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Abstract

Vehicular Adhoc Network (VANET) is a modern implementation of an intelligent

transport system that interconnects vehicles with each other and infrastructural modules.

It belongs to the Mobile Ad hoc Networks (MANET) subclass, which inherits features

from the Internet of Things (IoT). We use VANETs to inform drivers about traffic,

tolls, and parking spaces and also use them for security, communication, business,

and government surveillance. VANETs are expanding as a result of the growth of

wireless networks. The development of Internet-based applications and dependency

on these web-based applications results in the rapid increase of Internet-related attacks.

Similarly, implementing security in VANETs and the upkeep of these networks have

been challenging tasks. Among all the threats, Denial of Service (DoS) and Distributed

Denial of Service (DDoS) attacks are more damaging. DDoS assaults have increased

in volume and severity, making them a deadly tool for intruders since they may interfere

with any network’s functionality. All the legitimate users do not get the services they

need. Since these assaults can result in economic damage for businesses, it is a crucial

security concern. It may also risk human lives in vehicular networks. In vehicular

networks, a DDoS attack, an extension of a DoS attack, can stop the functioning of

the onboard GPS or entertainment systems; even the attacker can propagate a DDoS

attack toward the electric grid through the charging stations for the connected electric

vehicles. It is a challenging task to manage these attacks in a vehicular environment.

We use several Machine Learning (ML) methods for detecting DDoS assaults. ML finds

the optimal solution for DDoS handling among all the available solutions. It is a subset

of AI that allows machines to acquire knowledge and evolve without programmer

intervention. Existing ML algorithms work as a single-layer security framework in

a vehicular network environment. On the contrary DDoS dynamics are applicable in

different network layers. Thus, a gap exists between the existing solutions and the multi-

layer DDoS detection strategy requirements. Besides, most of the existing detection

models need to consider the heterogeneity of the traffic and are non-adaptive as per

the traffic rate. Organizations often face a strategic choice between prioritizing either

DDoS prevention or detection due to resource constraints, operational considerations,

and the dynamic nature of cyber threats.
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We address the problem of DDoS attacks by introducing three security frameworks:

one for DDoS detection, one for DDoS prevention, and a combined solution for both.

For DDoS detection, we propose and use a security framework called Vehicular Adap-

tive Intrusion Detection And Novel System for Heterogeneous Hosts (VAIDANSHH). It

is the first ML-based Network Intrusion Detection System (NIDS) for DDoS attacks

in vehicular networks to combine a three-tier security model, traffic adaptivity, and

heterogeneity. These three tiers are the hardware tier (physical tier), the interface tier

(communication channel), and the application tier. The advantage of this three-tier

architecture is that it provides a safe vehicle environment by applying rigorous security

at different levels. VAIDANSHH is a dynamic IDS that collects real-time packet infor-

mation and adapts the thresholds of traffic according to the traffic load. This adaptation

generates more accurate and reliable results. VAIDANSHH provides flexibility to in-

corporate vehicles of different vendors, standards, protocols, and technologies. Traffic

is also heterogeneous in VANETs. As a result, the heterogeneity of vehicles does not

create any problems related to compatibility or interoperability.

We propose the ”Predictive Risk Evaluation for Vehicular Infrastructure Resilience

(PREVIR)”. PREVIR is a new solution that combines the Logit approach (statistical

analysis) with the LogitBoost approach (machine learning) to thwart DDoS assaults in

vehicular networks. The logit model of PREVIR forecasts the likelihood of a packet

being malicious, and the machine learning approach enhances PREVIR’s performance

via iteratively tuning the model’s regular updates based on new traffic data. We

conducted several trials with PREVIR. We use the NSL-KDD public dataset, the CIC-

DDoS public dataset, and our NS3-generated dataset. Numerous attack types, such as

UDP flood, TCP flood, mixed flooding, U2R, Probe, and R2L assaults, are analyzed

by PREVIR. Its mathematical abilities give us the best results with little training and

without over-fitting. It may be used for single and multi-class classification. The

chance of an intrusion happening in a vehicle scenario is predicted by PREVIR using

the logit model. Using packet characteristics, PREVIR calculates the likelihood that a

new packet is harmful or not.

At last we introduce the first ML-based combined solution for the prevention and detec-

tion of DDoS attacks in vehicular networks. To be more specific, our proposed system
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is the first to consider the adaptive traffic threshold to generate the alarm for a suspicious

amount of traffic flow in an Intrusion Detection Prevention System (IDPS). We call

our proposed approach as Protecting vEhicular neTworks against distRibuted deniAl of

service attacKs (PETRAK). PETRAK uses four functions: prevention, alarm, training,

and detection. PETRAK’s alarming system uses the flow parameters and activates the

detection module. The detection module uses an ML model to detect malicious pack-

ets. The prevention system works in two modes: immediate and future. PETRAK uses

logistic regression to identify incoming packets and signatures of malicious packets to

prevent future attacks.

In terms of results, VAIDANSHH detects UDP flooding, a form of DDoS attack with

99.9% accuracy within a very short time. PREVIR can classify packets with an ac-

curacy of 100% and 99.99% for the two different datasets respectively. Our model

also shows an average sensitivity of 100% and an average specificity of 58.33%. The

comparative analysis shows that PREVIR’s efficiency is 20% better on average in the

prevention of malicious packets in contrast to cutting-edge models. We observe that

PETRAK shows an accuracy of more than 99%. The findings demonstrate PETRAK’s

effectiveness as a method for detecting and preventing DDoS assaults in VANETs.

New strategy development benefits from a thorough examination of these threats and

countermeasures. These attack detection and prevention system helps in saving finan-

cial resources and other network resources along with human lives. By using these

solutions researchers and industry can provide a secure working environment to the

end users and organizations.

vii



Contents

List of Tables xiii

List of Figures xv

1 Introduction 1

1.1 Networks categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Network and security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Security models (CIA and AAA) . . . . . . . . . . . . . . . . . . . 5

1.2.2 Denial of Service (DoS) . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Transition from DoS to DDoS . . . . . . . . . . . . . . . . . . . . 7

1.3 VANET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Security in VANET . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 DDoS in VANETs . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.3 DoS/DDoS sub-types . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 DDoS defense mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.1 Intrusion Detection Systems (IDS) . . . . . . . . . . . . . . . . . . 17

1.5.2 Intrusion Prevention Systems (IPS) . . . . . . . . . . . . . . . . . 18

1.6 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Vehicular Ad-hoc Networks 20

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Detailed architecture of VANET . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 Component-based Architecture . . . . . . . . . . . . . . . . . . . 23

2.2.2 Communication-based architecture . . . . . . . . . . . . . . . . . 28

2.2.3 Cloud-based layered architecture . . . . . . . . . . . . . . . . . . . 28

2.3 VANET applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

viii



2.4 Features of VANET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Future of VANET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Security requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.7 Attack classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.7.1 Attacks on security services: . . . . . . . . . . . . . . . . . . . . . 37

2.7.2 Attacks based on attacker-type: . . . . . . . . . . . . . . . . . . . . 42

2.7.3 Attacks on VANET layers: . . . . . . . . . . . . . . . . . . . . . . 43

2.7.4 Attacks on VANET components: . . . . . . . . . . . . . . . . . . . 48

2.7.5 Attacks on electric vehicles: . . . . . . . . . . . . . . . . . . . . . 52

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Security Solutions 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Detection solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Identity based solutions . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 Key based solutions . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2.3 Trust based solutions . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.4 Machine Learning solutions . . . . . . . . . . . . . . . . . . . . . 61

3.2.5 Hybrid solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.6 Solutions for EV infrastructure . . . . . . . . . . . . . . . . . . . . 66

3.3 Prevention solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.1 Conventional solutions . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3.2 Logit model-based solutions . . . . . . . . . . . . . . . . . . . . . 69

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Research Methodology 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Research gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

ix



4.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5.1 Methodology for objective 1: Literature Review . . . . . . . . . . . 78

4.5.2 Methodology for objective 2: Detection framework . . . . . . . . . 79

4.5.3 Methodology for objective 3: Prevention framework . . . . . . . . 80

4.5.4 Methodology for objective 4: Validation . . . . . . . . . . . . . . . 81

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 Detection Framework 84

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Motivation and contribution . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Proposed model: VAIDANSHH . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.1 System configuration . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.2 Network topology . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4.3 Attack methodology . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Adaptive alarming module: preliminary understanding . . . . . . . . . . . 92

5.5.1 Functional modules of the AAM . . . . . . . . . . . . . . . . . . . 94

5.6 Detection module and Tier-3 . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6.1 Dataset generation: . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6.2 Feature extraction and dimension reduction . . . . . . . . . . . . . 97

5.6.3 Training and testing . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.6.4 DDoS detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.8 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.8.1 AAM Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.8.2 DM Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.9 Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.9.1 Results of tier-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.9.2 Results of tier-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.9.3 Results of tier-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

x



5.10 Comparative analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.10.1 Naive Bayes family . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.10.2 Other classification algorithms . . . . . . . . . . . . . . . . . . . . 112

5.10.3 Existing solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.11 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Prevention Framework 115

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Basic terminology: Logit model . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Proposed model: PREVIR . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3.1 Functionality overview . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3.3 Parameter selection . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.3.4 Model construction and testing . . . . . . . . . . . . . . . . . . . . 123

6.3.5 Overall goodness of fit . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3.6 Computing probabilities . . . . . . . . . . . . . . . . . . . . . . . 124

6.3.7 Export model data for ML application . . . . . . . . . . . . . . . . 125

6.3.8 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3.9 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.3.10 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4.1 Results of Z-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.4.2 Results of Pearson’s goodness of fit . . . . . . . . . . . . . . . . . 131

6.4.3 Results of Hosmer-Lemeshov goodness of fit . . . . . . . . . . . . 131

6.4.4 Individual packet probabilities . . . . . . . . . . . . . . . . . . . . 132

6.5 Classification results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.5.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.5.2 Model construction time . . . . . . . . . . . . . . . . . . . . . . . 133

6.5.3 Testing time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.5.4 TP & FP Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

xi



6.5.5 Precision, recall, and F1-score . . . . . . . . . . . . . . . . . . . . 135

6.6 Comparative analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.7 Conclusion and future Work . . . . . . . . . . . . . . . . . . . . . . . . . 139

7 Conclusion 141

7.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2 Summary of Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2.1 Results of VAIDANSHH . . . . . . . . . . . . . . . . . . . . . . . 141

7.2.2 Results of PREVIR . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.3 Novelty and Innovation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.4 Contribution to the Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.5 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.6 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

References 151

xii



List of Tables

1 Attack classification based on security services . . . . . . . . . . . . . . . 41

2 Attack classification based on VANET layers . . . . . . . . . . . . . . . . 47

2 Attack classification based on VANET layers . . . . . . . . . . . . . . . . 48

3 Attack classification based on VANET components . . . . . . . . . . . . . 51

4 Identity based solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Identity based solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Key based solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Trust based solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Machine learning solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Machine learning solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Machine learning solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8 Hybrid solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

9 Solutions for EV infrastructure . . . . . . . . . . . . . . . . . . . . . . . . 66

10 Conventional attack prevention techniques . . . . . . . . . . . . . . . . . . 67

10 Conventional attack prevention techniques . . . . . . . . . . . . . . . . . . 68

10 Conventional attack prevention techniques . . . . . . . . . . . . . . . . . . 69

11 Logit and Probit Model-based prevention techniques . . . . . . . . . . . . 69

11 Logit and Probit Model based prevention techniques . . . . . . . . . . . . . 70

12 Attributes of experimental environment . . . . . . . . . . . . . . . . . . . 91

13 Selected attributes of synthetic dataset . . . . . . . . . . . . . . . . . . . . 98

14 Training and testing results with different data splits . . . . . . . . . . . . . 99

15 Results of alarming module from flow parameters . . . . . . . . . . . . . . 108

16 Detection results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

17 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

18 Detailed accuracy by class . . . . . . . . . . . . . . . . . . . . . . . . . . 109

19 Results obtained from techniques of Naive Bayes family . . . . . . . . . . . 109

20 Results obtained from other algorithms . . . . . . . . . . . . . . . . . . . . 110

xiii



21 Comparison of VAIDANSHH with existing models . . . . . . . . . . . . . 113

22 Attributes of Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

23 Accuracy results at various data splits . . . . . . . . . . . . . . . . . . . . 125

24 Results of Wald’s Z-test on Generated dataset . . . . . . . . . . . . . . . . 130

25 Results of Wald’s Z-test on NSL-KDD Dataset . . . . . . . . . . . . . . . 130

26 Results of Wald’s Z-test on CIC-DDoS 2019 Dataset . . . . . . . . . . . . 131

27 Results of goodness of fit . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

28 Results of Hosmer-Lemeshov goodness of fit . . . . . . . . . . . . . . . . 131

29 Individual packet probabilities . . . . . . . . . . . . . . . . . . . . . . . . 132

30 Comparison of Various strategies with proposed model . . . . . . . . . . . 138

31 Important characteristics of the proposed models in the research work . . . 147

xiv



List of Figures

1 Networks categorisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 CIA Framework and AAA Framework . . . . . . . . . . . . . . . . . . . . 6

3 Transition from DoS attacks to DDoS Attacks . . . . . . . . . . . . . . . . 7

4 Architecture of vehicular ad hoc network . . . . . . . . . . . . . . . . . . . . . 10

5 Attacks in VANET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6 DoS/DDoS attacks in VANET . . . . . . . . . . . . . . . . . . . . . . . . . . 12

7 DoS/DDoS defense mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 16

8 Relationship of Internet of Things (IoT) and VANETs . . . . . . . . . . . . 22

9 General architecture of VANET . . . . . . . . . . . . . . . . . . . . . . . 23

10 Component-based VANET architecture . . . . . . . . . . . . . . . . . . . 24

11 Complete research process . . . . . . . . . . . . . . . . . . . . . . . . . . 78

12 Research methodology for literature review . . . . . . . . . . . . . . . . . 79

13 Research methodology for attack detection . . . . . . . . . . . . . . . . . . 81

14 Research methodology for attack prevention . . . . . . . . . . . . . . . . . 82

15 Research methodology for comparative analysis and validation . . . . . . . 83

16 Overall functionality of proposed system . . . . . . . . . . . . . . . . . . . . . 89

17 Vehicle set up in the network . . . . . . . . . . . . . . . . . . . . . . . . . . 93

18 Results obtained from Naive Bayes algorithms . . . . . . . . . . . . . . . . . . 111

19 Results obtained from other algorithms . . . . . . . . . . . . . . . . . . . . . 112

20 Flowchart of PREVIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

21 Accuracy of the algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 133

22 Model Construction Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

23 Model Testing Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

24 True Positive Rate and False Positive Rate . . . . . . . . . . . . . . . . . . 135

25 Recall values in both the datasets . . . . . . . . . . . . . . . . . . . . . . . 136

26 Resulting parameters of comparative studies . . . . . . . . . . . . . . . . 137

xv



Chapter 1

Introduction

Living in the information age means information plays an important role in our actions. We

use networks to transfer information in many of our daily activities, such as setting a voice-

activated reminder, browsing the news on a tablet, and preparing meals in a programmed

oven. Besides utilizing technology to escape traffic, other tasks also include bill payments,

learning, performing office duties, purchasing digitally, and using digital platforms. The

primary purpose of networks is to share information, which is essential for our society to

function. A network connects two or more computers to exchange data through rules or

protocols. Network technology has changed significantly since its inception, and computing

is shifting towards mobile technology. We can control electronic products through WiFi

or Bluetooth networks instead of manually operating them. We connect various appli-

ances through networks, and this area is becoming vast as more devices are joining these

networks. Networks can be peer-to-peer, client-server, or other architectures and many op-

tions are available based on an organization’s requirements due to significant technological

advancements.

This chapter is separated into several subsections. The subsection 1.1 defines the relevant

networks with their scope. The subsection 1.2 defines security and its requirements in all

the networks. The subsection 1.2.1 provides the full description of mandatory security

features, CIA and AAA security models, DoS attacks, and the transition of DoS to DDoS

attacks. The subsection 1.3 defines VANET with its general architecture. It also defines the

implementation of security services in VANET and the risk of DoS and DDoS in VANETs.

The subsection 1.5 defines basic DDoS mitigation strategies. It defines general schemes

like prevention, detection, response, and tolerance.
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1.1 Networks categorization

According to Kizza, “a computer network is a distributed system consisting of loosely

connected computers and other devices. These devices are referred to as network ele-

ments or transmitting elements, and any two can communicate through a communication

medium” [1]. Each device must follow the rules or protocols to be in a communication net-

work when communicating with another device. The combination of hardware and software

that results from this is called a computer communication network or simply a computer

network. We classify networks based on their architecture as follows.

Figure 1: Networks categorisation

Client Server network: According to Migues, when a workstation can control a huge quan-

tity of stored information and carry out sophisticated calculations, we use this network [2].

This system, which serves other systems, is referred to as a server. Servers come in a variety

of forms. Client computers also access system resources simultaneously with the server.

Clients use guided media, like wires, and unguided media, such as radio waves, microwaves,

and satellites to access these server resources.

Peer-To-Peer network: A peer-to-peer (P2P) network is a computer network where every

computer, or node, in the network can act as a client and a server. In other words, each

computer can share its resources and access resources shared by other computers in the

network. P2P networks are decentralized, which implies that the system is not controlled

by a single server [3]. Instead, each computer communicates directly with other computers

in the network. One of the advantages of a P2P network is that it allows for the easy sharing
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of resources, such as files or processing power, between computers in the network. This

type of network is often used for file sharing, where users can download and upload files

directly from and to other users in the network. P2P networks also provide a high level

of fault tolerance, as the network can continue to function even if some nodes fail or are

removed. Because of the absence of a central body to administer and safeguard the network,

Peer-to-peer connections become prone to cyber threats like malware and viruses. Another

potential issue with P2P networks is that they can be slower than client-server networks, as

each computer must handle sending and receiving data. When we need resources spread out

over several locations, we employ this network. We disperse them among different areas.

With loose coupling, we link the various components of these networks together. It implies

that no system is dependent on another system.

Hybrid network: A hybrid network is a type of computer network that combines two or

more different network types or architectures. In a hybrid network, multiple servers provide

resources to clients, but some of the clients can also act as servers and share resources with

other clients. This type of network allows for a more flexible sharing of resources than a

traditional client-server network while providing the security and management benefits of

a server-based architecture [4]. One example of a hybrid network is a client-server network

with a P2P overlay. In this type of network, multiple servers provide resources to clients, but

the clients also connect directly to each other in a P2P overlay network to share resources.

This strategy allows clients to access resources from both the servers and other clients in

the network.

Cloud based networks: A cloud-based network is a computer network where the infrastruc-

ture and resources are hosted on cloud servers instead of being on-premises. Businesses

and organizations often use these networks to provide access to applications, data storage,

and other resources to users from anywhere in the world through the internet [5]. In a

cloud-based network, the servers, storage devices, and other infrastructure components are

hosted and maintained by a cloud services provider. Users can access these resources using

a web browser or a dedicated software application, while the service provider of the cloud

handles the network infrastructure’s management, maintenance, and security. The concept
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involves the integration of all network management functionalities with cloud computing.

Companies and institutions are migrating their processes to Internet facilities as technology

progresses to save, transfer, and exchange information. This infrastructure is known as

cloud technology. Nowadays, we see a wide range of devices connected to the internet

using numerous sensors and other mechanisms. The Internet of Things (IoT) is a system

of interconnected things that can carry out numerous functions including communication.

This is referred to as the ”net of everything,” which is a more comprehensive phrase. To

ensure proper operation of these networks, efficient data forwarding is essential, as data is

often time-sensitive [6].

Interplanetary networks: Interplanetary Networks allow communication between planets

and other celestial bodies in space. This type of network is designed to support deep

space exploration, enabling communication and data exchange between spacecraft, orbiters,

and ground stations across vast distances. Traditional networks, such as the Internet, are

unsuitable for interplanetary communication due to the long distance and the time delay

caused by the speed of light. The architecture of interplanetary networks relies on a store-

and-forward approach, where data is transmitted from one node to another, and each node

stores and forwards the data to the next node until it reaches its destination. This approach

is necessary to account for intermittent connectivity and delays in signal propagation [7].

Nanoscale networks: Nanoscale networks refer to a type of network infrastructure that

operates at the molecular and atomic scale. These networks are made up of nanoscale de-

vices. These nanoscale networks have the potential to revolutionize various fields, including

medicine, manufacturing, and computing. One of the challenges of nanoscale networks is

the limited range of communication between devices. Due to the devices’ small size, com-

munication is limited to short distances. Additionally, the devices are often susceptible to

noise and interference from their environment, which can cause errors in communication.

Despite these challenges, research in nanoscale networks continues to grow [8]. Such sys-

tems are employed in a variety of industries, including the manufacture of microchips and

medicine.

Other networks: Many types of computer networks are commonly used in various settings.
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The most well-known types include LANs, MANs, and WANs, which are often used to

connect devices within a limited geographic area, a metropolitan area, or across large

distances, respectively. However, several other popular networks serve unique purposes [9].

These include HAN, PAN, VPN, SAN, and GAN etc. Each of these network types has its

features and implementations.

1.2 Network and security

Business organizations use a variety of networks. By utilizing these networks, businesses

make themselves smart by increasing network speed, timely data exchange, and security.

The networks have become faster and more scalable due to technological advancements.

Still, security flaws are frequently increasing and decreasing the network’s trustworthiness.

Organizations need to ensure a safe working environment to gain customer trust, but in

the cyber world, no one is entirely safe from potential threats. While people can take

measures to protect themselves from existing threats, they cannot anticipate new ones that

may emerge in the future. There have been instances where attackers have taken advantage

of the vulnerabilities of the Internet. Therefore, it is essential to stay vigilant and stay

ahead of attackers. The list of cyber threats is endless. It is imperative to respond to online

society’s safety concerns.

1.2.1 Security models (CIA and AAA)

The CIA model stands for Confidentiality, Integrity, and Availability. It is an important

principle in the security field that strives to safeguard critical data privacy and confidentiality,

preserve the accuracy of the data, and guarantee that authorized parties have permission to

see its required contents. The AAA model, on the other hand, stands for Authentication,

Authorization, and Accounting. It is a model used in access control systems, which verifies

the identity of users (authentication), determines what actions they are allowed to perform

(authorization), and keeps track of their actions for auditing purposes (accounting). While

the AAA model helps to guarantee that only authorized people are provided information

accessibility and that their activities are recorded for responsibility, the CIA model assists in
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guaranteeing that confidential data is secured against unauthorized access [10]. We illustrate

the security model in Figure 2.

Figure 2: CIA Framework and AAA Framework

In general, security experts have successfully addressed many security issues, but they

have mostly overlooked ”Availability.” However, due to the rising prevalence of DoS and

DDoS attacks, this aspect has also become more critical, as users need access to information

whenever needed. DDoS and Availability are the topics of this research.

1.2.2 Denial of Service (DoS)

A DoS (Denial-of-Service) attack is a type of cyber attack that aims to make a website,

network, or online service unavailable to its intended users by overwhelming it with traffic

or other types of requests [11]. The goal of a DoS attack is to prevent legitimate users

from accessing the targeted system or service by flooding it with an excessive amount of

traffic or data. This can cause the system to slow down or crash, rendering it unusable

until the attack is mitigated. DoS attacks can be carried out in different ways, and their

severity can range from minor inconveniences to significant disruptions or even catastrophic

failures. There are several types of DoS attacks that attackers can use to achieve their goals,

including volumetric attacks, application layer attacks, and protocol attacks. Volumetric

attacks involve sending large amounts of data to the target system to consume its bandwidth

and resources. Application layer attacks, exploit the system vulnerabilities to consume
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system resources and crash it. Protocol attacks, on the other hand, target the underlying

communication protocols of a system, causing it to malfunction or crash [12].

1.2.3 Transition from DoS to DDoS

Computer processing speed, data retention, and connection speed have grown as technology

advances. More security measures have been established to use the internet as a result of

defending against conventional DoS assaults. Because systems now have more computing

capacity, it is simpler to control these assaults, which has lessened their impact. But

because attackers are always looking for new tactics, they have created a new technique

called Distributed Denial of Service (DDoS), as seen in Figure 3.

Figure 3: Transition from DoS attacks to DDoS Attacks

Figure 3 shows how a centrally controlled DoS assault transforms into a DDoS attack. The

transition from DoS to DDoS attacks marks a significant evolution in the tactics attackers

use to disrupt network services. In a DoS attack, a single computer floods a network or

website with traffic, causing it to crash or become unavailable to users. However, with

technological advancement, attackers have shifted to DDoS attacks that involve multiple

computers working in tandem to overload the targeted network or service. Unlike DoS

attacks, DDoS attacks are coordinated and can originate from anywhere in the world, making

it difficult to trace the source of the attack. The transition from DoS to DDoS attacks has

made it more challenging for network administrators to protect their networks and services
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from these malicious attacks. The attackers can use many compromised devices, making it

challenging to filter out legitimate traffic from malicious traffic.

DDoS attacks use a coordinated collection of systems to overload the targeted network or

service. Attackers can use bots or other infected machines to launch the attack directly or

indirectly. To establish a DDoS attack, the attacker first identifies vulnerable devices that

can be used as intermediate nodes. Attackers compromise these machines by injecting ma-

licious code into them through various means, such as phishing emails or exploiting known

vulnerabilities. Once the attacker injects the code, the compromised machine becomes part

of a botnet to launch the attack [13]. The attacker then communicates with the compromised

agents to inform them about the attack timing and the target. The attacker can use the botnet

to flood the target network or service with massive traffic or exploit specific vulnerabilities

in the target system. The attack aims to overwhelm the target and render it inaccessible to

legitimate users. DDoS attacks launched using bots and injecting malicious code can be

challenging to defend against, as they can originate from anywhere in the world and involve

many compromised devices. Organizations can use DDoS protection services to detect

and block malicious traffic, but attackers can use sophisticated techniques to bypass these

defenses. Therefore, it is essential to implement a layered defense approach that includes

regular vulnerability assessments, intrusion detection systems, and continuous monitoring

to detect and respond to DDoS attacks in real-time.

1.3 VANET

The Internet has undergone significant changes in size, capabilities, technologies, and

data traffic. Over time, the types of connections available to users have expanded from

dial-up links to broadband and wireless connections such as 2G, 3G, 4G, and soon 5G.

Researchers have achieved speeds of up to 45 terabits per second, allowing for connecting

different devices and objects. These networks have sparked a new revolution, the Internet

of Things (IoT) [14]. In 1999, Kevin Ashton, a UK-based entrepreneur and technologist

coined the term IoT. He had developed standards for RFID technology [15]. In previous

methods, physical objects or things could be connected to the internet using sensors or other
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technology, but they did not use internet protocols. A new approach has been adopted,

which involves implementing IP on electronic devices so that they can communicate via the

Internet. The first experiment involved an electronic toaster that turns on or off using the

internet. Subsequently, IP connected other electronic devices, such as soda machines and

coffee pots, to the internet. As a result, IoT has grown significantly in size. The expanding

range of technologies in the Internet of Things (IoT) has increasing applicability, including

transportation. We require an Intelligent Transport System (ITS) as we use millions of

automobiles, railways, and airplanes. ITS is an architecture that uses various cutting-edge

technologies to make the conventional transportation system safer, more practical, and

blockage-free. it safer, more convenient, and congestion-free. VANETs have the same

objective [16], facilitating communication between vehicles and other units. VANETs are

established when vehicles connect with any infrastructure module [17]. We use them

for various purposes, including commercial communication among vehicles, security, and

surveillance by authorities. VANETs fall under the umbrella of MANETs and constitute

part of the Internet of Things. We employ these networks in urban areas to inform drivers

about congestion, tolls, and parking [16]. We use these networks to ensure passenger safety

and comfort. Security concerns are also increasing with the growing scale of VANETs [17].

EVs are a crucial element of VANETs because they can communicate with both VANET

vehicles and infrastructure, as well as with Smart Grids (SGs)[18]. The automobile indus-

try has identified EVs as an important aspect of its future growth. We charge EVs through

smart charging, which entails sharing data between the EV and charging equipment with the

charging operator. Smart grids facilitate this type of electrical system[19]. Alternative ad-

vanced charging methods, such as vehicle-to-vehicle charging systems instead of intelligent

grids, are also feasible, where vehicles meet at a designated location to exchange electric-

ity [20]. This approach allows a vehicle to charge its battery without traveling far while the

energy-providing vehicle also avoids excessive travel. There are multiple ways to describe

the architecture of VANET, including component-based, communication technique-based,

and hybrid approaches. VANET can include various types of vehicles, such as electric,

non-electric, or hybrid vehicles, and can use different communication techniques, including
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cellular networks and dedicated short-range communication (DSRC). Component-based

architecture involves various components, such as infrastructural components, mobile com-

ponents, the Internet, and other related components. Communication-based architecture

focuses on communication between vehicles rather than the network components used. In

a hybrid approach, components and communication methodology are equally important.

This method minimizes communication latency while boosting connectivity between cars

and infrastructure thanks to the network’s design. In the VANET design, we use various

networking technological advances, including wireless networks and DSRC. It operates in

the 5.9 GHz frequency band and transmits data up to a range of 300 meters. VANET

architecture also uses cellular networks, which include 4G and 5G networks. A visual

representation of the VANET is visible in Figure 4.

Figure 4: Architecture of vehicular ad hoc network

1.3.1 Security in VANET

As discussed in the previous section, various security requirements include confidentiality,

integrity, and availability. Based on these services, the attackers may launch various VANET

attacks. These attacks are shown in the Figure 5.

Among the numerous types of attacks that VANETs are vulnerable to, the DoS/DDoS attack

is considered highly dangerous due to its universal nature, making it more potent than other

types of attacks. Such attacks focus on the availability factor and cause a denial of service,

thus rendering the services inaccessible. While there are other attacks as well, the focus

will be on the DoS/DDoS attacks that threaten VANET users by disrupting the availability

of services.
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Figure 5: Attacks in VANET

1.3.2 DDoS in VANETs

DDoS attacks have become a significant concern in VANETs. A DDoS attack prevents

an online system or application from being available by flooding it with many queries or

streams of traffic, preventing it from responding to valid requests. DDoS attacks are difficult

to mitigate, and they pose a significant threat to the reliability and safety of VANETs. In

VANETs, DDoS attacks target various communication channels, including V2V and V2I

communication links. The attacker can launch an attack with malicious vehicles or compro-

mised devices. The attacker sends massive traffic to the targeted network, causing it to crash

or become unresponsive. One of the primary reasons DDoS attacks harm VANETs is their

impact on the availability of critical services, such as emergency messages, traffic manage-

ment, and collision avoidance. These services rely on real-time and reliable communication

among vehicles and infrastructure, and any disruption or delay in this communication can

result in severe consequences, including accidents and fatalities. DDoS assaults also affect

the effectiveness of VANETs by introducing an obstruction, worsening the connectivity’s de-

lays, and lowering its total performance. DDoS assaults pose a severe problem for VANETs,

and as new attack routes keep developing, it becomes more challenging to identify and

stop attacks. Therefore, more study is required to provide reliable and effective methods to

reduce DDoS assaults in VANETs.
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1.3.3 DoS/DDoS sub-types

Attackers can use any of the assaults, i.e., simple DoS assaults and extended DoS attacks.

The attacker chooses a simple DoS assault when that attacker wants to deplete the resources

of a specific node. These resources include a vehicle or any infrastructure unit. On

the other hand, the attacker selects extended attacks that forward large volumes of data,

disrupting communication between multiple infrastructure units and vehicles. These basic

and extended attack types include different attack types, and Figure 6 illustrates some of

these possible attacks in VANET.

