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Abstract

Fixed point theory has always been an inevitable part of mathematical analy-
sis, being a combination of analytical, topological, and geometrical aspects of
mathematics. With vast applications in the fields of mathematics like approxi-
mation theory, game theory, optimization theory, mathematical modeling, graph
theory, and interdisciplinary fields like simulation functions in physics and Nash
equilibrium in economics, to name a few. Apart from numerous applications, a
constructive proof of a fixed point theorem renders an algorithm in the form of
an iterative scheme to find a fixed point of a map. Not only fixed points but also
coincidence points and common fixed points are significant because they are an
extended part of fixed points for a pair of maps. The theory of fixed points in
multivalued maps is as essential as the theory of single-valued maps. Even after
much-acclaimed work in the literature on the existence and uniqueness of fixed
points, many questions remain unanswered since there are numerous examples
known that possess fixed points but do not satisfy some or all hypotheses of the
results in the literature.

The objective of the research work in this thesis is to find a generalized approach
for establishing the existence and uniqueness of fixed points for different contrac-
tion maps as well as non-contractive maps in abstract spaces and to introduce
more generalized metric spaces. Each chapter exhibits fixed point results in vari-
ous abstract metric spaces. Some of these spaces are well known in the literature

while others have been introduced as a result of the research work.

Chapter 1 gives a brief introduction to the research work along with some notations
and definitions used throughout the thesis. The chapter also presents a short

summary giving an overview of each chapter.

Chapter 2 is devoted to fixed point results in orthogonal metric space that are ex-
tended with some generalized contraction maps like orthogonal a-n-G F-contraction,
orthogonal a-type F-contraction, orthogonal TAC-type S-contraction, orthogonal
TAC-contraction, orthogonal Suzuki-Berinde type F-contraction, and orthogonal
F-weak contraction. As an application, the existence and uniqueness of the solu-

tion for a first order differential equation are discussed.

Chapter 3 generalizes and unifies the fixed point results in relation theoretic metric
space, briefly written as R-metric space. Using F-weak expansive map, multival-

ued counter part of F-contraction, F-weak contraction, almost JF-contraction,

vii



and a-type F-contraction an attempt is made to extend the literature of fixed
point results in R-metric space. Many examples as well as a potential applica-
tion of determining the existence of a solution for a non-homogeneous, non-linear
Volterra integral equation endowed with a binary relation R are included in this

chapter, along with stability results.

Chapter 4 presents a novel class of metric space termed as C*-algebra valued R-
metric space, which generalizes C*-algebra valued metric space. We also introduce
the idea of C*-algebra valued R-contractive map and corresponding fixed point
results, as well as the existence and uniqueness of coincidence and common fixed
points using the Picard-Jungck iteration process. The results are generalized
enough to derive fixed point, coincidence point, and common fixed point results
in C*-algebra valued ordered metric space, C*-algebra valued metric space, and
metric space. As an application, the results obtained are applied to C*-algebra

valued metric space endowed with a directed graph.

Chapter 5 emphasizes to introduce the idea of bipolar R-metric space that ex-
ists by associating an arbitrary binary relation R with bipolar metric space and
to illustrate some fixed point results. The notions of Fx-contractive map and
Fr-expansive map are presented, and fixed point results are discussed in these
settings. Furthermore, for certain specified conditions, the results reduce to a
novel fixed point result in bipolar metric space and extends some well known

results in the literature.

kokokokskosk
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Chapter 1

General Introduction

1.1 Introduction

The theory of fixed point analysis has always been an integral part of mathemat-
ical analysis. This field of research has grown in prominence over the last century
and a half being an excellent combination of algebraic, topological, and geometri-
cal aspects of mathematics. For a metric space (U, d) and a self-map w : 0 — U,
a point o € U is c.t.b a fixed point of w if wo = p. For example, if wo = o*
where w : [—1,1] — [—1, 1], then w has 3 fixed points, which are —1,0 and 1. The
following graph shows the fixed points obtained:
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Figure 1.1: Fixed points of function wp = 03.



The result that establishes the existence of at least one fixed point, subject
to certain conditions, is known as a fixed point theorem. Picard (1890) intro-
duced an iterative scheme under which a sequence {4 }wen in (p, o) defined by
Owi1 = Wow ¥V w € N, where w : [p,0] — (—o00,+00) is continuous and differ-
entiable on (p, o) and |w'o| < L for some L < 1, converges to a solution of an
equation wp = p. The manner in which this sequence was described constituted
one of the turning points in the history of fixed point analysis and it is frequently
used to demonstrate the existence and uniqueness of a fixed point. Brouwer (1911)
explored the topological aspect of fixed point theory with his result which states
that “Every continuous map from a unit ball of R™ into itself has a fixed point.”
Banach (1922) came up with a classical and the most celebrated principle called
“Banach Contraction Principle” for the existence and uniqueness of the fixed
point of a self-map on a complete metric space along with a contractive condi-
tion. Thereafter, numerous generalizations of the Banach Contraction Principle
have been presented by the researchers (for reference, see Kannan (1968), Ciri¢
(1974), Czerwik (1993), Rhoades (2001), Ran & Reurings (2004), Long-Guang &
Xian (2007), Berinde (2008), Wardowski (2012), Ma et al. (2014), Wardowski &
Dung (2014), Alam & Imdad (2015), Sintunavarat (2016a), Gordji et al. (2017),
Karapmar et al. (2019), Khalehoghli et al. (2020), Nazam et al. (2021)). Another
class of map was given by Wang (1984) which initiated the idea of expansive map
and established some fixed point results in this setting and henceforth, many re-
searchers came up with the generalized expansive condition and proved certain
fixed point results in various spaces (see Khan et al. (1986), Daffer & Kaneko
(1992), Imdad & Khan (2004), Mustafa et al. (2010), Shahi et al. (2012), Gérnicki
(2016), Imdad & Alfagih (2018), Gubran et al. (2019), Yesilkaya & Aydin (2020),
Rossafi et al. (2021), Gupta et al. (2022)). All fixed point results discussed till
now are for single-valued self-map. However, the research in the framework of a
multivalued map, also addressed as a set-valued map, was initiated by Kakutani
(1941) and Wallace (1941) wherein the former extended the fixed point results of
Brouwer (1911) for a set-valued map and the later studied the fixed points for
trees, which in a major sense is related to finding the fixed point of a multivalued
map. Strother (1953) after extensively studying continuity in Strother (1951) an-
swered an open question concerning the fixed point results for a multivalued map.
The research on the multivalued maps and their fixed point results was continued
by Markin (1968) and by the most renowned paper of Nadler Jr (1969). Extensive
literature in this area has thrived since then (see Plunkett (1956), Covitz & Nadler
(1970), Lim (1985), Czerwik (1998), Rus et al. (2003), Feng & Liu (2006), Klim



& Wardowski (2007), Tahat et al. (2012), Ali & Abbas (2017), Chifu & Petrugel
(2017), Ghanifard et al. (2020), Nazam et al. (2021), Abbas et al. (2021), Debnath
(2022) and references cited therein).

The immediate application of some of these fixed point theorems is on linear and
non-linear systems of equations, integral equations as well as on differential equa-
tions. Many non-linear problems can be converted to an equivalent fixed point
form and eventually, the existence of a solution can be ascertained using a suitable
fixed point tool. Thus, one can conclude that fixed point analysis has a wide scope
of research in non-linear analysis (see Joshi & Bose (1985), Zeidler & Wadsack
(1993)). Furthermore, the majority of developments in fixed point theory have
been published in various monographs (see Goebel & Kirk (1990), Kirk & Sims
(2001), Agarwal et al. (2001), Granas & Dugundji (2003), Agarwal et al. (2009),
Almezel et al. (2014), Subrahmanyam (2018)). The profoundness of this theory
is also due to its vast application in many other fields of mathematics like ap-
proximation theory, game theory, optimization theory, mathematical engineering,
etc., besides various other interdisciplinary applications in the fields of economics,

electronics, physics, and biology.

1.2 Notations and Definitions

This section gives a brief introduction to the research work along with some nota-
tions and definitions used throughout the thesis. To begin with, we define metric

space.

Definition 1.2.1. (Fréchet (1906)) On a set O, we say a map d : UxU — [0, +00)
is a metric if V 0,¢,0 € U, the following are satisfied:

(i) d(o,s) =0 iff o=¢;
(i) d(e,<) = d(s, 0);
(iii) d(e;<) < d(o, o) + d(0,).
Then, (U, d) is c.t.b a metric space.

Definition 1.2.2. (see Rudin (1991)) For a vector space ©, over the field F,

norm is a function |.|| : © = R s.t:

(i) lle+ <l < llell +llsll;



(i) ||koll = |Klllell;
(i) |lol| >0 if 0 # 0;
Vo,ceOand k € F.

Definition 1.2.3. (see Rosen (1991)) A binary relation ‘<X’ is c.t.b a partially

ordered relation on set U if it satisfies the following:
(i) reflexive, that is, 0 < 0V 0 € U;
(ii) antisymmetric, that is, if 0 < ¢ and ¢ = ¢ then p =< V o,¢ € U;

(7i) transitive, that is, if 0 2 0 and 0 < ¢ then p < ¢V 0,¢,0 € U.

Throughout the thesis, let B denote a unital C*-algebra with the unit Iy and zero
element 0. Let B, = {vreB: 0y <viandB ={veB: v/ =vv Vv € B}

Definition 1.2.4. (Ma et al. (2014)) On a set U, let d: U x G — B, be a map
s.tV o,6,0 € O, the following holds:

(i) 05 =< d(0,);
(ii) d(o,<) = b iff 0 =<
(i) d(o,<) = d(s, 0);
(iv) d(e,s) = d(e,0) + d(,).
Then, (Ug,d) is c.t.b a C%,-metric space whereas d is a C%, -metric.

Lemma 1.2.1. (Douglas (2012), Murphy (2014)) In B, the following holds:

1
(1) forv € By where ||v| < 5 then Iy — v is invertible and ||v(Ig — v) 7| < 1;
(2) forv,v € B with v,V = 0y and v'v = vv', then v'v = Og;

(3) Ifv € B and v*,v™* € B where v* = v*™* = 0y and Iy — v € IB%’Jr 1s invertible
operator, then
(I —v) v = (Ig — v) '™,

Definition 1.2.5. (Gordji et al. (2017)) A set U with a binary relation ‘L’
is ¢.t.b an orthogonal set (denoted by L-set) when 3 oy € U implies either
[0 LooVo€eU] orlog LoV oeeU|. The element gy is called an orthogonal ele-

ment.



Definition 1.2.6. (Gordji et al. (2017)) For an orthogonal set (U, L), a sequence
{0w }wen C U is c.t.b an orthogonal sequence (denoted by L -sequence) when
either [0 L 0mi1 Vw € N] or [0pi1 L 0o V@ € NJ.

Definition 1.2.7. (Gordji et al. (2017)) A set U along with metric d and a binary

relation ‘L’ is c.t.b an orthogonal metric space (written as (U,d,)), if:

(i) (U,d) is a metric space;
(ii) (O, L) is an orthogonal set.

Definition 1.2.8. (Gordji et al. (2017)) On an orthogonal metric space (U,d),
let Q: 0 — O be a self-map. Then,

(i) Q is c.t.b orthogonally continuous (denoted by L-continuous) if for
every L-sequence { 0w twen With 0 — 0 tmplies Qo — Qo asw — +o0o. In
addition, Q) is L -continuous on entire space O if € is orthogonally continuous

at every point o € U.

(ii) orthogonal metric space (U,dy) is c.t.b a complete orthogonal metric
space (denoted by L -complete), if each L-Cauchy sequence in U is conver-

gent in O.

(iii) € is c.t.b orthogonal preserving (written as L-preserving) if o L ¢ im-
plies Qo L Q¢ and € is weakly L-preserving if o L ¢ implies Qo L Qg or
Q¢ L Qop.

Definition 1.2.9. (Mutlu & Giirdal (2016)) For two non-empty sets O and A, a
map d: O x A = [0,+00) is c.t.b a bipolar metric if the following are satisfied:

(i) d(o,s) =0 iff o=cV (0,5) € U x A;
(i) d(o,<) =d(s,0) ¥V o,c € UNA;
(iii) d(o1, ) < d(01,61) + d(02,61) + d(02,52) V 01,02 € U and 61,6 € A.

The triplet (U, A,d) is c.t.b a bipolar metric space.

Definition 1.2.10. (Mutlu & Giirdal (2016)) In a bipolar metric space (U, A, d)

(i) a point is c.t.b left, right or central point depending if it belongs to U,
A or U N A respectively.



(7i) a sequence ({0m},{Sw})wen on the set U x A is c.t.b a bisequence on
(U,A,d).

(1i7) a bisequence ({0w}, {Sw})wen on the set U x A is c.t.b convergent if both
the sequences { 0w twen and {sxtwen are convergent to respective right and
left point. In addition, if both {0m twen and {Sw twen converge to the same

centre point, then the bisequence ({0x}, {sw})wen is c.t.b biconvergent.
Definition 1.2.11. (Lipschutz (1964)) On U, a relation R is s.t R C U x U.

Definition 1.2.12. (Kolman et al. (1996)) For a subset Z of U, we say a relation
R is restricted to Z (denoted by R|z) when R = RN Z?.

Definition 1.2.13. (Alam & Imdad (2015)) For a relation R, we say 0, € U
are R-comparative (denoted by [p,s] € R) if either (o,5) € R or (s,0) € R.

Definition 1.2.14. (Khalehoghli et al. (2020)) For a relation R, a sequence
{0w}wen C U is c.t.b an R-sequence if (0, 0wi1) € RY w € N.

Definition 1.2.15. (Khalehoghli et al. (2020)) A metric space (U, d) together with

a relation R is c.t.b an R-metric space. It is usually written as (U, dg).

Definition 1.2.16. Let (U, dr) be an R-metric space and let ¢ : U — U, then

(1) (Alam & Imdad (2015)) a relation R is c.t.b dr-self-closed on U if for an
arbitrary R-sequence { 0w }wen C U s.t 1_1)rJrr1 0w = 0 implies existence of a

sub-sequence {0, tren C {0 }wen 8.t [0w,,0] € RV k€ N.

(7i) (Khalehoghli et al. (2020)) (U,dg) is c.t.b R-complete if each R-Cauchy

sequence is convergent.

(iii) (Khalehoghli et al. (2020)) ¢ is c.t.b R-continuous at o € U if for an
arbitrary R-sequence {0, }neny C U with 1_1)2(1 0, = 0 implies 1_131 OO0 =
po. Also, ¢ is c.t.b R-continuous on U if V o € U, ¢ is R-continuous at o.

(iv) (Khalehoghli et al. (2020)) ¢ is c.t.b R-preserving if for every (o,5) € R
implies (po, ¢s) € R.

Remark 1.2.2. (Khalehoghli et al. (2020)) Every continuous map is R-continuous

but not conversely.



Example 1.2.3. Consider O = (—o00,0] with usual metric d. Let the relation R
on U be defined as (o,s) € R iff 0> = ¢*>. Then, (U,dr) is an R-metric space.
Define a self-map ¢ on U s.t

gb(g)z{ 0 foro € U N Z;

—0° otherwise.

Then, ¢ is an R-continuous map on G but it is discontinuous at every non-integer

points of U.

Definition 1.2.17. (Wardowski (2012)) Denote § as a class of all functions F :
RT — (—00,400) s.t the following holds:

(F1) for o, € RY, where o < ¢ implies F(0) < F(s);

F2) for each sequence where € R" s.t
( ) f q Ow fweN, Ow

lim o, =04 lim F(on)=—00;

w—r+00 w——+00

(F3) for some v € (0,1), we have ¢ € RT s.t lim ¢"F(s) = 0.

¢—0t

In addition to the above, we denote § = {F : Rt — (—o00,+00) s.t F satisfies
(F1), (F2), (Fs), (Fa)}, where (F4): F(inf U) = inf (F(U)) ¥ U € R* with inf U >
0.

Definition 1.2.18. (Piri & Kumam (2014)) Denote Ap, the family of all maps
F:R" — (—o00,400) s.t:

(F1) for o,¢ € RY if o < < implies F(0) < F(s);
(Fy) inf F' = —oo;
(F3) F is continuous in R*.

Lemma 1.2.4. (Secelean (2013)) Define F' : Rt — (—o00,+00) as an increasing
map and let {0x}wen be a sequence s.t 0, € RT YV ww € N. Then, the following
holds:

(i) If F(o0n) — —o0 implies pn — 0;
(it) If inf F' = —oco and o — 0 implies F(0n) — —00.

7



Lemma 1.2.5. (Gérnicki (2016)) If w : U — U is a surjective map on metric

space (O, d), then w has a right inverse.

Definition 1.2.19. For a metric space (U, d), a self-map w : G — U is c.t.b

(i) (Samet et al. (2012)) an a-admissible map, where o : G — [0, +00), if
for each o, € U with 1 < a(p,s) implies 1 < a(wp, ws).

(ii) (Salimi et al. (2013)) an a-admissible map w.r.tn, with a,n: 0> — R,
if for o, € U with n(p,<) < a(p, <) implies n(we, ws) < a(wo, ws).

(iii) (Alizadeh et al. (2014)) a cyclic (&, B)-admissible map, with &, : U —
R-&-’ Zf

(a) For any o € G, 1 < &(p) implies 1 < B(wo);
(b) For any o € U, 1 < (o) implies 1 < &(wo).

(iv) (Sintunavarat (2015)) a weak a-admissible map, where o : B> — RY, if
for each o € U with 1 < a(p,wp) implies 1 < a(wp, wwp).

(v) (Sintunavarat (2016b)) an a-admissible map type S, where o : 5 — R
and real number s with s > 1, if for p,¢ € U we have s < oo, ) implies s <
a(wo, ws).

(vi) (Sintunavarat (2016b)) a weak a-admissible map type S, where a :
0? — RT and real number s with s > 1, if for o € U we have s <

a(o,wo) implies s < a(wp, wwp).

(vii) (Mongkolkeha & Sintunavarat (2018)) a cyclic (&, [)-admissible map
type S, with &, : O — R and real number s where s > 1, if:

(a) For any o € U, &(o) = s implies 5(wo) = s;

(b) For any o € U,B(p) > s implies &(wp) > s.

Remark 1.2.6. Following are few observations from (Sintunavarat (2016b)):

(i) Each a-admissible map is weak c-admissible map.
(i) Fach a-admissible map type S is weak a-admissible map type S.
(iii) The class of a-admissible map is different from «-admissible map type S.

8



Remark 1.2.7. The family of cyclic (&, 5)-admissible maps is different from the
family of cyclic (&, B)-admissible maps type S (see Mongkolkeha € Sintunavarat
(2018)).

Definition 1.2.20. (Hussain & Salimi (2014)) Denote &, the set of all maps
G : [0,400) X [0, 400) X [0, 400) X [0, +00) = [0, +00) 5.tV hy, ho, h3, by € [0, +00)
with hy.hy.hg.hy = 0 we have o > 0, s.t

G(hh h27 h37 h4) — @

Example 1.2.8. Let G(hy, hy, b, hy) = p.efmh2hshs) yhere o > 0 and K is a

non-negative real constant, then G € &.
Definition 1.2.21. (Ansari (2014)) A function C : [0,+00) x [0, +00) — R is
c.t.b a C-class function if C is continuous map s.t:

(i) C(oss) < o5

(ii) C(o,s) = o implies either o =0 or ¢ = 0;

V (0,¢) € [0,+00) x [0, +00).
Throughout the thesis, the family of C-class function is denoted by €.

Define a functional D : N (U) x N(U) — [0,+00) : D(U,V) = inf{d(p,0) s.t p €

U, 0 € V} and Pompeiu-Hausdorff functional (see Chifu & Petrusel (2017))

H: N(O)xN (V) — [0, +o0)U{+o0} s.t H(U,V) = max{supd(p,V),supd(c,U)}.
peU oeV

The upcoming lemma can be obtained from the result given in (Czerwik (1998))

for b-metric space.

Lemma 1.2.9. For a metric space (UO,d), D(p,V) < d(p,0) + D(0,V) V p,0 €
CandV COU.

1.3 Chapterwise Summary

This section of the chapter provides an overview of the work done in each chapter
of the thesis.

In Chapter 2, we have introduced generalized contraction maps like orthogo-

nal a-n-GF-contraction, orthogonal a-type F-contraction, orthogonal TAC-type
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S-contraction, orthogonal TAC-contraction, orthogonal Suzuki-Berinde type F-
contraction, and orthogonal F-weak contraction together with some of their weaker
versions in orthogonal metric space. Further, the results are applied to establish
the existence and uniqueness of the solution for first order differential equation.
The fixed point results discussed are proper extensions of some of the results

present in the literature.

In Chapter 3, we extend the fixed point results in the relation theoretic metric
space introduced by Alam & Imdad (2015), briefly written as R-metric space, by
putting forward the fixed point results using F-weak expansive map followed by
the fixed point results that are subjected to contraction conditions corresponding
to the multivalued counterpart of F-contraction, F-weak contraction, almost F-
contraction and a-type JF-contraction in R-metric space. Next, we discuss the
existence of the solution for a non-homogeneous, non-linear Volterra integral and

its stability using the idea of Hyers-Ulam stability.

Chapter 4 introduces the notion of C%, R-metric space which generalizes the class
of C%y-metric space. The first section introduces the idea of C%; R-contractive
map and C’,R-metric space along with some fixed point results which, in turn,
generalizes and integrates some well-known outcomes in the literature. The second
section discusses the existence and uniqueness of coincidence points and common
fixed points in C;,R-metric space using the technique of Picard-Jungck iteration.
Here, the results proved are for a pair of self-maps in the €%, R-metric space which
is generalized enough to deduce coincidence and common fixed point results in
C"y-ordered metric space, (%, -metric space, and metric space. As an application,
the coincidence and common fixed point results are applied on C’y,-metric space

endowed with a directed graph.

In Chapter 5, on associating an amorphous binary relation R with the bipolar
metric space, we introduce the notion of bipolar R-metric space together with
the fixed point results. Further, we introduce the notions of Fr-contractive map
and Fr-expansive map. The results provides a fixed point result in the setting of
Fr-contractive map followed by fixed point deductions with Fr-expansive map
in bipolar R-metric space. Under a specific condition, the results are reduced to a
novel fixed point result in bipolar metric space with respect to an expansive map

and to some result of literature, thus substantiating their utility.

The thesis ends with the bibliography followed by the list of publications, paper
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presented in conferences, and workshop attended.
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Chapter 2

Fixed Point Results in
Orthogonal Metric Space

2.1 Introduction

Gordji et al. (2017) gave the notion of orthogonal sets and subsequently, orthogo-
nal metric space and proved the Banach fixed point result in this space. Over the
period of time, number of authors have deduced fixed point results in an orthogo-
nal metric space (for reference, see Ramezani & Baghani (2017a,b), Ahmadi et al.
(2018), Senapati et al. (2018), Kanwal et al. (2020), Sawangsup et al. (2020), Yang
& Bai (2020), Beg et al. (2021), Chandok & Radenovié (2022), Gnanaprakasam
et al. (2022)).

In this chapter, we generalize the contraction maps in an orthogonal metric
space and associated fixed point results, which are inspired by the previous work.
The contraction maps like orthogonal a-n-GJF-contraction, orthogonal a-type F-
contraction, orthogonal TAC-type S-contraction, orthogonal TAC-contraction,
orthogonal Suzuki-Berinde type F-contraction, and orthogonal F-weak contrac-
tion together with some of their weaker versions are discussed. Also, various
fixed point results owing to these generalized contraction conditions are proved,
which indeed extends the results given in Hussain & Salimi (2014), Gopal et al.
(2016), Chandok et al. (2016), Baghani et al. (2016), Hussain & Ahmad (2017)
and Sawangsup et al. (2020). The results are used to show that the solution of
a first order ordinary differential equation exists and is unique. The fixed point

results demonstrated in this chapter are a proper extension of several results in
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the literature. The results proved in this chapter are part of 2.

2.2 Generalized Contraction Maps and Fixed Point
Results

This section is divided into five subsections, each of which introduces generalized
contraction maps in an orthogonal metric space and consequently, explores various

fixed point results owing to these weaker contraction conditions.

2.2.1 Orthogonal a-n-GF-Contraction

Hussain & Salimi (2014) presented the notion of a-n-GF-contraction map. In this
subsection, we first introduce some of the basic definitions including orthogonal
a-n-G F-contraction and orthogonal a-n-GF-weak contraction and later, prove
certain fixed point results under these settings. Further, the definitions and results

are supported by the examples.

Definition 2.2.1. For an orthogonal metric space (U,d)) with two maps a,n :
0? - R*, a self-map Q : U — U is c.t.b an orthogonal o-n-continuous map
(denoted by L-a-n-continuous) if for some o € U and an L-sequence {0z }wen in
O where n(0w, 0w+1) < (0w, 0w+1) ¥V w € N and wl_i)r&(} 0w = 0 implies

lim Qoo = Qo.

w—+00

Example 2.2.1. Let U = [0, +00) equipped with usual metric. Let o L < iff 0. €
{0,s}. Then, (U,d,) is an orthogonal metric space. Let Q : U — U be defined as

(o) :{ 0 0 €0,1);

1/2 otherwise.

Define a,n : 0% — R where

a(o,s) =
¢ 1/4 otherwise,

!Malhotra, A., and Kumar, D. (2022). Generalized Contraction Mappings and Fixed Point
Results in Orthogonal Metric Space. Applied Mathematics E-Notes, 22, 393-426.

2Kumar, D. and Malhotra, A. (2022). Orthogonal F-weak Contraction Mapping in Orthog-
onal Metric Space, Fixed Points and Applications. Filomat. (Accepted)
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and, n(o,s) =1V 0,5 € B. Thus, for a(o,s) = n(o,s), we must have p,s € [0,1).
The sequence {0 }wen, defined as

B 0 w=2m—1,V meN;
b= = 1/2m @ =2m, Vm €N,

is an L-sequence in U and o(0w, 0wt1) = N(0w, 0wt1) ¥V w € N. Also, since
0

0w — 0 as w — +oo then lim Qo, = 0= Q0. Hence, ) is L-a-n-continuous

w—+00
howewver, it is not a continuous map.

Definition 2.2.2. For an orthogonal metric space (G,d,) with two maps a,n :
0?2 = RT, a self-map Q : U — U is c.t.b an orthogonal a-n-GF-contraction
(denoted by 1 -a-n-GF-contraction) if ¥V o,¢ € G with o L g, d; (Qp,8) > 0 and
n(e, Qo) < alo,s), we have

G(d1(0,20), 1 (<, %), d1 (0,9),d1 (s, 0)) + F(di(Q0, %)) < F(di(e,5)),

where G € & and F € §.

Example 2.2.2. Consider U = {0,2,4,...,2% ...} along with usual metric space.
Let o L g iff o.c € {0}. Then, (U,d)) is an orthogonal metric space. Let Q : U —
O be defined as

2m=L for o = 2" where m € N — {1};
Qo) =
0 o € {0,2}.

Define a,n : U? — R* as,

alo,s) =
(@9) 5/2 otherwise,

{ 1 0 €{0,2};

and,

/2 o0e€{0,2};
n(o,s) = {

B 1 otherwise.

Now by above, we have

(i) for d(Q0,Q) > 0, we must have either o0 € {0,2} and ¢ = 2™ where
m € N— {1} or p = 2" where m € N— {1} and < € {0,2}.

(ii) for o L <, either o =0 or¢ = 0.
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Thus, for (i) and (ii) to hold together, we have either o = 0 and ¢ = 2™ where
m € N—{1} or p =2™ where m € N — {1} and ¢ = 0.

Consider o =0 and ¢ = 2™ where m € N—{1}. Then for such choice of o and s,
we have n(p, Qo) < alo,s). So for F(u) =In(u) and p = 0.5, we have

G(d1(0,R0),d1 (s, %), d1(0,2%),di (s, 20))+F (A1 (Q0,2%)) = p+In 2" (2.1)
and,
F(di(e.s)) =In(2™). (2.2)
Thus from (2.1) and (2.2), we obtain
G(dL(e.Q0),d1 (s, %), du(e, %), du(s, 0)) + F(dL(Q0,2%)) < F(dule,)).

Hence, ) is L-a-n-GF-contraction on U.

Definition 2.2.3. For an orthogonal metric space (U,d,) with two maps a,n :
0? — R", a self-map Q : U — U is c.t.b an orthogonal a-n-GF-weak con-
traction (denoted by 1-a-n-GF-weak contraction) if ¥ 0,6 € U with o L «,
d; (Q0,9) >0 and n(p,0) < a(p,s), we have

G(dL (0, Q0),dL(s,Q5), L0, 96),dL(s, Q0)) + F(di(Q0,0))

s f<max{di(@, ), d1 (0, 90), du (5, %), L@ ) T (6, 00) }>

2

where G € & and F € §.

Remark 2.2.3. From the above definitions, we can conclude that every 1 -a-n-

GF-contraction is an L -a-n-GF-weak contraction.

Theorem 2.2.4. For (U,d, ) an L-complete metric space with oy as an orthogonal
element, suppose G € & and F € §. Let a,n : 0> = RT and Q : U — U be a
self-map s.t:

(1) Q is L-preserving;
(1) Q is a-admissible map w.r.t n;

(III) 3 0y € U s.t n(00, Q00) < (00, 200);

(IV) Q is L-a-n-continuous;
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(V) Qs L-a-n-GF-contraction.

Then, ) possesses a fized point. In addition, if V o, € U s.t o L g, Qo = p and
Q¢ = ¢ implies n(0, 0) < a(p,<), then Q) possesses a unique fived point.

