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Abstract

A STUDY ON PRIME LABELING AND PRIME DISTANCE

LABELING OF GRAPHS

by Ram Dayal

“Let G = (V,E) be a graph with V as non- empty set of vertices or nodes or points

and E as the set of edges or lines or arcs. If the nodes or arcs or both of G are as-

signed labels (mostly integers) subject to certain constraints, then the graph G is said

to have vertex labeling, edge labeling or total labeling, respectively. One of the im-

portant areas in graph theory is graph labeling used in many applications like coding

theory, x−ray crystallography, cryptography, astronomy, circuit design, communication

networking, data base management, etc. There are many types of graph labeling studied

by many Mathematicians like prime labeling, prime distance labeling, vertex prime la-

beling, cordial labeling, k-equitable labeling, etc. Prime numbers have always fascinated

Mathematicians and the concept of relatively prime numbers has also been extensively

used in many areas of Mathematics. So, the prime labeling and prime distance labeling

have also been extensively studied by many Mathematicians. But the origin of most

of the graph labeling can be traced when β−valuation of a graph was introduced. A

one-one function f : V (G) → {0, 1, 2, . . . ,m} is said to be a β−valuation of a graph

G(V,E), where |E| = m, if each edge e = st is assigned the label |f(s) − f(t)| and all

the labels are distinct. A bijection f : V (G) → {1, 2, . . . , |V |} is called a prime labeling

of G if for each edge e = st, GCD(f(s), f(t)) = 1, where GCD denotes the greatest

common divisor. G is a prime graph if it admits a prime labeling. A graph G(V,E), is

a prime distance graph if there exists a one-one labeling of its vertices f : V (G) → Z

such that for any two adjacent vertices u and v, the integer |f(u)− f(v)| is a prime and

f is called a prime distance labeling of G. So, a graph G is a prime distance graph if

and only if there exists a prime distance labeling of G. Though a significant work has

been done in the area of prime labeling and prime distance labeling, complete charac-

terization of both these labeling is pending and have attracted many Mathematicians

for research in this direction. In an effort to achieve complete characterization of both

of these labeling, researchers across the globe have ingrained prime labeling and prime

distance labeling for various classes and families of graphs. Moreover both of these la-

beling have been extensively studied in the context of various graph operations such as
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extension, duplication, join, disjoint union, barycentric subdivision, Cartesian product,

vertex switching, etc.

In the present proposed work, an effort has been made to derive prime labeling and

prime distance labeling of some classes and families of graphs.

Sufficient conditions for the degree splitting graph of a bipartite graph to exhibit prime

distance labeling and barycentric subdivision of a graph to exhibit prime labeling have

been obtained. The complete characterization of prime distance labeling in the context

of barycentric subdivision has also been established.

Besides this some interesting conjectures and open problems have also been formulated

for future work. Thus the thesis titled: A Study on Prime Labeling and Prime

Distance Labeling of Graphs deals with the following objectives:

1 Deriving the prime labeling of some classes of graphs.

2 Establishing prime distance labeling of certain families of graphs.

3 Obtaining the prime and prime distance labeling in the context of extension of vertices

of some graphs.

4 Obtaining the prime and prime distance labeling in the context of barycentric subdi-

vision of some graphs.

The thesis A Study on Prime Labeling and Prime Distance Labeling of Graphs has been

divided into five chapters of which the first is introduction. Apart from giving a historical

background of graph theory, some basic notions of graph theory and graph labeling with

some established results in prime labeling and prime distance labeling are also included in

this introductory chapter to make this thesis self-contained. On the grounds of literature

review, research gap has been identified and some realistic objectives are proposed.

In the second chapter ‘Results on Prime Labeling’, prime labeling of some classes of

graphs has been investigated. The constraints on the orders of two prime graphs so that

their disjoint union exhibits prime labeling are also investigated. The prime labeling of

path graphs and complete graphs in the context of degree splitting of a graph has been

studied. Besides this, prime labeling of the complement of gear graph and middle graph

of a path graph has also been studied.

In the third chapter, ‘Prime Labeling in the context of Extension and Barycentric subdivi-

sion’, we study prime labeling of star, bistar and tree graphs in the context of barycentric

subdivision besides giving the sufficient condition for a graph to exhibit prime labeling

in the context of barycentric subdivision. Prime labeling of path and complete graphs

in the context of extension of vertices has also been investigated.
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In the fourth chapter, ‘Results on Prime Distance Labeling’, the prime distance labeling

of the non-commuting graphs of some non-abelian groups like dihedral group D2n and

Quartenion group Q8 are investigated. Prime distance labeling of the degree splitting

graph of complete graph, complete bipartite graph, Jelly fish graph J(m,n), Flower

graph F (Cm,Kn), Pizza graph, Diamond graph, Jewel graph, Super subdivision of a

graph, one point union of 2−regular graphs and sufficient condition for the degree split-

ting graph of a bipartite graph to exhibit PDL, have been investigated. Besides this

some general results on prime distance graphs have also been studied.

The last chapter, ‘Prime Distance Labeling in the context of Extension and Barycentric

subdivision’ deals with obtaining complete characterization of prime distance labeling of

simple graphs in the context of barycentric subdivision and prime distance labeling of

path and complete graphs in the context of duplication and extension of vertices. The

characterisation of family of graphs that exhibits PDL if Goldbach’s conjecture is true

has also been obtained.

In the end, a detailed bibliography has been included to justify the present study”.
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Chapter 1

Introduction

In this chapter an incisive introduction to graph theory and graph labeling has been

given along with a few applications of graph labeling. Apart from these basic notions

of graph theory and graph labeling, some established results in PL and PDL in this

introductory chapter are given to make this dissertation self-contained. The aim of

the thesis is presented along with the detailed review of literature. On the grounds of

literature review, research gap has been identified and some realistic objectives of the

present work are proposed.

1.1 Introduction to Graph Theory

In many different domains, graph theory is very significant. Graph theory first appeared

in the 1700s, when Swiss mathematician L. Euler published a paper on the Königsberg

bridge problem in 1736. Many people view this as the birth of the discipline of graph

theory. After Euler’s work, the area of graph theory virtually stagnated for the following

100 years. Euler’s theories on graphs were initially intended to be used for puzzle-solving

and entertainment. Later, around the middle of the 1800s, it was discovered that graphs

can be used to model a variety of real-world issues that are very important to society.

The fact is that practically every real-world issue involving a discrete arrangement of

things may be represented as a graph, provided that only the relationships between the

objects are considered and not their intrinsic attributes. G.R. Kirchoff introduced the

“theory of trees” in 1847, and it was applied in electrical networks. Arthur Cayley made

the discovery of trees in 1857 while attempting to enumerate the structural isomers of

saturated hydrocarbons represented by the formula CkH2k+2. In 1852, A. De Morgan

introduced the “Four-Color Conjecture”, that defines 4 colors are sufficient to color any

map on a plane such that the bordering regions are colored differently. The problem was

1
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first published by Cayley in 1879.This famous problem in graph theory has stimulated

a large volume of developments in “graph theory”. This result now has been estab-

lished and requires the help of computer for verification and hence we call it now Four-

Color Theorem. In the year 1859 Sir W. R. Hamilton invented a puzzle consisting of a

wooden, regular dodecahedron. The goal of the task was to identify a path along the

borders of the dodecahedron that starts from any city, travels through each city precisely

once, and ends at the city from which it started. A dodecahedron has twenty corners,

each of which was marked with the names of 20 cities. Hamiltonian circuits are what

such pathways are known as in graph theory. Finding a characterisation theorem for a

Hamiltonian circuit to exist in any given graph has not yet been resolved, even though

this problem can be addressed quite quickly. The field of graph theory remained largely

dormant for roughly 50 years. The interest in graphs again returned in the 1920s, and

one of the most well-known graph theorists of the time, D. König, compiled both his

own work and that of other mathematicians, publishing the first book in this field in

1936. Numerous books and thousands of papers have been written in the past 70 years

as a result of the extensive study that has been done in graph theory. Graph theory

has a wide range of applications in many different scientific domains, even though it was

initially intended to solve amusing puzzles. A Computer network can be depicted as a

graph with nodes denoting web pages and directed lines denoting links connecting those

sites. Like how a graph is a natural depiction of a molecule in chemistry, where nodes

stand in for atoms and lines for bonds, Computer-assisted molecular structure process-

ing, which includes anything from chemical editors to database searches, benefits from

this technology. It’s interesting to note that chemical graph theory [9], which uses graph

theory to the mathematical modelling of chemical events, is given special attention even

though mathematical modelling in Organic Chemistry stems from several fields of Math-

ematics. Graphs can also depict the dynamics of a physical process on those systems

as well as the local relationships between interacting system components in statistical

physics. The concept of graphs find application in describing micro-scale links in porous

media, with nodes denoting holes and lines denoting the smaller links connecting pores

[55]. The analysis of high symmetry graphs led to the development of algebraic graph

theory [8]. It examines many classes of graphs with relation to specific characteristics

of automorphism groups, including semi-symmetric graphs, line-transitive graphs, node-

transitive graphs, and distance transitive graphs. Additionally, graph theory has plenty

of applications in many fields of mathematics, science, engineering, & technology, as

well as communication networks and practical issues [6, 10]. GT and GL, respectively

denote graph theory and graph labeling.

“GL is a vital concept in GT that finds countless uses in different domains. GL is a

map that allocates integers to the links or points, or both under a few restrictions. The



Chapter 1. Introduction 3

importance of GL can be witnessed by its variety of uses in many domains like circuit

design, radar, etc”. For a detailed study, see [7, 22, 36, 40, 74].

1.1.1 Preliminaries

In this subsection some basic ideas of “graph theory” and results relevant to the study

undertaken have been recalled.

Definition 1.1.1. “A simple graph H consists of a non-null set V of finite number of

points/nodes & a set E of links/lines in a way that each line of G is a pair {yi, yj} for

some yi, yj in V with yi ̸=yj (See Figure 1.1).

Definition 1.1.2. The degree of x ∈ V (H), denoted by dH(x ), is the count of lines of

H incident with x (see Figure 1.1).

Definition 1.1.3. Two nodes are adjacent in G if they are joined by a line in G.

Definition 1.1.4. Two adjacent nodes of G1=(V, E ) are said to be neighbors. Open

& closed neighborhood of x represented by N (x ) or N [x ] respectively(see Figure 1.1).

Figure 1.1: A simple graph H

Definition 1.1.5. Two or more lines of G1 are known to be incident if they have a

common node.

Definition 1.1.6. A walk in G is a finite alternating sequence of nodes & lines that

begins and ends with nodes.

Definition 1.1.7. A walk in G without repetition of nodes is said to be a path, denoted

by Pn.

Definition 1.1.8. A closed path in G=(V,E ) is a cycle, Cn.
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Definition 1.1.9. G1 is connected if ∃ a Pn between each pair of nodes in G1, otherwise

disconnected.

Definition 1.1.10. G=(V,E ) without any cycle is said to be acyclic.

Definition 1.1.11. A tree is connected & has no cycles (see Figure 1.2).

Figure 1.2: A tree

Definition 1.1.12. A graph denoted by Kn is said to be complete if every pair of nodes

is connected by a line.

Figure 1.3: K5

Definition 1.1.13. H=(V ,E ) is bipartite when V shall be divided into 2 sets Y 1 &

Y 2 so that each line of H is having one end node in Y 1 & the other in Y 2.
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Figure 1.4: C6

Definition 1.1.14. A bipartite graph G1 with decomposition as V= Y 1 ∪ Y 2 is said

to be complete bipartite whenever every node in Y 1 is connected to every node in Y 2,

denoted by Km,n (see Figure 1.5).

Figure 1.5: K2,3

Definition 1.1.15. A star with n nodes is a complete bipartite graph K1,n−1.

Definition 1.1.16. A banana tree is a family of stars with a new node adjoined to one

end node of each star (see Figure 1.6).

Figure 1.6: Banana tree



Chapter 1. Introduction 6

Definition 1.1.17. A wheel graph is Wn = Cn ∧K1. (see Figure 1.7).

Figure 1.7: W5

Definition 1.1.18. The helm, Hn can be derived out of Wn by connecting a pendant

point to every rim point (See Figure 1.8).

Figure 1.8: H5

Definition 1.1.19. The Fln is formed from Hn by connecting each pendant node to the

centre of Hn (See Figure 1.9).

Figure 1.9: Fl5

Definition 1.1.20. The gear graph Gn is formed by inserting a node between adjacent

nodes on the perimeter of Wn (see Figure 1.10).
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Figure 1.10: Gear graph G5

Definition 1.1.21. A line e = xy is known to be subdivided when xy is replaced by

lines e1 = xw & e2= wy. When every line of H is subdivided, the resulting graph is

said to be barycentric subdivision of H. (see Figure 1.11).

Figure 1.11: S(C3)

Definition 1.1.22. The extension of any arbitrary node in G, say r, is obtained by

introducing a new node u1 in G which produces a new graph G1 & N (u1)={r} ∪
N (r)”. (see Figure 1.12).

Figure 1.12: Extension of v by u in P3

Definition 1.1.23. “The shadow graph D2(H ) of H is formed by having 2 copies of H,

say H ′ and H ′′ and joining every node x′ ∈ H ′ to the neighbors of the respective node

y′ ∈ H ′′(see Figure 1.13).
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Example 1.1.1. G and D2(G) (see Figure 1.13).

Figure 1.13: G and D2(G)

Definition 1.1.24. The web graph Wn,r can be obtained as a Cartesian product of Cn

and Pr. Note that Wn,1 is the same as Cn, and Wn,2 is a prism.

Definition 1.1.25. [41] A triangular snake Ts is derived from Ps: x1,x2, . . . xs by con-

necting xi and xi+1 to a new node ui: 1 ≤ i ≤ s− 1.

Definition 1.1.26. [41] A double triangular snake D(T s) contains of 2 Ts with a com-

mon Ps.

Definition 1.1.27. [41] The duplication of

(i) a point x of G1 is obtained by adding a new point x
′
to G1 & placing links so that

N(x) = N(x′).

(ii) a node vk of G1 by a line e = vk
′
vk

”is formed by introducing 2 new nodes vk
′
, vk

”

& a line e = vk
′
vk

” so that N
(
v
′
k

)
=
{
vk, vk

”
}
, N
(
vk

”
)
=
{
vk, vk

′
}
.

(iii) e1 = cd ∈ G1 by a point w is obtained by introducing a new point w to G1 so that

N (w) = {c, d}.

(iv) a line e1 = x1y1 in G1 produces G1
′
by introducing a line e

′
= x1

′
y1

′
, where

x1
′
, y1

′
are newly added points to G1 so that N

(
x1

′
)
= N (x1) ∪

{
y1

′
}
− {y1} &

N
(
y1

′
)
= N (y1) ∪

{
x1

′
}
− {x1}.

