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ABSTRACT 

With the development and notoriety of artificial intelligence (AI) in various fields, 

medical concentrates have started to actualize their capacities to care for and interpret 

information through telemedicine. With the difficulties in the usage of telemedicine, it 

is required to enhance its abilities and improve its adaptability to resolve problems in 

telemedicine. The continuous improvement in technology that prepares for the 

extension of associations through the Internet, i.e., the Internet of Things (IoT), and the 

development of the ability to handle information have made more noteworthy prospects 

of advancing the worldwide health industry, particularly telemedicine. With due 

advantages, telemedicine and AI gave unlimited opportunities for improvement, and 

the literature of existing work has been reviewed in this paper. The recent development 

with this technology can be characterized into four: information analysis collaboration, 

intelligent assistance diagnosis, healthcare information technology, and patient 

monitoring.  

WBANs (Wireless Body Area Networks) significantly automate. On the contrary, these 

systems create a large volume of sensed data, necessitating time-bounded services, 

dependability, data preparation, and effective communication technology. One of the 

acceptable choices to improve patient monitoring systems is the IOT with the notion of 

Fog computing. The massive surge in health-related digital information has changed 

machine learning algorithms, allowing them to produce more relevant information. 

Remote patient monitoring and recognizing threats to human health have become 

critical components of modern telemedicine. In this research work, epilepsy disease 

diagnosis is considered in telemedicine. Patients with epilepsy are more likely to die or 

have post-traumatic problems. As a result, early disease detection might be critical for 

a person's survival or for giving vital support. On the other hand, telemedicine data 

centers require scalable processing and storage resources to accommodate the 

expanding number of people being watched. Dedicated techniques are also necessary, 

allowing minimal data transmission of only the most interesting cases. 

The main objectives of the proposed model are 
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1. To study and analyze existing telemedicine system for different wireless network

technologies. 

2. To develop Internet of Things (IoT) enabled Fog Computing based architecture of

Telemedicine system for diseases diagnosis and to monitor remote health care services. 

3. To develop and analyze machine learning-based fog computing for an efficient e-

health care system. 

4. To evaluate and compare the proposed method with existing methods regarding

confusion matrix, receiver operating characteristics, latency, and energy consumption. 

To justify the above objectives, this research work is mainly focused on the needs of 

epilepsy patient monitoring systems before proposing and implementing a hierarchical 

layer-based IoT architecture that incorporates WBANs, fog computing, and cloud 

services. In this proposed model, a novel epilepsy classification method presented 

based on health metrics that uses machine learning and fuzzy logic. In addition, the 

suggested is tested using an embedded system and an open-source prototyping 

platform.  

Initially, the real-time health parameters from wearable sensors, respiratory rate, body 

temperature, air quality, SpO2, and heart rate of a person, are monitored, deliberated, 

and analyzed to assess the system's efficacy in various human activities. The values of 

each sensor parameter are observed for two sensor nodes connected to healthy people, 

and the distributions were statistically significant displayed on the Ubidots cloud 

services. As per anomaly found in sensor data as per the threshold assigned, an alert 

will be sent to the doctor or caretaker. The findings demonstrate that this architecture 

meets the stringent criteria of medical applications by delivering reliable 

communication.  

Later, the suggested approach distinguishes new instances based on disease symptoms 

and regular health markers. To forecast and compute the severity of the discovered 

disease for each sign of illness, different coefficients were used. The proposed method 

involves using wearable sensors with additional sensors to capture more data on the 

patient to enable a better and more accurate diagnostic to evaluate the patient's state 
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while they are being observed. Using a combination of machine learning and fuzzy 

logic, the system can diagnose and treat epilepsy patients with more intelligence and 

precision. Different classifiers were used to classify the Epileptic Seizure dataset. 

Compared to other classifiers, the Random Forest classifier with Fuzzy Inference 

System outperformed. Sensitivity analysis was performed on several of these classifiers 

to see how well they performed in classifying the Epileptic Seizure dataset when some 

parameters were changed. After that, a dataset prediction was made using feature 

selection based on attribute variance. 

The results are analyzed based on confusion matrix parameters, such as accuracy, 

sensitivity, specificity, f-score, positive and negative predictive value, false positive 

rate, and negative rate with receiver operating characteristic (ROC) with latency time 

required for training and testing of the model. Over 98% accuracy is achieved utilizing 

the same dataset to evaluate the effectiveness of ensemble machine learning algorithms 

and their processing needs. Our proposed method's results demonstrated that ML-FIS 

could be used to diagnose different disorders. Finally, the proposed model is compared 

with the state of art model, and it is much superior in all aspects. The suggested method 

controls sensor-based patient monitoring and demonstrate acceptable accuracy and 

savings compared to traditional methods. The study was tested on a subset of the 

population, where its superior precision and efficacy were quickly apparent. The 

recommended approach has been general thus far; however, it may be adapted to more 

pressing situations, such as those seen in operating rooms, critical care units, with 

infants, and with more complicated patients. The findings suggest that a machine 

learning–fuzzy logic system can effectively replace high-end, costly intelligent 

decision-making systems. Further, this research could help doctors, patients, medical 

practitioners, and other healthcare professionals detect diseases earlier and treat them 

more effectively.  

Keywords: Epilepsy, Fuzzy Logic Inference System, Machine Learning, Telemedicine. 
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CHAPTER 1 INTRODUCTION 

1.1 OVERVIEW AND BACKGROUND 

Each person needs rapid diagnosis and treatment if they ever hope to keep their 

body healthy and strong. Today's fast-paced lifestyle brings on many diseases, the 

consumption of unhealthy food, and the prevalence of stressful jobs. The healthcare 

industry is currently giving IoT much thought. Typically, an Internet of Things (IoT) 

based framework is prepared for integrating various things and sensors over the 

internet, with each related gadget having a unique identity that permits them to impart 

trade information without human mediation. The utilization of freely available IDEs 

(Integrated Development Environments) and SDK programming has made the 

implementation of IoT in the healthcare sector significantly easier. This integration has 

led to groundbreaking advancements in the effectiveness, affordability, and 

accessibility of health monitoring frameworks. 

IoT is a novel concept that promises to improve communication in the future. 

The IoT is a network of interconnected physical things that can exchange data and 

instructions with one another and similar devices and systems across a network 

infrastructure, somewhat unlike the Internet itself. Exceptional identification of each 

transporting object is achieved by its characteristics. By 2020, it is expected that there 

will be 50 billion IoT devices in use. Understanding Wireless Body Area Sensor 

Networks (WBASN) is crucial before using the concept of IoTs for remote health 

monitoring. 

Low-force, reduced-size, wearable, and lightweight are only a few of the 

characteristics of the sensor hubs that make up a WBASN. Electroencephalogram 

(EEG), electromyography (EMG), electrocardiography (ECG), accelerometer, beat 

oximeter, spinner, temperature, and heart rate observation are all used in clinical 

settings. These sensor nodes are crucial, as they can constantly monitor things while 

having a small amount of storage space. Constantly monitoring physiological data, 
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these wearable sensor hubs transmit it through RF signals to a facilitator hub before 

memory fills for pre-processing. Certain persistent diseases and persistent settings are 

typical for IoT-based medical care. Constant developments in data and correspondence 

innovation have prompted updating the applied sciences. The WBAN has expanded the 

range of medical applications by reducing the need for remote sensors and other 

electronic equipment. Healthcare costs have decreased, and treatment durations have 

decreased due to the increased possibilities made possible by technological 

advancements. WBANs are better capable of handling traffic from various types of 

organisations, are more innovative, smaller in size, and have a shorter battery life. The 

IoT is a cutting-edge development that links physical objects to digital networks. 

WBAN engineering in healthcare administrations can benefit from this method [1]. 

 

Figure 1.1 Telemedicine Approach using IoT [Source: Device Authority Ltd] 

Some of the most promising growth areas for the next decade include the 

exchange and analysis of data, the IoT, wearables, cloud computing, and mechanical 

technology. In particular, telemedicine has better potential for improvement due to the 

ongoing development of technology that allows for the creation of relationships via the 

web and the development of the ability to handle information depicted in figure 1.1. 

With these considerations in mind, it is clear that the use of artificial intelligence (AI) 

plays a crucial role in the development and implementation of new ideas in response to 

the massive amounts of data used in medical care, the need for predictable accuracy in 



3 

complex methodology, and the increasing demands in medical care administration. 

Computerised scheduling and communication of medical care needs and activities may 

increase clinic efficiency. 

Mobile health care, or mHealth, complements eHealth's emphasis on 

adaptability. With distributed computing, health records collected from any location 

may be securely stored and easily accessed, greatly enhancing patient care quality. 

Distributed storage, which provides on-demand stockpiling services, allows the 

customer to avoid dealing with the goods and equipment on a local level. When stored 

on the cloud, a patient's medical history is safe from destruction. A patient's medical 

history may be uploaded to a cloud-based service provider and accessed by treating 

physicians. However, the information included in health records is extremely valuable 

and may be used for various malicious purposes [2]. 

1.2 Telemedicine System 

1.2.1 Introduction 

Telemedicine is being moved in through user-friendly electronic messaging, allowing 

for the performance of conversations, clinical evaluations, and coordinating activities 

amongst clinical experts. In several articles, telemedicine is described as an "open and 

consistently expanding science" that incorporates "new headways in innovation" and 

"reacts and adjusts to the altering wellness requirements and circumstances of social 

orders." In the medical profession, telemedicine's essential functions include lowering 

deferrals, cutting costs, and increasing accessibility. Prioritizing cost-effectiveness and 

gaining the acknowledgement of the healthcare network, in the last ten years, remote 

innovation has been used to sensors and applied to contextual analyses identified using 

electronic patient records and home observing. Teleradiology, which transmits 

computerised radiological pictures (for example, X-beam pictures) from one area to the 

next; telepathology, which shows digitalized obsessive results; teledermatology, which 

transmits clinical data concerning skin conditions, and telepsychiatry for mental 

assessments and also meet-ups, are the four fields that will primarily benefit from the 

types of assistance provided by utilising data and correspondence innovations (ICT). 
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Its reach and capabilities, however, may be expanded thanks to new data emerging from 

studies of artificial awareness and information. When done right, telemedicine can 

increase efficiency, boost profits, and better allocate resources [3]. 

 

Figure 1.2 A general telemedicine system [4] 

Fig. 1.2 shows a high-level outline of a typical telemedicine setup. The typical 

organisational framework for a telemedicine system consists of the following levels: 

• Level 1: Center for local and distant telemedicine. These facilities serve as the 

primary care providers in non-urbanised or outlying regions. 

• Level 2: City/district hospital. The local/rural clinics are linked to the regional 

hospital in the city/district. Establishing a link between the district and state 

hospitals is possible but not required. 

• Level 3: Speciality centre. The municipal hospital has connections to other 

medical facilities that focus on treating specific diseases. 
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When an individual requires medical assistance, they visit the closest community 

health centre, where a local healthcare professional delivers care and conducts an initial 

examination. The physician uses live audio or video feeds and automated systems to 

communicate with patients in real-time. The essential diagnostic tools and 

teleconsultation gadgets are housed in this section, and they are connected to the city 

hospital through computers and the Internet. The primary role of the local healthcare 

unit is to gather and transmit essential patient information, such as physiological data 

and images, to the distant city hospital. The primary function of the local healthcare 

unit is to collect and send all of the patient's vital information to the faraway city 

hospital, including physiological data and pictures. After receiving the documents, the 

remote doctor will evaluate all of the information thoroughly before moving forward 

with any live interaction with the patient. After carefully evaluating the patient's 

condition, the doctor will arrange for the patient to visit a distant medical centre. All of 

the information pertaining to a patient is maintained in a centralised database that is 

accessible by all of the hospitals, no matter how far away they may be. The data is 

accessible via web-based or mobile app interfaces. The best hospitals also have 

connections to secondary facilities where patients may receive specialised care in times 

of crisis; these secondary facilities are equipped with teleconferencing equipment 

identical to the ones used by the top hospitals[4]. 

Telemedicine is healthcare delivery by electronic means, most frequently video 

conferencing [5]. Many healthcare facilities are looking towards telemedicine as a 

solution to rising healthcare expenses and the demand for improved treatment. Better 

access to healthcare has resulted from enhanced communication between doctors and 

their far-flung patients. Telemedicine has also been shown to improve connectedness, 

leading to fewer hospital readmissions and more adherence to treatment programmes. 

The improved access provided by telemedicine is not limited to patient-provider 

interactions. Telemedicine might help doctors form collaborative groups to share 

knowledge and improve patient care. 
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1.2.2 Applications of Telemedicine System 

The following are the various applications of telemedicine systems listed below. 

• 2nd Opinion 

• Chronic Disease Management 

• Device Streaming 

• Disaster Relief 

• Emergency Room (ER) Diversion 

• Mobile Health 

• Medication Management 

• NICU/ICU 

• Paramedic/Ambulatory 

• Telemedicine for Remote Clinics 

• Sharing Medical Information 

1.2.3 Benefits of Telemedicine System  

There are benefits to both patients and doctors when using this technology. 

Telemedicine may enrich and improve patient experience despite technological barriers 

and criticism. The field of telehealth, which includes telemedicine, has various 

benefits.: 

• Better Assessment 

• Better quality patient care 

• Control of Infectious Illness 

• Comfort and Convenience 

• Extends access to consults from specialists 

• Family Connections 

• Increasing patient engagement 

• More convenient, accessible care for patients 

• Primary Care and Chronic Condition Management 

• Safe Environment for Patients and Providers 
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1.2.4 Limitations of Telemedicine in Healthcare 

Telemedicine has several potential drawbacks, especially when contrasted with more 

conventional care means. It has supposed to work in tandem with existing healthcare, 

not as a replacement. Using telemedicine via a public network or an unencrypted 

channel presents a significant security risk since hackers might potentially obtain access 

to sensitive patient information. This technology is not yet ready for widespread usage 

because of potential drug delays in emergencies. If a doctor is licenced in one state, but 

their patient lives in another, the doctor cannot treat them in the other state. The 

clinicians' telemedicine service should be secure, rigorous, and compatible with privacy 

regulations. Focusing on patient self-reports and requiring clinicians to ask additional 

questions during telemedicine meetings are essential for obtaining an entire medical 

history. If a patient fails to disclose a severe symptom that should have been picked up 

during in-person care, their medication might be ineffective. Not being easily accessible 

or inexpensive is a significant downside. Setup and maintenance costs for the provider 

might be high. Despite its apparent benefits, implementing telemedicine infrastructure 

might be prohibitive for specific clinics and hospitals. Unreliable care cannot be 

provided if there is a communication breakdown. 

1.2.5 Future of Telemedicine in the Healthcare Sector 

In the future, patients will quickly and easily create accounts and arrange appointments 

with their favourite providers. Scanning and uploading patient verification documents, 

medical reports, and old prescriptions saves patients the trouble of manually entering 

their information. With the support of the patient interface, the doctor may formulate 

an immediate treatment strategy. The patient's medical and personal history are 

summarised for the doctor's convenience. Getting urgent and routine medical care is 

easy because of the abundance of local facilities. As a result, doctors can spend more 

time in person with patients who need intensive care and less time on routine issues that 

can be resolved remotely. Patients will be triaged more efficiently with video 

consultations in the future, and those who do not need immediate care will be 

discharged from the ER faster. This leads to better patient outcomes and reduces the 



8 

 
 

 

need for emergency department diversions. Many hospitals and clinics are using 

telemedicine software as a future-proofing measure. It connected cardiologists with 

patients willing to go to a remote clinic. They will work with the present system to 

shorten the intervals between follow-up visits. Many businesses may benefit 

significantly from the anticipated development of remote patient management as the 

sector's next driving factor in virtual healthcare. 

1.2.6 Telemedicine Security and Privacy 

Fraudsters frequently target healthcare institutions because of the high value of the 

information stored in their networks. Providers may only reap the benefits of 

telemedicine if they have a safe way to exchange patients' private medical data (PHI). 

Sensitive patient health information (PHI) must be safeguarded by HIPAA and other 

privacy requirements, making data security a primary priority in healthcare settings. 

Encryption and other data security technologies can assist in ensuring the safety of 

sensitive patient data while in transit across IoT devices used in telemedicine. It has 

been suggested that using an edge server to store data before transmitting it to the cloud 

is one HIPAA-compliant telemedicine option [6]. This requires a comprehensive 

strategy that includes robust network security measures and managed access privileges. 

1.2.7 Internet of Things IoTand Artificial Intelligence (AI) in Telemedicine 

Nowadays, a wide variety of medical devices and equipment may be linked to a server 

or the cloud thanks to the advent of ultrafast connection made possible by the IoT. 

Hence, modern telemedicine may leverage real-time data to provide better remote 

healthcare. Wearables and other medical gadgets allow patients to monitor their vitals 

at home and send the data to their doctors for further examination. Providers can enter 

notes about patients, issue prescriptions, and add additional information that can be 

accessed by pharmacists and experts [7-8]. 

Patient's vitals are monitored continuously by integrated wearables, which then upload 

their data to the cloud for convenient, continuing examination by both patients and 

healthcare providers. Patients may make a telemedicine consultation whenever they 
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feel poorly or have questions, and their doctor can access the ongoing readings to offer 

guidance. Better health management via this degree of monitoring can reduce the need 

for urgent care and emergency room visits for people with chronic diseases. 

Patients now have access to a new method of communication with their doctors: 

self-service kiosks, which may be found in various settings, including clinics, 

pharmacies, and public areas. Patients may schedule appointments and make payments 

at the stalls. 

For example, being able to act swiftly might be the difference between life and death 

in a heart attack or stroke. Telemedicine gadgets allow first responders to capture vital 

signs like EEG and EKG and send them to the hospital while still on the way. The team 

can better prepare for the patient's arrival and receive quick specialist advice on 

managing the patient. 

The field of telemedicine is also benefiting from the advancements in AI. For 

instance, while taking a patient's medical history over the phone, AI might prompt the 

user with pertinent questions based on their previous answers. Artificial intelligence 

algorithms can also aid in diagnosis, which is especially useful for melanoma. Other 

AI-based applications can also provide medication reminders and recommendations for 

regular condition checks using information gathered from individual monitoring 

systems. 

1.3 Machine Learning 

1.3.1 Introduction 

Machine learning is an AI application that has influenced various industries, from 

advertising and banking to video games and music. The healthcare sector, however, has 

felt the most extraordinary influence from artificial intelligence. PwC predicts that 

artificial intelligence will boost global GDP by $15.7 trillion by 2030, with the 

healthcare sector seeing the most significant benefit. 

Machine learning is an expanding area of study with several practical implications. 

Machine learning is a subset of AI that allows computers to learn how to analyse data 
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and identify patterns with little to no human input. Machine learning algorithms are 

trained by exposure to examples and data rather than given explicit instructions. 

Healthcare providers and healthcare systems will rely increasingly on machine learning 

technologies to sift through patient data and draw insights. Machine learning is crucial 

to the healthcare sector because it enables us to make sense of the voluminous volumes 

of healthcare data collected daily in EHRs. Machine learning techniques, such as 

machine learning algorithms, can be used in the healthcare industry to uncover 

previously hidden patterns and insights. As the use of machine learning expands in the 

healthcare sector, clinicians can take a more proactive tack, resulting in a more 

streamlined system with enhanced care delivery and patient-based practises [9]. 

Most artificial intelligence (AI) systems nowadays employ machine learning 

(ML) to analyse data and draw conclusions about the world. ML may be broken down 

into subcategories based on algorithm structure and learning technique. Supervised, 

unsupervised, and reinforcement learning are three further categories of learning 

strategies. The algorithm in supervised learning is taught via examples. Applications 

that have access to and can use previous data for predictions about future occurrences 

are good candidates for supervised learning. Even if data are incorrectly labelled or 

categorised, unsupervised learning algorithms can find a pattern in each dataset [10]. 

These algorithms train on past data, making their approaches easier to understand and 

implement. Regression algorithms and classification algorithms are two subsets of 

these. Regression techniques can be applied when there is a connection between the 

input and output variables, like weather forecasting. Classification algorithms divide 

the results into groups based on the values of input variables, such as yes/no or 

true/false. These characteristics make supervised learning ideal for predicting outcomes 

in practical situations based on input data. 

1.3.2 Need for Machine Learning in Healthcare Organizations 

In order to make sense of the vast volumes of healthcare data being created daily in 

electronic health records, machine learning is invaluable to the healthcare business. ML 

can be used in healthcare to uncover previously hidden patterns and insights. A more 
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predictive strategy that unifies the system with enhanced care delivery and patient-

based processes [11] is possible as machine learning in healthcare gets mainstream 

acceptance. 

The healthcare system and its capacity to treat complicated disorders are 

continuously evolving for the better. Nevertheless, there are still numerous obstacles to 

overcome, especially when tailoring dosage and duration of therapy to individual 

features or for patient groups with limited clinical data, such as children. To forecast 

the best and most customised therapies for children, ML has been effectively 

implemented into paediatric care in recent years. ML has been front and centre since 

the spread of the COVID-19 pandemic. In an ever-changing and uncertain business 

landscape, many companies have turned to ML to streamline operations and drive 

R&D. Hospitals and health systems have benefited from ML's ability to tackle one-off 

problems. 

One of the most promising areas of AI is ML technology, and many businesses 

are looking to take advantage of it. The number of people using ML is rising. It may be 

applied in corporate and medical settings and uses algorithms to promote data-driven 

learning. When new research, methods, and devices become available, healthcare 

evolves continuously. In some of these novel contexts, ML might help medical 

practitioners. Insights from unstructured text are now easier to develop and implement 

at scale, thanks to modern technologies. Millions of people's lives can be improved by 

the decisions that doctors and administrators make with the help of this new trove of 

ML-derived intelligence [12, 13]. 

Machine learning and healthcare principles have several significant applications 

in the sciences and the medical field. In healthcare, machine learning is typically used 

in three main areas: medical billing automation, clinical decision assistance, and the 

creation of clinical practice standards for use by healthcare organisations. Data 

generated by machine learning in healthcare can automatically recognise complex 

patterns, allowing primary care providers to receive clinical decision support directly 

within the electronic health record at the point of care. 
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1.1.2.3 Applications of Machine Learning in Healthcare 

Healthcare organisations can better manage their data and provide better services thanks 

to the increasing number of machine learning apps. 

• Managing Medical Data 

• Helps in Medical Diagnosis 

• Detecting Diseases at an Earlier Stage 

• Medical Assistance 

• Decision Making 

• Personalized Medicine 

• It helps Analyze the Errors in Prescriptions 

• Improved diagnosis and disease identification 

• AI-assisted surgery 

• Medical research and clinical trial improvement: 

1.1.2.4 Benefits for Healthcare Providers and Patient Data 

Potential applications of machine learning in clinical care span a broad spectrum, from 

enhancing patient data and diagnosis to cutting costs and enhancing patient safety. Here 

are just some of the many ways that machine learning is improving the lives of medical 

professionals: 

• Improving diagnosis 

• Developing new treatments 

• Reducing costs 

• Improving care 

1.4 Internet of Medical Things (IoMT) 

1.4.1 Introduction 

Connected medical hardware and software that can exchange data with HISes through 

the internet is known as the "Internet of Medical Things" (IoMT). An IoMT refers to 

the interconnected system of healthcare IT that includes Internet-connected medical 
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equipment, hardware infrastructure, and software applications. Medical data may be 

analysed quickly and in various ways with the help of IoMT, sometimes called IoT in 

healthcare, since it enables wireless and distant equipment to connect safely over the 

Internet. Linking patients with their doctors and facilitating the transfer of medical data 

through a secure network can lessen the load on healthcare systems [14] 

As seen in Figure 1.3, the IoMT market comprises intelligent devices used only for 

health care on the body, in the home, clinic, community, or hospital settings, and related 

telehealth, real-time location, and other services [15]. 

