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ABSTRACT 

 

Wireless Sensor Network (WSN) is comprised of a number of sensor nodes that 

acquire and transmit data wirelessly. In the majority of WSN applications, including 

health monitoring, military, environmental sensing, rescue, and biological tracking, 

sensor node position is significant. Localization is the process of determining the 

location value and placement of sensor nodes. While going through the literature, 

localization techniques that enable localization processes are characterized by sets of 

pairings, such as static and dynamic localization, centralized and distributed 

localization, outdoor and indoor localization, Two-Dimensional (2D) and Three-

Dimensional (3D) localization, etc. In various circumstances, the primary objective of 

these localization systems is to determine the relative coordinates of the node where 

an event is occurring. 

  

   WSNs are advantageous for a variety of military and commercial applications due 

to their quick deployment, self-organization, and fault tolerance. In recent years, 

mobility has emerged as an important research topic for WSNs. In static localization, 

the location of the target node may be calculated during initialization only. In a 

mobile context, however, the assessment of target node location is an ongoing 

process. Such mobile situations demand more time, energy, and the availability of a 

quick localization solution. When network mobility is taken into account, the 

localization procedure is filled with several problems and obstacles. Additionally, the 

dynamic localization process may be separated into three categories: mobile targets 

and fixed anchors, mobile anchors and fixed targets, and both mobile targets and 

anchors. In mobile settings, periodic re evaluation of target node placements is 

required because node positions shift frequently. 

 

    In the first contribution of the thesis, a novel concept of 2D range-based 

localization with target mobility is proposed by introducing virtual anchors to 

locate mobile target nodes in a two-dimensional scenario using various meta-

heuristics approaches. The novel proposed algorithm, the Dragonfly-Firefly (DA) 

meta-heuristic, is implemented for 2D WSNs. To locate unknown nodes, only one 
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anchor is used. A node whose position is known is normally deployed in the middle of 

the region that is to be sensed. To begin, the anchor and the target node distance are 

calculated after the notion of VN’s is proposed, with VN’s placed at certain angles in 

the field at a defined distance between the anchor and the target node. The centroid is 

calculated, and DA is used to compute the localization error. Similarly, one more 

approach has been proposed in a similar fashion and environment. An algorithm 

known as the Neural Network Algorithm (NNA) is being proposed for computing the 

location of randomly moving target nodes. To improve the findings, hybrid 

optimization strategies can be applied in the future. 

 

     In the second contribution of the thesis, a concept of 3D range-based localization 

with target mobility is proposed, which is based on various meta-heuristics for 

moving target nodes using one anchor node. In a simulation-based scenario, the 

middle and lower levels include nodes with uncertain positions, whereas the top layer 

has a single anchor node. The Adaptive Plant Propagation Algorithm (APPA), a 

revolutionary soft computing approach, is presented here to determine the optimal 

placements of these mobile nodes. These nodes are diverse and have been deployed in 

an asymmetrical environment with a DOI value of 0.01. Simulation findings 

demonstrate that the proposed APPA method surpasses previous meta-heuristic 

optimization strategies in respect of localization error, computational time, and 

localization determination. With the help of the results, it has been inferred that APPA 

is better than other algorithms at finding accurate locations and has faster 

convergence. 

 

      Further, third contribution of the thesis is the development of 3D range free 

localization with target mobility. In the proposed algorithm, only single anchor node 

has been used for localization and there is no requirement of the complex hardware to 

get the distance information between anchor and target node. In an anisotropic 

environment, target nodes and anchor nodes are distributed across the borders of three 

layers. Anchor nodes are placed in the top layer, while target nodes are scattered in 

the middle and bottom levels. A fuzzy Logic System (FLS) has been used for the 

modelling of RSS and edge weight to reduce computational complexity. Further, the 
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Tunicate Swarm Naked Mole Rat Algorithm (TSNMRA) is used to optimize the 

membership function bases of RSS and edge weights in order to reduce the position 

error. Even though this mobility-based approach is presented for the first time, 

simulation results indicate that the proposed technique achieves greater localization 

precision than static range-free schemes. As per the simulation results, the RF-

TSNMRA approach has greater localization accuracy than other methods in the 

literature, such as the weighted centroid method and the RF-HPSO, RF-BBO, and RF-

IWO. 
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CHAPTER -1 

 INTRODUCTION 

This chapter is dedicated to the Wireless Sensor Networks (WSNs), their architecture, 

features, applications, localization in WSN, and the associated challenges. We also 

conduct the study of localization approaches covered by the range-based and range-

free category against their merits and demerits and the various metrics used to 

evaluate the localization. 

1.1 WIRELESS SENSOR NETWORKS 

WSNs are generally grouped into battery-operated units that are networked to process, 

control, collect and communicate data to the users. These devices are termed 

motes/sensor nodes. WSNs comprise nodes placed within a particular target area or 

application-based target [1]. An array of such motes deployed in a particular area 

(indoor or outdoor) for assimilating respective purposes form WSN. The initial 

advancement of WSN was inspired by military applications, such as surveillance on 

the battlefield and detection of the enemy. As years passed by, significant measures of 

research endeavors have empowered the actual execution, and as a result, WSNs have 

become important tool for many real-life applications, viz. agriculture, greenhouse, 

disaster relief, target tracking, monitoring, etc. The benefits offered by WSN in 

comparison with wired network are less cabling, mobility, less installation cost, 

automation in the factories, smart infrastructure, etc. 

One of the types of WSN is underground WSN, where the sensor nodes are placed 

under the ground to monitor various actions [2]. Underwater WSN uses fewer sensor 

nodes, which are expensive and uses sparse placement. The benefits offered by WSN 

in comparison with wired network are less cabling, mobility, less installation cost, 

automation in the factories, smart infrastructure, etc. 

In WSN, each node in a network has the capability of Sensing, data gathering, 

processing the data, and communicating to the neighboring node or sink. The sensed 

data’s frequency, size, and quality are influenced by the physical resources available 

to the sensor node [3]. Flexibility, economic viability, and energy efficiency are some 
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of the design objectives of the sensor node. As shown in figure 1.1, a sensor node 

consists of five parts/subsystems as described below. 

Sensor:- This subpart of the sensor node is the actual interface of the node with the 

physical world. Parameters like temperature, pressure and humidity from the physical 

world can be measured through a sensor. 

Processor:- A processor is the cognitive component of a sensor node. This sensor 

node subcomponent is responsible for processing, code execution, and data collection. 

 

                    

Figure 1.1: WSN node Architecture 
 

Transceiver:- The work of the transceiver subsystem is to communicate with the node 

within the network and send data from one node to other. 

Memory:- The memory subsystem stores data and basic program codes in a sensor 

node. Appropriate memory size is crucial in a node, as it affects the node's cost and 

power consumption. 

Power Supply:- This subsystem is responsible for supplying energy to the other 

subsystem in a sensor node. Typically, batteries can be used for supplying energy 

within the node. These batteries can be recharged or replaced. 

 

1.2 WSN ARCHITECTURE 

Figure 1.2 shows the architecture of WSN that consists of sensor nodes, sink node and 

end user. The vast quantity of sensor nodes is built up as a classic WSN.  

Memory 

Communication      

Device 

Controller Sensor 

Power Supply 
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                          Figure 1.2: Representation of the wireless sensor network 

Further, these sensor nodes also comprise various critical components, such as the 

power required for their operation, a sensor is required to detect the event and to 

change the sensed data into electrical signals. After that, the data will be sent to the 

microcontroller, where it is processed in the form of an electrical signal, and the 

transceiver will receive the data so that the communication can be reached.    

 

1.3 WSN FEATURES 

The various features of the WSN are presented as [4-5]. 

 Energy Regulation: In WSN, sensor node has limited power, so energy 

regulation is necessary to increase the existence of WSN.  

 Communication model: Sensor node plays a significant role in the 

communication purpose of the network model. In addition, since large 

numbers of sensor nodes are densely conveyed, neighbor nodes are near each 

other to decide system performance. 

 Different Hop Communication: Long-distance communication requires 

potent transmission. Thus, intermediate hops are used in WSN to make 

communication possible over less powerful transmission. 

 Node density: Node density depicts that all nodes are within the 

communication range of several other nodes at all times. The node density is 

an essential factor influencing the connectivity in WSN. It is expected in 
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sensor network exploration that the node density is sufficiently high to 

guarantee that all nodes are constantly inside the communication range of a 

few particular nodes. 

 Self-Organization: WSN has an important self-organization feature in which 

the network should be able to tolerate faults and should be able to add more 

sensor nodes as required. 

 Dynamic-Topology: As some sensor nodes are removed in WSN due to some 

battery issues or it may be other faults, the network topology will change. 

Similarly, according to the requirement, some new sensors are added to the 

network, and the topology will change again. In this way, WSN has a dynamic 

topology [6]. 

  

  

1.4 APPLICATION AREAS IN WSNs 
 

WSNs have become popular in solving various problems due to their flexible nature 

in different domains. It has the potential to change our daily living scenes in many 

ways. WSNs can be applied in various ways. Different applications of WSN are 

presented as [7-8]. 

 Health monitoring: WSNs play a vital role in health monitoring. As sensor 

networks are widely used in the health care area. Some of the health 

applications are supporting disabled patients, monitoring doctors and patients, 

telemonitoring human physiological data, controlling drug administration 

inside the hospital, and various diagnostics in the nursing homes monitoring 

old patients. This can be done by implanting various sensors in the human 

body for the detection of muscle activities and neural changes. WSN helps us 

in the detection of sign monitoring and unconsciousness. It can also be used 

for measuring and monitoring the physiological signals i.e., glucose level, 

heart rate and blood pressure. 

 Military Applications: WSNs are integral to military applications and play an 

influential role in monitoring border areas for applications like surveillance, 

earthquake detection, and detection of opponents’ unusual activities. WSN 

enhances the power of the military by being a fundamental part of Military 

Control, Intelligence, Investigation, Communication, etc. Human intervention 

in those areas is not easily possible.  
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 Weather Testing: In weather testing, WSN is used to know temperature, rain 

chances, air-pressures, wind-velocity, and also disaster probability. 

 Environmental Sensing: WSNs are used to collect meaningful data from 

various sensor nodes over a while to detect some unwanted changes in the 

environmental conditions. These unwanted changes could be forest fire 

detection, landslide detection, climate monitoring, air pollution monitoring, 

etc. 

 Function Approximation: When a physical variable, such as temperature or 

pressure, varies from one site to another, this is known as a location function. 

To approximate this unknown function, each sensor node collects a number of 

samples in a network to extract various characteristics and then approximation 

mapping is done at the sink node. 

 Industrial Applications: Wireless sensor networks control and monitor 

various parameters like temperature, viscosity, vibrations and pressure in the 

industrial field. In the industrial field, the “supply chain, factory and 

production sector” are mainly influenced and controlled by WSNs. 

 Traffic Monitoring: WSN is used in traffic system to control the traffic on 

reading, to control the jams and also reduces the accidents on roads. 

 Security and Surveillance: The main difference between environmental and 

security monitoring is that there isn’t any actual collection of data in security 

monitoring. It keeps monitoring the surrounding data but transmits 

information only when there is some violation of security measures. The alarm 

message is the immediate reaction to the violation of the security system. 

Instant alarm reaction makes the system more reliable [9]. 

 Home Monitoring: WSN has played a substantial role in home automation. It 

gives our house the ability to think, process and act accordingly. We have 

turned our houses into smart homes by implementing sensors in every corner. 

By sensing the environmental conditions, our home will adjust itself 

accordingly. For e.g., it will sense the temperature and adjust the parameters 

air conditioner accordingly. The sensors control the lights in the balcony and 

corridor, which will illuminate themselves according to the intensity of light 

present there. 
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    As we have seen different paradigms that WSN has brought renaissance in the 

field of technology and automation. Some of the applications are shown in the 

following figure 1.3. 

