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Abstract 

Food allergy is an exponentially pullulating health concern affecting developed as 

well as developing countries. Consumption of antigenic food protein leads to 

sensitisation by production of distinct Immunoglobulin type-E (IgE) antibodies. IgE 

mounted immune response symptoms generally arises after two hours of allergenic 

food consumption thereby distressing skin, respiratory and gastrointestinal system 

causing erythema, pruritus, wheezing, sneezing, nausea, diarrhoea, unconsciousness, 

and anaphylaxis. Moreover, the individuals experiencing food allergic conditions are 

more susceptible to acquire respiratory ailments like asthma. The main objective of 

the study was to dynamically explore the pharmacological space to screen out drug-

like pharmacophores against the food allergen profilins and further develop the 

machine learning based allergenicity assessment model based on exhaustive 

physicochemical space mining of these allergens. Profilin, a ubiquitously found 

protein in plants, animals and viruses have been associated with IgE cross-reactivity 

and are responsible for oral allergy syndrome and pollen food allergy syndrome. The 

multiple sequence alignment profiles of human versus food allergen profilins revealed 

a very low level of sequence identity, signifying that the imposed hypersensitive 

reactions against allergen profilins is by virtue of difference in their amino acid 

composition make-up. The allergenic profilin protein from apple, pineapple, wheat, 

and soybean were subjected to homology modelling and molecular dynamic analysis, 

which revealed that their conserved structural property having equal number of 

helices, sheets, and loops is responsible for their IgE cross-reactivity and 

classification as pan allergens. Pharmacophores were screened against these allergen 

profilins by virtual screening and molecular docking studies unveiled their efficient 

binding dynamics. Bioavailability studies of these pharmacophores was also in-

accordance with suitable therapeutics and thus qualifies them to act as lead molecules 

for drug designing against these allergens. The investigations pertaining to utilisation 

of physicochemical space for computationally assisted allergenicity assessment is 

scarce and therefore profilin gene family was extensively explored based on relative 

amino acid usage and correspondence analysis which unravelled interesting findings. 

Correspondence analysis based on amino acid usage of allergen and non-allergen 
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profilins revealed discrete clusters among them, signifying differential patterns of 

amino acid usage. Correlation analysis revealed that physicochemical features like 

protein disorder, trypsin digestion and solubility differed significantly among the 

allergen and non-allergen profilins, thus supporting the observations from 

correspondence analysis. An in-depth structural analysis revealed that the over-

represented amino acids in allergen profilins have a propensity of being exposed on 

the surface, which may be attributed to their distinct allergenic characteristics. These 

distinguished physicochemical features along with other parameters constituted the 

descriptor space and ZeroR, Support Vector Machine (SVM), and Random Forest 

models which were developed on a manually curated non-redundant dataset and RF 

model was evaluated as the best classifier. The developed RF model in comparison to 

existing classifiers outperformed them in terms of their accuracy, Mathew’s 

Correlation coefficient (MCC) value and Receiver Operating Characteristic (ROC) 

area, suggesting the gravity of employed descriptors extracted by differential amino 

acid usage analysis in achieving superior accuracy for computationally assisted 

allergenicity assignment of query protein instances. Further the classification of 

validated allergens as “predicted allergens” by the developed RF model with higher 

prediction probability value on an independent dataset of sesame proteome is an 

indicative of true positive classification capture accuracy of the model. Along with 

this, the developed model also classified the profilin instances in sesame proteome as 

potential allergen with significant prediction probability values. The expressional 

analysis of the sesame transcriptomic data revealed higher expression of validated 

allergens in sesame. Although the expression profile of profilin was lower but 

considerable as compare to the validated allergens and thus necessitates to conduct 

clinical examinations pertaining to allergenicity assessment of profilin protein in 

sesame. Overall, the study provides scientifically approved inputs to perform 

pharmacophore validation against food allergen profilins and on the other hand, 

allows the food industries to modify, validate and utilise the developed RF model for 

allergenicity assessment in a time and resource-saving manner. 
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Chapter 1 

Introduction 

Food serves as a medium of vital nutrients for human beings and on the other side it 

allows the invasion of toxic substances and pathogens inside the human system. The 

human system, over the years, has efficiently evolved its sensory machineries to 

differentiate among the useful and unhealthy food constituents. Allergen mediated 

immunological responses are accountable for maintaining the food quality by 

imposing immune reactions against the food-antigens. Allergic reactions generally 

imposed by the immune system for removing the harmful constituents from the body 

are recognised by rhinitis, sneeze, cough, vomit, and diarrhoea and in worst 

conditions these reactions become fatal by leading to conditions like edema, hives, 

and anaphylaxis (Florsheim et al., 2021). Food allergy is termed as an individual’s 

inappropriate immune response against the food-antigens. The list of major food 

allergens currently recognised by the worldwide organisations are egg, wheat, milk, 

soy, peanut, tree nuts, fish, shellfish, and sesame. The mounted immune response as 

classified by National Institute of Allergy and Infectious Diseases (NIAID) can be 

triggered by either IgE, without IgE or by both. IgE mounted immune response 

symptoms generally arises after two hours of allergenic food consumption and 

thereby distressing skin, respiratory and gastrointestinal system causing erythema, 

pruritus, wheezing, sneezing, nausea, diarrhoea, unconsciousness, and anaphylaxis 

(Anvari et al., 2019). Sensitisation process takes place by the production of IgE 

antibodies (specific to the food allergen) by plasma cells which differentiates from B-

lymphocytes. These antibodies attach to the cell surface of mast cells and basophils 

and when individual is exposed to same allergen for second time, the antigenic part of 

the food allergen attaches to these antibodies which further results in release of 

histamine and leukotriene signalling molecules (Burks et al., 2012; Tedner et al., 

2022). A generalised graphical representation of Ig-E mediated allergic responses are 

shown in Figure 1.1 below (Tedner et al., 2022). 
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Figure 1.1: Generalised graphical overview of Ig-E mediated allergic response by the 

food-antigens. 

Epidemiology of food allergy in last 20 years have increased in industrialised 

countries and this rise has been observed in developing countries with upsurged 

economy (Florsheim et al., 2021). The contemporary factors like alterations in the 

food-habit, use of processed food, changed gut microbiome and intestine immune 

system by the influence of less-exposure to parasites are associated with this 

prevalence (Florsheim et al., 2021). Recently, a study published in the Journal of 

American Medical Association (JAMA) concluded that more than 26 million adults in 

the United States are under the influence of food allergy complications (Gupta et al., 

2019). In European countries, the incidence of self-reported food-allergy ranged from 

6.5% to 24.6%, whereas, the food sensitisation percentage was in the range of 11% to 

28.7% (Lyons et al., 2020). A study conducted by the European Union in 2019, 

19.1% (n=5677) the Indian population was found to be IgE sensitised (Li et al., 



3 
 

2020). The prevalence data shown by the report in India may not be taken-up as a 

reference to provide overall food-allergy prevalence as only a small-subset of 

population from a region is considered in the study. Another major gap in analysing 

the epidemiology is the implication of non-standard methodology in food-allergy 

assessment, which makes it difficult to analyse significantly (Li et al., 2020).  

According to FAO (Food and Agriculture Organisation), the world population in 2050 

will be around 9.1 billion and to feed this huge population food supplies must increase 

by 70 percent (FAO, 2009). As per the latest reports by (FAO, 2021), around 720 to 

811 million people experienced malnutrition in 2020 which is an increase of 118 to 

161 million as compared to 2019 malnutrition index. Current practices to meet the 

food supply demands include introduction of foreign proteins to produce genetically 

engineered crops with desired traits which certainly requires an expertise safety 

assessment analysis before its commercialisation (Westerhout et al., 2019). At present 

in India, there are more than 85 genetically engineered plant species under research 

and development phase including rice, cotton, tomato, brinjal, maize, wheat, banana, 

apple, mango, sesame, papaya, and guava (Warrier and Pande, 2016).  

Currently no single experiment/assay/technique is sufficient to assess the food allergy 

in humans, therefore the expert committees have regulated fusion of numerous 

approaches for potential allergenicity assessment in “weight of evidence” manner 

(CODEX, 2009; EFSA, 2010; EFSA, 2017). The major pathways suggested in these 

guidelines are the use of sequence homology approach with known allergen, 

enzymatic digestion assays and IgE attachment assays and in special cases can be 

extended to animal studies to recognise the allergenic potential of foreign protein 

(Remington et al., 2018). However, the applicability of animal and in-vitro T-cell 

assays for allergenicity assessment have not been proven efficient (Ladics et al., 2009; 

Remington et al., 2018; Westerhout et al., 2019).  

Presently, computational biology approaches have been utilised extensively for the 

allergenicity assessment of foreign proteins (Wang et al, 2021). Numerous web-

servers and models have been developed recently which are based on homology 

search with known allergen, motif-based approach, identification of IgE epitopes, 

support vector machine, and pseudo amino-acid composition, and artificial neural 
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networks for allergenicity assessment of proteins (Ivanciuc et al., 2003; Saha and 

Raghava, 2006; Kumar and Shelokar, 2008; Mohabatkar et al., 2013; Dimitrov et al., 

2014). Some studies have also embarked upon the physicochemical features like 

aliphatic index, grand average of hydropathy (GRAVY), molecular weight, polarity, 

amino acid composition and hydrophobicity as input features which resulted in 

improved efficiency of the model (Li and Wang, 2017; Wang et al, 2021). However, 

systematic exploration of the physicochemical space and utilising this information to 

develop food allergenicity assessment model is lacking from the contemporary 

scenario.  

The profilin gene family will be taken as a model dataset for the current study. 

Profilin is found in plants, protozoa, fungus, animals, and viruses (Santos and Van 

Ree, 2011). It was firstly brought into the picture by Carlson in 1977, as low 

molecular weight, actin-linked profilamentous protein responsible for the monomeric 

state of the actin protein (Carlsson et al., 1977). Profilin is among those proteins 

which are found in abundance inside the cell and with help of immunofluorescence 

and electron microscopy, it was found to be located on the edges of the cytoplasm and 

occasionally links with an internal shell of the plasma membrane (Hartwig et al., 

1989). The molecular mass of profilin varies between 12 – 15 KDa (Kilo Daltons), 

having 125-153 amino acids with pI (Isoelectric point) from 4.3 to 9.2 (Santos and 

Van Ree, 2011).  

The count of profilin genes in various organisms is related to intricacy. Lower 

eukaryotes have one, two or three genes for the profilin. Three profilin genes were 

found in smaller eukaryotes like Dictyostelium discoideum (González-Velasco et al., 

2019) and Caenorhabditis elegans (Polet et al., 2006). Mammals contain four profilin 

specific genes annotated as Pfn1 to Pfn4. Pfn1gene translates into prevalent isoform 

profilin 1 (Schluter et al., 1997). Pfn2 transcripts two splice forms out of which 

profilin II translates in neuron cells and profilin IIb expresses in kidney cells of mice 

(Di Nardo et al., 2000). Translated product of Pfn3 and Pfn4 gene was found in 

kidney of rat and human testis respectively (Hu et al., 2001; Obermann et al., 2005). 

Plants contain the highest count of profilin genes, with a maximum number of up to 

ten. However, it may be noted that few of these genes may be pseudogenes, and apart 
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from these pseudogenes, the rest of the genes translates into two forms, based on 

sequence resemblance (Huang et al., 1996) and biochemical features (Kovar et al., 

2000).  In Arabidopsis plant, profilin 1, 2 and 3 isovariants were found to be 

expressed in every tissue of the plant whereas profilin 4 and 5 were found to be 

expressed majorly in developed pollen (Kandasamy et al., 2002). 

Numerous studies have been carried out previously in identification of food allergens, 

their classification as pan-allergens, identifying IgE cross-reactivity among food and 

aeroallergens and computationally assisted prediction of food allergens has all been 

discussed (Singh et al., 2021). The first identification of profilin as an allergen was 

observed in the pollen of birch (Betula verrucosa) in 1991 and by immunological 

assays and homologous sequence to existing profilin, this protein was designated as 

Bet v 2 (Valenta et al., 1991). Most importantly, profilin was found to have allergic 

potential in peanuts (Arachis hypogaea), soybean (Glycine max), tomato (Solanum 

lycopersicum), apple (Malus domestica), banana (Musa acuminata), orange (Citrus 

sinensis), wheat (Triticum aestivum) (Kleber-Janke et al., 1999; Rihs et al., 1999; 

Willerroider et al., 2003; Ma et al., 2006; Reindl et al., 2002; Lopez‐Torrejon et al., 

2005; Rihs et al., 1994). The prevalent nature and conserved structure of profilin in 

plants corresponds to IgE cross-reactivity in profilin among pollen, plant food and 

latex sources and thus regarded as pan-allergen (Santos and Van Ree, 2011). Profilin 

sensitisation has been determined in individuals experiencing food allergy. Profilin 

has been defined as minor allergen in individuals having an allergy to peanut (Kleber-

Janke et al., 1999), carrot (Daucus carota) (Ballmer-Weber et al., 2001), celery 

(Apium graveolens) (Ballmer-Weber et al., 2001) and pineapple (Ananas comosus) 

(Reindl et al., 2002). In individuals facing allergy to melon (Cucumis melo) 

(López‐Torrejón et al., 2005a), orange (Citrus sinensis) (Lopez‐Torrejon et al., 2005) 

and soybean (Rihs et al., 1999), the profilin sensitisation was 71%, 78-87% and 69%, 

respectively and thus regarded as a major allergen. Profilins are also associated with 

pollen food-allergy syndrome (leading to oropharyngeal pruritus and anaphylaxis), in 

which the individual sensitised by the profilin from ragweed (Ambrosia 

artemisiifolia), birch (Betula verrucosa) and mug wort (Artemisia vulgaris) develop 

cross-reactivity against the profilins from apple, pineapple, carrot, soybean, celery, 
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banana and peach (Carlson and Coop, 2019).  Additionally, profilin in the atopic 

individuals caused oral epithelial remodelling leading to inflammatory conditions. 

Clinical study has proven the linkage of profilin with oral epithelial inflammation 

which subsequently got prolonged through profilin exposure, present in numerous 

vegetable and fruits (Rosace et al., 2019). Recent studies have shown that profilin 

isovariants length ranges from 100 to 130 amino acids long with four helices and 

seven sheets in their secondary structure (Włodarczyk et al., 2022). Study on profilin 

isoforms has shown sequence dissimilarity in profilin amino acid sequences but they 

possess parallel tertiary structure as observed in case of tomato, latex, and apple 

profilins (Włodarczyk et al., 2022). From this we can conclude that despite the 

sequence difference in profilin allergens from various sources their structural 

homology contributes to their IgE cross-reactivity patterns and classification as pan 

allergens. 

Allergic reactions mediated by sesame are on the rise globally and presently, its 

regulatory processes and responsible factors are not clearly distinguished. Sesame has 

been recognised as allergen by the 32 developed countries including European Union, 

Canada, Japan, Australia, and New Zealand (Gangur and Acharya, 2021). Recently, 

USA has also passed a bill (FASTER Act 2021) to label sesame as the major food 

allergen. India and China are the largest harvesters of sesame but still there are no 

evidence of reported allergic reactions in these countries which raises two hypotheses 

stating either there is no such incidence of sesame mediated food-allergy in those 

countries or certainly there is scarcity of standardised food-allergy tests and thus 

remains camouflaged (Gangur and Acharya, 2021). The protein allergens in sesame 

includes albumin, oleosin and vicilin whereas profilin has not been recognised as 

allergen by the International Union of Immunological Societies (IUIS) (Gangur and 

Acharya, 2021). Researchers has also pointed out that there may be presence of 

additional protein allergens in the sesame seeds which are not identified yet (Gangur 

and Acharya, 2021).  

In the present study tertiary structure prediction and evaluation of the allergen 

profilins (apple, pineapple, wheat and soybean) will be carried out to analyse their 

biologically-active conformation and further with the advent of virtual screening 
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suitable pharmacophores will be screened out. Differential amino acid usage 

signatures of the profilin gene family (allergen and non-allergen) will be reported and 

further those variations will be linked to their physicochemical properties. The 

observed distinguished features will be employed as descriptors to develop machine 

learning based prediction models. The present study will be focused on identifying the 

uncharacterised sesame seed allergens in the reference proteome by virtue of the 

developed machine-learning based model. Finally, expression analysis study of the 

identified allergens will be carried out by RNASeq data analysis. 
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CHAPTER 2 

Review of Literature 

2.1 Historical glimpse of food allergy 

Antique records pertaining to role of food in the pathogenesis and cure of any ailment 

is nonsensical, numinous, and preposterous (Cohen, 2008). The first document 

discussing the concern towards “food-hypersensitivity” was by Shen Nong (2735 BC) 

and Huang Di (2698 to 2598 BC) in “Shi Jin-Jing” (prohibition related to foods), 

which suggested caution to a female expecting child against non-vegetarian foods like 

meat, chicken and shrimp and causatives of skin lesion commonly regarded as 

urticaria and eczema nowadays (Cohen, 2008). In 460 to 377 BC the understanding of 

Hippocrates regarding atopic individuals suffering from cheese consumption stated 

that there is something different in the body components of these individuals. He also 

pointed out that if cheese consumption is not good for human, then it might have 

harmed all individuals. Presently, this understanding of his pointing out “difference in 

body components” in atopic individuals is defined as Immunoglobulin-Type-E (IgE) 

(Cohen, 2008). After this Pedacious Dioscorides (50 AD), Aretaeus the Cappadocian 

(120 to 180 AD) and Claudius Galen (130 to 200 AD) observed the inimical outcome 

by consumption of cheese and milk and finally in 1900 the antigen causing discomfort 

was identified in milk from cow who pasture on wheat bran, hay of peanut and tops of 

ragweed (Cohen, 2008). Herodotus (484 to 425 BC) has discussed about the Egypt 

people’s non preferential nature towards consumption of pulses and later observed in 

the Greek-Roman physicians warning to lentil, bean, and pea consumption (Cohen, 

2008). The inception of food mediated hypersensitive reactions among individuals, J. 

B. van Helmont in 1662 reported a study describing the individual experiencing 

asthma attack after he consumed fish (Cohen, 2008). The ground-breaking discovery 

of Richet and Portier in 1902 unravelling about the anaphylaxis and later in 1906 

Pirquet’s explanation to allergy as modified response paved the way to unveil 

mechanisms regulating food-mediated hypersensitive reactions (Cohen, 2008). With 

this the scientists from European countries initiated their research focusing on clinical 

studies of the patients and anaphylaxis in guinea pigs (Laroche et al., 1930). In 1930, 
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Laroche with the co-authors published a study which discusses about food allergen 

mediated urticaria, asthma and gastro-intestinal complications and found different 

food sources like milk, eggs and wheat were the mediators of these hypersensitive 

reactions (Laroche et al., 1930). The European scientists termed these conditions as 

alimentary anaphylaxis (Laroche et al., 1930). Further, mollusc, fish and crustacean 

were identified as potential source of food-induced hypersensitive reactions (Laroche 

et al., 1930). On the other hand, American scientists to a greater extent relied upon the 

skin tests for distinguishing the food-allergens (Schloss, 1912). The applicability of 

skin prick tests for the identification of food-allergen mediated hypersensitivity 

substantiated by Oscar Schloss in 1912 by systematically examining this response in 

an 8-year-old kid aroused after consuming egg, almond, and oat (Schloss, 1912). 

Schloss was also able to chemically purify the food extract used as a reagent to 

proceed with skin prick tests (Schloss, 1912). Further this process of chemical 

extraction of food reagent for skin prick food-allergen testing was advanced by the 

work of Coca, and, several physicians found it handy to carry out skin prick test using 

these materials and thus commercialisation of these test kits took place beyond the use 

of concerned physicians (Cohen, 2008). Albert Vandeer in 1933 delivered a speech to 

Society for Study of Asthma and Allied Conditions in which he depreciated the 

current practice of skin prick test as the standard protocol for food allergy testing by 

pointing out that it puts the patient in a bizarre and nonpractical prescribed food 

consumption with no significant results (Cohen, 2008). Further he raised the concern 

that usefulness of analytical test for food allergy identification needs further 

characteristic insight of the allergens, benchmarking of the chemicals used in tests and 

associated clinical investigations (Cohen, 2008). Taking these points into the 

consideration May presented double-blind placebo-controlled food challenge for 

diagnosis of food-allergy and later it became a benchmark analysis to assess food-

mediated responses (May, 1976). Vaughan along with Frances Wilson in 1930 bring 

about a revolution in the associated domain by developing a categorical system of the 

plant extracted foods based on homologous features and further present with a model 

food- allergen plant which represents all plants falling in its clade (Vaughan, 1930). 

Additionally, researchers involved in study of plants were able to perceive the 

formation of new species from their progeny because of single mutational event 



10 
 

which correspond to presence of same allergen in discrete plants by the term cross-

reactivity (Cohen, 2008). Another major contribution was from Matthew Walzer in 

1931, providing a catalogue in which he classified and categorised food-allergen 

sources and discussed their implication in regulating hypersensitive reactions in 

suffering individuals (Cohen, 2008). 

2.2 Impact of processing techniques on allergenicity of food allergens 

Majority of the food mediated allergic hypersensitive reactions are associated with 

milk, egg, wheat, fish, soy, tree nut, peanut, and shellfish (Verhoeckx et al., 2015). 

Various food processing techniques like thermal, homogenisation, hydrolysis, 

fermentation, and enzymatic treatments tend to predominate the allergenicity potential 

of antigenic food protein partially (Verhoeckx et al., 2015). Recently, the application 

of fermentation to soybean found as the best processing method to obtain 

hypoallergenic soybean (Pi et al., 2021). Fermentation and hydrolysis of milk has 

proven to be effective against limiting the allergenic potential of milk allergen 

proteins (Verhoeckx et al., 2015). Heat-treated milk results in whey protein 

denaturation, while casein does not affect by heat treatment because of the absence of 

secondary, tertiary, and quaternary protein confirmations. Homogenization of milk 

does not have any role in altering their allergenic potential. By sterilisation, around 

25% of whey proteins left intact, while, remaining portion undergoes denaturation and 

triggered Maillard reaction resulting in significant loss of allergic nature of milk used 

in edible products made from milk (Porter, 1978; Michalski and Januel, 2006; 

Huffman and de Barros Ferreira, 2011; Bu et al., 2013). Previously, several studies 

have observed that consumption of heat-treated eggs by the kids with egg allergy 

resulted in significant decrease (50 to 85%) in their allergic symptoms (Lemon-Mulé 

et al., 2008; Turner et al.,2013; Cortot et al., 2012). The consumption of baked 

products from hazelnuts also reduces its allergenicity significantly in atopic 

individuals (Worm et al., 2009; Hansen et al., 2003). The incubation of peanuts in 

boiled water for 20 minutes has proved to be an effective processing measure to 

reduce IgE binding potential for allergenic food proteins from peanut as confirmed by 

immunoblotting. Autoclaving (2.56 atm for 30 min) of the roasted peanuts also 

resulted in decreased IgE binding efficiency for peanut allergenic proteins. Hydrolysis 
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effect on roasted peanut resulted in hydrolysis of peroxidase, digestive enzymes, and 

reduced level of allergens viz., Ara-h-1 and Ara h 3, while no effect observed on raw 

peanut (Yu et al., 2011; Beyer et al., 2001; Cabanillas et al., 2012; Chung et al., 

2004).  

2.3 IgE cross-reactivity of the food allergens 

IgE cross-reactivity pertaining to allergic response refers to the generation of specific 

IgE against a food allergen protein leading to sensitisation and later this IgE triggers 

the same response against a protein generally belonging to the same family but from 

different organism because of inability to distinguish the original sensitiser protein 

causing allergic reaction (Chruszcz et al., 2018). Profilins possess high sequence 

identity and conserved tertiary structure which contributes to frequent IgE cross-

reactivity among pan allergens (Chruszcz et al., 2018; Mari, 2001). Sensitisation to 

profilins from pollen also accounts for pollen-food allergy syndromes like mugwort-

celery-spice syndrome and ragweed-melon allergic reactions (Asero and Amato, 

2011; Ebner et al., 1998). Profilin from pollens, plant foods and latex have been 

implicated with IgE cross-reactivity and regarded as pan-allergens (Santos and Van 

Ree, 2011). Various studies have confirmed the profilin sensitization in individuals 

experiencing food allergy (Lopez‐Torrejon et al., 2005; Rosace et al., 2019). The 

homology of allergenic food protein from peanut has been demonstrated with allergen 

proteins from soy, legumes, and tree nuts causing IgE cross-reactivity reactions 

among atopic individuals (Popescu, 2015). The allergen Jun a 3 (Pathogenesis-related 

5 protein), from mountain cedar contains the homologous protein sequence from 

pepper, cherry, kiwi, tomato, and apple (Popescu, 2015).  The cross-reactivity among 

food and aeroallergens of animal, plant and fungal origin has clinical complications of 

respiratory allergy in patients sensitised with cross-reactive aero and food allergens 

resulting into oral allergy syndromes, which may extend into severe anaphylaxis 

(Popescu, 2015). Various cross-reactive food and aeroallergens groups are listed in 

Table 2.1 below (Popescu, 2015). 
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Table 2.1: Various cross-reactive food and aeroallergen groups responsible for IgE-

cross-reactivity. 