Figure 1.3 Internet of Medical Things at a glance [15] 
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The IoT has presented many new challenges recently, from smart homes to smart cities, 

including the IoMT. Improved quality of life and lower healthcare costs are only two 

of the many ways in which IoMT helps individuals. Essential components include 

wireless sensors, as illustrated in Figure 1.4, which can monitor a patient's health 

remotely, and communication technology, which may relay that information to carers. 

 

Figure 1.4 General architecture of the internet of medical things [16] 

The first step in creating an intelligent healthcare ecosystem is realising the 

potential of current technology to provide superior service to end users and enhance 

their quality of life. Artificial intelligence is another enabling technology for IoMT, 

which may aid doctors in making clinical decisions and other complex tasks. The data 

provided by healthcare experts and patient input may be used by Machine and Deep 

Learning approaches to teach computers how to make normal and aberrant judgements. 

Artificial intelligence-enabled IoMT devices provide constant patient monitoring. The 

older people with disabilities can benefit from intelligent robots, smart homes, and 

virtual assistants. [16]. 

Figure 1.5 depicts the three primary components that make up the IoMT 

architecture: the application layer, the perceptual and the network layer. The perceptual 

layer is the lowest and is responsible for taking in information directly from the source 

and forming an opinion based on that information. There are now two parts to the 
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perception layer: the access sublayer and the acquisition sublayer. The data collection 

sublayer's primary responsibility is to make sense of the obtained data by employing 

various medical perception and signal-collecting tools. Main signal acquisition 

techniques [17] may include graphic code, RFID, GPRS, etc. 

 

Figure 1.5 Layer-wise architecture overview of IoMT [17] 

The data access sublayer uses short-range data transfer methods like Bluetooth, 

Wireless Fidelity (Wi-Fi), ZigBee, etc., to link the information gathered in the 

acquisition layer with the information in the network layer. The network layer, or 

intermediate layer, offers several data transmission methods and a variety of platform 

and interface-related functions. The Service and Network Transmission Layers are sub-

layers of this layer. The network transmission sublayer uses several mediums, such as 

mobile communication networks, wireless sensor networks, and the internet, to relay 

the perception layer's data in a timely, reliable, and impenetrable fashion. However, the 
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service layer makes the unification of disparate systems possible, including databases, 

data warehouses, and information description formats. The platform offers an open 

interface and other platform-related services for these integrations. Again, this layer is 

divided into two smaller layers: the layer responsible for making decisions about 

medical data and the layer that stores and displays that data. The application layer takes 

the data collected from the network layer to administer the medical record through 

various apps. Patient records, including those for hospital stays, clinic visits, and other 

medical care, are kept in the in-depth files that comprise the medical information 

application layer. When it comes to medical care, however, it is the application layer 

that does the heavy lifting of analysing data on patients, ailments, medications, 

diagnoses, treatments, and so on [18-19]. 

1.4.2 Role of IoMT in Remote Patient Monitoring 

The IoT has made it feasible to monitor patients worldwide remotely. A patient's health 

may be continually monitored using gadgets in the house and sophisticated sensor 

technologies, allowing for prompt intervention in the case of medical emergencies. 

Patients are increasingly active participants in their care because of the IoT. Patients are 

more encouraged to take charge of their physical and emotional wellness with fitness 

bands and other technologies. 

Keeping patient data safe online is paramount in remote patient management. Patients 

are monitored constantly to ensure their physical safety and prevent any accidents from 

occurring. Patients get a more optimistic outlook and are motivated to take active steps 

towards healing as a result [20]. 

1.4.3 Challenges in IoMT 

The Internet of Medical Things (IoMT) might dramatically improve patient care but 

poses new concerns. Successful healthcare IoT implementation relies on overcoming 

these obstacles. Due to the vast number of participants in the IoMT ecosystem, IoT 

presents its own set of legal, regulatory, technological, and privacy issues: 

• Connectivity providers
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• End users 

• Medical device providers 

• Original equipment manufacturers (OEM) 

• System integrators 

• Systems/software providers 

In order to effectively address these issues, healthcare institutions, technology 

providers, lawmakers, and regulatory agencies will need to work together. The full 

potential of IoMT can only be realised if privacy and security are prioritised if adequate 

investment is made in data management systems, if interoperability is fostered, if costs 

are taken into account, if environmental impacts are addressed, if scalability and 

upgradeability are ensured, and if clear regulations and standards are established. In the 

long run, this will result in better patient treatment, higher quality medical results, and 

a more streamlined healthcare system. 

1.4.4 Benefits of IoMT in the sector of healthcare 

The Internet of Medical Things (IoMT) is the network of interconnected medical 

devices and health systems that can generate, analyse, and transmit health data to 

healthcare information technology systems, such as wearables and sensor-enabled 

devices for remote patient monitoring applications. By allowing for remote patient 

monitoring and the transfer of medical data over a secure network, Wi-Fi-enabled 

medical equipment that promotes machine-to-machine communication minimises the 

strain on healthcare systems and the number of in-person visits patients require. There 

is no denying the impact IoMT is having on the healthcare system. IoMT is ideally 

positioned to improve healthcare systems in various ways, including cost savings, 

simplicity of care delivery, and satisfaction of customers. The following are some of 

the benefits of IoMT in the medical field.  

• Asset Management 

• Customized treatment 

• Better Chronic Care Management 
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• Ensures Adherence to Physician’s orders

• Improved Health Outcomes

• Improved Drug Management

• Increased Patient Engagement

• Reduced Costs

• Real-time Monitoring

• Remote Medical Assistance

1.5 Fog Computing 

1.5.1 Introduction 

Fog Computing distributes the information-sharing and management 

responsibilities over the whole network. It improves the efficiency of cloud 

management by providing more nuanced data. Fog computing is a virtualized platform 

that provides resources, including processing power, application interfaces, system 

management, and storage. The company's administration describes the relationship 

between IoT connections and cloud-based systems. Fog computing becomes 

increasingly important when delivering applications and services to a larger audience 

in a distributed setting. In consumer devices like wristwatches, fog computing displays 

information about the user's activity, such as the distance walked and the number of 

calories ingested. The device monitors heart rate and adjusts the user's sleeping 

environment accordingly. Nowadays, smartphones like the Samsung Note 4 include 

built-in sensors like heart rate monitors and motion detectors like accelerometers and 

gyroscopes. Reducing idle cloud workers is a boon to fog computing, a comprehensive 

part of distributed computing when both registration phases have similar admissions. 

Distributed computing has strengths and flaws that come together to produce a package 

that benefits and hinders end users. One of the advantages of the IoT is the efficient 

creation and management of massive volumes of data in various applications, which 

can then be quickly processed and analysed. Particularly amid the dynamic progression 

of human existence, novel care frameworks are needed. Medical care frameworks might 
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benefit from increased efficiency when fog processing and IoT are used in devices used 

in clinical sector applications [21, 22]. 

As shown in Fig. 1.6, the three levels that make up the usual architecture of an 

IoT/fog Computing-based healthcare system are various layers: the sensor layer, the 

fog layer, and the centralised cloud layer for computation. 

 

Figure 1.6 The Architecture of Healthcare System based on IoT/Fog Computing.[23] 

Data from medical sensors and devices is sent to the fog layer for processing and 

execution over a wireless (Wi-Fi) or cellular (4G/LTE) connection. The health data 

acquired by different IoT medical sensors and equipment is sent to the cloud computing 

layer, which the fog computing layer "acts as a bridge between. Its purpose is to analyse 

healthcare data from the IoT in real time. Real-time messages or alerts are sent to users 

concerning whether or not they are currently considered infected. Since it is linked to 

the cloud, this layer may store data, run analyses, and compile patient medical records. 

Fog computing represents a shift in the computer paradigm. The Fog is typically 

depicted in popular culture as a low-lying cloud. For end-user applications like 

healthcare, autos, and intelligent cities, fog computing entails placing computing 

services on faraway devices to support low latency, high efficiency, and high 
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dependability [23]. Fog computing is a sort of cloud computing in which a "smart 

gateway" performs a number: 

• Computation: The data is processed by a fog gateway, which then generates 

logs of a medical grade that are sent to the cloud for further analysis. The 

calculations have a wide range of complexity, from filtering to wavelet analysis. 

• Data Security: Users may set up a shield that safeguards their information and 

identities. 

• Local Connectivity: The fog gateway communicates wirelessly with wearable 

sensors to collect data and trigger events like warnings and notifications. 

• Onsite Database: It generates a locally accessible database with features and 

clinical parameters for internal and external queries.[24] 

1.5.2 Fog Computing in Health Monitoring 

The use of fog computing has set a new benchmark for the healthcare monitoring 

industry. Fog computing alleviates the strain on networks by processing data 

decentralised. The remote healthcare system employs sensors implanted in or 

strategically placed on the patient's body to monitor their health, measuring specific 

symptoms and supporting them in obtaining precise remedies. A dedicated device 

facilitates interaction between the sensors and the monitoring apparatus [25]. 

1.5.3 Solution to Overcome the IoT Challenges 

IoT security challenges 

Fog computing is a proxy for low-powered devices needing software or authentication 

updates. In addition, they can check on the safety of adjacent electronics. 

Latency Constraints 

To accommodate the latency requirements of IoT applications, the fog executes all 

time-sensitive processes close to end users. 

Network Bandwidth Constraints 
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Application requirements, network capacity, and available computing resources are all 

considered in a fog computing setup. As a result, less information must be sent to the 

cloud, which frees up bandwidth. 

Uninterrupted Services 

Fog computing may function autonomously, guaranteeing service uptime despite erratic 

cloud connection speeds. 

1.5.4 Role of Machine Learning (ML) in Fog Computing (FC) 

In addition, the variety and transmission efficiency of FC services should be improved. 

The creation of FC systems has made use of ML. Hence, ML may help in many different 

ways for nodes. For instance, by incorporating ML with FC, deep analytics becomes 

applicable. As ML can provide trustworthy AI, developers are creating intelligent fog 

apps. These algorithms mine collected data for insights and insights. Fog computing is 

essential for enhancing network traffic and response times by decreasing latency during 

the execution of any job. Fog computing's primary goal is to relieve stress on the cloud 

by distributing low-latency processing tasks. However, there have been occasions when 

Fog computing has failed to deliver sufficient and precise findings, diminishing 

efficiency and quality in performance processes. 

High-layer services, in-depth analytics, a robust end-user, and intelligent answers are 

required of Machine Learning applications employed in fog computing. This is why 

ML may be used to improve the throughput and latency of data transfer in Fog nodes. 

With user-defined real-time processing and communication operations, it enhances the 

architectural sequence of Fog nodes. Machine learning's use has been on the rise, and 

not just to enhance fog computing applications. It is also being put to work to improve 

fog services, such as resource management, security, energy efficiency, latency, and 

traffic modelling. Our current work seeks to fill this knowledge gap by examining the 

function of Machine Learning inside the fog computing paradigm. The relevance of 

Machine Learning in edge computing is highlighted, and the three critical components 
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of fog computing that Machine Learning is connected with controlling are precision, 

resources, and security. 

1.5.5 Characteristics of Fog Computing 

A fog system has several features, as listed in Table 1.1. 

Table 1.1  Fog computing characteristics 

Features Description 

Heterogeneity It is at the very end of a network that 

provides services to a very diverse set of 

customers. 

Capability It provides instantaneous reaction, 

making it useful in a variety of industrial 

contexts. 

Storage and Services It has its own data processing, storage, 

and communication infrastructure. 

Operation Areas Works only in the immediate area (single 

hop from a device to a fog node) 

Platform It has a highly virtualized platform. 

Additional Features Provides low-cost, versatile, and 

transportable hardware and software 

deployment. 

 

1.5.6 Benefits of Fog Computing 

• It protects data more effectively since businesses may analyse their information 

in-house. 

• Due to the data's proximity to the host, security is enhanced. 

• The quantity of information that must be uploaded to the cloud is decreased.  

• Reduces the response time of the system. 
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• Network bandwidth is conserved since less data needs to travel a shorter 

distance. 

1.5.7 Limitations of Fog Computing 

• In addition to storing and processing data, data transfer also requires encryption 

and decryption to unlock data, adding another layer of complexity to data 

management. 

• Adding a layer of separation between the host and the cloud causes an increase 

in power usage.  

• The host and the fog node may have congestion due to increased traffic (heavy 

data flow).   

• Task scheduling involving the host, fog nodes, and the cloud is challenging. 

 

1.6 Motivation and Significance of Work 

Because of advancements in telemedicine, distant doctors may virtually visit patients 

whenever they are in need. Medical experts and patients can have a face-to-face, or at 

least virtual, consultation using video or audio conferencing technology. As hospitals, 

providers, and patients all learn to work together in the context of today's healthcare 

system, the benefits and uses of telemedicine are expanding. Some of the motivational 

reasons for the integration of telemedicine and machine learning are: 

1. Improving healthcare accessibility: Telemedicine can enhance healthcare 

accessibility by connecting patients with healthcare services. By utilizing 

machine learning techniques, we can contribute to advancing telemedicine 

systems that facilitate remote monitoring, diagnosis, and treatment, effectively 

bridging the gap between patients and healthcare providers. 

2. Enhancing diagnostic accuracy: Machine learning algorithms can analyze 

extensive medical data, identifying patterns and making precise predictions. By 

developing telemedicine-specific machine learning models, we can assist in 
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improving diagnostic accuracy, enabling healthcare professionals to make well-

informed decisions even from remote locations. 

3. Remote patient monitoring: Machine learning algorithms can effectively 

analyze real-time patient data gathered through wearable devices or sensors, 

enabling continuous remote patient monitoring. By researching telemedicine 

systems that integrate machine learning, proactive monitoring can aid in the 

early detection of potential health issues, facilitating timely intervention and 

preventing complications. 

4. Advancing healthcare research: Through research endeavours in telemedicine, 

including exploring new algorithms, models, and techniques, we can expand 

our understanding of how machine learning can address specific healthcare 

challenges. This research holds the potential to inspire new methodologies and 

drive further innovation within the healthcare industry. 

By combining the capabilities of telemedicine and the intelligence of machine learning, 

we can significantly contribute to the early diagnosis of illnesses, which is crucial for 

patients' chances of survival. Integrating health-parameter-based early illness diagnosis 

with telemedicine has the potential for a broader impact on the healthcare industry, 

paving the way for improved methodologies and innovative solutions. 

Hence, early sickness diagnosis may be crucial to a patient's chances of survival. Thus, 

we require health-parameter-based early illness diagnosis. 

1.7 Challenges and Issues in IoT and Telemedicine 

Paying doctors and other medical professionals for telemedicine services might be 

difficult. For instance, Medicare only partially reimburses telemedicine providers. Not 

having your electronic health record (EHR) system linked with the platform you use to 

deliver telemedicine services might lead to data inconsistencies in the workflow. 

Without proper platform integration, the continuity of care might be jeopardised. It is 

possible that a patient's new telemedicine provider will not have access to their whole 

medical history if they transition from one service provider to another. Patients who do 

not know how telemedicine functions are less likely to use it. I have a tough time getting 
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to them. Before launching telemedicine services, polling your patients to determine 

which devices they are most likely to utilise is essential. 

High-speed data transmission, monitoring, storage, and calculation are required due to 

the volume of data generated by IoT devices. Connecting data acquired from disparate 

sources and using standard medical service frameworks adds complexity to data 

integration. The risks associated with the IoT have increased because of cyber security 

concerns, the use of IoT in an inadequately standardised security protocol, and hackers 

gaining access to too much sensitive data. The IoT and its associated devices require 

constant updates, inefficiently managed inventories of patients or assets related to 

healthcare, a lack of attention to market interest, subpar products and services, the 

compromise of customer data set frameworks and security breaches. Outdated security 

network measurements are another primary difficulty with IoT applications in 

healthcare organisations. The IoTs require a secure network of interconnected devices 

and the safekeeping of sensitive information. Organizations providing healthcare 

services put a premium on patients' right to confidentiality and safety. Due to the 

importance of protecting patients' personal health information, medical data 

transmissions across international borders must always be encrypted. 

Installing various devices or accompanying sensors was an essential aspect of IoT 

because only a limited number of medical facilities required connections and alliances. 

In addition, the same patient may be suffering from several conditions. Such 

discrepancies might lead to aberrations and misunderstandings in the application of IoT 

devices in healthcare initiatives. 

1.8 Research Problem 

Currently, telemedicine frameworks are utilized for far-off sound and video interviews, 

lessening the expense of rehashed visits to the specialist, constantly checking patients 

with persistent infections, distant careful activities, and crisis care in mishap 

circumstances, just as for preparing and improving the capabilities of specialists. In 

telemedicine frameworks, clients can share network assets such as electronic clinical 
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records, clinical reference books, chart books, strategies, and suggestions and provide 

details regarding clinical investigations and other clinical data. These data assets, 

spoken to in data sets and data distribution centres, are made accessible to wellbeing 

offices through the presentation of data and correspondence innovations and the 

advancement of wellbeing network foundations. Telemedicine has two associations: 

"doctor-patient" and "doctor-doctor." The first kind of communication is effectively 

utilized in various countries. It permits doctors to talk about the aftereffects of tests, 

leads distant discussions with tight masters, screens the methods and tasks, and gives 

preparation and accreditation of the clinical workforce. The second kind of 

communication has shown up generally as of late, which is brought about by the need 

to address various issues, both emotional (for instance, trust in the specialist or doctor) 

and target (for example, protection of patient data). This communication allows us to 

unravel various undertakings: gathering data (grievances, anamnesis), assessing the 

outcomes and changing treatment, dynamic about a full-time visit, and checking the 

well-being state. One of the principal disadvantages is cost and availability. Although 

telemedicine is an outstanding and remarkable service, it may be too expensive for 

businesses to use and maintain more minor medical services. So, introducing an 

intelligent expertise system at the intermediate layer, i.e., the fog layer, will reduce cost 

and increase reliability. 

Information quality is an issue in medical care-related tasks; if the information totals 

are utilized to investigate initially and analyze the information perceptions, the 

meaningful choices taken on such peculiar information may turn out badly. Mainly, 

when information related to Big Data is heterogeneous and multidimensional, the 

information investigation might be wrong. Being IoT geologically worldwide, it is 

fitting to facilitate the intricacy of Big Data with IoT and their related medical care 

information and related Fog Computing administrations before their perceptions are 

taken for understanding. Recognizing the worth and unimportance of similar medical 

care information is imperative since both are basic in our perception and understanding 

examination, affecting the emotional cycle. The examination questions are planned to 

keep in mind the writing studies and the inspiration of new advancements in medical 
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services sciences. How do the IoT-driven medical care frameworks oversee in a 

sheltered and secure climate? Why do we need a system, and how can it work? How 

does Fog Computing discover multidimensional ailments? 

These extra loopholes in the present computing models create another computing and 

networking paradigm named Fog. A fog computing stage runs the same application 

anywhere in the closeness of the clients, settling on constant examination and dynamic 

more achievable and successful. Also, fog as a service empowers new IoT-based 

medical care models to convey computing, control services and storage at various scales 

to address the issues of different end clients. Considering these realities, we proposed 

an IoT-Fog-based medical services structure to distinguish and control disease 

prognosis. The framework alerts patients, users, and doctors during a crisis. It 

additionally helps with diagnosing stage and persistently checking users' health 

boundaries utilizing IoT-based clinical sensors to anticipate the danger of assault. It 

empowers the maturing populace or people who are disabled and live alone or distant 

from medical care specialist organizations to deal with their health more productively 

and viably, even in remote places. 

1.9 Research Contribution 

The research presented in this study offers several significant contributions to 

telemedicine and healthcare. The key findings and advancements include: 

• An approach is proposed to integrate IoT, fog computing, and artificial

intelligence in telemedicine, which opens up new possibilities for extending

healthcare services to rural areas with limited resources. This is made possible

by leveraging the extensive computing capacities offered by diverse healthcare

organizations.

• The research has contributed to the development of an innovative architecture

for a Telemedicine system called IFCATS (Internet of Things enabled Fog

Computing-based Architecture Telemdecine System), representing a significant

advancement in telemedicine by facilitating proactive healthcare and
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empowering healthcare providers with the capability to detect diseases remotely 

but also ensures robust security measures are in place to protect sensitive 

medical data. 

• The study presents a noteworthy research contribution in the form of an 

intelligent hybrid framework named Ensemble Machine Learning Regression 

with Fuzzy Logic Inference System (EMLR-FLIS) for remote disease 

prediction. By integrating ML techniques and FZI, this framework significantly 

enhances the accuracy of disease prediction. This advancement holds great 

potential to benefit patients with similar diseases and improve human health. 

• The proposed system's performance has been rigorously evaluated by 

comparing multiple classification methods based on various performance 

parameters, including the confusion matrix. This analysis helps identify the 

suggested system's effectiveness compared to existing methods. 

The following are some of the most significant contributions made by the suggested 

method: 

• Development of a new classification system for epilepsy identification based on 

routinely monitored health indicators. 

• A novel detection technique is introduced utilizing machine learning, fuzzy 

logic, and sensor data fusion. 

In conclusion, this research contributes valuable insights and practical implementations 

to telemedicine, IoT, fog computing, and artificial intelligence. The findings 

demonstrate the potential for enhanced healthcare services, remote disease prediction, 

and improved diagnosis techniques, ultimately benefiting patients and promoting better 

overall human health. 

1.10 Objectives 

1. To study and analyze existing telemedicine systems for different wireless 

network technologies. 
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2. To develop Internet of Things (IoT) enabled Fog Computing based architecture 

of Telemedicine system for diseases diagnosis and to monitor remote health 

care services. 

3. To develop and analyze machine learning-based fog computing for an efficient 

e-healthcare system. 

4. To evaluate and compare the proposed method with existing methods regarding 

confusion matrix, receiver operating characteristics, latency, and energy 

consumption. 

1.11 Thesis Organization 

This thesis consists of six chapters, as discussed below: 

Chapter 1 explains the research's background and motivation. It also outlines the 

research goal and the scope of work that will guide the study. It also describes the 

importance of the fundamentals of the proposed system keyword technology with its 

architecture and various features and significance related to the domain. 

Chapter 2 contains a literature review of existing works on IoT-based real-time health 

parameter monitoring, considering health records and classification of disease 

diagnosis using various intelligent techniques, fuzzy logic, machine learning, and deep 

learning approaches. 

Chapter 3 explains the proposed layer architecture based on fog computing with the 

working flow. Primarily, real-time data acquisition from sensors, built based on a 

wireless body area network, is performed and observed on the IoT Cloud dashboard 

platform data. 