 

 

                            Figure 1.3: Applications of wireless sensor networks 

 

1.5 ISSUES AND CHALLENGES IN WSN 

Following are some of the major issues that affect the performance, accuracy and 

design of WSNs. 

 Energy: Energy is essential for a sensor node to perform various operations, 

including data gathering, processing, and communication. Even when the node 

is idle, it requires some amount of energy. The batteries that provide power to 

the sensor node need to be recharged or replaced after consumption. 

Sometimes due to some demographic or geographical conditions, it is 

challenging to recharge or replace batteries. So, designing an energy-efficient 

network is a crucial research issue [10]. 
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 Self-Organization: As soon as the WSN is deployed, they should be able to 

perform necessary work without human interference, such as network 

configuration, maintenance, fault tolerance and localizing themselves [11]. 

 Quality of Service (QoS): It is the level of facility that WSN provides to its 

user. When WSN works for the user in the real-time application, that time, 

QoS should be good. Although it is not easy in WSN because the network 

topology can change at any time, and when the sensors in the network send the 

collected data, there are chances of unstable traffic affecting the QoS [12]. 

 Security: Confidentiality, authenticity and integrity are essential issues related 

to a WSNs security. Confidentiality is the essential requirement for data 

transmission within a network. Also, the integrity and authenticity of data 

should be maintained in a network, i.e., actual data should reach the receiver 

[13]. 

 Localization: A WSN's primary role is to control and track activities that can 

be assimilated meaningfully when their specific positions are identified. 

Typically, this requires knowledge of the reporting nodes' locations. The 

localization problem is the challenging task of determining the locations of 

nodes in a WSN [14]. 

 Mobility: WSN deployments are done in either static or mobile environments. 

Initially mobility has many challenges that are required to overcome, 

including energy consumption, connectivity, and coverage [15]. 

 Deployment: Deployment in WSNs is challenging, as it refers to 

implementing a network in a real-world scenario. In locations where it is hard 

to reach, the sensor nodes are deployed through helicopters, or some particular 

topology is used for deployment. Also, several sensor nodes' concurrent 

transmission attempts result in network congestion in densely deployed 

networks. So, properly deploying nodes in WSN is a laborious, challenging 

and tedious task [16]. 

 Fault Tolerance: A network should be capable of adapting to changes in 

connectivity caused by node failure. The WSN should remain functional even 

if any node fails. So, selecting an efficient routing algorithm that can change 

connectivity in node failure is an essential area for further research [17]. 
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1.6 LOCALIZATION IN WSN 

Localization is the procedure for defining the location value of the sensor nodes and 

the positioning of the sensor node [18]. Location computation, confinement methods, 

and calculations are used to estimate the actual position and area of its deployment, 

whose actual place was not defined earlier [19]. It is possible only with the help of 

some nodes whose locations are already predefined. Those actual nodes are named 

anchor nodes [20-21]. During deployment, manually specifying location data on each 

node is not a feasible alternative. Similarly, it is impossible to provide every node 

with a Global Positioning System (GPS) receiver due to high cost and deployment 

restrictions. 

       

Ultra Wide Band (UWB) approaches are ideally suited for interior use, whereas 

acoustic transmission-based systems require additional hardware. Both strategies are 

precise but costly in terms of energy usage and processing. Un-localized nodes 

calculate their locations via the energy-intensive beacon signals of anchor nodes. 

Several methods have been developed in the literature to decrease the communication 

cost. Similarly, if a node incorrectly guesses its position, this inaccuracy propagates 

throughout the network and to subsequent nodes, resulting in incorrect information 

regarding the placement of anchor nodes. The position estimate of the target nodes is 

mainly determined by the RSS/distance between the anchor node (whose position is 

known) and the target node (with unknown location). 

 

Types of nodes in WSN [9] are Beacon node and Unknown node as described below. 

 Beacon Node/Anchor Node: These are the nodes that are aware of their 

position inside a certain target region. These nodes know there position 

because they are deployed manually, they are attached with Global Positioning 

System (GPS). These nodes have significant impact on the localization 

because more anchors give more exactness in location determination.  

 

 2D and 3D Nodes: 2D nodes are deployed in XY plane and all the nodes are 

in the same height whereas in 3D nodes deployment along with XY plane, 

sensor height is also considered. 
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1.6.1 Unknown Node/Free Node: These nodes do not know their position in a 

particular target area. These nodes use the anchor node information to 

determine their position. The process of finding the unknown node’s position 

is, in fact, localization. 

1.6.2 Issues in context of Localization in WSNs 

Many research proposals are proposed for effectively determining a sensor's actual 

position, but the primary concern is to lower the values of the error occurring during 

this process. However, some essential open issues which promote consideration and 

examination to enhance the location computation procedure in sensor systems are as 

follows: 

 Efficient energy utilization in sensor localization: Recently, the analysts 

have featured the proficient energy utilization in location computation of 

sensor node is defined in [22-25]. However, it is still very difficult to outline 

energy effective node location calculations framework in WSNs. 

 Localization in 3D WSNs: The procedure for Three-Dimensional (3D) nodes 

localization process uses enhanced heuristic technique for node distance 

calculation. In WSN the complexities factor and the restriction issue has not 

been looked into the 3D WSNs [26]. As contrasted the Two-Dimensional (2D) 

WSNs, there are generally few plans for 3D WSNs. 

 Limited Resources: With the advancements in chip design and fabrication 

techniques, the sensor nodes are getting smaller and smaller. Thus the 

resources at their disposal for example, battery power, storage capacity, and 

processing capability, are getting reduced. The localization method must 

produce accurate location estimations despite the restricted availability of 

resources. 

 Mobility: Traditionally, sensor network is formed using static or immovable 

nodes. With the need for new applications like IoT, however, the network 

became mobile. The localization method must be flexible and able to account 

for the movement of anchors, targets, or both. 
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 Secure Localization: Secure localization has continually been among the 

critical issues of broadly deployed sensor nodes in WSNs. The security issue 

of the node location system is getting the researcher’s attention to design a 

robust system as presented in [27-28]. The security issue in localization is vital 

because data for that particular location is essential to protect that node from 

malicious attacks. 

 Minimum Number of Beacons: In wireless sensor network many node 

localization technique is followed on beacon’s node. The location of this 

special node is determined by GPS or via setting to them at particular 

recognized coordinates points [19].  

 Obstacles and Irregular Deployment: The localization procedure is also 

influenced by the presence of obstructions or an uneven deployment region. 

The primary premise of WSNs is Line-Of-Sight (LOS) communication 

between nodes. Obstacles may induce signal diffraction and bending, resulting 

to faulty estimate and an improper result. 

 Error Propagation in Interferometric Ranging Based Localization: The 

extending Technique in Radio Interferometer has been proposed as a possible 

course of error propagation in the node location estimation process. It has 

advantages in the position estimation process, which could be profoundly 

exact over other location techniques like (RSSI), (ToA) and (AoA). This 

technique has some limitations due to more estimation for readings and is 

constrained to smaller systems with just 16 nodes. An iterative calculation 

because of Interferometric to represent bigger systems during location 

calculation. Because of interferometric ranging, future localization algorithms 

require a way to diminish the propagation errors as represented in [29-30]. 

 Energy efficient and consumption model: WSNs are an asset on resource 

constraints in nature. These formulate energy effectiveness during the efficient 

energy consumption model design as described in [31]. Sensor nodes in WSNs 

should know their positions with a specific end goal of working together 

adequately. The sensor node localization information helps people in different 

application domains in the network.  
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1.6.3 Localization Procedure 

The primary purpose anticipated from a WSN is event reporting; however, the 

significance and accuracy of an event's assessment cannot be assured until its specific 

location is verified. In WSN, the localization technique for unknown nodes is 

separated into three sections [32] as specified in figure 1.4. 

 

Figure 1.4: Description of localization process 

Mainly, localization algorithms consist of two stages: the first stage is used for 

measuring the distance and the second stage is used for solving the computations. 

1.6.3.1 Measurement Stage 

In this stage, the distance measured between different nodes is considered an 

important parameter, including angle measurement and their connectivity between 

them. These techniques are classified into five main categories described as 

follows: 

  1. Strength of the received signal. 

  2. Arrival of the signal at a particular time or the difference in their arrival times. 

3. Angle of arrival. 

4. Proximity, based on the network connectivity. 

5. Picture/scene analysis. 

      Each category has been described in some detail manner below. 

 Received Signal Strength Indication (RSSI): This is used basically to 

observe the received incoming signal. On the arrival of the received signal, the 
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task of RSSI is to calculate the distance based on the incoming signal. 

Distance calculations are performed using the received signal strength of the 

incoming signal [33-34]. Only minimal hardware is needed to calculate the 

received signal strength, which is one of this method's most significant 

advantages. But its limitation is that the measured values will change in the 

case of mobility, environmental conditions, path loss, or fading. 

 ToA: It finds the distance and time at which the incoming signal is received, 

as the speed of propagation information is already available. The transmitter 

and the receiver end are synchronized, and the transmission start time is 

known. The parameter speed of the light is known and distance calculation is 

done based on the time of the incoming signal’s arrival at the receiver end [35-

36]. In this method, synchronization must be required between the transmitter 

and the receiver clocks for accuracy, which leads to additional hardware 

requirements at both units, and increases complexity. 

 TDoA: In this scheme, the medium used for transmission gives a different 

speed. The arrival of any signal at the receiver end is used to measure the 

arrival of the other signal. The distance is calculated based on the arrival time 

of these two transmitted signals. This method provides accuracy under LOS 

conditions, but if certain disturbances occur in the environmental conditions, it 

leads to the failure of LOS conditions. Also, with the change in environmental 

conditions, these arrival times will vary from their actual values, leading to 

incorrect distance measurements. 

 Angle of Arrival (AoA): Using the AoA method, the computation between 

the anchor and the target nodes based on distance is also calculated. In this 

method, an angle is made between the two lines, where the first line connects 

the transmitting and receiving ends, and the second line is between the 

receiver and the other direction, taken as a reference. The distance measured 

through this technique is more accurate than the distance calculated using the 

RSSI method mentioned above [37]. 
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 Proximity: This is the simplest and cheapest method available for calculating 

the distance between the nodes because it measures distances only between 

those nodes which are inter-connected and within range. The hard- ware 

configuration required is simplest under this scheme [38]. 

 Picture Analysis: This technique behaves differently from the techniques 

mentioned above. In this, the distance calculations are carried out using a 

picture or based on scene analysis. In this technique, additional hardware is 

required, which leads to complexity and is the main drawback of this 

technique. 

1.6.3.2 Measurement Stage 

In the second, computational stage, the estimations done on determining the distance 

and angles in the previous stage are collated for calculating the positions of the 

unknown nodes. These methods, which work on computational analysis, are discussed 

as follows. 

 

 Trilateration: In this scheme the estimated coordinates of the target node is 

determined with the help of three anchor nodes, and the location of the 

tracking nodes is calculated [39]. As shown in Figure 1.5, the determination of 

the target nodes coordinates is obtained from the coincidence of consecutive 

circles. Here, the positions of the anchors are represented as x1 and y1 and so 

on, while x, y denotes unknown node positions and d specifies the distances. 

 

 

   Figure 1.5: Working of trilateration method 
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 Triangulation: Geometrically, the triangulation technique is used to obtain 

the information of 2-D coordinates on the basis of angles calculated between 

the nodes and the reference points. Using mathematical sine and cosine 

rules, the position of the target nodes can be calculated [40]. Figure 1.6 

shows this technique that requires at least three anchor nodes.                                                    

                

 

    Figure 1.6: Working of triangulation method 
 

 Multilateration: In the trilateration approach, the calculated distance is not 

perfect because the joining of the three circles does not correspond to a 

single point. In order to cope with this limitation, at least three anchor nodes 

are required, a process termed multilateration [41]. The results of this 

technique are much more efficient than those from trilateration. Figure 1.7 

represents this concept. 

