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Abstract
Fixed point theory has always been an inevitable part of mathematical analy-
sis, being a combination of analytical, topological, and geometrical aspects of
mathematics. With vast applications in the fields of mathematics like approxi-
mation theory, game theory, optimization theory, mathematical modeling, graph
theory, and interdisciplinary fields like simulation functions in physics and Nash
equilibrium in economics, to name a few. Apart from numerous applications, a
constructive proof of a fixed point theorem renders an algorithm in the form of
an iterative scheme to find a fixed point of a map. Not only fixed points but also
coincidence points and common fixed points are significant because they are an
extended part of fixed points for a pair of maps. The theory of fixed points in
multivalued maps is as essential as the theory of single-valued maps. Even after
much-acclaimed work in the literature on the existence and uniqueness of fixed
points, many questions remain unanswered since there are numerous examples
known that possess fixed points but do not satisfy some or all hypotheses of the
results in the literature.
The objective of the research work in this thesis is to find a generalized approach
for establishing the existence and uniqueness of fixed points for different contrac-
tion maps as well as non-contractive maps in abstract spaces and to introduce
more generalized metric spaces. Each chapter exhibits fixed point results in vari-
ous abstract metric spaces. Some of these spaces are well known in the literature
while others have been introduced as a result of the research work.

Chapter 1 gives a brief introduction to the research work along with some notations
and definitions used throughout the thesis. The chapter also presents a short
summary giving an overview of each chapter.

Chapter 2 is devoted to fixed point results in orthogonal metric space that are ex-
tended with some generalized contraction maps like orthogonal α-η-GF -contraction,
orthogonal α-type F -contraction, orthogonal TAC -type S-contraction, orthogonal
TAC -contraction, orthogonal Suzuki-Berinde type F -contraction, and orthogonal
F -weak contraction. As an application, the existence and uniqueness of the solu-
tion for a first order differential equation are discussed.

Chapter 3 generalizes and unifies the fixed point results in relation theoretic metric
space, briefly written as R-metric space. Using F -weak expansive map, multival-
ued counter part of F -contraction, F -weak contraction, almost F -contraction,
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and α-type F -contraction an attempt is made to extend the literature of fixed
point results in R-metric space. Many examples as well as a potential applica-
tion of determining the existence of a solution for a non-homogeneous, non-linear
Volterra integral equation endowed with a binary relation R are included in this
chapter, along with stability results.

Chapter 4 presents a novel class of metric space termed as C∗-algebra valued R-
metric space, which generalizes C∗-algebra valued metric space. We also introduce
the idea of C∗-algebra valued R-contractive map and corresponding fixed point
results, as well as the existence and uniqueness of coincidence and common fixed
points using the Picard-Jungck iteration process. The results are generalized
enough to derive fixed point, coincidence point, and common fixed point results
in C∗-algebra valued ordered metric space, C∗-algebra valued metric space, and
metric space. As an application, the results obtained are applied to C∗-algebra
valued metric space endowed with a directed graph.

Chapter 5 emphasizes to introduce the idea of bipolar R-metric space that ex-
ists by associating an arbitrary binary relation R with bipolar metric space and
to illustrate some fixed point results. The notions of FR-contractive map and
FR-expansive map are presented, and fixed point results are discussed in these
settings. Furthermore, for certain specified conditions, the results reduce to a
novel fixed point result in bipolar metric space and extends some well known
results in the literature.

******
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Chapter 1

General Introduction

1.1 Introduction

The theory of fixed point analysis has always been an integral part of mathemat-
ical analysis. This field of research has grown in prominence over the last century
and a half being an excellent combination of algebraic, topological, and geometri-
cal aspects of mathematics. For a metric space (f, d) and a self-map ω : f→ f,
a point % ∈ f is c.t.b a fixed point of ω if ω% = %. For example, if ω% = %3

where ω : [−1, 1]→ [−1, 1], then ω has 3 fixed points, which are −1, 0 and 1. The
following graph shows the fixed points obtained:

Figure 1.1: Fixed points of function ω% = %3.
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The result that establishes the existence of at least one fixed point, subject
to certain conditions, is known as a fixed point theorem. Picard (1890) intro-
duced an iterative scheme under which a sequence {%$}$∈N in (ρ, σ) defined by
%$+1 = ω%$ ∀ $ ∈ N, where ω : [ρ, σ] → (−∞,+∞) is continuous and differ-
entiable on (ρ, σ) and |ω′%| 6 L for some L < 1, converges to a solution of an
equation ω% = %. The manner in which this sequence was described constituted
one of the turning points in the history of fixed point analysis and it is frequently
used to demonstrate the existence and uniqueness of a fixed point. Brouwer (1911)
explored the topological aspect of fixed point theory with his result which states
that “Every continuous map from a unit ball of Rn into itself has a fixed point.”
Banach (1922) came up with a classical and the most celebrated principle called
“Banach Contraction Principle” for the existence and uniqueness of the fixed
point of a self-map on a complete metric space along with a contractive condi-
tion. Thereafter, numerous generalizations of the Banach Contraction Principle
have been presented by the researchers (for reference, see Kannan (1968), Ćirić
(1974), Czerwik (1993), Rhoades (2001), Ran & Reurings (2004), Long-Guang &
Xian (2007), Berinde (2008), Wardowski (2012), Ma et al. (2014), Wardowski &
Dung (2014), Alam & Imdad (2015), Sintunavarat (2016a), Gordji et al. (2017),
Karapınar et al. (2019), Khalehoghli et al. (2020), Nazam et al. (2021)). Another
class of map was given by Wang (1984) which initiated the idea of expansive map
and established some fixed point results in this setting and henceforth, many re-
searchers came up with the generalized expansive condition and proved certain
fixed point results in various spaces (see Khan et al. (1986), Daffer & Kaneko
(1992), Imdad & Khan (2004), Mustafa et al. (2010), Shahi et al. (2012), Górnicki
(2016), Imdad & Alfaqih (2018), Gubran et al. (2019), Yeşilkaya & Aydın (2020),
Rossafi et al. (2021), Gupta et al. (2022)). All fixed point results discussed till
now are for single-valued self-map. However, the research in the framework of a
multivalued map, also addressed as a set-valued map, was initiated by Kakutani
(1941) and Wallace (1941) wherein the former extended the fixed point results of
Brouwer (1911) for a set-valued map and the later studied the fixed points for
trees, which in a major sense is related to finding the fixed point of a multivalued
map. Strother (1953) after extensively studying continuity in Strother (1951) an-
swered an open question concerning the fixed point results for a multivalued map.
The research on the multivalued maps and their fixed point results was continued
by Markin (1968) and by the most renowned paper of Nadler Jr (1969). Extensive
literature in this area has thrived since then (see Plunkett (1956), Covitz & Nadler
(1970), Lim (1985), Czerwik (1998), Rus et al. (2003), Feng & Liu (2006), Klim
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& Wardowski (2007), Tahat et al. (2012), Ali & Abbas (2017), Chifu & Petruşel
(2017), Ghanifard et al. (2020), Nazam et al. (2021), Abbas et al. (2021), Debnath
(2022) and references cited therein).
The immediate application of some of these fixed point theorems is on linear and
non-linear systems of equations, integral equations as well as on differential equa-
tions. Many non-linear problems can be converted to an equivalent fixed point
form and eventually, the existence of a solution can be ascertained using a suitable
fixed point tool. Thus, one can conclude that fixed point analysis has a wide scope
of research in non-linear analysis (see Joshi & Bose (1985), Zeidler & Wadsack
(1993)). Furthermore, the majority of developments in fixed point theory have
been published in various monographs (see Goebel & Kirk (1990), Kirk & Sims
(2001), Agarwal et al. (2001), Granas & Dugundji (2003), Agarwal et al. (2009),
Almezel et al. (2014), Subrahmanyam (2018)). The profoundness of this theory
is also due to its vast application in many other fields of mathematics like ap-
proximation theory, game theory, optimization theory, mathematical engineering,
etc., besides various other interdisciplinary applications in the fields of economics,
electronics, physics, and biology.

1.2 Notations and Definitions

This section gives a brief introduction to the research work along with some nota-
tions and definitions used throughout the thesis. To begin with, we define metric
space.

Definition 1.2.1. (Fréchet (1906)) On a set f, we say a map d : f×f→ [0,+∞)
is a metric if ∀ %, ς, σ ∈ f, the following are satisfied:

(i) d(%, ς) = 0 iff % = ς;

(ii) d(%, ς) = d(ς, %);

(iii) d(%, ς) 6 d(%, σ) + d(σ, ς).

Then, (f, d) is c.t.b a metric space.

Definition 1.2.2. (see Rudin (1991)) For a vector space Θ, over the field F,
norm is a function ‖.‖ : Θ→ R s.t:

(i) ‖%+ ς‖ 6 ‖%‖+ ‖ς‖;
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(ii) ‖k%‖ = |k|‖%‖;

(iii) ‖%‖ > 0 if % 6= 0;

∀ %, ς ∈ Θ and k ∈ F.

Definition 1.2.3. (see Rosen (1991)) A binary relation ‘�’ is c.t.b a partially
ordered relation on set f if it satisfies the following:

(i) reflexive, that is, % � % ∀ % ∈ f;

(ii) antisymmetric, that is, if % � ς and ς � % then % = ς ∀ %, ς ∈ f;

(iii) transitive, that is, if % � σ and σ � ς then % � ς ∀ %, ς, σ ∈ f.

Throughout the thesis, let B denote a unital C∗-algebra with the unit IB and zero
element θB. Let B+ = {ν ∈ B : θB � ν} and B′ = {ν ∈ B : νν ′ = ν

′
ν ∀ ν ′ ∈ B}.

Definition 1.2.4. (Ma et al. (2014)) On a set f, let d : f × f → B+ be a map
s.t ∀ %, ς, σ ∈ f, the following holds:

(i) θB � d(%, ς);

(ii) d(%, ς) = θB iff % = ς;

(iii) d(%, ς) = d(ς, %);

(iv) d(%, ς) � d(%, σ) + d(σ, ς).

Then, (fB, d) is c.t.b a C∗AV -metric space whereas d is a C∗AV -metric.

Lemma 1.2.1. (Douglas (2012), Murphy (2014)) In B, the following holds:

(1) for ν ∈ B+ where ‖ν‖ < 1
2 , then IB − ν is invertible and ‖ν(IB − ν)−1‖ < 1;

(2) for ν, ν ′ ∈ B with ν, ν ′ � θB and ν ′ν = νν
′, then ν ′ν � θB;

(3) If ν ∈ B′ and ν∗, ν∗∗ ∈ B where ν∗ � ν∗∗ � θB and IB − ν ∈ B′+ is invertible
operator, then

(IB − ν)−1ν∗ � (IB − ν)−1ν∗∗.

Definition 1.2.5. (Gordji et al. (2017)) A set f with a binary relation ‘⊥’
is c.t.b an orthogonal set (denoted by ⊥-set) when ∃ %0 ∈ f implies either
[% ⊥ %0 ∀ % ∈ f] or [%0 ⊥ % ∀ % ∈ f]. The element %0 is called an orthogonal ele-
ment.
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Definition 1.2.6. (Gordji et al. (2017)) For an orthogonal set (f,⊥), a sequence
{%$}$∈N ⊂ f is c.t.b an orthogonal sequence (denoted by ⊥-sequence) when
either [%$ ⊥ %$+1 ∀ $ ∈ N] or [%$+1 ⊥ %$ ∀ $ ∈ N].

Definition 1.2.7. (Gordji et al. (2017)) A set f along with metric d and a binary
relation ‘⊥’ is c.t.b an orthogonal metric space (written as (f, d⊥)), if:

(i) (f, d) is a metric space;

(ii) (f,⊥) is an orthogonal set.

Definition 1.2.8. (Gordji et al. (2017)) On an orthogonal metric space (f, d⊥),
let Ω : f→ f be a self-map. Then,

(i) Ω is c.t.b orthogonally continuous (denoted by ⊥-continuous) if for
every ⊥-sequence {%$}$∈N with %$ → % implies Ω%$ → Ω% as $ → +∞. In
addition, Ω is ⊥-continuous on entire space f if Ω is orthogonally continuous
at every point % ∈ f.

(ii) orthogonal metric space (f, d⊥) is c.t.b a complete orthogonal metric
space (denoted by ⊥-complete), if each ⊥-Cauchy sequence in f is conver-
gent in f.

(iii) Ω is c.t.b orthogonal preserving (written as ⊥-preserving) if % ⊥ ς im-
plies Ω% ⊥ Ως and Ω is weakly ⊥-preserving if % ⊥ ς implies Ω% ⊥ Ως or
Ως ⊥ Ω%.

Definition 1.2.9. (Mutlu & Gürdal (2016)) For two non-empty sets f and Λ, a
map d : f×Λ→ [0,+∞) is c.t.b a bipolar metric if the following are satisfied:

(i) d(%, ς) = 0 iff % = ς ∀ (%, ς) ∈ f× Λ;

(ii) d(%, ς) = d(ς, %) ∀ %, ς ∈ f ∩ Λ;

(iii) d(%1, ς2) 6 d(%1, ς1) + d(%2, ς1) + d(%2, ς2) ∀ %1, %2 ∈ f and ς1, ς2 ∈ Λ.

The triplet (f,Λ, d) is c.t.b a bipolar metric space.

Definition 1.2.10. (Mutlu & Gürdal (2016)) In a bipolar metric space (f,Λ, d)

(i) a point is c.t.b left, right or central point depending if it belongs to f,
Λ or f ∩ Λ respectively.
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(ii) a sequence ({%$}, {ς$})$∈N on the set f × Λ is c.t.b a bisequence on
(f,Λ, d).

(iii) a bisequence ({%$}, {ς$})$∈N on the set f × Λ is c.t.b convergent if both
the sequences {%$}$∈N and {ς$}$∈N are convergent to respective right and
left point. In addition, if both {%$}$∈N and {ς$}$∈N converge to the same
centre point, then the bisequence ({%$}, {ς$})$∈N is c.t.b biconvergent.

Definition 1.2.11. (Lipschutz (1964)) On f, a relation R is s.t R ⊆ f× f.

Definition 1.2.12. (Kolman et al. (1996)) For a subset Z of f, we say a relation
R is restricted to Z (denoted by R|Z) when R = R∩ Z2.

Definition 1.2.13. (Alam & Imdad (2015)) For a relation R, we say %, ς ∈ f
are R-comparative (denoted by [%, ς] ∈ R) if either (%, ς) ∈ R or (ς, %) ∈ R.

Definition 1.2.14. (Khalehoghli et al. (2020)) For a relation R, a sequence
{%$}$∈N ⊂ f is c.t.b an R-sequence if (%$, %$+1) ∈ R ∀ $ ∈ N.

Definition 1.2.15. (Khalehoghli et al. (2020)) A metric space (f, d) together with
a relation R is c.t.b an R-metric space. It is usually written as (f, dR).

Definition 1.2.16. Let (f, dR) be an R-metric space and let φ : f→ f, then

(i) (Alam & Imdad (2015)) a relation R is c.t.b dR-self-closed on f if for an
arbitrary R-sequence {%$}$∈N ⊂ f s.t lim

$→+∞
%$ = % implies existence of a

sub-sequence {%$k}k∈N ⊆ {%$}$∈N s.t [%$k , %] ∈ R ∀ k ∈ N.

(ii) (Khalehoghli et al. (2020)) (f, dR) is c.t.b R-complete if each R-Cauchy
sequence is convergent.

(iii) (Khalehoghli et al. (2020)) φ is c.t.b R-continuous at % ∈ f if for an
arbitrary R-sequence {%n}n∈N ⊂ f with lim

n→+∞
%n = % implies lim

n→+∞
φ%n =

φ%. Also, φ is c.t.b R-continuous on f if ∀ % ∈ f, φ is R-continuous at %.

(iv) (Khalehoghli et al. (2020)) φ is c.t.b R-preserving if for every (%, ς) ∈ R
implies (φ%, φς) ∈ R.

Remark 1.2.2. (Khalehoghli et al. (2020)) Every continuous map isR-continuous
but not conversely.
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Example 1.2.3. Consider f = (−∞, 0] with usual metric d. Let the relation R
on f be defined as (%, ς) ∈ R iff %2 = ς2. Then, (f, dR) is an R-metric space.
Define a self-map φ on f s.t

φ(%) =

 0 for % ∈ f ∩ Z;
−%2 otherwise.

Then, φ is an R-continuous map on f but it is discontinuous at every non-integer
points of f.

Definition 1.2.17. (Wardowski (2012)) Denote F as a class of all functions F :
R+ → (−∞,+∞) s.t the following holds:

(F1) for %, ς ∈ R+, where % < ς implies F(%) < F(ς);

(F2) for each sequence {%$}$∈N, where %$ ∈ R+ s.t

lim
$→+∞

%$ = 0 iff lim
$→+∞

F(%$) = −∞;

(F3) for some γ ∈ (0, 1), we have ς ∈ R+ s.t lim
ς→0+

ςγF(ς) = 0.

In addition to the above, we denote F′ = {F : R+ → (−∞,+∞) s.t F satisfies
(F1), (F2), (F3), (F4)}, where (F4): F(inf U) = inf

(
F(U)

)
∀ U ⊂ R+ with inf U >

0.

Definition 1.2.18. (Piri & Kumam (2014)) Denote ∆F , the family of all maps
F : R+ → (−∞,+∞) s.t:

(F1) for %, ς ∈ R+ if % 6 ς implies F (%) 6 F (ς);

(F2) inf F = −∞;

(F3) F is continuous in R+.

Lemma 1.2.4. (Secelean (2013)) Define F : R+ → (−∞,+∞) as an increasing
map and let {%$}$∈N be a sequence s.t %$ ∈ R+ ∀ $ ∈ N. Then, the following
holds:

(i) If F (%$)→ −∞ implies %$ → 0;

(ii) If inf F = −∞ and %$ → 0 implies F (%$)→ −∞.

7



Lemma 1.2.5. (Górnicki (2016)) If ω : f → f is a surjective map on metric
space (f, d), then ω has a right inverse.

Definition 1.2.19. For a metric space (f, d), a self-map ω : f→ f is c.t.b

(i) (Samet et al. (2012)) an α-admissible map, where α : f2 → [0,+∞), if
for each %, ς ∈ f with 1 6 α(%, ς) implies 1 6 α(ω%, ως).

(ii) (Salimi et al. (2013)) an α-admissible map w.r.t η, with α, η : f2 → R+,
if for %, ς ∈ f with η(%, ς) 6 α(%, ς) implies η(ω%, ως) 6 α(ω%, ως).

(iii) (Alizadeh et al. (2014)) a cyclic (α̂, β)-admissible map, with α̂, β : f→
R+, if:

(a) For any % ∈ f, 1 6 α̂(%) implies 1 6 β(ω%);

(b) For any % ∈ f, 1 6 β(%) implies 1 6 α̂(ω%).

(iv) (Sintunavarat (2015)) a weak α-admissible map, where α : f2 → R+, if
for each % ∈ f with 1 6 α(%, ω%) implies 1 6 α(ω%, ωω%).

(v) (Sintunavarat (2016b)) an α-admissible map type S, where α : f2 → R+

and real number s with s > 1, if for %, ς ∈ f we have s 6 α(%, ς) implies s 6
α(ω%, ως).

(vi) (Sintunavarat (2016b)) a weak α-admissible map type S, where α :
f2 → R+ and real number s with s > 1, if for % ∈ f we have s 6

α(%, ω%) implies s 6 α(ω%, ωω%).

(vii) (Mongkolkeha & Sintunavarat (2018)) a cyclic (α̂, β)-admissible map
type S, with α̂, β : f→ R+ and real number s where s > 1, if:

(a) For any % ∈ f, α̂(%) > s implies β(ω%) > s;

(b) For any % ∈ f,β(%) > s implies α̂(ω%) > s.

Remark 1.2.6. Following are few observations from (Sintunavarat (2016b)):

(i) Each α-admissible map is weak α-admissible map.

(ii) Each α-admissible map type S is weak α-admissible map type S.

(iii) The class of α-admissible map is different from α-admissible map type S.
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Remark 1.2.7. The family of cyclic (α̂, β)-admissible maps is different from the
family of cyclic (α̂, β)-admissible maps type S (see Mongkolkeha & Sintunavarat
(2018)).

Definition 1.2.20. (Hussain & Salimi (2014)) Denote G, the set of all maps
G : [0,+∞)×[0,+∞)×[0,+∞)×[0,+∞)→ [0,+∞) s.t ∀ ~1, ~2, ~3, ~4 ∈ [0,+∞)
with ~1.~2.~3.~4 = 0 we have ℘ > 0, s.t

G(~1, ~2, ~3, ~4) = ℘.

Example 1.2.8. Let G(~1, ~2, ~3, ~4) = ℘.eK.(~1.~2.~3.~4) where ℘ > 0 and K is a
non-negative real constant, then G ∈ G.

Definition 1.2.21. (Ansari (2014)) A function C : [0,+∞) × [0,+∞) → R is
c.t.b a C-class function if C is continuous map s.t:

(i) C(%, ς) 6 %;

(ii) C(%, ς) = % implies either % = 0 or ς = 0;

∀ (%, ς) ∈ [0,+∞)× [0,+∞).
Throughout the thesis, the family of C-class function is denoted by C.

Define a functional D : N (f)×N (f)→ [0,+∞) : D(U, V ) = inf{d(ρ, σ) s.t ρ ∈
U, σ ∈ V } and Pompeiu-Hausdorff functional (see Chifu & Petruşel (2017))
H : N (f)×N (f)→ [0,+∞)∪{+∞} s.tH(U, V ) = max{sup

ρ∈U
d(ρ, V ), sup

σ∈V
d(σ, U)}.

The upcoming lemma can be obtained from the result given in (Czerwik (1998))
for b-metric space.

Lemma 1.2.9. For a metric space (f, d), D(ρ, V ) 6 d(ρ, σ) + D(σ, V ) ∀ ρ, σ ∈
f and V ⊆ f.

1.3 Chapterwise Summary

This section of the chapter provides an overview of the work done in each chapter
of the thesis.

In Chapter 2, we have introduced generalized contraction maps like orthogo-
nal α-η-GF -contraction, orthogonal α-type F -contraction, orthogonal TAC -type
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S-contraction, orthogonal TAC -contraction, orthogonal Suzuki-Berinde type F -
contraction, and orthogonal F -weak contraction together with some of their weaker
versions in orthogonal metric space. Further, the results are applied to establish
the existence and uniqueness of the solution for first order differential equation.
The fixed point results discussed are proper extensions of some of the results
present in the literature.

In Chapter 3, we extend the fixed point results in the relation theoretic metric
space introduced by Alam & Imdad (2015), briefly written as R-metric space, by
putting forward the fixed point results using F -weak expansive map followed by
the fixed point results that are subjected to contraction conditions corresponding
to the multivalued counterpart of F -contraction, F -weak contraction, almost F -
contraction and α-type F -contraction in R-metric space. Next, we discuss the
existence of the solution for a non-homogeneous, non-linear Volterra integral and
its stability using the idea of Hyers-Ulam stability.

Chapter 4 introduces the notion of C∗AVR-metric space which generalizes the class
of C∗AV -metric space. The first section introduces the idea of C∗AVR-contractive
map and C∗AVR-metric space along with some fixed point results which, in turn,
generalizes and integrates some well-known outcomes in the literature. The second
section discusses the existence and uniqueness of coincidence points and common
fixed points in C∗AVR-metric space using the technique of Picard-Jungck iteration.
Here, the results proved are for a pair of self-maps in the C∗AVR-metric space which
is generalized enough to deduce coincidence and common fixed point results in
C∗AV -ordered metric space, C∗AV -metric space, and metric space. As an application,
the coincidence and common fixed point results are applied on C∗AV -metric space
endowed with a directed graph.

In Chapter 5, on associating an amorphous binary relation R with the bipolar
metric space, we introduce the notion of bipolar R-metric space together with
the fixed point results. Further, we introduce the notions of FR-contractive map
and FR-expansive map. The results provides a fixed point result in the setting of
FR-contractive map followed by fixed point deductions with FR-expansive map
in bipolar R-metric space. Under a specific condition, the results are reduced to a
novel fixed point result in bipolar metric space with respect to an expansive map
and to some result of literature, thus substantiating their utility.

The thesis ends with the bibliography followed by the list of publications, paper
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presented in conferences, and workshop attended.

******
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Chapter 2

Fixed Point Results in
Orthogonal Metric Space

2.1 Introduction

Gordji et al. (2017) gave the notion of orthogonal sets and subsequently, orthogo-
nal metric space and proved the Banach fixed point result in this space. Over the
period of time, number of authors have deduced fixed point results in an orthogo-
nal metric space (for reference, see Ramezani & Baghani (2017a,b), Ahmadi et al.
(2018), Senapati et al. (2018), Kanwal et al. (2020), Sawangsup et al. (2020), Yang
& Bai (2020), Beg et al. (2021), Chandok & Radenović (2022), Gnanaprakasam
et al. (2022)).

In this chapter, we generalize the contraction maps in an orthogonal metric
space and associated fixed point results, which are inspired by the previous work.
The contraction maps like orthogonal α-η-GF -contraction, orthogonal α-type F -
contraction, orthogonal TAC -type S-contraction, orthogonal TAC -contraction,
orthogonal Suzuki-Berinde type F -contraction, and orthogonal F -weak contrac-
tion together with some of their weaker versions are discussed. Also, various
fixed point results owing to these generalized contraction conditions are proved,
which indeed extends the results given in Hussain & Salimi (2014), Gopal et al.
(2016), Chandok et al. (2016), Baghani et al. (2016), Hussain & Ahmad (2017)
and Sawangsup et al. (2020). The results are used to show that the solution of
a first order ordinary differential equation exists and is unique. The fixed point
results demonstrated in this chapter are a proper extension of several results in
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the literature. The results proved in this chapter are part of 1,2.

2.2 Generalized Contraction Maps and Fixed Point
Results

This section is divided into five subsections, each of which introduces generalized
contraction maps in an orthogonal metric space and consequently, explores various
fixed point results owing to these weaker contraction conditions.

2.2.1 Orthogonal α-η-GF-Contraction

Hussain & Salimi (2014) presented the notion of α-η-GF -contraction map. In this
subsection, we first introduce some of the basic definitions including orthogonal
α-η-GF -contraction and orthogonal α-η-GF -weak contraction and later, prove
certain fixed point results under these settings. Further, the definitions and results
are supported by the examples.

Definition 2.2.1. For an orthogonal metric space (f, d⊥) with two maps α, η :
f2 → R+, a self-map Ω : f→ f is c.t.b an orthogonal α-η-continuous map
(denoted by ⊥-α-η-continuous) if for some % ∈ f and an ⊥-sequence {%$}$∈N in
f where η(%$, %$+1) 6 α(%$, %$+1) ∀ $ ∈ N and lim

$→+∞
%$ = % implies

lim
$→+∞

Ω%$ = Ω%.

Example 2.2.1. Let f = [0,+∞) equipped with usual metric. Let % ⊥ ς iff %.ς ∈
{%, ς}. Then, (f, d⊥) is an orthogonal metric space. Let Ω : f→ f be defined as

Ω(%) =

 0 % ∈ [0, 1);
1/2 otherwise.

Define α, η : f2 → R+ where

α(%, ς) =

 4 %, ς ∈ [0, 1);
1/4 otherwise,

1Malhotra, A., and Kumar, D. (2022). Generalized Contraction Mappings and Fixed Point
Results in Orthogonal Metric Space. Applied Mathematics E-Notes, 22, 393-426.

2Kumar, D. and Malhotra, A. (2022). Orthogonal F-weak Contraction Mapping in Orthog-
onal Metric Space, Fixed Points and Applications. Filomat. (Accepted)
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and, η(%, ς) = 1 ∀ %, ς ∈ f. Thus, for α(%, ς) > η(%, ς), we must have %, ς ∈ [0, 1).
The sequence {%$}$∈N, defined as

%$ =

 0 $ = 2m− 1, ∀ m ∈ N;
1/2m $ = 2m, ∀ m ∈ N,

is an ⊥-sequence in f and α(%$, %$+1) > η(%$, %$+1) ∀ $ ∈ N. Also, since
%$ → 0 as $ → +∞ then lim

$→+∞
Ω%$ = 0 = Ω0. Hence, Ω is ⊥-α-η-continuous

however, it is not a continuous map.

Definition 2.2.2. For an orthogonal metric space (f, d⊥) with two maps α, η :
f2 → R+, a self-map Ω : f → f is c.t.b an orthogonal α-η-GF-contraction
(denoted by ⊥-α-η-GF-contraction) if ∀ %, ς ∈ f with % ⊥ ς, d⊥(Ω%,Ως) > 0 and
η(%,Ω%) 6 α(%, ς), we have

G
(
d⊥(%,Ω%), d⊥(ς,Ως), d⊥(%,Ως), d⊥(ς,Ω%)

)
+F

(
d⊥(Ω%,Ως)

)
6 F

(
d⊥(%, ς)

)
,

where G ∈ G and F ∈ F.

Example 2.2.2. Consider f = {0, 2, 4, . . . , 2k, . . . } along with usual metric space.
Let % ⊥ ς iff %.ς ∈ {0}. Then, (f, d⊥) is an orthogonal metric space. Let Ω : f→
f be defined as

Ω(%) =

 2m−1 for % = 2m where m ∈ N− {1};
0 % ∈ {0, 2}.

Define α, η : f2 → R+ as,

α(%, ς) =

 1 % ∈ {0, 2};
5/2 otherwise,

and,

η(%, ς) =

 1/2 % ∈ {0, 2};
1 otherwise.

Now by above, we have

(i) for d⊥(Ω%,Ως) > 0, we must have either % ∈ {0, 2} and ς = 2m where
m ∈ N− {1} or % = 2m where m ∈ N− {1} and ς ∈ {0, 2}.

(ii) for % ⊥ ς, either % = 0 or ς = 0.
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Thus, for (i) and (ii) to hold together, we have either % = 0 and ς = 2m where
m ∈ N− {1} or % = 2m where m ∈ N− {1} and ς = 0.
Consider % = 0 and ς = 2m where m ∈ N−{1}. Then for such choice of % and ς,
we have η(%,Ω%) < α(%, ς). So for F(µ) = ln(µ) and ℘ = 0.5, we have

G
(
d⊥(%,Ω%), d⊥(ς,Ως), d⊥(%,Ως), d⊥(ς,Ω%)

)
+F

(
d⊥(Ω%,Ως)

)
= ℘+ln 2m−1 (2.1)

and,

F
(
d⊥(%, ς)

)
= ln(2m). (2.2)

Thus from (2.1) and (2.2), we obtain

G
(
d⊥(%,Ω%), d⊥(ς,Ως), d⊥(%,Ως), d⊥(ς,Ω%)

)
+F

(
d⊥(Ω%,Ως)

)
6 F

(
d⊥(%, ς)

)
.

Hence, Ω is ⊥-α-η-GF-contraction on f.

Definition 2.2.3. For an orthogonal metric space (f, d⊥) with two maps α, η :
f2 → R+, a self-map Ω : f → f is c.t.b an orthogonal α-η-GF-weak con-
traction (denoted by ⊥-α-η-GF-weak contraction) if ∀ %, ς ∈ f with % ⊥ ς,
d⊥(Ω%,Ως) > 0 and η(%,Ω%) 6 α(%, ς), we have

G
(
d⊥(%,Ω%), d⊥(ς,Ως), d⊥(%,Ως), d⊥(ς,Ω%)

)
+ F

(
d⊥(Ω%,Ως)

)
6 F

(
max

{
d⊥(%, ς), d⊥(%,Ω%), d⊥(ς,Ως), d⊥(%,Ως) + d⊥(ς,Ω%)

2

})
,

where G ∈ G and F ∈ F.

Remark 2.2.3. From the above definitions, we can conclude that every ⊥-α-η-
GF-contraction is an ⊥-α-η-GF-weak contraction.

Theorem 2.2.4. For (f, d⊥) an ⊥-complete metric space with %0 as an orthogonal
element, suppose G ∈ G and F ∈ F. Let α, η : f2 → R+ and Ω : f → f be a
self-map s.t:

(I) Ω is ⊥-preserving;

(II) Ω is α-admissible map w.r.t η;

(III) ∃ %0 ∈ f s.t η(%0,Ω%0) 6 α(%0,Ω%0);

(IV) Ω is ⊥-α-η-continuous;
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(V) Ω is ⊥-α-η-GF-contraction.

Then, Ω possesses a fixed point. In addition, if ∀ %, ς ∈ f s.t % ⊥ ς, Ω% = % and
Ως = ς implies η(%, %) 6 α(%, ς), then Ω possesses a unique fixed point.

Proof. Consider {%$}$∈N be a sequence in f where %$+1 = Ω%$ = Ω$+1%0 for
each $ ∈ N. Since η(%0,Ω%0) 6 α(%0,Ω%0), so using α-admissibility of Ω w.r.t η,
we get

η(%1, %2) = η(Ω%0,Ω2%0) 6 α(Ω%0,Ω2%0) = α(%1, %2),

repetitive use of α-admissibility of Ω w.r.t η, we obtain

η(%$−1, %$) 6 α(%$−1, %$) ∀ $ ∈ N.

Also, as %0,Ω%0 ∈ f where (f,⊥) is an⊥-set then the repeated use of⊥-preserving
property of Ω, gives

[%$−1 ⊥ %$ ∀ $ ∈ N] or [%$ ⊥ %$−1 ∀ $ ∈ N].

Using contractive property of Ω, we get

G
(
d⊥(%$−1,Ω%$−1), d⊥(%$,Ω%$), d⊥(%$−1,Ω%$), d⊥(%$,Ω%$−1)

)
+F

(
d⊥(Ω%$−1,Ω%$)

)
6 F

(
d⊥(%$−1, %$)

)
. (2.3)

Since, we have

d⊥(%$, %$+1).d⊥(%$−1, %$).d⊥(%$−1, %$+1).d⊥(%$, %$) = 0,

so ∃ ℘ > 0, s.t

G(d⊥(%$, %$+1), d⊥(%$−1, %$), d⊥(%$−1, %$+1), d⊥(%$, %$)) = ℘. (2.4)

On using (2.4) in (2.3), we obtain

℘+ F(d⊥(Ω%$−1,Ω%$)) 6 F(d⊥(%$−1, %$)),

that is, F(d⊥(%$, %$+1)) 6 F(d⊥(%$−1, %$))− ℘

6 F(d⊥(%$−2, %$−1))− 2℘

6 · · · 6 F(d⊥(%0, %1))−$℘. (2.5)
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Taking limit as $ → +∞ in (2.5) and by using (F2) property of F , we have

lim
$→+∞

d⊥(%$, %$+1) = 0. (2.6)

Further, by (F3) property of F , ∃ some 0 < γ < 1, s.t

lim
$→+∞

(
d⊥(%$, %$+1)

)γ
F(d⊥(%$, %$+1)) = 0. (2.7)

Using (2.6) and (2.7) in (2.5), we get

(
d⊥(%$, %$+1)

)γ(
F(d⊥(%$, %$+1))−F(d⊥(%0, %1))

)
6 −$℘

(
d⊥(%$, %$+1)

)γ
6 0.

On letting $ → +∞ in above, we have lim
$→+∞

$
(
d⊥(%$, %$+1)

)γ
= 0. So, ∃ $0 ∈

N, s.t

$
(
d⊥(%$, %$+1)

)γ
6 1 ∀ $ > $0,

implies d⊥(%$, %$+1) 6
1

$1/γ ∀ $ > $0.

