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ABSTRACT 
 

 

Nonlinear evolutionary equations (NLEEs) are critical tools for describing nonlinear 

phenomena in various scientific fields, such as biology, physics, pattern formation, solitons, 

ecology, heat transfer, chemistry and nonlinear dispersion. Solitary waves, which are 

solutions to NLEEs, maintain their shape while moving at a constant speed, and have 

received significant attention from the scientific community. This research provides, a 

comprehensive understanding of the origins and development of solitons and their behavior 

under different NLEEs. The versatility of solitons is explored, including their applications in 

plasma physics, nonlinear optics, epidemiology, and nonlinear Bose-Einstein condensation. 

NLEEs are mathematical models used to describe the time evolution of various physical, 

biological, and social systems. It is kind of partial differential equations (PDEs) that 

describes how a system changes over time based on the values of its variables and the 

relationship between them. They are often used to study the dynamics of system with 

multiple interacting components, where the behavior of the system as a whole cannot be 

understood by looking at each component separately. When these equations are 

mathematically modeled, it is a strong possibility that it is usually difficult to solve these 

equations analytically. Therefore, it would be challenging for researchers to identify 

analytical or exact solutions to these differential equations. Advanced numerical approaches 

are shown to be the most efficient in these situations for providing an accurate numerical 

solution to these differential equations. 

 

Partial differential equations (PDEs) have been used extensively to model complex 

phenomena like fluid flows, elastic elasticity, and gene mutation. The complicacy of these 

equations is that, these are complex and difficult to derive their analytical solutions. To 

address these difficult problems, advanced numerical techniques including differential 

quadrature, collocation, and finite difference have been developed. The differential 

quadrature method (DQM), one of these methods, has been shown to be extremely effective 

in getting numerical solutions to various kinds of PDEs. DQM, which employs the linear 

summation of a function's values at certain discrete grid points over the issue domain, can be 

thought of as an approximation to a function's derivative. A set of basis functions are used to 

determine the proper weighing factors in the DQM approximation. The weighing coefficients 

can be calculated using a variety of basis functions. 

In this research work, three different techniques, such as Standard B-spline basis function 

with DQM, Crank-Nickolson with DQM using standard B-spline basis function, and particle 

swarm optimisation approach with differential quadrature method using exponential B-spline 

basis function, have been developed. In this study, modified cubic B-spline basis functions 

and exponential B-spline basis functions are used to obtain the weighing coefficient for DQM 

to improve the accuracy of Crank-Nickolson with the differential quadrature method and 

particle swarm optimisation with the differential quadrature method. These developed 

techniques have been implemented on non-linear PDEs to obtain accurate solutions. 
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The obtained results evaluate the effectiveness of the DQM and highlight the capability of 

our method. This finding could be useful in solving a wide range of differential equations 

encountered in various fields of research. 
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CHAPTER-1 

A COMPREHENSIVE INTRODUCTION TO NLEES 

1. INTRODUCTION 

Differential equations are powerful mathematical tools that relate a function to its 

derivatives, accounting for the behavior of the function with respect to other independent 

variables like time, position, or temperature. The process of solving a DEs involves 

determining a function that meets an equation’s conditions while satisfying any given initial 

or boundary constraints, making it a crucial process for understanding and predicting the 

behavior of complex systems. In the engineering and science domains, different 

mathematical models are expressed using various ODEs and PDEs. These differential 

equations are essential tools to define other phenomena in the science area, for instance, 

electromagnetic fields, quantum mechanics, fluid flow diffusion processes, the physical laws 

of structural mechanics, and many more. Because of the importance of these differential 

equations in diverse branches of engineering and sciences and due to the vast applications of 

such equations in distinct fields related to science and engineering, a variety of ODEs and 

PDEs have been solved by researchers. For the purpose of getting solutions to such 

differential equations, different analytical and numerical methods have been in progress. 

When a mathematical model of such equations is framed, there are chances that, most of the 

time, it is bothersome to solve such equations explicitly or analytically. Therefore, fetching 

analytical or exact solutions to such differential equations is quite challenging for 

researchers. This problem indicates a need to find a solution to these differential equations 

by implementing some different techniques; in such situations, advanced numerical methods 

emerge as the most powerful tool to obtain an accurate numerical solution to these 

differential equations. 

 In the absence of an analytical solution, an extensive variety of phenomena must be 

evaluated numerically. Due to the intricacy of the equations, solving nonlinear PDEs can be 

difficult. The significance and simplicity of numerical approaches are emphasized at that 
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time. To determine the outcomes of such complex-natured PDEs that are closest to the true 

value, many numerical approaches have been developed. The solutions to these kinds of 

PDEs are frequently approximated using numerical techniques like the "finite difference 

method," "finite element method," and "differential quadrature method," among others. 

These techniques involve discretizing the problem's domain and employing iterative 

algorithms to find an approximation that solves the equation while allowing for a certain 

amount of error.  

Numerical analysis is a branch of mathematics that focuses on developing efficient numerical 

methods to address such difficult mathematical issues. The present work enhanced numerical 

solutions of nonlinear PDEs using DQM with B-spline basis functions, the Crank Nickolson 

method, and the particle swarm optimization approach. Initial research on the differential 

quadrature method focused on the latter and computed the weighing coefficients using a large 

number of B-spline basis functions. 

The goal is to create a numerical approach for solving nonlinear PDEs. The different 

equations, including the KdV, Burgers, and Fisher’s equations, are essential for structuring 

a variety of mathematical models, which increases their significance in scientific study. 

Researchers can better comprehend these equations behavior and prospective applications 

by devising a numerical method to solve them, which will ultimately help in the creation of 

innovative answers to diverse scientific and engineering problems. 

1.1  NON-LINEAR EVOLUTION EQUATION 

Nonlinear evolution equations (NLEEs) are partial differential equations that dynamically, 

or in terms of both space and time, and through nonlinear systems, explain nonlinear science. 

Nonlinear evolutionary equations are called "nonlinear" because they involve nonlinear 

functions of the variables, which can lead to complex and often unpredictable behaviour of 

the system. They are also called "evolutionary" because they describe how the system 

evolves, taking into account the effects of various factors that influence the system's 

behaviour. NLEEs dynamically describe nonlinear sciences, the space and time two-

dimensional system through the nonlinear systems. NLEEs are a class of nonlinear PDEs 

that have solitons as the solution and a number of other significant characteristics. Nonlinear 

dispersion, pattern formation, solitons, and other nonlinear processes in physics, chemistry, 

biology, and ecology are all described by these equations. As a result, it is characterized as a 

one-of-a-kind instrument for understanding scientific and technological phenomena.  
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1.1.1  Different types of solutions of nonlinear evolutionary equations 

NLEEs have an extensive range of applications in chemistry, biology, physics, and 

engineering. Here are some applications of these equations based on their different types of 

solutions: 

1.1.1.1 Periodic solutions: A periodic solution is one that repeats itself after a certain 

amount of time. Examples of equations with periodic solutions include the Kuramoto-

Sivashinsky, Ginzburg-Landau, and Swift-Hohenberg equations. They are commonly used 

to model natural phenomena like flame fronts, chemical reactions, and turbulence in fluid 

dynamics. Identifying and analysing periodic solutions is essential to understanding the 

behavior of complex systems in nature. 

1.1.1.2 Travelling wave solutions: Travelling wave solutions are types of soliton solutions 

that maintain their shape and speed while propagating through space. Equations such as KdV, 

and SG have travelling wave solutions. They are made to simulate how light and waves move 

through optical fibers and through water, respectively. Travelling wave solutions also explain 

the spread of epidemics and nerve impulses. 

1.1.1.3 Shock waves: A shock wave is a sudden change in the amplitude or speed of a wave. 

Equations such as the Burgers equation and the Riemann problem have shock wave solutions. 

The Burgers equation, which has shock wave solutions, is used to model traffic flow and the 

behavior of fluids under high pressure. In addition, shock wave solutions are also used to 

explain the behavior of supernovae and other explosive events. 

1.1.1.4 Multi soliton solutions: Multi solitons are solutions consisting of multiple solitons 

that maintain their shape and speed over long distances. Equations with multi soliton 

solutions include the KdV, and SG equations. Multi soliton solutions have applications in 

the study of magnetic flux tube dynamics, Bose-Einstein condensate behavior, and quantum 

fluid dynamics. 

In summary, NLEEs can have a variety of solution types, including periodic solutions, 

travelling wave solutions, shock waves, soliton solutions, chaotic solutions, and multi-soliton 

solutions. The specific type of solution that arises depends on the physical system being 

modelled and the properties of the equation governing that system. 
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1.1.2  Types of nonlinear Evolutionary Equations 

There are many examples of nonlinear evolutionary equations that are used to model a 

extensive range of biological, physical, and social phenomena. Here are a few examples: 

1.1.2.1 The Fisher-Kolmogorov equation: This is a nonlinear PDE that is used to model 

the spread of a population over time. It is often used to study the dynamics of biological 

populations, such as the spread of a disease or the growth of a population. 

   𝑢𝑡 = 𝑣𝑢𝑥𝑥 + 𝜌𝑓(𝑢), 𝑡 ≥ 0, 𝑥 ∈ (−∞,∞)                                                    (1.1) 

Where 𝑢 is the velocity, 𝑥 represents the coordinates in space, 𝑡 denotes the time, v is a 

constant that denotes the coefficient of diffusion, 𝑓 depicts nonlinear reaction term and 𝜌 is 

a term for reaction factor. 

             1.1.2.2 The Korteweg–de Vries equation: This is a nonlinear PDEs that describes the 

propagation of waves in certain types of media, such as shallow water waves. It is used in 

diverse applications, including plasma physics, fluid dynamics, and optics. 

∂𝑢

∂𝑡
(𝑥, 𝑡) + 𝜀𝑢(𝑥, 𝑡)

∂𝑢

∂𝑥
(𝑥, 𝑡) + 𝜇

∂3𝑢

∂𝑥3
(𝑥, 𝑡) = 0, 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑡 > 0                       (1.2)         

             When 𝑎, 𝑏 stands for the range being considered, 𝑢 is the velocity, 𝑥 stands for the 

coordinates in space, 𝑡 is for time, and 𝜀 and 𝜇 are positive parameters.  

1.1.2.3 The Schrodinger equation: This is a nonlinear PDE that describes the behavior of 

quantum mechanical systems. It has applications in disciplines including chemistry, 

materials science, and electronics and is used to study the behavior of particles at the atomic 

and subatomic level. 

 𝑢𝑡𝑡 − 𝑢𝑥𝑥 + sin(𝑢) = 0,−∞ < 𝑥 < ∞,    0 ≤ 𝑡 < ∞                                             (1.3)         

            where 𝑢 is the velocity, 𝑡 represents the time and 𝑥 denotes the space coordinate in the 

direction of propagation. 

1.1.2.4 Burgers Equation: Burger’s equation is an important nonlinear equation that is 

relevant in a variety of disciplines of study. It is one of the simplest models, or PDEs, for 

waves with diffusive terms in liquid components in nonlinear mathematical models. Burgers 

created this equation in 1948 to link the two inverse effects of convection and dispersion in 

order to obtain insight into the study of turbulence. On the other hand, turbulence is more 
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perplexing because it is both 3D and clearly irregular. Burgers one-dimensional equation can 

be found in many physical problems, including models of traffic flow and 1D turbulence, as 

well as waves in fluid-filled elastic tubes and shock and sound waves in viscous media. 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 𝑣

𝜕2𝑢

𝜕𝑥2
                                                                                                           (1.4) 

Where 𝑢 is the velocity, 𝑥 represents the coordinates in space, 𝑡 denotes the time, and 𝑣 

depicts the kinetic viscosity or the diffusion coefficient. 

1.1.3 Importance of the Non-linear Evolution Equation 

Analytical solutions to nonlinear evolution equations (NLEEs) are essential in nonlinear 

physical research because they may accurately explain a variety of real phenomena, 

including vibrations, solitons, and finite-speed propagation. Exact solutions may be used to 

explain the key characteristics in diverse scientific, technological, and engineering 

applications, and they can also be used to develop and solve NLEEs when evaluating 

computer algebra software packages. Many chemistry, physics, and biological equations 

have empirical parameters or empirical functions, which is crucial. Exact solutions help 

researchers plan and execute experiments in order to ascertain these parameters or functions 

by simulating natural situations. However, not all interest equations can be solved. As a 

result, familiarity with all conventional and newly created methods for solving these models, 

as well as the development of new approaches, has become increasingly crucial. As a result, 

there has been a lot of research into developing techniques to solve not just NLEEs but also 

other forms of ODEs and PDEs. 

The study of these non-linear evolution equations (NLEEs) also plays an important role in 

various scientific applications, like biophysics [1], The DNA lattice is used as an example 

in the study of soliton. A protein experiences structural changes that lead to intracellular 

communication as it gets closer to soliton. The transmission of solitons on the DNA lattice 

is shown in Feynman diagrams, which represent the persistence of cellular life [2]. 

Additionally, solitary waves are used to look at a number of biophysical processes. A single 

wave also appears in the investigation of the DNA molecule's nonlinear dynamics [3]. A field 

theory both classical and quantum field theory rely heavily on solitons and their relatives, 

such as instantons [4]. Field theory is made simple to understand by topological solitons [5], 

such as monopoles, kinks, vortices, and skyrmions. 

Plasma Physics: The research on solitary waves is linked to the idea of plasma physics, 

which involves a high number of charged particles. The KdV equation, for example, defines 
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the local ion density, which reflects the shift in charge from neutral. The KP equation, 

variations of the KdV equation, and the KP equation are additional equations used to 

investigate plasma physics and explain solitons and solitary wave solutions. Furthermore, 

soliton in plasma is investigated in a variety of settings, including the interaction of soliton 

in collision less plasma [6], soliton stability in hydrodynamics and plasma [7], and ion-

acoustic solitons in plasma [8].  

Fluid dynamics: Fluid dynamics problems are studied using solitary waves. Solitary waves 

may be found in deep water, as demonstrated by Vladimir Zakharov's work [9]. In order to 

examine these waves, it is necessary to develop the nonlinear Schrodinger equation (NLSE). 

Numerous fluid dynamics models, such as the theory of non-propagating surface waves, 

dispersive shock waves, and tidal bores, have created solitary wave solutions. Solenoids [10], 

small amplitude gravity capillary waves as envelope soliton solutions [11], and the soliton-

mean field theory to describe the propagation of solitons in macroscopic hydrodynamic flow 

are all examples of solenoids. 

Optical fiber: Light propagates as solitons in optical fibers [12]. Solitons, or data packets, 

are used for the optical cable transmission of the data. Solitons enable a high-speed, high-

bandwidth network since they move at the speed of light. High-speed optical fibre 

communications can benefit from optical soliton due to this characteristic [13]. Furthermore, 

it has applications in a number of disciplines connected to fiber optics, such as soliton 

photonic switches, which exploit the mechanism of spatial soliton position shift following 

collision for optical switching. Optical logic gates may also be designed using soliton 

trapping in optical fiber [14]. 

Josephson Junctions: The Josephson junction [15] is a nonlinear oscillator made up of two 

weakly coupled superconductors divided by a small nonconductive layer that allows 

electrons to pass through. The propagation of electromagnetic waves between two 

superconductors may be analyzed as solitary waves. Mechanical circuits, such as SQUIDs 

(superconducting quantum interference devices), are made with these junctions. The Bose 

Einstein condensate method (BEC) was first demonstrated by Bose and Einstein in 1924. At 

very low temperatures, a small fraction of the particles in a diluted base gas can exist in the 

same quantum state, known as BEC. The macroscopic dynamics of BEC near absolute zero 

are simulated using the Gross-Pitaevskii equation [16, 17]. BECs were accomplished 

experimentally in 1995 [18, 19] by cooling atoms of diluted alkali vapours to incredibly low 

temperatures on the order of fractions of kelvin. 
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1.2 SOLITONS 

In the shallow water of the Great Britain Canal in 1834, a Scottish naval engineer named 

John Scott Russell [1] observed a "Great wave of translation." Solitons are a type of non-

dispersive long wave that travels in packet form at a constant velocity. They are also known 

as permanent-shaped shallow water waves. When a soliton collides with another soliton, its 

form remains constant, which is a unique characteristic. Solitons have attracted the attention 

of physicists, mathematicians, and engineers owing to their tenacity and practical utility. 

Soliton is a solution for nonlinear PDEs. The types of solitons are Kink solitons, breather 

solitons, gap solitons, envelope solitons, and solitary waves with discontinuous derivatives. 

This research explores better numerical approximations of non-linear PDEs by implementing 

DQM based on different kinds of test functions, including B-spline basis functions. This 

research work intends to fetch numerical approximations of non-linear PDEs using different 

test functions, including a class of B-spline basis functions. For instance, the main core of 

this research work is finding a numerical approximation of the KdV equation, Burgers 

equation and Fishers equation regarding one and two dimensions. The importance of these 

equations increases as they serve the purpose of framing different mathematical models and 

have meaningfulness in other branches of science and engineering. Literature is explored in-

depth to gain knowledge regarding the equations mentioned above. A brief literature review 

of such equations is discussed ahead. 

1.3 DIFFERENTIAL QUADRATURE METHOD 

To get approximation findings of nonlinear PDEs, several numerical approaches has been 

developed during the last few decades, for example “finite difference method”, “finite 

element method”, “finite volume method”, “collocation method”, etc. However, one of the 

most advanced and useful numerical approaches for obtaining the results of various nonlinear 

PDEs is DQM. 

DQM is a well-known numerical technique, is employed to solve partial differential 

equations (PDEs). Bellman and Casti [20, 21] presented this technique in the 1970s. This 

technique underwent revision in the 1980s [22] and shown to be a useful numerical approach 

to issues in the physical and engineering sciences  [23]. Due to its properties of quick 

convergence, high accuracy, and computational power, it is currently a well-known 

numerical approach. Professor Chang Shu [24] has produced a book on DQM and its use in 

general engineering up to the year 1999. The weighting coefficient formulation enhanced by 
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Quan and Chang [25] which is the most important component of DQM. It is effectively 

applied to estimate the weighting coefficients using a variety of basis functions, including B-

spline functions [26], Lagrange interpolation polynomials, Fourier expansion-based 

functions, polynomial-based functions [27], radial basis functions [28], trigonometric B-

spline functions [29], exponential B-spline functions [30], hyperbolic B-spline functions, 

sinc function etc. 

A number of basis functions have been used in literature with DQM. The B-spline DQM is 

a significant numerical approach to obtain solutions for PDEs. There has been a lot of work 

described in the literature for obtaining numerical approximations of nonlinear PDEs using 

various types, orders, and degrees of B-spline DQM, some of which are presented here. 

Bashan et al. presented modified cubic B-spline [38], modified quintic B-spline [39], and 

Crank-Nicolson quintic B-spline [40] with DQM. Korkmaz and Dag presented cubic B-

Spline[32], quartic B-spline [41] and sinc functions [42] with DQM. Tamsir et al. [43, 44] 

presented exponential modified cubic B-spline DQM. Arora et al. [36], [45], [46] presented 

modified trigonometric B-spline DQM. Shukla et al. presented  cubic B-splines [47], 

exponential modified cubic B-spline [48] DQM. Kapoor et al. presented modified uniform 

algebraic hyperbolic (UAH) tension B-spline [49], modified quartic hyperbolic B-spline [50] 

and Barycentric Lagrange interpolation basis [51]  with DQM. Kumar et al. [52] used radial 

basis functions with DQM. 

The differential quadrature method (DQM) is a well-known numerical methodology [31] that 

evolved from the Gauss quadrature numerical integration approach, which approximates a 

defined integral using a weighted sum of integrand values at a set of nodes in the form of: 

∫  
𝑏

𝑎

𝑓(𝑥)𝑑𝑥 ≈∑  

𝑁

𝑗=1

𝑤𝑗𝑓(𝑥𝑖) 

Nodes are 𝑥𝑖; 𝑖 = 1,2, … ,𝑁 and weight coefficients are 𝑤𝑗. Bellman et al. [21] expanded 

Gauss quadrature to determine the derivatives of all kinds of orders of differentiable 

functions, which they named differential quadrature. DQM allows a space derivative to be 

expressed as a weighted sum of the values of the functions at the knots (similar to nodes in 

Gaussian quadrature) across the domain. 

