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Abstract

The current thesis, entitled Some Strategical Methods for Solving Decision Mak-

ing Problems Using Type-2 Fuzzy Sets is the result of research outcomes conducted

by me under the esteemed guidance and supervision of Dr. NITIN BHARDWAJ,

Professor, Department of Mathematics, Lovely Professional University, Phagwara, Pun-

jab. The research work is now being submitted to the Department of Mathematics,

School of Chemical Engineering and Physical Sciences, Lovely Professional University,

Phagwara-144411, Punjab, India, for the award of a Doctor of Philosophy in Mathemat-

ics.

Metacriterion group decision-making (MCGDM) problems are an integral part of

contemporary decision theory. These problems involve evaluating a set of alternatives

against multiple influential criteria to determine the optimal choice. In our daily lives,

we often face the dilemma of whether or not to take action, pondering the best course of

action before making a decision. The decision-making (D −MG) process heavily relies

on having the right information available to the relevant individuals at the appropriate

times. In general, decision-makers (D−MRs) establish specific characteristics or criteria

that need to be satisfied in order to select the best alternatives when solving problems.

The complexity of today’s socioeconomic environment and the limited knowledge

available pose significant challenges for decision-makers, making it difficult to arrive at

precise decisions. Uncertainty, imprecision, and vagueness are common features of the

information used in decision-making processes. To mitigate these issues, researchers have

extensively employed the theory of fuzzy sets (FSs) and its extensions, including intu-

itionistic fuzzy sets (IFSs), type-2 fuzzy sets (T2FSs), type-2 intuitionistic fuzzy sets

(T2IFSs), and Soft sets. These approaches effectively minimize the level of uncertainty

inherent in decision-making.

In recent decades, substantial research efforts have been dedicated to addressing

multi-criteria decision making (MC − DM) or multi group-decision making problems

across various fields. However, an essential factor in determining the best alternatives

is the environment in which D-MRs evaluate the available options. This environment

can exhibit both quantitative and qualitative characteristics, depending on the nature

of the real-life problem at hand. To tackle this challenge, researchers have developed

the concept of linguistic variables (LV ) and corresponding analytical approaches that
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employ various information measures. Following these groundbreaking contributions,

researchers have been actively involved in expanding and applying these concepts to

various disciplines. Nonetheless, the primary objective for decision-makers remains the

ranking of objects to achieve their desired outcomes.

The primary objective of this research is to introduce innovative methodologies using

intuitionistic fuzzy sets, type-2 fuzzy sets, and type-2 intuitionistic fuzzy sets to effec-

tively address decision making problems that involve uncertainty. To achieve this goal,

we define a range of measures tailored for solving both multi-criterion decision making

and MCGDM problems. These measures allow the expression of information about each

alternative using fuzzy numbers derived from intuitionistic fuzzy sets, type-2 intuitionis-

tic fuzzy sets, and type-2 Fermatean fuzzy sets (T2FFSs). Furthermore, we extensively

examine the desirable relationships between the proposed measures and operators.

Leveraging these measures, we develop an efficient method to solve decision making

problems by incorporating the expertise of a group of experts. Our approach compre-

hensively considers the information associated with each alternative to provide robust

solutions. To demonstrate the effectiveness of our method, we apply it to various real-life

practical examples and compare its performance against existing studies in the field.

The thesis is structured into five chapters, each of which is summarized below:

The first chapter provides a brief overview of the related work conducted by various

authors in the evaluation of decision making approaches using different methodologies.

The fundamentals and introductory concepts pertaining to fuzzy sets, type-2 fuzzy sets,

intuitionistic fuzzy sets, and type-2 intuitionistic fuzzy sets are presented.

In chapter 2, we explores the significance and practical applications of fuzzy set exten-

sions, including intuitionistic fuzzy set, Pythagorean Fuzzy Sets (PFS), and Fermatean

Fuzzy Sets (FFS), among others, which overcome these limitations and enable more

complex analysis. We also discuss operators on intuitionistic fuzzy sets, establish the-

orems on their relations, and introduce a new distance measure (dmr) which consider

both membership function (M − F ) and non-membership functions (N − MF ), high-

lighting its importance through a pattern recognition (P − R) problem. The results

showcase the potential of fuzzy set extensions, operators, and distance measures in gain-

ing deeper insights into complex real-world systems and making informed decisions in

various fields.

In chapter 3, we focused on decision making issues as decision making can be challeng-

ing, especially when dealing with imprecise or uncertain information. In recent years,

type-2 fuzzy sets have been proposed as an improvement over traditional fuzzy sets,

allowing decision makers to express their preferences with greater flexibility. However,
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even with type-2 fuzzy sets, decision making can still be difficult, especially in group

decision making scenarios. To address this issue, a novel approach based on type-2

fermatean fuzzy sets has been proposed, along with a set of distance measures based

on Hamming and Euclidean metrics. This approach was evaluated in a group decision

making process using a numerical example, demonstrating its effectiveness in improving

decision outcomes. This study offers a promising new perspective on decision making

that can lead to better outcomes and improved satisfaction among decision makers.

In chapter 4, we made comparison between different fuzzy sets and type-2 fuzzy

sets. Fuzzy sets have revolutionized decision making by providing a mathematical tool

for modeling uncertainty and imprecision. However, traditional fuzzy sets may not be

sufficient in certain situations, leading to the development of extensions such as Type-2

fuzzy sets, Intuitionistic fuzzy sets, and Type-2 intuitionistic fuzzy sets. This paper

provides an overview of these sets, comparing and contrasting them using operations

of union, intersection, and distance measures. Additionally, a new distance measure is

proposed for type-2 intuitionistic fuzzy sets, which is demonstrated with a numerical

example. By understanding the properties and applications of these sets, informed

decisions can be made in real-world situations with uncertainty and imprecision.

In chapter 5, we focussed on the extension of fuzzy sets, specifically intuitionistic

fuzzy sets and type-2 intuitionistic fuzzy sets, with the use of illustrative examples. The

paper highlights the significance of type-2 intuitionistic fuzzy sets in decision making.

The study also discusses the challenges faced in decision making situations and how

type-2 intuitionistic fuzzy sets can address them. Additionally, the paper introduces a

novel distance measure for type-2 intuitionistic fuzzy sets that considers the uncertainty

in the membership function and non-membership function. A numerical example is

provided to demonstrate the practical application of the proposed distance measure.

Also, a comprehensive analysis is conducted to compare the proposed distance measure

with existing measures like Euclidean distance (E−D) and Hamming distance (H−D)

to determine its accuracy and reliability in representing uncertainty and vagueness in

decision making.

A bibliography is included at the end of the thesis, which is by no means comprehen-

sive, but does identify all of the research articles and books that were mentioned in the

main text.
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Chapter 1

Introduction

People like engineers, surgeons, lawyers, scientists, or hr managers deal with a variety

of issues every day in the real world in order to properly execute their tasks. To choose

the best one(s) among them, which is an essential element of everyday life, is one of the

difficult decisions that must be made in order to reach the optimal points with the desired

goal. A decision making (D−MG) theory is crucial to this goal’s accomplishment in the

area of the D −MG process. To do or not to do is, in fact, one of the most important

decisions one must make in everyday life. The proper data being available to the right

people at the right times is a prerequisite for the entire D−MG process. By identifying

the decision makers (D − MRs) and stakeholder(s) in the decision, Baker et al. [11]

state that the likelihood of dispute over the problem definition, requirements, goals,

and criteria is reduced. According to Campling [18].“The process of D −MG involves

choosing between possible courses of action and entails a cycle of activities and events

that begins with the identification of a problem and continues with the evaluation of

implemented solutions”. In a nutshell, D−MG is the experimental process of picking the

best option(s) among a variety of possibilities. The process of conducting experiments is

a mental process of knowing, which includes consciousness, perception, reasoning, and

judgement.

Typically, when choosing the best option(s) to solve an issue, a D −MR will define

some characteristics or criteria that must be met in order to evaluate the offered items.

The criteria are used to categorise D−MG situations into two categories: (1) decisions

based on a single criterion; and (2) decisions based on two or more criterion, also known

as multicriterion decision making (MC −DM). For instance, the selection committee

will always use a certain criterion when choosing a marketing manager for a particular

company, such as their past record, communication skills, experience, and motivation

power.

1
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1.0.1 Multicriterion Decision Making (MC −DM)

Undoubtedly, one of the most significant things humans can do is make decisions, from

the numerous situations that we face on a daily basis to very complex systems. A logical

D −MG process is used to determine and select the best options depending upon the

preferences and the values of D−MR with relation to its criteria. From a mathematical

perspective, there should be a methodology and an algorithm that one can use to arrive

at a sensible and correct decision. D−MG procedures have recently gained popularity

across industries and at various administrative levels within the relevant departments of

many organisations due to their increased global competitiveness, ability to make sound

plans, and need to thrive in their particular markets. Hence, For lowering material

prices, reducing manufacturing time, and improving product or service quality, D−MG

is crucial, especially in the procuring department. Choices happen when variations of

alternatives are present in front of us associated with diverse criteria. The D − MG

process explains how choices are really framed as well as how they may be framed more

successfully or effectively. Some other areas of management like as inventory control, in-

vestment, manpower activity, new-product development, allocation of resources, medical

diagnosis and also including plenty of others, D −MG process has a great importance.

There are various categories of D − MG. Broadly speaking, it falls into one of four

categories: individual D−MG, group D−MG, MC −DM , and multi-stage D−MG.

MC − DM is a modelling and methodological approach used in decision sciences to

construct different types of D −MG problems. The basic objective of decision analysis

is to lessen ambiguity. Preferences and information D−MG challenges are modelled in

MC−DM and pertinent alternatives are assessed in the presence of numerous compet-

ing criteria. Qualitative benefits, quantitative benefits, and cost benefits are only a few

examples of numerous criteria. Creating a decision environment, which is a collection

of values, alternatives, attributes, and preferences that are available to the connected

problems, is how decisions are formed in decision sciences. Depending on the nature

of the issues, D −MRs must consider a wide range of factors when selecting the best

choice, including technological, economic, ethical, political, legal, and social consider-

ations. Certain types of information can be quantified numerically, while others can

only be described verbally or subjectively. By studying the challenges D − MRs can

create MC −DM problems and recommend more effective MC −DM techniques. The

traditional techniques of making decisions work well for issues where the performance

criterion can be accurately represented by a single crisp value, making it possible to

rate and rank the alternatives with no issues. Because the criteria in most real-world

D −MG situations in various fields often contain imprecision or ambiguity, it may be

more appropriate to describe the information with the use of some language variable.

Fuzzy set (FS) theorey can be used as a technique for problem modelling and solution
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when the information that is accessible in relation to a problem is ambiguous, impre-

cise, or incomplete. FSs were first used in the MC −DM area by Bellman and Zadeh

[12] and Zimmermann [171]. To address issues that could not be addressed or solved

using the conventional, classical MC −DM procedures, they introduced a new family

of methodologies. Fuzzifications of the traditional D − MG theories have been used

as applications of FSs in the D −MG domain. MC −DM problems frequently have

ambiguous, imprecise, or insufficient parameters given by the D−MR. So, it is prefer-

able to treat the expertise of specialists on the parameter as fuzzy data. Yet, there are

circumstances in which the perception of membership values (MV ) may not always be

possible and the evaluation of non-membership values (NMV ) may not always be pos-

sible due to the lack of information. As a result, there is still an element of uncertainty

on which reluctance persists. Intutionistic fuzzy set (IFS) theory can undoubtedly be

used to manage this scenario better. As a result, since its inception, IFS has drawn

increasing attention, and as a result, scholars have given MC −DM theory more con-

sideration. Here, a straightforward MC − DM framework is provided. Think of R as

the set of alternatives (R1, R2...Rm) and K as the set of criteria (K1,K2,Kn) for the

D − MG situation. The following matrix can now be used to present the MC − DM

situation:

A =



K1 K2 . . . Kn

R1 S11 S12 . . . S1n

R2 S21 . . . . S2n

. . . . . . .

. . . . . . .

Rm Sm1 . . . . Smn


where Sij represents evaluation of alternatives Ri under criteria Kj For a decision

making problem, we have

A: Objective.

B: Criteria (Kj).

C: Alternatives (Ri).

1.0.2 Fuzzy Sets (FS)

A binary function known as the characteristic function of a crisp set gives each item in

a set a value of either 1 or 0, indicating whether the object is a member or non-member
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of the set. However, this approach is not always sufficient for representing complex

real-world phenomena where objects can have partial membership in a set. To address

this issue, a generalization of the characteristic function was introduced that allows

for values between 0 and 1 to be assigned to elements of a set, indicating the level of

membership in the set that each element has. This function is known as a M − F , and

the set it defines is referred to as a FS. Unlike crisp sets, FSs are capable of capturing

the gradations of membership in a set, ranging from full membership (1) to complete

non-membership (0), with all possible degrees of partial membership in between. This

makes FSs ideal for representing concepts that are vague, ambiguous or ill-defined,

such as good, very good, poor, intelligent, large, and medium-large. In 1965, Zadeh

was the first to present the idea of FSs and has since given rise to a new section of

mathematics which deals in characterizing and analyzing uncertainty. Fuzzy logic and

FSs have been widely employed in a wide range of areas, including artificial intelligence,

control systems, D −MG, and expert systems. In summary, while crisp sets and logic

are suitable for representing binary concepts, FSs and logic provide a more flexible and

realistic approach to modeling complex real-world systems by allowing for gradations

of membership and capturing the inherent uncertainty in many real-world phenomena.

J. A. GOGUEN (1967) [58] extends the foundational work of Zadeh, introducing new

perspectives and generalizations. Notably, it explores order structures that go beyond

the conventional unit interval. This broader consideration of order structures has led

to the development of a fresh outlook on optimization problems. The significance of

this research may lie primarily in its unique perspective rather than specific findings.

Throughout the evolution of FS theory, pattern classification has played a crucial role,

serving as a significant influence. The 1973 work of Richard Bellman and Magnus Giertz

[13], it is not simple to apply the basic set theory ideas, such as union and intersection,

to the world of FSs. Various approaches and strategies have been proposed to address

this challenge. However, it has been observed that the operations of maximum and

minimum are particularly significant and play an essential part in the FSs arithmetic.

Ronald Yager (1975) [152] when goals and constraints are not precisely defined, D−MG

problems become increasingly significant, especially when dealing with complex and

social systems. Yager provides a summary of Zadeh’s FS theory methodology and its

use in making fuzzy decisions.

1.0.3 Histry of Fuzzy Sets

Zadeh (1965a) [159] made the remark that most object classes in the physical world lack

clearly specified membership criteria, which gave rise to the idea of a FS. This insight
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emphasises the discrepancy between traditional mathematical representations and men-

tal representations of reality, which rely on binary logic, exact integers, and differential

equations. Classes of objects that zadeh mentioned, like “big size”, “bird”, “chair”, etc.,

only exist in our minds as mental representations that employ nouns or phrases from

natural language. For such categories, where membership seems to be a developing idea

rather than a simple issue of being in or out, classical logic is not appropriate. Mental

representations, which are useful summaries of perceptual experiences that explain the

complexity of the universe, cannot match the precise level of actual numbers. Analyt-

ical models of physical events can properly reflect reality, but they can be difficult to

understand because they don’t provide much justification on their own and might be

unintelligible to non-experts. On the other hand, the vagueness that plagues mental

representations is caused by the vagueness of linguistic expressions and the absence of

definite bounds for the categories of objects they refer to. As a result, we can refer to

these linguistical concepts as gradul qualities or fuzzy predicates. It might have appeared

futile and even insane a century ago to attempt to express human knowledge in a way

that is both user-friendly and scientifically accurate. However, the development of com-

puters has fundamentally changed the field of science, ushering in the era of information

management. Given that so many people rely on computers to acquire information that

aids in D−MG, It is essential that solid theories and innovative technologies be devel-

oped for knowledge representation and automated reasoning. How to preserve and use

human knowledge in many sectors where little unbiased and accurate data is accessible

is a crucial concern in this regard. Due to its significance in this development Dubois,

et al. [46], FS theory is closely related to artificial intelligence.

There have been numerous recent attempts to improve logic’s capacity for represen-

tation and to put forth non-additive models of uncertainty. Lotfi Zadeh started the more

prominent and successful of these endeavours in 1965 when he released his article titled

“Fuzzy Sets”. A logic of gradualness in attributes has been developed using zadeh’s

methodology, whose foundation is the concept of progressive membership. As a result,

“Possibility Theory” Zadeh 1978 [164], a novel and extremely successful uncertainty cal-

culus, has been developed. It treats the ideas of possibility and certainty (or necessity)

as incremental modalities. This idea has proven to be especially straightforward and

useful in practise. FSs were first put forth by zadeh in 1973 [160] with the intention

of making a contribution to the fields of abstraction and summarization, information

processing and communication, and pattern categorization. When they were first put

forth in the early 1960s, the claims regarding the applicability of FSs in these fields

may have seemed speculative, but subsequent advancements in the fields of data science

and engineering have demonstrated the fact that these intutions were accurate and far

exceeded expectations. The word “fuzzy” frequently alludes to the idea of vagueness
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when discussing FSs. It is important to talk about the connection between fuzziness

and obscurity. When used in daily speech, the adjective “fuzzy” can describe an object’s

lack of solidity or firmness or its fringe’s loose fibres. It may also imply that anything

is covered in loose, volatile material or has leaks. Similar to how descriptions of objects

might be ambiguous or imprecise, objects themselves are not vague.

1.0.4 Type-2 Fuzzy sets (T2FSs)

Making decisions under uncertain conditions, which involve evaluating or selecting from

a range of available options, is a common challenge in real-life scenarios. Such problems

are difficult to model and handle due to the presence of uncertainty. While probabil-

ity theory is a useful tool in many cases, uncertainty is often imprecise or vague in

nature and cannot be described using traditional probabilistic approaches. To address

these situations,T2FSs emerged as a development of traditional FSs. [161]. T2FSs

offer a more flexible framework for dealing with uncertainty, enabling a more accurate

representation of the underlying imprecision or vagueness in the problem. As a result,

T2FSs have emerged as a crucial tool for making decisions, under uncertain conditions,

particularly in situations where traditional probabilistic approaches are inadequate. A

T2FS is a FS where the MV s are themselves Type-1 fuzzy sets (T1FSs) defined on

the unit interval [0, 1]. This gives you more room to directly model the uncertainty

that exists in a problem. T2FSs are more complex than T1FSs and can be difficult to

understand and clarify. However, they provide an effective means of expressing uncer-

tainty and handling imprecision in information. T2FSs are three-dimensional and are

particularly useful at interfaces where increasing levels of imprecision, uncertainty, and

fuzziness are present. Several studies have focused on developing operations on T2FSs

[40, 75, 110]. T2FSs have a representation theorem stated by Mendel and John [99], It

dispenses with the “Extension Principle” and allows the development of formulas for the

union, intersection, and complement of T2FSs. This theorem provides a valuable tool

for working with T2FSs and has facilitated their use in a wide range of applications.

Mizumoto and Tanaka [111, 112] proposed operations on T2FSs and associated

properties. While Nieminen [117] revealed the algebraic structure of T2FSs. Fuzzy-

valued logic was studied by Dubois and Prade [41, 42, 44], who also expanded “type-

1 fuzzy sup-star composition to type-2 fuzzy relations”. Karnik and Mendel [72–76]

developed a generic formula for the “extended sup-star composition of type-2 fuzzy

relations and operations” on T2FSs. Mendel [102] expanded on the more sophisticated

characteristics of T2FSs. Mendel [103] evaluated a plane representation of T2FSs that

is consistent with the ideas of a cutting of T1FSs, while Castillo and Melin [20] discussed

theories of type-2 fuzzy logic. Mendel [104] offered a high-level history of T2FSs and
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fuzzy logic systems, whereas Ling and Zhang [91] established operations on triangular

T2FSs. A brand-new parameterization technique for universal type-2 fuzzy membership

functions was created by Castillo et al. [21]. While Shahparast and Mansoori [124] used

evolving type-1 rules to produce an online broad type-2 fuzzy classifier, Xing et al. [147]

utilised interval T2FSs for the categorization of remote sensing data. In the area of

medical sciences, Ontiveros et al. [118] compared interval type-2 and general type-2

fuzzy systems. By use of an interval type-2 fuzzy logic system-based similarity measure,

Ashraf et al. [2] calculated the similarity between the pixels in a digital picture.

1.0.5 Intuitionistic Fuzzy sets (IFSs)

Atanassov presented IFSs [4, 6, 8], as a type of higher-order FSs that have proven

to be effective in handling vagueness. In some situations, it may not be possible to

evaluateMV s to our satisfaction due to a lack of information, in addition to the presence

of vagueness. Similarly, evaluating NMV s may also not be possible in such cases,

leaving a part of the problem indeterminate and uncertain. In situations where there is

insufficient information to define an imprecise concept using a conventional FSs, IFSs

offer an alternative approach. It is important to note that while FSs are a type of

IFSs, the reverse is not true. This theory is a FS extension, giving it a more flexible

tool for replicating human D−MG procedures and activities requiring human skill and

expertise [83, 84]. Since such activities are inherently imprecise and often not entirely

reliable, IFSs are a valuable tool for addressing these challenges.

In recent years, academics have paid a lot of attention to distance measure (dmr)

and simmillarity measure (smr), which are crucial mathematical tools used in D−MG

and pattern recognition (P − R) tasks [39]. To date, IFSs have been subjected to a

variety of distance or similarity measurements [131, 144]. A M − F and a N − MF

make up IFSs two-dimensional representation. While Grzegorzewski [64] suggested

using the Hausdorff metric to create a distance measurement, Szmidt and Kacprzyk

[134] introduced d −mr for IFSs using the hamming distance (H −D) and euclidean

distance (E − D). A generalised d − mr for IFSs was suggested by Wang and Xin

and is effective for P − R tasks [64]. Song and Wang [132] developed a similarity

metric based on the similarity matrix’s positive definiteness, whereas Hatzimichailidis

et al. [66] proposed a dmr for IFSs constructed using a matrix norm and a fuzzy

consequence. The hesitation function in IFSs was not taken into account by these

methods, which produced erroneous findings. Researchers have looked into a three-

dimensional model of IFSs, encompassing the M−F , N−MF , and hesitancy function,

to get around these restrictions. Wang and Xin’s approach from Wang and Xin [140]

was expanded by Park et al. [120], who also provided a distance metric for IFSs
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used in P − R. Yang and Chiclana adjusted grzegorzewski’s method [64] to determine

the separation between IFSs. Yang and Chiclana’s study established a brand-new

spherical dmr afterwards used in decision analysis for IFSs in 3-D space [59]. The

approach suggested by hatzimichailidis et al. was expanded upon by Luo and Zhao

[93]. We found that, although most distances are linear in nature, several of the current

approaches do not entirely satisfy the axiomatic definition of a dmr after analysing the

existing dmr methods for IFSs. Some of the distance or similarity measurements for

IFSs that are currently in use may not be sufficient to explain judgements or may

result in surprising outcomes. As a result, the issue of creating distance or similarity

measurements for IFSs is still unresolved and intriguing.

1.0.6 Type-2 Intuitionistic Fuzzy Sets (T2IFSs)

T2FS is a more advanced version of the T1FS, which is an extension of the classical FS.

T2FS allows for more accurate handling of uncertainty and ambiguity in D−MG and

reasoning problems, which is a fundamental superiority over T1FS. The T1FSs MV , a

real number between [0,1], reflects the level of belongingness. When compared to T2FS

MV , which are FSs themselves, providing a more flexible and nuanced representation

of uncertainty. Zadeh was the one who first suggested the T2FS idea. [161, 162, 165]

and extensively explored by Mendel [102]. T2FS encompasses both ordinary FSs and

interval valued fuzzy sets (IV FS) as special cases, they are particularly useful in situa-

tions with higher degree of uncertainty. Researchers have investigated T2FSs in many

domains, including theoretical studies [30, 63, 76, 77] and various application areas

[53, 65, 67, 81, 121]. Singh and Garg [130] proposed a novel approach called the symmet-

ric triangular intuitionistic T2FSs that combines both IFSs and T2FS environments.

Using this method, novel interval type-2 intuitionistic fuzzy aggregation operators were

created that can account for various relationships between input arguments. Building

on this work, Garg and Singh [57] introduced triangular interval T2IFSs and developed

three new aggregation operators for triangular interval T2IFSs. In addition to this,

Garg and Singh [129] proposed T2IFS, which is another extension of T2FSs. The use

T2IFS offers significant advantages in modeling complex D−MG problems that involve

high levels of uncertainty and ambiguity. By combining intuitionistic fuzzy and T2F en-

vironments, these techniques can provide more flexible and nuanced representations of

uncertainty, leading to more accurate and reliable D −MG. A T2IFS is an extension

of the T1IFS, which itself is an extension of the classical FS. In situations involving

D − MG and reasoning, it enables greater flexibility in the expression of uncertainty.

In T2IFS, the membership and non-membership of an element in a set are FSs known

as upper and lower M − Fs, and upper and lower N −MFs, respectively. The upper
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and lower M − Fs quantify the degree of belongingness, while the upper and lower

N −MFs quantify the degree of non-belongingness of an element to the set. Unlike a

T1IFS, which has a fixed degree of uncertainty associated with each element, a T2IFS

allows for a varying degree of uncertainty based on the context of the decision problem.