Proof. Consider {04 }wen be a sequence in U where ¢,11 = Qo = Q% g, for
each @ € N. Since (g9, 200) < (00, Q00), so using a-admissibility of Q w.r.t ,

we get
(o1, 02) = n(Q00, ¥ 00) < (Qoo, P 00) = o1, 02),
repetitive use of a~admissibility of 2 w.r.t n, we obtain

N(0w-1, 0x) < (0m-1,0=) YV weN.

Also, as 9o, Q09 € U where (U, L) is an L-set then the repeated use of | -preserving
property of €2, gives

(0w 1 L oo VweN] or [0gn L 0w 1 VweN]
Using contractive property of €2, we get

G(d1(0m1,2001),d1 (0=, 202), d1 (051, 20=), d1 (02, 20w1))
+f<dL<QQw—l> QQw)) < ]:<dL(Qw—17 Qw)>' (2.3)

Since, we have

d1 (0w 0w+1)-d1 (01, 0)-A1 (015 0w+1)-d1 (0w, 0) = 0,
sodp>0,s.t

G(d1 (0w 0w+1), d1(0w-1; 0), A1 (01, 0m41): A1 (0w, 02)) = - (2.4)
On using (2.4) in (2.3), we obtain

£ + ./T"(dJ_(QQw—la ng))
that is, F(d, (0w, 0w+1))

Fldi(0w-1,02)),
F(di(0w1,0x)) — ¢
F(di(0m—2,0c-1)) — 2¢
< F(di(eo, 01)) — wp. (2.5)

INCINCIN N
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Taking limit as @w — +o00 in (2.5) and by using (F,) property of F, we have

lim d) (0w, 0wsr1) = 0. (2.6)

w——+00

Further, by (F3) property of F, 3 some 0 < v < 1, s.t

lim (1 (0 0t1)) Fd1 (02, 041)) = 0. (2.7)

w—r+00
Using (2.6) and (2.7) in (2.5), we get

v

(A1(0m: 0m41)) (F(di(0m 0211)) = F(di(00, 1)) € =@ (d1 (0w, 0m41)) <O,

On letting @w — +o00 in above, we have lim w(dL(Qw, gwﬂ)>7 =0. So, dw, €

w—+00
N, s.t

Y
w(dJ_(Qwv Qw-‘rl)) < 1 v w 2 wo,

implies  d (0w, 0my1) < p—y Vw 2> wo.

Now, for w* > w > wy and using triangle inequality, we obtain

g} +o0 oo q
d1 (0w, 05) < Z d1(0i, 0i41) < ZdL(Qu 0i+1) < Z i

= =1 =1

+oo
As 0 < v < 1, so convergence of ;m implies {0z }wen is an L-Cauchy

sequence and since U is L -complete, we have l_1>IJrrl 0w = . Therefore, by L-a-n-

continuity of 2, we get

lim Qo, = lim g,y = Qo,

w——+00 w——+00

that is, o = Qop.

Thus, €2 possesses a fixed point. Next, let ¢ be s.t {2¢ = ¢ and p L ¢ then by given
condition 7(g, 0) < a(0,¢). On using L-a-n-GF-contraction of  over ¢ and ,

we obtain

G(dL(0.Q0). du (s, %), d1(0,2%),di (. Q0)) + F(d1(Q0.2%)) < F(du(0:5))-

Since,
d1(0,9Q0).d(s,9%).d1(0,96).dy (s, Q0) =0,
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so dp>0,s.t

G(d1(0,00),d1(5,9%),d1(0,9%),d1(s,Q0)) = p.
Therefore,

p—’—‘F(dL(QQ, Q§)> < F(dL(Qy g))a
implies ¢+ F(di(o,5)) < F(dilos)),
that holds only if o = ¢. Hence, 2 possesses a unique fixed point. n

Example 2.2.5. Consider the orthogonal metric space and L -a-n-GF -contraction
map §2 defined in Example 2.2.2, then

(i) (U,dy) is L-complete: Suppose {0z }twen be any L-Cauchy sequence in U.
Then, we have a sub-sequence {0z, } of {0w} s.t 0w, =0V k > 1, that is,
0w, — 0 as w — 400. Since this happens with any L-Cauchy sequence in

U, so we have {0 }wen convergent in U.
(ii) Q is L-preserving: Since 0 L ¢V ¢ € U, then Q0 =0 L QcV¢eU.

(7ii) Q is a-admissible w.r.t n: From the definition of a, n and 2, we can con-

cluded that € is a-admissible map w.r.t 7.

(iv) Qis L-continuous: For any convergent L-sequence {0 }wen, we have g —
0 as w — +o00. Then, Qor — 20 =0 as w — +o00.

Since all the hypotheses of Theorem 2.2.4 hold, so §) possesses a fized point viz.
0=0.

Theorem 2.2.6. For (U,d, ) an L-complete metric space with oy as an orthogonal
element, let G € & and F € §F. Let a,n: U = R* and Q: U — U be a self-map

s.t:

(1) Q is L-preserving;
(1) Q is a-admissible map w.r.t n;
(1I1) 3 00 € U s.t (00, Q200) < (00, 200);
(IV) Q is L-a-n-continuous;
(V) Qis L-a-n-GF-weak contraction.
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Then, ) possesses a fized point. In addition, if V 0,6 € U s.t o L ¢, Qo = p and
Q¢ = < implies n(p, 0) < a(p,s), then Q possesses a unique fized point.

Proof. Working on the lines of Theorem 2.2.4, we obtain an L-sequence {0 }wen

in U, s.t
G(dL(0m-1,0001),d1(0m, 20x), dL(0m-1,20), d1 (0, Q0e-1))

+ F(d1(Q0m1,00x)) < f(maX{dL(Qw_l, 0=), A1 (051, Q205-1),

dy (0m-1,€20%) + d1 (0, 205-1) }) (2.8)

d1 (0w 20z), 5
Since, we have
d1 (0w, 0w+1)-d1(0m-1, 0)-d1 (051, 0m+1)-d1 (0m, 0z) = 0,
so 3 p > 0, that gives
G(d 1 (0w 0w+1), d1(0w-15 0); A1 (01, 0w 41): A1 (0w, 0)) = - (2.9)

On using (2.9) in (2.8), we get

% + ‘F(dl(Qwala QQw))

dy1(0m-1, 011 })

< F maX{dL(Qw_l, 0),d1 (0 Omt1), 5

dJ.(walu Qw) + dJ_(Qwa Qw+1>

]—"(max{dL(Qw_l,Qw)vdi(QmeH)v 2 }>

N

maX{dJ_(le, Qw): dl(@wa Qerl)}) .

Case (i): Let maX{dL(Qw_l, 0w), d1 (0w, Qw+1)} = d) (0w, 0w+1), then

% + F(dL(Qmw Qw—l—l)) < JT:(dJ_<Qw7 Qw+1))7
which is not true for any o > 0.

Case (11) Let max{dj_<gw—17 Qw)a dJ_(Qwa Qw+1)} = dJ_(Qw—la Qw)a then

o+ F(dL(Qmw Qw+1)) < F(di(0w-1,0=)),
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thus, F(dL(0e: 0ms1)) < F(di(0mo1,02)) — 9
= F(di(0m-1,0%)) — 20 < -+ < F(di(00, 01)) — wp.

The result now follows on the lines of Theorem 2.2.4. O

Remark 2.2.7. In the upcoming result, we exclude the condition of L -c-n-continuity

of Q1 and instead consider a weaker condition.

Theorem 2.2.8. For (U,d}) an L-complete metric space with oy as an orthogonal
element, let G € & and F € §. Let a,n: U = RY and Q : U — U be a self-map
s.t:

(1) Q is L-preserving;
(II) Q is a-admissible map w.r.t n;
(1II) 3 00 € U s.t (00, 200) < (00, 200);

(1V) If{0w}wen is an L-sequence in U 5.t 0(0w, 0wt1) < (0w, 0my1) and 0 — 0
as w — +00, then

(0o LoV @ or [0l ogV x|
and,

1(Q0w, V0m) < (0w, 0)] or Q%0 Vom) < a(Qos,0)] V@ €N;

(V) Qs L-a-n-GF-contraction.

Then, 2 possesses a fixed point. In addition, if for each o,¢ € U with o L g,
Qo = p and Qs = < implies (o, 0) < a(p,s), then Q possesses a unique fixed

point.

Proof. Working on the lines of Theorem 2.2.4, we obtain an L-sequence {04 }wen
in U s.t

N0z, 0mt1) < 0z, 0w+1) and  lim on = p.

w—r—+00

Here, we say that ¢ is a fixed point of €2 in U. By the given condition, we have

0w LoVweN] or [0l o, VweN]
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and,

[U(Qw+17 Qw+2) < a(gw+1, Q)] or [U(Qw+2, Qw—i—S) < OZ(Qw+2, Q)] VweN.

Thus, 3 a sub-sequence {o,,} of {0z}, s.t

1(0w,, 0,) < (0w, 0).

Since, ) is |-a-n-G F-contraction, we obtain

F(di(Q0w,Q0)) < G(di(0m,, Q0z,),d1(0,20),d1 (0., ),
d1(0,920=,)) + F(d1(Q0=,,Q0))

< -F(dJ_(wag))?
that is, F(d|(Q0w,,Q0)) < F(di(0s.,0)).

From (F;) property of F, we have

1 (Q0w,,20) < d1 (0. 0)- (2.10)

Letting s — +oo in (2.10), gives d, (0, 20) = 0. Thus, €2 possesses a fixed point.

Further, the uniqueness of fixed point follows on the lines of Theorem 2.2.4. [

Theorem 2.2.9. For (U,d, ) an L-complete metric space with gy as an orthogonal
element, suppose G € & and F € §. Let a,n: 0> = RT and Q : U — U be a
self-map s.t:

(1) Q is L-preserving;
(1I) Q2 is a-admissible map w.r.t n;
(111) 3 0o € U s.t (00, 00) < (20, Q00);

(1V) If{0w}wen is an L-sequence in U 5.t (0w, 0w+1) < (0w, 0+1) and 0o — 0
as w — +00, then

[0 LoV @] or [ol 0xVa]
and,

(0w, P 0) < a(Qow, 0)] or N(Q%0m, P 0m) < a(QPox, 0)] V@ €N;
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(V) Qis L-a-n-GF-weak contraction.

Then, £ possesses a fixed point. In addition, if for each o, € U with o L g,
Qo = o0 and Q¢ = < implies (o, 0) < a(o,s), then Q possesses a unique fized

point.

Proof. Working on the lines of Theorem 2.2.8, we obtain a sub-sequence {g,} of
an L-sequence {0z} with 9(0z,,20s,) < a(0z,, 0), st

F(di(Q0w,Q0)) < G(di(0m, Q0z,),d1(0,20),d1(05.,20),d1 (0, 20s.))

<
+ F(d1(Q0z.,20))

F| ma {dJ_ waQ) dJ_(gws7QQws) dJ_(QaQQ)7

N

dL(waQQ> +dL(Q7QQw5)}> (2 11)
From (F;) property of F in (2.11), we have
dJ_(QQwsv QQ) < maX{dL<Qwsa Q)J dJ_(Qwsv ngs)a dJ_(Q7 Q(Q)J
dL(Qwstg) +dL(Qa QQws)} (2 12)
9 . .

Letting s — 400 in (2.12), gives
d1 (0, €20) = 0.

Thus, €2 possesses a fixed point. Further, the uniqueness of fixed point follows on
the lines of Theorem 2.2.4. O

2.2.2 Orthogonal a-type F-Contraction

The idea of a-type F-contraction was discussed by Gopal et al. (2016), and the
results proved were generalization of the contraction results in Ciri¢ (1974), War-
dowski (2012), Wardowski & Dung (2014).

In this subsection, we first discuss some basic definitions and prove fixed point
results related to orthogonal a-type JF-contraction and some of its weaker con-

traction conditions.
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Definition 2.2.4. For an orthogonal metric space (U,d,) and for o : 0 — RT,
a self-map 0 : U — U is c.t.b an orthogonal a-type F-contraction (denoted
by L-a type F-contraction) if 3o >0, F € § with o L ¢ and d;(Qp,€) >0 s.t
Y 0,6 € O, we have

o+ a(0,)F (di(Q0,0)) < F(di(0.9)).

Example 2.2.10. Let U = R*, d,(0,5) = |o—¢| and 0 L < iff either o =0 or¢ =
0. Then, (U,d)) is an orthogonal metric space. Let ) : 5 — U be defined as

o) :{ 3/2 o€ [10,20);

0 otherwise.

Let a : U2 — [0,+00) be defined as ao,s) = 3/2 V¥ 0,5 € U. Define F(u) =
In(u). Ford, (Q0,9¢) >0 and o L < to hold simultaneously, we have either o =0
and s € [10,20) or p € [10,20) and ¢ = 0.

Let 0= 0 and < € [10,20). Then,

o+ a(0,0) In(dL(Q0,06)) = o+ ;’ In(d. (0,3/2)) = o + 2111(3/2) (2.13)
and,

n(d.(0,5)) = In(s). (2.14)

From (2.13), (2.14) and for o = 1, we can conclude that 2 is L-a type F-

contraction. The case for o € [10,20) and ¢ = 0 holds on the similar lines.

Definition 2.2.5. For an orthogonal metric space (U,d.) and for a: G — RY,
a self-map Q : O — U is c.t.b an orthogonal a-type F-weak contraction
(denoted by L-a type F-weak contraction) if 3 o >0 and F € § 5.tV 0,6 € U
with 0 L ¢ and d; (Qp,Qs) > 0, we have

o+ a(0,9)F(d1(20,2)) < f<max{di(97 <), d1(0,Q0),dL (s, €),

dy(0,€%) +d¢(§799)}>
> .

Remark 2.2.11. From the above definitions, we can concluded that each 1 - type
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F-contraction is an L-a type F-weak contraction.

Theorem 2.2.12. For (U,d ) an L-complete metric space with s > 1 and gy as
an orthogonal element, suppose F € F. Let a: U?> = Rt and Q : U — U be a
self-map s.t:

(I) Q2 is L-preserving;

(II) Q is weak a-admissible map type S;
(III) 3 some oo € U with s < (09, 200);
(IV) Q is L-continuous;

(V) Q is L-a type F-contraction.

Then, £ possesses a fixed point. In addition, if for each o, € U with o L g,
Qo = o and Qs = ¢ implies s < a(p, <), then Q possesses a unique fized point.

Proof. On defining a sequence {04 }wen in U where 0541 = Qon = Q7T lgy for
each w € N and since gy, 209 € U where (U, L) is an L-set then the repeated use
of L-preserving property of €2, gives

(0w 1 Lo VweN] or [0m L 0w 1VweN],

thus, {0 }wen is an L-sequence in O.
Now, by the given condition a(gg, 01) = (g0, Q200) = s and as Q is weak a-
admissible map type S, we have a(o1, 02) = s continuing, we get a(0n_1, 0w) = S,

and

F(di(0m: 0m41)) = F(d1(Q0m1,002)) < sF(d1(Q0e1,90))
< a0m1,02)F (d1(Q0m1,Q02)).

Using L-a type F-contraction condition of €2 and for p > 0, we get

o + F(di(0m) 0o41)) o+ 5F (d1(Q0w-1, 0z))

o+ a(0m-1, Qw)f(dJ_(Qwala QQw))
F(di(0-1,204)),
F(di(ow1,02)) = ¢
F(di(0m2,051)) =20

EEES f(dl(QO; 91)) — wp. (2.15)

that is, .F(dL(Qwa Qw+1))

INCINCIN NN N
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Taking limit as w — +o0o in (2.15) and by (F3) property of F, we have

lim d) (0w, 0wsr1) = 0. (2.16)

w—+00

And further, by (F3) property of F, 3~y € (0,1), s.t

lim (dL(Qw,Qw+1))7~7:(dL(Qw,Qw+1)> =0. (2.17)

w——+00

From (2.15), we conclude that

(dL(0m: 0241)) (FdL(0m: 0m41)) = F(dil00, 01))) < —(dL(0m: 0m11)) -
(2.18)

On letting w — +o0 in (2.18) and using (2.16) and (2.17), we obtain

lim w(dL(Qw, gwﬂ))7 =0.

w——+00

So, 3 some w; € N, s.t

1
d1 (0w Owt1) < Ty Vw > w.
ot/
Consider w* > w > wy, then by triangle inequality, we obtain

di (0w 0) < di(0ws 0wt1) + A1 (041, Omi2) + -+ -+ AL (0 —1, O+ )
+o0o +o0o 1

< > di(0i,0i01) = BYR

i=1 i—1 ¢

1
As series > 17 7y is convergent, we get {0 }wen is an L-Cauchy sequence and
1
since U is L-complete, so 4 o € U s.t lir£ 0w = o. Further, since €2 is 1-
w—r+00
continuous, we have

lim Qo, = lim o,y = Qo,

w——+00 w——+00

that is, o = Qp.

Thus, ) possesses a fixed point. Next, let ¢ be s.t ¢ = ¢ and ¢ L . Then by
given condition, we obtain a(g,<) > s. Using L-a type F-contraction property

of 2, we have

o+ F(di(Q0.99)) < o+ sF(d1(20.90)) < o+ ale, <) F(d1(20.9))
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g -F(dJ_(Q7 §)),
that is, p+]:<dL(g, q)) < ]:(dL(g, g)) (2.19)
Now, (2.19) holds only if o = ¢. Hence, {2 possesses a unique fixed point. H

Example 2.2.13. The self-map Q) defined in Example 2.2.10 satisfies all hypothe-

ses of above theorem and thus possesses a fized point o = 0.

Theorem 2.2.14. For (U,d ) an L-complete metric space with s > 1 and gy as
an orthogonal element, suppose F € F. Let a: U?> = Rt and Q : U — U be a
self-map s.t:

(I) Q is L-preserving;

(II) Q is weak a-admissible map type S;
(III) 3 09 € U with s < a(go, Qoo);
(IV) Q is L-continuous;

(V) Qs L-a type F-weak contraction.

Then, ) possesses a fixed point. In addition, if for each o,¢ € U with o L g,
Qo = 0 and Q¢ = ¢ implies s < a(p,s), then ) possesses a unique fized point.

Proof. Working on the lines of Theorem 2.2.12, we obtain an | -sequence {0 }wen
in U with a(0w, 0wt1) = s VweN.

F<dL(Qw’ Qw+1)) f(dL<QQw—la ng))
sF(d1(Q0m1,00x))

(01, 0=)F (A1 (01, 20=) ).

NN

Since €2 is L-a type F-weak contraction, so

(@ + f(dL(Qw: Qerl)) g@ + Oé(@wflv Qw)‘F(dJ_(Qwala QQw))
<f<max{dL<lea Qw)v dJ_(wala QQw71)7

dL(Qw—h ng) + di(@ﬁw QQw—l) })

dL(Qwv QQW)J 9

:F<maX{dL<Qw—l7 Qw)7 dL(Qwa Qw+1>a
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dL(Qw—; O+1) })

g}—(maX{dL(wa Qw)v dJ_(Qwa Qw+1>7

dL(Qw—ly Qw) + dl(@wa Qw-i—l) })

2
implies  © + F(di(QW7 Qw+1)) <f<ma><{d¢(gw_1, 0w), d1 (0=, Qw+1)}>~

(2.20)
Case (l) Let maX{dJ_(Qw—la Qw)a dJ.(tha Qw—l—l)} = dl.(@wa Qw+1)7 then by (220)

% + «F(dJ_(QmH Qw—i—l)) < F<dL(Qwa Qw+l))>
which does not hold true for any p > 0.

Case (11) Let max{dJ_(lev Qw)a dJ.(Qwu Qw+1)} = dJ_(wala Qw>7 then by (220>

F(di(0m-1; 0w));
F(di(0m-1,02)) — ¢
F(di(0w-1,0=)) — 2¢

- < F(di(0o, 01)) — wp.

VAN/A

@+}_(dl(gw,9w+1))
that is, ]—“(

dJ.(Qwa Qw+1))

IA

The result now follows on the lines of Theorem 2.2.12. O

Remark 2.2.15. In the upcoming result, we weaken the condition of 1 -continuity
of Q).

Theorem 2.2.16. For (U,d ) an L-complete metric space with s > 1 and gy as
an orthogonal element, suppose F € F. Let a: U> = Rt and Q : U — U be a
self-map s.t:

(1) Q is L-preserving;
(1) Q is weak a-admissible map type S;
(III) 3 some oo € G with s < (00, 200);

(IV) If 3 an 1 -sequence { 0w }wen With A(0w, 0wi1) = S and 0 — 0 as @ — +00,
then a(0x,0) = s and either [o, L oV w € N] or [p L 0 V@ € NJ;
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(V) Qs L-a type F-contraction.

Then, ) possesses a fixed point. In addition, if for each o,¢ € U with o L g,
Qo = o and Qs = ¢ implies s < a(p,s), then Q possesses a unique fized point.

Proof. Proceeding on the lines of Theorem 2.2.12, one can obtain {0 }wen an
1 -sequence where g, — ¢ as @w — +00 and a0, 0w+1) = S. Then, by given

condition we have (0w, 0) = s and either

0w LoVweN] or [0l o,VweN].
Using |-preserving property of €2, we get

Qon L QoVweN] or [QolQo,VweN]

Since €2 is an L-a type F-contraction, so we have

o+ F(d1 (0=, 20))

o + sF(d1 (20w, Q0))

0 + (0=, 0)F (d1 (R0, 20))
F(d1(0=:0))- (2.21)

‘/'-'(dj_(gw_,_l,ﬁg)) < p+f<dL(Qw+laQQ))

NN N

Using (F7) property of F in (2.21), we obtain

dL(Qw+1a QQ) < dL(Qwa Q)-

Let w — +oo, we get d(p,Q20) = 0. Thus, Q possesses a fixed point. Further,
the uniqueness of the fixed point of {2 follows on the lines of Theorem 2.2.12. [

Theorem 2.2.17. For (U,d ) an L-complete metric space with s > 1 and gy as
an orthogonal element, suppose F € F. Let a: U?> = Rt and Q : U — U be a
self-map s.t:

(1) Q is L-preserving;
(II) Q) is weak a-admissible map type S;
(III) 3 some gy € G with s < (09, Q00);

(IV) If 3 an L-sequence {0w}wen With a(0m, 0m+1) = s and 0 — 0 as w —
+00, then a0, 0) = s and either [p, L oV w € N] or [p L o, Vw € NJ;
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(V) Qs L-a type F-weak contraction.

Then, Q) possesses a fived point. In addition, if each o,¢ € G with o 1. ¢, Qo= o

and Qs = < implies s < a(o,5), then ) possesses a unique fized point.

Proof. By the working of Theorem 2.2.16, we obtain

F(d1(mr1,0)) o + F(di(0w11,20))
= o+ F(di(Q0=,))
o+ Sf(dJ_<QQW7 QQ))

o + (0, 0)F (1 (0w, Q0))
F(maX{dL(Qwa 0), d1 (0w, Q0=), d1(0,Q0),

d1 (0w, Q0) —g d1(0,0z) })

N\

NN

N

(2.22)

Using (F;) property of F in (2.22), we obtain

d W7Q +d ,Q fovi
dJ-(Qerl’QQ) < max{dL<QW7Q)adL(Qwvﬂgw)vdL(g>Qg)a J_<Q Q> J_(Q e )}

2

Let @ — 400, we get
d 1 (0,Q0) = 0.

Thus, €2 possesses a fixed point. Further, the uniqueness of the fixed point of ()
follows on the lines of Theorem 2.2.16. O

Remark 2.2.18. [t should be noted that Theorem 2.2.12, Theorem 2.2.1/, Theo-
rem 2.2.16 and Theorem 2.2.17 proved above are valid even if € is considered as

an a-admissible map type S.

Theorem 2.2.19. For (U,d}) an L-complete metric space with oy as an orthog-
onal element, suppose F € F. Let a : U2 — RT and Q : U — U be a self-map

s.t:

(1) Q is L-preserving;
(1) Q is weak c-admissible map;
(III) 3 some gy € U with 1 < (00, Q00);
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(IV) Q is L-continuous;

(V) Qs L-a type F-contraction.

Then, ) possesses a fixed point. In addition, if for each o,¢ € U with o L g,
Qo = p and Qs = ¢ implies 1 < a(o,<), then Q possesses a unique fized point.

Proof. On defining a sequence {0 }wen in U, where o011 = Qo = Q% lgy for
each w € N and since gy, 209 € U, where (U, L) is an L-set then the repeated

use of L-preserving property of 2, gives
(01 Lo VweN] or [0l ow1VweN]

thus, {0w}wen is an L-sequence in . Now, by given condition «(gg, 01) =
a(00,Q00) > 1 then by the weak a-admissibility of €, we have «(Qgy,2Q00)

= (01, 02) = 1 continuing, we get a(g0n_1, 0w) = 1, and

F(di (0w, 011)) = F(d1(Q0m-1,202)) < al0m-1, 02)F (41 (Q02-1,20))-

Using |-a type F-contraction condition of €2 and for o > 0, we have

o+ F(di(0m 0=41)) < 9+ 0w 1, 02)F (A1 (Q0m1,205))
< F(di(ow1,002)),
that is, F(dL(0z, 0ws1)) < F(dL(0m-1,02)) = ¢
< F(di(0m2001)) =20
< “'<]:(di(90791)>_w@- (2.23)

Taking limit as @w — +o00 in (2.23) and by (F3) property of F, we have

lim d, (0w, 0wi1) =0. (2.24)

w——+00

And further, by (F3) property of F, 3~ € (0,1), implies

lim_(d1 (0w, 0ws1)) F(dL(0m: 0s1)) = 0. (2.25)

w—+00

From (2.23), we conclude that

(d1(0m: 0241)) (FdL(0m: 041)) = F(dil00, 1)) < —=(dL(0m: 011)) -
(2.26)
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On letting w — +o0 in (2.26) and by (2.24), (2.25), we get

lim w(dL(gw, Qwﬂ))7 =0.

w—+00

Thus, d some w; € N, s.t

1
d1 (0w, 0m+1) < i Vw2 w.
Consider w* > w > w;, then by triangle inequality, we obtain

dJ_(Qwa Qw*) < dJ_(Qwa Qw—i—l) + dJ_(Qw—i-la Qw+2) +---+ dL(Qw*—la Qw*)
+oo +o0 1

< ZdL<Qi79i+1 Z HYel

=1

1
As series >0 —— is convergent, we get {0 }wen is an L-Cauchy sequence and

since U is 1- Complete, so 34 o € U for which

lim o, = 0.

w——+00

Further, since () is 1 -continuous, so we have

lim Qo, = lim o, = o,

w—r—+00 w—r—+00

that is, o = Qo.

Thus, €2 possesses a fixed point. Next, let ¢ be s.t ¢ = ¢ and ¢ L ¢. Then by
given condition, we get a(p,<) > 1. Using L-a type F-contraction property of €,

we have

o+ F(di(Q0,%)) < p+ale)F(d(Qe,0)) < F(d(e,9)),
that is, o+ F(di(es)) < F(du(es)): (2.27)

Now, (2.27) holds only if o = ¢. Hence, £ possesses a unique fixed point. ]

Example 2.2.20. Let § = (—o0,+00) along with usual metric space and define
o Llsiffo=ksV ¢ €U and for some fixed k € Z. Then, (U,d,) is an orthogonal
metric space. Let € : U — U be defined as

22/25 orpoeC—|—1,1};
Qo) = / d .[ |
0 otherwise.
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Let a : U — R as a(o,s) = 1V 0,6 € B. For 9 L s and d (0,9%) > 0 to
hold together, we must have either o = 0 and ¢ € U — [—1,1] or p € U — [—1,1]
and ¢ = 0. Consider o = 0 and ¢ € U — [—1,1] along with F(u) = In(u) and
o = —1n(22/25) > 0, we have

o+ a(o, ) F (dL(Q0, Q) = o+ In(22/25) = 0, (2.28)

and, .F(dL(g, g)) =In([s|]), wheresc e U —[—1,1]. (2.29)

So, from (2.28) and (2.29), we can conclude that Q is L-« type F-contraction
although, § is not continuous. Also, the space (U,d}) is L-complete (because of
completeness of metric space (UO,d, )) and the self-map ) is weak c-admissible and
L -preserving. Next, to check L-continuity of Q, let { 0w }wen be an L-sequence in
O which is convergent. Then, we have o, — 0 as w — +00, that is, wl—i>r£oo Qo =
0 = Q0. Thus, Q2 is L-continuous. Since, each hypothesis of Theorem 2.2.19 is

satisfied, so () possesses a fized point viz. o = 0.

Theorem 2.2.21. For (U,d,) an L-complete metric space with oy as an orthog-
onal element, suppose F € §. Let a : U2 — RT and Q : U — U be a self-map
s.t:

(1) Q is L-preserving;

(1) Q is weak a-admissible map;
(III) 3 some gy € U with 1 < (o0, Q00);
(IV) Q is L-continuous;

(V) Qis L-a type F-weak contraction.

Then, £ possesses a fixed point. In addition, if for each o, € U with o L g,
Qo = p and Qs = ¢ implies 1 < a(o,<), then Q possesses a unique fized point.

Proof. By the working done in Theorem 2.2.19, we obtain an |-sequence {9y }wen
in U with @(0w, 0ws1) =21 VweN.

«F(dL(wa Qw—i—l)) = F(dL(QQw—h ng)) < a(gw—la Qw)f<dJ_(QQw—la QQw))
The result now follows on the lines of Theorem 2.2.14. O
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Remark 2.2.22. In the upcoming result, we weaken the condition of L -continuity
of Q1.

