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                                         ABSTRACT 

 

 

Agriculture occupies an important place in India's economy. About 70% of the country’s 

population’s livelihood is provided by agriculture and a contribution around 50 % to the 

national income. Agricultural development is considered the foundation of the economic 

growth of India. 

The development of technology has led to a steady rise in grain production. But even then 

we can see that in the viciousness of the introduction of high yielding varieties, the use of 

new mechanisms in farming has improved irrigation management, but the green revolution 

has not reached the predictable success. After harvesting, the food grains are stored in 

different traditional and primitive storage structures for shorter or longer periods where 

immense losses occur not only in terms of quality but in quantity also which are caused 

by many abiotic and biotic factors. The different factors that are causing a loss in storage 

are weevils, beetles, moths and rodents. 

Insect infestation is one of the main factors causing immense damage to the stored grains. 

There is a need to control insect infestation to meet the increasing needs of human beings. 

There were many ways by which insect infestation was controlled like 

 Maintaining a temperature unfavorable for the growth of insects 

 The Sterile Insect Release Method 

 To model the population redistribution for adults like C. ferruginous, a transport 

(diffusion) equation was used in stored grain. 

 Insects exposure to phosphine gas 

 Chemicals 

 Light emitting diodes were used to catch the insects 

 The Superiority of one species over the other to settle and dominate new patches 

 An Increase in the concentration of carbon dioxide at particular temperatures 

leads to a reduction in adult emergence and also the killing of eggs.  
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The insect’s growth mainly depends on different factors like temperature, humidity, 

suitable location and availability of food. To study the insect’s growth and the different 

factors responsible for its growth, developing a mathematical model is necessary. 

In order to research the growth and development of insects, this thesis is built around 

three main goals. It tried to answer the following questions 

 Dependency of damage of grains on insect population 

 Does insect growth show the same behavior under a constant and fluctuating 

environmental ecosystem? 

 How Angoumois grain moth affects stored grains in an environmental ecosystem?           

Research Objectives are 

1.  To develop the model describing small outbreak of a % of damaged grains in 

storage ecosystem. 

2. To develop and validate a mathematical model that describes the population 

growth of insects in a randomly fluctuating environmental ecosystem. 

3. To develop and validate a mathematical model to analyze the effect of Sitotroga 

Cerealella on grains in the environmental ecosystem 

The whole work is discussed in different chapters and the abstracts related to each   of 

the chapters are given below: 

 

Chapter 1 

This chapter deals with the introduction along with the literature review giving a brief 

background for the upcoming chapters. Different papers were reviewed to get to know 

the biology of insects, to study different factors responsible for the growth and 

development of insects, hot spot area, the different methods applied to control the 

growth and the development of insects and mathematical methods.  

Chapter 2 

A Mathematical model had been proposed and analyzed to study the relation between 

the percentage of damaged grains and the insect population. It had been observed that 

the percentage of damaged grains increased with the increase in the insect population. 

The linear differential equation was formed with the help of some assumptions. 

For this, we laid down certain assumptions as follows: 
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1. The conditions were sufficiently unfavorable that the outbreak never became large. 

2. For conciseness, we considered that a single insect damaged the grains at first 

rapidly. 

An experiment was performed on different varieties of paddy under storage conditions, 

the environmental factors i.e. R.H. temperature and moisture content was maintained 

75 % with KOH for two weeks and moisture content varied from 11.3 to 12.0 % after 

two weeks. At the end of the experiments, % of damaged grains, total population of 

insects and loss of weight were recorded. We concluded from this model with 

experimental data and plotted graph that the % damage of grains increased with the 

increasing number of the insect populations. 

Chapter 3  

The mathematical model had been developed and validated that described the growth 

in population in a randomly fluctuating environmental ecosystem. A mathematical 

model was formulated explaining insect population and their growth in an arbitrarily 

changeable environmental ecosystem. The changes in the net growth rate of insects 

were discussed using the stochastic models. The changes in birth rate and death rate 

were studied. It tried to answer different questions like “Did insects show the same 

behavior under constant and fluctuating environments”? We studied the insect 

population changed in a successful colonized population in a randomly fluctuating 

environment. We also discussed the death rate changed using the model that 

approximated the situation describing a population that fluctuated around an average 

far from zero.   

Chapter 4         

     The most noteworthy pest of stored agricultural products worldwide is the     

Angoumois grain moth Sitotroga Cerealella. Its infestations rise during storage, in pre-

harvest or post-harvest 

     For this problem an entomological data was selected. A Mathematical Model was 

developed which was based on two varieties viz. % grain infestation and % loss 

in germination. For 3, 6 and 9 months of duration losses in grains weight and 

germination of rice varieties infested by Sitotroga Cerealella were observed.   From 

the data, it was observed that the % of germination value lost was   exhibiting 
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oscillating behaviour with regard to (Kernel)% grain infestation. Thus, it was 

hypothesized that % of germination value lost in terms of grain infestation 

percentage followed a law with an oscillating behaviour demonstrated by the 

solution. So, a model had been developed by using differential equations of second 

order by taking the assumption that the rate of change of % of germination loss with 

respect to grain infestation was proportional to germination loss. Regression was used. 

Line of best fit was found. 

     We concluded from this model that infestation by Sitotroga Cerealella brought 

considerable damage to impact significant variations in germination when different 

storage periods were taken. As the storage period increased insect infestation 

increased progressively and the germination decreased following a more or less 

similar trend. Insect infestation was directly proportional to the number of insects 

presented inside the store. This mathematical model laid focused on the role of 

infestation by insects during storage which led to the reduction in germination which 

proved its efficiency in itself.   

      Chapter 5 

                      In this chapter, a mathematical model had been developed and validated to analyze the 

growth in population through a nonlinear stochastic process. By employing nonlinear 

stochastic differential equations for growth and the associated Fokker-Plank equations 

for the probability densities that were time dependent, the evolution of the probability 

density of an insect population was examined. It was clear that the variance behaviour 

was dependent on the beginning conditions, however in the case of the mean, the impact 

of the early conditions vanished quickly. As the growth of the insects continued, we 

noticed how the mean and variance responded differently. The behavior of the mean 

was that it was monotonically increasing but for the case of the variance, at some time 

the variance rose above the steady-state variance before the process reached the steady-

state and then as the growth proceeded and shrank back to zero, the variance would fall 

back to zero. 
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Chapter 6         

Analysis of Cryptolestes ferrugineus (Stephens) (Coleoptera: Laemophloeidae) 

population dynamics showed that population varied in small patches and large patches. 

The two main variables that controlled the dynamics of population, as determined by 

key factor analysis, were the temperature and the quantity of insects previously 

mentioned. The number of insects grew as the total number of degree days increased. 

In none of the tested scenarios did nine population-based unstructured models suit the 

bug counts. The optimum equation for this relationship has three variables and was 

sigmoidal. Temperature, temperature change, and the earlier number of insects were 

the main factors determining Cryptolestes ferrugineus population trends in grain bins. 

These elements were  considered when creating this new model, which accurately 

predicted the insect   population before it reached its peak density 

 Chapter 7 

       This chapter discussed about the future scope of the research. Different areas where    

the research could be useful is detailed. The future scope of the research is wide and 

promising. The development of more sophisticated models, combined with the 

integration of machine learning algorithms, will likely lead to significant advancements 

in our understanding of insect behavior and the management of insect pest in stored 

grain systems. 
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CHAPTER -1 

 

 
1.1 INTRODUCTION 

 

 
Grains hog a big share in the plates of Indians. Grains thus play a great role in the 

country’s economy as it caters to the feeding needs of a large population. Moreover, 

grains can be transported and stored with general care for a long time. Technology is 

growing by leaps and bounds today which has also given a boost to the production of 

grains. Owing to this technology boom 2,000,000,000 tonnes of grains are produced 

per year. India owns the second largest part of the land in the world which is agricultural 

amounting to 179,900,000 hectares. India produces about 25 % of the total global 

production of pulses in the world and consumes 27 % of world consumption and 

imports 14 % of pulses in the world. According to FEO statistics (2010) on world 

agriculture, wheat, rice, lentils, and millet are all produced in the second-largest 

quantities by India. In 2017–18 total food grain production was near to 75,000,000 

tonnes.The details about production for the years 2016-2022 of rice, wheat, unmilled 

paddy and coarse grain is shown in tabular form.                                                            

                                    
                                     Table 1.1 – Representing Year 2016 

Item Jan. Feb. Mar. Apr. May. June. July. Aug. Sept. Oct. Nov. Dec. 

Rice 125.8 161.6 194.2 221.6 213.2 207.9 194.1 180.0 165.3 144.7 125.2 110.5 

Wheat 237.8 203.2 168.6 145.3 314.4 326.3 301.8 275.9 242.4 213.2 188.4 164.9 

Total 364.7 365.1 362.8 366.9 527.6 534.2 495.9 455.9 407.7 358.0 313.6 275.5 

Unmilled 

Paddy 
199.0 189.2 146.4 99.25 96.50 95.91 78.44 61.69 32.03 20.8 186.8 237.2 

Coarse 

grain 
0.99 0.44 1.34 2.51 2.69 2.58 2.54 2.54 2.53 1.32 1.40 1.59 
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Table 1.2 – Representing Year 2017       

 

 

 

 

Item Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec 

Rice 

 

163.2 

 

 

199.9 

 

236.7 249.2 256.1 246.1 235.2 219.0 215. 7 189.3 166.5 147.8 

Wheat 

 

196.6 

 

178.4 155.5 136.3 356.4 438.5 416.4 407.5 375.1 359.2 336.3 309.2 

Total 

 

358.1 

 

379.4 386.3 385.1 609.1 686.8 652.2 629.1 595.8 544.5 495.8 456.0 

Unmilled 

Paddy 
255.4 213.0 149.4 79.1 68.4 79.7 66.2 48.1 33.4 17.56 169.6 269.5 

Coarse 

grain 
1.65 1.79 1.39 1.19 0.96 0.99 0.96 0.82 0.65 0.49 2.12 

 

2.18 

 

  

  Table 1.3– Representing Year 2018      

 

 

 

 

 

Item Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec 

Rice 

 

133.7 
 

171.2 205.0 231.8 229.2 222.0 211.4 199.5 182.8 164.0 141.2 132.2 

Wheat 138.4 116.2 95.29 81.59 297.4 335.4 323.7 301.5 279.1 259.6 239.5 217.6 

Total 273.2 286.8 299.3 312.4 525.6 556.4 534.1 498.7 458.9 431.7 387.7 374.9 

Unmilled 

  Paddy 
241.1 185.1 166.6 101.0 92.30 101.6 81.96 58.38 33.98 18.36 197.4 254.8 

Coarse  

grain 
1.48 1.21 1.38 1.62 1.69 1.51 1.52 1.52 1.53 1.35 1.39 1.39 
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Table 1.4 – Representing Year 2019      

 

 

 

 

 

                               

                                                  Table 1.5 – Representing Year 2020    

 

 

 

  Item Jan Feb Mar Apr May June July Aug Sep Oct Nov 

    

Dec 

 

Rice 183.9 229.9 268.9 295.9 290.5 276.8 289.2 276.3 251.4 256.1 233.0 

 

216.7 

 

Wheat 

 

273.2 

 

 

238.3 

 

 

202.2 

 

 

168.9 

 

 

335.6 

 

 

468.6 

 

 

459.3 

 

 

438.8 

 

 

416.9 

 

 

398.1 

 

 

375.7 

 

356.7 

Total 

 

456.1 

 

  

469.2 

 

 

465.0 

 

 

465.8 

 

 

626.1 

 

 

745.4 

 

 

748.5 

 

 

719.1 

 

 

678.3 

 

 

645.3 

 

 

614.8 

 

 

565.5 

 

Unmilled 

 

  Paddy 

 

276.1 

 

 

269.8 

 

 

205.4 

 

 

158.5 

 

 

135.8 

 

 

125.0 

 

 

109.1 

 

 

80.9 

 

 

65.7 

 

 

43.55 

 

 

198.5 

 

 

254.1 

 

Coarse 

 grain 

 

2.05 

 

 

2.15 

 

 

1.25 

 

 

0.48 

 

 

1.41 

 

 

1.48  

 

 

1.49 

 

 

1.57 

 

 

1.49 

 

 

1.15 

 

 

3.98 

 

 

3.11 

 

  Item Jan Feb  Mar  Apr  May June July 

 

Aug 

 

Sept Oct Nov Dec 

Rice 236.1 276.5 307.7 325.3 296.5 276.4 275.7 256.4 266.4 248.6 209.0 

 

213.6 

 

Wheat 

 

329.9 

 

 

314.6 

 

 

276.2 

 

 

249.0 

 

 

359.7 

 

 

559.2 

 

 

546.9 

 

 

413.2 

 

 

415.9 

 

 

386.1 

 

 

366.7 

 

 346.5 

Total 
 
566.1 

 

  
579.2 

 

 
586.9 

 

 
645.7 

 

649.2 
 
833.6 

 

 
823.6 

 

669.6 
 
679.3 

 

 
643.7 

 

 
563.7 

 

 
554.4 

 

Unmilled 

 

Paddy 

 

279.8 

 

 

257.9 

 

 

286.0 

 

 

256.3 

 

 

239.2 

 

 

219.9 

 

 

186.9 

 

 

77.92 

 

 

57.7 

 

 

49.55 

 

 

199.5 

 

 

265.1 

 

Coarse 

 grain 

 

3.44 

 

 

3.14 

 

 

0.23 

 

 

1.37 

 

 

2.16 

 

 

2.16 

 

 

1.46 

 

 

1.37 

 

 

1.46 

 

 

1.13 

 

 

3.76 

 

 

3.31 
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    Table 1.6 – Representing Year 2021      

 

 

 

Table 1.7 – Representing Year 2022       

 

“Source: The Central Pool's stock of food grains from 2016 to 2022 (Figs.in lakh million tonnes)” 

 

Every year, 150 million tonnes of food grains are produced in India. India's production 

of food grains grew by 6.74 million tonnes in 2019–20 compared to 2018–19. 

Additionally, production in 2019–20 grew by 26.20 million tonnes compared to the 

average production throughout the years from 2013 to 2018. A record 117.47 million 

Item Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec 

Rice 186.6 243.9 282.3 291.1 304.8 299.2 296.8 291.1 268.3 253.2 229.2 
 
213.0 

 

Wheat 

 

342.9 

 

 

318.3 

 

 

295.4 

 

 

273.0 

 

 

525.6 

 

 

602.9 

 

 

549.9 

 

 

564.8 

 

 

517.8 

 

 

468.5 

 

 

419.8 

 

378.5 

Total 

 

364.7 

 

  

365.7 

 

 

362.8 

 

 

366.8 

 

 

527.6 

 

 

534.2 

 

 

495.9 

 

 

455.6 

 

 

786.2 

 

 

721.7 

 

 

649.8 

 

 

591.5 

 

Unmilled 
 

Paddy 

 
404.2 

 

 
387.9 

 

 
345.0 

 

 
310.6 

 

 
262.2 

 

 
286.9 

 

 
289.8 

 

 
229.2 

 

 
176.1 

 

 
140.6 

 

 
254.6 

 

 
358.8 

 

Coarse 

 grain 

 

3.20 

 

3.52 

 

4.66 

 

7.97 

 

7.50 

 

7.44 

 

6.30 

 

5.4 

 

2.51 

 

1.88 

 

1.49 

 

1.54 

 

 

Item 

 

Jan 

 

Feb 

  

Mar 

  

Apr 

  

May 

 

June 

 

July 

 

Aug 

 

Sep 

  

Oct 

 

Nov 

  

 Dec 

Rice 221.5 263. 295.7 323.2 332.68 - - - - - - - 

Wheat 

 

330.1 

 

 

282.7 

 

 

234.0 

 

 

189.9 

 

 

303.46 

 

 

- 

 

- 

 

- 

 

- 

 

- 

 

- 

 

- 

Total 

 

551.6 

 

  

546.0 

 

 

529.7 

 

 

513.12 

 

636.14 - - - - - - - 

Unmilled 

 
Paddy 

 

473.6 
 

 

492.5 
 

 

441.1 
 

 

339.03 
 

 

266.11 
 

- - - - - - - 

Coarse 

 grain 

 

1.80 
 

 

2.88 
 

 

3.31 
 

 

4.83 
 

 

4.13 
 

 

- 

 

- 

 

- 

 

- 

 

- 

 

- 

 

- 
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tonnes of rice were produced in 2019–20, a significant increase over the 107.8 million 

tonnes that were produced on average over the previous five years. Additionally, the 

output of wheat in 2019–20 has improved and reached a record 106.2 million tonnes, 

up 2.61 million tonnes from the production in 2018–19. Additionally, it exceeded by 

11.60 million tonnes from the 94.61 million tonnes average of the previous five years. 

