

Thesis Submitted for the Award of the Degree of

 DOCTOR OF PHILOSOPHY

in

 Computer Applications

By

 Deepjyot Kaur Ryait

Registration Number: 11816022

Supervised By

Dr. Manmohan Sharma (UID: 21909)

School of Computer Applications (Professor)

Lovely Professional University

LOVELY PROFESSIONAL UNIVERSITY, PUNJAB

2023

DESIGN FAULT TOLERANCE AND LOAD BALANCING

MECHANISMS FOR MULTIPLE CONTROLLERS IN

ii

DECLARATION

I, hereby declared that the presented work in the thesis entitled “Design Fault

Tolerance and Load Balancing Mechanisms for Multiple Controllers in

Software Defined Network” in the fulfilment of the degree of Doctor of

Philosophy (Ph.D.) is the outcome of research work carried out by me under the

supervision of Dr. Manmohan Sharma, working as Professor, in the School of

Computer Applications of Lovely Professional University, Punjab, India. In keeping

with the general practice of reporting scientific observations, due acknowledgments

have been made whenever the work described here has been based on the findings

of other investigators. This work has not been submitted in part or full to any other

University or Institute for the award of any degree.

(Deepjyot Kaur Ryait)

11816022

School of Computer Applications

Lovely Professional University,

Punjab, India

iii

CERTIFICATE

This is to certify that the work reported in the Ph.D. thesis entitled “Design Fault

Tolerance and Load Balancing Mechanisms for Multiple Controllers in

Software Defined Network” is submitted in fulfillment of the requirement for the

reward of the degree of Doctor of Philosophy (Ph.D.) in the School of Computer

Applications, is a research work carried out by Deepjyot Kaur Ryait, Registration

No. 11816022, is a bonafide record of her original work carried out under my

supervision and that no part of the thesis has been submitted for any other degree,

diploma or equivalent course.

(Dr. Manmohan Sharma)

Professor

School of Computer Applications

Lovely Professional University, Punjab, India

This work is dedicated to Almighty God,

my respected parents, my sister, my brothers and my

respected supervisor whose blessings, inspirations,

continuous motivation and love has made it possible for

me to undertake and complete my Ph.D. Thesis.

v

ABSTRACT

In the digital world, every person wants to be connected to know what is happening

in the virtual world. Therefore, different users have different requirements based on

their needs. Still, technologies are undergoing several changes; recently introduced

a technology that attracts more attention in an academic and industrial area is the

Software Defined Network (SDN); although SDN initially supports centralized

logical control of the entire network; that offers facilities like programmability,

adjustability, and dynamically reconfiguration of the networking elements as

compared to the traditional networking. The framework of Software Defined

Networks offers an abstraction network, which becomes too easy to achieve network

reachability. This technology provides the provision of network services to upscale

their infrastructure in a network with minimal disturbance. But in a traditional

network, there is a strong interdependency between both functional components and

the non-existence of programmability. For this reason, it is a complicated task to

configure network devices as per the requirements of network users due to the

predefined policies. Thus, it is not coping with modern enterprise user demand.

The main objectives of the thesis are to design a model for fault tolerance and load

balancing in SDN. In a traditional network, it becomes more complex to manage the

widespread adoption of a network because it is complicated to configure the network

elements due to its predefined policies. If trying to reconfigure network elements, it

becomes unmanageable sometimes. The main reason behind this is a vertical

integration exists between both functional components of the traditional networking

devices. So, it can be said that when adding a new feature, it always increases the

cost or expensive and difficulty of configuring the elements due to the change in

topology and functionality of the network. To overcome this situation, restructuring

the infrastructure of the traditional networks as Software Defined Network (SDN).

Decouple the control layer from the data layer in SDN; this improves network

vi

performance. To overcome these challenges, the researchers are devoting more

efforts toward the SDN controller to improve the performance of the networks in

terms of reliability, scalability, high availability and resilience of services. Based on

the study, the main objectives of the thesis would be to design a model for proactive

fault tolerance in SDN to reduce single point failure, to design an adaptive algorithm

for load balancing in SDN controllers, and validation of proposed fault tolerance and

load balancing algorithm for SDN.

Software Defined Networks offer a novel model for networking that boosts network

flexibility and programmability by dividing the control plane from the data plane.

The controller receives the full control logic and offers a centralized, global logical

representation of the network. The SDN controller has several responsibilities, like

managing network behavior, dedicating and controlling the functionality of network

elements, controlling the network management and complexity of the network,

making a decision regarding regular network traffic in a network, etc. As a result, a

controller is an essential part of SDN because it allows for the control of all network

implementations and manipulations. However, this also raises the likelihood of a

single controller becoming a single or central point of failure in the network. It

causes the complete network to collapse as a result. As a consequence, a fault

tolerance mechanism is needed that employs numerous controllers to decrease the

network's single point of failure (SPOF).

The importance of having numerous controllers is that they improve the network's

services' scalability, dependability, and high availability. During the simulation

study, it is discussed what happens when a network contains a single point of failure

and how to use various functions of many controllers to reduce the risk of a SPOF

in the SDN network. The packet loss parameter gradually increases after a SPOF

event happens in a network until the controller is once more in a working or

operational state. Consequently, the network's numerous controllers can be used to

solve this issue. In SDN, a centralized controller manages all responsibilities for the

network. Then it becomes very difficult to accomplish their responsibilities

simultaneously. In SDN networks, the use of many controllers results in a number

of load balancing-related issues, including controller failure or cascading failure of

vii

controllers. These issues include the controller becoming overwhelmed when the

load surpasses its threshold value. Due to the direct effect on network performance,

allocating the workload among the various SDN controllers is one of the more

challenging tasks. Furthermore, the load balancing between the control planes and

their scalability have a significant impact on the network's performance in the SDN

environment. In order to efficiently utilize the network's overall view to manage

congestion, an algorithm for load balancing across multiple SDN controllers is

suggested for this purpose by using the queuing technique.

Through the separation of the control plane and data plane, Software Defined

Network (SDN) offers an agile paradigm. Still, a solitary controller has a higher

impact on failure in a network. However, having numerous controllers as the

network's single point of failure can be avoided. Meanwhile, some challenges are

counter like uneven traffic distribution between controllers which become an origin

of cascaded failure of controllers; when a controller manages network traffic beyond

its capacity. Then drop rate of packets is increasing exponentially in a network. This

is happening due to the insufficiency of the load balancing technique. So, it is

necessary to distribute the appropriate workload among the controllers. To propose

a load balancing algorithm that gets rid of these challenges by evaluating an

equilibrium state of distribution which describes the long-run probability of

controllers by integrating Queuing Technique with Markov Continuous Chain,

which aids to lessens the packet drop ratio in the network. The queuing method

successfully manages network congestion for this purpose by taking a holistic view

of the network. Along with the different queue items, it also offers the ability to

calculate the packet delivery ratio and packet drop ratio. In order to manage packet

loss rate in the network, it is necessary to ascertain the importance of queue size.

These variables improve a network's quality of service (QoS).

The correlation and multiple regression model that can statistically explain the

variation in the Packet Successfully Delivery in a network with the Queue Size, Total

No. of Packets, and Packet Size in the network are then evaluated. The performance

of the different SDN controller jobs is next compared to a suggested model or

scheme in terms of round-trip time, average throughput, average bandwidth, ping

viii

delay, etc. If the lessened value of round-trip time, the reliability of a network is

increasing and the latency of the network is decreased. During simulation to analyze

the proposed scheme, show more appropriate results as compared to other

configurations of SDN controllers.

Acknowledgment

ix

ACKNOWLEDGMENT

I express my sincere thanks and deep gratitude to my guide and supervisor, Dr.

Manmohan Sharma, Professor in the School of Computer Applications, Lovely

Professional University, Punjab, for his unwavering support, suggestions,

encouragement, guidance, and patience in helping me to accomplish this work. With

great respect, I am expressing my gratitude to him for his valuable contribution to

the progress and development of my research. I have benefited a lot because his help

and guidance inspired me greatly. He possesses knowledge of immense breadth and

depth, coupled with great talent and enthusiasm for research. He has led me into the

area of networking (Software Defined Network) and simulated my research interest.

He has taught me not only how to undertake research work. But also, how to

communicate effectively in the form of a research paper. I am fortunate to be

associated with him. His active participation, untiring efforts, affection, guidance,

and approach have brought this work to the present stage.

I have received help and guidance from many other people in preparation for the

thesis. But as a researcher, the guidance provided by my advisor and guide, Dr.

Manmohan Sharma, is unparalleled. From framing the research problems to carrying

out an analysis, from simulation to paper writing, and from the finer points of

grammar to the finer points of teaching classes. He has spent an uncountable hour

with me helping to complete this work. I am truly grateful to him for his kind help.

During this period, I may have been tired and disappointed many times, but I always

believed and had the confidence that Dr. Manmohan Sharma is there to help and

guide me, clear all my doubts, and provide me with strength and direction. He always

found time whenever I needed for intelligent fruitful discussions. He always

encouraged me whenever I became frustrated. I am also thankful to my supervisor

for their valuable and timely suggestions and motivation. I feel very proud to have

Acknowledgment

x

worked with them. Without their inspiring enthusiasm and encouragement, this work

could not be complete.

I am extremely grateful to Dr. Anil Sharma, Professor in the School of Computer

Applications, Lovely Professional University, Punjab, who infused my passion for

research and always encouraged me with parental guidance and moral support. I

wish to express my gratitude to Lovely Professional University, Punjab, for

providing an excellent environment for research and teaching facilities. I also extend

my sincere thanks to the RDC (Research Degrees Evaluation Cell) and CRDP

(Centre for Research Degree Programmes) of the Lovely Professional University,

Punjab, for providing a proper conducive environment for the completion of this

work.

I give my deepest thanks to my beloved parents, Papa Jagjit Singh Ryait and Mom

Baljit Kaur Ryait; my sister, Dr. Jasmeet Kaur Ryait; and my brothers, Karanvir

Singh Ryait and Gurdatar Singh Ryait, for their infinite love, inspiration,

encouragement, and spirited support. I give thanks to God for the talent and abilities

that enabled me to undertake this research.

I am particularly grateful to my supervisor for carefully reviewing the draft material

of this thesis. Last but not least, I would like to take the opportunity to thank my

mentors for their constant encouragement, hours of sitting together, and frequently

lively discussions, which helped me and encouraged me to complete the work.

 Deepjyot Kaur Ryait

School of Computer Applications

Lovely Professional University,

Punjab, India

Date: - 23th November, 2023

Preface

xi

PREFACE

Present and future generations of networks support different requirements for

different users. Although, Software Defined Network initially started to support a

centralized logical control of the entire network that offers facilities like

programmability, adjustability, and dynamically reconfiguration of the networking

elements to compare traditional networks. The framework of Software Defined

Networks offers an abstraction network, which becomes too easy to achieve network

reachability. This technology provides a centralized location for managing the

provision of network services to upscale their infrastructure in a network with

minimal disturbance. But in traditional networks, there is a strong interdependency

between both functional components and the non-existence of the programmability.

For this reason, it is a complicated task to configure network devices as per the

requirements of network users due to the predefined policies. Thus, it is not coping

with modern enterprise user demand.

In this thesis, they have presented that the SDN controller is a very crucial

component of the network that manages all traffic on the network. Controller is

responsible for taking routing decisions for the network, while forwarding devices

are simply the forwarding elements in the data plane. The motive of the research

work is to address fault tolerance and load balancing between multiple controller

issues in Software Defined Network. Specifically, to evaluate an equilibrium state

of distribution that describes the long-run probability of controllers by integrating

Queuing Technique with the Markov Continuous Chain; which aids in lessening the

packet drop ratio in the network. Our work is hereby presented in the form of a thesis

containing seven chapters.

In Chapter 1, titled “Introduction to Software Defined Network,” has presents the

evolution of the networking paradigm, describing the technical changes through

various progressive generations of networks. The chapter presents the basic concepts

Preface

xii

of Software Defined Network with its characteristics, history, essential elements of

SDN, etc. The difference between both networking paradigms is represented in

tabular form. The chapter consummates with concerning the current status of SDN

networks.

In Chapter 2, titled "Architecture of Software Defined Network and OpenFlow

Protocol," which describes the architecture of SDN and the operations of its planes.

The next section of the chapter describes the OpenFlow protocol, flow table, and

types of messages in OpenFlow. The different categories of implementation flow

rules are discussed in the next section of the chapter.

Chapter 3 has been titled “Literature Review in Software Defined Network.” In this

chapter, has reviewed the literature on Traditional Networks, Software Defined

Networks, and their protocols to bring out their merits under different conditions.

Fault tolerance and load balancing in SDN are challenging tasks. Therefore, they

have received a tremendous amount of attention from many researchers. Many

researchers lighted on these issues in SDN as a further research direction.

Chapter 4, titled “Significance of Controller in Software Defined Networks,”

presents a controller acting as a critical and crucial component in SDN because it

always provides a logical view of an entire network. If any fault occurs in the

controller, then the operation of the entire network collapses. So, a fault tolerance

mechanism is required to reduce a single point of failure in an SDN network by using

multiple controllers.

In Chapter 5, titled " Load Balancing using Queuing Models in Multiple Controller

Environment of SDN," an algorithm for load balancing in multiple controllers in

SDN using the queuing technique is proposed, which effectively uses the global

view of a network to control network congestion. To compare the M/M/1 Queue

Model based on the likelihood of different system characteristics like Ls, Lq, Ws, and

Wq, with infinite vs finite capacity. These variables aid in assessing the effectiveness

of SDN controllers.

In Chapter 6, titled “Balancing through Probability Distribution in SDN,” in this

chapter, has proposed queuing technique with a Markov Continuous Chain that

Preface

xiii

effectively uses the global view of the network to control the congestion of a

network. Moreover, to determine what is the significance of queue size for

controlling packet drop rates in the network. These parameters enhance the quality-

of-service (QoS) of a network. The performance is evaluated by the correlation and

the multiple regression model can statistically explain the variation in Packet

Successfully Delivery in the network with the Queue Size, Total No. of Packets, and

Packet Size in the network. Then it compares the performance of the various roles

of SDN controllers with a proposed model or scheme in terms of parameters such as

average throughput, average bandwidth, ping delay, and so on.

Chapter 7 is titled "Conclusion and Future Work," which concludes the thesis by

discussing the observations and findings acquired from the proposed

method/technique in the thesis and discusses the research work that can be carried

out in the future as an extension of the present work. To conclude, they believe their

research can help other researchers identify challenges and new research directions

in the area of fault tolerance and load balancing in the Software Defined Network.

The following chapter describes the additional work that can be done using the

research offered in this thesis.

Table of Contents

xiv

TABLE OF CONTENTS

Contents
DECLARATION .. ii

CERTIFICATE .. iii

ABSTRACT .. v

ACKNOWLEDGMENT .. ix

PREFACE .. xi

LIST OF ABBREVIATIONS .. xix

LIST OF SYMBOLS ... xxi

LIST OF TABLES .. xxii

LIST OF FIGURES ... xxiv

Chapter 1 Introduction to Software Defined Network 1-12

1.1 Introduction ... 1

1.2 Definition of Software Defined Network ... 2

1.3 Characteristics of SDN .. 2

1.4 Traditional Network v/s Software Defined Network 3

1.5 History of SDN ... 7

1.6 Essential Elements of SDN .. 8

1.6.1 Forwarding Devices .. 8

1.6.2 Data Plane .. 8

1.6.3 Southbound Interface (SBI) .. 9

1.6.4 Control Plane .. 9

Table of Contents

xv

1.6.5 Northbound Interface (NBI) .. 9

1.6.6 Eastbound/Westbound Interfaces .. 9

1.6.7 Application Plane ... 9

1.7 Origin of Software Defined Network ... 10

1.8 Basic Concepts of SDN ... 10

1.9 Components/Attributes of SDN ... 10

1.10 Current Status of SDN ... 11

Chapter 2 Architecture of Software Defined Network and OpenFlow Protocol

 14-28

2.1 Architecture of Software Defined Network .. 14

2.2 Data Plane ... 16

2.3 Control Plane .. 17

2.4 Application Plane .. 17

2.5 OpenFlow Protocol in SDN ... 19

2.6 Flow Table .. 19

2.6.1 Type of Message .. 21

2.7 Implementation of Flow Rules ... 23

2.7.1 Reactive Method ... 23

2.7.2 Proactive Method.. 24

2.8 OpenFlow Pipeline and Group Table ... 25

2.9 Summary ... 28

Chapter 3 Literature Review in Software Defined Network 30-54

3.1 Introduction ... 30

3.2 Traditional Networks ... 31

3.3 Software Defined Networks... 32

Table of Contents

xvi

3.3.1 SDN Protocols .. 49

3.3.2 OpenFlow Protocol ... 49

3.4 Observations and Research Gaps ... 50

3.5 Objectives ... 52

3.6 Summary53

Chapter 4 Significance of Controller in Software Defined Networks 56-82

4.1 Introduction ... 56

4.2 Related Work .. 57

4.3 Problem Formulation ... 58

4.4 Why Controller is a Crucial Component in SDN 60

4.5 Single Controller v/s Multiple Controllers ... 61

4.6 Type of Multiple Controller’s in SDN ... 62

4.7 Simulation and Result.. 66

4.7.1 Mininet Simulator ... 67

4.8 Multi-deployment of Controllers in SDN ... 75

4.9 Conclusion .. 82

Chapter 5 Load Balancing using Queuing Models in Multiple Controller

Environment of SDN 84-112

5.1 Introduction ... 84

5.2 Related Work .. 85

5.3 Problem Formulation ... 86

5.3.1 Need of Load Balancing in SDN Controllers 86

5.4 Proposed Design of Algorithm for Load Balancing.................................... 87

5.5 Queuing Model M/M/1: ∞/∞ versus M/M/1: N/∞ and its Simulation 90

5.5.1 NS2 Simulator .. 97

Table of Contents

xvii

5.5.2 Numerical Evaluation and Result .. 108

5.6 Conclusion .. 111

Chapter 6 Balancing through Probability Distribution in SDN 114-154

6.1 Introduction ... 114

6.2 Related Work .. 115

6.3 Problem Formulation ... 116

6.4 Proposed Approach ... 117

6.4.1 Markov Chain ... 119

6.4.2 Transition Probability of ‘n’ Steps .. 119

6.4.3 Equilibrium State of Probability.. 121

6.4.4 Equilibrium State in a Queue .. 122

6.4.5 Pseudo Code for Load Balancing in SDN Controllers by using the

Queuing Technique with the Markov Chain .. 123

6.5 Simulation and Evaluation of Result .. 125

6.5.1 Queue Model .. 125

6.5.2 Various Queue Objects ... 127

6.5.3 Equilibrium State of Controllers ... 129

6.5.4 Significance of Queue Size ... 137

6.5.5 Correlation Matrix .. 140

6.5.6 Multiple Regression Model ... 140

6.5.7 Performance Evaluation of Controllers ... 143

6.6 Conclusion .. 153

Chapter 7 Conclusion and Future Work 156-158

7.1 Conclusion .. 156

7.2 Future Work .. 157

Table of Contents

xviii

REFERENCES 160-175

LIST OF PUBLICATIONS 177-178

LIST OF CONFERENCES 180-181

List of Abbreviations

xix

LIST OF ABBREVIATIONS

4D Decision, Dissemination, Discovery and Data Plane

API Application Programming Interface

BGP Border Gateway Protocol

CAPEX Capital Expenditure

CDN Content Delivery Network

CLI Command-Line Interface

DCN Data Center Networks

EID End Point Identifiers

FIB Forwarding Information Base

IETF Internet Engineering Task Force

IP Address Internet Protocol Address

JSON JavaScript Object Notation

LISP Locator/Identifier Separation Protocol

LLDP Link Layer Discovery Protocol

MAC Address Media Access Control Address

NAM Network Animator

NBI Northbound Interface

NetConf Network Configuration Protocol

NFV Network Function Virtualization

NOS Network Operating System

O&M Operational and Management

List of Abbreviations

xx

OF OpenFlow

ONF Open Networking Foundation

ONS Open Networking Summit

OPEX Operational Expenditure

OVSDB Open vSwitch Database

QoS Quality of Services

REST REpresentational State Transfer

RIB Routing Information Base

RLOC Route Locators

RPC Remote Procedure Call

RTT Round-trip Time

SBI Southbound Interface

SDN Software Defined Network

SD-VPN Software Defined Virtual Private Network

SPOF Single Point of Failure

SSL Secure Socket Layer

TCAM Ternary Content Addressable Memory

TCL Tool Command Language

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

VLAN Virtual Local Area Network

VPN Virtual Private Network

XML Extensible Markup Language

List of Symbols

xxi

LIST OF SYMBOLS

λ Arrival Rate of a Packet

μ Service Rate of a Packet

ꝭ Traffic Intensity or Utilization Factor

P0 Idle Time

Ls Length of a System

Lq Length of a Queue

Ws Waiting Time of a System

Wq Waiting Time of a Queue

P[Xt+1] Probability of the Future State

P[Xt] Probability of the Present State

рi j Conditional Probability of the State

ᴨ0 Initial Probability of a State

ᴨ(k) Vector State of Probabilities for period k

P Transition Probability of Matrix

𝑦 Response Variable

𝛽0 Slope Intercept Coefficient

𝒳1 + ⋯ + 𝒳𝑘 Explanatory Variables

𝛽1 + ⋯ + 𝛽𝑘 Coefficient of Variables

List of Tables

xxii

LIST OF TABLES

Table 1: Traditional Networks versus Software Defined Networks 5

Table 2: Difference between Reactive and Proactive Method 24

Table 3: List of Action Set in OpenFlow 25

Table 4: Various value of Group Type in OpenFlow 27

Table 5: Literature Review on SDN Controller’s 48

Table 6: Simulation Parameters of Setup 68

Table 7: Compare the Result of Controllers in SDN 74

Table 8: Performance Metrics of Controllers w.r.t. Round-trip Time 78

Table 9: Comparison of Controllers w.r.t. Average Throughput, Average Bandwidth

and Ping Delay 81

Table 10: Compare various Parameters in both Models 96

Table 11: Simulation Parameters 98

Table 12: Arrival and Service Rate of the Controllers in the Network 108

Table 13: Comparison of Parameters of Controllers 110

Table 14: Abbreviation of Variables used in Algorithm 123

Table 15: Equilibrium State for Two Controllers 130

Table 16: Equilibrium State of Two Controllers in Different Cases 134

Table 17: Equilibrium State for Three Controllers 135

Table 18: Equilibrium State for Four Controllers 136

Table 19: Effect of Queue Size w.r.t. other Parameters 138

Table 20: Performance Comparison of Controllers in Round-trip Time Metric 144

List of Tables

xxiii

Table 21: Performance Evaluation of Controllers with the Proposed Model 147

Table 22: Performance Evaluation of Controllers with the Proposed Model w.r.t.

Average Throughput, Average Bandwidth and Ping Delay 150

Table 23: Quantitative Analysis of Parameters 153

List of Figures

xxiv

LIST OF FIGURES

1.1 Traditional Networks 6

1.2 Software Defined Networks 7

2.1 Layer Structure of Software Defined Network 15

2.2 Architecture of Software Defined Network 16

2.3 SDN Paradigm work on these Four Pillars 18

2.4 OpenFlow Protocol Architecture 20

2.5 Format of the Flow Entries 20

2.6 (a) Controller-to-Switch Messages 22

2.6 (b) Asynchronous Messages 22

2.6 (c) Synchronous Messages 22

2.7 Packet Forwarding Process in Reactive Method 23

2.8 Notify to the Controller by using PACKET-IN Message 24

2.9 Packet Flow Process in the Pipeline of OpenFlow 26

2.10 Format of Group Table Entries 26

2.11 Format of Meter Table in OpenFlow 1.3 27

4.1 Use of LLDP Packet between the Controller and Switch in SDN 61

4.2 Single Controller v/s Multiple Controllers in SDN 62

4.3 Various Role of the Multiple Controller in SDN 63

4.4 Behavior of Multiple Controller in SDN 64

4.5 Pseudo Code to Reduce Single Point of Failure in SDN 66

4.6 (a) Run a SDN Controller in a Terminal 69

List of Figures

xxv

4.6 (b) Run a topology in a Terminal through Mininet 69

4.6 (c) Host Unreachable after killing the Controller 70

4.6 (d) Simulation in a Single Controller in SDN 70

4.7 (a) Run an Equal Controller in a Terminal at Port Number 6653 71

4.7 (b) Run an Equal Controller in a Terminal at Port Number 6654 71

4.7 (c) Duplicate Packets generated during Simulation of Equal Controller 71

4.7 (d) Simulation in Equal Controller in SDN 72

4.8 (a) Run the Master Controller in a Terminal at Port Number 6653 72

4.8 (b) Run the Slave Controller in a Terminal at Port Number 6654 73

4.8 (c) Run a topology by using Python API in the Mininet 73

4.8 (d) No Duplicate Packets are generated in Master-Slave Simulation 73

4.8 (e) Simulation in Master-Slave Controller in SDN 74

4.9 (a) Overall CPU Utilization in Equal Controller 76

4.9 (b) Overall CPU Utilization in Master-Slave Controller 76

4.10 (a) Overall Memory Utilization in Equal Controller 77

4.10 (b) Overall Memory Utilization in Master-Slave Controller 77

4.11 Comparison of CPU Utilization in Multiple Controller 78

4.12 (a) Performance Metrics of Controllers in term Minimum RTT 79

4.12 (b) Performance Metrics of Controllers in term Average RTT 79

4.12 (c) Performance Metrics of Controllers in term Maximum RTT 80

4.12 (d) Performance Metrics of Controllers in term Mean Deviation RTT 80

4.13 (a) Comparison between Controllers w.r.t. Average Throughput, Average

Bandwidth and Time Duration 81

4.13 (b) Performance of Controllers w.r.t. Ping Delay 82

5.1 Use of Queuing concept in SDN Controller 88

List of Figures

xxvi

5.2 Algorithm for Load Balancing in Multiple Controllers 89

5.3 Flowchart for Load Balancing in SDN Controllers 90

5.4 (a) Probability of events occur in time interval (t+δt) 91

5.4 (b) Possible of events occur in time interval (t+δt) 92

5.4 (c) Representation of Queue Model M/M/1: ∞/∞ in Network 94

5.4 (d) Representation of Queue Model M/M/1: N/∞ in Network 95

5.5 Compare various parameters Ls, Lq, Ws & Wq in both Models 96

5.6 (a) M/M/1 Queue Model with Infinite Capacity 99

5.6 (b) M/M/1 Queue Model with Finite Capacity 99

5.6 (c) Instantaneous Throughput in Queue Model with Infinite Capacity 100

5.6 (d) Instantaneous Throughput in Queue Model with Finite Capacity 100

5.6 (e) Instantaneous Goodput in Queue Model with Infinite Capacity 101

5.6 (f) Instantaneous Goodput in Queue Model with Finite Capacity 101

5.6 (g) Instantaneous Delay in Queue Model with Infinite Capacity 102

5.6 (h) Instantaneous Delay in Queue Model with Finite Capacity 102

5.6 (i) Comparison between both Queue Models w.r.t. Queue-Size 103

5.6 (j) Comparison between both Queue Models w.r.t. Arrived Packets 103

5.6 (k) Comparison between both Queue Models w.r.t. Departed Packets 104

5.6 (l) Comparison between both Queue Models w.r.t. Dropped Packets 104

5.6 (m) Comparison between both Queue Models 105

5.7 Comparison between both Queue Model in Average Throughput, Average

Delay and Packet Delivery Ratio 105

5.8 (a) Flowchart for Load Balancing in SDN Controllers with queue monitoring

variable 106

5.8 (b) Algorithm for Load Balancing in Multiple Controllers 107

List of Figures

xxvii

5.9 Scenario of Network using M/M/1: N/∞ Model for Load Balancing in

Software Defined Network 108

5.10 Probability of Traffic Intensity of the Controllers 109

5.11 Probability w.r.t. P0 and No Queue occur in the System 109

5.12 Probability w.r.t. Ls, Lq, Ws & Wq occur in the System 111

6.1 Use of Queuing Technique in SDN Controller 119

6.2 Transition Probability of ‘n’ step time period 120

6.3 Equilibrium State in Queue 122

6.4 Pseudo Code for Load Balancing in SDN Controllers 125

6.5 (a) Comparison between both Queue Models 126

6.5 (b) Comparison between both Queue Model in Average Throughput, Average

Delay and Packet Delivery Ratio 126

6.6 (a) Number of Packets Drop in various Queue Object 127

6.6 (b) Probability of Packet Delivery Ratio in various Queue Object 128

6.6 (c) Probability of Packet Drop Ratio in various Queue Object 128

6.7 Graphically Representation of Controllers 129

6.8 Equilibrium State of Two Controllers 131

6.9 A Few Cases of Equilibrium State of Two Controllers 133

6.10 Graphically Representation of an Equilibrium State of Controllers in

Different Cases 133

6.11 Equilibrium State of Three Controllers 136

6.12 Equilibrium State of Four Controllers 137

6.13 Drop Rate of Packets v/s Queue Size 138

6.14 Packet Delivery Ratio v/s Queue Size 139

6.15 Packet Drop Ratio v/s Queue Size 139

List of Figures

xxviii

6.16 Correlation Matrix between various Parameters 140

6.17 Result of Multiple Regression Model of Three Variables 141

6.18 Result of Multiple Regression Model of Two Variables 142

6.19 Classification of Controllers in Software Defined Network 144

6.20 Comparison between Controllers in term Minimum RTT 145

6.21 Comparison between Controllers in term Average RTT 145

6.22 Comparison between Controllers in term Maximum RTT 146

6.23 Comparison between Controllers in term Mean Deviation RTT 146

6.24 Performance Evaluation w.r.t. Min Delay, Max Delay, Avg Delay, Avg

Jitter and Delay Standard Deviation 148

6.25 Performance Evaluation w.r.t. Bytes Received 148

6.26 Performance Evaluation w.r.t. Average Bitrate 149

6.27 Performance Evaluation w.r.t. Average Packet Rate 149

6.28 Performance Evaluation of Controllers w.r.t. Throughput by Gnuplot 151

6.29 Performance Evaluation of Controllers w.r.t. Bandwidth by Gnuplot 151

6.30 Performance Evaluation of Controllers with the Proposed Model 152

6.31 Performance Evaluation of Controllers w.r.t. Ping Delay 152

Introduction to Software

Defined Network

1

1 Chapter

Introduction to Software Defined Network

1.1 Introduction

Today, Network Communication has a great impact on the life of human beings due

to the growth or evolution of the internet. Communication is a way to share and

exchange views, information, thoughts, emotions, and knowledge with another. So,

an efficient communication system is required to accomplish the needs of a user. At

present, the internet influences the life of a human being. It is difficult to manage

daily routines when try to imagine living without the internet. Therefore, the internet

offers a way to establish a digital society where everyone wants to interact and stay

updated on what is occurring online. Still, technology is undergoing several changes;

a recently introduced technology that attracts more attention in academic and

industrial areas is the Software Defined Network (SDN). SDN aims to create an

environment of network with efficiency, scalability, adaptability, flexibility,

reliability, etc.