Now, for $∗ > $ > $0 and using triangle inequality, we obtain

d⊥(%$, %∗$) 6
$∗−1∑
i=$

d⊥(%i, %i+1) 6
+∞∑
i=1

d⊥(%i, %i+1) 6
+∞∑
i=1

1
$1/γ .

As 0 < γ < 1, so convergence of
+∞∑
i=1

1
$1/γ implies {%$}$∈N is an ⊥-Cauchy

sequence and since f is ⊥-complete, we have lim
$→+∞

%$ = %. Therefore, by ⊥-α-η-
continuity of Ω, we get

lim
$→+∞

Ω%$ = lim
$→+∞

%$+1 = Ω%,

that is, % = Ω%.

Thus, Ω possesses a fixed point. Next, let ς be s.t Ως = ς and % ⊥ ς then by given
condition η(%, %) 6 α(%, ς). On using ⊥-α-η-GF -contraction of Ω over % and ς,
we obtain

G
(
d⊥(%,Ω%), d⊥(ς,Ως), d⊥(%,Ως), d⊥(ς,Ω%)

)
+F

(
d⊥(Ω%,Ως)

)
6 F

(
d⊥(%, ς)

)
.

Since,

d⊥(%,Ω%).d⊥(ς,Ως).d⊥(%,Ως).d⊥(ς,Ω%) = 0,
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so ∃ ℘ > 0, s.t

G
(
d⊥(%,Ω%), d⊥(ς,Ως), d⊥(%,Ως), d⊥(ς,Ω%)

)
= ℘.

Therefore,

℘+ F
(
d⊥(Ω%,Ως)

)
6 F

(
d⊥(%, ς)

)
,

implies ℘+ F
(
d⊥(%, ς)

)
6 F

(
d⊥(%, ς)

)
,

that holds only if % = ς. Hence, Ω possesses a unique fixed point.

Example 2.2.5. Consider the orthogonal metric space and ⊥-α-η-GF-contraction
map Ω defined in Example 2.2.2, then

(i) (f, d⊥) is ⊥-complete: Suppose {%$}$∈N be any ⊥-Cauchy sequence in f.
Then, we have a sub-sequence {%$k} of {%$} s.t %$k = 0 ∀ k > 1, that is,
%$k → 0 as $ → +∞. Since this happens with any ⊥-Cauchy sequence in
f, so we have {%$}$∈N convergent in f.

(ii) Ω is ⊥-preserving: Since 0 ⊥ ς ∀ ς ∈ f, then Ω0 = 0 ⊥ Ως ∀ ς ∈ f.

(iii) Ω is α-admissible w.r.t η: From the definition of α, η and Ω, we can con-
cluded that Ω is α-admissible map w.r.t η.

(iv) Ω is ⊥-continuous: For any convergent ⊥-sequence {%$}$∈N, we have %$ →
0 as $ → +∞. Then, Ω%$ → Ω0 = 0 as $ → +∞.

Since all the hypotheses of Theorem 2.2.4 hold, so Ω possesses a fixed point viz.
% = 0.

Theorem 2.2.6. For (f, d⊥) an ⊥-complete metric space with %0 as an orthogonal
element, let G ∈ G and F ∈ F. Let α, η : f2 → R+ and Ω : f→ f be a self-map
s.t:

(I) Ω is ⊥-preserving;

(II) Ω is α-admissible map w.r.t η;

(III) ∃ %0 ∈ f s.t η(%0,Ω%0) 6 α(%0,Ω%0);

(IV) Ω is ⊥-α-η-continuous;

(V) Ω is ⊥-α-η-GF-weak contraction.
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Then, Ω possesses a fixed point. In addition, if ∀ %, ς ∈ f s.t % ⊥ ς, Ω% = % and
Ως = ς implies η(%, %) 6 α(%, ς), then Ω possesses a unique fixed point.

Proof. Working on the lines of Theorem 2.2.4, we obtain an ⊥-sequence {%$}$∈N
in f, s.t

G
(
d⊥(%$−1,Ω%$−1), d⊥(%$,Ω%$), d⊥(%$−1,Ω%$), d⊥(%$,Ω%$−1)

)
+ F

(
d⊥(Ω%$−1,Ω%$)

)
6 F

(
max

{
d⊥(%$−1, %$), d⊥(%$−1,Ω%$−1),

d⊥(%$,Ω%$), d⊥(%$−1,Ω%$) + d⊥(%$,Ω%$−1)
2

})
. (2.8)

Since, we have

d⊥(%$, %$+1).d⊥(%$−1, %$).d⊥(%$−1, %$+1).d⊥(%$, %$) = 0,

so ∃ ℘ > 0, that gives

G(d⊥(%$, %$+1), d⊥(%$−1, %$), d⊥(%$−1, %$+1), d⊥(%$, %$)) = ℘. (2.9)

On using (2.9) in (2.8), we get

℘+ F(d⊥(Ω%$−1,Ω%$))

6 F
(

max
{
d⊥(%$−1, %$), d⊥(%$, %$+1), d⊥(%$−1, %$+1)

2

})

6 F
(

max
{
d⊥(%$−1, %$), d⊥(%$, %$+1), d⊥(%$−1, %$) + d⊥(%$, %$+1)

2

})

= F
(

max
{
d⊥(%$−1, %$), d⊥(%$, %$+1)

})
.

Case (i): Let max
{
d⊥(%$−1, %$), d⊥(%$, %$+1)

}
= d⊥(%$, %$+1), then

℘+ F
(
d⊥(%$, %$+1)

)
6 F(d⊥(%$, %$+1)),

which is not true for any ℘ > 0.

Case (ii): Let max
{
d⊥(%$−1, %$), d⊥(%$, %$+1)

}
= d⊥(%$−1, %$), then

℘+ F
(
d⊥(%$, %$+1)

)
6 F(d⊥(%$−1, %$)),
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thus, F
(
d⊥(%$, %$+1)

)
6 F(d⊥(%$−1, %$))− ℘

= F(d⊥(%$−1, %$))− 2℘ 6 · · · 6 F(d⊥(%0, %1))−$℘.

The result now follows on the lines of Theorem 2.2.4.

Remark 2.2.7. In the upcoming result, we exclude the condition of ⊥-α-η-continuity
of Ω and instead consider a weaker condition.

Theorem 2.2.8. For (f, d⊥) an ⊥-complete metric space with %0 as an orthogonal
element, let G ∈ G and F ∈ F. Let α, η : f2 → R+ and Ω : f→ f be a self-map
s.t:

(I) Ω is ⊥-preserving;

(II) Ω is α-admissible map w.r.t η;

(III) ∃ %0 ∈ f s.t η(%0,Ω%0) 6 α(%0,Ω%0);

(IV) If {%$}$∈N is an ⊥-sequence in f s.t η(%$, %$+1) 6 α(%$, %$+1) and %$ → %

as $ → +∞, then

[%$ ⊥ % ∀ $] or [% ⊥ %$ ∀ $]

and,

[η(Ω%$,Ω2%$) 6 α(Ω%$, %)] or [η(Ω2%$,Ω3%$) 6 α(Ω2%$, %)] ∀ $ ∈ N;

(V) Ω is ⊥-α-η-GF-contraction.

Then, Ω possesses a fixed point. In addition, if for each %, ς ∈ f with % ⊥ ς,
Ω% = % and Ως = ς implies η(%, %) 6 α(%, ς), then Ω possesses a unique fixed
point.

Proof. Working on the lines of Theorem 2.2.4, we obtain an ⊥-sequence {%$}$∈N
in f s.t

η(%$, %$+1) 6 α(%$, %$+1) and lim
$→+∞

%$ = %.

Here, we say that % is a fixed point of Ω in f. By the given condition, we have

[%$ ⊥ % ∀ $ ∈ N] or [% ⊥ %$ ∀ $ ∈ N],
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and,

[η(%$+1, %$+2) 6 α(%$+1, %)] or [η(%$+2, %$+3) 6 α(%$+2, %)] ∀ $ ∈ N.

Thus, ∃ a sub-sequence {%$s} of {%$}, s.t

η(%$s ,Ω%$s) 6 α(%$s , %).

Since, Ω is ⊥-α-η-GF -contraction, we obtain

F
(
d⊥(Ω%$s ,Ω%)

)
< G

(
d⊥(%$s ,Ω%$s), d⊥(%,Ω%), d⊥(%$s ,Ω%),

d⊥(%,Ω%$s)
)

+ F
(
d⊥(Ω%$s ,Ω%)

)
6 F

(
d⊥(%$s , %)

)
,

that is, F(d⊥(Ω%$s ,Ω%)) 6 F(d⊥(%$s , %)).

From (F1) property of F , we have

d⊥(Ω%$s ,Ω%) < d⊥(%$s , %). (2.10)

Letting s→ +∞ in (2.10), gives d⊥(%,Ω%) = 0. Thus, Ω possesses a fixed point.
Further, the uniqueness of fixed point follows on the lines of Theorem 2.2.4.

Theorem 2.2.9. For (f, d⊥) an ⊥-complete metric space with %0 as an orthogonal
element, suppose G ∈ G and F ∈ F. Let α, η : f2 → R+ and Ω : f → f be a
self-map s.t:

(I) Ω is ⊥-preserving;

(II) Ω is α-admissible map w.r.t η;

(III) ∃ %0 ∈ f s.t η(%0,Ω%0) 6 α(%0,Ω%0);

(IV) If {%$}$∈N is an ⊥-sequence in f s.t η(%$, %$+1) 6 α(%$, %$+1) and %$ → %

as $ → +∞, then

[%$ ⊥ % ∀ $] or [% ⊥ %$ ∀ $]

and,

[η(Ω%$,Ω2%$) 6 α(Ω%$, %)] or [η(Ω2%$,Ω3%$) 6 α(Ω2%$, %)] ∀ $ ∈ N;

22



(V) Ω is ⊥-α-η-GF-weak contraction.

Then, Ω possesses a fixed point. In addition, if for each %, ς ∈ f with % ⊥ ς,
Ω% = % and Ως = ς implies η(%, %) 6 α(%, ς), then Ω possesses a unique fixed
point.

Proof. Working on the lines of Theorem 2.2.8, we obtain a sub-sequence {%$s} of
an ⊥-sequence {%$} with η(%$s ,Ω%$s) 6 α(%$s , %), s.t

F
(
d⊥(Ω%$s ,Ω%)

)
< G

(
d⊥(%$s ,Ω%$s), d⊥(%,Ω%), d⊥(%$s ,Ω%), d⊥(%,Ω%$s)

)
+ F

(
d⊥(Ω%$s ,Ω%)

)
6 F

(
max

{
d⊥(%$s , %), d⊥(%$s ,Ω%$s), d⊥(%,Ω%),

d⊥(%$s ,Ω%) + d⊥(%,Ω%$s)
2

})
. (2.11)

From (F1) property of F in (2.11), we have

d⊥(Ω%$s ,Ω%) < max
{
d⊥(%$s , %), d⊥(%$s ,Ω%$s), d⊥(%,Ω%),

d⊥(%$s ,Ω%) + d⊥(%,Ω%$s)
2

}
. (2.12)

Letting s→ +∞ in (2.12), gives

d⊥(%,Ω%) = 0.

Thus, Ω possesses a fixed point. Further, the uniqueness of fixed point follows on
the lines of Theorem 2.2.4.

2.2.2 Orthogonal α-type F-Contraction

The idea of α-type F -contraction was discussed by Gopal et al. (2016), and the
results proved were generalization of the contraction results in Ćirić (1974), War-
dowski (2012), Wardowski & Dung (2014).
In this subsection, we first discuss some basic definitions and prove fixed point
results related to orthogonal α-type F -contraction and some of its weaker con-
traction conditions.
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Definition 2.2.4. For an orthogonal metric space (f, d⊥) and for α : f2 → R+,
a self-map Ω : f → f is c.t.b an orthogonal α-type F-contraction (denoted
by ⊥-α type F-contraction) if ∃ ℘ > 0, F ∈ F with % ⊥ ς and d⊥(Ω%,Ως) > 0 s.t
∀ %, ς ∈ f, we have

℘+ α(%, ς)F
(
d⊥(Ω%,Ως)

)
6 F

(
d⊥(%, ς)

)
.

Example 2.2.10. Let f = R+, d⊥(%, ς) = |%− ς| and % ⊥ ς iff either % = 0 or ς =
0. Then, (f, d⊥) is an orthogonal metric space. Let Ω : f→ f be defined as

Ω(%) =

 3/2 % ∈ [10, 20);
0 otherwise.

Let α : f2 → [0,+∞) be defined as α(%, ς) = 3/2 ∀ %, ς ∈ f. Define F(µ) =
ln(µ). For d⊥(Ω%,Ως) > 0 and % ⊥ ς to hold simultaneously, we have either % = 0
and ς ∈ [10, 20) or % ∈ [10, 20) and ς = 0.

Let % = 0 and ς ∈ [10, 20). Then,

℘+ α(0, ς) ln(d⊥(Ω0,Ως)) = ℘+ 3
2 ln(d⊥(0, 3/2)) = ℘+ 3

2 ln(3/2) (2.13)

and,

ln(d⊥(0, ς)) = ln(ς). (2.14)

From (2.13), (2.14) and for ℘ = 1, we can conclude that Ω is ⊥-α type F-
contraction. The case for % ∈ [10, 20) and ς = 0 holds on the similar lines.

Definition 2.2.5. For an orthogonal metric space (f, d⊥) and for α : f2 → R+,
a self-map Ω : f → f is c.t.b an orthogonal α-type F-weak contraction
(denoted by ⊥-α type F-weak contraction) if ∃ ℘ > 0 and F ∈ F s.t ∀ %, ς ∈ f
with % ⊥ ς and d⊥(Ω%,Ως) > 0, we have

℘+ α(%, ς)F
(
d⊥(Ω%,Ως)

)
6 F

(
max

{
d⊥(%, ς), d⊥(%,Ω%), d⊥(ς,Ως),

d⊥(%,Ως) + d⊥(ς,Ω%)
2

})
.

Remark 2.2.11. From the above definitions, we can concluded that each ⊥-α type
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F-contraction is an ⊥-α type F-weak contraction.

Theorem 2.2.12. For (f, d⊥) an ⊥-complete metric space with s > 1 and %0 as
an orthogonal element, suppose F ∈ F. Let α : f2 → R+ and Ω : f → f be a
self-map s.t:

(I) Ω is ⊥-preserving;

(II) Ω is weak α-admissible map type S;

(III) ∃ some %0 ∈ f with s 6 α(%0,Ω%0);

(IV) Ω is ⊥-continuous;

(V) Ω is ⊥-α type F-contraction.

Then, Ω possesses a fixed point. In addition, if for each %, ς ∈ f with % ⊥ ς,
Ω% = % and Ως = ς implies s 6 α(%, ς), then Ω possesses a unique fixed point.

Proof. On defining a sequence {%$}$∈N in f where %$+1 = Ω%$ = Ω$+1%0 for
each $ ∈ N and since %0,Ω%0 ∈ f where (f,⊥) is an ⊥-set then the repeated use
of ⊥-preserving property of Ω, gives

[%$−1 ⊥ %$ ∀ $ ∈ N] or [%$ ⊥ %$−1 ∀ $ ∈ N],

thus, {%$}$∈N is an ⊥-sequence in f.
Now, by the given condition α(%0, %1) = α(%0,Ω%0) > s and as Ω is weak α-
admissible map type S, we have α(%1, %2) > s continuing, we get α(%$−1, %$) > s,
and

F
(
d⊥(%$, %$+1)

)
= F

(
d⊥(Ω%$−1,Ω%$)

)
6 sF

(
d⊥(Ω%$−1,Ω%$)

)
6 α(%$−1, %$)F

(
d⊥(Ω%$−1,Ω%$)

)
.

Using ⊥-α type F -contraction condition of Ω and for ℘ > 0, we get

℘+ F
(
d⊥(%$, %$+1)

)
6 ℘+ sF

(
d⊥(Ω%$−1,Ω%$)

)
6 ℘+ α(%$−1, %$)F

(
d⊥(Ω%$−1,Ω%$)

)
6 F

(
d⊥(%$−1,Ω%$)

)
,

that is, F
(
d⊥(%$, %$+1)

)
6 F

(
d⊥(%$−1, %$)

)
− ℘

6 F
(
d⊥(%$−2, %$−1)

)
− 2℘

6 · · · 6 F
(
d⊥(%0, %1)

)
−$℘. (2.15)
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Taking limit as $ → +∞ in (2.15) and by (F2) property of F , we have

lim
$→+∞

d⊥(%$, %$+1) = 0. (2.16)

And further, by (F3) property of F , ∃ γ ∈ (0, 1), s.t

lim
$→+∞

(
d⊥(%$, %$+1)

)γ
F
(
d⊥(%$, %$+1)

)
= 0. (2.17)

From (2.15), we conclude that

(
d⊥(%$, %$+1)

)γ(
F(d⊥(%$, %$+1))−F(d⊥(%0, %1))

)
6 −$

(
d⊥(%$, %$+1)

)γ
℘.

(2.18)

On letting $ → +∞ in (2.18) and using (2.16) and (2.17), we obtain

lim
$→+∞

$
(
d⊥(%$, %$+1)

)γ
= 0.

So, ∃ some $1 ∈ N, s.t

d⊥(%$, %$+1) < 1
$1/γ ∀ $ > $1.

Consider $∗ > $ > $1, then by triangle inequality, we obtain

d⊥(%$, %$∗) 6 d⊥(%$, %$+1) + d⊥(%$+1, %$+2) + · · ·+ d⊥(%$∗−1, %$∗)

6
+∞∑
i=1

d⊥(%i, %i+1) =
+∞∑
i=1

1
i1/γ

.

As series ∑+∞
i=1

1
i1/γ

is convergent, we get {%$}$∈N is an ⊥-Cauchy sequence and
since f is ⊥-complete, so ∃ % ∈ f s.t lim

$→+∞
%$ = %. Further, since Ω is ⊥-

continuous, we have

lim
$→+∞

Ω%$ = lim
$→+∞

%$+1 = Ω%,

that is, % = Ω%.

Thus, Ω possesses a fixed point. Next, let ς be s.t Ως = ς and % ⊥ ς. Then by
given condition, we obtain α(%, ς) > s. Using ⊥-α type F -contraction property
of Ω, we have

℘+ F
(
d⊥(Ω%,Ως)

)
6 ℘+ sF

(
d⊥(Ω%,Ως)

)
6 ℘+ α(%, ς)F

(
d⊥(Ω%,Ως)

)
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6 F
(
d⊥(%, ς)

)
,

that is, ℘+ F
(
d⊥(%, ς)

)
6 F

(
d⊥(%, ς)

)
. (2.19)

Now, (2.19) holds only if % = ς. Hence, Ω possesses a unique fixed point.

Example 2.2.13. The self-map Ω defined in Example 2.2.10 satisfies all hypothe-
ses of above theorem and thus possesses a fixed point % = 0.

Theorem 2.2.14. For (f, d⊥) an ⊥-complete metric space with s > 1 and %0 as
an orthogonal element, suppose F ∈ F. Let α : f2 → R+ and Ω : f → f be a
self-map s.t:

(I) Ω is ⊥-preserving;

(II) Ω is weak α-admissible map type S;

(III) ∃ %0 ∈ f with s 6 α(%0,Ω%0);

(IV) Ω is ⊥-continuous;

(V) Ω is ⊥-α type F-weak contraction.

Then, Ω possesses a fixed point. In addition, if for each %, ς ∈ f with % ⊥ ς,
Ω% = % and Ως = ς implies s 6 α(%, ς), then Ω possesses a unique fixed point.

Proof. Working on the lines of Theorem 2.2.12, we obtain an ⊥-sequence {%$}$∈N
in f with α(%$, %$+1) > s ∀ $ ∈ N.

F
(
d⊥(%$, %$+1)

)
= F

(
d⊥(Ω%$−1,Ω%$)

)
6 sF

(
d⊥(Ω%$−1,Ω%$)

)
6 α(%$−1, %$)F

(
d⊥(Ω%$−1,Ω%$)

)
.

Since Ω is ⊥-α type F -weak contraction, so

℘+ F
(
d⊥(%$, %$+1)

)
6℘+ α(%$−1, %$)F

(
d⊥(Ω%$−1,Ω%$)

)
6F

(
max

{
d⊥(%$−1, %$), d⊥(%$−1,Ω%$−1),

d⊥(%$,Ω%$), d⊥(%$−1,Ω%$) + d⊥(%$,Ω%$−1)
2

})

=F
(

max
{
d⊥(%$−1, %$), d⊥(%$, %$+1),
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d⊥(%$−1, %$+1)
2

})

6F
(

max
{
d⊥(%$−1, %$), d⊥(%$, %$+1),

d⊥(%$−1, %$) + d⊥(%$, %$+1)
2

})
,

implies ℘+ F
(
d⊥(%$, %$+1)

)
6F

(
max

{
d⊥(%$−1, %$), d⊥(%$, %$+1)

})
.

(2.20)

Case (i): Let max
{
d⊥(%$−1, %$), d⊥(%$, %$+1)

}
= d⊥(%$, %$+1), then by (2.20)

℘+ F
(
d⊥(%$, %$+1)

)
6 F(d⊥(%$, %$+1)),

which does not hold true for any ℘ > 0.

Case (ii): Let max
{
d⊥(%$−1, %$), d⊥(%$, %$+1)

}
= d⊥(%$−1, %$), then by (2.20)

℘+ F
(
d⊥(%$, %$+1)

)
6 F(d⊥(%$−1, %$)),

that is, F
(
d⊥(%$, %$+1)

)
6 F(d⊥(%$−1, %$))− ℘

= F(d⊥(%$−1, %$))− 2℘

≤ · · · 6 F(d⊥(%0, %1))−$℘.

The result now follows on the lines of Theorem 2.2.12.

Remark 2.2.15. In the upcoming result, we weaken the condition of ⊥-continuity
of Ω.

Theorem 2.2.16. For (f, d⊥) an ⊥-complete metric space with s > 1 and %0 as
an orthogonal element, suppose F ∈ F. Let α : f2 → R+ and Ω : f → f be a
self-map s.t:

(I) Ω is ⊥-preserving;

(II) Ω is weak α-admissible map type S;

(III) ∃ some %0 ∈ f with s 6 α(%0,Ω%0);

(IV) If ∃ an ⊥-sequence {%$}$∈N with α(%$, %$+1) > s and %$ → % as $ → +∞,
then α(%$, %) > s and either [%$ ⊥ % ∀ $ ∈ N] or [% ⊥ %$ ∀ $ ∈ N];
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(V) Ω is ⊥-α type F-contraction.

Then, Ω possesses a fixed point. In addition, if for each %, ς ∈ f with % ⊥ ς,
Ω% = % and Ως = ς implies s 6 α(%, ς), then Ω possesses a unique fixed point.

Proof. Proceeding on the lines of Theorem 2.2.12, one can obtain {%$}$∈N an
⊥-sequence where %$ → % as $ → +∞ and α(%$, %$+1) > s. Then, by given
condition we have α(%$, %) > s and either

[%$ ⊥ % ∀ $ ∈ N] or [% ⊥ %$ ∀ $ ∈ N].

Using ⊥-preserving property of Ω, we get

[Ω%$ ⊥ Ω% ∀ $ ∈ N] or [Ω% ⊥ Ω%$ ∀ $ ∈ N].

Since Ω is an ⊥-α type F -contraction, so we have

F
(
d⊥(%$+1,Ω%)

)
6 ℘+ F

(
d⊥(%$+1,Ω%)

)
= ℘+ F

(
d⊥(Ω%$,Ω%)

)
6 ℘+ sF

(
d⊥(Ω%$,Ω%)

)
6 ℘+ α(%$, %)F

(
d⊥(Ω%$,Ω%)

)
6 F

(
d⊥(%$, %)

)
. (2.21)

Using (F1) property of F in (2.21), we obtain

d⊥(%$+1,Ω%) < d⊥(%$, %).

Let $ → +∞, we get d⊥(%,Ω%) = 0. Thus, Ω possesses a fixed point. Further,
the uniqueness of the fixed point of Ω follows on the lines of Theorem 2.2.12.

Theorem 2.2.17. For (f, d⊥) an ⊥-complete metric space with s > 1 and %0 as
an orthogonal element, suppose F ∈ F. Let α : f2 → R+ and Ω : f → f be a
self-map s.t:

(I) Ω is ⊥-preserving;

(II) Ω is weak α-admissible map type S;

(III) ∃ some %0 ∈ f with s 6 α(%0,Ω%0);

(IV) If ∃ an ⊥-sequence {%$}$∈N with α(%$, %$+1) > s and %$ → % as $ →
+∞, then α(%$, %) > s and either [%$ ⊥ % ∀ $ ∈ N] or [% ⊥ %$ ∀ $ ∈ N];
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(V) Ω is ⊥-α type F-weak contraction.

Then, Ω possesses a fixed point. In addition, if each %, ς ∈ f with % ⊥ ς, Ω% = %

and Ως = ς implies s 6 α(%, ς), then Ω possesses a unique fixed point.

Proof. By the working of Theorem 2.2.16, we obtain

F
(
d⊥(%$+1,Ω%)

)
6 ℘+ F

(
d⊥(%$+1,Ω%)

)
= ℘+ F

(
d⊥(Ω%$,Ω%)

)
6 ℘+ sF

(
d⊥(Ω%$,Ω%)

)
6 ℘+ α(%$, %)F

(
d⊥(Ω%$,Ω%)

)
6 F

(
max

{
d⊥(%$, %), d⊥(%$,Ω%$), d⊥(%,Ω%),

d⊥(%$,Ω%) + d⊥(%,Ω%$)
2

})
. (2.22)

Using (F1) property of F in (2.22), we obtain

d⊥(%$+1,Ω%) < max
{
d⊥(%$, %), d⊥(%$,Ω%$), d⊥(%,Ω%), d⊥(%$,Ω%) + d⊥(%,Ω%$)

2

}
.

Let $ → +∞, we get

d⊥(%,Ω%) = 0.

Thus, Ω possesses a fixed point. Further, the uniqueness of the fixed point of Ω
follows on the lines of Theorem 2.2.16.

Remark 2.2.18. It should be noted that Theorem 2.2.12, Theorem 2.2.14, Theo-
rem 2.2.16 and Theorem 2.2.17 proved above are valid even if Ω is considered as
an α-admissible map type S.

Theorem 2.2.19. For (f, d⊥) an ⊥-complete metric space with %0 as an orthog-
onal element, suppose F ∈ F. Let α : f2 → R+ and Ω : f → f be a self-map
s.t:

(I) Ω is ⊥-preserving;

(II) Ω is weak α-admissible map;

(III) ∃ some %0 ∈ f with 1 6 α(%0,Ω%0);
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(IV) Ω is ⊥-continuous;

(V) Ω is ⊥-α type F-contraction.

Then, Ω possesses a fixed point. In addition, if for each %, ς ∈ f with % ⊥ ς,
Ω% = % and Ως = ς implies 1 6 α(%, ς), then Ω possesses a unique fixed point.

Proof. On defining a sequence {%$}$∈N in f, where %$+1 = Ω%$ = Ω$+1%0 for
each $ ∈ N and since %0,Ω%0 ∈ f, where (f,⊥) is an ⊥-set then the repeated
use of ⊥-preserving property of Ω, gives

[%$−1 ⊥ %$ ∀ $ ∈ N] or [%$ ⊥ %$−1 ∀ $ ∈ N],

thus, {%$}$∈N is an ⊥-sequence in f. Now, by given condition α(%0, %1) =
α(%0,Ω%0) > 1 then by the weak α-admissibility of Ω, we have α(Ω%0,ΩΩ%0)
= α(%1, %2) > 1 continuing, we get α(%$−1, %$) > 1, and

F
(
d⊥(%$, %$+1)

)
= F

(
d⊥(Ω%$−1,Ω%$)

)
6 α(%$−1, %$)F

(
d⊥(Ω%$−1,Ω%$)

)
.

Using ⊥-α type F -contraction condition of Ω and for ℘ > 0, we have

℘+ F
(
d⊥(%$, %$+1)

)
6 ℘+ α(%$−1, %$)F

(
d⊥(Ω%$−1,Ω%$)

)
6 F

(
d⊥(%$−1,Ω%$)

)
,

that is, F
(
d⊥(%$, %$+1)

)
6 F

(
d⊥(%$−1, %$)

)
− ℘

6 F
(
d⊥(%$−2, %$−1)

)
− 2℘

6 · · · 6 F
(
d⊥(%0, %1)

)
−$℘. (2.23)

Taking limit as $ → +∞ in (2.23) and by (F2) property of F , we have

lim
$→+∞

d⊥(%$, %$+1) = 0. (2.24)

And further, by (F3) property of F , ∃ γ ∈ (0, 1), implies

lim
$→+∞

(
d⊥(%$, %$+1)

)γ
F
(
d⊥(%$, %$+1)

)
= 0. (2.25)

From (2.23), we conclude that

(
d⊥(%$, %$+1)

)γ(
F(d⊥(%$, %$+1))−F(d⊥(%0, %1))

)
6 −$

(
d⊥(%$, %$+1)

)γ
℘.

(2.26)
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On letting $ → +∞ in (2.26) and by (2.24), (2.25), we get

lim
$→+∞

$
(
d⊥(%$, %$+1)

)γ
= 0.

Thus, ∃ some $1 ∈ N, s.t

d⊥(%$, %$+1) < 1
$1/γ ∀ $ > $1.

Consider $∗ > $ > $1, then by triangle inequality, we obtain

d⊥(%$, %$∗) 6 d⊥(%$, %$+1) + d⊥(%$+1, %$+2) + · · ·+ d⊥(%$∗−1, %$∗)

6
+∞∑
i=1

d⊥(%i, %i+1) =
+∞∑
i=1

1
i1/γ

.

As series ∑+∞
i=1

1
i1/γ

is convergent, we get {%$}$∈N is an ⊥-Cauchy sequence and
since f is ⊥-complete, so ∃ % ∈ f for which

lim
$→+∞

%$ = %.

Further, since Ω is ⊥-continuous, so we have

lim
$→+∞

Ω%$ = lim
$→+∞

%$+1 = Ω%,

that is, % = Ω%.

Thus, Ω possesses a fixed point. Next, let ς be s.t Ως = ς and % ⊥ ς. Then by
given condition, we get α(%, ς) > 1. Using ⊥-α type F -contraction property of Ω,
we have

℘+ F
(
d⊥(Ω%,Ως)

)
6 ℘+ α(%, ς)F

(
d⊥(Ω%,Ως)

)
6 F

(
d⊥(%, ς)

)
,

that is, ℘+ F
(
d⊥(%, ς)

)
6 F

(
d⊥(%, ς)

)
. (2.27)

Now, (2.27) holds only if % = ς. Hence, Ω possesses a unique fixed point.

Example 2.2.20. Let f = (−∞,+∞) along with usual metric space and define
% ⊥ ς iff % = kς ∀ ς ∈ f and for some fixed k ∈ Z. Then, (f, d⊥) is an orthogonal
metric space. Let Ω : f→ f be defined as

Ω(%) =

 22/25 for % ∈ f− [−1, 1];
0 otherwise.
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Let α : f2 → R+ as α(%, ς) = 1 ∀ %, ς ∈ f. For % ⊥ ς and d⊥(Ω%,Ως) > 0 to
hold together, we must have either % = 0 and ς ∈ f − [−1, 1] or % ∈ f − [−1, 1]
and ς = 0. Consider % = 0 and ς ∈ f − [−1, 1] along with F(µ) = ln(µ) and
℘ = − ln(22/25) > 0, we have

℘+ α(%, ς)F
(
d⊥(Ω%,Ως)

)
= ℘+ ln(22/25) = 0, (2.28)

and, F
(
d⊥(%, ς)

)
= ln(|ς|), where ς ∈ f− [−1, 1]. (2.29)

So, from (2.28) and (2.29), we can conclude that Ω is ⊥-α type F-contraction
although, Ω is not continuous. Also, the space (f, d⊥) is ⊥-complete (because of
completeness of metric space (f, d⊥)) and the self-map Ω is weak α-admissible and
⊥-preserving. Next, to check ⊥-continuity of Ω, let {%$}$∈N be an ⊥-sequence in
f which is convergent. Then, we have %$ → 0 as $ → +∞, that is, lim

$→+∞
Ω%$ =

0 = Ω0. Thus, Ω is ⊥-continuous. Since, each hypothesis of Theorem 2.2.19 is
satisfied, so Ω possesses a fixed point viz. % = 0.

Theorem 2.2.21. For (f, d⊥) an ⊥-complete metric space with %0 as an orthog-
onal element, suppose F ∈ F. Let α : f2 → R+ and Ω : f → f be a self-map
s.t:

(I) Ω is ⊥-preserving;

(II) Ω is weak α-admissible map;

(III) ∃ some %0 ∈ f with 1 6 α(%0,Ω%0);

(IV) Ω is ⊥-continuous;

(V) Ω is ⊥-α type F-weak contraction.

Then, Ω possesses a fixed point. In addition, if for each %, ς ∈ f with % ⊥ ς,
Ω% = % and Ως = ς implies 1 6 α(%, ς), then Ω possesses a unique fixed point.

Proof. By the working done in Theorem 2.2.19, we obtain an ⊥-sequence {%$}$∈N
in f with α(%$, %$+1) > 1 ∀ $ ∈ N.

F
(
d⊥(%$, %$+1)

)
= F

(
d⊥(Ω%$−1,Ω%$)

)
6 α(%$−1, %$)F

(
d⊥(Ω%$−1,Ω%$)

)
.

The result now follows on the lines of Theorem 2.2.14.
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Remark 2.2.22. In the upcoming result, we weaken the condition of ⊥-continuity
of Ω.

Theorem 2.2.23. For (f, d⊥) an ⊥-complete metric space with %0 as an orthog-
onal element, suppose F ∈ F. Let α : f2 → R+ and Ω : f → f be a self-map
s.t:

(I) Ω is ⊥-preserving;

(II) Ω is weak α-admissible map;

(III) ∃ some %0 ∈ f with 1 6 α(%0,Ω%0);

(IV) If ∃ an ⊥-sequence {%$}$∈N with α(%$, %$+1) > 1 and %$ → % as $ →
+∞, then α(%$, %) > 1 and either [%$ ⊥ % ∀ $ ∈ N] or [% ⊥ %$ ∀ $ ∈ N];

(V) Ω is ⊥-α type F-contraction.

Then, Ω possesses a fixed point. In addition, if for each %, ς ∈ f with % ⊥ ς,
Ω% = % and Ως = ς implies 1 6 α(%, ς), then Ω possesses a unique fixed point.

Proof. By the working done in Theorem 2.2.19, one can obtain {%$}$∈N an ⊥-
sequence, where %$ → % as $ → +∞ and α(%$, %$+1) > 1. Then by given
condition, we have α(%$, %) > 1 and either

[%$ ⊥ % ∀ $ ∈ N] or [% ⊥ %$ ∀ $ ∈ N].

Using ⊥-preserving property of Ω, we get

[Ω%$ ⊥ Ω% ∀ $ ∈ N] or [Ω% ⊥ Ω%$ ∀ $ ∈ N].

As, Ω is an ⊥-α type F -contraction, so

F
(
d⊥(%$+1,Ω%)

)
6 ℘+ F

(
d⊥(%$+1,Ω%)

)
= ℘+ F

(
d⊥(Ω%$,Ω%)

)
6 ℘+ α(%$, %)F

(
d⊥(Ω%$,Ω%)

)
6 F

(
d⊥(%$, %)

)
. (2.30)

Using (F1) property of F in (2.30), we obtain

d⊥(%$+1, gp) 6 d⊥(%$, %).
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On letting $ → +∞, we get

d⊥(%,Ω%) = 0.