Definition 1.1.28. [41] The total graph T (H ) of H with node set, V (H ) ∪ E (H ) and

2 nodes are adjacent when they are either adjacent or incident in H ”.

Definition 1.1.29. [41] “The k − th power Gk of G has the same node set as G and

two distinct nodes u and v of G are adjacent in Gk if and only if their distance in G is

at most k. The graphs G2 and G3 are also known as square and cube of G respectively

(Parthiban, 2018)”.
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Definition 1.1.30. [44] “DWn of size n is composed of 2Cn +K1.

Definition 1.1.31. [44] F1,n is defined as F1,n = K1 + Pn.

Definition 1.1.32. [44] Umberlla graph G = U (r, s) is defined as follows: The node set

V (U (r, s)) = {v1, v2, . . . , vr+s}& E (U (r, s)) = E1∪E2∪E3, where E1 = {vivi+1 : 1 ≤ i ≤ s− 1},
E2 = {vsvs+j : 1 ≤ j ≤ r},
E3 = {vkvk+1 : s+ 1 ≤ k ≤ r + s− 1}.

Definition 1.1.33. The join of two disjoint graphs H1 and H2, H1 +H2 has node set

V (H1 +H2) = V1 ∪ V2 and E (H1 +H2) = E1 ∪E2 ∪ {uv : u ∈ V1, v ∈ V2} (see Figure

1.14).

Figure 1.14: G1, G2 and G1 +G2

Definition 1.1.34. Two graphs H1 & H2 are known to be isomorphic if ∃ a one-

one correspondence between their nodes & lines such that the incidence relationship is

preserved” (see Figures 1.15, 1.16).

Figure 1.15: Isomorphic Graphs

Figure 1.16: Non - isomorphic Graphs
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1.2 Graph Labeling

“An allocation of numbers to V or E or both of H subject to a few restrictions is called

a GL. There are many types of GL studied by many Mathematicians like PL, PDL, node

PL, cordial labeling, k -equitable labeling, etc. Prime numbers have always fascinated

mathematicians, and the concept of relatively prime numbers has also been extensively

used in many areas of Mathematics. So, the PL and PDL have also been extensively

studied by many mathematicians. But the origin of GL can be traced when Rosa [57]

introduced β-valuation of a graph in 1967. A one-one function g : V (H )�{0,1,2,. . . ,m}
is a β-valuation of H (V,E ), where |E |=m, if each line e=st is given the label |g(s)−g(t)|
and every label is unique”. The present study is focused on PL and PDL of simple and

undirected graphs.

Definition 1.2.1. If the nodes or lines or both of G are assigned labels (mostly integers)

subject to certain conditions, then the graph is said to have node labeling, line labeling

or total labeling respectively.

Definition 1.2.2. “H= (m, n) is graceful when ∃ a one-one mapping g :V (H ) → {0,
1,. . . ,n} such that the resulting absolute difference of the node labels of all the lines is

{1, 2, · · · , n}” (see Figure 1.17).

Figure 1.17: Graceful labeling of G

1.3 Prime Labeling and Prime Distance Labeling

Some number theory results are recalled here:

Conjecture 1.3.1. “(The Goldbach’s Conjecture (GC)): Every 2k > 2, 2k = p1 +

p2, pi ∈ P (Burton, 2011)”.

Conjecture 1.3.2. “(The Twin Prime Conjecture (TPC)) ∃ infinitely many

primes pi, pj such that |pi − pj | = 2 (Burton, 2011)”.
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Conjecture 1.3.3. “(de Polignac’s) For any positive integer 2s, ∃ infinitely many

pairs of consecutive primes that difference is 2k (Burton, 2011)”.

Theorem 1.3.1. “(Ramare’s) Every 2k is the sum of at most 6 primes (Burton,

2011)”.

Theorem 1.3.2. “(The Green-Tao) For any positive integer l, ∃ a prime A.P of

length l (Burton, 2011)”.

Theorem 1.3.3. “Every sufficiently large odd number, 2k+1, 2k+1 = p1+p2+p3, pi ∈ P.

is the sum of three primes (Burton, 2011)”.

Lemma 1.3.1. (Euclid’s Lemma) When q is a prime and c, d are any two integers,

then q |cd ⇒ q| c or q|d.

Theorem 1.3.4. Two integers c, d are co-prime if and only if ∃ two integers x and y

such that cx+ dy = 1.

Theorem 1.3.5. If two integers r and s are co-prime, then r |sc ⇒ r| c.

Theorem 1.3.6. The number of positive primes is infinite.

Definition 1.3.1. The Euler φ− function is the function φ : Z+ → Z+ and defined as

follows: (i) : φ (1) = 1, (ii) for k > 1, φ (k)= the count of positive integers < k and

co-prime to k.

Theorem 1.3.7. If r and s are co-primes, then φ (rs) = φ (r)φ (s).

Theorem 1.3.8. If q is a prime, then φ (qn) = qn − qn−1 = qn
(
1− 1

q

)
, where n is any

positive integer.

Theorem 1.3.9. If n > 1 and pi; i = 1, 2, 3...m are the distinct prime factors of n, then

φ (n) = n
(
1− 1

p1

)(
1− 1

p2

)
. . .
(
1− 1

pm

)
.

Theorem 1.3.10. If q is a prime and x is any integer such that q is not a divisor of x

so that (x, q) = 1, then xq−1 ≡ 1 (mod q).

Theorem 1.3.11. If m is a positive integer & a is any integer such that (a,m) = 1,

then aφ(m) ≡ 1 (mod m).

Theorem 1.3.12. If q is a prime, then (q − 1)! + 1 ≡ 0 (mod q) i.e. (q − 1)! + 1 is a

multiple of q.

Theorem 1.3.13. (Converse of Wilson’s Theorem) If (p− 1)! + 1 ≡ 0 (mod p),

then p must be a prime.
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Definition 1.3.2. A graph H with k− nodes is said to allow prime labeling (PL) if ∃ a

bijective map g : V (H) → {1, 2, ..., k} so that for each e = kl, GCD(g (k), g (l)) = 1.

Any G admitting PL is a prime graph (PG) (see Figure 1.18).

Figure 1.18: A prime graph

Definition 1.3.3. H is a PDG if ∃ a one-one labeling h :V (H ) � Z so that given 2

adjacent nodes k & l, the integer |h(k)− h(l)| is prime. (see Figure 1.19).

Figure 1.19: A PDG

Interestingly, the establishment of PDL of a few classes of graphs is very much related

to some important results in Number Theory. In fact the PDL of bipartite graphs can

be shown by using the Green-Tao theorem; the PDL of cycles can be done by using GC,

TPC, etc”.

1.4 Review of Literature

1.4.1 Some Important Results on Prime Labeling

Some important results on PL are recalled in this subsection.
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“In [26] the given results are established:

� If H is a prime graph of order s, then α0 (H) ≥
⌊
s
2

⌋
, where α0(H) is the indepen-

dence number of H.

� A complete bipartite graph G = (A, B) of order n with |A| ≤ |B|, is prime iff

|A| ≤
∣∣P (n2 , n

)∣∣+ 1.

� If H = (A, B) is bipartite of order p with |A| ≤ |B| & |A| ≤
∣∣P (p2 , p

)∣∣+ 1, then

H is prime.

� If T = (A, B) is a connected acyclic graph of order s with |A| ≤ |B| & |A| ≤∣∣P ( s3 , s
)∣∣+ 1. Then T is prime.

� All trees of order less than 16 admit PL.

� If α0 (G) ≥ n−
∣∣P (n2 , n

)∣∣− 1, then G is prime.

P. Haxell et al [25] established the following:

� ∃ k′ such that every tree of order k with k ≥ k′ is prime.

� For every d ≥ 1 ∃ n′′ such that every s (n)− separable bipartite d− degenerate

graph F of order n ≥ n′′ is prime, where s (n) = n1− 106.d
ln lnn .”

“S. K. Patel and Jayesh Vasava [51] established the following:

� If n and m both are odd, then C
(j)
n ∪ C

(k)
m is not a prime graph.

� C
(j)
2n ∪ C

(k)
m is prime ∀ n and m.

� C
(2)
2n ∪ C

(2)
2m ∪ C

(2)
k is prime ∀ n,m and k.

� C2n ∪ C2n ∪ C2n ∪ C2n ∪ C2m ∪ Ck is prime ∀ n,m and k”

“S. K. Vaidya et al. [72] proved the following:

The graph formed by performing duplication of

� x ∈ Pk is a PG.

� a node by a line in Pk is a PG.

� every node by a line in Pk is not a PG.
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� a line by a node in Pk is a PG.

� a line in Pk is a PG.

� every node by a line in Ck is not a PG.

� a line by a node in Ck is a PG.

� a line in Ck is a PG if k ≥ 3.

S. Meena and P. Kavitha [37] proved the following:

The graph formed by performing duplication of

� each node by a line in subdivision of S1,n does not admit PL.

� a node in subdivision of S1,n admits PL.

� all pendant nodes in subdivision of S1,n admits PL.

� nodes of degree 2 in subdivision of S1,n admits PL.

� the nodes of the subdivision of S1,n except the apex node admits PL.

� the lines by a node which are incident with pendant nodes in subdivision of S1,n

does not admit PL.

S. Meena and K. Vaithilingam [38] established the following:

The graph obtained by

� fusing any 2 consecutive nodes in Hn is a PG.

� duplicating a node vk in the rim of Hn is a PG.

� switching of any node vk in the rim of Hn is a PG.

� the path Pk union of 2 pieces of Hr is a PG if r ̸= 5k + 1.

� Hn admits PL.

S. Ashokkumar and S. Maragathavalli [37] proved the following:

� Flower graph Fln admits a PL.

� Splitting graph of star graph admits a PL.

� The bistar Bn,n admits a PL.
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� The friendship graph Fn admits a PL.

The authors in [69] proved the following:

The graph obtained by

� identifying any 2 nodes xi & xj (d (xi, xj) ≥ 3) of Ck is a PG.

� duplicating arbitrary node of Ck is a PG.

� path union of finite copies of Cr is a PG except for odd r.

� joining two copies of Cr by Ps is a PG except r & s both odd”.

1.4.2 Some Important Results on Prime Distance Labeling

Joshua D. Laison, Colin Starr, Andrea Walker [33] proved the following:

� “Every bipartite graph is PDG.

� If GC is true, then each Cn is PDG.

� Every cycle is a PDG.

� All Dutch windmill graphs are PDG iff the TPC is true.

A. Parthiban and N. Gnanamalar David [45] established the following:

� “µ(G) of any non-PDG G is again a non-PDG.

� Any k -th power k ≥ 2 of µ(Pn), n≥2, does not admit a PDL.

� Any k -th power (k ≥2) of µ(Cn), n≥3, does not admit a PDL.

� The shadow graph D2(Pn) of Pn admits a PDL.

� The middle graph M (Pn) of Pn admits a PDL.

� The total graph T (Pn) of Pn admits a PDL.

� The double triangular snake D(Tn) admits a PDL.

� The triangular snake Tn admits a PDL”.

A. Parthiban and N. Gnanamalar David [41] established the following:

“The graphs formed by
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� (i) switching a pendant node in Pk, (ii) switching a neighbor of a pendant node

in Pn and (iii) switching a middle node in Pn admit no PDL for n ≥ 14”.

� switching a central node in Wn admits a PDL for n≥4.

� performing duplication of a point by a line at all points in Pn admit a PDL for

n≥1.

� performing (i) duplication of a node in Pn or (ii) duplication of a node by an line

in Pn admits PDL for n≥1.

� performing duplication of a line by a node at all lines in Pn admits PDL.

� performing extension at all nodes in Pn admits PDL.

� taking union of k -copies of PDG H admits PDL.

� gluing at each node of a PDG H finite number of node disjoint paths permits PDL.

� gluing 2 copies of Ck by Pl admits PDL”.

A. Parthiban et al. [44] proved the following:

� “G1 = H1 ×K2 admits PDL”.

� “Wn = Cn−1 +K1, n ≥ 10 admits no PDL”.

� “Hn, n ≥ 10 admits no PDL”.

� “DWn, n ≥ 5 admits no PDL”.

� “F1,n, n ≥ 11 admits no PDL”.

� “U (m,n) , m ≥ 11 admits no PDL”.

A. Parthiban & N. Gnanamalar David [42] proved the following:

� “Wn,r for any n, r ≥ 3 admits a PDL”.

� “DSG(Pn) does not admit a PDL ∀ n ≥ 13”.

� “DSG(Kn), n ≥ 4 does not admit a PDL”.

� “The braid graph B (n) permits PDL ∀ n ≥ 3”.

� “The triangular ladder TLn admits a PDL ∀ n ≥ 2”.
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1.5 Research Gap and Objectives

Though plenty of study has been pursued in the section of PL and PDL of graphs,

still there are many interesting conjectures and open problems to work on. For in-

stance, Entringer-Tout Conjecture: Every tree is prime graph has not been settled till

date, though a partial success has been achieved wherein it has been proved that all

large trees are prime. Complete characterizations of prime graphs and PDGs are still

pending. Researchers across the globe have done an enormous amount of work in this

direction. Moreover both of these labeling have been studied by many mathematicians

for many classes and “families of graphs” in the context of many “graph operations”

like barycentric sub-division, extension of nodes, join, Cartesian product, corona, dupli-

cation, node switching, etc. But there are many families and classes of graphs for which

the exhibition of these labeling in the context of barycentric sub-division and extension

of nodes is pending. Moreover an attempt has been made to narrow the gap of estab-

lishing the complete characterization of these labeling. Based on these research gaps,

the following objectives are framed:

1. Deriving the PL of some classes of graphs.

2. Establishing PDL of certain families of graphs.

3. Obtaining the prime and PDL in the context of extension of nodes of some graphs.

4. Obtaining the prime and PDL in the context of barycentric subdivision of some

graphs.

1.6 Contributions of the thesis

The present research study enriches the field of graph theory, specifically the area of PL

and PDL of graphs. The contributions advance the possibility of attaining the complete

characterizations of PL and PDL. The study also provides the future directions for the

readers and research community.

1.7 Conclusion

In this chapter, an introduction to GT and GL has been given for references in the

exposition. In addition to PL and PDL, a few other graph labeling techniques have

also been recalled. Finally, a comprehensive review of literature along with research gap

followed by the proposed objectives are also presented.
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Results on Prime Labeling

2.1 Introduction

In this chapter PL of some classes of graphs has been studied. The constraints on the

orders of two prime graphs so that their disjoint union exhibits PL have been investi-

gated. Also studied PL of Pn and Kn in the context of degree splitting graph of given

graph. Besides this, prime lableling of the complement of gear graph & middle graph of

a path have also been derived.

