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Abstract

This thesis concentrated on the emergence of new type of topological spaces and analysing

their properties with the practical applications. Also, this brought a new insight to the

field of study of generalization of closed sets in newly developed spaces. First and

foremost we merged two types of topologies namely Alexandroff spaces and Soft topo-

logical spaces to develop a new kind of space known as Alexandroff Soft Topological

Spaces(ASTS). This space satisfies a more grounded condition that an arbitrary inter-

section of open sets are open. We have likewise examined different ideas like basis of a

topology, sub base, subspace, closure of a space etc. Also, different separation axioms

known as Alexo Ti-spaces have been presented along with their properties. This space

is also the parametrized type of general topology. Further, we have studied the concept

of generalization of closed sets and introduced new two classes of generalized closed sets

namely rw∗-closed sets in Alexandroff spaces and g
Ås
-soft closed sets in ASTS. Also,

we presented some new results with examples. These are the new generalization of

closed sets in topological spaces with new outcomes. Then, we introduced another form

of topological spaces known as Fuzzy Alexandroff Soft Topological Spaces(FASTS) by

using fuzzy soft sets. We explored various topological properties like base, sub base

etc of these spaces. Also, we investigated two major topological properties viz con-

nectedness and compactness property by giving the definitions of cfA-connectedness,

cfi-connectedness and cfA-compactness. We also contemplated various separation ax-

ioms in these spaces. Besides this, we utilized these fuzzy soft sets to solve the problems

of decision-making. We proposed a method which uses fuzzified evidence theory along

with D-S theory to calculate total degree of fuzziness of the parameters and reduce

uncertainty of data. Subsequently, we used Dempster’s rule of combination to fuse

independent parameters into integrated one. An experiment has been performed to val-

idate our proposed method. We also compared our results with grey relational analysis
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method to show the efficiency and correctness of our results. In addition to this, we

gave a practical medical diagnosis application in reference to COVID 19 which helps a

doctor to take decision on patient’s condition easily. This also supports the fidelity of

our method. Next, we took two spaces namely Alexandroff spaces and Soft spaces into

bitopological view. There, we introduced one more new type of topological spaces known

as Alexandroff Soft Bitopological Spaces(ASBS). Then, we looked into various topolog-

ical properties of these spaces and defined new separation axioms as well. After that,

we presented a new class of generalized closed sets known as (1, 2)− ğ- soft closed sets

in these spaces. We have studied various properties of these closed sets and compared

our results with existing generalized closed sets along with examples. Additionally, we

used this new class of closed sets in attribute reduction problem. For this, we used

Pawlak’s rough approximation theory to produce new set approximations in bitopology

using (1, 2) − ğ soft closed sets. Then, we defined Alexandroff Soft Bitopological Ap-

proximation Spaces(ASBAS) by using topological interior and closure concept. We also

studied various properties of rough sets in ASBAS. Finally, we gave an application of

these approximations in data reduction in multi-valued information systems. This thesis

is divided into nine chapters. Following is the brief core of chapters given in the thesis.

This thesis is divided into nine chapters.

Chapter-I is the introductory chapter which contains general presentation of topic with

some important results. It also contains some preliminaries which describes some basic

results and basic properties of spaces which are useful for the accomplishment of our

work.

Chapter-II is the review of literature. It contains the brief summary of work done by

many researchers since 1960 till date. It establishes our in-depth understanding and

knowledge of our study. This review of literature leads us to find out research gap and

then formulate our objectives of thesis.

Chapter-III is the foundation of new type of topology known as Alexandroff Soft Topo-

logical Spaces. These spaces are defined with their general topological properties and

some new separation axioms.

Chapter-IV is the generalization of closed sets in Alexandroff Soft Topological Spaces.

A new notion of g
Ås
- soft closed sets has been given. We also investigated various results

related to this class of closed sets with the help of examples.
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Chapter-V also revealed the concept of generalization of closed sets in Alexandroff

Spaces. A new class of closed sets known as Regular-Weakly Star closed sets in Alexan-

droff Spaces was given. We have also studied our properties of these closed sets and

compared some results with previously established generalized closed sets.

Chapter-VI describes a topological space known as Fuzzy Alexandroff Soft Topological

Spaces by using fuzzy soft sets with the study of properties like connectedness and

compactness and new separation axioms.

Chapter-VII elaborates the application of fuzzy soft sets in solving decision-making

problems. A new methodology has been given to solve decision-making problems and

reduce uncertainty of data by using fuzzy soft sets. A practical example (in view of

COVID-19) has been given to show the efficiency and correctness of our method.

Chapter-VIII revolves around the topic Alexandroff Soft Bitopological spaces and its

applications in data reduction field. Firstly, an introduction to ASBS has been given.

Also, topological properties of these spaces have been analysed. After that, a new

generalization of closed sets in these spaces are given along with some basic properties

and examples. Furthermore, these new generalized closed sets are used in the field of

data reduction in information systems. Firstly, it gives a brief introduction to rough

set theory and approximation spaces. Then, we defines Alexandroff Soft Bitoplogical

Approximation Spaces and give its various properties. After that, we give an example

to reduce data in information systems by using generalized closed sets in these spaces.

Chapter-IX is the conclusion of whole thesis and future scope for many researchers.
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Chapter 1

Introduction

1.0.1 General Introduction

The word Topology was coined by Johanne Benedict Listing in the 19th century and it

originated as a well-defined mathematical discipline since 20th century. It can be for-

mally characterized as the investigation of subjective characterization of specific articles

that remain unchanged under a particular sort of change, particularly the properties

which remain invariant under a particular sort of invertible change. There are disparate

forms of topology namely point-set topology, bitopological spaces, fuzzy topology, soft

topology, Alexandroff spaces and nano topology. These all kinds of topology has their

own importance. Point-set topology is the base for all types of topologies. There is a

brief description of different types of topologies established so far.

Given, X is a set and τ is a family of subsets of X. Then τ is called a topology on X if

it satisfies the following conditions:

1) Any union of sets in τ is itself in τ .

2) Any finite intersection of sets in τ is itself in τ .

3) The empty set and X itself belong to τ .

We say (X, τ) is a topological space, sometimes abbreviated as X is a topological space.

J.C Kelley [1] in 1963 defined the notion of bitopological spaces (a set equipped with two

topologies). He used the concept of quasi-metric spaces to define bitopological spaces. A

new class of topology was introduced to deal with uncertainties, called as fuzzy topology.

Fuzzy set theory was introduced by Zadeh [2] as a generalization of crisp or classical

set theory. It has many applications in the field of engineering, sciences, economics,
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computer science, decision making problems, etc. Alexandroff spaces were introduced by

P.Alexandrov in 1937. It was named after his name and known by the name of Discrete

Raume, where he produced the characterization in context of sets and neighbourhood.

By an Alexandroff space, we mean a topological space in which the intersection of every

family of open sets is open. D. Molodstov in 1999 introduced the concept of soft sets as

a new mathematical tool to solve the problems of uncertainty. After that, P.K Maji in

2003 studied the concept of soft set theory with some important definitions and results.

Shabir [3] defined soft topology with a fixed set of parameters and showed that it is a

parametrized form of topological spaces. Also, soft separation axioms for soft topological

spaces have been defined with some important results.

Open sets and closed sets both have their own importance in general topological spaces.

The notion of closeness helps to generate new concepts like continuity, convergence,

connectedness etc. Closed sets give a useful characterization of compactness property,

separation axioms and various covering lemmas. The concept of generalization of closed

sets played an important role in topology. N.Levine [4] was the first to define g-closed

sets in general topology. After that, many authors extend this work to different classes

of generalized closed set. Similarly, this concept of generalization of closed sets gained

its importance in bitopology, soft topology, fuzzy topology etc as well.

1.0.2 Brief Preface of our Research Work

As topological space is very useful for the study of mathematical problems and closed

sets played an important role in these spaces, our work mainly focussed on introducing

new types of topological spaces and study the concept of generalization of closed sets

in those newly developed spaces with some practical applications. In the first place, we

have studied two types of spaces specifically Soft spaces and Alexandroff spaces and then

amalgamate them to develop a new type of topological spaces known as Alexandroff Soft

Topological Spaces.

It is defined as-

An Alexandroff Soft Topological Space is a set X with an arbitrary set of parameters

A together with a system (Ki,A), where Ki : A −→ ℘(X) with the property that an

arbitrary intersection of open sets is open [5].
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We have studied various topological properties of these spaces like basis, subbase, conti-

nuity, homeomorphism etc. Afterwards, we investigated and generated new separation

axioms known as Alexo Ti, Alexo-regular, Alexo-normal etc and also talked about their

general properties with examples.

Now, we discussed the concept of generalization of closed sets in topological spaces.

Firstly, we introduced a new class of closed sets in ASTS known as g
Ås

-Soft closed

sets where Ås defines the arbitrary set of parameters. We also incorporated its various

properties as well as their characteristics and compared it with already existing classes

of generalized closed sets.

It is defined as-

In (X , τ
Ås
), a soft closed set (P ′

, Ås) is called Alexandroff Soft Generalized closed set

(in short, g
Ås

-closed set) if there is a soft closed set (A′
, Ås) containing (P ′

, Ås) such

that (A′
, Ås) ⊏ (V, Ås) when (P ′

, Ås) ⊏ (V, Ås) and (V, Ås) is soft open in X .

Further, we introduced another new class of generalized closed sets which is named as

Regular Weakly-Star Closed (briefly known as rw∗-closed) sets in Alexandroff spaces.

We have also explored its various properties like union, intersection etc along with the

concept of rw∗-open sets.

It is explicated as-

A set P ⊏ (X , τA) is known as Regular Weakly Star-closed (rw∗-closed) if there exist

S, a closed set such that P ⊏ S ⊏ V wherever P ⊏ V and V is regular semi-open in

(X , τA). RW ∗C (X ) represents the collection of all rw∗-closed sets [6].

In addition to, we established another type of topological space known as Fuzzy Alexan-

droff Soft Topological Spaces which uses fuzzy soft sets as a basic need. This space is a

mixture of Alexandroff Soft Topological Spaces and Fuzzy Soft Topological Spaces.

It is defined as-

A set X together with a topology τfA containing fuzzy soft closed sets satisfying follow-

ing three conditions:

1) An arbitrary intersection of any number of members of τfA belongs to τfA .

2) Finite union of members of τfA belongs to τfA .

3) 0fA and 1fA ∈ τfA .

Thus, (X, τfA , µfE ) is said to be FASTS where µfE is the membership function of the

fuzzy soft sets with respect to an arbitrary set of parameters E . Members of topology
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τfA are fuzzy soft closed sets and their complements are known as fuzzy soft open sets

respectively [7].

We also explored different topological properties of these spaces like base, subbase etc.

We have also investigated two major properties of topology namely connectedness and

compactness by giving the definitions of cfA-connectedness, cfi-connectedness and cfA-

compactness. Our work revealed various results related to these properties with exam-

ples.

Further, we used fuzzy soft sets with Dempster-Shafer theory to solve the problem of

decision-making. The method we proposed uses fuzzified evidence theory to calculate

total degree of fuzziness of the parameters. Firstly, we measured the uncertainties (fuzzi-

ness) of parameters and then modulated the uncertainties calculated. Next, we used the

fuzzy preference relation analysis to produce the consistency matrix. After that, a while

later, a suitable fundamental basic probability assignment (BPA) in terms of each pa-

rameter was produced. In the last, we utilized Dempster’s rule of combination to blend

the independent parameters into integrated one. Unavoidably, the best ideal decision can

be gotten dependent on the positioning of choices. A brief description of steps have been

given to calculate fuzziness of parameters followed by an experiment. Also, we compared

our outcomes with grey relational technique to show the effectiveness of our proposed

method. At last, we solved a real-life decision-making problem in medical diagnosis field

(specifically in reference to COVID-19) based on our proposed work. Finally, we also

performed the practical with other method (grey relational analysis method given by Li

et al [8]) which showed that our technique can reduce uncertainty to a greater extent

and this is more accurate and efficient in solving decision-making problems [9].

Now, we defined one new type of topological spaces known as Alexandroff Soft Bitopo-

logical Spaces.

It is designed as-

An Alexandroff Soft Bitopology is a non-empty set endowed with two soft topologies

having arbitrary intersection of open sets is open. Thus, a triplet (X , τ s1 , τ
s
2 ) is known

as Alexandroff Soft Bitopological Space. Elements of τ s1 and τ s2 are closed sets and their

complements are open sets in X .

We have also explored its several topological properties. After that, we generated dif-

ferent separation axioms like Alexo soft bi- T0, Alexo soft bi- T1, Alexo soft bi- regular

etc. Then, we considered the concept of generalization of closed sets in these spaces
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and defined a new class of soft closed sets known as (1, 2)− ğ soft closed sets. We also

explored its various properties like union, intersection etc and proved some results with

examples. With this, we utilized this new class of closed sets in data reduction prob-

lems in multi-esteemed information systems. For this, we developed Alexandroff Soft

Bitopological Approximation spaces and then used (1, 2) − ğ soft closed sets to reduce

attributes in information systems.

1.1 Important Prerequisites of our work

1.1.1 Topological Spaces

Definition 1.1. [10] A set X along with a family τ of subsets of X is known as a

topological space if it satisfies the following conditions:

1) Any union of sets in τ is itself in τ .

2) Any finite intersection of sets in τ is itself in τ .

3) The empty set and X itself belong to τ .

Definition 1.2. [1] A triplet (X,U ,V) is defined to be a bitopological space by Kelley

in 1963, where X is a non-empty set and U and V are two arbitrary topologies defined

on X.

Definition 1.3. [3] Suppose an initial universal set be X and A be a set of parame-

ters, and τ ⊑ SS(X, E). A family τ describes a soft topology on X if the below given

statements are satisfied:

a. 0A, 1A belongs to τ .

b. For (P,A), (Q,A) ∈ τ , (P,A) ⊓ (Q,A) ∈ τ .

c. For (Pi,A) ∈ τ ∀ i ∈ I, ⊔{(Pi,A) : i ∈ I} ∈ τ .

A soft topological space is denoted by (X, τ,A). The complement of soft open sets are

known as soft closed if they belongs to τ .

Definition 1.4. [11] A set X along with a system F of subsets is said to be an

Alexandroff space (or σ- space)if an arbitrary intersection of an open set is open.
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1.1.2 Important definitions and results

Definition 1.5. [10] A basis for general topological space is defined as a collection of

B of subsets of X which satisfies below mentioned two conditions:

(1) There is at least one base component B for each point containing that point x ∈ X.

(2) For x ∈ B1 ⊓ B2, there is B3 base component containing x such that B3 ⊑ B1 ⊓ B2.

The collection B which satiates these two axioms can generate the topology τ brought

by B.

Definition 1.6. [12] Let X be an Alexandroff space and U be a family of open sets.

Then U is the minimal base for the topology of X if and only if:

1) U covers X.

2) If A,B ∈ U , there exists a subfamily {Ui : i ∈ I} of U such that A ⊓ B = ⊔i∈IUi.

3) If a subfamily {Ui : i ∈ I} of U verifies ⊔i∈IUi, then there exists i0 ∈ I such that

⊔i∈IUi = Ui0 .

Definition 1.7. [13] A soft set is said to be a soft closed set if its relative complement

∈ τ . The relative complement of a soft set (F ,A) is defined by (F ,A)
′
= (F ′

,A) where

F ′
is a mapping from A to ℘(X) given by F ′

(a) = X \ F(a) ∀ a ∈ A.

Definition 1.8. [13] The soft closed set (K,A) ∈ SCS (X, Ås), where K(p) = ∅, for

every p ∈ A is known as null soft set of (X, τ) and symbolised as 0. The soft closed set

(K,A), where K(p) = X, ∀ p ∈ A is known to be absolute soft of (X, τ) and symbolised

as 1.

Definition 1.9. [3] Let (X, τ) be soft topological space and Y ⊆ X be a non-empty

set. Then, τY = {(FY ,A) | (F ,A) ∈ τ} is said to be relative topology on Y and (Y, τY )

is called soft subspace of (X, τ).

Theorem 1.10. [3] Let (Y, τY ) be a soft subspace of soft topological space (X, τ) and

(F ,A) be a soft set over X, then-

1) (F ,A) is soft open in Y iff (F ,A) = Y ∩ (G,A) for some (G,A) ∈ τ .

2) (F ,A) is soft closed in Y iff (F ,A) = Y ∩ (G,A) for some (G,A) in X.

Definition 1.11. [3] For any two soft sets (F ,A) and (G,B), soft set (F ,A) is said to

be soft subset of (G,B) if-

1) A ⊆ B and
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2) for all a ∈ A,F(a) and G(a) are identical approximations.

We can write it as (F ,A) ⊆ (G,B).

Definition 1.12. [3] The intersection (H, C) of two soft sets (F ,A) and (G,B) over a

common universe X, denoted by (F ,A) ∩ (G,B) is defined as-

C = A ∩B and H(e) = F(e) ∩ G(e) for all e ∈ C.

1.1.3 Fuzzy topological spaces

Definition 1.13. [2] (Fuzzy set): Let X be a non-empty set and A ⊑ X . A fuzzy set

A is determined by its membership function µA : X −→ [0, 1] whose value determines

the grade of membership of point x in A for x belongs to X .

Definition 1.14. [14] Let X be an initial universe set and E be the set of parameters.

The pair (FE ,A) is a fuzzy soft set over X where A ⊑ E and FE is a mapping defined

as FE : A → IX , where IX is a set of all fuzzy subsets of X.

It is clear that every soft set can be considered as a fuzzy soft set. Also, when both X

and A is finite, fuzzy soft sets are either represented by matrices or in tabular form.

Example 1.1. Let X = {g1, g2, g3, g4} be the universal set and A = {e1, e2, e3} be the

set of parameters.

Then, (Fϵ,A) is a fuzzy soft set over X described as follows :

F (e1) = {g1/.5, g2/.2, g3/.2, g4/.1}

F (e2) = {g1/.6, g2/.1, g3/.1, g4/.2}

F (e3) = {g1/.4, g2/.3, g3/.2, g4/.1}

A g1 g2 g3 g4

e1 0.5 0.2 0.2 0.1
e2 0.6 0.1 0.1 0.2
e3 0.4 0.3 0.2 0.1

Table 1.1: Fuzzy soft set (FE , A)

Definition 1.15. A fuzzy topology is a family τf of fuzzy sets in X which satisfies the

following conditions:

1) ∅f and Xf ∈ τf .

2) If Af and Bf ∈ τf , then Af ⊓ Bf ∈ τf .

3) If Afi ∈ τf for each i ∈ I, ⊔Afi ∈ τf .
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Definition 1.16. [15] A fuzzy soft topology τ on (U, E) is a family of fuzzy soft sets

over (U, E) satisfying the following properties :

1) ∅, E ∈ τ .

2) If FA, GB ∈ τ , then FA ⊓ GB ∈ τ .

3) If Fα
Aα

∈ τ∀α ∈ Λ, an indexed set, then ⊔α∈Λ Fα
Aα

∈ τ .

Definition 1.17. [16] In a fuzzy topological space, two sets A and B are said to be

weakly separated iff ∃ P and Q ∈ τf such that A ⊆ P and is not quasi- coincident

to Q, that is, there exists x ∈ X such that A(x) + Q(x) > 1 and B ⊆ Q and is not

quasi-coincident to P in the same manner.

Theorem 1.18. [17] Two fuzzy sets A and B are Q-separated or strongly separated in

(Y, τY ) iff these two sets are Q-separated in (X, τX) where Y is the subset of X.

Definition 1.19. [18] An entropy measure is a sequence of mappings En : Xn ∗ Pn ∗

Wn −→ R+ satisfying several properties (symmetry, monotonicity, additivity etc).

Definition 1.20. [19] (Shannon Entropy): Shannon in 1948 introduced the concept of

Shannon entropy to handle basic probability problem.

Shannon entropy (H) is derived as –

H = −
∑N

i pi log2 pi.

Where pi is the probability of state i satisfying
∑N

i pi = 1 and N is the number of basic

states in a system.

Definition 1.21. [20] (Deng entropy): This novel belief entropy was introduced by

Deng in 2016. It also measures the uncertainty conveyed by basic probability assign-

ment.

It is defined as –

Ed =
∑

i m(Ai) logm(Ai)

2|Ai|−1
.

Where m is the belief function and Ai is the hypothesis of belief function. Deng entropy

is degenerated into Shannon entropy when the belief value is allocated to one single

element.

Definition 1.22. [21] (W-entropy): This type of entropy was given by Dan Wang et

al in 2019. It is the unified form about belief entropy based on deng entropy which

considers the scale of frame of discernment and the relative scale of focal element with
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respect to Frame of Discernment.

W-entropy is calculated as below-

EW (m) =
∑

m(A) log2(
m(A)

2|A|−1 (1 + ϵ)f |X |).

Where ϵ is a constant and ϵ ≥ 0 and f | X | is the function determines the cardinality

of X .

The function f | X |=
∑

B⊑X ,B≠A
|A⊓B|
2|X|−1

.

Definition 1.23. [22] (Fuzziness): A measure of fuzziness is a function from the set

of all fuzzy subsets of X to the set of all positive real numbers. The function f(A)

expressed the degree to which boundary of A is not sharp.

The measure of fuzziness is calculated as-

f(A) =
∑
x∈X

(1− | 2A(x)− 1 |). (1.1)

The range of function f is [0, | X |]; f(A) = 0 iff A is a crisp set; f(A) =| X | when

A(x) = 0.5 ∀x ∈ X .

Definition 1.24. [22] (Fuzziness in evidence theory): Total degree of fuzziness F(m),

of the body of evidence < m,F > is calculated as follows-

F(m) =
∑

A∈F m(A)f(A) Where f(A) is given by eq (1.1).

Definition 1.25. [23, 24] (Performance measure): The performance measure of a

method satisfies the optimal criteria for resolving decision making problem. It is denoted

by γS .

Mathematically, γS = 1∑n
i

∑n
j |F(ei)(Op)−F(ej)(Op)| +

∑n
i=1F(ei)(Op).

Here, n is the number of choice parameters and F(ei)(Op) depicts the membership value

of the ideal object Op for the choice parameter ei.

If the performance measure of one method is greater than other, then that method is

much finer than other and vice-versa.

Dempster -Shafer theory is proposed by Dempster [25] and Shafer [26]. This theory

deals with the uncertain information and applied to uncertainty modelling [27, 28],

decision making [29, 30] and information fusion [31, 32, 33] etc. This theory does not

need prior information in modelling uncertainty and also able to fuse multiple evidences

into integrated one.
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Definition 1.26. [26] (Frame of discernment): A frame of discernment is a finite non-

empty set of mutually exclusive and exhaustive hypotheses denoted by Θ = {A1,A2 . . .An . . .At}

and Ai ⊓ Aj = ∅ and 2Θ represents the set of all subsets of Θ.

Definition 1.27. [26] (Basic Probability assignment (BPA)): It is also known as mass

function. A mass function is a mapping m from 2Θ to [0, 1] satiates the following

conditions-

m(∅) = 0 and
∑

A∈2Θ m(A) = 1.

If m(A) > 0, A is called a focal element and its union is known as the core of the mass

function.

Definition 1.28. [26] (Belief function): It can be defined as a mapping Bel : 2Θ −→

[0, 1] satisfying following conditions:

Bel(∅) = 0, Bel(Θ) = 1 and Bel(A) =
∑

B⊑Am(B),∀A ∈ Θ.

Bel(A) exemplify the imprecision and uncertainty in decision making problems. When

there is single element, then, Bel(A) = m(A).

Definition 1.29. [25] (Dempster’s rule of combination): This rule computes an inte-

grated set of combined evidences. Suppose m1 and m2 are two independent BPAs in Θ,

then rule of combination is defined as -

m(A) =


1

1−K
∑

B⊓C=Am1(B)m2(C), A ≠ ∅

0, A = ∅
(1.2)

and

K =
∑

B⊓C=∅

m1(B)m2(C) < 1 (1.3)

where B ∈ 2Θ and C ∈ 2Θ&K ∈ [0, 1] represents the coefficient for confliction between

two BPAs.

Zhaowen Li et al [8] utilized grey relational analysis with Dempster Shafer theory to

solve the problem of decision making. They calculated grey relational degree and then

calculated uncertainty degree of various parameters. Further, BPA of each independent

alternative can be obtained on the basis of this degree and used Dempster’s rule of

combination to fused different alternatives into collective alternative. Finally, the best

alternative based on the ranking of these fused alternatives can be obtained.
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Definition 1.30. [8] (Grey mean relational degree): The grey means relational degree

between dij and d̃i can be computed as-

rij =
min1≤i≤s∆dij + 0.5max1≤i≤s∆dij

∆dij + 0.5max1≤i≤s∆dij

(1.4)

(i = 1, 2 . . . ,m, j = 1, 2 . . . n)

Where dij denotes the membership value of xi with ej , d̃i is the mean of all parameters

with respect to each alternatives and ∆dij is the difference information between dij and

d̃i.

Definition 1.31. [34] (Fuzzy preference relation): Fuzzy preference orderings can be

defined as fuzzy binary relations related to reciprocity and maximum and minimum

transitivity. Mathematically, it is denoted by-

P = (pjk)n×n.

where pjk ∈ [0, 1] represents the preference value of alternative ej over ek.

