
 

COMPUTATIONAL APPROACHES FOR THE ANALYSIS OF 

CROP MONITORING USING SATELLITE IMAGES 

 

Thesis Submitted for the Award of the Degree of 

 

    DOCTOR OF PHILOSOPHY  
 

in  

      Electronics Communication Engineering 
  

 

By 

 Dhande Akshay Pramodrao  

 
Registration Number: 41900395 

 

Supervised By 

Dr. Rahul Malik (23360) 

Department of Computer Science and 

Engineering (Assistant Professor) 

Lovely Professional University, Punjab, India  

 

 

 

 

LOVELY PROFESSIONAL UNIVERSITY, PUNJAB 

2023 



ii 
 

DECLARATION 

 

I, hereby declared that the presented work in the thesis entitled “Computational approaches 

for the analysis of crop monitoring using satellite images” in fulfilment of degree of 

Doctor of Philosophy (Ph. D.) is outcome of research work carried out by me under the 

supervision Dr. Rahul Malik, working as Assistant Professor, in the Department of Computer 

Science and Engineering of Lovely Professional University, Punjab, India. In keeping with 

general practice of reporting scientific observations, due acknowledgements have been made 

whenever work described here has been based on findings of another investigator. This work 

has not been submitted in part or full to any other University or Institute for the award of any 

degree. 

 

 

 

(Signature of Scholar) 

 Dhande Akshay Pramodrao 

41900395 

Department of Electronics Communication Engineering 

Lovely Professional University, Punjab, India 

 

 

 

 

 

 

 

 



iii 
 

CERTIFICATE  

 

This is to certify that the work reported in the Ph. D. thesis entitled “Computational 

approaches for the analysis of crop monitoring using satellite images” submitted in 

fulfillment of the requirement for the reward of degree of Doctor of Philosophy (Ph.D.) in 

the Department of Electronics Communication Engineering, is a research work carried out by  

Dhande Akshay Pramodrao, 41900395, is bonafede record of his original work carried out 

under my supervision and that no part of thesis has been submitted for any other degree, 

diploma or equivalent course. 

 

 

 

(Signature of Supervisor) 

Name of supervisor: Dr. Rahul Malik 

Designation: Assistant Professor 

Department of Computer Science and Engineering 

Lovely Professional University, Punjab  

 

 

 

 



iv 
 

Abstract 

 

 

There are many different ways in which crops might be damaged, some of the most common 

of which being natural catastrophes, improper fertilization or treatment, and improper 

handling. In order to plan and put into action strategies for corrective action, it is required to 

first create an assessment of the amount of damage that has been incurred. In order to 

perform this estimate with a high degree of precision, it is essential to obtain images from 

both the satellite and the near-field perspective. Near-field imagery can be used to aid in 

assessing damage from crop diseases, while satellite imagery can be used to aid in assessing 

damage from natural disasters. The processing of these images necessitates the building of 

different models, which limits the amount of time that can be spent on their correlative 

analysis and, as a consequence, affects the accuracy of damage diagnosis on an overall basis.  

 This thesis suggests architecture based on a Deep Convolutional Network (DCN) 

which successfully perform the correlation between near-field and far-field images. This is 

done as a method of limiting the effect of the weakness that was previously highlighted. 

Because of this correlative analysis, the system is able to forecast crop losses with a degree of 

accuracy that is superior to that of individual models. This is because individual models can 

only make predictions based on their own data. The model is taught to detect locations that 

are polluted by natural catastrophes, therefore aiding agricultural experts in implementing 

corrective steps based on a specific site. The model is taught to search for regions that are 

contaminated in order to achieve this goal. After comparing the results of the recommended 

architecture with some newly developed techniques, we found that model achieves 8% better 

precision, 10% more accuracy, 8% accuracy and 5.1% better recall. performance than the 

previous model. The assessment is done on a large number of data sets, which helps to 

validate the model and offers an estimate of its applicability to a wide range of crop kinds. 

This study also includes suggestions for prospective future research topics that may be 

explored in order to better the underlying model's overall performance. These 

recommendations are included at the conclusion of the thesis. 
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 In light of these findings, we have come to the conclusion that satellite image 

processing is a job that spans multiple domains. A wide variety of models for the processing 

of satellite pictures have been established by researchers, and each of these models has 

specific requirements for the kinds of data and procedures that should be employed. For 

instance, the picture capture module may be given images in a layered format, but the module 

that extract the feature can need information in a 3D or 2D format. As the performance of 

these models changes in response to variation in both data set parameters and internal process 

parameters, when they are applied to real-time settings, their performance is restricted in 

terms of both their accuracy and their scalability. There is sufficient evidence to say that 

model reported till date have limitation on their scalability for multiple application as they are 

application specific. 

 This thesis offers and analyzes a unique temporal engine with excellent efficiency that 

takes use of enhanced incremental transfer learning for real-time satellite picture 

categorization. The engine was developed by we of this thesis have objective to decrease the 

possibility that these limits may be triggered in operation. The model begins by gathering 

real-time satellite data via the use of Google Earth Engine. This data is then processed 

through the using CNN that is based on transfer learning through use of backscatter 

coefficient analysis. When assessed across a dispersed target, these factors represent the 

average value of intensity of precision image. As a result of the extraction of the backscatter 

coefficients, the model can display cropped images in HV and VV modes. As a result, the 

CNN model can extract a significant number of features from the provided satellite image 

and divide the datasets into three groups based on crop. 

 After the images have been sorted into their appropriate categories, they are subjected 

to further processing that includes a layer of incremental learning. This makes it much easier 

to visually identify regions that have been destroyed. The suggested model demonstrated an 

accuracy of 97.66% for identifying crop type and damage severity for various classes of 

images. This is made possible by its utilization of incremental learning in conjunction with a 

CNN for the classification process. The use of incremental learning and a CNN were 

essential in achieving this goal. When it was put through its paces, the performance of the 

model was found to be stable over a wide range of geographic locations in the neighborhood 

of where we are now located. This result was also compared with many latest methods, and 

we come to the conclusion that recommended model had 4.6% better precision, 7.9% higher 
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recall value and 5% better accuracy, in comparison with them. Because of this, proposed 

TRSATL model may be used in a manner that is particularly helpful for applications 

involving real-time satellite-based crop categorization scenarios. 
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Chapter No 1 

 

Introduction 

 

 

Outline 

This chapter describes the role of various remote-sensing techniques in agriculture. The 

inspiration behind this particular research work is discussed here. Followed by the gaps 

in literature, problem definition, and objectives of this research work are also discussed. 

 

1.1 Satellite Image Processing 

Images of the earth and other satellites that were taken using artificial satellites are part 

of the field of study and development known as satellite image processing. This is a 

crucial and expanding field of research. The information may be recovered from the 

images once they have been taken in digital format and uploaded to the computers. The 

multiple distinct surfaces may be identified by looking at the pixel values after 

statistical methods have been applied to the digital images.  

The development of infrastructure, the monitoring of environmental conditions, 

and the early identification of the consequences of approaching natural disasters all 

make substantial use of satellite imagery. Broadly speaking, we could say that satellite 

imagery is a type of remote sensing that uses pixel resolutions to collect consistent data 

about the Earth's surface. We are able to state this because of the definition we have 

given. As a result, there are many different industries where satellite image processing 

may be used, including research and development, remote sensing, astronomy, and 

now, large-scale cloud computing. A true and up-to-date representation of earth and its 

surroundings may be found in satellite images. A broad range of applications that 

benefit mankind are made possible by the huge network of remote sensing satellites 
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that orbit the globe and provide regular observation about the Earth's surface. Satellite 

images have been an invaluable resource for decision-makers, scientists, and planners 

in the private and public sectors for the purpose of efficient policy and decision-making. 

It may be mapping the devastation left behind by earthquakes and hurricanes or the 

examination of slow morphological changes in the urban expansion of a city over period 

of time. 

There are currently about 80 earth observation satellites in orbit above the globe, 

launched by as many as 20 different countries as part of their civilian space programs. 

These will be used to map the retreat of polar ice and glacial cover to increase 

desertification; monitoring drought; and increasing desertification. To monitor the 

earth's surface, these satellites are fitted with of cutting-edge remote sensing tools. 

QuickBird satellite, which was originally made commercially accessible in November 

2000, has a resolution of less than one meter. Since then, an amazing growth rate is 

observed in the market for high-resolution satellite imagery, and several private 

companies are now vying for clients in this fiercely competitive sector. In addition to 

Maxar (WorldView/QuickBird), GeoEye, SIIS (Kompsat), Airbus (Pleiades), Spot 

Image, ImageSat International (Eros), BlackBridge (RapidEye), China Siwei 

(SuperView-1, 2, 3, 4, TripleSat DMC3 Constellation), and PlanetLabs, are some of the 

most well-known companies also own a large collection of satellites that can collect 

high resolution satellite pictures on, under different scenarios.  

 One may download several satellite photos with a medium resolution for free. 

Sentinel 1 and 2 photos taken at 10 meters, Landsat 8 images taken at 15 meters pan 

and 30 meters MS, and more. This provides access to extremely high-quality 

photographs that may be utilized for their particular area or project for scholars and 

enterprises. A range of monitoring applications, including land cover classification 

image fusion, and change detection, may benefit from data gathered through remote 

sensing. In order to gather information about the earth's resources and ecosystem, 

remote sensing is an essential technique. The availability of high-resolution satellite 

photos, as well as mapping apps like Bing Maps and Google Earth, have considerably 

facilitated the dissemination of satellite imaging information. The extensive usage of 

satellite images is a result of both of these phenomena. 
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 The data and images that satellites collect via remote sensing may have different 

resolved. The four common resolutions associated with satellite imagery are as follows.  

• Resolution of Space 

It is described as pixels in a picture that can be seen by the naked eye and is gauged on 

the ground. The sensor's Instantaneous Field of View (IFoV) controls it. It is said to 

have a high spatial resolution because it has a high resolving power, also known as the 

ability to discriminate. Important elements that affecting the precision of ground objects 

detection is spatial resolution, refers to the size of an entity that can be understood 

evidently in an image.  Figure 1.1 is an example of medium resolution satellites images 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Images Captured from Medium Resolution Satellites 

• Resolution of Spectral  

This resolution specifies the number of wavelength intervals that the sensor is capable 

of sensing, as well as the internal wavelength size. The term "spectral resolution" for 

an image describes a sensor's ability to distinguish minute wavelength intervals, and it 

plays a role in certain areas of classifying remotely sensed pictures. 
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• Resolution of Time 

The term "temporal" describes the interval between various imaging cloud phases and 

is often used to allude to the passing of time or days. The length of time needed to return 

to the same area and collect data is known as temporal resolution.  

• Resolution via radiometry 

This resolution, which is often expressed in terms of bits size, communicates the true 

characteristics of the image. It offers the actual bit depth in addition to recording the 

various brightness levels of the imaging system. 

 The detecting land use variation, and making of land cover maps for urban 

planning, as well as planning scenarios for transportation and the environment, benefits 

from temporal resolution Figure 1.2 depicts an example of one of these image sets and 

demonstrates how it may be used in transportation and change detection scenarios. 

 

Figure 1.2. Satellite Image for Transportation and Change Detection  

 Highly detailed ortho-images obtained from high resolution satellite data may 

be used to build a graphical image of the area of interest and the area around it. In 

addition to offering a wealth of information, these georeferenced maps also provide a 

general image of the area.  

Urban planning, site selection for new airports and railways, site selection for new 

airports, property tax surveys, and transportation planning, are just a few of the many 
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uses for base maps. business and industry are a few examples. One of the quickest and 

most economical methods is probably using satellite imagery to map out the land use 

and land cover of an area. Figure 1.3, which gives a realistic image of the situation, 

shows the current condition of how the property is being utilized clearly. A change 

detection examination of the zone using pictures taken over time periods may reveal 

trends in urban development, changes in the amount of forest cover, and the severity of 

flood and drought damage. 

 

Figure 1.3. Use of Satellite Images for High Performance Applications 

  Satellite images, with their ability to repeatedly return to the same locations, 

are very helpful for analyzing the harm caused by natural catastrophes like earthquakes, 

floods, landslides, and cyclones which become impassable at such times. Because they 

provide information that is quick and accurate about the region that was impacted by 

the calamity, satellite photographs are particularly useful for planning rescue and relief 

operations. Also, for deciding where to put storm and flood shelters. The before and 

after images, which are shown in figures 1.4, make it clear how much damage the 

disastrous flood events produced.  

It is imperative that agricultural resources be managed effectively to satisfy the 

requirements of a rising worldwide population. A crucial tool for this management is 

satellite imagery. The quantity of land that is suitable for agricultural use is also being 
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negatively impacted by the problems of deforestation and desertification. Excessive 

irrigation has a detrimental effect on salinization in many areas, and people who depend 

on rain constantly live in terror of frequent droughts.  

 

Figure 1.4. Temporal Changes in the Image Sets 

 Remote sensing and geographic information systems (GIS) may assist offer 

solutions for greater agricultural output and the correct administration of farmlands by 

gathering proper information on kinds and also the quality, place, and amount of these 

resources. By offering solutions for higher agricultural productivity, this may be 

achieved. Studies using remote sensing may provide accurate data on acreage, crop 

health monitoring, and output estimates as shown in Figure 1.5.  

 

Figure 1.5. Use of Satellite Images in Land Classification Scenarios 
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Wide expanses of forest are under risk due to a variety of circumstances, including 

forest fires, illegal tree cutting for agriculture, urbanization, and infrastructure 

developments like roads and dams. The process of enhancing current approaches to 

collecting and creating maps and resource data for forestry mapping may benefit greatly 

from the use of satellite imagery and geographic information systems (GIS). Without 

the information acquired, decisions on the proper management of this crucial resource 

cannot be made, making its acquisition crucial. The pink areas of the figure demonstrate 

how mangrove jungles in the sunder ban were destroyed for agricultural use. Because 

of this sensitive environment of the mangroves is put in peril. Photos taken by satellites, 

which can be used as an "eye in the sky," which are an important source for monitoring 

the polar ice caps. These pictures provide powerful and incontestable proof of the huge 

variations taking place in the Polar Regions or the worldwide retreat of many glaciers 

as a consequence of increasing temperatures as shown in figure 1.6.  

 

Figure 1.6. Use of Satellite Images for Polar Ice Caps. 

In a manner comparable to this, satellite photographs depict the development of deserts 

into once uninhabited areas and massive deforestation, both of which often compel 

environmental groups and governments to take necessary preventative measures. There 

are various applications and benefits that may be gained by using satellite pictures. This 

is a trustworthy as well as cost effective technique of gathering essential information 

that can be used by researchers, planners, and decision-makers to keep an eye on the 

state of the world for the benefit of humankind as a whole in a variety of different 
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contexts. The area of remote sensing has benefited from the advancements made in the 

subject of machine learning (ML). We examine a model architecture that is thought to 

be cutting-edge in this thesis. It is known as the transformer and was first created to 

address Natural Language Processing (NLP) issues, while it is now often used with 

many other kinds of sequential data. According to the work by W. Zhang et al. they 

employ a modified version of this architecture to recognize agricultural areas based on 

a series of satellite images acquired over time. By doing this, they are able to provide 

results that are superior to those produced by more traditional methods (such random 

forests) while using less resources than recurrent networks. 

 

1.2 Band-Based Classification Models 

 The rapid growth of technology has led to an increase in the prevalence of the 

usage of digital image processing. Satellites are used to acquire pictures for remote 

sensing, which has various uses beyond just monitoring images. Some of these 

applications include military, navigation, and others. Image size has naturally expanded 

throughout the course of time as a direct result of the development of increasingly 

advanced systems for obtaining satellite images. Because there is a restriction on the 

amount of storage space available, it is impossible to preserve these images for future 

use. The process of working through it takes a significant amount of time. Different 

methods for processing images reported till date, each of which has ability to improve 

an image in some manner, whether it is in terms of the file size or the clarity of the 

image. The satellite images include a significant amount of textural contrast in addition 

to a wide range of color variation, all of which contribute to the images' dual qualities 

of being attractive and somewhat perplexing. Because of this, it might potentially be 

challenging to apply processing algorithms to the satellite data. Because the satellite 

data is gathered from such a great distance, there is a possibility that it will pick up 

unwelcome interferences that will make the image quality worse. The quality of the 

final image will also suffer as a direct result of this since the subsequent processing 

stages will be made more challenging. The finished image is essential for both the 

ongoing inquiry and the process of making decisions. Before the noise-distorted 

satellite images can be further processed, they need to go through a step called pre-
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processing. This step removes noise from the image. These days, remote sensing has 

shown itself to be an ever-increasing means of obtaining satellite data, and it is essential 

for determining the geographical and temporal changes that take place on the surface 

of the earth. This data comes from all across the globe, and it is compiled by scientists 

and government groups so that people may better understand how our planet is 

changing. Data obtained through remote sensing may be particularly useful in a wide 

variety of contexts, like estimating global climate change; detecting changes in land 

cover; disaster management; security; and urban and land development. These 

applications are just a few examples of the potential applications of this data. 