2.2 Certain Results on PL of Graphs

First we recall some established results:

Theorem 2.2.1. “Assume that Tk is a connected acyclic graph on k nodes, where k ≥ 3.

Let A = {x ∈ V |deg (x) ̸= 1} and B = {y ∈ A| y is adjacent to pendant verices}. If

|A| ≤ |P (1, k)|+ 1 and |B| ≤
∣∣P (k2 , k)∣∣+ 1, then Tk has PL, where P (x, y) is the set

of all primes t such that x < t ≤ y”.

Example to illustrate the above theorem: Consider T in Figure 2.1. See that n = 31,

“A = {vi : i = 1, 2, 3, 4, 5, 6, 7}, B = {v1, v2, v4, v6, v7} ”, |A| = 7, |B| = 5. Also,

|P (1, 31)| = 11, |P (15.5, 31)| = 5. Since theorem 2.2.1 is satisfied, T has PL as shown

in the Figure 2.1.

18
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Figure 2.1: PL of a tree with 31 nodes

Theorem 2.2.2. [35] “W2n is switching invariant.

Theorem 2.2.3. [39] U (m,n) is a PG.

Theorem 2.2.4. [39] Shell graphs are prime graphs for n ≥ 5.

Theorem 2.2.5. [39] 2 copies of Ck sharing a common node is prime graph k ≥ 3,

where k is any positive integer.

Theorem 2.2.6. [38] A graph G obtained by the path union of two pieces of Hn is a

PG if n ̸= 5k + 1.

Definition 2.2.1. The Jahangir graph Jc,d, c ≥ 1, d ≥ 3, is on cd + 1 nodes

consisting of Ccd with an extra central node u which is adjacent to cyclically labeled

nodes u1, u2, u3, ..., ud such that d(ui, ui+1) = c, 1 ≤ i ≤ d− 1 in Ccd.

Theorem 2.2.7. [1] If cd is even, then the Jc,d for c ≥ 2, d ≥ 3 is prime.

Theorem 2.2.8. [1] When nm is an odd number then Jn,m ceases to be a PG.

Theorem 2.2.9. [1] Lilly graph In, n ≥ 2 admits PL.

Theorem 2.2.10. If H1 and H2 are two prime graphs with orders m & n respectively

(m, an odd positive integer ≥ 3 and n = 2 ∗ LCM [1, 3, 5, . . . , m − 2]), then the

disjoint union of G1 and G2 admits PL.

Proof. If G1 be a prime graph with m-nodes and V (G1) = {w1, w2, . . . , wm}, m
is an odd ≥ 3, then ∃ a bijective map h : V (G1) → {1, 2, 3, . . . , m} so that if

e = wiwj ∈ E(G1) then GCD
(
h(wi), h(wj)

)
= 1. Similarly, let G2 be a PG with

n-points & V (G2) = {v1, v2, . . . , vn}, where n = 2. LCM [1, 3, 5, ..., m − 2], m ≥ 3.

Then ∃ a bijective map g : V (G2) → {1, 2, 3, ..., n} so that if e
′
= vivj ∈ E(G2)

then GCD (g(vi), g(v)j)) = 1. Obtain G as G1 ∪ G2 and consider a new function
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h : {w1, w2, ..., wr, v1, v2, ..., vs} → {1, 2, 3, . . . , r, r+1, r+2, . . . , r+ s} defined as

follows: h (x) =

{
g (x) , x = vi, i = 1, 2, 3, . . . , s

s+ f (x) , x = wj , j = 1, 2, 3, . . . , r
.

Claim: h is one-one.

Let x, y ∈ V (G1) ∪ V (G2). Then three cases arise:

Case 1: Let x, y ∈ V (G1)

Take h (x) = h(y). This implies that n+ f (x) = n+ f (y) ⇒ x = y as f is one-one.

Case 2: Let x, y ∈ V (G2)

Take h (x) = h(y). This again implies g (x) = g (y) ⇒ x = y as g is one-one.

Case 3: Let x in V (G1) & y in V (G2) or x ∈ V (G2) and y ∈ V (G1)

Let x in V (G1) & y in V (G2). Then clearly x ̸= y. Here n + 1 ≤ h (x) ≤ n + m,

1 ≤ h(y) ≤ n implies h (x) ̸= h (y) showing that h is one-one. The other possibilities

can be dealt in a similar manner.

Further, if e = vivj ∈ E(G2), then GCD (h (vi) , h (vj)) = GCD
(
g(vi), g(vj)

)
= 1. If

e′ = wiwj ∈ E(G1), then letGCD (h (wi) , h (wj)) = d impliesGCD
(
n+ f(wi), n+ f(wj)

)
=

d. Then since GCD (f (wi) , f(wj)) = 1, therefore one of f (wi) or f(wj) is odd. Also

n is even implies one of n + f (wi) orn+ f(wj) is odd which implies d is odd. As

d | n+ f (wi) and d | n+ f(wj) implies d | f (wi)− f(wj) i.e., d |
∣∣∣f (wi)− f(wj)

∣∣∣. But
possible values of

∣∣∣f (wi)− f(wj)
∣∣∣ are 1, 2, 3, . . . , m − 1 as wi ̸= wj . Now m ≥ 3 is

odd implies m−1 is even and m−2 is odd. As d is odd, therefore, d = 1, 3, 5, ..., m−2.

If d = 3, then 3 | n+ f(wi) and 3 | n+ f(wj). Also 3 | n implies 3 | f (wi) and 3| f (wj),

which is impossible as GCD (f (wi) , f(wj)) = 1. Similarly, one can get a contradiction

if d = 5, 7, . . . , m− 2. Therefore, d = 1 which proves that the disjoint union of G1 and

G2 admits PL”.

Theorem 2.2.11. The complement graph Gn of Gn, n ≥ 3, does not admit PL.

Proof. For n = 3, one can see that α0

(
G3

)
<
⌊
|V (G3)|

2

⌋
and so by lemma 2.2.2, G3 is

not a PG. Note that |V (Gn)| =
∣∣V (Gn

)∣∣ = 2n+1. For n > 3, (2n− 3) ≥ 5 and one can

easily see that every rim node of Gn is adjacent to (2n− 3) other rim nodes. Further,

there are 2n+1 labels out of which
[
2n+1

2

]
are even labels, where [ ] denotes the greatest

integer function. Thus, there are
[
2n+1

2

]
even labels for 2n + 1 nodes. Without loss of

generality, label any rim node of Gn with an even number and other (2n− 3) rim nodes

cannot be assigned the even label. Moreover, the remaining two rim nodes are adjacent
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in Gn which implies that only one of them can be assigned the even label. The apex

node can also be assigned the even label. Thus, at the most only three nodes can be

assigned even labels in Gn. But for n > 3, there are even labels greater than or equal

to 4. Hence, Gn is not a PG ∀ n > 3.

Theorem 2.2.12. DS(Pn) of Pn, n > 1 (an odd integer) admits PL.

Proof. If Pn be the given path on n–nodes with V = {v1, v2, . . . , vn}, n > 1 is an odd

positive integer, then V = S1 ∪ S2, where S1 = {v1, vn} and S2 = {v2, . . . , vn−1}.
Let V (DS (Pn)) − V (Pn) = {w1, w2}. Here, |V (DS (Pn))| = n + 2. A function

f : {v1 , v2, . . . , vn, w1, w2} → {1, 2, . . . , n + 2} is given as below:“f (w1) = 2, f (w2) =

1, f (vk) = 2 + k, 1 ≤ k ≤ n. Then, clearly f is a bijective function and also

E (DS (Pn)) =
⋃
Ei : 1 ≤ i ≤ 3, where E1 = {vivi+1 : 1 ≤ i ≤ n− 1} , E2 = {w1v1, w1vn} , E3 =

{w2vi : 2 ≤ i ≤ n− 1}. Now GCD (f (vi) , f (vi+1)) = GCD ( 2 + i, 3 + i) = 1”, be-

ing consecutive integer, 1 ≤ i ≤ n − 1. Also GCD (f (w1) , f (v1)) = GCD (2, 3) =

1, GCD (f (w1) , f (vn)) = GCD (2, 2 + n ) is1, as n an odd, GCD (f (w2) , f (vk)) =

GCD (1, 2 + k) is1, 2 ≤ k ≤ n−1. Hence, f induces PL of DS (Pn) , for an odd n > 1

(see Figure 2.2 for the illustration when n = 11).

Figure 2.2: A PL of DS (P11)

Conjecture 2.2.1. DS(Pn) of Pn (n an even integer ≥ 4) does not admit PL.

Theorem 2.2.13. [35] Kn, n ≥ 4 does not admit PL.

Lemma 2.2.1. [42] DS (Kn) = Kn+1.

Theorem 2.2.14. DS (Kn) , n ≥ 3 does not admit PL.

Proof. The result is direct from Lemma 2.2.1 and Theorem 2.2.13.
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Theorem 2.2.15. “M (Pn) admits PL.

Proof. If Pn is on n ≥ 2 nodes s1, s2, . . . , sn and n − 1 lines t1, t2, . . . , tn−1, then

M (Pn) having 2n − 1 nodes and 3n − 4 lines is defined as follows: V (M (Pn))=

V (Pn) ∪ E(Pn)= {u1, u2, . . . , u2n−1} where the nodes ui, 1 ≤ i ≤ n correspond to

s′is and un+j , 1 ≤ j ≤ n − 1 correspond to tj ’s and E (M (Pn)) = E1 ∪ E2 ∪ E3,

where E1 = {uaun+a, 1 ≤ a ≤ n− 1} , E2 = {ub+1un+b, 1 ≤ b ≤ n− 1} and E3 =

{un+cun+c+1, 1 ≤ c ≤ n− 2}. For n = 2, the case becomes trivial, so take n ≥ 3.

Now h : V (M (Pn)) → {1, 2, 3, . . . , 2n − 1} is given as below:h (u1) = 1, h (u2) =

3, h(un) = 4, h (un+1) = 2, h (un+2) = 5, h (uk) = 2k, 3 ≤ k ≤ n − 1, h (un+k) =

h (un+k−1) + 2, 3 ≤ k ≤ n− 1. Then f induces PL for M (Pn)”.

Example 2.2.1. The PL of M (P12) is shown below in Figure 2.3.

Figure 2.3: The PL of M (P12)

Definition 2.2.2. “A graph H of order k with V (H) = {1, 2, ..., k} is a maximal PG if

and only if for any two adjacent nodes i and j, GCD (i, j) = 1”.

Example 2.2.2. A maximal prime graph of order 6 is shown in Figure 2.4.

Figure 2.4: A maximal prime graph of order 6

Theorem 2.2.16. If Hα is a maximal PG on k nodes, then α0 (Hα) =
⌊
k
2

⌋
.

Proof. Consider the set {1, 2, 3, . . . , m} of first m natural numbers, then see that

number of even natural numbers is equal to
⌊
m
2

⌋
. Moreover, in a maximal prime graph
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the nodes labeled with even integers form a maximal independent set which proves that

α0 (Hα) =
⌊
m
2

⌋
.

Lemma 2.2.2. [26] If α0 (H) <
⌊
|V (H)|

2

⌋
, then H is not a prime.

Theorem 2.2.17. Let H be a maximal PG with order k and Cm be a cycle of order m,

where m, k being odd. Then their disjoint union is not prime.

Proof. Since G is a maximal prime graph and therefore in view of Theorem 2.2.16,

α0 (G) =
⌊
n
2

⌋
= n−1

2 as n is odd. Also α0(Cm) = m−1
2 as m being odd. Therefore,

α0 (G ∪ Cm) = n−1
2 + m−1

2 = m+n
2 − 1 <

⌊
|V (G∪Cm)|

2

⌋
. Hence according to Lemma 2.2.2,

the result follows.

Definition 2.2.3. [51] “C
(k)
m is obtained by identifying only one node of every k copies

of Cm. Clearly,
∣∣∣V (C(k)

m

)∣∣∣ = k (m− 1) + 1 and
∣∣∣E (C(k)

m

)∣∣∣ = km”.

For example, C
(4)
3 is shown in Figure 2.5.

Figure 2.5: C
(4)
3

Note: If ⌈x⌉ denotes the ceiling function and ⌊x⌋ denotes the floor function, then

⌈x⌉ = −⌊−x⌋.

Theorem 2.2.18. Let G =

(
n⋃

k=1

C
(2)
nk

)
∪

(
m⋃
j=1

C
(2)
mj

)
, where both m, n being odd, each

nk an odd integer and each mj is an even integer. If n > m, then G is not prime.

Proof. Since each nk is an odd integer and eachmj is an even integer, therefore α
(
C

(2)
nk

)
=

nk − 1 and α
(
C

(2)
mj

)
= mj . Now α (G) =

n∑
k=1

(nk − 1) +
m∑
j=1

mj =
n∑

k=1

nk +
m∑
j=1

mj − n.

Further |V (G)| =
(

n∑
k=1

2nk

)
−n+

(
m∑
j=1

2mj

)
−m = 2

(
n∑

k=1

nk

)
+2

(
m∑
j=1

mj

)
−(n+m).
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Now
⌊
|V (G)|

2

⌋
=

n∑
k=1

nk +
m∑
j=1

mj −
⌈
n+m
2

⌉
=

n∑
k=1

nk +
m∑
j=1

mj − n+m
2 as n, m being odd.

Also, it is given that n > m, therefore 2n > n+m, i.e., n+m
2 < n implies −n < −n+m

2 .

This further implies that α0 (G) <
⌊
|V (G)|

2

⌋
. Hence by Lemma 2.2.2, G is not a PG.

2.3 Conclusion

In this chapter, the sufficient condition for the existence of PL of disjoint union of prime

graphs has been established. Further, prime labeling of Pn and Kn in the context of

degree splitting graph and complement of gear graph have been investigated. Also, PL of

middle graph of path graph & disjoint union of graphs has been established in addition

to formulating some interesting conjectures.



Chapter 3

PL in the Context of Extension

and Barycentric Sub-division

3.1 Introduction

In this chapter, the sufficient condition for PL of barycentric subdivision of a graph has

been obtained. Also PL of star graph, bistar graph and tree in the context of barycentric

sub-division have been investigated. Further, the PL of complete graph and path graph

in the context of extension of nodes besides formulating some open problems have also

been investigated.

3.2 Certain Results on PL of Graphs in the Context of

Extension and Barycentric Sub-division

Recall some important results.