 

Figure 1.7: Working of multilateration method 
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1.6.4   Classification of Localization Algorithms 

The localization concept is gaining importance in almost all real-world applications of 

WSNs. The survey of these algorithms provides detailed explanations of the different 

techniques available for localizing the nodes referred to as anchor-based, anchor-free, 

range-free and range-based nodes, etc. Every node connected to the network 

broadcasts a beacon signal processed by the receiver at the reception section to 

determine the distance, which helps count hops. Figure 1.8 classifies the various 

available localization algorithms. 

              

 

Figure 1.8:   Taxonomy of WSN localization methods 

1.6.4.1 GPS Related 

The different classes of GPS-related approaches are GPS-based and GPS-free ; each 

one has its own advantages and disadvantages. 

 GPS Based: In this method, all sensor nodes are equipped with GPS receivers. 

With GPS, localization accuracy is quite good; but, GPS only communicates 

in the LOS; in crowded areas, numerous obstructions may affects; and the 

expense of equipping all sensor nodes with GPS puts this method prohibitively 

expensive. 

 GPS Free:  To overcome the constraints of a GPS-based strategy, instead of 

connecting every sensor node with GPS, connect just a subset of sensor nodes 
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with GPS. These nodes transform into anchor nodes. Then, unknown nodes 

utilize the anchor nodes to locate themselves using any range-based or range-

free localization technique. 

 

1.6.4.2 Range Related 

The location determination algorithm is of two types, namely range-free and range-

based techniques. Triangulation, trilateration, and multilateration are used for 

identifying a position utilizing a range-oriented methodology. 

 Range Based (RB): In RB localization techniques, the anchor node’s range 

information is required, but, in the second method, information relevant to 

the range is not required. Using specialized hardware, the distances between 

the nodes are calculated precisely. The main issue arising from this 

technique is accuracy degradation taking place in the case of mobility 

scenarios and of various noises taking place in the environment. 

 Range Free: A network formation in the case of the range-free technique is 

the one in which a direct relation between the hop count and distance is 

formed. In this case, the locations are calculated using radio connectivity 

information among their available neighboring nodes. This technique is 

more efficient, in terms of simplicity and cost- effectiveness, than the range-

based localization techniques. Several approaches related to range-free 

techniques are given below [42-43]. 

1.6.4.3 Anchor Related 

This defines whether the localization algorithm is using the anchor node or not.  

These are the techniques available on which the position of target nodes is relied 

upon. Using (anchor-based) method, the information about the anchor node is 

required in order to determine the unknown node coordinates in contrast; anchor-free 

procedures do not need such knowledge about the anchor. In the deployment stage the 

position of a few nodes, known as anchor nodes, are known, as they include a GPS 

feature, whereas, in the case of the anchor-free method, localization is achieved, using 

the information of the relative coordinates [44-45]. 
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 Anchor Based: The main motive behind the use of the anchor-based method 

is the calculation of the distance from the unknown nodes to the known 

nodes; after the calculation on this basis is carried out between them, then, by 

using localization algorithms, the unknown node deter- mines its coordinates 

in space, as, for determining 2-D coordinates, three anchor nodes are at least 

required and, for determining 3-D coordinates, four anchor nodes at least are 

required. 

 Anchor Free: In cases where no anchor node is available, there are two 

important steps to be followed for determining or localizing the unknown 

nodes. By the use of different localization methods available, every node in 

the sensing field computes the distance between them and their neighboring 

nodes. Then, using distance information, every node deployed in any region 

of interest determines its coordinates itself. 

 

1.6.4.4 Computation Based 

It specifies if it is a centralized or decentralized algorithm. Both centralized and 

decentralized algorithm design methods are distinct. 

 Centralized: A central processor is responsible for computing all the 

computations by the centralized method. The main advantage of using the 

centralized method is that each node does not need to perform the 

computations. The main limitation of using this technique is that every node 

sends the data back to the base station. Simulated annealing and RSSI-based 

localization come under the classification of centralized localization 

algorithms. These algorithms are better in terms of localization accuracy 

because complete information about the connectivity and distance is available 

between the deployed sensor nodes and their neighbors [46]. 

 Distributed: In the case of distributed localization algorithms, the sensors 

deployed in the field compute the required information in terms of either 

connectivity or distance on an individual basis. In this method, each node 

communicates with them or with their neighbors in order to determine their 

own location. Beacon-based, coordinate system-based and hybrid localizations 
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are categorized under distributed localization algorithms. In this method, much 

iteration is required to achieve stability, resulting in the technique being a little 

slow, which leads to a drawback of this method [47]. 

 

1.6.4.5 Mobility Based 

In the static algorithms, once the nodes are deployed they will not move; but in 

dynamic method deployed sensor nodes have some mobility and will move 

accordingly [48–50]. 

 Static: In static algorithms, the coordinates of unknown nodes are determined 

during the set-up of static WSNs. In static algorithms, the convergence rate is 

fast. There are many range-based techniques available, like an approximate 

point in triangulation and lateration, multilateration, and the modified centroid 

method, which are categorized under static techniques. 

 Dynamic: In the case of the dynamic method, continuous tracking of sensor 

nodes is required as they are moving and changing their coordinate values. A 

little extra time is required to find the positions of the moving nodes; for 

tracking the position of moving nodes, an accurate localization feature is 

required using this process. Track the location of moving target nodes it is 

very difficult because it has to be determined periodically. Road navigation in 

the absence of GPS features is a property of Kalman Filters [51-52]. In order 

to predict the system’s future states, the Kalman filter is one the useful 

technique. 

1.7 LOCALIZATION ISSUES 

In many real-time applications, the localization concept is becoming an important and 

essential requirement in the field of WSN. Some of the concerns that need special 

attention are mentioned here. 

 Node Energy: The sensor nodes have non-replaceable and limited-energy 

battery units for performing the operations, such as sensing and reporting. The 

whole system becomes worse if special care is not taken with regard to battery 

units [24]. Therefore, it is necessary to build an efficient algorithm that uses 

less energy. 
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 Node Mobility: Maintaining the node’s connectivity in the mobility scenario 

is quite a challenging task in localization. In the case of static WSNs, the node, 

once estimated, is not going to change its position as it is fixed, but, in the case 

of dynamic WSNs, the nodes periodically shift from one position to another 

position, and the deployed sensor node has to determine and estimate the 

position periodically [53]. 

 Transmission Range of a node:  In localization technique, a beacon signal is 

required for determining the locations of unknown nodes. Beacon nodes are 

equipped with a GPS feature which helps these nodes to be placed at a 

position with known coordinates, and, with this feature, one can obtain a 

proper connectivity in between the beacon and the target nodes. So, the 

transmission range of a node plays a key role in estimating the locations of 

unknown nodes. 

 Localization Accuracy: To determine the accuracy the difference among 

actual and the estimated position of the sensor node is calculated. It is a quiet 

hard to obtain the accurate location of the sensor node by applying localization 

algorithms. So, by using available or new localization algorithms, it is possible 

to obtain optimum results [54-55]. 

 Localization Security: As in WSNs, most of the times this set-up is installed 

in unfriendly locations. Some of the problems that occur in localization are 

overshadowing and distance away from attack [56].  

 Deployment in 3 D: Complexity in the 3D localization is very high. As in 2D 

there are so many localization schemes are available but in 3D very limited 

schemes are there.  

 

1.8 MOTIVATION 

The motive here is to design Meta-heuristic approaches for optimum localization of 

static and dynamic WSNs. In WSN, a large number of distributed devices equipped 

with sensors are deployed to monitor environmental phenomena. There are some 

challenges in WSNs that restrict achieving the accurate position of each node. 
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 Node to Node accurate Measurement: In localization, we measure distance 

between one node to other. For many applications node to node measurement 

accuracy should be high. So, accurate location of node is a big challenge in 

localization process. 

 Node Mobility: Mobility support in WSN is very critical. However, it is an 

important research issue to know the existing solutions for mobility in WSNs 

and localize the target nodes in dynamic scenarios. 

 Scalability: The algorithms used for localization are required to be suitable 

for sensor deployment in large scale networks with less anchor nodes also. 

 Power Management: Numerous WSN applications need a longer network 

lifetime due to their surveillance nature. Thus, offering an area with an energy-

efficient monitoring service is a crucial research problem. Likewise, 

localization algorithms necessitate energy-efficient computation. 

     

        While developing the localization algorithms, the above-mentioned parameters 

are required for WSN implementation in various applications. These challenges make 

the WSNs localization research unique and interesting even after a decade of intense 

research. Our basic focus in this work is to make the proposed localization process 

more accurate, cost-effective and computationally efficient in mobility-based 

scenarios. Taking into consideration of these factors, objectives have been proposed 

for this work in the following section. 

 

1.9 OBJECTIVES 

Based on the application requirements, in localization process, factors like accuracy, 

scalability, energy consumption and mobility should be considered. In this work, our 

major focus is on achieving high node location accuracy with very less number of 

anchor nodes in dynamic (Anchor and Target node may have some mobility) and static 

scenarios by using the applications of met heuristic based algorithms. The proposed 

objectives are: 
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1. Designing a range based error control model for estimation of 2D and 3D 

optimal node location in homogeneous dynamic environment with various 

novel soft computing approaches. 

2. Designing a range free error control model for estimation of 2D and 3D 

optimal node location in homogeneous dynamic environment with various 

novel soft computing approaches 

3. To analyze and appraise a stochastic algorithm for homogeneous 2D and 

3D range free dynamic WSNs which are able to calculate the optimized 

coordinates of target nodes. 

4. Comparative analysis of existing techniques with the proposed techniques 

at different stages for validation of the proposed algorithm. 

 

1.10 CONTRIBUTION OF WORK 

Our research work is focused on calculating the unknown locations of target nodes 

using a single anchor node. To achieve accurate, energy efficient and low cost 

localization, some efforts have been made to estimate the dynamic node location in 

2D & 3D environments for range based and range-free approaches. In this work, 

mobility has been assigned to target nodes in some scenarios and in some scenarios, 

mobility has been given to the anchor node. To make the algorithm energy efficient 

and cost effective, only one anchor node has been utilized to estimate the target node 

position. Further, approaches like DA, NNA, APPA and TSNMRA have been utilized 

to get optimum results. The thesis makes the following significant contributions:  

 

2D range-based Localization with target mobility: This contribution proposes the 

concept of introducing virtual anchors to locate mobile target nodes in a two-

dimensional scenario by various meta-heuristics separately. The novel proposed 

algorithm Dragonfly-Firefly (DA) Metaheuristic, is implemented for 2D WSNs. To 

locate unknown nodes, only one anchor is used. A node whose position is known is 

normally deployed in the middle of the region which is to be sensed. To begin, the 

anchor and the target node distance is calculated after the notion of VN’s is proposed, 

with VN’s placed at certain angles in the field at a defined distance between the 

anchor and the target node. The centroid is calculated, and DA is used to compute the 
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localization error. Similarly, one more approach has been proposed in a similar 

fashion and environment. Here, for computing the location of randomly moving target 

nodes, an algorithm is known as Neural Network Algorithm (NNA) is being proposed 

and used. The concept of NNA can also be utilized in 3D Localization to find the 

exact location of the nodes. 

 

3D range-based Localization with target mobility: In this work, we demonstrate 

the application of novel 3D node localization algorithms based on various met 

heuristics to moving target nodes using one anchor node. In a simulation-based 

scenario, the middle and lower levels include nodes with uncertain positions, whereas 

the top layer has a single anchor node. Adaptive Plant Propagation Algorithm (APPA) 

is a revolutionary soft computing approach presented to determine the optimal 

placements of these mobile nodes. These nodes are diverse and have been deployed in 

an asymmetrical environment with a DOI value of 0.01. Simulation findings 

demonstrate that the proposed APPA method surpasses previous meta-heuristic 

optimization strategies in respect of localization error, computational time, and 

localization determination. 