Traditionally, the network was more complex and harder to manage in its

widespread adoption. Software Defined Networks (SDN), an essential technology

with many potential applications in the sector, are created in order to address this

issue by redesigning the current/traditional network infrastructure [6].

Today, every commercial enterprise is willing to earn maximum profit in the

network field by offering various communication facilities. Any failure that occurs

during the communication of the network results in a heavy loss of revenue. It is

2

essential to overcome this situation by increasing the availability of networks and

minimizing revenue loss [16].

SDN greatly boosts network efficiency. Network management is made simpler by

software defined networking. SDN provides several facilities like programmability,

adjustability, and dynamically reconfiguration of the networking elements.

Currently, Software Defined Networking paradigm is supported by large industries

such as Microsoft, Google, Amazon, Cisco, Juniper, Facebook, HP, IBM, Samsung,

etc.

1.2 Software Defined Network

"By decoupling/disassociating the control plane from the data plane in a network,"

is how the term "Software Defined Network" (SDN) is described. SDN is an

upcoming network architecture that provides programmability, simplicity of

management and adaptability, dynamic configuration of network components,

control, and efficient optimisation of network resources, by splitting the network

management plane and forwarding plane. SDN makes it possible for networks to be

directly connected to apps via application programming interfaces. (APIs).

SDN is an architecture that separates the control plane from the data forwarding

function in networking devices. SDN also offers centralised control management,

and enhances network flexibility and management, making it possible to design a

dynamic, adaptable network architecture.

1.3 Characteristics of SDN

The architecture of a Software Defined Network defines a novel way of a networking

system that can be built by using a combination of hardware network commodities

with software-based technologies and openness. Additionally, SDN offers a

centralised network structure that can interact with the rest of the network. The

framework of Software Defined Networks offers an abstraction network, which

3

becomes too easy to achieve network reachability. The various characteristics of

Software Defined Networks are listed below:

1. Reduce the complexity of a network by decoupling the control plane from

the data plane.

2. SDN controller provides a logically centralized view of a network for

maintaining the network intelligence.

3. Using APIs, users can easily deploy applications and services.

4. Network control is directly programmable due to the separation of functional

components.

5. Substantially reduce manual configuration in the network.

6. A readily programmable network is eliminated manual configuration.

7. SDN is an agile model which abstracts the control from the forwarding

function to adjust dynamic changes.

8. Due to centralized control, forwarding elements can be configured at scale.

9. Controller interacts with network elements through APIs.

10. Easy to achieve network reachability through SDN as compared to the

traditional networks.

11. Vendor Neutrality is achieved in SDN networks because instructions are

provided by SDN Controller.

12. Open Standard-based is attained/accomplished in SDN by supporting

standard protocols for communication between devices from multiple

vendors and maintaining a common software environment.

1.4 Traditional Network v/s Software Defined Network

Software Defined Networking is the most popular way to deploy applications in a

network by organizations with a faster rate and decrease the overall cost of

deployment. The framework of Software Defined Networks offers an abstraction

network, which becomes too easy to achieve network reachability. This technology

provides a centralized location for managing the provision of network services.

Software Defined Network offers an option to upscale their infrastructure in a

network with minimal disturbance/disruption. But in a traditional network, there is

4

a strong interdependency between both functional components and the non-

existence of programmability. For this reason, it is a complicated task to configure

network devices as per the requirements of network users due to the predefined

policies. As a result, it is unable to meet the needs of modern enterprise users.

When reconfiguring these traditional network devices is tried results in a fault,

imbalance, or alter the configuration of these devices within surges the complexity

of the network [6,16]. Due to the traditional network's lack of programmability, it is

difficult and expensive to add new functionality. This is because changing a

network's topology is unprofitable because it raises the network's capital and

operating costs. Additionally, if any changes are attempted in the control plane, all

network devices must have new firmware installed on them or have their hardware

upgraded.

A traditional network primarily relies on physical infrastructure, such as switches

and routers, to build a communication connection between them, whereas a software

defined network is built on a software-based network rather than hardware. SDN, on

the other hand, is built on software that enables users to manage resources via a

control plane as opposed to engaging with actual infrastructure.

The reason behind this rigidity of traditional networks is the vertical integration of

both functional components which are bonded together inside the forwarding

elements [6,16]. While the past decade, the failure of a link increased the inflexibility

in the network due to the loss of perceptibility of operators over their network. The

reason for that switch behavior is like a black box that is written by multiple vendors.

It is to prevent the network operators to modify their implementation to satisfy the

requirements of their customers. Thus, traditional networks arose many difficulties

in handling the data transmission in the network. The Software Defined Network

(SDN), which improves the network's efficiency by differentiating the control plane

from the data plane, therefore is necessary to restructure a traditional network.

A software defined network has an isolated control plane and data plane. As a result,

it provides programmability for network components, which lowers the network's

complexity. It becomes simple and easy to modify or adjust network policies

because the SDN controller provides a logically centralised picture of the complete

5

network. Additionally, SDN offers features like flexibility, centralised view control,

reduced complexity, and lower network system costs. Thus, SDN's position as

networking's future is provided through network innovation. More flexibility is

available than in the traditional network thanks to the cutting-edge SDN paradigm.

It enables users the ability to dynamically add additional network functionality in

the shape of applications.

Software Defined Networking is a modern paradigm for networking, which offers

increased programmability, more adaptability, and enhanced flexibility along with

easy manageability, adjustability, and dynamical reconfiguration of network

elements when compared with the traditional network paradigm. Therefore, it's

crucial to redesign the conventional network (Software Defined Network) in order

to increase network efficiency by splitting the management or control plane from

the data plane. It provides two main benefits such as:

1) Completely control logic of the network is transferred to the controller.

2) Network devices function in the data layer as a straightforward forwarding

element.

As a result, Software Defined Networking offers a cutting-edge networking

paradigm that can assist in quickly satisfying customer needs. Moreover, SDN

improves network control which permits the network provider to rejoinder the

changing business requirements [1-9,14-17]. So, several industries are

supporting the SDN paradigm like Microsoft, Google, VMware, IBM, Cisco,

Juniper, etc. The differences between the two networks are depicted

diagrammatically in Figures 1.1 and 1.2 as well as in Table 1.

Traditional Networks Software Defined Networks (SDN)

Hardware-based Network. Software-based Network.

A strong bond exists between both

functional components.

In SDN, a strong bond does not exist

between both functional components.

Traditional Networks maintain a routing

table in every switch.

SDN maintains a flow table for every

switch.

Table 1: Traditional Networks versus Software Defined Networks

6

Lack of programmability in a network. Increase programmability of network.

Do not provide centralized control of the

network.

The controller provides centralized

control of an entire network.

Rigidly of adaptability in the network due

to a tightly coupled bond exist in

functional components.

More adaptability offers in the network

due to a centralized control.

Do not provide network virtualization in

traditional networks.

Network Virtualization provides in

SDN.

Do not provide vendor neutrality. It works

in the vendor-specification environment.
It provided vendor neutrality.

Little flexibility is provided as compared

to SDN networks.

More flexible than traditional

networks due to programmability.

The maintenance cost is higher. The maintenance cost is less.

The operational and capital cost is high. The operational and capital cost is less.

Switch

Control Plane

Data Plane

Switch

Control Plane

Data Plane

Switch

Control Plane

Data Plane

Switch

Control Plane

Data Plane

Figure 1.1: Traditional Networks

7

1.5 History of SDN

Early in the year 2000, there was a sudden increase in demand for networking

services with greater flexibility and reliability due to the internet. Many initiatives

are currently being made to accomplish innovation in the networking industry by

splitting the control layer from the data layer. The network architecture was changed

by the 4D initiative to include the four planes of decision, dissemination, discovery,

and data. Then, utilising two components, Ethan (an extension of SANE) addresses

some 4D features: (1) a centralised controller has maintained a network-wide

security policy; and (2) Ethan switches have received the forwarding rules from a

controller. The two primary flaws of Ethan are the absence of knowledge about

network nodes and users, and the requirement for control over flow level routing

therefore Ethan was not adopted as a result [16].

Martin Casado et al. [25, 26] proposed a clean-slate security architecture (SANE) to

control security policies in a centralized manner instead of doing it at the edge as

normally done in 2006. Security is a fundamental goal to redesign an architecture.

Programmable Switch

Controller

Figure 1.2: Software Defined Networks

8

Its main goal is to establish an architecture that supports simplicity, implements

security at the link layer, and hides all topology and service information from

unauthorized parties. The OpenFlow project originated the idea of a Software

Defined Network. Then Stanford publishes the OpenFlow V1.0.0 specs. In 2009

Martin Casado co-founds Nicira (Nicira network founded). The Open Networking

Foundation (ONF) is formed and the first open networking summit in 2011. Then

many industries like Juniper, and Cisco are incorporated with SDN. The SANE and

its replacement Ethan laid the foundation for the start of an OpenFlow. The

OpenFlow (OF) protocol, a brand-new technology that is implemented in a

university campus' network, was created by a study team at Stanford University. One

of the most popular southbound interfaces in the SDN is the OpenFlow protocol,

which facilitates interaction between both the data and control planes [6,8,16,27].

1.6 Essential Elements of SDN

The Software Defined Network offers a framework of abstraction in a network that

increases the network reachability; it is too easy to achieve in SDN compared to

traditional networks. Identify different elements that are considered essential in

Software Defined Networking explained below [6,15,16,64,66]:

1.6.1 Forwarding Devices:

Devices in the data plane that carry out different network operations, like packet

forwarding, can be either hardware or software-based. These forwarding

components contain clearly specified instruction sets or flow rules that enable them

to respond to incoming network packets by, for example, passing them to a controller

or dropping them. The SDN controller installs these instructions over the forwarding

elements' southbound interfaces.

1.6.2 Data Plane:

The lowest layer of the software defined network paradigm is the data plane;

basically, it is a collection of forwarding elements that are interconnected to each

9

other in the plane. They act as a simple forwarding element in the network whose

behavior is controlled by a controller.

1.6.3 Southbound Interface (SBI):

A southbound interface is existing between the control plane and forwarding plane

whose responsibility is to provide communication between both planes. It also calls

by the name southbound APIs. The flow of southbound interfaces can be going

downward in SDN architecture.

1.6.4 Control Plane:

A key component of the Software Defined Networking architecture is the control

plane. It's commonly referred to as a controller. The control plane programmes every

forwarding device using the southbound API because it offers a centralised logical

view of the complete network. An SDN controller controls the flows of the switches

and routers in the data plane through the southbound interfaces while managing the

network applications and business logic via the northbound interfaces to implement

network intelligence.

1.6.5 Northbound Interface (NBI):

Communication among the application plane and the control plane is made possible

by a northbound interface. Northbound APIs is another name for it. The flow of

northbound interfaces can be going upward in the SDN paradigm.

1.6.6 Eastbound/Westbound Interfaces:

This interface is used when multiple controllers are communicated in the network;

because ensuring general compatibility and interoperability between multiple

controllers is crucial.

1.6.7 Application Plane:

The application plane is a top layer of SDN that includes a set of network

applications or network services like routing, load balancing, monitoring, and so on.

Through this plane, network users can control and manage the network. Because

these applications define policies that are implemented by a controller via

southbound APIs in forwarding devices.

10

1.7 Origin of Software Defined Network

A pioneer of Software Defined Networks was Martin Casado. He is a co-founder of

the Nicira networks as well as a software developer, business owner, and investor.

In 2006, Martin Casado, a Ph.D. student at Stanford University, and his team

proposed the clean-slate security architecture (SANE) to control security policies in

a centralized manner. No new feature was available on the switch until the hardware

was upgraded. Their work was motivated by the fact that software is separated and

upgraded independently. In 2008, the idea or concept of a Software Defined

Network was initiated or originated from the OpenFlow project, and Stanford

published OpenFlow V1.0.0 specs in 2009. The Open Networking Foundation

(ONF) was formed and the first Open Networking Summit (ONS) in 2011. Many

companies like Juniper and Cisco announced incorporation with SDN.

1.8 Basic Concepts of SDN

The Software Defined Network defines an innovative design way for a networking

system that can be constructed by a combination of hardware network commodities

with software-based technologies and openness. Furthermore, SDN provides a

centralized structure or view of a network that can communicate with the rest of the

network. The basic concepts of Software Defined Networks are listed below:

• To separate switch hardware from control logic.

• To centralized the development of a control logic or mechanism.

• Application Programming Interfaces allow for communication between the

different planes (application plane, control plane, and data plane).

1.9 Components/Attributes of SDN

SDN pledges to increase a network's flexibility, agility, and manageability by

centralising control administration and abstracting the control plane from the job of

11

data forwarding in networking elements. The main components/attributes required

for the Software Defined Networks are given below:

• Hardware Switches

• Controller

• Applications

• Flow Rules

• Application Programming Interfaces (APIs).

1.10 Current Status of SDN

Software Defined Networking provides an innovative paradigm of networking that

can help to fulfill the requirement of a user on demand. Moreover, SDN improves

network control which permits the network provider to respond to the changing

business requirements quickly. So, several industries are supporting the SDN

paradigm. A company such as the Google has started to implement SDN in their

data center networks. It is required to transform the current network with SDN in a

phased manner. The operational costs and delays that occur due to a link failure can

be significantly minimized in SDN. The recent deployment at Tribune Media, which

used VMware NSX to transfer more than 140 apps to the company's new SDN

infrastructure, serves as an illustration of an SDN in action. By dispersing network

tasks, such as switches, routers, and firewalls, across the environment, VMware's

virtual networking and security software allows essential business and data

processes to run as efficiently as possible without compromising security or

dependability. The following three examples used in SDN are:

• Microsoft’s Virtual Machine Manager

The infrastructure of SDN can be deployed and managed using Microsoft's virtual

machine manager (VMM). It offers a uniform administration experience and is

employed to set up traditional data centres. VMM offers virtualized hosts, network

and library resources, and allocated storage, among its capabilities.

12

Users can carry out a wide range of tasks when SDN is integrated with the VMM.

These include designing and administering virtual network policies, guiding traffic

flows between virtual networks, and managing the infrastructure, which includes

network controllers, software load balancers, and gateways. It also incorporates a

wide range of technologies, including software load balancing, the RAS gateway,

and the network controller.

• VMware NSX

With more than 140 apps moved over the course of five months to an SDN

architecture, Tribune Media has likely the largest SDN deployment utilising

VMware NSX. Tribune Media was split off from the rest of the Tribune Company

in 2012. As a result, the organisation had to upgrade its IT systems and apps. As an

outcome of this, Tribune Media decided to use VMware SDDC as the basis for its

IT infrastructure. A virtual networking and security programme called VMware

NSX is used in Software Defined Data Centres (SDDCs), which offer cloud

computing based on VMware network technology. Switches, routers, and firewalls

are just a few examples of the network functions that are distributed throughout the

environment by NSX using a network hypervisor. Because of its agility, flexibility,

and security, Tribune Media chose VMware's NSX.

• The Forefront of Tech Innovation

SDN can be implemented in many different ways. Even though the technology is

still in development, significant service providers are using it. SDN, which will

power future technological advancements in networks, promises to lower

operational costs and offer more precise security.

Architecture of Software

Defined Network and

OpenFlow Protocol

14

2 Chapter

Architecture of Software Defined Network

and OpenFlow Protocol

2.1 Architecture of Software Defined Network

A flexible model for networking is the Software Defined Network. Compared to a

conventional network, this one offers the following features: programmability,

greater adaptability, increased flexibility, simple management, adjustability, and

dynamic reconfiguration of network elements. By separating the control plane from

the data plane, software defined networks improve network efficiency and offer two

primary advantages: Network devices only function as a straightforward forwarding

element in the data plane, and the controller has full control over the network's logic.

Software Defined Networking provides an innovative paradigm of networking that

can help to fulfill the requirement of the user on demand. Moreover, SDN improves

network control and permits the network provider to respond to changing business

requirements [6-19]. The novel paradigm of Software Defined Network follows a

layered structure given in Figure 2.1; SDN architecture consists of three layers that

follow a bottom-up approach/strategy. Each layer has been designed for a definite

purpose.

15

The controller controls and directs the behaviour of all forwarding components,

which are present in the bottom or infrastructure layer. They serve as a

straightforward sending element as a result. Because it must forward data, gather

statistical data, and monitor or watch, it is also referred to as the forwarding plane

or data plane. The "Brain of the Network" [2,6-19]—also known as the control

layer—follows, offering a logical overview of the complete network. It is commonly

referred to as a controller. By dynamically modifying the policies of the network

components, the controller can set or reconfigure them. Between the application

plane and the data plane is the control plane. In the application layer, various network

applications are implemented to control the logic of the network domain. These

programmes are constantly running or operational on the controller's top. The

controller manages three types of APIs such as Eastbound-Westbound, Northbound,

and Southbound. The East-Westbound APIs are used when multiple controllers are

communicating. The northbound APIs, like the REST APIs, allow for

communication between the application and control plane; the southbound APIs,

Application Layer

Control Layer

Infrastructure Layer

Figure 2.1: Layer Structure of Software Defined Network

16

like the OpenFlow protocol, allow for communication between the data plane and

control plane.

The architectural design of Software Defined Network has mainly three planes: the

data plane, the control plane, and the application plane, as shown in Figure 2.2. Each

plane has its own specific functions [1-9,16,64,66].

2.2 Data Plane

The majority of the data layer is made up of forwarding devices like switches and

routers. Devices in the data plane that carry out different network operations, like

packet forwarding, can be either hardware or software-based. These forwarding

elements have well-defined flow rules which aid to take action on the incoming

packets in the network like forwarding to a specific port, dropping a packet, forward

to a controller. These instructions are installed by the controller through southbound

interfaces in the forwarding elements. These devices function as a straightforward

forwarding element whose behaviour is dedicated by the controller as a result of the

decoupling of the control plane from the data plane. A switch checks the header field

of a newly received packet against the flow rules install in the flow table. If any

appropriate flow rule matches, then the corresponding action takes place. Otherwise,

Forwarding Device Forwarding Device Forwarding Device

Forwarding Device Forwarding Device Forwarding Device
Forwarding Device

Network Applications

Network Services

Northbound APIs

Southbound APIs

Figure 2.2: Architecture of Software Defined Network

17

send a PACKET-IN message to a controller then the controller installs new flow

rules in the table. The data plane is also known as the infrastructure layer. It is a

bottom layer of the Software Defined Network paradigm; A major duty of the data

plane is data forwarding, as well as monitoring information and gathering statistics.

2.3 Control Plane

The control plane, also known as the controller, which offers a centralized, global

perspective of the network. It serves as a "Brain of Network" because of this. The

controller can modify the forwarding components' configuration by dynamically

modifying their policies. Between the application plane and the data plane, the

control plane acts as a mediator. It can interact with the application plane using

northbound interfaces (northbound APIs), and it can communicate with the data

plane using southbound interfaces (southbound APIs). Most controllers used

OpenFlow as a southbound API. A controller has network management ability and

resolves network-related issues by providing a logically centralised view of control

given by the Network Operating System (NOS). So, the developer does not need to

maintain information about how data is distributed at a low level among these

forwarding elements while defining network policies. In order to implement network

intelligence, an SDN controller manages network applications and business logic

through northbound interfaces; to control the flows of the switches/routers in the

data plane through the southbound interfaces. The flow of southbound API can be

going down and the northbound interfaces can be going upward in the SDN

architecture. The controller has the responsibility how maintaining and upgrading

the topology information of a network. Through programmability, the controller can

control the network traffic and decreases the complexity network. It is done by the

controller due to a centralized logical view of the network.

2.4 Application Plane

Different network applications and services are implemented in the application plane

to manage the logic of a complete network domain. These programmes are always

active on the controller's topmost layer. Northbound APIs, which seek network state

and offer a facility to manipulate the services, make it feasible for the application

18

and control plane to communicate. Every instruction of applications will be

translated into forwarding elements of the data plane through southbound APIs

(mainly used the OpenFlow). Most northbound APIs are REST (REpresentational

State Transfer) APIs. Through this plane, network users can control and manage the

network. Because these applications define policies that are implemented by a

controller via southbound interfaces in forwarding elements.

So, to define SDN as an architecture of networking that works on these four pillars

are (as shown in Figure 2.3):

1. To remove or extract the control capability from network devices by

decoupling the control plane from the data plane. As a result, these devices

serve as a simple forwarding element.

2. Instead of destination-based, the forwarding decisions are flow-based.

3. The control logic is moved or transferred to an external entity known as a

controller.

4. The network is programmable via applications run on top of the controller.

The controller interacts with the underlying network elements of the data

plane via APIs. It is an essential characteristic of SDN.

Decoupling Flow-based Logic Control Transfer

Network
Programmable via

Applications

1 2 3 4

SDN

Figure 2.3: SDN Paradigm work on these Four Pillars

19

2.5 OpenFlow Protocol in SDN

One of the most well-liked and well-known southbound SDN APIs is the OpenFlow

Protocol. It is an intermediary between the control plane and the data plane; it is used

to make communicate among them. Various OpenFlow versions are available, but

OpenFlow 1.3 is a widely supported version. The channel of communication

between the controller and switch is established by using the OpenFlow protocol.

they must have the same version of the OpenFlow protocol. For packet processing,

OpenFlow 1.1 made two significant changes: a group table and a pipeline of multiple

flow tables. Because of this, OpenFlow V1.0 and V1.1 are incompatible with one

another. The architecture of the OpenFlow Protocol shows in Figure 2.4.

The OpenFlow switch has mainly two constituents [6,8,15-17,27]: -

1. Secure Channel: Establish an encrypted link between the controller and

switch using SSL and TLS.

2. Flow Table: For the purpose of handling the incoming packets, all

forwarding rules are implemented in the flow table.

2.6 Flow Table

A flow table with a number of flow entries is present in every network node or

element. The controller provides these rules, which the OpenFlow switch uses. To

each OpenFlow switch has at least one flow table. These flow entries are organized

by their priority in a flow table. Each flow entry has primarily three fields as shown

below in Figure 2.5.

• Matching/Header Field: To check or match the source address, destination

address, port, IP address/MAC address, and VLAN ID against the header

information of the incoming packet.

• Actions/Instructions: To specify the course of action for matching packets,

such as packet forwarding, dropping, modification, etc.

• Stats: To show statistical information about the flow like the number of

received packets, bytes, and duration of the flow.

20

Flow Table Flow Table

Flow Table

Group Table

OpenFlow Switch

Secure Communication
Channel

Flow Table Flow Table

Flow Table

Group Table

OpenFlow Switch

Flow Table Flow Table

Flow Table

Group Table

OpenFlow Switch

Controller

Matching Fields Actions Stats

Packet Counters

1. Forward Packet to Port(s)

2. Encapsulate and Forward to Controller

3. Send to Processing Pipeline

4. Drop Packet

Switch
Port

MAC
Scr.

MAC
Dst.

Eth
Type

VLAN
ID

IP Scr. IP Dst. TCP/UDP
Scr.

TCP/UDP
Dst.

Figure 2.4: OpenFlow Protocol Architecture

Figure 2.5: Format of the Flow Entries

21

The controller has the authority to situate and operate the flow entries in network

devices. A controller has privileges to insert, delete, and modify the flow entries in

a table and instruct the switches on how the packet should be transmitted in the data

plane. Therefore, a controller can easily manipulate the forwarding behavior of these

devices.

2.6.1 Type of Message

For this purpose, the OpenFlow protocol supports numerous kinds of a message

which define how to coordinate these forwarding devices in a network are listed

below [6,8,16]:

• HELLO: - To set up a connection between controller and switch by using

the HELLO message.

• ECHO: - To check the liveness of connection and its operational status

between the controller and forwarding devices. An ECHO-REQUEST

message is sent by a controller to a switch, and a switch responds with an

ECHO-RESPONSE message to the controller. When a switch fails to

respond to an ECHO-REQUEST message then identify that connection is

lost.

• PACKET-IN: - When a switch can't find a suitable flow rule in a table, it

sends a PACKET-IN message to a controller.

• PACKET-OUT: - The PACKET-OUT message is sent by a controller to

a switch in reaction or response to the PACKET-IN message. The

PACKET-OUT message specifies how to deal with these packets.

• FLOW-MOD: - A controller can update the flow entries of switches by

using the FLOW-MOD message.

• PORT-STATUS: - A switch sends a notification to a controller by using

the PORT-STATUS message. There is a change in the status of ports such

as port-up or port-down. This information helps to manage failure in the

network by a controller.

All messages are grouped into three types of messages controller-to-switch message,

asynchronous message, and symmetric message in Figures 2.6 (a to c):

22

A. Controller-to-Switch: These messages, such as PACKET-OUT, FLOW-

MOD, ROLE-REQUEST, etc., have been initiated by the controller to

directly examine the status of the switch.

B. Asynchronous: These messages are originated by the switch to inform

the controller about the network change that an event occurs by a switch

like PACKET-IN, PORT-STATUS, etc.

C. Symmetric: Symmetric messages are beginning either by the controller

or switch to send each other without any solicitation such as HELLO or

ECHO messages.

Controller

Switch

Controller-to-Switch Messages

Controller

Switch

Asynchronous Messages

Controller

Switch

Symmetric Messages

Figure 2.6 (a): Controller-to-Switch Messages

Figure 2.6 (b): Asynchronous Messages

Figure 2.6 (c): Synchronous Messages

23

2.7 Implementation of Flow Rules

The two different techniques are used for implementing flow rules in a table in either

a reactive manner or a proactive manner by an SDN controller. The working of these

methods is as follows and the comparison between both methods is highlighted in

Table 2.

2.7.1 Reactive Method:

When a host sends a new packet in the network then the switch matches its header

field against the flow entries of the table. If the header field of the packet matches

then the corresponding action is executed otherwise, the switch sends the PACKET-

IN message to the controller. The controller inserts or alters flow rules by using

PACKET-OUT, and FLOW-MOD messages. After that switch can easily forward

packets to the desired destination [6-27, 64,66] shown in Figure 2.7.

When a host sends a new packet in the network then the switch matches the header

field of the incoming packet to the corresponding flow entries in a flow table. If the

header of the packet is matched then the corresponding action is executed; otherwise,

the switch sends a PACKET-IN message to the controller when the header of a

packet is not matched. The controller installs/inserts new or modified flow rules in

a flow table by using FLOW-MOD or PACKET-OUT messages in switches of

Switch

Packet in from the

Network
Parsing Header

Fields

Match

Against

Tables

Perform Actions

on Packet

Notify Controller about

packet using PACKET_IN

message

No Match Found

Table Entry Found

Header Fields Actions Stats

PACKET-IN

FLOW-RULE

Controller

Figure 2.7: Packet Forwarding Process in Reactive Method

24

networks. After those switches can easily forward the packets to the desired

destination. These steps are highlighted in Figure 2.8 by using numbers 1, 2, 3, and

4.

2.7.2 Proactive Method:

A proactive method controller previously installed flow rules in a table for managing

network traffic. The PACKET-IN event never happens in this method because the

controller can populate the flow rules before the packets arrive. So, the latency of a

network is eliminated that brings due to the involvement of a controller in the

PACKET-IN message. The value of the action field is set to FLOOD always in the

proactive method.

Reactive Method Proactive Method

The reactive method installs the flow rule

after the fault occurs or sends a new

packet by the host.

The proactive method installs the flow

rule before the fault occurs or a new

packet sends by the host.

Table 2: Difference between Reactive and Proactive Method

Figure 2.8: Notify to the Controller by using PACKET-IN Message

25

2.8 OpenFlow Pipeline and Group Table

OpenFlow 1.1 [6-16], which is used for packet processing, introduces two major

changes: a group table and a pipeline of numerous flow tables. For this reason, the

OpenFlow V 1.0 and OpenFlow V 1.1 versions are not compatible. In OpenFlow 1.1

version offers a concept of the pipeline for multiple flow tables. When a packet has

arrived in a pipeline then the metadata field of a packet is used for the matching

process. Metadata of the packet is used from one step of the pipeline to the next step

of the pipeline till the execution of the action set is occurring. This action set is also

known as the instruction set of a flow table. The list of action sets is given below in

Table 3. And the working/processing of the pipeline in OpenFlow is shown in

Figure 2.9.