 The phrase "land cover" may be used to refer to everything that is situated above 

the ground, including vegetation, structures, bodies of water, soil, and a variety of other 

components. It is very necessary to recognize and categorize the land cover in order to 

monitor changes at the ground level. Image classification is an integral part of modern 

remote sensing and is used extensively for the study of patterns and visual data. A wide 

variety of scholars from a variety of backgrounds have come up with and implemented 

their own individual classification systems for images. The categorization of satellite 

images gives us the ability to keep a watch on a wide variety of various topics [28], 

including pollution, mapping of forest cover, mapping of wetland area, mapping of land 

cover, and more. Alexey Dosovitskiy and his fellow researchers [23] suggested using 

ViT as an alternative to CNN for solving image classification problems. For datasets 

like as ImageNet, CIFAR-100, VTAB, and others, the classification results that can be 

generated using ViT are better to those that can be achieved with CNN.  

 In the case of the Merced, AID, Optimal31, and NWPU datasets, remote sensing 

scene classification applications often make use of ViT [21]. When categorizing 63 

distinct classes using metadata and image attributes from the IARPA fMoW dataset, 

work in [29] employed CNN as a set to achieve exceptional accuracy [25]. When 

trained on the SAT4 dataset, a pre-trained Resnet50 network showed encouraging 

results [27] in terms of its capacity to extract features from the data. Because of the 

significant amount of overlap that exists across the bands, Work in [26] made use of 

two convolutional neural networks (CNNs) that were trained using data from both the 

visible and the near-infrared (NIR). Because of this connection, conventional CNNs 

can only make limited use of the information. Calculating the normalized differential 
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vegetation index may be done using either the NIR or the red band of the spectrum. 

When this is utilized as input for VGG, Alexnet, or Convnet [30, 31], the training 

efficiency of these neural networks is improved since it delivers great accuracy while 

using a reduced number of parameters. The conversion of color images to grayscale is 

one of the most critical processes in the image processing pipeline. Work in [31] 

developed an image for transforming images based on singular value decomposition, 

which was subsequently utilized to change SIFT characteristics. In order to integrate 

these two approaches, structure similarity index was used. The images indicate that the 

accuracy of the model improves with each image transformation that is applied to it. In 

this investigation, we utilize ViT to compare 13-band spectral datasets to the 

conventional RGB dataset, the RGB & NIR dataset, as well as all other kinds of 

datasets. 

Another important application of image processing is Change detection in past and 

present image for which we can implement different machine learning algorithms. To 

identify the changes in the satellite image the fully convolutional neural network based 

on Siamese Autoencoder (SA) is presented by Y. Zhou et al, as shown in Figure 1.7. 

This give 93% accuracy which is higher than 78% of kernel density estimation Global 

Algorithm, 90% of SAFC difference network (90%) and 91% of Residual Network, 

 

Figure 1.7. SAFCNN for change detection 
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1.3 Machine Learning Models 

 Several mathematical methods and algorithms have been created and made 

accessible for use in the context of satellite image processing. This page describes 

several satellite images processing techniques, including segmentation, enhancement, 

feature extraction, and feature detection. Figure 1.8 depicts a variety of satellite image 

processing techniques.  

 

Figure 1.8. Different Models for Satellite Image Processing Scenarios 

It is very uncommon for satellite images to only display a limited tonal range. 

Consequently, it will be necessary to enhance these images; nonetheless, it is very 

essential that essential particulars be preserved and that the operation result in no loss 

of data. There are a number distinct approaches to image enhancement, but they may 

generally be placed into one of two categories: spatial domain methods or frequency 

domain techniques. One of the most common image editing methods, known as 

histogram equalization, may be employed on the whole image or merely on the areas 

of the image that have been cropped out. It's an image that's added to a photograph to 

make the overall look better. In present scenario, there has been a renaissance in the 

utilization of algorithms that are based on metaheuristics. Image enhancement is one 

application that makes use of algorithms like the one known as Particle Swarm 

Optimization (PSO). In addition, more traditional images of evolutionary computing 

are used in the process of image enhancement. Utilizing a Genetic Algorithm (GA), 

which evaluates a person's degree of fitness, is yet another strategy that has been 
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suggested for improving the contrast of a satellite gray-level image. To accomplish this 

goal, they implemented strategy of Locating the intensity of spatial edges. It is standard 

procedure to make advantage of GA's alteration capabilities in order to generate a more 

desirable image. It seems that one positive outcome of using this technique is the 

enhancement of the image's quality. Both the GA and PSO procedures have a possibility 

of being stuck in local minima, which is one of the problems with optimization. In more 

recent times, there has been an uptick in the attention placed on combining a number 

of different optimization strategies with one another. 

 The Particle Swarm optimization technique and the Cuckoo Search (CS) 

algorithm are both components of one method that falls into this category.  A "cuckoo 

search" is a method of doing global searches by utilizing samples from a variety of 

populations. The phrase "cuckoo search" refers to this method. The results that were 

obtained by using the CS algorithm in conjunction with the PSO algorithm were 

demonstrated to be a great deal nearer to the optimum solution than the results that were 

obtained by using either the PSO or GA algorithms on their own. Both the CS approach 

and the algorithm known as Modified Differential Evolution (MDE) are used often in 

the field of image improvement [32]. The MDE algorithm is one of the methods that 

has gained the greatest notoriety in recent years. 

 The process of developing features for the purpose of using them in data 

filtering and classification is referred to as feature extraction. When deciding on a 

method of classification, one should take into consideration the characteristics that may 

be utilized to differentiate the various categories. The Scale- Invariant Feature Operator 

and the Scale Invariant Feature Transform (SIFT) are two well-known feature 

extraction methods that make use of scale space theory to identify both the location and 

the scale of local features. These two approaches are also among the most effective 

(SFOP). In addition, point feature identification algorithms such as FAST are becoming 

more widespread. [32] employs a technique of feature-matching that was 

conceptualized with the help of graph theory. This strategy is flawed as a result of the 

non-linear character of the intensity changes that it creates. K-Means Clustering is 

additional method that has been utilized to separate important aspects of an image from 

the rest of the picture.  
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 It is an unsupervised method in which the user chooses the threshold at which 

the clustering process is finished. Methods that are based on statistics, such as machine 

learning, are now being used. For the purpose of feature extraction, an approach that 

makes use of machine learning in conjunction with Euclidean distance has been used 

[33]. This approach takes the satellite product as its starting point and produces an 

image that includes features such as rivers. Finding out which of an image's feature 

blocks are really present inside the image is the primary objective of applying machine 

learning to images. In this demonstration, we make use of REPTree, a program that 

builds trees in an iterative fashion. There will be a selection of three of the most famous 

contestants. When it comes to feature extraction, another technique that is used is 

known as saliency analysis. The image that is described in [34] is utilized in order to 

generate a saliency map that takes into account information from multispectral as well 

as panchromatic images. In order to identify saliency maps, this technique performs an 

analysis on a group of images to search for similar characteristics. The most significant 

problem that might arise during the process of feature extraction is the chances of 

extremely large structures will be miscalculate as a result of certain image differences. 

The shadows that were present in these shots were another factor that led to various 

inconsistencies. 

 In order to segment an image, its pixels must first be grouped together into 

clusters based on the characteristics that they have in common. It is essential to have 

the ability to identify important elements within an image, such as the presence of 

metropolitan centers, disaster-prone regions, and forest cover. This is important in its 

own right and has its own weight. The team is able to incorporate a wide variety of 

methodologies thanks to the use of metaheuristic algorithms, which enables them to 

extend their study into the realm of segmentation. In recent years, new techniques for 

segmentation have been created. These new techniques make use of CNN features and 

Conditional Random Fields (CRFs). Accurate segmentation may now be achieved with 

the help of these techniques. In order to find a solution to the segmentation issue, one 

may try modeling support vector machines (SVM), which is another frequent strategy. 

Because of the prevalence of situations in which it is essential to differentiate buildings 

from the environments in which they are situated, a method that makes use of deep 

convolutional networks for the purpose of image segmentation has seen widespread 



14 
 

use. Instruction is provided via the use of a large dataset and supervised classification 

using this approach. It has been suggested in [35] that a Markov Random Field (MRF) 

[35] may be used in order to more accurately identify the data. A quantization step, a 

clustering step, and a computation of the probability using the fewest number of clusters 

that were practically possible were all included in the procedure. Y. Zheng et al., makes 

the recommendation that Deep Convolution Neural Networks (DCNNs) be used for the 

semantic segmentation of high-quality satellite images. Here, a new architecture is first 

built by adding boundary detection to an already existing SEGNET encoder. This is 

done so that the methodology may be used. Convolutional networks and encoders have 

been combined in this hybrid system to take use of their respective capabilities. 

Nevertheless, the enormous scale of the model is a significant shortcoming that has 

specialists on edge. The borders that are produced by this are likewise not entirely clear. 

  

1.4 Image Fusion Models 

 The image of integrating many images into a single one is known as "image 

fusion." As a result of this, the primary objective of these fused images is to preserve 

as much of the information from the original source as is reasonably possible, and it is 

hoped that the performance of the fused image will be superior to, or at the very least, 

on par with, that of the images that were used as input. The overall architecture of the 

fusion process is shown here by a block diagram, which may be seen in Figure 1.9. 

Image fusion techniques may be categorized according to the level at which they 

operate, which might be either the decision level, the feature level, or the pixel level. 

The Synthetic Variable Ratio and the Bovey Transform (BT) are two of the most well-

known examples of the mathematical computing approaches that are now in use (SVR). 

However, the technique does have a drawback, and that is that it is not very good at 

swiftly merging such enormous amounts of satellite data. This is the system's primary 

limitation. This makes the concept very difficult to implement in its current form. 

Recent years have seen the development of a large number of innovative methods of 

geometric analysis that may be used to transform-based image fusion. These types of 

approaches are shown by, for example, the Non-Subsampled Contourlet Transform, the 

Wedgelet Transform, and the Curvelet Transform (NSCT). When looking at satellite 
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images of the building, it is essential to carry out a geometric analysis of the structure. 

In the context of remote sensing image fusion, the Shift-Invariant Shearlet transform 

(SIST) has been suggested as a technique of achieving this objective [37]. The 

multispectral and panchromatic images are used as a starting point for deriving the 

feature vectors. Following this, fuzzy C algorithms are used in order to split the feature 

vectors into their respective classes (FCM). The SIST is the primary constituent of the 

multispectral image's first significant subcomponent.  

 The entropy component theory may be used to evaluate panchromatic images 

in order to determine which aspect of the image is more prominent. In the field of image 

fusion, other model-based approaches are also being used in the process. When several 

multi-band images are combined, one option that may be taken is to use a hierarchical 

Bayesian model. [38] details the presentation of a notion for image fusion that makes 

use of sparse representation and image decomposition. In this step, the picture that was 

provided to us is broken down into its cartoon and texture components. A method 

known as spatial fusion is used in order to bring together the dissimilar components. 

The sparse representation-based fusion approach is used so that all of the individual 

textural features may be combined into one for different use cases. 

 

Figure 1.9. Image Fusion Process 

 If the spatial abnormalities in the fused images concern you, you can get past 

them by fusing the textural components of the images, which can be done by utilizing 

a dictionary learning technique. This can be done even if the spatial inconsistencies 

worry you. One of the most significant downsides linked with a merged image is the 



16 
 

possibility of noise effects, which lessen the attractive effects made by such images. An 

image that is optimized using a spider generates two improved images of itself, one of 

which has a high contrast and the other of which has a high PSNR (peak signal-to-noise 

ratio) [39]. In this particular examination method, agents assume the form of spiders, 

and the search space is modeled like a web. 

The position of each individual spider in the web represents the best possible answer. 

When these two images are combined into a single one, a new image is produced that 

has a noise-to-contrast ratio that is completely unique. This method achieves a greater 

harmony between contrast and PSNR than other methods of image enhancement, such 

as Linear Contrast Stretching (LCS), Histogram Equalization (HE), and the Particle 

Swarm Optimization (PSO). He stands for Histogram Equalization, LCS stands for 

Linear Contrast Stretching, and PSO stands for Particle Swarm Optimization. One 

method for classifying scenes is shown in [40], and it is based on the spatial integration 

of global as well as local image information. The classification of images is the purpose 

that this approach was created for. After the image is broken up into dense parts, the 

next step is to apply the k-means clustering approach to the information that has been 

gleaned from it. In order to do multi modal feature-based fusion, it is necessary to make 

use of two distinct feature extractions, as stated in [41]. Deep feature extraction and 

shallow feature extraction are two approaches that are used to get the low-level 

characteristics of each pixel in an image. These two methods are distinct from one 

another yet are connected. This method involves the extraction of several features. After 

the low-level features have been collected, the next step is to produce the mid-level 

features using those low-level features. When training Deep Belief Networks to create 

high-level features, mid-level characteristics are used as a starting point in the training 

process (DBN). Next, a Restricted Boltzmann Machine (RBM) is used to investigate 

the link between the deep and shallow returned features, and ultimately, image fusion 

is carried out making use of the data obtained from the RBM. Researchers came to the 

conclusion that multi modal fusion is improved to its single modal cousin after 

analyzing efficiency of annotation. One of the most evident problems with the present 

techniques of fusion is that they are unable to capture the continuity that exists across 

the many forms. 
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 When attempting to categorize the satellite images according to the elements 

that are visible in the images, several aspects need to be taken into consideration. When 

designing an effective classification system, various factors, including the spatial 

resolution of the image obtained through remote sensing, the requirements of the user, 

any additional processing methods, and the amount of time that is available, must all 

be taken into consideration. Each part should be able to function independently of the 

others, have sufficient information for analysis, and be immediately distinguishable 

from the others in terms of its uniqueness. Following satellite image classification, 

further processes such as denoising, segmentation for image extraction, augmentation, 

and so on may be carried out to get the further increase the quality of the picture 

processing. Classification of an image also takes into account the kind of satellite 

imagery that was utilized to acquire it. Images obtained from several satellites, each of 

which have their own unique sensors, might vary greatly from one another. The vast 

majority of the currently available techniques for image categorization make use of 

either expert systems, fuzzy algorithms, or artificial neural networks. [43] Radial Basis 

Function Neural Network, most often abbreviated as "RBFNN," is a powerful neural 

network that offers a broad variety of tunable parameters and is sometimes shortened 

to "RBFNN." The resistance to noise signals is the most important benefit. 

 Image tagging for video captured by UAVs is another crucial factor to take into 

account. Support vector machine, often known as SVM, is one of the most used 

methods, and it is responsible for producing a classification map. The categorization 

system was built on the radial basis function, which served as the basis for the 

construction of the system. There are certain inaccuracies in the categorization, and the 

SVM does not ensure that the results will be accurate. In the field of object-based 

categorization, the approach known as supervised methodology is now the method that 

sees the greatest use. However, fuzzy-based classification algorithms have inherent 

limitations when it comes to the task of categorizing things [44]. The Random Forest 

algorithm, abbreviated as RF in certain circles, is yet another well-liked classification 

method. Both supervised and unsupervised classification algorithms have a place in the 

world of machine learning. In supervised classification, the majority of the time, two 

different approaches are utilized: The Fitting equation will be used as the foundation 

for the first equation. At this point in the process, the equation is modified such that the 
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mean area of the given objects is input. This allows for the determination of the various 

categorization scales. To establish how unlike the input item is to the reference one, an 

additional possibility is to make use of the Euclidean distance. The approach known as 

rate of change (ROC) is used while carrying out the unsupervised procedure. The 

difference between two indices is what is used to get the best solution for this process. 

The use of one of the numerous possible categorization strategies might be beneficial 

to a variety of different industries. The RF approach is used to classify different land 

coverings, as well as different kinds of forests and urban land uses.  

 The support vector machine is used extensively in the process of determining 

whether regions are susceptible to landslides as well as which land uses should be 

classified. In forest mapping, gap analysis may be useful in identifying possible uses. 

The use of RF in conjunction with SVM is utilized in both the categorization of 

agricultural zones as well as the partitioning of natural catastrophe zones. Deep feature 

learning is used in [45] to provide a strategy for the categorization of high-resolution 

satellite images. This strategy was presented as part of the study. After the original 

image has been shrunk down through a number of levels, the images from those levels 

are used to train the DCNN. The use of a method known as spatial pyramid pooling is 

one that has the potential to make the training process go more quickly (SPP). 

Regardless of the size of the input image, SPP nets are able to maintain constant values 

for their weight parameter values. It's possible that tweaking the parameters of a fully 

connected model might make training each SPP net go more quickly. As the 

classification process takes place the weights are optimized by the use of multiple 

kernel learning. There is a possibility that the quality of the final result may be improved 

by combining a number of different categorization models and determining how well 

each model categorizes the data. 

