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ABSTRACT 

Currently, the existing wired system for smart farming, as it was difficult to 

manage and install, is replaced by wireless communication. Smart farming with precise 

greenhouse is installed to improvise in managing the growth of agriculture and 

therefore observing different environments in precision agriculture. A numerous system 

for agriculture developed for control system and remote monitoring control system of 

precision agriculture. But due to limited solutions, greenhouse monitoring is not yet 

competent to deal with agriculture growth on entirely control systems. Smart farming 

with accurate greenhouses needs to be implemented for better farming growth 

management, and therefore precision agriculture monitoring in various conditions is 

required. The Internet of Things (IoT) is a new era in computer communication that is 

gaining traction due to its vast range of applications in project development. The IoT 

provides individuals with smart and remote approaches, as an example, smart 

agriculture, smart environment, smart security, and smart cities. This is the most recent 

technology that is making things easier these days.  

The IoT has fundamentally expanded remote-distance control and the diversity 

of networked things or devices, which is an intriguing element. The IoT comprises 

hardware as well as the internet connectivity to real-time application. Sensors, 

actuators, embedded systems, and an internet connection are the key components of the 

IoT. In the farming industry, the IoT is crucial to boosting utility. Innovative agricultural 

practices and medical informatics have the potential to increase crop yield while using 

the same amount of input. Individuals can benefit from the IoT in various ways. 

Intelligent farms require the creation of an IoT based infrastructure based on 

sensors, actuators, embedded systems, and a network connection. The agriculture sector 

will gain new advantages from machine learning and IoT data analytics in terms of 

improving the quantity and quality to fulfil rising food demand. Fog computing is a 

developing computing approach to extend and assist cloud computing. Fog computing 

platforms have several characteristics that help provide services for the users in a 

reduced time and thus improve the QoS of IoT devices such as being close to edge 

users, being open platform, and its support for mobility. Thus, it is becoming a 
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necessary approach for user-centric IoT-based applications that involve real-time 

operations. The objectives of this research work are the following.  

 To analyze various methods to develop a smart farming ecosystem under 

greenhouse environment. 

 To develop an internet of things (IoT) based autonomous system for smart 

farming environment using smart sensors like moisture sensor, temperature 

sensor, soil sensor etc. for computational data analytics. 

 To optimize proposed system using machine learning for fog layer enabled 

devices to achieve the precision management. 

 To compare and analyze the proposed method with existing system with 

performance parameters like accuracy, latency, resources utilization and 

sensitivity. 

As a result, an interest is developed in creating a smart farm IoT application. In 

greenhouse agriculture, this study presented remote sensing of parameters and control 

system. The objective is to manage CO2, temperature, soil moisture, humidity, and 

light, with regulating actions for greenhouse windows/doors dependent on crops being 

carried out once a quarter throughout the year. The main goal is to properly regulate 

greenhouse conditions in accordance with plant requirements, to enhance output and 

provide organic farming. The results show that the greenhouse may be controlled 

remotely for CO2, temperature, soil moisture, humidity, and light, resulting in improved 

management. In this experimentation, Gerbera and Broccoli are considered. The 

primary purpose is to adjust greenhouse conditions in line with plant needs in order to 

increase production and provide organic farming. Overall implementation is remotely 

monitored via IoT using Message Query Telemetry Transport (MQTT) on Adafruit IO 

Cloud Platform, and sensor data is analysed for its normal and anomaly behaviour.  

The findings of greenhouse elements such as soil moisture, CO2, temperature, 

and light for broccoli and gerbera plants are investigated using a graphical depiction 

based on real-world data collected by the suggested model. On Adafruit IO, the 

equipment is used to track of greenhouse elements from afar, including soil moisture, 
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CO2, temperature, and light. Farmers may collect these data using an Adafruit IO cloud 

account and an Internet connection. 

The four essential components of the proposed approach are the cloud layer, the 

fog layer, the edge layer, and the sensor layer. The data required from sensor layer for 

analytics model is collected by using an IoT-based embedded system device for two 

greenhouse plants with sensing parameters as input and related actuators as output. The 

two different analytics models are developed for intelligent and precise farming using 

the classification and regression model. The primary goal of this analysis is to enhance 

production and provide organic farming by adjusting farming conditions according to 

plant needs that are considered in the experimentation.  

A precise control of sensing parameters, CO2, soil moisture, temperature, 

humidity, and light intensity in a smart greenhouse agriculture system is presented using 

a regression-based supervised machine learning approach. However, it appears that the 

greenhouse could be operated remotely for CO2, soil moisture, temperature, humidity, 

and light, resulting in improved management. The overall implementation is remotely 

monitored through IoT using MQTT, and sensor data is analysed for its normal and 

anomalous behaviour. For effective computation over the cloud layer, analytics and 

decision-making system has been developed at the fog layer and constructed using 

supervised machine learning algorithms for precise management using regression 

modelling methods. The proposed framework has improved its presentation and now 

allows it to properly achieve the goal of the entire system. 

Finally, an analytics and decision-making system was built at the fog layer, 

employing two supervised classification-based machine learning approaches, using 

support vector machine (SVM) and artificial neural network (ANN) for effective 

computation over the cloud layer. The experimental results are evaluated and analysed 

in MATLAB software with statistics and machine learning toolbox. The performance 

evaluation of proposed system is analysed using confusion matrix-based parameters, 

accuracy, sensitivity, specificity, and f-score for classification based supervised 

analytics, root mean square value for regression-based supervised analytics with 

computation time for training and testing phase of model.  
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It is found that the classification accuracy using SVM is much better than that 

of ANN and other state of art methods. The suggested approach is also successful in 

creating smart agricultural systems with intelligent prediction-based decision support. 

On the basis of the experimental results, the proposed strategy also proved to be the 

most effective in providing actuators with predictions and control. Furthermore, this 

proposed model can be used in a real-world scenario by making it robust and 

weatherproof. 

Keywords: Precision Agriculture, Intelligent greenhouse, Internet of Things, Machine 

Learning, Smart Farming, Fog Computing. 
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CHAPTER 1 INTRODUCTION 

1.1 OVERVIEW AND BACKGROUND 

The land and quality of the plants are now the crucial daily bounds for money 

harvests or food crops, making plant agriculture a creative task. Poor farming 

knowledge and information about new techniques is a significant problem in modern 

agriculture. Our forefathers in the agricultural sector avoided using specialised 

technology for individual plant growth in favour of general natural phenomena. The 

introduction of technical machinery into the agricultural sector has made it possible to 

cultivate plants in settings that go well beyond the norm. This has led to the production 

of higher yields and lower manure usage. The huge use of fertilisers, defoliants, and 

water in plant crops is in line with their natural rationality [2, 3]. In intensive nursery 

settings, growers often use agrochemicals in quantities that exceed the true yield 

demands, leading to ecological pollution and waste.  Crops are handled with a lot of 

induction without taking target estimates obtained as a result of advanced crop-

checking technology into account, and when compared to overall creation estimates, 

the value of water and agronomics is inexpensive. In particular, a sizable percentage of 

working people relies on the farming sector for their livelihood. In India, this number 

is particularly high, with 53 percent of the working population and 61% of the working 

population, respectively [4]. When considering the size of its market, India is the second 

largest producer of organic goods in the world. By 2022, it is expected that farm revenue 

in India will have doubled, according to current studies and forecasts [5]. By 2025, 

Inc42 projects that the Indian agricultural sector would grow to a value of $ 24 billion. 

The sixth largest food and grocery market in the world is in India, where 70% of sales 

are made through retail. According to the first advance estimates for FY23 (Kharif 

alone), the nation's overall production of food grains is predicted to be 149.92 million 

tonnes. India's rapid population growth is the primary force behind the industry's 

growth. This is further supported by the increase in income levels in rural and urban 

areas, which has increased the demand for agricultural products throughout the country. 

Accordingly, the market is being encouraged by the increasing use of innovative 
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technologies such as blockchain, artificial intelligence (AI), geographic information 

systems (GIS), drones, and remote sensing technologies, as well as the introduction of 

numerous e-farming applications. 

 

Figure 1.1   Agriculture Exports from India (US$ Billion) (Source: IBEF) 

As shown in figure 1.1 the industry has had strong growth in terms of exports 

during the past 12 months.  

• Exports of marine items totaled $7.77 billion in FY22. 

• The value of rice exports (including basmati and nonbasmati) was $6.98 

billion USD. 

• Buffalo meat totaled $3.30 billion dollars. 

• The value of sugar exports was $4.60 billion USD. 

• The value of tea exports was US$750.93 million. 

• The value of coffee exports was $1,020.80 billion USD. 
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1.1.1 Technological Progress in Modern Agriculture 

Modern farming and horticultural production systems are undergoing 

significant technological progress, which has led to the terms "agriculture 4.0" and 

"Smart Agriculture" (SA) [6]. Numerous innovative technologies, such as autonomous 

agricultural trucks, satellite infrastructure, and unmanned aerial vehicles (UAVs), will 

be linked to future scenarios. In particular, modern farmers will benefit greatly from 

adopting both technologies related to precise farming and IoT. In reality, a much more 

sensible and superior horticultural production framework is needed to adequately 

address some impending problems, such as the rapid increase in population, 

atmospheric conditions, and the consumption of common assets. Therefore, 

investigations and mechanical advancement can be solutions to reduce these 

challenges. The new advancement in agriculture [7–10] is probably the one for the first 

half of the 21st century, with enormous design challenges frequently spiking enormous 

arrangements through challenging inventions. The advancement related to agriculture 

5.0 is based on the concept that farms are using automated activities and emotionally 

supporting networks based on the freedom of individual choice, as outlined by the 

precision agriculture standards. As a result, it is likely that the ideas behind agriculture 

5.0 will incorporate the usage of robotics and possibly even some types of artificial 

intelligence. Ranches have typically relied on a large number of sporadic professionals 

to gather harvests and keep profits high.  

Since society has changed from an agricultural culture in which many people 

lived on homesteads to one in which many people lived in urban settlements, ranches 

are facing the difficulty of a manpower shortage. AI-enhanced farming robots are one 

approach to the workforce crisis. An example of how AI-enhanced farming robots can 

help alleviate labour shortage is a smart greenhouse management system. Smart 

greenhouse systems provide advanced energy optimisation and microclimate regulation 

[11-15]. The factors; temperature, humidity, light, and soil moisture are crucial to 

controlling and monitoring to ensure optimal plant growth. 



 

4 

 
 

 

 

Figure 1.2   Smart Technologies for Agriculture 

Figure 1.2 shows the smart technologies that will be beneficial for smart farming. 

Sensors for things like humidity, light, soil, temperature, water, etc. are all part of the 

field of sensing technologies. A farm may employ a software programme developed 

specifically for it. It is possible to communicate efficiently using a cellular system. 

Positional technology such as GPS or satellite may be used to construct machine 

learning (ML) algorithms for data analysis and decision making. [16, 18, 21-25]. 

Ecologists are interested in testing for the following criteria to better understand the 

plant growth cycle and to conduct active studies if any of the elements are changed: 

 CO2 level. 

 Lycopene monitoring to determine the change of the produce. 

 Nitrogen monitoring to determine the puffiness of the produce.  

 pH Value. 

 Phosphorous deficit to determine soil fertility. 
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There is a significant change in the way farms collect and use information to make 

informed operational choices. Information and communication technology (ICT) 

demand in agriculture, including machine intelligence algorithms and rationalisation of 

raw material use as a capital-centred system, cutting-edge electronics in beverage 

production in sustainable and environmentally sensitive practices, all add up to what is 

known as ‘intelligent culture’. New technologies are enhancing the lives of a wide 

variety of individuals all over the world. People's ability to influence their surroundings 

with more certainty is greatly facilitated by the IoT and other various forms of sample, 

such as grown samples and sample learning techniques. In order to provide essential 

information to the final labourer and services regarding the foundation and properties 

of agro production and structures, IoT and data reasoning are used in the environmental 

and agronomic sectors for two-pronged diagnostics and control of brilliant culture 

arrangements. The summary of smart agricultural aspects [31-34] is shown in Figure 

1.3. 

 

Figure 1.3   Overview of IoT in Agriculture 
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Actuators' intelligence is being controlled via ML. The algorithm takes into 

account the specific environmental and soil parameters of the plant to provide the best 

possible recommendations to the farmer. IoT is also used to gather sensor data from the 

field so that the data and ideas from the ML algorithm are made available on a UI 

platform, making it easier to monitor the field in real time. Predictions are made using 

sensor data using supervised machine intelligence algorithms, and agricultural solutions 

are provided. The use of IoT gadgets provides an automated data prediction. The data 

collected will help the farmer make a well-informed choice [96, 97]. The technology 

suggested will improve the effectiveness of the system and foresee more advanced 

intelligence-based control possibilities. Climate change will reduce crop yields because 

it slows plant development in agricultural settings. Greenhouse gases, temperature, soil 

moisture, and light are just some of the environmental sensor elements that require 

constant maintenance and monitoring. Intelligent agriculture could use IoT innovation 

as a solution to this problem [98, 99]. For optimal plant development, this type of 

agriculture carefully controls greenhouse variables such as temperature, water flow, and 

light management. AI-enhanced farming robots might help alleviate the labour crisis. 

Smart greenhouse systems provide advanced energy optimisation and microclimate 

regulation. The following factors - temperature, humidity, light, and soil moisture - are 

crucial to controlling and monitoring to ensure optimal plant growth. 

There are main keywords on which work focus, which are explained below. 

1.1.2 Greenhouse 

A greenhouse is a structure similar to the state of a home that is protected with the 

essential elements to preserve microclimate, such as water stream management, 

directed temperature range, etc. for robust plant development. As a result, it stays away 

from things like too much light invasion, high temperatures, diseases, creepy crawlies, 

etc. Any plant may be grown by a farmer at any time of year by preserving the 

greenhouse environment. As one of our topics of interest, greenhouse farming has 

relevance that shows the reality of why it has gained so much significance [104–108]. 
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1. Greenhouses need much less water systems than ordinary cultivars, as it traps 

the dampness. 

2. Reduces the span of editing and expands the nature of harvests as well. 

3. Successfully adjusting environmental conditions like humidity and temperature 

to meet the needs of plants. 

4. Through nurseries, it is also possible to develop slow-time-of-year crops. 

5. Pests are easily controlled. 

6. It is exceptionally flexible, as the harvests can be filled in different climatic 

conditions. 

 

 

Figure 1.4   Schematic of Green House Technology 

 

The term "greenhouse technology" refers to the practise of using automation to 

provide optimal growing conditions for plants or crops. Although its main function is 
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to shield crops from unfavourable weather, as time has progressed, its use has expanded 

to include additional benefits, such as higher yields and lower input costs. Greenhouses 

are simple to regulate because they feature a closed environment. The latest technology 

available to commercial plants allows maximum yield with minimal effort [109–112].  

The state-of-the-art smart greenhouse integrates cutting-edge scientific knowledge 

from a variety of software and hardware technologies.  

i. Greenhouse Controllers 

By automating many greenhouse management tasks, environmental controllers help 

farmers increase production while decreasing overhead. Using a smartphone app, you 

can open and close vents and turn on and off using a smart motor controller. Sensors 

placed throughout the greenhouse send data to controllers, which are then programmed 

to meet certain specified requirements. Sensing is where we must begin.   

ii. Sensors  

Sensors in a greenhouse record data on various factors such as the interior and exterior 

atmosphere, surrounding CO2 levels, light intensity, photoperiod, water potential, and 

electrical conductivity, allowing the grow room controller to maintain optimal 

conditions for plant growth. By using an app to keep tabs on the myriad of factors that 

go into greenhouse maintenance, you may save a lot of time and money on labour. The 

sensor reports crop-level information to the operating system, which then prompts the 

motors to open or close. Let us take a look at how automation ties everything together. 

iii. Automation 

Automation helps farmers boost crop yields by maintaining a constant growing 

environment while cutting costs by reducing energy use and man hours. This is great 

news since it frees up producers' time and effort for other endeavours, like growing 

their business or collaborating with other companies. The IoT provides a solid answer 

through sensor-triggered automation.  
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iv. Data  

The greenhouse controllers collect and analyse data over time, revealing which 

settings for watering, feeding, lighting, and climate management result in the best 

harvests. This information can be used to improve yields, resource efficiency, and 

bottom lines in repeated harvests. 

The various advantages of greenhouse farming are addressed in the following 

sections [113-119]. The discussion about increased production, minimising production 

risks, profit maximisation, etc. are discussed.  

i. Increased Production 

By simulating natural conditions indoors and producing more plants per square 

foot than you could in an open field, greenhouse farming can increase agricultural 

productivity. 

ii. Minimising Production Risks 

When crops are contained in one area, they are protected from such rapid 

temperature changes. In addition, it can prevent birds and other animals from damaging 

crops by keeping them at bay. 

iii. Profit Maximisation 

Combining greenhouse farming with other techniques, such as hydroponics, has 

been shown to increase yields by two to thrice compare to open-field agriculture. Profits 

can increase if efforts to save energy and materials are successful. 

iv. Controlling Pests and Illness 

Pests and diseases are less likely to be a concern if a greenhouse is used. Only 

the necessary workers need access to the enclosed area, reducing the likelihood that 

pests or diseases may spread to the crops through human contact. If any issues arise, 

you may also pinpoint them with this method. Separating sick or damaged plants from 

healthy ones can save the harvest. 
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v. Perpetual Harvesting 

The regulated environment of a greenhouse makes it possible to grow plants 

outside of their traditional growth seasons. High-quality crops can be cultivated year-

round, regardless of the weather outside, thanks to greenhouse temperature control 

technology. 

vi. Strengthened Safety and Stability 

The greenhouse-controlled atmosphere is safe and stable for plants and workers 

due to the lack of interference from the outside world. 

A greenhouse is a great method to cultivate plants, but it requires constant 

attention. Greenhouses cannot maximise crop yield without greenhouse environment 

and growth management systems. Greenhouse management can benefit from 

automation in administration or technology development. The care of plants that grow 

within a greenhouse requires management to adjust and regulate environmental factors. 

There are a variety of methods to supply plants with their daily needs, such as food and 

water [120–128]. Among these methods are: 

a) Fertigation Equipment for a Greenhouse 

An automated system for controlling irrigation systems, a fertigation manager 

is run by a computer. The state-of-the-art technology included allows the daily 

management of several irrigation schemes for numerous greenhouse crops based on 

greenhouse temperature, moisture, and more. In addition, it facilitates the accurate 

administration of plant hormones. 

b) Water Purification for Hydroponics 

Water treatment systems may be used to recycle and treat water, which is the 

best approach to supply clean water to your greenhouse plants. Modern ozone systems 

help filter irrigation wastewater into usable water to minimise water stress and 

maximise plant growth in greenhouses. 
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c) Managers of the Climate in Greenhouses 

Greenhouses require a reliable climate and growth management system to 

control the inside temperature and humidity and to keep tabs on the exterior wind, rain, 

the sun and the air temperature. Keep tabs on the greenhouse's CO2 levels, lights, 

shades, vent placement, and more. 

The need for growth management and control systems increases as greenhouse 

plant cultivation expands. They offer assistance at every stage, from limiting fertilisers 

and sugars to stopping stem growth to ensuring adequate sunlight for optimal plant 

development and keeping an eye on the greenhouse lights. Everything in greenhouses 

must be meticulously monitored and maintained, from plant density to water content. 

A greenhouse management and control system uses cutting-edge technology to provide 

a unified platform to manage and adjusting all aspects of a greenhouse from a single 

location. The most effective greenhouse management systems can help with a wide 

variety of tasks, including but not limited to: heating, ventilation, irrigation, fertigation, 

carbon dioxide, humidity, shade, misting, water treatment and recycling, soil and 

moisture levels, and more. Such fully or partially automated solutions allow for more 

efficient greenhouse management on a larger scale. Without a reliable tracking and 

management system, dealing with issues and prioritising your work can consume a lot 

of time. Controlling all components of the greenhouse growth environment from one 

central location is possible with greenhouse automation [129–135]. 

