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Abstract 

Traffic management is becoming a critical problem for society as vehicle traffic volume rises. 

Due to static traffic management regulations on roadways, traffic flow may become 

congested as it has been growing on roads. An innovative and intelligent traffic control 

system is required to manage the traffic flow on roads, especially in developing countries. 

The intelligent system reduces the shortcomings of a fixed timer control system. Machine 

Learning and soft computing techniques can be utilized to optimize signal timing depending 

on traffic information on different lanes. 

In this thesis, a literature review on various aspects like vehicle detection and classification, 

emergency vehicle detection techniques, and green signal optimization methods has been 

done. Based on published works, the methods and techniques utilized for designing 

intelligent traffic controllers have been evaluated. This study will aid in methodically 

disseminating results. Therefore, it helps researchers working in similar areas choose the 

most effective datasets and techniques for vehicle detection, emergency vehicle detection, 

and green signal optimization. 

Various datasets have been extracted from different open-source libraries to perform the 

experimental work. Various models have been implemented on the chosen datasets for 

vehicle detection and classification and their performance has been analyzed. It has been 

observed that the proposed ensemble of the Faster R-CNN and SSD model outperformed the 

other existing models. Also, the results of the proposed model have been analyzed for traffic 

density estimation. For emergency vehicle detection, two techniques that are RFID and siren-

based models have been used. An ensemble of fully connected layers, CNN, and RNN 

models have been implemented. According to the experimental findings, the proposed 

ensemble produced reliable results for the detection of emergency vehicles. 

Finally, to optimize the green signal of the traffic controller, vehicle density information and 

the emergency vehicle's presence or absence are considered input parameters. An adaptive 

neuro-fuzzy inference system has been trained based on traffic density and flow rate of 

intersection. Experimental results proved that the proposed ANFIS model optimizes the green 

signal better than fixed-timer-based and fuzzy-based systems. 

The suggested technique can be utilized to lessen junction wait times for passengers along 

with road congestion. Further, it also helps reduce fuel consumption and CO2 emissions. 
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Chapter 1 

Introduction 

A vital component of any country‘s economic growth relies on the conditions of road 

transportation. It impacts the rate, structure, and pattern of growth [1]. India is known for 

being the second-largest road network in the world, having a length of 5.89 million 

kilometers [2]. In India, 64.5% of commodities are moved through a road network, and about 

90% of passengers use roads for traveling [2]. Road traffic has progressively increased with 

the connectivity improvement between towns, cities, and villages across the country. 

Automobile sales and freight transportation by road are rapidly increasing in India. 

In today's society, efficient logistics and people transportation are critical to the social 

economy‘s success. However, the existing infrastructure that relies on conventional traffic 

management systems, such as the loop detector-based SCOOP system, breaks down due to 

the rise in societal needs for transportation. Traffic congestion increases the burden on 

people's daily lives [3]. According to a government report [4] published by the United States 

Department of Transportation, due to traffic congestion, there were more than 5.7 billion 

gallons of fuel wastage during 2000 in 75 big US cities, as well as a negative socio-economic 

influence of 3.6 billion hours of traffic interruption. By 2011, the costs had escalated to 5.5 

billion hours of interruption, $121 billion in fuel wastage, and more than 25 million tonnes of 

automobile pollution [5]. As a result, a popular study area in recent years has been how to 

efficiently use current transportation infrastructure to reduce the conflict between 

transportation resources and demand for products and people mobility. 

US Department of Transportation reports revealed that traffic congestion has three significant 

reasons. The first factor causing traffic congestion are incidents like construction zones, 

accidents, and bad weather. The second factor is traffic demand, which includes typical and 

unusual traffic patterns. The third cause is traffic management systems and physical 

bottlenecks under transportation infrastructure. Moreover, 40% of traffic congestion occurs 

due to bottlenecks, 25% from traffic incidents like accidents, 15% from bad weather 

conditions, 10% accounts for work zones, and the rest is affected by signal timings at 

intersections and uncertain events [6]. 

Congestion can occur due to an excess of the road's service capacity, a surge in cars, or a 

reduction in the road's throughput because of road accidents. Whatever the reason, when the 

traffic flow hits saturation, congestion immediately arises. Furthermore, a driver‘s rapid 
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braking on a slick road can cause a breaking wave in the vehicle behind him, resulting in a 

significant delay. As a result of the protracted delay, traffic will get stagnant. 

Consider the cities of Mumbai and Bangalore. Given in a traffic survey [7] of 416 cities 

across 57 nations, Banglore has been known for its worst traffic management, whereas 

Mumbai is following closely behind in the fourth position.   A journey in Bangalore during a 

heavy traffic jam takes 71% longer. Similarly, it is 65% longer in Mumbai [8]. Improved 

traffic flow can reduce the number of accidents and passengers' travel time. 

The state and central governments have adopted several ways to deal with this issue. Traffic 

light controllers have been deployed in the accidentally-prone areas, and laws have been 

enforced against all traffic violators. 

1.1 Traffic Lights 

 The function of a traffic light is to serve as an indicator that uses a universal color code to 

indicate whether it is secure to drive, ride a bicycle, or walk at a road intersection, a zebra 

crossing, or any other location. Traffic lights for vehicles in India typically have three 

significant lights: a red light that signifies a stop, a green light that denotes a go, and a yellow 

light that denotes the vehicle is about to stop. In India, no particular signal is used for 

pedestrians crossing. The traffic signals have been advantageous to all commuters. It 

enhanced traffic flow and may have saved people time in addition to reducing the number of 

incidents. A simple traffic light is shown in figure 1.1. 

 

 

 

 

 

 

 

Figure 1.1: Basic Structure of Indian Traffic Lights 
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There are three standard systems for traffic control in use: 

a) Manual traffic Controlling: As the name implies, manual traffic control requires human 

interaction. The traffic police officer is responsible for traffic control in a particular 

region. The traffic officers use a signboard, a sign light, and a whistle to regulate traffic. 

b) Standard traffic lights with fixed timers: Traffic controllers with predetermined timers 

regulate traffic at intersections. The timer comes pre-programmed with a specific pre-

defined value. Depending on the timer's value, the lights change from red to green 

automatically. 

c) Electronic Sensors: Installing proximity sensors or loop detectors on the road is another 

leading technique. These sensors measure the amount of traffic on the route. Traffic 

signals switch to other states based on data collected from sensors. 

Traditional procedures have several disadvantages. Manual traffic control requires 

considerable human resources. It is not practicable to have traffic police manually manage 

traffic in all regions of a city or town due to a lack of resources. As a result, there is a demand 

for a better, smart, and more intelligent traffic control system. Static traffic control employs a 

traffic signal with a countdown for each phase set in stone and does not respond to real-time 

traffic on the road. Accuracy and coverage are generally at odds since high-quality data is 

typically obtained utilizing novel and expensive technologies, which means that a limited 

budget will limit the options if using electronic sensors. Furthermore, as most sensors have a 

limited effective range, there is a need for many sensors to provide complete coverage. 

1.2 Need for Traffic Management 

Today's traffic controllers are not programmed and are susceptible to human mistakes. 

Because of overcrowding, increased daily travelers, globalization, and reduced or thin 

highways, traffic monitoring is a top priority in many countries. Traffic influx is being 

hampered by improper signaling system architecture and traffic rules violations, causing 

congestion. Pollution and global warming affect the inside city environment due to traffic 

congestion at various intersectional crossings. Commuters also pay a hefty price for long 

periods stuck in traffic because of excessive fuel usage. Every government is concentrating 

on traffic monitoring and network management challenges. The economy's productivity of a 

particular nation is directly impacted by better road networks allowing free traffic movement. 
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Fixed-time traffic signals lack the characteristics needed to accommodate traffic variations; 

instead, they have varying timings based on the time of day. The signal cycle is repeatable, 

and the timing between stages is adjusted for every cycle. Managing a specific intersection 

based on predetermined signals entails identifying the time scheduling of green, yellow, and 

red lights for every traffic stream, regardless of the vehicle‘s density approaching the 

intersection. The features and average traffic density for a certain period determine the signal 

duration. 

Nevertheless, the addition of more traffic signals has a lot of unfavorable effects and 

challenges: 

a) Heavy traffic delays are caused by traffic lights 

The number of automobiles on the road has increased, which has resulted in severe traffic 

congestion. The mornings, before work, and the evenings, after work, were when this 

occurred most frequently at significant crossroads. This problem primarily causes people 

to waste more time on the road. 

b) The road user must still wait even though there is no traffic 

At particular intersections, there may occasionally be no traffic. Drivers must wait till the 

traffic signal turns green because it is still red. They will be held accountable if they run a 

red light. 

c) An emergency can be stuck in a traffic jam 

Ambulances, fire trucks, and police cars regularly get stuck during traffic congestion, 

especially at junctions with traffic lights. This results from the waiting traffic for the 

signal to turn green. It is crucial since it can stop an emergency from developing into a 

complicated and potentially fatal situation.  

In the last few years, technology has developed in every way imaginable. More quickly than 

ever before, science and technology are evolving. Artificial intelligence (AI) is changing our 

daily lives, starting with the obvious AI capabilities designed as assistants, like face unlocks 

criteria [9]. Furthermore, AI has made inroads into fields such as mathematics, cybernetics,  

medical science, neurology, engineering, philosophy, economics, education, psychology, and 

transportation logistics, to name a few. It can also be defined as the study and composition of 

intelligent agents aware of their surroundings and making decisions based on that knowledge. 

AI's fundamental goal is to create and build an automated system that can accomplish 

activities that people can do based on experience and observations. AI is the branch of 
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computer science concerned with discovering and developing innovative and intelligent 

computers that respond like live beings. 

The creation of "The Logic Theorist" marked the start of the modern AI revolution. It directs 

us to "Machine Learning." Machine learning's primary goal is to complete tasks assigned to it 

to address a specific issue by utilizing its existing knowledge and statistical data. The data 

must be reliable and consistent for learning to occur as quickly and effectively as feasible. 

Significant AI developments such as machine learning (ML), deep learning (DL), and neural 

networks (NN) enhance a machine's capacity to learn from data based on prior knowledge. 

[10–12]. Numerous machine learning applications are available today, including weather 

prediction, music and hotel recommendation systems, market analysis, facial recognition, 

speech, etc. When it comes to machine learning and artificial intelligence, mathematical logic 

and statistics are essential. Embedded systems are another important use of AI in which 

software is embedded in computer hardware [13]. 

Different governmental organizations request high-tech technology to oversee the country as 

technology advances. Transportation networking plays a significant part in a smart city, 

mainly in metropolitan centers, because it is divided into numerous diverse sectors. Most 

traffic congestion occurs in metropolitan areas, leading to increased air pollution and the 

danger of accidents. A smart city must have stronger administration that plans strategically to 

handle traffic issues. Manual traffic control has proven impractical in India due to rising 

urbanization. 

Additionally, as the volume of data acquired from multiple traffic cameras grows, central 

monitoring systems are experiencing scaling challenges. According to a replication based on 

this, the local unblocking strategy improves road competence and minimizes crowded 

breakdowns in localized situations. A substantial increase in average ambient temperature 

and noise pollution was observed and reported amid heavy traffic. Improvements to geometry 

and traffic are crucial for the speedy and efficient flow of traffic needed in metropolitan 

areas. Climate change is also a primary factor for transportation management in developing 

countries like India, South Africa, Chile, and China.  

1.3 Strategies for Traffic Management 

Intelligent Transportation Systems (ITS) is the use of computing, information, and 

communications technology for the real-time management of vehicles and networks, 

including the movement of people, products, and services. It is mandatory to grasp the causes 
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of mobility and how it is done to comprehend the transportation system and the necessity to 

model traffic flow. People and things must migrate between different locations due to 

people's daily activities. The transportation system provides the infrastructure and means to 

ensure that people and goods are in the right place at the right time to undertake the activities 

that result in products and services when the market needs them [16]. As the demand for road 

safety and connectivity between road networks has increased in recent years, ITS has 

attracted much interest [17]. 

To summarise, traffic monitoring hardware with wireless communication abilities can collect 

real-time data in existing traffic infrastructure. Then collected information will be sent to 

appropriate control agencies in an accurate and timely manner, helping them to make 

intelligent decisions to develop smart traffic controllers to reduce overall traffic congestion 

[18]. The present methods are broadly classified into two groups based on the numerous 

techniques of using the data acquired in ITS. 

a) The reactive approaches 

This strategy primarily employs the ITS's real-time traffic data to build traffic 

management solutions for the present traffic scenario [19]. Traffic flow management, 

Adaptive traffic signal control, congestion detection, and other related approaches are 

examples of related methods. 

b) The proactive approaches 

As reactive methods work and provide decisions based on real-time information, the 

reactive techniques emphases on analyzing the massive traffic information collected by 

ITS as well as extracting the data features of relevant control objects like movement 

characteristics of the participants of a specific traffic system, the characteristics and 

patterns of the traffic flow about time and so on. 

Proactive strategies, as opposed to reactive approaches, can help ITS improve the overall 

efficiency of the transportation system (in terms of road safety, congestion prevention, and so 

on) as well as the travel experience of system users (such as passengers, pedestrians, etc.). 

This remark is justified since, as previously stated, the reactive methods are intended to react 

to an identified traffic-related issue to reduce the system's negative effect. But the reactive 

strategies will always be late in responding to observed traffic circumstances. Thus, traffic 

jams that occur due to uncertain circumstances and need to be timely handled will cause the 

failure of the traffic management system and cause high congestion. On the contrary, reactive 
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approaches can only run the system in a steady state, even in traffic variations, due to a lack 

of sufficient traffic infrastructure. The proactive techniques can also predict upcoming traffic 

for a specific time.  

The idea of automatic traffic signals was the only way to ensure traffic flowed smoothly. 

Preliminary studies indicate that if general-purpose machines were operated online and in 

real-time: 

a) Using traffic information collected from several vehicle-detection sensors improves the 

timing of signals at each node, which is critical for overall system efficiency.  
b) It also determines the proper temporal connection between nodes while accounting for the 

current traffic flow direction and speed. 
c) It controls discrete signals to create archetypal circumstances. 
d) To make sure everything is in functioning order, it inspects the traffic flow and signal 

operation. 

Modern communication systems that rely on sensor tags to collect data and offer information 

on the current condition of the roads employ smart traffic signal controls to manage traffic 

signals. They make judgments based on priorities and are dynamic, so they work in real-time. 

The automated system uses this information to make judgments, such as when to activate 

each traffic light based on traffic volume on the roadways. Modern technologies like DL with 

Image Processing, OpenCV, intelligent controls, and AI are used by these automatic systems 

to make traffic-directing decisions, which traffic officers like police officers or traffic 

marshals frequently carry out. Other application areas include the management of freeways, 

intersection traffic signal control, and traffic and incident management. 

1.4 Different Techniques for Traffic Lights 

a) Non-Electric gas-lit traffic lights 

J. P. Knight suggested the idea created by Saxby & Farmer's railway signal engineers 

[20]. Three semaphore arms connected to red, green, and blue gas lamps make up the 

pattern. A traffic cop ran it. The police officer might face the wrong way as he had to flip 

the gas bulb manually. In this controller, the green light meant "Caution," while the red 

light meant "Stop." Even though the traffic control model was in operation, it had been 

out of commission for some time due to an explosion caused by a gas light leak. 
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b) Electric traffic lights 

In 1912 [21], Lester Wire designed electric traffic lights with red-green color and a 

buzzer. The buzzer gave a warning to the drivers for color change. In 1920 [22], for the 

four-way intersection, three-color traffic lights were proposed by William Potts. The 

police constable had to operate the lights, which soon became obsolete. 

c) Automatic timers based traffic lights 

In 1922 [17], automatic timers were added by the company "Crouse Hinds ."Countdown 

timers were introduced in 1990 in traffic lights. It is the oldest and most widely used 

method to control traffic. This controller replaced the human job as each lane gets an 

equal period for green signal in a periodic manner. This model saves money by reducing 

the number of traffic officers required at the intersection. It also helps the pedestrian plan 

whether sufficient time is available to pass the intersection. This model has limitations, 

too, like it needs to be fixed on real-time data. Also, it doesn't provide priority to 

emergency vehicles. A timer-based traffic light is shown in figure 1.2. 

 

 

 

 

 

 

 

 

 

Figure 1.2: Fixed Timer Based Traffic Light with Countdown Timer 

d) Computerized traffic lights 

In 1950, computers made traffic lights a big turn where pressure plates were placed at the 

intersection to detect cars at the red light [22]. In 1952, pressure-sensitive detectors were 

used to measure inbound and outbound traffic. Using vehicle detection algorithms, one 

can estimate how long the green light will last based on vehicle density. In the 21st 

century, various computerized techniques like image processing, Fuzzy Logic, Artificial 

Neural networks (ANN), the Internet of Things(IoT), Wireless Sensor Networks (WSN), 

and hybrid systems [14] are used for the designing of intelligent and adaptive traffic 

lights. 
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e) Image processing Based Technique 

Image processing is a technique for manipulating photos and videos to improve their 

quality or extract relevant information [15]. It includes three steps: 

 Image acquisition 

 Analyzing and manipulating the image 

 Extracted feature or altered image 

The traffic lights model using image processing was proposed in 1973 by the University of 

Tokyo engineers. Images from different roadsides are taken to analyze the current traffic 

scenario, like vehicle density, length of the queue, etc. Vehicles having high priority, like 

ambulances, fire brigade, and police vans, are detected and can be prioritized. Although this 

model works on real-time data due to environmental issues and quality concerns, a high-

resolution camera may increase the overall implementation cost. 

Some other challenges in this approach are: 

 Which type of cameras should be used to take images so that images will be of high 

resolution and objects will be identified efficiently? Whether the camera can take images 

with a full resolution during nighttime or if the weather could be clearer. 

 What should be the cameras' height so they can detect the vehicles from a long distance? 

f) Fuzzy expert system (FES) based traffic controllers 

In the Fuzzy expert system, fuzzy logic is used instead of Boolean logic. It consists of 

rules and membership functions to design the system and reason the data. Two categories 

of fuzzy inference systems exist the Mamdani-based Fuzzy Inference System (FIS) and 

the Sugeno-based Fuzzy inference system (FIS). Fuzzy logic is an integral part of 

artificial intelligence which works efficiently with incomplete data. It uses linguistic 

variables that are easy to understand by a human. It was initially used in 1977 for 

designing traffic controllers [23]. In this, fuzzy rules are designed based on the congestion 

on a lane, the number of objects approaching the green light, the presence of emergency 

vehicles, etc., and the output will be the extension in green signal timing to a particular 

roadside. From the literature survey, It is determined that the system performs better than 

the fixed timer system. But the major drawbacks are a lack of self-adaptability and self-

learning capabilities. It makes decisions based on the pre-defined rules fed into the 

system. The architecture of the fuzzy inference system is shown in figure 1.3.  
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Figure 1.3: Architecture of Fuzzy Expert System 

g) Artificial Neural Network (ANN) based traffic controllers 

ANNs are computing systems inspired by biological neurons. These systems learn things 

from the examples rather than programmed by task-specific rules. It is having self-

learning and self-adaptive ability [19]. It works well with real-time data. Multi-layer NN 

provides the acceptable solution, but as it is a mathematics-based model thus, it makes the 

system difficult to understand and analyze the computations that will be performed on 

hidden layers. The volume of the training dataset also dramatically impacts the efficiency 

of the ANN system. The system's efficiency will increase as the training dataset grows 

larger. The application of neural networks for traffic management was used in 1989 [24]. 

A basic architecture of the neural network is given in figure 1.4 

 

 

 

 

 

Figure 1.4: Architecture of Artificial Neural Network 

h) Wireless Sensor Network (WSN) based traffic controllers 

In wireless sensor networks, sensors are used to collect data about vehicles in each lane, 

the presence of ambulances, fire brigades, etc., and send the information to controllers 

[25]. Controllers have specific algorithms implemented in them. Based on the collected 

real-time data, decisions are taken, and the signal is allocated to a particular roadside. 

Delays in the elicitation, processing and sending of information to the controllers are the 

significant challenges of WSN, which affect the system's efficiency. 

i)  Hybrid Techniques for traffic controllers 

Two or more technologies combined to overcome the limitations of each other are known 

as a hybrid approach. Shortcomings of the fuzzy system are the need for self-adaptation 

Input Fuzzification Inference Engine Defuzzification Output 
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capability [26], the ANN's lack of inference, the WSN's delay problems, and the quality 

factor in image processing techniques. Fuzzy logic and NN can be combined to improve 

flow rate and vehicle waiting time at an intersection. A hybrid image processing and NN 

system can provide high accuracy in vehicle recognition and classification, density 

estimation, and emergency vehicle detection. Similarly, the hybrid system of the Internet 

of Things (IoT) and Wireless sensors help with vehicle detection, velocity estimation, 

flow rate determination, and emergency vehicle detection. Signal optimization results can 

be improved by hybridizing genetic algorithms and swarm intelligence [27]. Related 

literature review shows that hybrid systems provide high accuracy and performance. 

In recent years, traffic management has extensively used video monitoring and surveillance 

systems for security, ramp metering, and providing travelers with real-time information and 

updates. Video surveillance systems can also be used to estimate traffic density and vehicle 

categorization, which can subsequently be utilized to manage traffic signal timers to improve 

traffic flow and reduce congestion. 

1.5 Benefits of Smart Traffic Management System 

Many traffic-related problems arise due to fixed-signal timer traffic control systems at 

crossings. They don't modify the phase sequence or length. Increased demand for road 

capacity necessitates innovative traffic control methods, which can be found in the ITS 

discipline.  

The smart city paradigm combines information and communication technology to increase 

the efficiency of various city services. One of the primary industries that make citizens' lives 

easier is transportation. Many drivers, by nature, want to get to their destination as fast as 

possible. Arriving sooner reduces the travel time of automobiles on the road, reducing CO2 

emissions and preserving the city's green environment. Several researchers have devised a 

clever and efficient method for scheduling competing traffic flows at signalized road 

intersections. These tactics focus on reducing the length of traffic queues at intersections or 

minimizing the average delay per car. 

Processes or procedures that do not require human interaction are called "automation." 

Sensors provide critical traffic data, and a programmed controller determines the system 

output. A programmable controller controls the actuator that turns on and off the lights. 
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An intelligent traffic light is an automated system that creates different traffic signals based 

on real-time road conditions and data from sensors located at various locations along the road 

and nearby intersections in the context of traffic management. 

An intelligent traffic system includes auxiliary peripherals such as sensors, detectors, 

communicators, and other equipment to regulate traffic flow. The term "intelligent" refers to 

traffic signals' ability to adapt and adjust to current road circumstances using attached 

peripherals and respond appropriately in each situation. 

The following are the components of an intelligent traffic control system: 

a) A central control system 

The central control system serves as the framework for the traffic control system. The 

system includes traffic lights, signals, cameras, and queue detectors. The AI-based system 

can analyze real-time data by collecting information from 3D AI cameras and queue 

detectors with computer vision capabilities. The AI system assists in transmitting the best 

data to regulate the operation of traffic lights and signals for the smooth flow of traffic. 

b) Smart signal light 

Intelligent traffic lights and signals can reduce congestion and travel time at intersections. 

The intelligent controller can manage the congestion and allow the traffic to pass without 

a predetermined scheduling plan. 

One of the most obvious benefits of deploying advanced technology in traffic management is 

the ability to control and reduce traffic congestion and accidents in metropolitan areas. Data 

can be collected regarding traffic flow, climate, weather, and other factors using the sensor 

system deployed on the road surface. The data will be analyzed and processed using a 

computer system, and the results will be available to the public through some application. 

Drivers can choose safe traffic routes by knowing the current traffic situation on the road. 

As a result of the technological revolution, intelligent automated systems are displacing old 

operating approaches. In major cities worldwide, an intelligent traffic management system 

gives you an advantage by offering safe public transportation, stiff penalties for disobeying 

traffic laws, and intelligent traffic congestion solutions. IoT, AI, computer vision, supervised 

machine learning, and big data are just a few of the advanced technology solutions that are 

helping to solve traffic management problems in real time. Smart roads, smart highways, 

smart street lighting, and computerized traffic signaling are all part of an intelligent traffic 

management system.  
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1.6 Gap Analysis 

Based on the study of various traffic management systems, some of the research gaps that 

have been identified are as follows: 

a) Video/Image capturing of traffic scenes at odd times and in bad weather conditions 

Most research uses standard visible cameras at intersections to take traffic information. 

But these cameras cannot provide accurate and high-quality videos/images at odd times 

and in bad weather conditions. Thus, more information is needed to underestimate or 

overestimate the actual vehicle density, which leads to the undesirable green signal 

timing. In the proposed model, thermal images are utilized rather than using standard 

visible cameras. 

b) Estimation of vehicle density on traffic roads 

Previous works used sensors, loop detectors, and image processing techniques to estimate 

vehicle density. Image processing methods must provide satisfactory results due to the 

poor quality of the captured images/videos, and visible cameras must provide accurate 

and sufficient information at odd times and in bad weather conditions. In most studies, 

traffic density was computed in terms of the number of vehicles present or the area 

covered by vehicles available on the road. In the proposed approach, density estimation is 

done in terms of the total number of units available on the roads. Vehicles are classified 

into six categories, and each type of vehicle is assigned a unit value. Unit value depends 

upon the size and shape of the vehicle type. 

c) Prioritizing the emergency vehicles like (ambulances, fire trucks, and police vans) at the 

intersection 

Most earlier studies considered only ambulances for priority and optimizing green signal 

timing. However, fire trucks and police vans are a high priority and lifesaver vehicles. 

Thus, while providing the green signal to a particular road, the presence of emergency 

vehicles is also checked in the proposed model. If more than one type of emergency 

vehicle is present, priority will be given to the highest priority vehicles, and lesser priority 

vehicles will be considered after that. 

d) Coordinated control intersections 

From the literature, it has been analyzed that optimizing green signal timing is very 

beneficial. But it will be more helpful if adjacent intersections will also be coordinated. It 
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will reduce the overall waiting time of passengers and reduces fuel wastage. In this study, 

green signal optimization is performed on stand-alone and coordinated intersections. 

I.7 Research Objectives 

This study's primary goal is to design an intelligent and artificial intelligence-based traffic 

light management system. To accomplish this task following objectives were proposed. 

a) Detection of vehicles on lanes and classifying them into different categories like 2-

wheeler, 4-wheeler lightweight, 4-wheeler heavy vehicles, and 6-wheeler vehicles using 

convolutional neural network. 

b) Detection of high-priority or emergency vehicles such as fire brigade, ambulances, police 

vans, etc., and prioritizing them in crossing the intersection using RFID. 

c) Vehicular density calculation on the current lane as well as the adjacent lane from the 

data collected in objective 1. 

d) Determining the green signal timing of each phase depends upon density using a hybrid 

neural network system and fuzzy logic. 

e) Sending traffic information from the present junction to the adjacent junction for 

managing traffic signals using a wireless sensor network. 