 Recent advancements in deep learning have made feature identification an issue 

that is receiving attention by the researcher and scientist. The ability to distinguish 

buildings, roads, plants, and other properties within an image may be valuable in a 

variety of scenarios, including urban planning, environmental monitoring, disaster risk 

assessment, and other related areas of study. Among the many valuable applications of 

image processing and computer vision, edge detection is among the most significant. 

Many edge detection algorithms are presently in use. Preweitt, PSO, Laplacian, and the 
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Laplacian of Gaussian are only few of the others. When using this method, you will not 

be able to alter the thickness of the edge, and it will be difficult to choose an appropriate 

threshold. These are two potential issues that might develop as a result of using the 

approach. A reliable marine oil spill detection system is required by the International 

Maritime Organization to conduct inspections of maritime trade routes. Because of this, 

it is necessary to use a technique of feature selection that is based on machine learning 

[46]. Images captured using SAR images are often used to depict oil spills visible on 

the surface of the sea. It has the potential to cover a large area while yet presenting a 

distinct image. When trying to pinpoint the location of an oil leak, there are generally 

three steps that need to be taken. Dark spot segmentation is the first step that has to be 

taken in order to proceed with the process. This will separate the feature from the 

backdrop. In the second step, known as "feature extraction," the feature vectors that 

contain the data necessary to detect oil spills in an image are obtained via the process 

of extracting features. These feature vectors include the information that is necessary 

for an undertaking such as this one. The very last thing that has to be done is to 

categorize the black areas. At this point in the process, we are going to apply the criteria 

that separate feature areas from non-feature regions. In machine learning, one of the 

most important steps is called Feature Selection, and its purpose is to create a collection 

of features that exactly describe the detection issue that is currently being worked on. 

Cloud cover is one of the most significant challenges since it lowers the image quality 

of satellite images, making them less useful. The researcher who is seeking to learn 

about the landscape will find it more difficult to do so as a result of this. This indicates 

that the identification of clouds is an essential component of satellite image analysis. 

The detection of clouds using panchromatic satellite images is made more difficult by 

the very variable cloud distribution that is present throughout all of the various sets.may 

be simply interpreted in terms of the physical world for different use cases. 

 

1.5 Motivation of Research 

 Crop damage is caused by irregular fertilization, natural disasters, improper 

handling etc. For planning and executing corrective actions an estimating of this 

damage is important. Both near-field images and satellite images are needed to make 
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this estimate with high accuracy.  Near-field imagery aids in assessing damage from 

crop diseases while satellite imagery helps assess damage from natural disasters. The 

overall accuracy of damage detection is reducing because separate models were 

developed to process these images. As the accuracy of the presented model till date is 

not sufficient to use them to real time application this put limit on their use for real-

world scenarios. As accurate damage detection of the crop is important for policy 

makers for the very important task like food security. This motivated us to pursue this 

research and try to attempt to developed a novel method which will overcome this 

lacuna. In addition, researchers propose a variety of satellite image processing models, 

but the accuracy and scalability of this model is limited in the real time scenarios due 

to variation in the dataset parameters and internal process parameters. To design a novel 

model capable of overcoming these problems is the main motivation of this research. 

 Now a days society is facing the problem of rapid urbanization, huge de-

forestation in this scenario it is important to monitor the land use.  At the same time 

separation of crop filed from other area is the challenging and under-researcher area. 

This drives us to undertake this research problem and come up with a method using 

deep learning techniques for crop filed classification to improve classification accuracy.  

 

1.6 Gaps in Existing Models 

Based on the review, following gaps are identified in the current field of research, 

• Limited study of different damage detection technologies and datasets has been 

done under current scenarios. 

• Evaluate of the best models for damage detection and classification using near field 

imaging, satellite imaging and statistical analysis is still under research for different 

deployments 

• A relationship engine to identify similarity patterns between each of these damage 

detection and classification techniques is not designed for large-scale sets 

• There is a need for an efficient machine learning algorithm to improve damage 

detection and classification accuracy based on the mutual relationships between 

different techniques 
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• The work is currently focused either on crop type detection, or land-type detection 

• Limited research is done in the area of crop damaged areas detection using hyper 

spectral imagery 

• Damage detection along with prediction of yield is currently under research, and 

needs lot of experimentation 

• Effect of the integration of crop type detection with land damage detection is yet to 

be performed, which is our plan of research in this thesis 

 

1.7 Quality Measures 

 To evaluate any system, it is always suggested that one must decide the system 

evaluating parameter or Quality Measures of that system first. The most common way 

to evaluate the machine learning experiments or the information retrieval systems or to 

present results for binary decision problems in machine learning are Accuracy, 

Precision, recall, F-measure, AOC. All these parameters are listed and defined below. 

 

Precision 

How accurately a classification model can identify the relevant data points is called as 

precision. It can also call positive predictive value for the classification model. 

Precision should take into account all positive samples that are categorized as positive, 

whether properly or wrongly.  

Precision = T P / T P+F P 

 

Recall 

Ratio of relevant images that were found by an image classification model to total 

number of relevant images in the database is known as Recall value of that classification 

model. It can also know as sensitivity.  It is concerned with appropriately categorizing 

all positive samples. It makes no distinction between positive and negative samples.  
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Recall = TP / TP+FN   

Accuracy 

Accuracy is the percentage of correct predictions made by our model. It is one of the 

parameters consider when we assist classification algorithm. Informally, accuracy is 

the fraction of predictions our model got right. it is defined as  

Accuracy = Correct predictions/ Total number of predictions 

 

Area Under Curve  

Another of the most commonly employed measure for model assessment is Area Under 

Curve (AUC). AUC is a two-dimensional region that exists under the complete ROC 

curve. In binary classification problem it is typically applied. The greater the AUC, the 

better the model is thought to be in distinguishing between classes. An explanation of 

the ROC curve that enables a classifier to distinguish between classes is the Area Under 

the Curve.  

 

Figure 1.10. Area Under Curve 

 

F-measure/ F-score 

The F-score is frequently used to evaluate machine learning models, notably in natural 

language processing, as well as information retrieval systems like search engines. The 

F-score, which is defined as the harmonic mean of the model's precision and recall, is 

a technique for integrating the accuracy and recall of the model. It is employed to 

evaluate methods for binary classification that label samples as "positive" or "negative."  

2 x [(Precision x Recall) / (Precision + Recall)]. 
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1.8 Dataset Details 

The following datasets were used in order to process satellite images, 

• xView3 Dark Vessel Detection 2021 (xView3 Team, Aug 2021) 

• EuroSAT (DFK, Aug 2017),  

• Agricultural Crop Cover Classification Challenge (CrowdANALYTIX, Jul 

2018),  

• PASTIS : Panoptic Agricultural Satellite Time Series (IGN, July 2021) 

• FloodNet (University of Maryland, Jun 2021),  

• LPIS agricultural field boundaries Denmark, Netherlands, France 

 

1.9 Problem Definition 

 Based on the studies conducted previously in this filed, it can be observed that 

researchers have either worked on near field images for disease identification, or 

satellite imaging-based crop damage identification operations. But, for a real-time crop 

damage detection system it is necessary that all these methods must be combined in 

such a way that the output of one method must be able to enhance the damage detection 

accuracy of other methods. Thus, our problem statement is to devise an architecture 

that can initially perform crop damage detection using each of the individual methods, 

and then combine these methods in such a manner that there is a mutual dependency 

between them. Learning from this mutual dependency a convolutional neural network 

will be trained that can observe patterns from these individual systems and perform 

incremental learning to improve the crop damage detection accuracy of the given field 

sets. 

 Also, we observed that separation of crop filed from other area is the 

challenging and under-researcher area. So, we have decided to take the benefits of the 

latest development happening in the field of ML and DL to address this issue and to 

design a method using deep learning techniques for crop classification here we have 

kept our focus on to improve classification accuracy so that it can be used for real-time 

application like land use monitoring, crop insurance settlement, etc.  
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1.10 Objectives 

The following are the objectives of the proposed research, 

1. To deeply analyze existing damage detection techniques and classification models 

from satellite images for remote sensing.  

2. To develop a method for hyper-spectral images analysis techniques for damage 

detection.  

3. To design a method using deep learning techniques for crop filed classification to 

improve classification accuracy.  

4. To compare and validate the proposed model with the majority of existing models 

 

1.11 Methodology 

In this work we work on deep convolutional model which are combine with different 

CNN architectures, deep feature extraction model, and a transfer learning approach. 

This combination allows the system to produce highly efficient features, which have 

large inter-class variance, and minimum intra-class variance. To improve this 

scalability, this thesis proposes a high-efficiency temporal engine for real-time satellite 

image classification using augmented incremental transfer learning for crop analysis.  

 

1.12 Flow of Thesis 

This dissertation starts with a brief overview of satellite image processing before 

moving on to a discussion of how these pictures might be used to classify crop images. 

Introduction covers a comprehensive review of the related work reported in the recent 

past in the field of damage detection techniques and classification models from satellite 

images for remote sensing. The debate and the flaws in existing models are evaluated 

based on the discussion that has taken place here. This chapter paves the foundation for 

the problem statement. The chapter also lists the objectives of research undertaken. This 
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is followed by a description of the dataset, an explanation of the issue, and a set of 

goals.  

Next, in Chapter 2, we'll talk about a review of existing satellite image classification 

models for processing crop images, which will include discussions of linear 

classification models, models inspired by biology, and models based on deep learning.  

Chapter 3 is devoted to discussing how to create an effective ensemble learning model 

for detecting crop damage using deep convolutional networks, this section covers the 

following: an overview of the model, a survey of existing models for detecting crop 

damage, the design of the proposed model for detecting crop damage by utilizing an 

ensemble of DCN, and an analysis of the results with comparisons using enhanced 

incremental transfer learning for crop analysis.  

Chapter 4 discusses the implementation of a high efficiency model for satellite picture 

categorization. This is followed by an overview of related work, an explanation of the 

model's motivations, a description of the proposed model and a comparison of the 

engine's performance to that of existing models. 

Chapter 5 provides the concluding remarks on re-search by showcasing the substantial 

contributions of the job completed. Future instructions of the applied research work are 

provided towards the tail end of the chapter. The chapter concludes the thesis, by 

detailing briefly, the result of every one of the chapters.  

Chapter 6 shows the dissemination of work done in which a list of published, accepted 

and communicated research work with title, year and journal name are written. 

 



 

 

 

 

 

Chapter No 2  

Review of Literature 
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Chapter No 2 

 

Review of Literature 

 

Outline 

Here we'll talk about a review of existing satellite image classification models for 

processing crop images, which will include discussions of linear classification models, 

models inspired by biology, and models based on deep learning. 

 

2.1 Review of Real-Time Satellite Image Classification Models 

 There are many methods for categorizing satellite images, and the most popular 

ones are designed for a specific purpose. The most well-known categories of models 

centre on certain types of satellite pictures. The findings in study found [4,5,6] that 

Multispectral and Multangle 3D CNN classification is beneficial for the impervious 

surface analysis, classification of urban images, and a study of multitemporal images 

using the MDFN. To make this model more scalable, the study presented in [7] 

proposes creating a CNN model that can be used in remote sensing applications. 

 The models suggested in [8], [9] and [10] are designed for different purposes - 

land cover classification by using Features Extraction and Classification Algorithms, 

comprehensive dominant forest species classification by using Neural-Based 

Hierarchical Approach, and semi-supervised adversarial deep Network (SSADN) for 

Segmentation of Satellite Images, but they were inspired by this technique. Researchers 

have proposed models that are very similar to each other. These methods seek to reduce 

duplication to increase classification performance, which is scalable to many 

applications. A few of these methods include TPTSC [12], using DL to categorize land 

use and land cover [11], ship detection using artificial training datasets [13], and rice 

paddy detection using deep learning [14]. Each of these methods is discussed in detail, 
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including their use cases and common pitfalls. While anyone of these algorithms can 

be utilised in large-scale classification applications, they must be validated further. [15, 

16, 17] provides the evidence behind the use of support vector machines (SVMs), 

attention-based CNN (ACNN), Graph Models with deep learning and for the processing 

of polarimetric data. Although these models are effective in a range of different 

contexts, they only offer modest levels of accuracy and precision. Researchers are 

discussing topics such as spatial and temporal hidden Markov models [18], deep 

learning for automatic yield prediction [19], and CNNs for local climate zone 

classification [20]. They're also looking at morphology feature extraction or 

collaborative classification with LBP [21], which is a type of deep learning model [22]. 

These topics are intended to improve system performance. To predict image changes 

while maintaining a low error rate, these models combine various types of images and 

eliminate redundant features. To provide enough time for a model or two to accumulate 

data and get feedback, these models need a lot of delays. 

Articles published in [23] and [24] propose a multiple-scale, linear iterative clustering 

model: the simple linear iterative clustering CNN (SLIC-CNN). This SLIC-CNN 

incorporates both stacked convolutional auto-encoders and deep neural networks for 

batter performance. The main task of the model is to reduce the delay it takes to process 

information while still maintaining a reasonable level of accuracy.  

Table 2.1 Literature Survey Summary 

Detail of 

the Paper 

Main findings or conclusion relevant to 

the proposed research work 
Remarks 

(Ghazaryan 

et al. 2018) 

Classifying the time series data from 

Landsat photographs was done by using 

Google Earth Engine. It's effective because 

it uses a process called decision fusion 

which combines expertise from several 

different classification techniques. 

Winter cereals performed 

the most accurate 

categorization, but 

summer crops made 

more mistakes. 

(Azar et al. 

2016) 

Supervised classification (EVI, NDFI, 

RGRI), multi-temporal data 
It can be used for the 

complete year. 

(Bagheri et 

al. 2018) 

As classification techniques, quadratic 

discriminant analysis, SIMCA, linear 

discriminant analysis, and Mahala Nobis 

discriminant analysis were implemented. 
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(Hao et al. 

2016) 

In the red, near-infrared, and blue 

wavebands, two vegetation indexes are 

derived from atmospherically corrected 

reflectance. i. e.  EVI and NDVI 

By incorporating 

additional data sources, 

one might be able to 

construct an analytical 

system for this. In the 

near future, one might 

also get more accurate 

training samples from the 

crop type. 

(Kuželka 

and Surový 

2018) 

This software integrates a technique called 

Structure from Motion to automatically 

segment crops with automated 

classification. 

The use of spectral 

knowledge from images 

or image processing 

techniques dependent on 

entities could further the 

development 

(Hütt and 

Waldhoff 

2018) 

Multi-Data Approach (MDA). 

TerraSAR-X only collects one image every 

six days and requires cloudy conditions. The 

Solution: Use six TerraSAR-X 

multitemporal and dual-polametric strip 

map images to classify land cover without 

the need for fog or clouded skies. 

As evidenced by recurring 

disparities with variances 

in the realms of training 

and authentication, 

categorization is not 

dependably specific for 

potatoes. 

(Basukala 

et al. 2017) 

Many algorithms were used in the study. 

These were: non-parametric machine 

learning algorithms, RF, SVM, and MLC.  

The classifier output was also evaluated and 

compared to either  field-based or  pixel-

based methods of choice. 

 

(Melgani 

and 

Bruzzone 

2004) 

Band depth & Segmented Principal 

Component Analysis   

Successional plant 

communities from 

canopy fields 

(Shwetank 

and .J 

2002) 

Gini Index, Random Forest 
Savanna tree species from 

airborne images 

(Lu and 

Weng 

2007) 

Linear Discriminant Analysis VIP score   
Forestry species from 

airborne images 

(Steele 

2000) 
Normalized Two Sample T-test   

Seagrass species field 

covering spectra 

(Gislason 

and 

Benediktss

on, J. An., 

Sveinsson 

2006) 

Analysis of Variance (Tukey HSD), 

Classification, and Regression Tree 98% 

Rice genotypes from 

covering spectra 
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Table 2.1 summarizes our research and findings so far. Form table 2.1 we can say that 

these models use different types of features to produce super-features, which are then 

used for classification purposes after refinement. Despite these disadvantages, 

researchers have created various models to help with classification. Majority of these 

models are either not applicable in broad range of situations or are application-specific. 

For this reason, research has shown that there is still a need for classification algorithms 

to reach the level of performance needed for real-time applications.  

 

2.2 Review of Application Specific Classification Models 

 Researchers have come up with a number of different approaches in order to 

produce crop damage detection systems that are very precise. In this section, we will 

investigate the ways in which a variety of techniques are similar to one another as well 

as the ways in which they vary. The reason we do this is so that we can evaluate how 

well the various strategies stack up against the one that we have proposed. These tactics, 

for the most part, are dependent on deep learning in order to accomplish their goals; for 

instance, the study presented in [26] advises complementing with a region CNN model. 

(Ham et al. 

2005) 

Resampled 1st derivative Stepwise 

Discriminant Analysis   

Eucalypt forest species 

from lab spectra 

(M. Chi, 

Benediktss

on, and 

Feng 2009) 

Continuum Removed Stepwise 

Discriminant Analysis   

Himalayan forest species 

from satellite images 

(Rodriguez

, 

Kuncheva, 

and C. J. 