Theorem 2.2.23. For (U,d,) an L-complete metric space with oy as an orthog-
onal element, suppose F € F. Let a : U2 — RY and Q : U — U be a self-map
s.t:

(1) Q is L-preserving;
(II) Q is weak a-admissible map;
(III) 3 some gy € U with 1 < (00, 200);

(IV) If 3 an L-sequence {0z twen With (0w, 0wt+1) = 1 and 0 — 0 as w —
+00, then a0y, 0) = 1 and either (o, L oV w e N]or [p L 0, Vw € NJ;

(V) Qs L-a type F-contraction.

Then, 2 possesses a fixed point. In addition, if for each o,¢ € U with o L g,
Qo = 0 and Q¢ = ¢ implies 1 < a(p,<), then Q possesses a unique fixed point.

Proof. By the working done in Theorem 2.2.19, one can obtain {gy }wmeny an L-
sequence, where 9, — 0 as w — 400 and (0w, 0wr1) = 1. Then by given

condition, we have a(0, 0) > 1 and either

0w LoVweN] or [0l orVweN].
Using L-preserving property of {2, we get

Qon L QoVweN or [QolQo,VweN]
As, Q is an L-a type F-contraction, so

F(dj_(gw-i-la QQ)) S+ f<dL(Qw+1aQQ)) = o+ f(di(QQwaQQ))
0 + (0=, 0)F (d1 (0w, 20))
-F<dL(Qw, Q))~ (2.30)

NN

Using (F;) property of F in (2.30), we obtain

d1 (0w+1,9P) < d1 (0w, 0)-
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On letting @w — +o00, we get

dy(0,Q0) =0.

Thus, 2 possesses a fixed point. Further, the uniqueness follows on the lines of
Theorem 2.2.19. ]

Theorem 2.2.24. For (U,d}) an L-complete metric space with oy as an orthog-
onal element, suppose F € §. Let o : B2 — RY and Q : U — U be a self-map

s.t:

(1) Q is L-preserving;
(1) Q is weak a-admissible map;
(III) 3 some gy € U with 1 < (00, 200);

(IV) If 3 an L-sequence { 0w twen With (0w, 0mt1) = 1 and 0 — 0 as w —
+00, then a0, 0) = 1 and either [0, L 0V w € N] or [0 L 0, Vw € NJ;

(V) Qs L-a type F-weak contraction.

Then, ) possesses a fixed point. In addition, if for each o,¢ € U with o L g,
Qo = 0 and Q¢ = ¢ implies 1 < a(p,<), then Q possesses a unique fixed point.

Proof. The proof follows from the working of Theorem 2.2.23 followed by working
done in Theorem 2.2.17. O

Remark 2.2.25. [t should be noted that Theorem 2.2.19, Theorem 2.2.21, Theo-
rem 2.2.23 and Theorem 2.2.24 proved above are valid even if € is considered as

an a-admissible map.

2.2.3 Orthogonal TAC-Contraction

TAC-type contractive map was introduced by Chandok et al. (2016). Inspired by
work done, in this subsection we put forward the notion of orthogonal TAC-type
S-contraction map, orthogonal weak TAC-type S-rational contraction, orthogonal
TA(C-contraction map and orthogonal weak TAC-rational contraction that further
extends our approach towards contraction principles and fixed point results in

orthogonal metric space.
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Let W denotes the set of maps v : [0, +00) — [0, +00), which are continuous and
monotonically increasing with ;' ({0}) = 0 and let ® denotes the set of maps
¢1 : [0,4+00) — [0,400), which are continuous where wl_i)r}rloo ¢1(0w) = 0 implies
e 02 = 0

Definition 2.2.6. For an orthogonal metric space (U,d,), a self-map Q: 0 — O
is c.t.b an orthogonal TAC-type S-contraction (denoted by L-TAC-type S-

contraction) if for o, € U with o L ¢, s > 1 and &(p).5(s) = s implies

1 (d1(Q0,9%)) <C(¢1(di(0,9)): 61(du(0:9)))

where &, B : U — [0,+00), C € €, ¢ € ¥ and ¢, € .

Example 2.2.26. Let U =R, d,(0,¢) = |o —<| and 0 L < iff o< = 0. Then,
(U,d,) is an orthogonal metric space. Let Q0 : U — U be defined as

0 otherwise.

(o) :{ —0/T 0 €[0,+00);

Let &, 8 : U — [0, +00) be defined as

d(g):{ 2 0 € [0, +00);

0 otherwise,

0 otherwise.

B(o) ={ 2 e ol

Also, C : [0,4+00)* — R be defined as C(g,s) = 0 — s and 1, ¢ : [0,+00) —
3 3

0,400) as ¥1(e) = = and ¢1(g) = = Now, for o L < and 4(g)B(<) > s =2 to

hold simultaneously, we must have either o = 0 and ¢ € (—00,0] or p € [0, 400)

and ¢ = 0.

Case (i): For o =0 and ¢ € (—00,0], we have

Y1 (dL(20,95)) =0, (2.31)
and, - €(6n(d0.9)60(22(0,6)) = €{n() i) = ¢ (2T, ) - 2l
(2.32)
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Case (ii): For p € [0,400) and ¢ =0, we have

V1 (dL(Q0,90)) = 1 (d1(20,0)) = va(|el/7) = 31‘5‘ (2.33)

and, C(@/Jl(dL(Qa 0)), ¢1(d (o, O))) = C(¢1(|Q|)>¢1(|Q|)) = C<3’2917 3|4Q|> _ 3]4@]‘

(2.34)
From (2.31), (2.32), (2.33) and (2.34), we have 2 as L-T AC-type S-contraction.

Definition 2.2.7. For an orthogonal metric space (U,d, ), a self-map Q2 : G — U
is c.t.b an orthogonal weak TAC-type S-rational contraction (denoted by
1 -weak TAC-type S-rational contraction) if for o,¢ € U with o L ¢, s > 1 and

a(p).5(s) = s, implies
d(Q0,96) < C(M*(0,5), 61(M*(0,5))),

where &, 3 : U — [0,+00), C € €, ¢ € O and,
1 +d¢(9,99))d¢(<,9<)}

M*(0,¢) = maX{dL(Q, S), (

Definition 2.2.8. For an orthogonal metric space (U,d, ), a self-map Q2 : G — U
is c.t.b an orthogonal TAC-contraction (denoted by L-TAC-contraction) if
for 0,6 € U with o L < and &(p).B(s) = 1, implies

1(d1(Q0,96)) <C(¥r(di(e,9)), d1(dile,5))),
where &, : U — [0,+00), C € €, ¢ € ¥ and ¢, € .
Example 2.2.27. Let U = [0, +00), d1(0,5) = |0 —<| and o L < iff o.c € {5, 5}.

Then, (U,d}) is an orthogonal metric space. Let ) : 5 — U be defined as

5/7 otherwise.

o) :{ o/3  0€[0.2)

Let &, 3 : G — [0,4+00) be defined as

4(0) :{ L 0el0,2);

0 otherwise,
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0 otherwise.

Also, C : [0,+0)? — R be defined as C(o,s) = 0 — < and ¥y, ¢y : [0, +00) —
0, +00) as ¥1(0) = o and ¢1(0) = 0/3. Now, for o L < and &(0)B(s) = 1 to hold
simultaneously, we must have either o = 0 and s € [0,2] or p € [0,2] and ¢ = 0.
Considering o € [0,2] and ¢ =0, we have

1 (d1(20,00)) = d1(Q0,0) = o/3, (2.35)

and,  C(¢1(d1(0,0)), 61(d1(0,0))) = C(v1(0), 01(0)) = i(0) = d1(0)

)
o—o/ 3¢

(2.36)

From (2.35) and (2.536), we have 2 as 1.-T' AC-contraction which is not a contin-

uous map.

Definition 2.2.9. For an orthogonal metric space (U,d,), a self-map Q: 0 — O
is c.t.b an orthogonal weak TAC-rational contraction (denoted by | -weak
TAC-rational contraction) if for o, € U with o L ¢ and &(0).5(s) = 1, implies

d.(Q0,Q5) < C(M*(0,5), 61(M"(0,5))),

where &, : U — [0,+00), C € €, ¢ € O and,

1+di(0,Q0))d, (s,

Theorem 2.2.28. For (U,d) an L-complete metric space with s > 1 and g

as an orthogonal element, let &, : U — [0,400) and Q : U — U be a cyclic
(&, B)-admissible map type S s.t:

(1) Q is L-preserving;

(I1I) If 3 some oy in O with &(go) = s and (o) = s;
(III) 2 is L-continuous;
(IV) Q is L-TAC-type S-contraction.
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Then, Q possesses a fized point. Moreover, if &(g) = s and B(s) = s ¥V 0,6 € U
where Qo = o and Q¢ = ¢ with o L ¢, then € possesses a unique fixed point.

Proof. As (U, d)) is an orthogonal set, then for gQ0y € U, we have
[o0 L Qoo] or [Q00 L 00]- (2.37)

Define a sequence {0 }wen in U, where 0411 = Q0w = Q% (09) V @ € N. Using
L -preserving property of €2 in (2.37), we obtain that {o,}men is an L-sequence
in U. Next, by given condition, &(gy) > s and as 2 is cyclic (&, §)-admissible
map type S, we have 5(g1) = B(Qoo) = s. Continuing in similar way, we get
G(0m-1) = s and B(om) = s for each w € N'. Then, &(0w-1)5(0=) = s. Let us
denote ( = d, (0w, 0w+1). Since, Q is L-T'AC-type S-contraction, we have

¢1<<w>:¢l<dL<QW7Qw+l)) = ¢1(dL(QQw—1,QQw)>
< C(¢1(Co1): 61(Co1)) < ¥i(Gamr)- (2:38)

Also, 17 is monotonically increasing map, s0 (» < (w—1 V@ € N, thus, {(x }wen
is a decreasing and as each (, € RT, so 3 some ¢ € [0,+00), s.t 1_1)111 (w = C.

On taking limit as @ — +o0 in (2.38), we obtain

P1(¢) < C(¢1(C)7¢1(C)) < Y1(Q),
that is, C(¥1(€), 91(C)) = ¥ ().

By using definition of C-class function, we obtain either 1;(¢) = 0 or ¢;1(¢) = 0.

From either of the cases we have ( = 0, that is,

o G = i (e i) = 0.

So, for some [ = ¢/w* > 0 3 some w; € N s.t
dJ_(Qw, Qw-i-l) <l Vw>uw. (239)
Let @, w* € N where w > w,. Using triangle inequality and (2.39), we get

dJ_(Qwa Qw—i—w*) < dJ_(Qwa Qw+1) + dJ_(Qw—i-l: Qw+2) +---+ dJ_(Qw—i-w*—b Qw—i—w*)

w'l = .
Thus, we have, {0 }wen as an L-Cauchy sequence in U. Since U is L-complete,
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JpoeUst lim p, = . In addition, as €2 is an L -continuous map, so
w—r+00

lim Qo, = lim g, = Qo,

w——+00 w——+00

that is, o = Qo.

Hence, ) possesses a fixed point. Next, let ¢ € U be s.t ¢ = ¢ and ¢ L ¢ then,
&(0)B(s) = s. Using L-T'AC-type S-contraction condition of €2, we obtain

i (difo.)) = vi(d(Q0.%)) < C(vnl(dile,)),di(di(e,<)))
< ¢1(dL(97§));

that is, C(¢1(dL(Q,§))a¢1(dL(Q,§))> = Y1(dL(o,9)).

On using definition of C-class function we obtain, either ¢4 (d) (0,5)) = 0 or
¢1(d1(0,5)) = 0. From both the cases, we get d, (0,5) = 0. Hence, £ possesses a
unique fixed point. O

Example 2.2.29. Erxample 2.2.26, satisfies all hypotheses of Theorem 2.2.28 and

thus possesses a fized point viz. o = 0.

Corollary 2.2.30. For L-complete metric space (U,d, ) with s > 1 and gy as an
orthogonal element, let &, : U — [0,400) and Q : U — U be a cyclic (&, 5)-
admissible map type S s.t:

(I) Q is L-preserving;
(II) If 3 some gy in U with &(go) = s and B(oo) = s;

(I1I) If{0w }wen is an L-sequence where o, — 0 asw — +00 along with 5(0w) =
s for each w € N, implies $(0) = s and either [p, L oV @] or [p L 05 ¥V w];

(1V) Q is L-TAC-type S contraction.

Then, Q possesses a fized point. Moreover, if &(g) = s and f(s) = sV 0,6 € U
where Qo = o and Q¢ = ¢ with o L ¢, then ) possesses a unique fixed point.

Proof. Working on the lines of Theorem 2.2.28, we obtain { ¢, }wen an L-sequence
in U s.t o — 0 as w — +oo and also, f(g,) = s for each w € N. Then, by given
condition, we obtain (o) > s and either [0 L 0V w] or [0 L 0 ¥V @] . Thus
a(0w)B(0) = s, implies

U1 (d1(0w11,20)) = v (d1(Q02,20)) < C(v(di(0x0)), d1(d1 (0 0)))

<
< ¥1(di(os0)).
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Taking limit as o — 400 and using continuity of C, ¥ and ¢, we have d, (0, Q20) =
0. Thus, €2 possesses a fixed point in U. Also, by Theorem 2.2.28 we obtain unique-
ness of fixed point. O

Theorem 2.2.31. For L-complete metric space (O,d, ) with s > 1 and gy as an
orthogonal element, let &, 3 : U — [0,400) and Q : U — U be a cyclic (&, 5)-
admissible map of type S s.t:

(I) Q is L-preserving;
(1) If 3 some gg in U with &(00) = s and 5(gg) = S;
(III) Q is L-continuous;

(IV) Q is 1 -weak TAC-type S-rational contraction.

Then, Q) possesses a fized point. In addition, if &(¢) = s and B(s) = s V 0,6 € U
where Qo = p and Qs = ¢ with o L ¢, then ) possesses a unique fixed point.

Proof. By the working done in Theorem 2.2.28, we can obtain an _L-sequence
{0w }wen With &(0m-1)F(0w) = s for every w € N. By using L-weak TAC-type

S-rational contraction of €2, we get

Cw = dJ.(Qw; Qw+1) = dJ_(Qwala QQw)
C(M* (01, 02), 1 (M* (021, 02)) )
M*(Qw—h QW>a (240)

NN

(1 +di (01, Qw))dj_<gw; O11) }

where, M*(0w-1,0=) = max{dL(Qw_th)a 1+di(0w1,0)

= max{(p_1,(w}-
Suppose for some wy € N, we have M*(0my—1, 0w,) = (wy, that is,
Como > Comp—1- (2.41)
Then, by (2.40), we have

Cao < C (G 01(Cmy)) < Camo
that is, C(CWoa 9251 (Cwo>) - C‘WO'

41



By using definition of C-class function, we have either (,, = 0 or ¢1((s,) = 0.
From either of the cases, we get (5, = 0 which is a contradiction to (2.41).
Thus for each @w € N, we have (, < (»_1, where {(}wen is a decreasing and
as each (, € RT, so 3 some ( € [0,+00), s.t wlirilm (» = (. On taking limit
as w — 400 in (2.40), we get C(C,¢1(C)) = (, which implies either { = 0 or
¢1(¢) = 0 that is, ¢ = 0, and thus, wl—igloo (o = wl—igrloo d) (0w, 0w+1) = 0. Now, for

some | = ¢/w* > 0, 3 some w; € N with,
dJ_(Qw, Qerl) <l Vw>uw. (242)
Let w,w"* € N where w > w;. Using triangle inequality and (2.42), we get

dJ.(va Qerw*) < dJ_(Qw, Qerl) + dJ_(Qerlv Qw+2) + -+ dJ_(QerW*—l, Qerw*)

< wil=e.

Thus, we have, {0 }wen as an L-Cauchy sequence in U. Since U is L-complete,
JoeU, st lim p, =0 As Qis an |-continuous map, so
w—r+00

lim Qo, = lim g,y = Qo,

w—+00 w—+00

that is, o = Qop.

Hence, ) possesses a fixed point. For uniqueness, let ¢ be s.t {2¢ = ¢ and o L ¢ then
by given condition &(p)B(s) = s. Using L-weak TAC-type S-rational contraction

of €, we obtain
dJ-(Q> C) = dJ_(QQ7 Qg) < C(M*(Qv §), ¢1(M*(Qv §))), (24?))

1+ d.(e,90))d(s, Q)
1 + dJ.(lQ? g)

where, M*<g,g>=max{m<g,g>,< }:m,g).

Thus from (2.43), we get

di(0,5) <C(di(0,9),1(di(0,5))) < dilo,9),

which implies d, (0,<) = 0. Hence, € possesses a unique fixed point. ]

Corollary 2.2.32. For L-complete metric space (O,d, ) with s > 1 and gy as an
orthogonal element, let &, 3 : U — [0,400) and Q : U — U be a cyclic (&, 5)-
admissible map of type S s.t:
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(1) Q is L-preserving;
(II) If 3 some gy in U with &(go) = s and B(0o) = s;

(I1I) If{0w }wen is an L-sequence where o, — 0 asw — +00 along with 5(0x) =
s for each w € N, implies $(0) = s and either [p, L oV @] or [p L o, ¥V w];

(IV) Q is L-weak TAC-type S-rational contraction.

Then, §) possesses a fized point. In addition, if &(g) = s and B(s) > sV o, € U
where Qo = o and Qs = ¢ with o L ¢, then ) possesses a unique fixed point.

Proof. With reference to the working of Theorem 2.2.31, we can obtain an _L-
sequence {0z }wen in U where o, — ¢ as w — +o00 and [(pn) > s for each
w € N. By given condition, 5(9) > s and either [p, L oV w| or [0 L 0m V @]
which implies &(0,)B(0) = s. On using L-weak TAC-type S-rational contraction
of ), we get

d1 (011, 920) = d1 (202, 20) < C(M* (0w, 0), 1 (M* (0, 0))). (2.44)

(14 d. (0w Uow)) ) di (0, 2(0)) }
1 + dJ.(Qwv Q) ‘
Taking limit as w — 400 in (2.44), we obtain d (g, ) = 0. Thus, ¢ is a fixed

where, M* (0, 0) = max{dL(Qwa 0),

point of  and the uniqueness of the fixed point follows on the lines of Theorem
2.2.31. ]

Remark 2.2.33. In the upcoming result, we consider 2 to be a cyclic (&, [)-

admissible map.

Theorem 2.2.34. For 1-complete (U,d,) with gy as an orthogonal element, let
&, : 0 — [0,400) are defined on U and Q2 : U — U be a cyclic (&, B)-admissible

map on U s.t:

(1) Q is L-preserving;

(I1) If 3 some gy in U with a(gy) = 1 and B(0o) = 1;
(III) 2 is L-continuous;

(IV) Q is L-TAC-contraction.

Then, Q) possesses a fixed point. In addition, if &(0) > 1 and B(s) 21V 0,6 € U
where Qo = p and Qs = ¢ with o L ¢, then ) possesses a unique fixed point.
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Proof. As (U,d, ) is an L-set, then for gy, Q0p € U, we have
[0 L Q00] or [Q00 L 0ol (2.45)

Define a sequence {0 }wen in U where g1 = Qop = Q% (0) V @ € N. Using
L -preserving property of €2 in (2.45), we obtain that {04 }men is an L-sequence
in U. Next, by given condition, &(gp) > 1 and by cyclic (&, 5)-admissibility of €2,
we have ((01) = 5(Q00) = 1. Repetitive use of cyclic (&, 8)-admissibility of €,
we get &(0w—1) = 1 and B(0n) > 1V w € N'. Then, &(0n-1)3(0w) = 1. Let us
denote (» = d, (0w, 0w+1). Using L-T'AC-contraction of €2, we have

1/11(Cw) :wl(dL(QW7Qw+l)) = wl(dJ_(QwalaQQW))
< C(%(Cw—ﬁ»ﬁbl(fw—ﬁ) < Y1(Co-1). (2.46)

Since, 17 is monotonically increasing function, so (o < (-1 V w € N, thus,
{Co}wen is a decreasing and as each (, € RT, so 3 some ¢ € [0,+00), s.t

lim (, = (. On taking limit as @ — 400 in (2.46), we obtain

$i(¢) <C(¢1(0), 41(0)) < (Q),

By using definition of C-class function, we obtain either 1;(¢) = 0 or ¢1(¢) = 0.

From either of the cases we have ( = 0, that is,

wl—l>I-£loo gw - w1—1>r—|l}oo dL(Qw’ Qw—l—l) =0

So, for some [ = ¢/w* > 0, 3 some w; € N s.t
A1 (0w O0ws1) <1 Vw>w. (2.47)

Let @, w* € N where w > w,. Using triangle inequality and (2.47), we get

dL(Qwa Qw+w*) < dL(Qwa Qw+1) + dL(Qw—i—l: Qw+2) + -+ dL(Qw—l—w*—la Qw—i—w*)

w'l =e.

Thus, we have {05 }wen as an L-Cauchy sequence in U. Since U is L-complete,

30 € U with I_IH_I 0w = 0. As () is an L -continuous map, so

lim ng = wl—lg—loo Ow+1 = QQ)

w——+00
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that is, o = Qp.

Hence, ) possesses a fixed point. Next, let ¢ be s.t ¢ = ¢ and o L ¢ then by
given condition &(p)B(s) > 1. Using L-T'AC-contraction of €2, we obtain

i (di(e,q)) = i (di(Qo.2)) < C(vr(di(o.9)) dr(du(e,<)))
< Yi(di(e9)),
n(di(e;<))-

implies C(wl(dL(g, $)), o1(dL (o, g)))

On using definition of C-class function, we obtain either 1 (d, (o0,5)) = 0 or
¢1(d1(0,5)) = 0. From both the cases, we get d, (0,5) = 0. Hence, £ possesses a
unique fixed point. O

Example 2.2.35. Consider the space defined in Example 2.2.27. Then, U is

L-complete and also such ) is 1 -preserving. Next, we have

(i) Cyclic (&, 5)-admissibility of Q: Since for o € [0,2] we get &(o0) > 1 implies
B(Qo) = B(eo/3) = 1, similarly, for o € [0,2] we get (o) = 1 implies
a(Qo) = a(o/3) > 1.

(ii) L-continuity of Q: Since for {0m}wen an L-sequence in U, then o, — 0.
So we have, {Qox} — 0= Q0.

Since all hypotheses of Theorem 2.2.34 hold, so ) possesses a fixed point which is
0=0.

Remark 2.2.36. The above theorem holds even if instead of taking €2 as an 1-

continuous map we consider a weaker condition as discussed in the following result.

Corollary 2.2.37. For L-complete metric space (U,d ) with oy as an orthogonal
element, suppose &, 3 : U — [0, 4+00) are defined on U and Q : U — U be a cyclic

(&, B)-admissible map on U s.t:

(1) Q is L-preserving;
(1) If 3 some g in G with &(00) = 1 and (o) = 1;

(II1) If {0} wen 5 an L-sequence where g, — 0 as w — +00 along with f(0x) =
1 for each w € N, implies 3(0) > 1 and either [p, L oV @] or [0 L 0, V @];

(IV) Q is L-TAC-contraction.
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Then, § possesses a fized point. In addition, if &(0) = 1 and B(s) 21V o, € U
where Qo = o and Q¢ = ¢ with o L ¢, then € possesses a unique fixed point.

Proof. Working on the footprints of Theorem 2.2.34, we obtain {gx}wen an L-
sequence in U with g, — 0 as w — +o00 and also, 5(0w) = 1V @w € N. Then,
by given condition, we obtain 5(9) > 1 and either [p, L 0¥V @] or [0 L 0x V w@].
Thus &(05)5(0) = 1, implies

¥1(d1(Q0, Q0)) < C(v1(d1 (0=, 0)), d1(d1 (0=, 0))) < 1 (di(0m, 0)):

Taking limit as @ — 400 and using continuity of C, ¥ and ¢1, we have d, (0, Q20) =
0. Thus, €2 possesses a fixed point in U. Also, the uniqueness of fixed point can
be proved on the lines of Theorem 2.2.34. O]

Theorem 2.2.38. For L-complete metric space (U,d ) with oy as an orthogonal
element, let &, : U — [0,400) and 2 : U — U be a cyclic (&, B)-admissible map
on O s.t:

(1) Q is L-preserving;
(II) If 3 some gy in O with &(oo) = 1 and B(00) = 1;
(I11) Q is L-continuous;

(1V) Q is L-weak TAC-rational contraction.

Then, § possesses a fized point. In addition, if &(0) =21 and B(s) 21V 0, € U
where Qo = o and Q¢ = ¢ with o L ¢, then ) possesses a unique fixed point.

Proof. By the working done in Theorem 2.2.34, we obtain an | -sequence { 0 }wen
with &(0w-1)B(0w) = 1 for every w € N. By using L-weak TAC-rational con-

traction of €2, we get

C(M*(Qw—la Qw'>’ gbl(M*(Qw—l) QW)))
M*(Qw—la QW)7 (248)

Cw - dL(Qw’ Qw—i—l) - dL(QQw—lu ng) <
<

(]- + dL(Qw—h Qw))dL<Qwa Qw—l—l) }
1 + dJ_(Qw—la Qw)

Where, M*(Qw—lagw) - max{dL(Qw_l,Qw%
= max{(p_1,(w}-
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Suppose for some wy € N, we have M*(0m,—1, 0my) = Cwy, that is,

oo > Comp—1- (2.49)
Then by (2.48), we have

Cwo < C(gwoa gbl(Cwo)) < g‘woa
that is, C(Coy, $1(Car)) = Cmo-

Using definition of C-class function, we have either (5, = 0 or ¢1((w,) = 0. From
either of the cases, we get (5, = 0 which is a contradiction to (2.49). Hence
for each w € N, we have (, < (-1, thus, {(x}wen is a decreasing and as each
(w € RT, s0 I some ¢ € [0, +00), with wl_i)I_Ii_loo (w = (. On taking limit as @w — +00

in (2.48), we get C((, ¢1(C)) = ¢, which implies either ¢ = 0 or ¢;(¢) = 0 that is,
¢ = 0, thus we obtain,

Now, for some | = ¢/w* > 0, 3 some w; € N s.t,
A1 (0w, 0wi1) <l Y@ > w. (2.50)
Let @, w* € N where w > w,. Using triangle inequality and (2.50), we get

dL(QW7 Qw+w*) < dL(Qw: Qw-{—l) + dL(Qw—i—h Qw+2) + - dL(Qw—l—w*—lv Qw—l—w*)

w'l =e.

Thus, we have {05 }wen as an L-Cauchy sequence in U. Since U is L-complete,

dp0 €0, with lim o, = 0. As Q0 is an |-continuous map, so
w——+00

lim Qo, = lim o, = o,

w—r—+00 w—r—+00

that is, o = Qo.

Hence, 2 possesses a fixed point. Next, let ¢ be s.t ¢ = ¢ and p L ¢ then, by
given condition &(0)B(s) > 1. Using L-weak TAC-rational contraction of €2, we

obtain

dy(0.¢) = d1(Q0.96) < C(M*(0,5),61(M*(0.5))), (2.51)
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(14 di(0,20))d. (s, %)
1+di(p,5)

where, M*(9,¢) = max{dL(g, S), } =di(0,9).

Thus from (2.51), we get

di(e,s) < C(di(0,5),61(d1(0:5))) < du(o,),
which implies d, (0,<) = 0. Hence, € possesses a unique fixed point. O

Remark 2.2.39. The above theorem also holds if we drop L-continuity of 2 and

instead consider a weaker condition, as discussed in the following corollary.

Corollary 2.2.40. For L-complete (U,d ) with oy as an orthogonal element, let
a,0:0 — [0,400) and Q : U — U be a cyclic (&, B)-admissible map on U s.t:

(I) Q is L-preserving;
(II) If 3 some gy in U with &(go) = 1 and B(0o) = 1;

(III) If{0w }wen is an L-sequence where o, — 0 asw — +00 along with 5(05) =
1 for each w € N, implies B(0) = 1 and either (o, L oV w]or [o L 0 V ];

(1V) Q is L-weak TAC-rational contraction.

Then, § possesses a fized point. In addition, if &(9) > 1 and B(s) > 1V o, € U
where Qo = p and Qs = ¢ with o L ¢, then € possesses a unique fixed point.

Proof. With reference to working of Theorem 2.2.38, one can obtain an _L-sequence
{0w }wen in U where o, — p as @w — 400 and ((0x) = 1 for each w € N. By
given condition, 5(0) > 1 and either [0» L 0oV @] or [0 L 0n V w| which implies
4(0w)B(p) = 1. On using L-weak TAC-rational contraction of 2, we get

d1 (0w41,90) = d1(Q0, ) < C(M (02, 0), 61(M* (02, 0))), (2.52)

(1+ di (0=, 0x)))di(0,2(0)) }
1 + dJ.(Q‘W? Q) .
Taking limit as w — +o0 in (2.52), we get d, (0,20) = 0. Thus, p is a fixed point

where, M* (0w, 0) = maX{dJ_<Qwa 0),

of €2 and the uniqueness follows on the lines of Theorem 2.2.38. O]

Example 2.2.41. Consider U be the interval [0,400) with usual metric space
and let 0 L s iff o < sV ¢ €U. Then, (U,dy) is L-complete. Let Q : U — U be
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defined as

170

— € 10,1/2);
o] 1o ecl

150? otherwise.

Clearly, here Q) is L-preserving and L -continuous map but not a continuous map.
Define &, 3 : U — R* as

0 otherwise,

X 3/2  0€][0,1/2);
a(o) = {

and,

m@:{w4 0€10,1/2);

0 otherwise.

