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ABSTARCT 

In the proposed work, an incubation time delay in the detection of the 

susceptible, infected and recovered population is explored and assessed using 

an SIR epidemic model. Individuals who are susceptible, infected, and 

recovered hosts are taken into account as state variables. It is assumed that the 

inner equilibrium is not zero. The local and global stability of the endemic 

equilibrium is investigated by using the time delay as a bifurcation parameter, 

and establish whether the condition is absolutely stable or conditionally stable. 

A Hopf bifurcation also happens under certain circumstances.  

Mathematically, the positivity and boundedness of all analytical solutions is 

established using comparison theorem. Local stability analysis of interior 

equilibrium is established. Stability analysis of interior equilibrium 

considering delay parameter resulted into Hopf-bifurcation showing the 

complex dynamical behaviour. Nature of the roots has been studied in detail 

using Rouche’s theorem.  Sensitivity analysis of state variables with respect 

to model parameters is done for almost all the models using ‘Direct Method’. 

Numerical simulation is done using MATLAB where all the model parameters 

have been assigned different numerical values. This helped to find the critical 

value of the delay parameter below which the system exhibited stability and 

above this critical value, the system lost stability and Hopf-bifurcation 

occurred.  

In chaper-2, A traditional SIR model is analyzed by means of delay differential 

equations in this work. With the assumption that the susceptible population 

grows logistically and that the incidence rate follows the bilinear rule of mass 

action. The delay parameter represents the incubation time that must pass 

before infected susceptible become infectious. Using the transcendental 

characteristics equation, the non-zero epidemic equilibrium point is identified 

and also stability study is performed on that point. When the delay parameter 

value is less than the critical value, the system is destabilized and shows 

asymptotic stability. Hopf bifurcation occurs as the delay reaches the critical 
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point. Directional analysis depicting the direction and periodicity of 

bifurcating solutions is performed using the center manifold theory. The 

sensitivity analysis is conducted on the parameters of the model and the basic 

reproductive number 𝑅଴ which indicate the relative significance of these for 

fluctuations in the different values of state variables. MATLAB is used to 

validate the numerical results. 

In chapter-3, An SIR epidemic model is investigated and evaluated by 

including a lag in the incubation time into the method of determining who is 

infected with the disease. The state variables that are taken into account are 

the persons who are susceptible to infection, who have contracted infection, 

and who have recovered from infection. The computation of the inner 

equilibrium that does not equal zero is carried out. By using the time delay as 

a bifurcation parameter, the local stability of the endemic equilibrium is 

examined, and a condition that is either absolutely stable or conditionally 

stable is identified. In addition, there are some conditions that must be met 

before a Hopf bifurcation may take place. Using MATLAB, numerical 

simulations have been run in order to better show the primary findings that 

have been drawn. 

In chapter-4, Mathematical examination of the SIR model with mutation, 

including the inclusion of an incubation time lag as well as a general non-

linear incidence rate based on the law of mass action. When the virus 

undergoes a mutation, the restored population loses its immunity and becomes 

susceptible once again at a pace specified by the letter 'c', which stands for the 

mutation rate. Before taking effect, this mutation waits for the period of grace 

time specified by 𝜏. The three-state variables susceptible population, infected 

population, and recovered population are each denoted by the symbols S(t), 

I(t), and R(t), respectively. The basic reproduction number, denoted by the 

notation ‘𝑅଴’, is determined, and a graphic representation of its significance 

to infected and recovered populations is provided. For the purposes of 

studying stability and bifurcation, the non-zero equilibrium is taken into 

consideration. When the delay parameter reaches its critical point value, the 
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Hopf-bifurcation condition will take place. Both sensitivity analysis and 

directional analysis are done out using the direct method. In order to 

corroborate analytical results with numerical simulations, MATLAB is 

utilized to conduct the simulations. 

In chapter-5, A discrete delayed SIR epidemic model with logistic growth is 

analysed. A threshold value is obtained which depict a dynamics and 

outcomes of the disease. A basic reproductive number ℜ଴is defined, with this 

a disease free and non-zero endemic equilibrium is discussed. A disease-free 

equilibrium is shown to be asymptotically stable for a given value of the delay 

parameter 𝜏. The disease disappears when the basic fundamental reproductive 

number  ℜ଴ < 1. For a certain value of the delay parameter 𝜏, it is observed 

that the equilibrium 𝐸∗ is asymptotically stable and devoid of diseases. When 

ℜ଴ > 1, disease persist. Stability switches are seen for 𝜏 ≠ 0 and Hopf-

Bifurcation occurred when 𝜏 going beyond some critical point value. The 

delayed system for DFE (disease-free equilibrium) at ℜ଴ = 1, has also been 

shown to be linearly neutrally stable. We also analyze the sensitivity of the 

state variable with respect to the fundamental reproductive number ℜ଴. We 

conclude with some MATLAB-based numerical simulations to demonstrate 

the analytical findings. 
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Chapter 1 

1.1 General Introduction 

Diseases that are caused by organisms, such as bacteria, viruses, fungus, or 

parasites, are referred to as infectious diseases. Our bodies are home to a wide 

variety of species, both inside and out. They seldom cause damage and can 

even help the organism. However, if the right circumstances are present, some 

microbes may cause sickness. It is possible for some infectious diseases to be 

spread from one person to another. There are other diseases that may be 

passed on by insects and other animals. In addition to that, you might get 

further diseases if you consume tainted food or water or if you come into 

contact with organisms that are found in the natural world. Fever and 

exhaustion are common indications of a disease, but the signs and symptoms 

might vary based on the organism that is causing it. Infections that are not 

life-threatening may respond to rest and home treatments, whereas infections 

that are life-threatening may need hospitalization. Vaccines are an effective 

means of protecting against a wide variety of contagious diseases, including 

measles and chickenpox. Washing your hands often and thoroughly may help 

prevent you from the vast majority of infectious infections. The following are 

examples of different phases of infectious diseases: 

 Endemic Phase: The prefix "en" means "in" and the suffix noun 

"demos" means "people," therefore the term "endemic" literally 

translates to "in-people". It is a term that is used to describe a disease 

that is prevalent at a level that is generally consistent across a whole 

community or nation. It is possible for any nation to be home to a 

disease that is distinct from all others. For instance, malaria is an 

infectious disease that is endemic to Africa. 

 Epidemic Phase: An epidemic is a scenario in which a disease spreads 

quickly to a large number of individuals in a specific community 

within a short period of time. The term "epidemic" originates the 

Greek prefix "epi," means upon or above, suffix "demos," is people. 
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The word "epidemic" is used to more than merely outbreaks of 

infectious diseases. It is also applied with any circumstance that leads 

to a damaging growth of health hazards inside a society, for instance 

the rise in obesity internationally which is commonly called as 

"obesity epidemic". 

 Pandemic Phase: The Greek prefix “pan”, meaning "all," and the noun 

demos, meaning "people," are the origins of the English term 

pandemic. It is a phrase that is used to describe the fast spread of an 

infectious or communicable disease spanning numerous continents or 

globally. The term "pandemic" is given to an epidemic when it has 

reached a worldwide scale and is affecting a significant proportion of 

the world's population, like in the case of the covid-19 virus. 

 Syndemic Phase: A syndemic is the aggregation of two or more 

contemporaneous or sequential epidemics or disease clusters in a 

community with biological interactions that make the prognosis and 

burden of disease worse. A hookworm, malaria, and HIV/AIDS 

pandemic is an example of a syndemic, also known as a synergistic 

epidemic. 

The following infectious disease affected the history of mankind: 

 430 BC - Around 100,000 people perished as a result of the Plague of 

Athens, which is considered to be the world's first pandemic to spread 

across many regions. Nobody knows for sure what sickness was 

responsible for this epidemic. 

 541 BC - The pathogen Yersinia pestis was to blame for the Justinian 

Plague, which was responsible for the deaths of 30 million to 50 

million people. 

 In the 1340s, the bubonic plague produced by Yersinia pestis, 

sometimes known as the "Black Death," claimed the lives of around 

50 million people. 

 In the year 1494, an epidemic of syphilis, which originated in the 

Americas and was transported to Europe by its carrier, the bacterium 
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Treponema pallidum, claimed the lives of more than 50,000 

individuals in Europe. 

 Tuberculosis is an old disease that first became widespread during the 

Middle Ages and was responsible for the deaths of millions of people. 

 In the year 1520, over 3.5 million people perished as a result of 

smallpox, which was caused by the bacterium Variola major. 

 Between the years 1793 and 1798, yellow fever, sometimes known as 

"The American Plague," claimed the lives of around 25,000 persons in 

colonial America. 

 The cholera epidemic of 1832 claimed the lives of around 18,402 

individuals and spread over Asia, Europe, and the America. 

 In 1918, the Spanish flu caused the deaths of over 50 million people 

and was responsible for subsequent pandemics in 1957, 1968, and 

2009. 

 Since its discovery in 1976, the Ebola virus has been responsible for 

29 outbreaks and the deaths of 15,258 persons as of the year 2020. 

 Acute haemorrhagic conjunctivitis, a kind of pink eye that was 

originally identified in 1969 and went on to trigger a pandemic in 1981, 

is a derivation of pink eye. 

 Since it was discovered in 1981, HIV and AIDS have been responsible 

for the deaths of around 37 million people. It is now being referred to 

as a pandemic. 

 2002 was the year that saw the most fatalities from SARS, with 813 

individuals losing their lives to the "near-pandemic" that year. 

 In 2009, the H1N1 "swine flu" pandemic claimed the lives of 284,000 

individuals, making it the sixth flu pandemic of this century. 

 Chikungunya, a virus that is spread by mosquitoes and was discovered 

for the first time in 1952, did not become a pandemic until 2014. 

Rarely do people pass away as a result of this infection. 

 2015: The Zika virus belongs to the family of flaviviruses and has been 

around for many years. The mosquito-borne virus did not begin to 
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spread at an alarming rate until 2015, most likely as a result of a 

mutation in the virus. 

 In 2019 the infectious disease known as COVID-19 is caused by a 

newly discovered strain of the coronavirus. The letters 'CO' and 'VI' 

represent for corona, while the letter 'D' stands for disease. 

As a result of the fact that humans originated on a planet that was mostly 

inhabited by microorganisms, which are astounding in both their quantity and 

their variety, humans have been closely intertwined with them from the very 

beginning. The term "commensals," which literally means "those that eat at 

the same table," is given to microorganisms that live in close relationship with 

their hosts because these bacteria often benefit or gain advantages from this 

interaction. The bacteria are referred to be "mutualists" when they are both 

beneficial to others and to themselves. In a practical sense, it is difficult to 

determine if a particular microbe is a commensal, a mutualist, or none of these 

things. This is because a microbe's participation in the ecosystem may be 

indirect and its influence may be subtle due to the interactions it has with other 

members of the community. Microorganisms almost always reside in the 

environment in the form of intricate communities. The number of microbial 

cells that are linked with the human body is comparable to the total number 

of human cells, and the number of unique genes and gene functions these are 

connected with the human microbiome surpasses the number of unique 

human genes by a factor that is at least one hundred times greater. 

The scope of the scientific discipline of infectious diseases has broadened to 

include not just the study of injuries and violence, but well as the exploration 

of any exposure that impacts health outcomes, including molecular and 

genetic variables. Historically, infectious diseases focused on the learning of 

outbreaks of infectious illness. The field of infectious diseases has a wide 

range of applications, including the assessment of a population's overall 

health, the facilitation of individual decision-making, and the identification of 

the factors that contribute to an event's cause. Infectious diseases are able to 

provide answers to difficult issues by using rigorous statistical approaches. 
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The data related to infectious diseases may also be used to advise policies or 

recommendations that impact groups or people, such as selecting which 

populations to vaccinate, establishing speed limits on a highway, or 

determining how many times per week a person should exercise.  

It is not always necessary for a microorganism to cause disease in order for it 

to be considered a pathogen. Many infectious diseases that are common and 

serious in immunocompetent hosts are caused by organisms that are typically 

found within the human microbiota. These organisms compete with other 

indigenous microbes and, for the most part, adopt a commensal lifestyle. 

Illness, however, that is produced by these so-called commensal pathogens is 

probably definitely an accident due to the fact that illness is not necessary for 

the evolutionary survival of these pathogens. 

The term "mathematical model" refers to a description of a system that is 

expressed in mathematical language and makes use of mathematical concepts. 

The act of creating a mathematical model is referred to as "mathematical 

modelling," and the phrase describes the process itself. Not only are models 

based on mathematics utilised in the chemical sciences, physical science, 

biological sciences, earth science, and computer engineering stream and other 

engineering, but they are also utilised in non-physical sciences as economics, 

psychology, sociology, and political science. The explanation of a system, the 

investigation of the impacts of various components, and the formulation of 

hypotheses on behaviour may all be aided by the use of models. Mathematical 

modelling is the skill of transforming issues from an application field into 

workable mathematical formulations whose theoretical and numerical 

analysis gives insight, solutions, and direction that might be valuable for the 

application from where the problems originated. 

Mathematical models might be used in order to establish a connection 

between biological mechanism of communication and the outgoing dynamics 

of infection in populations. This would be done in order to better understand 

how infectious diseases spread across populations. At its most fundamental 

level, an epidemic may be explained by listing who infected whom and when 
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this took place. Mathematical models may be used to estimate how infectious 

diseases evolve, which can reveal the expected result of an epidemic and 

assist influence activities that are taken to improve public health. Models 

discover parameters for various infectious diseases by using fundamental 

assumptions or obtained data in conjunction with mathematics. Models then 

utilise these parameters to quantify the impacts of various treatments, such as 

mass vaccination programmes. The models may assist in determining which 

intervention should be avoided and which should be tested, as well as 

anticipate future development patterns, among other applications. 

Since the beginning of infectious disease epidemiology as a field of study 

more than a century ago, representation the disease system mathematically 

and also a complete analysis like sensitivity, other behaviour of infectious 

diseases has been two of the most important aspects of the field. The recent 

advancements in technology of data management, the capacity to exchange 

and deposit data over the internet, as well as rapid diagnostic tests and genetic 

sequence analysis, the comprehensive electronic monitoring of infectious 

disease has become increasingly commonplace in present years. This is due 

to the fact that there have been numerous recent improvements in all of these 

areas. This is due to the fact that these developments have made it possible to 

monitor infectious diseases in greater detail than ever before. Because of these 

continuous breakthroughs, the use of mathematical models to generate and 

evaluate fundamental scientific theories as well as to build actionable 

methods for disease prevention has expanded significantly. Mathematical 

analysis and models have successfully shed light on previously baffling facts 

and have been of critical importance in the creation of public health 

programmes in a significant number of countries throughout the world. 

In the discipline of mathematics, delay differential equations, which are 

sometimes referred to as DDEs for short, are a specialized form of differential 

equation in which the derivative of an unidentified function at a specific time 

is provided in terms of the values of the function at earlier periods. This type 

of differential equation is commonly referred to as a DDE. Delay Differential-
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difference equations (DDEs) are sometimes referred to as time-delay systems, 

hereditary systems, systems with after effect or dead-time, differential-

difference equations, and equations with diverging argument. 

In infectious diseases, the effect is not felt immediately, but takes some time 

to mature. This delay may be due to gestation period, incubation, mating or 

identification of infected ones. This gives a good scope for incorporation and 

application of delay differential equations in the modelling of infectious 

disease. The proposed research work will be oriented and bounded towards 

modelling of infectious diseases, performing the stability analysis and 

observing bifurcations due to critical delay parameters. 

1.2  Literature Review 

Infectious diseases are a leading cause of mortality across the globe. In the 

past, infectious diseases have been responsible for the deaths of many more 

people than any and all conflicts combined (for example, the Spanish flu). 

Bernoulli Daniel is credited as being the first person to use mathematics to the 

modelling of infectious diseases (Bernoulli Daniel, 1760). Kermack and 

McKendrick's research, which was first made public in 1927, was a significant 

factor in shaping the modelling framework. Their SIR model continues to be 

used in the modelling of epidemics of infectious illnesses. This fundamental 

model, in addition to a few of its adaptations (Bacaër, 2011; Bacaër & Bacaër, 

2011a, 2011b) will be the focus of our attention. 

A deterministic SIR model is presented, in which the daily contact rate is 

assumed to remain unchanged, the rate in which the compartment of infected 

person recovers from the illness is assumed to rely solely on the amount of 

time that it has been infected, and the recovered people are assumed to be 

permanently immune from further assault (Wang, 1979). A comprehensive 

examination of a broad category of SIR epidemic models is presented, after 

which the adequate criteria that ensure the long-term stability of the endemic 

equilibrium solution are obtained (Stech & Williams, 1981) . It has been 

shown that a variety of epidemiological processes are responsible for periodic 

resolutions. The technique used is called extrinsic forcing, and it uses a 
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parameter like the contact rate as the driving force that results in periodicity 

the most directly, nevertheless, periodicity may also emerge of its own accord. 

This is a less common occurrence. According to (Hethcote & Levin, 1989) , 

cyclic models of the SIR or SEIR type are capable of having periodic 

solutions if there is a significant amount of temporal delay in the eliminated 

class. (Mena-Lorcat & Hethcote, 1992)  analyses five SIRS epidemic models 

for populations of varied sizes in which the rate of infection is supplied by 

law of mass action. These terms pressing the count of infectives person and 

the number of susceptible or the proportion of the population that are 

susceptible. These incidences are given for populations in which the size of 

the susceptible population ranges from zero to one hundred percent. 

To investigate the variation behaviour of a SIR epidemic model with a 

incubation period in the removed compartment and using a nonlinear 

incidence rate, a mathematical model is presented (Lin, 1992) . This model 

will be used to analyse the asymptotic behaviour. A disease transmission 

model of the SEIR type with an exponential demographic structure is 

developed in this article. According to Cooke and Van Den Driessche's 

(Cooke & Van Den Driessche, 1996) research, it is believed that all babies are 

susceptible to the disease, there is a constant for the normal mortality rate, and 

there is a constant for the extra death rate for infective people. In many 

infectious diseases, one of the most often seen phenomena is the process by 

which susceptible individuals might eventually build up immunity to the 

disease by exposure to a persistently low level of infection over time. This 

significant aspect has been included in a SIRS epidemiology model together 

with the rates of incidence and the rise in immunity (Ghosh et al., 1996). The 

equations for epidemics such as malaria that are transmitted by vectors such 

as mosquitoes and need an incubation period before becoming contagious are 

provided. A set of distributed delay differential equations will be generated as 

a result of the model's application. A model was presented for the propagation 

of an infectious disease that was transmitted by a vector after an incubation 

period had elapsed. (Takeuchi et al., 2000) model may still be seen as an 
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extension of the same thing, and the current model can be seen as an extension 

of that. An SIRS epidemic model with immunity provided by subclinical 

infection on a population has been taken into consideration. This has allowed 

for the examination of the geographical spread of a disease. Both the rate of 

infection and the rate of immunisation may be described as being of a 

nonlinear kind. (Ghosh et al., 2000) conducted research to examine the 

dynamics of the infectious disease as well as its endemicity on both a regional 

and international scale. According to (Evans et al., 2002), a generic SIR 

epidemic model is created with the force of infection susceptible to seasonal 

change, and a percentage of the number of infectives measured is 

unidentifiable. In this model, the fraction of unidentified infectives is not 

specified. 

An epidemic of SARS, which was acquired by a new coronavirus, has spread 

from China to the rest of the world in a way that is confounding in terms of its 

behaviour as a contagious agent. The outbreak began in the province of 

Guangdong and has since spread to the rest of China and the rest of the world, 

(Ng et al., 2003) states that determining the factors that led to this behaviour 

is necessary for accurately anticipating what the future holds for the current 

epidemic as well as for developing and executing effective preventative 

measures. In the suggested stochastic model for the development of a 

susceptible-infective-removed (SIR) pandemic within a closed and limited 

population, there are two levels of severity of infectious individuals: mild and 

severe. (Ball & Britton, 2005) within the context of the SIRS model, the 

propagation of two distinct diseases in a small world network is examined, 

with the constraint that each individual may only be afflicted with one disease 

at any one moment. According to Kosinski and Grabowski's (Kosiński & 

Grabowski, 2006), there is a correlation between the existence of a second 

disease and a considerable reduction in the number of persons who were 

discovered to have the first disease. This correlation was established within a 

certain control parameter range. An investigation is conducted into the global 

dynamics of a SIRS model with a nonlinear incidence rate. (Jin et al., 2007) 
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determine a cutoff point for a illness to be considered extinct, investigate the 

presence and asymptotic behaviour and also the stability of equilibrium point, 

and prove the existence of two types of stable states, which may either be a 

disease-free stable equilibrium state, a stable endemic state, or a stable limit 

cycle state. (Yoshida & Hara, 2007) a SIR epidemic model that takes into 

account density-dependent birth and death rates has been developed. It is 

assumed in this model that the total number of people in the population is 

controlled by an equation called the logistic equation. According to Yoshida 

and Hara's research, it is presumed that the disease is spread in the usual 

manner. (Z. Song et al., 2009) , a model that investigates the presence of 

disease-free equilibrium as well as endemic equilibria which are stable for the 

SIRS epidemic model with the saturation incidence rate has been developed. 

This model takes into consideration the factors of population dynamics related 

to disease like mortality, natural mortality, and constant birth of population. 

The results of this study show that disease-free equilibrium and endemic 

equilibria do exist and are stable. (Dybiec, 2009), An expanded and modified 

SIR model of epidemic transmission is given, according to which susceptible 

agents are exposed to the illness and, as a result, may become infectious. This 

model is based on the idea that susceptible agents interact with infected 

neighbours. 

(Lu, 2009) an epidemiological model that is a SIRS model with or without 

distributed time delay that is impacted by random perturbations is presented 

as a proposition in this article. In this paper, the disease-free equilibria of the 

related stochastic SIRS model is analysed, and the stability criteria of this 

equilibrium are presented. (R. Xu et al., 2010) An investigation is being 

conducted using a delayed SIRS epidemic model with saturation incidence 

and transitory immunity. According to research, the immunity that is 

developed by having a disease is only transitory, and sick persons who get 

infected will revert back to the vulnerable class after a certain amount of time. 

(Jiang et al., 2011) investigate a stochastic SIR model and demonstrate that 

this model can only generate one positive solution at the global level. In 
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addition to that, the asymptotic behaviour of this solution has also been 

shown. In this study, (Abta et al., 2012) a time lag delayed ‘SIR’ model and 

its matching SEIR model are examined side-by-side and compared with 

regard to global stability.  According to this model, when a saturated 

incidence rate is taken into consideration, It is possible to determine, with the 

help of Lyapunov functionals, the conditions under which the endemic 

equilibrium and the disease-free equilibrium are both globally asymptotically 

stable. An SIR model that takes into consideration the influence of available 

resources in the public health system, particularly the number of hospital 

beds, has been developed by (Shan & Zhu, 2014). (Harko et al., 2014) 

proposed a model, that includes a standard incidence rate as well as a 

nonlinear recovery rate. There is the possibility of arriving at a parametric 

variation of the exact analytical solution to an SIR epidemic model. In order 

to investigate certain explicit models that match to predetermined values of 

the parameters, precise solutions are used, and the findings indicate that the 

numerical solution reproduces the analytical solution in an exact manner.  (L. 

Liu, 2015) proposed an SIR epidemic model, examined and analysed based 

on the incorporation of an incubation time delay as well as a general nonlinear 

incidence rate, in which the increase of susceptible people is guided by the 

logistic equation. It is common practise to employ discrete epidemic models 

for the purpose of diagnosing the disease's aetiology, tracking its progression, 

and preventing its transmission. According to research carried out by (Hu et 

al., 2016), the three-dimensional discrete SIRS epidemic models are superior 

than their two-dimensional discrete counterparts when it comes to accurately 

describing the characteristics of the illnesses' transmission. 

 An SIR model of the transmission of the Zika virus (ZIKV) is being 

developed, and it will incorporate Zika virus infections in newborns. The 

model has one disease-free equilibrium point in addition to one endemic 

equilibrium point. According to (Kibona & Yang, 2017), the free one is stable 

under certain situations but unstable under other ones. Dengue fever and its 

potentially fatal consequences, such as dengue hemorrhagic fever, have 
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emerged as one of the most common disease that are spread by mosquitoes in 

recent decades.  An SIR epidemiological model that describes the phases of 

the disease's transmission from vectors to hosts and from hosts to vectors has 

been presented by (Páez Chávez et al., 2017). An age-structured susceptible-

infective-recovered epidemic model is examined in order to determine the 

asymptotic stability of the nontrivial endemic equilibrium of the model. The 

model is reduced into a system of four ordinary differential equations (ODEs) 

and the process is carried out (Kuniya, 2018). This reduction is conducted for 

a particular version of the disease transmission function. 

An investigation into the usefulness of modelling techniques is carried out 

about the pandemic that was brought about by the spread of the novel 

COVID-19 illness, and a SIR model is developed. This model offers a 

theoretical framework to study the spread of the illness within a population 

(Cooper et al., 2020). There is now being carried out some mathematical and 

numerical analysis for COVID-19. A time-dependent SIR model is presented, 

which records the transmission and recovery rate at time ‘t’ (Chen et al., 

2020). This model is proposed in order to anticipate the trend of COVID-19. 

The COVID-19 pandemic serves as an example of how important it is for 

people to make treatment-related decisions. An example is given in which 

neither the rate of disease spread nor the effectiveness of therapies can be 

determined with absolute confidence (Gatto & Schellhorn, 2021). Since the 

first case of the COVID-19 coronavirus disease was discovered in China, 

there have been a number of efforts made to forecast the spread of the 

pandemic around the globe. These attempts have various degrees of accuracy 

and dependability. A short-term prediction of new cases is performed in order 

to anticipate the large number of cases in India and selected high-incidence 

states, and assess the efficacy of a three-week lock down period using a range 

of different models. This is done in order to prevent the spread of the disease 

across the country. In addition, a short-term forecast of new cases is carried 

out in order to determine the maximum number of active cases for certain 

states with a high frequency of the disease. This is done in order to lower the 
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risk of missing the greatest number of active cases that might possibly be 

present in India and in a few other states with a higher incidence rate. In order 

to examine the impact of lockdown as well as the impacts of other 

interventions, the Time Interrupted Regression model is used (Malavika et al., 

2021), In order to make short-term predictions, the logistic growth curve 

model is used. When attempting to predict the peak period and maximum 

number of active cases, SIR models are used. The Time Interrupted 

Regression model is used in order to determine the effect that lockdown and 

various other interventions have had. 

1.3   Proposed objectives of the study 

On the basis of literature review and research gaps, the following objectives 

have been proposed in this present study: 

1. To Analyze the classic SIR Model for infectious diseases using 

the delay differential equations. 

2. To perform the stability analysis and Hopf-bifurcation for the 

virus mutation in SIR Model for infectious diseases using delay 

differential equations.  

3. To perform the sensitivity analysis and directional analysis of the 

proposed model. 

1.4   Basic Concepts of General SIR Model Used in the thesis 

1.4.1 Basic Reproduction Number 

The term "basic reproduction number" is used in the scientific discipline of 

epidemiology to refer to a method of determining how infectious a disease is 

and how easily it may be passed on to others. This is the number that is 

represented by the acronym R₀, which may be pronounced "R naught." It is an 

accurate representation of the normal number of new infections that can be 

traced back to a single infected individual in a population that is completely 

susceptible to the disease. 
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To be more explicit, the basic reproduction number is an estimate of the 

number of secondary infections that would be generated by an infected person 

in a community where everyone is susceptible to the disease, supposing that 

there are neither preventative measures in place nor any immunity to the 

disease. It takes into consideration things like how contagious the disease is, 

how long it remains contagious, and how often people interact with one 

another. If the basic reproduction number is less than one (R₀ < 1), it indicates 

that each infected individual will, on average, infect fewer than one other 

person. Under these circumstances, there is a good chance that the disease will 

start to recede and then disappear altogether from the population. On the other 

hand, if the basic reproduction number is more than one (R₀ > 1), this suggests 

that one infected individual will, on average, spread the infection to more than 

one other person. This provides evidence that the disease may have the 

capability of spreading across the population. 

 

Figure 1.1 : The progression of time for all compartments displaying epidemic 

curves in the SIR model. 

1.4.2 Law of Mass Action 

The SIR model operates on the presumption that the people who make up the 

population behave in accordance with the law of mass action, which states that 

they interact with one another in a haphazard manner. The constant parameter 

“c” is used to quantify the possibility that an infected person may come into 
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touch with any other members of the population. The value of the parameter 

“a” gives an indication of how likely it is that the disease will in fact be passed 

on. These two constants, ‘a’ and ‘c’, may be collapsed into a single constant 

disease transmission rate, denoted by the letter ‘r’, if they are multiplied 

together. However, when it comes to disease propagation in a more general 

sense, it is essential to take into account the various aspects of ‘r’ separately. 

The assumption behind the rule of mass action is that the rate of disease 

transmission is proportional to the size of the population. While this is fairly 

accurate for many diseases like the flu. 

1.4.3 The Basic SIR model without demography 

The Susceptible, Infectious, and Removed/Recovered compartments bring the 

number of compartments in this basic compartmental model. Individuals who 

are not already infected but have the potential to become so are included in 

the susceptible compartment (S). This indicates that those who are in the 

susceptible compartment have the potential to get infected and migrate into 

the infectious compartment, or they may maintain their immunity and stay in 

the susceptible compartment without being infected. The infectious 

compartment (I) is made up of diseased people who are capable of passing the 

disease on to the susceptible people in the other compartment (S). This 

indicates that people who are contained inside the infected compartment either 

continue to be infectious or are transferred to the removed compartment if they 

recover or pass away. The persons that make up the removed compartment 

(R) are those who have either made a full recovery and are now immune or 

have passed away. All of the above indicates that the people are able to travel 

between the compartments in the following order 𝑆 → 𝐼 → 𝑅 and the rate of 

change are given by the following system of equations. 