Chapter 4 provides a detailed implementation of an intelligent disease diagnosis model 

using hybrid intelligent techniques, supervised classification-based machine learning 

algorithms, and fuzzy logic. Further, the results are evaluated and analyzed for hybrid 

algorithms combination. 
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Chapter 5 is based on the simulations, and  multiple classification methods are 

compared by the various performance parameters primarily based on the confusion 

matrix and analyze the proposed system performance with existing methods.  

Chapter 6 emphasizes the main accomplishments and utility of the research and 

discusses the scope for developing future research work that could apply to designing 

the intelligent telemedicine system. 
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CHAPTER 2 REVIEW OF LITERATURE 

2.1 Literature Review  

In this section, a literature review of various telemedicine application scenarios 

is conducted, which is primarily based on IoT and ML. 

Health informatics, public health, law, medicine, the trade press, and industry 

reports were among the numerous fields in the literature on information security and 

privacy in healthcare that were studied [26] (2010) from information systems journals. 

In addition, they offered a broad perspective on the state of the art in information 

systems research and proposed novel avenues for investigation. 

Pulse oximetry variables normal range determined [27] (2010) in a small group 

of individuals with chronic obstructive pulmonary disease. Exacerbation onset was 

separated from symptom change using a composite HR and SpO2 score, which might 

allow for more timely treatment and validate such occurrences in therapeutic studies. 

Hamida EB et al. [28] (2011) use time-variant channel measurements at 2.45 

GHz to conduct experimental research on the topology dynamics and performance of 

routing techniques in WBSNs. They plan to learn more about how delivery ratios, 

latency, and energy consumption are affected by human body shadowing in network 

and routing systems. Finally, some best practices for developing and deploying WBSN 

architectures are outlined. 

By employing a body sensor network platform we previously built, they could 

determine the respiratory rate from three-dimensional acceleration data by using an 

adaptive band-pass filtering approach in conjunction with principal component analysis 

[29] (2011). Twelve people were tested in person to confirm that the method can 

accurately estimate the subjects' respiration rates while sitting, standing, walking, 

jogging, or sleeping. 

Patients with COPD on home oxygen treatment can keep track of their 

respiratory frequency [30] (2012) daily. These individuals' breathing rates dramatically 
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increase days before ECOPD necessitates hospitalization. If this is the case, there may 

be a chance for preventative measures. 

In-home HF and CLD telemonitoring has significantly enhanced [31] (2013) 

the proportion of patients who do not require hospitalization and lowers disease-

specific hospitalization rates and lengths of stay in the hospital. Telehealth monitoring 

in the home has the potential to be an effective alternative method of providing medical 

care for frail older adults. 

A system comprising many wirelessly networked medical sensors and a 

controller device has been suggested to collect medical data in real life [32] (2013). 

The method proposed [33] (2014) for securing transmitted data by generating 

pair symmetric keys for the sensor and the receiver. Since each person's biosignals are 

distinct, they yield the data required to generate cryptographic keys. During processing, 

a mathematical model was used to create the time series that are diagnostically 

comparable to the original biosignals. 

Patients with persistent heart failure are the focus of a meta-analysis of remote 

patient monitoring done [34] (2014). 

To lessen the burden on battery life in WSNs, Chang J-Y et al. [35] (2014) 

suggested a uniform clustering technique combined with an energy-efficient routing 

design—the centralised and cluster-based methods used to design the sensor nodes' 

cluster-tree routing architecture. Using ideas of uniform cluster organisation, this 

system aims to lessen the distances sensor nodes must travel when transmitting data. 

An optimal cluster distribution may be achieved by calculating the distances between 

sensor nodes and considering their respective residual energies when deciding which 

nodes should serve as cluster heads. The data transmission lengths were shortened 

between the sensor nodes by utilising an adaptive multi-hop strategy predicated on the 

standard cluster position. By distributing the load among the clusters, the overall energy 

consumption can lower and increase the lifetime of the sensor nodes. The simulation 
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findings demonstrate that the suggested strategy improves the existing methods for 

wireless body sensor networks regarding energy efficiency and longevity. 

The reliability of a vest was tested [36] (2015) when the wearer is lying down, 

sitting, standing, and walking. They compared the Hexoskin wearable vest's ability to 

track heart rate (HR), breathing rate (BR), tidal volume (VT), minute ventilation, and 

hip motion intensity (HMI) when the subject was lying down, sitting, standing, and 

walking to gold standard laboratory equipment.  

There is a potential for widespread adoption due to the analysis of security 

difficulties and challenges presented [37] (2015) and the provision of a clearly defined 

security architecture that ensures the privacy and security of users. 

The OSI model's seven-layer design broke in a recent assessment [38] (2016). 

OSI, or the Open System Interconnection Reference Model, is a reference framework 

for making protocol judgements in a well-organized system. 

Even below the current air quality recommendations, short- and long-term 

exposures to outdoor air pollution worldwide are linked [39] (2016) with the mortality 

and morbidity of COPD sufferers. Using biomass for cooking in low-income countries 

was strongly correlated with COPD mortality among adult female nonsmokers. 

In order to address these concerns, an energy-efficient information-sending 

technique (EDFS) is proposed [40] (2016) for modifying sensor energy usage and 

enhancing network lifespan and communal duties in heterogeneous WBANs. Two of 

our primary promises are compacted detection to reduce the size of the initial 

physiological data that must be communicated and that the excess energy levels are 

considered the examination of recurrence. Data transmission via WBAN networks may 

be made more efficient and reliable with the help of the EDFS. Similarly, simulation 

findings demonstrate that the proposed EDFS can successfully manage the often-

shifting WBAN landscapes while delivering tailored energy consumption and 

productivity. 
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Damian Dziak et al. [41] (2017) presented an indoor/outdoor IoT-based 

information system. Due to the absence of methodological approaches to the design 

process shown by the performed survey of comparable works, a design methodology is 

developed, which approaches the design target from the perspectives of the 

stakeholders, contracting authorities, and possible users. The approach uses a three-axis 

acceleration and magnetometer, thresholding, the Pedestrian Dead Reckoning (PDR), 

and a decision tree algorithm. A monitored individual may be accurately located inside 

one of four room zones, and their falls and behaviours of laying, standing, sitting, and 

walking can be identified with such an architecture. The discovered behaviours are then 

utilised to categorise the present state of affairs as either normal, suspicious, or 

hazardous, and the system then sends an alert to the healthcare professionals. The 

suggested solution's strong resilience was verified in real-world circumstances. In 

addition, the test results encouraged future participation in the project and pleased 

stakeholders and potential consumers. 

K Vani et al. [42] (2017) designed a method to transmit temperature and heart 

rate data from home monitoring devices to carers. In addition, the indoor air quality is 

monitored and set off an alarm if a potentially dangerous gas is identified. The 

temperature, heart rate, and gas sensor data are continuously monitored and analysed 

using a fuzzy logic method. The Thing Speak service provides access to cloud-stored 

information. Anomalies will be identified based on the learned data and the sensor data. 

A comprehensive system for seizure detection using DL was established by 

Gramacki et al. [43] (2017). The R and Python codes provided enable the following 

tasks: reading raw European Data Format files, reading data files containing the seizure 

annotations made by human experts, extracting train, validation, and testing data, 

creating an appropriate Convolutional Neural Network (CNN) model, training the 

model, checking the quality of the neural classifier, and saving all learning results. 

A. Al-Khafajiy et al. [44] (2017) investigate the creation of a Cognitive Fog 

(CF) model for safe, smart healthcare services that can make their judgements, such as 



35 

whether or not to continue operating processes, what new methods to invoke when 

necessary, and how to safeguard the system's operational procedures.  

AI and telemedicine's malleability opened up boundless possibilities for 

progress [45] (2018). Constant monitoring, medical care data innovation, intelligent 

help conclusion, and data examination coordinated effort are four themes in the spread 

of this technology's use. The patterns of late writing and the problems they aim to solve 

will be addressed, along with examples. 

W. Liu et al. [46] (2018) proposed edge-device-driven architecture as an 

alternative web-based e-health object connectivity and service delivery framework. The 

updated approach was developed to facilitate the use of recently implanted health 

objects, accommodate the growth of edge devices, and provide specific procedures for 

establishing further e-health intelligence standards. With various edge devices and 

implanted oversaw objects coordinated at the core link. 

M. Singh et al. [47] (2018) tackled such fundamental problems using a look-up 

table and energy harvesting. It provides the highest possible throughput while using as 

little energy as possible, making it possible to build self-sustaining, all-encompassing 

wireless networks. There have been three settings for the experiments. The impact of 

varying various system parameters on the performance of critical components like 

lookup tables and energy harvesting has also been studied (like energy consumption, 

normalised throughput, and saved and residual energy). NS-2 runs the simulation, and 

MATLAB displays the data for maximum readability. By comparing the suggested 

model to the baseline model, the results show that it utilizes less memory. 

The architecture of microservices [48] (2019) enables early defect localization 

and determination on a remotely managed virtual recovery machine through an 

Internet-based communication channel. The architecture above comprises three layers: 

a base layer that collects data from the repair machine's subsystems using IoT standards, 

a middle layer that analyses the collected data to determine the part's health, and a top 

layer that presents the results. At last, the higher layer makes decisions based on the 
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findings. The proposed engineering makes sense for non-uniform systems. This study 

also demonstrates how this engineering accommodates the specific and all-

encompassing safety procedures for mission-critical devices like medical service 

guides. 

The 5G-enabled Tactile Internet (TI)-based telemedicine procedural 

architecture for Healthcare 4.0 is analysed and discussed by Gupta et al. [49] (2019). 

They provide an ongoing review of the historical setting of the first successful cardiac 

surgery. 5G's URLCC management ensures a reliable communication connection for a 

remote medical operation with a latency of less than one millisecond and availability 

of 99.99%. A solution for a telemedicine procedure includes a correspondence station 

with two unique components: a traditional organisational structure and a TI enabled by 

5G. With TI as the organisation's backbone, the proposed design is more responsive and 

reliable in the research. The last section highlights some of the most pressing 

unanswered questions and assessment challenges of the conventional telemedical 

process design, focusing on inactivity and consistency. 

O. Medical care administration application advances in telemedicine 

engineering have been studied by S. Albahri et al. [50] (2019). IoT arrangements have 

established problems relating to wearable body sensors (Tier 1) and clinical focus 

personnel that plague telemedicine designs (Tier 3). To sum up, a potent examination 

strategy demonstrated the Fault-Tolerant-Framework on mHealth assumed (FTF-

mHealth-IoT) about IoT to identify critical flaws in the current investigation into 

medical care administrations. 

To facilitate remote verification of the real restoration measure, S. Ashapkina et 

al. [51] (2019) have examined the task of developing quantitative measures for 

automated recognition of activity kinds inside the framework's architecture. The 

research suggests limiting capacity attributes to the base twisting approach by using the 

computation of time scale distorting with distinct measurements. This study aims to 

provide methods for measuring the accuracy with which restoration practices are 
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carried out following treatment protocols, thereby increasing the controller's objectivity 

and reliability. 

Incorporating a stage for guiding rescue vehicles is proposed with precision and 

keeping an eye on passengers' tolerance levels [52] (2019). The scene's primary goal is 

to increase the patient's chance of survival by having the ambulance arrive at the 

hospital as soon as possible, giving the watchful doctor as much time as necessary to 

review the patient's biological data. That way, the doctor may give the paramedics 

helpful instructions for the ride or arrange for the necessary clinical services to be ready 

for the patient when they arrive. Moreover, the platform employs AI techniques on the 

collected data to aid the specialist in identifying probable clinical hazards. The 

framework's blueprint provides us with a multi-tiered approach. The presentation of a 

model of the integrated framework is evaluated. 

The term "beneficial arrangement" [53] (2019) is used to describe a device that 

serves as both a checking and video-conferencing tool for patients and doctors care 

specialists who are involved in the care of multiple patients and as a legitimate, user-

friendly instrument for the chronic patient. The advantages of this setup are distinct 

from those of other telemedicine platforms and also include monitoring the progress of 

at least one PDTA in which the individual patient is included, verifying the adherence 

to care plans (pharmacological and electro-clinical overviews) and adjusting them 

based on clinical perceptions; and, finally, reducing the variability of the risk list of 

comorbidities, the simultaneous presence of multiple pathologies, which is a common 

prognostic. 

Using the OSI reference model, a hierarchical organisation for the framework 

suggests [54] (2019) under study, depicting the many stages of information disclosure. 

Each successive level of the proposed model highlights the tasks involved in ensuring 

the secure connection of the components of the telemedicine system. Examples of 

secure organisation collaboration in setting up remote human state monitoring at 

varying information introduction levels are provided. A set of techniques and 
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computations for implementing such an association are offered to ensure the safety of 

data transmitted through unencrypted channels. 

It is critical to have access to an Ophthalmologist on call for remote screening 

of patients for potentially vision-threatening disorders when providing care in 

Medically Underserved Areas/Population (MUA/P) or high-stress clinical settings like 

emergency rooms [55] (2019). With an estimated 217 million people globally afflicted 

by moderate to severe vision-impairing illnesses, the availability of speedier (or 

continuous) diagnoses for a broad scope is crucial for the growing number of patients 

with vision-impairing infections. Early identification is essential in preventing vision 

loss from diabetes-related retinopathy and AMD (age-related macular degeneration). 

Y. Fan et al. [56] (2019) explored wearable medical devices (WMDs) on the 

path to telemedicine restoration. The WMDs and the traditional devices could estimate 

the patients' vital signs, including ear temperature, heart rate, blood oxygen saturation, 

and pulse. The calculations were done at six, ten, fourteen, and eight o'clock on the first 

day of each month of 2018. By comparing WMDs and conventional devices, no 

significant difference was found in the intended information and estimating season of 

any key sign (P > 0.05); nevertheless, the WMDs consumed much less time in the 

information record and the total estimation measure. This proves that WMDs may be 

used for critical sign estimation in telemedicine therapeutics. 

The designers increase accessibility between devices, customers, and 

companies utilizing the IoT [57] (2019). A central component of this system is a 

Raspberry Pi, which collects data from the sensors and processes it to control things 

like lights, fans, doors, alarms (in the event of an emergency), phone calls, and 

television. The individual's carers, loved ones, or friends can gain insight into the 

person's health thanks to sensors attached to a crisis module. It monitors the person's 

vitals and notifies the proper authorities if a problem arises. 

D. Gracanin et al. [58] (2019) look into how technology might deliver 

healthcare services while maintaining privacy and safety. Successful, ongoing help with 
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the adaptability to meet unanticipated needs and emergencies can be provided by an 

appropriated VCC (DVCC), which is composed of individual VCCs and the junction 

of local and public edges. A meta-model-based discussed approach to managing private 

patient data and enhancing the efficacy of the care community's faculty will allow off-

site care facilities to expand to meet the rising demand for round-the-clock monitoring. 

The framework [59] (2019) provided the automated detection of 

anomalies/illness deteriorations using a specialised clinical Decision Support System 

and a clinical specialist UI. The gathered data included heart rate, respiratory rate, body 

posture, oxygen saturation, electrocardiogram leads, auscultation, and electrical 

impedance tomography. Pilot concentrations of the framework were implemented in 

Greece and the United Kingdom. The pilot project was conducted in Greece, 

highlighting the journey from data collection to applied translational medicine via the 

first operational use of the WELCOME Foundation. 

The current state of utilising the achievements of current Internet advancements 

analysed [60] (2019) following the tasks of telemedicine screening of patient's 

condition and to investigate the potential for deciding approaches to enhance the quality 

of telemedicine benefits by constructing modern telemedicine structures. It is 

recommended to study leading global nations' best practices and analyse the benefits of 

leading telemedicine screening for various patient categories to determine the major 

directions for enhancing telemedicine administrations in Ukraine. 

X. Li et al. [61] (2019) provide secure and proficient data on the executive's 

framework dubbed EdgeCare for adaptable healthcare infrastructures. Local experts are 

prepared to organise frontline staff to manage healthcare data and promote information 

sharing. EdgeCare is designed for real-world application through a collaborative effort, 

including engineers at several levels. They use an electronic clinical record to illustrate 

how sensitive data relating to healthcare is handled. The Stackelberg game-based 

improvement calculation is also guided by them toward an optimal motivation system 

for an information authority and customers in the appropriate decentralised information 

exchange. From there, we investigate safe data exchange and participation in the 



40 

framework. Mathematical results from a security audit demonstrate that EdgeCare 

provides practical solutions for safeguarding healthcare data and encouraging expert 

knowledge sharing. 

The framework of IoT telemedicine medical services for the elderly living alone 

is presented [62] (2019), which may be used for the living arrangements of seniors 

alone. Pulse monitoring, myoelectric signal collection, and a bloodstream monitoring 

infrastructure are the primary foci of the telemedicine system. Older people who live 

alone often rely first on common physiological signals. The patient's body has calmed 

down (showing no unusual signs) and is now at its baseline norm physiologically (Base 

Line Data). From the patient's vantage point, the physiological symptoms are confirmed 

and presented on a mobile device. 

With a Bluetooth preparation card, data on the patient's systolic and diastolic 

pressures and pulse may be sent in stages to a remote worker through a phone network 

under an e-health paradigm [63] (2019). As a result, the model may transmit and report 

through an instant message a separate warning if an irregularity should occur in the 

estimation and reporting of the elements. These records are then stored in a database 

where the patient and specialist can consult and view them from any Computer. A small 

number of patients who followed the programme saw very positive results. In addition, 

there was a discrepancy between the used pulse screen and one guaranteed by the World 

Health Organization, with a difference of +/- 5 points being within the margin of error. 

The particular methodologies pertinent to the mHealth application investigates 

and proposes [64] (2019), which allows patients to send health records to specialists 

and specialists to offer the history further and haggle with masters and help patients 

find companions experiencing primary indications in protection saving climate 

guaranteeing the wellbeing record's credibility. 

Telemedicine research has been developing for some time now [65] (2019). This 

research aims to compile a list of, and settings for, the most often used electronic cards 

and microcontrollers in remote monitoring systems for chosen chronic patients' vital 
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signs. Similar to this investigation, the reasons, obstacles, and suggestions for further 

study were proposed to be differentiated. There is no starting point from which the 

people who want to research this subject should employ equipment and programming 

tools. 

To enhance fall detection, anticipation, and security, Md. Shahiduzzaman et al. 

[66] (2019) offer a cloud-network edge engineering that incorporates the clinical cloud, 

edge organisations, and end gadgets like a smart protective cap. Wearable cameras, 

accelerometers, and spinning sensors are included in the smart helmet so that it can 

monitor the older adult's daily activities via data gleaned from various sources. 

Offloading the processing of sensor data preparation to the edge can reduce latency and 

increase security. The clinical data can be sent through a secure clinical network to the 

clinical cloud for services like fall alerts. 

With the help of a sensor for estimating oxygen saturation in the blood (SpO2), 

another for measuring temperature, and another for measuring blood pressure, as well 

as Bluetooth, an Arduino, and some apps, a groundbreaking IoT architecture is 

suggested [67] (2019). The suggested device with sensors and innovation-based data is 

most suited for special patients' health observation and analysis, according to the 

purposeful outcomes and its assessment. 

Wijesinghe et al. [68] (2019) offer an autonomous framework they term an 

Intelligent Diabetic Assistant (IDA), which prioritises analysis and therapy based on 

what it sees on the user's screen. Information-based modules in the IDA allow for 

limited screening, near-native foot ulcer diagnosis, and severity-based orders. They 

quantify the IDA's usability in terms of execution, learnability, and satisfaction using 

the System Usability Scale (SUS). They conduct our experiments with medical 

professionals who are concerned about diabetes. With an average SUS of 88.5, the 

framework was adequate but not very convenient. 

Zhao et al. [69] (2019) offer a wearable system that uses accelerometers and AI 

to monitor foetal growth. A local checking unit and a remote health assessment unit 
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comprise the framework. An article of clothing equipped with accelerometers for data 

security, an installed framework for signal handling and artificial intelligence (AI), and 

an Android-based nearby checking stage used for the perception of insights on foetal 

wellbeing status based on data obtained from the garment via Bluetooth make up the 

community monitoring team. The IoT is used in the framework to interface all the 

terminal checking units to a control community, which is essential in grasping the 

concept of the eHealth home consideration. 

In the context of Next Generation frameworks, Cecil J et al. [70] (2019) discuss 

an IoMT-based framework for surgical training. This Internet of Medical Things 

framework is designed and developed with the ideas of Global Environment for 

Network Innovations (GENI)-based networking in mind. Virtual reality (VR) 

simulation settings with haptic interfaces allow orthopaedic experts and residents to 

learn and communicate with one another from different places and in real-time. The 

results of these studies highlight the possibility of adopting such Internet of Medical 

Things-based methods to medical education and show the need to employ such a 

framework in medical education. 

IoT conceptualization, definitions, features, technologies, and difficulties are 

illustrated by Abdel-Basset M et al. [71] (2019). They also discussed how the IoT may 

help us make better decisions in our daily lives and create a more intelligent educational 

system. 

Health risk assessment and decision-making (Health-RAD) is an algorithm 

proposed by Habib C et al. [72] (2019). It checks in on a patient, calculates the severity 

of their illness based on their vital signs, and if there's a serious problem, it alerts the 

doctor immediately. As a result, the patient's condition is constantly evaluated, and his 

or her progress or decline is tracked. A risk variable between 0 and 1 reflects the severity 

degree. If the danger value is high, the patient's condition is extremely serious and 

immediate medical intervention is required. A vital sign's score is based on historical 

and present values, so we can evaluate its health by tracking its trajectory over time 

rather than only reacting to spikes. 
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The throughput, power, and latency requirements for constantly monitoring 

BSNs using BLE technology were investigated by Ayoub MAM et al. [73] (2019). They 

assess multiple Bluetooth core standard implementations using a Nordic 

Semiconductor nRF52840 chip-based theoretical model and experimental equipment. 

They assess an EKG gateway and node's current consumption and battery life and 

examine how BLE versions and settings affect electrocardiography (EKG). 

Using the wireless power transfer (WPT) method, Rabby MKM et al. [74] 

(2019) offer a unique, aware priority schedule-based charging algorithm for recharging 

embedded sensor nodes in a wireless body area network. As a result, the instantaneous 

power needs and the total power consumption of SNs during particular operation times 

are all regarded as crucial study performance metrics. 

The technical concepts and distinguishing features of intelligent wearable 

devices are dissected by Li P et al. [75] (2019). A smart wearable equipment system for 

Power Patrol operation has been designed to support intelligent patrol inspection at 

power network operating sites. 

C.C. Bennett. Cardiovascular, Neuropathy, Ophthalmic, Renal, and Other 

Complications were identified by et al. [76] (2019). The modelling technique employed 

machine learning strategies, including unsupervised clustering, supervised 

classification, natural language processing of unstructured care notes, and feature 

engineering. Predicting the onset of diabetic complications using claims data or data on 

socioeconomic determinants of health was successful around 83.5% of the time, the 

study found. They also demonstrated that significant clusters in the patient population 

associated with problems and mental health may be revealed and exploited for cost-

effective screening programmes, cutting the number of patients tested by 85%. 

A great quick medical response strategy is proposed by Sundaravadivel P. et al. 