Define C : [0,400)> — R as C(0,5) = 0 — ¢ and ¢1 : [0,+00) — |
¢1(0) = 0/2. For g € [0,1/2), a(o) > 1 implies 3(Qo) = B(5¢) = 1 and vice-
versa, thus Q is a cyclic (&, 5)-admissible map. Next, for &(0)5(s) > 1

to hold simultaneously, we must have either
lo=0ands €[0,1/2)] or [¢=0andpe€[0,1/2)].

Considering o =0 and ¢ € [0,1/2), we get

4, (90,00) = d, (0, 1179§> _ 117; (2.53)
and, C(M*(0,5), 1(M*(0,5))) = C(s,5/2) = 5/2. (2.54)

From (2.53) and (2.54), we conclude that < is an L-weak TAC-rational contrac-
tion. Thus, by Theorem 2.2.38 we conclude that ) possesses a fized point viz.
0=0.

2.2.4 Orthogonal Suzuki-Berinde type F-Contraction

Recently, Hussain & Ahmad (2017) introduced the idea of Suzuki-Berinde type
F-contraction and established certain fixed point result, which is a generalization
of Piri & Kumam (2014). In this subsection, we put forward the notation of

orthogonal Suzuki-Berinde type F-contraction and explore the fixed point results.
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Definition 2.2.10. For an orthogonal metric space (U,d,) and for F € Ap,
a self-map Q : U — U is c.t.b an orthogonal Suzuki-Berinde type F-
contraction map (denoted by 1L-S-B type F-contraction) if 3 o > 0 with L > 0
s.t for each o,¢ € U, where d; (Q0,9¢) >0 and o L g, we have

1
5d1(e.Q0) < di(os) implies
o+ F(di(Q0,9)) < F(di(e,<)) + L-min{d, (e,20),d1(0,%),d1(s,20)}.

Example 2.2.42. Let U = [0,7/2] with d,(0,s) = |0 —<| and 0 L < iff 0. =
¢ V¢ e UO. Then, (G,d)) is an orthogonal metric space (with o = 1 as an
orthogonal element). Let Q) : U — U be defined as

Q(Q) _ { 1 0€ [07 7/2)§

2/7 otherwise.

For o 1 ¢ and d; (Q0,9s) > 0, we must have either o =1 and s ="7/2 or o =7/2
and ¢ = 1. Consider p =1 and ¢ = 7/2. Then for F(u) = In(u) and 0 < p < 1,

we have
o+ F(dL(Q0,95)) = o+ In(2/7), (2.55)

and, F(dL(o,5))+L.min{dL(e,0),d.(0,),dL(s,Q0)} = In(5/2). (2.56)

From (2.55) and (2.56), we can conclude that Q is L-S-B type F-contraction.

Theorem 2.2.43. For L-complete metric space (U,d ) with oy as an orthogonal
element, let F € Ap and Q : U — U be L-preserving, L -continuous and 1-S-B
type F'-contraction. Then, () possesses a fized point. Moreover, if o 1. ¢V 0,6 € O
where Qo = p and Qs = ¢, then ) possesses a unique fized point.

Proof. Let {0}wen be a sequence in U, where gy = Qo = Qg V w € N.
Since gy is an orthogonal element, so we have [gg L Q0] or [Q09 L 0o]. Repetitive
use of |- preserving property of 2, we obtain {¢}en as an L-sequence in U. If
for some wy € N, we have 05, = 0wy+1 = 20w, then we are done. Suppose o #

Ow+1 V w S Na that iS, dL(QwaQw+l) > 0. AS, %dl(Qwangrl) = %dJ_(QwaQQw)
< d) (0w, Q0w+1), and since Q is an L-S-B type F-contraction map, therefore

% + F<dJ_<Qwa Qw+1)) = @+ F(dl(Qwala QQw))
< F(di(0m1,00))+
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L.min{d, (0m-1,0%),d1 (051, 0w11), d1 (0=, 0=) },
F(dL(0w1,02)) — ¢
F(dL<Qw—27 Qw—l)) —2p

< F(dL(Qo, Ql)) - wp. (2.57)

that is, F(dL(Qwa Qw+1))

V/AN/ANV/AN

Taking limit as @w — 4oo in (2.57) and using (F3) and Lemma 1.2.4, gives
lim d, (0w, 0wi1) = 0. Thus, for some ¢/w* =1 >0 3w, € N, with

w—r—+00

A1 (0w O0ws1) <1 Vw>w. (2.58)
Let @, w* € N where w > w,. Using triangle inequality and (2.58), we have

dL(Qwa Qw+w*) < dL(Qwa Qw+1) + dL(Qw—i—l: Qw+2) + -+ dL(Qw—l—w*—la Qw—i—w*)

w'l =e.

Therefore, {0x }wen is an L-Cauchy sequence in U. Since U is L-complete, so

30 € U where lim o, = o. Since, €2 is an | -continuous map, so
w—r+00

m omp = lim Qo = (o,

w——+00

that is, o = Qo.

Thus, €2 possesses a fixed point. Let ¢ be s.t {2¢ = ¢ so by given condition g L <.
Suppose ¢ # s, that is, d1 (0,5) > 0. Also, $d1(0,0) = 0 = 3d.(0,Q0) < di(0,5)
and, using 1-S-B type F-contraction of {2, we get

F(di(0,9)) = F(d.(Q0,90)) <p + F(d.(Q0,2%))
<F(dl(Qa )

S)
+L.m1n{dL 0,90),dy(0,9%),d, (s, QQ)}
that is, F(dL(Q, §)) <F(dl(97 )),

which does not hold. Hence, ) possesses a unique fixed point. O]

Example 2.2.44. Consider the orthogonal metric space and a self-map discussed
in Example 2.2.42. Then, we have

(i) (U,d,) is L-complete: For any L-Cauchy sequence {0z }wen in U, 3 a sub-
sequence {0, } where oo, = 1V k > 1, that is, {0, } s convergent. Thus,
we have (U,dy) as L-complete.
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(1t) Q is L-preserving: Since 1 L ¢V ¢ e U, then Q(1) =1L Qg V¢ eU.

(7ii) Q is L-continuous: For any L-sequence {0} — 0 as w — +o00, then o = 1.
Thus, {Qoz} — Q1) =1 as w — +0o0.

Since all hypotheses of Theorem 2.2.43 hold, so ) possesses a fixed point viz.
o=1.

Corollary 2.2.45. For L-complete (U,d, ) with oo as an orthogonal element. Let
Q: 0 — U be L-preserving, L-S-B type F-contraction and if {0z }wen i an

L -sequence in O with o — 0 as w — +o0 implies
[ow LoV @] or [ol ¢mV @]

Then, €2 possesses a fixed point. Moreover, if o L ¢V o,¢ € U where Qo = o and
Q¢ = ¢, then € possesses a unique fized point.

Proof. On the lines of Theorem 2.2.43, we obtain an L-sequence {0y }wen in O
with o, — 0 as @w — +o0o. Thus, by given hypothesis, either [p, L o V w] or
[0 L 0m ¥V @]. Suppose for some wj € N,

1 1
idj_(@wm ngo) 2 dJ_(Qwoy Q) or §dJ_(QQw0> QQQWO) 2 dJ_(Qme 9)7 (259)

implies  2d; (0w, 0) < di(0mg: 20y) < A1 (0w, 0) + di(0,20=,),
that iS, dJ.(meQ) < dJ_(Q>QQw0)' (260>

From (2.59) and (2.60), we get

1
d1 (0w, 0) < d1(0,20m,) < 5%(9@%, Q%0). (2.61)

1
Since, idi(ﬁ)ma Q0wy) < di(0wgs Q0m,). So by contraction condition of €, we

obtain

< o+ F(di(Q0my, 20z,))
< F(d1(0m; Q0my) ) + Lo min{d. (0, Q0z,),
A1 (0 0y ), A1 (20w, 20y
that is, F(dL(ngo, QQQWO)) < o+ F(éﬁ(QQwo, Q2QW0)) < F(dL(Qwo; QQm))-

F(d (20w, 2 0zy))
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By (F}), we obtain

A1 (R0, 2 0my) < d1 (0 0wy )- (2.62)
Using triangle inequality and (2.61) in (2.62), we get

dL(QmeQQQwo) < dL(meQ) _’_dL(Q?QQ‘wo)
1 1
§dL(QQw07 QZQWQ) + §dL(QQw07 QQQWQ)
= dL(Qme Q2Qwo)7

which is a contradiction. Thus, we have

1 1
idL(Qwov ngo) < dL(me Q) or idL(QQwoa QQQwo) < dL<QQ‘woa Q) vV w € N.

Since () is an L-S-B type F-contraction map, so we obtain

p_i_F(dL(QQw’QQ)) < F(di(@wa@))—f—

L.min{d_ (0=, 20x), d1 (0w, ), d1 (0, Q=) }.
(2.63)

On taking limit as w — 400 in (2.63) and using (F») along with Lemma 1.2.4,
we get

lim d;(Qor,Q) = 0,

w——+00

that is, dy(p,Q0) = 0.

Thus, €2 possesses a fixed point. The uniqueness of fixed point follows on the lines
of Theorem 2.2.43. O

2.2.5 Orthogonal F-weak Contraction

Inspired by the work done in Baghani et al. (2016), Sawangsup et al. (2020),
in this section, we put forward the notation of orthogonal F-weak contraction
and establish some fixed point theorems with orthogonal F-weak contraction in

complete orthogonal metric space.

Definition 2.2.11. A self-map Q on U, where (U,d,) is an orthogonal metric
space and F € §, is c.t.b an orthogonal F-weak contraction (denoted by | z-
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weak contraction) if 3 o > 0 s.t for each o, € U with o L ¢ and d, (0,) >0
implies

di(0, %) +di(s,Q0) }) .

p+f(dJ_(QQ7 Q§)) < F (max{dJ_(Qv §)7dl(ga th)vdl_(ga Q§), 2

(2.64)

Remark 2.2.46. From (2.64), we can infer that every L z-contraction is L z-weak
contraction. However, following example substantiates that the converse need not
hold true.

Example 2.2.47. Let U = {0,1,2,3,4} with usual metric d, .

Let R = {(0,0),(0,1),(0,2),(0,3),(0,4),(4,0),(4,1),(4,2),(4,3),(4,4)}. Define
o L ¢ iff (o,6) € R. Clearly, (U,L) is an orthogonal set (with 0 and 4 as
orthogonal element). Let Q : U — U be defined as Q0) = 0 = Q(1) = Q(4),
Q2) =1, Q3) = 2. Let F(p) = In(u). It can be verified that Q is L r-weak
contraction however, € is not 1 x-contraction since for o = 4 and ¢ = 3, o +
F(d(Q0o,8%)) < F(di(o,5)) does not hold for any o > 0.

Theorem 2.2.48. For an L-complete metric space (U,d,) and F € §, if a self-
map  on O is L-continuous, 1 r-weak contraction and L-preserving. Then, €

possesses a unique fixed point in O.

Proof. As (U, 1) is an orthogonal set, therefore, let there be an orthogonal element

00 € U where
[0 Log VoeU] or [polo VoeUl. (2.65)

As 09, Q(00) € U then by (2.65), we have [Q(g9) L 0o] or [0o L ©(00)]. Define a
sequence {0}y in O, where oy = Q(0%) V @ € N. Since  is L-preserving.
Therefore, {05}_oy is an L-sequence. Let us consider 7, = d (0w, 0wt1) for

w=0,1,2,.... If for some w, € N,

Ny = dL(me Qwo+1) = 07
that iS, Owy = Owoy1 — Q(Qwo)a

which gives that €2 possesses a fixed point. Instead, let 1, # 0V w € N. As Q is

1 r-weak contraction, so V w € N, we have

‘F(nw) - f(dl_<gw7 Qw—i—l) - f(dJ_(QQw—hQQw))
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<f<max{m<gw1, 00), A1 (01, 0m 1), 1 (00, Q0.

di(gw—h ng) + dL(QW7 ng—l) }) —p

2
d o—1, O +d sy Yo
=F (max{dL(Qw—la Qw),dj_(gw,@w—l-l)? L(Q = +12) L(Q : )}> Y
d wo—1s O ‘l‘d wy KW
< (maX {dL(Qw—la Qw)a di(gw’ Qw"‘l)’ J_(Q ne ) 2 J_(Q : +1) }> Y

‘7:
F (max {dJ_(Qw717 Qw)y dJ_(Qwu Qw+1)}) — .
If max {d| (0w-1;0w),d1 (0w Ow+1)} = d1 (0w, 0w+1) then from above, we have

f(UW> < f<UW> — s

which is a contradiction (for g > 0). Thus, we obtain max{dL(Qw_l, 0w ), d1 (0w,
0wt1)} = d1(0w1,02) V@ € N and,

F(z) < F(zm1) = 9 < Flo—2) = 20 < -+ < Flip) — wp (2.66)
Taking limit as @ — 400 in (2.66), we obtain 1_1>r£ F(ne) = —oco. Using (Fa),
we obtain

wl_i)rJrrloo Ne = 0. (2.67)

By (F3) property 3 v € (0,1) s.t

lim 72 F(1e) = 0. (2.68)

w—+00

From (2.66), we have nl F (1) —nLF(no) < —nlwp. Taking w — +oo and using
(2.67) and (2.68), we get

lim wnl =0. (2.69)

w——+00

On observing (2.69), we get that 3 w; € N where V @ > w;, we have

1
Ne < — Vw > w. (2.70)
wa

Consider w,w* € N with @w* > w > w;, using (2.70) and triangle inequality of

metric space d , we get
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dL(Qw*a Qw) < dL(Qw*a Qw*—l) + -+ dL(Qw—i—Qv Qw—l—l) + dL(Qw-l—la Qw)
+oo

—+00
= Noo1 A o e < Dom < Y1/
i=1 =1

+o0o

As " 1/i*7 is convergent (for v € (0,1)), we get {0w}_cy is an L-Cauchy se-
i=1

quence and since U is L-complete, we have {0}y is convergent, that is, 3 o € U

with lixf 0w = 0. Using L-continuity of {2, we get
w—r+00

lim Q(ox) = Qo),

w——+00

implies wl—ig—loo 0wr1 = (o).

Thus, 0 = Q(p). Hence, p is a fixed point of Q. Let o* be s.t Qp* = p* which

implies
Q%" )=0" VweN.
By (2.65), we have
[oo L 0"] or [o" L oo].
Since €2 is |-preserving, therefore
[27(e0) L Q(e%)] or [Q(e") L Q% (e0)]-
Also, Q2 is 1 z-weak contraction, thus

F(d1 (0w, 0")) =F(dL(2% 00, 0"))
=F dJ_(QQw—hQQ*))
<F max{dL(gw—hQ*)adL(gw—laQQW—I)adL(Q*)QQ*>,

dL(wab QQ*) + dl(g*a Qwal) }) —p

2
:f (maX {dJ_<Qw—17 Q*)J dJ.(Qw—la Qw)v dJ_(Qw7 Q*>}) — -

Next, we have following cases:

Case (i): Let max{d,(0x-1,0%),d1(0m-1,0=),d1 (0=, 0")} = di(0w,0") then
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V w € N, we obtain F(d, (0w, 0")) < F(d,(0n,0")) — p, which does not hold
for any p > 0.

Case (11) Let maX{dL<Qw—l7 Q*)a dL(Qw—lv Qw)7 dJ_(Qwa Q*))} - dL(Qw—b Qw) then
VweN, we get

F(d1 (0w, 0") < F(di(0m-1,02)) — 9 = F(Nw-1) — p-

Using (2.66), we get
f(dJ_(QW7 Q*)) < F(nwfl) — < < »7:(770) - wp.

Taking w — 400, we get lim F(d, (0w, 0")) = —00. By (F3) property,

w—r+00
im di (0w, 0") =0,

implies o = o".

Case (iii) Let maX{dJ—(Qw—h Q*)7 dJ_(Qw—h Qw)a dJ.(QW? Q*))} = dJ—(QW—lJ Q*) then
Vw e N, we get

F(dl(gwa Q*)) F<dL(Qw—17 Q*)) -

<
< Fdi(0m—2,0")) —2p < --- < F(di(00, 0%)) — wep.

Taking w — +o00 and using (F2) property, we obtain ¢ = p*. Thus, we conclude
that €2 has a unique fixed point in O. O

Remark 2.2.49. Theorem 2.2.48 proved above provides a proper extension of
Theorem 3.10 and Theorem 3.8 of Baghani et al. (2016) and Sawangsup et al.
(2020) respectively. The example discussed below further substantiates the out-

come.

Example 2.2.50. Consider the orthogonal metric space discussed in Erample
2.2.47. Then, the map defined in it can be verified for L-continuous and -
preserving. Also, U is L-complete since for any arbitrary 1-Cauchy sequence
{0=} in O, 3 a sub-sequence {0z, } of {0x} 5t 0w, =0V k = ki or 0n, =4
YV k > ko for some ky, ko € N. Thus, {0z, } converges to 0 or 4. Therefore, {0}
is convergent. Since all hypotheses of Theorem 2.2.48 hold so §2 has a unique fixed

point which is o = 0, even though ) is not L z-contraction.

57



Theorem 2.2.51. For an L-complete metric space (UO,d,) and F € §, if a self-

map 2 on O is L r-weak contraction and L-preserving s.t

(I) F is continuous;

(II) If 3 an L-sequence {oz} in U is s.t for o — 0 as w — 400, we have
0w Lo YVweNoropol o, VweN.

Then, €2 possesses a unique fixed point in O.

Proof. By the working done in Theorem 2.2.48, it can be shown that there is
an L-sequence {0x}_cy, Where o, — 0 as @ — +oo. We show that o is the
desired fixed point. However, once the existence of fixed point is established then
the uniqueness follows similar to Theorem 2.2.48. Suppose on the contrary that
di(0,Q0) > 0.

Case (i): If {w € N : Qp, = Qp} is infinite. Then, 3 sub-sequence {0y} of
{0w }wen 8.t Qop, = Qo implies 05,11 = Qo. Taking limit w — 400, we get

0 = Qp, which is a contradiction.

Case (ii): If {w € N : Qp, = Qp} is finite, that is, for some wy € N,
d; (Q0w,0) >0 Vw > wy. By given condition, we have [0, L 0 ¥V w € N] or
[0 L 0 ¥V w € N]. Since Q is L-preserving, therefore

Qo L Qo VYweN] or [Qol Qo, VweN].
As Q is | z-weak contraction, we have

o + F(dL(Qow, Qo))

g f(max{dj_(gw, Q)u dL((QW7 QQw); dJ.(Q? QQ),

d1 (0w; Q0) + di(0,0x)
: )

< f<max{dL<Qwa Q)7 dl_(ng Qw+1)7 dJ_(Qv QQ)7

d1 (0w, 0) +di(0,Q0) +di (0, 0w+1) })

5 (2.71)

Since, 0 — 0 as w — +00. Therefore, 3wy € N, s.t d) (0w,0) =0 YV w > wy.

Hence, for each w > max{wy, @}, we obtain

d 1 (0w, 0) +di(0,Q0) + d. (o, gw+1)}

max{di(@mQ)7dL(Qw7Qw+1)adL(Qa Qo), 5
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=d, (0,Q0).

As F is continuous, on letting limit @ — +o0 in (2.71), we get
p + F(dL(Q0,90)) < F(dL(Q0,0)),

which does not hold. Thus, €2 has a fixed point ¢ in U. O
Corollary 2.2.52. For (U,d}), an L-complete metric space and F € §, if a map

Q: 0 — U is Lr-weak contraction and 1 -preserving s.t

(I) F is continuous;

(II) If 3 an L-sequence {px} in U is s.t for o, — 0 as w — 400, we have
0w Lo V weNorpol o, VweN.

Then, ) in U possesses a unique fized point. Further, for each o* € U the Picard
sequence {Q7(0*)} _on converges to fized point o of Q.

Proof. By the working done in Theorem 2.2.51, ) possesses a unique fixed point.
We show that Picard sequence {Q%(o*)}_.y converges to fixed point o, that is
lim Q%(p*) = p. Since ¢* € U is any arbitrary point and U is an orthogonal set,

w—r+00

therefore [o* L 0o] or [gg L 0*], and as € is L-preserving, thus
[Q%(0") L Q%(0g) VweN] or [Q%g) L Q") VweN].
Using 1 z-weak contraction of €2, we obtain

o+ F(dL(Q7(0"), o))

= o+ F(dL(2%(0"), 27 (00))

= o+ F(dL (A7 (2)), 227 (20)))

(max{dL Qw 1 Qw—1>adL(Qw_l(Q*)’Qw(Q*))7dL(Qw—laQw)a

Qw)‘;’dl(Qw 19" (9*))}>_ (2.72)

(Qw 1

Taking limit as @w — +o00 in (2.72) and since F is continuous, we get

p + Fldo(_lim Q70" 0)) < F(di(_lim Q0" 0)),

w—+00

which holds iff lim Q%(o¢*) = o. Hence, Q is a Picard operator. O

w—+00
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2.3 Application

We now apply the outcome of Theorem 2.2.48 to show the existence and unique-

ness of the solution of the ordinary differential equation given by:

/

0'(0) — Q(0,0(0)) =0 ae oel=][0,T];

(2.73)
0(0) =a for a>1,

where, Q : I x (—o0, +00) — (—00, +00) is an integrable function which satisfies

the following:

1) Qo,5) >0V ocTands>0;

(I1) 3 afp) € £1(T) and p > 0 s.t

(0, %(0)) — o, V(0))] <

for each X,9) € L1(I) s.t X(0)V(0) > X(0) or X(2)(e) = V(o).

Theorem 2.3.1. The differential equation given in (2.73) along with condition
(1) and (I1I) has a unique solution.

Proof. Let U = {X € O(I, (—o0, +00)) : X(0) > 0V o € 1} and define a relation

on U as

XLy iff X(0)V(e) >X(0) or X(0)V(0) >V(e) Vo€l

e !
Then, (U, L) is an orthogonal set. Let A(p) = / la(o)|do. So that A" = |a(p)|
) 0
a.e o € . Define a map d, : U x U — [0, +00) by

di(X,9) = 1X -] =swpe @ X(0) - V(o) | VX,V €O

o€l

Now, since (U,d,) is L-complete. Let {X;}wen be a L-Cauchy sequence in O
then we can conclude that {X,} converges to a point X in C(I). It is enough if
we show that X € U. Let p € I fixed then

xw(g)%w—i—l(tg) > xw(g) or xw(g)%wﬁ-l(g) > 3':w-i-l(lg)'
AsX,(0) >0 Vw € N, then 3 a sub-sequence {X,, } of {X} for which X, > 1
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and since X, — X as w — 400 so X5, — X as w — +oo implies X(p) > 1.
Thus, X € U. Define amap Y : U0 — O as:

(YX)(0) =B+ /OgQ(t,%(t))dt.

Then:

(1) Y is L-preserving. Let X L ), then
0
(VX)(0) =7 +/0 Q(t, X(t))dt > 1,

which shows that (YX)(0)(YD)(0) = (YV)(0) or (YX)(0)(IV)(0) = (VX)(0).
Therefore, YX 1L V).

(2) ¥ is L-continuous. Let {X,} be an L-sequence in U which converges to
X € U. Then, it is well evident from previous working that X(p) > 1 implies
X(0) L X(p) for each w € N and ¢ € I. So, we have

OV - V@] < A0 /gm(t,aew(t))—mt x(1)
—A(@/ E| ))"0‘6(@” A1) A gy

e A~ “d) (X, /O|a ]e

< e @m0 (X, X)(eMO7).

N

N

Since above inequality holds for any arbitrary o € I and @w € N. So, we have
d (VX5 V%) <e®(1—elolng (x,,%) V weN.

Thus, VX, — VX.

(8) Y is Lr-weak contraction.
Let X,9 € Ust X L9 and d (VX,Y9) > 0, then for each ¢ € I, we obtain

X)) - VDI < [0 X(0).206.D(0)d
[ e a0 - ol O Oar
e d(2.9) [ la(®]e'

efde(%yg‘j)(eA(g) -1,
e A (A _ 1ed (X,9)

N

N

NN

that is, e @|(VX)(0) — (YD) (0)]
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(1= e H)e™vd, (X, 9)
(1-— e—lla\h)e—de(%7 ).

NN

It follows that d, (VX,Y9) < e %d, (X,9). Taking logarithm, we get

p+In(d (VX,)9)) < In (maX{dL(%, ), d (X, VX),d. (D,)Y),

dy (X, y@);di@vy%)})

On defining F : RT — (—o00, +00) as F(u) = In(u), we obtain that ) is L z-weak
contraction. Therefore, using Theorem 2.2.48, ) has a unique fixed point and

hence differential equation has a unique solution. O

2.4 Conclusion

Under some specific conditions, the results proved in this chapter are reduced to
many well-known fixed point results in the literature. Consider the binary relation
o Llgiff o, €0 Vp,¢ €0 then (U,d,) is an orthogonal metric space (for any
metric d; on U) with every element in U as an orthogonal element. Infact, in such

a case the orthogonal metric space (U, d ) reduces to metric space (U, d) then:

(I) With the above condition, Theorem 2.2.4 and Theorem 2.2.8 reduces to
Theorem 2.1 and Theorem 2.2 respectively of Hussain & Salimi (2014).

(IT) Theorem 3.8 of Gopal et al. (2016) can be deduced from Theorem 2.2.21
under specific condition as mentioned above along with €2 as an a-admissible

map.

(III) Theorem 8, Theorem 12 of Chandok et al. (2016) are particular cases of
Theorem 2.2.28 and Corollary 2.2.37, Theorem 2.2.31 and Corollary 2.2.40

respectively with respect to the above orthogonal metric space.
(IV) Theorem 2.1 of Hussain & Ahmad (2017) can be deduced from Corollary

2.2.45 along with specific condition as mentioned above.

okoskokokosk
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Chapter 3

Fixed Point Results in Relation

Theoretic Metric Space

3.1 Introduction

Alam & Imdad (2015) introduced the idea of relation theoretic metric space, briefly
written as R-metric space (notation introduced by Khalehoghli et al. (2020)),
wherein the given metric space is combined with an amorphous binary relation,
R. Since then, fixed point results for various maps in the relation theoretic metric
have been studied (see Imdad et al. (2018), Prasad et al. (2020), Alam et al.
(2021), Prasad (2021), Khan et al. (2022)).

Motivated by the work done in the literature on R-metric space, in this chapter we
first put forward the fixed point results using F-weak expansive map followed by
the fixed point results that are subjected to contraction conditions corresponding
to the multivalued counterpart of F-contraction, F-weak contraction, almost F-
contraction and a-type F-contraction in R-metric space. Next, we discuss the
solution of a non-homogeneous, non-linear Volterra integral along with its stability
using the idea of Hyers-Ulam stability (Hyers (1941), Ulam (1960)). The results

of this chapter have been presented in 345,

3Malhotra, A., and Kumar, D. (2022). Some fixed point results using F-weak expansive map-
ping in relation theoretic metric space. Journal of Physics: Conference Series, IOP Publishing,
2267(1), 012040.

4Malhotra, A., and Kumar, D. (2023). Fixed Point Results for Multivalued Mapping in
R-Metric Space. Sahand Communications in Mathematical Analysis, 20(2), 109-121.

SMalhotra, A., and Kumar, D. (2023). Existence and Stability of Solution for a Nonlinear
Volterra Integral Equation with binary relation via Fixed Point Results. (Communicated).
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3.2 Generalized Expansive Maps and Fixed Point
Results

Herein, we first introduce the notions of relational type JF-expansive map and

relational type F-weak expansive map in the setting of R-metric space.

Definition 3.2.1. For an R-metric space (U,dg), ¢ : U — U is c.t.b a relational
type F-expansive map for F € §, if 3 o > 0 s.t for each 0,¢ € U with
(0,) € R, we have

F(dr(9o,¢s)) = F(dr(o,5)) + e

Definition 3.2.2. For an R-metric space (U,dg), ¢ : U — U is c.t.b a relational
type F-weak expansive map for F € §, if 3 p > 0 s.t for each 0,5 € U with
(0,5) € R, we have

Fldr(go,¢)) = F(M(0,:9)) + ¢,

where M(e, <) = maX{dn(Q, <), dr (0, 90), dr (s, ¢s), Irlo.05) ;dn(g’ $o) }

Example 3.2.1. Let U = {0, 1,2,3,4,5,6} equipped with metric dg(0,s) = |o—s]|.
Let relation R = {(0,5) : 0 #, 0. =0 0,5 < 5}. Then, (U,dgr) is an R-metric
space. Define ¢ : U — U as ¢p(0) =0, ¢(1) = 3, ¢(2) =4, ¢(3) =6, ¢(4) =5,
¢(5) = 1 and ¢(6) = 2. Then, ¢ is a relational type F-weak expansive map but

clearly ¢ is not F-weak expansive map.

Remark 3.2.2. Every relational type F-weak expansive map is a relational type
F-expansive map. Since, if ¢ is a relational type F-weak expansive map, then for

FeF, Ip>0s.tfor each o,¢ with (o,5) € R, we have

Fln(o0,09) > wax{ de(o,5).dr(e,60) dals, ), 2

> F(dr(0,9)) + p.

Hence, ¢ is relational type F-expansive map. Given Example 3.2.1 further verifies
a relational type F-weak expansive map which is also relational type F-expansive

map.

Theorem 3.2.3. For an R-complete metric space (U,dg), let ¢ : U — U be a

surjective map S.t:

64



(1) ¢ is relational type F-weak expansive map;
(1) ¢ is R-preserving;
(I11) 3 some gy € U s.t (go,s) € R Vs € ¢(U);

(1V) ¢ is R-continuous.
Then, ¢ possesses a unique fixed point.