The fact that a function 𝑢(𝑥, 𝑡) may be approximated using interpolation at 𝑁 discrete grid 

points is well-known. The function 𝑢(𝑥, 𝑡) can be defined in the form: 
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𝑢(𝑥, 𝑡) =∑  

𝑁

𝑗=1

𝑐𝑗𝑢(𝑥𝑖, 𝑡), 1 ≤ 𝑖 ≤ 𝑁 

𝑢(𝑥𝑖, 𝑡)  is the value of the function 𝑢(𝑥, 𝑡) at any knot point 𝑥𝑖 in the domain [𝑎, 𝑏], where 

𝑐𝑗 is the basis function. Since of DQM, the first derivative of the same function may be 

expressed as, 

∂𝑢(𝑥𝑖, 𝑡)

∂𝑥
≈∑  

𝑁

𝑗=1

𝑎𝑖𝑗𝑢(𝑥𝑖, 𝑡), 1 ≤ 𝑖 ≤ 𝑁 

Similar to the first derivative, the second derivative can be computed as 

∂2𝑢(𝑥𝑖, 𝑡)

∂𝑥2
≈∑  

𝑁

𝑗=1

𝑏𝑖𝑗𝑢(𝑥𝑖, 𝑡), 1 ≤ 𝑖 ≤ 𝑁 

where 𝑎𝑖𝑗 and 𝑏𝑖𝑗 are weight coefficients to be calculated using an appropriate technique. 

Several partial and ordinary differential equations have been solved using DQM, with weight 

coefficients computed using Lagrange polynomials [32], cubic B-splines [33], modified 

cubic B-splines [34, 35], trigonometric B-splines [36], quintic B-splines [37], and so on. 

1.4 B-SPLINE BASIS FUNCTION 

Mathematical models of most of the sciences and engineering problems and phenomena are 

expressed in terms of DEs, either ordinary or partial, and as a system of initial and boundary 

value problems, either linear or nonlinear. These equations have been intensively investigated 

in the literature as per their applicability in engineering and distinct areas such as quantum 

mechanics, electromagnetic fields, fluid flow diffusion, etc. Since finding an analytical solution 

to these equations is difficult, advanced numerical methods must be utilized. There are a variety 

of numerical techniques used for solving PDEs, including the collocation method, DQM, and 

FEM. When it comes to numerical aspects, in the subject of approximation theory, For the 

purpose of addressing BVP and PDEs, the B-spline basis function plays a key role. In the realm 

of mathematics, Schoenberg [53] developed the B-spline ('B' stands for Basis) in 1946, 

characterizing a uniform piecewise polynomial approximation. The term "B-spline" is an 

abbreviation for "basis spline." A least supported spline function in terms of degree, 

smoothness, and domain partition is B-Spline. 

Consider the problem of finding a polynomial that passes through the points whose function 

values are given. For only two points, there exists a linear polynomial, but if the number of 

points doubles, a cubic polynomial can be fitted, and so on. Thus, with an increase in the number 
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of data points, the degree of polynomial also increases. Thus, with a large number of points, a 

higher degree of polynomial emerges, which is difficult to work with. This situation can be 

tackled with the use of a piecewise polynomial. A piecewise polynomial is a polynomial that 

approximates the function over some part of the domain. This approximation allows us to 

construct an exact approximation, but since the portion of approximated polynomials is not 

smooth, the obtained function is not smooth at the point where the two piecewise polynomials 

are joined. To resolve this problem, splines are used. 

The knot 𝑥𝑖 sequence is used in order to define the basic function. Let 𝑋 be a set of consisting 

of 𝑁 + 1 non-decreasing real numbers 𝑥0 ≤ 𝑥1 ≤ 𝑥2 ≤. . . ≤ 𝑥𝑛−1 ≤ 𝑥𝑛. The set 𝑋 signifies the 

working region of the domain to define the B-spline basis, the 𝑖𝑡ℎ knot span is defined by the 

half interval [𝑥𝑖, 𝑥𝑖+1] and the knot series represents the working region of the real number line.  

The knot vectors or the knot series are called as uniform if the knots are uniformly distributed 

(i.e., 𝑥𝑖+1 − 𝑥𝑖 is a constant for 0 ≤ 𝑖 ≤ 𝑛); otherwise, it is said to be non-uniform. Having 

degree r, Each B-spline function of covers 𝑟 + 1 knots or r intervals. Schumaker [54] expressed 

the B-spline basis functions based on the concept of divided differences. Cox [55] and Boor[56] 

separately discovered a recurrence relation for calculating B-spline basis functions, in the 1970s. 

The following discussed formula for the 𝑝𝑡ℎ B-spline basis function having 𝑟𝑡ℎ degree proposed 

by Boor in a recursive way by utilising Leibnitz’ theorem as follows: 

𝐵𝑝,𝑟(𝑥) = 𝑉𝑝,𝑟𝐵𝑝,𝑟−1(𝑥) + (1 − 𝑉𝑝+1,𝑟)𝐵𝑝+1,𝑟−1(𝑥), 𝑓𝑜𝑟 𝑟 ≥ 1                                                         (1.5) 

Here, 𝑉𝑝,𝑟 = (
𝑥−𝑥𝑟

𝑥𝑝+𝑟−𝑥𝑟
) 

Cox de-Boor recursion formula expressed as in above form. Here 𝐵𝑝,𝑟(𝑥) define a 𝑝𝑡ℎ  B-spline 

basis function having degree 𝑟𝑡ℎ. By using this formula, it is shown that B-spline basis functions 

of any degree can be defined as a linear combination of basis functions of lower degrees. 

Zero-degree B-spline is whose value is 1 in a half open internal and otherwise it is zero defined 

as a linear combination of basis functions of lower degrees. 

By putting 𝑟 = 1 in the recursive formula using zero-degree B-spline formula. B-spline having 

First degree also called as linear B-spline. 

The value of the function can be obtained for linear B-spline can be represented as: 

𝐵𝑖,1(𝑥) =

{
 
 

 
 

𝑥 − 𝑥𝑖
𝑥𝑖+1 − 𝑥𝑖

          𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1]

𝑥𝑖+2 − 𝑥

𝑥𝑖+2 − 𝑥𝑖+1
           𝑥 ∈ [𝑥𝑖+1, 𝑥𝑖+2] 

0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                             (1.6) 
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Using the value of linear B-spline and for 𝑟 = 2 in the recursive formula, B-spline basis 

function of degree second given as: 

𝐵𝑖,2(𝑥) =

{
 
 
 

 
 
 

(𝑥 − 𝑥𝑖)
2

(𝑥𝑖+2 − 𝑥𝑖)(𝑥𝑖+1 − 𝑥𝑖)
                                                                  𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1]

(𝑥 − 𝑥𝑖)(𝑥𝑖+2 − 𝑥)

(𝑥𝑖+2 − 𝑥𝑖)(𝑥𝑖+2 − 𝑥𝑖+1)
+

(𝑥𝑖+3 − 𝑥)(𝑥 − 𝑥𝑖+1)

(𝑥𝑖+3 − 𝑥𝑖+1)(𝑥𝑖+2 − 𝑥𝑖+1)
    𝑥 ∈ [𝑥𝑖+1, 𝑥𝑖+2]  

                                       
(𝑥𝑖+3 − 𝑥)

2

(𝑥𝑖+3 − 𝑥𝑖+1)(𝑥𝑖+3 − 𝑥𝑖+2)
                                                  𝑥 ∈ [𝑥𝑖+2, 𝑥𝑖+3]                               

               0                                                                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1.7) 

The cubic B-spline basis function is third degree B-spline is given by formula   

𝐵𝑖,3(𝑥) =
1

ℎ3

{
 
 

 
 
                                  (𝑥 − 𝑥𝑖−2)

3                                                𝑥 ∈ [𝑥𝑖−2, 𝑥𝑖−1]                            

                   (𝑥 − 𝑥𝑖−2)
3 − 4(𝑥 − 𝑥𝑖−1)

3                  𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖]                   

(𝑥𝑖+2 − 𝑥)
3 − 4(𝑥𝑖+1 − 𝑥)

3                  𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1]

          (𝑥𝑖+2 − 𝑥)
3                                             𝑥 ∈ [𝑥𝑖+1, 𝑥𝑖+2]  

               0                                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(1.8) 

From the definition given by (4), at the nodal points the values of 𝐵𝑖(𝑥) can be obtained, on 

differentiating with respect to 𝑥 first and second derivative values of 𝐵𝑖(𝑥) can be obtained. 

Table 1.1 provides the value, 𝑢 =
3

ℎ
 , at the nodal points the values of 𝐵𝑖(𝑥) and its

 

derivatives. 

Table 1.1: At the nodal points, value of 𝐵𝑖(𝑥)for cubic B-spline and its derivatives. 

The fourth degree B-spline basis function known as quartic B-spline is given by 

              

𝐵𝑖,4(𝑥) =
1

ℎ4

{
  
 

  
 

    
     (𝑥 − 𝑥𝑖−2)

4                                                                𝑥 ∈ [𝑥𝑖−2, 𝑥𝑖−1]

(𝑥 − 𝑥𝑖−2)
4 − 5(𝑥 − 𝑥𝑖−1)

4                                      𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖]     

(𝑥 − 𝑥𝑖−2)
4 − 5(𝑥 − 𝑥𝑖−1)

4 + 10(𝑥 − 𝑥𝑖)
4     𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1]  

    (𝑥𝑖+3 − 𝑥)
4 − 5(𝑥𝑖+2 − 𝑥)

4                                           𝑥 ∈ [𝑥𝑖+1, 𝑥𝑖+2]           

      (𝑥𝑖+3 − 𝑥)
4                                                                       𝑥 ∈ [𝑥𝑖+2, 𝑥𝑖+3]          

0                                                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

        (1.9) 

This basis function is non-zero on five knot spans. From the definition given by (5), the values of  

𝐵𝑖(𝑥)at the nodal points can be obtained. On differentiating with respect to 𝑥, Its three derivative 

values can be obtained in an identical approach. Using the value 𝑣 =
4

ℎ
 , at the nodal points, the 

value of 𝐵𝑖(𝑥) and its derivatives may be tabulated as in Table 1.2. 

𝑥 𝑥𝑖−2 𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1 𝑥𝑖+2 

𝐵𝑖(𝑥) 0 1 4 1 0 

        𝐵𝑖
′(𝑥) 0 𝑢 0 −𝑢 0 

𝐵𝑖
′′(𝑥) 0 2

3
𝑢2 −

4

3
𝑢2 

2

3
𝑢2 

0 
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Table 1.2: At the nodal points, value of 𝐵𝑖(𝑥) for quartic B-spline and its derivatives. 

Extending the definition, the quintic B-spline basis function can be defined as follows:  

𝐵𝑖,5(𝑥) =
1

ℎ5

{
 
 
 

 
 
 

    
     (𝑥 − 𝑥𝑖−3)

5                                                                                    𝑥𝑖 ∈ [𝑥𝑖−3, 𝑥𝑖−2]

(𝑥 − 𝑥𝑖−3)
5 − 6(𝑥 − 𝑥𝑖−2)

5                                                             𝑥𝑖 ∈ [𝑥𝑖−2, 𝑥𝑖−1]   

       (𝑥 − 𝑥𝑖−3)
5 − 6(𝑥 − 𝑥𝑖−2)

5 + 15(𝑥 − 𝑥𝑖−1)
5           𝑥𝑖  ∈ [𝑥𝑖−1, 𝑥𝑖]

(𝑥𝑖+3 − 𝑥)
5 − 6(𝑥𝑖+2 − 𝑥)

5 + 15(𝑥𝑖+1 − 𝑥)
5                            𝑥𝑖 ∈ [𝑥𝑖 , 𝑥𝑖+1]            

     (𝑥𝑖+3 − 𝑥)
5 − 6(𝑥𝑖+2 − 𝑥)

5                                                               𝑥𝑖 ∈ [𝑥𝑖+1, 𝑥𝑖+2]               

         (𝑥𝑖+3 − 𝑥)
5                                                                                 𝑥𝑖 ∈ [𝑥𝑖+2, 𝑥𝑖+3]     

    0                                                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1.10) 

 

The definition provides the values of 𝐵𝑖,5(𝑥) at different values of nodes. In an identical 

approach, the value of its four derivatives can be obtained on differentiating with respect to 𝑥. 

Table 1.3 provides the value of derivatives considering 𝜔 =
5

ℎ
. 

Table 1.3: At the nodal points, value of 𝐵𝑖(𝑥)for quintic B-spline and its derivatives. 

      𝑥 𝑥𝑖−3 𝑥𝑖−2 𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1 𝑥𝑖+2 
𝑥𝑖+3 

𝐵𝑖(𝑥) 0 1 11 11 1 1 0 

    𝐵𝑖
′(𝑥) 0 𝑣 3𝑣 −3𝑣 𝑣 −3𝑣 0 

 𝐵𝑖
′′(𝑥) 0 3

4
𝑣2 −

3

4
𝑣2 −

3

4
𝑣2 

3

4
𝑣2 

3

4
𝑣2 

0 

 𝐵𝑖
′′′(𝑥)

 
0 3

8
𝑣3 −

9

8
𝑣3 

9

8
𝑣3 

3

8
𝑣3 −

3

8
𝑣3 

0 

𝑥 𝑥𝑖−3 𝑥𝑖−2 𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1 
𝑥𝑖+2 𝑥𝑖+3 

    𝐵𝑖(𝑥) 0 1 26 66 26 1 0 

𝐵𝑖
′(𝑥) 0 𝜔 10𝜔 0 −10𝜔 −𝜔 0 

𝐵𝑖
′′(𝑥) 0 4

5
𝜔2 

8

5
𝜔2 −

24

5
𝜔2 

8

5
𝜔2 

4

5
𝜔2 

0 

𝐵𝑖
′′′(𝑥)

 
0 12

25
𝜔3 −

24

25
𝜔3 

0 24

25
𝜔3 −

12

25
𝜔3 

0 

𝐵𝑖
𝑖𝑣(𝑥)

 
0 24

125
𝜔4 −

96

125
𝜔4 

144

125
𝜔4 −

96

125
𝜔4 

24

125
𝜔4 

0 
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Figure 1.1 Different kinds of B-spline basis function. 

The degree of B-spline can be extended as sixth degree, seventh degree, eighth degree, ninth 

degree and so on. Use of B-spline up to tenth degree exist in literature. Other than the standard 

B-spline there are different types of B-splines which can be used according to the considered 

function such as trigonometric B-spline, exponential B-spline, and so on. 

1.5  TRIGONOMETRIC B-SPLINE 

A trigonometric B-spline 𝑇𝑖(𝑥), is characterized as a spline function that has minimum supports 

for a given degree, smoothness, and space partition. Having degree 𝑟, Each trigonometric B-

spline function covers 𝑟 + 1 knots or 𝑟 intervals and is defined as follows [46], [57]: 

 

𝑇𝑖
𝑟(𝑥) =

sin
𝑥 − 𝑥𝑖
2

sin
𝑥𝑖+𝑟−1 − 𝑥𝑖

2

𝑇𝑖
𝑟−1(𝑥) +

sin
𝑥𝑖+𝑟 − 𝑥

2

sin
𝑥𝑖+𝑟 − 𝑥𝑖+1

2

𝑇𝑖+1
𝑟−1 

for 𝑟 =  2,3,4,…. .  

This recurrence relation demonstrates that the trigonometric B-spline basis elements of a higher 

degree can be steadily assessed using of basis of lower degree. 𝑇𝑖(𝑥) is a piecewise 

trigonometric function with geometric properties like non-negativity, partition of unity and 𝐶∞ 

continuity.  

1.5.1 Three degree or Cubic Trigonometric B-Spline 

The cubic trigonometric B-spline basis function 𝑇𝑖(𝑥), for 𝑖 =  −1,0, . . . , 𝑁 +  1 can be 

expressed in the following form [58] : 
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𝑇𝑖
3(𝑥)

=
1

𝑥

{
 
 

 
 

𝑝3(𝑥𝑖),                                                                                                    𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1]

𝑝(𝑥𝑖)(𝑝(𝑥𝑖)𝑞(𝑥𝑖+2) + 𝑞(𝑥𝑖+3)𝑝(𝑥𝑖+1)) + 𝑞(𝑥𝑖+4)𝑝
2(𝑥𝑖+1),       𝑥 ∈ [𝑥𝑖+1, 𝑥𝑖+2]

𝑞(𝑥𝑖+4)(𝑝(𝑥𝑖+1)𝑞(𝑥𝑖+3) + 𝑞(𝑥𝑖+4)𝑝(𝑥𝑖+2)) + 𝑝(𝑥𝑖)𝑞
2(𝑥𝑖+3),      𝑥 ∈ [𝑥𝑖+2, 𝑥𝑖+3]

𝑞3(𝑥𝑖+4),                                                                                                    𝑥 ∈ [𝑥𝑖+3, 𝑥𝑖+4]

0,                                                                                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 

(1.11)     

Where 𝑝(𝑥𝑖) = sin (
𝑥−𝑥𝑖

2
) , 𝑞(𝑥𝑖) = sin (

𝑥−𝑥𝑖

2
) , 𝜔 = sin (

ℎ

2
) sin (ℎ)sin (

3ℎ

2
) and ℎ =

𝑏−𝑎

𝑛
. 

1.6  EXPONENTIAL B-SPLINE:  
For a uniform mesh Γ with the knots 𝑥𝑖 defined on [𝑎, 𝑏] if 𝐵𝑖(𝑥) be the B-splines at the points 

of Γ together with knots 𝑥𝑖, 𝑖 = −3,−2,−1,𝑁 + 1, 𝑁 + 2,𝑁 + 3 outside the interval [𝑎, 𝑏] and 

a finite support on each of the four consecutive intervals [𝑥𝑖 + 𝑟ℎ, 𝑥𝑖 + (𝑟 + 1)ℎ]𝑟=−3
0 , 𝑖 =

0,… ,𝑁 + 2. The function formula can be expressed as [59, 60]: 

       𝐵𝑖(𝑥) =

{
  
 

  
 𝑏2 [(𝑥𝑖−2 − 𝑥) −

1

𝑝
(sinh (𝑝(𝑥𝑖−2 − 𝑥)))]   𝑥 ∈ [𝑥𝑖−2, 𝑥𝑖−1]

𝑎1 + 𝑏1(𝑥𝑖 − 𝑥) + 𝑐1𝑒
𝑝(𝑥𝑖−𝑥) + 𝑑1𝑒

−𝑝(𝑥𝑖−𝑥)   𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖]

𝑎1 + 𝑏1(𝑥 − 𝑥𝑖) + 𝑐1𝑒
𝑝(𝑥−𝑥𝑖) + 𝑑1𝑒

−𝑝(𝑥−𝑥𝑖)   𝑥 ∈ [𝑥𝑖, 𝑥𝑖+1]

𝑏2 [(𝑥 − 𝑥𝑖+2) −
1

𝑝
(sinh (𝑝(𝑥 − 𝑥𝑖+2)))]   𝑥 ∈ [𝑥𝑖+1, 𝑥𝑖+2]

0  otherwise. 