[77] (2019), which keeps tabs on residents' vitals and provides feedback or hospital 

notifications as needed. The suggested architecture delivers multi-dimensional 

feedback to guarantee people's safety and caution them against developing health 
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problems. Simulating the proposed architecture with the ZigBee radio standard took 95 

seconds with 40 nodes. Using the free software CupCarbon, we show how these sensor 

networks may be routed according to the severity of an emergency. 

For wireless body area network applications, Miran MM et al. [78] (2019) 

developed a new and downsized PIFA (Planar Inverted-F Antenna) that operates at the 

ISM band (2.4-2.4835 GHz). The suggested implantable antenna has real dimensions 

and a slot-less ground plane, simplifying the construction. The suggested antenna's 

compact size makes it ideal for WBANs or wireless body area networks. The patch of 

the proposed antenna is made of copper, while the substrate is made of Rogers RO3210. 

The antenna is encased in biocompatible Rogers RO3035 so that it does not come into 

touch with the human body. CST Microwave Studio was used to conduct analyses of 

the antenna's operating frequency, Voltage Standing Wave Ratio (VSWR), S11 

parameter, directivity, and overall efficiency in flat and bending configurations on a 

three-layer human tissue model. In order to alleviate any antenna-related health worries, 

the Specific Absorption Rate (SAR) is calculated. 

Craig Kuziemsky et al. [79] (2019) discuss the potential reach of AI approaches 

in the telehealth field. These approaches are oriented toward satisfying clinical 

requirements, and they shed light on current directions based on reports of recent 

developments. There are now two main areas of concentration for linked modern 

orders. First, there was the need to enhance the quality of standard clinical practice and 

service delivery. Second, innovative models of care needed to be created and supported. 

Specific case studies have been selected to illustrate each area of interest better. 

H. Chen et al. [80] (2019) presented a new approach to recognising wheezing, 

crackling, and other common noises by combining the optimal S-transform with deep 

residual networks. The experimental findings demonstrate the superiority of the 

suggested OST and ResNet for the multi-classification of respiratory sounds, with an 

accuracy of 98.79%, a sensitivity of 96.27%, and a specificity of 100%. The deep-

learning-based ensembling CNN and empirical mode decomposition-based ANN are 
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outperformed by 3.23% and 4.63%, respectively, in respiratory sound triple-

classification by the suggested method. 

Prediction of cardiovascular disease was proposed by R Latha et al. [81] (2019) 

using a partially observable Markov decision process model (POMDP). Fog computing 

lets the doctor reach the patient in an emergency. Due to the patient's condition, an 

ambulance was sent. iFogSim, a fog computing platform, sends clinicians data. 

Academics are becoming interested in fog computing in healthcare. Cardiovascular 

disease is widely studied. Blood viscosity increases cardiovascular disease risk. Blood 

moves slowly and frictionally due to its high viscosity.  

Using statistical modelling in the form of quadratic discriminant analysis and 

audio-based signal processing techniques by J McNulty et al. [82] (2019). The overall 

accuracy of this 3-class classifier was 85.35% (testing dataset). The detection sensitivity 

for both inhalation and blisters was 70%. By giving doctors a quick and easy way to 

track whether or not their patients are using their inhalers as prescribed, this strategy 

has the potential to make a big difference in clinical practice. 

The importance of characteristics taken from the various phases of a CO2 

waveform shape from an exercising asthmatic is investigated by OP Singh et al. [83] 

(2019). In the proposed study, nine volunteers with stable mild asthma, aged 20-25, 

were randomly selected from the UTM Health Center and breathed into human 

respiration CO2 monitoring equipment before and after training. The participants ran 

on a medical treadmill for 2 minutes at 7.5 km/h (TMX428-15% elevation). Then, they 

compared the Area generated from each segment using numerical methods to the slope 

or derivative of the program, automatically segmenting each breath cycle into sub-

cycles using a threshold. By analysing the receiver operating characteristic curve, they 

discovered that the segmented portion of the mixture of the upper expiratory and 

alveolar phases had a greater area under the curve (AUC) of 0.94. 

There are 1.84 million tweets that are many years old and deal with health that 

were recovered by Talpada et al. [84]. Their research indicates that without a 
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sufficiently extensive and uniformly distributed training dataset, lexical and semantic-

based approaches to sentiment prediction perform better than Deep Learning 

approaches. They found that the number of domain-specific terms in the target text 

significantly impacts the accuracy with which sentiment can be predicted using domain-

specific information. Predicting sentiment using Twitter data can reveal patterns in the 

demographic distribution of feelings. They found that many people have favourable 

impressions about telemedicine. It is in its early stages and has not yet reached a broad 

audience. 

An autonomous system, the Intelligent Diabetic Assistant (IDA), selects the 

diagnosis and the treatment priorities based on the observations that are displayed on 

the screen in the proposed prototype by I Wijesinghe et al. [85] (2019). The IDA is built 

around knowledge-based modules for things like foot ulcer detection and border 

screening in near real-time, categorization based on severity levels, and clinical 

decision support. To evaluate the IDA's usability, they applied the System Usability 

Scale's (SUS) three subscales: performance, learnability, and satisfaction. With a mean 

SUS of 88.5, the system is usable but not outstanding. They conduct their studies with 

doctors and nurses who have experience treating patients with diabetes. 

L Yung-Hui et al. [86] (2019) proposed a novel paradigm for autonomous DR 

diagnosis, leveraging AI and the cloud. The max-pooling layers are swapped out in the 

DCNN for factional max-pooling. To discover the true limits of each class's 

distribution,a support vector machine (SVM) was used for training. With the help of 

the provided strategy, the recognition rate was able to increase to 86.17%. They are also 

making an app for the iPhone. A non-specialist may take fundus pictures and 

automatically make a diagnosis using this device called the "Deep Retina," which is 

equipped with a portable ophthalmoscope. It is a telemedicine system that can be used 

in real life, and it has applications in self-diagnosis, remote medical treatment, and care 

at home. 

The gradient boosting decision tree (GBDT) with EIMO device data predicted 

blood pressure rates by B Zhang et al. [87] (2019). EIMO hardware collects 
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electrocardiogram (ECG) and photoplethysmogram (PPG) signals. Without overfitting, 

cross-validation selects the optimal settings. GBDT's systolic and diastolic blood 

pressure predictions are above 70% and 64% accurate, respectively, with a prediction 

time of less than 0.1 s. 

Lateef HA et al. [88] (2019) investigated three alternative classification 

algorithms using an open-access EEG dataset consisting of pre-identified records of 

500 patients: SVM, Logistic Regression, and Long Short-Term Memory (LSTM). 

Models were adjusted with pre-existing Python library code and the orange data mining 

program. 

Pravin A. et al. [89] (2019) suggested a smart and secure healthcare architecture 

based on fog computing to anticipate and prevent Dengue virus outbreaks. 

A novel EoT computing platform for safe and intelligent healthcare monitoring 

services is presented by Alabdulatif et al. [90] (2019). Data saved and processed within 

an IoT framework encrypted with fully homomorphic encryption will remain private. 

Our framework significantly improves the speed with which encrypted data is 

processed without sacrificing the analytical precision or privacy of the information 

being processed. To collect and analyse the large-scale and heterogeneous data in the 

dispersed EoT devices independently before sending it to the cloud, a distributed 

strategy for clustering-based approaches is developed for the proposed EoT 

architecture. They show how the suggested framework works in practice by analysing 

a case study including bio-signal data from a patient. 

A. Kallipolitis et al. [91] (2020) detail the design and implementation of a 

telemedicine-based emotional assessment programme. They discuss the finer points of 

the suggested plot's employment and fusion, outlining the repercussions of the plot's 

pinpoint accuracy and dynamic nature. Two separate methods are employed and 

compared. To identify seven distinct assumptions about human looks, the principal 

technique takes advantage of the fast and stable qualities of the accelerated robust 

highlights computation. The implementation of the latter requires convolutional neural 
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networks. During routine video chat sessions between authorised clinical staff and 

patients, the complete usefulness is provided as a Web administration to the medical 

care stage. 

Innovative engineering (SENET) [92] (2020) based on artificial intelligence 

techniques and consisting of three main layers is anticipated to be presented. Following 

detailing the proposed architecture, they investigate the presentation of four effective 

and well-known calculations for protecting WBSNs with k head bunches: severe world 

difficulties (WCC), molecular swarm enhancement (PSO), insect province 

advancement (ACO), and genetic estimate (GA) (the k-inclusion issue). Results 

demonstrate that the suggested design reduces power consumption by distant sensors. 

The WCC computation is a good option for determining sensor placement in the 

proposed engineering concerning WSN power consumption, the total number of 

sensors needed, and consistent quality. Results demonstrate that the suggested WCC 

computation, with an average score estimation of 38.44 across 9 cases, is superior to 

alternatives. 

Fog computing, powered by the IoT, is being developed in the healthcare sector 

to streamline administrative processes for the general public, which might ultimately 

save the lives of billions of people. The method is geared toward making mathematical 

operations more convenient to data repositories in healthcare facilities [93] (2020). One 

area of focus is finding ways to send data to the cloud more cheaply.  

The proposed blockchain-based solution [94] (2020) has the potential to 

revolutionise healthcare management. To eliminate the need for a centralised 

administrator, they suggest a setup in which Ethereum keen agreements are used to 

construct a simple, sealed telemedicine medical services framework and to guarantee 

the integrity of sensitive patient information. The patient is kept thoroughly apprised of 

all transactions in the organisation, and the communication between all the groups 

affiliated with the organisation is directed by the sharp agreement. 
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Fog computing, IoT, and AI are all used in a new framework presented in [95] 

(2020) to provide superior and more intelligent insight into medical services. The 

implementation of Blockchain technology ensures the building's safety. The suggested 

approach makes primary ICU patient surveillance more efficient and safer. The design 

is functional for anybody in the ICU, from patients to doctors to chaperones. In this 

scenario, IoT devices continuously monitor patients' vitals and transmit that data to fog 

nodes for processing. Several AI processes are run in the fog's nodes to determine if the 

perceiving patient needs immediate attention. 

A solution was provided for integrating electroencephalography [96] (2020) 

based on AI components into the eHealth IoT framework using the TensorFlow open-

source platform. Certain physiological data, such as systolic and diastolic blood 

pressure, blood oxygen saturation, heart rate, breathing force and rate, skin conductance 

and opposition, internal heat level, and electroencephalography (EEG) from different 

anodes, are recorded using this framework. Our major focus is developing an EEG-

controlled device that can decode eye movement as part of our ongoing research on 

mind-computer interfaces. 

Using statistical and machine learning strategies [97] (2020) within a mobile 

app to categorise ADLs is also possible. Because of the increased need for continuous, 

non-invasive monitoring during the current COVID-19 epidemic, MyNeuroHealth was 

developed, considering the disproportionate prevalence of neurological diseases in 

developing countries. The outcomes demonstrate that MyNeuroHealth can recognise 

and classify Motor Seizures and falls with 99% accuracy. The software can also tell 

whether a patient has fallen or staggered for whatever reason and informs carers 

accordingly. 

A broad overview of helpful technologies and frameworks provided [98] (2020) 

for addressing the COVID-19 crisis in various contexts. The main focus is specifically 

on 1) wearable devices suitable for checking the at-risk and isolated populations, both 

for assessing the health status of guardians and the board workforce and for encouraging 

emergency measures for admission to emergency clinics, and 2) covert detecting 
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frameworks for recognising the infection and for observing patients with moderately 

mild manifestations whose clinical circumstance could out of the blue deteriorate. 

Finally, new challenges and opportunities for future directions are highlighted. 

A continuous home telemonitoring framework was presented [99] (2020) for 

chronic respiratory patients utilising a Vodafone-developed 5G network as part of the 

Italian Ministry of Economic Development's 5G Experiment in Milan. The user wears 

a respiratory and activity screen, a natural sensor, and a heartbeat oximeter that sends 

data to a Vodafone 5G foundation Multi-Edge Computing worker. Data about activities, 

respiration, and the surroundings is continually relayed and gathered. Eighteen healthy 

subjects were examined for 48 hours in unmonitored accounts. 

A novel system was developed [100] (2020), facilitating information's seamless 

transmission and display across various complex frameworks. The system 

demonstrated successful data transmission and reception over distances of 300 km, with 

an approximate delay of one second. Additionally, the study monitored the system's 

processing power, memory usage, and data preparation time as the user count increased. 

Each client typically transmitted 810 bytes of data, encompassing client ID, timestamp, 

channel data, breathing rate, and sleep status. With a capacity of ten concurrent users, 

the study recorded an average data preparation time of 0.15 seconds, an average CPU 

utilization of 5.01%, and an average memory utilization of 0.1%. These findings 

highlight the need for careful management when considering the future applications of 

this groundbreaking technology in terms of individual, public, and therapeutic use. 

The AIR CARDIO project evaluates [101] (2020) the efficacy, efficiency, and 

practicality of a home telemonitoring system for congenital heart disease children. 

Biomedical sensors send ECG, pulse rate, core body temperature, weight, and oxygen 

saturation to a central location. The centre's attention remains aligned with e-health 

care, allowing doctors greater freedom in determining a patient's limits. Via the app, 

parents and guardians are also given a few questionnaires to complete to gauge their 

level of satisfaction with the system as a whole. The Monasterio Foundation for 

Pediatric and Adult Congenital Cardiology at the University of the Caribbean enrols 45 
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individuals annually for the clinical trial. The fundamental results include the selected 

kid-friendly sensors and the incredibly user-friendly smart central point technology. 

The HEREiAM platform supports many data innovation frameworks [102] 

(2020) developed the technical considerations and user experience evaluation of the 

platform's telephonic verification features. The newest medical services guidelines and 

security standards are met by a private cloud that receives data in the form of XML files 

from off-the-shelf Bluetooth clinical devices and uses them to create an interoperable 

health administration framework. This Android-based framework integrates many 

utilities to aid the elderly who live alone and is designed to be accessible via TV and 

small devices. 

A stable COVID-19 observational framework is proposed by M. Otoom et al. 

[103] (2020). The system has five main components: the Quarantine/Isolation Center, 

the Data Analysis Center, the Health Doctors, the Cloud Infrastructure, and the Center 

for Collecting and Downloading Data on Symptoms. The proposed framework would 

utilise an IoT system to collect real-time indication data from clients to early distinguish 

suspected COVID cases, monitor the treatment response of the individuals who have 

just recovered from the infection and comprehend the concept of the infection by 

gathering and analysing important data. After selecting the most important symptoms, 

a test was designed to evaluate these eight formulas using real-world COVID-19 

adverse events data. 

Once restrictions on staying at home are eased, [104] (2020) proposed a 

consumer hardware solution to promote safe and stable entry points. EasyBand, an 

IoMT-enabled wearable, is familiar with reducing the emergence of new sure instances 

by automatic contact following and facilitating fundamental social removal. 

S. Vishnu et al. [105] (2020) edition analyses and diagrams IoMT-based remote 

monitoring frameworks, including ingestible sensors, smart clinics, portable healthcare, 

and better continuous illness treatment approaches. Security concerns limit buyers' 

IoMT use. 
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The focus and QRS band have been eliminated thanks to cutting-edge 

technology. Human bio-impedance signals are filtered out using texture cathodes [106] 

(2020), and human breathing indicators are recognised using discrete. A reflection-type 

photoelectric sensor is used to decipher the impact of the human heartbeat signal, and 

ECG (Electrocardiogram) data is combined with a constant assessment of the sleeve-

free circulatory strain based on the beat wave conduction time. The smart blood oxygen 

immersion computation will have a self-learning limit calculation based on close 

infrared image plethysmography signal box discovery. 

Sundaravadivel P. et al. [107] (2020) suggested a privacy-protected framework 

to track a traveller's medical care. iMED-Tour, the tour wearable created as part of the 

study, alerts the user to seek a hospital service in an emergency and offers 

recommendations for the user's chosen medical services. The suggested framework's 

response time and capacity to locate the quickest route were assessed. CupCarbon's 

implementation of the shortest route method took 10 seconds, whereas the iMED-Tour 

wearable's delay was milliseconds. 

Using a look-up table, O. I. Khalaf et al. [108] (2020) investigated the SE and 

EE concerns in 5G networks using a fuzzy-based technique and found that a 

symmetrical trade-off between the two was optimal for improving system performance. 

The simulation is performed in NS-2.31 and then analysed and displayed the data in 

MATLAB. The suggested model obtained maximum values of EE and SE of 0.92 

bit/J/Hz and offered a QoS-provisioned cognitive radio-enabled 5G network. 

Data dependability may be confirmed by a three-tiered decision-making process 

proposed by Tao H. et al. [109] (2020). Using simulations for 1-DM, 2-DM, and 3-DM, 

they assess system efficacy and demonstrate that up to 92% of data dependability 

problems may be uncovered across all three levels. Notwithstanding extensive research 

on security and privacy procedures, the system would be the first framework to address 

data dependability specifically. 
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A. Duggento et al. [110] (2020) demonstrated that a machine learning-based 

cardiac classification tool may be employed as a diagnostic and screening tool in 

various situations, including telemedicine, by reaching an area under the ROC curve of 

0.77. 

Bahaa Mostafa et al. [111] (2020) presented an IoMT-based healthcare 

monitoring system that would be assessed by AI utilising fuzzy logic. The proposed 

effort relied on an ATmega microcontroller to carry out its functions and provide a 

platform for monitoring analytics (decisions) to be made by carers or doctors. In this 

article, we select a heart rate pulse sensor and an infrared temperature sensor that report 

skin temperature and ambient temperature to the carer.  

Ahmed Kassem et al. [112] (2020) designed a low-cost, high-quality 

multipurpose wearable revolutionary system for cardiac patients and fitness athletes. 

The proposed fuzzy logic system architecture successfully identifies the physical 

mobility mode, and the IoT dashboard remotely monitors test participants' health states 

in real time. 

Kashif Hameed et al. present an innovative and intelligent healthcare system 

powered by cutting-edge technologies like the IoT and ML.[113] (2020). A medical 

decision support system can benefit from this system's sensing and processing 

capabilities. This technique offers an inexpensive option for those living in far-flung 

places, allowing them to determine whether or not they are experiencing a severe health 

problem and, if so, to seek treatment at local hospitals. The experimental outcomes also 

demonstrate that the suggested system is effective and smart enough to perform medical 

services. The findings in this research provide empirical support for the hypothesis. 

To facilitate effortless communication between the BCI and IoT gadgets, O. P. 

Idowu et al.[114] (2020) presented an enhanced Particle Swarm Optimization (PSO)-

based neural network (NN). To conduct the trials, a BCI system was built that first 

projected features extracted from the PSO into a neural network and then used the 

network to interpret the user's intentions. The experimental findings showed that the 
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suggested PSO-based NN approach could effectively categorise motor imagery (MI) 

tasks with a 98.9% accuracy. Several suggestions on how the work may be improved 

were also made. 

T. Malapane et al. [115] (2020) revealed the system's design, its implementation, 

and preliminary testing with result analysis. The sensing and networking parts of the 

system's infrastructure are outlined. The experimental results of testing the intelligent 

algorithm based on fuzzy logic for spotting out-of-the-ordinary situations are provided. 

To monitor thousands of older people, identify falls, and alert caretakers, 

Dariusz Mrozek et al. [116] (2020) demonstrated a scalable system architecture. 

Scalability tests were also run, considering the need for full transparency to make large-

scale system operations possible. In addition, they tested several Machine Learning 

models for their detection efficiency and verified the best ones. The classification 

performance of the tested models was best with Boosted Decisions Trees. They also 

conducted experiments to ensure that fall detection worked both in the Cloud and on an 

Edge IoT device. Tests of data transfer from the device to the cloud indicated that 

executing fall detection on the Edge reduced the size of stored and communicated data. 

ML Rahman et al. [117] (2020) presented a machine-learning illness symptom 

analysis approach to aid patients in finding the right medical speciality based on the 

symptoms they can quickly identify. The suggested framework would employ a 

machine learning method to choose which medical speciality to refer the patient to after 

considering their unique set of symptoms. They use nine distinct supervised machine-

learning methods to probe the proposed architecture. The framework's effectiveness in 

determining the correct medical divisions using machine learning approaches is 

investigated and contrasted. This framework has applications in both automated 

healthcare administration and telemedicine platforms. Perhaps this might pave the way 

for significant progress in the healthcare industry. 
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Automatic seizure identification employing DL methods and neuroimaging 

modalities was the subject of a detailed review by Shoeibi et al. [118] (2020). Methods 

are reported that use EEG and MRI to diagnose epileptic seizures automatically.  

Seizure identification using electrical activity features in the brain is the subject 

of research by M. Savadkoohi et al. [119] (2020). Neurophysiologists will find 

rewarding careers in the rapid and precise diagnosis of epileptic seizures. They 

investigated the most effective method for identifying significant patterns in epileptic 

EEGs. The signals utilised in this study are 173.61 Hz sampled chunks of 23.6 s taken 

from 100 single-channel surface EEG recordings. Five normal volunteers with eyes 

closed and open and five epilepsy patients with seizure-free periods and epileptic 

episodes provided the signals. The EEG waves were analysed, and their features were 

extracted using a Butterworth filter, Fourier Transform, and Wavelet Transform in the 

frequency, time and time-frequency domains, respectively, for feature engineering 

(SFFS). We used the SVM and KNN learning algorithms to identify the processed EEG 

data. Three metrics—Accuracy, Sensitivity, and Specificity—were used to evaluate 

performance. After experimentation, SVM performed somewhat better than KNN. 

A unique heterogeneous deep ensemble-based multi-feature learning 

environment for epilepsy classification is proposed [120] (2020). The suggested model 

addresses data imbalance, low precision, and the necessity of a trustworthy 

classification model. To do so, they sample data with a 95% confidence interval and 

employ a multi-level augmenting strategy to deal with the issue of class imbalance. 

Random sampling, down-sampling, and synthetic minority over-sampling are only a 

few examples of the many methods used to collect samples (SMOTE). 

The Bonn University database was used in the assessment of the system by 

Khati R.M. et al. [121] (2020). In pattern recognition challenges, choosing the right 

features to analyse is crucial. They utilised a wrapper approach based on recursive 

feature elimination to narrow down the most valuable features. In this research, they 

tested seven different machine learning algorithms on data derived from human brain 

activity (EEG). 
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The suggested architecture presented [122] (2020) ensures privacy and granular 

access control using a highly efficient key exchange protocol and ciphertext attribute-

based encryption (CP-ABE). Together, CP-ABE and digital signatures safeguard the 

system's integrity and its users' privacy. The suggested framework's safety and 

efficiency were also evaluated. 

A safe and fog-assisted architecture addressed security, access control, and 

privacy issues in PHR systems [123] (2020). The proposed framework is built on a fog-

based architecture and employs ciphertext attribute-based encryption (CP-ABE) and an 

efficient key exchange protocol to ensure privacy and granular control over who may 

access what. To further protect the integrity of the system and the privacy of its users, 

CP-ABE is employed in conjunction with a digital signature. The safety and efficiency 

of the suggested architecture were examined. 

EHR systems' security and privacy features are the exclusive topic of a 

comprehensive literature evaluation conducted [124] (2020). Before delving into the 

possible uses of blockchain in EHR systems, they provide a brief overview of the 

foundational knowledge between electronic health record (EHR) systems and 

blockchain. Several research possibilities and obstacles are also highlighted. 