Cross-Reactive 

Group 

Allergen 

Name 

Source Organism 

(Common Name) 

Allergen 

Classification 

(Food/Aero) 

 

 

Number 1 

 

Bet v 1 European White Birch 
Aeroallergens 

Aln g 1 European Alder 

Mal d 1 Apple 

Food allergens 
Pru p 1 Peach 

Api g 1 Celery 

Gly m 4 Soybean 

 

 

 

 

 

 

Number 2 

Bet v 2 European White Birch 

 

 

 

Aeroallergens 

Ole e 2 Olive 

Che a 2 Lambsquarters 

Art v 4 Mugwort 

Amb a 8 Short Ragweed 

Api g 4 Celery 

 

 

 

Food allergens 

Dau c 4 Carrot 

Pru p 4 Peach 

Cuc m 2 Muskmelon 

Mus xp 1 Banana 

Sin a 4 Yellow Mustard 

 

 

 

 

 

Pla a 3 London Plane Tree 
 

 

Aeroallergens 

Ole e 7 Olive 

Art v 3 Mugwort 

Amb a 6 Short Ragweed 

Api g 2 Celery  
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Number 3 Pru p 3 Peach  

Food allergens Cuc m LTP Musk Melon 

Mus a 3 Banana 

Sin a 3 Yellow Mustard 

 

 

Number 4 

Der p 10 European House Dust mite  

Aeroallergens Bla g 7 German Cockroach 

Pen m 1 Black Tiger Shrimp  

Food allergens Myt e 1 Mussel 

 

 

Number 5 

Fel d 2 Cat 
 

Aeroallergens 
Can f 3 Dog 

Equ c 3 Domestic Horse 

Bos d 6 Domestic Cattle  

Food allergens Sus s 6 Domestic Pig 

 

Some of the crucial syndromes which arises because of cross-reactivity between food 

and aeroallergens from plant origin are listed in Table 2.2 below (Popescu, 2015). 

Table 2.2: Various syndromes associated with cross-reactive food and aeroallergens. 

Name of Syndrome Cross-reactive food and aeroallergens 

Birch-apple syndrome 
Mal d 1(Apple) homolog to Bet v 1 (European 

White Birch) 

Cypress-peach syndrome 
Pru p 3 (Peach) (Non-specific lipid transfer 

protein) 

Celery- Mugwort- Spice 

Syndrome 

Art v 4 (Mugwort), Api g 5 (Celery) homologs 

to Art v 60 KDa 

Mugwort- Peach association 
Art v 4 (Mugwort) profilin, Art v 3 (lipid 

transfer protein) 

2.4 Classification of allergen proteins in various protein families 
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A remarkable study was performed in 2009 which classified the allergen proteins into 

their respective protein families and motifs (Ivanciuc et al., 2009). It was suggested 

that distinct similar region on allergen proteins having homologous structure may be 

of potential significance than overall sequence similarity (Ivanciuc et al., 2009). To 

find those distinct similar regions on allergen proteins they categorised allergen 

proteins and their sub-domains present in Structural Database of Allergenic Proteins 

(SDAP) to their respective protein family using Pfam database (Ivanciuc et al., 2009). 

Those SDAP allergenic proteins were categorised into 130 Pfams, out of which 31 

Pfams contained at least four allergens (Ivanciuc et al., 2009). The copious allergen 

families classified in Pfam database are represented in Figure 2.1. 

 

Figure 2.1 Classification of various allergen families by Pfam database. The 

horizontal axis represents various allergen families whereas vertical axis represents 

number of allergens in that family. 
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The Protease inhibitor/Lipid Transfer Protein/seed storage protein family having Pfam 

code PF00234 includes 34 allergens found in plants. Tertiary structure of three 

allergens namely Pru p 3, Hor v 1 and Zea m 14 has been classified under this family. 

Pathogenesis related/Bet v 1 protein family (PF00407) includes pollen, seed, and fruit 

tissue allergenic proteins. Birch pollen allergen (Bet v 1) has been classified as a 

major allergen which cross-reacts with allergenic proteins from alder pollen, hazel, 

chestnut, apple, pear, and stone fruit respectively. Cupin family (PF00190) represents 

beta-barrel domain families and EF hand family (PF00036) includes calcium 

attaching sequence motifs primarily observed in parvalbumin. Profilin family 

(PF00235) consists of plant profilins having molecular weight of 12-15 kDa and are 

recognised as conserved proteins. The profilin allergen, Ara h 5 from peanut has been 

classified under this family (Ivanciuc et al., 2009). 

2.5 Evolution of computationally assisted protein allergen prediction tools 

Majority of the allergic reactions are triggered by presence of allergenic proteins in 

food, pollen, and various other substances in the environment. Considering the health 

risks posed by allergic responses, it is essential to evaluate their potential allergenicity. 

The application of omics engineering and processing techniques to alter or introduce a 

new protein in food or food products has emerged exponentially in previous years, 

which makes it essential to evaluate allergenicity of these altered or new proteins in 

order to ensure their non-allergenic nature. Bioinformatics has played a central role in 

the endeavours associated with allergenicity assessment by development of various 

models and web-servers to assess the potential allergenicity based on amino acid 

sequence and their associated structural information (Kadam et al., 2016). In the 

upcoming part, some of the important allergenicity assessment tools developed by 

advent of computational biology has been reviewed. 

2.5.1 Structural Database of Allergenic Proteins (SDAP) 

SDAP, a specialised allergen database introduced in 2003, provides sequence, 

structural, and IgE binding region related annotation of the protein allergens. The 

database was aimed to ease the sequence homology search among the allergen proteins. 

The web-server can be accessed by the link https://fermi.utmb.edu/. On 12 Feb. 22, the 
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database contained annotation of 1658 allergenic proteins with 101 protein allergens 

having 3D structure information cross-referenced from Protein Data Bank (PDB). For 

the allergenic proteins the database also provides a comprehensive list of their 

classification in Protein Family (Pfam). The database allows the user to categorically 

access the allergens present in food, insects, animals, fungi, pollen, and mites (Ivanciuc 

et al., 2003). User can perform the operation to evaluate their query protein for 

allergenicity by performing a similarity search against the SDAP database allergens 

(Ivanciuc et al., 2003). The similarity search performed by the SDAP uses property 

distance function to provide user with search output (Ivanciuc et al., 2003). 

Conclusively, the SDAP allows the user to access the allergen database and search for 

allergenicity of query protein by performing similarity search. 

2.5.2 AIgPred 

In 2006, a tool named as AlgPred was developed by (Saha and Raghava, 2006), 

following the in-silico approach for allergenicity assessment of query protein and 

finding the presence of any IgE binding region. They used a dataset of 578 allergens 

and 700 non-allergens for training and testing in order to develop a model based on 

support vector machine (SVM). Features like amino acid constitution and dipeptide 

constitution retained 85.02%, 84% of precision and specificity respectively (Saha and 

Raghava, 2006). In motif-based approach by using Multiple Em for Motif Elicitation 

(MEME)/Motif Alignment they achieved 93.94% and 33.34% sensitivity and 

specificity respectively (Saha and Raghava, 2006). In their third approach known IgE 

epitopes were used as a database to search for allergenic proteins which upon validation 

returned 98.14% specificity and 17.47% sensitivity. In their fourth part, simple BLAST 

search was performed in contrast to allergenic peptides for the prediction of the 

allergenic proteins. At last, with the combination of two or more than two methods 

hybrid method was developed and validated on a dataset of 323 allergens and 101725 

non-allergens (Saha and Raghava, 2006). To our knowledge this was the first study 

which reported the application of machine learning classifiers for allergenicity 

assessment of any protein.  

2.5.3 AllerTool 
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In 2007, (Zhang et al., 2007) designed a web-based tool named as AllerTool for 

evaluating the allergenicity and cross- reactivity of the allergen proteins. The tool 

allows the user to graphically explore the allergen protein’s cross-reactivity and 

allergenicity evaluation model based on similarity search. They also developed a 

support vector machine-based approach to find the allergenicity of query protein with 

86% of sensitivity and specificity respectively (Zhang et al., 2007). The web link at 

http://research.i2r.a-star.edu.sg/AllerTool/ on 17 Feb. 22, was found to be inaccessible 

implying the server has been obsolete. 

2.5.4 SVM based allergen prediction model 

A machine-learning based approach, in 2008 was employed to find out the allergenic 

proteins by means of evolutionary relationship and claimed comparatively enhanced 

sensitivity and specificity. SVM was used for training and testing a dataset of 693 

positive proteins and 1041 negative proteins retrieved from Swiss-Prot 

(https://www.uniprot.org/) and SDAP (https://fermi.utmb.edu/) (Kumar and Shelokar, 

2008). Features like protein peptide residues, dipeptide construction and pseudo amino 

acid construction were used which resulted in an accuracy of 86.3%, 86.5% and 82.1% 

respectively. They also used Position Specific Scoring Matrix (PSSM), which provided 

highest accuracy of 90.1%. For validation of model, 10-fold cross-validation method 

was used in which dataset was arbitrarily categorised into 10 subsets. The accuracy of 

the SVM model using PSSM was found superior as compared to existing allergen 

prediction models like AIgPred and WebAllergen. It was concluded that use of the 

evolutionary information could be of greater importance for developing highly 

sophisticated allergen prediction models (Kumar and Shelokar, 2008). 

2.5.5 AllerTOP 

A web server-based tool named as AllerTop was introduced in 2013 for the allergen 

prediction. This method presents the first non-alignment-based approach for the 

allergen assessment. They retrieved a sum of 2395 allergens and non-allergens were 

obtained from the same genus to constitute the positive and negative dataset 

respectively. They represented features of allergen protein sequences by z1, z2, z3 

descriptors and changed to consistent vectors with ACC transformation. Five machine 
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learning-based approaches implemented in order to find the best-fit model for the 

prediction, out of which, k nearest neighbour (at k=3) gives the best model in terms of 

accuracy and was incorporated in the AllerTop web server. AllerTop on comparison 

with other existing prediction servers, performed better by giving 94% sensitivity 

(Dimitrov et al., 2013). The updated version of AllerTop can be accessed by the link 

https://www.ddg-pharmfac.net/AllerTOP/method.html. 

2.5.6 Allergenicity assessment by chou’s pseudo amino acid composition 

(Mohabatkar et al., 2013), in 2013 published a document, which predicts the 

allergenicity of query proteins by Chou’s pseudo amino acid composition and machine 

learning approaches. Chou’s pseudo amino acid composition methodology was 

developed to improve the allergen prediction efficiency of proteins at sub cellular 

location and membrane proteins respectively. They used Support Vector Machine for 

the prediction, which considers vector presentation of the sequences obtained from 

sequence characteristics. The dataset used to generate the model was obtained from 

AIgPred web-server. The dataset contained 460 positive protein entries and 560 

negative protein entries. In Chou’s simulated amino acid construction, they considered 

hydrophobic, hydrophilic, isoelectric point, pK1 and pK2 characteristics of the amino 

acids. Accuracy obtained on the dataset by them was 91.9% and Mathew’s correlation 

coefficient value obtained was 0.82. They also compared these prediction results with 

other programs like AlgPred and found that their algorithm gives efficient accuracy 

than the one compared with (Mohabatkar et al., 2013). 

2.5.7 proAP 

In 2013, (Wang et al., 2013), comprehensively analysed computational based methods 

for allergen prediction. They combined these methods and developed a new tool named 

as proAP. Support vector machine, sequence and motif-based approaches for allergen 

prediction were analysed and they found that support vector machine-based approach 

provided top accuracy and specificity when tested on a dataset of 989 verified allergens 

and 244,538 non-allergens (Wang et al., 2013). ProAP tool was able to predict the 

query allergen through world-wide-web search available at 

http;//gmobl.sjtu.cn/proAP/main.html, but the link was inaccessible on 21 Feb. 22.  
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2.5.8 Artificial neural network-based allergen prediction model 

Artificial neural network-based model was developed to evaluate the allergenic 

potential of the various proteins. Two distinct algorithms were coded consisting of 

three and four steps and their prediction potential was determined on 2427 positive and 

2427 negative instances respectively. The positive protein sequences were retrieved 

from Central Science Laboratory allergen database, Food Allergen Research and 

Resource Program allergen database, SDAP and Allergome database, while, the non-

allergen protein sequences of commonly used food such as bread wheat, tomato, potato, 

pepper, Asian and African rice were obtained from Swiss-Prot to constitute the 

negative dataset. In three-step algorithm, firstly characters of amino acids which 

includes size, hydrophobicity, relative abundance, beta strand and helix propensities 

were considered. Secondly, they converted strings into vectors of same length via auto 

and cross covariance. In last step, Artificial neural network was employed to develop 

the model. In terms of their performance, three-step algorithm was able to predict 82% 

of the allergens and non-allergens in contrast to four-step algorithm, which was able to 

predict 76% positive and negative protein entries. They also compared various web 

tools available for predicting allergenic potential and found that some tools identify 

allergens and some non-allergens with great accuracy, and finally concluded that 

utilization of multiple prediction tools is necessary for accurate allergenicity 

assessment of query proteins (Dimitrov et al., 2014). 

2.5.9 Allerdictor 

In 2014, (Dang and Lawrence, 2014) developed a tool named Allerdictor for the 

prediction of allergenic proteins by application of text classification. This method was 

based on sequence-mediated prediction of allergens and was able to predict large 

number of protein sequences with effective accuracy in quick response time. The tool 

directs the protein sequences into text document and applies support vector machine for 

the allergen prediction. On comparison with other existing prediction tools like 

AllerHunter, AlgPred and SORTALLER, this method surpasses accuracy of these tools 

and retrieves the results in quick time. They also found that Allerdictor examined 

approximately 540000 protein sequences from Uniprot (https://www.uniprot.org/) in 

around six minutes and identified less than 1% of sequences as allergenic (Dang and 
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Lawrence, 2014). However, the respective web link http://allerdictor.vbi.vt.edu/ for the 

tool was inaccessible on 24 Feb. 22. 

2.5.10 PREALW 

In 2017, (Li and Wang, 2017), introduced a new algorithm named as PREALw which 

combines PREAL, FAO/WHO methodology for allergen prediction and motif-based 

method for allergenicity assessment. It considers weighted score for the allergenicity 

prediction of query sequences. This method was termed as integrative because of the 

combination of various prediction methods in order to embed the characteristic of 

various methods and overcome the limitation of individual predictions. The method 

was regarded as best suitable for the prediction of crops allergens. The dataset used for 

the prediction consists of 830 recognized allergens and non-allergens. The method 

developed gives the accuracy of 85.9% with area under curve value 0.87 which 

surpasses prediction accuracy of FAO/WHO and PREAL criteria for allergen 

prediction respectively. They also provided status of the allergens in crops (soybean, 

wheat, and maize). These crops had 3988 allergens out of which 846 were confirmed 

and 3142 allergens were predicted by the generated model. It was observed that 

soybean had 92 confirmed and 299 predicted, rice had 151 confirmed and 927 

predicted, maize had 121 confirmed and 932 predicted and wheat contained 482 

confirmed and 984 predicted allergens respectively (Li and Wang, 2017). The web-

server for the developed model can be accessed at 

http://lilab.life.sjtu.edu.cn:8080/prealw/index.php. 

2.5.11 Random Forest model for allergenicity assessment 

In 2019, (Westerhout et al, 2019), designed a random forest model for the allergenicity 

assessment of query protein sequences. The dataset was constituted by 525745 

instances out of which 1673 were considered allergen and rest non-allergen protein 

instances. The model was developed on 29 descriptors including physicochemical and 

biochemical parameters. Some of the features include GRAVY, aliphatic index, 

instability index, extinction coefficient, amino acids number, secondary structure 

proportion and positively and negatively charged amino acids. The developed model 
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was able to achieve more than 85% of sensitivity, specificity, and accuracy respectively 

(Westerhout et al, 2019). 

2.5.12 Deep Learning and Ensemble Learning for allergenicity assessment 

Recently, in 2021, (Wang et al, 2021) employed deep learning and ensemble learning 

techniques for the allergenicity assessment of the query proteins. The dataset used for 

model development consists of 583 positive and 600 negative protein instances which 

were non-redundant respectively. The dataset was further processed to obtain the 

pseudo amino acid composition vectors which were further subjected as input for deep 

learning and ensemble model development and lastly comparative analysis with other 

available models was carried out. Through five-fold cross-validation they observed that 

deep learning model produced comparatively highest area under curve (AUC) value of 

0.95. They also pointed out the concern that deep learning model required prior training 

and this time was observed to be prolonged in order to perform evaluation of the query 

sequences (Wang et al, 2021). 

2.5.13 AIgPred 2.0 

(Sharma et al, 2021) in 2021, introduced an updated version of the AIgPred (section 

2.5.2) for the allergenicity assessment. The model was developed on 10075 positive 

and negative instances respectively. The dataset was employed in the ratio of 80:20 for 

training and testing respectively and 5-fold cross validation was opted. The techniques 

employed for model development were homology-based assessment, presence of IgE 

epitopes, motif similarity, machine learning classifiers and hybrid approach combining 

all the techniques out of which the best model provided them with receiver operating 

characteristics curve (ROC) value of 0.98 (Sharma et al, 2021). The web-server for the 

developed model can be accessed at https://webs.iiitd.edu.in/raghava/algpred2/. 

Conclusively, the food allergy exists from the ancient time as discussed in the historical 

background of the section which present the different aspects of considering the impact 

of food allergy reactions and their understanding towards avoiding the consumption of 

allergenic food sources. Further insights into the food allergens revealed the antigenic 

part which is responsible for causing the associated reactions and thus the 

immunological bases were also revealed. Further the race to develop a standardised 
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food allergy test kit had numerous complications and till now the associated worldwide 

organisations rely on a weight of evidence manner to assess the allergenicity potential. 

We also reviewed some papers in which we have observed a significant reduction in 

allergenicity of the food sources undergoing various processing techniques and can 

conclude to a point that allergenic protein potential might have a significance to their 

conformation. The evolution of the allergenicity prediction tools by utilising numerous 

sequence and structural features helped to analyse the present state of the allergenicity 

prediction models. 
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Chapter 03 

Research Gap 

Presently, computational biology approaches have been extensively utilised for the 

allergenicity assessment of foreign proteins. Numerous web-servers and models have 

been developed recently which are based on homology search with known allergen, 

motif-based approach, identification of IgE epitopes, support vector machine, and 

pseudo amino-acid composition, and artificial neural networks for allergenicity 

assessment of proteins. Some studies have also utilised the physicochemical features 

like aliphatic index, GRAVY, molecular weight, polarity, amino acid composition and 

hydrophobicity as input features and resulted in improved efficiency of the model.  

 After an in-depth analysis of these utilities, it was observed that systematic 

physicochemical space mining pertaining to food allergens have been partially 

explored.  

 For the first-time Correspondence and RAAU (relative amino acid usage) 

analyses will be employed on food allergen dataset to dynamically explore 

their physicochemical space and further those findings (distinct protein 

allergen features) will be translated towards development of machine learning 

based protein allergenicity assessment model. 
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Chapter 4 

Research Objectives 

Objective 1: Computational analysis (sequence, structure, and function) of food crop 

            allergen proteins. 

Objective 2: Machine learning (SVM and RF) tool development for prediction of  

           food allergens. 

Objective 3: Application of the developed model/tool for genome-wide prediction of 

           food allergen.  

Objective 4: Expression validation of few food allergens by RNA-Seq data analysis. 
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Chapter 5 

Materials and Methods 

5.1 Computational analysis (sequence, structure, and function) of food crop             

allergen proteins 

5.1.1 Multiple sequence alignment of human versus food allergen profilins 

Protein sequences of human profilins having Uniprot accessions P07737 (Human 

profilin-1), P35080 (Human profilin-2), P60673 (Human profilin-3) and Q8NHR9 

(Human profilin-4) were aligned with food allergen profilins Q84RR7 (Apple 

profilin), Q94JN2 (Pineapple profilin), B6EF35 (Wheat profilin) and O65810 

(Soybean profilin) respectively by using the ClustalW web-server (Thompson et al., 

2003). Apart from selecting slow/accurate parameter, rest of the settings were kept at 

default to obtain the alignments. 

5.1.2 Molecular modelling of the food allergen profilins  

Protein sequences of the profilins from apple, pineapple, wheat and soybean were 

subjected to homology modelling (unavailability of experimentally elucidated 3D 

structure) by the SWISS Model webserver https://swissmodel.expasy.org/ at default 

parameters to obtain their three-dimensional confirmations. This tool develops the 

homology model by recognition of the template structure for the target protein 

followed by target protein sequence alignment with the template structure. After this 

the model generation and evaluation are done by the SWISS MODEL server 

(Waterhouse et al., 2018). Subsequently, the template pdb structures were retrieved 

from RCSB (Research Collaboratory for Structural Bioinformatics) PDB (Protein 

Data Bank) at https://www.rcsb.org/ shown in Table 5.1. 

5.1.3 Molecular dynamics simulation analysis  

The molecular dynamic simulation studies help to evaluate the stability of the 

modelled confirmations (Kar et al., 2021). The molecular dynamic simulation of the 

modelled structures was performed for 10 nano seconds using the Gromacs software 

version 5.1.1 (Kar et al., 2021; Van Der Spoel et al., 2005). The molecular dynamic 
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simulation steps were followed as referred in the (Kar et al., 2021). The box center of 

3.111, 3.111, 3.111 nm and box vector of dimension 6.223, 6.223, 6.223 were 

observed in cubic box type for the modelled pineapple profilin protein. OPLS-all 

atom force field (2001 amino acid dihedrals) was used to generate the topology of 

modelled structures (Jorgensen et al., 1996). The simple point charge extended (spce) 

water model was considered to solvate the box and charged protein was observed 

having -7 electrons of total charge. The box was charge neutralised by adding 7 

sodium ions and topology was processed. Fourier grid of dimension 40x40x40 and 

spacing of 0.156, 0.156, 0.156 was used for x, y and z axis respectively. NVT 

ensemble with constant volume and temperature were used to achieve the 

equilibration and the simulations were performed at 1.013 bar of pressure and 300 

Kelvin temperature (Kar et al., 2021). The molecular dynamics trajectory was 

analysed by the RMSD (Root Means Squared Deviation) values. Similarly, the 

simulations were carried out for the modelled profilins from apple, wheat and soybean 

respectively. 

5.1.4 Virtual Screening of the modelled allergen profilins 

Virtual screening of all the profilins listed in table 1 was carried out using the Pharmit 

web server available at http://pharmit.csb.pitt.edu/index.php (Sunseri and Koes, 

2016). The web server allows the user to explore interactive chemical space and 

return significant hits using state-of-the-art algorithms. The significant hits were 

filtered based on energy minimised score and RMSD values. The pharmacophore 

search for the profilin protein was explored against the ZINC database (Sterling and 

Irwin, 2015). Pharmit also provides a hit screening option, which was employed in 

present study to retrieve more significant hits by considering Lipinski’s Rule of Five 

(Lipinski, 2004) and Veber’s rule for drug-likeness (Veber et al., 2002). All the 

parameters of drug-likeness considered in the present study are detailed in Table 5.2. 

5.1.5 Molecular Docking and Drug likeness 

Top hits obtained by the Pharmit virtual screen were further subjected to docking 

analysis using fast and efficient molecular docking module AutoDock Vina available 

at http://vina.scripps.edu/ (Trott and Olson, 2010). The docked conformations were 
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further processed by the PLIP (Protein-Ligand Interaction Profiler) webserver 

https://projects.biotec.tu-dresden.de/plip-web/plip/index to get non-covalent 

interaction map among the docked conformations. The physicochemical profiles of 

the pharmacophores for their bioavailability were revealed using SwissADME (Daina 

et al., 2017) and admetSAR (Cheng et al., 2012) web servers. 

Table 5.1 List of profilins considered in the study along with their Uniprot accessions 

and templated PDB ID used for homology modelling. 

 

Table 5.2 Hit screening parameters employed at Pharmit with reference to Lipinski’s 

rule of five and Veber’s rule. 