 

3D range free localization with target mobility: For Localization, a single movable 

anchor node is considered. In an anisotropic environment, target nodes and anchor 

nodes are distributed across the borders of three layers. Anchor nodes are placed in 

the top layer, while target nodes are scattered in the middle and bottom levels. A 

fuzzy Logic System (FLS) has been used for the modeling of RSS and edge weight to 

reduce computational complexity. Further, the Tunicate Swarm Naked Mole Rat 

Algorithm (TSNMRA) is used to optimize the membership function bases of RSS and 

edge weights in order to reduce the position error. Even though this mobility-based 

approach is presented for the first time, simulation results indicate that the proposed 

technique achieves greater localization precision than static range-free schemes. 

 

1.11 THESIS ORGANIZATION 

The organization of the thesis work has been represented chapter wise with the major 

points are being covered as: 
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In chapter 1, we first present the overview WSN, its architecture, features, 

applications, localization in WSN and the associated challenges. We also conduct the 

study of localization approaches covered by the range-based and range-free category 

against their merits and demerits and the various metrics used for the evaluation of the 

localization. The research motivation, research objectives to accomplish and 

contribution of the thesis have also been discussed in this chapter. 

  Chapter 2 provided the comprehensive literature work on range-free and range-free 

localization techniques for the static and dynamic scenarios; localization based on 2D 

and 3D environments and met heuristic approaches based on localization. Further, it 

also mentions the other related research work to reduce the error of the localization 

process. It also includes the research gaps, criteria for evaluation and parameter 

calculation to be done for the execution of the proposed research work.   

   Chapter 3 presents a novel hybrid DA optimization technique. Further, the 

implementation of above said algorithm is applied to a mobile 2D environment using 

a single anchor node. The effectiveness of the DA method is determined by getting 

results and comparing performance metrics such as the number of localized nodes, 

location, and scalability. Moreover, for computing the location of randomly moving 

target nodes, an algorithm known as the Neural Network (NN) algorithm is presented. 

A node whose position is known is normally deployed in the middle of the region 

which is to be sensed. Acquiring results and comparing performance parameters such 

as the number of localized nodes, location, and scalability is being used to measure 

the success of the NNA approach. 

In chapter 4, the problem extension of 2D mobile target node localization into 3D 

localization problems using an anisotropic environment has been done. Here, the 

Adaptive Plant Propagation Algorithm (APPA) approach is being presented to 

determine the optimal placements of mobile nodes. Simulation findings demonstrate 

that the proposed APPA method outperforms previous meta-heuristic optimization 

strategies in terms of localization error, computational time, and the sensor nodes that 

are located. 
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        Chapter 5 presents the range-free 3D localization technique named TSNMRA. 

Here, a single mobile anchor node is considered for localization. Target nodes and 

anchor nodes are deployed over three-layer boundaries in an anisotropic environment. 

Additionally, the weights of the edges among each target node and its neighbors are 

employed and these weights are represented using the Fuzzy Logic System (FLS). 

TSA and NMRA lower the localization error by optimizing their edge weights. The 

simulation result of the proposed algorithm gets better localization accuracy as 

compared with static range-free schemes. 

 

Chapter 6 deals with the overall conclusion and future work of the work carried out in 

this thesis. This chapter summarizes the significant contributions and ends with some 

proposals to be covered in future.   

 

1.12 SUMMARY  

This chapter provides an introduction related to the fundamental concept of WSN, 

such as architecture, applications, features, localization in WSN, localization issues, 

and the process of localization. It also covers the major classification of localization 

algorithms along with their basic concepts. In the next chapter literature review 

associated with our research is presented along with the metrics for evaluation. 
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CHAPTER -2 

 LITERATURE REVIEW 

In this chapter, the comprehensive literature work on range-free and range-free 

localization techniques for the static and dynamic scenarios, localization based on 2D 

and 3D environments and met heuristic approaches based on localization is described. 

In addition, this chapter also mentions the other related research work to reduce the 

error of the localization process. It also includes the research gaps, criteria for 

evaluation and parameter calculation to be done for the execution of the proposed 

research work.   

2.1 TRADITIONAL LOCALIZATION ALGORITHMS RELATED WORK 

WSNs nowadays are treated as an emerging technology, used for various applications 

like investigation of natural resources, tracking of static or dynamic targets, and in 

areas which it is not easy to access. A WSN consists of different types of sensors, 

which may be homogenous or heterogeneous [57]. The main challenges faced in 

WSNs, which degrade the performance, are computational, battery lifetime, security, 

and localization. The localization procedure is used to assign coordinates to 

unidentified nodes throughout the sensing area. Localization techniques can be used 

in WSNs for different applications, such as tracking of targets and location tracking of 

target nodes, etc. Many researchers have presented a variety of localization algorithms 

for improving important parameters, namely accuracy and efficiency. These 

approaches are categorized primarily as range-based or range-free localization 

strategies like (RSSI) [58-59], (TOA) [60-61], (TDOA) [62], (AOA) [63-64], are 

classified as range-based techniques. Using either angle information or distance, the 

range-based localization approaches determine the position of an unknown node. A 

huge deployment is involved in implementing this method, but these methods are 

more effective at localizing the node effectively and guaranteeing accurate node 

localization as compared with range-free techniques. 

In WSN, deployment is not always static. It may also be dynamic, but there are a few 

problems that need to be overcome, like the maintenance of link, scope, and usage of 

energy. The present trend in today’s WSNs puts mobility in a positive light. 
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Localization is the main requirement as well as the biggest challenge for dynamic 

WSNs. The accurate positions of the nodes placed in the sensor field must be known 

in order to identify the most efficient route. The sensor nodes may also move from 

one point to another during their run-time in the case of dynamic WSNs, but the 

position of sensor nodes is not going to vary from its original position in the static 

scenario. Thus, locating unknown target nodes in dynamic environments is of prime 

concern. 

In [65], the authors propose one new approach Convex Position Estimation (CPE), for 

enhancing localization accuracy. In this work, three anchors having a similar 

transmission range corresponding to an unknown node exists in the overlap region. 

CPE is a centralized algorithm and, because of its resource restriction feature, is not 

able to do the complex computation required for optimization. In [66], the authors 

develop a scheme for large-scale WSN named Approximation Point in Triangulation 

(APIT), in which a few numbers of devices are connected with GPS, and their number 

can be changed on the basis of network and node density. APIT approach separates 

the network in the form of a triangular area among the anchors. This APIT scheme 

works well when random node deployment and irregular radio-pattern are there and 

thus leads to less overhead. In [67], the authors suggest a hop-based position 

estimation algorithm that works on the concept of Distance Vector (DV). The 

advantage of this approach is its simplicity and independence from range 

measurement. The usefulness of the method is enhanced by its simplicity. The 

disadvantage is that it can only function in an isotropic system. In [68], the authors 

propose an approach named Weighted Centroid Localization (WCL). This approach is 

intended to overcome the less precise location estimation of the Centroid. They used 

the weight factor to improve the localization approach. Weight is the function that 

depends on the sensor node's distance and features. The pitfall is that the nodes that 

the anchor's immediate neighbor can be localized. The benefit of the WCL is its fast 

execution nature and simplicity for finding the location of the node. 

In [69], the authors develop a new Hierarchical Multi-Dimensional Scaling (MDS) 

based localization approach. This author divides this approach into three steps. Here, 

the sensor node can work as cluster-head, cluster-member, and in the form of a 

gateway. In [70], the authors propose two algorithms and, after that, combine them 
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into Self Adaptive Positioning (SAP) algorithm. In [71], the authors develop a new 

approach combining the centroid and DV-Hop. In this work, the pitfalls of the two 

localization scheme, which are centroid localization and DV-Hop, has been elaborated 

and proposed a new algorithm. This approach has not noticed any effect in the 

improvement of the localization accuracy, but this approach is less complex, and the 

localization error in this approach is less as collate to centroid localization and the 

DV-Hop. The work mentioned in [72] highlights an approach that is centralized in 

nature and location is calculated by the centric powerful Base Station (BS). It contains 

three steps in which, initially, sensors determine the pair-wise gap matrix. To get this 

gap matrix, the whole network is broadcasted with message packets. In order to get 

the matrix, there is a need for flooding of packets and that is the reason for more 

power consumption. After that, this gap matrix works as input for the Multi-

Dimensional Scaling (MDS) method. This approach is effective and found to be 

accurate as compared to other approaches. It is easy to implement and, in 

computation, less complex. Hence, MDS is also used for distributed localization.  

 

2.2 TARGET NODE LOCALIZATION RELATED WORK 

 

As many advances and improvements in the field of wireless communication have 

taken place in recent years, this has encouraged the use of WSNs in many real-world 

applications. Localization of sensor nodes becomes necessary in almost every 

application in WSNs. There are a variety of localization techniques found in the 

literature for determining the position of an unknown node, which is feasible with or 

without anchor nodes. 

 

2.2.1 2D Localization Related Work 

In [14], authors have examined outdoor localization without using GPS features in 

their study. They calculated the coordinates of the unknown nodes using the centroid 

process. Lee et al. [73] used fewer anchors to demonstrate their work on localization. 

They achieved a high level of accuracy in estimating distance by finding shorter 

distances. In [74] authors proposed some methods for distance estimation: the first 

was to use available statistical techniques and then apply the neural network concepts 

to compute the distance. Their findings were focused on parameters that reduce the 
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accuracy of distance measurements, such as transmitted power, Radio frequencies, 

node mobility, etc. In their paper, [75] two variants of bat optimization algorithm 

(BOA) are proposed to localize the sensor nodes in a more efficient way and to 

overcome the drawbacks of original BOA, i.e. being trapped in local optimum 

solution. The exploration and exploitation features of original BOA are modified in 

the proposed BOA variants 1 and 2 using improved global and local search strategies. 

To validate the efficiency of the proposed BOA variants 1 and 2, several simulations 

have been performed for various numbers of target nodes and anchor nodes, and the  

results are compared with original BOA. The positions of the nodes are computed 

using this geometric relationship. In [79], the authors presented MBAL (Mobile 

Beacon node localization problem. [76] This paper proposes an improved Savarese 

algorithm to the problem of singularity in WSN node localization. The proposed 

algorithm is a modified version of the conventional Savarese algorithm, and it solves 

the singularity problem and improved the positioning accuracy. Simulation results 

show that the proposed algorithm effectively improved system performance, and the 

accuracy is improved over 2.83% and 2.96% than the existing algorithms. The 

proposed scheme is effective for indoor environments while it can be deployed 

outdoor for small-scale.Sumathi and Srinivasan [77] employed a single anchor node 

and the least-squares method to identify the precise placements of static target nodes 

based on RSSI data. 

In [78] authors used the PI method to present a different approach in which no such 

association or mapping -Assisted Localization), a method for range-dependent 

localization in which the mobility of the mobile anchor node is controlled by a 

strategy. Their plan provided the most route variety with the fewest complications. In 

[80], the authors explored range-free strategies which are energy oriented and use 

fewer anchor nodes in their conclusions. They believed that by using fewer anchor 

nodes, their technique is less complicated and more effective. In [81], the authors 

suggested a hybrid model termed as Lion Assisted Firefly Algorithm (LAFA) model 

has been introduced. In this conference, a parametric analysis is made on the proposed 

algorithm by varying the parameter in LAFA. This includes the performance analysis 

of the model under each variation. In [82], the authors developed an approach that 
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belongs to the group of range-free techniques. Their research asserted that their 

approach is simple and practical, with comparisons between nodes based on RSSI 

values, which uses much less energy and demonstrates a high degree of precision by 

using movable anchor notions. In [83] authors suggested two algorithms for providing 

mobility in WSNs. Stone and Camp [84] addressed anchor-based localization 

algorithms and computed the efficiency and preciseness in relation to anchor mobile 

nature and target nodes. There is much more study that we have not described, and the 

results can be found in the literature [85–95]. 