The use of natural resources, such as light, heat, humidity, ventilation, and CO2, 

is essential for healthy crop growth, with strong stems and roots and sufficient yields. 

Different types of climate have distinct effects on the production of various crops. The 

climate in the greenhouse must be managed to ensure uniform growth and high-quality 

harvest. There are five factors that can be adjusted to modify the greenhouse's climate. 

This makes it possible for plants of all types to flourish within greenhouses year-round, 

regardless of the weather outside. The following are the five environmental elements 

that need to be managed in the greenhouse. 
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a) Heat  

To maintain the ideal air temperatures within the greenhouse, plant producers 

must carefully regulate the heating system. Some plants can suffer from heat stress or 

illness if the temperature is too high, while others will thrive if you create conditions 

similar to those seen in the summer. 

b) Humidity 

Humidity in the air has a significant impact on plant development. Air 

temperature, precipitation, and drought conditions are all potential causes of dampness. 

The plants inside a greenhouse produce heat and humidity by exhaling carbon dioxide 

and absorbing oxygen. Therefore, environmental management is crucial for optimal 

plant growth and harvest. 

c) Air Circulation 

Humidity can be reduced, temperature can be stabilised, and a new supply of 

carbon dioxide can be ensured all with proper ventilation. Therefore, plant life requires 

an open setting. But the appropriate breeze is essential for development. Fans and vents 

allow for the regulation of airflow within greenhouses. 

d) Radiance 

When tending crops in open fields, producers have little say over the intensity 

of the sun's rays. However, within greenhouses, the intensity of the light may be 

controlled. Different plants respond differently to different levels of light. For plants to 

thrive on a low-light diet, you will want to use light filters, blackout curtains, etc. 

e) Carbon Dioxide 

Carbon dioxide (CO2) is another crucial environmental element that can have a 

significant impact on plant development. For photosynthesis, plants must absorb carbon 

dioxide, as you know. Gas boosts agricultural output in the same way. The ability to 

produce oxygen during photosynthesis can be stimulated by increasing the 

concentration of CO2 in a greenhouse. 
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Since growing greens in a greenhouse is an expensive venture, it makes sense 

to focus on growing high-yielding crops that have great economic value and sustained 

market demand. Greenhouses are typically used for the commercial cultivation of 

tomatoes and other crops that require a warm environment. Flowers, plants, fruits, and 

even transplants may all benefit from growing in a greenhouse. They can also be used 

to cultivate exotic greenhouse varieties. The economic viability of a greenhouse is 

influenced by demand, supply, weather, and labour. Common plants grown in 

Greenhouses for Flowers and vegetables. Our aim was to conduct our experiments with 

two plants: gerberas and broccoli [136-142]. 

The market value, vase life, and popularity of gerberas all contribute to the 

importance of the flower. Greenhouses in tropical and subtropical regions allow the 

cultivation of high-quality gerbera. The Gerbera plantation in the greenhouse is shown 

in Figure 1.5. Gerbera is a miniature perennial herb (about 30-45 cm in height) with 

hair on its body. The width of the leaves is about 3 inches. The stems are tall and lean, 

without leaves, and can be either a single hue or a combination of many. In warm and 

humid climates, it blooms continuously throughout the year. From seed to bloom, 

expect about three months. Gerberas can be grown from their own seeds, via cuttings 

of buds-containing clumps, or by tissue culture. Tissue-cultured seedlings are the best 

option for commercial growth in a controlled setting. Gerbera daisies have a rather 

lengthy vase life, making them ideal for use in decorative arrangements, occasional 

gardening, and even cosmetics.  

Broccoli, the green crown gem vegetable, is a model food due to its abundance 

of beneficial properties. Fibre, iron, magnesium, potassium, zinc, vitamins C and B, 

and vitamins K are all present in abundance in broccoli. The sulforaphane chemical it 

contains is also cancer-fighting. These verdant trinkets are planted in early spring or 

late summer because they are cold-season veggies. 
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Figure 1.5   Gerbera flower plantation in Greenhouse 

 

The broccoli flower plantation in the greenhouse is shown in Figure 1.6. A cold 

frame greenhouse, because of its structure, is ideal for growing broccoli and other cool-

season vegetables. Planting it can result in one or two major harvests and several 

smaller harvests during the growing season. About two months before the final freeze 

date, plant broccoli seeds in modular trays. A greenhouse location with 6 to 8 hours of 

sunshine each day is ideal. Full light is ideal for growing broccoli; shade will result in 

a weaker crop. 

 

Figure 1.6   Broccoli flower plantation in Greenhouse 
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1.1.3 Benefits of Smart Greenhouses 

Smart greenhouse allows growers to minimise labour and improve efficiency 

in the use of resources and chemicals while maximising the yields shown in Figure 1.7. 

 

Figure 1.7  Benefits of Smart Greenhouse 

 

i. Preserve Optimal Microclimate Conditions 

With the help of IoT sensors, farmers can gather a wealth of information at a 

level of detail never before possible. They monitor the greenhouse's environment 

parameters in real time, such as inside and outside atmosphere, in terms of temperature, 

moistness, light intensity, and CO2 levels. Keeping ideal environmental conditions for 

plant growth while promoting energy savings, this information triggers pertinent 

modifications to the HVAC and lighting settings. At the same time, motion/acceleration 

sensors may detect whether a door has been left open accidentally. 

ii. Optimise Water Use and Fertiliser Application 

Smart greenhouses help farmers monitor their crops and their environment 

simultaneously. This guarantees that the water and nutrient demands are met in a way 

that maximises harvests. Indicators of agricultural water stress include measurements 

of soil volumetric water content. Fertiliser needs can also be learnt from soil salinity 

tests. This information allows automatic activation of sprinkler and spraying systems 

to meet the needs of the crop in real time with as little human intervention as possible. 
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iii. Prevent the Spread of Disease by Eliminating Infection 

Crop infectious diseases are a constant problem for farmers and significantly 

reduce profits with each new epidemic. Agrochemical treatments are readily available, 

but farmers are not always sure when to use them. Too frequent applications pose 

environmental, safety, and financial problems, while not using treatments might lead to 

harmful disease outbreaks. Insights into pest and fungal disease threats can be gleaned 

from samples from greenhouse conditions, external elements, and loam composition 

using an ML framework. Using these samples, farmers can minimise the cost of 

chemicals while still ensuring a healthy harvest. 

iv. Reduce Crime and Boost Safety 

The theft of high-value crops from greenhouses is common. Many growers do 

not have a reliable security system because it is too expensive to set up a network of 

closed-circuit television cameras. The affordable monitoring of the status of the doors 

and the detection of suspicious actions is now possible thanks to IoT sensors in smart 

greenhouses. They are connected to an automatic alarm system that activates right away 

in the event of a safety threat to the plant. 

1.1.4 Precision Agriculture 

Management systems focussing on precision agriculture are constantly 

evolving. They provide farmers with a wide range of solutions to common issues. 

However, precision agriculture encompasses a vast set of resources that farmers must 

understand to maximise yields. Precision farming uses cutting-edge tools like satellite 

images and field mapping to boost yields and profits. As an added bonus, it uses 

traditional materials to the fullest. Therefore, by making it easier to solve urgent 

economic and ecological challenges, this form of agricultural management promotes 

the development of sustainable agriculture. [143-155] Some examples of the 

technology used in such a system are satellite imaging, GPS, and drones. From this 

information, farmers learn about their crops, weather forecasts, environmental changes, 

and more. The ability to handle different pieces of land separately from each other 
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distinguishes precision farming from conventional farming. Rearranging the quantity 

of fertiliser, optimising the movement of techniques, and conserving fuel are just a few 

examples of how zoning may help with field management.  

i. Importance of Precision Agriculture 

Precision agricultural technology allows farmers to manage their operations 

from a distance. Large fields or clusters of tiny areas are not a problem for even the 

smallest farms. 

It significantly improves crop efficiency, reducing expenses while boosting 

output. Given that precision agricultural technology appears pricey at first appearance, 

that latter point is crucial. Compared to the savings made through more traditional 

farming methods, the long-term savings are much greater. As a result, farmers can 

determine the precise amount of fertiliser required and the best types for a particular 

region. Furthermore, precision farming technologies improve long-term planning of 

agricultural operations, allowing for quick changes in strategy in response to unforeseen 

events. The quality is maintained and a reliable food supply is made possible through 

efficient use of the land. As a result, precision agriculture in agriculture is crucial to 

ending hunger in the world. 

ii. Benefits of Precision Agriculture 

Both farmers and Mother Nature benefit from precision agriculture. Furthermore, 

these regions are linked because agricultural conditions are negatively impacted by 

environmental deterioration. Several advantages for such greenhouse management are 

as follows: 

 Developing favourable attitudes. 

 Spreading modern farming techniques to increase output quality, quantity, and 

minimise costs. 

 Efficient use of water resources. 

 Lowering the dependence on weather conditions. 

 Preserving soil health by using fewer pesticides. 
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 Reducing the price of resources and things like water, seeds, gasoline, etc. 

 The full genetic potential of the crops being produced is realised. 

 Prevents soil degradation. 

 The socioeconomic situation of farmers is shifting because of precision farming. 

 Reduction of chemical application in crop production. 

 To increase agricultural productivity. 

With the use of precision farming, farmers can greatly raise the quality of their output 

while also cutting costs. 

Limitations of Precision Agriculture   

 High cost. 

 Heterogeneity of cropping systems and market imperfections. 

 Less technical knowledge, technology, and expertise can damage the crop. 

 Can be easily applicable for large land holdings.  

1.1.5 Internet of Things 

The Internet of Things (IoT) is made up of intricate networks connecting 

billions of devices and people to create multistage, multishow, and multi-innovation 

systems. The condition of the smart environment can be created with the aid of 

equipment gadgets and web connectivity, providing information on cities, businesses, 

health, energy, transportation, and other aspects of our daily lives. This is possible by 

simply connecting all devices at any time and location with the input of information. 

  IoT refers to an arrangement in which various physical items, such as 

computers, servers, and mobile devices, are embedded. Smart homes and cities, 

transport systems, and healthcare networks are some of the most well-known uses of 

the Internet of Things. All of these structures have many moving parts. The advent of 

edge computing technologies has made the transition away from the traditional cloud-

centric architecture. The uniformity of IoT's growth and architectures depends on the 

standardisation of their classification. There are four distinct levels in total: "service," 

"platform," "network," and "device." In contrast, most IoT gadgets aren't particularly 
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powerful when it comes to things like central processing unit speed, amount of storage 

space, or battery life. This means that they are vulnerable to a wide range of cyber 

threats and should be treated as such [156-164]. Consequently, there are concerns about 

inadequate security and the potential for privacy violations. The blockchain is among 

the most promising new technologies that have emerged to deal with the 

decentralisation problems. In Figure 1.8, X shows the year and Y shows the connected 

devices in billions. Statistics project that the number of IoT devices will more than 

double in 2020 to more than 25 billion in 2030. 

 

 

Figure 1.8   Expected IoT connection with coming generations 

 

i. Components associated with IoT 

An Internet of Things (IoT) system is a network that connects various gadgets, 

digital machines, and other objects that may transport data across a network without 

involving a human. We need to properly integrate five key elements, as indicated in 

Figure 1.9, for our system to be categorised as an IoT system. 
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Figure 1.9   Primary components of IoT 

ii. Things or Devices  

These have sensors and actuators built right in. While sensors take in 

information from their surroundings and send it to a gateway, actuators really do 

something with that information.  

iii. Gateway  

The sensors send their data to the Gateway, where it undergoes preliminary 

processing. Provides protection for the network and the information being sent.  

iv. Cloud  

Once gathered, the data is stored in the cloud. To put it simply, a cloud is a group 

of servers that are always connected to the Internet.  

v. Analytics  

After the data are uploaded to the cloud, processing may begin. In this context, 

several algorithms are used for data analysis (including ML and similar methods).  

vi. User interface  

The part of a computer system with which a user interacts to see or alter data. 

 

1.1.5.1 Layer Architectures of IoT 

The Perception Layer, Network Layer, and Application Layer are the three 

levels that make up the basic IoT architecture, which is illustrated in Figure 1.10 below. 

The first figure shows the basic IoT architecture with three layers perception, network 
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and the application layer and second figure shows its advanced version with more 

dedicated layers in which a further business layer is added for application development 

in the business era and the processing and transport layer are added, where the transport 

layer acts as network layer and the processing layer acts as the intermediate data 

processing layer instead at the application layer.  

 

 

Figure 1.10   Layer-wise architecture for IoT 

 

1.1.5.2  IoT based Smart Farming Cycle 

Information is the lifeblood of IoT technologies. Smart farms, in order to operate at 

peak efficiency, need to establish a never-ending loop of data collection, analysis, and 

action [165-170]. An intelligent agricultural cycle may look like this: 

 Actions: Operation of the tasks causes a recurrence from the beginning of the 

cycle. 

 Decisions: The study results in options that farmers can use to improve their 

harvests 

 Diagnosis: IoT solutions built in the cloud are used to analyse sensor data. 

 Observation: Data about environmental parameters are collected using sensors. 
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1.1.5.3 Benefits of smart farming: How is the IoT shaping agriculture? 

In many ways, agriculture stands to benefit from technological advancements 

and the Internet of Things. There are specifically 5 applications of IoT that benefit 

agriculture: 

 The information, a lot of information, collected by smart agricultural sensors on 

things like weather, soil quality, crop growth progress, and livestock health. 

You may monitor the overall health of your company, employee productivity, 

machinery use, etc. with the information gathered here. 

 Increased control over operations internally, leading to less danger in 

production. Knowing how much you can expect to produce helps with logistics 

planning. The exact amount of crops harvested may be planned to avoid having 

unsold inventory. 

 Better cost management and less waste due to tighter manufacturing oversight. 

You may reduce the likelihood of losing your harvest by keeping an eye out for 

any abnormalities in the development of your crops or the health of your 

livestock. 

 Automation of formerly manual procedures has led to an increase in 

productivity. Many steps in the production cycle, such as watering, fertilising, 

and pest control, can be automated with the help of smart devices. 

 Increased production and better quality. Using automated systems to optimise 

yields and quality control throughout the manufacturing cycle. 

 

1.1.5.4 IoT use cases in Smart Agriculture 

i. Climate Conditions 

The agricultural industry is highly dependent on the weather. And having faulty 

climatic knowledge severely reduces both agricultural yield and quality. But IoT 

technologies let you check the forecast live. Sensors are used to take greenhouse and 

atmospheric readings to determine which plant varieties would thrive under certain 

weather conditions. Sensors that describe the IoT ecosystem can precisely measure 
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variables like humidity, rainfall, temperature, and more in real time. You can find a wide 

variety of sensors on the market to monitor all of these factors and set them up in a way 

that suits the needs of intelligent greenhouse farming. To promote optimal growth, these 

sensors monitor the environment and crops. If unstable weather is detected, a warning 

is sent. Having a physical presence during unfavourable weather is no longer necessary, 

which increases production and allows farmers to enjoy greater advantages of 

agriculture [171-178]. 

 

ii. Precision Farming 

One of the most well-known uses of the IoT in agriculture is precision 

agriculture and agriculture. Using applications used for intelligent agriculture, we can 

track creature, vehicle, with field observation, and stock roster monitoring improves 

farming's precision and control. In PF, the collected sample is analysed with the 

intention of taking action. With the use of sensors, data can be generated in precision 

farming, allowing farmers to analyse the data and make timely, informed decisions. The 

adoption of various PF techniques for irrigation, livestock, vehicles, and other things 

related to farming, may significantly increase the production and efficacy of farms. In 

order to maximise productivity, precision farming analyses soil conditions and other 

relevant characteristics. Water and nutrient levels can be monitored in real time, and 

you can also monitor the operating characteristics of the linked devices. 

 

iii. Smart Greenhouse 

Weather stations can now automatically alter the greenhouse's environment 

using the Internet of Things based on user's instructions. Elimination of human error 

resulted in reduced costs and improved precision in greenhouses that have used IoT. 

The use of natural power sensors for greenhouses results in cutting-edge and budget-

friendly farming. These kinds of sensor collect and send sample in real time, allowing 

for precise monitoring of the greenhouse environment. The sensors allow for remote 

monitoring of the greenhouse's water usage and condition through the use of email and 

text message notifications. IoT allows precise watering systems with pressure, 
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humidity, temperature, and luminosity sample data gathering with the use of these 

sensors. 

iv. Data Analytics 

The established database system cannot handle the sample data that the IoT 

sensors have gathered. The problem can be resolved with an end-to-end IoT platform 

and cloud-based data storage. These systems have the potential to significantly improve 

the standard of daily tasks. Sensors are the primary mechanism for obtaining enormous 

volumes of data in the Internet of Things. Analytics tools are used to examine the data 

and get insight from it. Data analytics is useful to assess the state of crops, animals, and 

other agricultural factors. Better choices can be made with the data help of the obtained 

thanks to advances in technology. By collecting data from sensors, IoT devices allow 

you to monitor crop health in real time. Better harvesting decisions can be made with 

the use of predictive analytics. By analysing trends, farmers can prepare for expected 

weather and agricultural harvests. With the use of IoT, farmers have been able to 

increase both the quantity and quality of their production by better monitoring crop 

health and soil fertility. 

v. Agricultural Drones 

The deployment of agricultural drones is the most recent technological 

disruption that has significantly impacted agriculture. Drones, both ground-based and 

airborne, are put to work in fields for purposes such as crop analysis, monitoring, 

planting, and spraying. Drone technology has provided a significant boost to the 

agriculture business with the help of strategic management that works on real time data 

samples. A well-designed drone can pinpoint exactly where watering needs to be 

adjusted. As soon as the plant begins to form, the sensors report its status and compute 

a vegetation index. In the end, environmentally friendly drones have become the norm. 

The end effect will drastically decrease the amount of chemicals mixed with water. 

vi. Smart Irrigation on Agriculture Land 

Smart irrigation uses automated sprinkler systems and smart pumps. Sensors 

that measure soil moisture are becoming common, especially in agricultural settings. 
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Soil moisture sensors send data to smart pumps or smart sprinklers, which then activate 

or deactivate accordingly. 

 

vii. Monitoring Soil Quality 

To determine the fertility and moisture content of their soil, most farmers rely 

on a sampling procedure. Chemical breakdown differs from place to place, therefore, 

fortunately, this sampling does not provide reliable data. This is not going to help much 

in the meantime. It is crucial in agriculture because of this issue. To capture precise soil 

data that can be utilised in the dashboard or mobile app for farm monitoring, sensors 

can be placed at regular intervals throughout the farmland. 

viii. Livestock Monitoring 

Cattle tracking, animal welfare, and health monitoring are all areas where IoT 

devices could prove invaluable. This information can then be utilised to single out 

unwell animals for isolation, reducing the risk of disease transmission. Labour costs 

can be reduced by using Internet of Things-based sensors for livestock monitoring. 

 

1.1.6 Machine Learning 

ML enables a broad idea with many useful applications, including contemporary 

agriculture. ML has the potential to revolutionise agriculture by helping farmers select 

quality and health before planting. Artificial intelligence (AI) includes the subfield 

known as machine learning. In many ways, predictive analytics may be a game changer. 

Artificial intelligence allows farmers to collect and handle data much more quickly and 

efficiently. AI can assist farmers with many activities, such as evaluating market 

demand, forecasting prices, and determining the best times to sow and harvest [179–

185]. 

 

ML has several uses in agriculture. Here are some of the more crucial ones: 

 Suitable time for crops 

 Crop Yield Patterns 

 Water and Irrigation 
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 Agribots 

 Farm animals 

 

There are many uses of ML in Precision Agriculture which are mentioned below 

 Analyze Market Demand 

 Risk Management 

 Breeding Seeds 

 Crop Protection 

 Soil Health Monitoring 

 Harvesting 

Many problems, including climate change, lack of irrigation systems, food 

shortages, low groundwater levels, large losses, and waste, have plagued the 

agricultural industry in recent years. The future of farming may depend on cognitive 

solutions such as ML. A significant scope is in terms of broad-scale agricultural 

research and development, but there are many applications and cutting-edge 

technological instruments available that may improve the system as a whole. The 

potential for ML in agriculture is immense. For this reason, stable and secure apps are 

required. Extremely powerful ML tools can adapt to changing environmental 

conditions. It also helps them make decisions in the moment and provides the right 

infrastructure to gather contextual information. The high cost of cognitive solutions is 

an additional issue that can be detrimental in agriculture. To find the best solutions and 

enable the wider distribution of technological tools, technology is used [186–192]. 

