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ABSTRACT

In the proposed work, the study of the underlying system consisting of major

inter-related components, viz. aquatic population, global warming, acidification,

eutrophication, pollutants and toxicants is carried out. The system is analysed and

studied by defining its borders, by distinguishing its major components, character-

izing the change in them by mathematical equations and then interconnecting the

representative equations in order to obtain a model of the original system. For the

proposed study, deterministic and dynamic mathematical models are constructed

using systems of ordinary differential equations in order to predict the changes in

the attributes of the inter-related objects of the system. The population growth

dynamics is modelled independently, taking into account the factors such as toxi-

city of water, rising temperature of water, pH of water, dissolved oxygen in water

etc. and then these models are used to predict the effects of toxicant concentration,

acidification and global warming on the process rates affecting the growth of an

aquatic organism.

Once the model is governed by differential equations, these equations are solved

assuming the initial positivity of all the state variables as initial conditions and

by using mathematical techniques related to the system of non-linear differential

equations. The system of differential equations constituting the models is ana-

lyzed using stability theory. The boundedness of all the solutions obtained and

the processes involved is checked using comparison principles. The local stability is

checked using Jacobian and Lyapunov’s method and the global stability is analysed

using Lyapunov function. Also, numerical solutions of the models are obtained by

using numerical techniques and MATLAB. For the models, the sensitivity anal-

ysis is also conducted in order to estimate the sensitivity of state variables with

respect to model parameters. Further, for the verification and validation of the

results/outcomes of the model, they are compared with the existing experimental

results and the available data in research papers related to our field in order to

verify that whether the model assembly really represents the functioning of the

system or not.
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The objective of the research work includes the study of:

1. Mathematical modelling on effects of water pollutants and toxicants on single

aquatic population.

2. Mathematical modelling on effects of water pollutants and toxicants on in-

teracting aquatic populations.

3. Mathematical modelling on combined effects of global warming and water

acidification on single aquatic population.

4. Mathematical modelling on combined effects of global warming and water

acidification on interacting aquatic populations.

In chapter 1, the general introduction about the aquatic population dynamics un-

der the effect of various anthropogenic stressors such as pollution, acidification,

global warming etc. has been given. The literature review section brings into

light, certain noteworthy works done by researchers in this field till date. In view

of the same, the research gaps have been identified and the objectives of the study

have been proposed. The important concepts, terms and mathematical prelimi-

naries used throughout the study have also been described in this chapter. The

chapter concludes with a summary of the chapters included in the thesis.

In chapter 2, the effect of increasing toxicity and acidity in water bodies on the

aquatic population dynamics is studied. A non-linear mathematical model hav-

ing variables as concentration of acid in water, concentration of toxicant in water,

concentration of dissolved oxygen in water and density of aquatic population (like

fish) has been proposed. Through stability analysis and numerical simulations, it

has been shown that the rising water toxicity and acidity are detrimental to the

growth and survival of the aquatic population. Sensitivity analysis is also carried

out for the model, which shows that both dissolved oxygen and aquatic population

are found to be sensitive and negatively dependent on the input rate of toxicant

and input rate of acid in water. Threshold value for dissolved oxygen is calculated

under the hypothetical numerical simulation values and the results obtained are
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validated with the results of previously available experimental and mathematical

studies in this field.

In chapter 3, the impacts of rising toxicants and acid components in water on the

resource i.e. dissolved oxygen, the prey population and predator population in

an aquatic ecosystem are studied by proposing a non-linear mathematical model.

Stability analysis for the model is carried out. It is shown that the prey popula-

tion decreases with rising toxicity and acidity level in water. Consequently, the

predator population which is dependent on prey population for its food also ex-

hibits a decline in its density with rising toxicity and acidity. Moreover, from the

sensitivity analysis, it is further observed that dissolved oxygen and predator pop-

ulation are sensitive and negatively dependent on input rate of toxicant in water.

Oscillatory behaviour is observed for prey and predator populations on increasing

the assimilation rate above the value 1.28. The results obtained from the model

analysis and numerical simulations are validated by comparing them with results

of previously available studies.

In chapter 4, the effects of rising level of carbon emissions and the rising acidity on

concentration of dissolved oxygen in water are studied. A non-linear mathemati-

cal model consisting of variables as concentration of carbon in water, pH level of

water, density of algal population and concentration of dissolved oxygen in water

is proposed and analyzed. Results of stability analysis and numerical simulations

carried out for the model show that under the simultaneous effects of increased

carbon emissions and acid in water, the oxygen level in water will decrease more

rapidly than under the single effect of each factor. With increase in natural de-

cay rate of algal bloom to h= 8.893 and above, the system bifurcates to a stable

limit cycle periodic solution and Hopf bifurcations are observed. The results of our

study are supported by study done by Chakraborty et al. 2017. Also, threshold

values for input rate of carbon in water and input rate of dissolved oxygen in water

have been calculated for the model.

In chapter 5, a mathematical model consisting of non-linear differential equations

is formulated, to study the impact of global warming, increased carbon emissions

and increased algal bloom growth on the level of dissolved oxygen in water. Lo-

cal and global stability analysis is done for the model. Numerical simulations are
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carried out using MATLAB. It is observed that with rise in global warming and

carbon emissions, the dissolved oxygen concentration exhibits a decline. A thresh-

old level for carbon input is proposed, above which the survival of species in an

aquatic ecosystem may not be possible due to development of hypoxic conditions.

In chapter 6, a non-linear mathematical model is proposed to study the hazardous

consequences of the growing plastic pollution on aquatic ecosystem and the im-

pact of this menace on the dissolved oxygen in water, in the presence of already

existing environment stressors such as global warming and eutrophication. The

results of the model analysis suggest that interplay between the anthropogenic

stressors i.e. plastic pollution, global warming and eutrophication is much more

detrimental to aquatic ecosystem rather than the single effect, as these factors

may lead to deficiency of dissolved oxygen pushing the system towards a state of

hypoxia. Sensitivity analysis for the model is also carried out which shows that

the water temperature increases with rising greenhouse gases and also shows that

the increasing rates of eutrophication promote high algal growth in water which

in turn results in decreased oxygen levels in water. It is suggested that certain

methods to control the environment stressors have to be devised at the earliest,

especially focusing on waste disposal and treatment before their inlet in the water

bodies.

In chapter 7, a non-linear mathematical model is proposed to study the impact of

inflating level of carbon emissions which is contributing towards global warming,

and water acidification on the algal bloom population and aquatic populations

like fishes which are dependent on dissolved oxygen for their survival. Stability

analysis and numerical simulations performed using MATLAB for the proposed

model, reveal that the unprecedented rise of carbon emissions, water temperature

and water acidity can create a hypoxic situation, if not controlled timely which in

turn will hamper the oxygen-dependent population species residing in the aquatic

bodies. It is also observed that with the increase in rate of algal decomposition (h)

to 0.952 and above, the system bifurcates to a stable limit cycle periodic solution

and Hopf-bifurcations are observed.

In the end, the problems undertaken for investigation in this study have been

justified by a bibliography given in the concluding part of the thesis.
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Chapter 1

General Introduction

1.1 Introduction

Aquatic ecosystem is a discrete unit having well-defined boundaries, energy sources,

certain abiotic components and a group of interacting organisms which constantly

interact among themselves as well as their surrounding environment leading to

transfer of energy within the ecosystem. It is basically a water-based ecosystem.

Aquatic ecosystem can be further categorized as Fresh water ecosystems and Ma-

rine ecosystems. Lake ecosystem and river ecosystem are examples of freshwater

ecosystems. Marine ecosystems constitute about 97% of the water on Earth. These

include the organisms which live in oceans or sea. These can be found in the depths

of ocean floor, near the sea or ocean surface as well as on the ocean surface. Coral

reefs, mangroves, estuaries, and deep-sea vent communities are examples of ma-

rine ecosystems. An aquatic ecosystem are home to various types of species which

include aquatic plants (also referred to as hydrophytes) such as ferns and sea-

weeds, aquatic vertebrates like fishes, whales, cords, sharks etc., organisms such as

shrimps, crayfish and other crustaceans, amphibians, reptiles, bacteria and other

micro-organisms. Abiotic components such as sand, silt etc. also form a part of

the aquatic ecosystem.

The scientific study of populations having marine habitat is called marine ecol-

1
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ogy which is basically a subset of marine biology and includes observations at the

individual and community levels combined with the study of aquatic ecosystems.

This includes the study of structure, efficiency of marine food webs, the functional,

structural relationships within a species, among organisms of different species and

takes into accounts their interactions with the physical and chemical environments

as well.

Population can be explained as an assembly of identical community members which

live together under a homogeneous environment. The marine ecosystems have a

diverse collection of populations, some of which are given below:

• Benthic organisms which are the organisms that live at the bottom and are as-

sociated with activities like crawling and burrowing, for example, mollusks, small

gastropods, crabs etc.

• Pelagic organisms i.e. the organisms swimming or drifting in water, for example,

Blue whale, red tuna crabs etc.

• Plankton species, which are not able to swim against the ocean currents, e.g.,

dinoflagellates, jellyfish, algae etc.

• Nekton species which can able to against the ocean currents, for example, lob-

sters, scallops etc.

A series of continuous interactions and interrelations exist among the different pop-

ulations present in an aquatic ecosystem as well as between the population and

the abiotic environmental factors. The interactions can be of various types, some

of them are illustrated below:

• Mutualism: It is an interspecific connection between two living beings in the

aquatic system with advantage to both the partner individuals in interaction with

each other. Amid this connection, populations of each associating species develop,

survive, and reproduce at a larger rate within the sight of other interacting species.

• Competition: Where individuals of a species compete amongst one another or

with individuals of a different species for various resources like nutrition, space etc.

which in turn determines the diversity, profuseness, life cycles, distribution, and

health of a species. In this interaction each species is affected negatively.

• Predation: An organism which eats another living being for their sustenance is

called predator while the living being that is being eaten upon is named as prey.
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This sort of association between the prey and predator is known as predation.

• Commensalism: It is an interspecific connection between two life forms in the

ecosystem where one group of species benefits while the alternate species stays un-

affected. In this affiliation, for the most part a commensal can acquire supplements

from the host species for their living place, development, and movement whereas

the host remains unaffected.

• Amensalism: Any relationship existing between organisms of varied species

wherein one organism is destroyed or inhibited while the other organism is un-

affected.

The environment of a species in an ecosystem also plays a determining role in the

existence, growth, and survival of the species. It basically constitutes the physical

properties which directly or indirectly influence an organism and may affect many

natural processes like rate of reproduction, survival, or extinction of a particular

species in a habitat. In an aquatic ecosystem, the environment is majorly consist-

ing of water as the species reside and interact either inside or on the surface of

water. The influencing environmental factors can be abiotic such as heat, pH of

water, dissolved oxygen in water, dissolved carbon dioxide, nitrogen phosphates

etc. or, the affecting parameters can be biotic in nature such as other organisms

which live in and share the same habitat.

It is hard to exaggerate the role of marine biological communities (particularly

plankton communities) in impacting life on earth. Marine phytoplankton provides

a large portion of the total oxygen available by human and other living beings. The

activities of plankton populations are also contributing to global climate change.

In addition the ocean is a very important source of food for many nations. That

makes the study of marine ecosystems a primary task. Another part of the issue

concerns the issue of conserving nature and protecting biodiversity. The increasing

anthropogenic impact on marine ecosystems (such as waste disposal, increased car-

bon emissions and intensive fishing) has driven many ocean and marine ecosystems

to a dangerous state wherein many aquatic species are on the verge of extinction.

Despite substantial progress over the last decades, more comprehensive studies are

imperative.

The aquatic ecosystem influences human population in many vital ways. Potable
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water, water for industrial, commercial, and agricultural use etc. is obtained from

freshwater bodies. Marine ecosystems also act as a source for fertilizers, miner-

als, food, tourism avenues, transportation facilities etc. However, currently these

ecosystems are facing a threat from various activities such eutrophication and acid-

ification caused by discharge of agricultural, household, and industrial wastes in

water bodies. Human acts such as overfishing and hunting of exotic species as

well as increasing temperature of water due to global warming are also posing a

threat to the sustainability and diversity of these ecosystems. A variety of different

co-occurring stressors are likely to affect the ecology of deep sea ecosystems.

Globally, temperature and climatic conditions have exhibited notable changes in

recent years and recent studies foresee even more shifts in climate patterns due

to anthropogenic activities [1]. The anthropogenic activities are leading to a sub-

stantial inflation in the release of gases such as carbon dioxide in the earth’s at-

mosphere. The oceans are known to play a crucial role in buffering the impacts

of the global alterations due to human- driven activities by acting as the largest

active carbon sink by absorbing the carbon emissions and heat generated in the at-

mosphere. However, the magnified carbon emissions, increasing temperature and

inflated pollution rates of water are posing a threat to the functioning and sus-

tainability of the marine ecosystems as well as to the survival and productiveness

of the organisms and species in the ecosystems.

The variation of one of the most salient environmental factors i.e. Temperature

is found to have many important ecological effects. The oxygen production is

decreasing to accommodate the warming of oceans, which is leading to altered

plankton-oxygen dynamics and may prove fatal to the aquatic populations [2].This

shall also negatively affect the resource based Prey-predator system [3]. Along with

the increase of temperature, the anthropogenic activities are contributing to an in-

crease in pollution of water bodies due to the unchecked release of various kinds

of wastes such as agricultural and household effluents in aquatic bodies leading to

eutrophication and acidification of water. Global warming is found to further add

to the eutrophication process in lakes. These activities also lead to an increase of

nitrogen and phosphorus concentration in water which causes algae to grow rapidly

at a rate which the ecosystem is incapable of handling. This all is having catas-
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trophic consequences for biological species residing in water, a major effect being

the decrease of dissolved oxygen in water. Continuous decrease of dissolved oxygen

in water may lead to oxygen being present in quantity which is insufficient for the

fishes and other aquatic life to survive in water. The food web and community

structure are also being disturbed due to these changes [4, 5].

The increasing carbon dioxide concentration in environment, along with increas-

ing the temperature of water, is also leading to lowering of pH of seawater, thus

leading to oceanic acidification. The various anthropogenic stresses such as pol-

lution and climate changes are also exerting pressures on the coral reefs which is

leading to high mortality rates and mass bleaching of the coral reefs. This in turn

is disturbing the existing biodiversity of oceans. The impacts further extend to

coastal ecosystems due to increase of harmful algal blooms (HAB’s). These algal

blooms have been found to kill aquatic species such as fishes, contaminate sea food

by poisoning and altering the aquatic ecosystems, coastal tourism, the fisheries,

and human and other species health [6]. The changing climate dynamics especially

an increase in carbon emissions shall also impact the overall economic growth in

a negative way [8]. In research environments, modelling commonly serves purpose

such as integrating knowledge or the quantitative testing hypotheses and for mod-

elling, the system of interest needs to be described. In aquaculture and marine

sciences, the system of interest is commonly a marine organism for example, phy-

toplankton or zooplankton and very often a collection of interacting species for

example, a group of fishes, small fishes, and whales etc. It is found that few works

with mathematical modelling has been proposed in this direction.

The study of marine ecosystems is an increasingly significant issue. Often, how-

ever, field experiments seem either very expensive, or even impossible. A marine

ecosystem is a particularly complicated object from the point of a regular scientific

investigation, due both to multiple number of interacting aquatic species and the

complexity of the aquatic environment properties. That is one of the reasons why

the role of mathematical modelling in marine ecology is very important.

In view of the above, in the proposed study mathematical modelling on the aquatic

population under effect of toxicants like water pollutants, metals, nutrients such as

nitrogen, phosphorus etc. , the phenomenon of global warming and the combined
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effect of toxicants and global warming will be carried out. The mathematical mod-

elling in study of aquatic ecosystem shall be helpful in paving way and providing

guidance for future research. This study shall prove beneficial to carry out a quan-

titative study of the damage caused to organisms, their growth and survival in

presence of limiting factors such as pollutants and toxicants in water, reduction in

dissolved oxygen, temperature of water, acidification and eutrophication of water

bodies etc. The outcome of the proposed research work will help us to predict loss

of ecological diversity and quality loss due to the adverse effects of toxic chemicals

and temperature. The models proposed in the thesis shall also assess the effects of

increasing carbon emissions resulting in the temperature increase of water on the

growth dynamics of aquatic population and these will be used for designing and

exploring various decision policies at agricultural, regional and industrial scales.

System analysis and mathematical modelling supported analysis of a particular

water ecosystem will also help the experimentalists and marine biologists in de-

signing strategies to control yield and quality of marine bodies under reducing

factors such as toxicants in the form of toxic chemicals.

1.2 Literature Review

The work carried out by initial researchers in this field was mainly of theoreti-

cal, empirical, and statistical type. Gamo et al. [12] studied the temporal and

spatial variations in water characteristics of the Japan sea. Meyer et al. [8] were

among the early researchers to review the theoretical models to explore the im-

pacts of change in climate on freshwater ecosystems. They also identified certain

improvements that need to be made in the models to further improve the under-

standing of climate alterations in future. Hulme [9] discussed the various threats

of the climate change and explored various strategies, methodologies, and man-

agement strategies to tackle this problem. Research has shown that both abiotic

and ocean-based biological changes would be considerably more complex under

global climate change. Also, climate -induced changes are likely to be intensified

by synergistic effects between pressures such as overfishing and the temperature
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rise [10]. Mackenzie et al. [11] described the impact of climate change on the

fisheries management and the fish species of the Baltic sea using a regional – scale

climate– ocean modelling considering the factors of increased temperature and

salinity. Kundzewicz et al. [13] conducted a theoretical study of climate change in

Anthropocene and concluded that the climate change is likely to cause decline in

quality of freshwater, thus leading to its scarcity. The increasing temperatures also

posed threat to pursuit of sustainable development of the affected areas. Sokolova

and Lannig [14] conducted a review to understand the implications of the tem-

perature rise due to global warming and pollution by discharge of trace metals

in water bodies, on marine species. The scope for studying the effect of global

warming on freshwater bodies was further broadened by Vadadi-Fulop et al. [15],

who showed by theoretical ecological modelling that freshwater zooplankton exhib-

ited shifts in their distribution, abundance, structure, size spectra and phenology

to respond to the climate change. Their study further opened avenues for more

in-depth study of climate change effects on freshwater populations. Collins et al.

[16] conducted a theoretical study on the impact of the rising global warming on

the El Niño–Southern Oscillation (ENSO) and the Tropical Pacific Ocean.

Apart from the above-mentioned theoretical studies, many statistical and empiri-

cal studies have also been conducted to study the effect of increasing temperatures

on aquatic ecosystems. The climate change impact was statistically studied by

Hoegh-Guldberg [17] who proved that climate change was a fundamental factor in

causing aquatic ecological transformations and may lead to irreversible effects such

as species distribution alteration, changed dynamics of food webs, less ocean pro-

ductivity and greater probability of disease. Few researchers through their study

concluded that the physio–chemical characteristics of deep water may undergo rad-

ical changes under the climate change. Evidences for these observations were found

by empirical studies done in various water bodies such as study of Mediterranean

Sea by Danovaro et al. [18] and the study of the Baltic Sea by Carstensen et al.

[19]. Quere et al. [20] showed the weakening of Southern Ocean Carbon sink due to

the climate change resulting from recent human activities. Numerical experiments

conducted by Okunishi et al. [21] for pelagic fish ecosystem in the western North

Pacific revealed that the under the global warming scenario, the growth of fish in
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the key spawning area was slightly slower than under the present climatic condi-

tions. Through statistical work, they proved that carbon sink will be present as

long as atmospheric carbon dioxide exists but fraction of carbon emissions that the

ocean will be able to absorb shall decrease in capacity. Statistical studies by Ki-

bler et al. [22] also revealed that due to changes in water temperature, the growth

relationships of the aquatic species such as dinoflagellates will show a substantial

shift in their distribution and abundance. As per the empirical study conducted

by Deutsch et al. [23], climate shifts may lead to alteration of species ecologies

by reducing the metabolic index of the upper oceans by 20% globally and forcing

the metabolically viable habitats to contract pole ward. The relationship between

the process of global warming and effect of increase of carbon dioxide in atmo-

sphere was studied statistically by Specht et al. [24], in which it was demonstrated

that, if the concentration of carbon dioxide is doubled, the temperature of Earth

shall show an increase by 0.4 K. Gleckler et al. [25] also proved through their

statistical work that due to anthropogenic warming, heat uptake by the oceans

had doubled in the recent decades. This in turn led to warming of oceans and

subsequent loss of dissolved oxygen in a marine ecosystem. The increased carbon

dioxide concentration and the resulting rising acidity level of water threaten the

growth and early-life survival rates of larval-fish populations and hence lead to

perturbations in the ability of adult fish to adapt to surging carbon dioxide level

[26]. Sweetman et al. [27] through their study based on statistical observations

provided many vital effects of change of climate on the deep-sea benthic ecosys-

tems. According to the study, the main environmental variables expected to be

altered due to increasing carbon emissions were pH of water, dissolved oxygen in

water, temperature of water and food supply of benthic organisms. The increase of

carbon in atmosphere may lead to increase of ocean temperature by 1◦C and cause

decrease of the level of dissolved oxygen in water. This shall further impact the

food availability for aquatic species, alter the rates of predation and competition,

alter embryonic growth and survival rates of egg laying elasmobranches and lead

to early maturation of fishes resulting in slow population rates and long genera-

tion times. It was concluded from their study that increase in carbon emissions

shall characterize decrease of biodiversity and populations of flora and fauna in
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the oceanic seabed. Trolle et al. [28] analyzed in their experimental study that

uncertainties of land-use, eco-hydrological models and climate models in potential

aquatic ecosystem status predictions.

A few mathematical studies have attempted to explore the effect of global warm-

ing and rising water temperatures on the aquatic ecosystem. Dymnikov et al. [29]

stated various strategies to construct mathematical models for modelling climatic

changes and discussed main concepts regarding the mathematical aspects of cli-

mate theory. Hijmans and Graham [30] probed the feasibility of climate envelope

models for predication of species distribution pattern under the climatic variations.

Kellie-Smith and Cox [7] highlighted in their mathematical study that the changing

climate dynamics, especially an increase in carbon emissions shall also impact the

overall economic growth in a negative way. The mathematical study carried out

by Misra et al. [31] concluded that the rising level of Chlorofluoro Carbon (CFC)

is depleting the concentration of ozone in atmosphere and leading towards global

warming. The study also recognized the effects of increasing global warming on

survival level of two competing populations. To better understand the adverse ef-

fects of increasing carbon dioxide in atmosphere due to human activities, Shukla et

al. [32] proposed a non-linear mathematical model having six dynamical variables

which were concentration of atmospheric carbon dioxide, human population , ice

sheets mass, mean surface temperature and sea level and area of land submerged

in water. The model was analysed qualitatively and conditions for local and global

equilibriums were evaluated through Lyapunov’s method. It was shown that by

controlling the carbon emissions in atmosphere, melting of ice glaciers could be

minimized which would lead to stabilization of sea level, decrease of land submerg-

ing in water and consequently shall benefit the human population.

Another disastrous consequence of human – driven activities in Anthropocene was

found to be rise of quantity of pollutants and toxicants in water bodies. Muyibi et

al. [33] evaluated the consequences of economic advancement in Malaysia and the

challenges faced in enforcing the regulatory policies for control of water pollution.

Ahmed et al. [34] conducted a study on river Buriganga, Bangladesh and found

that the heavy metals accumulated in the shellfish and tropical fishes could have

carcinogenic health risks if consumed continuously and excessively by humans over
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a time period of 70 years. Halder and Islam [35] have discussed that the rising

water pollution is having devastating impact on human health wherein the hu-

mans are getting exposed to various health problems such as respiratory diseases,

anaemia, reproduction and childbirth problems, dengue, malaria, yellow fever etc.

The continuous exposure of aquatic species to the toxic metals and its uptake by

them poses many health risks to human population which consume these species,

especially fish [36]. Hamilton et al. [37] conducted a data-based study on the

adaptive capabilities of the fish in contact with the water pollutants, the effects

on their fitness and critically reviewed the lethal impacts of chemical spills on

the exposed wild fish population in water bodies. Zohra and Habib [38] deduced

from their study on fish populations of the Mediterranean Sea that heavy metal

contaminants and toxicants give rise to high risks towards the health of the fish

population. Corcoll et al. [39] studied the effects of Copper pollution at environ-

mental concentrations on marine microbial communities. Sadeq and Beckerman

[40] highlighted the chronic impact of sublethal heavy metal concentrations on

Cladocera Species and observed reduced growth and reproduction rate along with

delayed maturity in the population under the effect of these heavy metals. Study

conducted by Raja et al. [41] in the Adyar estuary of South India revealed that

chromium toxicity caused mass mortality of fishes. Wang et al. [42] carried out

an experimental study to bring forth the toxic effects of increased concentrations

of Silver (Ag) and Zinc (Zn) on organisms in freshwater bodies and recommended

optimal concentration of Silver and Zinc for protection of the freshwater ecosys-

tems.

One of the most dreadful anthropogenic activity in the last 60 years adversely

affecting the marine ecosystems worldwide is the rise in plastic production. The

plastic which at one time was viewed as just another pollutant has now emerged

as an omnipresent catastrophe and a major environmental threat worldwide. In

the aquatic ecosystems, besides the entanglement and ingestion of macro debris by

large vertebrates, the planktonic and invertebrate species ingest and accumulate

the microplastics and are further transferred and moved along food chains [43].

Vegter et al. [44] emphasized the need to plastic pollution in order to safeguard

the survival of marine wildlife and ensure the future survival of species in ocean and
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coastal habitats. Eerkes-Medrano et al. [45] reviewed the surfacing threats and

identified knowledge gaps by investigating the presence of microplastics in fresh-

water systems and the effect of the plastic pollution on the aquatic organisms.

The plastic nanoparticles which are transferred upwards through an aquatic food

chain cause brain disorders and behavioural impairments in aquatic zooplankton

especially fish [46].

Some mathematical works have attempted to stress the severity of the negative

effect of the pollutants entering in the water bodies on the marine biota. He

and Wang [47] mathematically analysed the behaviour over a long period of time

and criterial for extinction or survival of a population in a closed environment

contaminated with pollutants. The spatial dynamics for a system of nutrient-

phytoplankton where the phytoplankton is assumed to be affected by the toxins

is studied using a mathematical model by Chakraborty et al. [48]. Chakraborty

and Das [49] proposed a model for a system of two phytoplankton and one zoo-

plankton exhibiting a Holling type II functional response under the influence by

toxicity. They demonstrated that in order to achieve a sustainable ecosystem, an

ideal control strategy for toxic substances needs to be defined. Mathematical model

proposed by Kumar et al. [50] analysed the effect of toxicants on the deformity in

a biological population which could be applied to human population also. Bhatia

et al. [51] described a stage-structured bio-economic fishery model under toxicants

presence with harvesting having the control parameter as Taxation. An optimal

harvesting policy was proposed in their study using Pontryagins maximum princi-

ple. Tiwari et al. [52] conducted a mathematical study on the impact or organic

as well as inorganic pollutants on the fish population and highlighted that in order

to ensure the survival and life of fish population, restrictions need to be imposed

on release of pollutants in water bodies.

The rising carbon emissions and soaring amount of pollutants and toxicants en-

tering aquatic bodies is accelerating ocean acidification. McNeil and Matear [53]

showed from their empirical study that ocean acidification shall follow the increase

in anthropogenic carbon emissions. The lowered pH will impact the marine biolog-

ical species adversely; hence they raised the concern to stop the future acidification

of water by reducing the carbon emissions to atmosphere through activities such
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as fossil fuel burning. Guinotte and Fabry [54] attempted to review the effects of

rising acidification of oceans on marine organisms. Bijma et al. [55] proved by their

theoretical study, that the deadly appearance of the three risk factors in oceans

namely ocean warming, water acidity rise pushed the ecosystem towards deterio-

ration. Cripps et al. [56] revealed through their study that the ocean acidification

leads to decrease in growth rates and suppressed the reproductive scope in zoo-

plankton. The rising stress of ocean and coastal water acidification was studied by

Breitburg et al. [57] wherein they synthesized some discrete observations regarding

the concurrence of ocean acidification along with other environment co-stressors

like modifications in food webs, climatic changes, oxygen and productivity varia-

tions etc. Dixson et al. [58] and Jellison et al. [59] showed through their empirical

study that the acidification of water was disrupting the ability of organisms like

fishes and snails to detect predators. Ocean acidification has been found to sub-

stantially increase the toxicity response of two principle benthic species i.e. purple

sea urchins (Paracentrotus lividus) and mussels (Mytilus edulis) to a global coastal

contaminant (copper -0,1 µM) [60]. Nagelkerken et al. [61] predicted that the rise

in ocean acidification could lead to loss of marine biodiversity and low produc-

tivity. Elevation in carbon dioxide emissions could also lead to modifications and

alterations in the habitat of fish populations. Ocean acidification is also found to

boost the accumulation of Cadmium in bivalve species which can be latent risk

to sea food safety [62]. Qi et al. [63] showed by their statistical study that the

western Arctic Ocean was being rapidly acidified due to various human activities

like water transport and increase in carbon uptake by the oceans. Law et al. [64]

have attempted to review the devastating effects of water acidification on the vul-

nerability of calcifying organisms focussing on aquatic ecosystems of New Zealand.

The increasing carbon dioxide concentration, which is a major driver for acidifi-

cation of oceans and climatic disturbances, coupled with desalination can majorly

affect the micro planktonic food web [65]. Using a sample data, Mukherjee et al.

[66] studied the physiological responses of the freshwater fish populations under

the fluctuating acidity levels.

Recent researchers have also drawn attention towards the degradation of coral reefs

because of ocean warming and increased pollutants and consequent ocean acidifi-
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cation. Ocean acidification is causing irreversible losses to the to coral reef com-

munity and decreasing the abundance and growth of crustose coralline algae [67].

Buddemeier et al. [68] attempted to calculate the long-term effects of the future

temperature increase, ocean acidification and bleaching events on coral reefs using

a simulation model. Pandolfi et al. [69] found that the coral reefs are degrading

under the pressure of human-induced stressors such as climate change, overfishing

and pollution and maintaining the normal ecological and biological functioning of

these ecosystem is a massive global challenge. Munday et al. [70] highlighted that

the rising ocean acidification shall contribute towards emergence of behavioural

impairments in the reef fishes. Hughes et al. [71] have pointed out on the basis

of their experimental and empirical study that after the ill-effects of the pollution,

temperature increase was the second factor adding to stress on coral reefs. They

also identified prevailing challenges of sustaining coral reefs and ensuring normal

ecosystem functioning. Further a conceptual outline of framework was provided

which gave an insight to the options to be incorporated for the conservation and

restoration of coral ecosystems. The effect of ocean warming on coral reefs was

further studied empirically by DeCarlo et al. [72] wherein it was concluded that

an increase of 2◦C ocean temperatures led to mass coral bleaching and mortality.

These increased death rates of Coral reefs could have devastating consequences in

future and would impact coastal economies in a negative way greatly. The ocean

acidification shall lead to harmful influence on marine life such as causing bleach-

ing, decreased productivity and lower diversity of species in Coral reefs ,which was

proved through many statistical studies conducted by Anthony et al. [73], Enochs

et al. [74] and by Sunday et al. [75].

The aggravating global warming, pollution, eutrophication, and ocean acidification

is increasing the growth of Harmful Algal Bloom in water. Rabalais et al. [76]

showed through empirical studies that the Harmful algal blooms are increasing

manifold which can prove harmful for aquatic and water dependent populations.

The increased eutrophication under global change is thus likely to cause many

harmful impacts such as poor water quality, loss of habitat, biodiversity loss and

boom in harmful algal blooms. Hallegraeff [77] predicted a rise in harmful algal

bloom and secondary negative effects on the marine food webs because as a result
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of global climate mutations. Fu et al. [6] concluded from their study that the

harmful algal growth which is increasing due to global climate change is detri-

mental to both the aquatic and human population. Glibert et al. [78] used a

global modelling approach to study the impacts of harmful algal blooms to coastal

ecosystems. Through a statistical model, they proved due to the sudden increase

in frequency and magnitude of algal blooms due to increasing temperatures, detri-

mental effects on aquatic life have been seen and these warming conditions have

caused contamination of seafood with toxins and disrupted the functioning of the

ecological processes of the ecosystem. These findings received support by McCoy

and Pfister [79] and Gobler et al. [80], who through their experimental study

put forward the finding that intensification of harmful algal bloom due to global

warming was leading to an increased human health threat and concern. Snickars

et al. [81] determined the changes in distribution and availability of zoobenthos

and benthic-feeding fish under the effects of climate changes, salinity level and eu-

trophication. The growth of algal bloom leads to decrease in the dissolved oxygen

level of water because the decomposition process of algal blooms uses the dissolved

oxygen and can create a hypoxic situation. The fish kill event witnessed in 2002 in

the coastal waters of Bolinao, Pangasinan, Philippines was attributed to increased

eutrophication and algal bloom growth which led to drop of dissolved oxygen level

below 2.0 mg/L [82].

Pal et al. [83] proposed a mathematical model to show that phytoplankton-

zooplankton persist in case the maximum ingestion rate becomes more than thresh-

old value. They proved that under high nutrient concentration, algal bloom in-

creased in growth. The growth of algal blooms in water due to nutrient discharge

in form of agricultural and domestic wastes was deduced from mathematical study

conducted by Shukla et al. [84]. Their model considered the combined interac-

tions of algal population density, concentration of nutrients, detritus density and

concentration of dissolved oxygen in the water. Through equilibria analysis it was

found that with increase in eutrophication, the rate of algal blooms had increased.