Production of nutritive and coarse cereals reached 45.24 million tonnes in 2019–20, 

beating the 43.06 million tonnes produced in 2018–19 by 2.18 million tonnes. 

According to the ministry of agriculture's second advance estimate, India's output of 

food grains, including wheat, rice, pulses, and coarse cereals, may set a record of 316.06 

million tonnes (mt) for the crop year (July-June) 2021–22.  

As compared to the last five years’ average production of pulse, there is an increase of 

about 3.14 million tonnes in pulses output for the current crop year with an estimation 

of 26.96 million tonnes. When compared to the average production over the previous 

five years, the output for coarse cereals is estimated to be 3.28 million tonnes higher at 

49.86 million tonnes. It is expected that the production is estimated to reach level for 

other crops such as oilseeds, sugarcane, cotton, etc. The total production of oilseeds is 

anticipated to increase to a record 37.95 million tonnes in 2021–22, up 1.20 million 

tonnes from the 35.95 million tonnes reported for the previous year. 

The total sugarcane production was estimated to be about 414.04 million tonnes for the 

year 2021-22 which was higher than the average yield of sugar cane of 373.46 million 

tonnes by 40.59 million tonnes. Oil seed production reached a new high of 37.95 

million are expected to be produced in 2021–2022, up 1.20 million tonnes from the 

35.95 million tonnes reported for the previous year. 
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                  Figure 1.1- Showing the amount of food grains produced in India from the 2010–2021 fiscal year, along 

with projections for 2022 (in million metric tonnes)  

                   Source “Production volume of food grains India FY 2010-2022.Statista.      

https://www.statista.com/statistics/1140261/india-production-volume-of-food-grains/.” 

 

1.2 GRAIN LOSSES 

Production has been increasing but at the same time, losses remain constant at 10% 

which is due to improper storage. It is estimated that 6% out of the total 10% loss occurs 

due to mismanagement during storage. Before reaching the kitchen of the consumers a 

lot of hard work is done during the harvest which includes threshing, winnowing, 

bagging, transportation storage et cetera. Storage is the step just before the grains can 

reach the hands of consumers and it becomes very important to store that properly to 

ensure that their supply remains constant during the year since they are periodic and 

produced at specific places only. Storage of food grains is crucial for ensuring that 

customers receive the right amount of food and that no one in the nation goes hungry. 

But for this, proper managemental steps have to be taken because both biotic and abiotic 

factors affect the health of stored grains considerably. Abiotic factors like temperature, 

carbon dioxide, oxygen and moisture can affect the condition of food grains to a large 
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extent. Biotic factors like fungi, bacteria, arthropods (mainly insects and mites) and 

vertebrates which include enemies like rodents (rats) and birds can lead to a large - 

scale destruction of this stored food. Microorganisms and rodents reproduce at a very 

large rates and can pose a great threat if remain uncontrolled and unchecked. To stop 

our go downs from rampaging, it is necessary to keep an eye on these variables and 

how they interact. According to projections, the population of the globe would increase 

to 9.8 billion in 2050 and 11.2 billion in 2100. In 2030, 8.6 billion people will live on 

the planet, according to a recent United Nations estimate. And to feed this population 

global agricultural production has to increase by 60% from 2005-07 level, which is 

mammoth. Before the harvest, obstacles like weeds, animal pests, and abiotic 

environmental pressures like temperature damage around 35% of the total biological 

product that could be produced, or 3,153,000 tonnes, with a loss of 105,500,000 tonnes.  

A. Mesterhazy et al. [5] concluded that there were also losses after harvest in India 

which amount to 12 to 16,000,000 tonnes of food grains per annum. During storage, 

many threats were waiting to destroy the food grains which include insects, rats, 

microorganisms and other non-living factors like temperature and storage conditions. 

Improper handling of grains without any prowess could lead to poor grain quality and 

even a complete quality drop in grains. The monetary worth of these losses exceeded 

Rs. 50,000 crores annually, according to P. K. Singh [70]. Rats, mice, and bacteria were 

all blamed for the qualitative and quantitative losses that occured during storage. It had 

been reported that a large number of insect pests were associated with stored grains. 
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Figure 1.2- Showing different Biotic and Abiotic Factors in Grain Storage Ecosystem 

 

"Global Hunger Index Report for 2019" 

According to the 2019 Global Hunger Index, India was rated 102 out of 117 nations, 

placing it behind South Asian neighbours including Bangladesh, Pakistan, and Nepal. 

India is plagued by hunger issues, according to a survey on the global hunger index.  

The irony is that more than a third of the food supply is lost in post-harvest agricultural 

management at a time when the globe is struggling to meet the needs of every person 

on Earth.  
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Developing nations can boost food availability, relieve pressure on natural resources, 

significantly reduce starvation, and generally improve the conditions of their 

inhabitants by reducing food quality deterioration and maintaining proper storage 

management. For high production, it is important to make suitable plans against insects 

as it one of the factor which is chiefly responsible for the low levels of production and 

damaging stored grains badly. The aim of this thesis is to develop mathematical model 

which can be helpful in protecting stored grains from insects. 

 

According to the Global Hunger Index 2021 report, India has enough data to 

determine its 2021 GHI scores because it is ranked 101st out of 116 nations. With a 

score of 27.5, India has a serious level of hunger. 

 

1.3 NEED OF MATHEMATICAL MODELING 

What is mathematical modeling? 

Models give a description of our beliefs related to the functionality of the world and the 

translation of these beliefs into mathematical language can be achieved through 

mathematical modeling. Mathematical modeling is a boon to making integrated 

strategies like keeping in control the growth of insects, weeds, pests and diseases in 

stored grains and can be helpful in strategizing the steps in controlling dependency on 

chemicals. It is a good example of a potentially valuable tool. 

Since most trials are conducted with little amounts only, mathematical modelling 

provides insight into what may occur if enormous quantities of grains were taken into 

account. Sometimes in most experimental work, it becomes difficult or impossible to 

include the total effect on an ecosystem caused by the environmental factors but 

mathematical models can be useful in foreseeing or understanding the combined effect 

of the factors. 
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                                Figure 1.3- Showing Mathematical Modeling Process 

Current Food and Agriculture Situation 2021  

“The 2030 Agenda for Sustainable Development clearly recognizes the importance of 

minimizing food waste and loss. Reducing food loss and waste is thought to be crucial 

for enhancing nutrition and food security, fostering environmental sustainability, and 

bringing down production costs. However, attempts to prevent food loss and waste 

won't be successful unless they are supported by a thorough comprehension of the issue. 

Mathematical Modeling can prove to be of great importance in this regard. We can look 

forward to reducing dependence upon chemicals and controlling weeds, pests and 

diseases in store grains. 
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1.4 LITERATURE REVIEW 

Grain storage is the bridge between the distribution system of the grains and its 

procurement so it becomes a necessity to keep the quality and security of the grains 

during storage. Different organizations have been trying their best to find out a solution 

for this critical issue related to storage losses. Different researchers approach different 

methods (chemical, bio-chemical & mathematical) in different times to protect stored 

grains.F. J. Gay [22] discussed a method that involves the use of a dust barrier to protect 

an isolated stack of grains and also discussed another method to protect stored wheat 

from insect damage which made use of the DDT and 666-impregnated dusts. S. Nelson 

and W. K. Whitney [82] discussed a method to control insects by the use of an electric 

field at higher frequencies and intensities. S. Hussain and M. Hussain [78] discussed a 

laboratory experiment to kill the larvae of Trogoderma granarium by reducing its 

pressure to protect stored grains. S. Nelson [83] discussed another method of 

controlling insects in stored grains by making use of microwaves & other radio 

frequency energy. A mathematical model was created by B. K. Bala et al. [15] 

according to the hypothesis of G. Yaciuk et al. [34] that one of the most crucial elements 

restricting the spread and abundance of insects, mites, and fungus that contaminated 

and ruined stored grain was temperature. They also proposed model of convergent finite 

differences that converged to check the grain's temperature as well as changes in the 

surrounding air temperature during the course of the storage duration and discussed its 

uses. G. Thorpe and W. B. Elder [35], who found that aeration was very effective in 

reducing the use of pesticide-treated grains, discussed how " the pace of chemical 

insecticides' decomposition was directly proportional to the grain's temperature and 

moisture level " and discussed how transfer of heat and moisture mechanisms were 

represented mathematically using a finite difference algorithm and chemical pesticides 

decay in aerated grain was presented. They discussed that the aeration of grains was 

found to be very helpful in reducing the usage of pesticide methacrifos in tropical and 

subtropical regions of Australia. Also, G. Thorpe et al. [36] discussed that the 

community of insect pest Sitophilus oryzae (L) might be controlled by handling the 

microclimates of bulk grains. Considering an aerated bulk of grains, a mathematical 

model of the heat and transfer phenomenon with a combination of the population model 

https://www.cabdirect.org/cabdirect/search/?q=au:%2522Gay,+F.+J.+%2522
https://www.cabdirect.org/cabdirect/search/?q=au:%2522Hussain,+M.%2522
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of Sitophilus oryzae was presented and predicted that the population growth of weevils 

could be controlled by blowing cold night air through the bulk of grains. So proper 

aeration could be helpful to control Sitophilus orzae infestation. J. Sutherland et al. [47] 

discussed about a pneumatic conveyor grain disinfector to disinfect wheat grain by 

heating it to 70°C which could protect it from all stages of Rhyzopertha dominica which 

was considered to be the most heat-forbearing of Australian grain insects without 

affecting the grains quality. A mathematical model of the pneumatic heating process 

was established. M. Ahmed et al. [60] suggested a mathematical framework to 

investigate the harm insects did to crops in the warehouse environment. He monitored 

the effect of four insect species namely Tribolium castaneum, Sitophilus oryzae, 

Trogoderma granarium, and Rhyzopertha dominica on the small sample of stored 

grains. The growth rate of various insect species was estimated using principal 

component analysis and to examine the community composition with respect to time 

gradient which was correlated with the loss and damage of grain, they used multiple 

regression and differential equations for this. C. Jia et al. [16] discussed that insect 

growth could be prevented by low storage temperature and presented, a two-

dimensional heat and transfer mathematical model to explain the transient temperature 

variations to confirm this, the experiments were performed in a galvanized steel bin 

taking in account the complex mixed boundary conditions on the surface of grain and 

around the bin wall. And further C. Jia et al. [17] presented a mathematical model to 

describe heat and transfer processes accounting for sun radiation, the outside 

temperature, and air convection which were all mixed boundary conditions taking place 

during the storage of  wheat using the typical meteorological data of a region based on 

finite element method and obtained the results that grain high temperature were 

accumulated in different areas of the bin i.e. in the bin center, bin bottom and the top 

and ventilation was necessary for preventing damage of the grains. A mathematical 

model, method, and software were proposed by O. Khatchatourian and F. D. Oliveira 

[65] for modelling the airflow and for the purpose of cooling dynamics of the soya bean 

mass. Three models were examined for this, and a comparison with experimental data 

was made. While the second method took into account similar temperatures of the 

surrounding air and the grain and hypothetically alienated the deep bed into a finite 

number of thin layers, the first method used PDE system solutions to explain the heat 



13 

 

and mass transfer and energy conservation. The third technique, which was based on 

using homochronous number as an argument, was used to generalise the dimensionless 

data of the temperature in a deep bed of uniform cross sections with varied velocities 

in different sections. It was mentioned how this method, which was based on empirical 

formula, proved to be the best method producing the best outcomes when compared to 

other methods. The distribution of temperature and moisture transfer of wheat stored in 

hermetic plastic container or silobag owing to seasonal differences in environmental 

constraints was estimated, A. Gaston et al. [11] discussed a model linked to three 

dimensions for transmission of mass and heat. This model calculated the levels of 

oxygen and carbon dioxide, along with the related Loss of dry matter and grain 

respiration. To verify the model, measured humidity and temperature values were 

compared to the anticipated value. A. Tanksale and J. K. Jha [3] developed a 

mathematical model based on LP to reduce the price of transportation and food grain 

inventory storage. Cplex optimisation studio was utilised to show the findings that 

would aid FCI in creating the food movement schedules for each month. Z. M. Isa et 

al. [90] created a three-dimensional mathematical model to investigate how exposure 

to phosphine gas caused insects to become extinct within grain. With the use of C code 

and the computational fluid dynamics [CFD] programme FLUENT, the proposed 

model to explain sorption and insect death was resolved. The two forms of fumigation 

distribution considered in this suggested model were fan-forced delivery from the silo's 

base and tablet delivery from the silo's top. The distribution remained unaltered in the 

case of tablet fumigation, according to the results, however the spot where the leak was 

located was particularly crucial for Fumigation using a fan. The outcomes of the half-

life pressure test did not reveal phosphine dispersion during tablet fumigation either. 

According to A. A. Barreto et al. [9], the temperature, moisture content, and insects, 

mites, and microflora activity were the main contributors to grain spoiling and had a 

major effect on the grain quality in storage. Consequently, a bi-dimensional coupled 

momentum heat and mass transport model was described to foretell the distribution of 

the temperature and moisture movement in a grain bulk., while N. Khuttiyamart and 

W. Yomsatieankul [64] investigated the causes of moisture movement and loss in 

moisture in grain storage. It was discovered that oxidation was producing physical 

changes in the temperature and moisture of the grain in the silo during storage and 
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aeration. This was done by applying a relevant mathematical model. The model's 

numerical solution, which was the finite difference approach was used to generate the 

results, which were based on a set of partial differential equations. A Java object-

oriented programme was also created to model changes in temperature and humidity on 

the basis of the proposed mathematical model. A. A. Barreto et al. [10] addressed a 

mathematical model that had been proven to be accurate for checking grain storage 

conditions and calculating the change in carbon dioxide concentration in a wheat holder 

silo bag while accounting for tropical, sub-tropical, and temperate weather conditions 

in Argentina and found out that insect control was feasible for southern and central 

regions climatic conditions of Argentina storage. A. Biancolillo et al. [7] created a 

method to detect an insect infestation in grains that had been stored using NIR 

spectroscopy in conjunction with discriminant and other conventional modelling 

techniques. The Indian meal moth (Plodiainterpunctella), which was the most prevalent 

of all the infesting insects, was the main focus. In order to distinguish between the 

edible and infested rice samples, the conventional techniques Soft Independent 

Modelling of Class Analogy (SIMCA) and Partial Least Squares Discriminant Analysis 

(PLS-DA) were applied. These samples of edible and infested rice were obtained from 

various farmers in six different countries and therefore came to the conclusion that the 

SIMCA model was specifically for the non-contaminated ones, delivering 97% of the 

findings properly but not suited for test specimens being insufficiently sensitive. PLS-

DA, on the other hand, allowed correctly of roughly 97.5% of infected samples and 

95.6% of edible samples. In the range of temperatures best for growth and reproduction, 

according to W. H. Siddiqui and C. A. Barlow [87], the intrinsic capacity for rise (rm) 

of the Drosophila McLanoyastcr Meigen (DrosMeigen) was more sensitive to 

temperature variability than to mean constant temperatures. This mismatch was mostly 

due to the fact that maximal fecundity was only experienced at specific temperatures. 

S. M. Henson and J. M. Cushing [80] conducted an experiment and came to the 

conclusion that flour beetles populations(ribolium) demonstrated considerable rose in 

numbers bigger than those when they were cultivated in a fixed volume when grown in 

flour that was regularly fluctuating. The cubic polynomial model, according to R. T. 

