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ABSTRACT 
 

Nonlinear evolutionary equations (NLEEs) play a crucial role for describing nonlinear 

phenomena across various scientific fields, including biology, physics, chemistry, 

pattern formation, solitons, ecology, heat transfer, and nonlinear dispersion. Solitary 

waves, which are solutions to NLEEs, maintain their shape while moving at a 

constant speed, and have received significant attention from the scientific community. 

This research provides, a comprehensive understanding of the origin and development 

of solitons and their behavior under different NLEEs. The versatility of solitons is 

explored, including their applications in plasma physics, nonlinear optics, biology, 

and nonlinear Bose-Einstein condensation. NLEEs are mathematical models used to 

describe the time evolution of various physical, biological, and social systems. They 

are partial differential equations (PDEs) that describes how a system changes over 

time based on the values of its variables and the relationship between them. They are 

often used to study the dynamics of system with multiple interacting components, 

where the behavior of the system as a whole cannot be understood by looking at each 

component separately. When these equations are mathematically modeled, it is a 

possibility that these equations are difficult to solve analytically. Therefore, it would 

be challenging for researchers to identify analytical or exact solutions to these 

differential equations. Advanced numerical approaches are shown to be most efficient 

in these situations for providing an approximate numerical solution to these 

differential equations. 

In this research, two numerical methods are established to solve partial differential 

equations. These newly established numerical methods are: “Exponential modified 

cubic B-spline differential quadrature method (Expo-MCB-DQM) with LOOCV 

approach” and “Exponential modified cubic B-spline differential quadrature method 

(Expo-MCB-DQM) with PSO approach”.  

In these methods two approaches (LOOCV and PSO) are used with the “Exponential 

modified cubic B-spline differential quadrature method” to identify the optimal value 

of the parameter 𝜖 that is used in the exponential cubic B-spline basis functions, that 

needs to provide a value which plays an important role in obtaining accurate 

numerical solutions. The combination of these approaches with Expo-MCB-DQM, 

makes it novel in the literature, that attract researchers' interest, which improves the 
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results of this method. Up till now, the value of parameter 𝜖 had been determined by 

the hit-and-trial approach, which leads to unstable results.  

To check the authenticity of these newly developed techniques, the methods are 

implemented on nonlinear Schrödinger (NLS) equation and Sine-Gordon (SG) 

equation. These two partial differential equations (NLS equation and SG equation), 

have soliton-type solutions and play crucial roles in various physical applications in 

science and engineering. The Josephson junction and optical fiber are two significant 

applications of the NLS equation and SG equation, respectively, briefly discussed in 

the thesis. 
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Chapter-1 

Introduction 

1.1 Research Problem and Motivation 

In modern life, mathematical modeling has become a powerful tool to tackle a wide 

range of real-world problems. However, finding exact solutions to these problems are 

challenging, and thus, advanced numerical techniques are often required. Finite 

difference, finite element, collocation, and differential quadrature methods are some 

examples of these techniques. I started my research journey by studying literature of 

differential quadrature method which used many B-spline basis functions to calculate 

weighing coefficients. Despite its usefulness, literature research indicates that the 

exponential cubic B-spline basis function is not as extensively used as compared to 

other B-spline basis functions. One possible reason for this is that its results can be 

unstable due to a randomly assigned parameter value. Our research problem stems 

from this issue: can we optimize this parameter value used in basis functions of 

exponential cubic B-spline? From studied literature, it is noticed that Radial basis 

functions (RBF) also faces the same type of problem. The research presented in the 

literature is an extension of the statistical approaches (LOOCV and PSO), that are 

utilized to find the optimal value of the shape parameter, which is used with different 

numerical techniques to solve PDEs [1-4].  

Now the question arises here: can we use these statistical approaches to improve the 

accuracy and stability of the “exponential cubic B-spline differential quadrature 

method”? This problem becomes our research objective, and we aim to apply the 

“exponential cubic B-spline differential quadrature method” with LOOCV and PSO 

approaches to solve NLEEs that represent engineering and science applications. 

1.2 Need of Numerical methods: Differential equations are vital mathematical tools 

used to explain and model various scientific phenomena, such as electromagnetic 

fields, quantum physics, fluid flow, diffusion processes, and structural mechanics. 

They play a fundamental role in many scientific disciplines, aiding researchers in 

developing a comprehensive understanding of the behavior of complex systems. In 
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the field of sciences and engineering, a wide range of ODEs and PDEs are used to 

explain many mathematical models. Researchers have solved a large number of ODEs 

and PDEs, analytically and numerically due to their importance. If an analytical 

solution is unavailable, then such an equation can be solved numerically. Solving 

nonlinear PDEs can be a challenging task due to the complexity of the equations. At 

that time, the importance and clarity of numerical methods are highlighted. Different 

numerical techniques have been developed to find the best-approximated results of 

such complex-natured PDEs. Numerical methods, such as the “finite difference 

method”, “finite element method” and “differential quadrature method”, etc. are often 

used to approximate the solutions to this type of PDEs. These methods involve 

discretizing the domain of the problem and using iterative algorithms to obtain an 

approximate solution that satisfies the equation within a certain error tolerance.  

Numerical analysis is an area of mathematics that works with creating effective 

numerical techniques to solve such challenging mathematical problems. Through the 

use of DQM with B-spline basis functions, this study investigates improved numerical 

solutions of nonlinear PDEs. The objective is to develop a numerical methodology to 

solve nonlinear PDEs. The NLS equation and Sine-Gordon equation play a crucial 

role in framing various mathematical models, which further enhances their 

significance in scientific research. By developing a numerical technique to solve these 

equations, researchers can gain a better understanding of their behavior and potential 

applications, ultimately aiding in the development of innovative solutions for various 

scientific and engineering challenges. 

1.3 Nonlinear evolutionary equations (NLEEs): Nonlinear evolutionary equations 

are called "nonlinear" because they involve nonlinear functions of the variables, 

which can lead to complex and often unpredictable behavior of the system. They are 

also called "evolutionary" because they describe how the system evolves, taking into 

account the effects of various factors that influence the system's behavior. NLEEs 

dynamically describe nonlinear sciences, the two dimensions of space and time 

through the nonlinear systems. NLEEs are a type of nonlinear PDE whose solution 

exists in the form of solitons and have several other important properties. 
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There are many examples of nonlinear evolutionary equations that are used to model a 

wide range of physical, biological, and social phenomena. Here are a few examples: 

1.3.1 The Navier-Stokes equations: These are a set of nonlinear PDEs that describe 

the motion of fluids. They are used to model the behavior of liquids and gases in a 

variety of applications, including weather forecasting, aerodynamics, and 

oceanography. 

1.3.2 The Fisher-Kolmogorov equation: This is a nonlinear PDE that is used to 

model the spread of a population over time. It is often used to study the dynamics of 

biological populations, such as the spread of a disease or the growth of a population. 

1.3.3 The Korteweg-de Vries equation: This is a nonlinear PDE that describes the 

propagation of waves in certain types of media, such as shallow water waves. It is 

used in many applications, including fluid dynamics, plasma physics, and optics. 

1.3.4 The Schrödinger equation: This is a nonlinear PDE that describes the behavior 

of quantum mechanical systems. It is used to study the behavior of particles at the 

atomic and subatomic level, and has applications in fields such as chemistry, materials 

science, and electronics. 

1.3.5 The Black-Scholes equation: This is a nonlinear PDE that is used in financial 

mathematics to model the behavior of stock prices. It is used to value options and 

other financial derivatives, and has applications in portfolio optimization and risk 

management. 

1.4 Applications of nonlinear evolutionary equations 

NLEEs have a wide range of applications in various fields of science and engineering. 

Here are a few examples: 

1.4.1 Pattern formation: NLEEs, such as reaction-diffusion equations, are used to 

model pattern formation in biological systems, such as the stripes on a zebra or the 

spots on a leopard. 

1.4.2 Fluid dynamics: The Navier-Stokes equations, which are NLEEs, are used to 

model the behavior of fluids, such as air and water, weather patterns, blood flow, and 
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aircraft design. These equations have numerous applications in aerospace engineering, 

weather forecasting, and oceanography, among other fields.  

1.4.3 Epidemiology: NLEEs, as the Susceptible-Infectious-Recovered (SIR) model, 

are used to model the spread of diseases and infections in populations. These 

equations can help predict the spread of a disease and assess the effectiveness of 

interventions, such as vaccination programs. 

1.4.4 Materials science: The Schrödinger equation, a well-known NLEEs is used to 

model the behavior of materials at the atomic and subatomic level. This can help 

researchers design new materials with specific properties, such as strength, 

conductivity, and elasticity. NLEEs, such as the Ginzburg-Landau equation, are used 

to model the behavior of materials, such as superconductors and super fluids. 

1.4.5 Finance: NLEEs, such as the Black-Scholes equation, are used in financial 

mathematics to model the behavior of financial instruments, such as options and 

futures. This can help investors make informed decisions and manage risk. 

1.4.6 Climate science: Heat equation, which is a NLEE used to model the behavior of 

the Earth's climate system. This can help researchers understand the factors that 

influence climate change and make predictions about future climate patterns. 

1.4.7 Quantum mechanics: NLEEs, such as the NLS equation are used to model the 

behavior of quantum mechanical systems, such as the behavior of atoms in a Bose-

Einstein condensate. 

1.4.8 Nonlinear optics: NLEEs, such as the NLS equation, are used to model the 

propagation of light in nonlinear media, such as optical fibers. 

1.4.9 Population dynamics: Lotka-Volterra equation is a NLEE which is used to 

model the interactions between different species in an ecosystem. 

1.4.10 Soliton: NLEEs, such as KdV equation and SG equation have important 

applications in the study of soliton solutions, which are localized wave-like solutions 

that maintain their shape and speed even after interacting with other solitons or 

perturbations. 
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These are just a few examples of the many applications of NLEEs. These equations 

are used in many fields of science and engineering, where they help researchers and 

engineers to understand complex system and design new technologies. 

1.5 Different types of solutions of nonlinear evolutionary equations 

NLEEs have a wide range of applications in physics, chemistry, biology, and 

engineering. Here are some applications of these equations based on their different 

types of solutions: 

1.5.1 Periodic solutions: A periodic solution is a solution that repeats itself after a 

certain amount of time. Examples of equations with periodic solutions include 

Kuramoto-Sivashinsky, Ginzburg-Landau, and Swift-Hohenberg equations. They are 

commonly used to model natural phenomena like flame fronts, chemical reactions, 

and turbulence in fluid dynamics. Identifying and analyzing periodic solutions is 

essential in understanding the behavior of complex systems in nature. 

1.5.2 Travelling wave solutions: Travelling wave solutions are type of soliton 

solutions that maintain their shape and speed while propagating through space. 

Equations such as KdV, NLS, and SG have travelling wave solutions. They are used 

to model the propagation of waves in water and light in optical fibers. Travelling 

wave solutions also explain the spread of epidemics and nerve impulses. 

1.5.3 Shock waves: A shock wave is a sudden change in amplitude or speed of a 

wave. Equations such as the Burgers' equation and the Riemann problem have shock 

wave solutions. The Burgers' equation, which has shock wave solutions, is used to 

model traffic flow and the behavior of fluids under high pressure. In addition, shock 

wave solutions are also used to explain the behavior of supernovae and other 

explosive events. 

1.5.4 Chaotic solutions: Chaotic solutions are unpredictable and exhibit complex 

behavior over time. Equations with chaotic solutions include the Lorenz system, 

Rossler system, and Henon-Heiles system. Chaotic solutions are used to study fluid 

turbulence, the dynamics of chemical reactions, and the behavior of financial markets. 

1.5.5 Multisoliton solutions: Multisoliton are solutions consisting of multiple 

solitons that maintain their shape and speed over long distances. Equations with 
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multisoliton solutions include the KdV, NLS, and SG equations. Multisoliton 

solutions have applications in the study of magnetic flux tubes dynamics, Bose-

Einstein condensates behavior, and quantum fluid dynamics. 

In summary, NLEEs can have a variety of solution types, including periodic solutions, 

travelling wave solutions, shock waves, soliton solutions, chaotic solutions, and 

multisoliton solutions. The specific type of solution that arises depends on the 

physical system being modeled and the properties of the equation governing that 

system. 

1.6 Solitons: Solitons are a unique type of long wave that does not disperse and 

moves as a packet with a constant velocity. They are also known as shallow water 

waves with a permanent form. The remarkable feature of solitons is that they maintain 

their shape when they collide with another soliton. This property has made solitons 

popular among mathematicians, physicists, and engineers due to their robustness and 

practical applications. Solitons are formed as a special type of solution of NLEEs, and 

NLEEs are a type of nonlinear PDEs.  

1.7 Introduction to Differential Quadrature Method 

To get approximation findings of nonlinear PDEs, several numerical approaches have 

been developed during the last few decades, for example “finite difference (FD) 

method”, “finite element (FE) method”, “finite volume (FV) method”, “collocation 

method”, etc. However, one of the most advanced and useful numerical approaches 

for obtaining the results of various nonlinear PDEs is DQM. 

DQM is a well-known numerical technique, is employed to solve partial differential 

equations (PDEs). Bellman and Casti [5, 6] presented this technique in the 1970s. 

This technique underwent revision in the 1980s [7] and shown to be a useful 

numerical approach to issues in the physical and engineering sciences [8]. Due to its 

properties of quick convergence, high accuracy, and computational power, it is 

currently a well-known numerical approach. Professor Chang Shu [9] has produced a 

book on DQM and its use in general engineering up to the year 1999. The weighting 

coefficient formulation enhanced by Quan and Chang [10] is the most important 

component of DQM. It is effectively applied to estimate the weighting coefficients 
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using a variety of basis functions, including B-spline functions [11], Lagrange 

interpolation polynomials, Fourier expansion-based functions, polynomial-based 

functions [12], radial basis functions [13], trigonometric B-spline functions [14], 

exponential B-spline functions [15], hyperbolic B-spline functions, sinc function etc. 

1.8 Literature Review of Differential Quadrature Method (DQM) 

A number of basis functions have been used in literature with DQM. The B-spline 

DQM is a significant numerical approach to obtain solutions of PDEs. There has been 

a lot of work described in the literature for obtaining numerical approximations of 

nonlinear PDEs using various types, orders, and degrees of B-spline DQM, some of 

which are presented here. Bashan et al. presented modified cubic B-spline [16, 17], 

modified quintic B-spline [18], and Crank-Nicolson quintic B-spline [19] with DQM. 

Korkmaz and Dag presented cubic B-Spline [20], quartic B-spline [21] and sinc 

functions [22] with DQM. Tamsir et al. [23, 24] presented exponential modified cubic 

B-spline with DQM. Arora et al. [25-28] presented modified trigonometric B-spline 

with DQM. Shukla et al. presented cubic B-splines [29], and exponential modified 

cubic B-spline [30] with DQM. Kapoor et al. presented modified uniform algebraic 

hyperbolic (UAH) tension B-spline [31], modified quartic hyperbolic B-spline [32], 

and Barycentric Lagrange interpolation basis [33] with DQM. Kumar et al. [34] used 

radial basis functions with DQM. 

1.9 Spline Functions: The theory of splines is explained in detail by Carl de Boor 

[35]. Splines are widely used by draftsmen and shipbuilders to draw curves that pass-

through points in a continuous manner, as well as in numerical techniques. These 

functions are commonly used in numerical analysis, computer-aided design, computer 

graphics, and other fields where the accurate representation of curves and surfaces is 

important. They provide a flexible and computationally efficient way to interpolate or 

approximate data, and can be used to construct curves and surfaces of arbitrary shape 

and complexity. 

Spline functions are mathematical functions used in the interpolation and 

approximation of data. These are piecewise-defined functions that consist of 

polynomial segments of a certain degree that are smoothly connected at a set of points 
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called knots. The polynomial segments are chosen to ensure that the spline is smooth 

and continuous across the knots. 

In numerical analysis, a spline is a function defined piecewise using polynomial 

functions. It is a polynomial of degree k in each interval [𝒱𝑖 , 𝒱𝑖+1], 𝑖 = 0,1,2,… , 𝑛 −

1, with the property that the polynomial and its first to k-1th derivatives are continuous 

in the domain [𝒱𝑖 , 𝒱𝑖+1]. The knots or node points are the known abscissas  𝑥𝑖 on a 

uniform mesh 𝒱0 < 𝒱1 <……< 𝒱𝑛 in the computational domain [a, b], where, 𝒱0 = 𝑎  

and 𝒱𝑛 = 𝑏. The spline function 𝑆(𝒱) on the computational domain [a, b], is defined 

as the sum of the polynomial functions 𝑃(𝒱𝑖) over all sub-domains that is: 

𝑆(𝒱) = ∑𝑃(𝒱𝑖)

𝑛

𝑖=1

 

The concept of spline originated from the problem of fitting a polynomial to a set of 

data points with known functional values. For example, a linear polynomial can be 

used with two data points, a quadratic polynomial with three, and a cubic polynomial 

with four. However, as the number of data points increases, the degree of the 

polynomial required also increases, making it challenging to work with higher degree 

polynomials. The most commonly used spline functions are cubic splines, which 

consist of cubic polynomial segments that are joined smoothly at the knots. To 

construct a cubic spline, the data points are first divided into a set of intervals, with 

each interval containing two adjacent knots. A cubic polynomial is then fitted to the 

data within each interval, subject to certain continuity and smoothness conditions at 

the knots. These conditions ensure that the spline is smooth and continuous across the 

knots, and that its first and second derivatives are also continuous. Once the cubic 

spline is constructed, it can be evaluated at any point within the interval by using the 

appropriate polynomial segment. This allows the spline to interpolate or approximate 

the data with a high degree of accuracy, even if the data is noisy or irregularly spaced. 

1.10 Different types of spline functions 

Here are some examples of different types of spline functions:  
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(a) Linear spline: A simple example of a linear spline is a straight line connecting 

two adjacent data points. For example, if we have the data points (1,2) and (3,4) the 

linear spline connecting them is:  𝑦 =  1 +
x

2
.  

(b) Quadratic spline: A quadratic spline is a parabolic curve or piecewise quadratic 

function that connects adjacent data points smoothly. They are more flexible than 

linear splines but are still relatively simple. For example, if we have the data points (1, 

2), (2, 1), and (3, 4), a quadratic spline that fits these points is: 𝑦 = −
x2

4
+

3𝑥

2
− 1. 

(c) Cubic spline: A cubic spline is a cubic polynomials or piecewise cubic function 

that connects adjacent data points smoothly. They are the most commonly used type 

of spline function and provide a good balance between flexibility and simplicity. For 

example, for the data points (1, 2), (2, 1), and (3, 4), a cubic spline that fits these 

points is given by: 𝑦 = −
x3

2
+ 3𝑥2 − 3𝑥 + 2. 

(d) Quartic splines: Quartic splines are spline functions of degree four. They are 

used in situations where a higher degree of accuracy is required, but cubic splines are 

not sufficient. Quartic splines are defined by piecewise quartic polynomials that are 

joined smoothly at the knots. 

(e) Quintic splines: Quintic splines are spline functions of degree five. They are used 

in situations where even greater accuracy is required than with quartic splines. Quintic 

splines are defined by piecewise quintic polynomials that are joined smoothly at the 

knots. 

(f) Higher-order splines: Higher-order splines are spline functions of degrees higher 

than three. They are less commonly used than cubic splines but can provide greater 

flexibility and accuracy in some situations. 

(g) B-spline: B-splines are a type of piecewise polynomial function that are widely 

used in computer graphics and geometric modeling. An example of a B-spline is the 

cubic B-spline, which is a piecewise cubic function that is defined by a set of control 

points and a set of basis functions. The basis functions determine the shape of the 

curve, while the control points determine its position. 
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(h) Non-Uniform Rational B-Splines (NURBS): NURBS are a type of spline 

function that are commonly used in computer-aided design (CAD) and computer 

graphics. An example of a NURBS curve is a Bezier curve, which is a cubic NURBS 

curve that is defined by a set of control points and a set of weights. The weights 

determine the degree of influence that each control point has on the shape of the 

curve. They are similar to B-splines but allow for more complex shapes and can 

represent curves and surfaces with a high degree of accuracy. 

Overall, spline functions are a powerful and versatile tool for the interpolation and 

approximation of data, and the choice of spline function depends on the specific 

requirements of the application. These are just a few examples of the different types 

of spline functions. There are many other types of spline functions, each with their 

own unique properties and applications. 

1.11 Different types of B-splines functions 

B-spline basis functions are powerful techniques used in computer aided geometry 

design (CAGD) and approximation theory. B-splines are piecewise polynomials that 

exhibit global smoothness. The points at which these pieces are connected are known 

as knot points or grid points. The term “B-spline” was first introduced in 1946 by 

Schoenberg [36] as a short form of basis spline, which is a piecewise polynomial 

approximation that is smooth. 

B-spline is a spline function that achieves minimal support for a given degree, 

smoothness, and partition domain. The basis function is the fundamental concept of 

the B-spline. A knot sequence is a non-decreasing sequence of knot points, where 

each knot point is denoted by 𝒱𝑖 . The interval between each knot point, [𝒱𝑖 , 𝒱𝑖+1), is 

the 𝑖𝑡ℎ knot span. When knots are equally spaced, the knot sequence is known as a 

uniform knot sequence, and when knots are not equally spaced, it is a non-uniform 

knot sequence. A B-spline function with degree 𝑘 covers (𝑘 + 1) knot points or 𝑘 

intervals. 

In the 1972, Cox and Boor [35] gave a recurrence relation for attaining the B-spline 

basis function. Using Leibnitz's Theorem, Boor derived the 𝑛𝑡ℎ B-spline basis 

function with 𝑘𝑡ℎ degree in the form of a recurrence relation: 
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𝐶𝑖,𝑘(𝒱) = 𝑍𝑖,𝑘𝐶𝑖,𝑘−1(𝒱) + (1 − 𝑍𝑖+1,𝑘)𝐶𝑖+1,𝑘−1(𝒱) 

where 𝑍𝑖,𝑘  is given by: 

𝑍𝑖,𝑘 = (
𝒱 − 𝒱𝑖
𝒱𝑖+𝑘 − 𝒱𝑖

) 

The above recursion formula is known as the Cox de Boor formula, and 𝑍𝑖,𝑘  is the 𝑖𝑡ℎ 

B-spline function with degree 𝑘. The set {𝒱𝑖} is the non-decreasing set of knot points. 

By using the Cox de Boor formula, we can easily observe that the B-spline function of 

an arbitrary degree can be evaluated as a linear combination of lower degree B-

splines. 

Here are some examples of different types of B-splines: 

(a) Zero Degree B-splines: By setting 𝑘 = 0, the basis function of zero degree B-

splines simplifies to a step function, making it a straightforward and uncomplicated 

basis function. Thus, a B-spline of zero degree is constructed as follows: 

𝐶𝑖,0(𝒱) = {
 1,   
0,

𝒱𝜖 [𝒱𝑖 𝒱𝑖+1)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(b) Linear B-spline: If we substitute 𝑘 = 1 in the equation and utilize the concept of 

B-spline of 1st degree, which is commonly referred to as the linear B-spline. The 

construction of the linear B-spline is as follows: 

𝐶𝑖,1(𝒱) =

{
 
 

 
 

       

     

𝒱 − 𝒱𝑖
𝒱𝑖+1 − 𝒱𝑖 ,

  𝒱𝜖[𝒱𝑖,𝒱𝑖+1)

𝒱𝑖+2 − 𝒱

𝒱𝑖+2 − 𝒱𝑖+1,
  𝒱𝜖[𝒱𝑖+1, 𝒱𝑖+2)

    0,                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(c) Quadratic B-spline: To obtain the B-spline of 2nd degree, also known as the 

quadratic B-spline, we can substitute 𝑘 = 2 in formula and incorporate the concept of 

the B-spline of the first degree.  
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The construction of the quadratic B-spline is as follows: 

𝐶𝑖,2(𝒱) =
1

ℎ2

{
 
 
 

 
 
                      

(𝒱 − 𝒱𝑖)
2

(𝒱𝑖+2 −𝒱𝑖)(𝒱𝑖+1 − 𝒱𝑖)
,                             𝒱𝜖[𝒱𝑖 , 𝒱𝑖+1)

(𝒱 − 𝒱𝑖)(𝒱𝑖+2 −𝒱)

(𝒱𝑖+2 −𝒱)(𝒱𝑖+2 − 𝒱𝑖+1)
+

(𝒱𝑖+3 −𝒱)(𝒱 − 𝒱𝑖+1)

(𝒱𝑖+3 −𝒱𝑖+1)(𝒱𝑖+2 −𝒱𝑖+1)
, 𝒱𝜖[𝒱𝑖+1 , 𝒱𝑖+2)

                       
(𝒱𝑖+3 −𝒱)

2

(𝒱𝑖+3 − 𝒱𝑖+1)(𝒱𝑖+3 −𝒱𝑖+2)
,                            𝒱𝜖[𝒱𝑖+2, 𝒱𝑖+3)

    0,                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(d) Cubic B-spline: The B-spline of degree 3, also referred to as the cubic B-spline, 

can be obtained by utilizing the recurrence relation and the B-spline of degree 2. The 

construction of the cubic B-spline is as follows: 

𝐶𝑖,3(𝒱) =
1

ℎ3

{
 
 

 
 

(𝒱 − 𝒱𝑖−2)
3,                𝒱𝜖[𝒱𝑖−2, 𝒱𝑖−1)

(𝒱 − 𝒱𝑖−2)
3 − 4(𝒱 − 𝒱𝑖−1)

3, 𝒱𝜖[𝒱𝑖−1, 𝒱𝑖)

(𝒱𝑖−2 − 𝒱)
3 − 4(𝒱𝑖+1 − 𝒱)

3, 𝒱𝜖[𝒱𝑖, 𝒱𝑖+1)

       (𝒱𝑖+2 − 𝒱)
3,             𝒱𝜖[𝒱𝑖+1, 𝒱𝑖+2)

              0,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(e) Quartic B-spline: The B-spline of degree 4, also known as the quartic B-spline, 

can be constructed by utilizing the recurrence relation and the B-spline of degree 3 to 

obtain the B-spline of degree 4. The construction of the quartic B-spline is as follows: 

𝐶𝑖,4 =
1

ℎ4

{
  
 

  
 

(𝒱 − 𝒱𝑖−2)
4, 𝒱𝜖[𝒱𝑖−2, 𝒱𝑖−1)

(𝒱 − 𝒱𝑖−2)
4 − 5(𝒱 − 𝒱𝑖−1)

4, 𝒱𝜖[𝒱𝑖−1, 𝒱𝑖)

(𝒱 − 𝒱𝑖−2)
4 − 5(𝒱 − 𝒱𝑖−1)

4 + 10(𝒱 − 𝒱𝑖)
4, 𝒱𝜖[𝒱𝑖 , 𝒱𝑖+1)

(𝒱𝑖+3 − 𝒱)
4 − 5(𝒱𝑖+2 −𝒱)

4, 𝒱𝜖[𝒱𝑖+1, 𝒱𝑖+2)

(𝒱𝑖+3 −𝒱)
4, 𝒱𝜖[𝒱𝑖+2, 𝒱𝑖+3)

   0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(f) Quintic B-spline: The B-spline of degree 5, also referred to as the quintic B-

spline, can be established by utilizing the recurrence relation and the B-spline of 

degree 4.  
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The construction of the quintic B-spline is as follows: 

𝐶𝑖,5 =
1

ℎ5

{
 
 
 

 
 
 

(𝒱 − 𝒱𝑖−3)
5, 𝒱𝜖[𝒱𝑖−3, 𝒱𝑖−2)

(𝒱 − 𝒱𝑖−3)
5 − 6(𝒱 − 𝒱𝑖−2)

5, 𝒱𝜖[𝒱𝑖−2, 𝒱𝑖−1)

(𝒱 − 𝒱𝑖−3)
5 − 6(𝒱 − 𝒱𝑖−2)

5 + 15(𝒱 − 𝒱𝑖−1)
5, 𝒱𝜖[𝒱𝑖−1, 𝒱𝑖)

(𝒱𝑖+3 −𝒱)
5 − 6(𝒱𝑖+2 −𝒱)

5 + 15(𝒱𝑖+1 − 𝒱)
5, 𝒱𝜖[𝒱𝑖 , 𝒱𝑖+1)

(𝒱�̇�+3 − 𝒱)
5 − 6(𝒱𝑖+2 −𝒱)

5, 𝒱𝜖[𝒱𝑖+1, 𝒱𝑖+2)

(𝒱𝑖+3 −𝒱)
5, 𝒱𝜖[𝒱𝑖+2, 𝒱𝑖+3)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(g) Uniform B-spline: A uniform B-spline is a B-spline where the knots are equally 

spaced. Uniform B-splines are commonly used in numerical analysis because they 

have desirable mathematical properties. 