Proof. Define {0 }wen, a sequence in U where 01 = ¢go, 02 = 601, - -, Owi1 =
$0w- On using condition (III), we have (go, p0o) € R, that is, (o, 01) € R and
since ¢ is R-preserving, so (¢og, p01) = (01, 02) € R. Proceeding in similar way,
we obtain that (0w, 0w+1) € RV w € N'. Next, for g,, 0,11 € U and since ¢ is a
surjective map so by Lemma 1.2.5, there is a right inverse ¢* of ¢ s.t ¢* 011 = 0w-

Since, ¢ is relational type F-weak expansive map, therefore 4 ¢ > 0 s.t
f(dR(Qerm Qw+1)) = f(dR(¢Qw+1, ¢Qw)) P f(M(Qw+17 Qw)) + @

f(M((b*Qw+27 ¢*Qw+1)) + £

F(max{dR(¢*Qw+27 ¢*Qw+l)> dR(¢*Qw+27 Qw+2)7

* d ) w y Yo +d * o , O
AR (6 0ms1, 0mir), R(O" 0mr2, 0 41) ! (0" 0mi1, 0 +2)}

WV

+p
> F(dr (9" 0mt2, 0" 0wt1)) + 9.

Thus, ¢* is a relational F-contraction map on U, therefore, by Theorem 3.2 of
Sawangsup et al. (2017), ¢* possesses a unique fixed point, that is, 3 ¢ € U s.t
¢*C = (. Now, ¢ = ¢p¢*C = ¢(, hence, ¢ possesses a unique fixed point. O

Corollary 3.2.4. For an R-complete metric space (U,dg), let ¢ : U — U be a

surjective map s.t:

(1) ¢ is relational type F-expansive map;
(II) ¢ is R-preserving,
(III) 3 some gy € U s.t (00,5) € R Vs € ¢(U);

(IV) ¢ is R-continuous.

Then, ¢ possesses a unique fixed point.
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Proof. By Remark 3.2.2, every relational type F-weak expansive map is relational

type F-expansive map so proof now follows from Theorem 3.2.3. n

3.3 Generalized Multivalued Contraction Maps
and Fixed Point Results

We now prove fixed point results for multivalued maps in an R-metric space
subject to generalized contractions. But before proceeding to the results, we first
define relation between two subsets of an R-metric space and R-continuity for

multivalued maps.

Definition 3.3.1. For an R-metric space (U,dg), two non-empty subsets U,V
of U we say, (U,V) € R if (p,o) € R for each p € UandoeV.

Example 3.3.1. Let U = R with usual metric and define R = {(p,¢) € U?
iff 0. < OY. Then, for subsets U = (—00,0) and V = (0,+00) of U, we have
(U, V) eR.

Definition 3.3.2. For an R-metric space (U,dr), a multivalued map ¢ : G —
K(U) is c.t.b an Ry -continuous at o € U if for any R-sequence {0z }wen in U
with dg (0w, 0) — 0 as w — +00, we have H(P0w, po) — 0 as w — +00. Also, ¢

is c.t.b Ry-continuous on U if V p € U, Ry-continuous at o.

It should be noted that the above definition holds true if we consider a multivalued
map ¢ : 0 — CB(U).

Theorem 3.3.2. For an R-complete metric space (U,dg), let ¢ : U — KC(U) be

a multivalued map s.t:

(1) 3 00 €U s.t (00,5) € RV s € dpoo;
(1) For each (0,s) € R, we have (¢o, ¢s) € R;

(III) FEither ¢ is Ry -continuous or for any R-sequence {0 }wen St 0w — 0 as
w — +00, we have (9, 0) €E RV w € N;

(IV) If for some F € §, 3 o > 0 with H(po, ¢s) > 0 s.t for every (o,5) € R, we

have

o+ F(H(po, ¢5)) < F(dr(o,5))-
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Then, ¢ possesses a fixed point.

Proof. Let {0 }wen be a sequence in U where 9,11 € ¢on V w € N. By
condition (1), we obtain (gg, 01) € R. On using condition (1I), we have

(600, p01) = (01, 02) € R. (3.1)

On repetitive use of condition (11) in (3.1), we get (0w, 0wt1) € R, ¥V w € N.
Thus, {0x }wern is an R-sequence in U. If o1 € ¢p; then we are done. Suppose
01 & ¢o1 and since ¢p; is compact subset of U then dr(o1,¢01) > 0. Now,

dr (01, 001) < H(poo, po1) thus by (Fi), we have

F(H(¢0o, dor))
F(dr(00,01)) — -

F(dr(o1,001)) <
<

If o, € ¢poy for some k € N’ then we are done. Suppose ¢, & ¢oo V @w € N and
since ¢, is compact subset of U then, dg (0w, P0w) > 0V w € N.

As,  dr(0w; 90w) < dR(0w, 0wt1) < H(P0w-1, P0w),
that is,  F(dr (0=, ¢0=)) < F(dr(0m: 011)) < F(H(P0m-1,00x))
< Fldr(0w-1,0=)) — ¢
< F(dr(0w-1,0w)). (3.2)

Thus, {(» = dr(0w,0w+1)}wen is a decreasing sequence of non-negative real
number. Let lim (, = ( > 0. Next, by (3.2) we have

w——+00

’F(Cw) < F(Cw—l) - < f((w—Q) - 2@ SRR f(((]) - wp. (33)

On letting w — +o00 in (3.3) we get, 1_131 (w = 0. By (F3), 37 € (0,1) s.t
lim (0 F((s) = 0. Using (3.3), we have

w——+00
(@ F (=) = (L F(Co) < —w(p (3.4)

Taking limit as w — +o0 in (3.4), we get lim w() = 0. Thus, 3 wy € N with

w—+00

w = Wy, (w < 5 Consider w*, w € N, where @w* > w > w, and

wl/

d’R(Qwa Qw*) < d’R(Qw7 Qerl) + dR(Qerla Qw+2) + -+ dR(Qw*fla Qw*)
- Cw+<w+1+"'+<w*—1
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+001

w*—1 400
= LGS LGS LGy (3:5)
j=w j=w

= Jj=w

+o0o 1
j=w 1/~

obtain that {0y }wen is an R-Cauchy sequence and using R-completeness of U,

Since the series >

is convergent and on letting w — 400 in (3.5), we

JoeUst lim p, = 0. Wenow claim that o € ¢o.
w—r+00

Case (i): Let ¢ be a Ry-continuous map. Since 9511 € ¢p0,, we have

dR(Qw+17 ¢Q> < H(¢QW> ¢Q> (36)

Taking limit as w — 400 in (3.6) and using R-continuity of ¢, we get

dr(0;00) = lim dr(ow1;00) < _lim H(¢0w, ¢o) = 0.
So, we conclude that o € ¢p.

Case (ii): We have an R-sequence {0z }wenw St 0mi1 € ¢0n ¥V w € N and
0w — 0 as w — 400 then, (0g,0) € R Y w € N. On the contrary, suppose
that o & ¢p then 3 @’ € N with ¢ & {05} for every w > w’ which further gives
H (oo, pow) > 0 and also by given condition, we have (05, 0) € RV w € N

Fldr(0mt1,00)) < 9+ F(H(90w, ¢0)) < Fldr (0w, 0))- (3.7)
On letting w — +o0 in (3.7), we obtain dg (o, ¢o) = 0 which is not true. Hence,
0 € go. O

Theorem 3.3.3. For an R-complete metric space (U,dg), let ¢ : U — CB(U) be

a multivalued map s.t:

(I) 3 00 €U 5.t (00,5) €R V<€ poo;
(II) For each (o,s) € R, we have (¢o, ¢s) € R;

(III) FEither ¢ is Ry -continuous or for any R-sequence {0 }wen St 0w — 0 a$
w — +00, we have (9, 0) € RV w € N;

(IV) If for some F € §', 3 p > 0 with H(po, ps) > 0 s.t for every (o0,5) € R, we

have

o+ F (Mo, ¢<)) < F(dr(e,9))-
Then, ¢ possesses a fized point.
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Proof. By the working done in Theorem 3.3.2, we obtain an R-sequence {0 }wen
in U, where 0541 € o ¥V @ € N'. If 9, € ¢po; then, we are done. Suppose 0; ¢
¢01 and since ¢ is closed subset of U then, dr (g1, $01) > 0. Now, dg (01, po1) <
H (0o, po1) thus by (F1), we have

F(dr(o1,901)) < F(H(P0o, po1)) < F(dr(00, 01)) — - (3.8)

Thereby using (F;) property of F, we get

F(dr(o1,001)) = F(inf dr(o1,5)) = inf F(dr(01,5)), (3.9)
SEPo1 SEPo1
on using (3.8) in (3.9) and the fact that gy € ¢p1, we observe that

inf F(dr(01,5)) < Fldr(01,02)) < F(H(o, ¢01)) < Fldr (00, 01)) — .

SEPo1

So from above equation, we have F(dg (01, 02)) < F(dr(00,01)) — o If 02 € ¢02
then we are done, else for g, &€ ¢, we have g3 € pos so that

]:(dR(Q%QB)) ]:(dR(Qh@)) §-

Continuing in a similar manner, we obtain F(dg (0w, 0w+1)) < F(dr(0w-1, 0w)) —

o and thus dr (0=, 0w+1) < dr(0z-1, 0z), that is, {dr (0w, 0x+1)}wen is a decreas-
ing sequence of non-negative real numbers. Now, by the working of Theorem 3.3.2

we conclude that ¢ possesses a fixed point. O

Theorem 3.3.4. For an R-complete metric space (U,dg), let ¢ : U — K(U) be

a multivalued map s.t:

(I) 3 0o € U with (o,s) € RV s € doo;
(II) For each (o,s) € R, we have (¢, ds) € R

(III) FEither ¢ is Ry -continuous or for any R-sequence {0x }wen, where 0 — 0
as w — +00, we have (0w, 0) € RV w € N;

(I1V) If for some F € §, 3 p > 0 with H(po, ¢s) > 0 so that for every (o,s) € R,

we have

o+ F(H(6e,65)) < f(max{dR(g7 0 Do 60, (s o), D885+ Dls 60 })

Then, ¢ possesses a fized point.
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Proof. By the working done in Theorem 3.3.2, an R-sequence {0z }men is ob-
tained, where o411 € ¢po, V w € N'. Suppose 01 € ¢o1, then we have

0< dR(Ql7¢Q1) < H<¢Q07¢Ql)

Further, using condition (1V), we have

o+ F(H(Poo, p01)) < f<max{dR(Qo,91),D(Qo,¢90)7D(91,¢Q1)7

D(0o, $01) ;r D(o1, $0o) }) (3.10)

Next, the following observations can be easily made for a multivalued map and in

addition using Lemma 1.2.9, we have

D(00, $00) < dr(00,01),
D(o1,901) < H(poo, po1),
D(o1,600) = 0,
and, D(0o,d01) < dr(0o,01) + H(doo, p01)-

Using above in (3.10), we get

o+ F(H(poo, 001)) < «F<max{d73(907Ql)aH(¢QO>¢Ql)7W})

< F<maX{dR(Q07Ql)aH(¢Q07¢Q1)7

dr (00, 01) + H (00, d01) })

5 (3.11)

If dr (00, 01) < H(poo, p01), then by (3.11) we obtain

o+ F(H(doo, p01)) < F(H(boo, po1)),

which is a contradiction. Thus, we have H(poo, p01) < dr(00,01) and by (3.11),
we get o+ F (H(deo, p01)) < F(dr(0o, 01)). Further, suppose 05 ¢ ¢0o ¥V @ € N,

p+;(H(¢Qwa¢Qw+l)) < F<maX{dR(QwaQw+1)7D(Qw>¢Qw)7D(Qw+1a¢Qw+1)7

D(Qwv¢gw+1) —; D(Qw+17¢gw> }) (312)
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Again, we have the following observations:

D(0s, 00

) < dr (0w, 0w+1);
D(0w11, P0w11)

)

)

(¢Qwv ¢Qw+1)>

NN
r &=

Q O

D(Qerla ¢Qw
a’nda D(QLTM (waJrl <

’

R (0w 0wt1) + H(P0c, 90w 11).
Using above in (3.12), we get

£ + ‘F(H(gbé)wa ¢Qw+1)) < F<maX{d'R(Qwv Qw-‘rl)) H(¢Qwa ¢Qw+1)7

d’R(@wa Qerl) + H(¢Qwv ¢Qw+1) })
5 .

(3.13)

If dR(Qw7 Qw—i—l) < H(¢Qwa ¢Qw+1)7 then by (313) we have

9+ F(H(P0w; 90w+1)) < F(H(90w, 90m41)),

which is a contradiction. Thus, we have H(¢0, 90w+1) < dr(0w, 0w+1) and by
(3.13), we get

o+ ‘F(%((bgwa ¢Qw+1)) < ‘F<dR(QW7 Qerl))'

Now, by the working of Theorem 3.3.2 we conclude that ¢ possesses a fixed point.
]
Theorem 3.3.5. For an R-complete metric space (U,dg), let ¢ : U — CB(U) be
a multivalued map s.t:
(I) 3 00 € U s.t (00,6) € RV €E oo,
(II) For each (o,¢) € R, we have (¢o, ¢s) € R;

(III) FEither ¢ is Ry -continuous or for any R-sequence {0 }wen St 0w — 0 as
w — 400, we have (0n,0) € RV w € N;

(IV) If for some F € §', 3 p > 0 with H(po, <) > 0 s.t for every (0,5) € R, we

have

p+F(H(po, <)) < ]-"(max{dn(g, o), D(0, 60), D(s, 3, D(o, ¢<) ;D(@ Q) })

Then, ¢ possesses a fized point.
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Proof. Using the working done in Theorem 3.3.4, we obtain an R-sequence { 0 }wen

where 0,11 € ¢o V w € N'. Suppose 01 € ¢o1, then we have

o+ F(H(doo, p01)) < ]:<max{d72(@0,91)7D(90,¢90)7D(01,¢91);

D(00, 901) +D(Qla¢90)}>
2

< dr(00,01))-

Since, ¢p; is closed and ps € ¢o1, then by working done in Theorem 3.3.3, we

obtain

gieggl F(dr(o1,6)) < Fldr(o1,02)) < F(H(poo,d01)) < F(dr(0o,01)) — ¢
F(dr(01,02)) < Fl(dr(o,01)) — o

The existence of fixed point now follows on the lines of Theorem 3.3.3. O

Example 3.3.6. Consider U = {0,1,2,3,4} and d(o,s) = |0 — <|. Define ¢ :
U — CB(0) as:

bo = {0,1}  foro=3;
¢ {0} otherwise.

Let R = {(0,0),(0,1),(0,3)} and F(u) = In(p). We have (U,dg) is an R-
complete metric space. Also, ¢ is Ry-continuous and satisfies condition (I1I) of
Theorem 3.3.5. Next, for (0,5) € R with H(do, ¢s)) > 0, we have o =0, ¢ =3
and

o+ F(H(po ¢5)) < f(max{dR(g, O). D(0. 60). D(s. b), 212 ¢s) + D(s, po) })

2

Thus, the given R-metric space satisfies all the condition of Theorem 3.3.5 and hence,

¢ has a fized point which is o = 0.

Remark 3.3.7. It should be noted that the given example in the absence of re-
lation R does not satisfy the multivalued contraction condition given in Altun
et al. (2015) and Acar et al. (2014). Also noted that the given relation R is not
orthogonal thus, the results of Sharma € Chandok (2020) cannot be applied.

Example 3.3.8. Let U = U, Uy, where Uy = [0,1/2] and By = (1/2,1). Define
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a metric d : U x U — [0,4+00) as:

0014+ |po—¢ if 0F#;
d(Q,C)={ L | o

Also, define R = {(o,s) € U* s.t o.c € {o,6}}. Then, (U,dg) is an R-metric
space. Let a multivalued map ¢ : O — CB(U) be defined as:

_ {0} if o € Uy;
¢9_{ {0,1/3}  if o€ Us.

Let F(p) = In(p), then we have (U,dg) is an R-complete metric space and in

addition, the following conditions hold:

(i) For 0 € U, (0,¢0) € R.
(i) For any (0,¢) € R, (do,ds) € R.

(7ii) For any R-sequence {0m}twen With 0 — 0 as w — +oo then o = 0 and
thus (0w, 0) € R VY w € N.

(iv) Let (0,6) € R then 0 =0 or/and ¢ = 0. Consider o =0 (the case for ¢ =0

follows similarly), then we have the following cases:
Case (i): Let s € Uy then

p +In(H(¢o, ¢<)) = p + In(H(0,0)) — —oo,
and, In(dg(o,s)) = In(dr(0,5)) = —o0.

Thus, contraction condition

o +In(H(Po, ¢5)) < In(dr(o,5)),

holds for any finite o > 0.

Case (ii): Let ¢ € Uy then,

p +In(H(do, ¢<)) = p + In(#H({0},{0,1/3})) = o + In(0.3433),
and, In(dg(o,<)) = In(dg(0,<)) = In(0.01 + <) > In(0.51).
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Thus, contraction condition

o +In(H(po, ¢5)) < In(dr(o,5)),

holds for 0 < o < 0.396.

Hence, from the above example, we conclude that a multivalued map ¢ satisfies all

condition of Theorem 3.3.3 and thus possesses a fized point which is o = 0.

Remark 3.3.9. However, it should be noted here that since the space (U,dgr) is
an incomplete metric space thus results of Wardowski (2012), Wardowski & Dung
(2014), Acar et al. (2014), Altun et al. (2015) are not applicable.

Theorem 3.3.10. For an R-complete metric space (U,dg), let ¢ : U — CB(U)

be a multivalued map s.t:

(1) 3 00 € U with (0o, p00) € R;
(II) For each (p,s) € R implies (¢0,¢s) € R;

(III) FEither ¢ is Ry -continuous on U or there is an R-sequence {0 }wen, where
0w — 0 as w — +00 implies (0w, 0) € RV w € N;

(IV) If for some F € §', there are two constants o > 0 and k > 0 s.t for every
(0,6) € R with H(¢po, ¢s) > 0, we have

o + F(H(po, ¢s)) < F(dr(o,s) + £D(s, o).

Then, ¢ possesses a fized point.

Proof. On defining a sequence {0y }wen Where 0511 € 0 ¥V w € N'| we have
(00, 01) € R by using condition (7). Further, on using condition (1I), we obtain
(P00, po1) € R, that is, (01, 02) € R. The repetitive use of condition (1I) yields
that, (0w, 0wi1) € RV @ € N'. Thus, {0x }wen is an R-sequence in U. Next, if
01 € ¢o1 then we are done. Suppose 01 € ¢, and since ¢, is closed subset of U
implies D(g1, ¢01) > 0. Now, D(01, p01) < H(¢poo, 1) thus by (F1), we have

F(D(o1,001)) < F(H(poo,¢01)) < F(dr(0o,01) + £D(01,000)) — ¢
= F(dr(o,01)) — o (3.14)
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Thereby using (F;) property of F, we obtain
F(D(01,001)) = ]:<<ie%£1 dr (01, C)) = <ie%£1 ]:(dR(Ql, g)) (3.15)

On using (3.14) in (3.15) and as g2 € ¢p1, we obtain that

/N
W

dR(Qla Qz))

F(D(o1, d01)) = ciefqlsﬁl F(dr(01,9)) (
(H (900, P1))
(
(

Y

F
F

dr (00, 01)) — ¢
dR(QOa Ql))' (3-16)

NN N

So from (3.16), we have dr (01, 02) < dr(00,01). Again, if gy € ¢p, then we are
done, else suppose g2 & @2, we obtain dr(02,03) < dr(01,02) — p. Continuing
in a similar manner suppose 0, € ¢0r V w € Ny, we obtain dg (0w, 0wi1) <
AR (0w—1, 0w), that is, {dr (0w, 0w+1) }wen, i a decreasing sequence of non-negative

real numbers and as

F(dr (0w 0wt1)) F(dr(0w-1,0x)) — 9 < F(dr(0o-2, 0w—-1)) — 2p

<
< - < F(dr(00, 01)) — wep. (3.17)

On letting w — +o0 in (3.17), we get grf dr (0w, 0wt1) = 0. By (F3), 30 <
v <1s.t

lim (dR(QW7 Qw+1))’yf(dR(QW7 Qw+1)> = 0. (318)

w——+00

Then, from (3.17), we have

(AR (0w 0w11)) " F (AR (0w, 0wt1)) — (AR (0w 0m41))" F(dr (00, 01))
< —wp(dr (0w, Owt1))"- (3.19)

Taking limit as @ — +o0 in (3.19) and using (3.18), we have

lim w(dR(wa Q‘w-l—l))7 =0.

w——+00

Thus, 3 w; € Ny s.t for w € Ny with @w > w;, we obtain

1
AR (0w 0wt1) < ey (3.20)
Next, we show that {05 }wen, is an R-Cauchy sequence. Consider w,w* € Ny,

1)



where w* > w > w;. By (3.20) and triangle inequality, we obtain

AR (0w, 0w) < dR(0w, 0m+1) + AR (0415 Omt2) + -+ - + dR (0 -1, O+)

+oo +o0 1
< Z dr (0, 0i+1) < Z By (3.21)

+00 1
Using the convergence of the series » 75 in (3.21), we get that {0m twen, is an
—~

*

1=
R-Cauchy sequence and using R-completeness of U, 3 0" € U s.t liril 0w =0".
Tw—r+00
We now claim that o* € ¢p*.

Case (i): Let ¢ be an Ry-continuous map. Since gn11 € ¢0, we have

D(0w+1,90") < H(P0w, $07). (3.22)

Taking limit as @ — +o00 in (3.22) and by R-continuity of ¢, we get

D(¢",¢0") = lim D(ows1,¢0") < _lim H(bow, do") = 0.

li
w——+00

Thus, 0" € ¢po*.

Case (ii): Let there be an R-sequence {0y }wen Where 0, — 0* as w — 400
implies (0w, 0") € R Y w € N. Instead, let o* ¢ ¢o* then 3 @’ € N st
0" € {ow} V w > @ implies H(pon, 0*) > 0 and also by given condition, we
have (0, 0") € RV w e N.

F(D(0w+1,007)) < 9+ F(H(bow, 00")) < F(dr(0x,0")). (3.23)

On letting @w — 400 in (3.23), we obtain D(p*, pp*) = 0 which is not true. Hence,
0" € ¢o*. O

Corollary 3.3.11. For an R-complete metric space (U, dr), define a multivalued
map ¢ : U — K(O) s.t:

(1) 3 00 € U, where (0o, p0o) € R;
(1) For every (o,s) € R implies (¢0,ds) € R;

(III) Either ¢ is Ry-continuous on U or there is an R-sequence {0 }wen, where

0w — 0 as w — +00 implies (0w, 0) € RV w € N;
(IV) If for some F € §, there are two constants o > 0 and k = 0 with H(po, ¢<) >
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0 s.t for each (0,s) € R, we have

o + F(H(po, ¢s)) < Fldr(o,s) + £D(s, ¢0)).

Then, ¢ possesses a fized point.

Proof. Working on the lines of Theorem 3.3.10, we obtain an R-sequence { 0 }wen
in U where 0,41 € ¢o, Vw € N. Suppose 01 € ¢o1 and as ¢p; is compact, so 3
some g9 € ¢pq, with

% ¢Q0> ¢Ql)7

D(o1, ¢o1) = dr (01, 02) (

F(H (oo, do1))
(
(

that is, F(D(o1, po1)) < F(dr(o1,02))

NN N

F(dr (00, 01) + KD(01, 000)) —
dr (00, 01)) — - (3.24)

N

So from (3.24), we have dg(01, 02) < dr(00,01). Again, if g2 € ¢p, then we are
done, else for gs &€ ¢oo, we have dg (02, 03) < dr (01, 02). Continuing in a similar

manner, we obtain d'R(Qwv Qw—l—l) < dR(Qw—h Qw)v that iS? {d’R<Qw7 Qw—i—l)}WGNo is
a decreasing sequence of non-negative real numbers. The proof now follows from
Theorem 3.3.10. [

Theorem 3.3.12. For an R-complete metric space (U,dgr), let « : G x U —
[0, 4+00) and ¢ : U — CB(U) be a multivalued a-admissible map s.t:

(I) 3 00 € U, where (0o, o0) € R and (o, poo) = 1;
(1) For every (o,s) € R implies (¢0,ds) € R;

(III) FEither ¢ is Ry -continuous on U or there is an R-sequence {05 }wen, where
0w — 0 a8 w — +00 implies (0w, 0) = 1 and (0w, 0) € RV w € N;

(IV) If for some F € §', 3 p > 0 with H(po, ¢s) > 0 s.t for every (0,5) € R, we

have
o+ alo, <) F(H(po, ¢5)) < Fldr(o,9))-

Then, ¢ possesses a fixed point.

Proof. By the working done in Theorem 3.3.10, we obtain an R-sequence { 0 }wen
where 9,11 € ¢on ¥V w € N'. By condition (1), we get a(gp,01) = 1. Using
multivalued a-admissibility of ¢, we have a(dog, po1) = 1 implies (o1, 02) > 1.
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Continuing in a similar way, we get a0, 0w+1) = 1V w € N'. Next, if 01 € ¢o1,
then we are done. Suppose g1 € ¢0; and as ¢p, is closed, so we have D(o1, po1) > 0
and consequently D(g1, 001) < H(¢oo, po1), and thereby using (F;) property of

F, we obtain

F(D(o1,001)) = ]:( in£ dR(Qly<)> = gieggl}—(dn(&,@)) < F(dr(o1,02))

SEPo1
< F(H(doo, do1)) < aloo, 01)F (H(doo, do1))
< Fldr(0o, 01)) — 9 < F(dr(00; 01))- (3.25)

So from (3.25), we have dr (g1, 02) < dr(00, 01). Again, if g2 € ¢pos then we are

done, else suppose 02 € ¢z, we have D(02, ¢02) > 0, D(02, ¢02) < H(¢o1, P02)
and,

dr (02, 03) < dr(01, 02).

Further, if o, € ¢o, for some v € N, then the fixed point is obtained. Suppose
0w & 00w V w € N and as ¢o, is closed s0 D(0w, p0w) > 0 thus, we have

f(D<QW7¢Qw)) = geiggw F(dR(@mg))
F(dr (0w 0w+1)) < F(H(P0w-1, 90w))
(0w-1, 0w ) F (H(P0w—1, P0x))

F(dr(0m-1,0=)) — 9 < F(dr(0m-1, 0=))- (3.26)

NN N

Hence, {dr (0w, 0w+1) }wen is a decreasing sequence of non-negative real numbers.
From (3.26), we get

F(dr (0w 0w+1) < F(dr(0m-1,0%)) — 9 (3.27)

On letting w — 400 in (3.27), then gl}rl AR (0w, 0wi1) = 0. By (F3), 30 <y <
Is.t

lim (dr (0w, 0=+41))" F(dr(0; 0w11)) = 0. (3.28)

w——+00

Then from (3.27), we have

(AR (0w 0w +1))” <]:(d7z(9w> 0w+11)) — F(dr (0o, Ql))) < —@P(dr (0w, 0w t1))”-
(3.29)

78



Taking limit as @ — +o00 in (3.29) and using (3.28), we have

lim w(dR(wagw-H)) =0.

w—+00

Thus, 3 w; € Ny so that for w € Ny with @w > w;, we obtain

1
AR (0w, 0mt1) < ey (3.30)

We now show that {05 }wen, is an R-Cauchy sequence. Consider w,w* € Ny

where w* > w > w;. By (3.30) and triangle inequality, we get

AR (0w, 0=) < dr(0w,0w+1) + AR (0m+1; Omt2) + -+ + AR (0*—1, O)
+oo +oo 1

< Y dr(oi, 0i1) < Z A (3.31)

i=w

+o0 1
Using the convergence of the series Z BV in (3.31), we get that {0x }wen, is an

R-Cauchy sequence and since O is an R—complete metric space, thus 4 p* € U s.t

lim o, = . We now claim that o* € ¢p*.

w——+00

Case (i): Let ¢ be an Ry-continuous map. Since gu11 € ¢0, we have

D(0w+1,90%) < H(P0a ¢07).- (3.32)

Taking limit as @ — +o00 in (3.32) and using R-continuity of ¢, we obtain

D(o*,¢0*) = lim D(0wi1,00") < lim H(pow, 90") =

w—~+00 w—+o0o
So, 0" € ¢o*.

Case (ii): Let there be an R-sequence {0 }wen St 0w — 0" as w — 400
implies (0m,0%) € RY w € N. Let 0o € ¢o*, then 3 w’ € N st 0" & {0x}
for every w > @’ implies H(pow, po*) > 0 and also by given condition, we have
(0w, 0") € RV w € N. Now,

F(D(0my1,00")) < F(H(d0w, d0")) < alow, 0")F(H(P0w, p0"))
< 9+ (0w, 0")F(H(d0w, p0"))
<

F(dr (0w 0"))- (3.33)

On letting w — +o0 in (3.33), we get D(0*, po*) = 0 which is a contradiction.
Hence, o* € ¢o*. O
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Corollary 3.3.13. For an R-complete metric space (U,dgr), let a : U x U —
[0, 4+00) and ¢ : U — K(U) be a multivalued a-admissible map s.t:

(I) 3 00 € U, where (0o, 00) € R and (o, poo) = 1;
(II) For each (o,<) € R implies (¢o, ¢s) € R;

(III) FEither ¢ is Ry -continuous on U or there is an R-sequence {0 }wen, where

0w — 0 S @ — +00 implies a0y, 0) = 1 and (0w,0) € RV w € N;

(1V) If for some F € §, 3 o > 0 with H(po, ¢s) > 0 s.t for every (o0,5) € R, we
get
o + a0, ) F(H(go, ¢s)) < F(dr(o,9))-

Then, ¢ possesses a fixed point.