Also, pjk + pkj = 1, pjj = 0.5, 1 ≤ j ≤ n and 1 ≤ k ≤ n.

Definition 1.32. [35] (Consistency matrix): The consistency matrix can be developed

on the basis of fuzzy preference relation as follows:

p = (pjl)n×n =

(
1

n

n∑
k=1

(pjk + pkl)− 0.5

)
n×n

. (1.5)

1.1.4 Generalized closed sets

Definition 1.33. [4] A non-empty subset P of X is known as g -closed if and only if

P̄ ⊑ V when P ⊑ V and V is open.

Definition 1.34. [36] Soft generalized closed set (in brief, soft g -closed) is defined

when the closure of soft set (P, E) is contained in (V, E) whenever (P, E) ⊑ (V, E) and

(P, E) is soft open in X.

Definition 1.35. A subset A of a topological space (X, τ) is called

• Regular open if A = (A)◦ and regular closed if A = (A◦).

• Semi-open if A ⊑ (A◦) and semi-closed if (A)◦ ⊑ A.

• Regular semi-open if there is a regular open set U such that U ⊏ A ⊏ U .

• Weakly closed sets (w -closed) [37] if A ⊑ U whenever A ⊑ U and U is semiopen in X.
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• Regular w-closed(rw-closed sets) [38] if A ⊏ U whenever A ⊏ U and U is regular

semi-open in (X, τ).

Lemma 1.36. [38] Every regular semi-open set in (X, τ) is semi-open but the converse

is not true.

Lemma 1.37. [38] If A is regular semiopen in (X, τ), then X \ A is also regular

semi-open.
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Chapter 2

Literature Review

This chapter contains review of literature since 1940s till date. These reviews of research

papers identifies, evaluates and synthesis the relevant literature within our particular

field. It discusses published work and gives us an overview of research done by other

researchers.

2.0.1 Overview of previous research work done by researchers till date

• J.C Kelly (1963): He was the first to introduce the concept of bitopological spaces

(equipped by two topologies). He used the concept of quasi-metric spaces which

has been studied before by Wilson [39] to define bitopological spaces. A triplet

(X , τ1, τ2), was said to be a bitopological space which helped to obtain systematic

generalizations of standard results. This paper gave very important results on

quasi metrics also. This paper also included the counter examples for the various

results related to metrization space [1].

• L.A Zadeh (1965): He was the first to present the concept of fuzzy sets to manage

the problem of uncertainty. A fuzzy set is portrayed by a membership function

which assigns to each individual of a set. The notion of unions, intersections,

complement, and inclusion were also established in this paper. Its membership

function can take only two values 0 and 1, with fa(x) = 1 or 0 according as x does

or does not belong to A. He also defined the algebraic operations like algebraic
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sum, algebraic product of fuzzy sets and studied their properties [2].

• A.P Dempster (1967): Dempster introduced the renowned theory known as Demp-

ster Shafer theory which can show flexibility and effectiveness in modelling both

uncertainty and imprecision of data without prior information. This theory is

considered as the generalization of Bayesian probability theory. Here, he used the

concept of lower and upper probablities over subsets of a space S. Further, in the

last, he talked about a mechanism of combining multiple information sources to

fuse them into integrated one [25].

• N.Levine (1970): This paper defined the generalised closed sets in topology and

then determined the behaviour of sets with respect to unions, intersections, sub-

spaces etc. It also defined the generalised open and studied the Cartesian products

of g-closed, g-open sets. The basic properties of g-closed and g-open had also been

discussed. The main result of the paper was to introduce the T1/2 space in which

closed sets and g-closed sets coincided. A space (X , τ) is said to be symmetric if

and only if ∀ x and y in X , x ∈ c(y) implies that y ∈ c(x) where c denotes the

closure operator [4].

• R. Lowen (1976): The main purpose of this paper was to go deeper inside the idea

of fuzzy topological spaces and then redefined fuzzy topological spaces given by

C.L Chang(1968) [40]. Two functors ω̃ and τ̃ were also introduced which clearly

explained the connection between fuzzy topological spaces and topological spaces.

It also gave the mathematical reasons to redefine the definition given by C.L Chang

and then gave the new definition as under:

δ ∈ IE is a fuzzy topology on E iff

1) ∀α constant, α ∈ δ,

2) ∀µ, ν, µ ∧ ν ∈ δ,

3) ∀(µj)j∈J ⊂ δ =⇒ supj∈J µj ∈ δ.

Further, the properties like union, intersection, complement, compactness had been

studied in the paper [41].
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• G. Shafer (1976): Shafer along with Dempster developed the renowned theory

known as Dempster Shafer theory which can show flexibility and effectiveness in

modelling both uncertainty and imprecision of data without prior information.

Shafer used the framework of belief and plausibility and then, defined various new

concepts like basic probability assignment, mass function etc. Also, their theory

has the ability to fuse multiple evidences into integrated one [26].

• N. Ajmal et al. (1989): This paper explained the concept of connectedness in

different way. He gave a new definition of connectedness in the form Ci - connect-

edness. Four types of connectedness in fuzzy topological spaces has been given. He

further discussed all the implications that exist among them. It has been shown

that a fuzzy space is disjoint union of its components. Various counter examples

are given to prove the relevance of results. The concept of compactness of fuzzy

sets has also been discussed [42].

• K.C Chattopadhyay et al. (1993): This paper redefined fuzzy topology and ex-

plained various properties of it. It followed the definition of connectedness given

by Ajmal to redefine connectedness in the context of fuzzy sets in some new way.

He gave the notion of fuzzy closure operator, product theorems for fuzzy connect-

edness, fuzzy compactness etc with various results [43].

• F.G Arenas (1999): This paper was all about Alexandroff spaces which were first

defined by P. Alexandrov with name of Diskrete Raume in 1937. These spaces

were not studied systematically, so this paper studied these spaces systematically

from several point of view and its properties including quasi-uniform spaces. It

meant by an Alexandrov space a topological space such that every point has a min-

imal neighbourhood. The main focus of the paper was on studying the topological

properties of these spaces systematically which is relevant to the application of

these spaces in digital topology also [12].

• P.K Maji (2001): D.Molodstov [44] initiated the concept of soft sets as a new

mathematical tool to deal with uncertainties. Following his concept, Maji gave
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an application of soft sets with the approach of Pawlak’s rough theory. He solved

a decision-making problem for which he used an analogous representation of soft

sets in the form of a binary information table. One numerical example related to

real-life has been solved by defining an algorithm and find the optimum value of

choice function which can easily show the use of soft sets with arbitrary sets of

parameters [14].

• P. Das et al. (2003): Levine [4] in 1970 defined g closed sets in general topology.

This paper is the generalization of g closed sets in Alexandroff spaces which they

called g∗ closed sets. They produced those results which shows g∗ closed sets not

always behave like g closed sets in topology. They also gave various examples

to show where these sets behave like g closed and where they were not. By the

use of g∗ closed sets, they deduced a new separation axiom, called as, Tw– axiom

which was similar to that of T(1/2) axiom defined by Levine. They compared the

results of these new generaisation and axiom with the previous ones by the help

of examples [45].

• O.A El Tantawy et al. (2005): In this paper, new classes of sets denoted by ij−Ω-

closed sets are defined in bitopological spaces. These sets are used to define new

bitopological properties and new kind of continuous functions between bitopolog-

ical spaces. This paper also showed that some bitopological separation properties

are preserved under some types of continuous functions. He also introduced new

four bitopological separation axioms and investigated their relations between the

properties [46].

• S.S Benchalli et al. (2007): He introduced a new class which lies between the class

of all w-closed sets and all regular g-closed sets, known as regular w-closed sets in

topological spaces. It also investigated the relation among closed sets, πg closed

sets, w closed sets etc. Also studied the properties of unions, intersections and

subspaces of rw- closed sets . It also gave the various implications which results

in different relations among other definitions of different closed sets [38].
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• F. Jinming (2007): He established a very new notion of I-fuzzy Alexandrov topol-

ogy which was instigated by a fuzzy preordered relation and also this new kind

of topology induced a fuzzy preordered relation in return. This paper explained

connections between certain generalized topological structures and fuzzy order

structures on a universe set X in details. It introduced a notion of a I- fuzzified

set of all upper sets of a fuzzy preordered set with the residuation operation and

proved several theorems over it. The representation theorem of fuzzy preorders by

I-fuzzy topologies had also been obtained [47].

• T. Speer (2007): The basic properties of Alexandroff spaces along with several ex-

amples have been studied. He also explained how we can construct new Alexandroff

spaces from given ones. He talked about the concept of minimal open neighbour-

hoods, continuous maps etc for these spaces. He additionally introduced Hausdorff

Alexandroff Spaces and proved some theorems related to this. Also, two invariants

for compact Alexandroff spaces are defined and elaborated with the help of given

examples [48].

• K. Chandrasekhara Rao et al. (2009): He along with K. Joseph [49] introduced

the concepts of semi-star generalised open and closed sets in topological spaces.

This paper defined the notion of semi-star gw- closed sets in bitopological spaces.

It also studied the properties of unions, intersections, closure and interior opera-

tions. This paper also studied the concept of pairwise semi-star generalised w−T1/2

spaces and their properties with respect to open sets and closed sets [50].

• A.S Salama (2010): This paper used the concept of lower and upper approxima-

tions of Pawlak rough sets to introduce new generalization concepts. It investigated

the basic concepts of generalized rough sets generated by bitopological structures.

A measure of roughness with new approximations was defined in this paper with

various results. Also, a medical application for data reduction was done based on

medical data. He also elucidated a new concept of rough membership function

which can helps to analyze and make decision according to a conditional attribute

in decision table [51].
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• M.S Sarsak et al. (2010): He placed a new class of sets strictly in between πgp

closed sets and gspr- closed sets which is known as πgsp- closed sets in topological

spaces and then studied the properties of unions, intersections, closure operation

etc. He also gave the notion of πgsp- open sets and demonstrated a figure of im-

plications which shows relation among different classes of closed sets. Further, he

showed that the converse of πgsp- closed to πgp closed is not true in general with

the help of an example [52].

• M. Shabir et al. (2011): Classical set theory is not fully suitable in handling the

problems of uncertainties. D. Molodstov in 1999 [44] introduced the concept of

soft sets which were free from all the problems of certainties and vagueness. In this

paper, the author introduced the new notion of soft topological spaces and also

showed that it gives a parametrized family of topological spaces but the converse

for the same is not true. Also, the notion of soft open sets, soft closed sets, soft

interior and soft closure had been introduced. Also, the concept of soft subspaces

was introduced [3].

• K. Kannan et al. (2012): It introduced a new class of β̂ generalized closed sets and

β̂g open sets in topology and studied the properties of closure operation, unions

and intersections on them. It also gave the important results related to a new set

and with the help of an examples, it also proved the converses of those theorems

need not to be true wherever necessary [36].

• S. Roy et al. (2012): They constructed a topology on fuzzy soft set. D. Molodtsov

in 1999 was the first who defined a new theory known as soft set theory which

can solve complicated problems in the field of economics, engineering, and envi-

ronment etc. This paper established a topology on fuzzy soft set and studied their

properties [15].

• A. Mukherjee (2013): The new notions of strong separation axioms including

strongly pairwise hasdorffness, strongly pairwise regularity, strongly pairwise nor-

mality etc in bitopological spaces are introduced. With this, new notion of strongly
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pairwise compactness is also defined. Several examples are given to explain the

given new notions [53].

• T. Simsekler et al. (2013): This paper introduced fuzzy soft topology which is a

combination of soft topology and fuzzy topology. Soft set theory and fuzzy theory

provides a way to solve the problems of certainties etc. Fuzzy soft topology is a

generalization of soft topology, over a fuzzy soft set with a fixed set of parameter.

It showed the belongness of fuzzy point to fuzzy soft set and then introducing

fuzzy soft interior, fuzzy soft closure, fuzzy soft neighbourhood as well as fuzzy

soft Q- neighbourhood of a fuzzy point. It has also an application to decision

making problem [54].

• D.N Georgiou et al. (2014): He discussed the concept of soft set theory and then

investigated soft topological spaces by giving new characterizations, new notions

like soft closure, soft interior, soft boundary, soft continuity, soft open and closed

maps and soft homeomorphism. Various theorems and results related to these

properties were represented in the paper [13].

• S. Guzide et al. (2014): This paper is the general study of soft closed sets in

soft bitopological spaces. Different notions like soft closed sets, soft α-closed, soft

semi-closed, soft pre-closed, soft sg-closed sets were defined in the paper. The

figure explaining the relationship among these different closed sets was explained.

Various results along with the examples were established [37].

• Y. Chan Kim (2014): In this paper, the author made use of join preserving maps

and studied the properties of them in complete residuated lattices and then defined

join approximation operators as a generalization of fuzzy rough sets in complete

residuated lattices. It used the concepts of fuzzy complete lattices to define or

generalise upper approximation operators without fuzzy relations in fuzzy com-

plete lattices. It defined Alexandrov topology in terms of operators and further

investigated the relationships between join preserving maps, fuzzy preorders and
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Alexandrov topologies and also gave examples [55].

• S. husain et al. (2015): In this paper, the authors readdress several soft separation

axioms like soft Ti axioms, soft normal, soft regular and soft T4 etc by using soft

points. They also explore the concept of soft invariance properties for example

soft topological property and soft hereditary property with the hope that these

concepts might be useful in practical applications and in some general man-made

machine systems [56].

• G. Shafer (2015): The author defined a rule for combining two or more belief

functions where the belief functions are from distinct or independent sources of

evidence and named this rule as Dempster’s rule of combination. This rule also

preserves the regularity conditions of continuity and condensability in the theory

of belief functions [57].

• L. Zhaowen (2015): In this paper, an approach to fuzzy soft sets in decision making

to avoid selecting a suitable level soft set and to solve the problem of medical

diagnosis is presented. This approach combines grey relational analysis with the

Dempster Shafer theory of evidence. The advantages of this approach have been

shown by comparing this approach with mean potentiality approach.

Various examples are solved and also medical diagnosis problem has been solved

as a numerical problem with this approach [8].

• Deng (2016): In this paper, he proposes novel belief entropy which is more effi-

cient to measure the uncertain information as it can also measure the uncertainty

expressed by a basic probability assignment. It is the generalization of Shannon

entropy as it degenerates into Shannon entropy when allocated to the single ele-

ments [20].

• N. Bhardwaj et al. (2016): They defined a new class of closed sets known as

Regular β̂- generalized closed sets which lies between β̂- generalized and regular
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generalized closed sets in bitopological spaces. Also the characterizations of these

sets have been studied. They also defined the notion of rβ̂- generalized open sets

and rβ̂- generalized neighbourhoods in bitopological spaces [58].

• B.K Tripathy et al. (2016): This paper gave an application of fuzzy soft sets in

decision-making problems and showed that their approach is more realistic than

the algorithm given by Maji [59] in 2002. It also defined membership function for

fuzzy soft sets and various concepts related to fuzzy soft theory are redefined [60].

• M. Lellis Thivagar et al. (2016): This is a very interesting application of nano

topology. In this, they computed the technique for recruitment process via nano

topology. In nano topological granular computing, only single granular had been

used but this study developed a new multi granular nano topological model which

was based on multi indiscernibility relations on the universe. It also discussed the

relationship between multi granular nano topological spaces and multi* granular

model of it. It provides a new pathway to solve decision making problems based

on nano topological theory [61].

• A.K Banerjee et al. (2016): In this paper, a new generalisation of closed sets in

Alexandroff spaces had done, named as, λ∗- closed sets, ĝ- closed sets in Alexan-

droff spaces. The authors’ also studied the previous properties of g∗ closed sets,

explained in [45] and gave some properties which were not previously found out.

They introduced a new class of closed sets, ĝ and λ∗ closed sets and studied their

properties. They also studied various separation axioms Tw/4, T3w/8, Tw and intro-

duced a new separation axiom T5w/8 in the Alexandroff spaces which lies between

T3w/8 and Tw spaces [62].

• C.K Raman (2016): The new generalisation of closed sets known as b- closed sets

was introduced by M. Ganster and M. Steiner for the general topology and then

he introduced the concept of gb- closed sets in bitopological spaces, symbolized by

ij − gb-closed sets. He also introduced ij − gbr closed sets and studied the impor-

tant properties of named sets and two new bitopological spaces namely ij−T ∗b1/2
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and ij − ∗Tb1/2 were introduced. The fundamental characteristics of such spaces

have also been analyzed and correlated with ij − Tb1/2 space [63].

• B. Meera Devi (2017): This paper defined a new class of closed sets known as

(i, j)− g∗∗b- closed sets in bitopological spaces. Also, some of its basic properties

have been studied with the investigation of relationship of these sets with other

existing closed sets. An implicated figure is also given to investigate the relation-

ship among different classes of closed sets in bitopological spaces [64]

• S. Chandrasekar et al. (2017): Lellis Thivagar was the first to define a new kind

of topology known as nano topological space, in terms of approximations and

boundary region of a subset of a universe using an equivalence relation. Nano g

closed and nano sg closed sets were already introduced by K. Bhuvaneswari et al.

in 2014 and 2015 respectively. In this paper, the new notions of nano sg –inte-

rior & nano sg- closure has been introduced which are very important in point

of view of generalization of closed sets in nano topological spaces. The properties

of Nsg interior & Nsg closure had also been studied with the help of examples [65].

• S. Acharjee et al. (2017): This paper studied the properties under soft bitopology

and defined various notions like soft nowhere dense set, soft boundary and first

category etc. It specifically focussed on fundamental structures for soft bitopology

and leaves the new point of view for utilizing these new notions in different aspects

of science for better mankind. It also investigated the results given by Cagman

and Semen in 2014 with more interest [66].

• S. Lazaar et al. (2017): This was the very recent work on Alexandroff spaces. In

this paper, the author characterised the new type of topology known as homo-

geneous functionally Alexandroff spaces. As indicated by this paper, a function

f : X −→ X determines a topology P (f) on X by taking the closed sets to be

those sets A ⊑ X with f(A) ⊑ A. The topological space (X,P (f)) is called

functionally Alexandroff spaces. It also elaborated the concept of homogeneity

of functionally Alexandroff spaces and proposed very important propositions and
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theorems with examples which may help other scholars for future results on it [67].

• S. Al Ghour et al. (2018): The paper explained the concepts of minimality and

homogeneity in fuzzy respect and defined two notions of minimality in fuzzy bitopo-

logical spaces. Two new notions of homogeneity known as homogeneous and pair-

wise homogeneous fuzzy bitopological spces were introduced. Also, the connection

between minimality and homogeneity has been given in this paper. Various im-

portant results and theorems in fuzzy homogeneous bitopological spaces have been

given [68].

• M. Ferri (2018): This paper was a fascinating case of utilization of topology to

artificial intelligence and learning extraction. It gave a solid base to both the age of

novel hypothetical instruments and finding forefront common applications. Both

machine learning and knowledge extraction need to comprehend the data shape

on minute scale as well as major scale for which it require brilliant utilization of

geometry for example topology. This paper manages a typical issue that data can

be depicted by a high number of factors; however the dataset X can be inherently

low-dimensional. It utilized topological summary of the dataset which makes it a

lot simpler to manage it [69].

• K. Vithyasangaran et al. (2018): This paper generalised g- closed sets of topologi-

cal space to bitopological space. They named it as τ1τ2g– closed set in bitopological

space (X , τ1, τ2). It studied the properties of this new set and compared them with

the properties of g – closed sets in general topological spaces. It defined τ1τ2g-

continuous functions and also studied its properties. It also gave the counter ex-

amples for the converses of given theorems [70].

• M.Kameshwari et al. (2018): The authors extended the concept of clopen sets

in fuzzy topological spaces to fuzzy bitopological space in this paper. It also de-

fined many notions like fuzzy pairwise slightly precontinuous functions, defined

fuzzy pairwise pre-T0, fuzzy pairwise pre-T1, fuzzy pairwise pre T2, fuzzy pairwise

Co − T0, fuzzy pairwise Co − T1, fuzzy pairwise Co − T2. The main work of this
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paper was to investigate the separation axioms like hausdorffness, normality etc

using fuzzy pairwise slightly precontinuous functions and gave important results

with examples [71].

• R. Tripathi et al. (2018): In this research, the new concept of regular fuzzy bi-

closure space was introduced. It compared the results of this concept with the

other existing definitions and results as well. It also explained the properties of

sum, product, and subspaces of the defined space. It also defined the fuzzy pre

continuous map fuzzy biclosure spaces. It studied the various possible concepts of

regularity using fuzzy pre open sets and obtained the interrelation among them.

And also concepts of regularity using fuzzy pre continuous map and found various

interrelation among them [72].

• E. Akin (2018): This paper named fuzzy topological spaces with a new name In-

duced fuzzy topological spaces with a simple property affine invariance. And also

studied some simple notions of compactness of such spaces. It made use of def-

inition of lower semi continuity of a function to define affine invariance and also

gave the definition of laminated fuzzy topology by changing the first condition in

the definition of basic fuzzy topology. It defined weakly induced fuzzy topological

spaces also and further, in the last, it explained the notion of compactness and its

properties with respect to induced fuzzy topological spaces [73].

• J. Pandey et al. (2018): In this paper, a new class of intuitionistic fuzzy closed

sets known as intuitionistic g ∗ p closed sets are introduced which lies between pre

closed sets and gp closed sets. Intuitionistic fuzzy g- closed concept was intro-

duced by Thakur and Chaturvedi in 2008 and then this paper further generalises

them and introduced g ∗p closed sets in intuitionistic fuzzy space. The author also

worked on the continuity of intuitionistic fuzzy closed sets and defined intuitionis-

tic fuzzy g ∗ p continuous mappings. Further, they introduced new kinds of spaces

T ∗p, αT ∗∗p and αT ∗p as an application of intuitionistic fuzzy g ∗ p closed sets and

explained them with the help of examples [74].
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• S.E Abbas et al. (2018): The concept of fuzzy soft grills are used to define the

notion of connectedness in fuzzy soft topological spaces. The fuzzy soft operator

∅ is constructed from a fuzzy soft grill GE and a fuzzy soft topological space. The

extension of concept of α-connectedness related to fuzzy soft operator α on the set

X is also given [75].

• X. Fuyuan (2018): This paper gives a hybrid method for utilizing fuzzy soft sets in

decision-making problems by integrating a fuzzy preference relation analysis based

on belief entropy with the Dempster Shafer evidence theory. This approach can

reduce the uncertainty level to greater extent and improve the quality of solving

decision-making problems [24].

• D. Wang (2019): Different entropies are introduced to measure the uncertainty

of data. D. Wang introduced new belief entropy known as w-entropy to measure

uncertainty. It is the unified form about belief entropy based on deng entropy by

considering the scale of frame of discernment and the relative scale of focal element

with respect to FOD. Also, various examples have been solved with different belief

entropies to compare the results [21]

• A. Emre Eysen et al. (2019): The paper explained the relationship between weaker

forms of properties like Menger, Alster and Lindelof in bitopological spaces. It in-

troduced weak version of the Alster property in terms of selection principles and

gave counter examples with the results. Also, the properties of (i, j)- Almost Alster

bitopological spaces have been examined. The paper also explained the difference

between these properties with the help of examples [76].

• T.Y Ozturk et al. (2019): A new type of bitopological spaces defined on neutro-

sophic sets was introduced. This space is known as Neutrosophic Bitopological

Spaces. Various notions like pairwise neutrosophic open sets, closed sets, closures

and interior were presented. The paper also explained the relationship between
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these concepts with general topological structure. The basic properties of neutro-

sophic bitopological spaces along with examples were given in the paper [77].

• B. Bhattacharya et al. (2019): They introduced a new class of fuzzy sets called

as fuzzy Λγ-sets and defined a completely different structure known as Fuzzy in-

dependent Alexandorff spaces. A new notion of fuzzy Λγ- continuity was defined

and relationship of this notion with already existing functions has been established.

Further, the definition of fuzzy Λγ- generalized closed sets was given and various

properties in the form of results have been studied [78].

• G. Priscilla Pacifica et al. (2019): After the bitopological spaces [1], tri topological

space [79], quad topological space [80] and penta topological spaces were intro-

duced as a generalization of general topology. The main focus of this paper was

to investigate the general properties of penta topology and analysed the nature of

generalized closed sets in penta topological spaces. Some examples were also given

to easily understand the outcomes [81].

• Y. Chan Kim et al. (2019): This paper presented another thought of Alexandroff

L - fuzzy pre vicinities on complete residuated lattices which give a bound together

pathway to three spaces. This paper additionally explored relations among Alexan-

drov L-fuzzy pre-proximities, Alexandrov L-fuzzy topologies, L - fuzzy lower ap-

proximate operators, and L-fuzzy lower approximate operators. And used all these

terms in the paper to study their corresponding relations. Also the relationship

between Alexandroff L – Fuzzy pre proximities and Alexandov topological struc-

ture was established. Examples of the respective terms and relations were also

contained in the paper [82].