Thus, Ω possesses a fixed point. Further, the uniqueness follows on the lines of
Theorem 2.2.19.

Theorem 2.2.24. For (f, d⊥) an ⊥-complete metric space with %0 as an orthog-
onal element, suppose F ∈ F. Let α : f2 → R+ and Ω : f → f be a self-map
s.t:

(I) Ω is ⊥-preserving;

(II) Ω is weak α-admissible map;

(III) ∃ some %0 ∈ f with 1 6 α(%0,Ω%0);

(IV) If ∃ an ⊥-sequence {%$}$∈N with α(%$, %$+1) > 1 and %$ → % as $ →
+∞, then α(%$, %) > 1 and either [%$ ⊥ % ∀ $ ∈ N] or [% ⊥ %$ ∀ $ ∈ N];

(V) Ω is ⊥-α type F-weak contraction.

Then, Ω possesses a fixed point. In addition, if for each %, ς ∈ f with % ⊥ ς,
Ω% = % and Ως = ς implies 1 6 α(%, ς), then Ω possesses a unique fixed point.

Proof. The proof follows from the working of Theorem 2.2.23 followed by working
done in Theorem 2.2.17.

Remark 2.2.25. It should be noted that Theorem 2.2.19, Theorem 2.2.21, Theo-
rem 2.2.23 and Theorem 2.2.24 proved above are valid even if Ω is considered as
an α-admissible map.

2.2.3 Orthogonal TAC-Contraction

TAC -type contractive map was introduced by Chandok et al. (2016). Inspired by
work done, in this subsection we put forward the notion of orthogonal TAC -type
S-contraction map, orthogonal weak TAC -type S-rational contraction, orthogonal
TAC -contraction map and orthogonal weak TAC -rational contraction that further
extends our approach towards contraction principles and fixed point results in
orthogonal metric space.
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Let Ψ denotes the set of maps ψ1 : [0,+∞)→ [0,+∞), which are continuous and
monotonically increasing with ψ−1

1 ({0}) = 0 and let Φ denotes the set of maps
φ1 : [0,+∞) → [0,+∞), which are continuous where lim

$→+∞
φ1(%$) = 0 implies

lim
$→+∞

%$ = 0.

Definition 2.2.6. For an orthogonal metric space (f, d⊥), a self-map Ω : f→ f
is c.t.b an orthogonal TAC-type S-contraction (denoted by ⊥-TAC-type S-
contraction) if for %, ς ∈ f with % ⊥ ς, s > 1 and α̂(%).β(ς) > s implies

ψ1
(
d⊥(Ω%,Ως)

)
6 C

(
ψ1(d⊥(%, ς)), φ1(d⊥(%, ς))

)
,

where α̂, β : f→ [0,+∞), C ∈ C, ψ1 ∈ Ψ and φ1 ∈ Φ.

Example 2.2.26. Let f = R, d⊥(%, ς) = |% − ς| and % ⊥ ς iff %.ς = 0. Then,
(f, d⊥) is an orthogonal metric space. Let Ω : f→ f be defined as

Ω(%) =

 −%/7 % ∈ [0,+∞);
0 otherwise.

Let α̂, β : f→ [0,+∞) be defined as

α̂(%) =

 2 % ∈ [0,+∞);
0 otherwise,

and,

β(%) =

 2 % ∈ (−∞, 0];
0 otherwise.

Also, C : [0,+∞)2 → R be defined as C(%, ς) = % − ς and ψ1, φ1 : [0,+∞) →
[0,+∞) as ψ1(%) = 3%

2 and φ1(%) = 3%
4 . Now, for % ⊥ ς and α̂(%)β(ς) > s = 2 to

hold simultaneously, we must have either % = 0 and ς ∈ (−∞, 0] or % ∈ [0,+∞)
and ς = 0.

Case (i): For % = 0 and ς ∈ (−∞, 0], we have

ψ1
(
d⊥(Ω0,Ως)

)
= 0, (2.31)

and, C
(
ψ1(d⊥(0, ς)), φ1(d⊥(0, ς))

)
= C

(
ψ1(|ς|), φ1(|ς|)

)
= C

(
3|ς|
2 ,

3|ς|
4

)
= 3|ς|

4 .

(2.32)
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Case (ii): For % ∈ [0,+∞) and ς = 0, we have

ψ1
(
d⊥(Ω%,Ω0)

)
= ψ1

(
d⊥(Ω%, 0)

)
= ψ1(|%|/7) = 3|%|

14 , (2.33)

and, C
(
ψ1(d⊥(%, 0)), φ1(d⊥(%, 0))

)
= C

(
ψ1(|%|), φ1(|%|)

)
= C

(
3|%|
2 ,

3|%|
4

)
= 3|%|

4 .

(2.34)

From (2.31), (2.32), (2.33) and (2.34), we have Ω as ⊥-TAC-type S-contraction.

Definition 2.2.7. For an orthogonal metric space (f, d⊥), a self-map Ω : f→ f
is c.t.b an orthogonal weak TAC-type S-rational contraction (denoted by
⊥-weak TAC-type S-rational contraction) if for %, ς ∈ f with % ⊥ ς, s > 1 and
α̂(%).β(ς) > s, implies

d⊥(Ω%,Ως) 6 C
(
M∗(%, ς), φ1(M∗(%, ς))

)
,

where α̂, β : f→ [0,+∞), C ∈ C, φ1 ∈ Φ and,

M∗(%, ς) = max
{
d⊥(%, ς),

(
1 + d⊥(%,Ω%)

)
d⊥(ς,Ως)

1 + d⊥(%, ς)

}
.

Definition 2.2.8. For an orthogonal metric space (f, d⊥), a self-map Ω : f→ f
is c.t.b an orthogonal TAC-contraction (denoted by ⊥-TAC-contraction) if
for %, ς ∈ f with % ⊥ ς and α̂(%).β(ς) > 1, implies

ψ1
(
d⊥(Ω%,Ως)

)
6 C

(
ψ1(d⊥(%, ς)), φ1(d⊥(%, ς))

)
,

where α̂, β : f→ [0,+∞), C ∈ C, ψ1 ∈ Ψ and φ1 ∈ Φ.

Example 2.2.27. Let f = [0,+∞), d⊥(%, ς) = |%− ς| and % ⊥ ς iff %.ς ∈ {%2 ,
ς
2}.

Then, (f, d⊥) is an orthogonal metric space. Let Ω : f→ f be defined as

Ω(%) =

 %/3 % ∈ [0, 2];
5/7 otherwise.

Let α̂, β : f→ [0,+∞) be defined as

α̂(%) =

 1 % ∈ [0, 2];
0 otherwise,
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and,

β(%) =

 2 % ∈ [0, 2];
0 otherwise.

Also, C : [0,+∞)2 → R be defined as C(%, ς) = % − ς and ψ1, φ1 : [0,+∞) →
[0,+∞) as ψ1(%) = % and φ1(%) = %/3. Now, for % ⊥ ς and α̂(%)β(ς) > 1 to hold
simultaneously, we must have either % = 0 and ς ∈ [0, 2] or % ∈ [0, 2] and ς = 0.
Considering % ∈ [0, 2] and ς = 0, we have

ψ1
(
d⊥(Ω%,Ω0)

)
= d⊥(Ω%, 0) = %/3, (2.35)

and, C
(
ψ1(d⊥(%, 0)), φ1(d⊥(%, 0))

)
= C

(
ψ1(%), φ1(%)

)
= ψ1(%)− φ1(%)

= %− %/3 = 2
3%.

(2.36)

From (2.35) and (2.36), we have Ω as ⊥-TAC-contraction which is not a contin-
uous map.

Definition 2.2.9. For an orthogonal metric space (f, d⊥), a self-map Ω : f→ f
is c.t.b an orthogonal weak TAC-rational contraction (denoted by ⊥-weak
TAC-rational contraction) if for %, ς ∈ f with % ⊥ ς and α̂(%).β(ς) > 1, implies

d⊥(Ω%,Ως) 6 C
(
M∗(%, ς), φ1(M∗(%, ς))

)
,

where α̂, β : f→ [0,+∞), C ∈ C, φ1 ∈ Φ and,

M∗(%, ς) = max
{
d⊥(%, ς),

(
1 + d⊥(%,Ω%)

)
d⊥(ς,Ως)

1 + d⊥(%, ς)

}
.

Theorem 2.2.28. For (f, d⊥) an ⊥-complete metric space with s > 1 and %0

as an orthogonal element, let α̂, β : f → [0,+∞) and Ω : f → f be a cyclic
(α̂, β)-admissible map type S s.t:

(I) Ω is ⊥-preserving;

(II) If ∃ some %0 in f with α̂(%0) > s and β(%0) > s;

(III) Ω is ⊥-continuous;

(IV) Ω is ⊥-TAC-type S-contraction.
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Then, Ω possesses a fixed point. Moreover, if α̂(%) > s and β(ς) > s ∀ %, ς ∈ f
where Ω% = % and Ως = ς with % ⊥ ς, then Ω possesses a unique fixed point.

Proof. As (f, d⊥) is an orthogonal set, then for %0Ω%0 ∈ f, we have

[%0 ⊥ Ω%0] or [Ω%0 ⊥ %0]. (2.37)

Define a sequence {%$}$∈N in f, where %$+1 = Ω%$ = Ω$+1(%0) ∀ $ ∈ N. Using
⊥-preserving property of Ω in (2.37), we obtain that {%$}$∈N is an ⊥-sequence
in f. Next, by given condition, α̂(%0) > s and as Ω is cyclic (α̂, β)-admissible
map type S, we have β(%1) = β(Ω%0) > s. Continuing in similar way, we get
α̂(%$−1) > s and β(%$) > s for each $ ∈ N′. Then, α̂(%$−1)β(%$) > s. Let us
denote ζ$ = d⊥(%$, %$+1). Since, Ω is ⊥-TAC-type S-contraction, we have

ψ1
(
ζ$
)

= ψ1
(
d⊥(%$, %$+1)

)
= ψ1

(
d⊥(Ω%$−1,Ω%$)

)
6 C

(
ψ1(ζ$−1), φ1(ζ$−1)

)
6 ψ1(ζ$−1). (2.38)

Also, ψ1 is monotonically increasing map, so ζ$ 6 ζ$−1 ∀ $ ∈ N, thus, {ζ$}$∈N
is a decreasing and as each ζ$ ∈ R+, so ∃ some ζ ∈ [0,+∞), s.t lim

$→+∞
ζ$ = ζ.

On taking limit as $ → +∞ in (2.38), we obtain

ψ1(ζ) 6 C
(
ψ1(ζ), φ1(ζ)

)
6 ψ1(ζ),

that is, C(ψ1(ζ), φ1(ζ)) = ψ1(ζ).

By using definition of C-class function, we obtain either ψ1(ζ) = 0 or φ1(ζ) = 0.
From either of the cases we have ζ = 0, that is,

lim
$→+∞

ζ$ = lim
$→+∞

d⊥(%$, %$+1) = 0.

So, for some l = ε/$∗ > 0 ∃ some $l ∈ N s.t

d⊥(%$, %$+1) < l ∀ $ > $l. (2.39)

Let $,$∗ ∈ N where $ > $l. Using triangle inequality and (2.39), we get

d⊥(%$, %$+$∗) 6 d⊥(%$, %$+1) + d⊥(%$+1, %$+2) + · · ·+ d⊥(%$+$∗−1, %$+$∗)

< $∗l = ε.

Thus, we have, {%$}$∈N as an ⊥-Cauchy sequence in f. Since f is ⊥-complete,
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∃ % ∈ f s.t lim
$→+∞

%$ = %. In addition, as Ω is an ⊥-continuous map, so

lim
$→+∞

Ω%$ = lim
$→+∞

%$+1 = Ω%,

that is, % = Ω%.

Hence, Ω possesses a fixed point. Next, let ς ∈ f be s.t Ως = ς and % ⊥ ς then,
α̂(%)β(ς) > s. Using ⊥-TAC-type S-contraction condition of Ω, we obtain

ψ1
(
d⊥(%, ς)

)
= ψ1

(
d⊥(Ω%,Ως)

)
6 C

(
ψ1(d⊥(%, ς)), φ1(d⊥(%, ς))

)
6 ψ1

(
d⊥(%, ς)

)
,

that is, C
(
ψ1(d⊥(%, ς)), φ1(d⊥(%, ς))

)
= ψ1(d⊥(%, ς)).

On using definition of C-class function we obtain, either ψ1(d⊥(%, ς)) = 0 or
φ1(d⊥(%, ς)) = 0. From both the cases, we get d⊥(%, ς) = 0. Hence, Ω possesses a
unique fixed point.

Example 2.2.29. Example 2.2.26, satisfies all hypotheses of Theorem 2.2.28 and
thus possesses a fixed point viz. % = 0.

Corollary 2.2.30. For ⊥-complete metric space (f, d⊥) with s > 1 and %0 as an
orthogonal element, let α̂, β : f → [0,+∞) and Ω : f → f be a cyclic (α̂, β)-
admissible map type S s.t:

(I) Ω is ⊥-preserving;

(II) If ∃ some %0 in f with α̂(%0) > s and β(%0) > s;

(III) If {%$}$∈N is an ⊥-sequence where %$ → % as $ → +∞ along with β(%$) >
s for each $ ∈ N, implies β(%) > s and either [%$ ⊥ % ∀ $] or [% ⊥ %$ ∀ $];

(IV) Ω is ⊥-TAC-type S contraction.

Then, Ω possesses a fixed point. Moreover, if α̂(%) > s and β(ς) > s ∀ %, ς ∈ f
where Ω% = % and Ως = ς with % ⊥ ς, then Ω possesses a unique fixed point.

Proof. Working on the lines of Theorem 2.2.28, we obtain {%$}$∈N an ⊥-sequence
in f s.t %$ → % as $ → +∞ and also, β(%$) > s for each $ ∈ N. Then, by given
condition, we obtain β(%) > s and either [%$ ⊥ % ∀ $] or [% ⊥ %$ ∀ $] . Thus
α̂(%$)β(%) > s, implies

ψ1
(
d⊥(%$+1,Ω%)

)
= ψ1

(
d⊥(Ω%$,Ω%)

)
6 C

(
ψ1(d⊥(%$, %)), φ1(d⊥(%$, %))

)
6 ψ1

(
d⊥(%$, %)

)
.
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Taking limit as$ → +∞ and using continuity of C, ψ1 and φ1, we have d⊥(%,Ω%) =
0. Thus, Ω possesses a fixed point in f. Also, by Theorem 2.2.28 we obtain unique-
ness of fixed point.

Theorem 2.2.31. For ⊥-complete metric space (f, d⊥) with s > 1 and %0 as an
orthogonal element, let α̂, β : f → [0,+∞) and Ω : f → f be a cyclic (α̂, β)-
admissible map of type S s.t:

(I) Ω is ⊥-preserving;

(II) If ∃ some %0 in f with α̂(%0) > s and β(%0) > s;

(III) Ω is ⊥-continuous;

(IV) Ω is ⊥-weak TAC-type S-rational contraction.

Then, Ω possesses a fixed point. In addition, if α̂(%) > s and β(ς) > s ∀ %, ς ∈ f
where Ω% = % and Ως = ς with % ⊥ ς, then Ω possesses a unique fixed point.

Proof. By the working done in Theorem 2.2.28, we can obtain an ⊥-sequence
{%$}$∈N with α̂(%$−1)β(%$) > s for every $ ∈ N. By using ⊥-weak TAC -type
S-rational contraction of Ω, we get

ζ$ = d⊥(%$, %$+1) = d⊥(Ω%$−1,Ω%$)

6 C
(
M∗(%$−1, %$), φ1(M∗(%$−1, %$))

)
6 M∗(%$−1, %$), (2.40)

where, M∗(%$−1, %$) = max
{
d⊥(%$−1, %$),

(
1 + d⊥(%$−1, %$)

)
d⊥(%$, %$+1)

1 + d⊥(%$−1, %$)

}
= max{ζ$−1, ζ$}.

Suppose for some $0 ∈ N, we have M∗(%$0−1, %$0) = ζ$0 , that is,

ζ$0 > ζ$0−1. (2.41)

Then, by (2.40), we have

ζ$0 6 C
(
ζ$0 , φ1(ζ$0)

)
6 ζ$0 ,

that is, C
(
ζ$0 , φ1(ζ$0)

)
= ζ$0 .
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By using definition of C-class function, we have either ζ$0 = 0 or φ1(ζ$0) = 0.
From either of the cases, we get ζ$0 = 0 which is a contradiction to (2.41).
Thus for each $ ∈ N, we have ζ$ 6 ζ$−1, where {ζ$}$∈N is a decreasing and
as each ζ$ ∈ R+, so ∃ some ζ ∈ [0,+∞), s.t lim

$→+∞
ζ$ = ζ. On taking limit

as $ → +∞ in (2.40), we get C
(
ζ, φ1(ζ)

)
= ζ, which implies either ζ = 0 or

φ1(ζ) = 0 that is, ζ = 0, and thus, lim
$→+∞

ζ$ = lim
$→+∞

d⊥(%$, %$+1) = 0. Now, for
some l = ε/$∗ > 0, ∃ some $l ∈ N with,

d⊥(%$, %$+1) < l ∀ $ > $l. (2.42)

Let $,$∗ ∈ N where $ > $l. Using triangle inequality and (2.42), we get

d⊥(%$, %$+$∗) 6 d⊥(%$, %$+1) + d⊥(%$+1, %$+2) + · · ·+ d⊥(%$+$∗−1, %$+$∗)

< $∗l = ε.

Thus, we have, {%$}$∈N as an ⊥-Cauchy sequence in f. Since f is ⊥-complete,
∃ % ∈ f, s.t lim

$→+∞
%$ = %. As Ω is an ⊥-continuous map, so

lim
$→+∞

Ω%$ = lim
$→+∞

%$+1 = Ω%,

that is, % = Ω%.

Hence, Ω possesses a fixed point. For uniqueness, let ς be s.t Ως = ς and % ⊥ ς then
by given condition α̂(%)β(ς) > s. Using ⊥-weak TAC -type S-rational contraction
of Ω, we obtain

d⊥(%, ς) = d⊥(Ω%,Ως) 6 C
(
M∗(%, ς), φ1(M∗(%, ς))

)
, (2.43)

where, M∗(%, ς) = max
{
d⊥(%, ς),

(
1 + d⊥(%,Ω%)

)
d⊥(ς,Ως)

1 + d⊥(%, ς)

}
= d⊥(%, ς).

Thus from (2.43), we get

d⊥(%, ς) 6 C
(
d⊥(%, ς), φ1(d⊥(%, ς))

)
6 d⊥(%, ς),

which implies d⊥(%, ς) = 0. Hence, Ω possesses a unique fixed point.

Corollary 2.2.32. For ⊥-complete metric space (f, d⊥) with s > 1 and %0 as an
orthogonal element, let α̂, β : f → [0,+∞) and Ω : f → f be a cyclic (α̂, β)-
admissible map of type S s.t:
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(I) Ω is ⊥-preserving;

(II) If ∃ some %0 in f with α̂(%0) > s and β(%0) > s;

(III) If {%$}$∈N is an ⊥-sequence where %$ → % as $ → +∞ along with β(%$) >
s for each $ ∈ N, implies β(%) > s and either [%$ ⊥ % ∀ $] or [% ⊥ %$ ∀ $];

(IV) Ω is ⊥-weak TAC-type S-rational contraction.

Then, Ω possesses a fixed point. In addition, if α̂(%) > s and β(ς) > s ∀ %, ς ∈ f
where Ω% = % and Ως = ς with % ⊥ ς, then Ω possesses a unique fixed point.

Proof. With reference to the working of Theorem 2.2.31, we can obtain an ⊥-
sequence {%$}$∈N in f where %$ → % as $ → +∞ and β(%$) > s for each
$ ∈ N. By given condition, β(%) > s and either [%$ ⊥ % ∀ $] or [% ⊥ %$ ∀ $]
which implies α̂(%$)β(%) > s. On using ⊥-weak TAC -type S-rational contraction
of Ω, we get

d⊥(%$+1,Ω%) = d⊥(Ω%$,Ω%) 6 C
(
M∗(%$, %), φ1(M∗(%$, %))

)
, (2.44)

where,M∗(%$, %) = max
{
d⊥(%$, %),

(
1 + d⊥(%$,Ω(%$))

)
d⊥(%,Ω(%))

1 + d⊥(%$, %)

}
.

Taking limit as $ → +∞ in (2.44), we obtain d⊥(%,Ω%) = 0. Thus, % is a fixed
point of Ω and the uniqueness of the fixed point follows on the lines of Theorem
2.2.31.

Remark 2.2.33. In the upcoming result, we consider Ω to be a cyclic (α̂, β)-
admissible map.

Theorem 2.2.34. For ⊥-complete (f, d⊥) with %0 as an orthogonal element, let
α̂, β : f→ [0,+∞) are defined on f and Ω : f→ f be a cyclic (α̂, β)-admissible
map on f s.t:

(I) Ω is ⊥-preserving;

(II) If ∃ some %0 in f with α(%0) > 1 and β(%0) > 1;

(III) Ω is ⊥-continuous;

(IV) Ω is ⊥-TAC-contraction.

Then, Ω possesses a fixed point. In addition, if α̂(%) > 1 and β(ς) > 1 ∀ %, ς ∈ f
where Ω% = % and Ως = ς with % ⊥ ς, then Ω possesses a unique fixed point.
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Proof. As (f, d⊥) is an ⊥-set, then for %0,Ω%0 ∈ f, we have

[%0 ⊥ Ω%0] or [Ω%0 ⊥ %0]. (2.45)

Define a sequence {%$}$∈N in f where %$+1 = Ω%$ = Ω$+1(%0) ∀ $ ∈ N. Using
⊥-preserving property of Ω in (2.45), we obtain that {%$}$∈N is an ⊥-sequence
in f. Next, by given condition, α̂(%0) > 1 and by cyclic (α̂, β)-admissibility of Ω,
we have β(%1) = β(Ω%0) > 1. Repetitive use of cyclic (α̂, β)-admissibility of Ω,
we get α̂(%$−1) > 1 and β(%$) > 1 ∀ $ ∈ N′. Then, α̂(%$−1)β(%$) > 1. Let us
denote ζ$ = d⊥(%$, %$+1). Using ⊥-TAC-contraction of Ω, we have

ψ1
(
ζ$
)

= ψ1
(
d⊥(%$, %$+1)

)
= ψ1

(
d⊥(Ω%$−1,Ω%$)

)
6 C

(
ψ1(ζ$−1), φ1(ζ$−1)

)
6 ψ1(ζ$−1). (2.46)

Since, ψ1 is monotonically increasing function, so ζ$ 6 ζ$−1 ∀ $ ∈ N, thus,
{ζ$}$∈N is a decreasing and as each ζ$ ∈ R+, so ∃ some ζ ∈ [0,+∞), s.t

lim
$→+∞

ζ$ = ζ. On taking limit as $ → +∞ in (2.46), we obtain

ψ1(ζ) 6 C
(
ψ1(ζ), φ1(ζ)

)
6 ψ1(ζ),

that is, C(ψ1(ζ), φ1(ζ)) = ψ1(ζ).

By using definition of C-class function, we obtain either ψ1(ζ) = 0 or φ1(ζ) = 0.
From either of the cases we have ζ = 0, that is,

lim
$→+∞

ζ$ = lim
$→+∞

d⊥(%$, %$+1) = 0.

So, for some l = ε/$∗ > 0, ∃ some $l ∈ N s.t

d⊥(%$, %$+1) < l ∀ $ > $l. (2.47)

Let $,$∗ ∈ N where $ > $l. Using triangle inequality and (2.47), we get

d⊥(%$, %$+$∗) 6 d⊥(%$, %$+1) + d⊥(%$+1, %$+2) + · · ·+ d⊥(%$+$∗−1, %$+$∗)

< $∗l = ε.

Thus, we have {%$}$∈N as an ⊥-Cauchy sequence in f. Since f is ⊥-complete,
∃ % ∈ f with lim

$→+∞
%$ = %. As Ω is an ⊥-continuous map, so

lim
$→+∞

Ω%$ = lim
$→+∞

%$+1 = Ω%,
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that is, % = Ω%.

Hence, Ω possesses a fixed point. Next, let ς be s.t Ως = ς and % ⊥ ς then by
given condition α̂(%)β(ς) > 1. Using ⊥-TAC-contraction of Ω, we obtain

ψ1
(
d⊥(%, ς)

)
= ψ1

(
d⊥(Ω%,Ως)

)
6 C

(
ψ1(d⊥(%, ς)), φ1(d⊥(%, ς))

)
6 ψ1

(
d⊥(%, ς)

)
,

implies C
(
ψ1(d⊥(%, ς)), φ1(d⊥(%, ς))

)
= ψ1(d⊥(%, ς)).

On using definition of C-class function, we obtain either ψ1(d⊥(%, ς)) = 0 or
φ1(d⊥(%, ς)) = 0. From both the cases, we get d⊥(%, ς) = 0. Hence, Ω possesses a
unique fixed point.

Example 2.2.35. Consider the space defined in Example 2.2.27. Then, f is
⊥-complete and also such Ω is ⊥-preserving. Next, we have

(i) Cyclic (α̂, β)-admissibility of Ω: Since for % ∈ [0, 2] we get α̂(%) > 1 implies
β(Ω%) = β(%/3) > 1, similarly, for % ∈ [0, 2] we get β(%) > 1 implies
α̂(Ω%) = α̂(%/3) > 1.

(ii) ⊥-continuity of Ω: Since for {%$}$∈N an ⊥-sequence in f, then %$ → 0.
So we have, {Ω%$} → 0 = Ω0.

Since all hypotheses of Theorem 2.2.34 hold, so Ω possesses a fixed point which is
% = 0.

Remark 2.2.36. The above theorem holds even if instead of taking Ω as an ⊥-
continuous map we consider a weaker condition as discussed in the following result.

Corollary 2.2.37. For ⊥-complete metric space (f, d⊥) with %0 as an orthogonal
element, suppose α̂, β : f→ [0,+∞) are defined on f and Ω : f→ f be a cyclic
(α̂, β)-admissible map on f s.t:

(I) Ω is ⊥-preserving;

(II) If ∃ some %0 in f with α̂(%0) > 1 and β(%0) > 1;

(III) If {%$}$∈N is an ⊥-sequence where %$ → % as $ → +∞ along with β(%$) >
1 for each $ ∈ N, implies β(%) > 1 and either [%$ ⊥ % ∀ $] or [% ⊥ %$ ∀ $];

(IV) Ω is ⊥-TAC-contraction.
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Then, Ω possesses a fixed point. In addition, if α̂(%) > 1 and β(ς) > 1 ∀ %, ς ∈ f
where Ω% = % and Ως = ς with % ⊥ ς, then Ω possesses a unique fixed point.

Proof. Working on the footprints of Theorem 2.2.34, we obtain {%$}$∈N an ⊥-
sequence in f with %$ → % as $ → +∞ and also, β(%$) > 1 ∀ $ ∈ N. Then,
by given condition, we obtain β(%) > 1 and either [%$ ⊥ % ∀ $] or [% ⊥ %$ ∀ $].
Thus α̂(%$)β(%) > 1, implies

ψ1
(
d⊥(Ω%$,Ω%)

)
6 C

(
ψ1(d⊥(%$, %)), φ1(d⊥(%$, %))

)
6 ψ1

(
d⊥(%$, %)

)
.

Taking limit as$ → +∞ and using continuity of C, ψ1 and φ1, we have d⊥(%,Ω%) =
0. Thus, Ω possesses a fixed point in f. Also, the uniqueness of fixed point can
be proved on the lines of Theorem 2.2.34.

Theorem 2.2.38. For ⊥-complete metric space (f, d⊥) with %0 as an orthogonal
element, let α̂, β : f→ [0,+∞) and Ω : f→ f be a cyclic (α̂, β)-admissible map
on f s.t:

(I) Ω is ⊥-preserving;

(II) If ∃ some %0 in f with α̂(%0) > 1 and β(%0) > 1;

(III) Ω is ⊥-continuous;

(IV) Ω is ⊥-weak TAC-rational contraction.

Then, Ω possesses a fixed point. In addition, if α̂(%) > 1 and β(ς) > 1 ∀ %, ς ∈ f
where Ω% = % and Ως = ς with % ⊥ ς, then Ω possesses a unique fixed point.

Proof. By the working done in Theorem 2.2.34, we obtain an ⊥-sequence {%$}$∈N
with α̂(%$−1)β(%$) > 1 for every $ ∈ N. By using ⊥-weak TAC -rational con-
traction of Ω, we get

ζ$ = d⊥(%$, %$+1) = d⊥(Ω%$−1,Ω%$) 6 C
(
M∗(%$−1, %$), φ1(M∗(%$−1, %$))

)
6 M∗(%$−1, %$), (2.48)

where, M∗(%$−1, %$) = max
{
d⊥(%$−1, %$),

(
1 + d⊥(%$−1, %$)

)
d⊥(%$, %$+1)

1 + d⊥(%$−1, %$)

}
= max{ζ$−1, ζ$}.
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Suppose for some $0 ∈ N, we have M∗(%$0−1, %$0) = ζ$0 , that is,

ζ$0 > ζ$0−1. (2.49)

Then by (2.48), we have

ζ$0 6 C
(
ζ$0 , φ1(ζ$0)

)
6 ζ$0 ,

that is, C
(
ζ$0 , φ1(ζ$0)

)
= ζ$0 .

Using definition of C-class function, we have either ζ$0 = 0 or φ1(ζ$0) = 0. From
either of the cases, we get ζ$0 = 0 which is a contradiction to (2.49). Hence
for each $ ∈ N, we have ζ$ 6 ζ$−1, thus, {ζ$}$∈N is a decreasing and as each
ζ$ ∈ R+, so ∃ some ζ ∈ [0,+∞), with lim

$→+∞
ζ$ = ζ. On taking limit as $ → +∞

in (2.48), we get C
(
ζ, φ1(ζ)

)
= ζ, which implies either ζ = 0 or φ1(ζ) = 0 that is,

ζ = 0, thus we obtain,

lim
$→+∞

ζ$ = lim
$→+∞

d⊥(%$, %$+1) = 0.

Now, for some l = ε/$∗ > 0, ∃ some $l ∈ N s.t,

d⊥(%$, %$+1) < l ∀ $ > $l. (2.50)

Let $,$∗ ∈ N where $ > $l. Using triangle inequality and (2.50), we get

d⊥(%$, %$+$∗) 6 d⊥(%$, %$+1) + d⊥(%$+1, %$+2) + · · ·+ d⊥(%$+$∗−1, %$+$∗)

< $∗l = ε.

Thus, we have {%$}$∈N as an ⊥-Cauchy sequence in f. Since f is ⊥-complete,
∃ % ∈ f, with lim

$→+∞
%$ = %. As Ω is an ⊥-continuous map, so

lim
$→+∞

Ω%$ = lim
$→+∞

%$+1 = Ω%,

that is, % = Ω%.

Hence, Ω possesses a fixed point. Next, let ς be s.t Ως = ς and % ⊥ ς then, by
given condition α̂(%)β(ς) > 1. Using ⊥-weak TAC -rational contraction of Ω, we
obtain

d⊥(%, ς) = d⊥(Ω%,Ως) 6 C
(
M∗(%, ς), φ1(M∗(%, ς))

)
, (2.51)
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where,M∗(%, ς) = max
{
d⊥(%, ς),

(
1 + d⊥(%,Ω%)

)
d⊥(ς,Ως)

1 + d⊥(%, ς)

}
= d⊥(%, ς).

Thus from (2.51), we get

d⊥(%, ς) 6 C
(
d⊥(%, ς), φ1(d⊥(%, ς))

)
6 d⊥(%, ς),

which implies d⊥(%, ς) = 0. Hence, Ω possesses a unique fixed point.

Remark 2.2.39. The above theorem also holds if we drop ⊥-continuity of Ω and
instead consider a weaker condition, as discussed in the following corollary.

Corollary 2.2.40. For ⊥-complete (f, d⊥) with %0 as an orthogonal element, let
α̂, β : f→ [0,+∞) and Ω : f→ f be a cyclic (α̂, β)-admissible map on f s.t:

(I) Ω is ⊥-preserving;

(II) If ∃ some %0 in f with α̂(%0) > 1 and β(%0) > 1;

(III) If {%$}$∈N is an ⊥-sequence where %$ → % as $ → +∞ along with β(%$) >
1 for each $ ∈ N, implies β(%) > 1 and either [%$ ⊥ % ∀ $] or [% ⊥ %$ ∀ $];

(IV) Ω is ⊥-weak TAC-rational contraction.

Then, Ω possesses a fixed point. In addition, if α̂(%) > 1 and β(ς) > 1 ∀ %, ς ∈ f
where Ω% = % and Ως = ς with % ⊥ ς, then Ω possesses a unique fixed point.

Proof. With reference to working of Theorem 2.2.38, one can obtain an⊥-sequence
{%$}$∈N in f where %$ → % as $ → +∞ and β(%$) > 1 for each $ ∈ N. By
given condition, β(%) > 1 and either [%$ ⊥ % ∀ $] or [% ⊥ %$ ∀ $] which implies
α̂(%$)β(%) > 1. On using ⊥-weak TAC -rational contraction of Ω, we get

d⊥(%$+1,Ω%) = d⊥(Ω%$,Ω%) 6 C
(
M∗(%$, %), φ1(M∗(%$, %))

)
, (2.52)

where,M∗(%$, %) = max
{
d⊥(%$, %),

(
1 + d⊥(%$,Ω(%$))

)
d⊥(%,Ω(%))

1 + d⊥(%$, %)

}
.

Taking limit as $ → +∞ in (2.52), we get d⊥(%,Ω%) = 0. Thus, % is a fixed point
of Ω and the uniqueness follows on the lines of Theorem 2.2.38.

Example 2.2.41. Consider f be the interval [0,+∞) with usual metric space
and let % ⊥ ς iff % 6 ς ∀ ς ∈ f. Then, (f, d⊥) is ⊥-complete. Let Ω : f → f be
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defined as

Ω(%) =


17%
19 % ∈ [0, 1/2);

15%2 otherwise.

Clearly, here Ω is ⊥-preserving and ⊥-continuous map but not a continuous map.
Define α̂, β : f→ R+ as

α̂(%) =

 3/2 % ∈ [0, 1/2);
0 otherwise,

and,

β(%) =

 5/4 % ∈ [0, 1/2);
0 otherwise.

Define C : [0,+∞)2 → R as C(%, ς) = % − ς and φ1 : [0,+∞) → [0,+∞) as
φ1(%) = %/2. For % ∈ [0, 1/2), α̂(%) > 1 implies β(Ω%) = β(17%

19 ) > 1 and vice-
versa, thus Ω is a cyclic (α̂, β)-admissible map. Next, for α̂(%)β(ς) > 1 and % ⊥ ς

to hold simultaneously, we must have either

[% = 0 and ς ∈ [0, 1/2)] or [ς = 0 and % ∈ [0, 1/2)].

Considering % = 0 and ς ∈ [0, 1/2), we get

d⊥(Ω0,Ως) = d⊥

(
0, 17ς

19

)
= 17ς

19 , (2.53)

and, C
(
M∗(0, ς), φ1(M∗(0, ς))

)
= C(ς, ς/2) = ς/2. (2.54)

From (2.53) and (2.54), we conclude that ς is an ⊥-weak TAC-rational contrac-
tion. Thus, by Theorem 2.2.38 we conclude that Ω possesses a fixed point viz.
% = 0.