This makes it a more powerful tool for modeling complex D−MG problems where there

is a high degree of uncertainty and ambiguity. T2IFSs have been effectively applied to

a lot of different fields, including D−MG, P −R, and image processing. However, their

increased complexity also makes them more computationally demanding than T1IFSs,

which can be a challenge in some applications.

1.0.7 Review of Distance or Similarity Measures (dmr and smr)

Measurements of distance and similarity are crucial ideas in data analysis and D−MG.

A smr establishes the degree of similarity between two sets, whereas a dmr establishes

the degree of difference. When there is greater closeness between two objects, the value of

a dmr decreases and the value of a smr increases. These two metrics can be normalised

so that distance = 1 minus similarity, and vice versa, as they are dual concepts. Measures

of distance and similarity have drawn a lot of interest in helping people make decisions

in the real world. For both IFSs and IV FS, researchers have put forth a variety of

distance measurements. Szmidt and Kacprzyk, for instance, [134] proposed four different

dmrs for IFSs, including Hamming, Euclidean, normalised Hamming, and normalised

E −D. Grzegorzewski [64] proposed novel dmr for IFSs and IV FSs depending upon

the Hausdorff metric, while Wang and Xin [140] introduced an axiom definition for

dmrs of IFSs to handle pattern recognition difficulties. IV FSs were given distance and

similarity measurements by Xu [149], and the dmrs for IV FSs were expanded by Park et

al. [119] by including the amplitude margin. The inequalities of Euclidean or normalised

Euclidean dmrs, however, are not valid, according to Chen [25], who demonstrated faults

in the current dmrs put out by grzegorzewski [64]. Szmidt and Kacprzyk [136] presented

new dmr depending on the Hausdorff metric to tackle these problems, while Zhang and

Yu [168] provided new dmrs for IFSs and IV FSs that do away with the shortcomings

of current dmrs. A three-dimensional Hausdorff dmr was also proposed by Yang and

Chiclana, and its consistency was compared to that of its two-dimensional equivalent

[154]. The normalised Euclidean dmr was used by Vasanti and Viswanadham to assess

student performance [139]. In general, the creation of new distance and similarity metrics

for IFSs and IV FSs has important ramifications for a variety of industries, including

finance, medicine, and engineering, where precise comparison of objects’ similarities and

differences is essential for making decisions. A fresh distance metric was proposed by

Ejegwa and Modom and its use in a medical diagnosis issue [48]. A numerical method was
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devised by Gupta and Mohanty [62] to assess the degree of compensation for MC−DM

issues in fuzzy contexts. By employing fuzzy numbers to reflect the choices and weights of

the D−MRs, the technique accounts for the uncertainties in the D−MG process. Chen

et al. [24] developed the idea of similarity degree between two FSs, but Dengfeng and

Chuntian [37] expanded this idea to include IFSs and used it to solve pattern recognition

issues. Dengfeng and Chuntian’s smr, however, had several flaws in its axiom qualities,

and Mitchell [107] suggested a more suitable modification. Another smr was provided

by Liang and Shi in 1998, and it was contrasted with other methods already in use. By

using numerical illustrations, Hung and Yang [68] created a smr based on the Hausdorff

distance and demonstrated its efficacy. Dengfeng and Chuntian’s method has some

drawbacks, and Liu [92] presented a smr for IFSs that does not have those drawbacks.

Three distinct forms of smrs for IFSs based on geometric distance, set theory, and

matching function were defined by Xu [149] and used to address multi attribute decision

making (MADM) issues. A number of similarity measurements for IFSs were put forth

by Xia and Xu and used in group D −MG. A cosine similarity metric was created by

Ye [157] for IFSs and medical diagnosis issues. According to entropy measurements,

Wei, Wang, and Zhang [143] developed smrs for IV IFSs. A cosine similarity metric

for IV IFSs and pattern identification issues was proposed by Singh [126]. Ye [158],

which expanded the cosine smr by including a degree of hesitation and used it to solve

MADM issues. Wu et al. [145] found flaws in the similarity metrics outlined by Wei,

Wang, and Zhang [143] and presented a new measure that takes the IV IFSs degree

of reluctance into account and gets over pattern recognition’s constraints. By offering

numerical counterexamples, Boran and Akay [15] proposed parametric distance and

dmrs for IFSs and carried out a comparison with other smrs. [37, 60, 61, 68, 87,

107, 157]. By generalising the dmr suggested by Boran and Akay [15], Dugenci cite

33 produced a fresh dmr between two IV IFSs and provided counterexamples of an

existing measure established by Xu [149]. In order to improve the limitations of the

smr provided by Chen and Chang [28], Nguyen [116] developed a knowledge measure

of IFSs and built a similarity or dissimilarity measure on its foundation. In order to

prove the validity of their suggested measure, Chen, Cheng, and Lan [29] conducted

a comparison between the suggested metric and current measurements [15, 28, 37, 68,

92, 107, 157, 168] and provided a measure of similarity that satisfies the triangular

property. Garg gave similarity and distance metrics for intuitionistic multiplicatives and

used them to solve D −MG issues in his citation [55]. In order to evaluate credit risk,

Shen et al. [125] introduced a dmr for IFSs that addresses the shortcomings of the one

previously proposed by Chen, Cheng, and Lan [29](19). With an application to medical

diagnosis issues, Luo and Zhao [93] analysed the current dmr [64, 125, 134, 140, 154]

and presented a dmr based on the binary function and matrix norm. By converting

IFSs into IV FSs, Ke et al. [78] suggested an efficient dmr based on interval values
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for IFSs and performed a comparative study based on numeric demonstrations to show

the viability of the proposed dmr. In order to calculate the entropy measure, Rashid et

al. [122] built a dmr between IV IFSs and used it to address MADM issues. The basic

formulation and features of these measures were established by Hung and Yang in their

[68] paper, which also gave a method for determing the similarity between T2FSs. By

adding a similarity metric to assess the similarity between two T2FSs, Mitchell [108]

expanded on this work and used the suggested approach to address the issue of automatic

evaluation of welded structures. Similarity and inclusion metrics between T2FSs were

defined by Yang and Lin in [155], and their characteristics and interactions were studied.

They developed a clustering approach for type-2 fuzzy data by fusing Yang and Shih’s

algorithm from [156] with the suggested similarity metrics. They also contrasted their

findings with Hung and Yang’s [68] work. Based on the Sugeno integral, Hwang et al.

[69] provided similarity, inclusion, and entropy measurements for T2FSs. For clustering

the patterns of T2FSs, they combined a reliable clustering algorithm with the proposed

smr. Overall, these investigations aid in the creation of techniques for T2FS clustering

and similarity analysis. To gauge the degree of similarity between T2IFSs, Garg and

Singh [129] established similarity metrics. Numerous professions, like data mining and

pattern recognition, can use these measurements in the real world.

1.1 Prelimanaries and Basic Concepts

1.1.1 Fuzzy Sets [159]

Assuming S is a universal set, let s represent any one of its elements. Then, an ordered

pair collection can be used to represent a FS D specified on S.

D =
{
(s, µD(s))|s ∈ S

}
. (1.1)

1.1.2 Equality of Fuzzy Sets [159]

If D and E are FSs on a universal set S, they are considered equal (denoted by D = E)

if they contain the same number of elements and have the same membership function

for every element s ∈ S.

µD(s) = µE(s). (1.2)
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1.1.3 Union of Fuzzy Sets [159]

Considering two FSs D and E that are specified on the same universe S, their union is

defined as

µD∪E(s) = max{µD(s), µE(s)}∀s ∈ S. (1.3)

1.1.4 Intersection of Fuzzy Sets [159]

Let D and E be two FSs stated on the same universe S, their intersection is defined as

µD∩E(s) = min{µD(s), µE(s)}∀s ∈ S. (1.4)

1.1.5 Fuzzy Set Compliment [159]

µD̄(s) = 1− µD(s)∀s ∈ S. (1.5)

1.1.6 α- Level Set [159]

Let D be a FS in S then α- Level set of D is defined as

Dα = {s ∈ S : µD(s) ≥ α}, (1.6)

where α be any real number such that α ∈ [0,1].

1.1.7 Strong α- Level cut [159]

Let D be a FS in S then strong α- cut of D is defined as

Dα+ = {s ∈ S : µD(s) > α}, (1.7)

where α be any real number such that α ∈ [0,1].

1.1.8 Support of a Fuzzy Set [159]

The support of a FS D, which is defined on a set S, “refers to a crisp set that contains

all the elements in S whose M − D in D is greater than zero”. In simple terms, the

support of a FS consists of the specific elements from the original set that have some

level of membership in the FS.
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Support(D) = {s ∈ S : µD(s) > 0}. (1.8)

1.1.9 Core of a Fuzzy Set [159]

The core of FS D consists of all the elements in S that are completely and unambiguously

represented by D, without any fuzziness or uncertainty.

Core(D) = {s ∈ S : µD(s) = 1}. (1.9)

1.1.10 Height of a Fuzzy Set [159]

The height of a FS D, which is represented by h(D), is expressed as the highest M −D

that any element in the set D can obtain. In other words, h(D) is the maximum

membership grade (M −G) that is attained by any element in the FS D.

h(D) = sup
s∈S

µD(s). (1.10)

1.1.11 Normal of a Fuzzy Set [159]

A FS D defined on set S is called Normal if and only if

h(D) = sup
s∈S

µD(s) = 1, (1.11)

for at least one s ∈ S and is called subnormal otherwise.

1.1.12 Cardinality of a Fuzzy Set [159]

The scale cardinality of a FS D defined on a finite set S is a measure of the effective

size of the FS and is defined as the sum of the M − Gs of all the elements in the set.

Mathematically, the scale cardinality of D is given by:

|D| =
∑
s∈S

µD(s). (1.12)
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1.1.13 Convex Fuzzy Set [159]

A FS D defined on a set S is convex if

µD {(λs1 + (1− λs2)) ≤ min (µD(s1), µD(s2))∀s1, s2 ∈ S, λ ∈ [0, 1]} . (1.13)

1.1.14 Type-2 Fuzzy Set [161]

Let S be the universe of discourse (UOD). Then we define structure of T2FS D on S

as

D =
(
s, u, µD(s, uD)

)
|s ∈ S, uD ∈ js ⊆ [0, 1], (1.14)

in which

0 ≤ µD(s, uD) ≤ 1, (1.15)

where uD is a primary M−F (P−MF ) and µD(s, uD) is a fuzzy M−F , µD : S → [0, 1].

is said to be secondary M − F (S −MF ). It can also be written as

D =

∫
s∈S

µD(s)/s |s ∈ S, u ∈ js ⊆ [0, 1] =

∫
s∈S

[

∫
u∈js

(fs(uD)/uD)]/s,

where µD(s) =
∫
u∈js(fs(uD)/uD) is the grade of membership,fs(uD) = µD(s, uD)

is named as S −MF where uD is P −MF of D and js is called P −MF of s.

Figure 1.1: Type-2 fuzzy set

1.1.15 Footprint of Uncertainity (FOU) [113]

The uncertainty associated with the P −MF of a T2FS, is represented by a defined and

limited area known as the FOU . The FOU encompasses the entirety of the P −MF
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Figure 1.2: Type-2 membership function and the shaded area is FOU

.

by forming their logical union represented as

FOU(D̃) = ∪s∈SJs. (1.16)

The region that is marked with shading in Figure 3 represents the FOU .

1.1.1. Mendel and John [99]. A type-2 fuzzy set (T2FS), labeled D̃, is describes by a

type-2 M − F µD̃(s, u), where s ∈ S and u ∈ Js ⊆ [0,1], i.e,

D̃ =
(
s, u, µD̃(s, u)

)
|s ∈ S, u ∈ js ⊆ [0, 1], (1.17)

where 0 ≤µD̃(s, u) ≤ 1. D̃ can also be expressed in the form of

D̃ =

∫
s∈S

∫
u∈Js

µD̃(s, u)/(s, u) |s ∈ S, u ∈ js ⊆ [0, 1], (1.18)

where
∫ ∫

represents the combination of all permissible s and u and for discrete UOD

we replace
∫
by
∑

.

1.1.2. Mendel and John [99] for every s (say s=s′) the 2-dimentional plane whose axis

are u and µD̃(s
′, u) is said to be the vertical slice of µD̃(s, u). S −MF is a vertical slice

of µD̃(s, u) defined as

µD̃(s = s′, u) ≡ µD̃s
′ =

∫
u∈Js′

fs′(u)/u, Js′ ⊆ [0, 1], (1.19)

where 0 ≤fs′(u) ≤ 1. As ∀ s′ ∈ S, we drop prime notation µD̃(s
′) and refer µD̃ as

S −MF .

1.1.3. Mendel and John [99]. A type-1 fuzzy set (T1FS) can be written in terms of

T2FS as (1/µF (s))/s or 1/µF (s) ∀ s ∈ S. 1/µF (s) implies S −MF has only one value

in its domain called PMV µF (s) at which the secondary grade is equall to one.
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1.1.16 Operations on Type-2 Fuzzy Sets (T2FSs)

Let D̃ and Ẽ be two T2FSs in UOD S. Let µD̃(s) and µẼ(s) be the coresponding

M −Gs of these two sets, represented as µD̃(s) =
∫
u fs(u)/u and µẼ(s) =

∫
w gs(w)/w,

where u, w ∈ js represent P − MF of s and fs(u),gs(w) ∈ [0,1] represent S − MF of

s. By extension principle of zadeh [40, 72, 161], the M −Gs for union, intersection and

compliment of T2FSs D̃ and Ẽ are defined as

Union

D̃ ∪ Ẽ ⇔ µD̃∪Ẽ(s) = µD̃(s) ⊔ µẼ(s) =

∫
u

∫
w
(fs(u) ⋆ gs(w))/(u ∨ w). (1.20)

Intersection

D̃ ∩ Ẽ ⇔ µD̃∩Ẽ(s) = µD̃(s) ⊓ µẼ(s) =

∫
u

∫
w
(fs(u) ⋆ gs(w))/(u ⋆ w). (1.21)

Compliment

¯̃D = µ ¯̃D
(s) = ¬µD̃(s) =

∫
u
(fs(u))/(1− u), (1.22)

“where ∨ denotes the max t-conorm and ⋆ denotes a t-norm. The integrals denotes log-

ical union and the operations ⊔, ⊓ and ¬ refer as join, meet and negation respectively”.

Where a t-norm is represented by ⋆ and the maximum t-conorm is represented by

∨. The procedures ⊔, ⊓, and ¬ relate to join, meet, and negation, respectively, while

integrals indicate logical union.

1.1.17 Extension Principle

One of the most fundamental notions in FS theory that may be utilised to apply simple

mathematical concepts is the extension principle. It was already suggested in Initial

input by zadeh in its simplest form. Adjustments have been suggested in the interim.

Zadeh, Dubois, and Prade [43, 160–162] provided the following definition of the extension

principle.

Let E1, E2..., Er be r fuzzy sets in S1, S2..., Sr and S be the Cartesian product of

universes S = S1 × ...,×Sr, respectively. , where f is a mapping from S to a universe T.

t = f(s1, ..., sr). We can then define a fuzzy set F in T by using the extension principle

concept
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F̄ = {t, µF̄ (t)|t = f(s1, ..., sr), (s1, ..., sr) ∈ S}, (1.23)

“

µF̄ (t) =


sup(s1,...,sr)∈f−1(t)min{µĒ1(s1), ..., µĒr(sr)}

if f−1(t) ̸= 0

0 otherwise},

(1.24)

” where f−1 is the inverse of f.

If we put r=1, then the extension principle is reduced to

F̄ = {f(Ē) = {(t, µF̄ (t))|t = f(s), s ∈ S}, (1.25)

where

µF̄ (t) =

{sup(s)∈f−1(t)min{µĒ(s)} if f−1(t) ̸= 0

0 otherwise}
. (1.26)

1.1.18 Type-2 Intuitionistic Fuzzy Set (T2IFS) [129]

A T2IFS D in the UOD S is set {s, µD(s), νD(s)} where s is the element of T2IFS,

µD(s) and νD(s) are called M−G and N−MG respectively defined in the closed interval

[0,1] as

µD(s) =

∫
s∈j1s

(fs(uD)/uD), νD(s) =

∫
s∈j2s

(gs(vD)/vD), (1.27)

where fs(uD)/uD and gs(vD)/vD are termed as S−MF and secondary non membership

function (S − NMF ). In addition uD, vD denotes the P − MF and primary non-

membership functions (P − NMF ) and js1 and js2 are named as the P − MF and

P −NMF of s, respectively. In other words, T2IFS D is defined in the UOD as

D = {(s, uD, vD), fs(uD), gs(vD)|s ∈ S, uD ∈ js1 , vD ∈ js2}, (1.28)

where the element of the domain (s, (uD, vD)) called as P −MF (uD) and P −NMF

(vD) of s ∈ S where fs(uD) and gs(vD) S −MF and S −NMF respectively.

D = {s, (uD, fs(uD)), (vD, gs(vD))}, (1.29)

and is called type-2 intuitionistic fuzzy number (T2IFN).
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1.1.19 Operation on T2IFSs [32]

Let’s consider two T2IFS D and E

D =

∫
s∈S

(∫
u∈ius

(µD(s, u), νD(s, u))/u

)
/S

and

E =

∫
s∈S

(∫
v∈ivs

(µE(s, v), νE(s, v))/v

)
/S,

where ius ⊆ [0, 1] and ivs ⊆ [0, 1] are domains for S − MF respectively. Then we

define

Union

D ∪ E =

∫
s∈S

(∫
v∈iws

(µD∪E(s,w),νD∪E(s,w)
)

w

S
, ius ∪ ivs = iws ⊆ [0, 1],

where

µD∪E(s) = ϕ

(∫
u∈ius

(µD(s, u))/u,

∫
v∈ivs

(µE(s, v))/v

)
.

By making use of extension principle, we obtain

µD∪E(s, w) =

∫
u∈ius

∫
v∈ivs

(µD(s, u) ∧ µE(s, u)) /ϕ(u, v),

where ϕ(u, v) is t-conorm of u and v

µD∪E(s, w) =

∫
u∈ius

∫
v∈ivs

(µD(s, u) ∧ µE(s, u)) /(u ∨ v).

Similarly

νD∪E(s, w) =

∫
u∈ius

∫
v∈ivs

(νD(s, u) ∨ νE(s, u))/(u ∨ v).

Intersection

D ∩ E =

∫
s∈S

(∫
v∈iws

(µD∩E(s,w),νD∩E(s,w))
)

w

S
, ius ∪ ivs = iws ⊆ [0, 1],

where

µD∩E(s, w) =

∫
u∈ius

∫
v∈ivs

(µD(s, u) ∧ µE(s, u))/(u ∧ v),

and
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νD∩E(s, w) =

∫
u∈ius

∫
v∈ivs

(νD(s, u) ∨ νE(s, u))/(u ∧ v).

1.1.20 Distance Measures

Distance measure for T2FSs [127]

Let G2D̃ be the set of all T2FSs, a real function dm : G2D̃×G2D̃ → [0, 1] is called dmr

if dm satisfies following axioms:

(p1) 0 ≤ dm(D̃1, D̃2) ≤ 1, ∀(D̃1, D̃2) ∈ G2(D̃) (Boundedness). (1.30)

(p2) dm(D̃1, D̃2) = dm(D̃2, D̃1) (Symetric). (1.31)

(p3) dm(D̃1, D̃2) = 0, IF D̃1 = D̃2 (Reflexive). (1.32)

(p4) dm(D̃1, D̃2) = 0, dm(D̃1, D̃3) = 0, D̃3 ∈ G2(D̃) then dm(D̃2, D̃3) = 0 (Transitive).

(1.33)

Due of convenience, two T2FS D̃1 and D̃2 in S are denoted by D̃1 = {s, u, gs(uD̃1
)|s ∈ S}

and D̃2 = {s, u, gs(uD̃2
)|s∈ S}. Based on these notations [127] has developed several

dmr for T2FS D̃1 and D̃2.

■ Normalised Hamming Distance

h2(D̃1, D̃2) =1/2n
n∑

j=1

{|uD̃1
(sj)− uD̃2

(sj)|+ |gsj(uD̃1
)− gsj(uD̃2

)|+

|ϕD̃1
(sj)− ϕD̃2

(sj)|},

(1.34)

where ϕ is defined as the distinction between the P −MF and the S −MF in a T2FS.

■ Normalised Weighted Hamming Distance

h2W (D̃1, D̃2) =1/2n
n∑

j=1

Wj{|uD̃1
(sj)− uD̃2

(sj)|+ |gsj(uD̃1
)− gsj(uD̃2

)|+

|ϕD̃1
(sj)− ϕD̃2

(sj)|}.

(1.35)

■ Normalised Euclidean Distance

e2(D̃1, D̃2) ={1/2n
n∑

j=1

{|uD̃1
(sj)− uD̃2

(sj)|2 + |gsj(uD̃1
)− gsj(uD̃2

)|2+

|ϕD̃1
(sj)− ϕD̃2

(sj)|2}}1/2.

(1.36)
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■ Normalised Weighted Euclidean Distance

e2W (D̃1, D̃2) ={1/2n
n∑

j=1

Wj{|uD̃1
(sj)− uD̃2

(sj)|2+

|gsj(uD̃1
)− gsj(uD̃2

)|2 + |ϕD̃1
(sj)− ϕD̃2

(sj)|2}}1/2.

(1.37)

Distance Measures Between T2IFS [55]

Garg presented the H −D and the E −Ds between T2IFNs. Let GI
2(s) be the class

of T2IFSs over the universal set S. A real function d2 : G
I
2(s)×GI

2(s) → [0, 1] is called

dmr, where d2 satisfies the following postulates.

The H − D and E − D between T2IFNs were provided in [129]. The family of

T2IFSs over the UOD S is denoted by the symbol GI
2(s).A real function is defined as

d2 : G
I
2(s)×GI

2(s) → [0, 1]. d2 is referred to as the dmr, and it must satisfy the following

axioms:

(p1) 0 ≤ d2(D̃1, D̃2) ≤ 1,∀(D̃1, D̃2) ∈ GI
2(t), (1.38)

(p2) d2(D̃1, D̃2) = 0, IF D̃1 = D̃2, (1.39)

(p3) d2(D̃1, D̃2) = d2(D̃2, D̃1), (1.40)

(p4) d2(D̃1, D̃2) = 0, d2(D̃1, D̃3) = 0, D̃3 ∈ GI
2(t) then d2(D̃2, D̃3) = 0. (1.41)

For convenience, two T2IFSs D̃1 and D̃2 in S are expressed by D̃1 = {s, u, fsj(uD̃1
),

(v, gsj(vD̃1
))|s ∈ S} and D̃2 = {s, u, fsj(uD̃2

), (v, gsj(vD̃2
))|s ∈ S} then following dis-

tances for D̃1 and D̃2 are defined by considering the P − MF , S − MF , P − NMF ,

S −NMF , FOU and VMF .

■ Hamming Distance

d1(D̃1, D̃2) =1/4
n∑

j=1

{|uD̃1
(sj)− uD̃2

(sj)|+ |gsj(uD̃1
)− gsj(uD̃2

)|+

|ϕD̃1
(sj)− ϕD̃2

(sj)|+ |vD̃1
(sj)− vD̃2

(sj)|+ |hsj(vD̃1
)−

hsj(vD̃2
)|+ |ωD̃1

(sj)− ωD̃2
(sj)|}.

(1.42)
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■ Normalised Hamming Distance

d2(D̃1, D̃2) =1/4n
n∑

j=1

{|uD̃1
(sj)− uD̃2

(sj)|+ |gsj(uD̃1
)− gsj(uD̃2

)|+

|ϕD̃1
(sj)− ϕD̃2

(sj)|+ |vD̃1
(sj)− vD̃2

(sj)|+ |hsj(vD̃1
)−

hsj(vD̃2
)|+ |ωD̃1

(sj)− ωD̃2
(sj)|}.

(1.43)

■ Euclidean Distance

d3(D̃1, D̃2) ={1/4
n∑

j=1

{|uD̃1
(sj)− uD̃2

(sj)|2 + |gsj(uD̃1
)− gsj(uD̃2

)|2+

|ϕD̃1
(sj)− ϕD̃2

(sj)|2 + |vD̃1
(sj)− vD̃2

(sj)|2 + |hsj(vD̃1
)−

hsj(vD̃2
)|2 + |ωD̃1

(sj)− ωD̃2
(sj)|2}}1/2.

(1.44)

■ Normalized Euclidean Distance

d4(D̃1, D̃2) ={1/4n
n∑

j=1

{|uD̃1
(sj)− uD̃2

(sj)|2 + |gsj(uD̃1
)− gsj(uD̃2

)|2+

|ϕD̃1
(sj)− ϕD̃2

(sj)|2 + |vD̃1
(sj)− vD̃2

(sj)|2 + |hsj(vD̃1
)−

hsj(vD̃2
)|2 + |ωD̃1

(sj)− ωD̃2
(sj)|2}}1/2.

(1.45)

1.2 Literature Review

L.A. Zadeh (1965) [159]. In this paper zadeh introduced concept of FSs. A FS is a

group of objects characterized by a range of M − Gs. Each object within the set is

assigned a M −G between zero and one, which is determined by a M −F . The M −F

captures the degree of membership or similarity of an object to the set. These sets

are given the concepts of inclusion, union, intersection, complement, relation, convexity,

etc., and different features of these concepts are determined with relation to FSs.