• P.L Meenakshi (2019): The paper defined a new class of generalized closed sets

in bitopological spaces known as i, j − δ semi-generalized star closed sets (briefly

called as i, j − δsg(∗)-closed sets). Some interrelations between this kind of closed

26



sets and already existing closed sets were given. Various properties of newly de-

veloped closed sets have been studied in this paper [83].

• Sandhiya et al. (2019): This paper is an example of very interesting and impor-

tant application of fuzzy soft set theory. We can’t make right decisions in our real

life easily, so fuzzy soft set theory provides us the right guidelines to make right

decisions. The problem of decision making can be solved by using this concept in

the real world. In this paper, the author illustrated one numerical problem as well

to deal with the problem of job requirement. They gave the algorithm to solve

the problem as well. The numerical example of the paper solved job allocation

problem in Indian industrial scenario [84].

• Y. Zhao et al. (2019): This paper put forward the concept of an improved belief

entropy to measure uncertainty which is based on Deng entropy and the belief in-

terval. More particularly the span and the center of belief interval are considered to

define the total uncertainty degree. It also showed that this improved measure can

be degenerated into Shannon entropy. A case study is solved to show the efficiency

and flexibility of new approach as compared to previous uncertainty measures [85].

• B. Kang et al. (2019): There are various belief entropy functions used to measure

uncertainty of data. This paper discussed the condition of the maximum of Deng

entropy which is used to measure the uncertainty degree of basic probability as-

signment in evidence theory. Some numerical properties are also used to illustrate

the basic probability assignment with the maximum Deng entropy [86].

• L. Boxer (2019): Digital topology is one of the recent notions in the real world.

This paper examined the fixed point set in digital topology. Here, the author ex-

amined the properties of fixed point set and found some new results. In this paper,

the author gave a complete computation of F (Cn) where Cn is the digital cycle of

n points. It also studied how fixed point sets in digital images can be arranged. It

also explained the concept of homotopy fixed point spectrum using digital topol-

ogy. Also the notion of pull indices of the digital image was introduced. All those
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factors which affected fixed point sets were explained separately in the paper with

their respective examples and important results [87].

• I. Bukhatwa et al. (2020): The authors generalized the concept of (i, j)-semi I

open sets and (i, j)-βI open sets and defined γij-semi I open sets and γij- βI open

sets in ideal bitopological spaces which was defined by K. Kuraowski [88] in 1966.

Also, the notions of γij - semi I continuous functions and γij-βI functions were in-

troduced. Various results based on these concepts have been given with examples

and counter examples as well [89].

• R. Roshmi et al. (2020): This paper defined one notion of regularity and two

notions of normality. She made use of some separation axioms to produce new

notions. A notion of completely normal space was also given. It also explained

relationship of these two properties between topological spaces and bitopological

spaces. Some of the features of these properties in bitopological spaces have been

explained in this paper [90].

• B.M Afsan (2020): This paper introduced a new type of covering property βt
ωr,s-

closedness in bitopological spaces and gave several characterizations via filter bases

and grills. He used the idea of closure operators and closed spaces modulo grills

to define new results. Various grills generalizations have been introduced in these

spaces [91].

• A.S Salama (2020): The paper presented the generalization of classical approxi-

mation space and named it as bitopological approximation space. He defined new

membership functions and inclusion functions and used these for redefining rough

approximations. He used topological approaches for information systems. Also,

some properties of rough sets on bitopological spaces have been studied. Further,

a real-life application related to data reduction in multi-valued information system

has been elaborated [92].
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2.0.2 Research Gap

This research gap helped us to achieve our objectives.

• In general topology, τ is a family of subsets of X and the elements in (X , τ) are

open sets and three conditions have been satisfied. Alexandroff topology is a space

in which an arbitrary intersection of open sets is an open set. Likewise, there are

other topological spaces like soft topological spaces in which τ is the family of soft

sets over X , fuzzy topological spaces where τ is the family of fuzzy soft sets over

X , intuitionistic fuzzy topology where τ is the family of Ifs in X and nano topol-

ogy in which τR(X ) = {U , ∅, LR(X), UR(X)} satisfies three conditions of general

topology.There is no such relation among them. So, we will try to relate our space

with one of them or may produce new kind of space. Further, we will work on

generalization of closed sets over them and study their properties and produce new

results as well.

• In Alexandroff topology, there is generalisation of g∗- closed sets and λ∗- closed

sets (till now) and in which they defined them and generalize them to study their

properties. In the same way, we intend to work on generalization of rw- closed

sets and other classes of closed sets and study the properties with results by giving

examples also. Further, comparing the results with previous results of general-

ization of closed sets in general topology. Also, the work on functions, continuity

behaviour of closed sets has not been discussed yet in Alexandroff topology, so we

will also work on functions in this topology.

• Previous researches introduced bitopological spaces, which are prepared with two

topologies on a non–empty set X . Different generalisation of closed sets like semi-

star gw- closed sets, ij − gb closed sets, τ1τ2 g- closed sets were given and also

the properties had been discussed in them. But, Alexandroff bitopological space

has not been introduced yet and that’s why we intend to introduce it and work on

generalisation of closed sets taking infinite number of elements in account. And

also study their properties and work on functions, mappings part as well.
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• Fang Jinming, in 2017, [47] focussed at introducing I-fuzzy topological spaces

through a fuzzy relation on a set and also explored the connection between certain

generalised topological structures and fuzzy order structures. Similarly, we will

try to find out relation between Alexandroff space and fuzzy orders specifically

we will consider total ordering on sets instead of preordered sets and also using

biresiduation operators to generate new results and further using closure operator,

work on generalisation of closed sets on them. Kim in 2014 introduced new con-

cept Alexandroff L-fuzzy on complete residuated lattices (algebraic structure) and

Kim et al. (2019) defined Alexandroff fuzzy topology on X in terms of operators

and studied the properties of join-meet preserving maps and Alexandroff fuzzy

topologies. So, we intend to merge fuzzy topology with Alexandroff in general way

and investigate their mappings behaviour, their properties etc and extend all these

concepts using closure (interior) operator in the same way and produce new results.

• There are interesting applications of topologies in this digital world. One of them is

the world of digital topology. Digital topology is used to analyse image algorithms,

counting of components etc. The use of Alexandroff topology in digital way has not

been found yet. So, we will use our Alexandroff discrete topology which is finitely

generated topological space in digital way and make use of closed sets and their

generalisation in solving the problems of digital topology. Also, the important

application of fuzzy concept in real world is decision making. Fuzzy concept was

used to solve the basic problems of decision making. We will use Alexandroff soft

topological concept or Alexandroff fuzzy concept in solving many more problems

of real life in the same way.

2.0.3 Objectives of our proposed work

After the extensive survey of literature, the main objectives of the research work are

enlisted below:

✓ Develop the new type of topological space using Alexandroff Space and Soft Topo-

logical space to study the behaviour of generalized closed sets on it.
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✓ Examine the concept of Compactness, Connectedness, Continuity using gener-

alized closed sets in new developed topological space to study the behaviour of

different kind of functions.

✓ To introduce Alexandroff Bitopological Spaces and then study the concept of gen-

eralization of closed sets along with their properties. Also, study and generate new

separation axioms and comparing the new results with the previous ones.

✓ Define Fuzzy Alexandroff Topological Spaces and generalize the concept of closed

sets on it to solve problems of decision making, Engineering, digital topology etc.
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Chapter 3

Alexandroff Soft Topological

Spaces

This chapter illustrates the emergence of new type of topological spaces known as Alexan-

droff Soft Topological Spaces which is a combination of Soft topological spaces and

Alexandroff spaces. Also, various important topological properties have been studied

under this chapter. Further, different separation axioms known as Alexo Ti-spaces have

been presented alongside their properties.

Here, (X , τ
Ås
) denotes an Alexandroff Soft Topological Spaces(ASTS), A denotes the

arbitrary set of parameters and Alexo Ti denotes various separation axioms in this sec-

tion.

3.0.1 Definition of Alexandroff Soft Topological Spaces with example

Definition 3.1. An Alexandroff Soft Topological Space is a set X with an arbitrary set

of parameters A together with a system (Ki,A), where Ki : A −→ ℘(X) fulfilling the

axioms below:

1. An arbitrary intersection of number of elements of τ
Ås

is a set in τ
Ås
.

2. Finite union of members of sets from τ
Ås

is a set in τ
Ås
.

3. 0
Ås

and 1
Ås

are in τ
Ås
.

Example 3.1. Take X = R. A be a set of parameters defined as A = {0, 1}. Let τ
Ås

= {(Pi,A), i = 1, 2 . . .} ⊔ {0
Ås
, 1

Ås
}. A mapping Pi : A → ℘(X) defined as:
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Pi =


i, i+ 1, . . . if a = 0,

∅ if a = 1

Clearly, (X , τ
Ås
) is an Alexandroff Soft Topological Spaces.

3.0.2 Properties of Alexandroff Soft Topological Spaces

Definition 3.2. A basis for an ASTS is a collection P of soft closed subsets of X which

fulfill the following given statements:

1) ⊓P = ∅.

2) For P1,P2 ∈ P,P1 ⊔ P2 = ⊓Pi, for i ∈ I.

Any collection of soft closed subsets of X which satiates these conditions can define

topology generated by P.

Theorem 3.3. Suppose (U ,A) be a family of soft closed sets in ASTS. Then, (U ,A) is

known as the minimal base for the topology τ
Ås

of X if and only if the following axioms

are satisfied:

(1) (U ,A) covers X .

(2) For (P,A), (Q,A) ∈ (U ,A), ∃ a subfamily {(Ui,A) : i ∈ I} of (U ,A) such that

(P,A) ∪ (Q,A) = ∩(Ui,A), for i ∈ I.

(3) If a subfamily {(Ui,A) : i ∈ I} of (U ,A) verifies ∪(Ui,A) ∈ (U ,A), for i ∈ I, then ∃

io ∈ I such that ∩ (Ui,A) = Uio.

Corollary 3.4. Suppose U be a non-empty set and B be a basis for topology τ
Ås

on U .

Then, the collection τ
Ås

equals to the set of all intersections of basis elements.

Proof. A family of elements of B are also the members of τ
Ås
. Since τ

Ås
is a topology,

their intersection must be in τ
Ås
. Conversely, for U ∈ τ

Ås
, an element Bx of B be such

that x ∈ Bx ⊂ U , for each x ∈ U . Then, U = ⊓x∈UBx, so U equals to the intersection of

members of B.

Definition 3.5. Let Y ⊆ X be a non-empty set in ASTS. Then, τY
Ås

= {(PY ,A)) |

(P,A) ∈ τ
Ås
} is known as relative topology on Y and (Y, τY

Ås

) is known as Alexandroff

Soft subspace of (X , τ
Ås
).
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Example 3.2. Any Alexandroff Soft subspace of an Alexandroff discrete topological space

is also discrete topological space.

Proposition 3.6. Let Y ⊆ X be a non-empty set in ASTS. Then, (Y, τβY ) is a subspace

of (X , τβ
Ås

) for each β ∈ A.

Proof. Since (Y, τY
Ås

) is an Alexandroff Soft Topological Spaces in Y, so (Y, τβY ) is also

a topological space for each β ∈ A. Now, for each β ∈ A, τβY = {PY(β) | (P,A) ∈ τ
Ås
}.

= {Y ⊓ P(β) | (P,A) ∈ τ
Ås
}.

= {Y ⊓ P(β) | (P,A) ∈ τβ
Ås

}.

Thus, (Y, τβY ) is a subspace of (X , τβ
Ås

).

Definition 3.7. Let (Y, τ
Ås
) be a soft closed subset of (X , τ

Ås
). Then, (Y, τ

Ås
) ⊆

(X , τ
Ås
) is known as an Alexandroff Soft Closed subspace of (X , τ

Ås
) when (X , τ

Ås
) \

(Y, τ
Ås
) ∈ τ

Ås
, or equivalently, An Alexandroff Soft subspace (Y, τ

Ås
) of (X , τ

Ås
) is

known to be closed if the injection map i : (Y, τ
Ås
) → (X , τ

Ås
) is closed.

Theorem 3.8. Suppose (X , τ
Ås
) and (Y, τ

Ås
) are ASTS with minimal bases (P,A) and

(Q,A). If (X , τ
Ås
) is an Alexandroff Soft closed subspace of (Y, τ

Ås
), then we have

P = {Q ∩ X : Q ∈ Q}.

Proof. The proof is taken directly from [93].

Theorem 3.9. Suppose (Y, τ
Ås
) be an Alexandroff Soft closed subspace of (X , τ

Ås
).

Then, (P,A) is an Alexandroff Soft closed in (Y, τ
Ås
) where A is the set of parameters

iff it equals to the intersection of an Alexandroff Soft closed set of X with Y.

Proof. Let us suppose that (P,A) = Q⊓Y, where Q is an Alexandroff Soft closed in X .

Then, X \ Q is Alexandroff Soft Open in X , so (X − Q) ⊓ Y is Alexandroff Soft Open

in Y.

Because (X − Q) ⊓ Y = Y \ P ⇒ Y \ P is Alexandroff Soft Open in Y, we have P is

Alexandroff Soft closed in Y.

Conversely, P is Alexandroff Soft closed in Y which implies Y − P is open in Y, thus,

Y − P = V ⊓ Y where V is an Alexandroff Soft Open set of X . The set X − V is

Alexandroff Soft Closed in X and P can be written as Y ⊓ (X −V) which is the required

result.
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Corollary 3.10. Let (Y, τ
Ås
) be an Alexandroff Soft closed subspace of (X , τ

Ås
). Then,

B ⊑ Y is Alexandroff Soft closed in Y iff B is Alexandroff Soft closed in X .

Definition 3.11. The Alexandroff Soft Product Topology is the topology with basis as

the collection B of all sets of the form P ∗ Q, where P and Q are the Alexandroff soft

subsets of X and Y respectively.

Theorem 3.12. In Alexandroff Soft Product Topology, the product of Alexandroff Soft

Closed sets is closed .

Proof. Suppose Ai be Alexandroff Soft closed in Xi, ∀ i = 1, 2,

Then, Xi \ Ai is an Alexandroff soft open set in Xi ∀i, where Xi is the collection of

Alexandroff Soft Topological Spaces.

So, (
∏n

i=1Xi) \ (
∏n

i=1Ai) = [(X1 \ A1 ∗ X2 ∗ . . . ∗ Xn)] ⊔ [X1 ∗ (X2 \ A2) ∗ X3 . . . ∗ Xn] ⊔

. . . ⊔ [X1 ∗ X2 . . . ∗ (Xn \ An)]

⇒ L.H.S is a union of Alexandroff Soft Open sets in Alexandroff Soft Product Spaces.

Therefore, L.H.S is an Alexandroff Soft open set in
∏n

i=1 ⇒
∏n

i=1Ai is closed in
∏n

i=1Xi.

Remark 3.13. If G and F are Alexandroff Soft closed sets in X and Y respt., they can’t

form a basis for Alexandroff Soft closed sets in the product topology.

Example:- Cofinite topology on X = Y = N.

Proposition 3.14. Suppose (X , τ
Ås
) be an Alexandroff Soft Topological Space over X .

The collection- τβ
Ås

= {P(β)|(P,A) ∈ τ
Ås
} defines a topology on X , where β ∈ A.

Proof. Since τβ
Ås

= {P(β)|(P,A) ∈ τ
Ås
} for β ∈ A.

Clearly, (1) ∅,X ∈ τ
Ås

implies ∅,X ∈ τβ
Ås

.

(2) Let {Pi(β) | i ∈ I} be a collection in τβ
Ås

. Since (Pi,A) ∈ τ
Ås

∀i ∈ I, we have ⊓i∈I

(Pi,A) ∈ τ
Ås
, thus ⊓i∈I (Pi,A) ∈ τβ

Ås

.

(3) Since (P,A) ⊔ (Q,A) ∈ τ
Ås
, so P(β) ⊔Q(β) ∈ τβ

Ås

, for P(β),Q(β) ∈ τ
Ås
.

Thus, τβ
Ås

also defines a topology on X , for each β ∈ A. Also, this results implies

that we have a topology τβ
Ås

on X corresponding to each parameter. But conversely, it

doesn’t holds.

Example 3.3. Let X = {x1, x2, x3},A = {a1, a2} and τ
Ås

= {∅,X , (P1,A), (P2,A), (P3,A)}

where (Pi,A) are soft sets over X , defined as follows:
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P1(a1) = {x1} P1(a2) = {x2}

P2(a1) = {x1, x2} P2(a2) = {x1, x3}

P3(a1) = {x1, x3} P3(a2) = {x1}.

Then, τ
Ås

is not a topology on X as (P1,A) ⊔ (P2,A) = (Q,A) where Q(a1) = {x1, x2}

and Q(a2) = X and so (Q,A) /∈ τ
Ås
.Also, τa1 = {∅,X , {x1}, {x1, x2}, {x1, x3}} and

τa2 = {∅,X , {x1}, {x2}, {x1, x3}} are topologies on X . This can be shown that even if

the collection corresponding to each parameter defines a topology on X , that collection

need not be an Alexandroff Soft Topology on X .

Definition 3.15. Let (X , τ
Ås
) be an Alexandroff Soft Topological Space over X and

(P,A) be an alexandroff soft set over X . Then, the Alexandroff Soft closure of (P,A)

denoted by clX (P,A) is the intersection of all soft closed supersets of (P,A).

Clearly, clX (P,A) is the smallest Alexandroff Soft closed set over X containing (P,A).

Definition 3.16. Let (X , τ
Ås
) be an Alexandroff Soft Topological Space over X and

(P,A) be an Alexandroff Soft set over X . Then, an Alexandroff Soft set (clXP,A) or

(P,A) associated with (P,A) is defined as-

P(β) = P(β) where P(β) is the closure of P(β) in τβ
Ås

, for each β ∈ A.

Proposition 3.17. If (P,A) is an Alexandroff Soft set over X .Then, (P,A) ⊂ (P,A).

Proof. Since P(β) is the smallest soft closed set in (X , τβ
Ås

), which contains P(β), for any

β ∈ A. Also, H(β) is also soft closed set in (X , τβ
Ås

) containing P(β), if (P,A) = (H,A).

This implies that P(β) = P(β) ⊆ H(β). Thus, (P,A) ⊂ (P,A).

Definition 3.18. A function g : X → Y is known as Alexandroff Soft continuous if for

each Alexandroff Soft closed subset P of Y, g−1(P) is an Alexandroff Soft closed subset

of X where (X , τ
Ås
) and (Y, τ

Ås
) are two Alexandroff Soft Topological Spaces.

Theorem 3.19. If (X , τ
Ås
), (Y, τ

Ås
) and (Z, τ

Ås
) are three Alexandroff Soft Topological

Spaces and g : X → Y and f : Y → Z are Alexandroff Soft continuous maps. Then, the

composition of these maps is also Alexandroff Soft continuous. That is, fog : X → Z is

also Alexandroff Soft closed.

Proof. Let V be Alexandroff Soft closed in Z. Then, f−1(V) is Alexandroff Soft closed

in Y. By the continuity of g, g−1[f−1(V)] = (fog)−1(V) is Alexandroff Soft closed in X .

Thus, fog is Alexandroff Soft continuous.
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Definition 3.20. [13] A mapping g is known as Alexandroff Soft homeomorphism if

g : X −→ Y is a bijection and both g and g−1 are Alexandroff Soft continuous.

Proposition 3.21. Suppose (K,A) ∈ SCS(X ,A), h is injective map of A onto Bs and

g be a one-one map of X onto Y. We have to prove the following:

1) ρgh(K,A) = ρ−1
g−1h−1(K,A).

2) ρgh((K,A)) = (ρgh((K,A)).

Proof. 1) Let ρgh(K,A) = (L,Bs), ρ
−1
g−1h−1(K,A) = (M,Bs) and qY ∈ Bs. We must

prove that L(qY) = M(qY).

Let h−1(qY) = qX . Since the map h : A −→ Bs is 1− 1, L(qY) = g(K(qX )).

On the other hand, M(qY) = (g−1)(K(h−1(qY)) = g(K(qX ).

Thus, L(qY) = M(qY).

2) Let ρgh((K,A)) = (L,A), (ρgh(K,A)) = (M,Bs), qY ∈ Bs. We must prove that L(qY)

= M(qY).

Let h−1(qY) = qX .

Since the map h : A −→ Bs is 1− 1, L(qY) = g(X \ K(qX )). It is given that g mapping

is 1− 1 and onto, g(X \ K(qX )) = Y \ g(K(qX ).

Therefore,L(qY) = Y \ g(K(qX )).

On the other hand, M(qY) = Y \ g(K(qX )).

Thus, L(qY) = M(qY).

3.0.3 Separation axioms in Alexandroff Soft Topological Spaces

Definition 3.22. A space (X , τ
Ås
) is called Alexo T0- space if for points x, y ∈ X and

x ̸= y, ∃ soft closed sets (P,A) and (Q,A) such that x ∈ (P,A) and y /∈ (P,A) or

y ∈ (Q,A) and x /∈ (Q,A).

Definition 3.23. A space (X , τ
Ås
) is called Alexo T1- space if there exists soft closed sets

(P,A) and (Q,A) such that x ∈ (P,A) and y /∈ (P,A) and y ∈ (Q,A) and x /∈ (Q,A),

for points x, y ∈ X and x ̸= y.

Theorem 3.24. Suppose that (X , τ
Ås
) be an Alexandroff Soft Topological Space. If

(x,A) is a soft open set in τ
Ås

for each x ∈ X , then, (X , τ
Ås
) is Alexo T1- space.
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Proof. Let (x,A) is a soft open set in τ
Ås
, for each x ∈ X . So, (x,A)

′
is soft closed in

τ
Ås

and y ∈ (x,A)
′
and x /∈ (x,A)

′
for x ̸= y, x, y ∈ X . Similarly, (y,A)

′ ∈ τ
Ås

such

that x ∈ (y,A)
′
and y /∈ (y,A)

′
. Thus, (X , τ

Ås
) is Alexo T1- space.

But the converse does not holds.

Example 3.4. Let X = {x1, x2},A = {a1, a2} and τ
Ås

= {∅,X , (P1,A), (P2,A)} where

P1(a1) = X P1(a2) = {x1}

P2(a1) = {x2} P2(a2) = X .

Then, τ
Ås

is a topology over X .

We have, τa1 = {∅,X , {x2} and τa2 = {∅,X , {x1}.

Neither (X , τa1) nor (X , τa2) is Alexo T1- space but x1, x2 ∈ X with x1 ̸= x2, and also

x1 ∈ (P1,A) and x2 /∈ (P1,A) and x2 ∈ (P2,A) and x1 /∈ (P2,A). Therefore, (X , τ
Ås
)

is Alexo T1- space.

Also, for (x1,A) and (x2,A) ∈ τ
Ås

over X , defined as

x1(a1) = x1 x1(a2) = x1

x2(a1) = x2 x2(a2) = x2.

Their relative complements are

x
′
1(a1) = x2 x

′
1(a2) = x2

x
′
2(a1) = x1 x

′
2(a2) = x1.

Neither (x1,A)
′
nor (x2,A)

′ ∈ τAs. Hence, the converse of the result.

Proposition 3.25. A non-empy subset of Alexo T1- space is also an Alexo T1- space.

Proof. Since X is Alexo T1- space, then ∃ soft closed sets (P,A) and (Q,A) such that

x ∈ (P,A) and y /∈ (P,A) and y ∈ (Q,A) and x /∈ (Q,A) for x, y ∈ X and x ̸= y.

Now, x ∈ Y and x ∈ (P,A) implies x ∈ Y ⊓ (P,A) = (PY ,A) where (P,A) ∈ τ
Ås
.

Suppose y /∈ (P,A) which implies y /∈ P(β) for some β ∈ A.

Now, y /∈ Y ⊓ P(β) ⇒ Y(β) ⊓ P(β). Therefore, y /∈ Y ⊓ (P,A) = (PY ,A).

In the same way, we will show that y ∈ (QY ,A) and x /∈ (QY ,A).

Hence proved.

Definition 3.26. A space (X , τ
Ås
) is known as Alexo T2- space if there exists soft closed

sets (P,A) and (Q,A) such that x ∈ (P,A), y ∈ (Q,A) and (P,A) ⊓ (Q,A) = ∅, for

x, y ∈ X such that x ̸= y

Proposition 3.27. If (X , τ
Ås
) is Alexo T2- space over X , then (X , τβ

Ås

) is also Alexo

T2- space for each β ∈ A.
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Proof. For any β ∈ A,

τβ
Ås

= {P(β) | (P,A) ∈ τ
Ås
}.

Let x, y ∈ X such that x ̸= y, ∃ (P,A), (Q,A) such that x ∈ (P,A) and y ∈ (Q,A) with

(P,A) ⊓ (Q,A) = ∅.

This means x ∈ P(β) and y ∈ Q(β) and P(β) ⊓Q(β) = ∅.

Hence, (X , τβ
Ås

) is also Alexo T2- space for each β ∈ A.

Remark 3.28. 1) Every Alexo T1- space is Alexo T0.

2) Every Alexo T2 space is Alexo T1.

