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ABSTRACT 

__________________________________ 

 
 

One of the most exciting emerging concepts nowadays is the Internet of Things (IoT). 

The rise of Machine Learning (ML), Big Data, IoT and Data Science has presented 

promising opportunities for research in modern times. However, the persistent 

deployment of IoT devices, sensors, and other data-gathering technologies is creating 

substantial strain on the current IoT infrastructure. As a result, managing the massive 

volume of data produced by these devices has become an increasingly pressing issue. 

The number of IoT devices is increasing exponentially, and presently we have more 

than 20000 million objects connected to the network. The amount of data and 

complexity circulating across networks is also growing exponentially. IoT plays a 

measure role in this growth rate of IoT data traffic, resulting in a significant rise in data 

traffic reaching the cloud or data center. The response time of IoT systems is affected 

by the growth of data traffic as this may not be appropriate for sensitive environments. 

In this IoT environment where resources are scarce, vast quantities of data are produced 

by the millions of IoT nodes distributed across devices at the network's edge. Given the 

constraints of the IoT network's resources, researchers are prioritizing data management 

as a critical area of focus. The data from diverse devices is both extensive and varied, 

making it imperative to select the right approach for classification and analysis. By 

doing so, the data can be optimized at the device, Edge, and Fog levels, which would 

result in improved network performance in the future. The IoT has also attracted 

industry-oriented researchers and has become a common platform for most IoT-based 

applications. The increasing number of IoT devices is pushing the boundaries of the 

existing IoT architecture. Therefore, alarming for a new or upgraded IoT framework. 

The IoT devices include sensing, storage, processing, and communication of the data 

collected from device level nodes and other nodes in the physical world to the local 

Fog/Edge. Various data management frameworks have been proposed at the IoT-edge 
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level to efficiently utilize the available resources in the IoT environment. The 

optimization of the resources in IoT demands the implementation of the machine 

learning approaches at different levels of the IoT-edge framework. These machine 

learning approaches must be designed to meet the expectations of the application for 

which the framework has to be designed. Since in most of the applications, we have 

challenges due to constrained resources. The resources are constrained due to the 

miniature and unattended IoT devices for using these applications. These applications 

experience pervasive limitations due to the extensive integration of IoT. 

The foundation for the design and implementation of machine learning algorithms 

for resource optimization in IoT depends on the analysis and classification of the IoT-

data at the IoT first/device level and second/edge level. There have to be different data 

management frameworks for Internet of things edge architecture for these resource-

constrained IoT applications. The offloading of the IoT-data from the IoT devices 

through the IoT environment to the edge depends on the device's capability for 

processing, storage, communication, and how much delay the application can permit. 

The IoT-data sensed from these devices is in large amounts and is continuous. The 

limitations of storage, power, bandwidth, and memory are also adding to the problem. 

Therefore, data management in a new IoT framework is the solution that can bypass 

these limitations. The sensor data is captured in real-time and is implemented in 

proposed model. Explored various architectures for IoT, along with data types from 

diverse sensors, and generated insightful graphs based on an experiment conducted with 

a real-time dataset. 

In order to achieve the objectives, Initially, an Internet of Things environment was 

established by incorporating six IoT devices. This is explained in Section 5.6.1. The 

classification of the IoT data on the basis of device configuration was the biggest 

challenge in this work. To achieve this, the dataset was categorized into two subsets. 

The first category of the dataset comes from the IoT sensors, and the second category 

is the primary data about the configuration of the IoT devices. This primary data helps 

us to create a regression model that sets the basis for data classification at the device 

level. With the help of this regression model, a data management framework was 

formulated, leveraging two algorithms one at the device level and the other at the edge 

level within the IoT environment to ensure seamless operations. The proposed model 
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is capable of deciding whether to push the data to the above level (edge) or to process 

the data at the first/device stage. As a result, the overall energy of the (the number of 

alive nodes) of the IoT network increased by 11.9 percent.  

This thesis presents the two staged data management frameworks for the IoT with 

main emphases on machine learning-based modeling and IoT data classification. In this 

thesis, the focus is on classification of IoT-data at the first/device stage, second stage 

i.e., Edge/Fog level, and third stage i.e., cloud level using ML techniques and a 

framework a presented that defines the design/implementation of the machine learning 

algorithms for the resource-constrained IoT-edge-cloud architecture. The thesis also 

gives a comparative analysis of the proposed work with the existing approaches. 
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CHAPTER 1 

__________________________________ 

INTRODUCTION 

__________________________________ 
 

 

 

 

In today's world, data is generated by the human being population using smart devices 

every minute. Researchers estimate that over 3 million new devices/nodes are added to 

the network connected each month. In every second, around 130 new nodes are added 

to the environment of Internet of Things. Moreover, within the upcoming four years, it 

is projected that the global count of interconnected devices will exceed 30 billion [1]. 

It was also predicted that by the year 2020, there would be nearly twenty to thirty billion 

electronic devices connected as part of the Internet of Things [2]. IoT is fetching a 

highly anticipated fuel for big data revolution by interconnecting smart devices in cities, 

i.e., connecting all the vehicles, appliances, industrial networks, health-care services, 

etc., to the internet [3]. To improve the quality of living style, the IoT is undoubtedly 

the solution and critical technology for the current world, having high future 

capabilities. However, at the same time, it also puts much pressure on the existing 

method for communication at the IoT network. The IoT has exceeded around 4.40 ZB 

amounting to 10 percent of the whole "digital universe,” which was only 2 percent in 

2012-2013. Furthermore, in the next 4 years i.e., by 2025, more than 75 billion IoT 

devices will be connected to the web. In communication technologies, a solution that 

tends to improve by itself for the future is a requirement because all the existing 
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infrastructures will not work for the future after looking at the IoT data's growth rate. 

All types of data that is generated by the IoT devices are assumed to be uploaded and 

stored in the cloud viz. IoT/cloud integration. To extract information, cloud-based data 

analysis is done, and results are generated for IoT data. This approach is not sufficient 

for most applications having a huge volume of redundancy in the collected IoT-data. 

As the IoT network is alarming because of the tremendous increase in the IoT data's 

growth rate, the existing ML algorithms are to be redefined in the resource-constrained 

network for an efficient and everlasting solution. Classification and Regression are the 

techniques of machine learning approaches, which fall under Supervised Learning. The 

ML algorithms can classify the data in a domain that helps predict the future response 

or helps in the decision support system. As in the IoT network case, which is flooded 

with the IoT data and lacks the resources at different levels, i.e., device level, Edge/Fog 

Level. Therefore, the classification technique is the best possible way of classifying the 

data at each level. The data is filtered at the first level, i.e., the device level. If the data 

is classified at the device level, then the resource constraints like memory, processing 

unit, communication unit, and power source will not be a barrier for the volume, 

velocity, and variety of the IoT data in the future. 

The amount of data in an IoT network is so high that the existing framework and 

presently available algorithms are insufficient for processing the IoT data. Therefore, 

the present IoT network's improvement is a big Challenge and has high importance for 

IoT-data Analytics. Mohammad Saeid et al. have surveyed the use-case of different 

machine learning algorithms used for processing IoT data in an IoT network [4]. The 

data shows that the use cases like, smart environment, smart traffic, smart health etc., 

are processed at the edge, edge/cloud, and cloud, respectively. Smart air controlling, 

smart public places, and smart human activity have historical data and are processed at 

cloud/edge levels. The type of data for the smart cities and the location of its processing 

viz Edge or Cloud is different in the IoT Network. Most of the processing is done at the 

second/edge and the third/cloud level, and most of the researchers have shown the same 

type of Data characteristics, that further leads us towards the IoT data Analytics at all 

the levels, i.e., cloud, Edge/Fog, and device level (device-head cluster) [5]. The data 

captured by the device is forwarded to the above level, as the resources at the device 

level are limited; therefore, researchers are restricted for data processing at the device 
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level. In a Smart environment, data collection and the sensing are performed by the 

device level sensor nodes that deal with the IoT's communication. In a way, like 

gateways play a crucial role in connecting to other smart devices, the network 

communication nodes are responsible for Data aggregation, conversion, and 

transmission. The Typical IoT Node is shown below in Figure 1.1. The recent years 

have changed computer science's whole scenario by collaborating different subjects 

into its domain. Moreover, predictions using machine learning have introduced new 

strength in today's world, which we call Artificial Intelligence (AI), a combination of 

various fields like Expert Systems (ES), Natural Language Processing (NLP), Neural 

Network (NN), machine learning perception, etc. All these subfields are hungry for 

fuel, and that is data. Data is the fuel in today's world. The amount of data generated by 

devices is growing every day as we increasingly rely on them to connect to the internet. 

Hence, all these devices connected to each other and to internet form a network called 

the IoT. 

 

Figure 1.1: Resources of a Typical IoT Node. 

The emergence of such an environment has led to a data explosion. The increasing 

population and the acceleration in the number of devices generating data at a higher 

rate are creating more significant problems in an IoT environment. The reason behind 

this is resource constraints. This resource constrained IoT environment has a specific 

limit, i.e., processing power, storage, battery power, bandwidth and memory. Figure 

1.1 shows the resources of a typical IoT Node [3][6]. However, the data generated has 

nearly no threshold. Therefore, we have two options: either we must minimize the 

constraints or minimize the data. Managing hardware or a source is not a permanent 
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solution; therefore, managing data based on classification or feature extraction with 

machine learning can lead us towards a permanent solution. In this thesis, the data is 

classified, so that the data in this resource-constrained environment can flow according 

to the resource's capability. 

1.2 IoT Architectures  

IoT architecture comprises the following layers: 

 The Perception Layer. 

 Network Layer. 

 Middle Layer. 

 Application Layer and 

 The Business Layer. 

Perception Layer: This layer has the capability of data collection and its responsibility 

includes collecting and identifying the data. After that, the data is analyzed and accessed 

by an IoT application to give service. In an IoT network, devices have mini-profiles 

fields that can be different or similar to the other IoT devices present in the IoT 

environment. Effectively managing shared data, both within and beyond cluster groups, 

will be greatly facilitated by this information. 

Networking Layer: Network Layer connects all entities and permits the sharing of data 

between different connected entities of IoT. It can aggregate data of existing IT 

infrastructures like business systems, transportation systems, power grids, tending 

systems, ICT systems, etc. Services provided by Layers of Architecture usually develop 

a heterogeneous network that is more complex.  When we talk about the IoT networking 

layer, researchers must consider energy efficiency in the network, resource availability, 

QoS requirement, Data and Signal Processing, and most importantly, security and 

privacy [7]. 

Middleware Layer: It has two essential tasks, i.e., management of Service, which is 

also called service management. The second task is storing the information present in 

the lower layers of the network. Figure 1.2 shows the middleware layer in the center of 

IoT architecture.  This layer has more capabilities like decision-making based on 
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computational results, retrieving information, processing, and computing the 

information. 

 

Figure 1.2 : Basic Architecture of IoT. 

Application Layer: The application layer utilizes the information presented in the 

Middleware Layer to manage new applications. Examples of the IoT new applications 

are smart health, smart glasses, smart independent living, smart transportation, smart 

home, etc. 

Business Layer:  IoT applications and management services fall under this layer. It can 

make or describe Practical reality or business trends of the data with the help of 

flowcharts, graphs, models, etc. The processed data that it receives from the lower 

levels of architecture is processed effectively for data analytics, making it easier for the 

functional executives or managers to do further accurate analysis. The analysis is 

further required for important decisions or plans [7]. 

1.3 Functions of IoT Architecture 

There are three essential functions of an IoT architecture given below 

 Aggregation of data and sensing 

 Utilizing data and  

 Communicating data 

The network communication nodes are accountable for data aggregation, conversion, 

and transmission. IoT applications utilize the sensed data to offer users a variety of 
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services. The continuous growth in the number of IoT nodes/devices that process, 

upload and collect/push the data to the higher level i.e., cloud, results in a significant 

volume of data being generated [8].  Nowadays IoT is considered a key technology, as 

the global aim is to enhance the quality of life, as well as promote financial development 

and employment opportunities. One of the main challenges for IoT to cloud integration 

is contemporary communication technologies. Internet of things cloud incorporation 

includes storing and uploading data generated by IoT nodes/devices; therefore, IoT data 

must be processed by cloud-based data analysis to retrieve helpful information. In most 

cases, it has been found that the collected data's density is very high; therefore, it 

becomes necessary to pre-process the data for analysis and storage purposes. Due to the 

growth of IoT, it becomes necessary to redesign IoT communications [9]. Figure 1.3 

shows the essential functions of an IoT system. The basic architecture involves three 

functions: aggregation of data, sensing, utilizing data, and communicating the same for 

various services at the application level. 

 

Figure 1.3: Basic Functions of IoT. 

Physical IoT layer performs the data collection and sensing. The network 

communication nodes are responsible for data aggregation and transmission to other 

nodes or networks. The censored data is then accessed by IoT applications that can 

access a range of services provided by IoT applications. It includes a communication 

unit, processing unit, memory, and a power source. However, IoT networks comprise 

many complex heterogeneous components. The Typical IoT nodes have many resource 
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constraints; therefore, envisioning real-world IoT systems is intricate without including 

cloud platforms or powerful devices, including Smart gateways, Fog devices, etc. The 

limitations of resources should be addressed at both the hardware and software levels. 

Moreover, there are many constraints due to IoT nodes' characteristics, including the 

behavior of the network, constraint at the application level, etc. These constraints are 

primarily applications dependent and commonly found in pervasive applications of IoT 

[10]. 

Some of the applications of IoT are 

 Remote Monitoring of Soil Parameters 

 Environment monitoring 

 Monitoring of green energy system. 

 Water Monitoring. 

 Disaster Monitoring. 

 Remote Monitoring Patients etc. 

1.3 Data explosion in device/edge Layer of IoT Environment 

The data is the fuel for today's modern computer science technology, i.e., machine 

learning, decision support system, e-commerce, big data, data science, etc. And this 

fuel is not going to exhaust in the coming years because it is available in a considerable 

amount. e.g., Twitter generates 12 TB of data per day [11], also the New York Stock 

Exchange generates 1 TD of data every day. The number of videos uploaded per day 

on YouTube can be watched continuously for a year. Facebook, which is the most 

popular social networking website, generates 0.5 petabytes of data every day, including 

40 million photos. Every 60 seconds, 98,000 plus tweets tweeted, 695000 status updates 

on Facebook, 11 million instant messages, 698445 Google searches, and above 168 

million emails are being sent. The data generated in 60 seconds is 1820 TB [11]. 

The highest growth among all types of data is of IoT data. Today, people are so 

dependent on smart devices that almost all the smart home's electronic devices are 

connected to the internet. i.e., smart bulb, smart refrigerator, smart door-lock, smart air-

condition, etc. The increasing growth of these devices is resulting in the explosion of 

data. It was predicted that by the year 2020-21, more than 25 billion devices would be 

connected to the Internet worldwide. More than 3 million devices are connected to the 
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internet every month. Moreover, in the next 4 years, 30 billion more devices are 

expected to be a part of the connected devices worldwide. The data generated has 3 

characteristics: Variety, Velocity, and Volume. Also popularly known as the 3-V 

Theory. In simple words, the Variety describes the nature/type of the data. The data in 

a Smart environment can be image data, i.e., data captured by the camera, or it can be 

text, audio, temperature reading data, etc. The volume means that the amount of data 

generated is tremendous, hence we need more storage and processing power. The 

velocity refers to the processing of this data at a faster rate. As the flow of data is 

continuous and increasing, the processing of this data is also increasing day by day. The 

loophole is that data flows in a resource constrained IoT environment. 

 

Figure 1.4: Three levels of IoT Environment. 

This IoT Environment can be divided into three categories.  

 Device Level 

 Edge/Fog Level 

 Cloud Level 

The device-level is the weakest in terms of processing power. As shown in Figure 1.1, 

the device level has a limited power source, memory, processing power, and 
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communication unit. The device-level is responsible for capturing or monitoring the 

data. It records or senses the data and forwards it to the next level. The devices that can 

be at the device level can be of any type. For example, temperature sensors, image 

sensors, proximity sensors, accelerometer, pressure sensors, light sensors, smoke/gas 

sensors, IR sensors, ultrasonic sensors, etc., Figure 1.4 describes the three levels of an 

IoT environment. The data which is collected from these sensors is pushed forward to 

the cluster head. As the data is of variety and is in massive amounts, the device cannot 

process it. It can also process the data to a specific limit to classify the data into the 

device and edge level. The Edge/Fog level is the middle layer of the IoT Network. The 

resources in this layer are comparatively of a higher level than the device-level. The 

availability of the nodes such as Raspberry PI or routers with Cisco's IOx operating 

system has made the level capable of processing and storing the data virtually through 

virtual machines on infrastructure nodes. However, the Fog level cannot process a huge 

analytic task or multiple IoT applications competing for resources. This results in 

increased processing Latency. The cloud level is the top level of the IoT Network, 

which contains all the data and has all the resources available for the processing and 

data analysis to predict and respond to the user's input. 

1.4 Challenges and Objectives 

In the evolving landscape of the Internet of Things (IoT), the integration of machine 

learning has become a pivotal factor in shaping technological paradigms. Current 

technologies in IoT often rely on traditional rule-based systems, offering a deterministic 

approach to data analysis and decision-making. However, the emergence of machine 

learning has introduced a transformative shift. Unlike conventional methods, machine 

learning algorithms in IoT can adapt and learn from vast datasets, fostering a dynamic 

and predictive environment. Additionally, machine learning augments real-time 

processing, allowing for quicker and more accurate decision-making in diverse IoT 

applications. Moreover, traditional IoT technologies may struggle with the sheer 

volume and complexity of data generated by interconnected devices. Machine learning 

algorithms excel in handling such big data, extracting valuable insights, and optimizing 

resource allocation. While existing technologies offer a foundation for IoT 

functionality, the incorporation of machine learning introduces a paradigm shift, 
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unlocking unprecedented capabilities that propel IoT systems into a new era of 

efficiency, adaptability, and intelligent decision-making. The IoT data flows through a 

resource-constrained environment. The resources such as memory, battery, storage and 

bandwidth are limited in an IoT environment. The resources are weakest at the device 

level resulting in more restrictions for processing and storage. The biggest challenge is 

the pervasiveness of the IoT devices, therefore the upgradation of the resources at the 

device level becomes difficult. The data that flows through this IoT environment is vast 

and continuous resulting in the delay in the IoT network. As most devices are either 

pervasive or small and portable. Therefore, increasing the hardware capacity will 

increase the size of the IoT device. Hence the data management is the solution for the 

IoT data limitations. The raw data generated by the IoT devices is boundless, and if this 

data is well managed in an IoT environment, it can be useful for various IoT Solutions. 

Most IoT devices are lacking in processing power, battery/power, storage, and 

bandwidth. Therefore, it becomes difficult for an IoT device to process a huge amount 

of data. To implement the proposed framework, the work has been divided in to four 

objectives. 

1.5 Objectives 

1. Analysis and classification of IoT data at device level and Edge Level. 

2. Data management framework for IoT Edge-Cloud architecture for Resource 

constrained IoT applications. 

3. Design and Implementation of Machine Learning algorithms for resource 

optimization in IoT. 

4. Performance Analysis and Comparison of the proposed work with the existing 

approaches. 

1.6 Research Methodology 

In IoT networks, efficient resource utilization is paramount. Analyzing data within the 

network plays a pivotal role in optimizing operations. By strategically minimizing data 

flow, each tier of the IoT architecture benefits. This process involves scrutinizing 

information at various levels, identifying patterns, and implementing data reduction 

techniques. Through meticulous analysis, the system can enhance resource allocation, 
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boost energy efficiency, and streamline overall performance. This approach ensures 

that the IoT network operates seamlessly, harnessing its potential to the fullest while 

minimizing unnecessary data transmission, thus contributing to a more sustainable and 

effective Internet of Things ecosystem. 

IoT data Analysis in an IoT network for optimizing the resource utilization at each 

level of the IoT network. This can be achieved by minimizing the data flow in the 

network. Improving data management at each level designing efficient machine 

learning algorithms for each level. The implementation of the data analysis algorithms 

and machine learning algorithms will be done by using Python and MATLAB. The data 

for the analysis will be acquired in Realtime or data sets from the deployed IoT 

networks for different applications.  

1. To achieve the 1st objective, an IoT environment is created to collect real-time data 

in various scenarios. A wireless sensor network (WSN) is created consisting of 

several sensors and a gateway as shown in the 5th chapter of this thesis. For this IoT 

environment, six sensors have been deployed in a particular area of agricultural 

land. This WSN comprises a gateway responsible for communication with the 

surrounding and distributed sensors using the Zigbee module. A total number of 6 

sensors were deployed, and the sensors could cover the full agricultural field. The 

data stored in the form of csv file was first analysed and filtered. After pre-

processing, the data is classified using the proposed mathematical model.  

2. To achieve the 2nd objective, a hybrid resource constrained KNN algorithm and 

MLADCF framework is presented in a resource constrained environment. The 

framework is tested with real time data sets captured during first objective. The 

resources like memory, battery and storage were kept constant during the first 

scenario. The simulation is performed with Cloudsim toolkit by incorporating auto-

scaling libraries. 

3. To achieve the 3rd objective, three different algorithms have been developed for 

device level and Edge/Fog level. The output of the second objective is the input of 

the third objective. The overall energy, storage and number of alive nodes of the 

network is calculated and compared in three different scenarios by using MATLAB. 

Figure 1.5 shows the methodology in the form of a flow chart. 
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Figure 1.5: Flowchart of the Research Methodology. 

4. To achieve the 4th objective, all the results of objective 2 are compared with the 

existing machine learning algorithms. And the results of the third objectives are 

compared with the existing approaches and are shown in the form of graphs and 

tables. 

1.7 Thesis Organization 

The thesis presents the data classification at different IoT-Edge architecture levels with 

main emphases machine learning based framework and classification of IoT-Data. The 

rest of the thesis is organized as shown in Figure 1.6. 

Literature Review of Data Ananlysis in IoT Environment

Survey and Review of different Machine Learning Algorithms in 
IoT Environment

Identifying the problem

Defining the Objectives

Analysing of data  of an IoT network using tools like python, 
Hadoop, Matlab etc. based on Parameters like energy, storage, and 

processing power.

Designing of new machine learning Algorithm at device Level for 
decision making.

Desinging of  machine learning  Algorithm  at Edge/Fog Level 
and Cloud Level.

Framework for Resource managemant/ Data management of IoT 
Environment 

Comparing New results with existing results
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Figure 1.6: Organization of the Thesis. 

Chapter 1 gives the introduction, research background, thesis structure and objectives; 

chapter 2 gives the literature survey of IoT environment, IoT architecture and different 

machine learning algorithms ; Chapter 3 Summarizes the three levels of an IoT 

environment and analysis the IoT data at device level and Edge Level; chapter 4 

introduces a framework for data management in IoT Edge-Cloud architecture that is 

designed to support resource-constrained IoT applications; Chapter 5 presents the 

advancements in machine learning algorithms and their comparison based on 

advantages and disadvantage and implements the machine learning algorithms for 

device and edge level; In Chapter 6 a comparative analysis is presented between the 

proposed work and the existing approaches; Finally, Chapter 7 is concluding the thesis. 
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CHAPTER 2 

__________________________________ 

LITERATURE REVIEW 

__________________________________ 
 

 

2.1 Introduction 

Internet of things (IoT) connects a huge number of things to the internet. It comprises 

complex environments having heterogeneous components. This IoT environment 

generates enormous data and therefore imposes a demand for storage, processing, and 

transmission. Since IoT provides many applications using other technologies such as 

Fog, Edge, and Cloud to help us in our day-to-day life applications, which are not 

limited to our daily lives, however, they include other more important sectors such as 

remote patient monitoring, precision agriculture, environmental monitoring, disaster 

mitigation, and other smart city applications. We expect these applications will increase 

day by day without any limit. The only limitation which we found is in the resources of 

IoT. The constraints in the resources of IoT pose many challenges before us at the 

network, hardware and software levels. Since the applications are increasing, resource 

management at the different levels of IoT systems becomes necessary. These resources 

include battery life, size, processing power, storage, and bandwidth. Due to the 

pervasiveness of some IoT applications, protocols and lightweight algorithms are 

employed to acquire, process, and store data. The general structure of the IoT 

environment comprises three stages/levels: the first/device level, the second/Fog/Edge 

level, and the third/Cloud Level. While most data is processed at the cloud level due to 

resource availability, Fog Computing technology enables some data to be processed at 

the Fog level. However, the device level has limited resources due to factors such as 
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size, pervasiveness, and wearables. Therefore, managing resources and data is crucial 

for a better IoT environment framework. Encryption and virtualization are added to the 

algorithms and protocols at the edge level. The development of more specific and 

lightweight protocols and algorithms is a key challenge in the resource constraints 

applications of IoT. The classification of the data at the first stage i.e., device level and 

proper resource allocation within the IoT network will help improve resource 

management. In recent years, technological advancements and the widespread 

availability of the internet have enabled us to become increasingly connected with the 

world around us. Incorporating mobile phones and smart devices into our daily routine 

has become an essential aspect of our lives, fostering a connection between individuals 

and every element present in our surroundings. This has led to the emergence of the 

IoT, which offers the potential to interconnect everyday objects such as appliances, 

light bulbs, traffic lights, and vehicles. As a result, IoT has become a reality, and the 

possibility of interconnecting various elements of our environment is now within reach 

[11-13]. 

 

Figure 2.1: Application Scenarios for IoT. 

It was projected that in 2021, the number of devices/nodes connected to the internet 

would exceed 30 billion, posing a challenge to the centralized infrastructures in place 

today. The widespread deployment of sensors, along with the rise of 4K video 

transmissions, augmented reality, and other advanced technologies, has led to a surge 

in internet traffic that is reaching data centers. This trend is only set to continue as IoT 

and other connected technologies become increasingly prevalent in our lives [14]. 

Sensor and IoT data is typically sent to cloud data centers for storage and processing, 
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which can create unacceptable latencies in environments that require real-time 

decision-making. At Massachusetts Institute of Technology (MIT), research was 

conducted, during which Kevin Ashton coined the term IoT (Internet of Things) on 

sensor technologies and Radio Frequency Identification networks (RFID). The concept 

was that if every object in our environment was equipped with this technology, 

computers could identify, observe, and comprehend the world [15]. An IoT device is 

characterized by a small electronic system equipped with a processor, sensors to 

measure the environment, actuators that allow it to perform certain actions in response 

to the data received, and communication modules that use network protocols. IoT’s 

example is found in smart homes, in which sensors are installed in different areas of the 

house, connected to a central system allows optimizing the use of electricity, water, and 

energy consumption. The value for businesses lies in the insights obtained from the 

data, which can lead to process automation, resource optimization, and better decision-

making, ultimately resulting in greater operational efficiency. Figure 2.1 illustrates the 

application scenarios for IoT. The size and variety of data circulating on today's 

networks are increasing exponentially, and IoT contributes significantly to this increase 

in volume. Cisco estimated that more than 30 billion devices would be connected to the 

network, implying an increase, a substantial amount of traffic circulating through the 

networks and reaching data centers in the cloud treatment [16].  

2.2 Related Work 

Cloud computing is a technology that has promoted IoT systems by offering the storage 

and computing capacities necessary to process and extract information from the data 

generated by said systems. The discussion revolves around architectures in which data 

gets transferred to centralized infrastructures for processing before being returned to 

the requestor. However, when storing, processing, and retrieving data from the cloud, 

the latency can be affected by the increase in traffic taking place on the networks, which 

can be unacceptable in environments that need to respond in Real-time. An autonomous 

vehicle cannot afford a delay between detecting a possible collision and acting 

accordingly (slowing down, stopping); industrial safety systems, such as fire alarms 

and smoke detectors, cannot afford data transmission delays. For this reason, 

organizations need solutions that allow data flows to be processed in the shortest 
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possible time to obtain immediate responses. Reducing latency means bringing 

processing closer to the end devices, the ones that generate and consume data. Bringing 

services closer to the network's perimeter has been challenging since the internet 

became a universal service and the widespread demand and consumption of content. 

Proof of this is content distribution networks, Content Delivery Network or CDN, 

whose objective is to prevail the native limitations of the internet in terms of QoS sensed 

by the user, providing services that enhance network performance by maximizing 

bandwidth enhancing accessibility. All this through a collaborative grouping of nodes 

in the network located in the vicinity of the clients [17]. 

2.3 Reference Model 

The IoT model is designed as a balance among 7 levels or layers, detailing how each 

level should function to ensure simplicity, scalability, and compatibility among all 

sections of an internet of things. In this system, data moves bidirectionally between 

level 1 and level 7, as illustrated in Figure 2.2. 

 

Figure 2.2 Reference Model for IoT. 

Level 1: Sensors, actuators, and physical devices are effective in generating, 

transmitting, and receiving data through a network protocol. 

Level 2: Level 2 of the IoT architecture involves the networking equipment that 

facilitates communication between level 1 devices and higher levels. These devices are 

typically located at the customer's end. 

Level 3: The function of this layer is to conduct an initial analysis of the data flow. 

Level 3 of the IoT architecture can be regarded as an intermediary layer that resides 
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between the hardware and the cloud infrastructure. This layer is referred to as Edge or 

Fog Computing and should ideally be placed as close as possible to the data source, at 

the network's edge. 

Level 4 to level 7: The services of Cloud, infrastructure, and applications are located in 

the remote network, where data is transformed into useful knowledge and information. 

The true potential of IoT lies in the combination of Cloud and edge Computing. One 

potential goal is to reduce the high level of centralization inherent in cloud services, 

presently possess is necessary to process data flow in real-time. This can be achieved 

by promoting analysis and knowledge generation closer to the node where data is 

generated. The Edge (Fog) Computing layer is thus critical to this process [17]. 

2.4. IoT Protocols 

Communication technologies represent the channels through which things can 

communicate and thus allow heterogeneous devices to create services. For 

communication between network nodes and peripherals or sensors, lightweight 

protocols are required, efficient in battery, CPU, and bandwidth. As a result of the 

bibliographic review, some technologies are identified as candidates to be 

implemented. 

 

Figure 2.3: Communication Protocols. 