In [96] authors used a Cosine Rule-based Localization (CRL) technique. Trilateration 

is used in existing techniques to find sensor node locations. In comparison to the 

present trilateration technique, simulation findings show that CRL gives more 

accurate results for all trajectories. In [97] authors stated that this study proposes 

virtual partition and distance correction (VP-DC) for minimizing error in the distance 

estimate step. The concept of a virtual partition algorithm is used to find each hop's 

distance on the least communication path among the beacon and the node which is to 

be traced. In [98] authors discussed that the purpose of this project is to develop a 

particle swarm optimization approach for localization that is based on velocity 

adaptation. The results show that the proposed method is more effective at improving 

location accuracy. In [99] authors describe a UNL (Unknown Node Localization) 

approach for a sensor position estimate. The suggested solution is based on RSSI and 

thus requires no additional hardware or data connection between sensor nodes. They 

conducted experiments to assess the correctness of the UNL approach in terms of 

localization, and they discovered that the proposed method is easy because it requires 

less computing and communication. For the correct estimation of unknown nodes, the 

suggested approach is compared to other current localization methods. The testing 

findings demonstrate the algorithm's usefulness and its capacity to more precisely 

locate unknown nodes in a network. In [100], the authors developed history-

dependent multi-node cooperative localization, which is a distributed localization 

solution for sparse ad hoc wireless networks that measures the proportion of reference 

nodes (HMCL). In the suggested HMCL approach, they utilize a unique model to 

eliminate the incorrect estimate values based on prior positions of nodes. 
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2.2.2 3D Range Based Localization Related Work 

In [101] authors have used UWB, a ToA technique, to calculate the requisite three-

dimensional coordinates for a localization procedure. They explored how their 

technique is more accurate in comparison with other techniques. In [102], the authors 

proposed DV-Hop scheme that can more precisely and efficiently localize 3-D 

coordinates of a sensor node, but it's quite complex, and the deployment cost is very 

high. In [103] author presented a hybrid approach for optimization that merged DV 

hopping with the newton method. Also, for their proposed algorithm, the authors took 

into account major parameters: coverage and accuracy. On the basis of the RSSI 

model, Li et al. [104] created a model for finding 3-D positions in a WSN context. 

They suggested a model for determining the relationship between the DOI and 

variance in the transmitted signal's ranges. In [105] authors used a parametric 

approach to create an algorithm for determining 3-D coordinates. Due to the fact that 

the network is contracting towards a center element known as the central point, this 

method has fewer anchor nodes accessible for localization and may perform better. In 

[106], the authors suggested a localization approach that relies on a costly beacon 

signal. It has been inferred that MDS-MAP, DVHOP, and the Centroid approach are 

methods that have been updated from 2-D to 3-D coordinates and are available in the 

literature along with some applications in diverse areas [107–120]. Cheng et al. [121] 

and Zhou et al. [122] surveyed this technology when collecting 3-D coordinates in 

applications deployed in an underwater network. Localization is accomplished using 

knowledge dependent on connectivity and the number of anchors in these methods. In 

[123] authors defined a hybrid method for creating 3-D WSNs. This scheme employs 

an approximation based on the least-squares criterion [124-125]. 

By combining multi-group interaction and quantum feature methods having the 

Symbiotic Organisms Search (SOS) concept, S Chu et al. [126] created a novel global 

optimization technique named MQSOS. It is efficient and consistent, and it may be 

used for actual issues requiring several arguments. Comparing MQSOS against other 

intelligence algorithms under the CEC2013 large-scale optimization test suite by the 

authors. Experiment findings indicate that the MQSOS approach surpassed other 

smart methods. According to Kotwal et al. [127], distributed localization nodes 

evaluate their min and max distance limitations with regard to anchor nodes using 
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crude RSSI. The approximation utilizes a basic binary search technique. The 

approximate distance limitations contribute to the formation of the node's feasibility 

region in connection to anchor nodes. In order to minimize localization error, the 

feasibility area locations are utilized as starting particles in PSO to resolve the 

optimization issue. Using basic calculations, it was revealed that nodes might be 

located with better precision than with present techniques, and a restricted range is 

required. In [128], the authors offer a localization solution for unidentified emitter 

nodes in a WSN. In this technique, it is assumed that there are four anchor nodes with 

known locations and single or more unknown nodes sending RF signals to be received 

by four anchor nodes. The primary data source for the system is an imprecise 

indication of signal strength. This work investigates the PSO technique, which may be 

applied in real-time to achieve a better approximation of the sensor nodes' positions. 

The modeling and experimental results of the proposed methodology are described. 

According to the authors in [129], the RSSI technique calculates the distance among 

benchmark and target nodes placed in the environment using the trilateration 

technique. In [77] authors presented an RSS technique for identifying unidentified 

nodes that requires just one anchor node. This research proposes a technique for 

identifying fixed target nodes using the approach of least squares. In [78] provided a 

mobile-oriented Perpendicular Intersection (PI) technique that explicitly does not map 

the RSS distances. Here the geometric PI relation is utilized to determine the node's 

placement. In [102] authors presented the DV-Hop dependent method for finding 

sensor nodes. This algorithm's downfall is mostly attributable to its complexity and 

increasing cost. 

2.2.3 3D Range Free Localization Related Work 

Numerous techniques are developed to cater to localization issues in WSNs. The 

connection information among an anchor node and a target node, as well as the 

amount of hop counts, play a significant part in range-free localization schemes in 

determining target node positions. Additionally, the basic centroid approach is used to 

obtain the locations of the target nodes. In [130], the author developed a range-free 

technique that depends on the proximity data utilized by a coarse-grained approach. In 

this technique, the centroid method is employed to determine the 2D positions of 

target nodes by taking into account the position of the anchor node [109]. Widespread 



32 

in the existing work are methods to find the 2D coordinates of target nodes using 

range-free methods. Obtaining precise 3D positions of a target node, on the other 

hand, remains an outstanding research question. The primary contribution of research 

to 3D node localization utilizing range-free approaches is as follows: The authors of 

[131] devised a hybrid localization approach that calculates the 3D coordinates of a 

target node with greater precision by integrating RSSI and hop distance data. 

However, the strategy presented is not suitable for an uneven network. Moreover, two 

range-free localization schemes based on RSS data and using Computational 

Intelligence (CI) methods are shown in [132]. In the beginning, edge weights are 

modeled utilizing FLS and then optimized using the Genetic Algorithm (GA). In 

contrast, the second approach uses Neural Networks (NN) to determine the location 

by treating localization as a single issue. In their work [133], the authors developed a 

minimal localization technique using low-cost and small-area WSNs. This approach is 

entirely scattered and meets a strict authorization requirement for the sensor network 

in consideration. Authors in [134] proposed a method to enhance the Monte-Carlo 

approach by using an adjusted heredity computation based on the LMS values. The 

authors of [135] developed a flexible, iterative localization approach based on the 

steepest gradient descent. In [56], the authors developed a new technique that is a 

combination of the RSS and AoA methods, in which sensor nodes are randomly 

dispersed with unknown transmission power and route loss exponents. In [137] 

authors suggested two 3D-based range-free localization techniques using HPSO and 

BBO in the asymmetrical domain of WSN and argued that FLS might lessen the 

nonlinear relationship between RSS and distance. Two 3D techniques based on 

Bacterial Foraging Optimization (BFO) and Invasive Weed Optimization (IWO) are 

suggested in [73]. Reduction of computational cost and non-linearity among RSS and 

distance to improve localization precision by mapping edge weight among both the 

target node and its closest anchor node utilizing FLS has been executed here. A range-

free approach for multi-hop propagation in an anisotropic network is addressed in 

[82]. The variation in hop count between the shortest route and direct path creates a 

detoured route among nodes. The route diversion is utilized to determine the new 

distance for the optimal path. In [137] authors provide a technique based on 3D DV-

HOP localization using PSO. The proposed approach is more precise than the 

conventional DV-HOP method. 
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2.2.4 Optimization Related Work 

The Authors presents a comparative analysis of the different test case optimization 

techniques. There are various optimization techniques available for the context. This 

review explains about the different optimization techniques on the basis of their 

evolution, methodology, performance and applications [191].  In this an attempt is 

made to review the literature on different modern optimisation techniques for cutting 

parameters in machining. The review is kept general in nature, without considering 

special cases like, multi-objective optimization problems, linear programming, 

multidisciplinary optimization problems, convex problems, etc. Although various 

optimization methods have been proposed in recent years, but some more popular 

optimization techniques such as Genetic Algorithm, Ant colony method, Honey Bee 

Algorithm, Simulated Annealing are presented here [192]. 
 

 

2.3 META HEURISTIC IN WSN LOCALIZATION  

Computational Intelligence (CI) is the approach used to solve complicated problems 

that are inspired by nature. CI may be used efficiently in a variety of real-time 

situations. In contrast to Artificial Intelligence (AI), CI systems may make decisions 

on their own, i.e., a system can determine its optimal fitness or resolution by using a 

variety of methodologies [138]. Applications of CI are now used in several industries, 

including decision support, genetic clustering and classification, consumer electrical 

products, the equity markets, time-series prediction, medicine, and a variety of 

bioinformatics issues. 

2.3.2 Genetic Algorithms in WSN Localization 

This is a technique based on search and optimization and is used for finding the 

estimated results. It begins its search with random solutions, and these solutions are 

assigned a fitness function that is relative to their objective function. Then, a set of 

new populations is formed by using three genetic operators named reproduction, 

cross-over, and mutation. An iterative operation in GA takes place using all three 

operators until a terminated criterion is not reached. For decades, GA has been used in 

a wide variety of applications because of its simplicity. The working of the same has 

been defined in figure 2.1. 
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Figure 2.1:  Working layout of GA 

In [139], the authors have suggested a technique that modifies the hop count by 

changing a correction factor and then optimizes the updated hop size using a line 

search algorithm. The idea of co-planarity is developed in order to eliminate location 

inaccuracies induced by coplanar nodes. The precision of localization is further 

enhanced by using a GA. Later on, in [140], authors developed Salp Swarm 

Algorithm (SAA), a contemporary bio-inspired algorithm. The suggested approach 

contrasts with the good optimization techniques, including PSO, BOA, FA, and GWO 

for various WSN operations. On a similar note, in [141], authors have suggested a 

technique that uses the Fruit fly Optimization Algorithm (FOA) to minimize the 

difference between the predicted and actual sensor positions. In the proposed scheme, 

a group of flies is initialized in the search region with random values for direction and 

distance. Using fitness, researchers then identify the flies with the greatest odor value 

to estimate the position of the destination point. A similar kind of work has been done 

by other researchers using the essence of GA during the localization process [142-

147]. 
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2.3.3 PSO Related Work 

Kennedy and Eberhart created PSO [148], which is dependent on bird behaviour. It is 

an effective strategy whose execution phase is simpler. A random number of particles 

are distributed across space. The movement is then applied to the deployed particles 

in the search area. A moving particle in the search space gathers the 'pbest' and 'gbest' 

locations. The working of the same has been defined in figure 2.2. 

          

 

Figure 2.2:  Working layout of PSO 
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In [149], the authors have developed a 3D approach based on PSO. First, they 

describe an enhanced technique (MDV-Hop) in which the average distance for every 

hop of anchor nodes is computed using RMSE and dynamically adjusted in groups 

with the weight RMSE associated with group hops. For more precision, they extended 

the adaptive optimization method PSO to the MDV-Hop localization technique and 

named as PMDV-hop. Authors in [150] utilize PSO for locating a source in 

complicated urban settings. PSO is executed so that each particle is represented by an 

Unmanned Aerial Vehicle (UAV) that directly measures and locates the global 

maximum of the carried out field. PSO is modified in a number of ways so that it 

might function well in this application. In [151], authors have suggested a novel 

localization paradigm for dispersed sensor nodes. The suggested system takes into 

account DV-Hop localization techniques using PSO. In addition, the radio irregularity 

model is addressed to demonstrate the applicability of the proposed approach in an 

anisotropic network. Some other related in this context have been highlighted and 

performed by the authors [152-157]. 