Proof. 1) If (X , τ
Ås
) is Alexo T1- space, then ∃ two soft closed sets (P,A), (Q,A) such

that x ∈ (P,A) and y /∈ (P,A) and y ∈ (Q,A) and x /∈ (Q,A). It is obvious to say that

x ∈ (P,A) and y /∈ (P,A) or y ∈ (Q,A) and x /∈ (Q,A). This implies that (X , τ
Ås
) is

Alexo T0- space.

2) Let (X , τ
Ås
) is Alexo T1- space, then for x ̸= y, ∃ (P,A), (Q,A) such that x ∈ (P,A)

and y ∈ (Q,A) with (P,A) ⊓ (Q,A) = ∅. Since (P,A) ⊓ (Q,A) = ∅, so x /∈ (Q,A) and

y /∈ (Q,A). Thus,x ∈ (P,A) and y /∈ (Q,A) and y ∈ (Q,A) and x /∈ (Q,A). Hence,

Every Alexo T2 space is Alexo T1.

But not every Alexo T0 is T1 and not every Alexo T1 is T2.

Example 3.5. Let X = {x1, x2},A = {a1, a2} and τ
Ås

= {∅,X , (P1,A), (P2,A)} where

P1(a1) = X P2(a1) = {x1}

P1(a2) = {x2} P2(a2) = X .

Thus, (X , τ
Ås
) is Alexo T1 but not Alexo T2 because x1 and x2 ∈ X , there does not

exist any (P,A) and (Q,A) soft closed sets such that x1 ∈ (P,A) and x2 ∈ (Q,A) with

(P,A) ⊓ (Q,A) = ∅.

Now, consider τ
Ås

= {∅,X , (P1,A) where P1(a1) = x2 and P1(a1) = X . Then, clearly

X with this topology is Alexo T0 but not Alexo T1 as there does not exist soft closed

sets (P,A) and (Q,A) such that x1 ∈ (P,A) and x2 /∈ (P,A) and x2 ∈ (Q,A) and

x1 /∈ (Q,A).

Proposition 3.29. Let (X , τ
Ås
) be an Alexandroff Soft Topological Space and Y ⊆ X .

Then, (Y, τ
Ås
) is also Alexo T2 if (X , τ

Ås
) is Alexo T2- space.

Proof. Suppose points x, y ∈ Y be such that x not equal to y. Since (X , τ
Ås
) is Alexo

T2- space, then there exists (P,A), (Q,A) such that x ∈ (P,A) and y ∈ (Q,A) with
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(P,A) ⊓ (Q,A) = ∅. So, for each β ∈ A, x ∈ P(β), y ∈ Q(β) and P(β) ⊓ Q(β) = ∅.

This implies that x ∈ Y ⊓ P(β), y ∈ Y ⊓ Q(β) and P(β) ⊓ Q(β) = ∅.

Hence, x ∈ (PY ,A) and y ∈ (QY ,A) and (PY ,A) ⊓ (QY ,A) = ∅,

where (PY ,A), (QY ,A) ∈ τY
Ås

.

Thus, (Y, τ
Ås
) is also Alexo T2- space.

Definition 3.30. (Alexo Regular space) A space X is said to be a Alexo Regular

space if ∃ soft closed sets (P1,A), (P2,A) such that x ∈ (P1,A), (Q,A) ⊆ (P2,A) and

(P1,A) ⊓ (P2,A) = ∅. for (Q,A) a soft open set and x ∈ X such that x /∈ (Q,A).

Definition 3.31. A space (X , τ
Ås
) is known as Alexo T3 if it is Alexo regular as well as

Alexo T1- space.

Remark 3.32. 1) An Alexo T3- space may or may not be Alexo T2-space.

2) A space X with topology τβ
Ås

corresponding to each β ∈ A may not be Alexo T3-

space even if (X , τ
Ås
) is Alexo T3-space.

Proposition 3.33. Let Y ⊆ X be a non-empty set in ASTS. Then, (Y, τβ
Ås

) is also

Alexo T3- space if X is Alexo T3.

Proof. Since X is Alexo T3, it means that X is also Alexo T1 as well as Regular space.

By Proposition 3.25, Y is also T1.

Suppose that (Q,A) is a soft open set in Y such that y /∈ (Q,A), for y ∈ Y.

By using Theorem 1.10, y /∈ ((Y,A)⊓ (P,A), for (Q,A) = ((Y,A)⊓ (P,A)), for (P,A)

in X .

Now, y /∈ (P,A) as y ∈ (Y,A). Also, X is T3-space, so ∃ (P1,A), (P2,A) such that

y ∈ (P1,A), (P,A) ⊂ (P2,A) and (P1,A) ⊓ (P2,A) = ∅.

Now, take (Q1,A) = (Y,A)⊓(P1,A) and (Q2,A) = (Y,A)⊓(P2,A), then, (Q1,A), (G2,A) ∈

τY
Ås

such that y ∈ (Q1,A) and (Q,A) ⊂ (Y,A) ⊓ (P2,A) = (Q2,A) and also (Q1,A) ⊓

(Q2,A) ⊆ (P1,A) ⊓ (P2,A) = ∅ implies (Q1,A) ⊓ (Q2,A) = ∅.

Hence, (Y, τβ
Ås

) is Alexo T3- space.

Definition 3.34. A space (X , τ
Ås
) is known as Alexo Normal space if ∃ soft closed

sets (P1,A) and (P2,A) such that (P,A) ⊏ (P1,A), (Q,A) ⊏ (P2,A) and (P1,A) ⊓

(P2,A) = ∅ for (P,A) and (Q,A) soft open sets over X and (P,A) ⊓ (Q,A) = ∅.

Definition 3.35. An Alexandroff Soft Topological Space (X , τ
Ås
) is known as Alexo T4

if it is Alexo T1 and Alexo Normal space.
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Remark 3.36. 1) An Alexo T4- space need not be Alexo T3-space.

2) A space with topology τβ
Ås

corresponding to each parameter β ∈ A need not be

Alexo T4- space if (X , τ
Ås
) is Alexo T4.

3) If (X , τ
Ås
) is Alexo T4-space, then (Y, τY

Ås

) is not necessary a Alexo T4-space being

a non-void subset of X .

Example 3.6. [3] Let X = {x1, x2, x3, x4}, A = {a1, a2} and τ
Ås

= {∅,X , (P1,A), (P2,A), (P3,A) . . . (P8,A)},

where (Pi,A) are defined as-

P1(a1) = {x1, x2, x4} P1(a2) = {x1, x2, x3}

P2(a1) = {x1, x3, x4} P2(a2) = {x1, x2, x3}

P3(a1) = {x1, x4} P3(a2) = {x1, x2, x3}

P4(a1) = {x2, x3} P4(a2) = {x1, x2, x3}

P5(a1) = {x2} P5(a2) = {x1, x2, x3}

P6(a1) = {x3} P6(a2) = {x1, x2, x3}

P7(a1) = ∅ P7(a2) = {x1, x2, x3}

P8(a1) = X P8(a2) = {x1, x2, x3}.

Then, (X , τ
Ås
) is Alexo T4- space but not Alexo T3- space.

Now, consider τa1 = {∅,X , {x1, x2}, {x1, x3, x4}, {x1, x4}, {x2, x3}, {x2}, {x3}} and τa2

= {∅,X , {x1, x2, x3}}.

Here, τa1 and τa2 are not Alexo T3- spaces This shows that a space with topology τβ
Ås

corresponding to each parameter β ∈ A need not be Alexo T4- spaces for each β ∈ A.

Now, take Y = {x1, x2, x3}. Then τY
Ås

= {∅,X , (PY1 ,A), (PY2 ,A), (PY3 ,A) . . . (PY8 ,A)},

where (PYi ,A) are defined as-

PY1(a1) = {x1, x2} PY1(a2) = Y

PY2(a1) = {x1, x3} PY2(a2) = Y

PY3(a1) = {x1} PY3(a2) = Y

PY4(a1) = {x2, x3} PY4(a2) = Y

PY5(a1) = {x2} PY5(a2) = Y

PY6(a1) = {x3} PY6(a2) = Y

PY7(a1) = ∅ PY7(a2) = Y

PY8(a1) = Y PY8(a2) = Y.

It has been seen that (Y, τY
Ås

) is not Alexo T4- space. Thus, a subspace of Alexo T4 need

not be Alexo T4- space.
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Thus, it concludes the definition of Alexandroff Soft Topological Spaces with some im-

portant properties and the generation of new separation axioms with examples.
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Chapter 4

g
Ås
-soft closed sets in Alexandroff

Soft Topological Spaces

Closed sets have their own importance in topological spaces from years and the gener-

alization of them plays important role in the study of various topological spaces. It can

produces various separation axioms, covering lemmas, different types of closed sets etc.

N. levine [4] firstly initiated the concept of generalization in topological spaces. Likewise,

in this chapter, we define g
Ås
-soft closed sets and investigated its various properties in

Alexandroff Soft Topological Spaces.

Throughout the chapter, we refer to Alexandroff soft topological spaces as (X , τ
Ås
) or

X and Ås denotes an arbitrary set of parameters.

4.0.1 Definition of g
Ås
-soft closed set

Definition 4.1. In (X , τ
Ås
), a soft closed set (P ′

, Ås) is called Alexandroff Soft Gen-

eralized Closed Set(in short, g
Ås
-soft closed set) if there is a soft closed set (A′

, Ås)

containing (P ′
, Ås) such that (A′

, Ås) ⊏ (V, Ås) when (P ′
, Ås) ⊏ (V, Ås) and (V, Ås) is

soft open in X .

Example 4.1. Suppose X = R and Ås = {e1, e2, . . . ei} be an arbitrary set of parameters

where i ∈ I. Let τ
Ås

have the family of soft closed sets in X . Let (P
′
1, Ås) , (P

′
2, Ås) and

(P
′
3, Ås) be mappings from set of parameters to power set of X defined as-
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P
′
1(ei) =


2i, if ei = e1,

∅, otherwise

P
′
2(ei) =


3i, if ei = e1,

∅, otherwise

P
′
3(ei) =


(5 + i, 6 + i) if ei = e1,

∅, otherwise

Clearly, (X , τ
Ås
) is Alexandroff Soft Topological Spaces and (P

′
2, Ås) and (P

′
2, Ås) are

g
Ås
- soft closed sets in X . But (P

′
3, Ås) is not g

Ås
-soft closed sets in X .

4.0.2 Characteristics of g
Ås
-soft closed set

Theorem 4.2. Suppose (P ′
, Ås) is g

Ås
-soft closed in X and (P ′

, Ås) ⊏ (Q′
, Ås) ⊏

(R′
, Ås) where (R′

, Ås) is a soft closed set contained in (V, Ås) and (V, Ås) is soft open.

Then, (Q′
, Ås) is also g

Ås
-soft closed set in X .

Proof. Assume that (Q′
, Ås) contained in (V, Ås) and (V, Ås) is soft open. Since (P

′
, Ås)

⊏ (Q′
, Ås) and (Q′

, Ås) ⊏ (V, Ås), thus (P
′
, Ås) ⊏ (V, Ås). Hence, there is a soft closed

set (R′
, Ås) such that (R′

, Ås) ⊏ (V, Ås) whenever (P
′
, Ås) ⊏ (V, Ås) and (V, Ås) is soft

open (by the defn of g
Ås
-soft closed set).

Since (Q′
, Ås) ⊏ (R′

, Ås), this implies (R′
, Ås) is a soft closed set containing (Q′

, Ås)

such that (R′
, Ås) ⊏ (V, Ås) whenever (Q

′
, Ås) ⊏ (V, Ås) and (V, Ås) is soft open.

Therefore, (Q′
, Ås) is also g

Ås
-soft closed set.

Theorem 4.3. A soft closed set (P ′
, Ås) is g

Ås
-soft closed set in X iff there is a soft

closed set (R′
, Ås) ⊐ (P ′

, Ås) such that (R′
, Ås) \ (P

′
, Ås) does n’t have any non-empty

soft closed sets.

Proof. It is given that (P ′
, Ås) is g

Ås
-soft closed set in X . Then, there exists soft closed

set (R′
, Ås) containing (P

′
, Ås) such that (R′

, Ås) ⊏ (V, Ås) whenever (P
′
, Ås) ⊏ (V, Ås)

and (V, Ås) is soft open.

Now, assume that (R′
1, Ås) ⊑ (R′

, Ås) \ (P
′
, Ås) and (R′

1, Ås) is non-empty soft closed

set. Since (R′
1, Ås) is soft closed , (R1, Ås) is soft open and (P ′

, Ås) ⊑ (R1, Ås),

it follows that (R′
, Ås) ⊑ (R1, Ås) and so (R′

1, Ås) ⊑ (R, Ås) and thus (R′
1, Ås) ⊑
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(R, Ås) ⊓ (R′
, Ås) = ∅ , this implies (R′

1, Ås) is empty , which is a contradiction to our

assumption.

Conversely, (P ′
, Ås) ⊏ (V, Ås) and (V, Ås) is soft open in X . If (R′

, Ås) ̸⊏ (V, Ås),

then,(R′
, Ås) ⊓ (V, Ås) is a non-empty soft closed set in (R′

, Ås) \ (P
′
, Ås), which con-

tradicts the given fact.

Hence, (P ′
, Ås) is g

Ås
-soft closed set in X .

Corollary 4.4. A g
Ås
-soft closed set (P ′

, Ås) is soft closed iff cl(P ′
, Ås) \ (P ′

, Ås) is

g
Ås
-soft closed .

Proof. It is given that (P ′
, Ås) is both soft closed and g

Ås
-soft closed set, then it is

evident that cl(P ′
, Ås) and cl(P ′

, Ås) \ (P ′
, Ås) are both empty and soft closed in

nature.

Conversely, Let (P ′
, Ås) be a g

Ås
-soft closed such that cl(P ′

, Ås)\ (P
′
, Ås) is soft closed.

Since (P ′
, Ås) is g

Ås
-soft closed set, using theorem 4.3, there exists soft closed set (A′

, Ås)

containing (P ′
, Ås) such that (A′

, Ås)\(P
′
, Ås) does n’t contain any non-void soft closed

set. Since cl(P ′
, Ås) \ (P ′

, Ås) is closed and cl(P ′
, Ås) \ (P ′

, Ås) ⊏ (A′
, Ås) \ (P ′

, Ås)

and cl(P ′
, Ås) \ (P ′

, Ås) = ∅ , it means cl(P ′
, Ås) = (P ′

, Ås) and so (P ′
, Ås) is soft

closed.

Theorem 4.5. Suppose (P ′
, Ås) and (Q′

, Ås) are two g
Ås
-soft closed sets, the union of

these two is also g
Ås
-soft closed set in X .

Proof. Suppose that (P ′
, Ås) and (Q′

, Ås) both are g
Ås
-soft closed sets. Let (P ′

, Ås) ⊔

(Q′
, Ås) ⊏ (V, Ås) where (V, Ås) is soft open in X . Since (P ′

, Ås)⊔(Q
′
, Ås) ⊏ (V, Ås), we

have (P ′
, Ås) ⊏ (V, Ås) and (Q′

, Ås) ⊏ (V, Ås). Now, (P
′
, Ås) and (Q′

, Ås) are g
Ås
-soft

closed sets, by definition, there are closed sets (S ′
, Ås) and (S ′

1, Ås) containing (P ′
, Ås)

and (Q′
, Ås) respt. such that (S ′

, Ås) ⊏ (V, Ås) and (S ′
1, Ås) ⊏ (V, Ås) and (V, Ås) is

soft open. Therefore, (S ′
, Ås)⊔(S

′
1, Ås) ⊏ (V, Ås) whenever (P

′
, Ås)⊔(Q

′
, Ås) ⊏ (V, Ås)

where (V, Ås) is soft open in X . Thus, the union of two g
Ås
-soft closed sets is also g

Ås
-soft

closed set in X .

Remark 4.6. If (P ′
, Ås) and (Q′

, Ås) are two g
Ås
-soft closed sets, then their intersection

(P ′
, Ås) ⊓ (Q′

, Ås) is not necessary to be g
Ås
-soft closed set.

Follows from example 2.5 [4]
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4.0.3 g
Ås
-soft open sets in Alexandroff Soft Topological Spaces

Definition 4.7. A soft closed set (P ′
, Ås) is known as g

Ås
-soft open in an Alexandroff

Soft Topological Spaces if the relative complement of (P, Ås) is g
Ås
-soft closed in X .

Or We can say that a set (P ′
, Ås) is called g

Ås
-soft open in X iff ∃ an open set (R, Ås)

contained in (P ′
, Ås) such that (U ′

, Ås) ⊏ (R, Ås) when (U ′
, Ås) is soft closed and

(U ′
, Ås) ⊏ (P ′

, Ås).

Theorem 4.8. If (P ′
, Ås) is g

Ås
-soft open in X and int

Ås
(P ′

, Ås) ⊏ (B′
, Ås) ⊏ (P ′

, Ås),

then (B′
, Ås) is also g

Ås
-soft open.

Proof. Let (R′
, Ås) ⊏ (B′

, Ås) and (R′
, Ås) is soft closed in X . Since (B′

, Ås) ⊏ (P ′
, Ås)

and (R′
, Ås) ⊏ (B′

, Ås), so (R′
, Ås) ⊏ (P ′

, Ås). Now, there exists open set (V, Ås) ⊏

(P ′
, Ås) such that (R′

, Ås) ⊏ (V, Ås) when (R′
, Ås) is soft closed in X and (R′

, Ås) ⊏

(P ′
, Ås).

Since int
Ås
(P ′

, Ås) ⊏ (B′
, Ås), this implies that there is an open set (V, Ås) contained

in (B′
, Ås) such that (R′

, Ås) ⊏ (V, Ås) whenever (R
′
, Ås) is soft closed and (R′

, Ås) ⊏

(B′
, Ås).

Hence, (B′
, Ås) is also g

Ås
-soft open in X .

Theorem 4.9. In (X , τ
Ås
), a soft closed set (P ′

, Ås) is g
Ås
-soft open iff there is a soft

open (U , Ås) contained in (P ′
, Ås) such that (U , Ås) ⊔ (P, Ås) ⊏ (V, Ås) where (V, Ås)

is soft open implies V = X .

Proof. Since (P ′
, Ås) is g

Ås
-soft open, thus there exists soft open set (U , Ås) contained in

(P ′
, Ås) which satisfies the definition of g

Ås
-soft open set. Now, let (V, Ås) be soft open

such that (U , Ås)⊔ (P, Ås) ⊏ (V, Ås).Then, (V
′
, Ås) ⊏ (U ′

, Ås)⊓ (P ′
, Ås). Since (V

′
, Ås)

is soft closed and (V ′
, Ås) ⊏ (U ′

, Ås), (V
′
, Ås) ⊏ (P ′

, Ås). So, (V ′
, Ås) ⊏ (U ′

, Ås) ⊓

(U , Ås) = ∅ which implies V = X .

Conversely, let there is a soft open set (U , Ås) ⊑ (P ′
, Ås) such that (U , Ås) ⊔ (P, Ås) ⊏

(V, Ås) where (V, Ås) is soft open set and thus implies V = X .

Let (A′
, Ås) be a soft closed set that is contained in (P ′

, Ås). Now, (U , Ås) ⊔ (P, Ås) ⊏

(U , Ås) ⊔ (A, Ås) which is open and so, (U , Ås) ⊔ (A, Ås) = X which implies (A′
, Ås) ⊏

(U , Ås). Hence proved.
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Theorem 4.10. In (X , τ
Ås
), if (P ′

, Ås) and (Q′
, Ås) are g

Ås
-soft open sets, their in-

tersection is also g
Ås
-soft open.

Proof. Supose that (P ′
, Ås) and (Q′

, Ås) be g
Ås
-soft open sets. Let (P ′

, Ås) ⊓ (Q′
, Ås)

= (H′
, Ås). Now, suppose (A′

, Ås) be a soft closed set contained in (H′
, Ås). Since,

(P ′
, Ås) and (Q′

, Ås) are g
Ås
-soft open sets, then there exists open sets (U , Ås) and

(U1, Ås) respt. such that (A′
, Ås) ⊏ (U , Ås) and (A′

, Ås) ⊏ (U1, Ås). Thus, (A′
, Ås) ⊏

(U , Ås)⊓(U1, Ås) = (V, Ås). Now, for (H
′
, Ås), there is a soft open set (V, Ås) contained

in (H′
, Ås) s. t (A

′
, Ås) ⊏ (V, Ås) whenever (A

′
, Ås) is soft closed and (A′

, Ås) contained

in (H′
, Ås).

Hence the proof.

Remark 4.11. Generally, the union of two g
Ås
-soft open sets need not to be g

Ås
-soft open.

But if g
Ås
-soft open sets are weakly separated, their union is g

Ås
-soft open. Follows from

theorem 4.3 [4]

Thus, here, we gave a new generalization of closed sets in Alexandroff Soft Topological

Spaces and investigated their properties along with the notion of g
Ås
-soft open sets.
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Chapter 5

rw∗-closed sets in Alexandroff

spaces

This chapter explained and defined the notion of Regular Weakly Star closed (briefly

known as rw∗-closed) sets in Alexandroff spaces in which every point has a minimal

neighbourhood. We discuss the characterizations and study their properties based on

set theory along with the notion of rw∗-open sets.

In this work, a space (X , τA) or simply X represents Alexandroff spaces and R and Q

denotes the set of real numbers and rational numbers respectively.

Definition 5.1. [11] A system E of subsets together with a set is said to be an Alexan-

droff space (or σ), if the given below conditions have been fulfilled:

1) An arbitrary intersection of number of sets of E ∈ E .

2) Finite union of number of sets of E ∈ E .

3) ∅ and X ∈ E .

Components of E are known as closed sets. complement of these sets are known to be

open.

One can take open sets instead of closed sets with the conditions of finite intersectability,

countable summability and the whole set and non-empty set must be open.

Remark 5.2. τA is not a topology, in general, which can easily be seen when we take

X = R with τA as a family of all Eσ in R.

Definition 5.3. [58] In (X , τA), a subset P is known as Regular generalized (rg-closed)

if P̄ ⊑ V wherever P ⊑ V and V is regular open in X .
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Definition 5.4. [38] If a regular open set V satisfy the condition V ⊏ P ⊏ cl(V) where

P ⊆ X , then P is said to be regular semi-open. The family of regular semi-open is

denoted by RSO(X ).

5.0.1 Definition of rw∗-closed sets

Definition 5.5. A set P ⊏ (X , τA) is known as Regular Weakly Star - closed (rw∗-

closed) if there exist S, a closed set such that P ⊏ S ⊏ V wherever P ⊏ V and V is

regular semi-open in (X , τA).

RW ∗C (X ) represents the collection of all rw∗-closed sets.

5.0.2 Various results regarding rw∗-closed sets in Alexandroff spaces

Theorem 5.6. [38] Every w-closed set in X always implies rw∗-closed but not con-

versely.

Proof. From the point that each regular semi-open set is semi-open.

Conversely, it is not true as seen in the following illustration:

Example 5.1. Suppose X = R\Q and τA = {X , ∅, Hi}. Clearly, (X , τA) is not a space

in general topology. Let P be the set containing all irrational numbers of the interval

[0, 1]. Then P is not open since the set of irrational numbers neither closed nor open

and hence not semi-open which implies it is not w-closed but it is rw∗-closed set as the

only regular semi-open as well as closed set is X that contains P.

Remark 5.7. Every closed set is rw∗-closed but the converse of this is not true which

can be seen by the given illustration :

Example 5.2. Suppose X = R \ Q and τA = {X , ∅, Hi}, where Hi is the collection of

all countable subsets of X . So, (X , τA) is not a space in general topology. Now, let P be

the set containing all irrational numbers of interval [0, 1] and clearly, it is rw∗-closed set

as the only regular semi-open and closed set that contains P is X but P is not closed.

Theorem 5.8. The subset P is rw∗-closed in X if it is regular generalized closed and

regular open.
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Proof. Let V be any regular semi-open set such that P ⊑ V. Since P is regular open and

regular generalized closed, P̄ ⊑ P. Thus, there exist closed set S such that P ⊑ S ⊑ V

wherever P ⊑ V and V is regular semi-open.

Hence, P is rw∗-closed set in X .

Remark 5.9. In an Alexandroff Topological Spaces, every regular semi-open sets is not

semi-open.

Example 5.3. Let X = R \ Q. And topology τA = {X , ∅, Hi}. Let P be the set of all

irrationals in interval (0, 1). Since P is uncountable, so it is not open and hence not

semi-open but clearly, it is regular semi-open.

Theorem 5.10. If P and Q are rw∗-closed sets, then P ⊔ Q is also rw∗-closed set in

X .

Proof. Suppose P and Q are rw∗-closed sets in X .

Let V be a regular semi-open such that P ⊔Q ⊏ V.

Then, P ⊑ V and Q ⊑ V. Since P and Q are rw∗-closed sets, there exist closed set S

such that P ⊑ S ⊑ V and Q ⊑ L ⊑ V.

Hence, P⊔Q ⊑ S⊔L. That is, there exist closed setW such that P⊔Q ⊑ S⊔L = W ⊑ V

wherever P ⊔Q ⊏ V and V is regular semi-open in (X , τA).

Remark 5.11. Generally, the intersection of two rw∗-closed sets is not rw∗ in Alexandroff

spaces.