The purpose of the standards is to facilitate and simplify the integration between 

applications, services, and other components of a technological solution. IoT is no 

exception: organizations such as the W3C, IETF, EPC Global, IEEE, and ETSI, among 

others, have advocated. Figure 2.3 summarizes the most used protocols based on the 

TCP / IP stack. 
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To carry out a diagnosis and evaluation of the protocols most used by IoT, together 

with their main differences specifically in the application layer of the OSI reference 

model. This evaluation was motivated by the fact that a unified IoT architecture has not 

yet been clearly defined. There is currently a lack of consensus regarding the definition 

of protocols and standards across all aspects of the IoT. According to the requirements 

survey results, it is possible to evaluate which ones are suitable for this implementation 

with the previous study of protocols. Computing power represents the brain of things 

by providing processing and storage capacity. Computing capacity is important in 

environments where access channels to the cloud are poor due to the lack of data 

network coverage. Here are some of the most popular and commonly used commercial 

alternatives for IoT product development [17]. 

2.5 Construction of the Architecture Prototype 

As a representation model, suggest using 3-layer architecture, based on IoT, to manage 

the supply chain in which there is also a division at the process level. Similarly, mention 

some other emerging architectures, where the perception, network, and application 

layers of the 3-layer architecture can be appreciated selected as a model for this 

technological solution. In the proposed representation model, one of the main 

characteristics of IoT is evidenced, in which each physical object has a virtual 

representation through a good network and computing infrastructure that supports it, as 

shown in Figure 2.4. 

 

Figure 2.4: Representation Model. 
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By implementing a set of nodes, the data capture, transmission, processing, and 

subsequent presentation are carried out according to its context since the processing 

could be given before the transmission [18]. Next, the topology of the nodes developed 

according to the guidelines of the proposed architecture and the layer in which they are 

found is described. Figure 2.4 is used as a reference and follows an IoT EDGE or 

Internet of Things at the edge approach. 

2.6 Node Topologies 

The EDGE Gateway nodes require the use of interfaces defined under the IEEE 

802.15.4 standard since they define the physical level, mentioning aspects of signaling, 

coding, and voltages. It also provides access to the medium addressing at the MAC2 

and LLC3 layer levels, enabling traffic over IP for the MQTT and REST application 

protocols used to send data captured by the IoT nodes to the cloud. As SBC (in English, 

Single Board Computers), the reference Raspberry PI 3 has been selected because it 

represents the most attractive commercial alternative for processing and storage in 

embedded devices due to its easy acquisition, commercialization, configuration, and 

greater compatibility in the market. This reference supports the UART, i2c, and one 

wire protocols used by the GPS, NFC + ADXL345, and DHT22 modules. 

 

Figure 2.5: Topology of Nodes. 
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 2.6.1. Sensing Layer 

In the first layer (embedded systems and sensors), the Raspberry device digitally senses 

the readings of the variables through a set of sensors installed to capture raw data that 

will serve as input for the different services provided by the technological solution in 

the cloud. Following the IoT EDGE approach, the application protocols are configured 

to connect the device and the AWS, CARTO, and PUBNUB services since node-red 

supports the REST-full stack used by the device to deliver registers an adjustable 

frequency in JSON format, which contains the readings of the entire sensor [18]. The 

device also provides a web page4 to access from a tablet or Smartphone that acts as a 

base station of a Wi-Fi environment/network for the edge node. The following 

components act together on the sensing layer: 

Edge Devices: It is a general-purpose device that supports operating systems for 

embedded devices. As for the power source, it is not of great autonomy due to its high 

mobility. It makes decisions based on the calculations it performs on the input data 

taken from the sensors; it can execute commands on the actuators. 

Edge Sensor and Actuator: It includes devices of special or particular purpose; they 

do not support the execution of the operating system. They may be Environmental, 

Humidity and temperature sensor - DHT22, Accelerometer, and Gyroscope - 

ADXL345, Georeferencing, GPS Module - Adafruit Fona SIM808, Communications, 

Connection to Wi-Fi networks - Adapter 801.11, Connection to GSM networks - 

Adafruit Fona SIM808, Authentication and NFC - SL030, etc. 

2.6.2. Network Layer 

Given the heterogeneity, breadth, and depth of the proposed architecture, some nodes, 

depending on the availability of cell phone networks, will have the ability to use GSM 

modules to send and receive data on the internet without depending on other nodes. The 

gateway or gateway for the architecture model is assumed by any device that allows the 

option of creating Wi-Fi anchor points and that, through the respective ISP, gives the 

node an exit to the internet. Figure 2.5 shows the network topology compatible with the 

present technological solution. This topology uses different network connection 

mechanisms, from Wi-Fi cell phone networks to satellite links, to reach the services 

hosted in the cloud [18]. 
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Edge Gateway: Includes devices with processing capacity, storage, memory, and high-

capacity power supply, supporting the operating system. It can be any device that allows 

creating Wi-Fi anchor points. 

2.6.3. Cloud Layer 

This layer provides the microservices of the DSS, provisioned on Amazon 

infrastructure, the visualization and generation of indicators in the CARTO platform, 

and the generation of a dashboard or control panel. The microservices created by these 

platforms are accessed by the EDGE devices of the sensing layer to send the records 

stored in their local memories, taking advantage of the storage and processing capacities 

of these nodes. They are oriented to the location in PUBNUB-eon, connected to 

Mapbox using a publication and subscription scheme similar to that used by MQTT. 

The Initial State tool is used experimentally to build a history of records on a timeline. 

2.6.4. Edge Computing 

"Edge Computing" refers to a computational architecture where processing and analysis 

competencies are brought closer to the source of data. This approach can reduce latency 

and improve application response times by avoiding the need to transmit data to remote 

infrastructures for analysis. As a result, the volume of data sent to the network is 

reduced, making it an ideal solution for IoT environments. Virtualization and 

distributed computing are key factors within this decentralized architecture model that 

must scale horizontally. The term Edge device, in this context, refers to items with 

limited capabilities that have their own set of resources: CPU, memory, storage, and 

network. They can be smartphones, smart glasses, smartwatches, tablets, routers, 

autonomous vehicles, or any IoT device with processing capacity. Thus, Edge 

Computing refers to how part of the processes that are now carried out in cloud data 

centers are moved and executed in Edge devices or Edge nodes that can sometimes 

represent small data centers in the client's vicinity. Researchers have proposed various 

solutions to optimize the IoT environment. One solution that has been proposed is the 

use of Software Defined Networking (SDN) networks. However, there is currently no 

agreed-upon reference architecture for Edge Computing, as shown in Figure 2.6. The 
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concept of bringing processing to the data source through a collaborative process of 

nodes is not a new one, with studies and research dating back to the 1990s [19].  

 

Figure 2.6: Architecture for Edge Computing. 

The Cloud of Things concept provides mechanisms to bring data from IoT devices 

to the cloud. This environment consists of different layers/levels. The data has to pass 

through different layers i.e., device layer, Fog/Edge layer and finally cloud layer. As 

the data is increasing day by day therefore the use of machine learning approaches is 

very important in order to optimize the resources. Seamless intermediate network 

devices are used to communicate in an IoT environment, known as IoT gateway. The 

IoT Gateway provides information on this data that flows in both directions, and also it 

acts as a translator. Hence it contains two different protocols to communicate in day-

to-day life, In the domain, a wide array of diverse sensors is encountered, each capable 

of acquiring distinct types of data. Every sensor has another purpose, and these sensors 

are enormous in numbers, so the amount of data is tremendously high. Managing a 

massive amount of data that comes from thousands of sensors is a challenging thing. 

The sensors such as optical sensor, infrared sensor, gas sensor, gyroscope, level sensor, 

pressure sensor, proximity sensor, temperature sensor, humidity sensor, accelerometer 

etc., collect different data types of different volume and variety. 
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Figure 2.7: Overview of Fog Computing. 

Fog computing offers significant benefits in managing the Big Data generated by 

IoT. Edge analytics, which involves processing data at the second level i.e., edge level 

of the environment, reduces the high data redundancy in IoT. Pre-processing tasks such 

as filtering, cleaning data, extraction of variables, comprehension, and reduction 

techniques of data dimensions at the edge have helped reduce the amount of data sent 

to the higher level i.e., cloud and subsequently stored [19]. Similarly, techniques to 

merge several data streams into one or send the data only when anomalies are detected 

reduce the frequency with which IoT data is generated. Additionally, handling 

interoperability technical, semantic, and syntactic in Fog nodes (gateway IoT) reduces 

IoT heterogeneity. In summary, Fog computing reduces latency, bandwidth 

consumption, and storage space. It provides essential advantages, such as improving 

QoS, supporting mobility, interoperability, and device location awareness, as depicted 

in Figure 2.7. This makes Edge Computing advantageous for systems with limited or 

intermittent connectivity, such as petroleum platforms, as data can be preprocessed at 

the source without the need for network connectivity. 

2.7 Machine Learning 

Machine learning algorithms has a critical role in the analytics of IoT data [19]. As a 

subset of Artificial Intelligence, it has great significance in the IoT network. With the 

increasing amount of data, day by day produced or generated by our own devices is of 

no use if not processed properly and utilized for data analytics like Big Data Hadoop, 

MATLAB, Bluemix, etc. Similarly, data of high volume is generated in the network of 
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IoT. This network is similar to the wireless network system in terms of architecture to 

accept a few things. The layers in the architecture require the machine learning 

algorithms for different levels separately. The standard machine learning algorithms 

that different researchers are presently utilizing are Naive Bayes (NB), k- Nearest 

Neighbor (KNN), K- means, Principle Component Analysis (PCA), Support Vector 

Machine (SVM), Random Forest (RF), etc. These algorithms have different functions 

and capabilities for accessing and processing the data. The k-means algorithms have 

significant existence among the group of algorithms present today. It is the oldest and 

commonly used technique. However, it has one big problem, i.e., the researcher should 

be confident about the value of the parameter k; otherwise, the algorithms will lead 

towards null or towards a terrible decision or output. Mohammad Saeid et al. have 

presented the algorithm for K-means where the cluster center 𝑆 is learning to be 

optimal for the data and the assignment of the data πnk. K-nearest neighbor method is 

also one of the simplest methods that is useful to many data scientists. It is effortless to 

implement both in the classification and regression problems. The assumptions made 

by the KNN method are so close that the algorithm becomes much more helpful and 

gives approximate output to the researchers [19]. 

On the other hand, the Naive Bias method is based on the Bayesian's Theorem; it 

also proposes a predictive analysis and gives results based on probability which is also 

approximate to the accurate value. Another supervised ML algorithm, i.e., support 

vector machine, is the most popular among the data scientists and is mainly used when 

data visualization is highly required in more than one dimension. PCA finds data 

patterns where there is a high variation in the data sets. It eliminates the dimensions to 

find the pattern in the data. The most natural among the machine learning algorithms 

are neural networks that work on a different platform, i.e., artificial neuron, which is as 

same as the biological neuron. This algorithm's working falls under the category of 

Deep Learning (DL), which is a subset of artificial intelligence. The classification of 

these machine learning algorithms plays a vital role in the IoT network. The selection 

of algorithms can never be random. The design of the network has substantial 

dependability on the microcontroller that is incorporated in that IoT network. Table 2.1 

below is a comparison of different machine learning algorithms based on their 

advantages and disadvantages. The best combination of the machine learning 
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algorithms will give accurate results in the output and accordance with the decision 

support system. The k-mean helps better in huge variables and produces clusters in a 

well-shaped manner. Likewise, random forest also is considered good in input variables 

[20][21]. Table 2.1 Compares different machine learning algorithms for their use case, 

advantages, and disadvantages. 

Table 2.1: Machine learning algorithms based on their advantages and disadvantages. 

Algorithm Use Case for IoT Advantages Disadvantages 

K-means  

[22],[23] 

Traffic and Air Control 

monitoring, making the 

home as a smart home, so 

will be cities as Smart 

Cities. 

More effective for handling 

large variables and results in 

more compact clusters. 

Determining the appropriate K-value 

is challenging when dealing with 

data of varying densities. 

Naïve Bayes 

[24],[25] 

Agriculture data analysis, 

All citizens as smart 

citizens. 

Easy to implement and 

requires minimal training data. 

Assumption can be incorrect. 

K-Nearest 

Neighbor 

[26] 

Smart Citizen It remains beneficial even 

when the training data is noisy. 

The value of k must be precisely 

known. 

Support 

Vector 

Machine 

(SVM) 

[27],[28] 

Classify data, real-time 

Prediction. 

Data can be visualized in 

dimensions exceeding two. 

The decision-making system 

is nearly impeccable. 

 

Choosing an appropriate kernel 

value is a complex task, and when 

dealing with large datasets, training 

time increases significantly. 

Principle 

Component 

Analysis  

[29-33] 

Surveillance of public 

areas; valuable for 

detecting faults. 

Low redundancy and reduced 

complexity in images. 

Evaluating the covariance matrix is 

challenging, and even basic 

invariances might not be captured. 

Neural 

Network  

[23] 

Healthcare Analysis, 

Forecasting, Low energy 

consumption and useful 

with redundant data also. 

It has the ability to model and 

learn Complex relationships. 

It can also generalize. 

Interpreting parameters can be 

challenging, leading to complexities 

at times. Needs a large dataset. 

Random 

Forest  

[23] 

l-Banking, Stock Market, 

Medicine, and E-

Commerce. 

considered as good for taking 

thousands of input variables. 

Noise in the datasets. 

 
2.8 Classification of Machine Learning Algorithms 

In earlier days, if someone would have thought about machines or algorithms that learn 

by themselves, then nobody would have believed. Today we have machine learning 

algorithms that learn by themselves with some parameters or training data. The most 
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important branch of artificial intelligence, i.e., machine learning, has advanced 

tremendously in recent years. Machine learning has four subsets, i.e., supervised 

learning, unsupervised Learning (USL), semi-supervised learning, and reinforcement 

learning. Supervised learning means that the algorithm has some labeled data used by 

the algorithm/machine to predict the future. Therefore, also known as a predictive 

model. Unsupervised learning has no labeled data, but its learning process entirely 

depends on selecting the parameters on which the comparison or the decision-making 

system works. Therefore, also known as a descriptive model. The reinforcement 

learning will use none of the above methods except the learning after the failure method. 

It detects the failure pattern and prevents the system from using it again. Table 2.2 

below shows the recent advancements in machine learning algorithms by different 

researchers. 

Table 2.2: Advancements in the machine learning algorithms by different researchers. 

Author/name 

/year 

Algorithms /Techniques Summary 

J. L. Berral- 

G arcia [34] 

SVM, ANN, K-means, DBSCAN, 

Decision tree Algorithms. 

Classification, prediction, and modeling 

survey was observed and completed using 

machine learning 

Qui, Wu. Q, Ding. 

G, Feng [35] 

Support vector machine, Regression, 

Neural Networks, Principal Component 

Analysis. 

Using big data processing, A survey of 

regular and uncommon algorithms was done. 

Bokhari, 

Zeyauddin, and 

Siddiqui [36] 

SVM, ANN, PCA, NB. They proposed a new model for storage and 

analysis for Big IoT data. 

Wu, W. Cheng, 

Hoffman and 

Wang [37] 

Principle Component Analysis, Regression Healthcare analytics are introduced. 

V Thool, C. 

Thool, R. Bendre, 

[38] 

MapReduce, Linear 

regression 

They developed a model using Regression 

and mapping and Reducing Technologies. 

The conclusion from Table 2.1 and Table 2.2 suggests and can help any researcher in 

selecting an appropriate algorithm for his IoT environment. If k-mean is the choice, 

then the data should be of a vast number of variables. Similarly, for agriculture, the 

naïve bayes algorithm, based on the Bayesian theorem, is beneficial as it is elementary 

to implement and needs very little training data. On the other hand, neural network 

based on artificial neuron needs a considerable amount of training data and can take 
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much time. So, it is not suitable for agricultural purposes. The K-Mean has a drawback 

that almost every researcher has suffered because its value of k, i.e., the number of 

clusters, is challenging to identify or difficult to guess. Therefore, there is always a risk 

of bad results or zero percent accuracy.  

The NB also has the same disadvantage of wrong assumptions. In K-Nearest 

Neighbor, the distance of the nearest neighbor is calculated for a cluster. It is helpful in 

Smart cities because it helps even if the data is noisy, but here, the value of k should be 

accurate. SVM can visualize the data in more than one dimension. If the data has no 

capability of classification and no inference line can be drawn, then SVM will ensure 

that the data is visualized in more than one dimension so that the classification is 

possible. However, the selection of a good kernel value is challenging. SVM is very 

good in Real-Time predictions. PCA is used for monitoring public places and for 

deducting faults. It has a lack of redundancy and decreased complexity in images. 

However, evaluating the covariance matrix is challenging, and capturing invariance can 

also be problematic. Random Forest is helpful in I-Banking and Stock Market because 

it is considered good in tasking, but it has noise in the datasets. Therefore, it is clear 

from the discussion that the correct technique is directly proportional to the type of data 

that a researcher needs to process.  

The extraction of the information is crucial that even business decisions are also 

taken based on predictions. The advancement in the machine learning algorithm is 

significant for healthcare. The day is not far when doctors will also use machine 

learning techniques for deciding the treatment for a patient. The COVID-19 pracademic 

has shaken the whole world today. People have waited for almost one year for an 

antidote that can cure the COVID-19 disease. Machine Learning has the capability that 

can find patterns and can be an initiative in drawing the inference line that can lead to 

a better life. 

Table 2.3: Machine Learning and Deep Learning Techniques in IoT Environment. 

Ref. 

No. 
 

Technique Application Focused Area Evaluation Parameters Experiment Setup/Data Set 

[39] 

 

Deep Learning  Physiological 

motion of 

human 

skeletons. 

Accuracy ratio with 

MEMS, PHMM, NBDF. 

Advanced Spatio-Temporal 

Extraction Model (ASTEM), 

Live sensor data of human 

skeleton. 
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[40] TensorFlow 

Deep Learning 

Model and 

LoRa  

Smart City Waste 

Management 

Gradients, weight, 

placeholders, bias, hyper-

parameters, and 

metadata. And Type of 

waste metal, plastic or 

paper. 

A prototype (Arduino Uno 

and Raspberry Pi.)  

[41] Deep Learning Smart 

Environment 

Water Quality 

Monitoring 

Quality of multimodal 

data, 

Misinformation rate, 

Quality of multimodal 

data. 

water quality monitoring in a 

coastal area of China. 

[42] Deep Learning IoT 

infrastructure 

Cellular 

Networks 

Accuracy, EPOCH, 

Access Rate, No. of IoT 

devices. 

dataset is obtained by using 

the (conventional) Hungarian 

algorithm. 

[43] Deep Learning Natural Power 

Resources 

Wind Power 

Generator 

Power factor, velocity 

ratio. 

                     _ 

[44] Neural Network Smart City Waste 

Management 

False Positive/Negative 

Rate, Precision, True 

Positive rate, Recall and 

Accuracy. 

Images from the TrashNet 

dataset. 

[45] Deep Learning Satellite 

communication 

Feature 

Extraction 

Accuracy, G-mean, etc. Proxmox Virtual 

Environment, OpenSAND, 

OpenBACH, Selenium.  

[46] Deep Learning Industrial IoT Image 

Visualization 

Precision, Recall, F-

measure, Accuracy. 

PythonTensorflow1.9, / 

Leopard Mobile dataset from 

IKM Laboratory. 

[47] Bayesian 

Network 

prediction 

IoT Ecosystem Cost 

Efficiency 

Signal Strength, Network 

Type, Network 

Coverage, CQ, TE, OCS 

and FTSV. 

ESM systems. 

[48] 

 

Reinforcement 

Learning 

General 

Infrastructure 

Bandwidth 

Optimization 

Bandwidth, System Cost, 

Convergence, Weight 

Factor. 

Deep Q-Network. 

[49] Neural Network Image 

Processing 

Feature 

Extraction 

Distortion image 

detection, Low resolution 

image detection, Image 

detection Speed, 

Accuracy, CPU 

utilization and Memory 

Utilization. 

Simulation Tests. 

[50] Artificial Neural 

Network 

Smart 

Transportation 

Passengers precision recall f1-score 

lueto, (Walking, Bus, 

Train, and Bicycle). 

Bad.App4 proprietary 

solution. 
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[51] Artificial Neural 

Network 

Smart Farming Fuzzy Logic 

(Smart water 

pump 

Activation) 

Relative humidity, 

Outside Air Temp., Solar 

radiation, Speed of Wind 

and Relative humidity of 

inside air. (Sum of 

squares Mean Square and 

F Value Probability). 

ANOVA for validation. 

[52] Deep Learning Smart City Waste 

management 

Types of Waste (Paper, 

Glass, Cup, Plastic, 

Cardboard,) Accuracy, 

no. of test images. 

ResNet34(PYTORCH,) / 

Dataset of waste (GITHUB). 

[53] Deep Learning 

and NN. 

Smart 

Restaurant  

Food Data 

Accuracy 

Food Dataset Classes, 

Accuracy, 

Common Crawl, Scrapy, / 

Dataset of food Pictures. 

[54] Logistic 

regression, 

Decision Tree, 

Naïve Bayes, 

Multilayer 

perceptron, 

Random Forest 

and k-nearest 

neighbor. 

Food Quality 

and traceability 

system. 

RFID Class label, Temperature, 

humidity (Speed of 

trolley, Frequency), gID, 

timestamp, RSS, and 

antenna ID. 

Scikit-learn V0.19.1, Python 

V3.6.6 and XGBoost V0.81. 

[55] Neural Network Smart Energy in 

IoT 

Environment 

WSN Response rate, delay, 

overhead, request 

failures, energy, lifetime, 

and live node count. 

Network simulator. 

[56] RF, LR, KNN, 

ANN and NB 

Smart Farming Machine 

Learning 

Rainfall, Avg. Rainfall, 

Avg. Temp., Year, 

Temperature, Year, 

Pressure, Avg. Pressure. 

Python and Weka. 

 

[57] K-NN, SVM 

Navie Bayes 

(NB), Decision 

Trees (DT) and 

(RF)Random 

Forest and 

Logistic 

Regression (LR) 

Smart Watches 

for athletes  

Feature 

extraction and 

Accuracy 

Forehand Drive, Chop, 

Flick, Backhand Control, 

Backhand Drive, Chop, 

Flick and Forehand 

attack. 

Android Studio, SDK, and 

JDK / Smart watch data of 12 

students playing Ping pong. 

[58] Deep Learning Social Network Sentiment 

Analysis 

Accuracy, Precision, 

Recall, F Measure. 

Live Streaming of Twitter 

Data (e.g., FLUME). 

[59] Natural 

Language 

Processing and 

ML methods 

Smart City Environmenta

l Monitoring 

temperature, humidity, 

light intensity, noise, 

pressure, wind strength. 

SenSquare h. 
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H. Zhang, Z. Fu, and K. Shu have proposed a technique for athletes using smartwatches 

for better accuracy [57]. They used techniques like K-NN, SVM, NB, LR, DT, and RF. 

To complete the experimental process, they collected data of smartwatches from the 12 

players playing ping pong. The experiment setup was completed by using Android 

Studio, SDK, and JDK. The focus of the experiment was accuracy. Before that, in 

October 2018 [62], J. Diaz-Rozo, C. Bielza, and P. Larrañaga used Clustering 

Technique for better accuracy. The focus was on Industrial environments. To fulfill the 

[60] Clustering (K-

mean ++) 

IoT 

Infrastructure 

WSN Energy Range, 

Computational Time, 

Accuracy, FNR 

estimation. 

NS2 simulation tool. 

[61] Clustering (K-

Mean)  

General IoT 

Infrastructure 

Cognitive 

decision 

Accuracy. 

Error Rate, Repeat 

Times, no. of Neurons, 

No. of network Layers. 

MATLAB 8.1.0.604 

(R2013a). 

[62] Clustering,  

naive Bayes 

classifier 

Smart Industries Data 

Streaming 

Accuracy, Sensitivity 

and Specificity, Gaussian 

parameters (λ, δ, φ and 

N) window size N. 

Industrial Internet 

Consortium Testbed. 

[63] SVM and KNN Disaster 

Management 

Noise data 

sets 

IDR, Building State, 

 

HyperMesh, S-DYNA / non-

noisy data set and noisy data 

set. 

[64] QR 

decomposition 

and parallel dual 

ascent. 

Improved SVM 

Training 

QR 

decompositio

n framework 

stopping threshold, 

optimal step size, η∗, 

iterations, tc, γ and C. 

LIBSVM datasets repository, 

covtype, Webspam and 

SUSY. 

[65] ANN, SVM, 

KNN 

Smart City 

Disaster 

Management 

Fault 

Tolerance 

Presence of smoke, 

Presence of fire, Leakage 

of gas, Oil spill, zero fire 

in the building, zero gas 

leakage, zero oil spill, 

etc. 

Netlogo 5.3.1 software, / 

online data repository of UCI, 

Kaggle, and Data world. 

[66] LDA, NB and 

SVM 

Smart Industry Manufacturin

g 

(Accuracy 

Rate.) 

Accuracy, Frequency, 

Iteration, preceding level 

of warning, after level of 

caution, after level of 

float. 

SEA dataset development 

technique. 

[67] Supervised 

Learning 

(SVM) 

Smart Energy renewable 

energy 

resources 

Energy Distributed, 

Energy Saved. 

Dataset source: Central 

Statistics Office Ministry of 

Statistics and Programme 

Implementation. 
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necessary data set requirement, they created the datasets by simulating random values 

from a Gaussian distributor mixture. 

In today’s world, machine learning techniques play a vital role in saving lives. As 

elaborated in paper [59], F. Montori, L. Bedogni, and L. Bononi have shown how ML 

techniques are useful in environmental monitoring. They have used NLP and other 

various ML Methods and have proposed a model for smart city. 

Among all the techniques, Clustering is the most popular technique in the field of 

Artificial Intelligence. Paper [60-62] clustering techniques have been used for 

improving WSN network, IoT infrastructure, and Smart Industries data Streaming, 

respectively. However, in some instances where the researcher wants to visualize the 

data in more dimensions for better understanding, the SVM is the most reliable choice 

for any data scientist. SVM, in combination with other techniques, e.g., KNN, ANN, 

NB, etc., has performed better and has given more accurate results [63-67]. A. Ibrahim, 

A. Eltawil, Y. Na, and S. El-Tawil have used SVM and KNN for reduction of noise in 

the data sets that can be helpful in disaster management [63]. Similarly, Aljumah, A, 

Ahamed Ahanger, Bhatia, M, and A, Kaur have also worked on disaster management 

for the smart city, and they have also used ANN, SVM and KNN techniques [65]. 

Nowadays, the ML methods combination has been a better option for most researchers 

than using a single ML algorithm. Alfian et al. has proposed a concept of using RFID 

for food Quality and Traceability system. This experiment used logistic regression, 

decision tree, naïve bayes, Multilayer perceptron, k-nearest neighbor and random forest 

[54]. Similarly, Attia A. et al. have also used various ML methods for Smart Farming 

[56].  

As a subset of machine learning, Deep Learning is also playing a vital role in data 

science. The parameters like Accuracy, precision, recall etc. have performed better 

when using Deep Learning [39], [42], [45], [46], [52], [53]. Similarly, Deep learning 

has been used in Waste Management, Water Quality Management, Natural Power 

Resources, Feature extraction, Smart Transportation, Smart Farming, Smart Energy, 

etc. T. J. Sheng et al. have discussed the challenges that are being currently faced by 

the City Management in keeping the city clean. In their research article, they have 

focused on waste management. They have worked on a deep learning model that can 

help smart dustbins and efficiently manage the waste around the smart city [40]. In 



33 
 

2020, deep learning and neural network concepts were frequently used for waste 

management. Alqahtani, F., Al-Makhadmeh, Z., Tolba, A. et al. have also contributed 

in the same area [44]. The advancement in the field of AI has driven us towards ML 

techniques and neural networks. Table 2.3 is an example of ML Methods and Deep 

Learning [41], [43]. The use of these methods for applications like smart city, smart 

transportation, smart energy, smart farming, IoT infrastructure, image processing, etc., 

is exemplified in papers [47], [48], [49], [50], [51], and [55]. 

Table 2.4: Taxonomy on Data Management/Classification Techniques in IoT Environment. 

Ref. 

No. 
 

Technique Application Focused Area Evaluation 

Parameters 

Experiment Setup/Data Set 

[68] Clustering & 

Classification 

(HLMCC -

model) 

IoT 

Infrastructure 

 

Anomaly 

Detection 

Device ID, Sensor 

Value and Delay 

Value. 

LWSNDR and Landsat Satellite 

Dataset. 

 

[69] Classification Social Network Redundancy No. of features, 

classification 

results and Total 

accuracy. 

Java programming language with 

JDK 1.7.0 and GPS Trajectories, 

Indoor User Movement Prediction 

from RSS, Water Treatment Plant, 

Hepatitis and Twitter Dataset. 

[70] Clustering 

(Hybrid 

LBGLM) 

IoT 

infrastructure 

(Classification 

Problem) 

Minimization of 

labelled dataset 

No. of clusters as 

‘k’. 

Rank loss, 

coverage, 

hamming loss and 

one error. 

MLKNN implementation in 

MULAN package / CAL 500, 

emotions, mediamill, scene and 

yeast. 

[71] Unsupervised 

Learning 

Algorithm 

Prediction 

(Predictive 

Analysis 

algorithm) 

IoT data 

Classification 

K value for data 

sets. 

 

R-framework on an Intel Corei9-

64GB_DDR4-2TB_SSDM2 

machine. 

[72] Classification 

(Capsule 

network 

Model) 

Smart City IoT data 

Classification 

Data Flow Length, 

Data Packet 

Length, Accuracy. 

Ubuntu16.04OS, Python2.7, 

TensorFlow1.8.0, 4-core CPU 

and64G memory. 

[73] Classification 

(SVM) 

IoT 

infrastructure 

Feature 

Extraction 

(Based on 

Adaptive 

boosting.  

SVM kernel 

function’s RBF, 

(σ) the Gaussian 

width, and 

regularization 

parameters C. 

