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ABSTARCT 

 

In the proposed work, prey-predator dynamics are studied using the delay involving 

predation of mature prey, the effect of toxin-producing prey on predator 

populations, multi-team prey-predator scenario, interaction of commensal species 

with delay and a single prey and a pair of predators using a delay differential 

equation and a functional response with a square root. 

A method that has worked well for integrating and synthesising environmental and 

ecological data is mathematical modelling. Natural objects are not directly 

addressed in mathematical ecology. It works with mathematical constructs and 

procedures that serve as analogues to natural phenomena and processes. The 

mathematical models do not include all of the knowledge we may have about 

nature; rather, they just include the knowledge that is most relevant to the task at 

hand. By understanding the logic behind our theories about nature, mathematical 

modelling enables us to avoid making convincing arguments that may not be true 

or are true only in particular circumstances. The suggested models have undergone 

mathematical analysis, and the outcomes have undergone numerical verification. 

Mathematically, the positivity and bounds of all analytical solutions are established 

using the comparison theorem. All possible and feasible interior and exterior 

equilibrium conditions are calculated. Calculation of stability carried out about 

interior equilibrium values and Hopf bifurcation takes place when delay crosses 

specific value. The nature of the roots has been studied in detail using Roache’s 

theorem. Sensitivity analysis and directional analysis of state variables with respect 

to model parameters are done for almost all the models using the "Direct Method" 

and "Centre Manifold Theory," respectively. Numerical simulation is done using 

MATLAB software using the dde23 command, where all the model parameters 

have been assigned different numerical values. This made it easier to identify the 

delay parameter's critical value, over which the system lost stability and 
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experienced a Hopf bifurcation. Below this specific value, the structure displayed 

stability. 
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Chapter 1 

General Introduction 

1.1  Introduction 

Word Ecology is combination of two words Eco + Logos in Greek it means 

Household +Learning about. Thus, ecology mean to understand the life of species. 

The word “ECOLOGY” firstly used by German Zoologist, Ernst Haeckel, in 1866 

to explain the “economics” of living organism. Eugene Odum is the inventor of 

modern ecology. In his honour University of Georgia established Odum, Eugene P. 

The School of Ecology, the only independent college of ecology in the world, 

celebrated its 13th anniversary on January 9, 2021.  

One of the fundamental concepts of ecology is the analysis of the interactions 

between predators and prey. One of the notable issues with concept of predator-

prey relations is “paradox of enrichment” first used by Michael Rosen Zweig in 

1971. He explained sequel in six- predator-prey models were increasing the food 

available to prey caused the predators population to destabilize.  

According to Arditi and Ginzburg (1989), field findings consistently contradict 

these assumptions. In 1992, Ginzburg and Akcakaya and Luck, Arditi and 

Berryman investigated in biological control paradox (1920), which states that it is 

impossible to simultaneously achieve a very low and constant prey equilibrium 

density using a classical model. Although there are countless incidents of the 

introduction of predators and parasites in Classical biological management that led 

to the maintenance of exotic pests at sparser and more stable populations, as noted 

by different authors namely Turnbull and Chant in 1961, DeBach in 1974, Hagen 

and Franz in 1973. 

Ratio-dependent predator-prey theory has recently attracted attention by Arditi and 

Ginzburg 1989; Berryman 1990. Although not new, this model is not well-known 
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in ecology theory. Despite the fact that they resolved issues with conventional 

models as well as enhancement and biocontrol agents' paradoxes. 

Thomas Malthus in 1798 gave information on the Principle of Population provided 

the first pure mathematical calculations on population. According to Malthus, when 

population grows logarithmically, the things that affect it either remain the same or 

rise arithmetically. Malthus' Concept of Population was transformed into a 

mathematical equation by Verhulst forty years later, in 1838. The Logistic equation 

is 

𝑑𝑀

𝑑𝑡
= 𝑛𝑀 (1 −

𝑀

𝐾
) 

M = density of population 

n = rate of change 

K = equilibrium density  

This equation is constantly criticized for being too straightforward, yet it is always 

useful in the creation of single-species population structure, especially when it is 

extended to discontinuous increases in population that are time-lag and volume 

dependent. This theory describes the behaviour of numerous single organisms in 

both lab and real-world settings studied by many researchers in different decades 

namely Gause in 1934, Allee et al. in 1949, Thomas et al. in 1980, Berryman and 

Millstein in 1990. 

In Lotka theory of Physical Biology firstly we observed Population structure 

theory. Lotka presented the first framework of predator-prey relationship in 

addition to handling the logistic equation, which he referred to as the Rule of 

Population Increase from First Principle. Not only did he create the prey-predator 

model that included two species instead of just one, postulated by Volterra in 1928, 

as interpreted by Chapmans in 1931. He contends that population growth is 

inversely correlated with biomass production. Some few months later, in 1935, 
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Nicholson and Bailey develop a discrete-time model to describe how insect 

parasitic organisms and their hosts engage. The Lotka-Volterra model and this one 

includes concepts that are similar Royama 1971. The stabilization of the Nicholson-

Bailey formulas involved numerous complex computations. 

It is fact that Volterra 1928 and Gause 1934 both used the logistic equation for their 

two species competition model, but not succeed to make it perfect for modelling 

predator-prey interactions. Lwslie (1948) was first to drive Logistic predator 

equation. The incorporation of a predator model equation was the next significant 

advancement in the idea of predator-prey relationships. The prey mortality rate 

must be a nonlinear system of prey population, according to Solomon 1949 and 

Holling 1959–66, who noted that a predator can just deal a fixed supply of preys in 

a short period of time.  

In 1977, Holling derived the Michaelis-Menten equation of enzyme kinetics, from 

which his disc equation was constructed. The relationship between individual 

organisms, as noted by Berryman and Getz in 1981 and 1984, is the source of 

population structure; hence, the expression must be calculated as the per-capita rate 

of variation. The half-saturation point, a physiological response that specifies the 

amount of alternative food accessible to predators, has an ecological value based 

on population. The product, not the predator/prey ratio, as shown by Leslie's 

equation. 

An effective tool for integrating and synthesising environmental and ecological 

data is mathematical modelling. Natural objects are not directly addressed in 

mathematical ecology. It focuses with mathematical constructs and procedures that 

serve as analogues to natural phenomena and processes. The mathematical 

structure does not include all of the knowledge we may have about nature; rather, 

they just include the knowledge that is most relevant to the task at hand.  

Now a new equation derived by Michaelis-Menten-Holling so that behaviour of 

predator from one species to other can be observed. Whenever functional response 
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taken in prey equation, we get parabolic prey isoclines which is behaviour of ratio-

dependent prey equation. By understanding the logic behind our theories about 

nature, mathematical modelling enables us to avoid unnecessary convincing 

arguments that might not be real or are only valid in particular circumstances. The 

number of people inside a population fluctuates, occasionally dramatically, over 

the life of an organism.  

Numerous creatures, such as algae, insects, fish, frogs, and others underwent 

similar abrupt transformations, as seen by ecologists. Ecologists were intrigued to 

comprehend such significant shift, and early studies came to the conclusion that 

resource availability was always crucial. Researchers found that populations always 

exhibit a drop trend for availability to the restricted resources when sources for 

example food, nesting locations, or refuges are few. Such bottom-up management 

in environments refers to habitats where the availability of nutrients, productivity, 

and primary producers' characteristics keep the environment in good condition.  

In reality, these two methods of population reduction cooperate to track down 

population fluctuations over period. Another extremely significant point is that 

diseases and insects also can affect population structure. Species with massive, 

cycle-like population fluctuations provide some astounding instances of population 

variations. These cycles frequently co-occur in the same region with other species' 

population cycles. Red foxes, for instance, feed on hares, grouse, and voles in 

northern Sweden. Studies on these species show that each of the prey animals has 

connected population cycles, with population maxima every three to four years. 

Vegetation is the main food source for grouse, voles, and hares, and their 

populations are reliant on it. With more food, population size is influenced by 

bottom-up control. When there are many voles and there is intense competition for 

food, the voles start fighting over little amounts of food, which changes their 

hunting behaviour and causes the population to drop. So, in communities of these 

animals, food availability is crucial. When there aren't any voles around, foxes 
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prefer to eat other small creatures like grouse and hares. Foxes should grow when 

there is plenty of food available. Since this system is unmanageable for 

experimentation, we are unable to anticipate how far any of these influences the 

population loop will go. However, theories suggest that food and hunting cooperate 

to restrict population levels. Prey must have access to enough of food in order to 

survive and reproduce while also avoiding becoming prey for predators.  

The snowshoe hare's learning demonstrates the impact of food availability and 

predator escape on population levels. Ecologists have used mathematical models to 

study the nature of prey-predator dynamics since choosing between eating food and 

predator escape is difficult in the field, just like businessmen and meteorological 

researchers do. This new relation gives primitive rectilinear Lotka-Volterra 

predator isocline and a new paradox enrichment and biological control. This 

isocline structure help in development of modern prey-predator theory & provide a 

mathematical way to population ecologists understand the facts that affect 

population dynamics.  

All of these time lag models have benefited greatly from the inclusion of delay 

differential equations. Delay differential equations have not yet been used to the 

study of prey-predator systems. When delay is applied to any concept that received 

negative feedback, it results in the system & oscillatory behaviour. There are 

concepts that provide negative feedback in mathematical models dealing with 

dynamics. It also offers a very good opportunity to delay this term in order to look 

at the dynamic behaviour shown by the overall growth program. It is important to 

apply this principle of delay differential equations in time and circumstance. If we 

take the initial Lotka Volterra equation, the prey population increased at a very 

greater incidence to add a limit to the prey equation to allow this meaningful. This 

change renders the configuration of the corresponding point and makes the device 

stable.  
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For two species interaction models, both Volterra and Gause use logistic equation 

but do not end up making this appropriate for interaction between prey-predator. 

Even if the population formula where it is introduced always operates on slow 

population trends, including functional response in the prey-predator model is 

crucial since it describes the behaviour of seeking predators on a quick time scale. 

Ecology is defined as the study of interactions between different organisms and 

their surroundings. It concerns the underlying principles that govern all animals as 

well plants. Ecology is therefore described as a tool to understand the coexistence 

of organisms. A.G. Tansely was the first to invent the word ecosystem. Ecosystem 

is made up of two terms: 

𝐸𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚 = 𝐸𝑐𝑜 (𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡) + 𝑆𝑦𝑠𝑡𝑒𝑚 ( 𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛) 

The ecology is the basic fundamental unit of species and their surroundings 

interacting with one other also with their individual components, claims American 

ecologist E.P. Odum. Food webs include, but are not limited to, detrital food webs, 

soil food webs, marine food webs, ocean food webs, arctic food webs, grassland 

food webs, and microbial food webs. Abiotic, or non-living, environment and a live 

biological community come together to form an ecosystem. Green plants classified 

as producers (autotrophs), consumers (heterotrophs), and decomposers 

(saprotrophs) make up the living community. For a species to survive, it must 

receive energy. For instance, plants need the sun's energy to grow; some animals 

consume plants; and other species consume other species.  

A food chain is the order in which members of a biological community are fed by 

other members. A food chain highlights the dependence of various living creatures 

in a given ecosystem in terms of their feeding relationships and the transfer of 

energy from the sun to producers, consumers, and decomposers. Even a food web 

forms when several food chains in an ecosystem intersect each other. 
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𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟𝑠 → 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑠 → 𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑠

→ 𝑇𝑒𝑟𝑛𝑎𝑟𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑠 

 

Figure 1.1 Grazing and Detritus food chain  

 

                                               Figure 1.2 Grazing food chains  

An ecological community's species feeding relationships are presented graphically 

in a food web. Even the energy connection and transmission between them are 
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specified. In these food webs, several food chains are interconnected. The ecology 

is more stable the more chains it has. 

Figure 1.3 Food Web Diagram 

The trophic level of an organism refers to its place within a population or a food 

chain. The producers (plants, algae, and bacteria) occupy the lowest tropic level of 

an ecosystem. They absorb sunlight and transform it into food energy. It generates 

carbohydrates that are high in energy using solar energy. All living things 

ultimately derive their vitality from the sun. 

An animal that has been physically and physiologically modified to consume plant 

matter is an herbivore. Herbivores often have mouthparts suited to rasping or 

grinding due to their diet of plants. For e.g., Elephant, Deer, Grasshopper, etc. A 

species that gets all of its nutrition and energy needs from a diet that predominantly 

or exclusively consists of animal flesh, whether through hunting or rummaging, is 

known as a carnivore, which is characterized as a meat eater. Tiger, Jaguar, Egret, 

Falcon, etc. are a few examples. An omnivore is a type of animal that may receive 

its calories and nutrients from a meal that includes a variety of food sources, 
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including plants, animals, algae, fungi, and bacteria. such as Beer, Turtle, etc. 

Bacteria and fungus are decomposer species that feed on and decompose decaying 

protoplasm to restore organic material components to ecological cycles. 

  

 Herbivore       Producers         Carnivore         Omnivore             Decomposer 

                         Figure 1.4 Examples of organisms at different tropic levels 

The term "food web" refers to the way in which different food chains interact. In 

nature, some organisms operate in the ecosystem not just at a single trophic level 

but more than one trophic level. It means that it may derive its food from more than 

one source. The organism may get eaten itself by another organism always present 

top of trophic level. It may also survive on different organisms of lower trophic 

levels. In this way, various food chains are linked together in an ecosystem and the 

intersection of these food chains forms a complex network called the food web. 

Hundreds of species are often connected by their eating patterns in real food webs. 

Essential parts of ecosystem ecology are food webs.  

Figure 1.1 shows a food web in a unique habitat with many interconnected food 

chains. The stability of an ecosystem in nature is greatly influenced by the food 

webs. For instance, a decline in the number of rabbits would inevitably lead to a 

decline in the population of carnivorous consumers who love to eat rabbit. 

Consequently, it would be dependent on two key factors: 

a) Length of food- chain: - The length of a food chain would depend on the 

diversity of the species and how they ate. The length of the food chain would 

increase with the variety of species' eating patterns. 

b) Choices at different stages for consumers: - The more choices there are, the 

more interlocking the pattern will be. Food webs are substantially more 
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complicated in deep oceans, seas, and other environments with a diverse 

range of species. 

In the actual world, a species' population growth rate frequently takes time to adjust 

to changes in either its own population or the population of an interacting species. 

A few components that introduce time delay into the model include the age 

structure of the population which affects birth and death rates, puberty period, 

gestation period which varies from 20 days for mice to 645 days for 

elephants, mealtime, response time, storage of food, wealth restoration durations, 

and malnutrition coefficient in carnivores' interactions. 

According to Haines and Crouch “Mathematical modelling is a process in which 

real-life situations and relations are expressed by using mathematics. One of the 

pillars of mathematics education is mathematical modelling. Through the technique 

of mathematical modelling, a real-world issue is translated into a mathematical 

structure. Modelling entails creating circumstances from real life or changing 

difficulties from mathematical explanations into situations that are acceptable or 

realistic. As Sir Arthur Eddington once said, "Do not believe an experiment unless 

it is confirmed by theory”. The problem may or may not be fully resolved as a 

consequence of the modelling process, but it will be made clearer.  

Mathematics has played a significant part in the development of a framework that 

makes it easier to understand the enormously complicated ecological processes in 

nature. Mathematical ecology has a long and illustrious history. Ecologists are 

frequently interested in how people, communities, and ecosystems change through 

time and place; luckily, a field of mathematics known as dynamical systems theory 

was created expressly to address dynamics. Today, math is still important and may 

perhaps be becoming more so in the advancement of ecology.  

From above discussion in this thesis, following problems have been studied using 

mathematical models: 

1. Modelling and analysis of prey- predator model involving predation of 

mature prey using delay differential equation. 
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2. Modelling the effect of toxin producing prey on predator population using 

delay differential equations. 

3. Modelling the multi-team prey-predator dynamics using the delay 

differential equation. 

4. Modelling the prey- predator dynamics involving commensal species 

under the effect of time lag. 

5. Study of the stability of a single prey and a pair of predators using a delay 

differential equation and a functional response with a square root. 

1.2  Literature Review 

Over the years, numerous mathematical models have been used in the 

comprehensive study of mathematical biology and population dynamics. The 

Lotka-Volterra model, also called a Prey-Predator model, and [1] made the most 

significant contributions to theoretical population biology. It is a coupled non-linear 

ODE system that is used to describe the interaction of two species, one of which is 

referred to as the prey species and the other as the predator species. The integro-

differential equation model was first suggested by [2], who quickly understood that 

time delay must be considered for accurate modelling. But he was unable to 

determine whether an equilibrium point was stable. When solving the updated 

model using [2], [3] provided the precise approach, employing the delay function's 

most basic form.  Limit cycle prey-predator interaction models considered the 

limited prey population and the restricted hunger of the predators [4-5]. Mass action 

predation, in contrast to Holling type-II, has a non-zero handling time, as 

demonstrated by [6]. It has been demonstrated that transmissible diseases can afflict 

the predator under a variety of physical situations and circumstances [7]. 

If we suppose that the functional predation responses are of Holling type II, the 

Hopf-bifurcation is necessarily supercritical [8]. It has also been demonstrated that 

many diseases, such as rabies and hepatitis, require an incubation period before 

becoming infection vectors [9-10]. It has been demonstrated that the susceptible 
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predator consumes the prey according to mass action law, whereas the infected 

predator consumes according to Holling type-II response [11]. 

The ratio dependent model presented in [12] evolved as an alternative to the models 

presented in [1] and [2]. Many animals have two stages in their lives: immature and 

mature. Each level has a unique set of behavioral characteristics. Many authors [13-

15] have also provided stage-structured prey-predator models. A mathematical 

model in which the predator category consumes the immature prey extensively was 

proposed [16]. Positive equilibrium stability qualities for continual input of refuge 

preys in Lotka-Volterra prey-predator systems have been explored in detail [17].  

In a predator-prey scenario with discrete delays, a full investigation was presented 

for a number of stabilities such as absolute, conditional, and bifurcation [18]. The 

zeros of the exponential characteristic equation were thoroughly examined [19]. 

[20] investigated the stability of a non-linear DDE about non-zero equilibrium 

locations. A plankton model is an evolutionary model, and many have been 

produced and studied in the past. Several articles have attempted to evaluate the 

significance of various hydrological parameters in the generation of plankton 

blooms, as well as appropriate functional responses to explain the drop-in predator 

population due to toxin-producing prey [21].  

These data indicate that toxic compounds, as well as poisonous prey, play an 

important role in predator population development and have an impact on prey-

predator confrontations. Peter A. Abrams talked on theories about the dynamics 

and equilibrium of species and traits, as well as how predatory and anti-predator 

qualities can adapt to environmental changes. Stability appears to be the least likely 

where there is coevolution and a bi-directional axis of prey vulnerability. An 

increase in prey protection ability is less likely than an increase in predator assault 

capacity to result in evolutionary responses in its companion [22]. Alan A. 

Berryman discovered that prey-predator ratios, rather than prey numbers alone, 

determine functional responses. The most serious criticism leveled at logistic prey-
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predator models is that they do not precisely follow environmental rules. After all, 

predator reproduction does not necessitate prey death [23].  

Buike Arthur L. Ma Jr. and Ernest F. B Enfield discovered a plethora of toxicities 

in predator—prey interactions. Any toxicity data is thought to make an individual 

more vulnerable to predation. Prediction could be better if species behaved oddly. 

This is a critical concern for the vast majority of invertebrate organisms. Sherberger 

et al. investigated the effect of heat shock on floating insects. They were 

investigating if thermally stressed nymphs are more vulnerable to banded sculpture 

predation [24]. M. J. Naxadua and B. A. Kroft concluded that the fungicide 

benomyl's direct toxicity and prey poisoning caused a predatory mite's lifelong 

immature depression[25]. Ja Ksh et al. discover two types of adaptations to prey by 

carnivorous vertebrates and illustrate their link in an economic model [26]. 

According to the Toxin Ology Notes, poisonous animals can be researched as a 

substance, and toxicity must be investigated from any viewpoint that is necessary 

for life, including parasites and population control.B. A. Perret and T. A. Freyvo 

Gel  Fascinating links between toxinology and ecology may be formed, which will 

be critical for the survival of biodiversity. As a result, toxinology can only be 

assumed as a limit in its early stages[27]. Lincoln Pierson Brower and Linda Susan 

Fink investigated whether wild birds could be trained to avoid naturally harmful 

insects by sight or taste. However, authors have proven that unconditioned taste 

rejection of hazardous substances by wild birds exists. In actuality, such 

unconditional responses to aposematic visual and taste markers of many insects 

appear to be as necessary or crucial as conditioned reactions[28].   

Single species tests, according to John Cairns, Jr., can reliably predict reactions at 

later stages. Various levels of environmental realism can be reached in the 

laboratory or under laboratory conditions at various phases of biological 

organization, according to the author. The authors concluded that the toxicity test 

balancing at various phases of biological organization is required to produce a 

credible risk evaluation [29]. Maria R. Servedio discovered the classical 
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conditioning model for predator remembering and forgetting tests, as well as the 

intensive one-trial and no forgetting over time, which can occur with very toxic 

prey. The author discovered that the extremely poisonous prey conditions 

accelerate the development of coloration by stabilizing very brilliant mutations, 

with each succeeding mutation creating a somewhat higher conspicuousness of the 

prey[30]. 

Prey species with comparable shape and behavior that are initially killed and 

consumed may differ greatly in their usefulness as food for generalist arthropod 

predators, according to Soren Woft and Darid H. Wise [31]. Jefferson T. Turner 

and Patricio A. Tester discovered that interactions between hazardous 

phytoplanktones and their zooplancton graders are intricate. Some zooplankters 

ingest toxic phytoplankton without apparent harm, whereas others are harmful. 

Their mechanisms of action, toxicity, and solubility differ from phycotoxins and 

impact grazers in different ways [32].  

Akira Mori and Gordon M. Burghardt proposed that the anti-predator nature of 

animals was shaped by a variety of environmental factors. When it comes to 

ectotherms, one of the most important variables is the ambient temperature, as most 

physiological functions rely on the body's temperature. The authors investigated 

the anti-predator behavior of a Japanese grass serpent's erect temperature [33]. 

According to research, R. tigvinuz shifts from diverse passive responses to active 

flight responses when the temperature rises in order to combat predators.Thomas 

N. Sherratt came to the conclusion that the average likelihood of attacking 

defenseless models and their defenseless imitations should decrease in a sigmoidal 

manner with an increase in the availability of defenseless alternative prey and that 

the choice to drill predators generally should be fairly indifferent to the probability 

of the possible defense of prey items[34]. 

Michael P. Speed observed that the elusive presence of an appetizing prey might 

inhibit predator learning and accelerate predator forgetting, to the prey's benefit. In 

terms of learning and memory, cryptic may be an anti-signal[35]. Ruxton et al. 



15 
 

observed that the toxicity and coloration of prey species are frequently varied. The 

authors also discovered a substantial relationship between signal intensity and the 

average toxicity of each signal level. When equilibrium is reached, predators 

change their behavior and appear to ignore the signal[36].  

Christina G. Halpin and Candy Rowe concur that the rejection risk is influenced 

not only by an individual's investment in safeguards, but also by the investment of 

others in the same group. As a result, a predator's taste rejection may destabilize 

defense expenditure and stimulate prey defensive heterogeneity[37]. The trained 

predators, John Skelhorn and Candy Rowe, observed that there are important 

selective factors in aposematism and that they continue to make strategic decisions 

to consume guarded prey based on their acquired knowledge of the prey's poisonous 

and nutritional quality[38].  

Stephanie O'Donnell et al. discovered that invasive species cause many extinctions 

while also being difficult to eradicate. Because indigenous prey is critical to 

invasive predator problems, CTA could be employed to alter invasive predator 

feeding behavior. The authors concluded that CTA may be a viable strategy for 

reducing the ecological consequences of invasive species [39]. According to David 

W.M. Nelson et al., generalist predators use natural and acquired behaviors to reject 

unfavorable foods and effectively choose ideal preserved forging, in order to 

choose the presence of prey variable in diseases, diet, defenses, and availability. 

Expert predators do not exhibit such behavioral variety, maybe because their food 

is of predictable consistency [40].  

istein Haugsten Holen discovered that if the protective toxin is sufficiently 

unpleasant, a mimicric complex may be less helpful to the predatory than it should 

be if the models are slightly toxic and better resistant against predation. Taste 

imitation may also reduce the profitability of the imitation complex while 

increasing predation security [41]. Richard Shine discovered that most dunnarts ate 

only a portion of a toad before discarding it, and there was no sign of toad poisoning 

in a single animal. After only one or two encounters, both dunnarts learnt to avoid 
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toads as prey. Predators denied toads over the duration of the study (22 days), 

indicating that toads are hazardous in terms of long-term retention [42].  

According to Christina G. Halpin, European starlings (Sturnus vulgaris) increase 

their consumption by artificially increasing their nutritional level and lower their 

intake by discontinuing protein enrichment. This demonstrates that birds may 

detect and utilise this information in their food foraging decisions to detect the 

nutrient content of deadly prey, therefore improving new opportunities for evolving 

prey defenses. This is obviously visible. Nutritional disparities between people 

could result in similarly hazardous prey, which could explain why some species 

undergo ontogenetic protection measures [43]. 

According to D. Peacock et al., innovative strategies are crucial for the survival of 

endangered species against feral cats. According to new research, if a cat has 

effectively killed a dangerous species, a single feral cat would actively destroy 

endangered beast populations. Toxic collars and toxic implants fitted or implanted 

during surveillance or reintroduction programming may empower the offending 

animals if a target animal is killed multiple times [44].  

Flubendiamide, according to R.S.Ramos et al., tends to linger on the surface longer. 

The authors believe that the insecticides chlorfenapyr, chlorantraniliprole, 

flubendiamide, spinosad, and indoxacarb are the most interesting to use with C. 

Furthermore, these chemicals protect B communities. Pallescent and more 

environmentally friendly pest management strategies [45].  

Coral gobies were mentioned as a possible prey by Barbara Gratzer et al., however 

E. Fasciatus' non-toxic monitoring fish clearly preferred the Gobiodon. When faced 

with a goby, the predator did not choose one animal over the other. Poisonous 

gobies were frequently caught, but they were evacuated quickly, repeatedly, and 

alive, contrary to our expectations. This unusual avoidance after capture indicates 

the substantial risk of these gobies living on the ground due to their skin toxin [46]. 

M. Banerjee and E. Venturino have explored a prey-toxic prey-predator interaction 

device without accounting for the time lag of the gestation period. However, the 
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time lag associated with the gestation period was not considered by the authors of 

this paper. The predator's replication after predating the prey is instantaneous in the 

technique proposed by M. Banerjee and E. Venturino, and the practical form of the 

predator exhibiting avoidance behavior in the presence of enormous amounts of 

toxic prey is considered. However, in the natural world, it is more practical to 

tolerate the temporal lag caused by the gestation period. M. Banerjee and E. 

Venturino's analysis is broadened by incorporating time delay into the predator's. 

 

The types of behavioral features demonstrated by animals to recognize predators 

cannot be determined by examining the relationship between prey population and 

strike rate [51]. One prey is dangerous to the predator, whereas the other is not. The 

hunting processes of both prey groups are tracked individually by Monod-Haldane 

and Holling type II functional outputs [52].  

Using an ordinary differential equation, the authors assessed the predator-prey 

relationship in three dimensions in three species. The computation was based on 

the subjective population numbers of two prey animals and one predator creature 

that share their habitats [53]. In research, a mathematical model of hunts for two 

competing prey species was developed and tested. The rate of growth and 

functional responses could be general nonlinear functions. The findings point to the 

presence of an intraspecific interference component, which is a critical 

characteristic determining the system's dynamics [54].  

Three prey-predator populations could be asymptotically stabilized over time by 

using nonlinear feedback control inputs. The functional parameter limit, beneath 

which variables converge to limit cycles, is established [55]. Many animals like to 

live in groups called herds. Different groups may cooperate, compete, or create a 

predator-prey relationship since they share the same habitat. A prior study [56] 

reported a new paradigm for predator-prey teams.  

We looked at two prey populations and two predator populations in this study. 

When two prey species exist in different environments and can defend themselves 
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in groups, only one of the two predators can move between them. A predator 

influences both group trends and pesticide effectiveness [57]. A study investigated 

the long-term unexpected behavior of the at-risk group using a stochastic logistic 

differential equation that calculates ecosystem function [59]. To maintain a stable 

food web, the predator alternates between prey with varying relative densities [60]. 

A study discovered the conditions under which species become extinct in the 

system and identified the essential characteristics for all species to persist 

indefinitely [61]. By completing an initial examination of the model's normalised 

version, researchers demonstrated the existence of dynamics in genuine predator-

prey systems that are well-represented by fundamental conditions [62]. Few studies 

have employed mathematical modeling to investigate how prey maturation affects 

a predator-prey model. To analyze predatory behavior on mature prey, delay 

differential equations can be used [63].  

A mathematical model that accounts for time lag is required to analyze the dynamic 

behavior of these types of biological systems [64]. In the absence of climate 

fluctuation, the criteria for local asymptotic stability were met. The probabilistic 

technique was created by the authors by incorporating Gaussian white noise notions 

into all regular equations [65]. Under some conditions, the system has a stationary 

distribution that is ergodic. Under certain conditions, the system's solution stays 

globally asymptotically stable [66]. A three-species prey-predator system was used 

in one study, with the predator being a layman by nature because it feeds on two 

prey creatures [67]. 

In many environments, prey cooperation benefits both prey populations. If one prey 

is dangerous to a predator and the other is weak, the predator may pursue the weak 

prey [68]. Another study found that nonconstant solutions require significant 

diffusions, interspecific contests, slower prey intrinsic growth rates, and higher 

predator intrinsic reduction rates [69].  

The interplay of multiple prey and a single predator is frequently unstable. It is 

extremely unlikely that all three species will dwell in the same location. In practice, 
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the predator always triumphs [70]. When two prey species compete directly, a 

predator model with temporal delays and a weak Allee effect in the prey's 

development function is used. Despite its simplicity, the system exhibits a wide 

spectrum of dynamic behavior, such as biostability at the equilibrium point [71]. 

To study delay models in population dynamics, we used the model proposed by 

[72]. Using stochastic Lyapunov functionals, one study proposed numerous 

conditions for extinction and survival in the mean of the three species [73]. A high 

level of fear of a prey animal and a higher quality of life for second prey may boost 

that species' chances of survival [74].  If the impulsive duration exceeds a certain 

threshold, the structure is usually stable [75]. A dynamic system modelled by 

multiple teams consists of two preys and one predator. Individuals from both prey 

groups would support one another during an attack, and the rate of predation for 

each group would differ [76]. 

Researchers can see the impact of prey collaboration by determining the types of 

interactions in a multiteam system. Such a study's findings would be comparable to 

those reported by Poole on Leslie-Gower computations [77]. The amount of easily 

digested food influences a predator's behavior toward a specific prey species. A 

biosynthetic suppression strategy regulates these genes, and therefore the predator 

population's lifestyle [78]. Survival and density variations in prey species increase 

protection evolution based on parameters. Incorporating a predator's optimal meal 

selection into the model improved cohabitation and reduced overall density 

variations [79]. 

A fourth-order nonlinear differential equation can be utilized to represent the 

system when there is just one predator [80]. The authors employed the press 

perturbation approach to assess the intensity of overall impacts of connections 

between phytoplankton and bacteria in the stable state under these coexistence 

conditions. This implies that, despite the fact that plankton and bacteria compete 

for a common resource, inorganic phosphorus, a mutualistic scenario may emerge 

as a result of the mechanism by which element carbon moves from plankton to 
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bacteria [81]. Because of its generality and significance, the predator-prey 

relationship has drawn the attention of a growing number of applied 

mathematicians and ecologists. While developing a variety of sophisticated models 

for two or more interacting animal systems [82], the effects of population, age 

distribution, time delay, functional response, switching, and other aspects were all 

considered. 

According to the author, Hydra plays an important function in prey population 

management. According to the author, hydra population density climbed from June 

to a high in late July or early August, then stayed stable or slightly fell until late 

August [85]. The essential idea that the parameters are cyclic functions of time 

modifies the total set of differential equations that reflect predator-prey dynamics. 

The author also determined that the system has a periodic solution [86].  

Commensal and mutualistic interactions are common among terrestrial vertebrate 

species and have significant but mostly unmeasured effects on individual fitness. 

Because all terrestrial vertebrate commensal and mutualistic relationships occur 

spontaneously [87]. Dingoes had an impact on the past human economy by 

competing for large prey because of their severe impact on kangaroo population 

reduction in current ecology and the human economy. The authors acknowledge 

that identifying all independent situations and individuals who interact to generate 

an example of this type in our hypothesis archaeological enquiry is difficult [88]. 

The author arrived to extremely generic nonlinear mutualism models and some 

simple tests for determining if a nonlinear mutualism model is globally stable or 

stable in a finite region. The author also discovered that mutualistic systems are 

more mathematically tractable than competition and prey-predator dynamics [91]. 

The researcher came to the conclusion that how to analyze a scenario when its key 

findings appear to be empirically incorrect. Because the theory is analytically valid 

and, in some ways, tautological, the author attempted to figure out what went wrong 

to produce its empirical falsification [93]. In multispecies ecosystems, the author 

identified a relationship between complexity and sustainability [97].  
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The authors used a multi-framework to integrate two delays and the Holling II 

impulse response. The normal form approach and the Centre manifold theorem are 

also utilized to produce explicit equations for establishing the trajectory of the Hopf 

bifurcation and the existence of bifurcating solutions [98]. According to the authors' 

findings [101], the strength of commensal mediation eventually decreases as a 

result of a steady pace of resource depletion.  

The importance of the system's species interactions, such as qualitative stability, 

time dependence, predation, mutualism, commensalism, and so on, is an intriguing 

and important problem to investigate. In terms of various sorts of functional 

responses, several prey-predator models have been examined [102]. When 

analyzing the dynamics of the predator-prey relationship, the authors discovered 

two main paths. The authors also noted that, while this technique is clearly useful 

for gaining a thorough understanding of each particular predator-prey relationship, 

it is inefficient for drawing broad conclusions about two significant ecological 

issues [103].  