𝑑𝑆

𝑑𝑡
  =  −

𝛽𝑆𝐼

𝑁
 

𝑑𝐼

𝑑𝑡
   =

𝛽𝑆𝐼

𝑁
  −  𝛾𝐼 

𝑑𝑅

𝑑𝑡
  =  𝛾𝐼 
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The ODE that was used in the SIR model may be seen in the equations that 

were just presented. This population is closed, which means there are no new 

births and no deaths. N is the total number of people present throughout all of 

the different compartments, and this value will stay the same from one time 

step to the next. The infection rate, denoted by the Greek letter beta 𝛽, is 

calculated by multiplying the likelihood of being infected after coming into 

touch with an infected person by the typical number of people with whom one 

comes into daily contact. The recovered/removal rate, also known as gamma 

𝛾, is the rate at which a person is transported from the infected compartment 

to the recovered compartment. This determines how quickly an individual is 

removed from the infectious compartment. 𝛽 and 𝛾 have the values that are 

predetermined from the start, whereas S, I, and R begin with the values S (t = 

0), I (t = 0), and R (t = 0), respectively. By combining the three previous 

equations, we arrive to the conclusion that  
ௗௌ

ௗ௧
 +

ௗூ

ௗ௧
 +

ௗோ

ௗ௧
 =  0, which tells us 

that S(t) + I(t) + R(t) = Constant = N. As a result, S, I, and R are constrained 

by N. 

1.4.4 The SIR model with demography 

Assuming there is a natural host lifetime of  
𝟏

𝜶
  day/years is the quickest, most 

straightforward, and most often used approach to incorporating demography 

into the SIR model. The rate at which individuals inside every epidemiological 

compartment succumb to natural mortality may thus be expressed as the 

mathematical constant 𝛼. It is essential to emphasise that this component is 

independent of the disease and is not meant to represent the pathogenicity of 

the infectious agent. This is something that has to be emphasised since it is 

crucial. It has been assumed throughout history that 𝜇 also indicates the 

population's crude birth rate. This ensures that the entire population number 

does not vary over the course of time, or, to put it another way, 
ௗௌ

ௗ௧
+

ௗூ

ௗ௧
+

ௗோ

ௗ௧
=

0. The SIR model, which takes into account both births and deaths, may thus 

be characterised as: 
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𝑑𝑆

𝑑𝑡
= 𝜇 − 𝛽𝑆𝐼 − 𝛼𝑆   

𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼 − 𝛼𝐼   

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝛼𝑅  

Assuming beginning circumstances of S(t=0) greater than zero, I(t=0) greater 

than zero, and R(t=0) greater than zero. For the purpose of this model, it is 

necessary to initiate the formula for the reproduction number R₀. The 

parameter stands for the transmission rate per infectious, and the fact that the 

equation contains negative components tells us that each person spends an 

average of  
ଵ

(ఈାఊ)
 time units in this class. Therefore, if we assume that everyone 

in the community is at risk for contracting the disease, we can calculate the 

average number of new infections that occur per infected person using the 

formula 𝑅଴ =  
ఉ

(ఈାఊ)
.  The consideration of demographic dynamics may make 

it possible for a disease to be eradicated from a population or to remain there 

over the long run. Because of this, it is very essential to investigate what takes 

on while the system is in a state of equilibrium. 

1.4.5 Delay Differential Equation  

A delay differential equation (DDE) is a type of differential equation that 

incorporates time delays. Unlike ordinary differential equations (ODEs), 

where the derivative of a function depends only on the current time, DDEs 

involve derivatives that depend on the function's past values. The general form 

of a delay differential equation can be represented as follows: 

𝑑𝑦(𝑡)

𝑑𝑥
= 𝑓(𝑦(𝑡), 𝑦(𝑡 − 𝜏ଵ), 𝑦(𝑡 − 𝜏ଶ), 𝑦(𝑡 − 𝜏ଷ) … … … ) 

In this equation, y(t) represents the unknown function, τ₁, τ₂, ... are positive 

time delays, and ‘f ‘represents a given function that describes the dynamics of 

the system. The function f can involve the present state of the system, as well 

as the state values at previous times determined by the delays. 
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Analytically solving DDEs can be challenging due to their inherent 

mathematical complexity. Unlike ODEs, DDEs require initial conditions over 

a range of past time values to determine the solution accurately. Therefore, 

numerical methods are often employed to approximate solutions to DDEs. 

1.5 Mathematical Preliminaries 

1.5.1  Existence of Unique, Bounded and Positive Solution of Delay 

differential equation 

A differential equation is said to be in the form of a delay differential equation 

if the derivative of the current time relies on the solution as well as derivatives 

of preceding times. Here an initial history function, rather than an initial 

condition, needs to be defined. A delayed state variable can be used to 

demonstrate the past dependence of a differential equation. The derivative of 

state variable is not required in this case. The corresponding delay differential 

equation with a single delay 𝜏 > 0 is given by (Smith, 2010)  

𝑥̇(𝑡) = 𝑓(𝑥, 𝑥(𝑡), 𝑥(𝑡 − 𝜏))                                        (1.1) 

Suppose that 𝑓(𝑡, 𝑥, 𝑦) and 𝑓௫(𝑡, 𝑥, 𝑦) are continuous on 𝑅ଷ. Let 𝑠 ∈ 𝑅 and 

∅: [𝑠 − 𝜏, 𝑠] → 𝑅 be continuous. We seek a solution 𝑥(𝑡) of equation (1.1) 

satisfying 

𝑥(𝑡) = ∅(𝑡), 𝑡 ∈ [𝑠 − 𝜏, 𝑠], 𝑥(0) = 𝑥଴        (1.2) 

And satisfying equation (1.1) on 𝑡 ∈ [𝑠, 𝑠 + 𝜎] for some 𝜎 > 0. 

Theorem 1.5.1 (Existence of unique solution). Let 𝑓(𝑡, 𝑥, 𝑦) and 𝑓௫(𝑡, 𝑥, 𝑦) 

are continuous on 𝑅ଷ. Let 𝑠 ∈ 𝑅 and ∅: [𝑠 − 𝜏, 𝑠] → 𝑅 be continuous. Then 

there exists 𝜎 > 𝑠 and a unique solution of the initial-value problem (1.1)- 

(1.2) on [𝑠 − 𝜏, 𝜎].      

𝑥̇(𝑡) = 𝑓(𝑥, 𝑥(𝑡), 𝑥(𝑡 − 𝜏))                                                         (1.3) 
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Theorem 1.5.2 (Boundedness of solution).  Let 𝑓 satisfy the hypothesis of 

theorem1.5.1 and let 𝑥: [𝑠 − 𝜏, 𝜎) → 𝑅 be the noncontinuable solution of the 

initial value problem (1.1)- (1.2). If 𝜎 < ∞ then lim
௧→ఙି

|𝑥(𝑡)| = ∞ 

Remark 1.5.3 Theorems 1.5.1 and 1.5.2 extend immediately to the case that 

𝑥 ∈ 𝑅௡ and 𝑓: 𝑅 × 𝑅௡ × 𝑅௡ → 𝑅௡, it also extends to multiple discrete delays 

τ଴ < τଵ < ⋯ < τ୫ where 𝑓 = 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝜏଴), 𝑥(𝑡 − 𝜏ଵ), … , 𝑥(𝑡 −

𝜏௠)). 

Theorem 1.5.4 (Positivity of solution). Suppose that 𝑓: 𝑅 × 𝑅ା
௡ × 𝑅ା

௡ →

𝑅௡satisfies the hypothesis of theorem 1.5.1 and remark 1.5.3 and for all 𝑖, 𝑡 

and for all 𝑥, 𝑦 ∈ 𝑅ା
௡:  𝑥௜ = 0 ⇒ 𝑓௜(𝑡, 𝑥, 𝑦) ≥ 0 ,If the initial data ∅ in equation 

(1.2) satisfy ∅ ≥ 0, then the corresponding solution 𝑥(𝑡) of equation (1.1) 

satisfy 𝑥(𝑡) ≥ 0 for all 𝑡 ≥ 𝑠 where it is defined. 

1.5.2 Stability by Variational matrix method 

Let an autonomous system of equations be  

ௗ௬

ௗ௧
= 𝑓(𝑦)                                                                                 (1.4) 

Where 𝑦 is an n-tuple vector i.e. 𝑦 = (𝑦ଵ, 𝑦ଶ, − − −𝑦௡). Let 𝜙(𝑡)  be the 

solution of system (1.3). The linear part of the expansion of the system (1.3) 

about 𝜙(𝑡) is given by the variational equation of the system (1.3) with respect 

to 𝜙(𝑡), written as 

ௗ௫

ௗ௧
= 𝑓௬(𝜙(𝑡))𝑥                                                             (1.5) 

 Where 𝑓௬(𝜙(𝑡)) =
ௗ௙೔

൫ௗ௬ೕ൯
೙×೙

 at 𝜙(𝑡). Since the stability of the variational 

system depicts the stability of any solution of a non- linear system governed 

by it, so stability of 𝑥 = 0 of (1.4) determines the stability of 𝑦 = 𝜙(𝑡) of 

(1.3).  Particularly, when 𝜙(𝑡) = 𝜙଴, a constant, the system (1.3) becomes 

ௗ௫

ௗ௧
= 𝐴                                                                           (1.6) 
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Where 𝐴 = 𝑓௬(𝜙଴). Since a small perturbation of the system (1.3) is 

represented by system (1.4), so the stability of 𝑦 = 𝜙଴ of (1.5) actually gives 

the stability of the solution of 𝑥 = 0 of (1.4). The description of stability of 

every solution of 𝑥ᇱ = 𝐴𝑥 is given by following theorems.(Ahmad & Rao, 

2014)  

Theorem 1.5.5 If all the latent roots of 𝐴 have negative real parts, then every 

solution of the system 𝑥ᇱ = 𝐴𝑥 ,where 𝐴 = ൫𝑎௜௝൯ is a constant matrix, is 

asymptotically stable. 

Theorem 1.5.6 If all the latent values of matrix 𝐴 with multiplicity grater than 

one has negative real parts and all its roots with multiplicity one has non-

positive real parts, then all the solutions of the system  𝑥ᇱ = 𝐴𝑥 are bounded 

and hence stable. Following theorem (Ahmad & Rao, 2014)to determine the 

sign of real parts of the roots of characteristic equation. 

Theorem 1.5.7 Hurwitz’s Theorem. A necessary and sufficient condition for 

the negativity of the real parts of all the roots of the polynomial  

𝐿(𝜆) = 𝜆௡ + 𝑎ଵ𝜆௡ିଵ + 𝑎ଶ𝜆௡ିଶ + − − − − +𝑎௡ with real coefficients is the 

positivity of all the principal diagonals of the minors of the Hurwitz matrix 

𝐻௡ =

⎣
⎢
⎢
⎢
⎡
𝑎ଵ

𝑎ଷ

𝑎ହ

1
𝑎ଶ

𝑎ସ

0   0 0    0 ⋯ 0
𝑎ଵ 1 0    0 ⋯ 0
𝑎ଷ 𝑎ଶ 𝑎ଵ 1 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ .              0
0 0 0 0 0 0 ⋯      0 ⎦

⎥
⎥
⎥
⎤

 

Theorem 1.5.8.  Let ςଵ,ςଶ … . ς୫ are all non-negative and ζ୧
୨(j =

0,1,2, … m: i = 1,2, … n) are constants. As (ςଵ, ςଶ, … , ς୫) vary, the sum of the 

orders of the zeros of exponential polynomial P(χ, eି஧ணభ , … . , eି஧ணౣ) on the 

open half plane can change only if a zero appears on or crosses the imaginary 

axis, where; 

P(χ, eି஧ணభ , … . , eି஧ணౣ) = χ୬ + ζଵ
଴χ୬ିଵ + ⋯ + ζ୬ିଵ

଴χ୬ + ζ୬
଴ +

ൣζଵ
ଵχ୬ିଵ + ⋯ + ζ୬ିଵ

ଵχ୬ + ζ୬
ଵ൧eି஧ணభ + ⋯ + [ζଵ

୫χ୬ିଵ + ⋯ +

ζ୬ିଵ
୫χ୬ + ζ୬

୫]eି஧ணౣ  
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Ruan and Wei (Ruan & Wei, 2001), (Ruan & Wei, 2003a)proved this theorem 

using Rouches theorem (Dieudonne, 1960). 

1.6  Hopf-Bifurcation 

The expansion of the problem from two dimensions to higher dimensions was 

the most important contribution that Hopf made. The term "Poincaré-

Andronov-Hopf bifurcation" is frequently used interchangeably with the term 

"Hopf bifurcation." (Marsden et al., 1978) The Hopf-bifurcation theorem 

provides a description of the manner in which a topological property of a flow 

changes as a result of the variation of one or more parameters. The most 

important thing to realise about flows is that their local behaviour will be 

entirely dictated by the linearized flow if the critical point gives the 

hyperbolic. In light of this, it can be deduced that the eigenvalues of the 

linearized flow at the stationary point will all have real parts that are not equal 

to zero. As a result, bifurcations of stationary points are only able to take place 

at parameter values for which a stationary point does not have a hyperbolic 

slope.  A bifurcation value of a parameter is a value at which there is a shift 

in the qualitative character of the flow. This is a more exact definition. 

Because it requires a non-hyperbolic stationary point with linearized 

eigenvalues ∓𝑖𝜔, and therefore a two-dimensional centre manifold, and 

bifurcating solutions are periodic rather than stationary, the Hopf bifurcation 

is many orders of magnitude more difficult to investigate.   

Theorem 1.6.1. Hopf-Bifurcation Theorem.   

Let us consider one parameter family of delay equations 

Where 𝐹: 𝐶 × 𝑅 → 𝑅௡ is a twice continuously differentiable in its arguments 

and 𝑥 = 0 is a steady state for all values of 𝜇: 𝐹(0, 𝜇) ≡ 0. 

We may linearize 𝐹 about ∅ = 0 as follows 

𝐹(∅, 𝜇) = 𝐿(𝜇)∅ + 𝑓(∅, 𝜇) 

Where 𝐿(𝜇): 𝐶 → 𝑅௡ is a bounded linear operator and 𝑓 is higher order 

 𝑥ᇱ(𝑡) = (𝑥௧, 𝜇) (1.7) 
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lim
∅→଴

|𝑓(∅, 𝜇)|

‖∅‖
= 0 

Following is the characteristic equation about 𝐿: 

|𝜆𝐼 − 𝐴(𝜇, 𝜆)| = 0, 𝐴௜௝(𝜇) = 𝐿(𝜇)௜൫𝑒ఒ𝑒௝൯ 

The roots of this equation constitute the main assumption. (H) The latent 

equation w having a pair of simple roots ∓𝑖𝜔 with 𝜔଴ ≠ 0 and no other root 

that is an integer multiple of 𝑖𝜔଴ for 𝜇 = 0 

Here a root of order one means (Pandey et al., 2016) a simple root. If the 

characteristic equation is written as  ℎ(𝜇, 𝜆) = 0, then (H) implies 

ℎఒ(0, 𝑖𝜔଴) ≠ 0. So, by the implicit function theorem, there exists a 

continuously differentiable family of roots 𝜆 = 𝜆(𝜇) = 𝛼(𝜇) + 𝑖𝜔(𝜇) for 

small 𝜇 satisfying 𝜆(0) = 𝑖𝜔଴. In particular, 𝛼(0) = 0 and 𝜔(0) = 𝜔଴. Next 

assumption is that as 𝜇 increases through zero, the line of imaginary axis is 

crossed transversally by these roots. Actually, the assumption is: 

 𝛼ᇱ(0) > 0 (1.8) 

In case 𝛼ᇱ(0) < 0,  we always ensure that equation (1.18) holds by changing 

the sign of the parameter i.e. we take parameter 𝑣 = −𝜇. Thus, the positive 

sign is basically a normalization which ensures that if 𝜇 < 0, then the pair of 

roots has a negative real part and if  𝜇 > 0, then it has positive real part. 

Theorem 1.6.2.  Let (H) and equation (1.8) hold. Then there exist 𝜀଴ > 0, real 

valued even function 𝜇(𝜀) and 𝑇(𝜀) > 0 satisfying 𝜇(0) = 0 and 𝑇(𝜀) =

2𝜋
𝜔଴

ൗ , and a non-constant 𝑇(𝜀)- periodic function 𝑝(𝑡, 𝜀) with all functions 

being continuously differentiable in 𝜀 for |𝜀| < 𝜀଴, such that 𝑝(𝑡, 𝜀) is a 

solution of equation (1.7) and 𝑝(𝑡, 𝜀) = 𝜀 𝑞(𝑡, 𝜀) where 𝑞(𝑡, 0) is a 2𝜋
𝜔଴

ൗ -

periodic solution of 𝑞ᇱ = 𝐿(0)𝑞. 

𝜇(𝜀) = 𝜇ଵ𝜀ଶ + 𝑂(𝜀ସ)                                                                (1.9) 

𝑇(𝜀) =
ଶగ

ఠబ
[1 + 𝜏ଵ𝜀ଶ + 𝑂(𝜀ସ)]                                                  (1.10) 
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Moreover, there exist 𝜇଴, 𝛽଴, 𝛿 > 0 such that if equation (1.7) has a non-

constant periodic solution 𝑥(𝑡) of period 𝑃 for some 𝜇 satisfying |𝜇| < 𝜇଴  

with 𝑚𝑎𝑥௧|𝑥௧| < 𝛽଴ and ห𝑃 − 2𝜋
𝜔଴

ൗ ห < 𝛿, then 𝜇 = 𝜇(𝜀) and 𝑥(𝑡) = 𝑝(𝑡 +

𝜃, 𝜀) for some |𝜀| < 𝜀଴ and some 𝜃. If 𝐹 is five times continuously 

differentiable then, all other latent roots for 𝜇 = 0 have strictly negative real 

parts except for ∓𝑖𝜔 then 𝑝(𝑡, 𝜀)  is asymptotically stable if 𝜇ଵ > 0 and 

unstable if 𝜇ଵ < 0. 

1.7  Sensitivity Analysis of State Variables with respect to Model 

Parameters 

Systematic evaluation of the effects of model parameters on system solutions 

is called sensitivity analysis. There are number of methods to do sensitivity 

analysis of systems without delay, but there are only a few methods for 

sensitivity analysis of systems involving delays. The knowledge of how a 

small change in model parameter can bring change in the state variable, can 

be a great help in modelling process. It helps in elimination of ineffective and 

irrelevant parameters. It gives a complete insight into the overall behaviour of 

the proposed model.  

If all the parameters in the given system (1.1) - (1.2) are considered to be 

constants, then sensitivity analysis includes just the calculation of partial 

derivatives of solution with respect to each parameter (Rihan, 2003a). The 

matrix of sensitivity functions is of the form: 

𝑆(𝑡) ≡ 𝑆(𝑡, 𝛼) = ቂ
డ

డఈ
ቃ

்

𝑥(𝑡, 𝛼)                                                   (1.11)         

Its 𝑗𝑡ℎ column is:  𝑆௝(𝑡, 𝛼) = ቂ
డ௫ೕ(௧,ఈ)

డఈభ
,

డ௫ೕ(௧,ఈ)

డఈమ
, … ,

డ௫ೕ(௧,ఈ)

డఈ೙
 ቃ

்

 

This column vector gives sensitivity of the solution 𝑥௝(𝑡, 𝛼) for small change 

in parameter 𝛼௜ , 𝑖 = 1,2,3, … , 𝑛. 

Theorem 1.7.1  𝑆(𝑡) satisfies the delay differential equation: 
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Where    𝐽(𝑡) =
డ

డ௫
𝑓(𝑡, 𝑥, 𝑥ఛ),   𝐽ఛ(𝑡) =

డ

డ௫ഓ
𝑓(𝑡, 𝑥, 𝑥ఛ),   𝐵(𝑡) =

డ

డఈ
𝑓(𝑡, 𝑥, 𝑥ఛ) 

1.8    Summary 

This thesis consists of five chapters whose detail is as follows: 

In chapter-1, A general information is given about the infectious diseases, its 

various stages and also some infectious diseases which was spread in the 

history. Infectious diseases take time to develop, therefore the impact is not 

seen right away. This delay might be brought on by the gestation period, 

incubation, mating, or the detection of sick individuals. Incorporating and 

using delay differential equations in the modelling of infectious diseases is 

made possible by this. The proposed study will be focus on simulating 

infectious illnesses, conducting stability analyses, and monitoring 

bifurcations caused by crucial delay factors. The basic terms and the theorems 

are explained in this chapter. 

In chaper-2, The study of stability of SIR model is examined with a non-linear 

incidence function. Delay breaks the system, causing limit cycles and 

sporadic solutions. Equilibrium E* stabilising after early fluctuations without 

a delay. An infected person can be adequately treated and the system will 

stabilize if a critical delay 𝜏 is shorter than that value. As the delay 𝜏 constant 

varies below 2.241, the equilibrium E* loses stability and becomes 

asymptotical. The equilibrium E* undergoes a Hopf-bifurcation after 

reaching to the value 2.241.  

The system involving all three states will always repeat the epidemic if the 

delay crosses the critical threshold. The direction analysis of the model has 

been performed which reveals the direction, amplitude, and periodicity of the 

bifurcating solutions as per the criteria given by Hassard (Schneider, 1982). 

Not only delay but other model parameters also affect the system. Thus, the 

sensitivity with model parameters and basic reproduction number 𝑅଴ are 

tested. Disease transmission rate 𝛼ଶ affects the system greatly. As 

𝑆ᇱ(𝑡) = 𝐽(𝑡)𝑆(𝑡) + 𝐽ఛ(𝑡)𝑆(𝑡 − 𝜏) + 𝐵(𝑡), 𝑡 ≥ 0     (1.12) 
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transmission rate decreases, the system changes from Hopf bifurcation to 

asymptotic stability to absolute stability. The model's dynamics and basic 

reproductive number 𝑅଴ are investigated. We studied the threshold parameter 

𝑅଴ factors that ensured the endemic and infection-free equilibria's asymptotic 

stability, 𝑅଴ > 1 makes the disease endemic and spreads in the neighbourhood, 

while 𝑅଴ < 1 eliminates it. The simple DDE model has chaotic and 

quasiperiodic dynamics and is suitable for high population numbers. 

In chapter-3, With the assistance of the suggested model, an analysis of the 

traditional SIR model may be carried out using DDE.  The delay causes the 

system to become unstable and sets off a complicated pattern of behaviour 

that includes limit cycles and stable periodic solutions through hopf-

bifurcation. An investigation of the equilibrium's degree of stability, E*, is 

carried out. After the first few variations, the equilibrium E* tends to remain 

stable when there is no delay in the process. It indicates that if the delay in the 

identification of contaminated section is below a certain value, the suspected 

and infected may be recovered well, and the system will become stable. The 

equilibrium E* begins to lose its stability and eventually leads to asymptotic 

stability when the value of the delay parameter 𝜏 falls below the critical point, 

which is denoted by the number 𝜏 < 8.5. When the delay parameter reaches 

the critical value, which is denoted by the number 𝜏 ≥ 8.5, the equilibrium 

E* displays the complicated dynamics in the form of a Hopf bifurcation. This 

indicates that if the delay exceeds the critical value in the identification of 

infected individuals, the system that involves all three states and is involved 

in the epidemic will constantly remain in the vicious loop of repeating the 

epidemic after each cycle of delay length. The periodic solutions that are 

stable and have a big amplitude as well as a limit cycle trajectory. 

In chapter-4, An SIR model with virus mutation is analysed using delay 

differential equations. When the virus mutates, the recovered population 

losses its immunity and becomes susceptible again. The incubation period is 

denoted by τ.  For the study of stability, feasible non-zero equilibrium point 

𝐸∗ has been considered. The delay factor has been incorporated in the term 
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defining recovered hosts. The nature of the roots of exponential characteristic 

equation formed by the system of equation has been studied in detail using 

Routh-Hurwitz criteria and results of theory of equations with the help of 

lemmas. It is found that the system shows asymptotic satiability as long as the 

value of the delay parameter 𝜏 is less than the critical point value that is 𝜏 <

7.15. But, as soon as the value of time lag parameter 𝜏 crosses the critical 

point value that is 𝜏 ≥ 7.15, the system losses stability and the limit cycles 

are seen via Hopf- bifurcation. The period, direction and stability of these 

bifurcating periodic solutions have also been determined. The conditions for 

supercritical and subcritical bifurcating solutions have been laid down using 

an algorithm given by  (Schneider, 1982). Sensitivity analysis has been 

carried out, telling us about the model parameters that are responsible for 

dynamic behaviour of the equilibrium point, apart from the delay parameter 

𝜏. We used the direct method of sensitivity given by (Rihan, 2003b). The 

system is very sensitive to the model parameter ‘c’ as well as the parameter 

‘a’ which represents the rate of mutation and growth rate respectively. As the 

value of ‘c’ and ‘a’ increase, the state variables S(t), I(t) and R(t) tends to 

move from limit cycles to more of asymptotic stability and finally to absolute 

stability.  

The effect of reproduction number 𝑅଴ on the shapes of infected and recovered 

population is studied.  The figures 12 shows that the peak of infected 

population is reached on 11th day when the value of reproduction number 

𝑅଴ = 0.5. But the infection spreads comparatively fast if the value of 

reproduction number increases to 𝑅଴ = 1.33 and the peak of infected 

population is reached on 3rd day. The infection spreads so rapidly that the 

steepest of these peaks of infected population is reached on 2nd day only, if 

the value of reproduction number 𝑅଴ = 10, the recovery rises and the system 

approaches stability with increasing values of 𝑅଴.  

In chapter-5, The global dynamic behavior of a SIR model with incubation 

period are investigated, and the susceptible population is shown to expand in 

a logistic fashion. There is a critical value of ℜ଴ in the system that controls 
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how the disease behaves. The impact of incubation period on the dynamic 

behaviours of systems are the focus of this research. This paper's findings 

demonstrate that the proximity to an endemic value and the stability of 

solutions are dependent on two variables: the incubation period duration and 

the threshold value ℜ଴. System has global asymptotic stability in the disease-

free equilibrium 𝐸∗ if ℜ଴ = 1. In the case where ℜ଴ > 1, 𝐸∗ is no longer 

stable, and the endemic equilibrium 𝐸∗ is indeed irreversible. The requisites 

for achieving local stability and Hopf bifurcation at 𝐸∗ were derived by 

treating the delay time as a parameter. If 1 <  ℜ଴ ≤ 2, then 𝐸∗ is absolutely 

stable; that is, 𝐸∗ is always locally stable when  τ is non zero. When ℜ଴ > 2, 

𝐸∗ is conditionally stable in the range τ ∈ (0, τ଴) , as soon as the value of τ 

surpasses the critical value τ଴ i.e., τ > τ଴ , 𝐸∗become unstable and shows 

Hopf-bifurcations. This chapter shows that for short time delay in has no 

effect on the positive invariance. Even the boundedness of solutions, the 

global stability of DFE, or the permanence of the endemic equilibrium 

remains intact. However, for long delays, the delay time can destabilize the 

unique endemic equilibrium, and a variety of stable periodic solutions through 

Hopf bifurcation. Our theoretical findings are reflected in the results of the 

numerical simulations that were performed.    
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Chapter 2 

Analysis of Classic SIR Model using Delay Differential 

Equations 

2.1 Introduction 

For both humans and animals, illnesses and infections have long posed a 

serious hazard. The phrase "communicable illnesses" refers to conditions that 

transfer from person to person by indirect or direct physical contact. Diseases 

and illnesses may be transmitted by contact with a virus-carrying person or by 

breathing the virus. They have the potential to spread and become endemic, 

resulting in both physical and financial suffering. Millions of people die each 

year from these diseases, most of them in developing countries. Mathematical 

modelling makes it feasible to investigate these disorders from a variety of 

perspectives, comprehend transmission rates, estimate future losses, and 

devise preventative strategies. For the investigation of endemic disease 

transmission rates, several models have been developed (Anderson & May, 

1979a; Diekmann & Heesterbeek, 2000; Hethcote & Tudor, 1980a; Huo & 

Ma, 2010; Koff, 1992; McCluskey, 2010a; Singh, 2022; Xiao & Ruan, 2007a).  

In these models of infection propagation, three fundamental epidemiological 

concepts are usually used: the susceptible chunk of the peoples S(t), the 

infected people I(t), and the recovered one R(t). To estimate theoretically the 

number of persons affected by an infectious illness, a straight forward SIR 

model was devised (“Contributions to the Mathematical Theory of Epidemics. 

II. The Problem of Endemicity,” 1932). The dynamic transmission process 

between infected and susceptible is modelled in simple SIR models, and this 

modelling determines how simple SIR models behave. SIR models do an 

adequate job at representing viral agent illnesses including measles, mumps, 

and smallpox. Numerous researchers have modelled and examined such 

infectious illnesses (A. Rihan et al., 2012; Berezovsky et al., 2005a; Cai et al., 

2009a; d’Onofrio et al., 2007; D’Onofrio et al., 2007; Esteva & Matias, 2001; 

Hsu & Zee, 2004). Some illnesses, like the flu and TB, have an incubation or 
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latent period. It is claimed that they are infected yet not contagious throughout 

the incubation phase, and can be precisely modelled by the delay parameter in 

SIR models using DDE. The worldwide stability of the SIR epidemic model 

with distributed delays has been examined (Beretta et al., 2001). Additionally, 

the prerequisites for the endemic equilibrium's asymptotic stability for all 

potential delays have been established (X. Song & Cheng, 2005).  