Shukla et al. [85] proposed a nonlinear mathematical model to study the simulta-

neous effect of eutrophication and water pollutants on the level of dissolved oxygen

in water bodies and showed that under the individual effect of either of the two
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factors, the dissolved oxygen level was greater as compared to the dissolved oxygen

when these two factors operate together in a water body. Misra et al. [86] proposed

a mathematical model to mitigate the burgeoning algal bloom growth through cre-

ating awareness among the farmers to reduce agricultural run-off in surrounding

water bodies such as lake and adopt is as a remedial measure to stop this aquatic

catastrophe. Nie et al. [87] presented a resource competition model to study two

algal species in the presence of uncurbed and excess rising atmospheric carbon

dioxide concentration. Wolkowicz and Yuan [88] developed a mathematical model

to study the effect of light on the nitrogen fixing and non-nitrogen fixing phyto-

plankton population. Jiang et al. [89] mathematically analysed a system of toxin

producing phytoplankton along with zooplankton under the effect of harvesting

with Holling III functional response. In the mathematical study conducted by Yu

et al. [90], they considered a nutrient-plankton model along with toxin-producing

phytoplankton and emphasized that the toxin-producing phytoplankton and fluc-

tuations in the environment play an important role in ending algal blooms. Zhang

et al. [91] described a mathematical model consisting of coupled system of partial

and ordinary differential equations to study the interplay among pelagic algae,

benthic algae and nutrient in a shallow aquatic ecosystem. Mandal et al. [92],

in their mathematical study emphasized that in order to maintain the stability

of a phytoplankton-zooplankton system, there is dire need to control the rate of

input of environmental toxins like chemicals pesticides etc. into the water bodies.

Warming waters, increasing ocean acidification and pollution was disorienting and

creating chaos in growth and survival of marine species which was shown by sta-

tistical data analysis conducted by various researchers such as Guinotte and Fabry

[54], Cripps et al. [56], Mearns et al. [93], Munday et al. [70], and Tembo [94].

Serafy and Harrell [95] documented some laboratory and field observations with

regard to the behavioural responses of freshwater fish assemblages to high pH and

dissolved oxygen levels.

One of the alarming consequences of the damage caused to marine ecosystems

by the climate change was the decreasing content of oxygen in water due to the

increasing temperature. This was pointed out in the statistical studies done by

various researchers such as Joos et al. [96] and Stramma et al. [97]. Nurnberg [98]
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proposed the concept of the Hypoxic Factor for quantifying the dissolved oxygen

concentration in lakes and reservoirs. A decrease of 1 to 7% in global oxygen con-

centration is predicted by the ocean models as a result of ocean warming leading

to adverse effects on productivity and habitat for marine species [99]. Foley et al.

[100] conducted an essential data study over a time span of 40 years (1968–2008)

and highlighted the negative consequences on dissolved oxygen concentration in a

lake in a long-time response to eutrophication and climatic changes. Decrease in

dissolved oxygen concentration leading to hypoxia has been associated with trans-

generational reproductive impairments in species such as fishes [101]. Modification

in ocean ventilation rates and deoxygenation are vital ecological and biogeochemi-

cal implications of climate change [102]. The prediction of decline in oxygen content

in oceans was also proved by Schmidtko et al. [103] in their empirical work on the

available data of oceans. Through their work they proved that the global oxygen

content has deteriorated in the past five decades which could in turn affect the

marine habitats and populations, nutrient cycles, fisheries, and coastal economies.

The models proposed also predicted a 25% more decline in oxygen content than

the currently observed trend due to anthropogenic warming which may lead to

harmful impacts on ocean dynamics.

Few researchers have undertaken mathematical studies in the past to understand

the decreasing amount of dissolved oxygen in water under the effect of various fac-

tors such as increased temperature, toxicity, eutrophication, acidification of water

etc. and subsequent effect of the phenomenon on the aquatic ecosystem. A math-

ematical study on effect of discharging pollutants such as industrial and household

organic wastes in water bodies and consequent dissolved oxygen depletion was

carried out by Misra et al. [104] by proposing a non-linear mathematical model

incorporating the variables of pollutants, population and level of dissolved oxy-

gen. It was concluded in their study that with acceleration in discharge rate of

pollutants in water body, the equilibrium level of oxygen exhibits a decreasing

trend. This can threaten the survival of various species living in water bodies.

Survival of aquatic biotic species in polluted water was further studied mathe-

matically by Shukla et al. [105]. The study was conducted on a food chain and

modelled using the parameters of pollutant concentration, biological population,
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bacteria concentration, dissolved oxygen density of protozoa. Through stability

analysis and numerical example, it was demonstrated that when the discharge of

pollutants is made at very large rates, the dissolved oxygen content will decrease

and threaten the survival of biological species living in water. The simultane-

ous effect of eutrophication and pollutants was studied by Shukla et al. [85] by

proposing a mathematical model which considered six parameters. The variables

taken were concentration of nutrients, pollutants, bacteria density, density of al-

gae, detritus, and oxygen. Equilibrium and stability analysis for the model was

conducted which showed that the combined simultaneous occurrence of water pol-

lution and eutrophication decreases the dissolved oxygen more as compared to a

single effect thus threatening the survival of oxygen dependent species in water.

Khare et al. [106] observed from their mathematical study of impact of decreasing

dissolved oxygen on the survival and extinction of the biotic species such as in-

teracting zooplankton and phytoplankton. They showed that with the occurrence

of deficiency of dissolved oxygen in water on account of eutrophication caused in

Anthropocene, the density of phytoplankton and zooplankton was also depleted.

Kalra and Shreya [107] formulated a mathematical study to examine the simul-

taneous effects of acidity and toxicity on the aquatic populations like fishes and

concluded that rising toxicity and acidity lead to depriciation in oxygen level in

water and hence hamper survival of aquatic population. The altering dynamics of

oxygen depletion and its consequent effect on plankton population due to global

warming was studied by Sekerci and Petrovskii [2]. They developed a mathemati-

cal model having variables as oxygen concentration and density of zooplankton and

phytoplankton in water. Through steady state analysis and numerical simulations,

they found out that a large amount of warming may lead to a stage resulting in

absolute depletion of dissolved oxygen. Bharathi et al. [108] discussed a mathe-

matical approach to evaluate the impacts of increasing toxicity and pollutants in

the marine habitats. The increasing acidity of water and its subsequent effect on

the phytoplankton and fish population was studied and criteria for extinction or

survival of the phytoplatonic and fish population were obtained. The fact that fish

population shall lead to extinction on account of decrease of oxygen due to an-

thropogenic activities was further supported by mathematical study of Misra and
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Chaturvedi [109]. They proposed a novel mathematical model which studied the

depletion of dissolved oxygen in water bodies and the fate (survival/extinction) of

fish population with nutrient loading i.e. with input of phosphorus and nitrogen in

water body due to anthropogenic activities. It was shown that population of fish

shall tend to extinction, in case the concentration of dissolved oxygen was reduced

below threshold level as specified in their study. Venturino et al. [110] gave a

mathematical study which concluded that the industries and human population

destabilize a water body located near a city, by overburdening it with pollutants

and effluents which decrease the amount of oxygen in the water body.

1.3 Proposed objectives of the study

In view of the above therefore, in the proposed study mathematical modelling on

the aquatic population under the effects of toxicants and global warming will be

carried out. The objective of the research work includes the study of:

1. Mathematical modelling on effects of water pollutants and toxicants on single

aquatic population.

2. Mathematical modelling on effects of water pollutants and toxicants on in-

teracting aquatic populations.

3. Mathematical modelling on combined effects of global warming and water

acidification on single aquatic population.

4. Mathematical modelling on combined effects of global warming and water

acidification on interacting aquatic populations.

1.4 Main terms used in Thesis

1. Population: [111] A number of individuals of the same species living and

breeding in a specific area.



1.4 Main terms used in Thesis 19

2. Predator: [112, 113] An animal that captures and kills another animal (the

Prey) in order to eat it. The predator attacks prey and reduces its growth.

A predator that is at the top of the food chain is often called a top predator.

Top predators are often Keystone Species: if their populations are healthy,

it is a good indication that the ecosystem as a whole is in a healthy state,

because the rest of the food chain must be in a healthy enough state to

support it.

3. Prey: [113] An organism that is likely to be killed and eaten by a Predator.

4. Food Chain: [111] A series of organisms that pass energy and minerals from

one to another as each provides food for the next. The first organism in the

food chain is the producer and the rest are consumers.

5. Food Web: [111] A series of food chains that are linked together in an

ecosystem.

6. Interaction: [111] A relationship between two or more biological organisms

or species.

7. Stability: [111] The situation where the number of individuals in a popula-

tion or the level of a resource quickly returns to its original value following

a disturbance.

8. Stress: [111] A condition where an outside influence changes the composition

or functioning of something.

9. Toxicant: [111] Referring to a substance that is poisonous or harmful to

humans, animals or the environment.

10. Pollute: [111] To discharge harmful substances in unusually high concen-

trations into the environment.

11. Eutrophication: [111] The process by which water becomes full of phos-

phates and other mineral nutrients which encourage the growth of algae

andkill other organisms.
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12. pH: [111] pH gives the measurement of the acidity for a solution. It is calcu-

lated as the negative logarithm of the hydrogen ion concentration, measured

on a scale from 0 to 14.

13. Acidification: [111] The process of becoming acidic or of making a sub-

stance more acidic.

14. Bifurcation: [114] “A bifurcation occurs when a small smooth change made

to the parameter values (the bifurcation parameters) of a system causes a

sudden “qualitative” or topological change in its behavior”.

1.5 Mathematical Preliminaries

1.5.1 Autonomous and non-autonomous system [115]

“Let x(t) be vector valued function defined by

x(t) =


x1

x2

x3

:
:

xn(t)

 = col(x1(t), x2(t). . . . . . . . . .xn(t))

and f be vector valued function given by

f(t, x) =


f1(t, x1, x2, ...xn)
f2(t, x1, x2, ...xn)

:
:

fn(t, x1, x2, ...xn)

 = col(f1(t, x), f2(t, x). . . . . . . . . .fn(t, x))

then the system
dx

dt
= f(t, x) (1.1)

with initial condition x(t0) = x0 is a non-autonomous system. A differential equa-

tion of the form
dx

dt
= f(x) (1.2)
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with initial condition x(t0) = x0 in which right hand does not involve independent

variable t, is said to be autonomous system.”

1.5.2 Equilibrium point [115]

“Consider a system of first order differential equations of the form

x
′
1 = f1(t, x1, x2, ...xn)
x
′
2 = f2(t, x1, x2, ...xn)

...
x
′
n = fn(t, x1, x2, ...xn)

where f1, f2, ...fn are n given functions in some domain B of (n+1)-dimensional

Euclidean space Rn+1 and x1, x2, ...xn are n unknown functions. A set of n - func-

tion φ1, φ2...φn defined on I is said to be solution of equation (1.1) on I if for t ∈ I,

(i) φ
′
1(t), φ

′
2(t)...φ

′
n(t) exist.

(ii) The point (t, φ1(t), φ2(t)...φn(t)) remain in B; and

(iii) φ
′
i = fi(t, φ1(t), φ2(t)...φn(t)), i = 1, 2...n.”

1.5.3 Solution of differential system [115]

“Consider a system
dxi
dt

= fi(x1, x2, ..., xn) (1.3)

A point x∗ = (x∗1, x
∗
2, ...x

∗
n), is called a positive equilibrium of equation (1.3) if

(i) x∗ > 0,

(ii) fi(x
∗
1, x
∗
2, ...x

∗
n)=0 hold for all i=1,2,...n.”
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1.5.4 Definitions of Stability [115]

Definition 1.5.4.1. [115] “The solution x(t) of system (1.1) is said to be stable if,

for each ε > 0 there exist a δ = δ(ε) > 0 such that for any solution x̄(t) = x(t, t0, x̄0)

of system (1.1), the inequality ‖ x̄ − x0 ‖< δ implies ‖ x̄(t) − x0(t) ‖< ε for all

t ≥ t0.”

Definition 1.5.4.2. [115] “The solution x(t) of (1.1) is said to be asymptotically

stable if it is stable and if there exist a δ0 > 0 such that ‖ x̄ − x0 ‖< δ0 implies

‖ x̄(t)− x0(t) ‖→ 0 as t→∞”.

Definition 1.5.4.3. [115] “The solution x(t) of (1.1) is said to be unstable if it is

not stable.”

1.5.5 Hurwitz Theorem [115]

“Necessary and sufficient condition for the negativity of real parts of all the roots

of polynomial P (λ) = λn+a1λ
n−1 +a2λ

n−2 + ...+an−1λ+an, with real coefficients

the positivity of all the principle diagonals of the minors of the Hurwitz matrix

Hn =


a1 1 0 0 0 0 0 ... 0
a3 a2 a1 1 0 0 0 ... 0
a5 a4 a3 a2 a1 0 0 ... 0
...

...
...

...
...

...
... ...

...
0 0 0 0 0 0 0 ... an


Principal diagonals of Hn, for n=1,2,3,— are given by

D1 = |a1| , D2 =

∣∣∣∣ a1 1
a3 a2

∣∣∣∣ , ..., Dn = det(Hn).

In the case of second, third and fourth degree polynomials, the Hurwitz conditions

can be written as follows:

(i) For P (λ) = λ2 + a1λ+ a2, the Hurwitz condition are a1 > 0, a2 > 0.

(ii) For P (λ) = λ3 + a1λ
2 + a2λ+ a3, the Hurwitz condition are

a1 > 0, a2 > 0, a3 > 0 and a1a2 − a3 > 0.
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(iii) For P (λ) = λ4 + a1λ
3 + a2λ

2 + a3λ+ a4, the Hurwitz condition are

a1 > 0, a2 > 0, a3 > 0, a4 > 0, and a1a2a3 − a2
3 − a2

1a4 > 0.”

Theorem 1.5.1. [115] “If all the characteristic roots of A have negative real parts,

then every solution of
dx

dt
= Ax

, where A = (aij) is a constant matrix, is asymptotically stable.”

Theorem 1.5.2. [115] “If all the characteristic roots of A with multiplicity greater

than one have negative real parts and all its roots with multiplicity one have non

positive real parts, then all the solution of system dx
dt

= Ax are bounded and hence

stable.”

1.5.6 Liapunov’s Second Method of Stability [115]

“The following system of an autonomous differential equation is of the form

dx

dt
= f(x) (1.4)

where, f ∈ C[Rn, Rn], x = (x1, x2, ..., xn), f = (f1, f2, ..., fn), x(t0) = x0, t ∈
[t0,∞). Assume that f is a smooth enough to ensure the existence and unique-

ness of the solution of (1.4). Let f(0) = 0 and f(x) 6= 0 for x 6= 0 in some

neighbourhood of the origin so that (1.4) admits the so called zero solution (x =

0) and the origin is an isolated critical point of (1.4).

Let Ω be an open set in Rn containing the origin. Suppose V (x) is a scalar continu-

ous function (i.e., a real-valued continuous function in the variables (x1, x2, ..., xn)

defined on Ω. For the sake of easy geometrical interpretation, we shall use the

Euclidean norm,

‖ x ‖2
e= x2

1 + x2
2 + ...+ x2

n

in our discussion. For convenience, we shall drop the subscript e.”

Definition 1.5.6.1. [115] “A scalar function V (x) is said to be positive definite

on the set Ω if and only if V (0) = 0 and V (x) > 0 for x 6= 0 and x ∈ Ω.”
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Definition 1.5.6.2. [115] “A scalar function V (x) is called positive semidefinite

on the set Ω when V has the positive sign throughout Ω, except at points (include

the origin) where it is zero.”

Definition 1.5.6.3. [115] “A scalar function V (x) is negative definite (negative

semi-definite) on the set Ω if and only if -V (x) is positive definite (positive semi-

definite) on Ω.”

1.5.7 Sylvester’s Criterion [115]

“Let

V (x) = xTBx =
n∑

i,j=1

bijxixj, (1.5)

be a quadratic form with the symmetric matrix B = (bij) i.e. , bij = bji.

To test positive definiteness of V (x) in (1.5), we can apply the Sylvester’s criterion

which asserts that a necessary and sufficient condition for V (x) in (1.5) to be

positive definite is that the determinants of all the successive principal minors of

the symmetric matrix B = (bij) be positive, that is,

b11 > 0,

∣∣∣∣ b11 b12

b21 b22

∣∣∣∣ , ...,
∣∣∣∣∣∣∣∣∣
b11 b12 ... b1n

b21 b22 ... b2n
...

... ...
...

bn1 bn2 ... bnn

∣∣∣∣∣∣∣∣∣ > 0.

The derivative of V with respect to (1.4) is the scalar product given by

V ∗(x) = gradV (x).f(x),

V ∗(x) =
∂V

∂x1

f1(x) +
∂V

∂x2

f2(x) + ...+
∂V

∂xn
fn(x). (1.6)

It should be noted that if x = x(t) is any solution of (1.4), then by the chain rule

and from (1.6), we can obtain

d

dt
V (x(t)) =

∂V

∂x1

x′1(t) +
∂V

∂x2

x′2(t) + ...+
∂V

∂xn
x′n(t),



1.5 Mathematical Preliminaries 25

=
n∑
i=1

∂V

∂xi
fi(x(t)) = V ∗(x(t)).

Let Sρ be the set Sρ = {x ∈ Rn :‖ x ‖< ρ} and let R+ = [0,∞) and J =

[t0,∞), t0 ≥ 0. Suppose x(t) = x(t, t0, x0) is any solution of (1.4) with the initial

value x(t0) = x0 such that ‖ x ‖< ρ for x ∈ J . Also since (1.4) is autonomous, we

can further suppose, without any loss of generality, that t0 = 0.”

Theorem 1.5.3. [115] “If there exists a positive definite scalar function V (x)

such that V ∗(x) ≤ 0 on Sρ, then the zero solution of (1.4) is stable.”

Theorem 1.5.4. [115] “If there exists a positive definite scalar function V (x)

such that V ∗(x) is negative definite on Sρ, then the zero solution of (1.4) is asymp-

totically stable.”

Theorem 1.5.5. [115] “If there exists a scalar function V (x), V (0) = 0, such that

V ∗(x) is positive definite on Sρ and if in every neighbourhood N of the origin,

N ⊂ Sρ, there is a point x0, where V (x0) > 0, then the zero solution of (1.4) is

unstable.”

1.5.8 Comparison Principle [115]

“Consider the initial value problem

u′ = g(t, u), u(t0) = u0, (1.7)

where g ∈ C[Ω, R],Ω being on open set in R2. Let J1 = [t0, t0 + a), a > 0.

Let g ∈ C[Ω, R],Ω being on open set in R2, and let r(t) be the maximal solution

of (1.7) on J1. Also, let m(t) be a continuous function on J1 such that m(t0) ≤ u0

and (t,m(t)) ∈ Ω satisfying the differential inequality,

D+m(t) ≤ g(t,m(t)), t ∈ J1 (1.8)

Then, on the common interval of existence of m(t) and r(t), the inequality

m(t) ≤ r(t) (1.9)

holds.”
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1.5.9 Sensitivity Analysis

The sensitivity indices of state variables with respect to the parameters of the

model, help in the measurement of relative variation in variables with respect

to change in parameter values. These indices help to identify that how minor

changes in the value of parameters bring about variations in the value of state

variables. These indices therefore help in modelling process, designing of necessary

control strategies, and gives an insight of the overall behaviour of the proposed

mathematical model.

The normalized forward sensitivity index of a variable ‘Z’ depending on a parameter

‘u’ is given by the following expression [117]:

γZu =
∂Z

∂u
∗ u
Z

(1.10)

The results of sensitivity analysis prove to be more mathematically sound than the

simple variation in the parameter values.

1.6 Summary of the thesis

In the proposed work, the study of the underlying system consisting of major

inter-related components, viz. aquatic population, global warming, acidification,

eutrophication, pollutants and toxicants is carried out. The system is analysed and

studied by defining its borders, by distinguishing its major components, character-

izing the change in them by mathematical equations and then interconnecting the

representative equations in order to obtain a model of the original system. For the

proposed study, deterministic and dynamic mathematical models are constructed

using systems of ordinary differential equations in order to predict the changes in

the attributes of the inter-related objects of the system. The population growth

dynamics is modelled independently, taking into account the factors such as toxi-

city of water, rising temperature of water, pH of water, dissolved oxygen in water

etc. and then these models are used to predict the effects of toxicant concentration,

acidification and global warming on the process rates affecting the growth of an
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aquatic organism.

Once the model is governed by differential equations, these equations are solved

assuming the initial positivity of all the state variables as initial conditions and

by using mathematical techniques related to the system of non-linear differential

equations. The system of differential equations constituting the models is ana-

lyzed using stability theory. The boundedness of all the solutions obtained and

the processes involved is checked using comparison principles. The local stabil-

ity is checked using Jacobian and Lyapunov’s method and the global stability

iss analysed using Lyapunov function. Also, numerical solutions of the models

are obtained by using numerical techniques and MATLAB. For the models, the

sensitivity analysis is also conducted in order to estimate the sensitivity of state

variables with respect to model parameters. Further, for the verification and vali-

dation of the results/outcomes of the model, they are compared with the existing

experimental results and the available data in research papers related to our field

in order to verify that whether the model assembly really represents the function-

ing of the system or not.

In chapter 1, the general introduction about the aquatic population dynamics un-

der the effect of various anthropogenic stressors such as pollution, acidification,

global warming etc. has been given. The literature review section brings into

light, certain noteworthy works done by researchers in this field till date. In view

of the same, the research gaps have been identified and the objectives of the study

have been proposed. The important concepts, terms and mathematical prelimi-

naries used throughout the study have also been described in this chapter. The

chapter concludes with a summary of the chapters included in the thesis.

In chapter 2, the effect of increasing toxicity and acidity in water bodies on the

aquatic population dynamics is studied. A non-linear mathematical model hav-

ing variables as concentration of acid in water, concentration of toxicant in water,

concentration of dissolved oxygen in water and density of aquatic population (like

fish) has been proposed. Through stability analysis and numerical simulations, it

has been shown that the rising water toxicity and acidity are detrimental to the

growth and survival of the aquatic population. Sensitivity analysis is also carried

out for the model, which shows that both dissolved oxygen and aquatic population



1.6 Summary of the thesis 28

are found to be sensitive and negatively dependent on the input rate of toxicant

and input rate of acid in water. Threshold value for dissolved oxygen is calculated

under the hypothetical numerical simulation values and the results obtained are

validated with the results of previously available experimental and mathematical

studies in this field.

In chapter 3, the impacts of rising toxicants and acid components in water on the

resource i.e. dissolved oxygen, the prey population and predator population in

an aquatic ecosystem are studied by proposing a non-linear mathematical model.

Stability analysis for the model is carried out. It is shown that the prey popula-

tion decreases with rising toxicity and acidity level in water. Consequently, the

predator population which is dependent on prey population for its food also ex-

hibits a decline in its density with rising toxicity and acidity. Moreover, from the

sensitivity analysis, it is further observed that dissolved oxygen and predator pop-

ulation are sensitive and negatively dependent on input rate of toxicant in water.

Oscillatory behaviour is observed for prey and predator populations on increasing

the assimilation rate above the value 1.28. The results obtained from the model

analysis and numerical simulations are validated by comparing them with results

of previously available studies.

In chapter 4, the effects of rising level of carbon emissions and the rising acidity on

concentration of dissolved oxygen in water are studied. A non-linear mathemati-

cal model consisting of variables as concentration of carbon in water, pH level of

water, density of algal population and concentration of dissolved oxygen in water

is proposed and analyzed. Results of stability analysis and numerical simulations

carried out for the model show that under the simultaneous effects of increased

carbon emissions and acid in water, the oxygen level in water will decrease more

rapidly than under the single effect of each factor. With increase in natural de-

cay rate of algal bloom to h= 8.893 and above, the system bifurcates to a stable

limit cycle periodic solution and Hopf bifurcations are observed. The results of our

study are supported by study done by Chakraborty et al. 2017. Also, threshold

values for input rate of carbon in water and input rate of dissolved oxygen in water

have been calculated for the model.

In chapter 5, a mathematical model consisting of non-linear differential equations
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is formulated, to study the impact of global warming, increased carbon emissions

and increased algal bloom growth on the level of dissolved oxygen in water. Lo-

cal and global stability analysis is done for the model. Numerical simulations are

carried out using MATLAB. It is observed that with rise in global warming and

carbon emissions, the dissolved oxygen concentration exhibits a decline. A thresh-

old level for carbon input is proposed, above which the survival of species in an

aquatic ecosystem may not be possible due to development of hypoxic conditions.

In chapter 6, a non-linear mathematical model is proposed to study the hazardous

consequences of the growing plastic pollution on aquatic ecosystem and the im-

pact of this menace on the dissolved oxygen in water, in the presence of already

existing environment stressors such as global warming and eutrophication. The

results of the model analysis suggest that interplay between the anthropogenic

stressors i.e. plastic pollution, global warming and eutrophication is much more

detrimental to aquatic ecosystem rather than the single effect, as these factors

may lead to deficiency of dissolved oxygen pushing the system towards a state of

hypoxia. Sensitivity analysis for the model is also carried out which shows that

the water temperature increases with rising greenhouse gases and also shows that

the increasing rates of eutrophication promote high algal growth in water which

in turn results in decreased oxygen levels in water. It is suggested that certain

methods to control the environment stressors have to be devised at the earliest,

especially focusing on waste disposal and treatment before their inlet in the water

bodies.

In chapter 7, a non-linear mathematical model is proposed to study the impact of

inflating level of carbon emissions which is contributing towards global warming,

and water acidification on the algal bloom population and aquatic populations

like fishes which are dependent on dissolved oxygen for their survival. Stability

analysis and numerical simulations performed using MATLAB for the proposed

model, reveal that the unprecedented rise of carbon emissions, water temperature

and water acidity can create a hypoxic situation, if not controlled timely which in

turn will hamper the oxygen-dependent population species residing in the aquatic

bodies. It is also observed that with the increase in rate of algal decomposition (h)

to 0.952 and above, the system bifurcates to a stable limit cycle periodic solution
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and Hopf-bifurcations are observed.

In the end, the problems undertaken for investigation in this study have been jus-

tified by a bibliography given in the concluding part of the thesis.



Chapter 2

Study of Effects of Toxicants and
Acidity on Oxygen-Dependent
Aquatic Population: A
Mathematical Model

2.1 Introduction

The aquatic ecosystem influences human population in varied vital ways. Potable

water, water for industrial, commercial and agricultural use etc. are obtained from

fresh water bodies. Marine ecosystems also act as a source of fertilizers, miner-

als, food, tourism avenues, transportation facilities etc. However, currently these

ecosystems are under constant threat from various activities such as eutrophication

and acidification caused by intractable discharge of agricultural, household wastes

in water bodies. Industrial and metal pollution is threatening the existence of

aquatic communities [39, 40, 42]. The toxicity level of water is increasing manifold

due to rising pollutants. The increasing carbon dioxide concentration in environ-

ment is leading to lowering of pH of water, thus leading to water acidification [53].

As the environment of an aquatic species plays a determining role in the existence,

growth and survival of the species, hence the population dynamics of species in

31
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water is also altered by growing toxicity and acidity. Increasing water acidifica-

tion and pollution is responsible for disorienting and creating chaos in growth and

survival of aquatic species [34, 56, 36, 37, 66, 94, 38]. Experimental and mathemat-

ical studies have also supported that the resource and fish populations are sensitive

to the acidification and water pollution [108]. Increasing water toxicity has been

found to cause mass fish mortality [41]. These effects are also leading to decrease of

dissolved oxygen (DO) in water, which is one of the primary resources for survival

of aquatic population [86, 110]. Decrease in dissolved oxygen (DO) level leads to

decrease in water quality [35], death and reproductive impairments in fishes [101].

Increased rates of eutrophication and pollution also lead to steep increase in algal

blooms which further limit the level of dissolved oxygen in water [48, 118, 6]. A few

mathematical models exist which have studied the effect of toxicity and pollutants

on dissolved oxygen and subsequent effects on the phytoplankton and fish popula-

tion [106, 105, 84, 85]. Several mathematical studies [47, 104, 52] have highlighted

that the toxicant discharge rate must be controlled in order to avoid the situations

like hypoxia. The studies also show that the fish population shall lead to extinction

on account of decrease of dissolved oxygen caused by anthropogenic activities [109].

The mathematical studies conducted till now have focussed on individual effects of

increasing pollution, toxicant or acidity of water on aquatic population. However,

the combined effect of acidity and toxicants on the target population has not been

considered in the available studies. To focus on the combined effect of all these

damaging factors especially on primary favourable resource i.e. dissolved oxygen

in water and consequently on residing aquatic population like fishes, a non-linear

mathematical model is being proposed.

In this model, it is assumed that the toxicity of water is increasing from discharge

of metals, organic pollutants, inorganic pollutants, etc. into water bodies whereas

the rise in acidity can be attributed to two phenomena. One reason is the direct

discharge of industrial wastes, acids, chemicals in water and the second cause be-

ing the addition of carbon-rich pollutants in water. By carrying out analytical and

numerical analysis for the model, the conditions for survival of aquatic population

under the stress of toxicity and acidity are derived.



2.2 Mathematical Model 33

2.2 Mathematical Model

In this model, the aquatic population dynamics is studied by presuming that the

water toxicity and acidity is rising due to anthropogenic activities. It is assumed

that the acidity of water is increasing by two ways, one by direct input of acid

components in water and the second through the carbon present in the pollutants.

The latter results in formation of carbonic acid because the carbon reacts with

the dissolved oxygen in water, thus increasing acidity of water. The rising acidity

has grave consequences for aquatic populations. The incoming pollutants also

increase the toxicity level of water. This results in decrease of dissolved oxygen in

water which is assumed as the prime resource for survival of aquatic population.

Depletion of dissolved oxygen , thus, has critical negative effect on survival and

growth of aquatic population.

In view of the above, let A(µgL−1) and S(µgL−1) represent the concentration of

acid and toxicant in water, P(mgL−1) represent the density of aquatic population

like fish and let D0(mgL−1) denote the concentration of favourable resources i.e.

dissolved oxygen in water. The above mentioned notations are incorporated for

formulation of the model containing the system of non-linear differential equations

given as:

dA

dt
= p− b1A+ k1AS, (2.1)

dS

dt
= q − αS − k1AS, (2.2)

dP

dt
=

(
β11D0

β12 + P
− d1A

)
P −mP − δ1P

2, (2.3)

dD0

dt
= r − n1D0 − n2SD0 −

β11D0P

β12 + P
, (2.4)

where the initial conditions are given by:

A(0) > 0, S(0) > 0, P (0) > 0, D0(0) > 0.

The system parameters can be defined as follows:

p is the input rate of acid in water through various sources such as industrial
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wastes, acid rain etc. b1 is the rate at which the acid is washed out of the water

bodies in a natural way. The pollutants being uptaken by the water bodies due

to anthropogenic activities are potentially rich in carbon, leading to the increase

of acidity of water. This is represented by the term k1AS through a bilinear in-

teraction where k1 represents the rate of increase in water acidity due to increased

toxicant amount in water. q is the rate at which the toxicants and pollutants are

introduced in the aquatic ecosystem. α represents the depletion rate of the toxi-

cants and pollutants due to natural processes of toxicants draining out of the water

bodies, sedimentation or intake of these pollutants by various populations thriving

in the water bodies. β11 is the rate of consumption of favourable resource i.e. dis-

solved oxygen by the aquatic population and β12 is the half saturation constant.

The increasing water acidity has a negative consequences on growth of the aquatic

population denoted by the term d1AP where the rate of depletion of population on

account of increased acidity is represented by the parameter d1. m represents the

death rate of the population and the self-restricting rates of growth of population

is given by δ1. The input rate of favourable resource i.e. dissolved oxygen is given

by r. n1 is the natural depletion rate of dissolved oxygen. The rising toxicity

and high rate of eutrophication cause an increase in the algal bloom growth. The

decomposition of the increased organic matter in water uses the dissolved oxygen

which leads to scarcity of the oxygen in water. The utilisation of oxygen in the

decomposition process is given by the term n2SD0 ; where the term n2 represents

the decomposition rate of the algal biomass and the organic pollutants in water.

All the parameters p, k, b1, α, β11, β12, d1, n1, n2 and δ1 are assumed to be positive

constants.

In the following sections, we shall carry out the mathematical analysis of the

model given by eqs. (2.1)− (2.4).
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2.3 Dynamical Behaviour of Model

2.3.1 Boundedeness of Solutions :

Now, we shall show that the solutions of the mathematical model given by eqs.

(2.1)− (2.4) are bounded in the positive orthant R+
4 . The following lemma estab-

lishes the boundedness of solutions.

Lemma 2.3.1. All solutions of the model given by Eqs. (2.1)−(2.4) shall lie in the

region Fr where: Fr =
{

(A, S, P,D0)εR+
4 : 0 ≤ A+ S ≤ W1u, 0 ≤ D0 + P ≤ W2u

}
for all t → ∞ with positive initial values A(0), S(0), P (0), D0(0) where W1u =
p+q
γ

; γ = min(b1, α) and W2u = r
γ′

; γ′ = min(n1,m).