1.8 Major Contributions of the Thesis 

Significant contributions made by the thesis are summarized as follows: 

a) A vehicle detection and classification model based on ensemble learning has been 

proposed. For detection and classification, thermal and visible images are used as input. 

Thus, the proposed model can detect at night and in bad weather conditions like fog, rain, 

etc.  

b) Emergency vehicles like ambulances, fire trucks, and police vans have been identified 

using two different methods. The Proposed model prioritizes an ambulance more than fire 

trucks and police vans. Thus, if, at the same time, more than one emergency vehicles are 

present, these are prioritized according to the given preference. Thus, the proposed model 

can reduce the waiting time of high-priority vehicles at intersections. 

c) A density estimation method is introduced based on the number of vehicles on the road. 

The algorithm utilizes the unit values assigned to each vehicle type to compute the traffic 

density. 
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d) An adaptive fuzzy inference system is utilized to optimize the green signal timing at an 

intersection. The suggested methodology can reduce delays, reduce overall vehicle wait 

times, and increase intersection throughput.  

e) For signal optimization at the coordinated intersections, techniques to transfer traffic 

information at an adjacent intersection are proposed. The methods are based on the 

distance between the adjacent intersections. 

1.9 Thesis Outline 

The thesis has been organized into eight chapters. A brief overview of all the chapters is as 

follows: 

Chapter 1 covers the introduction of traffic light controllers, highlighting the requirement of 

traffic light controllers and different types of traffic light controllers. Different technologies 

have been discussed in building intelligent and adaptive traffic light controllers. Strategies for 

traffic management are presented in detail. The benefits of using intelligent traffic light 

systems are also given in this chapter. Finally, the chapter concludes with the gap analysis, 

research objectives, contribution of the thesis, and thesis organization. 

Chapter 2 includes a detailed literature review on three main aspects: vehicle detection and 

classification, emergency vehicle detection, and green signal optimization methods. The 

review reported in this chapter is conducted by locating relevant research studies from well-

known electronic resources and the most important conferences in the field. The literature 

review of vehicle detection and classification is based upon various parameters like extraction 

from images or videos, type of cameras used, models and techniques utilized, datasets 

considered for training and testing the models, metrics considered for evaluation of models, 

and performance achieved. Similarly, a survey of different methods of emergency vehicle 

detection has been done. Finally, a detailed study is done for optimizing green signals using 

various techniques based on fuzzy logic and its hybrid systems. The percentage of the status 

of the research work for vehicle detection and classification, emergency vehicle detection, 

and green signal optimization has been presented in the form of pie charts which benefits the 

researchers to know about the state-of-the-work carried out in the stated areas. 

Chapter 3 explains the basic concepts of classification, localization, and detection. It also 

covers the basic concepts of CNN models and their different types of layers. A comparison of 

visible images and thermal images is also given in detail. The concept of transfer learning is 

presented and explained in how it improves the performance of the models. This chapter also 
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contains the different datasets taken for the implementation of vehicle detection. An 

introduction to the deep learning architectures utilized for implementation is also discussed. 

Further, the chapter describes the proposed vehicle detection models' overall design and 

implementation. The method of traffic density estimation is also presented. 

The proposed vehicle detection model is an ensemble of Faster R-CNN and SSD models. On 

the four separate datasets, the suggested model is trained and tested. Images from the datasets 

are annotated, and vehicles are classified into six categories. An algorithm is proposed based 

on bounding box coordinators and confidence scores to obtain the final detection. Traffic 

density estimation is performed regarding the number of units on the roads. Different value of 

a unit has been decided for each type of vehicle. 

Chapter 4 describes the introduction to RFID technology, the components of RFID, and the 

different types of RFID. Various types of RFID types based on wavelength are also 

presented. Three types of emergency vehicles are considered for detection: ambulances, fire 

trucks, and police vans. Priority to the type of emergency vehicles is defined. A Python 

simulation-based system has been implemented to detect and prioritize emergency vehicles. 

Chapter 5 presents the concepts of sound-based detection and different features extracted 

from sound signals for object detection. An introduction to the recurrent neural network and 

its associated parts is also explained. The dataset of the siren sounds has been taken from the 

Google Audioset library. The sound files extracted are processed to extract meaningful 

features. Based on the extracted features, three deep-learning models are trained.  

The first model is designed using fully connected layers. The second model consists of 

convolutional layers, max-pooling, and drop-out layers. LSTM layers are utilized in the third 

architecture. Methods of selecting an optimal number of layers and parameters in each model 

are also presented in detail. Finally, an ensemble-based model based on optimal 

configurations of the three models has been implemented.  

Chapter 6 explains the concepts of optimization and different techniques for optimization. 

An introduction to fuzzy logic and an adaptive neuro-fuzzy inference system is presented. A 

model based on ANFIS is implemented to optimize the green signal timings and prioritize 

emergency vehicles. The traffic density of the current road and adjacent road, as well as the 

traffic flow of the intersection, is considered input parameters of the proposed model. The 

wireless sensor networks and AWS S3 service send traffic information from one intersection 

to another.  
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Chapter 7 covers the results from the proposed models implemented in this research to 

design an intelligent and smart traffic light controller. The performance of the vehicle 

detection and classification model is analyzed using precision vs. recall curve, accuracy, and 

mAP metric. Precision vs. recall results of the proposed model analyzed on four datasets are 

explained using line graphs. mAP analysis is given in the tabular form, and comparative 

analysis is shown using line graphs. From the experimental results, it has been concluded that 

the proposed model outperforms compared to its base estimators. Also, the proposed model 

performs better on thermal than visible images. A comparison between the proposed model 

and the previous studies is also provided. The traffic density computation results further 

demonstrate the proposed model's superiority. 

The emergency vehicle detection results based on RFID have been shown by considering 

different cases of the arrival of emergency vehicles towards the intersection. When multiple 

emergency vehicles of the same type and different types are approaching the intersection, the 

proposed system can efficiently detect and prioritize them. 

The performance of the sound-based emergency vehicle detection results is done by 

computing the accuracy and inference speed of the model. From experimental results, it has 

been observed that the proposed ensemble and RNN-based model outperform the other two 

models. A comparative analysis of the proposed model is also given based on machine 

learning models and other existing studies. Although the time taken by the proposed 

ensemble model is higher than other models, it provides acceptable results. 

Finally, the green signal provided by the proposed model is compared with the fuzzy-based 

system and fixed timer-based controller. The proposed system also considers the presence or 

absence of emergency vehicle on the road and prioritize the roadside where the emergency 

vehicle is present. Results are discussed by considering the different cases to find the order in 

which the proposed model serves roadsides around the intersection. According to an analysis 

of the experimental data, the proposed model performs better than fuzzy-based and fixed-

timer-based systems.  

Chapter 7 concludes the research given in the thesis and discusses the consequences for the 

future. This chapter concludes that the system's results are promising and can be used to 

benefit society. The system's performance can be improved in the future by considering the 

road's width and the vehicles' speed. We can also optimize the green signals using a hybrid 

model of genetic algorithm and fuzzy logic. 
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Chapter Summary 

In this chapter, the introduction to traffic congestion causes, the need for traffic management, 

and strategies to manage traffic have been documented. Since the proposed model is based on 

intelligent and AI-based techniques, an introduction to different AI-based traffic controllers 

has been described. This chapter explains the components of an intelligent traffic controller 

and the benefits of a smart and adaptive traffic management system. This chapter also 

highlights the gap analysis and the objectives that were framed for this thesis. In the end, the 

thesis outline has been documented in this chapter. 
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Chapter 2 

Literature Review 

Traffic control signals are signaling devices deployed at intersections to manage traffic flow. 

The first traffic signal in the world was only operational for a short time. In 1868, J.P. Knight 

[20] proposed gas-lit traffic lights, and railway signal engineers of Saxby and Farmer 

designed it. It was composed of red and green gas lamps connected with three semaphore 

arms operated by a police officer. It successfully controlled the traffic, but it burst on 2 

January 1896 due to a gas leakage of the lantern and injured the police constable operating it. 

In 1908, kerosene lamps based traffic lights were used in Toledo, Ohio [21]. The red light 

indicated "Stop," and the green for "Go." Before altering a traffic light, a traffic officer blew 

his whistle to notify commuters of the change. This model was used for the first two decades 

of the 20th century in the United States.  

A police officer in Paris built a traffic control system in 1912 controlled by a rotating, four-

sided metal box with the words "Stop" and "Go" printed on it. Lester Wire proposed the first 

electric traffic lights in 1912, in which red-green signals were used [21]. In 1914, electric 

traffic lights with buzzers were used to warn of color changes [22]. In 1920, William Potts, in 

Detroit, Michigan, designed the first traffic lights for four-way intersections and three-color 

lights [22]. In 1922, automatic timers were used in traffic lights by the company Crouse 

Hinds [17]. Cities replaced traffic police with this model, saving money. Semaphores and 

towers had been abandoned by 1930 because they needed to be bigger, the semaphores too 

small, and they were impossible for travelers to see at night [17]. 

In 1950, the rise of computers gave a big turn to traffic lights in America. By analyzing the 

waiting vehicles at the red light using pressure plates, the duration of the red light was 

determined at the intersection [21][22]. With the advancement in technology, vehicle 

detection algorithms made traffic lights easier. Countdown timers were developed for traffic 

lights in 1990 [21]. Timers help drivers and pedestrians by allowing them to analyze the time 

they need to wait at intersections and for pedestrians to cross the street. By this time, 

researchers had introduced image processing, fuzzy logic, sensors, NN, etc., in designing 

traffic lights. After the 1990s, with the advancement in AI technologies, numerous studies 

have been conducted to improve traffic light management systems. 
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In this work, mainly three tasks are performed to achieve the defined objectives that are as 

follows: 

[1.]  Detection and classification of vehicles and traffic density estimation. 

[2.]  Detection of emergency vehicles detections, that is, ambulances, police vans, and fire  

trucks. 

[3.]  Optimization of green signal timing and sending traffic information from one intersection 

to another. 

2.1 Research Methodology 

The research methodology consists of a philosophical analysis of all the assumptions 

associated with the particular field of study. The demand for researchers to thoroughly and 

objectively describe all available knowledge about a phenomenon raises the need for reviews. 

It could be done to derive more general conclusions about a phenomenon or as a stepping 

stone to more research projects. Generally, it includes the concepts of different phases, 

models, and qualitative and quantitative techniques. The review is conducted in this study by 

planning, conducting, and reporting the review, as shown in figure 2.1. The stages of this 

literature survey are to create a framework for the review process, execute the survey, 

investigate review results, record the review results and explore various research challenges. 

  

 

 

 

 

Figure 2.1: Overview of the research methodology 

2.1.1 Planning 

The planning process begins with determining the requirements for conducting the literature 

review. The top conferences and electronic databases related to intelligent and adaptive 

traffic light management are considered to conduct a literature survey. Then, research sub-

topics are further identified, and valuable research articles are extracted based on that.  

Planning Conducting Reporting 

 

 

 

 

 

 

 

 

 

 

 

 

 

Identifying 

Needs 

Identifying 

Research Topics 

Selecting 

Studies 

Extract required 

data 

Documenting 

Observations 

Analyse and 

Describe Results 



21 
 

The electronic databases of journals, conferences, and magazines like Google Scholar, ACM 

Digital Library, IEEE Explore, Springer, and Science Direct are explored to start with the 

search process. The primary aim of this survey is to find and categorize the existing literature 

emphasizing vehicle detection and classification, emergency vehicle detection, and green 

signal optimization. Major sub-topics of the literature survey are shown in figure 2.2. 

 

 

 

Figure 2.2: Topics of Literature Survey 

2.1.2 Conducting 

This stage involves selecting the studies and extracting the required data. Selecting studies 

aims to choose the relevant articles considering recent technologies and methods. It covers 

research papers from symposiums, conferences, journals, workshops, and magazines.  

2.1.3 Reporting  

This stage involves documenting observations, analyzing the extracted studies' findings, and 

reporting the final results. The survey observations have been given in the form of pie charts 

and tables by choosing appropriate factors and parameters of findings and methods utilized in 

the previous studies.  

2.2 Literature Review Based on Vehicle Detection and Classification 

The first step for designing a traffic light controller is to estimate the traffic volume at a 

particular intersection. It can be done by recognizing and detecting the number and types of 

vehicles on the road at a particular time. Nowadays, Methods based on ML and DL are 

frequently employed for the same. 

Ozkurt et al. (2009) [28] utilized NN to develop a vehicle classification and traffic volume 

estimation model. The author collected data from the Istanbul Traffic Management Company 

(ISBAK) to conduct the study. In this study, work was carried out by designing three 

components that were moving object detector (MOD) for the detection of moving vehicles, a 

vehicle identifier (VI) to identify the type of vehicle, and a traffic density calculator (TDC) to 

compute the density of vehicles. The suggested model provided an accuracy of 94%. 
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Suryanto et al. (2011) [29] used the generalized Hough transform technique for tracking 

objects. In this, the spatial color histogram model was used for object representation. It was 

concluded from the results that the proposed work successfully tracked the objects even when 

they were in the same background with different sizes. 

Kembhavi et al. (2011) [30] used color probability maps, Histograms of Oriented Gradients 

(HoG) as well as Pairs of Pixels to capture color-related information about the vehicles and 

their surroundings. Integration of these methods produced a high-dimensional feature set. The 

Partial Least Squares method was used to reduce the feature set's dimensionality and improve 

the proposed model's overall efficiency. The suggested model was compared with previous 

methods on the Google Earth San Francisco data set and Overhead Imagery Research Dataset 

(OIRDS) and provided comparable results. 

Arrospide et al. (2012) [31] evaluated the performance of symmetry features with Bayesian 

classification for verifying the vehicles. The symmetry results via the Kolmogorov-Smirnov 

test achieved an accuracy of 80%. The author also evaluated the HOG descriptor and proved 

that it had high between-class separability compared to symmetry. HOG-based configuration 

achieved an accuracy of 92.48%, and it was highest, 96.94%, considered with front 

close/middle features. 

Arrospide et al. (2013) [32] proposed and evaluated the performance of log-Gabor functions 

which was based on the previous Gabor filter. The newly defined log-Gabor filter was better 

than the Gabor function. Experiments were performed with both filters, and results showed 

that log-Gabor filters had an accuracy of 95.84% at a scale of 4 while only 95.14% with a 

Gabor filter. 

Zhang et al. (2013) [33] used the Gabor wavelet transform and Pyramid Histogram of 

Oriented Gradients (PHOG) to extract features from vehicle images. The author proposed a 

cascade ensemble-based method with a rejection scheme to consider the scenarios in which 

no decision was taken if ambiguity occurred. The first ensemble consisted of k-nearest 

neighbors (kNNs), support vector machine (SVM), multi-layer perceptrons (MLP), and 

random forest. Similarly, a collection of base MLPs was integrated into the second ensemble 

with a rotation forest scheme. A rejection scheme was implemented in both ensembles by 

considering the consensus degree from majority voting to a confidence score and by 

restricting the classification of ambiguous samples if the value of the consensus degree is less 

than a threshold. The final category of the vehicle was decided by dual majority voting from 
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both ensembles. A dataset from the local police department was collected to carry out the 

results. The proposed model provided an accuracy of 98.65% with a rejection rate of 2.5%. 

Arrospide et al. (2014) [34] explored the combination capabilities of multiple techniques like 

SVM, HOG, and Gabor filters and designed an ensemble of classifiers. The proposed 

approach was evaluated on the GTI vehicle image dataset, and it provided an overall 

accuracy of 98%. The suggested method demonstrated that the fusion of classifiers, as 

opposed to the best single feature-based classifier, was highly advantageous for vehicle 

recognition and produced an additional gain of about 3%. 

Qi et al. (2014) [35] used sparse representation-based classification and a post-processing 

method (boundary box shrinking) for pedestrian detection. The sparse coefficients were 

computed with two types of dictionaries. The detection was accomplished by assigning the 

given image to the class, which reduced the residual between the given input and the 

corresponding approximation. Experimental results were performed on the LSI dataset using 

three different feature extraction methods where the HOG feature demonstrated the best 

performance. The boundary box shrinking approach decreased the log-average miss rate. 

Dollar et al. (2014) [36] suggested three different visual recognition systems and 

demonstrated pedestrian and general object detection results using rapid feature pyramids. 

The approximation was valid for images with broad spectra and failed for narrow band-pass 

spectra images.  

Karpathy et al. (2014) [37] investigated CNN's effectiveness at classifying large-scale videos. 

The author claimed that CNN architectures outperform approaches based on features in 

learning strong features from sparsely labeled data. On the UCF-101 Action Recognition 

dataset, the author investigated the model's generalization performance while keeping the top 

layers and saw appreciable performance gains. 

Simonyan et al. (2014) [38] presented a deep convolutional neural network with up to 19 

layers for large-scale classification. The author suggested that the increased depth of CNN 

had improved the overall classification accuracy, and the proposed model achieved state-of-

the-art performance on the ImageNet challenge dataset. The proposed model was evaluated 

using top-1 and top-5 errors and scored top-5 test error as 6.8%, which was the lowest among 

other configurations. 

John et al. (2015) [39] presented a two-phase pedestrian detection method. The detection 

process first extracted candidate pedestrians from the infrared images. The images were 
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segmented using adaptive fuzzy C-means clustering. Then, potential pedestrians were 

trimmed based on traits of human posture. The binary classification was carried out, and 

pertinent characteristics were learned simultaneously using a convolutional neural network 

(CNN). The proposed method yielded better detection accuracy with reduced computational 

accuracy. 

Zangenehpour et al. (2015) [40] presented an approach in which the HOG method was used 

for feature extraction and SVM to classify moving objects from crowded traffic scenes. The 

dataset was collected from different intersections to conduct the study. In the proposed 

method three steps were used. Firstly moving objects were detected and tracked from videos. 

Then objects were classified based on their appearance, and finally, the computation of the 

probability of belonging to each class depended upon appearance and speed. The developed 

technique gave an overall accuracy of greater than 88%. The author also claimed that 

classification accuracy was good for vehicles and less for cyclists and pedestrians.  

He et al. (2015) [41] evaluated the performance of SPP-net for object detection on ImageNet 

2012, Pascal VOC 2007, and Caltech101 datasets. First, feature maps of the whole image 

were computed only once and then collected from random positions to create fixed-length 

feature sets. The author claimed that the SPP model performed faster than the R-CNN model 

and yielded better accuracy on the PASCAL VOC 2007 dataset.  

Angelova et al. (2015) [42] presented a new real-time approach to object detection that 

exploited the efficiency of cascade classifiers and fast features with the accuracy of deep 

neural networks. The proposed algorithm worked at 15 frames per second in real time. The 

given method had an average miss rate of 26.2% on the public Caltech Pedestrian dataset.  

Girshick et al. (2015) [43] developed a model which worked on single-stage training and 

utilized multitask loss. During the training, the model parameters were updated, and no 

memory was required to extract the features. The author claimed that the proposed model 

trained the VGG16 model nine times faster than R-CNN and ten times from SPPnet. The 

suggested model also provided a better mAP value on PASCAL VOC 2012.  

Dong et al. (2015) [44] utilized semi-supervised CNN for vehicle classification. A sparse 

Laplacian filter was used to collect the required features of vehicles from the unlabelled 

dataset. Softmax classifier was trained on the labeled dataset using multitask learning to get 

output. The author built his vehicle dataset, the BIT-Vehicle dataset, for model evaluation. 
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The given model achieved the highest accuracy of 96.1% in the daytime and 89.4% at night 

light. 

Fan et al. (2016) [45] evaluated the performance of the Faster R-CNN model on the KITTI 

dataset. Performance was evaluated at different scales, and the numeral of recommendations 

and absolute configuration was selected iteratively. The proposed configuration achieved a 

maximum average precision of 95.14% while it was 95% for default faster R-CNN.    

Fu et al. (2016) [46] integrated current computer vision approaches to gather information to 

assess thermal sensors' speed, identification, and classification capabilities in various 

temperature and illumination conditions. Data using thermal and visible cameras were 

collected simultaneously from various places. The author claimed that visible cameras had a 

better performance than thermal during the day, but thermal cameras outperformed during 

low visibility and shadow cases mainly for cyclists and pedestrians. Also, the speed 

performance of thermal cameras was constantly better than visible cameras in the daytime 

and at night.  

Redmon et al. (2016) [47] presented a regression-based method for object detection and 

classification, which separated bounding boxes (BB) spatially as well as related class 

probabilities. Only one NN was used to predict BB and the probability of classes from the 

whole image in one phase and optimized network performance. The author evaluated the 

proposed model on three public datasets: PASCAL VOC 2007, Picasso, and People-Art. The 

author claimed that the proposed network could process the images at 45 frames per second 

in real time. 

Liu et al. (2016) [48] presented an approach known as a Single Shot Detector (SSD) in which 

BB of output space was discretized into several predefined boxes of various aspect ratios and 

scales. The proposed model made predictions by generating scores based on the object 

present in the predefined box and made appropriate alterations to the boxes to match highly 

with the object's shape. The author claimed that the proposed model was more 

straightforward than available models as it did not use a proposal generation network or 

feature resampling phase. The proposed model was tested on PASCAL VOC, COCO, and 

ILSVRC datasets, achieving an mAP of 74.3% on the PASCAL VOC dataset. Additionally, 

the proposed model performed better than Faster R-CNN. 

Kong et al. (2016) [49] developed a deep hierarchical model named HyperNet for dealing 

with both region proposal generation and object detection. The proposed model aggregated 
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hierarchical features maps collected from hyper features and compressed into uniform space. 

The hyper feature deeply incorporated the semantics and high-resolution features of an image 

and helped in proposal generation as well as object detection by end-to-end training scheme. 

The author claimed that the proposed model achieved the highest recall and accuracy on the 

PASCAL VOC dataset when 100 proposals per image were considered. Also, the proposed 

model processes five frames per second (fps) on Graphics Processing Unit (GPU). 

Bell et al. (2016) [50] presented a model named as Inside-Outside Net (ION) in which inside 

and outside information of the region of interest (RoI) was extracted. Spatial Recurrent 

Neural Networks were used to integrate the RoI's outside contextual information. And skip 

pooling method was utilized to capture inside's information at varying scales and abstraction 

levels. Experimental results depicted that the proposed model had 77.9% mAp on PASCAL 

VIC 2012 dataset and 33.1% on the MS COCO dataset. 

Dai et al. (2016) [51] developed an object detection system in which position-sensitive score 

maps were used to resolve the issue of translation invariance in classification and detection 

problems. The author tested the proposed model on the PASCAL VOC dataset and achieved 

an mAP was 83.6% when used with ResNet-101 architecture.  

Kang et al. (2017) [52] proposed a multi-stage pipeline method for detecting objects from 

videos (VID) based on a still-image detection strategy. The dataset from the YouTube videos 

was collected to conduct the study. The author developed a novel temporal CNN to deal with 

temporal consistency and proved that performance was consistently improved over still-

image object detection.  

Pinheiro et al. (2016) [53] presented an approach known as SharpMask based on a top-down 

refinement method for performing object segmentation with augmented feed-forward 

networks. With the proposed top-down and bottom-up architecture, high-fidelity masks were 

generated effectively. It was a two-phase model. During the first phase, coarse 'mask 

encoding' was returned, and results were refined in the top-down phase by using features at 

successively lower layers. The author claimed that the proposed method improved the 

accuracy by 10-20% in average recall for multiple configurations.  

Dai et al. (2016) [54] proposed a model for instance-aware semantic segmentation in which 

multitask networks were cascaded. The proposed model consisted of three sub-models that 

differentiate instances, identify masks, and classify objects. Cascaded networks could share 
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their convolutional features. The model was tested and evaluated on PASCAL VOC and MS 

COCO datasets and provided acceptable results. 

Zhou et al. (2016) [55] developed a deep learning model for detecting and annotating 

vehicles that is DAVE. It comprised two CNN models: first, to extract objects, and second, 

Attribute Learning Network (ALN) was designed to verify generated proposals and predict 

the vehicle's color, type, and pose simultaneously. Both networks were optimized collectively 

to collect maximum latent information learned from ALN. The proposed model was 

evaluated on three public datasets and provided improvements over previous methods. 

Yan et al. (2016) [56] proposed a model based on hypothesis generation and hypothesis 

verification. During hypothesis generation, possible vehicles were detected considering 

shadows under vehicles. In the other phase, the generated hypothesis was labeled vehicles 

and non-vehicles. In this study, two types of HOG descriptors were utilized to extract features 

of vehicles, and then these were integrated for the final set. The AdaBoost classifier was 

trained on the integrated features set. The author claimed that the developed system had 

acceptable accuracy and could be used in real-time. 

Ren et al. (2017) [57] introduced a Region Proposal Network (RPN) in which convolutional 

features of the whole image were shared with the detection model and enabled the cheapest 

region proposals. Further, using the 'attention' method, the trained RPN network was merged 

with the Fast R-CNN to create a single model by sharing the convolutional features. 

Experimental testing on PASCAL VOC and MS COCO datasets provided state-of-the-art 

accuracy. 

Ullah et al. (2017) [58] presented a method to extract the features from moving vehicles, such 

as model, make and type. The detection model was designed using deep neural networks 

(DNN). The frame difference technique was utilized to predict moving vehicles, and then a 

symmetrical filter was used to extract the front part of the vehicle. The extracted frontal part 

was given as an input to DNN for identification. A custom dataset was collected to carry out 

the study, and the proposed model provided 96.31% top-1accuracy. 

Tayara et al. (2017) [59] introduced a vehicle detection and traffic estimation model by 

utilizing convolutional regression neural network. In this study, a regression model was used 

to infer the traffic count of an input image. The proposed model was tested on two public 

datasets: Munich and OIRDS. The author claimed that the proposed model was more 
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effective and yielded higher recall, precision, and F1 score. However, the inference time of 

the proposed model was high. 

Li et al. (2017) [60] designed a Scale-Aware Fast R-CNN (SAF R-CNN) in which large-size 

and small-size sub-networks were incorporated into a fused design to process pedestrians 

available in the image at different sizes. The proposed model was able to train the fused 

architecture by sharing early layers of convolutional filters for extracting mutual features and 

integrated the results of both sub-networks with scale aware weighing scheme. Experimental 

results depicted that the proposed model was efficient in detecting small-size pedestrians and 

achieved better accuracy on various benchmark datasets. 

Krizhevsky et al. (2017) [61] presented a neural network with 60 million parameters and 

6,50,000 neurons in which five convolution layers were used, and max pooling layers were 

added to avoid overfitting. In the end, three dense layers with 1000 neurons at output layers 

were implemented. Softmax activation function was utilized at the output layer. Dropout 

layers were used to minimize the chances of overfitting in dense layers. The proposed model 

attained top-1 and top-5 error rates of 37.5% and 17.0%, respectively. 