A.N. Kansagara et al. [31] showed the following:

Theorem 3.2.1. “S(Wn) is a prime graph ∀n ≥ 3”.

Example 3.2.1. PL of S(W9) is shown in Figure 3.1.

25
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Figure 3.1: PL of S (W9)

Theorem 3.2.2. “S(Fln) is a prime graph ∀n ≥ 3”.

Example 3.2.2. PL of S(Fl6) is given in Figure 3.2.

Figure 3.2: PL of S (Fl6)

Theorem 3.2.3. “S((C8
⊙

Kn)
⋃
(C8

⊙
Kn)) is a prime graph ∀n”.

Example 3.2.3. PL of S((C8
⊙

K1)
⋃
(C8

⊙
K1)) is shown in Figure 3.3.
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Figure 3.3: PL of S((C8

⊙
K1)

⋃
(C8

⊙
K1))

Theorem 3.2.4. “S(K1,n) admits PL.

Proof. If G1 = K1,n is a star & S (G1) is its barycentric subdivision. Let V (G1) =

{y0, y1, y2, . . . , yn} and V (S (G1)) = {y0, y1, y2, . . . , yn, w1, w2, . . . , wn}. |V (S(G1))| =
2n+1. Now, g : V (S(G1)) → {1, 2, 3, . . . , n, n+ 1, . . . , 2n, 2n+ 1} is defined as g (y0) =

1, g (wr) = 2r, 1 ≤ r ≤ n, g (yj) = 2j+1, 1 ≤ j ≤ n. Then f induces PL of S (G1).

Theorem 3.2.5. S(Bn,n) admits PL if 4n+ 3 is a prime number.

Proof. Let G = Bn,n be a bistar and S (G) be its barycentric subdivision. Let V (G) =

{u0, v0u1, u2, . . . , un, v1, v2, . . . , vn} and V (S (G)) =
{
u0, v0, w0, u1, u2, . . . , un, w1, w2, . . . , wn, v1, v2, . . . , vn, t1, t2, . . . , tn

}
,

where w0 is obtained by subdividing u0v0, wi by subdividing u0ui, 1 ≤ i ≤ n and ti

by subdividing v0vi, 1 ≤ i ≤ n. Then |V (S(G))| = 4n + 3. Now f : V (S(G))→
{1, 2, 3, . . . , 4n+ 3}is given by f (u0) = 1, f (v0) = 4n + 3, f (w0) = 4n + 2, f (wi) =

2i, 1 ≤ i ≤ n, f (uj) = 2j + 1, 1 ≤ j ≤ n, f (tk) = 2 (n+ k) , 1 ≤ k ≤ n, f (vl) =

2 (n+ l) + 1, 1 ≤ l ≤ n. Then f induces PL of S (G)”.

Conjecture 3.2.1. (Entringer-Tout Conjecture) [68] Every tree is a prime graph.

Theorem 3.2.6. The barycentric subdivision of a tree is prime if Prime Tree Conjecture

is true.

Proof. Since the barycentric subdivision of a tree results in a tree, therefore it is a PG

if conjecture 3.2.1 is true.

Notation: P(x, y)= {t : t is a prime and x < t ≤ y}.

Theorem 3.2.7. [26] If G = (V 1, V2) is bipartite with |V1| ≤ |V2| & |V1| ≤
∣∣P (n2 , n

)∣∣+
1, where n = |V (G)|, then G is prime.



Chapter 3. PL in the context of extension and barycentric sub-divisionn 28

Theorem 3.2.8. Barycentric sub-division of all simple graphs is bipartite.

Proof. Since the barycentric sub-division makes all the odd cycles, if any, even and hence

a bipartite graph.

Theorem 3.2.9. If S(G) = (V 1, V2) is the barycentric sub-division of G with |V1| ≤ |V2|
and |V1| ≤

∣∣P (n2 , n
)∣∣+ 1, then S(G) is prime.

Proof. Proof follows from Theorem 3.2.7 and Theorem 3.2.8.

Theorem 3.2.10. [35] Kn does not have PL for n ≥ 4.

Theorem 3.2.11. The graph obtained by taking extension of any arbitrary node in Kn

is not a PG.

Proof. Since the extension of a node in Kn gives rise to Kn+1 and therefore in view of

Theorem 2.2.14 the graph formed by taking extension of any arbitrary node inKn, n ≥ 3

is not a PG.

Theorem 3.2.12. Graph formed by taking extension of any arbitrary node of Pn is

prime.

Proof. If Pn is on n-nodes, say x1, x2, x3, . . . , xn and extension of xk in Pn is ob-

tained by adding new node x
′
k such that N

(
x

′
k

)
= N [xk], then the node set of new

graph having (n + 1)–nodes, namely, is
{
x1, x2, . . . xk−1, xk, x

′
k, xk+1, . . . , xn

}
. “y :{

x1, x2, . . . xk−1, xk, x
′
k, xk+1, . . . , xn

}
→ {1, 2, 3, 4, . . . k − 1, k, k + 1, . . . , n− 1, n, n+ 1}

is given by y
(
x

′
k

)
= 1 and y (xl) = l + 1, 1 ≤ l ≤ n”. Then y induces the required

PL.

Theorem 3.2.13. The graph obtained by taking extension of pendant nodes of Pn, is

prime ∀ odd n ≥ 1.

Proof. Let Pn be on n-nodes, say v1, v2, v3, . . . , vn and extensions of the pendant nodes

v1 and vn are respectively taken by adding new nodes v
′
1 and v

′
n so that “N

(
v
′
1

)
= N [v1]

and N
(
v
′
n

)
= N [vn]”. Then the node set of new graph having (n + 2)-nodes is{

v1, v
′
1, v2, . . . , vn, v

′
n

}
. A function “y :

{
v1, v

′
1, v2, . . . , vn, v

′
n

}
→ {1, 2, 3, 4, . . . , n− 1, n, n+ 1, n+ 2}

is defined as y
(
v
′
1

)
= 1, y

(
v
′
n

)
= n+ 2 & y (vk) = k + 1, 1 ≤ k ≤ n”. Then y induces

the required PL.
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3.3 Open Problems

Open Problems 3.3.1. Is theorem 3.2.13 true if n is even?

Open Problem 3.3.2. Is the graph formed by taking extension of all the nodes of Pn

a prime graph?

3.4 Conclusion

In this chapter, the PL of barycentric sub-division of star graph, bistar graph and

sufficient condition for PL of barycentric sub-division of a graph have been established.

Further PL of path graph and complete graph in the context of extension of nodes has

been investigated besides formulating some open problems. Similarly, one can study the

PL for barycentric subdivision of some other subclasses of trees; this is the future work.



Chapter 4

Results on Prime Distance

Labeling

4.1 Introduction

In this chapter, the PDL of the non-commuting graphs of some non-abelian groups like

dihedral group D2n and Quartenion group Q8 has been investigated. PDL of the degree

splitting graph of complete graph, complete bipartite graph, Jellyfish graph J (m,n),

Flower graph F (Cm,Kn), super subdivision of a graph, one point union of 2-regular

graphs and sufficient condition for the degree splitting graph of a bipartite graph to

exhibit PDL, have been investigated. Besides this, some general results on PDG have

also been studied. By W.L.G, it means that “without loss of generality”.

4.2 Some Results on Prime Distance Graphs

The PDL of some named graphs like diamond, bull, net, dart, house, house x, R, cricket,

banner, paw, kite, and butterfly graphs are given along with definition (see Figures 4.1

to 4.14).

Definition 4.2.1. “ A flower F (Cs, Kt) is constructed by having a copy of Cs & s

copies of Kt & connecting the ith copy of Kt at the ith lines of Cs”.

“If s & t be two positive integers where s ≥ 3 & t ≥ 3, then the node set & the line

set of F (Cs,Kt) are defined as given below.

V (F (Cs,Kt) ) = {ui | i in [1, s]} ∪ {ui ,i+1
j | i in [1, s], j ∈ [1, t − 2], us,s+1

j = us,1j }.
E(F (Cs,Kt)) = {uiui+1 | i ∈ [1, s], us+1 = u1} ∪ {uiui,i+1

j | i ∈ [1, s], j ∈

30
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[1, t − 2], us s+1
j = us,1j } ∪{ui+1u

i,i+1
j | i in[1, s], j in[1, t − 2], us+1 = u1, u

s,s+1
j =

us,1j } ∪ {ui,i+1
j ui,i+1

k | i in[1, s], j in[1, t − 2], k in[1, t − 2], j ̸= k, us,s+1
j =

us,1j , us,s+1
k = us,1k }”.

Definition 4.2.2. The n-pan graph is formed by connecting Cn to K1 with a cut edge.

Definition 4.2.3. The bull graph is a graph on 5 nodes and 5 lines as given in figure

4.3).

Definition 4.2.4. The butterfly graph is with 5 nodes and 6 lines and formed by

connecting two copies of C3 with a common node.(see Figure 4.13).

Definition 4.2.5. The cricket graph is the 5 -node graph (see Figure 4.10).

Definition 4.2.6. “The diamond graph is a planar graph with 4 nodes and 5 lines. It

consists of K4 minus one lines” (see Figure 4.2).

Definition 4.2.7. “H is a (k, s)−dart if every node of H of degree ≥ k+2 is a central

node of some (k, i)−diamond D as an induced subgraph of H with 2 ≤ i ≤ s, for

which (1) dD(x) ≥ dH(x) − 1 for each x in V (D);(2) no 2 nodes of C(D) have a

common neighbor in H − D” (see Figure 4.5).

Definition 4.2.8. The house graph is on 5 nodes and 6 lines as given in figure 4.6.

Definition 4.2.9. “The house X-graph is the house graph plus the two lines connecting

diagonally opposite nodes of the square base”.(see Figure 4.7).

Definition 4.2.10. The net graph is the graph on 6-nodes (see Figure 4.4).

Definition 4.2.11. “The Jelly fish graph J(a, b)(see Figure 4.1) is derived from a C4-

x1, x2, x3, x4 by connecting x1 and x3 with a line & joining a pendent lines to x2 and b

pendent lines to x4”.

Figure 4.1: J(m,n)
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Figure 4.2: Diamond graph

Figure 4.3: Bull graph

Figure 4.4: Net graph
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Figure 4.5: Dart graph

Figure 4.6: House graph

Figure 4.7: House X graph
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Figure 4.8: R graph

Figure 4.9: A graph

Figure 4.10: Cricket graph
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Figure 4.11: Banner graph

Figure 4.12: Paw graph

Figure 4.13: Butterfly graph
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Figure 4.14: A kite graph

Theorem 4.2.1. [33] Every bipartite graph admits PDL.

Theorem 4.2.2. G with ∆(G) > 2 cannot have PDL with all its nodes labeled odd

(even).

Proof. Since ∆ (G) > 2, therefore ∃ v ∈ V such that d (v) > 2. If possible, let f :

V (G) → Z be PDL of G. W.L.G, let f (v) = m, wherem is an odd integer. Let v1, v2, v3

be adjacent to v. Then |f (v1)−m| = p1, |f (v2)−m| = p2, |f (v3)−m| = p3, where

p1, p2, p3 are primes. Now one can observe that p1, p2, p3 are all even primes and

hence equal to 2. But there can be at most two odd numbers at a distance 2 from one

odd number, a contradiction. So, therefore any graph G with ∆ (G) > 2 cannot have a

prime distance labeling with all its nodes labelled odd. Similar argument holds good for

other nodes of G. The possibility of assigning even labels to all the nodes of G is ruled

out in a similar fashion.

Observations 1: Only Pn can have PDL with all its nodes labelled odd or even.

Example 4.2.1. The PDL of Pn is given in Figure 4.15.

Figure 4.15: Prime distance labeling of Pn

Observation 2: Cn cannot have PDL with all its nodes labeled only odd (even).

Definition 4.2.12. [28] “The super subdivision of H1, SS (H1) is constructed from H1

by replacing each link of H1 by K2,m, m a positive integer.
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(For example see figure 4.16)

Figure 4.16: SS (Pn) by K2,3

Definition 4.2.13. [28] Arbitrary super division ASS (H1) is derived from H1 by re-

placing each line kl of H1 by K2,mi(mi is any positive integer) by identifying k and l

with the nodes x and y, respectively, where {x, y} is a partition of K2,mi” (see Figure

4.17).

Figure 4.17: ASS (P2)

Lemma 4.2.1. SS (G) is bipartite.

Proof. “Let the super subdivision ofG is constructed by replacing each lines ofG byK2,m

and H1 = SS (G). Now, let V (G) = {x1, x2, . . . , xp} &
{
w1
i , w

2
i , . . . , wm

i

}
be the nodes

of H1 corresponding to the ith lines of G. Then |V (H1)| = p +mq & |E (H1)| = 2mq.

Further, if W1 = V (G) ,W2 =
{
wj
i : 1 ≤ i ≤ q, 1 ≤ j ≤ m

}
, then V (H) = W1 ∪ W2

is the required bipartition”.

Theorem 4.2.3. SS (G) is a PDG.

Proof. The result follows from Lemma 4.2.1.and Theorem 4.2.1

Remark 4.1. Theorem 4.2.3 is true for arbitrary super subdivision of G also.
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Plane Coloring Problem (PCP): “PCP looks for the least number of colours required

to colour the plane (P) so that no 2 points at a unit distance from each other get the

same colour. The answer to this problem is not known but χ(P ) has been narrowed

down to either one of 5, 6 or 7.”

Theorem 4.2.4. [45] G with V (G) ⊆ Z and χ (G) ≥ 5 does not admit PDL.

Theorem 4.2.5. [45] The graph G whose node set consists of all points in the plane

and there exists a line between two points if they are at a unit distance, cannot have

PDL.

Proof. The proof follows from the truth that 5 ≤ χ (G) ≤ 7 and Theorem 4.2.4.

Remark 4.2. There may be some finite subgraphs of G defined in Theorem 4.2.5 which

may or not admit PDL whose χ ≤ 4.

Theorem 4.2.6. G obtained from taking a finite copies of a PDG, H and joining ith-

node of each copy of H by a line admits PDL.

Proof. Since H is a PDG, there exists PDL f : V (H) → Z of H. Obtain G by taking

m copies of H and connecting ith-node of each copy of H by an lines. “Define a map

h1 : V (G) → Z as given below: h1 (H1) = f (H)”. Let k be the greatest label assigned

by h1 to H1 and p1 be a prime such that p1 > k. Now assign labels to nodes of H2

by adding p1 to the labels of corresponding nodes of H1. Let l be the greatest label

assigned to H2 and p2 be a prime such that p2 > l. Again, assign labels to nodes of H3

by adding p2 to the labels of corresponding nodes of H2. Continuing in this way, one

can get primes p3, p4, . . . , pm−1 such that each succeeding copy Hr of H is assigned

the labels by adding pr−1 to the labels of corresponding nodes of preceding Hr−1 of H.