The use of machine learning methods for large-scale data analysis in healthcare 

was recently reviewed in depth by Wei Li et al. [125] (2021). In addition, the benefits 

and drawbacks of current methods and the many obstacles still standing in the way of 

further study are emphasised. This research will aid healthcare professionals and 

government agencies stay abreast of the newest relevant data analytics developments 

based on machine learning for intelligent healthcare. 

Machine learning-based healthcare systems are first categorised [126] (2021). 

Pre-processing data methods, learning methods, evaluation methods, and applications 

are the main pillars of the proposed taxonomy for ML-based schemes in healthcare 

diagnosis treatment. Certain papers published in machine learning's healthcare 

applications are reviewed in light of the suggested categorization. Researchers may use 
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the information in this paper to get up to speed on the most recent findings about ML's 

medical applications, understand the obstacles they face, and plan for future studies. 

M. Jayalakshmi et al. [127] (2021) offer an all-encompassing approach to 

tracking the physical and mental health of COVID-19 patients. It makes it easier to 

provide better medical treatment, especially to those who have been isolated due to the 

COVID-19 outbreak. A fuzzy context-aware reasoning engine-based model uses the 

patient's present context and behaviours to determine their physical and mental state. 

Patient condition detection is aided by a fuzzy reasoning engine using language rules 

based on inference processes. The fuzzy set properties of various context types are used 

to frame linguistic rules. The reasoning engine guarantees accurate real-time context 

interpretation and current assessment using fuzzy semantic rules to detect the link 

between the qualities. The results of a simulated experiment are evaluated with the help 

of a context reasoning system based on fuzzy logic. The findings support continuing to 

track COVID-19 patients in their present settings. 

Ihsan Ullah et al. [128] (2021) proposed a data fusion method using type-2 fuzzy 

logic (T2FL) and Dempster-Shafer theory to extract particular data and get the proper 

conclusion quickly. Type-2 fuzzy logic properly determines patient data membership 

values, and the DST appropriately fuses and processes the membership values to 

conclude. Computer simulations with heart disease and diabetes datasets reveal that the 

proposed strategy outperforms ontology and type-1 fuzzy logic systems in precision. 

To address patients' demands while guaranteeing quick storage decisions even 

when data flows from wearable devices, Vinodhini Mani et al. [129] (2022) created a 

novel predictive model of health data storage.The machine learning classifier was built 

using a training set constructed from a subset of experts showing strong correlations 

between health data and storage characteristics. The outcomes validate the machine 

learning approach. 

H. Harb et al. [130] (2022) suggested an effective sensor-based data analytics 

paradigm for real-time patient monitoring and assessment. The proposed system 
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involves emergency detection, frequency modification, and real-time patient prediction. 

Our methodology outperforms other methods in simulations using real health data. 

Using a novel paradigm, Raj Jennifer S. et al.[131] (2021) recommended 

boosting edge cooperative network performance. This improves peripheral computing. 

This initial step establishes partnership evaluation criteria. Maximising edge 

cooperation improves job performance. Real datasets from older adults's wearable 

sensors indicate the system's efficacy. Thorough experimentation supports the 

recommended optimisation technique. 

J Hariharakrishnan et al.[132] (2021) extensively examines 6LoWPAN and RPL 

IoT in healthcare contexts. This research tracks athletes' body temperatures. Marathon 

runners can also develop race-topographic abilities differently. Athletes get sensors 

implanted to monitor their core body temperature during training. After analysing each 

athlete's thermoregulation process, tailored training regimens are created to 

accommodate variances. This strategy provides more customised progress tracking 

with fewer coaches and medical professionals, preventing premature deaths of healthy 

athletes. 

AI for COVID-19 diagnosis and therapy was restricted by Samer Ellahham et 

al. [133] (2021). Deep Learning might automate COVID-19 diagnosis with powerful 

algorithms for finding subtle patterns in patient radiographs. Biomarker analysis and 

machine learning aid prognosis and therapeutic planning. Deep neural network-based 

pneumonia diagnosis has a sensitivity of 85.35% and a specificity of 92.1%, 

outperforming RT-PCR. 

To remedy the deficiency in healthcare, Annamalai. M. et al. [134] (2021) 

presented a project to create a prototype pillbox. In addition to the medication, the 

hospital or retirement home may also supply this gadget, which has several high-tech 

functions. The majority of over-the-counter drugs, vitamin supplements, and stimulants 

should be compatible with this pack. The proposed smart pillbox has a programme that 
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lets medical staff or patients customise the pillbox's settings, including the pill size, the 

time of day pills are taken, and the frequency with which the pillbox is refilled. 

The IoT-based healthcare platform presented by G. Aquino et al. [135] (2021) 

to remotely monitor patients in critical conditions. Consequently, the aim is to develop 

the platform further by adding wearable and unobtrusive sensors to track the health of 

people who have contracted the coronavirus. They also detail the actual implementation 

of the method in a Brazilian critical care facility catering to patients with COVID-19. 

Under the context of a telemedicine platform catering to the MENA area, H. 

Faris et al. [136] (2021) offered an intelligent diagnosis decision support system. The 

suggested solution uses the Altibbi company's massive health-related dataset, which 

contains various unstructured patient inquiries written in various Arabic dialects and 

organised symptoms reported by primary care physicians (GPs). The system 

incorporates a combination of machine learning models educated from two 

perspectives: the patient's symptoms and their medical inquiries. 

Analysis of blood pressure, heart rate, and kidney function was proposed by 

Thilagavathy A. et al. [137] (2021). Glomerular Filtration Rate compares blood-stress 

levels to kidney characteristics (GFR). In theory, they suggest using a fuzzy logic 

system to represent the parameters; this system can also reason the risk to human health 

and conduct evaluations using rule-based criteria. 

Patient satisfaction with telemedicine adoption in rural public hospitals in 

Bangladesh was studied by K M. Zobair et al. [138] (2021), who used the Expectation 

Disconfirmation Theory expanded by Social Cognitive Theory in their research. This 

study improves upon previous efforts by developing a theory-based prediction model 

for estimating patient satisfaction using telemedicine. A study model examines the role 

that patients' expectations, performance, disconfirmation, and enjoyment play in 

predicting their happiness with the use of telemedicine in Bangladesh. Both structural 

equation modelling and artificial neural network techniques are used in a two-stage 

validation process to ensure the accuracy of this model. 
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A novel crossover matching between machine learning techniques and the 

taxonomy of telemedicine was presented by Salman OH et al. [139] in 2021. The 

crossover taxonomy is created in the research to identify the connection between the 

machine learning algorithm and the comparable telemedicine classifications. The 

application of ML is most noticeable in the proposal of a hybrid 

synchronous/asynchronous telemedicine architecture. 

The ECG intelligent health monitoring systems based on the IoT with machine 

and deep learning techniques are reviewed by J. N. Saeed et al. [140] (2021). To assist 

researchers in pushing the state of the art forward in future studies, the study also 

suggested avenues for investigation and new issues to tackle. 

Recent advancements in medical imaging, medical video, and clinical 

deployment, enabled by contemporary computer vision algorithms driven by deep 

learning, are reviewed by Esteva et al. [141] (2021). They begin by providing a high-

level overview of the last ten years of development in convolutional neural networks 

and the visual tasks they make possible in healthcare. Secondly, they outline several 

specific fields of medicine that might benefit from this type of imaging technology, 

such as cardiology, pathology, dermatology, and ophthalmology, and suggest future 

research directions. They go on to more broad areas of medical video, focusing on how 

incorporating computer vision into clinical operations might improve patient care. 

Lastly, they cover the difficulties inherent in using these technologies in clinical 

settings. 

Mahboob Alam et al. [142] (2021) demonstrated how the Internet of Things 

(IoT) and fuzzy inference systems (FIS) can intelligently diagnose diseases. Fuzzy logic 

is the best way to handle ambiguity, making the Fuzzy System a potential medical 

diagnosing tool. They use sickness symptoms to identify new cases. Symptom-based 

diagnosis might be time-sensitive. IoT and FIS enable the proposed system to monitor 

symptoms and diagnose ailments. The diagnosed condition's severity was determined 

using many parameters. This study contrasts COVID-19, Typhoid, Malaria, and 

Pneumonia. This study used FIS to diagnose the illness by matching symptoms to data. 
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MATLAB runs the FIS. Due to the imprecise manner, symptoms might suggest 

affectionate sickness. Our investigation revealed that FIS could diagnose more diseases. 

MT Qasim et al. [143] (2021) presented a Smart Healthcare Management 

Evaluation using a Fuzzy Decision-Making strategy to assess technology integration. 

This study evaluates the privacy protection an intelligent healthcare management 

system offers for patient information. This neural network predicts healthcare using 

fuzzy logic. The experiment measures fuzzy result precision, reliability, and mistake 

rate. 

TrueImage is an automated picture evaluation machine learning pipeline 

proposed by K. Vodrahalli et al.[144] (2021) to identify low-quality dermatological 

images and assist patients in improving their photography skills. Notwithstanding the 

training data's variety and restrictions, our trials show that TrueImage can reject 50% 

of patients' low-quality photographs while preserving 80% of the high-quality images. 

These encouraging outcomes point to the viability of our technology and its potential 

to enhance teledermatology care. 

Applications in automated seizure identification, prediction, and direction are 

highlighted in a study by Y Si et al. [145] (2021) that analyses several ML methods for 

electroencephalograph (EEG) signal procession in epilepsy research. The benefits, 

difficulties, and potential developments of ML approaches for EEG data processing in 

epilepsy are discussed in the present paper. 

In order to categorise EEG data from epileptic patients, OK Cura et al. [146] 

(2020) employed a high-resolution time-frequency (TF) representation termed 

Synchrosqueezed Transform (SST). Seizure and baseline EEG data from 16 patients 

with epilepsy are used to generate SST matrices. The classification of seizure and pre-

seizure signals is proposed using two methods based on ML and DL. The SST matrix 

was captured as a picture and then classified using a CNN-based architecture in the DL-

based method. The results of the simulations show that both methods have reasonable 

validation accuracy rates. For the machine learning-based technique, they get a 
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validation accuracy of 90.2%; for the deep learning-based procedure, they get a 

validation accuracy of 90.3 percent%. 

MA Ozdemir et al. [147] (2021) suggested a unique technique for seizure 

detection and prediction using a high-resolution TF representation called the Fourier-

based SST and a CNN. SST's TF plane signal component reassignment allows very 

localised TF energy distributions. SST accurately represents epileptic energy discharges 

on the TF plane. They evaluate the SST-based CNN technique using the publicly 

accessible CHB-MIT and proprietary IKCU datasets. Experimental results reveal high 

average segment-based seizure detection precision and accuracy across both datasets 

using the recommended technique. 

SM Usman et al. [148] (2021) offered a successful preprocessing and feature 

extraction method. Their method increases the true positive rate and predicts epileptic 

episodes in advance. Pre-processed time and frequency domain data from empirical 

mode decomposition (EMD) was utilised to train a prediction model. The proposed 

model detects the preictal state. 

The existing research on fog computing applications is surveyed by S Khan et 

al. [149] (2021) to uncover prevalent security holes. Including related technologies such 

as Edge computing, Cloudlets, and Micro-data centres provides a comprehensive look 

into the field. Functionality and user needs drive most Fog applications, while security 

is generally overlooked or treated as an afterthought. As a result of this paper's analysis, 

individuals responsible for building, developing, and maintaining Fog systems will 

better understand the future approaches that need to be taken to ensure the system's 

security. 

Shi S. et al. [150] (2021), emphasising privacy and security, conducted a 

thorough literature evaluation of blockchain techniques for EHR systems. Before 

delving into the possible uses of blockchain in EHR systems,they provided a brief 

overview of the foundational knowledge between electronic health record (EHR) 

systems and blockchain. They also highlight several potential avenues for future study. 
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Using an anchor node, G. S. Walia et al. [151] (2022) found unknown nodes in 

3D space. In this simulation, the middle and lower levels have moving nodes, but the 

top layer has a single anchor node. The Adaptive Plant Propagation Algorithm (APPA) 

is a new soft computing approach for locating these mobile nodes. The moving target 

nodes are heterogeneous and in an anisotropic environment with an irregularity of 0.01. 

Simulations show that APPA outperforms meta-heuristic optimisation techniques in 

localization error, computation time, and discovered sensor nodes. 

In order to improve the accuracy, precision, training, and testing data 

capabilities of healthcare-related apps and frameworks, Sonali Vyas et al. [152] (2022) 

evaluate several works that use fuzzy logic systems and algorithms. Future studies 

should focus on increasing the reasoning component's flexibility by integrating new 

features into the existing cloud infrastructure and testing new machine-learning 

approaches. 

Verma et al. [153] (2022) developed a cloud-based, IoT-based predictive 

technique for illness forecasting using data collected from biosensors to assess patient 

limitations. In addition to the regression method, they introduced a novel classifier 

called Generalized Fuzzy Intelligence-based Ant Lion Optimization (GFIbALO) for 

precise illness prediction. Before employing the proposed GFIbALO method for illness 

classification, the dataset undergoes filtering and feature extraction, following the 

regression rule for data processing. Assume further that some sickness has afflicted the 

patient; in this instance, the patient will be notified of the warning signal through SMS 

or other means. At this point, the patient can consult with physicians or seek other 

medical assistance. The MATLAB program is used to actualize the suggested 

GFIbALO classifier. The benefits of the suggested method in illness diagnosis and 

prognosis are then compared to those of the state-of-the-art procedures. 

The purpose of the work by Shamsah Alotaibi et al. [154] (2022) is to provide 

a comprehensive overview of the methods used to identify seizures in children with 

epilepsy, with a focus on machine learning approaches and methods tested on the CHB-

MIT scalp EEG database of epileptic paediatric signals. 
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HO Lekshmy et al. [155] (2022) need the ideal model to develop an ensemble 

model with improved learning capabilities. Classical machine learning methods like 

Logistic regression and the Naive Bayes model and deep learning methods like ANN, 

CNN, LSTM, and Autoencoders must be modelled and simulated. LSTM and Random 

Forest had the best sensitivity and specificity in this examination. 

The suggested approach by P. Rajendran et al. [156] (2022) uses machine 

learning techniques to identify the onset of a seizure. The EEG records brain activity 

and can be used to diagnose seizures. KNN, ANN, SVM, and principal component 

analysis (PCA) are four machine learning classifiers that will be compared in this study 

for their respective levels of accuracy. 

The classification accuracy of 99% was achieved by R M Khati et al. [157] 

(2022), a substantial improvement over the previous technique. Logistic regression with 

Adaboost had the best classification performance across ten cross-validation folds at 

99% accuracy. Naive Bayes and Random Forest yielded an Area under the ROC curve 

of 1 for different reasons. The naive Bayes classifier yielded a perfect 100% sensitivity. 

For epilepsy detection, a convolutional neural network is used in conjunction with deep 

learning classification applied to EEG inputs. In addition, great classification accuracy 

may be accomplished with only a single-channel EEG, a new aspect of this method. 

Accuracy levels of 90% or more have been demonstrated numerically using a 

conventional test data set. 

M H Aslam et al. [158] (2022) suggested a three-stage procedure framework. A 

PREP pipeline, a more complex replacement for simple notch filtering, is used to 

preprocess scalp EEG data. The SNR is improved using a regression-based technique, 

with both manually-created and automatically-created features used to predict seizures. 

Finally, interictal and preictal state segments are classified using LSTM. The proposed 

method achieves an accuracy of 94%, a specificity of 91.2% and a sensitivity of 93.8%. 

The suggested method outperforms the state-of-the-art approaches in terms of 

sensitivity and specificity. 
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X Cao et al. [159] (2022) proposed a domain-invariant deep feature 

representation strategy using adversarial learning to enable deep hybrid networks 

(HDN) to identify seizure types properly. The fine-tuned classifier determines the 

seizure cause. The experiments employed the CHB-MIT seizure database and TUH 

EEG Seizure Corpus. The domain adaptive deep feature representation improved deep 

hybrid model classification accuracy by 5% on the target set. It affects clinical EEG 

analysis using automated technologies. 

The suggested approach by A. Pravin et al. [160] (2022) will be useful in 

identifying dengue patients early when therapy is more likely to be successful. The 

participants will be sorted into categories according to their symptoms, and an alarm 

will immediately be issued to their phones. The approach will aid physicians in 

determining the disease's impact through careful analysis of the results and prompt 

action within a constrained time frame. 

An Internet of Things-based solution proposes [161] (2023) for home clinical 

settings to do remote monitoring and early identification of health concerns. The device 

can identify five types of heart rates. 

We create an intelligent IoMT-based architecture for an E-healthcare patient 

monitoring system that employs AI algorithms [162] (2023). The Hybrid ResNet 18 

and GoogleNet classifier (HRGC) predict abnormal/normal data. The next step is to 

decide whether to send a warning to hospitals and other medical facilities. 

Smart healthcare delivery uses telemedicine, as described [163] (2023). This 

system also makes use of cutting-edge mobile technology. Artificial intelligence, 

machine learning, 5G and IoT platforms, and other supporting technologies have roles 

in the evolution of linked smart healthcare. It also highlights the difficulties and threats 

associated with providing such high-tech treatment to patients.  

There was a presentation of a functioning prototype of a smart healthcare system 

[164] (2023) that would leverage the Internet of Things to provide high-quality 

healthcare available to everyone. They combined the ESP8266 microcontroller and the 
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ThingSpeak cloud with a remote temperature sensor during the development of this 

device. 

2.2 Research Gap of Literature Review 

Several studies have been carried out regarding telemedicine, fog which is discussed in 

Table 2.1 

Table 2.1 Research Gap of Existing Work 

Ref Authors Research Gaps 

[91] Kallipolitis, A. et al. (2020) The technology is still in beta, and its 

accuracy is affected by lighting and where 

you place it. 

[92] Bulaghi, Zohre et al. (2020) No thought is given to safety or energy 

efficiency. 

[93] Mani et al. (2020) Inadequate safety 

[94] A. Abugabah et al. (2020) Blockchain scalability becomes an 

important consideration, with a million 

healthcare transactions occurring every 

minute. 

[95] A. Banerjee et al. (2020) The framework's flaw lies in its 

assumption that every patient receives 

care from a doctor or nurse, which is 

seldom the reality. Additionally, as the 

framework's development reaches its final 

stages, it becomes essential to conduct 

validation studies to test the hypothesis it 

relies on 

[96] I. A. Pap et al. (2020) There is no thought to collecting data on 

various diseases, habits, or other 
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physiological features because it would 

not create a superior learning set. 

[97] Zia et al. (2020) There are no plans to create distinct 

application bundles for novice and 

advanced users or to incorporate other 

sensors, such as heart rate, 

electroencephalogram (EEG), or skin 

conductance, into the decision-making 

process. 

[98] J. M. Alvarez Q. et al. (2019) Fuzzy Logic control methods have the 

drawback of being dependent on human 

experience and knowledge. 

[50] O. S. Albahri et al. (2019) Ensuring the organization receives 

commercial and medical services, timely 

support to medical personnel, and 

delivering modern quality of life to indoor 

and outdoor patients are crucial. 

[99] A. Angelucci et al. (2020) We need a better data acquisition system. 

[51] M. S. Ashapkina et al. (2019) It is important to look for a range of 

motions. 

[52] M. N. Ashmawy et al. (2019) powered by remote servers 

[53] Bilotta et al. (2019) There is no explanation of how adding 

wearable sensors would enhance the 

system. 

[54] T. Buldakova et al. (2019) Emphasizing safety rather than electricity 

and data transfer rates 

[100] A. Choi et al. (2020) Users' physiological state must be tracked 

using a computer, smartphone, or other 
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internet-connected personal device 

regardless of location or time. 

[55] Arun & Rad et al. (2018) Since computing is expensive to 

implement, 

[101] M. Donati et al. (2020) A system for intermediate-level analytics 

has to be implemented. 

[56] Y. Fan et al. (2019) Selecting patients from various 

departments, categorizing vital signs for 

hierarchy analysis, measuring and 

evaluating WMD performance on an 

ongoing basis, and incorporating more 

sophisticated early warning systems all 

contribute to a more thorough monitoring 

strategy. 

[57] D. Ganesh et al. (2019) Investigate calibration and precision. 

[59] E. Kaimakamis et al. (2019) More work is needed on signal 

enhancement, integrated sensor 

miniaturization, and developing detection 

and DSS algorithms. 

[61] X. Li et al. (2019) There is no study of latency or power use. 

[62] J. Liau et al. (2019) Analysis of the sensor's accuracy is 

required. 

[46] W. Liu et al. (2018) Patients need to be transferred to inter-

service events as focal points, which may 

not happen if a provider is exclusively 

concerned with the patentability of its own 

devices. 

[63] Lopez et al. (2019) Wearable sensors present significant 

challenges based on the prototype. 
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[64] P. K. Maganti et al. (2019) No attention is paid to the cloud's accuracy 

with respective parameters. 

[103] Mwaffaq & Otoum et al. 

(2020) 

It is important to investigate several facets 

of illnesses. 

[40] D. Wu et al. (2016) No thought is given to safety. 

[66] Md. Shahiduzzaman et al. 

(2019) 

Not put through any real-world testing. 

[67] T. J. Swamy et al. (2019) There is a lack of doctor-patient 

communication. 

[68] I. Wijesinghe et al. (2019) Further work on image processing is 

required to boost the system's precision. 

[87] K. Zhang et al. (2020) There is no investigation into efficient 

methods of storage and coordination. 

[69] X. Zhao et al. (2019) There is a need to enhance the system's 

categorization accuracy for foetal 

movement signals. 

2.3 Technology Comparative of Existing Work 

Telemedicine systems are utilized for remote audio and video consultations, offering a 

cost-effective alternative to repeated hospital visits. Despite its value, telemedicine can 

pose affordability challenges for smaller healthcare facilities. To address this issue, 

introducing intelligent expertise systems at the intermediate fog layer can reduce costs 

and enhance reliability. Data quality remains a concern in healthcare-related projects. 

Given the global reach of IoT, leveraging IoT technology and interconnected healthcare 

data, along with Fog Computing services, can help alleviate the complexity of Big Data. 

The research inquiries have been developed through extensive literature surveys to 

incorporate new healthcare science technologies. 
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• How do IoT-driven healthcare systems ensure the safety and security of their 

operations? 

• What is the necessity and functioning of a framework in healthcare? 

• How does Fog Computing navigate the complexities associated with 

multidimensional ailments? 

Table 2.2 Comparison of existing literature review over technology used 

Ref 

Parameters/ 

Sensors 

Used 

Objective / 

Methodology 

Intellige

nce 

System 

Layer 

Deploy

ment 

Remark Alert 

[49] blood 

pressure, 

heart rate, 

oxygen 

saturation, 

ECG, and 

temperature. 

Fog computing, 

IoT, and 

machine 

learning are all 

used in this 

framework to 

give a better and 

smarter 

healthcare 

experience. 

Yes (ML) IoT, Fog, 

and 

Cloud 

Used 

limited 

(two 

class 

classifica

tion) 

based on 

fixed 

health 

attribute 

Yes 

[50] The 

NeuroSky 

Mindwave 

EEG headset, 

air flow, 

galvanic skin 

response, 

pulse 

oximeter, and 

temperature 

an EEG-

controlled 

device that 

would 

Interpret eye 

movement. 