Alonso 

2006) 

Mann Whitney U Test   
Tropical wetland species 

from field leaf spectra 

(D. Chen 

and Stow 

2002) 

Principal Component Analysis, Lambda-

Lambda R-Squared, Stepwise Discriminant 

Analysis, Derivative Greenness Vegetation 

Indices   

Crops and grassland cover 

types from field covering 

spectra 

(Zhang 

2010) 

Analysis of Variance, Linear Discriminant 

Analysis  

Mangrove classes from 

lab leaf spectra 
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Before using CNN's feature classification approach, this model first segments a portion 

of the image with the purpose of achieving the most accurate classifications possible. 

The model has a potential accuracy of 91.04% over a wide variety of various kinds of 

pests, and it has the potential to be applied to additional categorization jobs in order to 

enhance its utility.  

 A process that is quite similar to this one is described in [27], in which low-

quality images that were taken by unmanned aerial vehicles (UAVs) are used to train 

convolutional neural images. The generation of heat maps from the recorded images 

allowed this model to attain an accuracy of 95.1% over a wide variety of image sets. 

The heat map is also used to study the amount of damage present in the near-field 

images, which is another way that it helps with the overall process of estimating the 

amount of damage that has occurred across the board. Comparisons with the results of 

other CNN models, such as those presented in [28], which offers explanations of models 

such as rapid CNN and spiking CNN, are possible with this one. Other CNN models 

include: Using a DCNN (Deep Convolutional Neural Network), as suggested in [29], 

which is where the LodgedNet architecture is constructed, is one way that the efficiency 

of such architecture may be enhanced. This is also one strategy that may be used to 

increase the accuracy of other models. By combining a grey-level co-occurrence matrix 

(GLCM) with the conventional VGGNet-16 architecture, classification and local binary 

pattern estimation this model achieves an accuracy of 97.6% for various forms of crop 

damage. With the aid of the work done in [30] and [31], high-precision models that are 

capable of evaluating bird and predator patterns, both of which have direct effects on 

crop damages, may be implemented.  

 Methods of deep learning very similar to those illustrated in [32], [33], and [34] 

are presented there. The CNN models that are used in these studies make use of a variety 

of methodologies, such as 9-fold cross-validation, parallel convolutions, and area 

proposal networks established by Zeiler and Fergus. The accuracy of these models may 

range from 90% all the way up to 98.0%, depending on factors such as the dataset, the 

number of layers, and the CNN architecture that was used. According to the information 

presented in [35], which details broad residual networks, when trained particularly for 

a purpose, these networks, which are spinoffs of CNN, have the potential to attain 

almost flawless accuracy. Another model of this sort can be found in [36], and it makes 
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use of DCNN in conjunction with transfer learning to enhance the efficiency with which 

banana farms are categorized.  

 It has been noticed that this model can be modified to accommodate a wider 

variety of crop kinds, and that the accuracy of its damage detection can reach up to 99.7 

percent. Both of these observations have been noted. It is possible to use the model to 

estimate the damage done to crops with an accuracy of ninety percent or higher, making 

it a feasible option for categorization. Other uses of these networks are explored in [37], 

in which it is said that they are employed to the development and protection of plants. 

It's possible that applications based on nanotechnology may employ deep learning 

models in order to classify data more effectively. Other applications for deep learning 

models are currently being developed as well. These applications include an 

improvement in the processing of insurance claims [38], the identification of previously 

undiagnosed illnesses [39], the recognition of rice yield damage [40], and recognition 

of insect pests in greenhouses [41]. Using CNN models and architectures, these 

applications have the potential to attain an accuracy level ranging from 91% to 99%, 

with the exact range depending on the number of layers used in the classifier's design. 

Changing the CNN models might potentially lead us to these levels of accuracy.  

 Deep learning and transfer learning models are being put to use in a variety of 

specialized applications, including the detection of damage caused by brown 

planthoppers [42], damage detection for general purposes [43], and high-resolution 

image-based damage identification [44]. These are just a few examples of the niche 

applications currently being explored. With the use of these models, one may be able 

to acquire more precise findings. ANNs[45], SVMs[46], ANNs[47], AlexNets, 

VGGNets[48], GoogLeNets, and InceptionNets[49] are some of the machine learning 

architectures that are specified by researcher. Other machine learning architectures 

include GoogLeNets and InceptionNets. The Disaster Vegetation Damage Index 

(DVDI) and The Geographic Information Systems are also topics that are suggested by 

several publications. These architectures deliver comparable levels of efficiency and 

are suitable to use in applications involving the detection of crop damage in real time. 

Animal attacks, geological changes, and other variables that could harm crops are 

investigated in [50], and their affects can be used to influence the construction of 

machine learning models for damage detection. [50] Animal attacks, geological shifts, 
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and other factors that can destroy crops are researched. [50] See [51], which explains 

the background of the work that was discussed earlier, if you want further information 

about how proximal sensors may be utilized to improve damage categorization. In 

addition, as described in references [52] and [53], it is possible to simulate floods and 

the loss of crop water in order to anticipate any potential changes that may take place 

in the future in relation to the crop. In the research presented in [54], [55], and [56], the 

models are applied to the task of developing extremely accurate deep learning 

algorithms for crop damage detection and categorization sets. Table 2.2 summarizes 

each method, its performance. 

Table 2.2. Analysis of Various Existing Models 

Application Acc (%) Method 

C 98.56 PSO [5] 

C 87.80 MLC [5] 

C 98.00 ACO [5] 

C 83.00 BF [6] 

C 77.50 NB [6] 

C 83.50 J48 Graft [6] 

C 83.59 BTree [6] 

C 87.75 RF [6] 

C 90.00 Multiple VI with thresholding [8] 

C 79.20 PLSR UAV [10] 

C 78.70 PLSR Satellite [10] 

C 85.20 PLSR Hybrid [10] 

C 85.60 SVM UAV [10] 

C 76.30 SVM Satellite [10] 

C 89.80 SVM Hybrid [10] 

C 87.00 RFR UAV [10] 

C 80.50 RFR Satellite [10] 

C 92.30 RFR Hybrid [10] 
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C 99.09 SSU, GRU, CNN [12] 

C 92.85 SSU & RF [12] 

C 94.11 SSU, SVM-RBF [12] 

C 96.69 CNN-GRU [12] 

C 86.67 RefNet, SSTM, SSMB [16] 

C 55.00 Fast CNN [16] 

C 62.00 YoLo [16] 

C 85.30 SSMB [16] 

C 86.10 RefNet& SSMB [16] 

C 96.42 DARNN& DA [18] 

C 95.92 DARNN & SSCLM [18] 

C 95.45 DARNN & CLM [18] 

C 94.91 FCRNN & PLM [18] 

C 90.50 GDC-SAR [26] 

C 76.30 GMMC [26] 

C 92.40 Ensemble CNN [27] 

C 91.60 DenseNet [27] 

C 89.24 ResNet [27] 

C 87.15 LSTM [27] 

C 83.30 TH VI [29] 

CD 85.00 DVDI with thresholding [7] 

CD 93.00 SAFCNN [20] 

CD 90.00 SAFC DiffNet [20] 

CD 91.00 SAFC ConcNet [20] 

CD 91.00 ResNet [20] 

CD 78.00 KDEGA [20] 

CD 80.00 LAI Thresholding [21] 

CD 86.90 MODIS with Thresholding [22] 
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CD 96.00 RTC-UNet [23] 

CD 96.00 RTC-FCNN [23] 

CD 84.10 CART [24] 

CD 86.27 SVM [24] 

CD 86.46 RF [24] 

CD 88.56 SVM+ RF+ CART [24] 

DC 96.00 Hough transform with multi-level thresholding [9] 

DC 98.60 Red Band with Thresholding [17] 

DC 96.20 GPC [17] 

DC 95.00 TL [31] 

YP 85.00 LAI with Thresholding [14] 

YP 81.00 MODIS&SMAP with Gaussian [15] 

YP 90.30 LNL-VI [30] 

YP 87.00 RF [33] 

YP 83.00 GPR [35] 

YP 79.00 DT [35] 

YP 85.00 BPNN [35] 

YP 69.50 KNN [36] 

YP 85.30 NDVI with thresholding [39] 

YP 79.00 GNDVI [41] 

 

C    =  Classification 

CD   =  Change Detection 

DC  =  Detection & Counting 

YP   =  Yield Prediction 

 

2.3 Review of Crop Specific Classification Models 

 Here, various approaches proposed by researchers to detect crop damage and 

the nuances of each approach are explained in this thesis. One approach is illustrated 

by the work in [57]. It proposes the use of region-CNN model with an augmentation. 

Here they segment an image into different regions and uses CNN on those regions to 
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make very accurate classifications decision. An accuracy of 91.04% is reported by this 

model and can be utilized for different classification application. On the same line 

model that utilizes UAVs for taking an image, and implemented low-resolution images 

for CNN training can be seen in [58]. Because heatmap generation from captured 

images is used for evaluation this model can achieve 95.1% accuracy across multiple 

image sets. This aids in estimating damage extent in near-field photographs and hence 

aids in estimating damage extent for the remainder of the field.  As described by models 

in [59], neural networks like spiking CNN and fast CNN have been shown to produce 

higher accuracy. The use of the deep convolutional neural network (DCNN) can also 

improve the performance of these neural networks, as demonstrated by LodgedNet 

architecture, which is defined in [60]. This model got a 97.7% accuracy by usesing a 

VGGNet-16 architecture with local binary pattern estimation and GLCM (gray-level 

co-occurrence matrix). This can be used with work by [61] & [62] to create models for 

bird patterns and predator patterns. And this could help farmers improve the accuracy 

of their estimates for damage types, leading to reduced losses. 

 Many DL architecture can be seen from [63], [64], and [65]; in these various 

examples like Zeiler & Fergus with region proposal network and 9-fold cross-validation 

and CNN are used respectively. These models are typically 90-98% accurate, 

depending on the type of CNN architecture is use and dataset used. Research in [66] 

suggested variety of applications of these models, such as wide residual networks 

(WRN). Networks like CNN extend the reach and accuracy of CNN by being designed 

for specific applications. The study in [67] employs a DCNN with transfer learning to 

improve banana plantation classification efficiency. This model can be applied to 

another crop type and can detect problems accurately. This model can also detect the 

extent of the damage, with an accuracy of 90%. The makes this model a perfect option 

for classification.  

 Another use of these system is from [68], which include descriptions of plant 

growth and protection. Other applications for deep learning models include improving 

the efficiency of insurance claims [69], detection of unreported damage pathogens [70], 

rice crop damage detection [71], and greenhouse insect pest detection [72]. Deep 

learning models are used in applications such as brown planthopper damage detection 

[73], crop damage detection [74], and damage identification [75]. These deep learning 
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models and the architectures of CNNs can be modified to improve their accuracy levels, 

which range from 91% to 99% depending on the number of layers used. According to 

[76], [77], [78], and [79] (along with other sources, including [80], [81] and the "Global 

Land Cover Remote Sensing Data Sets at 30 m resolution"), machine learning 

architectures like those used in AlexNet, ANNs, VGGNet, SVMs, InceptionNet, 

GoogLeNet, and other GIS systems are discussed. Finally, the DVDI is also defined in 

this source. 

 The research in [82] elaborate the effect of factor like geological changes, 

animal attacks and crop damage. This study can be extended at [83], where it mentions 

the use of proximal sensors for improving the accuracy of damage classification. The 

research in [84] and [85] presented the model that predict any future changes to a crop 

like water loss. In this paper, models in [86], [87], and [88] were used for designing 

efficient DL algorithms for the classification and detection of crop damages. 

Combining transfer learning approaches with deep learning can enhance detection of 

crop damage. Based on this analysis, deep convolutional networks are described below. 

We will also compare its performance with other models. 

 Table 2.2 shows the comparison between some Existing Techniques based on 

their qualities. It can be noticed that each Technique provides certain pros and cons. 

Different techniques can be efficient in different cases, which is why there's not just 

one best way to detect damage. For example, checking for chlorine can be accurate in 

most cases, but it's not dependable. It might not matter much if you have fruit trees, so 

this analysis would not apply to you. That can be seen from table 2.3, where each of the 

reviewed methods of detecting a damaged crop and their accuracy is tabulated. 

Table 2.3 Comparative Analysis of Different Models 

Crop Method Input Data Acc. 

Wheat ANN [64] Image 86 

Apple ComNet [83] Image 97 

Apple CNN [88] Image 95 
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Cotton Random forest [58] 
Rainfall data and Satellite 

images 
85 

Guava CNN [84] Image 80 

Maize NN [69] Drone images 85 

Tomato MobileNetv2 YOLO3 [76] Image data 93 

Coffee and 

Citrus 
SVM [64] Image 85 

Corn & 

Soya-bean 
Neural network [63] Nitrogen profile 80 

Corn and 

Soya Bean 

Neural network with 

incremental learning [59] 
Image data 90 

Grape, 

Peach 
CNN [88] Image 91 

Straw-

berry, Rice 
SVM [64] Image 91 

Various CNN [61] Image 90 

Various RNN with LSTM [62] Image 95 

Various NN [67] Image 91 

Various DCEN [79] Image 86 

Various PCA, WO CNN [85] Image 93 

Various Two-tier CNN [86] Image 77 

Various DBN [87] Image 86 

Various CNN [88] Image 93 

Various DNN [68] Image 93 

Various Modified CNN [72] Image and weather data 97 

Various Random forest [65] Image and weather data 85 

Various DRQN [66] Image and weather data 94 
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Various NN [70] SAT with SDS 85 

Various CNN [78] 

Molecular phenotypes 

and physio-logical crop 

models 

91 

Various 
NN with a Recomm-ender 

system [71] 
Weather specific data 93 

 

2.4 Deep Learning-Based Classification Models 

The number of datasets that may be used for remote sensing or hyperspectral image 

characterization is limited; the tables that include the datasets that are used are shown 

in Table 2.4. There are also additional informative indexes; however, some of the 

characteristics associated with them are still unclear; hence, we have substituted the 

phrase "not certain" for the ambiguous features that are included follow. 

Table 2.4. Datasets used for assessment 

 

The work described in [112] describes the background research that typifies the 

application of deep learning computations to the classification of hyperspectral images. 

Scientists Jie Zhang, have proposed using DCNN to classify photographs taken along 

the shore of the Huanghe (Yellow) River Estuary. [113] contains the results of the 

study. These pictures were taken in one long burst, and then the best ones—both 

spectral and textural—were chosen to be arranged. Several categories were chosen, 

some of which are included in [113]: reed, tamarisk, water, spartina, tidal level, OCA 

and farmland. The accuracy of the straight SVM, sigmoid SVM models, RBF SVM, 
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polynomial SVM, and, as well as the recommended DCNN model, were all taken into 

account. Applications that need ongoing hyperspectral characterization may benefit 

from the proposed DCNN calculation, which was demonstrated to outperform prior 

calculations by more than 8% in terms of center accuracy. The kappa coefficient, a 

measure of the precision of a calculation, is also calculated, and the results demonstrate 

that the recommended DCNN is at least 10% more precise than the other networks. 

Research by [114] uses SVM in combination with a directed channel to improve 

grouping execution, despite widespread agreement that DCNN is better. The more 

accurate representation of visuals is achieved in part by the guided channel's role as a 

computation for improving elements. Ultimately, this makes the computation more 

feasible. The results of their study [115] were compared to those obtained by using 

SVM, Co-SVM, Co-SVM-EPF, and SVM-EPF models, as well as the GF-SVM model 

and the proposed GF-SVM-EPF model. After doing many calculations, they found that 

the recommended GF-SVM-EPF was at least 6% more effective than the others. There 

hasn't been any study on integrating GF-SVM-EPF with DCNN, but any reader of this 

should keep it in mind as a promising avenue for investigation. According to the work 

of Dan Yao et al., basic tiny CNNs may be used to simulate the spatial order of multi 

and hyperdimensional images, making DCNNs a kind of CNN. Deep convolutional 

neural network abbreviates to DCNN.  

 They have proposed using a minimal bit of level engineering to arrange these 

pictures. Using this method, the images have been divided into several sections, each 

of which may do a certain task. Example: using gaussian channels for image pre-

processing in the selected main area. This part of the process roes the work and uses 

the channel to ensure that all the pictures are processed properly. The same may be said 

for the several divisions responsible for the little but essential task of hyperspectral 

organization. After looking through six distinct CNN models, they concluded that their 

proposed design offers the highest accuracy. A combination of this proposed CNN with 

other, more extensive CNNs may improve the findings' precision. CNN, SVM, and 

deep CNN are all examples of classes that qualify as profound learning. Several 

alternative calculations for a deep learning-based hyperspectral order are proposed in 

the study reported in [116]. In particular, they looked at EMP, SVM, JSR, 3D CNN 

models to see which one provides the most precise computation. They looked into many 
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other options and found that the DFFN, also called a deep feed-forward system, may 

work for a hyperspectral business. Their investigation spans over 10 distinct areas; as 

such, it might provide any specialist with a great jumping-off place for further 

investigation and analysis. 