Redmon et al. (2017) [62] introduced YOLOv2 and YOLO9000 for real-time detection. The 

author claimed that YOLOv2 was the fastest compared to other detection models and 

provided a trade-off between accuracy and speed. In YOLO9000, WordTree was utilized to 

merge data from different sources. The model was trained with their joint optimization 

method on COCO and ImageNet datasets.  

Lin et al. (2017) [63] investigated the primary reason for the class imbalance problem and 

proposed a method to address this issue. This study used the cross-entropy loss to minimize 

the loss values given to correct classified samples. The author proposed focal loss, which 

focused on training a sparse set of complex samples and avoided many easy negatives. 

Experimental results had shown that the proposed model trained on focal loss was 

comparable with one-stage detectors in terms of speed and having better accuracy than two-

stage detectors. 

Bodla et al. (2017) [64] proposed soft- Non-Maximum Suppression (NMS) in which 

detection scores of all detected objects were decayed as a continuous function of overlapping 

maximum detection value. Accordingly, no complete object was removed. The suggested 

method showed cutting-edge accuracy using the PASCAL VOC and MS COCO datasets for 

training and testing. 
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Huang et al. (2017) [65] investigated the three main object detectors: Faster R-CNN, R-FCN, 

and SSD, and showed that if fewer proposals were considered in Faster R-CNN, the speed of 

the detector could be increased without much loss in accuracy as well as author claimed that 

feature extractor had less impact on SSD performance. Furthermore, the author found a trade-

off between the speed and accuracy of any object detector. 

Yu et al. (2017) [66] utilized Faster R-CNN and a fine-grained detection and classification 

model to recognize the vehicles' make and model. Faster R-CNN was used to detect vehicles 

from images. In the next step, an image comprising a single vehicle was passed to CNN to 

extract features, and a joint Bayesian belief network was utilized for classification. The 

author created a custom dataset to perform experimental results and showed acceptable 

accuracy. 

Wang et al. (2017) [67] implemented Faster R-CNN for vehicle detection and classification. 

The author utilized the PASCAL VOC dataset for experimental results and claimed that the 

model provided 90.51% and 90.65% accuracy if considered only trucks and cars. 

Zhuo et al. (2017) [68] proposed a two-step vehicle detector in which the first model was pre-

trained on GoogleNet on the ILSVRC-2012 dataset, and then the trained model was fine-

tuned on the vehicle dataset. All images of the vehicle dataset were categorized into six 

classes. Experimental results depicted that the proposed model had an accuracy of 98.26%, 

which was 3.42% greater than machine learning models. 

Sindagi et al. (2018) [69] surveyed crowd counting and density estimation based on CNN and 

traditional methods. The author categorized CNN-based techniques into the training process 

and network topology. Experimental results were performed on various datasets using 

traditional and CNN methods and proved that CNN models had better handling capacity to 

deal with crowd detection and density estimation at different scales and scenes.  

Suhao et al. (2018) [70] utilized the Faster R-CNN method with an improved RPN network to 

detect and classify vehicles effectively. The proposed model was tested and trained using data 

from MIT and Caltech, demonstrating its effectiveness. 

Arinaldi et al. (2018) [71] implemented Faster R-CNN and a Mixture of Gaussian (MoG) + 

SVM for counting the vehicles, identifying the type of vehicles, and estimating the speed of 

vehicles. From the experimental results, the author claimed that Faster R-CNN outperformed 

MoG in detecting vehicles in different environmental conditions.  
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Tsai et al. (2018) [72] improved and optimized the existing Faster R-CNN method for 

transportation applications. The dataset had a total of seven classes. The proposed model 

achieved an accuracy of 90% when three classes, small vehicles, big vehicles, and trucks, 

were considered. 

Han et al. (2018) [73] applied a CNN-based approach to classifying vehicles. The author also 

proposed an unsupervised pre-training technique to initialize the parameters of CNN to 

enhance the classification capabilities of the model. The accuracy of the experiment was 93.5 

percent. 

Sheeny et al. (2018) [74] utilized a polarised LWIR (POL-LWIR) camera to collect data from 

moving vehicles. The author evaluated the two popular object detectors, SSD and Faster R-

CNN, using different architectures. Models were evaluated on collected data as well as on the 

KITTI dataset. Experimental results showed the mAP of 80.94% on Faster R-CNN with 6.4 

FPS, while the mAP of SSD was 64.51% with 53.4 FPS. 

Cai et al. (2018) [75] developed a multi-stage model for object detection, which dealt with 

training overfitting issues and a quality mismatch in predictions. The proposed model 

comprised of series of detectors trained with varying IoU thresholds. The Cascade R-CNN 

model was implemented on the COCO dataset. Experiments have shown that the proposed 

model achieved good gains. 

Chen et al. (2018) [76] addressed the problems of object detection with less number of 

training examples and proposed a low-shot transfer detector (LSTD). In the given model, a 

deep flexible configuration of LSTD was designed to minimize the transfer difficulties of 

low-shot detections. Then, the proposed model was trained with new regularization 

parameters, Transfer Knowledge (TK), and Background Depression (BD) to fine-tune with 

fewer target samples. The author claimed that the proposed model outperformed PASCAL 

VOC and ImageNet datasets. 

Nam et al. (2018) [77] developed a vehicle detection and classification model in which 

vehicles were classified by type. The author utilized visible and thermal images and extracted 

headlight and grill areas. Texture characteristics were extracted from given images and used 

to classify moving vehicles. Experimental results were performed with six-category and 

three-category datasets. When considering six categories, the proposed model provided an 

accuracy of 92.7% on visible images and 65.8% on thermal images. Similarly, accuracy was 
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95.9% and 70.5% on visible and thermal images, respectively, when used with three 

categories. 

Liu et al. (2018) [78] addressed the issue of imbalanced class datasets and proposed a semi-

supervised pipeline consisting of DNN with data augmentation methods based on generative 

adversarial nets (GANs). The suggested model was comprised of three phases. During the 

first phase, many GANs were trained on the actual dataset to produce adversarial examples 

from the rare categories. In the second phase, an ensemble was trained on the unbalanced 

dataset with different CNN configurations. A sample selection technique was applied to 

figure out the low-quality adversarial examples. 

At last, the proposed ensemble was trained on the augmented images. The proposed model 

was evaluated on MIOvision Traffic Camera Dataset (MIO-TCD). Experimental results 

depicted that the proposed model increased some rare classes' performance and maintained 

overall high accuracy compared with base estimators. 

Murugan et al. (2018) [79] designed a system that consisted of background subtraction, 

vehicle detection, and tracking using structural matching, extracting features, and classifying 

images. Initially, images were converted from true color to grey color. Then, the Gaussian 

mixture model (GMM) and morphological operations were utilized to extract foreground and 

moving objects respectively. Kalman filter was used to track the vehicles in multiple frames. 

The proposed ANFIS model was used to classify the detected vehicles. Experimental results 

have shown the superiority of the proposed model as compared to traditional neural networks. 

Huang et al. (2019) [80] discussed the issue of scoring instance segmentation and proposed a 

CNN-based Mask Scoring R-CNN. The proposed model attempted to align the mask score 

with Mask IoU, which was earlier disregarded in maximum instance-based segmentation 

methods. On the MS COCO dataset, the proposed model had shown consistent performance 

and outperformed existing Mask R-CNN. 

Law et al. (2019) [81] introduced an object detection architecture in which only one CNN 

was used to detect BB as a pair of key points, top-left corner and bottom-right corner. This 

study eliminated the concept of anchor boxes utilized in earlier single-stage models. 

Furthermore, a new corner pooling layer was proposed to improve corner detection 

efficiency. The author showed 42.2% average precision on the MS COCO dataset and 

performed better than existing one-stage detectors. 
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Duan et al. (2019) [82] addressed the issues of CornerNet to judge the internal cropped area 

with the least cost. The proposed model detected objects with triplets consisting of one 

central key point and two corners. The significant contribution of the proposed work was to 

provide the ability of a two-stage detector into one stage detector other than an effective 

discriminator. The proposed model was evaluated on the MS COCO dataset and provided an 

average precision of 47%. 

Ghiasi et al. (2019) [83] introduced a model to optimize the working of designing a Feature 

Pyramid Network (FPN) with Neural Architecture Search (NAS) and known as NAS-FPN. 

The suggested model was more flexible and provided better detection results on the MS 

COCO datasets. Additionally, the supplied model significantly improved the trade-off 

between accuracy and speed. 

Tian et al. (2019) [84] introduced a one-stage detector that was free from generating anchors 

and proposals, known as the Fully Convolutional One-Stage (FCOS) object detection model. 

The proposed model solved the detection task in a per-pixel prediction manner and 

eliminated computation and hyperparameter tuning corresponding to anchor boxes. FCOS 

model achieved the highest accuracy among already existing one-stage detectors. The author 

also claimed that the proposed model could be utilized as RPN in the two-stage detector to 

improve their performance. 

Azimi et al. (2019) [86] proposed a vehicle detection model known as ShuffleDet in which 

speed performance was improved by utilizing shuffling channels and grouping convolutions. 

The inception module was used to recognize the size and shape of the vehicle. Experimental 

results were performed on CARPK and PUCPR datasets, and the proposed model processed 

the images at 14 FPS.  

Kim et al. (2019) [87] introduced a traffic surveillance system in which vehicles were 

detected, tracked, and classified with image processing methods and CNN models. Custom 

data was collected by installing a video camera on the road. The proposed model utilized 

transfer learning for training the CNN model. The developed model was able to track 

multiple vehicles, classify them, and calculate their speed.  

Biswas et al. (2019) [87] implemented two models (SSD and MobileNet-SSD) to determine 

the traffic density. The author analyzed the pros and limitations of both models based on the 

collected dataset. Experimental results depicted that SSD achieved 92.97% average accuracy 

while the accuracy of MobileNet-SSD was 79.30%. 
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Sun et al. (2020) [88] introduced a lightweight CNN in which features were optimized, and a 

joint learning scheme was utilized to classify vehicles based on type. In this study, depth-wise 

separable convolution was used to minimize the parameters of the network. Softmax loss and 

contrastive center loss were merged to increase the model's capacity for classification. 

Experimental results were performed on the Car-159 dataset, and the author claimed that 

model had less complexity while maintaining accuracy. 

Kumar et al. (2020) [89] combined the feature values with the bat optimization method to 

find the optimum feature set. SVM was integrated with the local binary pattern to design 

bounding boxes with a confidence score. Enhanced Convolutional Neural Network (ECNN) 

was utilized to remove interference area vehicles and moving objects. Experimental results 

showed 96.63% accuracy. 

Wang et al. (2020) [90] presented a method to classify small vehicles in the wild by using 

GANs. Discriminator consisted of two classification modules that could classify whether 

there was a car, van, or non-vehicle. Furthermore, the author proposed a novel mixed 

objective function to improve the comprehensive and perceptible information. The proposed 

model achieved the highest precision of 92.97%. 

Shvai et al. (2020) [91] proposed an ensemble model in class probabilities obtained from 

CNN that were fused with continuous class probability values obtained from Gradient 

boosting-based method. The given model was evaluated on a custom real-world dataset with 

an accuracy of 99.03%. 

Awang et al. (2020) [92] proposed an enhanced feature extraction approach based on Sparse-

Filtered CNN with the Layer-Skipping method (SF-CNNLS). Three channels of SF-CNNLS 

were used to extract main and unique features. The proposed model was tested on the BIT 

benchmark and the custom SPINT datasets. The model showed the highest accuracy of 93%. 

Grents et al. (2020) [93] merged Simple Online and Real-time Tracking (SORT) method with 

Faster R-CNN to detect and classify vehicles by type. The proposed model also estimated the 

speed of vehicles with an accuracy of 78%.  

Zhu et al. (2020) [94] proposed MME-YOLO, consisting of two sub-models: the improved 

inference head and the LiDAR image composite model. The first sub-model could identify 

duplicate visual clues by feature selection blocks and anchor-based or anchor-free ensemble 

models. In other sub-models, the actual point data was analyzed deeply and combined with 

the visual backbone architecture at different levels, enabling vehicle detection under unusual 



34 
 

lighting conditions. Experimental results indicated that the proposed model achieved accurate 

and reliable vehicle detection results. 

Jagannathan et al. (2021) [95] worked on two public datasets that are MIOvision traffic 

dataset and the BIT vehicle dataset. Initially, images from datasets were pre-processed to 

improve their quality using adaptive histogram equalization and GMM. After that, Steerable 

Pyramid Transform and Weber Local Descriptors were implemented for feature extraction 

from the detected vehicles. At last, extracted feature vectors were passed as input to the 

proposed ensemble for vehicle classification.  

 Hu et al. (2021) [96] proposed an improved YOLOv4 model to detect vehicles from video 

streams. This paper suggested an algorithm to speed up detection and conducted experimental 

tests. Simulation results showed that the proposed model had good accuracy and could be 

used for safe vehicle driving decision-making. 

Yang et al. (2021) [97] introduced feature fused SSD model and Tracking-guided Detections 

Optimizing (TDO) method for accurate and fast vehicle detection from videos. In the feature 

fused SSD, TDL replaced NMS through which inter-frame vehicles were linked by a fast-

tracking method. Hence, propagated inferences could compensate for missed detections, and 

final results confidence scores were optimized. Experimental results on highway datasets 

showed an mAP of 8.2% greater than the base estimator. 

Jamiya et al. (2021) [98] proposed a lightweight model, LittleYOLO-SPP, based on a 

YOLOv3-tiny network. In the proposed model, spatial pyramid pooling layers were 

introduced, which comprised pooling layers at different scales for feature concatenation to 

improve the learning abilities of a network. Further, network performance was improved by 

considering MSE and generalized IoU (GIoU). Experimental results on the PASCAL VOC 

dataset achieved an mAP of 77.44%, while 52.95% on the MS COCO dataset. 

Wang et al. (2022) [99] proposed a method for vehicle detection from the UAV video. Hue, 

saturation, and value (HSV) spatial brightness operations were performed on video frames to 

enhance the adaptability of a model under various lighting conditions. After that, vehicle 

detection was done using the SSD model. The traditional SSD model was optimized by 

considering the focal loss function. 

A summary of the different object detection models developed till now based on their 

architecture and performance is given in table 2.1. Table 2.2 summarizes various research 

done on vehicle detection and classification. 
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Table 2.1: Major milestones in object detection research based on the deep convolutional 

neural network 

Researcher Model Year Type Observations 

Krizhevsky 

[61] 

AlexNet 2012 Backbone 

Architecture 

It was a large and complex architecture 

for computer vision tasks consisting of 

650,000 neurons with 60 million 

parameters. In this, the ReLU activation 

function was used rather than Tanh, 

increasing the speed six times with the 

same accuracy. The dropout was used to 

avoid over-fitting. 

Permanent 

[100] 

OverFeat 2013 One Stage 

Detector 

The original classifier was extended into 

the detector by considering the last fully 

connected layer as 1 X 1 convolutional 

layer to allow arbitrary input. It had 

shown significant speed strength as 

compared to two-stage detectors. 

Simonyan 

and 

Zisserman 

[38] 

VGGNet 2014 Backbone 

Architecture 

In this, many 3X3 convolutional layers 

were used in increasing depth. The 

features were scaled down by using the 

max-pooling layer. Finally, the softmax 

classifier was applied to two fully 

connected layers consisting of 4096 

nodes. The major limitation was its slow 

training speed and a large number of 

weights. 

Girshick 

[101] 

R-CNN 2014 Two-Stage 

Detector 

Training and testing time was very high. 

Hard to get a globally optimal solution. 

He [41] SPP-net 2014 Two-Stage 

Detector 

Feature maps were calculated from the 

whole image, and fixed-length feature 

vectors were extracted. Detection 

performance was good, even when 

objects were at different scales and aspect 
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ratios. 

Girshick 

[43] 

Fast R-

CNN 

2015 Two-Stage 

Detector 

Features were extracted using the RoI 

pooling layer. The optimal solution, high 

accuracy, and better training and testing 

speed were significant advantages. 

Szegedy 

[100] 

GoogleN

et 

2015 Backbone 

Architecture 

In this, the inception module was used.  

Ren [57] Faster R-

CNN 

2016 Two-Stage 

Detector 

Proposals were generated using Region 

Proposal Network (RPN). Hard to 

observe small targets. 

He [102] ResNet 2016 Backbone 

Architecture 

It reduced training difficulties. So, it got a 

more optimal choice. 

Li [51] FPN 2016 Backbone 

Architecture 

It was a feature detector that integrated 

with object detectors. 

Redmon 

[47]  

YOLO 2016 One Stage 

Detector 

Object detection was considered a 

regression problem. Difficult to detect 

small and crowded objects. 

Newell 

[103] 

Hourglas

s 

2016 Backbone 

Architecture 

It captured both local and global 

information. It first down-sampled the 

input image and then up-sampled the 

feature map.   

Liu [48] SSD 2016 One Stage 

Detector 

Hard negative mining was used to avoid 

negative proposals. Data augmentation 

also helped in improving detection 

accuracy. Capable of performing real-

time inference. 

Dai [51] R-FCN 2016 Two-Stage 

Detector 

Relative position information was 

provided by a position-sensitive score 

map of different classes, and features 

were extracted using ROI pooling.  

Lin [63] ResNet 2017 Backbone 

Architecture 

It reduced computation and memory 

costs. Backbone accuracy is also 

improved. 
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Huang 

[104] 

DenseNe

t 

2017 Backbone 

Architecture 

Spatially robust features were retained, 

and the flow of information was 

improved by mixing the input with the 

residual output. 

Chen [105] DPN 2017 Backbone 

Architecture 

It had the benefits of the ResNet and 

DenseNet models.  

Lin [106] RetinaNe

t 

2017 One Stage 

Detector 

The focal loss was used to subdue the 

negative samples gradient rather than 

discarding them. A feature pyramid 

network was used to detect different size 

objects.  

Howard 

[107] 

MobileN

et 

2017 Backbone 

Architecture 

In this, the number of channels in each 

feature map was the same as the 

coordinates. Computational cost and 

number of parameters were reduced 

significantly. It was specially designed 

for mobile platforms. 

Cai [75]]  Cascade 

RCNN 

2018 Two-Stage 

Detector 

It worked similarly to RefineDet, and 

proposals were refined in a cascaded 

manner. 

 Law and 

Deng [81] 

CornerN

et 

2018 One Stage 

Detector 

Objects were detected as a pair of corners 

Google 

Brain  Team 

[108] 

Efficient

Det 

2020 One Stage 

Detector 

In this, ImageNet pre-trained EfficientNet 

was used as the backbone model. Its 

computations speed is high than YOLO 

and  AmoeabeaNet. 
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Table 2.2: A summarized Literature review of Vehicle Classification and Detection 

Author Images

/ 

Videos 

Camer

a Type 

Object 

Type 

Model/Te

chnique 

Metric 

Used 

Dataset Value 

(%) 

Ozkurt et 

al. [28] 

Videos Visible 

RGB 

Vehicle

s 

Neural 

network + 

Image 

Processing 

Accura

cy 

Istanbul 

traffic 

management 

company 

94 

Kembha

vi et al. 

[30] 

Images Visible 

RGB 

Vehicle

s 

Partial 

Least 

Square 

Methods + 

HoG 

Precisio

n vs., 

Recall 

Google Earth 

San 

Francisco 

Data set and 

Overhead 

Imagery 

Research 

Data 

set(OIRDS) 

Achieve

d the 

highest 

curve. 

Arróspid

e et al. 

[31] 

Images Visible 

RGB 

Vehicle

s 

HoG Accura

cy 

GTI vehicle 

image 

database 

96.94 

Arróspid

e et al. 

[32] 

Images Visible 

RGB 

Vehicle

s 

Log-

Gabor 

Filter 

Accura

cy 

GTI vehicle 

image 

database 

95.84 

Zhang et 

al. [33] 

Images Visible 

RGB 

Vehicle

s 

Ensemble 

of 

machine 

learning 

models 

with a 

majority 

voting 

scheme. 

Accura

cy 

Custom data 

collected 

from the 

local police 

department 

98.65 

Arróspid

e et al. 

Images Visible 

RGB 

Vehicle

s 

Ensemble 

of SVM, 

Accura

cy 

GTI vehicle 

image 

98 
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[34] HoG and  

Gabor 

filter. 

database 

 

Qi et al. 

[35] 

Images Therma

l 

Pedestri

an 

Sparse 

representat

ion-based 

classificati

on and 

boundary 

box 

shrinking. 

Log-

average 

miss 

rate 

LSI 

Pedestrian 

Dataset 

26 

Dollar et 

al. [36] 

Images Visible 

RGB 

Pedestri

an and 

general 

object 

detectio

n 

Fast 

feature 

pyramids 

based on 

visual 

recognitio

n system. 

Log-

average 

miss 

rate 

INRIA 17 

Caltech 43 

TUD 50 

ETH 50 

Karpathy 

et al. 

[37] 

Videos Visible 

RGB 

General 

object 

detectio

n 

CNN Accura

cy 

Sports-1M 80.2 

UCF-101 65.4 

Simonya

n et al. 

[38] 

Images Visible 

RGB 

General 

object 

detectio

n 

CNN Top-1 

error 

ILSVRC-

2012 

23.7 

Top-5 

error 

ILSVRC-

2012 

6.8 

John et 

al. [39] 

Images Therma

l  

Pedestri

an 

Fuzzy C-

Means + 

CNN 

Log 

average 

miss 

rate 

LSI 

Pedestrian 

Dataset 

34 

Zangene

hpour et 

al. [40] 

Videos Visible 

RGB 

Pedestri

an and 

bicycle 

HoG + 

SVM 

Accura

cy 

Custom 

dataset 

88 
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He et al. 

[41] 

Images Visible 

RGB 

General 

object 

detectio

n 

SPP-net mAP Pascal 

VOC2007  

82.44 

Caltech 93.42 

Angelov

a et al. 

[42] 

Videos Visible 

RGB 

Pedestri

an 

Deep 

Neural 

Network 

Averag

e miss 

rate 

Caltech 

Pedestrian 

32.52 

Girshick 

et al. 

[43] 

Images Visible 

RGB 

General 

object 

detectio

n 

Fast R-

CNN 

mAP PASCAL 

VOC 

 

66.9 

Dong et 

al. [44] 

Images Visible 

RGB 

Vehicle

s 

CNN+ 

Sparse 

Laplacian 

filter 

Accura

cy 

BIT-vehicle 

 

96.1(Day

) 

 

89.4(Nig

ht) 

Fan et al. 

[45] 

Images Visible 

RGB 

Vehicle

s 

Faster R-

CNN 

Accura

cy 

KITTI 

vehicle 

dataset 

95.14 

Fu et al. 

[46] 

Videos Visible 

RGB + 

Therma

l 

Vehicle

s + 

Pedestri

an 

HoG + 

SVM 

Accura

cy 

Custom 

dataset 

(Thermal) 

96.1 

 

Custom 

dataset 

(RGB) 

96.8 

Redmon 

et al. 

[47] 

Images Visible 

RGB 

General 

object 

detectio

n 

YOLO mAP PASCAL 

VOC  

63.4 

Picasso 53.3 

People Art 45 

Liu et al. 

[48] 

Images Visible 

RGB 

General 

object 

detectio

n 

SSD mAP  PASCAL 

VOC 

76.9 

MS COCO 80 

ILSVRC 43.2 
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Kong et 

al. [49] 

Images Visible 

RGB 

General 

object 

detectio

ns 

Hypernet mAP PASCAL 

VOC 

76.3 

Bell et 

al. [50] 

Images Visible 

RGB 

General 

object 

detectio

ns 

Inside-

Outside 

Net 

 PASCAL 

VOC 

79.2 

Dai et al. 

[51] 

Images Visible 

RGB 

General 

object 

detectio

ns 

R-FCN Accura

cy 

PASCAL 

VOC 

83.6 

Kang et 

al. [52] 

Videos Visible 

RGB 

General 

object 

detectio

ns 

CNN mAP YouTube 

object dataset 

76.8 

ImageNet 

VID 

41.7 

Pinheiro 

et al. 

[53] 

Images Visible 

RGB 

General 

object 

detectio

ns 

Segmentat

ion with 

feed-

forward 

network 

mAP MS COCO 33.5 

Dai et al. 

[54] 

Images Visible 

RGB 

General 

object 

detectio

n 

Semantic 

segmentati

on with 

deep 

learning 

mAP PASCALVO

C 

75.9 

MS COCO 44.3 

Zhou et 

al. [55] 

Images Visible 

RGB 

Vehicle

s 

CNN mAP PASCAL 

VOC2007 

64.44 

LISA2010 79.41 

Urban Traffic 

Surveillance 

(UTS) 

62.85 

Yan et Images Visible Vehicle HoG + Accura GTI vehicle 97.24 
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al. [56] RGB s AdaBoost cy image 

database 

Ren et al. 

[57] 

Images Visible 

RGB 

General 

object 

detectio

n 

Faster R-

CNN 

mAP Pascal VOC 78.8 

MS COCO  42.7 

Ullah et 

al. [58] 

Images Visible 

RGB 

Vehicle

s 

Deep 

neural 

network 

Accura

cy 

Custom 

dataset 

96.31 

Tayara et 

al. [59] 

Images Visible 

RGB 

Vehicle

s 

Convoluti

onal 

regression 

neural 

network 

Accura

cy 

Munich and 

Overhead 

Imagery 

Research 

Data Set 

(OIRDS) 

92 

Li et al. 

[60] 

Images Visible 

RGB 

Pedestri

an 

Scale 

aware Fast 

R-CNN 

Log 

average 

miss 

rate 

Caltech 9.32 

INRIA 8.04 

ETH 34.64 

Averag

e 

Precisio

n 

KITTI 77.93 

Krizhevs

ky et al. 

[61] 

Images Visible 

RGB 

General 

object 

detectio

n 

CNN Top-1 

error 

rate, 

Top-5 

error 

rate 

ILSVRC-

2012 

37.5 

 

17.0 

Lin et al. 

[63] 

Images Visible 

RGB 

General 

object 

detectio

n 

Feature 

pyramid 

network 

Averag

e 

Precisio

n 

MS COCO 59.1 
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Yu et al. 

[66] 

Images Visible 

RGB 

Vehicle

s 

Faster R-

CNN + 

Joint 

Bayesian 

belief 

network  

Accura

cy 

Custom 

dataset 

89 

wang et 

al. [67] 

Images Visible 

RGB 

Vehicle

s 

Faster R-

CNN 

Accura

cy 

PASCAL 

VOC 

90.65 

Zhuo et 

al. [68] 

Images Visible 

RGB 

Vehicle

s 

CNN pre-

trained on 

GoogleNet 

+ trained 

on Vehicle 

dataset  

Accura

cy 

ILSVRC-

2012, vehicle 

dataset 

98.26 

Suhao et 

al. [70] 

Images Visible 

RGB 

Vehicle

s 

Faster R-

CNN with 

improved 

RPN 

Accura

cy 

MIT + 

Caltech car 

dataset 

84 

Arinaldi 

et al.[71] 

Videos Visible 

RGB 

Vehicle

s 

Faster R-

CNN + 

MoG + 

SVM 

Accura

cy 

Indonesian 

Toll Road 

dataset  

67.2 

 MIT traffic 69.4 

Han et 

al. [73] 

Images Visible 

RGB 

Vehicle

s 

CNN Accura

cy 

Custom 

dataset 

93.5 

Nam et 

al. [77] 

Images Visible 

RGB + 

Therma

l 

Vehicle

s 

Texture 

features  

Accura

cy 

Custom 

dataset 

95.9 

(Visible) 

70.5 

(Thermal

) 

Liu et al. 