Yes (DL) IoT, 

Cloud Consider 

only 

EEG, 

Higher 

Computa

tion 

requirem

ent 

No 
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[51] Strip sensor A ubiquitous 

central 

monitoring 

system  

for sleep and 

respiration 

No Cloud 
Only 

used 

statistical 

calculati

on 

No 

[63] Heart rate, 

ECG, body 

weight, body 

temperature, 

oxygen 

saturation 

For children 

with cardiac 

problems, a 

home 

telemonitoring 

device is being 

developed. 

No IoT, 

Cloud Only 

used 

statistical 

calculati

on 

No 

[64] ECG, 

Temperature, 

GSR, PPG 

Sensor 

A voice-

controlled 

speech 

recognition 

system, a 

personal 

assistant 

No Bluetoot

h 
Only 

used 

regular 

rule-

based 

system 

No 

[67] respiratory 

and heart 

rate, SpO2, 

body posture, 

Lung 

Auscultation 

sounds, 

multi-lead 

ECG, and 

Electric 

COPD patients 

with substantial 

comorbidities 

can benefit from 

an innovative 

telemonitoring 

solution. 

No IoT, 

Cloud 

Only 

used 

regular 

rule-

based 

system 

Yes 
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Impedance 

Tomography 

(EIT) 

imaging 

[72] Wrist CK 

1000 digital 

sphygmoman

ometer 

E-Health 

System for 

Chronic-

Hypertensive 

Patients' Arterial 

Pressure 

Monitoring, 

Transmission, 

and Storage 

No Wifi, 

Cloud 

Only 

used 

statistical 

calculati

on 

No 

[78] wearable 

cameras, 

acceleromete

rs, gyroscope 

sensors 

Smart Helmet 

Improves Fall 

Detection for the 

Elderly 

[79] Temperature 

sensor, 

oxygen 

saturation 

(SpO2) 

sensor, Blood 

Pressure 

sensor 

eSmart is a 

human-centric 

IoT-based 

intelligent health 

monitoring and 

management 

system. 

Yes (DL) IoT Prototyp

e 

modellin

g, No 

specific 

algorith

m 

mentione

d, the 

higher 

computat

No 
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ion 

required 

[83] Respiration, 

Body 

temperature, 

pulse, blood 

oxygen 

saturation, 

blood 

pressure, and 

electrocardio

gram 

a solution for a 

wireless 

telemedicine 

health 

monitoring 

system with 

many physical 

parameters 

No Cloud Only 

used the 

regular 

rule-

based 

system 

and 

statistical 

calculati

on 

No 

[84] Acceleromete

r’s sensor 

Automatic 

monitoring of 

fetal movement. 

Yes (ML) Bluetoot

h, Cloud 

System 

efficacy 

not given 

or poor, 

Lack of 

learning 

knowled

ge 

Yes 

These knowledge gaps have led to a novel computing and networking paradigm called 

Fog. Considering these factors, we propose an IoT-Fog-based healthcare framework for 

monitoring and predicting diseases at an early stage. Additionally, the system must 

provide real-time notifications to users and doctors during emergencies. 

Figure 2.1 showcases the utilization of artificial intelligence (AI) across various aspects 

of telemedicine, specifically emphasising individual patient monitoring and diagnosis. 
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Figure 2.1 Utilization of AI in Various Areas of Telemedicine 

Integrating patient monitoring and diagnosis within the framework of an e-healthcare 

system can significantly enhance its efficiency. This integration plays a crucial role in 

optimizing the impact of this technology and calls for further exploration. 

Traditionally, cloud servers have been the primary choice for layer deployment in 

telemedicine implementations. However, it is essential to acknowledge the limitations 

associated with cloud-based solutions, including high latency, downtime, and security 

and privacy concerns. To overcome these challenges, the adoption of fog computing 

presents a promising alternative along with intelligent systems like ML DL. 
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CHAPTER 3 DEVELOPMENT OF THE INTERNET OF 

THINGS (IOT) ENABLED FOG COMPUTING 

ARCHITECTURE FOR REMOTE HEALTHCARE 

3.1 Overview 

The integration of IoT devices with advanced sensors and medical signal processing 

capabilities has a significant impact on enhancing comfort and convenience in people's 

lives. With the gradual increase in the number of patients, providing healthcare facilities 

to all individuals, especially those in remote areas, has become challenging, leading to 

various issues [2]. As a result, the development of smart healthcare systems has 

emerged as a vital research area to address these challenges. To overcome these issues, 

several healthcare applications have been designed using technologies such as Wireless 

Sensor Networks (WSNs), cloud computing, and fog computing [4-8] [10-12]. While 

cloud-based architectures are commonly used in e-healthcare applications, they 

introduce high latency when processing large volumes of data, limiting the widespread 

implementation of latency-sensitive healthcare solutions. 

In contrast, fog computing architecture offers processing and storage resources closer 

to the network's edge, making it a promising approach for designing e-healthcare 

applications that require low latency. IoT-driven fog computing is being actively 

developed in the healthcare industry to expedite services for the general public and 

potentially save countless lives. Based on the fog computing paradigm, this innovative 

computing platform aims to reduce latency in transmitting and communicating signals 

with distant servers, enabling faster delivery of medical services in both spatial and 

temporal dimensions. The experimental solution relies on IoT device technology and 

embedded or wearable WBANs to realize Wireless Body Area Networks. In this 

architecture, WBSNs collect data and transmit it to a controller unit located at the Fog 

Layer, where it may be interpreted. These gadgets can be connected to the web and can 

be programmed. Again, unlike sensor networks, they are connected directly to the 

source of power and so have no energy constraints. Computing hardware and an expert, 

ingenious method is used for this purpose. 
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3.2 Proposed Framework 

To realize WBANs, the proposed framework relies on the technologies of IoT devices 

and wearable sensors, as shown in Figure 3.1. 

 

Figure 3.1  Proposed IoT-enabled Framework for Remote Health Care Services 

3.2.1 Sensor Layer  

The system includes wireless nodes that can be moved about and sensors that may be 

implanted or worn to keep tabs on your health. There are many different kinds of 

portable sensors available. Small wireless nodes in a WBAN talk to one another and 

monitor the human body and its environment with sensors and actuators. Information 

on a certain biological parameter is gathered by the nodes composing a Body Area 

Network from the human body and then sent to other nodes in the fog. The patient can 

go about his day, as usual, using wireless sensor nodes, all while being continuously 

watched. Zigbee and Bluetooth, two short-range wireless communication technologies 

operating in the license-free ISM band (2.4 GHz), are commonly used to implement 

WBAN [7-8]. It can also span huge distances using technologies like WiFi and the 

Internet of Things. These standard technological frameworks outline a procedure for 

deploying the necessary components of a network. However, there are alternative, non-

standard, wireless communication methods that employ the same frequency spectrum 

to achieve the same results.  
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In our proposed experimentation, two nodes are used in sensor layers in which the Node 

MCU open-source platform is used, on which sensors for monitoring parameters 

including air quality, body acceleration, breathing sensor, heart rate, body temperature, 

and oxygen measurement in the blood are attached. The sensor nodes are attached to a 

shield that communicates with the microcontroller. 

3.2.2 Fog Layer 

The system's fog nodes process and analyse data, allowing for more accurate illness 

diagnosis and prognosis. Experts will guide the development of the analytics system 

that sends out alarm messages and collects data for the medical staff caring for the 

patient. The information collected by a sensor layer device is processed by fog 

computing, aggregating the resulting factors. It also distributes the data processing and 

administration tasks of the underlying network. Being the server that coordinates the 

work of several nodes in the fog, this layer is crucial. Data categorization allows us to 

utilize an analytics system to infer the value of a category variable from the value of a 

single other numerical or categorical variable. 

The Fog layer provides authentication, processes the data provided by the IoT, and 

establishes a secure link to the cloud layer, all while acting as a high-computing 

connecting hub between the IoT and cloud levels [6] [12] [14]. Receiving credentials 

from the IoT devices, which are then checked against the Fog layer's primary database 

of users, is the first step in the authentication pipeline for admitting an IoT user in the 

Fog layer. Hypertext Transfer Protocol Secure (HTTPS) is used for all internal 

connections in the Fog layer to guarantee a safe authentication procedure. In addition, 

each user's record in the database will typically have the following key fields: 

• Usernames and passwords are hashed before being kept.

• When users log onto the cloud, their information is encrypted using a 128-bit

random identifying code.

• Encrypting data at rest in a cloud database requires an ID and a sub-key, both

of which are assigned to data types inside categories.
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After users have been authenticated, the Fog layer, which includes the following 

components, may provide them with the necessary security credentials to access their 

cloud-based data: 

• The user identification code.

• The data type and its categories are associated with subKeys.

Two distinct types of user data may be defined by the context in which they are being 

used. The first group involves information that can be saved in its raw form without 

further processing, whereas the second group involves information that must be 

processed before storing it. Information often seen in medical records, including crucial 

information such as users' health sensed data, falls under the first group. 

In our proposed experimentation, the analytics models are deployed on a fog layer in 

which an intelligent framework for illness detection is developed, which is a hybrid 

methodology termed "EMLR-FLIS" that combines Ensemble Machine Learning 

Regression (EMLR) with Fuzzy Logic Inference System (FLIS). The first step involves 

collecting health data from wearable sensors to use as benchmarks later for training and 

testing machine learning algorithms. The proposed experimentation uses two machine 

learning regressor models: ensemble bagging and ensemble boosting. After this, feature 

engineering is used to convert the raw data into sophisticated features, split into separate 

sets for use in the training and testing phases. Machine learning models are applied to 

the train feature set to generate a trained model after successfully validating the train 

model. After that, the output of the regressor-based machine learning model, which is 

the health score, is further given to the fuzzy inference system. The health score is 

initially used as a projected output in a fuzzy inference system to determine the patient's 

health status.   

3.2.3 Cloud Layer 

Our major goal is to investigate the Machine Learning-based recognition system and 

learn how it might help doctors better read vital signs and patient states. As part of the 

cloud, it stores information that may later be used to construct applications that provide 
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real-time data to medical professionals, patients, or carers. The cloud layer is where 

information from the fog nodes is stored and managed before being used by a UI-driven 

app. 

The proposed method accurately analyzed patient health data observed under several 

environmental conditions from sensors deployed in the sensor layer using an embedded 

system based on the MCU platform. All the measurements were tracked in real-time on 

a personal computer through serial transmission protocol. In addition, sensor data is 

published from the nodes to the Ubidots Cloud system [9]. 

3.3 Experimental Setup 

The experimental setup in Figure 3.2 is used to verify the suggested framework stated 

above. The components of the suggested architectural framework are the sensor, fog, 

and cloud layer. The suggested experiment's Node 1 or Node 2 is the Node MCU open-

source platform, on which sensors for monitoring parameters including air quality, 

body acceleration, breathing sensor, heart rate, body temperature, and oxygen 

measurement in the blood are attached. The sensor nodes are attached to a shield that 

communicates with the microcontroller. The Arduino IDE develops embedded C code 

for accessing sensor data. IEEE 802.11 wifi is used to transmit the data wirelessly. The 

coordinator's laptop computer is a wireless access point, connecting it to the Fog server. 

The coordinator sends information (sensor data) to the Fog server, where it may be 

processed. The sensor data is processed and stored in the fog server's database for 

analysis before it is sent to the Ubidots Cloud account through the MQTT protocol. A 

user interface (UI) dashboard can display information on a smartphone or tablet 

computer.        
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Figure 3.2 Proposed Experimental Setup 

This experiment uses several sensors to measure various health parameters. MQ 135 is 

used to detect the presence of fresh air in terms of the air quality index of the 

surrounding environment. ADXL 345 sensor measures a person's posture, whether a 

sudden fall occurs in the patient's seizure or elderly patient. LM 293 sensor is used to 

detect the respiratory rate of a patient. Max 30100 sensor detects the heart rate and 

oxygen concentration in the patient's blood. DS 18b20 sensor is used to measure the 

body temperature of the patient. The Node MCU ESP 32 is the main heart of the system, 

which acts as a controller to which various sensors are interfaced. The data is sensed, 

processed, analysed, and monitored in real-time via serial monitor and over the Ubidots 

cloud service platform. 
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3.4 Flowchart of Proposed System 

The operational workflow of the proposed system and how the procedure operates are 

defined in Figure 3.3. At the start, all sensors interfaced to the controller are powered 

on and initialized from Node MCU ESP 32 controllers. At an early stage, data from all 

sensors are acquired from the patient and monitored in real time. The all-necessary 

health parameters are checked and monitored for normal and abnormal events. All data 

is sent over Ubidots cloud by establishing an internet connection through nearby Wi-Fi 

services. The real-time data is visualized on Desktop or Mobile applications of cloud 

services. The data is uploaded on the Ubidots cloud server periodically over a certain 

period.  

Figure 3.3 Flowchart of the proposed framework 
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The proposed system offers numerous significant contributions. It introduces a novel 

classification system for identifying epilepsy by leveraging regularly monitored health 

indicators of patients, primarily focusing on vital body parameters. To aid in decision-

making for diagnosis, the system incorporates two modalities. It presents an enhanced 

diagnostic technique that combines machine learning and fuzzy logic, along with the 

innovative sensor data fusion approach. 

3.5 Component Descriptions 

The ESP32 microprocessor, at its heart, is responsible for all its connectivity features, 

including Wi-Fi, Bluetooth, Ethernet, and Low Power [41] [63]. The ESP32 

incorporates a power amplifier, low-noise amplifiers, filters, and a power management 

module in addition to the antenna and RF balun. One of the development boards utilised 

and made for testing the ESP-WROOM-32 module is the Esp32 DevKit V1. In air 

quality control systems, the MQ-135 Gas sensors detect and quantify NH3, NOx, 

alcohol, benzene, smoke, and carbon monoxide. When only a single gas has to be 

detected, the MQ-135 sensor module's Digital Pin allows it to function independently 

of a microcontroller. The gases may be measured in parts per million by using the 

analogue pin. Complete with signal-conditioned voltage outputs, the ADXL335 is a 

small, low-power, three-axis accelerometer used to measure body acceleration. 

Dynamic acceleration due to motion, shock, or vibration can be measured in addition 

to the static acceleration of gravity in tilt-sensing applications. The DS18B20 is a 

temperature sensor from maxim integrated used to measure the body temperature that 

can be programmed over a single wire. It is commonly utilised to measure temperatures 

in harsh conditions like chemical solutions, mines, dirt, etc. It measures temperatures 

from -55 to 125 degrees with an accuracy of plus or minus 5 degrees Celsius. The sound 

level sensor, used to measure respiratory rate, is measured via a microphone connected 

to an LM393 operational amplifier. There is a potentiometer on board for fine-tuning 

the volume. Sounds are picked up by the Sound sensor module's built-in microphone. 

The LM393 integrated circuit receives this signal. The MAX30100 is a versatile sensor 

used to measure heart rate and blood oxygen level with various possible uses. The 
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sensor doubles as a pulse oximeter and a means of tracking heart rate. The sensor can 

measure heart rate and conduct pulse oximetry thanks to its two LEDs, photodetector, 

and low-noise signal processing modules. 

The data is protected and kept confidential thanks to Message Queue Telemetry 

Transport’s (MQTT) help. Lightweight publish-subscribe protocol that operates over 

TCP/IP; also known as MQTT [66-67] [69]. In MQTT, a message broker connects 

message senders with interested message receivers. The same client may be used to 

send and receive notifications. There is a topic that corresponds to each letter. The 

subject is the string containing the hierarchical tiers of the message's routing 

information, separated by slashes. The sending of data from a greenhouse's temperature 

sensors is seen in Figure 3.4. 

Figure 3.4  Workflow of MQTT for sensor data 

By creating clients and brokers with the following core components, MQTT realises 

the publish/subscribe concept. 

MQTT client 

"MQTT client device" refers to any networked device capable of exchanging messages 

utilising the MQTT protocol. Every machine with the MQTT library installed, from a 
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server to a microcontroller, is considered a MQTT client. The client is a publisher if it 

sends the message and a subscriber if it does the message. 

MQTT broker 

The MQTT broker is the backend system responsible for facilitating communication 

between clients. The broker is responsible for receiving and sorting messages, finding 

out which clients have subscribed to certain messages, and then sending those messages 

to those customers. It is also in charge of other things, including: 

• Authorizing and authenticating MQTT clients

• Handling missed messages and client sessions

• Passing messages to other systems for further analysis

MQTT connection 

An MQTT connection is established between the clients and the brokers. Clients send 

a CONNECT message to the MQTT broker to begin the connecting process. The 

CONNACK message is the broker's confirmation that the connection has been 

established. A TCP/IP stack is needed for communication between the MQTT client 

and the broker. The only person the client ever talks to is the broker. 

3.6 Hardware Setup 

As shown in Figure 3.5, a prototype was built using the suggested framework and tested 

with two nodes in various states representing their health parameters. Using an 

embedded system, the suggested method accurately analysed patient health data such 

as respiration rate, heart rate, blood oxygen level, and body acceleration. All the 

measurements were tracked in real-time on a personal computer through serial 

transmission and compared across various environmental conditions. In addition, by 

publishing data from the nodes to Ubidots broker, all of this sensor data could be 

watched over the Internet in a central location.  
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Figure 3.5 Hardware setup with two nodes implementation 

The user might subscribe to these data and have instantaneous access, as shown in 

Figure 3.6. 

Figure 3.6   Hardware setup with real-time data visualization on Ubidots Cloud 
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3.7 Data Monitoring on Ubidots Cloud Platform 

Ubidots is a business that specialises in data analytics and visualisation for the IoT. We 

process sensor data into actionable intelligence for commercial decision-making, 

machine-to-machine communication, academic study, and the conservation of world 

resources. Ubidots is an Internet of Things platform that helps businesses and startups 

bring their IoT ideas from prototype to mass production. Send information from any 

device with an Internet connection using the Ubidots platform.  

The value of your data may then be unlocked using visual tools, such as the 

configuration of actions and alerts, depending on your real-time data. Ubidots provides 

a REST API for accessing and modifying its many data resources, including data 

sources, variables, values, events, and insights. An API Key is needed to access the API 

through HTTP or HTTPS. Two-way data replication, encrypted storage, and TLS/SSL 

data support are all in place to keep your information safe. Each platform module has 

its own set of permission controls, letting you choose which data is visible to which 

users. Ubidots are available so businesses and academic institutions may easily and 

affordably harness the potential of the IoT. Ubidots's technology and engineering stack 

was built to provide our customers with a private, personalised experience. Our cloud 

service's application programming interfaces (APIs) are designed to work with various 

devices and protocols, including HTTP, MQTT, TCP, and UDP. Ubidots' time-series 

backend services are second to none when storing, processing, and retrieving IoT data. 

We have an IoT App Builder that lets programmers add their own HTML/JS code for 

private customisation, and we offer real-time, interactive data visualisation (widgets) 

on our application enablement platform. Ubidots is a service that facilitates data transfer 

from any given source to any desired display format. Figure 3.7 displays, from the 

server of the Ubidots cloud platform, real-time information gathered by the 

experimental setup. 



87 

Figure 3.7 Real-time data observations of prototype model on Ubidots Cloud Platform 

3.8 Data Interpretation 

Wearable sensor parameters are monitored, reflected upon, and examined to ascertain 

the system's potential use in various human undertakings. The cloud displays the 

statistical data distributions for two sensor nodes linked to healthy persons for each 

sensor parameter. If any readings are beyond the specified range, an alarm will be 

generated for the doctor or caretaker. 

Extracted from the prototype device in real-time over 30 events with a 1-second interval 

for five categories based on the age group. Considered age group for the observation 

has been taken as 0-5 years, 5-10 years, 10-30 years, 30-60 years and 60+ years.  
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Figure 3.8 shows the respiratory rate of various categories to understand how the rate 

has varied according to age group. It has been observed that a healthy individual has a 

respiratory rate of 16–20 breaths per minute, whereas a sick person has a rate higher 

than this. 

Figure 3.8 Data Interpreted for Respiratory Rate 
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Figure 3.9 displays the body temp of various categories to understand how the rate has 

varied according to age group. The average normal range for a human body temperature 

is 36.5 to 38.5 degrees Celsius.  

 

Figure 3.9 Data Interpreted for body temperature 
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Figure 3.10 displays the heart rate of various categories according to age group, and it 

has been observed that the average normal range for a human heart rate is 60 to 100 

beats per minute. 

Figure 3.10 Data Interpreted for Heart Rate 
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Figure 3.11 displays SpO2 of various categories to understand the normal range of 

SpO2 according to age group. The normal range for human oxygen saturation (SpO2) 

is over 95%.  

Figure 3.11 Data Interpreted for Body SpO2 

Figure 3.12 displays air quality checks for different conditions. The air quality index 

was assessed to make the false case assessment, and it was determined to be below 100 

PPM, the threshold at which pollutants become harmful to human health.  
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Figure 3.12 Data Interpreted for Air Quality 

When a person's measured value falls outside of a predetermined range, called a 

threshold, an alarm signal is created and forwarded to the appropriate medical 

professional, patient, or carer, following the priority assigned to each. 

Figure 3.13 displays each user's average respiratory rate, body temperature, air quality, 

SpO2, and heart rate in various test conditions. The final average range for different 

categories based on age groups for various sensors has been evaluated after interpreting 

data shown in the figure below: 
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Figure 3.13 Data displaying the average normal range for various sensor parameters 
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3.9 Summary 

This chapter presents the proposed IoT-based framework based on Fog Computing for 

Remote Health Care Services with an effective and reliable data monitoring system, 

which mainly consists of a primary three-layer architecture: sensor layer, fog layer, and 

cloud layer. The main objective of this framework is to develop a prototype system 

considering two nodes for monitoring the patient's health parameters under several 

circumstances for disease diagnosis over a cloud server platform. In the proposed 

experimentation, monitor the behaviour of patients using various sensors for different 

health parameters on a cloud server and visualize the data on the IoT cloud platform 

using MQTT protocol with its data interpretation. 
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CHAPTER 4 DEVELOPMENT OF INTELLIGENT 

FRAMEWORK FOR DISEASE DIAGNOSIS USING 

MACHINE LEARNING DEPLOYED AT FOG LAYER 

4.1 Overview 

This section discusses the proposed method for deploying an intelligent framework for 

illness detection using the Fog Layer, which is a hybrid methodology termed "EMLR-

FLIS" that combines Ensemble Machine Learning Regression (EMLR) with Fuzzy 

Logic Inference System (FLIS). The first step involves collecting health data from 

wearable sensors to use as benchmarks later for training and testing machine learning 

algorithms. After this, feature engineering is used to convert the raw data into 

sophisticated features, split into separate sets for use in the training and testing phases. 

Machine learning models are applied to the train feature set to generate a trained model. 

The health score is initially used as a projected output in a fuzzy inference system to 

determine the patient's health status. 

4.2 Hybrid Framework Using EMLR-FLIS 

The proposed block diagram of an Ensemble Machine Learning Regression-based 

framework with a Fuzzy Logic Inference System (EMLR-FLIS) is shown in Fig 4.1 

below.  

Figure 4.1 Proposed Block Diagram of Hybrid Framework 
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4.2.1 Clinical Records Dataset 

Table 4.1 details the health characteristics of the dataset, which consists of conventional 

clinical records taking the health behavior of patients with epilepsy into account. 