The study of data, including ML, is becoming increasingly popular. Algorithms 

are taught to classify data, generate predictions, and find hidden insights in data mining 

projects using statistical approaches. These discoveries inform application and 

commercial decisions that should eventually have an effect on vital growth indicators. 

Data scientists are projected to be in increased demand in tandem with the development 

and proliferation of big data. A branch of artificial intelligence known as machine 

learning (ML) enables computers to "learn" new skills and improve over time without 

being explicitly programmed. In the discipline of machine learning, the goal is to 
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develop methods that can autonomously access sample data and learn from them. 

Various data samples, observations, examples, experience, or instruction, are the basics 

for ML. It examines the data for patterns so it can make inferences from the provided 

examples. The fundamental objective is to empower network nodes to learn and adapt 

on their own, without the help of humans [193-205]. There is little doubt about the 

usefulness of ML for AI systems. However, what ML strategy should you implement? 

Among the numerous options available for ML training are: 

 Supervised learning 

 Unsupervised learning 

 Semi-supervised learning 

 

1.2 RESEARCH PROBLEM 

Conventional agribusiness, which depends only on farmer's insight, indicated 

unequipped for taking care of the rapidly developing horticultural prerequisites. 

Additionally, present day horticulture, which actually transfers generally on manual 

human intercession, shows numerous restrictions, particularly with regard to 

continuous upkeep, where a convenient right intervention can set aside a ton of cash, 

and ideal wrong reaction can be expensive. The endless manual endeavours 

demonstrated illogical and not generally conceivable, particularly with regard to 

checking the ecological conditions [14] [17] [35]. As an example, nurseries enable the 

entertainment of the uncomfortable ideal boundaries that plants need to improve 

creation or mimic the natural states of specific geological territories to locally obtain 

goods that are typically imported.  

New farming patterns also attempt to manage crops in controlled environments. 

Striking control of temperature, humidity, and illumination can also be used to maintain 

a strategic distance from the major climate variations that influence crop production. 

Today, horticulture targets expanding crop yield as far as creation and quality. 

Agriculture has developed directly as a result of the growing population. Improving 
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ranch productivity and cultivating quality without constant manual inspection to meet 

the world's expanding food demand is the fundamental test for agriculture businesses.  

Environmental change is also a difficult model in agribusiness. The most 

surprising test in quality cultivation is climate's eccentrics’ (e.g., erratic precipitation 

and temperature, etc.) and the states of the climate (eg, soil dampness) [2] [9]. 

When managing decisions aimed at increasing harvest production or water 

consumption, rural researchers and decision-makers take the clouded boundaries 

between such lexical standards as established in specialised writing into serious 

consideration.  Furthermore, a significant number of rates used to decide water or 

compost depend on general guidelines, which once in a while are obtained from long 

periods of involvement in specific yields on specific conditions [21] [28]. This makes 

troublesome not exclusively to look at or test the presentation of any proposed strategy 

for water system or preparation in heterogeneous conditions, yet in addition make the 

errands of checking and dynamic. Keeping in mind that the dependable estimation of 

factors identified with crop development and yield is not new nor costly any longer 

thanks to the Internet, very few conceptual models are as yet accessible that may fill in 

as brisk choice apparatuses for clients. 

Today, research has been done on remote sensor networks used in farms and 

greenhouses, demonstrating the prospective method of using IoT capabilities to 

complete dynamic cloud formation [33] [37]. This has sparked the development of a 

comprehensive implanted architecture on a realistic scale, incorporating IoT 

capabilities that are general enough for a variety of anticipated uses. To serve as an 

example of how such a framework might be useful in the fight against the harmful 

effects of environmental change. 

There are, however, some circumstances in which a solution that consists of a 

single IoT layer that sends data straight to a cloud layer may have flaws. While some 

studies and solutions simply focus on the Cloud, others use cloudlet- or fog-based 

approaches. Thus, Edge computing has developed to reduce the costs related to moving, 
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storing, and processing data in the cloud [12, 13]. Only the useful data are delivered to 

the cloud after being filtered and pre-handled at the organisation's edge with the aid of 

an Edge layer in an IoT environment. This helps customers achieve faster response 

times while preserving the framework's capabilities in the event of communication 

disruptions between the IoT layer and the cloud [25], [29]. 

1.3 MOTIVATION AND SIGNIFICANCE OF RESEARCH 

1.3.1 MOTIVATION FOR PRESENT RESEARCH  

As I belong to a farmer’s family and have grown up observing the huge changes 

in the field especially in my region i.e. Vidarbha region in Maharashtra. I found that 

farmers are not ready to accept the technological changes and their importance in 

agriculture. The basic requirements for any farmer are land, air, nutrients, water, and 

sunlight. With this, any farmer with their hard work and knowledge about the crop can 

make a good profit in agriculture. But degradation of soil due to chemically active 

fertilizers, drastic change in the weather, less technical knowledge of the crop, uneven 

atmosphere, etc. are many reasons that lead farmers to huge loss in agriculture.  

The price of the crop or any agricultural product is highly dependent upon the 

geographical area. The agricultural crop or product is less expensive in the area where 

it is developed. Crop cultivation is also depends on the geographical atmosphere. It 

becomes very difficult to cultivate crop under unfavourable atmospheric conditions. 

Which ultimately leads to an increase in the price of product due to transportation and 

packing cost.  

Research is carried out to overcome these boundaries and develop a smart 

greenhouse system in which the farmer can take production of any crop without 

worrying about the atmospheric conditions and nutrition requirements of the plants. By 

using a proposed system farmer will be able to monitor the crop without even physically 

visiting the field.  

As the global population increases, every country will have challenges in 

providing for its people's nutritional needs. Everyone can have decreasing natural 
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resources, shrinking productive land, and more uneven weather patterns. In response to 

these challenges, the agricultural industry is adopting ‘smart agriculture’, which uses 

the IoT and big data technology to enrich productivity. The Internet of Things (IoT) 

consists of a wide variety of innovative technologies and solutions.  

To increase efficiency and longevity, the agricultural industry must rely more 

and more on data and information. As a result of advancements in ICT, information 

collection, information storage, sample data analysis, and sample data use in agriculture 

are increasing day by day. The usage of blockchain technology also allows for the 

recording of a plant's entire history, from the origin of its seed to its final destination 

after harvest. Supply chain transparency can be improved and illegal and unethical 

manufacturing can be minimised with the use of this information. 

To make farmers rich with more profit and less production rate, an innovative 

smart farming system is introduced in the research. Smart farms are designed to 

improve the quality of agricultural production while minimising human involvement. 

You might, for instance, keep an eye on a number of things while you are away from 

your farm and take appropriate action. Smart farming allows you to make informed 

decisions while technology takes care of the task. 

1.4 OBJECTIVES 

1. To analyze various methods to develop a smart farming ecosystem under 

greenhouse environment. 

2. To develop an internet of things (IoT) based autonomous system for smart 

farming environment using smart sensors like moisture sensor, temperature 

sensor, and soil sensor etc. for computational data analytics. 

3. To optimize proposed system using machine learning for fog layer enabled 

devices to achieve the precision management. 

4. To compare and analyze the proposed method with existing system with 

performance parameters like accuracy, latency, resources utilization and 

sensitivity. 
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1.5 CONTRIBUTIONS 

The main contributions of the research are as follows. 

 The research provides a detailed study of the existing smart greenhouse systems 

which allow the research gap findings to be taken into account and provide 

unique and efficient solutions to the problems highlighted in the research study. 

 The research provides a four-layer framework for IoT-based farming system 

which can make it easier to establish an intelligent low-cost agricultural system.  

 The research creates effective analytics and decision-making models that can 

be employed with supervised ML for precise and intelligent farming, which 

helps farmers to get high productivity at low cost. 

 Farmers can cultivate any plant in any region without worrying about the 

atmospheric conditions. 

 It is not necessary for farmers to take the knowledge about the crop and 

technical aspects of greenhouse management because research does it for them.  

 

1.6 THESIS ORGANIZATION 

This thesis consists of the following six chapters.  

Chapter 1 entitled “Introduction” is the introductory chapter. This chapter 

explains the background and motivation. It also describes the research goal to be 

reached and the scope of work that will guide the research. Also, describes the 

importance of the fundamentals of proposed system keyword technology with its 

architecture and various features and significance related to domain. 

Chapter 2 entitled “Review of Literature”, contains a review of the literature on 

the theme related to this research. In this chapter, we present a literature review of 

existing work on IoT based monitoring system and intelligence smart farming with 

various ML approaches. 
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Chapter 3 is entitled “Development of IoT based Smart Farming System”. This 

chapter gives an explanation of proposed layer architecture with working flow. Also, 

the proposed approach that has IoT based on IoT for smart farming system is presented. 

Chapter 4 entitled “Analytics and Decision-Making Model Using ML for 

Precision Management”, presents the proposed methodological layer wise data flow 

which mainly consist of analytical and decision-making model which is implemented 

using multiple supervised regression ML algorithms is used for precise management. 

Chapter 5 entitled “Experimental Results and Discussion”. Based on the 

simulations, multiple classification methods are compared in accordance with the 

various performance parameters primarily based on confusion matrix and analyse the 

proposed system performance with state of the art methods.  

Chapter 6 entitled “Conclusion and Scope for Future Research Work”, 

emphasizes the main accomplishments and utility of the research and also discusses the 

scope for the development of future research work which could be applicable for 

designing of secured intelligent farming systems. 
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CHAPTER 2 LITERATURE REVIEW 

2.1 REVIEW OF LITERATURE 

This chapter discusses the many contributions to the field of "smart farming" 

made by researchers who took into account different methods of crop production and 

the incorporation of technology into the system. 

2.1.1 Smart Farming Based on IoT Methods 

A soilless culture ready to respond to the demands of full distribution nurseries 

using tolerably salty water was proposed by A. Santa et al. [1]. It is constructed on top 

of low-effort hardware and is supported by open-source software at the neighbourhood, 

edge, and cloud levels. Cyberphysical systems (CPSs) collect data and carry out 

continuous nuclear control actions by interfacing with agricultural devices at the 

neighbourhood level. To strengthen system dependability against network access 

failures, the platform's edge plane is in charge of handling and monitoring basic 

Precision Agriculture (PA) functions close to the entry organisation. Finally, the cloud 

platform uses information examination modules in a FIWARE architecture to compile 

historical and current data. 

A. Chehri et al. [2] focused on how distant sensors are essential to the structure 

of the smart farm, allowing for the management of a significant amount of data 

produced intermittently or continuously to study it draw conclusions from it, and 

construct a cutting-edge computerised smart farm. They did this by employing multitier 

rationale planning and organisation calculations to solve the problem of a weak 

business network and the detection of random inclusion in the Internet of Things. 

A highly adjustable perceptual framework offered to control and monitoring 

nursery temperature using IoT technology [3]. The principal function is to monitor the 

weather and regulate the temperature inside to save energy waste and maintain optimal 

working conditions. The nursery's weather is monitored using a Petri Nets (PN) model, 

and the resulting reference temperature is then transmitted to a temperature-guidance 

block. The next goal is to provide an adaptable energy efficiency (EE) framework plan 
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that manages massive measurements of the huge IoT huge data captured from sensors 

using a unique chart information model to assess and predict production, crop growth 

rate, energy use, and other connected difficulties. 

Choukpalli et al. [5] combined with a cloud-based social hub develop a 

biological system that characterises sensors and the relationships between different 

chemicals. Information on shared assets, part cultivates, and community collaborations 

is stored in the cloud, and part ranch and centre ontologies are developed to track these 

interactions. 

El-Basioni et al. [6] refer to the IoT standardisation, the agricultural industry 

has an IoT reference engineering. For success, the suggested Agricultural IoT Reference 

Architecture (AITRA) needs to take a close look at the IoT ecosystems and the 

application area. In the article, the three tiers of AITRA are illustrated: Device, Cloud, 

and Business, together with their corresponding structures, demonstrations, basic 

organisational structures, applications, and services. 

An Internet-connected Home Node (HN) and a mobile app designed for iOS 

smartphones [14] are the final pieces of this holistic dynamic, which reorganises data 

representation and plant health monitoring. The proposed IoT framework has been 

tested for more than seven days in a real world setting (a vegetable nursery). The data 

gathered identified potential sources of an infection that affects vegetables (in this 

example, the end root), validating the VegIoT Garden.  

J. Ruan et al. [15] conducted a study of the state of opinion on the topic of 

agricultural IoT literature over the past decade by analysing data from 3168 

publications and the 100,205 references they cite in Web of Science. Combining 

resources from many research and scholarly grounds reveals emerging trends in applied 

IoT methods, as well as issues of worry in farming. Collaboration organisations identify 

exceptional countries, foundations, and artists based on their contributions. In addition, 

convincing studies and researchers are shown, displaying ongoing research and 

development in the horticulture IoT. They also make suggestions for the future based 
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on the results of the survey, such as improving the farming IoT frameworks, 

implementing information security and sharing, implementing sustainable energy 

arrangements, conducting financial research and managing activities related to the IoT 

of horticulture, and using IoT for financing and e-commerce for agriculture fields. 

Saiz-Rubio et al. [16] review each important development, from the acquisition 

of crop field data through the use of variable rate applications. It examines the state of 

modern ranch management frameworks and helps farmers in making better decisions 

to reduce costs, protect the environment, and better coordinate food production in light 

of the anticipated increase in the global population.  

When the recommended arrangement to current IoT-based gardening and 

growth arrangements, network idleness decreases [17]. Here, a solution offered for 

detecting and compelling is based on cross-layer channel access and direction. They 

look at how the group is structured based on factors such as participation levels, activity 

levels, and sleepiness. The main focus of this article, which offers a control system 

based on the Internet of Things, is the expansion of agriculture and agriculture in 

provincial regions. Controlled system components and enhancements are discussed and 

researched from many angles, including test bed evaluation, improved energy 

efficiency, delayed execution, and throughput, all results of the MAC and guiding 

response for the IoT. When the suggested arrangement is used with the WiLD group, 

latency may be reduced and throughput for the final mile of the network can be 

increased. The suggested haze-setting structure saves the company time and resources 

by reducing the need for costly data transfers. 

Focussing on the need for people to keep a close eye on their growing crops, the 

investigation focusses [22] on the foundation and design of an IoT-enabled agriculture. 

When interacting with customers, a company maintains control across several domains 

and continuously collects data. The configuration allows the person in charge to 

concentrate on other duties while the system watches the harvest. It is clearly set up on 

non-agricultural grounds such as residential and business holdings. To promote optimal 

crop growth, the framework will control environmental factors such as temperature, 
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light, relative humidity, and fixation in the water. The group is in agreement that this 

will advance agriculture and allow people to buy vertical farming equipment for their 

homes without having to worry about relying completely on farmers. 

AgriTalk [24] is a cheap IoT platform for accurate soil cultivation. They run 

growth tests on the turmeric plant and the results show that overall quality of turmeric 

is improved using AgriTalk. More than ten times as much curcumin is packed into every 

100 grammes of this supplement than is found in similar products on the market today. 

They demonstrate how to effectively maintain AgriTalk for precision farming by 

demonstrating how to intuitively create the linkages between the sensors and the 

actuators with the optimal cultivation knowledge. To study the delays in AgriTalk's IoT 

messages, they employ estimates, explanatory examination, and recreation studies. Our 

research shows that AgriTalk can easily respond to rapid and dynamic differences in 

field climate conditions in soil development and that delays for programmed control 

and programmed manual control exchange with significant distances (over 30 Km) are 

short (under 0.2 seconds). 

It is recommended [27] to construct a structure that offers a framework to fence 

off a greenhouse, a chicken coop and a fish tank. They can monitor and adjust the 

temperature with a raspberry pi. The IoT is highly dependent on sensors and actuators 

for climate monitoring and response. Using this structure, we can deduce causal 

relationships between climatic factors and recycle the loss from one environment to the 

next. The primary function is to make climate control far more effective. The next step 

is to pinpoint the situations where the dependence on waste is most pronounced. The 

final objective is to provide a framework that may be easily expanded for use in any 

agricultural setting. 

The SWAMP project, for example, Brilliant Water Management Platform for 

Precision Irrigation, was announced by Kamienski et al. [32]. It develops Internet of 

Things-based strategies for smart water across the board in a precise water system, and 

is being piloted in Italy, Spain, and Brazil. They discussed the SWAMP perspective, the 

project's engineering, the pilots, and the situation-based progress measure. Although 
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still in its infancy, Marsh has recently attracted the interest of ranchers, agribusiness 

organisations, and government agencies around the world. At this point, they have gone 

to the pilots, researched them, and investigated the ideas based on the individual pilots' 

ends, gains, and needs. The most important lessons learnt so far hint to the consistent 

characteristics and variable highlights of pilots that can significantly bolster the 

blueprint for a really reproducible SWAMP stage. 

The Internet of Things (IoT) precision farming framework [34] consists of a 

group of gadgets that calculate more than 14 boundaries in the soil, during harvest, and 

the surrounding environment. They have combined the system with our cutting-edge 

farming platform that is cloud-based and offers a configurable interface for gathering 

data from various sensors and providing the farm manager with useful insights. So far, 

the system has been used to assess the viability of two green crops, cabbage and 

capsicum, during the Rabi (winter) period of 2017. They include our interactions with 

the project and lessons learnt from the season-long programme that led to a 20% 

reduction in agri-input costs and a 10% increase in output. 

A smart cultivating arrangement [35] can collect data from the field 

environment for continuous analysis to improve crop discernibility and overall yield. It 

can also design and implement a brilliant innovation for the horticultural sector that 

does not compromise on environmental or rural sustainability. The suggested 

framework's core is comprised of natural limitations including crop temperature, 

ambient stickiness, soil moisture, and light intensity. In conclusion, they also evaluate 

the presentation and efficiency of the MQTT convention in different stacking scenarios. 

The suggested investigation [36] is based on the blueprint of a typical IoT 

system designed to increase agricultural production by strategically arranging water 

resources and preparing for harvests according to their specific needs, environmental 

factors, and climatic projections. In this paper, a framework for a modest water system 

and its planning are proposed. Manure can be applied to the soil in a lawful manner 

using the suggested treatment framework. As a result, you will need less compost, 

which will save your money and boost soil quality. A versatile and user-friendly 
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software has been created to help provide this information to the ranchers in their local 

language. The cultivation of bean stew was subjected to context analysis, which was 

judged to be acceptable as a nonexclusive structure.  

A solar-powered intelligent farming monitoring framework is provided that 

makes use of IoT devices [37]. The goal of these solar-powered data collection nodes 

was to send field data to a central location for analysis and planning. Two models were 

examined to separate people's preferences for how they would like their energy-

collecting devices to work. A proof-of-concept for the framework's functionality is 

introduced, and a trial test bed is used to demonstrate this. Results of preliminary 

research suggest that charging and powering a device with the help of an energy 

collection device can extend its useful life.  

S. Sarangi et al. [38] have developed a practical edge stage that incorporates a 

flexible and adjustable sensor hub, allowing us to locally handle the rancher's logically 

significant detecting needs. Our edge platform, along with a cloud-based automated 

farming platform, allows us to provide AI-based solutions to farmers despite poor 

network and registration infrastructure. They present a contextual study demonstrating 

how our infrastructure, when coupled with a soil dampness sensor, can be used to more 

efficiently manage water resources. 