Figure 6: DoS/DDoS attacks in VANET

Sleep deprivation: A sleep deprivation attack attempts to make the victim’s machine

or communication system unavailable by making the target machine always active. The

attack involves continuously sending packets or requests to the target system, preventing it

from entering sleep or idle mode [21]. Continuous data transmission causes the system to

consume more power, processing resources, and bandwidth than it normally would, leading

to slow performance or complete system failure [22]. Sleep deprivation attacks can affect

many systems, including servers, routers, and other devices. Since this kind of assault relies

on saturating the system with traffic rather than depending on system flaws, it is complicated

to protect against.

Flooding attack: Flooding attacks are a type of cyberattack in which the attacker sends

an enormous amount of falsified data packets toward the victim. These packets become

overwhelming for the victim due to their limited resources. The primary aim of the attacker
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in such an attack is to send an enormous amount of data, and therefore they send all these

packets using fake or spoofed IDs [21]. As the attacker uses such IDs, no node or vehicle

responds to them by sending RREP packets. Once the attacker enters the network, they

establish a path of connections between nodes, which is used to transmit a vast amount of

fake traffic. This traffic floods the network and consumes its available bandwidth, disrupting

communication between various nodes.

Synchronization-based DDoS attacks: The synchronization-based DDoS attacks involve

sending bogus packets at a specific time when legitimate service messages are being trans-

mitted. As a result, the fake and legitimate messages collide, and the nodes in the network

cannot receive legitimate messages. These attacks can be even more destructive when

multiple attackers simultaneously send false messages. This type of attack causes signif-

icant disruption to the network’s functionality and is challenging to detect and mitigate.

The research conducted by Biswas and colleagues highlights the dangers posed by these

attacks and the need for effective countermeasures to ensure the security and reliability of

VANETs. [23].

Jamming attacks: Jamming attacks in VANET refer to deliberately interfering with wire-

less communications in the network by obstructing the communication frequency band.

The attacker sends high-power signals on the same frequency band as the VANET, caus-

ing interference and blocking legitimate transmission [22]. This attack aims to disrupt

communication between honest nodes and make the network unavailable to users. These

are divided into 4 categories: constant, deceptive, random, and reactive [24]. In constant

jamming, the attacker continuously transmits high-power signals, whereas in reactive jam-

ming, the attacker selectively jams the channel only when a particular message is sent.

Reactive jamming is more challenging to detect than constant jamming because it does not

produce a continuous signal. Deceptive jamming, also known as signal masking, involves

the transmission of RF signals that mimic legitimate messages to interfere with the regular

communication between nodes. Random jamming involves the transmission of RF signals

at random intervals.

Jellyfish attack: A DDoS assault known as a ”jellyfish” occurs when an attacker enters the
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infrastructure and blocks the transmission of data that has been received. By introducing

delays in forwarding, the attacker causes packet drops, leading to the unavailability of packets

to the intended recipients. Essentially, the attack causes network congestion by slowing

packet transmission, which can fail communication between network nodes [21] [25].

Intelligent cheater attack: Intelligent cheater attacks in VANETs are a type of security

threat that targets the system’s trustworthiness. In these attacks, the malicious node tries to

deceive other nodes by creating a false sense of reliability. The attacker can use a variety

of tactics, such as sending incorrect information or modifying the data transmitted to other

nodes. The objective of an intelligent cheater assault is to outperform other network nodes.

The invading node’s behavior appears normal, so such assaults might be challenging to

identify. As such, there is a need for advanced security measures that can identify and

prevent these attacks [25].

1.4 Machine Learning

Machine learning is a subset of artificial intelligence (AI) that focuses on the development

of algorithms and models that enable computer systems to learn and make predictions or

decisions without being explicitly programmed. In other words, it involves the use of

data to teach a computer system to recognize patterns, make inferences, and improve its

performance on a specific task over time. Key characteristics of machine learning include:

Learning from Data: Machine learning algorithms are designed to learn from large

volumes of data. The more data they have access to, the better they can learn and make

accurate predictions or decisions.

Pattern Recognition: Machine learning algorithms excel at recognizing patterns and

relationships within data. They can identify complex patterns that may be difficult for

humans to discern.

Generalization: ML models aim to generalize from the data they’ve been trained on to

make predictions or decisions on new, unseen data. This ability to generalize is a crucial
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aspect of machine learning.

Adaptability: ML models can adapt and improve their performance over time as they

are exposed to more data and gain experience. This adaptability is often referred to as

”learning.”

Automation: Machine learning allows for the automation of tasks that typically require

human intelligence, such as image recognition, natural language processing, and decision-

making.

Machine learning can be categorized into various types, including supervised learning

(where models learn from labeled data), unsupervised learning (where models discover

patterns in unlabeled data), and reinforcement learning, where models learn through trial

and error based on rewards or penalties. Machine learning has a wide range of applica-

tions, including in fields such as image and speech recognition, recommendation systems,

autonomous vehicles, medical diagnosis, fraud detection, and many others. It is a rapidly

evolving field with ongoing research and development, and its applications continue to

expand across various industries.

Machine learning significantly enhances security in VANETs by providing intelligent mech-

anisms for anomaly detection, intrusion prevention, and behavior analysis. ML algorithms

can continuously monitor and analyze the vast and dynamic data generated by VANETs,

enabling the early detection of security threats, such as unauthorized access, malicious

activities, and network intrusions. By learning from historical data patterns, ML models

can identify anomalies in real time, allowing for swift responses to mitigate potential risks

and ensuring the integrity, privacy, and safety of vehicular communications. Additionally,

the adaptive nature of ML enables VANET security measures to evolve and stay resilient in

the face of evolving cyber threats, making it an indispensable component in safeguarding

the reliability and trustworthiness of VANET infrastructure and services.
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1.5 DDoS defense mechanism

DDoS defense strategies can be categorized in a variety of ways. It may be categorized based

on the procedures employed or the place of implementation. Defense systems function in four

phases for all assault types: preventing, detecting, reacting, and endurance and mitigating.

The DDoS defense system is comprised of these four steps, as depicted in Figure 7.

Figure 7: DoS/DDoS defense mechanism

A DDoS defense system’s initial line of defense is to stop any attacker from starting an

attack. If organizations can thwart an assault before it is launched, they will incur minimal

costs. Before an attack is launched, we spot unusual behaviors that may be the start of

such an attack and take the necessary precautions. We may employ globally synchronized

filtering to prevent packets from creating significant attacking spikes. Filters that are globally

synchronized collaborate with other gadgets that have Internet access. Besides these filters,

we may utilize different additional attack prevention strategies for security [26].

Although DDoS preventive measures are constantly proactively engaged, given the progres-

sive nature of assault methods, surveillance systems should be sufficiently secure to quickly

and effectively identify an assault if the attacker can execute DoS or DDoS [27]. Early

detection of an assault means the victim will sustain minor damage and have the shortest re-

covery time. Delays in the attack’s identification might have a lot of negative consequences.
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We employ intrusion detection systems (IDSs) for this reason, which can identify assaults

using a variety of tactics. Although we use IDS in various forms, its fundamental purposes

always stay the same. In all types of IDS, controlling, tracking, identifying, and warning

are some of its primary functions.

After detection, the subsequent stage is to react to the assault [28]. Our detection system has

identified and picked up the incident once we’ve determined that the attacker has started it.

The network manager must act right once to identify the source of the assault and neutralize

it. Let’s say the onslaught continues for a while. If it happens, the assailant will either

exhaust the available bandwidth capacity or overload the target system, making it difficult

to halt the assault. It is challenging to identify the offender simply by looking at the source

IP attribute of the message since offenders consistently utilize faked IP numbers. The first

stage in an assault’s anticipation is a traceback. Through the procedure of ”traceback,” we

may locate the perpetrator’s origin by employing a variety of accessible methods. Once

we’ve located the source of the assault, we may either use rate-limiting strategies or, if the

assault continues to be active, discard every single packet originating from this IP address.

DDoS assaults are impractical to eliminate; hence, keeping the service operational for

legitimate users while the breach occurs is essential. We do so by employing mitigating and

assault endurance strategies. We do this using two fundamental techniques: tolerating faults

and quality of service. The additional methods include throttle and pushback architecture.

We achieve attack detection and prevention using IDS and IPS which are discussed as

follows:

1.5.1 Intrusion Detection Systems (IDS)

Intrusion Detection Systems (IDS) are fundamental to modern network security, serving as

vigilant sentinels in the digital realm. IDS solutions, which include Network-based IDS

(NIDS) [29] and Host-based IDS (HIDS) [30], [31], are designed to monitor network

traffic, system logs, and user activities in real-time. Their primary purpose is to detect

patterns or anomalies indicative of unauthorized or malicious behavior. NIDS scrutinizes

network traffic at critical junctures, while HIDS focuses on individual hosts, providing in-
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depth insights into system-level activities. IDS functions encompass anomaly detection,

signature-based detection, and real-time alerting, enabling prompt responses to potential

threats. Effective deployment entails strategic sensor placement, continuous tuning, and

seamless integration with other security components, enhancing network security through

the early detection of suspicious activities.

1.5.2 Intrusion Prevention Systems (IPS)

Intrusion Prevention Systems (IPS) represent the vanguard of network security, building

upon the foundation laid by IDS. IPS not only identifies threats but also takes proactive

measures to prevent or block malicious activities in real time. This advanced security solu-

tion conducts deep packet inspection, analyzing the content of packets as they traverse the

network. Deployed inline, IPS intercepts and evaluates traffic before it reaches its intended

destination, enabling immediate threat response. Key functions of IPS encompass threat

prevention, deep packet inspection, and inline deployment. Careful rule configuration is

essential to minimize false positives, ensuring that legitimate traffic remains uninterrupted.

Moreover, IPS systems require automatic updates to stay current with evolving threat land-

scapes, bolstering the security posture of organizations in the face of rapidly changing cyber

threats.

1.6 Organization of Thesis

We organize the thesis into a succession of chapters. In Chapter 1, we cover the concepts of

VANETs and DDoS as a gateway to the domain of communications and security. Chapter

2 presents a thorough literary overview of VANETs, noting potential concerns. Chapter

3 provides a comprehensive literature review of existing VANET solutions. Chapter 4

presents the research problem, objectives, motivation, and methodology. We present the

overall methodology followed by methodology to achieve individual objectives. Chapter

5 presents the first research contribution, the VAIDANSHH adaptive intrusion detection

system for heterogeneous hosts. In contrast, Chapter 6 presents the second contribution,

the PREVIR statistical model for detecting DDoS attacks in VANETs. Chapter 7 wraps
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up the thesis by outlining potential directions for future study, summarising the significant

contributions, and considering their ramifications.

1.7 Conclusion

In conclusion, this first chapter has laid the groundwork by categorizing networks, em-

phasizing the crucial interplay between network architecture and security, and introducing

essential security models such as CIA (Confidentiality, Integrity, Availability) and AAA

(Authentication, Authorization, Accounting). We also delved into the spectrum of Denial

of Service (DoS) attacks and their evolution into more potent Distributed Denial of Ser-

vice (DDoS) attacks, highlighting their significance in modern networks. Transitioning to

Vehicular Ad Hoc Networks (VANETs), we explored the unique security challenges they

present and the emergence of DDoS attacks within this context, shedding light on the diverse

subtypes of DoS and DDoS attacks tailored to the vehicular environment.

Our discussion on machine learning principles, encompassing learning from data, pattern

recognition, generalization, adaptability, and automation, has paved the way for advanced

security mechanisms. These principles hold the potential to enhance the detection and pre-

vention of DDoS attacks, aligning with our overarching thesis goal of strengthening VANET

security. Furthermore, this chapter introduced key DDoS defense mechanisms, with a par-

ticular focus on Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS),

as integral components in our forthcoming framework. With this comprehensive founda-

tion, we are well-prepared to embark on the subsequent chapters, where we will design,

implement, and evaluate innovative security solutions aimed at fortifying the reliability and

safety of vehicular networks in the face of evolving cyber threats.
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Chapter 2

Vehicular Ad-hoc Networks

We thoroughly survey the literature on vehicular ad-hoc networks (VANETs) in this chapter.

First, we give a general description of VANETs, including their design, uses, and charac-

teristics. Following that, we go into some of the difficulties VANETs have to deal with,

including mobility management, safety, and capacity. In addition, we look at how security

affects VANET throughput. Additionally, we carefully examine security in VANETs and

emphasize different security needs. This section categorizes several attack types according

to the perpetrator, VANET levels, parts, and EVs. We wrap off this chapter with a recap of

the significant discoveries and revelations from the empirical study.

2.1 Introduction

VANETs are a subset of MANETs, which, in turn, are a subset of IoT. VANETs are a specific

type of wireless network that falls under the umbrella of IoT. They share some common

characteristics with other IoT networks, such as sensors, data exchange, and network con-

nectivity. However, VANETs are more specialized and focus on vehicular communication,

distinguishing them from other types of wireless networks. The main objective of VANETs

is to provide road safety and reduce traffic congestion. They achieve this by enabling vehicles

to exchange real-time information like speed, position, and direction.

Urbanisation is a global trend that makes cities more populated, which causes serious road-

blocks, delays, and various travel-related problems. This urbanization trend is anticipated to

persist. It is crucial to install transportation technology, such as VANETs, that increase the

efficacy and security of the transit system to manage the increasing traffic. The VANETs deal

with various urbanization-related concerns, such as easing traffic congestion and boosting

traffic flow, consequently raising the standard lifestyle for those who reside in urban regions.

By promoting the use of green automobiles like autonomous and electrically powered ve-

hicles, VANETs also assist in lowering the environmental effect of transportation. Thus,
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VANETs offer a viable approach to controlling the issues brought on by urbanization and

guaranteeing secure, effective, and environmentally friendly infrastructure for today and

tomorrow.

The term ”Internet of Energy” (IoE) describes how numerous power-related equipment,

like smart grids, clean energy sources, battery-powered automobiles, battery backups, and

systems for handling energy, are connected. The IoE makes it possible for these items to

communicate and exchange data with one another, resulting in an electrical landscape that

is more effective, safe, and efficient [32]. When discussing EVs, VANETs and the IoE

are connected. As EVs gain popularity as customers and energy suppliers, we expect they

will play a bigger part in the energy system. By facilitating connectivity among EVs, the

infrastructure for charging them, and the electrical grid, VANETs make it easier for Vehicles

to be included in the electrical system. VANETs aid in optimizing charging procedures by

giving current data on the position, availability, and pricing of charging points, as well as

power consumption and supply. VANETs also aid in power preservation and transmission by

allowing EVs to share power with fellow vehicles and the power grid, depending on power

availability and demand [33]. Moreover, by providing safe connectivity and authentication

between EVs, charging facilities, and the power grid, VANETs improve the power network’s

protection, anonymity, and robustness. By offering continuous surveillance and analysis of

the network traffic and behavior, VANETs also aid in detecting and mitigating assaults and

other vulnerabilities to the electrical system.

Intelligent Transport Systems (ITS) are essential because they integrate various cutting-edge

technologies to make the traditional transportation system smarter, safer, more practical,

and congested-free [34]. Similar objectives led to the development of VANETs, which allow

interaction among vehicles and other components [35, 36]. With the use of RSUs, VANETs

first permit vehicle-to-vehicle communication, but over time, this communication expands

to link people walking and infrastructure. Such systems are currently employed in big cities

to transmit data on mishaps, barriers, parking spaces, and power stations. Establishing

connectivity between all vehicles and the rest of the world, especially the Internet, which

may link diverse applications with millions of people, is the core principle underlying the
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creation of these networks. We depict the connection between VANET and IoT in Figure 8.

Figure 8: Relationship of Internet of Things (IoT) and VANETs

The Figure 8 shows that VANET is an instance of IoTs and benefits from IoT and MANET

characteristics. The Internet of Things, MANET, ITS, and VANET, are all related technolo-

gies that aim to enhance various facets of the transportation sector. IoT is a networked equip-

ment system that talks to one another to give people streamlined services. IoT may link cars

to one another and the surrounding infrastructure in the transportation sector, enabling them

to exchange data and improve performance. A wireless ad hoc network called a MANET

enables devices to connect without a permanent infrastructure or centralized management.

Regarding transportation, MANET may link cars to the local infrastructure, enabling users

to exchange data and operate together on projects such as traffic management. ITS is an

architecture that integrates numerous cutting-edge technologies into the traditional trans-

portation system to make it more intelligent, safe, practical, and congested-free. It involves

enhancing transportation networks utilizing IoT, MANET, and other technologies. A form

of MANET called a VANET was created to facilitate communication among automobiles

and other components in a vehicular environment. Because it offers the communication

infrastructure required for ITS, VANET is a crucial part of ITS. IoT, MANET, ITS, and

VANET, in short, are all interconnected technologies that enhance transportation systems

by supplying real-time information, boosting safety, maximizing traffic flow, and allowing

intelligent transportation systems.
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2.2 Detailed architecture of VANET

VANET structure may be defined as either component-based or communication-based,

among several other possibilities [37]. In the following section, we define the component-

based architecture and then move on to defining the communication-based architecture.

Before diving into these architectures, we illustrate a general scenario of VANET in Figure 9,

which demonstrates a malware-based DDoS attack in the VANET with various components

and parties involved in the network.

Figure 9: General architecture of VANET

2.2.1 Component-based Architecture

The foundation of a component-based VANET design is partitioning the network into

discrete components or modules. Each component or module has a designated purpose,

contributing to the network’s overall functionality when these purposes integrate. This

approach allows for greater flexibility and modularity in the design of the network, as

well as easier maintenance and upgrading of individual components. OBU, vehicles, RSU,

walkers, wireless networks, and charging infrastructures for battery-powered vehicles are all

included in the VANET. Component-based architecture has the following components [38]:

Mobile components: These components include those that keep moving or remain in

mobility within the VANET [39]. Mobile elements refer to the vehicles themselves, which

are equipped with various communication devices such as GPS, sensors, and wireless

communication interfaces. These devices transmit and receive data between vehicles and
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Figure 10: Component-based VANET architecture

between vehicles and infrastructure components. Mobile components also include handheld

devices carried by passengers or drivers, which access information about traffic, weather,

and other relevant data.

Vehicles: Since vehicles are the nodes that connect to create a wireless network, they are

the essential movable part of VANETs. Vehicles are furnished with various connectivity

methods to communicate with each other and infrastructural elements, such as other automo-

biles. Vehicles may communicate various information, such as traffic conditions, highway

risks, temperature readings, and evacuation warnings, using VANETs as both information

recipients and senders. Other vehicles can use this information to improve their judgments,

such as lane changes, speed adjustments, or route selection. Depending on their functions

inside the network, vehicles can also be categorized. As an illustration, certain automobiles

may serve as routers or gateways, transferring information between other automobiles and

infrastructural elements.

On-board units (OBUs): OBUs are essential VANET architecture components installed

in vehicles to facilitate communication between vehicles and roadside units [40]. OBUs

can be integrated into the vehicles during manufacturing or installed as an aftermarket

device. OBUs collect and process data such as location, speed, acceleration, and vehicle

heading. OBUs also receive information from other vehicles and RSUs, such as traffic

congestion, accidents, weather conditions, and road work, and provide the same to the

motorist. In addition to an accident, speeding restrictions, and lane deviation alerts, OBUs

also alert the driver of potentially risky situations. OBUs typically consist of the following

sub-components:
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Wireless transceiver: The wireless transceiver enables communication between the OBUs

and other OBUs or RSUs in the network.

GPS receiver: The position, acceleration, and trajectory of the vehicle are identified by the

GPS receiver.

Antenna: The antenna sends and receives wireless signals.

Processor: The processor is in charge of handling the data that has been obtained and

returning the pertinent information.

Memory: The memory stores the data that is being transmitted or received by the OBU. In

addition, we use TPD [41], EDR [42], and GPS devices.

Infrastructural components: Infrastructural components refer to the fixed infrastructure

deployed in the VANET environment. RSUs use various communication technologies such

as Wi-Fi, Bluetooth, and cellular networks, which enable communication between vehicles

and other infrastructure components [43] [44]. Other infrastructural components include

traffic lights, surveillance cameras, and toll booths, providing connectivity and exchanging

data with vehicles.

Roadside Units (RSUs): RSUs are fixed infrastructure components in VANET architec-

ture installed along the roadways to facilitate communication between vehicles and other

RSUs [45]. RSUs employ detectors and cameras to identify traffic jams, mishaps, adverse

weather, and road construction to alert drivers and other RSUs in the network. RSUs can

also receive information from other vehicles and RSUs to optimize traffic flow and provide

real-time traffic information to drivers. RSUs can also communicate with traffic signal

controllers to manage traffic flow and reduce congestion. RSUs comprise sub-components

like wireless transceivers, antennae, processors, and memory.

Central trusted authority and server: Trusted authorities play a critical role in designing

and operating secure and reliable VANETs. A trusted authority is responsible for managing

the network’s security and making sure that only permitted endpoints connect to the network,

and transmissions are secure and protected from cyber threats [44]. The trusted authority

also manages the distribution of information to vehicles and infrastructure nodes, ensuring

that each device receives the information required to optimize its performance and enhance
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safety. In addition to managing security and information distribution, the trusted authority

is also responsible for coordinating the VANET’s operations. It includes collecting data

flow between vehicles and infrastructure nodes, detecting traffic congestion, identifying

potential hazards, and providing real-time traffic information to drivers. Overall, the role

of the trusted authority is essential in creating a secure and reliable VANET ecosystem.

Without a trusted authority, the network would be vulnerable to cyber-attacks, and data

transmissions would be at risk of being intercepted or compromised. By managing security

and information distribution and coordinating the VANET operations, the trusted authority

ensures that the network functions effectively and that drivers and passengers can travel

safely and efficiently.

The central server is a vital component of the VANET architecture responsible for managing

and coordinating the VANET’s operations. The central server receives data from OBUs

and RSUs and processes this information to detect traffic congestion and identify potential

hazards. The central server also manages the distribution of information to OBUs and RSUs,

ensuring that each vehicle receives the necessary information to optimize its performance

and enhance safety. The central server also manages the security of the VANET, ensuring

that data transmissions are secure and protected from cyber threats.

Network Management System (NMS): The NMS is responsible for managing the entire

VANET network. The NMS typically consists of many sub-components. The first is

the network controller, which controls the overall network performance and coordinates

the communication between the OBUs and RSUs. The security system is the second

component responsible for ensuring the network’s security and preventing unauthorized

access or attacks. The traffic management system is the next sub-component accountable

for managing traffic flow and reducing congestion. The last is a database that stores the

network configuration and other network-related information.

Internet gateway: The Internet gateway is an essential component of the VANET archi-

tecture that connects the VANET with the Internet. The internet gateway enables OBUs

and RSUs to access the internet, allowing them to communicate with networks and services

outside the VANET, such as cloud-based traffic management systems, emergency services,
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and public transportation services. The internet gateway also enables remote management

and monitoring of the VANET, allowing administrators to monitor network performance,

diagnose issues, and update software and firmware.

Private infrastructural components: Private infrastructural components in VANET refer

to the infrastructure owned and operated by private entities, such as toll road operators,

private parking operators, and fleet operators. These entities may have RSUs, which

communicate with their vehicles or customers. Private RSUs provide customized services

to the vehicles that use their infrastructure. For example, toll road operators can use RSUs

to collect tolls from passing vehicles and provide information on toll rates and payment

options. Private parking operators can use RSUs to provide information on available

parking spaces and reserve customer spots. Fleet operators can use RSUs to monitor the

location and status of their vehicles, as well as communicate with drivers and provide

navigation assistance. Private RSUs also augment the public RSU network. For example,

private RSUs extend the range of the public RSU network, providing coverage in areas

where the public network may not have coverage. Private RSUs also provide additional

capacity and redundancy to the network, ensuring that the network handles large volumes

of traffic and maintains connectivity even in the event of a failure of the public network.

The use of private infrastructural components can improve the overall performance and

reliability of the VANET, as well as provide customized services to users. However, the

use of private infrastructural elements introduces challenges related to interoperability and

coordination with the public network. Private infrastructure operators need to ensure that

their components are compatible with the public network and adhere to VANET protocols

and standards to ensure the smooth operation of the overall system.

Applications: Applications are responsible for providing services to users. Applications

can be installed on OBUs or accessed through the internet gateway [40]. Applications offer

various services, such as real-time traffic information, weather updates, parking availability,

and emergency services. Applications can also provide customized services based on the

user’s preferences and driving habits, such as route planning, entertainment, and social net-

working. Applications facilitate the adoption of electric and automated vehicles, providing
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information on charging stations and autonomous driving capabilities.

2.2.2 Communication-based architecture

Communication-based VANET architecture refers to a type of VANET architecture where

vehicular nodes transfer data with the help of RSU and directly. This architecture enables

vehicles to share information, such as road conditions, traffic updates, and emergency alerts,

to improve safety and efficiency on the road. Communication-based VANETs can be either

infrastructure-based or infrastructure-less. In a framework built on fixed physical structures

like terminals or gateways, vehicles may interact with one another. In contrast, in the

infrastructure-less architecture, vehicles communicate directly with each other without the

need for any fixed infrastructure.

The Communication system: Vehicles in VANET communicate using WAVE and DSRC [46].

VANET is unable to perform its basic jobs with information acquired through these meth-

ods. The Internet helps in getting a wide range of information. We use 3G/4G/LTE cellular

networks to communicate. We categorize communication in different classes like in-vehicle

communication [47] [48], V2V communication [49] [50], V2G communication [52] [53],

V2P communication [51], V2B [54], V2I communication [50], and V2X [55] [56].

2.2.3 Cloud-based layered architecture

The layered architecture of VANET in the context of cloud computing in VANETs divides

the overall architecture into four layers that include:

• Perception Layer: This layer gathers information from various sources such as sensors,

cameras, and communication networks.

• Coordination Layer: This layer helps in coordinating various vehicle activities in the

network and ensuring that they work together effectively.

• Artificial Intelligence Layer: It helps in making decisions based on the information

gathered in the perception layer and coordinating the activities of vehicles through the

coordination layer.
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• Smart Application Layer: This layer provides various applications such as traffic

management, safety warnings, and navigation services.

2.3 VANET applications

The way one makes use of VANET is specified by an application. We utilize these networks

for various purposes concerning the types of interaction taking place among different groups.

Such beings could engage in interactions between vehicles, vehicles, RSUs, or any other

form of interaction [57]. The proposed applications include the following types:

Safety applications: VANETs improve safety on the road by providing real-time informa-

tion about traffic conditions, road hazards, and potential accidents [58]. Here are some

safety applications of VANET:

• Collision warning: VANETs enable vehicles to communicate with each other and

exchange information about their speed, direction, and location. This information

detects potential collisions and warns drivers to take evasive action.

• Emergency vehicle notification: Emergency vehicles, including medical, firefighting,

and patrol cars, can use VANETs to alert neighboring drivers of imminent danger and

ask them to make way.

• Traffic signal preemption: VANETs communicate with traffic signals and prioritize

emergency vehicles, allowing them to reach their destination faster.

• Road hazard warning: VANETs enable vehicles to share information about road

hazards such as potholes, construction zones, and debris on the road. This information

warns other drivers and prevents accidents.

• Pedestrian safety: VANETs also improve pedestrian safety by detecting the presence

of pedestrians and warning drivers to slow down or stop.

Overall, safety applications of VANET have the potential to reduce accidents, injuries, and

fatalities on the road.
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Comfort applications: Comfort applications of VANET improve the overall driving ex-

perience and make it more comfortable and convenient for the driver and passengers [59].

Some of the popular comfort applications of VANET include:

• Infotainment: VANETs provide infotainment services to drivers and passengers, such

as music, news, and weather updates. These services are available through the

in-car entertainment system, and we can customize them according to the driver’s

preferences.

• Navigation: VANETs also provide real-time navigation services to drivers, such as

real-time traffic updates, road closures, and alternative routes. It can help drivers save

time and avoid congested areas.

• Parking assistance: VANETs provide drivers with real-time information about parking

spots in a particular area. It can help drivers save time and avoid unnecessary driving

around searching for a parking spot.

• Remote vehicle monitoring: VANETs remotely monitor the status of a vehicle, such

as fuel level, battery level, and tire pressure. It can help drivers plan their journeys

more effectively and avoid unexpected breakdowns.

• Comfortable driving: VANETs also provide a more comfortable driving experience,

automatically adjusting the car’s temperature and humidity or the suspension to ensure

a smoother ride.

Overall, the comfort applications of VANET make driving more enjoyable, convenient, and

stress-free, ultimately enhancing the overall driving experience.

Commercial applications: Commercial applications of VANET are those that generate

revenue or support business activities [60]. Some examples of commercial applications of

VANET include:

• Location-based advertising: VANET sends location-based advertisements to drivers.

Using data from the vehicle’s OBU, companies can determine a driver’s location and

send promotions to nearby businesses.
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• Fleet management: VANET tracks the location of a fleet of vehicles and optimizes

routes to improve efficiency and reduce costs.

• Logistics and supply chain management: VANET tracks the location and condition

of goods in transit, providing real-time visibility into the supply chain.

• Toll collection: VANET collects tolls automatically as vehicles pass through toll

booths, eliminating the need for physical toll booths and reducing traffic congestion.

• Parking management: VANET manages parking in urban areas, directing drivers to

available parking spaces and reducing the time spent looking for parking.

• Smart transportation systems: VANET can be integrated with other intelligent trans-

portation systems, such as traffic management and public transportation systems, to

provide a seamless and integrated transportation experience.

Environmental applications: Vehicular Ad-hoc Networks (VANETs) are wireless com-

munication networks that enable vehicles to communicate with each other and with infras-

tructure in their vicinity [61]. VANETs have a wide range of environmental applications,

including:

• Pollution monitoring: VANETs gather real-time data on air quality and other environ-

mental factors, allowing authorities to monitor pollution levels and take appropriate

measures to reduce emissions.

• Traffic management: By sharing information about traffic conditions in real-time,

VANETs can help reduce congestion and improve traffic flow, reducing emissions and

improving air quality.

• Intelligent transportation systems (ITS): VANETs can be integrated with ITS to pro-

vide drivers with real-time traffic information, helping them choose the most efficient

routes and reduce fuel consumption.

• Green routing: VANETs provide drivers with the most environmentally friendly routes

based on traffic conditions, terrain, and fuel efficiency.
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• Eco-driving: By providing drivers with real-time feedback on their driving habits,

VANETs can encourage eco-driving practices such as smooth acceleration and decel-

eration, which can reduce fuel consumption and emissions.

Overall, VANETs have the potential to play a significant role in reducing the environmental

impact of transportation by enabling more efficient and sustainable practices.

Productive applications: The productive applications of VANET include benefits derived

from its main advantages. One such benefit is the potential for VANET to help travelers

save time, fuel, and money, and reduce environmental impact by providing shorter and more

efficient travel paths [57]. VANETs optimize routes and reduce congestion by enabling

vehicles to communicate with each other and the surrounding infrastructure, leading to

faster and smoother travel. It leads to significant savings in fuel consumption and travel

time for individual drivers, as well as reduced emissions and overall environmental impact.

Therefore, the productive applications of VANET include optimizing traffic flow, reducing

congestion, improving travel efficiency, and promoting sustainability.

2.4 Features of VANET

VANETs have gained significant attention recently due to their potential to improve road

safety, reduce traffic congestion, and enhance transportation efficiency. However, VANETs

also present unique challenges due to their highly dynamic nature, lack of fixed infrastructure,

and attack vulnerability. In this context, understanding the features of VANETs is essential

to designing efficient and secure communication protocols that can address these challenges.