Cascaded Recurrent Neural Networks, similar to DFFN, were utilized in the work 

described in [117] to classify hyperspectral images. As a means of maintaining order, 

they use the idea of combining many independent systems into one. Using a loss task 

and an aggregate administrator, they found that a total of ten iterative neural networks 

yielded 90% to 95% accuracy. They concluded that the recommended SSC as RNN 

[118] technique is exceptional in its capacity to carry out order tasks by comparing the 

accuracy rates of SSC as RNN, CasRNN-O, CasRNN, and CasRNN-F. If you compare 

its center precision to that of other calculations, you'll find that it's over 15% more 

precise. Support vector machines (SVMs) are nonparametrically validated theories for 

addressing issues associated with a tendency to veer off course and regress. In the same 

vein, no presumptions are made about the hidden information's spread. You can find 

the mathematical justification for the SVMs in [119], [120], and [121].  

 The SVM preparation calculation anticipates choosing a hyperplane that splits 

the training data into a defined number of classes in a predictable manner with respect 

to the planning axes when the strategy is given a set of data tests in the original design 

of SVMs [122]. The decision furthest reaches that limit the amount of misclassification 

that may be accomplished during the organizing stage is referred to as the "ideal 

detaching hyperplane." The learning advice is to set a perfect choice breaking point to 

divide the planning models, and then to disengage test data in line with a comparison 

strategy [123]. Keep an eye on [124, 125] for a well-organized description of the SVM 

computation as a tool for example affirmation. For any piece-based method, SVMs 

included, it is crucial to have a segment task that accurately represents the closeness 

between tests. The same holds true for any tactic that relies on individual elements. 

Certain support vector machines and other segment-based classifiers that satisfy 

Mercer's condition [126] are built using common pieces such as the straight piece, 

polynomial piece, extended reason work (RBF) bit, and sigmoid piece. 



41 
 

Thanks to their superior performance, 3D CNNs have revolutionized hyperspectral 

characterization. Since the authors of [127] were able to effectively use CNN's 3D 

model for the assignment of characterization, this work represents a significant step 

forward in the analysis of hyperspectral grouping. As so, this is a significant 

development in the study. Also, they have employed exchange-based learning 

technologies to further increase overall system performance. The proposed framework 

has been shown to achieve an amazing 98% accuracy or higher. Also, there are no 

bottlenecks in the calculation, therefore it may be utilized for continuous applications. 

In [128], we see another CNN design, this one presenting the concept of fully 

programmed characterization. They've fused 1D and 3D convolutional neural networks 

to reap the advantages of both architectures' highlight management and data organizing 

capabilities. The resulting framework consistently achieves a precision of 95% or 

higher on a wide range of datasets. The findings have been compared to many other 

models, including L-SVM, RF-200, MLP, RNN, RBF-SVM, 1D DCNN and 1D CNN. 

In terms of mean accuracy values, the proposed model exceeds the alternatives by at 

least 5%. Article [129] describes the use of discriminative compact representation for 

characterizing hyperspectral images and learning highlights. The outcomes show that 

honing focus on highlights may help the order framework be more precise; as a result, 

improving belongs to a group of estimations or methods that can help weak students 

become good ones. At the end of the day, the fragile understudy could be seen as a 

superior model to the arbitrary theory. There are fewer problems with the fragile 

understudy than with the arbitrary theory. On the other hand, if the student does a good 

job, the result is almost as precise as it might be. The word "boosting" is used to describe 

a wide range of techniques that may be used to enhance the efficiency of any kind of 

educational endeavor. In [130], the author proposes a strategy for improving students' 

performance based on the assumption that even the weakest among them may be made 

into a strong one. The essential premise of this structure is that even the weakest learner 

can be improved. Boosting is a progressive content show [131] that uses the whole 

curriculum as its building blocks. The purpose of this method is to provide an incredibly 

precise leading set of computations [19], and it does so by combining the results 

acquired from many classifiers. 
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 In the last decade, the irregular forest has been one of the leading gathering 

classifiers because of the increased focus on academics. Using a random selection of 

planning data and components, this information-gathering technique controls the 

outcomes of probable alternate decision trees [132]. Due to its amazing request 

accuracy, the Arbitrary Forest method has swiftly gained traction as a viable choice in 

the field of remote recognition for the representation of images. Results from a wide 

range of use cases [133,134] demonstrated the reliability of Arbitrary Forest [135]. For 

clear motivation, researchers developed the RF classifier as a Classification and 

Regression Tree application [136]. Trucks are packed and delivered according to a 

blueprint of the relevant planning data. This indicates that the same getting ready test 

may be used again, whereas other models may be completely ignored. Seventy percent 

of the models used to evaluate the trees' readiness are brought-in-pack tests, while the 

remaining models are out-of-the-sack tests for each and every odd model. These out-

of-the-bag tests are performed to determine how well the resulting RF sounds when 

using an internal cross-endorsement strategy. An "out-of-the-box" mistake is how this 

blunder is being described. The client is responsible for selecting two values, Number 

of tree and Maximum number of tries, which are necessary for this method to work 

(number of features). The function of each node in the tree's center is identified by 

means of the Maximum number of tries parameter.  

 RF designed the trees to have a steep slope and a wide range of variations [137]. 

Class task probabilities are managed by each individual tree in the forest, and [138] 

discusses how these probabilities are collected independently and averaged. The 

accuracy of the portrayal is less dependent on the parameter Ntree when it is offered in 

a manner distinct from the succeeding parameter Mtry, as specified by the customer 

[139]. In terms of computational power, RF is widely acknowledged to be an effective 

classifier. A large body of research indicates that 500 is an appropriate value for the 

estimate of parameter Ntree since this is where errors tend to settle [140]. Different 

experts have implemented the RF classifier with different values of Ntree (e.g., 5000 

[141], 1000 [142], and 100 [143]). Physical copies of these efforts are still available. 

However, some specialists have shown that the above-mentioned motivation for 

immediate application and remarkable portrayal conclusion may obscure the 

significance of the estimation of the Ntree parameter. Based on the notion that 
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increasing the number of trees (Parameter Ntree = 70) yields a remarkable request 

result, the study provided in [144] employs RF to organize the SAR data. However, 

Mtry is seen as the square root of the number of information components [145], 

therefore it is a useful parameter. Using the estimate of Mtry as a proxy for the estimate 

of all variables does nothing except increase the computational complexity of the figure 

in one study [146]. Testing against other popular classifiers such as artificial neural 

networks, linear discriminant analysis, binary hierarchical classifiers, and decision trees 

showed that the RF classifier was much superior in terms of accuracy and precision 

[147]. Bolster Vector Machine, a classifier that uses an AI-based technique produced 

unfathomably high levels of accuracy across a wide range of use cases. Several studies 

have shown that the RF classifier performs as well as the SVM [148], and RF yields 

particularly impressive outcomes when applied to hyperspectral data (high dimensional 

data). Multi-scale question image inquiry (MOBIA) using EO satellite imagery was 

conducted using an RF classifier, as described in [150]. The result was imaged with 

very detailed metadata. Elhadim Adam examined the use of SVM and RF classifiers on 

Rapid Eye pictures, and he distinguished between the various Rapid Eye satellite data 

sets in terms of relevance. But studies in object-based image analysis have shown that 

SVM is the clear winner (OBIA). Baoxun Xu released a new version of the RF 

classifier, ensuring that it provides superior performance to state-of-the-art RF methods. 

The first algorithms applied were SVM, RF, and ANN which are considered 

effective in classifying the damage detected in plants and distinguishing the category 

of this damage. These algorithms relied heavily on the extraction of features and their 

subsequent selection to allow the classification task to be carried out efficiently. Most 

predictive modelling methods have a range of accuracies. But our CNN-based data had 

an average of 90% accuracy for both damage detection and classification.  

1. Deep learning algorithms can automatically learn and extract features from raw data. 

Traditional machine learning often requires handcrafted feature extraction, which can 

be complex and time-consuming.  

2 Deep learning algorithms tend to perform better with large volumes of data. They can 

handle big datasets more efficiently and often achieve higher accuracy as the volume 

of data increases.  
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3. Deep learning models can adapt and improve their performance over time as they are 

exposed to more data, making them more flexible and capable of continuous learning. 

 

2.5 Statistical Evaluation  

Each method is compared in terms of implementation difficulty, applicability and 

accuracy for statistical analysis. It is clear that the majority of research has focused on, 

yield prediction, categorization, detection and counting of plant kinds and change 

detection. The effectiveness of various change detection techniques is shown in Figure 

2.1. 

 

Figure 2.1. Change Detection Models 

The comparative analysis of yield prediction algorithm is shown in   figure 2.2 base on 

accuracy of model. 
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Figure 2.2. Yield Prediction Models 

Figure 2.3, which contains both disease detection and crop type classification, shows 

how effectively these classification techniques work 
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Figure 2.3. Classification Models 
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2.5 Conclusions 

 The first algorithms applied were SVM, RF, and ANN which are considered 

effective in classifying the damage detected in plants and distinguishing the category 

of this damage. These algorithms relied heavily on the extraction of features and their 

subsequent selection to allow the classification task to be carried out efficiently. Most 

predictive modelling methods have a range of accuracies. But our CNN-based data had 

an average of 90% accuracy for both damage detection and classification. Precision can 

be increased by accumulating input sources, such as image data, in addition to 

environmental information, nitrogen profile, weather data, and so forth. 
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Chapter No 3 

 

Ensemble Learning Model for Damage Detection 

Using Deep Convolutional Networks 

 

Outline 

This section covers an overview of the model, a survey of existing models for detecting 

crop damage, the design of the proposed model for detecting crop damage deep 

convolutional networks, also an analysis of the results with comparisons using 

enhanced incremental transfer learning for crop analysis,  

 

3.1 Introduction  

Natural calamities, improper treatment, and irregular irrigation are some of the reasons 

for crop damage. Near-field image and satellite images are essential input to accurately 

estimate the damage mention above for planning and executing corrective actions 

against it. Satellite imagery helps assess damage from natural disasters, while near-field 

imagery estimates damage from crop disease. Separate architecture is designed to 

handle these images, limiting the correlation between them and reducing overall 

recognition accuracy. In the comparison of the individual models the architecture 

suggested in this thesis perform better correlation between near-field and far-field 

images to predict crop damage more efficiently. When compared with some of the most 

advanced models, our proposed correlation-based model delivers a 10% improvement 

in accuracy and 8an % improvement in precision. Plus, you'll get 5% more accurate 

results with less effort. In order to validate the model, it was evaluated on different 

datasets and crop in multiple ways. This thesis also discusses upcoming research 
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instructions which can be consider so that the prediction model can perform more 

effectively. 

Crop damage prediction and detection is a complex process that involves many 

different components. This task ranges from the design of image pre-processing to 

variant feature selection, fusion, and post-processing. For instance, when creating a 

noise filter for images, we need to design something like an adaptive median filter 

(AMF), Gaussian filter (GF), or Weiner filter (WF). Noisy images are very common in 

satellite imagery. When noise filters are applied, the image quality is improved and salt 

and pepper noise, speckle noise, etc., may be removed. Once these filters have been 

applied, image fusion modules are activated in order to improve overall image quality. 

These modules combine images taken from different sensor, like multiband 

panchromatic, and multispectral images. Combining these images gives you a final 

image that has aggregate information, like shape information, colour levels, edge 

information, crop contours, and more. In extraction process, a projector block, extract 

the features. These features can include a wide range of things such as local binary 

patterns, histogram features, colour maps, and edge maps. 

 

 

Figure 3.1. Crop Damage Detection System Model 
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 Due to the large number of extracted features, the probability of feature 

redundancy increases. This redundancy reduces classification accuracy & increases 

processing delay. In order to avoid feature redundancy various feature selection models 

are implemented. Machine learning models are a great way to improve classification 

by analyzing the features of images. These factures should be varied widely for 

different types of photos and must be similar for images with similar content image. 

Classification engine is use to produce the crop damage system. Algorithms like SVM, 

NN, convolutional neural networks, and others are implemented in our model to 

classify the ‘non-damage' and 'damage' categories as seen in figure 3.1. When the 

images get classified, they are sent to a post-processing block. From there, we do an 

estimation of the extent of the image. The algorithm like random forest, Naïve Bayes 

and neural networks are used for pattern recognition models. To divides the images into 

several categories of damage the proposed architecture makes use of the damaged 

image's temporal categorization data. The enormous variety of crop damage detection 

system models that have been proposed by researchers over the years will be examined 

in the next part, and their effectiveness will be discussed in this thesis. We first 

fabricated a model with the proposed system structure, and then we evaluated its 

performance using precision, accuracy, recall, delay and F-measure. To verify the 

effectiveness of the recommended system, the performance of several state-of-the-art 

models that are currently employed for crop damage detection is compared with the 

suggested model. At last observations were made about the suggested system and 

recommended approaches to improve it. 

 

3.2 Proposed Method 

From the literature review, it can be observed that a wide variety of machine learning 

and deep learning models are available for satellite image classification. These models 

are applied to context-specific applications, which limits their scalability. To improve 

this scalability, a novel high-efficiency temporal engine for real-time satellite image 

classification using augmented incremental transfer learning for crop analysis is 

proposed in this section. The proposed TRSAITL model uses a combination of CNN 

with incremental learning to continuously improve classification accuracy using 

Adaptive thresholding layer with parameter tuning.  
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Transfer learning, several CNN architectures like VGGNet 16 network, and a deep 

feature extraction approach is combines in the proposed architecture. It generates 

extremely efficient features with significant interclass variation and low intraclass 

variance. Satellite crop datasets of Amravati District (India) which is generated after 

different disaster conditions such as floods and hailstorms in the year 2018 and 2019 is 

use to train the model. The model can be batter understood from following three steps: 

• Multiple CNN architectures for Classification. 

• Transfer learning block. 

• VGGNet 16 network for Deep feature extraction. 

This design has a few steps. The simplified version of it can be observed in Figure 3.2. 

The feature extraction model is directly provided with input images taken from our 

dataset. We got the result in form of tow class i.e., "non-damaged" or "damaged" by 

using the CNN classification model. This further aids in hyperparameter tuning of the 

proposed system via the transfer learning network. In order to fit the internal ImageNet 

model, input images are scaled to 224x224 and then features are extracted using a pre-

trained VGGNet-16 architecture. Figure 3.3 illustrates the features that may be seen at 

4096.  

 

Figure 3.2. Damage Evaluation Models 

To processes the images with a 64x64 window a 3x3 convolutional layer is used. 150K 

feature values are extracted from the image and then given to another 3x3 convolutional 
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layer with 64-by-64-windows for more filtering features. It's often hard to find a certain 

filter when you're looking for multiple filters, but thankfully this equation will tell you 

which one would work for your needs. The first thing that it does is reduce feature 

variance for any similar features, and then it will increase the variance for images that 

are in different classes. 

𝑀𝑃𝑜𝑢𝑡 = 𝑀𝑎𝑥 (
1

𝑋𝑘
∗ ∑ 𝑥𝑖

𝑋𝑘

𝑖=1

)

1/𝑙𝑟

… (1) 

Here, MPout is the output of the maximum pooling layer, and Xk is the input of the layer 

with "k=224" various feature vectors. Learning rate is represented by lr of the pooling 

layer (set between 0 and 1). Following convolutional layers with sizes of 128x128, 

256x256, and 512x512 are applied to the layer once more to extract 800,000, 400,000, 

and 200000 features, respectively. In essence, these traits were turned into 1.5 million 

distinct features. The same max pooling, rectilinear unit (ReLU) procedure and a fully 

connected neural network are then used to retrieve a total of 25,088 features. The 150K 

different pixels of one image is converted into 25K different features. This feature set 

has low variance with same class feature sets and huge variance with feature sets of 

different class. Extracted characteristics are provided to an ensemble CNN 

classification model for the purpose of identifying crops with damage. An ensemble 2D 

CNN model made up of leaky rectilinear units (ReLUs), multiple optimizers, level 2 

regularisation, and data augmentation receives the extracted features. This neural 

network model's architecture is shown in Figure 3.3. Encoder and decoder layers are 

among the specified layers. Prior to using the neural network, a data augmentation layer 

receives the output from the VGGNet 16 model. Every set of input features undergoes 

specialised calculations in this layer, 

• Using equation 2, data rotation up to 40 degrees is implemented. 

𝑑𝑜𝑢𝑡𝑖
=

𝑑𝑖𝑛𝑖
∗ sin  (∅𝑖) + 𝑑𝑖𝑛𝑖

∗ cos  (∅𝑖)

2
… (2) 

Where ∅𝑖  indicates the angle and ranges from 40 to 0 degrees in steps of 1 degree, and, 

𝑑𝑜𝑢𝑡𝑖
  and subscript are 𝑑𝑖𝑛𝑖

 are output, and input data for the specified angle. 
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• A typical autoregressive integrated moving average (ARIMA) model is used to 

enhance the samples when the width shifts between 0 and 0.2, as shown in equation 3. 