To address the wide variety of problems observed in agriculture, a customer-

centric IoT architecture was provided [39]. The suggested framework would let 

ranchers systematically inspect their remote fields, earning them praise for producing 

high-quality harvests. The planned layout also improves the food chain in a way that 

allows farmers and ranchers to increase their overall profit from the items they sell. The 

viability of the proposed engineering is evaluated using various usage scenarios that 

include various stages of the agricultural cycle. Reports also suggests a revolutionary 

structure for high-end mobile phones, which would inspire product designers to develop 

apps necessary for implementing the framework's many features.  
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P. Assuredly et al. [40] investigated a prototype in which two different sensors, 

a frequency domain reflection sensor and Resistor-based (RB) sensor, were used in this 

minimal effort WFD planning observational study to find moisten fronts. The study 

finds an inference to IOT-WFD as an innovation that provides constant wetting front 

data in soil, with precision agriculture and an efficient water system area, as well as 

connected choice information that conforms to the prevailing technological trend and 

the needs of smart farmers. This prototyping overview has been shown to have 

beneficial impacts, and evidence has been provided. 

  Ferrag et al. [51] examine how green agriculture will make use of blockchain-

based solutions that prioritise privacy and consensus methods for IoT applications. 

Additionally, blockchain-based privacy solutions and consensus algorithms for IoT 

applications were investigated, along with their potential adaptations to 

environmentally friendly agriculture based on the Internet of Things. Future research 

paths are discussed in the area of green agriculture are discussed, and open research 

issues are underlined based on the current survey. 

Devices, platforms, network protocols, data processing technologies, and 

possible agricultural applications of smart farming with IoT have been extensively 

studied [54]. The analysis demonstrates how data processing has progressed over time. 

Data was often used reactively in conventional methods. However, advances in 

technology have enabled new methods of using data for crop problem prevention and 

improved diagnostic precision. 

To provide data-driven insight and decision-making to encourage the 

development of aquaculture in a way that is environmentally sustainable, [55] brings 

together partners from industry, technology, and academia. The first case study of IoT 

instrumentation, information, and effect on the aquaculture sector was provided. The 

difficulties of connection, interoperability, and standardisation are examined and show 

how our past actions might guide our future plans. 
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Jacopo Aleotti et al. [57] suggest components of the automatic precision 

irrigation system that are managed. The embedded IoT devices operate linear irrigation 

equipment as part of the distributed design, which also consists of a decision support 

system, a server node, a mobile application for user engagement, and other aspects. The 

farmer can use the mobile app to register his information in the decision support system, 

ask the server for an irrigation plan, and monitor things in real time. The primary 

components of the system were tested in tomato fields in preliminary studies. 

The conceptual model described in [60], which was developed as part of the 

SWAMP project. After surveying all relevant literature, they present a conceptual model 

for predicting and explaining the investigated behaviour, one that draws on IoT, TPB, 

and Agriculture 4.0. Multiple actions that may be taken by the various players in the 

agricultural environment can be analysed using this model. With an emphasis on 

operations planning and irrigation scheduling, this model can be used to construct 

relationships between the measurements associated with each defined variable in a data 

model. The models shown here show how IoT and Industry 4.0 technologies can 

considerably improve strategic planning, operational optimisation, and intelligent water 

preservation in the agricultural industry. 

A. K. Pandey et al. [61] presented an automated IoT-based smart polyhouse 

system using Hadoop technology. The suggested nonmanual approach aids in 

automating the functionality of polyhouses, which in turn increases crop output and 

quality. Sensors, IoT gadgets, and Hadoop technologies like Apache Hadoop, Flume, 

and Hive make up this system. Sensor data will be analysed with these tools to better 

inform policy making. It also emphasises the use of smart irrigation methods and 

technology within the greenhouse, such as drip irrigation, to help farmers protect their 

crops from flooding. 

Researcher S. Rajeswari et al. [62] collected agricultural data using an IoT 

device, which was then uploaded to a cloud-based database. Big data analysis 

performed in the cloud is utilised to examine visual information. Needs for fertiliser, 

crop analysis, market research, and crop stock. The farmer receives the results of the 
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forecast, based on data mining technology, via a mobile app. The ultimate goal is to use 

these forecasted data to increase crop yields while keeping agricultural costs low. 

A disease-detecting intelligent automatic watering system is described [68]. 

Moisture sensors, temperature sensors, and wetness sensors are all part of the system 

design and they will all be placed in agricultural fields where collected data will be 

compared with threshold values calculated for different types of soil and different crops. 

An Arduino Uno processor receives data from the deployed sensors and communicates 

wirelessly with a data centre via a GSM module. The data centre stores the information 

it receives so that data mining techniques such as the Markov model may be used to 

analyse the data and identify potential diseases. When all is said and done, Android 

smart phones are updated with analytical results and observable physical metrics. The 

Arduino is programmed to turn on and off the irrigation system pump via the 

smartphone's user interface when instructed to do so by the user's Android device. 

A new privacy-protecting multi-agent system (MAS) created [72] for an IIoT 

environment. To choose and build the right clusters for the IIoT system, an expanded 

moth swarm algorithm-based clustering (EMSA-C) method was first created. 

Additionally, a multi-agent system is implemented to provide encrypted exchanges 

between different clusters. The potential is investigated through a comprehensive 

comparative study, with outcomes evaluated across a range of metrics. The investment 

money needed is substantial. The high cost of implementation is an evident issue for 

industrial IoT. The huge volume of data generated by IoT devices makes secure data 

storage and management connection failures common. The simulation findings show 

that BDL-PPDT is superior to current approaches in terms of output. The provided 

BDL-PPDT method may only have a 98.15 percent success rate, but it yields the finest 

attainable result nonetheless. The BDL-PPDT approach was demonstrated to be 

superior to the other existing methods by a number of criteria and is advised based on 

the findings of the aforementioned data analysis. 

Using the IoT to perform a variety of outdoor tasks, a revolutionary wireless 

mobile robot was created and launched [81]. Agriculture, transportation, and water 
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distribution can all benefit from the findings of this study. The IoT and remote sensor 

system is used to create sophisticated agricultural frameworks in many regions of the 

world. In this regard, one of the offshoots of intelligence is the practise of exactness. 

Researchers have developed a wide variety of check and robotization frameworks for a 

variety of agricultural applications. Using WSN, data gathering and transfer between 

ranch-based IoT devices will be a breeze. 

An IoT-integrated system was designed for crop production [82], which makes 

use of cloud computing for crop monitoring and other purposes. The technology is 

useful for monitoring crop growth in real time and saving the farmer time and effort by 

analysing data from sensors already embedded in the crops. 

The IoT ecosystem, as described by Olakunle Elijah et al. [88], enables smart 

farming. In addition, we present upcoming trends and possibilities that are broken down 

into four distinct sections: technology developments, application scenarios, business, 

and marketability. 

Rashi Kaur et al. [89] provides a comprehensive method for tracking and 

adjusting key aspects of crop development and harvesting. Technology also uses 

machine intelligence and the IoT to predict crop production. 

Using inexpensive IoT sensors and widely used IoT-based information storage 

Luis Omar et al. [95] presented a farming system. In addition, a novel data-mining 

method is offered for the forecasting of the output volume from various data sources, 

which uses crop production and weather data. To begin to validate this strategy, open 

historical data were collected from authorised sources in the north-eastern part of the 

Mexican state of Puebla. 

The main goal of the case study is to develop a model that predicts high-yield 

crops and precision agriculture [98]. The suggested system modelling incorporates 

cutting-edge IoT and important agricultural strategies. The final goal of this case study 

is to develop a model that can predict high-yield crops and precise farming. The 
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suggested system model incorporates both critical agricultural measures and 

contemporary technology like the Internet of Things (IoT). 

N Singh et al. [103] highlight in their proposal the importance of creating a 

helmet equipped with IoT. The location of the miner can be monitored with the help of 

an integrated GPS tracker. The proposed work would reduce the likelihood of fatalities 

and accidents in high-risk settings. This work is assessed in three distinct settings using 

an accuracy metric. The results of the study indicate that the suggested prototype 

achieves an accuracy of around 96% in the indoor setting, 98% in the outdoor setting, 

and 97% in the industrial setting. 

2.1.2 Smart Farming Based on AI/ML/DL Techniques 

To automate urban farming evaluation, an IoT platform is described [10] that 

brings together IoT, big data and distributed computing. Customers, in particular 

ranchers, will be able to keep an eye on the weather and automatically adjust the 

supplement thanks to the IoT platform. Based on the information collected about 

temperature, pH, total dissolved solids (TDS), oxidation reduction potential (ORP), and 

TDS, the platform suggests supplements. Regular camera checks are used to observe 

the plant's development rate. The proposed architecture uses a WiFi-based network and 

the Message Queuing Telemetry Transport (MQTT) protocol to transmit sensor data 

from an Internet of Things (IoT) device to a cloud-hosted worker. The platform is web 

and mobile based, giving customers the freedom to check in on the urban ranch anytime 

they choose. 

A novel idea for the preservation of rural land is proposed [11]. The PiCam is 

triggered to take a picture of the area in response to suspicious activity and motion 

around the ranch. To identify what is shown in the image, the image processing 

component uses single shot IDs and Mobilenets, a Deep Learning technique 

implemented in OpenCv for the Raspberry Pi board. The rancher will receive this 

notification in the form of email and wire equipment. The experiments are carried out 

on a ranch, and the precision and regularity of the framework are calculated and 
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planned. Based on the data, it is clear that the framework is both highly accurate (92%) 

and predictable (100%) in identifying malignant progression. 

IoT, big data, and AI and their complicated roles in influencing the future of 

agri-food systems were depicted in a diagram by Misra et al. [13]. The authors cover 

the role of IoT and big data investigation in agriculture (including nursery check, clever 

homestead machines, and robot-based harvest imaging), supply chain modernisation, 

online media (for open advancement and feeling examination) in the food industry, food 

quality assessment (using ghostly techniques and sensor combination), and finally 

sanitati after a brief introduction to the IoT, massive data (big data), and AI. The 

commercial viability of applications and the findings of translational research are 

particularly of particular attention. 

The data and the warning message were handled using an AI calculation to 

produce a warning message, and eventually the data and the warning message were 

shown via a graphical user interface (GUI).  Araby et al. [18] communicated a detecting 

organisation to collect field information of specific harvests (potatoes, tomatoes, etc.). 

To predict late scourge sickness in potatoes and tomatoes before the major event, this 

research suggests a clever system based on the coordination between IoT and AI, 

reducing costs by alerting the rancher to the precise time to apply protective pesticides, 

which will help preserve yield production during contamination seasons and reduce the 

use of unnecessary pesticides.  

The purpose of this framework [19] is to develop continuous weed control for 

onion farms. This system will be able to recognise weeds and apply the right dose of 

herbicide. The proposed WCS is a practical, portable, and easily operated remote 

arrangement of portable supplies accessible via a straightforward web interface. It is 

programmed to automate weed management, making it easier for ranchers to keep their 

fields in order. Image processing, artificial intelligence, and IoT are all crucial to the 

suggested architecture. 
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The RiceTalk project [23] uses nonphotographic IoT devices to detect the 

effects of rice. Our agricultural sensors produce nonpicture information that may be 

gradually processed and broken down by the AI instrument, in contrast to the picture-

based plant infection finding approaches. RiceTalk's AI model stands out because it is 

managed in the same way as any other IoTdevice. Our approach significantly reduces 

the overhead incurred by the board in order to provide continuous planning and 

forecasting. They also offer a novel component for spore germination as an alternative 

farming approach for extracting elements. In its present form, RiceTalk's prediction of 

rice's effect is 89.4 percent accurate. 

The data collection system demonstrated [30] is based on IoT technologies and 

intelligent image recognition. Decisions on what to grow involve a lot of knowledge, 

but the suggested framework would make it possible to automate the harvesting process 

by recognising individual crops using neural network models. After performing article 

placement on images, the usage of pixel orientations of the primary concern of the 

objective harvest in the image as neural organisation input, with the robotic arms being 

read as the yield side. A single shot multibox recognition model in the back layer and a 

photo highlight extraction model created with a MobileNet variation 2 convolutional 

neural network were combined to create the article locating model. At that time, the 

model was able to identify crops by collecting and labelling images. The results showed 

a mAP of 89%, while the mean Average Precision (mAP) of the suggested model 

preparation was 84%, which was higher than that of other models. 

N. Ippo et al. [33] have provided rural IoT framework solutions for the 

development observation of the tomato natural product by growing the Slack Bot API. 

This will inform ranchers about the condition of the tomatoes. By using deep learning 

to recognise organic tomato products, picture training to extract colour highlights, and 

artificial intelligence to score the different growth phases, they also pioneered image 

analysis. Their tomato discovery approach allowed users to choose between identifying 

green and red vegetables based on the first images provided. In addition, they have 

achieved a weight accuracy of 91.5% while employing SVM Classification to 
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characterise the six stages of tomato growth. They may use the results as a guide and 

estimate for when to harvest the tomatoes. Their study will conclude with the use of 

images from predetermined locations for the purpose of classifying and identifying 

diseases that manifest themselves on the leaves and fruit of tomatoes.  

The Adaptive Plant Propagation Algorithm, a novel soft computing strategy, 

was presented [42] to determine the ideal locations for these mobile nodes. The 

deployment of these movable target nodes occurs in an anisotropic setting characterised 

by irregularity. Compared to existing meta-heuristic optimisation methods, the 

suggested APPA algorithm shows superior performance in simulation results for 

localisation error, computing time, and detected sensor nodes. 

An energy autonomous system that can run continuously without human 

intervention across low power wide area networks [58]. They used a solar panel that 

was a few hundred square centimetres in size to create an application for a low-energy 

platform. The low-power foundation for an ML algorithm provided by the solution 

enables speedy IoT prototyping. In-depth analysis of the network model has revealed 

the parameters' settings and the limits of the requisite hardware. The effectiveness of 

the suggested system is evaluated and some thoughts on how to reduce power usage 

until the system has a net negative energy output. 

An energy efficient routing technique that integrates localisation and clustering 

was proposed [59]. To pinpoint the location of each node, an RSSI-based localisation 

approach suggested. Next, an uneven clustering technique based on fuzzy logic is 

created to ensure that all sensor nodes use the same amount of energy. PanStamp NRG 

2.0, a wireless sensor node, is used to really build an energy-aware routing algorithm. 

This network architecture is easily adaptable to IoT systems for use in environmental 

and agricultural monitoring and control. 

Using IoT, ML and drone technologies, an integrated strategy for tracking crop 

health developed [63]. When these diverse types of sensing are combined, the resulting 

data are inherently disparate because of differences in nature (i.e., the observed 
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parameter) and in temporal fidelity. The suggested method aims to maximise the 

integration of multiple sensing modalities and make their practical implementation 

easier due to the fact that different techniques have different degrees of spatial 

resolution. In their suggested system, IoT sensors report on the present condition of 

environmental parameters impacting the crop, and multispectral data from a drone 

platform. Because it measures crop health based on chlorophyll content alone, the 

NDVI can only tell us so much. Data from IoT sensors and multispectral images, both 

of which comprise time series data with various durations, have to be translated into a 

fixed-sized representation to create crop health maps. The neural network with multiple 

layers provided the highest precision (98.4%) of all evaluated models after the data 

were processed using a variety of ML and DL techniques. Due to a lack of baseline 

information, the accuracy of the health maps was double-checked by conducting ground 

inspections and consulting with agriculture specialists. The suggested study is a locally 

developed, technology-based approach to agriculture that can reduce the need for crop 

ground surveys while still delivering significant information about the health of the 

crop through the extraction of complementing features from a multi-modal data set. 

This is especially useful when there is a lot of agricultural land. 

A new federated framework, suggested by TKAGFL [69], which made up of 

these three elements: update approach, data heterogeneity, and scalability. As a first step 

in addressing the problem of data heterogeneity that usually arises in actual federated 

learning, conditional generative adversarial networks (GANs) are suggested as a 

method of data preparation. Second, the enhanced homomorphic encryption approach 

alleviates the tensions that arise from exchanging data and protecting individual 

privacy. Third, the authors increase communication efficiency by compressing 

communication parameters using a combination of top-K methods and the traditional 

AdaGrad optimisation used in deep learning. According to the test results, our TKAGFL 

framework can converge at 150 communication rounds, which is 50 rounds sooner than 

the competition, and it is 15% to 20% more accurate than rival algorithms and 

frameworks. It is also helpful for federated learning applications in industry, since our 

TKAGFL method decreases communication traffic by a factor of 10. 
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To optimise the classification and feature extraction processes, [70] looked at 

principal component analysis (PCA) was used to reduce dimensionality in a deep 

learning model created using the Debrecen Diabetic Retinopathy Debrecen Data Set, 

which is available in the UCI ML repository.  

To predict agricultural productivity and drought, Nermeen Gamal Rezk et al. 

[74] suggest an intelligent farming system together with an efficient prediction method 

called WPART based on ML approaches.  The suggested approach is estimated using 

five different data sets. The results demonstrated that the proposed method performed 

better than existing methods in classifying and forecasting agricultural productivity and 

drought. The results revealed that the suggested strategy was the most effective in 

forecasting drought and measuring the yield of crops including Bajra, Soybean, Jowar, 

and Sugarcane. The WPART approach outperforms state-of-the-art gold standard 

algorithms with accuracy levels of 92.51%, 96.77%, 98.04%, 96.12% and 98.15%, 

respectively, across five datasets assessing drought categorisation and crop yield.  

Using a sensor network, the data collected [75] from a number of different crop 

fields (potatoes, tomatoes, and more), sent them to a ML algorithm to generate alarm 

message, and displayed via the GUI.   

Various ML strategies developed [76] to predict CLW infection in plants. This 

study laid the groundwork for using ML to foresee the presence of CLW in greenhouse 

crops. In a commercial hydroponic greenhouse, the moth of CLW data was gathered 

weekly for two years. Temperature and relative humidity readings were also taken 

continuously during the investigation. The XGBoost algorithm was found to be the 

most efficient algorithm used throughout this research. This algorithm has attained an 

accuracy in prediction of 84%. To guarantee a complete data set for future outcomes, 

authors investigated the effect of several environmental factors on prediction precision.  

Remote monitoring of rice paddies using deep learning and IoT is proposed by 

Prabira Kumar Sethy et al. [78]. For rice leaf disease detection and nitrogen status 

assessment, the pre-trained vgg16 network is being investigated. In this context, 
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transfer learning and deep feature extraction are used to recognise photos. SVM have 

been introduced to identify pictures with the deep feature extraction method. Vgg16's 

transfer learning method achieves 79.86% and 84.88% accuracy, respectively, when 

used to recognise four distinct leaf diseases and forecast nitrogen status. The deep 

features and the SVM findings both have a 97.31% and a 99.02% accuracy rate in 

recognising four different leaf diseases and predicting nitrogen status, respectively. 

Additionally, an IoT-based and deep learning-based architecture is proposed for remote 

field monitoring. The proposed prototype has advantages over the state-of-the-art in 

that it not only regulates temperature and humidity, but also monitors the additional two 

factors, including the detection of nitrogen status and illnesses. 

The proposed Smart Agriculture approach [79] includes monitoring the 

agricultural land and can greatly help farmers in increasing output. The cloud-stored 

data, which contain details like the temperature, moisture, and humidity that affect 

disease in an agricultural field, is subjected to a naive Bayes analysis. 

An IoT-enabled agricultural monitoring prototype was proposed [80], which 

would use a variety of algorithms to monitor crops for a variety of things, including 

detection, quantification, maturity testing, and disease. This article discusses intelligent 

farm monitoring solutions enabled by IoT. Agricultural veggies have been detected and 

quantified using CHT. Defects in vegetables have also been identified by the use of 

colour threshold and colour segmentation. All methods were designed and implemented 

using convolutional neural networks (CNNs), a ML technique. To determine which 

approach would be best for integration into this agricultural monitoring system, 

MATLAB simulations have been used to compare traditional methods with CNN. This 

study found that CNN outperformed other approaches and existing algorithms with an 

accuracy of 90% or higher, making it the preferred option.  