Theorem 5.12. A subset P of X is rw∗-closed set, if there exist S containing P such

that S \ P doesn’t contain any non-void regular semi-open set in X .

Proof. Suppose P be an rw∗-closed set. Then, by definition, there exists S such that

P ⊏ S ⊏ V whenever P ⊏ V and V is regular semi-open in X . Let U be a regular semi-

open set contained in S \ P and U is non-empty. Now, U ⊏ S \ P implies U ⊏ X \ P.

Thus, P ⊏ X \U .Since U is regular semi-open, then X \ U is also regular semi-open (by

lemma 1.37). Also, P is rw∗-closed set,there exist S such that S ⊏ X \ U whenever

P ⊏ X \ U and X \ U is regular semi-open. So, U ⊏ X \ S. Also, U ⊏ X \ P. Thus,

U ⊏ (X \ S) ⊓ (S \ P) = ∅, which is a contradiction to the fact that U is non-empty.

Hence, the proof.
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Theorem 5.13. In (X , τA), X \ p is regular semi-open or rw∗-closed, for an element

p ∈ X .

Proof. Suppose X \ p is not regular semi-open. Thus, the only regular semi-open con-

taining X \ p is X .

And there exist a closed set S such that X \ p ⊏ S ⊏ X .

Hence, X \ p is an rw∗-closed set in X .

Theorem 5.14. In (X , τA), a subset P is regular closed if P is regular open and rw∗-

closed and hence it is clopen.

Proof. It is given that P is regular open and rw∗ in X . Since P ⊑ P and each regular

open set is regular semi-open. Hence, there exist S such that S ⊑ P wherever P ⊑ P

and P is regular semi-open.

Also, S containing P. Thus, P = S which means that P is closed.

Since P is regular open, then P is open.

Now, ((P)◦) = P = P.

Therefore, P is clopen.

Theorem 5.15. Q is an rw∗-closed set in X if P is an rw∗-closed subset of X with the

condition P ⊑ Q ⊏ P.

Proof. Let Q ⊑ V and V is open. Then, P ⊑ V. Since, P is rw∗-closed, there exist S,

is a closed set contaning P such that S ⊑ V.

Now, Q ⊑ {P̄} = P ⊑ V and this shows that Q is rw∗-closed set in X .

Remark 5.16. Conversely the above result is not true. (Remark 3.4 [38])

Theorem 5.17. Suppose P is rw∗-closed in (X , τA). Then, P is closed iff there exist

closed set S containing P such that S \ P is regular semi-open.

Proof. Suppose P is closed in X . Then, the closure of P is P itself and so P \ P = ∅,

which is regular semi-open in X .

On the other part, suppose there exist closed set S containing P such that S \ P is

regular semi-open .

Since P is rw∗-closed set, then, S \P doesn’t contain any non-empty regular semi-open
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set, it follows from theorem 5.12.

Hence, S \ P = ∅, thus P is closed in X .

Theorem 5.18. If P ⊑ (X , τA) is regular semi-open and rw∗-closed, thus P is closed.

Proof. The proof is directly from theorem 3.11 [38].

Corollary 5.19. Let P is regular semi-open and rw∗-closed set and S be closed in X .

Then, P ⊓ S is an rw∗-closed set in X .

Proof. Suppose P be a regular semi-open and rw∗-closed set and S be closed in X . By

above theorem, P is also closed and so P ⊓ S is closed and hence P ⊓ S is rw∗-closed

set.

Theorem 5.20. Suppose Q ⊑ P where P is rw∗-closed as well as regular semi-open.

Thus, Q is rw∗-closed relative to P iff Q is rw∗-closed.

Proof. Since P is rw∗-closed set, then there exist S, closed set, containing P such that

S ⊑ V wherever P ⊑ V and V is regular semi-open in X .

Now, P ⊑ P and P is regular semi-open , so S ⊑ P. That is, P = S and so P is closed.

Further, suppose Q is rw∗-closed closed. Then, there exist S1 which shows the rw∗-

closeness of Q. Since P is regular semi-open and Q ⊑ V ′
where V ′

is regular semi-open

in P, so V ′
is regular semi-open in X and hence S1 ⊑ V ′

which implies Q is rw∗-closed

in P.

On the other hand, let Q be a rw∗-closed in P. Then, there exist closed set S2 in P

which shows Q is rw∗ in P. Since, P is closed, S2 is closed in X . Next, Q ⊏ V1, V1 is

regular semi-open in X , so Q ⊑ V1 ⊓ P where V1 ⊓ P is regular semi-open and thus,

S2 ⊑ V1 ⊓ P ⊑ V1.

Hence proved.

Theorem 5.21. In an Alexandroff space (X , τA), the family of regular semi-open sets

RSO(X , τA) ⊑ {S ⊏ X : Sc ∈ τA} iff every subset of (X , τA) is rw∗-closed.

Proof. Let RSO(X , τA) ⊑ {S ⊏ X : Sc ∈ τA}.

Suppose P be any subset of (X , τA) such that P ⊑ V and V is regular semiopen. Thus,

V ∈ RSO(X , τA) ⊑ {S ⊏ X : Sc ∈ τA} and hence, V ∈ {S ⊏ X : Sc ∈ τA}.
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This implies V is closed. Thus, V is the closed set as well as regular semiopen set such

that P ⊏ V.

Hence, P is rw∗-closed set in X .

Conversely, suppose each subset in (X , τA) is rw∗-closed. Now, let V ∈ RSO(X , τA).

Since P ⊏ P and P is rw∗-closed, then there exist closed set V such that P ⊏ V where V

is regular semi-open in X and it is closed also. Thus, V ∈ {S ⊏ X : Sc ∈ τA}. Therefore,

RSO(X , τA) ⊑ {S ⊏ X : Sc ∈ τA}.

Definition 5.22. Regular Star semi-kernel is defined as the intersection of every regular

semi-open subsets that contains P. It is denoted by r∗sker(P).

Theorem 5.23. In (X , τA) P is rw∗-closed iff P ⊑ S, a closed set such that S ⊑ V,

wherever P ⊑ V, and V is regular semi-open, that is, S ⊑ r∗sker(P).

Proof. Firstly, suppose that P is rw∗-closed. Then, P ⊇ S, a closed set such that S ⊑ V,

wherever P ⊑ V where V is regular semi-open. Let x ∈ S ⊏ V.

Let x /∈ r∗sker(P), then there exist regular semi-open set V containing P such that x /∈

V. Since P is rw∗-closed , S ⊑ V, it implies x /∈ S ⊑ V, which is a contradiction. Hence,

x ∈ r∗sker(P) and thus S ⊑ r∗sker(P).

Conversely, suppose S ⊑ V and S ⊑ r∗sker(P). Suppose V is regular semi-open set

containing P, then, r∗sker(P) ⊑ V. Then, S ⊏ r∗sker(P) ⊑ V which implies P is

rw∗-closed.

5.0.3 Definition of rw∗-open sets

Definition 5.24. A subset P in (X , τA) is known to be regular w star-open (rw∗-open)

in X if complement of P is rw∗-closed in (X , τA).

Theorem 5.25. A set is rw∗-open iff there exist regular semi-open set V contained in

P such that S ⊑ V and S ⊑ P wherever S is closed.

Thus, this chapter demonstrates a new class of class of closed sets (rw∗-closed sets) in

Alexandroff spaces and give some important results with some new notions.
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Chapter 6

Fuzzy Alexandroff Soft

Topological Spaces

The main purpose of this chapter is to introduce a new kind of topology using the concept

of fuzzy soft sets and Alexandroff spaces. This kind of topology is known as Fuzzy

Alexandroff Soft Topological Spaces(FASTS). We have also studied various topological

properties of it. We further explored the concept of connectedness and compactness

and gave the definition of cfA- connectedness, cfi-connectedness and cfA-compactness in

FASTS along with their results and examples.

Throughout the chapter, (X, τf , µfE ) denotes the Fuzzy Alexandroff Soft Topological

Spaces and E is the arbitrary set of parameters.

Definition 6.1. [15] A fuzzy soft topology τ on (U, E) is a family of fuzzy soft sets over

(U, E) satisfying the following properties :

1) ∅, Ẽ ∈ τ .

2) If FA, GB ∈ τ , then FA ⊓ GB ∈ τ .

3) If Fα
Aα

∈ τ∀α ∈ Λ, an indexed set, then ⊔α∈Λ Fα
Aα

∈ τ .

Definition 6.2. [16] In a fuzzy topological space, two sets A and B are said to be

weakly separated iff ∃ P and Q ∈ τf such that A ⊆ P and is not quasi-coincident

to Q, that is, there exists x ∈ X such that A(x) + Q(x) > 1 and B ⊆ Q and is not

quasi-coincident to P in the same manner.

Theorem 6.3. [17] Two fuzzy sets A and B are Q-separated or strongly separated in

(Y, τY ) iff these two sets are Q-separated in (X, τX) where Y is the subset of X.
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6.0.1 Definition of Fuzzy Alexandroff Soft Topological Spaces

Definition 6.4. A set X together with a topology τfA containing fuzzy soft closed sets

satisfying following three conditions:

1) An arbitrary intersection of any number of members of τfA belongs to τfA .

2) Finite union of members of τfA belongs to τfA .

3) 0fA and 1fA ∈ τfA .

Thus, (X, τfA , µfE ) is said to be Fuzzy Alexandroff Soft Topological spaces where µfE

is the membership function of the fuzzy soft sets with respect to an arbitrary set of

parameters E . Members of topology τfA are fuzzy soft closed sets and their complements

are known as fuzzy soft open sets respectively.

Example 6.1. Let (Fi, E) be a fuzzy soft closed sets defined on X as follows:

Fi(a) =


0, if 0 ≤ a ≤ 1/2,

2x− 1, if 1/2 ≤ a ≤ 1

where Fi is a mapping from set of parameters E to powerset of X, a ∈ E and i ∈ I.

Then, τfA = {0̃fA, 1̃fA , (Fi, E)} is a topology defined on X.

Clearly, τfA is a Fuzzy Alexandroff Soft Topological Space.

6.0.2 Properties of Fuzzy Alexandroff Soft Spaces

Definition 6.5. A Fuzzy Alexandroff Soft Base for a topology τfA on (X, E) is a col-

lection of some fuzzy soft closed subsets satisfying the following axioms:

1) fE ∈ αf i.e (FA, E) ∈ αf .

2) ⊓αf ∈ E , which means for each e ∈ E and x ∈ X, ∃ FA ∈ αf such that µe
fA
(x) = 0.

3) If PA, QB ∈ αf , then ∀ e ∈ E and x ∈ X, ∃ RC ∈ αf , such that PA ⊔QB ⊑ RC and

µe
RC

(x) = max{µe
pA
(x), µe

qB
(x)}, where A ⊔B ⊑ C.

Example 6.2. Let X be the set of different machines and E a set of arbitrary param-

eters on which the quality of machines depend. Suppose E = {e1 = efficiency, e2 =

temperature, e3 = pressure} and A = {e1 = efficiency, e2 = temperature} be a subset

of E.

Suppose fA : E → IX be a mapping defined as-
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fA(e) = µe
fA

where µe
fA

= 0 if e ∈ E − A and µe
fA

̸= 0 if e ∈ A.

Now, (FA, E) =


e1 = {a0, b0.4, c0.5, d0.9}

e2 = {a0.2, b0.4, c0.8, d0.6}

(FA1 , E) =


e1 = {a0.5, b0.6, c0.2, d0.1}

e2 = {a0.3, b0.2, c0.6, d0}

(FA2 , E) =


e1 = {a0.3, b0.5, c0.7, d0.9}

e2 = {a0.2, b0.4, c0, d0.6}

(FA3 , E) =


e1 = {a0.3, b0.6, c0.3, d0.5}

e2 = {a0, b0.3, c0.6, d0.5}
Then, αf = {∅, (FA, E), (FA1 , E), (FA2 , E), (FA3 , E)} is a base for τfA.

Theorem 6.6. Let αf be a Fuzzy Alexandroff Soft base for a Fuzzy Alexandroff Soft

topology on (X, E). Suppose ταf
consists of those fuzzy soft closed sets GA over (X, E)

for each e ∈ E and x ∈ U , ∃ FB ∈ αf such that GA ⊑ FB and µe
FB

= µe
GA

, where A ⊑ B.

Then, τfA is a Fuzzy Alexandroff Soft topology on (X, E).

Proof. Since αf is a base for topology on (X, E). Then, (FA, ϵ) ∈ E which implies

(FA, ϵ) ∈ ταf
. Also, ∅ ∈ ταf

.

Now, by the given condition, for FA, GB ∈ ταf
and for each e ∈ E , x ∈ X, ∃ HC , ID ∈ αf ,

where A ⊑ C and B ⊑ D such that FA ⊑ HC , GB ⊑ ID with µe
FA

= µe
HC

and µe
GB

= µe
ID
.

Let FA ⊔GB = JA⊔B.

By using third property of base, for HC , ID ∈ αf and e ∈ E , x ∈ X, ∃ Kp ∈ αf such

that HC ⊔ ID ⊑ Kp and µe
Kp

(x) = max{µe
HC

(x), µe
ID
(x)}.

Now, HC(a) ⊔ ID(a) ⊑ Kp(a) ⇒ FA(a) ⊔GB(a) = JA⊔B ⊑ Kp(a), for a ∈ E .

Thus, JA⊔B ⊑ Kp.

Also, µe
Kp

(x) = max{µe
HC

(x), µe
ID
(x)} = max{µe

FA
(x), µe

GB
(x) = JA⊔B.

Hence, FA ⊔GB ∈ ταf
.

Now, suppose ⊓α′∈ΛF
α
′

A = JC where C = ⊓α′∈ΛAα′ and Fα
′

A ∈ ταf
, for all α

′ ∈ Λ.

Therefore, µe
JC

(x) = min{µe

Fα
′

A

(x) : α
′ ∈ Λ} ⇒ µe

JC
(x) = µe

Fα
′

A

(x), for some α
′ ∈ Λ.

Since Fα
′

A ∈ ταf
, ∃ GB ∈ αf such that Fα

′

A ⊑ GB and µe

Fα
′

A

(x) = µe
GB

(x).

Therefore, JC ⊑ GB and µe
JC

(x) = µe
GB

(x).
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This imples JC ∈ ταf
.

Hence, ταf
is a Fuzzy Alexandroff Soft topology on (X, E).

Remark 6.7. A topology generated by a fuzzy alexandroff soft base is known as Fuzzy

Alexandroff Soft topology on (X, E) and it is denoted by ταf
.

Theorem 6.8. Let αf be a fuzzy alexandroff soft base for a Fuzzy Alexandroff Soft

topology ταf
on (X, E). Then-

FA ∈ ταf
iff FA = ⊓α′∈ΛB

α
′

A where Bα
′

A ∈ αf ∀ α
′ ∈ Λ, an indexed set.

Proof. Firstly, since FA = ⊓α′∈Λ Bα
′

A . Then, FA ∈ ταf
as every member of αf is also a

member of ταf
.

Conversely, for each e ∈ E and x ∈ X, ∃ U e
Be

x
∈ αf such that FA ⊑ U e

Be
x
and µe

FA
= µe

Ue
Be
x

for FA ∈ ταf
and Be

x ⊑ A (by using theorem 6.6)

Now, let B = ⊔e∈E,x∈XBe
x and GB = ⊓e∈E,x∈X(U e

Be
x
).

We shall prove that GB = FA. Let a ∈ E and y ∈ X.

Then, µa
GB

(y) = min{µa
Ue
Be
x

(y) : e ∈ ϵ, x ∈ X}

≤ µa
Y a
B
y
a

(y) [corresponding to each a ∈ E and y ∈ X,Y a
By

a
∈ αf ]

= µa
FA

(y).

Therefore, µa
GB

(y) ≤ µa
GB

(y), for each a ∈ ϵ and y ∈ X.

Thus, GB ⊑ FA and FA ⊑ GB also.

So, FA = GB which means that FA can be represented as the intersection of some

members of αf .

Theorem 6.9. Let (X, τfA , µfE ) be a Fuzzy Alexandroff Soft Space and αf be a sub

collection of τfA such that every member of τfA is the intersection of some members of

αf . Then, αf is a fuzzy alexandroff soft base for τfA on (X, E).

Proof. Since (FA, E) ∈ τfA , (FA, E) ∈ αf .

Again, since E ∈ τfA , then E = ⊓αf .

Suppose, FA1 , FA2 ∈ αf . Then, FA1 , FA2 ∈ τfA and so their union.

Thus, ∃ Be
C

α
′ ∈ αf s. t FA1 ⊔ FA2 = ⊓{Be

C
α
′ : α

′ ∈ Λ}.

Therefore, FA1(e) ⊔ FA2(e) = ⊓{Be
C

α
′ (e) : α

′ ∈ Λ} for each e ∈ E .

That is, max {µe
FA1

(x), µe
FA2

(x)} = min {µe
Be

C
α
′
} for each e ∈ E and x ∈ X.

Therefore, we have max {µe
FA1

(x), µe
FA2

(x)} = µe
Be

C
α
′
, for α

′ ∈ Λ.
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Thus, for each e ∈ ϵ and x ∈ X, we get Be
C

α
′ ∈ αf such that FA1 ⊔ FA2 ⊑ Be

C
α
′ and

max {µe
FA1

(x), µe
FA2

(x)} = µe
Be

C
α
′
.

Hence the proof.

Definition 6.10. A collection ρ of some members of FASTS (X, τfA , µfE ) is known as

sub base for τfA iff the group made by all the arbitrary intersection of members of ρ

forms a base for τfA .

Theorem 6.11. A collection ρ is said to be sub base for τfA over (X, E) if and only if

the following conditions satisfied:

1) (FA, E) ∈ ρ or (FA, E) is basically the intersection of arbitrary no. of elements of ρ.

2) E = ⊓ρ.

Proof. Suppose that ρ is the sub base for ταf
and αf be a base generated by ρ.

Since (FA, E) ∈ αf , so either (FA, E) ∈ ρ or it can be written as the intersection of

arbitrary number of elements of ρ.

Now, Suppose x ∈ X and e ∈ E . Since ⊓ αf = E , ∃ BA ∈ αf such that µe
BA

(x) = 0.

Since BA ∈ αf , ∃ SAi ∈ ρ, i = 1, 2 . . . , n such that BA = ⊔n
i=1SAi .

Therefore, µe
BA

= maxni=1 µe
SAi

(x) and so µe
BA

= µe
SAi

(x), for some i ∈ {1, 2 . . . , n} ⇒

µe
SAi

= 0.

Hence, E = ⊓ρ.

Now,on the converse way, suppose ρ be the family of some fuzzy alexandroff soft sets

over (X, E) satiates the given situations.

Let αf be the family of arbitrary intersection of members of ρ. Now, we have to prove

that αf forms a base for fuzzy alexandroff soft topology.

Since αf is the collection of arb. intersection of members of ρ, by the given conditions

(FA, E) ∈ αf and E = ⊓ αf .

Now, let FA, GB ∈ αf and x ∈ X, e ∈ E .

Since FA ∈ αf , ∃ FAi ∈ ρ for i = 1, 2 . . . , n such that FA = ⊔n
i=1FAi

where A = ⊔n
i=1Ai and ∃ GBj ∈ ρ such that GB = ⊔m

j=1GBi where B = ⊔m
j=1Bi,

for GB ∈ αf .

Therefore, FA ⊔GB = (⊔n
i=1FAi) ⊔ (⊔m

j=1GBi) ∈ αf .

That is, FA ⊔GB ∈ αf .
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6.0.3 Connectedness in Fuzzy Alexandroff Soft Topological Spaces

One of the key topological characteristics used to distinguish topological spaces is con-

nectedness. The notion of connectedness has been studied for so many years. This

concept has been investigated by lots of authors [94, 16, 95, 42]. It has been observed

that connectedness given by Ajmal [42] is the strongest form and that given by Zheng

Chong [95] is the weakest one.

Definition 6.12. [94] Suppose (X, τf ) be a fuzzy topological space. A fuzzy set C is

said to be be disconnected (briefly CM - disconnected) if there exists two non-null fuzzy

sets (A, µA) and (B, µB) in the subspace of C such that A and B are Q-separated and C

can be represented as the union of A and B with µC = max {µA, µB}.

Definition 6.13. [16] Suppose (X, τf ) be a fuzzy topological space. A fuzzy set C is

said to be be connected (briefly CS - connected) if there ̸ ∃ two non-null fuzzy weakly

separated sets (A, µA) and (B, µB) in the subspace of C such that C = A⊔B. If C is not

connected, then it is said to be CS-disconnected.

Definition 6.14. [42] A fuzzy set C has Ci-disconnection (i = 1, 2, 3, 4) if ∃ two fuzzy

sets P and Q satisfying following conditions:

c1 : C ⊆ P ⊔Q, P ⊓Q ⊆ C̄, C ⊓ P ≠ 0̃, C ⊓ Q ̸= 0̃;

c2 : C ⊆ P ⊔Q, C ⊓ P ⊓ Q = 0̃, C ⊓ P ≠ 0̃, C ⊓ Q ̸= 0̃;

c3 : C ⊆ P ⊔Q, P ⊓Q ⊆ C̄, P ̸⊆ C̄,Q ̸⊆ C̄;

c4 : C ⊆ P ⊔Q, C ⊓ P ⊓ Q = 0̃, P ̸⊆ C̄, Q ̸⊆ C̄.

If there does not exist any Ci-disconnection, then C is known as Ci- connected for i =

1, 2, 3, 4.

Definition 6.15. [95] A fuzzy set C is known as connected (briefly Oq - connected) if

there does not exists two non-null fuzzy separated (strongly separated) sets (P, µP) and

(Q, µQ) in the subspace of C such that C = P ⊔Q. If C is not connected, then it is said

to be Oq-disconnected.

Theorem 6.16. A CS connectedness in fuzzy topological space implies CM - connected-

ness.

This result is the consequence of theorem [6.3], definitions [6.2], [6.12] and [6.13].

Definition 6.17. Let (X, τfA , µfE ) be a fuzzy alexandroff soft space. A fuzzy soft set

C is known as cfA-connected if there doesn’t any proper clopen fuzzy soft set in C.

Otherwise, a fuzzy soft set is cfA-disconnected.
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Remark 6.18. A Fuzzy Alexandroff Soft cfA-connectedness may not impliesOq-connectedness.

Example 6.3. Let us suppose that X = {x1, x2, x3} and τfA = {0̃, 1̃, (F1,A), (F2,A), (F3,A)}

where (Fi,A) are fuzzy soft sets defined as below:

F1(x1) = 0.8 F1(x2) = 0 F1(x3) = 0

F2(x1) = 0 F2(x2) = 0.9 F2(x3) = 0.9

F3(x1) = 0.8 F3(x2) = 0.9 F3(x3) = 0.9.

Now, let C be a fuzzy soft set in X such that C = (0.6, 0.7, 0.8).

Then C is cfA but not Oq as C = (0.6, 0, 0) ⊔ (0, 0.7, 0.8) and two sets (0.6, 0, 0) &

(0, 0.7, 0.8) are strongly separated.

Definition 6.19. [42] (Fuzzy Alexandroff Soft cfA-connectedness in terms of Ajmal

ci-connectedness):

Suppose (FA, E) is a fuzzy soft set in (X, τfA , µfE ). If ∃ two fuzzy soft sets GA and HA

satisfying follwing conditions:

c1 : FA ⊆ GA ⊔HA, GA ⊓HA ⊆ FA, FA ⊓ GA ̸= 0̃, FA ⊓HA ̸= 0̃;

c2 : FA ⊆ GA ⊔HA, FA ⊓ GA ⊓HA = 0̃, FA ⊓ GA ̸= 0̃, FA ⊓HA ̸= 0̃;

c3 : FA ⊆ GA ⊔HA, GA ⊓HA ⊆ FA, GA ̸⊆ FA, HA ̸⊆ FA;

c4 : FA ⊆ GA ⊔HA, FA ⊓ GA ⊓HA = 0̃, GA ̸⊆ FA, HA ̸⊆ FA.

Then, FA is cfi- disconnected and if there does not exist any cfi-disconnection, then FA

is said to be cfi- connected for i = 1, 2, 3, 4.

Theorem 6.20. Image of cfA-connected spaces under continuous map is cfA-connected

in FASTS.

Proof. Let X and Y be two fuzzy alexandroff soft topological spaces and g : X → Y be

a continuous map with bijection.

We have to prove that if C is cfA-connected in X, then its image g(C) is also connected

in Y .

We shall prove this by contradiction. So, suppose that g(C) is not cfA-connected, then

∃ non-null proper clopen fuzzy soft set B.

Thus, ∃ P ∈ τfA and Q ∈ C(τfA) such that B = g(C) ⊓ P = Q⊓ g(C).

Since the map g is bijective, so g−1(B) = C ⊓ g−1(P) = g−1(Q) ⊓ C.

Also, since g is a continuous map, g−1(P) ∈ τfA and g−1(Q) ∈ C(τfA).

Thus, g−1(B) is a non-null proper clopen fuzzy soft set in C which contradicts the fact
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that C is cfA-connected.

Hence the proof.