Proof. Consider the following function W1(t) given by :

W1(t) = A(t) + S(t).

From eqs.(2.1)− (2.2) and taking γ = min (b1, α) we obtain,

dW1(t)

dt
≤ p+ q − γW1(t).

Then, following the usual comparison theorem we obtain:

lim sup
t→∞

(W1, t) ≤
p+ q

γ
,

and hence,

A(t) + S(t) ≤ p+ q

γ
= W1u(t).

Let us now consider another function W2(t) given as:

W2(t) = P (t) +D0(t).

From eqs. (2.3)− (2.4) and taking γ′ = min(n1,m) we obtain

dW2(t)

dt
≤ r − γ′W2(t).
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Then, following the usual comparison theorem we obtain:

lim sup
t→∞

(W2, t) ≤
r

γ′
,

and hence,

P (t) +D0(t) ≤ r

γ′
= W2u(t).

This leads to the completion of the proof of lemma 2.3.1.

2.3.2 Positivity of solutions

Since the model given by eqs. (2.1) − (2.4) studies the dynamical behaviour of

aquatic population under the effect of increasing acidity and toxicity, hence it

becomes imperative to prove that the solutions exhibit positivity for all times.

Since the persistence of solutions is implied by positivity, hence the positivity of

solutions is shown by the following lemma.

Lemma 2.3.2. The solution of the model given by eqs. (2.1)− (2.4),

(A(t), S(t), P (t), D0(t)), with initial conditions, A(0) > 0, S(0) > 0, P (0) > 0,

D0 > 0, exhibits positivity for all time t > 0.

Proof. From eq. (2.1) we get,

dA

dt
= p− b1A+ k1AS,

dA

dt
≥ −b1A,

A ≥ h1e
−b1t,

where h1 is an integration constant.

Hence, A > 0 as t→∞.
Similarly, from eq. (2.2), we get,

dS

dt
≥ −(α + k1W1u)S,
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S ≥ h2e
−(α+k1W1u)t,

where h2 is an integration constant.

Hence, S > 0 as t→∞.
From eq. (2.3), we get,

dP

dt
≥ −(d1W1u +m+ δ1W2u)P,

P ≥ h3e
−(d1W1u+m+δ1W2u)t,

where h3 is an integration constant.

Hence, P > 0 as t→∞.
Similarly, from eq. (2.4), we obtain,

dD0

dt
≥ −(n1 + n2W1u + β11W2u)D0,

D0 ≥ h4e
−(n1+n2W1u+β11W2u)t,

where h4 is an integration constant.

Hence, D0 > 0 as t→∞.
This leads to completion of the proof of lemma 2.3.2.

2.3.3 Possible equilibrium points and existence conditions

Now, we find the equilibrium points for the given model defined by set of equations

(2.1)− (2.4). The model has the following three equilibrium points:

1. Population vanishing equilibrium point Ê(Â, Ŝ, 0, D̂0) where P̂ = 0 i.e.

when the toxicant and acid in the system increases to such a high level such that

the population tends towards extinction.

From eq. (2.1) we have,

Â =
p

b1 − k1Ŝ
. (2.5)

Â > 0 if b1 − k1Ŝ > 0. (2.6)

D̂0 =
r

n1 + n2Ŝ
. (2.7)
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Since Ŝ > 0, D̂0 > 0.

Ŝ is given as the positive root of the following quadratic equation ,

αk1Ŝ
2 − Ŝ(qk1 + αb1 + k1p) + qb1 = 0.

2. Interior Equilibrium Point E∗(A∗, S∗, P ∗, D∗0) : The values of

A∗, S∗, P ∗, D∗0 are given as:

From eq. (2.1) we have,

A∗ =
p

b1 − k1S∗
. (2.8)

A∗ > 0 if b1 − k1S
∗ > 0. (2.9)

D∗0 =
r(β12 + P ∗)

(n1 + n2S∗)(β12 + P ∗) + β11P ∗
. (2.10)

Since P ∗ > 0 and S∗ > 0 , hence D∗0 > 0.

S∗ is given as the positive root of the following quadratic equation ,

αk1S
∗2 − S∗(qk1 + αb1 + k1p) + qb1 = 0. (2.11)

P ∗ is given as the positive root of the following cubic equation,

P ∗3(δ1(n1 + n2S
∗) + β11δ1) + P ∗2(2δ1n1β12 + 2δ1n2β12S

∗ + d1n1A
∗

+d1n2A
∗S∗ +mn1 +mn2S

∗ + β11(δ1β12 + d1A
∗ +m) + P ∗(δ1β

2
12n1

+δ1β
2
12n2S

∗ + 2(d1A
∗β12n1 + β12n2d1A

∗S∗ +mn1β12 +mn2β12S
∗)

+β11(β12d1A
∗ +mβ12)− β11r) + (β2

12n1d1A
∗ +mn1β

2
12 +

n2d1β
2
12A

∗S∗ +mn2β
2
12S

∗ − β11β12r) = 0. (2.12)

The equation (2.12) will have at least one positive root if,

β2
12n1d1A

∗ +mn1β
2
12 + n2d1β

2
12A

∗S∗ +mn2β
2
12S

∗ < β11β12r (2.13)

3. Acid vanishing equilibrium Point Ĕ(0, S̆, P̆ , D̆0) i.e. Ă = 0.

The values of variables S̆, P̆ , D̆0 are given as:

S̆ =
q

α
. (2.14)
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From eq. (2.3) we get,

D̆0 =
r(β12 + P̆ )

(n1 + n2S̆)(β12 + P̆ ) + β11P̆
. (2.15)

Since P̆ > 0 and S̆ > 0 , hence D̆0 > 0.

P̆ is given as the positive root of the following cubic equation,

P̆ 3(δ1(n1 + n2S̆) + β11δ1) + P̆ 2(2δ1n1β12 + 2δ1n2β12S̆ +mn1 +mn2S̆

+β11(δ1β12 +m) + P̆ (δ1β
2
12n1 + δ1β

2
12n2S̆ + 2(mn1β12 +mn2β12S̆)

+β11β12m− β11r) + (mn1β
2
12 +mn2β

2
12S̆ − β11β12r) = 0. (2.16)

The equation (2.16) will have at least one positive root if,

δ1β
2
12n1 + δ1β

2
12n2S̆ + 2(mn1β12 +mn2β12S̆) + β11β12m < β11r (2.17)

Remark: The toxicant (S) in the system can not be taken as zero, as the external

input of toxicant cannot be completely nullified. Due to the multiple sources by

which the toxicant enters the system such as discharge of household, agricultural

or industrial wastes etc. in water, a certain amount of toxicant is always present

in the water bodies.

In the next section, the dynamical behaviour of the model shall be studied about

these equilibrium points in terms of local and global stability.

2.3.4 Local Stability

1. For population vanishing equilibrium point Ê(Â, Ŝ, 0, D̂0) : The vari-

ational matrix for system of eqs. (2.1)− (2.4) at population vanishing equi-

librium point Ê is given by ,
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M̂ =


−b1 + k1Ŝ k1Â 0 0

−k1Ŝ −α− k1Â 0 0

0 0
(
β11
β12
D̂0 − d1Â−m) 0

0 −n2D̂0 −β11D̂0

β12
−r
D̂0


The characteristic equation corresponding to variational matrix M̂ is

(λ+
r

D̂0

)(λ− β11

β12

D̂0 + d1Â+m)(λ2 + λ(b1 + α + k1Â

−k1Ŝ) + (αb1 − αk1Ŝ + k1b1Â)) = 0. (2.18)

The eigen values corresponding to characteristic equation of matrix M̂ are

given as:

λ1 = − r

D̂0

, λ2 =
β11

β12

D̂0 − d1Â−m (2.19)

λ3 and λ4 are obtained by solving the following quadratic equation:

λ2 + λ(b1 + α + k1Â− k1Ŝ) + (αb1 − αk1Ŝ + k1b1Â) = 0. (2.20)

Using Routh’s criteria, λ3 and λ4 will have non-positive real parts if,

b1 + α + k1Â > k1Ŝ, (2.21)

d1Â+m >
β11

β12

D̂0, (2.22)

and

αb1 + k1b1Â > αk1Ŝ. (2.23)

2. For acid vanishing equilibrium point: Ĕ(0, S̆, P̆ , D̆0) : The variational

matrix at acid vanishing equilibrium point Ĕ is given by,

M̆ =


Z1 0 0 0

−k1S̆ −Z2 0 0

−d1P̆ 0 Z3 Z4

0 −n2D̆0 Z5 −Z6
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where

Z1 = −b1 + k1S̆, Z2 = α, Z3 =
−β11D̆0P̆

(β12 + P̆ )2
− δ1P̆ ,

Z4 =
β11P̆

β12 + P̆
, Z5 =

−β11β12D̆0

(β12 + P̆ )2
, Z6 =

r

D̆0

.

The characteristic equation corresponding to variational matrix M̆ is given as :

(Z1 − λ)(−Z2 − λ)(λ2 + λ(Z6 − Z3)− (Z3Z6 + Z4Z5)) = 0. (2.24)

The conditions for the equilibrium state Ĕ to be asymptotically stable are given

by Routh-Hurwitz criteria as:

b1 > k1S̆,

Z6 − Z3 > 0,

−Z3Z6 − Z4Z5 > 0,

i.e.

b1 > k1S̆, (2.25)

r

D̆0

+
β11D̆0P̆

(β12 + P̆ )2
+ δ1P̆ > 0, (2.26)

(
β11D̆0P̆

(β12 + P̆ )2
+ δ1P̆

)(
r

D̆0

)
+

(
β11P̆

β12 + P̆

)(
β11β12D̆0

(β12 + P̆ )2

)
> 0, (2.27)

3. For interior equilibrium E∗(A∗, S∗, P ∗, D∗0): The variational matrix correspond-

ing to interior equilibrium E∗ is given by :

M∗ =


Z1 k1A

∗ 0 0
−k1S

∗ −Z2 0 0
−d1P

∗ 0 Z3 Z4

0 −n2D
∗
0 Z5 −Z6


where

Z1 = −b1 + k1S
∗, Z2 = α + k1A

∗, Z3 =
−β11D

∗
0P
∗

(β12 + P ∗)2
− δ1P

∗,
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Z4 =
β11P

∗

β12 + P ∗
, Z5 =

−β11β12D
∗
0

(β12 + P ∗)2
, Z6 =

r

D∗0
.

The characteristic equation corresponding to variational matrix M∗ is given as :{
λ2 + λ(Z6 − Z3)− (Z3Z6 + Z4Z5)

}
{λ2 + λ(Z2 − Z1)− Z1Z2

+k2
1A
∗S∗} = 0 (2.28)

By Routh Hurwitz criteria, the conditions for the equilibrium state E∗ to be asymp-

totically stable are obtained as :

Z6 − Z3 > 0,

−Z3Z6 − Z4Z5 > 0,

Z2 − Z1 > 0,

k2
1A
∗S∗ > Z1Z2.

Thus, the conditions for the equilibrium state E∗ to be stable are :

r

D∗0
+

β11D
∗
0P
∗

(β12 + P ∗)2
+ δ1P

∗ > 0, (2.29)

(
β11D

∗
0P
∗

(β12 + P ∗)2
+ δ1P

∗
)(

r

D∗0

)
+

(
β11P

∗

β12 + P ∗

)(
β11β12D

∗
0

(β12 + P ∗)2

)
> 0, (2.30)

k1A
∗ + α + b1 > k1S

∗, (2.31)

b1α + b1k1A
∗ > k1αS

∗. (2.32)

2.3.5 Global Stability

In this section, we shall establish the global stability of the model given by eqs.

(2.1)− (2.4). The following two theorems shall show the global stability:

Theorem 2.3.1. The box Fr is compact and positive invariant set in the space

(A, S, P,D0).
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Proof. Consider the system of equations given by (2.1) − (2.4). We consider a

box Fr in the phase space ASPD0 with one vertex at a point χ̄ = (Ā, S̄, P̄ , D̄0)

and the other vertex at the origin. The point χ̄ lies outside the box Fr with

Ā > Au,S̄ > Su,P̄ > Pu,D̄0 > D0u.

In order to prove the theorem, we shall first compute the upper bound for P. From

eq.(2.3) we get,

dP

dt
≤ β11W2uP − δ1P

2,

dP

P (G− δ1P )
≤ dt,

where

G = β11W2u,

and then by usual comparison theorem we get,

lim sup
t→∞

P (t) ≤ G

δ1

= Pu. (2.33)

Now, let
dw̄

dt
=

(
dA

dt
,
dS

dt
,
dP

dt
,
dD0

dt

)
.

We shall compute the angle of the flow with each face of the box Fr not lying in

the coordinate planes. Let v1, v2, v3 and v4 be the outward unit normal vectors to

the planes w1 : A = Ā, w2 : S = S̄, w3 : P = P̄ , w4 : D0 = D̄0 in reference to the

box Fr.

Then from eq. (3) we get,

v3
dχ̄

dt
|w3 =

(
β11D0

β12 + P̄
− d1A−m

)
P̄ − δ1P̄

2,

v3
dχ̄

dt
|w3 ≤

(
β11W2u − δ1P̄

)
P̄ −mP̄ .

Since

P̄ >
1

δ1

(β11W2u)



2.3 Dynamical Behaviour of Model 44

Table 2.1: Different initial values for variables A∗, S∗, P ∗, D∗0 of the model.

Variable 1st initial value 2nd initial value 3rd initial value 4th initial value
A 0.3 7 2 0.1
S 0.6 10 5 10
P 0.5 6 10 9
D0 0.8 17 22 0.5

therefore,

v3
dχ̄

dt
|w3 ≤ −mP̄ ,

hence

v3
dχ̄

dt
|w3 ≤ 0.

Similarly it can be proved that,

v1
dχ̄

dt
|w1 ≤ 0, v2

dχ̄

dt
|w2 ≤ 0, v4

dχ̄

dt
|w4 ≤ 0.

The above theorem makes it clear that the trajectories of the system given by

(2.1) − (2.4) will not cross Fr once they enter inside Fr. The interior equilibrium

E∗ is also observed to lie inside the Fr.

In the next theorem, we shall prove that E∗ is the only global attractor inside

Fr.

Theorem 2.3.2. The following inequalities should hold for the interior equilibrium

E∗ to be globally asymptotically stable:

(b1 − k1S)(α + k1A) > (k1S
∗ − k1A

∗)2,

(b1 − k1S)

(
β11D

∗
0

(β12 + P )(β12 + P ∗)
+ δ1

)
> d2

1, ,
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(α + k1A)

(
β11P

∗

β12 + P ∗
+ n2S

∗ + n1

)
> (n2D

∗
0)2,(

β11D
∗
0

(β12 + P )(β12 + P ∗)
+ δ1

)(
β11P

∗

β12 + P ∗
+ n2S

∗ + n1

)
>(

β11β12D0

(β12 + P )(β12 + P ∗)
− β11

β12 + P

)2

.

Proof. For showing the global stability of the equilibrium state E∗, assume the

following positive definite function:

Y =
1

2
(A− A∗)2 +

1

2
(S − S∗)2 +

(
P − P ∗ − P ∗ln P

P ∗

)
+

1

2
(D0 −D∗0)2 (2.34)

Differentiating the above equation w.r.t. ‘t’ we get,

dY

dt
= (−b1 + k1S)(A− A∗)2 −

(
β11D

∗
0

(β12 + P )(β12 + P ∗)
+ δ1

)
(P − P ∗)2

−(α + k1A)(S − S∗)2 −
(

β11P
∗

β12 + P ∗
+ n2S

∗ + n1

)
(D0 −D∗0)2

−d1(A− A∗)(P − P ∗) + (k1A
∗ − k1S

∗)(S − S∗)(A− A∗)

+

(
β11

β12 + P
− β11β12D0

(β12 + P )(β12 + P ∗)

)
(P − P ∗)(D0 −D∗0)

−n2D
∗
0(S − S∗)(D0 −D∗0),

dY

dt
= −[(b1 − k1S)(A− A∗)2 +

(
β11D

∗
0

(β12 + P )(β12 + P ∗)
+ δ1

)
(P − P ∗)2

+(α + k1A)(S − S∗)2 +

(
β11P

∗

β12 + P ∗
+ n2S

∗ + n1

)
(D0 −D∗0)2

+d1(A− A∗)(P − P ∗) + (k1S
∗ − k1A

∗)(S − S∗)(A− A∗) +(
β11β12D0

(β12 + P )(β12 + P ∗)
− β11

β12 + P

)
(P − P ∗)(D0 −D∗0)

+n2D
∗
0(S − S∗)(D0 −D∗0)],
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dY

dt
= −[a11(A− A∗)2 + a22(S − S∗)2 + a33(P − P ∗)2 + a44(D0 −D∗0)2

+a12(A− A∗)(S − S∗) + a13(A− A∗)(P − P ∗) +

a24(S − S∗)(D0 −D∗0) + a34(P − P ∗)(D0 −D∗0)]

where

a11 = (b1 − k1S), a22 = (α + k1A), a12 = k1S
∗ − k1A

∗,

a33 =
β11D

∗
0

(β12 + P )(β12 + P ∗)
+ δ1, a44 =

β11P
∗

β12 + P ∗
+ n2S

∗ + n1,

a13 = d1, a24 = n2D
∗
0, a34 =

β11β12D0

(β12 + P )(β12 + P ∗)
− β11

β12 + P
.

Sufficient conditions for dY
dt

to be negative definite obtained by Sylvester’s criteria

are:

a11a22 > a1
2
2, a11a33 > a1

2
3, a22a44 > a2

2
4, a33a44 > a3

2
4, (2.35)

i.e.

(b1 − k1S)(α + k1A) > (k1S
∗ − k1A

∗)2, (2.36)

(b1 − k1S)

(
β11D

∗
0

(β12 + P )(β12 + P ∗)
+ δ1

)
> d2

1, (2.37)

(α + k1A)

(
β11P

∗

β12 + P ∗
+ n2S

∗ + n1

)
> (n2D

∗
0)2, (2.38)

(
β11D

∗
0

(β12 + P )(β12 + P ∗)
+ δ2

1

)(
β11P

∗

β12 + P ∗
+ n2S

∗ + n1

)
>(

β11β12D0

(β12 + P )(β12 + P ∗)
− β11

β12 + P

)2

. (2.39)
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Table 2.2: Sensitivity Indices(γ) of A∗, S∗, P ∗, D∗0 at E∗ to parameters Zp.

Parameters(Zp) γA
∗

Zp
γS
∗

Zp
γ
D∗0
Zp

γP
∗

Zp

p 0.869 -0.22 -0.3 -0.459
b1 -1.38 0.351 0.478 0.732
k1 0.384 -0.351 -0.043 -0.066
q 0.512 0.864 -0.527 -0.808
α -0.382 -0.643 0.393 0.602
β11 0 0 -0.729 0.413
β12 0 0 0.043 -0.522
r 0 0 0.357 0.546
n1 0 0 -0.045 -0.07
n2 0 0 -0.359 -0.551
d1 0 0 0.456 -0.666
m 0 0 0.07 0
δ1 0 0 0.037 0
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Figure 2.1: Trajectories of the model with respect to time showing the stability
behaviour of interior equilibrium point E∗.

2.4 Numerical Simulation and Sensitivity Anal-

ysis

In order to support the analytical results derived for the system of equations given

by (2.1)− (2.4) numerical simulation is carried out in this section.
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Figure 2.2: Phase plane graphs at different values of initial conditions as given in
Table 1 showing the global stability behaviour.

Let us consider the below mentioned values of the model parameters:

p= 0.43 µgL−1day−1, b1 = 0.2day−1, q = 1.0µgL−1day−1, α = 0.1day−1,

k1 = 0.01Lµg−1day−1, β11 = 1.02day−1, β12 = 0.524mgL−1,

d1 = 0.7Lµg−1day−1,m = 0.19day−1, δ1 = 0.12Lmg−1day−1,

r= 12.56 mgL−1day−1, n1 = 0.33day−1, n2 = 0.34Lµg−1day−1. (2.40)
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Figure 2.3: Phase space graph for concentration of dissolved oxygen (D0) and
toxicant concentration (S).
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Figure 2.4: Phase space graph for concentration of dissolved oxygen (D0) and acid
concentration(A).

For these set of parametric values, the equilibrium values corresponding to interior

equilibrium point E∗ are A∗= 3.4258, S∗=7.4483, P ∗= 0.8406, D∗0=3.5984.

For the above mentioned set of parametric values, the feasibility and stability con-

ditions as given by eqs. (2.9, 2.13, 2.29 − 2.32, 2.36 − 2.39) are satisfied for the
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Figure 2.5: Phase space graph for density of aquatic population (P) and toxicant
concentration (S).
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Figure 2.6: Phase space graph for density of aquatic population (P) and acid
concentration(A).

interior equilibrium point E∗. The interior equilibrium point E∗ is found to be

asymptotically stable for these values as shown by fig. 2.1. Further, the numeri-

cal simulations are performed for illustration of the global stability of the interior

equilibrium E∗ for varying initial conditions as given in Table 2.1. The results
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Figure 2.7: Graph between dissolved oxygen (D0) and time t with increasing values
of q.
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Figure 2.8: Graph between population (P) and time t with increasing values of q.

are exhibited in the phase plane graphs for variables S-P, S-D0 , P-D0 and A-P

given by fig. 2.2. It is shown that all trajectories initiating from varying initial

conditions reach to the equilibrium value at E∗ with increasing time.

The results of sensitivity analysis prove to be more mathematically sound than the
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Figure 2.9: Graph between dissolved oxygen (D0) and time t with different values
of n2.
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Figure 2.10: Graph between dissolved oxygen (D0) and time t under increased
values of q and n2

simple variation in the parameter values. Hence, to examine the effect of all the

model parameters such as p, k, b1, α, β11, β12, d1, n1, n2 and δ1 on the concentration

of dissolved oxygen (D0) and the survival of target population (P), the sensitivity

analysis has been carried out at the interior equilibrium point E∗. The sensitivity
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Figure 2.11: Graph between Population (P) and time t under increased values of
q and n2
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Figure 2.12: Graph between population (P) and time t with increasing values of
p.

indices help in the measurement of relative variation in variables with respect to

change in parameter values. These indices identify the parameters having more

effect on population and dissolved oxygen level in water, and therefore will help in

designing of necessary control strategies. The normalized forward sensitivity index
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Figure 2.13: Graph between population (P) and time t under combined increase
of p and q.
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Figure 2.14: Graph between aquatic population (P) and time t under increasing
values of r.

of a variable ‘Z’ depending on a parameter ‘u’ is given by the following expression

[117]:

γZu =
∂Z

∂u
∗ u
Z

The sensitivity indices of each variable with the parameters of the model given
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by eqs. (2.1) − (2.4) are calculated using the above formula. Table 2.2 gives

the sensitivity indices at the interior equilibrium point E∗ by using the baseline

parameter values as given by eq.(2.40).

2.5 Conclusion

The mathematical model proposed in this chapter studies the combined effect of

increasing toxicity, pollutants and acidity of water on dissolved oxygen (DO) and

on oxygen-dependent aquatic population (P). The interior equilibrium E∗ is found

to be asymptotically stable as shown in fig.2.1 which is satisfying the conditions

given by eqs. (2.9, 2.13, 2.29 − 2.32, 2.36 − 2.39). From the stability analysis, it

is observed that the dissolved oxygen and aquatic population exhibit a decrease

with the rise in toxicity and acidity of water as shown in figs. 2.3, 2.4, 2.5 and

2.6. By the sensitivity analysis of the model at interior equilibrium point E∗, both

dissolved oxygen and aquatic population are found to be sensitive and negatively

dependent on the input rate of toxicant (q) and input rate of acid (p). It is ob-

served that as the value of input rate of toxicants (q) in water increases from 1.0

to 3.5 , the level of dissolved oxygen declines as shown in fig. 2.7. It is further

observed that the density of aquatic population also decreases with the increas-

ing toxicant input (q) in water as shown in fig. 2.8. As the amount of organic

pollutants in water and eutrophication rate rises, more oxygen is consumed in the

decomposition of organic matter, which reduces its amount in water. This is shown

numerically in fig. 2.9 from which it is observed that when the decomposition rate

of organic matter in water (n2) increases from 0.34 to 3.0, the concentration of

dissolved oxygen decreases. These results are also supported by the study carried

out by Sirota et al. [119].

In our study , it is found that in the absence of any input of toxicant and acid in

water, the value of dissolved oxygen level is 9.7531 mgL−1. But, when the value

of input rate of toxicant (q) is increased to 2.0 and value of decomposition rate

(n2) is increased to 1.89, the dissolved oxygen level falls to 0.5190 mgL−1 as shown

in fig. 2.10 , thus leading to a condition of hypoxia. The results obtained in our

study have been validated by comparing them with the results obtained in the
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study done by Chakraborty et al. [118]. They proved that the rising agricultural

pollution leads to increase in algal bloom, consequently causing decrease in the

dissolved oxygen (DO) level due to consumption in their decomposition process.

In the absence of any agricultural pollution the dissolved oxygen level obtained

was 9.5 mgL−1 which is comparable to the dissolved oxygen level obtained in our

study in absence of any toxicant or acid input. Chakraborty et al. [118] also ob-

tained similar results to our study where they found that with the introduction of

agricultural pollution in water, the dissolved oxygen level falls to 0.5 mgL−1 which

is insufficient for survival of aquatic population. Moreover, the results of our study

are supported by the case study carried out by San Diego-McGlone et al. [82]

which showed that the fish kill event that occurred in 2002 in the coastal waters of

Bolino, Phillipines was due to the stress of eutrophication which led to fall in level

of dissolved oxygen to a level less than 2.0 mgL−1 in water. However, since we are

considering the combined effect of eutrophication, pollution and acidification, the

dissolved oxygen level obtained in our study is 0.5 mgL−1 which is quite low than

the value 2.0 mgL−1 . This reinforces the observation that the combined effect

of toxicant and acid leads to a more rapid decrease in the dissolved oxygen level

as compared to the individual effect. Besides, as the dissolved oxygen (DO) is a

primary resource required for growth and survival of aquatic population, hence

hypoxic condition leads to extinction of populations in water. This effect is shown

in fig. 2.11 which shows that the increase in toxicant input (q) and decomposition

rate (n2), leads to decrease of population to zero level due to decline in dissolved

oxygen level (DO).

Furthermore, for increasing values of input rate of acid in water (p) from 0.43 to

5.0, the population level decreases as shown in fig. 2.12. This is supported by

the study conducted by Bharathi et al.[108] . Initially, it is observed that the fish

population is resistant to changing acid levels as shown in fig. 2.6. This is because

the eggs and larvae are more vulnerable to the acidic conditions. So, the fish pop-

ulation begins to decline only over some time. These findings are also supported

by the experimental study done by Baumann et al. [26].

Moreover, if only the single effect of toxicity is considered, it is found that the

aquatic population tends towards extinction when the value of input rate of toxi-
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cants (q) is increased to 2.5. Under the individual effect of acidity, the population

tends to zero when the value of input rate of acid (p) is increased to 5.0. How-

ever, under the combined effect of both acidity and toxicity , the population tends

towards zero for parameter values q=2.0 and p=0.79 as shown in fig. 2.13. This

establishes that the aquatic population decreases more rapidly under the combined

stress of toxicity and acidity as compared to the single effect of acidity or toxicant.

It is further observed that at the parameter values q=2.0 and p=0.79 , if the value

of input rate of dissolved oxygen (r) is increased from 12.56 to 14.25, the popula-

tion rises from zero level and again starts existing in the system as shown in fig.

2.14. Henceforth, for the aquatic population to exist, either the value of input rate

of dissolved oxygen (r) should be increased and maintained at a higher value than

the threshold value (r=14.25) or the toxicant input rates (q) and acid input rate

(p) should be maintained less than q=2.0 and p=0.79. Therefore, it is concluded

that in order to maintain a level of dissolved oxygen suitable for growth and sur-

vival of aquatic population, the release of acid and toxicants in water on account

of anthropogenic activities needs to be reduced.



Chapter 3

Impact of water toxicity and
acidity on dynamics of
prey-predator aquatic
populations: a mathematical
model

3.1 Introduction

One of the most alerting environmental concerns of recent times is the contamina-

tion of water bodies caused by various anthropogenic activities such as uncontrolled

discharge of household wastes, agricultural and industrial effluents into the water

bodies. Due to intractable release of pollutants directly into water bodies, the

toxicity and acidity level of water is rising rapidly. The increasing acidity of water

can also be attributed to the carbon components released by pollutants present in

water bodies as well as the inflating level of carbon dioxide in the atmosphere [53].

The acidifying water bodies are also leading to exacerbation of coral reef cover

[120]. The loss in coral cover is harmful to the macro invertebrate species in the

coral reefs [121]. The aquatic organisms exposed directly or indirectly to toxic and

acidic environment face several stresses which alter and threaten their growth and

survival in water [66, 36, 94, 122, 34, 56, 38]. The increasing chemicals and metal

58
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wastes also have prominent negative effects on the aquatic species [39, 40, 42]. The

human population, which is dependent on the aquatic ecosystem for food, miner-

als, fertilizers etc. is also facing grave consequences owing to the undermining

effects of increasing water toxicity and acidity. The top predators in an aquatic

food chain become exposed to the toxicants by feeding on the prey affected by the

toxicants [123]. Increased water acidity and metal contamination can also cause

disturbances in the trophic structure of aquatic species, loss in biodiversity and

decrease in density of fish stock in the water bodies [124, 125]. Several mathemat-

ical and experimental studies have also proved that the fish population have high

sensitivity to toxicant and pollutant [108] and exhibit high mortality rates when

exposed to them [41]. The presence of toxicants and pollutants in water not only

has negative consequences for the aquatic species but also for their resource i.e.

oxygen as they decrease the dissolved oxygen level in water [110]. The increased

acidification and eutrophication lead to a rise in toxic algal bloom in water. This

further reduces oxygen level in water due to consumption of dissolved oxygen in

the decomposition process of these algal blooms [118, 6]. Drop in the concentration

of dissolved oxygen in water also causes disruption in the pelagic food web [126].

Various biological phenomena have been studied by using mathematical modelling

as an efficient tool [31]. Khare et al. [106] conducted a mathematical study to eval-

uate the negative effects of decreasing dissolved oxygen on interacting planktonic

population. A few mathematical studies have also studied the effect of toxicant

on prey-predator aquatic population [49, 127, 128]. Several mathematical studies

have also highlighted the harmful role of increasing acidity on aquatic communities

[129]. These studies show that the aquatic populations and their interactions are

highly sensitive to the toxicant and acid level in water. However, the focus of the

mathematical studies carried out till now is on the individual role of pollution,

toxicant or acidity in an aquatic ecosystem. But, the effects of these factors have

not been taken into account together in the available studies. In order to study the

effects of toxicant and acid taken together on prey-predator aquatic populations,

in this chapter, a non-linear mathematical model is proposed. In this model, it

is presumed that the water toxicity is increasing from various processes such as

eutrophication, release of industrial pollutants, household wastes etc. directly into
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the water bodies. The acidity of water is rising via two processes, one is direct

discharge of chemicals and acids in water bodies and the second being the release

of carbon from the pollutants present in the water bodies. The carbon reacts with

the dissolved oxygen present in water and forms carbonic acid, thus, acidifying

the water bodies. The rise in water acidity and toxicity cause a decline in the

concentration of resource i.e. dissolved oxygen in water. This further has negative

influences on the prey and predator populations residing in water.

3.2 Mathematical Model

In the proposed mathematical model, the population dynamics of a prey-predator

in an aquatic environment is studied under the effect of increasing water toxicity

and acidity. It is assumed that the incoming pollutants cause a rise in toxicity

level of water. The carbon components present in the pollutants reacts with the

dissolved oxygen and form carbonic acid. Also, the industrial and agricultural

pollution lead to direct input of acid components into the water bodies. Thus, the

water acidity increases by two phenomena, one is the direct discharge of acidic com-

ponents and the second one being through the released pollutants in water. These

phenomena lead to decrease in dissolved oxygen level in water, thus, threatening

the survival of the aquatic species. It is further assumed that the predator popu-

lation is solely dependent on prey population for its growth and survival through

feeding on prey.

In view of the above, let A denote the acid concentration in water and T repre-

sent the concentration of toxicant in water. Let D0 represent the concentration

of dissolved oxygen in water. N denotes the density of aquatic prey population

like small fishes and let P represent the density of predator population directly

dependent on prey for food, like sharks, perch etc. With the above mentioned no-

tations, a mathematical model consisting a set of non-linear differential equations

is formulated given as:

dA

dt
= p0 − βA+ kAT, (3.1)
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dT

dt
= q0 − a0T − kAT, (3.2)

dD0

dt
= r − n11D0 − n12D0T − γND0, (3.3)

dN

dt
=

hN

1 + A
+ γND0 −

α11NP

g +N
− δ1N

2, (3.4)

dP

dt
=
α12NP

g +N
–a1P, (3.5)

where the initial conditions for variables are given as:

A(0) > 0, T (0) > 0, D0(0) > 0, N(0) > 0, P (0) > 0.