J. A. GOGUEN (1967) [58]. This paper builds upon and extends the foundational

work of zadeh, introducing new perspectives and generalizations. Notably, it explores

order structures that go beyond the conventional unit interval. This broader consider-

ation of order structures has led to the development of a fresh outlook on optimization

problems. The significance of this research may lie primarily in its unique perspective

rather than specific findings. Throughout the evolution of FS theory, pattern classifi-

cation has played a crucial role, serving as a significant influence. One of the reasons

for this is the intuition that probability theory may not be suitable for addressing the
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specific type of uncertainty encountered in pattern classification. The uncertainty in

this context is often perceived as ambiguity rather than statistical variation.

Richard Bellman and Magnus Giertz (1973) [13]. In this article, author extended

the broad set theory notions, such as union and intersection, to the world of FSs is a

difficult process. Various approaches and strategies have been proposed to address this

challenge. However, it has been observed that the operations of maximum and minimum

are particularly significant and are crucial to the FS arthematics.

Ronald Yager (1975) [152]. This article summarises Zadeh’s FS theory approach

and how it may be used for fuzzy D − MG. when objectives and restrictions are not

clearly stated, D−MG problems become increasingly significant, especially when dealing

with complex and social systems.

L.A. Zadeh (1975) [161] presented the idea of a T2FS. The concept of linguistic

variables allows for a more intuitive and human-like representation of information. It

enables the incorporation of imprecision and ambiguity by using linguistic terms to

describe the values of a variable.

Krassimir T. ATANASSOV (1986) [4]. In this paper, author presented the term

IFS, which is a generalisation of the term FS is defined and an example is shown.

A variety of modal and topological operator properties specified throughout the set of

IFSs, in addition to operations and relations among sets, are illustrated.

Eulalia Szmidt and Janusz Kacprzyk (1996) [133]. In this paper, It is taken into

consideration to use IFSs to determine solutions in group D − MG. A set of unique

intuitionistic fuzzy preference relations serves as the starting point. We also assume

that a fuzzy linguistic quantifier is equivalent to a conventional fuzzy majority. Either

immediately after developing a social intuitionistic fuzzy preference connection or after

starting with individual intuitionistic fuzzy preference relations, a solution is obtained.

The consensus winner and the intuitionistic fuzzy core are the two proposed solution

concepts.

Ranjit Biswas (1997) [14]. In this article, author stated The circumstances where

IFS theory is better suited to handle than FS theory are examined. Author consider

an i-v FS to be an IFS and an IFS to be a collection of an unlimited number of i-v

FSs.



Chapter 1. Introduction 23

N. N. Karnik and J. M. Mendel (2001) [75]. The author explores the concept of

type-2 relations and their properties, including compositions, M-Gs of type-2 relations,

set operations on T2FSs, and algebraic operations. T2FS allow for set operations such

as join and meet using either the minimum or product t-norm.

J.M. Mendel and R.I.B. John (2002) [99]. To tackle these concerns, the author

of the paper suggests a novel representation for T2FSs, which enables the derivation

of formulas for union, intersection, and complement operations without relying on the

extension Principle. This approach to defining T2FSs enhances clarity and facilitates

effective communication when discussing them.

Jerry M. Mendel (2003) [100]. It is not scientifically valid to model words using

T1FSs. We can model the inherent uncertainties in words as well as other uncertainties

using T2FSs. Through a series of questions and answers, this article serves as an

introductory resource on T2FSs, perhaps inspiring the reader to study more and apply

them.

Hung, W. L., & Yang, M. S. (2004) [68]. In this article, the author provides axiom

definitions, characteristics, and similarity metrics between T2FSs. The author presents

a practical method for calculating the similarities between Gaussian T2FSs.

Wang, W., & Xin, X. (2005) [140]. The distance measure between IFSs is defined

by an axiom in this study. The proposed distance measurements are supported by the

accompanying evidence. Analysis is done on the relationships between the IFSs simi-

larity and dmrs. Finally, pattern recognition is applied to the distance measurements

of IFSs.

Li, D. F. (2005) [85]. This work explores MADM using IFSs. To create the ideal

weights for the traits, a number of linear programming models are constructed, and the

appropriate D−MG strategies are also recommended. The practicality and effectiveness

of the suggested approach are demonstrated through the use of a numerical example.

Lin etal.(2007) [90]. This paper employs IFSs as a novel approach to address fuzzy

MC − DM problems. The proposed method enables the description of the degrees

of satisfiability and non-satisfiability of each alternative with respect to a specific set

of criteria using IFSs. Additionally, the method allows the D − MR to aggregate

the degrees of membership and non-membership of the criteria using the broad term

“importance”. By utilizing this recommended strategy, D − MRs can make informed

choices in a more realistic manner.
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Kahraman, C. (2008) [71]. In this study, the dissemination of the FS theory into

the crisp MADM and fuzzy multi-objective decision making (MODM) approaches is

first briefly summarised. Here are a few instances of recently released studies on fuzzy

MADM and MODM.

Ashtiani, B. etal (2009) [3]. The interval-valued fuzzy TOPSIS approach is de-

scribed in this study with the goal of resolving MC −DM issues where the weights of

the criteria are not equal.

Zhang, Q. S. etal (2010) [169]. The paper introduces a novel measure of infor-

mation entropy for IV IFSs. This measure utilizes the membership interval and non-

membership interval of the IV IFS.

Torra, V. (2010) [138]. The author of this work suggests reluctant FSs. Although

they may be seen as fuzzy multisets from a formal perspective, the author demonstrated

that their perception is different from the two current techniques for fuzzy multisets. As a

result, in addition to their definition, they also covered several fundamental operations

and looked at how these related to IFSs. The author also demonstrated that the

hesitant FSs envelopes are IFSs.

Dubois, D. (2011) [47]. This essay provides a heuristic evaluation of the role of s in

decision analysis. It discusses various aspects including linguistic variables, M −Fs, ag-

gregation processes, fuzzy intervals, and the valuable preference connections they offer.

The essay also highlights the importance of bipolarity and explores the potential of qual-

itative evaluation techniques. The author adopts a critical stance on the contemporary

in order to emphasise the real accomplishments and cast doubt on what is frequently

thought to be arguable by decision scientists who study the literature on fuzzy D−MG.

Zhu, B. etal (2012) [170]. In this study, the author introduces a concept called

DHFSs. The author then examines the essential characteristics and functions ofDHFSs.

Additionally, they analyse the connections between the aforementioned sets, utilise the

concept of nested intervals to highlight their shared characteristics, and then suggest an

extension principle for DHFSs.

Chen, S. M., & Wang, C. Y. (2013) [27]. The authors of this study offer an innova-

tive method for making decisions using fuzzy multiple characteristics that is built upon

IT2FS. They initially created a novel fuzzy ranking method based on the alpha-cuts of

IT2FSs. Then, using the IT2FSs recommended fuzzy ranking method, they present a

novel way for making decisions with numerous fuzzy qualities.
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Cuong, B. C., & Kreinovich, V. (2014) [31]. The paper introduces picture-FSs,

which are extensions of both FSs and IFSs. The author then discusses several picture-

FSs procedures that possess specific properties.

Bustince, H. etal (2015) [17]. The definition and fundamental characteristics of the

many forms of FSs that have so far surfaced in the literature are reviewed by the author

in this work. They list some of the applications they have been employed in and analyse

the connections between them.

Celik, E. etal (2015) [22]. This study examines 82 distinct publications that employ

various MC −DM strategies grounded on IT2FSs that are divided into 35 categories.

All studies pertaining to single and hybrid techniques are examined, highlighting their

practical uses, empirical findings, and shortcomings. The articles are also statistically

examined to reveal fresh developments in the field of IT2FSs.

Mendel, J. M. etal (2016) [105]. The concepts and notations T2FSs have seen some

important changes in the past 16 years, which are explained in this paper. The article

investigates issues related to the notation of the S−MFs and provides an explanation of

when and why it is important to differentiate between the FOU and the DOU (Domain

of Uncertainty). It also discusses why the notational concerns have not resulted in errors

in T2FS calculations and offers advice on notation in this context.

Mendel, J. M., & Mendel, J. M. (2017) [106]. The T2FSs are explicitly introduced

in this chapter, which also serves as the book’s foundation. There are several brand-new

terminology in it. The paper covers several topics including the concept of a T2FS,

definitions of general T2FS and their associated concepts, definitions of interval T2FS

and their associated concepts.

Singh, S., & Garg, H. (2017) [129]. A family of dmrs utilising Hamming, Euclidean,

and Hausdorff metrics are described in this study since a notion known as T2IFS has

been introduced. Its advantageous characteristics have also been thoroughly studied.

Finally, a strategy for rating the options based on group D − MG has been provided

and is based on these metrics. A numerical example has been used to demonstrate the

recommended measures.

Deveci, M. etal (2018) [36]. In this article, a brand-new model is put out to offer

a quick method for assessing probable vehicle sharing stations for the site selection

issue. The paper proposes a method that combines the TOPSIS (Technique for Order

Preference by Similarity to Ideal Solution) approach with the Weighted Aggregate Sum
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Product Assessment (WASPAS) technique and an interval type-2 fuzzy MC − DM

model. The use of IT2FS is suggested to better handle the uncertainty in expressing

M − F and N −MF . This approach aims to enhance the effectiveness of D −MG in

uncertain situations.

Luo, M., & Zhao, R. (2018) [93]. In this study, a new distance metric for IFSs is

introduced, which relies on a matrix norm and a strictly binary, increasing (or decreasing)

function. The novel dmr effectively resolves counterintuitive scenarios while also meeting

the axiomatic requirements of a dmr. By using numerical examples, it is demonstrated

that the new distance measurement is valid. Additionally, they provide the pattern

recognition algorithms and employ them to resolve diagnostic medical issues.

Dan, S. etal (2019) [32]. The author of this paper put out the T2IFSs notion. The

algebraic properties of T2IFSs and a number of mathematical operations on T2IFSs,

“such as union, intersection, complement, containment”, etc., are discussed that are

connected to these operations are also investigated. They then discussed some of their

fundamental aspects after defining two new operators, the necessity operator and the

possibility operator, to transform an T2IFSs into a regular T2FS. Additionally, two

distance metrics—the Euclidian distance of T2IFS and the H − D are introduced in

this paper, and an example of one of their applications is provided.

Senapati, T., & Yager, R. R. (2020) [123]. The author of this study suggests FFSs.

They contrasted IFSs, PFSs, and FFSs. They identify the basic set of operations for

FFSs and concentrate on the complement operator of these sets. In order to rank

FFSs, defined a scoring function and an accuracy function. They also looked at the

Euclidean separation between two FFSs. Finally, a Fermata fuzzy TOPSIS approach

was developed to address the issue of MC −DM .

McCulloch, J., & Wagner, C. (2020) [98]. The author examined all of the available

smr on T2FSs to ascertain which metrics share common similarities and which do not.

For those who do not, they addressed the reasons why the characteristics differ, demon-

strated if and what effects this has in applications, and spoke about how a precaution

may prevent forgetting to include an essential attribute. Additionally, they examined

current metrics in the context of word-based computation employing a vast array of

data-driven FSs.

Wang, H. etal (2021) [142]. In this paper, an interval type-2 fuzzy set-based multi-

attribute assessment model is created and used to assess service quality. In order to

determine how similar two trapezoidal IT2FSs are to one another, an area similarity
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measure algorithm is first presented. The TOPSIS technique is adapted to serve as

the assessment strategy using the area similarity metric. The evaluation model is then

used to arrange each evaluation dimension into the established classes in a challenge

evaluating a public transport service.

Jiang, W. etal (2021) [70]. In this study, interval similarity and generic T2FS

cosine similarity are proposed. The suggested smr for the generic T2FSs are based

on vector similarity; as a result, they are independent of any particular representation.

Additionally, weighted dice and cosine similarity metrics are suggested in this study

to cope with unique circumstances. To demonstrate that the offered similarities are in

fact smrs and may produce acceptable similarity results, a number of features and a

discussion are shown. In the end, a MC − DM procedure is suggested based on the

smrs provided in the scenario where the weights of the criterion are fully unknown.

De, A. K. etal (2022) [35]. This study presents a thorough overview of the literature

on T2FS. It is thoroughly demonstrated through graphical illustrations why T2FS have

been drawing academics’ attention for years on end since they were first developed. This

article investigates the topics where T2FSs have previously shown that they can deal

with incomplete information. Additionally, numerous T2FS advances and expansions

have been systematically reported.



Chapter 2

From Fuzzy Sets to Deep

Learning: Exploring the

Evolution of Pattern Recognition

Techniques

In this chapter, we deeply explores the significance and practical applications of FS ex-

tensions, including IFSs, PFSs and FFSs, among others. We also discuss operators on

IFSs, establish theorems on their relations and introduce a new distance measure which

consider both membership and non-membership functions, highlighting its importance

through a pattern recognition problem.

Various extension of FSs have been discussed on the basis of their need and impor-

tance. Some important results regarding the operation of IFSs has been obtained. As

we know different dmrs have been discussed by numerous researchers for different types

of FSs. These distance measurements undoubtedly meet the metric’s requirements, and

the normalised Euclidean distance has certain desirable geometric characteristics. Yet

it might not fit as well in practise. For instance consider three IFS J , K and L in the

equation {X = x1} , where J = (1, 0, 0), K = (0, 1, 0), and L = (0, 0, 1). If we

interpret using the ten-person deciding model, J = (1, 0, 0) represents ten people who

all are in favour of a candidate; K = (0, 1, 0) denotes ten people who all are against

him; and L = (0, 0, 1) denotes ten people who all hesitate. So, it makes sense for us

to assume that J and L differ less from one another than J and K do. But, for the

above-described Euclidean distance, the distance between J and L is nearly identical to

the distance between J and K, which does not seem to make sense to us As a result,

28
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We offer a broader definition of the distance between IFSs. in this study based on the

definition of smr provided by Li and Cheng [37] our offered distance was proved more

reasonable than Li and cheng.

The remaining portion of the chapter is structured as follows: Section 2.1 contains

the introduction. Preliminaries and fundamental ideas are contained in Section 2.2.

Extension of FSs is specified in Section 2.3 in terms of their politeness. Section 2.4

contains proerties of IFSs and theorem proofs. A dmr between IFS is introduced in

Section 2.5, including new dmr with a numerical example.

2.1 Introduction

L.A. Zadeh created FS theory in 1965 [159] to resolve ambiguous and inaccurate infor-

mation. Each entry in a FS has a MV, which indicates the degree of an event and has a

value between [0,1]. NumerousD−MG issues can be solved with FSs, including medical

diagnosis, pattern identification, cluster analysis [115, 141], and many others. Atanasov

thought up the IFS [4]. Each IFS element has a M −D (membership degree) and a

N−MD (non-membership degree) in the range [0,1] having sum less than or equal to 1.

This limit on the total of M −D limits the application of IFSs. Yager [153] proposed

the concept of PFS as an extension of IFSs. Every element in a PFS has a member-

ship grade (M − G) of hA(x) and a non-membership grade (N − MG) of gA(x), with

the square sum of these two grades being no more than one, (hA(x))
2 + (gA(x))

2 ≤ 1.

PFSs have numerous uses across many different fields, yet they are unable to manage

situations where (hA(x))
2+(gA(x))

2 ≥ 1 for instance, if (hA(x) = 0.8 and (gA(x) = 0.7,

then (hA(x))
2 + (gA(x))

2 = 1.13 > 1 Senapati and Yager [123] then put out the idea

of FFSs. A FFS has the following properties: (rf (x))
3 + (sf (x))

3 ≤ 1. This suggests

that FFSs are more powerful than FSs, IFSs, and PFSs. Since they are all confined

within the space of FFSs. Torra [138] HFSs are described as a function that generates

a set of MVs for each domain element. IV FS [163], presented by Zadeh and modified

the specific number of the M −D to an interval number. IV IFS, which combines IFS

and IV FS, was first introduced by Atanasov.

2.2 Basic Definitions

Definition 2.2.1. [159] A FS E in S is an ordered pair set if s is group of elements

denoted generally by

E = {(s, µE(s))|s ∈ S}, (2.1)
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is called M − F and its value lies in closed interval [0,1].

Definition 2.2.2. T2FS [99] is defined as the extension of ordinary FS that is T1FS

and is characterised by Type-2 membership function µZ̄(s, u). Let S be a fixed universe

a T2FS Z̄ ⊆ S is defined mathematically as

Z̄ = (s, u, µZ̄(s, u)) |s ∈ S, u ∈ js ⊆ [0, 1],

in which 0 ≤ µZ̄(s, u) ≤ 1. It can also be written as

Z̄ =

∫
s∈S

µZ̄(s)/s |s ∈ S, u ∈ jt ⊆ [0, 1] =

∫
s∈S

[

∫
u∈js

(gs(u)/u)]/s,

where µZ̄(s) =
∫
u∈js(gs(u)/u) is the M −G, gs(u) = µZ̄(s, u) is named as S−MF ,

where u is P −MF of Z̄ and js is called P −MF of s.

Definition 2.2.3. FOU (Footprint of Uncertainty) [113] actually for T2FS we are

having 3-D structure which becomes very difficult for calculation so we take the base

of 3rd dimension to calculate the values which is called FOU. It can be defined as the

union of all P −MFs that is

FOU(Z) = ∪s∈S(js). (2.2)

Distance Measure Between T2FSs

[127] Examine the following factors in order to calculate the distance measure for T2FSs.

P −MF , S−MF and FOU in the currently used dmr the following dmr is defined for

T2FSs J and K.

d2h(J,K) =
1

2n

n∑
j=1

|uJ(sj)− uK(sj)|+ |fsj(uJ)− fsj(uk)|+ |ξJ(sj)− ξK(sj)|. (2.3)

2.2.1 Numerical Example

Let’s consider four types of metal fields and each field is featured by 5 metals . We

can express these four fields by T2FSs {c1, c2, c3, c4} in space {S = s1, s2, s3, s4, s5}.See
table 4.3.8.1. There is another kind of special metal {n} so we have to find which metal

field this metal belongs.
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Table 4.3.8.1

s1 s2 s3 s4 s5

uc1(s) 1 0.7 0.5 0.7 1

fs(uc1) 0.7 0.9 0.2 0.5 0.9

uc2(s) 1.0 0.7 0.9 0.9 0.9

fs(uc2) 0.9 0.7 1.0 0.7 0.7

uc3(s) 1.0 0.9 1.0 0.9 0.9

fs(uc3) 0.7 1.0 0.9 0.9 0.4

uc4(s) 0.9 0.9 0.9 0.2 0.7

fs(uc4) 1.0 0.7 0.5 0.0 0.4

un(s) 0.9 0.2 0.2 0.2 0.9

fs(un) 0.4 0.5 0.4 0.0 0.7

we have

d2h(J,K) =
1

2n

n∑
j=1

|uJ(sj)− uK(sj)|+ |fsj(uJ)− fsj(uk)|+ |ξJ(sj)− ξK(sj)|, (2.4)

since from the table 4 and using d2h(J,K) we get following result

d2h(c1, n) = 0.44, d2h(c2, n) = 0.48, d2h(c3, n) = 0.6, d2h(c4, n) = 0.46,

which implies special metal n is produced from metal field c1.

2.3 Extension of Fuzzy Sets

A =



K1 K2 . . . Kn

A1 S11 S12 . . . S1n

A2 S21 . . . . S2n

. . . . . . .

Am Sm1 . . . . Smn


,

where Sij represents evaluation of alternatives Ai under criteria kj . For a D−MG

problem, we have

A: Objective,

B: Criteria (Kj),

C: Alternatives (Ai).
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Definition 2.3.1. Intuitionistic Fuzzy set (IFS) [4]; If a person is representing the

ratio of Sij in terms of M −D and N −MD. An object of the following form is what

Atanassov defines as an IFS J in S as

J = {s, µJ(s), νJ(s) : s ∈ S, µJ(s) ∈ [0, 1], νJ(s) ∈ [0, 1]}, (2.5)

where as µJ(s) : S → [0, 1] and νJ(s) : S → [0, 1] is called as M − D and N − MD

respectively, such that 0 ≤ µJ(s) + νJ(s) ≤ 1∀s ∈ S.

2.3.1 Intuitionistic Fuzzy Set Operations [5]

Let D and E be two IFSs on S then some operations are defined as

(a) D ⊆ E ⇔ µD(s) ≤ µE(s), νD(s) ≥ νE(s) ∀ s ∈ S. (2.6)

(b) D = E ⇔ µD(s) = µE(s), νD(s) = νE(s) ∀ s ∈ S. (2.7)

(c) DC = {s, νD(s), µD(s)},where DC is the compliment of D. (2.8)

(d) ∩Di = {(s,minµDi(s),max νDi(s)) : s ∈ S}. (2.9)

(e) ∪Di = {(s,maxµDi(s),min νDi(s)) : s ∈ S}. (2.10)

(f) D + E = {s, µD(s) + µE(s)− µD(s)µE(s), νD(s)νE(s) : s ∈ S}. (2.11)

(g) D · E = {s, µD(s) · µE(s), νD(s) + νE(s)− νD(s) · νE(s) : s ∈ S}. (2.12)

2.3.2 Intuitionistic Fuzy Number (IFN) [4]

An IFS D is called an IFN if D is

■ Intuitionistic fuzzy sub-set of real line.

■ Normal that is there is an s0 ∈ R such that µD(s0) = 1, νD(s0) = 0.

■ Convex for M − F µD(s0), that is

µD {(λs1 + (1− λs2)) ≥ min (µD(s1), µD(s2))∀s1, s2 ∈ R, λ ∈ [0, 1]} .

■ Concave for N −MF νD(s0), that is

νD {(λs1 + (1− λs2)) ≥ min (νD(s1), νD(s2))∀s1, s2 ∈ R, λ ∈ [0, 1]} .
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Figure 2.1: The M − F and the N −MF .

Definition 2.3.2. Interval valued intuitionistic fuzzy set (IV IFS): If one provides the

value of Sij in terms of interval [L.U] [6] introduced IVIF. Let a set S be fixed, an IV IFS

J over S is an object having the form

J = {S, (µl
J(s), µ

u
J(s), (ν

l
J(s), ν

u
J (s)}, (2.13)

where µl
J(s), µ

u
J(s) ⊂ [0, 1] and νlJ(s), ν

u
J (s) ⊂ [0, 1] under the constraint

µu
J(s) + νuJ (s) ≤ 1.

Definition 2.3.3. Hesitant fuzzy set (HFS); Tora.v [138] extended the concept of IFS

to HFS which permits the M −D a discrete set of [0, 1]. If a person rate the value of

Sij as {0.5, 0.6, 0.55}. Let P be a reference set , then we describe HFS on S in terms

of function h that when applied to S yields a subset of [0,1]

E = {S, hE(s); s ∈ S}. (2.14)

They consider only agreenance that is why we feel need of dual hesitant fuzzy set.

Definition 2.3.4. A dual hesitant FS [170] is a type of FS that is defined using two

different functions to determine the M −D and N −MD for every set’s element. These

functions provide two sets of values, one as M − D and another as N − MD, which

can be used to represent the degree of uncertainty or hesitation associated with each

element’s membership in the set. Given a fixed set P, a dual hesitant FS α on P is

interpreted as

α = {(p, h(p), g(p)); p ∈ P}, (2.15)

in which “ h(p) and g(p) are some values in [0,1] signifying the possible M − D and

N −MD of the element p ∈ P to the set α, respectively, under the constraint 0 ≤ γ, θ ≤
1 : 0 ≤ γ+ + θ+ ≤ 1. Where γ+ and θ+ denotes the maximum of degree of agree Nance

and degree of disagree Nance”.

Definition 2.3.5. Pythagorean Fuzzy set (PFS): If someone provides rating of Sij as

(0.7, 0.4) whose sum is not less than 1 then we use PFS introduced by [153]. Let S be
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a UOD, a PFS in S is given by

E = {(S, hE(s), gE(s); s ∈ S)}, (2.16)

where hE , gE : s → [0, 1] are M−D and N−MD with condition (hE(s))
2+(gE(s))

2 ≤ 1

for all s in S, The degree of indeterminacy is given by γE(s) =
√
1− (hE(s))2 − (gE(s))2

For connivance yager [153] called hE(s), gE(s) a Pythagorean fuzzy number and denoted

as E = (hE , gE).

Definition 2.3.6. Hesitant Pythagorean fuzzy set (HPFS) was introduced by [86]

defined as

E = {(s, h(s), g(s))}; s ∈ S, (2.17)

with condition 0 ≤ γ, θ ≤ 1 : 0 ≤ (γ+)2 + (θ+)2 ≤ 1 for all s ∈ S γ ∈ h(s), θ ∈ g(s).

Definition 2.3.7. Linguistic Pythagorean fuzzy set (LPFS) [56]. If someone has to

say about linguistic behavior for example beauty we can’t say 70 percent or 80 percent

beautiful here we use terms like more beautiful very beautiful etc. LPFS is defined as

E = {(S, (hE(s), (gE(s)); s ∈ S}, (2.18)

where (hE , gE) represents linguistic M − D and N − MD respectively with condition

(h2 + g2 ≤ t2).