In this regard, some of the crucial attributes of VANETs include centralized security systems,

time constraints, shared broadcast channels, volatility, no fixed topology, and infrastructure-

less operation [62] [63]. Different characteristics of the VANET are as follows:

Centralized security system: Unlike traditional wireless networks, VANETs do not have a

centralized security system responsible for implementing security among all nodes. Instead,

servers implement security standards. As a result, ad hoc networks rarely monitor packets,

which makes the network more vulnerable to attacks.

Time constraint: In VANETs, the nodes must forward messages within a specified time to
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avoid collisions in critical situations. However, verifying the authenticity of these messages

can lead to extra delays. Because of this, VANETs put a time limit on nodes, requiring them

to relay protected and legitimate data during a certain period.

Shared broadcast channel: VANETs send data through broadcasting, which makes it

simple for attackers to steal the exchanged data. Due to these flaws, security in VANETs is

a top priority.

Volatility and no fixed topology: VANETs are highly dynamic networks where vehicles

frequently join and leave the network, making it challenging to maintain a network for an

extended period. This volatility also makes it difficult to implement routing protocols due to

the lack of fixed topology, so the security system frequently reconfigures the routes, which

increases routing overheads.

Infrastructure-less: Ad hoc networks like VANETs are not dependent on routing devices

or other stationary equipment. Through the use of reputation management systems, trust

relationships between automobiles must be built in these infrastructure-free ecosystems.

2.5 Future of VANET

Urbanization is a global trend leading to an increase in population density in metropolitan

areas, resulting in significant traffic congestion, delays, and other transportation-related

issues. We expect this increase in urbanization to continue. By the year 2050, it is

anticipated that 86 percent of the population in advanced nations and 64 percent of the

population in emerging nations will live in urban areas. [64]. It is crucial to adopt VANETs

that enhance the efficiency and safety of the transportation system to manage the increasing

traffic. The deployment of VANETs addresses various issues related to urbanization, such

as reducing congestion and enhancing traffic flow, thereby improving the quality of life for

people living in urban areas.

EVs play a crucial role in reducing greenhouse gas emissions and providing a green en-

vironment in the future [65]. EVs run on electricity from renewable energy sources like

solar, wind, hydro, or geothermal power. These energy sources significantly reduce carbon

and other harmful emissions and reduce air pollution. Furthermore, EVs are more energy-
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efficient than conventional vehicles, requiring less energy to cover the same distance. The

rising shift towards EVs also creates new jobs in the renewable energy industry and supports

a green economy. The EVs also mitigate noise pollution as they operate quietly due to their

electric motor technology. Therefore, deploying EVs provides a green environment by

reducing emissions, saving energy, and reducing dependency on fossil fuels. The develop-

ment and adoption of EVs and renewable energy technologies pave the way for a sustainable

future that balances economic growth with environmental protection.

Several countries have implemented or are in the process of implementing EV policies.

Gasoline stations are incorporating charging stations [66]. Additionally, businesses and EV

owners install charging stations at their offices and homes. The emergence of intelligent

metering technology enables the supply of electricity in both directions while tracking

electricity consumption and distribution to the grid. We can give this surplus electricity

back to the grid at a reasonable price, which motivates users to save more electricity and

contribute to the grid, resulting in monetary benefits. The system requires enabling G2V and

V2G electricity supply through smart meters. Researchers are considering some advanced

versions of this technology where one electric vehicle (EV) can directly transfer surplus

electricity to other EVs without the involvement of grids [67].

Vehicles and VANET infrastructure are vulnerable to security attacks [68]. Lack of secu-

rity standards or limited use of this security standard makes VANETs insecure. Security

attacks affect various VANET layers and disturb services like integrity, confidentiality, and

availability [69]. Researchers suggest multiple methods to handle these attacks, but the

frequency of these attacks is still rising. The attack rise is due to the incorporation of

more electric and automated vehicles in VANET. Attackers launch attacks using unknown

methods or with some variation in existing techniques, such as volume, the strategy used,

or some other form. The following section discusses different security issues related to

these attacks, along with various attack types and solutions. These subsequent sections also

analyze different attacks and solutions.
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2.6 Security requirements

We need security aspects and requirements for VANET (Vehicular Ad Hoc Network) to

ensure the safety and security of the vehicles and passengers on the road. The transmission

of details concerning the state of the highways and congestion, vehicle velocity, and other

pertinent data is rendered through VANET, which increases road safety, lessens traffic jams,

and boosts driving quality. However, several security risks affect vehicle and infrastructure

communication, like envious attacks, data manipulation, and breaches of confidentiality.

Security measures are crucial to prevent unauthorized access, safeguard data integrity and

anonymity, and guarantee the network’s secure and dependable functioning [69].

Confidentiality: Confidentiality refers to keeping sensitive information hidden from people

who aren’t authorized to access it while making it visible only to those who are. Confidentia-

lity is essential for protecting data privacy and preventing unauthorized access to sensitive

information.

Integrity: Integrity refers to ensuring that the information received by a recipient is the same

as the information sent by the sender, without any unauthorized alterations. Integrity is es-

sential for maintaining data accuracy and reliability and preventing tampering or corruption

of information during transmission.

Availability: Availability is the ability for legitimate users to access the resources and

services they need whenever needed. Ensuring availability is essential for preventing

denial-of-service attacks and ensuring authorized users access the required information and

services.

Non-repudiation: Non-repudiation is a service that guarantees the authenticity and integrity

of the data transmitted and the legitimacy of its sender. Non-repudiation helps to prevent

fraud and unauthorized access and ensures that data integrity is maintained.

Authentication: Authentication is the process of confirming a user’s legitimacy and en-

suring they have permission to obtain the data or facilities they’re attempting to access.

Authentication helps prevent unauthorized access and data breaches and ensures that only

legitimate users can access sensitive information.
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Authorization: Authorization defines the user access level to certain information or ser-

vices. Authorization involves determining how much information a user can access, for

how long, and what other services they are authorized to use. It also helps to prevent unau-

thorized access and data breaches and ensures that users can only access the information or

services they are allowed to use.

Accounting: Accounting involves monitoring user activities and maintaining records of

relevant statistics, such as the time a user has used resources and services. It helps to

identify potential security threats and monitor system usage and is commonly implemented

through log files.

ID traceability: ID traceability involves identifying the real identities of vehicles. ID trace-

ability enables the correct source of a message to be located. These IDs are often employed

to identify the actual sender and recipient, which helps to guarantee that conversations are

routed and obtained from trusted parties [70].

Revocability: Revocability allows central authorities to revoke the certification and dereg-

ister a vehicle if it misbehaves, removing malicious nodes from the network. Revocability

helps to maintain network security and prevent potential security threatsk [71].

Liability identification: Liability identification is based on non-repudiation services, which

hold drivers accountable for any mistakes they may have made. It helps to ensure that drivers

take responsibility for their actions and helps to prevent fraudulent behavior [72].

Real-time constraints: Real-time constraints require that vehicular information be deliv-

ered in real-time, with any delay potentially leading to severe consequences. Ensuring

real-time information delivery is essential for maintaining system performance and prevent-

ing accidents or other security threats. Authentication is the process of verifying the identity

of users and ensuring that they are authorized to access the information or services they are

trying to access. Authentication helps prevent unauthorized access and data breaches and

ensures that only legitimate users can access sensitive information.
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2.7 Attack classification

Attack classification in VANETs can be categorized based on various factors such as security

services, attacker type, VANET architecture layer, VANET component, and attacks on

Electric Vehicles. These classifications help identify the attack’s nature, its impact’s severity,

and its potential to harm the network. We can take appropriate measures to mitigate or

prevent them by understanding the different types of attacks and their classifications. The

classification of attacks based on security services includes attacks on integrity, availability,

confidentiality, non-repudiation, and authentication. On the other hand, the category based

on attacker type includes insider and outsider attacks. The classification based on the

VANET architecture layer contains attacks on the network, physical, and application layers.

Similarly, attacks on the various components of VANETs, such as RSUs, OBUs, and

vehicles, can also be classified. Finally, the classification based on attacks on EVs includes

attacks on the EV-charging infrastructure and the electric grid.

2.7.1 Attacks on security services:

Security services such as confidentiality, integrity, availability, authentication, and non-

repudiation are crucial for safe and protected data transmission. However, attackers can

exploit these security services’ vulnerabilities and launch various attacks. For instance,

attackers can launch man-in-the-middle, traffic analysis, social engineering, or eavesdrop-

ping attacks on confidentiality. Similarly, attacks on data integrity include masquerading,

replay, message tampering, or illusion. Availability can be compromised by Denial of

Service (DoS/DDoS), sleep deprivation, jamming, jellyfish, intelligent cheater, black-hole,

grey-hole, greedy behavior, or spamming attacks. Authentication can be breached by Sybil,

tunneling, GPS spoofing, free-riding, or certificate/critical replication attacks. Lastly, re-

pudiation attacks or loss of events can target the non-repudiation service. Therefore, it is

essential to understand these attack classifications and develop countermeasures to ensure

secure communication in VANETs.

Confidentiality: The confidentiality of information exchanged between vehicles is crucial

in VANETs. Different solutions, such as public keys and certificates, encrypt and make the
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information confidential. Despite these measures, attackers may launch attacks to breach

information confidentiality through the latest attack methodologies. Security breaches

that compromise confidentiality involve unauthorized access to or exposure to private data.

These assaults aim to obtain information that should be kept confidential, such as proprietary

knowledge, critical corporate information, or personal or financial data. Various attacks that

disrupt the confidentiality services are as follows:

Man-in-the-middle attack: This attack type focuses on compromising the confidentiality

of communication in VANETs. It occurs when an unauthorized entity intercepts commu-

nication between vehicles, allowing the attacker to eavesdrop on sensitive information or

manipulate data in transit. Such attacks can lead to the exposure of private information and

pose a threat to the privacy of vehicle users.

Traffic analysis attack: Traffic analysis attacks aim to breach confidentiality by analyzing

patterns in network traffic. Attackers use this method to gain insights into the behavior

of vehicles and their users, potentially revealing sensitive information. Protecting against

traffic analysis attacks is crucial to safeguard the confidentiality of VANET data.

Social attack: Social attacks exploit human psychology to deceive vehicle users and obtain

confidential information. These attacks may involve tactics like phishing or impersonation,

where attackers trick users into revealing sensitive data. Maintaining confidentiality in

VANETs requires defenses against social engineering attacks.

Eavesdropping attack: Eavesdropping attacks involve unauthorized parties listening in on

the communication between vehicles, which can lead to a breach of confidentiality. Attackers

eavesdrop to gain information they should not have access to, making it essential to secure

VANET communication channels against such threats.

Data integrity: Integrity helps to guarantee that information that is exchanged isn’t altered,

rescheduled, or removed while being transmitted. An attempt to alter or destroy information

without authorization is the aim of a data integrity attack. The attacker tries to change

the accuracy or contents of the data, which might make it useless, unstable, or potentially

harmful. Attacks that disrupt the integrity of services include the following:

Masquerading attack: Integrity attacks involve impersonation of legitimate vehicles to gain

38



unauthorized access or manipulate network traffic. This type of attack threatens the integrity

of data and trust within the VANET environment.

Replay attack: Replay attacks capture and retransmit data to deceive recipients into accept-

ing false information, compromising data integrity. This can lead to incorrect actions or

decisions being made by vehicles based on manipulated data.

Message tampering attack: Message tampering attacks involve altering messages in transit

to corrupt data or deceive vehicle systems, undermining the integrity of the information

exchanged in VANETs.

Illusion attack: Illusion attacks create deceptive signals to mislead vehicles’ perception

and decision-making processes, posing a significant threat to the integrity of the VANET

environment.

Availability: An information security assault, known as an availability attack, aims to

interrupt or limit access to an infrastructure or system so that it is inaccessible to those

expected to use it. Availability is critical in VANETs as it ensures that all information is

available to legitimate users when required. By flooding the system or network with data

or taking advantage of flaws to bring about a system crash or failure, the attacker seeks to

prohibit authorized users from accessing the system or network.

DoS/DDoS: Denial of Service (DoS) and Distributed Denial of Service (DDoS) attacks

overwhelm the VANET network or specific vehicles with traffic, rendering them unavailable

for legitimate communication and coordination. Ensuring availability in the presence of

these attacks is critical for VANET functionality.

Sleep deprivation: Sleep deprivation attacks force vehicles into sleep mode, reducing their

availability for communication and coordination. This can disrupt the responsiveness of

vehicles in the network.

Jamming attacks: Jamming attacks emit radio interference to disrupt communication be-

tween vehicles, leading to unavailability. Effective countermeasures are necessary to miti-

gate the impact of jamming attacks.

Jellyfish attack: Jellyfish attacks flood the network with bogus messages, causing congestion

and impairing service availability. Protecting against such attacks is crucial to maintain
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network efficiency.

Intelligent cheater attack: These attacks involve vehicles pretending to be cooperative while

misusing network resources, negatively impacting availability by introducing deceptive

elements into the network.

Blackhole attack: Blackhole attacks intercept and drop data, making it inaccessible to other

vehicles or systems, severely affecting availability and data integrity.

Grayhole attack: Grayhole attacks partially drop data, leading to inconsistencies and reduced

network availability, making it challenging to ensure data integrity and system availability.

Greedy behavior attack: Greedy behavior attacks involve selfish or malicious behavior that

exploits network resources, negatively impacting availability and cooperation within the

VANET environment.

Spamming attack: Spamming attacks flood the network with irrelevant data, consuming

resources and degrading availability, which can hinder critical communication in VANETs.

Authentication: An authentication assault is a security assault that aims to obtain unau-

thorized access to a system or asset by evading or abusing its authentication measures.

Validating a user’s or system’s identification through authentication is a procedure that

frequently involves using credentials like usernames and passwords.

Sybil attack: Sybil attacks involve creating multiple fake identities to gain trust and dis-

rupt network operations, posing a severe threat to the authenticity and trustworthiness of

interactions in VANETs.

Tunnelling attack: Tunnelling attacks divert network traffic through unauthorized routes,

compromising the authenticity of communication paths and potentially facilitating further

attacks.

GPS spoofing: GPS spoofing attacks manipulate GPS signals to deceive vehicles about

their physical location, impacting the authenticity of location-based services and navigation

within VANETs.

Free-riding attack: Free-riding attacks exploit network resources without contributing,

violating the authenticity of cooperation within the VANET environment, and potentially

degrading the quality of service.
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Certificate/key replication attack: These attacks involve illegally copying and using certifi-

cates or keys to gain unauthorized access, undermining the authenticity and security of the

VANET infrastructure.

Non-repudiation: Non-repudiation attacks are a form of security attack designed to com-

promise the trustworthiness of digital transactions by enabling one side to free themselves

of responsibility. The capability to assure that the parties engaged in a digital transaction

cannot deny their involvement in it is known as non-repudiation. It ensures that once a par-

ticular message is sent, the sender cannot deny having sent it. However, attackers may launch

repudiation attacks or cause a loss of events, leading to various security breaches. There-

fore, non-repudiation is crucial in ensuring the authenticity and integrity of information

transmitted in VANETs. Table 1 shows attacks launched on various security services.

Table 1: Attack classification based on security services

Attacked Service Type of Attack Reference(s)

Confidentiality

Man-in-the-middle attack Ahmad et al. (2018) [73], Li et al.
(2012) [74]

Traffic analysis attack Cencioni et al. (2008) [75]
Social attack Sumra et al. (2011) [76]
Eavesdropping attack Choudhari et al. (2019) [77]

Integrity

Masquerading attack Malhi et al. (2016) [78]
Replay attack Junaid et al. (2018) [79], Malik et

al. (2019) [80]
Message tampering attack Singh & Sharma (2019) [81]
Illusion attack Lo & Tsai (2007) [82]

Availability

DoS/DDoS Komal et al. (2014) [83], Almori
et al. (2012) [84] Porwal et al.
(2014) [85]

Sleep deprivation Vimal et al. (2012) [86], Hasrouny
et al. (2017) [87]

Jamming attacks Hasrouny et al. (2017) [87], Azer et
al. (2014) [88]

Jellyfish attack Vimal et al. (2012) [86], Sakiz et
al. (2017) [89]

Intelligent cheater attack Sakiz et al. (2017) [89]
Blackhole attack Kshirsagar & Patil (2013) [90]
Grayhole attack Sen et al. (2007) [91]
Greedy behaviour attack Mejri et al. (2014) [92]
Spamming attack Sumra et al. (2011) [76]

Continued on next page
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Table 1 – Continued from previous page
Attacked Service Type of Attack Reference(s)

Authenticity

Sybil attack John et al. (2015) [93], Doucear
J.R.(2002) [94]

Tunnelling attack Sheikh et al. (2019) [95]
GPS spoofing Gamal et al. (2020) [72]
Free-riding attack Shilpa et al. (2015) [96]
Certificate/ key replication
attack

Junaid et al. (2018) [79]

Non-repudiation Repudiation attack Li et al. (2014) [97]

2.7.2 Attacks based on attacker-type:

This section discusses different types of attackers in VANETs, and how they launch attacks

using various methods [42], [98]. Different categories of attackers include active and

passive attackers, internal and external attackers, rational and malicious attackers, timing

attackers, communication attackers, and area attackers. The classification of attackers

based on their nature and activities is essential in developing appropriate countermeasures

to ensure the security of vehicular networks. Identifying and understanding the various

types of attackers and their techniques is crucial for devising effective security measures for

vehicular networks. Attackers compromise the safety and privacy of the vehicles and their

passengers, making it necessary to have adequate security measures in place. The different

categories of attackers and their activities provide insights into the potential security risks

and this knowledge helps in developing robust security mechanisms to safeguard vehicular

networks. Moreover, vehicular networks are becoming more complex with the increasing

number of connected vehicles and the growing use of autonomous driving technologies.

These developments also bring about new security challenges that need to be addressed.

The presence of different types of attackers with varying skills and resources can make

it challenging to ensure the security of vehicular networks. Therefore, a comprehensive

and proactive approach is required to address these challenges and maintain the safety and

security of vehicular networks.

Attackers might be classified as either external or internal. Internal attackers exist as an

intrinsic part of the VANET and are fully aware of it. On the other hand, external attackers

remain outside the VANET and are unaware of its architecture.
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Another classification of attackers is based on their intentions. Malicious and rational

attackers are two types of attackers. Rational attackers launch attacks for personal gains,

such as money or revenge. However, malicious attackers carry out assaults without financial

gain.

An attacker that alters the time for conversation or introduces unwarranted lags in com-

munication is regarded as a timing attacker [99]. A communication attacker chooses the

network, such as V2V or V2I, as their goal and executes an assault on it.

An area attacker conducts an assault against a particular vehicle, group of vehicles, or

location. It is crucial to comprehend these different types of attackers to create efficient

security measures to defend vehicle networks from these dangers.

2.7.3 Attacks on VANET layers:

This section examines vehicular networks and their layers, analogous to the OSI model [100].

Each layer has predefined tasks, and different protocols are employed at different layers.

This model does not include the Session and DLL, whereas the MAC and LLC layers are

formed for various jobs. The following sections define each of these layers and discuss

potential possible attacks.

Application layer: The Application layer is responsible for receiving user input and for-

warding it to other layers [66]. This layer also accepts output from different layers and

presents it to users. Attack possible against VANET application layer includes the follow-

ing:

Message Tampering: Message tampering attacks focus on the integrity of data at the

application layer. Attackers manipulate or modify messages exchanged between vehicles,

potentially causing incorrect decisions or actions based on tampered information.

Impersonation Attack: Impersonation attacks involve malicious entities pretending to be

legitimate vehicles or users within VANET applications. This attack can lead to unauthorized

access and deceptive interactions.

Repudiation Attack: Repudiation attacks aim to undermine non-repudiation mechanisms at

the application layer. Attackers may deny their involvement in certain actions or transactions,
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causing disputes and challenges in establishing trust.

Replay Attack: Replay attacks involve the unauthorized re-transmission of previously cap-

tured data. In VANET applications, this can result in the replay of outdated or incorrect

information, impacting the reliability of communication.

Illusion Attacks: Illusion attacks create deceptive signals or data to mislead VANET applica-

tions, potentially causing vehicles to make erroneous decisions based on false information.

False Position Attacks: False position attacks involve providing incorrect location informa-

tion within VANET applications, which can lead to safety hazards or misrouting.

Sybil Attack: Sybil attacks introduce multiple fake identities into the VANET application

layer, disrupting trust and authenticity by creating deceptive entities.

Transport layer: The Transport layer ensures process-to-process delivery of messages

and guarantees that they are sent in the proper order without any modifications [102].

It transports TCP and UDP packets from source to destination and keeps track of traffic

movement and congestion on the network.

Replay Attack: Replay attacks, when targeted at the transport layer, involve the unauthorized

retransmission of data packets. This can lead to issues such as repeated actions or message

duplication, affecting the reliability of communication.

Tunnel Attacks: Tunnel attacks divert traffic through unauthorized channels or tunnels,

potentially compromising data confidentiality and authenticity within the transport layer.

Man-in-the-Middle Attack: Man-in-the-middle attacks occur when attackers intercept and

possibly modify data between communicating parties, undermining the confidentiality and

integrity of data within the transport layer.

Message Tampering: Similar to the application layer, message tampering attacks at the

transport layer focus on manipulating or altering data packets, impacting the integrity of

communication.

Session Hijacking Attack: Session hijacking attacks involve unauthorized access to and

control of ongoing communication sessions, leading to data exposure or manipulation.

Sybil Attack: Sybil attacks within the transport layer disrupt trust and authenticity by intro-

ducing multiple deceptive identities, potentially affecting the security of communication.

44



Network layer: The Network layer is responsible for data packet propagation from one

node to another in vehicular networks [103]. In VANETs, security concerns differ from

those in other networks because of many reasons. Consequently, the assaults made against

VANET are unique.

Location Disclosure: Location disclosure attacks at the network layer involve revealing

the physical locations of vehicles, which can compromise privacy and potentially enable

tracking or targeting.

Packet Dropping: Packet-dropping attacks disrupt communication by intentionally discard-

ing data packets, causing data loss and affecting the reliability of data transmission.

Flooding Attack: Flooding attacks flood the network with excessive data packets, causing

congestion and potentially disrupting network services.

Replay Attack: Similar to other layers, replay attacks involve the unauthorized retransmission

of data packets within the network layer, affecting data integrity and reliability.

Message Tampering: Message tampering attacks focus on manipulating or altering data

packets in transit within the network layer, impacting data integrity.

Sybil Attack: Sybil attacks within the network layer introduce multiple deceptive identities,

undermining trust and potentially disrupting network operations.

Wormhole Attack: Wormhole attacks involve the creation of a covert, high-speed link be-

tween distant parts of the network, facilitating unauthorized communication and potentially

compromising data confidentiality and integrity.

Blackhole Attack: Blackhole attacks involve intercepting and discarding data packets, mak-

ing them inaccessible to other vehicles or nodes within the network, affecting data availability

and integrity.

Tunnel Attack: Tunnel attacks divert network traffic through unauthorized routes or tunnels,

potentially compromising data confidentiality and authenticity.

LLC and MAC layer: Multiple approaches manage traffic jams at the LLC and MAC layers.

Congestion management strategies might be reactive, proactive, as well as blended. [104].

DoS and DDoS Attacks: Similar to other layers, DoS and DDoS attacks at the LLC/MAC

layer disrupt communication and network services by overwhelming network resources.
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Illusion Attacks: Illusion attacks at the LLC/MAC layer create deceptive signals or data,

potentially misleading network protocols and impacting data reliability.

Routing Attack: Routing attacks involve the manipulation of routing protocols, leading to

incorrect routing decisions and potential data misdirection.

Signal Jamming Attack: Signal jamming attacks disrupt wireless communication by emitting

interference signals, potentially leading to packet loss and communication breakdown.

Replay Attack: Replay attacks within the LLC/MAC layer involve the unauthorized retrans-

mission of data frames, affecting data integrity and potentially causing data duplication.

Impersonation Attacks: Impersonation attacks target the authenticity of communication by

involving malicious entities posing as legitimate vehicles or nodes within the LLC/MAC

layer.

Message Tampering: Message tampering attacks within this layer focuses on the manipula-

tion or alteration of data frames in transit, impacting data integrity.

Sybil Attack: Sybil attacks within the LLC/MAC layer introduce multiple deceptive identi-

ties, disrupting trust and potentially affecting network performance.

Collision Attack: Collision attacks occur when multiple vehicles or nodes transmit data

simultaneously on the same channel, leading to data collision and potential data loss or

corruption within the LLC/MAC layer.

Physical layer: The Physical layer uses 802.11p OFDM in the dedicated short-range com-

munication [104]. It operates in the frequency spectrum of the 5.9 GHz band (5.885–5.905)

with a 10 MHz wide channel in the WAVE. The data rate in this type of communication is

typically 3 Mbps, with a default data rate of 6 Mbps. Researchers use various aspects of the

physical layer, including transmission power control, using multiple (or single) antennas,

channel estimation, and channel selection.

GPS Spoofing Attack: GPS spoofing attacks manipulate GPS signals to deceive vehicles

about their physical location, compromising the accuracy of location-based services and

navigation within the physical layer.

Jamming Attack: Jamming attacks emit radio interference, disrupting wireless communi-

cation channels and potentially leading to packet loss and communication breakdown at the
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physical layer.

Message Altering Attack: Message-altering attacks target the integrity of data frames at

the physical layer by manipulating or altering data in transit. A message-altering attack

or a message tampering attack, is a type of cybersecurity attack where an unauthorized

party intercepts a message in transit and modifies its content before allowing it to reach its

intended recipient.

Passive Eavesdropping: Passive eavesdropping involves unauthorized entities listening in

on wireless communication, potentially leading to a breach of confidentiality and privacy

within the physical layer.

Routing Attack: Routing attacks are malicious activities aimed at disrupting or manipulating

the routing of data packets in computer networks. These attacks can involve altering routing

tables, injecting false routing information, or diverting network traffic leading to network

disruptions.

Table 2 demonstrates various attacks possible on VANET layers.

Table 2: Attack classification based on VANET layers

Attacked Layer Type of Attack Reference(s)

Application layer

DoS & DDoS Komal et al. (2014) [83], Almori et al.
(2012) [84], Porwal et al. (2014) [85],

Message tampering Singh & Sharma (2019) [81]
Impersonation attack Tyagi et al. (2014) [105]
Repudiation attack Li et al. (2014) [74]
Replay attack Junaid et al. (2018) [79], Malik et al.

(2019) [80]
Illusion attacks Lo & Tsai (2007) [82]
False position attacks Gamal et al. (2020) [72]
Sybil attack John et al. (2015) [93], Douceur

J.R.(2002) [94]

Transport layer

DoS and DDoS attack Komal et al. (2014) [83], Almori et al.
(2012) [84], Porwal et al. (2014) [85],

Replay attack Junaid et al. (2018) [79], Malik et al.
(2019) [80]

Tunnel attacks Sheikh et al. (2019) [95]
Man in the middle at-
tack

Ahmad et al. (2018) [73], Li et al. (2012) [74]

Message tampering Singh & Sharma (2019) [81]
Session hijacking at-
tack

Hasrouny et al. (2017) [87]
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Table 2: Attack classification based on VANET layers

Attacked Service Type of Attack Reference(s)
Sybil attack John et al. (2015) [93], Douceur

J.R.(2002) [94]

Network layer

Location disclosure Mansour et al. (2018) [106]
Packet dropping Mansour et al. (2018) [106]
Flooding attack Vimal et al. (2012) [86]
Replay attack Junaid et al. (2018) [79], Malik et al.

(2019) [80]
DoS and DDoS attack Komal et al. (2014) [83], Alomari et al.

(2012) [84] Porwal et al. (2014) [85]
Message tampering Singh & Sharma (2019) [81]
Sybil attack John et al. (2015) [93], Douceur

J.R.(2002) [94]]
Wormhole Sen et al. (2007) [91]
Blackhole attack Kshirsagar & Patil (2013) [90]
Tunnel attack Sheikh et al. (2019) [95]

LLC/MAC layer

DoS and DDoS attack Komal et al. (2014) [83], Almori et al.
(2012) [84], Porwal et al. (2014) [85]

Illusion attacks Lo & Tsai (2007) [82]
Routing attack Kong et al. (2003) [107]
Signal jamming attack Karagiannis & Argyriou (2018) [108]
Replay attack Junaid et al. (2018) [79], Malik et al.

(2019) [80]
Impersonation attacks Tyagi et al. (2014) [80]
Message tampering Singh & Sharma (2019) [81]
Sybil attack John et al. (2015) [93], Douceur

J.R.(2002) [94]
Collision attack Tolba Amr (2018) [109], Mayank et al.

(2016) [110]

Physical layer

DoS and DDoS attack Komal et al. (2014) [83], Almori et al.
(2012) [84], Porwal et al. (2014) [85]

GPS spoofing attack Gamal et al. (2020) [72]
Jamming attack Hasrouny et al. (2017) [87], Azer et al.

(2014) [88]
Message altering at-
tack

Singh & Sharma (2019) [81]

Passive eavesdropping Choudhari et al. (2019) [77]
Routing attack Kong et al. (2003) [107]

2.7.4 Attacks on VANET components:

Attackers launch attacks on vehicular networks by targeting three categories of components:

vehicles, information, and infrastructure.
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Vehicles: Vehicles consisting of OBU and AU are the least secure units in VANETs

and can be easily targeted by attackers. Social engineering attacks, sensor impersonation

attacks, and malware integration attacks are among the types of attacks possible against

these units. Attackers can also target information flowing through the network, which can

be compromised by novel attacks such as eavesdropping, jamming, spoofing, and false

position attacks. These attacks can affect both the safety and non-safety applications of the

network.

Physical Damage to Vehicle: In this attack, malicious actors physically damage vehicles,

potentially compromising their safety and functionality. This type of attack can result in

accidents and pose a direct threat to the well-being of passengers.

Sensor Impersonation Attack: Attackers impersonate the sensors of a vehicle, providing

false or misleading information to the vehicle’s control systems. This can lead to incorrect

decision-making by the vehicle and jeopardize safety.

Bogus Information Attack: Malicious entities inject false or bogus information into a

vehicle’s communication system, potentially causing confusion and incorrect actions by the

vehicle.

Illegal Remote Firmware Attack: This attack targets a vehicle’s firmware remotely, com-

promising its operational integrity. Attackers can gain unauthorized control over vehicle

functions, posing significant safety and security risks.

Jamming Attack at Vehicle Level: Jamming attacks disrupt a vehicle’s communication

by emitting radio interference. This interference can disrupt critical vehicle-to-vehicle

(V2V) or vehicle-to-infrastructure (V2I) communication, potentially leading to accidents or

miscommunications.

Social Engineering Attack: Social engineering attacks manipulate individuals within the

VANET ecosystem, such as drivers or maintenance personnel, to gain unauthorized access

to vehicles or sensitive information.

Malware Integration: Malicious software (malware) is introduced into a vehicle’s systems,

allowing attackers to gain control, steal information, or interfere with vehicle operations.

Credential Revelation: Attackers reveal or steal the credentials (e.g., usernames and pass-
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words) of vehicles, potentially gaining unauthorized access and control.

Attacks on Information: Attacks on Information within Vehicular Ad-hoc Networks

(VANETs) encompass a range of malicious activities aimed at manipulating or compro-

mising data exchanged between vehicles and infrastructure. These attacks include fake in-

formation injection, impersonation, false position reporting, and message tampering. Fake

information attacks involve the insertion of deceptive data, potentially leading to incorrect

decisions by vehicles. Other attacks include the following:

Fake Information Attack: Fake information attacks involve injecting false data into the

VANET communication. This can mislead vehicles, leading to incorrect decisions and

actions.