The system parameters are given as follows:

p0 represents the rate of input of acid components in water via industrial effluents,

acid rain etc. Rate of washing out of acid out of water bodies through natural

processes is given by β. The bilinear interaction represented by the term kAT

depicts the reaction of carbon present in the toxicants and pollutants with the

dissolved oxygen in water leading to formation of carbonic acid. k represents the

rate of increase of water acidity on account of formation of carbonic acid. The

rate of input of toxicants and pollutants into the water bodies is represented by q0.

a0 gives the depletion rate of the pollutants and toxicants from the water bodies

due to natural washing out, decomposition and intake by aquatic populations etc.

r represents the input rate of dissolved oxygen in water and n11 gives its natural

depletion rate in water. The increase in acidity and toxicity of water gives rise

to inflated algal bloom growth. These algal blooms use the dissolved oxygen in

their decomposition process , thus depleting its level in water. The rate at which

the dissolved oxygen decreases due the algal decomposition is represented by n12.

The rate of uptake of dissolved oxygen by the prey population in water is given

by γ. h represents the natural growth rate of the prey population. α11 represents

the consumption rate of prey population by predator population. g is the extent

to which the prey population is protected by the environment. δ1 represents the

intraspecific competition between the prey population. α12 represents the assim-

ilation rate of predator and a1 gives the natural mortality rate of the predator

population. All the parameters p0, β, k, q0, a0, r, n11, n12, γ, h, α11, δ1, g, α12 and a1
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are assumed to be positive constants.

The mathematical analysis of the model given by equations (3.1) − (3.5) shall be

carried out in the subsequent sections.

3.3 Boundedness and Dynamical Behaviour of

Model

In this section, we shall establish the boundedness of solutions of the mathematical

model given by equations (3.1) − (3.5). The following lemma shows that the

solutions are bounded in R+
5 .

Lemma 3.3.1. All solutions of the system given by equations (3.1)−(3.5) with pos-

itive initial conditions will lie in the region Vr where: Vr = {(A, T,D0, N, P )εR+
5 :

0 ≤ A + T ≤ M11u, 0 ≤ N + D0 + α11P
α12
≤ M12u, Tl ≤ T ≤ Tu, 0 ≤ D0 ≤ D0u, 0 ≤

N ≤ Nu} for all t → ∞ for positive initial values A(0), T (0), D0(0), N(0), P (0)

where M11u = p0+q0
w2

; w2 = min(β, a0) ; M12u = r+Nu(h+µ)
µ

; n11 > µ ; α11a1
α12

> µ;

Tu = q0
a0

; Tl = q0
a0+kM11u

; D0u = r
n11

and Nu = h+γD0u

δ1
.

Proof. From equation (3.2) we obtain,

dT (t)

dt
≤ q0 − a0T.

Then, following the usual comparison theorem we obtain:

lim sup
t→∞

(T, t) ≤ q0

a0

,

and hence,

T (t) ≤ q0

a0

= Tu(t).

Similarly from equation (3.3) following the usual comparison theorem, we get,

lim sup
t→∞

(D0, t) ≤
r

n11

,
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and,

D0(t) ≤ r

n11

= D0u(t),

and from equation (3.4), following the usual comparison theorem, we obtain,

lim sup
t→∞

(N, t) ≤ h+ γD0u

δ1

,

hence,

N(t) ≤ h+ γD0u

δ1

= Nu(t).

Let us consider a function M11(t) given as ,

M11(t) = A(t) + T (t).

Taking w2 = min (β, a0) and from equations (3.1) and (3.2) we obtain,

dM11(t)

dt
≤ p0 + q0 − w2M11(t).

Then, by the usual comparison theorem we have:

lim sup
t→∞

(M11, t) ≤
p0 + q0

w2

.

Hence,

A(t) + T (t) ≤ p0 + q0

w2

= M11u(t).

Again, from equation (3.2) we get,

dT (t)

dt
≥ q0 − a0T − kM11uT,

and by usual comparison theorem we get,

lim inf
t→∞

(T, t) ≥ q0

a0 + kM11u

.

Therefore,

T (t) ≥ q0

a0 + kM11u

= Tl(t).

Now, consider a function M12(t) given as,

M12(t) = N(t) +D0(t) +
α11P (t)

α12

.
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From equations (3.3), (3.4) and (3.5) we get,

dM12(t)

dt
≤ r − n11D0 + hNu −

α11a1P

α12

,

For a positive constant µ and assuming n11 > µ ; α11a1
α12

> µ we get,

dM12

dt
+ µM12 ≤ r + (h+ µ)Nu

. Then by the usual comparison theorem we have:

lim sup
t→∞

(M12, t) ≤
r + (h+ µ)Nu

µ
= M12u(t).

Hence we get,

N(t) +D0(t) +
α11P (t)

α12

≤ r + (h+ µ)Nu

µ
.

Positivity of solutions : Since the positivity of solutions of the the model given

by equations (3.1) − (3.5) implies persistance, hence it is important to prove the

solutions of the model studying the dynamical behaviour of aquatic prey-predator

population under the effect of increasing acidity and toxicants, exhibit positivity

for all times . The positivity of solutions shall be shown by the following lemma.

Lemma 3.3.2. The solutions of the model given by equations (3.1)− (3.5),

(A(t), T (t), D0(t), N(t), P (t)), with initial conditions, A(0) > 0, T (0) > 0,

D0(0) > 0, N(0) > 0, P (0) > 0, remain positive for all times t > 0.

Proof. From equation (3.1) we get,

dA

dt
≥ −βA,

A ≥ g1e
−βt,

where g1 is an integration constant.

Hence, A > 0 as t→∞.
Similarly, from equation (3.2), we get

dT

dt
≥ −(a0 + kM11u)T,
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T ≥ g2e
−(a0+kM11u)t,

where g2 is an integration constant.

Hence, T > 0 as t→∞.
From equation (3.3), we get

dD0

dt
≥ −(n11 + n12M11u + γM12u)D0,

D0 ≥ g3e
−(n11+n12M11u+γM12u)t,

where g3 is an integration constant.

Hence, D0 > 0 as t→∞.
Similarly, from equation (3.4), we obtain

dN

dt
≥ −(α11M12u + δ1Nu)N,

N ≥ g4e
−(α11M12u+δ1Nu)t,

where g4 is an integration constant.

Hence, N > 0 as t→∞.
From equation (3.5), we obtain

dP

dt
≥ −a1P,

P ≥ g5e
−a1t,

where g5 is an integration constant.

Hence, P > 0 as t→∞.
This leads to completion of the proof of the lemma 3.3.2.

3.3.1 Possible equilibrium points and existence conditions

In this section, for the model defined by set of equations (3.1)− (3.5) , we find the

possible equilibrium points. The model has the following four equilibrium points:

1. Prey and predator population vanishing equilibrium point

Ê(Â, T̂ , D̂0, 0, 0) where N̂ = 0 and P̂ = 0 i.e. when the toxicant and acid level
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in the water increases to such a high amount such that the prey and predator

populations tends towards extinction.

Â =
p0

β − kT̂
. (3.6)

Â > 0 if β − kT̂ > 0. (3.7)

D̂0 =
r

n11 + n12T̂
. (3.8)

Since T̂ > 0, D̂0 > 0.

T̂ is given as the positive root of the following quadratic equation ,

a0kT̂
2 − T̂ (q0k + a0β + kp0) + q0β = 0.

2. Predator vanishing equilibrium point Ẽ(Ã, T̃ , D̃0, Ñ , 0)

i.e. P̃ = 0.

Ã =
p0

β − kT̃
. (3.9)

Ã > 0 if β − kT̃ > 0. (3.10)

Ñ =
1

δ1

(
h

1 + Ã
+ γD̃0

)
. (3.11)

T̃ is given as the positive root of the following quadratic equation ,

a0kT̃
2 − T̃ (q0k + a0β + kp0) + q0β = 0.

D̃0 is given as the positive root of the following quadratic equation ,

D̃0
2

+
D̃0

γ2(1 + Ã)
((n11 + n12D̃0)(1 + Ã)δ1 + γh)− rδ1

γ2
= 0.

3. Interior equilibrium point E∗(A∗, T ∗, D∗0, N
∗, P ∗) : The values of

A∗, T ∗, D∗0, N
∗, P ∗ are given as:

From equation (3.1) we have,

A∗ =
p0

β − kT ∗
. (3.12)
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A∗ > 0 if β − kT ∗ > 0. (3.13)

N∗ =
a1g

α12 − a1

. (3.14)

N∗ > 0 if α12 − a1 > 0. (3.15)

D∗0 =
r

n11 + n12T ∗ + γN∗
. (3.16)

Since N∗ > 0 and T ∗ > 0 , hence D∗0 > 0.

T ∗ is given as the positive root of the following quadratic equation ,

a0kT
∗2 − T ∗(q0k + a0β + kp0) + q0β = 0. (3.17)

P ∗ =
g +N∗

α11

(
h

1 + A∗
+ γD∗0 − δ1N

∗
)
. (3.18)

P ∗ > 0 if
h

1 + A∗
+ γD∗0 − δ1N

∗ > 0. (3.19)

4. Acid vanishing equilibrium point Ĕ(0, T̆ , D̆0, N̆ , P̆ ) i.e. Ă = 0.

The values of variables T̆ , D̆0, N̆ , P̆ are given as:

T̆ =
q0

a0

. (3.20)

From equation (3.5) we get,

N̆ =
a1g

α12 − a1

. (3.21)

N̆ > 0 only if,

α12 − a1 > 0. (3.22)

From equation (3.3) we get,

D̆0 =
r

n11 + n12T̆ + γN̆
. (3.23)

Since N̆ > 0 and T̆ > 0 , hence D̆0 > 0.

From equation (3.4), P̆ is given as ,

P̆ =
g + N̆

α11

(
h+ γD̆0 − δ1N̆

)
. (3.24)



3.3 Boundedness and Dynamical Behaviour of Model 68

P̆ > 0 only if,

h+ γD̆0 − δ1N̆ > 0. (3.25)

Remark: The toxicant (T) enters the water bodies through various multiple

sources such as agricultural, household and industrial wastes discharge. Hence,

the amount of toxicant entering in the system in the system can not be nullified

completely and consequently T cannot be taken as zero.

The dynamical behaviour of the model given by equations (3.1) − (3.5) in terms

of local and global stability for these possible equilibrium points shall be studied

in the next section.

3.3.2 Local Stability

(a) For prey and predator population vanishing equilibrium point

Ê(Â, T̂ , D̂0, 0, 0) : The characteristic equation corresponding to varia-

tional matrix about prey and predator population vanishing equilibrium

point Ê is given as:

(−a1 − λ)(−n11 − n12T̂ − λ)((−β + kT̂ − λ)(−a0 − kÂ− λ) +

k2ÂT̂ )

(
h

1 + Â
+ γD̂0 − λ

)
= 0.(3.26)

The eigen values corresponding to the above characteristic equation are

given as:

λ1 = −a1, λ2 = −n11 − n12T̂ , λ3 =
h

1 + Â
+ γD̂0, (3.27)

λ4 and λ5 are obtained by solving the following quadratic equation:

(−β + kT̂ − λ)(−a0 − kÂ− λ) + k2ÂT̂ = 0. (3.28)

As the eigen value λ3 = h

1+Â
+ γD̂0 is positive, hence the equilibrium

point Ê(Â, T̂ , D̂0, 0, 0) is unstable.
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(b) For predator population vanishing equilibrium point

Ẽ(Ã, T̃ , D̃0, Ñ , 0) : The characteristic equation associated with the vari-

ational matrix about predator population vanishing equilibrium point

Ẽ is given by:

(Z̃5 − λ)(λ2 + (Z̃2 − Z̃1)λ− Z̃1Z̃2 + k2ÃT̃ )(λ2 + (Z̃3 − Z̃4)λ−

Z̃3Z̃4 + γ2D̃0Ñ) = 0, (3.29)

where Z̃1 = −β + kT̃ ; Z̃2 = a0 + kÃ; Z̃3 = n11 + n12T̃ + γÑ ;

Z̃4 = h
1+Ã

+ γD̃0 − 2δ1Ñ ; Z̃5 = α12Ñ
g+Ñ
− a1; Z̃6 = −hÑ

(1+Ã)2
; Z̃7 = −α11Ñ

g+Ñ
.

The eigen values corresponding to the above characteristic equation are

given as:

λ1 = Z̃5, (3.30)

λ2 and λ3 are obtained by solving the following quadratic equation:

λ2 + (Z̃2 − Z̃1)λ− Z̃1Z̃2 + k2ÃT̃ = 0. (3.31)

λ4 and λ5 are obtained by solving the following quadratic equation:

λ2 + (Z̃3 − Z̃4)λ− Z̃3Z̃4 + γ2D̃0Ñ = 0. (3.32)

Using Routh-Hurwitz criteria, the boundary equilibrium state Ẽ will be

asymptotically stable subject to satisfying the following conditions,

Z̃2 > Z̃1, (3.33)

k2ÃT̃ > Z̃1Z̃2, (3.34)

Z̃3 > Z̃4, (3.35)

γ2D̃0Ñ > Z̃3Z̃4, (3.36)

a1 >
α12Ñ

g + Ñ
, (3.37)

kT̃ > β1, (3.38)

and
h

1 + Ã
+ γD̃0 > 2δ1Ñ . (3.39)
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(c) For interior equilibrium point E∗(A∗, T ∗, D∗0, N
∗, P ∗) :

The characteristic equation associated with the variational matrix about

interior equilibrium point E∗ is given by:

[λ2 + (Z∗2 − Z∗1)λ− Z∗1Z∗2 + k2A∗T ∗][λ3 − λ2(−Z∗3 + Z∗4)−

λ(Z∗3Z
∗
4 + Z∗7Z

∗
8 − γ2D∗0N

∗)− (Z∗3Z
∗
7Z
∗
8)] = 0 (3.40)

where Z∗1 = −β + kT ∗; ; Z∗2 = a0 + kA∗; Z∗3 = n11 + n12T
∗ + γN∗;

Z∗4 = h
1+A∗

+ γD∗0 − 2δ1N
∗ − α11gP ∗

(g+N∗)2
; Z∗6 = −hN∗

(1+A∗)2
;

Z∗7 = −α11N∗

g+N∗
; Z∗8 = α12gP ∗

(g+N∗)2
.

Using Routh Hurwitz criteria, the interior equilibrium state E∗ will be

asymptotically stable subject to satisfying the following conditions,

Z∗2 > Z∗1 , (3.41)

k2A∗T ∗ > Z∗1Z
∗
2 , (3.42)

Z∗3 > Z∗4 , (3.43)

γ2D∗0N
∗ > Z∗3Z

∗
4 + Z∗7Z

∗
8 , (3.44)

(−Z∗3 + Z∗4)(Z∗3Z
∗
4 + Z∗7Z

∗
8 − γ2D∗0N

∗) + Z∗3Z
∗
7Z
∗
8 > 0, (3.45)

kT ∗ > β1 (3.46)

and
h

1 + A∗
+ γD∗0 > 2δ1N

∗ +
α11gP

∗

(g +N∗)2
. (3.47)

(d) For acid vanishing equilibrium point Ĕ(0, T̆ , D̆0, N̆ , P̆ ) : The

characteristic equation corresponding to the variational matrix about

acid vanishing equilibrium point Ĕ is given by:

(Z̆1 − λ)(−Z̆2 − λ)[λ3 − λ2(−Z̆3 + Z̆4)− λ(Z̆3Z̆4

+Z̆7Z̆8 − γ2D̆0N̆)− Z̆3Z̆7Z̆8] = 0 (3.48)

where Z̆1 = −β + kT̆ ; Z̆2 = a0; Z̆3 = n11 + n12T̆ + γN̆ ;

Z̆4 = h+ γD̆0 − 2δ1N̆ − α11gP̆

(g+N̆)2
; Z̆6 = −hN̆ ; Z̆7 = −α11N̆

g+N̆
;
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Z̆8 = α12gP̆

(g+N̆)2
.

The eigen values corresponding to the above characteristic equation are

given as:

λ1 = Z̆1, λ2 = −a0, (3.49)

Using Routh’s criteria, the eigen values λ3, λ4 and λ5 will have non-

positive real parts subject to satisfying the following conditions,

Z̆3 > Z̆4, (3.50)

γ2D̆0N̆ > Z̆3Z̆4 + Z̆7Z̆8, (3.51)

(−Z̆3 + Z̆4)(Z̆3Z̆4 + Z̆7Z̆8 − γ2D̆0N̆) + Z̆3Z̆7Z̆8 > 0, (3.52)

kT̆ < β1, (3.53)

and

h+ γD̆0 > 2δ1N̆ +
α11gP̆

(g + N̆)2
. (3.54)

3.3.3 Global Stability

In this section, the global stability of the mathematical model given

by equations (3.1)− (3.5) shall be established. The following theorems

shall establish the global stability:

Theorem 3.3.1. The box given by Vr is a positive invariant and com-

pact set in the space (A, T,D0, N, P ).

Proof. Let us consider the system of equations given by (3.1) − (3.5).

Consider a box Vr in the phase space ATD0NP with one vertex at the

origin and the other vertex at a point ω̄ = (Ā, T̄ , D̄0, N̄ , P̄ ) . The point

ω̄ is considered outside the box Vr with Ā > Au,T̄ > Tu, D̄0 > D0u,

N̄ > Nu, P̄ > Pu.

Now we shall compute the angle of the flow with each face of the box

Vr not lying in the coordinate planes. Let ν1, ν2, ν3, ν4 and ν5 be the

outward unit normal vectors to the planes χ1 : A = Ā, χ2 : T = T̄ , χ3 :
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D0 = D̄0, χ4 : N = N̄ , χ5 : P = P̄ in reference to the box Vr.

Then from equation (3.3) we get,

ν3
dω̄

dt
|χ3 ≤ r − n11D̄0 − n12TlD̄0,

since

D̄0 >
r

n11

,

ν3
dω̄

dt
|χ3 ≤ −n12TlD̄0,

hence

ν3
dω̄

dt
|χ3 ≤ 0.

Similarly , we can prove

ν1
dω̄

dt
|χ1 ≤ 0, ν2

dω̄

dt
|χ2 ≤ 0, ν4

dω̄

dt
|χ4 ≤ 0, ν5

dω̄

dt
|χ5 ≤ 0.

From the above theorem it is clear that the trajectories of the system

of equations given by (3.1) − (3.5) do not not cross Vr once they enter

inside the box Vr. The interior equilibrium E∗ is also observed to lie

inside the Vr.

In the next theorem, we will prove that the only global attractor inside

Vr is E∗.

Theorem 3.3.2. For the interior equilibrium point E∗ to be globally

asymptotically stable, the following inequalities should hold for E∗.

(β − kT )(a0 + kA) > (kT ∗ − kA∗)2,

(a0 + kA)(n11 + γN + n12T ) > (n12D
∗
0)2,

2(n11 + γN + n12T )

(
−α11P

∗

(g +N)(g +N∗)
+ δ1

)
> 3(γD∗0 − γ)2,

4

(
−α11P

∗

(g +N)(g +N∗)
+ δ1

)(
a1 −

α12N

g +N

)
>
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3

(
α11

g +N
− α12gP

∗

(g +N)(g +N∗)

)2

,

2(β − kT )

(
−α11P

∗

(g +N)(g +N∗)
+ δ1

)
> 3

(
h

(1 + A)(1 + A∗)

)2

.

Proof. For establishing the global stability of the equilibrium state E∗,

we shall assume the following positive definite function:

Z =
1

2
(A− A∗)2 +

1

2
(T − T ∗)2 +

1

2
(D0 −D∗0)2 +(

N −N∗ −N∗ln N
N∗

)
+

1

2
(P − P ∗)2. (3.55)

Differentiating the above equation w.r.t. ‘t’ we get,

dZ

dt
= −[a11(A−A∗)2 + a22(T −T ∗)2 + a33(D0−D∗0)2 + a44(N −N∗)2+

a55(P − P ∗)2 + a12(A− A∗)(T − T ∗) + a23(T − T ∗)(D0 −D∗0)+

a34(N −N∗)(D0−D∗0) +a45(P −P ∗)(N −N∗) +a14(A−A∗)(N −N∗)],

where

a11 = β − kT, a22 = a0 + kA, a12 = kT ∗ − kA∗,

a23 = n12D
∗
0, a33 = n11 + γN + n12T,

a44 = δ1 −
α11P

∗

(g +N)(g +N∗)
, a55 = a1 −

α12N

g +N
,

a34 = γD∗0 − γ, a45 =
α11

g +N
− α12gP

∗

(g +N)(g +N∗)
,

a14 =
h

(1 + A)(1 + A∗)

.

Sufficient conditions for dZ
dt

to be negative definite obtained by Sylvester’s

criteria are:

a11a22 > a1
2
2, a22a33 > a2

2
3, 2a33a44 > 3a3

2
4,

4a44a55 > 3a4
2
5, 2a11a44 > 3a1

2
4, (3.56)
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i.e.

(β − kT )(a0 + kA) > (kT ∗ − kA∗)2, (3.57)

(a0 + kA)(n11 + γN + n12T ) > (n12D
∗
0)2, (3.58)

2(n11 + γN + n12T )

(
−α11P

∗

(g +N)(g +N∗)
+ δ1

)
> 3(γD∗0 − γ)2, (3.59)

4

(
−α11P

∗

(g +N)(g +N∗)
+ δ1

)(
a1 −

α12N

g +N

)
>

3

(
α11

g +N
− α12gP

∗

(g +N)(g +N∗)

)2

,

2(β − kT )

(
−α11P

∗

(g +N)(g +N∗)
+ δ1

)
> 3

(
h

(1 + A)(1 + A∗)

)2

. (3.60)

3.4 Numerical Simulation and Sensitivity

Analysis

To substantiate the analytical results obtained for the system of equa-

tions given by (3.1) − (3.5), numerical simulations have been supple-

mented in this section. The set of parametric values considered are

given below:

p0 = 0.43µgL−1day−1, β = 0.2day−1, q0 = 1.0µgL−1day−1,

a0 = 0.1day−1, r = 70mgL−1day−1, k = 0.01Lµg−1day−1,

n11 = 1.0day−1, n12 = 1.0Lµg−1day−1, γ = 0.995Lmg−1day−1,

h = 1.0µgL−1day−1, g = 1.0mgL−1, α11 = 1.00025day−1,

δ1 = 1.1Lmg−1day−1, α12 = 1.001day−1, a1 = 0.825day−1.

(3.61)
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For the above mentioned parametric values, the equilibrium values cor-

responding to interior equilibrium E∗ are given as:

A∗ = 3.4258µgL−1, T ∗ = 7.4483µgL−1, D∗0 = 5.3383mgL−1,

N∗ = 4.6881mgL−1, P ∗ = 2.1687mgL−1. (3.62)

For these values of the model parameters, the conditions of feasibility,

boundedness and stability corresponding to interior equilibrium point

E∗ are satisfied. Also, for the mentioned parametric values , interior

equilibrium E∗ is found to exhibit asymptotic stability as shown in fig.

3.1. The numerical simulations also show that the interior equilibrium

point E∗ is globally stable. These results are shown by the phase plane

graphs given by fig. 3.2 , which show that with increasing time, the

trajectories starting from varied initial conditions as given by table 3.1,

finally converge to the equilibrium value at E∗.

Further, for the model given by equations (3.1)− (3.5) sensitivity anal-

ysis has been carried out. Sensitivity analysis results provide a more

mathematically sound study of the effect of the model parameters given

by equation(3.61) on the resource i.e. dissolved oxygen (D0), prey

population (N) and predator population (P). The sensitivity indices

have been calculated to examine the relative variation in the variables

A∗, T ∗, D∗0, N
∗ and P ∗ with respect to change in the values of parameters

p0, β, q0, a0, k, r, n11, n12, γ, h, α11, g, δ1, α12 and a1, so that the parame-

ters having more profound effect on the model variables can be identified

and accordingly necessary control strategies can be developed.

The normalized forward sensitivity index of a variable Z with dependent

on parameter “v” is given by the expression given below [117]:

γZv =
∂Z

∂v
∗ v
Z

The sensitivity indices of each variable at equilibrium point E∗ with

respect to model parameters given by equation (3.61) are given in table

3.2.
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Table 3.1: Varying values of initial conditions for A∗, T ∗, D∗0, N
∗, P ∗.

Variable 1st intial 2nd intial 3rd intial 4th intial 5th intial
value value value value value

A 1 1 2 1 2
T 1 1.5 1.5 1.5 5
D0 1 1 4 1 10
N 1 10 4 10 1
P 1 2.5 3.5 1.5 2

Table 3.2: Sensitivity Indices(γ) of A∗, T ∗, D∗0, N
∗, P ∗ at E∗ to parameters Zp.

Parameters(Zp) γA
∗

Zp
γT
∗

Zp
γ
D∗0
Zp

γN
∗

Zp
γP
∗

Zp

p0 0.869 -0.222 0.126 0 1.354
β -1.384 0.353 -0.201 0 -2.157
k 0.384 -0.353 0.201 0 2.6155
q0 0.515 0.868 -0.494 0 -7.1022
a0 -0.384 -0.647 0.367 0 5.293
r 0 0 0.999 0 13.927
n11 0 0 -0.0763 0 -1.0617
n12 0 0 -0.568 0 -7.9081
γ 0 0 -0.356 0 -4.953
h 0 0 0 0 0.592
α11 0 0 0 0 -0.998
g 0 0 -0.355 0.999 -17.477
δ1 0 0 0 0 -13.522
α12 0 0 2.027 -5.701 100.622
a1 0 0 -2.026 5.698 -100.578
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Figure 3.1: Trajectories plotted with respect to time showing the stability of inte-
rior equilibrium point E∗.
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Figure 3.2: Phase plane graph for N-P at different initial values given in Table 3.1
demonstrating the global stability behaviour.

3.5 Conclusion

The mathematical model given by equations (3.1) − (3.5) studies the

impact of rising toxicants and acid components in water on the resource

i.e. dissolved oxygen (D0), prey population (N) and predator population
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Figure 3.3: Phase space graph for toxicant concentration (T) and concentration of
dissolved oxygen (D0).
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Figure 3.4: Phase space graph for acid concentration (A) and density of prey
population (N).

(P) in an aquatic ecosystem. From the stability analysis it is observed

that the acid vanishing point Ĕ is linearly asymptotically stable only

when the interior equilibrium point E∗ and boundary equilibrium point

Ẽ are unstable and vice-versa. The same is supported by equations

(3.38, 3.46, 3.53). Further, it is observed that the interior equilibrium
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Figure 3.5: Phase space graph for toxicant concentration (T) and density of prey
population (N).
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Figure 3.6: Graph between dissolved oxygen concentration(D0) and time t with
increasing values of q0.

point E∗ is asymptotically stable as shown in fig. 3.1 and the stability

conditions given by equations (3.12)−(3.19), (3.41)−(3.47), (3.57−3.60)

are satisfied. Also, when the interior equilibrium point is stable, the

boundary equilibrium point Ĕ shall be unstable as supported by equa-

tions (3.46, 3.53). Further, it may be noted that the resource i.e. dis-
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Figure 3.7: Graph between density of prey population(N) and time t with increas-
ing values of q0.
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Figure 3.8: Graph between density of predator population(P) and time t with
increasing values of q0.

solved oxygen concentration decreases with increasing water toxicity

as shown by fig. 3.3 and supported by equation 3.16. Also, the prey

population (N) decreases with rising toxicity and acidity level in water

as shown by figs. 3.4 and 3.5. Consequently, the predator population

which is dependent on prey population for its food also exhibits a decline
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Figure 3.9: Time series graph showing stable limit cycles for prey population(N)
and predator population(P) with rise in value of α12 to 1.25.
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Figure 3.10: Phase plane graph showing stable limit cycles for prey population(N)
and predator population(P) with rise in value of α12 to 1.25.

in its density with rising toxicity and acidity as supported by equation

3.18. Also, it is shown by fig. 3.6 that the dissolved oxygen concen-

tration (D0) shall decline on account of rise in value of toxicant input

rate (q0). Further, it may be noted that as the value of toxicant input

rate (q0) increases, it leads to decrease in density of prey population as
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Figure 3.11: Graph showing oscillations for prey population(N) with rise in value
of α12 to 1.28.
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Figure 3.12: Graph showing oscillations for predator population(P) with rise in
value of α12 to 1.28.

shown in fig. 3.7. Similarly, as illustrated by fig. 3.8, with increase

in the toxicant input level(q0) in water, the predator population tends

towards extinction. Moreover, from the sensitivity analysis, it is fur-

ther observed that dissolved oxygen (D0) and predator population (P)

are sensitive and negatively dependent on input rate of toxicant (q0) in
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Figure 3.13: Graph showing oscillations for predator population(P) and prey pop-
ulation(N) with rise in value of α12 to 1.28.
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Figure 3.14: Graph showing oscillations for P, N and D0 with rise in value of α12

to 1.28.

water. Also, the prey and predator populations are highly sensitive to

assimilation rate of predator (α12). For values of α12 equal to or greater

than 1.23 but less than 1.28, stable limit cycles are observed. Figs. 3.9

and 3.10 show the stable limit cycles observed for prey and predator

populations for value of α12 equal to 1.25. It may also be noted that
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Figure 3.15: Graph between concentration of dissolved oxygen(D0) and time t for
rise in value of q0 and n12.
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Figure 3.16: Graph between predator population (P) and time t for rise in value
of r.

on increasing value of α12 to 1.28, the stable co-existing behaviour is

changed to co-existing oscillatory behaviour. The oscillatory behaviour

observed for prey and predator populations is shown in figs. 3.11-3.14.

Furthermore, as the amount of agricultural and organic pollutants rise

in water, the algal bloom in water increases and more oxygen is con-
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sumed in its decomposition process. From our study, it is inferred that

in the absence of any toxicant or acid input in water, the dissolved

oxygen level is 12.3567 mgL−1 which lies in the required optimal range

[118]. However, under these conditions, when the toxicant input (q0)

is increased from 1.0 to 8.878 and the oxygen utilisation rate in the

decomposition process (n12) is increased to 1.495, the concentration of

dissolved oxygen falls to 0.5182 as shown in fig. 3.15, thus creating a

hypoxic condition which threatens the survival of aquatic species. The

results of our study are validated by the results of the study carried out

by Chakraborty et al. [118]. They found that with rising agricultural

pollutants, the algal bloom growth increases which leads to consump-

tion of dissolved oxygen in its decomposition process. Due to this, the

concentration of dissolved oxygen falls to 0.5 mgL−1 which is compara-

ble to the results of our study. Moreover, the case study carried out by

San-Diego-Mc Glone et al. [82] also support the results of our study.

They showed that under the stress of eutrophication, the dissolved oxy-

gen level in coastal waters of Bolino, Philippines fell to 2.0 mgL−1 which

caused fish kills in year 2002. However, since we are considering the ef-

fects of pollutants, eutrophication and acidification together , the level

of dissolved oxygen obtained in our study is 0.5182mgL−1 which is con-

siderably low than 2.0mgL−1.

It is further established that at the value of toxicant input rate q0 =

1.3679, the predator population tends towards zero a shown in fig. 3.16.

It is also observed that at the parameter values q0=1.3679, if the value

of r i.e. input rate of dissolved oxygen is increased from r=70.00 to

74.555, the predator population again starts rising from zero level as

shown in fig. 3.16. Thus, for the predator populations to exist , ei-

ther the toxicant input rate q0 should be maintained less than 1.3679 or

the dissolved oxygen input rate(r) should always be maintained above

threshold value of r= 74.555. Thus, it is concluded from our study that

to sustain the prey-predator aquatic populations while maintaining a

healthy level of dissolved oxygen in water, the release of toxic and acid
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components in water needs to be mitigated and control strategies needs

to be developed for the same in future.



Chapter 4

Impact of Carbon Emissions
and Increased Acidity on
Aquatic Population: A
Mathematical Model

4.1 Introduction

The aquatic ecosystem is essential for the existence and survival of hu-

man population. It serves basic needs of human population such as

potable water, water for agricultural and commercial use etc. Cur-

rently, the water bodies are facing the pressure of contamination caused

by various anthropogenic activities. The increasing carbon emissions

are leading to pollution and global warming. Temperature and climatic

conditions have exhibited notable changes due to global warming in

past years and recent studies foresee even more shifts in climate pat-

terns due to continuous increase of carbon emissions in environment

[17, 25] . Global warming causes a rise in temperature of water and this

is found to have negative ecological effects on the aquatic population

[1, 27]. To accommodate the warming of oceans, the oxygen production

in water is decreasing which is proving fatal to the aquatic populations

[103]. The uptake of carbon dioxide by water bodies has also increased

87
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in last 50 years [142]. The carbon reacts with oxygen in water and

forms carbonic acid. Hence, the increasing carbon dioxide concentra-

tion in water is leading to lowering of pH of water, thus acidifying the

water bodies. The unchecked release of various kinds of wastes such as

industrial effluents in aquatic bodies further contribute to acidification

of water [134]. Various studies show that the increased carbon emissions

and acidity of water obstruct the growth and survival of aquatic species

[54, 56]. Increasing water acidity also induces the growth of harm-

ful algal blooms in water [126]. Further, the rising carbon emissions

which cause global warming lead to the growth of algal blooms in water

[78, 80]. The decomposition of these algal blooms uses the dissolved

oxygen (DO) in water which decreases its level further in water. Since,

oxygen is a vital resource for the aquatic population hence its deple-

tion negatively affects the aquatic population. These algal blooms have

been found to kill aquatic species such as fishes and alter the aquatic

ecosystems [6]. Few mathematical works are available which show the

negative effect of increasing algal blooms on the aquatic ecosystem [118]

and determine that that the resource and fish populations are sensitive

to the acidification and pollution of water [108]. However, the mathe-

matical studies available till now have focused on the individual effect

of pollutants, acidity, or temperature on the aquatic population. To

study the combined effect of increasing acidity and carbon input on the

aquatic population like fishes, a mathematical model having parameters

as carbon concentration in water, pH of water, density of algal bloom

population and concentration of dissolved oxygen in water is proposed

and analyzed. It is assumed that the carbon concentration in water is

increasing due to the input of carbon-rich pollutants in water as well as

carbon emissions in atmosphere. This leads to lowering of pH of water.