Global asymptotic stability of endemic and disease-free equilibria is studied 

by the vast bulk of mathematical models. Many of these models, however, are 

strict, necessitating precise numerical analysis. Changes to state variables and 

settings can have far-reaching effects on the system's behavior. In a 

comprehensive qualitative analysis, a saturated incidence rate is used to 

highlight the features of the delayed SIR model that contribute to the 

asymptotically stable nature of the associated steady states. Stability of the 

DDE model is discussed in terms of time lag, under the circumstances under 

which it holds. Hopf bifurcation analysis is also covered in detail (Rihan & 

Anwar, 2012). Absolute consistency, conditional consistency, and bifurcation 

consistency were all studied in depth for a predator-prey system with 

discontinuous delays (Ruan, 2001). Deep-rooted analysis was done on the 

exponential characteristic equation's zero (Ruan & Wei, 2003b).  

The influence of reproduction number on the forms of the infected and 

recovered population is investigated, and two alternative population layouts 

are reported (Park & Bolker, 2020). (Rihan, 2003b) Introduced adjoint and 

direct sensitivity analysis techniques for delay differential equation-based 

numerical modelling. A nonlinear system of delay differential equations is 

used to determine the stability of equilibria points. It has been shown that the 

SIR model's solutions are constrained, and stability with a limited incubation 

time has been explored (Takeuchi et al., 2000) .SIR epidemic models having 

nonlinear incidence rates and scattered delays were examined for their 

stability (Elazzouzi et al., 2019), and two control measures taken into account 

in this model were vaccination terms and general treatment functions. (C. Yan 

& Jia, 2014) For a delayed SIR model with logistic growth, the stability and 
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Hopf bifurcation has been examined by using the reproduction number. Song 

Y, (Y. Song & Peng, 2006) Examines the use of a discrete and distributed 

delay logistic model. The existence of local Hopf bifurcations and the stability 

of the positive equilibrium have also been debated. (Abta et al., 2020) The 

influence of spatial diffusion of solution and delay on the dynamical behavior 

of the SIR epidemic model is investigated. 

In light of the foregoing, the following mathematical model is used in this 

work to examine the function of delay in the traditional SIR model. A 

directional analysis and a stability study of the non-zero endemic equilibrium 

point is also carried out.  

2.2 Mathematical Model 

We'll use the symbol 𝜏 > 0 to represent the incubation duration. The infected 

become a vector throughout the incubation phase, and it is not until after this 

time that they develop the infectious disease. let 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡),  be the 

three state variables; susceptible, infected, and recovered populations 

respectively. The resulting design is as follows: 

ௗௌ

ௗ௧
= 𝛼ଵ𝑆 ቀ1 −

ௌ

௞
ቁ − 𝛼ଶ𝑆𝐼(𝑡 − 𝜏)    (2.1) 

ௗூ

ௗ௧
= 𝛼ଶ𝑆𝐼(𝑡 − 𝜏) − (𝛼ଷ + 𝛿ଵ)𝐼    (2.2) 

ௗோ

ௗ௧
= 𝛼ଷ𝐼 − 𝛿ଶ𝑅      (2.3) 

Initially, 𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡) are positive for all the time 𝑡, and  𝐼(𝑡 − 𝜏) is 

constant for 𝑡 ∈ [0, 𝜏]. 

Table 2.1 : The parameter analyzed by the model (2.1) – (2.3) 

Parameter Description 

𝑘 Carrying capacity 

𝛼ଵ Natural birth rate 
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𝛼ଶ Rate of infection per encounter 

with infected hosts on 

susceptible hosts 

𝛼ଷ The rate of recovery  

𝛿ଵ Infected hosts' mortality rate 

𝛿ଶ The mortality rate after 

recovery. 

𝜏 Delay parameter or time lag  

It is acceptable to assume that each parameter has constant positive values. 

2.3 Non-Zero Epidemic Equilibrium 

At the equilibrium point the underlying assumption is 𝐼(𝑡 − 𝜏) ≅ 𝐼. 

𝐸∗(𝑆∗, 𝐼∗ , 𝑅∗) be the non-zero epidemic equilibrium determined as: 

ௗூ∗

ௗ௧
= 0 ⇒ 𝑆∗ =

(ఈయାఋభ)

ఈమ
  

ௗௌ∗

ௗ௧
= 0 ⇒ 𝐼∗ =

ఈభ

ఈమ
మ௞

(𝑘 − 1)(𝛼ଷ + 𝛿ଵ)  

ௗோ∗

ௗ௧
= 0 ⇒ 𝑅∗ =

ఈభఊ

ఈమ
మఋమ௞

(𝑘 − 1)(𝛼ଷ + 𝛿ଵ)  

So, we have 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) = 𝐸∗ ቀ
(ఈయାఋభ)

ఈమ
,

ఈభ

ఈమ௞
(𝑘 − 1)(𝛼ଷ +

𝛿ଵ),
ఈభఈయ

ఈమ
మఋమ௞

(𝑘 − 1)(𝛼ଷ + 𝛿ଵ) ቁ  

2.4 Stability And Bifurcation Analysis 

The set of equations (2.1) – (2.3) is transformed into the following equations 

at the equilibrium 𝐸∗(𝑆∗, 𝐼∗ , 𝑅∗)  

ௗௌ∗

ௗ௧
= 𝛼ଵ𝑆∗ ቀ1 −

ௌ∗

௞
ቁ − 𝛼ଶ𝑆∗𝐼∗(𝑡 − 𝜏)               (2.4) 

ௗூ∗

ௗ௧
= 𝛼ଶ𝑆∗𝐼∗(𝑡 − 𝜏) − (𝛼ଷ + 𝛿ଵ)𝐼∗                (2.5) 

ௗோ∗

ௗ௧
= 𝛼ଷ𝐼∗ − 𝛿ଶ𝑅∗                 (2.6) 
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Y. Takeuchi et.al (Takeuchi et al., 2000) have shown the boundedness of all 

possible solutions for systems (2.1) – (2.3) and that of systems (2.4)-           

(2.6). The set of equations (2.4) and (2.5), serve as the primary determinants 

of the system's dynamics.  The transcendental equation about the equilibrium 

𝐸∗is given by: 

 ฬ
λ − 𝒹ଵ −𝒹ଶ

−𝒹ଷ λ − 𝒹ସ
ฬ = 0                            (2.7) 

Where 𝒹ଵ, 𝒹ଶ  are the partial derivative of equations (2.4), (2.5) w.r.t 𝑆∗And 

𝒹ଷ, 𝒹ସ are that of w.r.t to 𝐼∗. 𝒹ଵ =  𝛼ଵ −
ଶఈభ

௞
𝑆∗, 𝒹ଶ = 0, 𝒹ଷ = −𝛼ଶ𝑆∗𝑒−𝜆𝜏, 

𝒹ସ = 𝛼ଶ𝑆∗𝑒−𝜆𝜏 − (𝛼ଷ + 𝛿ଵ). 

By expanding the determinant (2.7) we have: 

𝜆ଶ − (𝒹ଵ + 𝒹ସ)λ + 𝒹ଵ. 𝒹ସ − 𝒹ଷ. 𝒹ଶ = 0 

By substituting the values of 𝒹ଵ, 𝒹ଶ 𝒹ଷ,  𝒶𝓃𝒹 𝒹ସ   we have the following 

equation 𝜆ଶ + 𝑎ଵ𝜆 + 𝑎ଶ + (𝑎ଷ 𝜆 + 𝑎ସ)𝑒ିఒఛ = 0                     (2.8) 

Where 𝑎ଵ = ቀ
ଶఈభ

௞
𝑆∗ + 𝛼ଷ + 𝛿ଵ − 𝛼ଵቁ , 𝑎ଶ = ቀ

ଶఈభ

௞
𝑆∗ − 𝛼ቁ (𝛼ଷ +

𝛿ଵ), 𝑎ଷ = −𝛼ଶ𝑆∗   𝑎ସ = 𝛼ଶ𝑆∗ ቀ𝛼ଵ −
ଶఈభ

௞
𝑆∗ቁ 

When 𝜏 = 0, the equation (2.8) implies: 

𝜆ଶ + (𝑎ଵ + 𝑎ଷ)𝜆 + (𝑎ଶ + 𝑎ସ) = 0                (2.9) 

The roots of (2.9) contain a -ve real component according to Routh- Hurwitz's, 

suggesting that the system is stable if  (ℍ𝟏): (𝑎ଵ + 𝑎ଷ) > 0,  (ℍ𝟐): (𝑎ଶ +

𝑎ସ) > 0  

We now want to investigate how changing the value of 𝜏 affects the roots' 

negative real to the positive real part. 

If  𝜆 = 𝑖𝜔 is a root of (2.8) , then we have the following; 

(𝑖𝜔)ଶ + 𝑎ଵ(𝑖𝜔) + 𝑎ଶ + (𝑎ଷ(𝑖𝜔) + 𝑎ସ)𝑒ି(௜ఠ)ఛ = 0  

⇒ −𝜔ଶ + 𝑎ଵ(𝑖𝜔) + 𝑎ଶ +  (𝑎ଷ(𝑖𝜔) + 𝑎ସ)(cos(𝜔𝜏) − 𝑖𝑠𝑖𝑛 (𝜔𝜏) ) = 0  
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Sorting out the real and imaginary, it follows that 𝜔 satisfies: 

𝜔ସ − (𝑎ଷ
ଶ − 𝑎ଵ

ଶ + 2𝑎ଶ)𝜔ଶ + (𝑎ଶ
ଶ − 𝑎ସ

ଶ) = 0                           (2.10) 

The two roots of equation  (2.10) are: 

𝜔ଵ,ଶ
ଶ =

൫௔య
మି௔భ

మାଶ௔మ൯±ඥ(௔య
మି௔భ

మାଶ௔మ)మିସ(௔మ
మି௔ర

మ)

ଶ
                       (2.11) 

Both the two roots 𝜔ଵ,ଶ
ଶ  are non-positive if: 

(ℍଷ): (𝑎ଷ
ଶ − 𝑎ଵ

ଶ + 2𝑎ଶ) < 0 𝑎𝑛𝑑 (𝑎ଶ
ଶ − 𝑎ସ

ଶ) > 0 𝑜𝑟 (𝑎ଷ
ଶ − 𝑎ଵ

ଶ +

2𝑎ଶ)ଶ < 4(𝑎ଶ
ଶ − 𝑎ସ

ଶ)  

Therefore, if condition (ℍଷ) is true, equation (2.10) has non-positive roots. 

The following Conjecture is made by Ruan. S.(Ruan, 2001) 

Conjecture 1.  Zeros of  (2.8) have negative real part for all 𝜏 ≥ 0 If (ℍଵ) −

(ℍଶ) are true, However, if; 

(ℍସ):   (𝑎ଶ
ଶ − 𝑎ସ

ଶ) < 0 𝑜𝑟  (𝑎ଷ
ଶ − 𝑎ଵ

ଶ + 2𝑎ଶ) > 0 𝑎𝑛𝑑 (𝑎ଷ
ଶ − 𝑎ଵ

ଶ +

2𝑎ଶ)ଶ = 4(𝑎ଶ
ଶ − 𝑎ସ

ଶ), So, the equation (2.8) has +ve root  𝜔ଵ
ଶ. Using the 

same logic, if, 

(ℍହ):   (𝑎ଶ
ଶ − 𝑎ସ

ଶ) > 0 𝑜𝑟  (𝑎ଷ
ଶ − 𝑎ଵ

ଶ + 2𝑎ଶ) > 0 𝑎𝑛𝑑 (𝑎ଷ
ଶ − 𝑎ଵ

ଶ +

2𝑎ଶ)ଶ > 4(𝑎ଶ
ଶ − 𝑎ସ

ଶ) , Then, the equation (2.8) has two +ve 𝜔ଵ,ଶ
ଶ  roots. 

When delay 𝜏 takes values, the real part of the roots of equation (2.8) is zero. 

The latent values 𝜏௖
± of 𝜏 can be determined as; 

𝜏௖
± =

ଵ

ఠభ,మ
cosିଵ ൤

௔ర൫ఠభ,మ
మ ି௔మ൯ି௔భ௔యఠభ,మ

మ

௔య
మఠభ,మ

మ ା௔ర
మ ൨ +

ଶ௝గ

ఠభ,మ
, 𝑐 = 0,1,2, …            (2.12) 

Ruan. S.'s. (Ruan, 2001) The following supposition summarizes the previous 

findings. 

Conjecture 2. (I). The roots of equation (2.8) are wholly imaginary i.e ±𝑖𝜔ଵ 

if (ℍଵ) − (ℍଶ) 𝑎𝑛𝑑 (ℍସ) hold and 𝜏 = 𝜏௖
ା. 
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(II) The roots of equation (2.8) are wholly imaginary 

±𝑖𝜔ଵ(±𝑖𝜔ଶ respectively) if (ℍଵ) − (ℍଶ) 𝑎𝑛𝑑 (ℍହ) are valid and that  𝜏 =

𝜏௖
ା(𝜏 = 𝜏௖

ି) respectively.  

We anticipate that at 𝜏 > 𝜏௖
ା and 𝜏 < 𝜏௖

ି some roots of equation (2.8) will shift 

from having a negative real part to having a positive real part. Let's notice the 

following to investigate its potential. Let 𝜏௖
± = 𝜇௖

±(𝜏) + 𝑖𝜔௖
±(𝜏); 𝑐 =

0,1,2,3, …  

The equation (2.8) satisfies: 𝜇௖
±(𝜏௖

±) = 0, 𝜔௖
±൫𝜏௟

±൯ =𝜔ଵ,ଶ 

As indicated below, we can verify that the transversality criteria are accurate; 

ௗ

ௗఛ
൫Re 𝜆௖

ା(𝜏௖
ା)൯ > 0 𝑎𝑛𝑑 

ௗ

ௗఛ
൫Re 𝜆௖

ି(𝜏௖
ି)൯ < 0   

In other words, 𝜏௖
± is a bifurcation value. The zeros of equation (2.8) are 

scattered according to the following hypothesis. 

Hypothesis: if 𝜏௖
ା(𝑐 = 0,1,2,3, … ) be defined by equation (2.12) 

(I) we have the negative real part for all the roots of (2.8), if (ℍଵ), ( ℍଶ) is 

true, for all 𝜏 ≥ 0. 

(II) we have the negative real part for all the roots of (2.8), if 

(ℍଵ), (ℍଶ) , 𝑎𝑛𝑑 (ℍସ) hold and when 𝜏 ∈ [0, 𝜏଴
ା) . further, if  𝜏 = 𝜏଴

ା, 

equation has a pair of +ve complex roots ±𝑖𝜔ଵ, also at minimum one root with 

+ve real part if 𝜏 > 𝜏଴
ା. 

(III) If (ℍଵ), (ℍଶ) , 𝑎𝑛𝑑 (ℍହ) are true, then there is a +ve integer 𝑘 such that 

we have 𝑘 shift from stability to instability defined as 0 < 𝜏଴
ା < 𝜏଴

ି < 𝜏ଵ
ା <

𝜏ଵ
ି − −−< 𝜏௞ିଵ

ି < 𝜏௞
ା . This indicates that when 𝜏 ∈ [0, 𝜏଴

ା), (𝜏଴
ି, 𝜏ଵ

ା), − −

−, (𝜏௞ିଵ
ି , 𝜏௞

ା), all the roots of (7) have negative real components. further if  𝜏 ∈

(𝜏଴
ା, 𝜏଴

ି), (𝜏ଵ
ା, 𝜏ଵ

ି), − − −, (𝜏௞ିଵ
ା , 𝜏௞ିଵ

ି ) and 𝜏 > 𝜏௞
ା, (2.8) has minimum one 

root with +ve real components. 
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2.5 Directional analysis of Hopf-bifurcating solution: 

We find a sequence of repeated solutions that bifurcate from the positive 

steady state E* at the critical point. It is also crucial to think about the 

solutions' period, stability, and the way in which they bifurcate. In this part, 

we'll use normal form theory and manifold reduction by K. R. Schneider, 

Hassard, and B. D. (Schneider, 1982) to get an explicit formula for 

determining the Hopf-properties bifurcations at the critical Point. 

Let 𝑈ଵ = 𝑆(𝑡𝜏) − 𝑆∗(𝑡), 𝑈ଶ = 𝐼(𝑡𝜏) − 𝐼∗(𝑡), 𝑈ଷ = 𝑅(𝑡𝜏) − 𝑅∗(𝑡) and the 

delay 𝜏 can be normalizing by time scaling 𝑡 →
௧

ఛ
 , the system of equations 

(2.1) - (2.2) are transformed into 

ௗ௎భ

ௗ௧
= ቀ𝛼ଵ −

ଶఈభ

௞
𝑆∗ቁ 𝑈ଵ −

ఈభ

௞
𝑈ଵ

ଶ − 𝛼ଶ𝑈ଵ. 𝑈ଶ(𝑡 − 1) − 𝛼ଶ𝑆∗. 𝑈ଶ(𝑡 − 1)  

ௗ௎మ

ௗ௧
= 𝛼ଶ𝑆∗. 𝑈ଶ(𝑡 − 1) + 𝛼ଶ𝑈ଵ. 𝑈ଶ(𝑡 − 1) − (𝛼ଷ + 𝛿ଵ). 𝑈ଶ                       

ቑ 

                      (2.13)                                                                                                

Thus, in phase 𝔇 = 𝔇൫[−1 , 0], ℛା
ଶ൯ work is possible. We indicate the 

critical value τ୨ by τ଴  without loss of the generality. Let τ = τ଴ + 𝜇, then the 

system of equations                       (2.13) 

has  𝜇 = 0 a Hopf-bifurcation value. Rewrite this system as follows for ease 

of notation: 

𝑣ᇱ(𝑡) = 𝐿ఓ(𝑈௧) + 𝐹(𝜇, 𝑣௧)                                           (2.14) 

Where 𝑣(𝑡) = (𝑣ଵ(𝑡), 𝑣ଶ(𝑡) )் ∈ ℛଶ, 𝑣௧(𝜃) ∈ 𝔇 is defined by 𝑣௧(𝜃) =

𝑣௧(t + 𝜃), and  

 𝐿ఓ: 𝔇 → ℛ,   𝐹: ℛ × 𝔇 → ℛ are given, respectively by  

𝐿ఓ∅ = (τ଴ + 𝜇) ቎
൬𝛼ଵ −

2𝛼ଵ

𝑘
𝑆∗൰ 0

0 −(𝛼ଷ + 𝛿ଵ)
቏ ൤

∅ଵ(0)

∅ଶ(0)
൨

+ (τ଴ + 𝜇) ൤
0 −𝛼ଶ𝑆∗

0 𝛼ଶ𝑆∗ ൨ ൤
∅ଵ(−1)

∅ଶ(−1)
൨ 
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And 𝐹(𝜇, ∅) = (τ଴ + 𝜇) ൤
𝐹ଵ

𝐹ଶ
൨ respectively where 𝐹ଵ =

−
ఈభ

௞
 ∅ଶ

ଵ(0)−𝛼ଶ∅ଵ(0)∅ଶ(−1), 𝐹ଶ = 𝛼ଶ∅ଵ(0)∅ଶ(−1),   ∅(𝜃) =

൫∅ଵ(𝜃), ∅ଶ(𝜃)൯
்

∈ 𝔇൫(−1,0), ℛ൯. 

By the Representation theorem given by F. Riesz (Fuglede, 1955), there exists 

function 𝜂(𝜃, 𝜇) of bounded variation for 𝜃 ∈ [−1 , 0], ∋,𝐿ఓ∅ =

∫ 𝑑
଴

ିଵ
𝜂(𝜃, 0)∅(𝜃) for ∅ ∈ 𝔇   

Here 𝐿ఓ∅ = (τ଴ + 𝜇) ቈ
ቀ𝛼ଵ −

ଶఈభ

௞
𝑆∗ቁ 0

0 −(𝛼ଷ + 𝛿ଵ)
቉ 𝛿(𝜃) + (τ଴ +

𝜇) ൤
0 −𝛼ଶ𝑆∗

0 𝛼ଶ𝑆∗ ൨ 𝛿(𝜃 + 1) 

 𝛿 represent the Dirac delta function.   

For ∅ ∈ 𝔇൫[−1,0], ℛା
ଶ൯, Then the system is equivalent to  

𝑣ᇱ(𝑡) = 𝒜(𝜇)𝑣௧ + ℱ(𝜇)𝑣௧                                             (2.15) 

For 𝜓 ∈ 𝔇ଵ൫[−1 , 0], ℛା
ଶ൯, define 

𝒜∗𝜓(𝑠) = ቐ
−

ௗట(௦)

ௗ௦
, 𝑠 ∈ [−1 , 0)

∫ 𝑑
଴

ିଵ
𝜂்(−𝑡 ,0) 𝜓(−𝑡), 𝑠 = 0.

                              (2.16) 

And bilinear inner product  

< 𝜓(𝑠), ∅(𝜃) > = 𝜓(0)∅(0) − ∫ ∫ 𝜓(𝜉 − 𝜃)𝑑𝜂(𝜃)𝜙(𝜉)
𝜃

𝜉=𝜃

0

−1
𝑑𝜉               (2.17) 

Since 𝑖𝜔଴ are eigenvalues of 𝒜(0) 𝑎𝑛𝑑 𝒜∗,𝒜 = 𝒜(0) are adjoint operators. 

Thus they become the latent values of A*. Suppose that 𝑞(𝜃) = 𝑞(0)𝑒௜னబఏ is 

latent vector of 𝒜(0) corresponding to the latent value 𝑖𝜔଴. Then 𝒜(0) =

 𝑖ω଴ 𝑞(𝜃).  

When 𝜃 = 0, ቂ𝑖𝜔଴𝐼 − ∫ 𝑑𝜂(𝜃)𝑒௜ఠబఏ଴

ିଵ
ቃ 𝑞(0) = 0, this gives 𝑞(0) = (1, 𝑈ଵ)் 

where 𝑈ଵ =
௜னబିቀఈభି

మഀభ
ೖ

ௌ∗ቁ

(௜னబା(ఈయାఋభ))
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By the same way it can be proved that 𝑞∗(𝑠) = 𝐷(1, 𝑈ଵ
∗)𝑒௜னబதబ௦ represent the 

eigen value of 𝒜∗ corresponding to eigen vector  −𝑖ω଴, where  𝑈ଵ
∗ =

ି௜னబିቀఈభି
మഀభ

ೖ
ௌ∗ቁ

(ି௜னబା(ఈయାఋభ))
 The value of  D is required to assure that  < 𝑞∗(𝑠), 𝑞(𝜃) > =

1, From equation (2.17), 

< 𝑞∗(𝑠), 𝑞(𝜃)

>   𝐷 ቀ1, 𝑈ଵ
∗ቁ (1, 𝑈ଵ)்

− න න 𝐷 ቀ1, 𝑈ଵ
∗ቁ 𝑒ି௜னబதబ(కିఏ)𝑑𝜂(𝜃)(1, 𝑈)்𝑒௜னబதబ

ఏ

కୀఏ

଴

ିଵ

𝑑𝜉 

= 𝐷 ቄ1 + 𝑈ଵ𝑈∗ − ∫ ቀ1, 𝑈ଵ
∗ቁ

଴

ିଵ
𝜃𝑒௜னబதబఏ(1, 𝑈ଵ)்ቅ   

= 𝐷 ቄ1 + 𝑈ଵ𝑈ଵ
∗ + τ଴𝑈∗𝑊∗(𝛼ଶ𝑈 − 𝛼ଵ𝑈)𝑒௜னబதబቅ  

Hence, choose 𝐷 =
ଵ

ቄଵା௎భ௎భ
∗ାதబ௎∗ௐ∗(ఈమ௎ିఈభ௎)௘೔ಡబಜబቅ

  

such that < 𝑞∗(𝑠), 𝑞(𝜃) > = 1, < 𝑞∗(𝑠), 𝑞(𝜃) > = 0.  

By following K. R. Schneider, Hassard, B. D (Schneider, 1982) approach we 

compute the coordinates describing the center manifold 𝔇଴ at 𝜇 = 0 by using 

the same notations. manifold 𝔇଴ at 𝜇 = 0. Let equation (2.13) has solution  𝑣௧ 

with 𝜇 = 0. We Define  

𝑧(𝑡) =< 𝑞∗(𝑠), 𝑣௧(𝜃) >, 𝕎(𝑡, 𝜃) = 𝑣௧(𝜃) − 2𝑅𝑒(𝑧(𝑡)𝑞(𝜃))     (2.18)  

On the center manifold 𝒞଴,  𝕎(𝑡, 𝜃) = 𝕎 ቀ𝑧(𝑡), 𝑧(𝑡), 𝜃ቁ 

Where 𝕎(𝑧, 𝑧, 𝜃) = 𝕎ଶ଴(𝜃)
௭మ

ଶ
+ 𝕎ଵଵ(𝜃)𝑧𝑧 + 𝕎଴ଶ(𝜃)

௭
మ

ଶ
+ ⋯, 

In the direction of 𝑞∗ and 𝑞∗ the local coordinates for center manifold 𝒞଴ are 

𝑧 and 𝑧. Note that 𝑣௧ is real is the necessary condition for 𝕎 to be real. For 

solution 𝑣௧ ∈ 𝔇଴ of equation                            (2.16), since 𝜇 = 0 𝑧ᇱ(𝑡) =

𝑖ω଴τ଴𝑧+< 𝑞∗(𝜃), 𝐹൫0, 𝕎(𝑧, 𝑧, 𝜃) + 2𝑅𝑒൫𝑧(𝑡)𝑞(𝜃)൯ ൯ >  
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= 𝑖ω଴τ଴𝑧 + 𝑞∗(0) 𝐹൫0, 𝕎(𝑧, 𝑧, 0) + 2𝑅𝑒൫𝑧(𝑡)𝑞(𝜃)൯ ൯  ≡ 𝑖ω଴τ଴𝑧 +

𝑞∗(0)𝐹଴(𝑧, 𝑧) 

Rewrite this equation as: 𝑧ᇱ(𝑡) = 𝑖ω଴τ଴𝑧(𝑡) + 𝑔(𝑧, 𝑧)             (2.19) 

Where 𝑔(𝑧, 𝑧) = 𝑞∗(0)𝐹଴(𝑧, 𝑧) = 𝑔ଶ଴(𝜃)
௭మ

ଶ
+ 𝑔ଵଵ(𝜃)𝑧𝑧 + 𝑔଴ଶ(𝜃)

௭
మ

ଶ
+

𝑔ଶଵ(𝜃)
௭మ௭

ଶ
+ ⋯                                                                                          (2.20) 

As 𝑣௧(𝜃) = (𝑣ଵ௧, 𝑣ଶ௧   ) =  𝕎(𝑡, 𝜃) + 𝑧 𝑞(𝜃) + 𝑧𝑞(𝜃) and 𝑞(0) =

(1, 𝑢ଵ)்e୧னబதబ஘, so 

As a result, we get:  𝑔ଶ଴ = 𝐷(1, 𝑈ଵ)𝑓௭మ ,  𝑔଴ଶ = 𝐷൫1, 𝑈ଵ൯𝑓
௭

మ,  𝑔ଵଵ =

 𝐷൫1, 𝑈ଵ൯𝑓௭௭ , 𝑔ଶଵ =  𝐷൫1, 𝑈ଵ൯𝑓௭మ௭  

To find the value of  𝑔ଶଵ, the computation of 𝕎ଶ଴(𝜃) and 𝕎ଵଵ(𝜃) 

should be prioritized. From the equations (2.15) and (2.18)  we have; 

𝑊ᇱ = 𝑣௧
ᇱ − 𝑧ᇱ𝑞 − 𝑧

ᇱ
𝑞 = ቊ

𝒜𝕎 − 2𝑅𝑒ൣ𝑞∗(0)𝐹଴𝑞(𝜃)൧, 𝜃 ∈ [−1,0)

𝒜𝕎 − 2𝑅𝑒ൣ𝑞∗(0)𝐹଴𝑞(0)൧ + 𝐹଴, 𝜃 = 0
  

Let Wᇱ = 𝒜𝕎 + 𝐻(𝑧, 𝑧, 𝜃),                                                     (2.21) 

Where 𝐻(𝑧, 𝑧, 𝜃) = 𝐻ଶ଴(𝜃) 
௭మ

ଶ
+ 𝐻ଵଵ(𝜃)𝑧𝑧 + 𝐻଴ଶ(𝜃)

௭
మ

ଶ
+ 𝐻ଶଵ(𝜃)

௭మ௭

ଶ
+

⋯,                                                                                                      (2.22) 

However, on 𝔇଴ near the origin we have  𝕎ᇱ = 𝕎௭𝑧ᇱ + 𝕎௭𝑧
ᇱ
 

Simplifying the equating we get, 

det(𝒜 − 2𝑖𝜔଴𝐼) . 𝕎ଶ଴(𝜃) = −𝐻ଶ଴(𝜃),   𝒜𝕎ଵଵ(𝜃) = −𝐻ଵଵ(𝜃)   (2.23) 

And for 𝜃 ∈ [−1 , 0),   𝐻(𝑧, 𝑧, 𝜃) = −𝑞∗(0)𝐹଴𝑞(𝜃) − 𝑞∗(0)𝐹଴ 𝑞(𝜃) =

−𝑔𝑞(𝜃) − 𝑔  𝑞(𝜃)  