             (1.12) 

here, 

𝑝 = max
0≤𝑖≤𝑁

 𝑝𝑖, 𝑠 = sinh (𝑝ℎ), 𝑐 = cosh (𝑝ℎ)

𝑏2 =
𝑝

2(𝑝ℎ𝑐 − 𝑠)
, 𝑎1 =

𝑝ℎ𝑐

𝑝ℎ𝑐 − 𝑠
, 𝑏1 =

𝑝

2
[
𝑐(𝑐 − 1) + 𝑠2

(𝑝ℎ𝑐 − 𝑠)(1 − 𝑐)
] ,

𝑐1 =
1

4
[
𝑒−𝑝ℎ(1 − 𝑐) + 𝑠(𝑒−𝑝ℎ − 1)

(𝑝ℎ𝑐 − 𝑠)(1 − 𝑐)
] , 𝑑1 =

1

4
[
𝑒𝑝ℎ(𝑐 − 1) + 𝑠(𝑒𝑝ℎ − 1)

(𝑝ℎ𝑐 − 𝑠)(1 − 𝑐)
]

 

𝐵𝑖(𝑥) is twice continuously differentiable. From the Table 1.4, the values of 𝐵𝑖(𝑥), 𝐵𝑖
′(𝑥) and 

𝐵𝑖
′′(𝑥) at the knots 𝑥 's are obtained. 

                   x 𝑥𝑖−2 𝑥𝑖−1 𝑥𝑖 𝑥𝑖+1 𝑥𝑖+2 

                 𝐵𝑖(𝑥) 0 𝑠 − 𝑝ℎ

2(𝑝ℎ − 𝑠)
 

1 𝑠 − 𝑝ℎ

2(𝑝ℎ𝑐 − 𝑠)
 

0 
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Table 1.4: Exponential B-spline values 

1.6.1  Exponential Cubic B-Spline: 

For the uniform mesh 𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑛 = 𝑏, the exponential cubic B-spline, 𝐵𝑖(𝑥), is 

presented as a piecewise polynomial function as given below: 

𝐵𝑖(𝑥) =

{
 
 
 
 

 
 
 
 𝑏2 ((𝑥𝑖−2 − 𝑥) −

1

𝑝
(sinh(𝑝(𝑥𝑖−2 − 𝑥)))) [𝑥𝑖−2, 𝑥𝑖−1]

𝑎1 + 𝑏1(𝑥𝑖 − 𝑥) + 𝑐1 exp(𝑝(𝑥𝑖 − 𝑥)) + 𝑑1 exp(𝑝(𝑥𝑖 − 𝑥)) [𝑥𝑖−1, 𝑥𝑖]

 𝑎1 + 𝑏1(𝑥 − 𝑥𝑖) + 𝑐1 exp(𝑝(𝑥 − 𝑥𝑖)) + 𝑑1 exp(−𝑝(𝑥 − 𝑥𝑖)) [𝑥𝑖 , 𝑥𝑖+1]

𝑏2 ((x − 𝑥𝑖+2) −
1

𝑝
(sinh(𝑝(𝑥 − 𝑥𝑖+2)))) [𝑥𝑖+1, 𝑥𝑖+2]

0  otherwise 

     (1.13) 

here, 

𝑎1 =
𝑝ℎ𝑐

𝑝ℎ𝑐 − 𝑠
, 𝑏1 =

𝑝

2
(
𝑐(𝑐 − 1) + 𝑠2

(𝑝ℎ𝑐 − 𝑠)(1 − 𝑐)
) , 𝑏2 =

𝑝

2(𝑝ℎ𝑐 − 𝑠)
, 

𝑐1 =
1

4
(
exp (−𝑝ℎ)(1 − 𝑐) + 𝑠(exp (−𝑝ℎ) − 1)

(𝑝ℎ𝑐 − 𝑠)(1 − 𝑐)
), 

𝑑1 =
1

4
(
exp (𝑝ℎ)(𝑐 − 1) + 𝑠(exp (𝑝ℎ) − 1)

(𝑝ℎ𝑐 − 𝑠)(1 − 𝑐)
). 

and 𝑠 = sinh (𝑝ℎ), 𝑐 = cosh (𝑝ℎ) and 𝑝 is a free parameter. 

{𝐵−1(𝑥), 𝐵0(𝑥),⋯ , 𝐵𝑖+1(𝑥)} is a basis defined over the interval [𝑎, 𝑏]. Each basis function 

𝐵𝑖(𝑥) is continuously differentiable twice. The values of 𝐵𝑖(𝑥), 𝐵𝑖
′(𝑥) and 𝐵𝑖

′′(𝑥) at the knots 

𝑥𝑖 can be computed from Eq. (1.13) and are documented in Table 1.5. 

Table 1.5: Values of 𝐵𝑖(𝑥) and its first and second derivatives at the knot points 

           𝑥 𝑥𝑖−2 𝑥𝑖−1 𝑥 𝑥𝑖+1 𝑥𝑖+2 

            𝐵𝑖(w) 0 𝑠 − 𝑝ℎ

2(𝑝ℎ𝑐 − 𝑠)
 

1 𝑠 − 𝑝ℎ

2(𝑝ℎ𝑐 − 𝑠)
 

0 

                𝐵𝑖
′(𝑥) 0 𝑝(1 − 𝑐)

2(𝑝ℎ − 𝑠)
 

0 𝑝(𝑐 − 1)

2(𝑝ℎ𝑐 − 𝑠)
 

0 

𝐵𝑖
′′(𝑥) 0 𝑝2𝑠

2(𝑝ℎ𝑐 − 𝑠)
 

−𝑝2𝑠

𝑝ℎ𝑐 − 𝑠
 

𝑝2𝑠

2(𝑝ℎ𝑐 − 𝑠)
 

0 
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            𝐵𝑖
′(w) 0 𝑝(1 − 𝑐)

2(𝑝ℎ𝑐 − 𝑠)
 

0 𝑝(𝑐 − 1)

2(𝑝ℎ𝑐 − 𝑠)
 

0 

𝐵𝑖
′′(w) 0 𝑝2𝑠

2(𝑝ℎ𝑐 − 𝑠)
 

−𝑝2𝑠

𝑝ℎ𝑐 − 𝑠
 

𝑝2𝑠

2(𝑝ℎ𝑐 − 𝑠)
 

0 

that should be determined in computations. 

1.7  DQM WITH B-SPLINE BASIS FUNCTIONS 

The DQM is a numerical technique for solving nonlinear PDEs using B-spline functions as the 

basis functions. The algorithm for the DQM with B-spline basis functions is as follows: 

Step 1 Discretize the domain: Divide the domain of the nonlinear PDEs into a set of discrete 

points. The points should be evenly spaced to simplify the calculations. 

Step 2 Define the B-spline basis functions: A suitable B-spline basis functions are defined 

as piecewise polynomial functions that satisfy certain continuity conditions. These functions 

are used to approximate the unknown function and its derivatives at the discrete points. 

Step 3 Approximation: Approximate the unknown function and its derivatives at each of the 

discrete points using a weighted sum of the function values at these points, where the weights 

are determined by the B-spline basis functions. 

Step 4 Derivative evaluation: Evaluate the derivatives of the unknown function using the 

approximation obtained in step 3. 

Step 5 System of equations: Transform the PDE into a system of algebraic equations by 

applying the approximation and derivative evaluation. 

Step 6 Solve the system of equations: Solve the system of algebraic equations to obtain the 

values of the unknown function at the discrete points. 

Step 7 Calculating the errors: Interpolate the solution obtained in step 6 to obtain the values 

of 𝐿2 and 𝐿∞ errors. 
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1.8  CONVERGENCE ANALYSIS 

To analyze the convergence of the scheme, let 𝑈 be the modified cubic B-spline interpolant 

of 𝑢 ∈ 𝐶6[𝑥𝐿 , 𝑥𝑅]. It satisfies the following interpolation condition [122]: 

𝑈(𝑥𝑖) = 𝑢(𝑥𝑖), 𝑖 = 1,2, …… . , 𝑛 

and end conditions given as: 

𝑈
′′
(𝑥𝐿) = 𝑢

′′(𝑥𝐿) −
ℎ2

12
𝑢4(𝑥𝐿), 𝑈

′′
(𝑥𝑅) = 𝑢′′(𝑥𝑅) −

ℎ2

12
𝑢4(𝑥𝑅), 

Thus 

𝑈
′
(𝑥𝑖) = 𝑢

′(𝑥𝑖) + 𝑜(ℎ
4), 0 ≤ 𝑖 ≤ 𝑛                                                                                     (1.14) 

𝑈
′′
(𝑥𝑖) = 𝑢

′′(𝑥𝑖) −
ℎ2

12
𝑢4(𝑥𝑖) + 0(ℎ

2), 0 ≤ 𝑖 ≤ 𝑛                                                        (1.15) 

1.8.1 Theorem:  Let 𝑢 ∈ 𝐶6[𝑥𝐿 , 𝑥𝑅] The 𝑟𝑡ℎ derivatives of  𝑢 (𝑟 = 1,2) is approximated as 

reported in (1.1) have the following error bounds 

                   𝑢′(𝑥𝑗) = 𝑈′(𝑥𝑗) + 𝑜(ℎ
4),                                                                                       (1.16) 

and 

                  𝑢′′(𝑥𝑗) = 𝑈′
′(𝑥𝑗) + 𝑜(ℎ

2),                                                                                      (1.17) 

Proof. Let  𝑈 be the modified cubic B-spline interpolant of 𝑢 ∈ 𝐶6[𝑥𝐿 , 𝑥𝑅] that satisfies the 

interpolation and end conditions as discussed above. The triangle inequality yields: 

               |𝑢𝑖
′ − 𝑈𝑖

′| ≤ |𝑢𝑖
′ −𝑈𝑖

′
| + |𝑈𝑖

′
− 𝑈𝑖

′|                                                                            (1.18) 

On utilizing (1.7) and (1.8), we get 

                   |𝑢𝑖
′ − 𝑈𝑖

′| ≤ |𝑢𝑖
′ − 𝑈𝑖

′
| + 𝑂(ℎ𝑦

4),                                                                          (1.19) 

Now, 

𝑈𝑖
′
− 𝑈𝑖

′ =∑𝛿𝑘(𝜑𝑘
′ )𝑖 −∑𝑃𝑖𝑗

(1)

𝑛

𝑗=1

𝑛

𝑘=1

𝑢(𝑥𝑗 , 𝑡) 
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                                    = ∑𝛿𝑘∑𝑃𝑖𝑗
(1)

𝑛

𝑗=1

(𝜑𝑘
′ )𝑖 −∑𝑃𝑖𝑗

(1)

𝑛

𝑗=1

𝑛

𝑘=1

𝑢(𝑥𝑗 , 𝜏) 

                                                                 = ∑𝑃𝑖𝑗
(1) (∑𝛿𝑘(𝜑𝑘

′ )𝑖

𝑛

𝑘=1

− 𝑢(𝑥𝑗 , 𝜏))

𝑛

𝑗=1

                    (1.20) 

                 = ∑𝑃𝑖𝑗
(1) (𝑈(𝑥𝑗 , 𝑡) − 𝑢(𝑥𝑗 , 𝜏))

𝑛

𝑗=1

 

Utilizing interpolations conditions leads to: 

                                                                        𝑈𝑖
′
− 𝑈𝑖

′ = 0                                                           (1.21) 

After utilizing (1.19), equation (1.20) transforms to 

                                                                             |𝑢𝑖
′ −𝑈𝑖

′| ≤ 𝑂(ℎ𝑦
4)                                        (1.22) 

Similarly, the result of (1.18) can be proved. 

1.9  STABILITY OF METHOD 

By utilizing the differential quadrature method on partial differential equations, a set of 

ODEs is obtained that can be solved using any numerical methods such as the Runge-Kutta 

(R-K) method. To ensure stability while implementing the R-K method, conditions for 

eigenvalues are employed as given in the text [183]. On reducing the partial differential 

equation to a system of ordinary equations, the equation takes the form: 

𝑢𝑡(𝑥, 𝑡) = 𝑀 + 𝑓(𝑢(𝑥, 𝑡)),  
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Figure 1.2 Region of stability 

where 𝑀 is a matrix derived from the partial differential equation and 𝑓(𝑢(𝑥, 𝑡)) represents 

the nonlinear terms. The eigenvalues of matrix 𝑀 determine whether the system is robust. 

There are certain specific conditions that need to be satisfied depending on the value of time 

step Δt as discussed below: 

(a) Real λ ∶  −2.78 <  Δtλ <  0   

(b) Pure Imaginary: −2 √2  <  Δtλ <  −2 √2   λ   

(c) Complexλ : λΔt, lies inside the region 𝑅 (shown in Figure 1.1) 

The system is stable only if the eigenvalues fall within certain ranges, as shown in Figure 

1.2. It is essential to consider the time step value when determining the stability of the system. 

1.10      ERROR NORMS 

To ensure the accuracy of developed numerical technique, the findings are verified by 

comparing the approximations to both exact solutions and previously published numerical 

solutions. To accomplish this developed technique, various measures of error norms are 

utilized in the proposed research, and some of the most important formulas used to compute 

numerical errors are: 
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𝐿∞ = max(|𝑢𝑒𝑥𝑎𝑐𝑡(𝑥𝑖,𝑡) − 𝑢𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙(𝑥𝑖,𝑡)|) ; 

𝐿2 = √ℎ∑|𝑢𝑒𝑥𝑎𝑐𝑡(𝑥𝑖,𝑡) − 𝑢𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙(𝑥𝑖,𝑡)|
2
;

𝑁

𝑖=1

 

1.11 OBJECTIVES OF THE PROPOSED RESEARCH WORK  

1. To study the application of B-spline basis function in use with different numerical 

techniques. 

2. To solve one dimensional nonlinear evolution equations (NLEEs) with B-spline basis 

function in differential quadrature method. 

3. To solve the two-dimensional nonlinear evolution equations with adequate B-spline basis 

function.  

4. To explore the solution of nonlinear evolution equations using different forms of available 

B-spline basis function such as exponential, hyperbolic and cardinal basis functions. 

1.12 LAYOUT OF THE THESIS 

This thesis is structured into five chapters, providing a comprehensive and impressive 

exploration of solitons and their application in science and engineering. The brief layout of 

each chapter is discussed as follows: 

In Chapter 1, A comprehensive introduction to NLEEs. In this chapter, solutions of non-

linear NLEEs have been discussed, whose solutions are in the form of solitons, by 

implementing a quintic b-spline basis function using DQM. This chapter also includes the 

literature regarding the origin of the DQM. Furthermore, the developed formulae of 

“exponential cubic B-spline DQM” and its related methodology are also mentioned in this 

chapter. The error formulae to check the robustness of the schemes are also mentioned in this 

chapter. This chapter provides an overview of the concepts that are employed throughout the 

entire thesis. 

 

In Chapter 2, Solution of non-linear evolution equation by implementing of quintic B-

Spline basis function using differential quadrature method. The understanding of 

phenomena in science and technology depends on nonlinear evolution. The Korteweg-de 

Vries equation (KdV) is a prime example of a periodic solution equation that finds 
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application across a number of scientific domains. To solve the KdV equation, a quintic B-

spline basis function is presented using the differential quadrature method. 

In Chapter 3, Fishers equation and Burgers equation using Crank Nickolson (CN) and 

Differential Quadrature Method (DQM).  Nonlinear evolution is essential for 

understanding phenomena in science and technology. In this work, a hybrid scheme is 

developed called Crank Nickolson DQM for determining the solution of Fishers and Burgers 

equation by using a modified cubic B-spline as a basis function. To check the authenticity of 

the developed technique, the above method is implemented on the Fishers and Burgers 

equation. The authenticity and effectiveness of this methodology are shown by the findings, 

which are equivalent to those found in the literature and close to an exact solution. The results 

obtained are presented in the form of figures and tables. 

  

 In Chapter 4, Fisher 1D and 2D equation using Particle Swarm Optimization (PSO) 

and Differential Quadrature Method (DQM).  The vast majority of real-world problems 

may be formulated as optimization problems. A tool that has been utilized to approach 

problems across several domains is particle swarm optimization. This chapter includes the 

differential quadrature method using an exponential basis function with a particle swarm 

optimization technique for finding the solution of Fisher one-dimensional and two-

dimensional equations whose solutions exhibit the soliton form and have numerous 

applications.  

In Chapter 5, Conclusion and Future scope. In the last chapter Conclusion and Future 

scope of the research work is discussed. 
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CHAPTER 2 

SOLUTION OF NON-LINEAR EVOLUTION 

EQUATIONS BY IMPLEMENTING OF QUINTIC B-

SPLINE BASIS FUNCTION USING DIFFERENTIAL 

QUADRATURE METHOD 
 

   2.1 Introduction 

While performing studies to identify the most effective design for canal boats on the 

Edinburgh-Glasgow canal in 1844, John Scott Russell noticed a phenomenon. He noticed 

that after one or two miles, the height of water in the canal steadily decreases as it travels 

along the watercourse. He invented the term "Wave of Translation" to describe this unique 

and wonderful phenomenon. This gives rise to the soliton defined as a wave with a defined 

shape traveling at a constant speed through a given medium. The first wave to exhibit 

characteristics similar to a soliton was observed by Russell [1]. This was the beginning 

of an absolutely specific field of research to which scientists and mathematicians have 

contributed a lot over time. Nowadays it is known that many equations have soliton 

solutions. Some of the equations having soliton solution are KdV equation, Fisher’s 

equation, NLS equation etc. 

The Korteweg-de Vries (KdV) equation is a nonlinear partial differential equation developed 

by Korteweg and de Vries in 1895 with respect to plasma waves [70] and then again by 

Washimi and Taniuti [71] to study acoustic waves in a cold plasma. The KdV equation is 

used to examine the propagation of low-amplitude water waves in shallow water bodies. The 

solution to this equation produces solitary waves [72].  

The KdV equation is given by. 

∂𝑈

∂𝑡
(𝑥, 𝑡) + 𝜀𝑈(𝑥, 𝑡)

∂𝑈

∂𝑥
(𝑥, 𝑡) + 𝜇

∂3𝑈

∂𝑥3
(𝑥, 𝑡) = 0, 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑡 > 0                                   (2.1) 

When 𝑎, 𝑏 stands for the range being considered, 𝑢 is the velocity, 𝑥 stands for the 

coordinates in space, 𝑡 is for time, ε and μ are positive parameters. 

The KdV equation is a third-order nonlinear evolution equation that characterizes long waves 

and is widely used in physical and engineering disciplines. For example, it is used in 
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modeling ionic-acoustic solitons in plasma physics [73], in the study of a long wave in 

subsurface oceans, and shallow sols in geophysical fluid dynamics [74, 75]. It also describes 

the phenomenon in cluster physics and super deformed nuclei [76, 77], quantum field theory 

and classical general relativity [78]. The solution of the KdV equation has opened enormous 

possibilities for mathematical concepts.  

The solutions of nonlinear equations are always of interest to researchers as they are 

studied using various approaches [79, 80]. In most cases, an analytical solution is not 

accessible, so numerical aspects are always necessary [81]. Gardner et al [82] proved 

both the existence and uniqueness of solutions to the KdV equation. Liu [83] provided 

an elliptic Jacobi function solution for the KdV equation. In the same research paper, 

Hufford and Xing [84] reported a numerical solution for the linearized version of the 

problem as well as super convergence for the approach used. Trogdon and Deconinck 

presented [85] a finite-genus solution to the equation. Grava and Klein [86] solved the 

KdV equation numerically and asymptotically for a small dispersion limit. Leach [87] 

gives the large-time evolution of the generalized Korteweg-de Vries equation. The 

wavelet Galerkin approach is used by Kumar and Mehra [88] to find a time accurate 

solution of this equation. To solve this equation, Bahadir [89] uses an exponential finite 

difference technique. Aksan and Ozde Å [90] use the Galerkin finite element approach 

with B-spline functions. This equation was solved numerically and analytically by Ozde 

Å and Kutluay [91]. Ascher and McLachlan [92] provided a multi-symplectic box 

technique for the KdV equation. Small time solutions of the equation were given by 

Kutluay et al [93]. Idrees et al [94] use the optimal homotopic asymptotic technique to 

solve this equation. To solve the KdV equation numerically, Gucuyenen and Tanoglu 

[95] used the iterative splitting approach. Sarma [96] provided a solitary wave solution 

for this equation. Barbera [97] used a variational methodology, which was further 

investigated by Yuliawati et al [70] using the steepest descent approach, to study the 

solution of the KdV equation in the Hamiltonian condition. In addition, there have been 

several other successful numerical approaches to the KdV equation, including the 

spectral method [98], the pseudo-spectral method [81], and the collocation method [99]. 

2.2 Numerical Scheme 

The differential quadrature method involves estimating a derivative of a given function using 

linear summation of its components at different nodes of the problem domain. The domain 
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[a, b] can be simply partitioned into uniformly distributed finite nodes 𝑥𝑖 with distance ℎ, 

such that 

𝑎 =  𝑥0  <  𝑥1  <  𝑥2  <  …  <  𝑥𝑛−1  <  𝑥𝑛  =  𝑏. 

 Let 𝐵𝑖(𝑥) be the quintic B-splines with knots at points 𝑥𝑛, 𝑛 =  0, 1, 2, … ,𝑁. The 

arrangement of splines {𝐵−1, 𝐵0, 𝐵1, … , 𝐵𝑁 , 𝐵𝑁+1} forms the basis for any function on [𝑎, 𝑏]. 