Impersonation Attack: Impersonation attacks involve malicious entities posing as legiti-

mate vehicles or nodes within the VANET, potentially gaining unauthorized access and

compromising trust.

False Position Attack: Attackers provide incorrect position information within the VANET,

potentially leading to navigation errors or safety hazards.

Message Tampering: Message tampering attacks manipulate or alter data messages ex-

changed within the VANET, potentially compromising data integrity.

Eavesdropping: Eavesdropping attacks involve unauthorized entities listening in on VANET

communication, potentially leading to breaches of confidentiality and privacy.

Man-in-the-Middle Attack: In a man-in-the-middle attack, attackers intercept and possibly

modify data exchanged between vehicles, compromising the confidentiality and integrity of

data.

Spoofing Attack: Spoofing attacks involve the deceptive manipulation of data or signals

within the VANET, potentially causing vehicles to make incorrect decisions based on false

information.

Jamming Attacks: Similar to vehicle-level jamming attacks, these attacks disrupt VANET

communication by emitting radio interference, leading to communication breakdown and

potential safety issues.

Infrastructure components: Infrastructure components, such as Roadside Units (RSUs),
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central registration agencies, charging spots for EVs, trusted authorities, and video cameras

placed alongside the road or at other locations, such as parking areas, can also be targeted

by attackers. Attackers can launch network attacks, DoS/DDoS attacks, Sybil attacks, and

man-in-the-middle attacks against infrastructure components. Another component that at-

tackers can target in vehicular networks is the Global Navigation Satellite System (GNSS)

for location-based services. Attackers can interfere with GNSS signals to mislead vehicles

and cause accidents or perform spoofing attacks to impersonate the position of legitimate

vehicles. Attackers can also target vehicular networks’ Communication Infrastructure (CI)

components. The CI includes the communication equipment and protocols used to connect

the various network components. Attackers can exploit vulnerabilities in communication

protocols or launch attacks such as network scanning and sniffing to intercept and manipu-

late network traffic. In addition, the Cloud Computing component of vehicular networks is

another potential target for attackers. Cloud computing provides computational and storage

resources to vehicular networks. Attackers can exploit vulnerabilities in the cloud infras-

tructure or launch attacks such as data theft, data manipulation, or Denial-of-Service (DoS)

attacks to disrupt the services provided by the cloud. The following Table 3 demonstrates

various possible attacks on VANET components.

Table 3: Attack classification based on VANET components

Component Types of Attack Reference(s)

Vehicles

Physical damage to vehicle Sumra et al. (2011) [76]
Sensor impersonation attack Rawat et al. (2012) [111]
Bogus information attack Singh & Sharma (2019) [81]
Illegal remote firmware attack Dennis & Larson (2009) [112]
Jamming attack at vehicle
level

Hasrouny et al. (2017) [87], Azer et
al. (2014) [88]

Social engineering attack Sumra et al. (2011) [76]
Malware integration Hasrouny et al. (2017) [87]
Credential revelation Whyte et al. (2013) [113]

Information

Fake information attack Singh & Sharma (2019) [81]
Impersonation attack Tyagi et al. (2014 [105])
False position attack Gamal et al. (2020) [72]
Message tempering Singh & Sharma (2019) [81]
Eavesdropping Choudhari et al. (2019) [77]

Continued on next page
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Table 3 – Continued from previous page
Component Type of Attack Reference(s)

Man in the middle attack Ahmad et al. (2018) [73], Li et al.
(2012) [74]

Spoofing attack Gamal et al. (2020) [72]
Jamming attacks Hasrouny et al. (2017) [87], Azer et

al. (2014) [88]

Infrastructure

Man in the middle attack Ahmad et al. (2018) [73], Li et al.
(2012) [74]

Eavesdropping Choudhari et al. (2019) [77]
GPS tracking attack Singh & Sharma (2019) [81]
Sybil attack John et al. (2015) [93], Doucear

J.R.(2002) [94]
Network attacks Sumra et al. (2011) [76]
Bogus information Singh & Sharma (2019) [81]
DoS and DDoS attack Komal et al. (2014) [83], Alomari

et al. (2012) [84], Porwal et al.
(2014) [85]

Wormhole attack Sen et al. (2007) [91]

2.7.5 Attacks on electric vehicles:

Electric vehicles and their related infrastructure are also vulnerable to various types of

cyber-attacks, which can impact the safety and performance of the vehicles. One type of

attack is a relay attack, in which the attacker intercepts and relays communication between

the vehicle and its keyless entry system, allowing them to unlock and steal the vehicle.

Another type of attack is the DoS attack, which can disable the charging infrastructure and

prevent EV owners from charging their vehicles. Malware and ransomware attacks can also

be launched against the charging infrastructure or the vehicle’s onboard computer system,

compromising the safety and security of the vehicle’s occupants. To mitigate these risks, EV

manufacturers and charging infrastructure providers implement various security measures,

including encryption, authentication, and intrusion detection systems. Policymakers and

regulators need to consider cybersecurity in their regulations and standards for electric

vehicles and their infrastructure to ensure the safety and security of these vehicles in the

rapidly evolving transportation landscape.

According to Wang [66], EVs communicate with smart grids, vehicles, and infrastructure,

which makes them an essential component of VANETs. As the automobile industry shifts
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its focus towards EVs, their availability has increased globally, and their numbers are rising.

EVs use intelligent charging systems to charge their batteries, where the EV and charging

device share data connections with the charging operator. EVs use Grid-to-Vehicles (G2V)

or Vehicle-to-Grids (V2G) systems for charging. In the G2V system, electricity moves in

one direction from the charging point or grid to the vehicle. In the V2G system, electricity

moves in both directions, allowing for the exchange of surplus electricity between the vehicle

and the charging point. Saxena [115] explains that this type of system works by utilizing

intelligent grids. Li [74] suggests a more advanced charging system in which EVs exchange

electricity through vehicle-to-vehicle charging.

EVs connect to charging stations and billing/payment systems, also related to smart grids for

communication. However, communication between these components is vulnerable to at-

tacks such as eavesdropping, man-in-the-middle attacks, and repudiation attacks. Falk [117]

identifies different attack-vulnerable EV assets, such as access control policies, time, con-

figuration data, software, firmware and drivers, control commands, clock settings, meter

data, tariff data, customer ID, and location data. These assets are vulnerable to attacks,

including those affecting other vehicular networks. Although ISO/IEC standards work to

secure charging systems and smart grids, they require further improvement since attackers

possess various techniques to launch attacks against them. In addition to attacks on other

vehicles, the infrastructure used for vehicle charging and electricity distribution systems is

also vulnerable, necessitating additional security measures for EVs.

2.8 Conclusion

This chapter provides a comprehensive literature review of VANETs, a type of mobile

ad-hoc network within the IoT. The text overviews VANETs, including their architecture,

applications, and features. It also discusses the challenges faced by VANETs, such as

mobility management, security, and scalability. The impact of security on the performance

of VANETs is also examined, with a thorough analysis of security in VANETs, highlighting

the various security requirements. The text provides a classification of different types of

attacks based on the attacker, VANET layers, components, and electric vehicles (EVs). The
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text concludes by summarizing the insights from the literature. The future of vehicular

networks, including VANETs, is described as having the potential to save the lives of

millions of people worldwide by providing a safer and more efficient transportation system.

However, ensuring security in VANETs is emphasized to ensure their successful deployment

and continued growth.
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Chapter 3

Security Solutions

In this chapter, we explore various security solutions aimed at mitigating DDoS attacks in

VANET. This chapter examines security solutions in detail and discusses their strengths

and limitations. By analyzing these security solutions, this thesis chapter aims to provide

insights into the design and development of secure and trustworthy VANETs. The objective

is to provide a comprehensive overview of the existing literature in this area and to evaluate

the effectiveness of existing security solutions. We begin by reviewing the different attack

detection techniques. These techniques include identity-based solutions, key-based solu-

tions, and trust-based solutions, as well as machine learning (ML) and hybrid solutions. We

evaluate the strengths and weaknesses of these techniques and discuss how they detect DDoS

attacks in VANET. In addition to attack detection, we also study various DDoS prevention

techniques. We evaluate the effectiveness of these techniques and analyze their impact on

the performance of VANET. Finally, we discuss the challenges that need addressing for

effective deployment of these security solutions in real-world scenarios.

3.1 Introduction

VANETs pose unique security challenges, as they operate in open and dynamic environ-

ments and are vulnerable to various attacks. Security threats compromise these networks’

safety, privacy, trustworthiness, and reliability, leading to potential accidents, loss of life,

and damage to critical infrastructure. Therefore, it is essential to implement adequate se-

curity solutions in VANETs to make sure the network is secure, reliable, and trustworthy.

Furthermore, trust and reliability are crucial factors for the success of VANETs. Users

must be confident that the information received from the network is accurate and timely

and that the network operates smoothly without disruptions. However, security threats

can undermine trust in the network, resulting in reduced user adoption and deployment.

Similarly, network disruptions caused by security threats can lead to downtime, delays,
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and lost data, impacting the reliability of VANETs. The need for security solutions in

VANETs arises because these networks rely heavily on exchanging sensitive information

among vehicles and infrastructure components. For instance, safety applications such as

collision avoidance and traffic signal preemption require real-time communication between

vehicles and infrastructure. Any security breach in such applications can compromise the

safety of passengers and other road users. Similarly, collecting and transmitting sensitive

information in VANETs, such as location data, can lead to serious privacy violations if not

adequately secured. Various security solutions have been proposed for VANETs to address

these security challenges. We can broadly categorize these solutions into attack detection

and prevention techniques. Attack detection solutions stop security threats and identify the

attacker, whereas prevention solutions stop attacks from happening in the first place. It is

crucial to use adequate security measures in vehicular networks for the following reasons:

1. Safety: Vehicular networks are critical for communication and coordination between

vehicles, and essential for providing road safety. Security threats can disrupt these networks

leading to accidents and loss of life.

2. Privacy: Vehicular networks collect and transmit sensitive information about vehicles,

passengers, and the environment. Security threats can expose this information to malicious

actors, resulting in severe privacy violations.

3. Trust: The trustworthiness of vehicular networks is essential for their widespread

adoption and deployment. Security threats can erode trust in these networks, making them

less attractive to users and hindering their growth.

4. Reliability: Vehicular networks must be highly reliable to guarantee safe and efficient

vehicle communication. Security threats can disrupt the normal functioning of these net-

works, leading to downtime, delays, and lost data. Tanwar et al. classify security solutions

for vehicular networks into two main categories: attack detection solutions and prevention

solutions [118]. This chapter covers both categories of solutions.
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3.2 Detection solutions

Attack detection refers to identifying and classifying malicious or anomalous activities that

try to compromise the security of a system, network, or application. An attack detection

system is necessary for any effective cybersecurity strategy, as it allows organizations to

detect and respond to potential threats on time. Attack detection involves checking various

security events and traffic patterns and analyzing them for signs of suspicious or malicious

behavior. It also generates alerts for security administrators or automated systems when

potential threats are detected. Attack detection includes identifying abnormal user activity,

network traffic patterns, or system behaviors that may indicate an attack or security breach.

Attack detection techniques include tools and technologies like IDS and Security Information

and Event Management (SIEM) systems. These tools use machine learning algorithms and

other advanced analytics techniques to identify and classify potential threats. These tools

also incorporate automated response capabilities to mitigate the impact of attacks.

3.2.1 Identity based solutions

Identity-Based Cryptography (IBC) is a cryptographic approach Adi Shamir introduced in

1984. Boneh and Franklin made IBC practical when they implemented it in 2001 [119].

Unlike Public Key Infrastructure (PKI), which uses certificates to verify public keys, IBC

solutions generate the public key using the identity information of an entity, such as name,

IP address, or email address. In 2001, Boneh and Franklin introduced the IBC system using

bilinear pairings on elliptic curves [119]. IBC categorizes the solutions into Identity-Based

Encryption (IBE) and Identity-Based Signatures (IBS). IBC comprises IBE and IBS, which

means IBC contains IBE and signatures. These solutions are computationally more efficient

due to the absence of certificate verification.
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Table 4: Identity based solutions

Reference Service Attack type Solution Claims
Zhang et al.
(2002) [120]

Anonymity
and privacy

Signature
forgery

ID-based blind
signature and
ring signature
from pairing

Can be used
in electronic
cash scheme or
electronic voting
scheme.

Choon
& Cheon
(2002) [121]

Confidentia-
lity and Au-
thenticity

Forgery ID-based signa-
ture using gap
Diffie Hellman
(GDH) groups

Small signature
size with more ef-
ficiency.

Chow et al.
(2005) [122]

Confidentia-
lity, Au-
thenticity,
non-
repudiation

Message and
identity attack

ID-based ring sig-
nature

Requires only
two pairing com-
putations and un
forgeable

Gamage
et al.
(2006) [123]

Confidentia-
lity, Au-
thenticity

Forgery ID based ring sig-
nature.

Less computa-
tional overheads

Kamat et al.
(2006) [124]

authentica-
tion,
confidentia-
lity, non-
repudiation
and mes-
sage
integrity

Modification
attack, man
in the middle,
Replay attack

ID-based security
framework

No extra memory
requirements for
pseudonym

Jinyuan
et al.
(2010) [125]

Authentica-
tion, non-
repudiation,
integrity,
confidentia-
lity.

Forgery, man
in the middle,
Replay attack

Novel
pseudonym-
based scheme
and threshold
signature-based
security system

Efficient in
storage, com-
putations and
communication

Lim and
Paterson
(2010) [126]

Confidentia-
lity, Au-
thenticity

Impersonation
attack, modifi-
cation attack

Identity-based
key infrastruc-
ture for the grid
(IKIG)

Least costs of
computation &
communication
with employa-
bility in smart
grids.

He et al.
(2015) [127]

Confidentia-
lity/ Pri-
vacy

Impersonation
attack, modifi-
cation attack,
man in the
middle, Re-
play attack,
stolen verifier
table attack

ID based Con-
ditional Privacy-
Preserving
Authentication
(CPPA)

Low computation
cost and commu-
nication cost
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Table 4: Identity based solutions

Reference Service Attack type Solution Claims
Ali et al.
(2019) [128]

Authentica-
tion

Forgery Elliptic Curve
Cryptography
(ECC) and gen-
eral one-way hash
functions

Single signature
cost = 0.4438
ms, Batch signa-
ture cost= 0.442 +
0.0018n ms

Limbasiya
et al.
(2019) [129]

Authentica-
tion and
privacy

Impersonation
attack, modi-
fication attack
man in the
middle, Re-
play attack,
Session key
enclosure

proficient mes-
sage verification
scheme

Computational
cost =10Th +
3TECM, Time=
1.5970ms, En-
ergy (mJ)=
17.3754

Al-
shareeda
et al.
(2020) [130]

Privacy Impersonation
attack, mod-
ification
attack man in
the middle,
Replay attack,

VANET based
privacy-
preserving
communication
scheme (VPPCS)

optimum values
of MGS(ms),
SV M(ms), BV
MM(ms)

3.2.2 Key based solutions

VANETs rely on security solutions based on cryptographic keys to ensure the confidentiality,

integrity, and authenticity of transmitted data within the network. These key-based solutions

use cryptographic keys and hash functions to establish secure communication between nodes

in the network, with public keys used for encryption and private keys for decryption. Key-

based solutions guarantee the integrity of data transferred over the network and help prevent

unauthorized access to critical information. Key-based solutions, such as PKI, symmetric,

and asymmetric keys, are crucial for maintaining the security of VANETs and provide a

secure mechanism for exchanging data between nodes while protecting against various types

of attacks. It is worth noting that key-based solutions differ from ID-based ones in that they

use certificates to establish the authenticity of the communicating nodes. These solutions

are widely used to secure communication in VANETs and are essential for ensuring the

reliability and security of these networks [131].
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Table 5: Key based solutions

Reference Service Attack type Solution Claims
Sanzgiri
et al.
(2002) [132]

Authentica-
tion, non-
repudiation

Replay attack
Impersonation
Eavesdropping

ARAN Protocol Efficient and sim-
ple protocol

Hu et al.
(2002) [133]

Availability,
, non-
repudiation

DoS Routing at-
tack Replay attack

Ariadne 41.7% lower
packet overhead

Hu and
Johnson
(2003) [134]

Authentica-
tion,
availability

DoS Routing
attack Imperson-
ation

SEAD Protocol Packet delivery
ratio is almost
95%

Cencioni
et al.
(2008) [75]

Confidentia-
lity

Traffic Analysis
Attack

VIPER: a
Vehicle-to-
Infrastructure
communication
Privacy Enforce-
ment pRotocol
(Cryptography)

Efficient, low
computations,
less time delays
and less dummy
messages sent,

Li et al.
(2012) [74]

Confidentia-
lity

Man in the Mid-
dle

Mobile Payment
Protocol (Cryp-
tography)

Reduced commu-
nication and com-
putation cost

3.2.3 Trust based solutions

In VANET, trust-based solutions manage security threats and prevent unauthorized access

to sensitive information transmitted over the network. These solutions utilize a trust model

that establishes trust relationships between nodes in the network. We do this to determine

which nodes are trustworthy for exchanging information and which nodes are not. We

define the trust relationship based on predefined criteria like node behavior, reputation,

and history. Trust-based solutions offer an alternative to key-based ones, where public

and private keys secure communication. Instead, they rely on trust relationships between

nodes to ensure the confidentiality, integrity, and authenticity of information transmitted

over the network. Reputation-based systems, where nodes are assigned a reputation score

based on their past behavior, and trust management systems, where nodes negotiate trust

relationships with other nodes, are examples of trust-based solutions in VANET. VANETs

use various trust models in VANET, including data-oriented and entity-oriented models.

Data-oriented models focus on the data used during communication, while entity-oriented
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models emphasize the reliability of the drivers of vehicular entities.

Table 6: Trust based solutions

Reference Service Attack type Solution Claims
Poongodi
et al.
(2019) [135]

Availability DoS/DDoS A trust-based sys-
tem where history
and profiles are
observed

Det. rate =95.8%,
Avg. latency =
30s, P Del.R =
86%

Nandy et al.
(2020) [136]

Availability DoS/DDoS T-BICDS, trust-
based collabora-
tive intrusion de-
tection system

Detection rate
and accuracy not
defined

3.2.4 Machine Learning solutions

Machine learning solutions use artificial intelligence algorithms to detect and prevent se-

curity threats in VANETs. ML solutions automatically learn from network-generated data,

identify patterns and anomalies, and respond to security threats in real time. ML solutions

for VANETs detect various types of attacks, such as DDoS attacks, message tampering, and

eavesdropping. These solutions identify malicious nodes in the network using different ML

algorithms, such as decision trees, artificial neural networks, and support vector machines.

These algorithms analyze large amounts of data and decide how to respond to security

threats. Examples of these solutions include IDS, which uses ML algorithms to detect ma-

licious behavior in the network, and anomaly detection systems, which use ML algorithms

to identify and respond to unusual patterns in network traffic. These solutions are becoming

popular in VANETs because they quickly detect and respond to security threats in real time,

even as the network evolves and changes over time.

Table 7: Machine learning solutions

Reference Service Attack type Solution Claims
Grover
et al.
(2011) [137]

Availability DoS/DDoS Random forest,
naı̈ve-bayes, IBK,
J-48, ada-boost1

In Binary Clas-
sifier = 92% In
multi classifier =
93%
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Table 7: Machine learning solutions

Reference Service Attack type Solution Claims
Li et al.
(2015) [138]

Availability DoS/DDoS Support vector
machine

Better perfor-
mance in terms
of accuracy,
precision, and
recall

Ghaleb
et al.
(2017) [139]

Availability DoS/DDoS Artificial neural
network (ANN)

Accuracy=
99.74%, De-
tection Rate =
99%

Kim et al.
(2017) [140]

Availability DoS/DDoS Multi-class sup-
port vector ma-
chine

Accuracy ¿ 85%,
Precision = 90%,
Recall =85%

Yu et al.
(2018) [141]

Availability DoS/DDoS Support vector
machine

Accuracy more
than 97%

Karagiannis
& Argyriou
(2018) [108]

Availability DoS/DDoS Unsupervised
learning with
clustering (k-
means)

Not Available

Liang et
al. (2011)
(2018) [142]

Availability DoS/DDoS I-GHSOM Accuracy=
99.69%

Kosmanos
et al.
(2019) [143]

Availability DoS/DDoS k-NN and the
Random Forest
algorithm

Accuracy= 91%

Kaur et al.
(2019) [144]

Availability DoS/DDoS Adaptive neuro-
fuzzy system

Good efficiency
in terms of packet
loss rate, delay
and throughput

Aloqaily
et al.
(2019) [145]

Availability DoS/DDoS Decision Tree Accuracy
=99.43% and
detection rate =
99.92%

Kolandais-
amy et al.
(2019) [146]

Availability DoS/DDoS EBACA scheme
based on ant
colony opti-
mization and
integrated
Markov-chain

Attack mitigation
78% more than
other solutions.

Zeng et al.
(2019) [147]

Availability DoS/DDoS DeepVCM using
CNN and LSTM

Good perfor-
mance in accu-
racy, precision
and recall

Manimaran
et al.
(2020) [148]

Availability DoS/DDoS Heuristic-based
adaptive IDS

Not Available
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Table 7: Machine learning solutions

Reference Service Attack type Solution Claims
Shahverdy
et al.
(2020) [149]

Availability DoS/DDoS CNN Accuracy= 99.
95%

Schmidt
et al.
(2020) [150]

Availability DoS/DDoS Knot flow clas-
sification with
spline implemen-
tation

Accuracy = ¿73%
with all classifiers

Adhikary
et al.
(2020) [151]

Availability DoS/DDoS AnovaDot and
RBFDot in SVM

Good per-
formance in
accuracy, Gini,
KS, MER and H
parameters

Liu et al.
(2020) [152]

Availability DoS/DDoS Naive-Bayes clas-
sifier

Not provided

Several machine learning-based solutions are available for misbehavior detection in vehic-

ular networks. Grover et al. (2011) use NCTUns-5.0 and WEKA for DDoS detection

and show the efficiency of IDS using random forest, Naive-Bayes, IBK, J-48, and Ada-

boost1 [184]. Li et al. (2015) propose a context-aware ML-based solution called SVM-

CASE that uses SVMs to detect security threats in VANETs. It considers the context of the

network, such as the location, velocity, and acceleration of vehicles, as well as the traffic

conditions, to make more accurate security decisions [185]. Ghaleb et al. (2017) suggest a

model that uses ANN to detect misbehavior in VANETs such as the black hole, grey hole,

wormhole, and Sybil attacks [186]. Kim et al. (2017) propose a collaborative security

attack detection mechanism that uses Multi-class SVM in MATLAB and KDD CUP-1999

dataset to predict the attacks [187]. Yu et al. propose an SDN-based system for detecting

DDoS attacks in a vehicular environment, which uses differences in traffic flow and position

as parameters for attack detection and applies SVM [188].

D. Karagiannis and A. Argyriou (2018) propose a new IDS against spoofing attacks in con-

nected EVs using unsupervised learning with clustering (k-means) and R-Studio tool, which

uses Relative Speed Variations (RSV) as the detection parameter [189]. Similarly, Liang

et al. (2018) suggest an Improved Growing Hierarchical Self-Organizing Map (I-GHSOM)

that uses differences in traffic flow and position as parameters for attack detection, applies
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the Support Vector Machine (SVM) algorithm and uses the Mininet network simulator

tool [190]. Kosmanos et al. (2019) propose a new solution to handle spoofing attacks

in electric vehicular networks with an ML approach. It employs a clustering algorithm

to group vehicles according to their charging patterns and uses a decision tree to classify

them as usual or abnormal [191]. Kaur et al. (2019) provide an enhanced approach of

an adaptive neuro-fuzzy system for attack detection in vehicular networks, which uses an

ANFIS trained on a normal and attack traffic dataset using a combination of related fea-

tures [192]. Aloqaily et al. (2019) propose an intrusion detection system for connected

vehicles in smart cities using the decision tree algorithm and the NSL-KDD dataset, im-

plemented in MATLAB [193]. Kolandaisamy et al. (2019) introduce a solution with an

integrated Markov-chain and ant-colony optimization scheme using NS2 and Exploratory

Based Ant Colony Approach (EBACA)[194]. Manimaran et al. (2020) propose NDNIDS,

an intrusion detection system for NDN-based VANETs, using heuristic-based adaptive IDS

and generating a dataset, and also uses multiple sensor values and the driver’s heartbeat

rate as a detection feature[195]. Schmidt et al. (2020) propose spline-based IDS, which

works with knot flow classification [196]. Adhikary et al. (2020) present a hybrid algorithm

that detects DDoS attacks in VANETs using AnovaDot and RBFDot in SVM for classifi-

cation [197]. The algorithm employs a dataset synthesized by inducing jitter, delay, packet

drop, throughput, and collision for attack detection. In a recent study, Kadam et al. (2021)

propose a Hybrid KSVM scheme for intrusion detection that utilizes various parameters

such as protocol, source and destination IP, and port no.[198]. Türkoğlu et al. (2022)

introduce the SD-VANET architecture for intrusion detection in vehicular networks[199].

The architecture utilizes a feature selection algorithm based on Minimum Redundancy

Maximum Relevance (MRMR) for classification.

3.2.5 Hybrid solutions

Hybrid solutions for securing VANETs refer to security measures that employ multiple se-

curity techniques to provide a more effective defense against security threats. Such solutions

typically integrate traditional security techniques, such as encryption and authentication,

64



with modern security techniques, such as machine learning algorithms, to create a more

robust security solution. An example of a hybrid solution for VANET attacks might involve

combining identity-based cryptography with machine learning algorithms to enhance secu-

rity. In this scenario, identity-based cryptography would verify the authenticity of public

keys used in communication. At the same time, the machine learning algorithms would de-

tect and respond to security threats in real-time. Hybrid solutions address specific security

challenges, such as DDoS attacks, message tampering, and eavesdropping. We customize

them to meet the unique requirements of different VANET deployments. By integrating

multiple security techniques, hybrid solutions offer a more comprehensive defense against

security threats in vehicular networks and are a popular choice for organizations seeking to

secure their VANETs.

Table 8: Hybrid solutions

Reference Service Attack type Solution Claims
Lo & Tsai
(2007) [82]

Integrity Illusion Attack Plausibility vali-
dation network

Performance not
quantified

Mejri et al.
(2014) [92]

Availability Greedy behav-
ior attack

Entropy-based
solution for
DDoS detection

Detection and ac-
curacy are not de-
fined.

Malhi et al.
(2016) [78]

Integrity Masquerade Secure genetic-
based framework

Avg. accuracy
rate of 3 scenarios
is 86.54% with ef-
ficiency in packet
drop ratio.

Lahrouni
et al.
(2017) [153]

Availability DDoS attack A mathematical
model

Attack vehicle
accuracy= 100%
in all cases, Non
attack vehicle
accuracy in
RMS= 87.96%,
in MAV= 65.67%
and in MSE = 0%

Malik et al.
(2019) [80]

Integrity Replay Attack A non-learning
based method

Not available

Li et al.
(2020) [154]

Availability DoS/DDoS Heterogeneous
communication
framework with
the hybrid infor-
mation exchange

Detection rate
and accuracy not
defined
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3.2.6 Solutions for EV infrastructure

EVs are not immune to cyber-attacks and attackers can target these EVs like any other

vehicle. However, due to the lack of standardized communication procedures, EVs are

at a higher risk of being compromised. The charging infrastructure for these vehicles is

also susceptible to various security threats. Therefore, it is essential to implement security

measures and protocols to safeguard EVs from potential attacks.

Table 9: Solutions for EV infrastructure

Reference Service Attack type Solution Claims
Wan et al.
(2016) [155]

Authentica-
tion,
privacy

Eavesdropping
and active ad-
versaries.

Privacy-
preserving
scheme PRAC,
Privacy via
Randomized
Anonymous
Credentials

Exact claims not
available

Liu et al.
(2018) [156]

Authentica-
tion, non-
repudiation

Tampering at-
tack

Blockchain-
inspired data
coins and energy
coins

Exact claims not
available

Kim et al.
(2019) [157]

authentica-
tion

replay and
man-in-the-
middle

Blockchain-
based charging
systems

Communication
cost = 1824 bits,
computation cost
= 1.1709 ms and
0.6104 ms

Marzougui
et al. [158]

Energy
manage-
ment

Energy distri-
bution

fuzzy logic con-
trol, a flatness
control and rule-
based algorithm

Efficient in per-
formance

Kumar
et al.
(2020) [65]

Confidentiality,
Authentica-
tion, non-
repudiation

authentica-
tion attacks

Use of lattice-
based crypto-
graphic hash
SWIFFT

avoids heavy
computation and
reduces commu-
nication cost up
to 83%

Kavousi
et al.
(2020) [159]

Availability,
authentica-
tion

Message
flooding

Wavelet decom-
position method
and modified sup-
port vector ma-
chine

The high HR=
97.6 % and
CR= 95.14 % as
well as the low
MR=2.4% and
FR=4.86%
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3.3 Prevention solutions

Preventive measures in VANETs aim to prevent security threats from occurring. We can

accomplish this through various security technologies such as encryption, authentication,

and firewalls. Additionally, preventive solutions in VANETs include utilizing advanced

technologies like machine learning algorithms to detect and respond to security threats in

real-time.

3.3.1 Conventional solutions

Conventional solutions for preventing attacks encompass a wide range of techniques uti-

lized not only in computer networks but also in other types of networks, such as MANET

and VANET. These solutions are typically based on established security practices, such as

encryption, authentication, access control, and intrusion detection systems. They are often

combined to provide a layered defense against security threats. While these conventional

solutions can effectively mitigate attacks, they may only sometimes be sufficient to address

the unique security challenges presented by emerging technologies and new network archi-

tectures. As such, there is a growing need for more advanced and adaptive security solutions

that can keep pace with the evolving threat landscape.

Table 10: Conventional attack prevention techniques

Main Tech-
nique

Solution Author(s) Functionality or Working

Egress Fil-
tering

Default Allow and
Default Deny Pol-
icy

Mahajan &
Sachdeva (2013)
[209]

All outward moving packets are
checked for any suspicious pat-
tern for filtering

Ingress Fil-
tering

Rule-Based
ingress Filtering

Ferguson et al.
(1998) [210]

Packets are not allowed to en-
ter the network which does not
follow the rules of the filter.

Route Based Dis-
tributed Packet
Filtering (DPF)

Park and Lee
(2001) [211]

Proactive technique used for fil-
tering based on the route used
for traveling by the packet.

History Based IP
Filtering (HIF)

Peng et al. (2003)
[212]

Filters packet after analyzing
packet history record main-
tained in special databases.
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Table 10: Conventional attack prevention techniques

Main Tech-
nique

Solution Author(s) Functionality or Working

Hop Count Filter
scheme (HCF)

Jin et al. (2003)
[213]

Packets are filtered based on
number of hops (nodes) tra-
versed by the packet computed
from TTL.

Secure Overlay
Services

Keromytis et al.
(2004) [214]

Nodes are assigned special roles
and tasks. Authentic packets are
forwarded using hash functions.

Honeypot
based
Techniques

Simple Honey-
pots

Weiler N. (2002)
[215]

Attackers are attracted by pro-
viding loopholes in fake secu-
rity systems

Interaction based
honeypots

Daimi, K. (2018)
[218], Kim
et al. (2011)
[219], NG et al.
(2018),[220]

Interaction specifies how much
activities are allowed by honey-
pot.