2.2.4 Orthogonal Suzuki-Berinde type F -Contraction

Recently, Hussain & Ahmad (2017) introduced the idea of Suzuki-Berinde type
F -contraction and established certain fixed point result, which is a generalization
of Piri & Kumam (2014). In this subsection, we put forward the notation of
orthogonal Suzuki-Berinde type F -contraction and explore the fixed point results.
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Definition 2.2.10. For an orthogonal metric space (f, d⊥) and for F ∈ ∆F ,
a self-map Ω : f → f is c.t.b an orthogonal Suzuki-Berinde type F -
contraction map (denoted by ⊥-S-B type F -contraction) if ∃ ℘ > 0 with L > 0
s.t for each %, ς ∈ f, where d⊥(Ω%,Ως) > 0 and % ⊥ ς, we have

1
2d⊥(%,Ω%) < d⊥(%, ς) implies

℘+ F
(
d⊥(Ω%,Ως)

)
6 F

(
d⊥(%, ς)

)
+ L.min

{
d⊥(%,Ω%), d⊥(%,Ως), d⊥(ς,Ω%)

}
.

Example 2.2.42. Let f = [0, 7/2] with d⊥(%, ς) = |% − ς| and % ⊥ ς iff %.ς =
ς ∀ ς ∈ f. Then, (f, d⊥) is an orthogonal metric space (with % = 1 as an
orthogonal element). Let Ω : f→ f be defined as

Ω(%) =

 1 % ∈ [0, 7/2);
2/7 otherwise.

For % ⊥ ς and d⊥(Ω%,Ως) > 0, we must have either % = 1 and ς = 7/2 or % = 7/2
and ς = 1. Consider % = 1 and ς = 7/2. Then for F (µ) = ln(µ) and 0 < ℘ < 1,
we have

℘+ F
(
d⊥(Ω%,Ως)

)
= ℘+ ln(2/7), (2.55)

and, F
(
d⊥(%, ς)

)
+L.min

{
d⊥(%,Ω%), d⊥(%,Ως), d⊥(ς,Ω%)

}
= ln(5/2). (2.56)

From (2.55) and (2.56), we can conclude that Ω is ⊥-S-B type F -contraction.

Theorem 2.2.43. For ⊥-complete metric space (f, d⊥) with %0 as an orthogonal
element, let F ∈ ∆F and Ω : f → f be ⊥-preserving, ⊥-continuous and ⊥-S-B
type F -contraction. Then, Ω possesses a fixed point. Moreover, if % ⊥ ς ∀ %, ς ∈ f
where Ω% = % and Ως = ς, then Ω possesses a unique fixed point.

Proof. Let {%}$∈N be a sequence in f, where %$+1 = Ω%$ = Ω$+1%0 ∀ $ ∈ N.
Since %0 is an orthogonal element, so we have [%0 ⊥ Ω%0] or [Ω%0 ⊥ %0]. Repetitive
use of ⊥- preserving property of Ω, we obtain {%}$∈N as an ⊥-sequence in f. If
for some $0 ∈ N, we have %$0 = %$0+1 = Ω%$0 then we are done. Suppose %$ 6=
%$+1 ∀ $ ∈ N, that is, d⊥(%$, %$+1) > 0. As, 1

2d⊥(%$, %$+1) = 1
2d⊥(%$,Ω%$)

< d⊥(%$,Ω%$+1), and since Ω is an ⊥-S-B type F -contraction map, therefore

℘+ F
(
d⊥(%$, %$+1)

)
= ℘+ F

(
d⊥(Ω%$−1,Ω%$)

)
6 F

(
d⊥(%$−1, %$)

)
+
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L.min
{
d⊥(%$−1, %$), d⊥(%$−1, %$+1), d⊥(%$, %$)

}
,

that is, F
(
d⊥(%$, %$+1)

)
6 F

(
d⊥(%$−1, %$)

)
− ℘

6 F
(
d⊥(%$−2, %$−1)

)
− 2℘

6 · · · 6 F
(
d⊥(%0, %1)

)
−$℘. (2.57)

Taking limit as $ → +∞ in (2.57) and using (F2) and Lemma 1.2.4, gives
lim

$→+∞
d⊥(%$, %$+1) = 0. Thus, for some ε/$∗ = l > 0 ∃ $l ∈ N, with

d⊥(%$, %$+1) < l ∀ $ > $l. (2.58)

Let $,$∗ ∈ N where $ > $l. Using triangle inequality and (2.58), we have

d⊥(%$, %$+$∗) 6 d⊥(%$, %$+1) + d⊥(%$+1, %$+2) + · · ·+ d⊥(%$+$∗−1, %$+$∗)

< $∗l = ε.

Therefore, {%$}$∈N is an ⊥-Cauchy sequence in f. Since f is ⊥-complete, so
∃ % ∈ f where lim

$→+∞
%$ = %. Since, Ω is an ⊥-continuous map, so

lim
$→+∞

%$+1 = lim
$→+∞

Ω%$ = Ω%,

that is, % = Ω%.

Thus, Ω possesses a fixed point. Let ς be s.t Ως = ς so by given condition % ⊥ ς.
Suppose % 6= ς, that is, d⊥(%, ς) > 0. Also, 1

2d⊥(%, %) = 0 = 1
2d⊥(%,Ω%) < d⊥(%, ς)

and, using ⊥-S-B type F -contraction of Ω, we get

F
(
d⊥(%, ς)

)
= F

(
d⊥(Ω%,Ως)

)
<℘+ F

(
d⊥(Ω%,Ως)

)
6F

(
d⊥(%, ς)

)
+ L.min

{
d⊥(%,Ω%), d⊥(%,Ως), d⊥(ς,Ω%)

}
,

that is, F
(
d⊥(%, ς)

)
<F

(
d⊥(%, ς)

)
,

which does not hold. Hence, Ω possesses a unique fixed point.

Example 2.2.44. Consider the orthogonal metric space and a self-map discussed
in Example 2.2.42. Then, we have

(i) (f, d⊥) is ⊥-complete: For any ⊥-Cauchy sequence {%$}$∈N in f, ∃ a sub-
sequence {%$k} where %$k = 1 ∀ k > 1, that is, {%$k} is convergent. Thus,
we have (f, d⊥) as ⊥-complete.
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(ii) Ω is ⊥-preserving: Since 1 ⊥ ς ∀ ς ∈ f, then Ω(1) = 1 ⊥ Ως ∀ ς ∈ f.

(iii) Ω is ⊥-continuous: For any ⊥-sequence {%$} → % as $ → +∞, then % = 1.
Thus, {Ω%$} → Ω(1) = 1 as $ → +∞.

Since all hypotheses of Theorem 2.2.43 hold, so Ω possesses a fixed point viz.
% = 1.

Corollary 2.2.45. For ⊥-complete (f, d⊥) with %0 as an orthogonal element. Let
Ω : f → f be ⊥-preserving, ⊥-S-B type F -contraction and if {%$}$∈N is an
⊥-sequence in f with %$ → % as $ → +∞ implies

[%$ ⊥ % ∀ $] or [% ⊥ %$ ∀ $].

Then, Ω possesses a fixed point. Moreover, if % ⊥ ς ∀ %, ς ∈ f where Ω% = % and
Ως = ς, then Ω possesses a unique fixed point.

Proof. On the lines of Theorem 2.2.43, we obtain an ⊥-sequence {%$}$∈N in f
with %$ → % as $ → +∞. Thus, by given hypothesis, either [%$ ⊥ % ∀ $] or
[% ⊥ %$ ∀ $]. Suppose for some $0 ∈ N,

1
2d⊥(%$0 ,Ω%$0) > d⊥(%$0 , %) or 1

2d⊥(Ω%$0 ,Ω2%$0) > d⊥(Ω%$0 , %), (2.59)

implies 2d⊥(%$0 , %) 6 d⊥(%$0 ,Ω%$0) 6 d⊥(%$0 , %) + d⊥(%,Ω%$0),

that is, d⊥(%$0 , %) 6 d⊥(%,Ω%$0). (2.60)

From (2.59) and (2.60), we get

d⊥(%$0 , %) 6 d⊥(%,Ω%$0) 6 1
2d⊥(Ω%$0 ,Ω2%$0). (2.61)

Since, 1
2d⊥(%$0 ,Ω%$0) < d⊥(%$0 ,Ω%$0). So by contraction condition of Ω, we

obtain

F
(
d⊥(Ω%$0 ,Ω2%$0)

)
< ℘+ F

(
d⊥(Ω%$0 ,Ω2%$0)

)
6 F

(
d⊥(%$0 ,Ω%$0)

)
+ L.min

{
d⊥(%$0 ,Ω%$0),

d⊥(%$0 ,Ω2%$0), d⊥(Ω%$0 ,Ω%$0)
}
,

that is, F
(
d⊥(Ω%$0 ,Ω2%$0)

)
< ℘+ F

(
d⊥(Ω%$0 ,Ω2%$0)

)
6 F

(
d⊥(%$0 ,Ω%$0)

)
.
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By (F1), we obtain

d⊥(Ω%$0 ,Ω2%$0) < d⊥(%$0 ,Ω%$0). (2.62)

Using triangle inequality and (2.61) in (2.62), we get

d⊥(Ω%$0 ,Ω2%$0) < d⊥(%$0 , %) + d⊥(%,Ω%$0)

6
1
2d⊥(Ω%$0 ,Ω2%$0) + 1

2d⊥(Ω%$0 ,Ω2%$0)

= d⊥(Ω%$0 ,Ω2%$0),

which is a contradiction. Thus, we have

1
2d⊥(%$0 ,Ω%$0) < d⊥(%$0 , %) or 1

2d⊥(Ω%$0 ,Ω2%$0) < d⊥(Ω%$0 , %) ∀ $ ∈ N.

Since Ω is an ⊥-S-B type F -contraction map, so we obtain

℘+ F
(
d⊥(Ω%$,Ω%)

)
6 F

(
d⊥(%$, %)

)
+

L.min
{
d⊥(%$,Ω%$), d⊥(%$,Ω%), d⊥(%,Ω%$)

}
.

(2.63)

On taking limit as $ → +∞ in (2.63) and using (F2) along with Lemma 1.2.4,
we get

lim
$→+∞

d⊥(Ω%$,Ω%) = 0,

that is, d⊥(%,Ω%) = 0.

Thus, Ω possesses a fixed point. The uniqueness of fixed point follows on the lines
of Theorem 2.2.43.

2.2.5 Orthogonal F-weak Contraction

Inspired by the work done in Baghani et al. (2016), Sawangsup et al. (2020),
in this section, we put forward the notation of orthogonal F -weak contraction
and establish some fixed point theorems with orthogonal F -weak contraction in
complete orthogonal metric space.

Definition 2.2.11. A self-map Ω on f, where (f, d⊥) is an orthogonal metric
space and F ∈ F, is c.t.b an orthogonal F-weak contraction (denoted by ⊥F -
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weak contraction) if ∃ ℘ > 0 s.t for each %, ς ∈ f with % ⊥ ς and d⊥(Ω%,Ως) > 0
implies

℘+F(d⊥(Ω%,Ως)) 6 F
(

max
{
d⊥(%, ς), d⊥(%,Ω%), d⊥(ς,Ως), d⊥(%,Ως) + d⊥(ς,Ω%)

2

})
.

(2.64)

Remark 2.2.46. From (2.64), we can infer that every ⊥F -contraction is ⊥F -weak
contraction. However, following example substantiates that the converse need not
hold true.

Example 2.2.47. Let f = {0, 1, 2, 3, 4} with usual metric d⊥.
Let R = {(0, 0), (0, 1), (0, 2), (0, 3), (0, 4), (4, 0), (4, 1), (4, 2), (4, 3), (4, 4)}. Define
% ⊥ ς iff (%, ς) ∈ R. Clearly, (f,⊥) is an orthogonal set (with 0 and 4 as
orthogonal element). Let Ω : f → f be defined as Ω(0) = 0 = Ω(1) = Ω(4),
Ω(2) = 1, Ω(3) = 2. Let F(µ) = ln(µ). It can be verified that Ω is ⊥F -weak
contraction however, Ω is not ⊥F -contraction since for % = 4 and ς = 3, ℘ +
F(d⊥(Ω%,Ως)) 6 F(d⊥(%, ς)) does not hold for any ℘ > 0.

Theorem 2.2.48. For an ⊥-complete metric space (f, d⊥) and F ∈ F, if a self-
map Ω on f is ⊥-continuous, ⊥F -weak contraction and ⊥-preserving. Then, Ω
possesses a unique fixed point in f.

Proof. As (f,⊥) is an orthogonal set, therefore, let there be an orthogonal element
%0 ∈ f where

[% ⊥ %0 ∀ % ∈ f] or [%0 ⊥ % ∀ % ∈ f]. (2.65)

As %0, Ω(%0) ∈ f then by (2.65), we have [Ω(%0) ⊥ %0] or [%0 ⊥ Ω(%0)]. Define a
sequence {%$}$∈N in f, where %$+1 = Ω(%$) ∀ $ ∈ N. Since Ω is ⊥-preserving.
Therefore, {%$}$∈N is an ⊥-sequence. Let us consider η$ = d⊥(%$, %$+1) for
$ = 0, 1, 2, . . . . If for some $0 ∈ N,

η$0 = d⊥(%$0 , %$0+1) = 0,

that is, %$0 = %$0+1 = Ω(%$0),

which gives that Ω possesses a fixed point. Instead, let η$ 6= 0 ∀ $ ∈ N. As Ω is
⊥F -weak contraction, so ∀ $ ∈ N, we have

F(η$) = F(d⊥(%$, %$+1) = F(d⊥(Ω%$−1,Ω%$))
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6F
(

max
{
d⊥(%$−1, %$), d⊥(%$−1,Ω%$−1), d⊥(%$,Ω%$),

d⊥(%$−1,Ω%$) + d⊥(%$,Ω%$−1)
2

})
− ℘

=F
(

max
{
d⊥(%$−1, %$), d⊥(%$, %$+1), d⊥(%$−1, %$+1) + d⊥(%$, %$)

2

})
− ℘

6F
(

max
{
d⊥(%$−1, %$), d⊥(%$, %$+1), d⊥(%$−1, %$) + d⊥(%$, %$+1)

2

})
− ℘

=F (max {d⊥(%$−1, %$), d⊥(%$, %$+1)})− ℘.

If max {d⊥(%$−1, %$), d⊥(%$, %$+1)} = d⊥(%$, %$+1) then from above, we have

F(η$) 6 F(η$)− ℘,

which is a contradiction (for ℘ > 0). Thus, we obtain max
{
d⊥(%$−1, %$), d⊥(%$,

%$+1)
}

= d⊥(%$−1, %$) ∀ $ ∈ N and,

F(η$) 6 F(η$−1)− ℘ 6 F(η$−2)− 2℘ 6 · · · 6 F(η0)−$℘. (2.66)

Taking limit as $ → +∞ in (2.66), we obtain lim
$→+∞

F(η$) = −∞. Using (F2),
we obtain

lim
$→+∞

η$ = 0. (2.67)

By (F3) property ∃ γ ∈ (0, 1) s.t

lim
$→+∞

ηγ$F(η$) = 0. (2.68)

From (2.66), we have ηγ$F(η$)−ηγ$F(η0) 6 −ηγ$$℘. Taking $ → +∞ and using
(2.67) and (2.68), we get

lim
$→+∞

$ηγ$ = 0. (2.69)

On observing (2.69), we get that ∃ $1 ∈ N where ∀ $ > $1, we have

η$ 6
1
$

1
γ

∀ $ > $1. (2.70)

Consider $,$∗ ∈ N with $∗ > $ > $1, using (2.70) and triangle inequality of
metric space d⊥, we get
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d⊥(%$∗ , %$) 6 d⊥(%$∗ , %$∗−1) + · · ·+ d⊥(%$+2, %$+1) + d⊥(%$+1, %$)

= η$∗−1 + · · ·+ η$+1 + η$ <
+∞∑
i=1

ηi 6
+∞∑
i=1

1/i1/γ.

As
+∞∑
i=1

1/i1/γ is convergent (for γ ∈ (0, 1)), we get {%$}$∈N is an ⊥-Cauchy se-

quence and since f is ⊥-complete, we have {%$}$∈N is convergent, that is, ∃ % ∈ f
with lim

$→+∞
%$ = %. Using ⊥-continuity of Ω, we get

lim
$→+∞

Ω(%$) = Ω(%),

implies lim
$→+∞

%$+1 = Ω(%).

Thus, % = Ω(%). Hence, % is a fixed point of Ω. Let %∗ be s.t Ω%∗ = %∗ which
implies

Ω$(%∗) = %∗ ∀ $ ∈ N.

By (2.65), we have

[%0 ⊥ %∗] or [%∗ ⊥ %0].

Since Ω is ⊥-preserving, therefore

[Ω$(%0) ⊥ Ω(%∗)] or [Ω(%∗) ⊥ Ω$(%0)].

Also, Ω is ⊥F -weak contraction, thus

F(d⊥(%$, %∗)) =F(d⊥(Ω$%0, %
∗))

=F(d⊥(Ω%$−1,Ω%∗))

6F
(

max
{
d⊥(%$−1, %

∗), d⊥(%$−1,Ω%$−1), d⊥(%∗,Ω%∗),

d⊥(%$−1,Ω%∗) + d⊥(%∗,Ω%$−1)
2

})
− ℘

=F (max {d⊥(%$−1, %
∗), d⊥(%$−1, %$), d⊥(%$, %∗)})− ℘.

Next, we have following cases:

Case (i): Let max{d⊥(%$−1, %
∗), d⊥(%$−1, %$), d⊥(%$, %∗)} = d⊥(%$, %∗) then
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∀ $ ∈ N, we obtain F(d⊥(%$, %∗)) 6 F(d⊥(%$, %∗)) − ℘, which does not hold
for any ℘ > 0.

Case (ii): Let max{d⊥(%$−1, %
∗), d⊥(%$−1, %$), d⊥(%$, %∗))} = d⊥(%$−1, %$) then

∀ $ ∈ N, we get

F(d⊥(%$, %∗)) 6 F(d⊥(%$−1, %$))− ℘ = F(η$−1)− ℘.

Using (2.66), we get

F(d⊥(%$, %∗)) 6 F(η$−1)− ℘ 6 · · · 6 F(η0)−$℘.

Taking $ → +∞, we get lim
$→+∞

F(d⊥(%$, %∗)) = −∞. By (F2) property,

lim
$→+∞

d⊥(%$, %∗) = 0,

implies % = %∗.

Case (iii): Let max{d⊥(%$−1, %
∗), d⊥(%$−1, %$), d⊥(%$, %∗))} = d⊥(%$−1, %

∗) then
∀ $ ∈ N, we get

F(d⊥(%$, %∗)) 6 F(d⊥(%$−1, %
∗))− ℘

6 F(d⊥(%$−2, %
∗))− 2℘ 6 · · · 6 F(d⊥(%0, %

∗))−$℘.

Taking $ → +∞ and using (F2) property, we obtain % = %∗. Thus, we conclude
that Ω has a unique fixed point in f.

Remark 2.2.49. Theorem 2.2.48 proved above provides a proper extension of
Theorem 3.10 and Theorem 3.3 of Baghani et al. (2016) and Sawangsup et al.
(2020) respectively. The example discussed below further substantiates the out-
come.

Example 2.2.50. Consider the orthogonal metric space discussed in Example
2.2.47. Then, the map defined in it can be verified for ⊥-continuous and ⊥-
preserving. Also, f is ⊥-complete since for any arbitrary ⊥-Cauchy sequence
{%$} in f, ∃ a sub-sequence {%$k} of {%$} s.t %$k = 0 ∀ k > k1 or %$k = 4
∀ k > k2 for some k1, k2 ∈ N. Thus, {%$k} converges to 0 or 4. Therefore, {%$}
is convergent. Since all hypotheses of Theorem 2.2.48 hold so Ω has a unique fixed
point which is % = 0, even though Ω is not ⊥F -contraction.
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Theorem 2.2.51. For an ⊥-complete metric space (f, d⊥) and F ∈ F, if a self-
map Ω on f is ⊥F -weak contraction and ⊥-preserving s.t

(I) F is continuous;

(II) If ∃ an ⊥-sequence {%$} in f is s.t for %$ → % as $ → +∞, we have
%$ ⊥ % ∀ $ ∈ N or % ⊥ %$ ∀ $ ∈ N.

Then, Ω possesses a unique fixed point in f.

Proof. By the working done in Theorem 2.2.48, it can be shown that there is
an ⊥-sequence {%$}$∈N, where %$ → % as $ → +∞. We show that % is the
desired fixed point. However, once the existence of fixed point is established then
the uniqueness follows similar to Theorem 2.2.48. Suppose on the contrary that
d⊥(%,Ω%) ≥ 0.

Case (i): If {$ ∈ N : Ω%$ = Ω%} is infinite. Then, ∃ sub-sequence {%$i} of
{%$}$∈N s.t Ω%$i = Ω% implies %$i+1 = Ω%. Taking limit $ → +∞, we get
% = Ω%, which is a contradiction.

Case (ii): If {$ ∈ N : Ω%$ = Ω%} is finite, that is, for some $0 ∈ N,
d⊥(Ω%$,Ω%) > 0 ∀ $ > $0. By given condition, we have [%$ ⊥ % ∀ $ ∈ N] or
[% ⊥ %$ ∀ $ ∈ N]. Since Ω is ⊥-preserving, therefore

[Ω%$ ⊥ Ω% ∀ $ ∈ N] or [Ω% ⊥ Ω%$ ∀ $ ∈ N].

As Ω is ⊥F -weak contraction, we have

℘+ F(d⊥(Ω%$,Ω%))

6 F
(

max
{
d⊥(%$, %), d⊥(%$,Ω%$), d⊥(%,Ω%), d⊥(%$,Ω%) + d⊥(%,Ω%$)

2
})

6 F
(

max
{
d⊥(%$, %), d⊥(%$, %$+1), d⊥(%,Ω%),

d⊥(%$, %) + d⊥(%,Ω%) + d⊥(%, %$+1)
2

})
. (2.71)

Since, %$ → % as $ → +∞. Therefore, ∃ $1 ∈ N, s.t d⊥(%$, %) = 0 ∀ $ > $1.

Hence, for each $ > max{$0, $1}, we obtain

max
{
d⊥(%$, %), d⊥(%$, %$+1), d⊥(%,Ω%), d⊥(%$, %) + d⊥(%,Ω%) + d⊥(%, %$+1)

2

}
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= d⊥(%,Ω%).

As F is continuous, on letting limit $ → +∞ in (2.71), we get

℘+ F(d⊥(Ω%,Ω%)) 6 F(d⊥(Ω%,Ω%)),

which does not hold. Thus, Ω has a fixed point % in f.

Corollary 2.2.52. For (f, d⊥), an ⊥-complete metric space and F ∈ F, if a map
Ω : f→ f is ⊥F -weak contraction and ⊥-preserving s.t

(I) F is continuous;

(II) If ∃ an ⊥-sequence {%$} in f is s.t for %$ → % as $ → +∞, we have
%$ ⊥ % ∀ $ ∈ N or % ⊥ %$ ∀ $ ∈ N.

Then, Ω in f possesses a unique fixed point. Further, for each %∗ ∈ f the Picard
sequence {Ω$(%∗)}$∈N converges to fixed point % of Ω.

Proof. By the working done in Theorem 2.2.51, Ω possesses a unique fixed point.
We show that Picard sequence {Ω$(%∗)}$∈N converges to fixed point %, that is

lim
$→+∞

Ω$(%∗) = %. Since %∗ ∈ f is any arbitrary point and f is an orthogonal set,
therefore [%∗ ⊥ %0] or [%0 ⊥ %∗], and as Ω is ⊥-preserving, thus

[Ω$(%∗) ⊥ Ω$(%0) ∀ $ ∈ N] or [Ω$(%0) ⊥ Ω$(%∗) ∀ $ ∈ N].

Using ⊥F -weak contraction of Ω, we obtain

℘+ F(d⊥(Ω$(%∗), %$))

= ℘+ F(d⊥(Ω$(%∗),Ω$(%0))

= ℘+ F(d⊥(Ω(Ω$−1(%∗)),Ω(Ω$−1(%0)))

6 F
(

max
{
d⊥(Ω$−1(%∗), %$−1), d⊥(Ω$−1(%∗),Ω$(%∗)), d⊥(%$−1, %$),

d⊥(Ω$−1(%∗), %$) + d⊥(%$−1,Ω$(%∗))
2

})
. (2.72)

Taking limit as $ → +∞ in (2.72) and since F is continuous, we get

℘+ F(d⊥( lim
$→+∞

Ω$%∗, %)) 6 F(d⊥( lim
$→+∞

Ω$%∗, %)),

which holds iff lim
$→+∞

Ω$(%∗) = %. Hence, Ω is a Picard operator.

59



2.3 Application

We now apply the outcome of Theorem 2.2.48 to show the existence and unique-
ness of the solution of the ordinary differential equation given by:

θ
′(%)− Ω(%, θ(%)) = 0 a.e % ∈ Î = [0, T ];

θ(0) = a for a > 1,
(2.73)

where, Ω : Î × (−∞,+∞) → (−∞,+∞) is an integrable function which satisfies
the following:

(I) Ω(%, ς) > 0 ∀ % ∈ Î and ς > 0;

(II) ∃ α(%) ∈ L1(Î) and ℘ > 0 s.t

∣∣∣Ω(%,X(%))− Ω(%,Y(%))
∣∣∣ 6 α(%)

e℘

∣∣∣∣∣X(%)−Y(%)
∣∣∣∣∣

for each X,Y ∈ L1(Î) s.t X(%)Y(%) > X(%) or X(%)Y(%) > Y(%).

Theorem 2.3.1. The differential equation given in (2.73) along with condition
(I) and (II) has a unique solution.

Proof. Let f = {X ∈ C(Î, (−∞,+∞)) : X(%) > 0 ∀ % ∈ Î} and define a relation
on f as

X ⊥ Y iff X(%)Y(%) > X(%) or X(%)Y(%) > Y(%) ∀ % ∈ Î.

Then, (f,⊥) is an orthogonal set. Let A(%) =
∫ %

0
|α(%)|d%. So that A′ = |α(%)|

a.e % ∈ Î. Define a map d⊥ : f× f→ [0,+∞) by

d⊥(X,Y) = ‖X−Y‖ = sup
%∈Î

e−A(%)| X(%)−Y(%) | ∀ X,Y ∈ f.

Now, since (f, d⊥) is ⊥-complete. Let {X$}$∈N be a ⊥-Cauchy sequence in f
then we can conclude that {X$} converges to a point X in C(Î). It is enough if
we show that X ∈ f. Let % ∈ Î fixed then

X$(%)X$+1(%) > X$(%) or X$(%)X$+1(%) > X$+1(%).

As X$(%) > 0 ∀ $ ∈ N, then ∃ a sub-sequence {X$k} of {X$} for which X$k > 1
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and since X$ → X as $ → +∞ so X$k → X as $ → +∞ implies X(%) > 1.
Thus, X ∈ f. Define a map Y : f→ f as:

(YX)(%) = β +
∫ %

0
Ω(t,X(t))dt.

Then:

(1) Y is ⊥-preserving. Let X ⊥ Y, then

(YX)(%) = β +
∫ %

0
Ω(t,X(t))dt > 1,

which shows that (YX)(%)(YY)(%) > (YY)(%) or (YX)(%)(YY)(%) > (YX)(%).
Therefore, YX ⊥ YY.

(2) Y is ⊥-continuous. Let {X$} be an ⊥-sequence in f which converges to
X ∈ f. Then, it is well evident from previous working that X(%) > 1 implies
X$(%) ⊥ X(%) for each $ ∈ N and % ∈ Î. So, we have

e−A(%)|(YX$)(%)− (YX)(%)| 6 e−A(%)
∫ %

0
|Ω(t,X$(t))− Ω(t,X(t))|dt

6 e−A(%)
∫ %

0
|X$(t))− X(t))| |α(t)|

e℘
e−A(t)eA(t)dt

6 e−A(%)e−℘d⊥(X$,X)
∫ %

0
|α(t)|eA(t)dt

6 e−A(%)e−℘d⊥(X$,X)(eA(%)−1).

Since above inequality holds for any arbitrary % ∈ Î and $ ∈ N. So, we have

d⊥(YX$,YX) 6 e−℘(1− e−‖α‖1)d⊥(X$,X) ∀ $ ∈ N.

Thus, YX$ → YX.

(3) Y is ⊥F -weak contraction.
Let X,Y ∈ f s.t X ⊥ Y and d⊥(YX,YY) > 0, then for each % ∈ Î, we obtain

|(YX)(%)− (YY)(%)| 6
∫ %

0
|Ω(t,X(t)),Ω(t,Y(t))|dt

6
∫ %

0
e−℘|α(t)||X(t)−Y(t)|e−A(t)eA(t)dt

6 e−℘d⊥(X,Y)
∫ %

0
|α(t)|eA(t)

6 e−℘d⊥(X,Y)(eA(%) − 1),

that is, e−A(%)|(YX)(%)− (YY)(%)| 6 e−A(%)(eA(%) − 1)e−℘d⊥(X,Y)
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6 (1− e−A(%))e−℘d⊥(X,Y)

6 (1− e−‖α‖1)e−℘d⊥(X,Y).

It follows that d⊥(YX,YY) 6 e−℘d⊥(X,Y). Taking logarithm, we get

℘+ ln(d⊥(YX,YY)) 6 ln
(

max
{
d⊥(X,Y), d⊥(X,YX), d⊥(Y,YY),

d⊥(X,YY) + d⊥(Y,YX)
2

})
.

On defining F : R+ → (−∞,+∞) as F(µ) = ln(µ), we obtain that Y is ⊥F -weak
contraction. Therefore, using Theorem 2.2.48, Y has a unique fixed point and
hence differential equation has a unique solution.

2.4 Conclusion

Under some specific conditions, the results proved in this chapter are reduced to
many well-known fixed point results in the literature. Consider the binary relation
% ⊥ ς iff %, ς ∈ f ∀ %, ς ∈ f then (f, d⊥) is an orthogonal metric space (for any
metric d⊥ on f) with every element in f as an orthogonal element. Infact, in such
a case the orthogonal metric space (f, d⊥) reduces to metric space (f, d) then:

(I) With the above condition, Theorem 2.2.4 and Theorem 2.2.8 reduces to
Theorem 2.1 and Theorem 2.2 respectively of Hussain & Salimi (2014).

(II) Theorem 3.8 of Gopal et al. (2016) can be deduced from Theorem 2.2.21
under specific condition as mentioned above along with Ω as an α-admissible
map.

(III) Theorem 8, Theorem 12 of Chandok et al. (2016) are particular cases of
Theorem 2.2.28 and Corollary 2.2.37, Theorem 2.2.31 and Corollary 2.2.40
respectively with respect to the above orthogonal metric space.

(IV) Theorem 2.1 of Hussain & Ahmad (2017) can be deduced from Corollary
2.2.45 along with specific condition as mentioned above.

******
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Chapter 3

Fixed Point Results in Relation
Theoretic Metric Space

3.1 Introduction

Alam & Imdad (2015) introduced the idea of relation theoretic metric space, briefly
written as R-metric space (notation introduced by Khalehoghli et al. (2020)),
wherein the given metric space is combined with an amorphous binary relation,
R. Since then, fixed point results for various maps in the relation theoretic metric
have been studied (see Imdad et al. (2018), Prasad et al. (2020), Alam et al.
(2021), Prasad (2021), Khan et al. (2022)).

Motivated by the work done in the literature onR-metric space, in this chapter we
first put forward the fixed point results using F -weak expansive map followed by
the fixed point results that are subjected to contraction conditions corresponding
to the multivalued counterpart of F -contraction, F -weak contraction, almost F -
contraction and α-type F -contraction in R-metric space. Next, we discuss the
solution of a non-homogeneous, non-linear Volterra integral along with its stability
using the idea of Hyers-Ulam stability (Hyers (1941), Ulam (1960)). The results
of this chapter have been presented in 3,4,5.

3Malhotra, A., and Kumar, D. (2022). Some fixed point results using F -weak expansive map-
ping in relation theoretic metric space. Journal of Physics: Conference Series, IOP Publishing,
2267(1), 012040.

4Malhotra, A., and Kumar, D. (2023). Fixed Point Results for Multivalued Mapping in
R-Metric Space. Sahand Communications in Mathematical Analysis, 20(2), 109-121.

5Malhotra, A., and Kumar, D. (2023). Existence and Stability of Solution for a Nonlinear
Volterra Integral Equation with binary relation via Fixed Point Results. (Communicated).
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3.2 Generalized Expansive Maps and Fixed Point
Results

Herein, we first introduce the notions of relational type F -expansive map and
relational type F -weak expansive map in the setting of R-metric space.

Definition 3.2.1. For an R-metric space (f, dR), φ : f→ f is c.t.b a relational
type F-expansive map for F ∈ F, if ∃ ℘ > 0 s.t for each %, ς ∈ f with
(%, ς) ∈ R, we have

F(dR(φ%, φς)) > F(dR(%, ς)) + ℘.

Definition 3.2.2. For an R-metric space (f, dR), φ : f→ f is c.t.b a relational
type F-weak expansive map for F ∈ F, if ∃ ℘ > 0 s.t for each %, ς ∈ f with
(%, ς) ∈ R, we have

F(dR(φ%, φς)) > F
(
M(%, ς)

)
+ ℘,

whereM(%, ς) = max
{
dR(%, ς), dR(%, φ%), dR(ς, φς), dR(%, φς) + dR(ς, φ%)

2

}
.

Example 3.2.1. Let f = {0, 1, 2, 3, 4, 5, 6} equipped with metric dR(%, ς) = |%−ς|.
Let relation R = {(%, ς) : % 6= ς, %.ς = 0 %, ς < 5}. Then, (f, dR) is an R-metric
space. Define φ : f → f as φ(0) = 0, φ(1) = 3, φ(2) = 4, φ(3) = 6, φ(4) = 5,
φ(5) = 1 and φ(6) = 2. Then, φ is a relational type F-weak expansive map but
clearly φ is not F-weak expansive map.

Remark 3.2.2. Every relational type F-weak expansive map is a relational type
F-expansive map. Since, if φ is a relational type F-weak expansive map, then for
F ∈ F, ∃ ℘ > 0 s.t for each %, ς with (%, ς) ∈ R, we have

F(dR(φ%, φς)) > max
{
dR(%, ς), dR(%, φ%), dR(ς, φς), dR(%, φς) + dR(ς, φ%)

2

}
+ ℘

> F(dR(%, ς)) + ℘.

Hence, φ is relational type F-expansive map. Given Example 3.2.1 further verifies
a relational type F-weak expansive map which is also relational type F-expansive
map.

Theorem 3.2.3. For an R-complete metric space (f, dR), let φ : f → f be a
surjective map s.t:
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(I) φ is relational type F-weak expansive map;

(II) φ is R-preserving;

(III) ∃ some %0 ∈ f s.t (%0, ς) ∈ R ∀ ς ∈ φ(f);

(IV) φ is R-continuous.

Then, φ possesses a unique fixed point.