Researchers used a chaotic ecological model to increase ecological intuition, and it 

was determined that simplified mathematical models have served and will continue 

to play an important role in understanding exactly what sorts of behaviors may 

occur in natural ecosystems [104]. When surrounding variations are taken into 

account, researchers discovered that providing more food is insufficient to 

influence the behavior of a predator-prey ecosystem [105]. 

1.3 Motivation and Background (Research Gap) 

Many scientists, professors, researchers have made several contributions in 

modelling of prey-predator dynamics. From my Literature Review, I have found 

that majority of work on prey-predator dynamics involves ordinary differential 

equations. There is a huge scope for inclusion of delay differential equations in 

scenarios such as predation of mature prey, team up of the different species of prey 

to delay the predation rate, effect of toxin producing prey etc. 
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1.4 Scope of the Study (Hypothesis) 

Majority of work on prey-predator dynamics involves ordinary differential 

equations. There is a huge scope for inclusion of delay differential equations in 

scenarios such as predation of mature prey, team up of the different species of prey 

to delay the predation rate, effect of toxin producing prey etc. 

 

1.5 Research Objectives of the Study 

In the view of the above in this thesis, following problems have been studied using 

mathematical model. 

1. To model the prey-predator dynamics involving mature prey using the delay 

differential equation and study the stability and bifurcation analysis. 

2. To model the effect of toxin producing prey on predator population using the 

delay differential equation and study the stability, direction and bifurcation 

analysis. 

3. To model the multi-team prey-predator dynamics using the delay differential 

equation and study the stability, direction and bifurcation analysis. 

 

1.6 Basic Terms used in the Thesis 

1.6.1 Predation: - An ecological interaction called predation occurs when one 

species kills and consumes another. Based on the behaviour of a predator that 

catches and kills a prey before consuming it, predatory behaviour refers to the 

ecological process by which energy is transferred from living animal to live animal. 

Predation is a well-known species interaction that has been studied extensively over 

the years. Predation is conceptualised as a relationship in which the predator 

benefits and the prey suffers. Of fact, in cruel reality, prey is frequently not just 

"harmed," but also killed. Depending on the kind of predator. 

1.6.2 Gestation Period: - The gestation period is the span of time during which 

a mammal foetus develops from conception to birth. The length of this time varies 
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depending on the species. For instance, the gestation period of a cat typically lasts 

58–65 days whereas that of an elephant lasts 645 days. 

1.6.3 Prey and Predator: - The term "predator" refers to a creature that hunts 

and eats specific other organisms. The animals that predators consume are referred 

to as prey. Predators are often either carnivorous or omnivorous. Some examples 

of Predators are lions, tigers, sharks, and snakes etc. Depending on their position in 

the food chain, predators may potentially become prey to other creatures. For 

instance, a snake may be both an eagle's prey and a mouse's predator.  

1.6.4 Delay Differential Equation: - A special type of differential equation 

where the values of the function's values from previous periods are used to define 

the derivative of the unknown function at a specific time. 

1.6.5 Commensal Species: - Commensalism is a type of relationship between 

two living things where one of them gains from the other without hurting it. 

Commensalism can take the form of brief encounters between organisms or a 

permanent connection. 

1.6.6 Stability: - Here, we'll keep a watch out for the delay parameter's partial 

value, below that my system is stable and above which complicated behaviour 

begins to manifest. As we talk about the real quantity in model. None of which can 

even be negative, some prove the criteria mathematically by proving the positivity 

of model. 

1.6.7 Positivity: - As we talk about the real quantity in model. None of which 

can even be negative, some prove the criteria mathematically by proving the 

positivity of model. 

1.6.8 Boundedness: - Again as we are taking something in real. The sum total 

and combination of which always lies between nothing to something finite. We 

prove this assumption mathematically by showing that system is bounded. 
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1.6.9 Equilibrium Point: - In the absence of time variation that is when there 

is no disturbance in the system. We put the derivative of the system equal to zero. 

1.6.10 Food Webs and Chains: - The activity of feeding connects the lives 

of various animals in a wildlife habitat. Energy and food ingredients locked up in 

plant and animal tissues are passed through a chain as they develop and are 

consumed by others. Food chains interconnect there, and the resulting network is 

known as a food web. A community's animal and plant populations are naturally 

balanced. If the equilibrium is thrown off, the entire web might suffer. 

 

1.7 Mathematical Preliminaries  

 

1.7.1 Existence of Unique, Bounded and Positive Solution of Delay 

Differential Equation 

A special type of differential equation where the values of the function's values 

from previous periods are used to define the derivative of the unknown function at 

a specific time. Here an initial history function, rather than an initial condition, 

needs to be defined. A delayed state variable can be used to demonstrate the past 

dependence of a differential equation. The derivative of the state variables not 

required in this case. The corresponding DDE with a single delay τ > 0 is given by 

                                   𝑥̇(𝑡) = 𝑓(𝑥, 𝑥(𝑡), 𝑥(𝑡 − 𝜏))                             (1.1) 

Assume that 𝑓(𝑥, 𝑦, 𝑡) and 𝑓𝑥(𝑥, 𝑦, 𝑡) are continuous on 𝑅3. Let 𝑠 ∈ 𝑅 and 

∅: [𝑠 − 𝑟, 𝑠] → 𝑅 be continuous. We seek a solution 𝑥(𝑡) of equation (1.1) 

satisfying, in function 𝑓(𝑥, 𝑦, 𝑡), 𝑦 s t a n d s  f o r  
𝑑𝑥

𝑑𝑡
.  

 

𝑥(𝑡) = ℱ(𝑡), 𝑡 ∈ [𝑠 − 𝑟, 𝑠], 𝑥(0) = 𝑥0             (1.2) 

 

 

   

And satisfying equation (1.1) on 𝑡 ∈ [𝑠, 𝑠 + 𝜎] for some 𝜎 > 0. 
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Theorem 1 (Existence of Unique Solution) Let 𝑓(𝑥, 𝑦, 𝑡) and 𝑓𝑥(𝑥, 𝑦, 𝑡) 

are continuous on 𝑅3. Let 𝑠 ∈ 𝑅 and ∅: [𝑠 − 𝑟, 𝑠] → 𝑅 be continuous.  Then 

there exists 𝜎 > 𝑠 𝑎𝑛𝑑 𝑎 𝑢𝑛𝑖𝑞𝑢𝑒 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝐼𝑉𝑃 (1.1) − (1.2)𝑜𝑛 [𝑠 −

𝑟, 𝜎]. 

Theorem 2 (Boundedness of Solution). Let 𝑓 satisfy the hypothesis 

of theorem 1.7.1 and let 𝑥: [𝑠 − 𝑟, 𝜎) → 𝑅 be the noncontinuable solution 

of the IVP (1.1)- (1.2). If 𝜎 < ∞ then limit 𝑡→𝜎−|𝑥(𝑡)| = ∞ 

Remark Theorems 1 and 2 can be elaborated for the value when 𝑥 ∈ 𝑅𝑛 and 𝑓: 

𝑅 × 𝑅𝑛 × 𝑅𝑛 → 𝑅𝑛, i s  t h e  f u n c t i o n  t h e n  w e  c a n  e l a b o r a t e  t h i s  

t o  m u l t i p l e  t i m e s  o f  d i s c r e t e  v a l u e s  o f  d e l a y  𝑟0 < 𝑟1 < ⋯ < 

𝑟𝑚 where 𝑓 = 𝑓 (𝑡, w(𝑡), w (𝑡 − 𝑟0), w( 𝑡 − 𝑟1), …, w (𝑡 − 𝑟𝑚)). 

Theorem 3 (Positivity of Solution). Suppose that 𝑓: 𝑅× 𝑅+
𝑛  × 𝑅+

𝑛  

→𝑅𝑛satisfies the hypothesis of theorem 1.7.2 and remark 1.7.3 and for all 𝑖, 𝑡 and 

for all 𝑥, 𝑦 ∈  𝑅+
𝑛 , 𝑥𝑖 = 0 ⇒  𝑓𝑖(𝑥, 𝑦, 𝑡) ≥ 0 If the initial data ∅ in equation (1.2) 

satisfy ∅≥0, then the corresponding solution 𝑥(𝑡) of equation (1.1) satisfy 𝑥(𝑡)≥0 

for all 𝑡≥𝑠 where it is defined.  

1.7.2 Stability by Variational Matrix Method 

Let an autonomous system of equations be 

                                     
𝑑𝑦

𝑑𝑡
=  f(y)                                                                           (1.3)                                             

Where y is an n-tuple vector i.e., 𝑦 = (𝑦1, 𝑦2, − − −𝑦𝑛). Let𝜙(𝑡)be the solution of 

system (1.3). The linear part of the expansion of the system (1.3) about 𝜙(𝑡) is given 

by the variational equation of the system (1.3) with respect to 𝜙(𝑡), written as 

  

                                       
𝑑𝑥

𝑑𝑡
= 𝑓𝑦  (ϕ(t))x                                                         (1.4)  
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Where 𝑓𝑦(ϕ(t)) =
𝑑𝑓𝑖

(𝑑𝑦𝑗)𝑛×𝑛
 at 𝜙(𝑡). Given that every solution to a non-linear system 

regulated by a variational system would also be stable, so stability of 𝑥 = 0 of (1.4) 

determines the stability of 𝑦 = 𝜙(𝑡) of (1.3). Particularly, when𝜙(𝑡) = 𝜙0, a constant, 

the system (1.3) becomes 

𝑑𝑥

𝑑𝑡
= 𝐴𝑥 

Where 𝐴 = 𝑓𝑦 (𝜙0). Since a small perturbation of the system (1.3) is 

represented by system (1.4), so the stability of 𝑦 = 𝜙0 of (1.3) actually gives 

the stability of the solution of𝑥 = 0 of (1.4). The description of stability of 

every solution of 𝑥′ = 𝐴𝑥 is given by following theorems. 

Theorem 4 Whenever all latent values of 𝐴 have no positive real parts, then 

every answer of the system 𝑥′ = 𝐴𝑥 𝑤ℎ𝑒𝑟𝑒 𝐴 = 𝑎𝑖𝑗  is a constant matrix, is 

stable asymptotically. 

Theorem 5 If all the eigen values of 𝐴 with multiplicity greater than one 

has negative real parts and all its roots with multiplicity one has non-positive 

real parts, then               all the solutions of the system 𝑥′ = 𝐴𝑥  are bounded and 

hence stable. 

Following theorem determine the sign of real parts of the latent values of 

characteristic polynomial. 

 

 

Hurwitz Theorem  

𝑃(𝜆) =  𝜆𝑛 + 𝑏1𝜆
𝑛−1 + 𝑏2𝜆

𝑛−2 + − − − + 𝑏𝑛 

A required and sufficient criterion for all of the polynomial roots of the 

polynomial 𝑃(𝜆) having real portions to be negative is that the value of 

minors for all principal diagonals of Hurwitz matrix must have positive 

value  
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𝐻𝑛 =

[
 
 
 
 
𝑏1 1 0 0 0 0 … 0
𝑏3 𝑏2 𝑏1 1 0 0 … 0
𝑏5 𝑏4 𝑏3 𝑏2 𝑏1 1 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ … 0
0 0 0 0 0 0 … 0]

 
 
 
 

 

Theorem 6 Let 𝜍1, 𝜍2, 𝜍3, … 𝜍𝑚 are all non-negative 𝜍𝑖
𝑗(𝑗 = 0,1,2,…𝑚; 𝑖 =

1,2,… , 𝑛) are constants. As 𝜍1, 𝜍2, 𝜍3, … 𝜍𝑚 changes, the sum of the orders 

of the zeros of exponential polynomial 

𝑃(𝜒, 𝑒−𝜒𝜍1 , … , 𝑒−𝜒𝜍𝑚) = 𝜒𝑛 + 𝜁1
0𝜒𝑛−1 + ⋯ + 𝜁𝑛−1

0 𝜒𝑛 + 𝜁𝑛
0 + 

[𝜁1
1𝜒𝑛−1 + ⋯+ 𝜁𝑛−1

1 𝜒𝑛 + 𝜁𝑛
1]𝑒−𝜒𝜍1 + ⋯

+ [𝜁1
𝑚𝜒𝑛−1 + ⋯+ 𝜁𝑛−1

𝑚 𝜒𝑛 + 𝜁𝑛
𝑚]𝑒−𝜒𝜍𝑚  

Ruan and Wei proved this theorem using Rouches theorem.  

1.7.3 Hopf-Bifurcation  

The extension from two dimensions to higher dimensions was a key contribution 

made by Hopf. Sometimes Hopf bifurcation is also called as “Poincare- Andronov 

-Hopf bifurcation”. The Hopf-bifurcation Theorem explains how a flow's 

topological characteristics change when one or more parameters change. The 

essential finding about flows is that the linearized flow entirely determines the local 

behaviour of the flow if the stationary point is hyperbolic, or if all of the latent 

values of the linearized flow at the stationary point have non-zero real parts. 

Therefore, stationary point bifurcations can only take place at parameter values 

when the stationary point is not hyperbolic. More, precisely, a bifurcation value of 

a parameter is a value at which the qualitative nature of the flow changes. It is far 

more challenging to analyse the Hopf bifurcation since it calls for a non-hyperbolic 

stationary point with linearized latent values in a two-dimensional centre manifold, 

as well as periodic rather than stationary bifurcating solutions. 

Theorem 7 Hopf-Bifurcation Theorem  

Consider one family of delay polynomials with a single parameter 

                                                        𝑥′(𝑡) = 𝐹(𝑥𝑡, 𝜇)                                               (1.5)  
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Where 𝐹: 𝐶 × 𝑅 → 𝑅𝑛 is a continuous differentiable function in its domain and 

𝑥=0 is a steady state for arbitrary values of 𝜇: 𝐹(0, 𝜇) ≡ 0 

We have to linearize function 𝐹 about 𝜙 = 0 as follows 𝐹(𝜙, 𝜇) = 𝐿(𝜇)𝜙 +

𝑓(𝜙, 𝜇) 

Where 𝐿(𝜇): 𝑐 → 𝑅𝑛  is a bounded linear function and 𝑓 has large order: 

 

lim
𝜙→0

|𝑓(𝜙, 𝜇)|

‖𝜙‖
= 0 

Following is the characteristic polynomial about 𝐿: 

|𝜆𝐼 − 𝐴(𝜇, 𝜆)| = 0, 𝐴𝑖𝑗(𝜇) = 𝐿(𝜇)𝑖(𝑒𝜆𝑒𝑗) 

The roots of this equation constitute the main assumption. 

(H)The characteristic equation will be having a pair of simple conjugates eigen 

values ∓𝑖𝜔 𝑤𝑖𝑡ℎ 𝜔0 ≠ 0 and also no eigen value is scalar multiple of 𝑖𝜔0 𝑓𝑜𝑟 𝜇 =

0. Here a root of order one means a simple root. If we write characteristic 

polynomial in the form ℎ(𝜇, 𝜆) = 0 then (H) implies ℎ𝜆(0, 𝑖𝜔0) ≠ 0. So, by using 

theorem for implicit function, there exists a continuously differentiable set of 

solution 𝜆 = 𝜆(𝜇) = 𝛼(𝜇) + 𝑖𝜔(𝜇) for small 𝜇 satisfying 𝜆(0) = 𝑖𝜔0. In particular 

𝛼(0) = 0 and 𝜔(0) = 𝜔0. Next assumption is that as 𝜇 increases through zero, the 

line of imaginary axis is crossed transversally by these roots. Actually, the 

assumption is: 

                               𝛼′(0) > 0                                                                  (1.6) 

 

In case  𝛼′(0) < 0, we always ensure that equation (1.6) holds by changing the sign 

of the parameter i.e., we take parameter 𝜈 = −𝜇. The positive sign is essentially a 

normalization, ensuring that the pair of latent values has a positive real portion if 

𝜇 > 0 and a negative real part otherwise.  

Theorem 8 Let (H) and equation (1.6) both satisfied. Then ∃ 𝜀0 > 0,  a real 

valued well defined even function 𝜇(𝜀) and 𝑇(𝜀) > 0 𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔 𝜇(0) >

0 𝑎𝑛𝑑 𝑇(𝜀) = 2𝜋
𝜔0

⁄  , and a non-constant  𝑇(𝜀) − 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑝(𝑡, 𝜀) 



29 
 

having continuous differentiability for all functions in 𝜀 for |𝜀| < 𝜀0, such that 

𝑝(𝑡, 𝜀)  is a result of equation (1.5) and                                

𝑝(𝑡, 𝜀) = 𝜀𝑞(𝑡, 𝜀) 𝑤ℎ𝑒𝑟𝑒 𝑞(𝑡, 0) 𝑖𝑠 𝑎 2𝜋
𝜔0

⁄ 𝑝𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑞′ = 𝐿(0)𝑞.  

Moreover, there exist 𝜇0, 𝛽0, 𝛿 > 0, such that if equation (1.5) has a non-constant 

periodic solution 𝑥(𝑡) of period 𝑃 for some 𝜇 satisfying 𝜇 < 𝜇0 with  𝑚𝑎𝑥𝑡|𝑥𝑡| <

𝛽0  and |𝑃 − 2𝜋
𝜔0

⁄ | < 𝛿, 𝑡ℎ𝑒𝑛 𝜇 = 𝜇(𝜀) 𝑎𝑛𝑑 𝑥(𝑡) = 𝑝(𝑡 + 𝜃, 𝜀) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 |𝜀| <

 𝜀0 𝑎𝑛𝑑 𝑠𝑜𝑚𝑒 𝜃.     

If F is continuously differentiable five times, then:  

                                    

                     𝜇(𝜀) = 𝜇1𝜀
2 + 𝑂(𝜀4)                                                              (1.7) 

                           

                       𝑇(𝜀) =  
2𝜋

𝜔0
[1 + 𝜏1𝜀

2 + 𝑂(𝜀4)]                                             (1.8) 

If all other eigen values for 𝜇 = 0 have only negative real components, with the 

exception of ∓𝑖𝜔 𝑡ℎ𝑒𝑛 𝑝(𝑡, 𝜀) is asymptotically stable if 𝜇1 >

0 𝑎𝑛𝑑 𝑢𝑛𝑠𝑡𝑎𝑏𝑙𝑒 𝑖𝑓 𝜇1 < 0.  

1.7.4 Calculation of Sensitivity with Respect to State Variables of 

the Model Parameters 

Systematic evaluation of the effects of model parameters on system solutions is 

called sensitivity analysis. There are number of methods to do sensitivity analysis 

of systems without delay, but there are only a few methods for sensitivity analysis 

of systems involving delays. The knowledge of how a small change in model 

parameter can bring change in the state variable, can be a great help in modelling 

process. It helps in elimination of ineffective and irrelevant parameters. It gives a 

complete insight into the overall behaviour of the proposed model. The 

computation of partial derivatives of the solution with respect to each parameter is 

all that the sensitivity analysis involves if all the parametric values in the given 

system are assumed to be nonvarying. The sensitivity function matrix has the 

following format: 
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S(t) ≡ S(t, α) = [
𝜕

𝜕𝛼
]
𝑇

𝑥(𝑡, 𝛼) 

 

Its 𝑗𝑡ℎ 𝑐𝑜𝑙𝑜𝑢𝑚𝑛 𝑖𝑠 ∶  𝑆𝑗(𝑡, 𝛼) = [
𝜕𝛼𝑗(𝑡,𝛼)

𝜕𝛼1
,
𝜕𝛼𝑗(𝑡,𝛼)

𝜕𝛼2
, … ,

𝜕𝛼𝑗(𝑡,𝛼)

𝜕𝛼𝑛
]
𝑇

          

This column vector gives sensitivity of the solution 𝑥𝑗(𝑡, 𝛼) for small change in 

parameter  

𝛼𝑖 , 𝑖 = 1,2,3,… , 𝑛.      

Theorem 9 𝑆(𝑡) satisfies the delay differential equation: 

𝑆′(𝑡) = 𝐽(𝑡)𝑆(𝑡) + 𝐽𝜏𝑆(𝑡 − 𝜏) + 𝐵(𝑡), 𝑡 ≥ 0 

𝑊ℎ𝑒𝑟𝑒 𝐽(𝑡) =
𝜕

𝜕𝑥
𝑓(𝑡, 𝑥, 𝑥𝜏), 𝐽𝜏(𝑡) =  

𝜕

𝜕𝛼𝜏
𝑓(𝑡, 𝑥, 𝑥𝜏),𝐵(𝑡) =

𝜕

𝜕𝛼
𝑓(𝑡, 𝑥, 𝑥𝜏) 

1.8 Summary 

This thesis consists of six chapters whose details is as follows: 

 

In chapter-1, a broad overview of the subject is provided. Some key topics in prey-

predator dynamics are discussed. All of the essential mathematical ideas have also 

been provided, allowing for the analytical and numerical examination of all of the 

suggested mathematical models. It also provides a comprehensive examination of 

previous work in the subject of prey-predator dynamics in the form of a literature 

review. 

  

In chapter-2, In this chapter an interesting scenario assumed. While making this 

mathematical model we assumed that predator consume only mature prey due to 

this delay occur in system which we have studied using the DDE. A stability 

analysis is conducted about such a non-zero equilibrium point after calculating all 

probable equilibrium points. As the delay parameter's value falls below the critical 

point, the system destabilises and asymptotically stabilises. Once the value of the 

lag parameter reaches the critical point, Hopf bifurcation is shown. Moreover, 

sensitivity analysis has been carried out to examine the impact of additional factors 
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on the model parameters. Very few researchers have investigated the impact of prey 

maturation in a predator-prey model with the help of mathematical modelling. As 

time delay has a highly intricate effect on the operational behaviour of the system, 

such as stability calculation, attractivity, periodic vibration, bifurcation analysis, 

and so on. Many intriguing results have been achieved using the suggested model. 

Using MATLAB, the numerical findings are supported. 

 

 

In chapter-3, a mathematical model is proposed to study the effect of toxin 

producing prey on predator population using delay differential equations. The 

associated state variables are Prey populations and predator populations. The 

assumption is that the toxicity released by prey population adversely affects the 

predator population. The feasible interior equilibrium is calculated. Hopf 

bifurcation is observed about the critical value of delay parameter. Analytical 

findings are supported using MATLAB simulation. 

 

In chapter-4, the delay differential equation is used to explore the multi-team prey-

predator dynamics in a mathematical model. Many creatures in nature travel in 

herds and form teams to get from one area to another. This helps them in reducing 

the risk of predation. A lag in time brought on by the age structure, maturation 

period, and feeding time is a major factor in real-time prey–predator dynamics that 

result in periodic solutions and the bifurcation phenomenon. This study analysed 

the behaviour of teamed-up prey populations against predation by using a 

mathematical model. The following variables were considered: the prey population 

𝑃𝑟1, the prey population 𝑃𝑟2, and the predator population 𝑃𝑟3. The interior 

equilibrium point was calculated. A local satiability analysis was performed to 

ensure a feasible interior equilibrium. The effect of the delay parameter on the 

dynamics was examined. A Hopf bifurcation was noted when the delay parameter 
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crossed the critical value. Direction analysis was performed using the centre 

manifold theorem. The graphs of analytical results were plotted using MATLAB.  

 

In chapter-5, The study of prey-predator dynamics including commensal species 

under the influence of time lag is suggested using a mathematical model. In this 

work, a multi-species system is developed with a delay in which alternating prey 

are connected to two competing animals, a predator species, and a commensal 

species. The internal equilibrium point is calculated with and as the state variables 

under consideration. The practicable interior equilibrium is subjected to an 

investigation of local satiability. Study is done on how the delay parameter affects 

the behaviour. Hopf bifurcation happens when the delay parameter reaches a 

specific threshold. The direction is also determined using the centre manifold 

theorem. Analytical findings were supported visually using MATLAB. 

 

      

In chapter-6, the stability of a solitary prey and a pair of predators is investigated 

mathematically using a delay differential equation and a functional response with 

square root. In this paper we consider a prey-predator model with a logistic growth 

delay for the prey population and a square root functional response. A new 

competitor predator introduced into the system with a density-dependent death rate. 

Calculating the interior equilibrium point and doing a stability check about non-

zero equilibrium point. The system's behaviour changes from stable to unstable, 

whenever the value of delay is greater than critical value, Hopf-Bifurcation is seen. 

Numerical simulation done using MATLAB to support analytical finding. 
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Chapter-2 

Modelling and Analysis of Prey-Predator Model Involving 

Predation of Mature Prey using Delay Differential Equations 

2.1 Introduction 

Mathematical biology and population dynamics has been extensively studied using 

various mathematical models over the years. The most important contributions 

toward theoretical population biology were given by [1] and [2] which is also 

known as Lotka-Volterra model or a Prey-Predator model. The dynamics of two 

populations, one of which is referred to as the prey population and the other as the 

predator population, are described by a linked non-linear ODE system. However, 

[2] soon realized that time delay needs to be included for realistic modelling and 

proposed an integro-differential equation model. But he could not analyse the 

stability of equilibrium point.  

The exact method to solve the modified model by [2] was given by [3] who used 

the simplest form of delay function.  The limited prey population and limited 

predator appetite were considered in limit cycle prey-predator interaction models 

[4-5]. Nevertheless, Holling type-II has non-zero handling time, as shown by [6], 

whereas mass action predation offers zero handling time. It has been shown that the 

predator can be affected by transmissible diseases under various physical 

conditions and circumstances [7].  

If the functional predation responses are assumed to be of Holling type-II, the Hopf-

bifurcation is invariably of a supercritical character [8]. It has also been proved that 

there are many diseases such as rabies, hepatitis etc. which need incubation period 

before becoming infection vectors [9-10]. It has been proved that susceptible 

predator consumes the prey as per mass action law, but the infected predator 

consumes as per Holling type-II response [11]. The ratio dependent model given 

by [12] evolved as an alternate to models given by [1] and [2].  
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Many animals' life histories are divided into two phases immature and mature. 

There are various behavioural traits for each level. Many writers have also 

presented stage-structure prey-predator models [13–15]. A mathematical scenario 

was put up in which the predator species heavily devoured the young prey [16]. In-

depth research on positive equilibrium has been done on the stability characteristics 

for continual input of refuge preys in Lotka-Volterra prey-predator models [17].  

A complete investigation was given for a number of stabilities, such as absolute 

stability, conditioned stability, and bifurcated in a predator-prey scenario with 

discrete delays [18]. In-depth analysis was done on the exponential characteristic 

equation's zeros [19]. The stability of equilibrium points is examined using a non-

linear set of DDE [20]. 

In the view of above, therefore, this work aims to analyse the prey-predator 

relationship with delay differential equations involving predation of mature prey is 

performed. In the beginning section, after formulation of the basic model, the 

interior non-zero equilibrium is calculated. The stability study of this non-zero 

equilibrium is conducted in the next section in both the absence and presence of 

delay. Next, sensitivity analysis was done to determine how different factors 

affected the state variables. At last, conclusion part has been written involving the 

major findings of the analysis and biological applications of the proposed model.  

2.2 Mathematical Model 

2.2.1 Assumptions of the Model: 

1. Prey population has maturity time 𝜏. 

2. Predators consume only mature prey. 

3. The mechanism that controls this prey-predator dynamic is as follows: 

Where, 𝑃𝑟(0) > 0, 𝑃𝑑(0) > 0  and 𝑃𝑟(𝑡 − 𝜏) = 𝑐(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)  for 𝑡 ∈

[0, 𝜏] 

4. Positive constants are used for all the parameters. 
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2.2.2 Model Formulation: 

Let 𝑃𝑟 and 𝑃𝑑  stand for the relative masses of prey and predator. Prey populations 

are thought to mature with time 𝜏. Further, it is considered that only fully grown 

prey is consumed by predators. The mechanism that controls this prey-predator 

dynamic is as follows: 

𝑑𝑃𝑟

𝑑𝑡
= 𝑏𝑃𝑟 − 𝛼𝑃𝑟

2 − 𝛽𝑃𝑟𝑃𝑑     (1) 

𝑑𝑃𝑑

𝑑𝑡
= −𝑑𝑃𝑑 − 𝛿𝑃𝑑

2 + 𝛾𝑃𝑟(𝑡 − 𝜏)𝑃𝑑    (2) 

Where: 𝑃𝑟(0) > 0, 𝑃𝑑(0) > 0  and 𝑃𝑟(𝑡 − 𝜏) = 𝑐(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)  for 𝑡 ∈ [0, 𝜏]. 

These variables are taken into account by this system: 

Parameter Description 

𝑏 Birth rate of the prey population intrinsically 

𝛼 Prey intraspecific competition rate 

𝛽 Rate of inter-specific competing 

𝑑 Mortality rates among predatory species 

𝛾 Rate of inter-specific competing 

𝛿 Predator intraspecific competition frequency 

𝜏 Delay variable 

 

It is reasonable to take all of the parameters to be constant positive values. 

2.3 Non-Zero Equilibrium 

At the steady state 𝑃𝑟(𝑡 − 𝜏) ≅ 𝑃𝑟(𝑡). Calculations for the non-zero equilibrium  

𝐸∗(𝑃𝑟
∗, 𝑃𝑑

∗)  are as follows: 
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𝑑𝑃𝑟
∗

𝑑𝑡
= 0 ⇒ 𝑃𝑑

∗ =
𝑏−𝛼𝑃𝑟

∗

𝛽
  

𝑑𝑃𝑑
∗

𝑑𝑡
= 0 ⇒ 𝑃𝑑

∗ =
𝛾𝑃𝑟

∗−𝑑

𝛿
   

On comparing these values of 𝑃𝑑
∗, we get: 𝑃𝑟

∗ =
𝑏𝛿−𝛼𝛿−𝑑𝛽

(𝛾𝛽+𝛿)
 

⇒ 𝑃𝑑
∗ =

𝛾𝛽𝑏−𝛼𝛽𝛾+𝑑𝛽

(𝛾𝛽+𝛿)𝛽
  

As a result, we have a non-zero equilibrium point: 

𝐸∗(𝑃𝑟
∗, 𝑃𝑑

∗) = 𝐸∗ (
𝑏𝛿−𝛼𝛿−𝑑𝛽

(𝛾𝛽+𝛿)
,

𝛾𝛽𝑏−𝛼𝛽𝛾+𝑑𝛽

(𝛾𝛽+𝛿)𝛽
 )  

2.4 Investigation of Stability and Hopf-Bifurcation for Non-Zero 

of Equilibrium 𝑬∗(𝑷𝒓
∗, 𝑷𝒅

∗)  

The equations that regulate the process of population competition at steady point 

𝐸∗(𝑃𝑟
∗, 𝑃𝑑

∗)  are as follows: 

𝑑𝑃𝑟
∗

𝑑𝑡
= 𝑏𝑃𝑟

∗ − 𝛼𝑃𝑟
∗2

− 𝛽𝑃𝑟
∗𝑃𝑑

∗                          (3) 

𝑑𝑃𝑑
∗

𝑑𝑡
= −𝑑𝑃𝑑

∗ − 𝛿𝑃𝑑
∗2

+ 𝛾𝑃𝑟
∗(𝑡 − 𝜏)𝑃𝑑

∗   (4) 

With respect to the set of equations (3)– (4), the characteristic equation is provided 

by: 

𝜆2 + 𝑎1𝜆 + 𝑎2 + 𝑎3𝑒−𝜆𝜏 = 0     (5) 

Where 𝑎1 = (2𝛼𝑃𝑟
∗ + 𝛽𝑃𝑑

∗ + 𝑑 + 2𝛿𝑃𝑑
∗ − 𝑏), 

𝑎2 = (𝑑 + 2𝛿𝑃𝑑
∗)(2𝛼𝑃𝑟

∗ + 𝛽𝑃𝑑
∗ − 𝑏),  𝑎3 = 𝛽𝛾𝑃𝑟

∗𝑃𝑑
∗   

When 𝜏 = 0, the equation (5) changes to: 

 

𝜆2 + 𝑎1𝜆 + 𝑎2 + 𝑎3 = 0      (6) 
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Hurwitz's roots of equation (6) must have a negative real component in order for 

the system to meet the Routh-criterion; hence, the system is stable if: 

(𝐿1): 𝑎1 > 0;  

(𝐿2): (𝑎2 + 𝑎3) > 0  

which definitely holds true. 

Now, with changes in the values of 𝜏, we want to examine the shifting of the roots' 

negative real portions to positive real parts. 

If equation (5) has a root of 𝜆 = 𝑖𝜔 then equation (5) transformed to: 

(𝑖𝜔)2 + 𝑎1(𝑖𝜔) + 𝑎2 + 𝑎3𝑒−(𝑖𝜔)𝜏 = 0  

⇒ −𝜔2 + 𝑎1(𝑖𝜔) + 𝑎2 +  𝑎3(cos 𝜔𝜏 − 𝑖𝑠𝑖𝑛 𝜔𝜏 ) = 0  

Equating real and imaginary parts: 

𝜔2 − 𝑎2 = 𝑎3 cos 𝜔𝜏                  (7) 

𝑎1𝜔 = 𝑎3𝑠𝑖𝑛 𝜔𝜏                  (8) 

Square and add equation (7) and (8): 

𝜔4 + (𝑎1
2 − 2𝑎2)𝜔2 + (𝑎1

2 − 𝑎3
2) = 0               (9) 

The two solutions (roots)of equation (9) are: 

𝜔1,2
2 =

(2𝑎2−𝑎1
2)±√(𝑎1

2−2𝑎2)
2

−4(𝑎1
2−𝑎3

2)

2
                                                   (10) 

None of the two solutions (roots) 𝜔1,2
2  is positive if: 

(𝐿3): (2𝑎2 − 𝑎1
2) < 0 𝑎𝑛𝑑 (𝑎1

2 − 𝑎3
2) > 0 𝑜𝑟 (𝑎1

2 − 2𝑎2) < 4(𝑎1
2 − 𝑎3

2)  

Therefore, if condition (𝐿3)  is true, equation (10) does not possess positive roots. 