[78] 

Images Visible 

RGB 

Vehicle

s 

GANs + 

ensemble 

of CNN 

Averag

e 

Precisio

n 

MIO-TCD 

dataset 

93.55 
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Murugan 

et al. 

[79] 

Videos Visible 

RGB 

Vehicle

s 

GMM + 

Kalman 

filter + 

ANFIS 

Accura

cy 

Custom 

dataset 

92.6 

Kim et 

al. [86] 

Images Visible 

RGB 

Vehicle

s 

Image 

processing 

+ CNN 

Accura

cy 

Custom 

dataset 

98 

Biswas 

et al. 

[87] 

Images Visible 

RGB 

Vehicle

s 

SSD, 

MobileNet

-SSD 

Accura

cy 

Custom 

dataset 

92.97 

(SSD) 

79.30 

(Mobile

Net-

SSD) 

Sun et al. 

[88] 

Images Visible 

RGB 

Vehicle

s 

CNN Precisio

n 

Car-159 85.34 

Kumar et 

al. [89] 

Videos Visible 

RGB 

Vehicle

s 

Bat 

optimizati

on + SVM 

+ ECNN 

Accura

cy 

Custom 

dataset 

96.63 

wang et 

al. [90] 

Images Visible 

RGB 

Vehicle

s 

GANs Precisio

n 

KITTI 

dataset 

92.97 

Shvai et 

al. [91] 

Images Visible 

RGB 

Vehicle

s 

Ensemble 

of CNN 

Accura

cy 

Custom 

dataset 

99.03 

Awang 

et al. 

[92] 

Images Visible 

RGB 

Vehicle

s 

Sparse-

filtered 

CNN with 

layer 

skipping 

Accura

cy 

BIT vehicle 

dataset, 

custom 

dataset 

93 

Grents et 

al. [93] 

Videos Visible 

RGB 

Vehicle

s 

SORT + 

Faster R-

CNN 

Accura

cy 

Custom 

dataset 

78 

Zhu et al. 

[94] 

Images Visible 

RGB 

Vehicle

s 

MME-

YOLO 

Precisio

n 

Custom 

dataset 

91.18 
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Jagannat

han et al. 

[95] 

Images Visible 

RGB 

Vehicle

s 

Image 

processing 

+ 

ensemble 

learning 

Accura

cy 

MIO-TCD 99.13 

Hu et al. 

[96] 

Videos Visible 

RGB 

Vehicle

s 

YOLOv4 Detecti

on 

speed 

Custom 

dataset 

16FPS 

Yang et 

al. [97] 

Videos Visible 

RGB 

Vehicle

s 

Feature 

fused SSD 

+ TDO 

mAP ImageNet 

VID 

83.5 

Zhu et al. 

[98] 

Images Visible 

RGB 

Vehicle

s 

LittleYOL

O-SPP 

mAP PASCAL 

VOC 

77.44  

 

MS COCO 52.95 

Wang et 

al. [99] 

Videos Visible 

RGB 

Vehicle

s 

HSV + 

SSD 

Accura

cy 

 96.49 

For a literature review on vehicle detection and classification, research papers have been 

taken from 2009 to 2022. Figure 2.3 provides the statistics of the number of research papers 

taken year-wise.  

 

Figure 2.3: Number of papers reviewed year-wise for vehicle detection. 
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Figure 2.4 shows the ratio of image-dataset vs. video dataset taken in collected research 

papers. It has been observed that most researchers used image-based datasets over video-

based datasets. Similarly, Figure 2.5 shows the camera type, thermal or visible cameras for 

collecting datasets. Figure 2.5 shows that 96% of the datasets have been collected from 

visible cameras, and research on thermal images and videos is relatively less. Figure 2.6 

shows the various datasets taken for vehicle classification and detection research works and 

observed that PASCAL VOC and custom datasets are major sources. Various performance 

measures utilized to evaluate the model performance were shown in Figure 2.7 and analyzed 

that precision, accuracy, mAP, and precision-recall curve are the most utilized metrics. 

 

Figure 2.4 Videos vs. Images used in Literature 

 

Figure 2.5: Thermal vs. visible images used 

in previous studies 

 

Figure 2.6: Datasets used in previous studies 

 

Figure 2.7: Performance measure used in 

previous studies 
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2.2 Literature Review Based on Emergency Vehicle Detection 

Fazenda et al. (2009) [109] presented a method for incoming emergency vehicle detection. 

Ambisonic technology and an array of 4 ubiquitous speakers were used to provide 

information to the drivers. Simulation results demonstrated the efficiency of the suggested 

system. 

Liaw et al. (2013) [110] proposed a system for ambulance recognition based on siren sounds 

in Taiwan. Initially, frames were extracted from the given sound. Every extracted frame was 

categorized into high-frequency and low-frequency classes. Further, the Longest Common 

Subsequence (LCS) was utilized to compare the organization of frequencies in the extracted 

frames. Simulation results showed 85% accuracy on realistic sounds. 

Schroder et al. (2013) [111] presented Part-based models (PBMs) for detecting siren sounds 

of emergency vehicles in noisy conditions. The author proposed two major improvements. 

Rather than random initialization, spectro-temporal part extraction was initialized. Secondly, 

I preferred the discriminative training method over standard generative training. In the study, 

one hand-labeled and two ML-learned PBMs existed and were evaluated with standard 

Hidden Markov Models (HMMs) having mel-spectograms and MFCCs in noise-free and 

multi-condition training configurations. Experimental results showed that PBMs provided 

acceptable models for acoustic-based emergency vehicle detection. 

Miyazaki et al. (2013) [112] proposed a method to detect ambulance sound and programmed 

it on a microcontroller. This study utilized Fast Fourier Transform (FFT) twice, and siren 

sounds were converted into numerical values. The proposed system provided effective results 

under the Doppler Effect even when the signal-to-noise ratio was 0 dB. 

Sundar et al. (2015) [113] presented an intelligent traffic management system to prioritize 

emergency vehicles. Every vehicle was equipped with Radio Frequency Identification 

(RFID) tags. The author used NSK EDK-125-TTL and PIC16F877A tag readers to read 

RFID tags. The proposed system estimated vehicle density and determined network 

congestion. Green signal timing at an intersection was adjusted based on traffic. If an 

ambulance was detected, the traffic controller was informed to turn on the green signal. 

Information was provided to police with GSM SIM300 if the RFID of the stolen vehicle was 

identified. The proposed model provided the expected results under different inputs.  
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Dobre et al. (2015) [114] used yelp and wail signals and designed siren detection with 

minimal computational cost without digital signal processing. The proposed model was 

implemented and simulated on the SPICE simulator, and the results were acceptable. 

Saad et al. (2016) [115] designed an intelligent traffic controller using passive RFID. The 

proposed model worked in harsh environments very well. Elliptic curve cryptography was 

used to maintain the system's security. Also, security was implemented to deal with attacks. 

The experimental results showed that the designed system minimized the congestion on road 

and emergency conditions. 

Islam et al. (2016) [116] presented a traffic controller based on video processing methods and 

RFID. The frames extracted from videos were utilized to estimate the traffic density. For law 

enforcement, RFID sensors were implemented so that any motorist not following traffic rules 

could be caught easily.   

Amir et al. (2017) [117] designed an automatic traffic controller with emergency vehicle 

control. RFID was used and programmed on a Programmable Logic Controller (PLC) to 

detect emergency vehicles. The proposed model retained the green signal on the road on 

which the emergency signal was identified and kept it on until emergency vehicles passed the 

intersection. 

Meghana et al. (2017) [118] presented a traffic management system that utilized RFID to 

estimate traffic density. Traffic density was not estimated as the number of vehicles present; 

each type of vehicle was assigned several units. Also, priority was given to emergency 

vehicles with the help of RFID. 

Naik et al. (2018) [119] addressed the issue of the emergency vehicle waiting time at the 

intersection. Hence, an RFID-based system was proposed to resolve the issue of allowing 

emergency vehicles to pass when detected on a particular road. The author implemented the 

proposed model with Arduino and LED display. Also, The author adjusted the road's green 

signal based on its traffic density. 

Bhate et al. (2018) [120] utilized the Internet of Things (IoT) to reduce traffic congestion and 

prioritize emergency vehicles like ambulances, police vans, and fire brigades. The proposed 

model was implemented with Raspberry PI, Mode MCU, and RFID. Experimental results 

depicted that emergency vehicles were handled effectively with the proposed model. 

Dutta et al. (2018) [121] utilized WSN, IoT, Data analytics, and cloud computing to design 

an effective traffic light management system. The proposed model could find the optimal 
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route and suggest users find it. The proposed model also managed accidental events. The 

given model considered precipitation level, accident, green corridor concept, fuel 

consumption, and traffic flow rate with the help of machine learning algorithms. 

Ebizuka et al. (2019) [122] detected approaching emergency vehicles towards the intersection 

based on siren sounds. From the input signal, FFT was applied for spectral analysis, and the 

kind of emergency vehicle was detected. The proposed model gave acceptable accuracy even 

in the presence of noise. 

Sara et al. (2019) [123] developed a system for ambulance detection using computer vision. 

Images were captured using static cameras. First, features were extracted from input images 

using HOG, Local Binary Patterns (LBP), and Gabor filters. After that, extracted features 

were used to classify SVM and kNN. The proposed model was estimated using many 

performance measures and showed acceptable performance.  

Goel et al. (2019) [124] compared various models based on deep learning, such as YOLO, R-

CNN, and SSD, to detect emergency vehicles on the road. Several experimental results were 

conducted, and the author claimed that YOLO performed better. 

Roy et al. (2019) [125] proposed an automatic system to recognize emergency vehicles from 

CCTV footage. Model training was performed on the MS COCO dataset, vehicles were 

divided into emergency, and regular vehicles, as well as CCTV footage images, were 

collected. For detection, the YOLO-V3 model was considered. Experimental results showed 

promising results. 

Raman et al. (2020) [126] designed a hybrid model in which image processing and acoustic-

based detection were performed to detect ambulances and fire trucks. For object detection, 

SSD Mobilenet was utilized while an algorithm was proposed to detect the siren sounds of 

these vehicles. The proposed model was tested on a dataset of 100 images and provided an 

accuracy of 86%. 

Tran et al. (2020) [127] presented an ensemble-based approach to classify vehicle horns, 

siren sounds, and background noise. The first model was aimed at processing raw waveforms, 

and the second was working with features extracted by MFCC and log-mel spectrogram. 

According to the author, the suggested model had detection accuracy for siren sounds of 

98.24% and worked well with variable input length. 
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Shirabur et al. (2020) [128] proposed a system using piezo-based traffic density estimation 

and utilized RFID to collect information about unique tags given to ambulances and fire 

trucks. Experimental results demonstrated the efficiency of the suggested system. 

Karmakar et al. (2020) [129] presented a system to prioritize emergency vehicles. First, a 

priority code was assigned to emergency vehicles based on their types. Then, the proposed 

model computed lane clearance time to find several interferences required to minimize the 

travel time of emergency vehicles. The proposed model was implemented using SUMO, and 

results proved that travel time decreased with increased interventions. 

Supreeth et al. (2020) [130] proposed a system for classifying ambulance sirens from noisy 

signals and vehicle horns in the frequency domain. First, the input signal was captured using 

an onboard mic and pre-processed by the sound device module in Python. The recognized 

ambulance signal was compared with Wail, Horn, Yelp, and Hi-Lo ambulance sirens. After 

that, a statistical model was utilized to compute basis calculations, and classification was 

done. 

Fatimah et al. (2020) [131] utilized features extracted from the siren to detect the ambulance. 

Audio sensors were used to record the sounds of sirens and processed by bandpass filters. 

This study used MFCC and statistical features extracted using Fourier decomposition in the 

frequency domain. Various machine learning techniques were trained on a selected feature 

set, including SVM, KNN, and ensemble models. The proposed model showed an accuracy 

of 98.49%. 

Baghel et al. (2020) [132] utilized an extended YOLO model to detect emergency vehicles. 

This model used two phases. The first phase was used to create BB across objects, and the 

final classification was done in the second phase. Image tensors were passed to the phase 2 

classifier to classify classified vehicles into subclasses further. 

Tran et al. (2021) [133] presented a system for detecting emergency vehicles based on audio 

and visual. In this, the first YOLO model with cross-stage partial connections was trained to 

classify vision-based emergency vehicle detection. The proposed model achieved an accuracy 

of 95.5%. The second model was proposed based on audio in which siren sounds were 

considered to classify emergency vehicles from others. Both models were also integrated to 

design an audio-vision-based model. The proposed model provided a misdetection rate of 

1.54%. 
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For detecting emergency vehicles, research papers were collected from 2009 to 2021. Figure 

2.8 shows the statistics of research papers taken for the literature survey over a given period 

and observed that maximum research on emergency vehicle detection was done in 2019 and 

2020. Figure 2.9 shows the different techniques employed for emergency vehicle detection. It 

has been analyzed that maximum research was done considering the siren sounds of the 

vehicles. RFID is also a competing technology for detection applications.  

 

Figure 2.8: Year-wise percentage of Paper Reviewed for Emergency Vehicle Detection. 

 

Figure 2.9: percentage of work done on different techniques for emergency vehicle detection 
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2.3 Literature Review Based on Green Signal Optimization 

Nakatsuyama et al. (1984) [134] made use of fuzzy logic to design phase (offset) controllers 

even during rush hours also. Fuzzy control statements were used to control traffic on a one-

way arterial road. Experimental findings demonstrated the efficiency of the suggested system. 

Chinu et al. (1992) [135] presented a distributed method to control traffic signals in which 

local traffic conditions at present and adjacent intersections were considered parameters for 

signal optimization functions. Cycle time, offset, and phase split was used to define the signal 

timing at an intersection. The author made fuzzy rules to compute the signal timing based on 

intersection traffic conditions. The author performed several experiments, and simulation 

results showed the model's effectiveness. 

Kok et al. (1995) [136] utilized fuzzy logic to extend traffic controllers' green signal timing to 

reduce vehicles' overall waiting timing. Extension values were computed based on fuzzy 

rules. The author performed experiments to compare fixed-time controllers with the proposed 

system. The author claimed that the proposed method based on fuzzy logic was better in 

terms of moving time and waiting time. 

Trabia et al. (1999) [137] proposed a traffic light controller based on fuzzy logic for an 

isolated intersection. In this study, loop detectors were placed upstream of the intersection to 

estimate incoming traffic flow and queue length. Fuzzy rules were used to extend the green 

timing or terminate the green phase depending on the collected information. Experimental 

results were performed at a four-way intersection to compare the performance of the 

proposed system with traffic-actuated controllers. 

Mirchandani et al. (2001) [138] designed an adaptive traffic controller known as RHODES. 

The system used four steps to design the controller. Firstly, the traffic control problem was 

divided into sub-problems and arranged hierarchically. Then traffic flow was predicted at a 

different level to activate proactive control. After that, different optimization methods were 

utilized to solve decomposed problems. Finally, an appropriate data structure was utilized to 

compute the solutions of sub-problems. Simulation results showed the effectiveness of the 

proposed system. 

Chou et al. (2002) [139] designed a coordinated intersection green signal optimization 

system. Various parameters used as input were adjacent intersections, vehicle queue length, 

number of lanes, and street length. The proposed model was compared with previous research 



53 
 

and had various characteristics like variable input variables, only nine fuzzy rules, lower 

inference frequency, and coordinating adjacent intersections. The simulation results with 

three linguistic variables, low, medium, and high, showed better performance. 

Li et al. (2003) [140] utilized traffic flow information and diffusion at multiple junctions to 

design fuzzy based traffic light controller. A weighing mechanism was introduced to assign 

the weights to analyze the impact of traffic flow at an adjacent intersection on the green 

signal at the present intersection. In this study, average delay time was used to evaluate the 

model efficiency. The various parameters optimized were cycle time, phase, and green split. 

Experimental results proved the effectiveness of the proposed model. 

Chiou et al. (2004) [141] used a hybrid approach of genetic algorithm and fuzzy logic for 

adaptive traffic light controllers. The proposed model considered queue length and flow rate 

as input variables, green time extension as an output variable, and vehicle delay determined 

by fluid estimation as an evaluation parameter. Simulation results proved that the proposed 

model was efficient and robust and could be applied to adaptive controllers. 

Conglin et al. (2004) [142] presented a neuro-fuzzy system to estimate the vehicles waiting in 

the queue. The hybrid system was having an accuracy of 90%. The author also used genetic 

algorithms and fuzzy logic to design traffic light controllers. Experimental results showed 

that the delay time of vehicles and the queue length of waiting vehicles was reduced. 

Murtal et al. (2005) [143] proposed a model for isolated intersection based on fuzzy logic 

known as Fuzzy Logic Multi-phased Signal Control (FLMuSic). The model had two 

components: one for estimating the phase's green time and the other for phase sequencing 

based on traffic density. Simulation results were performed on three and four-phased 

intersections. In both scenarios, the proposed system showed effective results, significantly 

when traffic density varied at a high rate. 

Zeng et al. (2007) [144] designed a control strategy in which per-unit delayed vehicles were 

considered for signal optimization. Initial values of the controller were estimated by 

analyzing previous traffic flows. Simulation results depicted the effectiveness of the system. 

Nair et al. (2007) [145] presented a fuzzy-based system to control traffic under normal as 

well as abnormal traffic scenarios. Sensors were deployed at the incoming and outgoing lanes 

to collect traffic-related data. Collected information was used to optimize the signal timing. 

The author designed a simulator and carried out various experiments. Experimental results 
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depicted that the proposed model had the same efficiency as other fuzzy-based systems in 

normal conditions and performed better than other controllers under exceptional scenarios. 

Wannige et al. (2008) [146] designed a neuro-fuzzy-based traffic light controller in which 

inflow rate and traffic density were input parameters. Density was computed by subtracting 

the inflow rate from the outflow rate and divided by the distance between sensors. The 

model's output was considered an extension in green signal timing. A four-way intersection 

was considered to carry out experiments. A few fuzzy rules were added to the model by the 

author, and the neuro-fuzzy system generated other rules. The collected dataset was split into 

testing and validation sets. To evaluate the performance, linear membership functions were 

utilized. Experimental results proved that the neuro-fuzzy inference system was far better 

than a fuzzy-based system. 

Zheng et al. (2008) [147] developed an adaptive signal control model to estimate the optimal 

parameter values. The parameter values were optimized based on signal timing information 

to satisfy the demands of real-time vehicles on a cycle-by-cycle basis. The author performed 

experiments on a network of thirty-eight actuated signals with microscopic simulation. The 

author claimed that the proposed model was able to improve the performance of traffic light 

controllers even during peak hours. 

Wannige et al. (2009) [148] presented a coordinated control signal for two four-way 

intersections using a neuro-fuzzy inference system. Membership functions and fuzzy rules 

were automatically designed by a neuro-fuzzy system based on the provided data set. The 

main input parameter to the proposed model was the inflow rate. The green signal's duration 

was determined based on the inflow rate. Experimental results showed that the proposed 

model minimized vehicle delays under different traffic scenarios. And signal timings were 

controlled and adjusted at both intersections depending on the traffic scenario at the first 

junction. 

Franceshinis et al. (2009) [149] utilized a wireless sensor network (WSN) for traffic 

monitoring. The major objective of the research was to design a robust, flexible, low-

maintenance, and cost-effective system. Sensor nodes were deployed along the roads to 

collect vehicle count, direction, and speed. Collected data was sent to the gateway node and 

further given to the roadside unit to integrate it with other data generation mechanisms from 

alternative sources.    
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A wireless sensor network-based solution for typical Indian city traffic was put up by C et al. 

(2009) [150]. The goal was to comprehend and address the chaotic traffic congestion. The 

author suggested regulating and optimizing how long a signal is green and how many 

vehicles pass through the intersection in a certain amount of time. The goal was to optimize 

the number of cars going through the signal by using WSN to make the traffic signal adaptive 

to the dynamic traffic flow. Following a simulation-based initial experiment and examination 

of the proposed algorithm, the authors found that the same infrastructure could accommodate 

7% more vehicles. 

The geometric fuzzy multi-agent system (GFMAS), which was based on a geometric type-2 

fuzzy inference system, was created by Gokulan et al. (2010) using a distributed multiagent-

based technique [151]. The various degrees of uncertainty contained in the inputs and rule 

base of the traffic signal controller can be addressed using GFMAS. A virtual road network 

simulating a portion of Singapore's financial district was used to test the simulation models of 

the agents created in PARAMICS. Green Link Determining (GLIDE) and Hierarchical Multi-

agent Systems (HMS) were two traffic-control algorithms that were in-depth analyzed and 

compared (HMS). When tested for realistic traffic-flow circumstances, the suggested 

GFMAS signal control performed better than both benchmarks. Additional testing 

demonstrated the proposed GFMAS's more remarkable performance in dealing with planned 

and unforeseen accidents and impediments. The favorable outcomes illustrated the 

effectiveness of the suggested multi-agent architecture and the potential for further 

advancement. 

Azimirad et al. (2010) [152] provided an innovative model for a single signalized intersection 

and a fuzzy logic controller. To guarantee a smooth traffic flow with a minimum waiting time 

and line length, the controller managed the timings and phase sequence of the traffic lights. 

Under typical traffic conditions, In general, fuzzy traffic controllers are made to maximize 

traffic flows and reduce waiting times. Therefore, these were not the best traffic controllers in 

unusual traffic situations like roadblocks and accidents. The average waiting time for a 

vehicle in a traffic network under a given time control was formulated using state-space 

equations. Additionally, the author put forth a  fuzzy model and fuzzy traffic controller that 

could regulate how traffic moves in both familiar and unexpected scenarios. Results indicated 

that the suggested traffic controller performed better under normal and abnormal traffic 

situations than traditional fuzzy traffic controllers using a novel fuzzy model. 
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Wu et al. (2010) [153] created a fuzzy control system in which a sensor measured the number 

of vehicles in all lanes. The phase with the highest number of vehicles was classified as 

having the highest priority. The highest priority was transferred as the phase changed from 

the previous one to the next. The best green light delay duration was then calculated using 

fuzzy rules reasoning based on the length of the current waiting formation and the overall 

formation length. The simulation results showed that the fuzzy control method significantly 

outperformed the conventional timed control method regarding vehicle delay time. 

Yousef et al. (2010) [154] proposed a traffic control system that adapts based on new traffic 

infrastructure and cutting-edge techniques for regulating traffic flow sequences using wireless 

sensor networks (WSN). The controller implemented the traffic signals time management 

algorithm and the traffic system communication algorithm (TSCA) (TSTMA). As shown by 

dynamic changes in the flow sequence of traffic signals and traffic variance, both techniques 

were capable of giving the system an adaptive and effective traffic estimation. The simulation 

results showed that the proposed plan was effective in relieving traffic congestion on the 

isolated (single) intersection based on the typical length of the line and the typical duration of 

the wait, as well as effective global traffic flow control on many intersections. 

Zhou et al. (2010) suggested an adaptive traffic light control technique that modified the 

order and number of traffic lights in line with the amount of real-time traffic detected [155]. 

The proposed method determined the ideal green light sequence and length by considering 

several traffic variables, such as traffic volume, waiting time, vehicle density, etc. Simulation 

findings demonstrated that the suggested algorithm achieved a substantially better throughput 

and a much shorter average waiting time for the vehicle compared to a fixed-time control 

method and an actuation control technique. The results of the proposed technique's 

application on the author's transportation testbed, iSensNet, showed that it was successful and 

workable. 

A novel application to predict the position and speed of a vehicle utilizing a wireless sensor 

network was presented by Saqib et al. (2010) [156]. Two Anchor nodes were utilized along 

the roadside as readers, and the distance between them was calculated. When a moving 

vehicle with a tag arrives within the expected operational range of two anchor nodes, 

information is exchanged using the Symmetric double-sided two-way ranging algorithm, 

which provides us with location information. Velocity might be easily calculated using 

position data at many time intervals. Kalman filtering was applied to estimate position and 

velocity from noisy observations. 
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A method for image-based traffic signal control was proposed by Choudekar et al. (2011) 

[157]. The technology used photographs mounted next to the traffic light to detect 

automobiles. Using image matching, the recorded images were successively matched. Edge 

detection was performed using the Prewitt edge detection operator. The predicted proportion 

of matched vehicle density was used to measure the duration of traffic lights. 

Soh et al. (2011) developed an ANFIS traffic signals controller for multilane intersections to 

reduce traffic jams at traffic intersections [158]. This study presented a novel idea for 

producing sample data for ANFIS training. Fuzzy rules were used to generate the sample 

data, which was then analyzed using a tree diagram. The performance of this controller was 

evaluated against that of conventional controllers and fuzzy controllers using a multilane 

traffic intersection model created using the M/M/1 queuing theory. The ANFIS traffic signal 

controller, out of the three controllers, had the least average waiting times, queue lengths, and 

delay times, according to the simulation data. 

According to the degree of traffic, Zaied et al. (2011) [159] created a fuzzy logic system that 

considers the two two-way crossings and can vary the time intervals of a traffic light. The 

proposed approach was evaluated on real-time data collected from a signalized intersection in 

the Hawalli governorate of the State of Kuwait. The findings demonstrated that the proposed 

fuzzy logic traffic system performed better regarding total waiting time, moving time, and 

vehicle queue after 27 iterations. The findings suggested that the suggested method might 

shorten the cycle's duration and give other phases a better opportunity to capitalize on the lost 

green time. 

Balaji et al. (2011) [160] presented a multi-agent system based on a type-2 fuzzy decision 

module for traffic signal regulation for a complicated metropolitan road network. The 

distributed agent architecture with a type-2 fuzzy set-based controller was created to optimize 

the time when a traffic light is green to decrease vehicles' overall delay. The proposed agent 

architecture for the signal control was put to the test on a portion of the Singapore Central 

Business District that was simulated using the PARAMICS program. A hybrid neural 

network-based hierarchical multi-agent system (HMS) controller and a real-time adaptive 

traffic controller (GLIDE), both now in Singapore, were used to compare the performance of 

the proposed multi-agent controller. The present mean speed of vehicles on the road network 

and the overall mean delay that cars experienced when traveling from point A to point B 

served as the performance measures for evaluation. The road network's traffic conditions 
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were improved significantly under the proposed multi-agent signal control, reducing the total 

trip time for simulated cars operating in dual and multiple peak traffic scenarios. 