Arbogast and M. Mullen [75], provided a sufficient depiction of seasonal changes in 

grain temperature and trapped catches of Typhaea Stercorea and Typhaea Castaneum 
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infesting maize kept on farms in South Carolina. The small brown planthopper 

Laodelphax Striatelluis, the green rice leafhopper Nephotettix Cincticeps, and the rice 

stem borer Chilo suppressalis, paddy fields in Japan contained three pest bug species. 

that were the subject of an analysis of the annual light-trap caught trends for the past 50 

years by K. Yamamura et al. (49). As the temperature rose, more Chilo Suppressalis 

and Nephotettix Cincticeps were found to be caught in light traps, according to the 

model of state-space adopted by Akaike's information criteria. In order to study the 

impact of environmental fluctuation, The Sterile Insect Release Method (SIRM), a 

mathematical framework that studied how variable environmental changes affected 

both fertile and sterile insects, was proposed by A. Maiti et al. [5]. By treating the 

variables of the linearized system as influenced by time and randomly varying, the 

stochastic version of the model was created. The diffusivity of Cryptolestes ferruginous 

was discussed by F. Jian et al. [25] and was indicated to follow a diffusion pattern while 

the temperature was steady, the moisture content was dropping, the time it took to move 

was getting shorter, and the insect population was growing. A model was created by N. 

Kaliyan et al. [62] to forecast Indian meal moth larvae mortality in varying low-

temperature environments. The cumulative lethality index (CLI), which measured a 

mortality rate accumulation over time, was used to predict total insect population death, 

and when CLI was equal to 1, total insect population mortality took place. The study 

by F. Jian et al. [26] showed that the method of finite difference may be utilised to see 

insect migration of insects and redistribution using the finite difference approach by 

modelling Crptolestes ferrugineus population redistribution using transport equations. 

F. Jian et al.  [29] discussed that at 35°C, patch size affected the dynamics of the insect 

population and discovered that the number of insects inside a large patch depended 

more on the number of insects inside small patches than the other way around. 

Bactrocera zonata (Saunders), a dangerous polyphagous pest of horticultural crops, was 

studied by J. S. Choudhary et al. [42] using growth potential based on temperature at 

ecologically relevant steady temperatures of 15, 20, 25, 30, and 35 °C; relative humidity 

of 60 ± 10%. The results showed that temperature played a significant role in 

determining the climatic suitability for Bactrocera zonata in reproduction. In a 

consistent commensal environment, the two species coexisted for 200 generations, 

according to A. R. Verdugz and M. Ackermann [6]. Significant environmental changes 
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put a population on the verge of extinction, but in certain circumstances, adaptation 

through natural selection saved the population and allowed it to survive, according to 

J. Peniston et al. [43]. According to O. Imura and R. N. Sinha's [66] study of the 

interaction between Sitotroga cerealella and Sitophilus oryzae at 28°C and 60% 

Relative humidity for 22 weeks, the quantity of Sitophilus oryzae rose slowly in 

therapies for both single- and mixed-species but had no impact on other factors. M. 

Irsad et al. [59] tested various maize varieties against Sitotroga cerealella and 

Sitophilus oryzae and found that grains of 'Dehqan' were most susceptible to Sitotroga 

cerealella and 'Shaheen' were most resistant based on loss incurred, and for Sitophilus 

oryzae grains of 'Shaheen' were most susceptible and 'Azam' was found to be most 

resistant. Eight other rice varieties were also evaluated, and variety "JP-5" had the 

greatest index of vulnerability to Sitophilus oryzae. Sitotroga cerealella caused 

'Basmati-370' to sustain a maximum loss ranging from 28.7 to 47.3%. In a study 

conducted by J. P. Santos et al. [44] to determine the impact of the curculionid 

Sitophilus zeamais and the gelechiid Sitotroga cerealella at different developmental 

stages on the quality of maize seeds, it was discovered that the presence of the 2 insects 

reduced germination with increasing developmental stage, from 13% at the egg stage 

for Sitophilus zeamais and 10.9% for Sitotroga cerealella reached 93% and 85%, 

respectively, at the adult stage for Sitophilus zeamais and Sitotroga cerealella. In order 

to assess the potential impact of seed resistance in combination with an egg parasitoid 

on the dynamics of the Sitotroga cerealella population, R. H. Shukle and L. Wu [74] 

developed a predictive model. It was discovered that the 16 Soybean trypsin inhibitor 

(Kunitz inhibitor) had a negative impact on the development of the insect, and protease 

inhibitor, which might serve as a transgenic resistance factor, was suggested. Under 

controlled laboratory conditions, L. S. Hansen et al. [52] examined the life history of 

immature Angoumois grain moths, Sitotroga cerealella (Olivier), on dented maize. The 

temperature was the key determinant of egg incubation time, larval-pupal development 

time, and egg and larval-pupal survival. 30 C and 75% RH were the ideal conditions 

for the Angoumois grain moth to develop on maize. Additionally, the effects of four 

temperatures—20, 25, 30, and 35 C—and two levels of relative humidity—44 and 

80%—on the growth rate, age-specific survivorship and fecundity, the sex ratio and 

intrinsic growth rate of Sitotroga cerealella were examined. It was discovered that 30-
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degree humidity were the best conditions for Sitotroga cerealella population 

development. The ability of Sitophilus zeamais to colonise and monopolise new patches 

was the mechanism that caused Sitotroga cerealella to be quickly eliminated, according 

to M. N. Larsen et al. [53]. They also discussed the mechanism responsible for selecting 

the appropriate spatial scale. In their study, S. Ahmed et al. [79] described how, at both 

20 °C and 34 °C, the rate of rise in egg mortality and emergence in adult reduction from 

cured larvae or increased in pupae progressively with increasing exposure time. The 

most effective MA treatment was that containing 75% CO2 at 34 °C, which destroyed 

all eggs, larvae within 3 days and all 4 days for the pupae. Y. J. Jeon and H. S. Lee [89] 

discussed the study in which the scientists carried out an experiment to assess the effects 

of adult Sitotroga cerealella and Plodia interpunctella on LEDs trapped in the granary 

as attractants and compared the BLB with LED. It was discovered that Sitotroga 

cerealella preferred the blue LED over the black LED. By using several grains (Wheat, 

triticale, sorghum, rye, barley, and other grains), E. Borzoui et al. [21] examined 

biological and physiological characteristics of Sitotroga cerealella (Olivier). The 

results showed that the fitness of Sitotroga cerealella was significantly impacted by 

various cereals. B. N. et al. [14] talked about the investigation to find out the effects of 

the Essential oils from Artemisia khorassanica Podl. and Artemisia sieberi Bess have 

fumigant toxicity and sublethal effects on adults of Sitotroga cerealella (Olivier). It was 

discovered that the tested essential oils had a good potential to apply in integrated pest 

management of Sitotroga cerealella. Disrupting sexual communication between the 

sexes was the most effective way to combat the moth, according to M. Ma et al. [57]. 

In this study, the external morphology and ultrastructure of the sensilla on the antennae 

and ovipositor of Sitotroga cerealella were examined to ascertain their function. This 

was done using scanning electron microscopy (SEM) and transmission electron 

microscopy (TEM). Utilising histopathology, scanning electron microscopy (SEM), 

and gas chromatography-mass spectrometry (GC-MS), the shape and location of the 

female sex pheromone gland were also determined. M. Sola et al. [58] detected the 

innovative multiplex PCR and identifies five internal feeders of grain when treated with 

CO2 and the sensitivity limit of this gas-based approach was one pupa of insect per kilo 

of grain. 
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CHAPTER-2 

    MODEL TO DESCRIBE A SMALL OUT-BREAK OF 

DAMAGED GRAINS DUE TO INSECTS 

2.1 INTRODUCTION 

 

This chapter is concerned with a small outbreak of a % of damaged grains in a large 

susceptible grain. The linear differential equation was formed with the help of some 

assumptions. The analysis of the result revealed that % of the damage of grains 

increased with the increasing number of the insect populations. 

The presented model described a small outbreak of a % of damaged grains. I 

assumed that one or more insects arrived in a vacant area and started the outbreak 

as per the theory of M. Evans [55]. To prevent the situation in which the outbreak 

got out of control and eventually involved all susceptible in the population. For this 

we laid down certain assumptions as follows: 

1. The conditions were sufficiently unfavorable that the outbreak never became 

large. 

2. For conciseness, we considered that a single insect damaged the grains at first 

rapidly. 

     This Process (mode) best described the out-break after the introduction conditions 

(factors). 

     We supposed that when the model began there were k insects in the ecosystem. 

Each of these insects produced one or additional insects according to Michael O. 

Ashamo et al. [56]. If we perceived the original infective as forming this zeroth 

generation of the insects, then the amount of grains damaged by the first generation 

of the insects and so forth for subsequent generations according to the results of R. 

Varshney and C. R. Ballal [73]. The outbreak ended once all of curves of insects  

perished or total grains were damaged. The vertices of the graph represented 
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insects and the edge represented the paths of insects from the source to the recipient. 

2.2 MATERIALS AND METHODS 

 2.2.1 Insect attack probability 

       The first problem considered was the attack rate of the insect. The simplest reasonable 

assumption was that each insect for the attack (till damage) length of time t, where t 

was a continuous random variable. By using the theory of  F. Jian et al. [27], we 

assumed that 𝑥(𝑡) be an integer-valued random variable that served as counter thus 

each time an 'event' occurred 𝑥(𝑡) as augmented by one. We supposed that at 𝑡 =

 0 the counter was set to zero so 𝑋(0)  =  0. 

We supposed that insects occurred independently at random i.e. we supposed that 

the time was subdivided into small intervals of length ∆𝑡. The probability that one 

insect occurred in a particular interval of t was m t, where m was any parameter. 

Because we made ∆𝑡 as small as we wish. Thus the probability that no insect 

occurred in an interval of length t was (1– 𝑚∆𝑡). In general, all non-overlapping 

time intervals were independent of one another. We calculated the probability 

density for the random variable x (t). 

     Let Prob (x (t) =  n) = 𝑃𝑛(t),               n =  0, 1, 2, 3 ….                                   (1)                 

We wished to calculate 𝑃𝑛(t + Δ t),     n = 0, 1, 2, 3……  

There were two mutually exclusive situations at time t, which were mentioned as 

follows  

1. At time t, x (t)  =  n –  1 with probability 𝑃𝑛−1(t) and during the next time 

interval of length t an event occurred with probability m Δt. 

2.   At time t, x (t)  =  n with probability 𝑃𝑛(t) and during the next time interval 

of length ∆𝑡no event occurred with probability 1 − m Δt. 

       Since above two cases were mutually exclusive they might be arranged in the form  

       𝑃𝑛(t + Δ t) =  𝑃𝑛(t) m Δt +  𝑃𝑛−1(t) (1 − m Δt)   

      which simplified to yield                            

       
𝑃𝑛 (t+ ∆t ) – 𝑃𝑛 (t)

∆t
=  m [𝑃𝑛−1(t) – 𝑃𝑛(t)], n =  0,1,2,3 …    

       under limiting conditions ∆𝑡 → 0 
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 𝑑(𝑃𝑛(t))

𝑑𝑡
=  m [𝑃𝑛−1(t) – 𝑃𝑛(t) ], n =  0,1,2,3 …                                                         (2)                               

         When we took n = 0, then above equation reduced to an event occurring with 

   
 𝑑(𝑃0(t))

𝑑𝑡
 =  −m𝑃0 (t)                                                                                          (3)                                      

Since x (0)  =  0, it followed that 𝑃0(0) = 0   and  

    𝑃𝑛(0) = 0,   n = 1, 2 ,3 ….  

  Solving the equation (3) for 𝑃0 (t)with its initial condition we arrived at 

    𝑃0(t) =  𝑒−𝑚𝑡                                                                                                               (4) 

   Again when we let 𝑛 =  1 in equation (2) and substituted 𝑃𝑛(t) from (3) it  was 

fairly easy to get       

              
  𝑑(𝑃1(t))

𝑑𝑡
+ m𝑃1(t)  =  −m𝑒−𝑚𝑡                                                                                                                           (5)                                       

  This was the first order linear differential equation with constant coefficients, so 

integrating factor i.e 𝐼𝐹 =  𝑒𝑚𝑡 

  Hence this could be written as 𝑑[𝑃1(t)𝑒𝑚𝑡] =  mdt 

     On integrating this equation with the initial condition 𝑃1(0) =  0, we got 

      𝑃1(t) =  𝑚𝑡 𝑒−𝑚𝑡  

  By adopting the parallel procedure for n =1, it inductively leads to the general result  

       𝑃𝑛(t)  =  
(mt)𝑛𝑒−𝑚𝑡  

n!
, 𝑛 =  0, 1, 2, 3 ….                                                                   (6)                             

This was well known time dependent Poisson density function which described the 

probability that by time exactly n insects occur randomly. 

We had considered that the length of time t spent by insect for damaging the grains. 

Thus we had, proba (grain damage for time t)  = µ𝑒−𝑚𝑡                          (7)                                                                

During that time, the damage of grains remained continuous, the insect was          

being attacked on susceptible grains. We assumed that environment was favorable 

for the attack of insects on susceptible grains that took place independently at 

random such that the average number of grains damaged by one insect per unit time 

was m. 

  Again number of damaging 𝑗 grains, given that the damaging period lasts for t   units 

of time  𝑃 (
𝑗

𝑡 
) was given by   
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    𝑃 (
𝑗

𝑡 
) = [

(mt)𝑗

j!
] 𝑒−𝑚𝑡                                                                                                (8)                               

To eliminate the conditioning in 𝑃 (
𝑗

𝑡 
)  we made use of the assumption that the length 

of  the infection period was exponentially distributed with parameter j. Thus the 

probability p, that one insect damaged j grains during its damage period was 

           𝑃𝑗  = ∫ (
(mt)𝑗

j!
) e−𝑚𝑡   µ e−µ𝑡 dt                                                                  

∞

0
          

       = [
µ

µ+𝑚
] [

𝑚

µ+𝑚
]

𝒋

                                                                                                       (9)            

We had assumed throughout the development of the model, the number of the grains 

damaged by one particular victim of the insect was independent of the number damaged 

by any other victim.  We considered the 𝑖𝑡ℎ damaged grain and let 𝑄𝑖  be an integer 

valued random variable which counted the number of   cases of the grains which were 

damaged by the insect. Since 𝑄𝑖 was distributed according to 𝑃𝑖 the expected number 

of new cases, 𝐸 (𝑄𝑖) was given by 

      𝐸 (𝑄𝑖) =  = ∑ j𝑃𝑖
∞
0                                                                                                    (10)                                                                                      

     𝐸 (𝑄𝑖) =
𝑚

µ
, j = 0                                                                                                        (11)                             

It was stated in the introduction to this chapter that we imagined conditions to be    

unfavorable for a major epidemic; thus the insect outbreak died out quickly. We had 

determined what this means in terms of our variables. We considered one particular 

infective in the zeroth generation (grain) and had taken 𝑑𝑛 as the probability that the 

portion outbreak developed from the chosen infective had been died out by the nth 

generation .We assumed that chosen infective in the zeroth (grains) generation called 

A damaged the jth grains (called B) according to the theory of H. Tripathi and K. C. 

Garg [39]. We had viewed each B as the head of a curve of the damaged grains. If the 

A's portion of the outbreak had ended by the (𝑛 + 1)𝑡ℎ grains, then the portion from 

each of the 𝑗 B's must independently be ended after 𝑛 additional grains of the insect had 

occurred. This occurred with a probability equal to [𝑑𝑛]𝑗. But since, we did not know 

j; we had done average over all choices of 𝑗, weighted of 𝑃𝑗, the probability that 𝐴 had 

𝐵𝑗. Hence we had 

𝑑𝑛+1 = ∑ 𝑃𝑗
∞
0 [𝑑𝑛]𝑗 = f(𝑑𝑛)                                                                                                (12)                          



22 

 

       We had identified 𝑓(𝑑𝑛) as the probability generating function for this discrete  

density 𝑃𝑗  .The expression found was a recurrence relation for the sequence 

{𝑑0, 𝑑1 , . . . . . . . . . 𝑑𝑛 , 𝑑𝑛+1}. Then we made several observations.  Since 𝑑𝑛 was the 

probability that a line of the damaging grains ended by the  𝑛𝑡ℎ grain i.e. 