The switch sends the PACKET-IN

notification to the Controller if the

packet's header cannot be matched.

No PACKET-IN event occurs in the

proactive method.

Reactive Flow introduces latency due to

the involvement of the controller.

Proactive Flow eliminates latency

which involves due to the controller.

Recovery time is more than the proactive

method.

Recovery time is less as a compared

reactive method.

Action Set/ Instruction Description

Apply-Actions
Apply action immediately without any

modification to the action set.

Clear-Actions Clear the entire action list.

Table 3: List of Action Set in OpenFlow

26

OpenFlow V 1.1 and its later versions also support the group table feature. Each

group table has included these fields such as group-identifier, group-type, counters,

and action-buckets in the group table as shown in Figure 2.10.

PACKET-IN

SDN Controller

Send Packet to

Controller

Flow
Table 0

Packet +

Ingress Port

+ Metadata

+ Action Set

Flow
Table 1

Flow
Table n

Execute
Action Set

PACKET-OUT

Drop Packet

Send Packet to

Controller
Send Packet to

Controller

Drop Packet Drop Packet

Packet +

Ingress Port

+ Metadata

+ Action Set

Packet +

Ingress Port

+ Metadata

+ Action Set

Group Identifier Group Type Counters Action Buckets

Write-Actions
Merge the given action(s) into the current

action set.

Write-Metadata Update the Metadata field.

Goto-Table <next-table-id>

Goto next table in the processing pipeline. A

table-id of the next table is greater than the

current table-id.

Figure 2.9: Packet Flow Process in the Pipeline of OpenFlow

Figure 2.10: Format of Group Table Entries

27

Every group table entry has a unique group identifier in the table. The same group

identifier is used by several flow entries in a table; A group type specifies which

type of a group is applied. The purpose of these group types is a list in Table 4.

Sr. No. Group Type Meaning

1. All

This type of group is used for “broadcast” or

“multicasting.” In this group, packets are processed in

all action buckets.

2. Select
It uses a selection algorithm to run selected action

buckets.

3. Indirect
This type of group allows different flows and groups

which is related to a common group.

4. Fast Failover
It is used to implement a backup path in a switch to

measure the liveness of the port.

The counter field is used to collect statistical information on packets processed by a

group. The action bucket field of the group table contains a set of actions whose

execution depends on the type of group. In OpenFlow 1.3 version introduces a meter

table; that is directly connected to the flow table through a meter identifier. The

second field is the meter band that specifies the rate limit (data rate) of a packet. If

the rate limit of packets is exceeded then drop the packets. The counter field provides

statistical information on packets. The format of the meter table entry is shown

below in Figure 2.11.

The OpenFlow protocol prefers to use TCAM memory for the purpose of storing

information about flows in a table because it provides flexibility and efficiency in

terms of matching capabilities. Its size and price are both astronomically expensive,

though. TCAM memory is insufficient to keep a large number of flow entries in the

flow table concurrently [6,816]. In order to enable the flows to expire or be

Meter Identifier Meter Bands Counters

Figure 2.11: Format of Meter Table in OpenFlow 1.3

Table 4: Various value of Group Type in OpenFlow

28

withdrawn after a set amount of time, OpenFlow offers a flow timeout function. For

this purpose, two fields available are:

• Idle Timeout: The flow will expire if it is inactive for the allotted amount of

time.

• Hard Timeout: A flow entry must end after a predetermined period of time

(number of seconds). It doesn't matter whether packets are striking or

matching an entry.

In both fields, timeout's default value is 0. These flows are ongoing and cannot

be stopped. That is why the OpenFlow protocol is regarded as the father of

Software Defined Networks due to its broad acceptance and smooth deployment

of SDN.

2.9 Summary

Software Defined Networking offers a cutting-edge networking architecture that can

assist in meeting the needs of the user as needed. SDN also enhances network control

and gives the network provider the ability to adapt to shifting business needs. The

three layers that make up the unique SDN paradigm are built from the bottom up.

Using the four pillars as the foundation of its architecture. The OpenFlow Protocol

is among the preferred and well-known southbound SDN APIs. Using the OpenFlow

protocol, a communication path is built between the controller and switch.

Literature Review in

Software Defined

Network

30

3 Chapter

Literature Review in Software Defined

Network

3.1 Introduction

Today computer networking is the main source of communication in which different

persons exchange and share their ideas, develop and improve their skills, to get a

new insight of knowledge and experience on challenges that occur in their work. In

the last few years, computer networking has rapidly increased the demand for

services; but it is very difficult to cope with the demand of requirements of the user

in the traditional networks. To cover this situation, it is required to restructure the

traditional network to increase the efficiency of a network that can fulfill the

requirements of a user as per their demand. It is possible through a novel and

innovative paradigm of networking which is known as Software Defined Network.

This chapter provides an exhaustive review of the literature on the framework for

Software Defined Network and its functionalities. Finally, it summarises a review

of the literature on SDN controllers and their features before going into more detail

about how the control plane and data plane interact via the southbound application

programming interface, like the OpenFlow protocol. Discuss the related study on

fault tolerance and load balancing in SDN networks as well.

31

3.2 Traditional Networks

Due to the ongoing development of technologies, computer networks have a

significant impact on how humans' lifestyles change through time. However, adding

new functionality to traditional network devices is a challenging and complex

operation in traditional networks. Due to the traditional network's lack of

programmability, it is an uneconomical duty or task since it raises the network's

operational and capital costs. Additionally, all network devices must upgrade their

hardware if any changes are attempted to the control plane of the conventional

network. Vertical integration between the two functional components is the cause of

the rigidity of traditional networks.

S. Haji et al. [1] in traditional networks both functional components are vertically

integrated. This vertical integration, it makes more complex, complicated, and

difficult for the network operator to configure or reconfigured the network devices;

this is happened due to the predefined procedures that responded to a fault and load

modifications in the network.

D. Gopi et al. [2] in conventional routing protocols have a very intricate and rigidity

of adaptability in the network change. This happened due to a tightly coupled bond

existing between both functional components. In a traditional network, every router

can recompute the alternate paths independently in the network. After acquiring the

updated knowledge and building a new routing table based on it. Once the

convergence procedure is finished and the tables have been updated with the

modifications. Then, the network's packet transport is restarted from the source to

the destination. For this reason, convergence time has a great influence on the change

of topological size in the conventional or traditional networks; because all the routers

send updates through the BGP protocol to up-to-date their routing (RIB and FIB)

tables. Consequently, in order to expand the topology size in conventional networks,

the routing time required for convergence is continuously increasing; because the

information of a failure of a link or node is propagated or broadcasted via flooding

to update all the routing tables of routers in network. But, in case of SDN networks,

there is no need to propagate the updated information to all the forwarding elements

of the networks through flooding. The controller recomputed the alternate path and

32

updated this information only on the affected switches rather than all devices of the

networks. It is the responsibility of the controller to perform the routing convergence

and maintain topology knowledge of the network; it provides a centralized logical

view of the entire network. Thus, the routing convergence time in Software Defined

Networks is better than the conventional networks.

M. J. Anjum et al. [3] the traditional Data Center Networks (DCN) approach is

insufficient for the amount of data transfer that is presently occurring in a data centre

network. It is unable to utilize all the resources. The novel paradigm of Software

Defined Network (SDN) can be implemented in DCN networks to make better

network management compared to the traditional network because the control plane

and data plane are separate. The SDN uses multiple paths in a data center network

for transmitting the data; the other remaining links are used to regulate the data in

the network in a parallel manner. It enhanced data transmission in terms of

throughput and packet loss during link breakdown.

G. Khetrapal et al. [5] In traditional routing protocols, select a single best route for

a specified set of destinations by the decision selection process of the route; whereas

in SDN OpenFlow based routing select the multiple routes to the same destination.

Moreover, in SDN reconvergence time is better than in traditional routing protocols.

3.3 Software Defined Networks

This fact is well known that every day there are a lot of innovations and

enhancements of the existing technologies. Software Defined Networks (SDN)

responds as soon as possible to the network users' changing demands for the

network's resources. As a result, it is possible to assert that network advancements

position the SDN as networking's future. Software Defined Networks offer a new

paradigm for networking innovation by dividing the control plane from the data

plane. The goal of a Software Defined Network is to manage the network in a way

that allows service providers and commercial entities to rapidly adapt to changing

business circumstances. The capability to programme, alter, and dynamically

reconfigure networking devices is provided by software defined networks. As a

33

result, SDN provides flexibility, and centralised view control reduces both the

complexity and the expense of the network systems.

D. Gopi et al. [2] conventional routing protocols have narrow adaptability to

network changes. But, SDN provides an effective method for this problem due to a

centralized controller. In a conventional network, the convergence time is

continually increased as increase the topology increase. In SDN, when a topology is

scaled then the convergence time of routing has no significant change because all

work performs by an SDN controller. It can send updated information only to

affected switches rather than all devices of a network. Thus, SDN networks have

less convergence time as compared to conventional networks.

D. Kreutz et al. [6] provides an in-depth examination of Software Defined

Networks. A digital society is created via the internet when everything is connected

and accessible from anywhere. The traditional network is difficult to maintain and

would require wider adoption. Try reconfiguring the forwarding devices to respond

to a fault, imbalance, or change because it is difficult to set them in accordance with

predefined policies. It happened due to a strong bond existing in both functional

components. Even this vertical integration makes it more complicated to reduce the

flexibility and evolution of the network. Software Defined Network (SDN) provides

an emerging paradigm of networking that gives hope to changes in a traditional

network. First, break the vertical integration between both components. Second, this

separation makes all forwarding devices a simple forwarding element in the data

plane, and control logic is implemented in a logically centralized controller. Thus, a

controller has direct control over these data elements through a well-defined

application programming interface (such as OpenFlow). SDN architecture follows a

bottom-up approach. It offers an opportunity to solve long-standing problems in a

traditional network.

A global perspective of the network, dynamic programmability in forwarding

elements through APIs, and different applications running network logic on top of a

controller are some of the key concepts offered by SDN. Compared to traditional

networks, these are much easier to build and deploy. The ongoing research and

34

challenges in SDN are fault tolerance, load balancing of multiple controllers,

scalability, synchronous, and so on.

H. Zhang et al. [7] When comparing the performance of SDN routing to legacy

routing protocols, the legacy network has faster packet forwarding than SDN when

the network scale is lower. SDN speeds are faster than traditional networks when

the network scale is bigger because switches must not maintain all network

information in SDN.

S. Khan et al. [9] generally in SDN routing is implemented in the control plane;

because all information is maintained on the control plane like network state and

topology. The most realized issues in SDN are the single point of failure and

scalability. To resolve these issues, then there is a vast space for development that

can fulfill the requirements of SDN.

I. Radu et al. [10] describe the behavior and compatibility of SDN components

(software elements) connected to traditional hardware equipment (hardware

elements); because an SDN controller has the privilege to monitor all nodes of a

network and manage network traffic according to the network load. There are no

special configurations required in hardware networks or software networks. But

compared to the hardware switch, the virtual switch introduces a three times smaller

latency. Additionally, SDN components are not just pieces of hardware that can be

used virtually. Many companies offer 100% virtual solutions for various

communication service kinds. The architecture of these solutions is the same as that

of hardware devices.

Z. Hu et al. [11] enables the administrator to configure the resources of the network

in SDN very quickly. It is also a facility to adjust the traffic flow dynamically in the

network due to a controller. It can help the developer to implement security functions

that offer security services in the network when developing an SDN controller.

I. Bedhief et al. [12] about billions of smart heterogeneous devices are connected

via communications technologies. The SDN is an emerging network architecture

whose aim is to improve network performance through the global vision of a

network that is offered by the controller.

35

C. Tselios et al. [13] Software Defined Network simplifies the policy enforcement

or implementation in the network elements. As a consequence, it becomes easy to

reconfigure the network elements dynamically rather than an individual device. The

configuration of the network element can be changed by a controller. A solitary SDN

controller presents a failure risk for this reason.

Y. Yu et al. [15] Software Defined Networking provides a paradigm of a network

that offers simplified network management and innovation in networking. But still,

give more attention to the reliability of the network. The reliability of SDN is

ensured via fault tolerance. System monitoring, fault diagnosis, fault recovery, and

fault repair are the four main tasks that comprise the fault tolerance procedure. SDN

controller are still in the early stages of developing fault tolerance. So, it is

considered a future work for research in SDN.

A. Malik et al. [16] Software Defined Networks is a hot and burgeoning topic that

has attracted more attention in both the commercial and academic sectors; because

it decouples the control plane from the data plane. Moreover, the SDN paradigm

provides these features like programmability, adjustability, and dynamically

reconfiguration of forwarding devices in the network. But fault tolerance and

recovery are some of the key issues that SDN faces. Moreover, only 4% of the

research effort contributes to fault tolerance in SDN and the rest in other fields. To

better SDN traffic engineering and increase network efficiency, a controller offers a

global view of the network. To address these issues with network scalability and

resilience, fault tolerance requires more attention. If something goes wrong in one

layer, it may or may not affect the other layers. Because of this, each layer of SDNs

must be built separately to deal with the problems of fault tolerance on that layer. A

connection failure, for instance, might not have an impact on the control layer,

whereas a controller failure might have an impact on the entire infrastructure layer.

M. R. Parsaei et al. [17] compare current IP networks with SDN networks. In the

current network combing both components; Consequently, due to predetermined

rules, network configuration is challenging. Try to adjust them so they can react to

flaws, loads, and modifications. However, a new style of networking separated both

functional components. As a result, it provides smarter, flexible, and controllable

36

management facilities in the network. After a study on fault tolerance in both

networks to analyze the current network most challenge is the time to repair and

update the network whereas the SDN network increase computational overheads in

the controller. So, try to develop an algorithm for fault tolerance on the criteria of

the lowest packet loss in the network.

J. Chen et al. [18] proposed a significant component that is OpenFlow which is

useful for failure detection and recovery because SDN is unable to survive in a large-

scale network when facing a failure. So, to design a mechanism for achieving fault

tolerance. Then compare both reactive and proactive methods respectively; Every

time a controller fails, the OpenFlow channel and the supporting switches go out of

control. If using more than one controller in the control layer results in a more stable

system. For this reason, the author lights this issue (fault tolerance) in SDN as a

further research direction.

B. Isong et al. [21] a single controller controls all resources in a network and then

poses a single point of failure. It has a direct impact on the scalability, reliability,

availability, and performance of the network. The likelihood of a network

breakdown brought on by a single controller rises as network complexity rises. A

system's fault tolerance is its capacity to keep working in the face of hardware or

software breakdowns. Its nature is unreliable. The three steps of fault tolerance are

fault detection, recovery planning, and recovery execution. To ensure that the single

point of failure is eliminated, the fault should be identified and recovered as early as

feasible. This is due to the fact that the controller is a crucial component of the

network, and having only one faulty controller will have a negative influence on the

network's availability, scalability, and dependability/reliability.

S. Vissicchio et al. [22] SDN controller exerts a centralized logical control of a

whole network that make simplify network management and increases the efficiency

of a network. But, SDN comes with its own set of issues in terms of resilience,

robustness, and scalability.

I. F. Akyildiz et al. [24] SDN paradigm promotes innovation and evolution in

networking which improves resource utilization, simplifies network management,

and decreases the operating cost of a network. Traffic engineering receives a fairly

37

little amount of research attention compared to the development of SDN

architecture. For SDN to improve traffic engineering, this viewpoint, including flow

management, fault tolerance, load balancing, topology updating, and traffic analysis

in terms of scalability, availability, dependability, consistency, and accuracy, must

be accounted for.

M. Casado et al. [25] and O. Akonjang et al. [26] in early 2000, the demand for

the Internet is grown rapidly as well as; they needed more flexibility in the

networking services such as reliability. By dividing the data plane from the control

plane, several attempts have been made to attain originality in the networking

industry throughout this time. The 4D project was used to reorganize the network

design into four planes, including the Decision, Dissemination, Discovery, and Data

planes. Two components that Ethan project (a SANE extension) uses 4D features

are a centralised controller that oversees the network's overall security procedures

and Ethan switches that have gotten forwarding instructions from a controller. The

first of Ethan's two key drawbacks is its inability to comprehend the absence of

network nodes and users, while the second necessitates manual flow level routing

management. Ethan was not adopted as a result. In 2006, proposed a clean-slate

security architecture (SANE) to control security policies in a centralized way instead

of accomplishing it at the edge. Designing a new architecture with security is a

fundamental goal. Its main goal is to establish an architecture that supports

simplicity, implements security at the link layer, and hides all topology and service

information from unauthorized parties. The SANE and its replacement Ethan

provide a base for the beginning of OpenFlow. At Stanford University, a research

group has developed the OpenFlow protocol as a clean slate technology.

Communication between the both plane is made feasible by one of the most well-

liked southbound interfaces in SDN. The concept of the Software Defined Network

was created by the OpenFlow initiative.

M. Paliwal et al. [28] Because it handles all control decision responsibilities while

routing packets in a network, a controller in SDN architecture serves as the network's

brain. As a result, centralised decision-making capacity improves network

38

performance. A centralised controller, however, is unable to solve the scalability

problem.

A. Nantoume et al. [29] the fact, that operators are refusing to deploy their

equipment in the unprofitable region because the CAPEX and OPEX of equipment

are relatively high. As a result, Software Defined Networking has decreased a

network's CAPEX and OPEX while also enhancing the quality of service (QoS).

S. Scott-Hayward et al. [33] increase innovation in networking applications

through Software Defined Networking which aids to reduces the cost of a network.

This paper highlights the characteristics of SDN. Further, it exploits characteristics

of SDN that may be more secure than traditional networks.

S. Narayana et al. [35] SDN programming monitors the flow of traffic in network

paths by using queries through regular expression; it can be easily converted into

DFA to a representation of the path of queries in SDN.

R. Wang et al. [36] dedicated load balancer becomes expensive due to congestion

and quickly arises a single point of failure. Network switches can use either

microflow or wildcard rules to split traffic among server replicas according to packet

handling rules set up by controllers. because an immense amount of flow entries in

the flow table cannot be stored in TCAM memory. The OpenFlow install flow

timeout feature allows the flows to expire or be deleted after a predetermined period

of time. So, without interrupting current connections, immediately adjust the

changes in load balancing rules and regulations.

X. Xu et al. [37] traditional network architecture has become complicated to manage

due to a lack of programming capabilities; it also increases the deployment cost of

the network as compared to SDN.

W. Liao et al. [38] by separating both layer in SDN changes the limitations of the

existing network. This study suggested a load balancing mechanism that decreases

response time by dynamically adjusting the flow rules in a table; it can dynamically

transfer the extra load to a server that is under load.

39

S. Bera et al. [41] Path estimator and flow manager are two components that are

suggested for use in the Software Defined Networks implementation of flow tables.

This scheme improves network performance by nearly 50% approximately.

T. Luo et al. [44] identify the main two problems in the network that are rigid to

policy changing and difficult to manage which rise technical challenges in both

planes such as creating flow, and overhead introduce when a load of network traffic

is high.

K. Wang et al. [46] when network coverage has increased then a single controller

faces a bottleneck problem in the network; due to a scalability issue in the SDN. As

a consequence, network performance degrades.

M. C. Nkosi et al. [48] the use of load balancing helps networks run more efficiently,

are more available, and experience less gridlock. In legacy networks, a particular

hardware device is required for costly load balancing. But, in SDN there is no need

for a device for load balancing because the controller manages all calculations of an

optimal path; and then configures the flow table in switches by using a group table.

H. Kim et al. [50] CORONET used the restoration technique for the failover

mechanism to re-plan or re-compute the link after the failure. Each of CORONET's

four primary components is in charge of a distinct job. Since the topology finding

module is used to collect periodically information about a network which helps to

construct a global view of the network. The route plan module is used to calculate

the route path as well as the backup route in case of link failure by utilizing Dijkstra’s

algorithm. To enforce this routing route in the OpenFlow API, the VLAN switch

configuration module is used to configure the switch port with the VLAN ID. The

traffic assignment module is used to allocate traffic in a network. But CORONET

suffers a high latency problem during installing the new flow rules because it must

control a broad perspective of the network.

P. C. Fonseca et al. [51] issues with SDN fault management are presented in a

thorough perspective. The placement of a controller, reliability, scalability, and

failure of a controller are just a few of the problems that the conventional network

40

presents in comparison to a logically centralised control plane. These are ongoing

research issues in fault management in SDN.

F. Bannour et al. [52] Software Defined Networking continuously gained

popularity in recent years, in both study and academia. The centralization of an SDN

controller offers new opportunities to make network management easy. But arises

several issues which are related to the SDN control plane such as scalability,

reliability, consistency, and interoperability.

S. Bera et al. [53] SDN controller includes two different management policies

device management and network management which improve network performance.

Therefore, the packet delivery ratio is higher than in traditional networks due to a

global view of the SDN controller. To address an open issue in SDN is an optimal

placement of the controller problem.

G. Wang et al. [55] SDN controller interact with the application plane via the

northbound API, which facilitates network control and its services. One significant

problem that occurs when using numerous controllers is the placement of the

controllers. To resolve this issue must be a focus on minimum network latency,

maximum reliability, and minimum deployment cost of a network.

A. Gonzalez et al. [58] SDN paradigm enhances innovation and flexibility in the

network. So, robustness and fault tolerance must consider as the main criteria for

networking. But there are still many open issues like consistency, durability, and

scalability in SDN. The performance of the controller is classified into two concepts

such as controller latency and controller throughput. Moreover, a single controller

always has a threat of failure.

L. Sidki et al. [59] The network traffic is decided by the SDN controller, who has a

wide overview of the network's capabilities. Support on a single controller is

unsuitable due to two factors. Initially, the network encounters a solitary point of

failure, or SPOF. Secondly, it increases the demand for network traffic to help deal

with speed bottlenecks. Network throughput is reduced and network latency is

increased as a consequence.

41

N. Medhi et al. [60] the perception of a Software Defined Network relies on a

centralized controller. The various challenges addressed a centralized control

architecture faces as scalability, availability, and fault tolerance in SDN.

Y. E. Oktian et al. [61] a survey on the design choice of SDN that may be influenced

by these issues scalability, robustness, failure, privacy, and consistency.

N. Katta et al. [62] and A. Mantas et al. [63] Ravana required to be modified the

switch and OpenFlow to be extended with hitherto unforeseen addition to the

protocol. Rama does not require modification compared to Ravana; because Rama

handles consistency by using the event processing cycle as a transaction. But the

cost of this technique is increased and also incurs higher overhead compared to

Ravana. These overheads also decrease the performance of the network.

M. Karakus et al. [64] traditional architecture network applications and devices are

complicated to configure (or reconfigure) because they required highly skilled

personnel. It is a costly and time-consuming job; It faces an obstacle of vendor

dependency. SDN architecture dissociates the control plane from the data plane; It

allows a network administrator to supervise network services via the abstraction of

lower-level functionality. It is possible in SDN through a logically centralized

technology. For this reason, especially a controller (control plane) suffers scalability

issues in SDN which also affects the controller performance.

O. Blial et al. [65] by separating the control plane from the data plane, software

defined networking offers a number of advantages. The biggest problem in SDN,

however, continues to be SDN networks' scalability, dependability, and availability.

Therefore, the centralised SDN design cannot fulfil the requirements for a network's

efficiency, availability, and scalability.

Y. Zhang et al. [66] Software Defined Networking decouples the control plane from

the data plane as a compared traditional network. SDN provides a programmability

facility to configure the network elements. One of the major complaints against SDN

is that it has a single controller failure point, which lowers availability and

performance across the board. The performance and scalability of the network are

also severely constrained by a singular controller. Consequently, multiple controllers

42

are suggested; but they increase the complexity of networks. At last highlights

potential research issues in multiple controllers of SDN such as coordination

between controllers, load balancing among controllers, etc.

A. U. Rehman et al. [67] Fault tolerance, which guarantees high availability and

reliability in the system, is a crucial element of network resilience. Furthermore, they

highlight fault tolerance issues in SDN due to a single controller. Thus, SDN

controllers still exist with fault tolerance issue which is further categorized into

controller reliability, consistency, controller placement, and controller assignment

(balance of controllers). Moreover, scalability, availability, and data consistency are

still an area of research in SDN for multiple controllers.

S. Asadollahi et al. [69] computer networks claim that traditional networks are

replaced by SDN because they overwhelmed the limitations of traditional networks.

In SDN, the Ryu controller is used for scalability purposes by using the Mininet

simulator.

Y. Chen et al. [70] multiple controllers in SDN have a critical issue regarding load

balancing. Imbalance load may be causing some controllers to be overloaded, and

some controllers are underutilized in the network; because a load of each controller

is changed w.r.t. time. One of the biggest issues that occur among multiple

controllers is the distribution of load between controllers.

Y. Zhou et al. [71] Software Defined Network develops a centralized controller

which manages the entire network control, but it can suffer from scalability and

reliability issues in the control plane. Instead of attempting to balance the load across

numerous controllers, the proposed load balancing scheme is built on the switch

group.

J. Yu et al. [72] Due to a single controller, SDN currently has scalability and

availability problems. To fix this problem, implement multiple controllers in SDN.

But arises a load balance issue due to the uneven distribution of workload between

controllers.

J. Ansell et al. [73] Queuing theory is a well-established branch of analysis of the

performance changes as network traffic in the network. To study how network

43

performance will be affected by changing network traffic in the network. So, this

concept may be used for load balancing in SDN.

G. Nencioni et al. [74] SDN improves the flexibility and programming of networks.

But it also brings challenges like the consistency of network, load balancing, fault

tolerance, etc. that need to be explored. The operational and management failures

(O&M) have a higher impact on overall network availability in SDN. To reduce the

operational and management failures (O&M) to design a proper SDN controller is

needed.

B. Xiong et al. [75] limitation of the logically centralized controller in SDN affects

the network performance. A queuing model was proposed for approximating the

future performance of SDN controllers.

D. Chourishi et al. [77] The development of Software Defined Networking (SDN)

is still in its infancy. With SDN, load balancing at the control layer is a major

problem.

K. Benzekki et al. [78] compare the characteristics of Classical architecture with

Software Defined Network architecture. The SDN offers programmability,

centralized control, network flexibility, easy implementation and configuration, and

enhanced network management as compared to classical networks. At last addressed

SDN challenges that are faced such as scalability, reliability, dependability,

resiliency, high availability, etc.

R. K. Das et al. [81] A single controller's performance is necessary for a network to

function, although a solitary point of failure is always a possibility. The performance

of a network declines as network traffic increases, which is not what is wanted.

Therefore, the system's limited fault tolerance and dependability capabilities are

unacceptable.

T. Hu et al. [83] SDN provides flexibility in network management. But a single

controller does not meet the demand of the network as increasing the network

coverage area. To overcome this situation by using multiple controllers in SDN for

large network areas. But different four aspects that must be considered while

implementing multiple controllers in SDN are scalability, reliability, consistency,

44

and load balancing. In the future, must be a focus on these challenges as a research

area in SDN.

S. Muhizi et al. [85] to the evaluation of SDN performance by using a queuing

model that monitors. What impact will network traffic have on performance?

Furthermore, extend this analysis for multiple controllers in SDN.

T. Issa et al. [86] the use of a single controller in SDN creates more network failure

points and compromises the control plane's scalability, availability, and the speed.

To manage the load on controllers and enhance network performance, multiple

controllers are required to do away with a single point of failure.

H. Yu et al. [87] distributed controllers are used in SDN to resolve the issue of

scalability and load balancing. This paper says while managing load balancing in

SDN, then minimizing packet processing delay.

J. Cui et al. [88] single centralized controller suffers scalability and reliability in

SDN. But in distributed controllers, the key limitation is the counter of uneven

distribution of load between controllers. More difficult to handle the variation of

load in network traffic. Therefore, multiple controllers introduce a new challenge in

the control plane to rebalance a load of controllers when the uneven distribution of

load occurs.

W. H. F. Aly et al. [89] an important aspect of resilience is fault tolerance which

ensures the availability and reliability of the network is high. Both fault tolerance

and load balancing are interrelated issues. Moreover, it manages the load between

controllers by using performance metrics of the network.

O. Akanbi et al. [90] the efficiency of the network and the scalability of the control

plane depend heavily on the task distribution among distributed controllers. To

address this issue there is two main concern of network controller consider flow

setup latency and switch assignment to distribute workload across multiple

controllers.

J. Xu et al. [91] various strategies are proposed to resolve these issues like load

balancing, performance, and robustness of SDN controllers. While multi-controller

45

deployment in SDN by using queue system; then what is an impact on cost

deployment of the controller in network and how it is minimized in future.

A. Mahjoubi et al. [92] in SDN single controller suffers serious problems like

scalability, availability, and central point of failure. Distributed controllers are

employed as a solution to these problems. But still, they have to deal with fault

tolerance and load balancing challenges among controllers.

A. Mondal et al. [94] in the future, there is a need for an analysis model to ensure

quality-of-service with minimum packet drop in the system, reducing waiting time

in a system while using TCAM memory in the system.

M. Escheikh et al. [95] multiple controllers are used in SDN which suffers several

issues as the bottleneck, availability, synchronization, and an unbalanced traffic load

while scaling the network size.

L. Mamushiane et al. [103] by decoupling the both planes in SDN poses several

challenges regarding scalability, fault tolerance, load balancing, and network

performance. To resolve these issues, deploy multiple controller networks. But in

the future, try to integrate both load balancing and fault tolerance into a solution.