Proof. Define {%$}$∈N′ , a sequence in f where %1 = φ%0, %2 = φ%1, . . . , %$+1 =
φ%$. On using condition (III), we have (%0, φ%0) ∈ R, that is, (%0, %1) ∈ R and
since φ is R-preserving, so (φ%0, φ%1) = (%1, %2) ∈ R. Proceeding in similar way,
we obtain that (%$, %$+1) ∈ R ∀ $ ∈ N′. Next, for %n, %n+1 ∈ f and since φ is a
surjective map so by Lemma 1.2.5, there is a right inverse φ∗ of φ s.t φ∗%$+1 = %$.
Since, φ is relational type F -weak expansive map, therefore ∃ ℘ > 0 s.t

F(dR(%$+2, %$+1)) = F(dR(φ%$+1, φ%$)) > F(M(%$+1, %$)) + ℘

> F(M(φ∗%$+2, φ
∗%$+1)) + ℘

= F(max
{
dR(φ∗%$+2, φ

∗%$+1), dR(φ∗%$+2, %$+2),

dR(φ∗%$+1, %$+1), dR(φ∗%$+2, %$+1) + dR(φ∗%$+1, %$+2)
2

}
+ ℘

> F(dR(φ∗%$+2, φ
∗%$+1)) + ℘.

Thus, φ∗ is a relational F -contraction map on f, therefore, by Theorem 3.2 of
Sawangsup et al. (2017), φ∗ possesses a unique fixed point, that is, ∃ ζ ∈ f s.t
φ∗ζ = ζ. Now, ζ = φφ∗ζ = φζ, hence, φ possesses a unique fixed point.

Corollary 3.2.4. For an R-complete metric space (f, dR), let φ : f → f be a
surjective map s.t:

(I) φ is relational type F-expansive map;

(II) φ is R-preserving;

(III) ∃ some %0 ∈ f s.t (%0, ς) ∈ R ∀ ς ∈ φ(f);

(IV) φ is R-continuous.

Then, φ possesses a unique fixed point.
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Proof. By Remark 3.2.2, every relational type F -weak expansive map is relational
type F -expansive map so proof now follows from Theorem 3.2.3.

3.3 Generalized Multivalued Contraction Maps
and Fixed Point Results

We now prove fixed point results for multivalued maps in an R-metric space
subject to generalized contractions. But before proceeding to the results, we first
define relation between two subsets of an R-metric space and R-continuity for
multivalued maps.

Definition 3.3.1. For an R-metric space (f, dR), two non-empty subsets Û , V̂
of f we say, (Û , V̂ ) ∈ R if (ρ, σ) ∈ R for each ρ ∈ Û and σ ∈ V̂ .

Example 3.3.1. Let f = R with usual metric and define R = {(%, ς) ∈ f2

iff %.ς < 0}. Then, for subsets Û = (−∞, 0) and V̂ = (0,+∞) of f, we have
(Û , V̂ ) ∈ R.

Definition 3.3.2. For an R-metric space (f, dR), a multivalued map φ : f →
K(f) is c.t.b an RH-continuous at % ∈ f if for any R-sequence {%$}$∈N in f
with dR(%$, %)→ 0 as $ → +∞, we have H(φ%$, φ%)→ 0 as $ → +∞. Also, φ
is c.t.b RH-continuous on f if ∀ % ∈ f, RH-continuous at %.

It should be noted that the above definition holds true if we consider a multivalued
map φ : f→ CB(f).

Theorem 3.3.2. For an R-complete metric space (f, dR), let φ : f → K(f) be
a multivalued map s.t:

(I) ∃ %0 ∈ f s.t (%0, ς) ∈ R ∀ ς ∈ φ%0;

(II) For each (%, ς) ∈ R, we have (φ%, φς) ∈ R;

(III) Either φ is RH-continuous or for any R-sequence {%$}$∈N s.t %$ → % as
$ → +∞, we have (%$, %) ∈ R ∀ $ ∈ N;

(IV) If for some F ∈ F, ∃ ℘ > 0 with H(φ%, φς) > 0 s.t for every (%, ς) ∈ R, we
have

℘+ F(H(φ%, φς)) 6 F(dR(%, ς)).
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Then, φ possesses a fixed point.

Proof. Let {%$}$∈N′ be a sequence in f where %$+1 ∈ φ%$ ∀ $ ∈ N′. By
condition (I), we obtain (%0, %1) ∈ R. On using condition (II), we have

(φ%0, φ%1) = (%1, %2) ∈ R. (3.1)

On repetitive use of condition (II) in (3.1), we get (%$, %$+1) ∈ R, ∀ $ ∈ N′.
Thus, {%$}$∈N′ is an R-sequence in f. If %1 ∈ φ%1 then we are done. Suppose
%1 6∈ φ%1 and since φ%1 is compact subset of f then dR(%1, φ%1) > 0. Now,
dR(%1, φ%1) 6 H(φ%0, φ%1) thus by (F1), we have

F(dR(%1, φ%1)) 6 F(H(φ%0, φ%1))

6 F(dR(%0, %1))− ℘.

If %k ∈ φ%k for some k ∈ N′ then we are done. Suppose %$ 6∈ φ%$ ∀ $ ∈ N′ and
since φ%$ is compact subset of f then, dR(%$, φ%$) > 0 ∀ $ ∈ N′.

As, dR(%$, φ%$) 6 dR(%$, %$+1) 6 H(φ%$−1, φ%$),

that is, F(dR(%$, φ%$)) 6 F(dR(%$, %$+1)) 6 F(H(φ%$−1, φ%$))

6 F(dR(%$−1, %$))− ℘

< F(dR(%$−1, %$)). (3.2)

Thus, {ζ$ = dR(%$, %$+1)}$∈N′ is a decreasing sequence of non-negative real
number. Let lim

$→+∞
ζ$ = ζ > 0. Next, by (3.2) we have

F(ζ$) 6 F(ζ$−1)− ℘ 6 F(ζ$−2)− 2℘ 6 · · · 6 F(ζ0)−$℘. (3.3)

On letting $ → +∞ in (3.3) we get, lim
$→+∞

ζ$ = 0. By (F3), ∃ γ ∈ (0, 1) s.t
lim

$→+∞
ζγ$F(ζ$) = 0. Using (3.3), we have

ζγ$F(ζ$)− ζγ$F(ζ0) 6 −$ζγ$℘. (3.4)

Taking limit as $ → +∞ in (3.4), we get lim
$→+∞

$ζγ$ = 0. Thus, ∃ $0 ∈ N with

$ > $0, ζ$ 6
1

$1/γ . Consider $
∗, $ ∈ N, where $∗ > $ > $0 and

dR(%$, %$∗) 6 dR(%$, %$+1) + dR(%$+1, %$+2) + · · ·+ dR(%$∗−1, %$∗)

= ζ$ + ζ$+1 + · · ·+ ζ$∗−1
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=
$∗−1∑
j=$

ζj 6
+∞∑
j=$

ζj 6
+∞∑
j=$

1
j1/γ . (3.5)

Since the series ∑+∞
j=$

1
j1/γ is convergent and on letting $ → +∞ in (3.5), we

obtain that {%$}$∈N′ is an R-Cauchy sequence and using R-completeness of f,
∃ % ∈ f s.t lim

$→+∞
%$ = %. We now claim that % ∈ φ%.

Case (i): Let φ be a RH-continuous map. Since %$+1 ∈ φ%$, we have

dR(%$+1, φ%) 6 H(φ%$, φ%). (3.6)

Taking limit as $ → +∞ in (3.6) and using R-continuity of φ, we get

dR(%, φ%) = lim
$→+∞

dR(%$+1, φ%) 6 lim
$→+∞

H(φ%$, φ%) = 0.

So, we conclude that % ∈ φ%.

Case (ii): We have an R-sequence {%$}$∈N′ s.t %$+1 ∈ φ%$ ∀ $ ∈ N′ and
%$ → % as $ → +∞ then, (%$, %) ∈ R ∀ $ ∈ N. On the contrary, suppose
that % 6∈ φ% then ∃ $′ ∈ N with % 6∈ {%$} for every $ > $′ which further gives
H(φ%, φ%$) > 0 and also by given condition, we have (%$, %) ∈ R ∀ $ ∈ N′.

F(dR(%$+1, φ%)) 6 ℘+ F(H(φ%$, φ%)) < F(dR(%$, %)). (3.7)

On letting $ → +∞ in (3.7), we obtain dR(%, φ%) = 0 which is not true. Hence,
% ∈ φ%.

Theorem 3.3.3. For an R-complete metric space (f, dR), let φ : f→ CB(f) be
a multivalued map s.t:

(I) ∃ %0 ∈ f s.t (%0, ς) ∈ R ∀ ς ∈ φ%0;

(II) For each (%, ς) ∈ R, we have (φ%, φς) ∈ R;

(III) Either φ is RH-continuous or for any R-sequence {%$}$∈N s.t %$ → % as
$ → +∞, we have (%$, %) ∈ R ∀ $ ∈ N;

(IV) If for some F ∈ F′, ∃ ℘ > 0 with H(φ%, φς) > 0 s.t for every (%, ς) ∈ R, we
have

℘+ F(H(φ%, φς)) 6 F(dR(%, ς)).

Then, φ possesses a fixed point.
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Proof. By the working done in Theorem 3.3.2, we obtain an R-sequence {%$}$∈N′
in f, where %$+1 ∈ φ%$ ∀ $ ∈ N′. If %1 ∈ φ%1 then, we are done. Suppose %1 6∈
φ%1 and since φ%1 is closed subset of f then, dR(%1, φ%1) > 0. Now, dR(%1, φ%1) 6
H(φ%0, φ%1) thus by (F1), we have

F(dR(%1, φ%1)) 6 F(H(φ%0, φ%1)) 6 F(dR(%0, %1))− ℘. (3.8)

Thereby using (F4) property of F , we get

F(dR(%1, φ%1)) = F( inf
ς∈φ%1

dR(%1, ς)) = inf
ς∈φ%1

F(dR(%1, ς)), (3.9)

on using (3.8) in (3.9) and the fact that %2 ∈ φ%1, we observe that

inf
ς∈φ%1

F(dR(%1, ς)) 6 F(dR(%1, %2)) 6 F(H(φ%0, φ%1)) 6 F(dR(%0, %1))− ℘.

So from above equation, we have F(dR(%1, %2)) 6 F(dR(%0, %1))− ℘. If %2 ∈ φ%2

then we are done, else for %2 6∈ φ%2 we have %3 ∈ φ%2 so that

F(dR(%2, %3)) 6 F(dR(%1, %2))− ℘.

Continuing in a similar manner, we obtain F(dR(%$, %$+1)) 6 F(dR(%$−1, %$))−
℘ and thus dR(%$, %$+1) < dR(%$−1, %$), that is, {dR(%$, %$+1)}$∈N′ is a decreas-
ing sequence of non-negative real numbers. Now, by the working of Theorem 3.3.2
we conclude that φ possesses a fixed point.

Theorem 3.3.4. For an R-complete metric space (f, dR), let φ : f → K(f) be
a multivalued map s.t:

(I) ∃ %0 ∈ f with (%0, ς) ∈ R ∀ ς ∈ φ%0;

(II) For each (%, ς) ∈ R, we have (φ%, φς) ∈ R;

(III) Either φ is RH-continuous or for any R-sequence {%$}$∈N, where %$ → %

as $ → +∞, we have (%$, %) ∈ R ∀ $ ∈ N;

(IV) If for some F ∈ F, ∃ ℘ > 0 with H(φ%, φς) > 0 so that for every (%, ς) ∈ R,
we have

℘+F(H(φ%, φς)) 6 F
(

max
{
dR(%, ς), D(%, φ%), D(ς, φς), D(%, φς) +D(ς, φ%)

2

})
.

Then, φ possesses a fixed point.
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Proof. By the working done in Theorem 3.3.2, an R-sequence {%$}$∈N′ is ob-
tained, where %$+1 ∈ φ%$ ∀ $ ∈ N′. Suppose %1 6∈ φ%1, then we have

0 < dR(%1, φ%1) 6 H(φ%0, φ%1).

Further, using condition (IV), we have

℘+ F(H(φ%0, φ%1)) 6 F
(

max
{
dR(%0, %1), D(%0, φ%0), D(%1, φ%1),

D(%0, φ%1) +D(%1, φ%0)
2

})
. (3.10)

Next, the following observations can be easily made for a multivalued map and in
addition using Lemma 1.2.9, we have

D(%0, φ%0) 6 dR(%0, %1),

D(%1, φ%1) 6 H(φ%0, φ%1),

D(%1, φ%0) = 0,

and, D(%0, φ%1) 6 dR(%0, %1) +H(φ%0, φ%1).

Using above in (3.10), we get

℘+ F(H(φ%0, φ%1)) 6 F
(

max
{
dR(%0, %1),H(φ%0, φ%1), D(%0, φ%1)

2

})

6 F
(

max
{
dR(%0, %1),H(φ%0, φ%1),

dR(%0, %1) +H(φ%0, φ%1)
2

})
. (3.11)

If dR(%0, %1) < H(φ%0, φ%1), then by (3.11) we obtain

℘+ F(H(φ%0, φ%1)) 6 F(H(φ%0, φ%1)),

which is a contradiction. Thus, we have H(φ%0, φ%1) < dR(%0, %1) and by (3.11),
we get ℘+F(H(φ%0, φ%1)) 6 F(dR(%0, %1)). Further, suppose %$ 6∈ φ%$ ∀ $ ∈ N′,

℘+ F(H(φ%$, φ%$+1)) 6 F
(

max
{
dR(%$, %$+1), D(%$, φ%$), D(%$+1, φ%$+1),

D(%$, φ%$+1) +D(%$+1, φ%$)
2

})
. (3.12)
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Again, we have the following observations:

D(%$, φ%$) 6 dR(%$, %$+1),

D(%$+1, φ%$+1) 6 H(φ%$, φ%$+1),

D(%$+1, φ%$) = 0,

and, D(%$, φ%$+1) 6 dR(%$, %$+1) +H(φ%$, φ%$+1).

Using above in (3.12), we get

℘+ F(H(φ%$, φ%$+1)) 6 F
(

max
{
dR(%$, %$+1),H(φ%$, φ%$+1),

dR(%$, %$+1) +H(φ%$, φ%$+1)
2

})
. (3.13)

If dR(%$, %$+1) 6 H(φ%$, φ%$+1), then by (3.13) we have

℘+ F(H(φ%$, φ%$+1)) 6 F(H(φ%$, φ%$+1)),

which is a contradiction. Thus, we have H(φ%$, φ%$+1) < dR(%$, %$+1) and by
(3.13), we get

℘+ F(H(φ%$, φ%$+1)) 6 F(dR(%$, %$+1)).

Now, by the working of Theorem 3.3.2 we conclude that φ possesses a fixed point.

Theorem 3.3.5. For an R-complete metric space (f, dR), let φ : f→ CB(f) be
a multivalued map s.t:

(I) ∃ %0 ∈ f s.t (%0, ς) ∈ R ∀ ς ∈ φ%0;

(II) For each (%, ς) ∈ R, we have (φ%, φς) ∈ R;

(III) Either φ is RH-continuous or for any R-sequence {%$}$∈N s.t %$ → % as
$ → +∞, we have (%$, %) ∈ R ∀ $ ∈ N;

(IV) If for some F ∈ F′, ∃ ℘ > 0 with H(φ%, φς) > 0 s.t for every (%, ς) ∈ R, we
have

℘+F(H(φ%, φς)) 6 F
(

max
{
dR(%, ς), D(%, φ%), D(ς, φς), D(%, φς) +D(ς, φ%)

2

})
.

Then, φ possesses a fixed point.
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Proof. Using the working done in Theorem 3.3.4, we obtain anR-sequence {%$}$∈N′
where %$+1 ∈ φ%$ ∀ $ ∈ N′. Suppose %1 6∈ φ%1, then we have

℘+ F(H(φ%0, φ%1)) 6 F
(

max
{
dR(%0, %1), D(%0, φ%0), D(%1, φ%1),

D(%0, φ%1) +D(%1, φ%0)
2

})
6 dR(%0, %1)).

Since, φ%1 is closed and %2 ∈ φ%1, then by working done in Theorem 3.3.3, we
obtain

inf
ς∈φ%1

F(dR(%1, ς)) 6 F(dR(%1, %2)) 6 F(H(φ%0, φ%1)) 6 F(dR(%0, %1))− ℘

F(dR(%1, %2)) 6 F(dR(%0, %1))− ℘.

The existence of fixed point now follows on the lines of Theorem 3.3.3.

Example 3.3.6. Consider f = {0, 1, 2, 3, 4} and d(%, ς) = |% − ς|. Define φ :
f→ CB(f) as:

φ% =

 {0, 1} for % = 3;
{0} otherwise.

Let R = {(0, 0), (0, 1), (0, 3)} and F(µ) = ln(µ). We have (f, dR) is an R-
complete metric space. Also, φ is RH-continuous and satisfies condition (II) of
Theorem 3.3.5. Next, for (%, ς) ∈ R with H(φ%, φς)) > 0, we have % = 0, ς = 3
and

℘+F(H(φ%, φς)) 6 F
(

max
{
dR(%, ς), D(%, φ%), D(ς, φς), D(%, φς) +D(ς, φ%)

2

})
.

Thus, the given R-metric space satisfies all the condition of Theorem 3.3.5 and hence,
φ has a fixed point which is % = 0.

Remark 3.3.7. It should be noted that the given example in the absence of re-
lation R does not satisfy the multivalued contraction condition given in Altun
et al. (2015) and Acar et al. (2014). Also noted that the given relation R is not
orthogonal thus, the results of Sharma & Chandok (2020) cannot be applied.

Example 3.3.8. Let f = f1 ∪f2, where f1 = [0, 1/2] and f2 = (1/2, 1). Define
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a metric d : f× f→ [0,+∞) as:

d(%, ς) =

 0.01+ | %− ς | if % 6= ς;
0 if % = ς.

Also, define R = {(%, ς) ∈ f2 s.t %.ς ∈ {%, ς}}. Then, (f, dR) is an R-metric
space. Let a multivalued map φ : f→ CB(f) be defined as:

φ% =

 {0} if % ∈ f1;
{0, 1/3} if % ∈ f2.

Let F(µ) = ln(µ), then we have (f, dR) is an R-complete metric space and in
addition, the following conditions hold:

(i) For 0 ∈ f, (0, φ0) ∈ R.

(ii) For any (%, ς) ∈ R, (φ%, φς) ∈ R.

(iii) For any R-sequence {%$}$∈N with %$ → % as $ → +∞ then % = 0 and
thus (%$, %) ∈ R ∀ $ ∈ N.

(iv) Let (%, ς) ∈ R then % = 0 or/and ς = 0. Consider % = 0 (the case for ς = 0
follows similarly), then we have the following cases:

Case (i): Let ς ∈ f1 then

℘+ ln(H(φ%, φς)) = ℘+ ln(H(0, 0))→ −∞,

and, ln(dR(%, ς)) = ln(dR(0, ς)) > −∞.

Thus, contraction condition

℘+ ln(H(φ%, φς)) 6 ln(dR(%, ς)),

holds for any finite ℘ > 0.

Case (ii): Let ς ∈ f2 then,

℘+ ln(H(φ%, φς)) = ℘+ ln(H({0}, {0, 1/3})) = ℘+ ln(0.3433),

and, ln(dR(%, ς)) = ln(dR(0, ς)) = ln(0.01 + ς) > ln(0.51).
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Thus, contraction condition

℘+ ln(H(φ%, φς)) 6 ln(dR(%, ς)),

holds for 0 < ℘ < 0.396.

Hence, from the above example, we conclude that a multivalued map φ satisfies all
condition of Theorem 3.3.3 and thus possesses a fixed point which is % = 0.

Remark 3.3.9. However, it should be noted here that since the space (f, dR) is
an incomplete metric space thus results of Wardowski (2012), Wardowski & Dung
(2014), Acar et al. (2014), Altun et al. (2015) are not applicable.

Theorem 3.3.10. For an R-complete metric space (f, dR), let φ : f → CB(f)
be a multivalued map s.t:

(I) ∃ %0 ∈ f with (%0, φ%0) ∈ R;

(II) For each (%, ς) ∈ R implies (φ%, φς) ∈ R;

(III) Either φ is RH-continuous on f or there is an R-sequence {%$}$∈N, where
%$ → % as $ → +∞ implies (%$, %) ∈ R ∀ $ ∈ N;

(IV) If for some F ∈ F′, there are two constants ℘ > 0 and κ > 0 s.t for every
(%, ς) ∈ R with H(φ%, φς) > 0, we have

℘+ F (H(φ%, φς)) 6 F(dR(%, ς) + κD(ς, φ%)).

Then, φ possesses a fixed point.

Proof. On defining a sequence {%$}$∈N′ where %$+1 ∈ φ%$ ∀ $ ∈ N′, we have
(%0, %1) ∈ R by using condition (I). Further, on using condition (II), we obtain
(φ%0, φ%1) ∈ R, that is, (%1, %2) ∈ R. The repetitive use of condition (II) yields
that, (%$, %$+1) ∈ R ∀ $ ∈ N′. Thus, {%$}$∈N′ is an R-sequence in f. Next, if
%1 ∈ φ%1 then we are done. Suppose %1 6∈ φ%1 and since φ%1 is closed subset of f
implies D(%1, φ%1) > 0. Now, D(%1, φ%1) 6 H(φ%0, φ%1) thus by (F1), we have

F(D(%1, φ%1)) 6 F(H(φ%0, φ%1)) 6 F(dR(%0, %1) + κD(%1, φ%0))− ℘

= F(dR(%0, %1))− ℘. (3.14)
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Thereby using (F4) property of F , we obtain

F(D(%1, φ%1)) = F
(

inf
ς∈φ%1

dR(%1, ς)
)

= inf
ς∈φ%1

F
(
dR(%1, ς)

)
. (3.15)

On using (3.14) in (3.15) and as %2 ∈ φ%1, we obtain that

F(D(%1, φ%1)) = inf
ς∈φ%1

F(dR(%1, ς)) 6 F(dR(%1, %2))

6 F(H(φ%0, φ%1))

6 F(dR(%0, %1))− ℘

< F(dR(%0, %1)). (3.16)

So from (3.16), we have dR(%1, %2) 6 dR(%0, %1). Again, if %2 ∈ φ%2 then we are
done, else suppose %2 6∈ φ%2, we obtain dR(%2, %3) 6 dR(%1, %2) − ℘. Continuing
in a similar manner suppose %$ 6∈ φ%$ ∀ $ ∈ N0, we obtain dR(%$, %$+1) <
dR(%$−1, %$), that is, {dR(%$, %$+1)}$∈N0 is a decreasing sequence of non-negative
real numbers and as

F(dR(%$, %$+1)) 6 F(dR(%$−1, %$))− ℘ 6 F(dR(%$−2, %$−1))− 2℘

6 · · · 6 F(dR(%0, %1))−$℘. (3.17)

On letting $ → +∞ in (3.17), we get lim
$→+∞

dR(%$, %$+1) = 0. By (F3), ∃ 0 <
γ < 1 s.t

lim
$→+∞

(dR(%$, %$+1))γF(dR(%$, %$+1)) = 0. (3.18)

Then, from (3.17), we have

(dR(%$, %$+1))γF(dR(%$, %$+1))− (dR(%$, %$+1))γF(dR(%0, %1))

6 −$℘(dR(%$, %$+1))γ. (3.19)

Taking limit as $ → +∞ in (3.19) and using (3.18), we have

lim
$→+∞

$(dR(%$, %$+1))γ = 0.

Thus, ∃ $1 ∈ N0 s.t for $ ∈ N0 with $ > $1, we obtain

dR(%$, %$+1) 6 1
$1/γ . (3.20)

Next, we show that {%$}$∈N0 is an R-Cauchy sequence. Consider $,$∗ ∈ N0,
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where $∗ > $ > $1. By (3.20) and triangle inequality, we obtain

dR(%$∗ , %$) 6 dR(%$, %$+1) + dR(%$+1, %$+2) + · · ·+ dR(%$∗−1, %$∗)

6
+∞∑
i=$

dR(%i, %i+1) 6
+∞∑
i=$

1
i1/γ

. (3.21)

Using the convergence of the series
+∞∑
i=$

1
i1/γ

in (3.21), we get that {%$}$∈N0 is an

R-Cauchy sequence and using R-completeness of f, ∃ %∗ ∈ f s.t lim
$→+∞

%$ = %∗.
We now claim that %∗ ∈ φ%∗.

Case (i): Let φ be an RH-continuous map. Since %$+1 ∈ φ%$, we have

D(%$+1, φ%
∗) 6 H(φ%$, φ%∗). (3.22)

Taking limit as $ → +∞ in (3.22) and by R-continuity of φ, we get

D(%∗, φ%∗) = lim
$→+∞

D(%$+1, φ%
∗) 6 lim

$→+∞
H(φ%$, φ%∗) = 0.

Thus, %∗ ∈ φ%∗.

Case (ii): Let there be an R-sequence {%$}$∈N′ where %$ → %∗ as $ → +∞
implies (%$, %∗) ∈ R ∀ $ ∈ N′. Instead, let %∗ 6∈ φ%∗ then ∃ $′ ∈ N′ s.t
%∗ 6∈ {%$} ∀ $ > $′ implies H(φ%$, φ%∗) > 0 and also by given condition, we
have (%$, %∗) ∈ R ∀ $ ∈ N′.

F(D(%$+1, φ%
∗)) 6 ℘+ F(H(φ%$, φ%∗)) < F(dR(%$, %∗)). (3.23)

On letting $ → +∞ in (3.23), we obtain D(%∗, φ%∗) = 0 which is not true. Hence,
%∗ ∈ φ%∗.

Corollary 3.3.11. For an R-complete metric space (f, dR), define a multivalued
map φ : f→ K(f) s.t:

(I) ∃ %0 ∈ f, where (%0, φ%0) ∈ R;

(II) For every (%, ς) ∈ R implies (φ%, φς) ∈ R;

(III) Either φ is RH-continuous on f or there is an R-sequence {%$}$∈N, where
%$ → % as $ → +∞ implies (%$, %) ∈ R ∀ $ ∈ N;

(IV) If for some F ∈ F, there are two constants ℘ > 0 and κ > 0 withH(φ%, φς) >
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0 s.t for each (%, ς) ∈ R, we have

℘+ F(H(φ%, φς)) 6 F(dR(%, ς) + κD(ς, φ%)).

Then, φ possesses a fixed point.

Proof. Working on the lines of Theorem 3.3.10, we obtain anR-sequence {%$}$∈N′
in f where %$+1 ∈ φ%$ ∀ $ ∈ N′. Suppose %1 6∈ φ%1 and as φ%1 is compact, so ∃
some %2 ∈ φ%1, with

D(%1, φ%1) = dR(%1, %2) 6 H(φ%0, φ%1),

that is, F(D(%1, φ%1)) 6 F(dR(%1, %2)) 6 F(H(φ%0, φ%1))

6 F(dR(%0, %1) + κD(%1, φ%0))− ℘

= F(dR(%0, %1))− ℘. (3.24)

So from (3.24), we have dR(%1, %2) 6 dR(%0, %1). Again, if %2 ∈ φ%2 then we are
done, else for %2 6∈ φ%2, we have dR(%2, %3) 6 dR(%1, %2). Continuing in a similar
manner, we obtain dR(%$, %$+1) < dR(%$−1, %$), that is, {dR(%$, %$+1)}$∈N0 is
a decreasing sequence of non-negative real numbers. The proof now follows from
Theorem 3.3.10.

Theorem 3.3.12. For an R-complete metric space (f, dR), let α : f × f →
[0,+∞) and φ : f→ CB(f) be a multivalued α-admissible map s.t:

(I) ∃ %0 ∈ f, where (%0, φ%0) ∈ R and α(%0, φ%0) > 1;

(II) For every (%, ς) ∈ R implies (φ%, φς) ∈ R;

(III) Either φ is RH-continuous on f or there is an R-sequence {%$}$∈N, where
%$ → % as $ → +∞ implies α(%$, %) > 1 and (%$, %) ∈ R ∀ $ ∈ N;

(IV) If for some F ∈ F′, ∃ ℘ > 0 with H(φ%, φς) > 0 s.t for every (%, ς) ∈ R, we
have

℘+ α(%, ς)F(H(φ%, φς)) 6 F(dR(%, ς)).

Then, φ possesses a fixed point.

Proof. By the working done in Theorem 3.3.10, we obtain anR-sequence {%$}$∈N′
where %$+1 ∈ φ%$ ∀ $ ∈ N′. By condition (I), we get α(%0, %1) > 1. Using
multivalued α-admissibility of φ, we have α(φ%0, φ%1) > 1 implies α(%1, %2) > 1.
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Continuing in a similar way, we get α(%$, %$+1) > 1 ∀ $ ∈ N′. Next, if %1 ∈ φ%1,
then we are done. Suppose %1 6∈ φ%1 and as φ%1 is closed, so we haveD(%1, φ%1) > 0
and consequently D(%1, φ%1) 6 H(φ%0, φ%1), and thereby using (F4) property of
F , we obtain

F(D(%1, φ%1)) = F
(

inf
ς∈φ%1

dR(%1, ς)
)

= inf
ς∈φ%1

F
(
dR(%1, ς)

)
6 F(dR(%1, %2))

6 F(H(φ%0, φ%1)) 6 α(%0, %1)F(H(φ%0, φ%1))

6 F(dR(%0, %1))− ℘ < F(dR(%0, %1)). (3.25)

So from (3.25), we have dR(%1, %2) 6 dR(%0, %1). Again, if %2 ∈ φ%2 then we are
done, else suppose %2 6∈ φ%2, we have D(%2, φ%2) > 0, D(%2, φ%2) 6 H(φ%1, φ%2)
and,

dR(%2, %3) 6 dR(%1, %2).

Further, if %γ ∈ φ%γ for some γ ∈ N′, then the fixed point is obtained. Suppose
%$ 6∈ φ%$ ∀ $ ∈ N′ and as φ%$ is closed so D(%$, φ%$) > 0 thus, we have

F(D(%$, φ%$)) = inf
ς∈φ%$

F(dR(%$, ς))

6 F(dR(%$, %$+1)) 6 F(H(φ%$−1, φ%$))

6 α(%$−1, %$)F(H(φ%$−1, φ%$))

6 F(dR(%$−1, %$))− ℘ < F(dR(%$−1, %$)). (3.26)

Hence, {dR(%$, %$+1)}$∈N′ is a decreasing sequence of non-negative real numbers.
From (3.26), we get

F(dR(%$, %$+1) 6 F(dR(%$−1, %$))− ℘. (3.27)

On letting $ → +∞ in (3.27), then lim
$→+∞

dR(%$, %$+1) = 0. By (F3), ∃ 0 < γ <

1 s.t

lim
$→+∞

(dR(%$, %$+1))γF(dR(%$, %$+1)) = 0. (3.28)

Then from (3.27), we have

(dR(%$, %$+1))γ
(
F(dR(%$, %$+1))−F(dR(%0, %1))

)
6 −$℘(dR(%$, %$+1))γ.

(3.29)
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Taking limit as $ → +∞ in (3.29) and using (3.28), we have

lim
$→+∞

$(dR(%$, %$+1))γ = 0.

Thus, ∃ $1 ∈ N0 so that for $ ∈ N0 with $ > $1, we obtain

dR(%$, %$+1) 6 1
$1/γ . (3.30)

We now show that {%$}$∈N0 is an R-Cauchy sequence. Consider $,$∗ ∈ N0

where $∗ > $ > $1. By (3.30) and triangle inequality, we get

dR(%$∗ , %$) 6 dR(%$, %$+1) + dR(%$+1, %$+2) + · · ·+ dR(%$∗−1, %$∗)

6
+∞∑
i=$

dR(%i, %i+1) 6
+∞∑
i=$

1
i1/γ

. (3.31)

Using the convergence of the series
+∞∑
i=$

1
i1/γ

in (3.31), we get that {%$}$∈N0 is an

R-Cauchy sequence and since f is an R-complete metric space, thus ∃ %∗ ∈ f s.t
lim

$→+∞
%$ = %∗. We now claim that %∗ ∈ φ%∗.

Case (i): Let φ be an RH-continuous map. Since %$+1 ∈ φ%$, we have

D(%$+1, φ%
∗) 6 H(φ%$, φ%∗). (3.32)

Taking limit as $ → +∞ in (3.32) and using R-continuity of φ, we obtain

D(%∗, φ%∗) = lim
$→+∞

D(%$+1, φ%
∗) 6 lim

$→+∞
H(φ%$, φ%∗) = 0.

So, %∗ ∈ φ%∗.

Case (ii): Let there be an R-sequence {%$}$∈N′ s.t %$ → %∗ as $ → +∞
implies (%$, %∗) ∈ R ∀ $ ∈ N′. Let %∗ 6∈ φ%∗, then ∃ $′ ∈ N′ s.t %∗ 6∈ {%$}
for every $ > $′ implies H(φ%$, φ%∗) > 0 and also by given condition, we have
(%$, %∗) ∈ R ∀ $ ∈ N′. Now,

F(D(%$+1, φ%
∗)) 6 F(H(φ%$, φ%∗)) 6 α(%$, %∗)F(H(φ%$, φ%∗))

< ℘+ α(%$, %∗)F(H(φ%$, φ%∗))

6 F(dR(%$, %∗)). (3.33)

On letting $ → +∞ in (3.33), we get D(%∗, φ%∗) = 0 which is a contradiction.
Hence, %∗ ∈ φ%∗.
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Corollary 3.3.13. For an R-complete metric space (f, dR), let α : f × f →
[0,+∞) and φ : f→ K(f) be a multivalued α-admissible map s.t:

(I) ∃ %0 ∈ f, where (%0, φ%0) ∈ R and α(%0, φ%0) > 1;

(II) For each (%, ς) ∈ R implies (φ%, φς) ∈ R;

(III) Either φ is RH-continuous on f or there is an R-sequence {%$}$∈N, where
%$ → % as $ → +∞ implies α(%$, %) > 1 and (%$, %) ∈ R ∀ $ ∈ N;

(IV) If for some F ∈ F, ∃ ℘ > 0 with H(φ%, φς) > 0 s.t for every (%, ς) ∈ R, we
get

℘+ α(%, ς)F(H(φ%, φς)) 6 F(dR(%, ς)).

Then, φ possesses a fixed point.

Proof. Working on the footprints of Theorem 3.3.10, we obtain an R-sequence
{%$}$∈N′ where %$+1 ∈ φ%$ ∀ $ ∈ N′. Also, from the working in Theorem
3.3.12, we get α(%$, %$+1) > 1 ∀ $ ∈ N′. Next, suppose %1 6∈ φ%1 and as φ%1 is
compact, so ∃ some %2 ∈ φ%1, s.t

D(%1, φ%1) = dR(%1, %2) 6 H(φ%0, φ%1),

that is, F(dR(%1, φ%1)) 6 F(H(φ%0, φ%1))

6 α(%0, %1)F(H(φ%0, φ%1)) 6 F(dR(%0, %1))− ℘.

Next, if %2 ∈ φ%2, then the fixed point is obtained. Suppose %2 6∈ φ%2 and as φ%2

is compact so ∃ some %3 ∈ φ%2 s.t

D(%2, φ%2) = dR(%2, %3) 6 H(φ%1, φ%2),

that is, F(dR(%2, φ%3)) 6 F(H(φ%1, φ%2))

6 α(%1, %2)F(H(φ%1, φ%2)) 6 F(dR(%1, %2))− ℘.

If %k ∈ φ%k for some k ∈ N′, then we are done. Suppose %$ 6∈ φ%$ ∀ $ ∈ N′ and
as φ%$ is compact, so ∃ %$+1 ∈ φ%$, s.t

D(%$, φ%$) = dR(%$, %$+1) 6 H(φ%$−1, φ%$),

that is, F(dR(%$, %$+1)) 6 F(H(φ%$−1, φ%$))

6 α(%$−1, %$)F(H(φ%$−1, φ%$))

6 F(dR(%$−1, %$))− ℘.
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Hence, {dR(%$, %$+1)}$∈N′ is a decreasing sequence of non-negative real numbers.
The proof now follows on the line of Theorem 3.3.12.