6.0.4 Compactness Property

Compactness is a property that generalizes the notion of a subset of Euclidean space

being closed. The notion of compactness is based on important property of [a, b] that

every infinite subset has a limit point. Later on, mathematicians formulated the term

of compactness in terms of open coverings of the space. Fuzzy compactness was studied

by R. Lowen [41] in 1976. After this, many authors explored this concept in fuzzy

topology. In this section, we defined open coverings, compactness in Fuzzy Alexandroff

Soft Topological Spaces and gave various results related to it.

Definition 6.21. [41] (Open covering of a space): Let (X, τfA , µfE ) be a Fuzzy Alexan-

droff Soft Topological Spaces. Then, a family β of subsets of X is known as covering of

X if X = ⊔B∈βB. Also, if the members of β are open, then, it is called open covering

of X.

Definition 6.22. [41] A space (X, τfA , µfE ) is quasi cfA-compact if and only if for all

families α ∈ τfA such that supµ∈αµ = 1̃, ∃ αo ∈ 2α such that supµ∈αµ = 1̃.

Definition 6.23. A subset (GA, E) of a family of fuzzy soft closed sets is said to have

cfA- compactness if every fuzzy soft open cover of (GA, E) has a finite subcover. Also,

(X, τfA , µfE ) is itself called cfA-compact if each fuzzy soft open cover of 1̃E has a finite

sub cover.

Theorem 6.24. Any fuzzy soft closed subset of cfA-compact is cfA-compact.

Proof. Let (X, τfA , µfE ) be a fuzzy alexandroff soft topological space and (FA, E) be a

fuzzy soft closed subset in X.

Suppose that U = {(Pi, E)} is open covering of (FA, E) in X.

Since (FA, E) is fuzzy soft closed, then its complement (FA, E)
′
is fuzzy soft open set.

So, U ⊔ (FA, E)
′
is the fuzzy soft open covering for X.

Since X is cfA-compact, so every open covering possessses a finite subcover. Thus, X =

⊔n
j=1(Pij , E) ⊔ (FA, E)

′
where {(Pij , E)} is a finite subcover.

Thus, (FA, E) ⊑ ⊔n
j=1(Pij , E) which implies (FA, E) is also cfA .
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Theorem 6.25. Under a continuous map, the image of a cfA-compact space is also

cfA-compact.

Proof. Let (X, τfA , µfE ) and (Y, τfA , µfE ) be two FASTS and X is cfA-compact.

Let g : X → Y be a continuous map. Suppose α be a covering of g(X). The collection

{g−1(αo) : αo ∈ α} covers X; these sets are open as g is a continuous map.

Since X is cfA-compact, therefore, finitely many of them, g−1(α1), . . . , g
−1(αn), covers

X. Then, the sets α1, . . . , αn covers g(X).

Hence, g(X) is also cfA-compact.

Thus, we can conclude that this chapter elucidated a new type of topological spaces

known as Fuzzy Alexandroff Soft Topological Spaces. We investigated various general

topological properties of this spaces along with their results. We had also studied two

important properties of topological spaces namely connectedness and compactness.
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Chapter 7

An Advanced Uncertainty

Measure using Fuzzy Soft Sets:

Application to Decision-Making

Problems

The Fuzzy logics have emerged as a very important and useful topic in past recent

years. It has aroused as an important mathematical tool to deal with uncertainties and

vagueness of data. L.A Zadeh [4] presented the concept of fuzzy set theory in 1965 as a

transformation of classical set theory. In this chapter, we proposed a method which uses

fuzzified evidence theory to calculate total degree of fuzziness of the parameters. Also, a

medical diagnosis problem in respect of COVID-19 has been solved which help a doctor

to take decision on patient’s condition easily. We have also compared our proposed

method with Li [8] method to show the effectiveness of our method.

Let us recall some of the important definitions which helped us to proceed in our future

task.

7.0.1 Few prerequisites

Definition 7.1. (Fuzzy soft sets) [4, 14]: Let X be an initial universe set with E as

the set of parameters. The pair (F ,A) is a fuzzy soft set over X where A ⊑ E and F
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is a mapping defined as F : A −→ IX , where IX is the power set of X . It is evident

that every soft set can be contemplated as a fuzzy soft set. Also, when both X and A

is finite, fuzzy soft sets are either represented by matrices or in tabular form.

Definition 7.2. (Shannon Entropy) [19]: Shannon in 1948 introduced the concept of

Shannon entropy to handle basic probability problem.

Shannon entropy (H) is derived as –

H = −
∑N

i=1 pi log2 pi.

Where pi is the probability of state i satisfying
∑N

i pi = 1 and N is the number of basic

states in a system.

Definition 7.3. (Deng entropy) [20]: This novel belief entropy was introduced by Deng

in 2016. It also measures the uncertainty conveyed by basic probability assignment.

It is defined as –

Ed =
∑

i m(Ai)logm(Ai)

2|Ai|−1
.

Where m is the belief function and Ai is the hypothesis of belief function. Deng entropy

is degenerated into Shannon entropy when the belief value is allocated to one single

element.

Definition 7.4. (W-entropy) [21]: This type of entropy was given by Dan Wang et al in

2019. It is the unified form about belief entropy based on deng entropy which considers

the scale of frame of discernment and the relative scale of focal element with respect to

Frame of Discernment.

W-entropy is calculated as below-

EW (m) =
∑

m(A) log2(
m(A)

2|A|−1 (1 + ϵ)f |X |).

Where A is a proposition in mass function m, ϵ ≥ 0 is a constant and f | X | is the

function determines the cardinality of X .

The function f | X |=
∑

B⊑X ,B≠A
|A⊓B|
2|X|−1

.

Definition 7.5. (Fuzziness in evidence theory) [22]: Total degree of fuzziness F(m), of

the body of evidence < m,F > is calculated as follows-

F(m) =
∑

A∈F m(A)f(A) Where f(A) is given by eq (1.1).

Definition 7.6. (Performance measure) [23, 24]: The performance measure of a method

satisfies the optimal criteria for resolving decision making problem. It is denoted by γS .
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Mathematically, γS = 1∑n
i

∑n
j |F(ei)(Op)−F(ej)(Op)| +

∑n
i=1F(ei)(Op).

Here, n is the number of choice parameters and F(ei)(Op) depicts the membership value

of the ideal object Op for the choice parameter ei.

If the performance measure of one method is greater than other, then that method is

much finer than other and vice-versa.

Definition 7.7. (Frame of discernment) [26]: A frame of discernment is a finite non-

empty set of mutually exclusive and exhaustive hypotheses denoted by Θ = {A1,A2 . . .An . . .At}

and Ai ⊓ Aj = ∅ and 2Θ represents the set of all subsets of Θ.

Definition 7.8. (Basic Probability assignment(BPA)) [26]: It is also known as mass

function. A mass function is a mapping m from 2Θ to [0, 1] satiates the following

conditions-

m(∅) = 0 and
∑

A∈2Θ m(A) = 1.

If m(A) > 0, A is called a focal element and its union is known as the core of the mass

function.

Definition 7.9. (Belief function) [26]: It can be defined as a mapping Bel : 2Θ −→ [0, 1]

satisfying following conditions:

Bel(∅) = 0, Bel(Θ) = 1 and Bel(A) =
∑

B⊑Am(B),∀A ∈ Θ.

Bel(A) exemplify the imprecision and uncertainty in decision making problems. When

there is single element, then, Bel(A) = m(A).

Definition 7.10. (Dempster’s rule of combination) [25]: This rule computes an inte-

grated set of combined evidences. Suppose m1 and m2 are two independent BPAs in Θ,

then rule of combination is defined as -

m(A) =


1

1−K
∑

B⊓C=Am1(B)m2(C), A ≠ ∅

0, A = ∅
(7.1)

and

K =
∑

B⊓C=∅

m1(B)m2(C) < 1 (7.2)

where B ∈ 2Θ and C ∈ 2Θ&K ∈ [0, 1] represents the coefficient for confliction between

two BPAs.

Definition 7.11. (Grey mean relational degree) [8]: The grey means relational degree
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between dij and d̃i can be computed as-

rij =
min1≤i≤s∆dij + 0.5max1≤i≤s∆dij

∆dij + 0.5max1≤i≤s∆dij

(7.3)

(i = 1, 2 . . . ,m, j = 1, 2 . . . n)

Where dij denotes the membership value of xi with ej , d̃i is the mean of all parameters

with respect to each alternatives and ∆dij is the difference information between dij and

d̃i.

Definition 7.12. (Fuzzy preference relation) [34]: Fuzzy preference orderings can be

defined as fuzzy binary relations related to reciprocity and maximum and minimum

transitivity. Mathematically, it is denoted by-

P = (pjk)n×n.

where pjk ∈ [0, 1] represents the preference value of alternative ej over ek.

Also, pjk + pkj = 1, pjj = 0.5, 1 ≤ j ≤ n and 1 ≤ k ≤ n.

Definition 7.13. (Consistency matrix) [35]: The consistency matrix can be developed

on the basis of fuzzy preference relation as follows:

p = (pjl)n×n = (
1

n

n∑
k=1

(pjk + pkl)− 0.5)n×n. (7.4)

7.0.2 Our Proposed Methodology

Uncertainty can be exhibited in extraordinary ways. One of the forms of uncertainty

is fuzziness. Fuzziness (vagueness) results from imprecise boundaries of fuzzy sets. In

this section, fuzzified evidence theory along with DS-theory and Dempster’s rule of

combination has been used. First, we measure the uncertainties (fuzziness) of parameters

taking the scale of frame of discernment and relative scale of focal element with respect to

FOD into consideration. Next, we use the fuzzy preference relation analysis to produce

the consistency matrix. At that point, the vulnerabilities of parameters are adjusted

and a while later, a suitable fundamental basic probability assignment (BPA) in terms

of each parameter is produced. In the last, we utilize the Dempster’s rule of combination

to blend the independent parameters into integrated one. Inevitably, the best ideal

decision can be gotten dependent on the positioning of choices. The flowchart of the

proposed technique has been appeared in Figure 7.1

A. Measurement of uncertainty of parameters ej(j = 1, 2 . . . n):
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Total degree of fuzziness of the parameters with respect to alternatives can be calculated

as under:

Fd(A) =
∑
A∈f

m(A)log2m(A)f(A)(1 + ϵ)f |X |. (7.5)

Where m(A) denotes the mass function for hypothesis A and f(A)) is the degree of

fuzziness and is calculated by using equation (1.1). The factor (1 + ϵ)f |X | considers the

scale of FOD and also the relative scale of focal elements with respect to FOD. Also, ϵ

is the constant greater than 0 and an appropriate number can be given to it based on

practical example and f | X | represents the cardinality of X defined as-

f | X |=
∑

B⊏X ,B≠A
|A⊓B|
2|X|−1

.

Example 7.1. Let us suppose that the frame of discernment is X = {a1, a2, . . . , a5}. A

body of evidence < m,F > is listed as-

m1 : m1 = ({a1, a2, a3}) = 0.3, m1 = ({a4, a5}) = 0.7

m2 : m2 = ({a1, a2, a3}) = 0.3, m2 = ({a1, a2, a4, a5}) = 0.7

The total degree of fuzziness of m1 and m2 are calculated as below:

Fd(m1) =
∑

A∈f m(m1)log2m(m1)f(m1)(1 + ϵ)
∑

B⊏X ,B̸=A
|A⊓B|
2|X|−1

= 0.3log2(0.3)× 1.2× 20 + 0.7log2(0.7)× 1.2× 20

= −0.62531− 0.43224

= −1.0575

Fd(m2) =
∑

A∈f m(m2)log2m(m2)f(m2)(1 + ϵ)
∑

B⊏X ,B̸=A
|A⊓B|
2|X|−1

= 0.3log2(0.3)× 1.2× 2
2
21 + 0.7log2(0.7)× 1.2× 2

2
21

= −0.65391− 0.45201

= −1.10592

7.0.3 Brief description of Steps for the proposed method

Let Θ = {x1, x2, . . . xi . . . , xt} be the FOD and B = {e1, e2, . . . , ej , . . . en} be the set of

parameters.

Consider F : B −→ 2Θ is defined as F(ej)(xi) = dij .

1. Evolve the matrix D = (dij)n×n by the use of fuzzy soft set (F ,B) over Θ and dij is
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Figure 7.1: Flowchart of our Proposed Method

the membership value of xi with respect to ej .

D̆ = (dij)n×n =



d11 . . . d1j . . . d1n
...

...
...

...
...

di1 . . . dij . . . din
...

...
...

...
...

dt1 . . . dtj . . . dtn


(7.6)

2. Construct the information structure image sequence with respect to each parameter

ej using formula d̃ij =
dij∑t
i=1 dij

.

Thus,D =



d̃11 . . . d̃1j . . . d̃1n
...

...
...

...
...

d̃i1 . . . d̃ij . . . d̃in
...

...
...

...
...

d̃t1 . . . d̃tj . . . d̃tn


(7.7)
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3. Total degree of fuzziness of the parameters may be zero in some cases, so the proposed

formula is used to measure the uncertainty of the parameter, denoted by V(ej):

V(ej) = expFd(ej) = exp
∑t

i=1 dij(log2dij)f(dij)(1+ϵ)f |X|
. (7.8)

4. Normalize the uncertainty of the parameter ej as follows:

V(ej) =
V(ej)∑n
h=1 V(eh)

, 1 ≤ j ≤ n. (7.9)

5. Construct the fuzzy preference relation matrix based on the variance of uncertainties

of parameters. The diagonal elements of the matrix are allocated to 0.5 according to

definition 7.10. When there are only two parameters, the off- diagonal elements are

allocated to 0.5 as none other parameters are there to judge which one parameter is

preferred to other. When there are more than two parameters,n > 2, the variance for

the parameter ej(1 ≤ j ≤ n) is computed as-

V ar(ej) = V ar({V̄(e1), V̄(e2), . . . , V̄(ej−1), V̄(ej+1), . . . , V̄(en)}). (7.10)

And the off-diagonal elements pjk and pkj is calculated as follows:

pjk =
V ar(ej)

V ar(ej) + V ar(ek)
. (7.11)

pkj =
V ar(ek)

V ar(ek) + V ar(ej)
. (7.12)

where 1 ≤ j ≤ n and 1 ≤ k ≤ n.

6. Based on above fuzzy preference matrix obtained, built the consistency matrix p

utilizing equation (7.4)

7. Based on the consistency matrix p, the credibility value of the parameter ej is

calculated as-

Cred(ej) =
2

n2

n∑
k=1

pjk, 1 ≤ j ≤ n; 1 ≤ k ≤ n. (7.13)

where
∑n

j=1Cred(ej) = 1, these values will be taken as the loads to show the relative

reliability preference of parameters.

69



8. On the basis of credibility values of parameters, normalized uncertainty can be

modulated as-

MV(ej) = Cred(ej)× V(ej), 1 ≤ j ≤ n. (7.14)

9. Now, normalized the modulated uncertainty of parameters as the final degree of

fuzziness as-

MV(ej) =
MV(ej)∑n
h=1MV(ek)

, 1 ≤ j ≤ n. (7.15)

10. The basic probability assignment of the alternative xi and Θ with respect to ej is

calculated as-

mej (∅) = 0. (7.16)

mej (xi) = d̃ij × (1−MV(ej)). (7.17)

mej (Θ) = 1−
t∑

i=1

mej (xi). (7.18)

where 1 ≤ j ≤ t; 1 ≤ k ≤ n and
∑

A⊑Θmej (A) = 1, for j = 1, 2, .., n.

Hence, mej is the basic probability assignment on Θ.

11. There are independent parameters which we have to fuse into integrated one; we

make use of Dempster’s rule of combination based on definition (7.10). Then, the final

BPA of the alternative xi obtained is viewed as alternative’s belief measure. In the

end, the candidate alternatives are positioned dependent upon the final BPAs of the

alternatives xi and the ideal one can be acquired.

7.0.3.1 Experiment

Example 7.2. Suppose there is decision-making problem for which (F ,D) represents

fuzzy soft set and Θ = {x1, x2, x3} is the frame of discernment along with D = {e1, e2, e3, e4, e5}

as the set of parameters. Following steps are followed to solve this experiment.

1. Form the matrix D = (dij)n×n bring about by fuzzy soft set over Θ:

D =


0.85 0.73 0.26 0.32 0.75

0.56 0.82 0.76 0.64 0.43

0.84 0.55 0.82 0.53 0.47


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2. Formulate D̄ the information structure image matrix:

D̄ =


0.3778 0.3476 0.1413 0.2148 0.4545

0.2489 0.3905 0.4130 0.4295 0.2606

0.3773 0.2619 0.4457 0.3557 0.2848



3. The uncertainty measurement of the parameters ej(j = 1, 2, 3, 4, 5) is calculated using

eq (7.8) as under:

V(e1) = 0.2675 V(e2) = 0.1530

V(e3) = 0.2428 V(e4) = 0.0378

V(e5) = 0.0452

4. Normalize the above uncertainty of the parameters using eq (7.9):

V(e1) = 0.3582 V(e2) = 0.2057

V(e3) = 0.3250 V(e4) = 0.0507

V(e5) = 0.0605

5. Establish P= (pjk)n×n , the fuzzy preference relation matrix:

P =



0.5 0.3831 0.4486 0.4839 0.4683

0.6169 0.5 0.5671 0.6016 0.5865

0.5514 0.4329 0.5 0.5355 0.5199

0.5161 0.3984 0.4645 0.5 0.4843

0.5317 0.4135 0.4801 0.5157 0.5



6. Construct the consistency matrix p = (pjl)n×n as-

p =



0.5 0.3824 0.4488 0.4841 0.4686

0.6176 0.5 0.5665 0.6017 0.5862

0.5512 0.4335 0.5 0.5353 0.5197

0.5159 0.3983 0.4647 0.5 0.4845

0.5314 0.4138 0.4803 0.5155 0.5


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7. Produce the credibility value of parameter ej(j = 1, 2, 3, 4, 5) by using eq (7.13) as

under-

Cred(e1) = 0.2173 Cred(e2) = 0.1702

Cred(e3) = 0.1968 Cred(e4) = 0.2109

Cred(e5) = 0.2047

8. On the basis of consistency matrix, modulated the normalised uncertainty of parameter

ej using eq (7.14) (j = 1, 2, 3, 4, 5) as below-

MV(e1) = 0.077824 MV(e2) = 0.03502

MV(e3) = 0.063967 MV(e4) = 0.010689

MV(e5) = 0.012370

9. Normalize the modulated uncertainty calculated above as under:

MV(e1) = 0.3893 MV(e2) = 0.175209

MV(e3) = 0.320033 MV(e4) = 0.05347

MV(e5) = 0.061919

10. Now, compute the basic probability assignments of alternatives with respect to ej

using equations (7.16), (7.17) and (7.18) which can be seen from table 7.1.

BPA′s e1 e2 e3 e4 e5

m(x1) 0.2307 0.2867 0.0961 0.2033 0.4264
m(x2) 0.1520 0.3221 0.2808 0.4065 0.2444
m(x3) 0.2280 0.2160 0.3031 0.3367 0.2672
m(Θ) 0.3893 0.1752 0.3200 0.0535 0.0620

Table 7.1: BPAs of xi with respect to ej

11. Merge the BPAs of alternatives by the use of definition (7.10) to get the fusing

results which are going to be known as the belief measures of alternatives exhibited by

table 7.2 and Fig.7.2.
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Methods Bel(x1) Bel(x2) Bel(x3)

Grey relational Analysis Method 0.0745 0.1013 0.0990
Proposed Method 0.0212 0.0325 0.0275

Table 7.2: Alternatives belief measures in two unlike ways

Figure 7.2: Interpretation of belief values for Experiment

12. On the basis of belief values of alternatives, their final ranking can be obtained. It

has been observed that x2 > x3 > x1. Hence, the maximum value showed that ideal

choice is x2 which can be easily seen through table 7.3 and Fig. 7.2 also.

Also, we compare our proposed method with the grey relational approach by comparing

the belief values of alternatives along with the performance measure. It has been shown

in table 7.3. The uncertainty’s belief measure fell to 0.000104 attained from suggested

method. It has also been observed that our proposed method can reduce the uncertainty

and decision-making level as compared to grey relational method. We likewise compute

the measure of performance which indicates that our technique is more exact and efficient

than the other method.

Methods Ranking Optimal Value m(Θ) γ(performance measure)

Grey relational Approach x2 > x3 > x1 x2 0.0223 1.631

The Proposed Method x2 > x3 > x1 x2 0.0001035 1.832

Table 7.3: Comparison of different methods in example 7.2
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7.0.3.2 Application with real-life examplein reference to COVID-19

As we all know, the concept of uncertainty plays an important role in taking decisions in

real-life problems. It is very difficult for human beings to take decisions with accuracy

and efficiency in real-life problems. Fuzzy soft sets handle this problem efficiently with

more accuracy. Hence, considering the real-life decision making problem, it can easily

be shown that the given method is more efficient and accurate. We also compare our

experimental result with grey relational analysis method. Fuzzy soft sets are extensively

used in medical diagnosis field. Nowadays, the whole world is suffering from severe

disease named corona virus. It becomes very difficult for doctors to detect that which

type of disease a patient is suffering from. By using this proposed method, the ideal

choice can be made out.

Example 7.3. Suppose that the universal set consists of three types of diseases, namely,

{dengue, corona virus, cholera} represented as {x1, x2, x3} and G = {high fever, cough,

shortness of breath, nausea, vomiting, watery diarrhoea, rapid heart rate, physical ex-

amination, laboratory, rest} = {g1, g2, g3, g4, g5, g6, g7, h8, h9, h10} represents the set of

parameters.

Let I1 and I2 be the two subsets of G given by I1 = {g1, g2, g3, g4, g5, g6, g7} and I2 =

{h8, h9, h10} where (F , I1) is the fuzzy soft set representing “symptoms of diseases” and

(F , I2) defines “decision making tools”. Tables 7.4 and 7.5 represent these two fuzzy

soft sets.

Alternatives g1 g2 g3 g4 g5 g6 g7

x1 0.50 0.70 0.00 0.30 0.20 0.80 0.9
x2 0.40 0.60 0.90 0.00 0.90 0.70 0.00
x3 0.60 0.00 0.10 0.40 0.00 0.70 0.00

Table 7.4: Fuzzy soft set (F , I1)

Alternatives h8 h9 h10

x1 0.40 0.70 0.50
x2 0.20 0.10 0.90
x3 0.10 0.60 0.30

Table 7.5: Fuzzy soft set (F , I2)

Let us take an example of a patient put up with a disease having two symptoms-high

fevers, shortening of breathe. A doctor needs to make the most suitable diagnosis re-

garding symptoms namely physical examination, lab investigation, history. To find out
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the exact solution, (F , I1)) ⊓ (F , I2) is constructed in table 7.6. There are three dis-

eases {x1, x2, x3} and k1 = (g1, h1), k2 = (g1, h2), k3 = (g1, h3), k4 = (g3, h1), k5 =

(g3, h2), k6 = (g3, h3) represents pair of one symptom and one decision-making tool.

Here, Θ is FOD defined by definition (2.12) and E = {k1, k2, k3, k4, k5, k6} is the set of

parameters.

Alternatives k1 k2 k3 k4 k5 k6

x1 0.40 0.50 0.50 0.00 0.00 0.00
x2 0.20 0.10 0.40 0.20 0.10 0.90
x3 0.10 0.60 0.30 0.10 0.10 0.10

Table 7.6: Fuzzy soft set (F , I)

Following steps are to be followed to solve this numerical problem:

1. Form the matrix D = (dij)n×n bring about by (F , I) over Θ as below:

D =


0.40 0.50 0.50 0.00 0.00 0.00

0.20 0.10 0.40 0.20 0.10 0.90

0.10 0.60 0.30 0.10 0.10 0.10



2. Formulate D̄ the information structure image matrix:

D̄ =


0.5714 0.4167 0.4167 0.00 0.00 0.00

0.2857 0.0833 0.3333 0.6667 0.5 0.90

0.1429 0.5 0.25 0.3333 0.5 0.10



3. The uncertainty measurement of the parameters kj(j = 1, 2, 3, 4, 5, 6) using eq (7.8)

is as under:

V(k1) = 0.15638 V(k2) = 0.07818

V(k3) = 0.02424 V(k4) = 0.62005

V(k5) = 0.76663 V(K6) = 0.82895

4. Normalize the above uncertainty of the parameters using eq (7.9):

V(k1) = 0.063198 V(k2) = 0.031595

V(k3) = 0.009796 V(k4) = 0.2505
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V(k5) = 0.309821 V(k6) = 0.335006

5. Establish P = (pjk)n×n , the fuzzy preference relation matrix:

P =



0.5 0.5246 0.5473 0.4889 0.5324 0.5615

0.4754 0.5 0.5228 0.4643 0.5078 0.5372

0.4527 0.4772 0.5 0.4417 0.4850 0.5144

0.5111 0.5357 0.5583 0.5 0.5434 0.5724

0.4676 0.4922 0.5150 0.4566 0.5 0.5294

0.4385 0.4628 0.4856 0.4276 0.4706 0.5



6. Construct the consistency matrix p = (pjl)n×n as-

p =



0.5 0.5245 0.5472 0.4889 0.5323 0.5616

0.4755 0.5 0.5228 0.4644 0.5078 0.5371

0.4528 0.4773 0.5 0.4417 0.4851 0.5143

0.5111 0.5356 0.5583 0.5 0.5434 0.5726

0.4677 0.4922 0.5149 0.4566 0.5 0.5293

0.4384 0.4629 0.4857 0.4274 0.4707 0.5



7. Produce the credibility value of parameter kj(j = 1, 2, 3, 4, 5, 6) by using eq (7.13) as

under-

Cred(k1) = 0.1581 Cred(k2) = 0.1663

Cred(k3) = 0.1738 Cred(k4) = 0.1544

Cred(k5) = 0.1688 Cred(k6) = 0.1786

8. On the basis of consistency matrix, modulated the normalized uncertainty of param-

eter kj using eq (7.14) (j = 1, 2, 3, 4, 5, 6) as below-

MV(k1) = 0.0099 MV(k2) = 0.005253

MV(k3) = 0.01703 MV(k4) = 0.03868

MV(k5) = 0.052313 MV(k6) = 0.059834
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9. Normalize the modulated uncertainty calculated above as under:

MV(k1) = 0.059544 MV(k2) = 0.031306

MV(k3) = 0.010149 MV(k4) = 0.23059

MV(e5) = 0.0311793 MV(k6) = 0.356619

10. Now, compute the basic probability assignments of alternatives with respect to kj

using equations (7.16), (7.17) and (7.18) which can be seen from table 7.7.