Profilin source 

organism 
Allergome code Template used Uniprot ID 

Apple Mal d 4 5NZB Q84RR7 

Pineapple Ana c 1 5FDS Q94JN2 

Wheat Tri a 12 5FEF B6EF35 

Soybean Gly m 3 4ESP O65810 

Screening parameter Value range 

Molecular weight 150 to 500 Daltons 

No of rotatable bonds 0 to 9 

LogP (measure of lipophilicity) 0 to 5 

PSA (Polar Surface Area) 0 to 140 Å2 

Aromatics 0 to 7 

No of H-bond acceptor 0 to 10 
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5.1.6 Data retrieval for differential amino acid usage analyses of profilin family 

Profilin protein sequences were retrieved from the Uniprot knowledge base 

(https://www.uniprot.org/) with search keywords “profilin AND reviewed: yes”. Only 

those protein hits were included in the dataset whose protein names were designated 

as Profilin, Profilin 1, 2, 3 up to 12. A total of 408 hits were retrieved from keyword 

search out of which 200 hits constituted the final dataset. The instances from the 

query search including names other than profilin like Myb-related transcription 

factor..., suppressor of yeast deletion..., actin-cytoplasmic-2..., cell division control 

protein..., vasp, BN-1 and others were excluded from the dataset. The Allergome 

database, a repository of the allergen molecules, was referred to classify the profilin 

as allergens and non-allergens. The final dataset comprised of 164 allergen and 36 

non-allergen profilins respectively. The index of the final dataset has been provided in 

Appendix 1. 

5.1.7 Estimation of relative amino acid usage 

Relative amino acid usage (RAAU) refers to number of times a particular amino acid 

occurs in a protein relative to the total number of amino acids in that protein. In other 

words, the amino acid usage reveals the frequency of each amino acid in a protein 

(Peden, 2000). RAAU of the dataset was calculated using the CodonW (Ver. 1.4.2) 

software available at http://www.molbiol.ox.ac.uk/cu (Peden, 2000). 

 

RAAU(𝑖) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  ᇱ𝑖ᇱ𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑𝑠

Total number of amino acids
 

                                        Where ‘i’ represents any of the amino acid 

 

 

No of H-bond donor 0 to 5 
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5.1.8 Correspondence analysis  

Correspondence analysis (CoA), a multivariate statistical method, has been effective 

in addressing the variations in amino acid usage (Roy and Basak, 2021). It allows the 

user to explore the systematic synonyms codon/amino acid usage patterns of query 

genes/proteins (Peden, 2000). CoA represents major features of data variation by 

placing them along continuous axis according to the differential patterns observed, 

with each consecutive axis having a diminished effect (Greenacre, 1984). CodonW 

was used to generate CoA based on RAAU data of the concerned profilin sequences. 

5.1.9 Calculation of physicochemical features 

The web-servers GlobPlot 2 (http://globplot.embl.de/), Protein-Sol (https://protein-

sol.manchester.ac.uk/) and PeptideCutter (https://web.expasy.org/peptide_cutter/) 

were used to calculate the disorder, solubility, and trypsin digestion properties of the 

profilin proteins respectively, with default parameters.  

5.1.10 Statistical analysis 

The SPSS v17.0 software was used to calculate Pearson’s correlation analysis at 

significance levels of P < 0.05 and P < 0.01. 

5.1.11 Sequence and structural analyses of allergen profilins 

All the allergen profilins having experimentally resolved 3D structures were 

processed for in-depth sequence and structure analyses. The search query term 

“profilin” AND “allergen” at the PDB was used. The high-resolution PDB structures 

5FEG (Hev b 8), 5EMO (Art v 4), 5NZB (Bet v 2), 6MBX (Cuc m 2), 7KYW (Phl p 

12), 5FEF (Zea m 12), 4ESP (Ara h 5) and 5EM1 (Amb a 8) corresponding to the 

allergen profilins from Hevea brasiliensis (Hev b 8), Artemisia vulgaris (Art v 4), 

Betula verrucosa (Bet v 2), Cucumis melo (Cuc m 2), Phleum pratense (Phl p 12), 

Zea mays (Zea m 12),  Arachis hypogaea (Ara h 5) and  Ambrosia artemisiifolia 

(Amb a 8), respectively, were retrieved from PDB. Furthermore, the corresponding 

protein sequences were retrieved from UniProt and were subjected to multiple 

sequence alignment using the MEGAX software (Kumar et al. 2018). The z-scores of 

the alignment were computed employing the multi-Harmony web-server 
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https://www.ibi.vu.nl/programs/shmrwww/ (Brandt et al., 2010). The surface exposed 

residues were identified through the GETAREA web server 

(http://curie.utmb.edu/area_man.html) (Fraczkiewicz and Braun, 1998). 

5.2 Machine learning (SVM and RF) tool development for prediction of food 

allergens 

5.2.1 Dataset curation, descriptors selection and numerical indices calculation 

The positive dataset for the study was constituted by including literature verified food 

allergen protein instances retrieved from Allergen online 

(http://www.allergenonline.org/), WHO/IUIS Allergen Nomenclature 

(http://allergen.org/) and SDAP (Structural Database of Allergenic Proteins) at 

(https://fermi.utmb.edu/), whereas the negative dataset was curated from Uniprot 

database having non-allergen protein instances verified from pathology and biotech 

section under protein annotation window (Not assigned any allergome ID or studies 

linked to allergenic properties stimulation). Further, all the instances which contains 

the keywords “Profilin”, “Sesame”, “Sesamum indicum” were excluded from the 

dataset to avoid biased results. The final dataset was constituted by 1200 non-

redundant instances having equal ratio of positive and negative entries. 

Differential amino acid usage analysis (profilin family) and in-depth literature studies 

revealed sequence and structure-based properties distinctive of allergen proteins. 

Further, these properties were mapped with AAIndex database at 

https://www.genome.jp/aaindex/ to retrieve numerical indices of the respective 

descriptors. The final index of descriptors considered in the study are shown in Table 

5.3. Lastly, the numerical indices of the entire manually curated dataset were 

generated by in-house developed script using MATLAB (Higham and Higham, 2016). 

5.2.2 WEKA for machine learning model development 

WEKA (Waikato Environment for Knowledge Analysis) version 3.8.4, allows the 

users to generate array of machine learning based models on the various datasets (Hall 

et al., 2009). It includes algorithms of clustering, classification, regression and feature 

selection (Hall et al., 2009). WEKA also allows to perform cross-validation of the 
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developed models along with data visualisation options (Hall et al., 2009). The tool 

was employed in the present study to develop and cross-validate supervised machine 

learning models on the curated dataset. Initially the curated dataset was uploaded in 

the WEKA interface under the pre-process panel and under the classify tab the desired 

classifier was chosen. Further under the test option, ten-fold cross-validation was 

opted in which 90 percent of the data was used as training data and rest of the 10 

percent was employed as testing data for all of the developed models. 

Initially, ZeroR classifier was employed to calculate the baseline accuracy of the 

model with respect to the dataset (Hall et al., 2009). The classifier acts as a model 

classifier to compare with other classifiers (Hall et al., 2009). Further, Supprot Vector 

Machine (SVM) and Random Forest (RF) models were generated using 

functions.LibSVM and trees.RandomForest classifiers in the WEKA suite. The SVM 

classifier in case of linearly separable state provides an optimal hyperplane which best 

separates each class. The optimal hyperplane is achieved by maximising the margin, 

which is a distance from hyperplane boundary to the closest class value (Jackins et al., 

2021). On the other hand, Random Forest (RF) classification systems are 

ranked/ordered classification in the form of decision-tree. This classification system 

identifies the best descriptors for a dataset based on probability and returns a tree-

based classification model for the dataset (Jackins et al., 2021).  

5.2.2a Evaluation of the developed classifiers 

True Positive (TP) Rate: TP rate is the proportion of examples which were classified 

as class x, among all examples which truly have class x, which means how much part 

of the class was captured. It is equivalent to Recall (Hall et al., 2009). Similarly, 

accuracy is evaluated by (Saha et al., 2006). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

False Positive (FP) Rate: FP rate is the proportion of examples which were classified 

as class x, but belong to a different class, among all examples which are not of class x 

(Hall et al., 2009). 
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Precision: The Precision is proportion of examples which truly have class x among all 

those which were classified as class x (Hall et al., 2009). 

F-Measure: The F score is simply a combined measure for precision and recall (Hall 

et al., 2009). 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =  2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Mathew’s Correlation Coefficient (MCC) Value: The MCC is a measure of the 

classifier’s classification potential. Its value ranges from -1 to 1, where -1 represent 

the misclassification and 1 depicts perfect classification. MCC value of 0.5 signifies a 

random classification by the classifier (Hall et al., 2009). 

𝑀𝐶𝐶 =  
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃) × (𝑇𝑃 + 𝐹𝑁) × (𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁)
 

Receiver Operating Characteristics (ROC) Area: The ROC Curve is a measure to 

evaluate the performance of a binary classifier by plotting a graph between TP rate 

and FP rate (Hall et al., 2009). 

Table 5.3 Descriptors considered in the study along with their AAIndex accessions. 

Descriptor AAIndex/Web server Reference 

Hydrophobicity ARGP820101 Kopper et al., 2005 

Flexibility BHAR880101 Breiteneder and Mills, 2005 

Helix propensity KANM800101 Breiteneder and Mills, 2005 

Strand propensity GEIM800105 Breiteneder and Mills, 2005 

Size AllergenFP Dimitrov et al., 2014a 

Relative abundance AllergenFP Dimitrov et al., 2014a 

D1 (B-values) VNM940102 Han et al., 2009 

D2 (Transfer free BULH740101 Han et al., 2009 
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energy to surface) 

D3 (Knowledge-based 

membrane-propensity 

scale from 3D_Helix) 

PUNT030102 Han et al., 2009 

D4 (Normalized 

frequency of beta-turn) 
CHOP780203 Han et al., 2009 

D5 (Normalized 

frequency of C-

terminal non beta 

region) 

CHOP780211 Han et al., 2009 

 

5.3 Application of the developed model/tool for genome-wide prediction of            

food allergen 

To proceed with independent dataset testing of the developed model, the 

representative genome of Sesamum indicum cultivar: Zhongzhi No. 13, BioProject 

accession: PRJNA268358 was considered (Wang et al., 2016). The proteome 

corresponding to the accession having 24,106 instances was retrieved and associated 

numerical indices were calculated for the dataset by in-house developed script. 

Finally, using WEKA the test dataset was evaluated by allocating the corresponding 

indices file in arff (Attribute Related File Format) file extension and predictions were 

analysed. 

5.4 Expression validation of few food allergens by RNA-Seq data analysis 

5.4.1 Transcriptomic data retrieval from NCBI-SRA 

Transcriptomic data of indigenous Sesamum indicum having accession ID- 

SRR12153208 performed on Illumina NovaSeq 6000 platform was retrieved from 

NCBI-SRA toolkit. The run was having 18.7 Giga bases with total size of 5.6 GB. 

The run generated 6202914 raw reads with each read having length of 151 bases.  

5.4.2 Evaluation by the FastQC 
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This tool was employed to check for the quality of the raw sequencing data which 

should be resolved before moving further to avoid any false positive results 

(Andrews, 2010). The module analyses the raw sequencing data by various measures 

like per sequence quality score which displays a graphical representation of sequence 

quality score in the data and displays warning if the average quality score value 

lowers than 27 representing 0.2 percent sequencing error rate (Andrews, 2010). 

Further, it allows to detect the presence of adapters in the raw sequencing data which 

should be filtered before further processing (Andrews, 2010). 

5.4.3 Trimmomatic for the removal of adapter content from the transcriptomic data 

The Trimmomatic tool in the present study was employed to resolve the presence of 

adapter content in the raw data in order to prevent from generating false positive 

results. Additionally, this tool also helps to remove the low-quality bases or any other 

type of unwanted contamination from the query data (Bolger et al., 2014). The 

performance of the current protocol was carried out on high-performance 

computational system- Dell Precision Tower 3620 (RAM- 32GB) on Ubuntu Desktop 

20.04 LTS operating system.  

 

Figure 5.1 Command line execution window of Trimmomatic tool. 
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5.4.4 Spliced Transcripts Alignment to a Reference (STAR) for transcriptome 

mapping and differential expressional studies  

This module was utilised in the present investigation for contig 

assignment/construction of the transcriptomic data. The contig assignment was carried 

out by mapping the transcripts to annotated features of Sesamum indicum cultivar: 

Zhongzhi No. 13, BioProject accession: PRJNA 268358. STAR algorithms are well 

known to provide intensive accuracy with mapping speed of 50x more than other 

alignment programs but it requires large storage space (Dobin et al., 2013). The 

mapping process of the program includes looking for the seeds followed by cluster 

generation, joining the reads and finally scoring of the reads (Dobin et al., 2013). For 

every read of the query transcriptomic data, the STAR algorithms look for highest 

sequence length that overlaps with the reference genome. Now, the unmatched part of 

the read is further searched to look for its highest sequence length that matches the 

reference genome and by this generation of numerous seeds takes place (Dobin et al., 

2013). In case of the unmatched read sequence, the algorithm extends the previous 

seeds and performs the scoring which in turn if gave poor alignment score then the 

associated read portion will be assigned as contamination or adapter content. After 

this the generated seeds are joined together (a) based on their tendency of being close 

to the corresponding seeds (b) the seeds which are mapped to single location in the 

reference genome (c) arrangement of reads which gives best mapping score based on 

insertion, deletion, mismatch and gaps in order to form the complete read. 

By using -quantMode option in the STAR (version 2.7.9a) binary number of reads 

mapped to the reference genes of Sesamum indicum Zhongzhi No., 13 were analysed 

(Dobin et al., 2013). A read count is considered only if it matches by one or more 

nucleotides to a single gene of reference genome (Dobin et al., 2013). After this, 

normalised mapped reads value was calculated by using the following equation. 

 

Normalized mapped reads percent for n gene =
Number of mapped reads for n gene

Total number of mapped reads 
 × 100 
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Figure 5.2 STAR command line execution window. 

 

Figure 5.3 Schematic representation of proteome wide prediction and RNASeq data 

analysis for sesame. 
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Chapter 6 

Results & Discussion 

6.1 Computational analysis (sequence, structure, and function) of food crop           

allergen proteins 

The omnipresence of profilin expression in eukaryotic organisms has led to 

allergenicity assessment triggered by profilin proteins in animal and human (Santos 

and Van Ree, 2011). During the first identification of profilin allergen Bet v 2, in 

white birch pollen (Betula verrucosa), the IgE auto-reactivity to the human profilin 

has been confirmed by immunoblot assay in birch pollen sensitised individuals 

(Valenta et al., 1991). Although, the binding dynamics of IgE to human profilin were 

observed to be nominal but through basophil activation test the histamine release was 

found in only those patients which had higher IgE expression against allergen profilin 

from birch pollen. To further investigate on this account, we have performed sequence 

analysis of all human profilin isoforms against the allergen profilins from apple, 

pineapple, wheat, and soybean. 

6.1.1 Sequence alignment profiles of human versus food allergen profilins 

Human profilin sequences were aligned with food allergen profilins (apple, pineapple, 

wheat, and soybean) to find the degree of identity among them. The multiple 

sequence alignment profile of the human and food allergen profilins is shown in 

Figure 6.1 and subsequently the percent identity matrix of obtained alignment is 

shown in Table 6.1. Human profilin- 1 showed 22%, 17%, 21%, 22% of identity with 

food profilins from apple, pineapple, wheat, and soybean respectively. Human 

profilin-2 isoform was found to be 27%, 24%, 23%, 22% identical to apple, 

pineapple, wheat, and soybean profilins respectively. Similarly, lower sequence 

identity of 12%, 19%, 23%, 12% of human profilin-3 was seen with apple, pineapple, 

wheat, and soybean profilins respectively. Human profilin-4 showed 24%, 24%, 21%, 

24% of sequence identity against apple, pineapple, wheat, and soybean profilins 

respectively. Thus, percent identity matrix revealed a very low level (< 24%) of 
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identity among aligned human and food allergen profilins from apple, pineapple, 

wheat, and soybean.  

This lower sequence identity of human profilins against profilin food allergens from 

apple, pineapple, wheat, and soybean corresponds to previous studies which have also 

demonstrated 34% sequence identity of human profilin against the birch pollen 

allergen profilin (Valenta et al., 1991). Another major contributor to rarely observed 

animal profilin mediated allergic responses is the taxonomical relativeness of profilins 

from human and animal and also observed in our investigation, a low degree of 

similarity between human and plant profilins from apple, pineapple, wheat, and 

soybean which cancels out the phenomenon of IgE cross-reactivity (Santos and Van 

Ree, 2011). In addition to this, the plant profilins generate the sensitivity via the 

respiratory system and then due to high-level similarity with food profilins exhibits 

cross-reactivity, while animal profilins are consumed orally and gets digested before 

being presented to the associated digestive immune system (Santos and Van Ree, 

2011). 

 

Figure 6.1 Multiple sequence alignment profile of human versus food allergen 

profilins. The identical amino acids identified by the alignment are highlighted in 

yellow colour. 
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Table 6.1 Percent identity profile of the aligned human and food allergen profilins 

respectively. 

 
Human 

profilin-1 

Human 

profilin-2 

Human 

profilin-3 

Human 

profilin-4 

Apple 

profilin 
22 % 27 % 12 % 24 % 

Pineapple 

profilin 
17 % 24 % 19 % 24 % 

Wheat 

profilin 
21 % 23 % 23 % 21 % 

Soybean 

profilin 
22 % 22 % 12 % 24 % 

 

6.1.2 Structural evaluation of modelled food allergen profilins 

Elucidation of 3-dimensional conformations of proteins are essential to explore their 

functional properties at macromolecular level, which in-turn opens a wide array of its 

utilisations in associated domains (Waterhouse et al., 2018). Proteins and their 

associated interactions are essential components responsible for regulating various 

cellular-level processes and their comprehension allows us to regulate these systems 

(Waterhouse et al., 2018). Although, electron microscopic based technologies have 

evolved the dynamics for structural elucidation, but there is a void between protein-

protein association determination strategies (including yeast-2-hybridisation assay, 

phage display method and affinity chromatography) which provides high-rate output 

and number of newly experimentally resolved protein conformations. This certainly 

demands the intervention of computational strategies to perform protein modelling 

functionalities (Waterhouse et al., 2018). 

Profilin from apple, pineapple, wheat, and soybean has been associated with 

triggering IgE mediated responses in atopic individuals (Ma et al., 2006; Reindl et al., 
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2002; Rihs et al., 1994; Rihs et al., 1999). In the present study profilin allergens were 

explored computationally to develop homology models as their experimentally 

resolved structures were unavailable. The homology modelling of the profilin from 

apple, pineapple, wheat, and soybean opens the space for secondary-structure level 

comparisons. The best-modelled structures of these profilins are shown in Figure 6.2. 

The deduced 3D model shows that the profilins possess an equal number of helices 

and strands, contributing to their structural-level similarity. Profilin from apple, wheat 

and soybean were observed to have four helices while pineapple has three helices. All 

the modelled profilins also possess seven strands and 11 loops, as shown in Figure 

6.2. Similar observations have been obtained in case of profilin structures from 

tomato and latex validating the correctness of deduced structure in the present 

analysis (Włodarczyk et al., 2022). 

The Ramachandran plot has been utilised extensively in protein informatics and is 

recognised as best tool to evaluate the quality of modelled proteins. The plot analyses 

the modelled conformations by projecting the phi (N-Cα) and psi (Cα-C) angles of 

amino acids in a 2-dimensional space. The plot considers Vander walls radius by 

taking atoms as spheres and for this, phi and psi angles possible rotations represents 

favoured regions respectively and the angles at which these atomic sphere clashes 

were referred to as disallowed regions in the plot (Ramachandran et al., 1963). 

The Ramachandran plot of the profilins revealed that 96.12%, 96.12%, 96.90% and 

98.43% amino acids of the apple, pineapple, wheat, and soybean, respectively, lies 

under the favoured region as shown in Figure 6.3. These values validate the accuracy 

of steric conformations in the modelled profilin structures. 

The MolProbity score, evaluating the modelled-protein quality, corresponds to the 

crystallographic resolution at which the modelled structure assumed to be obtained 

(Davis et al., 2007). MolProbity score of 1.31, 1.16, 1.37 and 1.10 for the modelled 

profilins from apple, pineapple, wheat, and soybean respectively depicts the good 

model quality as the lower resolution value corresponds to better modelled structure. 
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Figure 6.2 Homology modelled 3D structures of profilin from apple, pineapple wheat 

and soybean. Various secondary conformations of the model like helix, strand and 

loop are represented by blue, red, and purple colour respectively. 

 

Figure 6.3 Ramachandran plot of the modelled profilins from apple, pineapple, 

wheat, and soybean. 
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6.1.3 Molecular dynamics simulation analysis of the modelled profilin structures 

The modelled allergen profilins from apple, pineapple, wheat, and soybean were 

subjected to molecular dynamics simulation for 10 nano seconds and based on RMSD 

values their conformational stability was analysed. RMSD values are obtained based 

on comparing the atomic co-ordinates of the query molecule at any time of simulation 

with the coordinates of the reference structure (Van Der Spoel et al., 2005). The 

RMSD plot of the 10 nano second simulation is shown in Figure 6.4. Initially, we saw 

a spike in the RMSD of all the modelled profilins which was around 2 Å for apple and 

pineapple, whereas it was around 3 Å for wheat and soybean. The fluctuation in the 

RMSD was observed approximately till 0.64 nano second for apple. The pineapple 

modelled structure was observed to fluctuate till 0.19 nano second. The fluctuation in 

wheat modelled profilin structure was observed until 0.60 nano second. Lastly, 

soybean profilin structure was observed to show fluctuation in their atomic 

coordinates till 0.17 nano second. After the observed fluctuations in the initial phases 

of the simulation their atomic coordinates were observed to attain equilibrium in all 

cases. Thereafter, stability was observed in all the modelled profilins which was 

around 1.2 Å for modelled apple profilin. Pineapple simulated modelled structure 

showed stability by showing fluctuations around 2.3 Å till complete simulation. 

Wheat profilin was subjected to simulation which showed fluctuations around 0.2 Å 

post equilibrium attainment. Soybean profilin was observed to fluctuate with RMSD 

value of 2.2 Å post equilibrium till the complete simulation cycle. Least RMSD value 

corresponding to better stability was seen in modelled profilin structure of wheat and 

apart from this all other profilins were not showing fluctuation more than 2.2 Å after 

the initial phase. From this, the stability of modelled profilins can be conferred and 

hence were opted as suitable receptor for the virtual screening studies. 
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Figure 6.4 RMSD plot of the modelled allergen profilins from Mal d 4 (apple), Ana c 

1 (pineapple), Tri a 12 (wheat) and Gly m 3 (soybean). The x-axis represents the time 

in nano seconds, whereas y-axis denotes RMSD values in Å. 

6.1.4 Virtual screening of the modelled profilins from apple, pineapple, wheat, and 

soybean 

The utilisation of structural dynamics of a drug-target molecule has become an 

important aspect to screen activity-specific pharmacophores in a time and resource 

saving manner (Lionta et al., 2014). Application of tertiary structure information has 

advantage over the conventional drug discovery hierarchy since it utilises the 

conformational aspect of the target molecule causing any disease (Lionta et al., 2014). 

The application of computational strategies during the process of drug design and 

development has completely changed the dynamics of pharmacophore identification 

by providing significant hits in lesser time and resource utilisation (Lionta et al., 
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2014). Virtual screen allows the user to perform computationally assisted screening 

against the query receptor molecule to identify the best hits from libraries of 

purchasable pharmacophores (Lionta et al., 2014).  

Taking this into account the virtual screening against the modelled allergen profilin 

was performed by using a suitable web server to search for the suitable 

pharmacophores against the ZINC (purchasable) library. The Pharmit web server 

retrieved the best pharmacophore hits based on energy minimised score and RMSD 

values. The best hits retrieved for the apple, pineapple, wheat, and soybean profilins 

are shown in Table 6.2.  

Table 6.2 Top ranked inhibitors screened by the Pharmit web server against ZINC 

(Purchasable) database for the allergen profilins. 