(h) Non-uniform B-spline: A non-uniform B-spline is a B-spline where the knots are 

not equally spaced. Non-uniform B-splines are used in situations where more control 

over the shape of the curve is needed. 

(i) Periodic B-spline: A periodic B-spline is a B-spline where the curve is closed, 

meaning it has the same value at the beginning and end points. Periodic B-splines are 

used in situations where the curve needs to be continuous and smooth at the 

endpoints. 

These are just a few examples of the different types of B-splines. There are many 

other types of B-splines with different orders, continuity, and knot vectors, each with 

their own unique properties and applications. 

1.12 Exponential cubic B-spline 

The exponential cubic B-spline basis functions are a type of spline function used in 

numerical analysis and computer graphics to approximate curves and surfaces. Expo-

MCB basis functions also available in literature for solving various equations such as 

Burgers equation [23], multi-dimensional convection-diffusion equations [30], Sine-

Gordon equation [15], Fisher’s reaction-diffusion equation [24], telegraph equation 

[37], nonlinear Schrödinger equation [26], etc. However, compared to other basis 

functions, Expo-MCB-DQM is still not often found in the literature. This is because 
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there exists a parameter 𝜖 in exponential cubic B-spline basis functions that needs to 

provide a value which plays an important role in finding the numerical solutions. 

1.13 The algorithm of DQM with B-spline basis functions 

The DQM is a numerical technique for solving nonlinear PDEs using B-spline 

functions as the basis functions. The algorithm for the DQM with B-spline basis 

functions is as follows: 

Step 1 Discretize the domain: Divide the domain of the nonlinear PDEs into a set of 

discrete points. The points should be evenly spaced to simplify the calculations. 

Step 2 Choose appropriate basis functions: A suitable basis functions are required 

to approximate the unknown function and its derivatives at the discrete points. 

Step 3 Approximation: Approximate the unknown function and its derivatives at 

each of the discrete points using a weighted sum of the function values at these points. 

In this study the weighting coefficients are determined by the exponential cubic B-

spline basis functions. 

Step 4 Derivative evaluation: Evaluate the derivatives of the unknown function 

using the approximation obtained in step 3. 

Step 5 System of equations: Substituting the derivatives, the PDE transformed the 

PDE into a system of ODEs. 

Step 6 Solve the system of equations: Solve the system of algebraic equations to 

obtain the values of the unknown function at the discrete points. 

1.14 Modified Exponential Cubic B-spline Differential Quadrature Method 

DQM is a numerical method for approximating the function derivative as a linear sum 

of the function value on the discrete node points inside the problem's solution space. 

This technique takes into consideration the grid distribution, where a given interval 

[𝑎, 𝑏] is divided into a set of discrete grid points 𝑎 = 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁 = 𝑏.  
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Assuming that the function 𝑢(𝑥) is sufficiently smooth within the region of the 

solution, the value of the derivatives at the discrete points 𝑥𝑖can be written in the form 

as follows: 

𝑑(𝑟)𝑢

𝑑𝑥(𝑟)
|𝑥𝑖 = ∑ 𝑝𝑖,𝑗

(𝑟)𝑢(𝑥𝑗),     𝑖 = 1,2,… , 𝑁,    𝑟 = 1,2,… , 𝑁 − 1
𝑁
𝑗=1                    (1.1) 

here 𝑟 signifies the order of derivative, 𝑝𝑖,𝑗
(𝑟)

 are the weighing coefficients and 𝑁 are 

the total points consider for approximation solution in the domain. 

The objective of the DQM approach is to estimate the weighting coefficients that can 

be obtained using a set of basis functions that covers the domain. While calculating 

the weighting coefficients, various types of basis functions may be applied as per the 

context. 

This research employs the exponential form of B-spline in third degree as the basis 

functions for calculating the weighting coefficients. The exponential cubic B-spline 

basis functions are defined as follows [23]: 

𝐶𝑚(𝑥) =
1

ℎ3

{
 
 

 
 𝛼3 (𝑥𝑚−2 − 𝑥) −

𝛼3

𝜖(sinh(𝜖(𝑥𝑚−2−𝑥)))
, 𝑥𝜖[𝑥𝑚−2 , 𝑥𝑚−1)

𝛼1 + 𝛼2(𝑥𝑚 − 𝑥) + 𝛼4𝑒
𝜖(𝑥𝑚−𝑥) + 𝛿1𝑒

−𝜖(𝑥𝑚−𝑥), 𝑥𝜖[𝑥𝑚−1, 𝑥𝑚)

𝛼1 + 𝛼2(𝑥 − 𝑥𝑚) + 𝛼4𝑒
𝜖(𝑥−𝑥𝑚) + 𝛿1𝑒

−𝜖(𝑥−𝑥𝑚), 𝑥𝜖[𝑥𝑚 , 𝑥𝑚+1)

𝛼3(𝑥 − 𝑥𝑚+2) −
𝛼3

𝜖(sinh(𝜖(𝑥−𝑥𝑚+2)))
, 𝑥𝜖[𝑥𝑚+1 , 𝑥𝑚+2)

     (1.2) 

where  ℎ = 𝑥𝑛 − 𝑥𝑛−1 for all 𝑛. 

α1 =
𝜖ℎ𝑐1

𝜖ℎ𝑐1−𝑐2
 , α2 =

𝜖

2
(

𝑐1(𝑐1−1)+𝑐2
2

(𝜖ℎ𝑐1−𝑐2)(1−𝑐1)
), α3 =

𝜖

2(𝜖ℎ𝑐1−𝑐2)
 , α4  =

1

4
(
(1−𝑐1+𝑐2)𝑒

−𝜖ℎ−𝑐2

(𝜖ℎ𝑐1−𝑐2)(1−𝑐1)
), 

𝛿1 = 
1

4
(
(−1+𝑐1+𝑐2)𝑒

𝜖ℎ−𝑐2

(𝜖ℎ𝑐1−𝑐2)(1−𝑐1)
), 𝑐1 = cosh(𝜖ℎ), 𝑐2 = sinh(𝜖ℎ). 

The parameter (ϵ) that has to be optimized is used here, which is necessary for finding 

the solutions. 

The numerical values of the exponential cubic B-spline functions 𝐶𝑚(𝑥) and their 

derivatives at different nodal points can be obtained with the help of Table 1.1.  
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Table 1.1.  The exponential cubic B-spline functions 𝐶𝑚(𝑥) and their derivatives at 

the different grid points. 

 𝒙𝒏−𝟐 𝒙𝒏−𝟏 𝒙𝒏 𝒙𝒏+𝟏 
𝒙𝒏+𝟐 

𝑪𝒎(𝒙) 0 𝑐2 − 𝜖ℎ

2(𝜖ℎ𝑐1 − 𝑐2)
 

1 𝑐2 − 𝜖ℎ

2(𝜖ℎ𝑐1 − 𝑐2)
 

0 

𝑪𝒎
′ (𝒙) 0 𝜖(𝑐1 − 1)

2(𝜖ℎ𝑐1 − 𝑐2)
 

0 𝜖(1 − 𝑐1)

2(𝜖ℎ𝑐1 − 𝑐2)
 

0 

𝑪𝒎
′′ (𝒙) 0 𝜖2 𝑐2

2(𝜖ℎ𝑐1 − 𝑐2)
 

−𝜖2 𝑐2
(𝜖ℎ𝑐1 − 𝑐2)

 
𝜖2 𝑐2

2(𝜖ℎ𝑐1 − 𝑐2)
 

0 

 

When utilizing exponential cubic B-spline as the basis functions in the fundamental 

DQM equation (1.1), the resultant equation is as follows: 

𝝏(𝒓)𝑪𝒎(𝒙𝒊)

𝝏𝒙(𝒓)
= ∑ 𝒑𝒊,𝒋

(𝒓)𝑪𝒎(𝒙𝒋),     𝒎 = −𝟏, 𝟎,… , 𝑵 + 𝟐,     𝒊 = 𝟏, 𝟐,… , 𝑵.𝒎+𝟐
𝒋=𝒎−𝟐      (1.3) 

Utilizing exponential cubic B-spline leads to the appearance of two additional points 

on both the left and right sides, resulting in a total of four additional points. These 

extra points are eliminated by modified form of the basis functions. The modified 

exponential cubic B-splines can be calculated as shown below at the mesh points [23]: 

𝐺1(𝑥) = 𝐶1(𝑥) + 2𝐶0(𝑥), 

𝐺2(𝑥) = 𝐶2(𝑥) − 𝐶0(𝑥), 

                                               𝐺𝑘(𝑥) = 𝐶𝑘(𝑥)𝑓𝑜𝑟   𝑘 = 3,4,… , 𝑁 − 2,            (1.4) 

𝐺𝑁−1(𝑥) = 𝐶𝑁−1(𝑥) − 𝐶𝑁+1(𝑥), 

𝐺𝑁(𝑥) = 𝐶𝑁(𝑥) + 2𝐶𝑁+1(𝑥), 

When r=1 in equation (1.1), the resulting equation is: 

𝐺𝑘
′ (𝑥𝑖) =  ∑ 𝑝𝑖,𝑗

(1)𝐺𝑘(𝑥𝑗), 𝑓𝑜𝑟    𝑖 = 1,2,… , 𝑁,    𝑘 = 1,2,… , 𝑁.
𝑁
𝑗=1                 (1.5) 

𝐴𝑝(1)[𝑖] = �⃗⃗�[𝑖] 𝑓𝑜𝑟    𝑖 = 1,2,… , 𝑁.        (1.6) 
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The coefficient matrix 𝐴 = [𝐺𝑖𝑗] of order N, is expressed as: 

𝐴 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝜖ℎ𝑐1 − 𝜖ℎ

𝜖ℎ𝑐1 − 𝑐2

 𝑐2 − 𝜖ℎ

2(𝜖ℎ𝑐1 − 𝑐2)
0 0 0 ⋯ 0

0 1
  𝑐2 − 𝜖ℎ

2(𝜖ℎ𝑐1 − 𝑐2)
0 0 ⋯ 0

0
 𝑐2 − 𝜖ℎ

2(𝜖ℎ𝑐1 − 𝑐2)
1

 𝑐2 − 𝜖ℎ

2(𝜖ℎ𝑐1 − 𝑐2)
0 ⋯ 0

⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱

0 0 ⋯
 𝑐2 − 𝜖ℎ

2(𝜖ℎ𝑐1 − 𝑐2)
1

  𝑐2 − 𝜖ℎ

2(𝜖ℎ𝑐1 − 𝑐2)
0

0 0 ⋯ 0
  𝑐2 − 𝜖ℎ

2(𝜖ℎ𝑐1 − 𝑐2)
1 0

0 0 ⋯ 0 0
 𝑐2 − 𝜖ℎ

2(𝜖ℎ𝑐1 − 𝑐2)

 𝜖ℎ𝑐1 − 𝜖ℎ

𝜖ℎ𝑐1 − 𝑐2 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The weighing coefficient vector 𝑝(1)[𝑖] = [𝑝𝑖1
(1), 𝑝𝑖2

(1), … , 𝑝𝑖𝑁
(1)]

𝑇

 which corresponds to 

grid point 𝑥𝑖, and the coefficient vector �⃗⃗�[𝑖] = [𝐺1,𝑖
′ , 𝐺2,𝑖

′ … , 𝐺𝑁−1,𝑖
′ , 𝐺𝑁,𝑖

′ ]
𝑇
 also 

corresponding to grid point 𝑥𝑖, are calculated for 𝑖 = 1,2,… , 𝑁 as follows: 

𝑇[1] =

[
 
 
 
 
 
 
 
 
𝜖(1−𝑐1)

(𝜖ℎ𝑐1−𝑐2)

𝜖(1−𝑐1)

(𝜖ℎ𝑐1−𝑐2)

0
0
⋮
0
0 ]

 
 
 
 
 
 
 
 

,  𝑇[2] =

[
 
 
 
 
 
 
 
𝜖(1−𝑐1)

2(𝜖ℎ𝑐1−𝑐2)

0
𝜖(1−𝑐1)

2(𝜖ℎ𝑐1−𝑐2)

0
⋮
0
0 ]

 
 
 
 
 
 
 

, … ,  𝑇[𝑁 − 1] =

[
 
 
 
 
 
 
 

0
0
⋮
0

𝜖(1−𝑐1)

(𝜖ℎ𝑐1−𝑐2)

0
𝜖(𝑐1−1)

(𝜖ℎ𝑐1−𝑐2)]
 
 
 
 
 
 
 

,  𝑇[𝑁] =

[
 
 
 
 
 
 
 
 

0
0
⋮
0
0

𝜖(1−𝑐1)

(𝜖ℎ𝑐1−𝑐2)

𝜖(𝑐1−1)

(𝜖ℎ𝑐1−𝑐2)]
 
 
 
 
 
 
 
 

 

After implementing the developed program on MATLAB the values of weighting 

coefficients are obtained. These values can then be utilized to determine the weighting 

coefficients for the second-order derivatives using the following relationship: 

𝑝𝑖𝑗
(2) =

{
 
 

 
 −∑𝑝𝑖𝑗

(2)          𝑓𝑜𝑟 𝑖 = 𝑗

𝑁

𝑖=1

2𝑝𝑖𝑗
(1) (𝑝𝑖𝑖

(1) −
1

𝑥𝑖 − 𝑥𝑗
)  𝑓𝑜𝑟 𝑖 ≠ 𝑗

 

A strong stability-preserving time-stepping Runge-Kutta (SSP-RK43) scheme [38] is 

then after applied to calculate the numerical solution to the resulting ODE system.  
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1.15 Strong stability-preserving time-stepping Runge-Kutta (SSP-RK43) scheme  

The SSP-RK43 is a numerical method to solve the given ordinary differential 

equations (ODEs). In the proposed research work, the reduced system of ODE can be 

presented by the following equation: 

𝑑𝑢

𝑑𝑡
= 𝐿(𝑢) 

where 𝐿 denotes a spatial nonlinear differential operator and to solve this system of 

ODE following are the steps as outlined below: 

𝑢(1) = 𝑢(𝑚) +
𝛥𝑡

2
𝐿(𝑢(𝑚)) 

𝑢(2) = 𝑢(1) +
𝛥𝑡

2
𝐿(𝑢(1)) 

𝑢(3) =
2

3
𝑢(𝑚) +

𝑢(2)

3
+
𝛥𝑡

6
𝐿(𝑢(2)) 

𝑢(𝑚+1) = 𝑢(3) +
𝛥𝑡

2
𝐿(𝑢(3)), 

and consequently, the solution 𝑢(𝑥, 𝑡) at a particular time level is completely known. 

1.16 Convergence analysis 

A numerical method for solving a differential equation is considered convergent if the 

approximate solution approaches the exact solution as the step size (ℎ) tends to zero, 

given that rounding errors from initial conditions approach zero. This implies that as 

the method is refined with smaller step sizes, the sequence of approximate solutions 

should converge to the exact solution. 

1.16.1 Rate of Convergence (ROC) 

The rate of convergence (𝑝) characterizes how quickly the iterates approach the exact 

solution as the number of iterations increases in an iterative numerical method.  

 𝑝 ≈1 suggests linear convergence, where the error decreases by a constant 

factor in each iteration, and the number of correct digits roughly doubles. 



19 
 

 If 𝑝 is close to 2, it indicates quadratic convergence. Here, the error decreases 

by a squared factor in each iteration, resulting in roughly quadrupling the 

number of correct digits. 

 Higher 𝑝 values denote faster convergence, and the associated interpretations 

hold for higher orders of convergence. 

The rate of convergence of the numerical scheme used in the chapters is calculated by 

the formula [39]: 

𝑝 ≈
log (

𝐸𝑁
𝐸2𝑁

)

log (
2𝑁
𝑁
)

 

where, 𝐸𝑁, and 𝐸2𝑁  are the  𝐿∞  errors with the number of partitions as N 

and 2N respectively.  

 
𝐸𝑁

𝐸2𝑁
: Represents the ratio of errors between two successive iterations (𝑁 and 

2𝑁). And reflects how much the error decreases from one iteration to the next. 

 log (
𝐸𝑁

𝐸2𝑁
): The logarithm (natural log is used, denoted by “ln” and is expressed 

with base e) of the error ratio amplifies differences in errors. 

 log (
2𝑁

𝑁
): The logarithm of 2 serves as a normalization factor. 

 
log(

𝐸𝑁
𝐸2𝑁

)

log(
2𝑁

𝑁
)

: Gives a numerical estimate of the rate of convergence (𝑝). The 

numerator measures how errors decrease, and the denominator normalizes this 

measurement. 

1.17 Stability of method 

In the context of numerical methods, stability denotes how an algorithm or method 

behaves when confronted with minor errors, or uncertainties. A numerical method is 

deemed stable if it consistently delivers accurate and reliable results, demonstrating 

resilience in the face of slight variations in input data, initial conditions, or 

computational parameters. 

The stability of the DQM method has undergone scrutiny in the literature, assessed by 

various authors [25-28]. Observations reveal that the DQM method exhibits 
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conditional stability, signifying its stability contingent on specific conditions, such as 

particular choices of time step or grid size. 

By utilizing the differential quadrature method on partial differential equations, we 

can obtain a set of ordinary differential equations that can be solved using numerical 

methods such as the Runge-Kutta method. To ensure stability when using the Runge-

Kutta method, conditions for eigenvalues are provided by M.K. Jain [40] in his book. 

Consider the equation of the form: 

𝑢𝑡(𝑥, 𝑡) = 𝑀 + 𝑓(𝑢(𝑥, 𝑡)), 

 

Figure 1.1. Region of Stability 

where 𝑀 is a matrix derived from the partial differential equation and 𝑓(u(x, t)) 

represents the nonlinear terms. The stability of the system depends on the eigenvalues 

of matrix 𝑀, which must satisfy specific conditions depending on the value of time 

step Δt as defined below:  

(a) Real 𝜆𝑗 ∶  −2.78 <  𝛥𝑡𝜆𝑗  <  0   

(b) Pure Imaginary 𝜆𝑗: −2 √2  <  𝛥𝑡𝜆𝑗  <  −2 √2  



21 
 

(c) Complex 𝜆𝑗: 𝛥𝑡𝜆𝑗, lies inside the region (shown in Figure 1.1) 

The system is stable only if the eigenvalues fall within certain ranges, as shown in 

Figure 1.1. It is essential to consider the time step value when determining the 

stability of the system.  

1.18 Optimization 

The process of minimizing or maximizing an objective function by choosing the best 

values for each of its variables from within the permitted range of values is referred to 

as "optimization". Any real-world application can often be turned into an optimization 

task. 

1.18.1 Applications of optimization techniques 

Optimization techniques have a variety of applications. Some of the applications of 

optimization techniques include: 

Operations research: Optimization techniques are widely used in operations 

research to solve problems such as resource allocation, inventory management, and 

scheduling. For example, linear programming can be used to optimize production and 

transportation schedules to minimize costs in a manufacturing company. 

Engineering: Optimization techniques are used in engineering to optimize the 

designing of complex problems, such as airplanes, bridges, and electronic circuits. For 

example, genetic algorithms can be used to optimize the shape of a wing for a given 

set of designs and nonlinear programming (NLP) can be used to optimize the shape of 

an aircraft wing to minimize drag while maximizing lift. 

Finance: Optimization techniques are used in finance to optimize investment 

portfolios, risk management, and trading strategies. For example, quadratic 

programming can be used to minimize the risk of an investment portfolio while 

maximizing its return. 

Machine learning: Gradient descent is an optimization technique that is widely used 

in machine learning to optimize the parameters of a model. It is used to minimize the 

loss function of a model, which measures the difference between the predicted and 
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actual output. Gradient descent is used in many machine learning algorithms, such as 

linear regression, logistic regression, and neural networks. 

Energy systems: Optimization techniques are used in energy systems to optimize the 

operation and control of power grids, renewable energy systems, and energy storage 

systems. An example is optimal power flow, which is an optimization problem that 

aims to minimize the operating cost of a power system while satisfying various 

constraints, such as the demand for electricity and the capacity of transmission lines. 

Overall, optimization techniques have numerous applications across different fields, 

and they are an essential tool for solving complex problems and improving efficiency 

and performance. 

1.18.2 Resampling techniques 

Resampling is a technique used in statistics and machine learning to create new 

datasets from an existing dataset by drawing samples with or without replacement. 

The goal of resampling is to improve the accuracy and reliability of statistical 

estimates and to reduce the risk of overfitting by generating multiple independent 

samples from the original dataset. There are several important resampling techniques 

such as cross-validation, LOOCV, Jackknifing, Bootstrapping, etc. By creating 

multiple independent samples from the original dataset, resampling allows researchers 

to obtain more accurate estimates of statistical parameters and to test the robustness of 

their results.  

LOOCV is not a specific algorithm, but rather a technique used in machine learning 

and statistical analysis to evaluate the performance of a model on a given dataset and 

parameter tuning. LOOCV trains the model on all the data except for one observation, 

which serves as the validation set. Every observation in the dataset goes through this 

procedure once, ensuring that every observation is utilized as the validation set 

precisely once. The algorithm's performance is tracked after each cycle, and the final 

estimation of the algorithm's performance on the full dataset is based on the average 

performance across all cycles. When the dataset is small or there is a shortage of data, 

LOOCV is often utilized. It may also be used to evaluate the effectiveness of many 

algorithms or adjust the hyperparameters of a single method. For estimating the 
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model's performance on new, untested data, LOOCV is very helpful since the dataset 

is limited. Nevertheless, since LOOCV involves fitting the model several times, it 

may be computationally costly, particularly for large datasets. 

1.18.3 Nature inspired algorithms 

Nature-inspired algorithms are a class of optimization algorithms that simulate the 

behavior of natural systems. These algorithms are widely used to solve complex 

optimization problems in engineering, computer science, and other fields. Some of the 

most popular nature-inspired algorithms are genetic algorithms, particle swarm 

optimization, ant colony optimization, artificial bee colony, differential evolution, 

firefly algorithm, harmony search, grey wolf optimizer, cuckoo search, and bat 

algorithm etc. One of them is briefed here i.e., particle swarm optimization (PSO).  

A computational worldwide optimization technique called PSO was initially 

suggested by Kennedy and Eberhart in 1995 [41]. It is based on research into the 

movement patterns of fish and bird flocks and derives from swarm intelligence. The 

birds are either separated or clustered together during their search until they pinpoint 

the spot where they could find food. One bird consistently has a good sense of smell, 

suggesting that it is aware of the position of the food and is more knowledgeable 

about the source of the food, while the other birds fly from one site to another in quest 

of food. Since the birds are constantly sharing information, particularly useful 

information as they migrate from one area to another in quest of food, they will 

ultimately assemble at the location where food can be obtained. Excellent information 

is like the most optimistic solution, and food supplies are like the most optimistic 

solution throughout the whole course. In terms of the particle swarm optimization 

approach, the solution swarm is like a flock of birds flying from one place to another. 