2.3.4 BBO Related Work 

In BBO [158], the term HIS (Habitat Suitability Index) represents the fitness function. 

The higher the value of HIS, the better is the place for better survival of spieces, 

whereas lower HIS values indicate an inappropriate place for the species to live. The 

working of the same has been defined in figure 2.3. 

In [159], authors have pointed out that increasing communication range and saving 

energy are major issues in WSN. To locate sensors in the area of interest, a BBO 

meta-heuristic approach is applied. The suggested method resolves a multi-objective 

issue using the traditional weighted sum technique. A fitness function is produced 

from a mix of competing goals, minimal interference, choosing the smallest number 

of sensors, and the network's connection limitation. The system determines the lowest 

number of sensors to place in the area of interest in order to optimize target coverage 

while reducing sensor interference. The suggested method is evaluated using both 

randomized and grid distribution. Some related work pertaining to the utilization of 

BBO has been expressed in the form of surveys and other research that has been done 

[160-164]. 
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Figure 2.3:  Working layout of BBO 

2.3.5 FA Related Work 

This algorithm was proposed by Yang [165]. The behavior of fireflies is used in this 

algorithm, and the rules followed by the fireflies are as follows: All fireflies are 

unisex as they move from one place to another, notwithstanding sex [166]. The 

parameter which attracts the fireflies towards each other is attractiveness, which is 

directly proportional to the glowing nature of the fireflies, and, as they move a certain 

distance apart, their brightness is reduced. So, fireflies will not follow each other in 

that particular case. If there is no brighter firefly found, then this event is random in 

nature. The fitness function, in this case, is represented by the glowing nature of 

fireflies. According to the Free Lunch theory, no single algorithm is best-suited to 

each optimization problem. There are many more types of optimization algorithms 
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that are reported in the literature, which can be applied to localization problems to 

check their performance. The working of the same has been defined in figure 2.4 

 

Figure 2.4:  Working layout of FA 

Some work in the direction of FA and Dragonfly Algorithm (DA) utilization has been 

expressed. In [167] authors have provided a detailed survey that covers the thorough 

analysis of the so-called DA and have highlighted its key aspects. DA is regarded as 

one of the most promising swarm optimization algorithms due to its successful 

application to a wide variety of optimization problems in a variety of fields. The 

review outlines the research on DA, including its forms such as linear, discontinuous, 

alter, and hybridization. In [168], the authors have suggested a revised version of the 

DA, which is afterward used to increase the lifespan of WSNs. The performance of 

the suggested augmented DA Metaheuristics is evaluated by comparing it to its 
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original conception, the classic LEACH method, and the PSO. Some other prominent 

work has been done by the other researchers in the same context has been mentioned 

in the literature [169-173]. 

 

2.4 OPTIMIZED LOCALIZATION RELATED WORK 

In  [174], authors have introduced a novel Swarm Intelligence (SI) technique for 

identifying static nodes that have been computationally intensive, simple to execute, 

and need minimal memory. In [175], the authors employ the RSS range method and a 

PSO-based algorithm to effectively find sensor nodes. Localization-wise, the strategy 

has a greater success rate. In [176], the authors created the PSO-Iterative distributed 

iterative localization technique. Each target node has more than three anchors, and 

PSO is utilized to decrease the localization error. In [54], the authors suggested 

localization solutions depend on HPSO and BBO concepts with minimum hardware 

requirements, called, respectively, Range free HPSO and BBO. Their weights of the 

edges are optimized utilizing PSO and BBO algorithms. Arora and Singh [177] 

recommended using the BOA optimization method to optimize the location of 

unknown sensor nodes. BOA's performance in 2D settings is compared with the 

results of PSO and FA. In respect of convergence time and positional precision, their 

method surpasses existing meta-heuristic algorithms. Range-based approaches are 

extensively used owing to their increased accuracy; however, flip uncertainty is a 

significant drawback. The authors of [54-55] suggested a PSO-based AI system for 

detecting the location of moving nodes. The algorithm is separated into two steps, 

with anchor nodes positioned at the sensing area's edges. Using RSSI, distance 

computations were performed in the first phase. It was expected that virtual anchor 

nodes might find unknown nodes with the assistance of anchor nodes at a later time. 

In these phases, centroid calculations are performed in conjunction with the PSO 

optimization method, and the results infer a quicker convergence time. 

In [178], the authors adopt the fundamental BAT method for the localization of nodes 

in WSN. To improve this, two BAT settings have been adjusted. The authors alter the 

basic BAT by using BFO. The authors of [179] suggest a method based on Grey Wolf 

Optimization (GWO). This author incorporated the GWO method to address the 
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localization issue. The grey wolf density and coefficient vectors had first been 

generated via the GWO method. GWO is superior due to its hierarchical leadership 

structure. The authors of [180] present a novel technique for node localization based 

on an efficient Bat algorithm. The efficiency of this strategy relies on the adaptation 

of bat speed by fusing it with the impact of doppler in order to enhance performance. 

In [181], the authors offer a novel technique for WSN node localization based on DV-

Hop and Modified PSO (MPSO). Late-evolutionary inaccuracy and a slow 

convergence rate are the drawbacks of the PSO. 

The authors currently rely primarily on the optimization process to enhance the 

accuracy of localization. Previously, we explored a number of localization algorithms 

that use a variety of optimization techniques to enhance localization. After examining 

these methods, we've determined that there are only a handful of algorithms capable 

of high precision, low cost and optimization of the process. In WSN, therefore, a 

robust localization method is required.  

2.5 RESEARCH GAPS 

Following gaps has been observed during literature survey are mentioned below. 

1. Localization of nodes in WSN is of utmost importance since event detection is 

impossible without precise location information. Therefore, localization is an 

essential aspect of WSN. 

2. In WSN, the distributed and centralized nature of localization has a significant 

effect. Because of single point failure, decentralized localization in WSN is 

preferable to centralized localization. However, the construction of distributed 

methods is a hard task. 

 

3. In most of the papers, minimum 3-4 anchor nodes are required to obtain 

locations in 2D or 3D environment. So, there is a requirement to find target 

nodes in 2D or 3D WSN by deploying fewer anchor nodes. This will reduce 

the deployment cost, which is one of the basic requirements in WSNs. 
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4. In range-based algorithms the level of accuracy achieved is upto 90%. So, 

there is a scope of improvement as accuracy is not achieved to the optimum 

level. 

5. The convergence time of optimization algorithm can be reduced to locate 

target nodes quickly in 2D-3D WSN. 

2.6 PARAMETERS AND CRITERIA FOR EVALUATION 

In WSNs, multiple errors occur, such as errors due to range problems, errors due to 

non-availability of GPS signals, and sometimes localization algorithms, which are 

used for certain applications, degrade the accuracy of the system. Range error arises 

due to incorrect measurements carried out on the basis of distances. Similarly, errors 

in anchor position lead to a GPS error. There are certain parameters on which the 

algorithm's performance depends, such as accuracy in terms of location, cost and 

coverage. The evaluation procedure is described in Fig. 2.5.   

 

                   Figure 2.5: Taxonomy of parameters for localization evaluation  

 

 Accuracy in Location: In this, the difference between the node’s original 

position and the estimated position is calculated using any localization 

algorithm and the difference between the two leads to an error. By using this 

information, the determination of the accuracy parameter is calculated; the 

smaller the error, the greater will be the accuracy, and vice versa. 
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 Flexibility to Error and Noise: The localization algorithm chosen for the 

determination of location should be flexible enough to combat errors or noises 

originating from the input side. 

 Coverage: The coverage parameter depends upon a few conditions, that how 

many anchor nodes are to be deployed in the sensor field. The larger the 

number, the better the coverage. 

 Cost: In this, the cost parameter is evaluated on the basis of power consumed 

and the time taken by the algorithms to localize the nodes, so that 

communication between the nodes can be initiated. 

 

2.6.2 Metrics for Accuracy 

The accuracy term is used to match the positions of the actual and the estimated target 

nodes. The difference between the two positions leads to errors and these errors are 

named the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE). 

 MAE: It is calculated in case of continuous variables and it is used to find out 

the accuracy of localization algorithm in a specified application. The equation 

of MAE in Eq. (2.1), where, (𝑥t, 𝑦t, 𝑧t) is current position and (𝑥e, 𝑦e, 𝑧e) is 

calculated position. 𝑁: represents total count of sensor nodes deployed. 

          (2.1) 

 RMSE: The parameter is also representing the measure of accuracy and is 

given by the Eq. (2.2). 

                           (2.2) 
 

In almost every application, cost factor determination is an important parameter. In 

the localization process, the parameters which contribute in terms of cost are power 

consumed during the set-up stage, anchor nodes required during this process, and the 

total time required to localize all the unknown nodes. As an enhancement of the 

network in terms of life span is important, but at the same time, cost management also 
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plays an equal role. There is a trade-off between these two. The ratio of known 

positions of the anchor nodes to the unknown positions, power consumed, and total 

time a localization algorithm requires localizing all the nodes play important roles in 

determining cost metrics. 

 Anchor to Target Ratio: In terms of cost metrics, anchor nodes are the ones 

which are deployed in the sensing field with GPS features enabled in them. In 

order to save the cost, we need to install only a few anchor nodes in the field 

as they are expensive, and, are used to locate all unknown nodes. 

 Overhead during Communication: As number of sensor nodes in any region 

of interest increases, the communication overhead also increases to a greater 

extent. The overhead is calculated by finding out the total number of packets 

sent. 

 Convergence Time: The time taken by the localization algorithm to collect all 

the information regarding localizing all the nodes present in the network 

represents the convergence time. As the network size increases, this parameter 

is affected. 

 Algorithmic Complexity: Algorithmic complexity is always defined with 

some standard notions (O), where the higher the order, like O(n3) and O(n2), 

the longer time it will take to converge, with this parameter representing the 

complexity. 

 Power Consumed: This parameter is important in terms of cost as it 

calculates the power consumed in a localization process. 

 

2.7 CONCLUSION 

In this chapter, we reviewed the literature on range-free and range-based localization 

algorithms and schemes, as well as their functioning, environment, 3D 

implementation, and optimization. This chapter discusses the two major 

circumstances, the static and dynamic problems of WSNs. The literature on WSN 

localization describes in-depth the numerous obstacles in identifying the sensor node, 

which has been reviewed in this chapter. One of the most difficult tasks is locating the 

target node in a multidimensional plane. Many optimization strategies have been used 
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in order to determine the precise placements of these sensors. There are also 

unresolved problems in this study field, such as localization in mobility-based 

situations and the use of fewer anchor nodes to save costs. As a result, numerous 

optimization strategies may be used to address the many challenges that arise 

throughout the localization process. There has been a lot of work described in the 

literature based on Metaheuristics for accurate localization. This chapter has shown 

some of these nature-inspired approaches and their application in different WSN 

scenarios. Furthermore, the parameters that are relevant for evaluating the algorithms 

are emphasized. 
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CHAPTER -3 

 LOCALIZING MOBILE NODES IN RANGE BASED 2D 

HOMOGENEOUS WSN USING DRANGONFLY AND NEURAL 

NETWORK ALGORITHM 

 

 

To locate the node, the utmost parameter is to determine the coordinates of the nodes; 

otherwise, all the information which is accumulated using the other sensor nodes will 

be of no use, and hence the communication will be erroneous and may become a 

source of interference for all the nodes. Therefore, for the majority of applications 

inside WSNs, it is necessary to determine the precise geographical position of the 

target nodes. The Dragon Fly Met-heuristic method is suggested and presented in this 

chapter to calculate the position of randomly moving target nodes. A node whose 

position is known is normally deployed in the middle of the region which is to be 

sensed. The effectiveness of the DA method may be determined by getting results and 

comparing performance metrics such as the number of localized nodes, location, and 

scalability. Also, an algorithm known as Neural Network (NN) algorithm has been 

proposed for computing the location of randomly moving target nodes. A node whose 

position is known is normally deployed in the middle of the region which is to be 

sensed. Acquiring results and comparing performance parameters such as the number 

of localized nodes, location, and scalability can be used to measure the success of the 

NNA approach. 