 

 

Further the best identified pharmacophores against the considered allergen profilins 

were explored as per their annotation in the referenced database. The first 

Profilin source organism ZINC ID Score mRMSD 

Malus domestica (Apple) ZINC000524729534 -9.99 0.778 

Ananas comosus 

(Pineapple) 
ZINC000000041632 -7.48 0.965 

Triticum aestivum (Wheat) ZINC000065529251 -7.92 0.733 

Glycine max (Soybean) ZINC000257349595 -7.85 1.455 
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pharmacophore ZINC000524729534, against the modelled allergen profilin has 

chemical formula of C27H42O6, having 6 rings, 33 heavy atoms with molecular weight 

of 462.627. The compound as per their characterisation in the dataset was categorised 

under the keyword anodyne and natural products. Next pharmacophore 

ZINC000000041632 screened against pineapple modelled allergen profilin was 

having chemical formula C15H9NO4 with 3 rings, 20 heavy atoms and molecular 

weight of 267.24. The pharmacophore was categorised under the standard library of 

the database as observed by associated keywords against the compound. The 

pharmacophore ZINC000065529251screened against the modelled wheat allergen 

profilin has molecular weight of 347.418 and chemical formula C21H21N3O2. The 

pharmacophore bears 4 rings, 26 heavy atoms and 6b hetero atoms. This compound 

was observed to be categorised under the anodyne library by the database and its 

analogs belong to the category of natural products. At last, ZINC000257349595 

screened against the modelled soybean profilin was having a molecular weight of 

352.471 and chemical formula C20H32O5. The pharmacophore was having 4 rings and 

25 heavy atoms. The pharmacophore was categorised under anodyne library by the 

database. Previously no data has been reported pertaining to the application of these 

pharmacophores and thus the present investigation through computationally was able 

to recognise their activity against the modelled allergen profilins (apple, pineapple, 

wheat, and soybean).  

6.1.5 Molecular docking analysis of the selected profilins against screened 

pharmacophores 

The observed activity of the screened pharmacophores allowed us to explore their 

molecular-level interactions with the modelled food allergen profilins from apple, 

pineapple, wheat, and soybean. The molecular docking programs allows the user to 

anticipate non-covalent interactions arising by virtue of the docked conformations 

between the receptor and its pharmacophore (Trott and Olson, 2010). In these 

algorithms the receptor molecules are deduced as fixed entity except for those regions 

which are capable of any rotation (Trott and Olson, 2010). The docked conformations 

of the receptor and ligand molecule is achieved by minimum energy space of the 

conformation, shape of the conformation and thermal factor (Trott and Olson, 2010). 



46 
 

Another major aspect of docking algorithms is to optimally attain the docked 

conformation accuracy while utilising the lesser computational time (Trott and Olson, 

2010). AutoDock Vina is one such algorithm with above mentioned features, was 

utilised in the present investigation to reveal the molecular interactions among the 

receptor food allergen profilins (apple, pineapple, wheat, and soybean) and screened 

pharmacophores against them. 

The visualisation of docked conformations of the profilins from apple, pineapple, 

wheat, and soybean against the screened pharmacophores were shown in Figure 6.5. 

Further, binding energy scores and the amino acids of the profilins taking part in the 

non-covalent interactions with pharmacophores are shown in Table 6.3. The docked 

conformation of the modelled apple allergen profilin and its screened pharmacophore 

were having -8.0 kcal/mol of the binding potential. Various non-covalent interactions 

were observed in the docked complex including hydrogen bond formation at Glu107 

and Glu108 residue number of the receptor profilin protein. Hydrophobic interactions 

were observed at position Pro40 and Leu110 of the apple profilin receptor molecule. 

Binding potential of -7.5 kcal/mol was observed at docked conformation of pineapple 

profilin and its pharmacophore. In this docked conformation, hydrophobic 

interactions were observed at sites Lys43, Glu46, Ala49, Leu60 and Tyr66 of the 

pineapple profilin. Binding energy of -7.5 kcal/mol was observed with docked 

conformation of modelled wheat profilin and its screened pharmacophore. In the 

docked conformation, hydrophobic interactions were observed at Glu45, Glu46, 

Ala48, Lys52, His59, Leu60, Thr63 and Phe66 positions of the wheat profilin receptor 

respectively. Salt bridge was also observed in the docked conformation at the position 

Glu46 of the wheat profilin receptor molecule. The docked conformation of the 

soybean profilin with its screened pharmacophore exhibited -10.0 kcal/mol of the 

binding energy.  Hydrogen bonds in the docked conformation was observed at Asp53, 

Gly58, Gly77 and Gly80 position of the soybean profilin receptor molecule. 

Hydrophobic interactions were observed in all the docked conformations. At the same 

time, hydrogen bonds were seen in the docked conformations of apple and soybean 

profilins, and lastly, a salt bridge was observed in the docked conformation of wheat 

profilin. Interestingly the pharmacophores were observed to be involved with non-
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covalent interaction at GLU46 and LEU60 position of the profilins from pineapple 

and wheat respectively. Various non-covalent interactions observed in the docked 

conformations of profilins are responsible for their strong binding energy potential 

and thus qualifies for the bioavailability profiling of associated pharmacophores.  

 

Figure 6.5 Docked conformations of the allergen profilins from apple, pineapple, 

wheat, and soybean along with their non-covalent interactions are referred to (a), (b), 

(c) and (d) respectively. Non-covalent interactions namely hydrogen bond, 

hydrophobic interactions and salt bridge are denoted by blue solid line, silver dotted 

line and yellow dotted lines respectively. 

Table 6.3 Interaction map of the best docked conformations of profilins from apple, 

pineapple, wheat, and soybean. Various interactions are represented by coded 

superscripts such as residues involved in hydrogen bond formation are represented by 

H, hydrophobic interactions by h, salt bridges by S. 
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6.1.6 Bioavailability analysis of the pharmacophores 

The bioavailability values of the docked pharmacophores were calculated by the 

SwissADME and admetSAR web servers to account for their compatibility in the 

form of oral dosage. According to Veber and Lipinski rule of five (LRO5), the 

parameters like drug-likeness, the number of hydrogen bond donor, the number of 

hydrogen bond acceptor, topological polar surface area, molecular weight, human 

intestinal absorption, and Abbott bioavailability score were determined as shown in 

Docked Conformation 
Binding Energy 

(Kcal/mol) 
Interacting Residues 

Malus domestica (Apple) vs 

ZINC000524729534 
-8.0 Pro40h, Glu107H, Glu108H and Leu110h 

Ananas comosus 

(Pineapple) 

vs ZINC000000041632 

-7.2 
Lys43h, Glu46h, Ala49h, Leu60h and 

Tyr66h 

Triticum aestivum (Wheat) 

vs ZINC000065529251 
-7.5 

Glu45h, Glu46S, Ala48h, Lys52h, His59S, 

Leu60h, Thr63h and Phe66h 

Glycine max (Soybean) vs 

ZINC000257349595 
-10.0 

Asp53H, Gly58H, Ala61h, Val74h, Gly77H 

and Gly80H 
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Table 6.4. LRO5 allows the user to screen potential pharmacophores in accordance 

with their physicochemical descriptors to behave as orally bioavailable molecule 

(Lipinski et al., 1997). This rule considers physicochemical properties and provides 

with a range of these descriptors which helps in screening suitable pharmacophores. 

Features like molecular weight, number of hydrogen bond donors (HBD), number of 

hydrogen bond acceptors (HBA) and partition coefficient are considered (Lipinski et 

al., 1997). As per the rule, an ideal orally bioavailable pharmacophore should have 

molecular weight less than 500. Number of HBD and HBA should be less than five 

and ten respectively for orally bioavailable molecule. The partition coefficient of a 

molecule refers to its potential to enter the cell membrane (Ahuja and Scypinski, 

2001). The partition coefficient is calculated by measuring the amount of the 

pharmacophore in equal ratio of organic and aqueous solvent after the state of 

equilibrium has been attained (Ahuja and Scypinski, 2001). The acceptable value of 

orally bioavailable pharmacophore with reference to LRO5 should be less than 5 

(Ahuja and Scypinski, 2001). The higher partition coefficient of a pharmacophore 

signifies its unchallenging potential to enter the cell membrane (Ahuja and Scypinski, 

2001). Veber had examined that pharmacophore with less than ten rotatable bonds 

and polar surface area of less than or equal to 140 Å2, were observed as suitable 

candidates to behave as orally bioavailable pharmacophores (Veber et al., 2002). 

Studies had shown that bioavailability of a pharmacophore is primarily driven by the 

human intestinal absorption process (Hou et al., 2007). This suggests the need to 

evaluate the HIA potential of the candidate pharmacophores and thus in the present 

scenario the HIA indices of all the screened pharmacophores were evaluated. Another 

score to evaluate the bioavailability of the pharmacophore is Abott Bioavailability 

score (Martin, 2005). The score allows the user to predict that whether a test 

compound will have bioavailability of more than ten percent in rats (Martin, 2005). 

The study pointed out that charge of the pharmacophore at human physiological pH 

drive the bioavailability profile of the respective molecule (Martin, 2005). Taking 

these into account, all the above discussed parameters were evaluated for the screened 

pharmacophores and their evaluation is discussed below. 
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The pharmacophore ZINC000524729534 screened against the modelled allergen 

profilin from apple was having six and three HBA and HBD respectively. The 

molecular weight of the pharmacophore was 462.62 Daltons, with no rotatable bonds. 

The topological polar surface area of the compound was calculated to be 96.22 Å2. 

Moreover, the compound was observed to HIA positive with index value of 0.81 and 

accepting the conditions of LRO5. The Abott bioavailability score of the 

pharmacophore was 0.55 suggesting the compound to be a good candidate to behave 

as orally bioavailable drug. Next, the pharmacophore ZINC000000041632, screened 

against the modelled pineapple profilin, had the molecular weight of 267.24 with 

topological polar surface area of 83.12 Å2. Number of HBA and HBD in the 

pharmacophore were four and one respectively with presence of two rotatable bonds. 

The HIA index for the pharmacophore was evaluated as positive with index of 1.00 

suggesting the compound to be highly suitable to behave efficiently in the form of 

oral dosage. The Abott bioavailability score of 0.56 also signify the pharmacophore to 

be good candidate to act as orally bioavailable drug and further these suggestions 

were consolidated by the point that it was also satisfying the parameters of LRO5. 

The pharmacophore ZINC000065529251, screened against the modelled allergen 

profilin from wheat had molecular weight of 347.41 Daltons and topological polar 

surface area of 58.36 Å2. The number HBA and HBD in the pharmacophores were 

observed to be three and 0ne respectively with presence of 5 rotatable bonds. The 

HIA index was observed to be positive for the compound with index of 1.00 

signifying the compound to be highly preferred to act as orally bioavailable drug. The 

Abott bioavailability score for the respective pharmacophore was 0.55 and was 

satisfying all the parameters of LRO5 to perform as orally bioavailable drug. At last, 

the compound ZINC000257349595, screened against the modelled allergen profilin 

from soybean possessed molecular weight of 352.47 Daltons and topological polar 

surface area of 97.99 Å2. The number of HBD and HBA in the pharmacophore were 

four and five respectively with presence of two rotatable bonds. The positive HIA 

index of the pharmacophore with value 0.98 suggests oral bioavailability potential of 

the compound. The Abott bioavailability score of 0.56b and fulfilling the conditions 

of LRO5 signifies the compound’s suitability to behave as orally bioavailable drug. 

Conclusively, HIA values of the pharmacophores in the order of 0.81, 1.00, 1.00, 0.98 
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for apple, pineapple, wheat, and soybean depicts their potential to act as orally 

bioavailable drug and all the pharmacophores were also satisfying the conditions of 

Veber’s rule and Lipinski’s rule of five to serve as drug-like molecules. Abbott 

bioavailability scores for all the pharmacophores also depict them as strong drug-like 

molecules. 

Table 6.4 Bioavailability analysis of the pharmacophores ZINC000524729534, 

ZINC000000041632, ZINC000065529251 and ZINC000257349595 respectively. 

 

Parameters 
ZINC000524

729534 

ZINC000000

041632 

ZINC00006

5529251 

ZINC00025

7349595 

Number of H-bond 

donor (HBD) 
3 1 1 4 

Number of H-bond 

acceptor (HBA) 
6 4 3 5 

Number of rotatable 

bonds 
0 2 5 2 

Topological Polar 

Surface Area (Å2) 
96.22 83.12 58.36 97.99 

Molecular Weight 

(Daltons) 
462.62 267.24 347.41 352.47 

Human Intestinal 

Absorption 
 

0.81 (HIA+) 1.00 (HIA+) 1.00 (HIA+) 
0.98 

(HIA+) 
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Drug likeness (Lipinski’s 

Rule of five) 
YES YES YES YES 

Abbott bioavailability 

score 
0.55 0.56 0.55 0.56 

 

6.1.7 Differential amino acid usage analyses of profilin family 

Amino acid usage analysis in the present investigation was carried out to explore 

whether there exists any difference in the amino acid utilisation patterns of the 

considered allergen and non-allergen profilin instances. The investigation will provide 

insight towards the relative amino usage patterns exhibited by the corresponding 

profilin allergen family whose differential behaviour, if observed, will further lead to 

explore the basis of this differential usage patterns in the associated family.  

6.1.7.1 CoA based on the RAAU data of the profilin family 

The present investigation is first of its kind to highlight differential patterns of amino 

acid usage patterns exhibited by the allergen and non-allergen profilins. 

Correspondence analysis (CoA) based on relative amino acid usage (RAAU) data was 

performed to explore the variations in the amino acid usage patterns among the 

profilin gene family. The principal axes of separation, Axes 1 and 2 of RAAU data, 

was used to generate the CoA. It was evident from our analysis (Figure 6.6) that the 

allergen and non-allergen profilins produced discrete clusters, signifying differential 

amino acid usage patterns. Moreover, the amino acids, namely methionine, proline, 

histidine, glutamine, glutamic acid, tryptophan, and glycine were more frequently 

represented among the allergen profilins as compared to the non-allergens (P < 0.05) 

(Table 6.5). The observed differential amino acid usage patterns among the allergen 

and non-allergen profilins form the foundation of our investigation to explore whether 

these patterns influence their physicochemical and structural properties. 
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Figure 6.6 Correspondence analysis of the profilin gene family plotted against Axis 1 

and Axis 2 of RAAU data. The allergen instances are represented as red squares, 

whereas non-allergens are denoted as green triangles. 

Table 6.5 Over/under-represented amino acids based on normalised RAAU of the 

allergen and non-allergen profilins. 

Amino Acid 
RAAU 

allergen 

RAAU 

non-

allergen 

Signific

ance 

Amino 

Acid 

RAAU 

allergen 

RAAU 

non-

allergen 

Significan

ce 

Methionine 5.99 3.58 
P < 

0.05 
Valine 8.81 10.55 P < 0.05 

Proline 6.53 4.11 
P < 

0.05 
Serine 4.48 6.47 P < 0.05 
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Histidine 4.73 2.47 
P < 

0.05 
Threonine 7.77 10.02 P < 0.05 

Glutamine 7.17 2.91 
P < 

0.05 
Alanine 9.78 12.86 P < 0.05 

Glutamic 

acid 
9.21 5.16 

P < 

0.05 
Asparagine 2.60 6.52 P < 0.05 

Tryptophan 2.00 1.44 
P < 

0.05 
Lysine 6.67 8.13 P < 0.05 

Glycine 18.76 11.75 
P < 

0.05 
Arginine 2.52 7.02 P < 0.05 

 

 

 

6.1.7.2 Physicochemical basis of differential amino acid usage patterns in profilin 

gene family 

The differential amino acid usage patterns observed among the allergen and non-

allergen profilins forms the foundation to investigate whether these distinct usages 

influence their physicochemical properties or not. Interestingly, features like disorder, 

solubility and trypsin digestion were found to be critically important among the 

allergen and non-allergen profilins. The allergen proteins possess distinguishable 

physicochemical features which make them to be recognised as foreign molecules by 

the host immune system and subsequently the individual gets sensitized and develop 

immune response against them (Xue et al. 2011).  

6.1.7.2a Profilin disorder 

Disorder in proteins refers to the state in which they do not have stable tertiary 

structures, yet are biologically active at physiological environment (Xue et al., 2011). 

Previous studies have shown that allergen proteins are highly disordered and 
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contribute to be a part of the allergen representative peptides (ARPs) (Xue et al., 

2011). The protein disorder of the allergen and non-allergen profilins were found to 

be 19.13% and 5.32%, respectively, which revealed that allergen profilins were highly 

disordered. It was evident from our correlation analysis that protein disorder exhibited 

a strong positive correlation (r = 0.680) with Axis 1 of RAAU (P < 0.01) (Table 6.6). 

Therefore, presence of disordered amino acid residues in allergen profilins, as 

revealed from the present study, may contribute to the immune responses and 

subsequent hypersensitive reactions among atopic individuals. 

6.1.7.2b Solubility 

Solubility of a protein refers to its potential to get dissolved into the solution (Zayas 

1997). Protein solubility is principally affected by various factors including the 

sequence of amino acids that constitute the protein (Zayas, 1997). The average 

solubility index of the allergen profilins (0.63 ± 0.04) was found to be relatively 

higher than that of the non-allergens (0.57 ± 0.07) (P < 0.01). A significant positive 

correlation (r = 0.348) (P < 0.01) (Table 6.6) of solubility with Axis 1 of RAAU data 

revealed a contribution of solubility index in producing the distinct clusters among the 

allergen and non-allergen profilins, based on RAAU data (Figure 6.6). Our 

observation is consistent with the fact that high solubility of allergens is implicated in 

activation of immune responses and triggering of allergic responses (Pekar and 

Untersmayr, 2018). 

6.1.7.2c Trypsin Digestion of profilins 

Trypsin is one of the several digestive enzymes involved in the gastrointestinal 

digestion of proteins found in food (Pekar and Untersmayr, 2018). The sensitisation of 

allergens in the gastrointestinal tract requires them to be resistant against various 

proteolytic enzymes like trypsin (Pekar and Untersmayr, 2018). This resistance 

stimulates the host to pose an immune response (Pekar and Untersmayr, 2018). It has 

been suggested that allergenic proteins possess higher potential to escape 

gastrointestinal digestion (Pekar and Untersmayr, 2018; Breiteneder and Mills, 2005). 

Our analysis revealed that allergen profilins were less prone to trypsin digestion (8.24 

± 0.93) in comparison to the non-allergen profilins (14.44 ± 2.59). Trypsin digestion 

was found to display a strong negative correlation (r = -0.822) with Axis 1 of RAAU 
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(P < 0.01) (Table 6.6), which signified that this factor is an imperative determinant in 

producing the discrete clusters among the allergen and non-allergen profilins, based 

on RAAU data (Figure 6.6). Previous studies have reported a decrease in the IgE 

binding capacity of peanut (reduced by 100 times) and soybean (reduced by 10 times) 

upon their digestion with human digestive enzymes (pepsin, trypsin, chymotrypsin, 

and peptidase of intestine) (Burks et al., 1992). Moreover, the celery food allergic 

patients with decreased gastrointestinal acid exudation, when provided with digestive-

enzyme, processed celery and resulted in reduced IgE binding, cross-linking 

capability, and allergic responses (Untersmayr et al., 2008). It is worth mentioning 

that altered gastrointestinal digestive enzyme activity contributes to increased IgE 

reactivity of allergenic food proteins (Pali-Schöll et al., 2018). In addition, factors like 

improper food allergen protein digestion due to increased gastric pH or decreased 

digestion ability, presence of specific T-helper type 2 adjuvants, and altered 

microbiome of digestive system are key contributors of allergic responses to food 

(Pali-Schöll et al., 2018). 

Table 6.6 Pearson’s correlation coefficient values of the physicochemical features of 

profilins with Axes 1 and 2 of RAAU data. 

Amino Acid 

Usage 

Disorder Solubility Trypsin digestion 

Axis 1 (RAAU) 0.680** 0.348** -0.822** 

Axis 2 (RAAU) -0.044 -0.135 0.302** 

                                ** indicates a significant correlation at 0.01 level (2-tailed) 

 

6.1.8 Sequence analysis of the allergen profilins revealed conserved motifs 

Sequence analysis of the allergen profilins was carried out by building their alignment 

profiles and subsequent screening of conserved motifs at 70% identity level. The 

sequence alignment has been shown in the Figure 6.7. The conserved motifs observed 

at 70% identity level revealed that the allergen profilins have identical motifs SWQ, 
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YVD, VWA, LAPTG, KYMVIQGE, VIRGKKG, KKT, GIY, PGQCNM and 

LGDYL which are represented by * in the Figure 6.7. The z-scores for the conserved 

motifs were observed as nan (not a number)/undefined, which denote completely 

conserved residues with a standard deviation value of zero. The empirical significance 

of the obtained alignment and conserved sites was estimated by z-score, which 

determines the deviation of the actual score from mean of the random scores 

generated by performing the randomizations of the actual alignment (Brandt et al., 

2010). The z-score for the conserved residues is marked by nan (not a number) 

signifying completely conserved sites (Appendix 2). 

 

Figure 6.7 Multiple sequence alignment profile of the profilin allergens performed by 

MEGAX. The residues with background colour in black represent the conserved sites 

at 70% identity level among allergen profilins.  

6.1.9 Structural analysis of the allergen profilins 

The over-represented amino acids among the allergen profilins, in comparison to the 

non-allergens, are presented in Table 6.5. Majority of these over-represented amino 

acids have been observed to be surface exposed as shown in Table 6.7 and Figure 6.8. 

The amino acids namely Methionine (Met), Proline (Pro), Histidine (His), Glutamine 
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(Gln), Glutamic acid (Glu), Tryptophan (Trp), and Glycine (Gly) were observed to 

have propensity to remain surface exposed in the x-ray resolved structures of allergen 

profilins from Hevea brasiliensis (Hev b 8), Artemisia vulgaris (Art v 4), Betula 

verrucosa (Bet v 2), Cucumis melo (Cuc m 2), Phleum pratense (Phl p 12), Zea mays 

(Zea m 12), Arachis hypogaea (Ara h 5), and Ambrosia artemisiifolia (Amb a 8) 

respectively. The experimentally resolved structure of allergen profilin Hevea 

brasiliensis (Hev b 8) was observed to have propensity of amino acids (three letter 

code and its position) Met (73), Pro (57, 62, 79, 89, 109 and 112), His (55), Gln (4, 

41, 76 and 99), Glu (14, 45, 78 and 108), and Gly (17, 58, 69, 88 and 130) to be 

surface exposed in the associated structure. The structure of Artemisia vulgaris (Art v 

4) was having amino acids Met (75), Pro (46, 64, 111 and 114), Gln (78, 101 and 

131), Glu (16, 43, 58, 80 and 110), and Gly (17, 19, 60, 90, 100, 115 and 132) 

exposed at the surface in their respective structure. The amino acids namely Met 

(119), Pro (46, 59, 64, 111 and 114), His (10), Gln (18, 20, 21, 43, 47, 101, 116 and 

131), Glu (9, 57, 58, 80, 109 and 110), Trp (3), and Gly (17, 19, 79, 90, 100, 115 and 

132) were observed to be surface exposed in the structure of Betula verrucosa (Bet v 

2). In the structure of allergen profilin from Cucumis melo (Cuc m 2), the amino acids 

namely Met (73, 99 and 117), Pro (44, 57, 62, 79, 89, 109 and 112),His (10 and 19), 

Gln (37, 41 and 76), Glu (9, 14, 16, 45, 78 and 108), and Gly (17, 69, 88, 98, 113 and 

130) were observed to be surfaced exposed respectively. The structural conformation 

of allergen profilin from Phleum pratense (Phl p 12), had amino acids Met (73), Pro 

(44, 57, 62, 79, 109 and 112), His (19), Gln (41, 76, 99 and 114), Glu (9, 14, 16, 45, 

56, 108 and 128), and Gly (1, 17, 58, 69, 88, 98, 113 and 130) exposed in their 

resolved structure. The structure of allergen profilin from Zea mays (Zea m 12), had 

amino acids namely Met (73, 99 and 117), Pro (44, 57, 62, 79, 109 and 112), His (19), 

Gln (4 and 76), Glu (16, 37, 41, 45, 56, 78, 108 and 128), and Gly (17, 58, 69, 88, 98 

and 130) surface exposed. The experimentally deduced crystal structure of allergen 

profilin from Arachis hypogaea (Ara h 5) was observed to have amino acids Met (73), 

Pro (44, 57, 62, 79, 89, 109 and 112), His (10 and 19), Gln (76 and 99), Glu (16, 45 

and 108), Trp (3), and Gly (17, 58, 88, 113 and 130) exposed on their surface. The 

allergen profilin from Ambrosia artemisiifolia (Amb a 8) had amino acids namely Met 

(75), Pro (46, 64, 81, 111 and 114), His (21), Gln (78, 101 and 131), Glu (9, 16, 43, 
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58, 80, 109 and 110), and Gly (17, 19, 60, 71, 82, 92, 100, 115 and 132) exposed to 

their surface. Conclusively, the detailed structural analysis revealed that majority of 

the overrepresented amino acids in the allergen profilins were analysed to be surface 

exposed, which indicate their potential to interact with their surrounding cellular 

environment and thus place them in a position where they are more prone to be 

recognised by the cells of the host immune system. 

Table 6.7 The surface exposed residues found in the allergen profilin in various 

organisms. These amino acids were over-represented by the allergen profilins on 

comparison to non-allergen profilins. 