Corollary 3.3.14. For an R-complete metric space (f, dR), let φ : f → f be a
self-map s.t:

(I) ∃ %0 ∈ f, where (%0, φ%0) ∈ R;

(II) φ is R-preserving;

(III) Either φ is R-continuous on f or there is an R-sequence {%$}$∈N, where
%$ → % as $ → +∞ implies (%$, %) ∈ R ∀ $ ∈ N;

(IV) ∃ some ℘ > 0 s.t for every (%, ς) ∈ R with dR(φ%, φς) > 0, we have

dR(φ%, φς) 6 e−℘dR(%, ς).

Then, φ possesses a fixed point.

Proof. Considering φ as a self-map on f with F(µ) = ln(µ) in Corollary 3.3.13,
we obtain the result.

Theorem 3.3.15. For an R-complete metric space (f, dR), let φ : f → CB(f)
be a multivalued α-admissible map s.t:

(I) ∃ %0 ∈ f, where (%0, φ%0) ∈ R;

(II) For each (%, ς) ∈ R implies (φ%, φς) ∈ R;

(III) Either φ is RH-continuous on f or there is an R-sequence {%$}$∈N, where
%$ → % as $ → +∞ implies α(%$, %) > 1 and (%$, %) ∈ R ∀ $ ∈ N;

(IV) If for some F ∈ F′, ∃ ℘ > 0 s.t for every (%, ς) ∈ R with H(φ%, φς) > 0, we
have

℘+α(%, ς)F(H(φ%, φς)) 6 F
(

max
{
dR(%, ς),D(%, φ%),D(ς, φς), D(%, φς) +D(ς, φ%)

2

})
.

Then, φ possesses a fixed point.

Proof. Working on the lines of Theorem 3.3.10, we get an R-sequence {%$}$∈N′
with %$+1 ∈ φ%$ ∀ $ ∈ N′. Also, from the working in Theorem 3.3.12, we
obtain α(%$, %$+1) > 1 ∀ $ ∈ N′. Next, if %1 ∈ φ%1, then we are done. Suppose
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%1 6∈ φ%1 and as φ%1 is closed, so we have D(%1, φ%1) > 0 and consequently
D(%1, φ%1) 6 H(φ%0, φ%1). Thereby using (F4) property of F , we get

F(D(%1, φ%1)) = inf
ς∈φ%1

F(dR(%1, ς)) 6 F(dR(%1, %2))

6 F(H(φ%0, φ%1)) 6 α(%0, %1)F(H(φ%0, φ%1)). (3.34)

Next, for some ℘ > 0, using condition (IV ) in (3.34), we have

℘+ α(%0, %1)F(H(φ%0, φ%1)) 6F
(

max
{
dR(%0, %1),D(%0, φ%0),D(%1, φ%1),

D(%0, φ%1) +D(%1, φ%0)
2

})

6F
(

max
{
dR(%0, %1),H(φ%0, φ%1), D(%0, φ%1)

2

})

6F
(

max
{
dR(%0, %1),H(φ%0, φ%1),

dR(%0, %1) +H(φ%0, φ%1)
2

})
. (3.35)

If dR(%0, %1) < H(φ%0, φ%1), then by (3.35) we have

℘+ α(%0, %1)F(H(φ%0, φ%1)) 6 F(H(φ%0, φ%1)),

which is a contradiction for ℘ > 0, where α(%0, %1) > 1. Thus, we haveH(φ%0, φ%1) <
dR(%0, %1) and by (3.34) and (3.35), we get

F(dR(%1, %2)) 6 α(%0, %1)F(H(φ%0, φ%1)) 6 F(dR(%0, %1))− ℘.

Further, suppose that %$ 6∈ φ%$ ∀ $ ∈ N′. As φ%$ is closed, so we have
D(%$, φ%$) > 0 and consequently D(%$, φ%$) 6 H(φ%$−1, φ%$). On using (F4)
property of F , we get

F(D(%$, φ%$)) = inf
ς∈φ%$

F(dR(%$, ς)) 6 F(dR(%$, %$+1)) 6 F(H(φ%$−1, φ%$))

6 α(%$−1, %$)F(H(φ%$−1, φ%$)). (3.36)

Again, for some ℘ > 0, using condition (IV ), we have

℘+ α(%$−1, %$)F(H(φ%$−1, φ%$)) 6 F
(

max
{
dR(%$−1, %$),D(%$−1, φ%$−1),
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D(%$, φ%$), D(%$−1, φ%$) +D(%$, φ%$−1)
2

})

6 F
(

max
{
dR(%$−1, %$),H(φ%$−1, φ%$), D(%$−1, φ%$)

2

})

6 F
(

max
{
dR(%$−1, %$),H(φ%$−1, φ%$), dR(%$−1, %$) +H(φ%$−1, φ%$)

2

})
.

(3.37)

If dR(%$−1, %$) 6 H(φ%$−1, φ%$), then by (3.37) we have

℘+ α(%$−1, %$)F(H(φ%$−1, φ%$)) 6 F(H(φ%$−1, φ%$)),

which is a contradiction for ℘ > 0, where α(%$−1, %$) > 1. Thus, we have
H(φ%$−1, φ%$) < dR(%$−1, %$) and by (3.36) and (3.37), we get

F(dR(%$, %$+1)) 6 α(%$−1, %$)F(H(φ%$−1, φ%$)) 6 F(dR(%$−1, %$))− ℘.

Now, by the working done in Theorem 3.3.12, we obtain that ∃ %∗ ∈ f s.t
lim

$→+∞
%$ = %∗. We now claim that %∗ ∈ φ%∗.

Case (i): Let φ be an RH-continuous map. Since %$+1 ∈ φ%$, we have

D(%$+1, φ%
∗) 6 H(φ%$, φ%∗). (3.38)

Taking limit as $ → +∞ in (3.38) and using R-continuity of φ, we obtain

D(%∗, φ%∗) = lim
$→+∞

D(%$+1, φ%
∗) 6 lim

$→+∞
H(φ%$, φ%∗) = 0.

So, %∗ ∈ φ%∗.

Case (ii): Let there be an R-sequence {%$}$∈N′ , where %$ → %∗ as $ → +∞
implies (%$, %∗) ∈ R ∀ $ ∈ N′. Let %∗ 6∈ φ%∗, then ∃ $′ ∈ N′ s.t %∗ 6∈ {%$}
for every $ > $′ implies H(φ%$, φ%∗) > 0 and also by given condition, we have
(%$, %∗) ∈ R ∀ $ ∈ N′. Now,

F(D(%$+1, φ%
∗)) 6 F(H(φ%$, φ%∗))

6 α(%$, %∗)F(H(φ%$, φ%∗))

< ℘+ α(%$, %∗)F(H(φ%$, φ%∗))

6 F
(

max
{
dR(%$, %),D(%$, φ%$),D(%, φ%),
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D(%$, φ%) +D(%, φ%$)
2

})
,

implies, D(%$+1, φ%
∗) 6 max

{
dR(%$, %),D(%$, φ%$),D(%, φ%),

D(%$, φ%) +D(%, φ%$)
2

}
(3.39)

On letting $ → +∞ in (3.39), we obtain D(%∗, φ%∗) = 0 which is not true. Hence,
%∗ ∈ φ%∗.

Corollary 3.3.16. For an R-complete metric space (f, dR), let φ : f→ K(f) be
a multivalued α-admissible map s.t:

(I) ∃ %0 ∈ f, where (%0, φ%0) ∈ R;

(II) For each (%, ς) ∈ R implies (φ%, φς) ∈ R;

(III) Either φ is RH-continuous on f or there is an R-sequence {%$}$∈N, where
%$ → % as $ → +∞ implies α(%$, %) > 1 and (%$, %) ∈ R ∀ $ ∈ N;

(IV) If for some F ∈ F, ∃ ℘ > 0 s.t for each (%, ς) ∈ R with H(φ%, φς) > 0, we
have

℘+α(%, ς)F(H(φ%, φς)) 6 F
(

max
{
dR(%, ς),D(%, φ%),D(ς, φς), D(%, φς) +D(ς, φ%)

2

})
.

Then, φ possesses a fixed point.

Proof. Working on the lines of Theorem 3.3.10, we get an R-sequence {%$}$∈N′
with %$+1 ∈ φ%$ ∀ $ ∈ N′. Also, from the working in Theorem 3.3.12, we obtain
α(%$, %$+1) > 1 ∀ $ ∈ N′. Suppose %1 6∈ φ%1 and as φ%1 is compact, so ∃ some
%2 ∈ φ%1, s.t

D(%1, φ%1) = dR(%1, %2) 6 H(φ%0, φ%1),

that is, F(D(%1, φ%1)) = F(dR(%1, %2)) 6 F(H(φ%0, φ%1))

6 α(%0, %1)F(H(φ%0, φ%1))

℘+ F(dR(%1, φ%1)) 6 ℘+ α(%0, %1)F(H(φ%0, φ%1)),

(3.40)

for some ℘ > 0. Next, using condition (IV ) in (3.40), we have
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℘+ α(%0, %1)F(H(φ%0, φ%1)) 6F
(

max
{
dR(%0, %1),D(%0, φ%0),D(%1, φ%1),

D(%0, φ%1) +D(%1, φ%0)
2

})

6F
(

max
{
dR(%0, %1),H(φ%0, φ%1), D(%0, φ%1)

2

})

6F
(

max
{
dR(%0, %1),H(φ%0, φ%1),

dR(%0, %1) +H(φ%0, φ%1)
2

})
. (3.41)

If dR(%0, %1) < H(φ%0, φ%1), then by (3.41) we have

℘+ α(%0, %1)F(H(φ%0, φ%1)) 6 F(H(φ%0, φ%1)),

which is a contradiction for ℘ > 0 and α(%0, %1) > 1. Thus, we haveH(φ%0, φ%1) <
dR(%0, %1). By (3.40) and (3.41), we get

F(dR(%1, %2)) 6 α(%0, %1)F(H(φ%0, φ%1)) 6 F(dR(%0, %1))− ℘.

Further, suppose %$ 6∈ φ%$ ∀ $ ∈ N′. As φ%$ is compact, so ∃ some %$+1 ∈ φ%$,
s.t

D(%$, φ%$) = dR(%$, %$+1) 6 H(φ%$−1, φ%$),

thus, F(D(%$, φ%$)) = F(dR(%$, %$+1)) 6 F(H(φ%$−1, φ%$))

6 α(%$−1, %$)F(H(φ%$−1, φ%$)),

that is, ℘+ F(dR(%$, φ%$)) 6 ℘+ α(%$−1, %$)F(H(φ%$−1, φ%$)),

(3.42)

for some ℘ > 0. Again, on using condition (IV ) in (3.42), we have

℘+ α(%$−1, %$)F(H(φ%$−1, φ%$))

6 F
(

max
{
dR(%$−1, %$),D(%$−1, φ%$),D(%$, φ%$),

D(%$−1, φ%$) +D(%$, φ%$−1)
2

})
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6 F
(

max
{
dR(%$−1, %$),H(φ%$−1, φ%$), D(%$−1, φ%$)

2

})

6 F
(

max
{
dR(%$−1, %$),H(φ%$−1, φ%$), dR(%$−1, %$) +H(φ%$−1, φ%$)

2

})
.

(3.43)

If dR(%$, %$+1) 6 H(φ%$, φ%$+1), then by (3.43) we have

℘+ α(%$, %$+1)F(H(φ%$, φ%$+1)) 6 F(H(φ%$, φ%$+1)),

which is a contradiction for ℘ > 0 and α(%$, %$+1) > 1. Thus, we haveH(φ%$, φ%$+1) <
dR(%$, %$+1). By (3.42) and (3.43), we get

dR(%$, %$+1) 6 α(%$−1, %$)F(H(φ%$−1, φ%$)) 6 F(dR(%$−1, %$)).

Now, by the working done in Theorem 3.3.15 we conclude that φ has a fixed
point.

3.4 Existence of Solution to Non-linear Volterra
Integral Equation with Binary Relation

The results obtained in the preceding section will now be implemented on a
non-homogeneous, non-linear Volterra integral equation equipped with a binary
relation in order to substantiate the existence of its solution. Consider f =
C([0, 1],R+), that is, set of all continuous functions from [0, 1] to R+ and define
d : f× f→ [0,+∞) as

d(Γ,Υ) = ‖Γ(%)−Υ(%)‖∞,[0,1].

Let relation R be defined as R = {(Γ,Υ) ∈ f × f : Γ(%).Υ(%) > 0 ∀ % ∈ [0, 1]}.
Define φ : f→ f as

φΓ(%) = ξ(%) + Ω
(∫ %

0
K(%, ς,Γ(ς))dς

)
, (3.44)

where ξ(%) is a continuous non-negative real valued function on [0, 1], kernel
K(%, ς,Γ(ς)) is a continuous and Ω is a linear operator on f so ∃ ℘ > 0 s.t
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‖Ω(Γ)‖ 6 ℘‖Γ‖ and

‖Ω‖ = sup
{
‖Ω(Γ)‖
‖Γ‖ : Γ 6= 0 and Γ ∈ f

}
.

Clearly, here φ is a non-homogeneous, non-linear Volterra integral equation along
with R as defined above.

Theorem 3.4.1. Let (f, dR) be defined as above. Let φ be a self-map on f given
by (3.44) where kernel K(%, ς,Γ(ς)) s.t for (Γ,Υ) ∈ R,

|K(%, ς,Γ(ς))−K(%, ς,Υ(ς))| 6 e−℘|Γ(ς)− Γ(ς)|,

where ς ∈ [0, 1] and for some ℘ > 0. Then the non-homogeneous, non-linear
Volterra equation (3.44) possesses a solution.

Proof. For f = C([0, 1],R+) with dR(Γ,Υ) = ‖Γ(%)−Υ(%)‖∞,[0,1] and relation R
on f given by R = {(Γ,Υ) ∈ f × f : Γ(%).Υ(%) > 0 ∀ % ∈ [0, 1]}, then (f, dR)
an R-complete metric space. We now show that φ given by (3.44) satisfies all
hypotheses of Corollary 3.3.14.

(i) ∃ Ô (zero function) in f with (Ô, φÔ) ∈ R.

(ii) For (Γ,Υ) ∈ R, we have Γ(%).Υ(%) > 0 implies φΓ(%).φΥ(%) > 0.

(iii) By the definition of φ in equation (3.44), we have φ is R-continuous.

(iv) Let (Γ,Υ) ∈ R with dR(φΓ, φΥ) > 0, then

|φ(Γ(%))− φ(Υ(%))| =
∣∣∣∣∣Ω
(∫ %

0
K(%, ς,Γ(ς))dς

)
−

Ω
(∫ %

0
K(%, ς,Υ(ς))dς

)∣∣∣∣∣
6 ‖Ω‖

∫ %

0

∣∣∣K(%, ς,Γ(ς))−K(%, ς,Υ(ς))
∣∣∣dς,

that is, dR(φ(Γ(%)), φ(Υ(%))) 6 ‖Ω‖e−℘dR(Γ(%),Υ(%))

= e(℘−ln ‖Ω‖)dR(Γ(%),Υ(%)).

Thus, the non-homogeneous non-linear Volterra integral equation defined in (3.44)
satisfies hypotheses of Corollary 3.3.14 therefore, the integral equation possesses
a solution.
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3.5 Hyers-Ulam Stability of Solution of Non-linear
Volterra Integral Equation with Binary Re-
lation

Now, we present the Hyers-Ulam stability due to Hyers (1941) and Ulam (1960)
in the frame of an R-metric space (f, dR). Let φ : f→ f be a self-map with the
fixed point %, that is,

φ% = %, (3.45)

and let ς ∈ f satisfies the inequality

dR(φς, ς) 6 ε, (3.46)

with ε > 0, then the fixed point equation given in (3.45) is c.t.b Hyers-Ulam stable
if ∃ δ > 0 s.t for each ε-solution ς∗ of (3.46), where ε > 0, ∃ solution %∗ of (3.45)
with

dR(%∗, ς∗) 6 δε.

Next, we show that the fixed point equation φΓ = Γ where φ is defined by (3.44)
is Hyers-Ulam stable. But before that consider the iterative scheme given as:

φΓ$(%) = ξ(%) + Ω
(∫ %

0
K(%, ς,Γ$(ς))dς

)
= Γ$+1(%),

for $ ∈ N. Then,

|Γ$+1(%)− Γ$(%)| 6
∣∣∣∣∣Ω
(∫ %

0
K(%, ς1,Γ$(ς1))dς1 −

∫ %

0
K(%, ς1,Γ$−1(ς1))dς1

)∣∣∣∣∣
6‖Ω‖e−℘

∫ %

0
|Γ$(ς1)− Γ$−1(ς1)|dς1

6
(
‖Ω‖e−℘

)2 ∫ %

0

∫ ς1

0
|Γ$−1(ς2)− Γ$−2(ς2)|dς2dς1

6
(
‖Ω‖e−℘

)$−1 ∫ %

0

∫ ς1

0
· · ·

∫ ς$−2

0
|Γ2(ς$−1)−

Γ1(ς$−1)|dς$−1 . . . dς2 dς1

6
(
‖Ω‖e−℘

)$−1
d(Γ1, φΓ1)

∫ %

0

∫ ς1

0
· · ·

∫ ς$−2

0
dς$−1 . . . dς2 dς1,
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thus, |Γ$+1(%)− Γ$(%)| 6 (‖Ω‖e−℘)$−1 %$−1

($ − 1)!dR(Γ1, φΓ1).

Theorem 3.5.1. For an R-complete metric space (f, dR) as defined in Theorem
3.4.1 along with the condition (Γ,Υ) ∈ R for every ε-solution Γ∗ and Υ∗, then the
fixed point equation φΓ = Γ is Hyer-Ulam stable.

Proof. By the working done in Theorem 3.4.1, ∃ Γ∗ in f, where φΓ∗ = Γ∗. Let Υ∗

be an ε-solution of fixed point equation, then (Γ∗,Υ∗) ∈ R, and by the working
done above, we have dR(φ$Υ∗,Γ∗) 6 ε, since φ$Υ∗ converges to Γ∗ as $ → +∞.
Also,

dR(Γ∗,Υ∗) 6 dR(Γ∗, φ$Υ∗) + dR(φ$Υ∗,Υ∗)

6 dR(Γ∗, φ$Υ∗) + dR(Υ∗, φΥ∗) + dR(φΥ∗, φ2Υ∗) + · · ·+

dR(φ$−1Υ∗, φ$Υ∗)

6 dR(Γ∗, φ$Υ∗) + dR(Υ∗, φΥ∗) + a dR(Υ∗, φΥ∗) + a2

2! dR(Υ∗, φΥ∗)

+ · · ·+ a$−1

($ − 1)!dR(Υ∗, φΥ∗)

6 (1 + ea)ε, (3.47)

where a = ‖Ω‖e−℘. Thus, from (3.47) we obtain dR(Γ∗,Υ∗) 6 δε. So, the fixed
point equation φΓ = Γ, where φ is defined by (3.44) is Hyers-Ulam stable.

3.6 Conclusion

In this chapter, we have introduced a novel approach to prove the fixed point
results for certain types of expansive maps and multivalued maps on a R-metric
space that extends, unifies and generalizes the results on multivalued and sin-
gle valued maps in the literature. However, under certain conditions the results
proved in this chapter are reduced to some well known results of the literature.

(I) If in Theorem 3.2.3 or Corollary 3.2.4 we consider relation R as universal re-
lation then we obtain the equivalent counterpart of Theorem 2.1 of Górnicki
(2016).

(II) If the binary relationR in Theorem 3.3.2 and Theorem 3.3.3 is considered to
be a universal relation on f, then the main results of Altun et al. (2015) are
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obtained. Under a similar condition in Theorem 3.3.5, a result equivalent
to one given by Acar et al. (2014) is deduced.

(III) If the binary relation R in Theorem 3.3.2 and Theorem 3.3.3 is considered
to be an orthogonal relation, that is, there is some %0 ∈ f where (%0, ς) ∈ R
∀ ς ∈ f or (ς, %0) ∈ R ∀ ς ∈ f, then the main results of Sharma & Chandok
(2020) are deduced.

(IV) On considering R as a universal relation and φ as a single valued self-map
on f in Theorem 3.3.2 and Theorem 3.3.5, the corresponding results of
Wardowski (2012) and Wardowski & Dung (2014) are obtained.

(V) On taking into account the amorphous binary relation R as a universal
relation in Theorem 3.3.10 and Corollary 3.3.11, we obtain Theorem 2.2
and Remark 3.3 of Altun et al. (2016).

(VI) If in Theorem 3.3.15 and Corollary 3.3.16 of the present chapter, we consider
α(%, ς) = 1, φ as a single valued self-map on f and R = f × f then we
obtain Theorem 2.2 and Theorem 2.4 of Mınak et al. (2014) and Wardowski
& Dung (2014), respectively.

(VII) On considering φ as a single valued self-map on f, an amorphous binary
relationR as a universal relation and κ = 0 in Theorem 3.3.10 and Corollary
3.3.11, we obtain Theorem 2.1 of Wardowski (2012).

(VIII) If we consider φ as a single valued self-map on f, an amorphous binary
relation R to be orthogonal (that is, there is some ς0 ∈ f s.t (ς0, %) ∈ R
∀ % ∈ f or (%, ς0) ∈ R ∀ % ∈ f) and κ = 0 in Theorem 3.3.10 and Corollary
3.3.11, we obtain Theorem 3.10, Theorem 3.3 and Theorem 3.3 of Baghani
et al. (2016), Mani et al. (2021) and Sawangsup et al. (2020), respectively.

(IX) If in Theorem 3.3.15 and Corollary 3.3.16 we consider α(%, ς) = 1, φ as a
single valued self-map on f and R = f×f then we obtain Theorem 2.2 of
Mınak et al. (2014).

(X) On considering φ as a single valued self-map on f, an amorphous binary
relation R as a universal relation and α(%, ς) = 1 in Theorem 3.3.12 and
Corollary 3.3.13, we obtain Theorem 2.1 of Wardowski (2012).

******
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Chapter 4

Fixed Point Results in
C∗-Algebra Valued R-Metric
Space

4.1 Introduction

Ma et al. (2014) put forward the idea of a novel metric space named C∗AV -metric
spaces and established some of the fixed point results subjected to fairly new
contractions as well as expansion maps that, over a period of time, has been
generalized by many (see Ma & Jiang (2015), Shen et al. (2018), Chandok et al.
(2019), Ghanifard et al. (2020), Mustafa et al. (2021), Shagari et al. (2023) and
references cited therein).

Inspired by the work done by Ma et al. (2014) and Alam & Imdad (2015), in this
chapter we put forward the idea of C∗AVR-metric space which generalizes the class
of C∗AV -metric space. Also, we introduce the idea of C∗AVR-contractive map and
related fixed point results along with the existence and uniqueness of coincidence
points and common fixed points using Picard-Jungck iteration process in C∗AVR-
metric space. As an application, the results obtained are applied on C∗AV -metric
space together with a directed graph. The results proved in this chapter have
been discussed in 6,7.

6Malhotra, A., Kumar, D., and Park, C. (2022). C∗-algebra valued R-metric space and fixed
point theorems. AIMS Mathematics, 7(4), 6550-6554.

7Malhotra, A., and Kumar, D. (2023). Coincidence Point and Common Fixed Point in
C∗-algebra Valued R-metric Space using Picard-Jungck Iteration Process with Application in
Graph Theory. (Communicated).
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4.2 Generalized Contraction Maps and Fixed Point
Results

Definition 4.2.1. For a set f together with B and relation R, define d : f×f→
B+. Then, (fB, dR) is c.t.b a C∗AVR-metric space if:

(i) (f,B, d) is a C∗AV -metric space;

(ii) R is a binary relation on f.

Definition 4.2.2. For a C∗AVR-metric space (fB, dR), ϕ : fB → fB is c.t.b a
C∗AVR-contractive map if ∀ %, ς ∈ fB with (%, ς) ∈ R, ∃ ν ∈ B where ‖ν‖ < 1
s.t

dR(ϕ%, ϕς) � ν∗dR(%, ς)ν.

Example 4.2.1. Let f = R, B = M2(R) with involution on B defined as A∗ = At

∀ A ∈ B, where At denotes the transpose of matrix A and zero element θB =[
0 0
0 0

]
= 0̂. For A = [aij], let

‖A‖ = max
16i,j62

|aij|.

Define d : f× f→ B+ as

d(%, ς) =
|%− ς| 0

0 |%− ς|

 .
In such case, for A = [aij], B = [bij] ∈ B, we say A � B iff aij 6 bij ∀ i, j = 1, 2.
Define R as (%, ς) ∈ R iff %.ς = 0 s.t (fB, dR) is a C∗AVR-metric space. Let
ϕ : fB → fB be defined as

ϕ(%) =

 3/25 for % ∈ N;
0 otherwise.

Now, for (%, ς) ∈ R, we must have either % or ς or both to be zero. Consider
ς = 0, then we have the following cases:

Case (i): If % ∈ fB − N. Then, we have ϕ% = 0 and eventually dR(ϕ%, ϕς) =
dR(0, 0) = 0̂. For any A ∈ B with ‖A‖ < 1, we have A∗dR(%, 0)A � 0̂ and thus

dR(ϕ%, ϕς) � A∗dR(%, ς)A.

92



Case (ii): If % ∈ N. Then

dR(ϕ%, ϕς) = dR(3/25, 0) =
3/25 0

0 3/25

 , (4.1)

and, for A =
[ 1√

5
0

0 1√
5

]
, we have

A∗dR(%, ς)A = AtdR(%, ς)A =
%/5 0

0 %/5

 . (4.2)

Thus, from (4.1) and (4.2), we obtain dR(ϕ%, ϕς) � A∗dR(%, ς)A for any % ∈ N.
The case when % = 0 can be proved in a similar manner as above. Hence, ϕ is a
C∗AVR-contractive map.

Example 4.2.2. Consider f = [0, 1], B = M2(C) with involution on B defined
as A∗ = AH ∀ A ∈ B, zero element θB =

[
0 0
0 0

]
= 0̂. For A = [aij], let ‖A‖ =

max16i,j62 |aij|. Define d : f× f→ B+ as

d(%, ς) =
|%− ς|ζ 0

0 |%− ς|ζ

 ,where ζ > 1.

In such a case, for A = [aij], B = [bij] ∈ B, we say A � B iff |aij| 6 |bij| ∀ i, j =
1, 2. Let R be defined as (%, ς) ∈ R iff %.ς = 0 then, (fB, dR) is a C∗AVR-metric
space. Let ϕ : fB → fB as

ϕ(%) =

 %/4 for % ∈ fB ∩Q;
0 otherwise.

Now, for (%, ς) ∈ R, we must have either % or ς or both to be zero. Consider
ς = 0, then

Case (i): Let % ∈ fB − Q. Then, we have dR(ϕ%, ϕς) = dR(0, 0) = 0̂. For
each A ∈ B with ‖A‖ < 1, we have 0̂ � A∗dR(%, 0)A and thus dR(ϕ%, ϕς) �
A∗dR(%, ς)A.

Case (ii): If % ∈ fB ∩Q. Then

dR(ϕ%, ϕς) = dR(%/4, 0) =
(%/4)ζ 0

0 (%/4)ζ

 , (4.3)
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and, for A =
[ 1√

2
0

0 1√
2

]
, we have

A∗dR(%, ς)A = AHdR(%, ς)A =
%ζ/2 0

0 %ζ/2

 . (4.4)

Thus, from (4.3) and (4.4), we obtain dR(ϕ%, ϕς) � A∗dR(%, ς)A for any % ∈
fB∩Q. The case when % = 0 can be proved in a similar manner as above. Hence,
ϕ is a C∗AVR-contractive map.

Definition 4.2.3. Let (fB, dR) be a C∗AVR-metric space and ϕ : fB → fB be a
self-map, then

(i) an R-sequence {%$}$∈N ⊂ fB is c.t.b convergent to % ∈ fB if for any
ε > 0, ∃ $0 ∈ N s.t ‖dR(%$, %)‖ 6 ε ∀ $ > $0.

(ii) ϕ is c.t.b R-continuous at % ∈ fB if for any R-sequence {%$}$∈N ⊂ fB

with lim
$→+∞

‖dR(%$, %)‖ = θB implies lim
$→+∞

‖dR(ϕ%$, ϕ%)‖ = θB. Also, ϕ is
R-continuous on fB if ∀ % ∈ fB, ϕ is R-continuous at %.

(iii) an R-sequence {%$}$∈N ⊂ fB is c.t.b R-Cauchy if for any ε > 0, ∃
$0 ∈ N s.t ‖dR(%$, %$∗)‖ 6 ε ∀ $,$∗ > $0.

(iv) (fB, dR) is c.t.b a complete C∗AVR-metric space if each R-Cauchy se-
quence is convergent in f.

(v) a subset ZB of fB is c.t.b a complete C∗AVR-subspace if (ZB, dR) is a complete
C∗AVR-metric space.

Example 4.2.3. Consider f = [0, 3] and B be the set of all 2×2 diagonal matrices
on C. Let involution on A ∈ B be defined as A∗ = AH , where AH is the conjugate
transpose of matrix A = [aij] and ‖A‖ = max

16i,j62
| aij |. Define d : f× f→ B+ as

d(%, ς) =
| %− ς |λ 0

0 | %− ς |λ

 ,where λ > 1.

Let R be defined as (%, ς) ∈ R iff %.ς = 0 then, (fB, dR) is a C∗AVR-metric space.
Let ϕ : fB → fB be defined as

ϕ(%) =

 %/4 for ρ ∈ fB ∩Q;
0 otherwise.
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For any convergent R-sequence {%$}$∈N, we must have lim
$→+∞

%$ = 0 and so,
lim

$→+∞
ϕ%$ = 0 = ϕ0. Thus, ϕ is an R-continuous map.

Theorem 4.2.4. Let (fB, dR) be a C∗AVR-metric space and let ZB be a complete
C∗AVR-subspace of fB. If ϕ : fB → fB is a self-map on fB s.t:

(I) ϕ(fB) ⊆ ZB;

(II) ϕ is R-preserving;

(III) ∃ some %0 ∈ fB s.t (%0, ς) ∈ R ∀ ς ∈ ϕ(fB);

(IV) ϕ is C∗AVR-contractive map;

(V) Either ϕ is R-continuous or R is dR-self closed on ZB.

Then, ϕ possesses a unique fixed point.

Proof. Define a sequence {%$}$∈N′ in fB where %1 = ϕ%0, %$+1 = ϕ$%0 =
ϕ%$ ∀ $ ∈ N. By condition (III) for some %0 ∈ fB, (%0, ϕ%0) ∈ R, that is
(%0, %1) ∈ R. Since, ϕ is R-preserving, so we have (ϕ%0, ϕ%1) = (%1, %2) ∈ R. On
continuous use of R-preserving property of ϕ, we get (%$, %$+1) ∈ R ∀ $ ∈ N′.
Thus, {%$}$∈N′ is a R-sequence in fB. Next, by using condition (IV), we obtain

dR(%$+1, %$) = dR(ϕ%$, ϕ%$−1) � ν∗dR(%$, %$−1)ν

= ν∗dR(ϕ%$−1, ϕ%$−2)ν

� (ν∗)2dR(%$−1, %$−2)ν2 � · · · � (ν∗)$ϑν$, (4.5)

where ϑ = dR(%1, %0) and ν ∈ B with ‖ν‖ < 1. Let $ > $∗, for $,$∗ ∈ N′, and
using triangle inequality along with (4.5), we get

dR(%$+1, %$∗) � dR(%$+1, %$) + · · ·+ dR(%$∗+2, %$∗+1) + dR(%$∗+1, %$∗)

�
$∑

ξ=$∗
(ν∗)ξϑνξ =

$∑
ξ=$∗

(νξ)∗ϑ1/2ϑ1/2νξ

=
$∑

ξ=$∗
(ϑ1/2νξ)∗(ϑ1/2νξ) =

$∑
ξ=$∗

|ϑ1/2νξ|2 �
∥∥∥∥∥

$∑
ξ=$∗

|ϑ1/2νξ|2
∥∥∥∥∥IB

�
$∑

ξ=$∗
‖ϑ1/2‖2‖νξ‖2IB � ‖ϑ1/2‖2

+∞∑
ξ=$∗

‖ν‖2ξIB

= ‖ϑ1/2‖2 ‖ν‖2$∗

(1− ‖ν‖)IB → θB as $∗ → +∞.
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Thus, {%$ = ϕ%$−1}$∈N is an R-Cauchy sequence in ZB so ∃ % ∈ ZB ⊂ fB with
lim

$→+∞
%$ = %.

Case (i): Consider ϕ be a R-continuous map. Since {%$}$∈N′ is R-sequence
with lim

$→+∞
%$ = %. Then,

% = lim
$→+∞

%$+1 = lim
$→+∞

ϕ%$ = ϕ%.

Thus, ϕ possesses a fixed point.

Case (ii): Consider R be dR-self closed on ZB. Since {%$}$∈N′ is an R-sequence
where %$ → % as $ → +∞. Then, ∃ a sub-sequence {%$k}k∈N of {%$}$∈N s.t
[%$k , %] ∈ R|ZB . Now,

dR(%$k+1, ϕ%) = dR(ϕ%$k , ϕ%) � ν∗dR(%$k , %)ν → θB as k → +∞.

Therefore, %$k → ϕ% as k → +∞ and by uniqueness of limit, we have % = ϕ%.
Thus, ϕ possesses a fixed point. Next, let ς be s.t ϕς = ς infact ϕ$ς = ς. By
condition (III), ∃ %0 ∈ fB s.t (%0, ς) = (%0, ϕς) ∈ R. Since ϕ is R-preserving, so
(ϕ%0, ϕς) ∈ R implies (ϕ$%0, ϕ

$ς) ∈ R. On using contractive condition of ϕ, we
have

dR(%$, ς) = dR(ϕ$%0, ϕ
$ς) � ν∗dR(ϕ$−1%0, ϕ

$−1ς)ν

� (ν∗)2dR(ϕ$−2%0, ϕ
$−2ς)(ν)2

� · · · � (ν∗)$dR(%0, ς)(ν)$. (4.6)

Taking limit as $ → +∞ in (4.6), we get dR(%, ς) = θB. Hence, ϕ possesses a
unique fixed point.

Example 4.2.5. Consider the C∗AVR-metric space as discussed in Example 4.2.2,
where the defined self-map ϕ on fB is a C∗AVR-contractive map and (fB, dR)
is a complete C∗AVR-metric space. Also, ∃ %0 = 0 ∈ fB s.t (%0, ϕ%0) ∈ R.
Further, ϕ is R-preserving (since for any (%, ς) ∈ R implies % = 0 or/and ς =
0 implies (ϕ%, ϕς) ∈ R) and for any convergent R-sequence {%$}$∈N we must
have lim

$→+∞
%$ = 0 and so is lim

$→+∞
ϕ%$ = 0 = ϕ0. Thus, ϕ is a R-continuous

map. Therefore, by Theorem 4.2.4 (case when ZB = fB), ϕ possesses a fixed point
viz. % = 0.

The upcoming theorem proves an analogues result of Kannan (1968) endowed
with a binary relation R under similar setting.
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Theorem 4.2.6. Let (fB, dR) be a C∗AVR-metric space and let ZB be a complete
C∗AVR-subspace of fB. If ϕ : fB → fB is a self-map on fB s.t:

(I) ϕ(fB) ⊆ ZB;

(II) ϕ is R-preserving;

(III) There exists some %0 ∈ fB where (%0, ς) ∈ R ∀ ς ∈ ϕ(fB);

(IV) For all %, ς ∈ fB with (%, ς) ∈ R, ∃ ν ∈ B′+, where ‖ν‖ < 1/2 s.t

dR(ϕ%, ϕς) � ν(dR(ϕ%, %) + dR(ϕς, ς));

(V) Either ϕ is R-continuous or R is dR-self closed on ZB.