Professionals supervise the process of acquiring and analyzing this dataset. In the table, 

the readings of a hundred volunteers' health sensors are recorded while they track their 

activities during specific times of the day while living in a simulated environment to 

generate the suggested data. Using an IoT-based cloud service platform, researchers 

analyze data from one hundred participants to determine the daily mean value of their 

experiments.  

Table 4.1  Health Attributes for Epilepsy Patients 

Input Output Measurement Unit 

Air quality Health Score 

(Regression-

based value) 

Parts per million (PPM) 

Body acceleration Three-axis motion records 

Respiratory rate Breath per min 

Heartbeat rate Beats per minute (BPM). 

Oxygen level in blood Percentage (%) 

Body Temperature Degree Celsius (°C) 

4.2.2 Feature Engineering 

Using data mining tools, feature engineering extracts features from unstructured data. 

Algorithms for machine learning can perform better when given access to these 

features. One may classify feature engineering as machine learning in an application. 

Additionally, it converts unstructured data into attributes that the predictive models can 

use to understand the underlying issue better, enhancing model accuracy for previously 

unknown data. 

Two objectives are the main focuses of feature engineering: 

• An appropriate input dataset that meets the requirements of the machine

learning method.

• Enhancing the effectiveness of machine learning models.
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The accuracy of classification or estimation performed by intelligent algorithms is 

enhanced by pre-processing the data, such as resampling, normalization, noise filtering, 

attribute selection, etc. The dataset feature samples are initially subjected to standard 

scaling with normalization. 

4.2.3 Ensemble Machine Learning Regression (EMLR) 

Exploring the connection between a set of characteristics or independent variables and 

a result (the dependent variable) is the goal of the regression-based classification 

method. In machine learning, this technique is used for making forecasts. For instance, 

"how comfortable a person is" is defined by an algorithm used to forecast continuous 

outcomes for health data categorization using a health score. Machine learning 

regression techniques include Random Forest Classifier, and Ada boost Classifier. 

The analytics platform based on regression analysis looks at how different factors affect 

one another. The purpose of ensemble learning, a meta-method, is to improve 

classification performance by combining the predictions of many models. The health 

score measures "how comfortable a person is following epilepsy," the approach is part 

of machine learning's predictive modelling process by which an algorithm predicts 

continuous outcomes for the classification of health data. 

The suggested method makes use of the ensemble learning regression model, which 

makes use of both ensemble bagging and boosting. Many decision model trees are 

mapped to different subsets of the dataset, and then the average predictions from each 

tree are used in the Bagging approach. Boosting adds ensemble members consecutively 

that correct the forecasts supplied by prior models, yielding a weighted average of the 

projections. Bagging makes use of the random forest bagger regressor. Boosting makes 

use of the Adaboost regressor. The results of a regressor trained using machine learning 

are sorted into epilepsy severity levels ranging from 0 to 1. 

Random Decision Forest (RDF) uses ensemble learning to aggregate multiple weak 

classifiers to offer solutions to challenging issues. An algorithm for supervised learning 

is a random forest. The "bagging" method's "forest" is constructed from several decision 
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trees. The bagging method is based on combining learning models to improve the 

model's final output. Generally speaking, a forest seems more vigorous the more trees 

there are. 

A random forest, as the name suggests, is made up of several decision trees. However, 

instead of relying solely on one tree, it uses the predictions from each tree to forecast 

the ultimate result based on most predictions. Similarly, with the random forest 

classifier algorithm, the more decision trees there are in the forest, the more accurate 

the model is. 

Figure 4.2  Learning Process of Random Decision Forest 

Figure 4.2 illustrates the division of the data into training and testing halves. Random 

forest is then applied to the training portions. Based on our training data, the random 

forest generates several decision trees, which accurately predict outcomes when tested. 

The vast majority of data points in the output are used to calculate it. It increases the 

model's accuracy because of this. 

Step 1: Create subsets of our original data. Row and feature sampling refers to choosing 

rows and columns with replacements and producing subsets of the training dataset. 
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Step 2: Build separate decision trees for each subset. Use a random selection of k 

features from m features in the training data such that k m to construct a decision tree 

that links the sample data points together. 

Step 3: Each tree of decisions will provide a result. Determines the best possible feature 

selection for a split of k. 

Step 4: The node should be cut into offspring using the best possible split. 

Step 5: Carry on until you reach the leaf node. 

Step 6: Continue doing this until you have a thick forest. Finally, find the predictions 

made by each decision tree for the most recent data points and assign those to the most 

popular class. If B is bagging, classification trees might make predictions based on the 

majority vote. 

Equation 4.1 

Step 7: The final result is evaluated using the majority voting method when solving a 

classification or regression problem. 

The behavioural logic of the random forest algorithm is defined as follows. 

To make n classifiers: 

For i = 1 to do n 

Sample the training data T randomly with a replacement for Ti output 

Build a Ti - containing root node, Ni 

Call BuildTree (Ni) 

end For 

BuildTree(N): 

If N includes instances of only one class, then it returns 

else 

Select z% of the possible splitting characteristics at random in N 

Select the feature F with the highest information gain to split on 

Create f child nodes of N, Ni ,..., Nf, where F has f possible values (F1, ... , Ff ) 
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For i = 1 to f do 

Set the contents of Ni to Ti, where Ti is all instances in N that match Fi 

Call Buildtree (Ni ) 

end for 

end if 

The AdaBoost (AdB) algorithm, also known as Adaptive Boosting, is a boosting 

approach used as an Ensemble Method in machine learning. For each new instance, 

weights are recalculated to increase the penalties for incorrectly labelled cases, thus 

called "adaptive boosting." Boosting is used to reduce bias and variance in supervised 

learning. It has based on the idea that learning happens in increments. All subsequent 

students are created from existing ones except for the initial learner. These pupils go 

from being weak to becoming powerful. In order to generate a robust learner, the 

boosting method combines several weaker learners. Each model performs adequately 

on a limited portion of the data but fails when applied to the whole set. As a result, 

adding more models boosts the overall performance. 

Step 1: Create the dataset from scratch and give each data point the same weight. 

Initialize the dataset and provide each data point with the same weight. The initial 

weighting can be determined by, 

     Equation 4.2 

Where N indicates the total number of data points and the number of records. 

Step 2: To find the data points incorrectly categorized, provide this as input to the 

model. Give the model this as input and see the data points incorrectly categorized. The 

actual influence is categorizable using 

Equation 4.3 

Where Alpha indicates the weight that each stump had in the final judgment, the total 

error is the number of misclassified data. 
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Step 3: Boost the significance of the data items that were incorrectly categorized. 

Incorrectly classified data points should have more weight, whereas correctly classified 

data points should have less weight. Then, adjust all data points' weights to their original 

values. To update the sample weights, the following formulae are used. 

1

a

i i e  

−=                Equation 4.4 

Here, multiplying Euler's number by the previous sample weight yields the new 

sample weight. If the records are accurately categorized, Alpha will be positive; 

otherwise, it will be negative. 

Step4: if (results are satisfactory) 

goto step 5 

else 

goto step 2 

end 

Step 5: Predictions are formed using a new model based on the dataset. 

Step 6: Many models are developed similarly, each fixing the flaws of the previous 

model. 

Step 7: The weighted mean of every model (weak learners) makes up the final (strong 

learners) model. 

4.2.4 Fuzzy Logic Inference System (FLIS) 

Singleton output membership functions that are constant or linear in the input values 

are used in Takagi-Sugeno-Kang fuzzy inference, also known as Sugeno fuzzy 

inference. Instead of computing the centroid of a two-dimensional region, the 

defuzzification technique for a Sugeno system uses a weighted average or sum of a 

limited number of data points, making it more computationally efficient than the 

corresponding procedure for a Mamdani system. A fuzzy inference system interprets a 

health score as an input by assigning values to the output vector based on normal, 
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severe, and critical health conditions. Any statement's truth becomes a matter of degree 

in fuzzy logic. The principle of the proposed FLIS appears in Figure 4.3. 

Figure 4.3 Principle of FLIS 

The following five functional blocks define the construction of FLIS. 

• Fuzzification Interface Unit: This unit transforms precise values into fuzzy

values.

• Database: It defines the membership functions of fuzzy sets utilized in fuzzy

rules.

• Rule Base: It comprises fuzzy IF-THEN rules.

• Decision-making Unit: This unit executes operations on the rules.

• Defuzzification Interface Unit: This unit converts fuzzy values into precise

values.

The Fuzzy Inference System (FIS) functions through the following process: 

• Using diverse fuzzification techniques, a fuzzification unit converts the crisp

input into fuzzy input.

• After converting crisp input to fuzzy input, a knowledge base is constructed,

consisting of rule bases and databases.
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• The fuzzy output from the defuzzification unit is ultimately transformed into

crisp output. The fuzzification unit transforms the crisp input into fuzzy input

and supports using various fuzzification techniques.

4.2.4.1 Fuzzy Inference Data for Health Parameters 

Tables 4.2 to 4.6 depict the fuzzy variable relationship between input and output with 

their respective ranges for health parameters like body temperature, heart rate, oxygen 

level in the blood, respiratory rate, and acceleration rate. All input defines the symptoms 

based on sensor reading values, and output defines the status of health conditions from 

HS0 to HS3 of health parameters. For acceleration data, health position is defined as 

HP1-HP3 as fall, normal, sitting [165-168]. 

Table 4.2  Body Temperature Data 

Input Membership 

Function Variable 

Ranges (deg 

cel) 

Output Membership 

Function Variable 
Ranges 

Hypothermia < 36 HS-1 (Health Score) 0-0.3 

Normal 36 - 37.5 HS 0 0.25-0.6 

Light Fever 37.5 – 38 HS +1 0.5-0.7 

Moderate Fever 38.1 - 38.5 HS+2 0.6-0.8 

High Fever 38.6 - 39.5 HS+3 0.7-0.9 

Very High Fever 39.6 - 42.5 HS+4 0.8-1.0 

Table 4.3 Heart Rate Data 

Input Membership 

Function Variable 

Ranges (beats 

per minute) 

Output Membership 

Function Variable 
Ranges 

Bradycardia < 60 HS-1 0-0.4 

Normal 60-100 HS0 0.3-0.7 

Tachycardia >100 HS+1 0.6-1.0 
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Table 4.4 Oxygen Level in Blood Data 

Input Membership 

Function Variable 
Ranges (%) 

Output Membership 

Function Variable 
Ranges 

Normal 95-100 HS0 0-0.3 

Mild Hypoxemia 91-94 HS+1 0.2-0.55 

Moderate Hypoxemia 86-90 HS+2 0.5-0.8 

Severely Hypoxemia <85 HS+3 0.7-1.0 

Table 4.5 Respiratory Rate Data 

Input 

Membership 

Function Variable 

Ranges (breaths per 

minute) 

Output Membership 

Function Variable 
Ranges 

Bradypnoea <12 HS-1 0-0.4 

Normal 12-20 HS0 0.3-0.7 

Tachypnoea >20 HS+1 0.6-1.0 

Table 4.6 Acceleration Rate Data 

Input Membership 

Function Variable 
Ranges (g) 

Output Membership 

Function Variable 
Ranges 

Standing 1 HP1 (Health Position) 0-0.3 

Sitting 2 HP2 0.2-0.55 

Squatting 3 HP3 0.5-0.8 

Lying 4 HP4 0.7-1.0 

4.3 Algorithm Steps 

INPUT 

Standard benchmark dataset form sensor containing Health Parameter Dataset with 

features and labels 

OUTPUT 
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Predicted disease diagnosis health score class. 

Pi - Classes: [0 - 1] 

PROCEDURE 

Feature Engineering 

Step1: Determine the size of feature data and target data, Fz, and Tz 

Step2: For in range of Fz 

Apply scaler transformation to each sample 

Data normalization with equal distribution for each class end 

Step 3: Make ready the MLR parameters 

Epochs/Neurons/Performance Parameters/Training Algo/Data Division 

Make ready MLR with training and target Data 

Extract Features layers from the network 

Predict the model with train data to get feature data 

Classification 

Step 4: Initialize Parameters for training MLR Models 

Step 5: Find hyperparameters of the trained model using Grid Search Optimization 

Step 6: Train the model based on best-selected hyperparameters 

Step 7: Validate the model by getting a training loss minimum 

Step 8: Store the trained model in the knowledge repository  

Testing 

Step 9: Load user test data 

Step 10: Apply feature engineering from steps 1 to 3 

Step 11: Load the trained model from step 8 

Step 12: Predict the health score of health parameter data to get a precise health score. 

Step 13: Define linguistic variables and terms used to describe health metrics. 

Step 14: Construct the membership function for the linguistic variables. 

Step 15: Built the knowledge rule base 

Step 16: Fuzzification: Perform fuzzification by converting crisp facts to fuzzy values 

using the membership function. 
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Step 17: Inference Engine: Utilize the inference engine to analyse the rule in the rule 

base 

Step 18: Inference Engine: Combine the result of each rule in the inference engine. 

Step 19: Defuzzification: To convert output data into non-fuzzy values, perform 

defuzzification. 

4.4 Summary 

This chapter develops an intelligent framework for disease diagnosis using a hybrid 

approach with the help of a ML Algorithm and a FLIS. In the proposed experimentation, 

health parameters records are considered for Epilepsy patients. Initially, a regression-

based machine learning algorithm is used to build the intelligent model, which predicts 

the data as the severity of epilepsy. Further, this severity is classified into disease types 

as per fuzzy knowledge defined for it. There are two algorithms, ensemble bagging and 

boosting, used for learning. Ultimately, the performance of the proposed system is 

thoroughly analysed and validated. 
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CHAPTER 5 EXPERIMENTAL RESULTS AND 

DISCUSSION 

5.1 Experimental Setup 

The proposed experimental setup uses PyCharm 3.11.1 software with Anaconda 

distribution to implement the system. Medical professionals watch over system testing. 

Using the suggested device, samples are obtained from various situations. First, sensor-

based data was transmitted to the server. This dataset was gathered and examined with 

the assistance of professionals. The data that is being proposed is a compilation of 

health sensor readings from 100 participants who participated in simulated daily life for 

a specified amount of time. A data logger on an IoT-based cloud service platform is 

used to analyse the mean value of experimentation over a dataset of 100 individuals for 

a single day. Both the Arduino app and a web browser show the findings. After receiving 

data gathered by sensors and transmitted through a smart device, the server generates a 

sample of the patient's report. The report is divided into three sections: sensor data, 

patient data, and patient symptoms, measured by health scores. The suggested method 

is a low-cost and effective option for residents of remote locations; they may use it to 

determine whether they have a significant health problem and, if so, seek appropriate 

treatment by contacting regional hospitals. In telemedicine, a novel concept is using 

sensors and decision support systems. Using analytics, medical facilities may achieve 

greater accuracy, early disease diagnosis, personalization, and cost savings.  

5.2 Performance Parameters 

The classification efficiency measures from a confusion matrix that provides the result 

of counting correctly and incorrectly identified cases by event class (normal/abnormal). 

Therefore, some statistically defined measurements are considered and used for the 

comparative analysis of classifiers. The metrics were evaluated for several performance 

measures applied to determine the quality of a chosen classifier for the needs of this 

research: Accuracy, Specificity, Sensitivity, F-score, Negative Predictive Value (NPV), 
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Positive Predictive Value (PPV), False Negative Rate (FNR), and False Positive Rate 

(FPR) were evaluated.  

The classification efficiency measure is derived from the confusion matrix, which 

provides information on the number of correctly and incorrectly classified cases based 

on event type (normal vs. abnormal). In order to conduct a comparative analysis of 

classifiers, multiple statistics-based measurements are taken into account. The 

evaluation of a classifier's performance includes various performance metrics such as 

RMSE, accuracy, precision, recall, f-score, sensitivity, specificity, True Positive (TP), 

True Negative (TN), False Positive (FP), False Negative (FN), and Receiver Operating 

Characteristic (ROC). Also root mean square error (RMSE) is evaluated. N is no. 

observation taken. 

( ) ( )     /        Accuracy TP TN TP TN FP FN= + + + +                                       Equation 5.1 

( )   /    Precision TP TP FP= +            Equation 5.2 

( ) /     /    Recall Sensitivity TP TP FN= +            Equation 5.3 

( )   /    Specificity TN TN FP= +              Equation 5.4 

( )  2 *   /  2     F score TP TP FP FN− = + + Equation 5.5 

( ) ( )      /    Negative Predictive Value NPV TN TN FN= +                    Equation 5.6 

( ) ( )      /    False Positive Rate FPR FP FP TN= +                     Equation 5.7 

( ) ( )      /    False Negative Rate FNR FN FN TP= +                   Equation 5.8

RMSE= √
∑ (Predictedi - Actuali)

2N

i=1
N

Equation 5.9 

5.3 Performance of the EMLR-FLIS Model 

By analysing the statistical health record histogram plot, as depicted in Figure 5.1, 

researchers can gain valuable insights into the distribution of the dataset. The histogram 

plot visually represents the frequencies or counts of events within specific values. The 
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horizontal axis of the plot corresponds to the range of values, while the vertical axis 

represents the frequency or count of events falling within the range or value T. The 

height of each bar in the histogram corresponds to the number of occurrences or data 

points within that particular range of values. 

Figure 5.1  Output Label Data Histogram 
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Utilizing PyCharm, the histogram plot offers a powerful tool for comprehending the 

distribution and characteristics of the dataset in a research context. The plot specifically 

incorporates input parameters like air quality, acceleration-x, acceleration-y, 

acceleration-z, respiratory rate, heartbeat rate, oxygen level, body temperature, health 

score C and Health score R. The x-axis showcases the range or values of the input 

parameter, while the y-axis indicates the frequency of each parameter. 

Overall, the histogram plot generated by PyCharm provides valuable insights into the 

distribution of medical data, allowing healthcare professionals and researchers to 

understand the prevalence and characteristics of specific medical measurements or 

variables within the dataset. It helps identify trends, potential outliers, and patterns 

essential for making informed medical decisions and conducting further analysis. 

It serves as a crucial component in research analysis, highlighting the relationship 

between input and output parameters in the context of health records.Furthermore, the 

health score output classification data was visualized using histograms, where health 

scores of 1, 2, and 3 were classified as normal, mild, and severe, respectively. These 

classifications are depicted in Figure 5.2. Most of the output classifications fell into the 

normal category, accounting for 54.44%. The remaining output categories, mild and 

severe, represented 19.35% and 26.21%, respectively. 

Figure 5.2 Count of label data 
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The correlation matrix between the variables shown in Figure 5.3, generated by 

PyCharm, provides a valuable tool for analyzing the relationships between variables 

within a dataset.  

Each cell denotes the correlation coefficient between two variables within the 

correlation matrix. The correlation coefficient is a statistical indicator that measures the 

strength and direction of the linear relationship between the variables. Its value can 

range from -1 to 1, where -1 signifies a complete negative correlation, 1 represents a 

complete positive correlation, and 0 signifies no correlation between the variables. 

Figure 5.3  Correlation Matrix of Input Variable Data 

The correlation matrix is represented visually through a color distribution bar, depicting 

the relationships between different attributes. Bright colors in the matrix indicate strong 

relationships, while darker colors signify weakly or no relationships between the 

attributes. 
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The simulated result for ensemble regression-based algorithms with bagging is shown 

in (Annexure-I).   

Figure 5.4 compares the predicted and actual Output nature, employing a bagging 

regressor. This comparison is a valuable measure to evaluate the performance and 

accuracy of a predictive model. In the proposed work, the bagging algorithm, an 

ensemble regression-based approach, is trained and validated following a specific 

procedure. The predicted values, highlighted in red, demonstrate a close alignment with 

the actual values represented in green. This strong alignment signifies that the model 

performs well and can accurately predict the target variable with a training accuracy of 

99%. 

 

Figure 5.4 Predicted vs. Actual Output Nature using Bagging Regressor. 
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The simulated result for ensemble regression-based algorithms with boosting is shown 

in Annexure II.  In the initial stage, the boosting algorithm is trained and validated 

according to the procedure described in the proposed work. A comparison between the 

actual and predicted output nature is plotted in Figure 5.5 to assess the algorithm's 

performance. Upon analysis, it is examined that the algorithm accurately predicts the 

exact data with an impressive training accuracy of 100%. 

Figure 5.5 Predicted vs. Actual Output Nature using Boosting Regressor. 

Later, performance was evaluated, analysed and compared for both algorithms. The 

results indicated that the proposed system demonstrated the capability to predict data 

compared to the ground truth data accurately. The ensemble boosting algorithm 

demonstrates superior performance with a score of  100%, surpassing the bagging 

algorithm in terms of the effectiveness of training the models. 
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The research includes an investigation of root mean squared error and accuracy for two 

algorithms, presented in Table 5.1.  

Table 5.1 Performance of Regressor Algorithm 

Parameters Ensemble Bagging Ensemble Boosting 

RMSE 0.02 0.01 

Accuracy 0.98 0.99 

Additionally, Figure 5.6 graphically represents the performance comparison between 

the ensemble boosting and bagging algorithms. The results indicate that the ensemble 

boosting algorithm outperforms the bagging algorithm, achieving a higher score of 0.99 

in terms of performance of testing the proposed models. 

Figure 5.6 Representation of Regressor Algorithm Performance 

Upon the successful training, validation, and testing of regression algorithms, a 

comprehensive analysis was conducted to evaluate the overall performance of the 
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proposed system. In particular, the confusion matrix was utilized as a valuable tool to 

assess the performance of the classification models, specifically in the domain of 

medical data analysis. The confusion matrix offers a concise summary of the model's 

predictions compared to the actual ground truth values, providing insights into the 

system's effectiveness. The confusion matrix is typically represented as shown in Figure 

5.7 to predict whether they have epilepsy based on several features. 

Figure 5.7 General Representation of Confusion Matrix  

The confusion matrix is a square matrix that consists of four important elements: True 

Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives (FN). 

Each element represents the count or frequency of predictions falling into these 

categories. The following table, labelled Table 5.2, presents a comprehensive 

breakdown of the confusion matrix's four fundamental components. 

Table 5.2 Detailed breakdown of key elements in the confusion matrix 

Result Description 

True Positive 

(TP) 

The model predicts that the patient has epilepsy (positive) and, 

indeed, he/she has epilepsy (true prediction).  

True Negative 

(TN) 

The model predicts that the patient does not have epilepsy 

(negative); indeed, he/she does not have epilepsy (true 

prediction) 
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False Positive 

(FP) 

The model predicts that the patient has epilepsy (positive), but 

he/she does not have epilepsy (false prediction) 

False Negative 

(FN) 

The model predicts that the patient does not have epilepsy 

(negative), but he/she has epilepsy (false prediction).  

The confusion matrix, depicted in Figure 5.8 (a) for bagging and Figure 5. 8 (b) for 

boosting, showcases the performance of the proposed test structure for both systems. 

The diagonal elements, represented in color, indicate the correct categorization of most 

samples. However, a few samples are misclassified and appear in non-diagonal 

positions. This observation suggests that the algorithm performs excellently, accurately 

predicting data during the testing phase. 

(a) Bagging FLIS (b) Boosting FLIS 

Figure 5.8 Confusion Matrix for (a) Bagging-FLIS      (b) Boosting FLIS 

It allows us to assess how well the model performs in identifying patients with the 

medical condition and those without it. It helps us understand the types of errors the 

model makes and provides insights into its accuracy and effectiveness.  