Each participant might work together to discover the most upbeat solution using the 

PSO method. A particle without quality or volume assumes the role of each individual 

and a simple behavioral pattern is regulated for each particle to demonstrate the 

complexity of the complete particle swarm. One may use this strategy to resolve the 

difficult optimist problems. 
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1.19 Error norms 

To ensure the accuracy of developed numerical technique, the findings are verified by 

comparing the approximations to both exact solutions and previously published 

numerical solutions. To accomplish this developed technique, various measures of 

error norms are utilized in the proposed research, and some of the most important 

formulas used to compute numerical errors are: 

𝐿∞ = max(|𝑢𝑒𝑥𝑎𝑐𝑡(𝑥𝑖,𝑡) − 𝑢𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙(𝑥𝑖,𝑡)|), 

𝐿2 = √ℎ∑|𝑢𝑒𝑥𝑎𝑐𝑡(𝑥𝑖,𝑡) − 𝑢𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙(𝑥𝑖,𝑡)|
2
,

𝑁

𝑖=1

 

𝑅𝑀𝑆 = √
1

N∑ |𝑢𝑒𝑥𝑎𝑐𝑡(𝑥𝑖,𝑡) − 𝑢𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙(𝑥𝑖,𝑡)|
2
,N

i=1

 

where 𝑢𝑒𝑥𝑎𝑐𝑡 and 𝑢𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙  represents the exact and numerical solutions respectively 

and N represents the number of partitions of the domain.  

1.20 Objectives of the proposed research work 

 To explore the importance of applications of solitons in various fields of 

science. 

 To study the solitons for their behavior that are existing as a result of solving 

the mathematical models which have significant role in the field of science 

and engineering. 

 To implement the differential quadrature method on nonlinear wave equations 

resulting in solitons using the LOOCV approach. 

 To implement the differential quadrature method on nonlinear wave equations 

resulting in solitons using the PSO approach. 

1.21 Layout of the Thesis 

This thesis is structured into six chapters, providing a comprehensive and impressive 

exploration of solitons and their application in science and engineering. 
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In chapter 1, a comprehensive introduction to NLEEs, solitons theory, SSP-RK45, 

optimization techniques, and other related topics have been discussed. This chapter 

also includes the literature regarding the origin of the differential quadrature method. 

Furthermore, the developed formulae of “Exponential modified cubic B-spline DQM” 

and its related methodology is also mentioned in this chapter. The error formulae to 

check the robustness of the schemes are also mentioned in this chapter. This chapter 

provides an overview of the concepts that are employed throughout the thesis. 

In chapter 2, literature regarding the history of solitons along with the development of 

solitons solutions, and the behavior of the solutions of NLEEs are discussed. The 

types of soliton are briefly explained, along with the significance of their applications 

in many branches of science and engineering.  

In chapter 3, an introduction to LOOCV along with its advantages, disadvantages, and 

algorithm has been discussed. A numerical technique “Exponential modified cubic B-

spline differential quadrature method (Expo-MCB-DQM) with LOOCV approach” 

has been developed. To check the authenticity of developed technique, it is 

implemented on two important equations which are nonlinear Schrödinger (NLS) 

equation and nonlinear Sine-Gordon (SG) equation in one dimension. The 

authenticity and effectiveness of this methodology are shown by the findings, which 

are equivalent to those found in the literature and near to exact solution. The work is 

presented in form of figures and tables. 

In chapter 4, an introduction to PSO along with its advantages, disadvantages, and 

algorithm has been discussed. A numerical technique “Exponential modified cubic B-

spline differential quadrature method (Expo-MCB-DQM) with PSO approach” has 

been developed. To check the authenticity of developed technique, it is implemented 

on two important equations which are NLS equation and nonlinear SG equation in 

one dimension. The authenticity and effectiveness of this methodology is shown by 

the findings, which are equivalent to those found in the literature and near to exact 

solution. The work is presented in the form figures and tables. 

Soliton solutions have practical applications that are highly relevant to various fields 

of science and engineering. Optical fibers and Josephson junctions are just two 

examples of how solitons can be used in real-world scenarios to achieve technological 
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advancements. Chapter 5, briefly explains two critical applications of solitons: optical 

fibers and Josephson junctions, out of several applications that have a significant role 

in the field of science and engineering. 

In Chapter 6, the conclusion and future scope of this research work is presented.  
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Chapter-2 

Overview of soliton and its applications  

in various field of science 

2.1 Introduction 

A soliton is a type of wave that maintains its shape while traveling through a medium, 

instead of dissipating or spreading out like most waves do. This means that a soliton 

will remain localized in space and time, moving as a single, self-reinforcing wave 

packet that retains its shape and velocity even after interacting with other waves or 

obstacles. Solitons are often observed in nonlinear systems, such as in shallow water 

waves, optical fibers, and plasma physics, and they have various applications in fields 

like telecommunications, signal processing, and quantum computing. Solitons are 

characterized by their ability to maintain their shape and amplitude over long 

distances, making them useful for long-range communication and energy transfer. 

This property arises from a balance between the nonlinear and dispersive effects in a 

system, which leads to a soliton's ability to counteract the dispersive spreading of its 

waveform by the nonlinear focusing of energy towards its center.  

2.2 History 

John Scott Russell [42], a Scottish naval architect, observed a "Great Translation 

Wave" in the shallow waters of the Great Britain Canal in 1834.  

  

Figure 2.1: John Scott Russell* 

*https://images.app.goo.gl/gDrohxPgKeitREvp7 

https://images.app.goo.gl/gDrohxPgKeitREvp7
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He attempted to demonstrate a constant wave by constructing a channel so that the 

wave could travel a great distance with the channel. He placed the boat in the canal 

with a rope to which he tied the horses on either side. He found that the wave came to 

rest due to the obstruction of the wave propagation by the boat, but continued to move 

at a constant speed without losing its shape. He followed the wave for about 8 miles 

and found that the wave moves at a constant speed for up to 2 miles without losing its 

shape.  

 

Figure 2.2 Solitary wave observed by the Scott Russell on the Great Britain Canal.* 

He continued his research and briefly described the properties of translational waves 

as follows: 

(a)  The waves can travel large distances with constant speed. 

(b)  They never merge, unlike normal waves. 

(c)  The speed of a wave depends on its size and its width depends on the depth of 

water. 

(d)  The higher waves travel faster than the smaller waves. 

*https://images.app.goo.gl/i3Nb8ypDEne3UygY9 

https://images.app.goo.gl/i3Nb8ypDEne3UygY9
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(e) The velocity of waves can be formulated by an equation which is as follows: 

𝑉 = √𝐺(𝐻 + 𝐴)             (2.1) 

Where G is the acceleration due to gravity, A is the amplitude of solitary waves; H is 

the height of shallow water channel and V is the velocity of travelling waves. 

The results of Russell were not appreciated by the mathematical society and also 

denied by a researcher named Array. In 1845, Array published his book “Tides and 

Waves”, in which he presented a theory of long waves and focused on the speed of 

waves which depends on their height and amplitude. This theory indicated that 

solitary waves by Russell could not exist [43]. 

In the 1870s, two great physicists, Joseph Boussinesq and Lord Rayleigh, 

independently further illuminated Russell's observations in the form of a mathematical 

model [44]. Boussinesq and Rayleigh observed the velocity of a solitary wave and 

related its height to distance, discussing the properties of high and small waves. 

In 1895 [45], the Dutch mathematician Diederik Korteweg, together with Gustav de 

Vries, formulated a nonlinear PDE, called as the KdV equation, recognizing soliton 

solutions to describe shallow water waves. This equation mathematically proves 

solitary water waves.  

In 1955, Fermi, Pasta, and Ulam [46] studied a computer simulation of a one-

dimensional nonlinear lattice to discuss its equilibrium state. They believed that the 

nonlinear interactions with respect to the normal modes of the linear system resulted 

in the energy of the system being uniformly distributed among all modes. But when 

they examined the KdV equation numerically, the results reversed this notion. The 

energy was again distributed unevenly among all modes, but the system returned to its 

initial position after some time. The problem later became known as the FPU 

problem. 

To understand this recursion phenomenon, Zabusky and Martin Kruskal [47] studied 

the FPU problem again in 1965. They solved the KdV equation numerically in terms 

of a nonlinear grid. Further, they noted the surprising property that the interaction of 

two solitary waves of the KdV equation exhibits elastic behaviour. When two solitary 
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waves collide, they reappear without changing their original shape, size, and velocity. 

These properties of elastic collision between two particles make them behave like 

stable particles. They called these solitary waves 'solitons' because of their particle-

like behaviour like protons, electrons, photons, etc. This is how the soliton was 

invented. 

When the soliton was discovered, there was no mathematical tool to solve the initial 

value problem of nonlinear integrable PDEs. Later, Gardner, Kruskal, Miura, and 

Greene (GKMG) invented a technique for solving nonlinear PDEs known as inverse 

scattering (IST). A year later, another mathematical approach for dealing with 

nonlinear problems was developed by Lax [48]. In it, an integrable PDE can be put 

into a standard form called a Lax pair. Then, Zakharov and Shabat [49] generalized 

this as a linear matrix eigenvalue problem and solved the nonlinear Schrödinger 

(NLS) equation using IST and obtained a soliton solution. 

Another scheme, known as the AKNS scheme, was developed by Ablowitz, Kaup, 

Newell, and Segur [50], who identified solitons with nonlinear evolution equations. 

This scheme was first used to numerically solve the SG equation, which was later 

used to solve several other nonlinear PDEs. There are several other methods such as 

the bilinear Hirota method and the Backlund transform that are commonly used to 

solve integrable nonlinear PDEs. 

2.3 Types of solitons 

Here are some important types of solitons depending on their shapes: 

2.3.1 Kink soliton: Kink soliton is a one-dimensional solitary wave, which signifies a 

change in the solution value due to the transition from one state to another [51, 52]. 

They are also known as topological solitons because their velocity does not depend on 

the wave amplitude. 

Topological solitons [53] are defined as a localized lumps of energy in a nonlinear 

system. They are stable particle-like objects with finite mass, have a smooth structure 

and appear like monopoles in the nonlinear classical field theory. 

The collision properties of solitons are observed in both kinks and anti-kinks 

solutions. The KdV, SG, Burger's, Ostrovsky equations [54], and many more 
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equations admits a kink type soliton solutions. Kink waves rise or fall from one 

asymptotic state to another and approach a constant level at infinity. The Kink-type 

soliton has been presented by the SG equation in section 2.5.2 of this chapter. 

2.3.2 Breather: A breather is a nonlinear wave in which energy accumulates in an 

oscillatory and bounded manner. They oscillate in both time and space, but sometimes 

exhibit oscillations in space and can localize in time. Once a breather reaches its 

maximum amplitude, it decays symmetrically and eventually disappears. The SG [55] 

and the NLS equation [56] are examples of one-dimensional PDEs that contain 

breather-type soliton solutions. The Breather-type soliton has been presented by the 

SG equation in section 2.5.2 of this chapter. 

2.3.3 Gap solitons: These are the solitons that occur in finite gaps in the domain of 

continuous systems. These types of solitons have been discussed by the NLS equation 

with periodic solutions observed experimentally in nonlinear optics and Bose-Einstein 

condensation [57]. Optical gap solitons [58], which exist in nonlinear optical media, 

are electromagnetic field structures. 

The difference between a regular soliton and a gap soliton is due to the dispersion of 

the group velocity of the photonic band structure. The gap solitons are presented by 

NLS equation in section 2.5.3 of this chapter. 

2.3.4 Envelope solitons: Envelope solitons are solitary wave solutions that occur in a 

dispersive nonlinear medium [59-61]. Envelope solitons can be divided into light and 

dark solitons. Bright solitons occur with a localized intensity peaking over a constant 

wave background, while dark solitons are described as a concavity in the continuous 

background. From the NLS equation bright soliton solutions are derived in the 

anomalous dispersion regime and dark soliton solutions are derived in the normal 

dispersion regime [62]. The dark solitons are more stable and less affected by 

background noise and interference compared to the light solitons. Apart from NLS 

equation the Chaffee-Infante equation [63] and Kaup-Kupershmidt equation [64] also 

admits bright and dark soliton solutions. The envelope soliton resulting from the NLS 

equation has been presented in section 2.5.3 of this chapter. 



32 
 

2.3.5 Solitary waves with discontinuous derivatives: There are solitary waves with 

discontinuous derivatives, which can be classified as peakons, cuspons, and 

compactons [65]. 

(a) Peakons are solitary waves whose peaks have a discontinuous first derivative [66, 

67]. This type of solitary wave solution is smooth, except for a peak at one corner of 

its vertex. In particular, peakons maintain their velocity and shape after colliding with 

other peakons. The equation of Camassa-Holm (CH) and the integral equation of 

Degasperis Procesi (DP) have peakon-type solutions. The peakon solution for the 

equation CH is presented in section 2.5.4 of this chapter. 

(b) Cuspons are soliton solutions where the solutions have cusps at crests [68]. In 

some special cases, the solutions of the CH and DP equation are of cuspons type. 

Cuspons have a variety of applications in physics, including in the study of fluid 

dynamics, plasma physics, and optics. They can be used to model the behavior of 

waves in nonlinear media, and their ability to maintain their shape over long distances 

makes them useful for transmitting information over long distances. The coupons 

solution for the DP equation has been presented in section 2.5.4 of this chapter. 

(c) Compactons are solitary waves that have a finite wavelength, are free of 

exponential tails, and have robust soliton-like solutions. They are special solitary 

waves that have the property of maintaining their shape and travelling at the same 

speed after colliding with other compactons. The nonlinear dispersive K(n,n) 

equation, which is a family of nonlinear KdV-like equations, yields a soliton solution 

of the compacton type presented in section 2.5.1 of this chapter. 

Each type of soliton has its own unique characteristics and is often associated with 

specific physical phenomena.  

2.4 Applications of solitons 

Solitons have a broader application perspective in various fields such as biophysics, 

field theory, plasma physics, fluid dynamics, photonic crystal fibers, optical fibers, 

condensed matter physics, Josephson junction and Bose-Einstein condensates, surface 

waves, etc.  
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Some of the above applications are briefly discussed below: 

2.4.1 Biophysics: Study of solitons is used in biophysics in the DNA lattice. When a 

protein comes near to soliton, some conformational changes occur, which cause 

intracellular communication. This communication of solitons on the DNA lattice is 

described by Feynman diagrams, which describe the survival of cellular life. The 

solitary wave is also used to study various biophysical phenomena. 

The Davydov soliton [69] is one such soliton that exists as a solution to an equation 

describing the energy distribution in hydrogen-bonded spines. The DNA molecules 

also reveal the presence of solitary waves [70], which arose in the process of splitting 

double-stranded DNA into single strands [71]. 

Solitons have been also observed in biological systems, including in the propagation 

of nerve impulses and in the motion of protein molecules. Understanding the 

properties of solitons in these systems can help us better understand the behavior of 

biological systems. For example, solitons have been observed in the propagation of 

nerve impulses in the squid giant axon, and they can be used to study the properties of 

ion channels in the axon, it can be modeled by the Fitz Hugh-Nagumo equation. 

Envelope solitons and breather solitons have also been observed in biological 

systems. 

Solitons can be used in medical imaging for example, MRI. Mathematical models are 

used to simulate the behavior of solitons in the human body, which can help to 

optimize imaging techniques and improve diagnosis. 

2.4.2 Field theory: Solitons appear in both classical and quantum field theory [51]. 

Topological solitons exist in field theory [53] in the form of kinks, monopoles, 

vortices, and skyrmions. In two-dimensional quantum field theory, the SG equation 

has solutions for topological solitons that can be mapped onto the elementary 

excitations of an exactly solvable quantum field theory [72]. 

2.4.3 Plasma physics: Solitons in the KdV equation and the modified KdV equation 

have applications in plasma physics, including in the study of magnetic reconnection 

and turbulence. Solitons can also be used to generate and accelerate high-energy 

particles in plasma-based accelerators. For example, solitons can be used to create 
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shocks in the plasma, which can accelerate particles to high energies. The study of 

solitary waves is also related to the study of plasma physics, which contains charged 

particles in large numbers [73]. For example, the KdV equation reflects the change of 

charge from neutrality. Another equation describing solitons and solitary-wave 

solutions for the study of plasma physics is the KP equation, variants of KdV. In 

addition, the soliton in plasma is studied in various contexts, e.g., to discuss the 

interaction of solitons in collisionless plasma [47], in Langmuir wave collapse for 

plasma [74], in the study of soliton stability in plasma and hydrodynamics [72], and in 

ionic-acoustic solitons in plasma [76, 77] etc. Benjamin-Bona-Mahony (BBM) [78] is 

considered as an improvement of the KdV equation and used to describe the 

properties of the long surface gravity wave, acoustic-gravity waves in compressible 

fluids, hydromagnetic waves in a cold plasma, and acoustic waves in an harmonic 

crystals. 

Example of plasma solitons in day-to-day life, is in the phenomenon known as aurora 

borealis, or the Northern Lights. Auroras occur when charged particles from the sun, 

called the solar wind, interact with the Earth's magnetic field and atmosphere. This 

interaction can generate plasma waves, including solitons, in the Earth's 

magnetosphere, which can produce the beautiful and colorful light displays that is 

seen in the night sky. 

Another example is in plasma processing, where solitons are used to control and 

manipulate plasma in order to produce thin films, microelectronics, and other 

industrial products. In this application, solitons are used to create patterns and 

structures in the plasma, which can be transferred onto a surface to create the desired 

product. 

Solitons are also used in laser-plasma acceleration, which is a technique for 

accelerating charged particles using a high-power laser pulse and a plasma. In this 

application, solitons can be used to create highly intense and localized electric fields, 

which can accelerate particles to very high energies in a short distance. 

2.4.4 Fluid dynamics: Solitary waves are also among the characteristics of fluid 

dynamics. The "translational wave" described by Russell was a water wave [79] and 

Korteweg and de Vries described a shallow water wave by the KdV equation, which 
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also occurs in a long-wavelength limit. Solitary waves also exist in deep water, as 

shown by the work of Vladimir Zakharov [80], who set up the NLS equation to study 

these waves. Solitary wave solutions have been constructed in many models of fluid 

dynamics. For example, tidal wells have been explained using dispersive shock 

waves, the theory of non-propagating surface-wave solitons [81], the small-amplitude 

gravity capillary wave as an envelope soliton [82], and the soliton mean-field theory 

in macroscopic flow hydrodynamics [83], etc. 

2.4.5 Fiber Optic Communications and optical fibers: Soliton pulses are widely 

used in fiber-optic communications to transmit data over long distances. These pulses 

maintain their shape and amplitude over long distances, which allows high-speed data 

transmission without signal distortion. Since solitons travel at a speed equal to that of 

light, they provide high-speed connectivity and a high-bandwidth network [84]. This 

property feature of optical solitons makes them useful for high-speed communication 

over an optical fiber [85]. Soliton pulses are used in submarine cables, where they can 

transmit data over thousands of kilometers with minimal signal loss. The soliton 

solution of the NLS equation is widely used in fiber optic communications. Both 

bright and dark solitons are used for signal transmission. There are applications in a 

variety of fields related to fiber optics, such as soliton photonic switches, which are 

used for optical switching by using the process of position shifting of the spatial 

soliton after collision [86]. In addition, trapping solitons in optical fibers can be used 

to develop optical logic gates [87]. Solitons are used in nonlinear optics to study 

optical switching, pulse compression, and pulse shaping. For example, solitons can be 

used to compress a long pulse into a much shorter pulse, which is useful in high-speed 

data transmission and in ultrafast laser systems. Solitons are used in laser technology 

to generate ultra-short laser pulses. Solitons can be generated in laser cavities, and 

they have extremely short durations, on the order of picoseconds or femtoseconds. 

These ultra-short laser pulses are used in a variety of applications, such as laser eye 

surgery, laser machining, and laser spectroscopy. Solitons are also used in pulse 

shaping to create customized waveforms that can be used in variety of applications. 

The propagation of solitons in fibers can be modeled by the NLS equation. In the 

study of optical solitons, the NLS equation [85] is crucial, which are used in pulse 

compression and shaping . The Fokas-Lenells (FL) equation [89, 90] has been derived 
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as an alternate model equation of the Schrödinger equation for the higher-order terms, 

and it represents the propagation of short pulses in optical fibers. Complex perturbed 

Gerdjikov-Ivanov equation [91] describes the physical characterization of the optical 

soliton waves to mitigate internet bottlenecks with many different applications in the 

telecommunication industry. Additionally, the telegraph equation [92, 93] has an 

important application electromagnetic waves in communication.  

2.4.6 Josephson junctions: A Josephson junction [94] is a device that consists of two 

superconducting electrodes separated by a thin insulating barrier. When a current is 

applied to the junction, a supercurrent can flow across the barrier, which is a quantum 

mechanical effect that occurs because of the way that electrons behave in 

superconductors. Specifically, solitons can be used to carry information in the form of 

binary digits, or bits, in superconducting digital circuits. In a Josephson junction, a 

soliton corresponds to a specific pattern of supercurrent flow that travels across the 

junction without dissipating. By carefully controlling the current applied to the 

junction, it is possible to create and manipulate solitons in order to encode and decode 

information. One example of a practical application of soliton solutions in Josephson 

junctions is in the design of high-speed data communication systems. By using 

solitons to encode and transmit digital information, it is possible to achieve extremely 

high data rates with low power consumption and minimal interference from other 

signals. Another example of a potential application of soliton solutions in Josephson 

junctions is in the design of quantum computing systems. Solitons could be used to 

carry and manipulate quantum information in the form of qubits, which are the basic 

building blocks of quantum computers. 

2.4.7 Bose-Einstein condensates (BEC): In 1924, Bose and Einstein demonstrated 

the process of Bose-Einstein condensates. Solitons have been observed in Bose-

Einstein condensates, which are ultra-cold atoms that behave like a single, coherent 

wave. Solitons in Bose-Einstein condensates can be used to manipulate the behavior 

of the atoms and to study the properties of superfluid. For example, solitons can be 

used to create vortices in the superfluid, which can be used to study the behavior of 

turbulence. At a very low temperature, a finite fraction of particles in a dilute base gas 

can assume the same quantum state known as BEC. The macroscopic dynamics of 
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BEC near temperature zero is modelled by the Gross-Pitaevskii equation [95, 96]. 

BECs were experimentally detected in 1995 by trapping atoms of dilute alkali vapours 

in a magnetic trap, which was then cooled to an extremely low temperature on the 

order of micro-Kelvins [97, 98]. Rogue waves in nonlinear Schrödinger models with 

variable coefficients are also an important application for Bose-Einstein condensates 

[99, 100]. The soliton solutions of the Gross-Pitaevskii equation, KdV equation and 

the modified KdV equation are also used in the study of the dynamics of Bose-

Einstein condensates. 

2.4.8 Oceanography: In oceanography, solitons are used to study ocean waves and 

tsunamis. Solitons can propagate over long distances without losing their shape, 

which makes them ideal for studying the behavior of waves in the open ocean. For 

example, solitons have been observed in the Indian Ocean tsunami of 2004, and they 

can be used to predict the behavior of tsunamis and other ocean waves. The KdV 

equation is a mathematical model used to study long, surface waves in shallow water. 

It includes nonlinear and dispersive terms that cause waves to behave differently from 

simple harmonic waves. In particular, the nonlinear term causes the wave to self-

modulate, resulting in the formation of soliton-like waves known as internal waves. 

Internal waves have been observed in the ocean and in laboratory experiments. They 

can travel great distances without significant attenuation, making them an important 

factor in the study of ocean dynamics. Internal waves affect the distribution of 

temperature and salinity in the ocean and the mixing of different water masses. 

Tsunamis, which are large, long-period waves that can cause significant damage, can 

also be modeled using soliton solutions. The soliton solutions of the nonlinear shallow 

water wave equation have been used to study tsunamis. These solutions can be used to 

predict the propagation of tsunamis and their effects on the coastal environment. 

Overall, nonlinear evolutionary equations have a wide range of applications in various 

fields of science and engineering, and they continue to be an active area of research. 

2.5 Relation between soliton solutions and nonlinear evolutionary equations 

NLEEs are mathematical models that describe how a system changes over time. 

NLEEs are characterized by their nonlinearity, which means that the relationship 

between the dependent and independent variables is not linear. NLEEs are of great 
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interest to researchers in various fields because they can exhibit a wide range of 

complex behaviors such as chaos, bifurcations, solitons, and pattern formation. 

Studying these behaviors can provide insight into the underlying mechanisms of the 

system being modeled and lead to the development of new technologies and 

applications. 

Soliton solutions are an important class of solutions for certain types of NLEEs. 

NLEEs are partial differential equations that describe how a system evolves over time 

and exhibit nonlinear behavior. The existence of soliton solutions in NLEEs is a result 

of the balance between nonlinear and dispersive effects. They are considered a unique 

tool for describing nonlinear phenomena in science and engineering. Soliton solutions 

of NLEEs are important because they exhibit unique properties, such as stability, non-

dispersiveness, and the ability to maintain their shape and speed over long distances. 