The rising temperature of water is decreasing the dissolved oxygen level

in water bodies. Further, it is assumed that the increase in carbon con-

centration and warming temperatures also increase the growth of algal

bloom in water which lead to subsequent decrease in dissolved oxygen
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in water. The analytical results are supported by numerical simulations

done using MATLAB.

4.2 Mathematical Model

In this model, it is presumed that the pH of water is decreasing due to

two reasons. One is due to increasing carbon content in water. The car-

bon reacts with the dissolved oxygen (DO) in water and forms carbonic

acid, thus leading to water acidification. Second cause is the direct

discharge of acid components and chemicals in water bodies. The in-

flating carbon emissions also lead to rise in temperature of water. As

a result, the solubility of oxygen in water decreases due to low absorp-

tion in warmed waters. Further, it is assumed that due to increase in

carbon and acid components in water along with rising water tempera-

ture, the algal population also increases. The dissolved oxygen is used

in the decomposition process of algal bloom, thus depleting the con-

centration of dissolved oxygen in water. In view of the above, let C

represent the concentration of carbon in water, pH represents pH level

of water, Al represent the density of algal population and D0 represent

the concentration of favourable resource i.e. dissolved oxygen in water.

Incorporating the stated variables, the model containing the following

system of non-linear differential equations is formulated.

dC

dt
= CE −

1

τc
(C − C0)− γ1D0C, (4.1)

d(pH)

dt
=

pH0

1 + C
− g(pH), (4.2)

dAl
dt

=
α1Al(1 + aC − b(pH))

β0 + Al
+ d1AlD0 − hAl, (4.3)

dD0

dt
= q −m1D0 − n1d1D0Al − γ1D0C, (4.4)

where C(0) > 0, pH(0) > 0, Al(0) ≥ 0, D0(0) ≥ 0, and C ≥ C0.

The model parameters can be defined as:
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CE represents the input rate of carbon in water. τc represents the latent

time period of carbon in water. C0 gives the threshold level of carbon

in water. The carbon in water reacts with dissolved oxygen and forms

carbonic acid. This reaction is represented by the term γ1D0C where

γ1 gives the rate of reaction of dissolved oxygen with carbon. The

threshold level of pH of water is given by pH0 and g is the natural

lowering rate of pH in water. α1 represents the rate of natural growth of

algal population. a represents the growth of algal blooms on account of

increasing carbon concentration in water and b gives the rate of growth

of algal blooms on account of decreasing pH. β0 is the half saturation

constant. Algal blooms use dissolved oxygen for respiration at night

which is represented by bilinear interaction d1D0Al , where d1 gives the

rate of utilization of oxygen in respiration process. h is the natural decay

rate of algal bloom. Input rate of dissolved oxygen is given by q. m1

is natural depletion rate of dissolved oxygen. n1 gives the consumption

rate of dissolved oxygen in the decomposition of algal blooms.

All the parameters stated above are assumed to be positive constants.

4.3 Dynamical Behaviour of the model

4.3.1 Boundedness of Solutions

Lemma 4.3.1. All solutions of the mathematical model given by eqs.

(4.1)-(4.4) shall lie in the region Br where Br = (C, pH,Al, D0) ∈ R+
4 :

0 < C < Cu, 0 < pH < pHu, 0 < Al < Alu, 0 < D0 < D0u for all t→∞
with positive initial values C(0), pH(0), Al(0), D0(0), where

Cu = τcCE + C0, D0u =
q

m1

, pHu =
pH0

g
, Alu =

α1(1 + aCu)

h− d1D0u

.

Proof. From equation (4.1) we get,

dC

dt
≤ τcCE + C0 − C.
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Then, following the usual comparison theorem we obtain,

lim sup
t→∞

(C, t) ≤ τcCE + C0 = Cu.

Now, from eq (4.2), we get,

d(pH)

dt
≤ pH0 − g(pH).

Then, following the usual comparison theorem we obtain,

lim sup
t→∞

(pH, t) ≤ pH0

g
= pHu.

Similarly from eq. (4.3) we get,

lim sup
t→∞

(Al, t) ≤
α1(1 + aCu)

h− d1D0u

= Alu.

and from eq. (4.4), we get,

lim sup
t→∞

(D0, t) ≤
q

m1

= D0u.

4.3.2 Positivity of solutions

Since the persistence of solutions is implied by positivity, hence the

positivity of solutions is shown by the following lemma.

Lemma 4.3.2. The solutions of the model given by eqs. (4.1)-(4.4) i.e.

(C(t), pH(t), Al(t), D0t)), having initial conditions, C(0) > 0, pH(0) >

0, Al(0) > 0, D0(0) > 0 , show positivity for all times t > 0.

Proof. From eq. (4.1), we obtain,

dC

dt
≥ −

(
1

τc
+ γ1D0u

)
C,

which implies,

C ≥ f1e
−( 1

τc
+γ1D0u)t,
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where f1 is integration constant. Hence we get, C > 0 as t→∞. From

eq. (4.2)), we get,

pH ≥ f2e
−gt

, where f2 denotes an integration constant. Therefore, we get, pH > 0

as t→∞. Similarly, from eq. (4.3), we get,

Al ≥ f3e
−(h+b(pH)u)t,

where f2 denotes an integration constant. This implies that Al > 0 as

t→∞. From eq. (4.4), we obtain,

D0 ≥ f4e
−(m1+n1d1Alu+γ1Cu)t,

where f4 is integration constant. Hence, D0 > 0 as t → ∞. This

completes the proof of lemma 4.3.2.

4.3.3 Possible equilibrium points and existence
conditions

Now, we shall study the equilibrium points corresponding to the model

defined by eqs. (4.1)-(4.4). The model has following three equilibrium

points:

1. Carbon Vanishing Equilibrium Point: Ĕ(0, ˘pH, Ăl, D̆0) where

C̆ = 0.
˘pH =

pH0

g
, (4.5)

D̆0 =
q

m1 + n1d1Ăl
. (4.6)

Ăl is given as the positive root of the following quadratic equation,

n1d1Ăl
2

+ Ăl(m1h+ hβ0n1d1 + α1bn1d1
˘pH − d1q − α1n1d1)−

(β0(qd1 −m1h) + α1m1(1− b ˘pH)) = 0. (4.7)

By Descarte’s rule of signs, the above equation will have at least one

non-negative root if,

β0qd1 + α1m1 > m1hβ0 + α1bm1
˘pH (4.8)
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2. Algal Population Vanishing Equilibrium Point:

Ê(Ĉ, ˆpH, 0, D̂0) where Âl = 0.

ˆpH =
pH0

g(1 + Ĉ)
, (4.9)

D̂0 =
q

m1 + γ1Ĉ
. (4.10)

Ĉ is given as the positive root of the following quadratic equation,

γ1Ĉ
2 + Ĉ(m1 +γ1τcq+γ1C0−γ1τcCE)− (C0m1 + τcCEm1) = 0. (4.11)

The above equation (4.11) shall have a positive root, following Descarte’s

rule of signs, hence, the algal population vanishing equilibrium point

shall be asymptotically stable.

3. Interior Equilibrium Point:E∗(C∗, pH∗, A∗l , D
∗
0).

pH∗ =
pH0

g(1 + C∗)
, (4.12)

D∗0 =
τcCE − (C∗ − C0)

τcγ1C∗
, (4.13)

A∗l =
q − γ1D

∗
0C
∗ −m1D

∗
0

n1d1D∗0
. (4.14)

Hence, D∗0 > 0 if,

τcCE > (C∗ − C0), (4.15)

and A∗l > 0 if,

q − γ1D
∗
0C
∗ −m1D

∗
0 > 0. (4.16)
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C∗ is is given as the positive root of the following equation,

C∗4(M3M4M5 + d1γ1 + γ1hM3)− C∗3[M3M4(M8 +M2M5)+

M4M7 + γ1M2(2d1 + hM3)− {M3M4(α1 +M5) + d1(γ1 + qM3+

m1) + hM3(qM3 +m1 + γ1)}]− C∗2[M3M4(M8 + α1M2 +M2M5+

M0M6) +M4M7 + γ1M2(2d1 + hM3) + d1M2(qM3 + 2m1)+

hm1M2M3 − {M4(M2M3M8 + α1M3 + 2M2M7) + d1(qM3 +m1+

γ1M
2
2 ) + hM3(qM3 +m1)}]− C∗[M2M3(α1M4 + qd1 + hm1)+

M2(M2M7M4 + 2m1d1)− {M2M3M4(M8 +M0M6) + 2M2M4M7+

d1M
2
2 (γ1 +m1)}]−M2

2 (M4M7 −m1d1) = 0, (4.17)

where,

M0 =
pH0

g
, M2 = τcCE + C0, M3 = τcγ1, M4 = n1d1,

M5 = α1a, M6 = α1b, M7 = d1β0, M8 = hβ0.

By Descarte’s rule of signs, the above equation (4.17) will have at least

one positive root if,

M4M7 > m1d1 (4.18)

4.4 Local Stability Analysis

1. Local Stability of Carbon Vanishing Equilibrium Point:

Ĕ(0, ˘pH, Ăl, D̆0):

The characteristic equation corresponding to variational matrix about

equilibrium point Ĕ is given by:(
1

τc
+ γ1D̆0 − λ

)
(−g − λ)(λ2 + (Z̆4 − Z̆3)λ− Z̆3Z̆4 + n1d

2
1ĂlD̆0) = 0,

(4.19)

where,

Z̆3 =
−α1(1− b ˘pH)Ăl

(β0 + Ăl)2
, Z̆4 = m1 + n1d1Ăl.
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By Routh’s criteria, Ĕ shall be asymptotically stable only if,

Z̆4 − Z̆3 > 0, (4.20)

and

n1d
2
1ĂlD̆0 > Z̆3Z̆4. (4.21)

2. Local Stability of Algal Population Vanishing Equilibrium

Point: Ê(Ĉ, ˆpH, 0, D̂0):

The characteristic equation corresponding to variational matrix about

the equilibrium point Ê is given by:(
λ−

(
α1(1 + aĈ − b ˆpH)

β0

+ d1D̂0 − h

))
(λ+ g)(

λ2 +

(
1

τc
+ γ1D̂0 +m1 + γ1Ĉ

)
λ+

1

τc
(m1 + γ1Ĉ) + γ1D̂0m1

)
= 0.

(4.22)

Following the Routh’s criteria, the boundary equilibrium point E is

asymptotically stable if,

hβ0 + α1b ˆpH > α1(1 + aĈ) + β0d1D̂0. (4.23)

3. Local Stability Interior Equilibrium Point:E∗(C∗, pH∗, A∗l , D
∗
0):

The characteristic equation corresponding to variational matrix about

equilibrium point E∗is given by:

λ4 + λ3(Z1 +Z6 +Z5 + g) + λ2(n1d
2
1D
∗
0A
∗
l +Z1Z6 + (Z5 + g)(Z1 +Z6)

+Z5g−γ2
1D
∗
0C
∗)+λ(n1d

2
1D
∗
0A
∗
l (Z1+g)+Z5g(Z1+Z6)−γ1D

∗
0C
∗(γ1(Z5+

g + n1d1Z3) + Z1Z6(Z5 + g)) + [gZ1Z5Z6 − γ1C
∗D∗0{Z5gγ1 + n1d1(Z3g

+ Z2Z4)}+ n1d
2
1Z1gD

∗
0A
∗
l ] = 0, (4.24)

where,

Z1 =
1

τc
+ γ1D

∗
0, Z2 =

−pH0

(1 + C∗)2
, Z3 =

α1aA
∗
l

β0 + A∗l
, Z4 =

−α1bA
∗
l

β0 + A∗l
,
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Z5 =
α1(1 + aC∗ − b(pH∗))A∗l

(β0 + A∗l )
2

, Z6 = m1 + n1d1A
∗
l + γ1C

∗.

By Routh’s criteria, the interior equilibrium point shall be asymptoti-

cally stable only if the following conditions are satisfied:

n1d
2
1D
∗
0A
∗
l + Z1Z6 + (Z5 + g)(Z1 + Z6) + Z5g > γ2

1D
∗
0C
∗, (4.25)

n1d
2
1D
∗
0A
∗
l (Z1 + g) + Z5g(Z1 + Z6) + Z1Z6(Z5 + g) >

γ1D
∗
0C
∗(γ1(Z5 + g) + n1d1Z3), (4.26)

gZ1Z5Z6 + n1d
2
1Z1gD

∗
0A
∗
l > γ1C

∗D∗0{Z5gγ1 + n1d1(Z3g + Z2Z4)}.
(4.27)

4.5 Global Stability

In this section, the following two theorems shall establish the global

stability of the model given by equations (4.1)-(4.4):

Theorem 4.5.1. The box Br in the space (C, pH,Al, D0) is a compact

and positive invariant set.

Proof. Consider a box Br in the space (C, pH,Al, D0). One vertex of the

box is considered to be at origin and other at point $ = (C̃, ˜pH, Ãl, D̃0).

The point $ shall lie outside the box Br with C̃ > Cu, ˜pH > pHu, Ãl >

Alu, D̃0 > D0u.

Let us now consider the equations given by (4.1)-(4.4).

Now let,

dν

dt
=

(
dC

dt
,
d(pH)

dt
,
dAl
dt

,
dD0

dt

)
.

Now, let us compute the angle which the flow makes with each face of

the box Br not lying in the coordinate planes. Let σ1,σ2,σ3,σ4 be the

outward unit normal vectors to the planes: φ1 : C = C̃, φ2 : pH =
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˜pH, φ3 : Al = Ãl, φ4 : D0 = D̃0 for the box Br. From equation (4.1) we

obtain,

σ1
dν

dt
|φ1 =

(
CE +

C0

τc

)
− C̃

τc
− γ1D0C̃,

σ1
dν

dt
|φ1 ≤

(
CE +

C0

τc

)
− Cu

τc
− γ1D0C̃,

σ1
dν

dt
|φ1 ≤ −γ1D0C̃,

Hence,

σ1
dν

dt
|φ1 ≤ 0.

Similarly,

σ2
dν

dt
|φ2 ≤ 0 σ3

dν

dt
|φ3 ≤ 0, σ4

dν

dt
|φ4 ≤ 0.

Thus, it is proved that the trajectories of the system given by (4.1) -

(4.4) will not cross Br once they enter inside Br. This completes the

proof of theorem 4.5.1.

Theorem 4.5.2. The interior equilibrium E∗ shall be globally asymp-

totically stable if the following five inequalities are satisfied:

2

(
1

τc
+ γ1D0

)
(m1 + n1d1Al + γ1C

∗) > 3(γ1(C∗ +D0))2,

4

(
1

τc
+ γ1D0

)(
α1(1 + aC∗ − bpH∗)
(β0 + Al)(β0 + A∗l )

)
> 9

(
aα1

β0 + Al

)2

,

2

(
α1(1 + aC∗ − bpH∗)
(β0 + Al)(β0 + A∗l )

)(
g

(1 + C)(1 + C∗)

)
> 3

(
bα1

β0 + Al

)2

,

2

(
α1(1 + aC∗ − bpH∗)
(β0 + Al)(β0 + A∗l )

)
(m1 + n1d1Al + γ1C

∗) > 3(n1d1D
∗
0 − d1)2,

2

(
1

τc
+ γ1D0

)
g > 3

(
pH0

(1 + C)(1 + C∗)

)2

.

Proof. Let us consider the following positive definite function:

Z =
1

2
(C−C∗)2+

1

2
(pH−pH∗)2+

(
Al − A∗l − A∗l ln

Al
A∗l

)
+

1

2
(D0−D∗0)2.

(4.28)
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Differentiating the above equation w.r.t.‘t’ we get,

dZ

dt
= −[b11(C−C∗)2+b22(pH−pH∗)2+b33(Al−A∗l )2+b44(D0−D∗0)2+

b14(C−C∗)(D0−D∗0) + b12(C−C∗)(pH − pH∗) + b13(C−C∗)(Al−A∗l )

+ b23(pH − pH∗)(Al − A∗l ) + b34(Al − A∗l )(D0 −D∗0)], (4.29)

where b11 = 1
τc

+ γ1D0, b22 = g, b33 = α1(1+aC∗−bpH∗)
(β0+Al)(β0+A∗l )

b44 = m1 + n1d1Al + γ1C
∗, b14 = γ1(C∗ +D0),

b12 = pH0

(1+C)(1+C∗)
, b13 = − aα1

β0+Al
, b23 = bα1

β0+Al
, b34 = n1d1D

∗
0 − d1.

By Sylvester’s criteria, sufficient conditions for dZ
dt

to be negative definite

are:

2b11b44 > 3b2
14, 2b11b22 > 3b2

12, 4b11b33 > 9b2
13,

2b22b33 > 3b2
23, 2b33b44 > 3b2

34,

i.e.

2

(
1

τc
+ γ1D0

)
(m1 + n1d1Al + γ1C

∗) > 3(γ1(C∗ +D0))2, (4.30)

4

(
1

τc
+ γ1D0

)(
α1(1 + aC∗ − bpH∗)
(β0 + Al)(β0 + A∗l )

)
> 9

(
aα1

β0 + Al

)2

, (4.31)

2

(
α1(1 + aC∗ − bpH∗)
(β0 + Al)(β0 + A∗l )

)(
g

(1 + C)(1 + C∗)

)
> 3

(
bα1

β0 + Al

)2

,

(4.32)

2

(
α1(1 + aC∗ − bpH∗)
(β0 + Al)(β0 + A∗l )

)
(m1 + n1d1Al + γ1C

∗) > 3(n1d1D
∗
0 − d1)2,

(4.33)

2

(
1

τc
+ γ1D0

)
g > 3

(
pH0

(1 + C)(1 + C∗)

)2

. (4.34)

This leads to completion of proof of theorem 4.5.2.

4.6 Numerical Simulation and Discussion

The analytical results for the model equations given by (4.1)-(4.4) are

supported by performing numerical simulations. Consider the following
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Figure 4.1: Trajectories of model w.r.t. time t showing stability behaviour of
interior equilibrium E∗.

6 7 8 9 10 11 12 13 14 15 16

6

8

10

12

14

16

18

20

22

24

26

C

A
l

Figure 4.2: Phase plane graph for C and Al for different initial values to show
global stability behavior.

set of parameters for the interior equilibrium point E∗(C∗, pH∗, A∗l , D
∗
0),

CE = 4.7, C0 = 6.6, γ1 = 0.345, pH0 = 7.0, g = 0.12, α1 = 0.412,

a = 0.85, b = 0.57, β0 = 1.5, d1 = 0.43, h = 0.715, q = 26.9,

m1 = 0.3, n1 = 1.87, τc = 50. (4.35)
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Figure 4.3: Phase plane graph for C and pH for different initial values to show
global stability behavior.
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Figure 4.4: Phase plane graph for C and D0 for different initial values to show
global stability behavior.

For the above set of parametric values, the values of interior equilibrium

E∗(C∗, pH∗, A∗l , D
∗
0) are found to be E∗ (9.7145, 5.4444, 19.6337, 1.3848).

The interior equilibrium E∗(C∗, pH∗, A∗l , D
∗
0) is found to be asymptot-

ically stable as shown in fig. 4.1 and is satisfying the feasibility and

stability conditions given by eqs. (4.15)-(4.16), (4.18), (4.25)-(4.27),
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Figure 4.5: Graph of pH with C for different values of CE
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Figure 4.6: Graph of Al with time t for different values of CE

(4.30)-(4.34). It is also observed that E∗ is globally stable for different

initial values as shown in figs. 4.2, 4.3 and 4.4. With regard to the

carbon vanishing equilibrium point Ĕ(0, ˘pH, Ăl, D̆0), for the parameter

values satisfying eqs. (4.8), (4.20)-(4.21), the values of Ĕ(0, ˘pH, Ăl, D̆0)

are found to be (0, 7.000, 18.463, 5.6188). With regard to the algal pop-

ulation vanishing equilibrium point Ê(Ĉ, ˆpH, 0, D̂0), for the parameter
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Figure 4.7: Graph of D0 with time t for different values of CE
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Figure 4.8: Graph showing limit cycles for Al and D0 for increase in parameter h.

values satisfying eq. (4.23), the values of Ê(Ĉ, ˆpH, 0, D̂0) are found to

be (10.2285, 5.1972, 0, 2.7433). From the stability analysis of interior

equilibrium point E∗, it is observed that with the increase of rate of

carbon input CE in water, the pH level of water decreases as shown in

fig. 4.5. Also, as the rate of carbon input CE, increases from 0.715 to

7.5, the concentration of algal bloom increases as shown in fig. 4.6. Fur-
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Figure 4.9: Graph showing limit cycles in C −D0 plane for increase in h.
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Figure 4.10: Graph showing limit cycles in C − Al plane for increase in h.

ther, with increased carbon input rate CE in water, along with acidity

and algal bloom growth, the temperature of water also increases due

to elevated levels of global warming. Hence, dissolved oxygen decreases

as shown in fig. 4.7. This is because of decreased oxygen solubility in

warmer waters and more oxygen consumption in the reaction with car-

bon as well as its utilisation in the decomposition process of increased



4.6 Numerical Simulation and Discussion 104

0
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6
1.8

10

15

20

25

30

35

40

45

0

0.5

1

1.5

2

2.5

3

3.5

CD
0

A
l

Figure 4.11: Graph of D0 − C − Al for increase in h.
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Figure 4.12: Graph of D0 with time t for increasing value of q at CE=22.0.

algal blooms. This is supported by study done by Sirota et al. [119].

Further, in the study conducted by Chakraborty et al. [118], under

the single effect of agricultural pollution, the algal population existed

at equilibrium value =19.62 and the corresponding oxygen concentra-

tion value was calculated to be 2.62. However, in our study, at the

algal population existing at level =19.6337, the value of dissolved oxy-
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gen concentration is 1.3848 as given by eq. (4.35). The comparison of

results with the study done by Chakraborty et al. [118] supports that

under the combined effects of increased carbon emissions and acid in

water, the oxygen level in water will decrease more rapidly than under

the single effect of each factor. Moreover, since dissolved oxygen (DO)

is an important resource for aquatic population to survive, hence its de-

pletion may even lead to extinction of the aquatic population. It is also

observed that as the value of natural decay rate of algal bloom (h) is

increased from 0.715 to 8.893, while keeping the other model parameters

same as given in eq. (4.35), the stable solutions of dissolved oxygen and

algal population are transformed into oscillatory solutions as shown in

fig.4.8. Thus, it is inferred that with increase in natural decay rate of al-

gal bloom to h= 8.893 and above, the system bifurcates to a stable limit

cycle periodic solution and Hopf bifurcations are observed as shown in

figs. 4.9, 4.10, 4.11. It is also observed that if the rate of carbon input

CE is increased from 4.7 to 22.0, keeping all the other parameters same,

then the dissolved oxygen tends towards a zero level. However, at this

stage if the oxygen input rate q is increased to 35.1, then the dissolved

oxygen starts increasing from zero level as shown in fig. 4.12. Hence-

forth, it is shown that for the dissolved oxygen to exist in the system,

either the rate of carbon input CE should be maintained below 22.0 or

the input rate of dissolved oxygen should be increased from its threshold

level i.e. q=35.1. Thus, it is concluded that the cumulative effect of

factors like increasing acidity, global warming, decomposition of algal

blooms, and direct discharge of carbon-rich pollutants in water have dire

consequences for the oxygen-dependent aquatic population and hamper

their growth and survival rate. Thus, it is imperative that for the exis-

tence of the aquatic population dependent on dissolved oxygen for their

survival, the rate of carbon emissions should be controlled. Further,

the discharge of input of acid and industrial wastes in water needs to

be monitored and reduced. Otherwise, with the rising algal blooms and

consequent decrease of dissolved oxygen in water, a situation of hypoxia
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can arise, which will ultimately lead to hazardous consequences such as

growth impairments in aquatic population and fish kills[80, 94].



Chapter 5

Decline in Dissolved Oxygen
Due to Increasing
Temperature and Algal
Blooms: Mathematical
Model

5.1 Introduction

In recent times, the human activities are leading to a steep rise in the

pollution and the carbon dioxide level in the environment. The marine

environment is exposed to toxins, toxic chemicals, industrial wastes,

etc. by their direct input in water. The presence of pollutants in water

results in habitat degradation of aquatic species [47]. Increased fossil

fuel burning, industrial pollutants etc. are some of the factors which

lead to rise of carbon emissions in the environment [130]. The increased

atmospheric carbon dioxide level contributes to global warming [131].

This increases the water temperature in different bodies of fresh wa-

ter and marine water. Climate change also has a direct influence on an

ecosystem’s structure and functions. The way materials and energy flow

in an environment is heavily influenced by climate change [132]. Un-

der global warming, the species’ metabolic rates are also changed [133].

107
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Additional carbon dioxide level can further result in weak acidification

of the water body [53] . Poor acidification in the marine environment

has the potential to harm reproduction abilities in macrophytes in wa-

ter and cause alterations in phytoplankton communities [134] . The

rising acidity, contamination and rising water temperatures lead to an

increased growth of algal blooms in the water bodies [135], [136]. Cli-

mate change is also found to have a significant impact on the frequency

and abundance of algal blooms affecting the growth and habitat of the

algal blooms. The growing algal blooms have negative affect on ecosys-

tem functioning [78]. They also disturb the aquatic biodiversity and

food chains [126]. It is seen that, due to pollutants present in the water

bodies, not only the species are affected but the resource i.e. dissolved

oxygen is also decreased. The oxygen levels in water fall with rise in

algal growth [137]. Ocean warming caused by global climate change

results in deoxygenation with negative consequences for ocean produc-

tivity and marine habitat. Ocean models predict declines of 1 to 7

percent over the next century in the global ocean oxygen stocks, with

declines extending into the future for a thousand years or more [99].

The decline in dissolved oxygen due to global warming can lead to con-

dition of hypoxia which may lead to death of various aquatic species

dependent on oxygen for their survival. Increased acidity and global

warming also lead to the loss of coral reefs ’ biodiversity, which poses

a threat to their dependent populations [138], [139]. Thus , due to the

growing acidity and hypoxic conditions , aquatic species face difficulty

in their growth and survival [140]. Various mathematical and exper-

imental studies are available which support the decrease of dissolved

oxygen due to global warming [141]. Also, certain mathematical stud-

ies study the effect of pollutants and acidification on aquatic ecosystem

individually [118], [47], [109], [84]. But, a combined study which stud-

ies the effects of global warming and carbon emissions together in one

mathematical model is not yet available.

In our study, we have formulated a mathematical model of non-linear
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differential equations to study the impact of global warming, increased

carbon emissions and increased algal bloom growth on the level of dis-

solved oxygen in water. Threshold levels for maximum amount of car-

bon input the aquatic ecosystem can handle has been calculated, above

which the carbon input increase can lead to condition of hypoxia having

dreadful effects on aquatic populations like fishes. Also, threshold level

of oxygen input has also been calculated required to sustain the aquatic

life under increased carbon dioxide concentration and global warming.

It has been found that under the effects of global warming and car-

bon dioxide increase in the atmosphere, the dissolved oxygen decreases

which can have very harmful effects on the aquatic ecosystem.

5.2 Mathematical Model

It is assumed in the proposed mathematical model that due to increase

of carbon dioxide concentration in the environment, the atmospheric

temperature is increasing which is leading to warming of waters. Also,

the water acidity is increasing due to the increasing carbon concentra-

tion. These factors are leading to increase in growth of algal blooms in

the water bodies. The increasing algal blooms and water temperature

further cause decline in the concentration of dissolved oxygen in water.

Under these assumptions, let τ(t) be the average surface temperature,

R(t) be the concentration of atmospheric carbon dioxide, Ag(t) be the

density of algal blooms and O(t) be the dissolved oxygen concentration

in water.

The model is formulated as given below:

dτ

dt
= φ(R−R0)− δ(τ − τ0) (5.1)

dR

dt
= Q− αR− hRAg

1 + aR
(5.2)

dAg
dt

=
hRAg
1 + aR

− βAg (5.3)
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dO

dt
= I–dAgO–nO–d3Oτ (5.4)

with initial conditions τ(0) ≥ 0, R(0) ≥ 0, Ag(0) ≥ 0, O(0) ≥ 0, τ ≥
τ0, R ≥ R0.

The model parameters are as given below:

φ is the growth rate coefficient corresponding to average surface temper-

ature, δ is the coefficient of depletion of average surface temperature.

R0 is the level of carbon dioxide in absence of pollution and human

activities. τ0 is the average surface temperature in absence of rising

carbon dioxide levels. Q is the rate of increase of carbon dioxide due to

human activities. α is the natural depletion rate of carbon concentra-

tion. h gives the growth rate of algal blooms due to increasing carbon

concentration in water and rising water acidity and a represents the pro-

portionality constant. β is the natural death rate of algal blooms. I is

the input rate of oxygen in water. d gives the depletion rate of dissolved

oxygen due to decomposition process of algal blooms in water. n is the

natural depletion rate of oxygen and d3 gives the rate of decrease of

dissolved oxygen concentration due to low solubility of oxygen in water

due to global warming.

All model parameters are assumed to be positive constants.

5.3 Dynamical Behaviour

In order to carry out the analysis of the model given by equations (5.1)-

(5.4), the dynamical behaviour of the mathematical model shall be stud-

ied in this section.

5.3.1 Boundedness and Positivity

In order to show the boundedness of the solutions of the model given

by equations (5.1)-(5.4), the following lemma shall be proved.

Lemma 5.3.1. All the solutions of the system of equations given by
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(5.1)-(5.4) lie in the region

$1 =
{

(τ, R,Ag, O) ∈ R4
+ : 0 ≤ τ0 ≤ τ ≤ τM , 0 ≤ R0 ≤ R ≤ RM ,

0 < O < OM , 0 < R + Ag +O ≤ W1M ,as t→∞, for all positive initial

values (τ(0), R(0), Ag(0), O(0)) ∈ R4
+, where,τM = φRM+δτ0

δ
,

RM = Q
α
, OM = I

n
,W1M = Q+I

b11
, where b11 = min(α, β, n).

Proof. From equation (5.2) we get,

dR

dt
≤ Q− αR

then by usual comparison theorem, as t→∞,

lim sup
t→∞

(R, t) ≤ Q

α
= RM

From equation (5.1) we get,

dτ

dt
+ δτ ≤ φRM + δτ0

By comparison theorem we get as t→∞,

lim sup
t→∞

(τ, t) ≤ φRM + δτ0

δ
= τM

From equations (5.2)-(5.4),

d(R + Ag +O)

dt
≤ Q+ I − αR− βAg − nO

then by comparison theorem we get as t→∞,

lim sup
t→∞

(R + Ag +O, t) ≤ Q+ I

b11

= W1M

where b11=min(α, β, n). From equation (5.4) we get,

dO

dt
≤ I − nO.

By comparison theorem we get as t→∞,

lim sup
t→∞

(O, t) ≤ I

n
= OM .
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In order to show the positivity of the solutions of the model given by

equations (5.1)-(5.4), the following lemma shall be proved.

Lemma 5.3.2. The solutions of the model given by equations (5.1)-

(5.4), (τ(t), R(t), Ag(t), O(t)) are positive for t > 0, for initial values:

τ(0) > 0, R(0) > 0, Ag(0) > 0, O(0) > 0.

Proof. From equation (5.1),

dτ

dt
≥ −δτ

τ ≥ k1e
−δt

where k1 is an integration constant.

Thus, we have τ > 0 for t→∞. From equation (5.2),

dR

dt
≥ −(α + hW1M)R

R ≥ k2e
−(α+hW1M )t

where k2 is an integration constant.

Thus, we have R > 0 for t→∞. From equation (5.3),

dAg
dt
≥ −βAg

Ag ≥ k3e
−βt

where k3 is an integration constant.

Thus, we have Ag > 0 for t→∞. From equation (5.4),

dO

dt
≥ −(dW1M + n+ d3τM)O

O ≥ k4e
−(dW1M+n+d3τM )t

where k4 is an integration constant.

Thus, we have O > 0 for t→∞.
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5.3.2 Equilibrium points

In this section, the feasible equilibria of the system given by equations

(5.1)-(5.4) shall be calculated.

1. Boundary equilibrium E1(τ̂ , 0, 0, Ô), where R̂ = 0, Âg = 0 i.e.

the carbon dioxide emissions and the algal population is taken as zero.

τ̂ =
δτ0 − φR0

δ
(5.5)

τ̂ > 0 if δτ0 − φR0 > 0 (5.6)

Ô =
I

n+ d3τ̂
(5.7)

Since τ̂ > 0, hence Ô > 0.

2. Interior equilibrium E2(τ ∗, R∗, A∗g, O
∗), where ,

R∗ =
β

h− aβ
(5.8)

R∗ > 0 if h > aβ (5.9)

τ ∗ =
φ(R∗ −R0) + δτ0

δ
(5.10)

τ ∗ > 0 as R∗ ≥ R0

A∗g =
(Q− αR∗)(1 + aR∗)

hR∗
(5.11)

A∗g > 0 if Q > αR∗ (5.12)

O∗ =
I

dA∗g + n+ d3τ ∗
(5.13)

As τ ∗ > 0 , hence O∗ > 0.