Definition 2.3.8. Single valued neutrosophic fuzzy set (SV NFS) [33]. In this set, we

have indeterminacy factor as well and is defined as

E = (S, hE(s), gE(s), iE(s); s ∈ S, (2.19)

with condition hE , gE , iE ∈ [0, 1] and 0 ≤ hE + gE + IE ≤ 3 for each s in S. Here

hE(s), gE(s), iE(s) represents M − D, N − MD, and indeterminacy If a person says

0.5% is true, 0.7% not true and 0.2% is not sure here not sure part is only taken into

consideration in neutrosophic set.

Definition 2.3.9. Fermatean fuzzy set (FFS) [123]. When someone provides a pair

(rf (s), sf (s)) as the M −D and N −MD like (0.9, 0.6) then the condition of IFS and

PFS are not satisfied (0.9) + (0.6) > 1. (0.9)2 + (.6)2 > 1. However, it satisfies the

condition (0.9)3 + (.6)3 ≤ 1. So FFSs are here good to control it. Let S be the UOD

and F be the FFS defined as

F = {(S, rF (s), sF (s)); s ∈ S}, (2.20)

with condition 0 ≤ (rF (s))
3 + (sF (s))

3 ≤ 1. Also iF (s) =
3
√
1− (rF (s))3 − (sF (s))3 is

identified as degree indeterminacy.
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2.4 Properties of Intuitionistic Fuzzy Set Operators

Definition 2.4.1. Operators of IFSs [38, 45, 79, 94] For every two IFSs U and V .

The following operations and relations are defined. Let µU (s), µV (s) be the M −D and

νU (s), νV (s) be N −MD of FS U and V respectively.

Max Operator

U + V = {max(µU (s), µV (s)),min(νU (s), νV (s))}. (2.21)

U · V = {min(µU (s), µV (s)),max(νU (s), νV (s))}. (2.22)

Algebraic Operator

U ⊕ V = (µU (s) + µV (s)− µU (s) · µV (s), νU (s) · νV (s)). (2.23)

U ⊖ V = (µU (s) · µV (s), νU (s) + νV (s)− νU (s) · νV (s)). (2.24)

Einstein Operator

U ⊘ V =
(µU (s) + µV (s))

(1 + µU (s)µV (s))
,

(2νU (s)νV (s))

((2− νU (s))(2− νV (s)) + (νU (s)νV (s)))
. (2.25)

U × V =
(2µU (s)µV (s))

((2− µU (s))(2− µV (s)) + µU (s)µV (s))
,
(νU (s) + νV (s))

(1 + νU (s)νV (s))
. (2.26)

Proof of Theorems

Let U , V and W be three IFSs, µU (s), µV (s), µW (s) and νU (s), νV (s), νW (s) be the

M −D and N −MD respectively.

Theorem 2.4.1.

U ∪ (V ∩W ) = (U ∪ V ) ∩ (U ∪W ).

Proof.

Let U ∪ (V ∩W ) = {(µU (s), νU (s)) ∪ (min(µV (s), µW (s))},max(νV (s), νW (s)).

Let µU (s) < µV (s) < µW (s) and νU (s) < νV (s) < νW (s), then

µU (s), νU (s)) ∪ (µV (s), νW (s))

= max(µU (s), µV (s)),min(νU (s), νW (s)),

= (µV (s), νU (s)). (2.27)
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Now

(U ∪ V ) ∩ (U ∪W )

= {max(µU (s), µV (s)),min(νU (s), νV (s))} ∩ {max(µU (s), µW (s)),min(νU (s), νW (s))},

= (µV (s), νU (s)) ∩ (µW (s), νU (s)),

= {min(µV (s), µW (s)),max(νU (s), νU (s))},

= (µV (s), νU (s)). (2.28)

From equations (2.27) and (2.28) we proved IFSs are distributive in nature.

Theorem 2.4.2. “ U ∩ (V ∪W ) = (U ∩ V ) ∪ (U ∩W )

Proof. Similarly, we can prove the result as proved in theorem.2.4.1

Theorem 2.4.3. U ⊖ V ⊆ U ⊕ V .

Proof.

U ⊖ V = µU (s), µV (s), νU (s) + νV (s)− νU (s), νV (s),

U ⊕ V = (µU (s) + µV (s)− µU (s)µV (s), νU (s)νV (s)).

Assume that

µU (s)µV (s) ≤ µU (s) + µV (s)− µU (s)µV (s),

=⇒ µU (s)µV (s)− µU (s)− µV (s) + µU (s)µV (s) ≤ 0,

=⇒ µU (s) + µV (s)− µU (s)µV (s)− µU (s)µV (s) ≥ 0,

=⇒ µU (s)(1− µV (s)) + µV (s)(1− µU (s)) ≥ 0.

Which is true as 0 ≤ µU (s) ≤ 1 and 0 ≤ µV (s) ≤ 1.”

Similarly

νU (s)νV (s) ≤ νU (s) + νV (s)− νU (s)νV (s),

=⇒ νU (s) + νV (s)− νU (s)νV (s)− νU (s)νV (s) ≥ 0,

=⇒ νU (s)(1− νV (s)) + νV (s)(1− νU (s)) ≥ 0,

which is true as 0 ≤ νU (s) ≤ 1 and 0 ≤ νV (s) ≤ 1.

Hence

U ⊖ V ⊆ U ⊕ V.
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Theorem 2.4.4.

U ⊕ U ⊇ U.

Proof.

µU (s) + µU (s)− µU (s)µU (s), νU (s)νU (s),

=⇒ 2µU (s)− (µU (s))
2, (νU (s))

2,

=⇒ 2µU (s)− (µU (s))
2 = µU (s) + µU (s)(1− µU (s)) ≥ µU (s),

and (νU (s))
2 ≤ νU (s).

Hence

U ⊕ U ⊇ U.

Theorem 2.4.5.

U ⊖ U ⊆ U.

Proof. Similarly we can prove the result as proved in theorem 2.4.4.

Theorem 2.4.6.

((U)C)C = U.

Proof.

U = (µU (s), νU (s)),

UC = (νU (s), µU (s)),

((U)C)C = (µU (s), νU (s)).

Theorem 2.4.7.

(U ∪ V )c = (U c ∩ V c).

Proof.

(U ∪ V )c = {(max(µU (s), µV (s)),min(νU (s), νV (s))}C ,

= min(νU (s), νV (s)),max(µU (s), µV (s)). (2.29)

(U c ∩ V c) = (νU (s), µU (s)) ∩ (νV (s), µV (s)),

= min(νU (s), νV (s)),max(µU (s), µV (s)). (2.30)

Hence from (2.29) and (2.30) we proved the result.
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Theorem 2.4.8.

(U ∩ V )C = UC ∪ V C .

Proof. Similarly, We can prove the result by theorem 2.4.7

Theorem 2.4.9.

U ⊕ (V ∪W ) = (U ⊕ V ) ∪ (U ⊕W ).

Proof.

U ⊕ (V ∪W ) = (µU (s), νU (s))⊕ (µV (s), νV (s)) ∪ (µW (s), νW (s)),

= {(µU (s), νU (s))⊕ (max(µV (s), µW (s)),min(νV (s), νW (s)))}

= (µU (s), νU (s))⊕ (µW (s), νV (s)),

= µU (s) + µW (s)− µU (s)µW (s), νU (s)νV (s). (2.31)

Now

(U ⊕ V ) ∪ (U ⊕W )

=µU (s) + µV (s)− µU (s)µV (s), νU (s)νV (s)

µU (s) + µW (s)− µU (s)µW (s), νU (s)νW (s).
(2.32)

Assume that µU (s) < µV (s) < µW (s)andνU (s) < νV (s) < νW (s), then

max(µU (s) + µV (s)− µU (s)µV (s), µU (s) + µW (s)− µU (s)µW (s)),

min(νU (s)νV (s)), (νU (s)νW (s))
(2.33)

= µU (s) + µW (s)− µU (s)µW (s), νU (s)νV (s). (2.34)

From (2.31) and (2.34), we proved the result.

Theorem 2.4.10.

U ∪ (V ⊕W ) = (U ∪ V )⊕ (U ∪W ).

Proof. Similarly we can prove the result by theorem 2.4.9

Theorem 2.4.11.

U ⊘ (V ∪W ) = (U ⊘ V ) ∪ (U ⊘W ).

Proof.

U ⊘ (V ∪W ) = (µU (s), νU (s))⊘ (max(µV (s), µW (s)),min(νV (s), νW (s))).
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Assume that µU (s) < µV (s) < µW (s) and νU (s) < νV (s) < νW (s), then

(µU (s), νU (s))⊘ (µW (s), νV (s)),

=
(µU (s) + µW (s))

(1 + µU (s)µW (s))
,

(2νU (s)νV (s))

((2− νU (s))(2− νV (s)) + νU (s)νV (s))
. (2.35)

Now

(U ⊘V )∪ (U ⊘W ) = (µU (s), νU (s))⊘ (µV (s), νV (s))∪ (µU (s), νU (s))⊘ (µW (s), νW (s)),

={ (µU (s) + µV (s))

(1 + µU (s)µV (s))
,

(2νU (s)νV (s))

(2− νU (s))(2− νV (s)) + νU (s)νV (s))
}

∪ { (µU (s) + µW (s))

(1 + µU (s)µW (s))
,

(2νU (s)νW (s))

(2− νU (s))(2− νW (s)) + νU (s)νW (s))
},

=max{ ((µU (s) + µV (s))

(1 + µU (s)µV (s))
,
(µU (s) + µW (s))

(1 + µU (s)µW (s))
},

min{ (2νU (s)νV (s))

((2− νU (s))(2− νV (s)) + νU (s)νV (s))
,

(2νU (s)νW (s))

((2− νU (s))(2− νW (s)) + νU (s)νW (s)))
}.

Let µU (s) < µV (s) < µW (s) and νU (s) < νV (s) < νW (s), then

=
(µU (s) + µW (s))

(1 + µU (s)µW (s))
,

(2νU (s)νV (s))

((2− νU (s))(2− νV (s)) + νU (s)νV (s))
. (2.36)

From (2.35) and (2.36) result is proved

Theorem 2.4.12.

U ∪ (V ⊕W ) = (U ∪ V )⊕ (U ∪W ) (2.37)

Proof. Simillarly we can prove we can prove the above result by theorem 2.4.11.

2.5 Distance Measure Between IFSs

Due to the fact that dmr refers to the distinction between IFSs, it is conceivable to

consider it as a parallel concept to smr. Due to the wide range of real-world applications

they provide, such as pattern identification, machine learning, D − MG, and market

forecasting, distance measurements between IFS, a key notion in fuzzy mathematics,

are also attracting a lot of attention. Many distance measurements between IFSs have

been presented and researched in recent years. The following dmrs were put out by

Szmidt and Kacprzyk [134] between J and K
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■ Hamming Distance

dH(J,K) = 1/2
n∑

j=1

{|µJ(tj)− µK(tj)|+ |νJ(tj)− νK(tj)|+

|ϕJ(tj)− ϕK(tj)|.

(2.38)

■ Normalised Hamming Distance

dNH(J,K) = 1/2n
n∑

j=1

{|µJ(tj)− µK(tj)|+ |νJ(tj)− νK(tj)|+

|ϕJ(tj)− ϕK(tj)|.

(2.39)

■ Euclidean Distance

dE(J,K) = {1/2
n∑

j=1

|µJ(tj)− µK(tj)|2 + |νJ(tj)− νK(tj)|2+

|ϕJ(tj)− ϕK(tj)|2}1/2.

(2.40)

■ Normalized Euclidean Distance

dNE(J,K) = {1/2n
n∑

j=1

|µJ(tj)− µK(tj)|2 + |νJ(tj)− νK(tj)|2+

|ϕJ(tj)− ϕK(tj)|2}1/2.

(2.41)

These distance measurements undoubtedly meet the metric’s requirements, and the

normalised Euclidean distance has certain desirable geometric characteristics. Yet it

might not fit as well in practise. For instance consider three IFS J , K and L in the

equation {X = x1} , where J = (1, 0, 0), K = (0, 1, 0) and L = (0, 0, 1). If we interpret

using the ten-person deciding model, J = (1, 0, 0) represents ten people who are in

favour of a candidate; K = (0, 1, 0) denotes ten people who all are against him and L =

(0, 0, 1) represents ten people who all hesitate. So, it makes sense for us to assume that

J and L differ less from one another than J and K do. But, for the above-described

Euclidean distance, the distance between J and L is nearly identical to the distance

between J and K, which does not seem to make sense to us. As a result, we provide

a more broad definition of dmr between IFSs in this study based on the definition of

smr provided by Li and Cheng [37] and was proved more reasonable than Li and cheng.

2.5.1 New Distance Measure Between Intuitionistic Fuzzy Sets

For convenience, two IFSs J and K in S are denoted by J = {s, µJ(s), νJ(s)|s ∈ S} and

K = {s, µK(s), νK(s)|s ∈ S}, then we defined new distance for J and K by considering
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M − F and N −MF .

d1(J,K) =
1

n

n∑
i=1

|µJ(si)− µK(si)|+ |νJ(si)− νK(si)|
4

+

min(|µJ(si)− µK(si)|, |νJ(si)− νK(si)|)
2

.

(2.42)

Definition 2.5.1. A real function d : F I(s) × F I(s) → [0, 1] is said to be a dmr, if d

meets the following axioms:

(A1) 0 ≤ d(J,K) ≤ 1, ∀(J,K) ∈ F I(s),

(A2) d(J,K) = 0, if J = K,

(A3) d(J,K) = d(K,J),

(A4) If E ⊆ K ⊆ L, where J,K,L ∈ F I(s), then d(J, L) ≥ d(J,K) and

d(J, L) ≥ d(K,L).

Now, we will prove the above defined measure is a valid dmr for IFS.

(A1) = 0 ≤ d1(J,K) ≤ 1.

Let J and K be two IFS then, we have |µJ(si)− µK(si)| ≥ 0,

|νJ(si)− νK(si)| ≥ 0,

d2(J,K) ≥ 0.

Then we have |µJ(si)− µK(si)| ≤ 1,

|νJ(si)− νK(si)| ≤ 1,

=⇒ d1(J,K) ≤ 1,

hence

0 ≤ d1(J,K) ≤ 1.

A2 holds trivialy, now we will prove for A3 and A4.

(A3) =⇒ d1(J,K) = d1(K,J).

We have

d1(J,K) =
1

n

n∑
i=1

|µJ(si)− µK(si)|+ |νJ(si)− νK(si)|
4

+

min|µJ(si)− µK(si)|, |νJ(si)− νK(si)|
2

,

(2.43)
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=
1

n

n∑
i=1

|µK(si)− µJ(si)|+ |νK(si)− νJ(si)|
4

+

min|µK(si)− µJ(si)|, |νK(si)− νJ(si)|
2

,

(2.44)

= d1(K,J),

=⇒ d1(J,K) = d1(K,J).

Now to prove (A4)

d1(J, L) ≥ d1(J,K), (2.45)

it can be easily seen that |µJ(si) − µL(si)| ≥ |µJ(si) − µK(si)| and |νJ(si) − νL(si)| ≥
|νJ(si)− νK(si)| so, we have

d1(J, L) =
1

n

n∑
i=1

|µJ(si)− µL(si)|+ |νJ(si)− νL(si)|
4

+

min|µJ(si)− µL(si)|, |νJ(si)− νL(si)|
2

(2.46)

≥ 1

n

n∑
i=1

|µJ(si)− µK(si)|+ |νJ(si)− νK(si)|
4

+

min|µJ(si)− µK(ti)|, |νJ(si)− νK(si)|
2

= d1(J,K)

(2.47)

then we get inequality d1(J, L) ≥ d1(J,K). Similarly, we can prove d1(J, L) ≥ d1(K,L).

Hence satisfies condition (A4), so we proved this is a valid distance measure for IFSs.

2.5.2 Advantages of New Distance Measure

As new distance measure is based on inclusion principle rather than triangle inequality.

The inclusion principle and the triangle inequality are both concepts related to distance

measures, but they serve different purposes and are applied in different contexts. Let’s

discuss the advantages of using the inclusion principle in the context of distance measures

for fuzzy sets.

Reflects Set Inclusion:

The inclusion principle is particularly suitable for fuzzy sets as it directly reflects the

concept of set inclusion. In fuzzy sets, elements can have varying degrees of membership,

and the inclusion principle accounts for this variability.

Considers Degrees of Membership:
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Fuzzy sets allow for the representation of degrees of membership, indicating the ex-

tent to which an element belongs to a set. The inclusion principle naturally incorporates

these degrees, making it more aligned with the nature of fuzzy sets.

Applicability in Fuzzy Logic:

Fuzzy logic is based on the idea of degrees of truth and degrees of membership. The

inclusion principle is more consistent with fuzzy logic principles, making it a preferred

choice for measuring distances in fuzzy sets.

Flexibility in Representation:

Fuzzy sets offer a flexible way to represent uncertainty and vagueness. The inclusion

principle allows for a more nuanced representation of this uncertainty by considering the

partial membership of elements in sets.

Conformance to Fuzzy Set Operations:

The inclusion principle aligns well with fuzzy set operations such as union and

intersection. This makes it easier to integrate distance measures into broader fuzzy

set-based algorithms and computations.

2.5.3 Numerical Example for Pattern Recognition

Example 2.5.1. Let’s consider a pattern recognition problem regarding the classifica-

tion of industrial materials. Every material is represented by intuitionistic fuzzy sets

I1, I2, I3, I4, I5 in the feature space T = {t1, t2, ..., t6}(see table 1). We have one unknown

industrial material M. Our purpose is to clarify to which class this unknown material

belongs. From the data given in table 2.5.1 we have following results for d1(P,Q).
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Table 2.5.1

t1 t2 t3 t4 t5 t5

µI1(t) 0.739 0.033 0.188 0.492 .020 0.739

νI1(t) 0.125 0.818 0.626 0.358 0.628 0.125

µI2(t) 0.124 0.030 0.048 0.136 0.019 0.393

νI2(t) 0.665 0.825 0.800 0.648 0.823 0.653

µI3(t) 0.449 0.662 1.000 1.000 1.000 1.000

νI3(t) 0.387 0.298 0.000 0.000 0.000 0.000

µI4(t) 0.280 0.521 0.470 0.295 0.188 0.735

νI4(t) 0.715 0.368 0.423 0.658 0.806 0.118

µI5(t) 0.326 1.000 0.182 0.156 0.049 0.675

νI5(t) 0.452 0.000 0.725 0.765 0.896 0.263

µM (t) 0.629 0.524 0.210 0.218 0.069 0.658

νM (t) 0.303 0.356 0.689 0.753 0.876 0.256

d1(I1,M) = 0.199, d1(I2,M) = 0.238, d1(I3,M) = 0.470, d1(I4,M) = 0.147,

d1(I5,M) = 0.109. It is clear that the material M belongs to I5 because it has least

difference from M . Naturally, this conclusion agrees with Liang and Shi’s findings.[134]

But our approach is far better as it contains inclusion relation which is failed for many

existing measures.



Chapter 3

Type-2 Fermatean Fuzzy Sets: A

Novel Approach for Enhancing

Group Decision-Making

The objective of this chapter is to study type-2 fermatean fuzzy sets in decision making.

Even with Type-2 fuzzy sets, decision-making can still be difficult, especially in group

decision-making scenarios. To address this issue, a novel approach based on Type-2

Fermatean fuzzy sets has been proposed, along with a set of distance measures based

on Hamming and Euclidean metrics. This approach was evaluated in a group decision-

making process using a numerical example, demonstrating its effectiveness in improving

decision outcomes. This study offers a promising new perspective on decision-making

that can lead to better outcomes and improved satisfaction among decision-makers.

The following sections make up the remaining text: Section 3.1 gives the introductry

part. The core descriptions of T2FS and T2FFS are covered in Section 3.2, along with

distance measurements. New normalised and weighted normalised distance measures

are suggested in Section 3.3. We developed a ranking method based on these metrics

for group decision-making problems in Section 3.4 and supported it with numerical

examples.

3.1 Introduction

Most mathematics issues in everyday life lack accurate or comprehensive information,

which can make it challenging for D − MRs to handle them without thoroughly ex-

amining the problem. Zadeh’s [159] theory of FSs, along with its relevant extensions,

45
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has been utilized to manage imperfect information. Examples of extensions to the the-

ory of FSs include IFS [4], T2FS [99], among others. Many literary sources include

The D −MG issue has been examined by researchers [54, 88, 89] in both FS and IFS

environments. Xu [149] and Xu and Yager [148] introduced techniques for merging in-

formation from multiple IFSs using geometric and arithmetic aggregation operations.

The IV IFS information was aggregated using several averaging and geometric aggre-

gation techniques devised by Xu and Chen [150] and Xu [151]. Yager [153] proposed the

PFS as a development of the IFS with the limitation that the square sum of its M −D

and N −MD be less than or equal to 1. Although the FSs and or IFS environments

have been used to explore the aforementioned work, they have certain limitations. For

instance, in some situations, it can be challenging for the D−M to pinpoint the precise

M − F of a FS that corresponds to an element. An extension of FS known as T2FSs

has been employed as a solution, which consists of three components: P −MF , S−MF ,

and FOU . This approach has been implemented to overcome the issue. However, be-

cause the T2FS is so sophisticated, it is challenging for D − MR to use it in actual

circumstances. An interval type-2 fuzzy sets (IT2FS) [101] with M −D ranging from

zero to one has been taken into consideration for this. Several articles have utilized the

IT2FS theory in addressing D − MG challenges through different techniques such as

linguistic weighted average [146], as well as ranking and arithmetic operations as dis-

cussed in [26]. Some t-conorm-based dmrs and knowledge measures for PFSs with their

application in D − MG was given by Ganai. A. H.[51]. A MC − DM based on dmr

and knowledge measures of FFSs given by Ganie. A. H. [50]. A Generalized hesitant

fuzzy knowledge measure with its application to MC −DM is given by Singh, S. and

Ganie, A. H. [128]. “Almulhim, T. and Barahona, I. [1] gave an extended picture fuzzy

MC −DM , provided a case study on COVID-19 vaccine allocation”.

3.1.1 Motivation and Advantages

In the realm of fuzzy logic, Type-2 Fermatean fuzzy sets (T2FFSs) emerge as a beacon of

innovation and resilience. As we navigate the complexities of real-world uncertainties,

the conventional Type-1 fuzzy sets often fall short in capturing the nuanced and dy-

namic nature of imprecise information. Enter T2FFSs, a paradigm that transcends the

limitations of its predecessors. T2FFSs provide a sophisticated framework for modeling

uncertainty, allowing us to delve deeper into the intricacies of imprecision and vagueness.

By incorporating higher-order uncertainty, these fuzzy sets empower decision-makers to

confront ambiguity with a more refined and robust tool.

In various applications such as decision-making, control systems, and artificial in-

telligence, where uncertainties are inherent, T2FFSs serve as a promising avenue for
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enhancing the precision and reliability of systems. This novel approach enables us to

not only acknowledge uncertainty but to embrace it, transforming it into a valuable asset

for informed decision-making. The motivation behind delving into Type-2 Fermatean

fuzzy sets lies in the recognition that the real world is inherently uncertain, and our

ability to navigate this uncertainty defines the success of our models and systems. By

embracing the richness and depth offered by T2FFSs, we embark on a journey to elevate

the field of fuzzy logic, pushing the boundaries of what is possible in the representation

and manipulation of uncertain information.

In embracing the paradigm of Type-2 Fermatean Fuzzy Sets, we embark on a quest

for precision in uncertainty, a journey that extends beyond the conventional boundaries

of fuzzy set theory. It is a call to researchers, a beckoning to explore the uncharted

territories of dynamic uncertainty modeling, and a promise of enhanced accuracy in the

ever-changing landscape of real-world applications. As we delve into this frontier, we

unlock new possibilities for advancing the state-of-the-art in fuzzy set theory, where

the interplay of Fermatean principles and Type-2 Fuzzy Sets paves the way for a more

nuanced and adaptive understanding of uncertainty.

The use of T2FFS in this study is a significant contribution to the field of FS

theory. By incorporating the concept of N −MD or rejection degree, T2FFS enables

D−MRs to consider not only the acceptance degree but also the rejection of an object.

This provides a more complete picture of the D − MG process in real-life situations.

Furthermore, the use of T2FFS is particularly important because it has not been widely

explored in previous research. This means that the findings from this study could pave

the way for further investigations into the applications of T2FFS in other areas of

D −MG.

In this research, the concept of T2FFS is presented, which is capable of effectively

handling uncertain and imprecise information in various practical scenarios. Addition-

ally, the study proposes a new dmr to complement the T2FFS approach. This is nec-

essary because T2FFS has significant capabilities in modeling and dealing with vague

or ambiguous information. A number of distance measurements based on Hamming,

Euclidean, and maximum metrics have been suggested as a result. The proposed mea-

sures and various desired features have all been carefully examined. Lastly, a ranking

technique has been suggested for ordering the T2FFS based on these metrics.
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3.2 Basic Concepts

3.2.1 Type-2 Fermatean Fuzzy Set (T2FFS)

Definition 3.2.1. A T2FFS Z in the UOD T is a set of pairs {t, µZ(t), νZ(t)} where t

is the element of T2FFS, µZ(t) and νZ(t) are M −G and N −MG respectively defined

in [0,1] as

µZ(t) =

∫
t∈j1t

(gt(u)/u), νZ(t) =

∫
t∈j2t

(ht(v)/v), (3.1)

where gt(u) and ht(v) are termed as S −MF and S − NMF respectively and jt1 and

jt2 are said to be P −MF and P −NMF of t respectively, where

0 ≤ (uZ(t))
3 + (vZ(t))

3 ≤ 1 and 0 ≤ (gt(uZ))
3 + (ht(vZ))

3 ≤ 1. (3.2)

T2FFS is also defined in UOD T as

{
((t, uZ , vZ), gt(uZ), ht(vZ))| t ∈ T, uZ ∈ jt1 and vZ ∈ jt2

}
, (3.3)

where (t, uZ , vZ)are called as P −MF and P − NMF of t ∈ T and gt(uZ), ht(vZ) are

termed as S−MF and S−NF respectively. We denote this pair as (t, uZ , gt(uZ), vZ , ht(vZ))

are said to be type 2 fermatean fuzzy number (T2FFN).