An adaptive traffic light control system was put forth by Zhou et al. (2011) [161] based on 

real-time traffic information such as waiting time, traffic volume, vehicle density, and the 

number of stops, and modified the sequences of green lights at various junctions. The length 

of the ideal green signal can be determined by considering local current intersection traffic 

and the traffic at adjacent intersections. Experimental results showed that the proposed 

approach gave promising results. 

Zade et al. (2012) [162] offered a simulation of a fuzzy traffic control system to modify the 

length of the green light for adequate traffic flow. This system's expression of traffic-

responsive signal control included two crucial elements: observation of the nearby 

intersection's current traffic status and proper regulation of the traffic signals. The controller 

is made based on flow rate and traffic density. This FIS module was created using the 

MATLAB tool's SIMULINK environment, which produced satisfactory traffic signal control 

results. The Adaptive Traffic Signal Controller could make decisions based on the Fuzzy 

Inference system to shorten wait times at intersections. 

In a multi-intersection ITS, a distributed algorithm that determined the order and duration of 

green lights was reviewed by Faye et al. (2012) [163]. The author revealed the design of a 

WSN placed at junctions that made local judgments independently without the assistance of a 

centralized body. This sensor network collected data using an adaptive algorithm called 

TAPIOCA (distributed and Adaptive Intersections Control Algorithm), which made decisions 

about the green light sequences dynamically while taking into account three goals: (i) 

decreasing users' average waiting times while lowering the likelihood of starvation; (ii) 

prioritizing movements with the best load discharge potential; and (iii) synchronizing 

subsequent lights, for example, to create green wavy lines. In comparison to alternative 

dynamic methods and pre-determined schedules, simulation results using the SUMO 

simulator demonstrated that TAPIOCA produced a low average waiting time for cars and 

responded swiftly to increases in traffic load. 

According to Bhuvaneswari et al. (2012) [164], a wireless sensor network can be used to 

make traffic signals adaptive to changing traffic flow. The proposed method was tested 

against the current fixed time control system using LabView simulation software. 
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Dynamic time restrictions at traffic signal junctions are a proposed improvement to the traffic 

control system made by Bharadwaj et al. (2013) [165]. The proposed system made use of 

sensors to ascertain the conditions of the traffic in order to control it dynamically. Due to 

traffic congestion, the existing static traffic control system may impede emergency vehicles 

like ambulances. The planned Efficient Dynamic Traffic Control System (EDTCS) included 

Road Side Units (RSU), Traffic Control Units (TCU), and Monitor Units (MU) (RSU). The 

unique RFID code for an emergency vehicle could be read by an RFID reader at RSU and 

sent to MU. MU relayed detected data to TCU to count regular and emergency vehicles using 

proximity switches and RFID tags. By comparing the counts gathered from various lanes, 

TCU got the regular and emergency vehicle counts and adjusted the signal dynamically. The 

proposed EDTCS reduced travel time and gave emergency vehicles, such as ambulances, a 

particular required priority. 

The average amount of time that vehicles spend waiting at a junction was decreased because 

of Srivastava et al. (2013) 's [166] analysis of approaches to construct an intelligent system 

that was able to blend and support some of the existing technologies of traffic control. The 

proposed algorithms were adaptable to traffic flow at every road intersection point. Real-

world traffic conditions were simulated on the Green Light District Simulator (GLD) 

platform to create the graph of average waiting time versus cycles. The outcomes 

demonstrated that the suggested approach worked well for managing traffic at an actual road 

intersection. 

Hussian et al. (2013) [167] presented a wireless sensor network-based system that could route 

traffic based on the amount of traffic near any circle or intersection. This system could be 

simply adopted in any traffic system with less effort and expense because it didn't require any 

systems in the vehicles. This system featured a microcontroller-based routing algorithm 

developed for superior traffic management and wireless sensor network technology to detect 

automobiles. 

Ahmed et al. (2013) [168] proposed a WSN-based roadside communication architecture and 

system used for the intelligent control and management of vehicle traffic at road 

intersections. According to the suggested architecture, data was sent to the coordinator 

module at the intersection from the end nodes by vehicles that interface with roadside units. 

The author developed a dependable and durable channel-switching method that improved 

packet delivery dependability while reducing reaction time, energy use, and connectivity 

latency. The author conducted a sensitivity analysis of the suggested system architecture to 
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find the best system configuration by changing various communication parameters. The 

outcomes demonstrated the integrity and feasibility of implementing our suggested 

architecture. 

Zhou et al. (2013) [169] created an adaptable architecture for gathering regional traffic data. 

Future investigation into developing and putting into practice traffic monitoring solutions was 

based on this framework. In the context of a WSN environment, a two-layer network 

architecture was built for the collecting of traffic information. A user-customizable data-

centric routing method was also suggested for traffic information distribution, in which 

various routing-related data was taken into account for decision-making to fulfill diverse user 

requirements. Compared to other conventional routing algorithms on a real-world urban 

traffic network, simulations demonstrated the suggested routing scheme's strong 

performance. 

Bodenheimer et al. (2014) [170] presented a strategy to reduce pointless stops, CO2 

emissions, and fuel usage. The author turned the traffic light controller's state graph into a 

transition graph that concentrated on signal changes and the likelihood that they would occur. 

The system was additionally adjusted for computational speed and storage requirements. 

According to the author, 80 percent of all cases could accurately identify signal alterations 

that would occur 15 seconds in the future. 

Bi et al. (2014) [171] suggested a multi-agent type-2 fuzzy logic control (FLC) system 

optimized by differential evolution (DE) for the regulation of multiple intersection traffic 

signals. Due to their three-dimensional membership functions, type-2 fuzzy sets effectively 

handled model uncertainties, but choosing the correct membership function and rule base 

parameters was difficult. The type-2 fuzzy system's parameters were chosen using DE 

because it was simple to understand and use and had a low level of spatial complexity. The 

membership functions (MF) and the expert rule base parameters were alternately modified to 

avoid computational complexity. A traffic network with eleven intersections was 

investigated, and the suggested controller was used to control each intersection. A secondary 

layer controller was placed at each intersection to choose the appropriate phase order. 

Furthermore, a multi-agent system was used to implement communication among the nearby 

intersections. Simulation experiments were developed to contrast communicative type-2 FLC 

optimized by DE with type-1 FLC, fixed-time signal control, etc. According to testing results, 
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the suggested approach might successfully increase vehicle throughput rate while decreasing 

delay, queue length, and parking rate. 

Lin et al. (2014) [172] created a two-stage fuzzy control system for the traffic signals for a 

single intersection. Based on the amount of traffic in each lane and the wait duration, the 

fuzzy controller calculated the traffic intensity of each phase and then decided whether to 

continue operating the current signal phase or halt it. MATLAB was used to simulate the 

intersection of four phases, and the control system's effectiveness was assessed using typical 

vehicle delays. The simulation results demonstrated that the two-stage fuzzy control system 

beat the induction control and conventional timing control systems to reduce the typical 

vehicle delay. 

Chao et al. (2014) [173] utilized Radio frequency identification (RFID)  to transfer traffic 

flow data directly to a control system via an RS232 interface. RFID was proposed as a 

method of traffic flow detection. In parallel, the sensor evaluated and assessed the data using 

an extension algorithm created to regulate traffic flow. Furthermore, using ZigBee wireless 

network connection technology, the traffic flow state was also sent to a remote monitoring 

control system. This study's traffic flow control technology was capable of remote 

transmission and decreased traffic accidents. Additionally, it could efficiently manage traffic 

flow while minimizing delays and preserving a constant traffic flow. 

Biswas et al. (2015) [174] suggested a model gathering data about traffic and the presence of 

high-priority vehicles that utilized infrared proximity sensors and a microcontroller 

positioned in the center of the system. An intelligent traffic system was created to ease traffic 

and give emergency vehicles priority. 

Collota et al. (2015) [175] proposed a real-time traffic monitoring IEEE 802.15.4 Wireless 

Sensor Network (WSN) with multiple concurrent fuzzy logic controllers, one for each 

phase, as part of a traffic light dynamic control system. Each fuzzy controller managed the 

phase and green time of the traffic signals dynamically while taking into account the turning 

movements of the cars. The proposed system combined the benefits of using four parallel 

fuzzy controllers, such as better performance, fault tolerance, and support for phase-specific 

management, with the benefits of the WSN, such as simple deployment and maintenance, 

flexibility, low cost, non-invasiveness, and scalability. According to simulation findings, the 

proposed method worked better than previous alternatives in the literature and significantly 

decreased vehicle waiting times. 
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Jagadeesh et al. (2015)  [176] introduced a low-cost real-time dynamic traffic light control 

system using sensors to lower travel time while ignoring the fixed delay in signals. Dynamic 

time management was tested by dynamizing the traffic lights, measuring the results using an 

infrared sensor, and transmitting the data via a microcontroller. 

Odeh et al. (2015) [177] introduced a hybrid approach that combines Fuzzy Logic Controllers 

(FLC) with Genetic Algorithms (GAs). In this work, GA was used to modify the FLC 

decision rules that established an intelligent traffic signal system, outperforming a 

conventional FLC-based control in terms of performance. According to the simulation 

findings produced by the hybrid algorithm, performance might be improved by up to 34% 

compared to a conventional logic controller (FLC) and up to 31% compared to a regular 

traffic signal controller (CTC). 

Chakraborty et al. (2015) [178] developed a system that extended the current dynamic traffic 

signal control algorithm to reduce the average waiting time. The author also included the 

worst-case scenario for managing emergency vehicles. 

Hung et al. (2016) [179] proposed a method in which a CCD camera was mounted to view 

moving cars as they appeared in the distance from the camera's view span to the crossroads' 

stop line, which was designated by the letter L and statistically determined. The traffic signal 

timing was adaptively altered following the estimated traffic flow using the video sequence 

that the camera captured in its span on the road, where the gaps between the vehicles were 

used to calculate the density of vehicles appearing in the camera span. 

Nellore et al. (2016) [180] thoroughly analyzed the current urban traffic control programs. 

The main challenges with congestion control, average waiting time reduction, giving 

emergency vehicles precedence, and intelligent traffic system design requirements were 

reviewed to understand urban traffic management's goals better. The author concluded that 

using cloud computing to construct an intelligent traffic cloud is necessary to address real-

time related issues. 

Dubey et al. (2017) [181] presented an adaptive traffic system with an internet connection to 

monitor various lanes continuously. The Central Traffic Control Office evaluated and 

managed the data collected from various lanes from a single location. This collected data 

provided a number for the amount of traffic congestion in a specific lane according to which 

traffic lights were designed to operate. The signal lights would be chosen based on shorter 

wait times and less pollution if the first lane had less traffic than the other lanes. This 
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technology also guides drivers in selecting a less congested route. This technique was also 

helpful for traffic surveys, VIP clearance, and emergencies. It made traffic clearance more 

effective. It also reduced pollution and traffic congestion. 

Cruz-Piris et al. (2018) [182] suggested using a graph's centrality measurement as a starting 

point to identify the ideal spots to deploy sensors in a traffic network. After incorporating 

these sensors into a simulation scenario, three unique types of agents—traffic light 

management agents, traffic jam detecting agents, and agents regulating traffic lights at 

intersections—were identified as part of a multi-agent system. These Multi-Agent Systems' 

fundamental goal was to reduce networked vehicles' distance travel time. The necessary 

building blocks for modeling the sensors and agents in the simulation environment were 

constructed to test the suggested method. The Travel and Activity PAtterns Simulation 

(TAPAS) Cologne traffic scenario and the Simulation of Urban MObility (SUMO) traffic 

simulator were both employed in the author's research. The collected data showed that the 

idea permitted the decrease of the sensor network while still obtaining crucial information to 

have a thorough grasp of the environment. Finally, the author's experiments demonstrated 

that the proposed work outperformed other solutions already in use, such as traditional traffic 

light management systems (static or dynamic), reducing the length of vehicle trips and the 

overhead associated with message exchange in sensor networks. 

Hartanti et al. (2019) [183] suggested a fuzzy Mamdani logic to improve traffic signal 

regulation at crossings. Based on various real-time parameters, including the length of each 

row's queue, the number of vehicles entering the line, the speed of the vehicles, and the width 

of each lane, each row's duration or green light period was optimized. 

For efficient traffic flow, Pughat et al. (2019) [184] provided a Green Light-time Estimation 

(GLE), and delays are tracked by the traffic light controller (TLC). This adaptive TLC based 

on a fuzzy inference system (FIS) was used to monitor the current traffic situation 

surrounding the intersection in order to facilitate efficient traffic flow. Two TLC techniques 

were examined and reported on in this work. The first technique predicted the amount of time 

using traffic density and flow rate. The second method monitored the length of the green light 

based on data from vehicle communications, queue size, and traffic flow rate. 

Balta et al. (2020) [185] proposed a three-stage fuzzy-decision tree for traffic control which 

considers information like road construction as well as environmental factors such as 

accidents or the presence of emergency vehicles. The suggested model generated/sent input 



64 
 

to SDN agent vehicles and Road Side Units in an intersection for VANET routing protocols 

to be automatically selected based on traffic conditions. Under different traffic and network 

situations, the Adapazar City Center Model was used to assess the performance of the 

proposed system. According to the results of performance tests, the proposed 3-stage fuzzy-

decision model outperforms fixed-time signaling by 15% to a maximum of 17%. 

Ali et al. (2021) [186] concentrated on constructing an adaptive traffic signal control system 

with updated Webster's formula. These calculations were used to determine the ideal cycle 

time based on the traffic conditions that would apply to the following cycle. The fuzzy logic 

system was used to monitor and manage the change in traffic conditions between two 

sequential cycles. Using the SUMO traffic simulator, the proposed adaptive control 

approaches were compared to fuzzy logic-based traffic control, fixed-time Webster traffic 

control, and modified Webster traffic control. The simulation results demonstrated that the 

proposed methods beat the fixed time and fuzzy logic-based traffic control systems regarding 

the average vehicle delay, speed, and journey time. 

Chabchoub et al. (2021) [187] created an intelligent traffic light controller that can govern 

movement in two different ways using a camera and auto sensors using fuzzy logic and 

image processing with MATLAB. The console input for the fuzzy logic was the number of 

vehicles on each road, and the timing of the assumed red, yellow, and green signal based on 

the level of traffic. The fuzzy logic was created with two inputs and six outputs. The 

simulation's outcome was comparable to the suggested control unit in that it dealt with the 

lights concurrently based on the number of vehicles on each road branch, which required 

constant operation of the stoplights. 

In the Vietnamese capital of Hanoi City's isolated intersection with mixed traffic, Vuong et 

al. (2021) [188] used an adaptive neuro-fuzzy inference system (ANFIS) as a traffic signal 

control method. The proposed ANFIS method was more efficient because it entirely used an 

artificial neural network and a fuzzy logic system, intelligently adjusting the green time for 

each phase of the traffic signal lights by the fluctuating traffic volume under mixed traffic 

conditions to increase vehicle throughput and decrease waiting time. An example signalized 

intersection in Hanoi City was studied to determine the efficacy of the suggested technique. 

Integrating the MATLAB programming language and the VISSIM traffic simulation model, a 

minor traffic simulator was made. Simulation results showed that the suggested approach 

using ANFIS outperformed both the fixed-time control strategy and the fuzzy logic method in 

terms of performance and adaptability. 
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Table 2.3 shows the summary of the literature review on green signal optimization techniques 

with respect to different parameters like single/coordinated intersections, performance 

measures, and outcomes of experimental work. 

Table 2.3: A summarized review of Green Signal Optimization Techniques 

Author Technique Single/Coor

dinated 

Intersection 

Metric 

Used 

Results 

Nakatsuya

ma et al. 

[134] 

Fuzzy 

Logic 

controller 

and phase 

controller 

Coordinated 

Intersection 

Delay 

(secs/ 

vehicles) 

Overall delay of vehicles had been 

reduced. 

Chinu et al. 

[135]  

Fuzzy 

Logic 

Single 

Intersection 

Waiting 

time, 

number of 

stops 

Overall waiting time and the 

number of stops had been 

minimized. 

Kok et al. 

[136] 

Fuzzy 

Logic 

Single 

Intersection 

Waiting 

time and 

movement 

time. 

It was noted that the fixed-time 

controller was somewhat 

imbalanced, whereas the fuzzy 

logic controller offered 

approximately equal movement of 

autos in each lane. Using the 

fuzzy logic controller significantly 

decreased the overall waiting time 

for the automobiles in each lane. 

The fuzzy logic controller 

outperformed the fixed time 

controller in terms of cost, which 

reflected fuel costs, efficiency, 

etc. 

Chou et al. 

[139] 

Fuzzy 

Logic 

Single and 

Coordinated 

Intersection 

Queue 

length and 

average 

The experimental results showed 

good performance with low, 

medium, and high traffic loads. 
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delay time 

Li et al. 

[140] 

Fuzzy logic Coordinated 

Intersection 

Delay time The proposed system showed 

better performance and controlled 

the real-time traffic and signals. 

Chiou et al. 

[141] 

Genetic 

algorithm-

based fuzzy 

logic 

Single 

intersection 

Total 

vehicle 

delay. 

The results suggested that the 

proposed model was effective, 

robust, and applicable for adaptive 

traffic signal control. 

Conglin et 

al. [142] 

ANFIS Single 

intersection 

Number of 

vehicles 

waiting in 

the queue 

90% accuracy for queue detection. 

Number of 

stops and 

average 

delay  

Experimental results showed that 

the proposed model's number of 

stops and average delay were also 

smaller. 

Murat et al. 

[143] 

Two fuzzy 

logic 

systems 

Single 

intersection 

Signal 

timing and 

phase 

ordering 

are the 

two output 

parameters

. 

The proposed approach reduced 

vehicle delays by 23%. 

Zeng et al. 

[144] 

Fuzzy logic Single 

intersection 

Number of 

delayed 

vehicles 

Comparing the proposed strategy 

to the conventional approach, 

fewer vehicles were delayed for 

each unit of time. 

Nair et al. 

[145] 

Fuzzy logic Single 

intersection 

Average 

delay 

In unusual traffic conditions, the 

proposed approach successfully 

cut down on average delays. 

Wannige et 

al. [146] 

ANFIS Single 

intersection 

Average 

delay  

The proposed system reduced the 

overall delay. 
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Zheng et al. 

[147] 

Adaptive 

signal 

control  

Coordinated 

intersection 

Average 

travel 

time, 

vehicle 

speed, 

mileage, 

and 

vehicle 

hours 

traveled. 

The proposed model performed 

best under medium-intensity 

traffic conditions.  
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Chapter Summary 

In this chapter, the literature review based on the research carried out by researchers on 

vehicle detection and classification, emergency vehicle detection, and green signal 

optimization based on fuzzy logic and hybrid systems of fuzzy systems has been documented. 

The selected papers offer an overview of research-based models and techniques for vehicle 

detection, emergency vehicle identification, and green signal optimization; datasets used, 

performance measures considered, and types of cameras taken for collecting datasets.  

After an exhaustive survey of various sub-topics, the given literature survey will be a 

significant step in finding research gaps and limitations of existing works and identifying the 

future scope for carrying out the research. 
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Chapter 3 

Vehicle Detection and Traffic Density Estimation 

Humans are perfect at identifying multiple objects and detecting obstacles accurately in no or 

very little time existing in an image. But to perform the same tasks using computers, high 

processing time, hardware infrastructure, and complex algorithms are required. Nowadays, 

with the progression of technology, i.e., faster GPUs and convolutional neural networks, and 

by collecting a large amount of data, machines can train to identify and categorize various 

objects in an image with high precision.  

Object recognition refers to a collection of related computer vision tasks recognizing objects 

in digital images. Image classification [41] is a supervised task that predicts the appropriate 

class of object available in an image. Object localization [189] refers to the determination of 

the position of one or more objects in an image and presents detected objects by drawing a 

bounding box around them. Object detection [189] is the combination of the above two tasks. 

An object detection algorithm distinguishes objects of confident, authentic classes from 

image backgrounds with the defined localization and predicts class labels of all objects. The 

task of the image classification model is to find the probability of an object belonging to a 

particular class. 

In contrast, the object localization model aims to identify the location, that is, the coordinates 

of an object. Figure 3.1 shows the figure of object detection. Hence, a reliable and efficient 

detection algorithm should determine spatial information and a solid understanding of 

semantic cues about the picture. 

 

Figure 3.1: Object Detection 
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Systems that use sensing, analysis, control, and communications technologies to improve 

mobility, efficiency, and security are known as intelligent transportation systems (ITS). Land 

transportation used ITS to improve traffic flow and reduce waiting time. Wide-ranging ITS 

applications process and transmit data to reduce traffic congestion, improve traffic 

management, and enhance quick responses to unexpected incidents. 

One of the critical components of public transportation systems is video surveillance, which 

offers tremendous research potential because it helps with traffic network planning and 

management. The investigation of algorithms becomes more crucial and necessary as the 

number of cars on the planet rises. In the past, viewing and interpreting video data required a 

lot of labor, which was quite wasteful. However, in the last ten years, the price of surveillance 

cameras has dropped, allowing for the recording and using vast amounts of traffic data. Many 

computer vision techniques have been created to examine video surveillance data. 

Specific surveillance tasks, like vehicle counting [190], license plate recognition [191], and 

incident detection [192], can be handled by sensor-based or vision-based algorithms in urban 

traffic systems. However, vision-based approaches may fully benefit from the plethora of 

visual patterns to identify target objects in a human-like manner. As an illustration, consider 

the application of vehicle detection. Radar sensor-based techniques can only detect vehicles 

in a small area. In contrast, vision-based approaches can use a camera to find all vehicles in a 

large visible area and simultaneously describe additional features of each detected vehicle.  

3.1 Different techniques for vehicle detection 

Vision-based vehicle detection algorithms are classified into three main divisions: motion-

based, handcrafted feature-based, and CNN-based approaches. 

3.1.1 Motion-based approaches  

Motion-based approaches comprise background subtraction, optical flow, and frame 

subtraction. Background subtraction separates foreground objects from the background using 

masks. The frame subtraction method subtracts two or three consecutive video frames to 

detect moving objects. In comparison, optical flow computes the motion vector of each pixel 

and tracks them. Among all these methods, optical flow is computationally complex and 

time-consuming. However, the above-mentioned techniques can only classify and detect 

moving vehicles by capturing images/videos from still cameras. 
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3.1.2 Handcrafted feature-based approaches  

Handcrafted feature-based approaches contain Histogram of Oriented Gradients (HOG) 

[193], SIFT [194], and Harr-like [195]. These methods have low feature representation. 

Although these methods work well even if the data size is small and doesn't require any 

special hardware, in ML, features need to be extracted by some expert. The algorithm's 

efficiency depends upon how accurately features are identified and extracted.  

 

 

 

 

Figure 3.2: Object detection using handcrafted features 

3.1.3 CNN based approaches 

With the advancement of image classification algorithms using deep learning, object 

detection algorithms have also been widely used in recent years. Deep Learning models 

require a considerable amount of training data as it learns high-level features from it. It 

reduces the task of developing feature extraction algorithms. But these algorithms highly 

depend upon high-end machines as these algorithms perform a large number of matrix 

multiplication operations. Graphical Processing Units (GPUs) can very efficiently optimize 

these operations. Object detection frameworks based on deep learning are categorized into 

two classes: two-stage detectors and one-stage detectors. 

A sparse set of proposals is generated in a two-stage detector, and features are taken out in 

the first phase. The motive is to propose high-recall regions so that every object in an image 

fits at least one of the proposed neighborhoods. Then region classifier predicts the class of 

each proposal. Two-stage detectors give high accuracy, although more time is taken to 

produce results. One stage detector directly predicts each location's category of the feature 

map, producing results in less time.  

3.2  Convolutional Neural Network 

Today's majority of machine learning professionals rely heavily on convolutional neural 

networks (CNN) [194]. Like a standard multi-layer neural network, a CNN model typically 

has one or more fully connected layers after one or more convolutional layers (sometimes 

with a sub-sampling step). Local connections and linked weights, along with some form of 

pooling, the architecture of a CNN is designed to take advantage of the 2D structure of an 

Input Digital 

Image (Pixels) 

Feature 

Representation 

(handcrafted) 

Machine Learning 

Classifier 



72 
 

input image. CNNs also have fewer parameters and are easier to train than fully-connected 

networks with the same number of hidden units. The primary functions of a general CNN 

model are introduced one at a time in the following subsections. 

3.2.1 Convolution 

Convolution filters are the first layers to accept an input signal. During convolution, the 

network identifies the input signal using what it has previously learned. The subsequent layer 

receives the generated output signal. Translational invariance is a convenient characteristic of 

convolution. It implies that each convolution filter represents an important feature, and the 

CNN algorithm learns which features make up the resulting reference image. The location of 

the features has no bearing on the output signal intensity; all that matters is if they are there. 

Therefore, an object might be present in various positions and yet be recognized by the CNN 

algorithm. 

Other crucial variables are also adjusted, like channel depth, stride, and zero-padding. The 

number of filters employed for the convolution operation is correlated with the channel depth. 

As more filters are added, the network gets stronger at extracting picture attributes and 

identifying patterns in unseen images. The amount of pixels the filter matrix moves over the 

input matrix is known as the stroke. Filters are moved over the image one pixel at a time 

when the stride is 1. 

3.2.2 Nonlinearity Activation 

The activation layer regulates the signal's progression through the network's layers by 

simulating how neurons activate. Strongly correlated output signals with prior references 

would activate more neurons, allowing for more effective signal propagation for 

identification. Rectified Linear Units (ReLU), the most common activation function for 

modeling signal propagation with CNN, are advised due to their faster training times. An 

extensive range of intricate activation functions is compatible with CNN. 

The element-wise operation (applied per pixel) known as ReLU is used to replace any 

negative pixel values in the feature map with a value of 0. ReLU is used to bring nonlinearity 

into the CNN model since most real-world data we would like the network to learn from is 

nonlinear (Convolution is a linear operation - element-wise matrix multiplication and 

addition, so we account for nonlinearity by introducing a nonlinear function like ReLU). 
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3.2.3 Pooling or Sub-sampling 

Convolutional layer inputs can be "smoothed" to lessen their sensitivity to noise and 

translational fluctuations. A technique known as pooling or sub-sampling can be 

accomplished by obtaining averages or the maximum over a signal sample. While reducing 

the dimensionality of each feature map, this spatial pooling still preserves the most crucial 

data. For the maximum pooling scenario depicted in Figure 3.3, the most significant 

component from the corrected feature map is chosen inside a spatial neighborhood made up 

of a 2X2 window. In such a window, it is also possible to compute the average (average 

pooling) or the total of all components rather than just the largest one. Max pooling has been 

proven to produce superior performance in real-world settings. 