        1.    0  𝑑0  𝑑1 , . . . . . . . . . 𝑑𝑛 𝑑𝑛+1… . 1 

        2.    Since the 𝐴 of line certainly had the disease, 𝑑0  =  𝑃0 

                  3.   The sequence must approach a limit since it could never exceed unity in numerical              

values, so              

  lim
      𝑛∞

𝑑𝑛 d  1 

2.3 RESULTS AND DISCUSSION 

The third observation allowed us to rewrite the recurrence relation as a non-recursive 

equation form, the probability of ultimate extinction of one line of the damaged grain 

 𝑑 =  𝑓(𝑑𝑛). This result was true for any insect transmission probability. After equating 

𝑑 to the probability generating function for the geometric density determined earlier 

yielded 

 𝑑 =
1

1+(1−𝑑)
𝑚
µ

                                                                                                              (13)                                                    

Solved for 𝑑 provides    𝑑 = {
       

µ

𝑚
 , 𝑖𝑓  𝑚 ≥ µ   

 
   1,    𝑖𝑓  𝑚  µ  

        

The two choices arose as the roots of a quadratic equation. The proper choice was 

always the smaller root which turned out to be one satisfying   0  d  1 

Finally, the probability that all of the branches shining damaged grains started by the K 

individuals was the zeroth grains that had independently died out given by        

 Prob [outbreak ends]  =  𝑑𝑘  = {
       (

µ

𝑚
)

𝑘

 , 𝑖𝑓  𝑚 ≥ µ   
 

       1,           𝑖𝑓  𝑚  µ  

                                             (14)                                                        

The condition taken for the outbreak to end with certainty was that 𝑚 <  𝜇. This was  

equal to the expected number of 𝐵's per ′𝑠  , satisfying             

    =  
𝑚

µ
 1                                                                                                                      (15)                                      
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Since the insects damaged the grain independently and the number of grains damaged 

by the 𝑖𝑡ℎ insect 𝑄𝑖 was distributed with the same geometric pattern as before so we 

had, 

 Prob (𝑄𝑖=𝑗)  =  𝑃𝑗 , 𝐸 (𝑄𝑖 )  =                                                                                      (16)                   

We defined   𝑊λ  =  ∑ 𝑄𝑖    
𝑊λ−1
𝑖=1                                                                                         (17)                                               

The expected value of 𝑊λ  followed easily from the conditional expectation 

given 𝑊λ−1. Hence 

𝐸(𝑊λ) = E(E(𝑊𝜆|𝑊𝜆−1) =  𝐸(𝐸(∑ 𝑄𝑖  )  
𝑊λ−1
𝑖=1 |𝑊𝜆−1))  

As the expected values of a sum equal the sum of the expected values. We got 

𝐸(𝑊λ) = 𝐸[𝐸(𝑄𝑖) 𝑊λ−1 )] 

𝐸(𝑊λ) = 𝐸((𝜃)𝑊λ−1 ) 

Since  was taken as constant in the above equation and it was written as 

𝐸(𝑊λ) =  𝐸(𝑊λ−1 ) 

𝐸(𝑊) = 1, because the model counted the number of insects which damaged by a 

single insect in the zeroth damaged generation. Thus  

 𝐸(𝑊λ) = 𝜃λ, λ =  0,1,2 … … 

When we added the expected number of insects in all successive generations the total 

number of insects in the zeroth generation, 𝑁 was given by 

 𝑁 = 𝑘 ∑ 
 λ 

∞

 λ= 0

=  
𝑘

1 − 
 

Using equation (15) in the above, we arrived at 

 

𝑁 =
𝑘

1− 
𝑚

𝜇

=  
 k 𝜇

 𝜇−𝑚
                                                                                                         (21)                                      

We performed an experiment on different varieties of paddy under storage conditions, 

the environmental factors i.e. Relative humidity, temperature and moisture content was 

maintained at 75 % with KOH for two weeks. The moisture content varied from 11.3 

to 12.0 % after two weeks. In this experiment, 400 healthy grains were taken in the 

glass specimen tubes conserved with muslin cloth and ten pairs of adult moths (S. 

Cerealella Oliver) of the same age were introduced in each specimen tube. The 

experiment was carried out at a constant temperature of 27± 1ºC for three months based 
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on the conditions given by V. Pandey et al. [86]. At the end of the experiments, % of 

damaged grains, the total population of insects and loss of weight were recorded.  

 Data regarding the moisture content of seed %, an average insect population and % of 

damaged grains were presented in the table below.                                             

 

       

                            Table 2.1- Representing the data regarding the moisture content of seed %, an average insect     

                                            population and % of damaged grains. 

   Sr no 
Moisture content 

of  seed % 

Average insect                                                                                         

population 
% damaged grains 

1 11.50 42.64 14.25 

2 11.82 11.07 3.41 

3 11.55 10.64 3.17 

4 11.30 14.26 5.67 

5 11.95 13.84 5.33 

6 11.63 9.75 2.67 

7 11.90 11.95 4.08 

8 11.90 13.27 4.92 

9 12.00 16.94 8.00 

10 11.88 13.43 5.08 
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                                              Figure 2.1 - Graph of Table -2.1 

 

 

2.4 CONCLUSION 

We concluded from this model with experimental data and plotted graph that the  

% damage of grains increased with the increasing number of the insect populations.  

We took initially k = 10 pairs, then equation (21) became 

𝑁 =
10µ

µ −  m
 

The quantity 𝑁 was the one we ordinarily wish to know, it’s instructive to work the 

probability that exactly k insects were involved in the disease outbreak. 

The model analysed that the greater the no of insects in the store were damaging a 

large amount of grains. This model emphasized on the role of insect infestation 

during storage, in reducing the outbreak of damaged grains due to insects in various 

conditions, which proved its efficiency in itself. 

                                      

 

           Average insect population   

              Moisture content of seed % 

              % damaged grains 
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                                      CHAPTER 3 

 
TO DEVELOP AND VALIDATE THE MATHEMATICAL 

MODEL THAT DESCRIBES THE GROWTH IN POPULATION 

IN A RANDOMLY FLUCTUATING ENVIRONMENTAL 

ECOSYSTEM 

 

 

 

3.1 INTRODUCTION 

  

The most important biotic component of a stored grain ecosystem is the insects. Insect 

population is greatly influenced due to the fluctuation of abiotic factors in combination 

with many biotic factors. A mathematical model was formulated explaining insect 

population and their growth in a randomly fluctuating environmental ecosystem. The 

changes in the net growth rate of insects were discussed using the stochastic models.  

Although production has been rising, losses that are the result of faulty storage remain 

stable at 10%. According to estimates, improper storage management accounts for 6% 

of the entire 10% loss. Losses in both quality and quantity during storage are brought 

on by insects, rodents, and microorganisms. It has been reported that a large number of 

insect pests are associated with stored grains. Insects need on storage conditions to 

develop and survive, and if the conditions are good, they continue to be active.  

A number of variables were taken into consideration, including the temperature, the 

moisture level, air relative humidity (RH), intergranular gaseous components, broken 

grains, and dockage that impacted the population dynamics of insects, according to L. 

Mason [51]. The temperature and humidity levels were among them, and they had an 

important impact on how long insects were developing and reproducing, as well as how 

widespread their infestation would be and how long they would be viable. K. 

Alagsundram et al. [48] conducted research on how changes in external climatic 

variables induced changes in storage conditions over time. The two significant 

gradients—temperature and moisture—that form inside the stored grain bulk had a 
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significant impact on insect pest migration, survival, and multiplication as well as grain 

quality. 

     In this chapter, a study of change in the insect population in a randomly fluctuating 

environmental ecosystem was discussed by using a mathematical model. R.Yadav and 

K. Bhagirath [72] developed a mathematical model to describe the damage caused by 

insects based on linear differential equation accounting some assumptions and 

concluded that as the number of insects increased, the % of damaged grains also 

increased. 

3.2 MODEL FORMULATION  

We had assumed ‘𝑥’ as the size of a biological population or the size of an organism . 

 In the absence of fluctuating environment, it was a continuous variable. To describe 

 the population growth of insects, the following differential equation was used 

𝑑𝑥

𝑑𝑡
   =

�̅�x  [1− 
x

R
]𝑛

𝑛
,   �̅�  > 0                                                                                           (1)                                      

Here ‘�̅�’ was the Malthusian parameter of population growth. The second term 

specified the restriction in the growth which occurred mainly because of crowding 

effects and competition for the available food. The equation (1) represented here was 

deterministic, with little consideration given to the influence of chance on population 

increased. So, in this chapter analysis of the situation when the replacement of this 

deterministic growth equation with stochastic form was done to note especially the 

relationship between the process' mean and variance when growth took place. We had 

considered the case when n = 1, we discussed the effects of the fluctuating 

environment on the growth of insects. Fluctuation in environmental ecosystem brought 

a change in net growth rate of insects as well as death rate 

Changes in net growth rate 

Incorporation of stochastic components into deterministic model (1) was done. The 

stochastic form of ‘𝑎’ was given by the equation 

 �̅� = 𝑎 + µG (t)                                                                                                                 (2)                                                      

Where G (t) represented Gaussian white noise and µ was its intensity. Considering 

the study of B. P. Khare [13] an assumption was taken for the fluctuations to be faster 

than time scale of growth in population. The stochastic general differential equation 

that explained the population growth became: 
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𝑑𝑥

𝑑𝑡
= 𝑎x (1 −   

x

R
)  +  µ (1 −   

𝑥

R
)xG (t)                                                                             (3)          

Also called Stratonovich SDE       

Replacing 𝑎 by (𝑎 +  
µ²

2
)                                         

Equivalent to Ito SDE  

𝑑𝑥

𝑑𝑡
= (𝑎 +  

µ²

2
) x (1 −   

x

R
)  +  µ (1 −   

𝑥

R
)xG (t) 

Comparison with the Fokker Plank equation was done 

𝜕𝑃

𝜕𝑡
= − 

𝜕

𝜕𝑥
 [α(x)P]  +   

1

2

𝜕²

𝜕𝑥²
[ß(x) P]                                                                 (4)                                    

We had got,  

α(x) = (1 − 
𝑥

R
) (𝑎 +  

µ²

2
) (1 −  

2x

R
)                                                                                    (5)                                               

ß(x)  = µ²𝑥²(1 −  
x

R
)²                                                                                                         (6)                                            

We had considered the singular boundary conditions i.e. 𝑥 = 0, 𝑥 = 𝑅 and 

approximating 𝑥 = 0 , we obtained 

α(x) ≈ (𝑎 +  
µ²

2
)   and ß(x) ≈  µ²𝑥² 

Since both the Natural boundaries were not attained. This process described a 

population of insects which was away from extinction and which fluctuated around 

some average value which was less than R because of the fluctuations in the rate of 

growth. 

The steady state probability density function was evaluated from this: 

P (
𝑥

 𝑦
 , ∞)  =

𝐴

ß(x)
𝑒2 ∫ (

α(y)

ß(y)
) dy

𝑥

0
                                                                                      (7)                             

Using the condition,  ʃ P (
𝑥

 𝑦
 , ∞)  dx = 1 we could determine ‘𝐴’ which was a 

normalization constant. Putting the values of α(y)and ß(y) from (5) and (6) in (7) 

 P =  A (1 −  
x

R
) . (

2𝑎

µ2 − 1) (
2𝑎

µ2 + 1)                                                                              (8)                                    

Replacing the quantities (
2𝑎

µ2 − 1) and (
2𝑎

µ2 + 1) by the quantities(
2𝑎

µ2 − 2) and (
2𝑎

µ2 + 2) 

respectively. When (
2𝑎

µ2) < 1,  showing the population of insects approaching zero or 

nearly R. 
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When  (
2𝑎

µ2) > 1 , the density function was monotonically increasing, depicted 

population accumulation near R according to N. Kant et al. [63]. 

𝜕𝑃

𝜕𝑡
= −

𝜕𝐽

𝜕𝑥
  =− 

𝜕

𝜕𝑥
 ([α(x)P] −   

1

2

𝜕

𝜕𝑥
[ß(x)P]) where J was probability current density  

𝐽 = [α(x)P] −   
1

2

𝜕

𝜕𝑥
[ß(x)P] 

As  
𝜕𝑃

𝜕𝑡
 = 0 being independent of time implied  

𝜕𝐽

𝜕𝑥
= 0 

𝐽= Constant and independent of ‘x’ but for equilibrium distribution to be normalisable, 

all derivatives approached to zero and hence 𝐽 = 0 . 

[α(x)P] −   
1

2

𝜕

𝜕𝑥
[ß(x)P] = 0 

α(x) =
1 dß

2 dx
 

We introduced the variable ‘𝑠’ to derive the time dependent probability density function 

such that  

  𝑠 =
(𝑙𝑜𝑔

𝑥

 1−  
𝑥
R

)

µ
                                                                                                               (9)                                                     

  dx = µx  (1 −
𝑥

𝑅
)   ds                                                                                                (10)  

  
𝑑𝑥

𝑑𝑠
= µx  (1 −

𝑥

𝑅
)             

 Using (3) 

  
𝑑𝑥

𝑑𝑡
= 𝑎x (1 −   

x

R
)  +  µ (1 −   

𝑥

R
)xG (t)   

  
𝑑𝑥

𝑑𝑠

𝑑𝑠

𝑑𝑡
 = 

𝑎

µ

𝑑𝑥

𝑑𝑠
 +  

𝑑𝑥

𝑑𝑠
G (t) 

 equation (3) changed to 
𝑑𝑠

𝑑𝑡
 = (

𝑎

 µ
) + G(t)                                                                        (11)                          

where (11) represented the  stochastic differential equation for an unrestricted wiener 

process. 

Probability density function 𝑔 (
s

 𝑠0
, t) satisfied the Fokker Plank equation, hence given 

by:                              

 
𝜕𝑔

𝜕𝑡
=  − 

𝜕

𝜕𝑠
(

𝑎

 µ
) g +

1

2

𝜕²𝑔

𝜕𝑠²
                                                                                                 (12)                                    

where the boundary conditions were given by 
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 lim
𝑠→±∞

g (
s

 𝑠0
, t) = 0                                                                                                          (13)                                   

Corresponding to the boundary conditions which were inaccessible i.e. 

  x = 0 (s =  − ∞) and x =  R (s =  + ∞) 

  g (
s

 𝑠0
, t) =

𝑒
[ 

−1
2𝑡

(
𝑠−𝑠0𝑒−𝑎𝑡

.µ² 
)]

√2𝜋𝑡
                                                                                              (14)                             

 

We obtained the probability density function 

   P (
𝑥

 𝑦
 , 𝑡)   =

1

√2𝜋𝑡 µy²x(1−
𝑥

R
)

𝑒

(
−1
2t

(
1

    µ      
𝑙𝑜𝑔

𝑥
𝑦

 − 
1
 µ 

 𝑙𝑜𝑔
1−

𝑥
𝑅

1−
𝑦
𝑅

 − 
𝑎t² 

µ
))

 
                                           (15)                             

which determined the behavior of the population. 

When R >  − ∞ then we could say that the food supply was limitless or far from 

saturation. 

From equation (11) we found, 

x =  eµ𝑠                                      

< x >=  ∫ xP (
𝑥

𝑦
, t)

𝑅

0
dx        

< x > =  ∫ xg (
𝑠

𝑠0
, t)

∞

−∞
dx                                                                                            (16)                             

          =   𝑒(
𝜇²𝑡

2
)𝑒

{𝜇(
𝑠0+ 𝑎𝑡 

𝜇
  )}

                                                        

        =ye𝑎t𝑒(
𝜇²𝑡

2
)                                                                                                                       (17)                                                                                                                       

Comparing to x =  y 𝑒𝑎𝑡                                                                                              (18)                                             

For the deterministic case (in which random fluctuations were absent), we had zero 

variance.  

Now we obtained variance as    

 Var (x)  =< 𝑥2 >  −  < x >2= 𝑦2𝑒2𝑎𝑡(𝑒µ²t − 1)   

           =   < x >2 (𝑒µ²t − 1)                                                                                          (19)                                       

The coefficient of variation was given by: 

 [Var (x)]½  =  
[(𝑒μ² t−1)]½    

<𝑥>

                                                                                                                                          (20)                                            

So we could say that when ‘t’ increased, there was an increase in coefficient of 

variation. 
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3.3 CHANGE IN THE DEATH RATE 

According to G. Singh et al. [38], in comparison to the adult population, if the zygote 

population was more and hence they were less subjected to random fluctuations then 

random variation would be seen mostly in the death of adults. Derivation of the 

continuous model was done to approximate the model. We had taken the population 

size to be 𝑥 and the deterministic birth rate as σ𝑥 .Without taking in account the age of 

an individual we had assumed  that the individual died in time ∆t  with probability λ𝑥∆t. 