Definition 3.2.2. Variance margin function (V − MF ) of T2FFS is defined as the

difference between P −MF and S −MF , P −NMF and S −NMF . It is denoted by

ϕ and ω respectively.

3.3 Distance Measure Between T2FFS

Here we introduce Hamming and Euclidean distances between T2FFNs. Suppose F f
2 (t)

class of T2FFSs over the universal set T.

Definition 3.3.1. “ A real function d : F f
2 (t) × F f

2 (t) → [0, 1] is said to be dmr when

following axioms are being satisfied.

(p1) 0 ≤ d(Z1, Z2) ≤ 1,∀(Z1, Z2) ∈ F f
2 (t), (3.4)

(p2) d(Z1, Z2) = 0, IF Z1 = Z2, (3.5)

(p3) d(Z1, Z2) = d(Z2, Z1), (3.6)

(p4) d(Z1, Z2) = 0, d(Z1, Z3) = 0, Z3 ∈ F f
2 (t) then d(Z2, Z3) = 0. (3.7)
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” For simplicity, let Z1 and Z2 are two T2FFSs in T denoted by

Z1 = {t(u, gtj(uz1), (v, htj(vz1))|t ∈ T} and Z2 = {t(u, gtj(uz2), (v, htj(vz2))|t ∈ T}.
(3.8)

Then, we define different distances for Z1 and Z2 taking into account P −MF , S−MF ,

P −NMF , S −NMF , FOU and VMF .

■ Hamming Distance

dH(Z1, Z2) =
1

4

n∑
j=1

{|(uZ1((tj))
3 − (uZ2(tj))

3|+ |(gtj(uZ1))
3 − (gtj(uZ2))

3|

+ |(ϕZ1(tj))
3 − (ϕZ2(tj))

3|+ |(vZ1(tj))
3 − (vZ2(tj))

3|+ |(htj(vZ1))
3

− (htj(vZ2))
3|+ |(ωZ1(tj))

3 − (ωZ2(tj))
3|}.

(3.9)

■ Normalized Hamming Distance

dNH(Z1, Z2) =
1

4n

n∑
j=1

{|(uZ1((tj))
3 − (uZ2(tj))

3|+ |(gtj(uZ1))
3 − (gtj(uZ2))

3|

+ |(ϕZ1(tj))
3 − (ϕZ2(tj))

3|+ |(vZ1(tj))
3 − (vZ2(tj))

3|+ |(htj(vZ1))
3

− (htj(vZ2))
3|+ |(ωZ1(tj))

3 − (ωZ2(tj))
3|}.

(3.10)

■ Euclidean Distance

dE(Z1, Z2) =
{1
4

n∑
j=1

|(uZ1((tj))
3 − (uZ2(tj))

3|2 + |(gtj(uZ1))
3 − (gtj(uZ2))

3|2

+ |(ϕZ1(tj))
3 − (ϕZ2(tj))

3|2 + |(vZ1(tj))
3 − (vZ2(tj))

3|2 + |(htj(vZ1))
3

− (htj(vZ2))
3|2 + |(ωZ1(tj))

3 − (ωZ2(tj))
3|2
}1/2

.

(3.11)

■ Normalized Euclidean Distance

dNE(Z1, Z2) =
{ 1

4n

n∑
j=1

|(uZ1((tj))
3 − (uZ2(tj))

3|2 + |(gtj(uZ1))
3 − (gtj(uZ2))

3|2

+ |(ϕZ1(tj))
3 − (ϕZ2(tj))

3|2 + |(vZ1(tj))
3 − (vZ2(tj))

3|2 + |(htj(vZ1))
3

− (htj(vZ2))
3|2 + |(ωZ1(tj))

3 − (ωZ2(tj))
3|2
}1/2

.

(3.12)
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We are going to obtain following properties on the basis of above defined distances: First

we prove the above defined distances are valid for T2FFSs.

Proposition 3.3.1. The above defined distances dS(Z1, Z2) for S = NH,NE between

T2FFSs Z1 and Z2 satisfies following properties (P1, P2, P3 and P4).

(p1) 0 ≤ dS(Z1, Z2) ≤ 1,∀(Z1, Z2) ∈ F f
2 (t), (3.13)

(p2) dS(Z1, Z2) = 0, IF Z1 = Z2, (3.14)

(p3) dS(Z1, Z2) = dS(Z2, Z1), (3.15)

(p4) dS(Z1, Z2) = 0, dS(Z1, Z3) = 0, Z3 ∈ F f
2 (t) then dS(Z2, Z3) = 0. (3.16)

Proof. For L = 1, 2 we have

(P1) Because Z1 and Z2 are T2FFSs, we have

|(uz1)(tj))3 − (uZ2)(tj))
3|L ≥ 0, |(gtj(uz1))3 − (gtj(uZ2))

3|L ≥ 0

|(ϕz1(tj))
3 − (ϕz2(tj))

3|L ≥ 0, |(vz1)(tj))3 − (vZ2)(tj))
3|L ≥ 0

|(htj(vz1))3 − (htj(vZ2))
3|L ≥ 0, |(ωz1(tj))

3 − (ωz2(tj))
3|L ≥ 0,

(3.17)

then we can say

{|((uz1)(tj))3 − (uZ2)(tj))
3|L + |(gtj(uz1))3 − (gtj(uZ2))

3|L+

|(ϕz1(tj))
3 − (ϕz2(tj))

3|L + |(vz1)(tj))3 − (vZ2)(tj))
3|L+

|(htj(vz1))3 − (htj(vZ2))
3|L + |(ωz1(tj))

3 − (ωz2(tj))
3|L} ≥ 0.

(3.18)

Which implies dS(Z1, Z2) ≥ 0, also

|(uz1)(tj))3 − (uZ2)(tj))
3|L ≤ 1, |(gtj(uz1))3 − (gtj(uZ2))

3|L ≤ 1

|(ϕz1(tj))
3 − (ϕz2(tj))

3|L ≤ 1, |(vz1)(tj))3 − (vZ2)(tj))
3|L ≤ 1

|(htj(vz1))3 − (htj(vZ2))
3|L ≤ 1, |(ωz1(tj))

3 − (ωz2(tj))
3|L ≤ 1,

(3.19)

therefore

n∑
j=1

{|((uz1)(tj))3 − (uZ2)(tj))
3|2 + |(gtj(uz1))3 − (gtj(uZ2))

3|2+

|(ϕz1(tj))
3 − (ϕz2(tj))

3|2 + |(vz1)(tj))3 − (vZ2)(tj))
3|2+

|(htj(vz1))3 − (htj(vZ2))
3|2 + |(ωz1(tj))

3 − (ωz2(tj))
3|2} ≤ 4,

(3.20)
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which means dS(Z1, Z2) ≤ 1, therefore 0 ≤ dS(Z1, Z2) ≤ 1.

(P2) Let dS(Z1, Z2) = 0, which implies

{|((uz1)(tj))3 − (uZ2)(tj))
3|L + |(gtj(uz1))3 − (gtj(uZ2))

3|L+

|(ϕz1(tj))
3 − (ϕz2(tj))

3|L + |(vz1)(tj))3 − (vZ2)(tj))
3|L+

|(htj(vz1))3 − (htj(vZ2))
3|L + |(ωz1(tj))

3 − (ωz2(tj))
3|L} = 0,

(3.21)

=⇒

((uz1)(tj))
3 = (uZ2)(tj))

3, (gtj(uz1))
3 = (gtj(uZ2))

3

(ϕz1(tj))
3 = (ϕz2(tj))

3, (vz1)(tj))
3 = (vZ2)(tj))

3

(htj(vz1))
3 = (htj(vZ2))

3, (ωz1(tj))
3 = (ωz2(tj))

3,

(3.22)

therefore Z1 = Z2.

(P3) dS(Z1, Z2) =
1

4n

n∑
j=1

{|(uZ1((tj))
3 − (uZ2(tj))

3|L + |(gtj(uZ1))
3 − (gtj(uZ2))

3|L

+ |(ϕZ1(tj))
3 − (ϕZ2(tj))

3|L + |(vZ1(tj))
3 − (vZ2(tj))

3|L+

|(htj(vZ1))
3 − (htj(vZ2))

3|L + |(ωZ1(tj))
3 − (ωZ2(tj))

3|L}

=
1

4n

n∑
j=1

{|(uZ2((tj))
3 − (uZ1(tj))

3|L + |(gtj(uZ2))
3 − (gtj(uZ1))

3|L

+ |(ϕZ2(tj))
3 − (ϕZ1(tj))

3|L + |(vZ2(tj))
3 − (vZ1(tj))

3|L+

|(htj(vZ2))
3 − (htj(vZ1))

3|L + |(ωZ2(tj))
3 − (ωZ1(tj))

3|L}.
(3.23)

= dS(Z2, Z1). (3.24)

(P4) dS(Z1, Z2) = 0, which implies

((uz1)(tj))
3 = (uZ2)(tj))

3, (gtj(uz1))
3 = (gtj(uZ2))

3

(ϕz1(tj))
3 = (ϕz2(tj))

3, (vz1)(tj))
3 = (vZ2)(tj))

3

(htj(vz1))
3 = (htj(vZ2))

3, (ωz1(tj))
3 = (ωz2(tj))

3,

(3.25)

and dS(Z1, Z3) = 0, implies that

((uz1)(tj))
3 = (uZ3)(tj))

3, (gtj(uz1))
3 = (gtj(uZ3))

3

(ϕz1(tj))
3 = (ϕz3(tj))

3, (vz1)(tj))
3 = (vZ3)(tj))

3

(htj(vz1))
3 = (htj(vZ3))

3, (ωz1(tj))
3 = (ωz3(tj))

3,

(3.26)
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therefore

((uz2)(tj))
3 = (uZ3)(tj))

3, (gtj(uz2))
3 = (gtj(uZ3))

3

(ϕz2(tj))
3 = (ϕz3(tj))

3, (vz2)(tj))
3 = (vZ3)(tj))

3

(htj(vz2))
3 = (htj(vZ3))

3, (ωz2(tj))
3 = (ωz3(tj))

3,

(3.27)

implies dS(Z2, Z3) = 0. Therefore dS(Z1, Z2) for (S = NH,NE) are valid distance

measure for T2FFSs.

Proposition 3.3.2. dH and dE dmr satisfies following properties

(a) (0 ≤ dH ≤ n).

Proof. we know

dH(Z1, Z2) =
1

4

n∑
j=1

{|(uZ1((tj))
3 − (uZ2(tj))

3|+ |(gtj(uZ1))
3 − (gtj(uZ2))

3|

+ |(ϕZ1(tj))
3 − (ϕZ2(tj))

3|+ |(vZ1(tj))
3 − (vZ2(tj))

3|+ |(htj(vZ1))
3

− (htj(vZ2))
3|+ |(ωZ1(tj))

3 − (ωZ2(tj))
3|},

(3.28)

and

dNH(Z1, Z2) =
1

4n

n∑
j=1

{|(uZ1((tj))
3 − (uZ2(tj))

3|+ |(gtj(uZ1))
3 − (gtj(uZ2))

3|

+ |(ϕZ1(tj))
3 − (ϕZ2(tj))

3|+ |(vZ1(tj))
3 − (vZ2(tj))

3|+ |(htj(vZ1))
3

− (htj(vZ2))
3|+ |(ωZ1(tj))

3 − (ωZ2(tj))
3|}.

(3.29)

Which implies dH(Z1, Z2) = ndNH(Z1, Z2) thus, we can say 0 ≤ dH ≤ n.

(b) 0 ≤ dE ≤ n1/2.

Proof.

dE(Z1, Z2) =
{1
4

n∑
j=1

|(uZ1((tj))
3 − (uZ2(tj))

3|2 + |(gtj(uZ1))
3 − (gtj(uZ2))

3|2

+ |(ϕZ1(tj))
3 − (ϕZ2(tj))

3|2 + |(vZ1(tj))
3 − (vZ2(tj))

3|2 + |(htj(vZ1))
3

− (htj(vZ2))
3|2 + |(ωZ1(tj))

3 − (ωZ2(tj))
3|2
}1/2 ≤ dH(Z1, Z2) ≤ n1/2,

(3.30)

which implies 0 ≤ dE ≤ n1/2.
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We have different practical situations where we take different weights to different sets

hence wj(j = 1, 2, 3. . . n) with wj ≥ 0,
∑n

j=1wj = 1 of element tj ∈ T to be taken

into account. Here we proposed normalised weighted Hamming distance and normalised

weighted Euclidean distances between T2FFSs.

■ Normalized Weighted Hamming Distance

dNWH(Z1, Z2) =
1

4n

n∑
j=1

Wj{|(uZ1((tj))
3 − (uZ2(tj))

3|+ |(gtj(uZ1))
3

− (gtj(uZ2))
3|+ |(ϕZ1(tj))

3 − (ϕZ2(tj))
3|

+ |(vZ1(tj))
3 − (vZ2(tj))

3|+ |(htj(vZ1))
3

− (htj(vZ2))
3|+ |(ωZ1(tj))

3 − (ωZ2(tj))
3|}.

(3.31)

■ Normalized Weighted Euclidean Distance

dNWE(Z1, Z2) =
{ 1

4n

n∑
j=1

Wj |(uZ1((tj))
3 − (uZ2(tj))

3|2 + |(gtj(uZ1))
3

− (gtj(uZ2))
3|2 + |(ϕZ1(tj))

3 − (ϕZ2(tj))
3|2

+ |(vZ1(tj))
3 − (vZ2(tj))

3|2 + |(htj(vZ1))
3

− (htj(vZ2))
3|2 + |(ωZ1(tj))

3 − (ωZ2(tj))
3|2
}1/2

.

(3.32)

Proposition 3.3.3. Let the weight vector of element tj ∈ T be wj then weighted distance

dS(Z1, Z2), (S = NWH,NWE) satisfies properties of (P1,P2,P3 and P4) As wj ∈ [0, 1]

and
∑n

j=1wj = 1 then we can obtain 0 ≤ dNWH(Z1, Z2) ≤ dNH(Z1, Z2). Hence satisfies

(P1) and explanation for (P2,P3 and P4) are similar to preposition 3.1, hence same for

dNWE.

Proposition 3.3.4. Relation between dNH and dNWH as dNWH ≤ dNH .
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Proof. Let Z1 and Z2 are T2FFSs also wj ≥ 0,
∑n

j=1wj = 1, so

dNWH(Z1, Z2) =
1

4n

n∑
j=1

Wj{|(uZ1((tj))
3 − (uZ2(tj))

3|+ |(gtj(uZ1))
3 − (gtj(uZ2))

3|

+ |(ϕZ1(tj))
3 − (ϕZ2(tj))

3|+ |(vZ1(tj))
3 − (vZ2(tj))

3|+ |(htj(vZ1))
3

− (htj(vZ2))
3|+ |(ωZ1(tj))

3 − (ωZ2(tj))
3|}

=
1

4
{[W1{|(uZ1((t1))

3 − (uZ2(t1))
3|+ |(gt1(uZ1))

3 − (gt1(uZ2))
3|

+ |(ϕZ1(t1))
3 − (ϕZ2(t1))

3|+ |(vZ1(t1))
3 − (vZ2(t1))

3|+ |(ht1(vZ1))
3

− (ht1(vZ2))
3|+ |(ωZ1(t1))

3 − (ωZ2(t1))
3|] + [W2{|(uZ1((t2))

3

− (uZ2(t2))
3|+ |(gt2(uZ1))

3 − (gt2(uZ2))
3|+ |(ϕZ1(t2))

3 − (ϕZ2(t2))
3|

+ |(vZ1(t2))
3 − (vZ2(t2))

3|+ |(ht2(vZ1))
3 − (ht2(vZ2))

3|+ |(ωZ1(t2))
3

− (ωZ2(t2))
3|] + ...[Wn{|(uZ1((tn))

3 − (uZ2(tn))
3|+ |(gtn(uZ1))

3

− (gtn(uZ2))
3|+ |(ϕZ1(tn))

3 − (ϕZ2(tn))
3|+ |(vZ1(tn))

3 − (vZ2(tn))
3|

+ |(htn(vZ1))
3 − (htn(vZ2))

3|+ |(ωZ1(tn))
3 − (ωZ2(tn))

3|]},

as wj ∈ [0, 1], thus

(3.33)

dNWH(Z1, Z2) ≤
1

4n
{[|(uZ1((t1))

3 − (uZ2(t1))
3|+ |(gt1(uZ1))

3 − (gt1(uZ2))
3|+ |(ϕZ1(t1))

3

− (ϕZ2(t1))
3|+ |(vZ1(t1))

3 − (vZ2(t1))
3|+ |(ht1(vZ1))

3 − (ht1(vZ2))
3|

+ |(ωZ1(t1))
3 − (ωZ2(t1))

3|] + [|(uZ1((t2))
3 − (uZ2(t2))

3|+ |(gt2(uZ1))
3

− (gt2(uZ2))
3|+ |(ϕZ1(t2))

3 − (ϕZ2(t2))
3|+ |(vZ1(t2))

3 − (vZ2(t2))
3|

+ |(ht2(vZ1))
3 − (ht2(vZ2))

3|+ |(ωZ1(t2))
3 − (ωZ2(t2))

3|] + ...[|(uZ1((tn))
3

− (uZ2(tn))
3|+ |(gtn(uZ1))

3 − (gtn(uZ2))
3|+ |(ϕZ1(tn))

3 − (ϕZ2(tn))
3|

+ |(vZ1(tn))
3 − (vZ2(tn))

3|+ |(htn(vZ1))
3 − (htn(vZ2))

3|+ |(ωZ1(tn))
3

− (ωZ2(tn))
3|]} ≤ { 1

4n

n∑
j=1

{|(uZ1((tj))
3 − (uZ2(tj))

3|+ |(gtj(uZ1))
3

− (gtj(uZ2))
3|+ |(ϕZ1(tj))

3 − (ϕZ2(tj))
3|+ |(vZ1(tj))

3 − (vZ2(tj))
3|

+ |(htj(vZ1))
3 − (htj(vZ2))

3|+ |(ωZ1(tj))
3 − (ωZ2(tj))

3|} = dNH(Z1, Z2).

(3.34)

But Z1and Z2 are arbitrary T2FFSs hence proves dNWH ≤ dNH .

Proposition 3.3.5. Relation between dNE and dNWE as dNWE ≤ dNE.
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Proof. Let Z1 and Z2 are T2FFSs also Wj ≥ 0,
∑n

j=1Wj = 1, so

dNWE(Z1, Z2) ={ 1

4n

n∑
j=1

Wj |(uZ1((tj))
3 − (uZ2(tj))

3|2 + |(gtj(uZ1))
3 − (gtj(uZ2))

3|2

+ |(ϕZ1(tj))
3 − (ϕZ2(tj))

3|2 + |(vZ1(tj))
3 − (vZ2(tj))

3|2 + |(htj(vZ1))
3

− (htj(vZ2))
3|2 + |(ωZ1(tj))

3 − (ωZ2(tj))
3|2}1/2

=
1

4
{W1|(uZ1((t1))

3 − (uZ2(t1))
3|2 + |(gt1(uZ1))

3 − (gt1(uZ2))
3|2

+ |(ϕZ1(t1))
3 − (ϕZ2(t1))

3|2 + |(vZ1(t1))
3 − (vZ2(t1))

3|2 + |(ht1(vZ1))
3

− (ht1(vZ2))
3|2 + |(ωZ1(t1))

3 − (ωZ2(t1))
3|2}1/2 +W2|(uZ1((t2))

3

− (uZ2(t2))
3|2 + |(gt2(uZ1))

3 − (gt2(uZ2))
3|2 + |(ϕZ1(t2))

3 − (ϕZ2(t2))
3|2

+ |(vZ1(t2))
3 − (vZ2(t2))

3|2 + |(ht2(vZ1))
3 − (ht2(vZ2))

3|2 + |(ωZ1(t2))
3

− (ωZ2(t2))
3|2}1/2 + ...Wn|(uZ1((tn))

3 − (uZ2(tn))
3|2 + |(gtn(uZ1))

3

− (gtn(uZ2))
3|2 + |(ϕZ1(tn))

3 − (ϕZ2(tn))
3|2 + |(vZ1(tn))

3 − (vZ2(tn))
3|2

+ |(htn(vZ1))
3 − (htn(vZ2))

3|2 + |(ωZ1(tn))
3 − (ωZ2(tn))

3|2}1/2,
(3.35)

as wj ∈ [0, 1], thus

dNWE(Z1, Z2) ≤
1

4
{|(uZ1((t1))

3 − (uZ2(t1))
3|2 + |(gt1(uZ1))

3 − (gt1(uZ2))
3|2 + |(ϕZ1(t1))

3

− (ϕZ2(t1))
3|2 + |(vZ1(t1))

3 − (vZ2(t1))
3|2 + |(ht1(vZ1))

3 − (ht1(vZ2))
3|2

+ |(ωZ1(t1))
3 − (ωZ2(t1))

3|2}1/2 + |(uZ1((t2))
3 − (uZ2(t2))

3|2 + |(gt2(uZ1))
3

− (gt2(uZ2))
3|2 + |(ϕZ1(t2))

3 − (ϕZ2(t2))
3|2 + |(vZ1(t2))

3 − (vZ2(t2))
3|2

+ |(ht2(vZ1))
3 − (ht2(vZ2))

3|2 + |(ωZ1(t2))
3 − (ωZ2(t2))

3|2}1/2 + ...

|(uZ1((tn))
3 − (uZ2(tn))

3|2 + |(gtn(uZ1))
3 − (gtn(uZ2))

3|2 + |(ϕZ1(tn))
3

− (ϕZ2(tn))
3|2 + |(vZ1(tn))

3 − (vZ2(tn))
3|2 + |(htn(vZ1))

3 − (htn(vZ2))
3|2

+ |(ωZ1(tn))
3 − (ωZ2(tn))

3|2}1/2}.

≤
{ 1

4n

n∑
j=1

|(uZ1((tj))
3 − (uZ2(tj))

3|2 + |(gtj(uZ1))
3 − (gtj(uZ2))

3|2

+ |(ϕZ1(tj))
3 − (ϕZ2(tj))

3|2 + |(vZ1(tj))
3 − (vZ2(tj))

3|2 + |(htj(vZ1))
3

− (htj(vZ2))
3|2 + |(ωZ1(tj))

3 − (ωZ2(tj))
3|2
}1/2

= dNE(Z1, Z2).

(3.36)

Because Z1 and Z2 are arbitrary T2FFSs, hence dNWE ≤ dNE .

Proposition 3.3.6. Relation between dNH and dNWE as dNWE ≤
√
dNH .
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Proof.

dNWE(Z1, Z2) ={ 1

4n

n∑
j=1

Wj |(uZ1((tj))
3 − (uZ2(tj))

3|2 + |(gtj(uZ1))
3 − (gtj(uZ2))

3|2

+ |(ϕZ1(tj))
3 − (ϕZ2(tj))

3|2 + |(vZ1(tj))
3 − (vZ2(tj))

3|2 + |(htj(vZ1))
3

− (htj(vZ2))
3|2 + |(ωZ1(tj))

3 − (ωZ2(tj))
3|2}1/2.

≤ { 1

4n

n∑
j=1

|(uZ1((tj))
3 − (uZ2(tj))

3|2 + |(gtj(uZ1))
3 − (gtj(uZ2))

3|2

+ |(ϕZ1(tj))
3 − (ϕZ2(tj))

3|2 + |(vZ1(tj))
3 − (vZ2(tj))

3|2 + |(htj(vZ1))
3

− (htj(vZ2))
3|2 + |(ωZ1(tj))

3 − (ωZ2(tj))
3|2}1/2.

≤ { 1

4n

n∑
j=1

{|(uZ1((tj))
3 − (uZ2(tj))

3|+ |(gtj(uZ1))
3 − (gtj(uZ2))

3|

+ |(ϕZ1(tj))
3 − (ϕZ2(tj))

3|+ |(vZ1(tj))
3 − (vZ2(tj))

3|+ |(htj(vZ1))
3

− (htj(vZ2))
3|+ |(ωZ1(tj))

3 − (ωZ2(tj))
3|}1/2 = (dNH(Z1, Z2))

1/2.

(3.37)

3.4 Group Decision Making with T2FFSs Based on Dis-

tance Measures

Here, we suggest a strategy for rating the various T2FFSs using the suggested distance

metrics for group D −MG issues.