The following lemma is available [18]. 
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Lemma 2.4.1 If (𝐿1) − (𝐿2)  are true, all the roots (solution) of equation (5) have 

negative real parts for all𝜏 ≥ 0. 

Besides, if: 

(𝐿4): (𝑎1
2 − 𝑎3

2) < 0 𝑜𝑟  (2𝑎2 − 𝑎1
2) > 0 𝑎𝑛𝑑 (𝑎1

2 − 2𝑎2)2 = 4(𝑎1
2 − 𝑎3

2)  

Then, positive solution(root) of equation (7) is 𝜔1,2
2 . 

It follows that, if: 

(𝐿5): (𝑎1
2 − 𝑎3

2) > 0 𝑜𝑟  (2𝑎2 − 𝑎1
2) > 0 𝑎𝑛𝑑 (𝑎1

2 − 2𝑎2)2 > 4(𝑎1
2 − 𝑎3

2)  

Then, two positive solutions(roots) of equation (7) are 𝜔1,2
2 . 

When takes particular values, equation (5) in both cases has roots that are entirely 

imaginary. The system of equations (7)-(8), which is provided may be used to 

compute the critical values 𝜏𝑗
±  of 𝜏. 

When takes certain values, the equation (5) in both (𝐿4)and (𝐿5), has totally 

imaginary roots. The system of equations (7)-(8), which is provided by: may be 

used to compute the critical values 𝜏𝑗
± of 𝜏, 

𝜏𝑗
± =

1

𝜔1,2
𝑐𝑜𝑠−1 (

𝜔1,2
2 −𝑎2

𝑎3
) +

2𝑗𝜋

𝜔1,2
, 𝑗 = 0,1,2, …                               (11)  

The following lemma [18] can be used to summarise the ideas from above. 

Lemma 2.4.2 (I) If (𝐿1) − (𝐿2) 𝑎𝑛𝑑 (𝐿4) hold and 𝜏 = 𝜏𝑗
+, so equation (5) has 

two roots that are totally imaginary, ±𝑖𝜔1. 

(II) If (𝐿1) − (𝐿2) 𝑎𝑛𝑑 (𝐿5) hold and 𝜏 = 𝜏𝑗
+(𝜏 = 𝜏𝑗

− 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦), in that case 

equation (5) has two roots that are totally imaginary,±𝑖𝜔1(±𝑖𝜔2 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦). 
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Our anticipation is that when 𝜏 > 𝜏𝑗
+ and 𝜏 < 𝜏𝑗

−, some solutions of equation (5) 

will transition from having negative real parts to having positive real parts. Let's 

notice the following to investigate its possibilities: 

𝜏𝑗
± = 𝜇𝑗

±(𝜏) + 𝑖𝜔𝑗
±(𝜏); 𝑗 = 0,1,2,3, …  

The eigen values of equation (5) satisfy: 𝜇𝑗
±(𝜏𝑗

±) = 0, 𝜔𝑗
±(𝜏𝑗

±) =𝜔1,2 

𝑊𝑒 𝑐𝑎𝑛 𝑐𝑜𝑛𝑓𝑖𝑟𝑚 𝑡ℎ𝑎𝑡 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑎𝑙𝑖𝑡𝑦 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑒𝑑 𝑏𝑒𝑙𝑜𝑤 𝑖𝑠 𝑡𝑟𝑢𝑒: 

𝑑

𝑑𝜏
(𝑅𝑒 𝜆𝑗

+(𝜏𝑗
+)) > 0 𝑎𝑛𝑑 

𝑑

𝑑𝜏
(𝑅𝑒 𝜆𝑗

−(𝜏𝑗
−)) < 0   

This means that the values 𝜏𝑗
± are bifurcating values. The dispersion of the zeros in 

equation (5) is provided by the following hypothesis [18]. 

Theorem:2.5 Let 𝜏𝑗
+(𝑗 = 0,1,2,3, … ) perceive equation (11). 

(I) All the latent values of equation (5) have negative real portions for any 𝜏 ≥ 0 if 

(𝐿1), (𝐿2) are true. 

(II) If (𝐿1), (𝐿2) 𝑎𝑛𝑑 (𝐿4) are true and 𝜏 ∈ [0, 𝜏0
+), is true, then all latent values of 

equation (5) have negative real portions. When value of 𝜏 = 𝜏0
+, then equation (5) 

supposed to have a pair of totally imaginary roots i.e., ±𝑖𝜔1. When 𝜏 > 𝜏0
+ in this 

case equation (5) has at least one latent value with a positive real component  

(III) If (𝐿1), (𝐿2) 𝑎𝑛𝑑 (𝐿5) are true, then there must be a positive integer m such 

that the transition from stability to instability of 0 < 𝜏0
+ < 𝜏0

− < 𝜏1
+ < 𝜏1

− … <

𝜏𝑚−1
− < 𝜏𝑚

+  and there are m occurs. This indicates that all the latent values of 

equation (5) have negative real portions when 𝜏 ∈ [0, 𝜏0
+), (𝜏0

−, 𝜏1
+), … , (𝜏𝑚−1

− , 𝜏𝑚
+ ). 

When 𝜏 ∈ (𝜏0
+, 𝜏0

−), (𝜏1
+, 𝜏1

−), … , (𝜏𝑚−1
+ , 𝜏𝑚−1

− ) and 𝜏 > 𝜏𝑚
+  in this case equation (5) 

has at least one latent value with a positive part. 

2.6 Numerical Simulation 
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The collection of parametric values shown below is thought to visually depict the 

behaviour revealed by the mathematical equations (1)– (2): 

𝛾 = 1.2, 𝛼 = 1, 𝑏 = 1.7, 𝛽 = 1, 𝑑 = 0.9, 𝛿 = 1  

The behaviour of the set of mathematical equations (1)– (2) changes from stable to 

complex dynamics close to the equilibrium 𝐸∗(𝑃𝑟
∗, 𝑃𝑑

∗) for different values of the 

delay parameter 𝜏, as shown in the accompanying diagram: 

 

Figure 2.1. When there is no delay i.e., when 𝜏 = 0 the equilibrium 𝐸∗(𝑃𝑟
∗, 𝑃𝑑

∗) is 

stable  
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Figure 2.2 Whenever the delay is lower than the threshold value, i.e., 𝜏 < 8.23, 

the equilibrium 𝐸∗(𝑃𝑟
∗, 𝑃𝑑

∗) is asymptotically stable. 

 

Figure 2.3 Whenever the delay is lower than the threshold value, 𝜏 < 8.23, the 

phase plane of equilibrium 𝐸∗(𝑃𝑟
∗, 𝑃𝑑

∗) is visible. 
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Figure 2.4 As the value of delay passes the threshold value, i.e., when 𝜏 ≥ 8.23,  

the equilibrium 𝐸∗(𝑃𝑟
∗, 𝑃𝑑

∗) loses stability and exhibits Hopf bifurcation. 

 

Figure 2.5 Whenever the value of delay exceeds the threshold value, i.e., 𝜏 ≥ 8.23, 

the phase plane of equilibrium 𝐸∗(𝑃𝑟
∗, 𝑃𝑑

∗) changes. 
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2.7 Analysing (Sensitivity) How State Variables are Affected by 

Model Parameters  

Understanding the significance and impact of other system components on the 

stability of the dynamic system is made possible by the determination of sensitivity. 

Here the effect of Intra specific competition rate among prey 𝛼 on predator 

population 𝑃𝑑 and the effect of Intra specific competition rate among predator 𝛿 on 

prey population 𝑃𝑟 has been depicted with the help of Figure 2.6 and Figure 2.7. 

 

 

Figure 2.6 Time series graph shows partial variations in Pd (predator counts) for 

various parameter values of 𝛼. 
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Figure 2.7 Time series graph shows partial variations in Pr (predator counts) for 

various parameter values of 𝛿. 

 

 

2.8 Conclusion 

With the support of the suggested model, the study of the prey-predator population 

scenario including the predation of only mature prey is carried out utilising DDE. 

During Hopf-bifurcation, delay causes the system to break down and sets off 

extraordinary nature with limit cycles and stable periodic solutions.  

Calculation of stability is done about the non-zero equilibrium point 𝐸∗. The 

equilibrium point 𝐸∗show stability whenever no delay in the system, as seen in 

figure 2.1. The identical information is supplied by (𝐿1) − (𝐿2), just like in lemma 

1. Figures 2.2 and 2.3 illustrate how the equilibrium 𝐸∗  begins to lose stability and 

transition to asymptotical stability as the delay parameter's value falls below the 

certain threshold point, i.e., 𝜏 < 8.23. The non-zero equilibrium value 𝐸∗ displays 

complicated nature in the form of a Hopf bifurcation as soon as the delay parameter 
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reaches the critical threshold, which is i.e., 𝜏 ≥ 8.2,. Figures 2.3 and 2.4 show 

examples of stable periodic solutions with large amplitudes and limit cycle 

trajectories. This observation of the system's complicated behaviour (1)-(2) agrees 

with (𝐿4) − (𝐿5) as stated in lemma 2. 

Sensitivity analysis of the proposed model has been done. The existing competition 

within a species (Intra specific competition) rate among prey and predator has been 

chosen as the parameters whose effect is seen on prey and predator populations. 

Figure 2.6 shows that as the Intra specific competition rate among prey increases 

from 1.0 to 1.2, the predator population tends to move toward stability. Figure 2.7 

shows that as the Intra specific competition rate among predators increases from 

1.0 to 1.2, the prey population tends to move toward stability.  
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Chapter-3 

 

Modelling the Effect of Toxin Producing Prey on Predator 

Population Using Delay Differential Equations 

3.1  Introduction 

Theoretical studies of predator-prey environments have a long tradition of 

mathematical ecology, dating back to the popular Lotka-Volterra equations. This 

technique has been used in a variety of biological systems. The global rise in toxic 

prey blooms over the last three decades has piqued interest in studying the dynamics 

of toxin-producing prey and their regulation. A plankton model is an evolutionary 

replica, and various plankton replica have been developed and researched in the 

past. Numerous publications have attempted to evaluate the relevance of different 

aspects that govern the features of the earth's water, particularly its mobility in 

relation to land, as well as suitable sorts of functional responses to explain the drop 

in predator population owing to toxin-producing prey [21].  

These findings suggest that toxic substances, as well as toxic prey, play a crucial 

role in predator population dynamics and have a substantial impact on prey-

predator confrontations. Peter A. Abrams talked on concepts well about evolution 

and equilibrium of species and characteristics, in addition to how predatory and 

anti-predator qualities might adapt to environmental changes. There is coevolution 

and a bi-directional axis of prey susceptibility, stability seems to be the least 

possible. An increase in prey defense ability is less likely to result in evolutionary 

countermeasures in its companion than an increase in predator attack ability [22]. 

Alan A. Berryman found that functional responses are influenced by prey-predator 

ratios rather than prey abundance singly. The most serious criticism levelled with 
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logistic prey-predator scenarios is that they do not precisely follow environmental 

laws. After all, predator reproduction does not require the death of prey [23].  

Buike Arthur L. Ma Jr. and Ernest F. B Enfield found a large number of toxicities 

for predators—prey encounters. Any toxicity data is considered to increase the 

vulnerability of an individual to predation. Prediction may be improved if species 

were behaving abnormally. This is an important consideration in the majority of 

invertebrate organisms. The effect of thermal shock on floating insects has been 

studied by Sherberger et al. One variable they were testing is whether thermally 

stressed nymphs are more sensitive to banded sculpture predation [24].  

M. J. Naxad ua and B. A. Kroft concluded that the direct toxicity and prey poisoning 

of the fungicide benomyl induced a predatory mite's lifelong immature 

depression[25]. Ja Ksh et al.finds the two forms of adaptations to their prey by 

carnivorous vertebrates, and they demonstrate their connection in an economic 

model [26]. The Toxin Ology Notes found that poisonous animals can be studied 

as a substance and toxicity must be examined from any angle that is critical for 

survival, including parasitizes and population management.T. A. Freyvo Gel and 

B. A. Perret  Fascinating ties between toxinology and ecology may be developed 

and in turn essential for the survival of biodiversity. So toxinology can only be 

presumed as a boundary in its budding region[27].  

Lincoln Pierson Brower and Linda Susan Fink tested that wild birds may become 

programmed to avoid naturally poisonous insects either visually or through taste. 

Authors have confirmed, however, that unconditioned taste rejection of noxious 

chemicals by wild birds also exists. In reality, such unconditional reactions to the 

aposematic visual and taste indicators of many insects always seem as essential or 

important as conditioned reactions[28]. John Cairns, Jr. noted that single species 

experiments can be used to accurately predict responses at other stages. The author 

has observed that at various stages of biological organisation varying levels of 
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environmental reality can be achieved in the laboratory or in laboratory conditions. 

In order to provide a reliable risk assessment, the authors have concluded that the 

toxicity test balance at various stages of biological organisation [29].  

The classical conditioning paradigm for the tests of predator remembering and 

forgetting and then the intense one-trial and no forgetting over time, which can 

happen with very toxic prey, was found by Maria R. Servedio. Author has observed 

that conditions required of the extremely toxic prey facilitate the evolution of 

colouring by fixing very bright mutations, with successive mutations each causing 

a slightly higher conspicuousness of the prey[30]. Soren Woft and Darid H. Wise 

showed that prey families with comparable structural and behavioural associations 

that are initially killed and devoured differ greatly in their usefulness as meal for 

generalist arthropod predators [31].  

The interactions between toxic phytoplanktone and its zooplancton graders were 

found to be complicated by Jefferson T. Turner and Patricio A. Tester. Some 

zooplankters consume some toxic phytoplankters without obvious harm, while 

others are damaging. Their modes of action, toxicity and solubility vary with the 

phycotoxins and affect the grazers in various ways [32]. Akira Mori & Gordon M. 

Burghardt suggested that the anti-predator nature of animals was built by several 

contextual influences. The environmental temperature is one of the most significant 

variables when ectotherms in which most physiological processes rely on the body's 

temperature. The authors looked at the erect temperature of the Japanese grass 

serpent anti-predator behaviour of an ectotherm [33].  

Authors have shown that R. tigvinuz is changing its anti-predatory action with 

rising temperature from various passive responses to active flying 

responses.Thomas N. Sherratt concluded that the average likelihood of attacking 

defenseless models and their defenseless imitations should decrease in sigmoidal 

manner, with an increasing availability of defenseless alternative prey and that the 
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decision to drill predators in general should be reasonably indifferent to the 

probability of the possible defense of prey items[34].  

Michael P. Speed discovered that the elusive presence of an edible prey can slow 

predator learning and speed up predator forgetting, to the benefit of the prey. 

Cryptic may be an anti-signal in terms of learning and memory[35]. Ruxton et al.  

noted that both toxicity and colouring of prey species are often variable. Authors 

also observed that there is a strong association between signal intensity and the 

average toxicity of each signal level. When equilibrium is achieved, predators are 

changing their behaviour, and now appear to ignore the signal visibly[36].  

Christina G. Halpin and Candy Rowe agree that the rejection risk is affected not 

only by an individual's investment in protections, but also by the investment of 

other individuals in the same population. Consequently, a predators taste rejection 

may lead to destabilization in defense expenditure and encourage heterogeneity in 

prey defense[37]. The trained predators, John Skelhorn and Candy Rowe, noted, 

there are an important selective forces in aposematism and continue to adopt 

strategic decisions to eat guarded prey on the basis of their gained knowledge of 

the prey's toxic and nutritional quality[38]. Stephanie O'Donnell et al. discovered 

that invasive species are responsible for many extinctions but are also difficult to 

eliminate. Since indigenous prey is key to invasive predator’s issues, CTA could 

be used to change invasive predators' feeding behavior. Authors concluded that 

CTA may offer an effective method to minimize invasive species' ecological effects 

[39].  

David W.M. Nelson et al. pointed out that generalist’s predators use natural and 

acquired behaviours to eliminate unfavourable foods and choose suitable preserves 

forging effectively, in order to choose the presence of prey variable in pathogens, 

diet, defences and availability. Expert predators also do not show such versatility 

in their behaviour, perhaps because their food is of predictable consistency [40]. 
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Øistein Haugsten Holen observed that a mimicric complex can be less beneficial to 

the predatory if the protective toxin is sufficiently distasteful than it should be if the 

models are mildly toxic, and better defended against predation. Also taste imitation 

may decrease profitability of the imitation complex and increase predation security 

[41]. Richard Shine found that most dunnarts ate partial toads until they were 

discarded, and there were no evidence of toad poisoning in a single specimen. After 

one or two meetings, both dunnarts quickly learned to avoid toads as a prey. For 

the length of the sample (22 days), Predators refused toads, meaning that toads are 

harmful in the awareness of the long-term retention [42].  

Christina G. Halpin  believe that European starlings (Sturnus vulgaris) raise their 

intake by artificially raising their nutrient level and decrease their intake by ceasing 

protein enrichment. This shows that birds can sense and use this information in their 

decisions on food forage to detect the nutrient content of poisonous prey, thereby 

improving new prospects for evolving prey defenses. This can be seen clearly. 

Nutritional differences among people might lead to equally toxic prey that are 

unprecedented and could explain why some species experience ontogenetic defense 

strategies [43] .  

D. Peacock et al. indicated that new techniques are critically necessary for the 

sustainability of endangered species against feral cats. There is emerging research 

that if a cat has destroyed a daunting species effectively, a single feral cat will 

actively destroy endangered beast populations. In the event that a target animal is 

killed many times, toxic collars and toxic implants fitted or implanted during 

surveillance or reintroduction programmers may empower the offending pet [44]. 

R.S.Ramos et al. found that flubendiamide was tending to stay on the surface 

longer. The authors proposed that the most promising compounds for use with C 

are pro-insecticides. In- cludens these pro-insecticides also maintain B 

communities. pallescens and allow advanced pest control systems to be more 

sustainable [45].  
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Barbara Gratzer et al. noted that coral gobies were potentially a prey, but E. The 

non-toxic monitoring fish of Fasciatus obviously favoured the Gobiodon. The 

predator did not prefer one animal to the other when targeted against a goby. 

Contrary to our hopes, poisonous gobies were often caught, but they were expelled 

instantly, repeatedly, and alive. This rare post-capture avoidance confirms the high 

risk of these gobies living on the ground due to their skin toxin [46].  

M. Banerjee and E. Venturino recently investigated a prey-toxic prey-predator 

interacting device without taking into account the gestation period's time lag. 

However, the writers of this report did not take into account the gestation period's 

time lag. In the method proposed by M. Banerjee and E. Venturino, the predator's 

replication after predating the prey is instantaneous, and the practical form of the 

predator exhibiting avoidance behaviour in the presence of vast amounts of toxic 

prey is taken into account. However, in the natural world, it is more practical to 

accept the gestation period's time lag. Taking this into account, M. Banerjee and E. 

Venturino's study is expanded by integrating time delay into the predator's 

dynamical equation [47]. 

3.2  Mathematical Model  

3.2.1 Assumptions of The Model 

1. One out of two prey is toxic. 

2. The predator can distinguish between the two prey species. 

3. When the poisonous prey consumes too much and hence kills too many 

predators, the toxic prey's intake decreases. 

4. Predator takes time τ for the gestation period. 

3.3 Mathematical Formulation  
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Assume a delayed prey-predator structure in which the predator consumes food 

from two separate prey populations 𝑁1 𝑎𝑛𝑑 𝑁3. We suppose that either of the two 

is poisonous. Let 𝑁1, 𝑁2 𝑎𝑛𝑑 𝑁3 represent the prey, predator, and poisonous prey 

populations, respectively. The latter, if consumed, will cause serious harm to the 

predator. We further suppose that the predator can distinguish between the two prey 

populations, and that if the poisonous prey is consumed in excess, killing too many 

predators, the latter would reduce its intake. This is represented by a Monod-

Haldane type model equation that rises to a maximum and then falls for higher 

values of the poisonous prey population. This sort of functional response accounts 

for the fact that predation rates drop with increasing poisonous prey density [48]. 

The predator is expected to take time for the reproductive cycle in this scenario 

[49,50]. Accordingly, the model can be expressed as 

𝑑𝑁1

𝑑𝑡
= 𝑎1𝑁1 (1 −

𝑁1

𝐾1
) − 𝑎2𝑁1𝑁2 − 𝑎3𝑁1𝑁3                                                  (1)  

𝑑𝑁2

𝑑𝑡
= 𝑏1𝑁2 (1 −

𝑁2

𝐾2
) − 𝑏2𝑁1𝑁2 − 𝑏3𝑁2𝑁3                                                    (2) 

𝑑𝑁3

𝑑𝑡
= 𝑐1𝑁1(𝑡 − 𝜏)𝑁3 − 𝑐2𝑁2𝑁3 − 𝑐3𝑁3                                                       (3) 

The above system is associated with the initial functions mentioned below  

(𝑁1(𝜃), 𝑁2(𝜃), 𝑁3(𝜃))𝜖𝑐+ = 𝑐(𝑐 − 𝜏, 0), 𝑅+
3 ), 𝑁1(0), 𝑁2(0), 𝑁3(0) > 0  

Specification of the variables and parameters 

  

  

Parameters Description 

𝑎1 The growth rate of the harmful prey 𝑁1 

𝑎2 The inhibitory effects of the two competing prey populations 

𝑎3 The rates of predation of both prey 𝑁1by predator 𝑁3 
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𝑏1 

𝑏2 

𝑏3 

𝑐1 

𝑐2 

𝑐3 

𝐾1 

𝐾2 

𝜏 

The growth rate of the prey 𝑁2 

The inhibitory effects of the two competing prey populations 

The rates of predation of both prey 𝑁2by predator 𝑁3 

The rates of toxin liberation by the harmful prey 𝑁1 reducing the growth of predator 

𝑁3 

The conversion rates of predator 𝑁3 

Natural death rate of predator population 𝑁3 

Carrying capacity of prey population 𝑁1 

Carrying capacity of prey population 𝑁2 

Delay parameter 

 

 

 

 

3.4 Equilibrium Point 

𝑑𝑁3

𝑑𝑡
= 0 

⇛   𝑐1𝑁1𝑁3 − 𝑐2𝑁2𝑁3 − 𝑐3𝑁3 = 0 

𝑁3(𝑐1𝑁1 − 𝑐2𝑁2 − 𝑐3) = 0 

𝑁3 = 0,      𝑐1𝑁1 − 𝑐2𝑁2 − 𝐶3 = 0 

⇛ 𝑁1 =  
𝑐2𝑁2 + 𝑐3

𝑐1
 

𝑑𝑁1

𝑑𝑡
= 0 

𝑎1𝑁1 (1 −
𝑁1

𝐾1
) − 𝑎2𝑁1𝑁2 − 𝑎3𝑁1𝑁2 = 0 
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𝑁1 {𝑎1 (1 −
𝑁1

𝐾1
) − 𝑎2𝑁2 − 𝑎3𝑁2} = 0 

𝑎1 (1 −
𝑁1

𝐾1
) − 𝑎2𝑁2 − 𝑎3𝑁2 = 0 

Put the value of 𝑁1 

𝑎1 (1 −
𝑐2𝑁2 + 𝑐3

𝑐1𝐾1
) − 𝑎2𝑁2 − 𝑎3𝑁2 = 0 

𝑎1(𝑐1𝐾1 −  𝑐2𝑁2 +  𝑐3) −  𝑎2𝑐1𝐾1𝑁2 −  𝑎3𝑐1𝐾1𝑁2 = 0 

𝑎1𝑐1𝐾1 −  𝑎1𝑐2𝑁2 +  𝑎1𝑐3 −  𝑎2𝑐1𝐾1𝑁2 −  𝑎3𝑐1𝐾1𝑁2 = 0 

𝑁2(−𝑎1𝑐2 − 𝑎2𝑐1𝐾1 − 𝑎3𝑐1𝐾1) =  −𝑎1𝑐1𝐾1 − 𝑎1𝑐3 

N2 =  
a1c1K1 +  a1c3

a1c2 + a2c1K1 + a3c1K1
 

3.5 Local Stability  

In this part, we will just look at the interior equilibrium's stability and local Hopf-

bifurcation. The system of equations (1), (2), and (3) clearly has a statistically 

significant and positive equilibrium. 

|

𝜂 − 𝑧1 𝑧2 𝑧3

𝑧4 𝜂 − 𝑧5 𝑧6

𝑧7 𝑧8 𝜂 − 𝑧9

| = 0 

|

|
𝜂 − (𝑎1 −

2𝑁1

𝐾1
− 𝑎2𝑁2 − 𝑎3𝑁3) −𝑏2𝑁2 𝑐1𝑁3

−𝑎2𝑁1 𝜂 − (𝑏1 −
2𝑁2

𝐾2
− 𝑏2𝑁1 − 𝑏3𝑁3) −𝑐2𝑁3

−𝑎3𝑁1 −𝑏3𝑁2 𝜂 − (𝑐1𝑁1 − 𝑐2𝑁2 − 𝑐3)

|

|

= 0 

After simplification, we get characteristic equation  

𝜂3 + 𝐴1𝜂2 + 𝐴2𝜂 + 𝐴3 + 𝑒−𝜂𝜏(𝐵1𝜂 + 𝐵2) = 0                                           (4) 
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Where 𝐴1 =  −(𝑎11 + 𝑎22),  𝐴2 =  𝑎23𝑎32 + 𝑎11𝑎22 − 𝑎12𝑎21, 𝐵1 =

−𝑎31𝑎13,  𝐴3 = 𝑎11𝑎23𝑎32 −  𝑎13𝑎21𝑎32, 𝐵2 =  𝑎13𝑎31𝑎22 − 𝑎12𝑎31𝑎23 

For the equilibrium point to be stable, all of the latent roots of the characteristic 

equation (4) must have real part with a negative sign. It is tough to determine under 

what circumstances all latent values of the equation (4) would have real part with 

negative sign. Assume the value of delay 𝜏 = 0 equation (4) is obtained. At the 

interior equilibrium 𝐸∗(𝑁1
∗, 𝑁2

∗, 𝑁3
∗), the characteristic equation of the above system 

of equations (1), (2), and (3) is 

𝜂3 + 𝐴1𝜂2 + (𝐴2 + 𝐵1)𝜂 + (𝐴3 + 𝐵2) = 0                                        (5) 

According to the Routh-Hurwitz criterion 

If 𝐴1 > 0, (𝐴3 + 𝐵2) > 0,𝐴1(𝐴2 + 𝐵1) > (𝐴3 + 𝐵2)                                                   (6)                                                                                    

So the real parts of all the roots of eq. (5) would be negative. 

𝐴3 + 𝐵2 = 0 if we assume 𝜂 = 0 to be a solution of (4). As a result, this statement 

violates the previous condition (6). Therefore, corresponding result obtained for 

𝜂 = 0  is not acceptable for (4).  Assume that for any 𝜏 ≥ 0 with µ > 0 is a (4) 

solution, then 

−𝑖µ − 𝐴1µ + 𝑖𝐴2µ + 𝐴3 + (𝑐𝑜𝑠µ𝜏 − 𝑖 sin µ𝜏)(𝑖𝐵1µ + 𝐵2) = 0                     (7) 

Distinguishing between the real and the imaginary values, 

𝐴3 − 𝐴1µ2 + 𝐵2 cos µ𝜏 + 𝐵1 sin µ𝜏 = 0                                              (8) 

𝐴2µ − µ3 + 𝐵1µ cos µ𝜏 − 𝐵2 sin µ𝜏 = 0                                               (9) 

which results in 

µ6 + 𝑥µ4 + 𝑦µ2 + 𝑧 = 0                                                                   (10) 

of which 

𝑥 =  𝐴2 − 2𝐴2, 𝑦 =  𝐴2
2 − 𝐵1

2 − 2𝐴1𝐴3, 𝑧 =  𝐴3
2 − 𝐵2

2 
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If we set 𝛼 =  µ2,  equation (10) becomes, 

𝛼3 + 𝑥𝛼2 + 𝑦𝛼 + 𝑧 = 0                                                                (11) 

and ℎ(𝛼) = (𝛼3 + 𝑝𝛼2 + 𝑞𝛼 + ɤ) 

3.6 Lemma 1 

                    The polynomial equation (11) yields the following results. 

1) Condition for the equation (11) has at least one positive root is   

 𝑧 < 0 

2) Condition for the equation (11) do not possess positive root is 𝑧 ≥ 0 

and (𝑥2 − 3𝑦) ≤ 0 

3) Condition for the equation (11) must have a positive solution is 𝑧 ≥

0 and (𝑥2 − 3𝑦) > 0 and also satisfies the following condition 

ʋ =  
−𝑥 ± (𝑥2 − 3𝑦)

3
> 0 𝑎𝑛𝑑 ℎ(ʋ) ≤ 0 

Proof. For equation (11) has at least one positive real solution let us take  

µ0 =  √𝛼0 

From equation (8) and equation (9), we obtain, 

cos µ0𝜏 =  
−(𝐵1µ0

2(𝐴2 − µ0
2) + (𝐴3 − 𝐴1µ0

2)(𝐵2))

(𝐵2)2 + (𝐵1µ0)2
                                    (12) 

𝜏𝑗 =  
1

µ0
 𝑎ɤ𝑐 cos (

−(𝐵µ0
2(𝐴 − µ0

2) + (𝐴2 − 𝐴µ0
2)(𝐵1))

(𝐵2)2 + (𝐵1µ0)2
+ 2𝑗𝜋)                (13) 

 

 where j = 0, 1, 2,3...     
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 3.7 Lemma 2  

Assume ℎ(𝛼0) =  (3𝛼2 + 2𝑥𝛼0 + 𝑦0) and the conditions in (6) are satisfied. For 

(j=0,1,2...), denote µ𝜂(𝜏) = 𝛼(𝜏) + 𝑖µ(𝜏) be the root of equation (4) satisfying 

𝛼(𝜏𝑗) = 0, µ(𝜏𝑗) = µ0, where 

𝜏𝑗 =  
1

µ
 𝑎ɤ𝑐 cos (

−(𝐵1µ2(𝐴2 − µ2) + (𝐴3 − 𝐴1µ2)(𝐵2))

(𝐵2)2 + (𝐵1µ0)2
+ 2𝑗𝜋)  

then ±𝑖µ0 are simple roots. If the transversality condition 

𝛼𝑗(𝜏𝑗) =  
𝑅𝑒𝜂(𝜏)

𝑑𝜏
|

𝜂 =𝑖 µ0 

  𝑓 = 0 

At any equilibrium point where 𝜏 = 𝜏𝑗 and, a Hopf bifurcation exists for the system 

of equations (1), (2), and (3). 

Proof. Let the root of the equation (4) be 𝜂 = 𝜂(𝜏). As 𝜂(𝜏) is substituted into eq. 

(4) and both sides of equation (4) are differentiated with respect to τ, it follows that 

[(3𝜂2 + 2𝐴1𝜂 + 𝐴2) + ((𝜂2𝐵3 + 𝜂𝐵1 + 𝐵2)(−𝜏) + (2𝜆𝐵3 + 𝐵1))𝑒−𝜂𝜏]
𝑑µ

𝑑𝜏

= 𝜂(𝜂2𝐵3 + 𝜂𝐵1 + 𝐵2)𝑒−𝜂𝜏 

Thus  

𝑑𝜂

𝑑𝜏
=  

(3𝜂2 + 2𝐴1 + 𝐴2)

𝜂(𝜂𝐵1 + 𝐵2)
+

(𝐵1)

𝜂(𝜂𝐵1 + 𝐵2)
 

From (8)-(10), we have         

𝑎𝑗(𝜏0) =  𝑅𝑒 [
(3𝜂2 + 2𝐴1𝜂 + 𝐴2)𝑒𝜂𝜏

𝜂(𝜂𝐵1 + 𝐵2)
] + 𝑅𝑒 [

(𝐵1)

𝜂(𝜂𝐵1 + 𝐵2)
] 

=
⧍

1
[3µ6 + 2(𝐴2 − 2𝐴2)µ4 + (𝐴2

2 − 𝐵1
2 − 2𝐴1𝐴3)µ2] 
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=
⧍

1
(3µ6 + 2𝑝µ4 + 𝑞µ2) 

= µ0
2  ⧍

ℎ𝑗 (𝛼) 

where ⧍ =  𝐵1
2µ0

2 + 𝐵2
2.Notice that 𝜂′ > 0 and µ0 > 0, we conclude that 

sign[𝛼𝑗(𝜏0)] = sign[ℎ𝑗(𝛼0)] 

This demonstrates the lemma. 

Using Lemma 2, we can easily establish the following findings on the stability and 

bifurcation of the mathematical equations (1), (2), and (3). 

3.8 Theorem 1. Suppose that (6) is satisfied 

1) The non-zero equilibrium point 𝐸∗ of the system of mathematical system 

(1), (2) and (3) is stable asymptotically for all 𝜏 ≥ 0 and the required 

condition for which all latent values of equation (4) have real part with 

negative sign is that 𝑧 ≥ 0 and (𝑥2 − 3𝑦) ≤ 0. 

2) The non-zero equilibrium point 𝐸∗ of the mathematical frame (1), (2) and 

(3) is stable asymptotically for all the values of delay 𝜏𝜖[0, 𝜏0] is that either 

𝑧 < 0 or 𝑧 ≥ 0 and (𝑥2 − 3𝑦) > 0 hold. 

3) The non-zero equilibrium point 𝐸∗ of the mathematical frame (1), (2) and 

(3) show Hopf bifurcation the value of delay when 𝜏 = 𝜏0 and all conditions 

as stated in (2) and ℎ𝑗(𝛼0) 𝑓 = 0 hold. 

4) All parameters are expected to be nonnegative and to be time constant. 