(Simulation experiments) Performed 

with different values c ranging from 

1 to 100. 
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(Wireless signal 

classifiers) 

[74] Classification 

(SVM and 

KNN) 

Industrial 

Environments 

Feature 

Selection 

SVM kernel 

function, (σ) the 

Gaussian width 

and parameters C. 

(σ) the Gaussian 

width and 

parameters C. 

(Simulation experiments) Performed 

with different values c ranging from 

1 to 100. 

[75] Multi-stage 

machine 

learning 

based 

classification 

framework 

Smart City Classifying IoT 

Devices 

distribution of 

volume/times 

during 

active/sleep 

periods), and 

signaling (e.g., 

domain names 

requested, server-

side port numbers 

used and TLS 

handshake 

exchanges. 

Apache server on a virtual machine, 

TP-Link Archer C7 v2, OpenWrt 

firmware release Chaos Calmer 

(15.05.1, r48532). 

[76] Binary 

Classification 

techniques 

Smart-city 

cellular 

infrastructure 

RACH-related 

sleeping cells 

KPIs, AUC. False 

Positive Rate, 

ROC, 

Neighborhood 

Category. 

LTE simulator. 

 

[77] Binary Neural 

Network 

Smart Home  

(Devices) 

Voice 

Commands 

Classification 

Amplitude, 

number of voices, 

Classes, 

Frequency. 

Data set with isolated voice 

commands (Brazilian Portuguese 

language) of 150 People. 

[78] Classification 

(CNN-G, 

CNN-G-F, 

Faster R-

CNNG)  

Smart Cities 

/Restaurant 

Food Images Accuracy Rate, 

Types of food, 

weight, Food 

Area. 

Faster R-CNN / Dish-233 dataset. 

[79] Classification IoT 

infrastructure 

Quality of 

Service 

appId, Latency L, 

Bandwidth B, 

MIPS. latency, 

energy 

consumption. 

iFogSim. 

[80] Bayesian-

based 

estimation 

method 

IoT 

Infrastructure 

Classification 

Accuracy 

Uncertainty 

parameter, 

Accuracy, No. of 

Sampling Points. 

Standard benchmark datasets from 

UCI machine learning repository 

and a real-world OTA dataset. 
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[81] Classification 

(KNN, SVM, 

DT and 

LSTM) 

General 

Infrastructure 

Web News Data 

accuracy 

Accuracy, 

Sensitivity, 

Specificity, Time 

and Space 

Complexity. 

MATLAB fitctree. 

[82] 

 

SVM, nearest 

centroid and 

Naïve Bayes. 

SDN (Software 

Defined 

Networks) 

Classification of 

Data 

Accuracy, 

Training Factor, 

Precision and 

Recall and F- 

Score. 

tcpdump’a packet analyzer utility. 

[83] Optimization 

algorithm of 

IoT data 

IoT 

Infrastructure  

Data Storage User Scale, No of 

Files created, File 

size, Fault 

tolerance. 

Downloading and 

uploading. 

OPNET Modeler. 

[84] Big data 

Analysis 

General 

Infrastructure 

Data 

Management 

Distance as a 

weighting 

parameter, Data 

Node, 

Data size and 

Node name.  

SunJava6, Hadoop 1.03 and Ubuntu 

Linux 10.04 / online terminal 

analysis, OTA-selected training set. 

[85] Deep 

Learning 

(Tensor Train 

Approach) 

General IoT 

infrastructure 

Minimizing IoT 

data Traffic 

SDN Control 

Traffic Control, 

Packet Size, Rate 

of Traffic, 

Ethernet port 

Speed, Service 

Rate, and Packet 

Send Interval. 

Raspberry Pi 3 (1.2 GHz CPU,1 GB 

RAM. 

[86] Decision 

Tree, Logistic 

Regression 

and SVM 

Social Network Data Filtering weighted value, 

frequency, idf. 

Spark cluster, Spark YARN. 

[87] Neural 

Network 

General IoT 

Infrastructure 

Data Recovery Kernel, Dilation, 

Stride, Output. 

200,000 pieces of data from Kaggle. 

[88] Deep 

Learning 

IoT 

Infrastructure, 

Smart Industry. 

Data 

Compression 

Power, Battery 

Performance, 

Accuracy, 

Decomposition 

Level, Error, 

Memory, 

bandwidth and 

Processor 

performance. 

Datasets of UCI multivariate time 

series, UCR univariate time series 

and UEA multivariate time series. 
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Resource optimization is crucial in the IoT environment. IoT has limitations in terms 

of bandwidth, Processing Power, Energy, Memory, etc. This weakness of resource 

constraints in the IoT environment has put the IoT data flow in a state causing the delay. 

This problem cannot be solved by increasing the capacity of Hardware because we 

cannot increase the size of the IoT devices. Therefore, Data Management is the only 

solution to such a problem. Data management in the IoT environment can be done in 

various ways. Many researchers have used different techniques for managing data in an 

IoT environment. Table 2.4 represents the well-known research in the field. S. Lin, C. 

Chen and T. Lee have proposed a hybrid clustering technique, namely LBGLM, to 

minimize the labeled dataset in an IoT environment. They have proposed a method for 

the classification problem for the IoT infrastructure [70]. Classification is essential in 

data management and it can optimize the IoT resources at the first level in data 

management. H. Yao, P. Gao, J. Wang, P. Zhang, C. Jiang, and Z. Han have proposed 

a smart city model. This model can classify data with more accuracy [72]. Similarly, J. 

Huang, L. Zhu, Q. Liang, B. Fan, and S. Li [80] have also worked on the classification-

accuracy using the Bayesian-based estimation method. They have used standard 

benchmark datasets from the UCI machine learning repository and a real-world OTA 

dataset. M. Raikar et al. have shown the importance of SVM, nearest centroid, and 

Naïve Bayes and have compared the Accuracy and have proposed a technique for Data 

Classification. For their experiment, they have used the tcpdump packet analyzer utility 

[82]. G. Casolla, S. Cuomo, V. S. d. Cola and F. Piccialli have proposed an Algorithm 

(Predictive Analysis algorithm) that can help predict the possible data set for 

Classification. They have used R-framework on an Intel Corei9-64GB_DDR4-

2TB_SSDM2 machine for their experiment [71]. Data management is not limited to 

Classification, but it is also about data storage, data filtering, data compression, data 

Recovery, data Accuracy, etc. As Wang, M., & Zhang, Q has proposed an algorithm 

for optimization of IoT network. The focus of the experiment was data storage and was 

completed in OPNET modeler [83]. Hsu I., and Chang C, have used ML methods such 

as decision tree, logistic regression, and SVM for data filtering, which can be beneficial 

for social networking. Their work can be helpful if stopping the wrong information 

spread unnecessarily on social networks [86]. Azar J et al. have focused on the 

compression of IoT data. This paper has used deep learning and has used the datasets 
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of UCR univariate time series [88]. Similarly, [85] has also used deep learning to 

minimize the IoT data traffic. They used the Tensor Train Approach for the 

minimization of the IoT data.  

The researchers have focused on data management rather than resource upgrade, as 

data management will work till the end. The data coming from the sensors is mostly the 

raw data and needs a lot of filtering because of the anomalies and redundancies. In the 

paper [68] and [69], the researchers have used different clustering and classification 

techniques for anomaly detection and removal of redundancy, respectively. Paper [68] 

has worked on the delay value and sensor value for the anomaly detection, and paper 

[69] has worked on the accuracy. Nowadays, people are mainly using the internet for 

news reading instead of radio and television, and there is a lot of wrong news 

information on the internet. To handle such a problem, Mulahuwaish et al. has classified 

data in terms of news data accuracy. They have used different ML methods such as 

kNN, SVM, DT, and LSTM and have used MATLAB fitctree for their experiment. This 

will help minimize the wrong information on the internet and increase the accuracy of 

Web news data [81]. Hou, R., Kong, Y., Cai, B. et al. have used Big Data analysis for 

data management in an IoT Environment [84]. Whenever we discuss data management, 

data recovery also plays a significant role in today's world. Shi, Y., Zhang, X., Hu, Q. et 

al. have worked on NN for data recovery. They have used 200,000 pieces of data from 

Kaggle for their experiment [87]. 

Similarly, [77] has also used neural network for smart devices in a smart home. They 

have worked on the voice commands classification. Moreover, they have used dataset 

with isolated voice commands (Brazilian Portuguese language) of 150 People. 

Table 2.5: Machine Learning Technique for feature extraction and Smart Health. 

Ref. 

No. 
 

Technique Application Focused 

Area 

Evaluation Parameters Experiment Setup/Data Set 

[89] Decision Tree 

Based 

Partition 

HealthCare Heart Disease Accuracy, Sensitivity and 

Precision. (Sex, Chest 

pain, B.P, Chol, Resting, 

Thali, Exang, Old Peak, 

Slope, CA, Thal and 

Num.) 

UCI machine learning 

repository (Cleveland, Hungary, 

Switzerland, and the VA Long 

Beach). 
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[90] Deep learning 

and Big data 

Smart City HealthCare Latency, Bandwidth, 

Energy Efficiency, 

Reliability and Security. 

ICanCloud, / ISPDSL-II, 

Waikato-VIII and WIDE-18. 

[91] Image 

Classification 

HealthCare (Image 

analysis) of 

the brain and 

chest. 

Accuracy and Kappa 

coefficient. 

12000 CT images of brain, chest 

and cervical spine. 

[92] Neural 

Network 

Healthcare Chronic 

Kidney 

Disease 

weight and bias value. CT images in renal cancer. 

[93] Random tree-

based 

classifier 

Healthcare Diabetes 

Prediction 

No. of neurons, No. of 

hidden layers, learning 

rate, epoch, activation 

function, neuron 

initializer, batch size, 

percentage of dropped 

neurons, loss function, 

the optimizer. 

PIMA Indians Diabetes (PID) 

dataset of 768 female diabetic 

patients. 

[94] Deep 

Learning 

Healthcare Feature 

Extraction 

and Detection 

No. of abnormal cells, 

abnormal cells, Precision, 

recall, support. 

Pap smear images / Herlev 

dataset from Denmark Hospital. 

[95] Big Data 

(Spark) 

Healthcare Prediction throughput and execution 

time, impurity, 

maxDepth and maxBins. 

diabetic data from Kaggle, 

cleveland.data of heart disease. 

[96] ML (Support 

Vector 

Machine) DT, 

RF, and MLP 

Healthcare Emergency 

Response 

time 

Accuracy, recall, 

precision and F-score. 

Tenfold cross-validation / 

dataset for student health 

gathered from 1100 instances. 

[97] Neural 

Network 

Healthcare Perceptron Accuracy, Average 

Performance, R-Value. 

UCI machine learning 

repository obtained by the 

Garvan institute. 

[98] K-NN, SVM, 

Random 

Forest, 

Decision trees 

and MLP. 

Healthcare Data set 

accuracy 

No. of patients, No. of 

disease types, Area 

Under curve using ML. 

(WEKA) open-source tool / 

Online health data, datasets are 

downloaded from 

https://archive.ics.uci.edu/ml/da

tasets.html. 

[99] Support 

Vector 

Machine 

(SVM 

Classifier) 

Healthcare Feature 

Extraction 

Detection, moving 

window integration, and 

pulse train. Filtering, 

squaring, and 

thresholding. 

MATLAB classification learner 

app. / ECG acquisition system 

real time data. 

[100] Deep 

Learning 

Healthcare Prediction Requested object 

identifier, request 

date/time, list of object’s 

Biology database, DNA Data 

Bank of Japan, GenBank and 

European Nucleotide Archive. 
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constituents and RT name 

or geographical location. 

[101] Deep 

Learning 

Healthcare Classification 

of skin cancer 

data 

Recall, F1-score, 

Accuracy, Average 

accuracy, and Class 

Precision. 

VGG19, Inception V3, 

SqueezeNet, and ResNet50 / 

(ISIC) image archive. 

[102] Probabilistic 

neural 

network 

(PNN) 

Healthcare Wearable 

Devices 

Heart rate avg. R-R 

interval avg. Peak QRS 

avg. Peak T-wave avg. 

Duration of QRS avg. 

Real time data from different 

players. 

[103] Bayesian 

Neural 

Network 

(BNN) and K-

Nearest 

Neighbor) K-

NN. 

Healthcare IoT-Fog 

Integration 

Blood pressure, blood 

sugar, Body temperature, 

Heart Rate, True Positive 

Value, Throughput. 

Accuracy, Precision, 

Sensitivity and recall. 

Real Time dataset of patients. 

[104] FUEHMF, 5G 

Technology 

Smart City Healthcare Delay, No. of FoG 

servers, No. of Gateway 

Connected, Avg. 

Competition, Lost Rate 

data packet queue. 

SSOAF, CBSF, Fog computing 

architecture for smart cities 

(FCASC) and FCRMFSC. 

[105] Fog 

Computing 

Smart Home Healthcare Precision, Recall, F-

measure, Specificity, 

Heart Rate, Blood 

Pressure, Respiration 

Rate, Gastro-intestinal 

tract, ECG. 

UCI data repository, US EPA 

data repository, Health Related 

Datasets HRD, Datasets ERD, 

Datasets BRD. 

[106] Bayesian 

Classification 

Healthcare Air quality 

Forecast 

Primary Pollutant, 

Pollution Level, PM 2.5. 

Hadoop, HDFS, MapReduce. 

[107] Classification 

(SVM) 

Healthcare Feature 

Selection 

mean-accuracies, mean-

reduct-sizes, Accuracy. 

MATLAB R2016a / BCI 

competition-II Dataset-III from 

Department of Medical 

Informatics. 

[108] Deep 

Learning 

Healthcare Predictive 

Model 

cross-entropy loss and 

class balance. Survival 

rate and Accuracy. 

clinical datasets from 

http://biogps.org. 

[109] Deep Neural 

Network 

Healthcare Heart Disease 

Data 

prediction 

Accuracy, Sensitivity, 

FPR, Precision, 

Specificity, F-measure 

and G-mean. 

PASCAL B-training dataset. 
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Machine Learning is playing a vital role in the field of healthcare. Many researchers 

have proposed models and different algorithms to detect dangerous diseases like cancer 

in its earlier stages. Today the world is under threat due to the pandemic of Covid-19. 

Moreover, the day is not far when researchers will also use machine learning techniques 

to deal with all kinds of viruses. M. K. Hasan et al. and Hossain et al. have used ML 

methods to predict diabetes. They have used a random tree-based classifier and naive 

Bayes, logistic regression, decision tree, and random forest, respectively [93], [112]. In 

recent years researchers have worked on many healthcare applications for Smart Cities. 

As shown in Table 2.5, ML methods for improving the healthcare system have evolved 

from 2018 to 2020. T. Muhammed et al. have used deep learning and big data for smart 

cities [90]. Similarly, Paper [104] proposed a technique using a different method as 

FUEHMF, 5G Technology.   

In the healthcare system, heart monitoring and heart disease are very important for 

IoT devices and smart health for Smart Cities. In the domain of Heart Monitoring, 

several ML methods have been exclusively applied in papers [89], [95], [102], [103], 

[105], and [109]. Notably, S. Mohan et al. have focused on heart diseases and utilized 

the decision tree-based partition technique [109]. The experiment collected a dataset 

from the UCI machine learning repository (Cleveland, Hungary, Switzerland, and the 

VA Long Beach) [89]. Similarly, Deperlioglu et al. has used the technique of deep 

neural network for heart disease data prediction and have used the PASCAL B-training 

dataset for their experiment [109]. In Table 2.5, some researchers have worked on the 

detection of cancer [92], [101], [110]. As G. Chen et al. have taken the CT images in 

[110] SOM and 

ORNN 

Healthcare Cancer 

Detection 

Accuracy, Sensitivity, 

Specificity and low root 

mean square error. 

Cloud, Coil100 and CIFAR-10 

datasets. 

[111] Neural 

Network 

Healthcare Data 

Classification 

Batch size, the learning 

rate, and the epoch size. 

Accuracy. 

Herlev dataset. 

[112] Decision 

Tree, Naive 

bayes, 

Logistic 

Regression 

and Random 

Forest. 

Healthcare Prediction 

Model 

Precision, F-Measure, 

Recall ROC and 

Accuracy. 

Diabetes risk prediction dataset 

collected from a diabetes 

hospital. 
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renal cancer and have used the neural network (Deep Convolution) method for 

detecting chronic kidney disease [92]. Similarly, A. Khamparia et al. have classified 

the skin cancer data by using deep learning [101]. Elhoseny et al. have also worked on 

cancer detection by using SOM and ORNN. For their experiment, they have used 

Coil100 and CIFAR-10 datasets [110].  

Image classification has also played a vital role in today’s healthcare monitoring 

system. H. Tang and Z. Hu have used 12000 CT images of the brain, chest, and cervical 

spine for their experiment of image analysis of the brain and chest [91]. Similarly, [94] 

has also used the Herlev dataset of Pap smear images from Denmark hospital for feature 

extraction and detection. Kesavan et al. has focused on the importance of IoT-Fog 

Integration using BNN and K-NN for the healthcare system by taking the real-time 

dataset of patients [103]. 

In day-to-day life, wearable devices have become our necessity. As it monitors our 

blood pressure, heart rate, and our calorie burn count in real-time. Some researchers 

have also focused on the area where wearable devices can be taken for a better 

healthcare monitoring system. Y. Atif et al. have taken real-time data from different 

players using IoT wearable devices and have used the Probabilistic Neural Network 

(PNN) technique [102]. 

Improving the quality of air is also part of our health. Y. Huang et al. worked on 

pollution parameters such as primary pollutants, pollution level, PM 2.5, etc. They have 

used the Bayesian classification technique for air quality forecast [106]. 

In case of emergency, the response-time has to be significantly more less. Souri et 

al. has used a dataset of student health gathered from 1100 instances and used an ML 

method such as SVM, DT, RF, and MLP in Tenfold cross-validation to improve 

Emergency response time [96]. Similarly, [98-99] and [107] have also used SVM for 

data accuracy and feature extraction for a better healthcare system in smart cities. 

Table 2.6: Taxonomy on ML Approaches for Privacy and Security of IoT Infrastructure. 

Ref. 

No. 
 

Technique Application Focused Area Evaluation Parameters Experiment Setup/Data Set 

[113] Deep 

Learning 

(RNN) 

General 

Infrastructure 

Fog Security DR and FAR Keras on TensorFlow/ RPL-

NIDS-2017 and N_BaIoT-

2018. 
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[114] Support 

Vector 

Machine 

and Block 

chain 

Smart City Privacy/Secur

ity 

Gradient, size, class label, 

dimensions and the Euler 

phi-function. 

Testbed/ Breast Cancer 

Wisconsin Data Set (BCWD) 

and Data Set of (HDD) heart 

disease. 

[115] Classificati

on (NB) 

Security Spam email Email percentage. 

Precision, F-Measure, 

Accuracy, True Positive, 

Negative, FN, TP and TN. 

RStudio / Enron, PU1, UCU 

Spambase and Ling-spam. 

[116] MOEA 

(MOPSO-

Lévy) 

IoT 

infrastructure 

Security Acceleration constants, 

Inertia weight, inertia 

damping rate, No. of grids 

per dimension, Accuracy, 

(TPR), False alarm rate 

(FAR), (TNR) and 

Precision. 

MATLAB 2016 / Datasets as 

Baby monitor, Danmini 

doorbell, Security camera 

PT737, Security camera PT838, 

Ecobee thermostat. 

[117] Supervised, 

Unsupervis

ed and 

Reinforcem

ent 

IoT 

Infrastructure 

Security  

                  - 

 

                                - 

[118] Neural 

Network 

IoT 

Infrastructure 

Security 

Botnet 

detection 

Byte in Per Flow, false 

positive rate (FPR), F𝛽, 

true positive rate (TPR) and 

Accuracy rate (ACC). 

pkt2flow tool / ISCX-Bot-2014 

data set, ISOT data set, ISCX 

2012 IDS data set. 

[119] Support 

Vector 

Machine 

IoT 

Infrastructure 

Security Detection accuracy rate, 

Average detection accuracy 

rate, Average, False alarm 

rate. 

Floodlight, Mininet emulation. 

(Ubuntu). 

[120] Classificati

on 

(MoE 

Neural 

Network) 

IoT 

Infrastructure 

Security Comparison of Machine 

Learning Algorithms in 

terms of Accuracy (%). 

VirusShare malware dataset. 

[121] Neural 

Network 

General 

Infrastructure 

Security Precision, Accuracy, Recall 

and F1-score. 

CICIDS2017 data set and Live 

Data Collection using different 

IoT devices, dpkt python 

library. 

[122] Deep 

Learning 

General 

Infrastructure 

Security Mean Squared Error, Data 

times, Data Volume, 

Decision Times and 

Decision Error. 

Keras, Python2.79, Matplotlib, 

Numpy, 

Hadoop Distributed File System 

(HDFS). 



43 
 

 

Machine Learning approach has already proved its importance by serving humanity in 

healthcare, smart city, smart farming, smart energy, smart home, etc. Security is the 

required field of the IoT environment. The fulfilment of confidentiality, integrity, and 

availability is the prime goal of every wireless system Protocol. Machine learning has 

also contributed to the fulfilment of these requirements. The researchers have used 

different ML methods for improving the security and privacy of IoT infrastructure. 

Table 2.6 shows the use of the ML techniques for IoT security. The researchers have 

[123] Deep 

Neural 

Network 

Smart City Security Accuracy, Sensitivity, FPR, 

Precision, Specificity, F1-

Score. 

S2OS, NumPy framework and 

Pandas framework, Matplotlib, 

Keras framework and Scikit-

learn framework / DS2OS data 

set. 

[124] K-NN 

Classificati

on 

Secure 

Algorithm 

K Nearest 

Neighbor  

Running time, 

Communication Cost, max. 

bucket length, cyclotomic 

polynomial, No. of nearest 

neighbors. 

ESkNN system. PPEDP and 

OT, HElib, EMP toolkit. 

[125] Deep 

Learning 

DL-IDS 

IoT 

Infrastructure 

Security Accuracy, Precision, 

Recall, F-1 score. 

NSL-KDD benchmark data set, 

KDD'99 data set. 

[126] Random 

forest, K-

nearest 

neighbor 

and naïve 

Bayes 

IoT Security Image Texture Toxicity ratio τ, 

Correlation, ASM and 

IDM. Also, Precision, 

Recall, F-measure, Overall 

Accuracy in %Kappa (-1 to 

+1, Entropy and Contrast. 

IoT malware dataset. 

[127] Support 

Vector 

Machine 

IoT 

infrastructure 

Security 

Data Mining Accuracy rate, Number of 

messages, Correct 

Messages, Normal 

information and Spam 

information. 

2200 real SMS provided by a 

mobile communication 

operator.  

[128] Bijective 

Soft Set and 

(NB, RF, 

DT and 

BN) 

Smart City Security Accuracy Precision Recall 

TP Rate TTBM 

Bot-IoT dataset 

[129] Deep 

Learning 

IoT 

infrastructure 

Fog Layer 

Security 

Layer of (Convolutional, 

Pooling and Hidden), 

Nodes in First and 2nd 

Hidden Layer, Precision, 

Recall, Fall out, Accuracy 

and F-measure. 

Apache Spark, / UNSW’s Bot-

IoT Dataset. 
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used SVM for improving security in the IoT environment [114], [119], [127]. Y. Chen 

et al. has worked on 2200 real SMSs provided by a mobile communication operator and 

have used the SVM technique for data mining to improve the IoT Infrastructure and 

Security [127]. 

Today we can see our mailbox full of spam data that are fraudsters attempting to 

take advantage of the infrastructure's security system's loopholes. Venkatraman et al. 

has proposed a technique and have used the Naive bias classification technique in the 

experiment to improve the classification of spam emails [115]. 

A. Samy, H. Yu, and H. Zhang have used Keras on TensorFlow for their research 

experiment and have worked on the technique Deep Learning (RNN) [113]. Similarly, 

Habib et al. have proposed a technique MOEA (MOPSO-Lévy) that will improve IoT 

security. Their experiment used MATLAB 2016 and collected the dataset as data of the 

Baby monitor, Danmini doorbell, Security camera PT737, Security camera PT838, 

Ecobee thermostat [116]. 

As a subset of the machine learning approach, deep learning has its significance and 

has evolved drastically, helping researchers in many experiments related to data 

science. [122], [123], [125], [129]. 

Reddy et al. has used the technique deep neural network for improving the security of 

Smart Cities. Their experiment used the S2OS, NumPy framework, and Panda’s 

framework and used the DS2OS dataset [123]. 

Nowadays, many researchers are creating and proposing different hybrid ML 

algorithms for improving the security of the IoT environment. Some have proposed 

improving the security at the first level, that is, the Device level, while some researchers 

are proposing the scope of improvement at the Edge/Fog Level. M. Sun et al. has 

proposed a technique using KNN that will improve and make the algorithm more secure 

[124]. Similarly, Otoum et al. has proposed a Deep Learning DL-IDS method that will 

also improve the IoT infrastructure's security and privacy. Their experiment used the 

NSL-KDD benchmark dataset, namely the KDD'99 dataset [125]. Karanja et al. have 

used and compared many techniques like RF, KNN, and NB for measuring and 

comparing the toxicity ratio τ, correlation, ASM and IDM, precision, recall, F-measure, 

overall accuracy in kappa. Their experiment has collected an IoT malware dataset and 

has worked chiefly on image texture [126]. 
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X. Dong et al. have used neural network for Botnet detection. The experiment was 

carried out using the pkt2flow tool, and the experiment was done using the ISCX-Bot-

2014 dataset, ISOT dataset, ISCX 2012, and IDS dataset [118]. Similarly, [121] has 

also used neural network, and the experiment was done by using the CICIDS2017 

dataset and live data collection using different IoT devices. 

2.9 Summary 

The resources of an IoT environment are limited. The nature of pervasiveness of the 

IoT devices has created a boundary for the researchers. Therefore, the data 

classification remains the best solution for this resource constrained IoT environment. 

In this study, a state-of-the-art survey has been carried out on IoT network and it was 

found that different machine learning algorithms have been used by the researchers for 

data classification. Machine Learning approaches has proved its importance by serving 

humanity in healthcare, smart city, smart farming, smart energy, smart home, etc. The 

advancements in the machine learning techniques have improved over the last several 

years, which results in the practicing the hybrid techniques in the field of artificial 

intelligence. From this chapter we can conclude that IoT data Classification needs a 

Hybrid data classification algorithm which can optimize the resources at the resource 

constrained IoT Network. The KNN has been used by most of the researchers for data 

classification. Some researchers have been combining the KNN with the deep learning. 

We will try to find out the best solution for the resource constrained problem of this 

IoT network.  

In this chapter, a comparative analysis of machine learning techniques was proposed 

to classify IoT data for resource constrained IoT applications. For this purpose, data 

from different research papers was collected to create two datasets. The data sets are 

used for experiment and the results are shown in the fifth chapter of the thesis. 
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CHAPTER 3 

__________________________________ 

ANALYSIS AND CLASSIFICATION OF 
IoT-DATA AT DEVICE LEVEL AND 

EDGE LEVEL 
__________________________________ 
 

 

3.1 Introduction 

In today's world, we are much more dependent on the internet than we were before. 

The machines' ease and dependability have led us towards a new scenario where 

everything connects to the Internet. Therefore, giving potential to the IoT has benefited 

us in numerous ways. The IoT emerges when different heterogeneous devices are 

connected and are communicating, which provides data of every kind. As the Internet 

of things is getting bigger since wireless communication started developing and getting 

importance. Today we can see every house in the metro cities is equipped with some 

IoT device. IoT devices are connected through a wireless router; therefore, these routers 

are used to transfer data and communicate with the environment cognitively. The most 

common example of these devices is Google Home, Alexa, smart light, etc. [130]. All 

these devices have different network policies for accessing and controlling the Internet. 

The environment in which this whole process is carried out is resource-constrained. The 

existing Framework for the IoT environment has certain constraints such as processing 

power, Storage, battery/energy, and bandwidth, hence causing the delay. Many 

heterogeneous end devices are interconnected, which collects data in almost every 

format is flooding the IoT environment [131-135]. 



47 
 

In an IoT environment, seamless intermediate network devices are used to 

communicate, known as IoT gateway. The IoT Gateway provides information on this 

data that flows in both directions, and also it acts as a translator. Hence it contains two 

different protocols to communicate in day-to-day life, we come across so many various 

sensors that acquire different types of data. Every sensor has another purpose, and these 

sensors are enormous in numbers, so the amount of data is tremendously high. 

Managing a massive amount of data that comes from thousands of sensors is a 

challenging thing. The sensors such as optical sensor, infrared sensor, accelerometer, 

gas sensor, gyroscope, level sensor, pressure sensor, proximity sensor, temperature 

sensor, humidity sensor, etc., collect different data types of different volume and 

variety. To store and process, such a massive amount of data requires a flexible 

architecture/framework. The data captured by the sensors flows through different 

channels, i.e., device level, Fog/Edge level, and reaches the top-level, i.e., cloud level. 

Figure 3.1 describes the layers of an IoT architecture. An IoT architecture's main 

functions should be Sensing, Aggregation of data, Communication, and Utilization of 

data at the application level for providing service. Apart from the functions of an IoT 

Architecture, it should be capable of processing the ever-increasing data with its 

resource-constrained layers, i.e., device layer and Edge/Fog layer. 

 

Figure 3.1: Layers of IoT Architecture. 

3.2 Resource Constrained IoT Architecture 

An IoT Network's environment consists of limited resources such as processing power, 

storage, battery/energy, and bandwidth that causes delay. In an IoT environment, their 
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limited resources are the main essential aspects of concern because of ever-increasing 

data [136]. With the increase in the data every day, the resources need to be upgraded 

with time. The limitations such as size, battery /energy, and the nature of pervasiveness 

restrict an IoT device. The three levels of an IoT architecture i.e., device level, 

Edge/Fog level and cloud level are shown in Figure 3.2. 

 

Figure 3.2: Three Tier IoT environment. 