The soliton solutions of NLEEs have many important applications in science and 

engineering. Soliton solutions are useful in various applications, which has been 

already discussed in this chapter briefly. A brief discussion is done on the type of 

solution and the physical behavior using MATLAB, which are briefly described 

below: 

2.5.1 Korteweg-de Vries Equation: The KdV is a very simple model of the wave 

equation, which is hyperbolic in nature. It is a nonlinear equation that links dispersion 

and nonlinearity. It is the most important class of NLEEs with various applications in 

engineering and natural sciences. It was originally discovered by Lord Rayleigh in 

1812; subsequently, it was mathematically introduced by Joseph Boussinesq in 1877 

and rediscovered by Diedrik Korteweg and Gustav de Vries in 1905, who introduced 

this equation in modelling shallow water waves. The KdV equation plays an 

important role in compressible fluids of fluid mechanics, description of the properties 

of electron plasmas, oceanic water waves, and mass transport problems associated 

with chemical compounds [101]. A simple generalization of the KdV equation is 

given as: 

𝑢𝑡 + 𝛼𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0,−∞ < 𝑥 < ∞,    0 ≤ 𝑡 < ∞                (2.2) 

Where variables x, u, and t represent wave amplitude, space, and time respectively 

and the subscripts represent differentiation with respect to the relevant variable. A 



39 
 

travelling wave solution of permanent form occurs due to a balance between the 

dispersive term and the nonlinear term. 

The nonlinear dispersive K(n,n) equation, which is a family of nonlinear KdV like 

equations give compactons type soliton solution is given as: 

𝑢𝑡 + 𝑎(𝑢
𝑛)𝑥 + (𝑢

𝑛)𝑥𝑥𝑥 = 0,−∞ < 𝑥 < ∞,    0 ≤ 𝑡 < ∞         (2.3) 

where 𝑎 = 1 results in compact solitary travelling soliton. The compactons soliton 

solution obtained for the K(n,n) equation is presented in Figure 2.3 for the exact 

solution given as [101]: 

𝑢(𝑥, 𝑡) = √cos(𝑥 − 𝑡),0 < 𝑥 < 1.5,   0 ≤ 𝑡 ≤ 1.5.                    (2.4) 

 

Figure 2.3: Compacton soliton from K(n,n) equation. 

2.5.2 Sine-Gordon Equation: The SG is a nonlinear PDE of hyperbolic in nature that 

has soliton solutions. It is named after its trigonometric sine function and Scottish 

mathematician James Gordon, who first introduced it in 1971. The structure of the 

soliton solutions is the same as that of the KdV equations. It was originally introduced 

by Edmond Bour in 1862 and rediscovered by Frenkel and Kontorova in 1939 while 

studying crystal dislocations [102]. The Sine-Gordon equation is given as:  

𝑢𝑡𝑡 − 𝑢𝑥𝑥 + sin(𝑢) = 0, −∞ < 𝑥 < ∞,    0 ≤ 𝑡 < ∞                      (2.5) 

where u is a function, t represents the time and x denotes the space coordinate in the 

direction of propagation. The SG equation admits the soliton solution as presented as 

in Figure 2.4 and 2.5. 
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The breather soliton solution obtained for the SG equation is presented in Figure 2.4 

for the exact solution given as [102]: 

𝑢(𝑥, 𝑡) = 4 arctan (
𝑣𝑠𝑖𝑛ℎ(

𝑥

1−𝑣2
)

cosh(
𝑣𝑡

1−𝑣2
)
) , −20 < 𝑥 < 20,  0 ≤ 𝑡 ≤ 30.     (2.6) 

 

Figure 2.4: Breather soliton from SG equation. 

The kink solitons that occurred for the SG equation is presented in Figure 2.5 for the 

exact solution given as [102]: 

𝑢(𝑥, 𝑡) = 4 tan−1 (𝑒
𝑥−𝑣𝑡

𝑑 ), −15 < 𝑥 < 15,  0 ≤ 𝑡 < 10 for  𝑣 = 0.5. (2.7) 

where v represents the velocity of soliton with 𝑑 = √1 − 𝑣2 is the Lorenz contraction 

factor. 

 

Figure 2.5: Kink soliton from SG equation. 
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This equation has a wide range of application in physics, not only in relativistic field 

theories but also in study of solid-state physics, nonlinear optics, shape waves, 

mechanical transmission lines and Josephson junction, Bloch wall motion of magnetic 

crystals and nonlinear dynamics of DNA etc. 

2.5.3 Nonlinear Schrödinger Equation: NLS equation is an important dynamical 

model in nonlinear physics, which presents the function of wave in nonlinear and 

dispersive motion and is given by: 

 𝑖𝑢𝑡 = 𝑢𝑥𝑥 + 𝑔|𝑢|
2𝑢,−∞ < 𝑥 < ∞,    0 ≤ 𝑡 < ∞                                      (2.8) 

where u is the complex field function and g is a constant. The first function of wave 

i.e., dispersion effect makes the waveform spread and the second function causes the 

steepening of waveform due to its nonlinear effect. The NLS equation admits the 

soliton solution as presented as in Figure 2.6 and 2.7. 

The gap solitons that occurred for NLS equation is presented in Figure 2.6 for the 

exact solution given as [26]: 

𝑢(𝑥, 𝑡) = sin(𝑥) 𝑒−𝑖1.5𝑡 , −4 < 𝑥 < 4, 0 ≤ 𝑡 ≤ 2.       (2.9) 

 

Figure 2.6:  Gap solitons from NLS equation. 

 

The envelope soliton that occurred for NLS equation is presented in Figure 2.7 for the 

exact solution given as [26]: 

𝑢(𝑥, 𝑡) = √2 cos(2𝑥 − 3𝑡) sech(𝑥 − 4𝑡),−10 < 𝑥 < 10,   0 ≤ 𝑡 ≤ 1.         (2.10) 
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Figure 2.7: Envelope soliton from NLS equation. 

NLS equation has localized solutions which have applications in many fields such as 

plasmas, electromagnetism and many other instability phenomena. It is also helpful in 

problem of optical pulse propagation in asymmetric, twin core optical fibers etc. 

Optical solitons, which are one of the most important solutions of NLSE, are used in 

optical fiber communication [84, 88, 103-108]. 

2.5.4 Camassa-Holm equation: This equation is first introduced by Camassa and 

Holm [109] by the use of Hamiltonian method. The Camassa-Holm (CH) equation of 

the form: 

𝑢𝑡 + 2𝑘𝑢𝑥 − 𝑢𝑥𝑥𝑡 + 3𝑢𝑢𝑥 = 2𝑢𝑥𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑥             (2.11) 

where 𝑢 denotes the fluid velocity and the parameter 𝑘 is a constant related to the 

critical shallow water wave speed. This is an entirely integrable dispersive water wave 

equation for all 𝑘 and for 𝑘 = 0, it has travelling solution of the form 𝑐𝑒−|𝑥−ɑ|, which 

are called peakons because they have a discontinuous first derivative at the peak. The 

CH equation has peakon type solutions. 

The peakon solution for CH equation is shown in Figure 2.8 with exact solution 

[110]: 

𝑢(𝑥, 𝑡) = √
3

2
𝑒−|𝑥−𝑡|,−6 < 𝑥 < 6,   0 ≤ 𝑡 ≤ 1.                          (2.12) 
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Figure 2.8: Peakon soliton from CH equation. 

The DP equation also describes shallow water nonlinear waves and its asymptotic 

accuracy resembles as that of CH equation: 

The DP equation is given by: 

𝑚𝑡 +𝑚𝑥𝑢 + 3𝑚𝑢𝑥 = 0,𝑚 = 𝑢 − 𝑢𝑥𝑥.                                                   (2.13) 

The cuspons solution for DP equation is shown in Figure 2.9 with exact solution [23]: 

𝑢(𝑥, 𝑡) = √1 − 𝑒−2|𝑥|,−2 < 𝑥 < 2,    0 ≤ 𝑡 ≤ 1.                     (2.14) 

 

Figure 2.9: Cuspons soliton from DP equation. 



44 
 

In addition to the above equations, there are many equations that admits soliton type 

solutions i.e., Kolmogorov-Petrovskii-Piskunov equation [111], generalized (2+1)-

dimensional shallow water waves equation [112], human immunodeficiency virus 

infection of CD4+ T-cells fractional biomathematical model for constructing novel 

solitary wave solutions [113], Fokas-Lenells equation [89], Klein-Fock-Gordon 

equation [114] relates to Schrödinger equation, phi-four equation [115] which is a 

particular case of the Klein-Fock-Gordon equation, telegraph equation [92], Chaffee-

Infante equation [63], Benjamin-Bona-Mahony (BBM) [78], Cahn-Allen equation 

[116], Klein-Gordon-Zakharov equation [77, 117], Kaup-Kupershmidt equation [64], 

Fisher-Kolmogorov-Petrovskii-Piskunov [118], Kadomtsev-Petviashvili equation 

[119], Ginzburg–Landau equation [120], Hirota-Satsuma-Shallow water wave 

equation [121], (2+1)-dimensional Kadomtsev-Petviashvili-Benjamin-Bona-Mahony 

equation [122], cubic-quintic nonlinear Helmholtz model [123], Ostrovsky equation 

[54], Vakhnenko-Parkes equation which is reduced from the Ostrovsky equation 

[124], complex perturbed Gerdjikov-Ivanov (CPGI) equation [91], etc. 

2.6 Summary 

In recent decades, nonlinear equations have emerged in various forms to study the 

behavior of complex natural phenomena across different branches of science and 

technology. Nonlinear systems exhibit outputs that are not proportional to their inputs. 

As a result, most nonlinear phenomena are modeled using NLEEs due to both 

dispersion and nonlinear effects.  

Solitons, a type of solitary wave, have significant importance in real life as they occur 

in various natural phenomena such as water waves, optics, and plasma. They also 

have practical applications in fields like communication, transportation, and medicine. 

For example, solitons are used in fiber optic communication to transmit data over long 

distances with minimal distortion. In transportation, solitons help to model traffic 

flow, while in medicine, they are used to study the dynamics of nerve impulses. Their 

ability to maintain their shape and energy over long distances makes them a valuable 

tool for transmitting and processing information, studying complex systems, and 

understanding the behavior of natural phenomena. 
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This chapter focuses on solitons, providing a brief history of their existence. 

Additionally, the applications of soliton solutions in various scientific and engineering 

fields are discussed. To generate reader interest, the types of solitons with the help of 

well-known NLEEs are also presented. 
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Chapter-3 

Numerical solutions of nonlinear partial differential 

equations using “Exponential modified cubic B-spline 

differential quadrature method (Expo-MCB-DQM) 

with LOOCV approach” 

3.1 Introduction 

Optimization is the process of determining the optimum feasible values for a model's 

parameters in order to minimize a specified cost or objective function. Optimization is 

also a key aspect of machine learning, and selecting the appropriate optimization 

method and hyperparameters that may greatly enhance a model's performance. 

Machine learning is a subfield of artificial intelligence (AI) that involves developing 

algorithms and statistical models that enable computer systems to automatically learn 

from and improve upon their performance in a specific task, without being explicitly 

programmed to do so. 

In other words, machine learning algorithms use statistical techniques to analyze and 

learn from patterns in large amounts of data, and then use this knowledge to make 

predictions or take actions without human intervention. Machine learning is used in a 

wide range of applications, including image and speech recognition, natural language 

processing, recommender systems, fraud detection, and many others. 

Machine learning models must be trained using this procedure in order to learn from 

the data and produce reliable predictions. There must establish an objective function 

that measures how well a machine learning model performs on the data in order to 

improve the model. The model parameters are then iteratively updated by the 

optimization process to minimize this objective function. To prevent overfitting, it's 

also crucial to keep an eye on the training procedure and assess the model's 

performance on a validation set. To get the best results, there may also have to adjust 

the optimization algorithm's hyperparameters, including learning rate and 

regularization. 
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Resampling optimization techniques are a class of techniques used in machine 

learning and statistical analysis to improve model performance by iteratively training 

and testing a model on multiple subsamples of the available data. Resampling 

techniques can be used for various purposes, such as model selection, hyperparameter 

tuning, and estimating the model's generalization error. The goal of resampling 

techniques is to create multiple, independent subsets of the data to train and validate 

the model, with the aim of obtaining a more accurate estimate of the model's 

performance. 

Some commonly used resampling techniques include: 

Cross-validation: In cross-validation, the available data is randomly partitioned into 

k subsets or folds. The model is trained on k-1 folds and evaluated on the remaining 

fold, and this process is repeated k times, with each fold being used as the validation 

set once. 

Bootstrap: Bootstrap is a resampling technique that involves creating multiple 

random samples of the available data by drawing data points with replacement. A 

model is trained on each of these bootstrap samples, and the results are averaged to 

provide an estimate of the model's performance. 

Leave-One-Out Cross-Validation (LOOCV): LOOCV is a special case of cross-

validation where each data point is used as the validation set once, and the model is 

trained on the remaining data. This process is repeated for all data points, and the 

results are averaged to provide an estimate of the model's performance. 

Monte Carlo Cross-Validation: Monte Carlo Cross-Validation is a resampling 

technique that involves randomly sampling the available data to create new datasets. 

A model is trained on each of these datasets, and the results are averaged to provide 

an estimate of the model's performance. 

Resampling techniques are widely used in machine learning and statistical analysis to 

optimize model performance, select the best model or set of hyperparameters, and 

estimate the model's generalization error. 

3.2 Leave-One-Out Cross-Validation 

Several optimization techniques, such as gradient descent, LOOCV, stochastic 

gradient descent, Adam, and Adagrad, are often used in machine learning. The 
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selection of one of these techniques will rely on the particular issue and data since 

they vary in how they update the model parameters during training which is known as 

LOOCV. 

3.2.1 Advantages of LOOCV algorithm 

LOOCV algorithm has several advantages, including: 

No information loss: LOOCV uses all the data points available for training and 

testing the model. It leaves out only one data point at a time and trains the model 

using the remaining data points. Therefore, LOOCV does not result in any 

information loss. 

Low bias: LOOCV has a low bias as it uses almost all the available data for training. 

This ensures that the model is trained on a representative sample of the data. 

Low variance: Since LOOCV trains the model on almost all the available data, it 

ensures that the model is not affected by the variance that may result from different 

partitions of the data. 

Provides a reliable estimate of model performance: LOOCV provides a reliable 

estimate of the model's performance as it tests the model on all the available data 

points. This ensures that the estimate is not affected by the randomness that may 

occur in the partitioning of the data. 

Applicable to small datasets: LOOCV is particularly useful for small datasets where 

partitioning the data into training and testing sets may result in a small sample size for 

either the training or testing set. 

Overall, the LOOCV algorithm is a useful tool for model selection and performance 

evaluation, particularly when dealing with small datasets or when there is a concern 

about bias or variance in the model. 

3.2.2 Disadvantages of LOOCV algorithm 

Although LOOCV has several advantages, it also has some disadvantages, including: 

High computational cost: LOOCV requires running the model on the entire dataset 

multiple times, which can be computationally expensive, particularly for large 

datasets. 
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Prone to overfitting: LOOCV may lead to overfitting if the model is too complex or 

if there are outliers or noise in the dataset. In such cases, the model may memorize the 

training data and perform poorly on new data. 

Unstable estimates: LOOCV estimates may be unstable if the model is sensitive to 

the particular data point left out during each iteration. This may result in high variance 

in the estimate of the model's performance. 

Not suitable for some models: LOOCV may not be suitable for some models, such 

as those with a high computational cost or those that require the use of specialized 

optimization algorithms. 

Not suitable for some types of data: LOOCV may not be suitable for certain types 

of data, such as time series data, where the order of the data points is important. 

Overall, LOOCV is a useful tool for model selection and performance evaluation, but 

it is important to consider its limitations and use it in conjunction with other methods 

to ensure the best results. 

3.2.3 LOOCV algorithm 

Estimating how well a machine learning algorithm will perform when asked to make 

predictions on data can be done with the LOOCV method. Rippa [125] suggested the 

application of the LOOCV to get the best possible value for the shape parameter in his 

mathematical work. Rippa determined that the shape parameter can be obtained by 

minimizing the error function 𝑙, which is defined as 𝑙 = [𝑙1, 𝑙2, 𝑙3, … , 𝑙𝑛]
𝑡, 

where 𝑙𝑘 = |𝑢(𝑥𝑘) − 𝑣
𝑘(𝑥𝑘)|, And 𝑣𝑘(𝑥𝑘) is the radial basis function that plays an 

important role to interpolate all the data points except 𝑥𝑘. Rippa presented the 

approach in a closed form which is given as 

𝑙𝑘 =
𝑝𝑘
𝐴𝑘𝑘
−1, 

where 𝑝𝑘  is the kth coefficient of the interpolation and 𝐴𝑘𝑘
−1 is the kth diagonal 

element of the inverse of the interpolation matrix. 

The procedure of LOOCV can be defined in the following steps: 

 In LOOCV, the dataset is divided into n subsets, where n is the total number 

of observations in the dataset. 
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 For each iteration, one observation is chosen as the test set, and the remaining 

observations are used to train the model.  

 The model is then tested on the observation that is left out, and the process is 

repeated n times, with each observation being left out once.  

 The performance of the model is then evaluated by calculating the average 

error rate over all the iterations.  

LOOCV is a reliable technique for estimating the performance of a model because it 

uses all the data available for training and testing, and it minimizes bias in the 

evaluation of the model's performance. This is an expansion of the statistical 

methodology that has been used successfully in the literature to choose the shape 

parameter in RBF [1, 4]. 

3.3 Numerical Scheme 

In this chapter “Exponential modified cubic B-spline differential quadrature method 

(Expo-MCB-DQM) with LOOCV approach” is being used to find the numerical 

solutions of two nonlinear PDEs (NLS equation and SG equation) with eight 

numerical problems. Figure 3.1 shows graphical representation of the numerical 

scheme implemented on these two partial differential equations 

 

 

Figure 3.1: Graphical representation of the numerical scheme. 
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3.4 Introduction to nonlinear Schrödinger equation 

The one-dimensional NLS equation is given by  [26]: 

𝑖𝑢𝑡 =  𝛼𝑢𝑥𝑥 + 𝛽|𝑢|
2𝑢 + 𝑔(𝑥, 𝑡)𝑢, 𝑥 ∈ [𝑎, 𝑏], 𝑡 ≥ 0,                         (3.1) 

with initial:  𝑢(𝑥, 0) = 𝑢0(𝑥), 

with boundary conditions: lim
|𝑥→∞|

𝑢(𝑥, 𝑡) = 0. 

Where 𝛼, 𝛽 are arbitrary real numbers, 𝑔(𝑥, 𝑡) denotes a bounded real-valued 

function, 𝑖 is the imaginary unit and 𝑢 = 𝑐 + 𝑖𝑑 denotes the complex-valued wave 

function. The variables 𝑥 and 𝑡 indicate space and time variables, respectively.  

The nonlinear Schrödinger equation is a variant of the Schrödinger equation that 

describes the propagation of non-dispersive waves in certain physical systems, 

including optical fibers. The NLS equation was first introduced by the Russian 

mathematician Andrei N. Kolmogorov and the Japanese physicist Yasushi Akaike in 

the 1960s. 

The NLS equation has become an essential tool for understanding the behavior of 

light waves in optical fibers and has led to the development of new technologies, 

including soliton transmission and dispersion compensation. 

3.4.1 Applications of nonlinear Schrödinger equations 

NLS equation is a fundamental equation in many areas of science and engineering. 

The nonlinear Schrödinger equation has applications in many fields, e.g., quantum 

mechanics, Bose-Einstein condensates [100], ocean dynamics [127], and nonlinear 

optics [84], etc. A key component of optical fiber communication is the utilization of 

optical solitons, one of the most significant solutions to the NLS equation [73, 84, 88, 

103-106, 128].  Here are some applications of the NLS equation: 

Soliton theory: The NLS equation is one of the fundamental equations in soliton 

theory, which is the study of wave phenomena that maintain their shape and velocity 

as they propagate. The NLS equation admits soliton solutions, which are localized 

wave packets that arise in certain nonlinear systems. 
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Nonlinear optics: The NLS equation is used to describe the propagation of light in 

nonlinear media, such as optical fibers and waveguides. The equation is used to model 

phenomena such as self-focusing, self-phase modulation, and soliton formation in 

optical fibers. 

Bose-Einstein condensates: The NLS equation is used to describe the dynamics of 

ultracold atoms in a Bose-Einstein condensate. The equation is used to model the 

behavior of the condensate order parameter, and it is a fundamental tool for 

understanding phenomena such as soliton formation and coherence collapse. 

Fiber optics communications: The NLS equation is used to model the transmission 

of data over long distances in optical fibers. The equation is used to study the 

nonlinear effects that can degrade the quality of the transmitted signal, such as self-

phase modulation, cross-phase modulation, and four-wave mixing. 

High-energy physics: The NLS equation arises in the study of certain quantum field 

theories in high-energy physics, such as the nonlinear sigma model. The equation is 

used to study the dynamics of solitons and other nonlinear excitations in these 

systems. 

Quantum field theory: The NLS equation arises in the study of certain quantum field 

theories, such as the Gross-Pitaevskii equation for Bose-Einstein condensates and the 

nonlinear sigma model in high-energy physics. 

Overall, the NLS equation is a versatile equation with many applications in various 

fields of physics and engineering. Its study continues to be an active area of research, 

with new applications and analytical techniques being developed. 

3.4.2 Role of soliton solutions in applications of nonlinear Schrödinger equations 

The soliton solution of the NLS equation is a fundamental concept in the study of 

nonlinear wave phenomena. Solitons are stable, localized wave packets that maintain 

their shape and velocity as they propagate through a nonlinear medium. Here are 

some applications of solitons in the context of the NLS equation: 
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Optical communications: Solitons are used in optical communications to transmit 

data over long distances without distortion. In optical fibers, solitons can be generated 

by modulating the input signal and then allowing the solitons to propagate through the 

fiber without any additional modulation. 

Fiber optic amplifiers: Solitons are used in fiber optic amplifiers to enhance the 

signal-to-noise ratio of the transmitted signal. The solitons are generated by a process 

called mode-locking, where a laser is operated in a way that produces a train of 

solitons. 

Bose-Einstein condensates: Solitons can be formed in Bose-Einstein condensates by 

manipulating the trapping potential of the atoms. These solitons can be used to study 

the dynamics of ultracold atoms and to create atom-based quantum devices. 

Condensed matter physics: The NLS equation is used to model the behavior of 

excitons, polarons, and other quasiparticles in condensed matter systems. The 

equation is used to study the formation and propagation of solitons and other 

nonlinear excitations in these systems. 

Nonlinear optics: Solitons are used in nonlinear optics to study phenomena such as 

self-focusing, self-phase modulation, and four-wave mixing. Solitons can be 

generated in nonlinear media by using a pump laser to excite a nonlinear response. 

Oceanography: Solitons are used in oceanography to study internal waves, which are 

waves that propagate beneath the ocean surface. Solitons can be formed in 

oceanographic systems by the interaction of currents and temperature gradients. 

Overall, solitons are a versatile concept that has many applications in various fields of 

physics and engineering. The soliton solution of the NLS equation is a fundamental 

tool for understanding nonlinear wave phenomena, and its study continues to be an 

active area of research. 

3.4.3 Literature Review of NLS equation: Many mathematicians and engineers 

have solved the nonlinear Schrödinger problem due to such important applications. 

By using the technique of unknown coefficients, Biswas et al. [129] investigated 
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the optical characteristics of the cubic quartic NLS equation. Kumar et al. [130] 

solved NLSE to find the optical soliton solution. Remizov and Starodubtseva 

[131] used quasi-Feynman formulae to resolve the multidimensional Schrödinger 

problem. Remizov [132] solved the NLS equation problem using a translation 

operator. Abdel Wahed [73] has solved the (n+1) dimensional NLS equation for 

an analytical answer. Malik et al. [105] used analytical methods to find novel 

optical solitons, including the Lie symmetry analysis and two iterations of the 

new extended generalized Kudryashov approach. Osman et al. [106] used two 

techniques for the perturbed NLS equation in nonlinear optical fibers: the first is 

the extended modified auxiliary equation, and the second is a generalized Riccati 

equation approach. In addition, the extended trial equation method [133], spectral 

collocation method [134], split step finite difference method [135], trigonometric 

cubic B-spline with DQM [26], finite difference method, and the quartic B-spline 

DQM [136], Crank-Nicolson based quintic B-spline DQM [19], modified cubic B-

spine DQM [16], quintic B-spline Galerkin finite element method [137], exponential 

cubic B-spline collocation method [138], and exponential cubic B-spline DQM [88], 

are few further effective numerical methods to the NLS equation. 

3.4.4 Implementation of the proposed scheme on numerical of the nonlinear 

Schrödinger equation 

Example 3.1: Consider the NLS equation (3.1) with 𝛼 = −0.5, 𝛽 = 1, 𝑔(𝑥, 𝑡) =

𝑐𝑜𝑠2(𝑥), domain 𝑥 ∈ [0,2𝜋] and 𝑡 > 0. 

The exact solution is given as [26]: 

 𝑢(𝑥, 𝑡) = sin(𝑥) exp(−3𝑖𝑡 2⁄ ), 

with the initial conditions 𝑢(𝑥, 0) = sin(𝑥), 

and boundary conditions 𝑢(0, 𝑡) = 0 =  𝑢(2𝜋, 𝑡). 

The physical representation of numerical and exact solution is shown in the figures 

3.2-3.5. The calculations are performed using ∆𝑡 = 0.0001, and 𝑁 = 51 (node 

points). The findings show that the current method is effective and similar to results 
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reported in the literature for the parameter 𝜖 =  0.051436. The 𝐿∞ error norm are 

shown in Table 3.1 and compared with the research findings [26] in order to verify the 

outcomes. The result of this method is better even when N is exactly half to the 

compared one in literature.  

Table 3.1: Comparative analysis of solutions of Example 3.1 with error norm. 

𝐓𝐢𝐦𝐞 Arora et al. [26] (𝑵 = 𝟏𝟎𝟎) Present (𝑵 = 𝟓𝟏) 

t 𝑳∞ 

1 1.69e-04 8.0091e-05 

5       6.57e-04 3.8471e-04 

10  2.17e-03 1.7641e-03 

20 8.26e-03 7.5851e-03 

 

 

Figure 3.2: The physical representation of comparison of exact and numerical 

solutions of Example 3.1 for N=51 at t=1. 