Honeytokens L. Spitzner,
(2003) [221]

An entity or a keyword which
attracts attacker.

Honeynets L. Spitzner,
(2003) [222]

It is collection of two or more
honeypots.

Honeyfarms Jiang et al. (2006)
[223]

It is centralized group of honey-
pots.

Load Bal-
ancer

Benefit-based
Load Balancing
(BLB)

Anh et al. (2008)
[225]

Traffic rate for forwarding fur-
ther and for processing is con-
trolled as per requirement.

Configur-
ation Based
Techniques

Disabling Unused
Service

Fortunati et al.
(2006) [227]

All those services which are not
required should be disabled.

Software Up-
dates & Security
patches

Fortunati et al.
(2006) [227]

Software should be updated and
patches should be installed im-
mediately when available.

Account privi-
leges and authen-
tication

Fortunati et al.
(2006) [227]

User accounts should be main-
tained and permissions should
be assigned.

Changing IP ad-
dresses

Fortunati et al.
(2006) [227]

IP addresses should be updated
at regular intervals.

Disabling IP
Broadcasting

Fortunati et al.
(2006) [227]

IP broadcasts should not be al-
lowed.

Current
Trends

DL-IDPS Lee et al. (2020)
[228]

Packet length is used as the main
parameter for attack detection
and prevention.

3 tier IDPS Ali et al. (2020)
[229]

Software should be updated and
patches should be installed im-
mediately when available.
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Table 10: Conventional attack prevention techniques

Main Tech-
nique

Solution Author(s) Functionality or Working

Blockchain Rohit et al. (2019)
[230], Jamder et
al. (2019) [231]

Blockchain-based solutions for
IoT devices are proposed

Umbrella Liu et al. (2019)
[232]

This solution works with the
help of ISPs.

reCAPTCHA
controller

Poongodi et al.
(2019) [233]

It works with the help of infor-
mation based metrics.

Statistics based
solution

Ahuja and Sing-
hal (2018) [237]

Statistical solutions are used for
DDoS.

MAEC-X archi-
tecture

Dao et al. (2018)
[238]

Special MAEC-X architecture
is proposed.

D-PIDs Sreerekha et al.
(2018) [239]

It works with the help of infor-
mation based metrics.

3.3.2 Logit model-based solutions

In this section, our focus is on solutions based on logistic regression and probit regression.

These solutions are particularly advantageous in cybersecurity as they leverage probability

distributions to prevent a range of security attacks effectively. Moreover, a related study

proposed an early warning mechanism for estimating the likelihood of bank failure, which

utilized detailed logit and discriminant analysis techniques [240].

Table 11: Logit and Probit Model-based prevention techniques

Author(s) Strategy Used Advantage Parameters Results
Martin,
d.(1977) [240]

logit & dis-
criminant anal-
ysis

Fund supply
differs as per
premium.

asset risk, liq-
uidity, capital
adequacy,

log odds ratios,
marginal effect
coefficients

Green et al.
(2007) [241]

Binary
grouped logit
regression

data analysis
of intrusion
prevention
systems to
see hackers’
behavior

protocol, the
origin of the
event, service
accessed, and
method of ac-
cess.

false and true
negative alerts
report from the
model.

Mukkho-
padhyay et al.
(2009) [242]
[244]

Multinomial
logit & probit
regression

Propose e-risk
insurance

time quantify ex-
pected risk,
attack trend
projection
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Table 11: Logit and Probit Model based prevention techniques

Author(s) Strategy Used Advantage Parameters Results
Jinkun et
al.(2016) [243].

Probit regres-
sion

provided
novel way
to construct
algorithm of
VL model

time predictions
and validity for
accumulative
vulnerability
loss

Prakash et
al.(2020) [245]

i) support vec-
tor ii) random
forest iii) logis-
tic which in-
cludes newton-
raphson,

evaluation
through accu-
racy scores.

flow duration,
forward pack-
ets, backward
packets, total
length of the
packet

confusion
matrix (per-
formance
analysis),
precision
results

Sharma et al.
(2020) [246]

CRAM-D
model-based
logit-probit

targeted risk
mitigation
through heat
matrix (proba-
bilities*loss)

Bits per second
(in gb) & dura-
tion (hrs)

generalized
probabili-
ties, expected
losses, risk-
severity
matrix.

3.4 Conclusion

In conclusion, the security of vehicular networks is a critical issue that requires proper

attention to ensure these networks’ safe and reliable operation. This chapter has reviewed

various security solutions to mitigate DDoS attacks in VANETs, including identity-based,

key-based, trust-based, ML, and hybrid solutions. We can make decisions about which

solutions are best suited to our needs. We can develop effective strategies for implementing

these solutions in our networks by understanding the strengths and weaknesses of these

solutions. It is important to note that the security of vehicular networks is an ongoing

challenge and requires continuous monitoring and improvement. All organizations must

adapt their security strategies to address these changing security needs as new threats

emerge, and technology advances. Ultimately, securing vehicular networks aims to ensure

the privacy, safety, and reliability of these networks and protect the drivers, passengers, and

other users who rely on them for their daily needs.
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Chapter 4

Research Methodology

Research methodology is a scientific approach to conducting research that includes selecting

tools and strategies for gathering, analyzing, and interpreting data. Any research study’s

methodology is an essential component because it impacts the validity and reliability of

the results. This chapter describes the research methods of DDoS detection and prevention

in VANETs. It thoroughly explains the research design, data collection procedures, data

analysis strategies, and ethical issues taken into account to maintain the study’s validity. The

research methodology chapter is vital since it directs the research process and guarantees

that the results acquired are correct and genuine.

4.1 Introduction

This chapter starts by reviewing the research gap in the area of DDoS detection and pre-

vention in Vehicular Ad-hoc Networks (VANETs), which serves as the basis for this study.

The chapter then goes over the specific objectives of the research, which include examining

different DDoS attack methods, assessing the efficiency of current DDoS detection and

prevention methods in VANETs, and suggesting a novel mechanism suited to the unique

features of VANETs. The chapter goes on to explore the necessity to solve the intricate

security concerns connected with VANETs and their growing use in intelligent transporta-

tion systems, which is what motivated this study. The chapter concludes by thoroughly

explaining the research methodology used in this study.

4.2 Research gap

Although various solutions can handle DoS/DDoS attacks, mathematical, statistical, knowledge-

based, and soft computing-based solutions have been proposed. But still, these solutions

need more accuracy and have detection delays. Because VANET vehicles have OBUs with

very slow processors and low storage capacity, it is challenging for the vehicles to do pro-
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cessing to detect attacks themselves. Attackers, on the other hand, launch attacks against

complete VANET with a variety of new tools and techniques.

• To make the cities smart, VANETs and their related security challenges must be

considered by all the countries for future Smart Cities. So this area has lots of

potential for research.

Elaboration: This gap suggests that there is a need for research that specifically

addresses the role of VANETs in smart city infrastructure. It implies that existing

studies may not have fully explored how VANETs can contribute to the development

of smart cities. In the context of our thesis objectives, we focus on assessing the

current state of VANET security within the smart city context, including the detection

and prevention of DDoS attacks.

• In many network security solutions, the availability of information is an issue

with the minimum importance. However, increasing attacks like DoS/DDoS on

availability have proved that this factor is equally important to other security

factors. So Dos/DDoS attacks need proper attention.

Elaboration: This gap highlights the significance of availability as a critical security

factor, especially in the face of the rising threat of DDoS attacks. It suggests that

existing security solutions might not adequately prioritize availability concerns. In

our thesis, we explore the implications of DDoS attacks on VANET availability, assess

the current state of DDoS prevention techniques, and propose frameworks to enhance

availability protection within VANETs.

• Attack prevention techniques are essential, which may save computational over-

heads of the detection and mitigation process. Based on the attack data, we

prevent future attacks. For this, we require an optimal solution to have the

ability to classify traffic based on previous results and identify attack packets.

Elaboration: This gap emphasizes the importance of proactive attack prevention

techniques in reducing the computational overhead associated with detection and

mitigation. It implies that current solutions might be more focused on reactive
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measures. In our thesis, we delve into the development of an optimal attack prevention

framework that leverages machine learning (ML) and previous attack data to classify

traffic and identify potential attack packets, aligning with your second and third

objectives.

• VANET solutions should be general, reliable, and universally applicable. So there

is a need to formulate a solution that is feasible practically and economically.

Elaboration: This gap highlights the requirement for VANET security solutions to

be practical, reliable, and economically feasible. It suggests that existing solutions

may not fully meet these criteria. In our thesis, we investigate the feasibility and cost-

effectiveness of proposed security mechanisms, ensuring that our ML-based detection

and prevention frameworks are practical for real-world deployment.

• Among available solutions area of machine and deep learning is comparatively

new and still growing as new algorithms and tools are being developed. Existing

ML techniques are not much used for attack prevention and detection in VANETs,

which are very beneficial for handling DoS/DDoS attacks on classical networks.

Checking the suitability of these existing and new ML technologies is still an

untouched area.

Elaboration: This gap underscores the underutilization of ML techniques in VANET

security, particularly for addressing DoS/DDoS attacks. It suggests that there is

untapped potential in leveraging ML and deep learning algorithms to improve security

in VANETs. In our thesis, we explore the suitability and effectiveness of existing and

emerging ML technologies for DDoS detection and prevention in vehicular networks.

• All security solutions must have accuracy in attack detection, short detection

time, minimum or no false positives & negatives. These ML techniques are more

suitable for classical networks as novel attacks may be detected with greater

accuracy, precision, and recall and quickly with low false positives. So, the

applicability of these parameters in any solution is a suitable research area.

Elaboration: This gap highlights the crucial attributes of security solutions, such
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as accuracy, quick detection, and minimal false positives and negatives. It suggests

that ML techniques, while suitable for classical networks, may require adaptation for

VANETs. In our thesis, we investigate how ML-based frameworks can achieve high

accuracy and low false positive rates in the context of DDoS attack detection, aligning

with your second and third objectives.

• Existing solutions use various feature sets for attack classification, but no fixed

one exists. It is worth finding a broad feature set applicable to different situations.

Elaboration: This gap indicates that there is no standardized feature set for attack

classification in VANET security solutions. It suggests the need for a comprehensive

and adaptable feature set that can be applied across diverse scenarios. In your thesis,

you can research and propose a versatile feature set that enhances the robustness and

adaptability of your ML-based DDoS detection and prevention framework, aligning

with your second and third objectives.

4.3 Objectives

Although the overall objective of this proposed system is to provide a suitable machine

learning-based security framework that will be able to detect DoS/DDoS attacks in a ve-

hicular environment, we can achieve this by achieving other supplementary objectives. It

requires proper background knowledge and an in-depth analysis of various existing solu-

tions. We should compare the system’s efficiency with already available solutions. We

use parameters like accuracy, detection time, and false-positive for comparison purposes.

Therefore, in the present research proposal, we have opted for the research problem of

developing a framework with machine learning techniques for vehicular ad hoc networks.

The objectives of this proposal are:

1. To analyze the existing DoS/DDoS security mechanisms and feasibility study in

VANETs.

2. To design a Machine learning-based detection framework for DDoS in vehicular

infrastructure.
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3. To design a Machine learning-based prevention/avoidance framework for DDoS in

vehicular infrastructure.

4. To validate and compare the performance of the designed framework with the existing

frameworks.

4.4 Motivation

Objective 1: To analyze the existing DoS/DDoS security mechanisms and feasibility

study in VANETs.

Motivation: DoS and DDoS attacks are increasing and potentially becoming more harmful

than the existing ones. These attacks are analyzed to know about the attack methods used

by attackers which helps secure future systems. Existing security mechanisms are studied

to find loopholes in them. Attackers use these loopholes or vulnerabilities to launch attacks.

We must examine Existing DoS/DDoS in the vehicular environment and their solutions

because it will provide a roadmap to future solutions.

Outcome: The primary outcome of the first objective will be a review paper and research

gap. This research gap makes a blueprint for future research.

Objective 2: To design a Machine Learning based detection method for DDoS in

vehicular infrastructure.

Motivation: Novelty and high performance of machine learning techniques make it a

favorite. These AI-based techniques have become more robust with the convergence of

deep learning algorithms. We check various parameters like accuracy, precision, recall,

and f1 score in ML techniques. Confusion matrix and other tools available in machine

learning make them more suitable. There is flexibility in implementing these techniques,

like statistical techniques, that we effortlessly combine with ML techniques. All these

characteristics make machine learning the first choice of most researchers.

Outcome: The Principal outcome of this objective will be a framework that can detect

DoS/DDoS attacks with accuracy and efficiency. This outcome originates from extracted

features using a machine learning algorithm.
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Objective 3: To design a Machine Learning based prevention/avoidance method for

DDoS in vehicular infrastructure.

Motivation: This objective is based on the concept that prevention is better than cure.

If we prevent attacks in advance there will be no need to spend time and other resources

mitigating those attacks. Prevention also reduces the load of the system by dropping

malicious traffic. The Machine learning method has multiple benefits, including those

discussed in the motivation section of Objective 2.

Outcome: With the help of this objective, we will generate a DoS/DDoS attack prevention

framework that will learn from attack packets. This learning will help in classifying traffic

and stopping futuristic attacks.

Objective 4: To validate and compare the performance of the designed framework

with the existing frameworks.

Motivation: Any solution is considered acceptable only if outperforms existing solutions.

Nobody will use this solution if its performance level is below the existing solutions. Various

parameters like accuracy, precision, recall, and f1 score provide the base for the results of

solutions. We also use other parameters like throughput, delay, Packet Drop Count (PDC),

Packet Transfer Delay (PTD), Packet Transfer Interval (PTI), and waiting time.

Outcome: This objective will provide a comparative statement of results produced by the

proposed framework and existing frameworks of the same kind.

4.5 Methodology

In the general research process, we define the problem first and conduct research, followed

by other systematic steps. This research implements a security framework using an ML

algorithm. We describe a general research methodology in the following steps.

The methodology presented in this study follows a structured sequence of steps, each with a

distinct role in the research process. It begins with the crucial task of defining the problem

within the relevant domain, ensuring that the research remains focused and purposeful.

Following this, a comprehensive review of existing literature is conducted to establish
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the current state of knowledge and contextualize the research. Identifying research gaps

becomes the logical next step, justifying the study by demonstrating its contribution to

addressing these gaps. Clear research objectives are then formulated, serving as guiding

principles throughout the study. The research design is meticulously prepared to align with

these objectives, ensuring that data collection and analysis are systematic and purposeful.

Implementation involves executing the research design, collecting data, and subsequently

analyzing it to derive meaningful insights. Finally, the interpreted data is compared with

existing benchmark results, and the findings are synthesized into a comprehensive report,

ensuring that the entire research process is both rigorous and transparent.

1. In the first step, we define the problem related to the concerned domain.

2. After the problem definition, we review the concerned literature.

3. After a review of the literature, we identify the research gap.

4. Based on the research gap, we determine objectives.

5. We also prepare a research design using the objectives.

6. Next, we implement the proposed research design.

7. After implementation, we collect data in terms of its performance.

8. We do the data analysis of this derived data.

9. Finally, we compare the interpreted data with existing benchmark results and write a

report.

We described all essential steps in Figure 11, where each step is followed sequentially. After

following this process, the four main objectives are formulated. Based on these objectives,

the methodology section may be subdivided into different sections.

The methodology begins with problem definition, a crucial step that establishes the research’s

clear purpose and scope. Following this, a thorough literature review is conducted to gain

insight into the existing knowledge landscape, serving as the foundation for subsequent
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Figure 11: Complete research process

research. The identification of research gaps arises from this review, demonstrating the need

for the study. Subsequently, research objectives are formulated to guide the investigation

and address the identified gaps. These objectives ensure that the research maintains a clear

focus on specific research questions or issues derived from the earlier steps, providing a

structured and purpose-driven approach to the study.

4.5.1 Methodology for objective 1: Literature Review

The literature review starts with using books and using search engines. From books, we can

find some references. Search engines also provide papers related to that topic. After finding

research papers, we may get more links to the concerned subject. This way, related articles,

and literature may be retrieved from various sources. Selection of legitimate sources is

crucial; otherwise, we may get misleading information.

1. Study about DoS attacks and history, including VANETs.

2. Study about DDoS attacks and history, including VANETs.

3. Study various types of attacks possible in networks, including VANETs.

4. Security solutions, already available to handle DoS/DDoS attacks.

5. Analysis of prevention, detection, response, and tolerance techniques.

6. After analyzing various techniques, a review paper will be completed.
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Figure 12: Research methodology for literature review

7. This will lead to research gap identification.

Figure 12 shows the steps involved in the literature review. After finding the research

gap, we will lead to objective 2

4.5.2 Methodology for objective 2: Detection framework

In this section of methodology, a novel ML framework will be provided. This framework

will be simulated in any simulation environment like MATLAB, SUMO, NS3, or others.

Various datasets are available for attack detection, like the NGSIM dataset, KDD CUP 1999,

DARPA 1999, DARPA 2000, and CAIDA DDoS 2007, or the learning algorithm may use

generated datasets. VANETs will be designed, and traffic will be routed using a suitable

protocol. Attacks will be launched by making some vehicles malicious nodes, and data will

be captured. From captures of attack traffic, various features will be extracted. Feature

selection and extraction are essential steps in selecting the correct feature set. Features like

packet drop ratio, packet delivery ratio, packet re-transmission error ratio, packets received,

packet capture ratio, packet collision ratio, or packets transmitted may be selected. Features

from legitimate traffic will also be extracted. The machine learning algorithm will use both

kinds of extracted features for attack detection.

1. In the first step, all the traffic packets will be captured.
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2. All the incoming packets will be stored in some database for processing.

3. Stored traffic packets will be used for analysis, and important features will be extracted

after analyzing packets.

4. Selected features will be normalized before use by the detection system.

5. After normalization, extracted features will be used by the machine learning algorithm

for training and testing. Training and testing models are used to compare the results

in the future.

6. After training and testing, the detection system will decide which packets to drop and

which to accept for further processing.

7. If packets are malicious, these will be dropped, and we will move further for Objective

3. If packets are legitimate, then packets will be processed.

ML algorithms include support vector machines, random forests, Naive Bayes, IBK, CNN,

and ANN. One suitable algorithm will be selected, yielding higher accuracy, precision, f1

score, and recall values. We display the flowchart of the attack detection system with an

ML algorithm in Figure 13.

4.5.3 Methodology for objective 3: Prevention framework

In this section, the methodology of a novel attack prevention framework will be provided,

which will be based on an ML framework. We display the flowchart of the attack prevention

system with an ML algorithm in Figure 14.

1. Input will be taken from objective 2. In case of an attack, malicious packets will be

used as input.

2. Probability distribution will also be used as input.

3. In the third step, a binary classifier will be used to classify the malicious and non-

malicious packets.
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Figure 13: Research methodology for attack detection

4. In this step Logit model and Probit model will be used to find the probability of

suspicious class and non-suspicious class.

5. There may be two cases; in the first case, the probability of a suspicious class may be

higher than the non-suspicious one. In this case, packets will be suspicious and will

be dropped.

6. In the second case, the probability of no suspicious class may be higher than the

suspicious class. In this case, packets will be non-suspicious and processed by the

network.

4.5.4 Methodology for objective 4: Validation

This section will evaluate the results obtained by the proposed framework. After the

evaluation of the results, these will be analyzed and summarised. After that, these results

will be compared with some existing benchmark work with the help of some parameters.

Parameters may be accuracy, throughput, delay, or some other parameters. This comparison

will provide information about its relative performance. The proposed framework may yield

good accuracy, but if it is below the accuracy of existing work, it may not be suitable for
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Figure 14: Research methodology for attack prevention

selection. The following Figure 15 shows the steps of objective 4.

The steps involved in this process are:

1. Evaluate the results of the proposed framework.

2. Select some parameters for comparison.

3. Define an efficiency benchmark of some existing work.

4. Compare the results of the proposed framework with the existing one.

5. Make a comparative statement for analysis purposes.

6. Conclude and give remarks about its acceptance or rejection.

4.6 Conclusion

The research methodology chapter explains the framework and strategy to meet the research

questions or objectives, an essential part of every research endeavor. This chapter provides
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Figure 15: Research methodology for comparative analysis and validation

an overview of the research design, data collection and analysis procedures, and study

limitations. The researcher needs to carefully consider the research methodology and select

acceptable methods that will adequately address the research questions while preserving

the validity and dependability of the findings. The research methods chapter also acts as a

manual for other researchers who might want to repeat the study, advancing knowledge in

the subject.
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Chapter 5

Proposed attack detection framework: VAIDANSHH

This chapter describes the proposed detection framework, VAIDANSHH, for securing

VANETs against botnet-based attacks. The chapter starts with an overview of the frame-

work. Next follows an explanation of the purpose and relevance of the proposed models.

The experimental setup of the framework is presented, including the system configuration,

network topology, and attack methodology. We introduce the Adaptive Alarming Module

(AAM) and the Detection Module (DM) and describe them as three tiers. The chapter also

includes a comprehensive evaluation of the framework’s performance, including the results

of tier-1, the hardware level; tier-2, the communication channel level; and tier-3, the appli-

cation level. Performance metrics for both the AAM and the DM are presented separately.

A comparative analysis compares VAIDANSHH with the Naive Bayes family algorithm,

other classification algorithms, and existing solutions. Finally, the chapter concludes with a

summary of the findings and future work.

5.1 Introduction

This chapter demonstrates a proposed framework for detecting DDoS attacks as VAIDAN-

SHH. Prevention techniques for DDoS attacks are generally proactive and attackers with

sophisticated tools can still launch successful attacks. Therefore, it is essential to have robust

detection systems that can efficiently detect attacks promptly to minimize losses for the vic-

tim and enable early recovery. Intrusion Detection Systems (IDSs) are typically used for this

purpose and employ various attack detection strategies. Although IDSs can be implemented

in multiple ways, they generally perform the same essential functions of managing, mon-

itoring, detecting, and alarming. The managing component receives and forwards traffic

while providing relevant information, which is then analyzed by the monitoring component

to identify traffic patterns and other features. The detection component then compares the

analyzed results with existing patterns to determine if it is an attack pattern. If so, an alert
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message is immediately sent to the network administrator. Depending on the organization’s

requirements and resources, we can categorize DDoS attack detection systems using various

approaches, including control mechanisms such as Centralized IDS, Hierarchical IDS, and

Distributed IDS, each with advantages and disadvantages [160].

Centralized IDS: In this category of IDSs, alerts are generated by local systems and devices

and then forwarded to a central server. This server gathers data from all sources, combines

the alerts, and analyzes them to determine the appropriate action. This approach allows

for better decision-making due to the collection and analysis of data. However, applying a

better security mechanism to the central server is essential as the entire security system could

collapse if attacked. A comparison between the working of Centralized and Distributed IDSs

was conducted by Feinstein [161].

Hierarchical IDS: In the Hierarchical IDS, we divide the whole system into different

levels based on the system’s geographical location, operating system, or control authority.

Data packets are examined at each level, and alerts are generated and verified by higher-

level systems. The higher-level systems act as intrusion detectors and correlation handlers,

receiving and generating alerts and analyzing them before forwarding them to higher-level

systems. This way, top-level systems take decisions and actions, making the system more

scalable. Sharma and Ahmin also utilized Hierarchical IDS in their studies, employing

Decision Tree and Rules-Based Models and Machine Learning and Knowledge Models,

respectively. (Source: [162] and [30])

Distributed IDS: This defense mechanism distributes overall control among autonomous

systems rather than relying on one system. Each component detects and prevents attacks

at its level but cannot correlate alerts from other systems, which may result in undetected

attacks. Distributed attack detection systems are flexible and easily scalable. One proposed

solution for DDoS attack detection is a distributed defense system that employs DIDS with

Blockchain and cloud computing infrastructure [31]. We can deploy IDS as host-based or

network-based, with hybrid IDS combining the beneficial features [163]. HIDS installed on

servers, observe the operating system and other applications working. They investigate data

traffic moving to and from the machine and generate alerts for any suspicious activity, such
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as a process attempting to access the password database. Some HIDS can take on different

forms, such as file integrity and login logs [164]. File integrity software is installed when an

operating system is installed and maintains a database of binary files. Any changes to these

files indicate an attack and alert network administrators. Association rule-based solutions

have been proposed for HIDS [165] and logistic regression-based solutions that employ

various machine learning techniques [166].

Network IDS: Network-based Intrusion Detection Systems (NIDS) are passive systems or

devices installed at selected network points that continuously monitor data traffic. These

systems can be implemented using different software or hardware. Generally, NIDS has

two interfaces; one for receiving incoming data packets and the other for reporting and

controlling. The listening component of NIDS analyzes the patterns and features of incoming

data to determine if an attack pattern exists. NIDS are usually deployed near the firewall

or edge routers where listening and monitoring network traffic would be more convenient.

Various technologies, such as artificial neural networks and machine learning, are employed

to inspect traffic patterns. However, large volumes of data cannot be handled by NIDS,

and it cannot analyze encrypted packets. Furthermore, Besharati [167] proposed a NIDS-

based system that uses logistic regression cost functions with stochastic gradient descent and

simulated annealing to fine-tune various hyperparameters of the neural network-based NIDS

classifier. Subba [29] also discussed various neural networks and deep learning techniques

for NIDS and HIDS. These advancements have enabled fuzzy logic-based systems to predict

up to 99.99% of attack patterns in advance and can provide warnings against these attacks.

Hybrid IDS: Hybrid IDS systems utilize Host IDS and Network IDS functionalities to create

a more flexible and powerful detection system. By monitoring machine events and network

traffic, hybrid IDS systems provide better security and authenticate file system integrity,

making them ideal for deployment in highly secure locations like an organization’s server.

Different deployment options exist when implementing a DDoS defense system, including

at the source end, victim end, or intermediate network location. While using a victim-side

defense system can provide accurate traffic analysis, it also consumes more resources and

is ineffective against high-rate attacks. Employing a hybrid IDS solution using machine
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learning, such as the one proposed by [168], can help detect DDoS attacks efficiently and

accurately.

In this thesis chapter, we propose a machine learning-based solution for detecting DDoS

attacks in vehicular networks using tools such as Network Simulator 3, Weka, Python, and

Wireshark. The adaptive IDS system proposed in the thesis utilizes sub-components that

work together to detect the attack. The information generated by one module is used by

the other to improve detection accuracy. The application of the BayesNet algorithm in this

process is a novel approach, as it can detect attacks with high accuracy while requiring

minimal overhead. Overall, the thesis demonstrates that we can detect DDoS attacks in

VANET using a limited number of packet attributes.

• We evaluate the effectiveness of the BayesNet algorithm in a vehicular environment.

• A new dataset is created and utilized in the model, which covers three different

scenarios where flooding attacks occur on the unique topology of VANET.

• This model employs a botnet-based attack model that follows a peer-to-peer architec-

ture.

• We implement an Adaptive Alarming Module (AAM) with six distinct features to

detect abnormalities in the system, and it also utilizes all or a subset of these features

as indicators.

• We also use a unique feature set containing ten features in the detection module. The

detection module uses these ten features to identify potential attacks.

5.2 Motivation and contribution

Existing solutions have tackled the problem of DDoS attacks in vehicular environments, but

they use only a single-layer architecture for detecting attacks. This architecture relies on

parameters from a single tier, resulting in less promising outcomes. To address the limi-

tations of previous studies, we propose VAIDANSHH, an ML-based solution for detecting
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DDoS attacks in VANETs. VAIDANSHH is the first model to consider a multi-tier archi-

tecture and adaptive traffic thresholds, enabling efficient DDoS attack detection in vehicular

environments. VAIDANSHH contributes the following:

• Three-tier architecture: VAIDANSHH offers a three-tier security architecture that

includes a hardware tier (physical tier), an interface tier (communication channel),

and an application tier. This architecture applies rigorous security checks, creating a

safe vehicle environment.

• Adaptive IDS: Unlike existing static solutions, VAIDANSHH is a dynamic IDS that

collects real-time packet information and adapts traffic thresholds according to the

traffic load. This adaptation generates more accurate and reliable results.

• Heterogeneity: VAIDANSHH is flexible enough to incorporate vehicles of different

vendors, standards, protocols, and technologies. As the traffic in VANETs is het-

erogeneous, vehicles’ heterogeneity does not create compatibility or interoperability

issues.

• Dataset: As DDoS datasets in VANET scenarios are rare, we have generated a new

VANET-based DDoS dataset that includes records of benign traffic and DDoS attack

traffic of UDP and TCP flood attacks. We can accept this dataset universally as it

includes various attack types.

• Classification: We pioneer using the BayesNet classification algorithm in the vehicu-

lar environment to detect DDoS attacks. BayesNet provides an approach to deal with

missing data and enables data to be combined with domain knowledge. The algorithm

promotes learning about links between variables, prevents data overfitting, and can

forecast accurately even with small sample sizes. Additionally, BayesNet can be easily

coupled with decision analysis tools to improve data analysis and management in ML.
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5.3 Proposed model: VAIDANSHH

VAIDANSHH is a Network Intrusion Detection System (NIDS) that incorporates three

security tiers and uses adaptive traffic thresholds and minimal packet features for attack

detection. This innovative layered approach enhances the efficiency and effectiveness of the

IDS by reducing false positives, providing multiple layers of protection, and allowing for

more advanced incident response. Among the three security tiers, the first tier monitors the

hardware resource consumption like CPU and RAM to identify abnormalities. The second

tier checks the flow parameters of the communication channel. It identifies attack patterns in

traffic, while the third tier utilizes machine learning to detect attacks at the application level.

By having security checks at all three tiers, VAIDANSHH is a highly efficient and effective

attack detection framework. VAIDANSHH can be deployed at an RSU or TA to monitor

VANET traffic because these locations have more computational power and memory to

handle large data bursts. Figure 16 shows the overall architecture of VAIDANSHH.

Figure 16: Overall functionality of proposed system

We divide the complete detection process into two main modules. We describe these 2
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modules and the complete functionality of this Figure 16 in the following sections and

subsections.

5.4 Experimental setup

The experimental setup for VANET simulation involves creating a virtual environment that

emulates real-world scenarios to test the performance of different VANET protocols and

applications. We define the vehicles’ mobility models, determining how vehicles move

within the network. We implement and test the application and then run the simulation to

generate results. Different parameters, such as packet delivery ratio, delay, and throughput,

are measured and analyzed to evaluate the performance of the VANET protocols and

applications. We adjust the experimental setup to test different scenarios. Overall, a

well-designed experimental design is essential for accurately evaluating the performance of

VANET protocols and applications before deploying them in real-world scenarios.

5.4.1 System configuration

The system configuration used in this study involves several software tools, including Win-

dows 11 as the primary operating system, Oracle Virtual Box Manager, Ubuntu 20.04.2

LTS, Network Simulator 3 (NS3), Weka, Python, and Wireshark. The hardware config-

uration comprises a specialized 4GB graphics card, an Intel i7 9th generation processor,

8GB of RAM, 256GB SSD, and 1TB HDD. This hardware is suitable for simulating real-

istic scenarios and experimenting with multiple nodes. The combination of software and

hardware tools provides the necessary computational power and storage capacity to conduct

simulations with a high degree of realism, making the research results more reliable and

accurate.

5.4.2 Network topology

Our simulation uses a specific vehicular topology consisting of 12 nodes, 1 RSU, and

11 legitimate vehicles. We use the terms ”nodes” and ”vehicle” interchangeably. In this

topology, one node acts as the attacker, one as the victim, and the other ten as ”bot nodes.”
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We illustrate the vehicular topology in Figure 17, where the red car represents the attacker

node, the green car represents the victim node, and the orange cars represent the bot nodes.