Profilin 

Allergen 

Source 

Organism 

Methionine 

(Position) 

Proline 

(Position) 

Histidine 

(Position) 

Glutamine 

(Position) 

Glutamic 

Acid 

(Position) 

Tryptophan 

(Position) 

Glycine 

(Position) 

Hevea 

brasiliensis 

(Hev b 8) 

Met (73) 

Pro (57, 

62, 79, 

89, 109 

and 112) 

His (55) 
Gln (4, 41, 

76 and 99) 

Glu (14, 

45, 78 

and 108) 

- 

Gly (17, 

58, 69, 88 

and 130) 

Artemisia 

vulgaris  

 (Art v 4) 

Met (75) 

Pro (46, 

64, 111 

and 114) 

- 

Gln (78, 

101 and 

131) 

Glu (16, 

43, 58, 80 

and 110) 

- 

Gly (17, 

19, 60, 

90, 100, 

115 and 

132) 

Betula 

verrucosa 

(Bet v 2) 

Met (119) 

Pro (46, 

59, 64, 

111 and 

114) 

His (10) 

Gln (18, 

20, 21, 43, 

47, 101, 

116 and 

131) 

Glu (9, 

57, 58, 

80, 109 

and 110) 

Trp (3) 

Gly (17, 

19, 79, 

90, 100, 

115 and 

132) 

Cucumis 

melo 

 (Cuc m 2) 

Met (73, 99 

and 117) 

Pro (44, 

57, 62, 

79, 89, 

109 and 

112) 

His (10 

and 19) 

Gln (37, 41 

and 76) 

Glu (9, 

14, 16, 

45, 78 

and 108) 

- 

Gly (17, 
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Figure 6.8 Surface exposed residues of allergen profilins depicted from their pdb 

structures by PyMol. The over-represented amino acids which were surface exposed 

are shown in red colour while rest of the protein is shown in grey colour as ribbons. 

6.2 Machine learning (SVM and RF) tool development for prediction of food 

allergens 

The exponential increase of the omics data by the advent of high-throughput 

approaches has opened the gates for implementation of data-mining based 

computational approaches. Data-mining based approaches has evolved the healthcare 

system by providing state-of-the-art data-driven solutions for disease diagnosis and 

thereby offering affordable treatment options (Jackins et al., 2021). There has been a 

considerable progress in the area of machine learning assisted allergenicity 

assessment of query proteins. Various models and web servers had developed 

employing machine learning strategies to achieve optimum accuracy for the 

allergenicity assessment of query proteins (Saha and Raghava, 2006; Zhang et al., 

2007; Kumar and Shelokar, 2008; Dimitrov et al., 2013; Wang et al., 2013; Wang et 

al., 2013a; Mohabatkar et al., 2013; Dang and Lawrence, 2014; Dimitrov et al., 2014; 

Wang et al, 2021; Sharma et al, 2021). After the extensive literature analysis of these 

developed models, we observed that selection as well as relevance of that descriptor 

influence the accurate allergenicity assignment of query proteins. For instance, we 

might have case where the model is giving-off very good accuracy but it might not be 

able to capture the entire allergenic classes. By taking these observations into account 

we performed simple but exhaustive approach to extract out features relevant to 

allergen proteins. The profilin allergen family was taken as the model class and 

subsequently its differential amino acid usage patterns were revealed as discussed in 

section 6.1.7. Further, the observed differential pattern was linked with those features 

which were associated with allergen proteins after their evaluation a difference in 

indices of those respective features were observed among allergen and non-allergen 

profilins. For the first we presented with an investigation where differential amino 

acid usage patterns findings were translated to extract significant features pertaining 

to allergen proteins. With this we further shifted towards utilisation of these features 
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in the form of descriptors to develop machine learning assisted allergenicity 

assessment model as discussed below. 

6.2.1 Models developed employing WEKA classifiers 

WEKA suite was used as a platform to generate various machine learning classifiers 

such as ZeroR, LibSVM and Random Forest respectively. The models were 

developed using manually curated dataset having equal ratio of binary classes 

followed by stratified 10- folds cross-validation.  

The output of the developed models using the manually curated dataset employing 

stratified 10-fold cross validation was shown in Figure 6.9 and Table 6.8 respectively. 

The confusion matrix in Figure 6.9 depicts the classification accuracy of the 

developed model by considering all the classes in the dataset. For the developed 

ZeroR classifier, the confusion matrix depicts those 600 instances were accurately 

classified as allergens whereas 600 were classified as non-allergens. Further, the 

confusion matrix pertaining to LibSVM classifier signified those 353 instances were 

accurately classified as allergens whereas 157 non-allergen instances were classified 

as allergens. Similarly, this model misclassified 247 instances of allergens as non-

allergens whereas 443 instances were correctly assigned as non-allergen class. In case 

of Random Forest classifier, two classes ‘a’ and ‘b’ in the confusion matrix were 

representing allergens and non-allergens respectively. The column ‘a’ in the 

confusion matrix of RF classifier signified those 521 instances were classified 

accurately as ‘a’, whereas 62 instances have been misclassified as ‘a’. On the other 

hand, column ‘b’ of the matrix signified those 79 instances were wrongly classified as 

‘b’ and 538 instances were correctly assigned to class ‘b’. From the confusion matrix 

it is evident that out of all the developed models the random forest model performed 

comparatively superior in terms of accurate assignment of allergen and non-allergen 

classes. After this those developed models were evaluated by the help of associated 

classifiers in order to select a best model for further analysis. 
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Figure 6.9 Confusion matrix for the ZeroR, LibSVM and Random Forest classifiers. 

After this the developed ZeroR, LibSVM and RF models were evaluated based on 

number of accurately classified instances in the dataset, accuracy, TP rate, FP rate, 

Precision, Recall, F-measure, MCC value, and ROC curve area respectively. The RF 

model was able to correctly classify 1059 instances in the dataset which was highest 

as compared to ZeroR and LibSVM as they classified 660 and 796 instances of the 

dataset correctly. The RF model produced highest accuracy of 0.88, whereas LibSVM 

and ZeroR model provided accuracy of 0.66 and 0.50 respectively. The TP rate of 

0.88 was highest by the RF model and ZeroR and LibSVM classifiers provided TP 

rate of 0.40 and 0.66 respectively. FP rate of 0.11 was lowest in case of RF model as 

ZeroR and LibSVM model gave FP value of 0.50 and 0.33 respectively. Further, 

precision value of 0.88 was highest of the RF model as compared to LibSVM model 

with 0.66 respectively. The recall value of 0.88 was also highest for the RF model as 

ZeroR and LibSVM model produced recall of 0.49 and 0.64 respectively. The F-

measure index of 0.88 was highest for RF model as LibSVM model gave F-measure 

of 0.64. The MCC value of 0.76 was also highest for RF model as LibSVM model 

gave 0.33 value for MCC. At last RF model with ROC area of 0.95 was highest as 

compared to ZeroR and LibSVM model which gave ROC area of 0.50 and 0.66 

respectively. From the above discussion it is evident that RF model outperforms all 

the developed classifiers in terms of the observed parameters and thus was opted for 

further analysis. 
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Table 6.8 Evaluation of the developed classifiers based upon various parameters. 

Parameters ZeroR LibSVM Random Forest 

Correctly Classified 

Instances 
600 796 1059 

Accuracy 0.50 0.66 0.88 

TP rate 0.40 0.66 0.88 

FP rate 0.50 0.33 0.11 

Precision - 0.66 0.88 

Recall 0.49 0.64 0.88 

F-measure - 0.63 0.88 

MCC - 0.33 0.76 

ROC Area 0.50 0.66 0.95 
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Figure 6.10 Clustered column based graphical evaluation of the ZeroR, LibSVM and 

RF classifiers. 

The above representation clearly denotes that Random Forest model performed 

comparatively superior than others on the curated dataset by producing highest TP 

rate, precision, recall, F-measure, MCC value and ROC area respectively. The MCC 

value of 0.76 signified superior classification accuracy of the developed model. 

6.2.1a ROC curve analysis of the developed models 

The ROC curve is a two-dimensional representation between TP rate and FP rate 

(Centor, 1991). This technique has been extensively utilised for identifying the 

positive or negative samples in a test (Centor, 1991). The ROC curve for all the 

developed models has been shown in Figure 6.11. Area under ROC has been 

established as an effective measure which determines the probability of a model to 

correctly distinguish among the binary classes with higher area under ROC signifying 

more accurateness of the model in binary classification (0- misclassification, 0.5- 

random classification and 1- perfect classification) (Centor, 1991). Comparatively, 

area under ROC of the Random Forest model was observed to be highest with a value 
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of 0.95, signifying the perfection of the model in binary classification of the instances. 

Therefore, based on these parameters the random forest model was evaluated as most 

reliable model among all the developed classifiers. 

 

Figure 6.11 ROC curves for the ZeroR, LibSVM and Random Forest classifiers. The 

horizontal axis represents FP rate whereas vertical axis denotes TP rate. 

6.2.2 Comparative evaluation of the developed model with existing classifiers 

The developed model was evaluated comparatively with existing classifiers based on 

parameters such as sensitivity, specificity, accuracy, MCC and ROC curve 

respectively, as these have been extensively utilised for statistical evaluation of 

machine learning based classifiers in the associated disciplines (Saha and Raghava, 

2006; Zhang et al., 2007; Kumar and Shelokar, 2008; Dimitrov et al., 2013; Wang et 

al., 2013; Wang et al., 2013a; Mohabatkar et al., 2013; Dang and Lawrence, 2014; 

Dimitrov et al., 2014; Wang et al, 2021; Sharma et al, 2021). The models developed 

by (Saha and Raghava, 2006; Wang et al., 2013; Wang et al., 2013a; Dimitrov et al., 

2014; Wang et al, 2021; Sharma et al, 2021) employing amino acid features-based 

model development. The first evaluator sensitivity corresponds to the magnitude of 

accurate positive class (allergen) prognostication by the classifier (Wang et al., 2013; 
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Sharma et al, 2021). Sensitivity of the developed model (0.86) was observed as 

equivalent with existing models like AIgPred_AAC (0.88) (Saha and Raghava, 2006) 

and AIgPred2_AAC_SVM (0.87) (Sharma et al, 2021). Apart from this the sensitivity 

of the developed model was observed to be superior than considered models for 

evaluation. Specificity on the other hand signifies the proportion of accurately 

classified negative class instances (non-allergens). Specificity of the developed model 

(0.89) was highest from all the considered models except for PREAL (0.91) (Wang et 

al., 2013a) and PREALw (0.94) (Wang et al., 2013) algorithms. However, it may be 

noted that highest specificity of the PREALw model contributes to the application of 

similarity-based approaches which ultimately provides superior evaluator indices. 

Although these similarity-based methods provide excellent specificity but lacks in 

identification of allergens which possess poor sequence-similarity (Wang et al., 

2013). An instance was observed where “alpha purothionin” an allergenic protein in 

wheat was not classified as allergen by similarity-based method (FAO/WHO criteria), 

while other methods (motif based, descriptors based) were able to classify this 

instance as allergenic (Wang et al., 2013). This certainly demanded an evolution in 

“descriptor selection” for computational based allergenicity assignment of query 

proteins. The next evaluator, accuracy is a measure of accurately classified positive 

and negative instances by the developed model (Wang et al., 2013). Accuracy of the 

developed model (0.88) was found highest among all the existing classifiers 

signifying model’s ability to correctly assign both positive and negative instances. 

The MCC value is a measure of classification potential of the developed model whose 

indices ranges from -1 to 1, where -1 represents mis-classification, 0 represents 

random classification and 1 represents flawless classification potential of the model 

(Westerhout et al, 2019). The MCC value (0.76) of the developed model was highest 

amongst all the existing classifiers with second highest value of 0.70 by the 

AIgPred_AAC classifier. Finally, ROC area is a measure to evaluate prediction 

potential of the model by plotting a graph between TP rate and FP rate. The ROC area 

of 0.95 by the developed model was highest among all the considered classifiers 

signifying superior classification potential of the developed model. Thus, the above 

comparison of developed model outperforms the considered classifiers, signifying the 
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role of employed descriptors extracted by differential amino acid usage analysis in 

computationally assisted allergenicity assignment of query protein instances. 

 

Figure 6.12 Comparative analysis of the developed RF model with existing 

classifiers. The horizontal axis represents the parameters namely sensitivity, 

specificity, accuracy, MCC value and ROC area respectively. The vertical axis 

represents the indices of the respective parameters. All the considered classifiers are 

coded by distinct colours respectively. 

6.3 Application of the developed model/tool for genome-wide prediction of            

food allergen 

Sesame mediated allergic reactions are on the rise globally and it has been regulated 

as allergen in 32 developed countries (Gangur and Acharya, 2021). Sesame induced 

allergic responses among atopic individuals presents array of responses (Gangur and 

Acharya, 2021). These responses include anaphylaxis and dermatitis induced by lipid 

allergens in sesame which are resulted from non-IgE mediated reactions (Gangur and 

Acharya, 2021). The protein allergens in sesame are responsible for IgE mediated 

responses resulting in anaphylaxis, diarrhoea, vomit, asthma, and respiratory system 

allergic responses. Apart from this, unidentified allergens in sesame seeds induces 

food-protein induced enterocolitis and eosinophilic esophagitis (Gangur and Acharya, 
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2021). On this account the present investigation was carried out to perform proteome 

wide allergenicity assessment of sesame to distinguish novel allergens. 

 To perform the genome wide prediction on developed Random Forest model, initially 

the reference genome of Sesamum indicum cultivar: Zhongzhi No. 13 was considered 

and subsequently the corresponding proteome having 24106 instances were retrieved 

as discussed under 5.3 subsection of the methodology.  

The ARFF structured dataset of sesame (Figure 6.13) was further supplied to the 

developed model which classified 2381 instances as potential allergens. The log file 

of predictions carried out by RF model is shown in Figure 6.14. The pie chart for the 

prediction summary was shown in Figure 6.15.  

Figure 6.13 was categorised into three part to comprehend the ARFF structured 

dataset of sesame. The first part named as dataset identifier represents the name of 

supplied dataset. Second part representing dataset attributes includes all the 

considered descriptors on which the RF model was developed. The last part numerical 

indices signified the calculated indices for each instance in the dataset whose values 

are separated by comma. At last, a question mark was placed at each instance which 

signified the unknown categorisation of the instance in the dataset. 

 



70 
 

 

Figure 6.13 ARFF structured dataset for the sesame proteome. 

 

 

Figure 6.14 RF model predictions log file on the sesame dataset. 
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Denotations in Figure 6.14 

inst#: denotes the serial number of the instance in the sesame dataset. 

actual: assigned class for the instance, ‘?’ was assigned initially as we want perform 

the predictions. 

predicted: predicted class by the model (1- allergen, 2- non-allergen) 

error: error in the predictions. 

prediction: denotes the prediction probability of the assigned class. 

 

Figure 6.15 Pie chart for the overall prediction summary of sesame proteome. 

Different colours were used to distinguish the predicted allergen and non-allergen 

classes. The proportion of predicted allergens in the sesame proteome were 

represented by blue colour whereas non-allergens denoted by orange colour 

respectively. 

Figure 6.15 clearly shows that around 10 percent of the entire sesame dataset was 

classified as potential allergen by the RF model. The developed model was able to 

correctly classify all known allergens in sesame namely oleosin H1 (Ses i 4), oleosin 
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L (Ses i 5), 11S globulin seed storage protein 2 (Ses i 6) and, 2S seed storage protein 

1 (Ses i 2) in sesame with prediction probability values of 0.75 (inst#11), 0.81 

(inst#17), 0.59 (inst#24) and, 0.90 (inst#25) respectively. The instances of profilin 

protein in the sesame proteome are automatically annotated by virtue of homology 

approach. The profilin instances namely inst#13622, inst#14113 and, inst#20609 were 

assigned as allergen with prediction probability of 0.69, 0.76 and, 0.77 respectively by 

the RF model. Eosinophilic esophagitis conditions among the atopic individuals are 

exponentially growing globally which results in conditions like dysphagia, puke and 

difficulty in growth (Spergel and Aceves, 2018). Food and aeroallergens are the 

inducers of this conditions allowing entry of eosinophil, basophil, mast cell and T- 

cells (Spergel and Aceves, 2018). Type-2 T-helper cells mediate these conditions 

whose dynamics were observed to be similar with conditions like asthma, allergic 

rhinitis, and atopic dermatitis (Spergel and Aceves, 2018). A case study carried out in 

2016 reported the association of pan-allergens sensitisation among eosinophilic 

esophagitis patients (Hogan et al., 2016). The study revealed that more than 85% of 

the subject patients (n = 66) were having the pan sensitisation to air-borne allergens 

and these patients were susceptible to be sensitised by exceptional foods (including 

nuts and legume) by virtue of the presence of pan-allergen profilin and PR-10 (Hogan 

et al., 2016). With this we would like to suggest that unrecognised profilin allergen in 

sesame may be a contributor to these conditions however further investigations are 

required to consolidate these findings. The main objective behind this was to corelate 

the unidentified allergens mediated eosinophilic esophagitis conditions by sesame in 

associated patients with the computationally identified profilin pan allergen in sesame 

by the present investigation. 

In a nut-shell, the RF model was able to not only classify the already identified 

allergens in sesame but also the profilin protein instances as allergenic with higher 

prediction probability. The observed classification potential of the RF model also 

corresponds to the relevancy of the descriptors employed. Additionally, among all the 

allergen predicted instances in sesame, 455 proteins were identified as 

uncharacterised. Uncharacterised proteins are those proteins whose structural, 
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functional, associational, and expressional analysis have not been evaluated (Hawkins 

and Kihara, 2007). 

The prediction probability range for the allergen classified instances was analysed in 

terms of number of instances belonging to a particular range of the query proteome. 

After the evaluation it was observed that 1000 allergens were predicted in the 

prediction probability range of 0.50 to 0.59. There were 691 predicted allergen 

instances which had prediction probability range of 0.60 to 0.69. Further 361 

instances were observed to be categorised under the prediction probability range of 

0.70 to 0.79. There were 232 predicted allergen instances lied with in the prediction 

probability range of 0.80 to 0.89. At last, 97 allergen predicted instances had 

prediction probability range of 0,90 to 1.00. The graphical representation for the 

prediction probability range-based classification of allergen instances was shown in 

Figure 6.16. 

 

Figure 6.16 Number of instances classified as allergens based on prediction 

probability range for sesame proteome dataset. Green colour was used to denote the 

prediction probability range of 0.50 0.59, whereas, blue colour signified the prediction 

probability range of 0.60 to 0.69. Yellow colour denoted the number of allergens 

predicted instances under prediction probability range of 0.70 to 0.79, whereas grey 

colour denoted the prediction probability range of 0.80 to 0.89. Orange colour 
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signified the number of allergens predicted instances under the prediction probability 

range of o.90 to 1.00. 

6.4 Expression validation of few food allergens by RNA-Seq data analysis 

The concept of mapping the transcriptional data to their respective proteome has been 

well established (Vogel and Marcotte, 2012; Chan et al., 2015; Ogburn et al., 2017; 

Karnaneedi et al., 2020). A study conducted recently, had employed the 

transcriptomic data from the various shrimp species to measure the expression levels 

of their corresponding allergen proteins (Karnaneedi et al., 2020). Taking the studies 

of (Chan et al., 2015; Ogburn et al., 2017; Karnaneedi et al., 2020) into account we 

have performed the expression analysis of the transcript from sesame to distinguish 

new allergens and dwell into their corresponding expression profiles. 

Transcriptomic data of indigenous Sesamum indicum having accession ID- 

SRR12153208 was retrieved from NCBI-SRA toolkit and subjected to expressional 

analysis. 

6.4.1 Evaluation by the FastQC 

The FastQC report of the raw transcriptomic data is shown in Figure 6.17. Part 1 of 

the figure represents basic statistics related to the sequenced data are presented in 

which total sequences were 15840574 with uniform length of 151 bases for each 

sequence and 47 % of GC content was observed. The part 2 of the figure representing 

per sequence quality score was evaluated by the Phred score (Ewing et al., 1998). The 

score allows the user to evaluate the accuracy of the nucleotide calling by the 

sequencing machine (Ewing et al., 1998). The Phred score generally ranges from 2 to 

40 with higher indices signifying more accurate nucleotide calling (Ewing et al., 

1998). The average Phred quality score per read was observed to be 36, which 

corresponds to the range of best nucleotide call accuracy. In part 3 of the Figure 6.17 

adapter content of the raw data was observed and it was found that there is presence 

of adapters in the data at positions 120-139 which needs to be resolved before further 

analysis with data. 
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Figure 6.17 FastQC report of the raw sequencing data. The report corresponds to 

three parts including basis stats, per sequence quality score and adapter content 

respectively. 

6.4.2 Trimmomatic analysis for the removal of adapter content from the 

transcriptomic data 

The execution and completion window for the Trimmomatic program was shown in 

Figure 5.1 of the methodology section. The output of program showed that total 

15840000 reads were provided as input out of which 1.22 % (192957) of the reads 

were filtered by the program and 15647043 reads constituted the processed dataset. 

In order to validate the observed exclusions from the raw data FastQC was employed 

on the processed data whose graphical report have been shown in Figure 6.18.  Part 3 

of the Figure 6.18 indicated that adapter content of processed data showed a flat line 

which corresponds to removal of the adapter content and hence can be processed to 

further analysis. Further this leads to the formation of variable length of the 

sequencing reads ranging from 36-151 bases as shown in part 1 (basic stats) of the 

Figure 6.18. 
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Figure 6.18 FastQC report of the processed sequencing data. The report corresponds 

to three parts including basis stats, per sequence quality score and adapter content 

respectively. 

6.4.3 STAR analysis for transcriptome mapping and relative expression analysis 

The STAR module was employed in the present investigation to map the generated 

contigs/scaffolds to the reference genome of sesame and calculate the number of 

mapped reads per gene. A screenshot of the output log file has been shown in Figure 

6.19. The log file in Figure 6.19 clearly states that number of input reads provided for 

the mapping was 15647043 out of which 92.70% (14505083) reads were mapped 

uniquely (mapQ score of 255) to the reference genome with the average mapping 

length of 148.71 bases. After this the query reads which were mapped to multiple 

locus of the reference genome were analysed in which 2.44 % (381598) of the reads 

were found to be mapped with multiple locus and 0.02% (3307) of reads were 

mapped with too many loci. Finally, no reads were found to be mismatched with the 

reference genome but 4.81% (753323) were unmapped because of the too short read 

length. During this process, mapping speed of 40.38 million reads per hour was 

monitored on the computational system. 
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Figure 6.19 Screenshot of the output log file of STAR module. The file corresponds 

to the mapping statistics of the query transcriptome to its reference genome. 

The completion of the STAR workflow generated a file named ‘Reads per 

gene.out.tab’ which corresponds to the number of reads of the transcriptomic data 

aligned with reference genome. Figure 6.20 represents the mapped reads plot for the 

identified allergen instances from sesame. In order to retrieve more insightful 

information out of this, the locus corresponding to the protein names were mapped 

using the Uniprot database and thus proteins which were predicted as allergens were 

analysed. Figure 6.20 represents the number of mapped reads per gene to their 

respective protein and normalised number of mapped reads. It was observed that 

expression of already identified allergens in sesame was found in the descending 

order as 11s globulin seed storage protein 2 (Ses i 6) (Beyer et al., 2007), 2S seed 

storage protein 1 (Ses i 2) (Beyer et al., 2002), 2S albumin (Ses i 1) (Wolff et al., 

2003) and Oleosin H1 (Ses i 4) (Leduc et al., 2006) with their mapped reads value of 

448297, 304599, 237362 and 99141 respectively. Further, expression of the newly 
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predicted profilin food allergens in sesame by the developed RF model was found to 

be 3505, 99 and 6 reads of the query sesame transcriptomic data mapped with Profilin 

(loc105162034) (3505), Profilin (loc105257698) (99) and Profilin (loc105162033) (6) 

respectively. Additionally, other allergenic identified protein instances having 

relatively similar expression to those with highest expressing proteins were oleosin 

(25296) (22051), lipid transfer protein (32795), Major Facilitator Superfamily (MFS)-

18 protein like (33706), Non-specific Lipid Transfer Protein (Ns-LTP)-3 like (21990), 

Uncharacterised ProteinLOC105168025 (21765), Glucan endo-1,3-beta-D-

glucosidase (21005), extensin-2-like (17772), metallothionein-like protein-2 (12933), 

36.4-kDa proline-rich protein (12030), and osmotin-like protein (8173). Most of the 

expressed proteins were also observed to be either annotated from homology (proteins 

with last word as “like”) or are uncharacterised proteins.  

It may be noted that mapping the transcript reads to their corresponding protein 

segment does not completely represent the amount of protein present (Karnaneedi et 

al., 2020). There are several other determinants like rate of protein translation and its 

regeneration, proficiency of the translational machinery and natural environmental 

conditions prior and throughout the translational process effects the protein expression 

level (Karnaneedi et al., 2020).  