Comparing the coefficients with (2.23) for 𝜃 ∈ [−1,0] that  

𝐻ଶ଴(𝜃) = −𝑔ଶ଴𝑞(𝜃) − 𝑔଴ଶ 𝑞(𝜃),  𝐻ଵଵ(𝜃) = −𝑔ଵଵ𝑞(𝜃) − 𝑔ଵଵ 𝑞(𝜃). 
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From equations (2.19), (2.22) and the definition of 𝐴 we obtain 

𝕎ଶ଴(𝜃) = 2𝑖ω଴τ଴𝕎ଶ଴(𝜃) + 𝑔ଶ଴𝑞(𝜃) + 𝑔଴ଶ 𝑞(𝜃) 

Solving for 𝕎ଶ଴(𝜃):   𝕎ଶ଴(𝜃) =
௜௚మబ

னబதబ
𝑞(0)𝑒௜னబதబఏ +

௜௚బమ

ଷఠబఛబ
𝑞(0)𝑒ି௜னబதబఏ +

𝔼ଵ𝑒ଶ௜னబதబఏ ,  

And similarly,  𝕎ଵଵ(𝜃) =
ି௜௚భభ

னబதబ
𝑞(0)𝑒௜னబதబఏ +

௜௚భభ

ఠబఛబ
𝑞(0)𝑒ି௜னబதబఏ + 𝔼ଶ 

we can find a 3D vectors 𝔼ଵ and 𝔼ଶ, by setting 𝜃 = 0 in 𝐻. In fact since 

𝐻(𝑧, 𝑧, 𝜃) = −2𝑅𝑒ൣ𝑞∗(0)𝐹଴𝑞(0)൧ + 𝐹଴, So 

𝐻ଶ଴(𝜃) = −𝑔ଶ଴𝑞(𝜃) − 𝑔଴ଶ 𝑞(𝜃) + 𝐹௭మ,     𝐻ଵଵ(𝜃) = −𝑔ଵଵ𝑞(𝜃) − 𝑔ଵଵ 

𝑞(𝜃) + 𝐹௭௭ 

Where 𝐹଴ = 𝐹௭మ
௭మ

ଶ
+ 𝐹௭௭𝑧𝑧 + 𝐹

௭
మ

௭
మ

ଶ
+ ⋯   

Notice that ቂ𝑖ω଴τ଴𝐼 − ∫ 𝑒௜னబதబఏ𝑑𝜂(𝜃)
଴

ିଵ
ቃ 𝑞(0) = 0 and ቂ−𝑖ω଴τ଴𝐼 −

∫ 𝑒ି௜னబதబఏ𝑑𝜂(𝜃)
଴

ିଵ
ቃ 𝑞(0) = 0,  Which Implies ቂ2𝑖ω଴τ଴𝐼 −

∫ 𝑒ଶ௜னబதబఏ𝑑𝜂(𝜃)
଴

ିଵ
ቃ 𝔼ଵ = 𝐹௭మ  and − ቂ∫ 𝑑𝜂(𝜃)

଴

ିଵ
ቃ 𝔼ଶ = 𝐹௭௭ 

The arguments can thus be used to express  𝑔ଶଵ the parameters. Based on the 

above study, every 𝑔௜௝ can be find out by the parameters. As a result, the 

following quantities can be calculated: 

𝒞ଵ(0) =
௜

ଶனబதబ
ቀ𝑔ଵଵ𝑔ଶ଴ − 2|𝑔ଵଵ|ଶ −

|௚బమ|మ

ଷ
ቁ +

௚మభ

ଶ
 , 𝜇ଶ = −

ோ௘{஼భ(଴)}

ோ௘{ఒᇲ(ఛబ)}
, 

𝛽ଶ = 2𝑅𝑒{𝐶଴(0)},  

𝑇ଶ = −
ூ௠{஼భ(଴)}ାఓమூ௠ ൛ఒᇲ(ఛబ)ൟ

னబதబ
                            (2.24) 

Theorem 2.1:  Hopf-bifurcation’s direction is defined by 𝜇ଶ , if  𝜇ଶ >

0 (𝜇ଶ < 0), the periodic bifurcating solutions exist for τ > τ଴ (τ < τ଴)  Hopf 

bifurcation is supercritical (subcritical), and. 𝛽ଶ is used to determine the 

bifurcating stability of solutions, are orbitally asymptotically stable (unstable) 
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if 𝛽ଶ < 0 (𝛽ଶ > 0 ). 𝑇ଶ defines the period of bifurcating solutions if 𝑇ଶ is 

greater than zero (less than zero), the period increases (decreases). 

2.6 Numerical Simulation 

In this section numerical simulations of model with different values of 

parameters is carried out Initially S = 10, I = 5, R = 1 ,and  𝑘 = 100, 𝛼ଵ =

0.1, 𝛿ଵ = 0.1, 𝛿ଶ = 0.051, 𝛼ଷ = 0.1, 𝛼ଶ = 0.01 and the equilibrium 𝑆∗ =

20.0953, 𝐼∗ =  8.0289   , 𝑅∗ =  15.9686 and also with reproductive number 

𝑅଴ . For different values of delay parameter 𝜏, the system of moves from stable 

to complex dynamics about equilibrium E*, shown in the graphic below.  

 

 

Figure 2.1 : System's time series graph without delay, E* (S*, I*, R*) moves to 

stabilize after early oscillations.  

 

S
 , 

I,
 R
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Figure 2.2 : Phase space view of E* (S*, I*, R*) without delay 

 

 

Figure 2.3 : Time series graph of the system when τ < 2.241, the critical value. The 

equilibrium E* (S*, I*, R*) is asymptotically stable. 

S
, I

, R
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Figure 2.4 : Phase space view of E* (S*, I*, R*) for  τ < 2.241 

 

 

 

Figure 2.5 : Time series graph shows that equilibrium E* (S*, I*, R*) shows Hopf-

bifurcation when τ ≥ 2.241 

S
, I

, R
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Figure 2.6 : Phase space view of E* (S*, I*, R*) when τ ≥ 2.241 

2.7  Sensitivity Analysis 

2.7.1 With respect to model parameters 

In this study, to estimate the general sensitivity “Direct Method" is used. In 

the direct approach, all parameters are taken into account as constants, and 

sensitivity coefficients are calculated by resolving sensitivity equations 

alongside the original system. In this scenario, all of the parameters 

(𝛼ଵ, 𝛼ଶ, 𝛼ଷ)  appearing in the system model (2.1)-(2.3) are assumed to be 

constants. If parameter 𝛼ଶ is taken into consideration, partial derivatives of the 

solution (S, I, R) with respect to 𝛼ଶ result in the following set of sensitivity 

equations: 

ௗ௫భ

ௗ௧
= (𝛼ଵ −

ଶఈభ

௞
𝑆 − 𝛽𝐼(𝑡 − 𝜏))𝑥ଵ − 𝛼ଶ𝑆𝑥ଶ(𝑡 − 𝜏)            (2.25) 

ௗ௫మ

ௗ௧
= 𝛼ଶ𝑆𝑥ଶ(𝑡 − 𝜏) + 𝛼ଶ𝐼(𝑡 − 𝜏)𝑥ଵ − (𝛼ଷ + 𝛿ଵ)𝑥ଶ           (2.26) 

ௗ௫య

ௗ௧
= 𝛼ଷ𝑥ଶ − 𝛿ଶ𝑥ଷ                (2.27) 

Where 𝑥ଵ =
డௌ

డఈమ
, 𝑥ଶ =

డூ

డఈమ
, 𝑥ଷ =

డோ

డఈమ
 

R
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The system of sensitivity equations (2.25) – (2.27) and equations  (2.1) – (2.3) 

are used to predict the sensitivity of the state variables (S, I, R) for the model 

parameter ‘𝛼ଶ’. Similar steps and justifications are used to estimate the state 

variables' sensitivity to the parameters 𝛼ଵ & 𝛼ଷ . 

 

 

Figure 2.7 : Sensitivity of the susceptible population w.r.t transmission rate αଶ of 

the disease. 
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Figure 2.8 : Sensitivity of the infected population w.r.t transmission rate αଶ of the 

disease 

 

Figure 2.9 : Sensitivity of the recovered population w.r.t transmission rate αଶ of the 

disease 
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As the transmission rate 𝛼ଶ of the disease decreases the system should tend to 

become stable. The same situation is depicted in figure 2.7, figure 2.8, and 

figure 2.9. As the value of ‘𝛼ଶ' decreases from 0.01 to 0.008, the system shift 

from a limit cycle to asymptotic stability, and when it further decreases from 

0.008 to 0.005 the system tends to become absolutely stable.   

2.7.2 With respect to reproductive number 𝑹𝟎: 

The basic reproduction number 𝑅଴ is defined as "the expected number of 

secondary cases directly generated by typical infection in a population where 

all individuals are susceptible to infection". For the model (2.1) – (2.3) the 

basic reproductive number is given by    𝑅଴ =  
௞ఈమ

(ఈయାఋభ)
.  

 

Figure 2.10 :  Solution of delayed SIR model (2.1) - (2.3). In the absence of delay 

system is stable have infection-free equilibrium when reproductive number R଴ <1 

S,
 I

, R
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Figure 2.11 :  Solution of delayed SIR model (2.1) - (2.3). In the absence of delay, 

the system has a small portion of endemic equilibrium when reproductive number 

R଴ > 1 

2.8 Conclusion 

This study examines SIR model stability with a non-linear incidence function. 

Delay breaks the system, causing limit cycles and sporadic solutions. Figure 

2.1 & Figure 2.2 show equilibrium E* stabilising after early fluctuations 

without a delay. An infected person can be adequately treated and the system 

will stabilize if a critical delay τ is shorter than that value. Conjecture 1, 

(ℍଵ) − (ℍଶ) shows the same truth. Figure 2.3 & Figure 2.4 show that as the 

delay τ constant varies below 2.241, the equilibrium E* loses stability and 

becomes asymptotical. The equilibrium E* undergoes a Hopf-bifurcation after 

reaching to the value 2.241.  

The system involving all three states will always repeat the epidemic if the 

delay crosses the critical threshold. Figure 2.5 & Figure 2.6 show stable 

periodic solutions with big amplitudes and limit cycle trajectories. The 

system's (2.1) – (2.3) complex behaviour matches conjecture-2 (ℍସ) − (ℍହ) 

The direction analysis of the model has been performed which reveals the 

S
, I

, R
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direction, amplitude, and periodicity of the bifurcating solutions as per the 

criteria given by Hassard (Schneider, 1982).  

Not only delay but other model parameters also affect the system. Thus, the 

sensitivity with model parameters and basic reproduction number R଴ are 

tested. Disease transmission rate αଶ affects the system greatly. As 

transmission rate decreases, the system changes from Hopf bifurcation to 

asymptotic stability to absolute stability, as shown in Figure 2.7, Figure 2.8 & 

Figure 2.9 . The model's dynamics and basic reproductive number R଴ are 

investigated. We studied the threshold parameter R଴ factors that ensured the 

endemic and infection-free equilibria's asymptotic stability, R଴ > 1 makes the 

disease endemic and spreads in the neighbourhood, while R଴ < 1 eliminates 

it. Figure 2.10 & Figure 2.11 depict the same scene. The simple DDE model 

has chaotic and quasiperiodic dynamics and is suitable for high population 

numbers.



 

49 
 

Chapter 3 

Bifurcation and Stability Analysis of Delayed SIR Model 

3.1  Introduction                                                

Infections and diseases have always been a great threat to human kind and 

animals. The spread of diseases from one person to another via blood or 

physical contact can be termed as communicable diseases. Infections and 

diseases can also spread by breathing in an airborne virus or bitten by a virus 

carrier. These infections and diseases have a great potential to become 

endemic and cause suffering and social economic loss. Millions of people lose 

their lives every year due to these diseases, especially in developing countries.  

Mathematical modelling a great tool to study these kinds of diseases from 

various perspective, transmission rates, estimate the potential losses and 

formulate the strategies to overcome these. Many models have been 

formulated for study of transmission rates of different kinds of endemics 

(Anderson & May, 1979b; Beretta & Capasso, 1987; Diekmann & 

Heesterbeek, 2000; Hethcote & Tudor, 1980b; Huo & Ma, 2010; Koff, 1992; 

May & Anderson, 1979; McCluskey, 2010b; Xiao & Ruan, 2007b) . Three 

basic epidemiological terms are always used in these infections spread 

models: the susceptible population 𝑆(𝑡), the infected portion 𝐼(𝑡) and the 

removed or recovered one 𝑅(𝑡). A simple SIR model was proposed to 

calculate theoretically, the number of infected people with a contagious 

sickness (“A Contribution to the Mathematical Theory of Epidemics,” 1927) 

. The modelling of dynamic transmission process between infected and 

susceptible determines the behaviour of simple SIR models. SIR models 

accurately portray infectious diseases caused by viral agents such as measles, 

mumps, and smallpox. A significant number of researchers have simulated 

and investigated infectious diseases like these (A. Rihan et al., 2012; 

Berezovsky et al., 2005b; Cai et al., 2009b; d’Onofrio et al., 2007; D’Onofrio 

et al., 2007; Esteva & Matias, 2001; Hsu & Zee, 2004). There are a number 

of diseases, like influenza and TB, that have a period of time during which 
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they remain dormant or incubating. During the time that they are in the 

incubation stage, it is claimed that they are infected but that they are not 

infectious. This incubation time may be accurately represented by a delay 

parameter in SIR models by making use of delay differential equations, 

(Beretta & Kuang, 2001) conducted research on the topic of the global 

stability of the SIR epidemic model with distributed delays. In addition, the 

requirements for asymptotic stability of endemic equilibrium have been 

established (X. Song & Cheng, 2005). These constraints apply to all feasible 

delays. 

In most of the mathematical models, disease free and endemic equilibrium are 

analysed for global asymptotic stability. But many of these models are stiff 

and numerical analysis needs to be performed carefully.  Small perturbations 

in state variables and parameters can result in changes in overall behaviour of 

the system. A saturated incidence rate has been applied in detailed qualitative 

analysis of delayed SIR model (Rihan & Anwar, 2012).  In the setting of a 

predator-prey system with discrete delays, a precise analysis was presented 

for a number of distinct kinds of stability, including absolute, conditional and 

bifurcation. This study was done for a number of distinct types of stabilities 

(Ruan, 2001). (Ruan & Wei, 2003a) performed an in-depth analysis about the 

nature of the roots that make up the exponential latent equation. It is carried 

out an investigation of the stability of steady state points utilising a non-linear 

DDE (Ruan, 2009). It has been shown that the solutions of the SIR model are 

bounded, and an analysis of the asymptotic stability of the model with a 

limited incubation time has also been conducted (Huang et al., 2010; 

Takeuchi et al., 2000). (Elazzouzi et al., 2019) conducted research to 

investigate the stability analysis of a generalised SIR epidemic model that 

included a nonlinear incidence rate and dispersed delays. The two control 

measures that were taken into consideration in this model were the 

vaccination term and the general treatment functions. 

Due to the information presented above, the following mathematical model is 

used in this article to investigate the effect that delay in the traditional SIR 
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model. In addition to this, stability analysis is carried out about the non-zero 

endemic steady state point. 

3.2 Mathematical Model 

Let the incubation period be denoted by 𝜏 > 0. During incubation period, the 

infected turn into a vector and only after this period, the infected becomes 

infectious. Let three state variables be: the susceptible population 𝑆(𝑡), the 

infected portion 𝐼(𝑡) and the removed or recovered one 𝑅(𝑡). The model 

formulated is: 

ௗௌ

ௗ௧
= 𝛼𝑆 − 𝛽𝑆𝐼(𝑡 − 𝜏)        (3.1) 

ௗூ

ௗ௧
= 𝛽𝑆𝐼(𝑡 − 𝜏) − 𝛾𝐼       (3.2) 

ௗோ

ௗ௧
= 𝛾𝐼 − 𝛿2𝑅       (3.3)  

Such that 𝑆 + 𝐼 + 𝑅 = 𝑁 (constant) 

Where: 𝑆(0) > 0, 𝐼(0) > 0, 𝑅(0) > 0 for all 𝑡 and 𝐼(𝑡 − 𝜏) = constant for 

𝑡 ∈ [0, 𝜏]. The parameters considered in this model are;   

Table 3.1 : Description of the parameters of the system (3.1)-(3.3) 

  

 It is justified to assume all the parameters as positive constants.  

Parameter Description 

𝛼 Intrinsic birth rate 

𝛽 Infection rate per contact 
between susceptible and 
infected hosts 

𝛾 Recovery rate of infected 
hosts 

𝜏 Delay parameter or 
Incubation period 

𝛿ଶ Death rate of recovered 
hosts 
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The dynamics of the system is mainly determined by the set of following two 

equations (3.1) and (3.2). So, the focus will be on first two equations (3.1) and 

(3.2) and equation (3.3) 

 can be ignored for analysis of the model.  

3.3   Non-Zero Epidemic Equilibrium 

It is assumed that at equilibrium point 𝐼(𝑡 − 𝜏) ≅ 𝐼. The non-zero epidemic 

equilibrium 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) is calculated as: 

ௗூ∗

ௗ௧
= 0 ⇒ 𝑆∗ =

ఊ

ఉ
                                                                                          

ௗௌ∗

ௗ௧
= 0 ⇒ 𝐼∗ =

ఈ

ఉ
        

ௗோ∗

ௗ௧
= 0 ⇒  𝑅∗ = 𝑁 −

ఊ

ఉ
−

ఈ

ఉ
       

Thus, we have non-zero equilibrium: 

𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) = 𝐸∗ ቀ
ఊ

ఉ
 ,

ఈ

ఉ
, 𝑁 −

ఊ

ఉ
−

ఈ

ఉ
ቁ  

3.4 Stability Analysis about Equilibrium 𝑬∗ and Hopf- Bifurcation 

At the equilibrium 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗), the system of equations (3.1)-(3.3) 

 becomes: 

ௗௌ∗

ௗ௧
= 𝛼𝑆∗ − 𝛽𝑆∗𝐼∗(𝑡 − 𝜏)      (3.4) 

ௗூ∗

ௗ௧
= 𝛽𝑆∗𝐼∗(𝑡 − 𝜏) − 𝛾𝐼∗      (3.5) 

ௗோ∗

ௗ௧
= 𝛾𝐼∗ − 𝛿ଶ𝑅∗       (3.6) 

The boundedness of all feasible solutions of system (3.1)-(3.3) 

  and that of system (3.4)-(3.5) has been proved by (Takeuchi et al., 2000). 

The fluctuation of the system is mainly determined by the set of two equations 

(3.4) and (3.5). The characteristic equation of equations (3.4 and (3.5) about 

the equilibrium 𝐸∗is given by: 
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𝜆ଶ + 𝒶𝜆 + 𝒷 + (𝒸𝜆 + 𝒹)𝑒ିఒఛ = 0                (3.7) 

Where 𝒶 = (𝛾 − 𝛼), 𝒷 = −𝛼𝛾, 𝒸 = −𝛽𝑆∗, 𝒹 = 𝛼𝛽   

When 𝜏 = 0, the equation (3.7) becomes: 

𝜆ଶ + (𝒶 + 𝒸)𝜆 + (𝒷 + 𝒹) = 0     (3.8) 

By Routh-Hurwitz’s criteria, roots of equation (3.8) will have non positive non 

zero real part i.e., the stability of the system arises if ; 

(ℍଵ): (𝒶 + 𝒸) > 0;  

(ℍଶ): (𝒷 + 𝒹) > 0  

which obviously is true. Now that this is done, we will check to see if the 

negative real sections of the roots have been replaced by positive real ones 

with the change in the value of 𝜏. 

Let 𝜆 = 𝑖𝜔 be a solution of characteristics of equation (3.7), so we have; 

−𝜔ଶ + 𝒶(𝑖𝜔) + 𝒷 +  (𝒸(𝑖𝜔) + 𝒹)(cos 𝜔𝜏 − 𝑖𝑠𝑖𝑛 𝜔𝜏 ) = 0   

Separating real and imaginary parts: 

−𝜔ଶ + 𝒷 = −𝒹 cos 𝜔𝜏 − 𝒸𝜔𝑠𝑖𝑛 𝜔𝜏    (3.9) 

𝒶𝜔 = −𝒸 cos 𝜔𝜏 + 𝒹𝑠𝑖𝑛 𝜔𝜏    (3.10) 

Squaring and adding: 

𝜔ସ − (𝒸ଶ − 𝒶ଶ + 2𝒷)𝜔ଶ + (𝒷ଶ − 𝒹ଶ) = 0  (3.11) 

The two roots of equation (3.11) are: 

𝜔ଵ,ଶ
ଶ =

൫ଶ𝒷ି𝒶మା𝒸మ൯±ඥ(𝒶మି𝒸మାଶ𝒷)మିସ(𝒷మି𝒹మ)

ଶ
       (3.12) 

None of the two roots 𝜔ଵ,ଶ
ଶ  is positive if: 

(ℍଷ): (2𝒷 − 𝒶ଶ − 𝒸ଶ) < 0 𝑎𝑛𝑑 (𝒷ଶ − 𝒹ଶ) > 0 𝑜𝑟 (𝒶ଶ − 𝒸ଶ + 2𝒷) <

4(𝒷ଶ − 𝒹ଶ)  
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This indicate that equation (3.12) does not have a solution which is positive if 

condition (ℍଷ) holds. We have the following lemma (Ruan, 2001). 

Lemma 3.1. If (ℍଵ) − (ℍଶ) hold, then all the roots of equation (3.7) 

have negative real parts for all 𝜏 ≥ 0. 

On the other hand, if: 

(ℍସ): (𝒷ଶ − 𝒹ଶ) < 0 𝑜𝑟  (2𝒷 − 𝒶ଶ − 𝒸ଶ) > 0 𝑎𝑛𝑑 (𝒶ଶ − 𝒸ଶ +

2𝒷)ଶ = 4(𝒷ଶ − 𝒹ଶ)  

Then, +ve root of equation (3.7) is 𝜔ଵ
ଶ. 

On the same basis, if: 

(ℍହ): (𝒷ଶ − 𝒹ଶ) > 0 𝑜𝑟  (2𝒷 − 𝒶ଶ − 𝒸ଶ) > 0 𝑎𝑛𝑑 (𝒶ଶ − 𝒸ଶ +

2𝒷)ଶ > 4(𝒷ଶ − 𝒹ଶ)  

Then, two +ve roots of equation (3.12) are 𝜔ଵ,ଶ
ଶ . 

For given particular values, the equation (3.7) has entirely complex roots when 

𝜏 takes certain values expressed in both (ℍସ) and (ℍହ) . The critical values 

𝜏௝
± of 𝜏 comes from the setup of the equations (3.9)-(3.10) , given by; 

𝜏௝
± =

ଵ

ఠభ,మ
𝑐𝑜𝑠ିଵ ൤

𝒹൫ఠభ,మ
మ ି𝒷൯ି𝒶𝒸ఠభ,మ

మ

𝒸మఠభ,మ
మ ା𝒹మ ൨ +

ଶ௝గ

ఠభ,మ
, 𝑗 = 0,1,2, …                 (3.13) 

The preceding discussion may be summarised in the lemma (Ruan, 2001) that 

is about to be presented. 

Lemma 3.2. (I) If (ℍଵ) − (ℍଶ) 𝑎𝑛𝑑 (ℍସ) hold and 𝜏 = 𝜏௝
ା, then equation 

(3.7) has a pair of purely imaginary roots ±𝑖𝜔ଵ.  

(II) If (ℍଵ) − (ℍଶ) 𝑎𝑛𝑑 (ℍହ) hold and 𝜏 = 𝜏௝
ା൫𝜏 = 𝜏௝

ି respectively൯, then 

equation (3.7) has a pair of complex roots with real part zero 

±𝑖𝜔ଵ(±𝑖𝜔ଶ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦). 
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Our expectation is the that the formerly negative real parts of certain roots of 

the equation (3.7) will change sign and become positive real. when 𝜏 > 𝜏௝
ା 

and 𝜏 < 𝜏௝
ି.  In order to investigate this option, let us label it as, 

𝜏௝
± = 𝜇௝

±(𝜏) + 𝑖𝜔௝
±(𝜏); 𝑗 = 0,1,2,3, …  

The roots of equation (3.7) satisfy: 𝜇௝
±൫𝜏௝

±൯ = 0, 𝜔௝
±൫𝜏௝

±൯ =𝜔ଵ,ଶ 

We can verify that the following transversality condition holds: 

ௗ

ௗఛ
ቀ𝑅𝑒 𝜆௝

ା൫𝜏௝
ା൯ቁ > 0 𝑎𝑛𝑑 

ௗ

ௗఛ
ቀ𝑅𝑒 𝜆௝

ି൫𝜏௝
ି൯ቁ < 0   

It concludes that 𝜏௝
± are bifurcating values.  

3.5 Numerical Simulation 

In order to visually portray the dynamics that are shown by the system of 

equations, the following set of parametric values has been adopted (3.1)−(3.3) 

  𝛼 = 0.1, 𝛽 = 0.01, 𝛾 = 0.1, As the value of the delay parameter 𝜏 is varied, 

The fluctuating patterns of behaviour seen by the equation system (3.1)- (3.3) 

 from being stable to exhibiting complicated dynamics revolving around the 

equilibrium 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) , is shown below: 
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Figure 3.1 : The Equilibrium  𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) tends to be stable after initial 

fluctuations in the presence of negligible delay i.e., when 𝜏 ≈ 0 

 

Figure 3.2 : The Equilibrium 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) is asymptotically stable when delay is 

less than critical vale i.e., when 𝜏 < 8.5 
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Figure 3.3 : Phase space of equilibrium  𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) when the delay is less than 

critical value i.e., 𝜏 < 8.5 

 

 

Figure 3.4 : The Equilibrium 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) moves from stability to Hopf-

bifurcation when delay is crosses the critical vale i.e., when 𝜏 ≥ 8.5 
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Figure 3.5 :  Phase space of equilibrium 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) when the delay crosses the 

critical value i.e., 𝜏 ≥ 8.5 

 

3.6 Conclusion 

With the assistance of the suggested model, an analysis of the traditional SIR 

model may be carried out using DDE.  The delay causes the system to become 

unstable and sets off a complicated pattern of behaviour that contain limit 

cycles as well as periodic solution that are stable over Hopf-bifurcation. An 

investigation of the equilibrium's degree of stability, E*, s carried out. As can 

be seen in Figure 3.1, if there is no delay involved, the equilibrium E* will 

typically return to its original state after experiencing some early oscillations. 

It indicates that if the delay in the identification of contaminated section is 

below a certain value, the suspected and infected may be recovered well, and 

the system will become stable. In addition, the fact that (ℍଵ) − (ℍଶ) exists, 

as in lemma 3.1, may be used to augment the same fact. As illustrated in 

Figure 3.2 and Figure 3.3, the asymptotic stability occurs when the delay   τ  

falls below the crucial point, which in this case is τ < 8.5. This causes the 

equilibrium E* to begin to lose its stability and ultimately results in the 

asymptotic stability. When the delay parameter  τ reaches the critical value, 
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which is denoted by the number τ ≥ 8.5, the equilibrium E* displays the 

complicated dynamics in the form of a Hopf bifurcation. This indicates that 

if the delay exceeds the critical value in the identification of infected 

individuals, the system that involves all three states and is involved in the 

epidemic will constantly remain in the vicious loop of repeating the epidemic 

after each cycle of delay length. Figure 3.4 and Figure 3.5 provide examples 

of stable periodic solutions with high amplitudes and limit cycle trajectories, 

respectively. This observation of the system's complicated behaviour, as 

indicated by (3.1)-(3.3) 
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Chapter 4 

Mathematical Analysis of SIR Model with Virus Mutation 

Using Delay Differential Equation 

4.1 Introduction             

In today's world, diseases are the most serious menace. Globalization, 

urbanization, and a slew of other variables are making life easier for us, but 

they are also key causes of sickness. These infections then spread like 

wildfire, resulting in widespread death. As a result, infectious disease 

modelling is critical in order to control outbreaks and prevent Endemics. It is 

a tool that is used to investigate the mechanisms by which solutions to manage 

the Endemic might be devised. An Endemic model is a simple way of 

describing how infectious diseases spread through a population. Mutation is 

a change in an organism's genes that results in differences that are handed 

down through generations through reproduction. The spread of the Endemic 

is heavily influenced by mutation. The immune system has a very specialized 

way of recognizing foreign substances. Immune cells or antibodies that detect 

one pathogen strain's proteins may not recognize proteins from another 

pathogen strain. As a result, virus mutations may enhance the virus's infection 

rate, rendering the vaccine ineffective. As a result, studying the transmission 

properties of altered viruses via mutation in the population is a worthwhile 

endeavour.  