3.1 INTRODUCTION 

In WSNs, to determine the physical behavior of sensor nodes, sensors are deployed in 

the natural environment. The sensor nodes deployed are cost effective and have less 

computational capabilities [182]. Some of the applications of WSNs are physical 

phenomena like monitoring the temperature, monitoring the habitat, and surveillance. 

WSNs also have various research challenges such as hardware and OS, installation, 

accurate location determination, QoS, network security, and so on. It is very important 

to find the accurate position or location of sensor nodes in WSNs. The simplest way 

to locate every deployed sensor node is to take the help of the GPS feature, although it 
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is very costly when many nodes are deployed in the network. Various optimization 

algorithms are available in the literature that are cost effective and perform accurate 

location determination, but most of these algorithms do not suit well for a wide range 

of WSN applications. Range-based and Range-free localization are the two strategies 

available that are used to identify sensor nodes. The unknown nodes are determined 

using previous information of other nodes referred to as target nodes, and the known 

location nodes are anchor nodes. The coordinate's determination of target nodes can 

be calculated using the anchor's beacon messages, but it needs more power and high 

communication costs. If an algorithm estimates the wrong location, this error is 

distributed over the entire network. The accuracy of localization must be high. A 

number of high-accuracy meta-heuristic algorithms are documented in the literature. 

    In this work, one GPS-equipped node (anchor) is placed just at the center of the 

area, which is to be sensed, and all other unknown nodes are placed randomly and are 

allowed to move in the field. Whenever the target node drops within a known location 

of the anchor node, the measurement of the distance between the anchor and the target 

node is executed using RSS measurements. Then by projecting two virtual anchors 

within the network to locate target nodes (as at least for determining 2D coordinates, 

three nodes are required). The estimated node location is calculated by determining 

the centroid positions using these three nodes, and then the optimum location is 

calculated using the Dragonfly and NN algorithm as defined in this chapter and their 

comparison with the existing approach [183].  

3.2 NODE LOCALIZATION USING DA 

The suggested algorithm is imposed on the distinctive, superior swarming approach of 

the Dragonfly [166]. The dragonfly swarms for hunting and migration. The action of 

the hunting swarm is static and functions by forming a tiny unit of dragonflies that 

suddenly shift and change their moves. The maximum dragonfly flight over long 

distances in one direction characterizes the migratory behavior of swarms known as 

dynamic swarms. Static swarming and dynamic swarms show the ability of DA to 

manipulate and explore. The conduct of Dragonfly operates on the principle of 

harmony, a distraction from the opponent, isolation, alignment, and attraction to food. 
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Parting, organization, attraction, location, and diversion towards food adversary 

sources are all factors that influence dragonfly swarm migration. The static avoidance 

of collisions between persons and other individuals in the vicinity is referred to as 

separation (Si). Alignment (Ai) is the rate at which individuals match the speed of 

others in their vicinity. Individuals' proclivity to congregate at the neighborhood's 

mass core is referred to as cohesion (Ci). Each operator has been proposed with 

Weights, which are adjusted to ensure that the dragonflies arrive at the best answer. 

As the optimization process advances, the dragonfly's adjacent radius grows as well. 

The following can be discussed in terms of DA's mathematical implementation. 

Let N be the number of dragonflies. The location of the ith dragonfly is determined 

with Equation (3.1). 

                                            (3.1) 

Herei=1,2,3,...,N, xi
d represents the dragonfly's search space position, and N signifies 

the number of the search element. The fitness value is calculated using values which 

were generated between finite limits of variables. The weights are randomly 

initialised for each dragonfly for Si, Ai, Ci, food (f), and enemy (e) elements. 

Cohesion and Alignment coefficients are derived with Equations (3.2) to (3.4) for the 

updating of the separation of dragonflies as pointed below. 

                                                        (3.2) 

                                                                               (3.3) 

                                                                               (3.4) 

Wher represents an individual’s ith's speed and  depicts position. Current people 

situation is denoted by , while the quantity of adjacent individuals is denoted by N. 

Food source attraction   is determined by Equation (3.5) and enemy diversion by 

Equation(3.6). 
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                                                                              (3.5) 

                                                              (3.6) 

Here corresponds to current individual's location and food source is indicated by  

and represents enemy source. Neighbourhood distance is determined by selecting 

N. Distance calculation, .  It is determined by Equation (3.7). 

                                                                          (3.7) 

If any dragonfly is found in the vicinity then the velocity is updated by Equation (3.8) 

and position by Equation (3.9). 

 

                                        (3.8) 

                                                        (3.9) 

If in the neighbourhood radius there exist no dragonflies, then the dragonfly's position 

is found out by the Levy Flight equation, mentioned in Equation (3.10), as it improves 

the dragon flies random approach and enhances search capability.                                                 

                                                                                 (3.10) 

Fitness function is evaluated on dragonflies' modified factors (Velocity, position). 

Position updating continues until the termination gets completed. 

The procedure to find target nodes is: 

a) One AN with number of TN’s placed in 15x15  area. 

b) When mobile nodes (target) falls in the vicinity AN, each TN keeps table of the 

distance among the two, as well as two virtual AN’s in the area (because at least 3 

nodes are mandatory for locating TN’s). Figure 3.5 demonstrates idea of AN, VN 

and TN. 

c) DA method is used to trace TN’s location. 
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Figure 3.1: Sensor field schematic representation 

As represented in Figure 3.1 where each mobile TN and AN is shown through 

Equation (3.11). 

                                                        (3.11) 

where ,  are TN positions, ( ,  is present AN’s location. Centroid , is 

found out in Equation (3.12) and is shown in Figure 3.2. 

                                                     (3.12) 

 

                     Figure 3.2: Computation of Centroid ANs and VNs 
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DA is used in Figure 3.3 to identify TN’s coordinates, which is acknowledged by 

( ). Idea is the reduction of estimated and actual distance among the actual node 

and computed coordinates, which is expressed in Equation (3.13). 

           

Here,  depicts estimated position of target node, ( ) depicts beacon node’s 

i location which is placed at adjacent positions of target node and all count of beacons 

are depicted by M (M>3 here). 

 

Localization error is found out by Equation (3.14) and is shown in Figure 3.4. 

         (3.14) 

 

 

Figure 3.3:  DA implementation around centroid 
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                                Figure 3.4: Estimated error using DA 

For DA, the optimum target node placement is evolved until the termination 

requirements are met (or the minimum value  is reached). 

3.3 RESULTS AND EVALUATION FOR DA 

The proposed algorithm's performance is assessed using Matlab. The simulations have 

been run on a Windows with Intel i3, 8GB RAM. Simulations were carried out on a 

15x15 m network. The anchor node is located in the sensing field's center (7.6 x 7.6 

m), and twenty target nodes have been scattered over the sensing area. Coordinates of 

the AN and VN are shown in Table 3.1. 

The specifications are: AN-Anchor Node, TN- Target Node and VN-Virtual Anchor 

Node 

Table 3.1: AN and VN positions for DA 

Coordinates AN VN1 VN2 VN3 VN4 VN5 VN6 

X 7.6 10.116 

 

5.248 2.508 4.497 9.315 12.399 

Y 7.6 11.845 11.877 7.898 3.502 2.903 6.598 
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Table 3.2 represents that 20 TNs with a single anchor node and six VN are deployed 

in the sensing field. 

Table 3.2: Distance between target and anchors for DA 

S.No  Anchor  VN-1 VN -2 VN -3 VN -4 VN -5 VN -6 

T N-1 4.82950833 7.98531255 9.66632634 8.83276928 6.12755065 1.66671265 3.43654076 

TN-2 4.26851103 4.37430216 7.7494740 9.14328368 8.29970901 5.3981682202 1.401260626 

TN-3 8.5018735 8.310563987 3.77985402 6.20284637 10.9015635 13.40183502 12.69929545 

TN-4 2.89929145 6.39511197 7.90214601 7.50207102 5.29913699 2.499995240 3.201617112 

TN-5 8.39870699 4.10205499 8.88174101 12.501056 13.2992601 11.16818198 6.501737897 

TN-6 4.89950201 3.19893201 1.80172399 6.29958699 9.19875299 9.798026899 7.899525901 

TN-7 4.69968299 7.40224402 9.60293911 9.3010610 6.59956802 2.402491899 2.610117902 

TN-8 4.31039410 0.8665498 4.40288899 7.80207910 9.3026485 8.401907298 5.390450502 

TN-9 8.70112402 13.5012802 11.1022899 6.40249901 3.91040102 8.410424702 12.40132899 

TN-10 6.40145110 7.40278899 10.5998399 11.3015798 9.10289102 4.597013899 1.699306699 

TN-11 6.79947601 6.10260610 10.2016699 11.7965732 10.6105502 6.802576201 2.102561291 

TN-12 5.20183835 4.30287799 0.80118799 5.59803802 9.10242342 10.20516246 8.802607601 

TN-13 7.39934864 12.4018636 10.5025068 6.25210532 2.39929863 6.730503386 10.80298624 

TN-14 7.7020363 12.7100853 11.1020565 6.90161960 2.70306832 6.40204576 10.80223752 

TN-15 4.80249901 4.20181902 7.89983201 9.80208599 9.10154640 6.101281902 1.601691482 
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TN-16 4.70201799 7.60110670 9.60124094 9.10205693 6.40151184 2.019539835 2.985462578 

TN-17 8.09929335 4.89972836 9.69999799 12.6995792 12.7014989 9.702289775 4.80281335 

TN-18 3.29929635 3.201947790 2.20172140 5.40198056 7.69996871 8.301812588 6.801570825 

TN-19 8.19857681 12.956322 9.89945264 5.10208589 4.10287231 8.89919201 12.50233791 

TN-20 5.39902139 8.71380340 4.81765821 0.6339412 5.29406879 9.137390165 10.39628467 

 

Table 3.3 presents various optimization techniques used to localize the moving target 

nodes in the sensing field for five movements within a range of 10 meters 

corresponding to average localization error. 

    Table 3.3: Comparison of algorithms to compute localization error for DA 

 

Algorithms 

 

Movements 

 

Transmission 

Range 

 

Maximum 

Localization 

error(m) 

 

Minimum 

Localization 

Error(m) 

 

Average 

Error(m) 

PSO 1 10 1.8674 0.1431 0.6944 

 2 10 3.8233 0.2142 1.1234 

 3 10 2.6978 0.1241 0.8132 

 4 10 1.8914 0.2132 0.5878 

 5 10 1.7897 0.1698 0.7432 

HPSO 1 10 0.6827 0.1188 0.2445 

 2 10 0.7623 0.0963 0.3532 

 3 10 0.7336 0.0481 0.3334 

 4 10 0.6591 0.2189 0.3487 

 5 10 0.5271 0.2187 0.2205 

BBO 1 10 1.4713 0.0321 0.3834 
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 2 10 1.4797 0.0779 0.8223 

 3 10 1.4714 0.0363 0.6922 

 4 10 1.4854 0.0442 0.7980 

 5 10 1.6714 0.0582 0.9313 

FA 1 10 4.6765 0.3834 2.3590 

 2 10 5.8855 0.5865 3.0534 

 3 10 4.8872 0.0323 2.4408 

 4 10 5.2234 0.2454 3.1356 

 5 10 4.6678 0.1980 2.5820 

DA(Proposed) 1 10 0.6827 0.1188 0.2145 

 2 10 0.7423 0.0893 0.3132 

 3 10 0.7236 0.0281 0.3034 

 4 10 0.6491 0.1989 0.2387 

 

 

5 10 0.5031 0.1878 0.2005 

 

The localization error for DA is quite low as clear from figure 3.5 and also as inferred 

from Table 3.3, which comprises its comparison with other approaches. Here, the 

node location is calculated in DA with minimum localization error and shortest 

processing time. This is due to the exploration ability of the Dragon Fly Algorithm 
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Figure 3.5: DA localization approach under various movements 
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Comparison of ALE of  DA with existing techniques 

 

3.4 NODE LOCALIZATION USING NNA 

A new algorithm for optimization based on NN called NNA is created [184]. NNA is 

a meta-heuristic approach with which the end-users are not required to alter any 

parameter. Artificial Neural Networks (ANNs) reduce mean square error by 

iteratively updating the weights and correlating the input with the output. 