3.4.1 Approach for Distance Measure

Consider a limited number of m criteria like {K = k1, k2, k3. . . km} and n alternatives

{R = R1, R2, R3...Rn} which are being evaluated by r D−MRs {DM = Dm1, Dm2, Dm3...Dmr}
having weight vector {W = W1,W2,W3...} where wj ≥ 0, j = 1, 2, 3...n and

∑n
j=1wj =

1.Consider the rating of D −MRs as P −MF ,S −MF , P −NMF and S −NMF .

In order to determine the best alternative, the following processes have been explained.

1. Sort the overall data for each alternative Ri according to the criteria Kj for P −
MF , S −MF , P −NMF , and S −NMF .
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2. Calculate the distance between the D − MRs D − Mr and the null decision N ,

where N is the decision of the D −MR and has one P − NMF and S − NMF

for each alternative Rj that meets each of the criteria Ki and zero P −MF and

S −MF .

3. Consider all the alternative Ri, criteria Kj , and their associated maximum value

of dmr to determine the maximum value of the dmrs corresponding to D −MR,

and then create the type-2 fermatean fuzzy alternative Ri, (i = 1, 2, ..., n).

4. Determine the distance in units of d between the alternative Ri and the null

decision N.

5. Rank the options Ri, i = 1, 2, ..., t to see which is best.

Table 3.4.1.1 Linguistic grade and corresponding P −MF and P −NMF value

Grades P −MFV Grades P −NMFV

Extremely faint(E-F) 0 Extremely strong(E-S) 1

Faint (F) 0.5 Strong(S) 0.9

Moderately Faint(m− f) 0.6 Moderately Strong(M-S) 0.8

Moderately Strong(M-S) 0.8 Moderately Faint(m-f) 0.7

Strong(S) 0.9 Faint(F) 0.6

Extremely Strong(E-S) 1 Extremely Faint(E-F) 0

Table 3.4.1.2 Linguistic grade and corresponding S −MF and S −NMF value

Grades S-MFV Grades S-NMFV

Extremely Faint 0 Extremely strong 1

Faint 0.4 Strong 0.9

Moderately Faint 0.5 Moderately Strong 0.8

Moderately Strong 0.8 Moderately Faint 0.7

Strong 0.9 Faint 0.6

Extremely Strong 1 Extremely Faint 0
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Table 3.4.1.3 Graded values of the alternative corresponding to each attribute (criteria)

DM1 DM1 DM1 DM1 DM2 DM2 DM2 DM2 DM3 DM3 DM3 DM3

P-MF S-MF P-NMF S-NMF P-MF S-MF P-NMF S-NMF P-MF S-MF P-NMF S-NMF

K1 R1 E-S M-S E-F m-f S E-S F E-F S m-f F M-S

K1 R2 M-S S F F S M-S E-F F F M-S S M-S

K1 R3 M-S m-f S M-S S m-f F M-S F m-f S M-S

K1 R4 M-S S m-f m-f S M-S F m-f F E-F S E-S

K2 R1 E-S S F F S m-f F M-S S M-S F m-f

K2 R2 M-S M-S m-f m-f S M-S E-F F m-f M-S M-S m-f

K2 R3 S E-S F E-F M-S m-f m-f M-S m-f M-S M-S m-f

K2 R4 E-S S E-F F M-S m-f m-f M-S m-f S M-S F

K3 R1 E-S M-S E-F m-f S E-S F E-F S S F F

K3 R2 S m-f F M-S M-S m-f m-f M-S E-S S E-F F

K3 R3 E-S S E-F F S S F F m-f M-S M-S m-f

K3 R4 E-S S E-F F S M-S F m-f m-f M-S M-S m-f

K4 R1 E-S S E-F F S E-S F E-F M-S M-S m-f m-f

K4 R2 E-S S E-F F S E-S F E-F E-S E-S E-F E-F

K4 R3 E-S m-f E-F M-S m-f E-S M-S E-F m-f M-S M-S m-f

K4 R4 S m-f F m-f M-S m-f m-f M-S m-f M-S M-S m-f

Table 3.4.1.4 Distance Measure Between dNH and N

K1 R1 1 0.94 0.75

K1 R2 0.75 0.86 0.5

K1 R3 0.5 0.75 0.30

K1 R4 0.69 0.76 0.19

K2 R1 1 0.75 0.75

K2 R2 0.58 0.75 0.58

K2 R3 1 0.58 0.58

K2 R4 1 0.58 0.75

K3 R1 1 1 0.75

K3 R2 0.75 0.58 1

K3 R3 1 0.75 0.58

K3 R4 1 0.75 0.58

K4 R1 1 1 0.58

K4 R2 1 1 1

K4 R3 1 1 0.58

K4 R4 0.75 0.58 0.58

3.4.2 Mathematical Illustration

Take the case of a person who is trying to decide how much money to put into the

market. There are five possible answers (I) R1 is an automobile firm, (ii) R2 is a

pesticides company, (iii) R3 is a multinational enterprise, (iv) R4 is an armaments

company, and (v) R5 is a tyre company. For this, they paid a specified panel of experts

(DM1, DM2, andDM3) whose weight vector is (0.40, 0.35, 0.25)T . Under the T2FFS

set, the investor makes a choice based on a number of factors, including the project risk
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K1, the revenue analysis K2, the social effect analysis K3, and the allocated space K4.

Tables 3.4.1.1 and 3.4.1.2 display the P − MF , P − NMF , and S − MF , S − NMF

linguistic grades necessary for this purpose.

1. Table 3.4.1.3 provides the accumulated data of each alternative that corresponds

to each criterion, ordered in terms of the linguistic grades based on the knowledge

and experience of the D −MRs.

2. Determine the value of d(DMk,N) (k = 1, 2, 3) for each possible solution. Table

3.4.1.4 summarises the numbers we use for dNH(DMk,N) in our calculations.

3. Find the highest value of dNH(DMk,N) in Table 4 for all options Rj, (j = 1, 2,...,

4) for each criterion Ki, (i = 1, 2, 3, 4). And hence build the T2FFS alternative,

Rj = (Ki((uRj), gKi(Rj)), vRj , hKi(Rj)), as

R1 = K1(1, 0.8, 0, 0.7),K2(1, 0.9, 0, 0.6),K3(1, 0.8, 0, 0.7),K4(0.9, 1, 0.6, 0).

R2 = K1(0.9, 0.8, 0, 0.6),K2(0.9, 0.8, 0.6, 0.7),K3(1, 0.9, 0, 0.6),K4(0.9, 1, 0.6, 0).

R3 = K1(0.9, 0.5, 0.6, 0.8),K2(0.9, 1, 0.1, 0),K3(1, 0.9, 0, 0.6),K4(1, 0.5, 0, 0.8).

R4 = K1(0.9, 0.8, 0.6, 0.7),K2(1, 0.9, 0, 0.6),K3(1, 0.9, 0, 0.6),K4(0.9, 0.8, 0.6, 0.7).

4. Now, we have computed the recommended distance measurements, dNH from N to

Rj (j = 1, 2,..., 4) and the results are presented below. The values for dNH(R1, N)

are 1.00, dNH(R2, N) are 0.9025, dNH(R3, N) are 0.9375 and dNH(R4, N) are

0.8775.

5. Our research has led us to the conclusion that R1 is the most deserving of our

investment capital.

3.4.3 Comparative Analysis

Comparative studies based on interval-valued and T2FS and T2IFS as suggested by

the authors [16, 68, 135, 143, 155, 166, 167], To assess how well the proposed methods

perform in comparison to existing methods, and their related findings are given in Table

3.4.3.1. This table shows that A1 is the best company to put money into compared to

the others, and this result overlaps with the suggested outcomes. Therefore, compared

to other existing approaches, the suggested technique can be used effectively to address

the problem of D −MG.



Chapter 3. Type-2 Fermatean Fuzzy Sets: A Novel Approach for ... 60

Table 3.4.3.1 comparative analysis

Existing approach score values score values Order of alternatives

R1 R2 R3 R4

[[16]] 0.800 0.800 0.7500 0.7400 R1 ≥ R2 ≥ R4 ≥ R3

[[135]] 0.833 0.604 0.733 0.506 R1 ≥ R3 ≥ R2 ≥ R4

[[68]] 0.676 0.727 0.372 0.471 R2 ≥ R1 ≥ R4 ≥ R3

[[166]] 0.800 0.700 0.650 0.525 R1 ≥ R2 ≥ R3 ≥ R4

[[167]] 0.400 0.400 0.375 0.387 R1 ≥ R2 ≥ R4 ≥ R3

[[155]] 0.181 0.144 0.090 0.117 R1 ≥ R2 ≥ R4 ≥ R3

[[143]] 0.784 0.555 0.470 0.352 R1 ≥ R2 ≥ R3 ≥ R4

[dNH ] 1.000 0.902 0.9375 0.8775 R1 ≥ R3 ≥ R2 ≥ R4



Chapter 4

Improving Decision-Making

Under Uncertainty: A

Comparative Study of Fuzzy Set

Extensions

In this chapter we studied different fuzy sets like type-2 fuzzy sets, intuitionistic fuzzy

sets and type-2 intuitionistic fuzzy sets. This chapter provides an overview of these sets,

comparing and contrasting them using operations of union, intersection, and distance

measures. Additionally, a new distance measure is proposed for Type-2 intuitionistic

fuzzy sets.

This chapter is divided into several sections to help you understand and compare different

existing FSs. Section 4.1 contains the introduction. In section 4.2, we’ll cover the

preliminaries and basic concepts to give you a solid foundation. Then in section 4.3 , we

compare different FSs using the operations of union and intersection. We explore their

similarities and differences, helping you make informed decisions for your specific needs.

Section 4.4 proposes a new distance measure for T2IFS, accompanied by a numerical

example to compare the results.

4.1 Introduction

L.A. Zadeh [159] developed FS theory in response to the requirement to represent the

activity of modelling in the human mind, which must take into account subjective and

imprecise elements. Its key idea is M − G, a member is either in or out of a subset

61
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according to conventional set theory. A proposition is either true or false in boolean logic.

Information by its nature contains uncertainty, we make decisions in environments with

various types of uncertainty in many scientific and industrial applications. Currently, the

majority of D −MG procedures involve acquiring and processing information, much of

which is noisy, fragmented, inconsistent, or all of the above. As a result, the models that

explain the real world must be supplemented by appropriate ambigious representations.

“With the introduction of soft computing approaches, many strong tools in the field of

computational intelligence, such as type-1 fuzzy logic, evolutionary algorithms, hybrid

intelligent systems, and neural networks”, were produced. [19, 114].

An extension of the ordinary FS, or T1FS is the T2FS. T2FSs could be referred to

as a “fuzzy-fuzzy set” because the M − Gs are ambiguous and the domain of T2FSs

is T1FS instead of crisp value. Zadeh [161, 162] introduced the idea of T2FS. Mendel

[102] provided overviews of T2FSs. Since T2FSs are a specific case of ordinary FSs and

IV FS, Takac [137] suggested that T2FSs are very useful in situations where there are

more uncertainties. From the perspectives of type reduction and the centroid, Kundu et

al [80] gave a fixed charge transportation problem with type-2 fuzzy parameters. Both

Dubois, Prade [42] and Mizumoto, Tanaka [77, 111] looked at the logical behaviour

of T2FS. Later, a large number of scholars conducted extensive research on T2FS,

theoretical and numerous application areas [53, 67, 76, 77].

The IFSs developed by Atanassov [9] that can be expressed in terms of the M−D, and

N −MD, a more generalised variant of the FS. The study of problems like D−MG by

utilising IFSs, however has attracted more attention [95]. In order to address the issue

of students satisfaction with university instruction, Marasini et al. [96] used an IFS

technique that may take into consideration two sources of uncertainty: one connected to

items and the other to subjects. Dan et al.[32] Present the generalised T2IFS, whose

type-1 membership is the conventional fuzzy membership and whose type-2 comprises

both M −F and N −MF as the IFS. Singh.S and Garg.H [129] proposed a MC−DM

problem by providing a dmr for T2IFS.

FSs have transformed D −MG by providing a mathematical tool for modeling uncer-

tainty and imprecision. However, traditional fuzzy sets may not be adequate in certain

situations, leading to the development of T2FSs, which introduce a third dimension

M −Fs to allow for more precise definitions of uncertainty. Different extensions of FSs

exist to make them more manageable, and understanding their properties is crucial for

selecting the most suitable set for specific conditions. T1FS, T2FS, IFS, and T2IFS

are sets examined for their properties, with numerical examples provided for comparison.

Furthermore, a new dmr is proposed for T2IFSs, demonstrating its significance with
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an example. By grasping the diverse properties and applications of these FSs, informed

decisions can be made in real-world situations with uncertainty and imprecision.

4.2 Preliminaries and Basic Concepts

4.2.1 Fuzzy set (FS)

1.1.1

4.2.2 Operation on Fuzzy Sets

The following operations for FSs are defined by [159] as generalisations of crisp sets and

crisp statements in his first paper.

Definition 4.2.1. Intersection [logical and]: The following M − F is used to describe

the intersection of the FSs J and K

µJ∩K(s) = Min{(µJ(s), µK(s))∀s ∈ S. (4.1)

Definition 4.2.2. Union [exclusive or]: The union’s M − F is described as

µJ∪K(s) = Max{(µJ(s), µK(s)) ∀s ∈ S. (4.2)

Definition 4.2.3. Complement (negation): The following is a definition of the comple-

ment’s M − F :

µJ(s) = 1− µJ(s) ∀s ∈ S. (4.3)

Later, the above defined definitions were expanded. Both the intersection and the union

can be modelled as t-norms [10, 38, 45, 49, 79, 94, 172]. Both kinds are associative,

commutative, and monotonic. Below is a compilation of typical dual pairs of non-

parameterized t-norms and t-conorms:

Definition 4.2.4. Drastic Product:

tW (µJ(s), µK(s)) =

Min{(µJ(s), µK(s))} if Max{(µJ(s), µK(s))} = 1

0 otherwise}.
(4.4)

Definition 4.2.5. Drastic Sum:

SW (µJ(s), µK(s)) =

Max{(µJ(s), µK(s))} if Min{(µJ(s), µK(s))} = 0

1 otherwise}.
(4.5)
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Definition 4.2.6. Bounded Difference:

t1(µJ(s), µK(s)) = Max{0, µJ(s) + µK(s)− 1}. (4.6)

Definition 4.2.7. Bounded sum:

s1(µJ(s), µK(s)) = Min{1, µJ(s) + µK(s)}. (4.7)

Definition 4.2.8. Einstein Product:

t1.5(µJ(s), µK(s)) =
µJ(s) · µK(s)}

2− [µJ(s) + µK(s)− µJ(s) · µK(s)]
. (4.8)

Definition 4.2.9. Einstein Sum:

s1.5(µJ(s), µK(s)) =
µJ(s) + µK(s)}

1 + µJ(s) + µK(s)
. (4.9)

Definition 4.2.10. Hamachar Product:

t2.5(µJ(s), µK(s)) =
µJ(s) · µK(s)}

µJ(s) + µK(s)− µJ(s) · µK(s)
. (4.10)

Definition 4.2.11. Hamachar Sum:

s2.5(µJ(s), µK(s)) =
µJ(s) + µK(s)− 2µJ(s) · µK(s)}

1− µJ(s) · µK(s)
. (4.11)

Definition 4.2.12. Minimum:

t3(µJ(s), µK(s)) = min{µJ(s), µK(s)}. (4.12)

Definition 4.2.13. Maximum:

s3(µJ(s), µK(s)) = max{µJ(s), µK(s)}. (4.13)

The above defined operators have been ordered as follows:

tw ≤ t1 ≤ t1.5 ≤ t2 ≤ t2.5 ≤ t3. (4.14)

s3 ≤ s2.5 ≤ s2 ≤ s1.5 ≤ s1 ≤ sw. (4.15)

The operations defined above are not valid for T2FSs because T2FSs contain type-2

M − F so, extension principle is defined to deal with the operations for T2FSs.
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4.2.3 (T2FS)

(1.1.14)

Definition 4.2.14. Footprint of Uncertainty(FOU) (1.1.15)

Example 4.2.1. Let “Young” people be the set defined by T2FS Ē and the P − MF

of Ē be “Youthness” and S −MF be degree of “Youthness”. Let T = {7, 9, 13} be the

car set having primary membership at point T respectively. j7 = {0.7, 0.8, 0.9}, j9 =

{0.5, 0.6, 0.7} and j13 = {0.3, 0.4, 0.5} then S−MF of point 7 is µ̄Ē(7, u) = {(0.8/0.7)+
(0.6/0.8) + (0.5/0.9)} that is µ̄Ē(7, 0.7) = 0.8 is the S − MG of 7 with respect to 0.7,

similarlaly µ̄Ē(9, u) = {(0.7/0.5) + (0.6/0.6) + (0.5/0.7)} and µ̄Ē(13, u) = {(0.8/0.3) +
(0.7/0.4) + (0.4/0.5)} then discrete T2FS can be defined accordingly Ē = {(0.8/0.7) +
(0.6/0.8)+(0.5/0.9)}/7+{(0.7/0.5)+(0.6/0.6)+(0.5/0.7)}/9+{(0.8/0.3)+(0.7/0.4)+

(0.4/0.5)}/13.

Definition 4.2.15. Extension Principle (1.1.17)

4.2.4 Intuitionistic Fuzzy set

(2.3.1)

Example 4.2.2. “ Let “Young”persons be the set defined by IFS J . The degree of

“Youthness”and “Adultness”represents MV and NMV respectively. Let T = {11, 14, 16}
and the M −G of the point 11 be µP (12) = {0.7, 0.8, 0.9} and the N −MG of point 11

is νP (11) = {0.1, 0.2, 0.0} similarly µP (14) = {0.5, 0.6, 0.7}, νP (14) = {0.4, 0.3, 0.1} and

µP (16) = {0.4, 0.5, 0.6}, νP (16) = {0.5, 0.4, 0.2}.”

4.2.5 Type 2 intuitionistic Fuzzy set(T2IFS)

Definition 4.2.16. [129] A T2IFS J in the UOD S is set of pairs {s, µJ(s), νJ(s)}
where s is the element of T2IFS, µJ(s) and νJ(s) are called M − G and N − MG

respectively defined in the interval [0,1] as

µJ(s) =

∫
s∈j1s

(gs(u)/u), νJ(s) =

∫
s∈j2s

(hs(v)/v). (4.16)

Where gs(u)/u and hs(v)/v are termed as S −MF and S −NMF . In addition µJ ,νJ

denotes the P − MF and P − NMF and js1 and js2 are named as the P − MF and

P −NMF of S, respectively. In other words, T2IFS J is defined in the UOD as

J = {(s, uJ , vJ), gsj(uJ), hsj(vJ)|s ∈ S, uJ ∈ js1 , vJ ∈ js2}. (4.17)
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Where the element of the domain (s, (uJ , vJ)) called as P −MF (uJ) and P − NMF

(vJ) of s ∈ S where gsj(uJ) and hsj(vJ) S −MF and S −NMF respectively.

4.3 Comperative Analysis on Different Types of FSs

4.3.1 Comparison on the Basis of Operation

In order to make comparison we take few FSs into account, ordinary FS or T1FS,

T2FS, IFS and T2IFS we define union and intersection for these defined sets.

4.3.2 Union and Intersection for T1FS [159]

let J and K be two FSs then their union and intersection is defined as follows

Union:

J ∪K = max{µJ(s), µK(s)},

where µJ(s) and µK(s) are the MV s of FS J and K.

Example 4.3.1. Let J={s,0.8} and K={s,0.7}, then J ∪ K = max{0.8, 0.7} =⇒
J ∪K = 0.8.

Intersection:

J ∩K = min{µJ(s), µK(s)},

where µJ(s) and µK(s) are the MV s of FS J and K.

Example 4.3.2. Let J={s,0.8} and K={s,0.7} then J∪K = min{0.8, 0.7} =⇒ J∩K =

0.7.

4.3.3 Union and Intersection for T2FS [161]

Let µJ and µK are two T2FS.
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Intersection:

µJ = {s, µJ(s)} and µK = {s, µK(s)},

where µJ(s) = {ui, µui(s)},

µK(s) = {vj , µvj(s)},

by extension principle intersection is defined as

µJ∩K(s) = {z, µJ∩K(z)| z = min{ui, vj}}, (4.18)

where µJ∩K(z) = supz=min(ui,vj)min{µui, µvj}.

Union:

µJ∪K(s) = {z, µJ∪K(z)| z = max{ui, vj}}, (4.19)

where µJ∪K(z) = supz=max(ui,vj)min{µui, µvj}.

Example 4.3.3. Let J be a small integer and K be an integer. Find µJ∩K(s) at s=3

Table 4.3.3.1

i ui µui vj µvj

1 0.8 1 1 1

2 0.7 0.5 0.8 0.5

3 0.6 0.4 0.7 0.3

J = {s, µJ(s)} at s=3

µJ(s) = {(u1, µu1), (u2, µu2), (u3, µu3)}.

={(0.8,1), (0.7,0.5), (0.6,0.4)},

similarly

µK(s) = {(v1, µv1), (v2, µv2), (v3, µv3)}.

={(1,1), (0.8,0.5), (0.7,0.3)}.
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Table 4.3.3.2

ui vj min(ui, vj) µui(3) µvj(3) min(µui(3), µvj(3))

0.8 1 0.8 1 1 1

0.8 0.8 0.8 1 0.5 0.5

0.8 0.7 0.7 1 0.3 0.3

0.7 1 0.7 0.5 1 0.5

0.7 0.8 0.7 0.5 0.5 0.5

0.7 0.7 0.7 0.5 0.3 0.3

0.6 1 0.6 0.4 1 0.4

0.6 0.8 0.6 0.4 0.5 0.4

0.6 0.7 0.6 0.4 0.3 0.3

µJ∩K(s) = supz=0.8{1, 0.5} = 1,

supz=0.7{0.3, 0.5, 0.5, 0.3} = 0.5.

supz=0.6{0.4, 0.4, 0.3} = 0.4.

4.3.4 Union and Intersection for IFS [52, 95]

let J and K be two IFSs then we define

Union:

J ∪K = max{µJ(s), µK(s)},min{νJ(s), νK(s)}. (4.20)

Intersection:

J ∩K = min{µJ(s), µK(s)},max{νJ(s), νK(s)}. (4.21)

Example 4.3.4. Let we have two IFS defined as

J={s,0.6,0.4} and K={s,0.7,0.2}, then

J ∪K = max{0.6, 0.7},min{0.4, 0.2}. = {0.7, 0.2}.
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4.3.5 Union and Intersection for T2IFSs [32]

lets consider two T2IFS J and K

J =

∫
s∈S

(∫
u∈ius

(µJ(s, u), νJ(s, u))/u

)
/S.

And

K =

∫
s∈S

(∫
v∈ivs

(µK(s, v), νK(s, v))/v

)
/S.

Where ius ⊆ [0, 1] and ivs ⊆ [0, 1] are domains for S −MF respectively. Then we define

union for J and K as:

J ∪K =

∫
s∈S

(∫
v∈iws

(µJ∪K(s,w),νJ∪K(s,w)
)

w

S
, ius ∪ ivs = iws ⊆ [0, 1],

where

µJ∪K(s) = ϕ

(∫
u∈ius

(µJ(s, u))/u,

∫
v∈ivs

(µK(s, v))/v

)
,

by using extension principle, we obtain

µJ∪K(s, w) =

∫
u∈ius

∫
v∈ivs

(µJ(s, u) ∧ µK(s, u)) /ϕ(u, v),

where ϕ(u, v) is t-conorm of u and v,

µJ∪K(s, w) =

∫
u∈ius

∫
v∈ivs

(µJ(s, u) ∧ µK(s, u)) /(u ∨ v),

similarly

νJ∪K(s, w) =

∫
u∈ius

∫
v∈ivs

(νJ(s, u) ∨ νK(s, u))/(u ∨ v).

Intersection for J and K is defined as:

J ∩K =

∫
s∈S

(∫
v∈iws

(µJ∩K(s,w),νJ∩K(s,w))
)

w

S
, ius ∪ ivs = iws ⊆ [0, 1],

where

µJ∩K(s, w) =

∫
u∈ius

∫
v∈ivs

(µJ(s, u) ∧ µK(s, u))/(u ∧ v).

And
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νJ∩K(s, w) =

∫
u∈ius

∫
v∈ivs

(νJ(s, u) ∨ νK(s, u))/(u ∧ v).

Example 4.3.5. “ Let J and K be two T2IFSs representing the set “Young” persons.

The “Youthness” is P −MF of J and K. Then the degree of “Youthness” and “Adult-

ness” are the S − MF and S − NMF respectively. We consider both J and K to be

defined on S={7,9,13} which are eventyualy represented as:”

J=((0.8,0.1)/0.7 +(0.6,0.2)/0.8 + (0.5,0.4)/0.9) /7 + ((0.7,0.2)/0.5 + (0.6,0.3) /0.6

+(0.5,0.4)/0.7) /9 +((0.8,0.2)/0.3 +(0.7,0.3)/0.4 +(0.4,0.5)/0.5)/13.

K= ((0.7,0.2)/0.6 +(0.5,0.4)/0.7 +(0.5,0.5)/0.8)/7 + ((0.8,0.2)/0.4 +(0.8,0.1)/0.5

+(0.4,0.5)/0.6)/9 +((0.7,0.3)/0.2 +(0.6,0.3)/0.3 +(0.4,0.4)/0.4)13.