The importance of various emerging automation techniques highlighted [83] 

such as IoT, WC, ML, AI, and deep learning as part of the technological growth of the 

sector.  
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Guanghui Ren et al. [84] described contemporary sensing applications that take 

advantage of ML-enabled smart sensor systems. Using both traditional and cutting-

edge ML (ML) algorithms and state-of-the-art computer hardware, smart sensor 

systems have developed highly specialised, application-specific "smart" models that 

can fuse multiple sensing modalities into a single, comprehensive picture of the system 

under study. 

Using data analytics and machine learning in an IoT system, Ravesa Akhter et 

al. [86] created a prediction model for Apple disease in apple orchards in Kashmir 

valley. To find out how farmers felt about the impact of evolving technology on 

precision agriculture, a local poll was also carried out. The study also explores the 

challenges of incorporating new technology into tried-and-true farming practices. 

Vu Khanh Quy et al. [87] evaluate the architecture, applications and research 

plans in addition to IoT devices, communication technologies, and big data storage and 

processing. The results of this research will serve as solutions that improve agricultural 

output and quality.  

To meet the long-term demands of smart agriculture, Yinghan Liu et al. [90] 

have developed an IoT and ML-based platform for smart agriculture and designed tests 

to test its efficacy. In addition, this study combines the demands of long-term smart 

agricultural development to create a platform for such development that makes use of 

IoT and ML and then uses experimental design to prove the platform's efficacy.  

To increase cattle productivity, Arpit Jain et al. [91] employed ML models and 

collar sensor data to make predictions about reproductive patterns, feeding difficulties, 

and bovine behaviour. The main areas of interest include the prediction of soil 

properties such as organic carbon and moisture content, the prediction of crop yield, the 

detection of disease and weeds in crops, and the identification of species. It is vital to 

categorise various crop pictures in order to monitor the production and quality of crops. 

Examples of how this approach may be used to increase livestock productivity include 

using ML models to predict reproductive patterns, diagnose feeding issues, and analyse 
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cow behaviour using information acquired from collar sensors. Drip irrigation and other 

intelligent harvesting systems, both of which significantly reduce the need for human 

effort, are also discussed.  

N. Sandeep et al. [92] looked at several different ML methods, each with its 

unique process and benefits and drawbacks. The best results from using any given 

model will result from the user having a thorough understanding of that model before 

using it in practise. Smart farm management can boost agricultural output by making 

better use of available data through analysis and processing. New possibilities for data-

intensive science have arisen thanks to ML and high-performance computers.  

Shekhar Bhansali et al. [93] investigate the applications of several ML Designs 

to the analysis of sensor data in a farming context. The article continues with a case 

study of a data-driven Internet of Things-based smart farm prototype that serves as an 

integrated FEW system. 

Using the IoT and ML/Deep Learning technologies, Alberto Ruiz et al. [94] 

offer a novel architecture for continuous monitoring of crop quality in agriculture. This 

three-tiered design is used to compile information from many sources and analyse it for 

conclusions on crop quality. The proposed method, which is based on the combination 

of data from various sources, achieves a smaller percentage error than using only one 

source, according to experiments. For example, compared to a strategy that relied solely 

on sensor data, our method obtained a 6.59 percent error rate in the test data set. 

By outlining the benefits and pitfalls of deep learning in agriculture, Biyun Yang 

et al. [96] serve as a valuable resource for scholars. This paper was written to help 

academics better grasp the potential benefits and drawbacks of using deep learning in 

the agricultural and horticultural industries. The author also hopes that this study would 

spur the development of intelligent horticulture by inspiring academics to investigate 

some important applications of deep learning in this field.  

Artificial intelligence (AI) may be used to estimate plant health in place of 

human understanding of sensor data, as proposed by Davor Cafuta et al. [97]. Extra 
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time between harvests and a higher nutrient yield are both possible thanks to inferences 

about a plant's status. For the purpose of estimating plant health, an approach is 

provided in which artificial intelligence is used in place of human expertise gleaned 

from sensor data. An accurate assessment of plant health lengthens lag times and 

increases yield per unit of input nutrients. The cost of plant research may be lowered 

and its usability and reliability boosted by the use of intelligent design and artificial 

intelligence algorithms to the study of plants. As a result, our improved greenhouse 

would be useful for studying and cultivating plants.  

Dimensionality reduction methods were the subject of research [100]. The 

results of the experiments show that ML algorithms using PCA improve performance 

in high-dimensional datasets.  ML methods without dimensionality reduction have been 

shown to perform better when the dimensionality of the data sets is minimal. 

Using deep learning (DL) methods, K. Lakshmanna et al. [101] took advantage 

of the plethora of new data that were collected or generated. Both DL and IoT 

approaches have grabbed the attention of many academics due to the growing 

popularity of the many application domains. Research has pointed to DL as a workable 

option for managing IoT generated data because of its design for dealing with several 

types of data in large volumes, which requires near-real-time processing. The author 

elaborates on several DL methods by detailing how they operate. The author conducted 

a comprehensive review, summarising the most significant DL reporting initiatives 

across datasets. Motivation and inspiration may be drawn from discussions about the 

capabilities, applications, and problems that DL leverages to enhance IoT applications. 

A methodology to aid diabetics in rural areas is developed by D S Rajput et al. 

[104]. It is useful for identifying Type 2 diabetes sufferers in rural India. It enhances 

the conversation between patients and medical professionals. The objective of this 

study is to generate a list of probable threats and their connections. In this study, several 

different ML models are used for prediction in this study, and their performance is 

evaluated so that the best one can be selected. These models include LR, SVM, decision 
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tree, Naive Bayes, and K closest neighbour classifiers. Compared to other methods, 

SVM has the highest accuracy, at 96.0%. 

2.1.3 Smart Farming Based on Fuzzy Logic Approach 

For the purpose of autonomous nursery, FLCs have IoT capabilities has been 

developed [9]. Seepage pH and Electrical Conductivity (EC) estimates are also 

evaluated together with the computer-generated waste estimates. The lexical 

vulnerability provided by "effectively inaccessible" was evaluated to ascertain whether 

water content is actually accessible to crops, just as yield is given a scalar value related 

to fertigation. The final product is a regulator that incorporates fundamental human 

information about water system planning into a systematic FLC, giving rural 

researchers quick access to the fundamental factors related to creation and development 

for a given space. Valid data collected from two distinct harvests using Internet-

connected remote sensors was used to gain regulatory approval. The findings of this 

study support to the continuous creation of low-cost, yet useful applications based on 

FLC and IoT that provide agribusiness manufacturers in poor nations. 

K. Omar et al. [41] improved the system's overall performance, analysed the SE 

and EE issues plaguing 5G networks using a fuzzy-based technique using a lookup 

table, and discovered a good balance between the two. A maximum EE and a 5G 

network with cognitive radio support had EE and SE values of 0.92 bits/J/Hz after 

changing the secondary user's (SU) sensing time and transmission power. 

2.1.4 Improved Agriculture Based on Wireless Sensing / Communication 

Technology 

Advancement of horticultural equipment and software libraries is two areas 

where the author has contributed [4]. A discussion of early-stage companies, public and 

private sector initiatives, and creative and practical solutions for precision agriculture 

is also included. 

Rural and animal situations [7] are not effectively digitised because they operate 

with less resources and a lower baseline of technology than the commercial sector. For 
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the agri-food industry to adopt, SF, PA, and Industry 4.0 provide promising new ideal 

models. 

Wireless sensor networks (WSNs) have been looked at in high-tech farming [8]. 

The physical and functional force utilisation of the various WSN components is the 

main focus of this article. From an energy efficiency point of view, this study surveys 

and discusses the most widely used conventions at the physical, information connection 

and organisational levels. The study findings provide concrete, verifiable evidence of 

primary power consumers, the scope of their consumption, and a thorough 

understanding of the critical elements that must be implemented to boost energy 

efficiency in a WSN. The investigation also recalls a WSN action performed for a 

sophisticated horticulture application. 

S. Akatamreddy et al. [12] look at the practises and technologies employed in 

precision farming that are shared with Industry 4.0. This article also discusses the gaps 

that need to be filled by examining innovations and recommendations and 

recommending a combined engineering approach. It is hoped that filling these gaps 

would hasten the development of Agriculture 5.0, which will involve fully automated 

measurement control. 

Archbold Taylor et al. presented an IoT framework for pH determination [20] 

for use in precision agriculture. The prototype is developed in IoT engineering, 

including data collection, processing, centralization, and user access. Each module's 

exploratory approval measure is taken into consideration throughout the planning 

phase, as well. They showed that the system could make predictions at a variety of 

points in large areas for the adjustment model. 

M. Baghrous et al. [21] have presented a system for autonomous farming that is 

based on the fog processing viewpoint with LoRa technology. The results demonstrated 

that continuous handling, response time, and data transmission capacity will be 

improved in agriculture by implementing a fog computing paradigm. They present an 

alternative arrangement based on Fog Nodes (FN) and LoRa technology in order to 
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reduce the absolute dormancy induced during information transmission from these 

inertness sensitive robots/robots towards the Cloud for preparation and improvement of 

hubs organisation in the vast brilliant homesteads. 

For mobile IoT networks, a link quality-orientated routing (LQOR) standard 

proposed [25]. By carefully selecting the next hop with fewer neighbouring hubs, this 

strategy aims to balance the load across the organisation. The computation has been 

shown to have a positive effect on the evaluation of similar presentations compared to 

other comparable approaches in the literature. The results demonstrate that the 

suggested computation reduces the number of retransmissions of information and the 

number of bundles affected by misfortune. As a result, the performance of the 

framework is enhanced in all aspects and the lifespan of the organisation is increased. 

Karim et al. developed and piloted [26] a cloud-based emotional support 

network against a late-breaking disease. To stop the potato disease, they implemented 

an alternative social support system. This is done by helping ranchers in implementing 

effective disease treatment strategies using weather data and the "Ullrich" forecast 

model. A cloud worker was also deployed to store the information gathered from the 

distant sensor network on the humidity and temperature conditions in the crops. The 

"Ullrich" model's risk factor counts were used to create an early warning system that 

sent an SMS to the rancher at the first sign of the “late blight” disease. By comparing 

their suggested framework with state-of-the-art DSS, they found it to be more widely 

available at a lower cost. 

To increase nurseries’ productivity and accuracy, we report the development of 

a portable LoRaWAN passage device [28]. The recently unveiled technology makes use 

of a Heltec Raspberry Pi 3 B + restricted Mini LoRa Gateway. It uses a predetermined 

number of sensor-equipped LoRa hubs and is powered by an external Li-On battery. 

The sensor data on humidity and temperature will be compiled by the adaptable 

LoRaWAN gateway. These records are compiled using publicly available, no-cost web-

based services. This study describes and clarifies the favourable circumstances and use 

of information gathering in agriculture.  
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Home ranchers are urged [29] to monitor the moisture and temperature using a 

low power and adaptable IoT-based engineering to evaluate the ecological influence on 

plants. The passage application running on a mobile phone transmits the door's 

purposeful properties through Bluetooth Low Energy (BLE) to a cloud platform that 

stores and cycles the data. These data are helpful for home ranchers because they have 

time-sensitive information, such as when to water a plant or when it is at risk of 

contracting a disease. This information is crucial as it helps reduce yield 

disappointments and makes farming more efficient. The new apparatus and software 

engineering are adaptable and designed to use less energy. Research into monitoring 

the microclimate will be aided by analyses that show that it is possible to construct a 

high-spatial target by locating multiple sensor hubs in a small region. 

A user-friendly and customisable engineering [31] for implementing recent 

advances enabled by IoT in SF is shown. Unmanned aerial vehicles (UAVs), wireless 

sensor networks (WSNs), weather stations, and a data processing architecture that takes 

advantage of AI and registration breakthroughs are all used in the suggested approach. 

The proposed architecture develops from the creation of a network of watchers and 

decision makers who cooperate to safeguard plant capital from risks from the outside 

(environment and pests) and inside (diseases). 

Singh, M., et al. [43], used a search table with energy harvesting (EH) to solve 

a problem. Provides the highest possible throughput with the lowest possible energy 

consumption, making it possible to build self-sustaining all-encompassing wireless 

networks. The simulation is performed with NS-2, and, for readability, the results are 

displayed in Matlab. The findings demonstrate that the suggested model uses less 

energy and provides a better normalised attainable throughput than the current 

approach. 

Hassan et al. [44] focus on the methods and procedures that improve spectrum 

efficiency and performance, attempting to examine and survey them. The important 

functionalities of the spectrum optimisation methods were evaluated using a descriptive 



 

57 

 
 

 

method. These are efficient ways to address issues associated with a certain frequency 

range, and they would also give benefits in terms of spectral efficiency. 

An analysis proposed [45] a system and analysed existing and past research 

work that talk about the main components, benefits, and limitations of the greenhouse 

system. The fundamental goal of this effort is to demonstrate and catalogue greenhouse 

features taken into account in each research gap. Agriculture growth in entirely 

controlled systems can currently not able to be monitored in greenhouses due to a lack 

of suitable alternatives. This study recommends a smart greenhouse system for use in 

the sector of precision agriculture for remote monitoring and control. 

A review of previous research was conducted [46]. Collaborative information 

analysis, intelligent assisted diagnosis, healthcare information technology, and patient 

monitoring are the four most recent advances in this field.  

Using MATLAB simulation software, M. Hassan et al. [47] study simulation 

results that demonstrate that increasing power improves the capacity rate and user count 

better than increasing BW, and the results also demonstrate that as the number of SC-

NOMA users increases above a certain point, the capacity rate of the overall network 

drops. 

Many features of spectrum sharing and management were summarised in [48]. 

The goal of this comparison is to help engineers create a 5G and beyond network that 

makes the most effective use of the available spectrum. 

Proactive spectrum sharing with full-duplex (FD) in cooperative Cognitive 

Radio Networks (CRN) was proposed. It is Analysed and discussed in detail for smooth 

system conduction [49]. 

The solutions presented [50] are based on the Floating Admittance modelling of 

basic L-, T-, and -type filters. When considering the size and complexity of circuits, the 

floating admittance matrix approach is a clear winner. 
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An approach to data analysis and processing for decentralised crop and soil 

monitoring was presented in [64], with the help of hierarchical aggregation and 

modelling primitives, which strengthen the network by removing communication 

bottlenecks. The main aim is to utilise computing resources at individual nodes using 

the fog computing paradigm and convey the events that arise to infrastructures for 

higher-level decision-making. Improvements are highlighted by reporting key metrics. 

Constraints on operations and rollout are anticipated after a case study is conducted 

using actual field data for crop and soil monitoring. 

Data gathered [65] from a real-world wireless deployment in a natural forest 

setting (the ECOMESH test bed). Additionally, two empirical models were created that 

can be used to forecast the performance of an attenuation network under two distinct 

conditions. These models provide the foundation for a dynamic network management 

system that may be used to keep QoS guarantees in place across a wide variety of 

wireless network topologies. 

A prototype was developed [66] for the detection and measurement of pig 

growth. An improved watershed algorithm is applied to the depth images collected from 

the time-of-flight camera in the selected region of interest to segment each individual 

animal when there is significant occlusion. The growth rate is projected using the 

segmented linear fitting approach, with the weight of the pig determined using image-

based data. Farmers may get immediate, actionable insights about what is occurring in 

the pig hen based on the collected data. The promising potential of precision agriculture 

techniques in livestock production to increase production and improve animal welfare 

has been shown by preliminary findings. 

A new M2M Communication Stack is suggested [67] to the specifications of the 

Sheep IT project, but with broader applicability in reference to intelligent farming. This 

study presents both a definition of the stack and experimental findings that validate the 

stack's viability. 



 

59 

 
 

 

To maximise energy utilisation and network longevity, an improved IMD-

EACBR technique presented [71] for WSN. The IAOAC algorithm determines a 

suitable goal that links various structures based on criteria such as energy savings, 

detachment, node degree, and intercluster distance. Several facets of the performance 

of the IMD-EACBR model have been investigated. The last step is extensive testing of 

the proposed network utilising all of NS-3.26's simulation features. Improvements in 

packet delivery ratio (PDR), latency, energy consumption, and number of dead nodes 

are among the other metrics that stand out from the simulation findings. 

Challenges and complications that may be encountered when integrating 

modern farming practices with older methods of production. The use of statistical and 

quantitative techniques can lead to revolutionary changes in our current agricultural 

system. The current and upcoming agricultural trends are provided through systematic 

analysis. 

In their comprehensive review of smart farming techniques and designs, they 

provided [77] an in-depth analysis of various designs and viable recommendations to 

fix the current state of smart farming.   

For long-term prediction of several environmental parameters in the presence 

of substantial non-linearity and noise, architectural application in a smart greenhouse is 

provided [85]. The suggested BEDA technique provided the best model across all 

datasets, with R values with root mean square errors of prediction for the three 

parameters of 2.726, 3.621, and 49.817. The experimental findings demonstrate that the 

suggested technique is ideal for more exact greenhouse management due to its high 

degree of prediction accuracy, resilience, and generalisability. 

An improved method for choosing CHs is presented [99], which makes use of 

a variant of the Rider Optimisation Algorithm (ROA). Using the best fitness value, the 

suggested method divides the solutions into two groups. The first set is kept up-to-date 

with the averaged value of riders who are being bypassed and riders who are being 

followed; the second set is kept up-to-date with the averaged value of riders who are 
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being attacked and riders who are being overtaken; the latter is known as Fitness 

Averaged-ROA (FA-ROA). Through a comparison with other state-of-the-art 

optimisation models, the proposed FA-ROA's performance is validated with respect to 

both the percentage of active nodes and the normalised energy. 

To reduce the density of superfluous routing (DSR), K. Lakshmanna et al. [102] 

use the perimeter degree method (PDT) to quantify routing congestion in both the 

horizontal and vertical directions for a silicon chip area. The last two decades have seen 

a rise in popularity for a metaheuristic approach to computing. It is a popular issue in 

optimisation and a classic problem in graph theory. Despite its widespread use, it is 

flawed because it gives incorrect guidance on where and how to place nodes. In order 

to evaluate the amount of congestion that occurs during the routing process and 

decrease the amount of congestion that occurs, the optimised model created by the 

improved harmonic search optimisation algorithm is tested and analysed with the 

improved floorplan data. 

W. Wong et al. [52] conducts a detailed examination of the current greenhouse 

cluster control system, analysing its features from the point of a hierarchical control 

system. Finally, the important features of hierarchical control in greenhouse clusters are 

shown from the perspective of application research. For creating models of greenhouse 

cluster coordination description and control structure, complex system theory offers 

significant theoretical help. 

A comprehensive look at privacy and safety in a smart agricultural environment 

was offered [53]. The security and privacy concerns of a cyberphysical system explored 

that is both dynamic and widely dispersed, with a focus on the precision agricultural 

area. In addition, the author provides greater detail on possible cyber-attack scenarios 

and draws attention to current research problems and future prospects.S. M. Patil et al. 

[56] used Kalman filter (KF) with prediction analysis to gather noise-free data for 

transmission in cluster-based WSNs. This method reduces the burden of data transfer 

in WSN applications while simultaneously enhancing the quality of the data used for 
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analysis. Prediction analytics, such as a decision tree, are used to forecast things like 

agricultural production, soil type, precipitation, and even crop diseases. 

2.2 RESEARCH ANALYSIS AND RESEARCH GAP 

IDENTIFICATION 

The findings of the previous study, which are summarised in Table 2.1, 

demonstrate that environmental conditions can be analysed using agriculture growing 

monitoring techniques. 

Table 2.1 Research analysis and research gap findings in existing literature 

Ref 
Sensors/Actuators 

Used 

Technology 

Used 
Application Research Gaps 

[1] 

Temperature/Humidit

y, Electrical 

conductivity, pH, 

Level controller, 

Liquid counter, Flow 

meter, Solar radiation 

IoT, 
Greenhouse 

(prototype) 

The cloud cannot provide very 

low latency. 