Since we assumed the number of individuals at time 𝑡 be x(t)and the number of 

individuals numbers at time (t + Δt)as x(t + Δt) which was a random variable took the 

value      

x(t + Δt) = x(t) + (σ𝑥  −λ𝑥)Δt                                                                                                                       (1)                                                                                                                        

With probability as   
 𝑥(t)

𝑖
 (λ𝑥Δt)𝑖   (1 − λ𝑥Δt)𝑥−𝑖                                                                                   (2)                                                                      

Here the number ‘i′ was Poisson distributed up to first order in 𝛥𝑡 

< i >= λ𝑥Δt                                                                                                                (3)                                                                                                           

< 𝑖2 >= λ𝑥  (1 − λ𝑥Δt)  +  (λ𝑥Δt)²                                                                              (4)                                                                                                         

By using equation (3), (4) and (1) 

< x (t + Δt) −  x (t) > = < Δx (t) >=  (σ𝑥 − λ𝑥)Δt                                                       (5)                                                                                                                    

<  [Δx (t)] ² > =  σ𝑥  (Δt) +  2 σ𝑥  xλ𝑥(Δt)² +  xλ𝑥Δt(1 − λ𝑥Δt)  +  (xλ𝑥Δt)²           (6)                 

Therefore   

 lim
Δt→0    

1

Δt
  < Δ (x) >=  σ𝑥  – λ𝑥                                                                          (7)                                                                                                                                                             

lim
Δt→0    

1

Δt
  < Δx (t) > ² =  xλ𝑥                                                                                                                               (8)                                                                                                        

σx was chosen in the same form as σ (m) of model                                                          (9)                                

σ (m)  = σ [1 − (
𝑚

𝑅
) α]    with α = 1                                                                                                       

For the continuous model the Fokker Plank equation (using equation 7 and 8) was given 

by           

∂P

∂t
=  −  

𝜕

𝜕𝑥
[α(x) P +  

1

2

𝜕²

𝜕𝑥²
 ß(x) P]                                                                                   (10)                                                                       

  With α(x) =  𝑎x (1 −   
𝑥

𝑅
) = σ𝑥  – λ𝑥                                                                                   (11) 

   ß(x)  =  λ𝑥x                                                                                                                               (12)                                                                
Determination of the Steady State Distribution 
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We had taken the variable x ≥  0 with boundary condition x = 0 [ß (0)  = 0 being 

singular and near x = 0],  

ß(x)  =  λx and α(x)  ∼ 𝑎x 

This was an exit boundary condition that whatever reaches the boundary x = 0 was get 

trapped there forever and led to the extinction of the population and the entrance 

boundary condition was given by x = ∞ and for all x >  0  the steady- state probability 

density function was zero. 

Transformation  dz =
𝑑𝑥

√𝜆𝑥
 was used to transform the Fokker Plank equation to find the 

value of  𝑃 (
x

y
 , t) 

 z = 2 (
𝑥

𝜆
) ½                                                                                                (13)                                                                                                                                                                               

P (
x

y
 , t)  =  

g(
𝑧

 𝑧0
,𝑡)

√ 𝜆x
                                                                                                                (14) 

Using 12, 13 and 14 we got 

𝜕𝑔 

𝜕𝑡
= − (

1𝜕

2𝜕𝑧
(𝑎 z −

𝑎𝜆𝑧³

4𝑅
−

1

𝑧
) g +

1 𝜕²𝑔

2 𝜕𝑧²
  )                                                                     (15)                                                   

By using simple transformation, we obtained,  

𝐺 = 𝑧 (
𝑎𝜆

4𝑅
)

¼

, Ω = 2 (
𝑎𝑅 

𝜆
)

½

, Ƭ =  (
𝑎𝜆 

𝑅
)

½ 𝑡

4
                                                                (16) 

hence equation (16) changed to 

𝜕𝑔 

𝜕𝑡
 =

𝜕

𝜕G
 [( 

1

G
− ΩG +  G3)] g +  

1 𝜕²𝑔

2  𝜕G²
                                                                         (17)                                                

Equation (10) approximate solutions were derived by using Malthusian regime 

1.An initial size was small i.e. y <  R  or   R ∞ 

2.For the Malthus regime we took y ≈  R  hence α(x) ≈  𝑎x  so that 

𝑃 (
𝑥

𝑦
, t) =

2𝑎

𝜆
𝑒𝑥𝑝 (

2𝑎𝐱+y𝑒−at 

μ𝑒𝑎t−1 ) I (
4𝑎√xy

𝜆( 𝑒
𝑎t
2 −𝑒

−𝑎t
2

 
)

)                                                                 (18)                                                             

The Ith moment of xe(𝑡) according to the density equation was:    

〈xe(t)〉 = ∫ xeP (
𝑥

𝑦
, t) dx

∞

0
    

             = ye𝑎t (
𝜆(𝑒𝑎t−1)

2𝑎
)

𝑒−1

𝑒
 (

−2𝑎y

λ(1−𝑒−𝑎t )
)
Γ(I + 1) F (I + 1: 2;

2𝑎y

λ(1−𝑒−𝑎t )
)                      (19)                                                                                                                                                                                                                                                                                                                                                                                  

With the help of this standard formula   F (b;  b;  z)  = 𝑒𝑧                                               (20)                                                                        
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F (b + 1; b; z) = (b +
𝑧

b
) F(b;  b; z)                                                                           (21)                                                                                        

We found  〈x (t) 〉 = 𝑦𝑒𝑎𝑡                                                                                                (22)                                                               

〈x² (t) 〉 − 〈x (t) 〉² =  
𝜆

𝑎
 〈x (t) 〉(𝑒𝑎t– 1)                                                                         (23)                                                                             

The average value was similar to the Malthusian deterministic behavior ß (x) = 0 and 

since α (x)  was linear in x so this was the expected value. T had been taken as 

Probability of population growing without limit and hence given by  

T(
 ∞

𝑦
 )  =  

 ∫ Π
𝑦

0
(η)dη

∫ Π(η)dη
∞

0

                                                                                                               (24)                                                                                                                                                                                                                                     

Where  Π (η)  =  𝑒
−2 ∫  

η

0
α(y)

ß(y)
dy

                                                                                          (25)                                                                         

𝑇 (
∞

𝑦
) = 1 − 𝑒−2𝑎

𝑦

λ
 
                                                                                                      (26)                                      

For the case when 𝑎 >  0, we found that with probability (1 − 𝑒−2𝑎
𝑦

λ
 ), the population 

would keep on growing and with probability (1 − 𝑒−2𝑎
𝑦

λ
 ) would become extinct for 

 𝑎 < 0. In the Malthusian regime, an approximation validation was limited to short times 

and limit of the time t ∞ had no meaning. 

In the regime y ≈  R ; 
𝑥−𝑦

𝑟
<< 1 and  a(x) ≈  a[R − x] ,  𝑎  > 0                                 (27)                                                                 

the parameter was defined as η =
2𝑎𝑅

λ 
 

For η > 1, 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 x = 0  was considered as 𝑎𝑛 𝑒𝑛𝑡𝑟𝑎𝑛𝑐𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 and f𝑜𝑟 

the condition when  0 < η < 1, the boundary was a regular boundary and x = ∞  was 

a natural inaccessible boundary when η > 0. 

𝑃 (
𝑥

𝑦
, ∞) =  A𝑥η−1 𝑒−η 

𝑥

𝑅  
 
, here A was a normalization constant and its value was given   

by  𝐴 =
(

𝑎

R
)ᵑ

Γ(η)
                                                                                                                       (28)                                                                         

The most probable population size in a steady state was given by 

𝑥0 = R −
λ

 2𝑎
 = R (1 −

1

η
) which was positive for η > 1.                                          (29)                                                                                                                                          

𝐴𝑠 η increased, the size approaches to R. The moment of the size of the population at 

steady state was given by                      

< 𝑥𝑒 >  =   (
𝑅 

η
)

𝑒

 
Γ(η+1)

Γ(η)
 ,   〈x〉  = R >  𝑥0                                                                 (30)                                                                  

Probability density depending on time was given by                     
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 P (
𝑥

𝑦
, t)  =

2𝑎

𝜆
(

𝑥

𝑦
)

𝑛−1

2 𝑒
η𝑎t

2

𝑒
𝑎t
2 −𝑒

− 
𝑎t
2

𝑒
(

−2𝑎x+yexp(−𝑎t)

λ(1−exp(−𝑎t))
)
𝐼𝑛−1 (

4𝑎(xy)½

λ(1−𝑒
 
𝑎t
2 )

)                                    (31)                              

We found that for all t >  0, the probability of having a large population (x ≫ R) was 

very small for all η > 0.While the probability of small size population was low 

when 𝜂 > 1  and very high for η < 1.Therefore the case when we had η > 1 described 

a fluctuation in population around as average far from zero.                    

 < 𝑥𝑝 >= (
λ 

2𝑎
)

𝑝

𝑒𝑥𝑝 (
2𝑎y  Γ(l+n)

𝜆(𝑒𝑎t−1)Γ(η)
) 𝐹 (η + p: η;  

2𝑎y

λ(𝑒𝑎𝑡−1)
)                                        (32)                                                   

using the equations (22), (23) for p =  1, 2 … ..   

We obtained from the above equation                                                      

 〈x〉 =  R (1 − 𝑒−𝑎𝑡) + y𝑒−𝑎𝑡 = R − (R − y)𝑒−at                                                         (33)                                                                   

The deterministic behavior was obtained by solving the deterministic equation 

𝑑𝑥

𝑑𝑡
= 𝑟(R − x)  

〈𝑥2〉 − 〈x〉² =  
λ 

2𝑎
[〈x〉 + y𝑒−𝑎𝑡](1 − 𝑒−𝑎𝑡)]                                                                  (34)   

We got the comparison to the zero value in this variance. 

3.4 CONCLUSION 

We concluded from this presented mathematical model that protein loss in grains was 

proportional to the population of the insects and which depended on different 

environmental factors. Stochastic models were used in studying the change in the net 

growth rate of insects. We studied that the insect population changed on a successful 

colonized population in a randomly fluctuating environment. We also discussed the 

changes in the death rate using the model that approximated the situation described a 

population that fluctuated around as average far from zero. The research highlighted 

that protein loss in grains was not only dependent on insect population size but also on 

various environmental factors considered in the model. Various environmental factors, 

including temperature, moisture levels, air relative humidity, intergranular gaseous 

components, broken grains, and dockage, were considered variables influencing insect 

population dynamics. Temperature and humidity levels were highlighted as crucial 

factors affecting insect development, reproduction, and infestation. Random changes in 

the environment could have multifaceted effects on insect populations, influencing their 

behavior, distribution, and interactions within ecosystems.  
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CHAPTER – 4 

 

  TO DEVELOP AND VALIDATE A MATHEMATICAL MODEL TO 

ANALYZE THE EFFECT OF S. CEREALELLA ON GRAINS IN 

THE ENVIRONMENTAL ECOSYSTEM 

      

                              

 

    Figure 4.1- Angoumois grain moth (Sitotroga Cerealella) 

Source – “Angoumois grain moth. Clemson University - USDA Cooperative Extension Slide   

Series.www.Bugwood.organisation.com 

https://www.forestryimages.org/browse/detail.cfm?imgnum=1235240. Published June 23, 2003. 

Updated May 11, 2011. Accessed February 11,2022.” 



36 

 

  

“The Angoumois grain moth (Sitotroga Cerealella) is a species of the Gelechiidae 

moth family, commonly referred to as the "rice grain moth". It is most abundant in the 

temperate or tropical climate of India, China, South Africa, Indonesia, Malaysia, 

Japan, Egypt and Nigeria, with its location of origin being currently unknown. It is most 

commonly associated as a pest of field and stored cereal grains as they burrow within 

the kernel grains of crop plants, rendering them unusable for human consumption.” 

(From Wikipedia).   

4.1 INTRODUCTION 

 

One of the main pests that attack grains stored in storage is the Angoumois grain moth, 

Sitotroga cerealella. Under the premise that the rate of change of % of germination loss 

with respect to grain infestation was proportional to germination loss, a mathematical 

model was created using differential equations of second order. An entomological 

dataset was used for this issue. This model will aid in reducing grain storage losses 

brought on by many elements like moisture, humidity, etc., which is extremely helpful 

for managing the stored grains effectively.The most important pest of stored 

agricultural products worldwide is the Angoumois grain moth. Sitotroga cerealella 

infestations rise during storage, in pre-harvest or post-harvest. 

 D. A. Ukeh and I. A. Udo [19] concluded that a variety of kernel such as corn, sorghum, 

wheat, soya bean, rice and paddy was attacked by the larvae of Sitotroga Cerealella. 

And also reported that the development of the pest could possibly be managed by 

alternating nutritive and the physical properties of cereals and also studied that this pest 

attack all types of cereal grains especially the wheat where weight loss could reach 50 

%. P. Weston and P. L. Rattlingourd [67] studied that the insect grow inside the kernel 

and affected the grain directly and made the convenient reproduction medium to 

reproduce their F1 generation. R. T. Arbogast and M. A. Mullen [75] reported that  the 

life cycle of this insect varies with abiotic factors such as temperature and relative 

humidity. M. Evans [55] reported that plentiful statistics were available due to the 

agricultural research going on in different agricultural departments of various 

universities that could provide a basis for analytical study. Mathematical modeling 

gave an insight that what might happen if large quantities of grains would be considered 
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as generally the experiments were performed with small amounts only and hence the 

data could be arranged in a systematic order through mathematical models so as to make 

it more useful for agricultural production. Every year due to high humidity harvested 

and processed paddy retains high moisture content which caused considerable 

losses in grains. The most harmful insect that caused intense damage to storage 

grains is the Angoumois grain moth also called Sitotroga Cerealella. 

The different factors that affect storage grains are biotic and abiotic where abiotic include the 

grain moisture, humidity temperature, light and type of storage structure and biotic 

include insects, etc. A Mathematical model was established by using second order 

differential equation by assuming that the rate of change of % in germination loss 

with respect to grain infestation was proportional to germination loss. F. Jian et al. [32] 

reported that analysis showed that the main factor affecting egg incubation period, 

larval-pupal development time and adult survivorship were the temperature and the 

optimum conditions required for its growth and survivorship were 30 C and 70-85 % 

RH. A. Kumar et al. [12] studied the effect of Sitotroga Cerealella infestation on rice grain 

quality and glycemic index of stored paddy grains and it was found that the glycemic index, 

glycemic load, total carbohydrate, amylose content and resistant starch were affected to a great 

extent. M. Muthukumar and K. Ragumoorthi [61] reported that seed quality reduced in 

all maize hybrids due to the attack of Sitotroga cerealella infestation. F. Jian et al. [25] 

reported that a diffusion equation could be used to model the population redistribution 

of adult Cryptolestes ferrugineus in stored grain and to solve the transport equations 

finite difference method could be used. T. Akter et al. [84] discussed the biology of the 

Sitotroga Cerealella and reported that the length of male and female was 11.2 ± 0.09 

and 12.07 ± 0.06 mm respectively. According to A. R. Verdugz and M. Ackermann [6] 

concluded that long-term stability of positive pairwise interactions got destabilized due 

to rapid evolution.   

4.2 MATERIAL AND METHODS 

The experiments were conducted at N.D.U.A.T., crop research station, Faizabad 

U.P. Twenty-five grams of rice seeds were selected and each of 10 selected 

varieties, comprising of 5- grain types were kept in 100 × 25 mm size pre sterlised 

glass specimen tubes. The tubes were placed inside the desiccator with some adult 
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moths and the complete experiment was performed under different 

environmental conditions for different periods. Based on the information collected 

from the experiments, a Mathematical Model was developed which was based on 

two varieties viz. % grain infestation and % loss in germination. For 3, 6 and 9 

months of duration losses in grains weight and germination of rice varieties infested 

by Sitotroga Cerealella were observed. 