Proof. Working on the footprints of Theorem 3.3.10, we obtain an R-sequence
{0w }weny Where 011 € ¢o, ¥V w € N. Also, from the working in Theorem
3.3.12, we get (0w, 0wi1) = 1 V w € N'. Next, suppose 01 & ¢o1 and as ¢p; is

compact, so 3 some 0y € ¢p1, 8.t

D(o1,001) = dr(01,02) < H(doo, p01),
that is, F(dr(01,001)) < F(H(¢oo,P01))
< (oo, Ql)f(H(ﬁbQo,Cbm)) < ]:(dR(Qo, 01)) — -

Next, if g € ¢y, then the fixed point is obtained. Suppose 03 & ¢os and as ¢oo

is compact so d some 03 € ¢ps 8.t

D(02, p02) = dr(02,03) < H(¢o1,d02),
that is, F(dr (02, d03)) < F(H(do1,d02))
< afor, 02) F(H(o1, p02)) < Fldr(o1,02)) — o

If o € ¢oy, for some k € N, then we are done. Suppose 0., & ¢po. V w € N and

as Qo is compact, s0 3 9p11 € 0w, S.t

H(¢p0w-1,90%),

F(H(dp0w-1, $0))

(0w—1, 0=) F (H(h0w-1, p0x))
F(dr(0w-1,0=)) — ©-

D(Qwa ¢Qw> = dR(Qwa Qw—i—l)
that iS: F<d7€(@w> Qerl))

INCININ N
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Hence, {dr (0w, 0w+1) }wen is a decreasing sequence of non-negative real numbers.

The proof now follows on the line of Theorem 3.3.12. O]

Corollary 3.3.14. For an R-complete metric space (U,dg), let ¢ : G — U be a
self-map s.t:

(I) 3 0o € U, where (09, p0o) € R;
(1) ¢ is R-preserving;

(III) FEither ¢ is R-continuous on U or there is an R-sequence {0z twen, where

0w — 0 as w — +00 implies (0w, 0) € RV w € N;

(IV) 3 some p > 0 s.t for every (0,<) € R with dg(¢o, ¢s) > 0, we have

dr (o, ¢s) < e “dr(o,5).

Then, ¢ possesses a fized point.

Proof. Considering ¢ as a self-map on U with F(u) = In(p) in Corollary 3.3.13,

we obtain the result. O

Theorem 3.3.15. For an R-complete metric space (U,dgr), let ¢ : U — CB(U)

be a multivalued a-admissible map s.t:

(I) 3 0o € U, where (0o, $0o) € R;
(II) For each (p,5) € R implies (¢po, ¢s) € R;

(III) FEither ¢ is Ry -continuous on U or there is an R-sequence {0} wen, where

0w — 0 as w — +00 implies a(0m,0) = 1 and (0w, 0) € RV w € N;

(IV) If for some F € §', 3 o > 0 s.t for every (0,5) € R with H(po, ps) > 0, we
have

D(o, ¢s) + D(s, ¢o) })

p+a(e,s)F(H(go, ¢s)) < f(maX{dn(Q, $), D(0, 90), D(s, ¢s), 5

Then, ¢ possesses a fized point.

Proof. Working on the lines of Theorem 3.3.10, we get an R-sequence {0 }wen
with 0511 € ¢0n V w € N. Also, from the working in Theorem 3.3.12, we
obtain a(0y, 0wi1) = 1V w € N'. Next, if 91 € ¢p1, then we are done. Suppose
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01 € ¢o1 and as ¢p; is closed, so we have D(o1,¢01) > 0 and consequently
D(o1,$01) < H(¢oo, po1). Thereby using (Fy) property of F, we get

F(D(01,901)) = gielqugl F(dr(o1,5)) < F(dr(o1,02))
< F(H(poo, po1)) < aleo, 01)F (H(doo, do1))- (3.34)

Next, for some p > 0, using condition (IV') in (3.34), we have

© + a(00, 01)F (H(Poo, po1)) <]:<max{dn(go, 01), D(00, 900), D(01, P01),
D(00, $01) + D01, p00) })

N

N

]:<m {d”R 00, 01), (ﬁbQO’ngl)’D(QO;bgl)})
A

max {dn 00, 01), H(P00, p01),

dr (00, 01) + H (P00, P01) })

5 (3.35)

If dr (00, 01) < H(poo, ®01), then by (3.35) we have

o + (00, 01) F (H(poo, po1)) < F(H (oo, p01)),

which is a contradiction for p > 0, where a(gg, 01) > 1. Thus, we have H (¢ oo, po1) <
dr (00, 01) and by (3.34) and (3.35), we get

F(dr(01,02)) < 0o, 01)F (H(boo, p01)) < F(dr (00, 01)) — 9

Further, suppose that o, € ¢, V w € N. As ¢o, is closed, so we have

D(0w, $0w) > 0 and consequently D(0y, ¢0w) < H(P0w_1,P0-). On using (Fy)
property of F, we get

F(D(0z, 90)) =<€ig§w F(dr(0x,9)) < F(dr(0x 0m41)) < F(H(P0m-1, 00=))
< (051, 0=) F(H(¢p0m-1, P0=)). (3.36)

Again, for some g > 0, using condition (I/V'), we have

% + a(Qw—l; QW)F(H(¢QW—17 ¢Qw)) < F<maX{dR(Qw—la Qw)a D(Qw—b ¢Qw—1)7
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D0, o), D1l-1:0¢2) + Dlos, %_1)}

2

< ‘F<maX{d7€(lea QW)v H(Qﬁ@w,h (bgw)a W})
< f(max{dR(gw_h 02), H(60w1, b0), dr (w1, Ow) +27-I,(gz5gw_1, $0z) })
(3.37)

If dr(0w-1, 0w) < H(P0w_1,P0w), then by (3.37) we have

0+ (051, 0c) F(H(P0m-1, 005)) < F(H(P0w—1, P0=));

which is a contradiction for o > 0, where a(g9n_1,0s) = 1. Thus, we have
H(P0w-1,P0w) < dr(0w-1, 0) and by (3.36) and (3.37), we get

‘F(dR(Qwa Qw+1)) < O‘(Qw—la QW)I(H(¢QW—17 ¢QW)) < F(dR(Qw—h Qw)) - -

Now, by the working done in Theorem 3.3.12, we obtain that 4 o* € U s.t
lim o, = 0. We now claim that o* € ¢p*.

w——+00

Case (i): Let ¢ be an Ry-continuous map. Since 9,41 € P00, We have

D(0m+1,90") < H(P0m, p0"). (3.38)

Taking limit as w — 400 in (3.38) and using R-continuity of ¢, we obtain

D(¢",¢0") = lim D(0my1,¢0") < lim H(¢pow, po*) =

w—+00 w—+-00
So, 0* € ¢o*.

Case (ii): Let there be an R-sequence {0 }wen, where o, — 0" as w — 400
implies (0,0%) € RY @w € N. Let ¢o* € ¢o*, then 3 @’ € N st o* € {05}
for every w > @’ implies H(pom, po*) > 0 and also by given condition, we have
(0w, 0%) € RV w € N'. Now,

F(D(0w+1,90")) < F(H(P0w, ¢0%))

<
< (0w, 0°)F (H($0w, p0"))
< 9+ (0w, 0")F (H(P0w, p0"))

< f(max{dww, 0), D0 602), D(0, 60).
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D(0, ¢0) ;D(Q, $0=) })

implies, D(0w41, P0") < maX{dn(@w, 0), D(0w, 90=), D(0, 90),

D(0w, o) + D(0, $0=) }
9

(3.39)

On letting w — +o0 in (3.39), we obtain D(o*, po*) = 0 which is not true. Hence,
0" € 9o, O

Corollary 3.3.16. For an R-complete metric space (U,dg), let ¢ : B — K(O) be

a multivalued a-admissible map s.t:

(I) 3 0o € U, where (09, P0o) € R;
(II) For each (o,5) € R implies (¢o, ¢s) € R;

(III) FEither ¢ is Ry -continuous on U or there is an R-sequence {0 }wen, where
0w — 0 as w — +00 implies (0w, 0) = 1 and (0w, 0) € RV w € N;

(IV) If for some F € §, 3 o > 0 s.t for each (0,¢) € R with H(po, ¢s) > 0, we

have

p+a(o,¢)F(H(do, ¢s)) < f(max{dn(g, $), D(o, d0), D(s, ¢5), D(o, ¢5) + D(s, ¢o) })

2

Then, ¢ possesses a fixed point.

Proof. Working on the lines of Theorem 3.3.10, we get an R-sequence {0y }wen
with o411 € ¢oo V w € N. Also, from the working in Theorem 3.3.12, we obtain
(0w, 0wt1) = 1V w € N'. Suppose g1 € ¢pp; and as ¢p; is compact, so 3 some
02 € ¢o1, 8.t

D(Qh 925@1) = dR(Qly 02)
that is, F(D(e1,d01)) = F(dr(o1, 02))

H(¢oo, po1),
F(H (¢00, do1))
(00, 01)F (H (P00, po1))

o + (o, 01)F (H (P00, P01)),
(3.40)

NN NN

o+ F(dr (01, 901))

for some p > 0. Next, using condition (/V') in (3.40), we have
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0+ (00, 00)F(H(be0, d01)) <f(max{dn<go, 01), Do, 600), D(or, bo1),
D(00, $01) + D(o01, $00) })

ma {dR 00, 01) (¢Q07¢Q1),D(Qoé¢gl)}>

f

f(ma {d’R 00, 01), H(d00, P01),
dr (0o, 01) + H (D0, 1) })

> (3.41)

If dr (00, 01) < H(po, p01), then by (3.41) we have

© + (00, 01)F (H(900, p01)) < F(H(Poo, do1)),

which is a contradiction for p > 0 and a(0g, 01) = 1. Thus, we have H(poo, p01) <
dr (00, 01). By (3.40) and (3.41), we get

F(dr(o1, 02)) < a(oo, 01)F (H(poo, p01)) < F(dr(00,01)) — -

Further, suppose 0, € 00, V w € N'. As ¢p,, is compact, so I some 9,11 € PO,
s.t

H(¢Qw—17 gb@w))
‘F(H((bgw—la ¢Qw))
a(@w—l; Qw)F(H<¢Qw—la ¢Qw))7

9 + a(0w-1,00) F (H(P0w-1,90x)),
(3.42)

D(0w, $0=) = dr (0w, Owt1)
thus? ‘F(D(QW7 ¢Qw)) = ‘F(dR(QW7 Qw-l—l))

INININ N

that is, p + F(dg (0w, 00=))

for some p > 0. Again, on using condition (V) in (3.42), we have

% + O‘(wala Qw)f<H(¢Qw717 ¢Qw))
< F<maX{dR(QW—17 Qw)? D(Qw'—la ¢Qw>7 D(Qw7 ¢Qw)7

D(Qw—h ¢Qw) + D(Q‘IM ¢Qw—l) })
2
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S f<max{dR(QW17 Qw), H((ﬁwala ¢Qw)a W})
< f(maX{de(le’ Qw);H((]ﬁQw,h ¢Qw), dR(Qw—la Qw) +2H(¢Qw—17 ngW) })
(3.43)

If dr (0w, 0w+1) < H(P0w, POw+1), then by (3.43) we have

% + O‘(QW7 Qw+1)F(H(¢QW7 ¢Qw+1)) g F<H(¢Qw> ¢Qw+1))7

which is a contradiction for p > 0 and (9, 0w+1) = 1. Thus, we have H(p0n, 00w11) <
AR (0w, 0w+1)- By (3.42) and (3.43), we get

dR(Qw> Qw-i—l) < a(gw—la Qw)f(?-“gbgw—la ¢Qw)) g ‘/—-(dR(Qw—la Qw))'

Now, by the working done in Theorem 3.3.15 we conclude that ¢ has a fixed
point. O

3.4 Existence of Solution to Non-linear Volterra
Integral Equation with Binary Relation

The results obtained in the preceding section will now be implemented on a

non-homogeneous, non-linear Volterra integral equation equipped with a binary

relation in order to substantiate the existence of its solution. Consider U =

C([0, 1], RT), that is, set of all continuous functions from [0, 1] to RT and define
d:U0x0U —[0,+00) as

d(T, 1) = [[T'(0) — T(0)low,f0.1)-

Let relation R be defined as R = {(I',T) € Ux U : I'(p).T(0) > 0V p € [0,1]}.
Define ¢ : U — U as

(o) = (o) + 0 [ Ko, 16 ) (3.4

where £(p) is a continuous non-negative real valued function on [0, 1], kernel

K(0,5,I'(c)) is a continuous and Q is a linear operator on U so 3 p > 0 s.t
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12M)] < llTl| and

|2 = sup{ ||(]2|;I|1|)H :I'#0and T € U}

Clearly, here ¢ is a non-homogeneous, non-linear Volterra integral equation along

with R as defined above.

Theorem 3.4.1. Let (U,dr) be defined as above. Let ¢ be a self-map on U given
by (3.44) where kernel K(o,5,1'(s)) s.t for (I',T) € R,

K(0, 6, T(6)) = K(e,¢, T(s))] < e ?[T(s) = T(<)],

where s € [0,1] and for some o > 0. Then the non-homogeneous, non-linear

Volterra equation (3.44) possesses a solution.

Proof. For U = C([0,1],RT) with dg(I', T) = [|[I'(¢) — Y(0)||s,[0,1] and relation R
on U given by R = {(I',T) € Ux U : T'(0).T(0) = 0V o € [0,1]}, then (U, dr)
an R-complete metric space. We now show that ¢ given by (3.44) satisfies all
hypotheses of Corollary 3.3.14.

A

(i) 3 O (zero function) in U with (O, $O) € R.
(ii) For (I',T) € R, we have I'(9).T(g) > 0 implies ¢I'(0).¢T (o) = 0.
(iii) By the definition of ¢ in equation (3.44), we have ¢ is R-continuous.

(iv) Let (I, 1) € R with dg (4T, ¢Y) > 0, then

||Q||/ ]/C 0,6, T(<)) = K(0,5, T(s))|ds,

)
that is, dr(6(I(2)), 6(T(2))) < |2le *dr(T(e), T(0))
oI g (1), X (o).

Thus, the non-homogeneous non-linear Volterra integral equation defined in (3.44)
satisfies hypotheses of Corollary 3.3.14 therefore, the integral equation possesses

a solution. N
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3.5 Hyers-Ulam Stability of Solution of Non-linear
Volterra Integral Equation with Binary Re-

lation

Now, we present the Hyers-Ulam stability due to Hyers (1941) and Ulam (1960)
in the frame of an R-metric space (U, dg). Let ¢ : U — U be a self-map with the
fixed point p, that is,

b0 = o, (3.45)
and let ¢ € U satisfies the inequality
dr(ds,<) < ¢, (3.46)

with € > 0, then the fixed point equation given in (3.45) is c.t.b Hyers-Ulam stable
if 3 > 0 s.t for each e-solution ¢* of (3.46), where € > 0, 3 solution o* of (3.45)
with

dr(0%,s") < de.

Next, we show that the fixed point equation ¢I' = I where ¢ is defined by (3.44)

is Hyers-Ulam stable. But before that consider the iterative scheme given as:

6a(0) = €00+ 0 [ Kl e Tot)ds) = Tolo),

for w € N. Then,

o

K(Q? ST (§1))d§1>

|Fw+1(9) - FW(Q)| <

[
Q / K(o, 1, Tw(s1))ds1 —
0
_ [
<l [MPa(st) = Tooa(en)lde

_ 2 4 S1
<(Ile)” [7 [T Irei(@) = Te-a(e)ldeds

w—1 ¢ [<1 Sww—2
<(lle=) ™ [7 [T [T Pa(wm) -

F1(§w—1)|d§w—1 .. dge dg;
_ Nw—1 4 S1 Sow—2
<(Iele )™y ory) [C [T [T de e dan,
o Jo 0

0
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w—1

(wg_l)!dn(rl, ¢I'y).

Theorem 3.5.1. For an R-complete metric space (U,dg) as defined in Theorem
3.4.1 along with the condition (I',T) € R for every e-solution I'* and Y*, then the
fixed point equation ¢I' = 1" is Hyer-Ulam stable.

thus, [To41(0) — Tz(o)] < ([Qlle™)™

Proof. By the working done in Theorem 3.4.1, 3 I'* in O, where ¢I'™* = T'*. Let T*
be an e-solution of fixed point equation, then (I'*, T*) € R, and by the working
done above, we have dg (¢ YT*, I'*) < ¢, since ¢ T* converges to I'* as w — +oo.
Also,

dr(T*, ") < dg (T, ¢%Y*) + dr (67 Y*, ™)
< dp(T*, ¢%T*) + dp(T*, §T*) + dr(¢pY*, $*L*) + - - +
dr (71T, 671)

2

< dr (D", 67T) + dr(T",6T%) + a dr(T*, 1) + Srdp(T", 61)

aw—l
< (L+e%)e, (3.47)

where a = ||Q||e™%. Thus, from (3.47) we obtain dx(I'*, T*) < de. So, the fixed
point equation ¢I' = T', where ¢ is defined by (3.44) is Hyers-Ulam stable. [

3.6 Conclusion

In this chapter, we have introduced a novel approach to prove the fixed point
results for certain types of expansive maps and multivalued maps on a R-metric
space that extends, unifies and generalizes the results on multivalued and sin-
gle valued maps in the literature. However, under certain conditions the results

proved in this chapter are reduced to some well known results of the literature.

(I) If in Theorem 3.2.3 or Corollary 3.2.4 we consider relation R as universal re-
lation then we obtain the equivalent counterpart of Theorem 2.1 of Gérnicki
(2016).

(IT) If the binary relation R in Theorem 3.3.2 and Theorem 3.3.3 is considered to

be a universal relation on U, then the main results of Altun et al. (2015) are
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(I11)

(VII)

(VIII)

(IX)

obtained. Under a similar condition in Theorem 3.3.5, a result equivalent

to one given by Acar et al. (2014) is deduced.

If the binary relation R in Theorem 3.3.2 and Theorem 3.3.3 is considered
to be an orthogonal relation, that is, there is some gy € U where (gg,¢) € R
V¢eUor(s,0) € RV €U, then the main results of Sharma & Chandok
(2020) are deduced.

On considering R as a universal relation and ¢ as a single valued self-map
on U in Theorem 3.3.2 and Theorem 3.3.5, the corresponding results of
Wardowski (2012) and Wardowski & Dung (2014) are obtained.

On taking into account the amorphous binary relation R as a universal
relation in Theorem 3.3.10 and Corollary 3.3.11, we obtain Theorem 2.2
and Remark 3.3 of Altun et al. (2016).

If in Theorem 3.3.15 and Corollary 3.3.16 of the present chapter, we consider
alo,s) = 1, ¢ as a single valued self-map on U and R = U x U then we
obtain Theorem 2.2 and Theorem 2.4 of Minak et al. (2014) and Wardowski
& Dung (2014), respectively.

On considering ¢ as a single valued self-map on U, an amorphous binary
relation R as a universal relation and £ = 0 in Theorem 3.3.10 and Corollary
3.3.11, we obtain Theorem 2.1 of Wardowski (2012).

If we consider ¢ as a single valued self-map on O, an amorphous binary
relation R to be orthogonal (that is, there is some ¢y € U s.t (¢,0) € R
VoeUor (o,5) € RYpe V) and k =0 in Theorem 3.3.10 and Corollary
3.3.11, we obtain Theorem 3.10, Theorem 3.3 and Theorem 3.3 of Baghani
et al. (2016), Mani et al. (2021) and Sawangsup et al. (2020), respectively.

If in Theorem 3.3.15 and Corollary 3.3.16 we consider a(g,¢) = 1, ¢ as a
single valued self-map on U and R = U x U then we obtain Theorem 2.2 of
Minak et al. (2014).

On considering ¢ as a single valued self-map on U, an amorphous binary
relation R as a universal relation and «(g,¢) = 1 in Theorem 3.3.12 and
Corollary 3.3.13, we obtain Theorem 2.1 of Wardowski (2012).

Kokokokok ok
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Chapter 4

Fixed Point Results in
C*-Algebra Valued R-Metric

Space

4.1 Introduction

Ma et al. (2014) put forward the idea of a novel metric space named C -metric
spaces and established some of the fixed point results subjected to fairly new
contractions as well as expansion maps that, over a period of time, has been
generalized by many (see Ma & Jiang (2015), Shen et al. (2018), Chandok et al.
(2019), Ghanifard et al. (2020), Mustafa et al. (2021), Shagari et al. (2023) and

references cited therein).

Inspired by the work done by Ma et al. (2014) and Alam & Imdad (2015), in this
chapter we put forward the idea of C%;, R-metric space which generalizes the class
of Cy-metric space. Also, we introduce the idea of C’y, R-contractive map and
related fixed point results along with the existence and uniqueness of coincidence
points and common fixed points using Picard-Jungck iteration process in C'y, R-
metric space. As an application, the results obtained are applied on C%; -metric
space together with a directed graph. The results proved in this chapter have

been discussed in 7.

6Malhotra, A., Kumar, D., and Park, C. (2022). C*-algebra valued R-metric space and fixed
point theorems. AIMS Mathematics, 7(4), 6550-6554.

"Malhotra, A., and Kumar, D. (2023). Coincidence Point and Common Fixed Point in
C*-algebra Valued R-metric Space using Picard-Jungck Iteration Process with Application in
Graph Theory. (Communicated).
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4.2 Generalized Contraction Maps and Fixed Point
Results

Definition 4.2.1. For a set U together with B and relation R, define d : U x U —
B.. Then, (Op,dg) is c.t.b a C%, R-metric space if:

(i) (G,B,d) is a C%y -metric space;
(ii) R is a binary relation on U.

Definition 4.2.2. For a C%, R-metric space (Ug,dr), ¢ : Op — Up is c.t.b a
C%vR-contractive map if V¥ o,¢ € U with (p,5) € R, 3 v € B where ||v]| <1
s.t

dr(po, vs) = vdr(0,s)v.
Example 4.2.1. Let U =R, B = My(R) with involution on B defined as A* = A

V A € B, where A denotes the transpose of matriz A and zero element Op =
[8 8] =0. For A = [a], let

4]l = max,la.

Defined: G x U — B, as

lo—¢l 0
0 Jo—gl

In such case, for A = a;j|, B = [bi;] € B, we say A 2 B iffa;; <b; Vi, j=1,2.
Define R as (o,5) € R iff o< = 0 s.t (Up,dr) is a C%, R-metric space. Let
@ : O — Op be defined as

d(o,s) =

0 otherwise.

3/25 for o € N;
p(o) = {

Now, for (0,5) € R, we must have either o or s or both to be zero. Consider

¢ =0, then we have the following cases:

Case (i): If p € U — N. Then, we have po = 0 and eventually dg(po, ps) =
dr(0,0) = 0. For any A € B with |A| < 1, we have A*dgr(p,0)A = 0 and thus

dr (o, 0s) 2 A*dr(0,<)A.
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Case (ii): If o € N. Then

3/25 0

d , =dr(3/25,0) = , 4.1
r(po, <) = dr(3/25,0) [ 0 3/25] (4.1)

<L 0

and, for A = {“05 i}, we have

75

Atdg(0,5)A = Aldr(0,6)A = : (4.2)
0 o/5

Thus, from (4.1) and (4.2), we obtain dr(pe,¢s) = A*dgr(0,s)A for any o € N.
The case when o = 0 can be proved in a similar manner as above. Hence, o is a

ChyR-contractive map.

Example 4.2.2. Consider U = [0,1], B = My(C) with involution on B defined
as A* = ALYV A € B, zero element 0y = [88] = 0. For A = [ay], let ||A]| =

maxi<; j<2 |a;;|. Defined: U x U — B, as

lo— ¢ 0

, where ( > 1.
0 Jo—g

d(o,¢) = [

In such a case, for A = |a;;], B = [bi;] € B, we say A < B iff |a;;| < |bij| Vi,5 =
1,2. Let R be defined as (o,s) € R iff o.c = 0 then, (Up,dg) is a C%, R-metric
space. Let ¢ : Og — Op as

0 otherwise.

(o) = { o/4  forpoeUpNQ;

Now, for (0,5) € R, we must have either o or s or both to be zero. Consider
¢ =0, then

Case (i): Let o € Ug — Q. Then, we have dr(po,¢s) = dg(0,0) = 0. For
each A € B with ||A| < 1, we have 0 < A*dr(0,0)A and thus dr(po,ps) =

Case (ii): If o € Up N Q. Then

0 (ofa) 43)
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and, for A = {%

A } , we have

s o

Atdgr(0,5)A = AMdr(0,¢)A = (4.4)

/2 0
0 o%/2|

Thus, from (4.3) and (4.4), we obtain dgr(po,ps) = A*dr(0,5)A for any o €
UOgNQ. The case when o = 0 can be proved in a similar manner as above. Hence,

¢ s a Oy, 'R-contractive map.

Definition 4.2.3. Let (Ug,dr) be a Cy,R-metric space and ¢ : Oy — Up be a
self-map, then

(i) an R-sequence {0 }meny C Up is c.t.b convergent to o € Up if for any
€>0,3wy €N s.t|dr(0w,0)|| <eVw>w.

(ii) ¢ is c.t.b R-continuous at p € Ug if for any R-sequence {0z twen C Up
with IEE ldr (0w, 0)|| = O implies IEE ldr (0w, 0)|| = Op. Also, p is
R-continuous on Uy if V p € Ug, ¢ is R-continuous at o.

(iii) an R-sequence {¢y}wen C Op is c.t.b R-Cauchy if for any ¢ > 0, 3

wp € N 8.t ||dr (0w, 0w+)|| < €V @, @w* > wy.

(iv) (Up,dr) is c.t.b a complete C*%, R-metric space if each R-Cauchy se-

quence is convergent in O.

(v) a subset Zg of Up is c.t.b a complete C, R-subspace if (Zg, dr) is a complete

ChyR-metric space.

Example 4.2.3. Consider O = [0, 3] and B be the set of all 2x2 diagonal matrices
on C. Let involution on A € B be defined as A* = A", where A is the conjugate

transpose of matriz A = [a;;] and ||A]| = max | aij |. Defined: U x U — B, as
LIS

lo—¢ | 0

, where A > 1.
0 lo—¢

d(o,¢) = [

|)\

Let R be defined as (o,s) € R iff o.c =0 then, (Up,dr) is a C%, R-metric space.
Let ¢ : U — Ugp be defined as

0 otherwise.

S0(@:{ o/4  forpeUrNQ;
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For any convergent R-sequence {0x}wen, we must have lg}rl 0 = 0 and so,

1_1}}3 Yow = 0= 0. Thus, ¢ is an R-continuous map.

Theorem 4.2.4. Let (Up, dr) be a Cy,R-metric space and let Zy be a complete
CyR-subspace of Op. If ¢ : O — Op is a self-map on Op s.t:

(1) ¢(Us) C Zg;

(1) ¢ is R-preserving;
(III) 3 some gy € Ugp 8.t (00,5) € RV ¢ € ¢o(Up);
(IV) ¢ is C*%, R-contractive map;

(V) Either ¢ is R-continuous or R is dg-self closed on Zg.
Then, @ possesses a unique fized point.

Proof. Define a sequence {pz}wen in Op where 01 = 00, 0wi1 = ¢%00 =
v0w ¥V w € N. By condition (1II) for some gy € Ug, (00, p00) € R, that is
(00, 01) € R. Since, ¢ is R-preserving, so we have (p0q, p01) = (01,02) € R. On
continuous use of R-preserving property of ¢, we get (0w, 0w+1) € RV w € N.
Thus, {0 }wen is a R-sequence in Ug. Next, by using condition (1V), we obtain

d’R(Qw+17 Qw) = d’R(()OQwv SOwal) j V*d’R(Qw7 wal)y
= V'dr(pom-1, P0m-2)V
j (V*)2d'R<Qw—17 Qw—Q)VQ j e j (V*)wﬁyw, (45)

where ¥ = dg (01, 00) and v € B with ||v|| < 1. Let w > w*, for w,w* € N, and
using triangle inequality along with (4.5), we get

.
&

(Qw+1> Qw) +-+ dR(Qw*+27 Qw*Jrl) + dR(Qw*Jrla Qw*)
(W )Et = Y (V8) 9129128

e=w*

dR(Qw+17 Qw*) j

=

*

aa)

(191/2V£)*<791/2V5) — Z ‘191/2V£|2 j
E=w*

—+00
19212141218 =< |92 32 (| 1s

f=w"

w

Z |191/21/£’2

§=w

Ig

*

IA I
it {010 {0

*

o

v [I*=

(=1l
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Thus, {0w = ©0w—_1}wen is an R-Cauchy sequence in Zg so 3 9 € Zg C Up with
lim o, = 0.

w——+00

Case (i): Consider ¢ be a R-continuous map. Since {0 }wen is R-sequence
with wl_lg_loo 0w = 0. Then,

o= lim o5y = lim o5 = po.

w—r+00 w—r+00
Thus, ¢ possesses a fixed point.

Case (ii): Consider R be dg-self closed on Zp. Since {0y }wern is an R-sequence
where o, — ¢ as w — +o0o. Then, 3 a sub-sequence {og, }ren Of {0 }wen st
[0w;.5 0] € R|z. Now,

AR (0wy+1, 90) = AR (PO, 90) = V'dR (0w, 0)V — O as k — +oc.