A detailed discussion on prevalence, complications and regulation of sesame have 

been reviewed in the Introduction part section 1.5, which signifies the regulatory 

importance of sesame as food allergen. India and China have been distinguished as 

the top harvesters of sesame but there is no evidence of reported food allergy 

complications (Gangur and Acharya, 2021). This expression of unnoticed/unreported 

sesame food allergy in India may corresponds to concerns regarding unavailability of 

standard allergy tests leading to generation of biased diagnostic and epidemiological 

data (Bhattacharya et al., 2018; Krishna et al., 2020; Gangur and Acharya, 2021). 

Studies have been reported which confer the co-existence of food allergy and asthma 

leading to increased risk of life-threatening anaphylaxis (Wang and Liu, 2011; Foong 

et al., 2107). In India, 37.9 million asthma patients have been diagnosed in 2018 but 

still no study have been carried out which evaluate its co-existence with food allergy 

(Krishna et al., 2020). Thus, the abundance level of these distinguished major 
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allergens and newly identified allergens in sesame corresponds to their allergenic 

potential and signifies the importance of allergenicity assessment from food sources.  

 

 

Figure 6.20 Number of mapped reads per gene for the sesame transcriptomic data. 

The horizontal axis represents the number of mapped reads. The vertical axis 

represents the identified allergen proteins by the developed model whose expressions 

were evaluated in the form of number of mapped reads. 
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Chapter 7 

Summary & Conclusions 

Food allergy is a predicament health concern affecting developed as well as 

developing nations. Primarily, proteins are accountable for inducing most food 

allergic reactions. At present more than 180 type of food sources have been identified 

to contain allergens and there are many to be explored. The FAO projection states that 

global population will be reaching the mark of 9.1 billion by 2050 and to feed this 

population an increase of 70 percent in food supply is required. Efforts have been 

carried out in the associated domain by worldwide researchers to produce genetically 

engineered crops with desired traits which certainly require expertise before its 

market viability. The identification of allergenic proteins in the food sources as well 

as assessing the allergenicity potential of foreign proteins is a vital checkpoint to 

assure food safety. The gold standard for food allergen identification includes 

serological and cytological assays but their applicability is limited by high cost and 

time-consuming process. As recommended by the expert committees, allergenicity 

assessment of the query protein is regulated in a “weight of evidence” manner which 

apart from standardised assays include computationally assisted allergenicity 

assessment. Numerous methods have been developed in the recent years involving 

application of similarity based, motif based, and epitope-based approaches. Further, 

utilisation of physicochemical space has also been observed in allergenicity 

assessment but there is a gap in exhaustive exploration of allergenic family to extract 

significant knowledge pertaining to their physicochemical nature and employing this 

information for the model development. Hence, the present study was objected 

towards allergen family based exhaustive feature extraction process and further 

employing this information in machine learning based model development. 

In first phase of the study sequence, structure, and pharmacophore screening analyses 

of the food allergen profilins were carried out. Profilins from apple, pineapple, wheat, 

and soybean are responsible for triggering IgE mediated reactions in atopic 

individuals. Further, profilins from apple, pineapple, and soybean were also accounted 

for Pollen Food allergy syndrome. Multiple sequence alignment of the human 
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profilins and food allergen profilins revealed very low level of similarity, 

corresponding to the hypersensitive nature of the food allergen profilins in atopic 

individuals. Due to unavailability of experimentally resolved structure of these 

profilins, their homology modelled tertiary structure was deduced by which their 

structural conservation was revealed (4 helix, 7 strands and 11 loops) corresponding 

to their IgE cross-reactive potential and classification as pan-allergen. The 

pharmacophores identified against these profilins by virtue of virtual screen and 

molecular docking studies were showing efficient binding energy and non-covalent 

interactions and were in accordance with bioavailability profiles and thus can be 

considered as lead molecules for in-vitro studies. 

After this, the study was focused towards unravelling the amino acid usage signatures 

of the profilin gene family. Multivariate statistical analysis revealed differential 

patterns of amino acid usage among the allergen and non-allergen profilins. It was 

evident from our analysis that the physicochemical features, including trypsin 

digestion, protein disorder and solubility of the profilins produced strong correlations 

with their differential patterns of amino acid usage. Interestingly, it was observed that 

relatively over-represented amino acids of the allergen profilins, on analysing their 

crystal structures were found to be surface exposed, suggesting that these over-

represented amino acids might play a significant role in allergenicity assignment of 

profilins. Further, the dataset curation was carried out by retrieving equal instances of 

allergen and non-allergen protein instances from public-accessible databases namely 

Allergen Online, WHO/IUIS Allergen.org and SDAP. The final dataset consisted of 

non-redundant 1200 protein instances which was excluded by any profilin and sesame 

instances in either of the dataset classes. Machine learning based classifiers namely 

ZeroR, SVM and RF were developed employing the manually curated dataset out of 

which RF model was observed to be giving superior classification potential and thus 

opted for further analysis. The developed RF model outperforms the considered 

classifiers in terms of accuracy (0.88), MCC (0.76) and ROC area (0.95) indices 

signifying the role of employed descriptors extracted by differential amino acid usage 

analysis in computationally assisted allergenicity assignment of query protein 

instances.  



82 
 

Further, the developed RF model exhibiting best classification potential and was 

employed to perform the proteome wide prediction of allergenic instances in 

reference genome of sesame. The model was able to predict around 10 percent of the 

entire proteome as allergenic. The model classified the experimentally validated 

allergens like oleosin, 2s seed storage protein and 11s globulin seed storage proteins 2 

in sesame as “predicted allergens” with superior prediction probability justifying its 

prediction accuracy. Apart from this, profilin protein instances in sesame were also 

classified as “predicted allergens” by the developed model with higher prediction 

probability. Thus, the study computationally validates the profilin protein in sesame 

as potential allergen and these finding can be taken up as preliminary basis to further 

consolidate these results. The RNASeq data analysis carried out on the transcriptomic 

data of sesame revealed the expression of 11s globulin seed storage protein 2, 2S seed 

storage protein 1, 2S albumin and Oleosin H1 allergenic proteins to be highest. 

Although profilin expression was observed to be comparatively less than the already 

distinguished allergens but their allergenic potential should not be overlooked due to 

their IgE cross-reactive nature. 

In future, the model can be enriched by addition of more significant descriptors 

pertaining to food allergens by exploring the structural and sequence space to obtain 

optimum accuracy. The present study can be translated towards the development of 

public-accessible web server for potential allergenicity assessment of query proteins. 

The developed model can also be utilised by the food industries to screen out the 

potential instances of allergens from their dataset of genetically modified proteins 

which will eventually save time and resources being utilised for safety assessment of 

these proteins.  

 

 

 

 



83 
 

Bibliography 

Ahuja, S. and Scypinski, S. eds., 2001. Handbook of modern pharmaceutical 

analysis (Vol. 3). Academic press. 

Andrews, S., 2010. FastQC: a quality control tool for high throughput sequence 

data. 

Anvari, S., Miller, J., Yeh, C.Y. and Davis, C.M., 2019. IgE-mediated food 

allergy. Clinical reviews in allergy & immunology, 57(2), pp.244-260. 

Asero, R., Mistrello, G. and Amato, S., 2011. The nature of melon allergy in 

ragweed-allergic subjects: A study of 1000 patients. In Allergy and asthma 

proceedings (Vol. 32, No. 1, p. 64). OceanSide Publications. 

Ballmer-Weber, B.K., Wüthrich, B., Wangorsch, A., Fötisch, K., Altmann, F. and 

Vieths, S., 2001. Carrot allergy: double-blinded, placebo-controlled food 

challenge and identification of allergens. Journal of allergy and clinical 

immunology, 108(2), pp.301-307. 

Beyer, K., Bardina, L., Grishina, G. and Sampson, H.A., 2002. Identification of 

sesame seed allergens by 2-dimensional proteomics and Edman sequencing: seed 

storage proteins as common food allergens. Journal of Allergy and Clinical 

Immunology, 110(1), pp.154-159. 

Beyer, K., Grishina, G., Bardina, L. and Sampson, H.A., 2007. Identification of 2 

new sesame seed allergens: Ses i 6 and Ses i 7. Journal of allergy and clinical 

immunology, 119(6), pp.1554-1556. 

Beyer, K., Morrowa, E., Li, X.M., Bardina, L., Bannon, G.A., Burks, A.W. and 

Sampson, H.A., 2001. Effects of cooking methods on peanut 

allergenicity. Journal of Allergy and Clinical Immunology, 107(6), pp.1077-1081. 

Bhattacharya, K., Sircar, G., Dasgupta, A. and Bhattacharya, S.G., 2018. 

Spectrum of allergens and allergen biology in India. International archives of 

allergy and immunology, 177(3), pp.219-237. 



84 
 

Bolger, A.M., Lohse, M. and Usadel, B., 2014. Trimmomatic: a flexible trimmer 

for Illumina sequence data. Bioinformatics, 30(15), pp.2114-2120. 

Brandt, B.W., Feenstra, K.A. and Heringa, J., 2010. Multi-Harmony: detecting 

functional specificity from sequence alignment. Nucleic acids 

research, 38(suppl_2), pp.W35-W40. 

Breiteneder, H. and Mills, E.C., 2005. Molecular properties of food 

allergens. Journal of Allergy and Clinical Immunology, 115(1), pp.14-23. 

Bu, G., Luo, Y., Chen, F., Liu, K. and Zhu, T., 2013. Milk processing as a tool to 

reduce cow’s milk allergenicity: a mini-review. Dairy science & 

technology, 93(3), pp.211-223. 

Burks, A.W., Tang, M., Sicherer, S., Muraro, A., Eigenmann, P.A., Ebisawa, M., 

Fiocchi, A., Chiang, W., Beyer, K., Wood, R. and Hourihane, J., 2012. ICON: 

food allergy. Journal of Allergy and Clinical Immunology, 129(4), pp.906-920. 

Burks, A.W., Williams, L.W., Thresher, W., Connaughton, C., Cockrell, G. and 

Helm, R.M., 1992. Allergenicity of peanut and soybean extracts altered by 

chemical or thermal denaturation in patients with atopic dermatitis and positive 

food challenges. Journal of allergy and clinical immunology, 90(6), pp.889-897. 

Cabanillas, B., Maleki, S.J., Rodríguez, J., Burbano, C., Muzquiz, M., Jiménez, 

M.A., Pedrosa, M.M., Cuadrado, C. and Crespo, J.F., 2012. Heat and pressure 

treatments effects on peanut allergenicity. Food chemistry, 132(1), pp.360-366. 

Carlson, G. and Coop, C., 2019. Pollen food allergy syndrome (PFAS): a review 

of current available literature. Annals of Allergy, Asthma & Immunology, 123(4), 

pp.359-365. 

Carlsson, L., Nyström, L.E., Sundkvist, I., Markey, F. and Lindberg, U., 1977. 

Actin polymerizability is influenced by profilin, a low molecular weight protein in 

non-muscle cells. Journal of molecular biology, 115(3), pp.465-483. 

Centor, R.M., 1991. Signal detectability: the use of ROC curves and their 

analyses. Medical decision making, 11(2), pp.102-106. 



85 
 

Chan, T.F., Ji, K.M., Yim, A.K.Y., Liu, X.Y., Zhou, J.W., Li, R.Q., Yang, K.Y., 

Li, J., Li, M., Law, P.T.W. and Wu, Y.L., 2015. The draft genome, transcriptome, 

and microbiome of Dermatophagoides farinae reveal a broad spectrum of dust 

mite allergens. Journal of Allergy and Clinical Immunology, 135(2), pp.539-548. 

Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P.W. and Tang, Y., 

2012. admetSAR: a comprehensive source and free tool for assessment of 

chemical ADMET properties. 

Chruszcz, M., Kapingidza, A.B., Dolamore, C. and Kowal, K., 2018. A robust 

method for the estimation and visualization of IgE cross-reactivity likelihood 

between allergens belonging to the same protein family. PLoS One, 13(11), 

p.e0208276. 

Chung, S.Y., Maleki, S.J. and Champagne, E.T., 2004. Allergenic properties of 

roasted peanut allergens may be reduced by peroxidase. Journal of agricultural 

and food chemistry, 52(14), pp.4541-4545. 

Codex Alimentarius Commission, 2009. Foods derived from modern 

biotechnology. FAO/WHO, Rome, pp. 1-85. 

Cohen, S.G., 2008. Food allergens: landmarks along a historic trail. Journal of 

allergy and clinical immunology, 121(6), pp.1521-1524. 

Cortot, C.F., Sheehan, W.J., Permaul, P., Friedlander, J.L., Baxi, S.N., Gaffin, 

J.M., Dioun, A.F., Hoffman, E.B., Schneider, L.C. and Phipatanakul, W., 2012, 

May. Role of specific IgE and skin-prick testing in predicting food challenge 

results to baked egg. In Allergy and asthma proceedings (Vol. 33, No. 3, p. 275). 

OceanSide Publications. 

Costa, J., Bavaro, S.L., Benede, S., Diaz-Perales, A., Bueno-Diaz, C., Gelencser, 

E., Klueber, J., Larre, C., Lozano-Ojalvo, D., Lupi, R. and Mafra, I., 2021. Are 

physicochemical properties shaping the allergenic potency of plant 

allergens?. Clinical Reviews In Allergy & Immunology. 

Costa, J., Villa, C., Verhoeckx, K., Cirkovic-Velickovic, T., Schrama, D., 

Roncada, P., Rodrigues, P.M., Piras, C., Martín-Pedraza, L., Monaci, L. and 



86 
 

Molina, E., 2022. Are physicochemical properties shaping the allergenic potency 

of animal allergens?. Clinical reviews in allergy & immunology, 62(1), pp.1-36. 

Daina, A., Michielin, O. and Zoete, V., 2017. SwissADME: a free web tool to 

evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of 

small molecules. Scientific reports, 7(1), pp.1-13. 

Dang, H.X. and Lawrence, C.B., 2014. Allerdictor: fast allergen prediction using 

text classification techniques. Bioinformatics, 30(8), pp.1120-1128. 

Davis, I.W., Leaver-Fay, A., Chen, V.B., Block, J.N., Kapral, G.J., Wang, X., 

Murray, L.W., Arendall III, W.B., Snoeyink, J., Richardson, J.S. and Richardson, 

D.C., 2007. MolProbity: all-atom contacts and structure validation for proteins 

and nucleic acids. Nucleic acids research, 35(suppl_2), pp.W375-W383. 

Di Nardo, A., Gareus, R., Kwiatkowski, D. and Witke, W., 2000. Alternative 

splicing of the mouse profilin II gene generates functionally different profilin 

isoforms. Journal of cell science, 113(21), pp.3795-3803. 

Dimitrov, I., Flower, D.R. and Doytchinova, I., 2013. AllerTOP-a server for in 

silico prediction of allergens. In BMC bioinformatics 14(6), pp. 1-9. 

Dimitrov, I., Naneva, L., Bangov, I. and Doytchinova, I., 2014. Allergenicity 

prediction by artificial neural networks. Journal of Chemometrics, 28(4), pp.282-

286. 

Dimitrov, I., Naneva, L., Doytchinova, I. and Bangov, I., 2014a. AllergenFP: 

allergenicity prediction by descriptor fingerprints. Bioinformatics, 30(6), pp.846-

851. 

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, 

P., Chaisson, M. and Gingeras, T.R., 2013. STAR: ultrafast universal RNA-seq 

aligner. Bioinformatics, 29(1), pp.15-21. 

Ebner, C., Jensen‐Jarolim, E., Leitner, A. and Breiteneder, H., 1998. 

Characterization of allergens in plant‐derived spices: Apiaceae spices, pepper 

(Piperaceae), and paprika (bell peppers, Solanaceae). Allergy, 53, pp.52-54. 



87 
 

EFSA, 2010. Scientific Opinion on the assessment of allergenicity of GM plants 

and microorganisms and derived food and feed. EFSA J. 8, 1700. https://doi.org 

/10.2903/j.efsa.2010.1700 

EFSA, 2017. Guidance on allergenicity assessment of genetically modified plants. 

EFSA J. 15, 4862. https://doi.org/10.2903/j.efsa.2017.4862 

Ewing, B., Hillier, L., Wendl, M.C. and Green, P., 1998. Base-calling of 

automated sequencer traces using Phred. I. Accuracy assessment. Genome 

research, 8(3), pp.175-185. 

FAO, 2009. How to feed the world in 2050. 

https://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_t

he_World_in_2050.pdf 

FAO, IFAD, UNICEF, WFP and WHO. 2021. The State of Food Security and 

Nutrition in the World 2021. Transforming food systems for food security, 

improved nutrition and affordable healthy diets for all. Rome, FAO. 

https://doi.org/10.4060/cb4474en 

Florsheim, E.B., Sullivan, Z.A., Khoury-Hanold, W. and Medzhitov, R., 2021. 

Food allergy as a biological food quality control system. Cell. 

Foong, R.X., du Toit, G. and Fox, A.T., 2017. Asthma, food allergy, and how they 

relate to each other. Frontiers in pediatrics, 5, p.89. 

Fraczkiewicz, R. and Braun, W., 1998. Exact and efficient analytical calculation 

of the accessible surface areas and their gradients for macromolecules. Journal of 

computational chemistry, 19(3), pp.319-333. 

Gangur, V. and Acharya, H.G., 2021. The global rise and the complexity of 

sesame allergy: prime time to regulate sesame in the United States of 

America?. Allergies, 1(1), pp.1-21. 

González-Velasco, Ó., De Las Rivas, J. and Lacal, J., 2019. Proteomic and 

transcriptomic profiling identifies early developmentally regulated proteins in 

Dictyostelium discoideum. Cells, 8(10), p.1187. 



88 
 

Greenacre, M., 1984. Theory and applications of correspondence analysis. 

Academic Press, London. 

Gupta, R.S., Warren, C.M., Smith, B.M., Jiang, J., Blumenstock, J.A., Davis, 

M.M., Schleimer, R.P. and Nadeau, K.C., 2019. Prevalence and severity of food 

allergies among US adults. JAMA network open, 2(1), pp.e185630-e185630. 

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten, I.H., 

2009. The WEKA data mining software: an update. ACM SIGKDD explorations 

newsletter, 11(1), pp.10-18. 

Han, P., Zhang, X. and Feng, Z.P., 2009. Predicting disordered regions in proteins 

using the profiles of amino acid indices. Bmc Bioinformatics, 10(1), pp.1-8. 

Hansen, K.S., Ballmer‐Weber, B.K., Lüttkopf, D., Skov, P.S., Wüthrich, B., 

Bindslev‐Jensen, C., Vieths, S. and Poulsen, L.K., 2003. Roasted hazelnuts–

allergenic activity evaluated by double‐blind, placebo‐controlled food 

challenge. Allergy, 58(2), pp.132-138. 

Hartwig, J.H., Chambers, K.A., Hopcia, K.L. and Kwiatkowski, D.J., 1989. 

Association of profilin with filament-free regions of human leukocyte and platelet 

membranes and reversible membrane binding during platelet activation. The 

Journal of cell biology, 109(4), pp.1571-1579. 

Hawkins, T. and Kihara, D., 2007. Function prediction of uncharacterized 

proteins. Journal of bioinformatics and computational biology, 5(01), pp.1-30. 

Higham, D.J. and Higham, N.J., 2016. MATLAB guide. Society for Industrial and 

Applied Mathematics. 

Hogan, M.B., Chawla, V., Scherr, R., Allenback, G., Wonnaparhown, A. and 

Wilson, N.W., 2016. Aeroallergen, Food and Panallergen Sensitization Patterns in 

Eosinophilic Esophagitis Patients. Journal of Allergy and Clinical Immunology, 

137(2), p.AB232. 



89 
 

Hou, T., Wang, J. and Li, Y., 2007. ADME evaluation in drug discovery. 8. The 

prediction of human intestinal absorption by a support vector machine. Journal of 

chemical information and modeling, 47(6), pp.2408-2415. 

Hu, E., Chen, Z., Fredrickson, T. and Zhu, Y., 2001. Molecular cloning and 

characterization of profilin-3: a novel cytoskeleton-associated gene expressed in 

rat kidney and testes. Nephron Experimental Nephrology, 9(4), pp.265-274. 

Huang, S., McDowell, J.M., Weise, M.J. and Meagher, R.B., 1996. The 

Arabidopsis profilin gene family (Evidence for an ancient split between 

constitutive and pollen-specific profilin genes). Plant physiology, 111(1), pp.115-

126. 

Huffman, L.M. and de Barros Ferreira, L., 2011. Whey-based ingredients. Dairy 

ingredients for food processing, 1, pp.179-198. 

Illi, S., von Mutius, E., Lau, S., Nickel, R., Grüber, C., Niggemann, B., Wahn, U. 

and Multicenter Allergy Study Group, 2004. The natural course of atopic 

dermatitis from birth to age 7 years and the association with asthma. Journal of 

Allergy and Clinical Immunology, 113(5), pp.925-931. 

Ivanciuc, O., Garcia, T., Torres, M., Schein, C.H. and Braun, W., 2009. 

Characteristic motifs for families of allergenic proteins. Molecular 

immunology, 46(4), pp.559-568. 

Ivanciuc, O., Schein, C.H. and Braun, W., 2003. SDAP: database and 

computational tools for allergenic proteins. Nucleic acids research, 31(1), pp.359-

362. 

Jackins, V., Vimal, S., Kaliappan, M. and Lee, M.Y., 2021. AI-based smart 

prediction of clinical disease using random forest classifier and Naive Bayes. The 

Journal of Supercomputing, 77(5), pp.5198-5219. 

Jorgensen, W.L., Maxwell, D.S. and Tirado-Rives, J., 1996. Development and 

testing of the OPLS all-atom force field on conformational energetics and 

properties of organic liquids. Journal of the American Chemical Society, 118(45), 

pp.11225-11236. 



90 
 

Kadam, K., Sawant, S., Jayaraman, V. and Kulkarni-Kale, U., 2016. Databases 

and Algorithms in Allergen Informatics. Bioinformatics—Updated Features and 

Applications; IntechOpen: London, UK, p.53. 

Kandasamy, M.K., McKinney, E.C. and Meagher, R.B., 2002. Plant profilin 

isovariants are distinctly regulated in vegetative and reproductive tissues. Cell 

motility and the cytoskeleton, 52(1), pp.22-32. 

Kar, P., Sharma, N.R., Singh, B., Sen, A. and Roy, A., 2021. Natural compounds 

from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: 

An in silico investigation. Journal of Biomolecular Structure and 

Dynamics, 39(13), pp.4774-4785. 

Karnaneedi, S., Huerlimann, R., Johnston, E.B., Nugraha, R., Ruethers, T., Taki, 

A.C., Kamath, S.D., Wade, N.M., Jerry, D.R. and Lopata, A.L., 2020. Novel 

allergen discovery through comprehensive de novo transcriptomic analyses of five 

shrimp species. International Journal of Molecular Sciences, 22(1), p.32. 

Kleber-Janke, T., Crameri, R., Appenzeller, U., Schlaak, M. and Becker, W.M., 

1999. Selective cloning of peanut allergens, including profilin and 2S albumins, 

by phage display technology. International archives of allergy and 

immunology, 119(4), pp.265-274. 

Kopper, R.A., Odum, N.J., Sen, M., Helm, R.M., Stanley, J.S. and Burks, A.W., 

2005. Peanut protein allergens: the effect of roasting on solubility and 

allergenicity. International archives of allergy and immunology, 136(1), pp.16-22. 

Kovar, D.R., Drøbak, B.K. and Staiger, C.J., 2000. Maize profilin isoforms are 

functionally distinct. The Plant Cell, 12(4), pp.583-598. 

Krishna, M.T., Mahesh, P.A., Vedanthan, P.K., Mehta, V., Moitra, S. and 

Christopher, D.J., 2020. The burden of allergic diseases in the Indian 

subcontinent: barriers and challenges. The Lancet. Global health, 8(4), pp.e478-

e479. 



91 
 

Kumar, K.K. and Shelokar, P.S., 2008. An SVM method using evolutionary 

information for the identification of allergenic proteins. Bioinformation, 2(6), 

p.253. 

Ladics, G.S. and Selgrade, M.K., 2009. Identifying food proteins with allergenic 

potential: evolution of approaches to safety assessment and research to provide 

additional tools. Regulatory Toxicology and Pharmacology, 54(3), pp.S2-S6. 

Laroche, G., Richet, C., ROWE, A.H., Mildred, P. and SAINT-GIRONS, F., 

1930. L'Anaphylaxie Alimentaire. Alimentary Anaphylaxis. Gastro-intestinal 

Food Allergy. By G. Laroche, Charles Richet Fils and François Saint-Girons... 