 

3.9 Numerical Example 

The following parametric values are used to graphically represent the behavior 

indicated by the following mathematical equations (1) -(3) 
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a1 = 0.68,   a2 = 1.22,   a3= 1.35 

b1 = 0.66,    b2 = 0.2,     b3 = 0.9 

c1 = 1.63,    c 2= 1,       c3 = 0.58 

The response of the mathematical equations (1)-(3) varies with the delay parameter, 

shifting from stable to complicated behavior around the equilibrium 

𝐸∗(𝑁1
∗, 𝑁2

∗, 𝑁3
∗). 

 

 

 

Figure 3.1 When the value of delay parameter is zero i.e., when 𝜏 = 0 the non-zero 

equilibrium point   𝐸∗(𝑁1
∗, 𝑁2

∗, 𝑁3
∗)  is stable  
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Figure 3.2 When the value of delay parameter is smaller than the thershold value, 

i.e., when 𝜏 < 4.48 the equilibrium 𝐸∗(𝑁1
∗, 𝑁2

∗, 𝑁3
∗) is asymptotically stable. 
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Figure 3.3 As the delay exceeds the critical value, that is, when 𝜏 ≥ 4.48, the 

equilibrium 𝐸∗(𝑁1
∗, 𝑁2

∗, 𝑁3
∗) loses stability and exhibits Hopf bifurcation. 

3.10 Conclusion: 

The analysis of prey-predator model to study the effect of toxin producing prey on 

predator population using delay differential equations. The calculation of stability 

is carried about non-zero equilibrium point 𝐸∗(𝑁1
∗, 𝑁2

∗, 𝑁3
∗). When the value of 

delay parameter is zero i.e., when 𝜏 = 0 the non-zero equilibrium point   

𝐸∗(𝑁1
∗, 𝑁2

∗, 𝑁3
∗)  is stable shown in Figure 3.1. The toxicity released by prey 

population adversely affects the predator population. When the value of delay 

parameter is smaller than the thershold value, i.e., when 𝜏 < 4.48 the equilibrium 

𝐸∗(𝑁1
∗, 𝑁2

∗, 𝑁3
∗) is asymptotically stable as shown in Figure 3.2. As the delay 

exceeds the critical value, that is, when 𝜏 ≥ 4.48, the equilibrium 𝐸∗(𝑁1
∗, 𝑁2

∗, 𝑁3
∗) 

loses stability and exhibits Hopf bifurcation shown in the Figure 3.3. Hence, it is 

concluded that time lag is a key factor which should be included in the 

mathematical model in order to study the dynamical behaviour of these types of 

biological systems. 
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Chapter4 

 

Modelling the Multiteam Prey-Predator Dynamics Using the Delay 

Differential Equation  

4.1 Introduction 

Numerous applied mathematicians and ecologists have increasingly focused on the 

predator–prey relationship because of its generality and significance. The impacts 

of population, age distribution, time delay, functional response, switching, and 

other characteristics have all been taken into account while developing a number of 

complex systems for at least two interacting class of breed in an ecosystem [61, 64, 

65, 75, 78]. 

Every species inside this natural world exists in the wild. Some population lives 

alone, while others live in herds, flocks, colonies, or packs. Living with or close to 

other animals can help certain species survive and guarantee that each member's 

needs are met through collaboration.  Furthermore, building a team and interacting 

with others is a fundamental tool through which a team member can consistently 

achieve positive outcomes and readily meet their needs. This study focused on a 

system in which herds of prey coexist and are attacked by the same type of predator. 

The problem of multiteam games is relatively new. For certain animals, forming a 

team more considerably improves their efficiency of food search as a group 

compared with when this activity is performed alone and reduces the danger of 

predation.  

Two prey and one predator sometimes interact in an unstable way. The likelihood 

of all three species coexisting in a particular area is quite low. Practically, the 

predator always wins [70]. Determining the types of interactions in a multiteam 

eco-system can enable researchers to recognise the importance of prey teamwork. 

The finding of such a study would be similar to those reported by Poole on Leslie–

Gower computations [77]. The sort of behavioural traits displayed by animals to 

recognise predators cannot be determined by looking at the link between the 
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population of prey and attack rate [51]. By performing an initial assessment of the 

model’s normalised form, a study demonstrated the presence of dynamics in 

practical systems of predator-prey that are substantially analogous to basic 

circumstances [62].  

A study identified the necessary criteria for all species to survive indefinitely and 

determined the condition when species becomes extinct in the system [61]. By 

utilising a stochastic logistic differential equation that calculates ecosystem 

function, a study examined the long-term unexpected behaviour of the at-risk group 

[59]. Another study reported that strong diffusions or interspecific competitions or 

slower prey intrinsic growth rates and faster predator intrinsic reduction rates are 

required to obtain a nonconstant solution [69]. To maintain a stable food web, the 

predator spends its time between preys with different relative densities [60]. The 

amount of food that can be quickly digested affects a predator's behaviour toward 

a particular kind of prey. These genes and therefore the predator population’s 

lifestyle is regulated by a biosynthetic repression approach [78]. Protection 

evolution in prey species is improved by survival and decreased density fluctuations 

based on parameters. The inclusion of a predator’s optimal meal choice into the 

model enhanced cohabitation and reduced overall density variations [79]. If the 

impulsive duration surpasses a threshold value, the structure remains typically 

stable [75].  

Many types of animals prefer to be together in a herd. Because different groups 

share the same habitat, they may cooperate, compete, or form a predator–prey 

relationship. New paradigm for predator–prey teams were reported in a previous 

study [56]. By applying nonlinear feedback control inputs, three prey–predator 

populations could be stabilised over time asymptotically. The functional parameter 

limit is set under which variables converge to limit cycles [55].  

The system exhibits a stationary distribution that is ergodic under certain 

conditions. The system’s solution remains globally asymptotically stable under 

certain conditions [66]. Two preys and one predator comprise a dynamic system 
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modelling multiple teams. During an attack, the individuals of both prey groups 

would support one another and the pace of predation for both groups would differ 

[76]. A mathematical simulation of two competing prey species was developed in 

research and evaluated. The pace of growth and functional responses might be 

nonlinear functions that are general in nature. The findings suggest the presence of 

a crucial characteristic governing the system’s dynamics that is termed as an 

intraspecific interference factor [54]. The criteria for local asymptotic stability were 

achieved in the lack of climate fluctuation. The authors defined the probabilistic 

approach by including Gaussian white noise notions into all regular equations [65]. 

The authors evaluated the predator–prey relationship in three species in three 

dimensions by using an ordinary differential equation. The estimate took into 

account the subjective population numbers of two prey species and one predator 

species that coexist in the same environment [53].  

Prey cooperation benefits both prey populations in many ecosystems. A predator 

may keep pursuing the weaker prey if one prey is dangerous and the other is weak 

[68]. In the presence of only one predator in the system, a fourth-order nonlinear 

differential system of equation can be used to represent the given mathematical 

system [80]. A study used a three-species prey–predator system considering that a 

predator is layman by nature because it survives on two prey animals [67]. In this 

study, we considered two prey populations and two predator populations. When 

two prey species live in two types of habitats and can defend themselves in groups, 

only one of the two predators can move between the two types of habitats [58]. 

Trends of a group and the effectiveness of herbicide are both affected by a predator 

[57].                                                

 

In the case of direct competition between two prey populations, a predator model 

is used that incorporates temporal delays and a weak Allee effect in the prey's 

growth function. Despite its simplicity, the system exhibits a wide range of dynamic 

behaviour, such as the equilibrium point’s biostability [71]. A high degree of fear 
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of a prey animal and a higher quality of living for second prey may improve the 

chances of living of that species [74]. One prey poses a threat to the predator, while 

the other is uninjured. Monod-Haldane and Holling type II functional responses 

separately track the predation processes of both prey groups [52].  

Research that employed stochastic Lyapunov functionals put forward several 

prerequisites for extinction and persistence in the median of the three species [73]. 

To examine delay models in population dynamics, we used the model adopted by 

[72]. There haven't been many research that use mathematical modelling to 

examine how prey maturity affects a predator-prey model. Predation of mature prey 

may be investigated through delay differential equations [63]. Time lag is a crucial 

factor that should be included in the mathematical model to examine the dynamic 

behaviour of these types of biological systems [64]. 

The delay model has not been employed in any research on the dynamics of prey-

predator systems. This work used delay differential equations to analyse the 

dynamics of multiteam prey-predator systems. 

4.2 Mathematical Frame 

 

A two-prey, one-predator delay differential model's dynamics were investigated in 

this work where both preys support each other to prevent predation. The predator 

is expected to take time τ during the gestation phase in this scenario. Thus, the 

model can be represented as follows: 

 

 

𝑑𝑃𝑟1(𝑡)

𝑑𝑡
=  𝑎1𝑃𝑟1(𝑡)(1 − 𝑃𝑟1(t)) − 𝑃𝑟1(𝑡)𝑃𝑟3(𝑡) + 𝑃𝑟3(𝑡)𝑃𝑟2(𝑡)𝑃𝑟1(𝑡)           (1) 

𝑑𝑃𝑟2(𝑡)

𝑑𝑡
=  𝑏1𝑃𝑟2(𝑡)(1 − 𝑃𝑟2(t)) − 𝑃𝑟2(𝑡)𝑃𝑟3(𝑡) + 𝑃𝑟3(𝑡)𝑃𝑟2(𝑡)𝑃𝑟1(𝑡)           (2) 

𝑑𝑃𝑟3(𝑡)

𝑑𝑡
=  − 𝑐1 𝑃𝑟3

2 (𝑡) + 𝑑1𝑃𝑟1(𝑡 − 𝜏)𝑃𝑟3(𝑡) + 𝑒1𝑃𝑟2(𝑡 − 𝜏)𝑃𝑟3(𝑡)                 (3) 
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Where delay τ > 0 is the lag time necessary for the predator’s gestation period; Pr1 

(t) and Pr2 (t) are the populations of the two teams of preys, respectively; and Pr3 (t) 

is the population of predators. All the parameters have positive values, that is, the 

values of a1, b1, c1, d1, and e1 are more than zero. The system (Poole, 1974; Vance, 

1978; Abrams et al., 1993) is related to the following starting functions: 

 

 

(𝑃𝑟1(𝜃), 𝑃𝑟2(𝜃), 𝑃𝑟3(𝜃)) ∈  𝐶+ = 𝐶((−𝜏, 0), 𝑅+
3), 𝑃𝑟3,  𝑃𝑟2, 𝑃𝑟1) > 0 

 

                                  Explanation of the variables and the parameters: 

Variables/Parameters Elucidation 

𝑃𝑟1 First prey population 

𝑃𝑟2 Second prey population 

𝑃𝑟3 Predator population 

𝑎1 Natural growth rate of 𝑃𝑟1 

𝑏1 Natural growth rate of 𝑃𝑟2 

𝑐1 Death rate of predator population due to mutual competition. 

𝑑1 Rate of predation of 𝑃𝑟1 

𝑒1 Rate of predation of 𝑃𝑟2 

𝜏 Delay parameter 

 

 

4.3 Equilibrium Point 

 

The systems (Poole, 1974; Vance, 1978; Abrams et al., 1993) have eight equilibria 

with specific nonnegativity requirements. Because delay does not play any role in 

the stability of the results in the other seven equilibria, we only concentrate on the 
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stability and local Hopf bifurcation of the inner equilibrium in this section. 

Equivalently, set equation (1) to zero to determine the equilibrium point, 

 

𝑑𝑃𝑟1
𝑑𝑡

=  0 

𝑎1𝑃𝑟1 − 𝑎1 𝑃𝑟1
2 − 𝑃𝑟1𝑃𝑟3 + 𝑃𝑟1𝑃𝑟2𝑃𝑟3 =  0 

𝑃𝑟1(𝑎1 − 𝑎1  𝑃𝑟1 − 𝑃𝑟3 + 𝑃𝑟2𝑃𝑟3) =  0 

Either    𝑃𝑟1 = 0  𝑜𝑟 𝑎1 − 𝑎1  𝑃𝑟1 − 𝑃𝑟3 + 𝑃𝑟2𝑃𝑟3 =  0 

𝑑𝑃𝑟2
𝑑𝑡

=  0 

𝑏1𝑃𝑟2 − 𝑏1 𝑃𝑟2
2 − 𝑃𝑟2𝑃𝑟3 + 𝑃𝑟1𝑃𝑟2𝑃𝑟3 = 0 

𝑃𝑟2(𝑏1 − 𝑏1 𝑃𝑟2 − 𝑃𝑟3 + 𝑃𝑟1𝑃𝑟3 = 0 

𝑑𝑃𝑟3
𝑑𝑡

=  0 

− 𝑐1 𝑃𝑟3
2 + 𝑑1𝑃𝑟1𝑃𝑟3 + 𝑒1𝑃𝑟2𝑃𝑟3 = 0 

𝑃𝑟3(− 𝑐1 𝑃𝑟3 + 𝑑1𝑃𝑟1 + 𝑒1𝑃𝑟2)  = 0 

As 𝑃𝑟1  ≠ 0, 𝑃𝑟2  ≠ 0, 𝑃𝑟3  ≠ 0 so we have three equations in 𝑃𝑟1, 𝑃𝑟2, 𝑃𝑟3 

𝑎1 − 𝑎1  𝑃𝑟1 − 𝑃𝑟3 + 𝑃𝑟2𝑃𝑟3 =  0 

𝑎1(1 − 𝑃𝑟1) + (−1 + 𝑃𝑟2)𝑃𝑟3 =  0                                                 (4) 

𝑏1 − 𝑏1 𝑃𝑟2 − 𝑃𝑟3 + 𝑃𝑟1𝑃𝑟3 = 0 

𝑏1(1 − 𝑃𝑟2) + (−1 + 𝑃𝑟1)𝑃𝑟3 = 0                                                  (5) 

− 𝑐1 𝑃𝑟3 + 𝑑1𝑃𝑟1 + 𝑒1𝑃𝑟2  = 0                                                     (6) 

Multiply (4) by −(−1 + 𝑃𝑟1) and (5) by (−1 + 𝑃𝑟1) then add 

𝑎1(1 − 𝑃𝑟1)(−)(−1 + 𝑃𝑟1) − (−1 + 𝑃𝑟1)(−1 + 𝑃𝑟2)𝑃𝑟3 = 0 

𝑏1(1 − 𝑃𝑟1)(−1 + 𝑃𝑟2) + (−1 + 𝑃𝑟1)(−1 + 𝑃𝑟2)𝑃𝑟3 = 0 

Add these equations 

𝑎1(1 − 𝑃𝑟1)(1 − 𝑃𝑟1) + 𝑏1(1 − 𝑃𝑟1)(−1 + 𝑃𝑟2) = 0 

𝑎1(1 − 𝑃𝑟1)
2 − 𝑏1(1 − 𝑃𝑟2)

2 = 0 

𝑎1(1 − 𝑃𝑟1)
2 = 𝑏1(1 − 𝑃𝑟2)

2 
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𝑎1
𝑏1
(1 − 𝑃𝑟1)

2 =  𝑏1(1 − 𝑃𝑟2)
2 

Taking square root 

√
𝑎1
𝑏1
(1 − 𝑃𝑟1) = (1 − 𝑃𝑟2) 

𝑃𝑟2 =  1 − √
𝑎1
𝑏1
 (1 − 𝑃𝑟1) 

Put this value in (5) 

[1 − {1 − √
𝑎1
𝑏1
 (1 − 𝑃𝑟1)}] 𝑏1 + (−1 + 𝑃𝑟1)𝑃𝑟3 = 0 

[1 − 1 + √
𝑎1
𝑏1
 (1 − 𝑃𝑟1)] 𝑏1 + (−1 + 𝑃𝑟1)𝑃𝑟3 = 0 

𝑏1 [√
𝑎1
𝑏1
 (1 − 𝑃𝑟1)] + (−1 + 𝑃𝑟1)𝑃𝑟3 = 0 

√𝑎1𝑏1(1 − 𝑃𝑟1) + (−1 + 𝑃𝑟1)𝑃𝑟3 = 0 

(−1 + 𝑃𝑟1)𝑃𝑟3 = −√𝑎1𝑏1 (1 − 𝑃𝑟1) 

(−1 + 𝑃𝑟1)𝑃𝑟3 = √𝑎1𝑏1 (−1 + 𝑃𝑟1) 

𝑃𝑟3 = √𝑎1𝑏1 

Let 𝐸∗(𝑃𝑟1
∗ ,  𝑃𝑟2

∗ ,  𝑃𝑟3
∗ ) denote the interior equilibrium  

where 

𝑃𝑟3
∗ = √𝑎1𝑏1, 𝑃𝑟2

∗ = 
𝑐1 √𝑎1𝑏1−𝑑1(1−√𝑏1 𝑎1⁄ )

𝑒1 + 𝑑1√𝑏1𝑎1
, 𝑃𝑟1

∗ =  

𝑏1𝑐1 + 𝑒1 (1 − √
𝑏1
𝑎1
)

𝑒1 + 𝑑1√
𝑏1
𝑎1

 

𝑐1√𝑎1𝑏1 ≤  𝑑1 + 𝑒, 𝑐1𝑎1 + 𝑑1  >  𝑑1√𝑏1 𝑎1⁄ , 𝑐1𝑏1 + 𝑒1 > 𝑒1√𝑎1 𝑏1⁄  
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4.4 Stability 

 

Now, we calculate stability of the aforementioned system of equation 

𝑑𝑃𝑟1
𝑑𝑡

=  𝑎1𝑃𝑟1 − 𝑎1 𝑃𝑟1
2 − 𝑃𝑟1𝑃𝑟3 + 𝑃𝑟1𝑃𝑟2𝑃𝑟3 

𝑑𝑃𝑟2
𝑑𝑡

=  𝑏1𝑃𝑟2 − 𝑏1 𝑃𝑟2
2 − 𝑃𝑟2𝑃𝑟3 + 𝑃𝑟1𝑃𝑟2𝑃𝑟3 

𝑑𝑃𝑟3
𝑑𝑡

=  − 𝑐1 𝑃𝑟3
2 + 𝑑1𝑃𝑟1(𝑡 − 𝜏)𝑃𝑟3 + 𝑒1𝑃𝑟2(𝑡 − 𝜏)𝑃𝑟3 

Differentiation w.r.t. 𝑃𝑟1 

𝑚1 =  𝑎1 − 2𝑎1𝑃𝑟1 − 𝑃𝑟3 + 𝑃𝑟2𝑃𝑟3, 𝑚2 = 𝑃𝑟2𝑃𝑟3,        𝑚3 = 𝑑1𝑃𝑟3𝑒
−𝜆𝜏 

Differentiation w.r.t. 𝑃𝑟2 

𝑚4 = 𝑃𝑟1𝑃𝑟3, 𝑚5 =  𝑏1 − 2𝑏1𝑃𝑟2 − 𝑃𝑟3 + 𝑃𝑟1𝑃𝑟3,              𝑚6 = 𝑒1𝑃𝑟3𝑒
−𝜆𝜏  

Differentiation w.r.t. 𝑃𝑟3 

𝑚7 = − 𝑃𝑟1 + 𝑃𝑟1𝑃𝑟2, 𝑚8 = −𝑃𝑟2 + 𝑃𝑟1𝑃𝑟2,       𝑚9 = −2𝑐1𝑃𝑟3 

Let 𝑣1 = 𝑃𝑟1 − 𝑃𝑟1
∗ , 𝑣2 = 𝑃𝑟2𝑃𝑟2

∗  and 𝑣3 = 𝑃𝑟3𝑃𝑟3
∗ then equations (1), (2) 

and (3) can be expressed in this form 

𝑑𝑣1
𝑑𝑡

=  −𝑎1𝑃𝑟1
∗ − 𝑃𝑟1

∗ 𝑣3 + 𝑃𝑟1
∗ 𝑃𝑟2

∗ 𝑣3 + 𝑃𝑟1
∗ 𝑃𝑟3

∗ 𝑣2 − 𝑎1𝑣1
2 − (1 − 𝑃𝑟2

∗ )𝑣1𝑣3

+ 𝑃𝑟1
∗ 𝑣2𝑣3 + 𝑃𝑟3

∗ 𝑣1𝑣2

+ 𝑣1𝑣2𝑣3                                                                               (7) 

𝑑𝑣2
𝑑𝑡

=  −𝑏1𝑃𝑟2
∗ 𝑣2 − 𝑃𝑟2

∗ 𝑣3 + 𝑃𝑟1
∗ 𝑃𝑟2

∗ 𝑣3 + 𝑃𝑟2
∗ 𝑃𝑟3

∗ 𝑣1 − 𝑏1𝑣2
2 − (1 − 𝑃𝑟1

∗ )𝑣2𝑣3

+ 𝑃𝑟2
∗ 𝑣1𝑣2 + 𝑃𝑟3

∗ 𝑣1𝑣2

+ 𝑣1𝑣2𝑣3                                                                           (8) 

𝑑𝑣3
𝑑𝑡

=  −𝑐1𝑃𝑟3
∗ 𝑣3 − 𝑑1𝑃𝑟3

∗ 𝑣1(𝑡 − 𝜏) + 𝑒1𝑃𝑟3
∗ 𝑣2(𝑡 − 𝜏) − 𝑐1𝑣3

2 − 𝑑1𝑣1(𝑡 − 𝜏)𝑣3

+ 𝑒1𝑣2(𝑡 − 𝜏)𝑣3                                                                                   (9) 

The stability of the equilibrium 𝐸∗(𝑃𝑟1
∗ ,  𝑃𝑟2

∗ ,  𝑃𝑟3
∗ ) can be examined by investigating 

the stability of the origin for equations (7), (8), and (9). Now, we compute the 

linearised system’s characteristics equations (7), (8), and (9) at (0, 0, 0) 
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|

𝜆 − 𝑚1 −𝑚2 −𝑚3

−𝑚4 𝜆 −𝑚5 −𝑚6

−𝑚7 −𝑚8 𝜆 −𝑚9

| = 0 

|

𝜆 − (𝑎1 − 2𝑎1𝑃𝑟1 − 𝑃𝑟3 + 𝑃𝑟2𝑃𝑟3) −𝑃𝑟2𝑃𝑟3 −𝑑1𝑃𝑟3𝑒
−𝜆𝜏

−𝑃𝑟1𝑃𝑟3 𝜆 − (𝑏1 − 2𝑏1𝑃𝑟2 − 𝑃𝑟3 + 𝑃𝑟1𝑃𝑟3) −𝑒1𝑃𝑟3𝑒
−𝜆𝜏

𝑃𝑟1 − 𝑃𝑟1𝑃𝑟2 𝑃𝑟2 − 𝑃𝑟1𝑃𝑟2 𝜆 + 2𝑐1𝑃𝑟3

|

= 0 

After simplification, we obtain the characteristic equation 

𝜆3 + 𝑋𝜆2 + 𝑌1𝜆 + 𝑒
−𝜆𝜏(𝑌2𝜆 + 𝑍2) = 0                                            (10) 

When τ = 0, equation (10) becomes 

𝜆3 + 𝑋𝜆2 + (𝑌1 + 𝑌2)𝜆 + 𝑍2 = 0                                                  (11) 

The Routh–Hurwitz criteria implies that with τ = 0, the equilibrium point 𝐸∗ is 

locally asymptotically stable if 

(𝑯𝟏)𝑋 > 0, (𝑌1 + 𝑌2) > 0, 𝑍2 > 0, 𝑋( 𝑌1 + 𝑌2) > 𝑍2 ℎ𝑜𝑙𝑑 

Let us consider (𝑯𝟏) condition is fulfilled. Then, equation (11) with 𝜏 =  𝜏𝑗(𝑗 =

0, 1, …… ) has only complex solution with conjugation ±𝑖𝜔0 

 

𝜏𝑗 =  
1

𝜔0
[𝑎𝑟𝑐𝑐𝑜𝑠

𝜔0
2(𝜔0

2𝑌2 + 𝑍2𝑋 − 𝑌1𝑌2)

𝑌2
2𝜔0

2 + 𝑍2
2 + 2𝑗𝜋] 

We have the following conditions: 

1. For all solution of equation (11) have real part with negative sign is that 

𝜏 𝜖 [0, 𝜏0). 

2. For all solution of equation (11) have only pair of conjugated complex 

solution ±𝑖𝜔0 and real part with negative sign only if 𝜏 = 𝜏0. 

If 𝜆 = 0 is a solution of (11) if 𝑍2 = 0. This condition found contrary to the third 

prerequisite in (𝑯𝟏), implying that 𝜆 = 0 is not corresponds to a solution of (11). 

So, assume that the condition when delay is greater and equal to zero i.e., 𝜏 ≥

0, 𝑎𝑛𝑑 𝑖𝜔 with 𝜔 > 0 is a valid solution of (11). 
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−𝑖 𝜔3 − 𝑋𝜔2 + 𝑖𝑌1𝜔 + 𝑒
−𝜔𝜏(𝑖𝑌2𝜔 + 𝑍2) = 0 

−𝑖 𝜔3 − 𝑋𝜔2 + 𝑖𝑌1𝜔 + (𝑐𝑜𝑠 𝜔𝜏 − 𝑖𝑠𝑖𝑛 𝜔𝜏) (𝑖𝑌2𝜔 + 𝑍2) = 0 

𝑖 (−𝜔3 + 𝑌1𝜔 + 𝑌2𝜔𝑐𝑜𝑠 𝜔𝜏 − 𝑍2𝑠𝑖𝑛 𝜔𝜏) + (−𝑋𝜔
2 + 𝑍2𝑐𝑜𝑠 𝜔𝜏

+ 𝑌2𝜔𝑠𝑖𝑛 𝜔𝜏) = 0 

Separating real and imaginary parts 

−𝜔3 + 𝑌1𝜔 + 𝑌2𝜔𝑐𝑜𝑠 𝜔𝜏 − 𝑍2𝑠𝑖𝑛 𝜔𝜏 = 0                                         (12) 

−𝑋𝜔2 + 𝑍2𝑐𝑜𝑠 𝜔𝜏 + 𝑌2𝜔𝑠𝑖𝑛 𝜔𝜏 = 0                                            (13) 

which give  𝜔6 + 𝛼𝜔4 + 𝛽𝜔2 + 𝛾 = 0                                                           (14) 

where  𝛼 = 𝑋2 − 2𝑌1, 𝛽 =  𝑌1
2 − 𝑌2

2, 𝛾 =  −𝑍2
2 

Let 𝑙 =  𝜔2, then equation (14) becomes 

𝑙3 + 𝛼𝑙2 + 𝛽𝑙 + 𝛾 = 0                                                       (15) 

Supposed 𝑙1, 𝑙2 𝑎𝑛𝑑 𝑙3 are the roots of equation (15) and connected by 

Sum of the roots                         𝑙3 + 𝑙2 + 𝑙1 =  −𝛼                                           (16) 

Product of the roots                        𝑙3 𝑙2 𝑙1 =  −𝛾                                                  (17) 

Thus, equation (17) has either only one or all three positive real roots. 

Depending on the value of determinant Δ1of the equation (15) 

where Δ1 = (
𝑆

2
)
2

+ (
𝑇

3
)
3

 and 𝑇 =  𝛽 −
1

3
𝛼2, 𝑆 =  

2

27
𝛼3 −

1

3
𝛼𝛽 + 𝛾 

Three situations are possible for the solution of (15): 

a) If Δ1 > 0, then one real root and a pair of imaginary roots can be obtained 

for equation (15). When the real root is positive, it can be written as follows: 

𝑙1 =  √
−𝑆

2
+ √ Δ1

3

+ √
−𝑆

2
− √ Δ1

3

−
1

3
𝛼 

b) If Δ1 = 0, all three real roots and two repeated roots are obtained for 

equation (15). If 𝛼 > 0, we obtain only one positive root,  𝑙1 = 2 √
−𝑆

2

3
−

1

3
𝛼. 𝐼𝑓 𝛼 < 0, we obtain only one positive root,  𝑙1 = 2 √

−𝑆

2

3
−

1

3
𝛼 for ,  
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 √
−𝑆

2

3
> −

1

3
𝛼 and three positive real roots for  

𝛼

6
< √

−𝑆

2

3
< −

1

3
𝛼 , 𝑙1 =

2 √
−𝑆

2

3
−

1

3
𝛼,   𝑙2 = 𝑙3 = − √

−𝑆

2

3
−

1

3
𝛼 

c) If Δ1 < 0, we obtain all the three roots are real and distinct, 𝑙1 =

2√
|𝑇|

3
cos (

𝜉

3
) − 

𝛼

3
 

𝑙2 =  √
|𝑇|

3
𝑐𝑜𝑠 (

𝜉

3
+
2𝜋

3
) −

𝛼

3
, 𝑙3 = 2√

|𝑇|

3
cos (

𝜉

3
+
4𝜋

3
) −

𝛼

3
 

Where cos 𝜉 = (−
𝑆

2√(
|𝑇|

3
)
3
), 0 < 𝜉 < 𝜋. Moreover, if 𝛼 > 0, one and only one 

positive solution exists. Otherwise, if 𝛼 < 0, we obtain all three real positive roots 

or only one positive real solution. It is equivalent to max (𝑙1, 𝑙2, 𝑙3) only when we 

obtain one positive real root. The number of positive real roots depends on the sign 

of  𝛼. Equation (15) has only one positive real root when 𝛼 ≥ 0 is present. 

Otherwise, we obtained three positive real roots. When  𝛼 =  𝑋2 − 2𝑌1 >  0,  one 

positive real root is obtained for (15). Let the obtained positive real root be denoted 

by symbol 𝑙0. Then, equation (14) would have only one positive real root 𝜔0 =

 √𝑙0. From equation (13), we have 

𝑐𝑜𝑠𝜔0𝜏 =  
𝜔0
2(𝜔0

2𝑌2 + 𝑍2𝑋 − 𝑌1𝑌2)

𝑌2
2𝜔0

2 + 𝑍2
2  

Express 

𝜏𝑗 = 
1

𝜔0
[𝑎𝑟𝑐𝑐𝑜𝑠

𝜔0
2(𝜔0

2𝑌2 + 𝑍2𝑋 − 𝑌1𝑌2)

𝑌2
2𝜔0

2 + 𝑍2
2 + 2𝑗𝜋]                         (18) 

where 𝑗 = 0, 1, 2, 3, 4, 5,….. ±𝑖𝜔0 obtained a root of equation (10) when   𝜏 =  𝜏𝑗. 

Furthermore, if (𝐻1) standards are fulfilled, all the roots of equation (10) with 𝜏 = 

0 have negative real values. We determine the outcomes of lemma1 by summarising 

the preceding discussion and using the lemma provided. The proof is completed 

with the following outcomes from theorem and lemma. 
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4.5 Theorem1 Assume the condition in (H1) is fulfilled. If 𝜏 𝜖 [0, 𝜏0), then the 

zero solution of equations (7), (8), and (9) is asymptotically stable. 

For delayed functional differential equations, the following components may be 

found by applying the conventional Hopf bifurcation theorem. 

4.6 Lemma 1 Let 𝑛(𝑙0) = (3𝑙0
2 + 2𝛼𝑙0 + 𝛽) ≠ 0 and condition in (𝐻1) are 

satisfied. For (𝑗 = 0, 1,… ), 𝜆(𝜏) =  𝛿(𝜏) + 𝑖𝜔(𝜏) is denoted as the solution of 

equation (10) that fulfils the condition 𝛿(𝜏𝑗) = 0,𝜔(𝜏𝑗) =  𝜔0 were 

𝜏𝑗 = 
1

𝜔0
[𝑎𝑟𝑐𝑐𝑜𝑠

𝜔0
2(𝜔0

2𝑌2 + 𝑍2𝑋 − 𝑌1𝑌2)

𝑌2
2𝜔0

2 + 𝑍2
2 + 2𝑗𝜋] 

Then, ±𝑖𝜔0 are pair of simple roots. If the transversality condition (𝐻1) 𝛿
′(𝜏𝐽) =

 
𝑅𝑒 𝜆(𝜏)

𝑑𝜏
|
𝜆=𝑖𝜔0

≠ 0 holds good, we obtain a Hopf bifurcation for (7), (8) and (9) at 

𝑣 = 0 𝑎𝑛𝑑 𝜏 =  𝜏𝑗. 

Proof. Assume  𝜆 =  𝜆 (𝜏) is a solution of equation (10). Put 𝜆 (𝜏) in (10) and 

differentiating with respect to 𝜏 on both sides, we get  

[(3𝜆2 + 2𝑋𝜆 + 𝑌1) + ((𝜆𝑌2 + 𝑍2)(−𝜏) + 𝑌2)𝑒
−𝜆𝜏]

𝑑𝜆

𝑑𝜏
=  𝜆(𝜆𝑌2 + 𝑍2)𝑒

−𝜆𝜏 

Thus 

(
𝑑𝜆

𝑑𝜏
)
−1 

= 
(3𝜆2 + 2𝑋𝜆 + 𝑌1)𝑒

𝜆𝜏

𝜆(𝜆𝑌2 + 𝑍2)
+

𝑌2
𝜆(𝜆𝑌2 + 𝑍2)

−
𝜏

𝜆
 

From (12)– (15), we have 

–𝛼′(𝜏𝐽) = 𝑅𝑒 [
(3𝜆2 + 2𝑋𝜆 + 𝑌1)𝑒

𝜆𝜏

𝜆(𝜆𝑌2 + 𝑍2)
] + 𝑅𝑒 [

𝑌2
𝜆(𝜆𝑌2 + 𝑍2)

] 

=
1

Ω
[3𝜔0

6 + 2(𝑋2 − 2𝑌1)𝜔0
4 + (𝑌1

2 − 2𝑋𝑍2 − 𝑌2
2)𝜔0

2] 

=
1

Ω
(3𝜔0

6 + 2𝛼𝜔0
4 + 𝛽𝜔0

2) 

=
𝜔0
2

Ω
(3𝜔0

4 + 2𝛼𝜔0
2 + 𝛽) 
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=
𝜔0
2

Ω
(3𝑙0

2 + 2𝛼𝑙0 + 𝛽) 

=
𝜔0
2

Ω
𝑛(𝑙0) 

where Ω =  𝑌2
2𝜔0

2 + 𝑍2
2 

𝑛(𝑙0) = 3𝑙0
2 + 2𝛼𝑙0 + 𝛽. Observed, when Ω > 0 and 𝜔0 > 0 

We find that 

Sign [𝛿′(𝜏𝐽)] = 𝑠𝑖𝑔𝑛[𝑛(𝑙0)] proves the theorem. 