For 𝑖 =  1, 2, … ,𝑁 + 1, the solution at each time point of the node 𝑥𝑖 is 𝑈(𝑥𝑖, 𝑡). The 

estimated derivative parameters are calculated as follows:  

𝑈𝑥 =∑ 

𝑁

𝑗=1

𝑝𝑖𝑗𝑢(𝑥𝑗, 𝑡), 𝑈𝑥𝑥 =∑ 

𝑁

𝑗=1

𝑞𝑖𝑗𝑢(𝑥𝑗, 𝑡), 𝑈𝑥𝑥𝑥 =∑ 

𝑁

𝑗=1

𝑟𝑖𝑗𝑢(𝑥𝑗, 𝑡),                                             (2.2) 

for 𝑖 =  1, 2, … ,𝑁 + 1. The derivatives are approximated by 𝑝𝑖𝑗, 𝑞𝑖𝑗, 𝑎𝑛𝑑 𝑟𝑖𝑗. Once the 

values of 𝑝𝑖𝑗 are fixed as described in the next section, the weighting coefficients 

𝑞𝑖𝑗 , 𝑎𝑛𝑑 𝑟𝑖𝑗 can be easily calculated.  

The method for calculating the other coefficients is as follows: 

 

∂2𝑢𝑖
∂𝑥2

=
∂

∂𝑥
(
∂𝑢

∂𝑥
) = ∑  

𝑁

𝑘=1

𝑝𝑖𝑘 (
∂𝑢

∂𝑥
)
𝑥=𝑥𝑘

=∑  

𝑁

𝑘=1

𝑝𝑖𝑘 (∑ 

𝑁

𝑗=1

𝑝𝑘𝑗𝑢(𝑥𝑗 , 𝑡))

= ∑  

𝑁

𝑘=1

∑ 

𝑁

𝑗=1

𝑝𝑖𝑘𝑝𝑘𝑗𝑢(𝑥𝑗, 𝑡) =∑  

𝑁

𝑗=1

𝑞𝑖𝑗𝑢(𝑥𝑗, 𝑡), 𝑖 = 1,2,3,… ,𝑁 + 1.

 

Since 𝑞𝑖𝑗 are calculated, using this the values for  𝑝𝑖𝑗 ,  𝑟𝑖𝑗 can be calculated in a similar 

manner. 

For 𝑖 =  −2,−1,0, … ,𝑁 + 2, 𝐵𝑖(𝑥), the quintic B-spline basis function, describes a 

piecewise defined function with the properties of continuity and division of unity. 

The following equations can be used to calculate the basis functions. 
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where 
2110,12 ,,.......,, ++−− NN BBBBBB  are basis formed over the region bxa  . Each quintic B-

spline covers six elements, so that a total of six quintic B-splines cover one element. Table 2.1 

summarizes the values of )(xBi  and the first four derivatives. 

Table 2.1 Values of )(xBi
 and its derivatives at the nodes. 

  

 

 

 

 

 

 

 

 

The first-order approximation of the derivative can be estimated using the relation:  

                                   𝐵𝑖
′(𝑥𝑖) =∑  

𝑁

𝑗=1

𝑝𝑖𝑗𝐵𝑖(𝑥𝑗) for 𝑖 = 1,2,… ,𝑁.                                                           (2.4) 

As a result, a matrix system emerges as: 

𝐴𝑝⃗[𝑖] = 𝑠[𝑖] 

here A is the coefficient matrix given by: 

[
 
 
 
 
 
 
66 26 1 0 0 0 ⋅ 0
26 66 26 1 0 0 ⋅ 0
1 26 66 26 1 0 ⋅ 0
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0 ⋅ 0 1 26 66 26 1
0 ⋅ 0 0 1 26 66 26
0 ⋅ 0 0 0 1 26 66]

 
 
 
 
 
 

 

that represents the vector, corresponding to node point 𝑥𝑖. The unknown coefficients are  

𝑝⃗[𝑖] = [𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑁]
𝑇, 𝑖 =  1, 2, … , 𝑁, with right hand side given as: 

𝑠[1] = [0, 𝑓, 𝑔, 0, … ,0]𝑇

𝑠[2] = [−𝑓, 0, 𝑓, 𝑔, 0, … ,0]𝑇

𝑠[3] = [−𝑔,−𝑓, 0, 𝑓, 𝑔, … ,0]𝑇

⋅
⋅

𝑠[𝑁 − 2] = [0,… ,−𝑔,−𝑓, 0, 𝑓, 𝑔]𝑇 ,

𝑠[𝑁 − 1] = [0,… ,0, −𝑔,−𝑓, 0, 𝑓]𝑇 ,

𝑠[𝑁] = [0,… ,0, −𝑔,−𝑓, 0]𝑇

 

Here, 𝑓 =
50

ℎ
 and 𝑔 =

5

ℎ
.  

x  3−ix  2−ix  1−ix  ix  1+ix
 2+ix  3+ix

 

)(xBi  0 1 26 66 26 1 0 

𝐵𝑖
′(𝑥) 0 h5  h50  0 h50−  h5  0 

𝐵𝑖
′′(𝑥) 0 220 h  240 h  2120 h−  240 h  220 h  0 

𝐵𝑖
′′′(𝑥)

 
0 360 h  3120 h−  0 3120 h  360 h−  0 

𝐵𝑖
𝐼𝑉(𝑥)

 
0 4120 h  4480 h−  4720 h  4480 h−  4120 h  0 
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The coefficients 𝑝𝑖1, 𝑝𝑖2, … , 𝑝𝑖𝑁 for 𝑖 =  1, 2, … ,𝑁. were calculated using MATLAB 2014 

to solve the given five band matrix system. Substituting approximate values for the derived 

first and third order spatial derivatives in equation (2.1) yields the following system: 

                       𝑢𝑡 = −𝜖𝑢∑  

𝑁

𝑗=1

𝑝𝑖𝑗𝑢𝑗 − 𝜇∑  

𝑁

𝑗=1

𝑟𝑖𝑗𝑢𝑗 .                                                                 (2.5) 

The SSP-RK45 scheme [104] is then used to solve this system of ordinary differential 

equations, which offers numerical solutions at various time levels. 

2.3 Numerical experiments  

 

In this section the accuracy the proposed method is shown by calculating the 𝐿2 𝑎𝑛𝑑 𝐿∞ 

errors. 

The lowest three invariants related to mass, momentum, and energy conservation are also 

calculated by the following equations:  

𝐼1 = ∫  
𝑏

𝑎

𝑈𝑑𝑥, 𝐼2 = ∫  
𝑏

𝑐

𝑈2𝑑𝑥, 𝐼3 = ∫  
𝑏

𝑎

[𝑈3 −
3𝜇

𝜀
(𝑈′)2] 𝑑𝑥. 

2.3.1 Experimental evaluation of single soliton 

Consider the KdV equation with exact solution given as [42] follows: 

      𝑈(𝑥, 𝑡) = 3𝐶 sech2(𝐴𝑥 − 𝐵𝑡 + 𝐷),                                                                                    (2.6) 

here 

𝐴 =
1

2
(𝜀𝐶/𝜇)1/2 and 𝐵 =

1

2
𝜀𝐶(𝜀𝐶/𝜇)1/2,  

so that (2.6) offers a single soliton with amplitude 3𝐶  and velocity 𝜀𝐶 moving toward the 

right. The equation is solved with the initial state taken from analytic solution (2.6) as 

𝑈(𝑥, 0) = 3𝐶sech2 (𝐴𝑥 + 𝐷), 

and the boundary conditions 𝑈(0, 𝑡) = 𝑈(2, 𝑡) = 0 for 𝑡 ≥ 0. 𝜀 = 1, 𝜇 = 4.84 × 10−4, 𝐶 =

0.3, 𝐷 = −6  is employed in order to create a comparison with other investigations. To 

demonstrate the evolution of the current technique using a modified quintic B-spline DQM, 

Table 2 and Table 3 show the error norm and invariants values, respectively. 

 

Table 2.2 Experimental evaluation of single soliton at ∆𝑡 = 0.0005. 
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Method N T 𝑳𝟐 𝑳∞ 𝑰𝟏 𝑰𝟐 𝑰𝟑 

Present 

Scheme  

151 0.25 2.3524× 10−6 6.4229× 10−6 0.1446 0.0868 0.0469 

 0.50 4.0430× 10−6 1.2235× 10−5 0.1446 0.0868 0.0469 

  0.75 6.0076× 10−6 1.9232× 10−5 0.1446 0.0868 0.0469 

  1.00 8.1958× 10−6 2.5869× 10−5 0.1446 0.0868 0.0469 

  2.00 4.3005× 10−5 9.0073× 10−5 0.1446 0.0868 0.0469 

  3.00 8.3086× 10−4 0.0022× 10−6 0.1444 0.0868 0.0469 

MQ_DQM  201 0.25 1.01× 10−5 2.66× 10−5 0.1445 0.0867 0.0468 

[39]  0.50 1.11× 10−5 2.59× 10−5 0.1445 0.0867 0.0468 

  0.75 1.33× 10−5     3.94× 10−5 0.1445 0.0867 0.0468 

  1.00 1.43× 10−5 4.08× 10−5 0.1445 0.0867 0.0468 

  2.00 2.14× 10−5 6.74× 10−5 0.1445 0.0867 0.0468 

  3.00 2.86× 10−5  8.15× 10−5 0.1446 0.0867 0.0468 

 

 

 

Figure 2.1 Simulations of single solitons  ∆𝑡 = 0.0005. 
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Table 2.3 Experimental evaluation of single soliton at ∆𝑡 = 0.001. 

Method N T 𝑳𝟐 𝑳∞ 𝑰𝟏 𝑰𝟐 𝑰𝟑 

Present  91  0.25   6.2478× 10−5 2.1816× 10−4 0.1446 0.0868 0.0469 

Scheme  0.50 9.6636× 10−5 2.0265× 10−4 0.1446 0.0868 0.0469 

  0.75 1.9160× 10−4 3.0993× 10−4 0.1446 0.0868 0.0469 

  1.00 4.4543× 10−4 7.0164× 10−4 0.1446 0.0868 0.0469 

MQ_DQM 201 0.25  0.000010     0.000027    0.1445 0.0867 0.0468 

     [39]  0.50    0.000010    0.000021    0.1445 0.0867 0.0468 

  0.75    0.000012    0.000034    0.1445 0.0867 0.0468 

  1.00    0.000012    0.000032    0.1445 0.0867 0.0468 

        

    [105] 200 0.25 0.00522 -    

  0.50 0.01200 - 0.144590 0.086759 0.046871 

  0.75 0.01220 -    

  1.00 0.02220 - 0.144590 0.086759 0.046873 
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Figure 2.2 Simulations of single solitons ∆𝑡 = 0.001. 

2.3.2 Experimental evaluation of interaction of two solitons  

Consider this second experiment [106] with initial condition stated as:  

𝑈(𝑥, 0) =∑  

2

𝑖=1

3𝐶𝑖sech
2 (𝐴𝑖𝑥 + 𝑥𝑖),  𝐴𝑖 =

1

2
(
𝜀𝐶𝑖
𝜇
)

1
2
, 𝑖 = 1,2. 

with boundary conditions 

𝑈(0, 𝑡) = 𝑈(2, 𝑡) = 0, 

where 𝜀 = 1, 𝜇 = 4.84 × 10−4, 𝐶1 = 0.3, 𝐶2 = 0.1, 𝑥1 = 𝑥2 = −6 is considered in all 

simulations. The same parameters as in the previous study [106] are used for numerical 

calculations using MATLAB R2015b (32-bit) in Windows 10 Version 21H2 for x64, with 

𝑁 = 91 and ∆𝑡 = 0.005.  Table 4 displays the error norm and invariants value.   

Table 2.4 Experimental Evaluation of Interaction of Two Solitons at ∆𝑡 = 0.005. 

Method N T 𝑰𝟏 𝑰𝟐 𝑰𝟑 CPU Time 

Present Scheme 91 0.75 0.2281 0.1071 0.0533 0.208 sec 

 1.50 0.2279 0.1071 0.0533 0.244 sec 

 2.25 0.2278 0.1071 0.0533 0.283 sec 
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 3.00 0.2238 0.1074 0.0533 0.316 sec 

MQ_DQM 

[39] 

91 0.75 0.2281 0.1070 0.0533  

 1.50 0.2280 0.1070 0.0533  

 2.25 0.2279 0.1070 0.0533  

 3.00 0.2277 0.1070 0.0533  

 

MQ[106] 

 

200 

 

0.75 

 

0.2280 

 

0.1070 

 

0.0535 

 

  1.50 0.2280 0.1070 0.0534  

  3.00 0.2279 0.1070 0.0532  

 

 

Figure 2.3 Simulations of two solitons ∆𝑡 = 0.005. 

2.3.3 Experimental evaluation of interaction of three solitons  

The numerical solution is calculated for the interaction of three solitons having the initial 

condition [107] given as: 

𝑈(𝑥, 0) = ∑  3
𝑖=1 12𝐶𝑖

2sech2 (𝐶𝑖(𝑥 − 𝑥𝑖)), 

with the zero boundary conditions for domain [-100,100] with 𝜀 = 1.0, 𝜇 = 1.0, 𝐶1 =

0.3, 𝐶2 = 0.25, 𝐶3 = 0.2, 𝑥1 = −60, 𝑥2 = −44, 𝑥3 = −26.  The same parameters as in the 
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previous study [107] at ∆t = 0.1 and a much smaller number of grid points 𝑁 = 251  than 

in the previous study [107] 𝑁 = 481 were used in the numerical computations. Table 5 

displays the error norm and invariants value. 

Table 2.5 Experimental evaluation of interaction of three solitons at ∆𝑡 = 0.1. 

Method N T 𝑰𝟏 𝑰𝟐 𝑰𝟑 

Present Scheme 

251 56 18.0004 9.8274 5.2615 

 112 17.9991 9.8275 5.2633 

  168 18.0029 9.8275 5.2627 

  224 18.0098 9.8276 5.2624 

  280 18.1445 9.8989 5.2627 

MQ_DQM 481 56 18.0002 9.8273 5.2622 

[39]  112 17.9994 9.8273 5.2621 

  168 17.9989 9.8274 5.2623 

  224 17.9988 9.8274 5.2623 

  280 18.0006 9.8274 5.2623 

MQ[107] 2000 56 18.0018 9.5936 5.0328 

  112 17.9974 9.5138 4.9651 

  168 17.9971 9.3228 4.7808 

  224 17.9985 9.0697 4.5362 

  280 17.9995 8.8327 4.3141 
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Figure 2.4 Simulations of three solitons ∆t = 0.1. 

 

2.3.4 Experimental evaluation of interaction of four solitons  

In this example the interaction of four solitons is presented with initial condition [107] 

given as: 

𝑈(𝑥, 0) = ∑  4
𝑖=1 12𝐶𝑖

2sech2 (𝐶𝑖(𝑥 − 𝑥𝑖)), 

Along with zero boundary conditions for domain [-150,150] with 𝜀 = 1.0, 𝜇 = 1.0, 𝐶1 =

0.3, 𝐶2 = 0.25, 𝐶3 = 0.2, 𝐶4 = 0.15, 𝑥1 = −85, 𝑥2 = −60, 𝑥3 = −35, 𝑥4 = −10.  

The considered parameters are same as in the previous study [107] at ∆𝑡 = 0.1 and a much 

smaller number of grid points 𝑁 = 401 than in the previous study [107] 𝑁 = 451 were used 

in the numerical computations. Table 6 displays the error norm and invariants value. 

Table 2.6 Experimental evaluation of interaction of four solitons at ∆𝑡 = 0.1. 

Method N T 𝑰𝟏 𝑰𝟐 𝑰𝟑 CPU Time 

Present Scheme 401 80 21.6000 10.3887 5.2687 2.225 sec 

 160 21.5999 10.3887 5.2683 3.819 sec 

 240 21.6002 10.3887 5.2702 5.316 sec 
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 320 21.5992 10.3887 5.2691 7.263 sec 

  400 21.5360 10.3973 5.2707 9.173 sec 

MQ_DQM 451 80 21.6000 10.3887 5.2688  

[39]  160 21.6000 10.3886 5.2687  

  240 21.6000 10.3886 5.2688  

  320 21.5998 10.3887 5.2688  

  400 21.6000 10.3887 5.2688  

       

MQ[107] 1500 80 2.16028 9.9723 4.8594  

  160 21.6049 9.7448 4.6426  

  240 

320 

400 

21.6011 

21.6007 

21.6074 

9.7023 

9.4774 

9.1922 

4.6035 

4.3943 

4.1368 

 

 

 

Figure 2.5 Simulations of four solitons at ∆𝑡 = 0.1. 
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2.4 CONCLUSION 

Due to the numerous applications of the KdV equation in physical phenomena, in recent 

years this equation has become a point of attraction for researchers who want to find a 

numerical solution for this equation using various methods. In this paper, the newly defined 

quintic B-spline basis function is presented to solve the equation using the differential 

quadrature method. The advantage of this approach is that it involves transforming the partial 

differential equation into an ordinary differential equation, which can be solved by any 

numerical technique for the solution of ordinary differential equations. In the present work, 

the SSP-RK45 is implemented to solve the obtained system of ordinary differential 

equations, which is a combination of the RK method of orders four and five that is a strong 

stability preserving scheme. Numerical results in terms of conservation variables and errors 

are calculated for the single soliton and extended till interaction of four solitons. The results 

are compared with numerical solutions from the literature. The results obtained agree well 

with those obtained earlier. The advantage of the proposed method is its ease of 

implementation compared to previous methods. Thus, the present approach can be utilized 

to solve a variety of nonlinear physical models with extension and application to two-

dimensional problems. 
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CHAPTER 3 

SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS 

USING CRANK NICKOLSON (CN) AND 

DIFFERENTIAL QUADRATURE METHOD (DQM) 

 

3.1 Introduction  

Differential equations are playing a significant part in applied mathematics that is involved 

in various computations in wave motion, wave distribution, electro-magnetic, network 

design, telecommunications, electronic dynamics, fluid dynamics and many related branches 

of engineering and sciences [108]. Researchers are looking for new methods for solving the 

modelled differential equation as a result of mathematical modelling utilising various 

analytical and numerical methodologies. But it is not always possible that the differential 

equation can be solved by the currents analytical techniques to yield the exact solution. There 

comes the role of numerical techniques that can help in solving the differential equations 

with the requisite accuracy. 

             With the growth of technology, there are numerous available choices of the finding the 

numerical solution of the differential equations utilising the software like MATLAB, Maple 

and Mathematica. Researchers are continuously working on the modification of the 

numerical methods to deliver the solution efficiently and precisely. One such attempt to adapt 

the computational numerical technique to solve the nonlinear differential equations is 

provided in this work. 

In the present chapter, the Crank-Nicolson technique is employed to solve the Burgers 

equation in part A and Fishers equation in part B, followed by DQM with a modified form 

of cubic B-spline basis function to remove extra knot points.  The equation is thus reduced 

to a system of equations by utilising differential quadrature technique to approximate the 

spatial derivatives. The next step consists of computing the solution of the produced system 

of equations using MATLAB programming in an iterative way. Since the present method is 

using the concept of differential quadrature method after discretizing the domain, hence it is 

acting as a tool to reduce the computational complexity of the collocation approach. As 

collocation method usually requires complex algebraic manual calculation. 
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            Part A: 

“NUMERICAL SIMULATION AND DYNAMICS OF BURGERS EQUATION 

USING MODIFIED CUBIC-B-SPLINE DIFFERENTIAL QUADRATURE 

METHOD.” 
 

Burgers equation is a basic partial differential equation that appears in many applications 

including classical dynamic, nonlinear harmonics, plasma physics, and traffic flow. Bateman 

[109] was the first researcher to present this equation, and Burgers [110] later examined it 

for its possible solution. There are various well known numerical methods reported in 

literature to solve Burgers equation. Some of the important numerical methods in last few 

years includes but are not limited to differential quadrature method [27], [43], [58], [111, 

112], finite element method [113, 114], collocation approach [115, 116], and finite difference 

approach [93], [117–121]. 