This induces PDL of G (see Figure 4.18).

Figure 4.18: A graph obtained from taking a finite copies of H & connecting ith-node
of every copy of H by an lines
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Lemma 4.2.2. “One vertex union of finite copies of bipartite graph results in bipartite.

Proof. Since the graphs are bipartite, therefore they do not contain any odd cycle.

Moreover, one point union of these graphs again does not give rise to any odd cycle in

them and so a bipartite graph.

Theorem 4.2.7. G formed by applying one point union of two 2-regular graphs admits

PDL if Goldbach’s Conjecture is true.

Proof. If G1 and G2 are two 2-regular graphs, then there are three cases:

Case (1): When G1 and G2 both are bipartite.

The result follows from Lemma 4.2.2 and Theorem 4.2.1.

Case (2): When none of G1 or G2 is bipartite.

Let G1 and G2 be the given 2-regular graphs with node sets V1 = {u1, u2, . . . , um} &

V2 = {v1, v2, . . . , vn}, respectively & G be the one point union of G1 and G2. W.L.G,

let the nodes v1 and u1 be identified to obtain G. Since G1 is a 2-regular graph and

by using Theorem 4.2.1, there exists PDL, say f . Similarly, since G2 is also a 2-regular

graph, there exists PDL, say g. “A 1-1 map h : V (G) → Z is defined as below: W.L.G,

let h(u1) = h(v1) = 0. Then h(uk) = 2(k − 1), for 2 ≤ k ≤ m− 1”. Now by using GC,

h(um−1) = p1 + p2 and h(um) = p1. Similarly, let h (vj) = −2(j− 1), for 2 ≤ j ≤ n− 1.

Now again by Goldbach’s Conjecture, h (vn−1) = −2 (n− 1) = −(p3 + p4) and h(vn) =

−p3. Clearly, h is the PDL of G.

Case (3): When either G1 or G2 is not bipartite.

This case can be dealt with that of case 2.

Definition 4.2.14. A unicyclic graph is a graph containing only one cycle.

Conjecture 4.2.1. Any unicyclic graph admits PDL.

Conjecture 4.2.2. The flower graph F (Cm, Kn) admits PDL for m ≥ 3 and n = 3.

Conjecture 4.2.3. The flower graph F (Cm, Kn) does not admit PDL for m ≥ 3 and

n = 4.
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Figure 4.19: F (C8,K5)

Theorem 4.2.8. [44] “If a subgraph H1 of G1 does not admit PDL, then so does G1”.

Theorem 4.2.9. [44] Kn, n ≥ 5 does not permit PDL.

Theorem 4.2.10. The flower graph F (Cm, Kn) does not admit PDL for n ≥ 5 and

m ≥ 3.

Proof. The result is clearly from Theorem 4.2.8 and Theorem 4.2.9.

The PDL of F (Cm, K3) is given in support of Conjecture 4.2.2 (see Figure 4.20).

Figure 4.20: PDL of F (C6, K3
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Theorem 4.2.11. [44] “J(m,n) admits PDL for any m,n ≥ 1”.

Proof. Let J(m,n) be on m pendent lines joining to v2 and n pendent lines joining to

v4. “A 1-1 map f : V (J (m,n)) → Z, is defined as given below: W.L.G, let f (v1) = −3,

f (v2) = 0, f (v3) = 2 and f (v4) = −1”. Let xi be the pendant nodes of v2 and yi be

the pendant nodes of v4. Let p1, p2, p3, · · · pm be the distinct prime numbers other

than the used primes. Label the pendant nodes which are joined with the node v2 with

those prime numbers. One can easily see that |f (xi)− f (v2)| = p ∈ P , for 1 ≤ i ≤ m.

Similarly, label the pendant nodes which are joined to the node v4. Label the nodes

yi, with sufficiently suitable even number such that |f (yi)− f (v4)| = pi ∈ P . This is

possible as there are infinitely many even numbers whose difference with −1 is a prime

number. Clearly f is the required PDL of J(m,n) (see Figure 4.21).

Figure 4.21: PDL of J(5 , 4)

Definition 4.2.15. A Theta graph having 7- nodes and 8-lines is a block with 2 non-

adjacent nodes of degree 3 and the remaining nodes of degree 2 (see Figure 4.22).

Figure 4.22: Theta graph

Theorem 4.2.12. The Theta graph admits PDL.
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Proof. Let V = {u0, u1, u2, u3, v1, v2, v3} denote the node set of Theta graph with

d (v1) = d (u1) = 3 and d (vi) = d (uj) = 2, i = 2, 3 and j = 0, 2, 3. “g : V → Z is

defined as below: g (vi) = 2i+ 1, i = 1, 2, 3 and g (uj) = 2j, j = 0, 1, 2, 3”. Then f

induces PDL of Theta graph.

Theorem 4.2.13. The sufficient condition for DS(G) of a bipartite graph G to admit

PDL is that there exists no pair of nodes xi, yj such that dG (xi) ̸= dG (yj), where

V = X1 ∪X2 is the decomposition of V & xi ∈ X1, yj ∈ X2.

Proof. Take a bipartite graph G with two partitions V1 and V2 of its node set. Take

W = V (DS (G))− V (G) = {w1, w2, . . . , wt}. Since dG (xi) ̸= dG (yj) , ∀ xi ∈ V1, yj ∈
V2, therefore it is obvious that no node from W is adjacent to nodes both from V1 & V2.

Thus, assume that nodes from the set W1 = {w1, w2, . . . , ws} are adjacent to nodes in

V1 and nodes from the set W2 = {ws+1, ws+2, . . . , wt} are adjacent to nodes in V2. This

shows that DS (G) is bipartite with bipartition (V1 ∪W1, V2 ∪W2). Hence in view of

Theorem 4.2.1, DS (G) admits PDL.

Corollary 4.2.1. If m ̸= n, then DS(Km,n) is a PDG.

Proof. Since m ̸= n, therefore applying Theorem 4.2.13, one can find that DS(Km,n) is

bipartite & hence the proof from Theorem 4.2.1.

4.3 PDL of Non-Commuting Graphs of Some Finite Non-

Abelian Groups

Recall some important definitions and results to make this sub-section self explanatory.

Definition 4.3.1. “The centre of (G, ∗), Z(G) = {a ∈ G : a ∗ b = b ∗ a,∀b ∈ G}.

Definition 4.3.2. The non-commuting graph of (G, ∗), Γ (G) having V = G−Z(G)

& E = {e : e is lines between node pair (l,m) so that l ∗m ̸= m ∗ l, for l,m ∈ V }.

Definition 4.3.3. Let Q8 = {1,−1, i,−i, j,−j, k,−k}. Define product on Q8 by usual

multiplication together with i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki =

−ik = j. Then Q8 forms a non-abelian group called the Quaternion group.

Lemma 4.3.1. [46] No triangular graph can possess PDL with all nodes labeled either

odd integers or even integers.

Definition 4.3.4. The set of all permutations on finite set X = {1, 2, 3, . . . , n}, n ∈
N forms a group with respect to operation ′o′ of composition of functions, known as

symmetric group and denoted by (Sn, o), for n ∈ N .
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Theorem 4.3.1. [46] Γ (S3) of (S3, o) does not permit PDL.

Theorem 4.3.2. [46] Γ (Sn) , n ≥ 4 of (Sn, o) does not permit PDL.

Definition 4.3.5. D2n, n ∈ N is the group of symmetries of polygon of n−sides and

is defined as D2n = {< x, y > : xn = e = y2, xy = yx−1}, where e is the identity

element.

Corollary 4.3.1. PDL of non-commuting graph of D6 of order 6 does not exist.

Proof. It is known that Dihedral group D6 can be represented by: D6 ={< x, y >

: x3 = e = y2, xy = yx−1}, and D6 is isomorphic to symmetric group (S3, o). So,

Γ(D6) is same as that of S3. Hence, Theorem 4.3.1 implies that Γ(D6) does not admit

PDL.

Theorem 4.3.3. PDL of Γ(D8) does not exist.

Proof. “D8 is also known as Octic group, which is represented by: D8 = {< x, y > : x4 =

e = y2, xy = yx−1}, where e is the identity element ofD8 =
{
e, x, x2, x3, y, xy, x2y, x3y

}
and the centre of D8, Z(D8) = {e, x2} which imply that e and x2 commute with each

of the remaining elements of group D8. Firstly, construct Γ(D8). Now, the node set

V of graph Γ(D8) is given by V = D8 − Z (D8) = {x, x3, y, xy, x2y, x3y}. Taking

v1 = x, v2 = x3, v3 = y, v4 = xy, v5 = x2y, v6 = x3y, V = {v1, v2, v3, v4, v5, v6} . To
find the lines set E of Γ(D8), one needs to find the pair of elements of V which don’t

commute with each other. Since, ea = ae, ∀a ∈ D8, xy = yx−1 ̸= yx ⇒ xy ̸= yx, x3y =

yx−3 = yx−1 = xy ⇒ x3y ̸= yx3, x (xy) = x2y and (xy)x = yx−1x = y ̸= x2y ⇒
x (xy) ̸= (xy)x, x3 (xy) = x4y = ey = y and (xy)x3 = yx−1x3 = yx2 = x2y ̸= y ⇒
x3(xy) ̸= (xy)x3, x

(
x2y
)
= x3y and

(
x2y
)
x = yx−2x = yx−1 = xy ̸= x3y ⇒ x

(
x2y
)
̸=(

x2y
)
x, x3

(
x2y
)
= x5y = exy = xy and

(
x2y
)
x3 = yx−2x3 = yx = x−1y ̸= xy ⇒

x3
(
x2y
)
̸=
(
x2y
)
x3, x

(
x3y
)
= x4y = ey = y and

(
x3y
)
x = yx−3x = yx−2 = x2y ̸=

y ⇒ x(x3y) ̸=
(
x3y
)
x, x3

(
x3y
)
= x6y = ex2y = x2y and

(
x3y
)
x3 = yx−3x3 = ye =

y ̸= x2y ⇒ x3
(
x3y
)
̸=
(
x3 y

)
x3. Hence, the following are the pair of adjacent nodes:

(x, y), (x, xy) ,
(
x, x2y

)
,
(
x, x3y

)
,
(
x3, y

)
,
(
x3, xy

)
,
(
x3, x2y

)
,
(
x3, x3y

)
, (xy, y) ,(

x3y, y
)
,(

x2y, xy
)
, and (x3y, x2y). Hence, Γ(D8) is shown in Figure 4.23:
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Figure 4.23: The Non-Commuting Graph

Suppose that there exists a function φ : V (Γ (D8)) → Z which determines PDL of

Γ(D8) , i.e. |φ (u)− φ (v)| is prime for each pair of adjacent nodes (u, v) in Γ(D8).

Applying Lemma 4.2.1 on ∆v1v2v6, if φ (v1) , φ (v2) is even, then φ (v6) must be odd.

Say, φ (v1) = 2m, φ (v6) = 2n+ 1, for n,m∈ Z .....(I). Then, φ (v2) = 2m+ 2.....(II).

Also, ∆v1v2v4 implies that φ (v4) must be an odd integer, say φ (v4) = 2r + 1, r∈ Z.
Now in ∆v5v2v4, φ (v4) is odd and φ (v2) is even. So by Lemma 4.2.1, φ (v5) can be

either even or odd. Thus the following 2 cases arise:

Case 1: When φ (v5) an even

Since (v5, v2) is a pair of adjacent nodes and φ (v2) = 2m+2, so, φ (v5) = 2m+4.....(III)

Now as v3 is the common node of ∆v3v4v5, ∆v1v3v6, and∆v5v3v6, it is obvious that

φ (v3) can either be odd or even. If φ (v3) is even and from Figure 4.23, it is clear that

the pairs of nodes (v3, v5)

textand (v3, v1) are connected by an lines. Since, φ (v5) = 2m+4 and φ (v1) = 2m, then

φ (v3) must be selected in such a way that both terms |φ (v3)−φ (v5) | and |φ (v3)−φ (v1) |
are prime numbers, in particular, the even prime 2. So, if φ (v5) = 2m + 4, then φ (v3)

should be the consecutive even integer i.e. φ (v3) = 2m + 2 or 2m + 6, but equation

(II) implies that φ (v3) = 2m + 2 and the PDL of nodes with integers is unique. So

φ (v3) = 2m + 6, which implies |φ (v3)− φ (v1)| = 6, which is not a prime. So, φ (v3)

cannot be even and hence, it must be an odd integer. Also Figure 4.23 clears that

(v3, v4) and (v3, v6) are pair of adjacent nodes. Combining the fact that |φ (v3)−φ (v6) |
and |φ (v3) − φ (v4) | are primes, particularly even primes with the assumption that

φ (v3) , φ (v6) and φ (v4) all are odd numbers. So (ϕ(v3), ϕ(v6)) and (ϕ(v3), ϕ(v4)) must
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be pair of consecutive odd numbers as the difference of any two consecutive odd integers

is 2. So, one can re-write their values as ϕ(v6) = 2n + 1, ϕ(v3) = 2n + 3, and ϕ(v4) =

2n + 5. Hence, the following labeling is attained in this case: ϕ(v1) = 2m, ϕ(v2) =

2m + 2, ϕ(v3) = 2n + 3, ϕ(v4) = 2n + 5, ϕ(v5) = 2m + 4 and ϕ(v6) = 2n + 1. Since

φ : V (Γ (D8)) → Z determines PDL on graph shown in Figure 4.23, so the following

interpretations can be made:

(vi,vj) � (v1,v3) (v1,v4) (v1,v6) (v2,v4)

|φ (vi)-

φ (vj)|
P1= |2(m− n)-3| P2= |2(m− n)-5| P3= |2(m− n)-1| P1= |2(m− n)-3|

(vi,vj) � (v2,v6) (v5,v3) (v5,v4) (v5,v6)

|φ (vi)-

φ (vj)|
P4=

|2(m− n)+1|
P4=

|2(m− n)+1|
P3= |2(m− n)-1| P5=

|2(m− n)+3|

Here, each Pi (i = 1, 2, 3, 4, 5) is an odd prime. Let 2 (m− n) = x ⇒ x is an even

integer. So, the purpose is to find the even integer x for which each of P1 = |x−3|, P2 =

|x− 5|, P3 = |x− 1|, P4 = |x+1|, P5 = |x+3| is an odd prime ..... (IV) It is obvious

that x ̸= ±2,±4,±6 otherwise at least one of Pi = 1 as defined in equation (IV), which

contradicts the fact that each Pi is an odd prime. So, either x > 6 or x < −6. W.L.G,

assume that x > 6, so the equation (IV) reduces to P1 = x − 3, P2 = x − 5, P3 =

x− 1, P4 = x+ 1, P5 = x+ 3 ..... (V)

Firstly, the claim is that none of Pi can be 3 ..... (VI).