 

4.7 Direction Analysis and Stability of The Hopf Bifurcation 

Solution  

 

As we showed in the last section, a set of solutions may be determined as bifurcates 

from the favourable steady state 𝐸∗  at a critical level of 𝜏. These bifurcating 

periodic solutions' direction, stability, and period need to be identified. In this part, 

we use normal form theory and the centre manifold theorem at the critical point 𝜏𝑗 

to construct accurate equations characterising the characteristics of the Hopf 

bifurcation at the specific critical value. 

Normalizing delay value 𝜏 by the time scaling 𝑡 ⟶
𝑡

𝜏
 system (7), (8), and (9) is 

transformed into 

𝑑𝑣1
𝑑𝑡

=  −𝑎1𝑃𝑟1
∗ 𝑣1 − 𝑃𝑟1

∗ 𝑣3 + 𝑃𝑟1
∗ 𝑃𝑟2

∗ 𝑣3 + 𝑃𝑟1
∗ 𝑃𝑟3

∗ 𝑣2 − 𝑎𝑣1
2 − (1 − 𝑃𝑟2

∗ )𝑣1𝑣3

+ 𝑃𝑟1
∗ 𝑣2𝑣3 + 𝑃𝑟3

∗ 𝑣1𝑣2

+ 𝑣1𝑣2𝑣3                                                                               (19) 

𝑑𝑣2
𝑑𝑡

=  −𝑏1𝑃𝑟2
∗ 𝑣2 − 𝑃𝑟2

∗ 𝑣3 + 𝑃𝑟1
∗ 𝑃𝑟2

∗ 𝑣3 + 𝑃𝑟2
∗ 𝑃𝑟3

∗ 𝑣1 − 𝑏𝑣2
2 − (1 − 𝑃𝑟1

∗ )𝑣2𝑣3

+ 𝑃𝑟2
∗ 𝑣1𝑣3 + 𝑃𝑟3

∗ 𝑣1𝑣2

+ 𝑣1𝑣2𝑣3                                                                          (20) 
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𝑑𝑣3
𝑑𝑡

=  −𝑐1𝑃𝑟3
∗ 𝑣3 + 𝑑1𝑃𝑟3

∗ 𝑣1(𝑡 − 1) + 𝑒1𝑃𝑟3
∗ 𝑣2(𝑡 − 1)

− 𝑐1𝑣3
2+𝑑1𝑣1(𝑡 − 1)𝑣3 + 𝑒1𝑣2(𝑡 − 1)𝑣3           (21) 

Take phase plane 𝐶 = 𝐶((−1,0), 𝑅+
3). WLOG, denote the critical value 𝜏𝑗 by 𝜏0. If 

𝜏 =  𝜏0 + 𝜎, then 𝜎 = 0 is a value for Hopf bifurcation for equations (19)– 21).  

To facilitate notational ease, we construct (19)– (21) in this manner. 

𝑣′(𝑡) =  𝐿𝜎(𝑣𝑡) + 𝐺(𝜎, 𝑣𝑡)                                                            (22) 

where 𝑣(𝑡) =  𝑣1(𝑡), 𝑣2(𝑡), 𝑣3(𝑡) 𝜖 𝑅
3, 𝑣𝑡(𝜃) = 𝑣(𝑡 + 𝜃) and 

𝐿𝜎𝜑 = (𝜏0 + 𝜎) [

−𝑎1𝑃𝑟1
∗ 𝑃𝑟1

∗ 𝑃𝑟3
∗ −𝑃𝑟1

∗ + 𝑃𝑟1
∗ 𝑃𝑟2

∗

𝑃𝑟2
∗ 𝑃𝑟3

∗ −𝑏1𝑃𝑟2
∗ −𝑃𝑟2

∗ + 𝑃𝑟1
∗ 𝑃𝑟2

∗

0 0 −𝑐1𝑃𝑟3
∗

] [

𝜑1 (0)

𝜑2(0)

𝜑3(0)
] + 

(𝜏0 + 𝜎) [
0 0 0
0 0 0

𝑑1𝑃𝑟3
∗ 𝑒1𝑃𝑟3

∗ 0
] [

𝜑1(−1)
𝜑2(−1)
𝜑3(−1)

] and 

𝐺(𝜎, 𝜑) = (𝜏0 + 𝜎) [
𝐺1
𝐺2
𝐺3

] respectively, were 

𝐺1 =  −𝑎1𝜑1
2(0) − (1 − 𝑃𝑟2

∗ )𝜑1(0)𝜑3(0) + 𝑃𝑟1
∗ 𝜑2(0)𝜑3(0)

+ 𝑃𝑟3
∗ 𝜑2(0)𝜑1(0) + 𝜑3(0)𝜑2(0)𝜑1(0), 

𝐺2 = −𝑏1𝜑1
2(0) − (1 − 𝑃𝑟1

∗ )𝜑3(0)𝜑2(0) + 𝑃𝑟2
∗ 𝜑3(0)𝜑1(0)

+ 𝑃𝑟3
∗ 𝜑2(0)𝜑1(0) + 𝜑3(0)𝜑2(0)𝜑1(0), 

𝐺3 = −𝑐1𝜑3
2(0) + 𝑑1𝜑1(−1)𝜑3(0) + 𝑐1𝜑2(−1)𝜑3(0), 

𝜑(0) = (𝜑1(𝜃), 𝜑2(𝜃), 𝜑3(𝜃))
𝑇𝜖 𝐶(𝐶 − 1, 0), 𝑅). 

Reisz representation theorem utilisation, we can find a function ∢(𝜃, 𝜎) of bounced 

variation for 𝜃 𝜖 [−1, 0) as  

𝐿𝜎𝜑 =  ∫ 𝑑∢(𝜃, 0)
0

−1

𝜑(0)𝑓𝑜𝑟 𝜑 𝜖 𝐶. 

We choose 

∢(𝜃, 𝜎) = (𝜏0 + 𝜎) [

−𝑎1𝑃𝑟1
∗ 𝑃𝑟1

∗ 𝑃𝑟3
∗ −𝑃𝑟1

∗ + 𝑃𝑟2
∗ 𝑃𝑟1

∗

𝑃𝑟2
∗ 𝑃𝑟3

∗ −𝑏1𝑃𝑟2
∗ −𝑃𝑟2

∗ + 𝑃𝑟2
∗ 𝑃𝑟1

∗

0 0 −𝑐1𝑃𝑟3
∗

] 𝜒(𝜃) + 
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(𝜏0 + 𝜎) [
0 0 0
0 0 0

𝑑1𝑃𝑟3
∗ 𝑒1𝑃𝑟3

∗ 0
] 𝜒(𝜃 + 1) 

where 𝜒 denotes the Delta Dirac rule for any  𝜑 𝜖 𝐶([−1, 0], 𝑅+
3), 

Let us define a function 

𝐴(𝜎)𝜑 =  {

𝑑𝜑(0) 𝜃 𝜖 [−1,0)

∫ 𝑑 ≮ (𝜃, 𝜑)
0

−1

𝜃 = 0
 

H (𝜎) 𝜑 = {
0 𝜃 𝜖[−1, 0)

𝐺(𝜎, 𝜑) 𝜃 = 0
 

Then, the system (22) is equivalent to 

𝑣𝑡
′ = 𝑋(𝜎)𝑣𝑡 +𝐻(𝜎)𝑣𝑡                                                             (23) 

For 𝜀 𝜖 𝐶′([−1,0], 𝑅+
3), define 

𝑋∗𝜖(𝑠) =  

{
 

 
−𝑑𝜖(𝑠)

𝑑𝜃
𝑠 𝜖 [−1,0,

∫ 𝑑 ≮𝑇 (−1,0)𝜀(−𝑡)
0

−1

𝑠 = 0

 

The bilinear inner product is as follows: 

< 𝜀(𝑠), 𝜑(𝜃) > = ∈ (0) 𝜑(0) − ∫ ∫ 𝜖(𝑣 − 𝜃)𝑑 ≮ (𝜃)𝜑(𝑣)𝑑𝑣         (24)
0

𝑣=0

0

−1

 

𝑋∗ 𝑎𝑛𝑑 𝑋(0)are adjoint operators; thus, 𝑖𝜔0 are the eigen values of 𝑋(0). They are 

the eigen values of 𝑋∗. Suppose that 𝛽(𝜃) =  𝛽(0)𝑒𝑖𝜔0𝜃 is an eigen vector of 𝑋(0) 

corresponding to the eigenvalue 𝑖𝜔0. Then, 𝑋(0) = 𝑖𝜔0𝛽(𝜃). When 𝜃 = 0, we 

obtain 

[𝑖𝜔0𝐼 − ∫ 𝑑 ≮ (𝜃)𝑒𝑖𝜔0𝜃
0

−1

] 𝛽(0) = 0 

which yields 𝛽(0) − (1, 𝑥1𝑦1)
𝑇 , 

where 

𝑥1 = 
(𝑃𝑟1

∗ − 𝑃𝑟2
∗ 𝑃𝑟1

∗ )𝑃𝑟3
∗ 𝑃𝑟2

∗ + (𝑃𝑟2
∗ − 𝑃𝑟2

∗ 𝑃𝑟1
∗ )(𝑖𝜔0 + 𝑎1𝑃𝑟1

∗ )

𝑃𝑟1
∗ 𝑃𝑟3

∗ (𝑃𝑟2
∗ − 𝑃𝑟2

∗ 𝑃𝑟1
∗ ) − (𝑃𝑟1

∗ − 𝑃𝑟2
∗ 𝑃𝑟1

∗ )(𝑖𝜔0 + 𝑃𝑟2
∗ 𝑏1)
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𝑦1 = 
𝑃𝑟2
∗ 𝑃𝑟3 

∗2𝑃𝑟1
∗ − (𝑖𝜔0 + 𝑎1𝑃𝑟1

∗ )(𝑖𝜔0 + 𝑏1𝑃𝑟2
∗ )

𝑃𝑟1
∗ 𝑃𝑟3

∗ (𝑃𝑟2
∗ − 𝑃𝑟2

∗ 𝑃𝑟1
∗ ) − (𝑃𝑟1

∗ − 𝑃𝑟2
∗ 𝑃𝑟1

∗ )(𝑖𝜔0 + 𝑃𝑟2
∗ 𝑏1)

 

Similarly, it can be verified that 𝛽∗(𝑠) = 𝐷(1, 𝑥2𝑦2)𝑒
𝑖𝜔0𝜏0𝑠is the eigen vector of 

𝑋∗corresponding to −𝑖𝜔0, 

where 

𝑥2 = 
𝑃𝑟2
∗ 𝑃𝑟3

∗ (𝑃𝑟1
∗ − 𝑃𝑟2

∗ 𝑃𝑟1
∗ ) + (𝑃𝑟2

∗ − 𝑃𝑟2
∗ 𝑃𝑟1

∗ )(𝑎1𝑃𝑟1
∗ − 𝑖𝜔0)

𝑃𝑟1
∗ 𝑃𝑟3

∗ (𝑃𝑟2
∗ − 𝑃𝑟1

∗ 𝑃𝑟2
∗ ) − (𝑃𝑟1

∗ − 𝑃𝑟1
∗ 𝑃𝑟2

∗ )(𝑏1𝑃𝑟2
∗ − 𝑖𝜔0)

 

𝑦2 =  
𝑃𝑟1
∗ 𝑃𝑟2

∗ 𝑃𝑟3
∗2 − (𝑎1𝑃𝑟1

∗ − 𝑖𝜔0)(𝑏1𝑃𝑟2
∗ − 𝑖𝜔0)

𝑃𝑟1
∗ 𝑃𝑟3

∗ (𝑃𝑟2
∗ − 𝑃𝑟2

∗ 𝑃𝑟1
∗ ) − (𝑃𝑟1

∗ − 𝑃𝑟2
∗ 𝑃𝑟1

∗ )(𝑏1𝑃𝑟2
∗ − 𝑖𝜔0)

 

To assume < 𝛽∗(𝑠), 𝛽(𝜃) ≥ 1, we have to calculate the value of D. From [24], we 

obtain < 𝛽∗(𝑠), 𝛽(𝜃) > 

= 𝐷̅(1, 𝑥̅2, 𝑦̅2)(1, 𝑥1, 𝑦1)
𝑇 −∫ ∫ 𝐷̅(

𝜃

𝑣=0

0

−1

1, 𝑥̅2, 𝑦̅2) 𝑒
−𝑖𝜔0𝜏0(𝑣−𝜃)𝑑

≮ (𝜃)(1, 𝑥1, 𝑦1)
𝑇𝑒−𝜔0𝜏0𝑑𝑣 

= 𝐷̅{1 + 𝑥1𝑥̅2 + 𝑦1𝑦̅2 −∫ (
0

−1

1, 𝑥̅2, 𝑦̅2) 𝜃𝑒
𝑖𝜔0𝜏0𝜃𝑑 ≮ (𝜃)(1, 𝑥1, 𝑦1)

𝑇} 

= 𝐷̅{1 + 𝑥1𝑥̅2 + 𝑦1𝑦̅2 − 𝜏0 𝑦̅2𝑃𝑟3
∗ (𝑑1𝑥1 + 𝑒1𝑦2)𝑒

𝑖𝜔0𝜏0} 

Hence, we can choose 

𝐷̅ =
1

1 + 𝑥1𝑥̅2 + 𝑦1𝑦̅2 + 𝜏0𝑦̅2𝑃𝑟3
∗ (𝑑1𝜎1+𝑒1𝑦)𝑒𝑖𝜔0𝜏0

 

Such that 

< 𝛽∗(𝑠), 𝛽(𝜃) ≥ 1,< 𝛽∗(𝑠), 𝛽(𝜃) = 0 

Continue the coordinates defining the vector by following the algorithm and using 

the same notations as their manifold 𝑐0 at 𝜎 = 0. Let 𝑣𝑡 be a solution of equation 

(23) with 𝜎 = 0. Define 

 

𝑚(𝑡) = < 𝛽∗(𝑠), 𝑣𝑡(𝜃) >                                                        (25) 

𝑉(𝑡, 𝜃) =  𝑣𝑡(𝜃) − 2𝑅𝑒 𝑚(𝑡)𝛽(𝜃)                                                   (26) 

According to manifold, we obtain centre 𝐶0. Accordingly, 
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𝑉(𝑡, 𝜃) = 𝑉(𝑚(𝑡) 𝑚̅(𝑡), 𝜃), 

where 

𝑉(𝑚, 𝑚̅, 𝜃) =  𝑉20(𝜃)
𝑚2

2
+ 𝑉11(𝜃)𝑚𝑚̅ + 𝑉02(𝜃)

𝑚̅2

2
+ ⋯ 

𝑚 and 𝑚̅ are local values for the manifold centre 𝐶0 in the direction of 𝛽∗ and 𝛽̅∗. 

When 𝑉 is real, 𝑣𝑡 is real. We assume only the real solution. For solution 𝑣𝑡  ∈  𝐶0 

of (23), since 𝜎 = 0, 

𝑚′(𝑡) = 𝑖𝜔0𝜏0𝑚+< 𝛽̅∗(𝜃), 𝐺(0, 𝑉(𝑚, 𝑚̅, 𝜃) + 2𝑅𝑒{𝑚(𝑡)𝛽(𝜃)}) > 

= 𝑖𝜔0𝜏0𝑚 + 𝛽̅∗(0)𝐺(0, 𝑉(𝑚, 𝑚̅, 0) + 2𝑅𝑒{𝑚(𝑡)𝛽(𝜃)}) 

=  𝑖𝜔0𝜏0𝑚 + 𝛽̅∗(0) 𝐺0(𝑚, 𝑚̅)                                                (27) 

where 𝑠(𝑚, 𝑚̅) =  𝛽̅∗(0)  𝐺0(𝑚, 𝑚̅) 

= 𝑠20(𝜃)
𝑚2

2
+ 𝑠11(𝜃)𝑚𝑚̅ + 𝑠02(𝜃)

𝑚̅2

2
+ 𝑠21

𝑚2𝑚̅

2
+ ⋯                        (28) 

Noticing 

𝑣𝑡(𝜃) = (𝑣𝑖𝑡 , 𝑣2𝑡 , 𝑣3𝑡) = 𝑉(𝑡, 𝜃) +𝑚𝛽(𝜃) + 𝑚̅𝛽̅(𝜃) 

and 𝛽(0) = (1, 𝑥1, 𝑦1)
𝑇𝑒𝑖𝜔0𝜏0𝜃 , we have 

𝑣1𝑡(0) = 𝑚 + 𝑚̅ + 𝑉20
(1)𝑚

2

2
+ 𝑉11

(1)(0)𝑚𝑚̅ + 𝑉02
(1)(0)

𝑚̅2

2
+ ⋯, 

𝑣2𝑡(0) = 𝑥1𝑚 + 𝑥̅1𝑚̅ + 𝑉20
(2)𝑚

2

2
+ 𝑉11

(2)(0)𝑚𝑚̅ + 𝑉02
(2)(0)

𝑚̅2

2
+ ⋯, 

𝑣3𝑡(0) = 𝑦1𝑚 + 𝑦̅1𝑚̅ + 𝑉20
(3)
(0)

𝑚2

2
+ 𝑉11

(3)(0)𝑚𝑚̅ + 𝑉02
(3)(0)

𝑚̅2

2
+ ⋯, 

𝑣1𝑡(−1) = 𝑚𝑒
−𝑖𝜔0𝜏0 + 𝑚̅𝑒𝑖𝜔0𝜏0 + 𝑉20

(1)(−1)
𝑚2

2
+ 𝑉11

(1)(−1)𝑚𝑚̅

+ 𝑉02
(1)(−1)

𝑚̅2

2
+ ⋯, 

𝑣2𝑡(−1) = 𝑥1𝑒
−𝑖𝜔0𝜏0 + 𝑥̅𝑒𝑖𝜔0𝜏0𝑚̅ + 𝑉20

(2)(−1)
𝑚2

2
+ 𝑉11

(2)(−1)𝑚𝑚̅

+ 𝑉02
(2)(−1)

𝑚̅2

2
+⋯, 

Comparing coefficients with (28), we have 
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𝑠20 = −2𝜏0𝐷̅[𝑎1 + (1 − 𝑃𝑟2
∗ )𝑦1 − 𝑥1(𝑃𝑟1

∗ 𝑦1 + 𝑃𝑟3
∗ ) + 𝑥̅2(𝑏1𝑥1

2 +

(1 − 𝑃𝑟1
∗ )𝑥1𝑦1) − 𝑥1𝑃𝑟3

∗ − 𝑦1𝑃𝑟2
∗ + 𝑦̅2𝑦1(𝑐1𝑦1 − 𝑑1𝑒

−𝑖𝜔0𝜏0 − 𝑒1𝑥1𝑒
−𝑖𝜔0𝜏0)], 

 

𝑠11 = −2𝜏0𝐷̅[𝑎1 + (1 − 𝑃𝑟2
∗ )𝑅𝑒{𝑦1} − 𝑃𝑟1

∗ 𝑅𝑒{𝑦̅1𝑥1} − 𝑃𝑟3
∗ 𝑅𝑒{𝑥1} +

𝑥̅2(𝑥1𝑥̅1𝑏1 + (1 − 𝑃𝑟1
∗ )𝑅𝑒{𝑥1𝑦̅1} − 𝑃𝑟2

∗ 𝑅𝑒{𝑦̅1} − 𝑃𝑟3
∗ {𝑥1} + 𝑦̅2(𝑐1𝑦1𝑦̅1 −

𝑑1𝑅𝑒{𝑦1𝑒
𝑖𝜔0𝜏0} − 𝑒1𝑅𝑒{𝑦1𝑥̅1𝑒

𝑖𝜔0𝜏0})], 

𝑠02 = −2𝜏0𝐷̅[𝑎1 + (1 − 𝑃𝑟2
∗ )𝑦̅1 − 𝑥̅1(𝑃𝑟1

∗ 𝑦̅1 + 𝑃𝑟3
∗ )

+ 𝑥̅2(𝑏1𝑥̅1
2 + (1 − 𝑃𝑟1

∗ )𝑥̅1𝑦̅1) − 𝑥̅1𝑃𝑟3
∗ − 𝑦̅1𝑃𝑟2

∗

+ 𝑦̅2𝑦̅1(𝑐1𝑦̅1 − 𝑑1𝑒
−𝑖𝜔0𝜏0)] 

𝑠21 = −2𝜏0𝐷̅[𝑎1 (𝑉20
(1)(0) + 2𝑉11

(1)(0)) + (1 − 𝑃𝑟2
∗ )(

1

2
 𝑉20

(1)(0)𝑦̅1 +

𝑉11
(1)(0)𝑦1 +

1

2
 𝑉20

(3)(0) + 𝑉11
(3)(0) − (2𝑅𝑒{𝑥1𝑦̅1} + 𝑥1𝑦1) −

𝑃𝑟1
∗ (

1

2
 𝑊20

(2)(0)𝑦̅1 +
1

2
 𝑉20

(3)(0)𝑥̅1 + 𝑉11
(2)(0)𝑦1 + 𝑉11

(3)(0)𝑥1) −

𝑃𝑟3
∗ (

1

2
 𝑉20

(2)(0) +
1

2
𝑉20
(1)(0)𝑥̅1 + 𝑉11

(2)(0) + 𝑉11
(1)(0)𝑥1) + 𝑥̅2(𝑏1𝑉20

(2)(0)𝑥̅1 +

2𝑉11
(2)(0)𝑥1) + (1 − 𝑃𝑟1

∗ )(
1

2
𝑉20
(2)(0)𝑦̅1 + 𝑉11

(3)(0)𝑥1 − (2𝑅𝑒{𝑥1𝑦̅1} + 𝑥1𝑦1) −

𝑃𝑟2
∗ (

1

2
𝑉20
(1)(0)𝑦̅1 +

1

2
 𝑉20

(3)(0) + 𝑉11
(1)(0)𝑦1 + 𝑉11

(1)(0)𝑦1 + 𝑉11
(3)(0) −

𝑃𝑟3
∗ (

1

2
 𝑉20

2 (0) +
1

2
 𝑉20

(1)(0)𝑥̅1 + 𝑉11
(2)(0) + 𝑉11

(1)(0)𝑥1)) + 𝑦̅2(𝑐1(𝑉20
(3)(0)𝑦̅1 +

2𝑉11
(3)(0)𝑦1) − 𝑑1 (

1

2
𝑉20
(1)(−1)𝑦̅1 + 𝑉11

(1)(−1)𝑦1 +
1

2
𝑉20
(3)(0)𝑒𝑖𝜔0𝜏0 +

𝑉11
(3)(0)𝑒−𝑖𝜔0𝜏0) − 𝑒1(

1

2
𝑉20
(1)(−1)𝑦̅1 + 𝑉11

(2)(−1)𝑦1 +
1

2
𝑉20
(3)(0)𝑥̅1𝑒

𝑖𝜔0𝜏0 +

𝑉11
(3)𝑥1𝑒

−𝑖𝜔0𝜏0))] 

Because of the presence of 𝑉20(𝜃) and 𝑉11(𝜃) in 𝑠21, we need to further 

compute them. From (23) and (26), we have 

𝑉′ = 𝑣𝑡
′ −𝑚′𝛽 − 𝑚̅′𝛽 

= {
𝑋𝑉 − 2𝑅𝑒{𝛽̅∗(0)𝐺0𝛽(𝜃)}, 𝜃 𝜖 [−1, 0),

𝑋𝑉 − 2𝑅𝑒{𝛽̅∗(0)𝐺0𝛽(0)} + 𝐺0 𝜃 = 0
 

≜ 𝑋𝑉 +𝑁(𝑚,𝑚,̅̅ ̅ 𝜃),                                                                             
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where 

𝑁(𝑚,𝑚,̅̅ ̅ 𝜃) =  𝑁20(𝜃)
𝑚2

2
+ 𝑁11(𝜃)𝑚𝑚̅ + 𝑁02(𝜃)

𝑚̅2

2
+ 𝑁21

𝑚2𝑚̅

2

+⋯          (29) 

On the other hand, on 𝐶0near the origin 

𝑉′ = 𝑉𝑚𝑚
′ + 𝑉𝑚̅𝑚̅

′ 

Expanding the aforementioned series and comparing the coefficient, we obtain 

[𝑋 − 2𝑖𝜔0𝐼]𝑉20(𝜃) =  −𝑁20(𝜃)                                                 (30) 

𝑋𝑉11(𝜃) =  −𝑁11(𝜃)                                                         (31) 

From (27), we know that for 𝜃 𝜖 [−1, 0), 

𝑁(𝑚, 𝑚̅, 𝜃) =  −𝛽𝑦̅(0)𝐺̅0𝛽(𝜃) − 𝛽
∗(0)𝐺̅0𝛽̅(𝜃) =  −𝑠𝛽(𝜃) − 𝑠̅𝛽̅(𝜃). 

Comparing the coefficient with (30), we obtain 𝜃 𝜖 [−1, 0] that 

𝑁20(𝜃) =  −𝑠20𝛽(𝜃) − 𝑠̅02𝛽̅(𝜃) 

𝑁11(𝜃) =  −𝑠11𝛽(𝜃) − 𝑠̅11𝛽̅(𝜃) 

From (29), (30), and (31) and the definition of 𝑋, we obtain 

𝑉20(𝜃) = 2𝑖𝜔0𝜏0𝑉20(𝜃) + 𝑠20𝛽(𝜃) + 𝑠̅02𝛽̅(𝜃) 

Solving for 𝑉20(𝜃), we obtain 

𝑉20(𝜃) =  
𝑖𝑠20
𝜔0𝜏0

𝛽(0)𝑒𝑖𝜔0𝜏0𝜃 +
𝑖𝑠̅02𝛽̅(0)

3𝜔0𝜏0
𝑒−𝑖𝜔0𝜏0𝜃 + 𝑃1𝑒

2𝑖𝜔0𝜏0𝜃 

Similarly, 

𝑉11(𝜃) =
−𝑖𝑠11
𝜔0𝜏0

𝛽(0)𝑒𝑖𝜔0𝜏0𝜃 +
𝑖𝑠̅11𝛽̅(0)

𝜔0𝜏0
𝑒−𝑖𝜔0𝜏0𝜃 + 𝑃2 

Where, by putting 𝜃 = 0 in N, it is possible to calculate the three-dimensional 

vectors 𝑃1and 𝑃𝑧. Accordingly, we obtain  

𝑁(𝑚, 𝑚̅, 𝜃) =  −2𝑅𝑒{𝛽̅∗(0)𝐺0𝛽(0)} + 𝐺0 

when 

𝑁20(𝜃) =  −𝑠20𝛽(𝜃) − 𝑠̅02𝛽̅(𝜃) + 𝐺𝑚2 

𝑁11(𝜃) =  −𝑠11𝛽(𝜃) − 𝑠̅11𝛽̅(𝜃) + 𝐹𝑚𝑚̅  

where 
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𝐺0 = 𝐺𝑚2

𝑚2

2
+ 𝐺𝑚𝑚̅𝑚𝑚̅ + 𝐺𝑚̅2

𝑚̅2

2
+⋯ 

Combining the definition of 𝑋, we obtain 

∫ 𝑑 ≮
0

−1

(𝜃)𝑉20(𝜃) = 2𝑖𝜔0𝜏0𝑉20(0) + 𝑠20𝛽(0) + 𝑠̅02𝛽̅(0) − 𝐺𝑚2 

and 

∫𝑑 ≮ (𝜃)𝑉11(𝜃) =  𝑠11𝛽(0) − 𝑠̅11𝛽̅(0) − 𝐺𝑚𝑚̅

0

−1

 

Notice that 

𝑖𝜔0𝜏0𝐼 − ∫ 𝑒𝑖𝜔0𝜏0𝜃𝑑 ≮ (𝜃))𝛽(0) = 0
0

−1

 

and 

−𝑖𝜔0𝜏0𝐼 − ∫ 𝑒−𝑖𝜔0𝜏0𝜃
0

−1

 𝑑 ≮ (𝜃))𝛽̅(0) = 0 

We have 

2𝑖𝜔0𝜏0𝐼 − ∫ 𝑒2𝑖𝜔0𝜏0𝜃𝑑 ≮ (𝜃))𝑃1 = 𝐺𝑚2

0

−1

 

Similarly, we have 

−(∫ 𝑑 ≮
0

−1

(𝜃))𝑃2 = 𝐺𝑚𝑚̅ 

Hence, we obtain 

[

2𝑖𝜔0 + 𝑎1𝑃𝑟1
∗ −𝑃𝑟1

∗ 𝑃𝑟3
∗ 𝑃𝑟1

∗ − 𝑃𝑟2
∗ 𝑃𝑟1

∗

−𝑃𝑟3𝑃𝑟2
∗ 2𝑖𝜔0 + 𝑏1𝑃𝑟2

∗ 𝑃𝑟2
∗ − 𝑃𝑟2

∗ 𝑃𝑟1
∗

−𝑑1𝑃𝑟3
∗ 𝑒−2𝑖𝜔0𝜏0 −𝑒1𝑃𝑟3

∗ 𝑒−2𝑖𝜔0𝜏0 2𝑖𝜔0 + 𝑐1𝑃𝑟3
∗

] 𝑃1 = 

−2 [

𝑎1 + (1 − 𝑃𝑟2
∗ )𝑦1 − 𝑥1(𝑃𝑟1

∗ 𝑦1 + 𝑃𝑟3
∗ )

𝑏1𝑥1
2 + (1 − 𝑃𝑟1

∗ )𝑥1𝑦1) − 𝑥1𝑃𝑟3
∗ − 𝑦1𝑃𝑟2

∗

𝑦1(𝑐1𝑦1 − 𝑑1𝑒
−𝑖𝜔0𝜏0 − 𝑒1𝑥1𝑒

−𝑖𝜔0𝜏0)

] 

and 

[

𝑎1𝑃𝑟1
∗ −𝑃𝑟1

∗ 𝑃𝑟3
∗ −𝑃𝑟2

∗ 𝑃𝑟1
∗ + 𝑃𝑟1

∗

−𝑃𝑟2
∗ 𝑃𝑟3 𝑏1𝑃𝑟2

∗ −𝑃𝑟2
∗ 𝑃𝑟1

∗ + 𝑃𝑟2
∗

−𝑑1𝑃𝑟3
∗ −𝑒1𝑃𝑟3

∗ 𝑐1𝑃𝑟3
∗

] 𝑃2 
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= −2 [

𝑎1 + (1 − 𝑃𝑟2
∗ )𝑅𝑒{𝑦1} − 𝑃𝑟1

∗ 𝑅𝑒{𝑦̅1𝑥1} − 𝑃𝑟3
∗ 𝑅𝑒{𝑥1}

𝑥1𝑥̅1𝑏1 + (1 − 𝑃𝑟1
∗ )𝑅𝑒{𝑥1𝑦̅1} − 𝑃𝑟2

∗ 𝑅𝑒{𝑦̅1} − 𝑃𝑟3
∗ 𝑅𝑒{𝑥1})

𝑐1𝑦1𝑦̅1 − 𝑑1𝑅𝑒{𝑦1} − 𝑒1𝑅𝑒{𝑦1𝑥̅1}𝑒
𝑖𝜔0𝜏0)

] 

Then, 𝑠21can be denoted by the variables. 

We determined that 𝑠𝑖𝑗can be calculated using the variables. Thus, we computed 

these quantities as follows:  

𝑍2(0) =  
𝑖

2𝜔0𝜏0
(𝑠11𝑠20 − 2|𝑠11|

2 −
|𝑠02|

2

3
) +

𝑠21
2
                               (32) 

𝜎2 = −
𝑅𝑒{𝑍2(0)}

𝑅𝑒{𝜆′(𝜏0)}
                                                                    (33) 

𝛽2 = 2𝑅𝑒{𝑍2(0)} 

𝑇2 =  −
𝐼𝑚{𝑍2(0)} + 𝜎2𝐼𝑚{𝜆

′(𝑍0)}

𝜏0𝜔0
                                                    (34) 

Theorem. 𝜎2 calculates the direction of the Hopf bifurcation: if 𝜎2 <0(𝜎2 > 0), we 

obtain the supercritical Hopf bifurcation. When  𝜏 >  𝜏0 (𝜏 < 𝜏0), we observed 

the bifurcating period solutions. 𝑃2 indicates that the bifurcating periodic solution 

is stable. If 𝛽2 < 0 (𝛽2 > 0), we observe that bifurcating periodic solutions are 

arbitrary and asymptotically stable (unstable).  The bifurcating periodic solution 

is determined by 𝑇2. When 𝑇2> 0 (𝑇2 < 0), the period increases (decreases), 

respectively.  

 

4.8 Numerical Example 

 

In this part, we used MATLAB to perform a numerical simulation of the system 

(Poole, 1974; Abrams et al., 1993). We use these parametric values: 

                                                                Set 1 

 

(a1 = 1.2; b1 = 1.4; c1 = 1; d1= 1; e1 = 2) 
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We can observe the positive interior equilibrium point when the initial value is 

0.2, 0.4, or 0.6. 

 

 

                Figure 4.1 When the value of delay is zero i.e., 𝜏 = 0, the 

system is stable 

 

Figure 4.2 System show Asymptotically stable behaviour when 

value of delay is less then threshold pointτ = 1.5 < τ0 = 1.7387 
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Figure 4.3 Phase plane graph for asymptotically stable when τ =

1.5 < τ0 = 1.7387 
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Figure 4.4 Hopf Bifurcation when τ = 1.85 > τ0 = 1.7387 
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Figure 4.5 Phase plane graph for Hopf Bifurcation when τ = 1.85 >

τ0 = 1.7387 

 

            Set 2 (a1 = 1; b1 = 1.44; c1 = 1; d1= 1; e1 =1.2) 

The positive interior equilibrium point is obtained when the initial value is 0.2, 

0.4, and 0.6. 