M. K. Faraj et al. [104] load balancing strategy is required when congestion and

overloading problem has occurred in the network. In the future, the queue length is

utilized for load balancing to reduce congestion in the network; while using multiple

controllers rather than a single controller.

A. Mondal et al. [105] This study suggested a Markov chain-based SDN analytical

model for analysing the efficiency of packet flow using OpenFlow. There were a lot

of network packet drops; either a table-miss entry happened or there was a long delay

before an output action was defined. In the future, it can be expanded with a queue

system that helps to shorten the packet flow's latency.

M. Hamdan et al. [106] in SDN, load balancing is a method used to boost network

performance. The main goals of load balancing are a minimum reaction time,

effective resource use, maximum system throughput, and avoiding bottleneck issues.

During the load balancing, several issues are rising like controller failure, migration

of switch(es), managing the load of the controller, resources allocations,

46

synchronization, controller placement, and so on. These open issues provide further

research direction in SDN.

S. Rowshanrad et al. [109] a controller can communicate with forwarding elements

via the OpenFlow which provides flow statistics of a network to the controller for

monitoring the network system. In the future, flow statistics information is combined

with queueing techniques to get optimize performance in a network.

G. Huang et al. [110] contrast the software defined network's architecture with that

of a conventional network. In comparison to traditional networks, SDN has a number

of benefits, including programmability, agility, flexibility, and centralised control.

This study adopted a proactive strategy based on the usage of a flow table as opposed

to a reactive one. The likelihood of flow entries matching is thus at its highest.

Utilize an analytical model in the future to enhance the performance-related factors.

Y. Zhang et al. [66] based on their interactions, the two kinds of SDN multiple

controller architecture are centralised architecture and distributed architecture. The

initial SDN architecture, which only implemented one controller, is referred to as

centralised architecture. Distributed architecture departs from the original trend of

SDN by offering a distributed control plane through the use of several controllers.

With distributed architecture, controller scalability can be increased. This kind of

design allows for more than one controller to make up the control plane. These

numerous controllers are responsible for overseeing various network administrative

domains and exchanging local data with neighbouring domains to improve the

execution of all global rules and regulations. Mostly concentrate on distributed

architecture, which may be divided into two types: horizontal and hierarchical.

• Horizontal Architecture: All controller is assigned to a different domain in a

horizontal design, commonly referred to as a flat model. East-West interfaces

are used by controllers to communicate with each other while managing their

own networks independently and with equal state. In a horizontal design,

every controller must be on the same level. The usual examples of horizontal

architecture include Onix [113], HyperFlow [117], and FlowVisor [114].

• Hierarchical Architecture: A hierarchical architecture for managing or

controlling controllers. Through a hierarchical architecture, all controllers

47

are separated into root or master controllers and local controllers based on

their function. Local controllers are accountable for the network state within

their local domain and are situated reasonably close to switches. The entire

network's information must be maintained by root controllers. Local

controllers have to communicate with root controllers beforehand handling

inter-domain activities, much like the client and server method. IRIS [119]

and Kandoo [120] are two examples of distributed SDN controller initiatives

utilising a hierarchical paradigm.

When a network experiences a fault, it can still function normally. This is referred

to as fault tolerance. Fault tolerance is a preventative method of enhancing controller

reliability that guarantees a secure functioning and high performance of networks.

Similar to traditional networks, one of the main objectives of controller design is to

accomplish fault-tolerant communication [66].

However, unlike conventional networks, SDN's failure tolerance is dependent on the

robustness of both the distributed control plane and the data plane. A review of the

literature on SDN controllers and their features, as well as the fault-tolerant approach

used by the present multiple controller systems, are summarised in Table 5. The

effects of controller errors can be greatly reduced by using several controllers.

The placement of controllers must be carefully considered in order to achieve fault

tolerance. Most recent studies focus on passive or active replication strategies to

increase fault tolerance [66].

• Passive Replication: With each switch, only one controller can initiate

communication (primary controller). A backup controller will be chosen to

take over control of the network when the main controller experiences a

failure situation. Primary-backup replication is another term for this strategy.

• Active Replication: It is yet another replication technique that is extensively

used. Switches can be linked to multiple controllers simultaneously using

this technique, allowing the others to continue operating the switches without

switching even if one controller fails.

48

O
p

en
D

ay
li

g
h

t

[1
2
2

]

Ja
v

a

O
p

en
D

ay
li

g
h

t

Y
es

--

--

×

--

E
P

L
 v

1
.0

v
1

.0
,
v

1
.2

,
v
1

.3

R
E

S
T

 A
P

I

S
M

ar
R

L
ig

h
t

[1
2
1

]

C
+

+
,
Ja

v
a

F
lo

o
d

li
g
h

t

N
o

C
o

n
tr

o
ll

er

F
ai

lu
re

--

×

R
ep

li
ca

te
d

sh
ar

ed

d
at

ab
as

e
fo

r

re
co

v
er

y

--

v
1

.0
,
v

1
.2

,

v
1

.3

R
E

S
T

 A
P

I

K
an

d
o
o

[1
2

0
]

C
,
C

+
+

,

P
y

th
o

n

--

Y
es

--

H
ie

ra
rc

h
ic

al

(W
it

h
o

u
t

g
lo

b
al

in
fo

rm
at

io
n
)

×

--

--

v
1

.0

--

IR
IS

 [
1

1
9

]

Ja
v

a

F
lo

o
d

li
g
h

t

Y
es

C
o

n
tr

o
ll

er

F
ai

lu
re

H
ie

ra
rc

h
ic

al

(R
o

o
t

an
d

L
o

ca
l

C
o

n
tr

o
ll

er
)

√

C
o

n
tr

o
ll

er

S
w

it
ch

in
g

--

v
1

.0
,
v

1
.2

,

v
1

.3

R
E

S
T

 A
P

I

E
la

st
iC

o
n

[1
1
8

]

Ja
v

a

F
lo

o
d

li
g
h

t

N
o

C
o

n
tr

o
ll

er

F
ai

lu
re

--

√

D
y

n
am

ic

C
o

n
tr

o
ll

er

M
ig

ra
ti

o
n

--

v
1

.0

R
E

S
T

 A
P

I

H
y

d
ra

 [
1

1
7
]

Ja
v

a

--

N
o

C
o

n
tr

o
ll

er

F
ai

lu
re

--

×

R
ep

li
ca

ti
o

n
 o

f

C
o

n
tr

o
ll

er
s

C
o

n
fi

g
u
ra

ti
o

n

--

--

--

O
N

O
S

 [
1

1
6

]

Ja
v

a

O
N

O
S

Y
es

O
N

O
S

In
st

an
ce

s

F
ai

lu
re

H
o

ri
zo

n
ta

l

×

R
ed

u
n

d
an

t

In
st

an
ce

s

--

v
1

.0
,
v

1
.2

,
v
1

.3

R
E

S
T

 A
P

I

D
IS

C
O

[1
1
5

]

Ja
v

a

F
lo

o
d

li
g
h

t

N
o

--

H
o

ri
zo

n
ta

l

×

--

--

v
1

.1

R
E

S
T

 A
P

I

F
lo

w
V

is
io

r

[1
1
4

]

C

O
p

en
F

lo
w

C
o

n
tr

o
ll

er
 a

s

p
ro

x
y

Y
es

--

H
o

ri
zo

n
ta

l

×

--

--

--

--

O
n

ix
 [

1
1

3
]

C
+

+
,
Ja

v
a,

P
y

th
o

n

--

N
o

L
in

k
,
S

w
it

ch

an
d

 O
n

ix

In
st

an
ce

s

F
ai

lu
re

H
o

ri
zo

n
ta

l

√

A
ct

iv
e

R
ep

li
ca

ti
o

n

C
o

m
m

er
ci

al

v
1

.0

R
E

S
T

 A
P

I

H
y

p
er

F
lo

w

[1
1
2

]

C
+

+

N
O

X

Y
es

C
o

n
tr

o
ll

er

F
ai

lu
re

H
o

ri
zo

n
ta

l

×

N
ea

rl
y

C
o

n
tr

o
ll

er
s

se
rv

e
as

 a
 h

o
t

st
an

d
b

y

--

v
1

.0

R
E

S
T

 A
P

I

N
a
m

e

L
a
n

g
u

a
g
e

C
o
n

tr
o
ll

er

P
la

tf
o
rm

O
p

en
 S

o
u

rc
e

F
a
il

u
re

 T
y
p

e

C
o
n

tr
o
ll

er

A
rc

h
it

ec
tu

re

C
o
n

tr
o
ll

er

L
o
a

d

B
a
la

n
ci

n
g

S
o
lu

ti
o
n

L
ic

en
se

O
p

en
F

lo
w

V
er

si
o
n

N
o
rt

h
b

o
u

n
d

A
P

Is

T
a
b

le
 5

:
 L

it
er

a
tu

re
 R

ev
ie

w
 o

n
 S

D
N

 C
o
n

tr
o
ll

er
’

s

49

3.3.1 SDN Protocols

The SDN paradigm makes use of southbound APIs to facilitate communication

between the network plane and the forwarding plane. The SDN controller has

effective network management, allowing it to adapt the network dynamically to meet

demand and needs as they arise. The OpenFlow protocol is the most widely used

communication protocol between the SDN controller and the network devices; Other

protocols that can be used as southbound interfaces in SDN include Network

Configuration Protocol (NetConf), which was developed by the Internet Engineering

Task Force (IETF) and allows users to install, modify, erase, or remove network

device configuration by using an Extensible Markup Language. (XML). It provides

a basic set of operations to edit and query configuration on forwarding devices. The

map and encapsulate functions are supported by the Locator/Identifier Separation

Protocol (LISP), which is created by the Internet Engineering Task Force LISP

Working Group. LISP is in charge of determining the relationship between EID (End

Point Identifiers) and RLOC (Route Locators). The entire process is completely

unseen (invisible) from the end host of the internet. OVSDB (Open vSwitch

Database) is a southbound API that allows to managing and manipulation of the

configuration of switches that support OVSDB through JSON RPC (JavaScript

Object Notation Remote Procedure Call) calls. Thus, it is called a management

protocol in an SDN environment. However, the most well-known SDN standard for

southbound APIs is OpenFlow.

3.3.2 OpenFlow Protocol

The OpenFlow Protocol has been commonly associated with SDN since 2011. The

SDN Controller establishes a secure communication channel with forwarding

devices by using the OpenFlow protocol. SDN network enables switches from

different vendors to be managed remotely using OpenFlow protocol. The version of

the OpenFlow protocol should be matched between the controller and network

devices when they make a communication connection.

W. Braun et al. [8] the current network's lack of programming should be addressed.

By utilising Software Defined Networking, which dynamically adds new

capabilities to the network for a set of applications, this issue can be resolved. The

50

OpenFlow Protocol is one of the most widely used and recognised southbound APIs

in SDN. It was originally suggested by Stanford University. Currently, the Open

Networking Foundation (ONF) has standardised it. For this purpose, the OpenFlow

protocol supports numerous kinds of messages which define how a controller

coordinates these forwarding devices in a network. All messages fall into one of

three categories: controller-to-switch, asynchronous, or symmetric. The processing

speed of a packet affects how long it spends in the controller overall. Additionally,

one unresolved problem in SDN is determining a controller's packet drop

probability.

L. Shif et al. [14] address the top two challenges such as security and scalability.

These challenges can be improved by SD-VPN (Software Defined Virtual Private

Network). The SDN controller pushes the flow rules in each virtual private network

(VPN) which is related to OpenvSwitch through the OpenFlow protocol.

C. M. Duran et al. [19] utilize OpenFlow select and fast-failover group to set up

flows in switches of a network and system response in failure. This will improve the

performance of the network.

W. Li et al. [20] a leading reference to the SDN OpenFlow. It has mainly three

components OpenFlow switch, OpenFlow controller, and OpenFlow flow channel.

When a new packet comes into the network, the switch matches its header field

against the flow entries of a table. The appropriate action is carried out if the packet's

header field matches; otherwise, switch forward the packet to a controller. The

controller inserts or alters flow entries in switches. After that switch can easily

forward packets to the desired destination. So, try to develop SDN with OpenFlow

in the future.

3.4 Observations and Research Gaps

Software Defined Network is a new emerging paradigm of networking that offers

flexibility and fast innovation compared to the traditional network. In SDN,

decoupling the control plane from the forwarding plane provides a programmability

facility to configure the network elements. But a single controller has suffered

51

restrictions on the performance and scalability of the network. A criticism in SDN

is a single point of failure of a controller that reduces overall network performance,

and availability, and at last, collapses the entire network. When multiple controllers

are used in the network then increases the complexity of networks and arise potential

research issues in SDN such as coordination between controllers, fault tolerance,

load balancing among controllers, controller placement, etc.

Several challenges/issues are existing in Software Defined Networks when dealing

with multiple controllers to solve the above problem [24,64,66] are: -

• Coordination between the multiple controller and switches: - When Software

Defined Networks are deployed in a wider network; it consists of several

domains that are managed with multiple controllers. In the data plane,

different operators implement different policies in forwarding devices that

may arise conflict between these policies; a question is a rise how to manage

the coordination between these policies and avoid conflict between them. It

is a critical issue in SDN.

• When multiple controllers are used in Software Defined Networks, fault

tolerance mechanisms are not clearly described: - At present, there is no well-

defined fault tolerance mechanism for multiple controllers because, during

this process, a critical issue arises regarding the number of controllers and

their appropriate locations.

• Controller Placement: In case of multiple controllers arise two critical issues:

how to decide on the number of controllers and where in the network they

should be placed. In the implementation of SDN multiple controllers, they

play a crucial part [66]. But both issues are NP hard problems. So, fault

tolerance at control plane is very complicate because as the number of

controllers rises then overall cost of network is hike. No universal rule exists

for controller placement; So, there must be to find an optimal trade-off

between the reliability and latency of the network.

• The dynamic load balancing mechanism for the multiple controllers: - When

organising numerous controllers in a large-scale network, it requires concrete

information on network traffic to manage the performance of the network in

52

an optimised way. Thus, network traffic requires a dynamic load balancing

mechanism that adapts and adjusts the controller load dynamically. So, an

effective load balancing mechanism is required for this purpose.

• Absence of standardization of the east-west bound interface in SDN: - There

is an absence of a standardised protocol for the east-west interface between

multiple controllers’ communications. And no facility for consistency

among the heterogeneous controllers; which increases the latency time

during the load balancing of controllers.

• Lack of standardization for the northbound interface: - SDN provides an

open-source for northbound APIs which enables to development of the

network applications. Several types of controllers used different languages

for developing northbound interfaces; which increases the complexity

between controllers to manage the interfaces in a large network. So, to

develop a standardized northbound interface that hides the complexity

between controllers.

• Integration of network virtualization and SDN for multiple controllers: -

Network virtualization hides the infrastructure underneath, which can

change based on how much work is being done and how flexible the

resources need to be. Thus, an integration of both paradigms offers an

innovative design that has advantages for both SDN and NFV.

• The cost field does not associate with flow entries of a flow table: - When

more than one of the flow rules has the same priority. Then conflicts arise

between these flow rules. To address this issue, the flow table must include

a new cost-related field.

3.5 Objectives

The main goal of the thesis is to design a model for fault tolerance and load balancing

in SDN. In a traditional network, it becomes more complicated and tough to handle

the widespread adoption of a network because it is complicated to configure the

network elements with its predetermined rules and policies. If trying to reconfigure

53

them to respond to a fault, load, and changes increases the complexity of the

network, and sometimes it becomes unmanageable [6,16].

The main reason behind this is a vertical integration exists between both functional

components of the traditional networking devices. This makes it very difficult to add

new functionality to a network; if try to make any modification or alteration to the

control plane then all network elements require to install new firmware and upgrade

their hardware devices. So, it can be said that when adding a new feature, it always

increases the expensive and difficult to configure the elements due to the change of

topology and functionality of a network. To overcome this situation, restructuring

the infrastructure of the traditional networks whose name is Software Defined

Network (SDN). Decoupling or delinking the control plane from the data plane in

SDN improves network efficiency. A controller, however, plays a crucial role in the

SDN architecture because it offers a centralized, global perspective of the network.

Additionally, it raises the network's maximum possibility of failure. As a

consequence, the whole network operation becomes halted. For this reason, a single

controller may not be feasible for a network. This revealed that fault tolerance and

recovery from failure are the major challenges faced in the SDN now. To overcome

these challenges, the researchers are devoting more efforts toward the SDN

controller for the great availability, scalability, performance, and reliability of

services.

Based on the study, the main objectives of the thesis would be:

1. To design a model for proactive fault tolerance in SDN to reduce single point

failure.

2. To design an adaptive algorithm for load balancing in SDN controllers.

3. Validation of proposed fault tolerance and load balancing algorithm for

SDN.

3.6 Summary

A brand-new networking paradigm called the “Software Defined Network” enables

faster innovation and flexibility than the “traditional network.” However, a single

54

controller has hampered the network's performance and scalability. A single point

of failure for a controller that lowers overall network performance and availability

before ultimately collapsing the entire network is a critique of SDN. The usage of

many controllers in a network increases network complexity and raises possible

SDN research questions on controller coordination, fault tolerance, load balancing,

controller placement, and other related topics.

Significance of

Controller in Software

Defined Networks

56

4 Chapter

Significance of Controller in Software

Defined Networks

4.1 Introduction

By segregating the control plane from the forwarding plane and allowing for the

programmability of network components, software defined networks reduce the

network's complexity. The SDN controller then makes it easy and straightforward

to modify network policies because it offers a logically centralised perspective of a

complete network. Also, it provides facilities such as flexibility, centralized view

control, decrease complexity as well as a decrease in the cost of a network system.

The network innovation provides a position to SDN as the forthcoming of

networking. The novel paradigm of SDN is more flexible than traditional networks

by separating vertical integration between both functional components.

When a user quickly changes their demand for resources then the Software Defined

Network is quickly satisfied their needs as soon as possible. Till now, SDN has

undertaken continuous development in academia and industry area. The controller

acts as a critical component in Software Defined Network because it provides a

logically centralized view of a whole network. Therefore, it increases the maximum

chances of failure in the network due to a single controller [59] that has faced many

issues regarding scalability, fault tolerance, and recovery from these failures in the

network. To overcome these issues, the researchers can make more efforts toward

57

the SDN controller for increasing its performance, scalability, reliability, resiliency,

and availability of the controller [6,15-28,52-67].

It is up to the controller to determine how to manage network traffic in the data

plane. When a new packet enters a network then the data plane receives forwarding

orders from the SDN controller. After receiving these instructions then forwarding

elements are updating their flow tables according to these instructions that are

provided by a controller. Thus, SDN networks are capable for communicate and

manage the forwarding elements which are supplied by the various vendors [16,59].

Because SDN transforms the communication network into a programmable network

that enables the service provider or network operator to update the network

faster/sooner and decrease the capital and operational expenditure (CapEx and

OpEx).

4.2 Related Work

Software Defined Network provides a novel paradigm for the network that separates

the two planes. Moreover, SDN has not been a talent to recover from a failure

automatically. So, to design a mechanism that offers coordination between controller

and switches like a fast failover method. Three factors have a great impact on the

recovery process network changes discovery, path computation, and network

updating. But, recovering from multiple link failures remains an open issue. It can

be considered a forthcoming research direction because lack of resilience failure and

significant elements that have an impact on network performance include the

increase in convergence time following a failure. Thus, SDN has brought a lot of

opportunities for innovation in the networking field. But still, it has faced several

challenges like fault tolerance, recovery, a resilience that degrade the reliability,

scalability, and availability of networks [16].

The controller and switches can communicate with one another through the

OpenFlow interface. The dedicated load balancing in SDN becomes expensive due

to a single controller increasing congestion in a network. Thus, TCAM memory is

preferable to hold flow tables because it provides flexibility and efficiency in terms

58

of the matching capabilities but, it is very expensive and small in size. So, TCAM

memory is insufficient to hold a large number of flow entries in a flow table

simultaneously [6,16,27]. To manage the OpenFlow Protocol has the facility to use

wildcard rules in the flow table. Another perspective is to occur a fault between both

controller and switch(es). If any fault occurs between them, then their switches lost

their connection with a controller or if a controller has broken down then underlying

switches become out of the control. As a consequence, the total network becomes

halts [18,24, 52-58]. To overcome this situation by using multiple controllers to

eliminate the risk of a central point of failure in SDN. So, the concept of multiple

controllers in SDN considers the future research direction/area.

To enhance the resiliency of the network by using multiple controllers. When a

primary controller is a breakdown then the backup controller manages the entire

network. But these changes can be arising inconsistency in the network. To

overcome this situation by managing all modifications in network topology

simultaneously. There is one critical problem that can occur regarding the

appropriate number of controllers to use as well as where they should be placed

within the controllers. For this reason, to maintain a trade-off between these metrics

like latency, reliability, and load balancing [66].

4.3 Problem Formulation

In the SDN paradigm, a centralised controller oversees all network components in a

network. For two primary reasons, relying on a controller is not feasible. The first is

that the controller is constantly at risk of becoming a point of failure (SPOF) in the

network [59]. Second, it halts an entire network operation which has an adverse

effect on the network performance. Sometimes, a bottleneck situation can be arising

in the network when a controller handles a large number of switches and need to

send instructions to these forwarding elements/devices on how to control network

traffic on demand. As a result, it increases the latency time and reduces the

throughput of a network [21,58,59].

59

Thus, Software Defined Network improves efficiency, programmability, and

utilization of the network. Due to a single/solitary controller, it restricted the

scalability and reliability of the SDN paradigm. For this purpose, focusing on the

multiple controllers in SDN increases the scalability and availability of a network.

An eliminate the threat of a SPOF in the network for future development [6,66]. So,

it must provide the facility of fault tolerance in the SDN network. There is only 4%

of research effort devoted/contributed to fault tolerance and 96% in other fields of

SDN [16].

A mechanism known as fault tolerance that empowers the system to continue its

functionality or operations even if a failure occurs or is present in its components.

In a communication network, fault tolerance has been widely used because it

provides a mechanism for how to recover from failure when it has happened in the

system [15,16]. In SDN, fault tolerance of the control plane concerned more

attention; because it always provides a logical view of an entire network. That is

why a controller acts as a critical component in SDN. If any fault occurs in the

controller, then complete network operation becomes halted. So, a fault tolerance

mechanism is required to manage these faults.

In SDN, the controller is a crucial component; so maximum efforts have been

dedicated to the SDN controller for achieving high performance, scalability,

reliability, and availability of network services to the user. In a distributed

environment, controllers have to address various challenges that give particular

attention to the problems of consistency, load distribution, fault tolerance, latency

time, etc. SDN centralized control of a controller poses a threat to the central point

of failure in the network and it is not able to recover from failure itself. So, the main

concern is to achieve maximum resilience, availability, and scalability of multiple

controllers cost-effectively [6,16,64,66].

When a single controller installs a lot of flow rules, the network's overheads are

greatly increased. A trade-off between load balancing and network delay must be

taken into account in order to avoid this predicament. Due to the inefficiency of a

single controller in a large-scale network and the fact that increased network traffic

lowers a network's consistency and performance, load balancing is therefore

60

required. As a consequence, increases the loss of packets in a network. At last, a

moment has occurred when an entire network collapses due to the failure of a

controller. Thus, a fault tolerance mechanism is required to avoid or eliminate a

single point of failure (SPOF) in SDN to use multiple controllers.

4.4 Why the Controller is an Essential or Crucial

Component to SDN

The SDN has opened up numerous opportunities for networking industry growth.

However, the controller plays a crucial role in SDN because it offers a

comprehensive view of the complete network. That is why it is called the “Brain of

Network.” It acts as a bridge connecting the application plane and data plane. The

controller can configure or reconfigure the network devices by dynamically

customizing their policies; thus, a developer is free from the need to maintain

information about the low-level detail of data distribution among the forwarding

devices while defining their network policies [51-68]. Therefore, the controller not

only manages the network but also resolves its problem. So, maximum efforts have

been devoted to the SDN controller for achieving high performance, with faster

scalability, more reliability, and ready availability of services; and provide an

advantage over a centralized control setup risk of failure in the network and its

limitation to recover automatically from a failure. So, our main concern is to achieve

maximum resilience and scalability of SDN by cost-effectively using multiple

controllers [2, 6-9,15-66]. In a distributed environment, the controller has to deal

with many different kinds of problems, such as latency time, tolerance to faults,

balance of load, consistency, and many other issues [6–21]. The controller considers

a critical component in SDN for the following reasons:

• A logically centralised view of the network is provided by the controller.

• It can control the network traffic.

• It is the controller's duty to update and maintain network topology data.

61

• The controller has the authority to install the flow rules in forwarding

elements either using a reactive or proactive manner.

• Through the programmability, the controller decreases the complexity

network.

• The controller has the power to control the functioning of forwarding

elements.

• When the controller handles more traffic as compared to its available

capacity. Then it increases the latency of the network and degrades its

performance of a network.

The SDN controller is also responsible to maintain the entire network topology

information. For this purpose, the controller generates the LLDP (Link Layer

Discovery Protocol) packet to determine (or discover) the topology information

about each switch, port, and link in the network as shown in Figure 4.1.

4.5 Single Controller v/s Multiple Controllers

An SDN offers flexibility, and a centralized view of the network thus helping in

decreasing the complexity and cost of the network. Because a controller has the skill

to decide on how to control network traffic in the forwarding plane through the flow

rules [7,16]. It acts as a critical component in SDN. A single controller may not be

feasible in SDN because it has a higher impact on failure in the network due to its

centralized view. If a failure has occurred, then the entire network becomes

collapses. This situation is not desirable in a communication network. To overcome

Controller
Switch

Generate LLDP Packet

Reply LLDP Packet

Figure 4.1: Use of LLDP Packet between the Controller and Switch in SDN

62

this problem, a fault tolerance mechanism is required that eliminates the possibility

of an SDN single point of failure [59]. To overcome this situation, researchers can

make more efforts toward the SDN controller for increasing the performance,

scalability, reliability, and availability of the controller [6-9,15-23,58-66]. For this

purpose, multiple controllers are used in Software Defined Network to lessen a

central point of failure in SDN as shown in Figure 4.2.

4.6 Type of Multiple Controller’s in SDN

The single point of failure in SDN can be eliminated by using multiple controllers

in the network. The OpenFlow specification support multiple controllers’

environment in SDN, in which controller can perform role among the following

three types (as shown in Figure 4.3).

1. Equal Role: All controllers have the privilege to configure the switches in

the network with full control to update or alter the flow rules. When a switch

Application Plane

Control Plane

Data Plane

Network Applications

Forward Device

Forward Device

Application Plane

Control Plane

Controller

Data Plane

Forward Device

Network Applications

Controller

Forward Device

Multiple Controllers in SDNSingle Controller in SDN

Controller Fail

Figure 4.2: Single Controller v/s Multiple Controllers in SDN

63

sends a PACKET-IN message to all the controllers and processes messages

like PACKET-OUT, FLOW-MOD, etc. from all controllers.

2. Master Role: The master controller has responsibility for managing or

handling the switches in the network. Thus, switches will send only control

messages to the master controller.

3. Slave Role: The slave controller act as a backup role for the master

controller. It can only receive HELLO and ECHO messages in the network.

But they cannot send and receive control messages.

Every switch in the network can only have one master controller. However, it can

have a number of equal or slave controllers. Even if the master controller fails, the

network will still be more reliable because there are so many controllers [59]. Then

any other controller sends a ROLE_REQUEST message as the ROLE_MASTER to

switch for changing their state or role. On receiving this message, the switch sends

back the ROLE_REPLY message to the controller and other controllers sends the

role as SLAVE in the network. Thus, the switch will communicate only with the

master controller [6, 16, 59-67]. The behavior of multiple controllers is summarized

Equal

SwitchSwitch

Equal

Equal Controller

Master

Slave

Slave

Switch Switch

Master-Slave Controller

Figure 4.3: Various Role of the Multiple Controller in SDN

64

in Figure 4.4 and Figure 4.5 shows the pseudo-code for SDN’s single point of failure

reduction.

/* Pseudo Code to Reduce a Single Point of Failure in SDN */

Step 1:

Start the ryu-manager with ofp-tcp-listen-port 6653 as a single controller;

Step 2:

if (Single Controller == “Fail”)

 {

 /* When a single point of failure (SPOF) occurs in SDN */

 Collapse the Entire Network;

 }

Maximum Chance of a Single Point of Failure exists in the SDN due to a Single Controller

To overcome this situation Multiple Controllers are used in the SDN

Different kinds of failure that can be occur are controller overloaded, any hardware and
software failure occur etc.

The OpenFlow specification 1.2 and later provide three different Role of Controller in the
Multiple Controllers Environment

Equal Role
Every controller has equal
permission to access the packet
flow in the SDN. Several equal
controllers are possible in the
SDN. Thus, duplicate packets are
generated in the network.
Therefore, it increases the
network overhead and also
wasted the bandwidth of the
network.

Master Role
Only one master controller is
existing in the SDN, which take
every decision regarding to the
flow rules installation and
manipulation in the network.

Slave Role
Slave Controllers are used for
backup purpose. Number of
slave controllers are possible

in the SDN.

The Master-Slave Relationship is selected for the Multiple Controllers in the SDN

Figure 4.4: Behavior of Multiple Controller in SDN

65

else

{

 /* To eliminate a single point of failure by using Multiple Controllers in

 SDN*/

 /* The OpenFlow 1.2 and its later specification provide three different

 roles of controller’s*/

 switch (ROLE)

 {

 case ROLE == “EQUAL”:

• Every controller has permission to access the packet flow in the

network.