5.3.3 Local Stability

In this section we shall carry out the local stability analysis for the

model given by equations (5.1)-(5.4).
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i. Local Stability of Boundary Equilibrium Point E1: For the

variational matrix associated with the boundary equilibrium E1 ,

the characteristic equation is given by

(− I
Ô
− λ)(−δ − λ)(−α− λ)(−β − λ) = 0 (5.14)

λ1 = − I
Ô
, λ2 = −δ, λ3 = −α, λ4 = −β (5.15)

The nature of roots of the equation (5.14) shows that the equilib-

rium point E1 is asymptotically stable.

ii. Local Stability of Interior Equilibrium Point E2: For the

variational matrix associated with the interior equilibrium E2, the

characteristic equation is given by

(− I

O∗
− λ)(−δ − λ)(λ2 − Z1λ+ Z2Z3) = 0 (5.16)

where

Z1 = −α− hA∗g +
haA∗gR

∗

(1 + aR∗)2
, Z2 =

hR∗

1 + aR∗
,

Z3 =
hA∗g

1 + aR∗
−

haA∗gR
∗

(1 + aR∗)2
.

We get,

λ1 = − I

O∗
, λ2 = −δ (5.17)

Using Routh’s criteria, the equilibrium point E2 is stable only if the

following is satisfied,

α + hA∗g >
haA∗gR

∗

(1 + aR∗)2
(5.18)

aR∗

1 + aR∗
< 1 (5.19)
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5.3.4 Global Stability

In this section, for the model given by equations (5.1)-(5.4), we shall

study the global stability behaviour about the interior equilibrium E2 .

Theorem 5.3.1. The box $1 in the space (τ, R,Ag, O) is compact and

positive invariant.

Proof. Consider a box $1 in space τ, R,Ag, O). One vertex of the box

is considered to be at origin and the other vertex at V = (τ ′, R′, A′g, O
′).

Also, consider τ ′ > τ,R′ > R,A′g > Ag and O′ > O. For calculating the

angle of flow that is made with each face of $1 not lying in coordinate

planes, let ρ1, ρ2, ρ3 and ρ4 be the outward unit normal vectors to planes

G1 : τ = τ ′, G2 : R = R′, G3 : Ag = A′g and G4 : O = O′.

We get from equation (5.4),

ρ44
dV

dt
|G4 ≤ I − nO′ − d3O

′τ0,

since O′ > I
n
,

ρ4
dV

dt
|G4 ≤ −d3O

′τ0,

hence

ρ4
dV

dt
|G4 ≤ 0.

Similarly,

ρ1
dV

dt
|G1 ≤ 0, ρ2

dV

dt
|G2 ≤ 0, ρ3

dV

dt
|G3 ≤ 0.

Hence,$1 is the region of attraction for model given by equations (5.1)-

(5.4).

Theorem 5.3.2. The following inequalities should hold for the model

given by the system of equations (5.1)-(5.4) to be globally stable.

δ

(
α +

hA∗g
(1 + aR∗)(1 + aR)

)
> φ2,
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(
α +

hA∗g
(1 + aR∗)(1 + aR)

)(
β − hR

1 + aR

)
>(

hR

1 + aR
−

hA∗g
(1 + aR∗)(1 + aR)

)2

,(
β − hR

1 + aR

)
(dAg + n+ d3τ) > (dO∗)2,

δ(dAg + n+ d3τ) > (d3O
∗)2.

Proof. Consider a positive definite function,

Z =
1

2
(τ − τ ∗)2 +

1

2
(R−R∗)2 +

1

2
(Ag − A∗g)2 +

1

2
(O −O∗)2.

Differentiating w.r.t. t we get,

dZ

dt
= −[b11(τ − τ ∗)2 + b22(R−R∗)2 + b33(Ag − A∗g)2 + b44(O −O∗)2

+ b12(τ − τ ∗)(R−R∗) + b14(τ − τ ∗)(O −O∗) + b23(R−R∗)(Ag − A∗g)

+ b34(Ag − A∗g)(O −O∗)] (5.20)

where, b11 = δ, b22 = α +
hA∗g

(1+aR∗)(1+aR)
, b33 = β − hR

1+aR
, b14 = d3O

∗,

b34 = dO∗, b44 = dAg + n+ d3τ, b12 = −φ, b23 = hR
1+aR

− hA∗g
(1+aR∗)(1+aR)

.

Using Sylvester’s criteria we get,

b11b22 > b1
2
2, b22b33 > b2

2
3, b33b44 > b3

2
4, b11b44 > b1

2
4.

Hence,the system of equations (5.1)-(5.4) shall be globally stable if the

following are satisfied,

δ

(
α +

hA∗g
(1 + aR∗)(1 + aR)

)
> φ2, (5.21)

(
α +

hA∗g
(1 + aR∗)(1 + aR)

)(
β − hR

1 + aR

)
>(

hR

1 + aR
−

hA∗g
(1 + aR∗)(1 + aR)

)2

, (5.22)
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(
β − hR

1 + aR

)
(dAg + n+ d3τ) > (dO∗)2, (5.23)

δ(dAg + n+ d3τ) > (d3O
∗)2. (5.24)
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Figure 5.1: Local stability behaviour at Interior equilibrium
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Figure 5.2: Global stability behaviour at interior equilibrium point
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Figure 5.3: Decrease in dissolved oxygen with increasing global warming
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Figure 5.4: Decrease in dissolved oxygen with increasing carbon dioxide

5.4 Numerical Example

For the equations given in (5.1)-(5.4), we shall consider the values of

parameters as given below:
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Figure 5.5: Graph for threshold value of dissolved oxygen

φ = 0.03, δ = 0.3, R0 = 5.5, τ0 = 13.5, α = 0.04, h = 0.4, a = 0.7,

β = 0.55, I = 23.44, d = 0.6, n = 0.3, Q = 6.358, d3 = 0.001. (5.25)

With these values of parameters given by equation (5.25), the following

values of variables at interior equilibrium point E2(τ ∗, R∗, A∗g, O
∗) are

obtained,

τ ∗ = 16.6167, R∗ = 36.6667, A∗g = 8.8933, O∗ = 6.6193.

For the above mentioned set of values of parameters given by equa-

tion (5.25), the conditions of stability given by equations (5.18)-(5.19),

(5.21) - (5.24) are satisfied. Therefore, the interior equilibrium E2 is

stable. The same is supported by figure 5.1. Also, the dissolved oxygen

equilibrium value is similar to the threshold level of dissolved oxygen

concentration in fresh water bodies [98].

5.5 Conclusion

From the stability analysis of the model given by equations (5.1)-(5.4),

it is concluded that the feasibility and stability conditions at interior
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equilibrium E2 given by (5.9),(5.12), (5.18) - (5.19), (5.21) - (5.24) are

satisfied for the values of parameters given by equation (5.25). E2 is

found to be locally stable as shown in figure 5.1. Also, the interior

equilibrium point is globally stable as shown in figure 5.2. The dis-

solved oxygen concentration decreases with rise in global warming as

shown in figure 5.3. This is also supported by equation(5.13). With

the increase in carbon dioxide concentration, the dissolved oxygen level

decreases as supported by equation(5.13) and shown in figure 5.4. It

is also observed that if the value of carbon input increases more than

Q=6.694, value of dissolved oxygen drops below 2.00. Thus, a condition

of hypoxia arises which can be detrimental for the aquatic population.

Also, at value of carbon input Q=6.83833, the dissolved oxygen level

decreases to zero which can lead to fish kills. Hence, we get a thresh-

old level for carbon input, above which the survival of species in an

aquatic ecosystem is not possible. It is also shown that Q=6.83833,

if the value of dissolved oxygen input is maintained above I= 24.115,

the dissolved oxygen level again starts to increase. This is shown in

figure 5.5. Thus, for the survival of aquatic species under the carbon

input(Q) greater than 6.83833, the dissolved oxygen input in water has

to be maintained above I=24.115. Thus, it is concluded from our study

that the rising global warming and carbon dioxide levels in atmosphere

greatly decrease the dissolved oxygen level in water, thus, harming the

aquatic ecosystem.



Chapter 6

Mathematical Study on
Simultaneous Effects of
Rising Plastic Waste, Global
Warming and Eutrophication
on Aquatic Ecosystem

6.1 Introduction

As the whole world battles the unprecedented times due to pandemic

COVID-19 which has caused disruptions in the lives of people world-

wide, its impending repercussions on the environment and the aquatic

ecosystem is also causing a flurry of concern among the environmen-

talists. The outspread of COVID-19 has skyrocketed the demand of

gloves, face masks, personal protective equipment, body bags, plastic

face shield etc., most of which are designed from single-use plastic. As

these supplies are essential to battle the health crisis, increasing their

production is seen as the focus of all the governments worldwide. How-

ever, no proper strategies and procedural guidelines for their recycling

and disposal are being developed. As a result, it is expected that inad-

vertent disposal of these plastic items by people could add to the already

existing environmental hazard of plastic pollution, an issue which has

121
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been left to simmer on the backburner for past long time. Since plas-

tic items are becoming an indispensable and addictive part of human

lifestyle, the pollution caused by it as landfills and accumulation in wa-

ter bodies is also surging day-by-day having dire consequences for the

environment. A report from the Ellen MacArthur Foundation devel-

oped with the World Economic Forum as a partner [143], has estimated

that by year 2050, the amount of plastics in the oceans shall outweigh

the fish populations. The swelling plastic waste is having precarious

out-turns for the residing populations in the aquatic bodies [144]. The

plastic particles are entering the aquatic food webs due to their con-

sumption by the aquatic biota which is hampering the growth patterns,

reproduction and life cycles of these species [145, 146, 147]. The burden

of plastic pollution is also intensifying the already existing problem of

global warming. The heat uptake by the oceans has shown a two times

increase in the heat uptake[25]. The rising temperatures are causing

loss to biodiversity of ecosystems and the organisms [148, 27]. Upon

degradation, plastic releases gases such as methane and ethylene which

further increases global warming [149, 150]. If the rate of production

of plastics continues in the same way, then by 2050, Global Greenhouse

Gases emissions due to plastic would touch a figure of 15 percent of

the global carbon budget, [151] which shall further contribute towards

global warming.

Though lockdowns imposed to combat the spread of COVID-19, have

temporarily cut-down on the carbon emissions but experts believe this

should not be taken as the slowing of climate change [152]. Along

with this, the human-induced activities due to rapid industrialization

and urbanization which were contributing towards the soaring carbon

emissions in atmosphere will further give way to atmospheric temper-

ature increase once the health crisis ends and the situation resumes

towards normal [153]. A recent data released by the United States

National Oceanic and Atmospheric Association (NOAA) [154] exhibits

that global carbon dioxide levels are sharply rising.
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The uptake of carbon dioxide by the ocean and land carbon sinks has

increased manifold in the last 50 years [142]. Further the carbon dioxide

when absorbed by the water bodies, reacts with the dissolved oxygen,

forms carbonic acid [94], and increases the acidity level of water which

is expected to be more severe in the coming times [155] which is bound

to have devastating effects on the species [134, 156]. The acidity of wa-

ter is also increased by eutrophication process [157, 158, 159], which is

caused by the input of rich nutrients into the water bodies, mostly as

agricultural run-off [118]. The acidic waters can prove harmful for the

health and development of residing populations and their biodiversity

[56, 75]. The eutrophic waters and the increased acidity levels further

promote the growth of Harmful Algal Blooms in water [6]. Warming

waters have also led to expansion of algal growth in oceans [80]. These

algal blooms, when present in large concentrations, prove detrimental

to the survival of aquatic species because their decomposition process

utilises the dissolved oxygen in the water body and leads to oxygen

scarcity which may lead to hypoxia, or in worst cases, anoxia also [82].

The plastic particles also hinder with the photosynthesis process of the

algal population and pose problems for their growth [160, 161]. Thus,

mortality rate of algal bloom is increased due to plastic, thus having a

direct negative impact on the concentration of dissolved oxygen due to

its consumption in the algal decomposition. Furthermore, due to the

climatic changes, the water temperature is also witnessing a rise and it

has been found that warmer waters are beneficial for the growth of al-

gal bloom and are weaker in holding dissolved oxygen. Thus, the global

warming is catastrophically steering the aquatic ecosystems towards low

dissolved oxygen concentrations.

The global content of oxygen has decreased over the past five decades

and a decline of one percent to seven percent in the global oxygen in-

ventory is predicted by the ocean models [103]. Dissolved oxygen is a

predominant resource for the existence of the aquatic species. Climate

changes, acidification, eutrophication, and hypoxia play an interactive
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role to reduce the viability and growth of aquatic organisms such as cer-

tain fishes especially affecting their early-life stages [26, 1] and adversely

affect the ecosystem [78, 17, 102, 81]. These phenomena are also leading

to loss of life, biodiversity, and habitat for various aquatic species. In

some cases, it can cause the collapse of the food webs, which play a key

role in benthic community structuring [126].

Several researchers have attempted to study the effect of pollution,

eutrophication and global warming on the populations by developing

mathematical studies [162, 31, 86, 2, 163, 92, 164]. Bharathi A.T. et al.

[108] have studied the combined impacts of acid and metal concentra-

tion in water on the survival of resource-based aquatic population under

nutrient recycling. Shukla et. al. [32] gave a mathematical model to

study the effect of growing anthropogenic carbon emissions and result-

ing temperature increase on the level of sea water and cautioned that

the sea level rise due to melting of ice sheets in globally-warmed environ-

ment shall cause survival problems for the human population. Sekerci

and Petrovskii [141] , in their mathematical study reinforced the fact

that the global warming causes decrease in the dissolved oxygen level by

obstructing the process of algal photosynthesis. Shukla et al. [84] pro-

posed a mathematical model to study the reduction in dissolved oxygen

caused by growth of algal bloom population in water wherein the algal

growth rate is governed by the Holling type-II functional response of the

nutrient concentration in water. However, Misra A.K. [165] enhanced

this mathematical model in his study and replaced the Holling-type

-II functional response by a more suited Holling-type-III functional re-

sponse for depicting the interaction between algal population and the

nutrients. Several other researchers have also used Holling-type-III func-

tional response in their studies to analyse the interactions between vari-

ous species [157]. H However, in all the available mathematical studies,

mostly the individual effect of the environment stressors is studied but

the effect of simultaneous occurrence of all the salient environmental

stresses such as plastic pollution, global warming, eutrophication and
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their cumulative consequences for the dissolved oxygen concentration

have still not been explored.

In view of the same, in this chapter, we propose a mathematical study

to analyse the effects of the simultaneous occurrence of pollution, plas-

tic wastes, acidification, algal bloom growth and global warming on the

concentration of dissolved oxygen in water. The model variables and

parameters are explained in the next section.

6.2 Mathematical Model-I

In our mathematical model-I, it is assumed that rising greenhouse gases

in the atmosphere and the accumulating plastic wastes in water bodies

are leading to global warming which is increasing the water tempera-

ture. In addition to this the carbon emissions and eutrophication are

increasing the acidity of water. Warmer, acidic, and eutrophic waters, in

turn, promote the growth of algal bloom population in water. These all

factors, especially warming waters and inflating algal population den-

sity, when operate together in an aquatic ecosystem, lead to decline in

the concentration of dissolved oxygen in water. Reduction in dissolved

oxygen further leads to condition of hypoxia, which can be harmful for

survival of aquatic biota.

In view of the assumptions, let Pl denote the concentration of plas-

tic waste in water body and G denote the concentration of greenhouse

gases in the atmosphere. Let n represents the concentration of nutri-

ents entering the water body leading to eutrophication and algal bloom

growth. a represents the density of algal population. T represents the

average surface temperature and O denotes the concentration of dis-

solved oxygen in water. The algal-nutrient concentration is assumed to

be governed by a Holling type-III functional response.

Certain considerations comprising the model propsoed are given as fol-

lowing:

1. The term I11 represents the increase in greenhouse gases due to
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degradation process of plastics [149, 150].

2. Growth rate of algal bloom which is assumed to be a resultant of

rise of nutrient concentration in water is represented by θ11β11n2a
µ20+n2 . This

interaction is assumed to follow a Holling type-III functional response

[165].

3. µ11(G−G0) represents the growth of temperature due to increase in

greenhouse gases concentrations in atmosphere.

4. The term Krγ
(T−Tr10 )
1 O represents the rate of degradation of plastic

which lowers the dissolved oxygen concentration in water through direct

and indirect effects [166].

5. The term α4aO represents the consumption of dissolved oxygen in

the decomposition process of algal population, which may lead to hy-

poxic conditions under aggravated risen algal concentrations [82].

Incorporating the variables and assumptions stated above the mathe-

matical model-I consisting of differential equations is formulated as

given below:

dPl
dt

= Q1 − α1Pl (6.1)

dG

dt
= I1 − α2G (6.2)

dn

dt
= q0 − α10n−

β11n
2a

µ2
0 + n2

(6.3)

da

dt
=
θ11β11n

2a

µ2
0 + n2

− ψ1a− ψ2a
2 (6.4)

dT

dt
= µ11(G−G0)− µ12(T − T0) (6.5)

dO

dt
= R−Krγ

(T−Tr10 )
1 O + α5a− ψ3O (6.6)
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where I1 = I10 + I11Pl, ψ1 = ψ0 + θ12Pl and ψ3 = α3 + α4a

with initial conditions as given below:

Pl(0) ≥ 0, G(0) > 0, n(0) > 0, a(0) ≥ 0, T ≥ 0, O ≥ 0, T ≥ T0, G ≥ G0

and T ≥ Tr.

The description of the parameters of the mathematical model are given

in Table 6.1.

All parameters are assumed to be positive constants.

6.3 Model Analysis

In this section, we study the various stationary solutions (equilibria) of

the mathematical model-I and examine the system given by equations

(6.1)-(6.6) for boundedness and positivity of the solutions.

6.3.1 Boundedness and Positivity of Solutions

Theorem 6.3.1. All the solutions of the mathematical model-I de-

noted by equations (6.1)-(6.6) are lying in the region given by $ ={
(Pl, G, n, a, T,O) ∈ R6

+ : 0 < Pl < Plu, 0 < G < Gu, 0 < n <

nu, 0 < a < au, Tl < T < Tu, Tl > 0, 0 < O < Ou} for positive ini-

tial values (Pl(0), G(0), n(0), a(0), T (0), O(0)) ∈ R6
+ as t → ∞. where

Plu = Q1

α1
, Gu = I10+I11Plu

α2
, nu = q0

α10
, au = θ11β11

ψ2
, Tu = µ11Gu+µ12T0

µ12
, Tl =

µ11(G−G0)
µ12

,

Ou = R+α5au
α3

.

Proof. From equation (6.1) we get,

lim sup
t→∞

(Pl, t) ≤
Q1

α1

= Plu.

From equation (6.2) we have,

lim sup
t→∞

(G, t) ≤ I10 + I11Plu
α2

= Gu.
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Table 6.1: Description of Model Parameters.

Parameter Description
Q1 Input rate of plastic in water body
α1 Decay and sedimentation rate of plastic
I10 Emission rate of greenhouse gases due to

anthropogenic activities
I11 Increase in greenhouse gases due to degradation

of plastic particles
α2 Natural depletion rate of greenhouse gases
q0 Rate of inflow of nutrients due to agricultural

run-off or domestic drainage
α10 Rate of natural loss of nutrients
β11 Proportionality constant
µ0 Half-saturation constant
θ11 Fractional proportionality constant
θ12 Rate of decrease of algal growth due to reduced

photosynthesis by plastics
ψ0 Natural mortality rate of algal population
ψ2 Depletion rate of algal population due to crowding
µ11 Rate of increase of water temperature due to rise

in greenhouse gases
µ12 Coefficient of surface heat transfer
G0 Threshold value for greenhouse gases above which temperature

will rise due to global warming
T0 Temperature of environment
R Input rate of oxygen in water
Kr Constant of reaction rate under specific temperature Tr
γ1 Coefficient demonstrating rate of reaction increase if temperature

rises by 10 degrees Celsius
Tr Reference Temperature
α5 Rate of increase in oxygen concentration due to

algal photosynthesis
α4 Proportionality constant
α3 Coefficient for rate of natural loss of oxygen
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Equation (6.3) gives the following,

lim sup
t→∞

(n, t) ≤ q0

α10

= nu.

Similarly from equation (6.4),(6.5) and (6.6) the following expressions

are obtained respectively,

lim inf
t→∞

(T, t) ≥ µ11(G−G0)

µ12

= Tl,

lim sup
t→∞

(a, t) ≤ θ11β11

ψ2

= au,

lim sup
t→∞

(T, t) ≤ µ11Gu + µ12T0

µ12

= Tu,

lim sup
t→∞

(O, t) ≤ R + α5au
α3

= Ou.

This completes the proof of the theorem 6.3.1.

Theorem 6.3.2. All the solutions of the system of equations denoted

by equations (6.1)-(6.6) exhibit positivity for all time t ≥ 0 for positive

initial conditions.

Proof. We have from equation (6.1),

dPl
dt
≥ −α1Pl,

Pl ≥ h1e
−α1t,

where h1 denotes the integration constant. Hence, Pl ≥ 0 for all time

t ≥ 0. Similarly from equations (6.2),(6.3),(6.4),(6.5) and (6.6), the

following can be deduced,

G ≥ h2e
−α2t,

n ≥ h3e
−(α10+β11nuau)t,

a ≥ h4e
−(θ12Plu+ψ0+ψ2au)t

T ≥ −µ11G0

µ12

+

(
T (0) +

µ11G0

µ12

)
e−µ12t,
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O ≥ h5e
−
(
Krγ

(Tu−Tr10 )
1 +α4au+α3

)
t,

where h2, h3, h4 and h5 are integration constants.

Hence, we get G ≥ 0, n ≥ 0, a ≥ 0, T ≥ 0 and O ≥ 0, for all times t > 0,

which leads to the completion of the proof of theorem 6.3.2.

6.3.2 Equilibrium points

The system given by equations (6.1)-(6.6) has the below given three

equilibrium points:

1. Algal Vanishing Boundary Equilibrium Point

Ê(P̂l, Ĝ, n̂, 0, T̂ , Ô):

From the system given by equations (6.1)-(6.6) we get,

P̂l =
Q1

α1

, (6.7)

Ĝ =
I10 + I11P̂l

α2

, (6.8)

T̂ =
µ11(Ĝ−G0) + µ12T0

µ12

, (6.9)

n̂ =
q0

α10

, (6.10)

Ô =
R

Krγ

(
T̂−Tr

10

)
1 + α3

. (6.11)

2. Plastic Vanishing Boundary Equilibrium Point

Ẽ(0, G̃, ñ, ã, T̃ , Õ):

From the system given by equations (6.1)-(6.6) we get,

G̃ =
I10

α2

, (6.12)

T̃ =
µ11(G̃−G0) + µ12T0

µ12

, (6.13)

ñ =
q0

α10

−
(
ψ0ã+ ψ2ã

2

α10θ11

)
, (6.14)
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ñ > 0 if,
q0

α10

>

(
ψ0ã+ ψ2ã

2

α10θ11

)
, (6.15)

Õ =
R + α5ã

Krγ

(
T̃−Tr

10

)
1 + α3 + α4ã

. (6.16)

ã is given by the positive root of the equation:

B1ã
5 +B2ã

4 +B3ã
3 +B4ã

2 +B5ã+B6 = 0, (6.17)

where

B1 = ψ3
2, B2 = 3ψ0ψ

2
2 − θ11β11ψ

2
2,

B3 = 3ψ2
0ψ2 − 2θ11qψ

2
2 − 2ψ0ψ2θ11β11,

B4 = ψ3
0 − 4θ11qψ0ψ2 − ψ2

0θ11β11 + 2θ2
11β11qψ2,

B5 = µ2
0α

2
10θ

2
11ψ2 + θ2

11q
2ψ2 + 2θ2

11β11qψ0 − 2θ11qψ
2
0,

B6 = ψ0µ
2
0α

2
10θ

2
11 + ψ0θ

2
11q

2 − θ3
11β11q

2.

The equation (6.17) has at least one positive root if the following con-

dition is satisfied:

3ψ0 < β11θ11. (6.18)

3. Interior Equilibrium Point E∗(P ∗l , G
∗, n∗, a∗, T ∗, O∗):

From the system given by equations (6.1)-(6.6) we get,

P ∗l =
Q

α1

, (6.19)

G∗ =
I10 + I11P

∗
l

α2

, (6.20)

T ∗ =
µ11(G∗ −G0) + µ12T0

µ12

, (6.21)

n∗ =
q0

α10

−
(
ψ1a

∗ + ψ2a
∗2

α10θ11

)
, (6.22)

n∗ > 0 if,
q0

α10

>

(
ψ1a

∗ + ψ2a
∗2

α10θ11

)
, (6.23)
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O∗ =
R + α5a

∗

Krγ
(T
∗−Tr
10 )

1 + α3 + α4a∗
. (6.24)

a∗ is given as the positive root of the following equation:

A1a
∗5 + A2a

∗4 + A3a
∗3 + A4a

∗2 + A5a
∗ + A6 = 0, (6.25)

where

A1 = ψ3
2, A2 = 3ψ1ψ

2
2 − θ11β11ψ

2
2,

A3 = 3ψ2
1ψ2 − 2θ11qψ

2
2 − 2ψ1ψ2θ11β11,

A4 = ψ3
1 − 4θ11qψ1ψ2 − ψ2

1θ11β11 + 2θ2
11β11qψ2,

A5 = µ2
0α

2
10θ

2
11ψ2 + θ2

11q
2ψ2 + 2θ2

11β11qψ1 − 2θ11qψ
2
1,

A6 = ψ1µ
2
0α

2
10θ

2
11 + ψ1θ

2
11q

2 − θ3
11β11q

2.

The equation (6.25) has at least one positive root if the following con-

dition is satisfied:

3ψ1 < β11θ11. (6.26)

6.4 Stability Analysis of the Model

Consider the system of equations as given below:

dx

dt
= f̆(t, x) (6.27)

dy

dt
= ğ(y) (6.28)

wheref̆ and ğ are locally Lipschitz functions and continous in variable

’x’ in Rn with the solutions existing for all time t ≥ 0.The equation

(6.28) shall be asymptotically autonomous with limit equation (6.27),

if for all ’x’ in Rn, f̆(t, x)→ ğ(x) uniformly as t→∞.

Lemma 6.4.1. [167, 168]: “Let e be a locally asymptotically stable

equilibrium of (6.28) and ω be the ω-limit set of a forward bounded

solution x(t) of (6.27). If ω contains a point y0 such that the solutions

of (6.28), with y(0) = y0 converges to e as t → ∞, then ω = {e} i.e.

x(t)→ e as t→∞”
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Corollary 6.4.1.1. [168]: “If the solutions of the system (6.28) are

bounded and the equilibrium e of the limit system (6.28) is globally

asymptotically stable then any solution x(t) of the system (6.28) sat-

isfies x(t)→ e as t→∞ .”

Since P ∗l ≤ lim supt→∞ Pl, G
∗ ≤ lim supt→∞G and T ∗ ≤ lim supt→∞ T ,

therefore upon solving the system of equations (6.1)-(6.6) for Pl, G and

T , the system given by (6.1)-(6.6) shall be reduced to an equivalent

autonomous system given below:

Mathematical Model-II

dn

dt
= q0 − α10n−

β11n
2a

µ2
0 + n2

, (6.29)

da

dt
=
θ11β11n

2a

µ2
0 + n2

− θ12P
∗
l a− ψ0a− ψ2a

2, (6.30)

dO

dt
= R−Krγ

(
T∗−Tr

10

)
1 O + α5a− α3O − α4aO. (6.31)

6.4.1 Equilibrium Points of Mathematical Model -
II and their existence conditions

The equilibrium points corresponding to the mathematical model given

by equations (6.29)-(6.31) are solved and given below:

1. Algal Vanishing Equilibrium PointĚ(ň, 0, Ǒ): From equations

(6.29)-(6.31) we get,

ň =
q0

α10

, (6.32)

Ǒ =
R

Krγ
(T
∗−Tr
10 )

1 + α3

. (6.33)

2. Interior Equilibrium PointE∗∗(n∗∗, a∗∗, O∗∗): From equations

(6.29)-(6.31) we get,

n∗∗ =
q0

α10

−
(
ψ∗1a

∗∗ + ψ2a
∗∗2

α10θ11

)
, (6.34)
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n∗∗ > 0 if,
q0

α10

>

(
ψ∗1a

∗∗ + ψ2a
∗∗2

α10θ11

)
, (6.35)

O∗∗ =
R + α5a

∗∗

Krγ
(T
∗−Tr
10 )

1 + α3 + α4a∗∗
. (6.36)

a∗∗ is given as the positive root of the following equation:

C1a
∗∗5 + C2a

∗∗4 + C3a
∗∗3 + C4a

∗∗2 + C5a
∗∗ + C6 = 0, (6.37)

where

C1 = ψ3
2, C2 = 3ψ∗1ψ

2
2 − θ11β11ψ

2
2,

C3 = 3ψ∗21 ψ2 − 2θ11qψ
2
2 − 2ψ∗1ψ2θ11β11,

C4 = ψ∗31 − 4θ11qψ
∗
1ψ2 − ψ∗21 θ11β11 + 2θ2

11β11qψ2,

C5 = µ2
0α

2
10θ

2
11ψ2 + θ2

11q
2ψ2 + 2θ2

11β11qψ
∗
1 − 2θ11qψ

∗2
1 ,

C6 = ψ∗1µ
2
0α

2
10θ

2
11 + ψ∗1θ

2
11q

2 − θ3
11β11q

2.

where ψ∗1 = ψ0 + θ12P
∗
l .

The equation 6.37 has at least one positive root if the following condition

is satisfied:

3ψ∗1 < β11θ11. (6.38)

Lemma 6.4.2. The solutions of the mathematical model-II given by

equations (6.29)-(6.31) shall lie in the reqion Σ given as,

Σ = {(n, a,O) ∈ R3
+ : 0 < n < nu, 0 < a < au, 0 < O < Ou} for t→∞

with positive initial values (n(0), a(0), O(0)) ∈ R3
+ where nu = q0

α10
, au =

θ11β11
ψ2

, Ou = R+α5au
α3

.

Proof. The proof of this lemma shall follow the similar steps as fol-

lowed in the theorem 6.3.1 for proving the boundedness of mathematical

model-I.
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6.4.2 Dynamical behaviour of the mathematical
model-II

Theorem 6.4.1. The Algal vanishing equilibrium point Ě correspond-

ing to mathematical model-II given by equations (6.29)-(6.31) shall be

asymptotically stable if θ11β11ň2

µ20+ň2 > θ12P
∗
l + ψ0.

Proof. The characteristic equation corresponding to the Jacobian Ma-

trix at Ě is given as:

(λ+ α10)(λ2 + (Ž5 + Ž8)λ+ Ž5Ž8) = 0, (6.39)

where

Ž5 = Krγ

(
T∗−Tr

10

)
1 + α3, Ž8 =

θ11β11ň
2

µ0 + ň2
− θ12P

∗
l − ψ0.

Following the Routh-Hurwitz criteria, Ěshall be asymptotically stable

if:

Ž8 > 0

i.e.
θ11β11ň

2

µ2
0 + ň2

> θ12P
∗
l + ψ0. (6.40)

Theorem 6.4.2. The Interior equilibrium point E∗∗ corresponding to

mathematical model-II given by equations (6.29)-(6.31) is always stable

if the conditions for existence for E∗∗ hold true.

Proof. The characteristic equation corresponding to the Jacobian Ma-

trix at E∗∗ is given as:

(λ+ Z∗∗5 )(λ2 + (Z∗∗1 + ψ2a
∗∗)λ+ Z∗∗1 ψ2a

∗∗ + Z∗∗2 Z
∗∗
3 ) = 0, (6.41)

where

Z∗∗1 = α10 +
2µ2

0β11n
∗∗a∗∗

(µ2
0 + n∗∗2)2

, Z∗∗2 =
β11n

∗∗2

µ2
0 + n∗∗2

,
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Z∗∗3 =
2θ11µ

2
0β11n

∗∗a∗∗

(µ2
0 + n∗∗2)2

, Z∗∗5 = Krγ

(
T∗−Tr

10

)
1 + α3 + α4a

∗∗

From the Routh-Hurwitz criteria we deduce that the equation (6.41) will

have negative roots or roots with negative real part under the condition

of existence for E∗∗, which proves the theorem 6.4.2.

6.4.3 Global Stability for the mathematical model-
II

Theorem 6.4.3. The Interior equilibrium point E∗∗ corresponding to

mathematical model-II given by equations (6.29)-(6.31) shall be globally

asymptotically stable if the following conditions hold true:

2

(
α10 + µ2

0β11

(
(an+ a∗∗n∗∗)

(µ2
0 + n2)(µ2

0 + n∗∗2)

))
(ψ2m1 + θ12P

∗
l m1) >

(
β11n

∗∗2(µ2
0 − n2)

(µ2
0 + n2)(µ2

0 + n∗∗2)

)2

and

2 (ψ2m1 + θ12P
∗
l m1)

(
Krγ

(
T∗−Tr

10

)
1 + α3 + α4a

∗∗
)
> (α4O − α5)2

where

p11 = α10 + µ2
0β11

(an+ a∗∗n∗∗)

(µ2
0 + n2)(µ2

0 + n∗∗2)
, p22 = ψ2m1 + θ12P

∗
l m1,

p33 = Krγ

(
T∗−Tr

10

)
1 + α3 + α4a

∗∗, p12 =
β11n

∗∗2(µ2
0 − n2)

(µ2
0 + n2)(µ2

0 + n∗∗2)
,

p23 = α4O − α5.