The resource constraints in an IoT environment are processing power, battery, energy, 

bandwidth, and storage. The constraint parameters remain the same in both the layers 

of an IoT environment, i.e., device/Sensor layer and Edge/Fog layer. An IoT 

device/Sensor receives enormous data from the surroundings. IoT devices need good 

processing power, storage, battery/energy, and bandwidth to process a massive amount 

of data. Due to the restrictions and demand for making small IoT devices, the battery's 

size becomes a big problem in a pervasive IoT device. Therefore, much work on data 

management has been done, and numerous energy-efficient algorithms are being 

employed to process, filter, store, and transfer data. The algorithms work based on the 

application's requirement; similarly, the massive amount of data demands good 

processor power for processing and storing the data. Suppose we cannot increase the 

size of an IoT device. In that case, we have only one Solution and, i.e., data management 

in an IoT environment to optimize the available resources [137-138]. IoT is changing 
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the manufacturing and edge innovation rules in the industrial sector; this has led the 

industrial sector transformation into digital factories and manufacturing intelligently. 

According to the 2018 analysis, IoT application manufacturing has the top priority in 

the world. The most popular organization, such as Microsoft and AWS, are among the 

top manufacturers of IoT applications. Smart manufacturing has become the goal of 

every leading industry across the globe. As its IoT application has a wide range of 

Connected devices both inside and outside the industry. 

The IoT has numerous applications for various sectors such as transport, weather 

monitoring, water supply, Health Care homes, offices, agriculture, and straw. Etc. But 

all these applications share a common problem: limitations of resources 50 memory 

storage processing power and energy. The effect of resource-constrained in the 

environment of Internet of Things has made it harder to process the data at the device 

level [139-141]. 

The sensors and pervasive IoT devices are the building block of the IoT network. 

Where IoT device is sense collect and analyse the data via different IoT nodes. The 

purpose of this IoT network is to sense, facilitate and utilize numerous resources and 

provide service in real-time. This network is divided into three levels that is device-

level, Fog level and the cloud level. During the last few years, much work has been 

done on the universal architecture for an IoT environment, as shown in Table 3.1. 

Table 3.1: Research Work on System Architecture Framework. 

Research Work Focused Area Author & References 

 

 

 

 

 

System Architectures 

Application 

Frameworks 

H. Hsieh et al. [142], A. P. Castellani et al. [143], J. 

Kiljander et al. [144], J. Gubbi et al. [145]. 

Cloud Centric 

Architectures 

G. C. Fox et al. [146], A. P. Castellani et al. [143], Q. Wu et 

al. [147], J. Gubbi et al. [145], D. Mazza et al. [148], A. 

Munir et al. [149], A. Brogi et al. [150], A. Gupta et al. [153]. 

Hardware 

Architectures 

C. Sarkar et al. [154], Morgan [155], A. Al-Fuqaha et al. 

[157], H. Hada et al. [158], Miao Yun et al. [159], A. H. Ngu 

et al. [164], M. A. Razzaque et al. [165], S. K. Datta et al. 

[167], K. K. Karmakar et al. [168]. 

Conceptual 

Models 

M. Kim et al. [169], J. Stankovic et al. [170], D. Guinard 

[17], O. Elijah et al. [171], S. Chen et al. [172], A. Whitmore 

et al. [173], A. Athira et al.[174], M. Díaz et al. [176], A. 

Bassi et al. [177], A. H. Alhamedi et al. [182] A. Javed [183], 

O. Kaiwartya et al. [184] M. R. Palattella et al. [185]. 
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Process 

Architectures 

Z. J. Muhsin et al. [187], F. Kawsar et al. [188], D. Mazza et 

al. [189], S. Sarkar et al. [190]. 

Restful 

architectures 

S. Hong et al [161], D. Guinard et al. [192], A. Rizzardi 

[193], I. Grønbæk [194]. 

SOA  

Architectures 

A. Athira et al. [174], A. P. Castellani et al. [143], B. Cheng 

et al. [195], P. Spiess et al [196], I. Chen et al. [197]. 

 

IoT came into existence in 1999; since then, it is growing with a fierce amount of 

velocity. The basic idea is to connect the day today’s electronic equipment of 

households with the internet and provide a cognitive approach towards the development 

of artificial intelligence. The idea was also beneficial for many other sub-line economic 

attributes, for example, business marketing, decision-making, Healthcare, E-

Commerce, agriculture, manufacturing, industries, social networking, and many more. 

The communication between user and cloud storage via a common platform gives rise 

to the data analytic and decision-making system. And it is attracting many business 

organizations and industries investing in IoT research. Add business organizations can 

find patterns and make important business decisions with the help of Big IoT Data 

Analytics [198]. 

The Big IoT environment is flooded with the data having the property of 6 V’s that 

is, volume, velocity, variety, value, veracity, and variability; therefore, it is called big 

IoT data.  The base of an IoT environment is like a wireless network that combines a 

large number of nodes (small sensors). These sensors are basically for sensing and 

taking the input, e.g., sensing pollution, humidity, monitoring bridge, etc. Most of the 

data that comes from these sensors are generally streaming data in the form of 

measurements or events happening at a particular time. Some sensors are deployed over 

that type of application which generates a large amount of data at high speed. This 

continuous flow of data coming from different types of sensors has emerged the 

necessity to a different and modern technique, framework, and tools to manage this 

huge amount of data which is mostly unstructured. This unstructured data is also 

increasing day by data and because of the increase in the smart devices usually has a 

sensor embedded in them. It is also believed that this data will increase with a high 

speed in the coming years [199]. 
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3.3 Sensor Data Format 

Sensor data consists of data collected from various sensors at the device level. This data 

comes from sensors like GPS, Accelerometer, Gyro, Magnetometer, Barometer, 

Thermometer, image sensors, Motion detector, smoke detector, audio sensors, etc. The 

data of a sensor is processed at different frequencies depending upon the type of sensor. 

For example, sensors like GPS, Barometer, and Thermometer will process at a 

frequency of 1Hz [200]. The data sensed by the sensor is recorded without any change. 

The data gets stored in the following way: 

Table 3.2:  Data Stored from The Sensor. 

Data Type 

1 Byte 

Payload 

N Bytes 

 

. . . . . . 

Data Type 

1 Byte 

Payload 

N Bytes 

As shown in Table 3.2, the first column contains the data type of 1 byte. The second 

includes the payload of N bytes. When data is transmitted over the internet, each unit 

has the header information and the actual data. The header recognizes the destination 

and the source of the data packet, and the original data is called as payload. The receiver 

on the other end only receives this payload. Following Table 3.3 represents data/sensor 

types currently defined along with corresponding descriptions: 

Table 3.3: Sensor Datatype. 

Sensors File Type Description/Example 

Temperature XML text (Float) Ambient Temperature. Temperature inside of a 

housing in milli centigrade 

Image TIFF version 6 

uncompressed (.tif) 

(Binary) 

Grayscale or RGB combination. 

GPS vector and raster data 

(.gpx) 

Packet gps-data structure containing relevant 

GPS data. 

Video MPEG-4 High 

Profile (.mp4) 

motion JPEG 2000 

(.jp2) (Discrete) 

Captures Continues images. 

Light Integer Illuminance. 



52 
 

Accelerometer Text Acceleration in milli Gs for x, y and z axes, 

correspondingly. 

Motion discrete Detection of the changed value. 

Smoke float Alarm is generated because of difference in the 

atmosphere due to smoke. 

Table 3.4 below shows the GPS data structure. The values are stored in little endian 

format. All integers are 4 bytes (total size 92 bytes) and all doubles are 8 bytes long. 

Also, some data may be undefined due to FPS status. 

Table 3.4: Image Sensor Requirements For Processing. 

Type Rate  Bandwidth Size  

(Hz) Byte/s (Byte) Bit/s 

JPEG 

Format 

0.05 250k ∼ 5M 2000k 

RAW Data 0.05 650k ∼13 M 5200k 

  

3.4 Recent IoT Devices and Technologies 

The heart of an IoT device is its microcontroller/processor, an (SoC) service on-chip 

responsible for data processing and storage. Microcontroller development boards are 

the best platforms to inherit these microcontrollers and provide various services that 

allow the user to program microcontrollers according to the application. Many 

microcontrollers have been developed, but very few are being used and are typical for 

the devices or sensors. Some of the standard SBCs single-board computers are Arduino 

Uno, Particle Electron, Espressif system ESP8266-01, ATMega328P Processor, etc. 

Table 3.4 shows all the standard microcontrollers that are being used for an IoT 

environment. Arduino is the most popular in an embedded (MCK) Microcontroller kit 

and is used to incorporate devices, for example, sensors that can collect information 

from the environment. 

The selection of a suitable microcontroller for an IoT device depends on the type of 

sensors and number of sensors incorporated on that device. The microcontroller that 

could match our needs, should coordinate reading and should match the desired output. 

The data communication protocol also plays a vital role. It should be such that it is used 



53 
 

between intra-device communication. In the end, we have to keep in mind the 

communication of the device with the edge-level or cloud-level. Therefore, the 

hardware capable of communicating with the cloud should be given the highest priority. 

Table 3.5 shows the comparison of different Microcontrollers commonly used in an IoT 

device. 

Table 3.5: Different Microcontrollers commonly used in IoT Devices. 

Name  Processor Processing 

Power 

Memory Power/ 

Battery 

Ref. No. 

Arduino Uno ATMega328P 16KHz 32kb flash, 1kb 

EEPROM 

500 mA [201],[204] 

Particle Electron 32-bit 

STM32F205 

ARM Cortex 

M3 

 

120 MHz 

1 MB Flash, 

128 kb RAM 

3.9V-12V 

DC 

[201],[204] 

Espressif System 

ESP8266-01 

32-Bit Tensilica 

L106 

80 MHz 1 MB 300 mA [201],[104] 

Rasberry Pi4 ARM Cortex 

A72 

1.5 GHz 1-4 GB 5V 3A [202],[205] 

BeagleBone 

Black 

AM335X ARM 

Cortex A8 

1 GHz 512 MB RAM, 4GB 

Flash 

5V 12A – 

2A 

[201],[205] 

Qualcomn 

DragonBoard 

410c 

ARM Cortex 

A53 

1.2 GHz 1GB, 8GB Flash. 6.5 – 18v 

2A 

[201],[204] 

PICI6C5X 8-Bit 40Mhz 2KB EEPROM - [132],[206] 

MSP430 16-Bit 16 MHz 512 KB - [205],[206] 

Mega AVR 8-Bit AVR 16-20 MHz 4-256KB - [201] 

Particle Electron 32-Bit ARM 

Cortex M3 

120 MHz 128 KB RAM, 32 KB 

Flash 

- [201] 

Adafruit feather 

32u4 FONA 

32-Bit AT 

Mega 32u4 

120 MHz 2KB RAM 32KB Flash - [202] 

Hologram Dash 32-Bit ARM 

Cortex M4 

120 MHz 128KB RAM, 1MB 

Flash 

- [204] 

LinkIT One 32-Bit 

MT2502A, 

ARM7EJ-S 

260 MHz 4MB RAM, 16 MB 

Flash. 

- [204] 

GOBLIN 2 32-Bit AT 

Mega328P 

16 MHz 2KB RAM, 32 KB 

Flash. 

- [204],[206] 
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PIC 18F4550 8- Bit 31 KHz to 48 

MHz 

256 bytes EEPROM, 

2KB RAM 

- [201],[204] 

8051 

Microcontrollers 

32-Bit  4KB ROM, 128 Bytes 

RAM 

- [202],[204] 

MSP430 micro-c 16-Bit 16MHz 512B SRAM, 16 KB 

Flash 

- [202] 

Infincon TRicore 32-Bit  - - [202] 

Atmel AVR MC 8-Bit 16 MHz 2KB SRAM, 1024 

EEPROM 

- [202],[206] 

 
Above Table 3.5 is showing a detailed specification of different IoT devices used for 

different applications. An analysis of the table suggests the way and approach be used 

for data analysis at different levels of the IoT/Edge network. The analysis of different 

IoT devices is based on processing power, delay, battery/energy, bandwidth, and 

storage/memory. Based on these parameters, the machine learning classification can be 

utilized at different IoT-Edge network levels. By implementing classification of 

machine learning algorithms and analysis of the IoT devices based on processing 

power, storage/memory, bandwidth, battery/energy, and delay of the IoT edge network, 

the following mathematical model is proposed for data analysis of IoT-Edge network 

at different levels. 

3.5 Mathematical Model 

Let the matric Am*n denote the IoT devices and its Corresponding sensors as shown 

below: 

A=   ൦

0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1

൪m*n        (3.1) 

Where ‘m’ is the number of IoT devices and ‘n’ is the number of sensors included. 

Let 𝐼 be the element 𝑎 of matrix A. 

If 𝑎 = ቄ
  1     𝑇ℎ𝑒𝑛 𝑔𝑜 𝑡𝑜 𝑣𝑒𝑐𝑡𝑜𝑟 𝑆ఈ 
  0      𝑆𝑒𝑛𝑠𝑜𝑟 𝑛𝑜𝑡 𝑃𝑟𝑒𝑠𝑒𝑛𝑡   
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Let 𝑆ఈ be the vector from the matrix A, as shown below 

 S =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
Dଵ

Dଶ

Dଷ

.

.

.
Dஒ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 β*               (3.2) 

Where β is the number of data Chunks/clusters generated by ‘n’ sensors. 

Let 𝑑 be the jth element of vector 𝑆ఈ and each 𝑑 will be a column vector as 

D୨ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
Pଵ

𝑃ଶ

Pଷ

.

.

.
Pஓ⎦

⎥
⎥
⎥
⎥
⎥
⎤

  γ*             (3.3) 

Where γ is the number of packets in the jth data cluster and 𝑑 ≤  𝑆ఈ {where 𝑑 is a 

subset of 𝑆ఈ } 

Processing Step 1: 

Det ∑ 𝑑
 ஓ
ୀଵ   ≤  𝑆     (3.4) 

If Determinant of ∑ 𝑑
 ஓ
ୀଵ   ≤  𝑆then the data will be processed at the device. 

If Det ∑ 𝑑
 ஓ
ୀଵ   >  𝑆 , then the data will not be processed at the device level and hence 

will be offloaded and will be forwarded to the next level i.e., Edge Level. 

Similarly, For the k number of sensors present in an IoT device, the processing step 1 

can be written as: 

Det ∑ 𝑑
 ஓ
ୀଵ   ≤  𝑆ାଵ     (3.5) 

If Det ∑ 𝑑
 ஓ
ୀଵ   ≤  𝑆ାଵ ,then the data will be processed at the kth sensor. Therefore, 

repeat the Steps for all IoT devices. Then the data will be processed by the kth sensor 

and, If Det ∑ 𝑑
 ஓ
ୀଵ   >  𝑆ାଵ, then the data will not be processed at the device-level rather 

it will be pushed to the edge level. 

3.5.1. Classification based on the Processing Power of each IoT Device 
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Let 𝑃 is the Processing power of the IoT device and 𝜃 is the value of effectiveness 

(VoE) of the Pth device in terms of Processing Power. And z is the constant value that 

can be obtained from the data set. As the processing power of any device is directly 

proportional to the value of effectiveness, we can write the below equation (3.6). 

𝜃 ∝ 𝑃      (3.6) 

And  𝜃 = Z𝑃               (3.7) 

3.5.2. Classification based on the Storage of each IoT Device 

Let 𝑆௦be the storage capacity of the Sth IoT device. The VoE of that device in terms of 

storage capacity is given as 

𝜃௦ = 𝑋/𝑆௦      (3.8) 

Where X is the constant value derived from the dataset. 

3.5.3. Value of Effectiveness (VoE) 

VoE in terms of processing power and storage is given by 

𝜃௦ = 𝑡𝑃/𝑆௦      (3.9) 

Where, 𝑡is the constant value. 

3.5.4. Classification based on the Power/Energy of each IoT Device 

If Power/Energy of IoT device is taken into consideration, then VoE is given by 

𝜃 = 𝑌𝐸      (3.10) 

Where Y is the constant value. 

The value of effectiveness (VoE) in terms of power/energy and Processing power is 

given by: 

𝜃 = 𝑡ଵ 𝑃 𝐸      (3.11) 

Where 𝑡ଵ is the constant. 
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3.5.5. Classification based on the Bandwidth of each IoT Device 

The value of effectiveness in terms of Bandwidth is given by  

And 𝜃 = 𝑉𝐵      (3.12) 

Where V is the constant. 

The value of effectiveness in terms of processing power and bandwidth is given by 

𝜃 = 𝑡ଶ 𝑃 𝐵      (3.13) 

3.5.6. Classification based on the Delay in sending the sensed information from 
IoT device to Edge of the Network 

If delay is taken into consideration, then the value of effectiveness (VoE) is given by 

𝜃ௗ = K ∗ 1/D      (3.14) 

In terms of Processing Power and Delay, The VoE is given by 

𝜃ௗ = 𝑡ଷ ∗ 𝑃ௗ/𝐷ௗ      (3.15) 

The final value of Effectiveness 𝜃 by combining the above all parameters is given by 

𝜃 = µ ∗ 𝑃𝐸𝐵/𝑆𝐷      (3.16) 

Where, µ is the constant value. More the value of 𝜃 better will be the option of 

choosing it for the data processing. 

The IoT environment's general structure has three levels, i.e., device level, Fog/Edge 

level, and Cloud Level. As most of the data is processed on the cloud level because of 

resource availability, and some may be processed at the Fog level due to the technology 

called Fog Computing. The device-level has very few resources due to various factors 

such as size, nature of pervasiveness, wearables, etc. Therefore, resource management 

with data management is the only solution for a better IoT environment Framework. To 

utilize the device level's available resources and to optimize it for the data processing, 

a general equation/mathematical model has been proposed for the device level. This 

model can decide which data packet should be processed at the device's level and which 
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should be sent to the Fog or cloud for data processing. In the above equation (3.16), 

processing power, energy/battery, bandwidth is directly proportional to the (𝜃)Value 

of Effectiveness. Whereas Storage and delay become inversely proportional. More the 

value of 𝜃, better will be the option of choosing it for the data processing. 

3.6 Experiment and Results 

The available sensors present at different locations around the globe produce a large 

amount of data. Among those sensors, some of the data has been captured and available 

at some authenticated websites. For the experiment, data has been captured in real-time 

from various IoT sensors, and a dataset available online has also been processed. The 

algorithm required for the classification at the device level needs a manual analysis of 

the data so that the classification based on the algorithm's various parameters can be 

done. Two datasets have been utilized for the experiment. The first data set is captured 

in real-time, and the other is taken from ‘data.world’, which is free and open to the 

public. The data set consists of the sensor data that are present around the globe at 

different locations. The graphs below were generated by using Python and R 

programming language in windows 10.  Figure 3.3 to Figure 3.7 below shows the graph 

for the humidity level at different times. This data set is from a data sensor at Chicago 

for weather monitoring. The dataset parameters are water temperature, humidity, 

turbidity, wave height, wave period, and battery life. 

 

Figure 3.3: Data from Sensor-1. 
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Figure 3.4: Data from Sensor-2.  

 

Figure 3.5: Data from Sensor-3. 

 

Figure 3.6: Data from Sensor-4. 
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Figure 3.7: Data from Sensor-5. 

                 

Figure 3.8: The combination of all the sensors from 1 to 5. 

Figure 3.8 shows the combination of all the graphs that are generated from five different 

sensors. It can be seen that the humidity level is lesser for all the sensors at a particular 

time i.e., 42688.50. This particular time can be considered as the optimal for the IoT 

Applications such as smart farming in a smart city. Similarly, graphs were plotted for 

other parameters i.e., pressure, Voltage, light, accel., and temperature. Below are the 

graphs for some of the parameters. 
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Figure 3.9: The combination of all the pressure sensors. 

 

Figure 3.10: The combination of all the Light sensors. 
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Figure 3.11: The combination of all the Voltage sensors. 

3.7 Summary 

The IoT data flows through a resource-constrained environment. As most devices are 

either pervasive or small and portable. Therefore, increasing the hardware capacity will 

increase the size of the IoT device. Hence the data management is the solution for the 

Big-IoT data limitations. This chapter proposes a mathematical model that classifies 

the data at the device-level Fog/Edge level. The data coming from the IoT devices is 

vast, and if this data is well managed in an IoT environment, it can be useful for various 

IoT applications. Most IoT devices are lacking in processing power, battery power, 

storage, and bandwidth. Therefore, it becomes difficult for an IoT device to process a 

huge amount of data. This problem results in delays caused by these IoT devices. These 

constraints underscore the intricate balance required for effective IoT operations. 

Processing power limitations impede the device's ability to swiftly analyze and respond 

to data, while restricted battery power mandates judicious energy consumption. 

Insufficient storage capacity hampers the device's ability to store and manage extensive 

datasets, limiting its potential functionality. Bandwidth limitations further compound 

the predicament, hindering seamless communication and data exchange between IoT 

devices and central systems. Consequently, the inherent constraints necessitate 

innovative approaches to data management, such as edge computing or distributed 

processing, enabling more efficient data handling closer to the source. Overcoming 
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these challenges is pivotal for unleashing the full potential of IoT applications, 

prompting ongoing research and development endeavors to enhance the capabilities of 

these devices. Addressing the deficiencies in processing power, battery life, storage, 

and bandwidth is integral to advancing the efficacy and ubiquity of IoT technologies in 

an increasingly interconnected world. 

      Graphs were generated for the data sets obtained from different IoT sensors, such 

as the Voltage sensor, Pressure sensor, Light sensor, and humidity sensor. The results 

show the difference in the data processing capability by using the proposed model, as 

it is optimal for saving energy and resources.
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CHAPTER 4 

__________________________________ 

DATA MANAGEMENT FRAMEWORK 
FOR IOT EDGE CLOUD 

ARCHITECTURE FOR RESOURCE 
CONSTRAINED IOT APPLICATIONS 

__________________________________ 

 
 

4.1 Introduction 

The Internet of Things (IoT) is a technology that strongly enters people's reality. All 

environments are involved, urban, industrial, office, or home. The speed of adoption of 

the technology has produced a certain disorder and informality in the process. As a 

consequence, important elements were left aside; one of the most relevant is that of 

security. In principle, IoT security does not have to be different from security in a 

typical computer network. In practice, however, there are environmental difficulties 

that further complicate the security problem. Many IoT devices are computationally 

limited, preventing the use of several known robust security mechanisms. The large 

number of devices that can be involved in an IoT network and the exponential increase 

in the number of interactions exacerbate the problem. The diversity of the equipment 

used, both in hardware and software, complicates the possibility of generalizing the 

proposed solutions. There is a wide variety of methods and tools that can be used to 

undertake the work. In the IoT environment, we have resource constraints in most of 

the scenarios. Therefore, including the security aspect in the IoT framework has to be 

in accordance with the processing power, battery life, communication range, and other 

characteristics of the resource constraints IoT framework.  
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The proposed Framework distributes the processing load to the last nodes of a digital 

network (sensors in the case of IoT). The use of computing type poses very attractive 

advantages for IoT solution providers. For example, they allow to minimize latency and 

preserve network bandwidth, operate reliably, speeding up decision-making, capture 

and protect a large number and types of data, and transfer the data to the most 

appropriate place for processing, with better analysis of local data. Edge computing 

technologies have been on the rise for several years, but the reach of IoT technology is 

accelerating its take-off process. As for the factors driving this change, two stand out: 

Falling prices for peripheral devices with increasing processing power. Centralized 

infrastructures support the increasing workload. Edge computing technology also 

arrives at artificial intelligence on devices much more feasible. It allows companies to 

leverage their data series in real-time rather than working with terabytes of data in 

central repositories in the world real-time cloud. In the next few years or decades, the 

technology may evolve to find a balance point between the cloud and more powerful 

distributed edge devices. Software vendors are developing specific, more robust, and 

secure infrastructures and security solutions. Providers will begin to incorporate 

security solutions for peripheral components into their current service offering to 

prevent data loss, provide network health diagnostics, and protect against threats. 

This chapter also discusses different security protocols for the resource-constrained 

IoT framework. The rest of the chapter is organized as Literature Review, IoT 

Ecosystem, Secure Architecture, Machine Learning, Result and Analysis and 

Conclusion. 

4.2 Background 

In the ecosystem of IoT devices, these are largely unsafe, as they are small and energy-

efficient devices; therefore, they also have limited computational resources. This last 

condition affects a lot when trying to include complex security schemes [207]. At an 

industrial level, several enterprises are applying IoT, for example, in intelligent 

transport and agriculture; however, one of the great current home and office automation 

goals is connected living. This objective requires important advances in the field of IoT, 

where it is necessary to provide answers to the problems related to the enormous 

increase in devices that must interact. A particular case in the IoT is that of smart homes 



66 
 

since many times the solutions implemented are ad-hoc by the users themselves, who 

usually try to reduce costs and efforts as much as possible, which is generally reflected 

in a minimal and probably non-existent security scheme. 

The devices involved require interconnection in a many-to-many scheme. It is 

necessary to implement an identity management system to ensure the exchange of 

information that scales appropriately. In this sense, proposes a home system that 

combines Extensible authentication protocol and datagram transport layer security. 

Also concerned with identity management and access control, confirm the possibilities 

of OAuth and make an architectural proposal compatible with services. 

Analyze the problem of IoT security [208-209] in the home and highlight how 

important it is to prevent sensors from indiscriminately capturing and distributing 

household data. As an example, they present the case of private conversations, which 

should not be published. Among the possible approaches, they mention a viable 

alternative that is oriented to services, to balance between centralization and 

distribution of control. Furthermore, the trend in software and distributed applications 

seems to be generally directed towards the use of microservices, delving along this line. 

They highlight the benefits that a microservices architecture, based on TLS / PKI, can 

have in IoT by lightening development and maintenance tasks, beneficial both for 

suppliers and distributors and for users while reinforcing interconnection security. Case 

studies such as that of confirm the possibilities of these techniques in a practical way. 

Said work then analyses the possibilities of using SSH and highlights the advantages 

provided by the data compression issue included in the said protocol, which is 

especially advantageous when working over HTTP. Although most of the related 

work’s SSL / TLS is the preferred security and encryption mechanism, what proposes 

is very interesting when analyzing the complications at a practical level in IoT with 

TLS. Contribute to the IoT environment with a model-managed approach and propose 

an OAuth-oriented model with a strong UML inclination. 

Another interesting architectural and security proposal is presented by, which the 

SSL certification authorities; an approach of local certification authorities would be 

used, which more frequently, but also with a lighter process, would authenticate the IoT 

equipment. This proposal, through transformations, could be adapted to a specific 

architecture, offering the possibility of customizing it to the required environment. It 
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can be considered that a middle point between the two proposals would be that of, 

which uses traditional certificates, but with close authentication, rather than at the node 

level; they emphasize that this mechanism could be complemented with one of 

authorization, such as OAuth or similar. 

Emphasize OAuth, but above all, with the particularity of concentrating its security 

architecture on the gateway equipment, where the base station or sink node resides, 

which is in charge of processing heavy of authenticating, authorizing, and establishing 

the links between clients and resources. This approach is very relevant when we 

consider how susceptible those edge devices are linked to edge computing, through 

which an entire IoT system can be compromised. One of the high-security points in 

edge systems in IoT is usually related to MQTT (or similar protocols). Several works, 

such as that of propose improvements over said protocol. 

4.3 IoT Ecosystem 

This work mainly considered that within the IoT ecosystem, it is necessary to segment 

the location, scope, and access of the equipment involved in two layers: local or edge 

and centralized. In the local layer, represented schematically in Figure 4.1, we have 

those elements that will invariably be installed in the smart home or office, such as 

sensors, actuators, edge processors such as gateways and brokers, and mobile user 

devices. 

 

Figure 4.1: Components at the local or edge layer of the IoT system. 
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Sensors are all equipment capable of capturing physical phenomena, virtual events, or 

periodic signals. Those sensors with the necessary capacity can communicate directly 

with the central broker; otherwise, they will interact with equipment in the edge 

processing subsystem. The sensors will be static when they emit a constant signal that 

would generally be used by mobile equipment moving in the environment as Bluetooth 

beacons for positioning. The dynamic sensors will capture measurements of the 

environment, which will vary depending on the environmental conditions, such as 

luminescence, temperature, humidity, among others. The actuators will allow 

interaction with hardware or software generating events or actions. They will receive 

instructions either directly from the broker or a pre-processor. They are divided into 

premises located in the intelligent environment, such as light or temperature controllers. 

They can also be remote, such as those capable of sending instructions, probably over 

the network, to a distant computer, but controlled from the home or smart offices, such 

as when it is required to send an SMS, email, or tweet. 

Finally, this layer contemplates the pre-processor equipment, which can also be called 

edge processors or brokers. These computers can be Raspberri Pi or small computers 

such as tablets. These capture raw data from the sensors to forward it to the centralized 

broker or actuator when the sensor is incapable.  

 

Figure 4.2: Components in the centralized layer of the IoT system. 

The information can be sent as received from the sensor, or it can be pre-processed, and 

this result sent. In the centralized layer, presented in Figure 4.2, the teams in charge of 
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the general coordination of all the components are necessary, i.e., administration, 

processing, and persistence. These subsystems are linked to each other and also to the 

edge layer through a centralized broker [210]. 

The administration subsystem defines the parameters and configuration of the 

system presents the web interfaces for the administrator users to interact with the entire 

system. In the case where central processing is done with multiple machines, it also 

manages the resulting cluster. The main part of this subsystem is then monitoring, 

which will allow all types of users to review the relevant information, preferably 

through dashboards and statistical tables. For all heavy information processing, the 

corresponding subsystem takes the data collected from the broker and processes it as 

defined by the specific applications or needs of the IoT system. In general, the 

processing will be divided depending, above all, on the urgency of the processing, in 

real-time, which processes the data in a continuous flow, as they arrive from the 

sensors; in memory, which collects the information in the cluster's memory, depending 

on the needs, and processes it in small batches; and batch, which interacts in general 

with the storage system, for processes where the amount of data is greater than what 

fits in the system's live memory. The information generated by the IoT system is 

directed to the persistence module, which safeguards the data for later use either in the 

development of models or in the generation of reports. Several alternatives must be 

considered, depending on the size of the information and the way it will be accessed. 