We utilize routing protocols such as UDP, TCP, and ICMP and set the data rate to 512

kbps for benign traffic and 20480 kbps for DDoS traffic, with a maximum bulk data rate

of 100000 kbps. The simulation runs for 40 seconds, and the communication area covers

10,000 square meters. To simulate a realistic environment, we apply a random mobility

model to all nodes, causing them to move unpredictably within the specified region. We

summarize the experiment’s environmental parameters in Table 12.

Table 12: Attributes of experimental environment

Parameter Value
Simulation Platform NS3.2.7
No. of Vehicles 12
Attacker Nodes 1
Bot Nodes 10
Victim 1
No. of RSUs 1
Routing Protocol UDP, TCP, ICMP
Visualisation Tool NetAnim
DDoS Rate 20480 kbps
Normal data rate 512 kbps
Maximum Bulk Bytes 100000 kbps
Simulation Time 40 Seconds
Data Transmission Rate 100 Mbps
Communication Range 100 m X 100 m
Mobility Model Random mobility

5.4.3 Attack methodology

The attack scenario involves two simultaneous attacks. The first is a Vehicle-to-Infrastructure

(V2I) attack, which affects the infrastructure because the RSU is kept busy handling mali-

cious messages. The second attack is a Vehicle-to-Vehicle (V2V) attack where one malicious

bot node sends a large amount of traffic to the victim vehicle, depleting the victim node’s

resources. The attacker takes advantage of the topology of small distances to make the

attack more lethal. We use peer-to-peer botnet architecture for experiments. We generate a

flooding attack (UDP and TCP) using a botnet. The attacker uses indirect communication
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methods and injects malicious code into vehicles, compromising them. These compro-

mised nodes communicate to form a botnet, which works together without knowledge of

each other, controlled by the attacker. The attacker initiates the attack by sending commands

to the bot nodes, which send large amounts of data toward the target through the RSU. The

attacker considers this architecture more reliable because it is challenging to close an attack

from it. Multiple layers of communication easily hide the attacker during the attack. The

research aims to detect this type of attack with various layers of security [200]. We simulate

three scenarios to incorporate packet features of all types. The first scenario is the Normal

Scenario, where vehicles communicate with each other without any attack, and there is

only benign traffic. The second scenario is the Attack-only scenario, where only a flooding

attack is created without legitimate traffic. This scenario evaluates the system’s capacity

and performance under a heavy influx of incoming traffic. The third scenario is the Mix

Scenario, where a DDoS attack is included with benign traffic. UDP and TCP floods are

the two types of flooding attacks in this scenario. Figure 17 depicts the DDoS scenario in

the simulation.

As discussed in the previous section 5.2, one unique feature of our model is that it can operate

with different types of vehicles that have different communication standards and protocols.

In real-world traffic, electric or fuel-powered vehicles may participate in communication,

and these vehicles can use unique components. These components may create compatibility

issues with elements of other automobiles. Our proposed solution works very well with all

these vehicles and accommodates heterogeneous vehicles.

5.5 Adaptive alarming module: preliminary understanding

Some terms need prior explanation before understanding the workings of AAM. These

terms are threshold values, comparative values, and adaptivity which are as follows:

Threshold values: Threshold values define the maximum acceptable values for flow param-

eters. If the parameter values exceed these thresholds, it indicates that there may be some

suspicious activity happening in the network. To calculate the threshold values, the AAM

considers only legitimate traffic in the network. The AAM calculates the threshold values
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Figure 17: Vehicle set up in the network

initially when we implement the system. We adjust these threshold values dynamically at

regular intervals, such as hourly, daily, weekly, or monthly. The AAM model quickly detects

malicious traffic that enters the network by regularly recalculating the threshold values. In

this experiment, we selected the flow parameter values of normal traffic during peak load.

It implies that flow parameter values of normal traffic are treated as base and any value

crossing this limit will be suspicious.

Comparative values: The system identifies abnormal flow parameter values of the current

traffic, which are then compared against threshold values. The AAM model calculates these

comparative values at specific time intervals. These time intervals are shorter than the

time intervals of the threshold values. If a comparative value exceeds the corresponding

threshold value, the system generates an alert to notify the users of the anomaly.

Adaptivity: A distinctive characteristic of this module is its adaptability in changing

threshold values based on traffic patterns. Since the traffic flow may differ at different times,

we adjust the threshold traffic parameters based on current traffic conditions. Increased
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traffic rates usually increase the possibility of DDoS attacks, so the threshold values change

dynamically to reflect the current circumstances. In cases such as flash-crowd, where

there are sudden surges in legitimate traffic, the module recalculates the threshold values to

account for these spikes.

The concept of adaptive thresholds in VANET traffic refers to the process of adjusting

threshold values based on current traffic conditions and network characteristics. This process

involves monitoring and collecting various traffic parameters like vehicle speed, acceleration,

density, and inter-vehicle distance. Statistical analysis is then performed on the collected data

to determine the normal range of values for each parameter under typical traffic conditions,

using measures like mean, standard deviation, and percentiles. These calculations establish

threshold values that define the upper and lower limits of normal parameter values. These

thresholds are dynamically adjusted in real time to adapt to changing conditions, taking into

account factors like time of day, location, weather conditions, road type, and historical data.

The adaptive thresholds account for varying traffic patterns and environmental influences by

incorporating these factors. Once the thresholds are established and dynamically adjusted,

they serve as reference points to detect abnormal traffic patterns.

Abnormal traffic patterns can include sudden changes in vehicle speed, abrupt acceleration

or deceleration, excessively close following distances, increased traffic, or any behavior

that significantly deviates from the established normal range. When the current parameter

values exceed or fall below the adaptive thresholds, it indicates the presence of suspicious

behavior. The system generates warnings or alerts and communicates with nearby vehicles

or the centralized traffic management system upon detecting abnormal patterns. These

warnings allow for timely responses to potential hazards or abnormal situations on the road.

5.5.1 Functional modules of the AAM

The AAM module is the first component of VAIDANSHH that examines hardware resources

and flow parameters to generate alerts. We recommend deploying the AAM in either an

RSU or a central TA for optimal efficiency, as in-vehicle components are not equipped

to handle heavy traffic or perform complex computations. The AAM has two layers of
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security, known as Tier-1 and Tier-2. Tier 1 utilizes RAM and CPU utilization as the

primary parameters to detect abnormalities in the network. On the other hand, Tier 2

uses flow parameters such as average bit rate sent and received, packet loss ratio, average

delay time, jitter, and flow IDs to identify anomalies. During a DDoS attack, there is a

significant increase in hardware resource consumption, and flow parameters such as packet

loss ratio, delay time, and bit rates also increase. The AAM sets threshold values for these

parameters and compares them with the current traffic values to detect any abnormalities in

the network. If the hardware resource consumption or the current traffic values exceed the

threshold values, it may indicate a DDoS attack, and the AAM raises an alert by sending a

message to DM. A more detailed description of the two tiers is provided below:

Tier-1: Hardware level The first layer of our proposed security system focuses on the

physical level, specifically the hardware level. It uses CPU and memory utilization as

the main parameters to detect abnormal network behavior. Under normal network traffic,

hardware resource consumption remains relatively low. However, during an attack, traffic

increases, resulting in an abnormal increase in resource consumption. Excessive resource

consumption can lead to packet drops and queuing delays due to resource unavailability, ul-

timately resulting in a Denial of Service (DoS) attack. Our experiments with VAIDANSHH

have revealed that the CPU load can increase to its maximum limit of 100%, and memory

consumption can exceed 90%.

Tier-2: Channel level In our proposed model, the communication channel serves as the

second layer. This layer actively monitors and calculates flow parameters in real-time to

identify any abnormalities in the network. As data travels from source to destination, it

generates various patterns that help in understanding network traffic behavior. The second

layer closely observes these patterns and calculates flow parameters such as jitter, delay, and

packet drop ratio. By setting threshold values for these flow parameters, the second layer

actively compares them with the current traffic to detect anomalies. If the comparative values

exceed the set threshold, it indicates an abnormality and an alert is raised immediately. The

AAM generates alarms when it detects any unusual or abnormal activity that may indicate
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a DDoS attack. These alarms are typically generated in real-time and can be triggered

based on various conditions, such as unusual patterns in network traffic or a high number

of requests from specific IP addresses or groups of IP addresses. The AAM generates an

alarm when the comparative values exceed the threshold values. After generating the alarm,

the detection system comes into action.

5.6 Detection module and Tier-3

Our proposed model includes the DM as its second primary module, which uses the BayesNet

ML algorithm to detect DDoS attacks. The DM operates at the application level of RSU/TA,

which is known as tier-3 in VAIDANSHH. The DM initiates its work once it receives alerts

from tier 2 of AAM. The DM uses the BayesNet ML algorithm to analyze network traffic

patterns and distinguish between malicious and benign packets. The DM utilizes the Waikato

Environment for Knowledge Analysis (WEKA), which aids packet observation, validation,

and classification. WEKA examines network traffic patterns and identifies malicious or

benign packets.

Additionally, the DM employs a synthesized dataset generated from various simulation

scenarios in NS3. We refine this dataset and convert it to a suitable format using data pre-

processing and feature reduction. We retain only pertinent features and discard irrelevant

ones. After feature reduction, we apply the BayesNet ML algorithm to determine which

packets are malicious and which are benign. Following appropriate training, the system

creates a model to detect attack packets. The DM tests the dataset to locate DDoS attack

packets. We provide a more detailed explanation of the DM’s operation in the following

sections, which include information on dataset generation, feature extraction and reduction,

training, and testing.

5.6.1 Dataset generation:

We have two options for selecting a dataset for machine learning: we can either utilize

an existing publicly available dataset or create our dataset by collecting data from various

sources. The choice of the dataset will depend on the specific problem we are attempting to
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solve and the type of model we plan to construct. Some important considerations include

the dataset’s relevance, size, quality, and whether it is labeled or not. For our experiment,

we decided to use a self-created dataset based on possible attack scenarios discussed in

subsection 5.4.3, which was designed specifically for attack detection and contains an

adequate number of features. Three scenarios are simulated in NS3 i.e., a Normal traffic

scenario, an attack traffic scenario, and a mixed traffic scenario. Using NS3, we monitored

packet movement using a flow monitor among 12 nodes and saved relevant packet attributes

in a .csv file by opening the ”pcap” file in Wireshark. Packet data from all three scenarios

is captured in a single file making our synthetic dataset. Our synthetic dataset contains 28

attributes and 6,97,792 records.

5.6.2 Feature extraction and dimension reduction

The DM uses a supervised learning technique called CFS Subset Evaluator and the best first

search method in WEKA to pick features. CFS evaluates the feature subset by calculating the

correlation coefficient between each attribute and the class attribute, as described in [201].

The evaluator identifies the most important attributes for classification and may choose

fewer attributes than those specified in the evaluator’s settings. It then combines the selected

features in a subset and calculates the correlation coefficient between the subset and the class

attribute. The feature subset with the highest correlation coefficient is considered the best

subset. We use the CFS Subset Evaluator in machine learning to identify and select the

most relevant attributes from a given dataset. It operates by first computing the individual

correlation of each feature with the target variable, typically a class label. This step is

crucial in assessing how well each feature independently predicts the target. Features that

exhibit higher correlations are considered more informative for the task at hand, as they

carry valuable information. In our case, the class attribute classifies the packet into normal,

attack, or mixed class. However, CFS doesn’t stop at individual feature correlations; it

also takes redundancy into account. Redundancy refers to the extent to which two or more

features convey similar information. We choose the following ten attributes as shown in

Table 13 from a total of 28 attributes.
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Table 13: Selected attributes of synthetic dataset

Attribute Description
Time Indicates the time of packet sent
Source IP address of the sender.
Destination IP address of the receiver.
Protocol Protocol used for communication.
Stream Index It maps the source and destination port of two IP ad-

dresses.
Time to Live Time for which a packet should remain in the network.
Time Since Previous Frame Time since previous frame was transmitted in the net-

work.
Arrival Time Time when the packet arrived at its destination
Epoch Time Time in seconds used by Wireshark for pcap files.
Info Information about packets sent.
Class Attribute for labeling the packet type.

Table 13 exhibits the chosen attributes of the generated dataset of the proposed system. In

addition, we perform feature reduction using nine distinct algorithms: five ranker methods,

three greedy step-wise search methods, and one best first search method [202] to check

which attributes are most suitable and relevant. Ten attributes with one additional attribute

i.e., the class attribute are used in classification.

5.6.3 Training and testing

We use BayesNet, for training and testing for DDoS attack detection, which is a powerful

machine learning algorithm utilized to model and analyze the probabilistic relationships

between network traffic features. In this application, we train the algorithm on historical

network data that includes both legitimate traffic patterns and instances of DDoS attacks.

During the training phase, BayesNet learns the conditional probabilities and dependencies

between features, building a Bayesian network that represents the network’s behavior under

normal and attack conditions. Subsequently, we use the trained BayesNet model to assess

incoming network traffic in real time. By comparing the observed behavior of the network

to the learned probabilistic model, BayesNet can detect deviations that suggest the presence

of a DDoS attack. This framework offers a probabilistic and interpretable approach to

DDoS detection, enhancing network security by identifying and mitigating malicious traffic

effectively.
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We use various data splits to train and test our model and choose the split that produces the

highest classification accuracy. Our synthetic dataset contains 6,97,792 instances, which

we split into proportions to determine the optimal split. We assess the model’s performance

using several metrics: time taken, accuracy, true positive rate (TPR), false positive rate

(FPR), precision, recall, and f-measure. After comparing the results, we find that the second

case, where 40% of the data is used for training and 60% for testing, is the most suitable

split. This split yields a high accuracy rate of 99.9785% and fast testing speed. The total

time to train the model is 2.84 seconds, and testing takes 1 seconds. The results from the

training and testing are presented in Table 14.

Table 14: Training and testing results with different data splits

BayesNet 30%
Training
70%
Testing

40%
Training
60%
Testing

50%
Training
50%
Testing

60%
Training
40%
Testing

70%
Training
30%
Testing

Time to Build Model in
Seconds

3.44 2.84 2.83 2.66 2.94

Time to Test Model in
Seconds

1.53 1.00 0.87 0.77 0.55

Instances Tested 488454 418675 348896 279117 209338
Correctly Classified 488355 418585 348828 279065 209298
Correctly Classified
%age

99.9797 99.9785 99.9805 99.9814 99.9809

In Correctly Classified 99 90 68 52 40
In Correctly Classified
%age

0.02 0.02 0.01 0.01 0.01

Mean Absolute Error 0.00 0.00 0.00 0.00 0.00
Root Mean Squared Er-
ror

0.01 0.01 0.01 0.01 0.01

Relative Absolute Error 0.04 0.04 0.04 0.04 0.42
TP Rate 1 1 1 1 1
FP Rate 0 0 0 0 0
Precision 1 1 1 1 1
Recall 1 1 1 1 1
F-Measure 1 1 1 1 1
MCC 1 1 1 1 1
ROC Area 1 1 1 1 1
PRC Area 1 1 1 1 1
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5.6.4 DDoS detection

The BayesNet algorithm has two stages: structure learning and parameter learning. In the

structure learning stage, the algorithm identifies the variables’ interdependence. It starts

with an empty network and gradually adds edges, evaluating the score of each new structure.

The algorithm chooses the structure with the highest score and repeats the process until we

can not improve further. The resulting network structure is the one with the highest score. In

the parameter learning stage, the algorithm determines the probability distributions of each

variable given its parent. Methods such as maximum likelihood estimation or Bayesian

estimation can be employed for this purpose. Once the structure and parameters of the

network are learned, the network can make predictions regarding the probability of each

variable based on the values of other variables.

ML detection also utilizes the K2 search method. This method assigns scores to various

network structures based on the probability of the data given the structure. It also assigns

scores to a set of input variables in random order. The order of variables plays a critical

role in the algorithm’s performance, and an incorrect order can lead to incorrect learning

of network topology. Once the network structure is determined, the DM chooses a class in

the estimate package to determine how to learn the probability tables. In this model, we use

the Simple Estimator Class (SEC), which directly estimates conditional probabilities using

Equation 1.

P (xi = k|pa(xi) = j) =
Nijk +N ′

ijk

Nij +N ′
ij

. (1)

Equation 1 uses a default value of 0.5 for the alpha parameter, denoted as N ′
ijk. This

default value balances the trade-off between over-fitting and under-fitting and is often a

good starting point for most applications, with fine-tuning possible later. The detection

model incorporates filters such as replace-missing-values, string-to-nominal, and remove-

percentage-split. The model uses ten characteristics and a dataset of 418,675 instances. The

training set is built in 2.84 seconds, and the detection functionality is tested in 1 second.

When the DM checks all instances and identifies malicious packets, it discards them, and
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only benign packets are processed. The VAIDANSHH model efficiently detects DDoS

attacks, and its complete working is defined in Algorithm 1.

Algorithm 1 Algorithm of VAIDANSHH

procedure ALARM()
interval1← time1;
interval2← time2;
stT imeThr ← time3;
stT imeComp← time4;
procedure Timer(interval2,
stTimeThr)
thr = calculateThreshold();
return(thr);

endprocedure
procedure calculateThreshold()

PythonScript();
endprocedure
procedure Timer(interval, stTime-
Comp)
comp = calculateParameter();
return(comp);

endprocedure
procedure calculateParameter()
PythonScript();

endprocedure

if comp ≥ thr then
raise alarm;
DETECT();

else
process packets;
continue();

end if
endprocedure
procedure DETECT()

pre-process data;
select features;
select ML algorithm;
train the ML model;
use dataset;
if Packet = Malicious then

sinkhole malicious packets;
update log;

else
process packet;

end if
endprocedure

Our model has two procedures, namely alarm() and detect(), which are relevant to our

work. The operation of the AAM is defined in Section 5.5.1 and Section 5.5.1. The

alarm() procedure is responsible for the AAM’s functioning, which uses four variables

to define the start and interval time of the procedures and the time interval when the

system calculates the threshold and comparative values. A timer procedure is initiated at

the specified start time and repeats at the predetermined interval. The timer procedure

calls the CalculateThreshold() and CalculateParameter() procedures, which utilize

a Python script to compute and return threshold and parameter values. The system then

compares these values, and if the comparative value exceeds the threshold value, the alarm()

procedure sends an alert message to the RSU controllers or network security administrators.

The administrators can take immediate action or conduct a further diagnosis.
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5.7 Results and discussion

In this section, we discuss the performance of our proposed VAIDANSHH model in detecting

DDoS attacks. We evaluated our solution on a synthetic dataset and achieved the following

outcomes. The result section covers two subsections. The first subsection, labeled as 5.8,

outlines the evaluation metrics used to measure the model’s effectiveness. The second

subsection, labeled as 5.9, presents the results of all three tiers and illustrates them through

tables and figures.

5.8 Performance metrics

Various performance metrics are employed to assess the efficiency of DDoS attack detection

systems. These metrics include detection rate, false positive rate, false negative rate,

throughput, latency, accuracy, and false alarm rate. Different metrics are utilized in the

AAM and the DM to evaluate their performances.

5.8.1 AAM Metrics

We assess the effectiveness of the AAM using six different metrics: the average ratio of

packet loss, the average delay in mean, the number of flows, the average bitrate received and

sent, and the amount of jitter.

Average packet loss ratio: Regarding network communication, some packets may not reach

their intended destination due to network congestion or errors. It is important to minimize

packet loss to enhance the network’s performance. Packet Loss Ratio (PLR) is a metric

used to calculate the ratio of lost packets to the total number of packets sent, represented as

a percentage. The equation below, labeled Equation 2, can be used to calculate the PLR for

each flow.

PLR = (
nr − ns

ns
) ∗ 100. (2)

where PLR stands for packet loss ratio, nr for the total number of packets received, ns for

the total number of packets sent. The system calculates APLR, i.e., the average of all flows
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from the Equation 3.

APLR =
(PLR1 + PLR2 + PLR3 + ...+ PLRn)

n
. (3)

Equation 3 calculates the Packet Loss Ratio (PLR) of each flow, where PLR1 represents

the PLR of the first flow, PLR2 represents the PLR of the second flow, PLRn represents the

PLR of the last flow, n represents the total number of flows. The PLR, also known as the

Packet Drop Ratio (PDR), is the ratio of lost packets to the total number of packets sent,

represented as a percentage. Networks with higher average PLR (APLR) or average PDR

(APDR) indicate poor performance, while those with lower APLR or APDR indicate better

performance.

Average mean delay: Delay is a crucial network performance parameter that measures

the time taken by a bit to travel from its source to the destination or from one endpoint

to another. Longer delay times indicate lower network performance and vice versa. This

parameter is also known as transmission delay. To calculate delay, we subtract the time a

packet is received from when we sent it. We then sum all the delays of each packet to get

the total delay, dividing by the total number of packets to get the average delay. Similarly,

we can calculate the Average Mean Delay (AMD) using Equation 4.

AMD =
(MD1 +MD2 + ...+MDn)

n
. (4)

Equation 4 provides a way to calculate the Average Mean Delay (AMD), a performance

parameter in network communication. We calculate AMD by taking the mean delay of each

flow and then averaging them. To calculate the mean delay, we first find the delay for each

packet by subtracting the receiving time from the sending time. We then add all the delays

for all the packets and divide them by the total number of packets for each flow. The result

for all flows is then averaged to obtain the AMD. In the equation, MD1 represents the mean

delay for flow 1, MD2 represents the mean delay for flow 2, MDn represents the mean delay

for the last flow, and n represents the number of the last flow.

Number of flows: The term ”flow” can have various meanings in different computing
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contexts, but in this particular case, it refers to a set of data streams or bits transmitted

between two nodes during a session. During a DDoS attack, the number of flows of

data streams usually increases significantly. However, in computer networks, there may

be situations where the number of flows increases without any attack, such as during a

temporary increase in traffic due to a flash crowd event. In vehicular networks, however,

increased suspicious activity flows require further investigation.

Average received and sent bitrate: The average received and sent bitrate is used to evaluate

the impact of a DDoS attack. Bitrate is the amount of data transmitted in a particular time

unit, also known as the transfer rate. It is generally measured in bits per second but can

also be measured in bytes or kilobytes per second. When a node is under a DDoS attack, it

receives a large volume of data and sends limited or no data because it is busy processing

incoming packets. This model calculates the average received bitrate using Equation 5.

ARB =
(RBR1 +RBR2 + ...+RBRn)

n
. (5)

The equation shown in Equation 5 calculates the model’s average received bitrate (ARB).

The received bitrate of each flow is denoted by RBR1 for flow 1, RBR2 for flow 2, and

RBRn for the last flow, where n is the total number of flows.

RBR =
(RBytes ∗ 8)

RDur
. (6)

and

RDur = timeLastRxPkt− timeFirstRxPkt. (7)

In a similar way average sent bitrate is calculated using the following Equation 8

ASBR =
(SBR1 + SBR2 + ...+ SBRn)

n
. (8)

The preceding equation represents the calculation of the average sent bitrate. Here, ASBR

refers to the average sent bitrate, SBR1 denotes the sent bitrate of the first flow, SBR2

represents the sent bitrate of the second flow, and SBRn denotes the sent bitrate of the last
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flow, where n is the number of the last flow.

SBR =
(SBytes ∗ 8)

SDur
. (9)

and

SDur = timeLastTxPkt− timeFirstTxPkt. (10)

The formula shown in Equation 10 utilizes the variable SDur, which represents the time

duration taken for sending packets, calculated by subtracting the time of the first packet

from the time of the last packet.

Jitter: The variation in the delay of data packets is called packet jitter or delay variation. If

packets take the same time to reach their destination, there is no jitter. However, if packets

experience different delays, the delay variance is referred to as jitter. From a performance

perspective, the jitter should be minimal. To calculate the jitter, we use the average time

difference between two successive packets, which can be obtained using Equation 11.

TDif1 = TTFP −RTFP. (11)

Where TTFP denotes the Transmit time of the first packet of a particular flow and RTFP

Receiving time of the first packet of a particular flow.

Jitter =
(TDif1 + TDif2 + ...+ TDifn)

n
. (12)

In our developed system, we utilize the average jitter produced by various flows. To obtain

this value, we add all the jitter values and divide the sum by the total number of flows.

5.8.2 DM Metrics

The Detection Module (DM) is an essential part of our system, which detects malicious

activities within a network. We utilize different metrics to determine the efficiency of an

attack detection module. Accuracy, precision, recall, and F1 score are some of the common

metrics that are employed to evaluate the performance of an attack detection module.
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Accuracy: The accuracy refers to the degree of correctness of our model in predicting the

correct packet labels or classes. It is influenced by both the datasets used and the algorithms

employed. Normalized datasets tend to yield higher accuracy than non-normalized ones.

Additionally, different machine learning algorithms have distinct training, learning, and

testing procedures, which lead to different outcomes. To calculate accuracy in machine

learning, we use the following Equation 13:

Accuracy =
TP + TN

N
. (13)

where the TP is True Positive, TN is True Negative and N is Total number of samples.

Precision: Precision is a metric used to measure the correctness of a model’s positive

predictions. It is calculated by dividing the number of true positive predictions by the total

number of predicted positives. During testing, a machine learning algorithm can predict

multiple classes or categories, and each class produces its precision value. The precision

metric is particularly useful when accuracy in positive predictions is important, ensuring

the model performs well in predicting any given label.

Precision =
TP

TP + FP
. (14)

Recall: The recall is a metric representing the proportion of true positives predicted by the

model among the total actual positives in the dataset. In other words, recall tells us how

well the model can identify all the relevant instances in the dataset. The formula for recall

can be expressed as follows:

Recall =
TP

TP + FN
. (15)

In Equation 14 and Equation 15, TP, FP, and FN stand for true positive, false positive, and

false negative respectively.

F1 Score: When we want our model to have a balanced precision and recall score, we

combine them to obtain a single metric. The F1 score is useful in this scenario, as it is the

harmonic mean of precision and recall.
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5.9 Evaluations

The results obtained from the simulation and proposed model can be divided into three

subsections. In the first subsection 5.9.1, we calculate intermediate results for tier-1,

which refers to the hardware level. In this part, we consider CPU utilization and memory

consumption as parameters. The second subsection 5.9.2 displays the results of tier-2, which

relates to the communication channel. It includes parameters such as the average packet

loss ratio, mean delay, sent bitrate, received bitrate, number of flows, and jitter. Lastly, the

third subsection 5.9.3 presents the results in the context of attack detection. These results

are from tier 3, representing the application level, using accuracy, precision, recall, and

F1-score as the main parameters.

5.9.1 Results of tier-1

During the analysis of the results, we initially focused on the utilization of hardware re-

sources. Tier 1 handles memory consumption and CPU load. When an attack occurs, the

CPU load can reach a maximum value of 100%. The system crashes, and communication

ceases in real-world scenarios, such as the simulated attack. We also notice a rise in memory

consumption, which reaches a maximum of 1.77 GB during the attack. It is the maximum

memory available that is exhausted during the attack.

5.9.2 Results of tier-2

As mentioned previously, VAIDANSHH employs channel parameters to detect attacks in

addition to packet information. These parameters are extracted using Python and include

the average packet loss ratio, average sent and received bitrate, mean delay, and flow IDs.

The results for these parameters are presented in Table 15, with the first column displaying

the benign traffic results and indicating threshold values. Table 15 describes the results.

We can draw the following conclusions based on the AAM results. Firstly, the number of

flow IDs increases in attack scenarios, indicating abnormal behavior in traffic. Secondly,

the packet loss ratio (PLR) increases significantly from 0% to 46%, another indicator

of abnormal behavior. Thirdly, the average means delay increases from 1ms to 35ms,
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Table 15: Results of alarming module from flow parameters

Flow parameter Normal
Traffic
(Thresh-
olds)

Normal
Traffic
with At-
tack

UDP
Flood
Only

Average Packet Loss Ratio (APLR) 0.00 30.87 46.09
Average Sent bitrate (ASB) in kbit/s 0.31 12001.65 18006.16
Average Received bitrate (ARB) in kbit/s 0.31 12001.65 18006.16
Average Mean delay (AMD) in milli seconds 1.02 27.04 35.58
Jitter in milli seconds 0.00 541.26 415.62
Number of Flow IDs generated 5.00 12.00 18.00

suggesting abnormal behavior in the traffic. Fourthly, the average sent bitrate increases

significantly from almost 0.5kbit/s to 18007kbits/s. The jitter also increases from 0 to

541.26 in the mixed scenario and 415.62 in the UDP flood attack. The detection accuracy is

very high at 99.9785%, and the detection process takes only 1 second. The model has a true

positive rate of 1 and a false positive rate of 0, which means that the model can accurately

identify and drop malicious packets. Additionally, the precision, recall, and F-measure

values of 1 indicate that the VAIDANSHH model is efficient regarding these parameters.

5.9.3 Results of tier-3

The module employs several parameters such as accuracy, precision, recall, and f1-score to

evaluate the effectiveness of attack detection. However, detecting attacks with high accuracy

is the primary objective; hence, accuracy is considered the topmost parameter.

Table 16: Detection results

Parameter Value Percentage

Correctly Classified Instances 418585 99.9785

Incorrectly Classified Instances 90 0.0215

Kappa statistic 0.9995 -

Mean absolute error 0.0001 -

Root mean squared error 0.0119 -

Relative absolute error - 0.0474
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Root relative squared error - 3.0688

Total Number of Instances 418675 -

Table 17: Confusion Matrix

A B C Classified as
276894 48 0 A = Mix Flood
0 2854 0 B = Normal
0 42 138837 C = UDP Flood

Table 16 presents the accuracy results, while Table 17 shows the confusion matrix of the

model. The confusion matrix reveals that among 276942 instances of the Mix Flood class,

the model accurately classifies 276894 instances but incorrectly labels 48 instances. On

the other hand, all 2854 instances of the legitimate category are correctly classified with no

misclassification. For the UDP Flood class, out of 138879 instances, 138837 are correctly

classified, while 60 instances are wrongly classified as legitimate class instances.