[3] Temperature 
IoT, Petri 

Net 
Greenhouse 

Focused on energy 

consumptions parameters only, 

no provision of intelligence 

system 

[7] - IoT, DL General Farming 
High computational cost not 

suited for IoT 

[8] - 
Energy 

Efficiency 
General Farming 

Limited range of implement 

devices also no provision of AI 

[9] 

pH, EC, ambient 

temperature and 

humidity 

IoT, Fuzzy 

Logic 
Greenhouse 

Human knowledge and 

expertise are fully dependent on 

Fuzzy Logic control systems. 
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[11] PIR sensor, Camera 

Image 

Processing, 

OpenCV 

Agriculture Field 

To shorten the time taken for a 

notification to the extent of a 

user, picture compression 

techniques must be created. 

[12] - IoT, ML Agriculture Field 

The crop data set should be 

precise according to 

environmental conditions 

[14] 

Air/ Soil 

Temperature and 

Humidity 

IoT 
Vegetable 

Garden 

The energy consumption 

parameter didn’t consider 

[17] 

Temperature, 

Pressure, Humidity, 

Luminosity, Soil 

Moisture, Relay 

Switch 

IoT General Farming 
Practicality implementation will 

be issue 

[18] 

Air temperature 

sensor, air humidity 

sensor, and soil 

IoT, ML General Farming 
High bandwidth, high power 

consumption, less reliable 

[19] Camera 
IoT, Image 

Processing 
Crop Field 

Maintenance of the robotic 

structure yields higher cost 

[21] 
water level, EC-pH 

level, 
IoT Agriculture Field It is not scalable as cloud 

[22] 

temperature and 

relative humidity 

sensors, pump 

IoT Vertical Farming Very few parameters studied 

[23] 

Temperature, 

Pressure, UV, CO2, 

Rain Gauge, 

Humidity 

IoT, AI Rice Field Security is not considered 
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[24] 

Temperature, 

Pressure, UV, CO2, 

Rain Gauge, 

Humidity 

IoT, AI Turmeric Field 
Latency and Security is not 

considered 

[26] 
Temperature and 

Humidity 
IoT, Potato Field 

The bandwidth is increased 

with higher power consumption 

[27] 
Camera, Temp and 

Humidity, PIR, 
IoT 

green vegetation,  

poultry, Fish 

Tank 

Implementation is not 

considered 

[28] Temp and Humd IoT, LoRa General Farming 
Lack of an effective storage 

mechanism 

[29] 

Soil Moisture , 

Temperature and 

Humidity 

IoT, BLE General Farming Rusting of soil moisture sensor 

[30] Camera, robotic arm 

IoT, Image 

Processing, 

MLP 

Tomato Field 

(prototype) 

Maintenance and precision of 

the mechanical part increases 

the cost 

[31] Camera 

Image 

Processing, 

ML 

General Farming 
Power consumption and 

security need to improve 

[33] Camera, 
IoT, DL, 

ML 
Greenhouse High computational cost 

[35] 

Humidity, 

Temperature, 

Moisture, Intensity 

IoT, 

Threshold 

Control 

General Farming Presentation is not user friendly 

[36] Temperature, pH IoT 
Chilli Farming, 

Irrigation 

Power consumption need to 

analyse 

[37] soil moisture, air IoT General Farming Less reliable sensors used 
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temperature, and 

relative humidity, 

Relay 

[38] Soil Moisture IoT, ML 
General Farming 

(prototype) 

Remote sensing image requires 

image enhancement for precise 

operation 

[40] Soil Sensors IoT 

Agriculture 

Water 

Management 

The sensor needs to be 

corrosion-free. 

[94] Camera IoT & ML 
Smart 

Agriculture 

Quality of crop images is a 

critical issue 

[95] Arduino Uno IoT Farming 
Large data are difficult to 

consider. 

[98] Not Applicable IoT & ML Crop Prediction 
The precision farming system is 

not developed. 

[101] Not Applicable IoT & DL Data Analytics 
The decision making model is 

not implemented. 

 

2.3 SUMMARY OF THE REVIEW OF LITERATURE 

In this chapter, we have analyse the subsequent data for the precise greenhouse 

management system. A smart greenhouse system, obsessed with market demands and 

dependent on improvement plan, is an amalgamation of IoT with agriculture.  

It is crucial to have a high level of technical expertise and technical involvement 

while observing and managing the greenhouse climate. The meticulous data was 

distinguished and empowering their full consideration to characterise the whole 

investigation as per their restriction and the likelihood of work enhancement.  

According to the research gap, agriculture and its repercussions are influenced by 

a number of fundamental components and circumstances. Cultivators in traditional 
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greenhouses can manage ecological parameters through a relative control component 

that includes manual interpolation, resulting in energy and productivity losses, as well 

as higher labour costs on a regular basis.  

From the above study, there are some major research gaps that should be taken 

into consideration for system improvement. 

1. Less parameters are taken into account. 

2. Practical implementation can be an issue. 

3. Low reliability. 

4. Low scalability. 

5. Latency should be considered. 

6. Lack of effective storage mechanism. 

7. Less reliable sensors are used. Etc. 

To overcome these challenges, an intelligent greenhouse weather detecting and 

controlling system emerges to liberate. IoT with Artificial Intelligence (AI) is becoming 

more widely used, which is a key aspect in the development of a smart precise 

greenhouse framework in the future. 
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CHAPTER 3 DEVELOPMENT OF IoT BASED SMART 

FARMING SYSTEM 

3.1 Overview 

The chapter describes the proposed Smart Farming System for Data Analytics 

(SFSDA) Using ML Enabled Internet of Things. The proposed system will be divided 

into four layers for better understanding. The cloud layer, fog layer, edge layer, and 

sensor/device layer are four fundamental architectural layers for a precision-controlled 

greenhouse management system. This chapter is more likely to focus on sensor/device 

layer which will be used for precise data collection from the field. In this a hardware 

prototype is developed to collect all information about the greenhouse environment 

including temperature, humidity, CO2, soil moisture, and light intensity. For data 

collection, various sensors and techniques have been implemented, which are explained 

in detail in this chapter.   

3.2 Block Diagram 

Figure 3.1 shows the suggested paradigm for an intelligent farming system to be 

used in the greenhouse. The detail working of the figure is explained in the following. 

 

Figure 3.1   Smart Farming Infrastructure for Greenhouse Management 

 



 

67 

 
 

 

3.3 Working 

The sensor layer is where all the field environment-related sensors and actuators 

live. The edge layer typically comprises a controller unit to which various sensors and 

actuators are connected in order to collect data for transmission to the fog layer. The 

primary function is to create an analytics and decision-making model using edge-level 

data and to provide actuator control signals to the edge layer. Finally, the upper cloud 

layer provides a UI dashboard that displays a graphical representation of sensor and 

actuator data. The proposed framework is unique in that it uses the Internet of Things 

(IoT) to aid farmers with greenhouse management. It is all done remotely so that 

farmers can monitor and adjust factors such as soil moisture, CO2, light, and 

temperature from afar. Because of this, farmers cannot physically go check on their 

crops. 

3.3.1 Sensor Layer 

The greenhouse, which is used for this experiment, is very climate sensitive and 

the plants being investigated are Gerbera daisies and broccoli. Various sensors like 

light, gas, temperature, humidity and moisture are deployed to track overall conditions 

in a green shade by using actuators like pump, fan and light. In addition, to relay 

parameters and run equipment such as fans and pumps, actuators will be chosen and 

employed. The adoption of a greenhouse management system provides several benefits 

to crop and disease control. 

3.3.2 Edge Layer 

The nodes and edges, which are sensors, are deployed in the field and linked to 

a low-power microcontroller optimised for the Internet of Things. In this research, we 

used an MCU Node ESP 32 to collect and process sensor data and send it to the upper 

layer’s home base. Calibration and verification of sensors against an expected value are 

necessary for accurate data collection in analogue or digital form. To guarantee crop 

survival through precise crop management, it is necessary to gather data for both 

favourable and unfavourable climatic factors. 
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3.3.3 Fog Layer 

Decisions, edge layer control, and data communication to the cloud layer for farmer 

use are the key responsibilities of this layer. The complex decision-making system is 

the result of an ML algorithm. The functions of fog layer include:  

 Information is produced by sensors in the boundary layer. 

 Real-time or batch data collection enabled by sensors included in IoT devices 

(temperature, humidity, camera vision, light intensity, etc.). 

 Acquiring and compiling information into a single database. 

 To clean and fix the data, algorithms might be used throughout the filtering 

process. 

 The function of the data should be taken into account while classifying it. 

 Computing: This stage entails performing computations on the categorised 

data (e.g., the amount of water to pump). 

 Prediction-based decision making and data visualisation through reports and 

dashboards. 

3.3.4 Cloud Layer 

Adafruit IO Cloud will be used to display data from all edge nodes before it is 

sent to the base station for processing and management. A graphical user interface (UI)-

based programme allows farmers to monitor the growth of their crops. A server-less 

execution environment for constructing and linking cloud services is called cloud 

functions. You can create straightforward, one-purpose functions with cloud functions 

that are linked to events released by your cloud infrastructure and services. When an 

event being watched fires, your function is called. In a completely managed 

environment, your code runs. Neither server management nor infrastructure 

provisioning is required.  

Data can be used by a system called Adafruit IO. It emphasises simplicity of 

usage and permits straightforward data connectivity with minimum need for scripting. 
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The Adafruit IO offers an easy-to-use platform for data analysis. The MQTT client 

libraries are included with IO. 

3.4 Data Acquisition using an Experimental Model 

For the new purpose of testing the suggested greenhouse system, a prototype 

experimental model was developed using an embedded system device that contains 

various sensors, as illustrated in Figure 3.2. 

 

Figure 3.2   Proposed System for Data Acquisition 

3.4.1 Sensors and Actuators 

In the proposed prototype, four sensors, DHT11, LDR, MQ2, Cu Leads, are 

used in experimentation with actuators fan, light and pump. The DHT11 temperature 

sensor is used which can also detects humidity, the LDR is used to detect the light 

intensity inside the greenhouse, the MQ2 sensor detects CO2 levels for day and night 

inside the greenhouse, and Cu leads well be utilized for sensing soil moisture inside the 

greenhouse. The actuators will be controlled by the control signal generated by the 

intelligent control system. Gerbera daisies and broccoli are two of the crops studied in 

the suggested model. Gerbera and Broccoli are two different flowers that have different 

characteristics and both require a separate atmosphere for their growth. All the data 

required for the development of gerbera and broccoli were collected from the project 
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in-charge of Hi-Tech lab of Agriculture University, Pune. The questionnaire is made to 

solve all doubts about gerbera and broccoli and it is being validated by experts.  

3.4.2 Embedded System 

As shown in Figure 3.3, all of the sensors required to collect the greenhouse 

parameters are wired to a microcontroller Node MCU ESP 32. Various parameters are 

logged in serial fashion on a personal computer, with time stamp values of 1 hour. 

Adafruit's IO cloud platform uses the MQTT protocol to continuously monitor 

temperature, humidity, light intensity (using the LDR sensor), carbon dioxide (using 

the MQ2 sensor), and soil moisture (using the Cu Leads) for 15 days, day at 11.00 am 

and night at 09.00 pm, at regular intervals in the month of December of 2021 year. 30 

data samples have been collected to send over cloud using microcontroller for training 

the data. 

 

Figure 3.3   Proposed Experimental Model 

3.4.3 Message Queuing Telemetry Transport (MQTT) 

The data privacy and integrity are protected via MQTT, a lightweight publish-

subscribe system that uses the TCP/IP network. A message broker is an intermediary in 

the MQTT protocol that facilitates communication between message senders and 

recipients. It is possible to use the same client to send and receiving alerts. Each letter 

represents a different subject area. The topic is the string that contains the slash-
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separated levels of the message hierarchy for routing. When a customer registers 

interest in a certain topic area, the broker will send them any messages that pertain to 

that area. Smart sensors, wearables, and other Internet of Things (IoT) devices typically 

have to transmit and receive data over a resource-constrained network with limited 

bandwidth. These IoT devices use MQTT for data transmission, as it is easy to 

implement and can communicate IoT data efficiently.  

MQTT supports messaging between devices to the cloud and the cloud to the 

device. MQTT implementation requires a minimal amount of code that consumes very 

little power in operations. The protocol also has built-in features to support 

communication with a large number of IoT devices.  In addition, wildcards allow you 

to subscribe to many topics at once. The transfer of data from temperature sensors in a 

greenhouse system is shown in Figure 3.4. 

 

Figure 3.4   Workflow of MQTT for sensor data 
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The MQTT protocol has the following advantages, which have led to it 

becoming a standard for IoT data transmission. 

i. Lightweight and efficient 

The lightweight and efficient MQTT implementation of the IoT device uses 

little resources, making it suitable for even modest microcontrollers. A simple MQTT 

control message, for instance, needs just to include two data bytes. For maximum 

efficiency, the MQTT protocol uses compact message headers. 

ii. Scalable 

Minimal code with low power consumption is all that is needed for a scalable 

MQTT implementation. The protocol was designed with features already included to 

facilitate interaction with a wide variety of IoT gadgets. It provides easy access and 

transfer of data without disturbing the runtime process. Therefore, the MQTT protocol 

can be used to establish a network connection to potentially millions of such devices. 

iii. Reliable 

Connectivity for many IoT devices occurs through slow and laggy cellular 

networks. Built within MQTT are features that speed up the time it takes an IoT device 

to reconnect with the cloud.  

iv. Secure 

Using contemporary authentication protocols such as OAuth, TLS1.3, 

Customer Managed Certificates, and more, Secure MQTT makes it easy for developers 

to encrypt messages and authenticate devices and users. 

v. Well-supported 

The MQTT protocol is widely supported by a number of languages, including 

Python. Therefore, it can be integrated into virtually any application with little effort 

from the programmer. 
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The publish/subscribe paradigm is fundamental to the MQTT protocol's 

operation. Clients and servers have always had direct contact in conventional network 

architectures. Clients make requests for information or data from the server, which are 

then fulfilled. However, with MQTT, the sender and the recipient of messages are 

separated via a publish/subscribe structure. Instead, a third party, known as a message 

broker, is in charge of facilitating interaction between content creators and consumers. 

The broker's responsibility is to sort the messages arriving from the publishers 

and deliver them to the relevant recipients. Below is an example of how the broker 

separates the publisher and the subscriber. 

i. Decoupling in space 

The publisher and the subscriber do not know the other's IP address or port 

number, and neither knows where the other is located on their respective networks. 

ii. Time Decoupling 

Both the publisher and the subscriber are not active or connected to the network 

at the same time. 

iii. Synchronisation Decoupling  

The sending and receiving of messages from both publishers and subscribers is 

completely asynchronous. The subscriber can receive messages independently of the 

publisher. 

By creating clients and brokers with the following core components, MQTT 

realises the publish/subscribe concept. 

i. MQTT Client 

Any machine, from a server to a microcontroller, with the MQTT library 

installed is considered a MQTT client. The client is a publisher if it is the one doing the 

message sending, and a subscriber if it is the one doing the message receiving. A device 

that uses MQTT for networked communication is known as an MQTT client. 
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ii. MQTT broker 

The MQTT broker is the back-end system responsible for coordinating 

communications between clients. The broker's job is to receive messages, sort them, 

determine which clients have subscribed to each message, and then deliver them to 

those clients. Among the other things it is responsible for are: 

 Authorising and authenticating MQTT clients 

 Sending data to a remote system for processing 

 How to deal with missing client sessions and communications? 

iii. MQTT Connection 

The MQTT connection between clients and brokers is established, and 

communication begins. Sending a CONNECT message to the MQTT broker begins the 

connection establishment process on the client side. By sending a CONNACK message, 

the broker verifies that the connection has been made. A TCP/IP stack is needed for 

communication between the MQTT client and the broker. Customers only communicate 

with the broker, never with each other. 

3.4.4 Adafruit IO Cloud Platform 

Adafruit IO provides a cloud platform for monitoring sensor data and observing 

the actuator controls. Adafruit IO is a cloud service to which our edge devices are 

linked. Its primary use is to store and then displaying data from controllers that belong 

to edge layer to which sensors attached. The sensor data are analysed to control the 

actuator using an intelligent system deployed at the fog layer and the status of actuator 

device control on the/off is visualised on Adafruit cloud platform. 

This platform can be used to: 

 Display the generated data online in real time using graphs and squares on a 

dashboard. 

 In-dash buttons that may be used through the internet or a mobile device to 

remotely activate and deactivate devices (motors, sensors, etc.). 
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 Integrate your work with online tools like RSS feeds, IFTTT, email, etc. 

 Implement threshold- and time-based triggers to take action when the data 

values meet or exceed predetermined conditions. 

One such cloud service, Adafruit IO, is geared towards IoT deployments. The 

Adafruit IO is compatible with several development boards and microcontrollers. 

Adafruit IO is preferred by IoT developers over other IoT cloud platforms because: 

 There is robust support for user interfaces and a variety of programming 

languages provided by the API. 

 Better judgements may be made with the help of data visualisation tools like the 

dashboard. 

 Confidentiality - More advanced encryption methods are used to keep data safe 

in the cloud. 

 Many blogs with phenomenal community support enable continuing product 

enhancements. 

3.5 Flowchart 

The technique and workflow of the proposed system are depicted in Figure 3.5. 

When the system starts, it will initialise all the sensors that we are using for data 

collection. All sensors will measure the agriculture field data and send it to the 

microcontroller. 



 

76 

 
 

 

 

                 

Figure 3.5   Workflow of Experimental Model 

The data received by the microcontroller will be sampled and converted in a 

suitable format before sending them to the cloud. For sending the data to clouds, the 

Internet needs to be active. So, controller will ask for the WI-FI availability, and if the 

WI-FI is available, then data will be sent to the clouds otherwise controller will ask for 

the WI-FI availability until the WI-FI is not available. The next data set will be collected 

after the set interval and the same process will continue.   
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3.6 Data Acquisition, Monitoring, and Interpretation 

Figure 3.6 shows the results of the prototype tests conducted using the proposed 

experimental design, which represented two crops produced under contrasting 

conditions. One, building a sensor net for intelligent green-house monitoring; two, 

automating actuators; and three, designing core model-embedded systems for plant 

growth and feeding were the three primary stages of testing. Using an embedded 

system, the proposed technique successfully evaluated soil moisture, temperature, CO2, 

and plant light which are all critical elements in the successful operation of a 

greenhouse.  

 

Figure 3.6   Experimental test bench. 

Figure 3.7 displays the results of our serially transmitted measurements from 

several experimental setups. All of this sensor data could be monitored in real time over 

the Internet on the Adafruit IO Cloud dashboard after being published from the nodes 

to the Adafruit broker. Arduino programming is used to collect and send data to adafruit 

IO. Farmer can monitor the data over serial monitor using an arduino. For display 

purpose a prototype is set with less delay to have a proper understanding of sensor 

working. The real-time data collection is achieved by the system as observed on serial 

computer.  
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Figure 3.7   Observed sensor data on a serial display alongside accurate time stamps. 

The prototype was first tested in a living room before visiting the farm field. 

Hence it is observed in the serial monitor that humidity, temperature, light intensity, 

and CO2 have some values, but the moisture level is showing the 0 value on the monitor. 

The user can access the sensor data for monitoring purposes by subscribing to the 

Adafruit IO system. The prototyped has been developed with two separate nodes for 

data collection inside and outside of the greenhouse. The two nodes, i.e., Node 1 and 

Node 2 have been created for the better understanding of the output data. Figures 3.8 

and 3.9 demonstrate how the user could subscribe to this information and have rapid 

access. 

 
Figure 3.8   For Case 1, sensor data was shown on Adafruit's IO cloud dashboard. 
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Figure 3.9   For Case 2, sensor data was shown on Adafruit's IO cloud dashboard. 

For better understanding two different themes have been chosen for Node 1 and 

Node 2. Node 1 graphical data interface uses the dark theme in which one can observe 

the changes in all parameters of the system. Node 2 uses the white dashboard for sensors 

inside the greenhouse for the interface to show changes in data.  

Figure 3.10 shows the graph for the reference data for broccoli and gerbera and 

the sensor data collected by various sensors. Reference data are validated from the 

university experts and the reference book for differentiating with actual data.  
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Figure 3.10   Gerbera and Broccoli both have different sensor parameter 

representations outdoors and within the greenhouse. 