 

 

 

                                     Figure 4.6 In the absence of delay, the system is stable 
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  Figure 4.7 Phase plane graph in the absence of delay in the system 

 

 

                Figure 4.8 Phase plane graph in the absence of delay in the system 

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

0.2
0.25

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4



87 
 

 

          Figure 4.9 Asymptotically stable when τ < τ0 = 1.7387 
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    Figure 4.10 Phase plane graph for asymptotically stable when 

τ < τ0 = 1.7387 

 

 

 

Figure 4.11 Hopf Bifurcation when τ = 2.5 > τ0 = 1.7387 
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Figure 4.12 Phase plane graph for Hopf bifurcation when τ = 2.5 > τ0 = 1.7387 

   

4.9 Conclusion 

 

Certain species, such as zebras and gazelles, form teams because it reduces the 

predation risk. Time delay caused by the age structure, maturation period, and 

feeding time is a major factor in real-time prey–predator dynamic that results in 

periodic solutions and the bifurcation phenomenon. This study investigated the 

impact of lag time on a multiteam prey–predator dynamic by examining two prey 

and one predator and considering that the two prey populations support each other 

when they are susceptible to predation. The insertion of a time delay destabilizes 

the system’s stable equilibrium point. For set 1, the system is absolutely stable in 

the absence of delay (i.e., 𝜏 = 0; Figure 4.1). The same finding is analytically 

supported by Ruth–Hurwitz’s criteria. The system is asymptotically stable when 

the value of delay is less than the critical value (i.e., 𝜏 < 1.7387; Figures 4.2). The 

Hopf bifurcation is observed when the delay parameter passes a critical value (i.e., 

𝜏 ≥ 1.7387; Figures 4.3). For set 2, the system is absolutely stable in the absence 

of delay (i.e., 𝜏 = 0; Figures 4.6).  
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The same finding is analytically supported by Ruth–Hurwitz’s criteria. The system 

is asymptotically stable when the value of delay is less than the critical value (i.e., 

𝜏 < 1.7387; Figures 4.9). The Hopf bifurcation is observed when the delay 

parameter passes a critical value (i.e., 𝜏 ≥ 1.7387; Figures 4.11). These graphs 

have their basics covered in lemmas.  Furthermore, the technique used to 

determine the direction and stability of a Hopf bifurcation solution is constructed 

using normal form theory and the centre manifold reduction hypothesis. 

Numerical results are substantiated using the dde23 code of MATLAB. 
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Chapter-5 

 

Modelling the Prey-Predator Dynamics Involving Commensal Species 

Under the Effect of Time Lag 

5.1 Introduction 

The importance of the system's species interactions, such as qualitatively stability, time 

dependent, predation, mutualism, commensalism etc., are interesting essential issue to 

research. Several prey-predator models have been investigated in terms of various types 

of functional responses [97, 86, 91, 87, 101, 83, 64, 92] etc. 

The researcher concluded that how to investigate a scenario when its major results 

appear to be empirically wrong. Because the theory is analytically correct and, in a way, 

tautological, the author attempted to determine what happened to cause its empirical 

falsification [93]. The writers found that when investigating the dynamics of the 

predator-prey relationship, they used two key paths. The authors also remarked that 

while this technique is undoubtedly important for a comprehensive knowledge of every 

individual predator-prey relationship, it is ineffective for making broad conclusions 

about two major ecological issues [103]. Author discovered a link between complexity 

and sustainability in multispecies ecosystems [97]. 

The basic hypothesis that the coefficients are periodic functions of time modifies the 

overall system of differential equations representing predator-prey dynamics. Author 

also calculated that system has periodic solution [86]. The author concluded extremely 

generic nonlinear mutualism models and some easy tests to evaluate a nonlinear 

mutualism model if it is globally stable or stable in a finite region. Author also 

discovered that mutualistic systems are more accessible to mathematical study than 

competition and prey-predator dynamics [91]. The author presented that Hydra plays a 

significant role in prey population control. The author observed that hydra population 

density increased from June to a peak in late July or early August, then remained stable 

or slightly decreased through late August [85]. Commensal and mutualistic interactions 

occur often across terrestrial vertebrate species and have significant but mostly 

unmeasured consequences on individual fitness. Because all commensal and 

mutualistic relationships among terrestrial vertebrates occurs naturally [87]. 
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Researchers used a chaotic ecological model to improve ecological intuition, and it was 

concluded that simplified arithmetic models have served and will continue to play an 

important role in comprehending exactly what kinds of behaviors may occur in natural 

habitats [104].  Authors used the press perturbation approach to evaluate the intensity 

of overall impacts of connections among phytoplankton and bacteria at the stable state 

under these coexistence circumstances. This implies that a mutualistic condition might 

arise as a result of the reason when element carbon pass from phytoplankton to bacteria, 

even though phytoplankton and bacteria fight for the same resource, inorganic 

phosphorus [81]. 

Dingoes affected the previous human economy through competition for big prey 

because they have such a severe impact on kangaroo population reduction in modern 

ecology and the human economy. Authors acknowledge that there is a problem in 

isolating all independent circumstances and individuals who collaborate to generate an 

example of this kind in our hypothesis archaeological query [88].  

Researchers observed that, when surrounding fluctuations are considered, the provision 

of more food is insufficient to govern the behaviour of a predator-prey ecosystem [105]. 

Authors used a multi-framework with Holling II impulse response and two lags. 

Explicit equations used for estimating the path of the Hopf bifurcation as well as the 

stability of bifurcating periodic results are also derived using the normal form technique 

and the Centre manifold theorem [98]. Authors demonstrated that a continuous pace of 

resource harvesting results in a decline in commensal density, which eventually 

diminishes the intensity of commensal mediation [101].  

Authors focused to analysis a Multiple Species Sync an environment having 

Commensal Predator-Prey Couple and Host Predator-Prey Pair (Normal Steady state). 

The system includes of a Predator and a prey that depends only on prey to survived, and 

two Carriers for whom above prey predator are commensal.   The Regular Constant 

Condition has been formed. If all of eigen values are negative, if values are real, and 

have negative real character, if the values are not real (complex), the solution is 

sustainable [83].  

The functional mechanisms that happen when invasive commensal species intrude on 

native forest observed [82]. The authors demonstrated a numerical investigation on an 

ecological model that includes a commensal and a host with restricted resources. This 
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model takes into account a wide range of values for the parameters and numerous 

restrictions are depicted. The interactions of the organisms have been found [102]. 

Authors used multiple sync-ecosystem which consists of a commensal predator & two 

hosts with assumption species have a plenty of food. Using the model equations, all 

viable equilibrium states are discovered in two phases, and conditions for its stability 

are addressed [99]. Researchers investigates the viability of a multiple sync eco-system 

with a commensal death rate. The system is made up of a commensal and multiple 

hosts. The global stability is established using an appropriately designed Lyapunov’s 

function-pair, and the organisms' increases are statistically determined using the R-K 

Forth order technique [100].  

A multiple system with two competing species that are logistically developing in a 

vicinity studied. Using numerical modelling, the reason of coexistence was determined 

to be commensalism [89]. Authors studied a multiple ecosystem wherein two organisms 

associate directly and the other is a predator organism that predates on both mutual 

organisms, all while dealing with limited resources. Researchers examined the effect of 

increasing values of the inhibition coefficient of the second mutual organisms and solve 

this model by R-K forth order [95].  

The current study assessed the behaviour of land use changes between 2007 and 2016, 

identifying the impact of these changes on the vegetation of the Atlantic Forest. In the 

Land Change Modeler, the evaluation of land use changes and ecological losses was 

modelled, and the benefits and losses for each category, as well as their future scenarios, 

were determined. Landscape metrics were calculated using the ArcGIS V-LATE plugin 

[96]. Author proposed and investigated a multiple commensal relationship model with 

Allee effect and one party that cannot exist alone. Sufficient criteria are discovered to 

ensure the border equilibrium's and positive equilibrium's local and global stability, 

respectively. The Allee effect causes instability in the system, although it is controllable 

[84].  

Authors used AB fractional derivative to analyse specific computational properties of 

a three-species prey–predator model in mathematical biology [90]. Time lag is a key 

factor which should be included in the mathematical model in order to study the 

dynamical behaviour of these types of biological systems [64]. 
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5.2 Mathematical Model 

 

We presented a three-species paradigm with time lag that contains two competing 

populations 𝑃1, 𝑃2 and a predator organism 𝑃𝑑 that is partly linked to alternative prey 

and is likely to benefit commensal species. The mathematical model is represented by 

following non-linear ordinary differential equations: 

 

       
𝑑𝑃1
𝑑𝑡

= 𝑝1𝑃1 (1 −
𝑃1
𝐾1
) − 𝑥1𝑃1𝑃2 + 𝑏1𝑃1𝑃𝑑                                        (1) 

𝑑𝑃2
𝑑𝑡

= 𝑝2𝑃2 (1 −
𝑃2
𝐾2
) − 𝑦1𝑃1𝑃2 − 𝐴1𝑐1𝑃2𝑃𝑑                                   (2) 

𝑑𝑃𝑑
𝑑𝑡

= 𝐴1𝑐1𝑒1𝑃2(𝑡 − 𝜏)𝑃𝑑 + (1 − 𝐴1)𝑃𝑑−𝑧1𝑃𝑑 − 𝑧2𝑃𝑑
2              (3) 

 

 

 

Where τ > 0 is the time lag necessary for predator’s gestation period. 𝑃1, 𝑃2 and 𝑃𝑑 

represent the populations of commensal, focus prey, and predator species at any given 

moment (t). All of the variables are greater than zero, i.e., 

𝑝1, 𝑝2, 𝑥1, 𝑦1, 𝑏1, 𝐴1, 𝑐1, 𝑒1, 𝑧1 𝑎𝑛𝑑 𝑧2. 𝐴1is a time-independent constant with an 

alternative resource as its origin. If 𝐴1 = 1, the predator is solely dependent on prey 

species. At 𝐴1 = 0, both the predator and prey populations expand without connection. 

Predation of prey is nil under this state, and predator populations depending on other 

food sources. Here we are not considered such type of model. A predator which depends 

on two sources for food is given by 0 < 𝐴1 < 1. 

 

Table summarizes the parameters and other variables used in the model. 
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Elucidation of the variables and the parameters: 

Variables/Parameters Description 

𝑃1 Density of commensal species 

𝑃2 Prey population 

𝑃𝑑 Predator population 

𝑝1 Natural growth rate of 𝑃1 

𝑝2 Natural growth rate of 𝑃2 

𝐾1 Environmental carrying capacity for 𝑃1 

𝐾2 Environmental carrying capacity for 𝑃2 

𝑥1 

                 𝑦1  

                 𝑏1 

 

𝑧1 

                 𝑧2 

                  τ  

                 𝑐1  

                 𝑒1        

𝐴1 

                      

 

 

 

             

                

Interspecific competition coefficient between 𝑃1 and 𝑃2 

Interspecific competition coefficient between 𝑃1 and 𝑃2 

The presence of a predator increases the interspecific 

commensalism coefficient 

Death rate of predator species 

Intraspecific competition rate of predator species 

Gestation period of Predator 

Predation rate of predator  

Prey conversion of biomass rate to predator biomass 

Time independent constant   

  

 

5.3 Equilibrium Point 
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𝑑𝑃𝑑
𝑑𝑡

= 0 

𝐴1𝑐1𝑒1𝑃2𝑃𝑑 + (1 − 𝐴1)𝑃𝑑−𝑧1𝑃𝑑 − 𝑧2𝑃𝑑 
2 = 0 

𝑃𝑑[𝐴1𝑐1𝑒1𝑃2 + (1 − 𝐴1) − 𝑧1 − 𝑧2𝑃𝑑] = 0 

Either 𝑃𝑑 = 0  or 𝐴1𝑐1𝑒1𝑃2 + (1 − 𝐴1) − 𝑧1 − 𝑧2𝑃𝑑 = 0 

𝐴1𝑐1𝑒1𝑃2 = −(1 − 𝐴1) + 𝑧1 + 𝑧2𝑃𝑑 

                                 𝑃2 =
−(1 − 𝐴1) + 𝑧1 + 𝑧2𝑃𝑑

𝐴1𝑐1𝑒1
                                        (4) 

𝑑𝑃2
𝑑𝑡

= 0 

 

 

𝑝2𝑃2 (1 −
𝑃2
𝐾2
) − 𝑦1𝑃1𝑃2 − 𝐴1𝑐1𝑃2𝑃𝑑 = 0 

 𝑃2  [ 𝑝2 (1 −
𝑃2
𝐾2
) − 𝑦1𝑃1 − 𝐴1𝑐1𝑃𝑑] = 0 

Either 𝑃2 = 0 or    [ 𝑝2 (1 −
𝑃2

𝐾2
) − 𝑦1𝑃1 − 𝐴1𝑐1𝑃𝑑] = 0 

  [ 𝑝2 (1 −
𝑃2
𝐾2
) − 𝑦1𝑃1 − 𝐴1𝑐1𝑃𝑑] = 0 

Substitute the value of 𝑃2 from equation (4) 

  [ 𝑝2 (1−

−(1 − 𝐴1) + 𝑧1 + 𝑧2𝑃𝑑
𝐴1𝑐1𝑒1

  

𝐾2
)− 𝑦1𝑃1 − 𝐴1𝑐1𝑃𝑑] = 0 

 

  [ 𝑝2 (1 − {
−(1 − 𝐴1) + 𝑧1 + 𝑧2𝑃𝑑

𝐴1𝑐1𝑒1𝐾2
}) − 𝑦1𝑃1 − 𝐴1𝑐1𝑃𝑑] = 0 

𝑝2[𝐴1𝑐1𝑒1𝐾2 + (1 − 𝐴1) − 𝑧1 − 𝑧2𝑃𝑑] − 𝐴1𝑐1𝑒1𝐾2𝑦1𝑃1 − 𝐴1
2 𝑐1

2𝑒1𝐾2 𝑃𝑑 = 0 

 

(−𝐴1
2 𝑐1

2𝑒1𝐾2 𝑃𝑑 − 𝑝2𝑧2)𝑃𝑑 − 𝐴1𝑐1𝑒1𝐾2𝑦1𝑃1 + 𝑝2𝐴1𝑐1𝑒1𝐾2 + 𝑝2(1 − 𝐴1) − 𝑝2𝑧1

= 0                                                                                                                                      (5) 

 

𝑑𝑃1
𝑑𝑡

= 0 
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𝑝1𝑃1 (1 −
𝑃1
𝐾1
) − 𝑥1𝑃1𝑃2 + 𝑏1𝑃1𝑃𝑑 = 0 

𝑃1[𝑝1 (1 −
𝑃1
𝐾1
) − 𝑥1𝑃2 + 𝑏1𝑃𝑑 ] = 0 

Either𝑃1 = 0 𝑜𝑟 [𝑝1 (1 −
𝑃1

𝐾1
) − 𝑥1𝑃2 + 𝑏1𝑃𝑑  ] = 0   

[𝑝1 (1 −
𝑃1
𝐾1
) − 𝑥1𝑃2 + 𝑏1𝑃𝑑 ] = 0 

[𝑝1 (1 −
𝑃1
𝐾1
) − 𝑥1𝑃2 + 𝑏1𝑃𝑑 ] = 0 

𝑃1[𝑝1 (1 −
𝑃1
𝐾1
) − 𝑥1𝑃2 + 𝑏1𝑃𝑑 ] = 0 

Substitute the value of 𝑃2 from from equation (4) 

𝑃1[𝑝1 (1 −
𝑃1
𝐾1
) − 𝑥1{

−(1 − 𝐴1) + 𝑧1 + 𝑧2𝑃𝑑
𝐴1𝑐1𝑒1

} + 𝑏1𝑃𝑑 ] = 0 

(𝐴1𝑐1𝑒1𝐾1𝑏1 − 𝑥1𝐾1𝑧2)𝑃𝑑−𝐴1𝑝1𝑐1𝑒1𝑃1 + 𝐴1𝑒1𝑝1𝑐1𝐾1 + 𝑥1𝐾1(1 − 𝐴1) − 𝑥1𝐾1𝑧1

= 0          (6) 

Multiply (5) by −𝑝1 and (6) by 𝐾2𝑦1 then add we get 

𝑃𝑑 =
(1−𝐴1)(𝑝1𝑝2−𝐾2𝐾1𝑥1𝑦1)+𝐴1𝐾2𝑝1𝑝2𝑒1𝑐1−𝐴1𝐾2𝑝1𝑝2𝑒1𝑐1−𝐴1𝐾1𝐾2𝑝1𝑦1𝑒1𝑐1+𝐾2𝐾1𝑥1𝑦1𝑧1

𝑝1𝑝2𝑧2+𝐾2𝐴1
2  𝑐1

2𝑝1𝑒1+𝐴1𝐾1𝐾2𝑏1𝑦1𝑒1𝑐1−𝐾1𝐾2𝑥1𝑦1𝑧2
                      

(7) 

 

5.4 The Model's Equilibrium Points 

The system of equation (1)-(3) have eight feasible equilibrium point 

 5.5 𝑬𝟏 Is a Point of Trivial Equilibrium (0,0,0) 

 5.6 Point of Axial Equilibrium 

Put 𝑃2 = 0 and 𝑃𝑑 = 0 in equation (1) 

𝑝1𝑃1 (1 −
𝑃1
𝐾1
) = 0 

(1 −
𝑃1
𝐾1
) = 0 

1 =
𝑃1
𝐾1

 

𝑃1 = 𝐾1 
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𝐸2 ≡ (𝐾1, 0,0) 

Put  𝑃1 = 0 and 𝑃𝑑 = 0 in equation (2) 

𝑝2𝑃2 (1 −
𝑃2
𝐾2
) = 0 

(1 −
𝑃2
𝐾2
) = 0 

𝑃2 = 𝐾2 

𝐸3 ≡ (0,𝐾2, 0) 

Put  𝑃1 = 0 and 𝑃2 = 0 in equation (3) 

(1 − 𝐴1)𝑃𝑑−𝑧1𝑃𝑑 − 𝑧2𝑃𝑑
2 = 0 

[(1 − 𝐴1) − 𝑧1 − 𝑧2𝑃𝑑]𝑃𝑑 = 0 

(1 − 𝐴1) − 𝑧1 − 𝑧2𝑃𝑑 = 0   as 𝑃𝑑 ≠ 0 

(1 − 𝐴1) − 𝑧1 = 𝑧2𝑃𝑑 

𝑃𝑑 = 
(1 − 𝐴1) − 𝑧1

𝑧2
  let 𝑚1 = (1 − 𝐴1) − 𝑧1 

                                      𝐸4 ≡ (0,0,
𝑚1

𝑧2
)    exists if 𝐴1 + 𝑧1 < 1                            (8) 

5.7 Boundary Equilibrium Point: 

When 𝑃2 = 0 from equation (3) 

we get 𝑃𝑑 =
𝑚1

𝑧2
 

From equation (1) we get 

𝑝1𝑃1 (1 −
𝑃1
𝐾1
) + 𝑏1𝑃1𝑃𝑑 = 0 

[𝑝1 (1 −
𝑃1
𝐾1
) + 𝑏1𝑃𝑑] 𝑃𝑑 = 0 

𝑝1 (1 −
𝑃1
𝐾1
) + 𝑏1

𝑚1

𝑧2
= 0 

𝑝1 (1 −
𝑃1
𝐾1
) = −𝑏1

𝑚1

𝑧2
 

𝑃1 =
𝑏1𝑚1𝐾1 + 𝑝1𝐾1𝑧2

𝑝1𝑧2
 

                                    𝐸5 ≡ (
𝑏1𝑚1𝐾1 + 𝑝1𝐾1𝑧2

𝑝1𝑧2
, 0,
𝑚1

𝑧2
)  = ( 𝑋1, 0, 𝑍1)                      (9) 
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Thus 𝐸5 exists if (8) is satisfied. 

Similarly, when 𝑃𝑑 = 0 we obtain 

 

        𝐸6 ≡ (
−𝑝2𝑥1𝐾2𝐾1+𝑝1𝐾1𝑝2

𝑝1𝑝2−𝑦1𝑥1𝐾2𝐾1
,
−𝑝1𝑦1𝐾2𝐾1+𝑝1𝐾2𝑝2

𝑝1𝑝2−𝑦1𝑥1𝐾2𝐾1
, 0)  = ( 𝑋2, 𝑌2,0)   (10) 

Thus 𝐸6 exists only if 

                                             𝑝2 > 𝑦1𝐾1                                (11) 

                                              𝑝1 > 𝑥1𝐾2                               (12) 

And when 𝑃1 = 0 we obtain 

𝐸7 ≡ (0,
−𝑐1𝑚1𝐾2𝐴1 + 𝑧2𝐾2𝑝2
𝑧2𝑝2 + 𝐴1

2 𝑐1
2𝑒1𝐾2 

,
𝑐1𝑒1𝑝2𝐾2𝐴1 +𝑚1𝑝2
𝑧2𝑝2 + 𝐴1

2 𝑐1
2𝑒1𝐾2 

, 0)  = ( 0, 𝑌3,𝑍3) 

5.8 𝐈𝐧𝐭𝐞𝐫𝐢𝐨𝐫 𝐄𝐪𝐮𝐢𝐥𝐢𝐛𝐫𝐢𝐮𝐦 𝐏𝐨𝐢𝐧𝐭: 𝐸8 ≡ (𝑃1
∗, 𝑃2

∗, 𝑃𝑑
∗) ≡ ( 𝑋4, 𝑌4,𝑍4). 

Substitute the value of 𝑃𝑑 in (6) to find the value of 𝑃1 we get 

 

𝑃1
∗ =    

𝐵1

𝐵2
    , 𝑃2

∗ =   
𝐵3

𝐵2
 , 𝑃𝑑

∗ =
𝐵5

𝐵6
    where 

𝐵1 = (𝐴1𝐾1𝑏1𝑒1𝑐1 − 𝑥2𝐾1𝑧2){𝐴1𝐾2𝑝1𝑝2𝑒1𝑐1 + 𝑝1𝑝2(1 − 𝐴1) − 𝐴1𝐾1𝐾2𝑝1𝑒1𝑐1𝑦1

−𝐾1𝐾2𝑥2𝑦1(1 − 𝐴1) + 𝐾1𝐾2𝑥2𝑧1𝑦1} + (𝑝1𝑝2𝑧2 + 𝐴1
2 𝑐1

2𝑝1𝑒1𝐾2

+𝐾1𝐾2𝐴1𝑏1𝑦1𝑒1𝑐1 − 𝐾1𝐾2𝑥2𝑦1𝑧2)(𝐴1𝐾1𝑝1𝑒1𝑐1 + 𝐾1𝑥2(1 − 𝐴1)

− 𝑥2𝐾1𝑧1) 

 

𝐵2 = (𝑝1𝑝2𝑧2 + 𝐴1
2 𝑐1

2𝑝1𝑒1𝐾2 + 𝐴1𝐾1𝐾2𝑏1𝑒1𝑐1𝑦1 − 𝐾1𝐾2𝑥2𝑦1𝑧2)(𝐴1𝑝1𝑒1𝑐1) 

 

𝐵3 = {−(1 − 𝐴1) + 𝑧1}(𝑝1𝑝2𝑧2 + 𝐴1
2 𝑐1

2𝑝1𝑒1𝐾2 + 𝐴1𝐾1𝐾2𝑏1𝑒1𝑐1𝑦1 −𝐾1𝐾2𝑥2𝑧2𝑦1)

+ 𝑧2{𝐴1𝐾2𝑝1𝑒1𝑐1𝑝2 + 𝑝1𝑝2(1 − 𝐴1) − 𝑝1𝑝2𝑧1 − 𝐴1𝐾1𝐾2𝑝1𝑒1𝑐1𝑦1

−𝐾1𝐾2𝑥2𝑦1(1 − 𝐴1) + 𝐾1𝐾2𝑦1𝑥2𝑧1 

 

𝐵5 = (1 − 𝐴1)(𝑝1𝑝2 −𝐾2𝐾1𝑥1𝑦1) + 𝐴1𝐾2𝑝1𝑝2𝑒1𝑐1 − 𝐴1𝐾2𝑝1𝑝2𝑒1𝑐1

− 𝐴1𝐾1𝐾2𝑝1𝑦1𝑒1𝑐1 + 𝐾2𝐾1𝑥1𝑦1𝑧1 

 

𝐵6 = 𝑝1𝑝2𝑧2 +𝐾2𝐴1
2 𝑐1

2𝑝1𝑒1 + 𝐴1𝐾1𝐾2𝑏1𝑦1𝑒1𝑐1 − 𝐾1𝐾2𝑥1𝑦1𝑧2 
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5.9 Stability 

Now stability of above system of equation is calculated 

𝑛1 = 𝑝1 −
2𝑝1𝑃1
𝐾1

− 𝑥1𝑃2 + 𝑏1𝑃𝑑 

𝑛2 = −𝑦1𝑃2 

𝑛3 = 0 

𝑛4 = −𝑥1𝑃1 

𝑛5 = 𝑝2 −
2𝑝2𝑃2
𝐾2

− 𝑦1𝑃1 − 𝐴1𝑐1𝑃𝑑 

𝑛6 = 𝐴1𝑐1𝑒1𝑃𝑑𝑒
−𝜆𝜏 

𝑛7 = 𝑏1𝑃1 

𝑛8 = −𝐴1𝑐1𝑃2 

n9 = (1 − A1) − z1 − 2z2Pd 

 

5.10 Dynamical Behaviour when 𝛕 = 𝟎 

 variational matrix for system (1)-(3) is  

 

W=

||

𝑝1 −
2𝑝1𝑃1

𝐾1
− 𝑥1𝑃2 + 𝑏1𝑃𝑑  −𝑦1𝑃2 0

−𝑥1𝑃1 𝑝2 −
2𝑝2𝑃2

𝐾2
− 𝑦1𝑃1 − 𝐴1𝑐1𝑃𝑑 𝐴1𝑐1𝑒1𝑃𝑑𝑒

−𝜆𝜏

𝑏1𝑃1 −𝐴1𝑐1𝑃2 (1 − 𝐴1) − 𝑧1 − 2𝑧2𝑃𝑑

|| =

0 

At 𝐸1 ≡ (0,0,0) variational matrix reduced to 

𝑊1 = |

𝑝1  0 0
0 𝑝2 0

0 0 (1 − 𝐴1) − 𝑧1

| = 0 

 

The latent values of the characteristic matrix 𝑊1at equilibrium point 𝐸1are 𝑝1, 𝑝2 and 

(1 − 𝐴1) − 𝑧1, so the critical  value 𝐸1 of the system (1)-(3) is not stable. 

At  𝐸2 ≡ (𝐾1, 0,0) the characteristic matrix transformed to 
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𝑊2=|

𝑝1 −
2𝑝1𝐾1

𝐾1
  −𝑥1𝐾1 𝑏1𝐾1

0 𝑝2 − 𝑦1𝐾1 0

0 0 (1 − 𝐴1) − 𝑧1

| = 0 

 

The latent root of the system is −𝑝1, 𝑝2 − 𝑦1𝐾1 and (1 − 𝐴1) − 𝑧1 and the system (1)-

(3) is stable if 𝑝2 − 𝑦1𝐾1 < 0  that is 𝑝2 < 𝑦1𝐾1 and (1 − 𝐴1) − 𝑧1 < 0. 

At  𝐸3 ≡ (0,𝐾2, 0) the characteristic matrix is transformed to 

𝑊3=|

𝑝1 − 𝑥1𝐾2  0 0
−𝑦1𝐾2 −𝑝2 −𝐴1𝑐1𝐾2
0 0 (1 − 𝐴1) − 𝑧1

| = 0 

The latent root of the system is 𝑝1 − 𝑥1𝐾2, −𝑝2and (1 − 𝐴1) − 𝑧1 and system (1)-(3) 

is stable if 

𝑝1 − 𝑥1𝐾2 < 0 and (1 − 𝐴1) − 𝑧1 < 0. 

At 𝐸4 ≡ (0,0,
𝑚1

𝑧2
) the characteristic matrix transformed to 

𝑊4=|
|

𝑝1 +
𝑏1𝑚1

𝑧2
  0 0

0 𝑝2 − 𝑐1𝐴1
𝑚1

𝑧2
0

0 𝑐1𝑒1𝐴1
𝑚1

𝑧2
(1 − 𝐴1) − 𝑧1 − 2𝑚1

|
| = 0 

The latent roots of the characteristic matrix 𝑊4 at equilibrium point 𝐸4 are 𝑝1 +
𝑏1𝑚1

𝑧2
  , 

𝑝2 − 𝑐1𝐴1
𝑚1

𝑧2
 and (1 − 𝐴1) − 𝑧1 − 2𝑚1, so equilibrium point of the system (1)-(3) is 

unstable. 

At 𝐸5 the latent roots are −𝑝1𝑋1, 𝑝2 − 𝑦1𝑋1 − 𝑐1𝑍1𝐴1and −𝑧2𝑍1 so the critical values 

of the system (1)-(3) stable only if 𝑝2 < 𝑦1𝑋1 + 𝑐1𝑍1𝐴1. 

At equilibrium point  𝐸6, the characteristic equation of W is: 

(𝑐1𝑒1𝐴1𝑌2 +𝑚1 − 𝜆)(𝜆
2 + (𝑝1

𝑋2

𝐾1
+ 𝑝2

𝑌2

𝐾2
)𝜆 + 𝑝1𝑝2

𝑋2𝑌2

𝐾1𝐾2
− 𝑥1𝑦1𝑋2𝑌2) = 0                          

(11) 

𝐸6 is asymptotically stable locally if and only if 𝑐1𝑒1𝐴1𝑌2 + 1 < 𝐴1 + 𝑧1. 

The characteristic equation of W is found at equilibrium point 𝐸7: 

(𝑝1 − 𝑥1𝑌3 + 𝑏1𝑍3 − 𝜆) ( 𝜆
2 + (𝑝2

𝑌3

𝐾2
+ 𝑧2𝑍3) 𝜆 + 𝑝2

𝑌3

𝐾2
𝑧2𝑍3 + 𝐴1

2 𝑐1
2𝑒1𝑌3𝑍3) = 0              

(12) 
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For the point  𝐸7 is to be a locally asymptotically stable if this condition is satisfied 

𝑝1 + 𝑏1𝑍3 < 𝑥1𝑌3. 

Find out if the latent values have a real value with negative sign by applying the 

Gerschgorin circle of the variational matrix W at equilibrium point 𝐸8  

                           
𝑝1

𝐾1
> 𝑥1 + 𝑏1                                                           (13) 

                               
𝑝2

𝐾2
> 𝑦1 + 𝑐1𝐴1                                                       (14) 

                                𝑧2 > 𝑒1𝑐1𝐴1                                                           (15) 

Following are some observations based on the preceding discussion: 

a. The ratio of 𝑃1′𝑠 intrinsic growth rate to carrying capacity is smaller than the sum of its 

commensalism rate (𝑏1) and interspecific competing rate (𝑥1). 

b. The ratio of its intrinsic growth rate to carrying capacity is smaller than the total of 

interspecific competition rate ( 𝑦1) and the product of predation rate (𝑐1) of 𝑃2 with 

other feed ingredient constant 𝐴1. 

c. Predator intraspecific competition rate is smaller than the product of predation rate (𝑐1) 

predator conversion efficiency, and substitute food supply constant 𝐴1. 

5.11 The Behaviour of System When Delay  𝛕 > 𝟎 

The system's characteristic equations (1)-(3) at the equilibrium point 𝐸8 is 

|

|
−
𝑝1𝑋4
𝐾1

− 𝜆 −𝑥1𝑋4 𝑏1𝑋4

−𝑦1𝑌4 −
𝑝2𝑌4
𝐾2

− 𝜆 −𝑐1𝐴1𝑌4

0 𝐴1𝑐1𝑒1𝑍4𝑒
−𝜆𝜏 −𝑧2𝑍4 − 𝜆 

|

|
= 0 

The characteristic equation is 

                     𝜆3 + 𝑇1𝜆
2 + 𝑇2𝜆 + 𝑇3 + 𝑒

−𝜆𝜏(𝐿1𝜆 + 𝐿2) = 0            (16) 

Where 𝑇1 =
𝑝1𝑋4

𝐾1
+

𝑝2𝑌4

𝐾2
+ 𝑧2𝑍4 

𝑇2 = −𝑥1𝑦1𝑋4𝑌4 +
𝑝1𝑝2𝑋4𝑌4
𝐾1𝐾2

+
𝑝1𝑧2𝑋4𝑍4

𝐾1
+
𝑝2𝑧2𝑌4𝑍4
𝐾2

 

𝑇2 = −𝑥1𝑦1𝑧2𝑋4𝑌4𝑍4 +
𝑧2𝑝1𝑝2𝑋4𝑌4𝑍4

𝐾1𝐾2
 

𝐿1 = 𝐴1
2 𝑐1

2𝑒1𝑌4𝑍4 

𝐿2 = 𝐴1𝑒1𝑏1𝑦1𝑐1𝑋4𝑌4𝑍4 +
𝐴1
2 𝑐1

2𝑒1𝑝1𝑋4𝑌4𝑍4
𝐾1
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Equilibrium point is stable if all latent values of (16) must have negative real part. It is 

not easy to find the condition when all eigen values of equation (16) have negative real 

part. When delay  τ = 0 then equation (16) reduces to  

   𝜆3 + 𝑇1𝜆
2 + (𝑇2 + 𝐿1)𝜆 + (𝑇3 + 𝐿2) = 0                                              (17) 

By Routh-Hurwitz criterion 

(𝑯𝟏) 𝑖𝑓 𝑇1 > 0, (𝑇3 + 𝐿2) > 0, 𝑇1( 𝑇2 + 𝐿1) > (𝑇3 + 𝐿2) ℎ𝑜𝑙𝑑 if and only if every 

latent value of equation (17) has real value with negative sign. 