Burgers equation in its general form is given as 

                                                
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 𝑣

𝜕2𝑢

𝜕𝑥2
                                                                (3.1)  

Where v depicts the kinetic viscosity or the diffusion coefficient. This form of the equation 

is called as viscous Burgers equation and is known as the inviscid Burgers equation in its 

absence. 

3.2 Basis functions 

Basis functions are a requirement to implement in the methodology of DQM to approximate 

the derivative. There are many well-known basis functions that are applied in DQM such as 

Lagrange’s polynomial, simple polynomial and the radial basis function etc. The present 

study is to solve the FEs by implementing the modified form of the B-spline basis function 

of the third degree. This piecewise polynomial basis function of third-degree is defined on 

the knot intervals as follows: 

𝜑𝑗(𝑥) =
1

ℎ3

{
  
 

  
 
    (𝑥𝑗 − 𝑥𝑗−2)

3                                                  𝑥 ∈ [𝑥𝑗−2, 𝑥𝑗−1]

(𝑥𝑗 − 𝑥𝑗−2)
3 − 4(𝑥𝑗 − 𝑥𝑗−1)

3
                  𝑥 ∈ [𝑥𝑗−1, 𝑥𝑗]

(𝑥𝑗+2 − 𝑥)
3
− 4(𝑥𝑗−1 − 𝑥)

3
                    𝑥 ∈ [𝑥𝑗 , 𝑥𝑗+1]

      (𝑥𝑗+2 − 𝑥)
3
                                                 𝑥 ∈ [𝑥𝑗+1, 𝑥𝑗+2]

          0                                                               𝑥 ∈ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Where 𝜑𝑗(𝑥)′𝑠 defines the basis for the considered domain. The basis function along with 

its two derivatives value at the nodal points are as follows: 

𝜑𝑗(𝑥𝑗) = 1, 𝜑𝑗(𝑥𝑗−1) = 4, 𝜑𝑗(𝑥𝑗+1) = 4 

𝜑𝑗
′(𝑥𝑗) = 0, 𝜑𝑗

′(𝑥𝑗−1) = 3/ℎ, 𝜑𝑗
′(𝑥𝑗+1) = −3/ℎ 

𝜑𝑗
′′(𝑥𝑗) = −12/ℎ

2, 𝜑𝑗
′′(𝑥𝑗−1) = 6/ℎ

2, 𝜑𝑗
′′(𝑥𝑗+1) = 6/ℎ2 

These basis functions are redefined at the boundary points to generate a system of equations 

that hold the property of being diagonally dominant. The modification in the basis functions 

is done at the first two and the last two knot points to deal with the contribution of the spline 

at the extra known points. Thus, the values of the function at the knots can be obtained as 

follows: 

𝜙1(𝑥) = 𝜑1(𝑥) + 2𝜑0(𝑥) 

𝜙2(𝑥) = 𝜑1(𝑥) − 𝜑0(𝑥) 

𝜙𝑗(𝑥) = 𝜑𝑗(𝑥) 𝑓𝑜𝑟 𝑗 = 3,… . , 𝑁 − 2 

𝜙𝑁−1(𝑥) = 𝜑𝑁−1(𝑥) − 𝜑𝑁+1(𝑥) 

𝜙𝑁(𝑥) = 𝜑𝑁(𝑥) + 2𝜑𝑁+1(𝑥) 

It can be seen that the modifications are reported at the two boundary points on either side 

of the domain while the rest values remain unchanged. 

3.2.1 Generated system of equations 

Using the DQM approach with the modified cubic basis functions, the first derivative for the 

grid points 𝑥𝑖, 𝑖 = 1,…… ,𝑁 can be written as: 

𝜑𝑘
′ =∑𝑃𝑖𝑗

1𝜑𝑘(𝑥𝑗), 𝑘 = 1,…… . . , 𝑁

𝑁

𝑗=1

 

 

Where, 𝑃𝑖𝑗
1  are the unknown weighting coefficients to obtain the first derivative 

approximations using the reframed basis functions as defined in the above section. 

Utilizing the values of 𝜑(𝑥) and its derivative at the knot points leads to: 

X𝑝⃗[𝑖] = 𝑌𝑝⃗[𝑖] 𝑓𝑜𝑟 𝑖 = 1, … . . , 𝑁 

The X represents the coefficients matrix defined as: 

𝑋 (𝑖, 𝑖) = 4;  𝑖 =  2, . . . , 𝑁 − 1 

𝑋 (𝑖 − 1, 𝑖)  =  1, 𝑖 =  2, . . . . , 𝑁 −  1 

𝑋 (𝑖, 𝑖 + 1)  = 1, 𝑖 =  1, . . . , 𝑁 − 2  

𝑋 (𝑘. 𝑘)  =  6, 𝑘 =  1 𝑎𝑛𝑑 𝑘 = 𝑁 
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The weighting coefficients presented in a column form as 𝑝⃗[𝑖], and 𝑌⃗⃗[𝑖] is the coefficient 

vector that can be defined as a matrix Z with each column representing the right-hand side 

to find the solution for each 𝑥𝑖 can be defined as: 

𝑍 (1, 1)  = −
6

ℎ
;  𝑍 (2, 1)   =

6

ℎ
 

𝑍 (𝑖 − 𝑙, 𝑖)  =  
3

ℎ
, 𝑍 (𝑖, 𝑖)  = 0, 𝑍 (𝑖 + 1, 𝑖)   =  −

3

ℎ
, 𝑖 =  1,2 . . . , 𝑁 − 1 

𝑍 (𝑛, 𝑛)  = −
6

ℎ
, 𝑍 (𝑛 − 1, 𝑛)  =  

6

ℎ
 

𝑍 (𝑖, 𝑗)  =  0, otherwise ∀ i and j. 

The resulted tridiagonal system of equations provides the weighting coefficients 𝑝𝑖1, 

𝑝𝑖2,…., 𝑝𝑖𝑛 for 𝑖 =  1 𝑡𝑜 𝑁. 

The obtained coefficients represent the values of 𝑃𝑖𝑗
1  which is used for the first derivative 

approximation and also for calculating the second-order derivative. 

3.3 Crank Nicolson Scheme 

The Crank-Nicolson scheme is a finite difference approach for numerical simulation of the 

differential equations. From last several years, it is implemented to solve numerous well-

known equations using the collocation approach. The purpose of this scheme is the 

discretization of the derivative with the average of the values taken at the two successive 

time levels. In this work, Burgers equation is solved by applying the DQM for approximating 

the derivatives after implementation of the well-known crank Nicolson scheme on the time 

derivative as 

𝑢𝑡 =
𝑢𝑛+1+𝑢𝑛

∆𝑡
. 

3.3.1 Scheme Implementation 

Consider the Burgers equation (3.1) in simplified form as 

𝑢𝑡 = 𝑣𝑢𝑥𝑥 − 𝑢𝑢𝑥  

On discretizing the derivative of 𝑢 with respect to 𝑡 using finite forward difference approach 

and applying the Crank-Nicolson scheme on the right-hand side terms generate the system 

as follows:  

               
𝑢𝑛+1−𝑢𝑛

∆𝑡
= 𝑣 [

(𝑢𝑥𝑥)
𝑛+𝑢𝑥𝑥

𝑛+1  

2
] −

(𝑢𝑢𝑥)
𝑛+(𝑢𝑢𝑥)

𝑛+1

2
                                       (3.3)                                                 

(3.2)
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𝑢𝑛+1 − 𝑢𝑛 = 
𝑣∆𝑡

2
[(𝑢𝑥𝑥)

𝑛 + (𝑢𝑥𝑥)
𝑛+1] −

∆𝑡

2
[(𝑢𝑢𝑥)

𝑛 + (𝑢𝑢𝑥)
𝑛+1] 

Applying the well-known quasi-linearization to linearize the nonlinear part of the equation 

produces  (𝑢𝑢𝑥)
𝑛+1 as: 

(𝑢𝑢𝑥)
𝑛+1 = 𝑢𝑛𝑢𝑥

𝑛+1 + 𝑢𝑛+1𝑢𝑥
𝑛 − (𝑢𝑢𝑥)

𝑛. 

Thus, the system can be simplified considering, 𝛼 =
𝑣∆𝑡

2
;  𝛽 =

∆𝑡

2
, and hence reduces to 

following form 

𝑢𝑛+1 = 𝑢𝑛 + 𝛼[𝑢𝑥𝑥
𝑛 + 𝑢𝑥𝑥

𝑛+1 ] − 𝛽[𝑢𝑛𝑢𝑥
𝑛+1 + 𝑢𝑛+1𝑢𝑥

𝑛] 

On separating the values of 𝑢 at different time levels 

𝑢𝑛+1(1 + 𝛽𝑢𝑥
𝑛) − 𝛼𝑢𝑥𝑥

𝑛+1 + 𝛽𝑢𝑥
𝑛+1𝑢𝑛 = 𝑢𝑛 + 𝛼𝑢𝑥𝑥

𝑛  

The values of the derivatives are obtained using DQM in the above system for (𝑛 + 1)𝑡ℎ 

time level followed leads to following system of equation for 𝑖 = 1 to 𝑁: 

(1 + 𝛽𝐴𝑖
𝑛)𝑢𝑖

𝑛+1 − 𝛼∑𝑞𝑖𝑗𝑢𝑗
𝑛+1

𝑁

𝑗=1

+ 𝛽𝑢𝑖
𝑛∑𝑝𝑖𝑗𝑢𝑗

𝑛+1

𝑁

𝑗=1

= 𝑅.𝐻. 𝑆. 

Where 𝐴𝑖
𝑛 =∑ 𝑝𝑖𝑗𝑢(𝑥𝑗 , 𝑡)

𝑛
,𝑁

𝑗=1  is the approximation of the derivative at the 𝑛𝑡ℎ level. The 

obtained system of equation can be visualized as follows: 𝐽𝑈𝑛+1 = 𝑅𝑛 

Here the matrix 𝐽 can be discussed as follows: 

𝐽𝑖𝑗 = {
1 + 𝛽𝐴𝑖 + 𝛽𝑢𝑖𝑃𝑖𝑗 − 𝛼𝑞𝑖𝑗 , 𝑓𝑜𝑟 𝑖 = 𝑗

𝛽𝑢𝑖𝑃𝑖𝑗 − 𝛼𝑞𝑖𝑗  ,                            𝑓𝑜𝑟 𝑖 ≠ 𝑗
 

and 𝑅𝑛 = 𝑢𝑛 + 𝛼∑ 𝑞𝑖𝑗𝑢(𝑥𝑗 , 𝑡),
𝑁
𝑗=1  can be then solved by any known method for solution of 

system of linear equations. Here, the Gauss-elimination method is implemented in an 

iterative way. 

(3.4)

 

(3.5)

 

(3.6)

 

(3.7)
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3.4 Numerical experiments  

Now, three numerical examples are presented using the proposed blended method to solve 

Burgers equation numerically with varying sets of parameters. Standard errors are used to 

evaluate the performance of various approaches. 

3.4.1 1st Test problem: Consider the equation (3.1) to be solved in the domain [0,8] with 

boundary condition taken from the exact solution [58], given as: 

𝑢(𝑥, 𝑡)  =
𝑥/𝑡

1+√(
𝑡

𝑔
)exp (

𝑥2

4𝜈𝑡
)
 , 𝑔 =

0.125 

𝜈
 for 𝑡 ≥ 1 

And the initial solution as: 𝑢(𝑥, 0)  =
𝑥

1+exp (
𝑥2−0.25

4𝜈
)
                                                                    (3.8) 

The numerical solution has been obtained for the high values of 𝜈 = 0.5 at different time 

levels for 𝑡 ≤ 5. The domain is taken as per the literature review. There is no limitation of 

changing the domain but the physical behaviour can be depicted in the considered domain. 

Table 1, presents the comparison of the numerical and exact solutions at different points with 

respect to the time. In Table 2, the errors are estimated at different time levels for time-step, 

𝑘 = 0.01 and the number of domain partition as 41, thus ℎ = 0.2 which is very less as 

compared to the domain. Figure 1 exhibits the solution behaviour to highlight the physical 

behaviour of the equation together with time. As can be depicted from the figure that with 

the advancement of time, the solution values are decreasing but satisfying the same 

characteristics at the boundary points. 

Table 3.1 Solution of the equation at different time levels for first test problem. 

X T=1.5 T=3.0 T=4.5 

 Exact Present Exact Present Exact Present 

1.0 0.265771 0.265604 0.118804 0.118783 0.071869 0.071864 

2.0 0.261421 0.261363 0.167623 0.167591 0.113387 0.113376 

3.0 0.088070 0.088151 0.127382 0.127381 0.109491 0.109486 

4.0 0.011859 0.011889 0.057975 0.057996 0.073605 0.073612 

5.0 0.000741 0.000744 0.016735 0.016750 0.035717 0.035726 

6.0 0.000023 0.000023 0.003238 0.003243 0.012919 0.012908 
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7.0 0.000000 0.000000 0.000433 0.000432 0.003582 0.003452 

 

Table 3.2: Errors of the Burgers equation at different time levels for 1st test problem. 

 T=1.5 T=3.0 T=4.5 

 Present [112] Present [112] Present [112] 

𝐿2 1.9281e-04 2.11e-03 4.9057e-05 1.64 e-03 3.4738e-04 1.38 e-03 

𝐿∞ 1.7771e-04 3.18e-03 3.4300e-05 1.43 e-03 5.5472e-04 0.89 e-03 

 

 

Figure 3.1 Numerical solution of the equation at different time levels. 

3.4.2 2nd Test problem: Consider the Burgers equation (3.1) with domain [0, 2] with zero 

boundary condition and the initial condition taken from the exact solution. The solution of 

the equation is verified from the exact solution obtained analytically as: 

𝑢(𝑥, 𝑡)  = 2πν
sin(𝛾)𝑒𝛽+4sin(2 𝛾)𝑒−4𝛽

4+cos(𝛾)𝑒𝛽+2cos(2 𝛾)𝑒−4𝛽
                                                                                        (3.9) 

Here 𝛾 = 𝜋𝑥, 𝛽 = − 𝜋2𝜈2𝑡 

The numerical solution of the equation is obtained for different time levels for 𝑘 = 0.1 at 

different values of 𝜈. In Table 3 and Table 4 the obtained numerical results are compared 

with the exact solutions and are presented in form of errors for 𝑡 = 0.1 and 𝑡 = 1 as was 

available in the literature. As shown by the obtained results in form of 𝐿2 and 𝐿∞ errors, the 
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numerical solutions are in good agreement with the exact solution and is much better as 

compare to result available in literature at relatively small value of domain partition. The 

surface plot of the solutions with 121 nodes is presented in Figure 2 to discuss the physical 

behaviour of the equation along with time while the physical behaviour of the solution 

obtained at 𝑡 = 1 for different values of 𝜈 is presented in Figure 3. It can be seen that the 

solution is showing the same behaviour with the changing of time but the amplitude of the 

wave is decreasing with decreasing the value of 𝜈. 

Table 3.3 Solution of the equation at time 𝑡 = 0.1 for the 2𝑛𝑑 test problem. 

T=0.1   𝛎 = 𝟏𝟎−𝟐 𝛎 = 𝟏𝟎−𝟒 𝛎 = 𝟏𝟎−𝟔 

 ℎ 𝑘 𝐿2 𝐿∞ 𝐿2 𝐿∞ 𝐿2 𝐿∞ 

Present  0.5 10−2 2.23e-04 2.23e-04 2.38e-08 2.38e-08 2.39e-12 2.39e-12 

[117] 0.025 10−3 3.55e-03 4.41e-03 3.74e-07 4.62e-07 3.74e-11 4.62e-11 

[111] 0.1 10−2 3.41e-03 3.89e-03 3.56e-07 4.11e-07 3.56e-11 4.11e-11 

[112] 0.025 10−3 3.47e-03 4.26e-03 - - - - 

 

Table 3.4 Solution of the equation at time 𝑡=1 for the 2𝑛𝑑 test problem. 

   ν = 10−2 ν = 10−4 ν = 10−6 

𝒕=1 𝒉 𝒌 𝑳𝟐 𝑳∞ 𝑳𝟐 𝑳∞ 𝑳𝟐 𝑳∞ 

Present 0.5 10−2 2.16e-03 2.16e-03 2.39e-07 2.39e-07 2.39e-11 2.39e-11 

[117] 0.025 10−3 2.66e-02 3.13e-02 3.72e-06 4.61e-06 3.74e-10 4.62e-10 

[111] 0.1 10−2 2.63e-02 2.92e-02 3.55e-06 4.09e-06 3.56e-10 4.11e-10 

[112] 0.025 10−3 2.63e-02 3.08e-02 - - - - 



57 
 

 

 

Figure 3.2 Physical behaviour of the numeric solutions of 2𝑛𝑑 test problem for 𝜈 = 10−4 at 

different time levels. 

 

 

Figure 3.3 Physical behaviour of the solution of 2𝑛𝑑 test problem obtained at 𝑡=1 for different 

values of 𝜈. 

3.4.3 3rd Test problem: Consider the Burgers equation (3.1) with domain [0, 1] and the 

boundary conditions as: 

 𝑢(𝑥, 0) = sin(2𝜋𝑥) + 0.5 sin (𝜋𝑥)                                                                                      (3.10) 
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 The equation's solution is calculated and validated with the results already presented in form 

of graphs [112]. The solution of the equation is calculated for the different value of time for 

the viscosity parameter 𝜈 with value as 0.05 for time step 𝑘 = 0.01 with the number of 

partitions as 41. The results of the numerical simulation are presented for the different time-

levels in Figure 4. From the figures presented under Figure 4 the physical behaviour of the 

solution can be seen changing the form along with the passage of time. The solution is of 

wave form can be seen changing from the two phases to single phase and then decreasing in 

amplitude with time. 

 

Figure 3.4 Physical behaviour of the 3𝑟𝑑  test problem for different values of time. 

3.5 Conclusion 

The present study demonstrates how effective the proposed hybrid approach of DQM with 

modified cubic B-splines and the finite difference scheme for discretization can be 

implemented to solve the partial differential equations. This work is an effort to develop 

numerical approach that can provide the approximate solution which is close to the exact 

solution to the Burger’s equation. The present work is exemplified with the assistance of 

three examples that demonstrate the benefit of the method in terms of the accuracy obtained 
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with less domain partition and for the adequate required time steps. The presented algorithm 

is capable of being modified that can be applied to higher order nonlinear differential 

equations in either linear or nonlinear form.  
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PART B: 

“NONLINEAR DYNAMICS OF THE FISHERS EQUATION  

WITH NUMERICAL EXPERIMENTS.” 

 

3.6 Introduction 

 

In this work. a hybrid scheme is developed to find more accurate solutions to the Fishers 

equation (FEs) which can be programmed and can be applied to solve similar equations. The 

Reaction-diffusion equations have been a keen topic of study for researchers in various fields 

of science and technology. One such reaction-diffusion equation was introduced by Fishers 

in 1937 [126-127] in a study of the development of favourable genes due to mutation which 

was known as Fishers equation. After framing, the application of this equation was 

investigated in many other related phenomena such as describing the pattern formation in 

wave propagation, studying the growth of cells in tissue engineering modelling oscillating 

chemical reactions, in population biology in the healing of a wound and in the growth of a 

tumour. 