 

Figure 3.3: The physical representation of comparison of exact and numerical 

solutions of Example 3.1 for N=51at t=5. 
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Figure 3.4: The physical representation of comparison of exact and numerical 

solutions of Example 3.1 for N=51 at t=10. 

 

Figure 3.5: The physical representation of comparison of exact and numerical 

solutions of Example 3.1 for N=51 at t=20. 

Example 3.2: Consider the NLS equation (3.1) with 𝛼 = 1, 𝛽 = 2, 𝑔(𝑥, 𝑡) = 0, 

domain 𝑥 ∈ [−15,15] and 𝑡 > 0. 

The exact solution is given as [26]: 

 𝑢(𝑥, 𝑡) = exp(−𝑖(2𝑥 + 4 − 3𝑡)) sech(𝑥 + 2 − 4𝑡),  

with the initial conditions: 𝑢(𝑥, 0) = exp(−𝑖(2𝑥 + 4)) sech(𝑥 + 2),  

and boundary conditions: 𝑢(−15, 𝑡) = 0 =  𝑢(15, 𝑡). 

The physical representation of numerical and exact solution is shown in Figure 3.6-

3.8. The calculations are performed using ∆𝑡 = 0.0001, and 𝑁 = 301 (node points). 

The findings show that the current method is effective and similar to results reported 

in the literature for the parameter 𝜖 =  3.000066. The 𝐿∞ error norm are shown in 
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Table 3.2 and compared with the research findings [26] in order to verify the 

outcomes. Results are comparable that the results available in literature. 

Table 3.2: Comparative analysis of solutions of Example 3.2 with error norm. 

𝐓𝐢𝐦𝐞 Arora et al. [26] (𝐍 = 𝟐𝟎𝟎) Present (N= 𝟑𝟎𝟏) 

t 𝑳∞ 

0.5  2.54e-04  2.4820e-04 

1.0  1.97e-04  1.8289e-04 

1.5  2.32e-04  1.3055e-04 

2.0  3.40e-04  1.2879e-04 

2.5  4.49e-04  2.0734e-04 

3.0  6.68e-04  3.1204e-04 

 

Figure 3.6: The physical representation of comparison of exact and numerical 

solutions of Example 3.2 for N=301 at t=1. 

 

Figure 3.7: The physical representation of comparison of exact and numerical 

solutions of Example 3.2 for N=301 at t=2. 
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Figure 3.8: The physical representation of comparison of exact and numerical 

solutions of Example 3.2 for N=301 at t=3. 

3.5 Introduction to nonlinear Sine-Gordon equation 

The SG equation is given by: 

                       𝑢𝑡𝑡 + 𝛼 𝑢𝑡 = 𝛽  𝑢𝑥𝑥 + 𝜂(𝑥) sin(𝑢)                        (3.2) 

initial conditions: 

𝑢(𝑥, 0) = 𝜙1(𝑥) 𝑎𝑛𝑑 𝑢𝑡(𝑥, 0) = 𝜙2(𝑥) 

and values defined at the boundaries. 

Here, 𝛼 and  𝛽 are real constants and 𝜂(𝑥, 𝑦)  parameter depicts the Josephson current 

density. The constant 𝛼  represents the dissipative term that plays an important role in 

converting equation from damped (α ≥ 0 ) to undamped for (α = 0). 

The SG equation has been studied extensively since its introduction in 1834 by James 

Clerk Maxwell, and it has found applications in many areas of physics, including the 

study of the behavior of magnetic flux lines in superconductors, the dynamics of 

vortices in fluid dynamics, and the study of topological defects in field theory. The 

equation has also been studied in mathematics, where it has been used to study the 

geometry of surfaces, integrable systems, and nonlinear waves. 

3.5.1 Applications of Sine-Gordon equation 

The SG equation is a second order nonlinear partial PDE with several applications in 

science and engineering, including mechanical transmission, Josephson junction, 

condensed matter physics, field theory, magnetic crystals, and mathematical physics. 

It appears as a remedy for the traditional Maxwell systems in the study of optics 



59 
 

[139]. Additionally, the geometrical analysis of the soliton in light of the canonical 

field uses this equation in the literature [140]. A mathematical model to show the fault 

dynamics of the phenomena of strain waves and earthquakes is also presented by the 

SG equation [141]. It is crucial to comprehend the impact of seismic distortion on the 

earth's crust and the idea underlying the origin of defective natural elements. The 

kinks form of the equation's soliton solution makes it a good tool for understanding 

the ideas behind various events. Here are some applications of the SG equation: 

Soliton theory: The SG equation is a prototypical example of a soliton equation, 

which means that it admits solutions that are localized and have the property of 

particle-like behavior. These solutions are known as solitons, and they have a 

remarkable property of being able to maintain their shape and velocity after colliding 

with other solitons or obstacles. 

Condensed matter physics: The SG equation describes the dynamics of the phase of 

a one-dimensional superfluid or superconducting system. It is also used to model the 

behavior of magnetic domain walls and dislocations in crystals. 

Classical mechanics: The SG equation arises in the study of certain classical 

mechanical systems, such as the motion of a pendulum in a dissipative medium. 

Integrable systems: The SG equation is one of the integrable systems, which means 

that it can be solved exactly using techniques from algebraic geometry and complex 

analysis. This property makes it a useful tool for studying other integrable systems in 

physics and mathematics. 

3.5.2 Role of solitons in applications of Sine-Gordon equation 

The soliton solution of the SG equation is a fundamental concept in the study of 

nonlinear wave phenomena. Solitons are stable, localized wave packets that maintain 

their shape and velocity as they propagate through a nonlinear medium. Here are 

some applications of solitons in the context of the SG equation: 

Condensed matter physics: The SG equation arises in the study of certain condensed 

matter systems, such as Josephson junction arrays and spin chains. Solitons can be 

formed in these systems, and they are used to study the dynamics of topological 

defects and other nonlinear excitations. 
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High-energy physics: The SG equation arises in the study of certain quantum field 

theories in high-energy physics, such as the Thirring model and the Gross-Neveu 

model. Solitons can be formed in these systems, and they are used to study the 

dynamics of particles and other nonlinear excitations. 

Nonlinear optics: The SG equation is used to model the propagation of light in 

nonlinear media, such as optical fibers and waveguides. Solitons can be formed in 

these systems, and they are used to study the dynamics of self-trapping, self-phase 

modulation, and other nonlinear effects. 

Fluid mechanics: The SG equation arises in the study of certain fluid dynamics 

problems, such as shallow water waves and surface waves on a fluid interface. 

Solitons can be formed in these systems, and they are used to study the dynamics of 

wave breaking, rogue waves, and other nonlinear effects. 

Nonlinear acoustics: The SG equation is used to model the propagation of sound 

waves in nonlinear media, such as acoustic metamaterials and photonic crystals. 

Solitons can be formed in these systems, and they are used to study the dynamics of 

nonlinear wave propagation and scattering. 

Overall, the soliton solution of the SG equation is an active area of research.  

3.5.3 Literature Review of SG Equation: The SG problem has been resolved by the 

researchers due to such important applications using a number of analytical and 

numerical methods for its soliton solutions including the modified decomposition 

method [142] for solving this equation 2D, homotopy analysis method [143], 

collocation and radial basis function [144], tension spline-based approximation 

scheme [145], modified cubic B-spline collocation technique [102], Legendre spectral 

element method [146], virtual element method [147], Barycentric rational 

interpolation and RBF [148], fourth-order collocation scheme [149], cubic B-spline 

DQM [29], modified trigonometric B-spline DQM [27], and rational radial basis 

function [153]. 

3.5.4 Implementation of the proposed scheme on numerical of the nonlinear 

Sine-Gordon equation 

Example 3.3: Consider the SG equation (3.2) in domain 𝑥 ∈  [−20,20] for 𝛼 = 0,

𝛽 = 1 and 𝜂(𝑥) = −1, 
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with initial conditions:  

𝜙1(𝑥) = 4 tan
−1(𝑐 sinh(𝛾𝑥)), 

and 

𝜙2(𝑥) =  0 

The exact solution of the equation is given by: 

𝑢(𝑥, 𝑡) = 4 tan−1(𝑐 sinh(𝛾𝑥) sech(𝛾𝑐𝑡)) 

here, 𝛾 is a parameter that depends on speed of a solitary wave is expressed as: 

𝛾 =  
1

√1 − 𝑐2
 

and the boundary conditions are calculated from exact solutions. 

The calculations are performed using parameters of 𝑐 = 0.5, 𝑘 = 0.001, and 𝑁 = 301 

(node points). The findings show that the current method is effective and similar to 

results reported in the literature for the parameter 𝜖 =  0.011702. The errors are 

shown in Table 3.3 and compared with the research findings [27] in order to verify the 

outcomes. Figure 3.9 shows the results at different times to show compression of 

exact solution and numerical solution. Figure 3.10 shows the surface plot of exact 

solution for 0 ≤ 𝑡 ≤ 20. 

Table 3.3: Comparative analysis of solutions of Example 3.3 with different error norms. 

Time Present results Arora et al. [27] 

t 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 

1 8.5768e-06 5.6434e-06 1.3516e-06 4.53e-06 3.36e-06 7.13e-07 

2 8.3200e-06 6.0814e-06 1.3111e-06 4.67e-06 3.36e-06 7.36e-07 

5 1.2807e-05 1.0619e-05 2.0183e-06 9.67e-06 6.88e-06 1.52e-06 

10 2.2668e-05 1.4979e-05 3.5722e-06 2.08e-05 1.23e-05 3.28e-06 

15 3.3615e-05 2.0633e-05 5.2974e-06 --- --- --- 

20 4.4854e-05 2.6284e-05 7.0685e-06 --- --- --- 
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Figure 3.9: The physical representation of comparison of exact and numerical 

solutions of Example 3.3 at t=1, 5, 10, 15, 20. 

 

Figure 3.10: Surface plot of exact solution of Example 3.3 for 0 ≤ 𝑡 ≤ 20. 

 

Example 3.4: Consider the SG equation (3.2) in domain  𝑥 ∈  [−3,3] for 𝛼 = 0,  

𝛽 = 1 and  𝜂(𝑥) = −1, 

 with initial conditions: 

𝜙1(𝑥) = 4 tan
−1(exp(𝛾𝑥 )), 

and 
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𝜙2(𝑥) =  
−4𝛾 exp(𝛾𝑥 )

1 + exp(2𝛾𝑥 )
 

The exact solution of the equation is given by: 

𝑢(𝑥, 𝑡) = 4 tan−1(exp(𝛾(𝑥 − 0.5𝑡 ))) 

here, 𝛾 is a parameter that depends on speed of a solitary wave is expressed as: 

𝛾 =  
1

√1 − 𝑐2
 

and the boundary conditions are calculated from exact solutions. 

The calculations are performed using parameters of 𝑐 = 0.5, 𝑘 = 0.0001, space step 

size is ℎ = 0.04, and 𝑁 = 151 (node points). The findings show that the current 

method is effective and similar to results reported in the literature for the parameter 

𝜖 =  0.040996. The errors are shown in Table 3.4 and compared with the research 

findings [29,102] in order to verify the outcomes. Figure 3.11 shows the results at 

different times to show compression of exact solution and numerical solution. Figure 

3.12 shows the surface plot of exact solution for  0 ≤ 𝑡 ≤ 1. 

Table 3.4: Comparative analysis of solutions of Example 3.4 with different error norms. 

Time Present results Mittal and Bhatia 

[102] 

Shukla and 

Tamsir [29] 

t 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 𝑳𝟐 𝑳∞ 𝑳𝟐 𝑳∞ 

0.25 6.4671e-06 1.3759e-05 2.1273e-07 3.66e-05 4.90e-05 5.67e-06 9.61e-06 

0.50 8.6897e-06 1.4149e-05 2.8584e-07 9.00e-05 7.55e-05 8.39e-06 1.10e-05 

0.75 9.9927e-06 1.4242e-05 3.2871e-07 1.60e-04 1.43e-04 1.05e-05 1.26e-05 

1.0 1.0807e-05 1.4056e-05 3.5549e-07 2.27e-04 2.10e-04 1.24e-05 1.44e-05 
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Figure 3.11: The physical representation of comparison of exact and numerical 

solutions of Example 3.4 at t=0.25, 0.5, 0.75, 1. 

 

Figure 3.12: Surface plot of exact solution of Example 3.4 for 0 ≤ 𝑡 ≤ 1. 

Example 3.5: Consider the SG equation (3.2) in domain  𝑥 ∈  [−20,20] for 𝛼 = 0,

𝛽 = 1 and 𝜂(𝑥) = −1, 

  with initial conditions: 

𝜙1(𝑥) = 4 tan
−1(exp(𝛾𝑥 )), 

and 

𝜙2(𝑥) =  
−4𝛾𝑐𝑒𝑥𝑝(𝛾𝑥 )

1 + exp(2𝛾𝑥 )
 

The exact solution of the equation is given by: 

𝑢(𝑥, 𝑡) = 4 tan−1(exp(𝛾(𝑥 − 𝑐𝑡))) 
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here, 𝛾 is a parameter that depends on speed of a solitary wave is expressed as: 

𝛾 =  
1

√1 − 𝑐2
 

and the boundary conditions are calculated from exact solutions. 

The calculations are performed using parameters of 𝑐 = 0.5, 𝑘 = 0.01, and 𝑁 = 501 

(node points). The findings show that the current method is effective and similar to 

results reported in the literature for the parameter 𝜖 =  0.012557. The errors are 

shown in Table 3.5 and compared with the research findings [150] in order to verify 

the outcomes. Figure 3.13 shows the results at different times to show compression of 

exact solution and numerical solution. Figure 3.14 shows the surface plot of exact 

solution for 0 ≤ 𝑡 ≤ 10. 

Table 3.5: Comparative analysis of solutions of Example 3.5 with different error norms. 

Time Present results Shiralizadeh et al. [150] 

t 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 

0.25 1.1209e-07 1.2617e-07 1.7688e-08 2.4100e-04 1.1894e-04 1.0778e-05 

0.50 3.5654e-07 3.9927e-07 5.6261e-08 3.4300e-04 1.2227e-04 1.5339e-05 

0.75 5.6832e-07 6.3866e-07 8.9680e-08 4.1281e-04 1.2225e-04 1.8461e-05 

1 7.0289e-07 8.2197e-07 1.1092e-07 4.6189e-04 1.2046e-04 2.0657e-05 

2 9.9756e-07 1.1835e-06 1.5741e-07 5.1809e-04 1.1437e-04 2.3170e-05 

5 1.6328e-06 1.4574e-06 2.5765e-07 4.3038e-04 1.3423e-04 1.9247e-05 

10 3.2190e-06 2.7674e-06 5.0795e-07 5.1966e-04 1.7801e-04 2.3240e-05 

15 5.2748e-06 4.2855e-06 8.3235e-07 6.5199e-04 2.3543e-04 2.9158e-05 

20 7.8827e-06 6.1400e-06 1.2439e-06 8.4070e-04 3.1339e-04 3.7579e-05 
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Figure 3.13: The physical representation of comparison of exact and numerical 

solutions of Example 3.5 at t=1, 5, 10, 15, 20. 

 

Figure 3.14: Surface plot of exact solution of Example 3.5 for 0 ≤ 𝑡 ≤ 10. 

 

Example 3.6: Consider the SG equation (3.2) in domain 𝑥 ∈  [−20,20] for 𝛼 = 0,

𝛽 = 1 and 𝜂(𝑥) = −1, 

  with initial conditions: 

𝜙1(𝑥) = 4 tan
−1(exp(𝛾𝑥 )), 

and 

𝜙2(𝑥) =  
−4𝛾𝑐𝑒𝑥𝑝(𝛾𝑥 )

1 + exp(2𝛾𝑥 )
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The exact solution is given and the boundary conditions are calculated from that: 

𝑢(𝑥, 𝑡) = 4 tan−1(exp(𝛾(𝑥 − 𝑐𝑡))) 

here, 𝛾 is a parameter that depends on speed of a solitary wave is expressed as: 

𝛾 =  
−1

√1 − 𝑐2
 

and the boundary conditions are calculated from exact solutions. 

The calculations are performed using parameters of 𝑐 = 0.95, 𝑘 = 0.01, and 𝑁 = 501 

(node points). The findings show that the current method is effective and similar to 

results reported in the literature for the parameter 𝜖 =  0.012557. The errors are 

shown in Table 3.6 and compared with the research findings [150] in order to verify 

the outcomes. Table 3.7 displays the rate of convergence of the proposed scheme, 

evaluated using the  𝐿∞ error norm at different time level. Figure 3.15 shows the 

results at different times to show compression of exact solution and numerical 

solution. Figure 3.16 shows the surface plot exact solution for 0 ≤ 𝑡 ≤ 10. 

Table 3.6: Comparative analysis of solutions of Example 3.6 with different error norms. 

Time Present results Shiralizadeh et al. [150] 

t 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 

0.25 1.7667e-05 3.4727e-05 1.2443e-07 3.9330e-04 1.3086e-04 1.7589e-05 

0.50 3.1706e-05 6.9928e-05 2.2330e-07 4.9815e-04 1.4274e-04 2.2278e-05 

0.75 4.7193e-05 1.0470e-04 3.3238e-07 5.9493e-04 1.9470e-04 2.6606e-05 

1 6.2698e-05 1.3951e-04 4.4158e-07 7.0399e-04 2.5476e-04 3.1483e-05 

5 3.0092e-04 6.0438e-04 2.1193e-06 1.2000e-03 5.1335e-04 5.1525e-05 

10 5.9195e-04 8.0423e-04 4.1690e-06 3.2000e-03 1.4000e-03 1.4163e-04 

15 8.6128e-04 1.1118e-03 6.0659e-06 7.4000e-03 2.6000e-03 3.3026e-04 

20 2.2213e-03 4.8656e-03 1.5644e-05 1.2000e-03 4.9000e-03 5.3738e-04 
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Table 3.7: The ROC of numerical scheme with Example 3.6 at 𝑡 = 0.25, 1, and 2. 

 

 

Figure 3.15: The physical representation of comparison of exact and numerical 

solutions of Example 3.6 at t=1, 5, 10, 20. 

 t=0.25 t=1 t=2 

N 𝑳∞ ROC 𝑳∞ ROC 𝑳∞ ROC 

50 1.18e-01 --- 4.75e-01 --- 4.40e-01 --- 

100 

200 

3.26e-02 

1.44e-03 

  1.862840 

4.495112 

3.99e-02 

6.13e-03 

3.574814 

2.700139 

1.22e-01 

1.17e-02 

1.853453 

3.373211 

400 

800 

9.31e-05 

5.06e-06 

3.955621 

4.201838 

3.63e-04 

2.07e-05 

4.076814 

4.136676 

7.21e-04 

4.28e-05 

  4.025600 

4.073538 
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Figure 3.16: Surface plot of exact solution of Example 3.6 for 0 ≤ 𝑡 ≤ 10. 

Example 3.7: Consider the SG equation (3.2) in domain 𝑥 ∈  [−10,10] for 𝛼 = 0,

𝛽 = 1 and 𝜂(𝑥) = −1, 

 with initial conditions: 

𝜙1(𝑥) = 0 

and 

𝜙2(𝑥) = 4 sech(𝑥) 

The exact solution of the equation is given by:  

𝑢(𝑥, 𝑡) = 4 tan−1(sech(𝑥) 𝑡) 

and the boundary conditions are calculated from exact solutions. 

The calculations are performed using parameters of 𝑘 = 0.01, and 𝑁 = 401 (node 

points). The findings show that the current method is effective and similar to results 

reported in the literature for the parameter 𝜖 =  0.999934. The errors are shown in 

Table 3.8 and compared with the research findings [150] in order to verify the 

outcomes. Table 3.9 displays the rate of convergence of the proposed scheme, 

evaluated using the  𝐿∞ error norm at different time level.  Figure 3.17 shows the 

results at different times to show compression of exact solution and numerical 

solution. Figure 3.18 shows the surface plot exact solution for  0 ≤ 𝑡 ≤ 20. 
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Table 3.8: Comparative analysis of solutions of Example 3.7 with different error norms. 

Time Present results Shiralizadeh et al. [150] 

t 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 

0.25 1.9450e-06 3.6320e-06 4.3383e-07 1.4400e-04 3.0169e-05 7.1908e-06 

0.50 2.5475e-06 3.6320e-06 5.6822e-07 2.4339e-04 4.6806e-05 1.2154e-05 

0.75 2.9748e-06 3.6320e-06 6.6354e-07 3.0422e-04 5.1706e-05 1.5192e-05 

1 3.2777e-06 3.6320e-06 7.3108e-07 3.5484e-04 5.2994e-05 1.7720e-05 

2 3.6014e-06 3.6320e-06 8.0328e-07 6.7163e-04 7.8976e-05 3.3540e-05 

5 2.9577e-06 3.6320e-06 6.5971e-07 3.0000e-03 3.2159e-04 1.4923e-04 

10 4.0544e-06 3.6320e-06 9.0432e-07 1.2600e-02 1.4000e-03 6.2974e-04 

15 7.0675e-06 3.6320e-06 1.5764e-06 2.8900e-02 3.2000e-03 1.4000e-03 

20 1.1713e-05 5.6180e-06 2.6126e-06 5.1700e-02 5.8000e-03 2.6000e-03 

 

Table 3.9: The ROC of numerical scheme with Example 3.7 at 𝑡 = 1, 2, and 5. 

 

 

 t=1 t=2 t=5 

N 𝑳∞ ROC 𝑳∞ ROC 𝑳∞ ROC 

25 1.65e-02 --- 1.85e-02 --- 1.66e-02 --- 

50 3.32e-04 5.638675 6.27e-04 4.883128 4.27e-04 5.283404 

100 

200 

2.53e-05 

3.63e-06 

3.716241 

2.797904 

4.15e-05 

3.63e-06 

3.916740 

3.514449 

2.96e-05 

3.63e-06 

3.852788 

3.024371 
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Figure 3.17: The physical representation of comparison of exact and numerical 

solutions of Example 3.7 at t=1, 5, 10, 15, 20. 

 

Figure 3.18: Surface plot of exact solution of Example 3.7 for 0 ≤ 𝑡 ≤ 20. 

Example 3.8: Consider the SG equation (3.2) in domain  𝑥 ∈  [−2,2]  for  𝛼 = 0, 

 𝛽 = 1 and 𝜂(𝑥) = −1, 

  with initial conditions: 

𝜙1(𝑥) = 0, 

and 

𝜙2(𝑥) = 4 sech(𝑥) 
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The exact solution of the equation is given by:  

𝑢(𝑥, 𝑡) = 4 tan−1(sech(𝑥) 𝑡) 

and the boundary conditions are calculated from exact solutions. 

The calculations are performed using parameters of 𝑘 = 0.0001, and 𝑁 = 101 (node 

points). The findings show that the current method is effective and similar to results 

reported in the literature for the parameter 𝜖 =  0.999934. The errors are shown in 

Table 3.10 and compared with the research findings [27] in order to verify the 

outcomes. Figure 3.19 shows the results at different times to show compression of 

exact solution and numerical solution. Figure 3.20 shows the surface plot exact 

solution for 0 ≤ 𝑡 ≤ 20. 

Table 3.10: Comparative analysis of solutions of Example 3.8 with different error norms. 

Time Present results Arora et al. [27] 

t 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 

0.3 5.5495e-05 1.0565e-04 2.7474e-05 5.55e-05 1.05e-04 2.72e-06 

0.6 6.6124e-05 1.0368e-04 3.2736e-05 6.61e-05 1.03e-04 3.24e-06 

1 7.0836e-05 9.9306e-05 3.5069e-05 7.08e-05 9.93e-05 3.47e-06 

1.5 7.6557e-05 9.1739e-05 3.7901e-05 --- --- --- 

2 8.7977e-05 8.2896e-05 4.3555e-05 --- --- --- 

 

 

Figure 3.19: The physical representation of comparison of exact and numerical 

solutions of Example 3.8 at t=0.3, 0.6, 1, 1.5, 2. 
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Figure 3.20: Surface plot of exact solution of Example 3.8 for 0 ≤ 𝑡 ≤ 20. 

It may be said that the findings acquired are in excellent agreement with each other 

and even outperform those reported by other studies [27, 29, 102, 150]. 

3.6 Summary  

This chapter presents an impressive approach for finding solutions of the NLEEs 

using the “Exponential modified cubic B-spline differential quadrature method with 

LOOCV approach”. In addition, the LOOCV technique is briefly described, along 

with its advantages and disadvantages.  

The use of the exponential cubic B-spline basis functions is limited in the literature 

due to assigned random value to parameter 𝜖, that often leads to unstable results. This 

chapter presents a methodology that combines LOOCV approach with the exponential 

modified cubic B-spline differential quadrature method. The LOOCV strategy is used 

to find the optimal value of the parameter 𝜖, occurs in the basis functions, which 

improves the accuracy of results. To check the authenticity and effectiveness of the 

proposed method, the method is implemented on examples of NLS equation and SG 

equation and results are shown in form of figures and tables. The success of this 

combined methodology, has been verified by calculated 𝐿2,  𝐿∞ , and 𝑅𝑀𝑆 error 

norms, shows that the results are close to exact solutions and comparable to other 

numerical methods that are already published in literature. The rate of convergence of 

the numerical scheme is also calculated by the  𝐿∞ error norm, which is on an average 

4. It seems that the proposed approach has a fast convergence rate. 

The idea of optimizing the value of any parameter available in method with the help 

of LOOCV approach provides an attractive research idea for future studies.  
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Chapter-4 

Numerical solutions of nonlinear partial differential 

equations using “Exponential modified cubic B-spline 

differential quadrature method (Expo-MCB-DQM) 

with PSO approach” 

4.1 Introduction 

Nature-inspired algorithms are a class of optimization algorithms that are based on the 

principles observed in nature. These algorithms are designed to solve complex 

optimization problems by mimicking the behavior of natural systems such as 

biological organisms, social insects, and physical systems. 