1 1 2 4 

5 6 7 8 

  3 2 1 0 

1 2 3 4 

Figure 3.3: Max Pooling Operation 

3.2.4 Fully-Connected Layer 

A network's final layers are frequently fully linked, which means that each neuron in the 

layers before and after them is connected. Significant elements of the input image are shown 

in the output of the convolutional and pooling layers. The task of the Fully-Connected layer is 

to categorize the input image into several groups using these qualities and the training 

dataset. It is also possible to learn nonlinear combinations of these features for data 

classification if a fully linked layer is included. Most of the convolutional and pooling layer 

characteristics may be helpful for the classification task, but combining those features may be 

much more efficient. 

3.2.5 Back Propagation 

The backpropagation algorithm is typically the foundation for a CNN model's training 

procedure [197]. To reduce output error, utilize gradient descent to update all filter weights 

and parameter values after computing the gradients of the error concerning all network 

weights via backpropagation. 
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3.2.6 Common Loss Functions 

In machine learning, optimization is frequently driven by a loss function that establishes the 

learning objective by mapping parameter values to a scalar number signifying the "badness" 

of these parameter settings. Learning aims to determine a weighting that minimizes the loss 

functions. An "information gain" matrix defines each label pair's " value " as sent to the 

information gain loss function. Softmax Loss computes the multinomial logistic loss by 

running real-valued predictions through a softmax to produce a probability distribution over 

classes. 

3.2.7 Dropout Operation 

A deep learning model can also be trained using the dropout operation approach. Dropout is 

the term used to describe neglecting neurons while training a specific set of randomly 

selected. When these units are "ignored," it signifies that during a specific forward or 

backward pass, they are not taken into consideration. At each training stage, a smaller 

network is left behind as individual nodes are either eliminated from the network with 

probability 1-p or kept in the network with probability p.  Dropout aims to prevent over-

fitting because a fully-connected layer consumes the majority of the parameters and co-

dependency between neurons during training.  

3.2.8 Proposal Generation 

Bounding boxes are generated around the potential objects and further refined. There are 

different methods for proposal generation, like computer vision-based methods, anchor-based 

methods, key point-based approaches, etc. In computer vision methods, proposals are 

generated with high recall using lower-level features. Anchor-based methods are supervised 

proposal generators. It generates the anchors at different scales and different aspect ratios. A 

feature map of 256 dimensions is extracted from each anchor and used for the classification 

and regression layer. The SSD was developed on a similar idea. 

3.2.9 Learning Strategy 

Optimization of localization and classification is challenging in object detection. Various 

learning strategies are used, like cascade learning, data augmentation, imbalance sampling, 

localization refinement, etc. Data augmentation plays a vital role in deep learning models as 

vast volumes of data are required to train these models. In Faster R-CNN, a horizontal flip is 

performed on training images to increase training data. Imbalance sampling is also a critical 

issue and is defined as most of the proposals generated are background images and actual 
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objects are very low. In SSD, complex negative sampling was used to fix the ratio of 

foreground objects and background. 

3.2.10  Testing Stage 

Predictions made by object detection algorithms are vast in number and duplicate, so they are 

not directly used for model evaluation. To remove duplicate predictions, i.e., false positives, 

non-maximum suppression (NMS) is used in the SSD. For each class, the predicted objects, 

i.e., bounding boxes, are arranged based on their confidence value and the predictions with 

maximum value are selected. Suppose selected bounding box is called M. After that the 

Intersection over Union (IoU) of all bounding boxes with M is computed. If IoU is more 

significant than some threshold value, it will remove these bounding boxes.  

        {
               (   )        
                       (   )        

 (i) 

NMS will miss an object if it lies within the threshold of M. To overcome these limitations, 

Navneet et al. [62] proposed soft-NMS which does not discard predictions but decreases the 

score of detections. 

 

Figure 3.4: Non-Maximum Suppression [50] 

Detection is done in two ways, i.e., vanilla object detection (bbox-level localization) and 

instance segmentation (pixel-level or mask-level localization). The vanilla object detection 

method uses bbox annotations while IoU is computed between the obtained bounding boxes 

and the target bounding boxes to compute the model effectiveness. 
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3.2.11  Transfer Learning 

In the past, utilized collected training data with labels or without labels was to infer the data 

using traditional machine learning and data mining algorithms. Transfer learning, however, 

changes this process since it applies knowledge gained from at least one source assignment to 

the target work to enhance the experience. The fundamental idea to integrate transfer learning 

in machine learning was created at the NIPS-95 workshop on "Learning to learn." This 

workshop's primary focus is on the need for machine-learning techniques that reinforce and 

retain prior experience-based knowledge. 

The main objective of transfer learning is to enhance the experience within the destination 

task by investing information from the supply task. With the help of transfer to improve 

learning, there are three standard methods: Firstly, initial performance accomplishable within 

the target task victimization solely the transferred information, before any more extended 

learning is executed, compared to the initial performance of an ignorant agent. Secondly, the 

measure of time it takes to become thoroughly familiar with the objective assignment given 

the transferred information contrasted with the measure of time to take it without any 

preparation. Thirdly, the last execution level reachable in the objective task contrasted with 

the last dimension without transfer. 

Transfer learning can be implemented in two ways: Firstly, the extraction of features, which 

takes the very much prepared model from the source task as a component extractor and 

relearns the last few expanded layers without changing the first system parameters; Secondly, 

the calibrating method, which includes a couple of arbitrary statement layers to the pre-

prepared systems, in addition, loads of unique layers will refresh in a little learning rate. 

Image categorization using Inception V3 as a starting point, transfer learning with a warm 

restart, VR-enabled imitation learning, leveraging modules from pre-trained models, and 

meta-learning: learning to learn, etc., are a few instances of transfer learning in action. 

3.2.12  Evaluation Metrics 

The task of object detection is typically used to predict the bounding box of the target item. 

An evaluation metric called Intersection over Union (IoU) is used to gauge how accurately an 

object detector performs on a specific dataset. This evaluation metric is frequently employed 

in object detection tasks. More specifically, the ground truth bounding boxes and the 

projected bounding boxes by a model are needed to apply IoU to evaluate an object detector.  
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Therefore, computing IoU can be defined as: 

    
               

              
                  (  ) 

The accuracy can be determined of the localization by specifying an IoU threshold. Each 

anticipated box is either a True Positive or a False Positive. The definition of precision (P) is 

the ratio of the number of True Positives (Tp) to the sum of the True Positives and the False 

Positives (Fp).  

  
  

     
              (   ) 

The number of True Positives (Tp) over the sum of the True Positives and the number of 

False Negatives is known as Recall (R) (Fn). 

  
  

     
              (  ) 

The accuracy-recall curve shows how precision and recall are traded off for different IoU 

thresholds. Low false negative rates are connected with high recall, and low false favorable 

rates are correlated with high precision. Excellent recall and high precision are both indicated 

by a high area under the curve. The precision values on the precision-recall curve are 

averaged to get the average precision when the recall is within the range [0, 0.1,..., 1]. 

Mean average precision (mAP) [198] is used to trade off accuracy and recall to assess the 

performance if numerous ground truths for each objects in the image are available.  

3.3  Proposed Methodology for Vehicle Detection 

To train a deep learning model, ‗N‘ annotated images {x1, x2, …, xN} are given, and for i
th

 

image xi, there are Mi objects belonging to C categories: 

   {(  
    

 ) (  
    

 )   (   
     

 )  }             ( ) 

Where   
 (  

 ⋴C) and   
  signify categorical and spatial labels of the j

th
 object in xi, respectively. 

For xi, the prediction  shares the same format as yi: 

     
  {(      

        
 ) (      

        
 )   }            (  ) 

Over C+1 categories, a multi-class classification model is trained, where C refers to actual 

classes and one background. 
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3.3.1 Data Collection 

Training the vehicle detection model with a standard dataset like PASCAL VOC 2007, 2012, 

and MS COCO 2014 is not an ideal choice [98]. These datasets do not contain all types of 

vehicle categories. PASCAL VOC 2007 and 2012 consists of only two class labels: car and 

bus. While MS COCO 2014 comprises three classes (car, bus, and truck). Therefore, four 

different datasets have been collected to perform experiments: FLIR thermal dataset, FLIR 

RGB dataset, MB7500, and KITTI dataset. FLIR dataset was released in 2018, consisting of 

approximately 14K Thermal, RGB images, and 10K videos [199]. The dataset comprises 

60% daytime and 40% nighttime images From November to May when the weather is clear 

to overcast. The MB7500 dataset contains around 7500 photos obtained with a Phantom 4 

drone and a high-definition camera in windy conditions. KITTI datasets are captured by 

driving around Karlsruhe's mid-size city, rural areas, and on highways. Figures 3.5 to 3.8 

show the difference between thermal and visible camera images of the same scene at different 

times and in weather. 

 
(A)  

 
(B) 

Figure 3.5:  Daytime image from the visible camera (A) and Thermal Camera (B) from FLIR 

Dataset [221] 

 
(A)  

 
(B) 

Figure 3.6: Sunlight-affected images from the visible camera (A) and Thermal Camera (B) 

from FLIR Dataset [221] 
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(A) 

 
(B) 

Figure 3.7: Morning time image from the visible camera (A) and Thermal Camera (B) from 

FLIR Dataset [221] 

 
(A)  

 
(B) 

Figure 3.8: Nighttime image from the visible camera (A) and Thermal Camera (B) from 

FLIR Dataset [221] 

3.3.2 Data Annotation 

Data annotation is the process of categorization and labeling of data. In this work, all the 

images are annotated using the labeling tool into six categories (cycle, two-wheeler, light 

vehicle, heavy vehicle, bus, and truck) [221].  

3.3.3 Data Augmentation 

Data augmentation is also used to increase the data diversity for training models. In this 

work, three transformations have been applied to balance the dataset: horizontal flip, rotation, 

and Gaussian noise. Figure 3.9 shows an original image of a bus and augmented images. 

    

(a) (b) (c) (d) 

Figure 3.9: Augmented Images (a) original (b) flipping (horizontal) (c) rotation (d) gaussian 

noise [221] 
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3.3.4 Detection of Vehicles using the Ensemble Method 

In this paper, two DL models (Faster R-CNN and SSD) have been investigated. In some 

scenes, both models show duplicate detections, which means the same object is detected in 

two categories simultaneously, leading to incorrect results. Figure 3.10 shows duplicate 

detections made by Faster R-CNN in which a total of five objects are present. Out of five 

objects, one object is detected by the model as a heavy vehicle and a light vehicle, while 

other objects are not detected at all. Base model predictions have been improved by 

eliminating duplicate detections, and an ensemble using a majority voting classifier has been 

implemented.  

3.3.5 Removal of Duplicate Detections in Faster R-CNN and SSD 

To remove the same predictions of the Faster R-CNN and SSD model, obtained predictions 

are compared to each other based on their bounding box coordinates. If the difference 

between two coordinates is less than 25 (threshold=25 taken using hit and trial method), then 

prediction with less confidence score is discarded. 

 

Figure 3.10: Prediction with Duplicate Detections by Faster R-CNN model [221] 

3.3.6 Ensemble of Faster R-CNN and SSD 

The technique of training numerous machine/deep learning models and integrating their 

outputs is known as ensemble learning. It's typically utilized to boost prediction performance, 

function approximation, and classification model accuracy. The proposed study has 

implemented an ensemble of two deep learning models (Faster R-CNN and SSD). Faster R-

CNN and SSD are explained as follows: 

3.3.6.1 Faster R-CNN 

Faster R-CNN is a two-stage detector consisting of a total of three parts. (a) Convolution 

layers (b) Region Proposal Network (RPN) (c) Classes and bounding box prediction. The 

architecture of Faster R-CNN is shown in Figure 3.11. CNN layers are used to extract 
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features from the images. RPN predicts the possibility of the presence or absence of an 

object. It works on the last feature maps of the CNN layers and predicts the bounding box 

around the possible objects. The last part of the model is used to predict class labels and final 

bounding boxes. 

 

 

Figure 3.11: Architecture of Faster R-CNN 

3.3.6.2 Single Shot Detector (SSD) 

SSD is a single-stage detector that consists of VGG-16 as a base without a classification layer 

followed by multi-box convolutional layers. Figure 3.12 shows the architecture of the SSD 

model. The base model (VGG-16) is used to extract features. After the VGG-16 base model, 

various convolutional layers with decreasing sizes are placed to detect objects at varying 

scales and aspect ratios and to predict confidence scores. Initial layers are responsible for 

detecting small objects, while deep layers detect larger ones. Hard negative mining is also 

utilized to avoid many negative proposals. 

 

 

 

 

 

 

 

 

Figure 3.12: Architecture of Single Shot Detector 
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Algorithm 1: Proposed Methodology 

INPUT: an image 

OUTPUT: Predicted classes with bounding boxes and their confidence score 

[PEnsemble : bbox , class, conf] 

Initialize the threshold value. And provide input images to the model. 

Begin 

   Obtain the results of base models. Suppose Pfaster and Pssd are the predictions 

obtained from faster R-CNN and SSD models, which return bounding boxes 

coordinates, class of vehicle, and confidence score. 

 [Pfaster: bbox, class, conf] 

 [Pssd:  bbox, class, conf] 

 If Pfaster. bbox - Pssd. bbox <= threshold 

     If Pfaster.conf1 > Pssd.conf2 

           PEnsemble.bbox = Pfaster.bbox 

           PEnsemble.class = Pfaster.class 

      Else 

 PEnsemble.bbox = Pssd.bbox 

            PEnsemble.class = Pssd.class 

       End 

 End 

End 

 

Faster R-CNN and SSD model predictions are saved in Pfaster and Pssd, respectively. 

Predictions made by both models are compared based on bounding box coordinates to 

identify unique or duplicate detections. If the coordinate values of two predictions have a 

difference of less than or equal to the threshold, that means both the models have predicted a 

specific vehicle. The confidence score of Pfaster is compared to the confidence score of Pssd. If 

the confidence score of Pfaster is greater than Pssd, then the prediction made by Pfaster is saved to 

the final prediction, and the Pssd prediction is discarded otherwise, and vice versa. A flow 

chart of the proposed technique is given in Figure 3.13. 
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Figure 3.13: working of proposed DL ensemble [221] 
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3.4  Traffic Density Estimation 

Road traffic density estimation is an essential factor that helps manage road traffic, road 

structure, vehicle routing, vehicular network traffic scheduling, reducing pollution, and 

making an efficient plan of transportation and related policies. Density is the number of total 

vehicles present on a lane over a time unit. Density is estimated by detecting and recognizing 

the vehicles. In late years, vehicle detection and classification has become a significant 

research arena and is used in many applications like intelligent parking systems, automatic 

toll collection, traffic statistics analysis, driver assistance systems, etc. 

Density is calculated as the number of units present on-road rather than the number of 

vehicles, as each vehicle has a different size and shape. They occupy different areas and take 

different times to cross the intersection. This research categorizes vehicles into six classes: 

cycle, two-wheeler, light vehicles (small cars), heavy vehicles (big cars, vans, etc.), bus, and 

truck. Table 3.1 shows the number of units assigned to each type of vehicle [221]. 

Predictions made of each model are summed up by multiplying each vehicle with its 

corresponding units 

        ∑                                    (   )    

Where predicted_categoryi represents the vehicle category predicted by the model and 

n_units represents the number of units associated with that category. 

Table 3.1: Number of units assigned to different types of vehicles 

Vehicle Type Number of Units 

Cycle 1.0 

Two-Wheeler 1.3 

Light Vehicle 1.7 

Heavy Vehicle 2.1 

Bus/Truck 2.3 
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Chapter Summary 

This chapter gives an introduction to object classification, localization, and detection. Basic 

concepts of a convolutional neural network, transfer learning, and object detection have been 

covered. Then, different evaluation matrices for object detection are also presented in this 

chapter. 

Finally, the chapter contains the design of an ensemble-based vehicle detection model, a 

combination of the Faster R-CNN and SSD models. The details of the working of the 

proposed model are illustrated in the algorithm. Also, the method of computing the traffic 

density is described, and the number of units assigned to each vehicle type is mentioned. 
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Chapter 4 

Detection of Emergency Vehicles Using Radio Frequency Identification 

(RFID) 

There has been a tremendous increase in vehicle traffic with urbanization, industrialization, 

and population. There is no robust traffic framework today; one approach to convey effective 

traffic frameworks is through unique control of traffic signals dependent on the traffic size. 

Moreover, for all need vehicles, for example, ambulances, police vans, and fire engines, no 

need administrations are given. Therefore, need vehicles must be furnished with specific 

administrations other than standard administrations. 

A traffic signal that works on timers is the most common form of traffic control. These are 

scheduled to work a certain way at a particular time, regardless of traffic. When congestion 

occurs for any reason, passengers' traveling time will increase, and emergency vehicles may 

get stuck in a traffic jam. In this chapter, the study of the detection of emergency vehicles 

using RFID has been done. 

4.1    Introduction to RFID Technology  

Animal tracking and automated toll collection are just two RFID technology applications that 

offer automatic object identification [201]. There are two components to this wireless 

technology: a tag (also known as a receiver) and a reader (i.e., a transmitter). These 

components employ radio frequency signals to exchange information between a tag attached 

to an object and a reader incorporated into the environment. RFID tags are embedded 

computers that enable wireless storage and retrieval of an object's identification information 

by an RFID reader. They have a small number of features and onboard memory. An RFID 

reader is an embedded computer that has processing power comparable to a modern desktop 

computer and can communicate in real time with thousands of RFID tags simultaneously 

[201]. RFID tags and readers come in various shapes and sizes and can work across 

frequencies and distances. They also have two different communication methods. 

4.2  Types of RFID 

RFID tags come in three primary varieties: passive, semi-passive, and active. The size and 

shape of tags can vary from that of a stamp to that of a shoe box, and they can work with 

various radio signal frequencies (e.g., from a few KHz to a few GHz). 
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4.2.1 Passive RFID 

A passive RFID tag has no internal power source. The incident radio frequency signal 

emitted by the RFID reader gives passive tags their power for functioning and 

communication. These are the least expensive (costing only a few cents per tag), have the 

most extended lifespan, and can initiate conversations with readers independently. 

4.2.2 Semi-passive RFID 

Semi-passive tags are semi-active or battery-assisted passive (BAP) tags. These operate on 

the same principle as passive tags but incorporate a battery to increase their communication 

range, provide memory to the tag, and sometimes add sensors. 

4.2.3 Active RFID 

An internal battery powers an active tag. As a result, it constantly announced its existence 

even without a reader. The reader is most dependent on active tags, which have a shorter 

lifespan and are more expensive (costing a few dollars or more per tag). Therefore, it is only 

applied in narrowly specialized industrial applications. 

4.3 Types of RFID Readers 

An RFID reader is an embedded device that can function over a wide range of radio signal 

frequencies (for example, from a few KHz to a few GHz). It comes in various form factors to 

fulfill the requirements of various use cases (e.g., handheld, desktop, wall-mounted, etc.). An 

embedded operating system must manage the onboard hardware resources of an RFID reader 

because the device is embedded. Additionally, an RFID reader includes a variety of 

communication interfaces (like USB, serial, ethernet, etc.) that enable it to be programmed in 

a variety of programming languages (like C++, C#, Java, etc.) to read and write tags by the 

needs of the application. A variety of antennas with various properties can connect RFID 

readers. Various antennas with various emission patterns (i.e., the form of the radio signal 

produced by the reader's antenna) can be utilized to link RFID readers. Newer readers can 

connect to up to four antennae. An RFID reader can read a tag at a range of distances, from a 

few centimeters for near-field readers to several tens of meters for far-field UHF RFID 

readers. It is dependent on the radio signal's frequency and intensity. 

4.4   Types of RFID Tag-Reader Communication Mechanisms 

Two main communication methods are employed for tag-reader interaction based on the 

variation in the temporal radiofrequency electromagnetic fields concerning tag-reader 
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distance. The charge and current components of the electric and magnetic fields are not 

significantly different when the tag-reader distance is up to two wavelengths of the reader's 

radio frequency signal. When tag reader distances are close, the combined effects create a 

near-field. Near-field communication is used to describe tag-reader communication through 

such a field interaction. The charge and current effects diverge to form a radiative field as the 

tag-reader distance surpasses the two wavelengths span limit. Far-field communication is the 

term used to describe this radiative field-based communication approach. Near-field 

communication is frequently used by RFID tags and readers when they operate at lower 

frequencies (i.e., a few KHz). In contrast, far-field communication is generally used when 

they run at higher frequencies (i.e., a few GHz). 

4.5 Different Ranges of RFID 

RFID labels and pursuers must be tuned at a similar recurrence. There are different 

frequencies that an RFID gadget can utilize. By and large, the most widely recognized are  

a) Low recurrence, or LF (125 - 134 kHz)  

b) High recurrence, or HF (13.56 MHz)  

c) Ultra-high recurrence, or UHF (433 and 860-960 MHz)  

Over the different frequencies, radio waves act contrastingly, so it is critical to pick the fitting 

recurrence for the application.  

Low-frequency labels, for instance, have a frequency and can enter delicate metal surfaces all 

the more adequately. LF RFID frameworks are likewise ideal for perusing high water content 

articles, for example, natural products or beverages. However, the reading go is just 

centimeters or centimeters. Commonplace LF RFID applications incorporate creature 

labeling and get to control. 

High-frequency labels work very well for metal items and can be utilized to deal with 

medium to high-water-content merchandise. HF RFID frameworks ordinarily work in inch 

ranges; however, they can have a most excellent perusing scope of roughly three feet (1 

meter). Following library books, following the patient stream, and travel tickets are the 

average HF RFID applications.  

UHF frequencies commonly offer better understanding and can move information rapidly 

(for example, peruse a lot more labels each second) than lower or high-recurrence frequencies 

(inch to 50 + ft. as per the RFID framework arrangement). Since, in any case, the frequency 
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of UHF radio waves is shorter, their sign would be brought down (or debilitated) and not 

communicated through metal or water. As a result of their high information move rates, RFID 

labels for some things without a moment's delay are appropriate, for example, merchandise 

boxes when passing a dock to a distribution center or dashing when crossing an end goal. 

Other primary uses for UHF RFID incorporate electronic cost assortment and control of 

stopping access because of the more drawn-out understanding extent. 

4.6   Proposed Methodology of RFID-Based Emergency Vehicle 

Detection 

During an emergency, the RFID tag is a sensor that passes signals to the lighting system. 

RFID is a technology used to automatically identify an individual, packet, or item with radio 

signals. It relies on RFID days to do so. These tiny transponders provide identity information 

when requested over a short distance. There are at least two parts in most RFID tags. One is 

an integrated circuit that stores certain information and modulates and demodulates the signal 

for radio frequency and other special functions. The second antenna is used to receive and 

transmit the signal. Two RFID tags exist mainly: active battery-containing RFID tags and 

passive, battery-free RFID tags. 

4.6.1 Proposed Methodology 

Every vehicle has passive RFID labels with explicit Electronic Product Code (EPC) RFID 

label numbers. No external force source should be connected. Subtleties, for example, the 

vehicle number, vehicle type, and proprietor data are likewise put away on each RFID tag. 

The Ultra-High Frequency (UHF) recurrence band recognizes labels in the RFID radio wire. 

The module peruses this information and is then sent for additional preparation to the worker. 

Table 4.1 shows the details of emergency vehicles taken for the experiment [219]. The 

proposed system includes two central units linked together: emergency vehicle detection and 

vehicle priority based on the type of vehicle. 
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Table 4.1: Details of Emergency Vehicles 

EPC 

Vehicle 

Number Vehicle Type 

Owner‘s 

Details Priority 

1011 XXX ambulance XXX 1 

1012 XXX fire brigade XXX 2 

1013 XXX ambulance XXX 1 

1015 XXX ambulance XXX 1 

1016 XXX police XXX 3 

1017 XXX fire brigade XXX 2 

1018 XXX ambulance XXX 1 

1019 XXX police XXX 3 

1020 XXX police XXX 3 

4.6.2 Detection of Emergency Vehicle 

This system is based on an RFID tag installed in emergency vehicles. During an emergency, 

it is used as a tracker. It means that the driver activates the RFID tag, which is then detected 

by RFID readers located a few meters away at the junction. These readers then continuously 

transmit the signals to the intersection where the traffic lights are controlled. The reader starts 

detecting signals, and the conditions return to normal as soon as the emergency vehicle is 

tagged into the junction. 

Access control is used to detect IDs entering or leaving the RFID reader area. The signals are 

passed to the junction unit following identification by RFID. The entire detection unit is 

shown in Figure 4.1. Following are the steps performed in the proposed algorithm. 

1. The transceiver collects signals sent by the RFID reader. After recognizing the received 

signals, the system identifies the type of emergency vehicle and assigns priority to it. For 

example, suppose more than one different or the exact emergency vehicle is present at 

different lanes, then according to their type. In that case, a numeric value, say 1 for an 

ambulance, 2 for the fire truck, and 3 for a police van.  

2. The system then prioritizes the roadsides accordingly. 
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Figure 4.1: Flow Chart of Proposed Methodology for RFID-based Emergency Vehicle 

Detection [219] 
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Chapter Summary 

This chapter covers basic concepts of RFID technology, components of RFID, and RFID 

based on frequencies. Ambulances, fire trucks, and police vans are considered emergency 

vehicles. It is assumed that RFID tags are attached to each emergency vehicle. When an 

emergency vehicle approaches the intersection, the RFID reader reads the RFID tag and 

checks the priority of the emergency vehicle assigned to them.  

This method presents a methodology for the arranging of traffic crisis vehicles. The proposed 

crisis location and organizing framework depend on radio recurrence ID. The crisis vehicle 

location module it will guarantee that the crisis vehicles will arrive at the goal as quickly as 

time permits. Each RFID tag is gathered and progressing by the system.  
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Chapter 5 

Acoustic-Based Emergency Vehicle Detection 

An audio segment that may be identified as a unique idea in an audio stream is referred to as 

a sound event [201]. We frequently encounter sound events in our daily lives, such as a 

doorbell, car engine, footfall, keyboard sounds, etc. Additionally, regardless of its substance, 

such as style, notes, or words, speech and music can be generally regarded as sound 

occurrences. Identifying the beginning and end of each sound event in an audio signal and 

connecting them to their appropriate textual labels is known as sound event detection (SED). 

SED's primary objective is to identify the sound events in the audio input accurately. 

The two primary subcategories of SED are monophonic and polyphonic [202]. Regardless of 

the number of sound events occurring at any given time, monophonic SED systems can only 

identify a single sound event (typically the most prominent) at a time. Because simultaneous 

sound events frequently occur in real life, the limit on the number of detected sound events is 

a drawback for the practical applicability of such systems. Consider the simultaneous 

presence of car horns, sirens, and loud human speech in an audio signal captured in a 

crowded street. On the other hand, the objective of polyphonic SED is to identify numerous 

simultaneous sound events at any particular time, which is more appropriate for real-world 

applications. 