 

                                                           

 

 Table-4.1 Observation of % grain infestation and % loss in germination for 3, 6 and 9 months 

 

 

 

 

 

 

 

 

      % Grain infestation     % Loss in germination 

3 months 6 months 9 months 3 months 6 months 9 months 

11.5 14.9 21.4 15.2 19.4 27.3 

4.6 7.3 7.3 9.9 18.5 21.2 

13.7 16.1 16.1 23.3 26.5 31.0 

11.5 12.1 15.1 18.9 22.7 24.5 

3.3 5.4 9.8 8.0 10.5 16.5 

6.5 7.3 7.9 8.6 13.9 16.9 

9.9 10.5 10.0 11.8 14.2 18.5 

10.5 10.5 13.2 15.3 17.2 10.9 

10.2 14.4 17.9 17.3 19.9 25.0 

15.5 17.7 23.5 21.4 26.2 33.0 



39 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
                 Figure 4.2- Showing % of 3 Months germination loss with respect to % grain infestation 

 

 

 

  

      

 

 

 

 

 

 
 

 

 

  

 

 

 

 

 

 

 
 

 

 

 

 

                    Figure 4.3- Showing % of 6 Months germination loss with respect to % grain infestation
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                Figure 4.4- Showing % of germination loss with respect to % grain infestation 9 Months

 

 

  The findings showed that the percentage loss in germination value was acting 

oscillatorily in relation to the percentage grain infection (Kernel). Thus, it was 

hypothesised that a law governs the percentage loss in germination value in relation 

to grain infection, and that the solution displayed oscillatory behaviour.   We first 

idealised the data collected in experiment to the extent that this idealized data is included 

in most of the original data and some averaged data before trying any law to mould 

this situation. The reasons of   idealization the data were as follows:  

1) To give a curve of frequency, the curve in Figure was idealized which showed the 

nature of oscillation.  

2) Xi were averaged at averaged kernel (grain infestation) to obtain observation % loss 

in germination for further use.
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 Table 4.2 - Average experimental data and Idealized average data for kernel Infestation and    

                  Germination percent loss

 

One data of germination losses Xi at grain infestation Yi had been omitted. The 

main reason behind this was that their behavior was different from the other data 

of the general trends, might be some other variables which were presented at the 

time of recording the data were not present here. According to the follow up of 

the idealized data and corresponding curve other observations of the table were as 

the same given in table 2.   

 

 

             Average experimental data                    Idealized average data 

Kernel 

Infestation 

       Germination 

        % loss 

Kernel 

Infestation 

Germination 

     % loss 

15.8 20.5 16 21 

7.3 22.1                     7 10 

17.1 26.8 17 27 

18.2           24.1 19 24 

6.2 22.0                  6 22 

7.1 11.6                   7 12 

10.2 14.7 10 15 

11.4                    14.4          11 14 

14.2 20.6 14 21 

18.8 26.8 19 27 
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4.3 Results and Discussion 

 
Here the rate of % germination loss be denoted by G and grain infestation   by 𝐼 and it was 

postulated that the rate of % germination loss with respect to grain infestation was 

proportional to G 

        
𝑑²𝐺

𝑑𝐼²
∝  G  

 

       
𝑑²𝐺

𝑑𝐼²
= −𝜔²𝐺                                                                                                                (1)                                                              

       here 𝜔²  was constant of proportionality 

    Solution of equation (1) was given by 

     𝐺 = 𝐴 𝐶𝑜𝑠𝜔𝐼 + 𝐵𝑠𝑖𝑛𝜔𝐼                                                                                                     (2)                                                    

      where 𝐴 𝑎𝑛𝑑 𝐵 were arbitrary constants   

    The s olution of equation (1) was given by an equivalent expression   

      𝐺 = 𝐶1sin (𝜔𝐼 + 𝜆)                                                           (3)                                                                   

      where sin(𝜔𝐼 + 𝜆) = 𝑠𝑖𝑛𝜔𝐼 𝑐𝑜𝑠𝜆 + 𝑐𝑜𝑠𝜔𝐼 𝑠𝑖𝑛𝜆                                                  (4)                                                                           

      Using equation (4) in equation (3) we had obtained     

      𝐺 = 𝐶1 𝑠𝑖𝑛𝜔𝐼 𝑐𝑜𝑠𝜆 + 𝐶1 𝑐𝑜𝑠𝜔𝐼 𝑠𝑖𝑛𝜆                                                                           (5)                                                                        

      On Comparing (2) and (5)  

      We have got 

       𝐴 = 𝐶1𝑠𝑖𝑛𝜆                                                                                                            (6)                                                                                             

        𝐵 = 𝐶1 𝑐𝑜𝑠 𝜆                                                                                                              (7)                                                                                             

      After squaring and adding above   

     We had got 𝐴² + 𝐵² = 𝐶1²  and  λ = 𝑡𝑎𝑛−1 𝐴

𝐵

 

            where 𝐶1 was called amplitude of oscillation and the oscillation was (𝜔𝐼 + 𝜆). 

         Phase angle was 𝜆, we started from the maximum point and took the angle 𝜆 =
𝜋

2
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           𝐺 = 𝐶1𝑐𝑜𝑠𝜔𝐼                                                                                               (8)                                                     

 𝜔was called the circular frequency and equations (6) and (7) resulted in                                                                                    

   𝐴 = 𝐶1, 𝐵 = 0 

T was the oscillation's period, or the separation between the two points, and  was     

another way to express the symbol. 

    𝜔 =  
2п

𝑇


By making use of equations (8) and (9), we got 

   𝐺 = 𝐶1𝑐𝑜𝑠 (
2п

𝑇
) 𝐼                                                                                                           (10)                                                                          

   At 𝜆 =
𝜋

2
   

     We  claimed that the data given in table was represented by the equation (10) in the model 

and to   justify this particular claim we proceeded to test the model. 

   The displacement curve in equation (10) was depicted with respect to a line of symmetry, 

which we referred to as the "line of best fit" of the data table. As a result, after fitting the 

data to the line y = mx + c, we obtained the equation y = 0.9 x +11.5.             

  The inclination of line obtained was 0.90 which gave wonderful effect i.e. germination 

value of grains was directly dependent upon % grain infestation.     

   Let, 𝑝 =  𝑥 −  10, 𝑠 =  𝑦 −  20  

Using Idealized data from Table 2 of Kernel infestation (x) and Germination %     

loss(y) to find different values of p and s, we obtained  

    ∑ 𝑝 = 16 , ∑ 𝑠 = 19 , ∑ 𝑝² = 209, ∑ 𝑝𝑠 = 198  

    𝑥 =  10 +  
16

9
 =  11.77 ≈ 11.8    

    𝑦 =  20 +
19

9
 =  22.2 

    𝑏𝑦𝑥 
=

(9∗198)−16∗19

(9∗209)−16²
     

    𝑏𝑦𝑥 
=   0.90 

    Regression line was therefore provided by                 



44 

 

     𝑦 –  22.2 =  0.90 (𝑥 –  11.77) 

     𝑦 =  0.9𝑥 +  11.507   

 

    4.4 Conclusion 

     From this model, we deduced that S. cerealella infestation caused sufficient damage 

to affect significant changes in germination when varied storage periods were taken. 

Insect infestation rose over time as storage time increased, and germination reduced 

over time in a trend that was more or less identical. The amount of insects within the 

store closely related to the infestation rate. Additionally, the environment, specifically 

the ecosystem, affected how many insects there were. This mathematical model 

focused on the part that insect infestation during storage played in reducing 

germination, which in and of itself demonstrated how effective it was. 
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CHAPTER-5 

             ANALYSIS OF GROWTH IN POPULATION THROUGH 

NONLINEAR STOCHASTIC PROCESS 

 

         5.1 INTRODUCTION 

                   By using related Fokker-Plank equations for the probability densities that were time-

dependent along with nonlinear stochastic differential equations for growth, the 

probability density evolution of an insect population was studied. It was clear that the 

variance behaviour was dependent on the beginning conditions, however in the case of 

the mean, the impact of the early conditions vanished quickly. As the growth of the 

insects continued, we noticed how the mean and variance responded differently. The 

variation of the process was discovered to have the potential to monotonically rise to a 

level above the steady state variance before falling back to the steady state variance.                    

                   Biologists used a differential equation to describe the growth which was given by 

                   𝑑𝑥 = (𝑎 − bxn−1)xdt, n ≥ 2                                                                                     (1) 

                   where ‘𝑥’ was an insect population or size and ‘𝑎’ was the growth parameter whereas 

second term in (1) represented restriction in growth which was caused due to the reasons 

like crowding and competition for resources. Another logistic equation was the 

Gompertz equation which puts a limit on the size  

                   𝑑𝑥 =  (𝑎 − 𝑏𝑙𝑛𝑥 ) 𝑥𝑑𝑡                                                                                               (2) 

                   The effect of random fluctuations on the growth of the population was ignored in these 

deterministic equations by making an assumption that the random fluctuations were 

independently distributed about the growth path and that growth law remains unaffected 

from these fluctuations. But in this chapter, these random fluctuations were taken into 

consideration which was an intrinsic part of the growth process. Equations were 

formulated which included random fluctuations. The above deterministic equations for 
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the growth were converted into the stochastic form. The main objective was to correlate 

the mean and the variance of the process as the growth proceeds. 

                   5.2 MATHEMATICAL MODEL 

         The Incorporation of stochastic components into deterministic models could be done by   

different ways. It was assumed that the random fluctuations were faster than µ =  
1

𝑎
 

which specified the time scale of macroscopic variables evolution in the process under 

consideration. Rapid changes in the environment and other fluctuations affected the 

system through external parameters. 

                   So the parameter ‘𝑎’ was taken as a random variable in equations (1) and (2).  

                    𝑎𝑡 = 𝑎 + 𝜎𝑓𝑡
                                                                                                                                                    (3)                                                                                                                                          

where 𝑎 was the mean, 𝑓𝑡  signified Gaussian white noise and 𝜎 was the noise intensity. 

For the random process 𝑋𝑡, equation (1) and (2) were replaced by the stochastic 

differential equation.   

                    𝑑𝑋𝑡 = (𝑎 − 𝑏𝑋𝑡
𝑛−1)𝑋𝑡𝑑𝑡 + 𝜎𝑋𝑡𝑑𝑊𝑡                                                                                                               (4)                   

                           𝑑𝑋𝑡 = (𝑎𝑋𝑡) ln  
𝑥∗

𝑋𝑡
𝑑𝑡 + 𝜎𝑋𝑡𝑑𝑊𝑡                                                                                                                             (5)   

                    Here 𝑊𝑡 represented the Wiener process. To make it easier b = 𝑎 ln x* had been put in 

(5).These equations specified the change in the size of the population. For the above 

SDEs, the choice between the Ito and Stratonovich interpretations depended on the 

nature of the process which was being installed. According to the theory of K. 

Alagusundaram et al. [48], there were no qualitative differences in any of the results 

between the above two approaches for the case which were considered here. By using 

the theory of P. Holgate [69] and C. Wang [18], to obtain the definite results, Ito 

stochastic calculus was used. 

                   5.3 RESULTS 

                        Each integral of the stochastic differential equation described the growth path or in other 

words, each solution of an SDE described one realization. This SDE generated an 

ensemble of realizations that was described by a probability density P(𝑥, 𝑡)which was 

transitional in nature, which satisfied the Fokker- Plank Equation. 
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 ∂P

∂t
=  − 

∂

∂x
 g(x)P(𝑥, 𝑡) +

1

2

𝜕2

𝜕𝑥2 𝜎²𝑥2P(𝑥, 𝑡)                                                                       (6) 

                   where g(x) = (𝑎 − bxn−1)𝑥 or 𝑎𝑥𝑙𝑛 
x∗

𝑥
 , respectively. So we had easily evaluated the 

steady-state probability density for this, which was denoted by𝑃𝑠 (𝑥). 

                   𝑃𝑠 (𝑥) = 𝑁𝑠 𝑥
(

2𝑎

𝜎²
−1)

𝑒
−2𝑏𝑥𝑛−1

 𝜎²(𝑛−1)                                                                                           (7)    

                   and value of Ps(x) for the Gompertz model  

                  𝑃𝑠 (𝑥) = 𝑁𝑠 𝑥
(

𝑎𝑙𝑛x∗ 

𝜎²
−1)𝑒

−𝑎𝑙𝑛²x

𝜎²                                                                                          (8) 

                   Where Ns was a Normalizing constant and probability density defined in equation (8) 

was normalized or in other words, steady-state probability existed and had a finite value 

at any positive value of the parameters. For 𝑎 >
𝜎2

2
 the probability density defined in 

equation (7)  was normalized. For the stochastic process, the condition  𝑎 >
𝜎2

2
 coincides 

in the Ito interpretation with the natural boundary condition 𝑥 = 0. And the probability 

density (7) was divergent when  
𝜎2

2
< 𝑎 <  𝜎²  at 𝑥 = 0.Hence taking  the condition 𝑎 >

𝜎²  for steady state probability density for both (7) and (8).The evolution of the 

probability density through time was described by the solution of the Fokker-Plank 

equation(5). All models discussed in equation (1) showed the same quality of behavior 

allowing the substitution of 𝑦 = 𝑥−𝑛+1. which made the SDEs linear. The logistic SDE 

changed into the linear SDE when 𝑛 = 2 with the substitution  

                    𝑑𝑌𝑡 = [(𝜎2 − 𝑎)Y + b)𝑌 + 𝑏)]𝑑𝑡 + 𝜎𝑌𝑡𝑑𝑊𝑡                                                              (9)                     

                   Its solution was given by    

                   𝑌𝑡 = {𝑒(
𝜎²

2
−𝑎) + 𝜎Wt } { 𝑌0 + b ∫ 𝑒   {−(

𝜎²

2
−𝑎 )𝑠−𝜎Wt }𝑡

0
ds} 𝑑𝑠                                       (10) 

                   For Gaussian fluctuations to undergo a linear transformation, we could see that the 

solution was in the exponential function for the Wiener process. Thus linear SDE 

solution was not a Gaussian process. The time-dependent solution of the Fokker-Plank 

Equation (6) couldn’t be determined by using the linearization procedure but could be 

found numerically and the results of this numerical solution were presented below. For 

the Gompertz model, the substitution of 𝑦 = 𝑙𝑛 𝑥 in SDE converted the nonlinear 
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process into a process called Ornstein-Uhlenbeck and hence for the Gompertz, 

stochastic process could be used according to the theory of A. Pleasant et al. [2]. When 

P(x, 0) = τ(x − 𝑥0) i.e.  if initial size of population was known, the solution obtained 

as      

                    P(x,  t|𝑥0) =
1

σ√π(1−e−2𝑎t)

𝑎

𝑒
−𝑎(ln x−ln x∗+

σ2

2𝑎
−exp (−atln 𝑥0)² 

σ2(1−e−2𝑎t)                                               (11) 

                   From this time-dependent probability density, the mean and variance both increased 

monotonically towards the steady–state mean and variance and dependence were on the 

parameters of the SDE only for these statistics. The analytical solution of Fokker-Plank 

equations had a complex form of an infinite series over orthogonal polynomials, if only 

the probability of the initial population sizes range were known. 

                    From the time-dependent probability density 𝑃(𝑥, 𝑡), it could be very helpful in 

understanding the behavior of first two moments. By using the Fokker-Planck equation 

of SDE, the ordinary differential equations for the mean 𝑚𝑡 and variance v could be 

derived. 

                      
 ∂P

∂t
=  − 

∂

∂x
 g(x)P(𝑥, 𝑡) +

1

2

𝜕2

𝜕𝑥2 𝜎²𝑥2P(𝑥, 𝑡)  (Fokker Plank’s Equation) 

                       g(x) was the drift coefficient and 𝜎²𝑥2 was the diffusion coefficient. 

                    Derivation of the mean 𝒎𝒕  

                    For 𝑚𝑡 , the drift coefficient was g(x) = 𝑎𝑚𝑡  −  b (𝑚𝑡² + v)  

                    Substituting in Fokker’s Plank Equation 

                   
 ∂P

∂t
=  − 

∂

∂𝑚𝑡
{(𝑎𝑚𝑡  −  b (𝑚𝑡

2 + v))P(𝑚𝑡 , v, 𝑡)} +
1

2

𝜕2

𝜕𝑚𝑡
2  {σ

2 (𝑚𝑡² + v)P(𝑚𝑡 , v, 𝑡)}   

                  Integrate the entire equation with respect to v over its entire range. 