Nature-inspired algorithms are typically based on probabilistic and stochastic models 

that mimic the processes of natural selection, mutation, reproduction, and survival of 

the fittest. These algorithms are often used in optimization problems where traditional 

optimization techniques may not be effective, such as in highly nonlinear, non-

convex, or multi-modal optimization problems. 

Some common examples of nature-inspired algorithms include: 

Genetic Algorithms (GA): GA is an optimization technique inspired by the 

principles of natural selection and genetics. It involves generating a population of 

candidate solutions, evaluating their fitness based on a fitness function, and then 

applying selection, crossover, and mutation operators to create new candidate 

solutions. GA is commonly used in optimization problems where the solution space is 

large and complex. 

Particle Swarm Optimization (PSO): PSO is an optimization technique inspired by 

the behavior of social insects such as birds flocking or fish schooling. In PSO, a 

population of particles moves through the solution space, guided by their own 

experience and the experience of their neighbors, to search for the optimal solution. 

PSO is commonly used in optimization problems with continuous variables. 
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Ant Colony Optimization (ACO): ACO is an optimization technique inspired by the 

behavior of ants. In ACO, a colony of ants searches for the shortest path between a 

source and a destination using pheromone trails. The pheromone trail is updated based 

on the quality of the solution found by the ants. ACO is commonly used in 

optimization problems involving graphs, such as the traveling salesman problem. 

Artificial Bee Colony (ABC): ABC is an optimization technique inspired by the 

behavior of honeybees. In ABC, a population of artificial bees searches for the 

optimal solution by exploring the solution space and communicating their experience 

to their peers. ABC is commonly used in optimization problems with continuous 

variables. 

Overall, nature-inspired algorithms are a powerful tool for solving complex 

optimization problems in a variety of domains, and they are widely used in research 

and practical applications. 

4.2 Particle Swarm Optimization (PSO) 

PSO is one of important nature-inspired optimization algorithm that belongs to the 

category of swarm intelligence algorithms. Swarm intelligence algorithms are based 

on the collective behavior of groups of simple agents, called "particles" or "swarm", 

that interact with each other and with the environment to solve complex optimization 

problems. PSO algorithm was inspired by the social behavior of bird flocking or fish 

schooling, where individual members of a group learn from their own and their peers' 

experience to adapt to changing environmental conditions and find the best path 

towards a common goal.  

It is a computational method used to optimize complex problems by simulating the 

social behavior of swarms of organisms, such as birds or fish. In PSO, a group of 

particles moves through a multidimensional search space, with each particle 

representing a candidate solution to the problem being optimized. The particles adjust 

their positions based on their own experience and the experience of their neighbors, 

with the goal of finding the optimal solution. PSO has been successfully applied to a 

wide range of optimization problems, including engineering design, financial 
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forecasting, and data mining. Its advantages include its simplicity, ease of 

implementation, and ability to handle complex, high-dimensional search spaces. 

PSO is a computer technique used in computational mathematics to optimize 

problems by repeatedly attempting to raise the quality of possible answers. This 

chapter of thesis describes the algorithm, advantages, and disadvantages of PSO, and 

its important applications. 

4.2.1 Algorithm of PSO technique 

The collective activities of birds while searching for food served as the inspiration for 

the development of the PSO algorithm [151]. In this technique, particles are 

considered entities, and their location affects how they behave. There is a component 

of the solution that has to be optimized at each location. The search process is driven 

by the updating of particle positions and velocities at each time step. There is a 

location for each particle in the swarm that can be resolved in D-dimensional space. 

Each particle moves according to its best-known locations both locally and across the 

search space, which are updated when new locations are discovered by other particles. 

With the use of a simple mathematical formula, the updating guidelines for each 

particle's location and speed by: 

𝑢𝑖𝑏
𝑡+1 = 𝜒[𝑢𝑖𝑏

𝑡 + 𝑑1 𝑟1(𝑝𝑖𝑏
𝑡 − 𝑥𝑖𝑏

𝑡 ) + 𝑑2 𝑟2(𝑝𝑔𝑏
𝑡 − 𝑥𝑖𝑏

𝑡 )] 

𝑥𝑖𝑏
𝑡+1 = 𝑥𝑖𝑏

𝑡 + 𝑢𝑖𝑏
𝑡+1 

Where 𝑥𝑖𝑏
𝑡 , represents particle’s position and 𝑢𝑖𝑏

𝑡  represents 𝑖𝑡ℎ particle’s velocity in 

𝐷 dimension at time step 𝑡,  𝑝𝑔𝑏  represents the particle having the best fitness value, 

𝑝𝑖𝑏  is the particle’s best position visited so far, 𝑑1, 𝑑2 are acceleration coefficients 

which quantify particle personal and global experience respectively, 𝜒 is called 

constriction coefficient which evaluates a value in the range [0,1] and is given by 

𝜒 =
2𝜅

|2 − 𝜃 − √𝜃(𝜃 − 4)|
 

With 𝜃 = 𝜃1 + 𝜃2, 𝜃1 = 𝑑1𝑟1, 𝜃2 = 𝑑2𝑟2and 𝜅 ≈ 1.  
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The procedure of PSO can be defined in the following steps: 

Step 1. Initialize the parameters: Define the number of particles and their positions 

in the search space. Assign random velocities to each particle. 

Step 2. Evaluate fitness: Calculate the fitness value for each particle based on its 

position. 

Step 3. Update particle's best-known positions: Compare the fitness value of each 

particle with its best-known fitness value. If the current fitness value is better, update 

the particle's best-known position. 

Step 4. Update global best-known position: Compare the fitness value of each 

particle with the global best-known fitness value. If the current fitness value is better, 

update the global best-known position. 

Step 5. Update particle velocities and positions: Update the velocity of each 

particle based on its current velocity, best-known position, and global best-known 

position. Update the position of each particle based on its current position and 

velocity. 

Step 6. Repeat steps 2-5 until a termination condition is met: Termination 

conditions can be a maximum number of iterations, reaching a satisfactory fitness 

level, or a predefined error threshold. 

M. K. Heri coded this PSO algorithm in MATLAB, Yarpiz, 2015.*  

The PSO algorithm is simple to implement. It is a computational technique used to 

determine parameter values that iteratively optimizes for minimizing error. The 

solution thus obtained by the implementation of the approach is reliable as it is being 

searched for the number of iterations with the selected number of parameters with a 

predetermined population (or swarm) size and range of optimize parameter. This 

approach has also been successfully used in literature to compute the good shape 

parameter using in radial basis functions [2].  

 

 

*(https://yarpiz.com/50/ypea102-particle-swarm-optimization)  

https://yarpiz.com/50/ypea102-particle-swarm-optimization
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4.2.2 Applications of PSO technique 

A number of papers have been published on applications of PSO. PSO is a potential 

global optimization technique that has been widely used to address problems in a 

variety of fields such as health care, business, smart cities and general aspects [152].  

Robinson and Rahmat-Samii [153] introduced PSO to the field of electromagnetics. 

Wang et al. [154] developed a novel technique for electrical impedance tomography 

based on PSO-RBF neural network. Kulkarni et al. [155] presented the application of 

PSO in wireless se networks. Perracchione and Stura [3] provide a novel method 

based on combining PSO with a mesh-free interpolation method to predict the values 

of the parameters indicating the disease (Prostate Cancer) risk level. Some PSO 

applications for acoustic filter optimization were presented by Barbieri et al. [156]. A 

numerical simulation of seismic wave impedance inversion based on the PSO was 

presented by Haijun et al. [157]. Kalatehjari et al. [158] presented the application of 

PSO in geotechnical engineering. Koupaei et al. [2] integrated the PSO with RBF-

collocation techniques. Pham et al. [159] used PSO to calculate the soil's undrained 

shear strength, which is a crucial topic for civil engineering. To solve the existing 

model with five objectives for the generation of green coal, Cui et al. [160] developed 

a multi-objective particle swarm optimization algorithm. Abed and Aladool [151] 

proposed the PSO technique based on a discrete least square weighted function 

(DLSWF) and an expansion approximant as a fitness function for the minimal 

optimization problem. 

4.2.3 Advantages of PSO technique 

Advantages of the PSO are as follows [161]: 

Simplicity: PSO is a relatively simple and easy-to-implement optimization algorithm 

compared to other more complex algorithms. It takes up greater optimization space 

and is easy to execute. 

Convergence: PSO is good at finding global optima, even in complex search spaces 

with many local optima.  
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Efficiency: PSO is a fast algorithm that can converge to a solution quickly, even for 

large-scale optimization problems. The PSO is built on intelligence. It can be used in 

engineering as well as scientific research. 

Robustness: PSO is robust to noisy and complex objective functions, and can handle 

non-linear and non-convex optimization problems. PSO do not calculate mutations or 

overlap. The particle's speed can be used to conduct the search. Over the course of 

several generations, only the most optimistic particle may transmit information to the 

other particles, and research proceeds very quickly. 

Flexibility: PSO can be easily adapted and customized to fit different types of 

optimization problems and objectives. PSO makes a decision immediately based on 

the response and a real-number code. The constant of the solution and the dimension 

have the same number. 

4.2.4 Disadvantage of PSO technique 

Disadvantages of the PSO are as follows [161]: 

Lack of dimensionality: This method cannot be used to solve non-coordinate system 

problems like the rules for how particles move in an energy field since it lacks 

dimensionality. 

Premature convergence: PSO can converge prematurely to a sub-optimal solution, 

especially for more complex optimization problems. 

Difficulty in tuning parameters: PSO has several parameters that need to be tuned 

carefully to achieve good performance. Selecting appropriate values for these 

parameters can be challenging and requires domain expertise. 

Limited memory: PSO has a limited memory of the best particle positions, which 

can prevent it from exploring new regions of the search space effectively. 

Lack of diversity: PSO particles can converge to the same region of the search space, 

which can limit the diversity of the search. 

4.3 Numerical Scheme  

In this chapter “Exponential modified cubic B-spline differential quadrature method 

(Expo-MCB-DQM) with PSO approach” is being used to find the numerical solutions 
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of two nonlinear PDEs (NLS equation and SG equation) with eight numerical 

problems. Authenticity and effectiveness of the proposed method tested by calculating 

the errors norms. Figure 4.1 shows graphical representation of the numerical scheme 

implemented on these two partial differential equations. 

 

      

Figure 4.1: Graphical representation of the numerical scheme. 

4.3.1 Implementation of the proposed scheme on numerical of the nonlinear 

Schrödinger equation 

The one-dimensional NLS equation is expressed as [26]: 

𝑖𝑢𝑡 =  𝛼𝑢𝑥𝑥 + 𝛽|𝑢|
2𝑢 + 𝑔(𝑥, 𝑡)𝑢,       𝑥 ∈ [𝑎, 𝑏], 𝑡 ≥ 0,                               (4.1) 

with an initial:  𝑢(𝑥, 0) = 𝑢0(𝑥), 

with boundary conditions: lim
|𝑥→∞|

𝑢(𝑥, 𝑡) = 0. 

Where 𝛼, 𝛽 are arbitrary real numbers, 𝑔(𝑥, 𝑡) denotes a bounded real-valued 

function, 𝑖 is the imaginary unit and 𝑢 = 𝑐 + 𝑖𝑑 denotes the complex-valued wave 

function. The subscripts 𝑥 and 𝑡 represents partial derivatives for space and time, 

respectively, and 𝑢𝑡 is the amplitude of the pulse envelope. 
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Applications and literature review of the NLS equation is already presented in chapter 

3 briefly where this equation is solved numerically by another technique.  

Example 4.1: Consider NLS equation (4.1) with 𝛼 = −0.5, 𝛽 = 1, 𝑔(𝑥, 𝑡) =

𝑐𝑜𝑠2(𝑥), 𝑥 ∈ [0,2𝜋] and 𝑡 > 0.  

The exact solution is given as [26]: 

 𝑢(𝑥, 𝑡) = sin(𝑥) exp(−3𝑖𝑡 2⁄ ), 

 with the initial condition:  𝑢(𝑥, 0) = sin(𝑥), 

and boundary conditions 𝑢(0, 𝑡) = 0 =  𝑢(2𝜋, 𝑡). 

The physical representation of comparison of numerical and exact solutions is shown 

in the figures 4.2-4.5 at different times. The results presented in Table 4.1 has been 

calculated by 𝐿∞ error norm using ∆𝑡 = 0.0001, and 𝑁 = 51 (node points). It can be 

seen that the present methodology is effective, for the ideal value of parameter, 𝜖 = 1 

that has been calculated with the help of PSO approach, which helps to minimize the 

errors and is comparable to results available in literature [26]. This approach yields 

superior results even when 𝑁 is exactly half of the one compared in the literature. 

Table 4.2 represents the comparative analysis of PSO and LOOCV with parameter 

value 𝜖 = 1 and 𝜖 = 0.011702 respectively by calculated 𝐿∞ error norm at different 

time level. The results of LOOCV approach is better than PSO approach. 

Table 4.1: Comparative analysis of solutions of Example 4.1 with error norm. 

Time Arora et al. [26] (𝑵 = 𝟏𝟎𝟎) Present (𝑵 = 𝟓𝟏) 

t 𝑳∞ 

1 1.69e-04  8.0553e-05 

5 6.57e-04  3.8156e-04 

10 

15 

2.17e-03  

---  

1.7590e-03 

4.2000e-03 

20 8.26e-03  7.5760e-03 
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Table 4.2: Comparative analysis of PSO and LOOCV of Example 4.1 by calculated 

different error norms. 

Time PSO (𝝐 = 𝟏) LOOCV (𝝐 = 𝟎. 𝟎𝟓𝟏𝟒𝟑𝟔) 

t 𝑳∞ 

1 8.0553e-05 8.0091e-05 

5 3.8156e-04 3.8471e-04 

10 1.7590e-03 1.7641e-03 

20 7.5760e-03 7.5851e-03 

 

Figure 4.2: The physical representation of comparison of exact and numerical 

solutions of Example 4.1 for N=51 at t=1. 

 

Figure 4.3: The physical representation of comparison of exact and numerical 

solutions of Example 4.1 for N=51at t=5. 
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Figure 4.4: The physical representation of comparison of exact and numerical 

solutions of Example 4.1 for N=51 at t=10. 

 

Figure 4.5: The physical representation of comparison of exact and numerical 

solutions of Example 4.1 for N=51 at t=15. 

 

Figure 4.6: The physical representation of comparison of exact and numerical 

solutions of Example 4.1for N=51 at t=20. 
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Example 4.2: Consider NLS equation (4.1) with 𝛼 = 1,, 𝛽 = 2,  𝑔(𝑥, 𝑡) = 0,  

𝑥 ∈ [−15,15] and 𝑡 > 0.  

The exact solution is given as [26]: 

 𝑢(𝑥, 𝑡) = exp(−𝑖(2𝑥 + 4 − 3𝑡)) sech(𝑥 + 2 − 4𝑡), 

 with the initial condition: 𝑢(𝑥, 0) = exp(−𝑖(2𝑥 + 4)) sech(𝑥 + 2),  

and boundary conditions: 𝑢(−15, 𝑡) = 0 =  𝑢(15, 𝑡). 

The physical representation of comparison of numerical and exact solutions is shown 

in the figures 4.7-4.9 at different times. The results presented in Table 4.3 has been 

calculated by 𝐿∞ error norm using ∆𝑡 = 0.0001, and 𝑁 = 301 (node points). It can 

be seen that the present methodology is effective and similar to results reported in the 

literature, for the ideal value of parameter, 𝜖 = 1.500110 that has been calculated 

with the help of PSO approach, which helps to minimize the errors and is comparable 

to results available in literature [26]. Table 4.4 represents the comparative analysis of 

PSO and LOOCV with parameter value 𝜖 = 1.500110 and 𝜖 = 3.000066 

respectively by calculated 𝐿∞ error norm at different time level. The results of 

LOOCV approach is better than PSO approach. 

Table 4.3: Comparative analysis of solutions of Example 4.2 with error norm. 

𝐓𝐢𝐦𝐞 Arora et al. [26] (𝐍 = 𝟐𝟎𝟎) Present (N= 𝟑𝟎𝟏) 

t 𝑳∞ 

0.5 2.54e-04  2.7559e-04 

1.0 1.97e-04  2.3285e-04 

1.5 2.32e-04  1.8752e-04 

2.0 3.40e-04  1.4692e-04 

2.5 4.49e-04  1.1676e-04 

3.0 6.68e-04  2.7559e-04 
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Table 4.4: Comparative analysis of PSO and LOOCV of Example 4.2 by calculated 

different error norms. 

𝐓𝐢𝐦𝐞 PSO (𝝐 = 𝟏. 𝟓𝟎𝟎𝟏𝟏𝟎) LOOCV (𝝐 = 𝟑. 𝟎𝟎𝟎𝟎𝟔𝟔) 

t 𝑳∞ 

0.5 2.7559e-04 2.4820e-04 

1.0 2.3285e-04 1.8289e-04 

1.5 1.8752e-04 1.3055e-04 

2.0 1.4692e-04 1.2879e-04 

2.5 1.1676e-04 2.0734e-04 

3.0 2.7559e-04 3.1204e-04 

 

 

 

 

Figure 4.7: The physical representation of comparison of exact and numerical 

solutions of Example 4.2 for N=301 at t=1. 

 

Figure 4.8: The physical representation of comparison of exact and numerical 

solutions of Example 4.2 for N=301 at t=2. 
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Figure 4.9: The physical representation of comparison of exact and numerical 

solutions of Example 4.2 for N=301 at t=3. 

4.3.2 Implementation of the proposed scheme on numerical of the nonlinear 

Sine-Gordon equation 

The SG equation is given as: 

                                𝑢𝑡𝑡 + 𝛼 𝑢𝑡 = 𝛽  𝑢𝑥𝑥 + 𝜂(𝑥) sin(𝑢)                       (4.2) 

 with the initial conditions: 

𝑢(𝑥, 0) = 𝜙1(𝑥) 𝑎𝑛𝑑 𝑢𝑡(𝑥, 0) = 𝜙2(𝑥) 

and values defined at the boundaries. 

Here, 𝛼 and  𝛽 are real constants and 𝜂(𝑥, 𝑦)  parameter depicts the Josephson current 

density. The constant 𝛼  represents the dissipative term that plays an important role in 

converting equation from damped (α ≥ 0 ) to undamped for (α = 0). 

Applications and literature review of SG equation is already presented in chapter 3 

briefly where this equation is solved numerically by another technique.  

Example 4.3: Consider the SG equation (4.2) in domain 𝑥 ∈  [−20,20] for 𝛼 = 0,

𝛽 = 1 and 𝜂(𝑥) = −1,   

with initial conditions:  

𝜙1(𝑥) = 4 tan
−1(𝑐 sinh(𝛾𝑥)), 

 and  

𝜙2(𝑥) =  0 
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The exact solution of the equation is given by: 

𝑢(𝑥, 𝑡) = 4 tan−1(𝑐 sinh(𝛾𝑥) sech(𝛾𝑐𝑡)) 

here, 𝛾 is a parameter that depends on speed of a solitary wave is expressed as: 

𝛾 =  
1

√1 − 𝑐2 
 

and the boundary conditions are calculated from exact solutions. 

The physical representation of comparison of numerical and exact solutions is shown 

in the figures 4.10-4.11 at different times. The results are calculated using parameters 

𝑐 = 0.5, 𝑘 = 0.001 and number of node points as 𝑁 = 300. The errors are shown in 

Table 4.5 and compared with the research findings [102] in order to verify the 

outcomes. From the results it can be seen that the present methodology is efficient and 

is comparable to results in literature [102] for the ideal value of parameter, 𝜖 = 1 that 

has been calculated with the help of PSO approach which helps to minimize the 

errors. Table 4.6 displays the rate of convergence of the proposed scheme, evaluated 

using the  𝐿∞ error norm at different time level.  Table 4.7 represents the comparative 

analysis of 𝐿2, 𝐿∞, and 𝑅𝑀𝑆 error norms at different time level calculated by PSO and 

LOOCV with parameter value 𝜖 = 1 and 𝜖 = 0.011702 respectively. The results of 

LOOCV approach is better than PSO approach. 

Table 4.5: Comparative analysis of solutions of Example 4.3 with different error norms. 

Time Present results Mittal and Bhatia [102] 

t 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 𝑳𝟐 𝑳∞ 

1 1.048e-05 6.845e-06 1.652e-06 --- --- 

2 

5 

1.077e-05 

1.780e-05 

7.919e-06 

1.415e-05 

1.698e-06 

2.805e-06 

2.564e-05 

--- 

1.818e-05 

--- 

10 3.190e-05 2.047e-05 5.027e-06 8.850e-05 5.228e-05 

20 6.289e-05 3.616e-05 9.911e-06 1.713e-04 9.438e-05 
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Table 4.6: The ROC of numerical scheme with Example 4.3 at 𝑡 = 1, 2, and 5. 

 

Table 4.7: Comparative analysis of PSO and LOOCV of Example 4.3 by calculated        

different error norms. 

Time PSO (𝝐 = 𝟏) LOOCV (𝝐 = 𝟎. 𝟎𝟏𝟏𝟕𝟎𝟐) 

t 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 𝑳𝟐 𝑳∞ RMS 

1 1.048e-05 6.845e-06 1.652e-06 8.5768e-06 5.6434e-06 1.3516e-06 

2 

5 

1.077e-05 

1.780e-05 

7.919e-06 

1.415e-05 

1.698e-06 

2.805e-06 

8.3200e-06 

1.2807e-05 

6.0814e-06 

1.0619e-05 

1.3111e-06 

2.0183e-06 

10 3.190e-05 2.047e-05 5.027e-06 2.2668e-05 1.4979e-05 3.5722e-06 

20 6.289e-05 3.616e-05 9.911e-06 4.4854e-05 2.6284e-05 7.0685e-06 

 

 

Figure 4.10: The physical representation of comparison of exact and numerical 

solutions of Example 4.3 for N=301 at t=1. 

 t=1 t=2 t=5 

N 𝑳∞ ROC 𝑳∞ ROC 𝑳∞ ROC 

50 4.48e-03 --- 1.81e-02 --- 1.97e-02 --- 

100 6.13e-04 2.870395 6.94e-04 4.708085 1.35e-03 3.864084 

200 

400 

3.62e-05 

2.16e-06 

4.080218 

4.069812 

4.14e-05 

2.52e-06 

4.067404 

4.037465 

7.41e-05 

4.49e-06 

4.192326 

4.043202 
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Figure 4.11: The physical representation of comparison of exact and numerical 

solutions of Example 4.3 for N=301 at t=2. 

 

Figure 4.12: The physical representation of comparison of exact and numerical 

solutions of Example 4.3 for N=301 at t=5. 

 

Figure 4.13: The physical representation of comparison of exact and numerical 

solutions of Example 4.3 for N=301 at t=10. 
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Figure 4.14: The physical representation of comparison of exact and numerical 

solutions of Example 4.3 for N=301 at t=20. 

Example 4.4: Consider the SG equation (4.2) in domain 𝑥 ∈  [−3,3] for 𝛼 = 0, 

  𝛽 = 1 and 𝜂(𝑥) = −1,  

with initial conditions: 

𝜙1(𝑥) = 4 tan
−1(exp(𝛾𝑥 )), 

 and  

𝜙2(𝑥) =  
−4𝛾 exp(𝛾𝑥 )

1 + exp(2𝛾𝑥 )
 

The exact solution of the equation is given by: 

𝑢(𝑥, 𝑡) = 4 tan−1(exp(𝛾(𝑥 − 0.5𝑡 ))) 

here, 𝛾 is a parameter that depends on speed of a solitary wave is expressed as: 

𝛾 =  
1

√1 − 𝑐2
 

and the boundary conditions are calculated from exact solutions. 

The physical representation of comparison of numerical and exact solutions is shown 

in the figures 4.15-4.16 at different times. The results are calculated using parameters  

𝑐 = 0.5, 𝑘 = 0.0001 and number of node points as 𝑁 = 151. The errors are shown in 

Table 4.8 and compared with the research findings [102] in order to verify the 

outcomes. From the results it can be seen that the present methodology is efficient and 
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is comparable to results in literature [102] for the ideal value of parameter, 𝜖 =

0.557934 that has been calculated with the help of PSO approach which helps to 

minimize the errors. Table 4.9 represents the comparative analysis of 𝐿2, 𝐿∞, and 𝑅𝑀𝑆 

error norms at different time level calculated by PSO and LOOCV with parameter 

value 𝜖 = 0.557934 and 𝜖 = 0.040996 respectively. The results of LOOCV 

approach is better than PSO approach. 

 

Table 4.8: Comparative analysis of solutions of Example 4.4 with different error norms. 

Time Present results Mittal and Bhatia [102] 

            t 𝑳𝟐 𝑳∞ 𝑳𝟐 𝑳∞ 

0.25 6.47e-06 1.37e-05 3.66e-05 4.90e-05 

0.50 8.68e-06 1.41e-05 9.00e-05 7.55e-05 

0.75 9.99e-06 1.42e-05 1.60e-04 1.43e-04 

1.0 1.08e-05 1.41e-05 2.27e-04 2.10e-04 

 

Table 4.9:  Comparative analysis of PSO and LOOCV of Example 4.4 by calculated 

different error norms. 

Time PSO (𝝐 =  𝟎. 𝟓𝟓𝟕𝟗𝟑𝟒) LOOCV (𝝐 = 𝟎. 𝟎𝟒𝟎𝟗𝟗𝟔) 

            t 𝑳𝟐 𝑳∞ 𝑳𝟐 𝑳∞ 

0.25 6.47e-06 1.37e-05 6.4671e-06 1.3759e-05 

0.50 8.68e-06 1.41e-05 8.6897e-06 1.4149e-05 

0.75 9.99e-06 1.42e-05 9.9927e-06 1.4242e-05 

1.0 1.08e-05 1.41e-05 1.0807e-05 1.4056e-05 
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Figure 4.15: The physical representation of comparison of exact and numerical 

solutions of Example 4.4 for N=151 at t=0.5. 