• Several equal controllers exist in the network.

• Duplicate packets are generated and marked as (DUP!).

 break;

 case ROLE == “MASTER”:

• Only one master controller exists in the network.

• All decision regarding installation and manipulations of flow

rules are taken by Master Controller.

if (MASTER == “Fail”)

{

 Any slave controller sends Role-Request message to switch;

 if (ROLE_REQUEST == “ROLE_MASTER”)

 {

 Switch send reply to Controller;

 ROLE_REPLY == “MASTER”;

 }

 else

 {

 Other controllers send role as a slave controller;

66

 }

 }

 break;

 case ROLE == “SLAVE”:

• Slave controller used as backup purpose.

• Number of slave controllers exist in the network.

 break;

 }

}

Output:

Therefore, multiple controllers are used to reduce a single point of failure in SDN.

4.7 Simulation and Result

Various controllers are available like Floodlight, Ryu, Pox, ONOS, OpenDayLight,

etc. In the proposed objective the Ryu controller is elected; because it is open source

and designed to magnify the agility in a network. It is completely based on the

Python language. Therefore, it is too easy to manage and adapt network traffic to the

network. Ryu controller provides a component-based framework for Software

Defined Networks. Through precisely defined APIs, the Ryu controller offers

software component capability. Developers are capable of developing new network

management and control apps with ease. The component-based approach offers the

facility to the organizations by customizing deployments to satisfy their specific

demand. As a result, the programmers can quickly and skilfully put their applications

into use by modifying the already-existing components to fit their requirements.

Ryu uses different protocols for controlling network devices as OVSDB, BGP, and

OpenFlow. The Ryu fully supports OpenFlow v1.0, v1.2, v1.3, v1.4, v1.5, and Nicira

Extensions. Ryu means “flow” in Japanese, and it is pronounced, “ree-yooh.” Ryu

Figure 4.5: Pseudo Code to Reduce Single Point of Failure in SDN

67

controller is highly used to develop and support research activities. The Ryu

controller support southbound interfaces are OpenFlow and northbound interfaces

are REST APIs [69,98,99].

4.7.1 Mininet Simulator

Mininet is a network emulator that runs on a virtual machine. It can make a realistic

virtual network for simulation; because the switch, kernel, and application code are

all executed on the same terminal. Mininet offers both environments for simulation

command-line interface (CLI) and an application programming interface (API). It is

lightweight OS virtualization to achieve scalability. Mininet simulator also provides

the following features are [102]:

• Open Source

• Fast

• Possible to create custom topologies

• Can run real programs

• Many OpenFlow features are built-in

• Programmable OpenFlow switches

• Easy to use

The Mininet simulator also provides the facility to build a custom topology utilizing

the python API with a few lines of code that import the required python libraries,

define topology class, and then create topology class objects. After saving the

filename with the .py extension.

To simulate or experimental setup required the following software tools and

programming language are used on the experimental platform: Ubuntu 18.04

Desktop as an Operating System, Mininet 2.3.0d5 as a Test Bed, Ryu SDN

Controller use as a Remote Controller, Python 2.7.17 version. A laptop with a 64-

bit operating system, an x64-based processor, the DESKTOP-3CK61R7, with an

Intel(R) Core (TM) i5-8250U CPU @ 1.60GHz 1.80GHz as a CPU, and 4 GB of

RAM are all included in the hardware environment. Table 6 details every simulation

parameter in depth. After these tools have been installed successfully, simulations

of the various controller roles in SDN are run.

68

During simulation, to analyze when a single controller fails then the whole network

becomes unreachable. Therefore, packet loss occurs in the network shown in Figure

4.6 (a to d). To overcome this situation, by using multiple controllers in SDN (either

equal controller or master-slave controller). In the case of Equal controller generated

duplicate packets in a network as depicted in Figure 4.7 (a to d). However, as can be

seen from Figure 4.8 (a to e), the Master-Slave controller does not introduce

duplicate packets.

Parameters of Simulation Setup

Operating System
Ubuntu 18.04.2 LTS (Long Term Support

version of Ubuntu)

System Specification x64 Intel(R) Core (TM) i5-8250U CPU

Simulator/Test Bed Mininet 2.3.0d5

SDN Controller Ryu Controller (ryu-manger 4.32)

Support of OpenFlow OpenFlow v1.3

Switch Openvswitch (2.9.5)

DB Schema 7.15.1

Programming Language Python 2.7.17

Packet Size (byte) 64

By default, Port No of Controller 6653

IP Address of Remote Controller 127.0.0.1

Bandwidth 10 Mbit/sec

Delay 2ms

Table 6: Simulation Parameters of Setup

69

Figure 4.6 (a): Run a SDN Controller in a Terminal

Figure 4.6 (b): Run a topology in a Terminal through Mininet

70

0

10

20

30

40

50

60

70

80

90

100

Packet Transmit Packet Receive Packet Loss

N
o

. o
f

P
ac

ke
ts

Single Controller in SDN

Packet Transmit Packet Receive Packet Loss

Figure 4.6 (d): Simulation in a Single Controller in SDN

Figure 4.6 (c): Host Unreachable after killing the Controller

71

Figure 4.7 (c): Duplicate Packets generated during Simulation of Equal Controller

Figure 4.7 (b): Run an Equal Controller in a Terminal at Port Number 6654

Figure 4.7 (a): Run an Equal Controller in a Terminal at Port Number 6653

72

0

2

4

6

8

10

12

14

Packet Transmit Packet Receive Packet Duplicate

N
o

. o
f

P
ac

ke
ts

Equal Controller in SDN

Packet Transmit Packet Receive Packet Duplicate

Figure 4.7 (d): Simulation in Equal Controller in SDN

Figure 4.8 (a): Run the Master Controller in a Terminal at Port Number 6653

73

Figure 4.8 (b): Run the Slave Controller in a Terminal at Port Number 6654

Figure 4.8 (d): No Duplicate Packets are generated in Master-Slave Simulation

Figure 4.8 (c): Run a topology by using Python API in the Mininet

74

The results of the simulation on the different controller roles in Software Defined

Networks are summarised in Table 7.

Role of Controller’s in SDN Environment

Comparison

Parameter

Single

Controller

Multiple Controller’s

Equal

Controller

Master-Slave

Controller

Risk of central point

of failure
Yes No No

0

2

4

6

8

10

12

14

16

18

20

Packet Transmit Packet Receive Packet Duplicate

N
o

. o
f

P
ac

ke
ts

Master-Slave Controller in SDN

Packet Transmit Packet Receive Packet Duplicate

Table 7: Compare the Result of Controllers in SDN

Figure 4.8 (e): Simulation in Master-Slave Controller in SDN

75

Network failure Yes No No

Percentage of packet

loss
Yes No No

Induce duplicate

packet
No Yes No

Requirement of

database synchronous
No No Yes

Increase latency of

network
Yes No No

Scalability of

network
No Yes Yes

4.8 Multi-deployment of Controllers in SDN

Then work on the multi-deployment of controllers in SDN and how their

performance is evaluated. For this purpose, iostat and top command are used to

evaluate the parameters that affect the performance of the network while using

multiple controllers in the network. Figure 4.9 (a and b) show the overall CPU

utilization curve fluctuates more in the equal controller as compared to the master-

slave controller.

Similarly, Figures 4.10 (a and b) show overall memory utilization in both multiple

controllers and Figure 4.11 shows the comparison of both roles of multiple

controllers in CPU utilization respective. Thus, the master-slave controller is

preferable to an equal controller for the proper utilization of resources.

76

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 2 4 6 8 10 12 14 16

C
P

U
 U

ti
liz

at
io

n
(%

)

Time(ms)

CPU Utilization in Equal Controller

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8

C
P

U
 U

ti
liz

at
io

n
(%

)

Time(ms)

CPU Utilization in Master- Slave Controller

Figure 4.9 (a): Overall CPU Utilization in Equal Controller

Figure 4.9 (b): Overall CPU Utilization in Master-Slave Controller

77

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 4 8 12 16

M
em

o
ry

 U
ti

liz
at

io
n

(%
)

Time(ms)

Memory Utilization in Equal Controller

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 1 2 3 4 5 6 7 8

M
em

o
ry

 U
ti

liz
at

io
n

(%
)

Time(ms)

Memory Utilization in Master-Slave Controller

Figure 4.10 (a): Overall Memory Utilization in Equal Controller

Figure 4.10 (b): Overall Memory Utilization in Master-Slave Controller

78

Now to compare the various role of SDN controllers’ performance in terms of the

round-trip time (RTT). During simulation to evaluate the result of SDN controllers

is summarized in Table 8 and shown in Figures (4.12 (a) to 4.12 (d)).

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4 5 6

C
P

U
 U

ti
liz

at
io

n
(%

)

Time(ms)

CPU Utilization of Multiple Controllers

Equal Controller Matser-Slave Controller

Round-Trip Time

(RTT)
Min (ms) Avg (ms) Max (ms) Mdev (ms)

Single Controller 0.042 43.522 2062.932 268.729

Equal Controller 0.081 41.889 94.402 32.708

Master-Slave

Controller
0.073 0.473 36.974 3.670

Figure 4.11: Comparison of CPU Utilization in Multiple Controller

Table 8: Performance Metrics of Controllers w.r.t. Round-trip Time

79

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

Single Controller Equal Controller Master Slave Controller

M
in

(m
s)

Comparison in term of Min RTT

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

Single Controller Equal Controller Master Slave Controller

A
vg

(m
s)

Comparison in term of Avg RTT

Figure 4.12 (a): Performance Metrics of Controllers in term Minimum RTT

Figure 4.12 (b): Performance Metrics of Controllers in term Average RTT

80

0.000

500.000

1000.000

1500.000

2000.000

2500.000

Single Controller Equal Controller Master Slave Controller

M
ax

(m
s)

Comparison in term of Max RTT

0.000

50.000

100.000

150.000

200.000

250.000

300.000

Single Controller Equal Controller Master Slave Controller

M
d

ev
(m

s)

Comparison in term of Mdev RTT

Figure 4.12 (c): Performance Metrics of Controllers in term Maximum RTT

Figure 4.12 (d): Performance Metrics of Controllers in term Mean Deviation RTT

81

To evaluate the effectiveness evaluation of SDN controllers on the role using the

iperf tool. As shown in Figures 4.13 (a) and (b), respectively, Table 9 compares

controllers based on various metrics or parameters, including average throughput,

average bandwidth, and ping delay. This demonstrates that a master slave controller

performs better than other kinds of controllers.

SDN Controller’s

A
ve

ra
g
e

T
h

ro
u

g
h

p
u

t

(G
B

yt
es

)

A
ve

ra
g
e

B
a
n

d
w

id
th

(G
b
it

s/
se

c)

P
in

g
 D

el
a
y

(m
s)

T
im

e

In
te

rv
a
l

(S
ec

)

 Single Controller 63.5 36.4 43.480 15

Equal Controller 69.8 40.0 41.808 15

Master Slave

Controller
70.9 40.6 0.400 15

63.5
69.8 70.9

36.4 40.0 40.6

15 15 15

Single Controller Equal Controller Master Slave Controller

Ti
m

e

Comparison Between Controllers

Average Throughput (GBytes) Average Bandwidth (Gbits/Sec) Time Duration (Seconds)

Table 9: Comparison of Controllers w.r.t. Average Throughput,

Average Bandwidth and Ping Delay

Figure 4.13 (a): Comparison between Controllers w.r.t. Average Throughput,

Average Bandwidth and Time Duration

82

4.9 Conclusion

Software Defined Network decouples the control plane from the data plane. Due to

this separation, a controller provides a centralized logical view of a whole network.

As a result, it raises the network's utmost risk of a single point of failure. To eliminate

the risk of SPOF in SDN by using multiple controllers. In the simulation, to analyze

when a single controller fails, then the percentage of packet loss is increasing. To

overcome this problem, by using multiple controllers in SDN. No packet loss occurs

in the equal controllers but, they generate duplicate packets in a network. To avoid

duplicate packets in the network then use the master-slave configuration in SDN.

During simulation, Tables 8 and 9 demonstrate that a master slave controller

performs better than other kinds of controllers. But a data synchronous problem has

occurred between the master and slave controllers. In the future, try to maintain data

synchronization between the master and slave controllers to enhance the availability

of the networks.

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

Single Controller Equal Controller Master Slave Controller

D
el

ay
(m

s)

Comparison in term of Ping Delay

Figure 4.13 (b): Performance of Controllers w.r.t. Ping Delay

Load Balancing using

Queuing Models in

Multiple Controller

Environment of SDN

84

5 Chapter

Load Balancing using Queuing Models in

Multiple Controller Environment of SDN

5.1 Introduction

A significant part of a software defined network is the supervisor. Control and data

planes were separated by the SDN model. A controller now serves as the central hub

for all management operations. Now all control logic is supervised by a controller.

In SDN, the main responsibilities of a controller are policy enforcement, network

configuration, inserting or modifying flow rules in a table, maintaining and updating

topology information (topology management), taking the decision regarding how to

control network traffic in a network, and so on. Thus, a controller provides global

information about a whole network. Moreover, it becomes convenient for operators

and researchers to adjust and extend the network flexibility to the added new feature

of network function through programmability. As a consequence, a higher impact or

risk factor of a failure is increasing on a single controller in SDN. When a single

controller fails, then the entire network becomes collapse. By using numerous

controllers to mitigate the risk of a single point of failure in SDN. The maximum

effort has been dedicated to the controller for achieving high performance,

scalability, reliability, and availability of services.

85

5.2 Related Work

In distributed environments, controllers have addressed various challenges

concerning taking into account problems like consistency, balancing loads, tolerance

for faults, and latency time. But centralized controller mainly suffers issues are

scalability, reliability, and so on. A centralized controller poses a threat like a single

point of failure. It is not able to recover automatically from this failure. So, the main

concern to achieving maximum resilience and scalability of multiple controllers in

a cost-effective way [6,64,66].

When a controller installs a lot of new flow rules in switches, there is a substantial

overhead at both the control and data planes in SDN [24,66]. To avoid a bottleneck

in SDN must consider a tradeoff between latency and load balancing. So, need to

manage load balancing in SDN because a controller cannot work efficiently in a

large-scale network as well as increase the traffic flow. Therefore, loss of packets is

the increase in a network and degrades the performance of a network. Moreover, the

maximum chance of failure occurs in SDN. Multiple controllers suggested to

maintaining the tradeoff between these metrics’ latency, reliability, and load

balancing [24,64]. But a critical problem arises in the case of multiple controllers to

determine an optimal number of controllers and their locations [24, 66]. In a

distributed environment, multiple controllers are used in a network then some issues

are needed to get more attention. Resolve these issues as soon as possible otherwise

degrades the network performance exponentially in a network. Such issues are

network latency and congestion, imbalance in the load between the multiple

controllers. So, the load balancing between multiple controllers is a crucial matter;

for optimal utilization of resources in the network that decreases the overheads in

the control plane [49,64-95]. It is accomplished by distributing a load of the

overloaded controller to other controllers of the network. Unbalancing between the

controllers reduces the overall utilization of resources in a network [92,93]. As a

consequence, some controllers in the network reach their performance bottleneck

due to the increase in delay of response whereas some other controllers are

underloaded in a network.

86

5.3 Problem Formulation

Load balancing is a vital issue in the case of multiple controllers in order to guarantee

optimal network resource usage and prevent reducing the overheads in the control

plane [92]. To achieve the load balancing between controllers, need to distribute the

load of the overloaded controller to other controllers of the network. The imbalance

between controllers reduces the overall resource utilization of a network [92-94];

because some controllers reach their performance bottleneck which increases the

response delay, whereas other controllers are underloaded or idle state in a network

[88,89].

In SDN, the controller is a very crucial component because it manages all traffic of

the network. While forwarding devices serve as a basic forwarding element in the

data plane, controller is responsible for making all of the network's decisions

regarding routing. When a controller handles more network traffic than its capacity

[24-76], then several problems occur such as controller failure, controller overload.

When it exceeds its threshold value, and cascaded failure of controllers in the

network [88]. Whenever multiple controllers are used in Software Defined Network

then counter new challenges as the load balancing between multiple controllers, due

to the uneven distribution of the network traffic, state synchronization occurs

between controllers, resulting in a cascading failure of the controller in the network

that increases the latency, and the drop rate of the packet in the network. Moreover,

it decreases the performance of the network [86-95].

5.3.1 Need of Load Balancing in SDN Controllers

For optimal network resource utilisation and minimal control layer overhead, load

balancing is a critical problem in multiple controllers. To distribute the burden of an

overloaded controller to other network controllers in order to accomplish load

balancing between multiple controllers. Uneven load distribution among controllers

lowers the network's overall resource utilisation [24,85-90]. As a consequence, some

controllers are underloaded or idle in the network whereas some controllers reach

87

their performance to bottleneck and upsurge response delay due to network traffic

[71-85].

The actual controller is a crucial component in SDN because it manages all traffic

of the network. Because the controller has the authority for making all routing

decisions of the network; So, since it directly impacts network performance,

balancing the workload across controllers is one of the trickiest tasks. Additionally,

the performance of the network is considerably affected by the control plane's

scalability and load balancing between them.

5.4 Proposed Design of Algorithm for Load Balancing

The motive of this objective is how to maintain and control the load balancing

between multiple SDN controllers. Both fault tolerance and load balancing are

complicated and interrelated issues while dealing with the multiple controllers in

SDN. To resolve these issues, using the Queuing theory technique and Markov

continuous chain helps to handle the fluctuation of load between the multiple

controllers. For this purpose, to design a load balancing algorithm by the integrated

concept Queuing Theory Technique and Markov Continuous Chain to manage the

load balance between the SDN controllers, which reduces packet dropping or packet

lost ratio of the network. It is happened in a network due to the lack of load balancing

techniques. So, it is necessary to distribute the proper workload on controllers

because network traffic fluctuates dynamically.

Network traffic behaves like a stochastic process whose behavior is random changes

over time. The Markov process is a simple stochastic process in which the

distribution of the future state depends only on the present state of a process rather

than how to arrive at the present state. Thus, the stochastic process must be holding

the Markov property “memoryless” [75,85,100]. According to this property, the

probability of the future state (Yt+1) at time instant (t+1) depends upon the present

state (Yt) at time instant (t) has been described as:

P [Yt+1 | Yt, Yt-1, …, Y2, Y1, Y0] = P [Yt+1 | Yt]

88

Where,

Yt+1 dependent on Yt, but not dependent on Yt-1, Yt-2, Yt-3…., Y2, Y1, Y0.

This memoryless property is also applicable in queuing model. It is also known as

the network queuing model. In queuing model, two main events have occurred;

either the arrival rate or service rate of a packet in the network. The poison

distribution and the exponential distribution are followed, respectively, by the arrival

rate, the time between arrivals, and the service rate [18, 19]. The arrival rate of a

packet in a system at time instant t is represented as λ and the service rate of a packet

in a system (or processing of packet) at time instant t is represented as µ. The traffic

intensity or utilization factor of a controller is represented as ꝭ. To calculate the

value of traffic intensity is ꝭ=λ/µ; idle time of a system is represented by P0=1-ꝭ.

Figure 5.1 shows how queuing technique is applicable in the SDN controller. Figure

5.2 depicts the general layout of an algorithm, while Figure 5.3 depicts the flowchart.

λ μ

Network

Controller

queue

Network

The Mathematical Notation of Markov Property as follow:

ℙ (Yt+1 = A | Yt = At, Yt-1 = At-1, …, Y0 = A0) = ℙ (Yt+1 = A | Yt = At)

for all t = 1,2, 3, … and for states A0, A1, …, At, A

Figure 5.1: Use of Queuing concept in SDN Controller

89

Algorithm for Load Balancing in SDN for Multiple Controllers by using Queuing

Technique

Initial Requirement:

CC is represented for Current Controller; SC is represented for Slave Controllers in the

network;

 = Arrival Rate of the packet; µ = Service Rate of the packet; ꝭ= Traffic Intensity of

Controller;

Traffic Intensity (ꝭ) acts as a threshold value of a Controller in the network.

Result:

0: No need for load balancing

1: Successfully load balancing perform

/* Load Balancing between Multiple Controllers in SDN*/

if Load of CC > ꝭ then

{

for (i=0; i<n; i++)

{

/* Calculate the traffic intensity value of all slave controllers SCi */

ꝭi=i /µi

Select controller SCi which has the lowest traffic intensity value in the

network.

}

return 1;

}

else

{

return 0;

}

Figure 5.2: Algorithm for Load Balancing in Multiple Controllers

90

5.5 Queuing Model M/M/1: ∞/∞ versus M/M/1: N/∞ and its

Simulation

In queuing model, it is expressed as the sum of three independent compound

probabilities [75,85,100] as depicted in Figure 5.4 (a and b) respectively. After

performing all the required manipulations in the M/M/1 queue model with infinite

Arrival Rate =, Service Rate=µ,

Traffic Intensity=ꝭ

Load Balancing between Multiple

Controllers in SDN

If Load of Current

Controller >
Threshold

Calculate the Traffic Intensity of all

the Slave Controllers

Select Slave Controller whose has

lowest traffic intensity in the

network

ꝭi=i/µi

Figure 5.3: Flowchart for Load Balancing in SDN Controllers

91

and finite queue length, which also highlights the impact on different parameters,

including queue length, system length, waiting time in the queue, and system.

To obtain the steady-state of the differential equation of the M/M/1: ∞/∞ model is

the product of three possibilities events occur [100] are shown in Figure 5.4 (a),

Figure 5.4 (b), and the representation of both queue models show in Figure 5.4 (c)

and 5.4 (d). Therefore,

𝛿𝑃𝑛 (𝑡+𝛿𝑡)

𝛿𝑡
= {−(𝜆 + 𝜇)𝑃𝑛(𝑡) + 𝜆𝑃𝑛−1(𝑡) + 𝜇𝑃𝑛+1(𝑡); 𝑓𝑜𝑟 𝑛 > 0} (5.1)

𝛿𝑃0 (𝑡+𝛿𝑡)

𝛿𝑡
= {−𝜆𝑃0(𝑡) + 𝜇𝑃1(𝑡); 𝑓𝑜𝑟 𝑛 = 0} (5.2)

To solve the above differential equations of the queuing model M/M/1: ∞/∞, to find

the value of P1 from equation (5.2).

𝑃1 = /µ

Then put n=1 in equation (1) and get 𝑃2 = (/µ)2𝑃0 and so on.

The probability of ‘n’ units (or packets) in

the system at a time (t+δt)

[(Probability of ‘n+1’ units in the system at a

time ‘t’) * (Probability of one service provide in

time δt) * (Probability of no arrival in time δt)]

[(Probability of ‘n’ units in the system at a time

‘t’) * (Probability of no service provide in time

δt) * (Probability of no arrival in time δt)]

[(Probability of ‘n-1’ units in the system at a

time ‘t’) * (Probability of no service provide in

time δt) * (Probability of one arrival in time

δt)]

=

+

+

Figure 5.4 (a): Probability of events occur in time interval (t+δt)

92

Similarly,

𝑃𝑛 = (/µ)n𝑃0

Or

 𝑃𝑛 = ꝭ
n𝑃0 (5.3)

After calculating the probability of 𝑃𝑛 of ‘n’ packets in the system and the probability

that the queuing system is idle by 𝑃0. The queuing system also provides four

important properties which are related to each other [100]:

• Calculate the length of the system (Ls) by using equation (5.4).

𝐿𝑠 = ꝭ/(1 − ꝭ) (5.4)

• To calculate the length of queue (Lq) by using equation (5.5).

𝐿𝑞 = 𝐿𝑠 ∗ ꝭ (5.5)

• Using equation 5.6 to determine the average waiting time of a packet in a

system (Ws).

𝑊𝑠 = 𝐿𝑠/𝜆 (5.6)

n+1

n

n-1

n

At time interval t t + δt

Time

1 Service or 0 Arrival

0 Service or 0 Arrival

1 Arrival or 0 Service

State

Figure 5.4 (b): Possible of events occur in time interval (t+δt)

93

• Using equation 5.7, calculate the average waiting time of packets in the

queue (Wq).

𝑊𝑞 = 𝐿𝑞/𝜆 (5.7)

But in M/M/1: ∞/∞ queuing model creates infinite queue length which also affects

the value parameters like length of queue (Lq), length of system (Ls), waiting time

in queue (Wq), and waiting time in system (Ws) in Figure 5.5. Thus, it is preferable

to use M/M/1: N/∞ queuing model in which the length of the queue is finite. As a

result, the number of arrivals won't go over N in any situation. As a result, the

system's capacity is capped or limited at let's say N.

Let

Arrival Rate () = 𝑛

{𝑛 = {
 , 𝑖𝑓 𝑛 = 0,1,2, … . . 𝑁 − 1
0 , 𝑖𝑓 𝑛 ≥ 𝑁

}

and

Service Rate (𝜇) = 𝜇𝑛

µ𝑛 = {µ , 𝑓𝑜𝑟 𝑛 = 1,2,3, … .. }

Similarly, solve differential equations of the queuing model M/M/1: N/∞, and get

the value of 𝑃0and 𝑃𝑛 in equations (5.8) and (5.9).

Therefore,

 𝑃0 = [
1−ꝭ

1−ꝭ
𝑁+1] (5.8)

 𝑃𝑛 = ꝭ
n𝑃0 { 𝑓𝑜𝑟 𝑛 = 0,1,2,3, … . 𝑁 } (5.9)

Similarly, evaluate expression of Ls, Lq, Ws and Wq in queuing model M/M/1: N/∞

are given below: -

• Calculate the length of the system (Ls) by using equation (5.10).

94

 𝐿𝑠 =
ꝭ

1−ꝭ
 [

1+𝑁ꝭ
𝑁+1−(𝑁+1)ꝭ

𝑁

1−ꝭ
𝑁+1] (5.10)

• The effective arrival rate (𝑒𝑓𝑓 =  (1 − 𝑃𝑁))

• To calculate the length of queue (Lq) by using equation (5.11).

 𝐿𝑞 = 𝐿𝑠 −
𝑒𝑓𝑓

µ
 (5.11)

• Using equation 5.12 to determine the average waiting time of a packet in a

system (Ws).

 𝑊𝑠 =
𝐿𝑠

𝑒𝑓𝑓
 (5.12)

• Using equation 5.13, calculate the average waiting time of packets in the

queue (Wq).

 𝑊𝑞 =
𝐿𝑞

𝑒𝑓𝑓
 (5.13)

Master
Controller

Slave
Controller

Slave
Controller

µ

∞

queue length

Figure 5.4 (c): Representation of Queue Model M/M/1: ∞/∞ in Network

95

In the simulation environment, M/M/1 queue model is simulated with both infinite

and finite queues of length, to observe and record the effect of various parameters

like length of the system, length of the queue, waiting time in the system, and waiting

time in the queue on the overall working of the network. The probability of idle

time(P0) is 11% in M/M/1: ∞/∞ model and 15 % in M/M/1: N/∞ model. After

recording observation under a scenario, the results of both queue models (infinite

and finite queue length) are compared and plotted in Figure 5.5 and Table 10;

The blue color curve represents M/M/1: ∞/∞, and the orange color curve represents

M/M/1: N/∞ queue model respectively. The probability of these parameters is

Ls=8.09%, Lq=7.2%, Ws=1.011% & Wq=0.9% approximately in M/M/1: ∞/∞

model. Similarly, the probability in M/M/1: N/∞ model are Ls=3.87%, Lq=3.03%,

Ws=0.508% & Wq=0.39% approximately. This parameter shows M/M/1: N/∞ model

is preferable to another model; because the value of these parameters (Ls, Lq, Ws &

Wq) are less as compared to another model.

Master
Controller

Slave
Controller

Slave
Controller

µ

N

queue length

Figure 5.4 (d): Representation of Queue Model M/M/1: N/∞ in Network

96

0

1

2

3

4

5

6

7

8

9

Ls Lq Ws Wq

P
ro

b
ab

ili
ty

 o
f

P
er

ce
n

ta
ge

Probability of Various Parameters
Ls, Lq, Ws & Wq

M/M/1:∞/∞ M/M/1:N/∞

Parameters M/M/1: ∞/∞ M/M/1: N/∞

Ls 8.09% 3.874%

Lq 7.2% 3.027%

Ws 1.011% 0.508%

Wq 0.9% 0.397%

Figure 5.5: Compare various parameters Ls, Lq, Ws & Wq in both Models

Table 10: Compare various Parameters in both Models

97

The experimental setup required the following software tools are: Ubuntu 18.04

Desktop as an Operating System, NS2 as a simulator, awk programming, Gunplot.

By using these tools created various files such as .tcl, .tr, .nam, .awk, and .plot

extension.

5.5.1 NS2 Simulator

Network Simulator Version 2 is known by the initials NS2. It is an event-driven,

open-source simulator created primarily for studies on computer communication

networks. It is capable of simulating both wired and wireless networks. It was

created in C++ and Otcl/Tcl and is an object-oriented, discrete event-driven

simulator.

To model and examine the behaviour of computer networks, many people use the

discrete event network simulator known as NS2. Both C++ and Otcl (Object-

oriented Tool Command Language) were used in the creation of this open-source

programme. To construct and manage network items and set up network scenarios

in NS2, one uses the Otcl (Object-oriented Tool Command Language), an extension

of the TCL (Tool Command Language).

One of the tools for TCL-based animation is the NAM (Network Animator). The

programme used packet traces from actual networks and network simulations. The

topology layout, packet-level animation, and numerous data inspection tools may all

be carried out using this particular tool. The nam files are kept with the .nam

extension.