BPA′s k1 k2 k3 k4 k5 k6

m(x1) 0.5374 0.4037 0.4125 0.00 0.00 0.00
m(x2) 0.2687 0.0807 0.3299 0.5130 0.3441 0.5790
m(x3) 0.1344 0.4843 0.2475 0.2564 0.3441 0.0644
m(Θ) 0.0595 0.0313 0.0101 0.2306 0.3118 0.3566

Table 7.7: BPAs of xi with respect to kj

11. By the use of definition 7.10, we combine BPAs of alternatives to get the fusing

results which are known as the belief measures of alternatives. This is conveyed by table

7.8 and Fig. 7.3.

Methods Bel(x1) Bel(x2) Bel(x3)

Grey relational Analysis Method 0.0295 0.1260 0.0578
Proposed Method 0.004058 0.008227 0.004996

Table 7.8: Alternatives’ belief measures in two unlike ways

12. On the basis of belief values of alternatives, their final ranking can be obtained. It

has been observed that x2 > x3 > x1.Hence, the maximum value showed that ideal choice

is x2 which can be easily seen through table 7.9 and figure 7.3 also.

Additionally, when we solved this example with grey relational analysis given by Li et al

[20], it has been observed that our method can decrease the uncertainty to greater level

which can be seen by comparing the uncertainty’s belief measures through table 7.9. We
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Figure 7.3: Belief values of alternatives for the proposed method

also calculated the performance measure γ for both methods. It has been found that our

method is more accurate and efficient as compared to grey relational approach.

Methods Ranking Optimal Value m(Θ) γ(performance measure)

Grey relational Approach x2 > x3 > x1 x2 0.01468 1.5919

The Proposed Method x2 > x3 > x1 x2 6.9578× 10−7 2.2698

Table 7.9: Comparison of different methods in example 7.3

Thus, by using this method, we can show that the belief measure of uncertainty fell to

6.9578 × 10−7 from 0.014683 in our proposed method. Hence, it can easily be deduced

that the proposed method was progressively productive and reduced the level of un-

certainty of the parameters and it is much more accurate to evaluate the symptoms of

corona within a patient.

This chapter demonstrates the practical application of fuzzy soft sets in solving decision-

making problems.
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Chapter 8

Data devaluation in

Multi-esteemed information

frameworks using Alexandroff

Soft Bitopological Approximation

Spaces

This whole chapter is all about the foundation of Alexandroff Soft Bitopological Spaces(ASBS)

along with their properties starting with the foundation of Alexandroff bitopological

spaces and further defines new class of generalized soft closed sets known as (1, 2) − ğ-

soft closed sets. Also, their properties will be discussed. Finally, we show the application

of these spaces using newly developed generalized closed sets in data reduction problems

in information systems and a practical example has been given to prove the relevance of

our results.

Throughout the chapter, (X , τ s1 , τ
s
2 ) denotes Alexandroff Soft bitopological spaces.

Following are the prerequisites for our important results:

Definition 8.1. [1] A triplet (X,U ,V) is defined to be a bitopological space by Kelley

in 1963, where X is a non-empty set and U and V are two arbitrary topologies defined

on X.
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Definition 8.2. [13] A family τ defines a soft topology on X if the following given

conditions are satisfied:

a. 0H, 1H belongs to τ .

b. For (R,H), (S,H) ∈ τ , (R,H) ⊓ (S,H) ∈ τ .

c. For (Ri,H) ∈ τ ∀ i ∈ I, ⊔{(Ri,H) : i ∈ I} ∈ τ .

(X , τ,H) denotes a soft topological space.

Definition 8.3. [3] Let us consider (X , τ) be soft topological space and G ⊆ X be a

non-empty set. Then, τG = {(FG ,P) | (F ,P) ∈ τ} is considered as relative topology on

G and (G, τG) is called soft subspace of (X , τ).

Theorem 8.4. [3] Let us consider (G, τG) be a soft subspace of (X , τ) and (H,P) be a

soft set over X , thus-

a) (H,P) is soft open in G if and only if (H,P) = G ∩ (I,P) for some (I,P) ∈ τ .

b) (H,P) is soft closed in G if and only if (H,P) = G ∩ (I,P) for some (I,P) in X .

Definition 8.5. [3] A soft set (H,P) is said to be soft subset of (G,Q) if-

a) P ⊆ Q and

b) for all p ∈ P,H(p) and G(p) are identical approximations.

We can write it as (H,P) ⊆ (G,Q).

8.0.1 Alexandroff Bitopological Spaces

Definition 8.6. A non-empty set X endowed with two arbitrary topologies (τ1, τ2)

which is closed under arbitrary intersection is said to be an Alexandroff Bitopological

Space.

Thus, a triplet (X , τ1, τ2) is known as Alexandroff Bitopological Space.

Members of τ1 and τ2 are closed sets and their complements are open sets in X .

Example : Discrete bitopology is an Alexandroff Bitopological space.

Definition 8.7. Let (X , τ1, τ2) be an Alexandroff Bitopological spaces and A be a

subset of X . Then, (X , τA1 , τA2 ) is a subspace in X where τA1 = {U ∩ A : U ∈ τ1} and

τA2 = {V ∩ A : V ∈ τ2}.

Definition 8.8. Suppose X be an Alexandroff bitopological spaces.(U ,A, τ1, τ2) be a

family of closed sets. Then, (U ,A, τ1, τ2) is known as minimal base if and only if :

1) (U ,A, τ1, τ2) covers X .
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2) For (P,A, τ1, τ2), (Q,A, τ1, τ2) ∈(U, A,τ1, τ2), ∃ a sub family {(Ui,A, τ1, τ2} such that

(P,A, τ1, τ2) ∪ (Q,A, τ1, τ2) = (Ui,A, τ1, τ2).

(3) If a subfamily {(Ui,A, τ1, τ2) : i ∈ I} of (U ,A, τ1, τ2) verifies ∪(Ui,A, τ1, τ2) ∈ (U ,A, τ1, τ2),

for i ∈ I, then ∃ io ∈ I such that ∩ (Ui,A, τ1, τ2) = Uio .

Definition 8.9. A family ατ1 of sets is called a subbase for a topology τ2 if and only if

the family of finite intersections of members of ατ1 is a base for τ2.

Definition 8.10. [96] An Alexandroff Bitopological space (briefly known as AL-BI

Space) is said to be connected if there doesn’t exist any non-void proper subset of X

which is both τ1-open and τ2 closed. It is to be noted that connectedness for a bitopology

may not be equivalent to connectedness of two topologies.

Theorem 8.11. If Y is a connected subset of X and Z is a set such that Y ⊂ Z ⊂ X ,

then Z is also connected. In particular, the closure of a connected is connected.

Proof. Let Y be a connected subset of X and Y ′
= A∪B, where A is clopen in τ1 and B

is clopen in τ2.Then, each of A∩Y and B ∩Y are clopen in Y and since Y is connected,

A ∩ Y or B ∩ Y must be void.

Suppose that A ∩ Y is void. Then, Y is a subset of B and consequently, Y ′
is a subset

of B.

Hence B is void and thus, it follows that Y ′
is connected.

Theorem 8.12. If f is a continuous onto mapping from a connected space (X , τ1, τ2)

to (Y, τ1∗ , τ2∗), then Y is also connected.

Proof. On the contrary, suppose that Y is not connected or disconnected. Then, there

exists two non-empty disjoint open sets such that Y = A ∪ B. Since f is a continuous

onto map, f−1(A) and f−1(B) are two disjoint non-empty sets in X . Thus, X can be

written as A ∪ B which implies X is disconnected which is again a contradiction.

Hence, Y is also connected.

Definition 8.13. The component of a bitopological space X is the maximal connected

subset of X .

Proposition 8.14. In (X , τ1, τ2), C is a connected subset, then either C ⊂ A or C ⊂ B,

where A and B are two non-empty disjoint open sets in X .
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Definition 8.15. An bi- Alexo T0 space is defined as -

For points x, y ∈ X and x ̸= y, ∃ τ1- closed set (P,A) and τ2-closed set (Q,A) such that

x ∈ (P,A) and y /∈ (P,A) or y ∈ (Q,A) and x /∈ (Q,A).

Definition 8.16. A space (X , τ1τ2) is called bi- Alexo T1- space if there exists τ1-closed

set (P,A) and τ2- closed set (Q,A) such that x ∈ (P,A) and y /∈ (P,A) and y ∈ (Q,A)

and x /∈ (Q,A), for points x, y ∈ X and x ̸= y.

Proposition 8.17. A non-empy subset of bi- Alexo T1- space is also an bi-Alexo T1-

space.

Proof. Since X is bi-Alexo T1- space, then ∃ τ1 closed set (P,A) and τ2 closed set (Q,A)

such that x ∈ (P,A) and y /∈ (P,A) and y ∈ (Q,A) and x /∈ (Q,A) for x, y ∈ X and

x ̸= y.

Now, x ∈ Y and x ∈ (P,A) implies x ∈ Y ⊓ (P,A) = (PY ,A) where (P,A) ∈ τ1.

Suppose y /∈ (P,A) which implies y /∈ P(β) for some β ∈ A.

Now, y /∈ Y ⊓ P(β) ⇒ Y(β) ⊓ P(β). Therefore, y /∈ Y ⊓ (P,A) = (PY ,A).

In the same way, we will show that y ∈ (QY ,A) and x /∈ (QY ,A).

Hence proved.

Definition 8.18. A space (X , τ1, τ2) is known as bi- Alexo T2- space if there exists τ1

closed set (P,A) and τ2 closed set (Q,A) such that x ∈ (P,A), y ∈ (Q,A) and (P,A)

⊓ (Q,A) = ∅, for x, y ∈ X such that x ̸= y

Remark 8.19. [44] 1) Every bi- Alexo T1- space is bi- Alexo T0.

2) Every bi- Alexo T2 space is bi- Alexo T1.

3) A non-void subset of X is also bi-Alexo T2-space if X is bi-Alexo T2.

Definition 8.20. A space X is said to be a bi- Alexo Regular space if for each x ∈ X

and a τ2 open set (Q,A) such that x /∈ (Q,A), then ∃ τ1- closed set (P1,A) and τ2-

closed set (P2,A) such that x ∈ (P2,A), (Q,A) ⊆ (P1,A) and (P1,A) ⊓ (P2,A) = ∅.

Definition 8.21. [51] A space X is said to be a bi- Alexo strongly pairwise regular

space if for each x ∈ X and a τ1 open set (Q,A) such that x /∈ (Q,A), then ∃ τ1-

closed set (P1,A) and τ2- closed set (P2,A) such that x ∈ (P1,A), (Q,A) ⊆ (P1,A) int-

(P2,A) and (P1,A) ⊓ (P2,A) = ∅.
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Definition 8.22. A space X is known as bi- Alexo Normal space if ∃ τ1- closed set

(P1,A) and τ2-closed set (P2,A) such that (P,A) ⊑ (P1,A), (Q,A) ⊑ (P2,A) and

(P1,A) ⊓ (P2,A) = ∅ for (P,A) and (Q,A) open sets over X and (P,A) ⊓ (Q,A) = ∅.

Definition 8.23. [90] A space X is known as bi- Alexo C (completely)-Normal space

if (P,A), (G,A) ⊑ X with (P,A) ∩ cl-(G,A)τ1 and (P,A) ∩ (Q,A) = ∅, ∃ τ1 closed set

U and τ2 closed set V such that (P,A) ⊑ U & (G,A) ⊑ V and U ∩ V = ∅.

Definition 8.24. [51] A space X is known as bi- Alexo strongly pairwise Normal space

if for each τ1-open set (P,A) and τ2-open set (G,A) with (P,A) ∩ (G,A) = ∅, ∃ τ1

closed set U and τ2 closed set V such that (P,A) ⊑ int- Uτ1 & (G,A) ⊑ int- Vτ2 and U

∩ V = ∅.

Remark 8.25. 1) Every closed subspace of regular space is regular.

2) Every closed subspace of normal is normal.

8.0.2 Alexandroff Soft Bitopology

Definition 8.26. An Alexandroff Soft Bitopology is a non-empty set endowed with

two soft topologies having arbitrary intersection of open sets is open. Thus, a triplet

(X , τ s1 , τ
s
2 ) is known as Alexandroff Soft Bitopological Spaces(ASBS). Elements of τ s1

and τ s2 are closed sets and their complements are open sets in X .

Definition 8.27. Let us consider (X , τ s1 , τ
s
2 ) be an Alexandroff Soft Bitopological spaces

and A ⊑ X . Then, (X , τ1As, τ2As) is a subspace in X where τ1As = {U ∩ As : U ∈ τ s1}

and τ2As = {V ∩ As : V ∈ τ s2}.

Definition 8.28. A soft subset A in ASBS is said to be a (1, 2)s-soft dense in X if and

only if τ s1 -(τ
s
2A) = X . The set of (1, 2)s-soft dense sets in X is denoted by (1, 2)s-SD(X ).

Definition 8.29. An Alexo soft bi- T0 space is defined as -

For points p, q ∈ X and p ̸= q, ∃ τ s1 - soft closed set (R,As) and τ s2 -soft closed set (S,As)

such that p ∈ (R,As) and q /∈ (R,As) or q ∈ (S,As) and p /∈ (S,As).

Definition 8.30. A space (X , τ s1τ
s
2 ) is called Alexo soft bi- T1- space if ∃ τ s1 -soft closed

set (R,As) and τ s2 - soft closed set (S,As) such that p ∈ (R,As) and q /∈ (R,As) and

q ∈ (S,As) and p /∈ (S,As), for points p, q ∈ X and p ̸= q.
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Definition 8.31. A space (X , τ s1 , τ
s
2 ) is known as Alexo soft bi- T2- space if ∃ τ s1 soft

closed set (R,As) and τ s2 soft closed set (S,As) such that p ∈ (R,As), q ∈ (S,As) and

(R,As) ⊓ (S,A) = ∅, for p, q ∈ X such that p ̸= q

Definition 8.32. Alexo Soft bi-Regular space - for each x ∈ X and a τ s2 soft open set

(S,As) such that p /∈ (S,As), then ∃ τ s1 -soft closed set (R1,As) and τ s2 - soft closed set

(R2,As) such that p ∈ (R2,As), (S,As) ⊆ (R1,As) and (R1,As) ⊓ (R2,As) = ∅.

Definition 8.33. A space X is called as Alexo soft bi- Normal space if ∃ τ s1 - soft closed

set (R1,As) and τ s2 -closed set (R2,As) such that (R,As) ⊑ (R1,As), (S,As) ⊑ (R2,As)

and (R1,As) ⊓ (R2,As) = ∅ for (R,As) and (S,As) soft open sets over X and (R,As)

⊓ (S,As) = ∅.

8.0.3 Generalized closed sets in Alexandroff Soft Bitopological Spaces

This section begins with basic introductions before defining (1, 2)− ğ-soft closed sets in

ASBS and presenting various findings.

Definition 8.34. [37] Let us consider (X , τ s1 , τ
s
2 ) be an Alexandroff Soft bitopological

spaces and As ⊑ X . Thus, As is called τ s1τ
s
2 -soft open if As = Bs ∪ Cs where Bs ∈ τ s1

and Cs ∈ τ s2 .

Definition 8.35. [37] Let P ⊆ Q. Then,

1) τ s1τ
s
2 -soft closure of Q is denoted by τ s1τ

s
2 − cl(Q) and defined as τ s1τ

s
2 − cl(Q) =

∩{R : Q ⊆ R,R is τ s1τ
s
2 -soft closed}

2) τ s1τ
s
2 -soft interior of Q is denoted by τ s1τ

s
2 − int(Q) and defined as τ s1τ

s
2 − int(Q) =

∪{R : Q ⊆ R,R is τ s1τ
s
2 -soft open}.

Definition 8.36. A subset Fs of X is known as (1, 2)− ğ soft closed set if τ s1τ
s
2 -cl- Fs

⊑ Us, whenever Fs ⊑ Us and Us is τ1τ2-soft open in X .

Example 8.1. Let X = {x1, x2, x3}, E = {a1, a2} be a set of parameters and A ⊑ E.

Define Fs
A = {(a1, {x1, x2}), (a2, {x2, x3})}. Then

Fs
A1

= {(a1, {x1})}

Fs
A2

= {(a1, {x2}

Fs
A3

= {(a1, {x1, x2})

Fs
A4

= {(a2, {x2)}
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Fs
A5

= {(a2, {x3)}

Fs
A6

= {(a2, {x2, x3})

Fs
A7

= {(a1, {x1}), (a2, {x2})}

Fs
A8

= {(a1, {x1}), (a2, {x3})}

Fs
A9

= {(a1, {x1}), (a2, {x2, x3})}

Fs
A10

= {(a1, {x2}), (a2, {x2})}

Fs
A11

= {(a1, {x2}), (a2, {x3})}

Fs
A12

= {(a1, {x2}), (a2, {x2, x3})}

Fs
A13

= {(a1, {x1, x2}), (a2, {x2})}

Fs
A14

= {(a1, {x1, x2}), (a2, {x3})}

Fs
A15

= Fs
A

Fs
A16

= Fs
∅

are all soft subsets of Fs
A.

Now, consider Fs
A = {FA2 ,FA3 ,FA5 , (a1, {x1, x3}), (a1, {x2, x3})}. Let τ s1 and τ s2 be two

topologies given by τ s1 = {Fs
∅ ,F

s
A,Fs

A2
} and τ2 = {Fs

∅ ,F
s
A}. Then, τ s1τ s2 = {Fs

∅ ,F
s
A,Fs

A2
}

is τ s1τ
s
2 soft open. Clearly, Fs

A3
, {(a1, {x2, x3})} are (1, 2)− ğ-soft closed sets.

Theorem 8.37. The union of two (1, 2)− ğ-soft closed sets is also (1, 2)− ğ-soft closed

set.

Proof. Let As and Bs be two (1, 2)−ğ-soft closed sets. Then, τ s1τ
s
2 -cl- As ⊑ Us, whenever

As ⊑ Us and Us is τ s1τ
s
2 -soft open in X and τ s1τ

s
2 -cl- Bs ⊑ Vs, whenever Bs ⊑ Vs and Vs

is τ s1τ
s
2 -soft open in X .

Thus, τ s1τ
s
2 -cl- (As ∪ Bs) ⊑ (Us ∪ Vs), whenever (As ∪ Bs) ⊑ (Us ∪ Vs) and (Us ∪ Vs) is

τ1τ2-soft open in X . Hence (As ∪ Bs) is also (1, 2)− ğ-soft closed set.

Remark 8.38. The intersection of two (1, 2)−ğ-soft closed sets may not be a (1, 2)−ğ-soft

closed set.

Proof. This follows from example 8.1 since FA3 ∩ {(a1, {x2, x3})} = FA2 which is not

(1, 2)− ğ-soft closed set.

Theorem 8.39. Every τ s1τ
s
2 - soft closed set implies (1, 2)− ğ-soft closed set.

Proof. We suppose Fs
A be τ s1τ

s
2 - soft closed set in Fs

B. Therefore, τ s1τ
s
2 - cl(Fs

A) = Fs
A ⊑

Fs
B whenever soft closed set Fs

A ⊑ Fs
B and Fs

B is τ s1τ
s
2 soft open. This implies that Fs

A
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is (1, 2)− ğ soft closed set. But the converse of this may not be true which follows from

example 8.1.

Definition 8.40. [97] Let Fs
A and Fs

A be two soft sets and Fs
A ⊑ Fs

B. Then, Fs
A is

called (1, 2) − gsg-soft closed set if τ s1τ
s
2 cl(Fs

A) ⊑ Fs
C Whenever Fs

A ⊑ Fs
C and Fs

C is

semi-generalized soft open set in τ s1τ
s
2 .

Theorem 8.41. A (1, 2)− gsg-soft closed set is (1, 2)− ğ-soft closed set.

Proof. Let us consider Fs
A be a (1, 2) − gsg-soft closed set. Then, τ s1τ

s
2 cl(Fs

A) ⊑ Fs
C

Whenever Fs
A ⊑ Fs

C and Fs
C is semi-generalized soft open set in τ s1τ

s
2 . Since any soft open

set is semi-generalized soft open set, thus every (1, 2)−gsg-soft closed set is (1, 2)−ğ-soft

closed set.

Remark 8.42. 1) τ s1τ
s
2 -soft closed set implies (1, 2)− ğ-soft closed, to the contrary, it is

not true.

2) (1, 2)− gsg-soft closed implies (1, 2)− ğ soft closed, to the contrary, it is false.

Theorem 8.43. If a subset Fs
A of X is (1, 2)− ğ-soft closed. Then, τ s1τ

s
2 -cl(Fs

A) \ Fs
A

does n’t contain any non-void τ s1τ
s
2 -soft closed set.

Proof. Let Fs
B be τ s1τ

s
2 -soft closed subset of τ s1τ

s
2 -cl(Fs

A) \ Fs
A. Then, Fs

B ⊑ τ s1τ
s
2 -cl(Fs

A)

and Fs
B ∩ Fs

A = ∅.

Therefore, X \ Fs
B is τ s1τ

s
2 -soft open set.

Since Fs
B ∩ Fs

A = ∅, Fs
A ⊏ X \ Fs

B. But Fs
A is (1, 2) − ğ-soft closed, then, τ s1τ

s
2 -

cl(Fs
A) ⊑ X \ Fs

B and consequently, Fs
B ⊑ X\ τ s1τ

s
2 -cl(Fs

A).

Therefore, Fs
B ⊑ τ s1τ

s
2 -cl(Fs

A) ∩X\ τ s1τ
s
2 -cl(Fs

A).

Hence, Fs
B is empty.

Theorem 8.44. Let Fs
A be a (1, 2) − ğ-soft closed subset of X . If Fs

A ⊑ Fs
B ⊏ τ s1τ

s
2 -

cl(Fs
A). Then, Fs

B is also (1, 2)− ğ-soft closed.

Proof. We suppose Us be a τ s1τ
s
2 -soft open set with Fs

B ⊑ Us. Then, Fs
A ⊑ Us.

Since Fs
A is (1, 2)− ğ-soft closed, τ s1τ

s
2 -cl(Fs

A) ⊑ Us.

Since Fs
B ⊑ τ s1τ

s
2 -cl(Fs

A) ⊑ Us, this implies τ s1τ
s
2 -cl(Fs

B) ⊑ τ s1τ
s
2 -cl(Fs

A) ⊑ Us.

Thus, Fs
B is also (1, 2)− ğ-soft closed.
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8.0.4 Application of Alexandroff Soft Bitopological Approximations

using (1, 2)− ğ-soft closed set in data reduction problems

In this section, we used Pawlak’s rough approximation theory to produce new set ap-

proximations in bitopology using (1, 2)−ğ-soft closed sets. We studied various properties

of rough sets on Alexandroff Soft bitopological approximation spaces. Finally, we give

an application of these approximations to data reduction in multi-valued information

systems.

8.0.4.1 Brief Description

Pawlak is deemed as the originator of Rough set theory [98]. This theory is the result

of applying pure mathematics to the study of data systems that are characterised by

ambiguity and uncertainty. This is often the new mathematical tool to traumatize soft

computing still as uncertainty of information besides fuzzy pure mathematics. Attribute

reduction is usually being a haul in data systems. Recently, this problem has become

a major concern among more and more researchers. Rough approximations are used to

deal with this problem. It has been successfully applied in various fields like artificial

intelligence, machine learning, pattern recognition, decision analysis, cognitive sciences,

intelligent decision making and process control etc. Zhi Pei et al. [99] in 2007 explored the

relationship between topology and generalized rough sets. In [100] Abu-Donia mentioned

three varieties of lower and higher approximations of any set with relevancy any relation

supported right neighborhood and generalized these three varieties of approximations

into two ways that employing a finite variety of any binary relations. This paper studies

a number of basic ideas of rough pure mathematics by employing a finite family of

any (reflexive,tolerance, dominance, equivalence) relations. A.S Salama [101] worked on

reduction of data sets in information system by using topology with rough sets. Abu-

Donia with Salama have generalized the classical rough approximation spaces using

topological near open sets called δβ-open sets [102, 103]. Salama [51] initiated new idea

of lower and upper approximations by using two topological structures and used these

approximations as an application. She has used bitopological approximations to resolve

the matter of attribute reduction in multi-valued information systems in her paper [92].