Finally, the entire system, and more specifically the border and centralized layers, must 

connect and exchange information, which is achieved through a central broker, in 

charge of managing all the message queues, thus reducing the complexity of the 

interactions. 

4.4 Secure Architecture 

The resulting architectural design took into consideration, above all, the need to ensure 

the exchange of information of all the components of the system, taking care of the 

speed of calculation at all times. These elements require reconciling characteristics that 

are often incompatible. For example, more robust cryptography systems may require 

more computing power than many lightweight devices, such as sensors, provide. The 

final architecture designed, implemented and tested is the one outlined in Figure 4.3, 
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which will be described in detail below. In the first place, the components involved will 

be specified, and then the security functionality in general will be presented. 

 

Figure 4.3: Secure Architecture. 

4.5  Components 

The organizational structure primarily comprises three key components: Registry 

Service (Registry) that is responsible for managing and maintaining the registry service, 

User Authentication and Authorization (UAA) that manages the equipment providing 

authentication services for both clients and users. Moreover, general services and client 

teams that encompasses all teams providing general services, as well as the various 

client teams. For the sake of simplicity, the components are referred to in the singular 

form. However, it is important to note that the architecture allows each category or type 

of component, especially services, to operate in clusters. 

4.5.1 Registry Services 

The main task of the registry (REG) is to allow services to register through IP and 

aliases (service name) and thus make them available to customers, who will connect to 

the REG to request the information with which they will finally connect to the services 

of interest. The REG also provides a load balancing service, by detecting that a service 

is registered in a cluster (multiple computers with the same service). The first point of 

contact for all other components of the system, whether these services or clients, is the 

REG, which requires a static IP; all the other components of the system, however, can 

work with dynamic IPs, via DNS. 



71 
 

4.5.2. User Authentication and Authorization (UAA) 

The UAA takes its acronym from the English User Authentication and 

Authorization. Within the proposed architecture it basically provides us with the 

authentication service, which works under OAuth2. The UAA stores the data of all the 

clients in the system, including their roles; With this information, the UAA user 

services may or may not authorize the use of certain elements. Any component can 

connect with the UAA to, through its client credentials (user and password), request an 

access token. In the same way, any component of the system can request the UAA to 

validate a token received from a third party. 

4.5.3. Generic Services and Client Computers 

The last category of components accommodates all other services and all clients. In 

general, these components will interact with each other after having registered/ 

authenticated in the system with the help of the REG and UAA. The services can be 

very diverse and it is up to the system administrator to decide which ones to 

require. However, in the proposed architecture for IoT, there are some that are 

fundamental, for which they have been implemented in the test system, and they will 

be mentioned below. To allow interconnectivity and, at the same time, reduce its 

complexity, the messaging service was implemented, which in the methodology is 

represented by the central broker. The broker is able to receive and distribute all the 

messages circulating in the system and basically allows all services and clients to 

establish a single connection with the broker in general, to deposit messages and 

retrieve them from one or more queues. This broker can work with any communication 

protocol, or a combination of several. However, since in the world of IoT the most 

widespread protocol is the Message Queuing Telemetry Transport (MQTT), that is used 

in the implementation and presented. Another service implemented for the proof of 

concept of the architecture is the one related to persistence, as a necessary support to 

subsequently implement batch processing. For this, a transit service was implemented 

that takes the information from the broker and transfers it to a Hadoop cluster, where 

different types of tools of said ecosystem can be used to process the information. One 

of the cases that was worked on, given the nature of the IoT information, especially that 
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from the sensors, was that of time series. For this, two data series services were built, 

thus providing graphing and trend analysis, among others. Regarding customers, all the 

sensors are considered here, which provide information to the system, the actuators, 

which react with the environment thanks to the information from the system, and all 

those devices, mobile or desktop, that allow the user to enter to configure the system, 

collect processed information, or even act also as sensors and actuators [211]. 

4.5.4. Security Scheme 

The system's security architecture comprises three fundamental scenarios: the basic 

one, to which all elements must adhere to in their transactions, unless otherwise 

specified; the lightweight scheme, generally used only when starting a worker process 

on the system; and the strengthened one, for relationships of trust between services. 

4.5.5. Basic Scheme 

This is the default scheme that the system components will use in their 

transactions. This scheme is represented in Figure 4.3 by the dotted line that 

encompasses the system, and uses a combination of one-way TLS plus OAuth2. Every 

service must provide its public security certificate (PKI) to clients, who can then 

validate it with the certificate authority (CA). Also, every client must provide the 

services with an OAuth access token so that they can validate it with the authentication 

service. The use of TLS, in the proposed scheme, is especially necessary to be able to 

encrypt the content of the information that is transmitted. It is used only on the services 

side to limit as much as possible the overhead that would imply, above all, at the 

administration level (but also of resources and processing), use it in all the 

components. The security breach that appears is compensated with the use of OAuth2, 

through which the clients are in turn validated by the services. 

4.5.6. Light Outline 

This is a scheme that could be considered insecure, which is why it is provided only for 

those cases where an access token cannot yet be obtained, or when it is considered 

redundant to request it. Two cases exist at the moment in the work environment, which 

implement this scheme. When components enter the system in order to initiate their 
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transactions, it is generally necessary to have the OAuth token, but since the UAA 

server IP may have changed, the first step is to contact REG to request the updated 

IP. For this connection, the client does not yet have the token, which is why it is not 

possible to work with the basic scheme. The second implementation of this scheme was 

applied to avoid unnecessary redundant connections and occurs when the service 

receives the token and must validate it with the UAA. It is for this type of case that the 

lightweight scheme comes into play. The service provides its PKI with which the 

communication is encrypted, but the client is not obliged to validate it (although it is 

recommended that they do so), the service provides an "insecure" access point for the 

client, which does not require the token. This is the scheme provided by REG 

exclusively to be able to deliver the UAA data. 

4.5.7. Strengthened Scheme 

Similar to the problem worked in the light scheme, sometimes two services require 

interconnection, but at least one of them (who acts as a client) is unable to obtain its 

access token. When dealing with services, it is not convenient to open an insecure 

channel as is done in the lightweight scheme. In order to maintain the security standard, 

then, it was decided to implement a two-way TLS scheme, which is possible, without 

incurring greater overhead, since, being services, they already have their PKI 

anyway. Additionally, in general, the services will be executed in equipment with 

greater processing capacity. This implementation also requires a dedicated channel to 

be able to execute this type of validation and the example is given by the 

communication between the REG and the UAA. The UAA is the one that provides the 

access tokens and therefore should validate itself which would generate a security 

hole. The REG, then, opens a dedicated channel so that a UAA service can register in 

this way at all times. By connecting the UAA with the REG, they exchange their 

respective PKIs, mutually validating each other over TLS, without reducing the 

system's security standard. 

4.5.8 Functionality 

Returning to Figure 4.3, the dotted line represents the scope of the basic security 

scheme, which encompasses the entire system. Internally, the numbers 1, 2 and 3 can 
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be seen, circled, which indicate the recommended starting order to guarantee the 

fluidity of the service. In practice, at least the services have in their base library the 

functionality to retry the connection when this starting order is not respected. However, 

this can be subject to unnecessary delay. 

In the first place, the registration server, REG, is started, which will provide a central 

access point for the acquisition of contact information for the other services: every 

service will register in the REG its respective IP and its alias (service name) and every 

client will search here, by aliases, for the IP of the service required to be able to connect 

with it. REG offers three access points, each of which must handle a different security 

mode: the first, lightweight, allows any client to obtain the UAA's IP without any 

additional security; the second mode, strengthened, allows the connection of the UAA 

using two-way TLS; the last, basic one, which requires OAuth2, allows clients to 

request information from services, and from services to record their contact 

information. Second, an Authentication Server (UAA) is started, which will provide 

OAuth2 credentials to clients. The enhanced security mechanism, with two-way TLS 

validation, is used between the UAA and the REG. The UAA connects with the REG, 

as well as any other service, to give it its IP and aliases and thus be available to the 

entire system. Once these two services, REG and UAA, are online, all the rest of the 

components, services and clients can start their work. Finally, then, as point 3, any other 

component, be it this service or client, will proceed as follows: first, using the 

lightweight security scheme, they will connect with the REG to request the IP of the 

UAA; They establish the connection with the UAA and request the access token, using 

their client credentials. With the access token in hand, the basic security scheme can 

already be used and, in the case of services, they will be registered with the REG, 

delivering IP and aliases, to wait for client requests, or act as a client from another 

service, as needed. In the case of a client, the next step is to use a service, where the 

basic security scheme will be applied; it connects to the REG and by means of an alias 

it requests the IP of the service of interest, and then connects with said service. 

4.6 Machine Learning 

To perform the object detection, the approach involves utilizing the K-NN algorithm, 

which serves the purpose of using a database where data points are categorized into 
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different classes to predict the classification of a new sample point. It is an ideal choice 

for classification studies when little or no prior knowledge is available about the 

distribution of the data. The K-NN algorithm operates based on the similarity of 

characteristics. The extent to which the characteristics of a new sample point resemble 

our training set determines how we classify it. In the following section, the working of 

the algorithm will be presented. In Figure 4.4, the aim is to classify the test sample 

(represented by the green circle) into either the first class of blue squares or the second 

class of red triangles. The K-NN algorithm is used to make this determination. If we set 

the value of k to 3 (as shown by the solid line circle), the test sample is assigned to the 

second class since there are two triangles and only one square within the inner circle. 

Conversely, if we set k to 5 (as shown by the dotted line circle), the test sample would 

be assigned to the first class because there are three squares and only two triangles 

within the outer circle. 

 

Figure 4.4: Operation of the Algorithm. [27] 

The K-NN algorithm can be applied to both classification and regression tasks. In 

classification, K-NN predicts a class membership or a discrete value. To classify an 

object, the algorithm assigns it to the most common class among its k nearest neighbors, 

determined by majority vote. In regression, K-NN predicts continuous values. The 

algorithm calculates the output value as the average (or median) of the values of its k 

closest neighbors. Additional attributes of K-NN include: 

 K-NN retains the entire training dataset, which it utilizes as a proxy. 

 K-NN doesn't acquire any models. 
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 K-NN conducts real-time predictions by assessing the similarity between an 

input sample and each instance in the training dataset. 

4.7 System Model  

The MLADCF has three layers, i.e., Device Layer, Edge-Fog Layer, and Cloud Layer. 

The device layer is placed at the bottom of the MLADCF. The Edge-Fog layer is in the 

middle, and finally, the Cloud Layer is placed at the top of the MLADCF. The whole 

IoT environment is squeezed in the above 3-level framework as shown in Figure 4.5. 

The device layer at the bottom of the MLADCF is the densest layer among the three 

layers. Usually, millions of active nodes present are sensing data from the environment. 

 

Figure 4.5: Machine Learning Analytics Based Data Classification Framework 
(MLADCF). 

The nodes in this layer vary in different aspects. There are different sensors in today's 

world, such as video sensors, motion detectors, smoke detectors, humidity sensors, 

temperature sensors, proximity sensors, pressure sensors, accelerometers, level sensors, 
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infrared sensors, gas sensors, optical sensors etc. All these Nodes collect data of 

different data types. In order to perform well in an environment, every datatype needs 

additional data storage, processing power, bandwidth, power/energy, etc. These device 

layer nodes have been categorized into the following three categories. 

 Device layer nodes have the capability of processing the data; 

 Nodes that cannot process the data; 

 Nodes used as routers/repeaters. 

The nodes present at the device level collect the data from the environment. These 

nodes can be of different types, such as capturing video data, audio data, textual data, 

etc. The cluster heads connect the data from these nodes. Traditionally the sensed data 

is captured/sensed followed by the filtration or compression process and then forwarded 

to the next level. However, the proposed MLADCF is designed to classify the data at 

the device level based on the parameters such as storage, processing power, bandwidth, 

and battery/power. The MLADCF will classify the data as the device level so that if a 

particular data packet can be processed at the device node, it will not be pushed to the 

Edge/Fog level. Moreover, if the data packet cannot be processed at the device level, it 

will be pushed to the Edge/Fog level. The middle layer is known as the Fog/Edge layer. 

This layer contains the Fog nodes. These nodes are lesser in number in comparison to 

the device level. This layer has better resources in comparison to the device level. These 

nodes have sufficient battery/power, storage capacity and processing power for 

processing the data coming from the device level. However, these nodes also vary in 

terms of storage, processing power, battery, etc. Likewise, device level here, some 

nodes are capable of processing the data, and some are not capable of processing a huge 

amount of data coming from the millions of sensors at the device level. Finally, there 

is the cloud level; this layer has all the required resources for data processing, data 

analytics, big data, decision-making, etc. Cloud provides services to various levels of 

the IoT environment. 

     The Machine Learning Analytics Based Data Classification Framework (MLADCF) 

is a meticulously crafted system with a core objective: efficient data classification. In 

its intricate design, MLADCF orchestrates a dynamic process where data undergoes a 

meticulous sorting mechanism. The nodes within the system possess a specialized 

capability to process specific types of data packets. This targeted approach ensures that 
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each node, equipped with tailored processing capabilities, efficiently handles the data 

assigned to it. The underlying principle is to enhance processing speed and optimize 

resource utilization by assigning tasks based on node capabilities.  

In the complex choreography of data processing, MLADCF acts as a conductor, 

directing the flow of information through the nodes. The synergy between machine 

learning algorithms and data processing capabilities results in a finely tuned 

orchestration. However, not all data fits the predefined processing criteria of the nodes. 

MLADCF accounts for this by intelligently diverting unprocessable data to the upper 

layer. This strategic decision prevents bottlenecks and ensures that the system maintains 

a fluid and adaptive functionality. In essence, MLADCF leverages its design intricacies 

to create a responsive and agile framework that optimizes data processing while 

gracefully handling the nuances of diverse data types. 

The proposed MLADCF is designed so that the data will be classified so that the 

nodes capable of processing the data will process the data packets, and the rest of the 

data will be pushed to the upper layer. This method will be incorporated into the device 

level and the Edge/Fog layer. This data management method will minimize the delay 

and utilize the resources efficiently. Furthermore, it will optimize the resource 

utilization for the coming IoT infrastructure in the future. The final value of 

Effectiveness 𝜃 by combining the above all parameters is given by equation (4.1). 

𝜃 = µ ∗ 𝑃𝐸𝑆         (4.1) 

Where, µ is the constant value. More the value of 𝜃 better will be the option of 

choosing it for the data processing. This paradigm provides the means by allowing data 

to be obtained from billions of devices that can sense, send and make decisions for the 

problems identified in IoT environment. From the state of variables, the structured, 

unstructured, or semi-structured records can be generated, which have the potential to 

generate changes from the information and knowledge that can be obtained when the 

processing mention the challenge to achieving the above due to the heterogeneity and 

discovery of the sensors, for which they propose solutions such as the creation of a 

middleware, that allows the connection between the sensors and the cloud to be made 

transparently. The MLADCF distributes the processing load to the last nodes of a digital 
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network (sensors in the case of IoT). The use of computing type poses very attractive 

advantages for IoT solution providers. For example, they allow to minimize latency and 

preserve network bandwidth, operate reliably, speed up decision-making, capture and 

protect a large number and types of data, and transfer the data to the most appropriate 

place for processing, with better analysis of local data. Edge computing technologies 

have been on the rise for several years, but the reach of IoT technology is accelerating 

its take-off process. As for the factors driving this change, two stand out: Falling prices 

for peripheral devices with increasing processing power. Centralized infrastructures 

support the increasing workload. Edge computing technology also arrives at artificial 

intelligence on devices much more feasible. It allows companies to leverage their data 

series in real-time rather than working with terabytes of data in central repositories in 

the world real-time cloud. In the next few years or decades, the technology may evolve 

to find a balance point between the cloud and more powerful distributed edge devices. 

Software vendors develop specific, more robust, and secure infrastructures and security 

solutions. Providers will begin to incorporate security solutions for peripheral 

components into their current service offering to prevent data loss, provide network 

health diagnostics, and protect against threats. 

4.8 Deployment and Testing 

The implementation decision was mainly that each of the components can be executed 

on a variety of computers and with the least interdependence, for which we proceeded 

to work on a microservices architecture that allows their deployment either as 

independent processes, or within a containerization structure, such as Docker. For 

desktop services and clients Java was used with Spring Boot in general. For the central 

messaging service, it was decided to work using the MQTT protocol and for the 

development of the broker the Moquette library was taken as a base, to which it was 

modified to add support for OAuth2 mainly. An HDFS cluster was used as a basis for 

persistence services time series services were built on the local network, which, 

according to the current interests of the thesis, were the most suitable for processing the 

data coming from the sensors. 

4.9 Algorithm for Proposed Work 
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Suppose we have n data points, denoted as (𝑋, 𝐶), where i ranges from 1 to n. Here, 

𝑋 represents the feature values, while 𝐶 represents the corresponding labels for 𝑋. 

Assuming that the number of available classes is c, the label 𝐶 can take on values from 

1 to c for all values of i. Let x be a data point for which the label is unknown, and we 

want to determine its label class using the k-nearest neighbor algorithm. 

 Calculate the Euclidean distance "d (x, 𝑥)" between x and each training instance 

𝑥, where i ranges from 1 to n. 

 Arrange the n Euclidean distances in ascending order. 

 Choose a positive integer k and select the first k distances from the sorted list. 

 Find the corresponding k points for these k distances. 

 Let ki denote the number of points belonging to the 𝑖௧ class among the k points, 

where i ranges from 1 to c. 

 If 𝑘 > 𝑘 for all j ≠ i, then assign x to the class i. 

4.10 Setup 

It interacted with OpenTSDB and Prometheus as for customers, it was decided to build 

generic libraries for different types of systems, which facilitate the process of 

developing specific applications. A Java client library was developed, one for Android 

mobiles, one for Arduino MKR and another for ESP32, the latter three based on Eclipse 

Paho. The Arduino libraries were intended exclusively for use in sensor and actuator 

controllers. System tests were conducted in a controlled office environment. The main 

equipment was an RPi 3B + that served as a Wi-Fi Gateway, providing DNS and NTP 

services, among others. MKR 1010 and ESP32 controllers were used simultaneously, 

which permanently received information from temperature, humidity and noise sensors, 

such as the DHT11 and the KY038. The RPi3B + also hosted the REG, UAA and 

messaging broker MQTT services. Persistence services over HDFS as well as TSDB 

were installed on Linux on an i5-4210U with 8 GB of RAM. In this last equipment, 

generic services were also installed for sending and receiving messages, with which the 

fluidity of the interaction was verified. 

As a mobile client, a N9005 was used, which had two functions: a dummy sensor, 

sending a large number of random numbers to the system, and a light actuator, warning 
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each time that the measurements of the real sensors exceeded certain levels 

parameterized in the application. Figure 4.6 is presents one of the setup of the testing 

system. 

In the experimentation related to the security tests, it was decided to assume that a 

possible attacker was already connected to the local network and that he was, 

potentially, capable of making any request and capturing all the traffic. In the first test, 

Zap was used to perform both active and passive scanning, and it was verified that 

security was maintained (encrypted traffic), except in the case (documented in the 

architecture) of the lightweight scheme. 

 

Figure 4.6: Setup. 

In Figure 4.6 from left to right, a cluster of 3 Raspberry Pi is observed running all the 

services on Docker; an ESP8266 monitoring noise level with a KY038; a MKR1010 

monitoring room temperature with a DHT11; an N9005 injecting random messages, 

and a desktop monitoring all services. 

4.11 Results and Analysis 

The process of including complex security schemes in lightweight IoT devices is not 

trivial as stated by Khan and in this work this statement is agreed. Two notable cases 

were that the handling of TLS with auto-generated certificates for MKR 1010 required 

regenerating all the firmware to include the CA, and that it could not be carried out on 

ESP8266 controllers due to the unavailability, in practice, of open-source libraries. This 

is sufficiently complete to guarantee the expected level of security. The approach 

adopted generally takes up the warnings made by Lin and Bergmann tries to provide a 
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sufficiently complete and simple system so that with minimal technical support it could 

be implemented at home, and then managed directly by the user. 

 

Figure 4.7: Measurement of Effect of change in Temp/ Humidity in DTH11 Sensor. 

 

Figure 4.8: Measurement of Effect of change in Temp/ Humidity in DTH11 Sensor. 

This, of course, has limitations given by the great variety of types of users that may 

wish to be included in the IoT. However, the tests carried out suggest that the heart of 

the prototype would allow providing this, if some facilities at the user interface, 

equipment and installer’s level can be included. This work confirms in relation to the 

problem of identity scaling and the benefit that can be obtained both with OAuth and 
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with a service-based approach. Delegating authentication to a single point, then relying 

on temporary credentials, as OAuth2 allows, keeps the identity infrastructure light. 

 

Figure 4.9: Temp/ Humidity in DTH11 Sensor comparative Analysis. 

It is precisely this approach to services / microservices that allows working with TLS 

to not be too demanding at the maintenance level, as highlighted by Díaz-Sánchez et 

al. This section recognizes the importance that at the security level should be given to 

the edge equipment; it especially reinforces the gateway equipment in order to later 

implement improvements in the MQTT protocol, in the style of what was done by Singh 

et al. but mainly including the use of OAuth2 and TLS. 

4.12 Summary 

This chapter focusses on the current need for data management in resource constrained 

IoT applications, especially those linked to a home context, and to do so without 

impairing the user's freedom of access to collect information and to modify the 

configurations of their system. The proposed Framework is centered around the 

management of data at various levels of the IoT architecture. In this chapter, the 

MLADCF (Machine Learning Analytic Based Data Classification Framework) has 

been proposed. The main contributions of this work include the implementation of a 

data management architecture for agriculture. In this regard, IoT sensors were utilized 

for data collection, enabling the creation of a real-time IoT network. As discussed at 

various sections of this chapter, the response time of the IoT device is mainly dependent 

on data generation, resource availability and data management at different levels of the 

framework. This need, as it turned out, starts among other things from the relative 
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informality of the IoT, especially in a smart home environment. It began with a 

methodological conception that stratifies the environment in layers: the one most 

closely related to the interaction with the space by collecting information and executing 

actions to modify the microenvironment, and the layer of centralized processing and 

analysis of the information. The device layer and edge layer were interrelated with a 

centralized connection that unifies them while also maintaining their light coupling.  
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CHAPTER 5 

__________________________________ 

DESIGN AND IMPLEMENTATION OF 
MACHINE LEARNING ALGORITHMS 
FOR RESOURCE OPTIMIZATION IN 

IOT 
__________________________________ 
 

 

5.1 Introduction 
The Internet is one of the tools of the 21st century that has advanced the most over time. 

IoT is considered a base technology for implementing Smart city projects in the world. 

The growth in the number of connected devices is exponential. In 2015, the number of 

connected devices was five billion; in 2017, it exceeded eight billion. We currently find 

ourselves with a forecast of between thirty and forty billion for 2023. This gives us an 

idea of the large number of data to be processed by these devices and companies' 

involvement in obtaining the greatest benefit. The Internet of Things has been 

developed with greater force in factories under the name of Industrial Internet of Things 

(IIoT, Industrial Internet of Things), compared to the Consumer IoT developed outside 

of them. The IoT is based on RFID (Radio Frequency Identification) technology. It 

allows each product or device to be assigned a code that serves as a unique identifier. 

The objects connected to the IoT usually carry sensors capable of detecting real-world 

conditions and actuators with which they can execute actions. In short, the IoT focuses 

information and decision-making on each device and then shares that data in the 

network through the Internet. Moreover, the combination of IoT and Artificial 

intelligence has also been important for decision-making, forecasting, smart healthcare, 

smart city, smart agriculture, smart industry, and much more [211]. 
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Machine Learning is used to apply algorithms, which, thanks to statistical 

techniques, allows machines to learn from experience. Machine Learning has four main 

variants. The machine is trained with labeled data as an example in supervised learning, 

thus providing a learning guide. On the other hand, in unsupervised learning, the data 

is not labeled, so the machine looks for similarities and forms groups based on them. 

Reinforcement learning is based on trial and error. The machine learns to carry out a 

task according to the consequences of its past decisions. Finally, Deep Learning is 

inspired by the functioning of the human brain to extract capabilities such as vision, 

pattern recognition, or motor-sensory control through artificial neural networks. 

People's lives are easier thanks to Artificial Intelligence. It frees up repetitive or 

complex tasks quickly, improves the quality of transport and safety, enables market 

forecasts, and pursues a good user experience through chatbots and recommendation 

systems, among others. In this chapter, the technical aspects of the Machine Learning 

tool and its applications, such as Smart Cities, are explained. A smart city's 

development is based on sustainability and technology to achieve efficient, innovative, 

safe, and high-quality public services. Thus, an urban complex is qualified as intelligent 

based on the investments made in education, energy infrastructures, communication, 

and transport technologies, ensuring a high quality of life, sustainable economic-

environmental development, and good use of the citizens' time. Tokyo, London, 

Singapore, Barcelona, Amsterdam, Oslo, and New York are the main examples of smart 

cities for carrying out numerous smart projects. However, smaller cities such as 

Srinagar are also putting into practice proposals to boost tourism through innovation 

applied to public and ornamental lighting. From improving traffic flow to constructing 

houses equipped with energy-saving systems through efficient lighting using solar 

energy [212]. 

5.1.1 Cloud of Things 

The Cloud of Things concept provides mechanisms to bring data from IoT devices to 

the cloud. This integration provides scalability, reliability, flexibility, and security to 

store IoT data securely, efficiently, and economically. Various technological proposals 

from companies’ leaders in cloud computing, open-source projects, and projects 

research promoted by the European Commission were developed to enhance this 
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integration. Tech companies have sought to exploit the infrastructure they have 

currently to support the inclusion of IoT in the cloud. Companies such as Amazon, 

Microsoft, Google, and IBM promote device support intelligence in their cloud 

computing infrastructure through platforms and different services to meet the needs of 

connecting the physical world with the digital world. Amazon allows the connection of 

IoT devices with your cloud using the Amazon Web Services (AWS) IoT Core, which 

provides a secure connection of devices IoT, routing and processing, control, and 

interactivity with IoT devices. The messages received by the AWS IoT Core can be 

routed to other platforms of the Amazon product portfolio such as AWS S3, QuickSight 

etc. [213]. 

Cloud computing is a mature technology that offers increased complex, large-scale 

computing capabilities via the Internet. Cloud computing provides easy access and 

secure computing resources to individuals and businesses on demand. In addition, this 

technology provides technical advantages such as energy efficiency, resource 

optimization, elasticity, or isolation of environments execution. These benefits have 

been possible due to the technological pillars fundamentals on which cloud computing 

is based, virtualization, and distributed computing. As a result, cloud computing 

introduces flexibility, scalability, high availability, and security features, converting it 

into this technology with more interest for handling the Big Data generated by IoT. 

Virtualization is a technology that allows creating computational resources virtual 

or logical based on the abstraction of physical resources. As a result, computational 

resources are more efficient and flexible. The most widely used virtualization 

techniques are virtual machines and containers. The Virtualization is at the hardware 

level managed by a hypervisor. It is the operating system capable of being installed. It 

runs using resources virtual computational, i.e., memory, processor, hard drive, etc. 

provided by the operating system. The hypervisor is in charge of abstracting physical 

resources, creating a set of customizable computational resources, and presenting these 

resources for virtual machines to use. As a result, each virtual machine is isolated and 

independent of the others to provide some level of security and run the applications 

necessary to its operation without affecting the other virtual machines. Examples of 

hypervisors are Xen, VMware, and Kernel-based Virtual Machine (KVM). 
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Container is a lightweight operating system executed using the physical 

computational resources provided by the system operating (host). Virtualization is at 

the operating system level managed by a virtualization layer (container engine). The 

virtualization layer partitions host resources to provide virtual network interfaces and 

independent spaces for container processes. In this way, each container can run 

applications isolated from the other. Examples of virtualization layers are Docker, 

Linux Container (LXC), and OpenVZ. 

Infrastructure as a Service (IaaS) provides infrastructure resources through virtual 

machines. User can configure system operating, software, and some network and 

security settings. Platform as a Service (PaaS): provides platform layer resources giving 

support to operating systems. The configurations allowed for the user are more 

restrictive and limited to the configurations and deployment of the applications. 

Software as a Service (SaaS) provides applications to end users. The consumer is 

only able to configure the parameters that allow the application. IoT has found in cloud 

computing an opportunity to solve the limited characteristics of their devices to store, 

process and analyze the data. The integration between IoT and cloud computing was 

imminent because of its many advantages. This integration has led to the generation of 

new business models such as Sensing as a Service (SenaaS). The SenaaS model 

proposes that the data collected by sensors be stored, sold or traded by the owner of the 

data. For example, a temperature sensor in a house can collect data and store this 

information in the cloud, and said information from the temperature sensor is published 

so that a manufacturer of thermostat equipment can improve the performance of your 

products. In addition, this integration gave rise to the creation of the concept of Cloud 

of Things [214]. 

5.1.2 Limitations of cloud computing 

Despite the many advantages of managing data in the cloud computing infrastructure, 

this has some limitations that must be faced for the optimal management of Big Data 

generated by IoT. 

Latency: is the most critical of the Big Data analysis limitations. End-to-end latency is 

critical in delay-sensitive applications, such as remote health monitoring of critically ill 

patients. Despite that the cloud can provide sufficient resources for optimal 
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performance in real-time processing, latency depends on other factors such as 

communication links and devices 

network intermediates.  

Bandwidth occupation: large volumes of data that must be transmitted to the cloud can 

cause saturation at the level network. Video and audio data generated by IoT devices 

during monitoring mainly cause this saturation. Although there are compression 

mechanisms for reduce the amount of data of the type video and audio in IoT, which is 

still considered a problem. 

Geographic Centralization: Computational resources are located in a centralized 

location that can be different from the geographic location of IoT devices. As a result, 

IoT devices can be geographically located at large distances with the location of the 

servers that make up cloud computing which can increase latency and decrease 

performance QoS. 

Low QoS: Geographical distribution of data centers that make up cloud computing can 

cause low QoS and low perception of service or quality of experience. Furthermore, the 

communication between IoT devices and the cloud depends on an unreliable network, 

which can fail, causing a reduction in the QoS. 