Table 18: Detailed accuracy by class

TPR FPR Precision Recall F-
Measure

MCC ROC
Area

PRC
Area

Class

1 0 1 1 1 1 1 1 Mixed
1 0 0.969 1 0.984 0.984 1 1 Normal
1 0 1 1 1 1 1 1 Flood

Average results
1 0 1 1 1 1 1 1 -

Table 19: Results obtained from techniques of Naive Bayes family

N B Family at
40%-60%

Bayes Net Naive Bayes Multinomial Simple Updatable

Time to Build
Model (Secs)

2.84 0.97 0.08 0.16 0.68

Time to Test
Model (Secs)

1.00 2.29 0.36 0.76 1.86

Instances Tested 418675 418675 418675 418675 418675
Correctly Classi-
fied

418585 414927 276942 405851 414927

Correctly Classi-
fied %age

99.97 99.10 66.14 96.93 99.10
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In Correctly Clas-
sified

90 3748 141733 12824 3748

In Correctly Clas-
sified %age

0.02 0.89 33.85 3.06 0.89

Mean Absolute
Error

0.00 0.01 0.30 0.02 0.01

Root Mean
Squared Error

0.01 0.06 0.38 0.11 0.06

Relative Absolute
Error

0.04 4.11 100 7.72 4.11

MCC 1 0.98 0.99 0.93 0.98
ROC Area 1 1 0.5 1 1
PRC Area 1 1 0.548 1 1

Table 20: Results obtained from other algorithms

BayesNet
and other
algorithms

BayesNet J48 AdaBoost Ensemble OneR Grading

Time to Build
Model (Secs)

2.84 6.23 16.30 294.20 1.14 5.66

Time to Test
Model (Secs)

1.00 0.49 0.50 206.52 0.47 0.77

Instances Tested 418675 418675 418675 418675 418675 418675
Correctly Clas-
sified

418585 485112 415817 276807 277740 276942

Correctly Clas-
sified %age

99.97 99.31 99.31 66.11 66.33 66.14

In Correctly
Classified

90 3342 2858 141868 140935 141733

In Correctly
Classified %age

0.02 0.68 0.68 33.88 33.66 33.85

Mean Absolute
Error

0.00 0.00 0.00 0.30 0.22 0.22

Root Mean
Squared Error

0.01 0.03 0.03 0.38 0.47 0.47

Realative Abso-
lute Error

0.04 0.94 0.94 100.13 74.58 74.00

MCC 1 1 0.99 0.99 0.04 0.99
ROC Area 1 1 1 0.50 0.50 0.50
PRC Area 1 1 1 0.54 0.55 0.54

The outcomes from the additional sections are consolidated in Table 18 and classified into

three important parameters. The first row represents the results for the mixed class, where

the True Positive Rate is 1 or 100%, False Positive Rate is 0 or 0%, and recall is 1 or
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100%. Precision and F-Measure values are also 1. In the same way, the parameters for

the normal and flooding classes are displayed in the second and third rows. The final row

of the table presents the average results, which are outstanding in all three scenarios, and

the variance in the results is not significant, indicating that the VAIDANSHH model is an

effective framework for identifying attacks.

5.10 Comparative analysis

This section aims to compare the performance of VAIDANSHH with other ML algorithms

applied to both the synthesized and publicly available datasets. The final results are com-

pared based on the parameters discussed in the previous section.

5.10.1 Naive Bayes family

We utilized various algorithmic variations of the naive Bayes technique on the same dataset

with different partitions. Our proposed model used a split of 40% training and 60% test-

ing data with the BayesNet algorithm, while the other algorithms used the same partition.

BayesNet outperformed other algorithms in terms of correctly classified instances, per-

centage of correctly classified cases, and incorrectly classified instances, as well as in the

percentage of incorrectly classified samples, mean absolute error, root mean squared error,

relative absolute error, true positive rate, false-positive rate, precision, recall, f-measure,

and MCC. The results are presented in Table 19 and Figure 18.

Figure 18: Results obtained from Naive Bayes algorithms
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From Figure 18 it is clear that the BayesNet algorithm is providing the best results when

compared to other algorithms in the NaiveBayes family.

5.10.2 Other classification algorithms

This section of the results presents the performance of several non-Bayes algorithms. Fol-

lowing evaluating the Bayes family algorithms, we tested other ML classifiers, including

J48, Ada-BoostM1, Ensemble Selection, OneR, and Grading algorithms. The results of

these algorithms varied, with some performing well and others not. For example, J48 and

Ada-BoostM1 achieved high accuracy rates, but their training times were long, and all result

values needed to be corrected. Ensemble Selection took a very long time for training and

testing, yet its results needed more accurate. OneR and Grading algorithms were fast in

training and testing, but their performance could have been more satisfactory. The results

of these algorithms are summarized in Table 20 and Figure 19.

Figure 19: Results obtained from other algorithms

Again from Figure 19 it is clear that BayesNet is superior among other algorithms in terms

of TP Rate, FP Rate, Precision, Recall, and F1-Measure.

5.10.3 Existing solutions

In this section of the results, we have compared our model VAIDANSHH with other

novel solutions in a similar domain. We have evaluated these solutions based on various

parameters, focusing on accuracy. Zang et al. (2021) propose a machine learning-based IDS

that uses streaming engines to analyze, handle, and visualize massive data in VANET, with
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an accuracy of 95% [203]. Another approach for VANET security is a hybrid data-driven

model that identifies known network breaches, with an accuracy of 96% [204]. Goncalves et

al. (2021) proposed an ML solution to provide an intelligent hierarchical security framework

for VANET, with an accuracy of 96% [205]. Soni et al. (2022) introduced a system to secure

V-RSU communication from blackhole and wormhole attacks in VANETs, with an accuracy

of 89% [207]. Malik et al. (2022) suggest another method for detecting and preventing

blackhole attacks in VANET, with an accuracy of 95% [208]. Finally, we report the results

of VAIDANSHH, which achieves an accuracy of 99.9%.

Table 21: Comparison of VAIDANSHH with existing models

Reference
Methodology Detection

type
Dataset Accuracy

claims
Zang et al.
(2021) [203]

Random Forest Anomaly-
based

Mininet-Wifi and
CIC-IDS 2017

95%

Bangui et al.
(2021) [204]

Random Forest
and K-means

Hybrid
(Anomaly
and Signature-
based)

CIC-IDS 2017 96%

Goncalves et al.
(2021) [205]

Random Forrest,
J48, and Multi-
layer Preceptron

Anomaly-
based

Public Vehicular
dataset available
at [206]

96%

Soni et al.
(2022) [207]

Particle Swarm
Optimization
Approach

Behavior-
based

Not required, as
attacker behavior
is observed

89%

Malik et al.
(2022) [208]

Detection & Pre-
vention of Black
Hole Attacks

Anomaly-
based

Not used, as other
parameters are
used

95%

Proposed
VAIDANSHH

BayesNet Anomaly-
based

Synthesised 99.9%

5.11 Conclusion and Future Work

The proposed model for detecting DDoS attacks is based on parameter selection, where

the AAM can identify suspicious network activity. Various parameters, such as jitter,

delay, and packet loss ratio, can indicate suspicious activities. The DM can detect attacks

effectively with an average accuracy of 99.9785, precision, recall, and F1-Score of 1 each.

The BayesNet algorithm performs very well in this model, with a weighted TPR of 1 and
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a weighted false-positive rate of 0, indicating that all packets are accurately classified and

legitimate users receive all the services. The proposed VAIDANSHH model is suitable

for detecting attacks with high accuracy, almost 100%. With TP rate, FP rate, precision,

and recall values of 1 and 0, the proposed model is also appropriate for other parameters.

The synthesized dataset used in the model contains the appropriate number of parameters

and records, presenting a realistic representation of vehicular networks. Other researchers

working on intrusion detection in VANETs can also use this solution to understand the

nature of DDoS attacks. Concentration is required for attack prevention to avoid additional

processing overheads, and flow parameters can identify suspicious activities and produce

good results.

Our future research will be directed toward designing a system that can detect and respond

to attacks at an early stage, focusing on determining the most effective parameters for

attack prevention. It will not only help reduce resource consumption but also improve the

overall performance of the intrusion detection system. Furthermore, we aim to evaluate the

effectiveness of this proposed model in a real vehicular environment to ensure its practical

application.
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Chapter 6

PREVIR: DDoS prevention framework

Attack prevention refers to implementing measures to stop an attack from happening or

reduce its likelihood of success. In the context of VANET security, prevention measures

aim to prevent unauthorized access, DDoS, and other attacks. Attack prevention is crucial

as it helps minimize the risk of network attacks. VANET attacks are more sophisticated and

devastating, ranging from financial loss to loss of life in some instances. Attack prevention

is, therefore, a critical aspect of VANET security, as it helps to protect critical assets,

including data, vehicles, and networks. Prevention measures reduce the likelihood of an

attack by identifying vulnerabilities and implementing security measures to mitigate them

before an attack occurs. These measures include access control, authentication, encryption,

and intrusion detection systems. We implement these measures and safeguard VANETs

from unauthorized access, data theft, and other types of attacks. Additionally, prevention

is more cost-effective than remediation, which involves responding to an attack after attack

occurrence. Remediation can be expensive and time-consuming and may only sometimes

successfully restore the affected systems and networks to their previous state. Prevention, on

the other hand, involves less cost and effort and is a more effective way of protection. Overall,

attack prevention is essential in VANETs, as it minimizes the impact of cyber-attacks and

protects critical assets from damage or loss.

6.1 Introduction

In this chapter, we describe ”Predictive Risk Evaluation for Vehicular Infrastructure Re-

silience (PREVIR),” which shows a pioneering use of a collaborative logit model and

machine learning approaches for the prevention of DDoS assaults. PREVIR is a blended

solution that uses statistics and machine learning approaches to develop an advanced DDoS

attack protection solution. PREVIR offers several benefits by combining both strategies,

including increased model efficiency and increased predictive power. By employing the
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Wald test for parameter selection and model creation, as well as goodness-of-fit tests to

assess the model’s performance PREVIR makes use of a logit model and increases the

effectiveness of current logit-based models. Additionally, the system uses DecisionStump

as the base learner and the LogitBoost machine learning algorithm for packet categoriza-

tion. The identification of malicious packets is made possible by statistical techniques that

anticipate packet probability. Through frequent updates based on fresh data and iterative

model refinement, the system constantly improves its performance.

The DDoS prevention capabilities offered by PREVIR show the utility of a hybrid strategy

that combines statistics and machine learning techniques. Two datasets are used for exper-

imentation: the NSL-KDD public dataset and a simulated and synthesized dataset created

by us. These datasets cover a range of assaults, including R2L, U2R, TCP, and UDP flood,

mixed flooding, and probe attacks. We show through a series of studies that PREVIR can

classify packets with an accuracy of up to 99.99%. The model also obtains an average True

Positive Rate (TPR) of up to 100%. PREVIR surpasses cutting-edge models, according

to comparative studies, showing an average 20% increase in the protection of malicious

packets.

6.2 Basic terminology: Logit model

The Cumulative Distribution Function (CDF) of random variable X is a probability that

assumes values lower than or equivalent to X 0, where it is some observed exogenous value

of X . We can formulate it as follows.

f(X = X0) = p(X ≤ X0), (16)

and the dependent variable is conditional, that is

Pi = E(Yi = 1/Xi). (17)

This implies the attack is malicious. Such non-linear probability function becomes as:
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Pi =
1

1 + e−(β1+β2X1+β3X2.....+β6X5)
, (18)

thereby,

Pi =
1

1 + e−zi
=

ezi

ezi + 1
. (19)

This makes the following equation.

Zi = β1 + β2(Flowpackets) + ...+ βn(Flowduration). (20)

In Equation 20, Flowpackets, Flowduration are the packet features. We can have n

number of packet features. β is the co-efficient for a corresponding feature. The equation

makes it clear thatZi ranges between -∞ and∞,Pi ranges between 0 and 1 as the probability

of malicious attack and legitimate traffic = 1. Therefore,

(Pi) + (1− Pi) = 1. (21)

In Equation 21,

(1− Pi) = 1− ez

1 + ez
, (22)

and

(Pi =
ez

1 + ez
). (23)

(1− Pi) =
1

1 + ezi
. (24)

Linear transformation becomes as:

Pi

(1− Pi)
=

1 + e−zi

1 + ezi
= ezi. (25)

Odd ratio is considered in favor of a malicious attack. We then log to both sides and we
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obtain:

Li = In(
Pi

(1− Pi)
) = Zi = (β1 + β2X1 + .....+ β6X5). (26)

Parameter estimation In logistic regression, we should minimize log loss to obtain ’good

fit’ parametric values, which indicate the closeness of predicted probabilities to the corre-

sponding actual values.

LogLoss =
−1
(N)

n∑
i=1

Y i.Lu(Pi) + (1− Y i)In(i− Pi). (27)

As an alternative method, the logit model uses maximum likelihood estimation to compute

the log of odds ratio as shown in Equation 26.

6.3 Proposed model: PREVIR

We use the NS3 tool to generate three attack scenarios. One scenario contains benign

traffic, the second has only attack traffic, and the third scenario includes benign traffic

along attack traffic. During the simulation process, we use a random mobility model to

generate a realistic environment with uncertain behavior of the vehicles. We capture the

total traffic in a .pcap file. We observe this file in Wireshark and create a dataset in the

.csv format. The attack scenario is based on a peer-to-peer-based reflection DDoS attack.

The generated/ synthesized dataset contains all characteristics applicable in any generalized

network scenario; however, the generation of the dataset uses a VANET architecture in

NS3 with RSUs and vehicles (nodes). We apply the proposed system PREVIR to this

synthesized and public dataset to check PREVIR’s efficacy. The model selects only those

attributes which may give the highest accuracy. PREVIR tests prevention efficacy in a

vehicular environment. In the future, we will test PREVIR in realistic VANET.

In Galician, PREVIR denotes prevention. The rationale driving the PREVIR approach is to

protect network infrastructure and services from DDoS attacks by developing a sophisticated
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and data-driven system for attack prevention. PREVIR predicts the probability of occurrence

of malicious attacks through a logit model based on a simulated and public dataset to

develop an early threat prevention system. The logit model offers both classification and

computations of probabilities. We get the best outcomes using its mathematical capabilities

with little training and without over-fitting. The learned weights (predicted parameters)

provide information on the different variables’ weight distribution. Additionally, it indicates

if the connection is optimistic or adverse. We use an integrated logit model to analyze the

correlation among these variables. It is a highly adaptable model that uses regularization,

which lowers model error using regularization parameters. In this section, we discuss

the overall functioning of PREVIR and the detailed process of model selection, dataset,

parameter selection, goodness of fit, and probability calculation. We show the complete

process in a flowchart through Figure 20.

Figure 20: Flowchart of PREVIR
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6.3.1 Functionality overview

The proposed solution, PREVIR, is designed for prediction and classification tasks with a

focus on feature selection and model evaluation. It begins by taking an attribute ’x’ as input

and aims to produce predictions and classifications as output. The algorithm operates in a

loop, repeatedly assessing each attribute in a given dataset. For each attribute, it performs

a Z-test, standardizing the attribute’s values and calculating the significance level ’p’ for

the predictor attribute. If the significance level is less than 0.05, the attribute is selected;

otherwise, it’s rejected. This step helps in feature selection, identifying attributes that have

a meaningful impact on the model.

Once the model’s attribute set is selected, a logistic regression model is applied using

these chosen attributes. Subsequently, the algorithm computes the goodness of fit metrics,

including the Chi-squared statistic and Hosmer-Lemeshow’s Goodness of Fit (GoF), to

evaluate the model’s overall efficiency. By comparing the metrics, PREVIR decides whether

to select or reject the model based on the criteria of Model Variance (MV) and Model

Stability (SV).

After selecting the model, the algorithm proceeds to export the model data for machine

learning applications. It then divides the data into training (70%) and testing (30%) sets.

LogitBoost with Decision Stump initialization is employed for model training using the

training features. In the testing phase, the model is applied to predict the output labels for

observations in the testing dataset, storing the predicted labels for evaluation.

Finally, the algorithm evaluates the model’s performance using various metrics, such as

accuracy and precision, to assess its effectiveness in predicting and classifying data. In

essence, PREVIR combines feature selection, model evaluation, and machine learning

techniques to enhance predictive accuracy and classification performance, making it a

comprehensive approach for data analysis and prediction tasks.

PREVIR uses log functions to transform the probability functions. We change Non-linear

equations (Equation 4) to linear equations (Equation 12). Equation 12 gives the probability

in log odds form, where log odds depict the chances in favor of the outcome. Hence, it

simplifies the task as coefficients such as b1, b2, b3, and b4 are linear in log odds. We apply
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Wald’s Z-test and individual probabilities using these coefficients. We also apply Hosmer-

lemeshov’s Goodness of fit to check the overall efficiency of the model. In computing results,

we use p-values to see the effectiveness where 1.00 signifies a perfect fit model. We check

individual packet probabilities using the coefficients to differentiate between malicious and

benign packets. As we use logic and probit model with linear regression to prevent attacks

in VANETs, we call our solution as Predictive Risk Evaluation for Vehicular Infrastructure

Resilience (PREVIR).

6.3.2 Dataset

The three datasets that we used are listed below. We find different DDoS attack types in such

datasets. If the proposed system or classifier successfully recognizes these attacks, we may

use real vehicular networks to test and implement them. PREVIR is a statistical model that

works accurately if appropriate data is available. We implement PREVIR on three datasets;

two are pre-built (publicly available), and another is a synthesized dataset.

Generated dataset It is our own synthesized dataset that we made through simulation

in NS3. We developed three different simulation scenarios to collect packets. In the first

scenario, there is only benign traffic; in the second, there is only attack traffic; and in the

third scenario, there are both benign and attack traffic. This scenario directs traffic from

all intermediate nodes toward the victim, making it a deadly assault scenario. In NS3, we

record all packet movement data in a .pcap file. We capture a total of 27 parameters with

697792 records. We also use an additional attribute for classification. We generate the

dataset using the VANET characteristics shown in Table 22.

Public NSL-KDD dataset The KDD99 dataset is an improved dataset produced by the

NSL-KDD. The University of New Brunswick developed this NSL-KDD dataset to fix

several problems with the KDD99 dataset. A few instances of the assault types of DoS,

Probe, U2R, and R2L, with their respective eleven, six, seven, and fifteen assault sub-classes,

are included in this compilation. They enhanced NSL-KDD by removing redundancy and

precisely splitting data for training and testing. Therefore, testing this dataset on a vehicular
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Table 22: Attributes of Topology

Parameter Value
Simulation Platform NS3.2.7
No. of Vehicles 12
Attacker Nodes 1
Bot Nodes 10
Victim 1
No. of RSUs 1
Routing Protocol UDP, TCP, ICMP
Visualisation Tool NetAnim
DDoS Rate 20480 kbps
Normal data rate 512 kbps
Maximum Bulk Bytes 100000 kbps
Simulation Time 40 Seconds
Data Transmission Rate 100 Mbps
Communication Range 100 m X 100 m
Mobility Model Random mobility

network proves to be feasible.

CIC-DDoS dataset The CIC-DDoS dataset, specifically the CIC-DDoS-2019, is typical

actual network traffic, including benign and frequent DDoS assaults. The collection consists

of labeled flows in CSV files and PCAP files that record network traffic data. Various param-

eters, including timestamps, source, and destination IP addresses, source and destination

ports, protocols, and attack kinds, are used to categorize the flows. The researchers priori-

tized producing background traffic that simulates human interactions to provide a realistic

environment for the dataset. To profile the abstract behavior of interpersonal encounters,

they used the B-Profile approach, which was put out in a paper by Sharafaldin et al. in 2016.

This system simulates the behavior of 25 people over various protocols.

6.3.3 Parameter selection

For model selection, we identify variables and check which can likely show an impact on

the model. For example, in the first experiment with the generated dataset, we select five

variables: flow packets, flow duration, total forward packets, total backward packets, and

forward header length.

We apply Wald’s Z-test to see which variables are important and contribute to DDoS
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prevention. Wrong variable selection may lead to wrong model selection and lead to failure.

z = (x− xmean)/std.dev (28)

We observe and analyze the individual values of variables obtained by the Z-test. Results

show that all the variables are statistically significant at a 5% confidence level. For instance,

interpreting the variable TotalFwdPackets, we say that holding other variables constant, if

’TotalFwdPackets’ increases by one, the average Logit value goes up by 0.04. That is, the

log of odds in favor of the attack goes up by 0.04. We interpret all the variables in the same

way.

6.3.4 Model construction and testing

After attribute selection, we construct the logistic regression model using the selected

attributes. The logit model is a statistical model that predicts binary or multi-class outcomes.

We then create the logit model and test using the chosen characteristics. Logit and Probit

models have pros and cons; in our proposed PREVIR, we decided on the Logit model.

The logit model predicts the probabilities of happening or non-happening of an event.

These probabilities assist in attack prevention. Another idea behind the selection of the

Logit model is that it uses the Cumulative Distribution Function (CDF) of the logistic

distribution, whereas the Probit model uses standard normal distribution. We can use single

or multi-class classification depending upon the attack packets. We can adapt the model

if attack packets contain multiple packet types. It uses a regularization parameter that we

use to fine-tune the model to reduce model errors. The Logit and Probit models yield the

same results. If the number of observations is high in the distribution tail and values of

Probit estimates become comparable with logistic estimates, we multiply logistic estimates

by 0.625-factor value.

6.3.5 Overall goodness of fit

We apply LR Chi (Likelihood - Ratio Statistics) to check the aggregate significance of the

model over the no variables (only intercept model). The results show that a p-value for LR
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chi is less than 5%, showing a significant impact of the selected parameters compared to

the intercept model with no variables. We implemented the chi-square goodness of fit test

using Equation 29.

X2 =
∑ (Oi − Ei)

2

Ei

, (29)

whereX2 is chi-square value,Oi is the observed frequency, andEi is the expected frequency.

We apply Hosmer-lemeshov’s Goodness of fit to measure the overall model significance.

It assumes the null hypothesis of the model is a good fit, and a p-value of more than 5

percent significance level shows the good fit model. Computed results show that a p-value

of 1.00 signifies a perfect fit model. We calculate the Hosmer-lemeshov Goodness of fit is

computed using Equation 30.

X2HL =
G∑

g=1

(Og − Eg)
2

Eg(1− Eg/Ng)
, (30)

where Og signifies the observed events, Eg signifies the expected events and Ng signifies

the number of observations for the gth group. G is the number of groups and
∑

is the

summation notation. The test statistic follows a chi-squared distribution with G− 2 degrees

of freedom. The output returns a chi-square value (a Hosmer-Lemeshow chi-squared) and

a p-value (e.g., Pr >ChiSq). Small p-values mean that the model is a poor fit.

6.3.6 Computing probabilities

We can also compute probabilities besides computing coefficients in the Logit model. We

use the given values of the explanatory variables to calculate the probabilities of attack.

We use the “predict” command in Stata to generate these probability values. We indicate

values of probabilities using p values, and these values range between 0 and 1. Values equal

to 0 or near 0 indicate that the packet is benign, and values equal to 1 or near 1 indicate

the packet is an attack packet. The predict command determines the predicted probability

(packet probabilities) for each observation in the dataset using a logit model. The logistic

function, sometimes called the sigmoid function, is the foundation of the internal equation
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to determine these probabilities.

p = 1/(1 + exp(−z)) (31)

where:

p represents the predicted probability (packet probability) for an observation.

z represents the linear combination of the predictors in the logistic regression model,

weighted by their respective coefficients.

6.3.7 Export model data for ML application

The next step is to export the model data for use in a machine learning (ML) environment

once the model is trained and ready for use. We save the essential data so that the machine

learning application can easily use the same for the model training.

6.3.8 Training

We often split the available dataset into two subsets: a training set and a testing set, to

evaluate the performance of the trained model. We prepare the model using the training set

and assess its performance using the testing set. A 70:30 data split is used, with 70% going

to training and 30% to testing. Once we divide the data into training and testing sets, the

following step is to load the 70% training dataset. The accuracy achieved by various ML

algorithms at different data splits is shown below in Table 23.

Table 23: Accuracy results at various data splits

Split
Ratio

LB ABM1 MLP NBM Vote IMC

40-60 99.9967 99.3284 66.9534 66.2951 66.2951 66.2951
50-50 99.9974 99.3247 85.9213 66.3467 66.3467 66.3467
60-40 99.9979 99.3279 87.9839 66.3754 66.3754 66.3754
70-30 99.9981 99.3317 70.2443 66.3955 66.3955 66.3955
80-20 99.9979 99.3257 85.6698 66.3409 66.3409 66.3409

In Table 23, it is evident that the accuracy kept on rising till 70-30 split and after then

started declining. MultilayerPerceptron is one exception in which the highest accuracy
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is maximum at 60-40 data split. As the majority(84%) of algorithms give the highest

accuracy at 70-30 data split, we decided to keep it for other datasets. The trained data

model finds links and patterns in the data that make predictions. A popular machine-

learning technique for classification problems is LogitBoost. We use the DecisionStump

classifier to initialize the LogitBoost algorithm in this stage. Simple decision tree algorithms

like DecisionStump work as weak learners within boosting algorithms like LogitBoost.

LogitBoost with DecisionStump works in the following manner.

1. Initialize the training set:

• Let N be the number of training instances.

• Let N be the number of training instances. Initialize the instance weights wi for

i = 1 to N such that 1/N is assigned to each instance initially.

2. For each iteration t = 1 to T , where T is the maximum number of iterations:

• Train a decision stump:

– Let ft(x) represent the prediction of the tth decision stump.

– Select a feature j and find the best-split point s that minimizes the weighted

impurity.

– The decision stump’s prediction for an instance x is:

• Calculate the weighted error (ε) of the decision stump by summing the weights

of misclassified instances.

• Compute the stump’s weight (α) using the equation: α = 0.5 ∗ ln((1− ε)/ε)

• Update the instance weights using the equation: wi = wi ∗ exp(α) if instance i

is misclassified wi = wi ∗ exp(−α) if instance i is correctly classified

3. Combine the decision stumps weighted by their respective α values to form the final

ensemble model.

4. To make predictions for new instances:

• Each decision stump predicts either class 0 or class 1.
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• The final prediction is obtained by summing the predictions weighted by their α

values and applying the logistic function (sigmoid) to the sum:

y = sigmoid(Σ(αj ∗ hj(x))) where hj(x) is the prediction of the jth decision

stump and αj is its corresponding weight.

6.3.9 Testing

Each observation in the testing dataset undergoes exposure to the trained model in this stage.

The model predicts each observation’s output label (classification) or value (regression)

based on the discovered patterns and correlations from the training process. The system

saves the predicted output label once the prediction is completed for each observation in

the testing dataset. These projected labels are compared with the actual labels in the testing

dataset to evaluate the model’s effectiveness.

6.3.10 Evaluation

It is crucial to consider various performance measures when assessing a trained machine

learning model’s performance. Metrics like accuracy, precision, recall, and F1-score are

significant in this situation. Accuracy indicates how accurately the model predicts outcomes

by computing the ratio of cases predicted correctly to all instances. Precision measures the

percentage of accurately detected positive cases among all positive predictions to assess the

quality of positive predictions by evaluating the ratio of genuine positive predictions to the

total number of positive cases. Recall, often called sensitivity, evaluates how well a model

can spot positive events. We show this complete process in Algorithm 2.

6.4 Results and discussion

The results obtained from the implementation and evaluation of PREVIR, our hybrid frame-

work for preventing DDoS attacks by integrating statistical methods and machine learning,

demonstrate its robustness and effectiveness. Through a series of experiments using both our

own simulated and synthesized dataset, as well as the widely used NSL-KDD public dataset,

we were able to assess the performance of PREVIR in classifying packets and preventing
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Algorithm 2 Proposed algorithm: PREVIR
1: Input: Attribute x
2: Output: Prediction and classification
3: repeat
4: for each x ∈ Dataset do
5: z = (x− xmean)/std.dev { Z-test on attribute}
6: (p > z) = 2 ∗ (1− pnorm(z)) {Significance level of predictor attribute}
7: if ((p > z) < 0.05) then
8: select attribute
9: else

10: reject attribute
11: end if
12: end for
13: until Model is selected
14: Apply logit model using selected attribute set
15: X2 =

∑ (Oi−Ei)
2

Ei
{ Goodness of Fit }

16: X2HL =
∑G

g=1
(Og−Eg)2

Eg(1−Eg/Ng)
{ Hosmer-lemeshov GoF}

17: compute p, MV and SV
18: if (MV > SV ) then
19: select model
20: else
21: reject model
22: end if
23: Export Model Data for ML application
24: Split Data in 70-30 Ratio
25: Load 70% training dataset
26: Initialize LogitBoost with DecisionStump
27: Train model with training features
28: for each Observation ∈ T estingDataset do
29: Predict the output label using the trained model
30: Store the predicted label
31: end for
32: Evaluate Performance metrics: Accuracy, precision
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malicious attacks. The obtained results showcase the exceptional capabilities of PREVIR,

with packet classification accuracy reaching an impressive 99.99%. Additionally, the sys-

tem achieves a true positive rate (TPR) of up to 100% while maintaining an average false

positive rate (FPR) of 35%. Moreover, comparative analysis reveals that PREVIR surpasses

state-of-the-art models, exhibiting an average improvement of 20% in preventing malicious

packets. These compelling outcomes affirm the efficiency and reliability of PREVIR as an

advanced solution for vehicular infrastructure resilience against DDoS attacks.

We pass the packet through the model with the selected variables to identify maliciousness

for a new packet that we have not evaluated in the past. Suppose the probability estimated

by the model is greater than the threshold. In that case, we say it is a case of a potential

attack, and if the probability is less than the threshold, we declare it a benign packet.

Ultimately, we validate the calculated probabilities against actual observations and obtain

the results. These compelling findings unequivocally establish the efficiency, reliability, and

superiority of PREVIR as an advanced and indispensable solution for ensuring the resilience

of vehicular infrastructure against the ever-growing threat of DDoS attacks.

6.4.1 Results of Z-Test

We employ the Z-test in the earlier phase to determine whether the parameters are significant.

Similarly, we use the Z-Test to construct the logit model based on a specific collection of

parameters from both datasets. We test 235,364 records in the Generated dataset, 125973 in

the NSL-KDD dataset, and 1048575 records in the CIC-DDoS 2019 dataset. These datasets

are evaluated and only relevant features are selected for inclusion in the model.

Generated dataset: We chose four variables for the first test with the generated dataset,

i.e., time-to-live, time-since-previous-frame, and time-since-first-frame. This test evaluates

p, z, and p>z values to suggest which parameters suit PREVIR. The values of p>z are most

important in this test. As all the p >z are 0 for all 4 attributes, this attribute combination

is selected for the model. We show other resulting parameters obtained from the generated

dataset in Table 24.

Abbreviations used in Table 24 are the Time To Live for TTL, Time Since the Previous
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Table 24: Results of Wald’s Z-test on Generated dataset

Class/Feature Co-eff Std.Err. Z P >z 95% Conf Interval

Time -0.869 0.170 -5.110 0 -1.2 -0.535
TTL -8.138 1.782 -4.570 0 -11.6 -4.644
TSPF -900.144 202.140 -4.450 0 -1296.3 -503.950
TSFF 1.229 0.248 4.950 0 0.7 1.716

Frame for TSPF, and Time Since the First Frame for TSFF.

NSl-KDD Dataset: Similarly, Table 25 presents the results of the Z-test performed on

the NSL-KDD dataset. The table shows that all the p >z values are less than the 5%

significance level. Consequently, we consider variables with these values appropriate for

the parameter selection procedure. To find the ideal combination, we analyzed a variety

of attribute combinations. Forty-two characteristics and 125,973 occurrences make up the

NSL-KDD Dataset. We have chosen the following five parameters for the model: duration,

number of file creations, hot, number of failed logins, and count. Table 25 contains the

findings we acquired using the NSL-KDD dataset.

Table 25: Results of Wald’s Z-test on NSL-KDD Dataset

Class/Feature Co-eff Std.Err. Z P >z 95% Conf Interval

DUR -0.000 3.33e-06 -32.270 0 -0.000 -0.000
NFC 0.240 0.045 5.340 0 0.152 0.329
Hot -0.041 0.002 -15.350 0 -.046 -0.035
NFL -0.529 0.133 -3.960 0 -0.791 -0.267
Count -.018 0.000 -166.860 0 -0.018 -0.018

Table 25 uses the abbreviations for variables: DUR represents Duration, NFC represents

the Number of files created, and NFL represents the Number of Failed Logins.

CIC-DDoS 2019 Dataset: The CIC-DDoS 2019 dataset comprises multiple subsets of

this CIC-DDoS dataset. We employed the Syn Dataset in our research. It has 1048575

records and 88 characteristics with the class labels Syn and Benign. While building the

model, we select 5 parameters having the most relevance. These parameters are appropriate

for the suggested Logit Model since they all generate a value of 0 for p >z.