 

Figure 4.16: The physical representation of comparison of exact and numerical 

solutions of Example 4.4 for N=151 at t=1. 

Example 4.5: Consider the SG equation (4.2) in domain  𝑥 ∈  [−20,20] for 𝛼 = 0,

𝛽 = 1 and 𝜂(𝑥) = −1, 

with initial conditions: 

𝜙1(𝑥) = 4 tan
−1(exp(𝛾𝑥 )), 

 and  

𝜙2(𝑥) =  
−4𝛾𝑐𝑒𝑥𝑝(𝛾𝑥 )

1 + exp(2𝛾𝑥 )
 

The exact solution of the equation is given by: 

𝑢(𝑥, 𝑡) = 4 tan−1(exp(𝛾(𝑥 − 𝑐𝑡))) 
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here, 𝛾 is a parameter that depends on speed of a solitary wave is expressed as: 

𝛾 =  
1

√1 − 𝑐2
 

and the boundary conditions are calculated from exact solutions. 

The physical representation of comparison of numerical and exact solutions is shown 

in the figures 4.17-4.20 at different times. The results are calculated using parameters 

𝑐 = 0.5, 𝑘 = 0.01 and number of node points as 𝑁 = 501. The errors are shown in 

Table 4.10 and compared with the research findings [150] in order to verify the 

outcomes. From the results it can be seen that the present methodology is efficient and 

is comparable to results in literature [150] for the ideal value of parameter, 𝜖 =

0.1000 that has been calculated with the help of PSO approach which helps to 

minimize the errors. Table 4.11 displays the rate of convergence of the proposed 

scheme, evaluated using the  𝐿∞ error norm at different time level. Table 4.12 

represents the comparative analysis of 𝐿2, 𝐿∞, and 𝑅𝑀𝑆 error norms at different time 

level calculated by PSO and LOOCV with parameter value 𝜖 = 0.1000 and 𝜖 =

0.012557 respectively. The results of LOOCV approach is better than PSO approach. 

Table 4.10: Comparative analysis of solutions of Example 4.5 with different error norms. 

Time Present results Shiralizadeh et al. [150] 

   t 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 

0.25 1.1224e-07 1.2635e-07 7.9048e-10 1.1209e-07 1.2617e-07 1.7688e-08 

0.50 3.5709e-07 3.9989e-07 2.5149e-09 3.5654e-07 3.9927e-07 5.6261e-08 

0.75 5.6940e-07 6.3980e-07 4.0102e-09 5.6832e-07 6.3866e-07 8.9680e-08 

1 7.0450e-07 8.2380e-07 4.9617e-09 7.0289e-07 8.2197e-07 1.1092e-07 

2 1.0006e-06 1.1872e-06 7.0471e-09 9.9756e-07 1.1835e-06 1.5741e-07 

5 1.6399e-06 1.4628e-06 1.1549e-08 1.6328e-06 1.4574e-06 2.5765e-07 

10 3.2316e-06 2.7776e-06 2.2760e-08 3.2190e-06 2.7674e-06 5.0795e-07 

15 5.2932e-06 4.3000e-06 3.7280e-08 5.2748e-06 4.2855e-06 8.3235e-07 

20 7.9080e-06 6.1593e-06 5.5695e-08 7.8827e-06 6.1400e-06 1.2439e-06 
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Table 4.11: The ROC of numerical scheme with Example 4.5 at 𝑡 = 1, 2, and 5. 

 t=1 t=2 t=5 

N 𝑳∞ ROC 𝑳∞ ROC 𝑳∞ ROC 

50 1.45e-02 --- 2.61e-02 --- 3.27e-02 --- 

100 5.95e-04 4.604882 9.34e-04 4.806783 9.14e-04 5.161404 

200 

400 

3.42e-05 

2.07e-06 

4.122454 

4.040960 

4.82e-05 

2.94e-06 

4.276137 

4.036637 

5.47e-05 

3.45e-06 

4.063054 

3.985120 

 

Table 4.12: Comparative analysis of PSO and LOOCV of Example 4.5 by calculated 

different error norms. 

Time PSO (𝝐 = 𝟎. 𝟏𝟎𝟎𝟎) LOOCV (𝝐 = 𝟎. 𝟎𝟏𝟐𝟓𝟓𝟕) 

   t 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 

0.25 1.1224e-07 1.2635e-07 7.9048e-10 2.4100e-04 1.1894e-04 1.0778e-05 

0.50 3.5709e-07 3.9989e-07 2.5149e-09 3.4300e-04 1.2227e-04 1.5339e-05 

0.75 5.6940e-07 6.3980e-07 4.0102e-09 4.1281e-04 1.2225e-04 1.8461e-05 

1 7.0450e-07 8.2380e-07 4.9617e-09 4.6189e-04 1.2046e-04 2.0657e-05 

2 1.0006e-06 1.1872e-06 7.0471e-09 5.1809e-04 1.1437e-04 2.3170e-05 

5 1.6399e-06 1.4628e-06 1.1549e-08 4.3038e-04 1.3423e-04 1.9247e-05 

10 3.2316e-06 2.7776e-06 2.2760e-08 5.1966e-04 1.7801e-04 2.3240e-05 

15 5.2932e-06 4.3000e-06 3.7280e-08 6.5199e-04 2.3543e-04 2.9158e-05 

20 7.9080e-06 6.1593e-06 5.5695e-08 8.4070e-04 3.1339e-04 3.7579e-05 
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Figure 4.17: The physical representation of comparison of exact and numerical 

solutions of Example 4.5 for N=501 at t=1. 

 

Figure 4.18: The physical representation of comparison of exact and numerical 

solutions of Example 4.5 for N=501 at t=5. 

 

Figure 4.19: The physical representation of comparison of exact and numerical 

solutions of Example 4.5 for N=501 at t=10. 
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Figure 4.20: The physical representation of comparison of exact and numerical 

solutions of Example 4.5 for N=501 at t=15. 

Example 4.6: Consider the SG equation (4.2) in domain 𝑥 ∈  [−20,20] for 𝛼 = 0,

𝛽 = 1 and 𝜂(𝑥) = −1, 

with initial conditions: 

𝜙1(𝑥) = 4 tan
−1(exp(𝛾𝑥 )), 

 and  

𝜙2(𝑥) =  
−4𝛾𝑐𝑒𝑥𝑝(𝛾𝑥 )

1 + exp(2𝛾𝑥 )
 

The exact solution of the equation is given: 

𝑢(𝑥, 𝑡) = 4 tan−1(exp(𝛾(𝑥 − 𝑐𝑡))) 

here, 𝛾 is a parameter that depends on speed of a solitary wave is expressed as: 

𝛾 =  
−1

√1 − 𝑐2
 

and the boundary conditions are calculated from exact solutions. 

The physical representation of comparison of numerical and exact solutions is shown 

in the figures 4.21-4.24 at different times. The results are calculated using parameters  

𝑐 = 0.95, 𝑘 = 0.01 and number of node points as 𝑁 = 501. The errors are shown in 

Table 4.13 and compared with the research findings [147]
 in order to verify the 

outcomes. From the results it can be seen that the present methodology is efficient and 

is comparable to results in literature [150] for the ideal value of parameter, 𝜖 =

1.0000 that has been calculated with the help of PSO approach which helps to 
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minimize the errors. Table 4.14 represents the comparative analysis of 𝐿2, 𝐿∞, and 

𝑅𝑀𝑆 error norms at different time level calculated by PSO and LOOCV with 

parameter value 𝜖 = 1.0000 and 𝜖 = 0.012557 respectively. The results of LOOCV 

approach is better than PSO approach. 

Table 4.13: Comparative analysis of solutions of Example 4.6 with different error norms. 

Time Present results Shiralizadeh et al. [150] 

   t 𝑳𝟐           𝑳∞ 𝑹𝑴𝑺 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 

0.25 1.8083e-05 3.5466e-05 1.2735e-07 3.9330e-04 1.3086e-04 1.7589e-05 

0.50 3.2542e-05 7.1808e-05  2.2919e-07 4.9815e-04 1.4274e-04 2.2278e-05 

0.75 4.8376e-05 1.0762e-04  3.4070e-07 5.9493e-04 1.9470e-04 2.6606e-05   

1 6.4267e-05 1.4344e-04 4.5263e-07   7.0399e-04 2.5476e-04 3.1483e-05   

5 3.1211e-04 6.2588e-04 2.1982e-06 1.2000e-03 5.1335e-04 5.1525e-05 

10 6.2221e-04 8.4379e-04 4.3821e-06 3.2000e-03 1.4000e-03 1.4163e-04   

15 9.0612e-04   1.2000e-03 6.3817e-06 7.4000e-03 2.6000e-03 3.3026e-04 

20 2.3000e-03    4.9000e-03    1.5891e-05 1.2000e-03 4.9000e-03 5.3738e-04 

 

Table 4.14: Comparative analysis of PSO and LOOCV of Example 4.6 by calculated 

different error norms. 

Time PSO (𝝐 = 𝟎. 𝟏𝟎𝟎𝟎𝟎) LOOCV (𝝐 = 𝟎. 𝟎𝟏𝟐𝟓𝟓𝟕) 

   t 𝑳𝟐           𝑳∞ 𝑹𝑴𝑺 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 

0.25 1.8083e-05 3.5466e-05 1.2735e-07 1.7667e-05 3.4727e-05 1.2443e-07 

0.50 3.2542e-05 7.1808e-05  2.2919e-07 3.1706e-05 6.9928e-05 2.2330e-07 

0.75 4.8376e-05 1.0762e-04  3.4070e-07 4.7193e-05 1.0470e-04 3.3238e-07 

1 6.4267e-05 1.4344e-04 4.5263e-07   6.2698e-05 1.3951e-04 4.4158e-07 

5 3.1211e-04 6.2588e-04 2.1982e-06 3.0092e-04 6.0438e-04 2.1193e-06 

10 6.2221e-04 8.4379e-04 4.3821e-06 5.9195e-04 8.0423e-04 4.1690e-06 

15 9.0612e-04   1.2000e-03 6.3817e-06 8.6128e-04 1.1118e-03 6.0659e-06 

20 2.3000e-03    4.9000e-03    1.5891e-05 2.2213e-03 4.8656e-03 1.5644e-05 
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Figure 4.21: The physical representation of comparison of exact and numerical 

solutions of Example 4.6 for N=501 at t=1. 

 

Figure 4.22: The physical representation of comparison of exact and numerical 

solutions of Example 4.6 for N=501 at t=5. 

 

Figure 4.23: The physical representation of comparison of exact and numerical 

solutions of Example 4.6 for N=501 at t=10. 
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Figure 4.24: The physical representation of comparison of exact and numerical 

solutions of Example 4.6 for N=501 at t=15. 

Example 4.7: Consider the SG equation (4.2) in domain 𝑥 ∈  [−10,10] for 𝛼 = 0,

𝛽 = 1 and 𝜂(𝑥) = −1, 

with initial conditions: 

𝜙1(𝑥) = 0, 

 and  

𝜙2(𝑥) = 4 sech(𝑥) 

The exact solution of the equation is given by: 

𝑢(𝑥, 𝑡) = 4 tan−1(sech(𝑥) 𝑡) 

and the boundary conditions are calculated from exact solutions. 

The physical representation of comparison of numerical and exact solutions is shown 

in the figures 4.25-4.28 at different times. The results are calculated using parameters 

 𝑘 = 0.01 and number of node points as 𝑁 = 401. The errors are shown in Table 4.15 

and compared with the research findings [150]
 in order to verify the outcomes. From 

the results it can be seen that the present methodology is efficient and is comparable 

to results in literature [150] for the ideal value of parameter, 𝜖 = 0.096455 that has 

been calculated with the help of PSO approach which helps to minimize the errors. 

Table 4.16 represents the comparative analysis of 𝐿2, 𝐿∞, and 𝑅𝑀𝑆 error norms at 

different time level calculated by PSO and LOOCV with parameter value 𝜖 =

0.096455. and 𝜖 = 0.999934 respectively. The results of LOOCV approach is better 

than PSO approach. 
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Table 4.15: Comparative analysis of solutions of Example 4.7 with different error norms. 

Time Present results Shiralizadeh et al. [150] 

t 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 

0.25 1.9450e-06 3.6320e-06 2.1638e-08 1.4400e-04 3.0169e-05 7.1908e-06 

0.50 2.5475e-06 3.6320e-06 2.8340e-08 2.4339e-04 4.6806e-05 1.2154e-05 

0.75 2.9747e-06 3.6320e-06 3.3093e-08 3.0422e-04 5.1706e-05 1.5192e-05 

1 3.2771e-06 3.6320e-06 3.6457e-08 3.5484e-04 5.2994e-05 1.7720e-05 

2 3.5973e-06 3.6320e-06 4.0019e-08 6.7163e-04 7.8976e-05 3.3540e-05 

5 2.9320e-06 3.6320e-06 3.2618e-08 3.0000e-03 3.2159e-04 1.4923e-04 

10 3.7994e-06 3.6320e-06 4.2267e-08 1.2600e-02 1.4000e-03 6.2974e-04 

15 6.2894e-06 3.6320e-06 6.9968e-08 2.8900e-02 3.2000e-03 1.4000e-03 

20 1.0231e-05 4.8680e-06 1.1381e-07 5.1700e-02 5.8000e-03 2.6000e-03 

 

Table 4.16: Comparative analysis of PSO and LOOCV of Example 4.7 by calculated 

different error norms. 

Time PSO (𝝐 = 𝟎. 𝟎𝟗𝟔𝟒𝟓𝟓) LOOCV (𝝐 = 𝟎. 𝟗𝟗𝟗𝟗𝟑𝟒) 

t 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 

0.25 1.9450e-06 3.6320e-06 2.1638e-08 1.9450e-06 3.6320e-06 4.3383e-07 

0.50 2.5475e-06 3.6320e-06 2.8340e-08 2.5475e-06 3.6320e-06 5.6822e-07 

0.75 2.9747e-06 3.6320e-06 3.3093e-08 2.9748e-06 3.6320e-06 6.6354e-07 

1 3.2771e-06 3.6320e-06 3.6457e-08 3.2777e-06 3.6320e-06 7.3108e-07 

2 3.5973e-06 3.6320e-06 4.0019e-08 3.6014e-06 3.6320e-06 8.0328e-07 

5 2.9320e-06 3.6320e-06 3.2618e-08 2.9577e-06 3.6320e-06 6.5971e-07 

10 3.7994e-06 3.6320e-06 4.2267e-08 4.0544e-06 3.6320e-06 9.0432e-07 

15 6.2894e-06 3.6320e-06 6.9968e-08 7.0675e-06 3.6320e-06 1.5764e-06 

20 1.0231e-05 4.8680e-06 1.1381e-07 1.1713e-05 5.6180e-06 2.6126e-06 
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Figure 4.25: The physical representation of comparison of exact and numerical 

solutions of Example 4.7 for N=401 at t=1. 

 

Figure 4.26: The physical representation of comparison of exact and numerical 

solutions of Example 4.7 for N=401 at t=5. 

 

Figure 4.27: The physical representation of comparison of exact and numerical 

solutions of Example 4.7 for N=401 at t=10. 
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Figure 4.28: The physical representation of comparison of exact and numerical 

solutions of Example 4.7 for N=401 at t=15. 
 

Example 4.8: Consider the SG equation (4.2) in domain  𝑥 ∈  [−2,2]   for 𝛼 = 0, 

𝛽 = 1 and 𝜂(𝑥) = −1,   

with initial conditions: 

𝜙1(𝑥) = 0, 

 and  

𝜙2(𝑥) = 4 sech(𝑥) 

The exact solution of the equation is given by: 

𝑢(𝑥, 𝑡) = 4 tan−1(sech(𝑥) 𝑡) 

and the boundary conditions are calculated from exact solutions. 

The physical representation of comparison of numerical and exact solutions is shown 

in the figures 4.29-4.32 at different times. The results are calculated at 𝑘 = 0.0001 

and number of node points as 𝑁 = 101. The errors are shown in Table 4.17 and 

compared with the research findings [27]  in order to verify the outcomes. From these 

results it can be seen that the present methodology is efficient and is comparable to 

results in literature [27] for the ideal value of parameter, 𝜖 = 0.999934 that has been 

calculated with the help of PSO approach which helps to minimize the errors. Table 

4.18 represents the comparative analysis of 𝐿2, 𝐿∞, and 𝑅𝑀𝑆 error norms at different 

time levels calculated by PSO and LOOCV with parameter value 𝜖 = 0.999934 and 
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𝜖 = 0.999934  respectively. In this example the parameter value is same even after 

applying two different techniques which means that the value is the best value of this 

parameter in this range. 

Table 4.17: Comparative analysis of solutions of Example 4.8 with different error norms. 

Time Present results Arora et al.  [27] 

t 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 

0.3 5.5495e-05 1.0565e-04 2.7203e-06 5.55e-05 1.05e-04 2.72e-06 

0.6 6.6122e-05 1.0368e-04 3.2413e-06 6.61e-05 1.03e-04 3.24e-06 

1 7.0831e-05 7.0831e-05 3.4721e-06 7.08e-05 9.93e-05 3.47e-06 

1.5 7.6553e-05 9.1739e-05 3.7901e-05 --- --- --- 

2 8.7983e-05 8.2896e-05 4.3129e-06 --- --- --- 

 

Table 4.18: Comparative analysis of PSO and LOOCV of Example 4.8 by calculated 

different error norms. 

Time PSO (𝝐 = 𝟎. 𝟗𝟗𝟗𝟗𝟑𝟒) LOOCV (𝝐 = 𝟎. 𝟗𝟗𝟗𝟗𝟑𝟒) 

t 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 𝑳𝟐 𝑳∞ 𝑹𝑴𝑺 

0.3 5.5495e-05 1.0565e-04 2.7203e-06 5.5495e-05 1.0565e-04 2.7474e-05 

0.6 6.6122e-05 1.0368e-04 3.2413e-06 6.6124e-05 1.0368e-04 3.2736e-05 

1 7.0831e-05 7.0831e-05 3.4721e-06 7.0836e-05 9.9306e-05 3.5069e-05 

1.5 7.6553e-05 9.1739e-05 3.7901e-05 7.6557e-05 9.1739e-05 3.7901e-05 

2 8.7983e-05 8.2896e-05 4.3129e-06 8.7977e-05 8.2896e-05 4.3555e-05 
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Figure 4.29: The physical representation of comparison of exact and numerical 

solutions of Example 4.8 for N=101 at t=0.6. 

 

Figure 4.30: The physical representation of comparison of exact and numerical 

solutions of Example 4.8 for N=101 at t=1. 

 

Figure 4.31: The physical representation of comparison of exact and numerical 

solutions of Example 4.8 for N=101 at t=1.5. 
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Figure 4.32: The physical representation of comparison of exact and numerical 

solutions of Example 4.8 for N=101 at t=2. 

LOOCV and PSO are two different types of techniques. LOOCV serves as a model 

evaluation method, whereas PSO works as an optimization algorithm. Furthermore, 

the  working processes of the techniques is also different, LOOCV computes the 

average performance for the final result, while PSO identifies the optimal value based 

on the best performance. Although the results obtained from both techniques are 

approximately similar, but also the LOOCV outcomes exhibit a slight superior, as 

shown in the comparison tables represented in this chapter. 

4.4 Summary  

This chapter presents an impressive approach to find solutions of the NLEEs using the 

“Exponential modified cubic B-spline differential quadrature method with PSO 

technique”. In this chapter, the exponential modified differential quadrature method is 

combined with the PSO technique. Using the PSO approach, the optimal value of the 

parameter associated with the basis functions is estimated, to improve the accuracy of 

results of present method. PSO is an efficient and effective global optimization 

method that has been successfully applied in various fields, including engineering, 

smart cities, healthcare, the environment, industry, and business.  

The proposed approach has been used to find soliton solutions of two important 

nonlinear evolutionary equations (NLS equation and SG equation), numerically.  That 

demonstrated to be highly accurate and effective by calculating the error norms test 

𝐿2,  𝐿∞ , and 𝑅𝑀𝑆. The numerical solutions obtained using this combined 
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methodology are very close to the exact solution and are comparable to other 

numerical approaches that have been published previously, the results are shown in 

form of figures and tables. The rate of convergence of the numerical scheme is also 

calculated by the  𝐿∞  error norm, which is on an average 4. It seems that the proposed 

approach has a fast convergence rate. 

The success of this combined methodology, makes it an attractive research idea for 

future studies. The PSO-based method is capable of assessing the parameter in a 

search space that allows for global search. 
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Chapter-5 

Role of soliton solutions of mathematical equations in 

optical fiber communication and Josephson junctions 

5.1 Introduction 

NLS equation, and SG equation are two important nonlinear evolutionary equations. 

One of the most interesting features of these two equations is the existence of soliton 

solutions, which are localized, stable, and nonlinear waves that propagate without 

dispersion. These equations are used in many mathematical models because of 

important properties of solutions. The important applications and literature review of 

these equations have been discussed briefly in chapter 3.  

This chapter is divided into two parts: in the first part a brief discussion is done about 

the importance of optical fiber communications and Josephson junction is discussed 

in the second part. Optical fibers are related to the soliton solutions of the NLS 

equation to function correctly. Optical solitons have the remarkable ability to 

propagate over long distances without dispersion. This property makes them an 

interesting subject of study in optical fiber communication. 

Josephson junctions, on the other hand, depend on soliton solutions of the SG 

equation to operate effectively. These electronic components are essential to a wide 

range of modern technological devices, including quantum computers, voltage 

standards, sensors, and high-speed digital circuits. 

5.2 Brief study of one of important applications of nonlinear Schrödinger 

equation 

5.2.1. Introduction to optical fiber communication 

In earlier times many countries were dependent on industrial era. But with the 

changes from industrial era to informational era, there comes the need of information. 

The necessity of information generates for its transition/delivery which can be 

effectively utilized when used in correct place, time and form. This succeeds 
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telecommunication in to picture which infers that communication technology is one of  

the best prevailing technologies which use light for its communication due to its 

amazing speed because of the well-known fact that light travels faster than 

everything. 

In today's era, people heavily rely on wireless communication networks such as the 

internet on mobile phones, e-shopping, e-business, and downloading large files, which 

demand high bandwidth for information transmission. Optical fiber communication 

(OFC) is an ideal solution to meet these requirements. OFC offers the advantage of 

fast transmission speed, as fast as that of light, which is much faster than any other 

communication mode. Additionally, OFC travels faster than copper cable 

communication. However, one of the significant issues with OFC is its dispersion. 

The more dispersion occurs, the lower the quality achieved or received because the 

pulses travelling in optical fibers scatter and interfere with each other after a certain 

time. This reduces the reliability of carrying information. While several fibers can 

reduce dispersion, none of them can entirely eliminate it. Here the optical soliton 

comes in to picture, which is invented by using setup of electromagnetic dispersion in 

anomalous regime with nonlinear effect known as self-phase modulation. Soliton do 

not disperse and when it encounters with a perturbation, it usually leaves behind the 

soliton unaltered. One of the best methods for favorable outcome of communication 

without dispersion is optical soliton. The equation of nonlinear Schrödinger is the 

perfect equation for narrating the propagation of light in optical fibers [103]. 

5.2.2. Role of Nonlinear Schrödinger equation 

The NLS equation is a fundamental equation in optical fiber communication that 

describes the propagation of optical pulses in an optical fiber, accounting for the 

effects of dispersion and nonlinearity. The NLS equation is used to model and analyze 

the behavior of light waves in optical fibers, including different fiber types, laser 

sources, and modulation schemes [162-166]. The NLS equation enables researchers 

and engineers to optimize optical fiber communication systems by predicting their 

performance and minimizing dispersion while maximizing bandwidth. Recently, 

Alharbi et al. [162] presented new and effective solitary applications in the 

Schrödinger equation using the Brownian motion process with physical coefficients of 
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fiber optics. One critical application of the NLS equation in optical fiber 

communication is the soliton solution [129, 163]. Solitons are self-reinforcing solitary 

waves that can travel long distances without dispersion or distortion. Solitons are 

generated through the balance between the dispersive and nonlinear effects of the 

fiber. In optical fiber communication systems, solitons can transmit information over 

long distances without distortion or loss of signal quality. 

The soliton solution of the NLS equation is directly proportional to the fiber's 

dispersion and the pulse's power, enabling efficient transmission of high-speed data 

and high-bandwidth applications. Solitons in optical fibers have revolutionized the 

field of communication, making it possible to support high-bandwidth applications 

such as video streaming, cloud computing, and telemedicine. 

In summary, the NLS equation and its soliton solution play crucial roles in optical 

fiber communication. The NLS equation enables the optimization of communication 

systems by predicting their behavior and minimizing dispersion while maximizing 

bandwidth. The soliton solution of the NLS equation allows for the efficient 

transmission of high-speed data over long distances without distortion or loss of 

signal quality, making it a preferred solution for high-bandwidth applications. 

5.2.3. Optical Soliton 

The best characteristic of solitary wave is that they remain intact in their shape and 

velocity even if they collide with each other. It does not terminate, outstretch or loose 

firmness over distance which makes it productive in used for fiber optic 

communication networks. Now, optical soliton is finally enumerated as a pulse which 

can travel several miles along with information which can be carried out without 

dispersion. The nonlinear regime can only perceive such solitons. 