Proof. Consider a positive definite function,

W (n, a,O) =
1

2
(n− n∗∗)2 +m1

(
a− a∗∗ − a∗∗ln a

a∗∗

)
+

1

2
(O −O∗∗)2), (6.42)
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where m1 = n∗∗

θ11
. Differentiating equation (6.42) w.r.t. t we obtain,

dW

dt
= −[p11(n− n∗∗)2 + p22(a− a∗∗)2 + p33(O −O∗∗)2+

p12(a− a∗∗)(n− n∗∗) + p23(a− a∗∗)(O −O∗∗)],

where

p11 = α10 + µ2
0β11

(an+ a∗∗n∗∗)

(µ2
0 + n2)(µ2

0 + n∗∗2)
, p22 = ψ2m1 + θ12P

∗
l m1,

p33 = Krγ

(
T∗−Tr

10

)
1 + α3 + α4a

∗∗, p12 =
β11n

∗∗2(µ2
0 − n2)

(µ2
0 + n2)(µ2

0 + n∗∗2)
,

p23 = α4O − α5.

Using Sylvester’s Criteria, E∗∗ shall be globally asymptotically stable

if,

2p11p22 > p2
12, 2p22p33 > p2

23,

i.e.(
α10 + µ2

0β11

(
(an+ a∗∗n∗∗)

(µ2
0 + n2)(µ2

0 + n∗∗2)

))
(ψ2m1 + θ12P

∗
l m1) >(

β11n
∗∗2(µ2

0 − n2)

(µ2
0 + n2)(µ2

0 + n∗∗2)

)2

(6.43)

2 (ψ2m1 + θ12P
∗
l m1)

(
Krγ

(
T∗−Tr

10

)
1 + α3 + α4a

∗∗
)
> (α4O − α5)2

(6.44)

6.5 Numerical Simulation and Sensitivity

Analysis

In this section, the numerical simulations are performed to support the

analytical results obtained for the model represented by equations (6.1)-
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Table 6.2: Sensitivity Indices(γ) of P ∗l , G
∗, n∗, a∗, T ∗, O∗ at E∗ with respect to the

parameters denoted by Zp.

Parameters(Zp) γ
P ∗l
Zp

γG
∗

Zp
γn
∗

Zp
γa
∗
Zp

γT
∗

Zp
γO
∗

Zp

Q1 1 0.1844 0.0596 -0.0389 0.2482 -0.0125
α1 -1 -0.1844 -0.0596 0.0389 -0.2482 0.0125
I10 0 0.8147 0 0 1.090 -0.1381
I11 0 0.1844 0 0 0.2482 -0.03126
α2 0 -0.999 0 0 -1.3458 0.16948
q0 0 0 3.222 3.7466 0 -1.8024
α10 0 0 -0.9672 -0.0075 0 -0.00005
β11 0 0 0.1972 1.1303 0 -0.5437
µ0 0 0 0.0428 -0.0148 0 0.0072
θ11 0 0 -1.8162 1.1871 0 -0.5711
θ12 0 0 0.0596 -0.0389 0 0.01875
ψ0 0 0 0.3136 -0.2049 0 0.09861
ψ2 0 0 1.4428 -0.9432 0 0.4537
µ11 0 0 0 0 0.525 -0.0661
G0 0 0 0 0 -0.821 0.1033
µ12 0 0 0 0 -0.525 0.0661
T0 0 0 0 0 0.4748 -0.0598
R 0 0 0 0 0 0.0654
Kr 0 0 0 0 0 -0.1417
γ1 0 0 0 0 0 -0.1052
Tr 0 0 0 0 0 0.9397
α3 0 0 0 0 0 -0.0323
α4 0 0 0 0 0 -0.8258
α5 0 0 0 0 0 0.3447
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Figure 6.1: Model Trajectories exhibiting the stability behaviour at interior equi-
librium point.
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Figure 6.2: Phase Plane Graph between O and a exhibiting global stability for
varying initial conditions

(6.6). We consider the below mentioned parameter values for our model:

Q1 = 0.214, α1 = 0.1, I10 = 1.003, I11 = 0.106, α2 = 0.3, q0 = 9.447,

α10 = 0.3, β11 = 0.28, µ0 = 1.0, θ11 = 9.105, θ12 = 0.04, ψ0 = 0.45,

ψ2 = 0.1, µ11 = 3.8717, G0 = 2.5, µ12 = 0.4, T0 = 14.0, R = 24.0,

Kr = 1.049, γ1 = 2.0, Tr = 22.0, α3 = 0.4, α4 = 0.495, α5 = 0.61. (6.45)
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Figure 6.3: Phase Plane Graph between O and T exhibiting global stability for
varying initial conditions
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Figure 6.4: Graph exhibiting rise in greenhouse gases concentration for increasing
plastic input

The value of the model variables obtained for the above given set of

parameter values are : P ∗l =2.140, G∗=4.0995, n∗=12.2929, a∗=20.7044,

T ∗=29.4816 and O∗=2.9520.

For the values of model parameters given by equation (6.45), the con-
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Figure 6.5: Phase space graph between O and T
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Figure 6.6: Graph between dissolved oxygen and time for increase in growth rate
of algal population

ditions for feasibility and stability derived analytically for the interior

equilibrium point corresponding to mathematical model-II, given by

equations (6.35), (6.38), (6.43) and (6.44) are found to be satisfied.

Also, the stability of interior equilibrium point for the model-I given

by equations (6.1)-(6.6) is shown by figure 6.1. Further, we performed
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Figure 6.7: Graph between dissolved oxygen and time for increase rate of utilisation
rate of dissolved oxygen in algal decomposition
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Figure 6.8: Behaviour of algal population for increasing plastic input

numerical simulations to establish the global stability behaviour of the

model given by equations (6.1)-(6.6) under variable initial conditions

which is shown by phase-plane graphs given by figures 6.2 and 6.3 . It

is demonstrated that all the trajectories which start from different ini-

tial conditions converge to the equilibrium value with increase in time.
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Figure 6.9: Threshold level for dissolved oxygen under the effect of rising green-
house gases concentration
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Figure 6.10: Threshold level for dissolved oxygen under the effect of rising plastic
waste concentration

Further, to study the relative variation in the model variables P ∗l , G,

n∗, a∗, T ∗ and O∗ with respect to the model parameters given by the

equation (6.45), sensitivity analysis has been performed using the be-

low given formula for calculating normalized forward sensitivity index
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Figure 6.11: Threshold level for dissolved oxygen under the simultaneous effect of
rising greenhouse gases and plastic waste concentration

for variable ‘Z’ depending on a parameter ‘w’ [117]:

γZw =
∂Z

∂w
∗ w
Z

. The sensitivity indices calculated for the model variables P ∗l , G, n∗, a∗,

T ∗ and O∗ with respect to the model parameters given by the equation

(6.45) are given in Table 6.2. These sensitivity indices give a fair idea for

the parameters whose variation has a more influential value on the model

variables and can be extremely helpful in design of control strategies to

minimise the anthropogenic pollution.

6.6 Conclusion

Plastics have become indispensably omnipresent in our lives, right from

being a part of our basic necessities like food wrappers, water bottles,

packaging materials etc. to armouring the frontline workers against the

deadly COVID-19 in the form of masks, gloves, PPE kits, face shields

etc. But, the absence of its proper disposal is creating a havoc for the

environment, especially for the aquatic ecosystem. This phenomenon
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coupled with various kinds of pollutants entering water and climatic

alterations, is adversely impacting the growth rate and the survival of

aquatic organisms. In our study, the results of the analysis carried out

for the mathematical model given by (6.1)-(6.6) bring into foreground

the interplay between various anthropogenic stressors such as accumu-

lating plastic waste in aquatic bodies, rising carbon emissions, global

warming, eutrophication, climate change etc. and their subsequent ef-

fects on the aquatic ecosystem especially on the oxygen-dependent pop-

ulations residing in the water bodies like fishes.

From the analytical study of system dynamics, it is observed that the in-

terior equilibrium point for model-II, satisfies existence conditions and is

locally and globally asymptotically stable as shown by equations (6.35),

(6.38), (6.43) , (6.44) and supported by figures 6.1, 6.2 and 6.3.

It is observed that the rising plastic waste is becoming a contributor

towards the increasing concentration of greenhouse gases in the atmo-

sphere as shown in figure 6.4 which is in turn causing an increase in the

temperature leading to global warming as shown by equation (6.21).

Moreover, the positive sensitivity index of Temperature (T) with re-

spect to plastic input rate Q1 and the high positive sensitivity index of

Temperature (T) with respect to greenhouse gases emission rate I10 also

support that rising greenhouse gases on account of human activities and

plastic pollution lead to climate changes induced by global warming. It

is further noted that the dissolved oxygen exhibits a decrease with time

under the influence of global warming as shown by figure 6.5. The eu-

trophication process also leads to highly promoting the growth of algal

population as seen by the high positive sensitivity index of Algal pop-

ulation (a) with respect to parameter q0. It is further shown by figure

6.6, that with increase in growth rate of algal population (θ11) owing

to eutrophication, the concentration of dissolved oxygen shall decline,

as with rise in algal population more dissolved oxygen is utilised for

its decomposition process. This is also supported by the large nega-

tive sensitivity indices of Dissolved oxygen(O) with respect to nutrient
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inflow rate (q0) and Dissolved oxygen(O) with respect to oxygen utilisa-

tion rate in algal decomposition (α4). The latter phenomenon is shown

by figure 6.7, which shows that with increase in the utilisation rate of

oxygen in the algal decomposition process (α4), the concentration of

dissolved oxygen in water shall reduce over time. These results are also

supported by the study done by Shukla et al. [84]. Notably, the grow-

ing plastic pollution hinders with the algal photosynthesis which raises

difficulty in the survival of algal population. This is shown by figure

6.8. Moreover, this also leads to deterioration of dissolved oxygen level

in water as with rise in algal mortality rate, more dissolved oxygen shall

be consumed in its decomposition process [141].

Further, it is observed that the dissolved oxygen approaches a zero value

when the emission rate of greenhouse gases due to anthropogenic activ-

ities (I10) reaches a value equal to or more than 3.9883 as shown in

figure 6.9. Similarly, for increase in input rate of plastic waste in wa-

ter body (Q1) exceeding 3.324, the dissolved oxygen approaches a zero

value as shown by figure 6.10. However, under the simultaneous effects

of both rise greenhouse gases and plastic waste accumulation in a water

body, the dissolved oxygen approaches zero much faster for much lower

values, I10=2.998 and Q1=1.478 as demonstrated by figure 6.11. Thus,

this supports the fact that the simultaneous effects of both the anthro-

pogenic stressors i.e. plastic pollution and global warming is much more

detrimental to aquatic ecosystem rather than the single effect, as the

deficiency of dissolved oxygen in water can lead to the system approach-

ing a state of hypoxia which will be harmful for existence and survival

of aquatic organisms [26, 1].

We are at the crossroads of two divergent paths in the situation of

this pandemic COVID-19. First one being the expedient approach that

places us squarely on track for a foreseeable future in which more plastic

is available in the ocean than fish. The other is a sustainable living and

working paradigm which will support us for a long time to come. We

have to quickly devise methods to control the environment stressors at
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the earliest, especially focusing on waste disposal and treatment before

their inlet in the water bodies. Only then, we shall be able to aim for a

sustainable future. The analytical study of our model, supported by nu-

merical simulations, supports this fact and provides a structured frame-

work to examine the impacts of the combined factors of plastic pollu-

tion, global warming and eutrophication, on oxygen-dependent aquatic

species, in the light of the future risks posed by the recent health crisis

of COVID-19 pandemic outbreak world over.



Chapter 7

Modelling on Rising Carbon
Emissions and Water Acidity
to Assess Their Impacts on
Algal Bloom Growth and
Oxygen-Dependent
Population

7.1 Introduction

The ecosystem is eminently dependent on the complex interrelations

and interactions between its species and environment. Alterations in

the environment, whether direct or indirect, play a significant role in

shaping of the ecological communities in an ecosystem. In recent times,

the aquatic ecosystem is becoming highly vulnerable to the hazardous

consequences of modern-age developmental activities being carried out

by the human population. Human activities are resulting in contam-

ination and quality degradation of the water bodies and altering the

physical, biological, and chemical processes in the aquatic ecosystem.

One of the major deleterious threats posed to the health ecosystem

biodiversity is anthropogenic climate change [148]. The untapped rise

148
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of anthropogenic carbon emissions is a major cause contributing to

global warming affecting many ecological communities [169]. Drastic

changes have been witnessed in the climate and temperature conditions

in the past years [25]. Certain recently conducted studies point towards

more serious climatic disruptions in the aquatic environments in future

[17, 169]. Global warming and associated rise in water temperature is

found to affect freshwater resources and have severe consequences for

the populations residing in water bodies [27, 1, 13]. Global Warming

causes reduced oxygen solubility in warmer waters and leads to oxygen

scarcity in water bodies [102]. Moreover, global warming leads to distur-

bances in the process of phytoplankton photosynthesis. A sufficiently

significant rise in water temperature is likely to force the environment

towards oxygen dearth, leading to condition of hypoxia or even anoxia

[141]. In ecosystems like Arctic, warming can also affect the predation

activities of species like wolf spiders in a disproportionate manner [170].

Increasing carbon dioxide concentration in water has also been found

to negatively impact the early life stage growth and survival rate in the

fish population [26]. Between 1750 and 2011 human activities caused

the carbon dioxide atmospheric level to rise by approximately 40 per

cent [171]. In the last 50 years, the absorption of carbon dioxide by

water bodies has also shown an increase [142]. Many juvenile reef fishes

are also found to exhibit abnormalities in their behaviours at CO2 seeps

[70]. Another grave consequence of increased carbon emissions is the

rise in acidity of water. When carbon dioxide enters the water bodies,

it forms carbonic acid through the following equilibrium reaction:

CO2 +H2O ⇔ H2CO3 ⇔ H+ +HCO−3 ⇔ H+ + CO2−
3

The pH level of water exhibits a decrease when more amount of carbonic

acid is formed resulting in higher release of H+ ions in water. Caldeira

and Wickett [155] have predicted a decline in seawater pH of 0.4 units by

2100 and another drop of 0.7 by the year 2300. It has also been found

that the rising carbon emissions and coupled acidity rise have many
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harmful effects on the residing population hampering their growth pro-

cesses and survival rates in aquatic ecosystem [56, 54, 156]. Along with

this, unrestrained release of industrial pollutants further contributes in

making the water bodies more acidic [134]. The increasing eutrophica-

tion, which is a resultant of unmanaged agricultural activities, is another

factor which has emerged as a contributor in lowering the pH of water

bodies by increasing the acidity [159]. The rising eutrophication and

acidity also promote the growth of algal bloom in water bodies. This

leads to high respiration rates producing more carbon dioxide in water

bodies causing a further drop in pH value [126, 157, 158]. Apart from

the rising acidity level of water, global warming also induces the growth

of algal bloom water bodies [78, 80]. Rise in algal population density,

is accompanied by decline in the concentration of the dissolved oxygen,

as the decomposition process consumes the oxygen, thus depleting its

level in water bodies [157]. The rising algal blooms are also deterio-

rating the biodiversity and, in some cases, leading to death of aquatic

species as well because of scarcity of the most vital resource required

for their survival i.e. dissolved oxygen in water [6]. According to some

studies, the escalation in acidification of water bodies is severely and

negatively impacting the species biodiversity in coral reefs as the corals

and some plankton are facing difficulty in maintenance of their external

carbon skeletons as decreasing in water pH causes reduction in calcium

carbonate saturation [172, 75].

Few mathematical studies are available which study the individual im-

pacts of the rising acidity, carbon emissions and pollution of water bod-

ies on the resource populations [108, 162, 164], and the effect of rising

algal bloom growth in water bodies [86, 84, 118]. Certain mathemati-

cal studies have also focussed on the harmful effects of growing global

warming on environment and subsequently on dependent populations

[32, 31]. These individuals studied conclude that the individual effects

of these factors can be very harmful for the ecosystem and dependent

species. However, a mathematical study which encompasses all these
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factors together, and its impact on the aquatic population is still un-

available.

In view of the above, in this chapter we propose a mathematical model

considering the variables as carbon concentration in water, pH of water,

algal bloom concentration, dissolved oxygen concentration and density

of population dependent on dissolved oxygen for its survival. It is as-

sumed that the carbon input in water through industrial, agricultural

and domestic pollution leads to a rise in acidity and global warming.

These in turn, lead to rise in algal bloom growth in the water bodies. As

a consequence, the dissolved oxygen concentration in water is reduced

and which is hazardous to the survival of the population which is de-

pendent on oxygen intake. The model is analysed by analytical method

for stability analysis and the results have been supported by numerical

simulations performed using MATLAB.

7.2 Mathematical Model

In the mathematical modelling process, it is assumed that the rising car-

bon emissions in the atmosphere are leading to two major complications

for aquatic environment, one being the increasing water acidity due to

formation of carbonic acid and other being the warming water tempera-

ture on account of global warming. These processes further catalyse the

growth of algal bloom in the water bodies. Further it is presumed, that

the increased algal population utilises more dissolved oxygen for its de-

composition process. This decline in dissolved oxygen is in turn assumed

to negatively impact the oxygen-dependent aquatic biota. In view of

the above given assumptions, let C denote the concentration of carbon

in water, pH represents the pH level of the water, Ag gives the density

of algal population in water, D represents the concentration of dissolved

oxygen in water and P represent the density of aquatic population like

fish dependent on intake of oxygen for its survival. Embodiment of these

variables leads to formulation of the following mathematical model com-
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prising of non-linear differential equations:

dC

dt
= E − 1

τl
(C − C0)− a1DC, (7.1)

d(pH)

dt
=

pH0

1 + C
− γ1(pH), (7.2)

dAg
dt

=
β1Ag(1 + α1C − α2(pH))

β2 + Ag
+ γ2AgD − hAg, (7.3)

dD

dt
= R− ψ0D − ψ1AgD − a1DC −

n1PD

v1 +D
, (7.4)

dP

dt
=

n2PD
2

v2
2 +D2

− θ1P − θ2P
2, (7.5)

where C(0) > 0, pH(0) > 0, Ag(0) ≥ 0, D(0) ≥ 0, P (0) ≥ 0andC ≥ C0.

The model parameters, assumed to be positive constants, are explained

as given below:

E denotes the rate of input of carbon dioxide in water body via var-

ious mode of anthropogenic pollution, τl gives the latent time period

corresponding to carbon dioxide in the water body, C0 represents the

threshold level of carbon dioxide in water. a1 represents the rate of

formation of carbonic acid in water due to reaction of carbon dioxide

with the dissolved oxygen and this reaction is represented by the term

a1DC. pH0 denotes the normal pH of water at which the aquatic or-

ganisms show optimum growth. γ1 is the natural rate of decrease of

pH caused due to increase in water flow, acid rain and other water tur-

bulences. The natural growth rate of algal population is represented

by β1. The rising carbon concentration enhances algal growth in water

with rate given by α1. α2 gives the rate of increase in algal population

on account of lowering pH i.e. increasing water acidity. β2 is half satura-

tion constant. Rate of utilisation of dissolved oxygen in algal respiration

process is denoted by γ2. The natural decay rate of algal population

is given by h. The input rate of oxygen in water is denoted by R. ψ0

is natural depletion rate of oxygen in water. The dissolved oxygen is

depleted due to algal decomposition and rate of this depletion is given
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by ψ1. n1 gives the rate of depletion of oxygen due to its consumption

in respiration and growth of the oxygen-dependent population. n2 gives

the growth rate of oxygen dependent population. v1 and v2 are half-

saturation constants. θ1 is the natural mortality rate of the population

and θ2 gives rate of intraspecific competition for the aquatic species.

7.3 Model Analysis

In this section, we study the equilibrium points for the model defined

by the equations (7.1)-(7.5) and discuss the boundedness and positivity

of the solutions.

7.3.1 Boundedness and Positivity of Model Solu-
tions

Theorem 7.3.1. All the solutions of the mathematical model repre-

sented by equations (7.1)-(7.5) lie in the region given by

$ =
{

(C, pH,Ag, D, P ) ∈ R5
+ : 0 < C < Cu, 0 < pH < pHu,

0 < Ag < Agu, 0 < D < Du, 0 < P < Pu} for positive initial values

(C(0), pH(0), Ag(0), D(0), P (0)) ∈ R5
+ as t → ∞ in case the condi-

tion β1 + γ2Du > h holds, where Cu = τlE + C0, pHu = pH0

γ1
, Agu =

β1α1Cu
β1+γ2Du−h , Du = R

ψ0
, Pu = n2

θ2
.

Proof. From equation (7.1) we get,

dC

dt
≤ E +

1

τl
C0 −

1

τl
C,

using comparison theorem we obtain,

lim sup
t→∞

(C, t) ≤ τlE + C0 = Cu,

From equation (7.2) we have,

d(pH)

dt
≤ pH0 − γ1pH,
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by comparison theorem, we get,

lim sup
t→∞

(pH, t) ≤ pH0

γ1

= pHu,

From equation (7.4) we obtain,

lim sup
t→∞

(D, t) ≤ R

ψ0

= Du,

From equation (7.3), using comparison theorem we have,

lim sup
t→∞

(Ag, t) ≤
β1α1Cu

β1 + γ2Du − h
= Agu,

provided the following inequality holds good,

β1 + γ2Du > h (7.6)

Similarly, from equation (7.5) and comparison theorem we have,

dP

dt
≤ n2P − θ2P

2,

hence,

lim sup
t→∞

(P, t) ≤ n2

θ2

= Pu

This proves the theorem 7.3.1.

Theorem 7.3.2. For positive initial conditions, all the solutions of the

model represented by equations (7.1)−(7.5) remain positive for all times

t ≥ 0.

Proof. We have from equation (7.1),

dC

dt
≥ − 1

τl
C − a1DuC,

which implies,

C ≥ u1e
−
(

1
τl

+a1Du
)
t

where u1 denotes the integration constant.

Hence, C ≥ 0 for all times t ≥ 0.
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Similarly from equation (7.2) we have,

d(pH)

dt
≥ −γ1pH,

which implies,

pH ≥ u2e
−γ1t,

where u2 is an integration constant.

Therefore, pH ≥ 0 for all times t ≥ 0.

From equation (7.3), we get,

dAg
dt
≥ −(β1α2(pH)u + h)Ag,

thus implying,

Ag ≥ u3e
−(β1α2(pH)u+h)t.

where u3 is an integration constant.

Hence, Ag ≥ 0 for all times t ≥ 0.

Moreover, from equation (7.4) we deduce,

dD

dt
≥ −(ψ0 + ψ1Agu + a1Cu + n1Pu)D,

which implies,

D ≥ u4e
−(ψ0+ψ1Agu+a1Cu+n1Pu)t

where u4 is an integration constant.

Therefore, D ≥ 0 for all times t ≥ 0.

Equation (7.5) gives that,

dP

dt
≥ −(θ1 + θ2Pu)P

implying

P ≥ u5e
−(θ1+θ2Pu)t

where u5 is an integration constant.

Hence,P ≥ 0 for all times t ≥ 0.

This completes the proof of theorem 7.3.2.
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7.3.2 Equilibria of the Model

1. Algal Vanishing Equilibrium Point Ĕ(C̆, ˘pH, 0, D̆, P̆ ):

From equation (7.1) we obtain,

C̆ =
τlE + C0

a1τlD̆ + 1
. (7.7)

From equation (7.2) we have,

˘pH =
1

γ1

(
pH0

1 + C̆

)
. (7.8)

Similarly from equation (7.5) we get,

P̆ =
1

θ2

(
n2D̆

2

v2
2 + D̆2

− θ1

)
(7.9)

P̆ > 0 if,
n2D̆

2

v2
2 + D̆2

− θ1 > 0. (7.10)

Also, from equation (7.4) we get, D̆ is given as the positive root of the

following equation,

D̆5(ψ0θ2a1τl) + D̆4(ψ0a1τlθ2v1 − θ2Ra1τl + ψ0θ2 + θ2a1τlE + θ2a1C0

− n1a1τlθ1) + D̆3(ψ0a1τlθ2v
2
2 −Ra1τlθ2v1 + ψ0θ2v1 + a1τlEθ2v1+

a1C0θ2v1−Rθ2+n1n2a1τl−n1θ1)+D̆2(ψ0θ2v1v
2
2a1τl−θ2v

2
2Ra1τl+ψ0θ2v

2
2+

a1θ2v
2
2τlE−Rθ2v2 +a1C0θ2v

2
2−Rθ2v1−a1τln1θ1v

2
2 +n1n2)+D̆(ψ0θ2v1v

2
2

−Ra1τlθ2v1v
2
2 + a1θ2v1v

2
2τlE + a1C0θ2v1v

2
2 − n1θ1v

2
2)−Rθ2v1v

2
2 = 0.

(7.11)

By Descarte’s rule of signs, the equation (7.11) shall have at least one

positive root.

2. Population Vanishing Equilibrium Point Ê(Ĉ, ˆpH, Âg, D̂, 0):

From equation (7.1) we get,

D̂ =
τlE − Ĉ + C0

a1τlĈ
. (7.12)
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From equation (7.2) we obtain,

ˆpH =
pH0

γ1(1 + Ĉ)
. (7.13)

From equation (7.4) we have,

Âg =
R− ψ0D̂ − a1D̂Ĉ

ψ1D̂
. (7.14)

Âg > 0, if

R− ψ0D̂ − a1D̂Ĉ > 0. (7.15)

From equation (7.3) we get,

Ĉ4(a1γ2 +ψ1M3M5 +ha1M3)+Ĉ3[M3ψ1(β1 +M5)+γ2(ψ0 +RM3 +a1)

+hM3(RM3+ψ0+a1)−ψ1M3(M8+M2M5)−a1M2(2γ2+hM3)−ψ1M7)]

+Ĉ2[ψ1(M2M3M8+2M2M7+β1M3)+γ2(RM3+a1M
2
2 +ψ0)+hM3(ψ0+

RM3)−M3ψ1(M2M5 +M8 +M0M6 +β1M2)−ψ1M7−ψ0M2(hM3 +γ2)−

a1hM2M3−M2γ2(RM3 +2ψ0)]+Ĉ[M2M3ψ1(M0M6 +M8)+2ψ1M2M7+

γ2M
2
2 (ψ0 + a1)−M2M3(Rγ2 + ψ0h+ β1ψ1)−M2(2ψ0γ2 + ψ1M2M7)]+

M2
2 (ψ0γ2 − ψ1M7) = 0, (7.16)

where

M0 =
pH0

γ1

, M2 = τlE + C0, M3 = τla1, M5 = β1α1,

M6 = β1α2, M7 = γ2β2, M8 = hβ2.

According to Descarte’s rule, equation (7.16) shall have a positive root,

if the following condition holds true,

ψ1β2 > ψ0. (7.17)

3. Interior Equilibrium Point E∗(C∗, pH∗, A∗g, D
∗, P ∗):

From equation (7.1) we have,

C∗ =
τlE + C0

1 + a1τlD∗
. (7.18)
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From equation (7.2) we get,

pH∗ =
pH0

γ1(1 + C∗)
. (7.19)

Equation (7.5) gives,

P ∗ =
n2D

∗2 − θ1v
2
2 − θ1D

∗2

θ2v2
2 + θ2D∗2

. (7.20)

P ∗ > 0 if,

n2D
∗2 − θ1v

2
2 − θ1D

∗2 > 0, (7.21)

From equation (7.3) we have,

A∗g =
1

γ2 −D∗

(
β1 +

A2

1 + A3D∗
−
(
A4 + A3A4D

∗

A5 + γ1A3D∗

)
+ β2γ2D

∗ − hβ2

)
,

(7.22)

where,

A1 = τlE + C0, A2 = β1α1A1, A3 = a1τl,

A4 = β1α2pH0, A5 = γ1(1 + A1)

A∗g > 0 if,(
β1 +

A2

1 + A3D∗
−
(
A4 + A3A4D

∗

A5 + γ1A3D∗

)
+ β2γ2D

∗ − hβ2

)
> 0, (7.23)

Let A6 = ψ1β2γ2, A7 = γ1A3, M0 = ψ0A3A7,

M1 = ψ0A3A5 + ψ0A7 − ψ0γ2A3A7 −RA3A7 − A3A6A7 + a1A1A7,

M2 = ψ0A5 − ψ0γ2A3A5 −RA3A5 − A3A5A6 + a1A1A5 − ψ0γ2A7−
RA7 − A6A7 + A3A7γ2R− ψ1β1A3A7 + hβ2A3A7 − γ2a1A1A7+

ψ1A
2
3A4,

M3 = γ2RA3A5 − ψ0γ2A5 − ψ1β1A3A5 + hβ2A3A5 − γ2a1A1A5−
RA5 − A5A6 +Rγ2A7 − ψ1β1A7 + hβ2A7 − ψ1A2A7 + 2ψ1A3A4,

M4 = Rγ2A5 − ψ1β1A5 + hβ2A5 − ψ1A2A5 + ψ1A4.
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Then, from equation (7.4) we obtain,

D∗7(θ2M0) +D∗6(θ2v1M0 + θ2M1 + n1n
2
2A3A7 − θ1n1A3A7) +D∗5(θ2v1M1+

θ2v
2
2M0 + θ2M2 + n1n

2
2A3A5 + n1n

2
2A7 − θ1n1A3A5 − θ1n1A7 − n1n

2
2γ1A3A7

+ θ1n1γ2A3A7) +D∗4(θ2v1v
2
2M0 + θ2v1M2 + θ2v

2
2M1 + θ2M3 − n1n

2
2γ2A3A5

+ n1n
2
2A5 − n1n

2
2γ2A7 + θ1v

2
2n1γ2A7 − θ1v

2
2n1A3A7 − θ1n1A5 + θ1n1γ2A3A5+

θ1n1γ2A7) +D∗3(θ2v1v
2
2M1 + θ2v1M3 + θ2v

2
2M2 + θ2M4 − n1n

2
2γ2A5−

θ1v
2
2n1A3A5 − θ1v

2
2n1A7 + θ1v

2
2n1γ2A3A7 + θ1n1γ2A5) +D∗2(θ2v1v

2
2M2+

θ2v1M4 + θ2v
2
2M3 − θ1v

2
2n1A5 + θ1v

2
2n1γ2A3A5) +D∗(θ2v1V

2
2 M3 + θ2v

2
2M4)

+ θ2M4v1v
2
2 + θ1v

2
2n1γ2A5 = 0. (7.24)

Following Descarte’s Rule, the equation (7.24) shall have at least one positive root

if at least any one of the below given conditions i.e. any of the equations given by

(7.25) - (7.29) holds true,

θ2v1M0 + θ2M1 + n1n
2
2A3A7 < θ1n1A3A7, (7.25)

θ2v1M1 + θ2v
2
2M0 + θ2M2 + n1n

2
2A3A5 + n1n

2
2A7 + θ1n1γ2A3A7 <

θ1n1A3A5 + θ1n1A7 + n1n
2
2γ1A3A7, (7.26)

θ2v1v
2
2M0 + θ2v1M2 + θ2v

2
2M1 + θ2M3 + n1n

2
2A5 + θ1v

2
2n1γ2A7 + θ1n1γ2A3A5

+ θ1n1γ2A7 < n1n
2
2γ2A3A5 + n1n

2
2γ2A7 + θ1n1A5 + θ1v

2
2n1A3A7, (7.27)

θ2v1v
2
2M1 + θ2v1M3 + θ2v

2
2M2 + θ2M4 + θ1v

2
2n1γ2A3A7 + θ1n1γ2A5 <

n1n
2
2γ2A5 + θ1v

2
2n1A3A5 + θ1v

2
2n1A7, (7.28)

θ2v1v
2
2M2 + θ2v1M4 + θ2v

2
2M3 + θ1v

2
2n1γ2A3A5 < θ1v

2
2n1A5. (7.29)

7.4 Stability Analysis of the Mathematical Model

In this section we shall study the local stability and global stability behaviour for

the equilbria of the mathematical model defined by equations(7.1)-(7.5).
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7.4.1 Local Stability Analysis:

1. For Algal Vanishing Equilibrium Point Ĕ(C̆, ˘pH, 0, D̆, P̆ ):

For local stability analysis of the algal vanishing equilibrium point Ĕ, we assume

the following,

Suppose, Z̆1 = 1
τl

+ a1D̆, Z̆2 = −pH0

(1+C̆)2
, Z̆3 = β1(1+α1C̆−α2

˘pH)
β2

+ γ2D̆ − h,

Z̆4 = R

D̆
− n1P̆ D̆

(v1+D̆)2
, Z̆5 = −n1D̆

v1+D̆
, Z̆6 = 2n2D̆P̆

v22+D̆2
− 2n2P̆ D̆3

(v22+D̆2)2
, Z̆7 = θ2P̆ .