5.1.3 Fog Computing 

The concepts of Fog Computing and Edge Computing emerge as proposals for efficient 

technological solutions to face the limitations of cloud computing and efficiently handle 

the Big Data generated by IoT. After the operation of both, the main idea is to bring the 

storage capacities closer and process to the source that generates the data (IoT devices, 

mobile phones, cameras, etc.). However, the two paradigms are usually seen as analogs, 

these present small characteristics that differentiate them each. Below are the 

characteristics of each of these paradigms are detailed: 

5.1.4 Edge Computing 

It is also known as Mobile Edge Computing (MEC) and has its origin in mobile 

communications. MEC appears under the necessity of smart mobile devices 

(smartphones) users to improve their access to applications and services on the mobile 

network. At MEC, part of the Computational resources of cloud computing is brought 
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to the brink of mobile networks to meet these needs through servers, micro data centers, 

and cloudlets. The cloudlets were a previous proposal to MEC and are framed in what 

is known, such as Mobile Cloud Computing. From an IoT point of view, edge 

computing refers to devices with interconnection capabilities of the network and some 

computational capabilities at the edge of the IoT network. The edge of the network in 

an IoT architecture comprises IoT gateways, smartphones, and some embedded devices 

with limited computing features. 

Unlike edge computing, this has its origin in IoT to cover IoT devices' storage and 

processing needs. For this reason, Fog Computing is more associated with IoT than 

edge computing associated more with mobile communications. Fog Computing 

comprises nodes Fog between IoT devices and the cloud. The Fog nodes are devices 

that offer computing capabilities, storage, and network services such as IoT gateways, 

routers, and smartphones. The wide range of devices for Fog Computing makes it 

possible to create geographically distributed services. It is known as a highly distributed 

and heterogeneous technology. In current literature, Fog Computing is considered an 

extension of cloud computing. Because it has the objective of extending data 

processing, storage, and analysis capacities. This extension is known as Cloud 

Continuum or IoT-Fog-Cloud Continuum, including Edge-Cloud Continuum. Since 

some devices used as Fog Nodes are at the edge of the network, edge computing can be 

a case particular to Fog Computing. 

5.1.5 IoT Architecture with Fog Computing 

The Internet of Things World Forum (IoTWF) 2014 proposed an extension of the 

reference architecture of 3-layer IoT in a 7-layer architecture, which includes Fog 

Computing. Fog nodes have limited computational resources and a capacity that varies, 

so it is a huge challenge to develop a platform and a service model in this layer. 

Currently, lightweight virtualization technologies are being used for their efficiency in 

the use of available resources. Mainly, the technology based on service containers 

emerge as the best option to be adapted at the Fog nodes. This technology offers 

virtualization and isolation of applications or services at the operating system level 

without the need for virtualization of hardware and drivers. 
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Fog computing provides important benefits to manage the Big Data generated by 

IoT. The processing performed at the edge of the network, also known as edge analytics, 

reduces the high data redundancy IoT. Pre-processing data tasks such as filtering, 

cleaning data, extraction of variables, comprehension, and reduction techniques of data 

dimensions at the edge have reduced the volume of data sent to the cloud and 

subsequently stored. In the same way, techniques to merge several data streams into 

one or send the data only when anomalies are detected reduce the frequency with which 

IoT data is generated. In addition, handling interoperability technical, semantic, and 

syntactic in Fog nodes (gateway IoT) reduces IoT heterogeneity. In short, Fog 

Computing reduces latency, bandwidth consumption, and storage space. It provides 

important advantages such as improving QoS, supporting mobility, interoperability, 

and device location awareness [215]. 

.  

Figure 5.1: IoT Architecture with Fog Computing. 

With this vision of using light virtualization technologies, platforms such as ParaDrop 

or Apache Edgent have been developed to provide data processing at the edge. Apache 

Edgent is a platform designed for real-time data processing on devices situated at the 

edge. It is primarily utilized for integration with the IBM Watson IoT platform in the 

Cloud. However, the development of more platforms adapted for use in Fog 

Computing. A clear example of using technology containers is presented, where a 
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gateway is implemented IoT using micro-services based on container virtualization 

Docker to optimize resources [215]. 

5.2 Background  
 
Human beings rely on pattern recognition to comprehend their surroundings and 

anticipate behavior. The surge in user-system interactions generates vast amounts of 

data, presenting an opportunity to extract patterns that enable accurate predictions. 

Although often used interchangeably, data science, data mining, machine learning, and 

artificial intelligence differ from one another. This chapter elucidates these distinctions 

and provides an introduction to machine learning fundamentals. Moreover, it explores 

various learning types, each suitable for specific problem-solving scenarios, along with 

examples of algorithms employed in each case. Machine learning is an automated 

approach to identifying significant patterns within datasets. It has become ubiquitous 

in tasks involving extensive data analysis, permeating our daily lives through 

technologies like email filters, recommendation systems, facial recognition, 

smartphone speech detection, weather forecasting, and traffic inquiries. Its applications 

extend to diverse domains, including medicine, marketing, logistics, and industrial 

equipment maintenance. Due to the complexity of these applications, it is impractical 

for humans to manually program specific instructions for each task. Instead, computers 

must possess the ability to learn from experience and adapt to novel situations. Different 

forms of learning exist, such as supervised learning, unsupervised learning, 

reinforcement learning, and deep learning, each characterized by unique attributes and 

algorithms that are employed based on the specific problem at hand. 

5.2.1 The Machine Learning 

Learning in a Machine Learning system consists of adjusting the parameters of a model 

based on the data received. This data set is called a data set, which contains both 

independent and dependent variables. The independent variables (features) are those 

columns of the data set used by the algorithm to generate a model that best predicts the 

dependent variables. On the other hand, the dependent variables (labels) are the 

columns of the data set resulting from a correlation between independent variables, so 

they must be predicted by the implemented model. Classical programming is 
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understood as a set of rules designed by a person to obtain responses that meet these 

rules from input data. On the other hand, Machine Learning is in charge of obtaining 

the most effective rules that relate the input data with the answers we hope to obtain 

through learning. The advantage of Machine Learning is that these rules can be applied 

to different input data to produce answers that have been automatically generated by 

what the system learned and not by instructions generated by a human. For example, if 

we wanted to design a Machine Learning algorithm to predict the price of a house in a 

certain city, the dependent variable would be the price of the house. In contrast, the 

independent variables would be all those factors that influence the price of housing, 

such as the surface area, the number of rooms, the distance to the city center, etc. 

The model must be sufficiently adjusted to the input data, but it must also have 

enough consistency to give a good result when different data are introduced. To do this, 

the data set is divided into two data subsets: the training data, which corresponds to 

approximately 80% of the data set; and the test data, which corresponds to the 

remaining 20% and will be used to measure the quality of the model after training. 

 

Figure 5.2: Machine Learning Process. 

Once we have the data, we need to establish a hypothesis: find an equation that best 

approximates the real behavior of the modeled phenomenon. This equation is the one 

that relates the input data and model parameters to the output. What is not measured 

cannot be improved, so the next step is to find the error in the prediction and try to 

minimize it. To minimize a function, set its derivative equal to zero. The cost function 

is responsible for compiling the error between the dependent variable to be determined 

and the hypothesis based on the model parameters. In some cases, it is easy to find the 
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formula that introduces the input and output data and provides the best parameter value 

to reduce the error to a minimum. However, with other models and other cost functions, 

it will not always be possible to find the minimum of the cost function analytically. For 

this reason, it is usual to use iterative methods that allow the error to be minimized little 

by little, such as the Gradient Descent method. The diversity of models and cost 

functions in Machine Learning makes it necessary to find solutions for non-convex 

functions, that is, for those with more than one minimum. The Gradient Descent method 

takes advantage of the derivative calculation to find the local minima since the 

derivative indicates the value of the slope at a given point. Since what is desired is to 

reach the minimum point, the logical thing is to advance in the direction in which the 

slope is high. Hence, the steps to be followed by this method are as follows: locate the 

largest slope in the current position, move in that direction a certain distance and stop 

in that new position. The process is repeated iteratively until convergence. 

5.2.2 Supervised Learning 

In supervised learning, the agent looks at sample input and output data pairs to learn a 

function that models the output based on the input. Therefore, the data used to build the 

model is the information to be predicted. There are two types of problems in supervised 

learning: regression problems and classification problems. A regression model predicts 

a continuous quantity, while a classification model predicts a label. 

Some of the most commonly used regression and classification algorithms are 

briefly explained below. Among the regression techniques, linear and polynomial 

regression stand out; and logistic regression, K-Nearest Neighbors and Support Vector 

Machine, stand out among the classification algorithms. Decision Trees, Random 

Forest, and Naïve Bayes classification are other known algorithms [216]. 

5.2.3 Linear Regression vs Polynomial Regression 

Linear Regression is a widely used technique in the field of Supervised Learning due 

to its simplicity and great utility. It consists of predicting a dependent variable y based 

on one or several independent variables x by drawing the straight line that best fits the 

data set. Equation (5.1) represents the hypothesis of this model. 
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ℎ(𝑥)= 𝑏+𝑏ଵ𝑥ଵ+𝑏ଶ𝑥ଶ+𝑏ଷ𝑥ଷ………   (5.1) 

The bi coefficients are the model parameters adjusted in the training stage as more data 

is entered. The model's objective is to minimize the cost function, that is, to make the 

difference between the actual output value (y) and the prediction value (h) minimal. 

The cost function is the Mean Square Error, which measures the squared distance 

between each point and the vertical that joins it with the regression line (Equation 5.2). 

𝐽 (𝑎, 𝑏) =12𝑚 Σ(ℎ(𝑥(𝑖)) −𝑦(𝑖))2    (5.2) 

The Gradient Descent algorithm is used to minimize this cost function, which is an 

iterative process that gradually reduces the error until a minimum is found in the cost 

function. Linear Regression can be simple if there is only one independent variable or 

multiple if there are more than one. This model is fast and robust, but there must be a 

certain linear relationship between input and output. 

 

Figure 5.3: Linear Regression. [27] 

An example of simple Linear Regression shown in Figure 5.3 is to predict the number 

of umbrellas sold based on the amount of rain according to the history of the previous 

year. An example of Multiple Linear Regression is predicting the sales of a product 

based on the money invested in TV advertising and radio advertising. In the latter case, 

since there are two independent variables, it is possible to represent them by adjusting 

a plane instead of a straight line [216]. 

Polynomial Regression tries to find a polynomial of degree n that fits the data 

distribution using a curve. It is useful when the Linear Regression cannot fit the data 

sufficiently due to some non-linearity between them. Equation (5.3) represents the 
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hypothesis for a one-variable third-degree Polynomial Regression, while Equation (5.4) 

represents the hypothesis for a two-variable second-degree Polynomial Regression. 

ℎ(𝑥)=𝑏0+𝑏1𝑥1+𝑏2𝑥12+𝑏3𝑥13   (5.3) 

ℎ(𝑥)=𝑏0+𝑏1𝑥1+𝑏2𝑥12+𝑏3𝑥2+𝑏4𝑥22+𝑏5𝑥1𝑥2  (5.4) 

Polynomial models gain much flexibility for linear ones since more or less adjusted 

curves are obtained depending on the polynomial degree. However, increasing the 

degree of the polynomial too much brings with it the problem of overfitting since, 

although the error is greatly reduced for the initial data, the model loses its ability to 

generalize to new input data. For example, the hourly energy demand as a function of 

the outside temperature follows a non-linear behavior adjusted with a polynomial of 

degree four. 

 

 

Figure 5.4: Linear Regression Vs Polynomial Regression. [27] 

5.2.4 Unsupervised learning 

In unsupervised learning, the agent detects existing patterns in the input data without 

observing the output. Therefore, the objective is to extract meaningful information from 

the input data, which lacks a label and whose structure is unknown. There are two types 

of problems in unsupervised learning: clustering and dimensional reduction. Grouping 

is responsible for creating sets of objects with similar characteristics. At the same time, 

dimensional reduction looks for redundant information in the data to reduce the number 

of variables and thus improve computational performance [216]. 

5.2.5 K-Means 
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The K-Means algorithm is the most popular clustering algorithm. It is an iterative multi-

stage algorithm. The first is to define the variable K, the number of clusters. Then K 

data are randomly chosen from the set called centroids. Each datum is assigned the 

nearest centroid, thus obtaining K classes. Moreover, the centroid is moved to the point 

corresponding to the mean of the distances between each datum and its centroid. The 

assignment between the centroid and the closest points is made again in this new 

position. 

 

Figure 5.5: K-Means Clustering. [28] 

The iterative process ends when the centroid barely moves between one iteration and 

another, thus reaching convergence. A representation of the process is shown in Figure 

5.5. 

Sometimes, looking at the data distribution, it is easy to guess the number of clusters. 

However, it is common to find a data set that is loosely clustered at a glance or even 

high-dimensional. Therefore, the Elbow Method is usually used to choose an 

appropriate K value. This method consists of representing the value of the cost function 

for each value of K and choosing the elbow of the function as the optimal K. The cost 

function that determines how good this algorithm is called the Distortion cost function, 

and it corresponds to the average distance between each datum and the assigned 

centroid. This algorithm is fast, robust, and simple when the data is very distinct or can 

be linearly separated. On the other hand, it is very sensitive to the value of K and can 

be ineffective when the data is superimposed or contains a lot of noise. Some examples 
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of the K-Means algorithm application can be market segmentation or the grouping of 

words with similar definitions to improve search engines [217]. 

5.2.6 Principal Component Analysis 

Given a data set, Principal Component Analysis (PCA) tries to find the most significant 

independent variables that represent said data set. When the number of variables and 

data is very high, the performance of the models decreases due to the computational 

cost of dealing with some data that does not provide relevant information. For this 

reason, dimensional reduction algorithms are needed. 

Mathematically, PCA reduces the initial n dimensions to k dimensions by finding k 

vectors into which to project the data, minimizing the projection error. The 

minimization of the projection error retains the data with the highest variance since they 

are the ones that play an important role in determining the output label. On the contrary, 

a low variance indicates that the value of that variable does not influence the label that 

is trying to be predicted. This does not mean the starting data is ordered from highest 

to lowest variance, and those with the lowest variance are eliminated. A large amount 

of information would be lost, but rather that the known vectors must contain the 

maximum possible variance. The original set of n variables is transformed into another 

smaller set of known uncorrelated variables called "principal components". 

 

Figure 5.6: Principal Component Analysis. [27] 

 
The computing time of a neural network that works with images is reduced thanks to 

PCA as a preprocessing stage. This algorithm is very useful in image compression, 



99 
 

where each pixel corresponds to a variable. In Figure 5.6, the objective is to retain the 

information of the pixels that contain the label to be predicted, so all the pixels that do 

not contain cats are useless [218][219]. 

5.2.7 Singular Value Decomposition 

In linear algebra, Singular Value Decomposition (SVD) is a method of factoring a real 

or complex matrix used for dimension reduction. It is based on the principle of 

decomposition of vectors in their orthogonal axes as shown in Figure 5.7, so that any 

vector a can be expressed by two variables: the unit vector that indicates the direction 

of projection (𝑣1) and the length of the projection (𝑠𝑎1). In SVD, this conclusion is 

extended to many vectors and in all dimensions. 

 
 

 

Figure 5.7: Singular Value Decomposition. [28] 

The' projection of the vector 'a' in the direction of the unit vectors gives the length of 

the projections, according to equation (5.5). 

𝑎் .  𝑉= (𝑎௫ 𝑎௫). (
௩ೣ

௩
) = 𝑆     (5.5) 

Using matrices, equation (5.6) is reached, where A is the point matrix, V is the 

orthogonal axis decomposition matrix, and S is the projection length matrix. 

A = S𝑉ିଵ = S𝑉்      (5.6) 

In equation (5.7), the matrix S is decomposed into the matrices U and Σ. 

𝑆=𝑈 Σ      (5.7) 



100 
 

Where U is the matrix of projection unit lengths and Σ includes the values of 𝜎𝑖, which 

increase if the points approach the axis of the corresponding 𝜎𝑖, as indicated by equation 

(5.8). 

σ  = √ ((𝑆)
ଶ ) + (𝑆)

ଶ    (5.8)  

Finally, the expression of the SVD method is the one shown in equation (5.9). 

A = 𝑈 Σ 𝑉்      (5.9) 

The main application of this method is to choose some unit vectors (matrix V) that 

coincide with the main components of the data set (matrix A). Thus, if the line of 

maximum variance is known, the points can be projected onto it. 

5.2.8 Independent Component Analysis 

Independent Component Analysis (ICA) is a computational and statistical technique 

used to reveal hidden factors within variables, measures, or signals. The variables found 

by ICA are called “independent components.” The objective is to decompose a 

multivariable signal into additive subcomponents assuming that they are non-Gaussian 

and statistically independent signals. This dimensional reduction technique, an 

extension of PCA, is much more powerful and works well in cases where classical 

methods fail. PCA can only impose independence up to the second order and thus define 

orthogonal directions. Tt is assumed that random variables follow Gaussian 

distributions, preventing ICA application. The ICA is a particular type of blind source 

separation, as it obtains the signals from n sources from the mixtures collected by m 

sensors. The ICA handles the blind recovery of said sources, assuming that the original 

signals are independent. A common example of its application in audio is the cocktail 

party problem, which occurs when several speakers speak simultaneously. The idea is 

to focus solely on one speaker to extract their voice and remove background noise or 

other conversations. This process can be modeled as a linear mix followed by source 

filtering [220]. 

5.2.9 Reinforced Learning 

Reinforcement learning is a form of machine learning based on a system of rewards 

and punishments in which an agent seeks the optimal decisions to obtain the maximum 
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reward both in the short and long term. The reward measures the contribution of the 

action to the final goal. This agent needs to know if its decision is good or bad. 

However, instead of having a supervisor as in supervised learning, it learns from its 

own experience from interactions with the environment. The framework that defines 

the interaction between the agent and the environment is a Markov Decision Process 

(MDP). Each state depends only on the previous state. Figure 5.8 schematically 

represents the three types of learning: supervised, unsupervised, and reinforcement. 

Unlike unsupervised learning, reinforcement learning tries to maximize the reward 

function instead of finding certain hidden patterns in an unlabeled data set. In addition, 

these rewards do not have to be offered instantly but may arrive delayed. 

 

 

Figure 5.8: Types of Learning. 

The main challenge of reinforcement learning is to balance exploration and exploitation 

(exploration and exploitation dilemma). To obtain high rewards, the agent tends to 

repeat those actions that have turned out to be positive. However, to discover these 

actions, it is necessary to test those that have not been previously tested. Therefore, the 

agent exploits current knowledge while exploring different options. 

Each reinforcement learning algorithm must follow a policy (policy) to decide what 

decision to take based on the state (state) in which it is found. However, this policy may 

not be followed in the learning stage. Those algorithms whose update rule performs the 

action that will bring the maximum benefit, although the current policy restricts said 

action, is called off-policy algorithms. On the contrary, on-policy algorithms are those 

that strictly follow the policy. When an agent tries to optimize its policy, it can do so 

from two different approaches. With a Model-Free approach, the agent obtains 
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information without prior knowledge of the environment through trial and error. 

Following a Model-Based approach, the agent calculates all states' success probabilities 

before acting based on these probabilities and thus models the environment [220]. 

5.2.10 Q-Learning 

The Q in Q-learning stands for quality, which in this case, measures how good action 

has been to earn a future reward. The goal is to learn the policy that maximizes the total 

reward. The algorithm creates a Q-table or matrix representing states versus actions. 

This matrix is initialized with all values to zero, and with each episode, the Q-values 

of all possible state-action pairs are updated. The matrix becomes a reference for the 

agent to select the best action based on the Q-values. At this point, the agent can interact 

with the environment in two ways. The first consists of exploiting the acquired 

knowledge, so the next action will be the one with a maximum Q-value. The second is 

exploration, where the agent acts randomly to add new states to the table. The parameter 

𝜀 balances the percentage of exploitation and exploration actions. Equation (5.10) 

represents the update rule of this algorithm. 

Q (s௧, a௧) ← Q (s௧, a௧) + a [ r௧ାଵ, + 𝜉 max 𝑄 (s௧ାଵ, a) – Q (s௧, a௧)]   (5.10) 

This rule adjusts the Q-values based on the difference between the new and old values. 

The new values are discounted with the discount factor (𝛾), and the step size is adjusted 

with the learning rate (α). The reward (r) is the value received after completing an action 

in a given state. Therefore, the next action is chosen to maximize the Q-value of the 

next state instead of following the current policy. A more complex and popular version 

is the Deep Q-Network, which replaces the state-action matrix with a neural network 

to work with massive amounts of data and perform more complex tasks. One of the 

applications of these algorithms is to make computers learn to play video games even 

better than humans [221]. 

5.2.11 SARSA 

SARSA (State-Action-Reward-State-Action) is a reinforcement learning algorithm that 

learns a policy based on a Markov Decision Process, just like Q-learning. The 
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difference is that SARSA is an on-policy algorithm; the learned Q-values always follow 

the current policy. Equation (5.11) represents the update rule of this algorithm. 

Q (s௧, a௧) ← Q (s௧, a௧) + a [ r௧ାଵ, + 𝜉 𝑄(s௧ାଵ, a௧ାଵ) – Q (s௧, a௧)] (5.11) 

This quintuple (s, a, r, s', a') gives the algorithm its name. The following action means 

that it must store the information for a long time before updating the values. This rule 

depends on the current state, the current action, the reward obtained, the next state, and 

the next action. 

The convergence of the method depends on the nature of the policy, its dependence on 

Q, and the learning rate. SARSA converges with probability 1 to an optimal policy if 

all state-action pairs are visited infinite times. SARSA has faster convergence but is 

more likely to get stuck in a local minimum. On the other hand, Q-learning has better 

final performance, but it needs more learning time. A combination of both is Backward 

Q-learning, which increases learning speed while improving final performance [221]. 

5.2.12 Deep Learning 

In recent times, a distinct realm within Machine Learning has surfaced, known as Deep 

Learning. This domain revolves around learning algorithms operating across multiple 

tiers of representation and abstraction, enabling the modeling of intricate relationships 

within data. These tiers signify varying degrees of concepts, with the upper echelons 

being hierarchically informed by the lower tiers. The notion of sequential 

representations achieved through these stratified levels lends the term "deep" to this 

form of learning, with the model's depth corresponding to the number of layers it 

encompasses. Within the realm of Deep Learning, these stratified representations 

coalesce into a Neural Network—a meticulously organized assembly of neurons. This 

nomenclature is rooted in neurobiology, drawing inspiration from the workings of the 

brain. Layers within this network comprise a specific quantity of neurons, each neuron 

gathering input from the preceding layer via external stimuli transmitted through its 

input connections. Internally, neurons conduct computations, yielding an output value 

channeled to neurons within the ensuing layer. This output serves as the sought-after 

prediction.  
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Figure 5.9: Deep Neural Network. 

Nevertheless, in order to achieve accurate predictions, the network must curtail the 

disparity between the prediction and the anticipated outcome through the automatic 

adjustment of model parameters. Within this context, each neuron allocates weights (w) 

to its individual input variables (x), thereby gauging the extent to which each variable 

influences the output, as depicted in equation (5.12). 

𝑤𝑥 + 𝑤ଵ𝑥ଵ+ 𝑤ଶ𝑥ଶ + . . .. + 𝑤𝑥   (5.12) 

Following the computation of the linear amalgamation of weights and inputs, an 

activation function (∅) is employed. The purpose of this function is to transform the 

output (y), imparting a non-linear character to it. This non-linearity enables the network 

to address problems of a non-linear nature, as delineated in equation (5.13). 

y = φ ( 𝑤𝑥 + 𝑤ଵ𝑥ଵ+ 𝑤ଶ𝑥ଶ + . . .. + 𝑤𝑥 )  (5.13) 

Backpropagation, also known as backward propagation, serves as the learning 

mechanism for neural networks. It involves transmitting error information from the last 

layers to the initial ones, thereby adjusting the parameters of each neuron. However, a 

challenge arises with this process: as the error propagates through layers, it diminishes, 

potentially causing only the final layers to receive significant training attention in very 

deep networks. Consequently, the neural network predominantly understands the 

weight or impact of each neuron on the erroneous outcome. The advancement in deep 

learning lies in its capacity to facilitate concurrent learning across all layers, 

circumventing the need for a sequential approach. Adjusting a parameter prompts 



105 
 

automatic adaptations in the interconnected parameters, streamlining the process under 

a unified feedback signal. 

Deep Learning possesses several vital attributes that mark it as a revolution within 

artificial intelligence: simplicity, scalability, and versatility. Its simplicity arises from 

the automation of feature engineering, which historically demanded substantial time 

and effort before model development. Scalability empowers the manipulation of 

datasets of varying sizes, while versatility enables the utilization of pre-trained models 

for diverse applications such as text generation, language processing, object 

identification in images and videos, and more. Deep Learning finds application in 

numerous domains, including client prospect identification for companies, disease 

prediction via image and medical data analysis, real-time threat detection and 

prevention in cybersecurity, and beyond. Various types of neural networks cater to 

specific purposes and degrees of complexity. The choice of network type hinges on the 

nature of the data at hand. Nevertheless, their overarching objective is to discern 

patterns within data to execute specific tasks like classification, clustering, or predictive 

analysis. In the subsequent sections, three neural network types are elucidated: 

Convolutional Neural Networks, Recurrent Neural Networks, and Generative 

Adversarial Networks [222-225]. 

5.3 Machine Learning Algorithms for Data Classification in IoT 

The Scikit-learn package offers an extensive array of algorithms capable of processing 

and manipulating datasets provided as input. Among these algorithms, many are 

proficient in forecasting forthcoming continuous values over time or categorizing data, 

drawing from both historical and novel observations. These algorithms span diverse 

categories contingent on the specific classification tasks they undertake [226]. The most 

frequently used and significant algorithms that are commonly employed to address 

various classification problems will be highlighted and analyzed in this work. Table 5.1 

presents a list of commonly used Machine Learning Algorithms for classifying IoT 

data. The primary emphasis lies in the domain of classification, particularly in the 

context of supervised learning using preexisting datasets. In this scenario, the objective 

is to determine the category to which a novel object belongs, even if we haven't 
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encountered it before, drawing insights from our past observations. Thus, we can find 

the following within these categories according to their nature: 

Table 5.1: Machine Learning Algorithms for IoT data Classification. 

Algorithm Family Algorithm 

Linear Models  Logistic Regression 

 Perceptron 

Neural Network  Multi-Layer Perceptron 

Discriminant Analysis  Linear Discriminant Analysis 

 Quadratic Discriminant Analysis 

Support Vector Machines  Linear Support Vector Machines 

 Polynomial Support Vector Machines 

Neighbors  K-neighbors 

 

Naïve Bayes 

 Bernoulli NB 

 Gaussian NB 

 Multinomial NB 

Trees  Decision Tree 

Ensemble  AdaBoost 

 Random Forest 

5.3.1 Perceptron: 

The perceptron is a model of a simple neuron. In 1958 the psychologist Frank Rosenblat 

developed this model based on McCulloch and Pitts and a learning rule based on error 

correction; he called this model Perceptron. What was most striking about this model 

is its ability to learn to recognize patterns. The perceptron is based on a series of sensors 

or inputs from which it receives the data to classify or recognize and where we also 

have an output neuron to tell us if it belongs to one class or another, activating or not 

depending on whether the output is 1 or 0. The simple perceptron algorithm is based on 

fundamental functions that enable data classification using the concept of a simple 

perceptron. Let us start by assuming that we have the function f of Rn in {-1, 1}, to 

which we can apply an input pattern x = (𝑥ଵ, 𝑥ଶ, 𝑥) T ∈ Rn and where we will have 

an output desired z ∈ {-1, 1}, or what is the same, f(x)= z. We will consider that input 

pattern as each characteristic that our data set has and to which we are going to pass 

said function. Since we have several input patterns to carry out the classification, we 



107 
 

will have the following relationship: {𝑥ଵ, 𝑧ଵ}, {𝑥ଶ, 𝑧ଶ} .... {𝑥, 𝑧}, where 𝑥 is the 

input pattern i ∈ 𝑅 yz = f (𝑥) [227]. What the function performs is a partition of the 

set of inputs into two spaces, on the one hand we would have the input patterns whose 

output is +1 and on the other the patterns whose output is -1, so we can say that this 

function is capable of distinguishing between two classes. Since our problem deals with 

the classification of more than two classes, the simple perceptron supports the one-vs-

all classification technique since the outputs we obtain are continuous and numerical, a 

technique explained earlier in this chapter. Moreover, how can we build a model that 

fulfills that function? For this, we will start from a bipolar process unit that fulfills the 

following function: 

𝟏 ௦௪భ௫భା ௪మ௫మା⋯ା ௪௫ஹ

ି𝟏 ௦௪భ௫భା ௪మ௫మା⋯ା ௪௫ஸ
    (5.14) 

Where we have that the parameters 𝑤 are the so-called synaptic weights. These weights 

will assume the importance or weight we give to each input value. On the other hand, 

we have the weighted sum that we call synaptic potential and the threshold . When 

the output of the said function is 1, it is said to be active, and otherwise, its output will 

be -1 or inactive. 

 

Figure 5. 10: Perceptron. 

5.3.2 Logistic Regression 

Logistic Regression is a classification algorithm used to predict the outcome of a binary 

categorical variable based on the independent variables. The objectives of this model 

are: to determine the existence or absence of a relationship between one or more 

independent variables and a dichotomous dependent variable to measure the sign of a 
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said relationship and predict the probability that the event Y=1 will occur based on the 

values of the independent variables [228]. 

The logistic function is the one that, for each individual, finds the probability (P) 

that the effect in question occurs. To understand the origin of this function, it is 

necessary to explain the concept of Odd, which is the ratio between the probability that 

an event occurs and that this event does not occur (Equation 5.15). 

Odd = P / 1 – P    (5.15) 

The Logit function shown in equation (5.16) is a logarithmic transformation on the Odd 

that converts probability values in the range [0,1] into values within the range [-∞, ∞]. 

Logit(P) = ln P / 1 – P   (5.16) 

The Logit function can be represented linearly as a function similar to the one used in 

Multiple Linear Regression shown in equation (5.17). 