Then, ϕ possesses a unique fixed point.

Proof. By working done in Theorem 4.2.4, we get an R-sequence {%$}$∈N′ in fB

where (%$, %$+1) ∈ R for $ ∈ N′. Using condition (IV), we get

dR(%$+1, %$) = dR(ϕ%$, ϕ%$−1) � ν(dR(ϕ%$, %$) + dR(ϕ%$−1, %$−1))

= ν(dR(%$+1, %$) + dR(%$, %$−1)),

therefore, (IB − ν)dR(%$+1, %$) � νdR(%$, %$−1).

Now, ν ∈ B′+ and ‖ν‖ < 1/2. Thus, by Lemma 1.2.1, (IB − ν) and ν(IB − ν)−1 ∈
B′+ with ‖ν(IB − ν)−1‖ < 1, so we have

dR(%$+1, %$) � ν(IB − ν)−1dR(%$, %$−1),

= bdR(%$, %$−1)

� · · · � b$dR(%1, %0) = b$ϑ, (4.7)

where b = ν(IB − ν)−1 and ϑ = dR(%1, %0). Let $ > $∗, for $,$∗ ∈ N, and using
triangle inequality along with (4.7), we get

dR(%$∗ , %$+1) � dR(%$∗ , %$∗+1) + dR(%$∗+1, %$∗+2) + · · ·+ dR(%$, %$+1)

=
$∑

ξ=$∗
bξϑ =

$∑
ξ=$∗

bξ/2bξ/2ϑ1/2ϑ1/2 =
$∑

ξ=$∗
(bξ/2ϑ1/2)∗(bξ/2ϑ1/2)

=
$∑

ξ=$∗
|bξ/2ϑ1/2|2 �

∥∥∥∥∥
$∑

ξ=$∗
|bξ/2ϑ1/2|2

∥∥∥∥∥IB
� ‖ϑ1/2‖2

+∞∑
ξ=$∗

‖b‖ξIB = ‖ϑ1/2‖2 ‖b‖$
∗

1− ‖b‖IB → θB as $∗ → +∞.
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Thus, {%$ = ϕ%$−1}$∈N′ is an R-Cauchy sequence in ZB and as ZB is complete
C∗AVR-subspace of fB so, ∃ % ∈ ZB ⊂ fB s.t lim

$→+∞
%$ = %.

Case (i): Consider ϕ be an R-continuous map. Then

% = lim
$→+∞

%$+1 = lim
$→+∞

ϕ%$ = ϕ%.

Thus, ϕ possesses a fixed point.

Case (ii): Consider R be dR-self closed on ZB. Since {%$}$∈N′ is a R-sequence
where %$ → % as $ → +∞. Then, ∃ a sub-sequence {%$k}k∈N of {%$}$∈N s.t
[%$k , %] ∈ R|ZB . Now,

dR(%$k+1, ϕ%) = dR(ϕ%$k , ϕ%) � ν(dR(ϕ%$k , %$k) + dR(ϕ%, %)).

Taking norm on both sides, we get

‖dR(%$k+1, ϕ%)‖ 6 ‖ν‖(‖dR(ϕ%$k , %$k)‖+ ‖dR(ϕ%, %))‖)

= ‖ν‖(‖dR(%$k+1 , %$k)‖+ ‖dR(ϕ%, %)‖).

Taking limit as k → +∞ on both sides, we get

‖dR(%, ϕ%)‖ 6 ‖ν‖‖dR(ϕ%, %)‖.

For ‖ν‖ < 1/2, above holds only when ‖dR(ϕ%, %)‖ = 0. Thus, ϕ possesses a fixed
point. Next, let ς be s.t ϕς = ς infact ϕ$ς = ς. By condition (III), ∃ %0 ∈ fB

where (%0, ς) = (%0, ϕς) ∈ R. Since ϕ is R-preserving, so (ϕ%0, ϕς) ∈ R implies
(ϕ$%0, ϕ

$ς) ∈ R for $ ∈ N. On using condition (IV), we have

dR(%$, ς) = dR(ϕ$%0, ϕ
$ς) � ν(dR(ϕ$%0, ϕ

$−1%0) + dR(ϕ$ς, ϕ$−1ς))

= νdR(%$, %$−1) � · · · � ν$dR(%1, %0). (4.8)

On taking limit as $ → +∞ in (4.8), we get dR(%, ς) = θB. Hence, ϕ possesses a
unique fixed point.

In the next theorem, we establish the R analog of the Chatterjea (1972) contrac-
tive condition for a C∗AVR-metric space.

Theorem 4.2.7. Let (fB, dR) be a C∗AVR-metric space and let ZB be a complete
C∗AVR-subspace of fB. If ϕ : fB → fB is a self-map on fB s.t:
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(I) ϕ(fB) ⊆ ZB;

(II) ϕ is R-preserving;

(III) There exists some %0 ∈ fB with (%0, ς) ∈ R ∀ ς ∈ ϕ(fB);

(IV) For all %, ς ∈ fB with (%, ς) ∈ R, ∃ ν ∈ B′+, where ‖ν‖ < 1/2 s.t

dR(ϕ%, ϕς) � ν(dR(ϕ%, ς) + dR(ϕς, %));

(V) Either ϕ is R-continuous or R is dR-self closed on ZB.

Then, ϕ possesses a unique fixed point.

Proof. Working on the lines of Theorem 4.2.4, we obtain an R-sequence {%$}$∈N′
in fB where (%$, %$+1) ∈ R for $ ∈ N′. Using condition (IV), we get

dR(%$+1, %$) = dR(ϕ%$, ϕ%$−1)

� ν(dR(ϕ%$, %$−1) + dR(ϕ%$−1, %$))

= νdR(ϕ%$, %$−1)

= νdR(ϕ%$, ϕ%$−2)

� ν(dR(ϕ%$, ϕ%$−1) + dR(ϕ%$−1, ϕ%$−2))

� ν(dR(%$+1, %$) + dR(%$, %$−1)),

therefore, (IB − ν)dR(%$+1, %$) � νdR(%$, %$−1).

Now, ν ∈ B′+ and ‖ν‖ < 1/2. Thus, by Lemma 1.2.1, (IB − ν) and ν(IB − ν)−1 ∈
B′+ with ‖ν(IB − ν)−1‖ < 1, so we have

dR(%$+1, %$) � ν(IB − ν)−1dR(%$, %$−1)

= bdR(%$, %$−1) � · · · � b$dR(%1, %0) = b$ϑ,

where b = ν(IB−ν)−1 and ϑ = dR(%1, %0). By the working done in Theorem 4.2.6,
we obtain that {%$ = ϕ%$−1}$∈N′ is an R-Cauchy sequence in ZB, and since ZB

is complete C∗AVR-subspace of fB, so ∃ % ∈ ZB ⊂ fB s.t lim
$→+∞

%$ = %.

Case (i): Consider ϕ be a R-continuous map. Then

% = lim
$→+∞

%$+1 = lim
$→+∞

ϕ%$ = ϕ%.

Thus, ϕ possesses a fixed point.
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Case (ii): Consider R be dR-self closed on ZB. Since {%$}$∈N′ is R-sequence
where %$ → % as $ → +∞. Then, ∃ a sub-sequence {%$k}k∈N of {%$}$∈N s.t
[%$k , %] ∈ R|ZB . Now,

dR(%$k+1, ϕ%) = dR(ϕ%$k , ϕ%) � ν(dR(ϕ%$k , %) + dR(ϕ%, %$k)).

Taking norm on both sides, we get

‖dR(%$k+1, ϕ%)‖ 6 ‖ν‖(‖dR(ϕ%$k , %)‖+ ‖dR(ϕ%, %$k)‖)

= ‖ν‖(‖dR(%$k+1 , %)‖+ ‖dR(ϕ%, %$k)‖).

Taking limit as k → +∞ on both sides, we get

‖dR(%, ϕ%)‖ 6 ‖ν‖‖dR(ϕ%, %)‖.

For ‖ν‖ < 1/2, above holds only when ‖dR(ϕ%, %)‖ = 0. Thus, ϕ possesses a fixed
point. Next, if ς is another fixed point of ϕ in fB, that is, ϕς = ς infact ϕ$ς = ς.
By condition (III), ∃ %0 ∈ fB s.t (%0, ς) = (%0, ϕς) ∈ R. Since ϕ is R-preserving,
so (ϕ%0, ϕς) ∈ R implies (ϕ$%0, ϕ

$ς) ∈ R for $ ∈ N. On using condition (IV),
we have

dR(%$, ς) = dR(ϕ$%0, ϕ
$ς) � ν(dR(ϕ$%0, ϕ

$−1ς) + dR(ϕ$ς, ϕ$−1%0))

= ν(dR(%$, ς) + dR(ς, %$−1)),

therefore, (IB − ν)dR(%$, ς) � νdR(ς, %$−1)

dR(%$, ς) �
ν

(IB − ν)dR(ς, %$−1)

� · · · � ν$

(IB − ν)$ dR(ς, %0). (4.9)

Using Lemma 1.2.1 and taking limit as $ → +∞ in (4.9), we get dR(%, ς) = θB.

Hence, ϕ possesses a unique fixed point.

Remark 4.2.8. The results proved in Theorem 4.2.4, 4.2.6 and 4.2.7 holds true
if (fB, dR) is considered complete C∗AVR-metric space.

Example 4.2.9. Consider f = [0, 1) together with usual metric and let the unital
C∗AV -metric space B = (−∞,+∞) together with ‖ν‖ = |ν|, for ν, γ ∈ B we have
ν � γ iff ν 6 γ and involution given by ν∗ = ν. Define a relation R on fB as
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(%, ς) ∈ R iff %.ς ∈ {%, ς} and let ϕ : fB → fB be defined as

ϕ(%) =

 0 for % ∈ [0, 2/9];
1/9 for % ∈ (2/9, 1),

then, fB is a complete C∗AVR-metric space. Next, for (%, ς) ∈ R we have either
% = 0 or/and ς = 0. Let us consider ς = 0, so the following cases arise:

Case (i): If % ∈ [0, 2/9], then

dR(ϕ%, ϕς) = dR(0, 0) = 0 (4.10)

and, dR(%, ς) = dR(%, 0) = %. (4.11)

So for any ν ∈ B with ‖ν‖ < 1, from (4.10) and (4.11), we obtain

dR(ϕ%, ϕς) � ν∗dR(%, ς)ν.

Case (ii): If % ∈ (2/9, 1), then

dR(ϕ%, ϕς) = dR(1/9, 0) = 1
9 (4.12)

and, dR(%, ς) = dR(%, 0) = %. (4.13)

So for ν = 1√
2 and from (4.12) and (4.13), we obtain

dR(ϕ%, ϕς) � ν∗dR(%, ς)ν.

Thus, ϕ is C∗AVR-contractive map. Also, ϕ is R-preserving and R-continuous.
Thus, by Theorem 4.2.4 (case when ZB = fB), we obtain that ϕ possesses a unique
fixed point which in this case is % = 0.

Remark 4.2.10. The metric space (f, d) considered in the above example is an
incomplete metric space and thus violates the applicability of fixed point results
proved in Banach (1922) and Ma et al. (2014).

Example 4.2.11. Let f = {0, 1, 2, 3, 4} and B = M2(R) with A∗ = A for each
A ∈ B and ‖A‖ = max16i,j62 |ai,j|. Let θB = 0̂ =

[
0 0
0 0

]
. Define d : f × f → B+

as

d(%, ς) =

 0̂ for % = ς;
IB otherwise,
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where IB denotes an identity matrix of order 2.
Define R = {(0, 0), (0, 1), (1, 1), (2, 2),(2, 4), (3, 2), (3, 4), (4, 4)}, then (fB, dR) is
a complete C∗AVR-metric space. Define a self-map ϕ : fB → fB as ϕ(0) = 0 =
ϕ(1), ϕ(2) = 1 = ϕ(3) = ϕ(4). Then, ϕ is an R-preserving map (since for any
(%, ς) ∈ R, (ϕ%, ϕς) = (0, 0) or (1, 1)). Also, as 0 ∈ fB where (0, ϕς) ∈ R ∀ ς ∈ fB

and ϕ is R-continuous as for any R-sequence {%$}$∈N with %$ → %, we have ϕ%$
converge to either 0 or 1. Next, for a given A ∈ B with 0 < ‖A‖ < 1/2, we have

dR(ϕ0, ϕ4) = dR(0, 1) = IB > A(dR(ϕ0, 0) + dR(ϕ4, 4)) = A(0̂ + IB) = AIB.

Here, ϕ satisfies all the hypotheses of Theorem 4.2.6 (case when ZB = fB) and
hence, ϕ possesses a unique fixed point viz. % = 0.

Remark 4.2.12. The self-map discussed in the above example does not satisfy
Kannan (1968) contraction condition.

Example 4.2.13. Let f = [0, 2) equipped with usual metric and let C∗AV -metric
space B = (−∞,+∞) together with ‖ν‖ = |ν|, for ν, γ ∈ B, ν � γ iff ν 6 γ and
an involution given by ν∗ = ν. Define a relation R on f as (%, ς) ∈ R iff %.ς ∈ {0}
and let ϕ : fB → fB be defined as

ϕ(%) =


%2

6 for % ∈ [0, 1);
0 otherwise.

Next, for (%, ς) ∈ R we have % = 0 or/and ς = 0. Let ς = 0 so we have the
following cases:

Case (i): If % ∈ [0, 1), then

dR(ϕ%, ϕς) = dR
(%2

6 , 0
)

= %2

6 (4.14)

and, ν(dR(ϕ%, ς)+dR(ϕς, %)) = ν

(
dR
(%2

6 , 0
)

+dR(0, %)
)

= ν

(
%2

6 +%

)
. (4.15)

Then for ν = 1/3 and from (4.14) and (4.15), we obtain

dR(ϕ%, ϕς) � ν(dR(ϕ%, ς) + dR(ϕς, %).

Case (ii): If % ∈ [1, 2), then

dR(ϕ%, ϕς) = dR(0, 0) = 0 (4.16)
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and, ν(dR(ϕ%, ς) + dR(ϕς, %)) = ν(dR(0, 0) + dR(0, %)) = ν%. (4.17)

Then, from (4.16) and (4.17) and for any value of ν ∈ (0, 1/2), we conclude that
ϕ satisfies the contraction hypothesis of Theorem 4.2.7 (case when ZB = fB).
Moreover, ϕ is R-continuous and R-preserving. Thus, by Theorem 4.2.7 (case
when ZB = fB), ϕ possesses a unique fixed point which is % = 0.

Remark 4.2.14. The metric space (f, d) considered in the above example is an
incomplete metric space and thus violates the applicability of Theorem 2.3 of Ma
et al. (2014) and Chatterjea (1972) contraction theorem.

4.3 Coincidence and Common Fixed Point Re-
sults

This section deals with coincidence point and common fixed point results in C∗AVR-
metric space (fB, dR). Firstly, we introduce the notions of Rϕ-preserving, R-
compatible, R-precomplete, R-continuous, R-contractive and weak R-contractive
in the framework of C∗AVR-metric space.

Definition 4.3.1. Let (fB, dR) be a C∗AVR-metric space and ψ, ϕ be two self-maps
on fB, then

(i) ψ is c.t.b Rϕ-preserving if (ϕ%, ϕς) ∈ R implies (ψ%, ψς) ∈ R.

(ii) ψ, ϕ are c.t.b R-compatible if for any R-sequence {%$}$∈N in fB s.t
{ψ%$}$∈N and {ϕ%$}$∈N are two R-sequences and lim

$→+∞
ψ%$ = lim

$→+∞
ϕ%$

we have,
‖dR(ϕ(ψ%$), ψ(ϕ%$))‖ → θB as $ → +∞.

(iii) a subset ZB of fB is c.t.b an R-precomplete subspace of fB, if for every
R-Cauchy sequence {%$}$∈N in ZB, we have lim

$→+∞
‖dR(%$, %)‖ = θB where

% ∈ fB.

(iv) maps ψ, ϕ are c.t.b R-contractive if for any %, ς ∈ fB with (ϕ%, ϕς) ∈ R,
we have

dR(ψ%, ψς) 6 δ∗dR(ϕ%, ϕς)δ,

where δ ∈ B and ‖δ‖ < 1.
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(v) maps ψ, ϕ are c.t.b weak R-contractive if for any %, ς ∈ fB with (ϕ%, ϕς) ∈
R, we have

dR(ψ%, ψς) 6 δ∗ζ∗(%$, %$+1)δ,

where δ ∈ B with ‖δ‖ < 1, where

ζ∗(%$, %$+1) = max
{
dR(ϕ%$, ϕ%$+1), dR(ψ%$, ϕ%$), dR(ψ%$+1, ϕ%$+1),

dR(ψ%$, ϕ%$+1) + dR(ψ%$+1, ϕ%$)
2

}
.

Example 4.3.1. Let f =
(
−1 + 1

$
, 1− 1

$

)
with d(%, ς) =| %− ς |, where $ ∈ N

with B = R and define R = {(%, ς) ∈ f2 : %.ς > 0}. Let ψ, ϕ : fB → fB be defined
as

ψ(%) =

 1
2 for % ∈ (−1 + 1

$ , 0];
1
9 for % ∈ (0, 1− 1

$ ),
and, ϕ(%) =

 −1
2 for % ∈ (−1 + 1

$ , 0];
1
9 for % ∈ (0, 1− 1

$ ).

Then for any %, ς ∈ fB with (ϕ%, ϕς) ∈ R, we have (ψ%, ψς) ∈ R. Thus, ψ is Rϕ-
preserving.

Remark 4.3.2. It can be observed from Definition 4.3.1 that on considering the
self-map ϕ on fB as identity map, we obtain that self-map ψ is R-preserving.

Example 4.3.3. Consider f = [0, 3] and B be the set of all 2 × 2 diagonal
matrices on C. Let involution on element A of B be defined as A∗ = AH , that is,
conjugate transpose of matrix A = [aij] and ‖A‖ = max

16i,j62
| aij |. Define metric

d : f× f→ B+ as

d(%, ς) =
| %− ς | 0

0 λ | %− ς |

 ,where λ > 0.

Let R = {%, ς ∈ f : either % = 0 or ς = 0}, then (fB, dR) is a C∗AVR-metric
space. Define self-maps ψ, ϕ on fB as:

ψ(%) =


%

3 for % ∈ [0, 2];
0 otherwise,

and, ϕ(%) =


%2

11 for % ∈ [0, 5/2];
0 otherwise.

Then, for any R-sequence {%$}$∈N′ in fB, ψ%$ and ϕ%$ are R-sequences with
lim

$→+∞
ψ%$ = lim

$→+∞
ϕ%$ s.t dR(ψ(ϕ%$), ϕ(ψ%$)) → 0 as $ → +∞. Thus ψ, ϕ

are R-compatible.
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Example 4.3.4. Let f = [0, 1) and Z = (0, 1) be a subset of f with B =
(−∞,+∞) and metric d : f× f→ B+ defined as

d(%, ς) =

 0 for % = ς;
1 for % 6= ς.

Let R = {%, ς ∈ f : dR(%, ς) < 1}. Then, for any R-Cauchy sequence {%$}$∈N′
in ZB is convergent in fB. Thus, ZB is an R-precomplete subspace of fB.

Remark 4.3.5. Every precomplete subspace is an R-precomplete subspace, how-
ever converse does not hold true. In Example 4.3.4, ZB is an R-precomplete sub-
space of fB but not a precomplete subspace of fB since the sequence {1− 1

$
}$∈N

is a Cauchy sequence in ZB which is not convergent in fB.

Theorem 4.3.6. Let (fB, dR) be a C∗AVR-metric space with ZB as anR-precomplete
subspace of fB and let ψ, ϕ be two self-maps which areR-contractive, R-continuous
and R-compatible. Also, let ψ be Rϕ-preserving where ψ(fB) ⊆ ϕ(fB) ∩ ZB and
∃ %0 ∈ fB with (ψ%0, ϕ%0) ∈ R. Then, ψ, ϕ have a coincidence point. In addi-
tion, if for any two coincidence points γ1 and γ2 of ψ, ϕ, that is, there exist some
ς1, ς2 ∈ fB with ψς1 = ϕς1 = γ1 and ψς2 = ϕς2 = γ2 we have (ς1, ς2) ∈ R, then ψ, ϕ
possess a unique coincidence point. Moreover, if ψ, ϕ are two weakly compatible
maps then they possess a unique common fixed point.

Proof. Define Picard-Jungck sequences {%$}$∈N′ and {ς$}$∈N′ , where ς$ = ϕ%$+1 =
ψ%$ ∀ $ ∈ N′. By given condition, ∃ some %0 ∈ fB s.t (ψ%0, ϕ%0) ∈ R, that is,
(ϕ%1, ϕ%0) ∈ R. Since ψ is Rϕ-preserving, we obtain

(ψ%1, ψ%0) ∈ R, that is, (ϕ%2, ϕ%1) ∈ R.

On repetitive use of Rϕ-preserving property of ψ, we get {ς$}$∈N′ , {ψ%$}$∈N′
and {ϕ%$}$∈N′ are R-sequences. Now,

dR(ς$, ς$+1) =dR(ϕ%$+1, ϕ%$+2)

=dR(ψ%$, ψ%$+1)

6δ∗dR(ϕ%$, ϕ%$+1)δ

6(δ∗)2dR(ϕ%$−1, ϕ%$)(δ)2 = (δ∗)2dR(ς$−2, ς$−1)(δ)2

6 · · · 6 (δ∗)$dR(ϕ%1, ϕ%2)(δ)$ = (δ∗)$dR(ς0, ς1)(δ)$. (4.18)

We next show that {ς$}$∈N′ is an R-Cauchy sequence. Let p, q ∈ N′ with p < q
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then, we have

dR(ςp, ςq) 6 dR(ςp, ςp+1) + dR(ςp+1, ςp+2) + · · ·+ dR(ςq−1, ςq)

6
q∑

γ=p
(δ∗)γdR(ς0, ς1)(δ)γ

=
q∑

γ=p

([
dR(ς0, ς1)

]1/2
δγ
)∗([

dR(ς0, ς1)
]1/2

δγ
)

6

∥∥∥∥∥
+∞∑
γ=p

∣∣∣∣∣[dR(ς0, ς1)
]1/2

δγ
∣∣∣∣∣
2∥∥∥∥∥IB

=
∥∥∥∥∥[dR(ς0, ς1)

]1/2∥∥∥∥∥
2 ‖δ‖2p

1− ‖δ‖IB → θB as p→ +∞. (4.19)

From (4.19), we observe that {ς$}$∈N′ is an R-Cauchy sequence in ZB and since
ZB is R-precomplete subspace of fB so, ∃ some ς ∈ fB s.t

lim
$→+∞

ς$ = ς,

that is, lim
$→+∞

ϕ%$ = lim
$→+∞

ψ%$ = ς. (4.20)

On using R-compatibility of ψ and ϕ, we have

lim
$→+∞

dR(ϕ(ψ%$), ψ(ϕ%$)) = θB.

On using R-continuity of ψ in (4.20), we obtain

lim
$→+∞

ψ(ϕ%$) = lim
$→+∞

ψ(ψ%$) = ψς.

Again, by using R-continuity of ϕ in (4.20), we obtain

lim
$→+∞

ϕ(ϕ%$) = lim
$→+∞

ϕ(ψ%$) = ϕς.

Further,

dR(ϕς, ψς) = lim
$→+∞

dR(ϕ(ψ%$), ψ(ϕ%$)) = θB.

Therefore, ς is the coincidence point of ψ, ϕ. Next, let γ1, γ2 be two distinct
coincidence point of ψ, ϕ, that is, there exist ς1, ς2 ∈ fB with ς1 6= ς2 with (ς1, ς2) ∈
R. Now, ψς1 = ϕς1 = γ1 and ψς2 = ϕς2 = γ2, thus

dR(ψς1, ψς2) 6 δ∗dR(ϕς1, ϕς2)δ, that is, dR(γ1, γ2) 6 δ∗dR(γ1, γ2)δ,
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which does not hold since ‖δ‖ < 1. Hence, ψ and ϕ have a unique coincidence
point. We now consider ψ, ϕ to be weakly compatible, that is, ψϕς = ϕψς where
ς is unique coincidence point of ψ, ϕ. Let υ ∈ fB where ψς = ϕς = υ, then we
have

ψυ = ψϕς = ϕψς = ϕυ.

Thus, υ is another coincidence point of ψ, ϕ which implies ς = υ, so we obtain ς
as a unique common fixed point of ψ, ϕ.

Theorem 4.3.7. Let (fB, dR) be a C∗AVR-metric space with ZB as anR-precomplete
subspace of fB and suppose ψ, ϕ are two self-maps which are weak R-contractive,
R-continuous and R-compatible. Also, let ψ be Rϕ-preserving with ψ(fB) ⊆
ϕ(fB) ∩ ZB and ∃ %0 ∈ fB where (ψ%0, ϕ%0) ∈ R. Then, ψ, ϕ have a coincidence
point. In addition, if for any two coincidence points γ1 and γ2 of ψ, ϕ, that is,
there exist some ς1, ς2 ∈ fB with ψς1 = ϕς1 = γ1 and ψς2 = ϕς2 = γ2 we have
(ς1, ς2) ∈ R, then ψ, ϕ possess a unique coincidence point. Furthermore, if ψ, ϕ
are two weakly compatible maps then they possess a unique common fixed point.

Proof. On defining a Picard-Jungck sequences {%$}$∈N′ and {ς$}$∈N′ in fB as
defined in Theorem 4.3.6, we conclude that {ς$}$∈N′ , {ψ%$}$∈N′ and {ϕ%$}$∈N′
are R-sequences. Now,

dR(ς$, ς$+1) =dR(ϕ%$+1, ϕ%$+2)

=dR(ψ%$, ψ%$+1) 6 δ∗ζ∗(%$, %$+1)δ, (4.21)

where, ζ∗(%$, %$+1) = max
{
dR(ϕ%$, ϕ%$+1), dR(ψ%$, ϕ%$),

dR(ψ%$+1, ϕ%$+1),
dR(ψ%$, ϕ%$+1) + dR(ψ%$+1, ϕ%$)

2

}

= max
{
dR(ϕ%$, ϕ%$+1), dR(ϕ%$+1, ϕ%$),

dR(ϕ%$+2, ϕ%$+1),
dR(ϕ%$+1, ϕ%$+1) + dR(ϕ%$+2, ϕ%$)

2

}

6max
{
dR(ϕ%$, ϕ%$+1), dR(ϕ%$+1, ϕ%$+2),
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dR(ϕ%$+1, ϕ%$+2) + dR(ϕ%$, ϕ%$+1)
2

}

6max
{
dR(ϕ%$, ϕ%$+1), dR(ϕ%$+1, ϕ%$+2)

}
.

Let max
{
dR(ϕ%$, ϕ%$+1), dR(ϕ%$+1, ϕ%$+2)

}
= dR(ϕ%$+1, ϕ%$+2), then from

(4.21), we have

dR(ϕ%$+1, ϕ%$+2) 6 δ∗dR(ϕ%$+1, ϕ%$+2)δ,

which is a contradiction since ‖δ‖ < 1.

If, max
{
dR(ϕ%$, ϕ%$+1), dR(ϕ%$+1, ϕ%$+2)

}
= dR(ϕ%$, ϕ%$+1) and from (4.21),

we get

dR(ϕ%$+1, ϕ%$+2) 6 δ∗dR(ϕ%$, ϕ%$+1)δ.

By Theorem 4.3.6, we obtain that ϕ, ψ possess a unique coincidence point and
common fixed point.

4.4 Application in Graph Theory

In this section, we establish an association of the results proved in the previous
section with a directed graph. Let Ξ = (V (Ξ), E(Ξ)) be a directed graph, where
V (Ξ) be the set of vertices which coincides with f and E(Ξ) be the set of directed
edges along with all loops, that is, E(Ξ) is a subset of V (Ξ) × V (Ξ). We also
assume that Ξ has no parallel edges in it.

Theorem 4.4.1. For (fB, d) a C∗AV -metric space endowed with a directed graph
Ξ and let ZB be a subspace of fB where every Cauchy sequence {%$}$∈N in ZB

with (%$, %$+1) ∈ E(Ξ) is convergent in fB. Let ψ, ϕ : fB → fB be self-maps s.t:

(I) For any %, ς ∈ fB with (ϕ%, ϕς) ∈ E(Ξ), we have

d(ψ%, ψς) 6 δ∗d(ϕ%, ϕς)δ,

where δ ∈ B and ‖δ‖ < 1;
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(II) For each % ∈ fB ∃ a sequence {%$}$∈N in fB where (%$, %$+1) ∈ E(Ξ) with
lim

$→+∞
‖d(%$, %)‖ = θB implies

lim
$→+∞

‖d(ψ%$, ψ%)‖ = θB and, lim
$→+∞

‖d(ϕ%$, ϕ%)‖ = θB;

(III) For any sequence {%$}$∈N in fB where (%$, %$+1) ∈ E(Ξ) s.t {ψ%$}$∈N
and {ϕ%$}$∈N are two sequences with (ψ%$, ψ%$+1) ∈ E(Ξ), (ϕ%$, ϕ%$+1) ∈
E(Ξ) and lim

$→+∞
ψ%$ = lim

$→+∞
ϕ%$, we have

‖d(ϕ(ψ%$), ψ(ϕ%$))‖ → θB as $ → +∞;

(IV) If (ϕ%, ϕς) ∈ E(Ξ) implies (ψ%, ψς) ∈ E(Ξ);

(V) ψ(fB) ⊆ ϕ(fB) ∩ ZB;

(VI) ∃ some %0 ∈ fB s.t (ψ%0, ϕ%0) ∈ E(Ξ).

Then, ψ, ϕ have a coincidence point. In addition, if for any two coincidence points
γ1 and γ2 of ψ, ϕ, that is, there exist some ς1, ς2 ∈ fB with ψς1 = ϕς1 = γ1 and
ψς2 = ϕς2 = γ2 we have (ς1, ς2) ∈ E(Ξ), then ψ, ϕ possess a unique coincidence
point. Moreover, if ψ, ϕ are two weakly compatible maps then they possess a unique
common fixed point.

Proof. Define a Picard-Jungck sequences {%$}$∈N′ and {ς$}$∈N′ with ς$ = ϕ%$+1 =
ψ%$ ∀ $ ∈ N′. From condition (V), ∃ some %0 ∈ fB s.t (ψ%0, ϕ%0) make an edge,
that is, (ϕ%1, ϕ%0) make an edge. On using condition (IV), we obtain

(ψ%1, ψ%0) ∈ E(Ξ), that is, (ϕ%2, ϕ%1) ∈ E(Ξ).

On repetitive use of condition (IV), we get that (ς$, ς$+1) ∈ E(Ξ), (ψ%$, ψ%$+1) ∈
E(Ξ) and (ϕ%$, ϕ%$+1) ∈ E(Ξ) ∀ $ ∈ N′. Now,

d(ς$, ς$+1) = d(ϕ%$+1, ϕ%$+2) =d(ψ%$, ψ%$+1)

6δ∗d(ϕ%$, ϕ%$+1)δ

6 · · · 6 (δ∗)$d(ϕ%1, ϕ%2)(δ)$

=(δ∗)$d(ς0, ς1)(δ)$. (4.22)

We next show that {ς$}$∈N′ is a Cauchy sequence, where (ς$, ς$+1) form an edge
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∀ $ ∈ N′. Let p, q ∈ N′ with p < q then, we have

d(ςp, ςq) 6d(ςp, ςp+1) + d(ςp+1, ςp+2) + · · ·+ d(ςq−1, ςq)

6
q∑

γ=p
(δ∗)γd(ς0, ς1)(δ)γ

6
+∞∑
γ=p

(
[
d(ς0, ς1)

]1/2
δγ)∗(

[
d(ς0, ς1)

]1/2
δγ) =

∥∥∥∥∥
+∞∑
γ=p

∣∣∣∣∣[d(ς0, ς1)
]1/2

δγ
∣∣∣∣∣
2∥∥∥∥∥IB

=
∥∥∥∥∥[d(ς0, ς1)

]1/2∥∥∥∥∥
2 ‖δ‖2p

1− ‖δ‖IB → θB as p→ +∞. (4.23)

Thus, {ς$}$∈N′ is a Cauchy sequence in ZB and since every Cauchy sequence in
ZB is convergent in fB, so ∃ some ς ∈ fB s.t lim

$→+∞
ς$ = ς, that is, lim

$→+∞
ϕ%$ =

lim
$→+∞

ψ%$ = ς.
On using condition (II), we obtain

lim
$→+∞

ϕ(ϕ%$) = lim
$→+∞

ϕ(ψ%$) = ϕς,

and, lim
$→+∞

ψ(ϕ%$) = lim
$→+∞

ψ(ψ%$) = ψς.

On using condition (III), we have

lim
$→+∞

d(ϕ(ψ%$), ψ(ϕ%$)) = θB.

Further,

d(ϕς, ψς) = lim
$→+∞

d(ϕ(ψ%$), ψ(ϕ%$)) = θB

Therefore, ς is the coincidence point of ψ, ϕ. Next, let γ1, γ2 be s.t there exist
ς1, ς2 ∈ fB with ς1 6= ς2 with (ς1, ς2) ∈ E(Ξ). Now, ψς1 = ϕς1 = γ1 and ψς2 =
ϕς2 = γ2, thus

d(ψς1, ψς2) 6 δ∗d(ϕς1, ϕς2)δ that is, d(γ1, γ2) 6 δ∗d(γ1, γ2)δ,

which does not hold since ‖δ‖ < 1. Hence, ψ, ϕ have a unique coincidence point.
We now consider ψ, ϕ to be weakly compatible, that is, ψϕς = ϕψς where ς is a
unique coincidence point of ψ, ϕ. Let υ ∈ fB be s.t ψς = ϕς = υ, then we have

ψυ = ψϕς = ϕψς = ϕυ.

Thus, υ is another coincidence point of ψ, ϕ which implies ς = υ, so we obtain ς
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as a unique common fixed point of ψ, ϕ.

Theorem 4.4.2. For (fB, d) be a C∗AV -metric space together with a directed graph
Ξ and let ZB be a subspace of fB where every Cauchy sequence {%$}$∈N in ZB

where (%$, %$+1) ∈ E(Ξ) is convergent in fB. Let ψ, ϕ : fB → fB be self-maps
s.t:

(I) For any %, ς ∈ fB with (ϕ%, ϕς) ∈ E(Ξ), we have

d(ψ%, ψς) 6 δ∗ζ∗(%, ς)δ,

where δ ∈ B with ‖δ‖ < 1 and,

ζ∗(%, ς) = max
{
d(ϕ%, ϕς), d(ψ%, ϕ%), d(ψς, ϕς), d(ψ%, ϕς) + d(ψς, ϕ%)

2

}
;

(II) For each % ∈ fB ∃ a sequence {%$}$∈N in fB where (%$, %$+1) ∈ E(Ξ) with
lim

$→+∞
‖d(%$, %)‖ = θB implies

lim
$→+∞

d(ψ%$, ψ%) = θB and, lim
$→+∞

d(ϕ%$, ϕ%) = θB;

(III) For any sequence {%$}$∈N in fB where (%$, %$+1) ∈ E(Ξ) s.t {ψ%$}$∈N
and {ϕ%$}$∈N are two sequences with (ψ%$, ψ%$+1) ∈ E(Ξ), (ϕ%$, ϕ%$+1) ∈
E(Ξ) and lim

$→+∞
ψ%$ = lim

$→+∞
ϕ%$, we have

‖d(ϕ(ψ%$), ψ(ϕ%$))‖ → θB as $ → +∞;

(IV) If (ϕ%, ϕς) ∈ E(Ξ) implies (ψ%, ψς) ∈ E(Ξ);

(V) ψ(fB) ⊆ ϕ(fB) ∩ ZB;

(VI) ∃ some %0 ∈ fB where (ψ%0, ϕ%0) ∈ E(Ξ).