The characteristic equation corresponding to the Jacobian matrix at the algal

vanishing equilibrium point Ĕ is given below,

(Z̆3 − λ)(λ4 + Ă1λ
3 + Ă2λ

2 + Ă3λ+ Ă4) = 0, (7.30)

where

Ă1 = Z̆4 + Z̆7 + Z̆1 + γ1,

Ă2 = Z̆1γ1 + (Z̆1 + γ1)(Z̆4 + Z̆7) + Z̆4Z̆7 − Z̆5Z̆6 − a2
1C̆D̆

Ă3 = (Z̆1 + γ1)(Z̆4Z̆7 − Z̆5Z̆6) + Z̆1γ1(Z̆4 + Z̆7)− a2
1γ1C̆D̆ − a2

1Z̆7C̆D̆,

Ă4 = Z̆1γ1(Z̆4Z̆7 − Z̆5Z̆6)− a2
1Z̆7γ1C̆D̆.

Following the Routh-Hurwitz Criteria, the population vanishing equilibrium point

will be locally asymptotically stable if the following conditions hold good,

β1(1 + α1C̆ − α2
˘pH)

β2

+ γ2D̆ − h < 0, (7.31)

Ă1 > 0, Ă2 > 0, Ă3 > 0, Ă4 > 0, (7.32)

Ă1Ă2Ă3 − Ă3
2
− Ă1

2
Ă4 > 0. (7.33)

2. For Population Vanishing Equilibrium Point Ê(Ĉ, ˆpH, Âg, D̂, 0):

For local stability analysis of the population vanishing equilibrium point Ê, we

assume the following,

’ Let Ẑ1 = 1
τl

+ a1D̂, Ẑ2 = pH0

(1+Ĉ)2
, Ẑ3 = β1Âgα1

β2+Âg
, Ẑ4 = β1α2Âg

β2+Âg
,

Ẑ5 = β1Âg(1+α1Ĉ−α2
ˆpH)

(β2+Âg)2
, Ẑ6 = R

D̂
, Ẑ7 = n1D̂

v1+D̂
, Ẑ8 = n2D̂2

v2+D̂2
− θ1
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The characteristic equation corresponding to the Jacobian matrix at the population

vanishing equilibrium point Ê is given below,

(−Ẑ8 − λ)
[
λ4 + λ3(Ẑ1 + (Ẑ5 + Ẑ6) + γ1) + λ2(Ẑ1(Ẑ5 + Ẑ6) + γ1(Ẑ5 + Ẑ6)+

Ẑ5Ẑ6 + ψ1γ2ÂgD̂ + γ1Ẑ1 − a2
1ĈD̂) + λ(Ẑ1Ẑ5Ẑ6 + ψ1γ2ÂgD̂Ẑ1 + Ẑ5Ẑ6γ1

+ ψ1Âgγ1γ2D̂ + (Ẑ5 + Ẑ6)γ1Ẑ1 − a2
1ĈD̂γ1 − a1ψ1Ẑ3ĈD̂ − a2

1ĈD̂Ẑ5)+

γ1Ẑ1Ẑ5Ẑ6 + γ1Ẑ1ψ1γ2ÂgD̂ − Ẑ3ψ1a1γ1ĈD̂ − a2
1γ1Ẑ5ĈD̂ − a1ψ1Ẑ2Ẑ4ĈD̂. (7.34)

Following the Routh-Hurwitz Criteria, the population vanishing equilibrium point

will be locally asymptotically stable if the following conditions hold good,

n2D̂
2

v2 + D̂2
> θ1, (7.35)

Ẑ1(Ẑ5 + Ẑ6) + γ1(Ẑ5 + Ẑ6) + Ẑ5Ẑ6 + ψ1γ2ÂgD̂ + γ1Ẑ1 − a2
1ĈD̂ > 0, (7.36)

Ẑ1Ẑ5Ẑ6 + ψ1γ2ÂgD̂Ẑ1 + Ẑ5Ẑ6γ1 + ψ1Âgγ1γ2D̂ + (Ẑ5 + Ẑ6)γ1Ẑ1 − a2
1ĈD̂γ1

− a1ψ1Ẑ3ĈD̂ − a2
1ĈD̂Ẑ5 > 0, (7.37)

γ1Ẑ1Ẑ5Ẑ6+γ1Ẑ1ψ1γ2ÂgD̂−Ẑ3ψ1a1γ1ĈD̂−a2
1γ1Ẑ5ĈD̂−a1ψ1Ẑ2Ẑ4ĈD̂ > 0, (7.38)

(Ẑ1 + (Ẑ5 + Ẑ6) + γ1)(Ẑ1(Ẑ5 + Ẑ6) + γ1(Ẑ5 + Ẑ6) + Ẑ5Ẑ6 + ψ1γ2ÂgD̂ + γ1Ẑ1

− a2
1ĈD̂)(Ẑ1Ẑ5Ẑ6 + ψ1γ2ÂgD̂Ẑ1 + Ẑ5Ẑ6γ1 + ψ1Âgγ1γ2D̂ + (Ẑ5 + Ẑ6)γ1Ẑ1−

a2
1ĈD̂γ1 − a1ψ1Ẑ3ĈD̂ − a2

1ĈD̂Ẑ5)− (Ẑ1Ẑ5Ẑ6 + ψ1γ2ÂgD̂Ẑ1 + ψ1Âgγ1γ2D̂+

Ẑ5Ẑ6γ1 +(Ẑ5 +Ẑ6)γ1Ẑ1−a2
1ĈD̂γ1−a1ψ1Ẑ3ĈD̂−a2

1ĈD̂Ẑ5)2−(Ẑ1 +(Ẑ5 +Ẑ6)+γ1)2

(γ1Ẑ1Ẑ5Ẑ6 + γ1Ẑ1ψ1γ2ÂgD̂ − Ẑ3ψ1a1γ1ĈD̂ − a2
1γ1Ẑ5ĈD̂ − a1ψ1Ẑ2Ẑ4ĈD̂) > 0.

(7.39)

Theorem 7.4.1. The interior equilibrium point E∗ shall be locally asymptotically

stable provided that the below given inequalities are satisfied:

4(
1

τl
+ a1D)

(
ψ0 + a1C + Agψ1 +

n1v1P

(v1 +D)(v1 +D∗)

)
> 9(a1C

∗ + a1D
∗)2,

2(
1

τl
+ a1D)γ1 > 3

(
pH0

(1 + C∗)(1 + C)2

)2

,
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4(
1

τl
+ a1D)

(
h− γ2D

A∗g
− β1β2(1 + α1C − α2pH)

A∗g(Ag + β2)(A∗g + β2)

)
> 9

(
α1β1

A∗g + β2

)2

,

2γ1

(
h− γ2D

A∗g
− β1β2(1 + α1C − α2pH)

A∗g(Ag + β2)(A∗g + β2)

)
> 3

(
α2β1

A∗g + β2

)2

,

4

(
h− γ2D

A∗g
− β1β2(1 + α1C − α2pH)

A∗g(Ag + β2)(A∗g + β2)

)
(ψ0 + a1C + Agψ1+

n1v1P

(v1 +D)(v1 +D∗)
) > 9(ψ1D

∗ − γ2)2,

4

(
ψ0 + a1C + Agψ1 +

n1v1P

(v1 +D)(v1 +D∗)

)(
θ2P

P ∗

)
>

3

(
n1D

∗

v1 +D∗
− n2v

2
2DP

P ∗(v2
2 +D2)(v2

2 +D∗2)

)2

.

Proof. In order to study the local stability of interior equilibrium point E∗ by

Lyapunov’s direct menthod, we linearise the system given by equations (7.1)-(7.5)

about E∗ by using the transformations as given below:

C = C∗ + z1; pH = pH∗ + z2; Ag = A∗g + z3; D = D∗ + z4; P = P ∗ + z5.

Consider the following positive definite function:

ζ =
1

2
z2

1 +
1

2
z2

2 +
1

2A∗g
z2

3 +
1

2
z2

4 +
1

2P ∗
z2

5 (7.40)

Differentiating ζ with respect to time t along the solutions corresponding to the

linearized system of equations (7.1)-(7.5) we get,

dζ

dt
= −[a11z

2
1 + a22z

2
2 + a33z

2
3 + a44z

2
4 + a55z

2
5 + a14z1z4 + a12z1z2+

a13z1z3 + a23z2z3 + a34z3z4 + a45z4z5], (7.41)

where a11 = 1
τl

+ a1D, a22 = γ1, a33 = h−γ2D
A∗g
− β1β2(1+α1C−α2pH)

A∗g(Ag+β2)(A∗g+β2)

a44 = ψ0 + a1C + Agψ1 + n1v1P
(v1+D)(v1+D∗)

, a55 = θ2P
P ∗
, a14 = a1C

∗ + a1D
∗,

a12 = pH0

(1+C∗)(1+C)2
, a13 = − α1β1

A∗g+β2
, a23 = α2β1

A∗g+β2
, a34 = ψ1D

∗ − γ2,

a45 = n1D∗

v1+D∗
− n2v22DP

P ∗(v22+D2)(v22+D∗2)
.
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According to Sylvestor Criteria, dζ
dt

shall be negative definite, and thus E∗ will be

locally asymptotically stable only if the below given inequalities hold true,

4a11a44 > 9a2
14, 2a11a22 > 3a2

12, 4a11a33 > 9a2
13, 2a22a33 > 3a2

23,

4a33a44 > 9a2
34, 4a44a55 > 3a2

45,

i.e.

4(
1

τl
+a1D)

(
ψ0 + a1C + Agψ1 +

n1v1P

(v1 +D)(v1 +D∗)

)
> 9(a1C

∗+a1D
∗)2, (7.42)

2(
1

τl
+ a1D)γ1 > 3

(
pH0

(1 + C∗)(1 + C)2

)2

, (7.43)

4(
1

τl
+ a1D)

(
h− γ2D

A∗g
− β1β2(1 + α1C − α2pH)

A∗g(Ag + β2)(A∗g + β2)

)
> 9

(
α1β1

A∗g + β2

)2

, (7.44)

2γ1

(
h− γ2D

A∗g
− β1β2(1 + α1C − α2pH)

A∗g(Ag + β2)(A∗g + β2)

)
> 3

(
α2β1

A∗g + β2

)2

, (7.45)

4

(
h− γ2D

A∗g
− β1β2(1 + α1C − α2pH)

A∗g(Ag + β2)(A∗g + β2)

)
(ψ0 + a1C + Agψ1+

n1v1P

(v1 +D)(v1 +D∗)
) > 9(ψ1D

∗ − γ2)2, (7.46)

4

(
ψ0 + a1C + Agψ1 +

n1v1P

(v1 +D)(v1 +D∗)

)(
θ2P

P ∗

)
>

3

(
n1D

∗

v1 +D∗
− n2v

2
2DP

P ∗(v2
2 +D2)(v2

2 +D∗2)

)2

. (7.47)

This leads to the completion of theorem 7.4.1.

7.4.2 Global Stability

Theorem 7.4.2. The set $ =
{

(C, pH,Ag, D, P ) ∈ R5
+ : 0 < C < Cu,

0 < pH < pHu, 0 < Ag < Agu, 0 < D < Du, 0 < P < Puwhere Cu = τlE +

C0, pHu = pH0

γ1
, Agu = β1α1Cu

β1+γ2Du−h , Du = R
ψ0
, Pu = n2

θ2
. is a positively invariant set

for positive initial values (C(0), pH(0), Ag(0), D(0), P (0)) ∈ R5
+ . The set $ is the

region of attraction for the system of equations represented by equations(7.1)-(7.5).
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Figure 7.1: Time series graph of model trajectories exhibiting stability of interior
equilibrium point.
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Figure 7.2: Phase Plane Graph between C and Ag exhibiting global stability for
varying initial conditions

Proof. For the system of equations represented by equations(7.1)-(7.5), in phase

space CpHAgDP , let us consider a box $ with one of its vertex lying at the

origin and an other vertex lying at a point σ = (C̄, ¯pH, Āg, D̄, P̄ ) where σ is a

point located outside the box $ and C̄ > Cu, ¯pH > pHu, Āg > Agu, D̄ > Du and

P̄ > Pu.

For each face of the box $, which does not lie in the coordinate planes, we shall
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Figure 7.3: Phase Plane Graph between Ag and exhibiting global stability for
varying initial conditions
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Figure 7.4: Equilibrium level of pH for increase in value of E

calculate angle of flow. For the planes denoted by π1 : C = C̄, π2 : pH = ¯pH, π3 :

Ag = Āg, π4 : D = D̄, π5 : P = P̄ , let χ1, χ2, χ3, χ4 and χ5 be the outward normal

unit vectors, in reference to $.

From equation (7.5) we have,

χ5
dσ

dt
|π5 ≤ n2P̄ − θ1P̄ − θ2P̄

2

. We have P̄ > Pu = n2

θ2
,
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Figure 7.5: Equilibrium density of algal population (Ag) for increase in value of E
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Figure 7.6: Equilibrium concentration of dissolved oxygen(D) for increase in value
of E

hence, we get,

χ5
dσ

dt
|π5 ≤ 0

. Similarly, we can also prove that,

χ1
dσ

dt
|π1 ≤ 0, χ2

dσ

dt
|π2 ≤ 0, χ3

dσ

dt
|π3 ≤ 0, χ4

dσ

dt
|π4 ≤ 0

Hence, we prove that the set $ is the region of attraction for the system of equa-
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Figure 7.7: Equilibrium density of population (P) for increase in value of E

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

t

D

 

 

ψ
1
=0.8041

ψ
1
=1.29

ψ
1
=1.72

Figure 7.8: Equilibrium density of Dissolved oxygen for increase in value of ψ1.

tions represented by equations(7.1)-(7.5). In the next theorem, we prove that E∗

is the only global attractor inside $.

Theorem 7.4.3. The interior equilibrium point E∗ shall be globally asymptotically

stable provided that the below given inequalities are satisfied:

4(
1

τl
+ a1D)

(
ψ0 + a1C + Agψ1 +

n1v1P

(v1 +D)(v1 +D∗)

)
> 9(a1C

∗ + a1D
∗)2,
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2(
1

τl
+ a1D)γ1 > 3

(
pH0

(1 + C∗)(1 + C)

2)2

,

4(
1

τl
+ a1D)

(
β1(1 + α1C

∗ − α2pH
∗)

(Ag + β2)(A∗g + β2)

)
> 9

(
α1β1

Ag + β2

)2

,

2γ1

(
β1(1 + α1C

∗ − α2pH
∗)

(Ag + β2)(A∗g + β2)

)
> 3

(
α2β1

Ag + β2

)2

,

4

(
β1(1 + α1C

∗ − α2pH
∗)

(Ag + β2)(A∗g + β2)

)
(ψ0 + a1C + Agψ1+

n1v1P

(v1 +D)(v1 +D∗)
) > 9(ψ1D

∗ − γ2)2,

4

(
ψ0 + a1C + Agψ1 +

n1v1P

(v1 +D)(v1 +D∗)

)
(θ2) >

3

(
n1D

∗

v1 +D∗
− n2v

2
2D

(v2
2 +D2)(v2

2 +D∗2)

)2

.

Proof. In order to study the global stability of interior equilibrium point E∗ we

consider the following positive definite function:

φ =
1

2
(C − C∗)2 +

1

2
(pH − pH∗)2 +

(
Ag − A∗g − A∗gln

Ag
A∗g

)
+

1

2
(D −D∗)2 +

(
P − P ∗ − P ∗ln P

P ∗

)
(7.48)

Differentiating φ with respect to time t we get,

dφ

dt
= −[b11(C − C∗)2 + b22(pH − pH∗)2 + b33(Ag − A∗g)2 + b44(D −D∗)2

+ b55(P − P ∗)2 + b14(C − C∗)(D −D∗) + b12(C − C∗)(pH − pH∗)

+ b13(C − C∗)(Ag − A∗g) + b23(pH − pH∗)(Ag − A∗g)+

b34(Ag − A∗g)(D −D∗) + b45(D −D∗)(P − P ∗)], (7.49)

where b11 = 1
τl

+ a1D, b22 = γ1, b33 = β1(1+α1C∗−α2pH∗)
(Ag+β2)(A∗g+β2)

b44 = ψ0 + a1C + Agψ1 + n1v1P
(v1+D)(v1+D∗)

, b55 = θ2 b14 = a1C
∗ + a1D

∗,

b12 = pH0

(1+C∗)(1+C)
, b13 = − α1β1

Ag+β2
, b23 = α2β1

Ag+β2
, a34 = ψ1D

∗ − γ2,

b45 = n1D∗

v1+D∗
− n2v22D

(v22+D2)(v22+D∗2)
.
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According to Sylvestor Criteria, dφ
dt

shall be negative definite, and thus E∗ will be

globally asymptotically stable only if the below given inequalities hold true,

4b11b44 > 9b2
14, 2b11b22 > 3b2

12, 4b11b33 > 9b2
13, 2b22b33 > 3b2

23,

4b33b44 > 9b2
34, 4b44b55 > 3b2

45,

i.e.

4(
1

τl
+a1D)

(
ψ0 + a1C + Agψ1 +

n1v1P

(v1 +D)(v1 +D∗)

)
> 9(a1C

∗+a1D
∗)2, (7.50)

2(
1

τl
+ a1D)γ1 > 3

(
pH0

(1 + C∗)(1 + C)

2)2

, (7.51)

4(
1

τl
+ a1D)

(
β1(1 + α1C

∗ − α2pH
∗)

(Ag + β2)(A∗g + β2)

)
> 9

(
α1β1

Ag + β2

)2

, (7.52)

2γ1

(
β1(1 + α1C

∗ − α2pH
∗)

(Ag + β2)(A∗g + β2)

)
> 3

(
α2β1

Ag + β2

)2

, (7.53)

4

(
β1(1 + α1C

∗ − α2pH
∗)

(Ag + β2)(A∗g + β2)

)
(ψ0 + a1C + Agψ1+

n1v1P

(v1 +D)(v1 +D∗)
) > 9(ψ1D

∗ − γ2)2, (7.54)

4

(
ψ0 + a1C + Agψ1 +

n1v1P

(v1 +D)(v1 +D∗)

)
(θ2) >

3

(
n1D

∗

v1 +D∗
− n2v

2
2D

(v2
2 +D2)(v2

2 +D∗2)

)2

. (7.55)

This leads to the completion of theorem 7.4.3.



7.5 Numerical Simulation and Discussion 170

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

14

16

18

20

t

P

 

 

R=26.9

R=20.9

R=15.9

Figure 7.9: Equilibrium density of population (P) for decrease in value of R
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Figure 7.10: Trajectories for mathematical model showing the existence of limit
cycles at h=0.952

7.5 Numerical Simulation and Discussion

In this section, we perform the numerical simulations so that the analytical results

obtained for the mathematical model represented by equations (7.1)-(7.5) are sup-

ported. We consider the below mentioned values for the parameters considered in
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Figure 7.11: Phase potrait between C and pH showing the existence of limit cycles
for h=0.952
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Figure 7.12: Phase potrait between D and pH showing the existence of limit cycles
for h=0.952

our model:

E = 1.7, τl = 50, C0 = 2.6, a1 = 0.345, pH0 = 7.0, n1 = 0.0985, γ1 = 0.31,

β1 = 1.608, α1 = 0.85, α2 = 0.57, β2 = 1.0, γ2 = 0.43, h = 0.715, R = 26.9

ψ0 = 0.3, ψ1 = 0.8041, v1 = 1.0, n2 = 0.0985, v2 = 1.0, θ1 = 0.057, θ2 = 0.001.
(7.56)
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Figure 7.13: Phase potrait between C and pH showing the existence of limit cycles
for h=3.956
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Figure 7.14: Phase potrait between D and pH showing the existence of limit cycles
for h=3.956

The equilibrium values obtained for the variables considered in our model for the

above stated set of parameter values given by equation (7.56) are :

C∗ = 3.1424, pH∗ = 5.4511, A∗g = 19.1382, D∗ = 1.5587, P ∗ = 12.7626. (7.57)

For the parametric values and equilibrium values corresponding to the model given



7.5 Numerical Simulation and Discussion 173

0
2

4
6

8
10

12
14

16
18

0

10

20

30

40

50

60

70

0

5

10

15

20

25

30

35

40

45

A
g

D

P

Figure 7.15: Phase potrait between Ag, D and P showing the existence of limit
cycles for h=3.956
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Figure 7.16: Phase potrait between C, Ag and D showing the existence of limit
cycles for h=3.956

by equations (7.56) and (7.57),it is found that the conditions for existence given

by equations(7.18)-(7.29) are satisfied.

It is further noticed from the numerical simulations that the conditions for bound-

edness, positivity and stability corresponding to the interior equilibrium point E∗

given by equations (7.6), (7.42)-(7.47), (7.50)-(7.55) are satisfied. Hence, we can
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Figure 7.17: Phase potrait between C, pH and P showing the existence of limit
cycles for h=3.956
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Figure 7.18: Phase potrait between C, pH and Ag showing the existence of limit
cycles for h=3.956

deduce that the interior equilibrium point E∗ is asymptotically stable for the model

parameter values given by equation (7.56). The local stability behaviour of E∗ is

shown by figure 7.1. Figures 7.2 and 7.3 demonstrate the global stability of E∗

showing that all trajectories initiating from different initial values converge to the

equilibrium point.
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From the stability analysis, it is shown the pH of water decreases as the carbon

concentration in water rises which is supported by equation (7.19). Figure 7.4 also

shows that as the value of input rate of carbon in water (E) increases, the water be-

comes more acidic due to formation of carbonic acid and consequently the pH level

of water declines. Also, it is shown by figure 7.5 that as the rate of input of carbon

components in water (E) rises, the density of algal population also increases. The

increase of carbon concentration implies elevated acidity and global warming. In

turn, the acidic and warmer waters with high algal growth lead to drop in level of

concentration of dissolved oxygen (D) in water as shown by figure 7.6. Further,

since the population is dependent on dissolved oxygen for its existence survival,

the increase in carbon components also affects the population growth negatively

as shown in figure 7.7. Moreover, it can be seen in figure 7.8, that as the value

of consumption rate of dissolved oxygen in the algal decomposition process (ψ1)

increases, the equilibrium level of dissolved oxygen concentration declines. Thus,

excessive growth of algal blooms can lead to scarcity of dissolved oxygen in water.

Furthermore, the excessively grown algal population forms a layer over water and

hinders the penetration of dissolved oxygen in the interior parts of the water body.

This leads to a situation of insufficient oxygen concentration being available for

the aquatic species to survive. The situation of hypoxia, hence pushes the aquatic

population towards a state of mass deaths or in worst cases, extinction. This is

shown by figure 7.9 that as input rate of dissolved oxygen in water (R) decreases,

population density also decreases.

It is further observed that as the value of the algal decay rate (h) is increased

to 0.952 and above, keeping the other parameters as given in equation (7.56) un-

changed, the stable solutions for the model defined by equations (7.1)-(7.5) trans-

form into oscillatory solutions as shown in figures 7.10, 7.11, and 7.12. Thus, it

can be inferred that with the increase in rate of algal decomposition (h) to 0.952

and above, the system bifurcates to a stable limit cycle periodic solution and Hopf-

bifurcations are observed as shown in figures 7.13, 7.14, 7.15, 7.16, 7.17 and 7.18.
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7.6 Conclusion

From our study, we conclude that simultaneous impacts of environmental pressures

such as rising carbon emissions, eutrophication, increasing algal bloom density in

water can have far-reaching and devastating consequences for the aquatic ecosys-

tem. These stressors can lead the ecosystem to state of hypoxia which can be very

hazardous for the existence, growth and survival of the aquatic populations [80, 94].

The study done by San Diego-McGlone et al. [82] regarding the fish kill event of

2002 in the coastal waters of Bolino, Phillipines owing to low oxygen levels due to

increased eutrophication, also support the results of our study. The dissolved oxy-

gen level obtained in their study which led to fish kills was around 2.0. However,

since in our study we are considering the simultaneous effects of increased carbon

emissions, eutrophication and increased algal bloom concentration, we obtain a

dissolved oxygen equilibrium level at 1.5587, which is lower than that available in

the study by San Diego-McGlone et al. [82]. Thus, we can further conclude that in

comparison with the individual impact of each environmental stressor, the simulat-

neous effects of all these pressures can cause more havoc in the aquatic ecosystem.

Thus, immediate measures need to be devised to curb these environmental hazards

which are polluting and deteriorating the aquatic ecosystem.
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Appendix

Units and Description of Variables and Parameters used in
Thesis

In the appendix, the units and description of variables and parameters used in

thesis have been given. The units are considered following the metric system, and

they have been assumed on the basis of units considered for similar variables in

the previously available works and mathematical studies done by researchers in

this field [107, 116, 118, 163, 165].

Table 7.1: Units of Variables used in Chapter 2

Variable Description Units
A Concentration of acid in water µgL−1

S Concentration of toxicant in water µgL−1

P Density of aquatic population like fish mgL−1

D0 Concentration of favourable resources i.e.
dissolved oxygen in water

mgL−1

Table 7.2: Units of Variables used in Chapter 3

Variable Description Units
A Concentration of acid in water µgL−1

T Concentration of toxicant in water µgL−1

D0 Concentration of favourable resources i.e.
dissolved oxygen in water

mgL−1

N Density of aquatic prey population like small
fishes

mgL−1

P Density of predator population directly de-
pendent on prey for food

mgL−1
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Table 7.3: Units of Variables used in Chapter 4

Variable Description Units
C Concentration of carbon in water mgL−1

pH pH level of water
Al Density of algal population mgL−1

D0 Concentration of dissolved oxygen in water mgL−1

Table 7.4: Units of Variables used in Chapter 5

Variable Description Units
τ Average surface temperature ◦C
R Concentration of atmospheric carbon dioxide mgL−1

Ag Density of algal population mgL−1

O Concentration of dissolved oxygen in water mgL−1

Table 7.5: Units of Variables used in Chapter 6

Variable Description Units
Pl Concentration of plastic waste in water body µgL−1

G Concentration of greenhouse gases in the at-
mosphere

mgL−1

n Concentration of nutrients entering the wa-
ter body leading to eutrophication and algal
bloom growth

mgL−1

a Density of algal population mgL−1

T Average surface temperature mgL−1

O Concentration of dissolved oxygen in water mgL−1

Table 7.6: Units of Variables used in Chapter 7

Variable Description Units
C Concentration of carbon in water mgL−1

pH pH level of water
Ag Density of algal population mgL−1

D Concentration of dissolved oxygen in water mgL−1

P Density of aquatic population mgL−1
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Table 7.7: Units of Parameters used in Chapter 2

Parameter Description Units
p Input rate of acid in water µgL−1day−1

b1 Rate at which the acid is washed out of the
water bodies

day−1

k1 Rate of increase in water acidity due to in-
creased toxicant amount in water

Lµg−1day−1

q Rate at which the toxicants and pollutants
are introduced in the aquatic ecosystem

µgL−1day−1

α Depletion rate of the toxicants and pollu-
tants

day−1

β11 Rate of consumption of dissolved oxygen by
the aquatic population

day−1

β12 Half saturation constant mgL−1

d1 Rate of depletion of population on account
of increased acidity

Lµg−1day−1

m Death rate of the population day−1

δ1 Self-restricting rates of growth of population Lmg−1day−1

r Input rate of dissolved oxygen mgL−1day−1

n1 Natural depletion rate of dissolved oxygen day−1

n2 Decomposition rate of the algal biomass and
the organic pollutants in water

Lµg−1day−1

t Time variable day
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Table 7.8: Units of Parameters used in Chapter 3

Parameter Description Units
p0 Input rate of acid in water µgL−1day−1

β Rate at which the acid is washed out of the
water bodies

day−1

k Rate of increase in water acidity due to in-
creased toxicant amount in water

Lµg−1day−1

q0 Rate at which the toxicants and pollutants
are introduced in the aquatic ecosystem

µgL−1day−1

a0 Depletion rate of the toxicants and pollu-
tants

day−1

r Input rate of dissolved oxygen in water mgL−1day−1

n11 Natural depletion rate of dissolved oxygen in
water

day−1

n12 Rate at which the dissolved oxygen decreases
due the algal decomposition

Lµg−1day−1

γ Rate of uptake of dissolved oxygen by the
prey population in water

Lmg−1day−1

h Natural growth rate of the prey population µgL−1day−1

α11 Consumption rate of prey population by
predator population

day−1

g Extent to which the prey population is pro-
tected by the environment

mgL−1

δ1 Intraspecific competition between the prey
population

Lmg−1day−1

α12 Assimilation rate of predator day−1

a1 Natural mortality rate of the predator popu-
lation

day−1

t Time variable day
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Table 7.9: Units of Parameters used in Chapter 4

Parameter Description Units
CE Input rate of carbon in water mgL−1day−1

τc Latent time period of carbon in water day
C0 Threshold level of carbon in water mgL−1

γ1 Rate of reaction of dissolved oxygen with car-
bon

Lmg−1day−1

pH0 Threshold level of pH of water mgL−1day−1

g Natural lowering rate of pH in water day−1

α1 Rate of natural growth of algal population mgL−1

a Growth rate of algal blooms on account of
increasing carbon concentration in water

day−1

b Rate of growth of algal blooms on account of
decreasing pH

day−1

β0 Half saturation constant mgL−1

d1 Rate of utilization of oxygen in algal respira-
tion process

Lmg−1day−1

h Natural decay rate of algal bloom day−1

q Input rate of dissolved oxygen mgL−1day−1

m1 Natural depletion rate of dissolved oxygen day−1

n1 Consumption rate of dissolved oxygen in the
decomposition of algal blooms

t Time variable day
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Table 7.10: Units of Parameters used in Chapter 5

Parameter Description Units
φ Growth rate coefficient corresponding to av-

erage surface temperature
Lmg−1◦Cday−1

δ Coefficient of depletion of average surface
temperature

day−1

R0 Level of carbon dioxide in absence of pollu-
tion and human activities

mgL−1

τ0 Average surface temperature in absence of
rising carbon dioxide levels

◦C

Q Rate of increase of carbon dioxide due to hu-
man activities

mgL−1day−1

α Natural depletion rate of carbon concentra-
tion

day−1

h Growth rate of algal blooms due to increasing
carbon concentration in water

day−1

a Proportionality constant
β Natural death rate of algal blooms day−1

I Input rate of oxygen in water mgL−1day−1

d Depletion rate of dissolved oxygen due to de-
composition process of algal blooms in water

Lmg−1day−1

n Natural depletion rate of oxygen day−1

d3 Rate of decrease of dissolved oxygen concen-
tration due to low solubility of oxygen in wa-
ter due to global warming

◦C−1day−1

t Time variable day
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Table 7.11: Units of Parameters used in Chapter 6

Parameter Description Units
Q1 Input rate of plastic in water body µgL−1day−1

α1 Decay and sedimentation rate of plastic day−1

I10 Emission rate of greenhouse gases due to an-
thropogenic activities

mgL−1day−1

I11 Increase in greenhouse gases due to degrada-
tion of plastic particles

day−1

α2 Natural depletion rate of greenhouse gases day−1

q0 Rate of inflow of nutrients due to agricultural
run-off or domestic drainage

mgL−1day−1

α10 Rate of natural loss of nutrients day−1

β11 Proportionality constant day−1

µ0 Half-saturation constant mgL−1

θ11 Fractional proportionality constant
θ12 Rate of decrease of algal growth due to re-

duced photosynthesis by plastics
Lmg−1day−1

ψ0 Natural mortality rate of algal population day−1

ψ2 Depletion rate of algal population due to
crowdings

Lmg−1day−1

µ11 Rate of increase of water temperature due to
rise in greenhouse gases

Lmg−1◦Cday−1

µ12 Coefficient of surface heat transfer day−1

G0 Threshold value for greenhouse gases above
which temperature will rise due to global
warming

mgL−1

T0 Temperature of environment ◦C
R Input rate of oxygen in water mgL−1day−1

Kr Constant of reaction rate under specific tem-
perature Tr

Lmg−1day−1

γ1 Coefficient demonstrating rate of reaction in-
crease if temperature rises by 10 degrees Cel-
sius

◦C−1

Tr Reference Temperature ◦C
α5 Rate of increase in oxygen concentration due

to algal photosynthesis
day−1

α4 Proportionality constant Lmg−1day−1

α3 Coefficient for rate of natural loss of oxygen day−1

t Time variable day
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Table 7.12: Units of Parameters used in Chapter 7

Parameter Description Units
E Input rate of carbon in water mgL−1day−1

τl Latent time period of carbon dioxide in water day
C0 Threshold level of carbon in water mgL−1

a1 Rate of reaction of dissolved oxygen with car-
bon

Lmg−1day−1

pH0 Threshold level of pH of water mgL−1day−1

γ1 Natural lowering rate of pH in water day−1

β1 Rate of natural growth of algal population mgL−1

α1 Growth rate of algal blooms on account of
increasing carbon concentration in water

day−1

α2 Rate of growth of algal blooms on account of
decreasing pH

day−1

β2 Half saturation constant mgL−1

γ2 Rate of utilization of oxygen in algal respira-
tion process

Lmg−1day−1

h Natural decay rate of algal bloom day−1

R Input rate of dissolved oxygen mgL−1day−1

ψ0 Natural depletion rate of dissolved oxygen day−1

ψ1 Consumption rate of dissolved oxygen in the
decomposition of algal blooms

Lmg−1day−1

n1 Rate of depletion of oxygen due to its con-
sumption in respiration and growth of the
oxygen-dependent population

day−1

n2 Growth rate of oxygen dependent population day−1

v1 Half saturation constant mgL−1

v2 Half saturation constant mgL−1

θ1 Natural mortality rate of the population day−1

θ2 Rate of intraspecific competition for the
aquatic species

Lmg−1day−1

t Time variable day
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