This nonlinear partial equation can be framed as: 

  𝑢𝑡 = 𝑣𝑢𝑥𝑥 + 𝜌𝑓(𝑢), 𝑡 ≥ 0, 𝑥 ∈ (−∞,∞)                                                                      (3.11) 

where x represents the coordinates in space, t denotes the time, v is a constant that denotes 

the coefficient of diffusion, 𝑓 depicts nonlinear reaction term and 𝜌 is a term for reaction 

factor. These terms signify the parameter of the phenomenon that is modelled as Fishers 

equation. For example, in the study of brain tumours, it represents the carrying capacity, the 

diffusion coefficient shows the migration of cells and the reaction factor represents the 

growth rate. Similarly, in the study related to the gene propagation. it represents the 

frequency of the mutant gene and the reaction factor 𝜌 signifies the strength of selection for 

the gene that shows the effect of the mutation. This equation is a well-known mathematical 

model that presents the asymptotic behaviour of the family of travelling waves. In many of 

the modelled scientific and biological phenomenon, the considered reaction term is taken as 

𝜌𝑢(1 − 𝑢) and the equation is solved with the following considered conditions at the 

boundary and at the initial phase of time: 

I.C: 𝑢(𝑥, 0) = 𝑢0(𝑥) ∈ [0,1], 
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B.C: a) lim
𝑥→−∞

𝑢(𝑥, 𝑡) = 1, lim
𝑥→∞

𝑢(𝑥, 𝑡) = 0, 

        𝑏) lim
𝑥→−∞

𝑢(𝑥, 𝑡) = 0, lim
𝑥→∞

𝑢(𝑥, 𝑡) = 0, 

Based on the requirement of the modelled phenomenon and the parameters. The equation 

can be solved with the non-local conditions [I.C with B.C (a)] or the local conditions [I.C 

with B.C (b)] with a finite domain [𝑥𝐿 , 𝑥𝑅] 

A number of efforts have been made by the researchers to find the solution to the equation 

using various approaches. For instance, FEs has been solved using the space derivative 

approach of the Fourier series. The explicit solution has been implemented by the authors to 

solve FEs in[128]. This equation has also been solved using the explicit finite difference 

approach [129], and the petrov-Galerkin finite element technique [130]. A modified finite-

difference scheme has been constructed using dynamical consistency by mickens for solving 

the FEs [131]. The moving mesh method has been implemented to the FEs to discuss the 

numerical solutions in [132]. A comparative study has been done [133] for the finite 

difference scheme with a nodal integral method taking the FEs numerical solution. The exact 

solution of the FEs is obtained using the Adomian decomposition approach [134]. A spectral 

approach using Chebyshev-Lobatto points has been developed [135] to solve the equation. 

A differential quadrature approach based on polynomials has been implemented to Fisher’s 

equation in one [136, 137] as well as in two dimension. Some other numeric approaches have 

also been implemented successfully for the study of Fisher’s equation namely wavelet 

Galerkin method [138], tension spline-based method [139], collocation-based approaches 

[140–143] and boundary integral equation method [144]. 

The present work show cases a hybrid approach using the Crank-Nicolson scheme with 

discretization and application of DQM for approximating derivatives using B-spline basis 

functions.  

The numerical scheme is discussed for implementation of the scheme on the FEs in the next 

section followed by the numerical example to present the obtained results by the proposed 

scheme. The work is concluded by the discussion of the present scheme with the obtained 

results. 

3.7 Scheme implementation 

Consider the FEs (3.11) defined in the introduction section. On discretizing the time 

derivative using finite difference approach with the implementation of the Crank-Nicolson 

technique on the space derivative and the other available functions, the equation can be 

written after taking terms of 𝑛𝑡ℎ and (𝑛 + 1)𝑡ℎ level separately as: 
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On linearizing the non-linear term using the approach given by Rubin and Graves [145] as follows: 

(𝑈2)𝑚
𝑛+1 = 2(𝑈)𝑚

𝑛 (𝑈)𝑚
𝑛+1−(𝑈𝑚

𝑛 )2 

 

results in the following equation: 

 

𝑈𝑚
𝑛+1(𝑎1𝜌∆𝑡𝑈𝑚

𝑛 ) − 𝑎2𝑈𝑥𝑥
𝑛+1 = 𝑎3𝑈

𝑛 + 𝑎2𝑈𝑥𝑥
𝑛  

 

Where,  𝑎1 = 1 −
𝜌∆𝑡

2
, 𝑎2 =

𝑣∆𝑡

2
,, 𝑎3 = 1 +

𝜌∆𝑡

2
 

On replacing the derivatives in the equation using the DQM, the iterative scheme can now 

be written as follows: 

𝑈𝑚
𝑛+1(𝑎1𝜌∆𝑡𝑈𝑚

𝑛+1) − 𝑎2∑𝑃𝑚𝑘
(2)

𝑁

𝑘=1

𝑈𝑘
𝑛+1 = 𝑎3𝑈

𝑛 + 𝑎2∑𝑃𝑚𝑘
(2)

𝑁

𝑘=1

𝑈𝑘
𝑛 

Equation (3.4) can be written in a matrix form as: 

 

[
 
 
 
 
𝐴11
𝑛

𝐴21
𝑛

𝐴12
𝑛

𝐴22
𝑛 ⋯

𝐴1𝑛
𝑛

𝐴2𝑛
𝑛

⋮ ⋮ ⋱ ⋮
𝐴(𝑁−1)1
𝑛 𝐴(𝑁−2)2

𝑛 … 𝐴(𝑁−1)𝑁
𝑛

𝐴𝑛1
𝑛 𝐴𝑛2

𝑛 ⋯ 𝐴𝑛𝑛
𝑛 ]

 
 
 
 

[
 
 
 
 
𝑈1
𝑛+1

𝑈2
𝑛+1

⋮
⋮

𝑈𝑁
𝑛+1]

 
 
 
 

= 

[
 
 
 
 
𝐵11
𝑛

𝐵21
𝑛

𝐵12
𝑛

𝐵22
𝑛 ⋯

𝐵1𝑛
𝑛

𝐵2𝑛
𝑛

⋮ ⋮ ⋱ ⋮
𝐵(𝑁−1)1
𝑛 𝐵(𝑁−2)2

𝑛 ⋮ 𝐵(𝑁−1)𝑁
𝑛

𝐵𝑛1
𝑛 𝐵𝑛2

𝑛 ⋯ 𝐵𝑛𝑛
𝑛 ]

 
 
 
 

[
 
 
 
 
𝑈1
𝑛

𝑈2
𝑛

⋮
⋮
𝑈𝑁
𝑛]
 
 
 
 

 

 

Where 

𝐴𝑖𝑗
𝑛 = {

𝑎1 + 𝜌∆𝑡𝑈𝑚
𝑛 − 𝑎2𝑃𝑖𝑗

(2), 𝑖 = 𝑗

−𝑎2𝑃𝑖𝑗
(2), 𝑖 ≠ 𝑗

and 𝐵𝑖𝑗
𝑛 = {

𝑎3 + 𝑎2𝑃𝑖𝑗
(2), 𝑖 = 𝑗

𝑎2𝑃𝑖𝑗
(2), 𝑖 ≠ 𝑗

 

 

On implementation of the required boundary conditions to the system of equations, the 

system is solved for the solution iteratively applying the Gauss elimination method. 

 

3.8 Results 

The numerical solutions for the FEs are evaluated taking the different set of parameters in 

form of a numerical example with large reaction factor by the proposed hybrid method. By 

evaluating the errors, the solutions are given in tables and presented in figures. 
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The FEs was presented by Petzold and Ren  [123] in study related to the stability of a moving 

mesh approach taking a large value of non-linear reactive term (𝜌) as compared to the 

diffusion term with the reaction rate coefficient (v) greater than equal to one. The analytic 

solution for the above said equation is reported in literature [128] as: 

2
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Solution of the FEs is obtained using the proposed hybrid scheme considering a finite domain 

as [𝑥𝐿, 𝑥𝑅]  =  [−0.2, 0.8] with nonlocal boundary conditions. The solution is obtained for 

the time  t =  0.001 to t =  0.003 and reaction factor 𝜌 = 2000, 5000 𝑎𝑛𝑑 10,000. The 

obtained numerical solutions have been presented in Figure 1 and Figure 2 for different 

reaction factors to show the solutions at different time levels with the number of partitions 

as 40 and 80 respectively. The solution is also presented in the 3D form in Figure 3 and 

Figure 4 to showcase the change in behaviour with respect to time. The results are also 

discussed for the accuracy in terms of the 𝐿∞ errors in Table 1 and Table 2 for reaction factor 

𝜌 =  2000 and 𝜌 =  5000 for different values of knot partitions. Comparison of the 

solutions obtained by the present scheme is given in Table 3 and Table 4 for reaction factor 

𝜌 =  10,000 which are available in the literature with the exact solutions at different knot 

points. The work is compared with the results obtained by the standard collocation approach 

[140]  and another form of collocation approach [141]. The calculated results are almost 

similar but the difference is regarding the number of domain partitions considered. This is a 

major factor responsible for the computational time which is less in the present scheme as 

compared to the collocation approaches. 

Table 3.5  𝐿∞ errors obtain by the hybrid scheme at different time levels for 𝜌 = 2000 for 

∆t=1× 10−5. 

𝑵 𝒕 = 𝟎. 𝟎𝟎𝟎𝟏 𝒕 = 𝟎. 𝟎𝟎𝟏𝟓 𝒕 = 𝟎. 𝟎𝟎𝟐𝟎 𝒕 = 𝟎. 𝟎𝟎𝟐𝟓 

𝟏𝟏 1.2021E-04 8.8798E-04 2.4096E-03 5.7924E-03 

𝟐𝟏 6.1551E-06 3.0570E-06 6.5669E-06 6.28168-06 

𝟑𝟏 1.5327E-05 3.9296E-06 8.5750E-07 3.5690E-07 
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Figure 3.5 Solution profile of the travelling wave for FEs at 𝜌 = 2000 

 

Table 3.6 𝐿∞ errors obtain by the hybrid scheme at different time levels for 𝜌 = 5000 for 

∆t=1× 10−5. 

𝑵 𝒕 = 𝟎. 𝟎𝟎𝟎𝟏 𝒕 = 𝟎. 𝟎𝟎𝟏𝟓 𝒕 = 𝟎. 𝟎𝟎𝟐𝟎 𝒕 = 𝟎. 𝟎𝟎𝟐𝟓 

31 7.1895E-06 1.9510E-04 6.9982E-03 1.9982E-02 

41 7.1122E-07 1.8788E-06 3.86138-05 9.6423E-04 

61 1.4733E-07 2.4601 E-07 1.2951 E-07 1.1264E-06 

81 1.1419E-07 2.7305E-07 3.8991 E-07 5.2300E-07 
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Figure 3.6 Solution profile of the travelling wave for FEs at 𝜌 = 5000 

 

Table 3.7 Solutions obtained by the hybrid scheme in comparison with the exact solutions and with 

others given in the literature at 𝑡 =  0.001 at 𝜌 =  10,000. 

X [140] [141] Present Exact 

-0.2 1.00000 1.00000 1.00000 1.00000 

-0.1 0.99999 0.99999 1.00000 1.00000 

0.1 0.97203 0.97199 0.9668 0.9691 

0.2 0.28644 0.29002 0.2398 0.2578 

0.3 0.00032 0.00035 2.37E-04 2.73E-04 

0.4 0.00000 0.00000 8.82E-08 7.50E-08 

0.5 0.00000 0.00000 2.22E-09 1.99E-11 

0.6 0.00000 0.00000 1.24E-10 5.29E-15 

0.7 0.00000 0.00000 4.63E-12 1.40E-18 

 

Table 3.8 Solutions obtained by the hybrid scheme in comparison with the exact solutions and with 

others given in the literature at 𝑡 =  0.002 at 𝜌 =  10,000. 

X [140] [141] Present Exact 
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-0.2 1.00000 1.00000 1.00000 1.00000 

-0.1 1.00000 1.00000 1.00000 1.00000 

0.1 0.99999 0.99999 0.99992 0.99992 

0.2 0.99958 0.99959 0.99950 0.99953 

0.3 0.99454 0.97551 0.97026 0.97200 

0.4 0.30845 0.32607 0.26831 0.28375 

0.5 0.00036 0.00045 0.00063 0.00033 

0.6 1.03E-07 0.00000 1.02E-07 9.16E-08 

0.7 2.93E-11 0.00000 2.67E-10 2.43E-11 

 

 

 

Figure 3.7 Solution profile of the travelling wave for FEs at 𝜌 = 2000 
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Figure 3.8 Solution profile of the travelling wave for FEs at 𝜌 = 5000 

 

3.9 Conclusion 

The present work is showcasing the efficiency of the proposed hybrid approach of Crank-

Nicolson based DQM with reframed cubic B-spline method for the study of Fishers equation. 

This is an effort in the development of the numerical approaches to find the improved 

solution of the FEs. The present work is illustrated with help of an example with large 

reaction factor. The obtained results show the benefit of the method in terms of the accuracy 

obtained with less domain partition. The presented algorithm can be extended for the 

application to the higher order nonlinear partial differential equations. 
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CHAPTER 4 

FISHER 1D AND 2D EQUATION USING PARTICLE 

SWARM OPTIMIZATION (PSO) AND DIFFERENTIAL 

QUADRATURE METHOD (DQM) 

 

4.1 Introduction: 

Fisher [126]  and Kolmogorov et al. [164] presented the Fisher-Kolmogorov-Petrovsky-

Piscunov equation, also known as the Fisher KPP equation, in 1937, which is now generally 

known as Fishers equation. Fishers equation is a time-dependent PDE resembling a reaction 

diffusion equation with periodic solutions and pattern formation behaviours[154], [165, 166]. 

In many physical and biological applications, the above equation designs the traveling 

wavefront with bounded solutions and it also appears in chemical kinetics, in various logistic 

growth models and study of wave propagation. Fishers equation is notable in physical 

phenomena, and there is a special approach to the reaction-diffusion equation in 1-D as 

follows: 

𝑢𝑡 = 𝜆𝑢𝑥𝑥 + 𝑢 (1 − 𝑢),−∞ <  𝑥 <  ∞, 𝑡 >  0                                                           (4.1)  

where β is known as a real parameter, reaction term is given by 𝑢 (1 − 𝑢), 𝑢 > 0 and it can 

depend upon space variable, 𝜆𝑢𝑥𝑥 is known as diffusion term and coefficient is known as a 

non-negative constant. Equation (4.1) is well-known 1-D Fishers equation.  

As in the phenomenon of cell migration, cell proliferation is one of the necessary 

mechanisms for wound healing and tumour progression. During this process, cells detect and 

answerable to variety of chemical and physical intimates. Numerous studies have examined 

the biochemical intimates of this process in depth, but physical intimates are still being 

considered to evaluate the phenomenon of tumour progression and wound healing. In both 

phenomena, the role of geometry in the proliferation rate of cell populations is extensively 

studied [130]. A model used to characterise the proliferation of cells is expressed as the well-

known 2-D Fishers Kolmogorov equation: 

𝑢𝑡 = ∇(𝜆∇𝑢) + 𝜇𝑓(𝑢)                                                                                                 (4.2) 
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Here 𝑢 (𝑥, 𝑦, 𝑡) is dimensional cell, 𝜆 is cell diffusivity,  𝜇 is cell proliferation rate and ∇ 

two- dimensional gradient operator and the function 𝑓(𝑢) =  𝑢 (1 − 𝑢) is a term in the 

equation containing non-linearity which the effect of reaction is represented by it. 

Assuming 𝜆1, 𝜆2 as the principal values of 𝜆 along the principal axes having coordinates 

(𝑋, 𝑌) [7], after that equation can be written in the form: 

𝑢𝑡 = 𝜆1𝑢𝑥𝑥 + 𝜆2𝑢𝑦𝑦 + 𝜇𝑓(𝑢)                                                                                                          (4.3) 

the value of 𝑥, 𝑦 and 𝑡 on rescaling can obtained as: 

 𝑡 = 𝜇𝑇 ,𝑥 = √
𝜇

𝜆1
𝑋 and 𝑦 = √

𝜇

𝜆2
𝑌   

Above equation becomes, 

𝑢𝑡 = 𝜆1𝑢𝑥𝑥 + 𝜆2𝑢𝑦𝑦 + 𝜇𝑓(𝑢)                                                                                                          (4.4) 

It is the general form of Fishers equation in two-dimension.   

In the previous decades efforts at a large scale has been made to solve 1-D fishers equation 

like Galerkin method by B-spline and Crank Nicolson method , cubic spline method [115], 

combination of collocation and Crank- Nicolson technique [139], [143], finite difference 

method [131], cubic B-spline quasi interpolation method [167], mesh method [152], sinc  

collocation method  [155] , finite difference method [168], pseudo-spectral  method [135], 

time-asymptotic convergence [169], one-dimensional and two-dimensional by quadrature 

method [170], finite difference [131], B-spline method [140], FRDE [141], DQM method 

[171], B-spline Galerkin method[143], exponential cubic B-spline method [172], cubic B-

spline quasi-interpolation [173], wavelet Galerkin approach [174], Adomian decomposition 

method [134].  

In last few years, the researchers focussed on the existence, uniqueness and stability of the 

two-dimensional Fishers equation. First numerical solution was analysed in 1974 by pseudo 

spectral approach [135] and then it has been solved by other methods such as petrov Galerkin 

finite element method [130], alternating group explicit iterative method [175], HAM [176], 

tanh method [177], travelling wave transform [178], implicit and explicit finite difference 

algorithm [154], DQM method [136], and cubic B-spline method [140]. 

 

In the chapter DQM, PSO technique and exponential basis functions are used to discuss one-

dimensional and two-dimensional FEs. To determine the parameter value which involved in 

the exponential B-spline method which is significant for the solution that has been resolved 

by optimisation technique. 
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    4.2 Application of Fisher’s Equation: 

                Fisher’s reaction-diffusion equation, is a partial differential nonlinear equation that 

models how a population or quantity spreads across time and space. It can be used in a 

number of different fields. Here are a few illustrations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

4.2.1 Population Dynamics: To describe the dispersal of species or populations through 

space, the Fishers equation is frequently employed in population biology and 

ecology. It takes into account how population growth and diffusion interact, taking 

into account things like birth, death, and dispersal rates. The equation aids in 

forecasting population densities as well as the dynamics of population growth or 

reduction and in diagnosing spatial patterns [179] 

4.2.2 Epidemiology: The Fishers equation is used to simulate the spatial spread of 

infectious illnesses in epidemiology. The equation aids epidemiologists in 

Applications of 

Fisher’s equation 

Population Dynamics: The 

equation aids in forecasting population 

densities, the dynamics of population 

growth or reduction, and diagnosing 

spatial patterns [179]. 

Genetic: FEs plays a crucial role in 

delineating the different prospects of 

genetic engineering. Most frequently, 

it is used to describe the behaviour of 

cells [126].  

Epidemiology: 

The equation aids 

epidemiologists in 

understanding the spread and 

control of illnesses by taking 

into account the expansion of 

the affected population and 

the diffusion of infected 

individuals [180]. 

Biological Processing: 

Using the Fishers model, a 

wound healing migration 

assay is used to demonstrate 

that the healing waves travel 

at a constant speed [182]. 

Chemical Reactions: 

The spatial distribution of 

reactants and products in 

reaction-diffusion 

systems is described by 

the FEs in chemical 

kinetics [181]. 
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understanding the spread and control of illnesses by taking into account the expansion 

of the affected population and the diffusion of infected individuals [180]. It facilitates 

in comprehending how various aspects of disease spread, such as transmission rates, 

movement patterns, and control methods, are impacted. 

4.2.3 Chemical Reactions: The spatial distribution of reactants and products in reaction-

diffusion systems is described by the FEs in chemical kinetics [181]. Scientists can 

research reaction fronts, the creation of chemical patterns, and the general behavior 

of reaction-diffusion systems thanks to its assistance in modeling chemical reactions 

that display both diffusion and reaction processes. 

4.2.4 Genetic Engineering: Genetic Engineering is a new field of study in which various 

techniques have been used to alter the genetic makeup of cells in order to enhance an 

organism in some manner. By altering the genome, scientists are able to confer 

desirable characteristics on different organisms. Animal genetic engineering has 

increased dramatically in recent years. Animal reproduction and the treatment of 

genetic disorders are the most promising potential applications for genetic modelling. 

FEs plays a crucial role in delineating the different prospects of genetic engineering. 

Most frequently, it is used to describe the behavior of cells [126] . It is one of the 

simplest reaction-diffusion equations and was initially used to examine the 

dissemination of a favorable gene through a population. FEs is also a useful model 

for describing the expansion of a monolayer cell province in vitro during tissue 

engineering. It depicts the behavior of a cell population as a combination of irregular 

cell movement and logistic multiplication, i.e. growth to the maximum cell thickness. 

It also analyses that, under certain conditions, the cell movement front will assume 

the form of a travelling wave with a constant shape and speed. 