Mathematical modelling of infectious diseases was initiated by Bernoulli 

Daniel (Bernoulli Daniel, 1760),(Gabriel & de la Harpe, 2010) . Since the 

work of Kermack and McKendrick, (Hernandez-Ceron et al., 2013),(Bacaër 

& Bacaër, 2011b),(Bacaër & Bacaër, 2011a) pioneered, compartment 

mathematical modelling has been a powerful tool for assessing infectious 

disease transmission and management. Just now, there has been a lot of focus 

on constructing realistic mathematical models for infectious disease 

transmission dynamics. Their SIR model is still used to model Endemics of 

infectious diseases. A deterministic SIR model is proposed, in which an 
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infected person's recovery is only dependent on how long they have been 

unwell, and recovered people are permanently immune to infection (Wang, 

1979). In a complete investigation of a generic class of SIRS Endemic models 

(Stech & Williams, 1981), the appropriate conditions that ensure that the 

endemic equilibrium solution are determined are globally stabile. Delays have 

a crucial role in population dynamics. The current dynamics of state variables, 

particularly in medical phenomena, are reliant not only on the current phase 

of the proceedings, but upon the past experience of the phenomenon also, i.e., 

on the previous state variables’ values. The temporal time lag may have an 

impact on the dynamics of infectious diseases. Many diseases, such as 

immunity period time lag (Q. Liu & Jiang, 2016),(Hao et al., 2013), infection 

period time lag (P. Yan & Feng, 2010), and incubation period time lag 

(Ashyani et al., 2016) ,(Safi & Gumel, 2011), (Naresh et al., 2011) ,(J. Liu et 

al., 2016) , have distinct types of delays when they spread. Considerable study 

has been conducted on the dynamical behaviours of the system with 

incubation time. Especially interesting are the features of recurring solutions 

originating from the Hopf-bifurcation. A variety of time-delayed Endemic 

models has been constructed for the study to obtain observation into the 

influence of time lag on the model's dynamic behaviour. The properties of 

solutions that are found repeatedly because of Hopf-bifurcation are 

particularly intriguing. Diverse time-delayed Endemic models have been built 

to examine the effect of time lag on the model’s dynamic behaviour. For age-

structured SEIR endemic models (Li et al., 2001) investigate whether or not 

there exists a positive solution and whether or not the steady state is stable. 

(Röst & Wu, 2008) explored the global stability, how infection age impacts 

infectivity in an SEIR model with a time lag. The study and control of 

infectious disease propagation and transmission was given by (Gao et al., 

2008) with two-time lags. (Kalra & Kumar, 2020) stability and sensitivity of 

model is performed using delay parameter. In a nonlinear SEIR model, (Tipsri 

& Chinviriyasit, 2015) looked at the influence of time lag on the stability and 

the direction of Hopf-bifurcation of recurring solutions 
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A mutation-based SIR Endemic model can capture these complex interactions 

between the virus and the host, allowing us to use analysis to explain more 

complex events. The evolutionary processes of mutations are taken into 

consideration in an Endemic model (Gubar et al., 2018). The amount of viral 

transformation to a susceptible chamber and the number of beneficial 

mutations by time t were both determined. To do this, a simple compartmental 

SIR model was created with a single parameter reflecting vaccination-induced 

transmission decrease. The model was then changed to include vaccination 

rate and short duration of immunity. It has been proven that a mutating disease 

can cause fluctuations in the number of affected people in a community 

(Girvan et al., 2002). A stochastic SIR model is intended to better depict the 

characteristics of a disease in practise, where minor influences can induce 

unexpected and sudden changes in transmission behaviour (Hale & Lunel, 

1993). (Schneider, 1982) When the model's parameters aren't considered as 

constants, adjoint equations and direct method are used to estimate the 

sensitivity functions. Two different layouts of infected and recovered 

population are reported by(Park & Bolker, 2020) and the effect of 

reproduction number on the shapes of infected and recovered population is 

studied.  (Kreck & Scholz, 2022) use the basic SIR model given by Kermack-

Mc Kendrick in 1927 for the analysis of Covid-19 and seems to be a black box 

for the improvement. (Rihan, 2003b) described adjoint and direct sensitivity 

analysis methods for numerical modelling employing delay differential 

equations.  

Keeping the above scenario in consideration, a mathematical model is 

proposed in this chapter, which studies the stability and existence of 

bifurcation in SIR model under the mutation factor, using delay differential 

equations. 

4.2 Mathematical model 

An infected person does not turn into infectious immediately but need a 

maturation time to become an infection vector. That maturation time is the 

incubation period and denoted by 𝜏 > 0. We suppose  S(t), I(t), R(t), are 
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respectively the susceptible population, infected population, and the removed 

population. The model depicting these dynamics is given as follows: 

ୢୗ

ୢ୲
= aS(t) − bS(t)I(t) + cR(t − τ)     (4.1) 

ୢ୍

ୢ୲
= bS(t)I(t) − dI(t)      (4.2) 

ୢୖ

ୢ୲
= dI(t) − (𝔇 + c)R(t − τ)          (4.3) 

Here: S(𝑡), I(t), R(t) are all positive for all t and R(t − τ) = k 

(constant) for t ∈ [0, τ]. 

 

Figure 4.1: Model's flowchart 

Table 4.1 : Description of the parameters of the system (4.1) - (4.3) 

Parameter Description Units 

a Susceptible Individuals' 

growth rate 

(day)-1 

b Rate of transmission  (day)-1 

    

c 

Rate at which the 
recovered ones become 
susceptible (mutation rate) 

(day)-1 

d Recovery rate (day)-1 

𝔇 Rate of permanent 

immunity 

(day)-1 

(𝔇 + c) Rate of total recovery (day)-1 

τ Time lag (day)-1 

All of the parameters can be assumed to be positive constants.  
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4.3 Endemic equilibrium 𝐄∗(𝐒∗ ≠ 𝟎, 𝐈∗ ≠ 𝟎, 𝐑∗ ≠ 𝟎) 

At equilibrium point R(t − τ) ≅ R. Endemic equilibrium E∗(S∗, I∗, R∗) 

is calculated as: 

ୢ୍∗

ୢ୲
= 0 ⇒ S∗(t) =

ୢ

ୠ
   

ୢୖ∗

ୢ୲
= 0 ⇒ I∗(t) =

ୟ(𝔇ାୡ)

𝔇ୠ
  

ୢୗ∗

ୢ୲
= 0 ⇒ R∗(t) =

ୟୢ

𝔇ୠ
  

Thus,E∗(S∗, I∗, R∗) = E∗ ቀ 
ୢ

ୠ
 ,

ୟ(𝔇ାୡ)

𝔇ୠ
 ,

ୟୢ

𝔇ୠ
 ቁ  

4.4 Boundedness of solutions 

Following lemma determines model solution’s boundedness. 

Lemma 4.1.  The model's entire solution is contained within the region 𝐷 =

ቄ(S(t), I(t), R(t)) ∈ 𝑅ା
ଷ:

(𝔇ାୡାୢ)

஦ౣ
≤ S(t) + I(t) + R(t) ≤

(ୟାଵାୢ)

஦
ቅ , 𝑎𝑠 t →

∞, for all positive initial values {S(0), I(0), R(0), N(t − τ) = 𝐾(Constant) for 

all t ∈ [0, τ]} ∈ 𝐷 ⊂ 𝑅ା
ଷ, where φ = min(1, d, 𝔇), and  φ୫ = max{a, d, c}. 

Proof: Consider the following function: W(t) = S(t) + I(t) + R(t),  

ୢ୵(୲)

ୢ୲
=

ୢ

ୢ୲
(S(t) + I(t) + R(t))  Using Equations (1) - (3) and  

φ = min(1, d, 𝔇).  and assuming that R(t − τ) ≈  R(t) as 𝑡 → ∞ ,  
ௗௐ(௧)

ௗ௧
≤

൫(a + 1 + d)൯ −  φW(t). Applying the comparison theorem, as t → ∞ :  

𝑊(t) ≤
(ୟାଵାୢ)

஦
.    Also again  

ௗௐ(௧)

ௗ௧
≤  φ୫W(t) − (𝔇 + c + d) , where φ୫ =

max{a, d, c} by Applying the comparison theorem, as t → ∞ :  𝑊(t) ≥

(𝔇ାୡାୢ)

஦ౣ
.    

Therefore, we have 
(𝔇ାୡାୢ)

஦ౣ
≤ S(t) + I(t) + R(t) ≤

(ଵାୟାୢ)

஦
 

S(t), I(t), and R(t) are thus uniformly confined at the end. The proof is 

finished.  
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4.5 Positivity of solutions 

The term "positivity" refers to the stability of a system. For positive solutions, 

one must show that Equations (1) – (3) provide all of the system's solutions, 

where initial conditions are S(0) > 0, I(0) > 0, R(0) > 0, ∀t and R(t − τ) =

k, for t ∈ [0, τ] , Models solutions (S(t), I(t), R(t) ) remain +ve for all time 

t > 0.  

By equation (4.2):  
ୢ୍(୲)

ୢ୲
 =  b. S(t). I(t) − d. I(t)   i. e    

ୢ୍(୲)

ୢ୲
≥ −d I(t)   i. e   

ୢ୍(୲)

୍
≥ −d  dt, I(t) ≥ 𝑘଴eିୢ୲, here 𝑘଴ is the integration constant. As a result, 

I(t) > 0 for all the time t. S and R have a similar argument. 

4.6 Hopf-bifurcation and Stability Analysis  

In the presence of endemic equilibrium E∗(S∗, I∗, R∗), the equation (4.1)–(4.3) 

implies, 

ୢୗ∗

ୢ୲
= aS∗(t) − bS∗(t)I∗(t) + cR∗(t − τ)   (4.4) 

ୢ୍∗

ୢ୲
= bS∗(t)I∗(t) − dI∗(t)     (4.5) 

ୢୖ∗

ୢ୲
= dI∗(t) − (𝔇 + c)R∗(t − τ)    (4.6) 

The characteristic equation of system (4.4)-(4.6) about the endemic 

equilibrium 𝐸∗is given by: 

อ

λ − mଵ −mଶ −mଷ

−mସ λ − mହ −m଺

−m଻ −m଼ λ − mଽ

อ = 0                                         (4.7) 

Where  mଵ =  a − bI∗ , mଶ = bI∗  , mଷ = 0  , mସ = bS∗, mହ =  bS∗ − d,  

m଺ = d,  m଻ = 𝒸eି஛த, m଼ = 0,  mଽ = −(𝔇 + c)eି஛த 

The equation (4.7) after expanding become: 

λଷ + Pଵλଶ + Pଶλ + (Pଷλଶ + Pସλ +  Pହ)eି஛த = 0               (4.8) 
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Where Pଵ = d + b(I∗ − S∗) − a,   Pଶ = a(bS∗ − d) + bdI∗ , Pଷ = (𝔇 + c),  

Pସ = (𝔇 + c)(d + b(I∗ − S∗) − a),  Pହ = (𝔇 + c)(bdI∗ +  a(bS∗ − d) −

 bcdI∗) , Where Pଵ, Pଶ, Pଷ, Pସ, Pହ are all positive . 

When τ = 0, the equation (4.8) becomes: 

λଷ + Pଵλଶ + Pଶλ + (Pଷλଶ + Pସλ +  Pହ) = 0                 

λଷ + (Pଵ + Pଷ)λଶ + (Pଶ + Pସ)λ +  Pହ = 0                             (4.9) 

By Routh-Hurwitz’s criteria implies that when τ = 0 , E∗(S∗, I∗, R∗), the 

endemic equilibrium is locally asymptotically stable equilibrium, if  

(ℋଵ):  Pହ > 0 , (Pଵ + Pଷ) > 0, (Pଶ + Pସ) > 0, (Pଵ + Pଷ)(Pଶ + Pସ) >  Pହ  

Hold, the incubation period parameter can influence the stability of 

E∗(S∗, I∗, R∗), and Hopf-bifurcation may appear whenever the time lag 

parameter going beyond a critical point value, as demonstrated in the 

following. 

Lemma - 4.2 Supposed that the condition ℋଵare satisfied, the equation (4.8) 

with τ =  τ ୨(j = 0,1. . . ) has a simple pair of conjugate purely complex roots 

±𝑖𝜔଴, were 

 τ ୨ =
1

𝜔଴
 ቊarccos

𝜔଴[𝑃ଵ𝜔଴(𝑃ହ − 𝑃ଷ𝜔଴
ଶ) +  𝑃ସ(𝜔଴

ଷ − 𝑃ଶ𝜔଴] 

(𝑃ହ − 𝑃ଷ𝜔଴
ଶ)ଶ +  𝑃ସ

ଶ𝜔଴
ଶ

+  2𝑗𝜋ቋ    𝑗 = 0,1,2,3,4 … … … … .. 

Further we have the following 

1. If τ ∈ [0, 𝜏଴), all zeros of equation (4.8) (4.9) have -ve real parts. 

2. If τ = 𝜏଴, equation (4.8)  has a set of conjugate purely complex zeros 

±𝑖𝜔଴, all the other zeros have -ve real parts. 

Proof. The equation (4.8)  has a solution λ = 0, iff Pହ= 0. This directly oppose 

to the third condition in (ℋଵ). Therefore, the equation (4.8)  has not a solution 
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λ = 0. Let for some value of τ ≥ 0, The equation (4.8)  has a solution  λ = 𝑖𝜔 

,where 𝜔 > 0.       

(𝑖ω)ଷ + Pଵ(𝑖ω)ଶ + Pଶ(𝑖ω) + (Pଷ(𝑖ω)ଶ + Pସ(𝑖ω) +  Pହ)eି୧னத = 0 

[−𝑖ωଷ − Pଵωଶ + Pଶiω] + [Pଷωଶ −  Pସ𝑖ω − Pହ](𝑖sin ωτ −  cos ωτ) = 0  

This implies: − Pଵωଶ + (Pହ − Pଷω଴
ଶ) cos( ωτ) + Pସω sin( ωτ) = 0       

Pଶω − ωଷ − (Pହ − Pଷω଴
ଶ) sin( ωτ) + Pସω cos( ωτ) = 0 

(Pହ − Pଷωଶ) cos( ωτ) + Pସω sin( ωτ) =  Pଵωଶ     (4.10) 

Pସw cos( ωτ) − (Pହ − Pଷωଶ) sin( ωτ) = ωଷ − Pଶω               (4.11) 

Squaring and adding equations     (4.10) and                (4.11) we get 

ω଺ + ൫Pଵ
ଶ − Pଷ

ଶ − 2Pଶ൯ωସ + ൫2PଷPହ − Pସ + Pଶ
ଶ൯ωଶ + ൫−Pହ

ଶ൯ = 0                                                                                

(4.12) 

Let α = ൫Pଵ
ଶ − Pଷ

ଶ − 2Pଶ൯, β = ൫2PଷPହ − Pସ + Pଶ
ଶ൯,  γ = ൫−Pହ

ଶ൯,    

and   ωଶ = 𝑦   

Equation (4.12) Implies:  𝑦ଷ + 𝛼𝑦ଶ + 𝛽𝑦 + 𝛾 = 0   (4.13) 

Let  𝑦ଵ, 𝑦ଶ, 𝑦ଷ denotes the three roots of the equation                                                                                

(4.12) so they have the following relation, 

𝑦ଵ + 𝑦ଶ + 𝑦ଷ = −𝛼,  𝑦ଵ. 𝑦ଶ. 𝑦ଷ =  −𝛾   (4.14) 

It is clear from the second equation of  (4.14) that reliant on the value of 

the determinant 𝐷ଵ there exist one or all positive real roots of equation  (4.13), 

where 𝐷ଵ = ቀ 
௉ 

ଷ
ቁ

ଶ

+ ቀ 
ொ 

ଷ
ቁ

ଶ

  and 𝑃 = 𝛽 −
ଵ

ଷ
 𝛼ଶ, 𝑄 =

ଶ

ଶ଻
 𝛼ଷ −

ଵ

ଷ
𝛼𝛽 + 𝛾.   here 

are three cases for the solution of equation  (4.13) 

Case-I:  If 𝐷ଵ  >  0, There is a real root and two conjugate imaginary roots in 

equation  (4.13). The positive real root of equation  (4.13) is given by  𝑦ଵ =

2. ට−
ொ

ଶ
+ ඥ𝐷ଵ

య
−

ଵ

ଷ
𝛼     
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Case-II:  If 𝐷ଵ =  0, There are three real roots in equation  (4.13), two of 

which are same. Especially if  𝛼 >  0, only one +ve solution exists, 𝑦ଵ =

2. ට−
ொ

ଶ
  

య
−

ଵ

ଷ
𝛼 . if 𝛼 <  0 there exist either a +ve real root 𝑦ଵ = 2. ට−

ொ

ଶ
 

య
−

ଵ

ଷ
𝛼   for    ට−

ொ

ଶ
   

య
>  −

ଵ

ଷ
𝛼 and three positive real roots for 

ఈ

଺
 < ට−

ொ

ଶ
   

య
<

−
ଵ

ଷ
𝛼; 𝑦ଵ = 2. ට−

ொ

ଶ
  

య
−

ଵ

ଷ
𝛼 ,  𝑦ଶ = 𝑦ଷ = −ට−

ொ

ଶ
  

య
−

ଵ

ଷ
𝛼 . 

Case-III: If  𝐷ଵ  <  0  there exist three distinct real root of the equation  (4.13) 

as 𝑦ଵ = 2. ට
|௉|

ଷ
 cos(

௞

ଷ
) −

ଵ

ଷ
𝛼   𝑦ଶ = 2. ට

|௉|

ଷ
 cos(

௞

ଷ
+

ଶగ

ଷ
) −

ଵ

ଷ
𝛼, 𝑦ଶ =

2. ට
|௉|

ଷ
 cos(

௞

ଷ
+

ସగ

ଷ
) −

ଵ

ଷ
𝛼, where  cos 𝑘 = ቌ−

ொ

ଶ ටቀ
|ು|

య
ቁ

య
ቍ ; 0 < 𝑘 < 𝜋  

Further if 𝛼 >  0 there exist only one positive real root of the equation  (4.13) 

otherwise if 𝛼 <  0  one or all +ve real roots may exist. If there is one +ve 

real root, will be equivalent to ma𝑥{𝑦ଵ, 𝑦ଶ, 𝑦ଷ}. 

Clearly the positive real solutions of the equation  (4.13) depend upon sign of 

𝛼. When 𝛼 ≥ 0, the equation  (4.13) has one +ve real root otherwise there may 

exist three real roots. It is easy to prove that  𝛼 = ൫Pଵ
ଶ − Pଷ

ଶ − 2Pଶ൯ > 0 

Hence equation  (4.13) has only one +ve real root. 

Let we denote the root by 𝑦଴. Thus, only one positive real equation                                                                                

(4.12) has, given by ω଴ = ඥ𝑦଴ , we have from the     (4.10) and (4.11). 

cos(ω଴τ) ൣ(Pହ − Pଷω଴
ଶ)ଶ + Pସ

ଶω଴
ଶ൧

=  ω଴[Pଵ𝜔଴(Pହ − Pଷω଴
ଶ) +  Pସ(ω଴

ଷ − Pଶω଴)]   

cos(𝜔଴τ) = 𝜔଴
௉భఠబ൫௉ఱି௉యఠబ

మ൯ା ௉ర(ఠబ
యି௉మఠబ)  

(௉ఱି௉యఠబ
మ)మା ௉ర

మఠబ
మ   

We denote  τ ୨ =
ଵ

ఠబ
 ቄarccos

னబ[୔భఠబ൫୔ఱି୔యனబ
మ൯ା ୔ర(னబ

యି୔మனబ)] 

(୔ఱି୔యனబ
మ)మା ୔ర

మனబ
మ +  2jπቅ    𝑗 =

0,1,2,3, …                                                                                             (4.15) 
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Then ±𝑖𝜔଴ , purely complex solution of the equation (4.9) with τ =  τ ୨ (j =

0,1. . . ).we also know that if the ℋଵ condition are met, every root of equation 

(4.9) with τ = 0 have negative real components. We get result of Lemma - 

4.1 by summarizing the above discussion. 

Theorem-4.1: Suppose the conditions of ℋଵare satisfied. If τ ∈ [0, 𝜏଴), all 

solutions of equation (4.8) have -ve real component, this implies asymptotical 

stability of the solutions of the equations (4.4)-(4.6).  

From prior description, we have the following utilising the classic Hopf-

bifurcation theorem for delayed functional differential equations (Hale & 

Lunel, 1993). 

Lemma-4.3:  Assume ℎ(𝑦଴)  =  (3𝑦଴
ଶ  +  2𝛼𝑦଴  +  𝛽)  ≠  0 and the 

conditions in (ℋଵ)are satisfied. For (j=0,1...), denote λ(τ)  =  φ(τ)  +  iω(τ) 

be the solution of equation (4.8) satisfying φ൫τ୨൯ =  0;  ω൫τ୨൯ =  ω଴, where 

 τ ୨ =
ଵ

ఠబ
 ቄarccos

னబ[୔భఠబ൫୔ఱି୔యனబ
మ൯ା ୔ర(னబ

యି୔మனబ)] 

(୔ఱି୔యனబ
మ)మା ୔ర

మனబ
మ +  2jπቅ    j =

0,1,2,3,4 … . ., When ±𝑖𝜔଴ are simple purely imaginary roots of (4.8). If the 

transversality condition   𝜑/൫τ୨൯ = ቀ
ୢୖୣ஛(த)

ୢத
ቁ

ఒୀ௜ன଴
≠  0 holds, for system of 

equations (4.4) - (4.6) a Hopf-bifurcation occurs at τ =  τ୨.           

Proof. Let the root of equation (4.8) be λ =  λ(τ). By placing the value of 

λ(τ) in (4.8) and differentiating both side of equation (4.8) w.r.t. τ, we have; 

ൣ(3λଶ + 2Pଵλ + Pଶ) + (Pଷλଶ + Pସλ + Pହ)(−τ)eି஛த

+ (2Pଷλ + Pସ)eି஛த൧
dλ

dτ
= λ(Pଷλଶ + Pସλ + Pହ)eି஛த 

Thus  ቀ
ୢ஛

ୢத
ቁ

ିଵ

=  
൫ଷ஛మାଶ୔భ஛ା୔మ൯ୣಓಜ

஛(୔య஛మା୔ర஛ା୔ఱ)
+  

(ଶ୔య஛ା୔ర)

஛(୔య஛మା୔ర஛ା୔ఱ)
−

த

஛
 

From equation (4.10)-(4.13) we have  

𝜑/൫𝜏௝൯ = Re ቈ
(3λଶ + 2Pଵλ + Pଶ)e஛த

λ(Pଷλଶ + Pସλ + Pହ)
቉ + Re ቈ

(2Pଷλ + Pସ)

λ(Pଷλଶ + Pସλ + Pହ)
቉ 
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𝜑/(𝜏଴) =
1

(Pହ − Pଷω଴
ଶ)ଶ + Pସ

ଶω଴
ଶ

ൣ3ω଴
଺ + 2൫Pଵ

ଶ − Pଷ
ଶ − 2Pଶ൯ω଴

ସ

+ (2PଷPହ − Pସ)ω଴
ଶ

 ൧ 

𝜑/(𝜏଴) =
1

∆
[3ω଴

଺ + 2αω଴
ସ + βω଴

ଶ ] =  
ω଴

ଶ

∆
[3ω଴

ସ + 2αω଴
ଶ + β ]

=
ω଴

ଶ

∆
 ℎ(𝑦଴) 

Where ∆= (Pହ − Pଷω଴
ଶ)ଶ +  Pସ

ଶω଴
ଶ Notice that ∆> 0 𝑎𝑛𝑑  ω଴ > 0,  we 

conclude that 𝑆𝑖𝑔𝑛ൣ𝜑/(𝜏଴)൧ = 𝑠𝑖𝑔𝑛[ℎ(𝑦଴)]  This proves the Lemma-4.2. 

4.7 Directional analysis of Hopf-bifurcating solution 

In the last section, at the critical point values, a set of recurrent solutions 

obtained which bifurcates from the positive steady state E*. Using the normal 

form theory and manifold reduction proposed by (Schneider, 1982), an 

explicit formula for finding the characteristics of the Hopf-bifurcation at the 

critical value τ୨will be derived in this section. 

Let 𝑢ଵ = S − S∗, 𝑢ଶ = I − I∗, 𝑢ଷ = R − R∗ and the delay 𝜏 can be normalizing 

by time scaling t →
୲

த
 , equations (4.1)-(4.3) are transformed into 

ୢ௨భ

ୢ୲
= (a − bI∗)𝑢ଵ − bS∗𝑢ଶ + c𝑢ଷ(t − 1) − b𝑢ଵ𝑢ଶ + cR∗(t − 1)         (4.16)

ୢ௨మ

ୢ୲
= bI∗𝑢ଵ + (bS∗ − d)𝑢ଶ + b𝑢ଵ𝑢ଶ                                                (4.17) 

ୢ௨య

ୢ୲
= d𝑢ଶ − (𝔇 + c)𝑢ଷ(t − 1) − (𝔇 + c)R∗(t − 1)                             (4.18) 

Thus, in the phase 𝒫 = 𝒫൫[−1,0], ℛା
ଷ൯ work can be done. Without losing of 

the generality, we denote the critical value τ୨ by τ଴. Let τ = τ଴ + 𝜇, then the 

system of equations (4.16) - (4.18) has  𝜇 = 0 a Hopf-bifurcation value. 

Rewrite this system as follows for ease of notation: 

𝑢ᇱ(𝑡) = 𝐿ఓ(𝑢௧) + 𝐹(𝜇, 𝑢௧)                                  (4.19) 
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Where 𝑢(𝑡) = (𝑢ଵ(𝑡), 𝑢ଶ(𝑡), 𝑢ଷ(𝑡) )் ∈ ℛଷ, 𝑢௧(𝜃) ∈ 𝒫 is defined by 

𝑢௧(𝜃) = 𝑢௧(t + 𝜃), and  

 𝐿ఓ: 𝒫 → ℛ,   𝐹: ℛ × 𝒫 → ℛ are given, respectively by  

𝐿ఓ∅ = (τ଴ + 𝜇) ൥
a − bI∗ −bS∗ 0

bI∗ (bS∗ − d) 0
0 d 0

൩ ቎

∅ଵ(0)

∅ଶ(0)

∅ଷ(0)
቏

+ (τ଴ + 𝜇) ൥
0 0 𝑐
0 0 0
0 0 −(𝔇 + c)

൩ ቎

∅ଵ(−1)

∅ଶ(−1)

∅ଷ(−1)
቏ 

And 𝐹(𝜇, ∅) = (τ଴ + 𝜇) ൥

𝐹ଵ

𝐹ଶ

𝐹ଷ

൩ respectively where 𝐹ଵ = −b∅ଵ(0)∅ଶ(0), 𝐹ଶ =

b∅ଵ(0)∅ଶ(0), 𝐹ଷ = 0, ∅(𝜃) = ൫∅ଵ(𝜃), ∅ଶ(𝜃), ∅ଷ(𝜃)൯
்

∈ 𝒫൫[−1,0], ℛା
ଷ൯.  

By representation theorem given by F. Riesz (Fuglede, 1955), there occur a 

function 𝜂(𝜃, 𝜇) of bounded variation for 𝜃 ∈ [−1,0], so that  𝐿ఓ∅ =

∫ 𝑑
଴

ିଵ
𝜂(𝜃, 0)∅(𝜃) for ∅ ∈ 𝒫  .  In fact, choose  

𝐿ఓ∅ = (τ଴ + 𝜇) ൥
a − bI∗ −bS∗ 0

bI∗ (bS∗ − d) 0
0 d 0

൩ ቎

∅ଵ(0)

∅ଶ(0)

∅ଷ(0)
቏

+ (τ଴ + 𝜇) ൥
0 0 𝑐
0 0 0
0 0 −(𝔇 + c)

൩ ቎

∅ଵ(−1)

∅ଶ(−1)

∅ଷ(−1)
቏ 

Here 𝛿 is Dirac delta function.  For ∅ ∈ 𝒫൫[−1,0], ℛା
ଷ൯, the system (4.19) is 

equivalent to  

𝑢ᇱ(𝑡) = 𝒜(𝜇)𝑢௧ + ℱ(𝜇)𝑢௧                    (4.20) 

For 𝜓 ∈ 𝒫ଵ൫[−1,0], ℛା
ଷ൯, define 

𝒜∗𝜓(𝑠) = ቐ
−

ௗట(௦)

ௗ௦
, 𝑠 ∈ [−1,0)

∫ 𝑑
଴

ିଵ
𝜂்(−𝑡, 0)𝜓(−𝑡), 𝑠 = 0.

  And bilinear inner product  
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< 𝜓(𝑠), ∅(𝜃) > = 𝜓(0)∅(0)— 10 ∫ 𝜓(𝜉 − 𝜃)𝑑𝜂(𝜃)𝜙(𝜉)
ఏ

కୀఏ
𝑑𝜉     

 (4.21) 

Since 𝑖𝜔଴ are eigen values of 𝒜(0) 𝑎𝑛𝑑 𝒜∗,𝒜 = 𝒜(0) are adjoint operators. 