Now for 7, S −MF and S −NMF of J and K are

((0.8, 0.1)/0.7 + (0.6, 0.2)/0.8 + (0.5, 0.4)/0.9)/7,

and

((0.7, 0.2)/0.6 + (0.5, 0.4)/0.7 + (0.5, 0.5)/0.8)/7.

For S = 7, the union of J and K is (µJ∪K(7), νJ∪K(7))

= ((0.8, 0.1)/0.7 + (0.6, 0.2)/0.8 + (0.5, 0.4)/0.9)/7 ∨ ((0.7, 0.2)/0.6 + (0.5, 0.4)/0.7 +

(0.5, 0.5)/0.8)/7,

((0.8∧0.7), (0.1∨0.2))/(0.7∨0.6) +((0.8∧0.5), (0.1∨0.4))/(0.7∨0.7) +((0.8∧0.5), (0.1∨
0.5))/(0.7∨0.8)+ +((0.6∧0.7), (0.2∨0.2))/(0.8∨0.6) +((0.6∧0.5), (0.2∨0.4))/(0.8∨0.7)

+((0.6∧0.5), (0.2∨0.5))/(0.8∨0.8) +((0.5∧0.7), (0.4∨0.2))/(0.9∨0.6) +((0.5∧0.5), (0.4∨
0.4))/(0.9 ∨ 0.7) +((0.5 ∧ 0.5), (0.4 ∨ 0.5))/(0.9 ∨ 0.8).

= (0.5, 0.4)/0.7+(0.5, 0.5)/0.8+(0.6, 0.2)/0.8+(0.5, 0.4)/0.8+(0.5, 0.5)/0.8+(0.5, 0.4)/0.9+

(0.5, 0.4)/0.9 + (0.5, 0.5)/0.9.

= (0.5, 0.4)/0.7+(max(0.5, 0.6, 0.5, 0.5), min(0.5, 0.2, 0.4, 0.5)) 0.8 + (max(0.5, 0.5, 0.5),

min(0.4, 0.4, 0.5))/0.9.

= (0.5, 0.4)/0.7 + (0.6, 0.2)/0.8 + (0.5, 0.4)/0.9.

Analysis on Operations of Union and Intersection for Different Fuzzy

Sets

FSs use a M − F to assign a degree of membership to each element of a set. This

allows for a more flexible and nuanced representation of uncertainty than the binary
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membership characteristic of classical sets. The union and intersection operations of

FSs are defined by taking the maximum and minimum of the M − Fs, respectively.

T2FSs take this idea one step further, by allowing the M − F itself to be a FS.

This enables an even more sophisticated representation of uncertainty, but also makes

the union and intersection operations more complex.

IFS go beyond the binary membership characteristic of FSs and also incorporate

a N − MD. This allows for a more nuanced representation of uncertainty, particu-

larly when dealing with vague or ambiguous information. The union and intersection

operations of IFSs take into account both M −D and N −MD.

T2IFSs combine the concepts of T2FS and IFS, allowing for an even more sophis-

ticated representation of uncertainty. The union and intersection operations of T2IFSs

also take into account both M −D and N −MD, making them particularly useful for

handling uncertain or ambiguous information.

Overall, these set types offer a rich and powerful toolbox for dealing with uncertainty

and imprecision in a wide range of applications, including D −MG, data analysis, and

control systems.

Results of Comparison

As we compared different FSs on the basis of union and intersection every FS has their

importance, but we found that T2IFSs offer a best tool for solving D−MG problems.

In terms of operations, T2IFSs exhibit differences compared to other FSs. The union

and intersection operations for T2IFSs involve considering the lower and upper MV

and NMV separately. This allows for a more flexible and granular manipulation of FSs,

enabling D−MR to capture the various degrees of uncertainty and ambiguity inherent

in complex decision problems.

4.3.6 Comparison on the Basis of Distance Measures

Distance Measure Between FSs and T2FSs [97, 127]

Definition 4.3.1. Distance measure plays an important role in D−MG. Let F1(S) be

the class of all T1FS of S. µJ(s) → [0, 1]is the M −F of S in F1(S). Let’s consider two
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FSs J and K in F1(S). Then d(J,K) is said to be a dmr between J and K if

d : F1(S)× F1(S) → [0, 1]. (4.22)

satisfies following axioms:

(p1) 0 ≤ d(J,K) ≤ 1 ∀ J,K ∈ F1(S). (4.23)

(p2) d(J,K) = d(K,J). (4.24)

(p3) d(J,K) = 0 if J = K. (4.25)

(p4) d(J,K) = 0, d(J, L) = 0, L ∈ F1(S) then d(K,L) = 0. (4.26)

For two FSs J and K, the following dmr is provided.

Hamming distance

d1h(J,K) =
1

n

n∑
j=1

|µJ(sj)− µK(sj)|. (4.27)

Euclidian distance

d1e(J,K) = { 1
n

n∑
j=1

|µJ(sj)− µK(sj)|2}1/2. (4.28)

4.3.7 Numerical Example

Lets consider four types of metal fields and each fieldis characterized by five different met-

als. We can express these four fields by FSs {c1, c2, c3, c4} in space {S = s1, s2, s3, s4, s5}.
See table 4.3.7.1, there is another kind of special metal n, so we have to find which metal

field this metal belongs.

Table 4.3.7.1

s1 s2 s3 s4 s5

uc1(s) 1 0.7 0.5 0.7 1

uc2(s) 1.0 0.7 0.9 0.9 0.9

uc3(s) 1.0 0.9 1.0 0.9 0.9

uc4(s) 0.9 0.9 0.9 0.2 0.7

un(s) 0.9 0.2 0.2 0.2 0.9
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we have

d1h(J,K) =
1

5

5∑
j=1

|µJ(sj)− µK(sj)|, (4.29)

since from the table 3 and using d1h(J,K) we get following result

d1h(c1, n) = 0.3, d1h(c2, n) = 0.4, d1h(c3, n) = 0.575, d1h(c4, n) = 0.32,

which implies special metal n is produced from metal field c1

for T1FS, we have only M−F but for T2FS we have P −MF , S−MF and FOU .

Distance Measure Between T2FSs

[127] Examine the following factors in order to calculate the distance measure for T2FSs.

P −MF , S−MF and FOU in the currently used dmr the following dmr is defined for

T2FSs J and K.

d2h(J,K) =
1

2n

n∑
j=1

|uJ(sj)− uK(sj)|+ |fsj(uJ)− fsj(uk)|+ |ξJ(sj)− ξK(sj)|. (4.30)

4.3.8 Numerical Example

Let’s consider four types of metal fields and each field is featured by 5 metals . We

can express these four fields by T2FSs {c1, c2, c3, c4} in space {S = s1, s2, s3, s4, s5}.See
table 4.3.8.1. There is another kind of special metal {n} so we have to find which metal

field this metal belongs.
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Table 4.3.8.1

s1 s2 s3 s4 s5

uc1(s) 1 0.7 0.5 0.7 1

fs(uc1) 0.7 0.9 0.2 0.5 0.9

uc2(s) 1.0 0.7 0.9 0.9 0.9

fs(uc2) 0.9 0.7 1.0 0.7 0.7

uc3(s) 1.0 0.9 1.0 0.9 0.9

fs(uc3) 0.7 1.0 0.9 0.9 0.4

uc4(s) 0.9 0.9 0.9 0.2 0.7

fs(uc4) 1.0 0.7 0.5 0.0 0.4

un(s) 0.9 0.2 0.2 0.2 0.9

fs(un) 0.4 0.5 0.4 0.0 0.7

we have

d2h(J,K) =
1

2n

n∑
j=1

|uJ(sj)− uK(sj)|+ |fsj(uJ)− fsj(uk)|+ |ξJ(sj)− ξK(sj)|, (4.31)

since from the table 4 and using d2h(J,K) we get following result

d2h(c1, n) = 0.44, d2h(c2, n) = 0.48, d2h(c3, n) = 0.6, d2h(c4, n) = 0.46,

which implies special metal n is produced from metal field c1.

Distance Measures Between IFS [140]

Definition 4.3.2. Let J and K be two IFS in S = {s1, s2, ...sn}

d3(J,K) =
1

n

n∑
i=1

|µJ(si)− µK(si)|+ |νJ(si)− νK(si)|
4

+
max(|µJ(si)− µK(si)|, |νJ(si)− νK(si)|)

2
,

(4.32)

whereJ = {si, µJ(si), νJ(si)|si ∈ S},K = {si, µK(si), νK(si)|si ∈ S}.

4.3.9 Numerical Example

Lets consider four kinds of metal fields and each field is featured by five metals . We

can express these four fields by T2IFSs {c1, c2, c3, c4} in space {S = s1, s2, s3, s4, s5}.
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See table 4.3.9.1, there is another kind of special metal {n} so, we have to find which

metal field this metal belongs.

Table 4.3.9.1

x1 x2 x3 x4 x5

uc1(x) 1 0.7 0.5 0.7 1

vc1(x) 0 0.1 0.4 0.2 0

uc2(x) 1.0 0.7 0.9 0.9 0.9

vc2(x) 0 0.4 0.1 0.1 0.1

uc3(x) 1.0 0.9 1.0 0.9 0.9

vc3(x) 0.0 0.1 0.0 0.1 0.1

uc4(x) 0.9 0.9 0.9 0.2 0.7

vc4(x) 0.1 0.0 0.1 0.7 0.2

un(x) 0.9 0.2 0.2 0.2 0.9

vn(x) 0.1 0.7 0.7 0.7 0.0

we have

d3(J,K) =
1

n

n∑
i=1

|µJ(si)− µK(si)|+ |νJ(si)− νK(si)|
4

+
max(|µJ(si)− µK(si)|, |νJ(si)− νK(si)|)

2
,

(4.33)

since from the table 5 and using d2(P,Q) we get following result

d3(c1, n) = 0.305, d3(c2, n) = 0.285, d3(c3, n) = 0.460, d3(c4, n) = 0.315,

which implies special metal n is produced from metal field c2.

Definition 4.3.3. [129] The variance margin function (V −MF ) of T2IFS is defined

as the difference between P −MF and S−MF , P −NMF and S−NMF . It is denoted

by η and ξ respectively.

Now we extended this new distance measure for T2IFSs and provided the com-

parison between this dmr with exixting dmr with a numerical example.

4.4 New Distance Measures Between T2IFS

Firstly we analyse the definition of “dmr for T2IFS”. Singh, S., & Garg, H. [129]

defined the concept for T2IFS where they used triangle inequality and we defined the
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inclusion relation between T2IFS which is not satisfied by euclidean dmr. It is necessary

to establish the inclusion relation between T2IFS, so we introduced a new dmr which

satisfies inclusion relation in T2IFS.

For convenience, two T2IFSs P and Q in T are denoted by

P = {t(u, ftj(uP ), (v, gtj(vP ))|t ∈ T} and Q = {t(u, ftj(uQ), (v, gtj(vQ))|t ∈ T}, then we

defined new distance for P and Q by considering the P −MF , S−MF , P −NMF and

S −NMF .

d4(P,Q) =
1

2n

n∑
i=1

1

4
{|uP (ti)− uQ(ti)|+ |vP (ti)− vQ(ti)|+

|fti(uP )− fti(uQ)|+ |gti(uP )− gti(uQ)|}

+
1

2
{max|uP (ti)− uQ(ti)|, |vP (ti)− vQ(ti)|,

|fti(uP )− fti(uQ)|, |gti(uP )− gti(uQ)|}.

(4.34)

Definition 4.4.1. “ A real function d4 : F
I
2 (t)× F I

2 (t) → [0, 1] is called dmr, where d4

defines the following axioms

(p1). 0 ≤ d4(P,Q) ≤ 1, ∀ (P,Q) ∈ F I
2 (t).

(p2). d4(P,Q) = 0, If P = Q.

(p3). d4(P,Q) = d4(Q,P ).

(p4). P ⊆ Q ⊆ R, where P,Q,R ∈ F I
2 (t), then d4(P,R) ≥ d4(P,Q) and

d4(P,R) ≥ d4(Q,R).

” Now we will prove the above defined measure is a valid dmr for T2IFS. Condition

(P1)

(P1) =⇒ 0 ≤ d4(P,Q) ≤ 1.

Let P and Q be two T2IFS then we have

|uP (ti)− uQ(ti)| ≥ 0, |fti(uP )− fti(uQ)| ≥ 0,

|vP (ti)− vQ(ti)| ≥ 0, |gti(uP )− gti(uQ)| ≥ 0,

this implies d2(P,Q) ≥ 0,

then we have |uP (ti)− uQ(ti)| ≤ 1, |fti(uP )− fti(uQ)| ≤ 1,

|vP (ti)− vQ(ti)| ≤ 1, |gti(uP )− gti(uQ)| ≤ 1,
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=⇒ d4(P,Q) ≤ 1, hence

0 ≤ d4(P,Q) ≤ 1.

Condition (P2) follows trivialy so we prove for (P3) and (P4).

(P3) =⇒ d4(P,Q) = d4(Q,P ),

we have

d4(P,Q) =
1

2n

n∑
i=1

1

4
{|uP (ti)− uQ(ti)|+ |vP (ti)− vQ(ti)|+

|fti(uP )− fti(uQ)|+ |gti(uP )− gti(uQ)|}

+
1

2
{max|uP (ti)− uQ(ti)|, |vP (ti)− vQ(ti)|,

|fti(uP )− fti(uQ)|, |gti(uP )− gti(uQ)|},

(4.35)

=
1

2n

n∑
i=1

1

4
{|uQ(ti)− uP (ti)|+ |vQ(ti)− vP (ti)|+

|fti(uQ)− fti(uP )|+ |gti(uQ)− gti(uP )|}

+
1

2
{max|uQ(ti)− uP (ti)|, |vQ(ti)− vP (ti)|,

|fti(uQ)− fti(uP )|, |gti(uQ)− gti(uP )|}.

(4.36)

= d4(Q,P ).

=⇒ d4(P,Q) = d4(Q,P ).

Now to prove (P4)

(P4) =⇒ d4(P,R) ≥ d4(P,Q), (4.37)

it is easy to see that |uP (ti)−uR(ti)| ≥ |uP (ti)−uQ(ti)|, |fti(uP )− fti(uR)| ≥ |fti(uP )−
fti(uQ)|

|vP (ti) − vR(ti)| ≥ |vP (ti) − vQ(ti)|, |gti(uP ) − gti(uR)| ≥ |gti(uP ) − gti(uQ)|, so we

have

1

2n

n∑
i=1

|uP (ti)− uR(ti)|+ |vP (ti)− vR(ti)|+ |fti(uP )− fti(uR)|+ |gti(uP )− gti(uR)|
4

+
max|uP (ti)− uR(ti)|, |vP (ti)− vR(ti)|, |fti(uP )− fti(uR)|, |gti(uP )− gti(uR)|

2
,

(4.38)
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≥ 1

2n

n∑
i=1

|uP (ti)− uQ(ti)|+ |vP (ti)− vQ(ti)|+ |fti(uP )− fti(uQ)|+ |gti(uP )− gti(uQ)|
4

+
max|uP (ti)− uQ(ti)|, |vP (ti)− vQ(ti)|, |fti(uP )− fti(uQ)|, |gti(uP )− gti(uQ)|

2
,

(4.39)

hence we obtained d4(P,R) ≥ d4(P,Q), similarly we can also prove for d4(P,R) ≥
d4(Q,R), hence satisfies condition (P4) so we proved this is a valid distance measure for

T2IFS.

4.4.1 Numerical Example

Let’s explore four categories of metal fields, where each field is represented by five

distinct metals. We can express these four fields by T2IFSs {c1, c2, c3, c4} in space

{T = t1, t2, t3, t4, t5}. See table 4.4.1.1. There is another kind of special metal {n} so

we have to find which metal field this metal belongs.

Table 4.4.1.1

t1 t2 t3 t4 t5

uc1(t) 1 0.7 0.5 0.7 1

ft(uc1) 0.7 0.9 0.2 0.5 0.9

vc1(t) 0 0.1 0.4 0.2 0

gt(uc1) 0.2 0.1 0.5 0.4 0.1

uc2(t) 1.0 0.7 0.9 0.9 0.9

ft(uc2) 0.9 0.7 1.0 0.7 0.7

vc2(t) 0 0.4 0.1 0.1 0.1

gt(uc2) 0.1 0.4 0 0.2 0.2

uc3(t) 1.0 0.9 1.0 0.9 0.9

ft(uc3) 0.7 1.0 0.9 0.9 0.4

vc3(t) 0.0 0.1 0.0 0.1 0.1

gt(uc3) 0.2 0 0.1 0.1 0.5

uc4(t) 0.9 0.9 0.9 0.2 0.7

ft(uc4) 1.0 0.7 0.5 0.0 0.4

vc4(t) 0.1 0.0 0.1 0.7 0.2

gt(uc4) 0 0.1 0.4 1.0 0.5

un(t) 0.9 0.2 0.2 0.2 0.9

ft(un) 0.4 0.5 0.4 0.0 0.7

vn(t) 0.1 0.7 0.7 0.7 0.0

gt(un) 0.5 0.4 0.5 1.0 0.1

we have
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d4(P,Q) =
1

2n

n∑
i=1

|uP (ti)− uQ(ti)|+ |vP (ti)− vQ(ti)|+ |fti(uP )− fti(uQ)|+ |gti(uP )− gti(uQ)|
4

+
max|uP (ti)− uQ(ti)|, |vP (ti)− vQ(ti)|, |fti(uP )− fti(uQ)|, |gti(uP )− gti(uQ)|

2
,

(4.40)

since from the table 6 and using d2(P,Q) we get following result

d2(c1, n) = 0.275, d2(c2, n) = 0.312, d2(c3, n) = 0.385, d2(c4, n) = 0.259.

Which implies special metal n is produced from metal field c4 obviously this coincides

with the result of Sukhveer Singh and Harish Garg [129] but there approach is not valid for

some calculations as it gives value beyond 1.0 which means our approach is better and also our

approach includes inclusion relation which is stronger than triangle inequality.

Analysis on the Basis of Distance measure for Different Fuzzy Sets

T1FSs are distinguished by M − Fs that are created using the degree of membership between

each element, set in the range [0, 1]. Yet, a wide variety of recent publications on D − MG

issues have taken IFSs into account to handle the ambiguity. IFSs are the generalised version

of FSs proposed by Atanassov [4], which gives the freedom to also model the reluctance in the

D −MG. They are specified by a M −D, N −MD, and the hesitation margin is obtained by

subtracting both from unity. Yet, as these traditional T1FSs or IFSs still have crisp membership

values, they are frequently linked to interpretability problems. There is a membership and a

non-membership in type-1 when dealing with these classical IFSs, and it is thought that the

uncertainty in the evaluation can be seen of as dissipating. There may still be some confusion

close to the membership and non-membership boundaries, though. Moreover, confusing and

imprecise information tends to be more prevalent in real-world application contexts. Type-2

M − Fs can be used to solve this issue, as type-2 M − F demonstrate T2FSs. It can be easily

seen from the above defined two examples for T1IFS and T2IFS respectively. In first example

we use only MVs and NMVs but in 2nd example we take secondary membership and secondary

non-membership values into consideration, so it better to use T2IFS instead of T1IFS when

the uncertainty is so high. We analysed different FSs and calculated the dmrs between these

sets by using numerical examples to check out the comparison and we found that T2IFS are

better.

Results of Comparison

To understand their importance, a comparison based on distance measures was conducted, using

examples for each type of fuzzy set. Distance measures provide a quantitative assessment of

similarity or dissimilarity between fuzzy sets. Through these examples, it becomes apparent that

T2IFSs outperform the other fuzzy sets when faced with ambiguous or uncertain information.



Chapter 5

Exploring the Power of Type-2

Intuitionistic Fuzzy Sets in

Multicriteria Decision Making

with a Novel Distance Measure

The main focus of this chapter is to study type-2 intuitionistic fuzzy sets and highlights the

significance of type-2 intuitionistic fuzzy sets in decision-making. The study also discusses the

challenges faced in decision-making situations and how type-2 intuitionistic fuzzy sets can address

them. Additionally, the chapter introduces a novel distance measure for type-2 intuitionistic

fuzzy sets that considers the uncertainty in the membership and non-membership functions.

The importance of new distance measure is defined with the aid of numerical illustration.

This chapter is structured into several sections, each covering an important aspect of the

proposed dmr for T2IFSs. Section 5.1 provides the introduction. Section 5.2 provides prelimi-

naries and basic concepts to help readers understand the foundation of the study. In section 5.3,

the new dmr based on three-dimensional representations is introduced, and its advantages over

previous methods are discussed. This section is the heart of the study, and it provides a detailed

description of the proposed dmr. Section 5.4 explores the application of the proposed dmr in

group D −MG with T2IFS. This section shows how the new dmr can be used to make better

decisions in a group setting.

5.1 Introduction

Professionals such as engineers, surgeons, lawyers, scientists, and HR managers face diverse

challenges daily to perform their duties effectively. Selecting the most suitable professional for

a task is a crucial element of everyday life, as it can significantly impact the outcome and

80
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success of a project or goal. However, making this decision can be difficult as it requires careful

consideration of various factors. A robust D − MG theory can help facilitate the D − MG

process by providing a systematic framework for analysing and evaluating alternatives. This

enables D−MRs to make informed decisions based on objective criteria and reduces the risk of

making poor or irrational choices.

[159] Zadeh’s pioneering theory of FSs has demonstrated significant accomplishments

across various fields. According to this theory, an element’s belongingness to a FS is denoted

by a solitary number within the range of 0 to 1, encompassing both endpoints. This number

is commonly referred to as the M − G, and it communicates the degree to which an element

pertains to a specific FS. Although the N − MD in a FS is commonly understood as the

complement of the M − D, this is not always the case. In other words, the value of N −MD

may not always be equal to 1 minus M − D, indicating that there may be some ambiguity or

hesitation in membership determination. The concept of an IFS was introduced by Attnassov

[4–6, 9]. IFS offers an even more precise, realistic, and practical representation of the objective

world than traditional FSs. IFS have gained widespread popularity and are more frequently

utilised than FSs, mainly because they have been extensively researched and utilised in various

fields, including D−MG [23, 134], pattern recognition [68, 82], and medical diagnosis [34]. Yager

[153] proposed the PFSs as a development of the IFS with the limitation that the square sum

of its M − D and N − MD be less than or equal to 1. Some t-conorm-based dmrs for PFSs

applid to D−MG was given by Ganai. A. H.[51]. A MC −DM based on dmrs and knowledge

measures of FFSs given by Ganie. A. H. [50]. A Generalized hesitant fuzzy knowledge measure

with its application to MC −DM is given by Singh, S. and Ganie, A. H. [126]. “Almulhim, T.

and Barahona, I. [1] gave an extended picture fuzzy MC−DM . Gave a case study of COVID-19

vaccine allocation”.

Sing.S and Garg.H [129] proposed T2IFS, and in order to get around it, they took into

account a M −D, an N −MD, and their related FOU and referred to the theory as a T2IFS.

They introduced the idea of the T2IFS and also defined dmrs for T2IFSs as a result, taking

into account the fact that the T2IFS is better equipped to handle imprecise and uncertain data

in practical situations. A number of dmrs based on Hamming, Euclidean, and maximum metrics

have been suggested. The study introduces a new approach to measuring the distance between

T2IFSs that is based on their three-dimensional representations and satisfies the axiomatic

definition of a distance. Unlike previous methods that rely on the triangle inequality property,

the proposed dmr uses the inclusion relation, which makes it more accurate and reliable. The

Euclidean distance fails to satisfy the inclusion relation, which highlights the importance of

developing new distance measurement techniques. The study evaluates the relationships between

the dmrs of various T2IFSs and demonstrates that the novel dmr can distinguish between them

more effectively. The numerical example presented in the study showcases how the new distance

measure gives more logical findings than other distance measurement techniques, which can

have important implications in fields such as computer graphics and image processing. Overall,

the study presents a significant contribution to the field of T2IFS distance measurement and

provides a solid foundation for further research in this area.
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5.2 Preliminaries and Basic Concepts

Definition 5.2.1. Type-2 fuzzy set (1.1.14)

Definition 5.2.2. Footprint of Uncertainty (1.1.15)

Definition 5.2.3. Type-2 intuitionistic fuzzy set (T2IFS) (4.2.16)

5.2.1 Union and Intersection for T2IFSs [32]

(4.3.5)

Definition 5.2.4. [127] Variance margin function (V−MF ) of T2IFS is defined as the difference

between P −MF and S−MF , P −NMF and S−NMF . It is denoted by η and ξ respectively.

Example 5.2.1. Let “young” be the set defined by T2IFS J̄ . “youthness” is the P −MF of J̄

then the degree of “youthness” and “adultness” are the S−MF and S−NMF respectively. Let

S={7,9,13} be the set and P −MF of the points of S is j7 = {0.7, 0.8, 0.9}, j9 = {0.5, 0.6, 0.7}
and j13 = {0.3, 0.4, 0.5} respectively.

5.2.2 Distance Measures Between (T2IFS)

Distance Measure between T2IFS has been defined by [129] presented the H−D and the E−D

between T2IFNs. Let F I
2 (s) be the class of T2IFSs over the universal set S.