If P1 = 3, then x = 6, which is a contradiction as x > 6. If P2 = 3, then x = 8 ⇒ P4 =

9, which is not a prime number. If P3 = 3, then x = 4, which is a contradiction as x >

6. If P4 = 3, then x = 2, which is again a contradiction as x > 6. If P5 = 3, then x = 0

which implies that P4 = 1, which is not a prime. So, it is clear that none of the Pi is 3.

Further, equation (V) implies that P1− P2 = 2, P3− P1 = 2, P4− P3 = 2, P5− P4 = 2

which means that the pairs (P1, P2), (P1, P3) are twin odd primes with P1 as common

and same way (P4, P3), (P4, P5) are twin odd primes with P4 as common. It is known

that each odd prime is of the form either 4k + 1 or 4k + 3, k being a natural number.

So, if P1 = 4k + 1, then P2 = 4k − 1, P3 = 4k + 3, P4 = 4k + 1, P5 = 4k + 3 or

if P1 = 4k + 3, then P2 = 4k + 1, P3 = 4k + 5, P4 = 4k + 7, P5 = 4k + 9, for a fixed

natural number k. So, either P2, P1, P3 or P2, P1, P3, P4, P5 will be the consecutive

twin odd primes. Since every third odd number is divisible by 3, which means that no

three successive odd numbers can be prime unless one of them is 3, which is impossible



Chapter 4. Results on Prime Distance Labeling 46

by assertion (VI). Hence, the supposition is wrong. So, φ (v5) cannot be an even integer

and this case is rejected.

Case 2: When φ (v5) is odd

Assume that φ (v5) is an odd integer. Since (v6, v5) and (v4, v5) are adjacent nodes in

Figure 4.23, so as proved in Case 1, (φ (v5) , φ (v6)) and (φ (v5) , φ (v4)) must be pair

of consecutive odd numbers as the difference of any two consecutive odd integers is 2.

So, one can write their values as φ (v6) = 2n + 1, φ (v5) = 2n + 3 and φ (v4) = 2n + 5,

where n is any integer. Hence, ∆v5v4v3 implies that φ (v3) must be an even integer

by Lemma 4.2.1. But (v3, v1) is an adjacent pair of nodes and φ (v1) = 2m. So,

φ (v3) = 2m − 2. Hence, the labeling of graph in Figure 4.23 is as follows: φ (v1) =

2m,φ (v2) = 2m+2, φ (v3) = 2m−2, φ (v4) = 2n+5, φ (v5) = 2n+3, and φ (v6) = 2n+1

since φ : V (Γ (D8)) → Z determines the PDL on graph shown in Figure 4.23. So, the

following interpretations are made:

(vi,vj) � (v1,v4) (v1,v6) (v2,v4) (v2,v5)

|φ (vi)-

φ (vj)|
P1= |2(m− n)-5| P2= |2(m− n)-1| P3= |2(m− n)-3| P1= |2(m− n)-1|

(vi,vj) � (v2,v6) (v3,v4) (v3,v5) (v3,v6)

|φ (vi)-

φ (vj)|
P4=

|2(m− n)+1|
P4= |2(m− n)-7| P3= |2(m− n)-5| P5= |2(m− n)-3|

Here, each Pi (i = 1, 2, 3, 4, 5) is an odd prime. Let 2 (m− n) = x ⇒ x be an even integer.

So, the purpose is to find that even integer x for which each of P1 = |x − 5|, P2 =

|x − 1|, P3 = |x − 3|, P4 = |x + 1|, P5 = |x − 7| is an odd prime. It is obvious that

x ̸= ±2,±4,±6,±8 otherwise at least one of Pi = 1 as defined in equation (IV), which

contradicts the fact that each Pi is an odd prime. So, either x > 8 orx < −8. W.L.G,

assume that x > 8. So the equation (IV) reduces to P1 = x − 5, P2 = x − 1, P3 =

x− 3, P4 = x+ 1, P5 = x− 7.... (VII)

Again the claim is that none of Pi can be 3 or 5... (VIII)

If P1= 3, then x = 8, which is a contradiction as x > 8. Also, if P1 = 5, then x=10 and

so P2= 9, which is not a prime. If P2=3 or 5, then x = 4 or 6 which is impossible as

x > 8. If P3=3 or 5, then x = 6 or 8, which is a contradiction as x > 8. If P4= 3 or

5, then x=2 or 4, which is again a contradiction as x> 8. If P5=3, then x= 10 or 12

which implies that P2= 9 or P3=9, which is not a prime. So, it is clear that none of Pi
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can be 3 or 5. Further, the equation (VII) implies that P1-P5= 2, P3-P1= 2, P2-P3=

2, P4-P2= 2 which further imply that (P1, P5), (P1, P3) and (P2, P3), (P4, P2) are pair of

twin odd primes with P1 and P2 as common odd primes, respectively. This condition is

to the one obtained in Case 1. So, by the same argument as applied in Case 1, this case

is also rejected. Hence, φ (v5) can neither be an odd nor an even integer. Hence, the

supposition is wrong and so the conclusion is that the PDL of Γ(D8) does not exist”.

Theorem 4.3.4. Γ(D2n) does not permit PDL for n ≥ 5.

Proof. “Consider D2n, where n ≥ 5 given by: D2n = {< x, y > : xn = e = y2, xy =

yx−1} & Z(D2n) =

 {e} , if n is odd natural number{
e, x

n
2

}
, if n is even natural number

So if V denote the node set for Γ (D2n), then V = D2n − Z(D2n), then V consists of

non-commuting elements of group D2n. Consider S = { x, y , xy , x2y , x3y}. Note

that order of x = n is atleast 5. So, xy = yx−1 ̸= yx

x (xy) = x2y, (xy)x = yxx−1 = ye = y ⇒ x (xy) ̸= (xy)x

x
(
x2y
)
= x3y and

(
x2y
)
x = yx−2x = yx−1 = xy ̸= x3y ⇒ x

(
x2y
)
̸=
(
x2y
)
x

x
(
x3y
)
= x4y and

(
x3y
)
x = yx−3x = yx−2 = x2y ̸= x4y ⇒ x

(
x3y
)
̸=
(
x3y
)
x

y (xy) = x−1yy = x−1e = x−1 and (xy) y = x ̸= x−1 ⇒ y(xy) ̸= (xy) y

y
(
x2y
)
= yyx−2 = y2x−2 = ex−2 = x−2 and

(
x2y
)
y = x2y2 = x2e = x2 ̸= x−2

⇒ y(x2y) ̸=
(
x2y
)
y

(xy)
(
x2y
)
= x (yy)x−2 = xex−2 = x−1 and (x2y)(xy) = x2yyx−1 = x ̸= x−1 ⇒

(xy)
(
x2y
)
̸= (x2y)(xy)

(xy)
(
x3y
)
= xyyx−3 = x−2 and

(
x3y
)
(xy) = x3yyx−1 = x2 ̸= x−2 ⇒ (xy)

(
x3y
)
̸=(

x3y
)
(xy)(

x2y
) (

x3y
)
= x2yyx−3 = x−1 and

(
x3y
) (

x2y
)
= x3yyx−2 = x ̸= x−1 ⇒

(
x2y
) (

x3y
)
̸=(

x3y
) (

x2y
)

But y
(
x3y
)
= yyx−3 = y2x−3 = ex−3 = x−3 and

(
x3y
)
y = x3y2 = x3e = x3 =

x−3 if n = 6 ...(I)

So,
(
x3y
)
commute with y D12 whereas the above equations show that the pairs

(x, y) , (x, xy) , (x, x2y),
(
x, x3y

)
, (y, xy) ,

(
y, x2y

)
,
(
xy, x2y

)
,
(
xy x3y

)
, (x2y, x3y) are non-

commuting in each D2n, for n ≥ 5. The proof is divided into the following two cases:

Case 1: When n an odd
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Since n ≥ 5 & n is odd, so n ̸= 6. By (I), x3 ̸= x−3 and
(
x3y
)
does not commute

with y.

So, in Γ (D2n) , the following are the minimum pairs of adjacent nodes:

(x, y) , (x, xy) , (x, x2y),
(
x, x3y

)
, (y, xy) ,

(
y, x2y

)
,
(
xy, x2y

)
,
(
xy , x3y

)
,
(
x2y, x3y

)
,
(
y, x3y

)
.

And S = { x, y, xy, x2y, x3y} ⊆ V . Set x = v1, y = v2, xy = v3, x2y = v4, x3y = v5.

Hence, in this case Γ (D2n) has the following form:

Figure 4.24: Subgraph of Non-Commuting graph Γ (D2n)

Clearly, the χ of the graph shown in Figure 4.24 is 5. Since it is subgraph of Γ (D2n),

it implies that χ(Γ (D2n)) is ≥ 5. As it is known that, the PDL of any graph with

chromatic number 5 is not possible, the conclusion is that for any odd number n ≥ 5,

the PDL of non-commuting graph of D2n, is not possible.

Case 2: When n an even

Since n ≥ 5 & even, so n is at least 6. Also, equation (I) implies that x3 = x−3 if n = 6,

so
(
x3y
)
commutes with y in group D12. So, the prove is for D12 separately. It is

known that, D12 = {e, x, x2, x3, x4, x5, y, xy, x2y, x3y, x4y, x5y}. Consider

S =
{
x, y, xy, x2y, x3y, x4y, x5y

}
⊆ V , where V is set of nodes of Γ(D12). Then,

x
(
x4y
)
= x5y and

(
x4y
)
x = x4x−1y = x3y ̸= x5y ⇒ x(x4y) ̸=

(
x4y
)
x

x
(
x5y
)
= x6y = ey = y and

(
x5y
)
x = x5x−1y = x4y ̸= y ⇒ x(x5y) ̸=

(
x5y
)
x

y
(
x4y
)
= x−4yy = x−4 = x2 and

(
x4y
)
y = x4 ̸= x2 ⇒ y(x4y) ̸=

(
x4y
)
y

y
(
x5y
)
= x−5yy = x−5e = x−5 = x and

(
x5y
)
y = x5 ̸= x ⇒ y(x5y) ̸=

(
x5y
)
y(

x2y
) (

x4y
)

= x2yyx−4 = x−2 = x4 and
(
x4y
) (

x2y
)

= x4yyx−2 = x2 ̸= x4 ⇒(
x2y
) (

x4y
)
̸=
(
x4y
) (

x2y
)

(xy)
(
x5y
)
= xyyx−5 = x−4 = x2 and

(
x5y
)
(xy) = x5yyx−1 = x4 ̸= x2 ⇒ (xy)

(
x5y
)
̸=(

x5y
)
(xy)
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(x5y)
(
x4y
)
= x5yyx−4 = x and

(
x4y
) (

x5y
)
= x4yyx−5 = x−1 = x5 ̸= x⇒(x5y)

(
x4y
)
̸=(

x4y
) (

x5y
)
.

Hence, in Γ (D12) , the following are minimum pairs of adjacent nodes: “(x, y) , (x, xy) ,
(
x, x2y

)
,(

x, x4y
)
,
(
x, x5y

)
, (y, xy) ,

(
y, x2y

)
,
(
y, x4y

)
,
(
y, x5y

)
,(

xy, x2y
)
,
(
xy , x5y

)
,
(
x2y, x4y

)
, (x5y , x4y)”. By setting x = v1, y = v2, xy =

v3, x2y = v4, x4y = v5, x5y = v6, the following graph is obtained as a subgraph

of Γ (D12).

Figure 4.25: A subrgraph of non-Commmuting graph Γ (D12)

Suppose that there exist φ : V (Γ (D12)) → Z which determines PDL so that |φ (u)− φ (v)|
is an odd prime for each pair (u, v) of adjacent nodes in Γ (D12). Then it is clear

from Figure 4.25 and by Lemma 4.2.1, that in ∆v1v2v3, for any two of three nodes

should be labeled with either an odd or even integer. Assuming φ (v1) = 2n, φ (v2) =

2n+ 2, n∈ Z, then φ (v3) must be odd integer, say φ (v3) = 2m+ 1, m∈ Z ... (II)

So, from ∆v1v2v4, one can get that φ (v4) must be an odd integer and also (v3, v4) are

adjacent nodes which imply that φ (v4) = 2m+ 3 ... (III)

Proceeding in a similar way, from ∆v1v2v6 and ∆v1v2v5, using the fact that (v3, v6), (v5, v4) are

adjacent nodes, one can get φ (v6) and φ (v5) must be odd integers and so, |φ (v6)− φ (v3)|
and |φ (v4)− φ (v5)| are even primes. It implies that (φ (v6) , φ (v3)) and (φ (v4) , φ (v5)) must

be pair of consecutive odd integers ... (IV)

But (v5, v6) is a pair of adjacent nodes and |φ (v6)− φ (v5)| is an even prime (difference

of any two odd integers is even) if and only if φ (v6) and φ (v5) are consecutive odd

integers ... (V)

Combining statements (II), (III), (IV) and (V), one can see that (φ (v6) , φ (v3) ), (φ (v4) , φ (v5)) , ((φ (v6) , φ (v5)) and (φ (v4) , φ (v3))

are pairs of consecutive odd integers. Again (II) and (III) imply that, φ (v5)= 2m + 5,

φ (v6) = 2m − 1 or 2m + 7. So, |φ (v6)− φ (v5)| = 6 or |φ (v6)− φ (v3)| = 6, a con-

tradiction. Hence, it is not possible to label the subgraph as shown in Figure 4.25

with φ : V (Γ (D12)) → Z so that |φ (u)− φ (v)| is an odd prime for each pair (u, v)
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of adjacent verices in Figure 4.25. So, if a subgraph of Γ (D12) does not admit PDL,

then Γ (D12) does not possess PDL. Hence, the PDL of the non-commuting graph of

D2n, for n = 6 is not possible. Further, the left thing is to prove the statement for

even integers n > 6. Thus n ≥ 10 and n is even integer. So equation (I) implies that

y
(
x3y
)
= yyx−3 = y2x−3 = ex−3 = x−3 and

(
x3y
)
y = x3y2 = x3e = x3 ̸= x−3

“for n = 10, 12 . . . . So,
(
x3y
)
commute with y in D2n for even integers n ≥ 10. Hence,

(x, y) , (x, xy) ,
(
x, x2y

)
,
(
x, x3y

)
, (y, xy) ,

(
y, x2y

)
,
(
xy, x2y

)
,
(
xy, x3y

)
,
(
x2y, x3y

)
,
(
y, x3y

)
are non-commuting in eachD2n, for even integers n ≥ 10” and S = {x, y, xy, x2y, x3y} ⊆
V . Set x = v1, y = v2, xy = v3, x

2y = v4, x
3y = v5. Hence, in this case the non-

commuting graph Γ (D2n) for even integers n ≥ 10 has the following form (see Figure

4.26):

Figure 4.26: A subgraph of Γ (D2n) for even integers n ≥ 10

This is similar to Case 1. As stated in Case 1, the chromatic number of the graph shown

in Figure 4.26 is 5. Since it is a subgraph of Γ (D2n), for even integers n ≥ 10, it implies

that χ(Γ (D2n)) is ≥ 5. As it is known that, the PDL of any graph with chromatic

number 5 is not possible. So, one can conclude that for any even integers n ≥ 10, the

PDL of Γ(D2n), is not possible. Hence, combining both Cases 1 and 2, one can conclude

the PDL of the Γ(D2n), for n ≥ 5, does not exist”.