During simulation, a network creates a trace file with the .tr file extension to be

saved in the detail information of every event that took place during the simulation.

Data manipulation and report generation are both possible with the scripting

language awk. Most pattern processing and scanning is done using awk. It performs

the corresponding actions after searching one or more files to see whether any lines

fit the specified patterns. The initials of the developers Aho, Weinberger, and

Kernighan are combined to form the acronym Awk. Gnuplot is a command-line and

98

GUI tool that can create two-dimensional and three-dimensional graphs. It is a free,

interactive, command-driven utility for function and data plotting.

The hardware environment consists of a PC/Laptop with a 64-bit operating system,

an Intel(R) Core (TM) i5-8250U CPU @ 1.60GHz 1.80GHz as a CPU, and 4 GB of

RAM. This processor is based on the x64 architecture. Table 11 details the

simulation parameters in detail.

Through simulator also analyze the various queue-parameters, instantaneous

throughput, instantaneous goodput, and instantaneous delay on both queue models

as shown in Figure 5.6 (a to m).

Operating System
Ubuntu 18.04.2 LTS (Long Term

Support version of Ubuntu)

System Specification
x64 Intel(R) Core (TM) i5-8250U

CPU

Simulator NS2 (ns-2.35)

Network Animator nam 1.1.5

Gnuplot v 5.2

Programming Language awk

Bandwidth 1.7-2Mb

Date Rate 10-20ms

Table 11: Simulation Parameters

99

*Note: “Y” axis represents Queue-Parameters like qsizeB, qsizeP, arrivedP, departedP, droppedP, arrivedB,

departedB and droppedB; where *B is number in Bytes, and *P is number in Packets.

Figure 5.6 (a): M/M/1 Queue Model with Infinite Capacity

Figure 5.6 (b): M/M/1 Queue Model with Finite Capacity

Time

Time

Q
u

eu
e
-P

ar
am

et
er

s
Q

u
eu

e
-P

ar
am

et
er

s

100

Figure 5.6 (c): Instantaneous Throughput in Queue Model with Infinite Capacity

Figure 5.6 (d): Instantaneous Throughput in Queue Model with Finite Capacity

101

Figure 5.6 (e): Instantaneous Goodput in Queue Model with Infinite Capacity

Figure 5.6 (f): Instantaneous Goodput in Queue Model with Finite Capacity

102

Figure 5.6 (g): Instantaneous Delay in Queue Model with Infinite Capacity

Figure 5.6 (h): Instantaneous Delay in Queue Model with Finite Capacity

103

Figure 5.6 (i): Comparison between both Queue Models w.r.t. Queue-Size

Figure 5.6 (j): Comparison between both Queue Models w.r.t. Arrived Packets

104

Figure 5.6 (k): Comparison between both Queue Models w.r.t. Departed Packets

Figure 5.6 (l): Comparison between both Queue Models w.r.t. Dropped Packets

105

*Note: “Y” axis represents Queue-Parameters like qsizeB, qsizeP, arrivedP, departedP, droppedP, arrivedB,

departedB and droppedB; where *B is number in Bytes, and *P is number in Packets.

Figure 5.7 shows the average throughput, average delay, and packet delivery ratio

in both models; where the blue, orange and purple color highlight respectively. The

90.37
63.24

241.30

33.36

99.9988%

69.975%

Infinite Capacity Finite Capacity

M/M/1 Queue Model

Average Throughput (kbps) Average Delay (ms) Packet Delivery Ratio (%)

Figure 5.6 (m): Comparison between both Queue Models

Figure 5.7: Comparison between both Queue Model in Average Throughput,

Average Delay and Packet Delivery Ratio

106

average delay of an unlimited queue model is much higher than a limited queue

model; because when the size of the queue is increasing or set to infinite then the

packet delivery ratio is improved (means increase). But the average delay of the

network becomes sequentially increased which is not acceptable for any

communication; because it increases the latency of the network that has an adverse

effect on network performance. If the size of the queue is set to finite, then the

average delay of the network becomes lessened as shown in Figure 5.7.

Load Balancing between Multiple

Controllers in SDN

Arrival Rate =, Service Rate=µ,

Traffic Intensity=ꝭ

If Load of

Controller > ꝭ

Calculate Traffic Intensity of all Slave

Controllers

ꝭi=i/µi

Select Slave Controller whose has

lowest traffic intensity in a network

And Monitor the length of Queue

by using queue monitoring variable

Figure 5.8 (a): Flowchart for Load Balancing in SDN Controllers with

queue monitoring variable

107

As a consequence, the queue model with finite capacity is preferable to the infinity

capacity model because the value of these parameters is less in the finite capacity

model as compared to another model. Moreover, if a finite length of the queue is

selected then the number of arrivals will not exceed then N; because the capacity of

a system is limited to say N.

The modified outline of an algorithm and flowchart are shown in Figure 5.8 (a to b)

with monitoring queue variable respectively.

Algorithm for Load Balancing in SDN for Multiple Controllers by using Queuing Technique

with queue monitoring variable

Initial Requirement: CC is represented for Current Controller; SC is represented for Slave

Controllers in the network;  = Arrival Rate of the packet; µ = Service Rate of the packet; ꝭ=

Traffic Intensity of Controller;

Traffic Intensity (ꝭ) of the controller act as a threshold value in the network.

Result:

0: No Need for Load Balancing

1: Successfully Load Balancing Done

/* Load Balancing between Multiple Controllers in SDN*/

if Load of CC > ꝭ then

 { for (i=0; i<n; i++)

 { /* Calculate the traffic intensity value of all slave controllers SCi */

 ꝭi=i /µi

Select controller SCi which has the lowest traffic intensity value in the network.

And monitor the length of the queue by using the queue monitoring variable.

 } return 1;

 } else

 { return 0; }

Output:

As a consequence, this algorithm helps to resolve all the issues which are related to load balancing in

the network such as overloaded controllers and controller failure in the network. Moreover, also avoid

cascaded failure of controllers in the network due to a load unbalancing between controllers.

Figure 5.8 (b): Algorithm for Load Balancing in Multiple Controllers

108

5.5.2 Numerical Evaluation and Result

Suppose the network (in Figure 5.9) has three controllers whose arrival and service

rate are given in Table 12, by using the M/M/1: N/∞ Model in which the finite length

of the queue is 10. Then calculate the parameters of these three controllers, which

are stated in Table 13 and shown in Figures 5.10 to 5.12.

Controllers Arrival Rate Service Rate

C1 8 9

C2 4 5

C3 3 6

Table 12: Arrival and Service Rate of the Controllers in the Network

Figure 5.9: Scenario of Network using M/M/1: N/∞ Model for Load Balancing in SDN

109

0.88
0.8

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C1 C2 C3

P
R

O
B

A
B

IL
IT

Y

Traffic Intensity (ꝭ)

C1

C2

C3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C 1 C 2 C 3

P
R

O
B

A
B

IL
IT

Y

Probability of P 0 & No-Queue

Idle Time (P0) No Queue

Figure 5.10: Probability of Traffic Intensity of the Controllers

Figure 5.11: Probability w.r.t. P0 and No Queue occur in the System

110

0

1

2

3

4

5

6

7

8

9

C 1 C 2 C 3

P
R

O
B

A
B

IL
IT

Y

Comparison of Parameters

Ls Lq Ws Wq

Controllers

Traffic

Intensity

(ꝭ)

P0

No

Queue
Ls Lq Ws Wq

C1 0.88% 0.12% 0.287% 3.87% 3.03% 0.508% 0.397%

C2 0.80% 0.20% 0.393% 2.96% 2.88% 0.759% 0.739%

C3 0.50% 0.50% 0.75% 0.99% 0.49% 0.332% 0.165%

(a)

Table 13: Comparison of Parameters of Controllers

111

In this scenario, controller C3 has the lowest traffic intensity value when compared

to controller C2. whenever the threshold value of the network's present controller

C1 is exceeded. The network load is managed by the controller C3.

5.6 Conclusion

The objective purpose is to design a load balancing algorithm by the integrated

concept of Queuing Theory Technique and Markov Continuous Chain to manage

the load balance between the SDN controllers, which reduces the packet dropping

or packet loss ratio of the network. Lack of load balancing techniques causes a

network imbalance. So, it is necessary to distribute the proper workload on

controllers because network traffic fluctuates dynamically. Figure 5.7 highlights the

average throughput, average delay, and packet delivery ratio in both models; If the

queue size is reduced then dropped the rate of the packet is increased in the network.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ls Lq Ws Wq

P
R

O
B

A
B

IL
IT

Y

Comparison of Controllers

C1

C2

C3

Figure 5.12: Probability w.r.t. Ls, Lq, Ws & Wq occur in the System

(b)

112

But if the size of the queue is increasing or set at infinite then the packet delivery

ratio increases but the average delay of a network is increasing rapidly. As a

consequence, it increases the latency of the network, which is not tolerable for any

communication. So, use the queue size more wisely for a network. Moreover, the

comparison shows the M/M/1 finite capacity model is preferable to another model.

Balancing through

Probability Distribution

in SDN

114

6 Chapter

Balancing through Probability Distribution

in SDN

6.1 Introduction

Software Defined Network provides an innovative paradigm of networking. It offers

to increase programmability, and adaptability, enhance flexibility along with easy

manageability, and dynamic reconfiguration of network elements. It provides help

to fulfill the requirements of users and to improve network control that permits the

network provider to respond to the changing business requirements. The Software

Defined Network (SDN) is an upcoming technology in the networking design, which

decouples the control plane from the data plane. The SDN controller receives all

control logic and offers a centralized logical view of the complete network. But it

also increases the chance of a failure in the network due to a single controller. To

overcome this situation, multiple controllers are required in a network. When

multiple controllers are used in SDN networks, there are problems with load

balancing, such as when the controller is overloaded because the load is higher than

its threshold value. This leads to controller failure or cascading failure of controllers,

both of which are detrimental to the network. So, since it directly impacts network

performance, distributing the workload among the various SDN controllers is one of

the trickier responsibilities.

115

6.2 Related Work

D. Kreutz et al. [6] provide an exhaustive survey on Software Defined Network,

although it provides an emerging paradigm of networking that gives hope to changes

in the traditional network. Thus, it offers an opportunity to solve long-standing

problems in a traditional network; because a controller has direct control over the

network through well-defined application programming interfaces. The ongoing

research and challenges in SDN are fault tolerance, load balancing of multiple

controllers, scalability, synchronous, and so on. W. Braun et al. [8] address a lack of

programming in the existing network. To overcome this situation by using software

defined networking, the network can dynamically add new functionalities in the

form of apps. The OpenFlow protocol supports a variety of message types that

specify how a controller is synchronised with various network forwarding devices.

The speed of a packet's processing affects the controller's estimation of the packet's

overall sojourn time. Additionally, there is still work to be done on figuring out a

controller's packet drop likelihood. Y. Yu et al. [15] give more attention to the

reliability of networks which offers simplified network management and innovation

in the networking field. To ensure the reliability of SDN via fault tolerance; but still,

is in the initial stage. So, it is considered a future work for research in this direction.

J. Chen et al. [18] suggested designing a mechanism for achieving fault tolerance in

SDN which is useful for failure detection and recovery because it is unable to survive

in a large-scale network while facing a failure;

Y. Zhang et al. [66] one of the main criticisms is a controller failure which decreases

overall network performance and availability. Moreover, when multiple controllers

are suggested but they increase the complexity of networks. At last highlights,

potential research issues in multiple controllers in SDN such as coordination

between controllers, load balancing among controllers, etc. A. Mahjoubi et al. [92]

in SDN single controller suffer serious problems such as single point of failure,

availability, and scalability. To overcome these problems, Distributed controllers are

used, but they still have to deal with fault tolerance and load balancing challenges

among controllers. I. F. Akyildiz et al. [24] SDN paradigm promotes innovation and

evolution in networking which improves resource utilization, simplifies network

116

management, and decreases the operating cost of a network. The development of

SDN architecture receives the majority of research attention, but traffic engineering

receives very little. Traffic engineering must take into account this perspective in

order for SDN to achieve higher scalability, availability, dependability, consistency,

and precision. Examples include traffic analysis, load balancing, flow control, and

fault tolerance.

B. Xiong et al. [75] the limitation of a logically centralized controller in SDN affects

the network performance. The future efficiency of the controller could be

approximately predicted using a queueing model. W. H. F. Aly et al. [89] an

important aspect of resilience is fault tolerance which ensures the availability and

reliability of a network is high. Both fault tolerance and load balancing are

interrelated issues. Moreover, it manages the load between controllers by using

performance metrics of the network.

M. K. Faraj et al. [104] load balancing strategy is required when congestion and

overloading problem has occurred in the network. Then queue length is utilized for

load balancing to reduce congestion in a network while using multiple controllers

rather than a single controller. A. Mondal et al. [105] in this paper proposed a

Markov chain-based analytical model in SDN that analysis the performance of

packet flow through OpenFlow. Due to high delay, a significant percentage of

packets either table-miss entry or output action are dropped from the network. In the

future, it will be expanded with a queue system that helps to shorten the packet flow's

latency.

6.3 Problem Formulation

The control plane and the data plane are dissociated by the agile model offered by

the Software Defined Network (SDN). The ultimate authorities of SDN controller

are to regulate the network traffic, insert appropriate flow rules in forwarding

elements, maintain and update network topology, detect network failure and how to

recover it, and so on. These responsibilities are handled by a controller because it

provides a centralized logical view of the network; if it failed then the entire network

117

becomes halted. Thus, it is a complicated task for a single controller. Still, a single

controller has a higher impact on failure in a network. But a central point of failure

in the network can be avoided by multiple controllers. Meanwhile, some challenges

are counter like uneven traffic distribution between controllers that become an origin

of cascaded failure of controllers; when a controller manages network traffic beyond

its capacity. Then drop rate of packets is increasing exponentially in a network. It is

happening due to insufficient implementation of load balancing techniques in the

network. As a consequence, some controllers are overloaded, and some are

underloaded. When a controller has to handle network traffic more than its capacity

or threshold value. Then the rate of packet loss is increase and the performance of

the network is decreased. So, it is necessary to distribute the appropriate workload

among the controllers.

6.4 Proposed Approach

To propose an algorithm that gets rid of these challenges by evaluating an

equilibrium state of distribution which describes the long-run probability of

controllers by integrating Queuing Technique with Markov Continuous Chain,

which aids in lessening the packet drop ratio and improving the efficiency of a

network. Load Balancing is an imperative issue in multiple controllers for optimum

utilization of resources in the network and minimum overhead in the control layer.

To achieve load balancing between multiple controllers by distributing a load of the

overloaded controller to other controllers of a network. Uneven load distribution

among controllers reduces the overall utilisation of resources in the network [92,93].

As a consequence, some controllers are underloaded or idle in a network whereas

some controllers reach their performance to bottleneck and upsurge response delay

due to network traffic [88,89].

The controller is a crucial component in SDN because it manages all traffic of the

network. A controller has the authority to make all routing decisions of a network.

So, since it directly impacts network performance, balancing the workload across

controllers is one of the trickiest tasks. Additionally, the performance of the network

118

is considerably affected by the control plane's scalability and load balancing between

them.

The motive of the proposed approach is how to maintain and control the load

balancing between the multiple SDN controllers. Both fault tolerance and load

balancing are complicated/complex and interrelated issues when dealing with multi

controllers in a network. To design an algorithm by the integrated concept of

Queuing Theory Technique and Markov Continuous Chain to manage the load

balance between the SDN controllers, which reduces the packet dropping or packet

lost ratio of a network. It is happening in a network due to the lack of load balancing

techniques. So, it is necessary to distribute the proper workload on controllers

because network traffic fluctuates dynamically.

Network traffic behaves like a stochastic process whose behavior is random changes

over time. The Markov process is a simple stochastic process, in which the

distribution of the future state depends only on the present state of the process rather

than on how to arrive at the present state. Thus, the stochastic process must be

holding the Markov property “memoryless” [74,100].

According to this property, the probability of the future state (Yt+1) at time instant

(t+1) depends upon the present state (Yt) at time instant (t) is outlined in equation

6.1 as:

 P [Yt+1 | Yt, Yt-1, …, Y2, Y1, Y0] = P [Yt+1 | Yt] (6.1)

Where, Yt+1 dependent on Yt but not dependent on Yt-1, Yt-2, …Y2, Y1, Y0.

The memoryless property is also applicable to the queuing model. It is often referred

to as the network queuing model. As shown in Figure 6.1, there are two different

kinds of events that could occur in a queuing model: either the packet's arrival rate

The Mathematical Notation of Markov Property as follow:

ℙ (Yt+1 = A | Yt = At, Yt-1 = At-1, …, Y0 = A0) = ℙ (Yt+1 = A | Yt = At)

for all t = 1,2, 3, … and for states A0, A1, …, At, A

119

or service rate. The poison distribution and the exponential distribution are followed,

respectively, by the arrival rate, the time between arrivals, and the service rate

[74,100].

6.4.1 Markov Chain

The Markov chain is a vital and significant tool for analyzing a transition matrix;

describing the probability of all possible states in a transition diagram. A transition

matrix must be a square (same number of rows and columns) matrix and represented

by Р. The sum of the probability of each row of the transition matrix is equal to one.

In general, the probability of the next state is depending on the previous state;

probability from one state to another state is represented in equation 6.2 as:

 рi j = Р (Xt+1 = j | Xt = i) (6.2)

It is also known as the conditional probability of the state [94]. This specified that

the probability of the next state “j” is given by the probability of the present state

“i”. The Markov chain's transition matrix is denoted by the symbols Р or (рij).

6.4.2 Transition Probability of ‘n’ Steps

Let suppose Markov Chain in a space S is {X0, X1, X2, X3,….}, with size N. The

transition probabilities for the Markov Chain is outlined as:

рi j = Р (Xt+1 = j | Xt = i)

for i, j ϵ S, t=0,1,2, ...

λ μ

Network

Controller

queueNetwork

Figure 6.1: Use of Queuing Technique in SDN Controller

120

р(n)
i j = Р (Xn+1 = j | X1 = i)

Then, Transition Probability from i state to j state after one step time period as given

below in equation 6.3:

i k j

Time n-1

рkj

1

m

р1j

рmj

Time n Time 0

n-1 steps 1 step

i

k

n 1 steps

n steps

 (n 1)

(n 1)

 =1

Figure 6.2: Transition Probability of ‘n’ step time period

(a)

(b)

121

 рi j = Р (Xn+1 = j | Xn = i) (6.3)

Transition Probability from i state to j state after “n” step time period in Figure 6.2

(a and b) respectively.

6.4.3 Equilibrium State of Probability

Let Pij = conditional probability of “j” state is given by the current state “i”. The

initial probability of a state is represented by ᴨ0. The size of the vector state of

probabilities is 1*N. The vector state of probabilities is used to determine the

probability that the system is in this state. This information is placed into a vector

state of probabilities such as:

ᴨ(k) = vector state of probabilities for period k

 = (ᴨ1, ᴨ2, ᴨ3, …..., ᴨn)

where as

n = number of states

ᴨ1, ᴨ2, ᴨ3, …..., ᴨn = probability of being in state 1, state 2, …..., state n.

Furthermore, if computing the state probability for period n+1 by using the state

probability of period n.

ᴨ (next period) = ᴨ (current period) *P

or

ᴨ (n+1) = ᴨ (n) *P

and the sum of state distribution must be one

𝜋1 + 𝜋2 + ⋯ + 𝜋𝑛 = 1

A Markov Chain provides a facility to evaluate the steady-state (or equilibrium state)

of distribution. A steady-state probability is an irreducible set of states which is

represented by the ᴨj. Let P be the transition matrix for the ‘n’ state. According to

the steady-state theorem or equilibrium behavior of the Markov Chain is:

lim
𝑛→∞

(р𝑖𝑗)𝑛 = ᴨ𝑗

The steady-state distribution is [𝜋1 + 𝜋2 + ⋯ + 𝜋𝑛 = 1]

122

ᴨ(𝑛+1) = ᴨ(𝑛) ∗ 𝑃

At equilibrium, it is known that

ᴨ (n+1) = ᴨ (n)

Therefore, ᴨ = ᴨ𝑃 (6.4)

Thus, an equilibrium state of distribution is used to describe the long-run behavior

(or probability) of a state or process. At the equilibrium state, the probability of the

next period is the same (equal/identical) as a state of the probability of the current

period (in equation 6.4). Thus, the initial state of probability values does not

influence the equilibrium state of probability. This concept is applied to calculate

the probability of controllers in a network domain.

6.4.4 Equilibrium State in a Queue

How an equilibrium state is implemented in a queue is shown in Figure 6.3; The

state diagram shows the probability of queue states. If a queue is empty then the

probability is “1-p”. Similarly, if queue length reaches “n state” then the probability

is “1-q”. The probability of one state (state 1) to another state (state 2) is “p”. The

probability or likelihood of transitioning from state 2 to state 1 is denoted by q," and

"1-p-q" denotes the likelihood of remaining in the same state (such as in a self-loop);

Always the sum of the probability of transition is one.

1 2 3 n.

p

q

1-p-q

1-p

1-p-q

p p

q q

p

q

1-q

Figure 6.3: Equilibrium State in Queue

123

6.4.5 Pseudo Code for Load Balancing in SDN Controllers by using the

Queuing Technique with the Markov Chain

For designing an adaptive load balancing algorithm, multiple controllers are used.

The master controller has full control of the network. When the length of the queue

(incoming to the master controller) exceeds the specified queue size of the controller,

a slave controller, with the highest probability among active slave controllers in the

network, is selected. According to the Markov Chain, the future state of a network

only depends upon the present state of a network rather than how arrived in the

present state (р(n)
i j = Р (Xn = j | Xn-1 = i). The steady-state distribution or equilibrium

state of a Markov Chain is used to calculate the probability of controllers in the

network domain, whose summation (Σ) of probabilities is always equal to one [100].

Table 14 shows the abbreviation of variables used in the algorithm; Figure 6.4 shows

the pseudo-code for load balancing in multiple controllers.

Abbreviation of Variables

Variable Name Purpose

th Threshold Value of Controller

lc Load of Current Controller

ql Queue Length

qs Queue Size

/* Pseudo Code for Load Balancing for Multiple Controllers in SDN by using

the Queuing Technique with the Markov Chain */

Initial Requirement:

ᴨ0 has represented the initial probability of controllers, which is a 1*N size matrix;

Pij has represented the Transition Probability of Matrix P; it is a square matrix N*N;

i and j represent row and column position in the transition probability matrix P;

Step 1:

 M=1 /* Initial Probability of Master Controller*/

 S=0 /* Initial Probability of all Salve Controller*/

Table 14: Abbreviation of Variables used in Algorithm

124

 ᴨ0 /* Initial Probability of Controllers whose size is a 1*N matrix */

 P=[i][j] /* Transition Probability of Matrix P which is a square matrix N*N */

Step 2:

for each controller in network

 do loop

 if (ᴨi+1 <> ᴨiP)

 then

 /*Calculate the Steady-State Probability of Distribution by using the formula

ᴨi+1 = ᴨi * P */

 exec proc steady_state;

 end if;

 end loop;

Step 3:

/* Once’s steady-state probability is reached; it becomes independent of the

initial probability of controllers */

 th=probability distribution of controller act as a threshold value;

 lc=current load of controller;

if (lc< th and ql<qs)

then

/*All the computations of the network are controlled by the Master

Controller*/

 exec proc master-controller;

else

125

/* Retrieve the Slave Controller which has a higher probability as

compared to the other slave controllers in the network domain and its

Queue_Length is less than specified Queue_Size */

 exec proc slave-controller;

 end if;

 end;

Output:

Therefore, the distribution of workload among controllers depends upon the

probability of distribution controllers; which aids to lessen the threat of controller

failure as well as managing load balancing between controllers.

6.5 Simulation and Evaluation of Result

A centralized controller manages all responsibilities of the network, then it come

very difficult to accomplish their responsibilities simultaneously. It is a very

important characteristic of networking to monitor the network traffic in real-time.

For this purpose, queuing technique that effectively uses the global perspective or

view of the network to control the congestion of the network is proposed. Moreover,

it also provides the facility to determine packet delivery ratio, and packet drop ratio

along with the various queue objects. Thus, to determine what is the significance of

queue size to control packet drop rate in the network. The quality-of-services (QoS)

of the network is enhanced by these parameters.

6.5.1 Queue Model

Using queue model M/M/1 with unlimited (or infinite) and limited (or finite)

capacity, all required manipulations were carried out on both queue models using

simulator, as illustrated in Figures 6.5. (a and b).

Figure 6.4: Pseudo Code for Load Balancing in SDN Controllers

126

*Note: “Y” axis represents Queue-Parameters like qsizeB, qsizeP, arrivedP, departedP, droppedP,

arrivedB, departedB and droppedB; where *B is number in Bytes, and *P is number in Packets

90.37
63.24

241.30

33.36

99.9988%

69.975%

Infinite Capacity Finite Capacity

M/M/1 Queue Model

Average Throughput (kbps) Average Delay (ms) Packet Delivery Ratio (%)

Figure 6.5 (a): Comparison between both Queue Models

Figure 6.5 (b): Comparison between both Queue Model in Average Throughput,

Average Delay and Packet Delivery Ratio

127

Figure 6.5 (b) highlights the average throughput, average delay, and packet delivery

ratio in both models, where the blue, orange, and purple color represents

respectively. The average delay of the unlimited queue model is much higher than

the limited queue model; because when the size of the queue is increasing or set to

infinite then the packet delivery ratio increases, but at the cost of an increased

average delay, which is not affordable or acceptable for any communication. If the

size of the queue is set to finite, then the average delay of the network becomes

lessened, as shown in Figure 6.5 (b). Based on these factors, the model with a finite

capacity queue is better than the model with an infinite queue.

6.5.2 Various Queue Objects

Many different types of queue objects are available like DropTail, Stochastic Fair

Queue, and so on. These queue objects show varying behavior in terms of the

probability of packet delivery ratio and packet drop ratio in Figure 6.6 (a to c).

0

5

10

15

20

25

DropTail SFQ DRR RED

N
o

.o
f

P
ac

ke
ts

 D
ro

p

Rate of Packets Drop

Figure 6.6 (a): Number of Packets Drop in various Queue Object

128

98.50

98.60

98.70

98.80

98.90

99.00

99.10

99.20

99.30

DropTail SFQ DRR RED

P
ro

b
ab

ilt
y

Packet Delivery Ratio

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

DropTail SFQ DRR RED

P
ro

b
ab

ilt
y

Packet Drop Ratio

Figure 6.6 (b): Probability of Packet Delivery Ratio in various Queue Object

Figure 6.6 (c): Probability of Packet Drop Ratio in various Queue Object

129

The DropTail queue object shows a packet delivery ratio of 99.22% which is higher

than other objects and a packet drop ratio of 0.78% approximately which is lower

than another queue object. To select finite capacity queue model with DropTail

queue object after analyzing the simulation result.

6.5.3 Equilibrium State of Controllers

Take another scenario of two controllers in which the value of transition matrix (P)

is sequentially increased in every case and calculate the steady-state of probability

distribution up to sixteen steps respectively. Let me explain a case, and how to

evaluate an equilibrium state of controllers in this scenario. If an initial probability

of both controllers at time period zero is ᴨ0 = [1 0]. The matrix of transition of

probabilities for the controller is P = [
0.7 0.3
0.6 0.4

] (as shown in Figure 6.7), where M

state the representation of the master controller and S state for slave controller.

where as

P11 = 0.7 probability of the master controller will be functioning for handling the

network traffic or workload.

P12 = 0.3 probability of slave controller will be functioning for handling the network

traffic or workload.

P21 = 0.6 probability of the master controller will be functioning for handling the

network traffic or workload.

SM

0.3

0.4

0.6

0.7

Figure 6.7: Graphically Representation of Controllers

130

P22 = 0.4 probability of slave controller will be functioning for handling the network

traffic or workload.

Because these conditions/events are mutually exclusive and exhaustive as a whole,

the total of the row probabilities must be one. When the current period is 0 then

compute the state of probabilities for period 1 by using this formula:

ᴨ1= ᴨ0 * P

ᴨ1=[1 0] [
0.7 0.3
0.6 0.4

]

ᴨ1=[0.7 0.3]

Then calculate the probability of controllers in various steps until the value of ᴨn+1

= ᴨn *P; as shown in Table 15 and Figure 6.8. An equilibrium state of the controller

is observed in Step 6 (Table 15), which is highlighted in yellow color. A few cases

are shown graphically in Figures 6.9 (a to c) respectively.