Let us assume  𝜆 = 0 is solution of (16) then (𝑇3 + 𝐿2) = 0. Thus, this result opposes 

to the second assumption given in (𝑯𝟏). So, 𝜆 = 0 does not satisfy equation (16). Let 

us consider that for some τ ≥ 0, 𝑖𝜔 with 𝜔 > 0 is a solution of (16), then 

−𝑖 𝜔3 − 𝑇1𝜔
2 + 𝑖𝑇2𝜔 + 𝑇3 + 𝑒

−𝜔𝜏(𝑖𝐿1𝜔 + 𝐿2) = 0 

 −𝑖 𝜔3 − 𝑇1𝜔
2 + 𝑖𝑇2𝜔 + 𝑇3 + (𝑐𝑜𝑠 𝜔𝜏 − 𝑖𝑠𝑖𝑛 𝜔𝜏)(𝑖𝐿1𝜔 + 𝐿2) = 0                  (18) 

Separating imaginary and real parts 

                         −𝑇1𝜔
2 + 𝑇3 + 𝐿2𝑐𝑜𝑠 𝜔𝜏 + 𝐿1𝑖𝑠𝑖𝑛 𝜔𝜏 = 0                                        (19) 

                                         −𝜔3 + 𝑇2𝜔 + 𝐿1 cos𝜔𝜏 − 𝐿2𝑖𝑠𝑖𝑛 𝜔 = 0                       (20) 

Which gives 

                                              𝜔6 + 𝑓𝜔4 + 𝑔𝜔2 + ℎ = 0                                             (21) 

Where 𝑓 = 𝑇1
2 − 2T2, 𝑔 = 𝑇2

2 − 𝐿1
2 − 2T1T3, ℎ = 𝑇3

2 − 𝐿2
2 . 

Let 𝑢 = 𝜔2, equation (21) becomes, 

                                             𝑢3 + 𝑓𝑢2 + 𝑔𝑢 + ℎ = 0                                                  (22) 

𝑘(𝑢) = 𝑢3 + 𝑓𝑢2 + 𝑔𝑢 + ℎ 

5.12 Lemma 1 we have the following results, for the polynomial equation (22) 

1) Condition for the equation (22) has at least one positive solution is 𝑧 < 0.  

2) Condition for the equation (22) only roots with no positive sign is 𝑧 ≥ 0 and 

(𝑥2 − 3𝑦) ≤ 0. 

3) Condition for the equation (22) has only the solutions with positive sign is  𝑧 ≥ 0 

and (𝑥2 − 3𝑦) > 0 

ʋ =  
−𝑥 ± (𝑥2 − 3𝑦)

3
> 0 𝑎𝑛𝑑 ℎ(ʋ) ≤ 0 

Proof. Let us assume that at least one positive root for equation (22) 

µ0 = √𝛼0 
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From equation (19) and equation (20), we obtain, 

           cos µ0𝜏 =  
−(𝐿1µ0

2(𝑇2 − µ0
2) + (𝑇3 − 𝑇1µ0

2)(𝐿2))

(𝐿2)2 + (𝐿1µ0)2
                                    (23) 

   𝜏𝑗 =  
1

µ0
 𝑎ɤ𝑐 cos (

−(𝐿1µ0
2(𝑇2 − µ0

2) + (𝑇3 − 𝑇1µ0
2)(𝐿2))

(𝐿2)2 + (𝐿1µ0)2
+ 2𝑗𝜋)                (24) 

 

where j takes values 0, 1, 2,3... 

5.13 Lemma 2 Consider  𝑘(𝑢0) =  (3𝑢0
2 + 2𝑓𝑢0 + 𝑔) ≠ 0 and the assumption in 

(𝑯𝟏) is satisfied. For the values of (j takes values 0,1,2...), denote µ𝜂(𝜏) = 𝛼(𝜏) +

𝑖µ(𝜏) be the solution of equation (4) satisfying 𝛼(𝜏𝑗) = 0, µ(𝜏𝑗) = µ0, where 

𝜏𝑗 = 
1

µ
 𝑎ɤ𝑐 cos(

−(𝐿1µ
2(𝑇2 − µ

2) + (𝑇3 − 𝑇1µ
2)(𝐿2))

(𝐿2)2 + (𝐿1µ0)2
+ 2𝑗𝜋)  

then ±𝑖µ0 are simple roots. If the transversality condition 

(𝑯𝟐)   𝛼
𝑗(𝜏𝑗) =  

𝑅𝑒𝜂(𝜏)

𝑑𝜏
|
𝜂 =𝑖 µ0 

≠ 0 

At any equilibrium point where 𝜏 = 𝜏𝑗 and, a Hopf bifurcation exists for the system of 

equations (1), (2), and (3). 

Proof. Let the root of the equation (17) be 𝜂 = 𝜂(𝜏). As 𝜂(𝜏) is substituted into eq. (17) 

and differentiating with respect to τ, it results into 

[(3𝜂2 + 2𝑇1𝜂 + 𝑇2) + ((𝜂
2𝐿1 + 𝜂𝐿2)(−𝜏) + 𝐿1))𝑒

−𝜂𝜏]
𝑑µ

𝑑𝜏
= 𝜂(𝜂𝐿1 + 𝐿2)𝑒

−𝜂𝜏 

Thus 

(
𝑑𝜂

𝑑𝜏
)
−1

== 
(3𝜂2 + 2𝑇1 + 𝑇2)

𝜂(𝜂𝐿1 + 𝐿2)
+

(𝐿1)

𝜂(𝜂𝐿1 + 𝐿2)
−
𝜏

𝜂
 

From (19)-(21), we have 

𝑎𝑗(𝜏0) =  𝑅𝑒 [
(3𝜂2 + 2𝑇1𝜂 + 𝑇2)𝑒

𝜂𝜏

𝜂(𝜂𝐿1 + 𝐿2)
] + 𝑅𝑒 [

(𝐿1)

𝜂(𝜂𝐿1 + 𝐿2)
] 

=
1

𝛥
[3µ6 + 2(𝑇1

2 − 2𝑇2)µ
4 + (𝑇2

2 − 𝐿1
2 − 2𝑇1𝑇3)µ

2] 

=
1

𝛥
(3µ6 + 2µ4 + 𝑔µ2) 

= 
µ0
2

𝛥
 𝑘′(𝑢) 
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where ⧍ = 𝐿1
2µ0

2 + 𝐿2
2 .Notice that 𝛥 > 0 and µ0 > 0, we observed that sign[𝛼𝑗(𝜏0)] =

sign[𝑘𝑗(𝑢0)] 

This demonstrates the lemma. 

We can easily calculate the results on the stability and bifurcation of the system of 

equations (1), (2), and (3) using Lemma number 2. 

 

 

5.14 Assessment of the Hopf-Bifurcation Solution’s Stability and 

Direction 

We shift the non-zero interior equilibrium 𝐸8 ≡ (𝑃1
∗, 𝑃2

∗, 𝑃𝑑
∗) to the origin by the 

translation  𝑣1(𝑡) = 𝑃1(𝑡) − 𝑃1
∗, 𝑣2(𝑡) = 𝑃2(𝑡) − 𝑃2

∗, 𝑣3(𝑡) = 𝑃𝑑(𝑡) − 𝑃𝑑
∗ and using 

the time scaling 𝑡 ⟶
𝑡

𝜏
  for normalizing the delay 𝜏 then system of mathematical 

equation (1)-(3) is converted into 

   
𝑑𝑣1
𝑑𝑡

= 𝑐11𝑣1 + 𝑐12𝑣2 + 𝑐13𝑣3 + 𝑐14𝑣1
2 + 𝑐15𝑣1𝑣2 + 𝑐16𝑣1𝑣3                                 (25) 

   
𝑑𝑣2
𝑑𝑡

= 𝑐21𝑣1 + 𝑐22𝑣2 + 𝑐23𝑣3 + 𝑐24𝑣2
2 + 𝑐25𝑣1𝑣2 + 𝑐26𝑣2𝑣3                                (26) 

    
𝑑𝑣3
𝑑𝑡

= 𝑐31𝑣2(𝑡 − 1) + 𝑐32𝑣3 + 𝑐33𝑣3
2 + 𝑐34𝑣2(𝑡 − 1) 𝑣3                                       (27) 

 

Where 𝑐11 = −
𝑝1𝑃1

∗

𝐾1
 , 𝑐12 = −𝑥1𝑃1

∗ , 𝑐13 = 𝑏1𝑃1
∗ , 𝑐14 = −

𝑝1

𝐾1
 , 𝑐15 = −𝑥1, 𝑐16 = 𝑏1,  

𝑐21 = −𝑦1𝑃2
∗, 𝑐22 = −

𝑝2𝑃2
∗

𝐾2
 , 𝑐23 = −𝑐1𝐴1𝑃2

∗ ,  𝑐24 = −
𝑝2

𝐾2
 , , 𝑐25 = −𝑦1, 𝑐26 = −𝑐1𝐴1, 

𝑐31 = 𝑐1𝐴1𝑒1𝑃𝑑
∗ ,𝑐32 = −𝑧2𝑃𝑑

∗ , 𝑐33 = −𝑧2, 𝑐34 = −𝑐1𝐴1𝑒1. 

Thus, we can proceed our calculation in the phase 𝐶 = 𝐶((−1,0), 𝑅+
3). WLOG, denote 

the critical value 𝜏𝑗by 𝜏0. Let 𝜏 =  𝜏0 + 𝛿, then 𝛿 = 0 is value of Hopf bifurcation to 

the system (25)-(27). For the simplicity of representation, we write (25)-(27) as 

                                    𝑣′(𝑡) =  𝐻𝛿(𝑣𝑡) + 𝐺(𝛿, 𝑣𝑡)                                                           (28) 

Where 𝑣(𝑡) = (𝑣1(𝑡), 𝑣2(𝑡), 𝑣3(𝑡))
𝑇
𝜖 𝑅3, 𝑣𝑡(𝜃)𝜖𝐶 is defined as 𝑣𝑡(𝜃) = 𝑣(𝑡 + 𝜃), 

and 𝐻𝛿 : 𝐶 → 𝑅, 𝐺: 𝐶 ⨯ 𝑅 → 𝑅, given by respectively. 

𝐻𝛿𝜉 = (𝜏0 + 𝛿)𝐸1𝜉(0) + (𝜏0 + 𝛿)𝐸2𝜉(−1) where 𝐸1 𝑎𝑛𝑑 𝐸2 are defined as 
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𝐸1 = |

𝑐11 𝑐12 𝑐13
𝑐21 𝑐22 𝑐23
0 0 𝑐32

| , 𝐸2 = |
0 0 0
0 0 0
0 𝑐31 0

| and 𝐺(𝛿, 𝜉) = (𝜏0 + 𝛿) [
𝐺1
𝐺2
𝐺3

] 

𝐺1 = 𝑐14𝜉1
2(0) + 𝑐15𝜉1(0)𝜉2(0) + 𝑐16𝜉1(0)𝜉3(0), 

𝐺2 =  𝑐24𝜉2
2(0) + 𝑐25𝜉1(0)𝜉2(0) + 𝑐26𝜉2(0)𝜉3(0), 

𝐺3 = 𝑐33𝜉3
2(0) + 𝑐34𝜉2(−1)𝜉3(0), 

where𝜉(𝜃) = (𝜉1(𝜃), 𝜉2(𝜃), 𝜉3(𝜃))
𝑇𝜖 𝐶((−1, 0), 𝑅). Use of Riesz representation 

theorem, help us to find a function ε(𝜃,δ) of the bounded variation for 

𝜃 𝑏𝑒𝑙𝑜𝑛𝑔 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [−1, 0], such that 

𝐻𝛿𝜉 = ∫ 𝑑𝜀(𝜃, 0)
0

−1

𝜉(𝜃)𝑓𝑜𝑟 𝜉 𝜖 𝐶. 

We can choose 𝜀(𝜃, 0) = {

𝑑𝜉(𝜃)

𝑑𝜃
𝜃 𝜖 [−1,0)

∫ 𝑑𝜀(𝜃, 0)
0

−1
𝜉(𝜃) 𝜃 = 0

 

and J (𝛿) 𝜉 = {
0 𝜃 𝜖[−1, 0)

𝐺(𝛿, 𝜉) 𝜃 = 0
 

the system (28) is equivalent to 

𝑣𝑡
′ = 𝐼(𝛿)𝑣𝑡 + 𝐽(𝛿)𝑣𝑡. 

For  𝜑 𝜖 𝐶′([−1,0], 𝑅+
3), define 

𝐼∗𝜑(𝑠) =  

{
 

 
−𝑑𝜑(𝑠)

𝑑𝜃
𝑠 𝜖 [−1,0),

∫ 𝑑𝜀𝑇(−𝑡, 0)𝜑(−𝑡)
0

−1

𝑠 = 0

 

And bilinear inner product. 

< 𝜑(𝑠), 𝜉(𝜃) > =  𝜑̅(0) 𝜉(0) − ∫ ∫ 𝜑̅(𝜉 − 𝜃)𝑑𝜀(𝜃)𝜉(𝜁)𝑑𝜁
0

𝑣=0

0

−1
. 

Since 𝐼∗ and 𝐼 = 𝐼(0) are adjoint operators. Then by the results obtained earlier, we 

observed that 𝑖𝜔0 is an eigen values of 𝐼(0). Thus, we conclude that this is an eigen 

values of 𝐼∗. Let us assume that 

𝑔(𝜃) = 𝑔(0)𝑒𝑖𝜔0  is an eigen vector of 𝐼(0) corresponding to eigen value −𝑖𝜔0, Then 

𝐼(0) = 𝑖𝜔0 𝑔(𝜃). When 𝜃 = 0, we obtain [𝑖𝜔0𝐼 − ∫ 𝑑𝜀(𝜃)𝑒𝑖𝜔0
0

−1
] 𝑔(0) = 0, which 

gives 𝑔(0) = (1, 𝜎1, 𝜌1)
𝑇 where  

                               𝜎1 =
𝑐31𝑐21 + 𝑐23(𝑖𝜔0 − 𝑐11)

𝑐12𝑐23 + 𝑐13(𝑖𝜔0 − 𝑐22)
                                                     (29) 
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                                𝜌1 =
(𝑖𝜔0 − 𝑐11)(𝑖𝜔0 − 𝑐22) − 𝑐12𝑐21

𝑐12𝑐23 + 𝑐13(𝑖𝜔0 − 𝑐22)
                                     (30) 

Same, it can be calculated that 

𝑔∗(𝑠) = 𝐷((1, 𝜎2, 𝜌2)𝑒
𝑖𝜔0𝜏0𝑠 is the latent vector of 𝐼∗corresponding to −𝑖𝜔0𝜏0 where 

                                  𝜎2 =
𝑐31𝑐21 − 𝑐23(𝑖𝜔0 + 𝑐11)

𝑐12𝑐23 − 𝑐13(𝑖𝜔0 + 𝑐22)
                                                    (31) 

                                 𝜌2 =
(𝑖𝜔0 + 𝑐11)(𝑖𝜔0 + 𝑐22) − 𝑐12𝑐21

𝑐12𝑐23 − 𝑐13(𝑖𝜔0 + 𝑐22)
                                     (32) 

Where  

𝐸̅ =
1

(1 + 𝜎1𝜎̅2 + 𝜌1𝜌̅2 + 𝜏0𝜌̅2𝜌1𝑐31𝑒−𝑖𝜔0𝜏0)
 

< 𝑔∗(𝑠), 𝑔(𝜃) >= 1,< 𝑔∗(𝑠), 𝑔̅ (𝜃) >= 0 

 

Now we calculate the coefficients, specifying important quantities of the periodic 

solution. We use the same calculation process as done by [6] in Hssard et al. 

𝑙20 = 2𝐸̅(𝑁11 + 𝜎̅2𝑁21 + 𝜌̅2𝑁31) 

𝑙11 = 𝐸̅(𝑁12 + 𝜎̅2𝑁22 + 𝜌̅2𝑁32) 

𝑙02 = 2𝐸̅(𝑁13 + 𝜎̅2𝑁23 + 𝜌̅2𝑁33) 

𝑙21 = 2𝐸̅(𝑁14 + 𝜎̅2𝑁24 + 𝜌̅2𝑁34) 𝑊ℎ𝑒𝑟𝑒 

𝑁11 = 𝑐14 + 𝑐16𝜌1 + 𝑐15𝜎1 

𝑁13 = 𝑐14 + 𝑐16𝜌̅1 + 𝑐15𝜎̅1 

𝑁12 = 2𝑐14 + 𝑐16𝜌1 + 𝑐16𝜌̅1 + 𝑐15𝜎1 + 𝑐15𝜎̅1 

𝑁14 = 2𝑐14𝑀11
(1)(0) + 𝑐15𝑀11

(2)(0) + 𝑐16𝑀11
(3)(0) + 𝑐14𝑀20

(1)(0) + 𝑐15
𝑀20
(2)(0)

2

+ 𝑐16
𝑀20
(3)(0)

2
+ 𝑐16𝑀11

(1)(0)𝜌1 + 𝑐15
𝑀20
(1)(0)

2
𝜌̅1 + 𝑐15𝑀11

(1)(0)𝜎1

+ 𝑐15
𝑀20
(1)(0)

2
𝜎̅1 

𝑁21 = 𝑐25𝜎1 + 𝑐26𝜌1𝜎1 + 𝑐24𝜎1
2 

𝑁22 = 𝑐25𝜎1+𝑐26𝜌̅1𝜎1 + 𝑐25𝜎̅1 + 𝑐26𝜌1𝜎̅1 + 2𝑐24𝜎1𝜎̅1 

𝑁23 = 𝑐25𝜎̅1 + 𝑐26𝜌̅1 + 𝑐24𝜎̅1
2 
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𝑁24 = 𝑐25𝑀11
(2)(0) + 𝑐25

𝑀20
(2)(0)

2
+ 𝑐26𝑀11

(2)(0)𝜌1 + 𝑐26
𝑀20
(2)(0)

2
𝜌̅1 + 𝑐25𝑀11

(1)(0)𝜎1

+ 2𝑐24𝑀11
(2)(0)𝜎1 + 𝑐26𝑀11

(3)(0)𝜎1 + 𝑐25
𝑀20
(1)(0)

2
𝜎̅1 + 𝑐24𝑀20

(2)(0)𝜎̅1

+ 𝑐26
𝑀20
(3)(0)

2
𝜎̅1 

𝑁31 = 𝑐33𝜌1
2 + 𝑐34𝑒

−𝑖𝜔0𝜏0𝜌1𝜎1 

𝑁32 = 2𝑐33𝜌1𝜌̅1 + 𝑐34𝑒
−𝑖𝜔0𝜏0𝜌̅1𝜎1 + 𝑐34𝑒

−𝑖𝜔0𝜏0𝜌1𝜎̅1 

𝑁33 = 𝑐33𝜌̅1
2 + 𝑐34𝑒

−𝑖𝜔0𝜏0𝜌̅1𝜎̅1 

𝑁34 = 𝑐34𝑀11
(2)(−1)𝜌1 + 2𝑐33𝑀11

(3)(0)𝜌1 + 𝑐34
𝑀20
(2)(−1)

2
𝜌̅1 + 𝑐33𝑀20

(3)(0)𝜌̅1

+ 𝑐34𝑒
−𝑖𝜔0𝜏0𝑀11

(3)(0)𝜎1 +
1

2
𝑐34𝑒

−𝑖𝜔0𝜏0𝑀20
(3)(0)𝜎̅1 

However 

𝑀20(𝜃) =
𝑖𝑙20

𝜔0𝜏0
𝑡(0) 𝑒𝑖𝜔0𝜏0𝜃+

𝑖𝑔̅02𝑞(0) 

3𝜔0𝜏0
 𝑒−𝑖𝜔0𝜏0𝜃 + 𝐹1𝑒

2𝑖𝜔0𝜏0𝜃  

And 

𝑀11(𝜃) =
−𝑖𝑔11

𝜔0𝜏0
𝑞(0) 𝑒𝑖𝜔0𝜏0𝜃+

𝑖𝑔̅11𝑞(0) 

𝜔0𝜏0
 𝑒−𝑖𝜔0𝜏0𝜃 + 𝐹2, 

Where 𝐹1 𝑎𝑛𝑑 𝐹2 are both three-dimensional vector quantity, and can be calculated by 

 

|

2𝑖𝜔0 − 𝑐11 −𝑐12 −𝑐13
−𝑐21 2𝑖𝜔0 − 𝑐22 −𝑐23
0 −𝑐31𝑒

−2𝑖𝜔0𝜏0𝜃 2𝑖𝜔0 − 𝑐32

| 𝐹1 = 2 [
𝑁11
𝑁21
𝑁31

] 

And 

|

𝑐11 𝑐12 𝑐13
𝑐21 𝑐22 𝑐23
0 𝑐31 𝑐32

| 𝐹2 = −2 [
𝑁12
𝑁22
𝑁32

] 

Then 𝑙21 can be written by the use of parameters. 

From the above discussion, we can observe that every 𝑙𝑖𝑗  determined by parameters 

used. Thus, we obtain the result: 

𝐷1(0) =
𝑖

2𝜔0𝜏0
(𝑙11 𝑙20 − 2𝑙11

2 −
𝑙02
2

3
) + 

𝑙21

2
, 

𝑛1 = −
𝑅𝑒{𝐶1(0)}

𝑅𝑒{𝜆′(𝜏0)}
 



109 
 

𝑛2 = 2𝑅𝑒{𝐶1(0)}. 

 

                                 𝑇2 = −
𝐼𝑚{𝐶1(0)} + 𝑛1𝐼𝑚{𝜆

′(𝜏0)}

𝜔0𝜏0
                                           (33) 

Which determines the quantities of bifurcation periodic solutions in the Centre 

manifold at critical values at 𝜏0.By the result of Hassard et al. we have the following 

Theorem. 𝑛1determines propagation of the Hopf-bifurcation: if 𝑛1 > 0 (𝑛1 <0), then 

the Hopf-bifurcation is supercritical (subcritical) and the bifurcating period solutions 

exits if  𝜏 >  𝜏0 (𝜏 < 𝜏0); 𝑛2 determines the stability of bifurcating periodic solutions: 

the bifurcating periodic solutions are arbitically asymptotically stable when 𝑛2 < 0 and 

periodic solutions are arbitically unstable if  𝑛1 > 0; 𝑎𝑛𝑑 𝑇2 finds the bifurcating 

periodic solution. The period increases when 𝑇2 > 0 and the period decreases when 

𝑇2 < 0 

5.15 Numerical Example 

In this part, we used MATLAB to do a numerical simulation of system [1]-[3]. We use 

these parametric values:                   

                                                 𝑝1 = 3 𝑝2 = 3 𝐾1 = 5 𝑏1 = 0.9 

𝑒1 = 0.5 𝑦1 = 0.6 𝑧1 = 0.2 𝐴1 = 0.91 

𝑧2 = 0.5 𝐾2 = 4 𝑥1 = 0.14 𝑐1 = 1.8 
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                                   Figure 5.1 In absence of delay the system is stable 

 

 

                                             Figure 5.2 Phase plane graph in absence of delay 
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Figure 5.3 Asymptotically stable when τ = 0.8 < τ0 = 1.30997 

 

 

Figure 5.4 Phase plane graph for Asymptotically stable when τ = 0.8 <

τ0 = 1.30997 
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Figure 5.5 Hopf Bifurcation when τ = 1.7 > τ0 = 1.30997 

 

 

Figure 5.6 Phase plane graph for Hopf Bifurcation when τ = 1.7 > τ0 = 1.30997 
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coexisting equilibrium level, according to analytic and statistical analysis. In the 

absence of delay the system is stable (figure 5.1). Phase plane graph in absence of delay 

(figure 5.2). System is asymptotically stable (figure 5.3). Phase plane graph for 

asymptotically stable system (figure 5.4). Hopf Bifurcation diagram shown in (figure 

5.5). Phase Plane graph for Hopf Bifurcation shown in (figure 5.6). Limit cycles for the 

non-zero equilibrium point when the time delay surpasses a critical value arise 

whenever the time delay is applied. According to observation, the crucial level of the 

delay parameter rises as 𝐴1′𝑠 numerical value does. 
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Chapter 6 

Study of the Stability of a Single Prey and a Pair of Predators using a 

Delay Differential Equation and A Functional Response with a Square 

Root 

6.1 Introduction 

In a predator-prey context, the fundamental and secondary components of predation 

were presented by C. S. Holling. Because of its significance, the functional response 

has been studied further in an attempt to understand its characteristics [106]. N. 

Macdonald studied it is normal to add a temporal delay in the component denoting the 

dependency of the predator on the prey in deterministic models of prey-predator 

interaction [107]. When studying the general differential equations system that 

characterizes predator-prey dynamics, J. M. Cushing made the assumption that the 

parameters are cyclic expressions of time [86]. Len Nunney observed persistent 

predator-prey interactions. The author discovered that discrete-generation predator-

prey models are stabilized by sigmoid functional responses [108].  

Andrew Sih found an interesting fact any tactic that lowers the danger of predation can 

be included in the broad definition of refuse usage [109]. The prevailing theories hold 

that prey is encountered by predators at random and that the tropic function is solely 

dependent on prey availability. This strategy is not always acceptable, according to 

Roger Arditi et al. The tropic function must be considered on the long-time scale of 

population dynamics, rather than the short behavioral time scale on which the models 

operate [12]. Yang Kuang et al. studied ratio-dependent prey-predator delayed systems 

[110].    

Chris Cosner and team proposed this unified scientific method for the generation of 

many forms of functional responses. The deduction is based on the idea of mass action, 

but with the important modification that the nature of predator spatial distribution and 

predation opportunities are taken into account implicitly [111]. Jill McGrady-Steed et 

al. discovered that species richness influences population size and stability. Many 

fundamental theories suggest that complex speciose societies are much less stable than 
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simple ones. Functional groups did not indicate individual population stability. Inter - 

specific relationships and statistical averaging may both aid in reducing the temporal 

changes of functional groups generated by aggregating a large number of species [112]. 

In 20th century several types of prey-predator dynamics studied by different researchers. 

These dynamics related to density dependent predation by [113, 114, 116, 118, 115]. 

Peter A. Abrams et al. examine the characteristics of the dynamics as well as the 

responses of the mean frequencies of each predator to death rates imposed on it or its 

competition. The dynamics study for this model exposes a variety of previously 

unknown behaviors, like chaotic oscillations and long-term transients that differ greatly 

from the final patterns of oscillations [117]. Meng Fan et al. meticulously analyze the 

behavior of a nonautonomous predator-prey system using the Beddington-DeAngelis 

functional response. For the cyclic (almost periodic) situation, a positive (just about) 

periodic answer and a border (just about) periodic solution are examined, together with 

persistence, mortality, and global asymptotic stable (generic nonautonomous situation) 

[119].  

When presented with a crowd of prey, many predators become confused and less 

efficient in their attacks. J. M. Jeschke et al. investigated the impact of predator 

perplexity on predator dynamics in order to gain knowledge on the environmental, 

ethological, and evolutionary consequences of this phenomena. The authors developed 

the very first functional responder model that takes perplexity into consideration and 

subjectively and statistically compares it to actual data from multi predator/prey 

systems [120]. Dongmei Xiao [121] proved physiologically the elimination of the 

singularity of the origin, which was deemed "pathological behaviour" for a ratio-

dependent prey - predator system, and the prevention of mutual extinction as a probable 

outcome of the predator prey interaction. 

Researchers establish a functional reaction that accounts for both prey densities. As 

a result, depending on how the two prey densities interact, the functional response 

exhibits types II (manipulating prey densities) and III (switching predator 

behaviour) studied by E. Vanleeuwen [19]. The authors looked at the 

consequences of linear changes to intrinsically unstable continuous-time prey-

predator models in a (small) region of the origin. P. E. Kloeden et al., in particular, 
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proved that based on the parameters chosen, either one universal attractor or a 

repulsive state arises [122].  

Valerio Ajraldi et al. demonstrate certain basic assumptions for traditional two-

population system [123]. S. N. Matia et al. discovered approach for herd behaviour as 

a self-defence mechanism outperforms the strategy of toxic production. The model also 

exhibits ecologically important dynamics around the origin due to prey herd behaviour 

[124]. Yun Kang et al.  came to the conclusion that species are vulnerable to extinction 

in the presence of Allee effects and that starting state has a significant impact on both 

the survival of prey and its matching predator. Researchers also noted that illness could 

be able to prevent prey from going extinct due to predation and promote cohabitation, 

while the disease-driven extinction cannot be stopped by a predator [125]. 

Hongxia Liu et al. investigated a prey-predator dynamics model with a square root 

response function using a stable-dependent impulse. The existence, uniqueness, and 

attraction for first order cyclic result first investigated using differential equation 

geometry theory and the successor function technique. The stability first order cycle is 

next examined using the Poincaré criterion for spontaneous differential equations [126]. 

Sourav Kumar Sasmal et al. investigate the behavior of a prey-predator model theory. 

This model incorporates collective prey defense against predation via the Monod-

Haldane functional response, in addition to a fear effect that slows prey growth rate 

when a predator is around [127].  

Jai Prakash Tripathi et al. described universal attractivity and permanence as basic 

functions using the continuation theory from coincidence degree theory, which 

improves on the standard conditions derived by employing limits of the important 

parameters and the presence of periodic solutions. This method outperforms the 

Brouwer fixed point theory in the Crowley-Martin basis function [128]. Yang et. al. 

explored the partial differential equation system's characteristic roots, along with the 

Turing destabilization and Hopf bifurcation. Analysing the normal form of the Turing-

Hopf bifurcation [129] yielded the phase diagram. Jawdat Alebraheem suggests a 

predator-dependent operational and numerical response-based autonomous predator-

prey model. The model's coexistence and extinction conditions were validated and 

identified using Kolmogorov analysis [130].  
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A multi-species model with delay that has two competing prey populations and a 

predator organism that is somewhat connected to other prey and helps commensal 

species. When alternate meal is provided, the system oscillates after initially exhibiting 

steady coexistence. This research, on the other hand, shows that supplying a variety of 

diets does not lead the system to oscillate [131]. 

 

6.2 Mathematical Model 

𝑑𝑅

𝑑𝑇
= 𝑠𝑅 (1 −

𝑅(𝑇 − 𝜏)

𝐾1
) − 𝑏1√𝑅𝐷1 − 𝑏2√𝑅𝐷2                                                  (1) 

𝑑𝐷1

𝑑𝑇
= 𝑏1𝑐1√𝑅𝐷1 − 𝑓1𝐷1                                                                                            (2) 

𝑑𝐷2

𝑑𝑇
= 𝑏2𝑐2√𝑅𝐷2 − 𝑓2𝐷2 − 𝑔𝐷2                                                                              (3) 

With the initial conditions 𝑅(0) > 0, 𝐷1(0) > 0, 𝐷2(0) > 0 above system (1)-(3) can 

be non- depersonalised by introducing new relations: 

𝑝̂ =
𝑅

𝐾1
, 𝑧1 =

𝐷1𝑏1

𝑠√𝐾1

, 𝑧2 =
𝐷1𝑏2

𝑠√𝐾1

, 𝑡 =
𝑠𝑇

2
 

and new parameters are used  

𝑠1 =
2𝑐1𝑏1√𝐾1

𝑠
, 𝑠2 =

2𝑐2𝑏2√𝐾1

𝑠
, ℎ1 =

𝑓1

𝑐1𝑏1√𝐾1

, ℎ2 =
𝑓2

𝑐2𝑏2√𝐾1

, ℎ3 =
𝑔𝑠

𝑐2𝑏2
2  

After conversion non-dimensional system become: 

𝑑𝑝̂

2𝑑𝑡
= 𝑝̂(1 − 𝑝̂(𝑡 − 𝜏)) − √𝑝̂𝑍1 − √𝑝̂𝑍2                                                              (4) 

𝑑𝑧1

𝑑𝑡
= 𝑠1𝑧1(√𝑝̂ − ℎ1)                                                                                                (5) 

𝑑𝑧2

𝑑𝑡
= 𝑠2𝑧2(√𝑝̂ − ℎ2 − ℎ3𝑧2)                                                                                 (6) 
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The system (4)-(6) has singularity when Jacobian calculated, because in (4)-(6) terms 

are not free from square root. To understand the system of equations (4)-(6) we assume 

𝑝̂ = 𝑝2, 

𝑑𝑝

𝑑𝑇
= 𝑝(1 − 𝑝2(𝑡 − 𝜏)) − 𝑧1 − 𝑧2                                                                       (7) 

𝑑𝑧1

𝑑𝑇
= 𝑠1𝑧1(𝑝 − ℎ1)                                                                                                 (8) 

𝑑𝑧2

𝑑𝑇
= 𝑠2𝑧2(𝑝 − ℎ2 − ℎ3𝑧2)                                                                                   (9) 

With initial conditions 𝑝(0) > 0, 𝑧1 > 0, 𝑧2 > 0  

Table: Meaning of parameters used in equation (1)-(3) 

Symbols Meaning 

             R Prey population at time t 

𝐷1 Predator population at time t 

𝐷2 Population of second predator at time 

t 

ℎ𝑗 Death rate 

𝑐𝑗 Predation rate 

              g Intra-specific competition rate 

𝐾1 Carrying capacity 

𝑏1 Conversion efficiency 

𝑠 Intrinsic growth rate of prey  

The subscript  𝑗 = 1 𝑜𝑟 2  

6.3 Equilibrium Points of the System: 

We calculate equilibrium points of (7)-(9)  

𝑝(1 − 𝑝2) − 𝑧1 − 𝑧2 = 0                                                                                     (10) 

𝑠1𝑧1(𝑝 − ℎ1) = 0                                                                                                    (11) 

𝑠2𝑧2(𝑝 − ℎ2 − ℎ3𝑧2) = 0                                                                                      (12) 
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After simplification (10)-(12) system of equation. We calculated five points of 

equilibrium for the system (7)-(9). 