Definition 5.2.5. A real function D : F I
2 (s)× F I

2 (s) → [0, 1] is said to be a dmr, if D satisfies

the following properties:

0 ≤ D(R1, R2) ≤ 1,∀(R1, R2) ∈ F I
2 (s). (5.1)

D(R1, R2) = 0, IF R1 = R2. (5.2)

D(R1, R2) = D(R2, R1). (5.3)

D(R1, R2) = 0, D(R1, R3) = 0, R3 ∈ F I
2 (s) then D(R2, R3) = 0. (5.4)

For convenience, two T2IFSs R1 and R2 in T are denoted by

R1 = {s(u, fsj(uR1
), (v, gtj(vR1

))|s ∈ S} and R2 = {s(u, ftj(uR2
), (v, gtj(vR2

))|s ∈ S} then

following distances for R1 and R2 are defined by considering the P −MF , S−MF , P −NMF ,

S −NMF , FOU and V −MF .

■ Hamming Distance

d1(R1, R2) =1/4

n∑
j=1

{|uR1
(sj)− uR2

(sj)|+ |gsj(uR1
)− gsj(uR2

)|+ |ϕR1
(sj)− ϕR2

(sj)|

+ |vR1
(sj)− vR2

(sj)|+ |hsj(vR1
)− hsj(vR2

)|+ |ωR1
(sj)− ωR2

(sj)|}.
(5.5)
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■ Normalised Hamming Distance

d2(R1, R2) =1/4n

n∑
j=1

{|uR1(sj)− uR2(sj)|+ |gsj(uR1)− gsj(uR2)|+ |ϕR1(sj)− ϕR2(sj)|

+ |vR1(sj)− vR2(sj)|+ |hsj(vR1)− hsj(vR2)|+ |ωR1(sj)− ωR2(sj)|}.
(5.6)

■ Euclidean Distance

d3(R1, R2) ={1/4
n∑

j=1

{|uR1
(sj)− uR2

(sj)|2 + |gsj(uR1
)− gsj(uR2

)|2 + |ϕR1
(sj)− ϕR2

(sj)|2

+ |vR1
(sj)− vR2

(sj)|2 + |hsj(vR1
)− hsj(vR2

)|2 + |ωR1
(sj)− ωR2

(sj)|2}}1/2.
(5.7)

■ Normalized Euclidean distance

d4(R1, R2) ={1/4n
n∑

j=1

{|uR1
(sj)− uR2

(sj)|2 + |gsj(uR1
)− gsj(uR2

)|2 + |ϕR1
(sj)− ϕR2

(sj)|2

+ |vR1
(sj)− vR2

(sj)|2 + |hsj(vR1
)− hsj(vR2

)|2 + |ωR1
(sj)− ωR2

(sj)|2}}1/2.
(5.8)

5.3 New Distance Measures Between T2IFS

In this part, we suggest a new technique to compute the distance between T2IFSs by replacing

the axiom of triangular inequality from Sing.S and Garg.H [129] dmr with an inclusion relation

based on the 3-D representation of T2IFSs. For two T2IFSs G and H in S denoted by

G = {s(u, fsj(uG), (v, gsj(vG))|s ∈ S} and H = {s(u, fsj(uH), (v, gsj(vH))|s ∈ S}. A new dmr

for G and H by considering the P −MF , S −MF , P −NMF , S −NMF and V −MF .

d2(G,H) =1/8n

n∑
j=1

{|uG(sj)− uH(sj)|+ |gsj(uG)− gsj(uH)|+ |ϕG(sj)− ϕH(sj)|

+ |vG(sj)− vH(sj)|+ |hsj(vG)− hsj(vH)|+ |ωG(sj)− ωH(sj)|+

4max(|uG(sj)− uH(sj)|, |gsj(uG)− gsj(uH)|, |ϕG(sj)− ϕH(sj)|,

|vG(sj)− vH(sj)|, |hsj(vG)− hsj(vH)|, |ωG(sj)− ωH(sj)|)}.

(5.9)

The chapter presents the definition of the axiom, which is outlined as follows.

Definition 5.3.1. A real function d : F I
2 (s)× F I

2 (s) → [0, 1] is referred to as a dmr if it fulfills

the following axioms.

(A1) 0 ≤ d(G,H) ≤ 1,∀(G,H) ∈ F I
2 (s). (5.10)

(A2) d(G,H) = 0, IF G = H. (5.11)

(A3) d(G,H) = d(H,G). (5.12)
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(A4) (G ⊆ H ⊆ I) where G,H, I ∈ F I
2 (s), then d(G, I) ≥ d(G,H)andd(G, I) ≥ d(H, I).

(5.13)

Now we will prove the above defined measure is a valid dmr for T2IFS. condition A1 and

A2 holds trivialy so we will prove for A3 and A4.

(A3) =⇒ d2(G,H) = d2(H,G),

we have

d2(G,H) =1/8n

n∑
j=1

{|uG(sj)− uH(sj)|+ |gsj(uG)− gsj(uH)|+ |ϕG(sj)− ϕH(sj)|

+ |vG(sj)− vH(sj)|+ |hsj(vG)− hsj(vH)|+ |ωG(sj)− ωH(sj)|+ 4max

(|uG(sj)− uH(sj)|, |gsj(uG)− gsj(uH)|, |ϕG(sj)− ϕH(sj)|, |vG(sj)− vH(sj)|,

|hsj(vG)− hsj(vH)|, |ωG(sj)− ωH(sj)|)},

=1/8n

n∑
j=1

{|uH(sj)− uG(sj)|+ |gsj(uH)− gsj(uG)|+ |ϕH(sj)− ϕG(sj)|+ |vH(sj)− vG(sj)|

+ |hsj(vH)− hsj(vG)|+ |ωH(sj)− ωG(sj)|+ 4max(|uH(sj)− uG(sj)|, |gsj(uH)− gsj(uG)|,

|ϕH(sj)− ϕG(sj)|, |vH(sj)− vG(sj)|, |hsj(vH)− hsj(vG)|, |ωH(sj)− ωG(sj)|)},

= d2(H,G).

=⇒ d2(G,H) = d2(H,G),

Now to prove (A4)

(A4) =⇒ d2(G, I) ≥ d2(G,H), (5.14)

it is easy to see that |uG(si)−uI(si)| ≥ |uG(si)−uH(si)|, |fsi(uG)−fsi(uI)| ≥ |fsi(uG)−fsi(uH)|

|vG(si)− vI(si)| ≥ |vG(si)− vH(si)|, |gsi(uG)− gsi(uI)| ≥ |gsi(up)− gsi(uH)|, so we have

d2(G, I) =1/8n

n∑
j=1

{|uG(sj)− uI(sj)|+ |gsj(uG)− gsj(uI)|+ |ϕG(sj)− ϕI(sj)|

+ |vG(sj)− vI(sj)|+ |hsj(vG)− hsj(vI)|+ |ωG(sj)− ωI(sj)|+ 4max

(|uG(sj)− uI(sj)|, |gsj(uG)− gsj(uI)|, |ϕG(sj)− ϕI(sj)|, |vG(sj)− vI(sj)|,

|hsj(vG)− hsj(vI)|, |ωG(sj)− ωI(sj)|)},

≥1/8n

n∑
j=1

{|uG(sj)− uH(sj)|+ |gsj(uG)− gsj(uH)|+ |ϕG(sj)− ϕH(sj)|

+ |vG(sj)− vH(sj)|+ |hsj(vG)− hsj(vH)|+ |ωG(sj)− ωH(sj)|+ 4max

(|uG(sj)− uH(sj)|, |gsj(uG)− gsj(uH)|, |ϕG(sj)− ϕH(sj)|, |vG(sj)− vH(sj)|,

|hsj(vG)− hsj(vH)|, |ωG(sj)− ωH(sj)|)},

then we get inequality d2(G, I) ≥ d2(G,H). Similarly we can prove d2(G, I) ≥ d2(H, I), hence

satisfies condition (A4) so we proved this is a valid dmr for T2IFS.
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5.4 Group-Decision-Making with T2IFSs Based on New

Distance Measure

We present an approach to assess various T2IFSs for group D−MG issues using the proposed

distance measurements.

5.4.1 Approach for Distance Measure

Let’s Consider m criteria like {K = k1, k2, k3. . . km} and n alternatives {A = a1, a2, a3...an}
are being evaluated by r D − MRs {DM = Dm1, Dm2, Dm3...Dmr} having weight vector

{W = W1,W2,W3...} where wj ≥ 0, j = 1, 2, 3...n and
∑n

j=1 wj = 1.Consider the rating of

D −MRs as P −MF , S −MF , P −NMF and S −NMF .

Then we describe the following steps for finding best alternatives.

1. Order the information collected for every alternative with respect to the criterion in the

form of P −MF , S −MF , P −NMF , and S −NMF .

2. Calculate the dmr coresponding to D−MRs and the void decision (V), d(DMr, V ), where

V is a decision with P −MF and S −MF as zero and P −NMF and S −NMF as one.

3. To find the maximum value of the dmrs that correspond to the D − MRs preferences,

evaluate the highest dmrs among all alternatives ai, criteria Kj , and their respective

maximum values of the dmrs, and then create the type-2 fermatean fuzzy alternative

ai, (i = 1, 2, ..., n).

4. Compute the dmr for alternatives and void decision d(Pj , V ).

5. Provide ranking to alternatives and obtain the best one.
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Table 5.4.1.1 Linguistic rating and corresponding P −MF and P −NMF value

Grades P-MFV Grades P-NMFV

Extremely week (Ex-We) 0.0 Extremely strong (Ex-St) 1.0

Week (Wk) 0.2 Strong (St) 0.7

Little week (L-Wk) 0.3 Little strong (L-St) 0.6

Average (A-V) 0.4 Average (A-V) 0.5

Little strong (L-St) 0.6 Little week (L-Wk) 0.3

Strong (St) 0.8 Week (Wk) 0.1

Extremely strong (Ex-St) 1.0 Extremely week (Ex-We) 0.0

Table 5.4.1.2 Linguistic rating and corresponding S −MF and S −NMF value

Grades P-MFV Grades P-NMFV

Extremely week (Ex-Wk) 0.0 Extremely strong (Ex-St) 1.0

Week (Wk) 0.2 Strong (St) 0.7

Little week (L-Wk) 0.3 Little strong (L-St) 0.6

Average (A-V) 0.4 Average (A-V) 0.5

Little strong (L-St) 0.6 Little week (L-Wk) 0.3

Strong (St) 0.8 Week (Wk) 0.1

Extremely strong (Ex-St) 1.0 Extremely week (Ex-We) 0.0

Table 5.4.1.4 Distance measure between d2 and N

k1 a1 1.0 1.0 0.875

k1 a2 0.875 0.950 0.0.475

k1 a3 0.475 0.875 0.375

k1 a4 0.675 0.875 0.275

k2 a1 1.0 0.875 0.875

k2 a2 0.575 0.875 0.475

k2 a3 1.0 0.675 0.675

k2 a4 0.875 0.675 0.475

k3 a1 1.0 1.0 0.875

k3 a2 1.0 1.0 1.0

k3 a3 1.0 0.875 0.675

k3 a4 1.0 0.875 0.675

k4 a1 1.0 1.0 0.875

k4 a2 1.0 1.0 1.0

k4 a3 1.0 0.875 0.375

k4 a4 0.675 0.875 0.675
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Table 5.4.1.3 Graded values of the alternative corresponding to each attribute (criteria)

DM1 DM1 DM1 DM1 DM2 DM2 DM2 DM2 DM3 DM3 DM3 DM3

P-MF S-MF P-NMF S-NMF P-MF S-MF P-NMF S-NMF P-MF S-MF P-NMF S-NMF

k1 a1 Ex-St L-St Ex-Wk L-Wk S Ex-St Wk Ex-Wk St L-Wk W L-St

k1 a2 L-St St Wk Wk St L-St E-Wk Wk Wk A-V St A-V

k1 a3 A-V L-Wk A-V L-St St A-V Wk A-V Wk L-Wk St L-St

k1 a4 L-St A-V L-Wk A-V S A-V Wk A-V Wk Ex-Wk St Ex-St

k2 a1 Ex-St St Ex-Wk Wk St L-Wk Wk L-St St L-St Wk L-Wk

k2 a2 L-St L-St A-V A-V St L-St Wk L-Wk Wk A-V St A-V

k2 a3 St Ex-St Wk Ex-Wk L-St L-Wk L-Wk L-St L-Wk L-St L-St L-Wk

k2 a4 St L-St Wk L-Wk L-St L-Wk L-Wk L-St L-Wk A-V L-St A-V

k3 a1 Ex-St L-St Ex-Wk L-Wk St Ex-St Wk Ex-Wk St St Wk Wk

k3 a2 Ex-St L-St Ex-Wk L-Wk St Ex-St Wk Ex-Wk Ex-St St Ex-Wk Wk

k3 a3 Ex-St St Ex-Wk Wk St St Wk Wk L-Wk L-St L-St L-Wk

k3 a4 Ex-St St Ex-Wk Wk St A-V Wk A-V L-Wk L-St L-St L-Wk

k4 a1 Ex-St St Ex-Wk Wk St Ex-St Wk Ex-Wk St A-V Wk A-V

k4 a2 Ex-St St Ex-Wk Wk St Ex-St Wk Ex-Wk Ex-St L-St E-Wk L-Wk

k4 a3 Ex-St L-Wk Ex-Wk L-St L-St St L-Wk Wk L-Wk L-Wk L-St L-St

k4 a4 L-St A-V L-Wk A-V St A-V Wk A-V A-V L-St A-V L-Wk

5.4.2 Mathematical illustration

Take the case of a person who is trying to decide how much money to put into the market. There

are five possible answers (I) a1 is lithium battery firm, (ii) a2 is a pesticides company, (iii) a3

is a multinational enterprise, (iv) a4 is an armaments company, and (v) a5 is a tyre company.

For this, they arranged a specified panel of experts (DM1,DM2, and DM3) whose weight vector

is (0.40, 0.35, 0.25)
T
. Under the T2IFS set, the investor makes a choice based on a number of

factors, including the project risk K1, the revenue analysis K2, the social effect analysis K3, and

the allocated space K4. Tables 5.4.1.1 and 5.4.1.2 display the P −MF , P −NMF , and S−MF ,

S −NMF linguistic grades necessary for this purpose.

1. Table 5.4.1.3 provides the accumulated data of each alternative that corresponds to each

criterion, ordered in terms of the linguistic grades based on the knowledge and experience

of the D −MRs.

2. Determine the value of d(DMk,N) (k = 1, 2, 3) for each possible solution. Table 5.4.1.4

summarises the numbers we use for d2(DMk, V ) in our calculations.

3. Find the highest value of d2(DMk, V ) in Table 4 for all options aj , (j = 1, 2,..., 4)

for each criterion Ki, (i = 1, 2, 3, 4). And hence build the T2FFS alternative, aj =

(Ki((uaj
), gKi(aj)), vaj

, hKi(aj)) as

a1 = K1(0.8, 1.0, 0.1, 0.0),K2(1.0, 0.8, 0.0, 0.1),K3(1.0, 0.6, 0.0, 0.3),K4(1.0, 0.8, 0.0, 0.1).

a2 = K1(0.8, 0.6, 0.0, 0.1),K2(0.8, 0.6, 0.1, 0.3),K3(0.8, 1.0, 0.1, 0.0),K4(0.8, 1.0, 0.1, 0.0).

a3 = K1(0.8, 0.4, 0.1, 0.5),K2(0.8, 1.0, 0.1, 0.0),K3(1.0, 0.8, 0.0, 0.1),K4(1.0, 0.3, 0.0, 0.6).

a4 = K1(0.8, 0.4, 0.1, 0.5),K2(0.8, 0.6, 0.1, 0.3),K3(1.0, 0.8, 0.0, 0.1),K4(0.8, 0.4, 0.1, 0.5).

4. Now, we have computed the recommended distance measurements, d2 from V to aj (j =

1, 2,..., 4) and the results are presented below.The values for d2(a1, V ) are 1.00, d2(a2, V )

are 0.900, d2(a3, V ) are 0.950 and d2(a4, V ) are 0.850.

5. Our research has led us to the conclusion that a1 is the most deserving of our investment

capital. which is coinciding with [129] but our approach is stronger than the previous

exixting because we use inclusion relation in our defined distance measure.
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5.4.3 Comparative analysis

To evaluate the effectiveness of the proposed method in comparison to other existing methods,

the authors carried out comparative studies using interval-valued and T2FSs, along T2IFSs

[16, 68, 129, 135, 143, 155, 166, 167]. Their related findings are presented in Table 5.4.3.1. This

table demonstrates that business a1 is the best to invest in relative to the others, and this finding

aligns with the predicted results. As a result, the recommended technique can be employed more

successfully to address the D −MG problem than other existing methods.

Table 5.4.3.1 comparative analysis

Existing approach score values score values Order of alternatives

a1 a2 a3 a4

[d2] 1.0 0.900 0.950 0.850 a1 ≥ a3 ≥ a2 ≥ a4

[[16]] 0.800 0.800 0.7500 0.7400 a1 ≥ a2 ≥ a4 ≥ a3

[[135]] 0.833 0.604 0.733 0.506 a1 ≥ a3 ≥ a2 ≥ a4

[[68]] 0.676 0.727 0.372 0.471 a2 ≥ a1 ≥ a4 ≥ a3

[[166]] 0.800 0.700 0.650 0.525 a1 ≥ a2 ≥ a3 ≥ a4

[[167]] 0.400 0.400 0.375 0.387 a1 ≥ a2 ≥ a4 ≥ a3

[[155]] 0.181 0.144 0.090 0.117 a1 ≥ a2 ≥ a4 ≥ a3

[[143]] 0.784 0.555 0.470 0.352 a1 ≥ a2 ≥ a3 ≥ a4

[[129]] 1.000 0.962 0.975 0.887 a1 ≥ a3 ≥ a2 ≥ a4

5.4.4 Limitations of the Proposed Method

Type-2 Intuitionistic Fuzzy Sets (T2IFS) extend the concept of Intuitionistic Fuzzy Sets (IFS)

by introducing an additional dimension of uncertainty, providing a more flexible framework for

handling vagueness and ambiguity. However, like any mathematical model, T2IFS have their

limitations. Here are some potential limitations

Increased Complexity:

T2IFS introduce an additional level of complexity compared to traditional IFS, making the

mathematical operations and interpretations more intricate. Handling this increased complexity

may require more computational resources and more sophisticated algorithms.

Data Requirement:

T2IFS may demand a larger amount of data for accurate modeling, especially when con-

sidering the uncertainties associated with both membership and non-membership functions at

two levels. In situations where data is limited, constructing and validating T2IFS models might

be challenging.

Computational Intensity:



Chapter 5. Exploring the Power of Type-2 Intuitionistic Fuzzy Sets in ... 89

Operations involving T2IFS, such as intersection and union, can be computationally inten-

sive. This can be a limitation in real-time applications or scenarios where quick decision-making

is required.

Interpretability Challenges:

Interpreting and communicating the meaning of T2IFS can be more challenging due to the

added dimension of uncertainty. This may hinder the practical adoption of T2IFS in fields where

a straightforward and intuitive understanding of fuzzy sets is essential.

It’s important to note that the limitations mentioned above do not necessarily make T2IFS

unsuitable for all applications. They highlight areas where researchers and practitioners should

exercise caution and carefully consider the trade-offs between the added expressiveness of T2IFS

and the associated challenges. Future research and advancements may address some of these

limitations and further enhance the applicability of T2IFS in various domains.



Chapter 6

Conclusion

The study of FS extensions and IFSs has significantly expanded our ability to accu-

rately model and analyze real-world systems that exhibit uncertainty and imprecision.

By defining various operators and distance metrics, we can manipulate and compare

IFSs, enabling more nuanced and comprehensive analysis. The practical applications

of these extensions and metrics are vast, from D −MG processes to image recognition

and data compression. With the continued development and implementation of these

tools, we can gain deeper insights and make more informed decisions in various fields.

This study further proposes a family ofH−D and E−D for T2FFSs by considering

the P−MF , S−MF , P−NMF , S−NMF , FOU , and V −MF . The favourable features

of these measurements have been carefully explored. A ranking method based on these

measures has also been advocated for overcoming problems with group D−MG, and it

is demonstrated using a numerical example. The suggested method has more fuzziness

and uncertainty since T2FFSs are used instead of already-existing FSs. A different

approach to addressing D−MG concerns has been placed by the studies, and here, we

may also extend the domain that is constrained in intuitionistic fuzzy sets. Therefore,

compared to other existing approaches, the suggested technique can be used effectively

to address the problem of D −MG.

Operation of union and intersection between T1FS, T2FS, IFS and T2IFS is dis-

cussed with the help of examples, to understand the importance of these FSs a com-

parison is made on the basis of dmrs by the aid of examples on each above defined

FSs. However, it is worth noting that the existing dmrs for T2IFSs have limitations.

To address this, a new dmr is proposed specifically tailored for T2IFSs. This measure

overcomes the limitations of the existing one, enabling a more accurate and reliable

comparison of T2IFSs. In conclusion, when faced with decision-making scenarios where

information is ambiguous or uncertain, it is better to utilize T2IFSs. Their ability

90



Chapter 6. Conclusion 91

to consider both membership and non-membership values, along with the proposed im-

proved dmr, allows for a more comprehensive and effective analysis of fuzzy information.

By employing T2IFSs in such conditions, decision-makers can obtain more reliable and

informed outcomes, leading to better decision-making overall.

The study defines the role of T2IFSs in D − MG and introduces a new dmr to

enhance the D −MG process. The practical application of the new dmr is illustrated

through a numerical example. By utilizing the newly proposed dmr, the study found

significantly better results in addressing the D−MG problem compared to the existing

dmrs.

In conclusion, the study of FS extensions and IFSs has greatly expanded our

ability to model and analyze real-world systems with uncertainty and imprecision. By

defining various operators and distance metrics, we can manipulate and compare IFSs,

enabling more comprehensive analysis. This has practical applications in D − MG

processes, image recognition, and data compression, among others. This thesis proposes

a family of Hamming and Euclidean distances for T2FFSs, considering different types of

M−Fs. The favorable features of these measurements have been carefully explored, and

a ranking method based on these measures has been advocated for group D−MG. The

use of T2FFSs adds more fuzziness and uncertainty to the D−MG process, extending

the domain compared to existing approaches. The thesis also addresses the operation

of union and intersection between different types of FSs, namely T1FS, T2FS, IFS,

and T2IFS, highlighting their importance. Furthermore, a new dmr is introduced

specifically for T2IFSs to overcome the limitations of existing measures. The role of

T2IFSs in D −MG is emphasized, and the newly proposed dmr is applied through a

numerical example. The results demonstrate that the suggested technique significantly

outperforms existing measures in addressing D −MG problems.

Overall, this research contributes to the advancement of FS theory by providing

new tools for modeling uncertainty and imprecision. The proposed dmr enhances the

D−MG process and shows promising results. These findings can be valuable in various

fields that require accurate modeling and analysis of complex systems.



Future Scope

Despite the fact that our research met its objectives, there are some substantial unre-

solved problems that we hope to address in future work. More specifically, we propose

to look at the following research problems:

1. To generate a generalised type-n fuzzy set.

2. To provide a distance measure for generalised type-n fuzzy set.

3. To use general type-n fuzzy set in decision making problems.

4. To investigate the geometry type-n fuzzy sets.

Despite the study of various types of fuzzy sets and decision making, there are many

results yet to be formulated.

6.0.1 Advantages, Limitations and Scope of Future Work

Type-n fuzzy sets generalize traditional fuzzy sets by allowing for multiple member-

ship grades, providing a more flexible framework for capturing complex and nuanced

uncertainties. Here are the advantages, limitations, and scope of type-n fuzzy sets:

Advantages:

1. Enhanced Representation of Uncertainty: Type-n fuzzy sets allow for a richer rep-

resentation of uncertainty by accommodating multiple membership grades. This

provides a more nuanced description of the varying degrees of membership and

non-membership.

2. Increased Expressiveness: The additional parameters in type-n fuzzy sets offer in-

creased expressiveness in capturing and modeling complex relationships, especially

in situations where the concept under consideration exhibits multiple aspects or

dimensions.
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3. Flexibility in Modeling: The flexibility of type-n fuzzy sets makes them suitable for

a wide range of applications, from decision-making and control systems to pattern

recognition and information retrieval.

Limitations:

1. Computational Complexity: The increased number of parameters in type-n fuzzy

sets can lead to higher computational complexity, especially in terms of imple-

menting fuzzy set operations and decision-making processes.

2. Data Requirements: Constructing accurate type-n fuzzy sets may require a sig-

nificant amount of data, and obtaining such data might be challenging in some

applications. Insufficient data can affect the reliability of the model.

Scope:

1. Multi-Dimensional Uncertainty Modeling: Type-n fuzzy sets are particularly well-

suited for applications where uncertainties have multiple dimensions or facets. This

makes them applicable in fields such as risk assessment, decision support systems,

and complex system modeling.

2. Dynamic Systems: In systems where uncertainties evolve or change over time,

type-n fuzzy sets can offer a flexible modeling approach that adapts to dynamic

conditions.

3. Control Systems: In control systems, especially those dealing with complex pro-

cesses, type-n fuzzy sets can provide a more accurate representation of uncertainty,

leading to improved control strategies.

It’s important to note that the suitability of type-n fuzzy sets depends on the specific

characteristics of the problem at hand, and their advantages and limitations should be

carefully considered in the context of the application.
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