Definition 4.3.6. Define product on Q8 by usual multiplication together with i2 = j2 =

k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. Then Q8 forms a non-abelian

group called the Quaternion group.

Lemma 4.3.2. Γ(D8) and Γ(Q8) are isomorphic.

Proof. D8 =
{
< x, y >: x4 = e = y2, xy = yx−1

}
, where “e is the identity element” of

D8 i.e. D8 =
{
e, x, x2, x3, y, xy, x2y, x3y

}
and centre of D8 is Z (D8) =

{
e, x2

}
.

Therefore V (Γ (D8)) =
{
x, x3, y, xy, x2y, x3y

}
. Let v1 = x, v2 = x3, v3 = y, v4 =

xy, v5 = x2y, v6 = x3y so that (Γ (D8)) = {v1, v2, v3, v4, v5, v6}. It is easy to check

that (v1, v2) , (v1, v6) , (v1, v3) , (v1, v4) , (v2, v6) ,
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(v2, v4) , (v2, v5) , (v3, v4) , (v3, v5) , (v3, v6) , (v4, v5) , (v5, v6) are the pairs of ad-

jacent nodes. Therefore, Γ(D8) is as given below (see Figure 4.27):

Figure 4.27: Γ(D8)

Now the Quaternion group is given by Q8 = {±1, ±i, ±j, ±k} and Z (Q8) = {1, −1} .
Therefore, V (Γ (Q8)) = {i, −i, j, −j, k, −k}. Letu1 = i, u2 = j, u3 = −j, u4 =

k, u5 = −i, u6 = −k so that “V (Γ(Q8)) = {u1, u2, u3, u4, u5, u6}. Then (u1, u2), (u1, u3),

(u1, u4), (u1, u6), (u2, u4), (u2, u5), (u2, u6), (u3, u4), (u3, u5), (u3, u6), (u4, u5), (u5, u4)

are the pairs of adjacent nodes”. Therefore, the non-commuting graph of Q8 is as given

below (see Figure 4.28):

Figure 4.28: Γ(Q8)
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Now, the correspondence Ψ (vi) = ui, i = 1, 2, 3, 4, 5, 6 induces an isomorphism

between Γ(D8) and Γ(Q8).

Theorem 4.3.5. PDL of Γ(Q8) does not exist.

Proof. Since Γ(D8) and Γ(Q8) are isomorphic by Lemma 4.3.2 and the PDL of Γ(D8)

does not exist in view of the Theorem 4.3.3. So one can conclude that the PDL of Γ(Q8)

also does not exist.

Definition 4.3.7. A pizza graph on 2n+ 1 nodes, Pzn, is formed from a S(Wn) in each

of its spokes.

The PDL of Pz11 is given in Figure 4.29.

Figure 4.29: PDL of pizza graph Pz11

Definition 4.3.8. The jewel graph Jk is defined by V (Jk) = {x, y, s, t, wj : 1 ≤ j ≤ k}
and E (Jk) = {xyi, yyi, xs, ys, yt, xt, st : 1 ≤ j ≤ k} (see Figure 4.30).
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Figure 4.30: Jewel graph Jk

Definition 4.3.9. “A fan F(1,k) = K1ΛPk.”

Definition 4.3.10. “If Lr is a ladder with V (Lr) = {vj , uj : j = 1, 2, 3, . . . , r} and one

can add links uivi+1, i = 1, 2, 3, . . . , r − 1 to Lr & delete ur which is incident to both

links ur−1ur and urvr, then by deleting the node, one gets a TLr. The diamond graph,

Brk, k ≥ 3, is formed by connecting a single point y to all the points vj , j = 1, 2, . . . , k of

TLk”.

Example 4.3.1. Br5 is given in Figure 4.31.

Figure 4.31: Diamond graph Br5

Theorem 4.3.6. The pizza graph Pzn permits PDL ∀n ≥ 3 if TPC is true.
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Proof. Take Pzn be with V (Pzn) = {u, vk, wk : 1 ≤ k ≤ n}, and E (Pzn) = {uvk, vkwk, wkwk+1, 1 ≤
k ≤ n}, so V (Pzn) = 2n+1 and vn+1= v1, wn+1= w1. “A 1-1 function w : V (Pzn) → Z

is defined as below: W.L.G, let w(u) = 0, w(wi) = 2i; 1 ≤ i ≤ n − 1”.

Now choose sufficiently large prime pα and twin primes (p1, p2) (with p1 < p2) so that

w(wn) = w(wn−1) + pα = p2 with a condition that |w(wn−1) − w(wn)| is a prime.

Then w(vn) = p1. Also, let w(vi) = w(wi) + pi, where p
′
is are sufficiently large

primes. One can check that Pzn permits PDL ∀n ≥ 3.

Theorem 4.3.7. Jn admits PDL, ∀n ≥ 1.

Proof. Let Jn be on n+ 4 nodes with V (Jn) = {u, v, s, t, vi : 1 ≤ i ≤ n}. Let E(Jn) =

E1 ∪ E2, where E1 = {ep, eq, er, es, et} and E2 = {ei1, ei2 : 1 ≤ i ≤ n}. Now
define an injective function y : V (Jn) → Z as follows: W.L.G, let (y(u) = 1, y(v) =

−1, y(s) = y(u)+3, and y(t) = y(u)+5. Next y(vi) = 2r ; 1 ≤ i ≤ n, r ∈ N, 2r >

y(t) in such a way that |y(u)−y(vi)| = pk+1 and |y (v)− y (vi)| = pk+2; 1 ≤ i ≤ n,

pk+1 and pk+2 are twin primes. Similarly, y(vi) = −y(vi) : n + 1 ≤ i ≤ 2n.

Clearly, y is PDL of Jn.

Proposition 4.3.1. F (1, n) for n ≥ 11 admits no PDL.

Theorem 4.3.8. The diamond graph Brn does not admit PDL for n ≥ 11.

Proof. The proof is obvious from Proposition 4.3.1.

Definition 4.3.11. “B
(3)
k for k ≥ 1 is a planar graph on k + 2 points x, y, y1, y2, . . . yk

& 2k + 1 links obtained by k times C ′
3s sharing a common link (y, x)”

Definition 4.3.12. The triangular book with book marks is a triangular book B
(3)
n with

a finite number of pendant lines attached at any one of the end nodes of the spine.

Theorem 4.3.9. B
(3)
n admits PDL for all n ∈ Z+ iff the TPC is true.

Corollary 4.3.2. The triangular book graph B
(3)
n with any finite number of book marks

admits PDL iff TPC is true.

Proof. The labeling for the triangular book graph is done as it is given in Theorem 4.3.9.

Now W.L.G, the book mark nodes, say wi i ≥ 1 are attached with u. The nodes wi

can be labeled with unused sufficiently large even numbers, say 2ti where ti ∈ N such

that 2ti − 1 is a prime. Hence the proof.

Definition 4.3.13. [29] “The generalized Jahangir graph Jm,k, for m ≥ 3, k ≥ 1,

consisting of Cm(k+1) with an extra node which is adjacent to m nodes of Cm(k+1) at

distance k + 1 on Cm(k+1)”.
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Theorem 4.3.10. The Jahangir graph Jm,k permits PDL ∀m ≥ 3, k ≥ 1.

Proof. If Jm,k is with V (Jm,k) = {u} ∪ {u1, . . . , um} ∪ {vi1 , v2i , . . . , vmi ; i =

1, ..., m}, then there arises two cases:

Case 1: If k an even.

Here Jm,k is bipartite and hence the proof.

Case 2: If k an odd.

A 1-1 map f : V (Jm,k) → Z is given below: W.L.G, let f(u) = 0, f(u1) =

p1, f(v11 ) = f(u1) + 2 and f(v1j ) = f(v1j−1 ) + 2, where 2 ≤ j ≤ k − 1 and p1

is a prime. Next, f(u2) = p2 so that |f(v1k−1 ) − f(u2)| = p, where p ∈ P . Again,

f (u2) = p2, f(v21 ) = f(u2) + 2 and f(v2j ) = f(v2j−1 ) + 2, where 2 ≤ j ≤ k − 1

and p2 is prime. Next, f(u3) = p3 such that |f(v2k−1 ) − f(u3)| = p, where p ∈ P .

Thus continuing the process up to the node um one can verify that f is the required

PDL of Jm,k.

Figure 4.32: PDL of J5,9

4.4 Conclusion

In this chapter some general results on PDL are obtained and the non-existence of PDL

of non-commuting graphs of Dihedral groups D2n, n ≥ 3 and Quaternion group Q8 are
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also established. Besides this, the sufficient condition for the existence of PDL of degree

splitting graph of a bipartite graph has also been obtained.



Chapter 5

Prime Distance Labeling in the

Context of Extension and

Barycentric Subdivision

5.1 Introduction

In this chapter, certain results on PDL in the context of duplication and extension of

nodes have been investigated. Further PDL of simple graphs in the context of barycentric

sub-division has been completely characterized.

5.2 Results on PDL in the Context of Duplication and

Extension Operations

Theorem 5.2.1. [43] If G is obtained from Cn = {u1, u2, . . . , un, u1}, n ≥ 6 by

duplicating an arbitrary node by a node, then G admits PDL if GC is true.

Theorem 5.2.2. Let Gn be obtained from Cn by duplicating an arbitrary node by a

node. Then Gn admits PDL for all n ≥ 6 if and only if GC is true.

Proof. Let Cn be with V (Cn) = {vi : 1 ≤ i ≤ n} and n ≥ 6. Obtain

Gn by performing duplication of node vn by a node v
′
n as given in Figure 5.1. So,

V (Gn) = V (Cn) ∪ {v′
n}, where N(v

′
n) = N(vn) = {vn−1, v1}. First assume that

Gn has a PDL for a +ve integer n ≥ 6, & take one such PDL of Gn. W.L.G, assume

that vr = 2(r – 1) for 1 ≤ r ≤ n – 1. Note that the remaining nodes vn and v
′
n cannot

57
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be of even labels (If vn or v
′
n is assigned -2, then it gives a contradiction). Moreover, one

cannot give an arbitrary odd number to vn or v
′
n as they must be of odd primes only. So

the labels of vn and v
′
n must be odd primes and whose sum is equal to the label of vn−1.

Therefore, if all Gn, n ≥ 6 are PDGs, then the GC is true. Conversely, if the GC is true,

then “define g : V (Gn) → Z+ as given below: g(vk) = 2(k – 1) for 1 ≤ k ≤ n – 1”.

Now g(vn−1) can be expressed as g(vn−1) = p1 + p2. Now letting g(vn) = p1 and

g(v
′
n) = p2 implies that g is a PDL of Gn.

Figure 5.1: G derived from Cn by duplicating vn by vn′ .

Theorem 5.2.3. “The graph formed by applying duplication of a point by a line at all

points in Pk allows PDL ∀ n ≥ 1.

Proof. If v1, v2, . . . , vn are the successive nodes of Pn & G is formed by performing

duplication of vk by v
′
kv

”
k for k = 1, 2, . . . , n, then it is interesting to note that G

has 3n nodes and n node disjoint cycles each of length three. Thus V (G) = V1 ∪ V2,

where V1 = V (Pn) and V2 = {v′
i, v

”
i } for all i and E(G) = E1 ∪ E2 ∪ E3 ∪ E4,

where E1 = E(Pn), E2 = (viv
′
i), E3 = (viv

”
i ) and E4 = (v

′
iv

”
i ) for all i.

Now define an injective map f : V (G) → Z as given below: W.L.G, f(v1) =

0, f(v
′
1 ) = f(v1) + 2 and f(v”1 ) = f(v1) + 5. Now let p1 be a prime larger

than the utilized labels. Then f(v2) = f(v1) + p1, f(v
′
2 ) = f(v2) + 2, and

f(v”2 ) = f(v2) + 5. Proceeding in this way, let pn be a prime larger than the utilized

labels. Then f(vn) = f(vn−1) + pn, f(v
′
n ) = f(vn) + 2, and f(v”n ) = f(vn) + 5.
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Figure 5.2: PDL of duplication of an line by a node at all lines in P6

Theorem 5.2.4. The graph formed by applying duplication of a link by a point at all

links in Pn admits a PDL.

Proof. Let Pn be on n nodes say vi, 1 ≤ i ≤ n and m lines. Then G1 is formed by

applying duplication of a link by a node at all lines can be defined as below: V (G1) =

Y1 ∪ Y2, where Y1 = V (Pn) & Y2 = {uj : 1 ≤ j ≤ m} and E(G1) = E1 ∪ E2,

where E1 = E(Pn) = {ei : 1 ≤ i ≤ m} and E2 = {ej : 1 ≤ j ≤ 2m}.
Now an injection is g1 : V (G1) → Z is defined as below: W.L.G, g1(v1) = 2 and

g1(u1) = 4. Next g1(vl) = g1(vl−1) + 5, ∀ 2 ≤ l ≤ n and g1(uj ) = g1(uj−1) + 5,

for 2 ≤ j ≤ m (see Figure 5.2).

Theorem 5.2.5. The graph obtained by performing extension at all nodes in Pn admits

a PDL.

Proof. Let Pn be on n-nodes, where n ≥ 3, say, uk, 1 ≤ k ≤ n& E (Pn) = {ek : 1 ≤ k ≤ m}.
Let G be obtained by performing extension at all nodes in Pn. Then V (G) = V1 ∪ V2,

where V1 = V (Pn), V2 = {vk : 1 ≤ k ≤ n} & E (G) = E1 ∪ E2 ∪ E3 ∪ E4, where

E1 = E (Pn) , E2 = {uivi : 1 ≤ i ≤ n} , E3 = {ui+1vi} and E4 = {uivi+1}. Define

h : V (G) → Z as h (u1) = 0, h (v1) = 2, h (uk) = h (uk−1) + 5, 2 ≤ k ≤ n &

h (vj) = h (vj−1) + 5, 2 ≤ j ≤ n. Then h gives a PDL of G (see Figure 5.3).