𝑑𝑜𝑢𝑡𝑖
=  𝑅 + ∅1 ∗ 𝑑𝑖𝑛𝑖

+ ∅2 ∗ 𝑑𝑖𝑛𝑖−1
+  ∅3 ∗ 𝑑𝑖𝑛𝑖−3

… + ∅𝑝 ∗ 𝑑𝑖𝑛𝑖−𝑝+1
… . (3) 

 

Figure 3.3. The VGG16 ImageNet Model 
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Where, ‘R’ stands for ARIMA constant, the 𝑖𝑡ℎ value of angle for width shifting is 

denoted by ∅𝑖. and ‘p’ stands for the width shifting from 0 to 20 (20%).  

Cropping with a range of 0 to 0.2 is used to enhance samples using the shearing 

operation as seen in equation 4. This operation is used to determine the feature's 

shearing stress value using statistical moment values. 

𝑑𝑜𝑢𝑡 =
𝑑𝑖𝑛 ∗ 𝑀𝑖𝑛

𝑀𝑛 ∗ 𝑏⁄ … (4) 

Where 'b' denotes the shearing range and Min denote the moments that are evaluated 

using mean values and Mn denote the moments that are evaluated using around the 

neutral axis. 

• When the supplied features are zoomed in between 0 and 0.2, equation 5's detection 

of the zooming operator is used to enhance the given features. This operator enables 

the use of several values for the same feature vector, assisting in the assessment of 

enhanced variant features. 

𝑑𝑜𝑢𝑡 =
𝑑𝑖𝑛

2 ∗  tan (
𝑍𝑓

2
)

… (5) 

In this case, Zf is the zoom factor that is utilised to estimate the zooming values. The 

super feature vector may be created by combining all of these characteristics, which is 

then supplied to the ensemble CNN design. In order to create a deep, 21-layered 

network, this design syndicates many CNN models; separately, these layers are 

specified as follows: 

Layer No. Design Purpose 

I.  

2D Convolutional layer 

with 32x32 size and 3x3 

kernel size 

For maximum pooling, the window is 

shifted via a 3x3 window, which aids in 

the extraction of extended features. This 

layer is responsible for extracting 1024 

features per line from extracted feature 

sets. 
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II.  
Leaky ReLU layer with 

alpha=0.1 

The output of the preceding layer is sent 

to the leaky ReLU layer at this stage for 

feature variance optimization. The output 

of this stage, which is controlled by the 

equation below, is displayed in the results 

once feature variance has been verified. 

𝑥𝑜𝑢𝑡 = 𝑎𝑙𝑝ℎ𝑎 ∗ 𝑥𝑖𝑛, 

𝑤ℎ𝑒𝑛  

𝑣𝑎𝑟(𝑥𝑖𝑛) > 0, 𝑒𝑙𝑠𝑒, 

𝑥𝑜𝑢𝑡 = 0 … … (6) 

III.  
Maximum pooling layer 

with a pool size of 2x2 

The features that are retrieved for a 

particular data point will have the highest 

value in relation to the feature variance. 

There will only be 512 features each 

stride if we lower the amount of features 

by a factor of 2x2. 

IV.  
Drop-out layer with a 

dropout rate of 0.25 

During the optimization phase, around 

25% of the characteristics are deleted to 

guarantee that only the most relevant 

features are chosen. 

V.  

2D Convolutional layer 

with 64x64 size and 3x3 

kernel size 

The extracted features are treated via a 

max-pooling layer that elongates it and 

extracts more from the 4096 features per 

stride to generate an extended feature set. 

The window is 3x3 in size, which assists 

in the extraction. 

VI.  
Leaky ReLU layer with 

alpha=0.1 

This leaky ReLU layer optimizes variance 

by assigning features extracted from the 

previous layer. The output of this ReLU is 

governed by equation 6, which checks for 

variance. 
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VII.  
Maximum pooling layer 

with a pool size of 2x2 

The retrieved characteristics are 

decreased to a factor of 2x2 in order to get 

the greatest value. As a consequence, each 

stride has 1024 characteristics. 

VIII.  
Drop-out layer with a 

dropout rate of 0.25 

For customer satisfaction, we remove 

about 25% of the features from a product. 

IX.  

2D Convolutional layer 

with 128x128 size and 3x3 

kernel size 

A stride is used to go from one layer to the 

next via a 3x3 window in order to create 

more features from the retrieved sets. This 

aids in giving extraction a wider context. 

X.  
Leaky ReLU layer with 

alpha=0.1 

The preceding layer's features, if any, are 

passed on to the layer of a leaky neuron 

for feature variance optimization. This 

layer's output is dictated by equation 6, 

which outputs the variance-optimized 

features. 

XI.  
Maximum pooling layer 

with a pool size of 2x2 

Feature reducers are used when there are 

too many features. They extract the 

maximum value from all of the extracted 

features and then reduce them by a factor 

of 2x2. That means that there are 2048 

features per stride. 

XII.  
Drop-out layer with a 

dropout rate of 0.25 

To optimise the selecting process, we 

have deleted about 25% of the features. 

XIII.  

2D Convolutional layer 

with 128x128 size and 3x3 

kernel size 

This method attaches a 3x3 window to the 

extracted feature sets and utilizes this pre-

selected window to extract 16384 features 

per stride. Max pooling is then 

implemented.  

XIV.  
Leaky ReLU layer with 

alpha=0.1 

Features are taken from the preceding 

layer and delivered to a leaky ReLU layer. 

After running the result via equation 6, 
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this layer assesses the variance in each 

characteristic. 

XV.  
Maximum pooling layer 

with a pool size of 2x2 

This procedure takes the most variability 

from the retrieved features and decreases 

them by a factor of 2x2, resulting in a 

halving of the number of features. As a 

result, it has 1024 features per stride. 

XVI.  
Drop-out layer with a 

dropout rate of 0.25 

For an optimized experience and better 

performance, we will remove 

approximately 25% of the features. 

XVII.  
Drop-out layer with a 

dropout rate of 0.5 

To optimise the selecting process, we 

have deleted about 50% of the features. 

XVIII.  

Dense layer with 512x1 

size and Leaky ReLU 

activation 

Using a dense layer that reduces the 

number of features with each stride. The 

512 features will be combined to form one 

feature value. LeakyReLU is used for 

activation, as described by equation 6. 

XIX.  

Dense layer with 512x1 

size and Leaky ReLU 

activation 

The input features are integrated in thick 

layers, with 512 features combining to 

generate a single feature value in each 

layer. 

XX.  

Dense layer with 2x1 size 

and Sigmoid activation & 

Stochastic Gradient 

Descent optimizer. 

This layer looks for and analyzes the 

crops: whether they're damaged or 

undamaged. 

XXI.  

Dense layer with 2x1 size 

and Sigmoid activation & 

root mean squared 

property (RMSProp) 

optimizer using a learning 

rate of 0.0001 for better 

classification. 

This is a completely linked layer for 

classifying crops into one of two 

categories: damaged crops and 

undamaged crops. It employs many 

optimization strategies to achieve the best 

possible outcome. 
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XXII.  

Dense layer with 2x1 size 

and Sigmoid activation & 

room Adam optimizer. 

This layer is used to categories different 

agricultural damage kinds into one of two 

classes: undamaged and damaged crop. 

Table 3.1. The Ensemble CNN Design 

Performance indicators including precision, recall, F-measure, and accuracy are 

obtained from this network by combining the outputs of all dense layers using a mode 

operation to get the final output class. By studying a pretrained architecture like 

VGGNet, the proposed architecture's hyper-parameters are optimised. The operation of 

this system is explained as follows: 

Table 3.1 now has an additional layer. The pre-trained VGGNet-16 model is trained 

with fewer layers than a fully convolutional network and makes use of the ImageNet 

architecture. 

• This model is used to classify images that have already been classified. Statistical 

analysis is then performed to compare the classification results with the original 

classification. 

• Leaky ReLU activation units are swapped out for regular ReLU activations in Table 

1. 

• Hyper-parameters are adjusted in accordance with the outputs of these models, i.e., 

the outputs of transfer learning (𝐶𝑜𝑢𝑡𝑇𝐿
), leaky ReLU (𝐶𝑜𝑢𝑡𝐿𝑅

), and normal ReLU 

(𝐶𝑜𝑢𝑡𝑁𝑅
), 

o If, 𝐶𝑜𝑢𝑡𝑇𝐿
=𝐶𝑜𝑢𝑡𝐿𝑅

 and 𝐶𝑜𝑢𝑡𝑇𝐿
=𝐶𝑜𝑢𝑡𝑁𝑅

, then no hyperparameter tuning 

needed. 

o If 𝐶𝑜𝑢𝑡𝑇𝐿
=𝐶𝑜𝑢𝑡𝐿𝑅

 and 𝐶𝑜𝑢𝑡𝑇𝐿
≠ 𝐶𝑜𝑢𝑡𝑁𝑅

, then adapt layer sizes to match the 

VGGNet-16 architecture. If not, we must adjust the hyper-parameters such 

that they gradually match the transfer learning model. 

o Else if 𝐶𝑜𝑢𝑡𝑇𝐿
≠ 𝐶𝑜𝑢𝑡𝐿𝑅

 and 𝐶𝑜𝑢𝑡𝑇𝐿
= 𝐶𝑜𝑢𝑡𝑁𝑅

, Change alpha in the hyper-

parameters to match the non-leaky ReLU model since out-of-process 

computation time and in-process computation time are not equivalent. 

Alpha should be adjusted by a factor of 0.01 either up or down until it is 

equal to the value of a non-leaking ReLU architecture. 
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o Otherwise, change the hyper-parameters to gradually match the non-leaky 

ReLU model if 𝐶𝑜𝑢𝑡𝐿𝑅
= 𝐶𝑜𝑢𝑡𝑁𝑅

. A 0.01 factor is used to enhance or reduce 

alpha. To match the layer sizes of VGGNet-16, layer sizes are also raised or 

lowered by a factor of 8. 

Hyper-parameters are tuned continuously after every classification. In the next section 

results of these iterative tuning procedures can be observed. 

 

3.3 Results & Comparisons 

To understand the work batter, we have divided the result on two sections visual 

analysis and quantitative analysis. 

3.3.1 Visual Analysis 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Experimental Results  
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Figure 3.5: Experimental Results 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Experimental Results  
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Figure 3.7: Experimental Results  

(A) Input Image (B) DCNN (C) VGG Net (D) Proposed Model 

As demonstrated by figure 3.4, 3.5 3.6 and 3.7 (a) Input Image and figure 3.4, 3.5, 3.6 

and 3.7 (B) DCNN [103] output, 3.4, 3.5, 3.6 and 3.7 (C) VGG Net [116] output, 3.4, 

3.5, 3.6 and 3.7 (D) output of proposed model, which shows the batter results as 

compare to DCNN [103], VGG Net [116], CNN [123]. 

 

3.4.2 Quantitative Analysis  

Because scientists can access LANDSAT images, collecting satellite data for different 

time periods has become easy. Here in this architecture, the data of Amravati District 

(India) from hailstorms during February 2018 and floods during March 2018 is 

evaluated. In this dataset, the selection of a region's farming population is important. 

Performance was evaluated for publications in [103], and [123], by putting the precision 

score from the literature so that we can compared the proposed model concerning the 

recall, precision, accuracy and F-measure values. The results concerning the evaluation 

of different testing images as shown in Tables 3.2, 3.3, 3.4, and 3.5. 

A B 

C D 
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Number of 

input 

images 

Precision 

Values of 

VGG Net 

[116] 

Precision 

Values of 

DCNN 

[103] 

Precision 

Values of 

CNN 

[123] 

Precision Values of 

Proposed Model 

90 0.79 0.79 0.8 0.889 

190 0.79 0.79 0.8 0.897 

390 0.80 0.80 0.81 0.905 

490 0.80 0.80 0.81 0.907 

590 0.81 0.81 0.82 0.912 

690 0.81 0.81 0.82 0.916 

790 0.82 0.82 0.83 0.919 

890 0.82 0.82 0.83 0.923 

990 0.82 0.82 0.83 0.927 

1090 0.82 0.82 0.83 0.931 

1190 0.83 0.83 0.84 0.934 

1290 0.83 0.83 0.84 0.938 

1390 0.84 0.84 0.85 0.942 

1490 0.84 0.84 0.85 0.946 

1590 0.84 0.84 0.85 0.95 

1690 0.85 0.85 0.86 0.953 

1790 0.85 0.85 0.86 0.957 

1890 0.85 0.85 0.86 0.961 

1940 0.86 0.86 0.87 0.967 

1990 0.87 0.87 0.88 0.972 

Table 3.2. Precision Scores of Various Algorithms  
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By using of multiple CNN architecture for classification, it gives 10% improvement. 

Table 3.3 below show evaluating recall values,  

Number of 

input 

images 

Recall 

Values for 

VGG Net 

[116] 

Recall 

Values for 

DCNN 

[103] 

Recall 

Values for 

CNN 

[123] 

Recall Values for 

Proposed Model 

90 0.640 0.618 0.650 0.709 

190 0.650 0.624 0.660 0.715 

390 0.650 0.632 0.660 0.721 

490 0.650 0.632 0.660 0.723 

590 0.660 0.636 0.670 0.727 

690 0.660 0.639 0.670 0.730 

790 0.660 0.641 0.670 0.732 

890 0.670 0.643 0.680 0.735 

990 0.670 0.646 0.680 0.738 

1090 0.670 0.649 0.680 0.741 

1190 0.670 0.651 0.680 0.744 

1290 0.680 0.654 0.690 0.747 

1390 0.680 0.657 0.690 0.750 

1490 0.680 0.659 0.690 0.753 

1590 0.680 0.662 0.690 0.757 

1690 0.690 0.665 0.700 0.760 

1790 0.690 0.667 0.700 0.763 

1890 0.690 0.670 0.700 0.766 

1940 0.700 0.673 0.710 0.774 

1990 0.710 0.678 0.720 0.785 

Table 3.3. Recall Scores of Various Algorithms  

The comparison of multiple reference models allowed us to find that incremental 

gains were seen in terms of recall performance (7%). The fMeasure provides true 

accuracy rates for the given set of architecture. It can be seen below in table 3.4 
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Number of 

input 

images 

F1 Values 

for VGG Net 

[116] 

F1 Values 

for DCNN 

[103] 

F1 Values 

for CNN 

[123] 

F1 Values for 

Proposed 

Model 

90 0.710 0.694 0.720 0.789 

190 0.710 0.701 0.720 0.796 

390 0.720 0.711 0.730 0.803 

490 0.720 0.710 0.730 0.805 

590 0.730 0.714 0.740 0.809 

690 0.730 0.718 0.740 0.812 

790 0.730 0.721 0.740 0.815 

890 0.730 0.723 0.740 0.819 

990 0.740 0.726 0.750 0.822 

1090 0.740 0.729 0.750 0.825 

1190 0.740 0.732 0.750 0.829 

1290 0.750 0.735 0.760 0.832 

1390 0.750 0.738 0.760 0.835 

1490 0.750 0.741 0.760 0.839 

1590 0.760 0.744 0.770 0.842 

1690 0.760 0.747 0.770 0.846 

1790 0.760 0.750 0.770 0.849 

1890 0.770 0.753 0.780 0.853 

1940 0.770 0.757 0.780 0.860 

1990 0.780 0.761 0.790 0.868 

Table 3.4 fmeasure Scores of Various Algorithms  

Our proposed models achieve appreciable improvements in fMeasure values. This is 

indicative of our model performing well and being appropriate for real-time crop 

damage detection. The comparison of accuracy of different model is shown in table 3.5. 
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Number of 

input images 

Accuracy 

Values for 

VGG Net 

[116] 

Accuracy 

Values for 

DCNN 

[103] 

Accuracy 

Values for 

CNN 

[123] 

Accuracy Values 

for Proposed Model 

90 0.86 0.84 0.87 0.89 

190 0.86 0.85 0.87 0.89 

390 0.87 0.87 0.88 0.90 

490 0.87 0.86 0.88 0.90 

590 0.88 0.87 0.89 0.91 

690 0.88 0.87 0.89 0.91 

790 0.89 0.88 0.90 0.92 

890 0.89 0.88 0.90 0.92 

990 0.89 0.88 0.90 0.92 

1090 0.90 0.89 0.91 0.93 

1190 0.90 0.89 0.91 0.93 

1290 0.90 0.89 0.91 0.93 

1390 0.91 0.90 0.92 0.94 

1490 0.91 0.90 0.92 0.94 

1590 0.92 0.90 0.93 0.95 

1690 0.92 0.91 0.93 0.95 

1790 0.92 0.91 0.93 0.95 

1890 0.93 0.92 0.94 0.96 

1940 0.93 0.92 0.94 0.96 

1990 0.95 0.92 0.96 0.97 

Table 3.5 Accuracy Scores of Various Algorithms  

Figure 3.8, which shows the effect of flood, and Figure 3.9, which highlights the effect 

of hail storms. 
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Figure 3.8 Flood-Affected Areas Identified 

 

Figure 3.9 Hailstorm-Affected Areas Identified 

Figure 3.10 and 3.11 show the results of different drone-based spot damage detection 

percentages.  