Z = 𝑤்𝑥 = 𝑤 + 𝑤ଵ𝑥ଵ + . . . + 𝑤𝑥   (5.17) 

In this way, it is obtained that the inverse of the Logit function is the logistic function 

sought (hypothesis function), called the sigmoid function represented in Figure 5.11. 

 

 

Figure 5.11: Logistic Regression. 

This function is responsible for taking real values and transforming them into a value 

in the range [0,1], which indicates the probability that a sample belongs to class 1 given 

the characteristics x parameterized by the weights w. A quantizer translates the 

probability into a binary output as shown in Equation (5.18). 
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Y = ൜
1        𝑖𝑓 𝑧 ≥ 0
0 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑟𝑒𝑠𝑡

   (5.18) 

This often happens in medicine since it tries to answer questions formulated based on 

the presence or absence of a certain characteristic that is not quantifiable but rather 

represents the existence or not of an effect of interest. For example, Logistic Regression 

in medicine is used to predict whether a tumor is benign or malignant based on the 

patient's age and size. The decision limit is marked by 𝑧=𝑤𝑇𝑥, so the degree of each 

term is varied to obtain the curve that best fits the data. 

5.3.3 Neural Network 

The Multilayer Perceptron is a generalization of the Simple Perceptron and arose due 

to its limitations when classifying data sets that were not linearly separable. Minsky 

and Papert were able to show in 1969 that combining the use of several simple 

Perceptron. Let us consider them as hidden layers, would solve the classification 

problem for problems that are not linear. However, for this solution, there was no 

definition of how to adapt the synaptic weights for each perceptron in the hidden layer 

since the simple Perceptron rule cannot be applied to this problem. Despite this, 

combining several simple Perceptron served as a help to the studies carried out by 

Rumelhart, Hinton, and Williams in 1986. They presented a way of committing a 

backpropagating error and adapting synaptic weights through a generalized delta or 

backpropagation rule. 

 

Figure 5.12: Neural Network. 
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The architecture of Multilayer Perceptron, as its name indicates, is based on the 

structuring of its neurons in various levels or layers. This architecture is a feedforward 

network where we can find an input layer, which we call sensors or our data set's 

characteristics. Another output layer will be the different possible types to classify and 

a certain number of intermediate layers of process units, which we can also call hidden 

as they have no connection with the outside. The role played by the hidden or 

intermediate layer is that of a projection of the input patterns onto a cube whose 

dimension is given by the number of units in the hidden layer. With this, what is 

intended is to make a projection in which the input patterns are linearly separable so 

that the value we get in the output layer is as correct as possible. The output units are 

connected only to the last hidden layer. In this type of network, what is intended is to 

establish a relationship between an input set and an output set. Thus, we have the 

following relationship: (𝑥ଵ, 𝑥ଶ, 𝑥ଷ... 𝑥) ∈ 𝑅 ⇢ (𝑦ଵ, 𝑦ଶ, 𝑦ଷ... 𝑦) ∈ 𝑅. In this way, 

we start from a set p of training patterns where we know that the pattern input (x𝑘ଵ, 

x𝑘ଶ, x𝑘) corresponds to the output (y𝑘ଵ, y𝑘ଶ, y𝑘) with k =1, 2, p. In Figure 5.12, we 

have shown a representation of this type of neural network. To understand this 

relationship, we indicate that the input layer has as many neurons as there are variables 

or characteristics in our data set. On the other hand, in the output layer, we will have as 

many process units as desired outputs in our system. The determination of the number 

of hidden layers is not established concretely. Using a greater number of hidden layers 

does not ensure that we obtain a better precision when finding the desired output since 

the methods used to train this type of network can be more expensive with a greater 

number of layers and can take time. Too long to find the best values for our training 

[229-231]. 

5.3.4 Support Vector Machines 

The support vector algorithm (SVM) is a discriminative classifier whose objective is to 

define a hyperplane in N-dimensional space (N is the number of independent variables) 

that maximizes the distance between data of both classes. The hyperplane is the 

decision boundary that helps classify the data, so each side of the hyperplane is assigned 

a class. Support vectors are those closest to the hyperplane, thus influencing its position 

and orientation. Finding a hyperplane that separates the data is usually not a one-size-
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fits-all solution. However, the optimal solution is the one that maximizes the distance 

between two parallel lines located symmetrically on each side of the decision boundary 

such that the support vectors are contained in them. This distance is known as margin. 

Those models with a large margin reduce the generalization error, while models with a 

small margin tend to be less prone to overfitting. Figure 5.13 represents the hyperplane 

chosen from among all the possible hyperplanes, as well as the different elements that 

have been commented on. 

 

Figure 5.13: Classification of Data by Support Vector Machine. 

In Logistic Regression, the linear output value is transformed into a value in the range 

[0,1] through the sigmoid function, where for values greater than 0.5, class 1 is 

assigned, and for smaller values, class 0. In the algorithm of support vectors, if the 

linear output is greater than 1, it is identified with one class, and if it is less than -1, it 

is identified with the other. Therefore, the range that acts as a margin is [-1,1]. For 

nonlinear classification problems, mapping and kernelization techniques are used. 

These techniques reorganize the data through mathematical functions, either in the 

same plane or in planes of higher dimensions, to adopt a configuration that makes them 

separable. This is one of the great advantages of support vectors over other models and 

their significant accuracy at the cost of low computing power. Furthermore, these 

principles can be used to solve regression problems [232]. 

5.3.5 Linear Support Vector Machine: 

 Linear algebra is used to find the hyperplane that separates the two data sets. One way 

to look at this type of algorithm is to use the inner product of two particular 

observations, the dot product of two vectors, instead of the observations themselves. 

This means that the dot product of two vectors is the sum of the multiplication of each 
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pair of input values of each vector. The core of the Linear SVM algorithm is responsible 

for defining the distance between the vectors and the new data. The more complex the 

kernel (such as Polynomial Kernel or Radial Kernel), the better the classification as 

they allow for curved lines that can better fit the data distribution. For this type of 

algorithm, the kernel is what we call the scalar product and which we represent as 

follows: K (x, 𝑥) = sum(x*𝑥), where x is the data vector, we are looking at xi is the 

support vector i. 

5.3.6 Polynomial Support Vector Machine 

Like Linear, a polynomial can be used as a kernel; in this case, we will have K (x, 𝑥) 

= 1+ sum(x*𝑥) d, where d indicates the degree of the polynomial. If d=1, the kernel 

would be the same as the Linear type. As mentioned previously, to a greater degree, it 

will allow the use of a more curved vector adjustment, but this also implies a higher 

computational cost. 

5.3.7 Discriminant Analysis 

Linear Discriminant Analysis, this type of algorithm, is easy to handle in those cases 

where the frequencies within each class are unequal, and the performance has been 

evaluated based on randomly generated data. This method tries to maximize the 

variance ratio that exists for both the data within each class and the variance that exists 

between the different classes in any particular data set. This ensures that the maximum 

separation between classes is achieved by drawing a separation region between the 

given classes. The formulas to carry out these calculations derive from basic 

probabilistic models in charge of extracting a model from the probable class 

conditioned through the data P(X|y=k) for each class k. The predictions can be obtained 

through the Bayes rule, and we select the class k that maximizes this conditional 

probability. If we want to use this model as a classifier, it is necessary to estimate from 

the training set the a priori class to which it belongs and the covariance matrices. The 

classification carried out in this type of classifier is creating a probability model for 

each class following a Gaussian distribution. In this case, we have that the Gaussian 

distributions of each class are the same and therefore share the same type of covariance 

matrix. In this way, we will achieve linear decision surfaces between the classes. As an 
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example of this type of algorithm, we can find it for automatic face recognition or 

document classification. Linear Discriminant Analysis is responsible for extracting a 

set of features that gives us the most relevant information to carry out the classification. 

This is done by analyzing the eigenvectors of scattering matrices to maximize the 

variations between classes and minimize the variations within the same class. In this 

way, the instances can be discriminated against to know if they belong to one class 

[233][234]. 

5.3.8 Quadratic Discriminant Analysis 

The classification using this method is very similar to the previous Linear version with 

the difference that this time the Gaussian distributions of the classes are not assumed. 

Therefore, the posterior distributions are used to estimate the class given a test example. 

Giving rise to decision surfaces of a quadratic form. These Gaussian parameters for 

each class can be obtained from the training set with a maximum likelihood estimate. 

5.3.9 K-Nearest Neighbors 

The K-Nearest Neighbors (K-NN) algorithm is a classification algorithm that labels 

each data item based on the label of the data closest to it. For this, the variable k is 

defined, which corresponds to the number of closest neighbors chosen to carry out the 

classification. Depending on this variable, we have some predictions or others. In the 

example shown in Figure 5.14, for k=1, the algorithm classifies the element as white; 

for k=2, the algorithm needs a criterion to classify since there is a neighbor of each 

color; and for k=3, the algorithm classifies the element as black, since two of the three 

nearby elements are black. 

 

Figure 5.14: K-NN. 
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Unlike other supervised learning algorithms, K-NN does not learn with the training 

data, but rather the learning occurs with the test data once the training data has been 

memorized. These algorithms are known as lazy algorithms, and they allow several 

problems to be solved simultaneously since the objective function is approximated 

locally for each element. The algorithm does not learn from a model but instead uses 

the data to generate an answer only when a prediction is requested. As a disadvantage, 

the computational cost is very high due to all the training data storage [235]. 

5.3.10 Naive Bayes 

The Naive Bayes classifier is widely used and gives great results for text analysis and 

classification. To understand how this classifier works, it is necessary to understand the 

Bayes theorem. This theorem works using conditional probability, or the probability of 

something happening, given what has happened previously. So, we can calculate the 

probability with which something will happen based on the conditional probability. The 

formula to calculate this probability would be:  

𝑃(ℎ|𝐷) =𝑃(𝐷|ℎ) 𝑃(ℎ)𝑃(𝐷)    (5.19) 

Where:  

 P(h) is the prior probability of hypothesis h. 

 P(D) is the probability when looking at the training set D. 

 P(D|h) is the probability of observing the training set D in a universe where the 

hypothesis 'h' is verified. 

 P(h|D) is the posterior probability of h when the training set D has been observed.  

Let us suppose the following example extracted from the following reference to 

understand this theorem. "Suppose an engineer is searching for water on a piece of land. 

A priori, it is known that the probability of water in the said farm is 60%. However, the 

engineer wants to make sure better and decides to carry out a test that allows detecting 

the presence or not of water. This test has a reliability of 90%; if there is water, it detects 

it in 90% of cases. Also, when there is no water, the test predicts no water in 90% of 

cases. Therefore, using the said test, what is more likely, whether there is water or not? 

Here, we can observe that we have a 60% probability that there may be water and that 
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it is conditioned by the 90% probability that the test is correct. Thus, Thomas Bayes 

gave us the solution to this problem with his theorem and the formula previously 

mentioned. For the selection of the hypothesis that uses the Maximum a Posterior 

technique, also known as MAP and which is as follows: hMAP= argmaxh¢HP(h|D) = 

argmaxh¢H𝑃(𝐷|ℎ) 𝑃(ℎ)𝑃(𝐷) = argmaxh¢HP(D|h) P(h). since many times the 

hypotheses are comparable, it is not necessary to multiply by P(h). Therefore, we are 

left with hML= argmaxh¢HP(D|h), called maximum likelihood. Considering the 

previous problem of the search for water, the one with the highest probability will be 

the solution to the problem above, that is, knowing if we will find water in said land. 

The Bayesian classifier will extract the most probable classification for a new example 

given a training set [236]. There are different types of Bayesian classification depending 

on the type of problem and data we are dealing with and how they are distributed.  

5.3.11 Bernouilli NB  

This type is used for data distributed according to Bernoulli's variegated distribution, 

i.e., there may be multiple attributes in our data. However, each one is assumed to have 

a binary variable, true or false, 1 or 0. Therefore this algorithm works very well when 

the attributes have binary values.  

GaussianNB: If the values of the attributes are continuous, then it is assumed that the 

values of the different classes are distributed according to a Gaussian distribution, that 

is, a Normal Distribution. Therefore, this type would be the most appropriate if we have 

this distribution of data. 

MultinomialNB: If the values we have are distributed according to different values, then 

it is preferable to use Naive Bayes Multinomial, being one of the standard classification 

algorithms used, for example, for text classification or categorization. For example, 

each event in the text classification represents the occurrence of a word in a document. 

5.3.12 Decision Tree  

The use of decision trees can be found in several fields, such as text extraction and 

classification (cancer detection, heart problems, or detection of different diseases such 

as Parkinson's or if a patient must be hospitalized having dengue. If there is something 

that we can highlight about this type of algorithm and the visualization of its 
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effectiveness, it is because of its easily understandable classification rules for humans. 

The idea comes through the well-known structure of trees where we can find a root and 

some nodes, where we will see their respective branches and leaves. A decision tree 

starts at the root node and spans down two or more branches from left to right. The 

node where the chain ends is what we will call the leaf node. The interpretation of a 

decision tree would be as follows: we will consider each intermediate node of the tree 

as an attribute or characteristic of the data to be processed, the root node being the most 

relevant attribute, and each leaf will correspond to a class or hashtag. In decision trees, 

a grouping of the data is performed based on the values of the attributes of the data we 

have. A class division is carried out according to the attribute that best distinguishes 

between some others. This process is applied recursively until all the data of a subset 

being treated belongs to the same class. The pseudocode of a decision tree would be as 

follows: 1. We place in the root node the attribute that is most relevant to the decision. 

2. Divide the training set into subsets where we have data that contain the same value 

for the attribute chosen in steps 1. 3. Repeat steps 1 and 2 until we have found all the 

leaves on each tree branch [237]. 

5.3.13 Ensemble  

The objective of this type of method is to combine the predictions of several classifiers 

with building a new one that is more robust and accurate. We can find two types 

depending on the technique used to find a new classifier and improve accuracy. 

Reinforcement methods: Classifiers are created sequentially, trying to correct the 

direction of the previous one, taking into account the error made in its rules. The idea 

is to build a more accurate classifier starting from several with lower precision or fit. 

The AdaBoost method (Adaptive Boosting) will be studied in this analysis.  

Averaging methods: Different independent classifiers are created, and their predictions 

are averaged. Using the average is better than predicting only one since the variance is 

reduced. The focus of this study will be on exploring the Random Forest method. 

5.3.14 AdaBoost 

This algorithm created by Freund and Schapire is one of the best options for 

classification binary decision trees. It is used in numerous fields such as network 
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intrusion detection, object detection or for, text classification, and also for the detection 

of different heart diseases. This method is responsible for analyzing several weak 

algorithms, which will be small decision trees of depth 1, which have little precision 

through the modified training set in each iteration. Sequentially, it will form a new, 

more precise one with the combination of all of them, assigning a weight in the final 

vote for the choice of the best rules for each one. The data modification in each 

reinforcement iteration consists of applying weights to each of the examples of the 

training set. These weights are all equal, and in the first iteration, data classification is 

performed. In each iteration, the weights of each data are modified, and a classification 

is made again with these new weights. The weight that was not modified properly will 

be increased. The weight will be increased oppositely for those that were not, so those 

data that are more difficult to classify are given more importance. The next simple 

classifier puts more interest in them—those who are heavier. To know how this 

algorithm works best, we can expand this information in the reference [238].  

5.3.15 Random Forest 

In this type of ensemble algorithm, a search for a more accurate classifier is performed 

using decision trees. Its use can be found in classifying the type of land cover. Each 

decision tree created is made from a random sequence of a subset of data from the 

training set. The difference with a decision tree is that the attribute with the highest gain 

or Gini index is not taken at the node where we have to divide the data. However, the 

best division between a random subset of the entire set of characteristics is taken. This 

will cause a greater deviation of the tree, but the variance decreases when using the 

mean of several trees. This algorithm classifies as follows: given an example with its 

respective characteristics, it is placed in each of the decision trees that exist in the forest 

and that the algorithm has created [239]. Each tree will give a ranking, and that tree 

gives a vote to that class that we have predicted. The forest chooses the classification 

through the class that has received the most votes. Scikit-learn's implementation is to 

combine several classifiers based on their probabilistic prediction, rather than using the 

vote each classifier gives to the class of the classified example. 
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5.4 Feature Extraction 

Data dimensionality and the need for its reduction are critical considerations in 

contemporary storage and processing, as high dimensionality slows down training. 

Nevertheless, numerous attributes can assist algorithms in identifying optimal 

solutions. Various techniques enable us to extract and project data onto new datasets 

with fewer attributes, yielding metrics comparable to the original dataset but with 

reduced computational and storage costs. However, it is crucial to acknowledge that 

these techniques may compromise data quality, potentially resulting in decreased 

precision, despite faster training in certain cases. Consequently, it becomes necessary 

to investigate how these techniques impact different algorithms to determine whether 

attribute reduction is worthwhile. Moreover, these techniques enhance speed, reduce 

storage requirements, and facilitate improved data visualization. For instance, by 

reducing dimensions to 2 or 3, we can graphically represent the data, enhancing our 

understanding of its distribution. One such technique is Feature Extraction, which aims 

to decrease data dimensionality while preserving attributes that contain the most 

significant information. Within these techniques, we will study a well-known one used 

and implemented in the sci-kit-learn package: PCA (Principal Component Analysis). 

This linear data transformation technique helps identify patterns based on the 

correlation between attributes. PCA is responsible for finding the hyperplane closest to 

the data and projecting them into a new space smaller than the original. The orthogonal 

axes, which are the main components where these new data are projected, of the new 

sub-space can be interpreted as the directions of the maximum variance, knowing that 

the new set of features is orthogonal to each other. We can see it in the following image. 

Vector PCA wants to project a vector with one dimension onto another with a lower 

dimension. Thus, in the new vector of the searched subspace, the first component will 

be that attribute with the greatest possible variance, taking into account that there is no 

correlation between them; that is, those components that remain in the new are 

orthogonal to each other. It is appropriate to indicate that PCA is sensitive to the 

distribution of the data and the scale at which they are found. We will take this into 

account when we analyze how it is possible to reduce the dimension of the data set that 

we are dealing with. We first have to have all the data on the same scale to give all the 
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features the same importance and then apply this reduction technique. This is something 

that we will take later chapters, we will study how this technique affects our data set, 

and we will analyze whether or not it affects the different metrics that we can obtain 

from the different algorithms. 

5.5 Proposed Methodology 

The proposed Framework (MLADCF) distributes the processing load to the last nodes 

of a digital network (sensors in the case of IoT). The use of computing type poses very 

attractive advantages for IoT solution providers. For example, they allow to minimize 

latency and preserve network bandwidth, operate reliably, speed up decision-making, 

capture and protect a large number and types of data, and transfer the data to the most 

appropriate place for processing, with better analysis of local data. Edge computing 

technologies have been on the rise for several years, but the reach of IoT technology is 

accelerating its take-off process. As for the factors driving this change, two stand out: 

Falling prices for peripheral devices with increasing processing power. Centralized 

infrastructures support the increasing workload. The MLADCF combines with hybrid 

resource constrained KNN (HRCKNN) model to give the system a complete learning 

approach for future IoT environment. 

5.5.1. Machine Learning Analytics based Data Classification Framework for IoT 
(MLADCF) 

To implement the proposed framework let us first consider n number of IoT devices in 

an IoT environment. Let the matric 𝐴∗ denote the IoT devices and its Corresponding 

sensors as shown below: 

A=   ൦

0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

൪m*n         (5.20) 

Where ‘m’ is the number of IoT devices and ‘n’ is the number of sensors included. Let 

𝐼 be the element 𝑎 of matrix A. 

If 𝑎 = ቄ
  1     𝑇ℎ𝑒𝑛 𝑔𝑜 𝑡𝑜 𝑣𝑒𝑐𝑡𝑜𝑟 𝑆ఈ 
  0      𝑆𝑒𝑛𝑠𝑜𝑟 𝑛𝑜𝑡 𝑃𝑟𝑒𝑠𝑒𝑛𝑡   

   (5.21) 
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The 𝑆ఈ below denotes the vector from the matrix A  

S =
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 β*         (5.22) 

Where β is the number of data Chunks/clusters generated by ‘n’ sensors. Let 𝑑 be the 

jth element of vector 𝑆ఈ and each 𝑑  will be a column vector as 

D୨ =
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  γ*         (5.23) 

Where γ is the number of packets in the jth data cluster and 𝑑 ≤  𝑆ఈ {where 𝑑 is a 

subset of 𝑆ఈ}. 

The equation will allow us to optimize the resources and to classify the data packet 

for the edge node. Edge computing technology also arrives at artificial intelligence on 

devices much more feasible. It allows companies to leverage their data series in real-

time rather than working with terabytes of data in central repositories in the world real-

time cloud. In the next few years or decades, the technology may evolve to find a 

balance point between the cloud and more powerful distributed edge devices. Software 

vendors develop specific, more robust, and secure infrastructures and security 

solutions. Providers will begin to incorporate security solutions for peripheral 

components into their current service offering to prevent data loss, provide network 

health diagnostics, and protect against threats. From the above eq. (5.23), If 

Determinant of ∑ 𝑑
 ஓ
ୀଵ   ≤  𝑆 then the data will be processed at the device. This can be 

written as 

Det ∑ 𝑑
 ஓ
ୀଵ   ≤  𝑆     (5.24) 



121 
 

If Det ∑ 𝑑
 ஓ
ୀଵ   >  𝑆 , that means the device is not capable of processing the data, 

therefore data will be offloaded and will be pushed to the higher level. Similarly, 

equation (5.24) can also be written as 

Det ∑ 𝑑
 ஓ
ୀଵ   ≤  𝑆ାଵ     (5.25) 

If Det ∑ 𝑑
 ஓ
ୀଵ   ≤  𝑆ାଵ , that means device is fully capable of processing the data at the 

kth sensor and will not be forwarded for processing. 

And if Det ∑ 𝑑
 ஓ
ୀଵ   >  𝑆ାଵ, that means device is not capable of processing the data and 

data will be forwarded to the edge level. 

The resulting mathematical design considered, above all, the need to ensure the 

exchange of information of all the components of the system, always taking care of the 

speed of calculation. These elements require reconciling characteristics that are often 

incompatible. For example, more robust cryptography systems may require more 

computing power than many lightweight devices, such as sensors, provide. The final 

architecture designed, implemented, and tested is outlined in the form of equation 

(5.25). In the first place, the components involved will be specified, and then the 

security functionality, in general, will be presented. IoT results from the convergence 

and evolution of ubiquitous or pervasive computing, internet protocols, sensing 

technologies, and embedded systems. These technologies form an ecosystem where the 

real and digital worlds are in continuous symbolic interaction.  

5.5.2. Hybrid Resource Constrained K-Nearest Neighbor Classifier (HRCKNN) 

The K-Nearest Neighbors (K-NN) algorithm is a classification algorithm that labels 

each data item based on the label of the data closest to it. For this, the variable k is 

defined, corresponding to the number of closest neighbors chosen to carry out the 

classification. Depending on this variable, we have some predictions or others. Unlike 

other supervised learning algorithms, K-NN does not learn with the training data, but 

rather the learning occurs with the test data once the training data has been memorized. 

These algorithms are known as lazy algorithms, and they allow several problems to be 

solved simultaneously since the objective function is approximated locally for each 

element. The algorithm does not learn from a model but instead uses the data to generate 
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an answer only when a prediction is requested. As a disadvantage, the computational 

cost is very high due to all the training data storage. 

In this thesis, a hybrid K-NN Classification approach has been proposed, namely 

HRCKNN and MLADCF, which work simultaneously in an IoT environment. This 

double approach is a solution to the resource constrained IoT environment. HRCKNN 

works with the proposed mathematical model MLADCF to tackle the problem of 

resource constrained IoT networks. The HRCKNN is the beginning of the proposed 

model, as the data has been further classified at the Edge/Fog level in the process. The 

overview of the HRCKNN is shown in Figure 5.15. 

 

Figure 5.15: HRCKNN Classifier Overview. 

HRCKNN works in two phases. HRCKNN first trains with the training data and helps 

the network tackle the problem of resource constraints. The first phase identifies the 

IoT devices at the device level, which can process the data. This helps the HRCKNN 

inform the groups of the IoT nodes. 

To understand HRCKNN, let us consider the following assumptions. Let ‘v’ is the 

query vector. F is the training feature vector where F= (𝑓, 𝑓2, 𝑓3, 𝑓4………….𝑓n ), X is 

the set of labels with respect to F.    is the class where j ∈ {1,2,3……. k}. The size of 

the neighborhood is denoted by λ. Φ denotes the Euclidean distance ED. Moreover, is 

the Euclidean distance between the query vector and nearest neighbor. In the first step, 

a local environment is created by HRCKNN. 

𝐹ᇱ= Uj Fj(λ, 𝑣)         (5.26) 
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Fj(λ, v) = {𝑓i∈ Cj | Φ (𝑓I, 𝑣) ≤ Φ
    (5.27) 

In equation (5.26), the inclusion of the training set can be written as 

𝐹ᇱᇱ= 𝐹ᇱ ∪ {𝑣}      (5.28) 

The HRCKNN is capable of calculating the distance between f and 𝐹ᇱᇱ. 

{Φ ( 𝑓1, 𝑓) …. Φ (𝑓n-1, 𝑓), Φ (𝑣, 𝑓)}    (5.29) 

Where 𝑛ᇱ = λk + 1 is the new training set 𝐹ᇱᇱ.The second step of HRCKNN calculates 

the distances for all the classes i.e., k-local hyperplane. The relative transformation is 

also adopted to construct the relative space in equation (5.28). In the final step, the 

HRCKNN calculated the distance of k local hyperplane. A local hyperplane is 

constructed as follows 

Φ
(𝑣) = =   {ℎ|ℎ =  𝑓ᇱ + ∑ αt

ி
ୀଵ  ( 𝑓t – 𝑓ᇱ ), αt ∈ ξ}   (5.30) 

𝑓ᇱ = 
ଵ


 ∑ 𝑓t


௧ୀଵ      (5.31) 

The HRCKNN allows the query feature vector to calculate the distance of local 

hyperplane with respect to the nth local hyperplane. The formula can be written as 

follows 

Φ(𝐻
(v), v) = min

αt
 || v – 𝑓ᇱ – ∑ αt


ୀଵ ( 𝑓t – 𝑓ᇱ) ||  (5.32) 

Where Φ(H୨
(v), v) is the local hyperplane distance, and the solution of the below 

equation (5.33) will give the value of  αt. 

(U. 𝑈ᇱ ) . A = 𝑈ᇱ. (v - 𝑓ᇱ)     (5.33) 

The above equation (5.33) can also be written as follows 

Φ(𝐻
(v), v) = min

αt
{ || v – 𝑓ᇱ – ∑ αt


௧ୀଵ ( 𝑓t – 𝑓ᇱ) || +  β  λ௧

ଶ

௧ୀଵ
 (5.34) 
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Where A= (α1, α2, α3 … … … α) and the composed matrix of vector  𝑓t – 𝑓ᇱ  is U which 

is an n × λ matrix. The HRCKNN adoptrs the mathematical model to summarize the 

local hyperplane distances. Hence creating the groups of the nodes that equally fall in 

the category of resources constrained and vice versa. 

5.5.3. Training Data 

The training data, also known as "training data set," is the data utilized to train a 

machine learning model. The effectiveness and accuracy of our machine learning model 

are directly influenced by the quality of the training data. Consequently, data scientists 

invest a substantial amount of time in tasks such as data cleaning, debugging, and data 

wrangling. Training data is an indispensable component in artificial intelligence and 

machine learning, enabling the development of accurate, efficient, and fully functional 

machine learning models. Training data plays a crucial role in machine learning 

algorithms, serving as the foundation for model development. Without training data, 

machines would lack the necessary understanding and knowledge to perform tasks 

effectively. Similar to how individuals require specific training for their respective jobs, 

machines necessitate a substantial body of information to fulfil their designated 

purposes and yield appropriate outcomes. 

5.5.4 Stages in MLADCF 

The proposed framework consists of 5 stages as shown in Figure 5.16. The first stage 

has n number of sensor nodes present. These nodes senses data from the environment 

and stores the raw data in the device storage. The cluster head namely CH1 as show in 

Figure 5.16 receives the data from these sensors. The working of the proposed 

algorithm starts from this stage 1. The proposed algorithm decides whether to push the 

data to the stage 2 or should process the data at stage 1 i.e., the device layer.  
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Figure 5.16: Stages of MLADCF. 

As the data is pushed to the stage 3 which is the Fog/Edge layer. The Fog/Edge layer 

consisted of n number of Fog nodes. The Proposed algorithm 2 works of the Fog server 

node and decides whether to push the data to the cloud or to process in this stage. 

5.5.5 Proposed Algorithm 1 

 
 Algorithm 1            

Require: Sensor node and cluster head. 

 Start 
 Calculate the value for 𝑑 
 If Det ∑ 𝑑

 ఊ
ୀଵ   ˃  𝑆 , then push the data to Fog 1 

Else, 
 Go to algorithm 2 
 Stop 

 

5.5.6 Proposed Algorithm 2 

 
 Algorithm 2             

Require: Source node and edge Node. 

 Node 𝑁ଵ, senses data from time 𝑡ଵ 𝑡𝑜 𝑡ଶ 
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 Evaluate value of effectiveness 𝜃 / 𝑑 of the IoT device 
 Evaluate the size of the packets in the 𝐽௧ data cluster 
 The size of the data packet reaches a maximum size of the 𝑆 
 Node 𝑁ଵ, acts as a Source node, 𝑆𝑅𝐶 with Id, 𝑆𝑅𝐶ௗ 

for each source node, SRCi do 

Every 𝑆𝑅𝐶 there is a cluster of available nearby nodes, 𝑁ଵ to act 
as service nodes, 𝑆 
SRCi broadcasts a request for nodes where, 𝑑 ≤  𝑆 
N nodes accepts the request of SRCi to act as slave nodes, Si1, Si2 … . 𝑆 
Sin selected by  𝑆𝑅𝐶 based on Availability quotient, A where: A=f (𝐸, 
𝑆𝑅𝐶) 
Divide the data of data size, X into data chunks 𝑋ଵ, 𝑋ଶ, 𝑋ଷ,...,𝑋 
SRCi ends 𝑋ଵ, 𝑋ଶ, 𝑋ଷ,...,𝑋 to the selected slave nodes, 𝑆ଵ, 𝑆ଶ, 𝑆ଷ,...,𝑆 
Each of N selected Sin sends the data to the edge, 𝑇ଵ 
Data is collected by 𝐸ଵ and acknowledgement is sent to 𝑆𝑅𝐶 

end for 

Data is deleted on 𝑆𝑅𝐶 and 𝑆 
The further processing of data is performed on the 𝑇ଵ 
The chunks of data received from  𝑆 are accumulated on the 𝑇ଵ 
Data is stored for each 𝑆𝑅𝐶 and maintained on the edge node, 𝑇ଵ

 

5.5.7 Proposed Algorithm 3 

 
 Algorithm 3            

Require: Source node and cloud. 