                  ∫ 𝑣
 ∂P

∂t

∞

−∞
=∫ [−

∂

∂𝑚𝑡
{(𝑎𝑚𝑡  −  b (𝑚𝑡

2 + v))P(𝑚𝑡 , v, 𝑡)} +
1

2

𝜕2

𝜕𝑚𝑡
2  {σ

2 (𝑚𝑡
2 +

∞

−∞

v)P(𝑚𝑡 , v, 𝑡)}] dv       
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                 Repeated a similar process for the variance v. Substituted the drift coefficient g(x) for 

v   (2𝑎v −  4b𝑚𝑡v +  σ2 (𝑚𝑡
2 + v)) into the Fokker-Planck’s equation, integrated it 

multiplied by v over the entire range to obtain the variance equation. 

                     ∫ 𝑣
 ∂P

∂t

∞

−∞
= ∫ [−v

∂

∂𝑚𝑡
{(𝑎𝑚𝑡  −  b (𝑚𝑡

2 + v))P(𝑚𝑡, v, 𝑡)} +
1

2
𝑣

𝜕2

𝜕𝑚𝑡
2  {σ

2 (𝑚𝑡
2 +

∞

−∞

v)P(𝑚𝑡 , v, 𝑡)}] dv       

                   After Integrating by parts and simplifying, we got the ordinary differential equations for 

the mean 𝑚𝑡 and variance v   

                   
d𝑚𝑡

dt
=  𝑎𝑚𝑡  −  b (𝑚𝑡² + v)     

                    
dv

dt
= 2𝑎v −  4b𝑚𝑡v +  σ2 (𝑚𝑡

2 + v)                                                                      (12) 

                   To obtain equations for the logistic stochastic process, we used Fokker plank’s equation 

           and identified drift coefficient and diffusion coefficient as  

            g(v)= 2av ln (
 𝑦∗

𝑚𝑡 
) − 2 +   σ2 (𝑚𝑡² + v) and b(v)=  σ2 (𝑚𝑡

2 +  v)and substituted in 

Fokker Plank’s equation and integrated 

                      ∫
 ∂P

∂t
=

∞

−∞
∫ [−

∂

∂𝑣
{(2av ln (

 𝑦∗

𝑚𝑡 
) − 2 +  σ2 (𝑚𝑡

2 + v)) P(𝑚𝑡, v, 𝑡)} +
∞

−∞

                                         
1

2

𝜕2

𝜕𝑣2  {σ
2 (𝑚𝑡

2 +  v) P(𝑚𝑡 , v, 𝑡)}] dv      

     = − (2av ln (
 𝑦 ∗

𝑚𝑡  
) − 2 +   σ2 (𝑚𝑡

2 + v)) P(𝑚𝑡, v, 𝑡)|

+ ∫ [(2a ln (
 𝑦 ∗

𝑚𝑡  
) −  σ2) 𝑃 +    σ2v

 ∂P

∂v
] 𝑑𝑣

∞

−∞
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                   Boundary terms vanished often, if the probability density function was well-behaved, 

and  we were left with 

∫ [(2a ln (
 𝑦 ∗

𝑚𝑡  
) −  σ2) 𝑃 +    σ2v

 ∂P

∂v
] 𝑑𝑣

∞

−∞

 

     𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑖𝑒𝑑 𝑡ℎ𝑒 𝑟𝑒𝑚𝑎𝑖𝑛𝑔 𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑙 

                      ∫ [(2a ln (
 𝑦∗

𝑚𝑡 
) −  σ2) 𝑃𝑑𝑣 +   ∫ σ2v

 ∂P

∂v

∞

−∞
] 𝑑𝑣

∞

−∞
   

                   
dv

dt
=  2av ln (

 𝑦∗

𝑚𝑡 
)  − 2 +  σ2 (𝑚𝑡² + v)                                                                  (13)      

                      
d𝑚𝑡

dt
= 𝑎𝑚𝑡  ln (

 𝑦∗

𝑚𝑡 
)  t −  

𝑎𝑣

2𝑚𝑡
  

              

 

                  Different approximation steps would lead to same equations, when the instantaneous 

fluctuation was proportional to the state 𝑋𝑡.  
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                                               Time                                                                       Time  

                                                 1(a)                                                                        1(b) 

                Figure 5.1- For the logistic stochastic process, the numerical solution of equation (12) for  

                                      both the mean and the variance. At 𝑎 =0.04 , b=0.005 ,𝜎=0.01.Bold curves and 
thin curves  correlate with initial conditions m(0)=0.5 , v(0)=0.0001 and 

m(0)=0.5, v(0)=0.005.Y-axis represents mean value in 1(a) and 2(a) and variance 

in 1(b) and 2(b) where X-axis represents Time. 
      

          
                                           Time                                                                  Time 

                                                      2(a)                                                                       2(b) 

               Figure 5.2- For the Gompertz Stochastic Process, the numerical solution of equation (13) 

for both the mean and the variance. At 𝑎 =0.03 , x*=7.45 ,𝜎=0.03. Bold curves 

and thin curves correlate with initial conditions m (0) =0.07, v (0) =0.0007 and 

m (0) =0.7, v (0) =0.007 respectively. 
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                    Figure 5.3 - For the logistic stochastic process Fokker-Planck equation solution was  

                                         represented numerically and hence plotted at different times (t1, t2, t3) by  

                                         using parameters  𝑎= 0.045; b= 0.003; 𝜎 =  0.005.Curves 1-3 representing 

                                         the probability density and curve 4 represents the steady state. 

 

 

 

 
        

                      Figure 5.4-  For the Gompertz process, Fokker-Planck equation solution was represented 

                                               numerically and hence plotted at different times (t1, t2, t3) by using   parameters 

                                               𝑎  = 0.03; x* = 1.5; 𝜎 =0.01. Curves 1-3 representing the probability density 

                                               and curve 4 represent the steady state. 
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                   The solutions were shown in Figures (5.1) and (5.2) for the set of equations (12) and 

(13). The evolution of mean and variance to a steady state took place for each case and 

the probability densities (7) or (8) could be used to obtain the values for the steady-state 

mean and variance. We could see the difference in the behavior of the mean and the 

variance while evolving to a steady-state. Initially, variance increased monotonically 

above its steady-state, attained maximum value at a time when the growth rate was near 

its maximum and then after some time decreased to a steady state and for the case of 

mean, it evolved monotonically towards the steady state. 

                   The variance increased monotonically to the steady-state variance initially, when the 

ratio of the standard deviation to the mean of the initial population size was small. 

Before shrinking back to the steady-state variance, the variance increased to a point 

greater than the steady-state variance, when the ratio was initially close to or greater 

than this ratio at the steady-state. Approximations that were made in deriving (12) or 

(13) were the main reason for this behavior. Direct numerical solutions of the Fokker-

Planck equation for both the process Gompertz and logistic were obtained to solve this 

which were shown graphically in Figures 5.3 and 5.4. We could see that the Gompertz 

stochastic process showed the similar behavior which suggested that behavior of the 

variance was independent on the approximations. The probability density evolution for 

the increasing time was shown in the graph. The steady-state distribution was shown by 

the last curve. For the stochastic growth processes, the non-monotonic variations of the 

variance were clearly described by non-monotonic changes in the amplitudes of the 

probability density curves. For example, at 𝑡 = 𝑡1  the steady state variance was greater 

than the process variance and was found to have less value at 𝑡 = 𝑡2  .  

                      The description for this different behavior was that as the growth proceeded the mean 

and variance responded differently. When the ratio of the steady-state standard variation 

to the steady-state mean was less than the ratio of the initial standard deviation to the 

initial mean then this scale difference led to the behavior observed. The behavior of the 

mean was that it was monotonically increasing but for the case of the variance, at some   

time the variance rose above the steady-  state variance before the process reached the 
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steady-state and then as the growth proceeded and shrank back to zero, the variance was 

fallen back to zero. 

 

                   5.4 CONCLUSION 

                   Biological growth could be described by using the growth equations. Results reflected 

the complex behavior of the mean and variance when the involvement of the growth 

processes took place. The behavior would exist in which the variance would rise above 

the steady-state variance before shrinking back to the steady-state variance. The analysis 

of this behavior gave the idea of danger for example if the aim was to find the danger to 

food safety or the quality of water through the growth of micro-organisms. The 

evolution of mean and the variance of growth processes which were described by using 

linear differential equations with a random growth rate to their steady-state values took 

place.                                   



 

 

55 

 

 

                                       CHAPTER-6 

TO PREDICT THE POPULATION DYNAMICS OF RUSTY GRAIN 

BEETLE IN STORED BULK WHEAT BY USING MATHEMATICAL 

MODELING 

 

   

  
                         Figure 6.1- Damage caused by Cryptolestes ferrugineus 

  Source- Cryptolestes ferrugineus. www.Shutterstock.com. https://www.shutterstock.com/image-

photo/rusty-grain-beetle-cryptolestes-ferrugineus-beetles-1236417859. Accessed November 

20,2021.  

https://www.shutterstock.com/image-photo/rusty-grain-beetle-cryptolestes-ferrugineus-beetles-1236417859.%20Accessed
https://www.shutterstock.com/image-photo/rusty-grain-beetle-cryptolestes-ferrugineus-beetles-1236417859.%20Accessed
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   "The lined flat bark beetle species Cryptolestes ferrugineus is a native of Europe. The rusty 

grain beetle is the popular name given to it, and it currently has a global range. 

     (Wikipedia) 

 

     6.1 INTRODUCTION 

Population dynamics of Cryptolestes ferrugineus (Stephens) (Coleoptera: 

Laemophloeidae) revealed that population variation occurred in both small and large 

patches. The temperature and quantity of insects presented previously were the two main 

reasons that influenced the population density according to analysis of key factor. The 

number of insects grew as the total number of degree -days increased. Since consistent 

temperatures were required for the model related to degree- days, it was impossible to 

estimate bug populations when temperatures were fluctuating. Based on the results of 

unstructured population models, an examination of significant variables, and the degree 

day model, this model provided an explanation for the insect populations under variable. 

The population density of Cryptolestes ferruginous (rusty grain beetle) were examined 

under various grain temperature treatments and in containers of varying sizes (small 

patches, medium patches, and large patches). It was discovered that insect numbers 

depended more on vast patches than on small patches, as opposed to the previous situation 

as concluded by F. Jian et al. [30]. If overcrowding was a factor in the decline of 

populations of insects, then crowding would only had a minimal role in the insect 

population in grain bins that were being stored because the insects would be unable to reach 

their maximal density in time inside of wide areas under changing temperatures. There 

might be limited use for various mathematical models created using the data gathered for 

the little jars. As a result, it was necessary to develop a mathematical model based on the 

big patch size. 

According to M. Kot [54], Analysing Key variables and models for unstructured 

population, such as logistic and exponential equations, models for discrete-time, harvested 

models and delay models were a few examples of broad models that represented the trend 

of population dynamics. The insect population was difficult to characterize and anticipate 
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the environment of grain storage was a complex system that was also affected by the 

complexity of insect biology. Consequently, determining the insect population's size was 

essential. Therefore, constructing complicated models that largely responsible for the 

calculation of time of egg producing and rate, mortality, and the duration of each stage of 

an insect has become insect population projection study trend, further increasing the 

implementation of the model was tricky. The grain depot supervisor needed a generic 

equation that would help him quickly estimate the bug population. To understand the 

fundamental elements driving the dynamics of the insect population, R. Morris et al. [76] 

devised the model for the analysis of key factor. Despite the poor forecasting precision of 

the key factor analysis-based model created to predict insect population dynamics, analysis 

of this model was being able to quantify each factor's contribution to population density, 

and the general model could be created by the quantitative contributions described in the 

key factor analysis.  

Many insect life cycles had been effectively predicted using degree-day models. According 

to J. Moore et al. [40], these models were based on the finding that an insect's population 

was closely associated with the local temperature. Ectothermic animals such as insects lack 

an inbuilt method for regulating body temperature. We had concluded that since their body 

temperatures were similar to those of their surroundings, accumulated heat units rather than 

calendar time would be a better predictor of their development and multiplication. This 

was the primary factor, according to L. Pikington and M. Hoddle [50], behind the degree 

day models' success in predicting growth rate and insect invasion. Although ambient 

temperatures predominantly affected the borders of a highly insulated media made of large 

grains, it was not yet known if population trends could be predicted in this situation using 

the degree-day model. This project's goal was to list all of the crucial elements that 

significantly affect the demography of populations of Cryptolestes ferruginous and to 

create a basic model using which population dynamics could be predicted. 
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 6.2 MODEL DEVELOPMENT 

       In the Newly created Key Factor-Degree Day model, degree-day model and the Key-factor 

analysis only the data pertaining to the big patches were employed. The data pertaining to 

the Temperature-increase and Temperature-decrease was employed to validate the 

generated Key Factor-Degree Day and the degree –day models.  

       The impact of temperature, insect volume, and size of patches on population growth, as 

well as the inherent birth and mortality rates, were characterized using the half of the adult 

population counted at the various storage times was estimated using unstructured models. 

To illustrate the overall pattern of population dynamics, the nine unstructured models were 

chosen. Only half of the adult population was included because the models, which assumed 

a one-to-one sex ratio, only took into account females.  

       The following were the models along with their underlying assumptions (the model's title 

served as its underlying assumption).        

       Case I: The carrying capacity and the Geometric development: 

        
𝑑𝑁

𝑑𝑡
= 𝑎𝑁 (1 −

N

K
)                                                                                                       (1)                

 Case II:  Exponential expansion and ongoing reproduction                 

        𝑁𝑡 = 𝑁0 𝑒
𝑎𝑡                                                                                                                (2)                                                                                               

  Case III: Dimensional expansion and discrete generations 

          𝑁𝑡 = 𝑁0 µ
𝑡                                                                                                                                                                           (3)               

                 Case IV: Growth in population and density dependent, immediate feedback of   density     

on   overall growth 

         𝑁𝑡 =  
K

1+
(k−𝑁0)

𝑁0
𝑒−𝑎𝑡 

                                                                                                     (4)                              

                         Case V: Population increase and non-instantaneous, density-dependent feedback on   

aggregate growth 

           
𝑁t+1

𝑁t
= 𝑒𝑎  

(1−𝑁t)

𝑘
                                                                                                         (5)                                                  

Case VI: Harvest model                  

            
𝑑𝑁

𝑑𝑡
= 𝑎𝑁 (1 −

N

K
) − 𝐸𝑁                                                                                             (6)                                     
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     Case VII:  Growth model with discrete time and density dependence 

       
𝑁t+1

𝑁t
=

𝑅0

1+(
𝑅0−1

𝐾
)𝑁t

                                                                                                          (7)                                                                                                            

     Case VIII: Density-independent model for the following time period  

     𝑁𝑡+1 = 𝑅ᵅ𝑁𝑡                                                                                                                                                                 (8)        

     Case IX: Density-independent for the upcoming two-period model  

       𝑁𝑡+2 = 𝑅ᵅ𝑁𝑡                                                                                                                                                                         (9)                 

     Here, t denoted the time interval (in days), the succeeding period (t + 1), the succeeding 

two periods (t + 2), 𝑎 denoted the internal rate of growth, and denoted the factor of 

geometric growth where the carrying capacity was denoted by K and R0 represented the 

net rate of reproduction rate.  Here, 𝑁t  and 𝑁0 each represented a half of the adult 

population still living at time t and the beginning of the trial, respectively. The models' 

fitness was assessed using the coefficient of determination (R2).  

    The coefficient of determination (R2) of the difference in half of the adult numbers 

between measured and calculated was used to assess the efficiency of the models. The 

model wouldn't fit to half of the adult population if R2 = 0 within the therapeutic 

circumstances. 

      6.3 KEY-FACTOR ANALYSIS  

    Using an approach proposed by R. Morris [76], the main determinants affecting insect 

population dynamics were quantified. The regression equations were as follows: 

Log10
𝑁𝑡+1 = 𝐴Log10

𝑁𝑡
                                                                                                                (10)                                                       

Log10
𝑁𝑡+1 = 𝐴Log10

𝑁𝑡 + Log10
𝐹                                                                                          (11)                                                                                             

Log10
𝑁𝑡+1 = 𝐴Log10

𝑟𝑁𝑡 + Log10
𝐹                                                                                         (12)                                  

Log10
𝑁𝑡+1 = 𝐴Log10

𝑟𝑁𝑡 + Log10
𝐹 + 𝐵                                                                                (13)                                         

     where A was the line's slope, Log10
𝐹  was its intercept, r was 𝑁t survival rate when 

exposed to a range of temperatures, and B was a minor factor that affected the  

population of insects. The values of the R2 were evaluated in order to ascertain the 

fitting's correctness. 
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 DEGREE DAY MODEL 

 Using information from F. Jian et al., the total quantity of adults, including both live and 

deceased ones, live adults, or young born during the storage period related to the total 

number of degree days were calculated to assess the influence of temperature on the insect 

population. [2]       

        Sum of the degree day = ∑  𝑁
𝑡=0 (𝑇𝑡 − 6.3)                                                                      (14)                                                                                  

where N was the storage time's day and 𝑇𝑡 was the daily temperature at t days (°C). 