 

Figure 3.10 Drone Images with 20% Damage Detected 
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Figure 3.11 Drone Images with 40% Damage Detected 

This data can be used to observe the accuracy or inaccuracy of drone-based damage 

findings across varying levels of damage. An accuracy improvement of 5% when 

compared with [103] , and 1.5%, when compared with [123] , is observed. This 

improvement assists the model to be applied for high efficiency & large-scale 

applications that are accuracy aware like monitoring of remote areas. Thus, the 

proposed model can be applied to a wide variety of crop damage detection systems with 

high performance. 

 

3.4 Conclusions 

 CNN models help improve the performance of classification of existing as well 

as new systems. High-efficiency convolutional, ReLU, dropout layers and max pooling, 

are used for faster feature extraction, which is what helps make CNN models so 

effective. Each of these layers consists of a different neural network to extract features 

with more accuracy. In the suggested architecture combine several learning rate 

optimizers such as RMSProp, SGD, and Adam so that the accuracy performance of the 

dense layer may be enhanced. The transfer learning model and ensemble CNN classifier 

are used to improve accuracy, precision, recall, and F-measure automatically by 

iterative updating of its hyper-parameters. We can see that this is true in Tables 3.2, 3.3, 

3.4, and 3.5. This thesis' suggested model outperforms existing deep learning models 

and can be implemented for high-efficiency applications like satellite-based crop 
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damage detection. LSTM and GRU models may also improve performance. GANs 

(generative adversarial networks) are another option to investigate since they can 

increase the output of both near-field and satellite images when assessing damage in 

already classed damaged images. 
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Chapter No 4 

 

Satellite Image Classification for Real-Time 

Using Augmented Incremental Transfer 

Learning  

 

 

Outline 

This chapter describes an overview of related work, an explanation of the model's 

motivations, a description of the proposed architecture for satellite image classification 

for real-time by means of transfer learning with augmentation for crop condition 

examination, and a comparison of engine’s performance to that of existing models. 

 

4.1 Introduction  

In satellite image processing multidomain are involves like image capturing, 

segmentation, denoising, feature reduction, feature extraction, post-processing tasks, 

and classification. Researchers propose a variety of satellite image processing 

architecture, each with diverse process and data necessities. For example, the image 

acquisition module may receive images in the form of layered, while the feature 

extraction module may require data in 3D or 2D form.  In addition, accuracy and 

scalability of this model is limited in the real time scenarios due to variation in the 

dataset parameters and internal process parameters. The motivation behind this research 

is to develop a novel method which will be able to overcome these issues. A new 

architecture is recommended and analyzed in this thesis to overcome the restrictions 

and limitations of existing work. This model uses backscatter coefficient analysis to 

create a transfer learning-based CNN architecture for analysing real-time satellite 

images obtained from Google's Earth Engine. As an output of this we get the average 



 

70 
 

intensity value of PRI (precision image intensity) of coefficient at the time we analyzed 

it for many targets. The presented architecture characterizes crop images in HV 

(Horizontal Tx, Vertical Rx) and VV (Vertical Tx, Vertical Rx) modes, as an outcome 

of using backscattering coefficients. After this the data set is divided into three class 

i.e., VV, VH and Original which largely help the CNN architecture to extract different 

features sets from given satellite data. To visual identification of affected areas an 

incremental learning layer is activated which processed already classified images. The 

final outcome of all this block (like Convolutional Neural Network, Incremental 

learning) the implemented architecture come up with 97.8% average accuracy for 

detecting damage severity and crop type. The consistent results were seen when we 

tested this new architecture for different regions around our local area. Hence the 

proposed new architecture is highly recommended as model was found to have a 7.9% 

better recall value, 5.6% improvement in accuracy and 4.6% better precision when 

compared with various state-of-the-art approaches reported till date. Additionally, the 

PSNR of the recommended model is up to 29.6 dB for various data set.  

 

Figure 4.1 A Typical Satellite Image Processing Model 
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 Multiple image processing jobs that should be able to function with various 

bands of image data must be designed in order to classify satellite images. These include 

feature extraction, feature selection, classification, band-based, band fusion, pre-

processing, post processing, segmentation, and feature-based pre-processing. Figure 

4.1 show the typical satellite image processing model. 

 This involves stacking and sequencing images from several bands in order to 

extract patches and estimate sequences. In order to extract a large number of features, 

the extracted patches are sent to a windowing layer, which separates them into smaller 

components. This sets feature is categorised using a deep learning (DL) model that 

creates the first clustered map by combining several convolutional neural networks 

(CNNs). A post-processing layer receives this initial map and helps create a refined 

map that can help identify the various components of the region being tested. These 

elements may include urban cover, crop type, crop cover, water cover, and land cover. 

 Numerous classification methods and architectures are suggested by researchers 

[1, 2, 3], each with a unique applicability, accuracy, classification delay, complexity, 

and other characteristics. We have proposed the concept of far-filed image 

classification for real-time application employing enhanced incremental transfer 

learning for crop in order to increase this performance. This model's performance is 

assessed in terms of latency, precision, area under the curve (AUC), recall, and accuracy 

and it is contrasted with other recent advanced techniques. At the conclusion, we 

discussed the findings about our model and offered similar suggestions for enhancing 

performance. 

 

4.2 Proposed Model 

It is very clear from the literature review that the model reported till date are very much 

application specific with their specific data set requirement and algorithm. Also, the 

model developed can provide a specific and accurate result for a specific condition but 

will give tremendous bad result for different data set.  This put limit on their use for 

general purpose application at the same time a single model cannot be implemented for 

all scenario. In this thesis we have suggested a satellite image classification model to 

overcome this limitation of existing model. The suggested model use augmented 
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incremental transfer learning which make the model more efficient and applicable for 

real-time problem.  

  

Figure 4.2. Flow of the Proposed Model 
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As we have implemented the CNN architecture with incremental learning it helps in 

continuously improving classification accuracy. Figure 4.2 show the Overall flow of 

the proposed model. In the suggested model images are downloaded from Google Earth 

Engine from which the VV & VH components are extracted and then augmented via 

reshaping, resizing, rescaling, and sheering operations. After that VGGNet-19 

architecture is implemented for crop image classification. The input to the crop damage 

detection model is images which are tag with crop type. the main function of the block 

is to detect the damage severity by using adaptive threshold engine. A block of the 

incremental learning layer is used to confirm the threshold engine's results. The 

correlation-based matching & hyperparameter tuning methods, aid in fine-tuning the 

VGGNet model. 

  The data was collected in and around the Amravati area (77.7523, 20.9320) 

from 2015 to 2021, and analysed using the suggested model. Google Earth engine is 

the best tool in the hand of researcher now a days which will help in accessing the real-

time satellite images with different Temple zone, we have collected the images from 

this engine for our work. These sources were interpolated via multiple location-based 

data access, wherein current area was segregated into different sub-regions, and each 

region was processed via different transmitter receiver polarization.  

Following process is adopted to extract the region from Google Earth engine longitude 

and latitude 

• Provide the targeted area in the form of 𝐿𝑎𝑡𝑡𝑎𝑟𝑔𝑒𝑡, 𝐿𝑜𝑛𝑔𝑡𝑎𝑟𝑔𝑒𝑡  

• Download the Extract COPERNICUS surface temperature collections and MODIS 

land cover collection images for this target. 

• Fine out the VH and VV component via equations 1 and 2 as follows, 

𝑉𝑉𝑖 =
∑ 𝐵𝑖 − 𝐵𝑅𝐺𝐵

𝑁𝐵𝑎𝑛𝑑𝑠
𝑖=1

∑ 𝐵𝑖 + 𝐵𝑅𝐺𝐵
𝑁𝐵𝑎𝑛𝑑𝑠
𝑖=1

… (1) 

𝐻𝑉𝑖 =
∑ 𝐺𝑖 − 𝐺𝑅𝐺𝐵

𝑁𝐵𝑎𝑛𝑑𝑠
𝑖=1

∑ 𝐺𝑖 + 𝐺𝑅𝐺𝐵
𝑁𝐵𝑎𝑛𝑑𝑠
𝑖=1

… (2) 
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Where, 𝐺 & 𝐵 represents their green & blue components,  𝐺𝑅𝐺𝐵 & 𝐵𝑅𝐺𝐵 represents 

green & blue components of RGB band, and 𝑁𝐵𝑎𝑛𝑑𝑠 represents number of bands 

extracted from Google Earth Engine. 

• VV and HV images are formed for current location after these values are extracted 

for each pixel. 

• To extract a greater number of images from the current location the current latitude 

and longitude are modified via equation 3,, 

𝑁𝑒𝑤𝑙𝑎𝑡 = 𝐿𝑎𝑡𝑡𝑎𝑟𝑔𝑒𝑡 ± 0.1, 𝑁𝑒𝑤𝑙𝑜𝑛𝑔 = 𝐿𝑜𝑛𝑔𝑡𝑎𝑟𝑔𝑒𝑡 ± 0.1 … (3) 

• VV and VH images are extracted to form the initial training set for each of these 

latitude and longitude positions. 

 

Different crop kinds and damage percentages are recorded with each image in the 

training set, which is manually annotated. For the purpose of developing training sets 

accurately, this data was taken from the Indian Meteorological Dataset 

(https://mausam.imd.gov.in/), and it may be scaled to any global geographic region. 

There aren't enough images in the gathered dataset to allow for effective CNN training. 

An augmentation layer is activated to fix this problem by resizing, resizing, sheering, 

and reshaping each of the input images. Equation 4 carries out the rescaling procedure. 

𝐼𝑠𝑐𝑎𝑙𝑒 =
𝐼𝑜𝑟𝑖𝑔 − min (𝐼𝑜𝑟𝑖𝑔)

max(𝐼𝑜𝑟𝑖𝑔) − min (𝐼𝑜𝑟𝑖𝑔)
∗ 𝑆𝐹 … (4) 

Here, SF is the scaling factor, which is changed from 1 to 128 in steps of 2 to produce 

64 distinct images for each input image. Where I orig, I scale stand for the original and 

scaled images, respectively. Resizing procedures are used to further enhance the input 

image and are carried out using equation 5 as follows: 

𝐼𝑟𝑒𝑠𝑖𝑧𝑒 = ⋃ |𝐼𝑜𝑟𝑖𝑔𝑖
|

𝑖=𝑖+𝑟

𝑁

𝑖=1

… (5) 
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In above equation r stands for the resizing factor and is adjusted in steps of 0.1 from 

0.1 to 10. By using resizing operation 100 different images are obtained from one input 

image. Equation 6, in the same way governed the reshaping operating as noted below.  

𝐼𝑟𝑒𝑠ℎ𝑎𝑝𝑒 = ⋁ ⋁ |𝐼𝑟+𝑠1,𝑐+𝑠2
| 

𝐶

𝑐=1

… (6)

𝑅

𝑟=1

 

Where C and R stands for the number of columns and rows in the given image, and S1, 

and S2 stands for reshaping constants that are adjusted between 2 and 8 to produce 64 

alternative images from the original image. Equation 7 governed the process of sheering 

as noted below. 

𝐼𝑠ℎ𝑒𝑒𝑟 = 𝑄 ∗
𝐼𝑜𝑟𝑖𝑔

𝐶𝑠ℎ𝑒𝑒𝑟
… (7) 

In this case, C sheer stands for the constant of sheering and Q stands for the quality 

factor, 64 distinct images for each input image produce by adjusting them from 1 to 8. 

For each input image, these augmented images are merged to produce 292 images, 

which are then provided to the VGGNet19 model. The retrieved images are scaled 

down to 128x128 for the initial convolution operations that help with the extraction of 

enhanced features. Multiple layers of convolution with various stride sizes, padding 

sizes and window sizes, are employed to aid in large-scale feature extraction. The 

extraction of over 1 million features from each augmented image set is made possible 

by the use of stride sizes from 3x3 to 5x5, padding sizes from 3x3 to 5x5 and window 

sizes ranging from 8x8 to 512x512. The convolutional processes are managed by an 

activation layer, which selects essential features. A leaky rectilinear unit (LReLU) is 

employed for VGGNet-19, allowing for variance-based feature extraction for improved 

accuracy performance. Equation 8 controls the output features that convolutional layers 

extract as shown below. 

𝐹𝑜𝑢𝑡 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (
𝑟

2
+ 𝑎,

𝑐

2
+ 𝑏) ∗ ∑ ∑ 𝐼𝑎𝑢𝑔(𝑖 − 𝑎, 𝑗 − 𝑏) … (8)

𝑐
2

𝑏=0

𝑟
2

𝑎=0
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Where a, b are the sizes of the strides which range from 3 by 3 to 5 by 5 for each layer, 

m, n are the convolutional window sizes for the particular convolution layer, and Iaug is 

an enhanced satellite image for the present layer. The leaky RELU utilised in this 

scenario eliminates 5% of all low variance features and aids in the initial feature 

selection phase. Equation 9 controls the Leaky ReLU as follows: 

𝐿𝑅𝑒𝐿𝑈(𝑥, 𝑦) = 0.05 ∗ (𝑥, 𝑦), 𝑤ℎ𝑒𝑛 𝑥 < 0 𝑜𝑟 𝑦 < 0 

𝑒𝑙𝑠𝑒, 1, 𝑤ℎ𝑒𝑛 𝑥 ≥ 0 𝑎𝑛𝑑 𝑦 ≥ 0 … (9) 

This variance assessment makes it feasible to extract several features and reduce them 

depending on variance. Equation 10 estimates the total number of features that this 

model has retrieved and chosen as follows: 

𝑓𝑐𝑜𝑛𝑣 =
2 ∗ 𝑝 − 𝑘 + 𝑓𝑝𝑟𝑒𝑣

𝑠
+ 1 … (10) 

Where k is the leaky ReLU kernel size for convolutions, s is the size of the stride, fprev 

represents the total number of features extracted by previous convolutional layer, fconv 

represents the total number of convolutional features extracted by current convolutional 

layer, and p represents the padding size of the leaky ReLU based convolutions. 

However, the Leaky ReLU has the drawback of estimating variance based on a fixed 

threshold, which is inefficient for large datasets. A layer called MaxPooling (maximum 

variance pooling) is utilised to improve feature selection capabilities. By computing a 

variance-based threshold for each extracted feature set, this layer selects features 

according to this variance threshold. If a feature's intensity exceeds this cutoff, it will 

be advanced to the following level; otherwise, it will be discarded at the current level 

alone. Equation 11 assesses this variance threshold. 

𝑓𝑡ℎ = √(𝑋𝑘
−1 ∑ 𝑥𝑝𝑘

𝑥∈𝑋𝑘

)
𝑝𝑘

… (11) 
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Where p k specifies the amount of features to be pooled at each layer and reflects the 

probability of pooling, and X k represents the input image. Hyperparameter 

optimization is used to change the pooling probability in order to optimise feature 

selection. To estimate a large number of features from the provided satellite images, 

this procedure is repeated for various step sizes and windows. As shown in Figure 4.3, 

these operations are made available to an FCNN (Fully Connected Neural Network) 

model for image classification into damage severity kinds and crop types. 

 

 

Figure 4.3. CNN Model Used for Classification  

The classification layer employs a Soft Max Activation Model to estimate the final class 

probability, which aids in classifying the severity of the crop damage. The Soft Max 

Activation Model includes the ability to backpropagate, which helps with ongoing 

accuracy improvement. Equation 12 provides the probabilities for each kind of output. 
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𝑐𝑜𝑢𝑡 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (∑ 𝑏 + 𝑓𝑖 ∗ 𝑤𝑖

𝑁𝑓

𝑖=1

) … (12) 

Where N f is the total number of features extracted using a mixture of multiple 

convolutional layers, Fi is the number of features extracted by all previous 

convolutional and Max Pooling layers, Wi is a tailored weight value for the given class, 

and b is bias value. For adaptive threshold evaluation with parameter adjusting 

procedures, these classes are employed. 

Before activating an adaptive thresholding layer for final processing and ongoing 

accuracy improvement the CNN Model measures crop type and damage severity. 