Likewise, we used this conception of approximations in Alexandroff Bitopological spaces
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with the usage of (1, 2)− ğ-soft closed set in data reduction in multi-valued information

system.

8.0.4.2 Alexandroff Soft Bitopological Approximation Spaces

The essential rough set approximations lower and upper coincide with the topological

interior and the closure operation respectively. The topological interior and closure of a

subset G ⊏ U are defined as follows:

1) G◦ = ⊔{H ⊑ U : H ∈ τ s,H ⊆ G}.

2) Ḡ = ⊓{I ⊑ U : H ∈ (τ s)c,G ⊆ I}.

The partition characterizes a topological space, called Approximation space G = (U ,R)

where U is called the universe and R is an equivalence relation [101, 104]. The equiva-

lence class [x]R is the key apparatus for defining rough approximations. The lower and

upper approximations are defined as follows:

1) R(A) = {x ∈ U : [x]R ⊑ A}.

2) R(A) = {x ∈ U : [x]R ⊓ A = ∅}.

Also, the positive region and negative region are POSR(A) = R(A) and NEGR(A) =

U \R(A) respt. Thus, borderline region is BNR(A) = R(A) \R(A) of U . The accuracy

measures are used to discover the degree of completeness of knowledge. Pawlak defined

the accuracy measure as below:

αR(A) = |R(A)|
|R(A)| where A ≠ ∅ and |U| is the cardinality of U .

A topological base generated by binary relations can produce a lower and upper approxi-

mations. The family of all right blocks SR = {Ri−R(x);x ∈ U} is a subbase for topology

τ sR on the universal set. Similarly, the family of all left blocks SL = {Ri−L(x);x ∈ U} is a

subbase for another topology τ sL. Thus, the approximation space BIT s = (U ,R, τ sR, τ
s
L)

is known as Alexandroff Soft Bitopological Approximation Space(ASBAS).

A subset As of U is known as (1, 2) − ğ-soft closed set if τ sRτ
s
L-cl- As ⊑ X s, whenever

As ⊑ X s and X s is τ sRτ
s
L-soft open in U . The complement of (R,L)− ğ- soft closed set

is (R,L) − ğ-soft open in Alexandroff Soft bitopological approximation space BIT s =

(U ,R, τ sR, τ
s
L). The family of all (R,L)− ğ-open is denoted by (ğ)O(U) and the family

of all closed (R,L)− ğ sets is denoted by (ğ)C(U)

Now, let BIT s = (U ,R, τ sR, τ
s
L) be an Alexandroff Soft Bitopological Space. R lower
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approximation and R upper approximation of subset A ⊑ U is defined as-

1) BIT s
R(A) = ⊔{B ∈ RO(U) : B ⊑ A}

2) BIT
s
R(A) = ⊓{G ∈ RC(U) : A ⊑ G}.

Let BIT s = (U ,R, τ sR, τ
s
L) be an Alexandroff Soft Bitopological space. L lower approx-

imation and L upper approximation of subset A ⊑ U is defined as-

1) BIT s
L(A) = ⊔{B ∈ LO(U) : B ⊑ A}

2) BIT
s
L(A) = ⊓{G ∈ LC(U) : A ⊑ G}.

Let BIT s = (U ,R, τ sR, τ
s
L) be a Alexandroff Soft Bitopological space. ğ lower approxi-

mation and ğ upper approximation of subset A ⊑ U is defined as-

1) BIT s
ğ(A) = ⊔{B ∈ ğO(U) : B ⊑ A}

2) BIT
s
ğ(A) = ⊓{G ∈ ğC(U) : A ⊑ G}.

The accuracy measures for the above defined approximations are specified as below:

αR(A) =
|A⊓BIT s

R(A)|
|A⊔BIT

s
R(A)| , αL(A) =

|A⊓BIT s
L(A)|

|A⊔BIT
s
L(A)| , αğ(A) =

|A⊓BIT s
ğ(A)|

|A⊔BIT
s
ğ(A)| .

Example 8.2. Let U = {1, 2, 3, 4, 5} be a universal set and three relations R on U are

defined as:

R1 = {(1, 1), (1, 5), (2, 3), (2, 4), (3, 5), (4, 1), (4, 5), (5, 5)}.

R2 = {(1, 1), (1, 3), (1, 5), (2, 3), (2, 4), (2, 5), (3, 5), (4, 1), (4, 5), (5, 5)}.

R3 = {(1, 1), (1, 5), (2, 3), (2, 4), (3, 3), (3, 5), (4, 1), (4, 5), (4, 4), (5, 5)}.

Then, SR = {{1, 5}, {3, 4}, {5}}.

SL = {{1, 4}, {1, 3, 4, 5}, {2}}.

Thus, the topologies generated with these relations are-

1) τ sR = {U , ∅, {1, 5}, {3, 4}, {5}, {3, 4, 5}, {1, 3, 4, 5}}

2) τ sL = {U , ∅, {1, 4}, {2}, {1, 2, 4}, {1, 3, 4, 5}}.

Three types of accuracies αR(A), αL(A), αğ(A) for some subsets of U are calculated as

below in the table 8.1.

A ⊑ U αR(A) αL(A) αğ(A)

{2, 5} 1/3 1/3 1
{1, 2, 5} 2/3 1 1
{1, 3, 4} 1/2 2/3 1
{3, 4, 5} 3/5 3/4 1
{1, 3, 4, 5} 4/5 4/5 1
{2, 3, 4, 5} 3/5 4/5 1

Table 8.1: Three types of accuracy measures
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We see that by using αğ accuracy measure the degree of exactness equals to 1, which

consequently means ğ accuracy measure is the best accuracy measure among all.

For the above approximations, any subset A ⊑ U has the following regions:

1) The Rinternal edge, EdgR(A) = A−BIT s
R(A).

2) The Linternal edge, EdgL(A) = A−BIT s
L(A).

3) The ğinternal edge, Edg
ğ
(A) = A−BIT s

ğ(A).

4) The Rexternal edge, EdgR(A) = A−BIT
s
R(A).

5) The Lexternal edge, EdgL(A) = A−BIT
s
L(A).

6) The ğexternal edge, Edgğ(A) = A−BIT
s
ğ(A).

7) The Rboundary, BONR(A) = BIT
s
R(A)−BIT s

R(A).

8) The Lboundary, BONL(A) = BIT
s
L(A)−BIT s

L(A).

9) The ğboundary, BONğ(A) = BIT
s
ğ(A) - BIT s

ğ(A).

Proposition 8.45. For BIT s = (U ,R, τ sR, τ
s
L) and a subset A ⊑ U , we have:

1) The Rboundary, BONR(A) = EdgR(A) ⊔ EdgR(A).

2) The Lboundary, BONL(A) = EdgL(A) ⊔ EdgL(A).

3) The ğboundary, BONğ(A) = Edg
ğ
(A) ⊔ Edgğ(A).

Proof. 1) BONR(A) = BIT
s
R(A) - BIT s

R(A) = (BIT
s
R(A) - A)⊔ (A - BIT s

R(A)) but

EdgR(A) = A−BIT
s
R(A) and EdgR(A) = A−BIT s

R(A), thus we have BONR(A) =

EdgR(A) ⊔ EdgR(A).

Similarly, using the above approximations, second and third part can be proved.

Also, there is a connection between classical lower and upper approximations and that of

our approach, the following proposition give the connection between them, where R(A)

and R(A) are the classical lower and upper approximations of rough sets.

Proposition 8.46. For any Alexandroff Soft bitopological approximation space, BIT s =

(U ,R, τ sR, τ
s
L) and a subset S ⊑ U , we have:

1) R(S) - BIT s
R(S) = Edg(S) ⊔ EdgR(S).

2) R(S) - BIT s
L(S) = Edg(S) ⊔ EdgL(S).

3) R(S) - BIT s
ğ(S) = Edg(S) ⊔ Edg

ğ
(S).

4) BIT
s
R(S) - R(S) = EdgR(S) ⊔ Edg(S).

5) BIT
s
L(S) - R(S) = EdgL(S) ⊔ Edg(S).

6) BIT
s
ğ(S) - R(S) = Edgğ(S) ⊔ Edg(S).
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For any Alexandroff Soft Bitopological approximation space BIT s = (U ,R, τ sR, τ
s
L), a

subset A ⊑ U is called-

1) R definable set if BIT
s
R(A) = BIT s

R(A) or BONR(A) = ∅.

2) L definable set if BIT
s
L(A) = BIT s

L(A) or BONL(A) = ∅.

3) ğ definable set if BIT
s
ğ(A) = BIT s

ğ(A) or BONğ(A) = ∅.

4) R rough if BIT
s
R(A) ̸= BIT s

R(A) or BONR(A) ̸= ∅.

5) L rough if BIT
s
L(A) ̸= BIT s

L(A) or BONL(A) ̸= ∅.

6) ğ rough if BIT
s
ğ(A) ̸= BIT s

ğ(A) or BONğ(A) ̸= ∅.

7) Roughly R definable, if BIT s
R(A) ̸= ∅andBIT

s
R(A) ̸= U .

8) Roughly L definable, if BIT s
L(A) ̸= ∅andBIT

s
L(A) ̸= U .

9) Roughly ğ definable, if BIT s
ğ(A) ̸= ∅ and BIT

s
ğ(A) ̸= U .

10) Internally R undefinable, if BIT s
R(A) = ∅ and BIT

s
R(A) ̸= U .

11) Internally L undefinable, if BIT s
L(A) = ∅ and BIT

s
L(A) ̸= U .

12) Internally ğ undefinable, if BIT s
ğ(A) = ∅ and BIT

s
ğ(A) ̸= U .

13) Externally R undefinable, if BIT s
R(A) ̸= ∅ and BIT

s
R(A) = U .

14) Externally L undefinable, if BIT s
L(A) ̸= ∅ and BIT

s
L(A) = U .

15) Externally ğ undefinable, if BIT s
ğ(A) ̸= ∅ and BIT

s
ğ(A) = U .

16) Totally R undefinable, if BIT s
R(A) = ∅ and BIT

s
R(A) = U .

17) Totally L undefinable, if BIT s
L(A) = ∅ and BIT

s
L(A) = U .

18) Totally ğ undefinable, if BIT s
ğ(A) = ∅ and BIT

s
ğ(A) = U .

Proposition 8.47. [92] For any space BIT s = (U ,R, τ sR, τ
s
L) and ∀x, y ∈ U , we have:

1) BITR(x) = BITR(y), if x ∈ BITR(y) & y ∈ BITR(x).

2) BITL(x) = BITL(y), if x ∈ BITL(y) & y ∈ BITL(x).

3) BIT ğ(x) = BIT ğ(y), if x ∈ BIT ğ(y) & y ∈ BIT ğ(x).

Proof. Since BITR(x) is the smallest R closed set containing x and clτR(y) is R

closed set containing x (by the definition of R upper approximation), thus BITR(x)

⊑ BITR(y) and by symmetry, BITR(y) ⊑ BITR(x). Similarly, second and third part

can be solved.
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8.0.5 Data devaluation in Multi-esteemed information frameworks us-

ing Alexandroff Soft Bitopological Approximation Spaces

In this section, we reduce the attributes in information system with the use of Alexandroff

Soft Bitopological Approximation Spaces.

A decision table consists of independent attributes named condition attributes and de-

pendent attributes are called decision attributes.

By devaluation of the information table, we mean a smaller subset R ⊑ S of attributes

that safeguard the nature of approximations.

The subset R′
⊏ R ⊑ S is a reduct as for BIT s = (U , C, τ sR, τ sL) if it is a minimal subset

of B which keeps the nature of order unchanged.

Dependency of attributes plays a crucial role in information system. The set of all

attributes A ⊑ C depends totally on the set of attributes B ⊑ C, denoted by B → A if

the set of all values of attributes from A are contained in the values of attributes from

B.

Let us consider R and S be subsets of S. Then, dependency can be defined as-

R depends on S with reference to τ sR if γR(R,S) = |POSR(R)|
|U| , and concerning τ sL if

γL(R,S) = |POSL(R)|
|U| .

Example 8.3. Consider the multi-valued information system given in the table below:

Let the set X = {x1, x2, x3, x4, x5, x6, x7} be the set of objects and C = {D1, D2, D3} be

condition attributes and Decision = D is the decision attribute. In this, we need to

determine the condition attribute that support the decision attribute.

D C3 C2 C1 X
Y es {c} {a, b, c} {a0} x1x1
No {c, d} {a, b} {a0, a} x2
Y es {c} {a, c} {b} x3
No {d} {a, c, d} {a} x4

Maybe {c, d} {d} {a} x5
Y es {c} {a, b} {a, b} x6

Maybe {c, d} {a, b, c} {a0, b} x7

Table 8.2: Multi-valued Information System

Now, we define a binary relations on X as follows:

RP⊑Q = {(p, q) : fP⊑Q(p) ⊑ fP⊑Q(q), ∀P ⊑ Q,P ≠ ∅, ∀ p, q ∈ X}.
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Using this relation, we construct relations on condition attributes and then generate two

topologies we need in the reduction process which are given by:

τ sR = {X , ∅, {x2}, {x4}, {x5}, {x6}, {x7}, {x3, x7},

{x2, x4}, {x4, x6}, {x4, x7}, {x2, x5}, {x2, x6}, {x2, x7},

{x4, x5}, {x5, x6}, {x5, x7}, {x6, x7}, {x3, x4, x7},

{x1, x4, x7}, {x2, x3, x7}, {x1, x2, x7}, {x3, x5, x7},

{x1, x5, x7}, {x3, x6, x7}, {x1, x6, x7}, {x1, x3, x7},

{x2, x4, x5}, {x2, x4, x6}, {x2, x4, x7},

{x4, x5, x6}, {x4, x5, x7}, {x2, x3, x4, x7},

{x1, x2, x4, x7}, {x3, x4, x5, x7},

{x1, x4, x5, x7}, {x2, x4, x5, x6, x7},

{x2, x3, x4, x5, x6, x7}, {x1, x2, x4, x5, x6, x7}}

τ sL = {X , ∅, {x1}, {x2}, {x3}, {x4}, {x5}, {x6}, {x1, x3, x7},

{x1, x2}, {x1, x3}, {x1, x4}, {x1, x5}, {x1, x6}, {x2, x3}

{x2, x4}, {x2, x5}, {x1, x6}, {x3, x4}, {x3, x5},

{x3, x6}, {x1, x2, x3, x7}, {x4, x5}, {x4, x6},

{x1, x3, x4, x7}, {x5, x6}, {x1, x3, x5, x7},

{x1, x3, x6, x7}, {x1, x2, x3}, {x1, x2, x4}, {x1, x2, x5},

{x1, x2, x6}, {x1, x3, x4},

{x1, x3, x5}, {x1, x3, x6}, {x1, x4, x5},

{x1, x4, x6}, {x1, x5, x6}, {x2, x3, x4}, {x2, x3, x5},

{x2, x3, x6}, {x2, x4, x5}, {x2, x4, x6},

{x1, x2, x3, x5, x7}, {x1, x2, x3, x6, x7}, {x3, x4, x6}, {x4, x5, x6},

{x1, x3, x4, x5, x7}, {x1, x3, x5, x6, x7}, {x1, x2, x3, x4},

{x1, x2, x3, x5}, {x1, x2, x3, x6},

{x2, x3, x4, x5}, {x2, x3, x4, x6},

{x1, x2, x3, x4, x7}, {x3, x4, x5, x6},

{x1, x2, x3, x4, x5}, {x2, x3, x4, x5, x6},

{x1, x2, x3, x4, x6}, {x1, x2, x3, x4, x5, x6}

These topologies can be considered as the basic knowledge for our sysytem which can

generate decision rules.

The discernible subsets of the decision attribute are:

D1 = Decision(Yes) = {x1, x3, x6}
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D2 = Decision(No) = {x2, , x4}

D3 = DecisionMaybe = {x5, x7}

After many calculations using the topologies right and left, the Rlowerapproximations

and Rupper approximation of the subset Di are given by:

BIT s
R(D1) = {x1, x6}, BIT s

R(D1) = {x1, x3, x6, x7}, then BON s
R(D1) = {x3, x7}.

BIT s
R(D2) = {x2, x4}, BIT s

R(D2) = {x2, x4}, then BON s
R(D2) = ∅.

BIT s
R(D3) = {x5, x7}, BIT s

R(D3) = {x1, x3, x5, x6, x7}, then BON s
R(D3) = {x1, x3, x6}.

Also, the Llower approximation and Lupper approximation are given by:

BIT s
L(D1) = {x1, x3, x6}, BIT s

L(D1) = {x1, x3, x6, x7}, then BON s
L(D1) = {x7}.

BIT s
L(D2) = {x2, x4}, BIT s

L(D2) = {x2, x4}, then BON s
L(D2) = ∅.

BIT s
L(D3) = {x5, x7}, BIT s

L(D3) = {x1, x3, x5, x7}, then BON s
L(D3) = {x1, x3}.

Also, the ğlower approximation and ğupper approximation are given below:

BIT s
ğ(D1) = {x1, x3, x6}, BIT s

ğ(D1) = {x1, x3, x6, x7}, then BON s
ğ (D1) = {x7}.

BIT s
ğ(D2) = {x2, x4}, BIT s

ğ(D2) = {x2, x4}, then BON s
ğ (D2) = ∅.

BIT s
ğ(D3) = {x5, x7}, BIT s

ğ(D3) = {x3, x5, x7}, then BON s
ğ (D3) = {x3}.

The conclusions about the accurate approach using (1, 2) − ğ sets with respect to infor-

mation given in the table 8.2 are:

1) The decision value ”Yes” is not exactly such that x7 is in the boundary region.

2) The decision value ”No” is exactly 1 such that its boundary region is empty.

3) The decision value ”May be” is not exactly such that x3 is in the boundary region.

In this chapter, we firstly defined Alexandroff Soft Bitopological Spaces and investigated

its properties along with the generalization of closed sets in it. Further, we analyzed

the concept of bitopological approximations by giving the definition of Alexandroff Soft

Bitopological Approximation Spaces and gave an application to data reduction in infor-

mation systems. The comparison of three accuracy measures were given which showed

that the measure using (1, 2)− ğ-soft closed sets is the best accuracy measure than other

measures for information systems.
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Chapter 9

Conclusion and Future Scope

This whole work structured new type of topological spaces and examined their prop-

erties rigorously. New Separation axioms along with their properties were generated.

Thereafter, we studied the concept of generalization of closed sets in newly developed

spaces, introducing new generalized closed sets and investigated their properties. The

new type of topological spaces namely Alexandroff Soft Topological Spaces, Alexandroff

Soft Bitopological Spaces and Fuzzy Alexandroff Soft Topological Spaces have their own

importance and can be used in different fields of decision-making problems, data devalu-

ation, image recognition etc. The new notions like separation axioms, generalized closed

sets in these spaces were introduced.

Our work provides an introductory platform for newly developed spaces but potentially

useful research in theoretical as well as applicable directions can be made. One possible

inspirational thought is that we can make use of programming language in topological

sense to make our manual work easier. Also, we can define new algorithms to deal with

real life problems of decision-making.
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1. Introduction & preliminaries

Nowadays, researchers are trying to develop novel approaches
for solving the fuzzy complex problems [18–30]. There are dis-
parate types of topological spaces namely discrete topology, indis-
crete topology, bitopology [7], soft topology [12], fuzzy topology
[15], intuitionistic fuzzy topology [3], Alexandroff spaces [2], and
nano topology [14] etc. Each one of them is unique in relation to
each other in some specific circumstances.
Molodtsov [9] gave a new peculiar theory named as soft set the-

ory in 1999. He implemented this theory effectively in numerous
ways such as functions smoothness, theory of games etc. Shabir
and Naz [12] proposed notion of soft topology as a parametrized
family of topological spaces by giving various definitions. They also
defined a topology corresponding to each parameter in a space and
explained results related to them. They have also introduced vari-
ous separation axioms. After that H. Hazra [6] had introduced
notions of topological structures in soft set settings. D.N Georgiou
[4] studied soft topological space and gave different properties and
results related to it. Maji [8] solved various decision making prob-
lems. Aktas and Cagman [5] explained the algebraic nature of soft
set theory.
Alexandroff spaces were first introduced by P. Alexandrov, after

his name in 1937, with the name of diskrete Raume (1937) [11],
where he produced the characterization in context of sets and

neighbourhood. These spaces had not been studied properly and
systematically. So, F.G Arenas in 1999 took initiative to study these
spaces and studied all the properties of topology in it as they
played an interesting role in place of finite spaces in digital topol-
ogy and also it follows from the fact that these spaces have all the
properties of finite spaces which are relevant to such theory. These
spaces have a great property which differentiates it from general
topology like every intersection of an open set is open.
In this paper, we have started with some results of general

topology and soft set theory as pre requisites and then obtain a
generalisation of them in Alexandrov soft topology presenting
new interpretations, classifications, and many concepts related to
it. This paper is divided into four sections. First section is the intro-
ductory part containing preliminaries as well. Second part defines
Alexandroff Soft topological space. This part describes various
properties like basis, subbase, subspace, closure of the space etc
with various results. Third section explaine separation axioms
and their related results along with the examples. Few notations
which have been used in the paper are as below-.
X ;sÅs
� �

denotes an Alexandroff Soft Topological Space, A
denotes the arbitrary set of parameters and Alexo Ti denotes vari-
ous separation axioms.
The basic definitions and results which are required for further

work:

Definition 1.1. [1] ”A set X along with a system F of subsets is said
to be an Alexandroff space (or r- space), if the following points
fulfilled:
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The main purpose of this paper is to establish a new type of topological space with the use of Fuzzy soft
sets and Alexandroff spaces. We defined Fuzzy Alexandroff Topological Spaces and studied their topolog-
ical properties. Further, we investigated two major properties of topology namely connectedness and
compactness by giving the definitions of cfA -connectedness, cf i -connectness and cfA -compactness. A
few examples have additionally been given which can show the utilization of this spaces in the field of
Physics. We likewise detailed different outcomes identified with them.
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1. Introduction

Topology can be generalized in many ways. Different types of
topology has their own importance. Zadeh [6] in 1965 proposed
the novel theory of fuzzy sets which has proved to be useful in
almost every sphere of sciences. Many mathematicians [21–35]
studied this concept for many years and gave important results
on them. C.L Chang [7] defined the topology on fuzzy sets in the
context of gradeness of open sets. After that, R.Lowen [8] redefined
fuzzy topological spaces and gave different important results
related to it. He also studied the property of compactness in fuzzy
topological spaces. Similarly, Molodstov [4] gave the peculiar con-
cept of soft sets which can eradicate the problems caused by the
use of classical methods in solving various engineering problems.
Maji [3] elucidated the theory of fuzzy soft sets and used this in
solving decision-making problems. In 2012, Sanjay [20] con-
structed topology on fuzzy soft sets and studied various topological
properties like fuzzy soft base, fuzzy soft subbase etc in fuzzy soft
topological spaces. Connectedness and compactness are two
important properties of topology which have been studied for so
many years. Ajmal [9] gave the concept of ci-connectedness in
fuzzy topology which is the strongest form of connectedness
among cM-connectedness [11], c5 -connectedness [10], Oq-
connectedness [13] etc. Ruth and Selvam [14] gave a new approach
of connectedness in fuzzy soft topology. In the same way, many

authors explored the concept of compactness in fuzzy topology
as well as fuzzy soft topology [8,15–17]. Alexandroff spaces [2]
possesses a great property known as arbitrary intersection of open
sets is open which differentiates it from other kind of topologies.It
has been named after Russian Topologist Pavel Alexandroff in
1937. After that, F.G Arenas studied these spaces and found that
it has the properties of finite spaces which can be used in the field
of digital topology [2]. Timothy [18] gave a note on Alexandroff
spaces and studied various properties of it.
Now, in this paper, our main purpose was to introduce a new

kind of topology using the concept of fuzzy soft sets and Alexan-
droff spaces. This kind of topology is known as Fuzzy Alexandroff
Soft Topological Spaces. We have also studied various topological
properties of it and gave the notion of fuzzy alexandroff soft base
and fuzzy alexandroff soft subbase. We further explored the con-
cept of connectedness and compactness and gave the definition
of cfA - connectedness, cf i -connectedness and cfA -compactness in
Fuzzy Alexandroff Soft Topological Spaces along with their results
and examples. This paper is divided into five sections. First two
sections contains the introduction and preliminaries which are
required for our main work. Third section explained the mainwork
of paper along with the important results. Fourth and fifth section
is the elaboration of notion of connectedness and compactness in
this newly developed topological space. Throughout the paper,

X; sf ;lf e
� �

denotes the Fuzzy Alexandroff Soft Topological Spaces

and e is the arbitrary set of parameters.
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