Translated by Mildred P. Rowe and Albert H. Rowe. Preface by Albert H. Rowe. 

University of California Press. 

Leduc, V., Moneret‐Vautrin, D.A., Tzen, J.T.C., Morisset, M., Guerin, L. and 

Kanny, G., 2006. Identification of oleosins as major allergens in sesame seed 

allergic patients. Allergy, 61(3), pp.349-356. 

Lemon-Mulé, H., Sampson, H.A., Sicherer, S.H., Shreffler, W.G., Noone, S. and 

Nowak-Wegrzyn, A., 2008. Immunologic changes in children with egg allergy 

ingesting extensively heated egg. Journal of Allergy and Clinical 

Immunology, 122(5), pp.977-983. 

Li, J. and Wang, J., 2017. Improving allergen prediction in main crops using a 

weighted integrative method. Interdisciplinary Sciences: Computational Life 

Sciences, 9(4), pp.545-549. 

Li, J., Ogorodova, L.M., Mahesh, P.A., Wang, M.H., Fedorova, O.S., Leung, T.F., 

Fernandez-Rivas, M., Mills, E.C., Potts, J., Kummeling, I. and Versteeg, S.A., 

2020. Comparative study of food allergies in children from China, India, and 

Russia: the EuroPrevall-INCO surveys. The Journal of Allergy and Clinical 

Immunology: In Practice, 8(4), pp.1349-1358. 

Lionta, E., Spyrou, G., K Vassilatis, D. and Cournia, Z., 2014. Structure-based 

virtual screening for drug discovery: principles, applications and recent 

advances. Current topics in medicinal chemistry, 14(16), pp.1923-1938. 



92 
 

Lipinski, C.A., 2004. Lead-and drug-like compounds: the rule-of-five 

revolution. Drug discovery today: Technologies, 1(4), pp.337-341. 

Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J., 1997. 

Experimental and computational approaches to estimate solubility and 

permeability in drug discovery and development settings. Advanced drug delivery 

reviews, 23(1-3), pp.3-25. 

López‐Torrejón, G., Crespo, J.F., Sánchez‐Monge, R., Sánchez‐Jiménez, M., 

Alvarez, J., Rodriguez, J. and Salcedo, G., 2005a. Allergenic reactivity of the 

melon profilin Cuc m 2 and its identification as major allergen. Clinical & 

experimental allergy, 35(8), pp.1065-1072. 

Lopez‐Torrejon, G., Ibanez, M.D., Ahrazem, O., Sánchez‐Monge, R., Sastre, J., 

Lombardero, M., Barber, D. and Salcedo, G., 2005. Isolation, cloning and 

allergenic reactivity of natural profilin Cit s 2, a major orange 

allergen. Allergy, 60(11), pp.1424-1429. 

Lyons, S.A., Clausen, M., Knulst, A.C., Ballmer-Weber, B.K., Fernandez-Rivas, 

M., Barreales, L., Bieli, C., Dubakiene, R., Fernandez-Perez, C., Jedrzejczak-

Czechowicz, M. and Kowalski, M.L., 2020. Prevalence of food sensitization and 

food allergy in children across Europe. The Journal of Allergy and Clinical 

Immunology: In Practice, 8(8), pp.2736-2746. 

Ma, Y., Zuidmeer, L., Bohle, B., Bolhaar, S.T.H., Gadermaier, G., 

Gonzalez‐Mancebo, E., Fernandez‐Rivas, M., Knulst, A.C., Himly, M., Asero, R. 

and Ebner, C., 2006. Characterization of recombinant Mal d 4 and its application 

for component‐resolved diagnosis of apple allergy. Clinical & Experimental 

Allergy, 36(8), pp.1087-1096. 

Mari, A., 2001. Multiple pollen sensitization: a molecular approach to the 

diagnosis. International archives of allergy and immunology, 125(1), pp.57-65. 

Martin, Y.C., 2005. A bioavailability score. Journal of medicinal chemistry, 48(9), 

pp.3164-3170. 



93 
 

May, C.D., 1976. Objective clinical and laboratory studies of immediate 

hypersensitivity reactions to foods in asthmatic children. Journal of Allergy and 

Clinical immunology, 58(4), pp.500-515. 

Michalski, M.C. and Januel, C., 2006. Does homogenization affect the human 

health properties of cow's milk?. Trends in Food Science & Technology, 17(8), 

pp.423-437. 

Mohabatkar, H., Mohammad Beigi, M., Abdolahi, K. and Mohsenzadeh, S., 2013. 

Prediction of allergenic proteins by means of the concept of Chou's pseudo amino 

acid composition and a machine learning approach. Medicinal Chemistry, 9(1), 

pp.133-137. 

Obermann, H., Raabe, I., Balvers, M., Brunswig, B., Schulze, W. and Kirchhoff, 

C., 2005. Novel testis-expressed profilin IV associated with acrosome biogenesis 

and spermatid elongation. Molecular human reproduction, 11(1), pp.53-64. 

Ogburn, R.N., Randall, T.A., Xu, Y., Roberts, J.H., Mebrahtu, B., Karnuta, J.M., 

Rider, S.D., Kissling, G.E., London, R.E., Pomés, A. and Arlian, L., 2017. Are 

dust mite allergens more abundant and/or more stable than other 

Dermatophagoides pteronyssinus proteins?. Journal of Allergy and Clinical 

Immunology, 139(3), pp.1030-1032. 

Pali-Schöll, I., Untersmayr, E., Klems, M. and Jensen-Jarolim, E., 2018. The 

effect of digestion and digestibility on allergenicity of food. Nutrients, 10(9), 

p.1129. 

Peden, J., 2000. Analysis of codon usage. Doctoral thesis, University of 

Nottingham, Nottingham. 

Pekar, J., Ret, D. and Untersmayr, E., 2018. Stability of allergens. Molecular 

immunology, 100, pp.14-20. 

Pi, X., Sun, Y., Fu, G., Wu, Z. and Cheng, J., 2021. Effect of processing on 

soybean allergens and their allergenicity. Trends in Food Science & 

Technology, 118, pp.316-327. 



94 
 

Polet, D., Lambrechts, A., Ono, K., Mah, A., Peelman, F., Vandekerckhove, J., 

Baillie, D.L., Ampe, C. and Ono, S., 2006. Caenorhabditis elegans expresses three 

functional profilins in a tissue‐specific manner. Cell motility and the 

cytoskeleton, 63(1), pp.14-28. 

Popescu, F.D., 2015. Cross-reactivity between aeroallergens and food 

allergens. World journal of methodology, 5(2), p.31. 

Porter, J.W.G., 1978. The present nutritional status of milk proteins. International 

Journal of Dairy Technology, 31(4), pp.199-202. 

Ramachandran, GN., Ramakrishnan, C. and Sasisekharan V. 1963. 

Stereochemistry of polypeptide chain configurations. Journal of Molecular 

Biology, 7, pp.95-99. 

Reindl, J., Rihs, H.P., Scheurer, S., Wangorsch, A., Haustein, D. and Vieths, S., 

2002. IgE reactivity to profilin in pollen-sensitized subjects with adverse reactions 

to banana and pineapple. International archives of allergy and 

immunology, 128(2), pp.105-114. 

Remington, B., Broekman, H.C.H., Blom, W.M., Capt, A., Crevel, R.W., 

Dimitrov, I., Faeste, C.K., Fernandez-Canton, R., Giavi, S., Houben, G.F. and 

Glenn, K.C., 2018. Approaches to assess IgE mediated allergy risks (sensitization 

and cross-reactivity) from new or modified dietary proteins. Food and chemical 

toxicology, 112, pp.97-107. 

Rihs, H.P., Chen, Z., Ruëff, F., Petersen, A., Rozynek, P., Heimanna, H. and Baur, 

X., 1999. IgE binding of the recombinant allergen soybean profilin (rGly m 3) is 

mediated by conformational epitopes. Journal of Allergy and Clinical 

Immunology, 104(6), pp.1293-1301. 

Rihs, H.P., Rozynek, P., May-Taube, K., Welticke, B. and Baur, X., 1994. 

Polymerase chain reaction based cDNA cloning of wheat profilin: a potential 

plant allergen. International archives of allergy and immunology, 105(2), pp.190-

194. 



95 
 

Rosace, D., Gomez-Casado, C., Fernandez, P., Perez-Gordo, M., del Carmen 

Dominguez, M., Vega, A., Belver, M.T., Ramos, T., Vega, F., Marco, G. and de 

Pedro, M., 2019. Profilin-mediated food-induced allergic reactions are associated 

with oral epithelial remodeling. Journal of Allergy and Clinical 

Immunology, 143(2), pp.681-690. 

Roy, A. and Basak, S., 2021. HIV long-term non-progressors share similar 

features with simian immunodeficiency virus infection of chimpanzees. Journal of 

Biomolecular Structure and Dynamics, 39(7), pp.2447-2454. 

Saha, S. and Raghava, G.P.S., 2006. AlgPred: prediction of allergenic proteins 

and mapping of IgE epitopes. Nucleic acids research, 34(suppl_2), pp.W202-

W209. 

Sampath, V., Abrams, E.M., Adlou, B., Akdis, C., Akdis, M., Brough, H.A., 

Chan, S., Chatchatee, P., Chinthrajah, R.S., Cocco, R.R. and Deschildre, A., 2021. 

Food allergy across the globe. Journal of Allergy and Clinical 

Immunology, 148(6), pp.1347-1364. 

Santos, A. and Van Ree, R., 2011. Profilins: mimickers of allergy or relevant 

allergens?. International archives of allergy and immunology, 155(3), pp.191-204. 

Schloss, O.M., 1912. A CASE OF ALLEEGY TO COMMON FOODS. American 

Journal of Diseases of Children, 3(6), pp.341-362. 

Schluter, K., Jockusch, B.M. and Rothkegel, M., 1997. Profilins as regulators of 

actin dynamics. Biochimica et Biophysica Acta-Molecular Cell 

Research, 1359(2), pp.97-109. 

Sharma, N., Patiyal, S., Dhall, A., Pande, A., Arora, C. and Raghava, G.P., 2021. 

AlgPred 2.0: an improved method for predicting allergenic proteins and mapping 

of IgE epitopes. Briefings in Bioinformatics, 22(4), p.bbaa294. 

Singh, B., Karnwal, A., Tripathi, A. and Upadhyay, A.K., 2021. Food Allergens 

and Related Computational Biology Approaches: A Requisite for a Healthy 

Life. Bioinformatics for agriculture: High-throughput approaches, p.145. 



96 
 

Spergel, J. and Aceves, S.S., 2018. Allergic components of eosinophilic 

esophagitis. Journal of Allergy and Clinical Immunology, 142(1), pp.1-8. 

Sterling, T. and Irwin, J.J., 2015. ZINC 15–ligand discovery for everyone. Journal 

of chemical information and modeling, 55(11), pp.2324-2337. 

Sunseri, J. and Koes, D.R., 2016. Pharmit: interactive exploration of chemical 

space. Nucleic acids research, 44(W1), pp.W442-W448. 

Tariq, S.M., Matthews, S.M., Hakim, E.A. and Arshad, S.H., 2000. Egg allergy in 

infancy predicts respiratory allergic disease by 4 years of age. Pediatric Allergy 

and Immunology, 11(3), pp.162-167. 

Tedner, S.G., Asarnoj, A., Thulin, H., Westman, M., Konradsen, J.R. and Nilsson, 

C., 2022. Food allergy and hypersensitivity reactions in children and adults—A 

review. Journal of internal medicine, 291(3), pp.283-302. 

Thompson, J.D., Gibson, T.J. and Higgins, D.G., 2003. Multiple sequence 

alignment using ClustalW and ClustalX. Current protocols in bioinformatics, (1), 

pp.2-3. 

Trott, O. and Olson, A.J., 2010. AutoDock Vina: improving the speed and 

accuracy of docking with a new scoring function, efficient optimization, and 

multithreading. Journal of computational chemistry, 31(2), pp.455-461. 

Turner, P.J., Mehr, S., Joshi, P., Tan, J., Wong, M., Kakakios, A. and Campbell, 

D.E., 2013. Safety of food challenges to extensively heated egg in egg‐allergic 

children: a prospective cohort study. Pediatric Allergy and Immunology, 24(5), 

pp.450-455. 

Untersmayr, E., Diesner, S.C., Brämswig, K.H., Knittelfelder, R., Bakos, N., 

Gundacker, C., Lukschal, A., Wallmann, J., Szalai, K., Pali-Schöll, I. and Boltz-

Nitulescu, G., 2008. Characterization of intrinsic and extrinsic risk factors for 

celery allergy in immunosenescence. Mechanisms of ageing and 

development, 129(3), pp.120-128. 



97 
 

Valenta, R., Duchene, M., Pettenburger, K., Sillaber, C., Valent, P., Bettelheim, 

P., Breitenbach, M., Rumpold, H., Kraft, D. and Scheiner, O., 1991. Identification 

of profilin as a novel pollen allergen; IgE autoreactivity in sensitized 

individuals. Science, 253(5019), pp.557-560. 

Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E. and 

Berendsen, H.J., 2005. GROMACS: fast, flexible, and free. Journal of 

computational chemistry, 26(16), pp.1701-1718. 

Vaughan, W.T., 1930. Food allergens: I. A genetic classification, with results of 

group testing. Journal of Allergy, 1(5), pp.385-402. 

Veber, D.F., Johnson, S.R., Cheng, H.Y., Smith, B.R., Ward, K.W. and Kopple, 

K.D., 2002. Molecular properties that influence the oral bioavailability of drug 

candidates. Journal of medicinal chemistry, 45(12), pp.2615-2623. 

Verhoeckx, K.C., Vissers, Y.M., Baumert, J.L., Faludi, R., Feys, M., Flanagan, S., 

Herouet-Guicheney, C., Holzhauser, T., Shimojo, R., van der Bolt, N. and 

Wichers, H., 2015. Food processing and allergenicity. Food and Chemical 

Toxicology, 80, pp.223-240. 

Vogel, C. and Marcotte, E.M., 2012. Insights into the regulation of protein 

abundance from proteomic and transcriptomic analyses. Nature reviews 

genetics, 13(4), pp.227-232. 

Wang, J. and Liu, A.H., 2011. Food allergies and asthma. Current opinion in 

allergy and clinical immunology, 11(3), p.249. 

Wang, J., Yu, Y., Zhao, Y., Zhang, D. and Li, J., 2013. Evaluation and integration 

of existing methods for computational prediction of allergens. BMC 

bioinformatics, 14(4), pp.1-9. 

Wang, J., Zhang, D. and Li, J., 2013a. PREAL: prediction of allergenic protein by 

maximum Relevance Minimum Redundancy (mRMR) feature selection. BMC 

systems biology, 7(5), pp.1-9. 



98 
 

Wang, L., Niu, D., Zhao, X., Wang, X., Hao, M. and Che, H., 2021. A 

Comparative Analysis of Novel Deep Learning and Ensemble Learning Models to 

Predict the Allergenicity of Food Proteins. Foods, 10(4), p.809. 

Wang, L., Xia, Q., Zhang, Y., Zhu, X., Zhu, X., Li, D., Ni, X., Gao, Y., Xiang, H., 

Wei, X. and Yu, J., 2016. Updated sesame genome assembly and fine mapping of 

plant height and seed coat color QTLs using a new high-density genetic 

map. BMC genomics, 17(1), pp.1-13. 

Warrier, R. and Pande, H., 2016. Genetically engineered plants in the product 

development pipeline in India. GM crops & food, 7(1), pp.12-19. 

Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., 

Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L. and Lepore, R., 2018. 

SWISS-MODEL: homology modelling of protein structures and 

complexes. Nucleic acids research, 46(W1), pp.W296-W303. 

Westerhout, J., Krone, T., Snippe, A., Babé, L., McClain, S., Ladics, G.S., 

Houben, G.F. and Verhoeckx, K.C., 2019. Allergenicity prediction of novel and 

modified proteins: Not a mission impossible! Development of a Random Forest 

allergenicity prediction model. Regulatory Toxicology and Pharmacology, 107, 

p.104422. 

Willerroider, M., Fuchs, H., Ballmer-Weber, B.K., Focke, M., Susani, M., 

Thalhamer, J., Ferreira, F., Wüthrich, B., Scheiner, O., Breiteneder, H. and 

Hoffmann-Sommergruber, K., 2003. Cloning and molecular and immunological 

characterisation of two new food allergens, Cap a 2 and Lyc e 1, profilins from 

bell pepper (Capsicum annuum) and Tomato (Lycopersicon 

esculentum). International archives of allergy and immunology, 131(4), pp.245-

255. 

Włodarczyk, K., Smolińska, B. and Majak, I., 2022. Tomato Allergy: The 

Characterization of the Selected Allergens and Antioxidants of Tomato (Solanum 

lycopersicum)—A Review. Antioxidants, 11(4), p.644. 



99 
 

Wolff, N., Cogan, U., Admon, A., Dalal, I., Katz, Y., Hodos, N., Karin, N. and 

Yannai, S., 2003. Allergy to sesame in humans is associated primarily with IgE 

antibody to a 14 kDa 2S albumin precursor. Food and chemical toxicology, 41(8), 

pp.1165-1174. 

Worm, M., Hompes, S., Fiedler, E.M., Illner, A.K., Zuberbier, T. and Vieths, S., 

2009. Impact of native, heat‐processed and encapsulated hazelnuts on the allergic 

response in hazelnut‐allergic patients. Clinical & Experimental Allergy, 39(1), 

pp.159-166. 

Xue, B., Soeria‐Atmadja, D., Gustafsson, M.G., Hammerling, U., Dunker, A.K. 

and Uversky, V.N., 2011. Abundance and functional roles of intrinsic disorder in 

allergenic proteins and allergen representative peptides. Proteins: Structure, 

Function, and Bioinformatics, 79(9), pp.2595-2606. 

Yu, J., Ahmedna, M., Goktepe, I., Cheng, H. and Maleki, S., 2011. Enzymatic 

treatment of peanut kernels to reduce allergen levels. Food chemistry, 127(3), 

pp.1014-1022. 

Zayas, J.F., 1997. Solubility of proteins. In Functionality of proteins in food (pp. 

6-75). Springer, Berlin, Heidelberg. 

Zhang, Z.H., Koh, J.L., Zhang, G.L., Choo, K.H., Tammi, M.T. and Tong, J.C., 

2007. AllerTool: a web server for predicting allergenicity and allergic cross-

reactivity in proteins. Bioinformatics, 23(4), pp.504- 

 

 

 

 

 

 

 

 

 



100 
 

Index 

A 

Allergen: 1, 3, 5, 6, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20 21, 23, 24, 25, 26, 28, 29, 
30, 32, 36, 37, 38, 41, 42, 43, 44, 45, 46, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 
63, 67, 69, 71, 72 ,73, 74, 77, 78, 79, 80, 81 

Allergy: 1, 2, 3, 5, 6, 8, 9, 10, 11, 78, 80 

Amino acid usage: 6, 23, 28, 29, 30, 51, 52, 53, 54, 61, 68, 81 

AutoDock: 26, 45 

B 

BLAST: 16 

Bioavailability: 27, 46, 48, 49, 50, 51, 81 

Bioinformatics: 15, 25 

C 

Conserved: 5, 11, 15, 56, 57 

Cross-reactivity: 5, 6, 11, 12, 13, 17, 37 

Computational: 3, 5, 15, 19, 23, 24, 33, 39, 42, 43, 44, 45, 61, 67, 68, 72, 76, 80, 81, 
82 

Classifiers: 17, 22, 31, 62, 63, 64, 65, 66, 67, 68, 81 

D 

Descriptors: 7, 18, 21, 30, 31, 48, 61, 67, 68, 69, 72, 81, 82 

Disorder: 29, 54, 81 

Domain: 9, 14, 15, 38, 80 

E 

Epitope: 23, 80 

Expression: 7, 34, 36, 72, 74, 76, 77, 79, 82 

F 

Food allergen: 1, 4, 5, 6, 9, 10, 11, 23, 25, 30, 32, 36, 37, 38, 44, 45, 55, 61, 69, 74, 
78, 80, 81, 82 

H 

Hydrophobicity: 4, 18, 19, 23, 45, 46, 47 



101 
 

Hypersensitive: 8, 9, 10, 54, 81 

I 

Immunological: 1, 5 

Identity: 11, 36, 37, 38, 56, 57 

M 

Model: 3, 4, 5, 7, 9, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 38, 39, 40, 41, 
42, 43, 44, 45, 49, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 78, 79, 80, 81, 82 

Machine learning: 7, 17, 18, 22, 23, 24, 30, 31, 61, 62, 67, 80 

Molecular dynamics: 26, 41 

N 

Non allergen: 6, 15, 16, 18, 19, 20, 21, 28, 30, 51, 53, 54, 55, 57, 59, 61, 63, 67, 71, 
81 

O 

Omics: 15, 61 

P 

Profilin: 4, 5, 6, 11, 13, 15, 25, 26, 27, 28, 29, 30, 36, 37, 38, 39, 40, 41, 42, 43, 44, 
45, 46, 47, 49, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 72, 78, 80, 81, 82 

Protein: 3, 4, 6, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 
30, 36, 38, 39, 45, 54, 55, 60, 61, 67, 68, 69, 71, 72, 74, 77, 78, 79, 80, 81, 82 

R 

RNA-Seq: 24, 32, 74 

RAAU: 23, 28, 29, 51, 52, 53, 54, 55, 56 

S 

Structure: 5, 6, 11, 14, 15, 16, 21, 24, 25, 26, 29, 30, 36, 39, 40, 41, 42, 54, 57, 58, 60, 
69, 70, 80, 81 

Sequence: 3, 4, 5, 6, 11, 15, 16, 18, 19, 20, 21, 24, 28, 29, 30, 33, 34, 36, 37, 54, 56, 
57, 67, 74, 75, 76, 80, 82 

T 

Transcriptomic: 33, 34, 74, 75, 77, 78, 79, 82 

 



102 
 

W 

WEKA: 30, 31, 32, 62 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A 
 

Appendices 

Appendix 1 List of Uniprot Accessions with identifiers considered in the study for differential amino 
acid usage analysis. 