Then, ψ, ϕ have a coincidence point. In addition, if for any two coincidence points
γ1 and γ2 of ψ, ϕ, that is, there exist some ς1, ς2 ∈ fB with ψς1 = ϕς1 = γ1 and
ψς2 = ϕς2 = γ2 we have (ς1, ς2) ∈ E(Ξ), then ψ, ϕ possess a unique coincidence
point. Furthermore, if ψ, ϕ are two weakly compatible maps then they possess a
unique common fixed point.

Proof. On defining a Picard-Jungck sequences {%$}$∈N′ and {ς$}$∈N′ in fB as de-
fined in Theorem 4.4.1, we conclude that (ς$, ς$+1), (ψ%$, ψ%$+1), (ϕ%$, ϕ%$+1) ∈
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E(Ξ) ∀ $ ∈ N′. Now,

d(ς$, ς$+1) =d(ϕ%$+1, ϕ%$+2) = d(ψ%$, ψ%$+1) 6 δ∗$∗(%$, %$+1)δ,

(4.24)

where $∗(%$, %$+1) = max
{
d(ϕ%$, ϕ%$+1), d(ψ%$, ϕ%$), d(ψ%$+1, ϕ%$+1),

d(ψ%$, ϕ%$+1) + d(ψ%$+1, ϕ%$)
2

}

= max
{
d(ϕ%$, ϕ%$+1), d(ϕ%$, ϕ%$+1), d(ϕ%$+1, ϕ%$+2),

d(ϕ%$+1, ϕ%$+1) + d(ϕ%$, ϕ%$+2)
2

}

6max
{
d(ϕ%$, ϕ%$+1), d(ϕ%$+1, ϕ%$+2),

d(ϕ%$+1, ϕ%$+2) + d(ϕ%$, ϕ%$+1)
2

}
.

Let max
{
d(ϕ%$, ϕ%$+1), d(ϕ%$+1, ϕ%$+2), d(ϕ%$+1, ϕ%$+2) + d(ϕ%$, ϕ%$+1)

2

}
=

d(ϕ%$+1, ϕ%$+2), then from (4.24), we obtain

d(ϕ%$+1, ϕ%$+2) 6 δ∗d(ϕ%$+1, ϕ%$+2)δ,

which is a contradiction since ‖δ‖ < 1. Thus, max
{
d(ϕ%$, ϕ%$+1), d(ϕ%$+1, ϕ%$+2),

d(ϕ%$+1, ϕ%$+2) + d(ϕ%$, ϕ%$+1)
2

}
= d(ϕ%$, ϕ%$+1) and from (4.24), we get

d(ϕ%$+1, ϕ%$+2) 6 δ∗d(ϕ%$, ϕ%$+1)δ.

Now, proceeding on the lines of Theorem 4.4.1 we obtain that ϕ, ψ have a unique
coincidence point and common fixed point.

4.5 Consequences

The present section substantiates that the results proved in this chapter are proper
extension of several well-known results found in the literature. Deductions of fixed
point, coincidence point and common fixed point results proved in this chapter
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can be done in different spaces.

4.5.1 Results in C∗-algebra Valued Ordered Metric Space

Let R be considered as a partially ordered relation, that is, R :=�, then following
results are obtained.

Corollary 4.5.1. Let (fB, d�) be a C∗AV -ordered metric space and let ZB be a
subspace of fB where every Cauchy sequence {%$}$∈N in ZB where %$ � %$+1 is
convergent in fB. Let ψ, ϕ : fB → fB be self-maps s.t:

(I) For any %, ς ∈ fB with ϕ% � ϕς, we have

d�(ψ%, ψς) 6 δ∗d�(ϕ%, ϕς)δ,

where δ ∈ B and ‖δ‖ < 1;

(II) For each % ∈ fB ∃ a sequence {%$}$∈N in fB, where %$ � %$+1 with
lim

$→+∞
‖d�(%$, %)‖ = θB implies

lim
$→+∞

d�(ψ%$, ψ%) = θB and, lim
$→+∞

d�(ϕ%$, ϕ%) = θB;

(III) For any sequence {%$}$∈N in fB, where %$ � %$+1 s.t {ψ%$}$∈N and
{ϕ%$}$∈N are two sequences with ψ%$ � ψ%$+1, ϕ%$ � ϕ%$+1 and lim

$→+∞
ψ%$

= lim
$→+∞

ϕ%$, we have

‖d�(ϕ(ψ%$), ψ(ϕ%$))‖ → θB as $ → +∞;

(IV) If ϕ% � ϕς implies ψ% � ψς;

(V) ψ(fB) ⊆ ϕ(fB) ∩ ZB;

(VI) ∃ some %0 ∈ fB with ψ%0 � ϕ%0.

Then, ψ, ϕ have a coincidence point. In addition, if for any two coincidence points
γ1 and γ2 of ψ, ϕ, that is, there exist some ς1, ς2 ∈ fB with ψς1 = ϕς1 = γ1 and
ψς2 = ϕς2 = γ2 we have ς1 � ς2, then ψ, ϕ possess a unique coincidence point.
Moreover, if ψ, ϕ are two weakly compatible maps then they possess a unique
common fixed point.
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Corollary 4.5.2. For (fB, d�) a C∗AV -ordered metric space and let ZB be a sub-
space of fB where every Cauchy sequence {%$}$∈N in ZB where %$ � %$+1 is
convergent in fB. Let ψ, ϕ : fB → fB be self-maps s.t:

(I) For any %, ς ∈ fB with ϕ% � ϕς, we have

d�(ψ%, ψς) 6 δ∗ζ∗(%, ς)δ,

where δ ∈ B with ‖δ‖ < 1 and,

ζ∗(%, ς) = max
{
d�(ϕ%, ϕς), d�(ψ%, ϕ%), d�(ψς, ϕς), d�(ψ%, ϕς) + d�(ψς, ϕ%)

2

}
;

(II) For each % ∈ fB ∃ a sequence {%$}$∈N in fB where %$ � %$+1 with
lim

$→+∞
‖d�(%$, %)‖ = θB implies

lim
$→+∞

‖d�(ψ%$, ψ%)‖ = θB and, lim
$→+∞

‖d�(ϕ%$, ϕ%)‖ = θB;

(III) For any sequence {%$}$∈N in fB, where %$ � %$+1, s.t {ψ%$}$∈N and
{ϕ%$}$∈N are two sequences with ψ%$ � ψ%$+1, ϕ%$ � ϕ%$+1 and lim

$→+∞
ψ%$

= lim
$→+∞

ϕ%$, we have

‖d�(ϕ(ψ%$), ψ(ϕ%$))‖ → θB as $ → +∞;

(IV) If ϕ% � ϕς implies ψ% � ψς;

(V) ψ(fB) ⊆ ϕ(fB) ∩ ZB;

(VI) ∃ some %0 ∈ fB with ψ%0 � ϕ%0.

Then, ψ, ϕ have a coincidence point. In addition, if for any two coincidence points
γ1 and γ2 of ψ, ϕ, that is, there exist some ς1, ς2 ∈ fB with ψς1 = ϕς1 = γ1 and
ψς2 = ϕς2 = γ2 we have ς1 � ς2, then ψ, ϕ possess a unique coincidence point.
Moreover, if ψ, ϕ are two weakly compatible maps then they possess a unique
common fixed point.

4.5.2 Results in C∗-algebra Valued Metric Space

Let R be the universal relation, then the following results are obtained.
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Corollary 4.5.3. For (fB, d) be a C∗AV -metric space and let ZB be a subspace
of fB where every Cauchy sequence {%$}$∈N in ZB is convergent in fB. Let
ψ, ϕ : fB → fB be self-maps s.t:

(I) For any %, ς ∈ fB, we have

d(ψ%, ψς) 6 δ∗d(ϕ%, ϕς)δ,

where δ ∈ B and ‖δ‖ < 1;

(II) For each % ∈ fB ∃ a sequence {%$}$∈N in fB with lim
$→+∞

‖d(%$, %)‖ = θB

implies

lim
$→+∞

‖d(ψ%$, ψ%)‖ = θB and, lim
$→+∞

‖d(ϕ%$, ϕ%)‖ = θB;

(III) For any sequence {%$}$∈N in fB s.t {ψ%$}$∈N and {ϕ%$}$∈N are two se-
quences with lim

$→+∞
ψ%$ = lim

$→+∞
ϕ%$, we have

‖d(ϕ(ψ%$), ψ(ϕ%$))‖ → θB as $ → +∞;

(IV) ψ(fB) ⊆ ϕ(fB) ∩ ZB.

Then, ψ, ϕ have a coincidence point. In addition, if for any two coincidence points
γ1 and γ2 of ψ, ϕ, that is, there exist some ς1, ς2 ∈ fB with ψς1 = ϕς1 = γ1 and
ψς2 = ϕς2 = γ2, then ψ, ϕ possess a unique coincidence point. Moreover, if ψ, ϕ
are two weakly compatible maps then they possess a unique common fixed point.

Corollary 4.5.4. For (fB, d) be a C∗AV -metric space and let ZB be a subspace
of fB where every Cauchy sequence {%$}$∈N in ZB is convergent in fB. Let
ψ, ϕ : fB → fB be self-maps s.t:

(I) For any %, ς ∈ fB, we have

d(ψ%, ψς) 6 δ∗ζ∗(%, ς)δ,

where δ ∈ B with ‖δ‖ < 1 and,

ζ∗(%, ς) = max
{
d(ϕ%, ϕς), d(ψ%, ϕ%), d(ψς, ϕς), d(ψ%, ϕς) + d(ψς, ϕ%)

2

}
;
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(II) For each % ∈ fB ∃ a sequence {%$}$∈N in fB with lim
$→+∞

‖d(%$, %)‖ = θB

implies

lim
$→+∞

‖d(ψ%$, ψ%)‖ = θB and, lim
$→+∞

‖d(ϕ%$, ϕ%)‖ = θB;

(III) For any sequence {%$}$∈N in fB s.t {ψ%$}$∈N and {ϕ%$}$∈N are two se-
quences with lim

$→+∞
ψ%$ = lim

$→+∞
ϕ%$, we have

‖d(ϕ(ψ%$), ψ(ϕ%$))‖ → θB as $ → +∞;

(IV) ψ(fB) ⊆ ϕ(fB) ∩ ZB.

Then, ψ, ϕ have a coincidence point. In addition, if for any two coincidence points
γ1 and γ2 of ψ, ϕ, that is, there exist some ς1, ς2 ∈ fB with ψς1 = ϕς1 = γ1 and
ψς2 = ϕς2 = γ2, then ψ, ϕ possess a unique coincidence point. Moreover, if ψ, ϕ
are two weakly compatible maps then they possess a unique common fixed point.

4.5.3 Results in Metric Space

Let R be universal relation on f along with B = R, then the following results are
obtained.

Corollary 4.5.5. For (f, d) a metric space, let Z be a subspace of f where every
Cauchy sequence {%$}$∈N in Z is convergent in f. Let ψ, ϕ : f→ f be self-maps
s.t:

(I) For any %, ς ∈ f, we have

d(ψ%, ψς) 6 νd(ϕ%, ϕς),

where 0 < ν < 1;

(II) For each % ∈ f ∃ a sequence {%$}$∈N in f where lim
$→+∞

d(%$, %) = 0 implies
lim

$→+∞
d(ψ%$, ψ%) = 0 and, lim

$→+∞
d(ϕ%$, ϕ%) = 0;

(III) For any sequence {%$}$∈N in f s.t {ψ%$}$∈N, {ϕ%$}$∈N are two sequences
with lim

$→+∞
ψ%$ = lim

$→+∞
ϕ%$, we have

lim
$→+∞

d(ϕ(ψ%$), ψ(ϕ%$)) = 0;
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(IV) ψ(f) ⊆ ϕ(f) ∩ Z.

Then, ψ, ϕ have a coincidence point. In addition, if for any two coincidence points
γ1 and γ2 of ψ, ϕ, that is, there exist some ς1, ς2 ∈ f with ψς1 = ϕς1 = γ1 and
ψς2 = ϕς2 = γ2, then ψ, ϕ possess a unique coincidence point. Moreover, if ψ, ϕ
are two weakly compatible maps then they possess a unique common fixed point.

Corollary 4.5.6. For (f, d) a metric space, let Z be a subspace of f where every
Cauchy sequence {%$}$∈N in Z is convergent in f. Let ψ, ϕ : f→ f be self-maps
s.t:

(I) For any %, ς ∈ f, we have

d(ψ%, ψς) 6 νζ∗(%, ς),

where 0 < ν < 1 and,

ζ∗(%, ς) = max
{
d(ϕ%, ϕς), d(ψ%, ϕ%), d(ψς, ϕς), d(ψ%, ϕς) + d(ψς, ϕ%)

2

}
;

(II) For each % ∈ f, ∃ a sequence {%$}$∈N in f, where lim
$→+∞

d(%$, %) = 0
implies lim

$→+∞
d(ψ%$, ψ%) = 0 and, lim

$→+∞
d(ϕ%$, ϕ%) = 0;

(III) For any sequence {%$}$∈N in f s.t {ψ%$}$∈N, {ϕ%$}$∈N are two sequences
with lim

$→+∞
ψ%$ = lim

$→+∞
ϕ%$, we have

lim
$→+∞

d(ϕ(ψ%$), ψ(ϕ%$)) = 0;

(IV) ψ(f) ⊆ ϕ(f) ∩ Z.

Then, ψ, ϕ have a coincidence point. In addition, if for any two coincidence points
γ1 and γ2 of ψ, ϕ, that is, there exist some ς1, ς2 ∈ f with ψς1 = ϕς1 = γ1 and
ψς2 = ϕς2 = γ2, then ψ, ϕ possess a unique coincidence point. Furthermore, if
ψ, ϕ are two weakly compatible maps then they possess a unique common fixed
point.

******
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Chapter 5

Fixed Point Results in Bipolar
R-Metric Space

5.1 Introduction

Mutlu & Gürdal (2016) coined the notion of the bipolar metric space which deals
with two abstract spaces by defining metric d on the cartesian product of these
spaces. This theory indeed generalized the metric space where only one space is
involved. Many authors have presented fixed point results in bipolar metric space
together with contractive maps (see Kishore et al. (2018), Gürdal et al. (2020),
Mutlu et al. (2020), Gaba et al. (2021), Roy et al. (2022) and references cited
therein).

With the intend to further generalize the idea of bipolar metric space, by this
chapter, we first introduce the notion of bipolar R-metric space wherein by as-
sociating an arbitrary binary relation R with bipolar metric space, fixed point
result is obtained. Next, we move a step forward and introduce the notions of
FR-contractive map and FR-expansive map along with some fixed point results in
a bipolar R-metric space . Under a certain specific condition, the results reduces
to novel fixed point result in bipolar metric space with respect to an expansive
map. The results of this chapter are part of the research papers presented in 8,9.

8Malhotra, A., and Kumar, D. (2022). Bipolar R-metric space and fixed point result. Inter-
national Journal of Nonlinear Analysis and Applications, 13(2), 709-712.

9Malhotra, A., and Kumar, D. (2023). Fixed Point Results using FR-contractive map and
FR-expansive map in Bipolar R-metric space. (Communicated).
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5.2 BipolarR-metric space and Generalized Con-
traction Maps

To begin with, we first put forward some of the terminologies used along with the
supportive lemma. At the end of the section, an example is discussed that helps
to validate the result proved.

Definition 5.2.1. Two non-empty sets f and Λ together with metric d : f×Λ→
[0,+∞) and binary relation R ⊆ f × Λ is c.t.b a bipolar R-metric space
(denoted by (f,Λ, dR)) if:

(i) (f,Λ, d) is a bipolar metric space;

(ii) R is a binary relation on f× Λ.

Definition 5.2.2. In a bipolar R-metric space (f,Λ, dR):

(i) a bisequence ({%$}, {ς$})$∈N in f×Λ is c.t.b anR-bisequence if (%$, ς$+1) ∈
R or (%$+1, ς$) ∈ R ∀ $ ∈ N.

(ii) an R-bisequence ({%$}, {ς$})$∈N is c.t.b a convergent R-bisequence if
both {%$}$∈N and {ς$}$∈N are convergent to respective right and left point.

(iii) an R-bisequence ({%$}, {ς$})$∈N is c.t.b a biconvergent R-bisequence
if both {%$}$∈N and {ς$}$∈N are convergent to the same central point.

(iv) a map ψ : f∪Λ→ f∪Λ is c.t.b a bipolar R-continuous if ∀ convergent
R-bisequence ({%$}, {ς$})$∈N in f× Λ s.t

%$ → ς and ς$ → % as $ → +∞,

implies, ψ%$ → ψς and ψς$ → ψ% as $ → +∞.

(v) (f,Λ, dR) is c.t.b a complete bipolar R-metric space if every Cauchy
R-bisequence is convergent R-bisequence.

(vi) a map ψ : f ∪Λ→ f ∪Λ is c.t.b a FR-contractive map for some F ∈ F

if ∃ some ℘ > 0 s.t for (%, ς) ∈ R, we have

℘+ F(dR(ψ%, ψς)) 6 F(dR(%, ς)).
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Lemma 5.2.1. In a bipolarR-metric space, each convergent CauchyR-bisequence
implies it is biconvergent R-bisequence.

Proof. Let ({%$}, {ς$})$∈N be a convergent Cauchy R-bisequence, that is, there
is some ({%$}, {ς$})$∈N ⊂ f × Λ with %$ → ς (in Λ) and ς$ → % (in f) as
$ → +∞. Let $,$0, $

∗ ∈ N where $,$∗ > $0, then

dR(%, ς) 6 dR(%, ς$∗) + dR(%$, ς) + dR(%$, ς$∗).

Taking limit as $,$∗ → +∞, we get % = ς. Hence, ({%$}, {ς$})$∈N is biconver-
gent R-bisequence.

Theorem 5.2.2. For a complete bipolar R-metric space (f,Λ, dR), let ψ : f ∪
Λ→ f ∪ Λ a map s.t:

(I) ψ(f) ⊆ f and ψ(Λ) ⊆ Λ;

(II) ∃ some 0 < λ < 1 with dR(ψ%, ψς) 6 λdR(%, ς) for each (%, ς) ∈ R;

(III) ∃ some (%0, ς0) ∈ f× Λ with (%0, ς0) ∈ R and (%0, ψς0) ∈ R;

(IV) ψ is bipolar R-continuous;

(V) For each (%, ς) ∈ R, we have (ψ%, ψς) ∈ R.

Then, ψ possesses at least one fixed point.

Proof. Let the bisequence ({%$}, {ς$})$∈N′ in f × Λ, where ψ%$−1 = %$ and
ψς$−1 = ς$ ∀ $ ∈ N′. By condition (III), we obtain that ∃ some (%0, ς0) ∈ f×Λ
where (%0, ς0) ∈ R and (%0, ς1) = (%0, ψς0) ∈ R. On using condition (V), we have

(ψ%0, ψς0) = (%1, ς1) ∈ R and (ψ%0, ψς1) = (%1, ς2) ∈ R,

continuing this process, we get (%$, ς$) ∈ R and (%$, ς$+1) ∈ R, ∀ $ ∈ N′. Thus
({%$}, {ς$})$∈N′ is an R-bisequence. Now from condition (II), we obtain

dR(%$+1, ς$+1) = dR(ψ%$, ψς$) 6 λdR(%$, ς$) 6 · · · 6 λ$+1dR(%0, ς0).

Furthermore,

dR(%$, ς$+1) = dR(ψ%$−1, ψς$) 6 λdR(%$−1, ς$) 6 · · · 6 λ$dR(%0, ς1).

121



Next, for some $,$∗ ∈ N′ with $∗ > $, we obtain

dR(%$, ς$∗) 6 dR(%$, ς$+1) + dR(%$+1, ς$+1) + dR(%$+1, ς$∗)

6 dR(%$, ς$+1) + dR(%$+1, ς$+1) + dR(%$+1, ς$+2) + dR(%$+2, ς$+2)

+dR(%$+2, ς$∗)

6 (dR(%$+1, ς$+1) + dR(%$+2, ς$+2) + · · ·+ dR(%$∗−1, ς$∗−1))

+(dR(%$, ς$+1) + dR(%$+1, ς$+2) + · · ·+ dR(%$∗−1, ς$∗))

6
$∗−2∑
k=$

dR(%k+1, ςk+1) +
$∗−1∑
k=$

dR(%k, ςk+1)

6
+∞∑
k=$

λk+1dR(%0, ς0) +
+∞∑
k=$

λkdR(%0, ς1),

= λ$+2dR(%0, ς0)
1− λ + λ$+1dR(%0, ς1)

1− λ → 0 as $ → +∞.

Thus ({%$}, {ς$})$∈N′ is a Cauchy R-bisequence and since (f,Λ, dR) is a com-
plete bipolar R-metric space, so ({%$}, {ς$})$∈N′ is convergent R-bisequence. By
Lemma 5.2.1, ∃ η ∈ f ∩ Λ s.t

%$ → η and ς$ → η as $ → +∞.

As ψ is bipolar R-continuous, so we have

lim
$→+∞

ψ%$ = ψη and lim
$→+∞

ψς$ = ψη,

that is, lim
$→+∞

%$+1 = ψη and lim
$→+∞

ς$+1 = ψη,

then, η = ψη.

Thus, ψ possesses at least one fixed point.

Example 5.2.3. Let f = [0, 1/2] and Λ = [−1/2, 0] where for (%, ς) ∈ f× Λ we
define d(%, ς) = |% − ς|. Define R on f × Λ as (%, ς) ∈ R iff %.ς = 0. Define
ψ : f ∪ Λ→ f ∪ Λ as:

ψ(%) =


29%
73 for % ∈ [0, 1/2];
−%2

6 for % ∈ [−1/2, 0).

Clearly, ψ(f) ⊆ f and ψ(Λ) ⊆ Λ. For (%, ς) ∈ R we have (ψ%, ψς) ∈ R. Also, ψ
is a bipolarR-continuous, since for any convergentR-bisequence ({%$}, {ς$})$∈N ∈
f × Λ, we have %$ → 0 and ς$ → 0 as $ → +∞ then ψ%$ → ψ0 = 0 and
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ψς$ → ψ0 = 0 as $ → +∞. Next, we verify condition (II) of Theorem 5.2.2.
For (%, ς) ∈ R either % = 0 and/or ς = 0, therefore we have the following cases:

Case (i): If % = 0 and ς ∈ [−1/2, 0) and for λ = 1/11, we have

dR(ψ%, ψς) 6 λdR(%, ς).

Case (ii): If % ∈ (0, 1/2] and ς = 0 and for λ ∈ (29/73, 1), we have

dR(ψ%, ψς) 6 λdR(%, ς).

Since all hypotheses of Theorem 5.2.2 hold, so ψ possesses a fixed point viz. 0.

Theorem 5.2.4. For a complete bipolar R-metric space (f,Λ, dR), let ψ : f ∪
Λ→ f ∪ Λ be a map s.t for some F ∈ F, the following holds:

(I) ψ(f) ⊆ f and ψ(Λ) ⊆ Λ;

(II) ψ is FR-contractive map;

(III) ∃ some (%0, ς0) ∈ f× Λ where (%0, ς0) ∈ R and (%0, ψς0) ∈ R;

(IV) ψ is bipolar R-continuous;

(V) For each (%, ς) ∈ R, we have (ψ%, ψς) ∈ R.

Then, ψ possesses a fixed point. Furthermore, if there are two fixed point %, %∗

then (%, %∗) ∈ R and in such case ψ possesses a unique fixed point.

Proof. Define a bisequence ({%$}, {ς$})$∈N′ in f × Λ with ψ%$−1 = %$ and
ψς$−1 = ς$. Since (%0, ς0) ∈ f× Λ, by condition (III), we obtain

(%0, ς0) ∈ R and (%0, ψς0) ∈ R.

On using R-preserving property of ψ, we obtain

(ψ%0, ψς0) ∈ R and (ψ%0, ψς1) ∈ R.

Repetitive use of R-preserving property of ψ, we get

(%$, ς$) ∈ R and (%$, ς$+1) ∈ R,
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∀ $ ∈ N′. Thus, ({%$}, {ς$})$∈N is an R-bisequence. Now,

F(dR(%$+1, ς$+1)) = F(dR(ψ%$, ψς$)) 6 F(dR(%$, ς$))− ℘

6 F(dR(%$−1, ς$−1))− 2℘

6 · · · 6 F(dR(%0, ς0))− ($ + 1)℘. (5.1)

Letting $ → +∞ in (5.1) and using (F2) property of F , we have lim
$→+∞

dR(%$+1,

ς$+1) = 0. Further using (F3) property of F , we obtain that ∃ $ ∈ (0, 1) s.t

lim
$→+∞

(
dR(%$+1, ς$+1)

)$
F(dR(%$+1, ς$+1)) = 0. (5.2)

Using (5.1) in (5.2), we obtain
(
dR(%$+1, ς$+1)

)$(
F(dR(%$+1, ς$+1)) − F(dR(%0, ς0))

)
6 −($ + 1)

(
dR(%$+1, ς$+1)

)$
℘.

(5.3)

Taking limit as $ → +∞ in (5.3), we get lim
$→+∞

($ + 1)
(
dR(%$+1, ς$+1)

)$
= 0.

Thus, ∃ some $∗ ∈ N′ s.t for each $ > $∗, we get

dR(%$+1, ς$+1) 6 1
($ + 1)1/$ . (5.4)

Since,

F(dR(%$, ς$+1)) = F(dR(ψ%$−1, ψς$)) 6 F(dR(%$−1, ς$))− ℘

6 F(dR(%$−2, ς$−1))− 2℘

6 · · · 6 F(dR(%0, ς1))−$℘. (5.5)

Taking limit as $ → +∞ in (5.5), we get lim
$→+∞

dR(%$, ς$+1) = 0. By using (F3)
property of F , we obtain that ∃ $∗ ∈ (0, 1) so that

lim
$→+∞

(
dR(%$, ς$+1)

)$∗
F(dR(%$, ς$+1)) = 0. (5.6)

Using (5.6) in (5.5), we have

(
dR(%$, ς$+1)

)$∗(
F(dR(%$, ς$+1))−F(dR(%0, ς1))

)
6 −$

(
dR(%$, ς$+1)

)$∗
℘.

(5.7)
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Taking limit as $ → +∞ in (5.7), we get lim
$→+∞

$
(
dR(%$, ς$+1)

)$∗
= 0. Thus, ∃

some $∗∗ ∈ N′ s.t for each $ > $∗∗, we obtain

dR(%$, ς$+1) 6 1
$1/$∗ . (5.8)

Consider $,$′ , $∗ ∈ N′ where $′ = max{$∗, $∗∗} and $∗ > $ > $
′ , we have

dR(%$, ς$∗) 6 dR(%$, ς$+1) + dR(%$+1, ς$+1) + dR(%$+1, ς$+2) + · · ·+

dR(%$∗−1, ς$∗)

=
(
dR(%$+1, ς$+1) + dR(%$+2, ς$+2) + · · ·+ dR(%$∗−1, ς$∗−1)

)

+
(
dR(%$, ς$+1) + dR(%$+1, ς$+2) + · · ·+ dR(%$∗−1, ς$∗)

)

6
+∞∑
γ=1

dR(%γ, ςγ) +
+∞∑
δ=1

dR(%δ, ςδ+1). (5.9)

Using (5.4) and (5.8) in (5.9), we obtain

dR(%$, ς$) 6
+∞∑
γ=1

1
(γ + 1) 1

$

+
+∞∑
δ=1

1(
δ
) 1
$∗
. (5.10)

Since, (5.10) is a convergent series, so we have ({%$}, {ς$})$∈N′ is a Cauchy R-
bisequence on complete bipolar R-metric space. Using Lemma 5.2.1, we obtain
that ∃ σ ∈ f ∩ Λ with

lim
$→+∞

%$ = σ and lim
$→+∞

ς$ = σ.

Using R-continuity of ψ, we get

lim
$→+∞

ψ%$ = lim
$→+∞

%$+1 = ψσ and lim
$→+∞

ψς$ = lim
$→+∞

ς$+1 = ψσ,

that is, σ = ψσ.

Thus, ψ possesses a fixed point. Next, let σ∗ ∈ f ∩ Λ be s.t ψσ∗ = σ∗, then
(σ, σ∗) ∈ R. Now,

F(dR(σ, σ∗)) 6 ℘+ F(dR(ψσ, ψσ∗)) 6 F(dR(σ, σ∗)),

which holds only if σ = σ∗. Hence, ψ possesses a unique fixed point.

Example 5.2.5. Let f = {1, 2, 3}, Λ = {3, 4, 5} together with metric d : f×Λ→
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[0,+∞) defined as d(%, ς) = |%− ς| and a binary relation R ⊂ f× Λ defined as

R = {(1, 3), (2, 3), (3, 3)}.

Define a map ψ : f∪Λ→ f∪Λ as ψ(1) = 2, ψ(2) = 3, ψ(3) = 3, ψ(4) = 4, ψ(5) =
4. Clearly ψ(f) ⊆ f, ψ(Λ) ⊆ Λ and for any (%, ς) ∈ R implies (ψ(%), ψ(ς)) ∈
R. Also, for any convergent R-bisequence ({%$}, {ς$})$∈N ∈ f × Λ, we have

lim
$→+∞

%$ = 3 and lim
$→+∞

ς$ = 3 thus lim
$→+∞

ψ%$ = ψ3 = 3 and lim
$→+∞

ψς$ =
ψ3 = 3. Next, to show that ψ is FR-contractive map, where F(µ) = ln(µ) +µ, let
us consider the following cases:

Case (i): Let (%, ς) = (1, 3). Then,

℘+ F(d(ψ%, ψς)) = ℘+ ln(d(2, 3)) + d(2, 3) = ℘+ 1,

and, F(d(%, ς)) = ln(d(1, 3)) + d(1, 3) = ln(2) + 2.

So, the FR-contractive condition holds in this case for any ℘ ∈ (0, ln(2) + 1).

Case (ii): Let (%, ς) = (2, 3). Then,

℘+ F(d(ψ%, ψς))→ −∞, and, F(d(%, ς)) = ln(d(2, 3)) + d(2, 3) = 1.

So, the FR-contractive condition holds in this case for any ℘ > 0.

Case (iii): Let (%, ς) = (3, 3). Then,

℘+ F(d(ψ%, ψς))→ −∞, and, F(d(%, ς))→ −∞.

So, the FR-contractive condition holds in this case for any ℘ > 0.
Since the conditions (I)-(V) of Theorem 5.2.4 hold, so ψ possesses fixed points
which are % = 3 and % = 4.

5.3 Generalized Expansive Map and Fixed Point
Result

Definition 5.3.1. For a bipolar R-metric space (f,Λ, dR), ψ : f ∪ Λ → f ∪ Λ
is c.t.b a FR-expansive map for F ∈ F if ∃ some ℘ > 0 s.t for (%, ς) ∈ R, we
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have
F(dR(ψ%, ψς)) > F(dR(%, ς)) + ℘.

Theorem 5.3.1. For a complete bipolar R-metric space (f,Λ, dR), let ψ : f ∪
Λ→ f ∪ Λ be a surjective map with ψ∗ as right inverse of ψ s.t for some F ∈ F,
the following holds:

(I) ψ(f), ψ∗(f) ⊆ f and ψ(Λ), ψ∗(Λ) ⊆ Λ;

(II) ψ is FR-expansive map;

(III) ∃ some (%0, ς0) ∈ f× Λ s.t (%0, ς0) ∈ R, (%0, ψς0) ∈ R and (%0, ψ
∗ς0) ∈ R;

(IV) ψ and ψ∗ are both bipolar R-continuous;

(V) For each (%, ς) ∈ R, we have (ψ%, ψς) ∈ R and (ψ∗%, ψ∗ς) ∈ R.

Then, ψ possesses a fixed point. Furthermore, if there are two fixed point %, %∗

then (%, %∗) ∈ R and in such case ψ possesses a unique fixed point.

Proof. Define ({%$}, {ς$})$∈N′ be a bisequence in f× Λ, where

ψ%$−1 = %$ and ψς$−1 = ς$, ∀ $ ∈ N

Now, proceeding on the lines of Theorem 5.2.4, we obtain that ({%$}, {ς$})$∈N′
is an R-bisequence. Since, (%$, ς$) ∈ R for $ ∈ N and ψ is surjective so we have
ψ∗ : f ∪ Λ→ f ∪ Λ s.t

ψ∗%$ = %$−1 and ψ∗ς$+1 = ς$ ∀ $ ∈ N′.

Next,

F(dR(%$, ς$+1)) = F(dR(ψ%$−1, ψς$))

> F(dR(%$−1, ς$)) + ℘

= F(dR(ψ∗%$, ψ∗ς$+1)) + ℘. (5.11)

By (5.11) and Theorem 5.2.4, we obtain that ∃ unique σ ∈ f ∩ Λ s.t,

ψ∗σ = σ,

that is, ψσ = σ.

Thus, ψ possesses a unique fixed point.
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5.4 Consequences

In this section, we reduce the results proved in previous section for fixed point
result in bipolar metric space (f,Λ, d) under an expansive map and some fixed
point result in the literature.

Theorem 5.4.1. For a complete bipolar metric space (f,Λ, d), let ψ : f ∪ Λ →
f ∪ Λ be a surjective map with ψ∗ as right inverse of ψ where ψ and ψ∗ are
continuous map with ψ(f), ψ∗(f) ⊆ f, ψ(Λ), ψ∗(Λ) ⊆ Λ and for some F ∈ F, ∃
℘ > 0 s.t:

F(d(ψ%, ψς)) > F(d(%, ς)) + ℘.

Then, ψ possesses a unique fixed point.

Proof. If in Theorem 5.3.1, we consider R = f × Λ then the above result is
obtained.

Theorem 5.4.2. (Mani et al. (2023)) For a complete bipolar metric space (f,Λ, d),
let ψ : f ∪ Λ → f ∪ Λ be a map where ψ is a continuous map with ψ(f) ⊆ f,
ψ(Λ) ⊆ Λ and for some F ∈ F, ∃ ℘ > 0 s.t:

℘+ F(d(ψ%, ψς)) 6 F(d(%, ς)).

Then, ψ possesses a unique fixed point.

Proof. If in Theorem 5.2.4, we consider R = f × Λ then the above result is
obtained.

******
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3. One Week International e-Faculty Development Programme on
Fixed Point Theory and its Applications, organized by School of Math-
ematics and Statistics, School of Basic Science, Manipal University Jaipur,
from September 15-19, 2020.

4. One Week Short Term Training Program on Computational Soft-
ware (MATLAB & MATHEMATICA) organized by Applied Mathe-
matics and Humanities Department, Sardar Vallabhbhai National Institute
of Technology, Surat, from October 05–09, 2020.

5. Workshop titled Various Applications of Fixed Point Theory or-
ganized by King Fahd University of Petroleum and Minerals Department
of Mathematics & Statistics Fixed Point Theory & Applications Research
Group, from December 14-15, 2020.
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