Figure 5.3: PDL of the graph obtained by performing extension at all the nodes of
P5
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Theorem 5.2.6. G derived by taking extension of v ∈ Kn, n ≥ 4 is not a PDG.

Proof. Since G1 is a PDG iff all of its subgraphs are PDGs & G formed by taking

extension of v ∈ Kn, n ≥ 4 contains K5 as a subgraph. Therefore in view of theorem

4.2.4 the proof follows”.

5.3 The Characterization of PDL in the Context of Barycen-

tric Subdivision(BS)

In this section, the proof of a result which completely characterizes PDL of simple graphs

in the context of BS.

Theorem 5.3.1. The barycentric subdivision of any simple graph G admits PDL.

Proof. Let G be any simple graph. There arises 2 possibilities.

Case 1. G a bipartite

Here G contains no odd cycles. The barycentric subdivision of G also a bipartite graph,

which is by Theorem 4.2.1, admits PDL.

Case 2. G a non-bipartite

Here G contains at least an odd cycle. The barycentric subdivision of G becomes a

bipartite graph as every odd Cn changes to even Cn and hence admits PDL by Theorem

4.2.10.

5.4 Conclusion

In this chapter, the PDL in the context of duplication and extension operations of certain

graphs has been investigated. Further, the complete characterization of PDL of simple

graphs in the context of barycentric subdivision has also been done.



Conclusion

In this thesis, prime PL and PDL of various graphs are discussed such as Pn, Kn,

Γ(G), pizza graph, diamond graph, jelly fish graph, flower graph, generalized Jahangir

graph. The complete characterization of PDL of simple graphs in the context of BS has

also been established. The sufficient condition for barycentric subdivision of graph to

admit PL & sufficient condition for DS(G) of a bipartite graph G to admit PDL have

also been established. Moreover, a few open problems and conjectures have also been

formulated paving a way for furtherance of research in this direction. Both labeling have

also been investigated for various classes of graphs in the context of extension of vertices,

duplication and barycentric subdivision operations. A complete characterization of both

the labeling is still unsettled but the present work may help to open a gateway to achieve

the characterization of both labeling either fully or partially. One can investigate both

of these labeling for some new families of graphs that are not studied in the present

work as a future task. Though, GL is widely applicable in countless domains, exploring

the immense uses of PL and PDL in various fields is a fascinating area of research.
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[19] R. B. Eggleton, P. Erdős, D. K. Skilton, Colouring the Real Line, J. Combin. Theory

Ser. B 39(1) (1985), pp.86-100.

[20] V. Ganesan, K. Balamuruguan, Prime Labeling for Some Sunlet Related Graphs,

International Journal of Scientific Research and Modern Education(IJSRME), 1(2)

(2016).

[21] E. Ghorbani and S. Kamali, Prime Labeling of Ladders, arXiv:1610.08849v1

[math.CO].

[22] J. Gross, J. Yellen, Graph Theory and Its Applications, CRC Press, London, (1999).

[23] K. M. M. Haque, X. Lin, Y. Yang, and P. Zhao, On the Prime Labeling of General-

ized Petersen Graph P(n,3), Int. J. Contemp. Math. Sci., 6 (2011), pp.1783-1800.

[24] K. M. M. Haque, X. Lin, Y. Yang, and P. Zhao, On the Prime Labeling of Gener-

alized Petersen Graph P(n,1), Util. Math., 83 (2010), pp.95-106.

[25] P. Haxell, O. Pikhurko, and A. Taraz, Primality of Trees, J. Combinatorics, 2 (2011)

pp.481-500.

[26] Hung-Lin Fu and Kuo-Ching Huang, On Prime Labelings, Discrete Math., 127

(1994), pp.181-186.



Bibliography 66

[27] Irvania Sukma Kumala, A. N. M. Salman, The Rainbow Connection Number of a

Flower (Cm,Kn) Graph and a Flower (C3, Fn) Graph, International Conference on

Graph Theory and Information Security, Procedia Computer Science, 74 (2015),

pp.168–172.

[28] P. Jeyanthi, S.Philo, M.K. Siddqui, Odd Harmonious Labeling of Super Subdivision

of Graphs, Pyroyecciones Journal of Mathematics 38(1) (March 2019), pp.1-11.

[29] Jia-Bao Liu, Agha Kashif, Tabasam Rashid and Muhammad Javaid, Fractional

Metric Dimension of Generalized Jahangir Graph, Mathematics, 7 (2019), pp.1-10.

[30] A. Kanetkar, Prime labeling of Grids, AKCE J. Graphs Combin., 6 (2009), pp.135-

142.

[31] A. N. Kansagara, S.K. Patel, J.B. Vasava, Prime Labeling in the Context of Subdi-

vision of Some Cycle Related Graphs, TWMS J. App. and Eng. Math. 11(2) (2021),

pp.524-540.

[32] S. Klee, H. Lehmann, and A. Park, Prime Labeling of Families of Trees with Gaus-

sian Integers, AKCE Internat. J. Graphs Combin., 13 (2016), pp.165-176.

[33] J. D. Laison, C. Starr, and A. Walker, Finite Prime Distance Graphs and 2-Odd

Graphs, Discrete Mathematics, 313 (2013), pp.2281-2291.

[34] G.C. Lau, W. C. Shiu, H.-K. Ng, and P. Jeyanthi, Further Results on SD-Prime

Labeling, JCMMCC, 98 (2016), pp.151-170.

[35] S. M. Lee, I. Wui and J. Yeh, On the Amalgamation of Prime Graphs, Bull.

Malaysian Math. Soc. (Second Series), 11 (1988), pp.59-67.

[36] F.T. Leighton, A Graph Coloring Algorithm for Large Scheduling Problems, Journal

of Research of the National Bureau Standard, 84 (1979), pp.79-100.

[37] S. Meena and P. Kavitha, Prime Labeling of Duplication of Some Star Related

Graphs, International Journal of Mathematics Trends and Technology, 23(1) (July

2015).

[38] S. Meena, K. Vaithilingam, Prime Labeling for Some Helm Related Graphs, Inter-

national Journal of Innovative Research in Science, Engineering and Technology,

2(4) (April 2013).

[39] S. Meena, G. Amuda, Some Results on Prime Labeling of Graphs, International

Journal of Innovative Science, Engineering & Technology, 3(6) (June 2016).

[40] E. Oczan and E. Ersoy, Final Exam Scheduler-FES, Proc. of 2005 IEEE Congress

of Evolutionary Computation, 2 (2005), pp.1356-1363.



Bibliography 67

[41] A. Parthiban, N. Gnanamalar David, Prime Distance Labeling of Some Path Related

Graphs, Int. Journal of Pure and Applied Mathematics, 120(7) 2018, pp.59-67.

[42] A. Parthiban, N. Gnanamalar David, On Prime Distance Labeling of Some Special

Graphs, Contemp. Stud. Discrete Math., 2(1) (2018), pp. 21-26.

[43] A. Parthiban and N.G David, On Prime Distance Labeling of Graphs, Theoret.

Comput. Sci. Discrete Math., (2017) pp.238-241.

[44] A. Parthiban et al., On Finite Prime Distance Graphs, Indian Journal of Pure and

Applied Mathematics, 52 (2021), pp.22-26.

[45] A. Parthiban and N. Gnanamalar David, Prime Distance Labeling of Some Families

of Graphs, International Journal of Pure and Applied Mathematics, 118(23) (2018),

pp.313-321.

[46] A. Parthiban and Swati Sharma, On Prime Distance Labeling of Non-Commuting

Graph of Non-Abelian Symmetric Groups, Think India Journal, 22(16) (2009),

pp.3823-3833.

[47] P. Patel and C. Patel, Various Graphs and Their Applications in Real World, In-

ternational Journal of Engineering Research & Technology, 2 (2013), pp.1499-1504.

[48] S. K. Patel, Neighborhood-Prime Labeling of Some Generalized Petersen Graphs,

Internat. J. Math. Soft Comput., 7(2) (2017), pp.111-118.

[49] S. K. Patel and N. P. Shrimali, Neighborhood-Prime Labeling of Some Union Graphs,

Internat. J. Math. Soft Comput., 6(1) (2016), pp.39-47.

[50] S. K. Patel and N. P. Shrimali, Neighborhood-Prime Labeling of Some Product

Graphs, Algebra Discrete Math., 25(1) (2018), pp.118-129.

[51] S. K. Patel and J. Vasava, On Prime Labeling of Some Union Graphs, Kragujevac

J. Math., 42(3) (2018), pp.441-452.

[52] O. Pikhurko, Trees are Almost Prime, Discrete Math., 307 (2007) pp.1455-1462.

[53] U. M. Prajapati and S. J. Gajjar, Some Results on Prime Labeling Open J. Discrete

Math., 4 (2014) pp.60-66.

[54] U. M. Prajapati and S. J. Gajjar, Prime Labeling of Generalized Petersen Graph,

Internat. J. Math. and Soft Comput., 5(1) (2015), pp.65-71.

[55] A. Prathik, K. Uma and J.Anuradha, An Overview of Applications of Graph Theory,

International Journal of Chem Tech Research, 9 (2016), pp.242-248.



Bibliography 68

[56] S. N. Rao, Prime Labelling, In: R. C. Bose Centenary Symposium on Discrete

Math. and Applications, Kolkata (2002).

[57] A. Rosa, On Certain Valuations of the Vertices of a Graph, Theory of Graphs

(Internat. Symposium, Rome, July 1966), Gordon and Breach, N. Y. and Dunod

Paris (1967), pp.349-355.

[58] H. Salmasian, A Result on Prime Labelings of Trees, Bull. Inst. Combin. Appl., 28

(2000) pp.36-38.

[59] S. A. Schluchter, J. Z. Schroeder, K. Cokus, R. Ellingson, H. Harris, E. Rarity, and

T. Wilson, Prime Labelings of Generalized Petersen Graphs, Involve, 10(1) (2017),

pp.109-124.

[60] P. Selvaraju and C. Moha, Prime Valuation of Union of Cycles and Cycle Related

Graphs, Internat. J. Advan. Res. Comput. Sci. Software Engin., 7 (6) (2017), pp.839-

842.

[61] A. Seoud, A. El Sonbaty, and S. S. Abd El Rehim, Some Methods of Labeling

Graphs, J. Egyptian Math. Soc., 18(2) (2010), pp.199-221.

[62] M. A. Seoud A. El Sonbaty, and A. E. A. Mahran, Primality of Some Graphs, Ars

Combin., 112 (2013), pp.459-469.

[63] M. A. Seoud, A. El Sonbaty, and A. E. A. Mahran, On Prime Graphs, Ars Combin.,

104 (2012), pp.241-260.

[64] M. A. Seoud and M. Z. Youssef, On Prime Labelings of Graphs, Congr. Numer.,

141 (1999), pp.203-215.

[65] W.C. Shiu, G. C. Lau, and S. M. Lee, On (Semi-)Edge-Primality of Graphs, Iranian

J. Math. Sci. and Informatics, 12(2) (2017), pp.1-14.

[66] M. Sundaram, R. Ponraj, and S. Somasundaram, On a Prime Labeling Conjecture,

Ars Combin., 80 (2006), pp.205-209.

[67] M. Sundaram, R. Ponraj and S. Somasundaram, On Prime Graphs of Order ≤ 6,

Acta Ciencia Indica, 32 (2006), pp.859-871.

[68] A. Tout, A. N. Dabboucy, and K. Howalla, Prime Labeling of Graphs, Nat. Acad.

Sci. Letters, 11 (1982), pp.365-368.

[69] S. K .Vaidya and K.K. Kanani, Prime Labeling for Some Cycle Related Graphs,

Journal of Mathematics Research, 2(2) (May 2010).



Bibliography 69

[70] S. K. Vaidya and U. M. Prajapati, Some Results on Prime and k-Prime Labeling,

J. Math. Research, 3(1) (2011), pp.66-75.

[71] S. K. Vaidya and U. M. Prajapati, Some Switching Invariant Prime Graphs, Open

J. Discrete Math., 2 (2012), pp.17-20.

[72] S. K. Vaidya and U. M. Prajapati, Prime Labeling in the Context of Duplication of

Graph Elements, Internat. J. Math. Soft Comput., 3(1) (2013), pp.13-20.

[73] V. Vilfred, S. Somasundaram and T. Nicholas, Classes of Prime Graphs, Interna-

tional J. Management and Systems, 18(2) (2002).

[74] D. B. West, Introduction to Graph Theory, 2nd ed. Englewood Cliffs, NJ: Prentice-

Hall, (2000).

[75] B. Yao, H.Cheng, Z. Zhongfu, and M.Yao, Labellings of Trees with Larger Maximal

Degrees, (unpublished).

[76] M. Z. Youssef and E.A.El Sakhawi, Some Properties of Prime Graphs, Ars Combin.,

84 (2007), pp.129-140.


	Declaration of Authorship
	Certificate
	Abstract
	Acknowledgements
	List of Figures
	List of Symbols and Abbreviations
	1 Introduction
	1.1 Introduction to Graph Theory
	1.1.1 Preliminaries

	1.2 Graph Labeling
	1.3 Prime Labeling and Prime Distance Labeling
	1.4 Review of Literature
	1.4.1 Some Important Results on Prime Labeling
	1.4.2 Some Important Results on Prime Distance Labeling

	1.5 Research Gap and Objectives
	1.6 Contributions of the thesis
	1.7 Conclusion

	2 Results on Prime Labeling
	2.1 Introduction
	2.2 Certain Results on PL of Graphs
	2.3 Conclusion

	3 PL in the Context of Extension and Barycentric Sub-division
	3.1 Introduction
	3.2 Certain Results on PL of Graphs in the Context of Extension and Barycentric Sub-division
	3.3 Open Problems
	3.4 Conclusion

	4 Results on Prime Distance Labeling
	4.1 Introduction
	4.2 Some Results on Prime Distance Graphs
	4.3 PDL of Non-Commuting Graphs of Some Finite Non-Abelian Groups
	4.4 Conclusion

	5 Prime Distance Labeling in the Context of Extension and Barycentric Subdivision
	5.1 Introduction
	5.2 Results on PDL in the Context of Duplication and Extension Operations
	5.3 The Characterization of PDL in the Context of Barycentric Subdivision(BS)
	5.4 Conclusion

	Conclusion
	Paper Publications and Presentations
	Bibliography