Given name Uniprot Identifier 

profilin_allergen_1 >sp|O82572|PROF1_RICCO Profilin-1 OS=Ricinus communis OX=3988 
GN=PRO1 PE=2 SV=1 

profilin_allergen_2 >sp|P41372|PROF1_TOBAC Profilin-1 OS=Nicotiana tabacum OX=4097 
GN=PRO1 PE=2 SV=1 

profilin_allergen_3 >sp|P49232|PROF1_WHEAT Profilin-1 OS=Triticum aestivum OX=4565 
GN=PRO1 PE=2 SV=2 

profilin_allergen_4 >sp|P52184|PROF1_HORVU Profilin-1 OS=Hordeum vulgare OX=4513 
GN=PRO1 PE=2 SV=1 

profilin_allergen_5 >sp|Q41344|PROF1_SOLLC Profilin-1 OS=Solanum lycopersicum OX=4081 
GN=PRO1 PE=2 SV=1 

profilin_allergen_6 >sp|Q42449|PROF1_ARATH Profilin-1 OS=Arabidopsis thaliana OX=3702 
GN=PRO1 PE=1 SV=1 

profilin_allergen_7 >sp|P25816|PROF1_BETPN Profilin-1 OS=Betula pendula OX=3505 
GN=BETVII PE=1 SV=1 

profilin_allergen_8 >sp|A4KA39|PROF1_CORAV Profilin-1 OS=Corylus avellana OX=13451 
PE=1 SV=1 

profilin_allergen_9 >sp|P35079|PROF1_PHLPR Profilin-1 OS=Phleum pratense OX=15957 
GN=PRO1 PE=1 SV=1 

profilin_allergen_10 >sp|Q9XF40|PROF1_MALDO Profilin-1 OS=Malus domestica OX=3750 
PE=1 SV=1 

profilin_allergen_11 >sp|O65809|PROF1_SOYBN Profilin-1 OS=Glycine max OX=3847 
GN=PRO1 PE=1 SV=1 

profilin_allergen_12 >sp|Q64LH1|PROF1_AMBAR Profilin-1 OS=Ambrosia artemisiifolia 
OX=4212 GN=D106 PE=1 SV=1 

profilin_allergen_13 >sp|Q8H2C9|PROF1_ARTVU Profilin-1 OS=Artemisia vulgaris OX=4220 
PE=1 SV=3 

profilin_allergen_14 >sp|O65812|PROF1_HEVBR Profilin-1 OS=Hevea brasiliensis OX=3981 PE=1 
SV=1 

profilin_allergen_15 >sp|O24169|PROFA_OLEEU Profilin-1 OS=Olea europaea OX=4146 
GN=PRO1 PE=1 SV=1 

profilin_allergen_16 >sp|P0DKD0|PROFD_OLEEU Profilin-1 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_17 >sp|P0DKD1|PROFG_OLEEU Profilin-1 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_18 >sp|P0DKD2|PROFH_OLEEU Profilin-1 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_19 >sp|P0DKD3|PROFI_OLEEU Profilin-1 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_20 >sp|P0DKD4|PROFJ_OLEEU Profilin-1 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_21 >sp|P0DKD5|PROFK_OLEEU Profilin-1 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_22 >sp|P0DKD6|PROFL_OLEEU Profilin-1 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_23 >sp|P0DKD7|PROFM_OLEEU Profilin-1 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_24 >sp|P0DKD8|PROFN_OLEEU Profilin-1 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_25 >sp|P0DKD9|PROFO_OLEEU Profilin-1 OS=Olea europaea OX=4146 PE=1 
SV=1 



B 
 

profilin_allergen_26 >sp|P0DKE1|PROFS_OLEEU Profilin-1 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_27 >sp|P0DKE8|PROAD_OLEEU Profilin-1 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_28 >sp|P0DKE9|PROAE_OLEEU Profilin-1 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_29 >sp|P0DKF0|PROAF_OLEEU Profilin-1 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_30 >sp|P0DKF2|PROAH_OLEEU Profilin-1 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_31 >sp|P0DKF3|PROAI_OLEEU Profilin-1 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_32 >sp|P0DKF5|PROAN_OLEEU Profilin-1 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_33 >sp|P0DKF6|PROAO_OLEEU Profilin-1 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_34 >sp|P0DKF7|PROAP_OLEEU Profilin-1 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_35 >sp|Q9XG85|PROF1_PARJU Profilin-1 OS=Parietaria judaica OX=33127 
GN=PRO1 PE=1 SV=1 

profilin_allergen_36 >sp|P35081|PROF1_MAIZE Profilin-1 OS=Zea mays OX=4577 GN=PRO1 
PE=1 SV=1 

profilin_allergen_37 >sp|Q9SQI9|PROF_ARAHY Profilin OS=Arachis hypogaea OX=3818 PE=1 
SV=1 

profilin_allergen_38 >sp|Q9XF38|PROF_PYRCO Profilin OS=Pyrus communis OX=23211 PE=1 
SV=1 

profilin_allergen_39 >sp|Q93YI9|PROF_CAPAN Profilin OS=Capsicum annuum OX=4072 PE=1 
SV=1 

profilin_allergen_40 >sp|C6JWH0|PRF01_KALTU Profilin Sal k 4.0101 OS=Kali turgidum 
OX=151250 PE=1 SV=1 

profilin_allergen_41 >sp|P49233|PROF2_WHEAT Profilin-2 OS=Triticum aestivum OX=4565 
GN=PRO2 PE=2 SV=2 

profilin_allergen_42 >sp|A4K9Z8|PROF2_BETPN Profilin-2 OS=Betula pendula OX=3505 PE=1 
SV=1 

profilin_allergen_43 >sp|A4KA40|PROF2_CORAV Profilin-2 OS=Corylus avellana OX=13451 
PE=1 SV=1 

profilin_allergen_44 >sp|O24650|PROF2_PHLPR Profilin-2 OS=Phleum pratense OX=15957 
GN=PRO2 PE=1 SV=1 

profilin_allergen_45 >sp|Q9XF41|PROF2_MALDO Profilin-2 OS=Malus domestica OX=3750 
PE=1 SV=1 

profilin_allergen_46 >sp|O65810|PROF2_SOYBN Profilin-2 OS=Glycine max OX=3847 
GN=PRO2 PE=1 SV=1 

profilin_allergen_47 >sp|Q93YG7|PROF2_SOLLC Profilin-2 OS=Solanum lycopersicum OX=4081 
PE=1 SV=1 

profilin_allergen_48 >sp|Q64LH2|PROF2_AMBAR Profilin-2 OS=Ambrosia artemisiifolia 
OX=4212 GN=A0418 PE=1 SV=1 

profilin_allergen_49 >sp|Q8H2C8|PROF2_ARTVU Profilin-2 OS=Artemisia vulgaris OX=4220 
PE=1 SV=3 

profilin_allergen_50 >sp|Q9STB6|PROF2_HEVBR Profilin-2 OS=Hevea brasiliensis OX=3981 
GN=PRO2 PE=1 SV=1 

profilin_allergen_51 >sp|Q9ST99|PROF2_TOBAC Profilin-2 OS=Nicotiana tabacum OX=4097 
GN=PRO2 PE=1 SV=1 

profilin_allergen_52 >sp|A4GCR5|PROFE_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_53 >sp|A4GCR8|PROFQ_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_54 >sp|A4GD50|PROFT_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 



C 
 

SV=1 

profilin_allergen_55 >sp|A4GD56|PROAA_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_56 >sp|A4GDR3|PROAT_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_57 >sp|A4GDR8|PROAX_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_58 >sp|A4GDS6|PROBA_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_59 >sp|A4GDS7|PROBB_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_60 >sp|A4GDT0|PROBD_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_61 >sp|A4GDT4|PROBG_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_62 >sp|A4GDT9|PROBI_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_63 >sp|A4GDU0|PROBJ_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_64 >sp|A4GDU5|PROBM_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_65 >sp|A4GE39|PROBP_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_66 >sp|A4GE44|PROBR_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_67 >sp|A4GE47|PROBT_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_68 >sp|A4GE48|PROBU_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_69 >sp|A4GE53|PROBX_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_70 >sp|A4GE55|PROBZ_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_71 >sp|A4GFB7|PROCA_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_72 >sp|O24170|PROFB_OLEEU Profilin-2 OS=Olea europaea OX=4146 
GN=PRO2 PE=1 SV=1 

profilin_allergen_73 >sp|P0DKE3|PROFV_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_74 >sp|P0DKE5|PROFX_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_75 >sp|P0DKE7|PROAC_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_76 >sp|P0DKF1|PROAG_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_77 >sp|P0DKF8|PROAQ_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_78 >sp|P0DKF9|PROAR_OLEEU Profilin-2 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_79 >sp|Q9T0M8|PROF2_PARJU Profilin-2 OS=Parietaria judaica OX=33127 
GN=PRO2 PE=1 SV=1 

profilin_allergen_80 >sp|P35082|PROF2_MAIZE Profilin-2 OS=Zea mays OX=4577 GN=PRO2 
PE=1 SV=2 

profilin_allergen_81 >sp|Q8GT39|PROF_PRUPE Profilin OS=Prunus persica OX=3760 PE=1 SV=1 

profilin_allergen_82 >sp|Q9XF37|PROF_APIGR Profilin OS=Apium graveolens OX=4045 PE=1 
SV=1 



D 
 

profilin_allergen_83 >sp|Q5FX67|PROF_CUCME Profilin OS=Cucumis melo OX=3656 PE=1 
SV=1 

profilin_allergen_84 >sp|P49234|PROF3_WHEAT Profilin-3 OS=Triticum aestivum OX=4565 
GN=PRO3 PE=2 SV=2 

profilin_allergen_85 >sp|A4KA44|PROF3_CORAV Profilin-3 OS=Corylus avellana OX=13451 
PE=1 SV=1 

profilin_allergen_86 >sp|O24282|PROF3_PHLPR Profilin-3 OS=Phleum pratense OX=15957 
GN=PRO3 PE=1 SV=1 

profilin_allergen_87 >sp|Q9XF42|PROF3_MALDO Profilin-3 OS=Malus domestica OX=3750 
PE=1 SV=1 

profilin_allergen_88 >sp|Q64LH0|PROF3_AMBAR Profilin-3 OS=Ambrosia artemisiifolia 
OX=4212 GN=D03 PE=1 SV=1 

profilin_allergen_89 >sp|Q9M7N0|PROF3_HEVBR Profilin-3 OS=Hevea brasiliensis OX=3981 
PE=1 SV=1 

profilin_allergen_90 >sp|A4GCR6|PROFF_OLEEU Profilin-3 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_91 >sp|A4GDQ6|PROAK_OLEEU Profilin-3 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_92 >sp|A4GDR4|PROAU_OLEEU Profilin-3 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_93 >sp|A4GDR9|PROAY_OLEEU Profilin-3 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_94 >sp|A4GDS9|PROBC_OLEEU Profilin-3 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_95 >sp|A4GDT1|PROBE_OLEEU Profilin-3 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_96 >sp|A4GDT5|PROBH_OLEEU Profilin-3 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_97 >sp|A4GDU2|PROBK_OLEEU Profilin-3 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_98 >sp|A4GDU6|PROBN_OLEEU Profilin-3 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_99 >sp|A4GE42|PROBQ_OLEEU Profilin-3 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_100 >sp|A4GE49|PROBV_OLEEU Profilin-3 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_101 >sp|A4GE54|PROBY_OLEEU Profilin-3 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_102 >sp|A4GFC0|PROCE_OLEEU Profilin-3 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_103 >sp|A4GFC3|PROCG_OLEEU Profilin-3 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_104 >sp|O24171|PROFC_OLEEU Profilin-3 OS=Olea europaea OX=4146 
GN=PRO3 PE=1 SV=1 

profilin_allergen_105 >sp|P0DKE2|PROFU_OLEEU Profilin-3 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_106 >sp|P0DKE6|PROAB_OLEEU Profilin-3 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_107 >sp|P0DKF4|PROAM_OLEEU Profilin-3 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_108 >sp|P0DKG0|PROCB_OLEEU Profilin-3 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_109 >sp|P35083|PROF3_MAIZE Profilin-3 OS=Zea mays OX=4577 GN=PRO3 
PE=1 SV=1 

profilin_allergen_110 >sp|P84177|PROF1_CITSI Profilin OS=Citrus sinensis OX=2711 PE=1 SV=2 

profilin_allergen_111 >sp|Q8L5D8|PROF_PHODC Profilin OS=Phoenix dactylifera OX=42345 PE=1 
SV=1 



E 
 

profilin_allergen_112 >sp|Q9XF39|PROF_PRUAV Profilin OS=Prunus avium OX=42229 PE=1 
SV=1 

profilin_allergen_113 >sp|Q84V37|PROF_CHEAL Profilin OS=Chenopodium album OX=3559 PE=1 
SV=1 

profilin_allergen_114 >sp|O81982|PROF_HELAN Profilin OS=Helianthus annuus OX=4232 PE=1 
SV=1 

profilin_allergen_115 >sp|A4KA45|PROF4_CORAV Profilin-4 OS=Corylus avellana OX=13451 
PE=1 SV=1 

profilin_allergen_116 >sp|Q9M7M9|PROF4_HEVBR Profilin-4 OS=Hevea brasiliensis OX=3981 
PE=1 SV=1 

profilin_allergen_117 >sp|A4GCR7|PROFP_OLEEU Profilin-4 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_118 >sp|A4GD58|PROAJ_OLEEU Profilin-4 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_119 >sp|A4GDQ8|PROAL_OLEEU Profilin-4 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_120 >sp|A4GDR1|PROAS_OLEEU Profilin-4 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_121 >sp|A4GDR6|PROAV_OLEEU Profilin-4 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_122 >sp|A4GDS0|PROAZ_OLEEU Profilin-4 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_123 >sp|A4GDU3|PROBL_OLEEU Profilin-4 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_124 >sp|A4GE50|PROBW_OLEEU Profilin-4 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_125 >sp|A4GFB9|PROCD_OLEEU Profilin-4 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_126 >sp|A4GFC2|PROCF_OLEEU Profilin-4 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_127 >sp|A4GFC4|PROCH_OLEEU Profilin-4 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_128 >sp|A4KA49|PROCI_OLEEU Profilin-4 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_129 >sp|P0DKE4|PROFW_OLEEU Profilin-4 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_130 >sp|P0DKG1|PROCC_OLEEU Profilin-4 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_131 >sp|A4KA31|PROF4_PHLPR Profilin-4 OS=Phleum pratense OX=15957 
PE=1 SV=1 

profilin_allergen_132 >sp|O22655|PROF4_MAIZE Profilin-4 OS=Zea mays OX=4577 GN=PRO4 
PE=1 SV=1 

profilin_allergen_133 >sp|Q9FUB8|PROF_BRANA Profilin OS=Brassica napus OX=3708 PE=2 
SV=1 

profilin_allergen_134 >sp|Q8GSL5|PROF_PRUDU Profilin OS=Prunus dulcis OX=3755 PE=1 SV=1 

profilin_allergen_135 >sp|Q8SAE6|PROF_DAUCA Profilin OS=Daucus carota OX=4039 PE=1 
SV=1 

profilin_allergen_136 >sp|O49894|PROF_MERAN Profilin OS=Mercurialis annua OX=3986 PE=1 
SV=1 

profilin_allergen_137 >sp|W8P570|PRF03_KALTU Profilin Sal k 4.0301 OS=Kali turgidum 
OX=151250 PE=1 SV=1 

profilin_allergen_138 >sp|A4KA41|PROF5_CORAV Profilin-5 OS=Corylus avellana OX=13451 
PE=1 SV=1 

profilin_allergen_139 >sp|Q9M7M8|PROF5_HEVBR Profilin-5 OS=Hevea brasiliensis OX=3981 
PE=1 SV=1 

profilin_allergen_140 >sp|A4GD54|PROFY_OLEEU Profilin-5 OS=Olea europaea OX=4146 PE=1 
SV=1 



F 
 

profilin_allergen_141 >sp|A4KA50|PROCJ_OLEEU Profilin-5 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_142 >sp|A4KA32|PROF5_PHLPR Profilin-5 OS=Phleum pratense OX=15957 
PE=1 SV=1 

profilin_allergen_143 >sp|Q9FR39|PROF5_MAIZE Profilin-5 OS=Zea mays OX=4577 GN=PRO5 
PE=1 SV=1 

profilin_allergen_144 >sp|A4KA43|PROF6_CORAV Profilin-6 OS=Corylus avellana OX=13451 
PE=1 SV=1 

profilin_allergen_145 >sp|Q9LEI8|PROF6_HEVBR Profilin-6 OS=Hevea brasiliensis OX=3981 
PE=1 SV=1 

profilin_allergen_146 >sp|A4KA51|PROCK_OLEEU Profilin-6 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_147 >sp|A4KA33|PROF6_PHLPR Profilin-6 OS=Phleum pratense OX=15957 
PE=1 SV=1 

profilin_allergen_148 >sp|A4KA55|PROF6_MAIZE Profilin-6 OS=Zea mays OX=4577 PE=1 SV=1 

profilin_allergen_149 >sp|A4KA52|PROCL_OLEEU Profilin-7 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_150 >sp|A4KA34|PROF7_PHLPR Profilin-7 OS=Phleum pratense OX=15957 
PE=1 SV=1 

profilin_allergen_151 >sp|A4KA56|PROF7_MAIZE Profilin-7 OS=Zea mays OX=4577 PE=1 SV=1 

profilin_allergen_152 >sp|A4KA53|PROCM_OLEEU Profilin-8 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_153 >sp|A4KA36|PROF8_PHLPR Profilin-8 OS=Phleum pratense OX=15957 
PE=1 SV=1 

profilin_allergen_154 >sp|A4KA57|PROF8_MAIZE Profilin-8 OS=Zea mays OX=4577 PE=1 SV=1 

profilin_allergen_155 >sp|A4KA54|PROCN_OLEEU Profilin-9 OS=Olea europaea OX=4146 PE=1 
SV=1 

profilin_allergen_156 >sp|A4KA37|PROF9_PHLPR Profilin-9 OS=Phleum pratense OX=15957 
PE=1 SV=1 

profilin_allergen_157 >sp|A4KA58|PROF9_MAIZE Profilin-9 OS=Zea mays OX=4577 PE=1 SV=1 

profilin_allergen_158 >sp|A4KA38|PRO10_PHLPR Profilin-10 OS=Phleum pratense OX=15957 
PE=1 SV=1 

profilin_allergen_159 >sp|A4KA59|PRO10_MAIZE Profilin-10 OS=Zea mays OX=4577 PE=1 SV=1 

profilin_allergen_160 >sp|A4KA60|PRO11_MAIZE Profilin-11 OS=Zea mays OX=4577 PE=1 SV=1 

profilin_allergen_161 >sp|Q5VMJ3|PROFX_ORYSJ Profilin LP04 OS=Oryza sativa subsp. japonica 
OX=39947 GN=Os06g0152100 PE=2 SV=1 

profilin_allergen_162 >sp|P83647|PROFX_ORYSI Profilin LP04 OS=Oryza sativa subsp. indica 
OX=39946 GN=OsI_020954 PE=1 SV=2 

profilin_allergen_163 >sp|Q9FUD1|PROFA_ORYSJ Profilin-A OS=Oryza sativa subsp. japonica 
OX=39947 GN=Os10g0323600 PE=2 SV=1 

profilin_allergen_164 >sp|A4KA61|PRO12_MAIZE Profilin-12 OS=Zea mays OX=4577 PE=1 SV=1 

profilin_non_allergen_1 >sp|P33828|PROF_VAR67 Profilin OS=Variola virus (isolate 
Human/India/Ind3/1967) OX=587200 GN=A42R PE=3 SV=1 

profilin_non_allergen_2 >sp|P68695|PROF_VACCC Profilin OS=Vaccinia virus (strain Copenhagen) 
OX=10249 GN=A42R PE=3 SV=1 

profilin_non_allergen_3 >sp|Q6RZE1|PROF_RABPU Profilin OS=Rabbitpox virus (strain Utrecht) 
OX=45417 GN=RPXV150 PE=3 SV=1 

profilin_non_allergen_4 >sp|Q77TH1|PROF_VACCT Profilin OS=Vaccinia virus (strain Tian Tan) 
OX=10253 GN=TA53R PE=3 SV=1 

profilin_non_allergen_5 >sp|Q80DT4|PROF_CWPXG Profilin OS=Cowpox virus (strain GRI-90 / 
Grishak) OX=265871 GN=A44R PE=3 SV=1 

profilin_non_allergen_6 >sp|Q8V2L6|PROF_CAMPM Profilin OS=Camelpox virus (strain M-96) 
OX=203173 GN=CMLV161 PE=3 SV=1 

profilin_non_allergen_7 >sp|O57243|PROF_VACCA Profilin OS=Vaccinia virus (strain Ankara) 
OX=126794 GN=MVA154R PE=3 SV=1 
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profilin_non_allergen_8 >sp|Q77DS0|PROF_CWPXB Profilin OS=Cowpox virus (strain Brighton Red) 
OX=265872 GN=CPXV179 PE=3 SV=1 

profilin_non_allergen_9 >sp|Q8JL78|PROF_ECTVM Profilin OS=Ectromelia virus (strain Moscow) 
OX=265874 GN=EVM141 PE=1 SV=1 

profilin_non_allergen_10 >sp|Q775N7|PROF_CAMPS Profilin OS=Camelpox virus (strain CMS) 
OX=203172 GN=CMP158R PE=3 SV=1 

profilin_non_allergen_11 >sp|Q8V4T7|PROF_MONPZ Profilin OS=Monkeypox virus (strain Zaire-96-I-
16) OX=619591 GN=A42R PE=1 SV=1 

profilin_non_allergen_12 >sp|Q9XW16|PROF1_CAEEL Profilin-1 OS=Caenorhabditis elegans 
OX=6239 GN=pfn-1 PE=2 SV=1 

profilin_non_allergen_13 >sp|P02584|PROF1_BOVIN Profilin-1 OS=Bos taurus OX=9913 GN=PFN1 
PE=1 SV=2 

profilin_non_allergen_14 >sp|P62962|PROF1_MOUSE Profilin-1 OS=Mus musculus OX=10090 
GN=Pfn1 PE=1 SV=2 

profilin_non_allergen_15 >sp|P62963|PROF1_RAT Profilin-1 OS=Rattus norvegicus OX=10116 
GN=Pfn1 PE=1 SV=2 

profilin_non_allergen_16 >sp|P68696|PRO1A_ACACA Profilin-1A OS=Acanthamoeba castellanii 
OX=5755 PE=1 SV=2 

profilin_non_allergen_17 >sp|Q95VF7|PRO1B_ACACA Profilin-1B OS=Acanthamoeba castellanii 
OX=5755 PE=1 SV=3 

profilin_non_allergen_18 >sp|Q20025|PROF2_CAEEL Profilin-2 OS=Caenorhabditis elegans OX=6239 
GN=pfn-2 PE=2 SV=3 

profilin_non_allergen_19 >sp|P19984|PROF2_ACACA Profilin-2 OS=Acanthamoeba castellanii 
OX=5755 PE=1 SV=3 

profilin_non_allergen_20 >sp|P26200|PROF2_DICDI Profilin-2 OS=Dictyostelium discoideum 
OX=44689 GN=proB PE=1 SV=1 

profilin_non_allergen_21 >sp|P35080|PROF2_HUMAN Profilin-2 OS=Homo sapiens OX=9606 
GN=PFN2 PE=1 SV=3 

profilin_non_allergen_22 >sp|Q09430|PROF2_BOVIN Profilin-2 OS=Bos taurus OX=9913 GN=PFN2 
PE=1 SV=2 

profilin_non_allergen_23 >sp|Q4R4P8|PROF2_MACFA Profilin-2 OS=Macaca fascicularis OX=9541 
GN=PFN2 PE=2 SV=1 

profilin_non_allergen_24 >sp|Q9JJV2|PROF2_MOUSE Profilin-2 OS=Mus musculus OX=10090 
GN=Pfn2 PE=1 SV=3 

profilin_non_allergen_25 >sp|Q5R4E2|PROF2_PONAB Profilin-2 OS=Pongo abelii OX=9601 
GN=PFN2 PE=2 SV=3 

profilin_non_allergen_26 >sp|Q9EPC6|PROF2_RAT Profilin-2 OS=Rattus norvegicus OX=10116 
GN=Pfn2 PE=1 SV=3 

profilin_non_allergen_27 >sp|Q21193|PROF3_CAEEL Profilin-3 OS=Caenorhabditis elegans OX=6239 
GN=pfn-3 PE=2 SV=1 

profilin_non_allergen_28 >sp|Q32PB1|PROF3_BOVIN Profilin-3 OS=Bos taurus OX=9913 GN=PFN3 
PE=2 SV=1 

profilin_non_allergen_29 >sp|M0RCP6|PROF3_RAT Profilin-3 OS=Rattus norvegicus OX=10116 
GN=Pfn3 PE=2 SV=1 

profilin_non_allergen_30 >sp|P60673|PROF3_HUMAN Profilin-3 OS=Homo sapiens OX=9606 
GN=PFN3 PE=2 SV=1 

profilin_non_allergen_31 >sp|Q8T8M2|PROF3_DICDI Profilin-3 OS=Dictyostelium discoideum 
OX=44689 GN=proC PE=3 SV=1 

profilin_non_allergen_32 >sp|Q9DAD6|PROF3_MOUSE Profilin-3 OS=Mus musculus OX=10090 
GN=Pfn3 PE=1 SV=1 

profilin_non_allergen_33 >sp|Q2NKT1|PROF4_BOVIN Profilin-4 OS=Bos taurus OX=9913 GN=PFN4 
PE=2 SV=1 

profilin_non_allergen_34 >sp|Q8NHR9|PROF4_HUMAN Profilin-4 OS=Homo sapiens OX=9606 
GN=PFN4 PE=1 SV=1 

profilin_non_allergen_35 >sp|Q9D6I3|PROF4_MOUSE Profilin-4 OS=Mus musculus OX=10090 
GN=Pfn4 PE=1 SV=1 

profilin_non_allergen_36 >sp|Q5IRJ7|PROF4_RAT Profilin-4 OS=Rattus norvegicus OX=10116 



H 
 

GN=Pfn4 PE=1 SV=1 

 

Appendix 2 The z-score table of the generated alignment for eight allergen profilins from Hevea 
brasiliensis (Hev b 8), Artemisia vulgaris (Art v 4), Betula verrucosa (Bet v 2), Cucumis melo (Cuc m 
2), Phleum pratense (Phl p 12), Zea mays (Zea m 12), Arachis hypogaea (Ara h 5) and Ambrosia 
artemisiifolia (Amb a 8) respectively. The z-score of the conserved motifs SWQ, YVD, VWA, 
LAPTG, KYMVIQGE, VIRGKKG, KKT, GIY, PGQCNM and LGDYL are highlighted in yellow 
colour. 

Alignment 

(Residue position) 

Sequence Harmony 

Z-score 

Multi-Relief 

Z-score 

Consensus Strings 

81 -1.46 2.17 AS EN AH D 

93 -3.37 1.74 L L I V 

85 -0.73 0.83 AS HQ T HT 

52 -0.53 0.95 FL FV I LV 

54 -1.19 0.93 QT HT Q H 

63 -0.22 0.83 S AS AQ AE 

115 -0.16 0.71 AP AS P AT 

71 -1.22 1.02 DE NQ E E 

78 -1.53 0.79 KN K GS K 
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