 

Soil moisture levels can be taken into account by rolling up or down the 

greenhouse's doors and windows. To keep the plant cool and promote rapid 

development, photosynthesis is dependent on a higher concentration of carbon dioxide 
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(CO2) and a higher water level in the evening than during the day. By absorbing CO2 

during the day and releasing it at night, the greenhouse can keep the CO2 content at its 

highest throughout the night, as shown in Figure 3.10. 

The soil moisture level is crucial because too much water can cause the plant to 

get a fungal infection and not enough water can dry out and kill the plant. Consequently, 

it is essential to pay close attention to the plant's watering needs. Because 

photosynthesis occurs primarily at night, plants require more CO2-rich water. As can be 

seen in Figure 3.10, the plants were completely submerged when the soil moisture 

sensor returned a negative number. A DC motor controlled the automated closing of the 

greenhouse's windows and doors.  

For example, in Figure 3.10, a positive number meant that the soil was dry and 

that it needed to be rewetted. The temperature inside the greenhouse is crucial, and thus 

it needs to be kept as high as possible. Warmth promotes flowering, fruiting, 

photosynthesis, and seed germination. 

Compared to the range outside the greenhouse, the relative humidity and the 

temperature range inside the greenhouse were therefore kept as close to ideal as 

feasible. Plants employ a variety of different systems, but one that is crucial to 

development, blooming, and overall form is the photosynthetic system, which benefits 

from the Sun’s spectrum of colours. 

For too dry or too wet soil, you can open or close the greenhouse's windows and 

doors. Photosynthesis, the process by which plants obtain their energy from carbon 

dioxide and water, is most effective when carried out at night rather than during the heat 

of the day. After measuring the level of CO2 concentration in a greenhouse, the 

maximum CO2 level is maintained overnight because the greenhouse absorbs CO2 from 

day to night. Figure 3.10 shows this daily decline in CO2 levels as a result of 

photosynthesis. 

The amount of water in the soil controls whether the engine will run, as shown 

in Figure 3.10. Both the inside and outside of the greenhouse are displayed graphically, 
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and the actuator fan or humidifier is adjusted correspondingly. Figure 3.10 shows that 

adequate light for photosynthesis is needed both inside and outside the greenhouse; 

therefore, artificial lighting is adjusted accordingly. Therefore, the amount of light 

entering the greenhouse was restricted to a level comparable to that that would normally 

enter the greenhouse on a cloudy day. 

The experimental data is collected for three different seasons to understand the 

best suitable climate conditions for gerbera and broccoli. The average 90-day data has 

been collected and validated with reference data collected for gerbera and broccoli. 

Some of the data samples are collected at day and some are collected at night for random 

data generation and to get the precise results in extreme worse conditions. The nonlinear 

data generation will always lead the algorithm to work smoothly in a complex situation.   

The result graphs show the data representation for CO2 for day and night time, soil 

moisture for dry and wet soil, Humidity, Temperature and light intensity for inside and 

outside greenhouse. The data collection is done for hot weather season (summer), 

monsoon season (rainy) and cold weather season (winter).  

The results for various seasons for different parameters are shown in Figure 3.11 

to figure 3.13. The climate conditions in the study region are tropical wet and dry, with 

hot, dry summers and mild to cool winters. Winter lasts from November to March, the 

monsoon season from July to October, and the summer season from March to June. The 

test field region, which is 0 feet (0 metres) above sea level, experiences tropical wet 

and dry seasons. The district's average annual temperature of 30.63°C (87.13°F) is 

4.66% higher than the national average for India. The test field area normally has 

103.26 wet days (28.29% of the time) annually and receives approximately 120.15 

millimetres (4.73 inches) of precipitation on average. The maximum temperature 

observed is 47 ° C and lowest is 24.03 º C. Figure 3.11 shows the sample data collected 

at day and night in the summer season. 



 

83 

 
 

 

 

Figure 3.11   Sensors reading in summer season for greenhouse monitoring. 

Similarly, data collection is processed for the rainy season for all the five 

parameters inside the greenhouse comparing the reference data of gerbera and broccoli 

with the actual data in Figure 3.12.  
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Figure 3.12   Sensors reading in rainy season for greenhouse monitoring.  

As seen in the graph, the temperature of the greenhouse is quite low at night and 

high at daytime. It will require much more data monitoring and parameter control 

during the season as the temperature requirement for both gerbera and broccoli is low 

for both day and night. The data collection for the winter season is done by using the 

same parameter that is shown in figure 3.13. 
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Figure 3.13   Sensors reading in winter season for greenhouse monitoring.  

The graphs conclude that the winter season is the best among all to have the 

cultivation of gerbera and broccoli. The research works for the cultivation of crop in 

any season using a greenhouse management system and by applying ML algorithms to 

control the atmosphere of the greenhouse for the smooth development of the crop.  
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3.7 Summary of the Chapter 

 The proposed four-layer architecture is covered in this chapter, along with the 

importance of each layer in the development of an Internet of Things (IoT)-

based smart farming system.  

 The main objective of this framework is to develop a prototype system for smart 

farming that accounts for the greenhouse environment, monitors greenhouse 

plant activity using a variety of cloud-based sensors, and visualises the data 

using data interpretation. It can be concluded that the IoT Based Smart Farming 

System (IBSFS) for data collection through various sensors has been 

successfully developed. 

 The Data Collection of various factors for analysing has been carried out by 

using a proposed prototype, which shall be further compare with reference data 

for validation.  

 All data sample will be stored for performing different machine learning 

algorithms for effective decision making which will be helpful in achieving 

precision management of a greenhouse.   
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CHAPTER 4 ANALYTICS AND DECISION-MAKING 

MODEL USING ML FOR PRECISION 

MANAGEMENT 

4.1 Overview 

This chapter depicts the proposed approach established at the third layer of our 

proposed model, i.e. a fog layer for a data analytics system employing various ML 

methods. The two machine learning algorithms were chosen because of their theoretical 

and implementation advantages, which perfectly suits the system dataset to get the 

intelligent and precise output. The classification and regression techniques were 

adopted and analysed in this chapter to get the expected results. The proposed system 

used classification and regression algorithms which were based on supervised learning 

data instead of unsupervised learning approach, as while experimentation, the system 

was monitored and the data behaviour of both sensors and actuators was observed. Also, 

supervised classification tends to be more accurate and is commonly used when labelled 

data is available. The actual data and expected data are compared for both two 

techniques. The system is developed to control the actuators devices like pump, fan, 

and light within the greenhouse making the greenhouse a smart one.  

One of the most well-liked supervised learning algorithms, Support Vector 

Machine, or SVM, is used to solve classification and Regression problems. It works 

well for many real-world issues and can solve both linear and nonlinear problems. Text 

classification, picture classification, spam detection, handwriting recognition, gene 

expression analysis, face detection, and anomaly detection are just a few of the tasks 

that SVMs can be used for. SVMs can handle high-dimensional data and non-linear 

relationships, making them flexible and effective in a wide range of applications. The 

optimal hyperplane selected to divide the two classes in this supervised machine 

learning issue. 

A neural network known as a multilayer perceptron learns the correlation between 

linear and nonlinear inputs. A perceptron is a basic form of neural network that has the 
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ability to categorise patterns that may be separated linearly. It has a single layer of 

binary output and weighted inputs. A more sophisticated kind of neural network called 

a multilayer perceptron (MLP) is capable of learning to categorise nonlinearly separable 

patterns. It effectively manages large volumes of input data. Following training, quickly 

makes predictions.  Even with fewer samples, the same accuracy ratio is still possible. 

The feed forward neural network is supplemented by the multilayer perceptron (MLP). 

The input layer, output layer, and hidden layer are the three different kinds of layers 

that make it up. 

The training and testing of data is performed using MATLAB 2021 version. The 

accuracy, sensitivity, specificity, latency, f-score, and LMSE are calculated and 

observed in this chapter. The detailed description is given below.  

4.2 Block Diagram 

The suggested methodology for data analytics systems using ML algorithms, 

typically regression modelling, is illustrated in Figure 4.1 and is addressed in more 

detail in the following. 

 

Figure 4.1   Implementation Flow of Data Analytics System 

At first, data from sensors is generated at the edge layer and then acquired. 

Information gathered by Internet of Things (IoT) devices, especially sensors, which can 

gather information in real-time or in tiny batches (temperature, humidity, camera vision, 

light intensity, etc.). In a target database, data are collected and combined. Pre-
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processing is the cleaning and editing of stored data. Data categorisation based on the 

classifier's initialisation and validation after ML methods have been trained in order to 

save the generated model. On the categorised data, calculations will be made during the 

prediction phase (for example, when to pump water). Decision-making based on 

predictions and data visualisation through reports or dashboards. For implementation 

purposes, the Support Vector Machine and the Multi-Layer Perceptron Neural Network 

are specifically two ML algorithms that were chosen. 

 

4.3 Working Principle 

4.3.1 Create and Access Dataset 

To train a model using a dataset generated in an experimental context, the ML 

approach divides the data into train and test sets, each with its own output data label. 

Overfit may be avoided with the use of data splitting, which is widely used in ML. 

When an ML model fits the training data precisely but fails to predictably fit fresh data, 

we say that the model overfits. Raw data used in a ML model is often split into half. 

With a 70:30 split between training and testing, 70% of the data is used to fine-tune the 

model and 30% is used for validation. Each sensing parameter in the sensor data has a 

total of 1024 samples. 

4.3.2 Feature Engineering 

"Feature engineering" is the process of identifying features from unstructured 

data using data mining tools and domain knowledge. These traits can be incorporated 

into ML algorithms to improve their performance. You might think of feature 

engineering as a type of applied ML. Improved model accuracy on unseen data is 

another byproduct of this process, which entails translating raw data into characteristics 

that more accurately describe the underlying problem to the prediction models. 

There are two main objectives in feature engineering: 

 Creating a suitable input dataset that meets the requirements of the ML 

algorithm; 
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 Increasing the utility of ML models. 

All raw data are given in *.csv format, which may be read using the Matlab 

programming language. This method is useful for gathering information and using ML 

regression strategies. By choosing and combining features from many datasets to 

generate a smaller feature subset, feature extraction is a technique for discovering 

previously unknown features. Selecting features from a dataset is the last step in the 

ML process; these characteristics form the basis for subsequent operations like 

clustering, classification, etc. You can get there with the use of techniques such as 

univariate analysis, correlation analysis, and so on. Our method employs univariate 

feature selection, a technique for choosing the most useful characteristics through a 

single statistical measure. 

4.3.2.1 Pre-processing 

Data pre-processing techniques like resampling, normalisation, noise filtering, 

attribute selection, etc., aid in increasing the precision of intelligent algorithms' 

categorisation or estimate. The feature samples in the data set are first normalised and 

scaled according to industry standards. 

The standard scaler, to standardise data, adheres to a specific concept of 

standardisation. When features are standardised (also known as Z-score normalisation), 

they are rescaled so that they exhibit the characteristics of a normal distribution with 

mean and standard deviation equal to zero and one, respectively. The following is how 

standard sample scores are calculated—also referred to as z scores. 

𝑧 =
x− µ

σ
     ………. (1) 

When characteristics follow a Gaussian distribution but have different means 

and standard deviations, standardisation can help by transforming them into a normal 

Gaussian distribution with those values fixed at 0 and 1. Linear regression, logistic 

regression, and linear discriminate analysis are examples of methods that benefit from 

having their input variables rescaled to fit the Gaussian distribution. Remove the mean 

and scale the features to a variance of 1 to get a standardised set. Centering and scaling 
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are carried out independently on each feature by computing the necessary statistics on 

the samples in the training set. Once the data has been transformed, the mean and 

standard deviation are kept for future use. Since many ML estimators behave abruptly 

if the features do not nearly resemble normally distributed data (such as Gaussian with 

zero mean and unit variance), a dataset must be standardised in order for them to work 

properly. 

When the values are normalised, they are moved and rescaled so that they fall 

into the range of 0 to 1. In other words, it is a form of Min-Max scaling. The 

normalisation formula is as follows: 

                                                       𝒳′ =
𝒳− 𝒳min

𝒳 max − 𝒳min
   …………. (2) 

The maximum and lowest values of the feature are denoted here by Xmax and 

Xmin. If X has the lowest value in the column, then X' has a numerator of zero. 

However, if X is the highest number in the column, then X' equals 1 because the 

numerator and denominator are both 1. X' is between 0 and 1 if and only if X is between 

the lowest and maximum values. 

4.3.2.2 Feature Selection 

The reduction in predictive analysis is achieved by a process known as feature 

selection. The concept of "garbage in-garbage out" applies to ML, which means that 

the input data must be carefully scrutinised. 

 

Figure 4.2   Feature selection strategies 
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To assign scores to subsets of variables based on their prediction capacity, the 

Wrapper technique treats the target learning machine as a black box. Figure 4.2 shows 

the induction process used in supervised ML, where a collection of training cases is 

shown, each of which is defined by a vector of feature values and a class label. An 

effective classifier is induced using the induction algorithm, which is sometimes called 

a black box. The feature subset selection method is a "wrapper" around the induction 

process in the wrapper technique. The large number of calculations needed to produce 

the feature subset is a major downside of this method. 

Feature selection methods streamline ML models to make them more accessible 

to scientists. The major impacts of the curse of dimensionality are mitigated by IT. 

Additionally, by increasing the model's generality, this method helps alleviate the issue 

of overfitting. As a result, the algorithm's computing time and space requirements are 

reduced, and its predictive performance is enhanced. 

The advantages of feature selection include: increased accuracy in classification 

and prediction, accelerated training, and reduced space requirements, enhancement of 

domain interpretability and comprehension. 

4.3.3 Develop Predictive Model 

Features from both the training and validation sets will be required to evaluate 

the model's efficacy. The model is then trained using a mix of the SVM and MLP Neural 

Network's supervised regression ML techniques. The ideal hyperparameters must be 

specified or adjusted during training to provide the best regression result on the test data 

set. One of the two selected regression-based approaches is support vector machine 

(SVM), since it works adequately when there is a reasonable margin of dissociation 

between classes and it is more productive in big-dimensional spaces. MLP not only 

processes large amounts of input data quickly and accurately after training, but can also 

tackle complex nonlinear problems. 

A well-liked technique for supervised classification and regression is SVM. 

SVMs are based on the premise that data that cannot be separated linearly may be 
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moved to a new location where they can be separated linearly using a hyper-plane that 

appropriately separates the data under two essential conditions. Because other sets of 

vectors would behave differently, we employ the hyperplane vector distances. The 

assumption function h is defined in Equation (3) as follows. 

                      1 . 0

1 . 0( ) if w x b

i if w x bh x   

           ………… (3) 

Locations on or above the hyperplane will be categorised as class +1, and those below 

the hyperplane as class -1. 

Artificial neural network (ANN) known as a multi-layer perceptron neural 

network (MLPNN) can have several hidden layers. Figure 4.3 depicts the layer-by-layer 

design of the system. A single neural model neural network is called a perceptron. Given 

that it simulates extremely nonlinear functions, it serves as the foundation for deep 

learning neural networks. Equation (4) illustrates the error in a output node j at the nth 

data point (training example). 

 

       j j je n d n y n             ………...(4) 

Where, 

‘d’ represents the goal value; ‘y’ represents the output value.  

Equation (5) illustrates how the weights can be changed in response to modifications 

that reduce the total output error.  

21
( ) ( )

2
j

j

n e n               ………… (5) 

 Hyperparameter tuning or optimisation is the process of choosing the ideal 

hyperparameters for a model-learning method. Training outcomes can be modified by 

adjusting the value of a parameter known as a hyperparameter. Grid search, the quickest 

and easiest way to fine-tune hyperparameters, is employed here. For each possible 
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combination of the provided hyper-parameter values, we construct a trained model, and 

then we compare their average scores to determine the best design. 

 

 

Figure 4.3   Layer wise architecture of MLPNN 

 

Below, we detail how to adjust the model's hyper-parameters. 

step1: Outline the components of a ML model. 

step2: Determine the range of values that can be used for each hyperparameter in the 

chosen method. 

step3: Determine how values of hyperparameters will be sampled. 

step4: Develop some standards by which to evaluate the model. 

step5: Design a cross-validation method to assess the system's performance. 

4.3.4 Deploy Model 

During deployment, data is put through its paces against a trained model, and the 

system's performance is measured across a variety of metrics. A hydroponic model at 

the device layer is controlled by data sent from the fog layer using the label anticipated 

from the previous layer's output. 
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4.4 Algorithm Steps of the Proposed Model 

ALGORITHM 

INPUT 

"Features Set"  

 Input – CO2 gas level in ppm, soil moisture in percent, light intensity in lux, 

humidity in percent, and temperature in Celsius. 

 Output - ON/OFF time duration of the pump, ventilation fan, amount of light. 

OUTPUT 

Predicted output with label values (regression). 

Step1: Data gathering from all the input sources.  

Step2: Create the label and feature data from the values of the raw data set in the 

datasets. 

Step3: For each feature's data, apply feature engineering. 

Step4: Replace the mean values with the missing and unidentified values. 

Step5: Find the normalised value of the entire feature collection. 

Step6: Scale every feature data to fall within a certain range. 

Step7: Choose the ML model for MLP, SVM, and regression. 

Step8: Select the range of possible values for the ML algorithm's hyperparameters. 

Step9: Utilise the Grid Search CV Optimisation technique to improve the 

hyperparameter values. 

Step10: Analyse and choose the ideal estimator and score for the chosen classifier. 

Step11: Apply the K-Fold Validation Learning Method to the model validation. 

Step12: Set the best hyperparameters that have been optimised for ML training. 

Step13: Set up the training dataset's feature and label data from scratch. 

Step14: Develop the model for the corresponding ML algorithms. 

Step15: Using the K-fold cross-validation method, verify the model's performance. 

Step16: Save/deploy the trained model if validation is successful; otherwise, go 

back to steps two or ten. 

Step17: Create the feature data from scratch for the test data set. 
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Step18: The trained ML algorithm model should be loaded. 

Step19: Regression analysis: forecast the outcomes given the label values. 

Step20: To check the performance of the system, evaluate RMSE (Regression). 

 

4.5 Summary of the Chapter 

In this chapter, a decision-making model with data analytics is developed using 

ML for Precision Management with two main objectives, namely an intelligent system 

and a precision management system.  

Two supervised machine learning (ML) algorithms, SVM and MLP, are used to 

build an intelligent system for actuator control based on environmental sensing input 

from greenhouses.  

The precision management system is performed using the same two supervised 

regression-based algorithms, SVM and MLP regressor, for precise control of actuators.  

Performance is analysed and validated for two approaches used in the system. 
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CHAPTER 5 EXPERIMENTAL RESULTS AND 

DISCUSSION 

5.1 Performance Statistical Measures 

A confusion matrix is used to gauge the system's effectiveness. While RMSE is 

computed for regression models using the confusion matrix parameters true positive 

(TP), false positive (FP), true negative (TN), and false negative (FN), accuracy, 

sensitivity (recall), specificity, and f-score are computed for classification models with 

positive predictive value (PPV), i.e., precision, negative predictive value (NPV), false 

negative rate (FNR), and false positive rate (FPR). Sensitivity, i.e. recall measures the 

model's capacity to correctly identify instances of the positive class, whereas specificity 

assesses its capacity to correctly identify instances of the negative class. In some 

applications, one statistic could be more important than another. The F-score, a machine 

learning evaluation metric, evaluates the accuracy of a model. It incorporates a model's 

recall and precision ratings. The accuracy statistic shows how often a model predicts 

accurately throughout the dataset. Most of the time, the F score is more useful than 

accuracy, especially if your class is divided unequally. Accuracy performs best when 

false-positive and false negative costs are roughly equal. If there is a large difference in 

the costs of false positives and false negatives, it is desirable to incorporate both 

precision and Recall. 