4.2.5 Biological Processing: The fundamental FEs in which cell division is influenced by 

chemical signals and cell movement is influenced by mechanochemical factors. In a 

study, using the Fisher model, a very straightforward wound healing migration assay 

was used to demonstrate that the healing waves travel at a constant speed, as predicted 

by FEs. In addition, it has been demonstrated that the manner in which the wave 

speed approaches the asymptotic wave speed closely matches that predicted by the 

model. According to our knowledge, this is the first medical evidence of FEs [182]. 
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4.3 Differential Quadrature Method: 

DQM is an approach used to find the efficient solution of the partial differential equations 

by converting them to the ordinary differential equations by representing the derivatives as 

the linear sum of the function with the weighting coefficients. There are a lot of basis 

functions that can be implemented to approximate the derivative such as Lagrange’s 

polynomial, simple polynomial and the radial basis function etc. 

Let the finite domain of the differential equation is given as [a, b]. It can be discretized in to number 

of known points as 𝑎 = 𝑥0 < 𝑥1 <∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙< 𝑥𝑛−1 < 𝑥𝑛 = 𝑏  

 The 𝑟𝑡ℎderivative of the function can be written as: 

⌊
𝑑𝑟𝑈

𝑑𝑥𝑟
⌋
𝑥𝑖

=∑𝑝𝑖𝑗
(𝑟)𝑈(𝑥𝑗), 𝑖 = 1 𝑡𝑜 𝑁, 𝑟 = 1 𝑡𝑜 𝑁 − 1

𝑁

𝑗=1

                                                     (4.5) 

where,  𝑝𝑖𝑗
(𝑟)

 represents the coefficients to be calculated using the exponential B-Spline basis 

function. 

As per the literature, the polynomial B-splines with a free parameter are the generalization of 

the exponential B-spline functions. The third-degree exponential B-spline can be defined as 

follows: 

𝐵𝑖(𝑥) =

{
 
 
 

 
 
 𝑏2 [(𝑥𝑖−2 − 𝑥) −

1

𝑝
(sinh (𝑝(𝑥𝑖−2 − 𝑥)))]  if 𝑥 ∈ [𝑥𝑖−2, 𝑥𝑖−1];

𝑎1 + 𝑏1(𝑥𝑖 − 𝑥) + 𝑐1𝑒
𝑝(𝑥𝑖−𝑥) + 𝑑1𝑒

−𝑝(𝑥𝑖−𝑥)  if 𝑥 ∈ [𝑥𝑖−1, 𝑥𝑖];

𝑎1 + 𝑏1(𝑥 − 𝑥𝑖) + 𝑐1𝑒
𝑝(𝑥−𝑥𝑖) + 𝑑1𝑒

−𝑝(𝑥−𝑥𝑖)  if 𝑥 ∈ [𝑥𝑖 , 𝑥𝑖+1];

𝑏2 [(𝑥 − 𝑥𝑖+2) −
1

𝑝
(sinh (𝑝(𝑥 − 𝑥𝑖+2)))]  if 𝑥 ∈ [𝑥𝑖+1, 𝑥𝑖+2];

0  otherwise. 

 

here 

 

𝑝 = max
0≤𝑖≤𝑁

 𝑝𝑖, 𝑠 = sinh (𝑝ℎ), 𝑐 = cosh (𝑝ℎ)

𝑏2 =
𝑝

2(𝑝ℎ𝑐 − 𝑠)
, 𝑎1 =

𝑝ℎ𝑐

𝑝ℎ𝑐 − 𝑠
, 𝑏1 =

𝑝

2
[
𝑐(𝑐 − 1) + 𝑠2

(𝑝ℎ𝑐 − 𝑠)(1 − 𝑐)
] ,

𝑐1 =
1

4
[
𝑒−𝑝ℎ(1 − 𝑐) + 𝑠(𝑒−𝑝ℎ − 1)

(𝑝ℎ𝑐 − 𝑠)(1 − 𝑐)
] , 𝑑1 =

1

4
[
𝑒𝑝ℎ(𝑐 − 1) + 𝑠(𝑒𝑝ℎ − 1)

(𝑝ℎ𝑐 − 𝑠)(1 − 𝑐)
]

 

Each basis function 𝐵𝑖(𝑥) is twice continuously differentiable. The values of 𝐵𝑖(𝑥), 𝐵𝑖
′(𝑥) 

and 𝐵𝑖
′′(𝑥) at the knots 𝑥𝑖 's are obtained from the Table 1. 
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Table 4.1. Exponential B-spline values: 

       𝑥𝑖−2        𝑥𝑖−1           𝑥𝑖         𝑥𝑖+1        𝑥𝑖+2 

𝐵𝑖(𝑥)        0 
   
𝑠 − 𝑝ℎ

2(𝑝ℎ − 𝑠)
 

           1 
  
𝑠 − 𝑝ℎ

2(𝑝ℎ𝑐 − 𝑠)
 

          0 

𝐵𝑖
′(𝑥)        0 

   
𝑝(1 − 𝑐)

2(𝑝ℎ − 𝑠)
 

          0 
  
𝑝(𝑐 − 1)

2(𝑝ℎ𝑐 − 𝑠)
 

          0 

𝐵𝑖
′′(𝑥)        0 

 
𝑝2𝑠

2(𝑝ℎ𝑐 − 𝑠)
    

−𝑝2𝑠

𝑝ℎ𝑐 − 𝑠
  

𝑝2𝑠

2(𝑝ℎ𝑐 − 𝑠)
 

          0 

 For functions which defined on the interval [𝑎, 𝑏], the 𝐵𝑖(𝑥), 𝑖 = −1,… , 𝑁 + 1 form a basis.  

In order to calculate the value of parameter ‘𝑝’ for which the error will be minimise and in 

order to minimise the error an optimisation technique is required. The process of minimizing 

or maximizing an objective function by choosing the best values for each of its variables 

from within the permitted range of values is referred to as "optimization."  

4.4 Applications of optimization techniques 

Optimization techniques have a variety of applications. Some of the applications of 

optimization techniques include: 

4.4.1 Operations research: Optimization techniques are widely used in operations research 

to solve problems such as resource allocation, inventory management, and scheduling. For 

example, linear programming can be used to optimize production and transportation schedules 

to minimize costs in a manufacturing company. 

4.4.2 Engineering: Optimization techniques are used in engineering to optimize the designing 

of complex problems, such as airplanes, bridges, and electronic circuits. For example, genetic 

algorithms can be used to optimize the shape of a wing for a given set of designs and nonlinear 

programming (NLP) can be used to optimize the shape of an aircraft wing to minimize drag 

while maximizing lift. 

4.4.3 Finance: Optimization techniques are used in finance to optimize investment portfolios, 

risk management, and trading strategies. For example, quadratic programming can be used to 

minimize the risk of an investment portfolio while maximizing its return. 
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4.4.4 Machine learning: Gradient descent is an optimization technique that is widely used in 

machine learning to optimize the parameters of a model. It is used to minimize the loss function 

of a model, which measures the difference between the predicted and actual output. Gradient 

descent is used in many such as linear regression, machine learning algorithms, neural 

networks and logistic regression. 

4.4.5 Energy systems: Optimization techniques are used in energy systems to optimize the 

operation and control of power grids, renewable energy systems, and energy storage systems. 

An example is optimal power flow, which is an optimization problem that aims to minimize 

the operating cost of a power system while satisfying various constraints, such as the demand 

for electricity and the capacity of transmission lines. 

Overall, optimization techniques have numerous applications across different fields, and they 

are an essential tool for solving complex problems and improving efficiency and performance. 

In this chapter, Particle swarm optimisation tool which is an optimization technique is used to 

optimize the value of errors. 

4.6 Particle Swarm Optimization (PSO) 

In the class of algorithms inspired by nature, PSO is one of the potential global optimisation 

methods. PSO is a computer technique used in computational science to optimize problems 

by repeatedly attempting to raise the quality of possible answers.  

A computational worldwide optimization technique called PSO was initially suggested by Dr. 

Kennedy and Eberhart in 1995 [69].  A particle without quality or volume assumes the role 

of each individual and a simple behavioural pattern is regulated for each particle to 

demonstrate the complexity of the complete particle swarm. One may use this strategy to 

resolve the difficult optimist problems. Swarms are considered as population particles that 

transmit information to improve the effectiveness of the search solution and find the global 

optimum in this nature-based swarm optimization technique. Each particle has their best 

experience which is called their current position. There is a best experience of all the particles 

that is called their global best position. A particle changes the current best position for particle 

when it detects a target superior to all previously detected locations. During the iterations, 

there is a new best solution for each of the 𝑛 particles. The main purpose of this algorithm is 

to find the overall best solution from all available solutions. This process goes up to the 
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defined iterations or until the objective is not reached. In this optimization algorithm, the 

velocity 𝑈𝑖
𝑘+1 and the position 𝑋𝑖

𝑘+1 of the 𝑖𝑡ℎparticle are updated as: 

𝑉𝑖
𝑘+1 = 𝑉𝑖

𝑘 + 𝑎1 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚 ∗ (𝑃𝑏𝑒𝑠𝑡𝑖 − 𝑋𝑖
𝑘) + 𝑎2 ∗ 𝑟𝑎𝑛𝑑𝑜𝑚 ∗ (𝐺𝑏𝑒𝑠𝑡 − 𝑋𝑖

𝑘), 

𝑋𝑖
𝑘+1 = 𝑋𝑖

𝑘 + 𝑉𝑖
𝑘+1 

Where 𝑉𝑖
𝑘  - is velocity of particle 𝑖 at 𝑘𝑡ℎ iteration, 

𝑎1, 𝑎2 – are real parameters, 

𝑟𝑎𝑛𝑑𝑜𝑚− is a random number, whose value lies between 0 & 1, 

𝑋𝑖
𝑘 = is 𝑖𝑡ℎ- particle position at 𝑘𝑡ℎ-iteration, 

𝑃𝑏𝑒𝑠𝑡𝑖 – Personal best position of particle 𝑖, 

𝐺𝑏𝑒𝑠𝑡 – Global best position of whole search space. 

PSO is a computational technique that iteratively optimizes, a problem to reduce error. It is a 

statistical method used to determine parameter values. To find the optimal answer to an 

optimization problem, the particles communicate, share their knowledge and follow a simple 

rule. The PSO method is an innovative method for evaluating the best shape parameter value 

of RBF using the non-linear partial differential equation. It is a global search optimization 

strategy and offers numerous characteristics in the parameter space. 

4.6.1 Algorithm of PSO technique 

The collective activities of birds while searching for food served as the inspiration for the 

development of the PSO algorithm [161]. In this technique, particles are considered entities, 

and their location affects how they behave. There is a component of the solution that has to 

be optimized at each location. The search process is driven by the updating of particle 

positions and velocities at each time step. There is a location for each particle in the swarm 

that can be resolved in one-dimensional space. Each particle moves according to its best-

known locations both locally and across the search space, which are updated when new 

locations are discovered by other particles. With the use of a simple mathematical formula, 

the updating guidelines for each particle's location and speed are provided by                                      

                                   )]()([ 2211

1 tttttt

idgdidididid
xprcxprcvv −+−+=+   

                                               
11 ++ += ttt

ididid
vxx
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Where, 
t

idx , represents 𝑐 particle’s position and 
t

idv  represents 𝑖𝑡ℎ particle’s velocity in 𝑑 

dimension at time step 𝑡,  𝑝𝑔𝑑 represents the particle having the best fitness value, 𝑝𝑖𝑑 is the 

particle’s best position visited so far, 𝑐1, 𝑐2 are acceleration coefficients which quantifies 

particle personal and global experience respectively,  is called constriction coefficient 

which evaluates a value in the range [0,1] and is given by 

                                                         
)4(2

2

−−−
=




   

      With 
22211121 ,, rcrc ==+=  and 1 . 

4.6.2 PSO Algorithm 

Input fitness function, lb, ub, Np, T, 𝑎1, 𝑎2 

           Initialize random population (𝑃) and velocity 𝑈𝑖 of particle 𝑖   

           Evaluate objective function value (𝑓) 

           Assign 𝑃𝑏𝑒𝑠𝑡𝑖 as P and 𝑓𝑏𝑒𝑠𝑡as 𝑓 

           Identify the solution with best fitness & assign the solution as 𝐺𝑏𝑒𝑠𝑡 and fitness as 𝑓𝑏𝑒𝑠𝑡 

                For 𝑡 = 1 to 𝑇  

                For 𝑖 = 1 to 𝑁𝑝  

Determine the velocity 𝑈𝑖 

Determine the new position (𝑋𝑖) 

  Bound 𝑋𝑖 

  Find objective function value 

  Update the population by including 𝑋𝑖 & 𝑓𝑖 

  Update 𝑃𝑏𝑒𝑠𝑡and 𝑓𝑝𝑏𝑒𝑠𝑡 

  Update 𝐺𝑏𝑒𝑠𝑡and 𝑓𝑔𝑏𝑒𝑠𝑡 

      End 

End 

 

The result of using the strategy is a solution that is accurate since it finding out for the number 

of repetitions with the no. of iterations across a set population size. Using radial basis 
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functions, this strategy has been effectively used to calculate equation solutions [62]. The 

parameters taken here are as: size of swarm:20; no. of maximum iterations: 50; inertia weight 

is decreased linearly with size 𝑐1 = 𝑐2 = 2.05. 

 

4.6.3 Applications of PSO technique  

A number of papers have been published on applications of PSO. One of the prospective 

global optimisation method is PSO that has been extensively applied to solve issues in 

numerous fields such as health care, environmental, industrial, commercial, smart city [63], 

[64], geotechnical engineering [46], civil engineering [65], electromagnetics[66], and wireless 

networks [67] etc. 

4.6.4 Advantages of PSO technique  

             Advantages of the PSO are as follows [68]: 

• The PSO is built on intelligence. Both engineering and scientific research can utilized 

it. 

• PSO do not calculate mutations or overlap. The search can be carried out using the 

particle's speed. Over the course of several generations, only the most optimistic 

particle may transfer information to the other particles, and knowledge evolves 

swiftly. 

• The PSO computation is extremely simple. In comparison to other development 

calculations, it takes up greater optimization space and is easy to execute. 

• PSO makes a decision immediately based on the response and a real-number code. 

The constant of the solution and the dimension have the same number. 

4.6.5 Disadvantage of PSO technique 

This method cannot be used to solve non-coordinate system problems like the rules for how 

particles move in an energy field since it lacks dimensionality [68]. 

   4.6.6 Implementation:   

To solve the fisher equation  

𝑢𝑡 = 𝑣𝑢𝑥𝑥 + 𝜌𝑓(𝑢) 

Substituting the approximations of the space derivatives using the DQM [100] with 

exponential B-spline basis functions results in an ODEs that can be solved by any appropriate 

numerical method. Once the solutions have been identified for the problem with the known 
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initial condition, the PSO technique is used to minimise errors and reduce the obtained error 

by comparing exact and numerical solutions. Once the value of the parameter is obtained for 

the minimum error, numerical results can be calculated on predefined domain and time 

intervals. 

The numerical scheme can be summarized and visualised as follows: 

 

 

 

 

 

 

 

 

 

 

 4.7 Numerical Result: 

In this section, the numerical solution of the FEs is considered taking the different set of 

parameters in form of two numerical examples by the developed hybrid technique. The 

accuracy and the efficiency of the methods are compared by evaluating the error norms. 

4.7.1 1st test problem: The FEs (4.1) was implemented and presented by Petzold and Ren 

[123] in the study of stability of a moving mesh system taking a large value of non-linear 

reactive term as compared to the diffusion term with the reaction rate coefficient greater than 

equal to one. The analytical solution for the above said parametric equation was obtained by 

Ablowitz and Zepetella [128] as follows: 

2

1
( , )

5
1 exp

6 6

u x t

x
t

 
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Solution of the FEs is obtained considering a finite domain as [𝑥𝐿 , 𝑥𝑅]  =  [−0.2, 0.8] with 

nonlocal boundary conditions. The obtained numerical solutions have been presented in form 

of figures and tables with the comparison of solutions obtained by differential quadrature and 

the collocation approach.  

Fishers 

Equation one-

dimensional 

Approximation 

using DQM with 

Exp B-spline 

(ODEs) 

𝑳∞ Error as 

objective function 

to minimize using 

PSO 

Obtained value of 

parameter 

Calculation of error 

using optimized value 

of parameter 
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For different values of 𝑁 and for different values of 𝑝 which varies between a range [1, 200]. 

Table 4.2: 𝐿∞ errors obtained by the hybrid scheme at different time levels for 𝜌 = 2000 for 𝑡 =

1 × 10−5. 

` 𝒕 = 𝟎. 𝟎𝟎𝟏𝟎 

 

𝒕 = 𝟎. 𝟎𝟎𝟏𝟓 

 

𝑳∞ P 𝑳∞ [160] 𝑳∞ P           𝑳∞ [160] 

11 3.7880E-06 1 1.2021E-04 1.9631E-06 1 8.8798E-04 

21 6.2634E-06 184.3448 6.1551E-06 1.8821E-06 64.9465 3.0570E-06 

31 1.6386E-05 200 1.5327E-05 3.9521E-06 200 3.9296E-06 

  t=0.0020   𝒕 = 𝟎. 𝟎𝟎𝟐𝟓  

11 3.2457E-06 12.1442 2.4096E-03 3.0905E-06 16.2559 5.7924E-03 

21 5.9916E-07 27.4870 6.5669E-06 3.6021E-07 47.3644 6.2816E-06 

31 8.9303E-07 190.5990 8.5750E-07 4.4764E-07 127.5467 3.5690E-07 

 

The exact and numerical solution at different intervals shown in Figure 4.1. To compare the 

findings with the exact answer, the results are displayed graphically. The specific approach 

to the problem is found to be in good accord with the obtained results to assess whether the 

numerical solution is accurate for 𝜌 = 2000 𝑎𝑛𝑑 ∆𝑡 = 1 × 10−6 , results are depicted by  

𝐿∞ errors and are presented in Table 4.2 and comparison is done with the results exists in the 

literature.  
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Figure 4.1 A graphical depiction of time dependent profiles versus x of 1𝑠𝑡 test problem for 𝜌 =

2000 for  𝑡 = 1 × 10−5  . 

 

Table 4.3: 𝐿∞ errors obtained by the hybrid scheme at different time levels for 𝜌 = 5,000 for 𝑡= 

1 × 10−5  . 

N 𝒕 = 𝟎. 𝟎𝟎𝟏𝟎 

 

𝒕 = 𝟎. 𝟎𝟎𝟏𝟓 

 

𝑳∞ p 𝑳∞ [160] 𝑳∞ p 𝑳∞ [160] 

31 1.8794E-06 127.4740 7.1895E-06 8.2982E-07 101.02222 1.9510E-04 

41 5.5736E-06 200 7.1122E-07 1.8174E-06 200 1.8788E-06 

61 1.7687E-06 200 1.4733E-07 6.2910E-05 200 2.4601E-07 

81 2.2558E-05 200 1.1419E-07 9.4953E-05 200 2.7305E-07 

  t=0.0020   𝒕 = 𝟎. 𝟎𝟎𝟐𝟓  

31 5.2087E-07 94.817065 6.9982E-03 3.1489E-07 92.4473 1.9982E-02 

41 6.3480E-07 182.46816 3.8613E-05 4.9421E-07 171.7256 9.6423E-04 

61 1.5366E-04 200 1.2951E-07 3.0157E-04 200 1.1264E-06 

81 2.5400E-04 200 3.8991E-07 5.1449E-04 200 5.2300E-07 

 

The exact and numerical solution at different intervals shown in Figure 4.2. To compare the 

findings with the exact answer, the results are displayed graphically. The specific approach 



81 
 

to the problem is found to be in good accord with the obtained results to assess whether the 

numerical solution is accurate for 𝜌 = 5000 𝑎𝑛𝑑 ∆𝑡 = 1 × 10−6  , results are depicted by  

𝐿∞ errors and are presented in Table 4.3 and comparison is done with the results exists in the 

literature.  

 

 

Figure 4.2 A graphical depiction of time dependent profiles versus x of 1𝑠𝑡 test problem for 𝜌 =

5000 for 𝑡 = 1 × 10−5. 

Table 4.4: 𝐿∞ errors obtained by the hybrid scheme at different time levels for 𝜌 = 10,000 for 𝑡 =

1 × 10−5. 