Latency in machine learning is influenced by both training time and testing time. 

Training time latency is the duration required to train a machine learning model using 

a specific dataset. Once the model is trained, it can be applied to predict new, unseen 
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data. On the other hand, testing time latency, also referred to as inference time latency, 

represents the time the trained model takes to process new data and generate 

predictions. 

To analyze the latency aspects, Table 5.3 provides insights into the bagging and 

boosting algorithms' training and testing time latency. The findings indicate that the 

training phase generally takes longer to train the model than the testing phase for both 

proposed models. 

Table 5.3 Latency Time for Bagging and Boosting Algorithm 

Parameter Bagging-FLIS (sec) Boosting-FLIS (sec) 

Training time latency 5.91 3.11 

Testing time latency 3.52 2.89 

In the case of the boosting-FLIS model, Figure 5.9 demonstrates its overall efficiency 

in terms of latency, with minimal computation time required for both the training and 

testing phases. The primary objective in reducing latency in machine learning 

applications is to achieve faster model training and prediction times, ultimately 

enhancing real-time performance. 

Figure 5.9 Representation of Latency for Bagging and Boosting Model 
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By analyzing the values in the confusion matrix, several performance metrics such as 

accuracy, precision, recall (sensitivity), specificity, and F1 score can be derived, 

which provide a more comprehensive understanding of the model's performance. 

Table 5.4 displays the precision, recall, and F-score values for different classes in a 

classification task. For the "Normal" class, all metrics (precision, recall, and F-score) 

have a value of 1.00. This indicates that all instances classified as "Normal" are 

accurate, with no false positives or negatives. In the case of the "Mild" class, the 

precision is 1.00, meaning that all instances classified as "Mild" are correct. However, 

the recall is 0.33, implying that only one-third of the actual "Mild" instances were 

correctly identified. The F-score, which combines precision and recall, is 0.50, 

indicating a moderate overall performance for this class. 

Regarding the "Severe" class, the precision is 0.84, indicating that a substantial portion 

of the instances classified as "Severe" are correct. The recall is 1.00, suggesting that all 

actual instances of "Severe" were correctly identified. The F-score is 0.91, signifying a 

high overall performance for this class. 

Table 5.4 Classification Report for Bagging-FLIS 

 In conclusion, figure 5.10 demonstrates excellent performance of the classification 

model for the "Normal" and "Severe" classes, as evidenced by high precision, recall, 

and F-scores. However, there is room for improvement in accurately identifying 

instances of the "Mild" class, as indicated by the lower recall and F-score values for 

this class. 

Classes Precision Recall F-Score 

Normal 1.00 1.00 1.00 

Mild 1.00 0.33 0.50 

Severe 0.84 1.00 0.91 

macro avg 0.95 0.78 0.80 

Accuracy : 0.95 
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In table 5.4, the macro-averaged (macro avg) provides the average values of precision, 

recall, and F-Score across all classes for Bagging-FLIS. The macro-averaged precision 

is 0.95, macro-averaged recall is 0.78, and macro-averaged F-Score is 0.80. These 

metrics give y an overall sense of how well the model is performing across all classes. 

The classification report for ensemble regression-based algorithms with bagging is 

shown in Annexure III.  The accuracy is a measure of how many predictions overall are 

correct. In Bagging-FLIS, the accuracy is 0.95, indicating that the model's predictions 

are correct for 95% . 

In summary, this table provides a comprehensive overview of your classification 

model's performance for each class for Bagging FLIS, as well as an overall assessment 

through macro-averaged metrics and accuracy. 

 

Figure 5.10 Performance of Classification Report for Bagging-FLIS 

Table 5.5 contains performance metrics for different classes in a classification problem. 

These metrics include sensitivity, specificity, negative predictive value (NPV), false 

positive rate (FPR), and false negative rate (FNR). 
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Table 5.5 Confusion Matric Parameters for Bagging-FLIS 

Class Sensitivity Specificity NPV FPR FNR 

Normal 1 1 1 0 0 

Mild 0.33 1 0.94 0 0.66 

Severe 1 0.92 1 0.07 0 

macro avg 0.78 0.97 0.98 0.023 0.22 

For the "Normal" class, the sensitivity, specificity, and NPV are all 1.00. This means 

that the model correctly identifies all instances of the "Normal" class and accurately 

classifies all non-"Normal" instances without any false positives or false negatives. The 

FPR and FNR values are 0, indicating no false positive or false negative errors for this 

class. The sensitivity of the "Mild" class is 0.33, indicating that only 33% of actual 

instances of the "Mild" class are correctly identified by the model. However, the 

specificity value is 1.00, meaning that all non-"Mild" instances are correctly classified. 

The NPV is 0.94, indicating a high probability of correctly identifying instances that do 

not belong to the "Mild" class. The FPR is 0, indicating no false positive errors, while 

the FNR is 0.66, indicating that 66% of actual "Mild" instances are incorrectly classified 

as non-"Mild". The sensitivity of the "Severe" class is 1.00, indicating that the model 

correctly identifies all instances of the "Severe" class. The specificity value is 0.92, 

suggesting that 92% of non-"Severe" instances are accurately classified. The NPV is 

1.00, signifying a high probability of correctly identifying instances that do not belong 

to the "Severe" class. The FPR is 0.07, indicating a low rate of false positive errors, 

while the FNR is 0, meaning there are no false negative errors for this class. Figure 5.11 

visualizes the performance of Bagging FLIS, which is very impressive for normal 

events that occurred during the observation. 
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Figure 5.11 Performance parameters for Bagging-FLIS 

Table 5.6 presents the classification report for the Boosting-FLIS model. It provides 

precision, recall, and F-score values for different classes. For the "Normal" class, the 

precision, recall, and F-score are all 1.00, indicating that all instances classified as 

"Normal" are correct, with no false positives or false negatives. In the case of the "Mild" 

class, the precision is 1.00, indicating that all instances classified as "Mild" are correct. 

The recall is 0.67, suggesting that 67% of the actual "Mild" instances were accurately 

identified. The F-score is 0.85, reflecting a good overall performance for this class. 

Regarding the "Severe" class, the precision is 0.94, indicating that a significant 

proportion of instances classified as "Severe" are correct. The recall is 1.00, indicating 

that all actual instances of "Severe" were correctly identified. The F-score is 0.97, 

demonstrating a high overall performance for this class. 
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Table 5.6 Classification Report for Boosting-FLIS 

Classes Precision Recall F-Score 

Normal 1.00 1.00 1.00 

Mild 1.00 0.67 0.80 

Severe 0.91 1.00 0.95 

macro avg 0.97 0.89 0.92 

Accuracy: 0.97 

In table 5.6, the macro-averaged (macro avg) provides the average values of precision, 

recall, and F-Score across all classes for Bagging-FLIS. The macro-averaged precision 

is 0.97, macro-averaged recall is 0.89, and macro-averaged F-Score is 0.92. These 

metrics give y an overall sense of how well the model is performing across all classes. 

The classification report for ensemble regression-based algorithms with boosting is 

shown in Annexure IV.  The accuracy is a measure of how many predictions overall are 

correct. In Boosting-FLIS , the accuracy is 0.97, indicating that the model's predictions 

are correct for 97% . 

The boosting-FLIS model in Figure 5.12 exhibits excellent precision, recall, and F-

scores for the "Normal" and "Severe" classes. However, there is room for improvement 

in correctly identifying instances of the "Mild" class, as evident from the lower recall 

and F-score values for this class. 

In summary, this table provides a comprehensive overview of your classification 

model's performance for each class for Boosting-FLIS, as well as an overall assessment 

through macro-averaged metrics and accuracy. 



123 

 
 

 

 

Figure 5.12 Performance of Classification Report for Boosting-FLIS 

Table 5.7 displays the sensitivity, specificity, Negative Predictive Value (NPV), False 

Positive Rate (FPR), and False Negative Rate (FNR) for different classes in the 

Boosting-FLIS model. 

Table 5.7 Confusion Matrix Parameters for Boosting-FLIS 

Class Sensitivity Specificity NPV FPR FNR 

Normal 1 1 1 0 0 

Mild 0.66 1 0.97 0 0.33 

Severe 1 0.96 1 0.03 0 

Macro avg 0.89 0.99 0.99 0.01 0.11 

 

For the "Normal" class, the sensitivity, specificity, and NPV values are all 1.00, 

indicating that the model correctly identifies all instances of the "Normal" class without 

any false negatives, and non-"Normal" instances are accurately classified with no false 

positives. The FPR and FNR values are 0, indicating this class's absence of false 
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positive and false negative errors. The sensitivity of the "Mild" class is 0.66, indicating 

that the model correctly identifies 66% of actual "Mild" instances. The specificity value 

of 1.00 suggests that all non-"Mild" instances are correctly classified. The NPV is 0.97, 

reflecting a high probability of correctly identifying instances that do not belong to the 

"Mild" class. The FPR is 0, indicating no false positive errors, while the FNR is 0.33, 

indicating that 33% of actual "Mild" instances are incorrectly classified as non-"Mild". 

The sensitivity for the "Severe" class is 1.00, meaning that the model correctly identifies 

all instances of the "Severe" class. The specificity value of 0.96 suggests that 96% of 

non-"Severe" instances are accurately classified. The NPV is 1.00, indicating a high 

probability of correctly identifying instances that do not belong to the "Severe" class. 

The FPR is 0.03, indicating a low rate of false positive errors, while the FNR is 0, 

indicating no false negative errors for this class. 

Confusion matrix parameters depicted in Figure 5.13 demonstrate each class's 

sensitivity, specificity, NPV, FPR, and FNR values in the Boosting-FLIS model. These 

parameters are crucial for evaluating the model's performance and ability to classify 

instances across different classes correctly. 

Figure 5.13 Performance parameters for Boosting-FLIS 
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In conclusion, the Boosting FLIS metrics exhibit slightly superior performance with 

higher precision, recall, F-Score, and accuracy when compared to Bagging-FLIS. 

Nonetheless, it's crucial to take into account the particular context and demands of the 

classification task when analyzing these findings. 

The ROC curve is a visual representation used to evaluate the performance of 

classification models, including bagging and boosting algorithms, as shown in Figures 

5.14 and 5.15, respectively. These figures illustrate the assessment of the proposed 

models by plotting the True Positive Rate (TPR) against the False Positive Rate (FPR= 

1 - specificity) at various classification thresholds. 

In Figure 5.14, there is a slight change in the shape of the curve at the top right corner, 

which contributes to a lower area under the curve of 0.99930. This suggests that the 

model's performance may not be optimal in that region. 

Figure 5.14 ROC for Bagging-FLIS 

On the other hand, Figure 5.15 showcases the boosting-FLIS model, which exhibits a 

significantly high AUC of 1.0. A higher AUC generally indicates superior classification 

performance, reflecting a higher true positive rate and a lower false positive rate across 

different threshold values. 
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Figure 5.15 ROC for Boosting-FLIS 

Overall, by comparing the ROC curves and their corresponding AUC values for 

bagging and boosting algorithms, the boosting-FLIS model demonstrates a stronger 

performance in terms of its ability to classify instances accurately and minimize false 

positives, as evidenced by its notably high AUC in Figure 5.15. 

5.4 Comparative Analysis 

Table 5.8 compares the proposed system with existing models used by different 

researchers. The proposed system demonstrates superior performance across several 

performance measures compared to the existing work. It leverages a fuzzy logic 

approach combined with ensemble machine learning for better decision-making 

performance. The proposed method is innovative as it utilizes sensor data and employs 

effective classification techniques. 
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Table 5.8 Comparative Performance with Existing Work 

Technology/ 

Methodology 

[Ref] 

Accuracy Sensitivity Specificity Precision Error rate F score 

Fuzzy 

adaptation 

method [127] 

91.8 NI 96.5 NI NI NI 

Type 2 Fuzzy 

logic, Inference 

IoT [126] 

95.1 98.1 NI NI NI 96.6 

Diagnosis of 

cardiovascular 

with CNN 

[110] 

NI NI NI NI 20 76 

Health 

monitoring with 

Fuzzy Logic 

[112] 

92 NI NI NI NI NI 

Classification 

method [28] 
95.5 NI NI NI NI NI 

Telemedicine 

using ANN and 

structural 

equation 

modelling [138] 

96.18 98.36 96.75 96.11 NI 98.16 

Audio-based 

classification, 

Monitoring [82] 

89.35 89.22 NI NI NI NI 
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NI- Not Investigated 

Table 5.8 illustrates the proposed system's performance parameters compared to the 

existing model. It is evident that the accuracy of the proposed model, using the boosting 

regression approach, specifically AdaBoost, is highly efficient and outperforms existing 

models, showcasing its superiority in accuracy and various other performance 

measures. 

Figure 5.16 depicts the performance analysis with existing work in terms of accuracy. 

The average accuracy achieved by the boosting algorithm is 97%. Additionally, the 

model exhibits a sensitivity of 89%, indicating its ability to identify positive instances 

correctly.  

Telemedicine 

platform for 

disease analysis 

[117] 

80 NI NI 83 NI 78 

Asthama 

detection, area 

features[83] 

83.89 100 77.8 NI NI NI 

Diabetic 

diagnosis, deep 

learning[86] 

86.11 89.3 90.89 NI NI NI 

Proposed work 

Bagging (RF) 
95 78 97.33 95 2 80.66 

Propose work 

Boosting 

(Adboost) 

97 89 98.66 97 1 92 
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Figure 5.16 Comparative Analysis of Accuracy with the existing method 

Figure 5.17 illustrates a comparative Sensitivity Analysis between the existing and 

proposed methods. However, it is important to note that sensitivity may vary across 

different research works. Sensitivity measures how well a machine learning model can 

detect positive instances.  

Figure 5.17 Comparative Analysis of Sensitivity with the existing method 
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Accuracy is the proportion of true results, either true positive or true negative, in an 

overall sample. For well-proportionate results, true positive and true negative are both 

important. Hence, accuracy is more important than sensitivity.  

We must consider sensitivity and specificity if it is to be considered. The specificity is 

reported as 98.66%, indicating the model's proficiency in correctly identifying negative 

instances, as shown in Figure 5.18 

Figure 5.18 Comparative Analysis of Specificity with the existing method 

The precision in Figure 5.19 represents the ability of a particular approach to accurately 

identify positive instances, indicating the proportion of true positive cases among the 

instances predicted as positive. The precision of the proposed model is 97%, reflecting 

a low number of false positive predictions. As compared to other existing work. 
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Figure 5.19 Comparative Analysis of Precision with the existing method 

Finally, the F-score, which combines precision and sensitivity into a single metric, is 

reported as 92, indicating a balanced performance in correctly identifying positive 

instances while maintaining precision, as shown in Figure 5.20. 

Figure 5.20 Comparative Analysis of F-score with the existing method 
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Table 5.9 Comparative Analysis of existing epilepsy related work 

Parameters 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 
F-score (%) 

Ref [43] NI 92.23 93.38 NI 

Ref [88] 90.1 NI NI NI 

Ref [146] 90.3 86.38 NI 88.56 

Ref [148] 92.79 NI NI NI 

Ref [157] 93.88 NI NI 91 

Proposed Model 

(AdaBoost-

Fuzzy) 

97 89 98.66 92 

 

Table 5.9 showcases the performance metrics of various models or methods in a 

classification scenario, possibly within a research framework. Each model is denoted 

by reference numbers, with data provided for accuracy, sensitivity, specificity, and the 

F-score, all presented in percentage form. For instance, Ref [43] demonstrates a 

sensitivity of 92.23% and a specificity of 93.38%, while Ref [146] has an accuracy of 

90.3%, a sensitivity of 86.38%, and an F-score of 88.56%. Conversely, Ref [88] 

displays an accuracy of 90.1% but lacks sensitivity and specificity data. In contrast, the 

Proposed Model (AdaBoost-Fuzzy) shows impressive performance with 97% accuracy, 

89% sensitivity, 98.66% specificity, and an F-score of 92%. This suggests that the 

proposed model surpasses the referenced methods in terms of accuracy and maintaining 

a balanced trade-off between sensitivity and specificity. 

Table 5.10 analyses energy requirements for different embedded boards, namely 

Arduino Uno, Arduino Mega, and the proposed ESP 32 system. It includes voltage 

levels, current consumption, current consumption during deep sleep, DC current per 

I/O pin, and DC current for the 3.3V pin. 
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Table 5.10 Comparative analysis of energy for different board 

Embedded 

Board 

Voltage 

Level 

Current 

Consumption 

Current 

Consumption 

Deep Sleep 

DC 

Current 

per I/O 

pin 

DC 

Current 

for 3.3V 

pin 

Arduino 

Uno 
5V 45 mA 35 mA 40 mA 150 mA 

Arduino 

Mega 
5V 50 mA 500 µA 20 mA 150 mA 

ESP 32 

(proposed 

system) 

3.3V 15 µA 5 µA 20 mA 40 mA 

 

The proposed ESP 32 system operates at a lower voltage level of 3.3V. It exhibits 

considerably lower current consumption than the Arduino boards, with 15 µA during 

normal operation and 5 µA during deep sleep mode. The DC current per I/O pin is 20 

mA, and the DC curren for the 3.3V pin is 40 mA. Based on the analysis, it is evident 

that the proposed ESP 32 system has the lowest energy requirements among the three 

boards. It consumes significantly less current during both normal operation and deep 

sleep mode. 

Moreover, it requires a lower DC current per I/O pin and for the 3.3V pin compared to 

Arduino Uno and Arduino Mega. This information is valuable for evaluating and 

selecting an appropriate embedded board, particularly considering energy efficiency. 

Lower energy requirements can be advantageous in applications where power 

consumption is critical, such as battery-powered devices or systems with limited energy 

resources. 

5.5 Summary 

In this chapter, considering the prototype model environment, the proposed system is 

developed, simulated, and analysed based on sensor data collected from the prototype 

wearable device-based WBAN and IoT for epilepsy classification with intelligent 

model analytics using a hybrid approach using ensemble machine learning regression 

and fuzzy logic inference system (EMLR-FLIS). The main predictive model-based 
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regression algorithms with fuzzy logic inference systems are interpreted for the best 

accuracy with a particular algorithm. Also, the performance of the proposed model is 

compared with existing work, and it is found that the proposed model is much more 

capable in every aspect. 
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CHAPTER 6 CONCLUSION AND FUTURE SCOPE 

6.1 Conclusion 

New opportunities for healthcare applications like activity identification and patient 

monitoring are made possible by wireless body area networks. It is important to review 

and combine their requirements with a feasible computing and communication 

architecture to get the most out of a network in a distant situation. To bridge the gap 

between the IoT's network and its perception layer, we have embraced the concept of 

fog computing. In addition, the Fog server may collect, process, store, and send data 

elsewhere. The system's design is founded on the Internet of Things; information 

gathered by WBAN is transmitted to the Fog server, where it is processed before being 

forwarded to the network layer. The network layer provides reliable routing thanks to 

an established paradigm. The data is received by the application layer, which then 

forwards it to the relevant interface. Node MCU, an open-source prototyping platform, 

is used to create working models of the proposed architecture. The results show that 

architectural considerations aid in reducing WBAN congestion and ensuring on-time 

service delivery. Taking into account a wide range of healthcare issues, we want to 

greatly increase the system's sensor coverage in the near future. Further technology 

advancements and clinical data collecting are needed to establish whether or not the 

specified telemedicine system can be deployed in practice.  

• The integration of IoT, fog computing, and artificial intelligence in telemedicine 

offers a promising approach for extending healthcare services to resource-

limited rural areas. The proposed IFCATS architecture represents a significant 

advancement in telemedicine, enabling proactive healthcare and remote disease 

detection while ensuring robust security measures for sensitive medical data. 

• A proposed intelligent hybrid framework, EMLR-FLIS, combines machine 

learning techniques and fuzzy logic inference to enhance the accuracy of disease 

prediction. This framework holds great potential for benefiting patients with 

similar diseases and can improve human health. 
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• The proposed system's performance has been rigorously evaluated, 

demonstrating its effectiveness through the comparison of multiple 

classification methods and performance parameters for machine learning, fuzzy 

logic, and the fusion of sensor data. 

• To differentiate between moderate and severe epilepsy and normal behaviour, 

the suggested system combined two ensemble machine learning-based 

classifiers with the fuzzy system, i.e. Bagging -FLISS  and Boosting FLIS. 

• Compared to state-of-the-art methodologies, the suggested hybrid ensemble 

boosting machine learning with a fuzzy logic inference system achieves an 

impressive accuracy of 97%. The model exhibits a sensitivity of 90%, indicating 

its ability to identify positive instances correctly.  In terms of specificity, the 

model demonstrates a proficiency of 98.66% in correctly identifying negative 

instances. The precision of the proposed model is 97%, indicating a low number 

of false positive predictions. The error rate is 1%, highlighting a low overall rate 

of prediction errors. The F-score, which combines precision and sensitivity, is 

reported as 92, indicating a balanced performance while maintaining precision. 

• The proposed system, utilizing ensemble machine learning and fuzzy logic, 

proves effective in determining conditions and recommending treatments for 

epilepsy patients while enabling competent decision-making in treatment, 

monitoring, and management.  

• Furthermore, while the approach has been discussed in a general context, it 

holds the potential for adaptation in critical settings such as operating rooms, 

critical care units, infant care, and complex patient scenarios. The results also 

highlight the advantages of using a machine learning-fuzzy logic system, as it 

requires a minimal number of devices and software components, making it an 

optimal choice for intelligent decision-making systems. 

• Overall, this research provides significant advancements in epilepsy diagnosis 

and treatment, showcasing the potential of ensemble machine learning and 

fuzzy logic in improving healthcare decision-making processes. The findings 

open doors for further exploration and customization of the proposed system to 
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cater to specific medical settings and challenging patient cases, ultimately 

leading to enhanced patient care and improved health outcomes. 

• Although the approach has been described generally, it may be modified to be 

used in more crucial settings such as operating rooms, critical care units, infants, 

and more difficult patients.  

• The results also demonstrate that, due to the small number of devices and pieces 

of software it requires, a machine learning-fuzzy logic system is an optimal 

choice for intelligent decision-making systems. The system's implementation 

aims to enhance efficiency in terms of cost, time, and resource utilization within 

the existing infrastructure. 

6.2 Future Scope 

In the future, the increasing availability of health record data presents an opportunity to 

leverage deep learning algorithms for constructing analytical models that can yield 

more accurate and effective results. The further system can be enhanced in 

classification with more health parameters and precise acquisition of parameters 

reading. Also, low-cost, reliable, and precise measurement wearable device 

development is challenging for any disease diagnosis. The main concern is the security 

of health records, so concern-secured protocols must be used to preserve patients' 

privacy.  
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Annexure 

Annexure-I 

Snapshot of simulate result for Ensemble Bagging for trainig dataset 

 

 

Annexure-II 

Snapshot of simulate result for Ensemble Boosting for trainig dataset 
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Annexure-III 

Snapshot of classification report of Bagging regressor model 

 

Annexure-IV 

Snapshot of classification report of Boosting regressor model 
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Annexure-V 

Circuit Block Diagram for node 1 

 

 

Annexure-VI 

Circuit Block Diagram for Node 2 
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