Thus they become the eigen values of𝒜∗.Suppose that 𝑞(𝜃) = 𝑞(0)𝑒௜னబఏ is a 

latent vector of 𝒜(0) corresponding to the proper value 𝑖𝜔଴. Then 𝒜(0) =

 𝑖ω଴ 𝑞(𝜃). When 𝜃 = 0, ቂ𝑖𝜔଴𝐼 − ∫ 𝑑𝜂(𝜃)𝑒௜ఠబఏ଴

ିଵ
ቃ 𝑞(0) = 0, this gives 

𝑞(0) = (1, 𝑣ଵ, 𝑣ଶ)் where 

𝑣ଵ =
(ୟିୠ୍∗)ି௜னబ

ୠୗ∗   𝑎𝑛𝑑 𝑣ଶ =
ୢ (௜னబି(ୟିୠ୍∗))

௜னబୠୗ∗   

By the same way it can be proved that 𝑞∗(𝑠) = 𝐷(1, 𝑣ଵ
∗, 𝑣ଶ

∗)𝑒௜னబதబ௦ represent 

the latent value of 𝒜∗ corresponds to latent vector  −𝑖ω଴, where 𝑣ଵ
∗ =

(ୟିୠ୍∗)ା௜னబ

ୠୗ∗
    𝑎𝑛𝑑 𝑣ଶ

∗ =
ୢ (௜னబା(ୟିୠ୍∗))

௜னబୠୗ∗
  . the value of D is required to assure 

that  < 𝑞∗(𝑠), 𝑞(𝜃) > = 1, From equation (4.20),  < 𝑞∗(𝑠), 𝑞(𝜃) >  =

𝐷൫1, 𝑣ଵ
∗, 𝑣ଶ

∗൯(1, 𝑣ଵ, 𝑣ଶ)் −

∫ ∫ 𝐷൫1, 𝑣ଵ
∗, 𝑣ଶ

∗൯𝑒ି௜னబதబ(కିఏ)𝑑𝜂(𝜃)(1, 𝑣ଵ, 𝑣ଶ)்𝑒௜னబதబ
ఏ

కୀఏ

଴

ିଵ
𝑑𝜉  

= 𝐷 ቄ1 + 𝑣ଵ𝑣ଵ
∗ + 𝑣ଶ𝑣ଶ

∗ − ∫ ൫1, 𝑣ଵ
∗, 𝑣ଶ

∗൯
଴

ିଵ
𝜃𝑒௜னబதబఏ(1, 𝑣ଵ, 𝑣ଶ)்ቅ   

= 𝐷൛1 + 𝑣ଵ𝑣ଵ
∗ + 𝑣ଶ𝑣ଶ

∗ + τ଴𝑣ଵ
∗𝑊∗(𝛽𝑣ଶ − 𝛼𝑣ଵ)𝑒௜னబதబൟ  

Hence, choose 𝐷 =
ଵ

൫ଵା௩భ௩భ
∗ା௩మ௩మ

∗ାதబ௩భ
∗ௐ∗(ఉ௩మିఈ௩భ)௘೔ಡబಜబ൯

  

such that < 𝑞∗(𝑠), 𝑞(𝜃) > = 1, < 𝑞∗(𝑠), 𝑞(𝜃) > = 0.  

By following K. R. Schneider, Hassard, B. D. (Li et al., 2001) approach we 

compute the coordinates describing the ‘centre manifold’  𝒫଴ at 𝜇 = 0 by 

using the same notations. manifold 𝒫଴ at 𝜇 = 0. Let equation (4.19) has 

solution  𝑢௧ with 𝜇 = 0. We Define 

𝑧(𝑡) =< 𝑞∗(𝑠), 𝑢௧(𝜃) >, 

  W(𝑡, 𝜃) = 𝑢௧(𝜃) − 2𝑅𝑒(𝑧(𝑡)𝑞(𝜃))                (4.22) 
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On the centre manifold 𝒫଴,  W(𝑡, 𝜃) = W ቀ𝑧(𝑡), 𝑧(𝑡), 𝜃ቁ 

In the direction of 𝑞∗ and 𝑞∗ the local coordinates for centre manifold 𝒫଴ are 

𝑧 and 𝑧. Note that 𝑢௧ is real is the necessary condition for 𝑊  is real. For 

solution 𝑢௧ ∈ 𝒫଴ of equation (4.20), since 𝜇 = 0,      𝑧ᇱ(𝑡) = 𝑖ω଴τ଴𝑧+<

𝑞∗(𝜃), 𝐹൫0, 𝑊(𝑧, 𝑧, 𝜃) + 2𝑅𝑒൫𝑧(𝑡)𝑞(𝜃)൯ ൯ >  

= 𝑖ω଴τ଴𝑧 + 𝑞∗(0) 𝐹൫0, W(𝑧, 𝑧, 0) + 2𝑅𝑒൫𝑧(𝑡)𝑞(𝜃)൯ ൯  ≡ 𝑖ω଴τ଴𝑧 +

𝑞∗(0)𝐹଴(𝑧, 𝑧) 

Rewrite this equation as: 𝑧ᇱ(𝑡) = 𝑖ω଴τ଴𝑧(𝑡) + 𝑔(𝑧, 𝑧)                   (4.23) 

Where 𝑔(𝑧, 𝑧) = 𝑞∗(0)𝐹଴(𝑧, 𝑧) = 𝑔ଶ଴(𝜃)
௭మ

ଶ
+ 𝑔ଵଵ(𝜃)𝑧𝑧 + 𝑔଴ଶ(𝜃)

௭
మ

ଶ
+

𝑔ଶଵ(𝜃)
௭మ௭

ଶ
+ ⋯                                                                                         (4.24) 

As 𝑢௧(𝜃) = (𝑢ଵ௧, 𝑢ଶ௧, 𝑢ଷ௧  ) =  W(𝑡, 𝜃) + 𝑧 𝑞(𝜃) + 𝑧𝑞(𝜃) and 𝑞(0) =

(1, 𝑣ଵ, 𝑣ଶ)்e୧னబதబ஘, so 𝑢ଵ௧(0) = 𝑧 + 𝑧 + Wଶ଴
(ଵ)(0) 

௭మ

ଶ
+ Wଵଵ

(ଵ)(0)  𝑧𝑧 +

W଴ଶ
(ଵ)(0) 

௭
మ

ଶ
+ ⋯, 

𝑢ଶ௧(0) = 𝑣ଵ + 𝑣ଵ 𝑧 + Wଶ଴
(ଶ)(0)

௭మ

ଶ
+ Wଵଵ

(ଶ)(0) 𝑧𝑧 + W଴ଶ
(ଶ)(0)

௭
మ

ଶ
+ ⋯, 

𝑢ଷ௧(0) = 𝑣ଶଵ
𝑧 + 𝑣ଶଵ

 𝑧 + Wଶ଴
(ଷ)(0)

௭మ

ଶ
+ Wଵଵ

(ଷ)(0) 𝑧𝑧 +

W଴ଶ
(ଷ)(0)

௭
మ

ଶ
+ ⋯, 

𝑢ଵ௧(−1) = 𝑧𝑒ି௜னబதబ + 𝑧𝑒௜னబதబ + Wଶ଴
(ଵ)(−1)

௭మ

ଶ
+ Wଵଵ

(ଵ)(−1) 𝑧𝑧 +

W଴ଶ
(ଵ)(−1)

௭
మ

ଶ
+ ⋯,  

𝑢ଶ௧(−1) = 𝑣ଵ𝑒ି௜னబதబ𝑧 + 𝑣ଵ 𝑒௜னబఛబ  𝑧 + Wଶ଴
(ଶ)(−1)

௭మ

ଶ
+ Wଵଵ

(ଶ)(−1) 𝑧𝑧 +

W଴ଶ
(ଶ)(−1)

௭
మ

ଶ
+ ⋯, 
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As a result of comparing coefficients with equation (4.24) we get:  𝑔ଶ଴ = 

𝐷(1, 𝑣ଵ, 𝑣ଶ)𝑓௭మ ,  𝑔଴ଶ = 𝐷൫1, 𝑣ଵ, 𝑣ଶ
∗ ൯𝑓

௭
మ ,  𝑔ଵଵ =

 𝐷൫1, 𝑣ଵ, 𝑣ଶ
∗ ൯𝑓௭௭, 𝑔ଶଵ =  𝐷൫1, 𝑣ଵ, 𝑣ଶ

∗ ൯𝑓௭మ௭  

In order to find the value of  𝑔ଶଵ, the computation of Wଶ଴(𝜃) and Wଵଵ(𝜃) 

should be prioritised. From the equations (4.20) and (4.22) ; 

Let Wᇱ = 𝒜W + 𝐻(𝑧, 𝑧, 𝜃),                                               (4.25) 

Where  𝐻(𝑧, 𝑧, 𝜃) = 𝐻ଶ଴(𝜃)
௭మ

ଶ
+ 𝐻ଵଵ(𝜃)𝑧𝑧 + 𝐻଴ଶ(𝜃)

௭
మ

ଶ
+

𝐻ଶଵ(𝜃)
௭మ௭

ଶ
+ ⋯,       (4.26) 

However, in lieu, on 𝒫଴ close to the origin Wᇱ = W௭𝑧ᇱ + W௭𝑧
ᇱ
 

Simplifying and equating the coefficients, we get 

[𝒜 − 2𝑖ω଴𝐼]Wଶ଴(𝜃) = −𝐻ଶ଴(𝜃),   𝒜Wଵଵ(𝜃) = −𝐻ଵଵ(𝜃)      (4.27) 

By equation (4.20), for 𝜃 ∈ [−1,0),    

𝐻(𝑧, 𝑧, 𝜃) = −𝑞∗(0)𝐹଴𝑞(𝜃) − 𝑞∗(0)𝐹଴ 𝑞(𝜃) = −𝑔𝑞(𝜃) − 𝑔  𝑞(𝜃)  

Comparing the coefficients with (4.23) for 𝜃 ∈ [−1,0] that  

𝐻ଶ଴(𝜃) = −𝑔ଶ଴𝑞(𝜃) − 𝑔଴ଶ 𝑞(𝜃),  𝐻ଵଵ(𝜃) = −𝑔ଵଵ𝑞(𝜃) − 𝑔ଵଵ 𝑞(𝜃). 

From equations (4.23) & (4.26) and the definition of 𝐴 we obtain 

Wଶ଴(𝜃) = 2𝑖ω଴τ଴Wଶ଴(𝜃) + 𝑔ଶ଴𝑞(𝜃) + 𝑔଴ଶ 𝑞(𝜃) 

Solving for Wଶ଴(𝜃):   Wଶ଴(𝜃) =
௜௚మబ

னబதబ
𝑞(0)𝑒௜னబதబఏ +

௜௚బమ

ଷఠబఛబ
𝑞(0)𝑒ି௜னబதబఏ + 𝐸ଵ𝑒ଶ௜னబதబఏ ,  

And similarly,  Wଵଵ(𝜃) =
ି௜௚భభ

னబதబ
𝑞(0)𝑒௜னబதబఏ +

௜௚భభ

ఠబఛబ
𝑞(0)𝑒ି௜னబதబఏ + 𝐸ଶ  

The three-dimensional vectors 𝐸ଵ and 𝐸ଶ,can be determined by setting 

𝜃 = 0 in 𝐻. In fact since 𝐻(𝑧, 𝑧, 𝜃) = −2𝑅𝑒ൣ𝑞∗(0)𝐹଴𝑞(0)൧ + 𝐹଴, So 
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𝐻ଶ଴(𝜃) = −𝑔ଶ଴𝑞(𝜃) − 𝑔଴ଶ 𝑞(𝜃) + 𝐹௭మ,     𝐻ଵଵ(𝜃) = −𝑔ଵଵ𝑞(𝜃) − 𝑔ଵଵ 

𝑞(𝜃) + 𝐹௭௭ 

Where 𝐹଴ = 𝐹௭మ
௭మ

ଶ
+ 𝐹௭௭𝑧𝑧 + 𝐹

௭
మ

௭
మ

ଶ
+ ⋯    Hence combining the definition 

of 𝒜,  

∫ 𝑑
଴

ିଵ
𝜂(𝜃)Wଶ଴(𝜃) = 2𝑖𝜔଴𝜏଴Wଶ଴(0) + 𝑔ଶ଴𝑞(0) + 𝑔଴ଶ 𝑞(0) − 𝐹௭మ  and  

∫ 𝑑
଴

ିଵ
𝜂(𝜃)Wଵଵ(𝜃) = 𝑔ଵଵ𝑞(0) − 𝑔ଵଵ 𝑞(0) − 𝐹௭௭  .   

Notice that ቂ𝑖ω଴τ଴𝐼 − ∫ 𝑒௜னబதబఏ𝑑𝜂(𝜃)
଴

ିଵ
ቃ 𝑞(0) = 0 and ቂ−𝑖ω଴τ଴𝐼 −

∫ 𝑒ି௜னబதబఏ𝑑𝜂(𝜃)
଴

ିଵ
ቃ 𝑞(0) = 0,  Which Implies ቂ2𝑖ω଴τ଴𝐼 −

∫ 𝑒ଶ௜னబதబఏ𝑑𝜂(𝜃)
଴

ିଵ
ቃ 𝐸ଵ = 𝐹௭మ  and − ቂ∫ 𝑑𝜂(𝜃)

଴

ିଵ
ቃ 𝐸ଶ = 𝐹௭௭ 

Hence,

቎

(2𝑖𝜔଴ − (a − bI∗)) bS∗ −𝑐𝑒ିଶ௜னబதబ

−bS∗ (2𝑖𝜔଴ − (bS∗ − d)) 0

0 −d ൫2𝑖𝜔଴ + (𝔇 + c)𝑒ିଶ௜னబதబ൯

቏ 𝐸ଵ =

−2 ቎
b𝑣ଵ𝑒ି௜னబதబఏ

−b𝑣ଵ𝑒ି௜னబதబఏ

0

቏ and  ቎

(−(a − bI∗) bS∗ −𝑐

−bS∗ (−(bS∗ − d)) 0

0 −d (𝔇 + c)
቏ 𝐸ଶ =

−2 ቎
b𝑅𝑒{𝑣ଵ}𝑒௜னబதబఏ

−b𝑅𝑒{𝑣ଵ}𝑒௜னబதబఏ

0

቏  

The arguments can thus be used to express  𝑔ଶଵ the parameters. Based on the 

above study, every  𝑔௜௝ can be find out. As a result, the successive quantities 

can be find out:  

𝒫ଵ(0) =
௜

ଶனబதబ
ቀ𝑔ଵଵ𝑔ଶ଴ − 2|𝑔ଵଵ|ଶ −

|௚బమ|మ

ଷ
ቁ +

௚మభ

ଶ
 , 𝜇ଵ = −

ோ௘{஼భ(଴)}

ோ௘{ఒᇲ(ఛబ)}
, 

𝛽ଵ = 2𝑅𝑒{𝑃଴(0)},  

𝑇ଵ = −
ூ௠{஼భ(଴)}ାఓమூ௠ ൛ఒᇲ(ఛబ)ൟ

னబதబ
                        (4.28) 
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Theorem 4.7.1: 𝜇ଵ gives the direction of Hopf-bifurcation. If 𝜇ଵ >

0(𝜇ଵ < 0), then the Hopf bifurcation is supercritical (subcritical) and 

bifurcating periodic solutions exist for τ > τ଴ (τ < τ଴). 𝛽ଵ gives the stability 

of bifurcating solutions and are orbitally asymptotically stable (unstable) if 

𝛽ଵ < 0 (𝛽ଵ > 0 ). The value of 𝑇ଵ defines the period if  𝑇ଵ > 0 (𝑇ଵ < 0 ) the 

bifurcating periodic solution’s period increases (decreases) . 

4.8 Numerical Example 

Numerical simulation is carried by using the following values:  

a = 0.147, b = 0.1, c = 0.0001, d = 0.8 , 𝔇 = 0.0749 ,                   

𝐸∗( S∗ = 2.78007 , I∗ = 0.0932, R∗ = 25.8356) with starting values: 

S(0)  =  10 , I(0)  = 10, R(0)  =  10. 

 

Figure 4.2 : When the time delay parameter τ has value less than 7.15, i.e., τ < 7.15, 

the Equilibrium    𝐸∗( 𝑆∗  ,  𝐼∗ , 𝑅∗)  demonstrates asymptotic stability 
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Figure 4.3 : Phase space view when the time delay parameter τ has value less than 

7.15, i.e., τ < 7.15, the Equilibrium E*(S*, I*, R*) demonstrates asymptotic 

stability.  

 

 

Figure 4.4 : The Equilibrium E*(S*, I*, R*) shows Hopf-bifurcation when the time 

delay parameter τ crosses the critical   point value i.e., 𝜏 ≥ 7.15 
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Figure 4.5 : Phase space view of the Equilibrium E*(S*, I*, R*) shows Hopf-

bifurcation when the time delay parameter τ crosses the critical   point value i.e., 

𝜏 ≥ 7.15 

4.9 State variable sensitivity analysis with respect to model 

parameters 

The model in this study includes constant parameters. To calculate the general 

sensitivity coefficients, the 'Direct Method' is used. In this method we assume 

that all parameters are constants, and then estimates the sensitivity coefficients 

by solving sensitivity equations alongside the original system. If all of the 

parameters (a, b, c, d) in the system model (4.1) – (4.3) are presumed to be 

constants, all that required to conduct sensitivity analysis is to calculate the 

partial derivatives of the solution for each parameter. Consider model 

parameter ‘c’ as an example: partial derivatives of the solution (S, I, R) with 

respect to parameter ‘c’ give rise to the set of sensitivity equations: 

 
ୢୗభ

ୢ୲
= ൫a − bI(t)൯ Sଵ − bS(t) Sଶ + c Sଷ(t − τ)             (4.29) 

ୢୗమ

ୢ୲
= bI(t) Sଵ + bS(t) Sଶ − dSଶ                 (4.30) 

ୢୗయ

ୢ୲
= dSଶ − (𝔇 + c)Sଷ(t − τ)                (4.31) 

Where Sଵ =
பୗ

பୡ
, Sଶ =

ப୍

பୡ
, Sଷ =

பୖ

பୡ
 

R
(t

)
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The sensitivity of the state variables (S, I, R) with respect to the model 

parameter ‘c’ is then estimated using this system of sensitivity equations 

(4.29) – (4.31) and the original system of equations (4.1) – (4.3). Estimating 

the sensitivity of the state variables with regard to the parameters a, b and d 

follows a similar process and arguments. 

The parameter ‘c’ represents the mutation rate. As the mutation rate increases 

the system should tend to become stable. The same situation is depicted by the 

Figure 4.6,  Figure 4.7 and Figure 4.8. As the value of ‘c’ is increases from 

0.0001 to 0.0021, the system shift from limit cycle to asymptotic stability, and 

when it further increases from 0.0021 to 0.01 the system tends to become 

absolutely stable.   

 

Figure 4.6 : Time series graph depicting partial changes in the susceptible 

population S(t) for various values of the mutation rate ‘c’. 

.                                                    

∂S
/∂

c
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Figure 4.7 : Time series graph depicting partial changes in the infected population 

I(t) for various values of mutation rate ‘c’. 

 

Figure 4.8 : Time series graph depicting partial changes in the recovered population 

R(t) for various values of mutation rate ‘c’. 

 

 

∂I
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The parameter ‘a’ represents the growth rate of susceptible population. As the 

growth rate increases the system should tend to become stable. The same 

situation is depicted by the Figure 4.9, Figure 4.10 and Figure 4.11. As the 

value of ‘a’ is increases from 0.141 to 0.447, the system shift from limit cycle 

to asymptotic stability, and when it further increases from 0.447 to 0.647 the 

system tends to become absolutely stable. 

 

 

Figure 4.9 : Time series graph depicting partial changes in the susceptible 

population S(t) for various values of the growth rate ‘a’. 
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Figure 4.10 : Time series graph depicting partial changes in the infected population 

I(t) for various values of the growth rate ‘a’. 

 

Figure 4.11 : Time series graph depicting partial changes in the recovered 

population R(t) for various values of the growth rate ‘a’. 
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4.10 Discussion about basic reproduction number (𝑹𝟎) 

The basic reproduction number 𝑅଴ of an infection is defined as “the expected 

number of cases directly generated by one case in a population where all 

individuals are susceptible to infection” The value of 𝑅଴ is calculate here by 

next generation matrix approach. 

Let 𝐻 be the matrix of infection rates and 𝐾 be the matrix of transmission 

rates. 

𝐻 = ቂ
0 b
0 0

ቃ , 𝐾 = ൤
d 0

−d (𝔇 + c)
൨ such that |𝐾| = d(𝔇 + c) ≠ 0 

𝐾ିଵ = ൤
1/d 0

1/(𝔇 + c) 1/(𝔇 + c)
൨  

         𝐻𝐾ିଵ = ቂ
b/(𝔇 + c) b/(𝔇 + c)

0 0
ቃ  

The basic reproduction number 𝑅଴ is given by spectral radius of 𝐻𝐾ିଵ 

(Britton & Ouédraogo, 2018). Hence, 𝑅଴ = 𝜌(𝐻𝐾ିଵ) = b/(𝔇 + c)  

The comparison of three curves in the Figure 4.12 tells that the increase and 

decrease of the value of reproduction number 𝑅଴ has significant impact on the 

Infected population 𝐼. The reproduction number is directly proportion to 

transmission rate 𝑏  and inversely proportional to total recovery rate (𝔇 + 𝑐). 

If (𝔇 + 𝑐) = 0.075 is kept same for three curves, but 𝑏 is increased gradually 

that is 𝑏 = 0.0375 → 0.1 → 0.75, we get three increasing values of 𝑅଴that is 

𝑅଴ = 0.5 → 1.33 → 10. It is observed that the peak of infected population is 

reached on 11th day when the value of reproduction number 𝑅଴ = 0.5. But the 

infection spreads comparatively fast if the value of reproduction number 

increases to 𝑅଴ = 1.33 and the peak of infected population is reached on 3rd 

day. The infection spreads so rapidly that the steepest of these peaks of 

infected population is reached on 2nd day only, if the value of reproduction 

number 𝑅଴ = 10.  
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Figure 4.12 : The peaks of infected population for different values of reproduction 

number. 

Figure 13 shows the significance of reproduction number 𝑅଴ on recovered 

population 𝑅. As reproduction number 𝑅଴ is inversely proportional to total 

recovery rate (𝔇 + c). So, here the values of (𝔇 + c) are decreased, there is 

an increase in the values of reproduction number 𝑅଴. As the value of (𝔇 + c) 

is gradually decreased that is (𝔇 + c) = 0.75 → 0.2 → 0.1, the corresponding 

increased values of 𝑅଴ are 𝑅଴ = 0.13 → 0.5 → 10. The Figure 4.13 clearly 

tells that how the recovery rises and the system approaches stability with 

increasing values of 𝑅଴.  
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Figure 4.13 : The recovered population approaches stability with increasing value of 

reproduction number. 

4.11 Conclusion 

In this chapter an SIR model with virus mutation is analysed using delay 

differential equations. When the virus mutates, the recovered population 

losses its immunity and becomes susceptible again. The incubation period is 

denoted by τ.  For the study of stability, feasible non-zero equilibrium point 

𝐸∗ has been considered. The delay factor has been incorporated in the term 

defining recovered hosts. The nature of the roots of exponential characteristic 

equation formed by the system of equation (4.1) - (4.3) has been studied in 

detail using Routh-Hurwitz criteria and results of theory of equations with the 

help of lemmas (4.1) - (4.3). It is found that the system shows asymptotic 

satiability as long as the value of the time lag parameter 𝜏 is less than the 

critical point value that is 𝜏 < 7.15. The same fact is also shown by the Figure 

4.2 and the Figure 4.3 shows the phase view of asymptotic satiability. But, as 

soon as the value of time lag parameter 𝜏 crosses the critical point value that 

is 𝜏 ≥ 7.15, the system losses stability and the limit cycles are seen via Hopf- 

bifurcation. The same is also shown by Figure 4.4 and the Figure 4.5 

represents the phase space diagram of Hopf- bifurcation. The period, direction 

and stability of these bifurcating periodic solutions have also been 
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determined. The conditions for supercritical and subcritical bifurcating 

solutions have been laid down using an algorithm (Schneider, 1982). 

Sensitivity analysis has been carried out, telling us about the model 

parameters that are responsible for dynamic behaviour of the equilibrium 

point, apart from the delay parameter 𝜏. We used the direct method of 

sensitivity (Rihan, 2003b). The system is very sensitive to the model 

parameter ‘c’ as well as the parameter ‘a’ which represents the rate of 

mutation and growth rate respectively. As the value of ‘c’ and ‘a’ increase, 

the state variables S(t), I(t) and R(t) tends to move from limit cycles to more 

of asymptotic stability and finally to absolute stability as shown by Figure 4.6 

to Figure 4.11.  

The effect of reproduction number 𝑅଴ on the shapes of infected and recovered 

population is studied.  The Figure 4.12 shows that the peak of infected 

population is reached on 11th day when the value of reproduction number 

𝑅଴ = 0.5. But the infection spreads comparatively fast if the value of 

reproduction number increases to 𝑅଴ = 1.33 and the peak of infected 

population is reached on 3rd day. The infection spreads so rapidly that the 

steepest of these peaks of infected population is reached on 2nd day only, if 

the value of reproduction number 𝑅଴ = 10. The Figure 4.13 clearly tells that 

how the recovery rises and the system approaches stability with increasing 

values of 𝑅଴. 
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Chapter 5 

Modelling the Effect of Discrete Delay in SIR Epidemic 
Model with Logistic Growth 

5.1 Introduction                                 

To trace the mathematical modelling of epidemics back through history, we 

need to start with Daniel Bernoulli (Bacaër & Bacaër, 2011a; Bernoulli, 1766; 

Bernoulli Daniel, 1760; Gabriel & de la Harpe, 2010). By separating the 

population into three groups susceptible (S), infected (I), and recovered (R), 

Kermack and Mckendric  (“A Contribution to the Mathematical Theory of 

Epidemics,” 1927) propose a conventional SIR epidemic model. This SIR 

model is helpful for analysing illnesses nowadays. A large body of work has 

been devoted to the study of nonlinear incidence epidemic models, and the 

SIR disease transmission model has a similar amount of background research 

(Cooke, 1979; X. A. Zhang & Chen, 1999). Numerous models illustrate the 

dynamics of disease using simple differential equations with no time lag. To 

depict the genuine dynamical behaviour of models that rely on system history, 

time delays are suitable. In reality, delays in epidemic models make them 

more realistic by describing disease latency or immunity. Delay affects 

population dynamics. In many real-world processes, especially biological 

ones, state variable dynamics depend on past values. Delay may affect 

infectious dynamics. Many sicknesses spread slowly due to immunity period 

delays (Q. Liu et al., 2016; C. Xu & Li, 2018; R. Xu et al., 2010), infection 

period delays (Singh, 2022; P. Yan & Feng, 2010), and incubation period 

delays (Ashyani et al., 2016; S. Liu et al., 2015; Naresh et al., 2011). stability, 

attractiveness, tenacity, cyclic oscillation, chaotic behaviour, and bifurcation 

are studied extensively in population models with time delay. Hopf 

bifurcation periodic solutions are of special importance (Cao et al., 2021; 

Kaddar & Talibi Alaoui, 2009; Sun, Cao, et al., 2007; Sun, Han, et al., 2007; 

Wu et al., 2012; C. Yan & Jia, 2014). Multiple researchers have outlined the 

overall features of a delayed SIR model that includes both transient immunity 

and a nonlinear incidence rate (Kyrychko & Blyuss, 2005; Takeuchi et al., 
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2000; Wanduku & Ladde, 2012) , Considered the delay as a transient 

immunity interval and found the endemic equilibrium to be globally stable. 

This indicated that the delay did not have any impact on the system, which 

had a nonlinear incidence rate. (Muroya et al., 2011) proved that a 

nonmonotonic incidence rate delayed SIRS pandemic model is robust on a 

global scale, this showed that delay couldn't alter nonmonotonic system 

dynamics, also use Lyapunov function technique for the global stability 

analysis (Enatsu et al., 2012). Using a Lyapunov function, (McCluskey, 

2010b) SIR model was investigated with incubation period and nonlinear 

incidence rate for the global stability. Delays affect system dynamics, causing 

Hopf bifurcation. (Ashyani et al., 2016; J. Liu, 2016; Schneider, 1982; Wu et 

al., 2012; C. Yan & Jia, 2014; J. Zhang et al., 2009; T. Zhang et al., 2010; Y. 

Zhang et al., 2021) addressed a generic nonlinear differential equation 

problem with a delay by discussing its Hopf bifurcation analysis. The 

directional analysis for the solution of delayed differentia equation using the 

normal form theory and manifold reduction proposed by K. R. Schneider, 

Hassard, B. D. (Schneider, 1982). 

Basic reproductive number ℜ଴ or some time called reproduction number is 

one of the key parameters to calculate the stability of SIR model. 

Mathematical analysis is employed to establish a threshold value ℜ଴, that 

indicates when the disease is nearing an endemic level and when the solutions 

begin to vary. The values of ℜ଴ and incubation period duration totally control 

the global dynamics of system. Disease always dies out and the DFE is 

globally asymptotically stable if ℜ଴ < 1, but if ℜ଴ > 1 the disease continues. 

(Avram et al., 2022; Sirijampa et al., 2018; Y. Song & Peng, 2006; Sun, Han, 

et al., 2007; Xia et al., 2018; Xue & Li, 2013) (Kumar et al., 2020; L. Liu, 

2015; L. Liu & Wang, 2017; Naresh et al., 2009; Xue & Li, 2013; Y. Zhang 

et al., 2021) in each of these research papers stability, bifurcation and 

sensitivity analysis has been performed with special reference to the 

reproduction numbers. By analyse the incubation parameter for bifurcation, 

this research investigates the endemic equilibrium's local stability. It identifies 
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the circumstances under which the system must be both absolutely and 

conditionally stable. In numerical simulations, it's proven that a system with a 

time delay has a rich, complicated dynamic, and that as the delay rises, a series 

of periodic solutions develops, showing complex periodic patterns. 

This chapter looks like, Section (5.2) offers the delayed SIR epidemic model 

and reproduction number. Sections (5.3) – (5.6) offer findings on nonzero 

endemic equilibrium, positivity, boundedness of solutions, and system 

permanence. Section (5.8) includes system (5.2)'s equilibria and the crucial 

value for endemic equilibrium. Section (5.7) addresses the global stability of 

the DEF and the lifetime of the endemic equilibrium. Section (5.9) presents 

the direction and stability of Hopf-bifurcation to the system of equation (5.2) 

by applying manifold reduction and normal form theory. Sections (5.10) and 

(5.11) of this research reports include numerical analysis and easy 

explanation. 