𝑁 𝒕 = 𝟎. 𝟎𝟎𝟏𝟎 

 

                               𝒕 = 𝟎. 𝟎𝟎𝟏𝟓 

 

 𝑳∞ p 𝑳∞ P 

11 0 26.7534 0 28.1728 

21 3.2683E-05 59.8813 4.5659E-05 67.7689 

31 2.3438E-06 104.4888 3.9461E-06 105.1255 

41 1.6684E-06 191.9409 9.7326E-07 179.5408 

61 6.1756E-04 200 2.0E-03 200 

81 9.7124E-04 200 3.5E-03 200 
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  t=0.0020                        𝒕 = 𝟎. 𝟎𝟎𝟐𝟓  

11 0 32.908 0 90.4507 

21 4.0265E-05 72.1092 3.0399E-05 74.4567 

31 4.6042E-06 106.3847 4.7671E-06 107.3924 

41 8.3694E-07 175 9.0643E-07 172.7307 

61 4.3116E-03 200 7.7256E-03 200 

81 8.1045E-03 200 1.4758E-02 200 

Similarly, Figure 4.3 shows the exact and numerical solution at different time levels. To 

compare the numerical solution with the exact solution for 𝜌 = 10,000 𝑎𝑛𝑑 ∆𝑡 =

1 × 10−6  , results are depicted by  𝐿∞ errors and are presented in Table 4.4. 

 

     

Figure 4.3 A graphical depiction of time dependent profiles versus x of 1𝑠𝑡 test problem for 𝜌 =

10,000 for 𝑡 = 1 × 10−5  . 

4.7.2 2nd test problem: Now, Solution is obtained by considering the equation (4.1) on a 

finite domain as [𝑥𝐿, 𝑥𝑅] = [0,1] with nonlocal boundary conditions. With initial condition 

has been considered as 𝑢(𝑥, 0) =
1

(1+𝑒𝑥𝑝(𝜌𝑥))2
 

With boundary condition lim
𝑥→−∞

𝑢(𝑥, 𝑡) = 1 , lim
𝑥→∞

𝑢(𝑥, 𝑡) = 0 and exact solution is given by: 

𝑢(𝑥, 𝑡) =
1

[1 + exp (√
𝜌
6
𝑥 −

5𝜌𝑡
6
)]

2 
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Table 4.5: 𝐿2 and 𝐿∞ errors obtained by the hybrid scheme for the different time levels solutions of 

2nd test problem for 𝜌 = 6 with ℎ = 1 × 10−3 and ∆𝑡 = 1 × 10−6   at different levels of time. 

 

Table 4.6: Value of absolute error in the PSO-DQM solution of 2nd test problem with 𝜌 = 6, 𝑛 =

11 𝑎𝑛𝑑 ∆𝑡 = 1 × 10−6  at different levels of time. 

x 𝒕 = 𝟎. 𝟎𝟎𝟎𝟏𝟎 

 

𝒕 = 𝟎. 𝟎𝟎𝟎𝟐 

 

Num. value Exact value Abs. Error Num. value Exact value Abs. Error 

0.1   0.2257628692996   0.2257634281619   3.7886e-7   0.225879623742   0.225881758036   2.1342e-6 

0.2   0.2027609522921   0.2027608716127   8.0679e-8   0.202872642577   0.202872349425   2.9315e-7 

0.3   0.1812032056058   0.1812032213726   1.5766e-8   0.181307257299   0.181307308866   5.1566e-8 

0.4   0.1611480352987   0.1611480329367   2.3620e-9   0.161244518459   0.161244510103   8.3563e-9 

0.5   0.1426256974841   0.1426256992945   1.8104e-9   0.142714475916   0.142714480472   4.5555e-9 

0.6   0.1256405426468   0.1256405405606   2.0861e-9   0.125721671388   0.125721665786   5.6021e-9 

0.7   0.1101729266816   0.1101729400578   1.3376e-8   0.110246528176   0.110246562534   3.4358e-8 

0.8   0.0961822267045   0.0961821575567   6.9147e-8   0.096248719771   0.096248528247   1.9152e-7 

0.9   0.0836093218458   0.0836096068232   2.8497e-7   0.083667905038   0.083669057269   1.1522e-6 

  𝒕 = 𝟎. 𝟎𝟎𝟎𝟑   𝒕 = 𝟎. 𝟎𝟎𝟎𝟒  

0.1 0.2259950683966 0.2260003019396 5.2335e-6 0.2261092349428 0.2261188798587 9.6449e-6 

0.2 0.2029844770615 0.2039838634058 6.1365e-7 0.2030964331616 0.2030954135439 1.0196e-6 

0.3 0.1814113315203 0.1814114339737 1.0245e-7 0.1815154326416 0.1815155966887 1.6404e-7 

Time(t) P 𝑳𝟐 𝑳∞ TBC 𝑳𝟐 [162] TBC 𝑳∞ [162] 

0.0001 10 1.5378E-07 1.4354E-13 7.0594E-05 1.2502E-04 

0.0002 10 7.7521E-07 4.5552E-12 1.5179E-04 2.5006E-04 

0.0003 10 1.8599E-06 2.7389E-11 2.4280E-04 3.7514E-04 

0.0004 10 3.3955E-06 9.3024E-11 3.4091E-04 5.0025E-04 
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0.4 0.1613410425742 0.1613410256438 1.6930e-8 0.1614376067503 0.1614375795559 2.7194e-8 

0.5 0.1428032922044 0.1428033001299 7.9225e-9 0.1428921466008 0.1428921582693 1.1668e-8 

0.6 0.1258028390791 0.1258028289999 1.0079e-8 0.1258840453382 0.1258840302039 1.5134e-8 

0.7 0.1103201611064 0.1103202219756 6.0869e-8 0.1103938272620 0.1103939183868 9.1124e-8 

0.8 0.0963152913145 0.0963149344314 3.5688e-7 0.0963819319448 0.0963813761180 5.5582e-7 

0.9 0.0837259563702 0.0837285413805 2.5850e-6 0.0837834888559 0.0837880591671 4.5703e-6 

 

The exact and numerical solution at different intervals shown in Figure 4.4. To compare the 

findings with the exact answer, the results are displayed graphically. The specific approach 

to the problem is found to be in good accord with the obtained results to assess whether the 

numerical solution is accurate for 𝜌 = 6, 𝑛 = 11 𝑎𝑛𝑑 ∆𝑡 = 1 × 10−6, results are depicted in 

Table 4.6 and the 𝐿2 and 𝐿∞ errors are presented in Table 4.5. 

 

   

Figure 4.4 Traveling wave solutions of 2𝑛𝑑 test problem for 𝜌 = 6 and ∆𝑡 = 1 × 10−6. 
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4.7.3 3rd test problem: Consider the equation (4.1) in the domain [0,1]. With initial 

condition has been considered as 𝑢(𝑥, 0) =
1

(1+𝑒𝑥𝑝(𝜌𝑥))2
 

With boundary condition lim
𝑥→−∞

𝑢(𝑥, 𝑡) = 1 , lim
𝑥→∞

𝑢(𝑥, 𝑡) = 0 and exact solution is given by: 

𝑢(𝑥, 𝑡) =
1

[1 + exp (√
𝜌
6 𝑥 −

5𝜌𝑡
6 )]

2 

 

Table 4.7: 𝐿2 and 𝐿∞ errors obtained by the hybrid scheme for the different time levels results of 3rd 

test problem for 𝜌 = 6 with ℎ = 1 × 10−1 and ∆𝑡 = 1 × 10−6   at different levels of time. 

Time(t) P                            𝑳𝟐 𝑳∞      TBC 𝑳𝟐 [162] TBC 𝑳∞ [162] 

0.0001 20 1.8906e-07 2.1298e-13 7.0594E-05 1.2502E-04 

0.0002 20 8.3693e-07 5.1964e-12 1.5179E-04 2.5006E-04 

0.0003 20 1.9407e-06 2.9406e-11 2.4280E-04 3.7514E-04 

0.0004 20 3.4892e-06 9.7229e-11 3.4091E-04 5.0025E-04 

Table 4.8: Value of absolute error in the PSO-DQM solution of 3rd test problem with 𝜌 = 6, 𝑛 =

11 𝑎𝑛𝑑 ∆𝑡 = 1 × 10−6  at different levels of time. 

x 𝒕 = 𝟎. 𝟎𝟎𝟎𝟏𝟎 

 

𝒕 = 𝟎. 𝟎𝟎𝟎𝟐 

 

Num. value  Exact value Value of 

Abs. Error 

Num. value Exact value Value of 

Abs. Error 

0.1 0.2257627866610 0.2257632481619 4.6150E-7 0.2258794784654 0.2258817580365 2.2795E-6 

0.2 0.2027609402831 0.2027608716127 6.8670E-8 0.2028725991685 0.2028723494258 2.4974E-7 

0.3 0.1812032076058 0.1812032213726 1.3767E-8 0.1813072665336 0.1813073088665 4.2330E-8 

0.4 0.1611480323046 0.1611480329367 6.3200E-10 0.1612445111409 0.1612445101033 1.0400E-9 

0.5 0.1426256963159 0.1426256992945 2.9790E-9 0.1427144740057 0.1427144804720 6.4700E-9 

0.6 0.1256405401524 0.1256405405606 4.0800E-10 0.1257216658328 0.1257216657868 4.6000E-11 

0.7 0.1101729287962 0.1101729400578 1.1262E-8 0.1102465345315 0.1102465625347 2.8000E-8 
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0.8 0.0961822174396 0.0961821575567 5.9883E-8 0.0962486925578 0.0962485282471 1.6431E-7 

0.9 0.0836092382694 0.0836096068232 3.6855E-7 0.0836677472989 0.0836690572691 1.3099E-6 

  𝒕 = 𝟎. 𝟎𝟎𝟎𝟑   𝒕 = 𝟎. 𝟎𝟎𝟎𝟒  

0.1 0.2259948792125 0.2260003019396 5.4422E-6 0.2261090193860 0.2261188798587 9.8604E-6 

0.2 0.2029843846945 0.2029838634058 5.2129E-7 0.2030962759823 0.2030954135439 8.6244E-7 

0.3 0.1814113522192 0.1814114339737 8.1750E-8 0.1815154681274 0.1815155966887 1.2856E-7 

0.4 0.1613410299318 0.1613410256438 4.2900E-9 0.1614375880720 0.1614375795559 8.52E-9 

0.5 0.1428032898499 0.1428033001299 1.028E-8 0.1428921439961 0.1428921582693 1.427E-8 

0.6 0.1258028300526 0.1258028289999 1.05E-9 0.1258840325651 0.1258840302039 2.36E-9 

0.7 0.1103201733875 0.1103202219756 4.859E-8 0.1103938467665 0.1103939183868 7.162E-8 

0.8 0.0963152383047 0.0963149344314 3.0387E-8 0.0963818460254 0.0963813761180 4.699E-7 

0.9 0.0837257332798 0.0837285413805 2.8081E-6 0.0837832087020 0.0837880591671 4.850E-6 

 

The numerical and exact value at different intervals shown in Figure 4.5. For comparison, 

the findings with the exact answer, the results are displayed graphically. The specific 

approach to the problem is found to be in good accord with the obtained results to assess 

whether the numerical solution is accurate for 𝜌 = 6, 𝑛 = 11 𝑎𝑛𝑑 ∆𝑡 = 1 × 10−6  , results 

are described in Table 4.8 and the 𝐿2 and 𝐿∞ errors are shown in Table 4.7. 
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Figure 4.5 Graphical solution of traveling wave presented in 3𝑟𝑑 test problem for 𝜌 = 6 and ∆𝑡 =

1 × 10−6. 

4.7.4 4th test problem: Tang and Weber (1991) [130] have taken initial disturbance with a 

flat top in a constrained location into consideration with 𝜆1 = 0.1, 𝜆2 = 0.01, 𝜇 = 0.1, 𝑥 ∈

[−2,2] 𝑎𝑛𝑑 𝑦 ∈ [−1,1] 𝑡𝑎𝑘𝑖𝑛𝑔 ℎ𝑥 = ℎ𝑦 = 0.05 and ∆𝑡 = 0.001 

𝑢(𝑥, 𝑦, 0) = {
1, 𝑖𝑓 𝑥2 + 4𝑦2 ≤ 0.25

𝑒𝑥𝑝[−10(𝑥2 + 4𝑦2 − 0.25)], 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Figure 4.6 displays the numerical solutions contour and surface plots at times 𝑡 = 0,1,2 and 

4. This illustration demonstrates how the top falls first with spreading disruption over time, 

as opposed to initial disruption, which has a flat top where diffusion is zero in the middle and 

at the edge diffusion is significant. 
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Figure 4.6 The surface and contour plot of 4𝑡ℎ test problem at time 𝑡 = 0,1,2 𝑎𝑛𝑑 4 with ∆𝑡 =

1 × 10−3 and ℎ𝑥 = ℎ𝑦 = 0.05. 

 4.8 Conclusion:  

Travelling wave solutions of the FEs, which have been evaluated by different numerical 

methods. This nonlinear Fishers problem has been solved using the differential quadrature 

method in this article employing the exponential B-Spline basis function with PSO. By 

calculating the 𝐿2 and 𝐿∞, the approximated results are shown. Obtaining the numerical 

solutions and the errors make it clear that the results are in excellent agreement, with the 

exact solutions. In the case of two-dimensional work, contour and surface plots are also 

shown, which are comparable to the results displayed graphically in the previous work. This 

approach demonstrates to be a cost-effective and viable methodology for obtaining 

numerical solutions for a distinct-nonlinear real-life models, and may therefore be expanded 

to effectively handle problems of higher dimensions. 
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CHAPTER 5 

CONCLUSIONS AND FUTURE SCOPE 

 

Nonlinear evolutionary equations dynamically describe nonlinear sciences, the space and 

time two-dimensional system through the nonlinear systems. NLEEs are a class of nonlinear 

PDEs that have solitons as the solution and a number of other significant characteristics. 

NLEEs are called "nonlinear" because they involve nonlinear functions of the variables, 

which can lead to complex and often unpredictable behaviour of the system. They are also 

called "evolutionary" because they describe how the system evolves, taking into account the 

effects of various factors that influence the system's behaviour.  

Nonlinear Evolution Equations (NLEEs) have various applications across different fields of 

science and engineering. These equations describe the time evolution of physical systems 

with nonlinearities, meaning that the relationship between variables is not directly 

proportional. Applications of NLEEs in different fields such as in physics the famous 

nonlinear Korteweg-de Vries equation and burgers equation, describing the behaviour of 

dispersion effects with nonlinear interactions and used to model various phenomena in fluid 

dynamics respectively and NLEEs can be used to model biological phenomena like the 

spread of infectious diseases, population dynamics, and the behaviour of complex biological 

systems. The Fisher-Kolmogorov equation is an example of an NLEEs used to study the 

spread of advantageous genes in populations. 

 In the field of optics, NLEEs are employed to study the behaviour of intense light waves in 

nonlinear materials, leading to phenomena like self-phase modulation, self-focusing, and 

optical solitons. NLEEs are used in financial mathematics to model the behaviour of financial 

instruments and markets. These models take into account various nonlinear factors that affect 

asset prices and market dynamics. It also plays a role in climate modelling to study the 

complex interactions between the atmosphere, oceans, and land surface, taking into account 

nonlinear feedback mechanisms. Also applied in various engineering disciplines, such as 

electrical engineering, mechanical engineering, and materials science. They are used to 

analyze and predict the behaviour of nonlinear systems and materials. These are involved in 

the study of pattern formation in natural phenomena, such as Turing patterns in reaction-
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diffusion systems. NLEEs are used in image processing and computer vision for tasks like 

image denoising, edge detection, and image segmentation. 

Solving Nonlinear Evolution Equations (NLEEs) analytically can be challenging in most 

cases, and closed-form solutions may not be possible for many nonlinear systems. However, 

various techniques and methods can be employed to analyze and approximate solutions to 

NLEEs. Some NLEEs have special soliton solutions. Solitons are self-reinforcing waves that 

maintain their shape during propagation. These soliton solutions can be found through 

various mathematical techniques. 

Numerical methods are commonly used to find solutions to Nonlinear Evolution Equations 

(NLEEs) due to several reasons as analytical techniques may not exist or may be extremely 

difficult to apply. Numerical methods provide a practical and effective means of 

approximating solutions in such cases. These methods offer flexibility in handling various 

types of NLEEs, including systems with high dimensionality, complex boundary conditions, 

or irregular geometries. They can be adapted to a wide range of problem setups, making them 

versatile for different applications. They can handle large-scale NLEEs by utilizing parallel 

computing and high-performance computing resources, allowing for faster and more 

accurate simulations. NLEEs can exhibit numerical instabilities due to nonlinearities, which 

can lead to difficulties in finding stable analytical solutions. Numerical methods, when 

properly implemented, can provide stable and accurate solutions even in the presence of 

nonlinearities. In the present study, the Crank-Nicolson technique is employed to solve these 

equations, followed by DQM with a modified form of cubic B-spline basis function to 

remove extra knot points.  The equation is thus reduced to a system of equations by utilising 

differential quadrature technique to approximate the spatial derivatives. The next step 

consists of computing the solution of the produced system of equations using MATLAB 

programming in an iterative way. Since the present method is using the concept of differential 

quadrature method after discretizing the domain, hence it is acting as a tool to reduce the 

computational complexity of the collocation approach. As collocation method usually 

requires complex algebraic manual calculation and a combination of DQM, PSO technique 

and exponential basis functions are used to discuss different equations. To determine the 

parameter value which involved in the exponential B-spline method which is significant for 

the solution that has been resolved by optimisation technique and present study demonstrates 

how effective the proposed hybrid approach of DQM with modified cubic B-splines and the 

finite difference scheme for discretization can be implemented to solve the partial differential 
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equations. This work is an effort to develop numerical approach that can provide the 

approximate solution which is close to the exact solution to the Burgers equation. The present 

work is showcasing the efficiency of the proposed hybrid approach of Crank-Nicolson based 

DQM with reframed cubic B-spline method for the study of Fishers equation. This is an effort 

in the development of the numerical approaches to find the improved solution of the FEs. 

Travelling wave solutions of the FEs, which have been evaluated by different numerical 

methods. This nonlinear Fishers problem has been solved using the differential quadrature 

method in this article employing the exponential B-Spline basis function with PSO. By 

calculating the 𝐿2 and 𝐿∞, the approximated results are shown. Obtaining the numerical 

solutions and the errors make it clear that the results are in excellent agreement, with the 

exact solutions. In the case of two-dimensional work, contour and surface plots are also 

shown, which are comparable to the results displayed graphically in the previous work. 

FUTURE SCOPE: 

1. The numerical solutions in this thesis only take initial and boundary concerns into 

consideration, fractional-order partial differential equations may be used to evaluate 

these techniques.  

2. In this research work discussion about different types of solutions of NLEEs, 

particularly one of them i.e., soliton type solution has been explored. This may further 

be extended to explore more type of solutions of PDEs. The presented algorithm is 

capable of being modified that can be applied to higher order nonlinear differential 

equations in either linear or nonlinear form.  

3. In this research work the exponential cubic B-spline differential quadrature method 

has been used with PSO technique to find the best value of the parameter 𝑝 in the 

basis function other optimization techniques may be explored to optimize the 

parameter value 𝑝 in the basis function, for example Artificial Bee Colony 

(ABC) algorithm, Genetic algorithm techniques, Ant Colony Optimization, Grey wolf 

optimization, Bat algorithm and many more. 
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- 26th June 2021 at Lovely Professional University, Phagwara, Punjab, India.  

2. Presented a paper as Oral Presentation entitled “Nonlinear Dynamics of the Fishers 

equation with numerical experiments” in 5th International Conference on 

“Mathematical Techniques in Engineering Applications” (ICMTEA2021) held on 3rd 

- 4th December 2021 at Graphic Era Deemed to be university, Dehradun, Uttarakhand, 

India. 

3. Presented a paper as Oral Presentation entitled “Study of Fisher’s Equation with 

different B-spline function” in “1st International Conference on Mathematical 

Methods and Techniques in Engineering and Sciences” (ICMMTES2022) at Graphic 

Era Deemed to be University & Graphic Era Hill University, Dehradun, India held 

on 9-10 Dec 2022. 

 

 

 

 

 

 

 

 