     According to F. Jian et al. [26], the number 6.3 of the adult Cryptolestes ferrugineus   

denoted the minimum movement temperature (°C). Because insects' movement signaled 

the beginning of routine biological activities including feeding, energy use, and mating, the 

lowest movement temperature was chosen as the threshold development temperature. 

    The association between both the insect’s number and the overall number of degree days 

with consistent temperature at each test site inside the huge areas was discovered using 

regression. Only information pertaining to large patches was used because there was little 

effect of size of patch on the dynamics of insect populations inside of big patches.  

     An equation that suited the data the best was determined to have the highest R2 value.      

This best-fit equation was applied to the treatments for changing temperatures in order to 

predict the insect population. 

 

       6.5   KEY FACTOR—DEGREE DAY MODEL 

       The Key Factor-Degree Day model was constructed using the results of the key factor  

analysis and the created degree day model. Assuming that the following factors had the   

greatest impact on the insect population at time t + 1:  

       1) The insects number at time t; 

       2) the total number of degree days during the past four weeks; and 

     3) variations in temperature.  
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       The fundamental motivation behind this assumption was to create a straightforward    

equation that could capture the broad population dynamics trend for each insect generation 

inside grain storage bins. As a result, other variables like crowding were ignored. Only the 

insect count inside the enormous regions connected to the entire data was used during 

model construction. The main justification for selecting a 4-week cycle was because this 

insect's life cycle under the investigated conditions lasted roughly 4 weeks. The best fit 

was found by the formula corresponding to the total number of degree days over a four-

week period. As a result, this chapter just summarised the conclusions drawn from the 4-

week data. 

       Various regression equations based on these hypotheses were adapted to the insect numbers 

(adults alive, deceased, or offspring) under all the investigated constant temperature 

circumstances. The following procedures were used to create this model: The first stage 

was to determine the effective equation to describe the population of insects during each 

given temperature. In phases two and three, the key factor analysis approach was utilized 

to gradually incorporate the key factors to the tested equations, and the assumption method 

was used in step three to change the tested equations. 

       The best fit was determined to be the equation with the largest R2 that predicted the   insects 

number under both Temperature-increase and Temperature-decrease situations. 

 

 6.5     RESULTS AND DISCUSSION 

  6.6.1 MODELS OF A NON-STRUCTURED POPULATION 

 

Despite all testing settings, none of the nine models assessed could account for half of the 

adult populations, which might be related to the interaction effects of insect volume, earlier 

insect number, temperature, and size of the patch. The main factor restricting population 

increase would not be temperature under conditions of stable temperature and at a 

temperature of less than 25 °C. It became evident as a result that the size of the patch and 

the population trends at 25, 30, and 35°C were significantly influenced by the number of 

insects presented at the time 
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        Table 6.2*-At different storage time intervals, value of the R2 for the unstructured population models 

fitted to 50% of the live Cryptolestes ferrugineus individuals that were counted    

       At 25 and 30 degrees Celsius, no mathematical equation was able to accurately forecast 

the bug population when coefficient of determination greater than 0.6  was obtained, 

Although Case I, IV and V experienced an acceptable suit at 35°C. Beginning with the 

idea that geometrical development depends on population density, all three of these 

models with density providing either immediate or delayed feedback on overall 

growth. This study showed that the prior quantity of Cryptolestes ferrugineus would 

only have an effect on the population at optimal temperatures if overcrowding had not 

been a limitation.  According to F. Jian et al. [28], the non-structural population models 

Models Grain Storage 
(Patch size) 

                              The grain's temperature (C) 

21C 25C 30C 35C T-increasea T-decreaseb 

Case 
I 

Small Size 
Medium Size 

Large Size 

0.0 
0.0 

0.0 

0.30 
0.44 

0.0 

0.10 
0.0 

0.33 

0.02 
0.0 

0.93 

0.0 
0.77 

0.55 

0.80 
0.35 

0.34 

Case 

II 

Small Size 

Medium Size 

Large Size 

0.0 

0.0 

0.0 

0.0 

0.0 

0.59 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

Case 

III 

Small Size 

Medium Size 

Large Size 

0.0 

0.0 

0.0 

0.0 

0.0 

0.59 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

Case 

IV 

Small Size 

Medium Size 

Large Size 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.28 

0.37 

0.74 

0.0 

0.93 

0.95 

0.0 

0.0 

0.25 

Case 

V 

Small Size 

Medium Size 

Large Size 

0.0 

0.67 

0.71 

0.52 

0.95 

0.0 

0.0 

0.0 

0.0 

0.94 

0.96 

0.88 

0.0 

0.0 

0.0 

0.69 

0.96 

0.98 

Case 
VI 

Small Size 
Medium Size 

Large Size 

0.24 
0.53 

0.56 

0.16 
0.12 

0.52 

0.08 
0.01 

0.01 

0.03 
0.04 

0.30 

0.28 
0.48 

0.25 

0.47 
0.26 

0.30 

Case 

VII 

Small Size 

Medium Size 

Large Size 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.27 

0.0 

0.0 

Case 

VIII 

Small Size 

Medium Size 

Large Size 

0.0 

0.0 

0.0 

0.0 

0.55 

0.50 

0.0 

0.11 

0.50 

0.0 

0.20 

0.0 

0.0 

0.70 

0.48 

0.0 

0.0 

0.0 

Case 

IX 

Small Size 

Medium Size 

Large Size 

0.0 

0.0 

0.0 

0.0 

0.10 

0.0 

0.0 

0.0 

0.0 

0.0 

0.13 

0.0 

0.0 

0.39 

0.0 

0.0 

0.0 

0.0 
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that were installed on half of the adult population were counted for R2 at various 

storage time intervals. Each case was shown graphically. 
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             Figure 6.2– Showing Unstructured Population Model (CASE 1) 

  

                                      Figure 6.3 –Showing Unstructured Population Model (CASE 2) 

20 22 24 26 28 30 32 34 36

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
oe

ffe
ci

en
t o

f d
et

er
m

in
at

io
n 

R
2

Temperature (Celcius)

 Small Patch

 Medium Patch

 Large Patch

 

C
o
ef

fi
ci

en
t 

o
f 

d
et

er
m

in
at

io
n

 (
R

2
) 

  
  

C
o
ef

fi
ci

en
t 

o
f 

d
et

er
m

in
a
ti

o
n
 (

R
2
) 

Temperature (Celsius) 

Temperature (Celsius) 



 

 

64 

 

             

20 22 24 26 28 30 32 34 36

0.0

0.1

0.2

0.3

0.4

0.5

0.6

C
oe

ffe
ci

en
t o

f d
et

er
m

in
at

io
n 

R
2

Temperature (Celcius)

 Small Patch

 Medium Patch

 Large Patch

     

                                        Figure 6.4 –Showing Unstructured Population Model (CASE 3) 
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Figure 6.5 –Showing Unstructured Population Model (CASE 4) 
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                               Figure 6.6 –Showing Unstructured Population Model (CASE 5)   
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                                             Figure 6.7 –Showing Unstructured Population Model (CASE 6) 
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                                     Figure 6.8 –Showing Unstructured Population Model (CASE 7)  
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                                Figure 6.9 –Showing Unstructured Population Model (CASE 8) 
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                                         Figure 6.10 –Showing Unstructured Population Model (CASE 9)                   

     

 

6.6.2 KEY FACTORS ANALYSIS 

       Comparing all of the temperatures considered, equation 11 provided the best fit. The results 

demonstrated three key points: 

       1) the population of the insects did not achieve its maximal volume at 30°C; 

      2) temperature and the prior insect population were the first two important elements 

impacting the population dynamics; and  

      3) The consequences of crowding could be numerically evaluated. 

       6.6.3 DEGREE- DAY MODEL 

       The total number of adults climbed as the sum of degree days increased before the adult 

population achieved its highest number. Inside the huge spaces, there were roughly as many 

adults at temperature increased as there were at temperature decreased. As a result, it stands 

to reason that the infection level would remain constant at a certain number of degree days. 
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Ukalska et al. [89] offered the most-effective equation for the relationship between the 

overall amount of adults (or just live grownups or progeny) and the total number of degree 

days at any tested temperature.  

       Sum numbers of adults =  
𝐶

1+𝑒
 
−(𝑠𝑢𝑚 𝑑𝑒𝑔𝑟𝑒𝑒 𝑑𝑎𝑦−𝑃𝑜)

𝐴

                                                       (15)  

        C, A and P0 were constants   

       When R2 ≥ 0.76, this formula could predict the overall number of adults. 

       The link between the overall number of adults and the overall total of degree days at all 

verified temperatures that were constant inside the huge regions was best represented by 

the equation below:           

       Sum numbers of adults =  
𝐶(𝑇−6.3)

1+𝑒
 
−(𝑠𝑢𝑚 𝑑𝑒𝑔𝑟𝑒𝑒 𝑑𝑎𝑦−𝑃𝑜)

𝐴(𝑇−6.3)𝐵

      

       and  R2 ≥ 0.87                                    

       This study discovered that an important variables impacting the dynamics of the 

Cryptolestes ferrugineus population were temperature, temperature change, and the 

previous insect population inside grain bins. The number of insects cannot be predicted 

using only the degree days’ sum. The number of degree days should be considered along 

with other important elements in a basic model that might be used to forecast the number 

of insects in stored grain. These elements were taken into account in this recently created 

model, which accurately predicted the number of insects. The most accurate equation to 

forecast the quantity of insects (living adults alone, all grownups, or progeny) inside the 

patches of big size at each grain's assessed temperature was  

 

Log10
N

t+1= C +AP+ 
B+DP

1+EP
 Log10

N
t   T-increase or constant 

                                                                                                                                      (16)                                                                                 

Log10
N

t+2= C +AP+ 
B+DP

1+EP
 Log10

N
t   T-decrease or constant 

 
 

       P- Total number of effective degree days, A, B, C, D, E were parameters. (16) was obtained 

by comparing equation (11) and sigmoidal equation (16) as A+BP in equation (16) = 

Log10
𝐹  𝑎𝑛𝑑 

C+DP

1+EP
  in equation 16 = A in equation 11. This broad equation took into account 
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the important variables previous insect counts, temperatures, temperature swings, and the 

total number of degree days. In light of the amount of insect populations presented in the 

samples and the anticipated temperatures at the collecting locations, this Key Factor-

Degree Day model could be utilised to foresee insect populations in the upcoming months. 

 

       6.7 CONCLUSION         

       In none of the tested scenarios did nine population-based unstructured models suit the bug 

counts. The optimum equation for this relationship has three variables and was sigmoidal. 

Temperature, temperature change, and the earlier number of insects were the main factors 

determining Cryptolestes ferrugineus population trends in grain bins. These elements were 

considered when creating this new model, which accurately predicted the insect population 

before it reached its peak density. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

70 

 

 

 

CHAPTER -7 

 

FUTURE SCOPE OF THE RESEARCH 

 

 

Insects can have a significant impact on stored grains. They can cause damage to the grain 

kernels, reducing the quality and quantity of the stored grain. This can result in reduced market 

value and economic losses for grain producers and storage facilities. Some of the most common 

pests of stored grains include grain beetles, grain mites, grain weevils, and stored product 

moths. These pests feed on the grain kernels, causing physical damage and reducing the grain's 

weight and nutritional value. In some cases, insects can also introduce mold and bacteria into 

the stored grain, further reducing its quality and posing a potential health risk. 

To prevent insect infestations in stored grains, it's important to properly store the grain in a 

clean, cool, and dry environment. This includes sealing grain containers to prevent entry of 

pests, monitoring the temperature and humidity levels, and regularly inspecting the grain for 

signs of infestation. In addition, fumigation with approved pesticides can be used to kill insects 

and their eggs in stored grain. 

The stored grain ecosystem is a system inside a system, thus multidisciplinary research should 

be reinforced and projects should be carried out by coordinated teams with experts in several 

study fields. The remaining difficulty is in putting the pieces together into a workable whole 

and filling in the research gaps. Large-scale, multi-factor testing (such those carried out inside 

storage silos) should be performed to confirm the synthesised whole. It is necessary to widen 

the scope of the research to include a variety of ecosystem and agroecosystem components as 

well as regional geography, climate, and agricultural succession. 

Mathematical modeling is a valuable tool to study the effects of insects on stored grains. It 

provides a means to understand complex biological systems and predict their behavior, which 

can help in developing more effective strategies for insect pest management.  

The future scope of the research is wide and promising. 
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Predictive modeling: Developing models that can predict the likelihood of insect infestations 

based on factors such as temperature, humidity, grain type, and storage conditions. This could 

allow grain producers and storage facilities to take proactive measures to prevent insect 

damage. 

Optimization models: Developing models that can help determine the most effective  

and efficient methods of controlling insect infestations, taking into account factors such as the 

type of insect, the type of grain, and the cost and availability of control methods. 

Risk assessment models: Constructing models that can evaluate the threat of insect infestation 

causing damage to grain that has been stored depending on a number of variables, such as the 

grain's vulnerability to infestation, the type and intensity of the infection, and potential negative 

effects on the economy and environment. 

Monitoring and surveillance models: Developing models that can monitor and detect insect 

infestations in real-time, using sensors and other technologies to collect data on temperature, 

humidity, and other environmental factors that may contribute to insect damage. 

Development of Mathematical Models: The research aims to develop mathematical models 

to study the insect population growth, the damage caused by insects and its relationship with 

the environmental factors and the stored grains. These models will provide a scientific basis 

for decision making in food storage management and help in predicting the extent of damage. 

Enhanced Food Safety: The research will help in ensuring food safety by reducing  

the risk of contamination from insect infestation. This will help in maintaining the quality of 

food grains and improve consumer confidence in food products. 

This study demonstrates how risky such a method would be if it were used, for example, to 

monitor the growth of microbes in order to assess the risk to water quality or food safety. 

Development of new insect control strategies: Based on a better understanding of the 

dynamics of insect populations and the factors that affect their growth and survival, the 

findings of this research can help design novel tactics for controlling insects in stored grain. 

Sustainable grain storage systems: This study may aid in the creation of environmentally 

friendly grain storage methods that require less chemical insecticides and are less susceptible 

to harm from insects. 
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Improved insect control technologies: The results of this research may inform the 

development of new technologies for controlling insects in stored grain, such as new traps, 

baits, and environmental control methods. 

Study of insect populations in other systems: The results of this research may have 

implications for the study of insect populations in other systems, such as forests, agricultural 

systems, and urban environments. 

Optimization of existing insect control methods: The results of this research can inform the 

optimization of existing methods for controlling insects in stored grain, making these methods 

more effective and efficient. 

Improved food security: By reducing the impact of insect infestation on stored grain, this 

research can contribute to improved food security and reduce food losses due to grain damage. 

Understanding the role of environmental fluctuations: The study may offer fresh 

perspectives on how environmental changes affect insect populations and may contribute to 

the creation of novel pest management techniques for environments where temperature, 

humidity, and other environmental factors are constantly changing, such as storage facilities. 

Development of new baits and traps: The results of this research may inform the 

development of new baits and traps that are more effective in controlling insect populations in 

stored grain. 

Study of insect behavior: The results of this research may provide new insights into the 

behavior of insects in stored grain and the factors that influence their survival and growth. 

Reduced environmental impact of grain storage: By reducing the need for chemical 

insecticides and promoting sustainable grain storage systems, this research can reduce the 

environmental impact of grain storage and contribute to a more.  

By providing a systematic and data-driven approach to understanding and controlling insect 

infestations, these models can help reduce economic losses and improve the sustainability of 

grain storage practices. 
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In conclusion, the future scope of the research is wide and promising. The development of 

more sophisticated models, combined with the integration of machine learning algorithms, will 

likely lead to significant advancements in our understanding of insect behavior and the 

management of insect pest in stored grain systems. 
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