5.1 Sound Representation 

The sound events in a real-world setting or a recording studio are digitally recorded to 

provide the audio signals for SED. Since no processing is done on the signal before it is used 

to represent a sound event, the time domain representation of a sound event is regarded as the 

lowest-level representation. However, this representation is mainly unnecessary to determine 

the belongingness of an object with its sound event for classification. To represent audio data 

for SED, specific acoustic properties are frequently extracted. Since the signals from the 

same sound event frequently share components in the frequency domain, the acoustic features 

are mostly retrieved in the frequency domain. 

Furthermore, compared to time domain representation, frequency domain representation is 

more noise-resistant and compact. The degree of abstraction of the sound representation 

depends on how many processing steps were applied to the time-domain input before 

acoustic features were obtained. For instance, the histogram of gradients (HOG) feature and 
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the mel-frequency cepstral coefficients (MFCC) feature, described below, are regarded as 

higher-level representations because they require multiple frequency domain processing steps 

to calculate, making the representations more abstract. 

5.2 Stages of Acoustic Feature Extraction 

Frame blocking, windowing, and frequency spectrum calculation are the three primary phases 

of acoustic feature extraction in the frequency domain. The signal should be presumptively 

able to model a sum of stationary sinusoids for the Short-time Fourier Transform (STFT) to 

acquire the frequency spectrum. The signal is first divided into brief frequency intervals to 

calculate the frequency of audio signals; the spectrum calculates the frequency of the 

spectrum. Frame blocking is the practice of doing this. Based on the frame length, there is a 

trade-off between frequency and time resolution. The increase hampers time resolution in 

frequency resolution that comes with more extended frames. As a result, the choice of frame 

duration depends on the current machine hearing task. Frame lengths between 20 and 50 ms 

are frequently chosen for SED. An overlap between the frames 25% and 50% of the frame 

length is frequently chosen to achieve better results. Then, a window function is multiplied by 

each short-time frame signal. Windowing is the technique used to prevent discontinuities at 

the frame's borders from affecting the estimation of the frequency spectrum. Hamming, 

Hann, and Blackman functions are frequently used for SED windowing. Finally, the 

frequency domain representation of each short-time frame signal is obtained using the 

discrete Fourier transform.  

5.2.1 Spectrogram 

The term "spectrogram" refers to the time-frequency domain feature matrix created by 

concatenating the frequency domain feature vectors for each recording's subsequent time 

frames. The foundation of a good representation of SED is frequently the spectrogram of an 

audio signal. The spectrogram has complex values because the Fourier transform is a 

complex-valued function. However, most machine learning techniques are only intended to 

function with input that has real values. Therefore, the phase information needs to be more 

frequently addressed in machine hearing since it is thought to be less informative [203], and 

only the magnitude of the spectrogram is employed. 

 Due to the linear frequency resolution of the Fourier transform and the fact that sound 

occurrences frequently have substantially higher energy levels at lower frequency levels, 

these lower frequency components predominate as valuable features. By using the logarithm 
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to create log magnitude spectrograms, the dynamic range of the linear magnitude 

spectrogram can be reduced. 

The advantages of using spectrograms as the audio representation for SED are as follows. 

Based on the relative energy distribution in the frequency domain, spectrograms offer more 

compact and comprehensive information about sound events when compared to raw audio 

signals in the time domain [204]. Additionally, because spectrograms are multi-dimensional 

like images, the extensive machine learning research conducted for tasks based on image 

categorization applies to SED. Because environmental noise is frequently restricted to lower 

frequencies, the resultant SED performance is better than raw audio signals. Spectrograms are 

more resilient to noisy environments than time-domain audio signals. 

5.2.2 Mel spectrogram 

Numerous spectrogram representation techniques are grounded in auditory perception in 

people. According to empirical findings, humans do not perceive sounds through a linear 

frequency scale, and we are more sensitive to changes in the lower frequency range than the 

higher frequency range.  

 The Mel scale is a non-linear frequency scale in which the human ear adjusts the pitches to 

appear equally spaced [205]. The mel spectrogram and mel-frequency cepstral coefficients 

are two examples of mel scale-based sound representations (MFCCs). The magnitude 

spectrogram is applied across the mel filter bank at each time frame to produce the mel 

spectrogram, a matrix of mel band energy feature vectors concatenated for successive time 

frames. Mel filterbank is a collection of triangle filters that use the mel scale and whose 

bandwidths increase with higher central frequencies. Higher frequency resolution is produced 

in the lower frequency range, and vice versa. Taking the logarithm to compress the dynamic 

range transforms the mel spectrogram into the log mel spectrogram, which is frequently 

processed further. Log mel spectrograms are the most widely used sound representation for 

SED tasks. They have been included in numerous cutting-edge techniques for polyphonic 

SED, uncommon SED, and SED employing weakly labeled data. The range of 40 to 80 mel 

filterbanks is frequently chosen for SED, likely fewer than the frequency bins utilized in 

STFT. Therefore, compared to a magnitude spectrogram, a mel spectrogram offers a more 

condensed picture.  
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5.2.3 Mel Frequency Cepstral Coefficients (MFCC) 

Applying Discrete Cosine Transform (DCT) to the log mel spectrogram yields MFCCs [206]. 

Mel filters overlap, which causes the outputs of neighboring filterbanks to correlate. As a 

result, DCT is roughly used to decorrelate the log mel spectrogram features. The higher 

MFCC coefficients are frequently ignored because they need more information. Additionally, 

the first coefficient needs to be more frequently addressed because it just equals the average 

log energy and says nothing about the spectral properties. The top 10–16 coefficients for each 

short period are acoustic properties.  

5.3 Detection of Emergency Vehicles using Siren Sounds 

Special siren sound signals are used by emergency vehicles to identify them on roads. 

However, traffic jams or road emergencies can cause emergency services to be delayed. 

Thus,   to avoid delays due to red signals at the traffic signal intersection, EVD has been 

focused on their siren sounds. Siren sounds have been separated into three categories: 

ambulance, fire truck, and police car. Each country has its regulations on the siren sound type 

and frequency band. 

Generally, the sirens are warning signals issued in an emergency and standardized by the 

International Organization of Standards (ISO), and ISO 7731 [207] gives important 

guidelines for warning sirens. Audio recognition using an ensemble of deep learning models 

is the primary approach used in this paper. Before performing the recognition task, audio 

feature extraction methods are used to obtain valuable features in the time domain and 

frequency domain. Intelligent transport systems can use the application of the EVDs system. 

Traffic controllers can integrate siren detection to prioritize direction with emergency 

vehicles by altering the signal and estimating the timing of the green signal accordingly.  

5.3.1 Data Collection 

The experimental dataset is collected from Google Audioset Ontology [208] which contains 

sound events in a hierarchal arrangement. This ontology consists of an animal, human, 

environmental, musical, and miscellaneous sounds. It includes the siren sounds of four 

vehicles, i.e., Police Car, Ambulance, Fire Engine, and Civil Defence Siren, in video format. 

Information about the video is available in a CSV file which contains the YouTube link to the 

video, starting time, ending time, and label. From the dataset, the video of three types of 

emergency vehicles (Ambulance, Police car, Fire truck) has been downloaded by using two 
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python libraries, i.e., "pafy‖ and ―youtube_dl." The whole audio file is of no use, so the siren 

sound of the vehicle is clipped from downloaded files using the "moviepy‖ library. 

5.3.2 Feature Extraction 

Although many feature extraction methods are available to extract features from audio data, 

Mel Frequency Cepstral Coefficient (MFCC) is used in this work. It has extracted 39 

different features from the dataset where the first feature corresponds to the audio pitch, and 

12 of them are related to the amplitude of frequencies. The flow chart of the feature 

extraction is given in Figure 5.1. The "Librosa" [209] library is used to extract information 

from audio files. The final shape of the feature vector and target is (259169,40) and(1,301), 

respectively. Figure 5.2 shows the waveform of the audio of the police car siren sound. 

 

 

 

 

 

 

 

 

Figure 5.1: Flow Diagram of feature extraction 

 

Figure 5.2: Waveform of police car siren [218] 
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5.3.3 Hyperparameter Tuning 

In this work, three types of deep learning models have been investigated and analyzed. When 

dealing with deep learning models, selecting the appropriate layers and network parameters 

to optimize its performance is necessary. Hence, a series of experiments have been 

conducted. The impact of the various layers and parameters is investigated in all three 

models. Following that, appropriate models from each configuration to acoustic-based EVD 

have been selected. Tables 6, 7, and 8 show the training and testing accuracy on different 

layers and parameters used in FCNet, CNN_Net, and RNN_Net models [218]. 

For implementing deep learning architectures, ―TensorFlow" has been used. It is a free and 

open-source library for mathematically extensive programming, mainly focusing on machine 

learning and neural networks, developed by Google. All the models have been trained on 

Google Colaboratory, supporting GPU (Graphics Processing Unit), free for public use. In all 

the configurations, the Relu activation function is used at the hidden layer, and in the output 

layer, Softmax activation is applied. The models are trained using the Adam optimizer [210] 

with a learning rate of 0.001, decay of 0.0001, and categorical cross-entropy loss.  

In this work, a recurrent neural network and an ensemble of three different deep-learning 

models have been created and evaluated to classify the siren sounds of emergency vehicles. 

Base estimators of the proposed ensemble consist of a fully connected neural network, CNN, 

and RNN. The details of the base estimators are as follows: 

a) Fully Connected NN (FCNet): This architecture is purely based on dense layers without 

convolutional layers. This network is evaluated with the different numbers of fully 

connected layers up to 8 with various parameters for selecting the best model. 

b) Convolutional NN (CNN_Net): This architecture consists of various 2D convolutional 

layers, filters, and a 4X4 kernel size. After convolutional layers, the max-pooling layer is 

used to prevent overfitting. Further, the dropout layer with a 0.25 parameter is applied 

after the dense layer. 

c) Recurrent NN (RNN_Net): This architecture is a recurrent neural network (RNN) that 

consists of a different number of long short-term memory (LSTM) layers with a different 

number of neurons.  

 

 



99 
 

Table 5.1: Layers and parameters in a multilayer fully connected neural network with 

different numbers of fully connected layers 

Layer FC 

Layer-

2 

FC 

Layer-3 

FC 

Layer-4 

FC 

Layer-5 

FC 

Layer-6 

FC 

Layer-

7 

FC 

Layer-

8 

Input 0 0 0 0 0 0 0 

FC-1024 35267

584 

3526758

4 

35267584 3526758

4 

3526758

4 

352675

84 

35267

584 

FC-512 52480

0 

524800 524800 524800 524800 524800 52480

0 

FC-512 26265

6 

262656 262656 262656 262656 262656 26265

6 

FC-512 ---- 262656 262656 262656 262656 262656 26265

6 

FC-256 ---- ---- 131328 131328 131328 131328 13132

8 

FC-256 ---- ---- ---- 65792 65792 65792 65792 

FC-128 ---- ---- ---- ---- 32896 32896 32896 

FC-64 ---- ---- ---- ---- ---- 8256 8256 

FC-32 ---- ---- ---- ---- ---- ---- 2080 

Output-3 1539 1539 771 771 387 195 99 

Total 

Parameters 

36,056

,579 

36,319,2

35 

36,449,79

5 

36,515,5

87 

36,548,0

99 

36,556,

163 

36,558

,147 

Training 

Accuracy 

% 

100 99.58 100 99.58 100 100 100 
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Testing 

Accuracy 

% 

60 70 75 84 92 94.6 96.4 

Table 5.2: Layers and parameters in a convolutional neural network with various  2D 

convolutional layers 

Layer Conv_Layers-

2 

Conv_Laye

rs-3 

Conv_Laye

rs-4 

Conv_La

yers-5 

Conv_La

yers-6 

Input 0 0 0 0 0 

Conv  4X4 – 32 544 544 544 544 544 

Conv  4X4 – 32 16416 16416 16416 16416 16416 

Conv 4X4 – 64 ---- 32832 32832 32832 32832 

Conv 4X4 –64 ---- ---- 65600 65600 65600 

Conv 4X4 – 128 ---- ---- ---- 131200 131200 

Conv 4X4 – 128 ---- ---- ---- ---- 262272 

FC – 512 564,265,472 281805312 70451712 35062272 6947328 

FC- 64 32832 16416 32832 32832 32832 

Output 3 195 99 195 195 195 

Total 564315459 281871619 70600131 35341891 7489219 

Training 

Accuracy % 

100 99.58 93.3 95 95 

Testing 

Accuracy % 

61 92.4 85.3 88.6 84.4 
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Table 5.3: Layers and parameters in an RNN with different long short-term memory (LSTM) 

layers 

Layer LSTM_Lay

er-2 

LSTM_L

ayer-3 

LSTM_Lay

er-4 

LSTM_

Layer-5 

LSTM_Layer

-6 

Input 0 0 0 0 0 

LSTM 32 9344 9344 9344 9344 9344 

LSTM 32 8320 8320 8320 8320 8320 

LSTM 64 ---- 24832 24830 24832 24832 

LSTM 64 ---- ---- 33024 33024 33024 

LSTM 128 ---- ---- ---- 98816 98816 

LSTM 128 ---- ---- ---- ---- 131584 

FC 128 4224 8320 8320 16512 16512 

Output 3 387 387 387 387 387 

Total 22275 51203 84227 191235 322819 

Training 

Accuracy % 

84.07 89.6 92.2 98.7 90.4 

Testing 

Accuracy % 

61.29 75.7 85.2 94.5 84.1 

5.3.4 Ensemble Model 

After evaluating and investigating various experimental results of different configurations of 

three models, an ensemble has been designed, making the prediction based upon majority 

voting. The base network of FCNet contains eight layers, CNN_Net consists of 3 layers, and 

RNN_Net comprises five layers. The proposed ensemble network's architecture is shown in 

Figure 5.3. 
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Figure 5.3: Architecture of Proposed Ensemble Model [218] 

Algorithm 5.1: Proposed Methodology for EVD 

Input: An audio file 

Output: The predicted class of emergency vehicle. 

Begin: 

I. Extract features from the given audio file using the MFCC technique. 

II. Provide extracted features to three base models, i.e., FCNet, CNN_Net, and 

RNN_Net, and store their predictions: y_FCNet, y_CNN_Net, and y_RNN_Net, 

respectively. 

III. Apply majority voting on the obtained predictions: mode(y_FCC_Net, y_CNN_Net, 

y_RNN_Net) and return final prediction 

End 
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Chapter Summary 

In this chapter, an introduction to sound-based event detection is covered. Different feature 

extraction methods from audio files are also discussed.  

Acoustic-based models are also a better choice as compared to image-based detection 

models. As emergency models move at high speed, it is difficult to capture the image of the 

emergency vehicle using the cameras. But emergency vehicles give warnings from long 

distances that the system can easily capture and process. 

This chapter introduces an ensemble of deep learning-based models for acoustic based 

emergency/high priority vehicle detection. The suggested model consists of fully connected 

layers, CNN and RNN models. Models have been trained on MFCC features extracted from 

collected data.  
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Chapter 6 

Green Signal Optimization Using Adaptive Neuro-Fuzzy Inference System 

A sound transport system is essential for a country's a trade and industry growth and 

development. But in many developing countries, inadequate transport facilities lead to road 

accidents and fidelities causing harm to life and environmental pollution.  

Traffic congestion is a significant issue in such countries as India. Road congestion is a 

complex process in which vehicles are clogged, and there is very slow or no movement. India 

alone accounted for about 10% of the world's road casualties [211]. Generally, road environs 

and human and vehicle interaction are driving road systems. According to a survey, the road 

environment contributes 28%, vehicle factors 8%, and human factors 95% to road accidents 

with overlapping effects [1]. Traffic congestion not only wastes people's time but also leads 

to environmental pollution, health hazards, and the wastage of fuel. The critical issue is 

managing road capacity with the supply-demand equation, properly deploying traffic control 

devices, and establishing intelligent transportation systems. Nowadays, fixed timer 

controllers with three-color traffic signals are used at intersections. Although these systems 

eliminate a person's intervention, they cannot work on real-time data nor identify priority 

vehicles. The waiting time for the vehicles is more in this system. In image processing-based 

systems, cameras are used to analyze the traffic density and the presence of vehicle density. 

But camera resolution and taking images/videos at odd times, like at night, is the major 

challenge. Fuzzy systems use predefined fuzzy rules for activating green signals depending 

on vehicle density, flow rate, etc.   Other than these techniques, Q-learning is widely used to 

improve traffic conditions. Q-Learning comprises an online learning method built upon the 

Markov Decision Process, which learns about the environment from previous experience 

without the involvement of a mathematical model.  

In all the techniques discussed above, the model is designed by analyzing the traffic pattern at 

a particular intersection. But traffic patterns keep on changing with time. Thus, the model 

fails to give the expected performance after some time. In this work, an ANFIS system is 

proposed, which can adapt itself to changing traffic conditions. ANFIS is a fusion system 

using neural networks and fuzzy logic, which can self-learn and perform reasoning that is 

easy for humans to understand. A neural network is a mathematical model which learns from 

previous experiences. A fuzzy system can use human reasoning to deal efficiently with 

uncertain data. In fuzzy logic, linguistic variables are used, and rules are designed to train the 
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system. Rules of the fuzzy system are fixed, and these rules are not adaptable. In the 

proposed method, the 4-lane intersection is considered, as shown in Figure 6.1, where the 

traffic can pass to its left side directly. For the right side direction and in the forward 

direction, vehicles need to wait for the green signal. 

 

Figure 6.1 4-way isolated intersection [220] 

6.1 Motivation  

Intelligent traffic control algorithms can be designed to increase the transportation system's 

supply if it is known how congestion propagates with time and space. In this work, with flow 

rate and density at the current lane, density at the adjacent lane is also considered. If the 

density at the adjacent lane is very high, then there is no use in providing high green signal 

timing at the current lane as well as it increases the waiting time of the vehicles at the 

adjacent lane. Rather than giving priority to the dense lane, the round-robin algorithm is used 

in the proposed method so that each lane gets equal priority with an appropriate time stamp. 

If green signal timing is provided to the lane with maximum density, then waiting time for 

vehicles on the less dense lanes will increase. Emergency vehicles like ambulances, fire 

brigade, and police vans must go with zero or minimal delay. In the proposed system, priority 

is given to such vehicles. If any high-priority vehicle is present, then the working of the 

round-robin algorithm is prompted, and a green signal is provided at the lane having a 
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priority vehicle. A minimum 15 seconds green signal is assigned to each lane. If no vehicle is 

present on a lane, then the green signal duration is reduced to zero for that lane. 

6.2 Proposed System for Green Signal Optimization  

Traffic congestion is a very complex and unpredictable problem. So it is challenging to 

manage the vehicles on the road and at intersections with a fixed timer system. Also, in case 

of emergencies like an accident or heavy jams, the intervention of traffic police is required, 

who manually handle the situation by taking the appropriate decisions. Soft computing 

techniques can be used to handle such issues as it exploits the tolerance for vagueness, 

ambiguity, and partial truth so that a robust, cost-efficient, and better understanding of reality 

can be accomplished. The role model for soft computing is the human mind. Neural 

networks, Fuzzy logic, and genetic algorithm are the principal partners of soft computing. As 

the neural network can learn and self-adaptability, a fuzzy system deals efficiently with the 

vagueness and fuzziness of natural systems by using if-then rules. A hybrid approach 

consisting of the NN and fuzzy logic (FL) has been considered, that is, Adaptive neuro-fuzzy 

inference system (ANFIS).  

The proposed model considers the traffic on the current and adjacent roadsides. Lanes are 

selected using the round-robin (RR) algorithm. According to the round-robin algorithm, each 

roadside will periodically get the green signal: roadside 1, roadside 2, lane 3, lane 4, and then 

lane 1, respectively. A fixed green time signal of 15 seconds is assigned to each lane. If no 

vehicle is present on a particular lane, then a green timing signal is not provided to that lane 

and shifted to the next lane. The round-robin algorithm is not applicable in the presence of 

emergency vehicles. Instead, a green signal is provided at the lane on which such a vehicle is 

present. After the vehicle's passage, the round-robin algorithm's operation is resumed again. 

6.2.1 ANFIS Model 

An integrating technique comprising of NN and FL called ANFIS is used as a principal tool 

in the proposed method. The proposed system is designed using the fuzzy rules extracted 

from the training data. Then ANFIS model is designed by tuning the rules of the fuzzy 

system using NN. Here, the Sugeno-based ANFIS system is implemented to compute the 

results.  

In the proposed system, vehicle density at the current roadside, vehicle density at the adjacent 

roadside, and flow rate is taken as input, and output is the green timing extension.  
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Vehicle density gives the number of vehicles present in one kilometer.  

  
 

 

   

  
             (   ) 

Where 'L' is the length of the lane and the ‗m‘ the number of vehicles present in the area 

covered by 'L‘ .Flow rate defines the vehicles passing the intersection during the green signal 

phase. 

  
 

 
                      (    ) 

Where 'T' on represents vehicles passing in time T seconds.  

A triangular membership function is used to represent the actual values of input and output. 

Output is defined as a constant value. The proposed model defines input variables from 0 to 

110 vehicles /km. Input variables are classified in five different ranges, from very low to very 

high, as shown in Table 6.1. According to the first-order Takagi and Sugeno‘s model, the 

output of each rule can be represented as follows:  

y= aiI1+biI2+ciI3+di  (ix) 

Where i= 1, 2, 3…..125 and ai, bi, ci, and di are the coefficients.  

Figure 6.2 shows the structure of the proposed system. The different layers of this structure 

are discussed below:  

 

Figure 6.2: Structure of the proposed system [220] 
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Layer 1: The number of neurons at this layer equals the number of input variables, i.e., three 

equal to inflow rate, density at the current lane, and density at the adjacent lane. 

Layer 2: In the proposed model, five membership functions are assigned to each input 

variable. Thus, the total number of neurons is 5+5+5=15. 

Layer 3: 125 fuzzy rules have been designed in the proposed model. Thus, 125 neurons are 

used at this layer. 

Layer 4: The number of neurons in this layer equals the number of membership functions 

used for the output variable. So, 125 neurons are used in this layer to represent output 

membership functions. 

Layer 5: This layer consists of only one fixed node that sum up all incoming signals to 

generate final output. 

Table 6.1:  Membership Functions for Input Variables 

Membership 

Function 

Flow Rate 

(Vehicles/Sec) 

Density at current 

lane(Vehicles/Km) 

Density at adjacent 

lane(Vehicles/Km) 

Very Low 0-30 0-30 0-30 

Low 20-50 20-50 20-50 

Average 40-70 40-70 40-70 

High 60-90 60-90 60-90 

Very High 80-110 80-110 80-110 

The proposed algorithm is divided into three parts: (i) selection of the lane, (ii) extension in 

the green signal timing, and (iii) training of the system. The flow chart of the proposed 

system is shown in figure 6.3 [220]. 

a) Selection of the lane: Normally, lane selection is made using the round-robin algorithm. 

Four input values are provided to the system, i.e., traffic inflow rate, number of vehicles 

waiting on the current lane, the density of the vehicles on the adjacent lane, and the presence 

of the emergency vehicle. Values for the next cycle are provided to the system during the 

yellow light. If the emergency vehicle is present on any lane, then the round-robin algorithm 

halts, and a green signal is provided on the lane having a priority vehicle. After the priority 

vehicle's passage, the round-robin algorithm's operation is resumed. 
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b) Optimizing green signal timing: Green timing signal is provided based on three 

parameters: Inflow rate (number of vehicles passing through the junction in one cycle), 

waiting for vehicles at the current lane (number of vehicles), and density of the vehicles 

(number of vehicles) at the adjacent lane. The linguistic variables for the input values used 

are Very Low (0-30 vehicles), Low (20-50 vehicles), Medium (40-70 vehicles), High (60-90 

vehicles), and Very High (80-110 vehicles). Depending upon the input variables and output 

variables, a total of 125 rules have been formulated, for example: 

i. If the inflow rate is shallow, waiting vehicles are very low at the current lane, and density at 

the adjacent lane is very low, green timing extension is shallow. 

ii. If the inflow rate is high, waiting vehicles are low at the current lane, and density at the 

adjacent lane is very low, green timing extension is shallow. If the inflow rate is low, waiting 

vehicles are high at the current lane, and density at the adjacent lane is low, green timing 

extension is high. 

iii. If the inflow rate is medium, waiting vehicles are medium at the current lane, and density 

at the adjacent lane is medium, green timing extension is medium. 

iv. If the inflow rate is high, waiting for vehicles at the current lane is very high, and density 

at the adjacent lane is low, green timing extension is medium. 

c) Training of system: The efficient design of ANFIS-based models need practical parameter 

training for enhanced accuracy. Training data is the most influencing factor. Therefore, to 

train the proposed model, traffic patterns are analyzed by taking videos of a junction (Guru 

Nanak Mission Chowk) in Jalandhar, Punjab. A dataset consists of values for inflow rate, 

waiting for vehicles, and vehicle density. For training and updating the proposed system, 

traffic data for one month can be stored so that the system's rules will be updated periodically 

to make the system adaptive. 

Pseudo code for the proposed methodology for adaptive traffic controller: 

1. Initialize the current road side and next road side: Set CURR=Roadside1, 

NEXT=Roadside2 

2. Initialize the algorithm parameters like the presence of priority vehicle (FLAG) and 

priority Road (Roadside_P). 

3. Check priority vehicle is present.  

If FLAG==1:   
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CURR=Roadside1 

  If CURR==Roadside1 then  

NEXT_P=Roadside2 

  Else if CURR== Roadside2, then  

NEXT_P=Roadside3 

  Else if CURR==Roadside3, then  

NEXT_P=Roadside4 

  Else   

NEXT_P=Roadside1 

  End If 

Initialize inflow rate (IRATE), number of waiting for vehicles at current lane 

(VCURR), and number of waiting for vehicles at adjacent lane (VADJ)   

End if 

4. Set green timing signals by evaluating the proposed system on IRATE, VCURR, and 

VADJ. 

If VCURR==0 then  

SIGNAL=0 

 Else 

  SIGNAL=15+EVAL(IRATE,VCURR,VADJ) 

 End if 

5. Activate the green signal timing for the SIGNAL seconds duration. 

6. Assign the current lane and next lane for the next cycle: 

CURR=NEXT 

If NEXT==Roadside1 then  

NEXT=Roadside2 

Else if NEXT==Roadside2, then  

NEXT=Roadside3 

Else if NEXT==Roadside3, then  

NEXT=Roadside4 

Else  

NEXT=Roadside1 

 End if 
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Figure 6.3: Flow chart of the proposed system [220] 
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6.3 Sending Data from One Intersection to Adjacent Intersection 

There are broadly two options to deal with such critical data: Premise communication or 

Cloud services. WSN modules such as Xbee or Zigbee can be used to build a reliable 

connection of internodes around the traffic signals and other on-ground modules. Figure 6.4 

and Figure 6.5 shows the receiver and sender circuit of WSN. 

a) Motivation to select Xbee or Zigbee 

i. IEEE 802.15.4-2003 standard designed for point-to-point and star communications 

ii. A broad spectrum of frequencies to choose from for data transmission 

iii. Relatively approachable for development and deployment as its long presence in solving 

WSN-related needs 

 

Figure 6.4: Receiver Circuit (WSN) [216] 
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Figure 6.5: Sender Circuit (WSN) [216] 

Even though with all these perks as well, Xbee fell short of meeting the requirement to serve 

as a viable option for data communication  

b) Reasons to look for a better solution. 