Depending on the season in which the image was taken, the layer employs various 

thresholds for the R, G, and B components to evaluate various damage kinds. The 

following thresholds are listed in table 4.1: 

Season -> 

Damage Type 
Winter Summer Rainy Autumn 

Low Damage 

𝐺

𝑅
> 0.6 & 

𝐺

𝐵
> 0.5 

𝐺

𝑅
> 0.5 & 

𝐺

𝐵
> 0.65 

𝐺

𝑅
> 0.6 & 

𝐺

𝐵
> 0.6 

𝐺

𝑅
> 0.55 & 

𝐺

𝐵
> 0.65 

Moderate 

Damage 

𝐵

𝑅
> 0.2 & 

𝐵 > 0.5 ∗ 𝐺 

𝐵

𝑅
> 0.6 & 

𝐵 > 0.6 ∗ 𝐺 

𝐵

𝑅
> 0.8 & 

𝐵 > 0.85 ∗ 𝐺 

𝐵

𝑅
> 0.75 & 

𝐵 > 0.85 ∗ 𝐺 

High Damage 
𝑅 > 0.3 ∗ 𝐵 & 

𝑅 > 0.35 ∗ 𝐺 

𝑅
> 0.45 ∗ 𝐵 & 

𝑅 > 0.55 ∗ 𝐺 

𝑅
> 0.35 ∗ 𝐵 & 

𝑅 > 0.65 ∗ 𝐺 

𝑅
> 0.75 ∗ 𝐵 & 

𝑅 > 0.8 ∗ 𝐺 

Table 4.1. Adaptive Threshold Evaluation for Damage Severity Detection 

After the damage categories are determined for the images, equation 13 is used to 

determine whether there is a correlation between the testing dataset and the 

corresponding ground truth: 

𝐶𝑡𝑟𝑎𝑖𝑛,𝑡𝑒𝑠𝑡 =
∑ 𝐼𝑡𝑒𝑠𝑡 − 𝐼𝑡𝑟𝑎𝑖𝑛

√(∑(𝐼𝑡𝑒𝑠𝑡 − 𝐼𝑡𝑟𝑎𝑖𝑛)2)
… (13) 
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When the test set image closely resembles one of the training set images, the correlation 

value is over 0.999. In certain situations, the test set image is discarded and not used 

for parameter adjustment. In such situation, we had to upload new images to the CNN 

architecture in order to retrain it. Because of this, the model is constantly updated, and 

its accuracy gradually increases. The examination of accuracy performance was 

covered in the text after along with numerous other performance indicators. 

 

4.3 Analysis of Result & Comparisons 

We have divided the result on two sections visual analysis and quantitative analysis. 

4.3.1 Visual Analysis 

 

Figure 4.4: Experimental Results  
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Figure 4.5: Experimental Results  

 

Figure 4.6: Experimental Results  

 

Figure 4.7: Experimental Results  

As demonstrated by figure 4.4, 4.5. 4.6 and 4.7 (A) are the input images and figure 4.4, 

4.5. 4.6 and 4.7 (B) shows results for the proposed model. 

 

4.3.2 Quantitative Analysis  

The data was collected in and around the Amravati area (77.7523, 20.9320) from 2015 

to 2021, and analysed using the suggested model. The recommended model employs 

Google Earth Engine for collecting of a wide variety of datasets from MODIS satellite 

data collections. Also, USGS SRTMGL1 ground elevations and the COPERNICUS 
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subset were utilised for dataset collection. The Rice, Bajra, Cotton, and Wheat crop 

images were retrieved for this model data set in 3 distinct severity categories. The data 

set have 2000 images in total which are classified in the following ratios: 70:15:15 for 

training, testing, and validation. 

 Performance was evaluated for publications in [128], [136], and [138], by 

putting the precision score from the literature so that we can compared the proposed 

model concerning the recall, precision, accuracy, delay and F-measure values. The 

results concerning the evaluation of different testing images as shown in Tables 4.2, 

4.3, 4.4, 4.5 and 4.6. 

By combining CNN with incremental learning, with several high-performance 

classification and adaptive thresholding level we were able to obtain decreased error 

rates. Table 4.2 show the comparison of precision (P) values with different models 

Table 4.2. Precision Scores of Various Algorithms  

Number 

of input 

images 

Precision 

Values for 

MSRPS [136] 

Precision 

Values for 

HCNN [128] 

Precision 

Values for 

CNN TSS [138] 

Precision Values for 

Proposed Model 

120 71.02 80.41 84.02 85.43 

250 71.66 81.14 84.8 85.91 

390 71.81 81.31 84.98 86.17 

520 72.11 81.65 85.33 86.43 

650 72.26 81.82 85.51 86.57 

790 72.34 81.91 85.6 86.61 

920 72.34 81.91 85.6 86.62 

1050 72.35 81.91 85.6 86.64 

1190 72.35 81.92 85.61 86.64 

1290 72.35 81.92 85.61 86.64 

1490 72.37 81.92 85.61 86.64 

1590 72.37 81.92 85.61 86.64 

1720 72.37 81.92 85.61 86.65 

1850 72.37 81.94 85.63 86.65 

1990 72.37 81.94 85.63 86.83 
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the proposed architecture is 14.2% more precise and has a higher recall than MSRPS, 

5% more accurate and has a higher recall than H. Convolutional Neural Network, and 

1.5% more precise and has a higher recall than Convolutional Neural Network TSS. 

Because of this the proposed architecture is adaptable to a wide range of high-precision 

real-time applications. Based on this dataset collection, accuracy was examined by 

equation 14  

𝐴 =
𝑁𝐶

𝑁𝑇
∗ 100 … (14) 

Where, 𝑁𝑇  & 𝑁𝐶 represents total number of images used for classification and number 

of correctly classified images. The model is compared with the state-of-the-art methods 

like HCNN, CNN TSS, MSRPS. The table 4.3 show the  comparison of this methods 

with respect to number of images used for evaluation (NI). 

Table 4.3. Accuracy Scores of Various Algorithms  

Number 

of input 

images 

Accuracy 

Values for 

MSRPS 

[136] 

Accuracy 

Values for 

HCNN 

[128] 

Accuracy 

Values for 

CNN TSS 

[138] 

Accuracy Values 

for Proposed Model 

120 65.55 73.22 83.93 96.66 

250 66.16 73.89 84.71 97.21 

390 66.29 74.05 84.89 97.51 

520 66.57 74.36 85.24 97.8 

650 66.70 74.50 85.41 97.96 

790 66.77 74.59 85.5 98.01 

920 66.77 74.59 85.5 98.02 

1050 66.78 74.60 85.51 98.03 

1190 66.79 74.60 85.52 98.03 

1290 66.79 74.60 85.52 98.04 

1490 66.79 74.61 85.53 98.04 

1590 66.79 74.61 85.53 98.04 

1720 66.79 74.61 85.53 98.05 

1850 66.80 74.62 85.54 98.05 

1990 66.80 74.62 85.54 98.05 
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The output of suggested model 15% better than HCNN & MSRPS and at least 12.5% 

improvement when compare to the Convolutional Neural Network TSS, in terms of 

multiple domain accuracy performance. Also, the comparison is done on the basics of 

AUC. The following table 4.4 show observations for area under the curve (AUC) 

values. 

Table 4.4. Area Under the Curve (AUC) Scores of Various Algorithms  

Number 

of input 

images 

AUC 

Values for 

MSRPS 

[136] 

AUC 

Values for 

HCNN 

[128] 

AUC 

Values for 

CNN TSS 

[138] 

AUC Values for 

Proposed Model 

120 63.44 70.87 81.23 93.56 

250 64.03 71.52 81.99 94.08 

390 64.16 71.67 82.16 94.37 

520 64.43 71.96 82.5 94.66 

650 64.55 72.11 82.66 94.81 

790 64.63 72.19 82.75 94.86 

920 64.63 72.19 82.75 94.87 

1050 64.63 72.19 82.76 94.88 

1190 64.64 72.20 82.77 94.88 

1290 64.64 72.20 82.77 94.89 

1490 64.64 72.21 82.77 94.89 

1590 64.64 72.21 82.77 94.89 

1720 64.64 72.21 82.77 94.9 

1850 64.65 72.22 82.78 94.9 

1990 64.65 72.22 82.78 95.61 

 

When evaluated against various types of satellite image data sets, the suggested model 

has 28.6% higher AUC than MSRPS, 22.5% higher AUC than HCNN, and 12.4% 
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higher AUC than CNN TSS. Because of which, the implemented model is capable of 

being used for large variety of low-error applications. The recall is one of the most 

important parameters to test the model applicability in real world hence we have 

compared the model with different algorithms. Table 4.5 show the observations are 

made for recall (R) values,  

Table 4.5. Recall Scores of Various Algorithms  

Number 

of input 

images 

Recall 

Values for 

MSRPS 

[136] 

Recall 

Values for 

HCNN 

[128] 

Recall 

Values for 

CNN TSS 

[138] 

Recall Values for 

Proposed Model 

120 70.13 79.40 82.99 90.85 

250 70.78 80.14 83.75 91.37 

390 70.93 80.30 83.92 91.65 

520 71.21 80.63 84.26 91.93 

650 71.36 80.78 84.43 92.07 

790 71.44 80.87 84.53 92.11 

920 71.44 80.87 84.53 92.12 

1050 71.45 80.89 84.53 92.14 

1190 71.45 80.89 84.55 92.14 

1290 71.45 80.89 84.55 92.14 

1490 71.47 80.90 84.55 92.14 

1590 71.47 80.90 84.55 92.14 

1720 71.47 80.90 84.55 92.15 

1850 71.47 80.92 84.56 92.15 

1990 71.47 80.92 84.56 92.35 

 

The proposed model is observed to be 20.5% efficient than MSRPS, 10.2% efficient 

than HCNN and 5.9% efficient than CNN TSS.  
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 In digital image prosecting and machine learning delay in the out put can affect 

the applicability of the model in real world. Hence, it is very important and significant 

to evaluate the suggested model on the basics of their speed. Table 4.6 show the similar 

observations are made for delay (D) values,  

Table 4.6. Average Delay (D) Scores of Various Algorithms  

Number 

of input 

images 

Delay 

Values for 

MSRPS 

[136] 

Delay 

Values for 

HCNN 

[128] 

Delay 

Values for 

CNN TSS 

[138] 

Delay Values for 

Proposed Model 

120 10.62 9.38 8.97 6.82 

250 10.52 9.29 8.89 6.76 

390 10.50 9.27 8.87 6.75 

520 10.46 9.23 8.83 6.72 

650 10.43 9.21 8.82 6.7 

790 10.42 9.21 8.81 6.71 

920 10.42 9.21 8.81 6.92 

1050 10.42 9.21 8.81 6.86 

1190 10.42 9.21 8.81 7.12 

1290 10.42 9.21 8.81 7.14 

1490 10.42 9.21 8.81 7.16 

1590 10.42 9.21 8.81 7.24 

1720 10.42 9.21 8.81 7.26 

1850 10.42 9.21 8.81 7.27 

1990 10.42 9.21 8.81 7.28 

 

Effective feature extraction using incremental learning leads to better feature selection. 

It enhances classification efficiency across a range of satellite image classification 

applications and improve the speed of classification. As a result, it is appropriate for 

real-time applications.  
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4.4 Conclusions 

 To increase overall precision, accuracy, recall, and AUC, the proposed 

architecture combines DL (Deep Learning) with augmented dataset acquisition and 

incremental learning. Because of these features, the proposed model achieved precision 

of 85.60%, accuracy of 98.06%, AUC of 95.6% and 92.05% recall for various image 

types. For different satellite image data set, the suggested model is found to be 14.2% 

more precise than MSRPS, 1.5% more precise than CNN TSS. and 4.9% more precise 

than HCNN. Furthermore, the model is 3.4% faster than CNN TSS, 5.9% faster than 

MSRPS, and 4.1% faster than HCNN for various types of satellite images. In terms of 

multiple domain accuracy performance, the developed model outperformed CNN TSS 

by 12.5% and MSRPS by at least 15%. Across diverse image types, the implemented 

model had a low latency of 6.85 ms. As a result, this type is excellent for a variety of 

high-speed applications. 

 To find out the gap in the suggested model researchers can also verify the 

suggested version's overall performance on various datasets. The researchers can use 

Q-Learning and ensemble classification models to enhance accuracy and precision. 
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5.1 Conclusions  

Early uses of SVM, RF, and ANN included the precise classification of plant diseases 

and the prediction of agricultural yields. These algorithms have to engage in complex 

procedures for the extraction of features and the selection of characteristics in order for 

them to be effective in the job that they do. The immediate effect of this was to make 

some architectural designs function exceptionally effectively, while other architectural 

designs were unable to reach the necessary degree of accuracy. In order for CNN-based 

systems to be regarded reliable, the accuracy criteria for yield prediction and illness 

detection must, however, be at least 90%. As a consequence of this, the ideas that are 

covered in this article are used significantly in the majority of real-time systems. By 

drawing on information from a wide variety of sources, these systems have the potential 

to provide illness and production forecasts that are very accurate. These input sources 

might be anything from picture data to environmental data to a nitrogen profile to 

meteorological data and more.  

 There are many more possible input sources as well. Additionally, they might 

be any mix of the aforementioned things. Models that are based on convolutional neural 

networks (CNN) are employed in order to enhance the categorization skills of both 

freshly constructed systems and those that are already in place. This is done by 

improving the accuracy of the CNN. The enhanced performance which was reported 

by this thesis is the outcome of using combination of max-pooling, ReLU, high-

efficiency convolutional, and dropout layers. Because every one of these layers makes 

a contribution of some kind to the process of feature extraction, it is feasible to achieve 
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a higher level of performance overall. The execution of an ensemble of these layers is 

a component of the model that has been proposed. The objective of this component is 

to enhance the efficiency with which the method for feature extraction is carried out. In 

order to accomplish the goal of achieving an even higher level of performance in terms 

of the dense layer's accuracy, this ensemble architecture makes use of a number of 

distinct learning rate optimizers, such as SGD, RMSProp, and Adam. This 

architecture's overall goal is to achieve an even higher level of performance. This 

ensemble CNN classifier experiences significant increases in its accuracy, precision, 

recall, and fMeasure scores when it is combined with a transfer learning model for the 

purpose of hyper-parameter tuning. These types of advancements occur in a piecemeal 

fashion throughout time. It is plainly evident that this is the case thanks to the 

comparison with a large number of other high-efficiency models, which is supplied in 

Table 3.1, and the analysis of the parameters, which is provided in Tables 3.2, 3.3, 3.4, 

and 3.5, respectively. From the output we can see that the implemented architecture is 

batter then the most existing and cutting-edge deep learning models in terms of the 

parametric performance, and it has a great deal of potential for utilization in crop 

damage detection applications that depend on satellite photos. It is possible to make use 

of LSTM and GRU models in order to carry out more research about the model's near-

field imaging performance (Gated Recurrent Unit). It is feasible that combining two 

independent models might increase the overall performance of the model even more. 

Researchers have the option of using Generative Adversarial Networks (GANs) to get 

a batter accuracy when determining the level of damage present in images that have 

already been labelled as damaged. This helps the researchers get a better understanding 

of the extent to which the images have been affected (GANs). 

 The technique that has been presented is made up of several different 

components, the most important of which are deep learning, enhanced dataset 

collecting, and incremental learning. These four factors, when considered collectively, 

have a beneficial effect not just on the area under the curve, but also on recall, accuracy, 

and precision (AUC). As a direct consequence of the existence of these qualities, the 

model that was provided was in a position to successfully deliver the following findings 

over a broad spectrum of various kinds of photographs: The area under the curve was 

95.6%, the recall was 92.05%, the precision was 85.6%, and the accuracy was 98.06%. 
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In the proposed model, an incremental learning layer has been introduced so that it may 

make the most of the variance in the features and, as a consequence, continuously 

increase its accuracy. This was done in order for the model to be able to: These findings 

demonstrated that the suggested model was capable of obtaining a low latency across a 

wide range of picture types, which suited it to be used in the process of implementing 

a wide variety of high-speed applications since it was suitable for doing so.  

• Attaining an accuracy level that was at least 15% greater than that attained by 

CNN TSS [138], HCNN [128], and MSRPS [136] over a broad range of 

application domains was one of the goals that the proposed technique set out to 

accomplish.  

• Furthermore, the proposed architecture is 14.2% more precise and has a higher 

recall than MSRPS, 5% more accurate and has a higher recall than 

Heterogeneous Convolutional Neural Network, and 1.5% more precise and has 

a higher recall than Convolutional Neural Network TSS.  

• All of these findings are documented in [4, 136, and 138]. These discoveries 

were derived from observations made using a variety of different satellite 

images.  

• In addition, the proposed model outperforms HCNN [128], MSRPS [136], and 

CNN TSS [138] when applied to the analysis of a variety of satellite images by 

4.1, 5.9, and 3.4 percentage points, respectively.  

5.2 Future Scopes  

• In the future, researchers could make the decision to utilize ensemble 

classification models and Q-Learning to additional improve precision and 

accuracy performance.  

• Putting the suggested model through its paces on a variety of different data sets 

and looking for any possible problems that may be present is one way to verify 

that the work done by the researchers is accurate. This may be done by searching 

for any potential problems that may be there.  

• Depending on the kind of application being used, these issues could be solved 

by using augmentation and deep learning classification models that are more 

suitable for the setting under different use cases. 
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