5.2.4. Optical Fiber Communication (OFC) 

In optical fiber communication system, the input can first encoded in to a binary 

sequence of electrical pulse which can be stimulated to moderate laser beam which 

can give rise to a sequence of zeros and ones which shows absence and presence of 

light respectively. In this the rate of transfer of information is expressed as bit rate 

which means number of bits transferred per second. 
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Fiber optic communication technology has become ubiquitous in today’s life, finding 

use in a variety of fields such as telephone communication, television broadcasting, 

fax transmission, banking transactions via ATMs, and internet browsing. This 

technology is highly efficient in handling two-way communication traffic, enabling 

seamless and reliable communication across various applications. 

 It has advantage over copper wire (both twisted paid and coaxial). Optical fiber has 

technological superiority and has 10000 time more bandwidth than that of coaxial 

cables. It is lighter and occupies less volume than that of coaxial cables. It has 

technological superiority as well as it is economical.  

Optical fiber cables are specialized communication cables that consist of one or more 

strands of optical fibers enclosed within a protective covering. Figure 5.1 shows 

optical fiber cable. These cables are designed to transmit information in the form of 

light signals over long distances with minimal signal loss and distortion.  

 

Figure 5.1 Optical Fiber Cable* 

The core of an optical fiber is the central region through which light signals travel. It 

is typically made of high-quality glass or plastic material with a high refractive index. 

The cladding is the outer layer surrounding the core of the optical fiber. It is made of a 

different material than the core, typically glass or plastic with a lower refractive 

index. The remaining layers serve as a protective covering, providing strength to the 

central part. 

*https://images.app.goo.gl/iMDi12oktQpAqmU38 

https://images.app.goo.gl/iMDi12oktQpAqmU38
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Optical fiber communication is a technology that enables the transmission of 

information over long distances using optical fibers, which are thin strands of glass or 

plastic that transmit light signals. This technology has revolutionized communication, 

offering high-speed data transfer, high bandwidth capacity, and low attenuation rates 

compared to traditional copper wire communication systems. It also has a special 

characteristic that it is a perfect insulator as it is made of silica-based glass or plastic 

and current is flowing in it. Subsequently these fibers are resistant to electromagnetic 

interference. It has an important property that it does not corrode. It is a challenge to 

handle optical fibers as it needs a great deal of skill and it is very expensive. 

In optical fiber communication, data is transmitted as light pulses that travel through 

the optical fibers. The fibers are designed to minimize signal loss and maintain the 

quality of the signal over long distances by using advanced techniques such as 

dispersion compensation, polarization mode dispersion compensation, and amplifier 

repeaters. Optical fibers also offer greater security and immunity to electromagnetic 

interference, making them suitable for sensitive applications such as military and 

healthcare. 

Optical fiber communication technology has found widespread use in various fields, 

including telecommunications, internet communication, broadcasting, medical 

equipment, and aerospace applications. The technology has enabled the development 

of high-speed data transfer networks, high-definition television, and medical 

equipment for remote diagnosis and treatment. Optical fiber communication has also 

contributed to reducing the digital divide by making internet access available in 

remote areas. 

Overall, optical fiber communication technology is a critical component of modern 

communication systems, enabling high-speed data transfer and reliable 

communication over long distances. As technology continues to advance, optical fiber 

communication is expected to play an even greater role in shaping the future of 

communication and information exchange. 
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5.2.5. Need of Soliton in fibers 

The amount of information through fibers can be increased by reducing the width of 

pulse to its shortest, so that larger information can be sent through fiber. But if a large 

number of pulses are injected in to fiber, then there will be problem of overlapping of 

pulses after travelling some distances so that ultimately it becomes difficult to 

differentiate between pulses and information will no longer be useful. 

Such situation can be handled if one handles the effects of nonlinearity. When the 

pulse is strong, the width of pulse is shortened when it is strong and the pulse is 

compressed too. It results in retaining the shape of pulse for long propagation 

distance. These steady waves came to be known as optical solitons. Many researchers 

are currently working on this topic, as it has gained significant attention in recent 

times. Mohammed et al. [164] presented technique of analyzing dispersion using a 

span of dispersion compensation fiber is used to ease the problems of chromatic 

dispersion and attenuation. They designed an approximate Gaussian pulse propagation 

model for analysis of dispersion compensation in a single mode optical fiber 

communication system, which is obtained from nonlinear Schrödinger equation to 

represent the effects of chromatic dispersion and attenuation which is solved using 

split-step Fourier Method. Hasegawa [165] presented a detailed study on the role of 

soliton-based communications on present-day ultrahigh-speed communications. 

5.2.6. Advantages of Solitons in optical fiber communications 

Some advantages are shown here [165, 166]: 

a)  Solitons are unaffected by an effect called polarization mode dispersion (PMD) 

has no effect on solitons. But if that wave travels over larger distances and in 

high-speed networks, it becomes less effective. 

b)  To overcome the less usage of solitons in high-speed networks, the travelling 

signal need not be electrified so that it can be more effective and useful in high-

speed networks which include routing, de-multiplexing and switching which are 

used in optical domain. 

c)  If solitons are taken care of properly then they can be highly robust than non-

return to zero (NRZ) pulse. The amplifiers which boost signaling also create noise 
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which can be controlled by using schemes that allows separation between 

amplifiers multiple times. 

d)  The use of in-line absorbers suppress the noise created by the signals. 

e)  Solitons have the capacity to stay together even during polarization which makes 

it efficient to use them in high-speed network. 

f)  Solitons can carry a large amount of data over long distances without the need for 

repeaters or amplifiers. 

g)  Solitons maintain their shape and speed over long distances, which helps reduce 

signal distortion. 

h)  Solitons require less power compared to other transmission methods, which can 

lead to cost savings. 

i)  Solitons are less susceptible to external interference, such as noise or distortion 

from other signals. 

5.2.7. Disadvantages of solitons in optical fiber communications 

However, soliton-based optical fiber communications also have several advantages it 

also has disadvantages. Some of these disadvantages include [165, 166]: 

Complex technology: Solitons require complex technology to generate, control, and 

detect, which can make them more expensive and challenging to implement. 

Challenging to manage: Soliton-based systems are challenging to manage because 

they require precise control over the signal parameters, such as the pulse width and 

repetition rate. This can make it difficult to maintain optimal performance, especially 

in complex systems with multiple soliton channels. 

5.2.8. Characteristics of Solitons based optical fibers 

Here the characteristics of solitons based optical fibers are [165,166]:  

Enormous Bandwidth: Optical Fibers have high data transmission bandwidth, which 

further increases by wavelength division multiplexing method. 

Low transmission loss: If the ultra-low loss and silica fibers which are erbium doped 

are being used as optical amplifiers then this contributes to achievement of loss less 

transmission. 
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Immunity to cross talk: Optical fibers are immune to cross talk means they are 

interference free i.e., from EMI and RFI as optical fibers are dielectric wave guides. 

Electric Isolation: Optical Fibers exhibits insulation as they are made of silica. 

Small size and weight: This size of optical fiber is very small and light in weight 

which makes them to use in satellites and aircrafts. 

Signal Security: Optical fibers provide 100% security to travelling signal due to its 

capacity of non-radiation. 

Ruggedness and Flexibility: Fiber cables retain their originality even after twisting 

or bending. 

Low cost and availability: These fibers are available in abundance in market so they 

are not costly. 

Reliability: The data sent via fibers is most reliable because of the following 

qualities: 

a)  Optical fibers are highly reliable because they do not disperse. 

b)  Optical fibers are neither corrosive nor chemically reactive as they are made of 

silicon glass. 

5.2.9. Applications of Soliton based optical fibers in real life 

Some important applications of soliton based optical fibers in real life are [165, 166]: 

Telephone: Fiber Optic cables are much smaller than old metal cables i.e., four metal 

cable capacities equal to one fiber cable. That’s why these cables are used in 

telephone lines and fit in to underground duct which also have high transmission 

capacity and low signal attenuation. 

Fiber cables are made up of no electrical conductors and signals in these pulses does 

not carry Electromagnetic interference. 

Submarine fiber cables: These fiber cables completely outdate coaxial cables in 

terms of transmission capacity which is 10 times more than the coaxial cables. 

Computer data communications: Fibers are used for data communications where 

wire links would not work properly because of electromagnetic interference that can 

block wire or radio transmission, whereas fiber cables are immune to electromagnetic 
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interference. Further fiber cables which do not carry conductors are also immune to 

power surges from lightning strikes which can damage electronic equipment. 

Ships Automobiles and Airplanes: The three magical properties of fibers i.e., light 

weight, small size and immune to EMI attracted makers of ships, automobiles and 

planes. As the electronic content of the ships, automobiles and planes have increased; 

the need of communications arises too. Automakers have studied the fiber to control 

signals i.e., from steering wheel to accessories such as power windows or radios. 

Military System: Military Systems also replaced bulky 26 pair wire cables by optical 

fibers to have better and effective communication systems. The fiber cable is more 

reliable than metal cable which often gets broken and hence causes loss in 

communication system. Military planners are also working on fiber optic systems for 

guiding battlefield missiles to their targets. 

Coded and decoded secret information: Optical fiber communication plays a 

crucial role in the transmission of coded and decoded secret information. Optical 

fibers provide a highly secure and reliable means of communication, making them 

ideal for transmitting sensitive information that needs to be kept confidential. 

One of the primary advantages of optical fiber communication is that it is highly 

resistant to external interference and eavesdropping. The light signals that are 

transmitted through the fiber are confined within the fiber's core, which makes it 

difficult for unauthorized parties to intercept or tamper with the signals. 

Moreover, the use of encryption techniques in combination with optical fiber 

communication adds an extra layer of security, ensuring that the information being 

transmitted is only accessible to authorized parties. Encryption involves the use of 

mathematical algorithms to convert plain text into a coded format that can only be 

decoded by authorized parties. 

Optical fiber communication is used extensively in military and government 

applications, where the transmission of sensitive information is critical. For example, 

optical fiber communication is used by intelligence agencies to transmit classified 

information securely between different locations. 
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5.2.10. Summary 

Optical fiber communication has revolutionized the way we communicate in our daily 

lives. It offers several advantages such as high bandwidth, low signal loss, and 

immunity to electromagnetic interference. However, one of the major challenges in 

optical fiber communication is dispersion, which can be overcome by using soliton 

solutions of the NLS equation. 

The study of the soliton solutions of the NLS equation is of utmost importance in the 

field of optical fiber communication. It enables researchers and engineers to design 

and optimize optical fibers, laser sources, and modulation schemes to achieve faster 

and more efficient communication. By understanding the behavior of solitons, 

researchers can develop communication systems that can transmit data over long 

distances without loss of signal quality. 

Optical solitons are self-reinforcing solitary waves that can travel long distances in 

optical fibers without dispersion or distortion. They are crucial for the efficient 

transmission of high-speed data and high-bandwidth applications over long distances. 

Soliton-based optical communication is used in many applications such as long-

distance telephone networks, high-speed internet, video streaming, cloud computing, 

and telemedicine. 

In day-to-day life, optical fiber communication technology is used in various 

applications such as making telephone calls, watching television, sending documents 

over fax, withdrawing money from bank ATMs, and surfing the internet. Optical fiber 

communication has become an essential part of our daily life, and its importance will 

continue to increase as technology advances further. 

In addition to military and government applications, optical fiber communication is 

also used in the banking and finance sector to transmit confidential financial 

information securely. For example, banks use optical fiber communication to transmit 

credit card data, online banking transactions, and other sensitive financial information 

securely between different branches and data centers. 

Overall, the secure and reliable nature of optical fiber communication makes it an 

indispensable technology for the transmission of coded and decoded secret 

information in various applications. 
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5.3. Brief study of one of important applications of Sine-Gordon equation 

5.3.1. Introduction  

The SG equation is a nonlinear PDE that arises in various areas of physics, including 

condensed matter physics, field theory, and soliton theory. One of the interesting 

features of the SG equation is that it supports soliton solutions, which are localized 

wave-like structures that behave as particles. A number of applications of the soliton 

solutions of the SG equation that play a key role in science and engineering have been 

addressed discussed in chapter 3 briefly. The Josephson junction is particularly 

significant and is briefly explained in this chapter. Here, the importance of soliton in 

Josephson junctions is discussed, along with some of its advantages and 

disadvantages. 

5.3.2. Josephson junction 

Josephson junctions [94] are devices that consist of two superconductors separated by 

a thin insulating barrier. Figure 5.2 represent the pictorial representation of Josephson 

junctions, when a voltage is applied across the junction, a supercurrent flows through 

the barrier, and the junction exhibits a variety of interesting and useful phenomena. 

One of these phenomena is the formation of solitons, which are self-reinforcing 

solitary waves that can travel through the junction [168, 169]. 

 

Figure 5.2 Josephson junctions* 

 

*https://images.app.goo.gl/jhdr84G9cqpVEhct9 

https://images.app.goo.gl/jhdr84G9cqpVEhct9
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Where V is Voltage, A is ammeter, and K is key. 

In new technologies, Josephson junctions are used in various ways, such as in 

superconducting electronics, quantum computing, and medical imaging. For example, 

in quantum computing, Josephson junctions are used as qubits, which are the building 

blocks of quantum computers. By controlling the flow of superconducting current 

through the junction, researchers can manipulate the state of the qubit and perform 

quantum operations. Trabelsi et al. [168] presented physical behavior of 

superconductivity phenomenon in their work.  

If Josephson junctions did not exist, many of these technologies would not be possible 

or would require alternative approaches that may not be as efficient or effective. For 

example, quantum computing without Josephson junctions would require the use of 

other types of qubits, such as those based on trapped ions or superconducting 

resonators, which have different properties and challenges. Medical imaging without 

superconducting quantum interference devices (SQUIDs) would require alternative 

magnetic field detectors, which may not be as sensitive or versatile. 

Josephson junctions are essential components of many modern technologies, and 

without them, these technologies would not exist or would be significantly different. 

5.3.3. Role of soliton solution in Josephson junction  

When a voltage is applied to the junction, a supercurrent can flow through the barrier, 

and the junction can exhibit a variety of interesting and complex behaviors, such as 

oscillations, chaos, and soliton formation. 

Soliton solutions are particularly important in the study of Josephson junctions 

because they can arise spontaneously and persist for long periods of time, even in the 

presence of noise and other sources of perturbation. This makes them useful for a 

wide range of applications, such as signal processing, data storage, and quantum 

computing. 

One of the key advantages of soliton solutions in Josephson junctions is their stability. 

Unlike other types of waves, solitons do not dissipate or spread out over time, which 

means that they can carry information over long distances without losing their 

coherence. This makes them useful for transmitting signals in noisy or unstable 
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environments, and for maintaining the coherence of quantum information in quantum 

computing applications. 

In addition to their practical applications, solitons in Josephson junctions have also 

been the subject of intense theoretical study. They provide a rich source of complex 

dynamical behavior, and their properties can be analyzed using a variety of 

mathematical techniques, including perturbation theory, bifurcation analysis, and 

numerical simulations. As a result, they have helped to advance our understanding of 

many important phenomena in nonlinear physics, such as chaos, pattern formation, 

soliton, and synchronization [169]. 

5.3.4. Applications of solitons in Josephson junction 

Solitons are self-reinforcing waves that maintain their shape and velocity while 

propagating through a medium. They have found several applications in various fields 

of physics, including the study of Josephson junctions, which are devices that allow 

the flow of a supercurrent between two superconductors separated by a thin insulating 

layer. Here are some applications of solitons in Josephson junctions [168, 169]: 

Voltage standards: Josephson junctions play a critical role in the creation of highly 

accurate voltage standards. Voltage standards are used to calibrate voltage-measuring 

instruments and to ensure the accuracy of voltage measurements in a wide range of 

applications in industries such as power grid management, telecommunications, and 

medical equipment. Josephson junctions are used to create a highly stable and precise 

reference voltage. When a Josephson junction is subjected to a microwave frequency, 

it generates a voltage that is proportional to the frequency. This voltage is known as 

the Josephson voltage, and it is highly stable and predictable. By using Josephson 

junctions in a specially designed circuit, known as a Josephson voltage standard 

(JVS), a highly accurate and stable voltage reference can be created. The JVS can 

then be used to calibrate voltage-measuring instruments and to provide a reference 

voltage for other applications. 

Voltage-controlled Josephson soliton oscillators: Solitons in Josephson junctions 

can be used to create oscillators that generate stable and coherent microwave signals. 
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By applying an external voltage to the junction, the soliton can be controlled to 

oscillate at a specific frequency. 

Digital signal processing: Josephson junctions can be used to perform ultrafast 

digital signal processing. This can be useful in applications such as high-speed data 

communication, radar systems, and image processing. 

High-speed communication: Solitons can be used to transmit information at high 

speeds through Josephson junctions. This is because they can propagate over long 

distances without losing their shape, making them ideal for carrying information 

without distortion. 

Magnetic flux quantization: Solitons can also play a role in the quantization of 

magnetic flux in Josephson junctions. When a soliton passes through a Josephson 

junction, it can induce a phase shift in the superconducting order parameter, resulting 

in the quantization of magnetic flux. 

Quantum computing: Solitons in Josephson junctions have also been proposed as a 

possible building block for quantum computing. By manipulating solitons with 

external voltages, it may be possible to create qubits that can be used for quantum 

information processing. 

Superconductivity: Josephson junction-based devices are used for making high-

temperature superconducting electronic components coupled with Josephson 

junctions used in making Josephson voltage standards. These are also used in the 

study of phase transition. These junctions help in the study of the properties of layered 

superconducting materials. 

5.3.5. Role of Josephson junction in new technologies 

The role of Josephson junctions in improving new technology in day-to-day life is 

significant. Here are some ways Josephson junctions are contributing to technological 

advancements that impact our daily lives [171, 172]: 

Improved efficiency of electronics: Josephson junctions can be used to create low-

power, high-speed electronics, which are essential for modern electronic devices. By 

improving the efficiency of electronic devices, Josephson junctions help to reduce 
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energy consumption and improve battery life, leading to longer-lasting and more 

sustainable technology. 

Faster and more accurate communication: Josephson junctions can be used to 

create highly stable and accurate microwave signals, which are essential for 

communication technology. This enables faster and more reliable communication, 

leading to better connectivity and improved data transfer rates. 

Medical imaging and diagnostics: Josephson junctions are used in SQUIDs, which 

are highly sensitive detectors of magnetic fields. SQUIDs are used in medical 

imaging, such as MRI, to detect the magnetic fields produced by the body's tissues. 

This allows for highly detailed images of the body's internal structures, leading to 

improved diagnostics and treatment planning. 

Advancements in quantum computing: Josephson junctions are essential 

components of superconducting qubits, which are used in quantum computing. 

Quantum computing has the potential to solve complex problems that classical 

computers cannot, leading to advancements in fields such as drug discovery, material 

science, and cryptography. 

High-speed data processing: Josephson junctions can be used to create ultrafast data 

processing devices, which are essential for high-speed data processing applications 

such as image and video processing. This enables faster data processing and more 

responsive technology, leading to improved user experiences and productivity. 

Josephson junctions are contributing to technological advancements that impact our 

daily lives in many ways, from improved energy efficiency and communication to 

better medical diagnostics and quantum computing.  

5.3.6. Advantages and Disadvantages of Solitons in Josephson Junctions 

Here are some advantages and disadvantages of solitons in Josephson junctions [173, 

174]: 
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5.3.6.1. Advantages 

Stability: Solitons in Josephson junctions are topologically stable and can persist for 

long periods of time without dissipating. This makes them useful for carrying 

information in quantum computing and communication applications. 

Nonlinear behavior: Solitons exhibit nonlinear behavior and can interact with each 

other in interesting ways. This allows for the manipulation and control of the soliton 

waveforms, which can be used for information processing and signal modulation. 

High-speed transmission: Solitons can travel through the Josephson junction at high 

speeds without losing their shape or amplitude. This makes them useful for high-

speed data transmission in electronic circuits. 

5.3.6.2. Disadvantages 

Difficult to generate: Generating solitons in Josephson junctions requires careful 

tuning of the junction parameters, such as the bias voltage and temperature. This can 

be challenging and time-consuming. 

Sensitivity to noise: Solitons in Josephson junctions are sensitive to noise and other 

environmental perturbations. This can cause the soliton waveform to degrade or even 

disappear, leading to errors in signal transmission. 

Limited applications: While solitons in Josephson junctions have many potential 

applications, their use is currently limited to certain areas of research and 

development, such as quantum computing and high-speed data transmission. Their 

implementation in commercial applications is still in its early stages. 

5.3.7. Summary  

The connection between the SG equation and Josephson junctions comes from the 

fact that the SG equation arises as an effective description of the dynamics of the 

phase difference between the two superconducting electrodes in a Josephson junction. 

This phase difference plays a crucial role in determining the behavior of the junction, 

and the SG equation provides a way to model its dynamics.  

The accuracy of voltage measurements is critical in many fields, including power grid 

management, telecommunications, and medical equipment. By using Josephson 
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junctions to create highly accurate voltage standards, it is possible to ensure the 

reliability and accuracy of voltage measurements in these and other applications. 

Overall, Josephson junctions have a wide range of applications in areas such as 

quantum computing, sensing, and digital electronics, and ongoing research is 

exploring new ways to utilize and optimize their unique properties. 

Solitons have a wide range of applications in the study of Josephson junctions and 

may have the potential for future technological advances in the field of electronics. 

Overall, the SG equation has many applications in various fields of physics and 

mathematics, and its study continues to be an active area of research. 
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Chapter-6 

Conclusion 

Two novel numerical methodologies: “Exponential modified cubic B-spline 

differential quadrature method with LOOCV approach” and “Exponential modified 

cubic B-spline differential quadrature method with PSO approach”, have been 

established in this thesis.  

The optimal value of the parameter 𝜖 employed in the basis functions of the 

“exponential cubic B-spline” is determined for the first time ever in literature. 

Researchers will benefit greatly from this breakthrough. The ideal value of the 

parameter 𝜖 in the exponential cubic B-spline basis functions is determined through 

the use of optimization techniques. Up till now, the value of parameter 𝜖 has been 

determined by the hit-and-trial approach, which leads to unstable results. 

The LOOCV approach is used in the “Exponential modified cubic B-spline 

differential quadrature method (Expo-MCB-DQM) with LOOCV approach” 

methodology to identify the optimal value of the parameter 𝜖 that is utilized in the 

exponential cubic B-spline basis functions and improves the results. The application 

of this combined approach on two PDEs (NLS equation and SG equation) ensures its 

validity. Accuracy evaluation of the technique is performed using error norms tests, 

with the results presented in tables and figures. The outcomes are really amazing, 

according to observations. The results are close to exact solutions and comparable to 

results of other numerical methods that have been previously published. The 

established methods will be successfully used in the future to numerically solve 

various issues, assisting researchers in their future work. 

PSO is a quick, accurate, and successful method of optimization. PSO, a well-known 

potential global optimization technique, has been used to tackle issues in many fields: 

engineering, smart cities, healthcare, the environment, business, and industry. 

The PSO algorithm is used in the “Exponential modified cubic B-spline differential 

quadrature method (Expo-MCB-DQM) with PSO approach” methodology to identify 
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the optimal value of the parameter 𝜖 that is utilized in the exponential cubic B-spline 

basis functions and improves the results. The application of this combined approach 

on two PDEs (NLS equation and SG equation) ensures its validity. Accuracy 

evaluation of the technique is performed using error norms tests, with the results 

presented in tables and figures. The outcomes are really amazing, according to 

observations. The results are close to exact solutions and comparable to results of 

other numerical methods that have been previously published. The established 

methods will be successfully used in the future to numerically solve various issues, 

assisting researchers in their future work. 

This study not only provides numerical methods for solving NLEEs numerically, but 

also focuses on applications of these equations in field of science and engineering. 

Solitons solutions of NLEEs have been covered in the current work along with a short 

history of their existence. Solitons have been used in a number of scientific and 

engineering fields, and this has been explored in this thesis. To spark the attention of 

the readers, the several sorts of solitons for the well-known NLEEs have also been 

covered. The importance of two specific NLEEs (NLS equation and SG equation) is 

briefly explained. These two NLEEs are also used to apply soliton solutions of 

NLEEs to various field of scientific and engineering, with a focus on two applications 

discussed in detail: optical fiber communication and Josephson junctions.  

The following is a brief description of the work conducted in this thesis: 

1. Two novel numerical approaches have been developed using optimization 

techniques.   

2. The thesis discusses the significance of NLEEs and their applications in science 

and engineering. Additionally, it highlights the importance of applications of soliton 

solutions of NLEEs, exemplified through Josephson junctions and optical fiber 

communication. 

Future scope 

In future this research work may be extended as follows:  

1.  In this research work LOOCV and PSO technique has been used with the 

“Exponential cubic B-spline differential quadrature method” to find the best value 
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of the parameter  𝜖 in the basis function. More basis function may be explored in 

which any parameter value needs to be optimized can further be extended, for 

example hyperbolic tension B-spine basis function. 

2. In this research work the exponential cubic B-spline differential quadrature 

method has been used with LOOCV and PSO technique to find the best value of 

the parameter 𝜖 in the basis function. More optimization techniques can be 

explored to optimize parameter value 𝜖 in the basis function, for example ABC, 

GA optimization techniques, and many more. 

3.  The numerical solutions in this thesis are calculated only for partial differential 

equations. Fractional-order partial differential equations may also be explored to 

implement these techniques. 

4.  The equations solved in this research work are in one dimension. These methods 

may further be extended to solve two and higher-dimensional equations appearing 

in various applications of science and engineering. 

5.  In this research work discussion about different types of solutions of NLEEs, 

particularly one of them i.e., soliton type solution has been explored. This may 

further be extended to explore more type of solutions of PDE’s like pattern 

formation, population dynamics, epidemiology, finance, climate science, and 

many more. 

6.  In this research work application of soliton solution of NLS equation in optical 

fiber and SG in Josephson junction equation has been briefed. This research may 

further be extended by exploring application of solutions of more equations like 

KdV equation, BBM equation, and many more which are discussed in this work. 
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