I) The Max range is limited to 3.2 Km, while Some traffic posts are farther away than 

this threshold. 

II) Packet dropping is a well-known issue while working with radio-wave-based 

solutions. 

III) Limited Baud rate to receive and process data which can bottleneck the whole 

workflow. 

IV) It can become economically unfeasible to deploy in real-world scenarios. 

The cloud-based solution seems a far more reliable alternative as it works around all the 

shortcomings of WSN in above mentioned case scenario. Even though there are many 

options, AWS S3 services fit the requirements perfectly. Figure 6.6 shows the dataflow of 

AWS S3. 

I) Multiple servers across the globe solve threshold distance issues and open the avenue 

for further expansions 
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II) High bandwidth accessibility delivers real-time data storage and retrieval necessities 

III) on-demand compute power, makes it cheaper to deploy in real-world situations 

 

Figure 6.6 AWS S3 dataflow (Cloud) [217] 
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Chapter Summary 

Congestion management at the intersection is the primary step to solving traffic-related 

problems. Previous researches show that designing an adaptive traffic controller is the 

primary step that can work on real-time data. The research work presented in this paper 

studies the traffic pattern of an intersection at different time intervals of the day and models 

the system on actual input data using the soft computing methodology that is ANFIS. It was 

assumed that a large amount of training data is required to train ANFIS successfully. 

However, it may be challenging to get a massive amount of data. Hence, this research 

attempted to build the system using a small data pool.  
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Chapter 7 

Results and Discussions 

In this thesis, three models are implemented. One for vehicle detection and traffic density 

estimation, the second for emergency vehicle detection using RFID and siren sounds, third 

for optimization of green signals using the ANFIS model. 

The experimental results of all the models have been discussed in this chapter. 

7.1 Results of Vehicle Detection 

Implementation of all three models has been done in Python using TensorFlow API. The 

experimental platform configuration of the machine is given in Table 7.1. The input size of 

the model is 300 X 300 with a batch size of 24. The learning rate and IoU threshold are 

0.0002 and 0.6, respectively. Table 4 shows the difference between thermal and RGB images 

of the same scene taken from the FLIR dataset. As thermal images generate the images by 

sensing heat reflected by a body, the image quality is not affected by lighting and weather 

conditions. Thus, the visibility of objects is better in thermal images than in RGB. 

To compare the SSD, Faster R-CNN, and proposed models, precision vs. recall curve and 

(Mean average precision) mAP matrices have been used. The precision-recall curve (PR 

Curve) helps report information retrieval results. A good PR curve has a greater area under 

the curve (AUC). The mAP helps measure the performance of object detection tasks. It 

compares the ground truth bounding box to the detected box.   Figure 7.1 to Figure 7.4 shows 

the graphs of the precision-recall curve of the FLIR thermal dataset, FLIR RGB, MB7500, 

and KITTI dataset, respectively. All PR curves show that the proposed Ensemble performs 

better than SSD and Faster R-CNN models. Table 7.2 shows the computed mAP values on 

the different datasets for SSD, Faster R-CNN, and proposed Ensemble [221]. The maximum 

mAP achieved is 94% by the proposed Ensemble on FLIR thermal dataset that is 34% higher 

than SSD and 6% from the Faster R-CNN model. The presented ensemble model performs 

better and yields more acceptable results than individual estimators. Experimental results also 

show that thermal image detection is better than visible images. A comparison of different 

models on a collected dataset based on mAP is shown in Figure 7.5 [221]. 
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Table 7.1 Experimental Platform Configuration 

Computing Machine Configuration 

Operating System Windows 10 

GPU NVIDIA GEFORCE GTX (4GB) 

RAM 8 GB 

Processor Intel Core i5 

GPU acceleration library CUDA, CUDNN 

 

 

 

Figure 7.1: Precision vs. Recall Curve of SSD, Faster R-CNN, and Proposed model on FLIR 

Thermal dataset [221] 
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Figure 7.2 Precision vs. Recall Curve of SSD, Faster R-CNN, and Proposed model on FLIR 

RGB dataset [221] 

 

Figure 7.3 Precision vs. Recall Curve of SSD, Faster R-CNN, and Proposed model on 

MB7500 dataset [221] 
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Figure 7.4 Precision vs. Recall Curve of SSD, Faster R-CNN, and Proposed model on the 

KITTI dataset [221] 

 

Figure 7.5 mAP of SSD, Faster R-CNN, and Proposed Ensemble on FLIR RGB, Thermal, 

KITTI, and MB7500 dataset [221] 
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Table 7.2: Comparative analysis of SSD, Faster R-CNN, and Proposed Ensemble based upon 

mAP on FLIR, KITTI, and MB7500 

Model Dataset mAP CY TW LV HV TR BU 

   SSD FLIR RGB 0.58 0.65 0.54 0.64 0.55 0.58 0.5 

FLIR Thermal 0.65 0.7 0.64 0.61 0.58 0.81 0.55 

KITTI 0.60 0.55 0.51 0.51 0.59 0.46 0.93 

MB7500 0.52 0.52 0.47 0.59 0.41 0.57 0.56 

Faster R- 

CNN 

FLIR RGB 0.87 0.94 0.87 0.8 0.94 1 0.67 

FLIR Thermal 0.88 0.96 0.91 0.86 0.87 0.86 0.8 

KITTI 0.81 0.75 0.75 0.84 0.89 0.77 0.85 

MB7500 0.68 0.68 0.6 0.59 0.94 0.6 0.67 

Proposed 

Ensemble 

FLIR RGB 0.92 0.94 0.93 0.91 0.91 1 0.83 

FLIR Thermal 0.94 0.95 0.96 0.89 0.97 1 0.9 

KITTI 0.92 0.85 0.87 0.96 0.92 0.97 0.98 

MB7500 0.86 0.89 0.8 0.96 0.94 0.78 0.78 

Table 7.3 shows the comparison of the proposed work with existing studies. Most of the work 

has been done for vehicle detection using visible images [221]. In this study, an ensemble of 

deep neural networks has been proposed and evaluated on thermal and visible images. The 

proposed model shows promising results on both types of images. 

Table 7.3: Comparison of the proposed model with existing methods 

Technique/Reference Image Type Accuracy 

Nam‘s Approach [77] Visible Images 92.7 

Nam‘s Approach [77] Thermal Images 65.8 

CNN-based Ensemble [78] Visible Images 93.2 

ShuffleDet [85] Visible Images 62.89 
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ECNN-SVM [89] Visible Images 93.63 

LittleYOLO-SPP [98] Visible Images 77.44 

Proposed Model Visible Images 92 

Proposed Model Thermal Images 94 

7.2 Results of Density Estimation 

Figure 7.6 to Figure 7.13 shows some of the experimental results obtained using SSD, Faster 

R-CNN, and the proposed model on the collected datasets [221]. An analysis is made based 

on the density estimated by each model. Computed density can be utilized for the designing 

of traffic light controllers.  
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Predicted Density=  4.2 
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Figure 7.6 Actual and predicted density of (a) SSD model, (b) Faster R-CNN, and (c) 

Proposed Ensemble w.r.t FLIR thermal dataset [221] 
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Figure 7.7 Actual and predicted density of (a) SSD model, (b) Faster R-CNN, and (c) 

Proposed Ensemble w.r.t FLIR thermal dataset [221]   
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Figure 7.6 consists of two heavy vehicles and two light vehicles. Figure 7.6 (a) depicts the 

results of the SSD model in which the exact vehicle is predicted as a heavy vehicle, and a 

light vehicle means duplicate detection, and SSD fails to detect other vehicles. While Figures 

7.6 (b) and 7.6 (c) show the results of Faster R-CNN and the proposed method, respectively, 

in which two heavy vehicles are detected accurately, and models fail to detect light vehicles. 

Hence, the actual density in the image is 7.6 (2 heavy vehicles=4.5 units and two light 

vehicles=3.4 units). Vehicle density computed by SSD models is 3.8 units, and Faster R-

CNN and proposed model computes 4.2 units, respectively. SSD models also predict one 

object as light and heavy vehicles. Figure 7.7 contains one truck, two light vehicles, and two 

heavy vehicles, and the total estimated vehicle density is 9.9 units. Figure 7.7 (a) depicts the 

results of the SSD model in which one truck and one light vehicle are detected, and the 

computed vehicle density is 4.0 units. Figure 7.7 (b) shows the results of Faster R-CNN in 

which one truck and one heavy vehicle are detected, and vehicle density is 4.4 units. Figure 

7.7 (c) contains the predictions made by proposing method. Vehicles are predicted as one 

truck, a light vehicle, and a heavy vehicle. The computed vehicle density is 6.6 units, the 

closest value to the actual value among all models. 
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Figure 7.8: Actual and predicted density of (a) SSD model, (b) Faster R-CNN, and (c) 

Proposed Ensemble w.r.t FLIR RGB dataset [221]  
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Predicted Density =5.5 

units 

Figure 7.9 Actual and predicted density of (a) SSD model, (b) Faster R-CNN, and (c) 

Proposed Ensemble w.r.t FLIR RGB dataset [221]  

Figure 7.8 shows two vehicles in the image: a light vehicle and a truck. Thus, the total vehicle 

density is 4.0 units. Figure 7.8 (a) contains detections made by the SSD model, where it 

detects both the vehicles and label them correctly as light vehicle and truck. Thus, the 

computed vehicle density is 4.0 units. In comparison, Faster R-CNN predicts only light 

vehicles and misses a truck. So, computer density is only 1.7 units. Predictions made by the 

proposed method are correct, and the estimated density is 4.0 units. Figure 7.9 consists of two 

light vehicles and one heavy vehicle. Therefore, the actual vehicle density is 14 units. Figure 

7.9 (a) depicts the results of SSD models showing only one vehicle as a light vehicle and 

vehicle density as 1.7 units. While Figures 7.9 (b) and 7.9 (c) show the results of Faster R-

CNN and the proposed method, respectively, in which all vehicles are predicted accurately, 

and the computed vehicle density is 5.5 units. 
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Figure 7.10 Actual and predicted density of (a) SSD model, (b) Faster R-CNN, and (c) 

Proposed Ensemble w.r.t MB7500 dataset [221] 
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Predicted Density=5.3 
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Figure 7.11 Actual and predicted density of (a) SSD model, (b) Faster R-CNN, and (c) 

Proposed Ensemble w.r.t MB7500 dataset [221] 

Figure 7.10 has five vehicles one truck, one bus, two light vehicles, and one 2-wheeler. Thus, 

the actual density is 9.3 units. Results of the SSD model are shown in figure 7.10 (a), and 

SSD predicts one bus correctly. A truck is detected as a light vehicle. Thus, the total 

predicted density is 4.0. Faster R-CNN predicted a 2-wheeler as one cycle, and the calculated 

density is only 1 unit. Finally, the proposed model predicts three vehicles and predicted 5.0 

units. Figure 7.11 has four vehicles: one light vehicle, one bus, and two 2-wheelers. Thus, the 

actual density is 6.6 units. Results of the SSD model are shown in Figure 7.11 (a), and SSD 

predicts only one light vehicle, and the estimated vehicle density is 1.7 units. Where 

predictions made by Faster R-CNN and the proposed method are given in Figures 7.11 (b) 

and 7.11 (c), respectively, these models detect one light vehicle, one bus, and one 2-wheeler 

as predicted as a cycle. Therefore, the estimated vehicle density is 5.3 units for both models. 
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Figure 7.12 Actual and predicted density of (a) SSD model, (b) Faster R-CNN, and (c) 

Proposed Ensemble w.r.t KITTI dataset [221] 
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Figure 7.13 Actual and predicted density of (a) SSD model, (b) Faster R-CNN, and (c) 

Proposed Ensemble w.r.t KITTI dataset  [221] 

Figure 7.12 consists of one cycle and one heavy vehicle total of 3.1 units of density. SSD has 

not predicted any vehicle. Thus, the estimated density is 0 units. While Figures 7.12 (b) and 

7.12 (c) show the results of Faster R-CNN and the proposed model, respectively, in which 

cycle and heavy vehicle are predicted correctly, and the computed density is 3.1 units. Figure 

7.13 contains one heavy vehicle and one light vehicle. Thus, the actual vehicle density is 3.8 

units. Figure 7.13 (a) shows the SSD model results in only one heavy vehicle being detected, 

and the computed vehicle density is 2.1 units. In comparison, Figures 7.13 (b) and 7.13 (c) 

show the results of Faster R-CNN and the proposed model, respectively, in which both the 

vehicle detected and computed density is the same as the actual density. 

Other than the detection accuracy, the effectiveness of the detection model can also be 

estimated using inference speed. Table 7.4 shows the inference speed of different models 

SSD, Faster R-CNN, and the proposed method [221]. 

Table 7.4 Comparison of inference speed of Faster R-CNN, SSD, and Proposed Method 

 

 

 

Considering the detection results and inference speed together, it is concluded that the 

proposed model provides better detection and density calculation results. However, the time 

taken to process the image is high compared to other models. 

 

Model Inference Speed 

Faster R-CNN 15.67 Sec 

SSD 10.15 Sec 

Ensemble 22.37 Sec 
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7.3 Results of Emergency Vehicle Detection using RFID 

This method dramatically impacts the traffic problems faced in urban areas. Usually, the 

traffic is controlled by a predetermined signal light-controlled system. The working of the 

modules is based on the RFID tag information. Also, the license invalidation module is 

present to ensure the drivers obey the rules. Otherwise, a fine will be deducted from the 

account specified in the RFID tag. The only requirement of this paper to be implemented is to 

provide the vehicles with a unique RFID tag. The proposed method was executed five times, 

and the results are shown in Table 7.5 [219]: 

Table 7.5: Results of Proposed Method for RFID-based Emergency Vehicle Detection 

Traffic Light 

Switching 

Direction 

Emergency 

Vehicle 

Present? 

Number of 

vehicles 

present 

Direction and details 

of vehicles from 

where vehicles 

coming 

Signal to be 

provided 

North Yes 2 From the west, 

Firebrigade  (EPC: 

1017) 

From North, Police 

van (EPC: 1020)   

Signal to be 

provided on 

West  

 West Yes 1 From North, Police 

van (EPC: 1020)   

Signal to be 

provided on 

North 

North No NA NA Signal to be 

provided on 

South 

South  No NA NA Signal to be 

provided on 

East 

East Yes 2 From North,  Police 

van (EPC: 1016) 

From South, 

Ambulance (EPC: 

1018) 

 Signal to be 

provided on 

East. 

Any RFID label on a path for over 20 minutes will distinguish an anomaly. It might be an 

accident in the vehicle or a mishap on the road. The vehicle with this EPC number will be 

tried for issues utilizing the phone number of the proprietor and, where pertinent, will give 

prompt help. 
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7.4 Results of Acoustic-Based Emergency Vehicle Detection 

A comparative analysis of the proposed model with different deep learning architectures is 

given in Table 7.6. In this paper, four different models have been explored. FC_Net model, 

which consists of only dense layers, provides an accuracy of 96.4% and its inference time is 

0.061s. CNN_Net model provides an accuracy of 92.4%, while RNN_Net and Ensemble have 

an accuracy of 94.5% and 98.7%, respectively. A comparison based upon inference time is 

also given in table 4, which clearly shows that the time taken by RNN_Net and FCNet is 

almost the same, while CNN takes longer than these models, and the response time of 

Ensemble is the highest, and its takes almost 1.5 seconds [218].  

Table 7.6: Comparative Analysis of Different Models 

Model Accuracy Inference 

Time (s) 

CNet 96.4 0.061 

CNN_Net 92.4 0.151 

RNN_Net 94.5 0.061 

Ensemble 98.7 1.5 

Various machine learning models are also evaluated on the collected dataset, and results are 

compared with the deep learning models. Table 7.7 compares different machine learning 

models with proposed deep learning models [218]. Although decision trees and random 

forests provide higher training accuracy, their testing accuracy could be higher, and models 

are over-fitted. Compared to machine learning models, proposed deep learning models 

provide better accuracy and acceptable models.  

Table 7.7: Comparative Analysis of deep learning models with machine learning models 

Method Training 

Accuracy (%) 

Testing 

Accuracy (%) 

Perceptron (L1 Regularization) 59.5 49.2 

Logistic Regression (L2 Regularization) 65.8 44.3 

SVM (Kernel=Polynomial) 61-7 52.4 

KNN (neighbors=10) 61.7 46 

Decision Tree (Entropy) 100 57.3 
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Random Forest (estimators=12) 98 57.3 

Naïve Bayes 65 42.6 

AdaBoost Classifier (base=Naïve Bayes, 

number of estimators=11) 

51 51 

Fully Connected Neural Network (8 FC 

layers) 

100 96.4 

Convolutional Neural Network (3 conv 

layers) 

99.58 92.4 

Recurrent Neural Network (5 LSTM layers) 

(Proposed) 

98.7 94.5 

Ensemble Model (Proposed) 99.74 98.7 

Several kinds of research based on microcontrollers [112] and circuit design [114] only stated 

the prospects of the siren detection system without evaluating its accuracy on a large dataset. 

As a result, works focused on ML and DL methods have been considered for comparison. 

Table 7.8 compares our proposed models to previous findings [212, 213, 214, 215, and 126] 

in terms of methods and functionality, and prediction accuracy. Table 7.8 depicts the 

classification accuracy of the CNN model proposed by L. Marchegiani [212], and the 

proposed model with RNN is almost the same. Machine learning models like KNN [212], 

HMM [214], and part-based models [214] had an accuracy of less than 90%. CNN models 

developed by Tran [128] achieved an accuracy of 98.24%. The proposed ensemble model 

provides 98.7% accuracy, the highest among all works. The proposed Ensemble yields 

promising results 98.7%, which is better than the results of RNN_Net (94.5%) and other 

related works [215] 94%, [213] 83%, [211] 85%, [214], 86%, [215] 98.24%. The 

performance of the ensemble model are more promising than other models.  

Table 7.8: Comparative Analysis based on the accuracy of existing works 

Work Features Approach/M

odel 

Classification

_Accuracy 

L. Marchegiani et al. [215]  

2018 

Spectrogram (log-mel) CNN 94.00 

L. Marchegiani et al. [213]  Spectrogram K-NN 83.00 
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2017 

J. J Liaw et al. [212]  2013 Longest Common 

Subsequence (LCS) 

LCS 

Comparison 

85.00 

J. Schroder et al. [214] 

2013 

Hand-labeled  

PBMs MFCC 

Spectrogram 

Part-based 

Models 

(PBMs) 

HMM 

86.00 

(PBMs) 

80.00 

(HMM+MFC

C) 

74.00 

(HMM+log-

mel 

V.T Tran et al. [127] 2020 Raw-data 

MFCC + Spectrogram 

Aggregated features: 

Raw data, 

Spectrogram, MFCC 

1D-CNN 

(WaveNet) 

2D- CNN 

(MLNet) 

CNN(SirenN

et) 

96.51 

(1D-CNN) 

96.42 

(2D-CNN) 

98.24 

(CNN) 

Proposed work with RNN MFCC RNN 94.5 

Proposed work with 

Ensemble 

MFCC Ensemble 

(FCNet, 

CNN_Net, 

RNN_Net) 

98.7 
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7.5 Results of Green Signal Optimization using Adaptive Neuro-Fuzzy 

Inference System 

The simulation was done using MATLAB. Fuzzy Logic Toolbox provides the steps of 

designing a fuzzy inference system and functions for adaptive neuro-fuzzy learning. The 

developed ANFIS model is applied to solve the problem of congestion. The real-time data 

has been taken for modeling the proposed system. To generate the FIS, the grid partition 

method is used. This method partitions the input space into several fuzzy regions to form the 

antecedents of the fuzzy rules. To train the model, a hybrid learning algorithm is used. The 

hybrid learning algorithm works in two phases: the forward phase to compute the results and 

the backward phase to update the parameters to minimize the error. The performance of the 

ANFIS model is compared with the fuzzy and fixed timer-based systems. Table 7.9 shows 

different cases of the predicted output of ANFIS, fuzzy system, and fixed timer system [220]. 

Case 1 shows that if vehicles at the current lane are very low, then the green timing signal is 

also low, and if density at the current lane is very high, then green timing is high, say 93 

seconds, as given in case 2. Case 3 indicates that the proposed model provides priority to 

emergency vehicles, and case 4 presents that no signal is provided at the current lane if 

waiting vehicles are zero at the current lane. 

Table 7.9: Fixed timer system, fuzzy system, and ANFIS predicted results 

Case Infl

ow 

Rate 

80(ir

ate) 

Number 

of 

waiting 

for 

vehicles 

at 

current 

lane 

(Vcurr) 

Number 

of 

waiting 

for 

vehicles 

at 

adjacent 

lane 

(Vadj) 

Priori

ty 

vehicl

e 

prese

nt 

(flag)  

Lane 

on 

which 

priori

ty 

vehicl

e 

prese

nt 

Fixed 

timer 

system 

output 

(in 

second

s) 

Fuzzy 

syste

m 

outpu

t (in 

secon

ds) 

AN

FIS 

outp

ut 

(in 

seco

nds) 

Lane 

to be 

serve

d by a 

fixed 

timer 

syste

m  

Lane 

to be 

serve

d by 

ANFI

S 

1 18 7 40 0 - 60 10 3 1 1 

2 89 118 49 0 - 60 55 93 2 2 

3 102 82 44 1 2 60 55 42 4 2 

4 25 0 17 0 - 60 18 0 2 3 
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Figure 7.14 and Figure 7.15 compare expected green signal timing vs. obtained green signal 

timing by the ANFIS and FIS models. ANFIS model has higher accuracy as compared to FIS. 

 

Figure 7.14 Expected green signal timing vs. obtained green signal by ANFIS [220] 

 

Figure 7.15 Expected green signal timing vs. obtained green signal by FIS [220] 
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Figure 7.16: Number of vehicles vs. green signal timing of ANFIS, FIS, and Fixed Timer 

System [220] 

Figure 7.16 compares the ANFIS model with the Mamdani-based FIS and fixed timer-based 

system based on the number of vehicles vs. green signal timing. From the comparison, it can 

be seen that green signal timing is less if the density at the current lane is less than 100. In the 

case of the ANFIS system resulting in less waiting time for the vehicles at the adjacent lane, 

signal timing is constant in a fixed timer-based system leading to higher waiting times. From 

the test data, it has been observed that the total number of vehicles passing through the 

intersection is 3147, and the time taken to pass these vehicles by ANFIS model, FIS model, 

and fixed timer based model is 1866 seconds, 2411 seconds, and 3480 seconds respectively. 

Thus, the overall waiting time is reduced. 

Figure 7.17, Figure 7.18, and Figure 7.19 show the entire cycle length duration of the ANFIS 

model, Mamdani FIS, and Fixed timer system [220]. ANFIS model has the shortest duration, 

while the fixed timer system has the maximum duration. 
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Figure 7.17 ANFIS signal timing in the first cycle [220] 

 

Figure 7.18 Mamdani FIS signal timing in the first cycle [220] 

 

Figure 7.19 Fixed timer signal timing in the first cycle [220] 
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Chapter Summary 

In this chapter, the results of all the models have been discussed. From the results of vehicle 

detection and classification, it has been concluded that the proposed Ensemble provides the 

highest accuracy compared to its base estimators and also provides traffic density available 

on the road at a particular time. Emergency vehicles have been detected by using RFID and 

sound signals. RFID tags have less wavelength so vehicles can be identified at a shorter 

distance from the intersection. Acoustic-based models have been implemented using CNN, 

RNN, and fully connected neural Networks. An ensemble of three configurations is also 

designed. It has been concluded that the proposed model provides the highest accuracy. 

Finally, Green signal optimization has been done using the ANFIS model, and a comparative 

analysis is provided with a fixed timer system, fuzzy-based system, and proposed model. 

Two methods have been utilized to send traffic information from one intersection to an 

adjacent intersection. WSN is beneficial when the distance between two intersections is less. 

But if the distance between two intersections is high, then cloud-based services provide better 

results. AWS S3 service has been utilized to send traffic information over high distances. 
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Chapter 8 

Conclusion and Future Scope 

In this work, an artificial intelligence-based traffic light controller has been implemented, 

which detects and estimates traffic density and makes detections for the presence of 

emergency vehicles. Green signal optimization has been done using an adaptive neuro-fuzzy 

inference system based on vehicle density and the presence of an emergency vehicle. 

To detect and classify the vehicles, Dataset has been collected from open source libraries. 

Two deep learning architectures, Faster R-CNN and SSD models are trained on the collected 

Dataset. Then, a hybrid model based on ensemble learning was implemented. From the 

experimental results, it has been concluded that the proposed model performs better in terms 

of accuracy than its base estimators, and traffic density estimation is done. Results of the 

density estimation are also better yielded by the proposed model as compared to Faster R-

CNN and SSD.  

To detect the emergency vehicle on the road near the intersection has been identified using 

RFID and siren sounds. RFID has two parts: an RFID tag and an RFID reader. But RFID 

technology has some limitations, like more distant objects can not be identified by using 

them. So, acoustic-based emergency vehicle detection has also been implemented. , siren 

sounds of emergency vehicles have been collected from the open source library. To perform 

sound-based detection, perform sound-based detection. Then, three deep learning models that 

are fully connected neural networks, CNN and RNN, were implemented, and their results 

were analyzed. Finally, an ensemble based on the three configurations discussed above has 

been implemented. From the experimental results, it has been concluded that the proposed 

ensemble performs better than individual models. RNN also provides acceptable results but 

has less performance than the ensemble model. 

Finally, green signal optimization has been done using an adaptive neuro-fuzzy inference 

system based on vehicle density calculation and the presence or absence of emergency 

vehicles. In this system, density at the current lane, adjacent lane, and intersection flow rate 

has been considered input parameters. The green signal to be provided on a particular phase 

is determined. The proposed model‘s results have been compared with a fixed timer and 

fuzzy-based controller. It is concluded that the proposed model reduces the vehicles' overall 

waiting time. 
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There are some limitations of the research work. As for vehicle detection, an ensemble 

technique is proposed, which takes longer detection time compared to base estimators. 

Integration of modules like vehicle detection, emergency vehicle detection, and signal 

optimization is also lacking.   

The proposed work will be extended for futuristic work to improve the system's performance. 

The length and width of the lane can also be considered for vehicle detection and traffic 

density estimation. Some mechanisms will be introduced in acoustic-based emergency 

vehicle detection to eliminate environmental noise. Likewise, green signal optimization can 

be done using reinforcement learning.        
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