 Fog 𝐹ଵ, receives data from form Ch1 over a time period of t 
 Evaluate value of effectiveness 𝜃/𝑑 of the Fog Node 
 Evaluate the size of the packets in the 𝐽௧ data cluster 
 The size of the data packet reaches a maximum size of the 𝑆 
 Fog 𝐹ଵ, acts as a Source node, 𝑆𝑅𝐶 with Id, 𝑆𝑅𝐶ௗ 

for each source node, SRCi do 

Every 𝑆𝑅𝐶 there is a cluster of available nearby Fog nodes, 𝐹ଵ 
to act as service nodes, 𝑆 
SRCi broadcasts a request for nodes where, 𝑑 ≤  𝑆 
N nodes accepts the request of SRCi to act as slave nodes, Si1, Si2 … . 𝑆 
Sin selected by  𝑆𝑅𝐶 based on Availability quotient, A where: A=f (𝐸, 
𝑆𝑅𝐶) 
Divide the data of data size, X into data chunks 𝑋ଵ, 𝑋ଶ, 𝑋ଷ,...,𝑋 
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SRCi ends 𝑋ଵ, 𝑋ଶ, 𝑋ଷ,...,𝑋 to the selected slave nodes, 𝑆ଵ, 𝑆ଶ, 
𝑆ଷ,...,𝑆 
Each of N selected Sin sends the data to the cloud 
Data is collected by cloud and acknowledgement is sent to 𝑆𝑅𝐶 

end for 
Data is deleted on 𝑆𝑅𝐶 and 𝑆 
The further processing of data is performed on the cloud.

 

5.5.8 Simulation Parameters 

Table 5.2: Simulation Parameters. 

S. No. Parameters Values 

1 No. of Service Nodes 500 

2 No. of SRC Nodes 100 

3 No. of Edge Nodes 5 

4 Initial energy of an IoT Service Node 300 mAh 

5 Initial energy of Source IoT Node 300 mAh 

6 Transmission Range of Service IoT node 40 mtr 

7 Transmission Range of Source IoT Node 40 mtr 

8 Block Size 256 

5.5.9 Performance Evaluation 

The comparative analysis is carried out through the following parameters: 

• Round: The completion of a process is called round. It starts with the sensing of the 

data and ends till the data is pushed to the edge level. 

• Energy: The difference between the total energy of an IoT node and the energy 

consumed in one round. 

𝐸 = 𝐸௧ − 𝐸     (5.35) 

where 𝐸 is the remaining energy,  𝐸௧ is the total energy before the round, and 𝐸 is 

the energy left after the round. Equation (5.35) can also be written as 

𝐸 =Σ𝐸/nr     (5.36) 
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This is called the average energy of the IoT system where nr is the active nodes. 

• Storage: Let 𝑆 is the storage occupied in an IoT node after the round. It can be 

calculated by the following equation (5.37). 

𝑆 = 𝑆௧  − 𝑆     (5.37) 

where 𝑆௧  is the total storage of a node before the round and 𝑆 is storage remaining 

after the round. 

• Processing Time: Processing time can be calculated by adding the time taken by the 

node in sensing, offloading, aggregating, and storing. 

The average energy of the system will be calculated by subtracting the average energy 

of MLADCF and the average energy of the traditional method. 

5.6 Experimental 

The heart of an IoT Device is its microcontroller/processor, an (SoC) service on-chip 

that is responsible for data processing and storage. Some of the common SBCs single 

board computers are Arduino Uno, Particle Electron, Espressif system ESP8266-01, 

Rasberry Pi4, Beaglebone black, PICI6C5X, MSP430, Mega AVR, Adafruit feather 

FONA, Holagram Dash, LinkIT One, Goblin2, PIC 18F 4550, 8051 Microcontrollers, 

MSP 430, Infincon TRicore, Atmel AVR MC, ATMega328P Processor, etc. It has been 

observed that the cost of the IoT Nodes is increasing with the increase in resources, i.e., 

Processing power, Memory, etc. Figure 5.17 and Figure 5.18 below shows the 

increasing cost while choosing the hardware of higher configuration. 

  

Figure 5.17: Cost Vs Processing Power.     Figure 5.18: Cost Vs Memory. 
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The essential aspect considered by companies today is the balance between income and 

costs and the result of the utilities. The cost of the product/device increases with its 

hardware capability. How should one evaluate or determine the cost of an IoT device 

and its impact on the network? For this, cost accounting is required, especially the costs 

related to the device-level hardware. However, it can be affirmed that there is no 

uniform vision of cost and what should be included under this term. In recent years, 

ideas about cost and performance have evolved rapidly to become concepts or part of 

accounts. Costs are an integral part of the production cost, so they cannot be separated. 

The selection of the right microcontroller for an IoT device depends on the types 

and number of sensors incorporated on that device. Figure 5.17 shows the comparison 

and cost of different Microcontrollers that are commonly used in an IoT device, and 

Figure 5.18 shows a comparison of the cost of different IoT devices used for different 

applications. 

5.6.1 Setup 

The first step involves setting up an IoT environment to collect real-time data in various 

scenarios. A wireless sensor network comprising multiple sensors and a gateway was 

created, as depicted in Figure 5.19, Figure 5.20 and Figure 5.21. Within this IoT 

environment, six sensors have been deployed in a specific area of agricultural land. 

Each note has an MTS 420 censor board. This WSN comprises a gateway responsible 

for communication with the surrounding and distributed sensors using the Zigbee 

module. The IRIS is programmed according to the censor board. MIB520 is used for 

the Gateway. The communication with the computer is done by the IRIS, which is 

programmed for the Gateway to act as a communicator. Six sensors have been 

successfully deployed, providing full coverage of the agricultural field. Mote-config is 

an application used to program the IRIS and MID 520. 
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Figure 5.19: IoT Environment.  Figure 5.20: IoT Motes and Gateway. 

 

 

Figure 5.21: IoT Mote. 

This mote-config works in the Windows operating system and configures the sensors. 

It also provides a user-friendly interface and allows the user to configure the Node ID, 

RF power, RF channel, and group ID. The nodes can further be enabled over the setup 

feature on all X mesh-based firmware. High power and low power X mesh applications 

are available for each sensor board. To upload firmware, a program tab is used by using 

a gateway. The setup of the hardware is as per the below protocol. 

 An ethernet port or USB should connect the Gateway and computer and be 

powered. 

 The Gateway should be attached to the IoT motes. 

 The programming. Next should be done while keeping the motes in power off 

mode. 
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For all other motes, the XMESH file must be uploaded over it. Moreover, for MDS 420 

sensor node, the IRS needs to be programmed for the censor board. After programming 

all the sensors, the sensors were deployed carefully into the agriculture field and 

connected to the Gateway successfully. The topology of the sensors is discussed in 

section 3.11.2 in Figure 5.22, Figure 5.23, and Figure 5.24. The advantage of the 

scenarios is that it covers all the possibilities that could happen during data collection 

in the smart agricultural activity. The scenarios would cover all the possibilities and 

failures of the motes if any of the modes was disconnected due to the battery drain. 

Therefore, the WSN deployed is highly reliable and scalable. The IoT environment is 

shown in Figure 5.19, Figure 5.20, and Figure 5.21 has the following sensors in each 

IoT node that is a temperature sensor, humidity sensor, light sensor, voltage, press 

petition, node ID, and location X, Y. The data rate of an IoT node shown in Figure 5.21 

is 250 KBPS and has a range of 500 meters: the range and data rate were enough for 

experimenting in this agriculture field. Postgress database was used for logging data 

into the sensors' database. To analyse this data and find a prediction model, this data 

was extracted into a.CSV file. The next step involves the cleaning of data in this.CSV 

file. The. CSV file contains anomalous values and redundant values. Therefore, data 

pre-processing is needed to clean the data. The. The CSV file also contains high pitch 

values and extra columns, which can fail to find the patterns and need to be cleaned. 

5.6.2 Scenario I, II & III 

During the implementation process, three distinct scenarios were encountered. The first 

scenario, as shown in Figure 5.22, is the scenario I, where data is less in the sense that 

the node is capable of processing and able to communicate the data without any 

resource constraints. As shown in Figure 5.22, node5 and node8 have sensed the data 

and can process the data, hence forwarding the data to node7 and node9, respectively. 

Fog 1, the edge node, receives the sensed data from its nearest nodes, i.e., node2 and 

node10. 
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Figure 5.22: Scenario I.                            Figure 5.23: Scenario II. 
 

 

Figure 5.24: Scenario III. 

Fog 1, the edge node, receives the data from its nearby slave nodes. Figure 5.23 is an 

example of scenario II where data is more than the scenario I, and the nodes are not 

capable of processing the data; therefore, the nodes will break the data into data chunks 

and push the data for processing the data at nearby nodes and from those nodes the data 

will be pushed to the Fog from the slave-nodes. As shown in Figure 5.23, node4 and 

node8 are sensing the data but are not capable of processing the data, dividing the data 

into data chunks, and sending the data chunks to nearby nodes node1, node7 node5, 

node6 and node9, node3 respectively. 

Scenario II leads us toward scenarios III, which has two different nodes, i.e., 

homogeneous nodes and heterogeneous nodes. Homogeneous Nodes Have the Same 
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Capability in processing power, battery, memory, etc. In heterogeneous nodes, a cluster 

Head has Higher Capability than Sensing Nodes. To add practicality to this experiment, 

we considered heterogeneous nodes. Scenario III leads to data classification, which, in 

turn guides us to the proposed framework. The adaptive Machine Learning algorithm 

is depicted in Figure 5.24 and plays a crucial role in the process. Classification of data 

is the base for the adaptive ML algorithm, where the IoT nodes will lead us for the IoT 

network, how to process, state, and communicate the data so that it can reach up to the 

Fog level. 

5.7 Summary 

This chapter discusses the importance of machine learning algorithms and the 

implementation of the proposed algorithms for resource-constrained IoT environment. 

The Cloud of Things concept provides mechanisms to bring data from IoT devices to 

the cloud. This environment consists of different layers/levels. The data has to pass 

through different layers i.e., device layer, Fog/Edge layer and finally cloud layer. As 

the data is increasing day by day therefore the use of machine learning approaches is 

very important in order to optimize the resources. The K-Nearest Neighbors (K-NN) 

algorithm is a classification algorithm that labels each data item based on the label of 

the data closest to it. This approach is commonly used for IoT data classification. To 

address the resource constraints, we have devised HRCKNN and incorporated it into 

the proposed framework as a proposed solution. 
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CHAPTER 6 

__________________________________ 

PERFORMANCE ANALYSIS AND 
COMPARISON OF THE PROPOSED 

WORK WITH THE EXISTING 
APPROACHES  

__________________________________ 
 
 
 

 
6.1 Metrics for Evaluation of Model Performance 

After adjusting the learning algorithm to perform the task, we have to measure its 

efficiency, that is, try to extract some measure that informs us of how well (or poorly) 

it is doing. As in the cases of supervised and unsupervised learning, the objectives 

sought are very different; the efficiency of some or other algorithms is also usually 

defined in very different ways. 

The case of supervised learning is the most natural and usual. Let us remember that, 

in this case, we have a set of initial examples on which we perform the learning and 

from which we know the desired result that the proposed algorithm must return. We 

want to see if the machine is able, from the trained examples, to generalize the learned 

behavior so that it is good enough on data not seen a priori, and if so, we say that the 

machine (model, algorithm) generalizes correctly. Since supervised learning algorithms 

learn from this data to adjust their internal parameters and return the correct answer, 

there is little point in measuring the machine's efficiency by bypassing the same data 

back to it since the information it would give us would be misleadingly optimistic. 
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6.1.1 Accuracy 

It can be defined as the percentage of correct predictions made by the classification 

model. It is a good metric to use when classes are balanced; that is, the proportion of 

instances of all classes is similar. However, it is not a reliable metric for data sets that 

have a class imbalance; that is, the total number of instances of one data class is much 

less than the total number of instances of another data class. 

 

Accuracy = 
ା

ାାା
     (6.1) 

Accuracy measures the percentage of cases that the model has got right. This is one of 

the most used and favorite metrics that should be avoided. The problem with accuracy 

is that it can be misleading; it can make a bad model. 

6.1.2 Precision 

Indicates, of all the positive predictions, how many are positive. It is defined as the ratio 

of correct positive predictions to overall positive predictions 

Precision = 


ା
      (6.2) 

Precision is the ratio of correctly predicted positive values to total predicted positive 

values. This metric highlights the correct positive predictions out of all positive 

predictions. High precision indicates a low false-positive rate. 

6.1.3 Sensitivity/TPR/Recall 

 Indicates how many are predicted to be positive of all the truly positive values. It is the 

ratio of correct positive predictions to the total number of positive cases in the data set. 

TPR = Sensitivity = 


ା
     (6.3) 

The completeness metric will inform us about the amount that the machine learning 

model is capable of identifying. 

6.1.4 F1 Score 
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The F1 value combines the precision and recall measurements into a single value. This 

is handy because it makes comparing the combined accuracy and recall performance 

between various solutions easier. When avoiding both false positives and false 

negatives is equally important to the problem, a balance between Precision and 

Sensitivity is needed. In this case, the metric F1 can be used, which is defined as the 

harmonic mean between these values. 

F1 Score = 2 ×  
୰ୣୡ୧ୱ୧୭୬ × ୖୣୡୟ୪୪

୰ୣୡ୧ୱ୧୭୬ାୖୣୡ
     (6.4) 

A machine learning classification model can be used to predict the actual class of the 

data directly or, much more interestingly, predict its probability of belonging to 

different classes. The latter gives more control over the output, and a custom threshold 

can be used to interpret the classifier output, which is often more prudent than building 

a completely new model if the last one has failed. 

6.2 Data Sets 

The performance of the proposed model was evaluated using four real-time data sets 

obtained by creating an IoT environment. The first data set was captured during the 

daytime with the full battery capacity of the IoT devices. The IoT nodes/sensors were 

placed in an orchard area for a day. The topology of the sensors is shown in Figure 5.22 

in the scenario I. The second data set was captured by keeping the same IoT sensors. 

The battery was unchanged during the process, and the storage was also intact. While 

capturing the data, some of the IoT notes ran out of battery and stopped working. Hence 

this gives us important information about the practicality of the IoT sensors, as these 

types of situations may arise in an IoT environment. The 3rd dataset falls under the 

category of scenario II. In this scenario, the batteries of the IoT sensors were replaced 

with new ones. In this scenario, the IoT sensors were strategically placed to ensure 

communication between all the sensors. The four data sets were captured by keeping 

the sensors in scenario III, as shown in Figure 5.24. In this scenario, all the sensors 

communicate with a cluster head, giving us the new data set for the experiment. 
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6.3 Performance Comparison of the Proposed Hybrid Model 

The selection of the algorithms for comparing the proposed algorithm or model is very 

important. Therefore, the algorithms commonly used for data classification in an IoT 

environment have been selected. Consequently, the algorithms chosen are Logistic 

regression (LR), Naive bias (NB), K-Nearest Neighbor (KNN), Decision trees (DT), 

Random Forest (RF), and Support vector machines (SVM). The model development 

was carried out using Spyder IDE and DL libraries. Additionally, Keras, TensorFlow, 

and scikit-learn packages were utilized to leverage devices for the implementation. The 

experiments were conducted on a Windows-based operating system, utilizing Python 

on a system equipped with an Intel i7 processor, 16 GB of RAM, and 1 TB of secondary 

storage. The study involved four distinct data sets. The results for all the datasets are 

shown below from Table 6.1 to Table 6.4. Furthermore, the graphs are plotted in 

Figures 6.1 to Figure 6.8. Four data sets were employed to evaluate the performance of 

the proposed model. The results for the first data set are shown in Table 6.1. During the 

first experiment of DS1 (Data set first), it was noted that the Naive Bayes (NB) 

algorithm exhibited the best execution time; however, it lacked in terms of accuracy. 

The HRCKNN was average in execution time, but the Accuracy of HRCKNN was the 

best among all the Machine learning algorithms. The Accuracy was 85 percent, 

followed by the SVM, which showed the same Accuracy. Nevertheless, the SVM lacks 

execution time badly, i.e., 9.9 seconds which was the worst among all the algorithms.  

The second data set comprises the data for a lesser no of nodes in comparison with 

dataset 1. As the nodes ran out of power, the rest of the nodes continued to sense the 

data from the environment. The results of the second dataset are shown in Table 6.2. 

The execution time was least in the proposed model at 0.004 secs, and it was seen as 

worst in the case of SVM. The KNN was comparatively better in terms of Precision, 

Recall, F1 score, and Accuracy. However, its execution time was not good in 

comparison with HRCKNN. HRCKNN and KNN produced an accuracy of 98 percent. 

Table 6.3 used data set 3, and Navie Bias was the fastest among all the algorithms but 

was worst in the Accuracy. Similarly, SVM produces an accuracy of 85 percent but was 

the slowest and took 9.9 secs in execution. However, HRCKNN proved to be the best 

in terms of Accuracy, i.e., 85 percent, and was near the best execution time, i.e., 0.036 
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secs. Data set 4 was generated by scenario III, also called the hybrid Scenario, as this 

data set was generated when all the sensors were communicating with a common cluster 

head. For this data set, the results are shown in Table 6.4. In this table, Navie bias has 

the best execution time but lacks the Accuracy of the data, i.e., only 14 percent. Here 

HRCKNN has the best Accuracy among all the algorithms. The graphs between the 

Execution time and Accuracy are plotted and are shown in Figures 6.1 to Figure 6.4. 

Moreover, the graphs between execution time and sensitivity are plotted in Figures 6.5 

to Figure 6.8. 

Table 6.1: Performance comparison of machine learning algorithms for DS1. 

Algorithm Execution Time 
(Sec) 

Precision (%) Recall (%) F1-Score 
(%) 

Accuracy (avg) 
(%) 

KNN 0.005 83 83 83 80 

SVM 9.9 80 80 80 85 

RF 0.72 88 88 88 79 

DT 0.067 80 79 79 76 

NB 0.003 54 51 48 53 

LR 0.68 63 62 62 63 

HRCKNN 0.036 87 87 87 85 

Table 6.2: Performance comparison of machine learning algorithms for DS2. 

Algorithm Execution Time 
(Sec) 

Precision (%) Recall (%) F1-Score 
(%) 

Accuracy (avg) 
(%) 

KNN 0.07 98 98 98 98 

SVM 2.6 96 98 97 97 

RF 1.1 98 98 98 98 

DT 0.06 97 97 97 98 

NB 0.005 78 78 78 83 

LR 0.85 79 85 81 84 

HRCKNN 0.004 97 97 97 98 

Table 6.3: Performance comparison of machine learning algorithms for DS3. 

Algorithm Execution Time 
(Sec) 

Precision (%) Recall 
(%) 

F1-Score (%) Accuracy (avg) 
(%) 

KNN 3.24 84 80 82 92 

SVM 9.9 30 30 30 48 

RF 12.1 85 79 81 92 

DT 4.8 83 78 80 91 
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NB 0.30 31 41 29 60 

LR 17.11 23 22 17 51 

HRCKNN 0.40 82 84 84 92 

Table 6.4: Performance comparison of machine learning algorithms for DS4. 

Algorithm Execution Time 
(Sec) 

Precision (%) Recall 
(%) 

F1-Score (%) Accuracy (avg) 
(%) 

KNN 0.009 67 69 68 66 

SVM 18.12 63 69 65 67 

RF 1.03 70 71 70 72 

DT 0.07 70 71 71 70 

NB 0.005 21 23 11 14 

LR 3.04 25 28 26 40 

HRCKNN 1.2 77 76 76 76 

 
 

 

Figure 6.1: Accuracy Vs Execution Time for DS1. 

 

Figure 6.2: Accuracy Vs Execution Time for DS2. 
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Figure 6.3: Accuracy Vs Execution Time for DS3. 

 

Figure 6.4: Accuracy Vs Execution Time for DS4. 

 

Figure 6.5: Sensitivity Vs Execution Time for DS1. 
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Figure 6.6: Sensitivity Vs Execution Time for DS2. 

 

 

 

Figure 6.7:  Sensitivity Vs Execution Time for DS3. 

 

Figure 6.8: Sensitivity Vs Execution Time for DS4. 
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6.4 MLADCF Results 

The MLADCF was tested through simulation to assess its performance and 

effectiveness, deploying IoT sensors, and creating an IoT environment for live data 

capturing. The performance evaluation of MLADCF included metrics such as energy 

consumption, alive nodes, processing time, and storage. The results were presented in 

the form of graphs. The node's energy during the simulation process is shown in Figure 

6.9. The energy of the node is calculated by equation (5.35) and equation (5.36). The 

results show that the node's energy is better in the proposed MLADCF. In the case of a 

traditional IoT environment, it was observed that the energy was getting exhausted 

during the process in comparison to the MLADCF. The results shown in Figure 6.9 

show an improvement in the node's energy by 11.9%. All scenarios in the IoT 

environment were considered, and a comparison was made to identify the factors 

causing energy drop in an IoT node. In scenarios where nodes engage in frequent 

communication rather than just transmitting data, we observed an 80% energy drop in 

the IoT nodes. 

 

Figure 6.9: No. of Rounds Vs Energy. 
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Figure 6.10: No. of Rounds Vs No. of Alive Nodes. 

 

Figure 6.11: No. of Rounds Vs No. of Alive Nodes. 

As every node has a major impact on the overall IoT environment, each node is 

responsible for the life of the network. If a node is overloaded with the incoming data 

traffic, its energy affects the overall network. The observation from Figure 6.10 and 

Figure 6.11 leads us towards the results of the MLADCF. In Figure 6.10, we can see 

that the number of alive nodes is more at all the points than the traditional framework, 
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hence improving the network's life. Moreover, the improvement was calculated to be 

24 percent. 

 

Figure 6.12: No. of Slave Nodes Vs Storage. 

 

Figure 6.13: No. of Slave Nodes Vs Processing Time. 

The increased data traffic from the millions of sensors required more storage capacity. 

In the proposed framework MLADCF, the storage problem has been taken into account, 

and it is observed from Figure 6.11 as the nodes start capturing data, the storage used 

is further reduced in the MLADCF. The number of secondary nodes for the data 
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processing is increased. The results for the processing time are shown in Figure 6.12. It 

is observed from the graph that the processing time decreases if the number of nodes is 

increased. 

6.5 Summary 

In this chapter, the proposed model is implemented for the resource-constrained IoT 

environment. The results were compared with existing machine learning approaches. 

The comparison revealed that the proposed model outperformed all the existing 

approaches for IoT data classification, making it the optimal choice for the resource-

constrained IoT environment. Comprehensive experiments were conducted as part of 

the study to evaluate the performance of the proposed model in comparison to the 

existing machine learning algorithms i.e., KNN, SVM, RF, DT, NB, and LR used for 

data classification. The primary difference between this thesis and other researchers' 

experiments lies in the specific focus on optimizing the overall energy consumption of 

the IoT network. Therefore, resulting in the improvement of the IoT network’s energy 

and the number of alive nodes remining in the IoT network. Two distinct experiments 

were conducted, as illustrated in Chapter 5 and Chapter 6. The first experiment was 

conducted to evaluate the mathematical model and proposed hybrid KNN algorithm. 

The output of the first experiment serves as the input for the second experiment, where 

two separate algorithms were proposed for device level and edge level, respectively. 

The end result is shown in the form of graph i.e., No. of rounds vs energy, no. of rounds 

vs no. of alive nodes, no. of slave nodes vs storage, and no. of slave nodes vs processing 

time. For the experiment, four data sets were utilized, all of which were captured in 

real-time by creating an IoT environment, as illustrated in Figure 5.22, Figure 5.23, and 

Figure 5.24. 
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CHAPTER 7 

__________________________________ 

CONCLUSION AND FUTURE 
DIRECTIONS

__________________________________ 
 
 
 
 
7.1 Conclusion 

The optimization of the resources is important in resource-constrained IoT applications. 

Implementation of machine learning approaches to meet the expectations of the 

application is required. Offloading data from IoT devices through the IoT network to 

the nearest Fog node is used in many applications, but the data offloading depends on 

many factors to optimize resources. The optimization is possible through mechanisms 

at different layers of the IoT environment. This Thesis discusses the layered approach 

for data classification. Based on the device capability, it is decided where to process, 

store, and communicate the sensed data within the permissible limits of delay in real-

time IoT applications. In the proposed framework for the optimization of the resources, 

the machine learning algorithm is used to decide at which layer of the network and 

device-level within the IoT network, i.e., IoT device, node, cluster node or Fog node, 

the processing, storage, communication of the data is to be taken. The data classification 

helps to optimize resource utilization within the IoT framework. 

This thesis has provided valuable insights into the challenges encountered by IoT 

systems and how emerging technologies like Edge and Fog Computing aim to address 

these challenges. By reducing network latencies and cloud service costs, these 

technologies seek to enhance the efficiency and performance of IoT systems. However, 
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it is important to note that deploying such systems is not a straightforward process, and 

determining where to begin can be daunting due to the heterogeneity of platforms, 

operating systems, hardware, cloud solutions, and communication protocols involved. 

Thus, there is a need for interoperable solutions that can integrate these diverse 

elements seamlessly. The study also observed how different IoT scenarios can 

contribute to standardization, making it easier for these systems to be adopted widely. 

Overall, the proposed methodology has successfully achieved its intended objectives. 

7.2 Future Directions 

Machine learning plays a pivotal role in advancing organizations along the business 

intelligence maturity curve by shifting from retrospective descriptive analysis to 

forward-thinking, autonomous decision-making. Although the technology has been 

around for decades, recent innovations and product advancements have sparked 

renewed interest among companies. Machine learning-based analytics solutions operate 

in real time, introducing a new dimension to business intelligence. While these models 

continue to provide valuable insights and reports to senior decision-makers, real-time 

analytics empower frontline employees to enhance performance on an hourly basis. 

As a subset of artificial intelligence, machine learning involves training systems with 

specialized algorithms to analyze, learn from, and generate predictions and 

recommendations based on extensive datasets. These predictive models can adapt to 

new data without human intervention, continuously improving accuracy and 

consistency in their results and decisions. This iterative process enhances system 

intelligence, enabling the discovery of hidden perspectives, historical relationships, 

trends, and new opportunities across various domains, from customer preferences to 

supply chain optimization and even oil exploration. Importantly, machine learning 

empowers organizations to leverage big data effectively and integrate capabilities like 

IoT analytics. Machine learning is a robust analytical technology already available to 

businesses. A wide range of commercial and open-source machine learning solutions, 

accompanied by a thriving developer ecosystem, is readily accessible. It is likely that 

your organization is already leveraging machine learning in some capacity, such as for 

spam filtering. Embracing machine learning and analytics more broadly empowers 
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faster responses to dynamic situations and unlocks greater value from rapidly 

expanding data repositories. 

As discussed in previous chapters, the development of current societies will depend 

to a certain extent on implementing the Internet model of the things in device 

generation. However, despite its advantages, the IoT has some drawbacks that lead to 

rethinking the processes and design of objects and their interconnectivity to adapt to 

certain daily needs and enable the expected interaction effectively. This situation 

implies that, soon, the creation of the devices and services based on the development 

of the IoT model should change, focusing on the paradigms that define the 

consciousness of the text as well as the application of the ubiquitous computing, thereby 

allowing the design of resources according to situations individuals in different social 

spheres. Identifying the aspects that determine the interaction process of a device with 

a user or a device with another through the Internet gives the possibility of generating 

new designs that circumscribe the concept of the Internet of Things. 

"MLADCF" the proposed model is based on a completely new framework" in which 

the need to know the environment or context, transcending a "Great concept Design" 

to "Design in Context." This context-awareness can be controlled by open hardware 

such as Arduino, Netduino, Galileo, Raspberry, or similar. Implementing 

communication that allows managing data generated in the Cloud closes the object-

user-awareness system of the context-Internet of Things. Finally, it is worth clarifying 

the use of technology in design within this model. Design for the IoT framework must 

involve ML technology during the process. However, it should not be considered use 

of this as the end but as the means; that is, it should be designed for the technology and 

not with technology. It has been seen that the increase in interaction between people 

and objects at any time is empowering more and more the development of current 

societies. In this sense, the Internet of things is already a reality present worldwide in 

all areas of social development. Nevertheless, being an emerging technology, the IoT 

model still has certain shortcomings that make it not entirely applicable. This implies a 

clear evolution of the Internet and changes in the conceptualization of everyday life and 

its context, which forces us to prepare for future interaction design and devices. A 

paradigm shift is necessary for object design and services based on the development of 

the IoT model, which should focus fundamentally on the approaches that define the 
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awareness of the context and the application of ubiquitous computing, thereby allowing 

the design of resources according to particular situations. That situation sets the tone 

for Carrying out work and research that will benefit the development of the Internet of 

Things and societies. 

In Chapter 6, it was observed that the HRCKNN algorithm exhibited inconsistency 

when applied to different data sets. The execution time, precision, and accuracy were 

additional and were not best for all the parameters. However, the hybrid quality of the 

model manages to outplay all other approaches. But there is a scope for improvement 

in the accuracy of the data set, which has a lower recall value. Similarly, for the 

framework MLADCF, the overall energy of the system can be improved by using an 

enhanced version of the approach. 
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