1) First, we calculate Trivial equilibrium points i.e., origin 𝐺0 = (0,0,0) 

2) Second, we calculate equilibrium point is axial 𝐺𝐴 = (1,0,0) 

3) Third, we calculate equilibrium point is boundary 𝐺𝐵1
= (ℎ1,ℎ1(1 −

ℎ1
2), 0) 𝑎𝑛𝑑 𝐺𝐵2

= (𝑝̃, 0, 𝑧2̃)  

Where  𝑧2̃ = 𝑝̃(1 − 𝑝̃2)𝑎𝑛𝑑 𝑝̃ is the first positive eigen root of the cubic equation.  

ℎ3𝑝̃3 + (1 − ℎ3)𝑝̃ − ℎ2 = 0                                                                               (13) 

 if ℎ1 < 1 then 𝐺𝐵1
the first boundary equilibrium point exists and  𝐺𝐵2

 exists only if 

𝑝̃  < 1 

4) Forth, the interior equilibrium points 𝐺∗ = (𝑝∗, 𝑧1
∗, 𝑧2

∗) where 𝑝∗ = ℎ1, 𝑧1
∗ =

ℎ1(1 − ℎ1
2) −

𝑑1−𝑑2

𝑑3
, 𝑎𝑛𝑑  𝑧2

∗ =
𝑑1−𝑑2

𝑑3
.  

6.4 Dynamical Behaviour when 𝝉 = 𝟎 

To study the nature of the system of equation (7)-(9) about the five feasible equilibrium 

points the variational matrix is  

𝑊 = [
1 − 3𝑝2 −1 −1

𝑠1𝑧1 𝑠1(𝑝 − ℎ1) 0

𝑠2𝑧2 0 𝑠2(𝑝 − ℎ2 − 2ℎ3𝑧2)

] 

Char. Polynomial of W corresponding to eigen value 𝐺0 is given by 

(1 − 𝜆)( 𝑠1ℎ1 + 𝜆)(𝑠2ℎ2 + 𝜆) = 0                                                                   (14) 

Because Equation (14) contains one positive root definitely, so 𝐺0 is unstable. 

At the equilibrium point 𝐺𝐴, the characteristic polynomial of W is 

 

(2 +  𝜆)( 𝑠1(1 − ℎ1) −  𝜆)( 𝑠2(1 − ℎ2) −  𝜆) = 0 

Eigen values of 𝑊 at 𝐺𝐴 are 𝑠1(1 − ℎ1), −2 𝑎𝑛𝑑 𝑠2(1 − ℎ2), so, the equilibrium points 

𝐺𝐴 of the system (7)-(9) is stable if ℎ1 > 1𝑎𝑛𝑑 ℎ2 > 1. 

One interesting result also obtained, if the equilibrium point 𝐺𝐴 is stable in that case the 

remaining equilibrium points 𝐺𝐵1
, 𝐺𝐵2

𝑎𝑛𝑑 𝐺∗ does not exists, and if equilibrium point 

𝐺𝐵1
, 𝐺𝐵2

𝑎𝑛𝑑 𝐺∗ exists then the equilibrium point 𝐺𝐴 is not stable. The characteristic 

equation of W at 𝐺𝐵1
is 
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             (𝑠2(ℎ1 − ℎ2) − 𝜆)(𝜆3 + (3ℎ1
2 − 1)𝜆 + 𝑠1ℎ1) = 0                       (15)  

Only if ℎ2 > ℎ1and ℎ1 >
1

√3
 then equilibrium points 𝐺𝐵1

of the system (7)-(9) locally 

asymptotically stable. During calculation we notice that when 

𝐺𝐵1
(equilibrium point )is stable then 𝐺∗(equilibrium point) does not exists and vice-

versa. 

At  𝐺𝐵2
, the characteristic polynomial of W is 

(𝑠1(𝑝̃ − ℎ1) − 𝜆)(𝜆2 + (3𝑝̃2 + 𝑠2ℎ3𝑧̃2 − 1)𝜆 + 𝑠2𝑧̃2) = 0             (16) 

 if ℎ1 > 𝑝̃ 𝑎𝑛𝑑 𝑝̃ >
1

√3
 then the point 𝐺𝐵2

 is local asymptotic stable. At point 𝐺∗ the 

characteristic polynomial of the system (7)-(9) is given by  

             𝜆3 + 𝐽1𝜆2 − 𝐽2𝜆 + 𝐽3 = 0                                                           (17) 

Where 𝐽1 = 𝑠2ℎ3𝑧2
∗ + 3ℎ1

2 − 1, 𝐽2 = (3ℎ1
2 − 1)𝑠2ℎ3𝑧2

∗ + 𝑠2𝑧2
∗ + 𝑠1𝑧1

∗ 𝑎𝑛𝑑 𝐽3 =

𝑠1ℎ3𝑧1
∗𝑠2𝑧2

∗. 

By Routh- Hurwitz criteria the equilibrium points 𝐺∗in system (7)-(9) is asymptotically 

locally stable if ℎ1 >
1

√3
. 

6.5 Study Behaviour when 𝝉 > 𝟎 

The characteristic equation of (7)-(9) around any equilibrium point is  

|
1 − 𝑝2 − 2𝑝2𝑒−𝜆𝜏 − 𝜆 −1 −1

𝑠1𝑧1 𝑠1(𝑝 − ℎ1) − 𝜆 0

𝑠2𝑧2 0 𝑠2(𝑝 − ℎ2 − 2ℎ3𝑧2) − 𝜆

| = 0 

After simplification  

𝜆3 + 𝐿1𝜆2 + 𝐿2𝜆 + 𝐿3 + 𝑒−𝜆𝜏(𝑄1𝜆2 + 𝑄2𝜆 + 𝑄3) = 0                                 (18) 

Where   𝐿1 = −1 + 𝑠1ℎ1 + 𝑠2ℎ2 − 𝑠1𝑝 − 𝑠2𝑝 + 𝑝2 + 2𝑠2ℎ3𝑧2 

𝑄1 = 2𝑝2 

 𝐿2 = −𝑠1ℎ1 − 𝑠2ℎ2 + 𝑠1ℎ1𝑠2ℎ2 + 𝑠1𝑝 + 𝑠2𝑝 − 𝑠1𝑠2ℎ1𝑝 − 𝑠1𝑠2ℎ2𝑝 + 𝑠1𝑠2𝑝2

+ 𝑠1ℎ1𝑝2 + 𝑠2ℎ2𝑝2 −  𝑠1𝑝3 − 𝑠2𝑝3 + 𝑠1𝑧1 + 𝑠2𝑧2 − 2𝑠2𝑧2ℎ3

+ 2𝑠1𝑠2ℎ1𝑧2ℎ3 − 2𝑠1𝑠2𝑝𝑧2ℎ3 + 2𝑠2𝑧2ℎ3𝑝2 

𝑄2 = 2𝑠1ℎ1𝑝2 + 2𝑠2ℎ2𝑝2 − 2𝑠1𝑝3 − 2𝑠2𝑝3 + 4𝑠2𝑧2ℎ3𝑝2 
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𝐿3 = −𝑠1ℎ1𝑠2ℎ2 + 𝑠1ℎ1𝑠2𝑝 + 𝑠1𝑝𝑠2ℎ2 − 𝑠1𝑠2𝑝2 + 𝑠1ℎ1𝑠2ℎ2𝑝2 − 𝑠1ℎ1𝑠2𝑝3

− 𝑠1ℎ2𝑠2𝑝3 + 𝑠1𝑠2𝑝4 + 𝑠1𝑧1𝑠2ℎ2−𝑠1𝑧1𝑠2𝑝 + 𝑠1ℎ1𝑠2𝑧2

− 2𝑠1ℎ1𝑠2ℎ3𝑧2 − 𝑠1𝑝𝑠2𝑧2 + 2𝑠1ℎ3𝑝𝑠2𝑧2 + 2𝑠1ℎ1𝑠2ℎ3𝑧2𝑝2

− 2𝑠1𝑝3𝑠2ℎ3𝑧2 + 2𝑠1𝑧1𝑠2ℎ3𝑧2, 

𝑄3 = 2𝑠1ℎ1𝑠2ℎ2𝑝2 − 2𝑠1ℎ1𝑠2𝑝3 − 2𝑠1ℎ2𝑠2𝑝3 + 4𝑠1𝑠2𝑝2ℎ1ℎ3𝑧2 − 4𝑠1𝑠2𝑝3ℎ3𝑧2 

If the eigen values of the characteristic polynomial (18) do not have positive real part, 

then equilibrium point is stable. It is not an easy task when all latent roots of (18) have 

no positive real part. When 𝜏 = 0 equation (18) transforms to 

𝜆3 + (𝐿1 + 𝑄1)𝜆2 + (𝐿2 + 𝑄2)𝜆 + 𝐿3 + 𝑄3 = 0                                        (19) 

By Routh-Hurwitz criterion  

(H) If (𝐿1 + 𝑄1) > 0, (𝐿3 + 𝑄3) > 0, (𝐿1 + 𝑄1) (𝐿2 + 𝑄2) > (𝐿3 + 𝑄3), then 

equation (19) has all the roots negative real parts. 

Let us suppose that if 𝜆 = 0 is a solution of (18) then 𝐿3 + 𝑄3 = 0, a contradiction to 

fact in (H). Hence,  𝜆 = 0 is not eigen value of equation (18). Suppose that for some 

arbitrary 𝜏 ≥ 0, 𝑖𝜔 with a condition 𝜔 > 0 is a solution of (18), so  

−𝑖𝜔3 − 𝐿1𝜔2 + 𝑖𝐿2𝜔 + 𝐿3 + (𝑐𝑜𝑠𝜔𝜏 − 𝑖𝑠𝑖𝑛𝜔𝜏)(−𝑄1𝜔 + 𝑖𝑄2𝜔 + 𝑄3)

= 0                                                                                                        (20)               

Separate real and imaginary parts, 

𝐿3 − 𝐿1𝜔2 + (𝑄3 − 𝑄1𝜔2) cos 𝜔𝜏 + 𝑄2𝜔 sin 𝜔𝜏 = 0                               (21) 

𝐿2𝜔 − 𝜔3 + 𝑄2𝜔𝑐𝑜𝑠𝜔𝜏 − (𝑄3 − 𝑄1𝜔2)𝑠𝑖𝑛𝜔𝜏 = 0                                   (22) 

Which gives                𝜔6 + 𝑙𝜔4 + 𝑚𝜔2 + 𝑛 = 0                                                     (23) 

Where  𝑙 = 𝐿1
2 − 𝑄 1

2 − 2𝐿2, 𝑚 = 𝐿2
2 − 𝑄2

2 + 2𝑄1𝑄3 − 2𝐿1𝐿3, 𝑛 = 𝐿3
2 − 𝑄3

2 

Let 𝛼 = 𝜔2, then equation (23) becomes  

                              𝛼3 + 𝑙𝛼2 + 𝑚𝛼 + 𝑛 = 0                                                               (24) 

Where  𝑜(𝛼) = 𝛼3 + 𝑙𝛼2 + 𝑚𝛼 + 𝑛) 
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6.6 Lemma1: For equation (24), we have results  

a) If 𝑛 < 0, the equation (24) has one positive root definitely. 

b) If 𝑛 ≥ 0, and (𝑙2 − 3𝑚) ≤ 0, then equation (24) has all root negative. 

c) If 𝑛 ≥ 0, and (𝑙2 − 3𝑚) > 0, then positive real root for equation (24) iff.  

𝛼1
∗ =

−𝑙 ± √𝑙2 − 3m

3
> 0 𝑎𝑛𝑑 𝑜(𝛼1

∗ ≤ 0. ) 

Assume equation (24) has a minimum one positive real root 𝜔0 = √𝛼0. 

From equation (21)-(22), we obtain,  

𝑐𝑜𝑠𝜔0𝜏 =
−(𝑄2𝜔0

2(𝐿2 − 𝜔0
2) + (𝐿3 − 𝐿1𝜔0

2)(𝑄3 − 𝑄1𝜔0
2))

(𝑄3 − 𝑄1𝜔0
2)2 + (𝑄2𝜔0)2

                (25) 

𝜏𝑖 =
1

𝜔0
arccos (

−(𝑄2𝜔0
2(𝐿2 − 𝜔0

2) + (𝐿3 − 𝐿1𝜔0
2)(𝑄3 − 𝑄1𝜔0

2))

(𝑄3 − 𝑄1𝜔0
2)2 + (𝑄2𝜔0)2

+ 2𝑗𝜋)           (26) 

Where i =0,1,2,3… 

 

6.7 Lemma2: Suppose 𝑜(𝛼0) = (3𝛼0
2 + 3𝑙𝛼0 + 𝑚) and condition in (H) are 

satisfied. For (i=0,1,2,3,4…), let 𝜆(𝜏) = 𝛽(𝜏) + 𝑖𝜔(𝜏) be the latent value of equation 

(18) satisfying 𝛽(𝜏𝑖) = 0, 𝜔(𝜏𝑖) = 𝜔0, where 

𝜏𝑖 =
1

𝜔0
arccos (

−(𝑄2𝜔0
2(𝐿2 − 𝜔0

2) + (𝐿3 − 𝐿1𝜔0
2)(𝑄3 − 𝑄1𝜔0

2))

(𝑄3 − 𝑄1𝜔0
2)2 + (𝑄2𝜔0)2

+ 2𝑖𝜋)            

Then ±𝑖𝜔0 are latent values. If condition of transversality condition  

(𝐻0)         𝛽′(𝜏𝐼) =
𝑅𝑒𝜆(𝜏)

𝑑𝜏
ǀ𝜆=𝑖𝜔0

≠ 0exists,  

then Hopf-Bifurcation observed in system (7)-(9) at any arbitrary equilibrium point 

and 𝜏 = 𝜏𝑖. 

Proof. Suppose 𝜆 = 𝜆(𝜏) be the solution of equation (18) put 𝜆(𝜏) in equation (18) and 

differentiating equation (18) w.r.t 𝜏, we observed that  
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[
(3𝜆2 + 2𝐿1𝜆 + 𝐿2) + ((𝜆2𝑄1 + 𝜆𝑄2 + 𝑄3)(−𝜏) + (2𝜆𝑄1 + 𝑄2))𝑒−𝜆𝑡

]
𝑑𝜆

𝑑𝜏

= 𝜆(𝜆2𝑄1 + 𝜆𝑄2 + 𝑄3)𝑒−𝜆𝑡 

Thus, 

(
𝑑𝜆

𝑑𝜏
)

−1

=
(3𝜆2 + 2𝜆1 + 𝐿2)𝑒𝜆𝜏

𝜆(𝜆2𝑄1 + 𝜆𝑄2 + 𝑄3)
+

(2𝜆𝑄1 + 𝑄2)

𝜆(𝜆2𝑄1 + 𝜆𝑄2 + 𝑄3)
−

𝜏

𝜆
 

From equation (21)-(23), we have  

𝛽′(𝜏0) = 𝑅𝑒 [
(3𝜆2 + 2𝜆1 + 𝐿2)𝑒𝜆𝜏

𝜆(𝜆2𝑄1 + 𝜆𝑄2 + 𝑄3)
] + 𝑅𝑒 [

(2𝜆𝑄1 + 𝑄2)

𝜆(𝜆2𝑄1 + 𝜆𝑄2 + 𝑄3)
] 

=
1

Λ
[3𝜔0

2 + 2(𝐿1
2 − 𝑄1

2 − 2𝐿2)𝜔0
4 + (𝐿2

2 − 𝑄2
2 + 2𝑄1𝑄2 − 2𝐿1𝐿3)𝜔0

2] 

=
1

Λ
(3𝜔0

6 + 2𝑙𝜔0
4 + 𝑚𝜔0

2)                                                                               

=
𝜔0

2

Λ
𝑜′(𝛼0),                                                                                                       

Where Λ = (𝑄3 − 𝑄1𝜔0
2)2 + (𝑄2𝜔0)2. Note that when Λ > 0 and 𝜔0 > 0, we 

concluded that 𝑠𝑖𝑔𝑛[𝛽′(𝜏0)] = 𝑠𝑖𝑔𝑛[𝑜′(𝛼0)] 

This proves the lemma. 

At equilibrium point 𝐺𝐴, the equation (18) becomes  

𝜆3 + 𝑅1𝜆2 + 𝑅2𝜆 + 𝑒−𝜆𝜏(𝑅3𝜆2 + 𝑅4𝜆 + 𝑅5) = 0                                 (27) 

𝑎𝑛𝑑 𝑙, 𝑚, 𝑛 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 𝑅1
2 − 𝑅3

2 − 2𝑅2, 𝑅2
2 − 𝑅4

2 + 2𝑅3𝑅5 𝑎𝑛𝑑

− 𝑅5
2 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦, 𝑎𝑛𝑑 𝜏𝑗 

Becomes 

𝜏𝐴 =
1

𝜔0
arccos (

−(𝑅4𝜔0
2(𝑅2 − 𝜔0

2) − 𝑅1𝜔0
2(𝑅5 − 𝑅3𝜔0

2))

(𝑅5 − 𝑅3𝜔0
2)2 + (𝑅4𝜔0)2

)            (28) 

Where  

𝑅1 = −𝑠1 − 𝑠2 + 𝑠1ℎ1+𝑠2ℎ2, 

𝑅2 = 𝑠1𝑠2 − 𝑠1𝑠2ℎ1 − 𝑠1𝑠2ℎ2 + 𝑠1𝑠2ℎ1ℎ2, 𝑅3 = 2, 

𝑅4 = −2𝑠1 − 2𝑠2 + 2𝑠1ℎ1 + 2𝑠2ℎ2 

𝑅5 = −2𝑠1𝑠2(−1 + ℎ1)(1 − ℎ2) 

6.8 Theorem1: Suppose that axioms in (H) and (𝑯𝟎) are satisfied. Then  

a. The system (18) latent points 𝐺𝐴 are asymptotically stable for every 𝜏𝜖[0, 𝜏𝐴). 
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b. At the point of equilibrium 𝐺𝐴 the system of equation (18) show Hopf-bifurcation, 

when 𝜏 = 𝜏𝐴 in the same way equilibrium point 𝐺𝐵1,the equation (15) changes to 

                   𝜆3 + 𝑆1𝜆2 + 𝑆2𝜆 + 𝑆3 + 𝑒−𝜆𝜏(𝑆4𝜆2 + 𝑆5𝜆) = 0                                     (29) 

𝑙, 𝑚, 𝑛 𝑏𝑒𝑐𝑜𝑚𝑒𝑠,

𝑙 = 𝑆1
2 − 𝑆4

2 − 2𝑆2, 𝑚 = 𝑆2
2 − 𝑆5

2 − 2𝑆1𝑆3, 𝑛 = 𝑆3
2 𝑎𝑛𝑑 𝜏𝑖𝑏𝑒𝑐𝑜𝑚𝑒𝑠 

𝜏𝐵1 =
1

𝜔0
𝑎𝑟𝑐𝑐𝑜𝑠 (

−(𝑆5𝜔0
2(𝑆2 − 𝜔0

2) − 𝑆4𝜔0
2(𝑆3 − 𝑆1𝜔0

2))

(𝑆4𝜔0
2)2 + (𝑆5𝜔0)2

)                                (30) 

 Where, 𝑆1 = −1 − 𝑠2ℎ1 + ℎ1
2 + 𝑠2ℎ2 , 𝑆2 = ℎ1𝑠1 + ℎ1𝑠2 − 𝑠1ℎ1

3 − 𝑠2ℎ1
3 − 𝑠2ℎ2 +

𝑠2ℎ1
2ℎ2, 𝑆3 = −𝑠1𝑠2ℎ1

2 + 𝑠1𝑠2ℎ1
4 + 𝑠1𝑠2ℎ1ℎ2 − 𝑠1𝑠2ℎ1

2ℎ2, 𝑆4 = 2ℎ1
2, 𝑆5 = −2𝑠2ℎ1

3 +

2𝑠2ℎ1
3 + 2𝑠2ℎ1

2ℎ2. 

6.9 Theorem2. Consider that (H) and (𝑯𝟎) are fulfilled and  

a. If (𝑙2 − 3𝑚) ≤ 0, all eigen values of (29) cannot have positive real parts for 

every 𝜏 ≥ 0, and so the latent values 𝐺𝐵1of the system (7)-(9) is stable 

asymptotic for every 𝜏 ≥ 0. 

b. If (𝑙2 − 3𝑚) > 0, 𝛼1
∗ > 0 𝑎𝑛𝑑 𝑜(𝛼1

∗) ≤ 0, holds then the equilibrium points 

𝐺𝐵1of the system (7)-(9) is stable asymptotic for every 𝜏 ∈ [0, 𝜏𝐵1). 

c. If every statement in (b) and 𝑜′(𝛼0) ≠ 0 satisfied, then the system (7)-(9) show 

a Hopf-bifurcation at point of equilibrium 𝐺𝐵1, when 𝜏 = 𝜏𝐵1. 

              At equilibrium point 𝐺𝐵2, the equation (15) becomes  

                       𝜆3 + 𝑊1𝜆2 + 𝑊2𝜆 + 𝑊3 + 𝑒−𝜆𝜏(𝑊4𝜆2 + 𝑊5𝜆 + 𝑊6) = 0              (31) 

𝑙, 𝑚, 𝑛 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑡𝑜 𝑙 = 𝑊1
2 − 𝑊4

2 − 2𝑊2, 𝑚 = 𝑊2
2 − 𝑊5

2 + 2𝑊4𝑊6 − 2𝑊1𝑊3 , 𝑛 =

𝑊3
2 − 𝑊6

2 respectively, and 𝜏𝑖 becomes  

𝜏𝐵2 =
1

𝜔0
𝑎𝑟𝑐𝑐𝑜𝑠 (

−(𝑊5𝜔0
2(𝑊2 − 𝜔0

2) + (𝑊3 − 𝑊1𝜔0
2)(𝑊6 − 𝑊4𝜔0

2)

(𝑊6 − 𝑊4𝜔0
2)2 + (𝑊5𝜔0)2

)      (32) 

Where 

 𝑊1 = −1 + 𝑠1ℎ1 − 𝑠1𝑝̂ + 𝑝̂2 + 𝑠2ℎ3  

 𝑊2 = −𝑠1ℎ1 + 𝑠1𝑝̂ + 𝑠1ℎ1𝑝2 − 𝑠1𝑝3 + 𝑠2𝑧̂2 − 𝑠2ℎ3𝑧̂2 + 𝑠1ℎ1𝑠2ℎ3𝑧̂2 − 𝑠1𝑠2𝑝ℎ3𝑧̂2 +

𝑠2ℎ3𝑝2𝑧2̂ 

𝑊3 = 𝑠1𝑠2ℎ1𝑧̂2 − 𝑠1𝑠2ℎ1ℎ3𝑧̂2 − 𝑠1𝑠2𝑝̂𝑧̂2 + 𝑠1𝑠2𝑝ℎ3𝑧̂2 + 𝑠1𝑠2ℎ1ℎ3𝑝2𝑧̂2

− 𝑠1𝑠2𝑝3ℎ3𝑧̂2                          
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 𝑊4 = 2𝑝̂2, 𝑊5 = 2𝑠1ℎ1𝑝̂2 − 2𝑠1𝑝̂2 − 2𝑠1𝑝̂3 + 2𝑠2ℎ3𝑝̂2𝑧̂2,𝑊6 = 2𝑠1𝑠2ℎ1ℎ3𝑝̂2𝑧̂2 −

2𝑠1𝑠2𝑝̂3𝑧̂2 

 

6.10 Theorem3.  Let (H) and (𝐻0) are satisfied and  

a) If 𝑛 ≥ 0 𝑎𝑛𝑑 (𝑙2 − 3𝑚) ≤ 0, all solution of equation (31) has no real part with 

positive sign for all 𝜏 ≥ 0, and so 𝐺𝐵2
 the point of equilibrium of mathematical 

equation (7)-(9) is stable asymptotic for every 𝜏 ≥ 0. 

b) If either 𝑛 < 0 𝑜𝑟 𝑛 ≥ 0 𝑎𝑛𝑑 (𝑙2 − 3𝑚) > 0, 𝛼1
∗ > 0 𝑎𝑛𝑑 𝑜(𝛼1

∗) ≤ 0𝑠𝑎𝑡𝑖𝑠𝑓𝑦 then 

𝐺𝐵2
 the equilibrium points of the system (7)-(9) is stable asymptotic for every 

𝜏𝜖[0, 𝜏𝐵2
).   

c) If all axioms in (b) and 𝑜′(𝛼0) ≠ 0 hold, then the system (7)-(9) at 𝐺𝐵2
 occurred a 

Hopf-Bifurcation, when 𝜏 = 𝜏𝐵2
. Similarly at the equilibrium point 𝐺∗, the equation 

(18) becomes, 

𝜆3 + 𝑃1𝜆2 + 𝑃2𝜆 + 𝑃3 + 𝑒−𝜆𝜏(𝑃4𝜆2 + 𝑃5𝜆) = 0                                     (33) 

𝑙, 𝑚, 𝑛 becomes 𝑙 = 𝑃1
2 − 𝑃4

2 − 2𝑃2, 𝑚 = 𝑃2
2 − 𝑃5

2 − 2𝑃1𝑃3, 𝑛 = 𝑃3
2 

respectively and 𝜏𝑖 becomes  

𝜏0 =
1

𝜔0
𝑎𝑟𝑐𝑐𝑜𝑠 (

−(𝑃5𝜔0
2(𝑃2 − 𝜔0

2) − 𝑃4𝜔0
2(𝑃3 − 𝑃1𝜔0

2))

(𝑃4𝜔0
2)2 + (𝑃5𝜔0)2

)            (34) 

𝑃1 = −1 + ℎ1
2 + 𝑠2ℎ3𝑧2

∗, 𝑃2 = 𝑠1𝑧1
∗ + 𝑠2𝑧2

∗ − 𝑠2ℎ3𝑧2
∗ + 𝑠2ℎ3ℎ1

2𝑧2
∗, 𝑃3

=  𝑠1𝑠2ℎ3𝑧1
∗𝑧2

∗ 

        𝑃4 = 2ℎ1
2, 𝑃5 = 2𝑠2ℎ3ℎ1

2𝑧2
∗. 

6.11 Theorem 4 Let (H) and (𝐻0) are satisfied and if 

  

a) If (𝑙2 − 3𝑚) ≤ 0, for every solution of equation (33) have no positive real parts for 

every 𝜏 ≥ 0, and hence 𝐺∗ point of equilibrium for (7)-(9) is stable asymptotic for 

every 𝜏 ≥ 0. 

b) If (𝑙2 − 3𝑚) > 0, 𝛼1
∗ > 0 and 𝑜(𝛼1

∗) ≤ 0 satisfied then 𝐺∗ the point of equilibrium 

of the system (7)-(9) is stable asymptotic for every 𝜏𝜖[0, 𝜏0). 

c) If all axioms stated in (b) and  𝑜′(𝛼0) ≠ 0 satisfied, then the system (7)-(9) at 𝐸∗ 

equilibrium point shows a Hopf-Bifurcation when 𝜏 = 𝜏0.  
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6.12 Numerical Simulation  

Numerical simulation performed with the help of MATLAB software. We choose the 

parametric values for the parameters  

𝑠1 = 1, 𝑠2 = 1 𝑎𝑛𝑑  ℎ3 = 0.58 

     

                                                 Figure 6.1 

For each equilibrium point of the system, the stability areas with respect to variables 

ℎ1𝑎𝑛𝑑 ℎ2 are displayed (see figure 6.1). 

For all these graphs Initial value is fixed (0.41, 0.11,0.11) 

 

Figure 6.2. The system (7)-(9) has stable asymptotic axial equilibrium points 𝐺𝐴 
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Figure 6.3. The axial equilibrium points 𝐺𝐵1 of systems (7)-(9) are asymptotically 

stable.  

Figure 6.4. The system (7)-(9)'s axial equilibrium points 𝐺𝐵1 are stable asymptotic 

points. 
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Figure 6.5. The system (7)-(9) has stable asymptotic axial equilibrium points 𝐺∗. 

Figure 6.6. When 𝜏 = 0.3 < 𝜏𝐴 = 0.757968, the axial equilibrium points 𝐺𝐴of the 

system (7)-(9) are stable asymptotically. 
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Figure 6.7. The axial equilibrium points 𝐺𝐴 of the system (7)–(9) lose stability and 

undergo a Hopf-Bifurcation at 𝜏 = 0.79 > 𝜏𝐴 = 0.75  

Figure 6.8. When 𝜏 = 0.75 < 𝜏𝐵1 = 0.891635 the axial equilibrium points 𝐺𝐵1of 

the system (7)-(9) are asymptotically stable. 



130 
 

 

Figure 6.9. The axial equilibrium points 𝐸𝐵1 of the system (7)-(9) are unstable at 𝜏 =

0.9 > 𝜏𝐵1 = 0.891635 and Hopf bifurcation takes place. 

Figure 6.10. The system's axial equilibrium points E B2 are stable asymptotically at 

𝜏 = 0.75 < 𝜏𝐵2 = 𝑂. 919727. 
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Figure 6.11. The axial equilibrium points 𝐸𝐵2of the system (7)-(9) lose stability and 

undergo Hopf-Bifurcation at 𝜏 = 0.95 > 𝜏𝐵2 = 0.919727 

Figure 6.12. When 𝜏 = 0.79 < 𝜏0 = 0.920973, the system (7)-(9)'s positive interior 

equilibrium points G* are asymptotically stable. 
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Figure 6.13 When 𝜏 = 0.924 > 𝜏0 = 0.920973, the positive internal equilibrium 

points 𝐸∗ of the system (7)-(9) lose their stability, resulting in a Hopf-Bifurcation.    

For the above set of parameters and ℎ1 = 1.1 and ℎ2 = 1.6, 𝐺𝐴(1,0,0) axial equilibrium 

point is stable asymptotic (see figure 6.2). Choose  𝑑1 = .7 𝑎𝑛𝑑 𝑑2 = 1.6 and other 

parameters remain same points  𝐺𝐵2
(0.7781, 0.0000, 0.3070) the boundary 

equilibrium point is stable asymptotic locally (see figure 6.3). If we set ℎ1 =

1.7 𝑎𝑛𝑑 ℎ2 = 0.6, 𝐺𝐵2
(0.7781, 0.0000, 0.3070) the boundary equilibrium point, is 

stable local asymptotic (see figure 6.4). If we set ℎ1 = 0.76 𝑎𝑛𝑑 ℎ2 = 0.6 we observed 

that 𝐺∗(0.7600, 0.0452, 0.2760) interior equilibrium point is local asymptotic stable 

(see figure 6.5). If we set ℎ1 = 1.1 𝑎𝑛𝑑 ℎ2 = 1.6 and delay 𝜏 = 0.3 < 𝜏𝐴 = 0.75, then 

𝐺𝐴(1,1,0) the axial equilibrium point is stable locally asymptotic (see figure 6.6) and 

system (7)-(9) at 𝜏𝐴 = 0.75 showed Hopf-Bifurcation (see figure 6.7). If we set ℎ1 =

1.7 𝑎𝑛𝑑 ℎ2 = 0.6 𝐺𝐵2
(0.7781, 0.0000, 0.3070) the boundary equilibrium points when 

𝜏 = 0.8 < 𝜏𝐵2
= 0.919727(𝐹𝑖𝑔𝑢𝑟𝑒 6.10) and if we take  𝜏𝐵2

= 0.919727 the system 

(7)-(9) showed Hopf-Bifurcation (see figure 6.11). If we take ℎ1 = 0.76 𝑎𝑛𝑑 ℎ2 = 0.6 

then “𝐺∗(0.7600, 0.0452, 0.2760) is stable asymptotic when delay 𝜏 = 0.79 < 𝜏0 =

0.920973 (𝐹𝑖𝑔𝑢𝑟𝑒 6.12) and at 𝜏0 = 0.920973  in the system (7)-(9) Hopf-

bifurcation is observed (see figure 6.13). According to the numerical simulation above, 

the duration of the delay is the smallest when just the system's prey population exists 

and longest when every of the system's species survive i.e., 𝜏𝐴 < 𝜏𝐵1
< 𝜏𝐵2

< 𝜏0 .  

6.13 Conclusion 

Limit cycles arise spontaneously under suitable situations that involve model 

parameters in Valerio Ajrajdi et al [123] prey-predator model. In this paper, we 
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explored a one-prey, multiple predator system with a delay in the prey's logistic growth 

rate and a square root functional response. The system becomes even more stable than 

it was because of the addition of another rival predator [123], and limit cycles don't 

appear in the system by itself.  

(1) The prey population will survive and the predator population will die out if the 

ratio of their mortality rates to the square root of the prey population's carrying 

capacity is larger than the product of their particular conversion efficiency and 

predation rates. The prey population (R) and one of the predator populations 

(𝐷1) survive, and the predator population (𝐷2)  that exhibits a density dependent 

mortality rate goes extinct, if the ratio of the predator's (𝐷1) death rate to the 

product of its conversion efficiency and predation rate is less than the ratio of 

the predator's (𝐷2) death rate to the product of its conversion efficiency and 

predation rate.  

(2) If the predator's mortality rate (𝐷1) to the total amount of its conversion 

efficiency and predation rate falls short of the predator's mortality rate (𝐷2) to 

the total value of its conversion efficiency and predation frequency, both the 

predator and prey populations (𝐷2)  will survive, but the predator population 

(𝐷1) will disappear. 

(3) When the predator's conversion efficiency, predation percentage, and density 

are all combined together, the predator's mortality rate (𝐷1) falls short of the 

prey population's equilibrium point. When the ratio of the predator's mortality 

rate (𝐷1) to the sum of its conversion efficiency and predation rate is greater 

than the square root of one-third of the prey population's available capacity, 

coexistence occurs in the system.  

(4) When the effect of time lag on the system is considered, limit cycles appear for 

all steady state when the time delay exceeds a given limits. 
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