5.2 Basic properties and Model formulation  

The following are the presumptions upon which the delayed model is based. 

The three-dimensional model tracks the progression of the susceptible people 

S(t), the infected people I(t), and the recovered ones R(t) at a given time t. 

Thus, the overall population at time t remains the same, with carrying capacity 

𝒦. The susceptible individuals become infected when they come in contact 

with infected individuals at the rate of 𝛼ଶ. We hypothesized that a susceptible 

person comes into touch with an infected one at time 𝑡 – 𝜏 and becomes 

infectious at time τ later. Under these conditions, the SIR epidemic model with 

a bilinear incidence rate is expressed as: 

ௗௌ

ௗ௧
= 𝛼ଵ𝑆(𝑡) ቀ1 −

ௌ(௧)

𝒦
ቁ − 𝛼ଶ𝑆(t – τ)𝐼(t – τ)        

ௗூ

ௗ௧
= 𝛼ଶ𝑆(t – τ)𝐼(t – τ) − (𝛼ଷ + 𝛼ସ + 𝛼ହ)𝐼(𝑡)    

ௗோ

ௗ௧
= 𝛼ଷ𝐼(𝑡) − 𝛼ହ𝑅(𝑡)                                               ⎭

⎪
⎬

⎪
⎫

                  (5.1) 

Where: 𝑆(𝑡) > 0, 𝐼(𝑡) > 0, 𝑅(𝑡) > 0 for all 𝑡 and 𝑆(𝑡 − 𝜏) =

 𝑘ଵ, 𝐼(t – τ) = 𝑘ଶ , 𝑘ଵ, 𝑘ଶ are constant for 𝑡 ∈ [0, 𝜏] 



 

90 
 

Where 𝛼ଵis the intrinsic birth rate, 𝛼ଶ  is the rate at the susceptible individuals 

become infected when they come in contact with infected individuals, 𝛼ଷ is 

the recovery rate of infected individuals, 𝛼ସ disease mortality rate,  𝛼ହ is the 

natural death rate, and 𝒦 is the parameter that measure the carrying capacity 

of population.   

It is expected in model (5.1) that those affected who are given effective 

treatment would recover, joining the recovery class after they develop 

temporary immunity to the disease. Note that since this model is used to track 

human populations, it is supposed that none of the parameters and variables 

are negative constants. 

For the simplicity we non-dimension Alize the system of equations (5.1) 

as  

𝑆ሖ =
ௌ

𝒦
,  𝐼ሖ =

ூ

𝒦
,   𝑅ሖ =

ோ

𝒦
,   𝑡́ =  𝛼ଶ𝒦𝑡,   𝛼ଵ́ =

ఈభ

ఈమ𝒦
,  𝛼ଷ́ =

ఈయ

ఈమ𝒦
,  𝛼ସ́ =

ఈర

ఈమ𝒦
, 

, 𝛼ହ́ =
ఈఱ

ఈమ𝒦
 

Dropping the sign “ ` ” the system of equation (5.1) become as: 

ௗௌ

ௗ௧
= 𝛼ଵ𝑆(𝑡)൫1 − 𝑆(𝑡)൯ − 𝑆(t – τ)𝐼(t – τ)            

ௗூ

ௗ௧
= 𝑆(t – τ)𝐼(t – τ) − (𝛼ଷ + 𝛼ସ + 𝛼ହ)𝐼(𝑡)         

ௗோ

ௗ௧
= 𝛼ଷ𝐼(𝑡) − 𝛼ହ𝑅(𝑡)                                               

⎭
⎪
⎬

⎪
⎫

                             (5.2) 

With initial conditions 𝜉 = (𝜉ଵ, 𝜉ଶ, 𝜉ଷ) of system (5.2) are defined in the 

Banach space of continuous mapping. 

ℂା =  {𝜉 ∈  ℂ([−𝜏, 0], ℝଷ
ା): 𝜉ଵ(𝜗) = 𝑆(𝜗), 𝜉ଶ(𝜗) = 𝐼(𝜗), 𝜉ଷ(𝜗) =

𝑅(𝜗)} , 𝜗 ∈ [−𝜏, 0]              (A) 

where 𝜉௜(0) > 0, 𝑖 = 1,2,3, the feasible area of the system (5.2) is defined as  

 Λ = { (𝑆, 𝐼, 𝑅) ∈ ℝଷ ∶ 𝑆(0) > 0, 𝐼(0) > 0, 𝑅(0) > 0}  
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It is easy to show that the feasible region  Λ is positively not changeable w.r.t 

system (5.1). System (5.2) has DFE 𝔼଴(1,0,0) .The basic reproductive number 

is defined as    ℜ଴ =
ଵ

𝓇
   where 𝓇 =  (𝛼ଷ + 𝛼ସ + 𝛼ହ).                             (5.3) 

5.3 Non-Zero Endemic Equilibrium 

It is to be supposed that at equilibrium point 𝑆(𝑡 − 𝜏) ≅ 𝑆,  𝐼(𝑡 − 𝜏) ≅ 𝐼. The 

non-zero endemic equilibrium 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) is calculated as: 

ௗூ∗

ௗ௧
= 0 ⇒ 𝑆∗ =  (𝛼ଷ + 𝛼ସ + 𝛼ହ) = 𝓇  

ௗௌ∗

ௗ௧
= 0 ⇒ 𝐼∗ = 𝛼ଵ(1 − 𝓇) = 𝛼ଵ𝓇(ℜ଴ − 1)  

ௗோ∗

ௗ௧
= 0 ⇒ 𝑅∗ =

ఈయூ∗

ఈఱ
 =

ఈయఈభ(ଵି𝓇) 

ఈఱ
 = 

ఈయఈభ௥(ℜబିଵ) 

ఈఱ
 

Thus, for  ℜ଴ > 1, we have a unique non-zero endemic equilibrium: 

𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) = 𝐸∗ ቀ 𝓇, 𝛼ଵ(1 − 𝓇),
ఈయఈభ(ଵି𝓇) 

ఈఱ
  ቁ = 𝐸∗ ቀ 𝓇, 𝛼ଵ𝓇(ℜ଴ −

1),
ఈయఈభ௥(ℜబିଵ) 

ఈఱ
  ቁ  

5.4 Positivity of solutions 

The term "positivity" refers to the stability of a system. For positive solutions, 

one must show that the system of Equations (5.2) provides all of the system's 

solutions, where initial conditions are 𝑆(𝑡) > 0, 𝐼(𝑡) > 0, 𝑅(𝑡) > 0 for all 𝑡 

and 𝑆(𝑡 − 𝜏) =  𝑘ଵ, 𝐼(t – τ) = 𝑘ଶ , 𝑘ଵ, 𝑘ଶ are constant for 𝑡 ∈ [0, 𝜏], the model 

solutions (S(t), I(t), R(t) ) remain +ve for all time t > 0. 

Now we have 
ௗோ

ௗ௧
= 𝛼ଷ𝐼(𝑡) − 𝛼ହ𝑅(𝑡), i.e 

ௗோ

ௗ௧
≥ −𝛼ହ𝑅(𝑡) i.e  

ௗோ

ோ(௧)
≥ −𝛼ହ𝑑𝑡  i.e 

𝑅(𝑡) = 𝑐଴𝑒ିఈఱ௧. here 𝑐଴ is the integration constant. As a result, R(t) > 0 for 

all the time t. so, S and I have a similar argument. 

5.5 Boundedness of solutions 

Lemma:(Tchuenche et al., 2007) All feasible solutions of the system (5.2) are 

bounded and enter the region 
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Λ = { (𝑆, 𝐼, 𝑅) ∈ ℝଷ ∶ 0 ≤ 𝑆 + 𝐼 + 𝑅 ≤  (𝛼ଵ + 1)/𝜇௠ } , 𝑎𝑠 t → ∞, 

where 𝜇௠ = min {1, 𝛼ସ, 𝛼ହ} for all positive initial values {𝑆(0) > 0,

𝐼(0) > 0, 𝑅(0) > 0 for all 𝑡 and 𝑆(𝑡 − 𝜏) =  𝑘ଵ, 𝐼(t – τ) = 𝑘ଶ , 𝑘ଵ, 𝑘ଶ 

are constant for 𝑡 ∈ [0, 𝜏]} 

With  ℜ଴ =
ଵ

௥
   where 𝑟 =  (𝛼ଷ + 𝛼ସ + 𝛼ହ), for the system (5.2) there always 

exist the equilibrium 𝐸଴(1,0,0) and if  ℜ଴ > 1, we have a unique non-zero 

endemic equilibrium:𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) = 𝐸∗ ቀ 𝓇, 𝛼ଵ(1 − 𝓇),
ఈయఈభ(ଵି𝓇) 

ఈఱ
  ቁ =

𝐸∗ ቀ 𝓇, 𝛼ଵ𝓇(ℜ଴ − 1),
ఈయఈభ௥(ℜబିଵ) 

ఈఱ
  ቁ , where 𝓇 =  (𝛼ଷ + 𝛼ସ + 𝛼ହ).   

5.6 Permanence of the system 

The set of equations(5.2) simplifies to: when E* (S*,I*,R*) is in 

equilibrium, 

ௗௌ∗

ௗ௧
= 𝛼ଵ𝑆∗(𝑡)൫1 − 𝑆∗(𝑡)൯ − 𝑆∗(t – τ)𝐼∗(t – τ)            

ௗூ∗

ௗ௧
= 𝑆∗(t – τ)𝐼∗(t – τ) − (𝛼ଷ + 𝛼ସ + 𝛼ହ)𝐼∗(𝑡)          

ௗோ∗

ௗ௧
= 𝛼ଷ𝐼∗(𝑡) − 𝛼ହ𝑅∗(𝑡)                                                  ⎭

⎪
⎬

⎪
⎫

                  (5.4) 

All possible solutions to systems (5.2) and              (5.4) have been shown to be 

constrained by (Takeuchi et al., 2000). The transcendent equation about the 

equilibrium 𝐸∗is given by: 

อ

𝜆 − 𝑚ଵ −𝑚ଶ −𝑚ଷ

−𝑚ସ 𝜆 − 𝑚ହ −𝑚଺

−𝑚଻ −𝑚଼ 𝜆 − 𝑚ଽ

อ = 0                                                    (5.5) 

Where  𝑚ଵ =  𝛼ଵ − 2𝛼ଵ𝑆∗ − 𝐼∗𝑒ିఒఛ , 𝑚ଶ = 𝐼∗𝑒ିఒఛ  , 𝑚ଷ = 0  , 𝑚ସ =

−𝑒ିఒఛ𝑆∗, 𝑚ହ =  𝑆∗𝑒ିఒఛ − 𝓇,  𝑚଺ = 𝛼ଷ,  𝑚଻ = 0, 𝑚଼ = 0,  𝑚ଽ = −𝛼ହ 

The equation (5.5) after expanding become: 

(𝜆 + 𝛼ହ)ൣ𝜆ଶ − (𝑚ଵ + 𝑚ହ)𝜆 + 𝑚ଵ𝑚ହ + 𝑆∗𝐼∗𝑒ିଶఒఛ൧ = 0            (5.6)

𝜆ଷ+(𝓇 − 𝛼ଵ + 2𝛼ଵ𝑆∗ + 𝛼ହ)𝜆ଶ + (2𝓇𝛼ଵ𝑆∗ − 𝓇𝛼ଵ + 𝛼ହ(𝓇 − 𝛼ଵ +
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2𝛼ଵ𝑆∗)) + 𝛼ହ (2𝓇𝛼ଵ𝑆∗ − 𝓇𝛼ଵ)  + ቂ(𝐼∗ − 𝑆∗)𝜆ଶ + ቀ𝛼ଵ𝑆∗ − 2𝛼ଵ𝑆∗ଶ +

𝓇𝐼∗ + 𝛼ହ((𝐼∗ − 𝑆∗)ቁ 𝜆 + 𝛼ହ൫𝛼ଵ𝑆∗ − 2𝛼ଵ𝑆∗ଶ + 𝓇𝐼∗൯ቃ 𝑒ିఒఛ = 0 

𝜆ଷ + 𝔪ଵ𝜆ଶ + 𝔪ଶ𝜆 + 𝔪ଷ + [𝔪ସ𝜆ଶ + 𝔪ହ𝜆 + 𝔪଺]𝑒ିఒఛ = 0             (5.7) 

Where 𝔪ଵ = (𝓇 − 𝛼ଵ + 2𝛼ଵ𝑆∗ + 𝛼ହ), 𝔪ଶ = (2𝓇𝛼ଵ𝑆∗ − 𝓇𝛼ଵ +

𝛼ହ(𝓇 − 𝛼ଵ + 2𝛼ଵ𝑆∗)), 𝔪ଷ = 𝛼ହ (2𝓇𝛼ଵ𝑆∗ − 𝓇𝛼ଵ), 𝔪ସ = (𝐼∗ − 𝑆∗), 

𝔪ହ =  𝛼ଵ𝑆∗ − 2𝛼ଵ𝑆∗ଶ + 𝓇𝐼∗ + 𝛼ହ(𝐼∗ − 𝑆∗), 𝔪଺ = 𝛼ହ൫𝛼ଵ𝑆∗ −

2𝛼ଵ𝑆∗ଶ + 𝓇𝐼∗൯, all 𝔪ଵ, 𝔪ଶ, 𝔪ଷ, 𝔪ସ, 𝔪ହ, 𝔪଺ > 0. 

5.7 Local and global stability of disease-free equilibrium 

Now in this section we will prove that DFE is asymptotically stable locally. 

when τ ∈ [0, 𝜏଴), endemic equilibrium is locally asymptotically stable locally 

and is unstable when τ > 𝜏଴, at the same time system (5.2)(5.1) moves toward 

Hopf-Bifurcation at 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗)  when τ = 𝜏௜. 

Theorem 5.1: The disease-free equilibrium (DFE) 𝐸଴(1,0,0) of the system 

(5.2) is,  

(a) Absolutely stable if ℜ଴ < 1,  

(b) linearly neutrally stable if ℜ଴ = 1, 

(c) unstable if ℜ଴> 1. 

Proof: When 𝜏 ≠ 0, the transcendental equation at the DFE, 𝐸଴(1,0,0) 

of (5.2) will be of the form as; 

(𝜆 + 𝛼ଵ)(𝜆 + 𝛼ହ)൫𝜆 + 𝓇 − 𝑒ିఒఛ൯ = 0                                  (5.8) 

⇒ 𝜆 = −𝛼ଵ   ,    𝜆 = −𝛼ହ   ,         𝜆 = −𝓇 + 𝑒ିఒఛ                         (5.9) 

The equation (5.8) has two negative real roots given by 𝜆ଵ = −𝛼ଵ   ,    𝜆ଶ =

−𝛼ହ   and the third root is coming from the equation  𝜆 = −𝓇 + 𝑒ିఒఛ   

(a) When ℜ଴ < 1, from the third equation of (5.8) 𝜆 = −𝓇 + 𝑒ିఒఛ   

𝑅௘(𝜆) =  𝑒ିோ೐(ఒ)𝐶𝑜𝑠(𝑝𝑞𝜏𝜆) − 𝓇, let 𝑅௘(𝜆) ≥ 0,  that implies that  
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𝑅௘(𝜆) ≤  1 − 𝓇 ⇒   𝑅௘(𝜆) ≤  𝓇(ℜ଴ − 1),                    (5.10) 

as ℜ଴ < 1, we have 𝑅௘(𝜆) < 0                    (5.11) 

Hence the DFE of the system of equations (5.2) is locally asymptotically 

stable. 

(b) If ℜ଴ = 1, from (5.8) we have 𝑅௘(𝜆) = 0, This shows that the root has a 

-ve real part except λ = 0, which gives the fact that 𝐸଴ is linear neutral stable 

state when ℜ଴ = 1. 

(c) If ℜ଴> 1, let 𝜆 + 𝓇 − 𝑒ିఒఛ = 𝒻(𝜆), because 𝒻(0) = 𝓇 − 1 =

−𝓇(ℜ଴ − 1) < 0, 𝒻(∞) > 0, there exist a positive value of 𝜆 . which clearly 

shows that the DFE of the system of equations (5.2) is asymptotically unstable. 

In addition to the above when 𝜏 = 0, and ℜ଴ < 1, the third root of 

characteristics equation of system (5.2) will be 𝜆 = −𝓇 + 1 =  𝓇(ℜ଴ − 1) <

 0, hence the system become locally asymptotically stable. Hence the theorem. 

Theorem 5.2: If the basic reproductive number ℜ଴ < 1 then the DFE 

𝐸଴(1,0,0) is globally stable for any value of time delay parameter 𝜏. 

Proof: for t > 1, let 𝑙௜ be the translation of roots of the system if equations (5.2) 

with initial conditions {𝑙ଵ(𝜗) = 𝑆(𝜗), 𝑙ଶ(𝜗) = 𝐼(𝜗), 𝑙ଷ(𝜗) = 𝑅(𝜗)} , 𝜗 ∈

[−𝜏, 0]. We can define a Lyapunov function as: 

𝐿(𝑡) = 𝐼(𝑡) +  ∫ 𝑆(𝜗)
௧

௧ିఛ
𝐼(𝜗) 𝑑𝜗                          (5.12) 

Further 𝐿(𝑡) > 0 along with the solution of the system of equations (2.8), also 

𝐿(𝑡) = 0, iff both 𝐼(𝑡) and 𝑅(𝑡) are zero. The derivative of (5.12) is as; 

𝑑𝐿(𝑡)

𝑑𝑡
=  

𝑑𝐼(𝑡)

𝑑𝑡
+ ൫𝑆(𝑡)𝐼(𝑡) − 𝑆(t – τ)𝐼(t – τ)൯ 

         = 𝑆(t – τ)𝐼(t – τ) − 𝓇𝐼(𝑡) + ൫𝑆(𝑡)𝐼(𝑡) − 𝑆(t – τ)𝐼(t – τ)൯ 

         = 𝑆(𝑡)𝐼(𝑡) − 𝓇𝐼(𝑡)                                                                    

As 𝑆(𝑡) ≤ 1, 𝑠𝑜  the above equation implies 
ௗ௅(௧)

ௗ௧
= 𝑆(𝑡)𝐼(𝑡) − 𝓇𝐼(𝑡) ≤

𝓇𝐼(𝑡)(ℜ଴ − 1) ≤ 0,  as ℜ଴ < 1 
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So we have 
ௗ௅(௧)

ௗ௧
≤ 0,  as ℜ଴ < 1, and 

ௗ௅(௧)

ௗ௧
= 0,  if 𝐼(𝑡) =  0, 𝑅(𝑡) = 0 

The maximum invariance set ቄ൫𝑆(𝑡), 𝐼(𝑡), 𝑅(𝑡)൯:
ௗ௅(௧)

ௗ௧
= 0ቅ,  is a singleton set 

{𝐸଴(1,0,0)}, when ℜ଴ < 1. Therefore by (Hale, 2007), the DEF  𝐸଴(1,0,0) is 

globally asymptotically stable.  

Hence the theorem. 

5.8 Bifurcation Analysis 

In this section, we will find the conditions for Hopf-Bifurcations to exist using 

τ as parameter for the result. In this part we assume that the basic reproduction 

number that ℜ଴> 1, so the endemic equilibrium 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗) =

𝐸∗ ቀ 𝓇, 𝛼ଵ𝓇(ℜ଴ − 1),
ఈయఈభ௥(ℜబିଵ) 

ఈఱ
  ቁ  exist. 

Case-1: When τ = 0, the characteristics equation (5.6) takes the form; 

(𝜆 + 𝛼ହ)[𝜆ଶ − (𝑚ଵ + 𝑚ହ)𝜆 + 𝑚ଵ𝑚ହ + 𝑆∗𝐼∗] = 0                      (5.13) 

Where 𝑚ଵ =  𝛼ଵ − 2𝛼ଵ𝑆∗ − 𝐼∗, 𝑚ହ =  𝑆∗ − 𝓇, 

Now 𝑚ଵ + 𝑚ହ =  𝛼ଵ − 2𝛼ଵ𝑆∗ − 𝐼∗ + 𝑆∗ − 𝓇 =  𝛼ଵ − 2𝛼ଵ𝓇 − 𝛼ଵ(1 −

𝓇) + 𝓇 − 𝓇 = −𝛼ଵ𝓇  

⇒ −(𝑚ଵ + 𝑚ହ) =  𝛼ଵ𝓇 > 0 

𝑚ଵ𝑚ହ + 𝑆∗𝐼∗ = (𝛼ଵ − 2𝛼ଵ𝑆∗ − 𝐼∗)( 𝑆∗ − 𝓇) + 𝑆∗𝐼∗ = 𝓇𝛼ଵ(1 − 𝓇)

= 𝛼ଵ𝑟ଶ(ℜ଴ − 1) > 0 

Therefore, all the roots of the equation (5.13) are negative, By Routh-

Hurwitz’s criteria 𝐸∗(𝑆∗, 𝐼∗, 𝑅∗)is locally asymptotically stable equilibrium, 

Now we will find the positive solution of (5.7) for τ > 0 let 𝑖𝜔 be the roots of 

the transcendental equation (5.7). 

So, we have (𝑖𝜔)ଷ + 𝔪ଵ(𝑖𝜔)ଶ + 𝔪ଶ𝑖𝜔 + 𝔪ଷ + [𝔪ସ(𝑖𝜔)ଶ + 𝔪ହ𝑖𝜔 +

𝔪଺]𝑒ିఒ௜ఠ = 0      



 

96 
 

−𝑖(𝜔)ଷ − 𝔪ଵ(𝜔)ଶ + 𝔪ଶ𝑖𝜔 + 𝔪ଷ

+ [−𝔪ସ(𝜔)ଶ + 𝔪ହ𝑖𝜔 + 𝔪଺](𝑐𝑜𝑠  (𝜔𝜏) − 𝑖𝑠𝑖𝑛(𝜔𝜏) ) = 0  

We have (𝔪଺−𝔪ସ(𝜔)ଶ) 𝑐𝑜𝑠  (𝜔𝜏) + 𝔪ହ𝜔𝑠𝑖𝑛(𝜔𝜏) = (𝔪ଵ(𝜔)ଶ − 𝔪ଷ)   

                    (5.14) 

𝔪ହ𝜔 𝑐𝑜𝑠  (𝜔𝜏) − (𝔪଺−𝔪ସ(𝜔)ଶ)𝑠𝑖𝑛(𝜔𝜏) = ((𝜔)ଷ − 𝔪ଶ𝜔)          (5.15) 

By solving          

             (5.14) and (5.15) we get; 

⇒ ω଺ + (𝔪ଵ
ଶ − 𝔪ସ

ଶ − 2𝔪ଶ)ωସ + (𝔪ଶ
ଶ − 2𝔪ଵ𝔪ଷ + 2𝔪ସ𝔪଺ −

𝔪ହ
ଶ)ωଶ + (𝔪ଷ

ଶ − 𝔪଺
ଶ) = 0  

⇒ 𝑥ଷ + 𝛽ଵ𝑥ଶ + 𝛽ଶ𝑥 + 𝛽ଷ = 0                                                 (5.16) 

Were,𝛽ଵ = 𝔪ଵ
ଶ − 𝔪ସ

ଶ − 2𝔪ଶ, 𝛽ଶ = 𝔪ଶ
ଶ − 2𝔪ଵ𝔪ଷ + 2𝔪ସ𝔪଺ −

𝔪ହ
ଶ, 𝛽ଷ = 𝔪ଷ

ଶ − 𝔪଺
ଶ, 𝑥 = ωଶ    

Now  𝛽ଷ = 𝔪ଷ
ଶ − 𝔪଺

ଶ = ൫𝛼ହ (2𝓇𝛼ଵ𝑆∗ − 𝓇𝛼ଵ)൯
ଶ

− ቀ𝛼ହ൫𝛼ଵ𝑆∗ −

2𝛼ଵ𝑆∗ଶ + 𝓇𝐼∗൯ቁ
ଶ

 

𝛽ଷ = −𝛼ହ
ଶ𝛼ଵ

ଶ𝓇ଶ(𝓇 − 1)(5𝓇 − 3) as ℜ଴> 1 ⇒ 𝓇 < 1, when 𝓇 <
ଷ

ହ
 , 

we have 𝛽ଷ < 0 

Therefore, there exist only one pair of purely complex roots of the equation 

(5.16) say 𝑥 = ∓𝑖𝜔଴, At the same time, by substituting 𝜔 = 𝜔଴ in    

  

  

  

             

(5.14) & (5.15) and solving it for the delay parameter τ,  we have; 

τ௣ =
ଵ

ఠబ
 ቄ𝑎𝑟𝑐𝑠𝑖𝑛

𝔪ఱఠబ(𝔪భ(ఠబ)మି𝔪య)ି((ఠబ)యି𝔪మఠబ)൫𝔪లି𝔪ర(ఠబ)మ൯

(𝔪ఱఠబ)మା(𝔪లି𝔪ర(ఠబ)మ)మ +  2𝑙𝜋ቅ ,

𝑙 = 0,1,2,3, … …                  (5.17)  
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Hence by the lemma in (Tipsri & Chinviriyasit, 2015), all the zeros of  (5.7) 

has -ve real parts for τ ∈ [0, τ଴), so we have, for the bifurcation analysis, we 

will show that there exist at least one eigen value who has positive real part 

for τ > τ଴, and ቀ
ୢୖୣ஛(த)

ୢத
ቁ

தୀதబ

≠  0 

By differentiating equation (5.7) w.r.t ′τ′ and after rearranging the terms we 

have  

ቀ
ୢ஛

ୢத
ቁ

ିଵ

=  
൫ଷ஛మାଶ𝔪భ஛ା𝔪మ൯ୣಓಜ

஛(𝔪రఒమା𝔪ఱఒା𝔪ల)
+ 

(ଶ𝔪ర஛ା𝔪ఱ)

஛(𝔪రఒమା𝔪ఱఒା𝔪ల)
−

த

஛
   

 sign൜ቀ
ୢୖୣ஛(த)

ୢத
ቁ

தୀதబ

ൠ = signቊ𝑅𝑒 ቀ
ୢ஛

ୢத
ቁ

ିଵ

ฬ
ఒୀ௜னబ

ቋ = 

sign൜𝑅𝑒 ቀ
൫ଷ஛మାଶ𝔪భ஛ା𝔪మ൯ୣಓಜ

஛(𝔪రఒమା𝔪ఱఒା𝔪ల)
ቁ + 𝑅𝑒(

(ଶ𝔪ర஛ା𝔪ఱ)

஛(𝔪రఒమା𝔪ఱఒା𝔪ల)
)ൠ 

= sign൜
ଷனబ

లା൫𝔪భ
మି𝔪ర

మିଶ𝔪మ൯னబ
ర ା൫ଶ𝔪మ

మିଶ𝔪భ𝔪యାଶ𝔪ర𝔪లି𝔪ఱ
మ൯னబ

మ
 

(𝔪ఱఠబ)మା(𝔪లି𝔪ర(ఠబ)మ)మ ൠ 

= sign൜
ଷனబ

లା(ఉభ)னబ
ర ା(ఉమ)னబ

మ

(𝔪ఱఠబ)మା(𝔪లି𝔪ర(ఠబ)మ)మൠ  = signቄ
னబ

మ(ଷனబ
రା(ఉభ)னబ

మ ାఉమ)

(𝔪ఱఠబ)మା(𝔪లି𝔪ర(ఠబ)మ)మቅ 

Because 𝓇 > 0, and when 𝓇 <
ଷ

ହ
, 𝛽ଶ > 0, and also if 𝓇 <

ଵ

ଶ
, that is if ℜ଴>2, 

both 𝛽ଵ > 0, 𝛽ଶ > 0, so 
னబ

మ(ଷனబ
రା(ఉభ)னబ

మ ାఉమ)

(𝔪ఱఠబ)మା(𝔪లି𝔪ర(ఠబ)మ)మ > 0, ⇒  ቀ
ୢୖୣ஛(த)

ୢத
ቁ

தୀதబ

> 0, 

which ensure that the conditions for transversality holds and Hopf-Bifurcation 

occurs at 𝐸∗ ቀ 𝓇, 𝛼ଵ𝓇(ℜ଴ − 1),
ఈయఈభ௥(ℜబିଵ) 

ఈఱ
  ቁ, from the above, we draw the 

following conclusions; 

Theorem 5.3: For the non-zero endemic positive equilibrium 

 𝐸∗ ቀ 𝓇, 𝛼ଵ𝓇(ℜ଴ − 1),
ఈయఈభ௥(ℜబିଵ) 

ఈఱ
  ቁ, The following is what we've 

found 

(a) If 1 <  ℜ଴ ≤ 2, holds, then the equilibrium 𝐸∗ ቀ 𝓇, 𝛼ଵ𝓇(ℜ଴ −

1),
ఈయఈభ௥(ℜబିଵ) 

ఈఱ
  ቁis asymptotical stable. 
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(b) If  ℜ଴ > 2, then the equilibrium 𝐸∗ ቀ 𝓇, 𝛼ଵ𝓇(ℜ଴ − 1),
ఈయఈభ௥(ℜబିଵ) 

ఈఱ
  ቁ is 

stable but conditionally, i.e when we have a delay critical parameter value τ଴, 

the equilibrium 𝐸∗ ቀ 𝓇, 𝛼ଵ𝓇(ℜ଴ − 1),
ఈయఈభ௥(ℜబିଵ) 

ఈఱ
  ቁ is asymptotical stable if 

τ ∈ [0, τ଴), and when τ > τ଴ and system gives Hopf-Bifurcation at 

𝐸∗ ቀ 𝓇, 𝛼ଵ𝓇(ℜ଴ − 1),
ఈయఈభ௥(ℜబିଵ) 

ఈఱ
  ቁ, further more at τ = τ௣, 𝑝 = 1,2,3 … .. 