Therefore, o, — o as k — +o0o and by uniqueness of limit, we have p = @p.
Thus, ¢ possesses a fixed point. Next, let ¢ be s.t ¢ = ¢ infact ¢¥¢ = ¢. By
condition (III), 3 oo € Ug s.t (00,5) = (00, ps) € R. Since ¢ is R-preserving, so
(p00, <) € R implies (9% 0o, ¢¥¢) € R. On using contractive condition of ¢, we

have

AR (0w,S) = dr(pT00,97s) = Vdr(p™ 00, ™ 'SV
= () dr(07 200,07 %) (v)?
= - 2 (V)%dr(00,9) (V)7 (4.6)

Taking limit as w — +oo in (4.6), we get dg(p,s) = 0. Hence, ¢ possesses a
unique fixed point. O

Example 4.2.5. Consider the C%, R-metric space as discussed in Example 4.2.2,
where the defined self-map ¢ on Up is a C% R-contractive map and (Up,dr)
is a complete Chy,R-metric space. Also, 3 99 = 0 € Up s.t (00,900) € R.
Further, ¢ is R-preserving (since for any (0,5) € R implies o = 0 or/and ¢ =
0 implies (po,ps) € R) and for any convergent R-sequence { 0w twen we must
have wliglm 0w = 0 and so is wLiIEoo Yow = 0 = 0. Thus, ¢ is a R-continuous

map. Therefore, by Theorem 4.2.4 (case when Zp = Up), ¢ possesses a fixed point
viz. o = 0.

The upcoming theorem proves an analogues result of Kannan (1968) endowed

with a binary relation R under similar setting.
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Theorem 4.2.6. Let (Up, dr) be a Cy,R-metric space and let Zy be a complete
ChyR-subspace of Og. If ¢ : O — Op is a self-map on Op s.t:

(1) ¢(Us) € Z8;
(II) ¢ is R-preserving;
(III) There exists some oy € Up where (09,5) € RV s € p(Up);

(IV) For all p,s € U with (0,5) € R, 3v e B, where ||v|| <1/2 s.t
dr(po, <) 2 v(dr(pe; 0) + dr(ps;<));

(V) Either ¢ is R-continuous or R is dg-self closed on Zg.

Then, ¢ possesses a unique fixed point.

Proof. By working done in Theorem 4.2.4, we get an R-sequence {0y }wen in Up
where (0w, 0w11) € R for w € N'. Using condition (1V), we get

AR (011, 0w) = AR (V0w, POw-1) =X V(dR(P0w: 0w) + dR(POm—1, 0—1))
= V(dR<Qw+17 Qw) + dR(Qwa Qw—l))a
thereforea ([IB - I/)dR(Qerla Qw) j VdR(Qw7 wal)-

Now, v € B', and ||v|| < 1/2. Thus, by Lemma 1.2.1, (I — v) and v(Iy —v)~ ' €

B, with ||v(Iy —v)7 Y| < 1, so we have

dR(Qw+17 Qw) j V(]]B - V)_ldR(Qwa Qw—l)a
= bdr (0w, 0w-1)
= - 2 b0%dr(01, 00) = 7Y, (4.7)

where b = v(Iy — v)~! and ¥ = dgr (01, 00). Let @ > w*, for w,@* € N, and using
triangle inequality along with (4.7), we get

dR(Qw*7 Qw—i—l) j dR(Qw*7 Qw*—i—l) + d’R(Qw*+17 Qw*—i—?) + -+ dR(Qw; Qw+1>

_ i by — i BE/2pE/291/291/2 — Zw: (b/291/2)* (b¢/291/2)
f=w* f=w* E=w*

_ i |b§/2,l91/2|2 < i |b£/2191/2|2 Iy
J =0

=< 9?2 +2: 6] 1p = |’01/2|‘2%IB — Op as w* — +00.

=
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Thus, {05 = P0w_1}wen is an R-Cauchy sequence in Zp and as Zp is complete

C"R-subspace of Up so, 3 p € Zg C Up s.t l_1>rJrr1 0w = 0.

Case (i): Consider ¢ be an R-continuous map. Then

o=Jlim oon = lm oo = e

Thus, ¢ possesses a fixed point.

Case (ii): Consider R be dg-self closed on Zp. Since {0 }wen is a R-sequence
where o, — ¢ as w — +o00. Then, 3 a sub-sequence {og, }ren Of {0m}wen st
[0w;.5 0] € R|z. Now,

AR (041, P0) = dr(P0m,, p0) = V(AR (P0my, 0=, ) + dr (90, 0)).

Taking norm on both sides, we get

ldr(0m+1, 0)| < |V[[(ldr (00w, 0=, ) || + ldr (00, 0))]])
= I (ldr(0mp,1» 0=) || + lldr (@0, 0)]])-

Taking limit as £k — +oo on both sides, we get

ldr (e, o)l < lI¥lllldr(pe, Q).

For ||v|| < 1/2, above holds only when ||dz(¢0, 0)|| = 0. Thus, ¢ possesses a fixed
point. Next, let ¢ be s.t ¢ = ¢ infact ¢®¢ = ¢. By condition (III), 3 g9 € Up
where (00,5) = (00, ¢s) € R. Since ¢ is R-preserving, so (©0o, ps) € R implies
(0% 00, p%s) € R for w € N. On using condition (IV), we have

dr(0=:5) = dr(¥7 00, ¢7<) = V(dr(9700, ¢ 00) + dr (75,7 <))
- Vd’R(Qwu Qw—l) == de’R(Ql;QO)- (48)

On taking limit as @ — 400 in (4.8), we get dg(o,<) = 0p. Hence, ¢ possesses a

unique fixed point. O

In the next theorem, we establish the R analog of the Chatterjea (1972) contrac-

tive condition for a C%; /R-metric space.

Theorem 4.2.7. Let (Ug,dr) be a CyR-metric space and let Zy be a complete
ChyR-subspace of Op. If ¢ : Og — Up is a self-map on Uy s.t:
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([) SO(U]E) - ZB;
(1) ¢ is R-preserving;
(III) There exists some gy € Up with (00,5) € RV ¢ € ¢(Up);

(1V) For all o,s € Op with (0,5) € R, 3v e B, where ||v|| < 1/2 s.t
dr (o, ¢s) 2 v(dr(pe,<) + dr(ps, 0));
(V) Either ¢ is R-continuous or R is dr-self closed on Zp.

Then, @ possesses a unique fized point.

Proof. Working on the lines of Theorem 4.2.4, we obtain an R-sequence {0 }wen

in UOp where (0w, 0w+1) € R for w € N'. Using condition (IV), we get

dR(0w+1, 0w) = dr(P0w) PO=-1)

=< v(dr(P0m, 0m-1) + dr(P0m-1, 0=))

= Vdr(P0w, 0w-1)

= VAR (90w P0x-2)

= V(dr(P0m; POw-1) + AR (P0m—1, POm—2))

= V(dr(0w+1, 0w) + AR (0w, 0-1)),
therefore, (Ig — V)dr(0w+1,0w) = VAR(0w, 0m-1).

Now, v € B', and ||v|| < 1/2. Thus, by Lemma 1.2.1, (I — v) and v(Iy —v)~ ' €

B, with ||v(Iy —v)7!| < 1, so we have

dR(Qw+17 Qw) j V(]]B - V)_ldR(Qwv Qw—l)
= bdR(Qw7 Qw—l) j e j bwd'R(Qla QO) = bwﬂ?

where b = v(Ip — )~ and ¥ = dg(01, 00). By the working done in Theorem 4.2.6,
we obtain that {0m = Y0w_1}wew is an R-Cauchy sequence in Zg, and since Zp

is complete (), R-subspace of Ug, so 3 p € Zp C Up s.t wl_i)rf_loo 0w = 0.

Case (i): Consider ¢ be a R-continuous map. Then

o= lim ooy = lim @o, = po.

w—+00 w—+00

Thus, ¢ possesses a fixed point.
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Case (ii): Consider R be dg-self closed on Zg. Since {0x}men is R-sequence
where o, — ¢ as w — +o00. Then, 3 a sub-sequence {og, }ren Of {0m}wen st
[0, 0] € R|z. Now,

AR (0w 11, 90) = dr(P0w,, P0) = V(AR(POwm, 0) + dr (Y0, 0=, ))-

Taking norm on both sides, we get

ldr(0mt1; o)l < WI[(ldr(Pemy; 0l + lldr(po; 0=))
= |ll(ldr (0w DI + lldr(v; 0=,)1))-

Taking limit as £k — +oo on both sides, we get

ldr (e, o)l < lIvlllldr(pe, Q).

For ||v|| < 1/2, above holds only when ||dz(¢0, 0)|| = 0. Thus, ¢ possesses a fixed
point. Next, if ¢ is another fixed point of ¢ in Ug, that is, p¢ = ¢ infact ¢¥¢ =¢.
By condition (111), 3 gy € Up s.t (00,5) = (00, <) € R. Since ¢ is R-preserving,
so (@0, s) € R implies (¢ gy, 7<) € R for w € N. On using condition (IV),

we have

dr(0w,S) = dr (%00, ¢7s) = v(dr(p® 00,07 ') + dr (s, ™ ' 00))
= y(d’R(QW7§) +dR(§7 Qw71)>7
therefore, (Iy —v)dr(0w,s) = vdr(S, 0w-1)
v
d < —d _
R(ngg> — (I[B—V) R(ga Qw 1)
Vw
B . 4.
i = (s — y)wdn(ﬁ ) (4.9)

Using Lemma 1.2.1 and taking limit as w — +o0 in (4.9), we get dg(0,s) = 0O5.

Hence, ¢ possesses a unique fixed point. O

Remark 4.2.8. The results proved in Theorem 4.2.4, 4.2.6 and 4.2.7 holds true

if (Op,dgr) is considered complete C%, R-metric space.

Example 4.2.9. Consider U = [0, 1) together with usual metric and let the unital
Cy-metric space B = (—o0,+00) together with ||v|| = |v|, for v,y € B we have

v =X v iff v < v and involution given by v* = v. Define a relation R on Op as
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(0,6) € Riff o.s € {o,s} and let ¢ : Oy — Up be defined as

- 0 for 0 €[0,2/9];
(o) = { 1/9  for o€ (2/9,1),

then, Ug is a complete C%, R-metric space. Next, for (0,5) € R we have either

0=0 or/and ¢ = 0. Let us consider ¢ =0, so the following cases arise:

Case (i): If 0 € [0,2/9], then
dr(po,¢<) = dr(0,0) =0 (4.10)

and, dr(0,s) = dgr(p,0) = o. (4.11)

So for any v € B with ||v| < 1, from (4.10) and (4.11), we obtain

dr (0, ps) 2 V'dr(0,)v.
Case (ii): If o € (2/9,1), then

dr(po, <) = dr(1/9,0) = 91) (4.12)

and, dg(0,s) = dr(0,0) = 0. (4.13)

So for v = % and from (4.12) and (4.13), we obtain

2
dr (0, ps) 2 V'dr(0,5)v.

Thus, ¢ is C%y R-contractive map. Also, ¢ is R-preserving and R-continuous.
Thus, by Theorem 4.2.4 (case when Zy = Ug), we obtain that p possesses a unique
fized point which in this case is o = 0.

Remark 4.2.10. The metric space (U,d) considered in the above example is an

incomplete metric space and thus violates the applicability of fized point results
proved in Banach (1922) and Ma et al. (2014).

Example 4.2.11. Let U = {0,1,2,3,4} and B = My(R) with A* = A for each
A€ B and |A|| = maxi jcoaij|. Let 05 =0 = [8 8}. Define d: U x U — B,

as

d(g,o:{ Vo Jere=s

Iy otherwise,
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where Iy denotes an identity matrixz of order 2.

Define R = {(0,0),(0,1),(1,1),(2,2),(2,4),(3,2),(3,4), (4,4)}, then (Up,dr) is
a complete C*y, R-metric space. Define a self-map ¢ : Op — Up as ¢(0) =0 =
©(1), p(2) =1 = ¢(3) = ¢(4). Then, ¢ is an R-preserving map (since for any
(0,6) € R, (o, ¢s) = (0,0) or(1,1)). Also, as0 € Ug where (0,p5) € RV ¢ € Up
and ¢ is R-continuous as for any R-sequence { 0w twen With 0 — 0, we have Yo,
converge to either 0 or 1. Next, for a given A € B with 0 < ||Al| < 1/2, we have

dr (0, 04) = dr(0,1) = Iz > A(dr(¢0,0) + dr(p4,4)) = A0 + Iz) = Alg.

Here, ¢ satisfies all the hypotheses of Theorem 4.2.6 (case when Zy = Ug) and

hence, ¢ possesses a unique fized point viz. o = 0.

Remark 4.2.12. The self-map discussed in the above example does not satisfy

Kannan (1968) contraction condition.

Example 4.2.13. Let U = [0,2) equipped with usual metric and let C%,,-metric
space B = (—o0, +00) together with ||v|| = |v|, for v,y € B, v 2 v iff v < v and
an involution given by v* = v. Define a relation R on U as (o,<) € R iff 0. € {0}
and let ¢ : O — Op be defined as

0?
90(9): g fOTQG[O,l);
0 otherwise.

Next, for (0,5) € R we have o = 0 or/and ¢ = 0. Let ¢ = 0 so we have the
following cases:
Case (i): If o € [0,1), then

2 Q2

dr (0, <) = dn(%,()) =% (4.14)

2

and, v(dr(po,s) +dr(ps, 0)) = V<dR<Q627 0) +dr (0, Q)) = V(Q(), +Q>. (4.15)

Then for v =1/3 and from (4.14) and (4.15), we obtain
dr(po, ¢s) 2 v(dr(pe;s) + dr(ps, o).
Case (ii): If o € [1,2), then

dr (0. ¢<) = dr(0,0) = 0 (4.16)
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and, v(dr(po,s) + dr(¥s,0)) = v(dr(0,0) + dr(0,0)) = vo. (4.17)

Then, from (4.16) and (4.17) and for any value of v € (0,1/2), we conclude that
@ satisfies the contraction hypothesis of Theorem 4.2.7 (case when Zy = Up).
Moreover, ¢ is R-continuous and R-preserving. Thus, by Theorem 4.2.7 (case

when Zy = Up), ¢ possesses a unique fized point which is o = 0.

Remark 4.2.14. The metric space (U,d) considered in the above example is an
incomplete metric space and thus violates the applicability of Theorem 2.3 of Ma
et al. (2014) and Chatterjea (1972) contraction theorem.

4.3 Coincidence and Common Fixed Point Re-

sults

This section deals with coincidence point and common fixed point results in C%; R-
metric space (Up,dg). Firstly, we introduce the notions of R-preserving, R-
compatible, R-precomplete, R-continuous, R-contractive and weak R-contractive

in the framework of C};,R-metric space.

Definition 4.3.1. Let (Up,dg) be a Cy, R-metric space and 1), ¢ be two self-maps

on Og, then

(1) ¥ is c.t.b R,-preserving if (o, ¢s) € R implies (o, ¥s) € R.

(ii) ¥, are c.t.b R-compatible if for any R-sequence {0n}wen in Up s.1

{0 }wen and {0} wen are two R-sequences and l—lgl V0w = l_1>IJrrl V0w

we have,

ldr (#(Yoz), ¥(poz))l = 08 as @ — +oo.

(7ii) a subset Zp of Up is c.t.b an R-precomplete subspace of Ug, if for every
R-Cauchy sequence { 0% }wen in Zg, we have LHE |ldr (0w, 0)|| = O where
A GIB-

(iv) maps ¥, ¢ are c.t.b R-contractive if for any o,¢ € Up with (o, ps) € R,

we have

dr(Y0,9<) < 6"dr(po, ¢<)0,

where 6 € B and |0 < 1.
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(v) maps 1, p are c.t.b weak R-contractive if for any 0,< € Op with (po, <) €

R, we have
dR(¢Q» ¢§) < 5*C*(Q‘wa Qw+1)67

where 6 € B with ||6]] < 1, where

(0w 041) = maX{dn(sogw, ©0w+41), AR (V0w P0=), AR (Y 0mt1, POz+1),

d’R(d}Q‘zrn ¢Qw+l) + dR(¢Qw+17 QOQW) }
5 .

1 1
Example 4.3.1. Let U = (—1 +—,1— > with d(o,<) =| 0 —< |, where w € N
w w

with B = R and define R = {(o,s) € U?: 0.c > 0}. Let 1, p : Ug — Ug be defined

as
V(o) = {

Then for any o,s € Up with (¢o,¢s) € R, we have (Yo,¢s) € R. Thus, 1 is Ry-

preserving.

for o€ (—1+X,0]; S5 foroe(—1+ 2,0
Loand, p(o) =4 )
fOT'QG(O,].—E), 9 fOTQE(O,l—E)-

Ol D=

Remark 4.3.2. [t can be observed from Definition 4.5.1 that on considering the

self-map ¢ on Oy as identity map, we obtain that self-map ¥ is R-preserving.

Example 4.3.3. Consider U = [0,3] and B be the set of all 2 x 2 diagonal
matrices on C. Let involution on element A of B be defined as A* = A®, that is,
conjugate transpose of matriv A = |a;;] and ||A]| = max, | ai; |. Define metric
d:0x0 —DB, as

lo—¢| 0

d(@c)Z[ 0 Mo—c|

] , where A > 0.

Let R = {o,s € U : either o = 0 or ¢ = 0}, then (UOp,dr) is a C%, R-metric
space. Define self-maps 1, p on Up as:

0 0’

Py for 0 €10,2]; — or o €10,5/2];
W) =1 3 U and, )= 11 e 0.5/2]

0 otherwise, 0 otherwise.

Then, for any R-sequence {0z twen in Up, Y05 and pom are R-sequences with

lim Yoo = _lim ¢om 5.t dr(Y(pos), p(Yox)) = 0 as @ — Foo. Thus ¢, ¢

w——+00

are R-compatible.
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Example 4.3.4. Let U = [0,1) and Z = (0,1) be a subset of U with B =
(—00,+00) and metric d: U x U — B, defined as

)0 for o=g;
dle.<) _{ 1 for o #¢.

Let R = {o,¢ € U : dr(0,s) < 1}. Then, for any R-Cauchy sequence {0z }wen

in Zg is convergent in Og. Thus, Zg is an R-precomplete subspace of Up.

Remark 4.3.5. Every precomplete subspace is an R-precomplete subspace, how-
ever converse does not hold true. In Example 4.3.4, Zg is an R-precomplete sub-
space of Og but not a precomplete subspace of Up since the sequence {1 — é}weN

is a Cauchy sequence in Zy which is not convergent in Op.

Theorem 4.3.6. Let (Ug, dr) be a CR-metric space with Zy as an R-precomplete
subspace of Op and let Y, ¢ be two self-maps which are R-contractive, R-continuous
and R-compatible. Also, let 1) be R,-preserving where 1(Ug) C p(Up) N Zg and
3 0o € Up with (Yoo, po0) € R. Then, 1, have a coincidence point. In addi-
tion, if for any two coincidence points v, and vo of V¥, p, that is, there exist some
1, € Up with 16y = g1 = vy and sy = s = Yo we have (s1,5) € R, then i, ¢
possess a unique coincidence point. Moreover, if ¥, @ are two weakly compatible

maps then they possess a unique common fixed point.

Proof. Define Picard-Jungck sequences {0y } wern and {¢ }wen, where ¢ = 00511 =
Yo, ¥ w € N'. By given condition, 3 some gy € Up s.t (0o, poo) € R, that is,
(po1,900) € R. Since v is R -preserving, we obtain

(2/1917 ¢QO) € RJ that iSJ (SOQ% SOQI) S R

On repetitive use of R -preserving property of ¢, we get {¢z}wen, {¥0w }wen

and {0 }wen are R-sequences. Now,

AR (Sws Swt1) =AR (V0w 11, PO +2)
=dr (Y0, Y0wi1)
<0 dr (90w POz 11)d
<(0)2dr (001, 90%)(6)" = (6") dr (o2, S=-1)(6)°
<o < (07)%dr (001, 002)(0)7 = (67)%dr(s0,61)(0)%.  (4.18)

We next show that {¢s}wen is an R-Cauchy sequence. Let p,q € N with p < ¢
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then, we have

dr(Sp;Sq) < dr(Sps 1) + dr(Spy1s Spya) + - + dr(Sy-1,5)
q
< D (6%)dr (S0, 1)(6)"
Y=p
a 12 _\" 1/2
= Z <|:d73<§07 §1)1| 57) ([dR(gth g1>:| 57)
Y=p
+00 1/2 2
< D2 {dn(Co,ﬁ)} o7 |\ Is
Y=p
2
1/2 ||
- H[dn(go,cl)] / 1H_”H5HIB — 0 as p— 4oo. (4.19)

From (4.19), we observe that {¢, }wenw is an R-Cauchy sequence in Zg and since

Zp is R-precomplete subspace of Up so, 3 some ¢ € Ug s.t

lim ¢, = g,
w—r+00
that is, wlililm V0w = wlililm Vow =6. (4.20)

On using R-compatibility of ¢ and ¢, we have

lim dR(¢(¢Qw)>¢(¢Qw)) = Op.

w—+00

On using R-continuity of ¢ in (4.20), we obtain

lim ¢(pow) = lim (Poz) = .

w—r+00

Again, by using R-continuity of ¢ in (4.20), we obtain

lim o(pox) = lim @(Yom) = ¢s.

w——+00 w—+00

Further,

dr(ps, ¥s) = _lim dr(p($o=), ¥(po=)) = Op.

Therefore, ¢ is the coincidence point of ¥, p. Next, let v1,72 be two distinct
coincidence point of 1, , that is, there exist 1, ¢ € Up with ¢ # ¢ with (¢1,¢) €
R. Now, ¥¢; = g1 = 71 and ¥ = s = s, thus

dr(Vs1,10) < 0"dr(ps1, ps2)d, that is, dr(v1,72) < 0" dr(71,72)0,
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which does not hold since ||0]] < 1. Hence, ¢ and ¢ have a unique coincidence
point. We now consider 9, ¢ to be weakly compatible, that is, 1 s = pi¢ where
¢ is unique coincidence point of ¢, . Let v € U where ¥ = ¢¢ = v, then we

have

v = s = ps = pu.

Thus, v is another coincidence point of v, ¢ which implies ¢ = v, so we obtain ¢

as a unique common fixed point of ¥, p. m

Theorem 4.3.7. Let (Ug, dr) be a C%R-metric space with Zg as an R-precomplete
subspace of Og and suppose 1, ¢ are two self-maps which are weak R-contractive,
R-continuous and R-compatible. Also, let 1 be R,-preserving with (Ug) C
©(Up) N Zy and 3 oo € U where (100, poo) € R. Then, ¥, ¢ have a coincidence
point. In addition, if for any two coincidence points v, and o of ¥, @, that is,
there exist some ¢1,50 € Up with Vs, = @¢1 = 1 and Ys = sy = Yo we have
(¢1,52) € R, then 1, p possess a unique coincidence point. Furthermore, if 1, @

are two weakly compatible maps then they possess a unique common fized point.

Proof. On defining a Picard-Jungck sequences {0 }wen and {¢p twen in Up as
defined in Theorem 4.3.6, we conclude that {¢x }wen', {¥0w }wen and {pom toen

are R-sequences. Now,
AR (So, Swt1) =AR (P01, POm+2)
:dR(¢QW7 ¢Qw+1) < 5*C*(Q’wa Qw+1)67 (421)
Wherea C*(QW7 Qw+1) - maX{dR<QOQw, SOQ‘W-&-I)? d'R(wQWJ SOQW)a

AR (V0m11, PO=+1),

dR(wQW7 (pQerl) + dR(¢<Qw+17 @Qw) }
2

= maX{dvz(soaw, ©0w+41), AR (POz+1, PO )

AR (P0m+2, PO=+1),

AR (P0m11, P0m+1) + AR (90w 12, PO=) }
2

< max{dR<§DQwa ©0m+41), AR(POm+1, POz+2),
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dr (00w 11, POw+2) + AR (V0w POw+1) }
2

g maX{d'R((pQw7 SOQW+1)7 dR((pQerh gpgw+2)}'

Let maX{dn(sOQw,apQwH),dn(waH,¢Qw+2)} = dr(P0w+1, POw+2), then from
(4.21), we have

AR (POw+1; POw+2) < 0 dR(POm+1, POw+2)0,

which is a contradiction since ||0] < 1.

If, maX{dR(sagw, ©O0w+1)s AR (POw+1, POm+2) ¢ = AR (PO0=, POm+1) and from (4.21),

we get

d’R((pQw—&-b SOQW—FZ) < 5*d'R((pQw7 @Qw—l—l)(s-

By Theorem 4.3.6, we obtain that ¢, possess a unique coincidence point and

common fixed point. O]

4.4 Application in Graph Theory

In this section, we establish an association of the results proved in the previous
section with a directed graph. Let = = (V(Z2), E(Z)) be a directed graph, where
V(Z) be the set of vertices which coincides with U and E(Z) be the set of directed
edges along with all loops, that is, E(Z) is a subset of V(Z) x V(Z). We also

assume that = has no parallel edges in it.

Theorem 4.4.1. For (Up,d) a C%y -metric space endowed with a directed graph
= and let Zp be a subspace of Uy where every Cauchy sequence {0 }wen in Zp

with (0w, 0w+1) € E(Z) is convergent in Op. Let ¢, : O — Op be self-maps s.t:

(I) For any o,s € Ug with (v, ¢s) € E(Z), we have

d(vo, 1) < 07d(pe, ¢5)9,
where 6 € B and ||0]| < 1;
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(II) For each o € Up 3 a sequence {0x twen in Op where (0w, 0mr1) € E(Z) with
lim {[|d(¢=, 0)|| = b implies

w——+00

im{|d(ow, Yo)|| = 0s and, lim_||d(pow, po)l| = bs;

(III) For any sequence {0x}wen in Up where (0w, 0wi1) € E(E) s.t {10m twen
CLTLd {QpQw}weN are two sequences thh (waa wa-i-l) € E(E)} (SOQLTH @Qw—i—l) €

E(Z) and wl_l}t}rloozﬁgw = wl_lg_loo V0w, we have

|d(p(¥0m), V(pom))|| = 08 asw — +oo;

(1V) If (po, <) € E(Z) implies (o,1s) € E(Z);
(V) ¥(Up) C ¢(Ug) N Zg;

(VI) 3 some gy € Ug s.t (Yoo, poo) € E(Z).

Then, 1, ¢ have a coincidence point. In addition, if for any two coincidence points
v1 and s of P, p, that is, there exist some <1, € Up with ¢ = g = 1 and
s = psy = Y2 we have (¢1,5) € E(Z), then 1, ¢ possess a unique coincidence
point. Moreover, if 1, ¢ are two weakly compatible maps then they possess a unique

common fized point.

Proof. Define a Picard-Jungck sequences { 0 }wen and {su }werny With ¢ = 00mi1 =
Yo, V w € N'. From condition (V), 3 some gy € Up s.t (¢00, o) make an edge,
that is, (01, poo) make an edge. On using condition (1V), we obtain

(¢917¢QO) € E(E>7 that iS, (90927Q0Q1) S E(E)

On repetitive use of condition (IV), we get that (¢o,Swr1) € E(Z2), (V0w V0wi1) €
E(Z) and (90w, 0z+1) € E(E) V@ € N'. Now,

(S Swt1) = A(POwm 11, PO12) =A(V 0w, Y 0m11)
<8 d(P0w, POm+1)0
<o < (07)%d(por, p02)(6)7
=(0")7d(0,61)(6)7. (4.22)

We next show that {s, }men is a Cauchy sequence, where (S, Sy 1) form an edge
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Vw e N. Let p,q € N with p < ¢ then, we have

d(Sp, Sq) <A(Sps Spr1) + d(Spi1, Spra) + -+ + d(Sg-1, )

v=p
I 12 ., 1/2 I 12 ?
<> (o, )] 8 ([dlso, )] 07 = [ X |[dlso, )| 67| | fe
Y=p =P
2 %
:| [d(go, 1)]1/2 1HEH||5||]B — 0 as p— +o0. (4.23)

Thus, {sx}wen is a Cauchy sequence in Zg and since every Cauchy sequence in

Zp is convergent in Ug, so d some ¢ € Ug s.t lim ¢, =¢, that is, lim o, =
w—+00 w—+00

wlj)IEOO wa =

On using condition (1I), we obtain

A PP0) = m_elbeo) = s,
and, wl_lffool/}(@%) = wgrfww(¢9w):¢§.

On using condition (1I1), we have

lim d(p(Yox), V(0ox)) = Os.

w——+00

Further,

d(es,vs) = lim d(p(Y0x), ¥ (pos)) = Os

w——+00

Therefore, ¢ is the coincidence point of ¢, . Next, let 71,72 be s.t there exist
S1,52 € Up with ¢ # ¢ with (61,6) € E(2). Now, ¢ = p51 = 71 and g, =
Sy = Y, thus

d(1ps1, V) < 6"d(ps1, ¢s2)d that is, d(vy1,72) < 07d(y1,72)9,

which does not hold since ||d]| < 1. Hence, 1), ¢ have a unique coincidence point.
We now consider 1, ¢ to be weakly compatible, that is, ¥ s = pi)s where ¢ is a
unique coincidence point of ¢, . Let v € Up be s.t ¢ = p¢ = v, then we have

v = s = ps = pu.