No. of Steps

Two Controllers

Master Slave

Step 1 1.000 0.000

Step 2 0.700 0.300

 Step 3 0.640 0.360

Step 4 0.628 0.372

Step 5 0.626 0.374

Step 6 0.625 0.375

Step 7 0.625 0.375

Step 8 0.625 0.375

Table 15: Equilibrium State for Two Controllers

131

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10 12 14 16

P
ro

b
ab

ili
ty

No. of Steps

EQUILIBRIUM STATE OF TWO CONTROLLERS

Master Slave

Step 9 0.625 0.375

Step 10 0.625 0.375

Step 11 0.625 0.375

Step 12 0.625 0.375

Step 13 0.625 0.375

Step 14 0.625 0.375

Step 15 0.625 0.375

Step 16 0.625 0.375

Figure 6.8: Equilibrium State of Two Controllers

132

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10 12 14 16

P
ro

b
ab

ili
ty

No. of Steps

EQUILIBRIUM STATE OF TWO CONTROLLERS

Master Slave

(a)

(b)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10 12 14 16

P
ro

b
ab

ilt
y

No. of Steps

EQUILIBRIUM STATE OF TWO CONTROLLERS

Master Slave

133

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10 12 14 16

P
ro

b
ab

ilt
y

No. of Steps

EQUILIBRIUM STATE OF TWO CONTROLLERS

Master Slave

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 Case 11

P
ro

b
ab

ili
ty

EQUILIBRIUM STATE OF TWO CONTROLLERS

Master Slave

Figure 6.9: A few cases of Equilibrium State of Two Controllers

(c)

Figure 6.10: Graphically Representation of an Equilibrium State of Controllers

in Different Cases

134

1
1

0
.3

5
7

1
4

2

0
.6

4
2

8
5

8

1
0

0
.0

0
0

0
0

1

0
.9

9
9

9
9

9

9

0
.1

1
1

1
1

1

0
.8

8
8

8
8

9

8

0
.2

2
2

2
2

3

0
.7

7
7

7
7

7

7

0
.3

3
3
3
3
4

0
.6

6
6
6
6
6

6

0
.4

4
4
4
4
5

0
.5

5
5
5
5
5

5

0
.5

4
5
4
5
5

0
.4

5
4
5
4
5

4

0
.5

5
5
5
5
6

0
.4

4
4
4
4
4

3

0
.6

6
6
6
6
7

0
.3

3
3
3
3
3

2

0
.7

7
7
7
7
8

0
.2

2
2
2
2
2

1

1

0

C
a
se

s

M
as

te
r

S
la

v
e

T
ab

le
 1

6
:

 E
q
u

il
ib

ri
u

m
 S

ta
te

 o
f

T
w

o
 C

o
n

tr
o

ll
er

s
in

 D
if

fe
re

n
t

C
as

es

135

Figure 6.10 and Table 16 show the analysis when the probability of a master

controller is decreased from 100 to 0 percent and vice versa. Likewise, for the three

controllers’ scenarios, observations are recorded in Table 17 and Figure 6.11, and

an equilibrium state observation is in Step 9 (in Table 17), which is highlighted with

yellow color. Similarly, in the case of four controllers, observations are recorded in

Table 18 and Figure 6.12, and an equilibrium state observation can be obtained in

Step 10 (in Table 18), which is highlighted in yellow color. These findings lead to

the conclusion that the complexity of the network grows along with the number of

controllers. Using this strategy, it becomes easy to manage the congestion of a

network and minimize the chance of controller failure in the network due to an

imbalance of workload. This strategy also reduces the overheads induced during the

switch migration, and context switching and minimizes the maintenance cost of the

network.

No. of Steps
Three Controllers

Master Slave 1 Slave 2

1 1.0000 0.0000 0.0000

2 0.8000 0.1000 0.1000

3 0.7500 0.1200 0.1300

4 0.7370 0.1250 0.1380

5 0.7336 0.1263 0.1401

6 0.7327 0.1266 0.1407

7 0.7327 0.1266 0.1407

8 0.7325 0.1267 0.1408

 9 0.7324 0.1268 0.1408

10 0.7324 0.1268 0.1408

11 0.7324 0.1268 0.1408

12 0.7324 0.1268 0.1408

13 0.7324 0.1268 0.1408

14 0.7324 0.1268 0.1408

15 0.7324 0.1268 0.1408

Table 17: Equilibrium State for Three Controllers

136

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Step
1

Step
2

Step
3

Step
4

Step
5

Step
6

Step
7

Step
8

Step
9

Step
10

Step
11

Step
12

Step
13

Step
14

Step
15

P
ro

b
ab

ili
ty

No. of Steps

EQUILIBRIUM STATE OF THREE CONTROLLERS

Master Slave 1 Slave 2

No. of Steps
Four Controllers

Master Slave 1 Slave 2 Slave 3

1 1.0000 0.0000 0.0000 0.0000

2 0.7 0.11 0.1 0.09

3 0.631 0.1345 0.129 0.1055

4 0.61565 0.139935 0.13635 0.108065

5 0.612324 0.14114 0.138077 0.10846

6 0.611619 0.141408 0.138461 0.108512

7 0.611473 0.141468 0.138543 0.108516

8 0.611443 0.141482 0.13856 0.108515

9 0.611437 0.141485 0.138564 0.108514

10 0.611436 0.141486 0.138564 0.108514

11 0.611436 0.141486 0.138564 0.108514

12 0.611436 0.141486 0.138564 0.108514

13 0.611436 0.141486 0.138564 0.108514

14 0.611436 0.141486 0.138564 0.108514

15 0.611436 0.141486 0.138564 0.108514

Figure 6.11: Equilibrium State of Three Controllers

Table 18: Equilibrium State for Four Controllers

137

6.5.4 Significance of Queue Size

Next, examine toward what happens to the packet drop rate as the queue size is

sequentially increased. As the size of the queue is reduced, the network's dropped

packet rate increases. But if the size of the queue is increased by or set to infinite

then the packet delivery ratio is improved, but on the other hand average delay of

the network increases rapidly. Due to the increased network latency, which is not

tolerable and unaffordable for any communication, the sizing of the queue needs to

be done more wisely for the network. Figure 6.13 illustrates how the rate of packet

drops decreases as queue size increases. As a result, as shown in Figures 6.13 to

6.15, the packet delivery rates increase and the packet drop ratio decreases as the

queue size increases (from 5 to 50 in Table 19) respectively.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S T E P
1

S T E P
2

S T E P
3

S T E P
4

S T E P
5

S T E P
6

S T E P
7

S T E P
8

S T E P
9

S T E P
1 0

S T E P
1 1

S T E P
1 2

S T E P
1 3

S T E P
1 4

S T E P
1 5

P
ro

b
ab

ili
ty

No. of Steps

EQUILIBRIUM STATE OF FOUR CONTROLLERS

Master Slave 1 Slave 2 Slave 3

Figure 6.12: Equilibrium State of Four Controllers

138

Queue Size Packet Drop
Packet Delivery

Ratio
Packet Drop Ratio

5 40 98.17 1.83

10 18 99.22 0.78

15 14 99.37 0.63

20 16 99.33 0.67

25 9 99.62 0.38

30 6 99.75 0.25

35 3 99.87 0.13

40 0 100.00 0.00

45 0 100.00 0.00

50 0 100.00 0.00

Table 19: Effect of Queue Size w.r.t. other Parameters

0

10

20

30

40

50

0 5 10 15 20 25 30 35 40 45 50

N
o

. o
f

P
ac

ke
t

D
ro

p

Queue Size

Packet Drop Rate

Figure 6.13: Drop Rate of Packets v/s Queue Size

139

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

0 5 10 15 20 25 30 35 40 45 50

P
ro

b
ab

ili
ty

Queue Size

Packet Drop Ratio

Figure 6.15: Packet Drop Ratio v/s Queue Size

Figure 6.14: Packet Delivery Ratio v/s Queue Size

98.0

98.2

98.4

98.6

98.8

99.0

99.2

99.4

99.6

99.8

100.0

0 5 10 15 20 25 30 35 40 45 50

P
ro

b
ab

ili
ty

Queue Size

Packet Delivery Ratio

140

6.5.5 Correlation Matrix

Correlation is used to express the association between the variables. The degree of

association is measured by a correlation coefficient. In other words, correlation

coefficients are used to measure the strength of a link. The correlation coefficient's

number ranges from +1 to -1. A positive correlation exists if the value of one variable

grows and the value of another variable similarly increases. A negative association

exists when one variable's value rises while another variable's value falls. Zero

indicates there is no association between the variables.

The analytical process is based on a matrix of correlation between the variables.

Valuable insight can be obtained from this matrix. The matrix of correlation between

various parameters (such as No. of Packet Received, Queue Size, Total No. of

Packets, and Packet Size) are shown in Figure 6.16. The No. of Packet Received

parameter is correlated to Queue Size is 0.389 (approx.), the Total No. of Packets is

0.964 (approx.), and the Packet Size is 0.078 (approx.) and similar to other variables.

6.5.6 Multiple Regression Model

In order to determine how two or more explanatory factors, affect the response

variable, the multiple regression model is used. In general, the multiple regression

model is defined as:

Correlation between

Parameters

No. of Packet

Received
Queue Size

Total No. of

Packets
Packet Size

No. of Packet Received 1

Queue Size 0.38931286 1

Total No. of Packets 0.964086941 0.3623451 1

Packet Size 0.078563975 0.59669339 0.035202443 1

Figure 6.16: Correlation Matrix between various Parameters

141

 𝑦 = 𝛽0 + 𝛽1𝒳1 + 𝛽2𝒳2 + ⋯ + 𝛽𝑘𝒳𝑘 (6.5)

where 𝑦 𝑖𝑠 a response variable, 𝒳1 + 𝒳2 + ⋯ + 𝒳𝑘 are explanatory variables,

𝛽0 is a slope intercept coefficient and 𝛽1 + 𝛽2 + ⋯ + 𝛽𝑘 are the coefficient of

variables.

In Figure 6.17, where 𝑦 (response variable) 𝑖𝑠 𝑃𝑎𝑐𝑘𝑒𝑡 𝑆𝑢𝑐𝑒𝑒𝑠𝑓𝑢𝑙𝑙𝑦 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑,

𝒳1 + 𝒳2 + ⋯ + 𝒳𝑘(explanatory variables) are Queue Size, Total No. of Packets

sent, and Packet Size, 𝛽0 is a slope intercept coefficient and 𝛽1 + 𝛽2 + ⋯ + 𝛽𝑘 are

the coefficient of variables. Then derived an equation for packet successfully

delivered by using equation 6.5 in the regression model as shown below:

𝑃𝑎𝑐𝑘𝑒𝑡 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

= [(−442.855) + (14.928 ∗ 𝑄𝑢𝑒𝑢𝑒 𝑆𝑖𝑧𝑒)

+ (1.127 ∗ 𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠) + (0.001 ∗ 𝑃𝑎𝑐𝑘𝑒𝑡 𝑆𝑖𝑧𝑒)]

Figure 6.17: Result of Multiple Regression Model of Three Variables

142

It was observed that the P-value of packet size was more than 0.05 in Figure 6.17;

signifying that packet size is not a statistically significant variable in the overall

regression model.

In Figure 6.18, where 𝑦 (response variable) 𝑖𝑠 𝑃𝑎𝑐𝑘𝑒𝑡 𝑆𝑢𝑐𝑒𝑒𝑠𝑓𝑢𝑙𝑙𝑦 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑,

𝒳1 + 𝒳2 + ⋯ + 𝒳𝑘(explanatory variables) are Queue Size and Total No. of

Packets send, 𝛽0 is a slope intercept coefficient and 𝛽1 + 𝛽2 + ⋯ + 𝛽𝑘 are

coefficient of variable. Then derived an equation for packet successfully delivered

from equation 6.5 as shown below:

𝑃𝑎𝑐𝑘𝑒𝑡 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑

= [(−432.250) + (16.1596 ∗ 𝑄𝑢𝑒𝑢𝑒 𝑆𝑖𝑧𝑒)

+ (1.1207 ∗ 𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑃𝑎𝑐𝑘𝑒𝑡𝑠)]

Figure 6.18: Result of Multiple Regression Model of Two Variables

143

The Multiple regression model shows 92.95% of the variation in Packet Successfully

Delivered in the network can be statistically explained with Queue Size, Total No.

of Packets, and Packet Size in Figure 6.17 and Figure 6.18 shows 93.015% of the

variation in Packet Successfully Delivered in the network can be statistically

explained with Queue Size and Total No. of Packets in multiple regression model.

6.5.7 Performance Evaluation of Controllers

In proposed scheme uses the queuing technique in SDN that improves the

performance of the network in round-trip time. The Round-trip Time (RTT) is a time

interval between to initiated the request from starting point and receiving a response

to the destination. It is measured in milliseconds (ms). The round-trip time is a vital

metric for determining the condition of the network, so the network administrator to

detect or monitor the speed and reliability of the network connection. The Content

Delivery Network (CDN) has a primary goal to lessen the RTT of a network. If the

value of RTT is reduced then the latency of the network is improved. There are

several factors affecting round-trip time (RTT) value such as transmission medium,

the response time of the server, the physical distance between nodes, network traffic,

etc; these factors increase the congestion and slow down the network connection that

hikes the value of RTT in a network.

In Software Defined Networks, the controller can be classified into two categories

like single controller and multiple controllers as shown in Figure 6.19. But a single

controller increases the maximum chance of failure in the network. If the controller

fails for any reason, then an entire network becomes collapses or halts. To reduce or

eliminate a SPOF in the network by using multiple controllers; further, has provided

two options either using equal controllers or master-slave controllers in a distributed

environment.

In simulation install all necessary tools such as the Ubuntu Operating System 18.04

Desktop, Mininet, and Ryu controller respectively. Now to compare the various role

of SDN controllers’ performance in terms of the round-trip time (RTT) with the

proposed model. During simulation to analyses and evaluate the result of SDN

controllers is summarized in Table 20 and shown in Figures (6.20 to 6.23).

144

Round-Trip Time

(RTT)
Min (ms) Avg (ms) Max (ms) Mdev (ms)

Single Controller 0.042 43.522 2062.932 268.729

Equal Controller 0.081 41.889 94.402 32.708

Master-Slave

Controller
0.073 0.473 36.974 3.670

Proposed Model 0.074 0.100 0.450 0.039

Classification of
Controllers in SDN

Single
Controller

Equal
Controller

Master
Controller

Slave
Controller

Multiple
Controller

Table 20: Performance Comparison of Controllers in Round-trip Time Metric

Figure 6.19: Classification of Controllers in Software Defined Network

145

0.000

0.010

0.020

0.030

0.040

0.050

0.060

0.070

0.080

0.090

Single Controller Equal Controller Master Slave
Controller

Proposed Model

M
in

(m
s)

Comparison in term of Min RTT

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

Single Controller Equal Controller Master Slave
Controller

Proposed Model

A
vg

(m
s)

Comparison in term of Avg RTT

Figure 6.20: Comparison between Controllers in term Minimum RTT

Figure 6.21: Comparison between Controllers in term Average RTT

146

0.000

500.000

1000.000

1500.000

2000.000

2500.000

Single Controller Equal Controller Master Slave
Controller

Proposed Model

M
ax

(m
s)

Comparison in term of Max RTT

0.000

50.000

100.000

150.000

200.000

250.000

300.000

Single Controller Equal Controller Master Slave
Controller

Proposed Model

M
d

ev
(m

s)

Comparison in term of Mdev RTT

Figure 6.22: Comparison between Controllers in term Maximum RTT

Figure 6.23: Comparison between Controllers in term Mean Deviation RTT

147

A performance metric is a function of a parameter that quantifies its influence; that

parameter affects the system metrics, in other words. Applying or measuring

performance analysis is required to ascertain how a performance metric relates to a

system. Analysing the computing system's performance is what it entails. It involves

looking at how well the computer system performs. To evaluate the SDN controllers'

performance using the D-ITG traffic generator in conjunction with the suggested

model for operation. In Table 21 and graphically in Figures 6.24 to 6.27, the whole

list of evaluation criteria is displayed.

Operation

of

SDN

Controller

Evaluation of Parameters

M
in

 D
el

ay

M
ax

 D
el

ay

A
v

er
ag

e
D

el
ay

A
v

er
ag

e
Ji

tt
er

D
el

ay
 S

ta
n

d
ar

d
 D

ev
ia

ti
o

n

B
y

te
s

R
ec

ei
v

ed

A
v

er
ag

e
B

it
ra

te

A
v

er
ag

e
P

ac
k

et
 R

at
e

T
im

e
D

u
ra

ti
o

n
 (

S
ec

)

 Single

Controller
0.000047 0.000443 0.000156 0.000011 0.000051 985500 394.2900 98.5720 20

Equal

Controller
0.000029 0.000446 0.000192 0.000010 0.000052 982500 393.0110 98.2529 20

Master

Slave

Controller

0.000029 0.000376 0.000154 0.000008 0.000051 985500 394.2445 98.5611 20

Proposed

Model
0.000024 0.000423 0.000118 0.000010 0.000031 987500 395.0126 98.7531 20

Table 21: Performance Evaluation of Controllers with the Proposed Model

148

Min Delay Max Delay Avg Delay Avg Jitter Delay Standard
Deviation

Performance Evaluation of Controllers

Single Controller Equal Controller Master Slave Controller Proposed Model

980000

981000

982000

983000

984000

985000

986000

987000

988000

Single Controller Equal Controller Master Slave
Controller

Proposed Model

K
b

yt
e

Performance Evaluation of Controllers

Bytes Received

Figure 6.25: Performance Evaluation w.r.t. Bytes Received

Figure 6.24: Performance Evaluation w.r.t. Min Delay, Max Delay, Avg Delay,

Avg Jitter and Delay Standard Deviation

149

392.0000

392.5000

393.0000

393.5000

394.0000

394.5000

395.0000

395.5000

Single Controller Equal Controller Master Slave
Controller

Proposed Model

K
b

it
/s

Performance Evaluation of Controllers

Average Bitrate

98.0000

98.1000

98.2000

98.3000

98.4000

98.5000

98.6000

98.7000

98.8000

Single Controller Equal Controller Master Slave
Controller

Proposed Model

P
kt

/s

Performance Evaluation of Controllers

Average Packet Rate

Figure 6.26: Performance Evaluation w.r.t. Average Bitrate

Figure 6.27: Performance Evaluation w.r.t. Average Packet Rate

150

When compared to the other types of controllers in Table 20, the proposed model's

minimum, average, and delay standard deviation parameters have the lowest values.

But the parameters for bytes received, bitrate, and average packet rate are higher

than in other controller configurations.

To assess the effectiveness of SDN controllers in their roles with the proposed

model, the iperf tool is used. As shown in Figures 6.28 to 6.31 and Table 22, compare

controllers based on various metrics, including average throughput, average

bandwidth, and ping delay. Table 22 depicts the operation of controllers with the

proposed model. In comparison to alternative controller configurations, the proposed

model has higher average throughput and bandwidth metrics and lower ping delay

metrics.

Operation of

SDN

Controller’s A
v
er

a
g
e

T
h

ro
u

g
h

p
u

t

(G
B

y
te

s)

A
v
er

a
g
e

B
a
n

d
w

id
th

(G
b

it
s/

se
c)

P
in

g
 D

el
a
y
 (

m
s)

T
im

e
In

te
rv

a
l

(S
ec

)

 Single

Controller
63.5 36.4 43.480 15

Equal

Controller
69.8 40.0 41.808 15

Master Slave

Controller
70.9 40.6 0.400 15

Proposed Model 71.4 40.9 0.026 15

Table 22: Performance Evaluation of Controllers with the Proposed Model

w.r.t. Average Throughput, Average Bandwidth and Ping Delay

151

Figure 6.28: Performance Evaluation of Controllers w.r.t. Throughput by Gnuplot

Figure 6.29: Performance Evaluation of Controllers w.r.t. Bandwidth by Gnuplot

152

63.5
69.8 70.9 71.4

36.4 40.0 40.6 40.9

15 15 15 15

Single Controller Equal Controller Master Slave Controller Proposed Model

Ti
m

e

Performance Evaluation of Controllers

Average Throughput (GBytes) Average Bandwidth (Gbits/Sec) Time Duration (Seconds)

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

Single Controller Equal Controller Master Slave
Controller

Proposed Model

D
el

ay
 (m

s)

Performance Evaluation of Controllers

Figure 6.30: Performance Evaluation of Controllers with the Proposed Model

Figure 6.31: Performance Evaluation of Controllers w.r.t. Ping Delay

153

Table 23 provides a quantitative analysis of the proposed model's parameters in

terms of the percentage of improvement over other types of controllers. After

looking at Tables 21, 22, and 23, it's clear that the performance of the proposed

model is better and superior to that of other SDN controller configurations.

Percentage of

Improvement

w.r.t. Proposed

Model

Parameters

Throughput Bandwidth Packet Rate

Single Controller 12.44% 12.36% 0.184%

Equal Controller 2.29% 2.25% 0.509%

Master Slave

Controller
0.71% 0.74% 0.195%

6.6 Conclusion

The Software Defined Network provides a novel paradigm of networking that

enhances innovation in networking as compared to the traditional network. The main

contribution is to propose an adaptive algorithm for load balancing in multiple

controllers by using the queuing technique with the Markov chain to evaluate an

equilibrium/steady state of a probability distribution for controllers, which assists

manage the load among controllers in a convenient way. Based on probability, it

reduces packet dropping or packet lost ratio, overheads, and migration cost of the

network due to managing load balancing. As a consequence, a cascading failure of

controllers in a network that occurs due to an imbalance of controllers can be

avoided. That implies the multiple controllers provide a ubiquitous and robust

network that extends the scalability, dependability, and high availability of a

network service after evaluating the equilibrium state of a probability distribution of

Table 23: Quantitative Analysis of Parameters

 →

154

controllers. In comparison to the other types of controllers in Table 21, the proposed

model's average delay and delay standard deviation parameters have the lowest

values. Table 23 is a quantitative analysis of the proposed model's parameters in

terms of how much better they are than other kinds of controllers. Moreover, the

proposed model’s performance is more appropriate as compared to other controllers.

Conclusion and Future

Work

156

7 Chapter

Conclusion and Future Work

7.1 Conclusion

The dissociation of the two planes is the primary factor in the Software Defined

Network's ability to offer a novel and agile networking paradigm that fosters

innovation in networking compared to the traditional network. A communication

system's important feature today is the availability of services on-demand and

without interruption. The firm will suffer a significant loss of revenue or profit if

there is any disruption or failure in the communication system. By expanding the

availability of networking facilities, this problem must be solved.

Designing a fault tolerance model that decreases the possibility of failure by one

point in an SDN network is the aim of this research. When an SDN controller fails

for whatever cause, it is analysed through simulation that the entire network becomes

unreachable; this means that the network is ruined until the controller is available in

the network and in a functioning state. As a result, a single controller has a greater

effect on network failure. For any type of communication system, it is not feasible.

To solve this issue, a fault tolerance mechanism that uses multiple controllers to

reduce the likelihood that the network will have a single or singular point of failure

is needed.

The most difficult task in a distributed environment is managing load balancing

between controllers. Moreover, both fault tolerance and load balancing are

complicated and interrelated issues when dealing with the multiple controllers in

157

SDN. To resolve these issues, using the Queuing Theory Technique and Markov

Continuous Chain helps manage the fluctuation of load between the multiple

controllers. A suggested adaptive for load balancing in multiple controllers, which

uses the queuing technique with the Markov chain to evaluate an equilibrium or

steady state of a probability distribution for controllers and aids in managing the load

among controllers, is useful for achieving this goal. These probabilities provide an

idea of how to distribute network traffic among controllers, and managing load

balancing reduces packet dropping or packet loss ratio, overheads, and network

migration cost. As a result, a cascading failure of controllers in a network caused by

an imbalance in controller workload can be avoided. Based on probability, it also

reduces overheads that are induced in the switch migration process and the migration

cost of the network and minimises the maintenance cost of the network.

In order to statistically explain the variance in Packet Successfully Delivery in a

network with respect to the Queue Size, Total No. of Packets, and Packet Size

parameters in the network, evaluate the correlation matrix and the multiple

regression model. After assessing the equilibrium state of a probability distribution

of controllers, it is implied that the numerous controllers offer a widespread and

reliable network that increases the scalability, dependability, and high availability of

a network service. The proposed model then demonstrated how superior it was in

comparison to other types of controllers. The next part of the chapter talks about

how the research presented in this thesis can be used to do more work.

7.2 Future Work

The Software Defined Network can resolve the problems with the present or

traditional networking system, despite having a unique networking architecture.

SDN can segregate the data plane from the control plane; therefore, overall control

of the network is transferred to the SDN controller. A real world is a vast and

extremely complex system. Because it offers the capability of demonstrating the

virtual network in order to understand how it functions in the real world, many large

organisations are converting or transforming their systems to Software Defined

158

Networks. The goal of this thesis is to manage load balancing between multiple

controllers in an SDN network based on the equilibrium state of the distribution

between the controllers, as well as to improve fault tolerance in the control plane by

eliminating a single point of failure through the use of multiple controllers.

In terms of design and analysis, managing a network with several controllers is far

more difficult and complex than managing a network with a single controller. A

large number of simulations can be performed using the work that has been proposed

in order to do performance evaluations and a quantitative analysis of the

performance parameters of the proposed model in terms of how much better they are

than other types of controllers.

The additional work that can be done using the research presented in this thesis is

briefly described in the part that follows. In the future, make an effort to implement

the right security measures for the controller, as it is tasked with managing the entire

network. A good security mechanism helps to prevent attempts by hackers to take

over the controller on the control plane. Additionally, it is thought that the

synchronisation between the controllers will manage any inconsistencies. In order

to increase the availability of the networks, attempt to keep data synchronised

between the controllers. The effort described in the thesis, they believe, will improve

the standard of service provided by the networking system.

 References

160

References

[1] S. Hanji et al., “Comparison of Software Defined Networking with

Traditional Networking,” Asian Journal of Research in Computer Science,

vol. 9, no. 2, pp. 1-18, 2021.

[2] D. Gopi, S. Cheng and R. Huck, “Comparative Analysis of SDN and

Conventional Networks using Routing Protocols,” in 2017 International

Conference on Computer, Information and Telecommunication Systems

(CITS), 2017.

[3] M. J. Anjum, I. Raza and S. A. Hussain, “Real-Time Multipath Transmission

Protocol (RMTP): A Software Defined Networks (SDN) based Routing

Protocol for Data Centric Networks,” in 1st International Conference on

Electrical, Communication, and Computer Engineering (ICECCE), pp. 1-6,

2019.

[4] M. Y. Daha, M. S. M Zahid, K. Husain and F. Ousta, “Performance

Evaluation of Software Defined Networks with Single and Multiple Link

Failure Scenario under Floodlight Controller,” in 2021 International

Conference on Computing, Communication, and Intelligent Systems

(ICCCIS), pp. 959-965, 2021.

[5] G. Khetrapal and S. K. Sharma, “Demystifying Routing Services in

Software-Defined Networking,” Aricent Demystifying Routing Services

SDN, pp. 1-12, 2014.

[6] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S.

Azodolmolky, and S. Uhlig, “Software-Defined Networking: A

Comprehensive Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–

76, 2015.

[7] H. Zhang and J. Yan, “Performance of SDN Routing in Comparison with

Legacy Routing Protocols,” in 2015 International Conference on Cyber-

 References

161

Enabled Distributed Computing and Knowledge Discovery, pp. 491-494,

2015.

[8] W. Braun and M. Menth, “Software-Defined Networking Using OpenFlow:

Protocols, Applications and Architectural Design Choices,” Open Access

Future Internet, vol. 6, no. 2, pp. 302-336, 2014.

[9] S. Khan, A. Wahid and S. Tanvir, “Comparative Study of Routing Strategies

in Software Defined Networking,” in SAC ‘16: Proceedings of the 31st

Annual ACM Symposium on Applied Computing, pp. 696-702, 2016.

[10] I. Radu, P. Ciotirnae and F. Popescu, “Integrating Software Defined

Networks with Traditional Hardware Networks,” in 2018 International

Conference on Communications (COMM), pp. 309-312, 2018.

[11] Z. Hu, M. Wang, X. Yan, Y. Yin and Z. Luo, “A Comprehensive Security

Architecture for SDN,” in 2015 18th International Conference on Intelligence

in Next Generation Networks, 2015.

[12] I. Bedhief, M. Kassar and T. Aguili, “SDN-based Architecture Challenging

the IoT Heterogeneity,” in 2016 3rd Smart Cloud Networks & Systems

(SCNS), 2016.

[13] C. Tselios, I. Politis and S. Kotsopoulos, “Enhancing SDN Security for IoT-

related deployments through Blockchain,” in 2017 IEEE Conference on

Network Function Virtualization and Software Defined Networks (NFV-

SDN), 2017.

[14] L. Shif, F. Wang and C. Lung, “Improvement of Security and Scalability for

IoT Network Using SD-VPN,” in NOMS 2018 – 2018 IEEE/IFIP Network

Operations and Management Symposium, 2018.

[15] Y. Yu, X. Li, X. Leng, L. Song, K. Bu, Y. Chen, J. Yang, L. Zhang, K. Cheng

and X. Xiao, “Fault Management in Software-Defined Networking: A

 References

162

Survey,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 349-

392, 2018.

[16] A. Malik, B. Aziz, A. Al-Haj and M. Adda, “Software-Defined Networks: A

Walkthrough Guide From Occurrence To Data Plane Fault Tolerance,” PeerJ

Preprints Open Access, pp. 1-26, 2019.

[17] M. R. Parsaei, S. H. Khalilian and R. Javidan, “A Comparative Study on

Fault Tolerance Methods in IP Networks versus Software Defined

Networks,” International Academic Journal of Science and Engineering, vol.

3, no. 4, pp. 146-154, 2016.

[18] J. Chen, J. Chen, F. Xu, M. Yin and W. Zhang, “When Software Defined

Networks Meet Fault Tolerance: A Survey,” in G. Wang et al. (Eds):

International Conference on Algorithms and Architectures for Parallel

Processing (ICA3PP 2015), Part III, vol. 9530, pp. 351-368, 2015.

[19] C. M. Duran, E. A. Leal and J. F. Botero, “Improving fault tolerance in

critical networks through OpenFlow,” in 2017 IEEE Colombian Conference

on Communications and Computing (COLCOM), 2017.

[20] W. Li, W. Meng and L. F. Kwok, “A Survey on OpenFlow-based Software

Defined Networks: Security Challenges and Countermeasures,” Journal of

Network and Computer Applications, vol. 68, pp. 126-139, 2016.