 

1. Accuracy = (TP + TN) / (TP + TN + FP + FN) 

2. Sensitivity = TP / (TP + FN) 

3. Specificity = TN / (TN + FP) 

4. F-score = 2 * TP / (2TP + FP + FN) 

5. Positive Predictive Value (PPV) = TP / (TP + FP) 

6. Negative Predictive Value (NPV) = TN / (TN + FN) 

7. False Negative Rate (FNR) = FN / (FN + TP) 

8. False Positive Rate (FPR) = FP / (FP + TN) 

9. RMSE = sqrt ( sum ( ( predicted_label - actual_ label )^2 ) / total predictions ) 
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5.2 Experimental Setup 

Two crops, gerbera daisies and broccoli, were used to put the suggested 

experimental strategy through its paces in real world settings. Some of the output 

attributes in the obtained dataset include pump on/off, ventilation fan on/off, light level 

(low/medium/high), CO2 gas level (ppm), soil moisture (percent), light intensity (lux), 

humidity (percent) and temperature (Celsius). The values in the dataset are recorded 

under various conditions at various times throughout each day. For the initial part of the 

project, supervised ML algorithms must be used to automate actuators, build sensor 

nets for intelligent greenhouse monitoring, and generate basic embedded models for 

plant growth and feeding. On a laptop running Windows 10 (64 bit) with Intel Core i5 

a 2.30GHz CPU, 8GB RAM, and no other software open, analytics and decision-

making models were categorised. The MATLAB Statistics and ML Toolbox (SMT) and 

MATLAB Integrated Development Environment (IDE) were used to write the model 

code. 

The recommended approach uses an embedded system to conduct a reliable 

analysis of CO2, soil moisture, temperature, and plant light in greenhouse operations. 

As the measurements are taken under various environmental conditions, they are all 

monitored in real time on a personal computer through serial transmission. As data is 

published from nodes to Adafruit's broker, it can be seen in the Adafruit IO Cloud 

dashboard for remote monitoring of all these sensors. The user may then subscribe to 

this information to get updates as they occur. 

5.3 Data Classification Using ML Model 

The intelligent Model, Statistics, and ML Toolbox was built with the help of the 

MATLAB IDE (Integrated Development Environment). RMSE was studied, a metric 

used to assess system performance. Table 5.1 shows the final range chosen for both 

classifiers and the hyperparameters needed to improve regression modelling for each 

classifier.  
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Table 5.1   Optimization of Regression Model Hyperparameters. 

Prediction 

Algorithm 

(Regression) 

Model Parameter 
Range 

Searched 

Range 

Selected 

SVM Regressor 

kernel 
rbf, poly, 

sigmoid 
poly 

max_iter 10, 30, 50 10 

MLP Regressor 

Hidden_layer_size 10, 50, 100 100 

max_iter 100, 200, 300 200 

The hyperparameter-tuning stage of the evaluation procedure is shown in both 

Table 5.2 and Figure 5.1. The importance of "Hyperparameter Tuning (HPs-T)" for 

choosing the best deep learning or machine learning model and enhancing the model(s)' 

performance. Make it simple because selecting a machine learning model is a 

challenging task that depends only on selecting the right set of hyperparameters. These 

are everything that is required to train a model. With a more tolerable variety of 

hyperparameter tuning and selection strategies, the performance of the machine 

learning model ultimately improves. It always refers to the model's parameters, and it 

is crucial to remember that they cannot be determined from the data and must be given 

before the model moves on to the training phase. Hyperparameter tweaking for the 

regression technique for SVM and MLP is done in the suggested model. 

Table 5.2   Training and testing evaluation time (hyperparameter tuning). 

Phase 
Regression 

SVMR MLPR 

Training 315.78 446.27 

Testing 72.95 75.21 
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Figure 5.1   Representation of evaluation time. 

After applying the suggested algorithms to the benchmark dataset, the decision 

making model evaluates the confusion matrix for regression and classification models 

to determine whether or not the desired result was achieved and to compute the various 

metrics, such as accuracy, sensitivity, latency, etc. MATLAB, along with a statistics and 

ML toolbox, was used to train and evaluate the model using the SVM and MLP-ANN 

supervised ML models. Both methods need optimal hyperparameters for model 

training, which were derived by employing the grid search CV technique.  

 The actual data and forecast data for the observation of the RMSE value 

for pump, fan, and light using the support vector machine (SVM) method are depicted 

in Figures 5.2-5.4. 
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Figure 5.2   Representation of actual and prediction data for pump SVM. 

 

Figure 5.3   Representation of actual and prediction data for fan SVM. 
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Figure 5.4   Representation of actual and prediction data for light SVM. 

The Root Mean Squared Error (RMSE) is one of the two main performance 

indicators for a regression model. It determines the usual discrepancy between the 

predicted values and the actual values. It provides a gauge of the model's precision, or 

how effectively the desired quantity can be predicted. The Root Mean Squared Error 

decreases with model quality. In a perfect model, which is a hypothetical model that 

would always predict the precise expected result, the Root Mean Squared Error would 

be 0. The Root Mean Squared Error has the advantage of being easy to comprehend 

because the error amount is stated in the same unit as the predicted column. 

 

Multilayer perceptron (MLP) algorithm is used to represent the actual data and 

forecast data for the pump, fan and light in Figures 5.5–5.7. The difference between the 

actual data and predicted data is not that great in SVM as compared to MLP. SVM have 

a shorter range of RMSE values, which clearly states that it has a lower error and more 

precision as far as the proposed model is concerned.   
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Figure 5.5   Representation of actual and prediction data for pump MLP. 

 

Figure 5.6   Representation of actual and prediction data for fan MLP. 
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Figure 5.7   Representation of actual and prediction data for light MLP. 

A typical rule of thumb states that the model can reasonably predict the data 

dependably when the RMSE value is between 0.2 and 0.5. A score of adjusted R-

squared greater than 0.75 is also highly recommended for accuracy demonstration. An 

adjusted R-squared of 0.4 or higher is also acceptable in some situations. The fact that 

no number in any of the RMSE graphs shown above exceeds one indicates that the 

system is working correctly and with more accuracy.  

The simulation results for the SVM and MLP algorithms used for classification 

modelling are shown in Figure 5.8 to figure 5.13. Figure 5.8 shows the confusion matrix 

for the pump MLP algorithm.  

 Figures 5.8 and 5.11, which are referenced below, depict the simulation 

results for the SVM and MLP algorithms used for classification modelling. The results 

of the classification report and confusion matrix for pump, fan and light as output 

qualities are shown below. Figure 5.8 shows that out of 30 samples the 22 samples were 

true positive, 1 sample is false positive, 0 samples are false negative and 7 samples are 

true negative, leading to 96.7% Accuracy, 3.3% error rate, 100% sensitivity, 87.5% 

specificity, and 96.49% F-score.    
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Figure 5.8   Confusion matrix using MLP for pump. 

Figure 5.9 shows that of the 30 samples the 16 samples were true positive, 0 

sample is false positive, 1 sample is false negative, and 13 samples are true negative 

which leads to 96.7% accuracy, 3.3% error rate, 94.1% sensitivity, 100% specificity, 

and 98.76% F-score. 

 

Figure 5.9   Confusion matrix using MLP for fan. 

Figure 5.10 shows that out of 30 samples the 19 samples were true positive, 0 

sample is false positive, 0 sample is false negative, and 11 samples are true negative 
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which leads to 100% accuracy, 0% error rate, 100% sensitivity, 100% specificity, and 

100% F-score. 

 

 

Figure 5.10   Confusion matrix using MLP for light. 

For confusion matrix using SVM showing in figure 5.11 for pump proposed 

system got 18 true positive values, 8 true negative values, 0 false positive values, and 

4 false negative values which leads to 86.7% accuracy, 13.3% error rate, 81.8% 

sensitivity, 100% specificity, and 95.74% F-score.   

 

Figure 5.11   Confusion matrix using SVM for pump. 
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For confusion matrix using SVM shown in figure 5.12 for fan proposed system 

got 16 true positive values, 11 true negative values, 2 false positive values, and 1 false 

negative values which leads to 90% accuracy, 10% error rate, 94.1% sensitivity, 84.6% 

specificity and 89.88% F-score.   

 

Figure 5.12   Confusion matrix using SVM for fan. 

For confusion matrix using SVM shown in figure 5.13 for light proposed system 

got 19 true positive values, 10 true negative values, 1 false positive values and 0 false 

negative values which leads to 96.7% accuracy, 3.3% error rate, 100% sensitivity, 

90.9% specificity and 95.95% F score. 

 

Figure 5.13   Confusion matrix using SVM for light. 
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Table 5.3 depicts the evaluation time required for training and testing of 

classification model for both algorithms SVM and MLP for three attributes actuator 

control pump, fan, and light for on/off operation. It is observed that based on the 

attributes data, train and test time varies for respective algorithms from figure 5.14 and 

figure 5.15.  

Table 5.3   Evaluation time required of classification model 

Attributes 
Training Time (sec) Testing Time (sec) 

SVM MLP SVM MLP 

Pump 4.56 4.89 3.81 3.93 

Light 4.25 4.40 3.75 4..02 

Fan 4.82 4.96 4.10 4.21 

 

 

Figure 5.14   Evaluation time required for training for classification model. 

The evaluation time required for the MLP algorithm is more as compared to the 

SVM algorithm for training data set, which differentiate latency in the proposed system. 

The evaluation time required for the MLP algorithm is more as compare to the SVM 
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algorithm for testing dataset due to a greater number of hyperparameters of MLP which 

differentiate latency in the proposed system. 

 

Figure 5.15   Evaluation time required for testing for classification model. 

Table 5.4 displays the results of the confusion matrix-based classification model 

for actuator control operation to on/off for three devices. Based on the data shown in 

the table below, it can be concluded that the MLP method outperforms the SVM in 

every measure considered to control the actuators pump, light and fan as on/off 

perfectly.  

Table 5.4   Performance evaluation of classification model 

Attributes Accuracy (%) Sensitivity (%) Specificity (%) F-score (%) 

SVM MLP SVM MLP SVM MLP SVM MLP 

Pump 86.66 96.66 81.81 100 100 87.5 95.74 96.49 

Light 96.66 100 100 100 90.90 100 95.95 100 

Fan 90 96.66 94.11 94.11 84.61 100 89.88 98.76 

 

Similarly, the other performance evaluation parameters are evaluated from 

confusion matrix attributes, PPV, NPV, FNR, and FPR as shown in Table 5.5. It has 
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been found that the suggested system can effectively classify the with greater PPV and 

NPV values as well as with minimal FNR and FPR ratio values.  

Table 5.5   Performance Evaluation of Regression Model 

Attributes PPV (%) NPV (%) FNR (%) FPR (%) 

SVM MLP SVM MLP SVM MLP SVM MLP 

Pump 100 95.65 66.66 100 18.18 0 0 12.5 

Light 95 100 100 100 0 0 9.09 0 

Fan 88.88 100 91.66 92.85 5.88 5.88 15.38 0 

 

The receiver operating characteristics (ROC) for classification modelling using 

two algorithms SVM and MLP, for pump, fan, and light actuator attributes. Figure 5.16 

shows that proposed system has higher true positive rate than a minimal false positive 

rate. A graph showing how well a classification model performs at every level of 

categorisation is called the receiver operating characteristic curve (ROC curve). On this 

curve, two parameters are plotted: FPR and TPR. 

 

 

Figure 5.16   ROC for classification using SVM (Pump, Fan, Light) 
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Figure 5.17   ROC for classification using MLP (Pump, Fan, Light) 

 

Figure 5.17 shows the graph for ROC for classification using MLP for three 

parameters, i.e., pump, fan and light. 

Figures 5.18 and 5.19 exhibit the SVM and MLP algorithms for regression 

modelling. Here, we can see the results of a regression analysis conducted on the output 

attributes of pump, fan, and light. Table 5.7 displays the evaluation of the regression 

model's efficacy. The table and its visual depiction in Figure 5.20 reveal that the SVM 

regressor method outperforms the MLP regressor for all three output qualities. 

 

Figure 5.18   Results of the Regression Approach for RMSE SVM 
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Figure 5.19   Results of the Regression Approach for RMSE MLP 

 

Table 5.6   Evaluation time required of regression model 

Attributes 
Training Time (sec) Testing Time (sec) 

SVM MLP SVM MLP 

Pump 5.01 5.89 4.10 4.28 

Light 5.45 5.63 4.35 4..79 

Fan 5.30 5.42 4.58 5.05 
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Figure 5.20   Training & Testing time for regression model 

The evaluation time required for training and testing of data is calculated in 

seconds. In both the cases of training and testing, it is observed MLP taking more 

time as compared to SVM. Here, one can say that SVM outperform MLP in case of 

evaluation time in proposed methodology. 

Table 5.7   Performance evaluation of regression model 

Attributes 
RMSE 

SVM MLP 

Pump 0.0615 0.0074 

Fan 0.0042 0.0020 

Light 0.0256 0.0132 

 

Finally, a comparison to the current state of the art approaches is shown in Table 

5.8. The results show that the proposed classification and regression model for 

intelligent and precise smart farming in greenhouses produces better results when 

accuracy, sensitivity, and specificity of the classification model are compared with the 

root-mean-square-error (RMSE) of the regression model. 
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Table 5.8   The Result of Comparative Analysis 

Ref 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

F-Score 

(%) 

Latency 

(sec) 
RMSE 

[74 ] 96.31  93.59 94.63 96.30 NI NI 

[75 ] NI NI NI NI NI 0.2431 

[76 ] 84  NI NI NI NI NI 

[78 ] 97.31 97.31 99.00 97.30 NI NI 

[84 ] 85 NI NI NI NI 0.02726 

Proposed 

Work 
97.77 98 98.83 98.41 6.49 0.0615 

 NI- Not Investigated in research. 

 The comparative analysis from contemporary methods with the proposed 

method is explain in Table 5.8 in which authors of Ref [74] proposed IOT based smart 

farming system along with an efficient prediction method called WPART based on 

supervised machine learning techniques are used in which the filter and wrapper feature 

selection approach is used to analyse the environmental indicators. Similarly Ref [75] 

uses support vector machine (SVM) and logistic regression (LR) model with MQTT. 

Using decision tree algorithm Ref [76] achieves 84% accuracy in proposed model. Ref 

[78] uses Vgg16 plus SVM for leaf disease identification and Ref [84] achieves 85% 

accuracy by using CNN and SVM based model.  

 The results show that the proposed system is worked with high precision by 

implementing the proper resource utilisation and comparing the system parameters like 

accuracy, sensitivity, specificity, F-Score, latency, and RMSE. The results extracted 

from the proposed work are the average values of the MLP classification and SVM 

regression algorithm for better results.  

 Table 5.9 shows the results of a comparison of several models that have been 

developed so far. Figure 5.21 shows a comparison between the suggested model and 

the standard methods currently used to develop intelligent agricultural systems. 
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Table 5.9   Comparative analysis of various existing studies. 

Ref. Technique(s)/Models Used Feature 
System 

Accuracy  

[11] Rasbery Pi & Open Cv 
Focus on automating pH 

control. 
92% 

[74] WPART and ML 
Decision Support for 

Prediction. 
96.31% 

[78] Vgg 16 Plus SVM 
Controls Temperature and 

Humidity 
97.31% 

[84] CNN & SVM 
Provided Smart sensing 

system and opportunities 
85% 

Proposed 

Work 
SVM and MLP 

Low-cost real time 

monitoring and control 

control 

97.77% 

 

Figure 5.21   Representation of accuracy value in %. 

Table 5.10 further shows that our proposed model is significantly better than 

those presented by other authors based on the research sensor and technology used to 

create the system. 
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Table 5.10   Comparative analysis table. 

 

Parameters 

References 

Subahi 

et al. 

2020 [3] 

A. 

Carrasquill

a-Batista et 

al. 2019 [9] 

Codeluppi 

et al. 2019 

[14] 

A. 

Araby et 

al. 2019 

[75] 

Proposed 

Model 

Sensors 

Used 

Temperature Yes Yes Yes Yes Yes 

Humidity Yes Yes Yes Yes Yes 

Soil Moisture No No Yes Yes Yes 

Light 

Intensity 
No No No No Yes 

CO2 Yes No No No Yes 

Technology 

Used 

IoT Yes Yes Yes Yes Yes 

ML No No No Yes Yes 

 
Precision 

Agriculture 
No Yes No No Yes 

 

From the above research table, it is found that researchers have taken the initiative 

towards precision agriculture but the proposed model considered almost everything i.e. 

crop sensors and technology to make an effective smart greenhouse management 

system using machine learning enabled Internet of Things. This proposed system can 

be easily used and handled by farmers for their crop wellness.  
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5.4 Summary of the Chapter 

In this chapter, considering the prototype model environment, proposed system 

is developed, simulated, and analysed based on various conditions in smart greenhouse 

farming environment.  

The two main predictive model-based classification and regression algorithms 

are interpreted for the best accuracy with the MLP algorithm.  

Also, the performance of proposed model is analysed with current work, and it is 

found that proposed model is much more capable in case of accuracy, sensitivity, 

specificity, latency, RMSE, and F-score. 

We can conclude that the developed precision controlled greenhouse management 

system is compared and analyzed with the help of different parameters like training and 

testing evaluation time, actual and predicted data and total evaluation time required for 

SVM and MLP alrorithms. 

When compared and analysed with the existing system, the overall accuracy of 

the system is 92% with low-cost implementation. 

It is also observed that in some MLP algorithm the proposed system has reached 

upto 100 % accuracy, 100% sensitivity, 100% specificity and 100% f-score with zero 

error rate.  
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CHAPTER 6 CONCLUSION AND FUTURE SCOPE 

6.1 Conclusions 

The study proposes a method through which an intelligent greenhouse 

automation is upgraded by using IoT technologies and concepts. A user can now control 

and monitor data transfer between a device and a fog layer, and vice versa, using real-

time sensor data. In order to improve agricultural output, the IoT concept is applied to 

the system by centralising data storage and processing in a reliable cloud. Precision in 

the data rectifies the proper utilisation of resources. The use of the IoT reduces 

maintenance expenses.  

The proposed system will correctly monitor and adjust greenhouse 

characteristics such soil moisture, carbon dioxide levels, temperature, humidity, and 

light to assist farmers in boosting production. The model is validated by using data from 

actual greenhouses to determine the optimum soil moisture, carbon dioxide, 

temperature, humidity, and light for producing broccoli and gerbera. The proposed 

monitoring system will be used for any crop that can be cultivated inside the 

greenhouse.  This results in disease free and large production of the crop.   

The unique greenhouse system is developed for precise control using supervised 

ML techniques based on classification and regression. The proposed approach is 

applicable in a smart agricultural context where an IoT-based decision-making 

paradigm is used. Classification and regression models are the two types of analytics 

used to create programmes for smart and accurate farming. Both SVM and MLP can be 

used for these modelling purposes.  

Finally, the performance of the smart farming system in intelligent and precise 

farming is assessed using classification and regression-based supervised ML 

algorithms. The results demonstrated that MLP outperformed SVM and other cutting-

edge classification algorithms. The MLP system accuracy is 97.77%, sensitivity is 98%, 

specificity is 98.83%, and F-score is 98.41% with a lower error rate achieved by the 
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system. The suggested technique also provided the most accurate predictions for 

actuators and the most precise control. 

 

6.2 Future Scope  

 Expanding the sensor parameters to include pH, CE, and other soil micro-

nutrient measurement sensors to obtain more accurate data and lend a hand to 

the AI system in its prediction efforts can be done. 

 In addition, by strengthening and weatherproofing the proposed model and 

applying solar panel to the greenhouse, the cost of execution would be reduced 

in practical settings.  

 By using deep learning models trained on massive dataset samples, model 

performance can be improved for security parameters. 
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Annexure I 

1. Circuit Diagram: Proposed experimental model with sensor specifications 

 

Figure: Circuit diagram of proposed system for data acquisition. 
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Annexure II 

1. Certificate of Visit And Data Collection. 
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2. Questionnaire for Reference Data Set of Gerbera and Broccoli 

 

Figure: Questionnaire Scan Copy for Gerbera Cultivation  
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Figure: Questionnaire Scan Copy for Gerbera Cultivation  
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3. Field Visit Photographs 

 

Greenhouse Environment (Outside) 

 

 

Greenhouse Environment (Inside) 
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