Thus, v is another coincidence point of v, ¢ which implies ¢ = v, so we obtain ¢
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as a unique common fixed point of ¥, p. m

Theorem 4.4.2. For (Ug,d) be a C%,-metric space together with a directed graph
= and let Zp be a subspace of Uy where every Cauchy sequence {0x}wen in Zp
where (0w, 0wt1) € E(Z) is convergent in Ug. Let 1, ¢ : Oy — Up be self-maps
S.t:

(I) For any o,s € Up with (o, ¢s) € E(Z), we have
d(vo,9<) < 6°¢*(0,<)0,

where § € B with ||d]] < 1 and,

Y

(o, ps) + d(vs, wg)}

d
"(0,5) = maX{d(sDQ, ©s), (o, o), d(1bs, ¢s), 5

(II) For each o € Up 3 a sequence {05 }wen in Op where (0w, 0w+1) € E(Z) with
im_{|d(e=, 0)|| = O implies
Jim d(¢ow, o) = 0 and, lim d(pow, po) = Os;
) 5.1 {wgw}weN

and {(IOAQW}WGN are two SEquUeEnces with (wau waJrl) € E(E)z (¢Qw7 (pgw+1) €

E(Z) and wl_lgloowgw = wl_l}r_{loo V0w, we have

(III) For any sequence {0x}wen in Op where (0m, 0w+1) € E(

|d(p(V0m), V(pow)) |l = 08 asw — +oo;

(IV) If (po,ps) € E(Z) implies (Yo,1s) € E(Z);
(V) ¥(Ug) C ¢(Up) N Zs;

(VI) 3 some gy € Op where (Y00, poo) € E(Z).

Then, 1, ¢ have a coincidence point. In addition, if for any two coincidence points
v1 and s of U, p, that is, there exist some ¢1,6 € Up with ¢ = g = 1 and
s = psy = Y2 we have (¢1,5) € E(Z), then 1, ¢ possess a unique coincidence
point. Furthermore, if 1, ¢ are two weakly compatible maps then they possess a

unique common fized point.

Proof. On defining a Picard-Jungck sequences {0, }wen and {6, boen in Op as de-
fined in Theorem 4.4.1, we conclude that (S, Swi1), (V0w V0wi1), (90w, POwi1) €
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E(Z) Vw e N. Now,
A(Swy Sw+1) =A(POw+1, POm+2) = AV 0, V0mt1) < I W (0w, Ow+1)9,
(4.24)

where @" (0, 0wr1) = maX{d(wew, ©0w+1), A(V 0w, PO=), Ad(1 0t1, POm+1),

d(waa (pQerl) + d(waJrla @Qw) }

2

= maX{d(sOQw, ©0w+41), A(P0m, POm41), A(POZ11, POm+2),

d(P0m41, POm+1) + AP0, POm+2) }
2

< max{d<gpgw7 (ngw+1)7 d(@Qerla (pgw+2)7

d(@@w—f—la @Qw-{-Z) + d(@gwa @Qw-‘rl) }
B .

A(P0w11, POm12) + AP0, POm11) } _
2

Let maX{d(SOQwv @Qw—i—l)a d(SOQwH, @Qw+2)7
d(P0w+1, POmt2), then from (4.24), we obtain

d(POmr1, POwr2) < 0°d(P0m+1, POm12)0,

which is a contradiction since ||0|] < 1. Thus, max{d(gogw, POw+1)s A POm+1, POw+2),

d(p0m+1, POm+2) + d(P0z, PO=+1)
9

} = d(P0w, Pow+1) and from (4.24), we get

d(P0w+1, POwr2) < 0 d(P0m, POw11)0.

Now, proceeding on the lines of Theorem 4.4.1 we obtain that ¢, 1) have a unique

coincidence point and common fixed point. O]

4.5 Consequences

The present section substantiates that the results proved in this chapter are proper
extension of several well-known results found in the literature. Deductions of fixed

point, coincidence point and common fixed point results proved in this chapter
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can be done in different spaces.

4.5.1 Results in C'*-algebra Valued Ordered Metric Space

Let R be considered as a partially ordered relation, that is, R :==, then following

results are obtained.

Corollary 4.5.1. Let (Ug,d<) be a C%y -ordered metric space and let Zg be a
subspace of Ug where every Cauchy sequence {0 }wen in Zp where 0 =< 0mi1 S

convergent in Og. Let 1, ¢ : Og — Op be self-maps s.1:

(I) For any o,s € Up with po < @<, we have

d< (1o, ¥<) < 8" d<(po, ¢<)d,
where § € B and ||4]] < 1;

(II) For each o € Up 3 a sequence {0n}wen in Up, where 0n =< 0my1 with
lim ||d<(0w,0)|| = 08 implies

w——+00

Nim  d«(¢0w, o) = 0p and, lim d<(p0w, p0) = be;

(III) For any sequence {0x}wen in Up, where 0 =< 0wi1 St {U0w}twen and

{00 }wen are two sequences with Yo <X Vowi1, P0w = POwi1 and 1112 V0w
Tw—r1+00

= lim we have
w—+00 @Qw;

[d<(¢(Yow), ¥(pom))|| = O as @ — +o0;

(IV) If po =< s implies Yo < 1s;
(V) ¥(Ug) C ¢(Or) N Zg;

(VI) 3 some gy € Up with 10y < v0o.

Then, 1, ¢ have a coincidence point. In addition, if for any two coincidence points
Y1 and s of P, v, that is, there exist some <1, € Up with ¢ = g = 1 and
VG = Sy = Yo we have ¢; = G, then 1, possess a unique coincidence point.
Moreover, if 1, p are two weakly compatible maps then they possess a unique

common fized point.
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Corollary 4.5.2. For (Up,d<) a C}4y -ordered metric space and let Zy be a sub-
space of Up where every Cauchy sequence {0x}wen in Zp where 0n < 0wi1 1S

convergent in Og. Let 1, : Og — Op be self-maps s.t:
(I) For any o,s € Up with po < @<, we have
d<(¥o,9s) < 6°C*(0,<)0,

where 6 € B with ||6|| < 1 and,

d< 5 d< s
C*(Q’ §) = maX{d’j(@@ ng)a di(¢@a 909)7 dj(lk, SO§>’ _(¢Q 4P§) ;— _(@ZK QPQ) };

(II) For each o € Up 3 a sequence {0m}wen in Up where 0p = 0mi1 with

lim ||d<(0w, 0)|| = 05 implies

im |d< (0w, V0)|| = b8 and, lim_ ld<(¢ 0=, po)|| = Os;

(III) For any sequence {0z }wen in Up, where 9p =< 0mi1, St {0wtwen and
{0 twen are two sequences with Y0 2 Yoz i1, P0= = POmr1 and _lim 1og

= lim we have
w—+00 SOQW’

[d<(¢(Yow), ¥(pom))|| = O as @ — +o0;

(IV) If po =< s implies Yo < 1s;
(V) ¢¥(Up) C ¢(Ur) N Zg;

(VI) 3 some gy € Op with 1oy = poo.

Then, 1, ¢ have a coincidence point. In addition, if for any two coincidence points
Y1 and s of U, v, that is, there exist some <1, € Up with ¢ = g = 1 and
VG = Sy = Yo we have ¢; = G, then 1, possess a unique coincidence point.
Moreover, if 1, p are two weakly compatible maps then they possess a unique

common fized point.

4.5.2 Results in C'*-algebra Valued Metric Space
Let R be the universal relation, then the following results are obtained.
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Corollary 4.5.3. For (Up,d) be a C%, -metric space and let Zy be a subspace
of Op where every Cauchy sequence {0x}wen in Zp is convergent in Op. Let

U, p: Og — Op be self-maps s.t:

(I) For any o,s € Up, we have
d(vo, 1<) < 6" d(po, ¢<)d,
where 6 € B and ||0]| < 1;

(II) For each o € Up 3 a sequence {0z twen in Op with 1_1}_{1 |d(0w, 0)|| = OB

implies

lim [|d(Yom, vo)| =05 and, _lim |d(0om, o)l = bs;

w—+00 w——+00

(III) For any sequence {0m}wen in Up $.t {10m }twen and {Qo0n}wen are two se-

quences with wl_lg_loo V0w = wl_lg_loo V0w, we have

ld(e(¢0w), P(pom))ll = 05 asw — +o0;

(IV) ¥(0p) C ¢(Up) N Zp.

Then, 1, ¢ have a coincidence point. In addition, if for any two coincidence points
Y1 and s of U, p, that is, there exist some <1, € Up with ¢ = g = v and
WSy = WGy = 7o, then 1, @ possess a unique coincidence point. Moreover, if 1, @

are two weakly compatible maps then they possess a unique common fized point.

Corollary 4.5.4. For (Up,d) be a C%, -metric space and let Zy be a subspace
of Op where every Cauchy sequence {0x}wen in Zp is convergent in Op. Let

U, O — Op be self-maps s.t:

(I) For any o,s € Up, we have
d(vo,¥s) < 6°¢"(0,9)0,

where 6 € B with ||6|| < 1 and,

C*(0,¢) = max{d(gpg, 0s), d(vo, vo), d(s, ¢s), d(vo, ¢s) 42' d(1s, po) };
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(II) For each o € Up 3 a sequence {0 }wen in Up with LHE (0w, 0)|| = OB

implies
im {|d(Yow, o)l =0 and, _lim_|[d(pow, po)ll = bs;

(III) For any sequence {0 }wen in Up 8.t {100w twen and {po0w}wen are two se-

quences with wlil}rlm V0w = wgglm V0w, we have

ld(p(Y0w), v(we=))ll = 08 asw — +00;

(IV) 4(Ug) C p(Up) N Zg.

Then, ¥, ¢ have a coincidence point. In addition, if for any two coincidence points
Y1 and s of P, p, that is, there exist some ¢1,6 € Up with ¢ = g = vy, and
WSy = WG = 7o, then W, @ possess a unique coincidence point. Moreover, if 1, ¢

are two weakly compatible maps then they possess a unique common fized point.

4.5.3 Results in Metric Space

Let R be universal relation on U along with B = R, then the following results are

obtained.

Corollary 4.5.5. For (U,d) a metric space, let Z be a subspace of O where every
Cauchy sequence { 0w }wen in Z is convergent in §. Let 1, ¢ : U — U be self-maps
s.t:

(1) For any o, € U, we have

d(¥o,vs) < vd(po, ¢s),

where 0 < v < 1;

(II) For each o € U 3 a sequence {0x fwen in U where 1_1}1_{1 d(0w, 0) = 0 implies
lim d(Y0m,10) =0 and, _lim _d(po=,p0) = 0;

w—r—+00

(III) For any sequence {0m}wen i U 8.t {1)0m twen, {00m }wen are two sequences

with wl—lgrloo V0p = wl_l}r_{loo V0w, we have

lim d(¢(Yox), Y(vo=)) = 0;

w——+00

116



(1V) (V) € p(0) N Z.

Then, 1, ¢ have a coincidence point. In addition, if for any two coincidence points
v1 and vo of ¥, @, that is, there exist some 1,60 € U with s = g = v, and
WS = PG = 7o, then ¥, @ possess a unique coincidence point. Moreover, if 1, @

are two weakly compatible maps then they possess a unique common fixed point.

Corollary 4.5.6. For (U,d) a metric space, let Z be a subspace of U where every
Cauchy sequence { 0w }wen in Z is convergent in B. Let 1, ¢ : U — U be self-maps

S.t:
(1) For any o,s € U, we have
d(¥o,vs) < v(*(0,9),

where 0 < v < 1 and,

I

g*(@, §> = max{d(gog, gpg)) d(l/)@, 900)7 d(lpg, 90§>, d(wQa QOG) ‘g d('@bg, SOQ) }

(II) For each o € U, 3 a sequence {0z }wen in U, where IEE d(0w,0) = 0
implies _lim d(¢ 0z, ) =0 and, lim d(poe, po) =0;

(III) For any sequence {0 }wen i U 8.t {1)0m twen, {00m }wen are two sequences

with wl—lgrloo Voo = wl_lg_loo V0w, we have

lim d(@(¢@w)a ¢(¢Qw)) = 0;

(1V) (D) C p(B) N Z.

Then, 1, ¢ have a coincidence point. In addition, if for any two coincidence points
v1 and vo of 1, @, that is, there exist some 1,60 € U with ¢ = s = 71 and
VS = s = Yo, then 1, possess a unique coincidence point. Furthermore, if
U, @ are two weakly compatible maps then they possess a unique common fized

point.

Kokokoskoskok
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Chapter 5

Fixed Point Results in Bipolar
R-Metric Space

5.1 Introduction

Mutlu & Giirdal (2016) coined the notion of the bipolar metric space which deals
with two abstract spaces by defining metric d on the cartesian product of these
spaces. This theory indeed generalized the metric space where only one space is
involved. Many authors have presented fixed point results in bipolar metric space
together with contractive maps (see Kishore et al. (2018), Giirdal et al. (2020),
Mutlu et al. (2020), Gaba et al. (2021), Roy et al. (2022) and references cited

therein).

With the intend to further generalize the idea of bipolar metric space, by this
chapter, we first introduce the notion of bipolar R-metric space wherein by as-
sociating an arbitrary binary relation R with bipolar metric space, fixed point
result is obtained. Next, we move a step forward and introduce the notions of
Fr-contractive map and Fr-expansive map along with some fixed point results in
a bipolar R-metric space . Under a certain specific condition, the results reduces
to novel fixed point result in bipolar metric space with respect to an expansive

map. The results of this chapter are part of the research papers presented in 2.

8Malhotra, A., and Kumar, D. (2022). Bipolar R-metric space and fixed point result. Inter-
national Journal of Nonlinear Analysis and Applications, 13(2), 709-712.

9Malhotra, A., and Kumar, D. (2023). Fixed Point Results using Fr-contractive map and
Fr-expansive map in Bipolar R-metric space. (Communicated).
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5.2 Bipolar R-metric space and Generalized Con-

traction Maps

To begin with, we first put forward some of the terminologies used along with the
supportive lemma. At the end of the section, an example is discussed that helps

to validate the result proved.

Definition 5.2.1. Two non-empty sets U and A together with metricd : O x A —
[0,4+00) and binary relation R C U X A is c.t.b a bipolar R-metric space
(denoted by (U, A,dR)) if:

(i) (O, A, d) is a bipolar metric space;
(i) R is a binary relation on U x A.

Definition 5.2.2. In a bipolar R-metric space (G, A, dg):

(i) a bisequence ({0m}, {Sw})wen in OXA is c.t.b an R-bisequence if (0w, Swi1) €
R or (0w+i1,$w) € RV w e N.

(i7) an R-bisequence ({0w}: {Sw})wen s c.t.b a convergent R-bisequence if

both { 0w }wen and {Sx }wen are convergent to respective right and left point.

(1ii) an R-bisequence ({0x},{sw})wen is c.t.b a biconvergent R-bisequence

if both { 0w twen and {Sx}wen are convergent to the same central point.

(iv) a map ¢ : BUA — OUA is c.t.b a bipolar R-continuous if V convergent
R-bisequence ({0w},{Sw})wen in U X A s.1

0 =S and Gu — 0 as w — +00,

mmplies, Vorp — Vs and Vs, — Yo as w — +00.
(v) (U,A,dg) is c.t.b a complete bipolar R-metric space if every Cauchy
R-bisequence is convergent R-bisequence.

(vi) a map ¢ : BUAN — OUA is c.t.b a Fr-contractive map for some F € §
if 3 some o > 0 s.t for (0,¢) € R, we have

o+ F(dr(vo,1s)) < F(dr(o,5)).
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Lemma 5.2.1. In a bipolar R-metric space, each convergent Cauchy R-bisequence

implies it is biconvergent R-bisequence.

Proof. Let ({0=},{sw})wen be a convergent Cauchy R-bisequence, that is, there
is some ({0w}, {Sw})wen € U X A with o, — ¢ (in A) and ¢, — ¢ (in U) as

w — 400. Let w, wy, w* € N where w, @* > wy, then

dr(0,5) < dr(0,Sw+) + dr (0=, S) + dr (0w v )

Taking limit as @, w* — +00, we get o = ¢. Hence, ({0x}, {Sw})wen is biconver-

gent R-bisequence. O]

Theorem 5.2.2. For a complete bipolar R-metric space (O, A, dg), let ¢ : OU
A — OCUA a map s.t:

(1) $(0) € and H(A) € A;
(II) 3 some 0 < XA < 1 with dg(vo,vs) < Adgr(o,<) for each (o,5) € R;
(III) 3 some (00,%) € U X A with (00,%) € R and (0o, Vs0) € R;
(IV) 1 is bipolar R-continuous;

(V) For each (p,5) € R, we have (Yp,19s) € R.
Then, 1 possesses at least one fixed point.

Proof. Let the bisequence ({0}, {Sw})wern in U X A, where o, 1 = 0, and
VSw-1 = ¢» ¥V w € N. By condition (11I), we obtain that 3 some (gg, ) € U x A
where (g9,<) € R and (00,1) = (00,%) € R. On using condition (V), we have

(¥00, %) = (01,61) €ER and (Yoo, ¥s1) = (01,%2) € R,

continuing this process, we get (0w, Sw) € R and (0w, Sw+1) € R, ¥V w € N'. Thus

({ow}, {Sw})wen is an R-bisequence. Now from condition (1I), we obtain

dR(le+17 §w+1> = d'fz(wav ?/Kw) < /\dR(wa gw) < te < >\w+1d7€(907 gO)'

Furthermore,

d'R(Q‘W7 gw—‘rl) - d’R(¢Qw—17 ¢§w) < /\dR(Qw—la gw) < ot < AwdR(Q(h gl)
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Next, for some w, w* € N’ with w* > w, we obtain

AR (0w:Sw*) < Adr(0w)Swt+1) + AR(Ow+1, Sw+1) + AR (Ow+15 S+ )

< dr(0w,Swt1) + Adr(0w+1s Swt1) + AR (041, Swi2) + AR (0Ow+2, Swi2)
+d7'\’,(gw+27 Cw*)

< (dr(0w+1,Swt1) + AR (0w+2, Swr2) + -+ + dR(0m -1, Sm—1))
+(dR<QW7 ngrl) + d'R(Qerla §w+2) + -+ d’R,(Qw*717 gw*))
w*—2 w*—1

< D dr(okt1,Se+1) + Y dr(0ks Ska1)
k=w k=w
+0o0 “+o0o

< > N dg (00, 0) + > Nedr (00, 1),
k=w k=w
)\w+2d )\w+1d

_ : R(/Q\O»g()) 4 : R(§07§1) 50 as w — +oo.

Thus ({0}, {Sw })wen is a Cauchy R-bisequence and since (U, A, dr) is a com-
plete bipolar R-metric space, s0 ({0}, {$w} )wen is convergent R-bisequence. By
Lemma 5.2.1, 3n € UNA st

0w — nand ¢, — 1 as w — +00.
As ) is bipolar R-continuous, so we have

lim o, =1vn  and lim ¢, = ¥n,

w—+00 w—+00
that is, wl_igloo Ow+1 = YN and wl_igl@ Swr1 = U,
then, n = Yn.
Thus, 1 possesses at least one fixed point. O

Example 5.2.3. Let § = [0,1/2] and A = [~1/2,0] where for (o,5) € U x A we
define d(o,s) = |o — <|. Define R on U x A as (0,5) € R iff o.c = 0. Define
Y :OUAN—=DUA as:

290

e for 0 €10,1/2];
V(o) = _722

o for o€ [—1/2,0).

Clearly, ¥(UO) C U and Y(A) C A. For (o0,¢) € R we have (Yo,1s) € R. Also, 9
is a bipolar R-continuous, since for any convergent R-bisequence ({0x }, {Sw})wen €

U x A, we have o0, — 0 and ¢ — 0 as w — +oo then Yo, — Y0 = 0 and
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Vsw — 0 = 0 as w — +oo. Next, we verify condition (II) of Theorem 5.2.2.
For (0,¢) € R either o =0 and/or ¢ = 0, therefore we have the following cases:

Case (i): If 0 =0 and ¢ € [-1/2,0) and for A = 1/11, we have

dr (o, vs) < Mdr(0,5).

Case (ii): If o € (0,1/2] and ¢ =0 and for A € (29/73,1), we have
dr (Y0, ¥s) < Adr(0,¢).

Since all hypotheses of Theorem 5.2.2 hold, so i) possesses a fixed point viz. 0.

Theorem 5.2.4. For a complete bipolar R-metric space (U, A, dg), let ¢ : G U
A — CGUA be a map s.t for some F € §, the following holds:

() Y(U) C U and Y(A) C A;

(II) 9 is Fr-contractive map;
(IIT) 3 some (00,5) € U x A where (09,5) € R and (00, %) € R;
(IV) 4 is bipolar R-continuous;

(V) For each (9,5) € R, we have (1o,19s) € R.

Then, 1 possesses a fixed point. Furthermore, if there are two fized point o, 0*

then (o, 0") € R and in such case ¢ possesses a unique fized point.

Proof. Define a bisequence ({0}, {Sw})wen in O x A with ¥o,_1 = o5 and
Sw—1 = S Since (0o, <) € U x A, by condition (III), we obtain

(00,50) € R and  (00,7%) € R.

On using R-preserving property of ¢, we obtain

(Y00,1%) € R and (Yoo, ¢¥s1) € R.

Repetitive use of R-preserving property of ¢, we get

(0w, $w) ER and (0w, Sws1) € R,
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Vo € N. Thus, ({0=}, {sx})wen is an R-bisequence. Now,

]:(dR(Qw-i-la §w+1))

Fdr(V 0w, Vsw)) < Fldr(0w, =) — 9
‘F(dR(Qw—ly §w_1)) - 2@
-+ < Fdr(0,%)) — (@ + 1)p. (5.1)

NN

Letting @w — +oo in (5.1) and using (F3) property of F, we have ligrl AR (0w+1,
Swt1) = 0. Further using (F3) property of F, we obtain that 3 w € (0,1) s.t

lim (dR(Qw+17§w+1))w]:(d7z(£)w+1>§w+1)) =0. (5.2)

w——+00

Using (5.1) in (5.2), we obtain

(dR(QwH,§w+1))w(-7:(d7z(@w+1,§w+1)) - -F(dR(QmCo)))

< —(w+1) (d’R<Qw+17 §w+1)>w@-
(5.3)

Taking limit as w — +oo in (5.3), we get 1_1}111 (w + 1)(d73(gw+17§w+1)>w = 0.

Thus, 3 some w* € N’ s.t for each w > w*, we get

1
dR(Qw+l>§w+l) < m . (54)
Since,
f(d’R<QW7§w+1>> = f(dn(lbgwfhlkw)) < ‘F<d72(@w717§w>> —
< Fdr(0m-2,Sw-1)) — 2p
< - < F(dr(00,61)) — wp. (5.5)

Taking limit as w — +o0 in (5.5), we get 1_131 dR (0w, Sw+1) = 0. By using (F3)
property of F, we obtain that 3 @w* € (0, 1) so that

lim (dR(QW7§w+1>)w*‘F(dR(QW7§w+1)) =0. (5.6)

w—r+00
Using (5.6) in (5.5), we have

*
*

(n(emssonn)) (Fllntom o)~ Fldn(an o)) < - (dnlomsonn) o
(5.7)
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Taking limit as @w — 400 in (5.7), we get LIIE w(dR(gw, ng))W = 0. Thus, 3

some w** € N s.t for each w > w™**, we obtain

1
AR (0w Sw+1) < ey (5.8)

. ! !/ /
Consider w,w ,w* € N where w = max{w*, w**} and w* > w > w , we have

dR(Qwa gw*) < dR(Q‘er §w+1) + dR(Qw+l> §w+l) + dR(Qerla §w+2) + -+
dR(Qw*fla gw*)

= <dR(Qw+1> §w+1) + dR(Qw+2> §w+2) +oee dR(Qw*—la gw*—l))

+ <dR(Qwv §w+1) + dR(Qw+17 gw+2) +oee dR(Qw*fla gw*))

+o0o 400
< D dr(0y: ) + ) dr(05,S541)- (5.9)
y=1 =1

Using (5.4) and (5.8) in (5.9), we obtain

400 1 400 1
dR(Qw,Qv) < Z 1 + Z 1 (510)
=+ )= 53 (5) =

Since, (5.10) is a convergent series, so we have ({0x}, {sz})wer is a Cauchy R-
bisequence on complete bipolar R-metric space. Using Lemma 5.2.1, we obtain
that 3 0 € U N A with

lim o, =0 and lim ¢, =o.
w—+00 w—+00

Using R-continuity of ¢, we get

lim = lim = n lim = lim =
w—r+00 wa w—+00 Qerl wO' a d w—r+00 wgw w—+00 §w+1 wO',

that is, o =1o.

Thus, 1 possesses a fixed point. Next, let ¢* € U N A be s.t Yo* = ¢*, then
(0,0") € R. Now,

Fldr(o,0%)) < p + Fldr(vo, o)) < F(dr(o,07)),
which holds only if 0 = ¢*. Hence, 1) possesses a unique fixed point. O

Example 5.2.5. Let U = {1,2,3}, A = {3,4,5} together with metric d : U x A —
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[0, 4+00) defined as d(o,<) = |0 — <| and a binary relation R C U x A defined as
R = {(17 3)7 (27 3)’ (37 3)}

Define a map 1p : BUN — BUA asp(1) = 2,9(2) =3, ¥(3) =3, ¥(4) =4, ¢¥(5) =
4. Clearly ¥(U) C U, ¥(A) C A and for any (o,¢) € R implies ((0),¥(s)) €
R. Also, for any convergent R-bisequence ({0w},{Sw})wen € U X A, we have

lim oo, = 3 and lim ¢, = 3 thus wlirfw Vop = Y3 = 3 and wlirfm VS =

w——+00 w—+00

3 = 3. Next, to show that 1) is Fr-contractive map, where F () = In(p) + p, let

us consider the following cases:
Case (i): Let (0,5) = (1,3). Then,
o+ F(d(vo,1<)) = p+In(d(2,3)) + d(2,3) = p + 1,

and, F(d(o,<)) =1In(d(1,3)) +d(1,3) = In(2) + 2.
So, the Fr-contractive condition holds in this case for any o € (0,1n(2) 4+ 1).
Case (ii): Let (0,5) = (2,3). Then,

o+ F(d(vo,1s)) = —oo, and, F(d(o,s)) =1In(d(2,3)) +d(2,3) = 1.

So, the Fr-contractive condition holds in this case for any o > 0.

Case (iii): Let (o0,5) = (3,3). Then,
o + F(d(1o,<)) = —o0, and, F(d(o,s)) = —o0.

So, the Fr-contractive condition holds in this case for any o > 0.
Since the conditions (1)-(V) of Theorem 5.2.4 hold, so 1 possesses fixed points
which are o = 3 and o = 4.

5.3 Generalized Expansive Map and Fixed Point
Result

Definition 5.3.1. For a bipolar R-metric space (O,A,dg), ¥ : DUA - B UA
is c.t.b a Fr-expansive map for F € § if 3 some p > 0 s.t for (p,5) € R, we
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have
F(dr(vo, 1)) = F(dr(o,<)) + p-

Theorem 5.3.1. For a complete bipolar R-metric space (O, A, dg), let ¢ : OU
A = O UA be a surjective map with ¢* as right inverse of ¢ s.t for some F € §,
the following holds:

(1) $(V),1* (V) C U and (), ¥*(A) C A;

(I1) ¥ is Fr-expansive map;
(III) 3 some (00,%) € U x A 5.t (00,%) € R, (00,%50) € R and (00,9 %) € R;
(IV) ¢ and * are both bipolar R-continuous;

(V) For each (p,5) € R, we have (1p,1s) € R and (¢*o,1*s) € R.

Then, 1 possesses a fixed point. Furthermore, if there are two fized point o, o*

then (0, 0%) € R and in such case ¢ possesses a unique fized point.

Proof. Define ({0%},{Sw})wen be a bisequence in U x A, where
V0m—1 = 0w and Yoz 1=¢z, VweEN

Now, proceeding on the lines of Theorem 5.2.4, we obtain that ({0}, {Sw})wen
is an R-bisequence. Since, (05,w) € R for w € N and ¢ is surjective so we have
Y* :UUA = DUA st

¢*Qw = Ow-1 and ¢*§w+1 = Cw Ywé€ N/.
Next,

f(d'R<QW7§w+1>> = ]:(dR(waq,wgw))
> F(dr(0m-1,%=)) + ¢
= F(dr(¥" 0w, ¥ Soy1)) + - (5.11)

By (5.11) and Theorem 5.2.4, we obtain that 3 unique o € U N A s.t,

Vo = o,
that is, Yo = o.
Thus, 1 possesses a unique fixed point. O
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5.4 Consequences

In this section, we reduce the results proved in previous section for fixed point
result in bipolar metric space (U, A, d) under an expansive map and some fixed

point result in the literature.

Theorem 5.4.1. For a complete bipolar metric space (U, A, d), let p : BUA —
O U A be a surjective map with ¥* as right inverse of 1 where ¢ and * are
continuous map with Y (0),v*(0) C U, Y(A),v*(A) C A and for some F € §, 3
o >0 s.t:

F(d(o,1s)) = F(d(e:s)) + ¢

Then, 1 possesses a unique fixed point.

Proof. 1If in Theorem 5.3.1, we consider R = U x A then the above result is
obtained. 0

Theorem 5.4.2. (Mani et al. (2023)) For a complete bipolar metric space (U, A, d),
let v : BUA — UUA be a map where ¢ is a continuous map with (U) C U,
Ww(A) C A and for some F € F, 3 p >0 s.t:

o + F(d(1ho, <)) < F(d(o,5)).

Then, 1) possesses a unique fixed point.

Proof. If in Theorem 5.2.4, we consider R = U x A then the above result is
obtained. ]

okoskokokk
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