[21] B. Isong, I. Mathebula and N. Dladlu, “SDN-SDWSN Controller Fault

Tolerance Framework for Small to Medium Sized Networks,” in 2018 19th

IEEE/ACIS International Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed Computing (SNPD), IEEE

Computer Society, pp. 43-51, 2018.

[22] S. Vissicchio, L. Vanbever and O. Bonaventure, “Opportunities and

Research Challenges of Hybrid Software Defined Networks,” ACM

SIGCOMM Computer Communication Review, vol. 44, no. 2, pp. 70-75,

2014.

 References

163

[23] T. Chen, M. Matinmikko, X. Chen, X. Zhou and P. Ahokangas, “Software

Defined Mobile Networks: Concept, Survey, and Research Directions,”

IEEE Communications Magazine, vol. 53, no. 11, pp. 126-133, 2015.

[24] I. F. Akyildiz, A. Lee, P. Wang, M. Luo and W. Chou, “Research Challenges

for Traffic Engineering in Software Defined Networks,” IEEE Network, vol.

30, no. 3, pp. 52-58, 2016.

[25] M. Casado, T. Garfinkel, A. Akella, M. Freedman, D. Boneh and N.

McKeown, “SANE: A Protection Architecture for Enterprise Networks,” in

Proceedings of the 15th Conference on USENIX Security Symposium, vol.

15, pp. 137-151, 2006.

[26] O. Akonjang, “SANE: A Protection Architecture for Enterprise Networks,”

pp. 1-10, 2007.

[27] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.

Rexford, S. Shenker and J. Turner, “OpenFlow: Enabling Innovation in

Campus Networks,” ACM SIGCOMM Computer Communication Review,

vol. 38, no. 2, pp. 69-74, 2008.

[28] M. Paliwal, D. Shrimankar and O. Tembhurne, “Controllers in SDN: A

Review Report,” IEEE Access, vol. 6, pp. 36256-36270, 2018.

[29] A. Nantoume, B. Kone, A. D. Kora and B. Niang, “Software Defined

Networking (SDN) for Universal Access,” in International Conference on

Emerging Technologies for Developing Countries (AFRICATEK 2018), pp.

133-144, 2018.

[30] G. Araniti, J. Cosmas, A. Lera, A. Molinaro, R. Morabito and A. Orsino,

“OpenFlow over Wireless Networks: Performance Analysis,” in 2014 IEEE

International Symposium on Broadband Multimedia Systems and

Broadcasting, 2014.

 References

164

[31] A. Kondel and A. Ganpati, “Evaluating System Performance for handling

scalability challenge in SDN,” in 2015 International Conference on Green

Computing and Internet of Things (ICGCIoT), 2015.

[32] A. Ghosh and T. Manoranjitham, “A study on load balancing techniques in

SDN,” International Journal of Engineering & Technology, vol. 7, no. 2.4,

pp. 174-177, 2018.

[33] S. Scott-Hayward, S. Natarajan and S. Sezer, “A Survey of Security in

Software Defined Networks,” IEEE Communications Surveys & Tutorials,

vol. 18, no. 1, pp. 623-654, 2016.

[34] M. Casado, N. Foster and A. Guha, “Abstractions for Software-Defined

Networks,” Communications of the ACM, vol. 57, no. 10, pp. 86-95, 2014.

[35] S. Narayana, J. Rexford and D. Walker, “Compiling Path Queries in

Software-Defined Networks,” in HotSDN ’14, 2014.

[36] R. Wang, D. Butnariu and J. Rexford, “OpenFlow-Based Server Load

Balancing Gone Wild,” in 11th USENIX Conference on Hot topics in

management of internet, cloud, and enterprise networks and services, pp. 1-

12, 2011.

[37] X. Xu and L. Hu, “A Software Defined Security Scheme Based on SDN

Environment,” in 2017 International Conference on Cyber-Enabled

Distributed Computing and Knowledge Discovery (CyberC), pp. 504-512,

2017.

[38] W. Liao, S. Kuai and C. Lu, “Dynamic Load-Balancing Mechanism for

Software-Defined Networking,” in 2016 International Conference on

Networking and Network Applications (NaNA), pp. 336-341, 2016.

[39] A. S. Nugroho, Y. D. Safitri and T. A. Setyawan, “Comparison Analysis of

Software Defined Network and OSPF Protocol Using Virtual Media,” in

 References

165

2017 IEEE International Conference on Communication, Networks and

Satellite (Comnetsat), pp. 106-111, 2017.

[40] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi and M. Conti, “A Survey

on the Security of Stateful SDN Data Planes,” IEEE Communications

Surveys & Tutorials, vol. 19, no. 3, pp. 1701-1725, 2017.

[41] S. Bera, S. Misra and M. Obaidat, “Mobility-Aware Flow-Table

Implementation in Software-Defined IoT,” in 2016 IEEE Global

Communications Conference (GLOBECOM), 2016.

[42] J. Jiang, H. Huang, J. Liao and S. Chen, “Extending Dijkstra’s Shortest Path

Algorithm for Software Defined Networking,” in 16th Asia-Pacific Network

Operations and Management Symposium, 2014.

[43] L. Kra, Y. Gondo, B. T. Goore and O. Asseu, “Contribution to the

Optimization of the Energy Consumption in SDN Networks,” Journal of

Sensor Technology, vol. 8, no. 3, pp. 59-67, 2018.

[44] T. Luo, H. Tan and T. S. Quek, “Sensor OpenFlow: Enabling Software-

Defined Wireless Sensor Networks,” IEEE Communications Letters, vol. 16,

no. 11, pp. 1896-1899, 2012.

[45] T. Theodorou and L. Mamatas, “CORAL-SDN: A Software-Defined

Networking Solution for the Internet of Things,” in 2017 IEEE Conference

on Network Function Virtualization and Software Defined Networks (NFV-

SDN), 2017.

[46] K. Wang, S. Kao and M. Kao, “An Efficient Load Adjustment for Balancing

Multiple Controllers in Reliable SDN Systems,” in 2018 IEEE International

Conference on Applied System Invention 2018 (ICASI), pp. 593-596, 2018.

[47] D. Wu, D. Arkhipov, E. Asmare, Z. Qin and J. McCann, “UbiFlow: Mobility

Management in Urban-scale Software Defined IoT,” in 2015 IEEE

Conference on Computer Communications (INFOCOM), 2015.

 References

166

[48] M. C. Nkosi, A. A. Lysko and S. Dlamini, “Multi-path Load Balancing for

SDN Data Plane,” in 2018 International Conference on Intelligent and

Innovative Computing Applications (ICONIC), 2018.

[49] I. P. A. Suwandika, M. A. Nugroho and M. Abdurahman, “Increasing SDN

Network Performance using Load Balancing Scheme on Web Server,” in

2018 6th International Conference on Information and Communication

Technology (ICoICT), 2018.

[50] H. Kim, J. R. Santos, Y. Turner, M. Schlansker, J. Tourrilhes and N.

Feamster, “CORONET: Fault Tolerance for Software Defined Networks,”

2012 20th IEEE International Conference on Network Protocols (ICNP),

2012.

[51] P. C. Fonseca and E. S. Mota, “A Survey on Fault Management in Software-

Defined Networks,” IEEE Communications Surveys & Tutorials, vol. 19, no.

4, pp. 2284-2321, 2017.

[52] F. Bannour, S. Souihi and A. Mellouk, “Distributed SDN Control: Survey,

Taxonomy and Challenges,” IEEE Communications Surveys & Tutorials,

vol. 20, no. 1, pp. 333-354, 2017.

[53] S. Bera, S. Misra, S. K. Roy and M. S. Obaidat, “Soft-WSN: Software-

Defined WSN Management Systems for IoT Applications,” IEEE Systems

Journal, vol. 12, no. 3, pp. 2074-2081, 2018.

[54] M. Abdullah, N. Al-awad and F. Hussein, “Performance Evaluation and

Comparison of Software Defined Networks Controllers,” International

Journal of Scientific Engineering and Science, vol. 2, no. 11, pp. 45-50.

2018.

[55] G. Wang, Y. Zhao, J. Huang and W. Wang, “The Controller Placement in

Software Defined Networking: A Survey,” IEEE Network, vol. 31, no. 5, pp.

21-27, 2017.

 References

167

[56] Y. Jimenez, C. Cervello-Pastor and A. Garcia, “On the controller placement

for designing a distributed SDN control layer,” in 2014 IFIP Networking

Conference, 2014.

[57] K. Kuroki, N. Matsumoto and M. Hayashi, “Scalable OpenFlow Controller

Redundancy Tackling Local and Global Recoveries,” in 5th International

Conference on Advances in Future Internet, pp. 61-66, 2013.

[58] A. Gonzalez, G. Nencioni, B. E. Helvik and A. Kamisinski, “A Fault-

Tolerant and Consistent SDN Controller,” in 2016 IEEE Global

Communications Conference (GLOBECOM), 2016.

[59] L. Sidki, Y. Ben-Shimol and A. Sadovski, “Fault Tolerant Mechanisms for

SDN Controllers,” in IEEE Conference on Network Function Virtualization

and Software Defined Networks (NFV-SDN), pp. 1-6, 2016.

[60] N. Medhi and D. K. Saikia, “OpenFlow-Based Multi-controller Model for

Fault-Tolerant and Reliable Control Plane,” in Smart Computing Paradigms:

New Progresses and Challenges Proceeding of ICACNI 2018, vol. 2, pp. 61-

73, 2018.

[61] Y. E. Oktian, S. Lee, H. Lee and J. Lam, “Distributed SDN controller system:

A survey on design choice,” Computer Networks, vol. 121, pp. 100-111,

2017.

[62] N. Katta, H. Zhang, M. Freedman and J. Rexford, “Ravana: Controller Fault-

Tolerance in Software-Defined Networking”, in 1st ACM SIGCOMM

Symposium on Software Defined Networking Research (SOSR’ 15), pp. 1-

12, 2015.

[63] A. Mantas and F. V. Ramos, “Rama: Controller Fault Tolerance in Software-

Defined Networking Made Practical,” ArXiv, vol. abs/1902.01669, 2019.

[64] M. Karakus and A. Durresi, “A Survey: Control Plane Scalability Issues and

Approaches in Software-Defined Networking (SDN),” Computer Networks,

vol. 112, pp. 279-293, 2017.

 References

168

[65] O. Blial, M. B. Mamoun and R. Benaini, “An Overview on SDN

Architectures with Multiple Controllers,” Journal of Computer Networks

and Communications, vol. 2016, pp. 1-8, 2016.

[66] Y. Zhang, L. Cui, W. Wang and Y. Zhang, “A Survey on Software Defined

Networking with Multiple Controllers,” Journal of Network and Computer

Applications, vol. 103, pp. 101-118, 2018.

[67] A. U. Rehman, R. L. Aguiar and J. P. Barraca, “Fault-Tolerance in the Scope

of Software-Defined Networking (SDN),” IEEE Access, vol. 7, pp. 124474-

124490, 2019.

[68] P. Dutta and R. Chatterjee, “A Novel Solution for Controller Based Software

Defined Network (SDN),” in Communications in Computer and Information

Science (CCIS), vol. 836, pp. 90-98, 2018.

[69] S. Asadollahi, B. Goswami and M. Sameer, “Ryu Controller’s Scalability

Experiment on Software Defined Networks,” in 2018 IEEE International

Conference on Current Trends in Advanced Computing (ICCTAC), 2018.

[70] Y. Chen, C. Li and K. Wang, “A Fast Converging Mechanism for Load

Balancing among SDN Multiple Controllers,” in 2018 IEEE Symposium on

Computers and Communications (ISCC), pp. 00682-00687, 2018.

[71] Y. Zhou, Y. Wang, J. Yu, J. Ba and S. Zhang, “Load Balancing for Multiple

Controllers in SDN Based on Switches Group,” in 2017 19th Asia-Pacific

Network Operations and Management Symposium (APNOMS), pp. 227-

230, 2017.

[72] J. Yu, Y. Wang, K. Pei, S. Zhang and J. Li, “A Load Balancing Mechanism

for multiple SDN Controllers based on Load Informing Strategy,” in 2016

18th Asia-Pacific Network Operations and Management Symposium

(APNOMS),2016.

 References

169

[73] J. Ansell, W. G. Seah, B. Ng and S. Marshall, “Making Queueing Theory

More Palatable to SDN/OpenFlow-based Network Practitioners,” in NOMS

2016 – 2016 IEEE/IFIP Network Operations and Management Symposium,

2016.

[74] G. Nencioni, B. Helvik, A. Gonzalez, P. Heegaard and A. Kamisinski,

“Availability Modelling of Software-Defined Backbone Networks,” in 2016

46th Annual IIE/IFIP International Conference on Dependable Systems and

Networks Workshop (DSN-W), 2016.

[75] B. Xiong, X. Peng and J. Zhao, “A Concise Queuing Model for Controller

Performance in Software-Defined Networks,” Journal of Computers, vol. 11,

no. 3, pp. 232-237, 2016.

[76] P. Kaur and A. Bhandari, “A Comparison of Load Balancing Strategy in

Software Defined Networking,” International Journal of Research in

Electronics and Computer Engineering, vol. 6, no. 4, pp. 1018-1025, 2018.

[77] D. Chourishi, A. Miri, M. Milic and S. Ismaeel, “Role-Based Multiple

Controllers for Load Balancing and Security in SDN,” in 2015 IEEE Canada

International Humanitarian Technology Conference (IHTC2015), 2015.

[78] K. Benzekki, A. E. Fergougui and A. E. Elalaoui, “Software-defined

networking (SDN): a survey,” Security and Communication Networks, vol.

9, pp. 5803-5833, 2017.

[79] N. Petroulakis, G. Spanoudakis and I. Askoxylakis, “Fault Tolerance Using

an SDN Pattern Framework,” in GLOBECOM 2017 - 2017 IEEE Global

Communications Conference, 2017.

[80] A. Banerjee and D. M. A. Hussain, “EXPRL: experience and predication

based load balancing strategy for multi-controller software defined

networks,” International Journal of Information Technology, 2020.

 References

170

[81] R. K. Das, F. H. Pohrmen, A. K. Maji and G. Saha, “FT-SDN: A Fault-

Tolerant Distributed Architecture for Software Defined Network,” Wireless

Personal Communications, vol. 114, pp. 1045-1066, 2020.

[82] M. Raza, S. Sivakumar, A. Nafarieh and B. Robertson, “A Comparison of

Software Defined Network (SDN) Implementation Strategies,” Procedia

Computer Science, vol. 32, pp. 1050-1055, 2014.

[83] T. Hu, Z. Guo, P. Yi, T. Baker and J. Lan, “Multi-controller Based Software-

Defined Networking: A Survey,” IEEE Access, vol. 6, pp. 15980-15996,

2018.

[84] F. Kurtz, D. Overbeck, C. Bektas and C. Wietfeld, “Control Plane Fault

Tolerance for Resilient Software-Defined Networking based Critical

Infrastructure Communications,” in 2018 IEEE 5G World Forum (5GWF),

2018.

[85] S. Muhizi, G. Shamshin, A. Muthanna, R. Kirichek, A. Vladyko and A.

Koucheryavy, “Analysis and Performance Evaluation of SDN Queue

Model,” in International Conference on Wired/Wireless Internet

Communication, 2017.

[86] T. Issa, Z. Raoul, A. Konate, J. C. Adepo, B. Cousin and A. Olivier,

“Analytical Load Balancing Model in Distributed Open Flow Controller

System,” Engineering, vol. 10, no. 12, pp. 863-875, 2018.

[87] H. Yu, K. Li and H. Qi, “An Active Controller Selection Scheme for

Minimizing Packet-In Processing Latency in SDN,” Security and

Communication Networks, vol. 2019, pp. 1-11, 2019.

[88] J. Cui, Q. Lu, H. Zhong, M. Tian and L. Liu, “A Load-balancing Mechanism

for Distributed SDN Control Plane Using Response Time,” IEEE

Transactions on Network and Service Management, vol. 15, no. 4, pp. 1197-

1206, 2018.

 References

171

[89] W. H. F. Aly, “Generic Controller Adaptive Load Balancing (GCALB) for

SDN Networks,” Journal of Computer Networks and Communications, vol.

2019, pp. 1-9, 2019.

[90] O. Akanbi, A. Aljaedi and X. Zhou, “Proactive Load Shifting for Distributed

SDN Control Plane Architecture,” in 2019 16th IEEE Annual Consumer

Communications & Networking Conference (CCNC), 2019.

[91] J. Xu, L. Wang, C. Song and Z. Xu, “Minimizing Multi-Controller

Deployment Cost in Software-Defined Networking,” in 2019 IEEE

Symposium on Computers and Communications (ISCC), 2019.

[92] A. Mahjoubi, O. Zeynalpour, B. Eslami and N. Yazdani, “LBFT: Load

Balancing and Fault Tolerance in distributed controllers,” in 2019

International Symposium on Networks, Computers and Communications

(ISNCC), 2019.

[93] W. H. F. Aly, “Controller Adaptive Load Balancing for SDN Networks,” in

2019 Eleventh International Conference on Ubiquitous and Future Networks

(ICUFN), pp. 514-519, 2019.

[94] A. Mondal, S. Misra and I. Maity, “Buffer Size Evaluation of OpenFlow

Systems in Software-Defined Networks,” IEEE Systems Journal, vol. 13, no.

2, pp. 1359-1366, 2019.

[95] M. Escheikh and K. Barkaoui, “Scalable Load Balancing Scheme for

Distributed Controllers in Software Defined Data Centers,” in 2019 Sixth

International Conference on Software Defined System (SDS), 2019.

[96] B. Lantz and B. O’Connor, “A Mininet-based Virtual Testbed for Distributed

SDN Development,” ACM SIGCOMM Computer Communication Review,

vol. 45, no. 4, pp. 365-366, 2015.

[97] B. Lantz, B. Heller and N. McKeown, “A Network in a Laptop: Rapid

Prototyping for Software-Defined Networks,” in 9th ACM SIGCOMM

Workshop on Hot Topics in Networks, pp. 1-6, 2010.

 References

172

[98] “Getting Started - Ryu 4.30 Documentation,” Available:

https://ryu.readthedocs.io/en/latest/getting_started.html, [Online; accessed

April 30, 2020].

[99] “Ryu SDN Framework,” Available: https://osrg.github.io/ryu/, [Online;

accessed April 30, 2020].

[100] L. Kleinrock, Queueing Systems, Volume 1: Theory. Wiley-Interscience,

1975.

[101] T. Issariyakul and E. Hossain, Introduction to Network Simulator NS2.

Springer, 2012.

[102] “Mininet,” Available: http://mininet.org/, [Online; accessed April 30, 2020].

[103] L. Mamushiane, J. Mwangama and A. Lysko, “Given a SDN Topology, How

Many Controllers are Needed and Where Should They Go?,” in 2018 IEEE

Conference on Network Function Virtualization and Software Defined

Networks (NFV-SDN), 2018.

[104] M. K. Faraj, A. Al-Saadi and R. J. Albahadili, “Load Balancing using queue

length in SDN based switches,” Journal of Xi’an University of Architecture

& Technology, vol. XII, no. IV, pp. 2603-2611, 2020.

[105] A. Mondal, S. Misra and I. Maity, “AMOPE: Performance Analysis of

OpenFlow Systems in Software-Defined Networks,” IEEE Systems Journal,

vol. 14, no. 1, pp. 124-131, 2020.

[106] M. Hamdan, E. Hassan, A. Abdelaziz, A. Elhigazi, B. Mohammed, S. Khan,

A. Vasilakos and M. N. Marsono, “A Comprehensive Survey of Load

Balancing Techniques in Software-Defined Network,” Journal of Network

and Computer Applications, vol. 174, pp. 1-35, 2021.

[107] S. Gu, J. Kim, Y. Kim, C. Moon and I. Yeom, “Controlled Queue

Management in Software-Defined Networks,” in 2015 5th International

Conference on IT Convergence and Security (ICITCS), 2015.

https://ryu.readthedocs.io/en/latest/getting_started.html
https://osrg.github.io/ryu/
http://mininet.org/

 References

173

[108] P. Vizarreta, P. Heegaard, B. Helvik, W. Kellerer and C. M. Machuca,

“Characterization of Failure Dynamics in SDN Controllers,” in 2017 9th

International Workshop on Resilient Networks Design and Modeling

(RNDM), pp. 1-7, 2017.

[109] S. Rowshanrad, S. Namvarasl and M. Keshtgari, “A Queue Monitoring

System in OpenFlow Software Defined Networks,” Journal of

Telecommunications and Information Technology, pp. 39-43, 2017.

[110] G. Huang and H. Y. Youn, “Proactive eviction of flow entry for SDN based

on hidden Markov model,” Frontiers of Computer Science, vol. 14, no. 4, pp.

1-10, 2020.

[111] A. Hussein, L. Chadad, N. Adalian, A. Chehab, I. Elhajj and A. Kayssi,

“Software-Defined Networking (SDN): the security review,” Journal of

Cyber Security Technology, vol. 4, no. 1, pp. 1-66, 2020.

[112] A. Tootoonchian and Y. Ganjali, “HyperFlow: A Distributed Control Plane

for OpenFlow,” in Proceedings of the 2010 internet network management

conference on Research on enterprise networking, pp. 3-3, 2010.

[113] T. Koponen et al., “Onix: A distributed control platform for large-scale

production networks,” in Proceedings of the 9th USENIX Conference on

Operating Systems Design and Implementation (OSDI’10), pp. 351-364,

2010.

[114] R. Sherwood et al., “FlowVisor: A Network Virtualization Layer,” Deutsche

Telekom Inc. R&D Lab, Stanford, Nicira Networks, Tech. Rep., pp. 1-14,

2009.

[115] K. Phemius et al., “DISCO: Distributed Multi-domain SDN Controllers,” in

Network Operations and Management Symposium (NOMS), 2013.

[116] P. Berde et al., “ONOS: Towards an Open, Distributed SDN OS,” in The

Workshop on Hot Topics in Software Defined Networking (HotSDN’14),

pp. 1-6, 2014.

 References

174

[117] Y. Chang et al., “Hydra: Leveraging Functional Slicing for Efficient

Distributed SDN Controllers,” CoRR, 2016.

[118] A. Dixit et al., “ElastiCon; An elastic distributed SDN controller,” in 2014

ACM/IEEE Symposium on Architectures for Networking and

Communications Systems (ANCS), pp. 17-27, 2014.

[119] B. Lee et al., “IRIS: The OpenFlow-based Recursive SDN Controller,” in

16th International Conference on Advanced Communication Technology, pp.

1227-1231, 2014.

[120] S. Hassas et al., “Kandoo: A Framework for Efficient and Scalable

Offloading of Control Applications,” in Proceedings of 1st Workshop on Hot

Topics in Software Defined Networks, pp. 19-24, 2012.

[121] F. Botelho et al., “SMaRLight: A Practical Fault-Tolerant SDN Controller,”

in Proc. 3rd European Workshop on Software Defined Network, pp. 6, 2014.

[122] J. Medved et al., “OpenDaylight: Towards a Model-Driven SDN Controller

Architecture,” in Proceedings of IEEE International Symposium on a World

of Wireless, Mobile and Multimedia Networks, pp. 1-6, 2014.

[123] L. Zhu et al., “SDN Controllers: Benchmarking & Performance Evaluation,”

Networking and Internet Architecture, vol. arXiv:1902.04491v1, pp. 1-12,

2019.

[124] S. K Vishwakarma et al., “Performance Analysis of different Load Balancing

Algorithms in SDN Based Data Center Networks,” International Journal of

Engineering Research & Technology, vol. 11, no. 07, pp. 30-35, 2022.

[125] O. Belkadi and Y. Laaziz, “A Systematic and Generic Method for Choosing

A SDN Controller,” Journal of Computer Networks and Communications,

vol. 5, pp. 239-247, 2017.

 References

175

[126] L. Girish and S. K N Rao, “Mathematical Tools and Methods for Analysis

of SDN: A Comprehensive Survey,” in 2016 2nd International Conference on

Computing and Informatics (IC3I), pp. 774-780, 2016.

[127] S. Askar and F. Keti, “Performance Evaluation of Different SDN

Controllers: A Review,” International Journal of Science and Business, vol.

5, no. 6, pp. 67-80, 2021.

[128] N. M Kazi et al., “Performance Evaluation of RYU SDN Controller Using

Mininet,” International Research Journal of Engineering and Technology,

vol. 8, no. 10, pp. 892-897, 2021.

[129] O. M. A. Alssaheli et al., “Software Defined Network based Load Balancing

for Network Performance Evaluation,” International Journal of Advanced

Computer Science and Applications, vol. 13, no. 4, pp. 117-124, 2022.

[130] M. Elmoslemany, “Performance Analysis in Software Defined Network

Controllers,” in 15th International Conference on Computer Engineering and

Systems (ICCES), 2020.

[131] E. D. Canedo et al., “Performance Evaluation of Software Defined Network

Controllers,” in Proceedings of the 10th International Conference on Cloud

Computing and Services Science (CLOSER 2020), pp. 363-370, 2020.

List of

List of Publications

177

LIST OF PUBLICATIONS

PUBLISHED/ACCEPTED/COMMUNICATED

1. Manmohan Sharma, Deepjyot Kaur Ryait and V. K. Saraswat,

“Implementation of Software Defined Networks in Internet of Things,”

Journal of Emerging Technologies and Innovative Research (ISSN:2349-

5162), vol. 5, no. 12, pp. 469-475, 2018.

2. Manmohan Sharma, Deepjyot Kaur Ryait and V. K. Saraswat, “A

Comparative Study of Traditional Networks with Software Defined

Networks,” Journal of The Gujarat Research Society (ISSN:0374-8588), vol.

21, no. 6, pp. 483-490, 2019.

3. Manmohan Sharma, Deepjyot Kaur Ryait and V. K. Saraswat, “Fault

Tolerance Mechanisms in Software Defined Networks,” Journal of The

Gujarat Research Society (ISSN:0374-8588), vol. 21, no. 6, pp. 491-499,

2019.

4. Deepjyot Kaur Ryait and Manmohan Sharma, “To eliminate the threat of a

Single Point of Failure in the SDN by using the Multiple Controllers,”

International Journal of Recent Technology and Engineering (ISSN: 2277-

3878), vol. 9, no. 2, pp. 234-241, 2020.

5. Deepjyot Kaur Ryait and Manmohan Sharma, “Implementation of Queuing

Models with SDN for Load Balancing in Multiple Controller Environment,”

International Journal of Advanced Trends in Computer Science and

Engineering (ISSN: 2278-3091), vol. 9, no. 4, pp. 5872-5879, 2020.

6. Deepjyot Kaur Ryait and Manmohan Sharma, “Various Role of the

Multiple Controllers in SDN Environment,” International Journal of

Advances in Electronics and Computer Science (ISSN: 2394-2835), vol. 7,

no. 12, pp. 17-21, 2020.

List of Publications

178

7. Deepjyot Kaur Ryait and Manmohan Sharma, “Load Balancing between

the Multiple SDN Controllers by using Queuing Technique,” International

Journal of Advances in Electronics and Computer Science (ISSN: 2394-

2835), vol. 7, no. 12, pp. 22-26, 2020.

List of

List of Conferences

180

LIST OF CONFERENCES

PUBLISHED/ACCEPTED/COMMUNICATED

1. Deepjyot Kaur Ryait and Manmohan Sharma, “Load Balancing between the

Multiple SDN Controllers by Using Queuing Technique,” In International

Conference on Recent Advances in Engineering, Technology and Science

(ICRAETS), pp. 1-5, 2020.

2. Deepjyot Kaur Ryait and Manmohan Sharma, “Various Role of the Multiple

Controllers in SDN Environment,” in International Conference on Electrical,

Electronics, Computer Science and Information Technology (ICEECSIT), pp. 6-

10, 2020.

3. Deepjyot Kaur Ryait and Manmohan Sharma, “Significance of Controller in

Software Defined Networks,” in 15th IEEE International Conference on

Industrial and Information Systems (ICIIS-2020), pp. 561-566, 2020.

4. Deepjyot Kaur Ryait and Manmohan Sharma, “Load Balancing using

Probability Distribution in Software Defined Network,” in International

Conference on Advances in Data-driven Computing and Intelligent Systems

(ADCIS 2022) Lecture Notes in Networks and Systems Book Series (LNNS)

Springer Singapore, vol. 698, pp. 183-200, 2023.

5. Deepjyot Kaur Ryait and Manmohan Sharma, “Statistical Influence of

Parameters on the Performance of SDN,” in 4th International Conference on

Communication and Intelligent Systems (ICCIS 2022) Lecture Notes in

Networks and Systems Book Series (LNNS) Springer Singapore, vol. 689, pp.

369-384, 2023.

6. Deepjyot Kaur Ryait and Manmohan Sharma, “Comparative Analysis of SDN

Controllers,” in CODD100 – International Conference on Networks, Intelligence

and Computing (ICONIC-2023) is presented and accepted for publication in the

Scopus-indexed Taylor & Francis Group 2023.

List of Conferences

181

7. Deepjyot Kaur Ryait and Manmohan Sharma, “Performance Evaluation of

SDN Controllers,” in 7th International Conference on Inventive Communication

and Computational Technologies (ICICCT – 2023) is presented and accepted for

publication in the Scopus-indexed Springer Lecture Notes in Networks and

Systems 2023.

8. Deepjyot Kaur Ryait and Manmohan Sharma, “A Novel Approach for

Reducing the Single Point Failure in Software Defined Networks,” in 2nd

International Conference on Recent Advances in Computing Sciences (RACS-

2023) is accepted.