5.9    Direction and stability analysis of Hopf-Bifurcation 

In the last section, at the critical point values, a set of recurrent solutions 

obtained which bifurcates from the positive steady state E*. It's also worth 

looking at the direction, stability, and period of these bifurcating periodic 

solutions. Using the normal form theory and manifold reduction proposed by 

K. R. Schneider, Hassard, B. D. (Schneider, 1982), an explicit formula for 

finding the characteristics of the Hopf-bifurcation at the critical value τ୨will 

be derived in this section. 

Let 𝑣ଵ = 𝑆(𝑡𝜏) − 𝑆∗(𝑡), 𝑣ଶ = 𝐼(𝑡𝜏) − 𝐼∗(𝑡), 𝑣ଷ = 𝑅(𝑡𝜏) − 𝑅∗(𝑡) and the 

delay 𝜏 can be normalizing by time scaling 𝑡 →
௧

ఛ
 , the system of equations 

(2.8) are transformed into 

ௗ௩భ

ௗ௧
= (𝛼ଵ − 2𝛼ଵ𝑆∗)𝑣ଵ − 𝛼ଵ𝑣ଵ

ଶ + (𝛼ଵ𝑆∗ − 𝛼ଵ𝑆∗ଶ) − ( 𝐼∗𝑣ଵ +  𝑆∗𝑣ଶ + 𝑣ଵ𝑣ଶ + 𝐼∗ 𝑆∗)(𝑡 − 1) 

ௗ௩మ

ௗ௧
= ( 𝐼∗𝑣ଵ +  𝑆∗𝑣ଶ + 𝑣ଵ𝑣ଶ + 𝐼∗ 𝑆∗)(𝑡 − 1) − 𝓇(𝑣ଶ + 𝐼∗)                                                             

ௗ௩య

ௗ௧
= 𝛼ଷ(𝑣ଶ + 𝐼∗) − 𝛼ହ(𝑣ଷ + 𝑅∗)                                                                                                           

                                          (5.18) 

Thus, in the phase 𝔇 = 𝔇൫[−1,0], ℛା
ଷ൯ work can be done. Without losing of 

the generality, we denote the critical value τ୨ by τ଴. Let τ = τ଴ + 𝜇, then the 

system of equations                                        (5.18) has  𝜇 = 0 a Hopf-

bifurcation value. Rewrite this system as follows for ease of notation: 

𝑣ᇱ(𝑡) = 𝐿ఓ(𝑣௧) + 𝐹(𝜇, 𝑣௧)                                                          (5.19) 
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Where 𝑣(𝑡) = (𝑣ଵ(𝑡), 𝑣ଶ(𝑡), 𝑣ଷ(𝑡) )் ∈ ℛଷ, 𝑣௧(𝜃) ∈ 𝔇 is defined by 𝑣௧(𝜃) =

𝑣௧(t + 𝜃), and  

 𝐿ఓ: 𝔇 → ℛ,   𝐹: ℛ × 𝔇 → ℛ are given, respectively by  

𝐿ఓ∅ = (τ଴ + 𝜇) ൥
(𝛼ଵ − 2𝛼ଵ𝑆∗) 0 0

0 −𝓇 0
0 𝛼ଷ −𝛼ହ

൩ ቎

∅ଵ(0)

∅ଶ(0)

∅ଷ(0)
቏

+ (τ଴ + 𝜇) ൥
−𝐼∗ −𝑆∗ 𝑐
𝐼∗ 𝑆∗ 0
0 0 0

൩ ቎

∅ଵ(−1)

∅ଶ(−1)

∅ଷ(−1)
቏ 

And 𝐹(𝜇, ∅) = (τ଴ + 𝜇) ൥

𝐹ଵ

𝐹ଶ

𝐹ଷ

൩ respectively where 𝐹ଵ =

−𝛼ଵ∅ଶ
ଵ

(0)−∅ଵ(−1)∅ଶ(−1), 𝐹ଶ = −∅ଵ(−1)∅ଶ(−1), 𝐹ଷ = 0, ∅(𝜃) =

൫∅ଵ(𝜃), ∅ଶ(𝜃), ∅ଷ(𝜃)൯
்

∈ 𝔇൫(−1,0), ℛ൯.  

By representation theorem given by F. Riesz (Fuglede, 1955), there exist a 

function 𝜂(𝜃, 𝜇) of bounded variation for 𝜃 ∈ [−1,0], such that 𝐿ఓ∅ =

∫ 𝑑
଴

ିଵ
𝜂(𝜃, 0)∅(𝜃) for ∅ ∈ 𝔇  .  In fact, choose  

𝐿ఓ∅ = (τ଴ + 𝜇) ൥
(𝛼ଵ − 2𝛼ଵ𝑆∗) 0 0

0 −𝓇 0
0 𝛼ଷ −𝛼ହ

൩ 𝛿(𝜃)

+ (τ଴ + 𝜇) ൥
−𝐼∗ −𝑆∗ 𝑐
𝐼∗ 𝑆∗ 0
0 0 0

൩ 𝛿(𝜃 + 1) 

Here 𝛿 represent the Dirac delta function.  For ∅ ∈ 𝔇൫[−1,0], ℛା
ଷ൯, The 

system (5.19) is equivalent to 

 𝑣ᇱ(𝑡) = 𝒜(𝜇)𝑣௧ + ℱ(𝜇)𝑣௧                                                    (5.20) 

For 𝜓 ∈ 𝔇ଵ൫[−1,0], ℛା
ଷ൯, define 
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𝒜∗𝜓(𝑠) = ቐ
−

ௗట(௦)

ௗ௦
, 𝑠 ∈ [−1,0)

∫ 𝑑
଴

ିଵ
𝜂்(−𝑡, 0)𝜓(−𝑡), 𝑠 = 0.

  And bilinear inner 

product    < 𝜓(𝑠), ∅(𝜃) > = 𝜓(0)∅(0) − ∫ ∫ 𝜓(𝜉 − 𝜃)𝑑𝜂(𝜃)𝜙(𝜉)
ఏ

కୀఏ

଴

ିଵ
𝑑𝜉                              

                            (5.21) 

Since 𝑖𝜔଴ are eigen values of 𝒜(0) 𝑎𝑛𝑑 𝒜∗,𝒜 = 𝒜(0) are adjoint operators. 

Thus they become the eigen values of𝒜∗.Suppose that 𝑞(𝜃) = 𝑞(0)𝑒௜னబఏ is 

an eigen vector of 𝒜(0) corresponding to the eigen value 𝑖𝜔଴. Then 𝒜(0) =

 𝑖ω଴ 𝑞(𝜃).  

When 𝜃 = 0, ቂ𝑖𝜔଴𝐼 − ∫ 𝑑𝜂(𝜃)𝑒௜ఠబఏ଴

ିଵ
ቃ 𝑞(0) = 0, this gives 𝑞(0) =

(1, 𝑢ଵ, 𝑢ଶ)் where 

𝑢ଵ =
௜னబି(ఈభିଶఈభௌ∗)

(௜னబା𝓇)
  𝑎𝑛𝑑 𝑢ଶ =

 ఈయ(௜னబି(ఈభିଶఈభௌ∗))

(௜னబା𝓇)(௜னబାఈఱ)
  

By the same way it can be proved that 𝑞∗(𝑠) = 𝐷(1, 𝑢ଵ
∗, 𝑢ଶ

∗)𝑒௜னబதబ௦ represent 

the eigen value of 𝒜∗ corresponding to eigen vector  −𝑖ω଴, where 𝑢ଵ
∗ =

ି௜னబି(ఈభିଶఈభௌ∗)

(ି௜னబା𝓇)
  𝑎𝑛𝑑 𝑢ଶ

∗ =
 ఈయ(ି௜னబି(ఈభିଶఈభௌ∗))

(ି௜னబା𝓇)(௜ିனబାఈఱ)
  The value of D is required 

to assure that  < 𝑞∗(𝑠), 𝑞(𝜃) > = 1,  

From equation (5.21) we have, 

< 𝑞∗(𝑠), 𝑞(𝜃) >  = 𝐷൫1, 𝑢ଵ
∗, 𝑢ଶ

∗൯(1, 𝑢ଵ, 𝑢ଶ)் −

∫ ∫ 𝐷൫1, 𝑢ଵ
∗, 𝑢ଶ

∗൯𝑒ି௜னబதబ(కିఏ)𝑑𝜂(𝜃)(1, 𝑢, 𝑢)்𝑒௜னబதబ
ఏ

కୀఏ

଴

ିଵ
𝑑𝜉  

= 𝐷 ቄ1 + 𝑢ଵ𝑢ଵ
∗ + 𝑢ଶ𝑢ଶ

∗ − ∫ ൫1, 𝑢ଵ
∗, 𝑢ଶ

∗൯
଴

ିଵ
𝜃𝑒௜னబதబఏ(1, 𝑢, 𝑢)்ቅ   

= 𝐷൛1 + 𝑢ଵ𝑢ଵ
∗ + 𝑢𝑢ଶ

∗ + τ଴𝑢∗𝑊∗(𝑢 − 𝛼ଵ𝑢)𝑒௜னబதబൟ  

Hence, choose 𝐷 =
ଵ

൛ଵା௨భ௨భ
∗ା௨௨మ

∗ାதబ௨∗ௐ∗(௨ିఈభ௨)௘೔ಡబಜబൟ
  

such that < 𝑞∗(𝑠), 𝑞(𝜃) > = 1, < 𝑞∗(𝑠), 𝑞(𝜃) > = 0.  
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By following (Schneider, 1982) approach we compute the coordinates 

describing the center manifold 𝔇଴ at 𝜇 = 0 by using the same notations. 

manifold 𝔇଴ at 𝜇 = 0. Let equation (5.19) has solution  𝑢௧ with 𝜇 = 0. We 

Define     𝑧(𝑡) =< 𝑞∗(𝑠), 𝑣௧(𝜃) >, 

  W(𝑡, 𝜃) = 𝑣௧(𝜃) − 2𝑅𝑒(𝑧(𝑡)𝑞(𝜃))                                 (5.22) 

On the center manifold ℂ଴,  W(𝑡, 𝜃) = W ቀ𝑧(𝑡), 𝑧(𝑡), 𝜃ቁ  In the direction of 

𝑞∗ and 𝑞∗ the local coordinates for center manifold ℂ଴ are 𝑧 and 𝑧. Note that 

𝑢௧ is real is the necessary condition for 𝑊  is real. For solution 𝑢௧ ∈ 𝔇଴ of 

equation (5.20), since 𝜇 = 0, 𝑧ᇱ(𝑡) = 𝑖ω଴τ଴𝑧+< 𝑞∗(𝜃), 𝐹൫0, 𝑊(𝑧, 𝑧, 𝜃) +

2𝑅𝑒൫𝑧(𝑡)𝑞(𝜃)൯ ൯ > = 𝑖ω଴τ଴𝑧 + 𝑞∗(0) 𝐹൫0, W(𝑧, 𝑧, 0) + 2𝑅𝑒൫𝑧(𝑡)𝑞(𝜃)൯ ൯  

≡ 𝑖ω଴τ଴𝑧 + 𝑞∗(0)𝐹଴(𝑧, 𝑧) 

Rewrite this equation as: 𝑧ᇱ(𝑡) = 𝑖ω଴τ଴𝑧(𝑡) + 𝑔(𝑧, 𝑧)               (5.23) 

Where 𝑔(𝑧, 𝑧) = 𝑞∗(0)𝐹଴(𝑧, 𝑧) = 𝑔ଶ଴(𝜃)
௭మ

ଶ
+ 𝑔ଵଵ(𝜃)𝑧𝑧 + 𝑔଴ଶ(𝜃)

௭
మ

ଶ
+

𝑔ଶଵ(𝜃)
௭మ௭

ଶ
+ ⋯                                                                       (5.24) 

As 𝑣௧(𝜃) = (𝑣ଵ௧, 𝑣ଶ௧, 𝑣ଷ௧   ) =  W(𝑡, 𝜃) + 𝑧 𝑞(𝜃) + 𝑧𝑞(𝜃) and 𝑞(0) =

(1, 𝑢ଵ, 𝑢ଶ)்e୧னబதబ஘, so 

𝑣ଵ௧(0) = 𝑧 + 𝑧 + Wଶ଴
(ଵ)(0)

௭మ

ଶ
+ Wଵଵ

(ଵ)(0) 𝑧𝑧 + W଴ଶ
(ଵ)(0)

௭
మ

ଶ
+ ⋯, 

𝑣ଶ௧(0) = 𝑢ଵ𝑧 + 𝑢ଵ 𝑧 + Wଶ଴
(ଶ)(0)

௭మ

ଶ
+ Wଵଵ

(ଶ)(0) 𝑧𝑧 + W଴ଶ
(ଶ)(0)

௭
మ

ଶ
+

⋯, 

𝑣ଷ௧(0) = 𝑢ଶଵ
𝑧 + 𝑢ଶଵ 𝑧 + Wଶ଴

(ଷ)(0)
௭మ

ଶ
+ Wଵଵ

(ଷ)(0) 𝑧𝑧 +

W଴ଶ
(ଷ)(0)

௭
మ

ଶ
+ ⋯, 

𝑣ଵ௧(−1) = 𝑧𝑒ି௜னబதబ + 𝑧𝑒௜னబதబ + Wଶ଴
(ଵ)(−1)

௭మ

ଶ
+ Wଵଵ

(ଵ)(−1) 𝑧𝑧 +

W଴ଶ
(ଵ)(−1)

௭
మ

ଶ
+ ⋯, 
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𝑣ଶ௧(−1) = 𝑢𝑒ି௜னబதబ𝑧 + 𝑢ଵ 𝑒௜னబఛబ 𝑧 + Wଶ଴
(ଶ)(−1)

௭మ

ଶ
+

Wଵଵ
(ଶ)(−1) 𝑧𝑧 + W଴ଶ

(ଶ)(−1)
௭

మ

ଶ
+ ⋯, 

As a result of comparing coefficients with equation                                                                

(5.24) we get:  𝑔ଶ଴ = 𝐷(1, 𝑢ଵ, 𝑢ଶ)𝑓௭మ ,  𝑔଴ଶ = 𝐷൫1, 𝑢ଵ, 𝑢ଶ
∗ ൯𝑓

௭
మ,  𝑔ଵଵ =

 𝐷൫1, 𝑢ଵ, 𝑢ଶ
∗ ൯𝑓௭௭, 𝑔ଶଵ =  𝐷൫1, 𝑢ଵ, 𝑢ଶ

∗ ൯𝑓௭మ௭  

In order to find the value of  𝑔ଶଵ, the computation of Wଶ଴(𝜃) and Wଵଵ(𝜃) 

should be prioritized. From the equations (5.20) and (5.22) we have; 

𝑊ᇱ = 𝑣௧
ᇱ − 𝑧ᇱ𝑞 − 𝑧

ᇱ
𝑞 =

ቊ
𝒜W − 2𝑅𝑒ൣ𝑞∗(0)𝐹଴𝑞(𝜃)൧, 𝜃 ∈ [−1,0)

𝒜W − 2𝑅𝑒ൣ𝑞∗(0)𝐹଴𝑞(0)൧ + 𝐹଴, 𝜃 = 0
  

Let Wᇱ = 𝒜W + 𝐻(𝑧, 𝑧, 𝜃)                                                (5.25) 

Where𝐻(𝑧, 𝑧, 𝜃) = 𝐻ଶ଴(𝜃)
௭మ

ଶ
+ 𝐻ଵଵ(𝜃)𝑧𝑧 + 𝐻଴ଶ(𝜃)

௭
మ

ଶ
+ 𝐻ଶଵ(𝜃)

௭మ௭

ଶ
+

⋯.                                                                                                    (5.26) 

However, on the other hand, on 𝔇଴ near the origin Wᇱ = W௭𝑧ᇱ + W௭𝑧
ᇱ
 

Simplifying the above series and equating the coefficients, we get 

[𝒜 − 2𝑖ω଴𝐼]Wଶ଴(𝜃) = −𝐻ଶ଴(𝜃),   𝒜Wଵଵ(𝜃) = −𝐻ଵଵ(𝜃)          (5.27) 

By equation (2.1), for 𝜃 ∈ [−1,0),    

𝐻(𝑧, 𝑧, 𝜃) = −𝑞∗(0)𝐹଴𝑞(𝜃) − 𝑞∗(0)𝐹଴ 𝑞(𝜃) = −𝑔𝑞(𝜃) − 𝑔  𝑞(𝜃)  

Comparing the coefficients with (2.3) for 𝜃 ∈ [−1,0] that  

𝐻ଶ଴(𝜃) = −𝑔ଶ଴𝑞(𝜃) − 𝑔଴ଶ 𝑞(𝜃),  𝐻ଵଵ(𝜃) = −𝑔ଵଵ𝑞(𝜃) − 𝑔ଵଵ 𝑞(𝜃). 

From equations (5.23), (5.26) and the definition of 𝐴 we obtain 

Wଶ଴(𝜃) = 2𝑖ω଴τ଴Wଶ଴(𝜃) + 𝑔ଶ଴𝑞(𝜃) + 𝑔଴ଶ 𝑞(𝜃) 
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Solving for Wଶ଴(𝜃):   Wଶ଴(𝜃) =
௜௚మబ

னబதబ
𝑞(0)𝑒௜னబதబఏ +

௜௚బమ

ଷఠబఛబ
𝑞(0)𝑒ି௜னబதబఏ + 𝐸ଵ𝑒ଶ௜னబதబఏ ,  

And similarly,  Wଵଵ(𝜃) =
ି௜௚భభ

னబதబ
𝑞(0)𝑒௜னబதబఏ +

௜௚భభ

ఠబఛబ
𝑞(0)𝑒ି௜னబதబఏ + 𝐸ଶ  

The three-dimensional vectors 𝐸ଵ and 𝐸ଶ, can be determined by setting 

𝜃 = 0 in 𝐻. In fact since 𝐻(𝑧, 𝑧, 𝜃) = −2𝑅𝑒ൣ𝑞∗(0)𝐹଴𝑞(0)൧ + 𝐹଴, So 

𝐻ଶ଴(𝜃) = −𝑔ଶ଴𝑞(𝜃) − 𝑔଴ଶ 𝑞(𝜃) + 𝐹௭మ,     𝐻ଵଵ(𝜃) = −𝑔ଵଵ𝑞(𝜃) − 𝑔ଵଵ 

𝑞(𝜃) + 𝐹௭௭ 

Where 𝐹଴ = 𝐹௭మ
௭మ

ଶ
+ 𝐹௭௭𝑧𝑧 + 𝐹

௭
మ

௭
మ

ଶ
+ ⋯    Hence combining the definition 

of 𝒜,  

∫ 𝑑
଴

ିଵ
𝜂(𝜃)Wଶ଴(𝜃) = 2𝑖𝜔଴𝜏଴Wଶ଴(0) + 𝑔ଶ଴𝑞(0) + 𝑔଴ଶ 𝑞(0) − 𝐹௭మ and  

∫ 𝑑
଴

ିଵ
𝜂(𝜃)Wଵଵ(𝜃) = 𝑔ଵଵ𝑞(0) − 𝑔ଵଵ 𝑞(0) − 𝐹௭௭  .   

Notice that ቂ𝑖ω଴τ଴𝐼 − ∫ 𝑒௜னబதబఏ𝑑𝜂(𝜃)
଴

ିଵ
ቃ 𝑞(0) = 0 and ቂ−𝑖ω଴τ଴𝐼 −

∫ 𝑒ି௜னబதబఏ𝑑𝜂(𝜃)
଴

ିଵ
ቃ 𝑞(0) = 0,  Which Implies ቂ2𝑖ω଴τ଴𝐼 −

∫ 𝑒ଶ௜னబதబఏ𝑑𝜂(𝜃)
଴

ିଵ
ቃ 𝐸ଵ = 𝐹௭మ  and − ቂ∫ 𝑑𝜂(𝜃)

଴

ିଵ
ቃ 𝐸ଶ = 𝐹௭௭ 

Hence,

቎

൫2𝑖𝜔଴ − (𝛼ଵ − 2𝛼ଵ𝑆∗) + 𝐼∗𝑒ିଶ௜னబதబ൯ 𝑆∗𝑒ିଶ௜னబதబ −𝑐𝑒ିଶ௜னబதబ

−𝐼∗𝑒ିଶ௜னబதబ ൫2𝑖𝜔଴ + 𝓇 − 𝑆∗𝑒ିଶ௜னబதబ൯ 0

0 −𝛼ଷ (2𝑖𝜔଴ + 𝛼ହ)

቏ 𝐸ଵ =

−2 ቎
𝑢ଵ𝑒ି௜னబதబఏ

−𝑢ଵ𝑒ି௜னబதబఏ

0

቏          
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and

቎

൫−(𝛼ଵ − 2𝛼ଵ𝑆∗) + 𝐼∗𝑒ିଶ௜னబதబ൯ 𝑆∗𝑒ିଶ௜னబதబ −𝑐𝑒ିଶ௜னబதబ

−𝐼∗𝑒ିଶ௜னబதబ ൫𝓇 − 𝑆∗𝑒ିଶ௜னబதబ൯ 0

0 −𝛼ଷ (𝛼ହ)

቏ 𝐸ଶ =

−2 ቎
𝑅𝑒{𝑢ଵ}𝑒௜னబதబఏ

−𝑅𝑒{𝑢ଵ}𝑒௜னబதబఏ

0

቏  

The arguments can thus be used to express  𝑔ଶଵ the parameters. Based on the 

above study, every  𝑔௜௝ can be find out by the parameters. As a result, the 

following quantities can be calculated: 

ℂଵ(0) =
௜

ଶனబதబ
ቀ𝑔ଵଵ𝑔ଶ଴ − 2|𝑔ଵଵ|ଶ −

|௚బమ|మ

ଷ
ቁ +

௚మభ

ଶ
 , 𝜇ଶ = −

ோ௘{ℂభ(଴)}

ோ௘{ఒᇲ(ఛబ)}
, 𝛽ଶ =

2𝑅𝑒{ℂ଴(0)},  𝑇ଶ = −
ூ௠{ℂభ(଴)}ାఓమூ௠ ൛ఒᇲ(ఛబ)ൟ

னబதబ
                    (5.28) 

Theorem 5.4: The direction of the Hopf-bifurcation is calculated by the value 

of 𝜇ଶ: if 𝜇ଶ > 0(𝜇ଶ < 0), then the Hopf bifurcation is supercritical 

(subcritical) and the bifurcating periodic solutions exist for τ > τ଴ (τ < τ଴). 

The stability of bifurcating solutions is calculated by the value of 𝛽ଶ, the 

bifurcating recurring solutions are orbitally asymptotically stable (unstable) if 

𝛽ଶ < 0 (𝛽ଶ > 0 ). The value of 𝑇ଶ defines the period of the bifurcating 

periodic solutions, the period increases (decreases) if 𝑇ଶ > 0 (𝑇ଶ < 0 ). 

5.10 Numerical Simulation and Discussion 

The purpose of this section is to provide some numerical simulations in order 

to show the theoretical findings that were gained from this work. By using 

MATLAB, we will also demonstrate the analytical findings by displaying 

various bifurcation diagrams, and we will investigate a novel dynamical 

behavior that occurs when the parameters are altered. For the goal of the 

aforementioned endeavour, we take into consideration the hypothetical and 

establish the values of the parameters in such a manner that they fulfil the 

requirements derived by analytical means in earlier parts. 
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With the set of the parameters 𝒦 = 90,  𝛼ଵ = 0.145, 𝛼ଶ = 0.0045, 𝛼ଷ =

0.185, 𝛼ସ = 0.25, 𝛼ହ = 0.0347 𝑎𝑛𝑑 𝜏 = 1, we get  ℜ଴ = 0.5179 < 1.we 

have DFE which is absolute globally stable and the dynamics of the system 

(5.1) has been plotted in Figure 5.1 . 

When 1 <  ℜ଴ = 1.597 ≤ 2, then the system (5.1) holds the asymptotic 

stability. the dynamics of the system are given by 𝒦 = 150, 𝛼ଵ =

0.156, 𝛼ଶ = 0.051, 𝛼ଷ = 0.180, 𝛼ସ = 0.2551, 𝛼ହ = 0.0346 , Figure 5.2 

When  ℜ଴ > 2 the dynamics of the system (2) is given by the following 

simulations,  

For 𝒦 = 20, 𝛼ଵ = 0.112, 𝛼ଶ = 0.0521, 𝛼ଷ = 0.0751, 𝛼ସ = 0.0477, 𝛼ହ =

0.0374 , by direct computation we get the basic reproduction number ℜ଴ =

6.616 > 1 

(a) When 𝜏 = 0 the endemic equilibrium 𝐸∗is locally asymptotically stable 

and the equilibrium point is 𝐸∗(3.1329,1.7642,3.5459) see the Figure 5.3 to 

Figure 5.6. 

(b) When 𝜏 = 0.85 < 𝜏௖ = 1.0125 the endemic equilibrium is also 

asymptotically stable see Figure 5.7 & Figure 5.8. 

(c) When 𝜏 = 𝜏௖ = 1.0125 the dynamics of the system shows hopf 

bifurcation see Figure 5.9 to Figure 5.12 

(d) When 𝜏 = 1.27 > 𝜏௖ = 1.0125, then the system going to be super 

critical. See  Figure 5.13 to Figure 5.16. 
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Figure 5.1 : When 1 <  ℜ଴ = 1.597 ≤ 2, then the system holds the asymptotic 

stability 

 

 

 

Figure 5.2 : When  ℜ଴ > 2 system has some limit cycle and then stable. 
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Figure 5.3 : When 𝜏 = 0 the endemic equilibrium 𝐸∗is locally asymptotically stable 

for Susceptible host  

 

       

Figure 5.4 : When 𝜏 = 0 the endemic equilibrium 𝐸∗is locally asymptotically stable 

for Infected host. 
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Figure 5.5 : When 𝜏 = 0 the endemic equilibrium 𝐸∗is locally asymptotically stable 

for Recovered host. 

 

      

Figure 5.6 : Phase space view when 𝜏 = 0 the endemic equilibrium 𝐸∗is locally 

asymptotically stable. 
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Figure 5.7 : When 𝜏 = 0.85 < 𝜏௖ = 1.0125 the endemic equilibrium is also 

asymptotically stable 

 

 

Figure 5.8 : Phase space view when 𝜏 = 0.85 < 𝜏௖ = 1.0125 the endemic 

equilibrium is also asymptotically stable 
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Figure 5.9 : When 𝜏 = 𝜏௖ = 1.0125 the dynamics of the system shows hopf 

bifurcation 

 

     

Figure 5.10 : When 𝜏 = 𝜏௖ = 1.0125 the dynamics of the system shows hopf 

bifurcation 
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Figure 5.11 : When 𝜏 = 𝜏௖ = 1.0125 the dynamics of the system shows hopf 

bifurcation 

 

Figure 5.12 : Phase space view when 𝜏 = 𝜏௖ = 1.0125 the dynamics of the system 

shows hopf bifurcation 
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Figure 5.13 : When 𝜏 = 1.27 > 𝜏௖ = 1.0125, the system going to be super critical 

 

 

Figure 5.14 : When 𝜏 = 1.27 > 𝜏௖ = 1.0125, the system going to be super critical 
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Figure 5.15 : When 𝜏 = 1.27 > 𝜏௖ = 1.0125, the system going to be super critical 

 

 

 

Figure 5.16 : Phase Space view when 𝜏 = 1.27 > 𝜏௖ = 1.0125, the system going to 

be super critical 
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Figure 5.17: Phase Space view showing the dynamics of all the states of stability 

i.e., globally (Green), Asymptotic (purple), Hopf bifurcation (Red) and Super 

critical (Blue) 

5.11    Conclusion 

The global dynamic behaviors of a SIR model with incubation period are 

investigated in this work, and the susceptible population is shown to expand 

in a logistic fashion. There is a critical value of ℜ଴ in the system (5.2) that 

controls how the disease behaves. The impact of incubation period on the 

dynamic behaviours of systems are the focus of this research. This chapter 

findings demonstrate that the proximity to an endemic value and the stability 

of solutions are dependent on two variables: the incubation period duration 

and the threshold value ℜ଴. System (5.2) has global asymptotic stability in the 

disease-free equilibrium 𝐸∗ if ℜ଴ = 1. In the case where ℜ଴ > 1, 𝐸∗ is no 

longer stable, and the endemic equilibrium 𝐸∗ is indeed irreversible. The 

requisites for achieving local stability and Hopf bifurcation at 𝐸∗ were derived 

by treating the delay time as a parameter. If 1 <  ℜ଴ ≤ 2, then 𝐸∗ is absolutely 

stable; that is, 𝐸∗ is always locally stable when  τ is non zero. When ℜ଴ > 2, 

𝐸∗ is conditionally stable in the range τ ∈ (0, τ଴) , as soon as the value of τ 

surpasses the critical value τ଴ i.e., τ > τ଴ , 𝐸∗ become unstable and shows 

Hopf-bifurcations. This study shows that for short time delay in (5.2) has no 

effect on the positive invariance. Even the boundedness of solutions, the 

R
 (

t)
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global stability of DFE, or the permanence of the endemic equilibrium remains 

intact. However, for long delays, the time delay can destabilize the unique 

endemic equilibrium, and a variety of stable periodic solutions through Hopf 

bifurcation. Our theoretical findings are reflected in the results of the 

numerical simulations that were performed.     
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