130



Table 26: Results of Wald’s Z-test on CIC-DDoS 2019 Dataset

Class/Feature Co-eff Std.Err. Z P >z 95% Conf Interval

Protocol -.08020 .00371 -21.59 0 -.08748 -.07291
Flowbytes 2.37e-1 2.39e-1 9.95 0 1.90e-1 2.84e-1
Flow Packets 5.88e-1 2.84e-1 20.72 0 5.33e-1 6.44e-1
Flag Count -4.4733 0.31192 -14.34 0 -5.08468 -3.86198
Flow Duration -1.37e-1 7.40e-1 -18.57 0 -1.52e-1 -1.23e-1

In Table 26, class label C1 stands for protocol, C2 for flowbytess, C3 for flow packets, C4

for flag count, C5 for flow duration

6.4.2 Results of Pearson’s goodness of fit

After observing variables, we analyze the overall goodness of fit to see whether our proposed

model is working fine or not. In Table 27, Prob >chi2 is 0 in both datasets; therefore, we

claim that the PREVIR model is significant.

Table 27: Results of goodness of fit

Parameter Generated NSl-KDD CIC-DDoS 2019
Number of obs 253364 125973 1048575
LR chi2 46298.38 36.46 72.84
Prob >chi2 0.0000 0.0000 0.0000
Pseudo R2 0.992 0.295 0.412
Log likelihood -17.942503 - 43.559954 - 28.54

6.4.3 Results of Hosmer-Lemeshov goodness of fit

Table 28 shows the results of probabilities and co-variate. This test produces Prob >chi2

as 1.000; therefore, we accept the null hypothesis is accepted. The tests for both datasets

results show the probability value of 1.

Table 28: Results of Hosmer-Lemeshov goodness of fit

Parameter Generated NSL-KDD CIC-DDoS 2019
Total observations 235364 125973 1048575
Pearson chi2 146.09 44693.63 78.45
Prob >chi2 1 1 1
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6.4.4 Individual packet probabilities

PREVIR shows that the probability of ”attack packets” is 0.9 or more; it signifies that our

model’s prediction for the attack is accurate. Therefore, we can claim that PREVIR is usable

to prevent future attacks by using these probability values. Values near 0 or precisely 0

indicate a benign packet the system can process. We show the results in Table 29.

Table 29: Individual packet probabilities

No Time Source Dest. EpochTime p
1 0 10.1.1.1 10.1.2.2 0.002009 0.999997
2 0 10.1.2.2 10.1.1.1 0.002009 0.989718
3 0.000277 10.0.0.1 10.1.2.2 0.002286 0.999997
4 0.000321 10.0.0.5 10.1.2.2 0.002330 0.999997
5 0.000364 10.0.0.9 10.1.2.2 0.002373 0.999997
6 0.000407 10.0.0.13 10.1.2.2 0.002416 0.999997
7 0.000451 10.0.0.17 10.1.2.2 0.002460 0.999997
8 0.000494 10.0.0.21 10.1.2.2 0.002503 0.999997
9 0.000537 10.0.0.25 10.1.2.2 0.002546 0.999997
10 0.000581 10.0.0.29 10.1.2.2 0.002590 0.999997

6.5 Classification results

6.5.1 Accuracy

In our study, we evaluated the performance of various machine learning algorithms, namely

LogitBoost, AdaBoostM1, MultilayerPerceptron, NaiveBayesMultinomial, Vote, and In-

putMappedClassifier, in terms of their accuracy. The LogitBoost achieves the highest

accuracy in the Generated Dataset with a perfect score of 99.99%. AdaBoostM1 follows

closely with an accuracy of 99.33%. The remaining algorithms, including MultilayerPer-

ceptron, NaiveBayesMultinomial, Vote, and InputMappedClassifier, have lower accuracy

scores of 70.24%, indicating relatively less accurate predictions. The NSL-KDD Dataset’s

accuracy score ranges from 49.01% to 83%. LogitBoost performs best with an accuracy

of 83%, while AdaBoostM1 and MultilayerPerceptron achieve accuracy scores above 82%.

The CIC-DDoS 2019 Dataset shows high accuracy for all algorithms, with MultilayerPer-

ceptron, AdaBoostM1, and LogitBoost performing exceptionally well, with accuracy scores
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above 99%.

Figure 21: Accuracy of the algorithms

6.5.2 Model construction time

The model construction time varies across the datasets and algorithms. In the Generated

Dataset, LogitBoost takes the longest time to construct, with a duration of 27.12 seconds.

AdaBoostM1 and NaiveBayesMultinomial have shorter construction times of 12.36 and

0.06 seconds, respectively. On the other hand, MultilayerPerceptron exhibits the longest

construction time of 252.41 seconds, indicating a more time-consuming process. In the

NSL-KDD Dataset, the construction times are lower overall, with NaiveBayesMultinomial,

Vote, and InputMappedClassifier having the shortest construction times of 0.01, 0.02,

and 0.03 seconds, respectively. MultilayerPerceptron takes the longest time to construct

among these algorithms, with a duration of 31.88 seconds. The construction times in

the CIC-DDoS 2019 Dataset are relatively higher, with NaiveBayesMultinomial, Vote, and

InputMappedClassifier exhibiting the shortest construction times. However, even the longest

construction time in this dataset, observed for MultilayerPerceptron with 748.27 seconds, is

considerably lower than the Generated Dataset.
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Figure 22: Model Construction Time

6.5.3 Testing time

AdaBoostM1 has the shortest testing time of 0.14 seconds in the Generated Dataset, indi-

cating its prediction efficiency. Conversely, MultilayerPerceptron and Vote require more

time for testing, with respective durations of 0.56 and 0.27 seconds. In the NSL-KDD

Dataset, the testing times are relatively low across all algorithms, with MultilayerPercep-

tron, NaiveBayesMultinomial, and Vote having the shortest testing times of 0.03 seconds.

The CIC-DDoS 2019 Dataset shows slightly higher testing times, with AdaBoostM1 having

the shortest duration of 0.28 seconds, while InputMappedClassifier requires the longest time

of 0.72 seconds.

6.5.4 TP & FP Rate

In our generated dataset, LogitBoost achieves a perfect TP Rate of 1 and an FP Rate of

0, indicating excellent performance in correctly identifying positive instances and avoiding

false positives. AdaBoostM1 exhibits a high TP Rate of 0.99 and a low FP Rate of 0.01.

MultilayerPerceptron, NaiveBayesMultinomial, Vote, and InputMappedClassifier have TP

and FP Rates of 0.7 and 0.14, respectively. In the NSL-KDD public dataset, LogitBoost,

AdaBoostM1, and MultilayerPerceptron have TP Rates of 0.83 and FP Rates of 0.17 or

0.18. NaiveBayesMultinomial, Vote, and InputMappedClassifier have TP and FP Rates of
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Figure 23: Model Testing Time

0.49 and 0.45 or 0.53, respectively. Similarly, in the CIC-DDoS 2019 Dataset, FP rates are

consistently high for all algorithms, suggesting a relatively high misclassification rate of

negative instances.

Figure 24: True Positive Rate and False Positive Rate

6.5.5 Precision, recall, and F1-score

In our generated dataset, LogitBoost achieves perfect precision, recall, and F1-score (all are

equal to 1). However, the values for AdaBoostM1, MultilayerPerceptron, NaiveBayesMulti-

nomial, Vote, and InputMappedClassifier are available, making it difficult to assess their
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performance in terms of precision, recall, and F1-score accurately. In the NSL-KDD pub-

lic dataset, LogitBoost, AdaBoostM1, MultilayerPerceptron, and NaiveBayesMultinomial

exhibit similar precision, recall, and F1 scores. However, we use the precision values for

Vote and InputMappedClassifier provide must be provided, making it difficult to assess their

precision, recall, and F1-scores accurately. In the CIC-DDoS 2019 Dataset, Multi-Layer

Perceptron (MLP) achieves the highest precision and F1-score among the algorithms.

Figure 25: Recall values in both the datasets

The analysis of the datasets reveals variations in model construction time, testing time,

accuracy, TP Rate, FP Rate, and, to some extent, precision, recall, and F1-score across

different algorithms. While LogitBoost generally performs well in terms of accuracy and

TP Rate, the performance of other algorithms may vary depending on the dataset. It is worth

noting that the missing values for precision, recall, and F1-score limit a comprehensive

analysis of these metrics for some algorithms in both datasets.

6.6 Comparative analysis

We compare the results of our proposed PREVIR with the existing state-of-the-art models

for validation. We consider two existing models as mentioned in Green et al. [241] and

B. R. Bajracharya [252] as these two models are closely connected to PREVIR in the use

probabilistic approach. We show the statistical results in Figure 26. In our experiments,
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we use two tests, one with our synthesized dataset and another with the publicly available

dataset. In this work, we have considered the mean values of both tests.

Figure 26: Resulting parameters of comparative studies

Comparing the classification results of PREVIR in the generated dataset and the NSL-

KDD dataset, we observe significant variations in model construction time, testing time,

accuracy, TP Rate, FP Rate, and, to some extent, precision, recall, and F1-score. In the

generated dataset, PREVIR’s LogitBoost achieves the highest accuracy of 99.99% and

exhibits excellent TP and FP rates performance. AdaBoostM1 also performs well with

a high TP Rate of 0.99. However, some algorithms limit precise precision, recall, and

F1-score analysis due to missing values. On the other hand, in the NSL-KDD dataset,

the accuracies range from 49.01% to 83%, with LogitBoost and AdaBoostM1 achieving

the highest accuracies. The TP Rates and FP Rates show variations among algorithms,

with some achieving better performance than others. Again, the availability of precision,

recall, and F1-score values is limited, hindering a comprehensive comparative analysis.

The generated dataset demonstrates higher overall accuracy and better TP Rate and FP Rate

performance than the NSL-KDD dataset. However, the analysis must include both datasets’

precision, recall, and F1-score values.

In addition to this comparative analysis, we compare other DDoS prevention solutions as

shown in Table 30. In this table, we compare PREVIR with four existing solutions. These

solutions include Bloom filters with IP-CHOCK, genetic model, reCAPTCHA controller,
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and HCPDS-based framework. We compare the techniques based on features and dataset,

simulator type, simulation timing, area of communication and protocol, advantages and

limitations, network topology, and performance accuracy. From this comparative study,

we claim that our proposed PREVIR is significant for DDoS detection and obtains good

accuracy.

Table 30: Comparison of Various strategies with proposed model

Technique

Bloom
filters
with IP-
CHOCK

Genetic
Model

re
CAPTCHA
controller

HCPDS
based frame-
work

PREVIR

Reference
Verma et.
al. (2013)
[247]

Malhi et.
al. (2016)
[248]

Poongodi
et. al.
(2019)[249]

Prabakeran et.
al. (2020)
[250]

Proposed ap-
proach

Year 2013 2016 2019 2020 2022

Feature
Set

Source IP,
Destina-
tion IP,
ACK/SYN

speed, di-
rection and
location of
the vehicle,
feedback
rate, ex-
ponential
backoff
and asso-
ciativity
time

Source IP,
Destination
IP, Source
Port, Des-
tination
Port

(packet fac-
tors, RSU
zone, and
vehicle dy-
namics)

flow packets,
flowduration,
totalfwd-
packets,
totalback-
wardpackets

Dataset
Simulation
based
dataset

Simulation
based
dataset

Simulation
based
dataset

Simulation
based dataset

Simulation
based dataset

Advantages

Support
Filtering,
Prevents
small and
Large
attacks

High accu-
racy, low
tracking
time of
attackers
and low
network
recovery
time.

High effi-
ciency, low
latency &
energy con-
sumption

Suitable for se-
curity and pri-
vacy preserva-
tion

High accuracy,
sensitivity and
specificity

Limitation

Low ac-
ceptance
rate during
attack

Exact re-
sults are not
provided

Memory
overheads

Less accurate
and slow

Not such prob-
lems

Comparison based on simulation and network topology
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Simulator
NS-2.34,
NAM,
tracing

MATLAB NS-2.28 NS2 NS-3

Simulation
time 80 s 100 sec 20s 100 sec 40 Sec

Communication
area 200m 500m 1500 X

1500 m
1000 X 1000
m 100 X 100 m

Packet size Not Pro-
vided

Not Pro-
vided

Not Pro-
vided Not Provided Default

Number of
Nodes

25, 50, 75,
100, 125,
and 150

50–400
50, 100,
150, and
200

50 to 400 12

Network
type

DSRC with
Two Ray
Ground
Model

Not Pro-
vided

DSRC with
Two Ray
Ground
Model

DSRC DSRC

Mac Type IEEE
802.11p

IEEE
802.11p

IEEE
802.11p IEEE 802.11 IEEE 802.11

Data
trans-
mission
speed

5, 10, 15,
20, and 25
m/s

Not Pro-
vided 10kbps Not Provided 512kbps,

20480kbps

Comparison based on Results Obtained
Accuracy 83.30% 89.9% 94.7% 99.6% 100%

6.7 Conclusion and future Work

In the presented work, we show PREVIR as a novel composite model of machine learning

and statistical analysis for DDoS detection in vehicular networks. With its probability-

based approach and tailored defense mechanisms, PREVIR enhances preventive capabilities,

adapts to real-time data, and provides robust protection against various DDoS attacks. By

addressing the research gap in VANET security and contributing to the development of

dedicated prevention systems, PREVIR is a valuable solution for mitigating DDoS attacks

and ensuring the resilience of VANET infrastructures.

In our study, LogitBoost consistently demonstrated the highest accuracy values across differ-

ent datasets, achieving a perfect score of 99.99% in the Generated Dataset and an accuracy of

83% in the NSL-KDD Dataset. In the CIC-DDoS 2019 Dataset, LogitBoost, AdaBoostM1,

and MultilayerPerceptron performed exceptionally well, with accuracy scores above 99%.
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These results provide empirical evidence of LogitBoost’s superior performance in accurately

predicting outcomes compared to other evaluated algorithms. Similarly, the evaluation of

machine learning algorithms on multiple datasets reveals that LogitBoost consistently per-

forms excellently in correctly identifying positive instances and avoiding false positives, as

evidenced by its perfect TP rate of 1 and FP rate of 0 in the generated dataset. AdaBoostM1

also exhibits strong performance with a high TP rate of 0.99 and a low FP rate of 0.01.

However, other algorithms such as MultilayerPerceptron, NaiveBayesMultinomial, Vote,

and InputMappedClassifier show lower TP and FP rates.

In our analysis, LogitBoost achieved perfect precision, recall, and an F1-score of 1 in

the generated dataset, indicating its exceptional performance. In the NSL-KDD public

dataset, LogitBoost, AdaBoostM1, MultilayerPerceptron, and NaiveBayesMultinomial ex-

hibited similar precision, recall, and F1 scores. Among the algorithms for the specified

metric, the Multi-Layer Perceptron (MLP) algorithm achieved the highest precision and

F1 score in the CIC-DDoS 2019 Dataset. We also compare our proposed PREVIR with

non-amalgamated and non-ML contemporary solutions for DDoS prevention. Our proposed

PREVIR outperforms all the frameworks and shows 100% accuracy of probability analysis

and classification.

In future research, it is essential to focus on improving the performance metrics of the

PREVIR model by addressing missing values in precision, recall, and F1-score evaluation.

PREVIR should also be evaluated on diverse datasets to assess its performance in different

network environments. Further efforts should be directed towards implementing PREVIR

in real-time DDoS detection systems, considering scalability and latency issues. Lastly,

mitigating the false positive rate of the model is vital to minimize disruptions to legitimate

network traffic and improve its usability in practical scenarios.
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Chapter 7

Conclusion and Future Work

7.1 General

In this conclusion chapter, we summarize the findings and contributions of the thesis and

present its limitations and future research directions. This thesis focuses on the problem

of Distributed Denial of Service (DDoS) attacks in Vehicular Ad-hoc Networks (VANETs)

and the proposed solution for detecting and preventing such attacks. The problem of DDoS

attacks in VANETs is becoming increasingly critical as more and more vehicles are being

equipped with communication systems, making them vulnerable to such attacks.

7.2 Summary of Findings

The proposed solution is a combination of machine learning algorithms and statistical

methods, which makes it a robust solution that can adapt to the changing dynamics of

VANETs. The simulation results show that the proposed solution can detect DDoS attacks

with high accuracy and prevent them from affecting the network performance. The results

also show that the solution has low false positive and false negative rates, indicating its

effectiveness in detecting real DDoS attacks and avoiding false alarms. Additionally, the

solution is designed to be scalable, making it suitable for large-scale VANETs.

7.2.1 Results of VAIDANSHH

The results obtained from VAIDANSHH’s performance evaluations highlight its effective-

ness in enhancing the security of VANETs. VAIDANSHH’s layered approach to intrusion

detection, which encompasses monitoring hardware resource consumption, flow parame-

ters, and application-level attacks, demonstrates a holistic and comprehensive strategy for

safeguarding VANET communication channels.

One of the notable findings is VAIDANSHH’s adaptability to the dynamic nature of

VANETs. By dynamically adjusting traffic thresholds and employing minimal packet fea-
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tures, the system excels in identifying both known and previously unseen attack patterns.

This adaptability is crucial in real-world scenarios where attackers continuously evolve their

tactics.

Additionally, the deployment strategy of VAIDANSHH at key points in the VANET in-

frastructure, such as RSUs and TAs, provides a strategic advantage. By monitoring traffic

at these critical junctures, VAIDANSHH contributes to early threat detection and rapid

response, ultimately enhancing the safety of drivers and passengers.

The low rate of false positives achieved by VAIDANSHH is another significant result.

This indicates that the system effectively distinguishes between normal network behavior

and potentially malicious activity, reducing unnecessary alerts and ensuring that security

personnel can focus their attention on genuine threats. This is a critical aspect of any intrusion

detection system, as excessive false positives can lead to alert fatigue and diminished

effectiveness.

This thesis provides a complete parameter-based DDoS detection solution that uses the

AAM to spot abnormal network activity. The suggested model uses a variety of variables,

including jitter, latency, and packet loss ratio, to efficiently detect assaults with high accuracy,

precision, recall, and F1-Score. Under the suggested model, the BayesNet method works

remarkably well, with a weighted TPR of 1 and a weighted false-positive rate of 0. The

VAIDANSHH model may be applied to various factors and is effective at almost 100%

accuracy in identifying attacks. The model’s synthesized dataset accurately depicts vehicular

networks and is realistic. Other researchers working on intrusion detection in VANETs can

use the suggested solution to comprehend the nature of DDoS attacks. The thesis makes a

significant addition to the topic of DDoS detection overall and emphasizes the value of flow

metrics in spotting suspicious activity and averting attacks.

7.2.2 Results of PREVIR

PREVIR’s results underscore its prowess as a DDoS attack prevention system tailored for

VANETs. The transformation of non-linear probability functions into linear forms using

logarithmic functions simplifies the modeling process while maintaining effectiveness in a
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dynamic VANET environment.

The results of PREVIR’s performance evaluations are particularly striking. Achieving 100%

accuracy in both test scenarios and 99.99% accuracy in test-2 demonstrates PREVIR’s

exceptional capability to accurately detect and prevent DDoS attacks. This high level

of accuracy is essential in ensuring the continued availability and integrity of VANET

communication.

The emphasis on low false positive rates in PREVIR’s results is noteworthy. Despite the

high accuracy in attack detection, the system maintains false positives at a minimum, with

only a 9.6% false positive rate for real DDoS attacks. This result showcases PREVIR’s

precision and reliability, as it avoids unnecessary disruptions to legitimate network traffic.

Furthermore, PREVIR’s comparative analysis with other DDoS prevention technologies

highlights its strengths and advantages. Its effectiveness, scalability, and adaptability make

it a standout choice for protecting VANETs against DDoS attacks.

Similarly, PREVIR, works by transforming the equation for the non-linear probability func-

tion into a linear form using the log function. PREVIR assesses how well it performs using

p-values and Wald’s Z-test. PREVIR simulates vehicle communication in VANET with an

attack-based topology and performs effectively when adequate data is available. The system

uses NS3, develops a dataset through simulations, and identifies relevant variables using

the Z-test and parameter selection. The Z-test chooses a set of variables for the PREVIR

system that can provide a superior model. The Z-test works on two different variable sets

from two datasets to establish the overall goodness of fit and Hosmer-Lemeshov’s goodness

of fit values. According to the results from the first dataset, four variables—time, time-

to-live, time-since-previous-frame—are adequate for the proposed PREVIR model. We

also evaluate performance metrics like sensitivity, specificity, accuracy, TPR, and FPR. We

verify the PREVIR model’s efficacy in preventing DDoS attacks by comparing its results

with two other state-of-the-art models, attaining 100% accuracy in both tests and 99.99%

in test-2. Despite being 100%, the specificity only averages 16.67%, making it 58.33%

specific. For real D, the false positive rate is 9.6%. The F1 score is displayed, and the

precision percentages are 98.59% and 97.92%, respectively.
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In summary, the results obtained from VAIDANSHH and PREVIR’s evaluations pro-

vide compelling evidence of their effectiveness in bolstering the security and resilience

of VANETs. Their adaptability, low false positive rates, and ability to achieve high ac-

curacy in attack detection make them invaluable assets in safeguarding the integrity of

VANET communication channels and ultimately ensuring the safety of drivers and passen-

gers. These results underscore the significance of these solutions in addressing the critical

security challenges faced by VANETs in the modern era.

Finally, we compare PREVIR with four other DDoS prevention technologies to evaluate their

features, datasets, simulator type, timing, communication area and protocol, advantages and

disadvantages, network architecture, and performance accuracy. PREVIR is a good choice

and performs well in accuracy.

7.3 Novelty and Innovation

VAIDANSHH and PREVIR stand out as innovative solutions in the realm of VANET security

due to their unique approaches and exceptional performance. VAIDANSHH’s multi-layered

intrusion detection approach, dynamic thresholding, and strategic deployment at critical net-

work points set it apart from traditional single-layer solutions. Its ability to maintain a low

false positive rate while adapting to dynamic VANET conditions showcases its innovation.

PREVIR, on the other hand, introduces log transformations for scalability, rigorous statisti-

cal model evaluation, and insightful comparative analysis. Its near 100% accuracy in DDoS

attack prevention is substantiated by comprehensive testing methodologies and realistic

datasets, making it a pioneering solution in safeguarding vehicular networks. These inno-

vations collectively address the complex challenges of VANET security and significantly

enhance the resilience of vehicular infrastructure.

While the reported results indicate the potential of VAIDANSHH and PREVIR, it’s impor-

tant to approach real-world implementation with the understanding that actual results may

vary. Rigorous testing in diverse scenarios is a positive indicator of their capabilities, but

the dynamic and unpredictable nature of VANETs means that continuous monitoring, adap-

tation, and ongoing evaluation are essential to ensure the effectiveness of these solutions in
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practical deployments. Here are some assumptions or considerations on which our results

are based:

Network Environment: During testing, there may be assumptions about the stability and

characteristics of the network environment. For instance, it might be assumed that the

network infrastructure is well-maintained and that communication links are reliable. Real-

world networks, however, can be subject to various issues, such as hardware failures, network

congestion, or interference, which may not align with the assumptions made during testing.

Traffic Patterns: Assumptions are often made about traffic patterns, including the volume

and types of data being exchanged among vehicles and infrastructure. Testing may use

synthetic or controlled traffic patterns that may not fully represent the diversity and unpre-

dictability of real-world traffic. Actual traffic patterns can vary significantly, affecting the

behavior of security mechanisms.

Attack Behaviors: Assumptions about the behavior and strategies of attackers can influence

testing scenarios. Testing typically involves known attack patterns or simulated attack

behaviors. However, real-world attackers are adaptive and may employ novel tactics that

were not considered in testing. Additionally, the intensity and frequency of attacks can

fluctuate over time.

Impact on Accuracy: The accuracy of security frameworks is highly dependent on the

accuracy of these assumptions. If the assumptions made during testing do not align with

the real-world conditions, the accuracy of the framework may vary in practice. Here’s how

this misalignment can impact accuracy:

False Positives/Negatives: Inaccurate assumptions can lead to false positives (incorrectly

identifying normal traffic as an attack) or false negatives (failing to detect actual attacks).

For example, if testing assumes a low level of network congestion, but congestion is high in

the real world, it may lead to false alarms or missed attacks.

Effectiveness: Assumptions about attack behaviors can impact the framework’s effective-

ness in detecting new or evolving threats. If the framework’s assumptions do not encompass

these threats, it may not perform well against them.

Robustness: The robustness of the framework, or its ability to adapt to changing conditions,

145



can be compromised if assumptions about network stability or traffic patterns do not hold.

Real-world fluctuations may challenge the framework’s ability to maintain high accuracy.

7.4 Contribution to the Field

This thesis makes a significant contribution to the field of VANET security, by providing a

practical and effective solution for detecting and preventing DDoS attacks. The proposed

solution provides a novel combination of machine learning algorithms and statics-based

methods, which makes it a robust solution that adapts to the changing dynamics of VANETs.

Furthermore, we designed the solution to be scalable, making it suitable for large-scale

VANETs.

VAIDANSHH and PREVIR are two innovative DDoS attack detection and prevention sys-

tems that have made significant contributions to society in network security. VAIDANSHH,

a network intrusion detection system, provides a layered approach to protecting the VANET

communication channel by monitoring hardware resource consumption, flow parameters,

and application-level attacks. Its adaptive traffic thresholds and minimal packet features for

attack detection ensure high efficiency and effectiveness in detecting attacks while reducing

false positives. By deploying VAIDANSHH at RSUs or TAs, we can monitor VANET traffic

more securely, increasing safety for drivers and passengers. Similarly, PREVIR has also

made a substantial contribution to society by providing an effective and accurate method

for detecting and preventing Distributed Denial of Service (DDoS) attacks in VANETs. Its

statistical model evaluates the performance of the Logit and Probit models using p-values

and Wald’s Z-test and identifies significant variables for effective parameter selection. The

model achieved 100% accuracy in both tests and 99.99% accuracy in test-2, making it highly

effective in thwarting DDoS attacks. By conducting a comparative analysis of features and

datasets, VAIDANSHH and PREVIR have provided more advanced incident response meth-

ods and enhanced the overall security of VANET communication channels. These detection

systems have thus made a significant contribution to society by improving the safety of

drivers and passengers and protecting the integrity of VANET systems.
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Table 31: Important characteristics of the proposed models in the research work

Proposed
Model

Salient fea-
tures

Issues addressed

VAIDANSHH Three-tier ar-
chitecture

It provides a safe vehicle environment by applying
rigorous security checks.

Adaptive IDS It addresses the problem of reliable results by consid-
ering real-time traffic.

Heterogeneity It addresses the problem of incorporating vehicles of
different vendors, standards, protocols, and technolo-
gies.

Dataset We provide a synthesized dataset and address the is-
sue of testing on a reliable dataset.

BayesNet ML
algorithm

We tested the effectiveness of BayesNet in VANETs
for the very first time.

PREVIR Logit model-
based

Logistic regression is a novel approach in the preven-
tion of DDoS in vehicular networks.

Compact fea-
ture set

PREVIR addresses the problem of DDoS prevention
with minimal features.

Results It provides efficient results in terms of accuracy, sen-
sitivity, TPR, and FPR.

Rigorous vali-
dation

We validate our results by rigorous testing through
Wald’s Z-test, HL Goodness of Fit, and individual
packet probabilities.

7.5 Limitations and Future Work

While the proposed solution is effective in detecting and preventing DDoS attacks in

VANETs, there are still some limitations that need to be addressed in future work. For

example, the solution does not consider other types of attacks and does not incorporate

additional security measures to further improve the security of VANETs. Additionally, the

simulation results are based on a specific set of assumptions and scenarios, and further

testing is required to validate the solution in different scenarios.

One area that needs improvement is the standard datasets required for testing and comparing

detection and prevention systems. The availability of standardized datasets would make it

easier for academics to create and assess their models and algorithms on an equal playing

field, enabling more precise comparisons of the efficacy of various systems.

Another area for improvement is the dynamic nature of DDoS attacks, which makes it

difficult to design systems that can adapt and respond to new and emerging attack tactics.
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Attackers frequently change their strategies, making staying on top of distinctive attack

patterns challenging.

Additionally, real-world scenarios’ huge network traffic volumes make identifying attacks

difficult while keeping false favorable rates low. False positives cause disruptions and

pointless alarms by mistaking legitimate traffic for harmful.

Finally, developing and deploying efficient detection and prevention systems is challenging

due to the complexity of the communication network infrastructure. The resources available

for detection and prevention may be limited in some circumstances, and the system must be

compatible with various network topologies.

7.6 Future Research Directions

Future research focuses on enhancing the proposed solution by considering other types of

attacks and incorporating additional security measures to further improve the security of

VANETs. We can conduct additional testing to validate the solution in different scenarios and

environments. One possible suggestion is to investigate the effectiveness of VAIDANSHH

and PREVIR under different network topologies and attack scenarios. These network

topologies and attack scenarios help improve these systems’ generalizability and ensure their

effectiveness in various real-world settings. Additionally, we can explore more advanced

machine learning techniques, such as deep learning to improve the accuracy of intrusion

detection and prevention. Finally, we can do more research to develop efficient and scalable

approaches to manage the large amounts of data generated by VANETs to support the

effective operation of VAIDANSHH and PREVIR. These future research directions have

the potential to advance the field of VANET security and contribute to the development of

more effective and reliable intrusion detection and prevention systems.

Another future research direction is to develop more advanced machine learning algorithms

and deep learning models for DDoS detection and prevention. While the current state-of-

the-art models, such as VAIDANSHH and PREVIR, have shown promising results, they

still have limitations in handling sophisticated and distributed attacks. We can develop more

advanced algorithms and models to improve the accuracy and speed of attack detection
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and the ability to adapt to new attack patterns. Another potential research direction is to

investigate the use of blockchain technology in DDoS prevention. Blockchain technology

is effective in preventing attacks on financial systems and data breaches. Implementing a

blockchain-based solution for DDoS prevention may improve the security and resilience

of VANETs against attacks. Finally, we can conduct research on the development of more

efficient and secure communication protocols for VANETs. Current protocols such as DSRC

and LTE-V are vulnerable to various attacks, and there is a need for more secure and efficient

communication protocols that can protect against DDoS attacks and other types of threats.

By developing more advanced communication protocols, it may be possible to create a more

secure and reliable VANET infrastructure that can better support the needs of intelligent

transportation systems.

7.7 Conclusion

This thesis presents a comprehensive study of DDoS attacks in VANETs and the proposed

solution for detecting and preventing such attacks. The results of this study indicate that

the proposed solution can effectively detect and prevent DDoS attacks in VANETs, thus

enhancing the security of the network. The proposed solution is a significant contribution

to the field of VANET security, and there are many opportunities for further research to

enhance the solution and address its limitations.

In conclusion, our research has presented two effective approaches for detecting and pre-

venting DDoS attacks in vehicular networks. VAIDANSHH, a Network Intrusion Detection

System, uses adaptive traffic thresholds and minimal packet features to identify attacks at

all three security tiers, resulting in a highly efficient and effective model. On the other hand,

PREVIR is a statistical model that performs well when relevant data is available, using the log

function to convert the equation for the non-linear probability function into a linear version.

By comparing and contrasting these two approaches, we have identified the strengths and

limitations of each method and the conditions under which they are most effective. While

VAIDANSHH is suitable for deployment at an RSU or TA, PREVIR requires relevant data

for performance. However, our research demonstrates that both models are promising for

149



improving the security and reliability of vehicular networks in the face of DDoS attacks,

thus contributing to the development of safer and more efficient transportation systems.
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