     NNA’s follows ANNs.  A "pattern solution" is a one-dimensional vector that 

represents the NNA's input data. A "pattern solution" refers to every individual 

searching agent community wise.". . 

In NNA, a pattern solution matrix  of dimensions  is created at random 

between the search space's lowest and upper boundaries. Population  is represented 

by Equation (3.15). 
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                                                          (3.15) 

where 

        (3.16) 

Here, LB and UB are 1×D vectors indicating the search space's bottom and upper 

limits.  

In NNA, every pattern result  is having matching weight , similar to ANNs. 

 

Array weights  is represented with Equation (3.17). 

              (3.17) 

where represents a matrix of that is distributed uniformly in random 

fashion between 0 and 1.  

     Random values are assigned as NNA’s starting weights, and are updated as the 

iteration progresses conceptualized on the error transmitted in the network. The gross 

weight of the pattern solution should not go more than one; hence, the weight values 

are assigned. Weight pattern solution is mentioned as follows: 

                                      (3.18) 

                                        (3.19) 
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Each pattern solution's fitness   is determined by evaluating the objective function 

 the associated pattern solution . 

                            (3.20) 

The pattern result with the best fitness is regarded the target result, with a target 

position , target fitness , and target weight  after the fitness 

calculations for all pattern solutions. The NNA simulates an ANN through N inputs, 

also which has D dimensions, and only single target output,  . 

The new pattern solution is developed and given as by Equations (3.21) and (3.22). 

                               (3.21) 

                            (3.22) 

Where, iteration index is represented by . 

Updated Weight Matrix Equation (3.23) is given below: 

    (3.23)       

During the optimization process, the constraints (3.16) and (3.17) must be met. 

    The recommended algorithm includes a bias operator for better search space 

exploration which adjusts updated weight matrix  as well as a fixed 

range of the pattern results developed in new population . It also avoids 

premature convergence by instructing a subset of the population to investigate areas 

of the search space that have yet to be explored by the population. 

     A modification factor  determines the percentage of pattern results that will 

be changed utilizing the bias operator.  initially was 1, indicating to entire 

population is prejudiced.  shall correspondingly be decreased at every iteration 

with accessible reduction mechanism, as given below by Equations ( 3.24) and (3.25). 
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               (3.24) 

                    (3.25) 

where  a positive value is less than 1, initially set at 0.99.  

The modification factor  is reduced to improve the method's exploitation as the 

number of iterations increases by allowing the algorithm to find the best solution that 

is close to the objective solution, mainly in the last iterations.  

The following Equation (3.26) describes the Transfer Function operator (TF). 

 

                                                                                             (3.26) 

The ith updated pattern solution  is transported to updated position 

 from the last one pointing target pattern solution  using the 

transfer function operator. 

Also, in NNA, the bias operator is more likely to generate a new pattern result at the 

beginning of the iteration process, which means more opportunities for discovering 

previously unseen pattern solutions and experimenting with new weight values. The 

probability of applying the bias operator reduces as the number of iterations increases, 

whereas the Transfer Function (TF) operator increases, boosting the exploitation of 

the NNA, especially during the last iterations. 

    Because the creation of a new updated result (as specified in Equation (3.27)) is 

dependent on all of the population specified mathematically therefore NNA is called a 

dynamic optimization model: 

                       (3.27) 
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The procedure to find target nodes are: 

a) In a 15x15  area, one AN with a number of TNs is installed.  

b) When a mobile node (target) comes close to an AN, each TN preserves a 

distance table between the two and two virtual AN's in the area (since at least 

three nodes are required for locating TN's). Figure 3.10 depicts the concepts of 

AN, VN, and TN. 

c) The NNA approach is utilized to track down TN's position. 

 

 

Figure 3.6: Diagram of a sensor field 
 

Each movable TN and AN is depicted in Figure 3.6 and the distance is measured 

using the Equation (3.28). 

                                                   (3.28)                                              
  

where ,  are TN positions, ( ,  is the current position of AN. Centroid , 

is discovered (as specified by Equation 3.29) and presented as in Figure 3.7. 

                                                                 (3.29)                
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Figure 3.7: Centroid ANs and VNs computation 

Figure 3.8 shows how NNA is utilized to identify TN's coordinates, which are 

recognized by ( ). The concept is to reduce the distance between the actual node 

and computed coordinates, which is stated in Equation (3.30). 

 

 

Figure 3.8: Implementation of NNA in the vicinity of the centroid 

                                             (3.30) 
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Here,  represents the estimated position of the TN, ( ) depicts the I 

location of the beacon node, which is positioned near to the target node, and M (M>3 

here) depicts the total number of beacons. The Equation (3.31) discovers the 

localization error, which is depicted in Figure 3.9. 

                 (3.31) 
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Figure 3.9:  Estimated error using NNA 

NNA evolves the best target node placement until the termination requirements are 

met (or the minimum value  is attained). 

3.5 RESULTS AND ANALYSIS FOR NNA 

Matlab is the tool with which the mentioned technique has been implemented. The 

simulations were done on a Windows computer having an Intel i3 processor and 8GB 

of RAM. One AN along with the help of two VN’s is able to trace the TN. Total six 

VN’s could be used but we are using only two as at least three nodes are required to 

locate the target node. Therefore to reduce the complexity we are using only two 

VN’s. On a 15x15 m network, simulations were run. The sensing field having 

dimensions (7.6 x 7.6 m) contains the AN in the middle, while twenty target nodes are 

strewn over the sensing region. The coordinates of AN and VN are shown in Table 

3.4. The distance between the Anchor and the target nodes has been illustrated in 
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Table 3.5. It can also be visualized through Figure 3.10 where it has been represented 

graphically. This has been achieved due to the adaptive unsupervised method of NNA 

for solving optimization problems.  

Symbolizing the variables as:  AN-Anchor Node, TN- Target Node and VN-Virtual 

Anchor Node 

Table 3.4:  AN and VN position values for NNA 

Coordinates AN VN1 VN2 VN3 VN4 VN5 VN6 

X 7.6 10.116 5.248 2.508 4.497 9.315 12.399 

Y 7.6 11.845 11.877 7.898 3.502 2.903 6.598 

 

Table 3.5 represents that 20 TNs with a single anchor node and six VN are deployed 

in the sensing field. 
 

Table 3.5: Distance between anchors and targets for NAA 

S.No Anchor VN-1 VN -2 VN -3 VN -4 VN -5 VN -6 

T N-1 4.81950833 7.97531255 9.65632634 8.82276928 6.11755065 1.65671265 3.42654076 

TN-2 4.25851103 4.36430216 7.7394740 9.13328368 8.28970901 5.3881682202 1.400260626 

TN-3 8.5008735 8.300563987 3.76985402 6.20184637 10.9005635 13.40083502 12.68929545 

TN-4 2.88929145 6.38511197 7.90114601 7.50107102 5.28913699 2.489995240 3.200617112 

TN-5 8.38870699 4.10005499 8.87174101 12.500056 13.2892601 11.15818198 6.500737897 

TN-6 4.88950201 3.18893201 1.80072399 6.28958699 9.18875299 9.788026899 7.889525901 

TN-7 4.68968299 7.40124402 9.60193911 9.3000610 6.58956802 2.401491899 2.600117902 

TN-8 4.30039410 0.8565498 4.40188899 7.80107910 9.3016485 8.400907298 5.380450502 

TN-9 8.70012402 13.5002802 11.1012899 6.40149901 3.90040102 8.400424702 12.40032899 
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TN-10 6.40045110 7.40178899 10.5898399 11.3005798 9.10189102 4.587013899 1.689306699 

TN-11 6.78947601 6.10160610 10.2006699 11.7865732 10.6005502 6.801576201 2.101561291 

TN-12 5.20083835 4.30187799 0.80018799 5.58803802 9.10142342 10.20416246 8.801607601 

TN-13 7.38934864 12.4008636 10.5015068 6.24210532 2.38929863 6.720503386 10.80198624 

TN-14 7.7000363 12.7000853 11.1010565 6.90061960 2.70206832 6.40104576 10.80123752 

TN-15 4.80149901 4.20081902 7.88983201 9.80108599 9.10054640 6.100281902 1.600691482 

TN-16 4.70101799 7.60010670 9.60024094 9.10105693 6.40051184 2.009539835 2.975462578 

TN-17 8.08929335 4.88972836 9.68999799 12.6895792 12.7004989 9.701289775 4.80181335 

TN-18 3.28929635 3.200947790 2.20072140 5.40098056 7.68996871 8.300812588 6.800570825 

TN-19 8.18857681 12.946322 9.88945264 5.10108589 4.10187231 8.88919201 12.50133791 

TN-20 5.38902139 8.70380340 4.80765821 0.6239412 5.28406879 9.127390165 10.38628467 

 

 

 

         Figure 3.10:  Graphical representation of distance between anchor and targets 
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Table 3.6 presents various optimization techniques to localize the moving target nodes 

in the sensing field for five movements within a range of 10 meters corresponding to 

average localization error. 

Table 3.6: Comparison of algorithms for calculating localization error for NNA 

 

Algorithms 

 

Movements 

 

Transmission 

Range 

 

Maximum 

Localization 

error(m) 

 

Minimum 

Localization 

Error(m) 

 

Average 

Error(m) 

PSO [183] 1 10 1.8674 0.1431 0.6944 

 2 10 3.8233 0.2142 1.1234 

 3 10 2.6978 0.1241 0.8132 

 4 10 1.8914 0.2132 0.5878 

 5 10 1.7897 0.1698 0.7432 

HPSO [183] 1 10 0.6827 0.1188 0.2445 

 2 10 0.7623 0.0963 0.3532 

 3 10 0.7336 0.0481 0.3334 

 4 10 0.6591 0.2189 0.3487 

 5 10 0.5271 0.2187 0.2205 

BBO [183] 1 10 1.4713 0.0321 0.3834 

 2 10 1.4797 0.0779 0.8223 

 3 10 1.4714 0.0363 0.6922 

 4 10 1.4854 0.0442 0.7980 

 5 10 1.6714 0.0582 0.9313 

FA [183] 1 10 4.6765 0.3834 2.3590 

 2 10 5.8855 0.5865 3.0534 
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 3 10 4.8872 0.0323 2.4408 

 4 10 5.2234 0.2454 3.1356 

 5 10 4.6678 0.1980 2.5820 

NNA                      

( Proposed) 

1 10 0.5827 0.1088 0.1145 

 2 10 0.6423 0.0793 0.2132 

 3 10 0.6236 0.0181 0.2034 

 4 10 0.5491 0.1889 0.1387 

 

 

5 10 0.4031 0.1778 0.1005 

 

 

Figure 3.11: Comparison of Average Localization Error of existing techniques with 

NNA 

Figure 3.11 shows that the localization error for NNA is quite low. In this case, the 

node position is determined in NNA with the least amount of localization error and 

the quickest processing time possible. 

     Figure 3.12 shows that the localization error for NNA is quite low and also, as 

inferred from Table 3.6, comprises its contrast with other approaches. Here, the node 

position is determined in NNA with fewer amounts of localization errors and the 

quickest processing time possible. 
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Figure 3.12: NNA localization techniques under various movements 
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3.6 CONCLUSION AND FUTURE SCOPE 

The work proposed in this chapter is the DA metaheuristic optimization localization 

technique for identifying locations of randomly arranged target nodes. There are two 

aspects to the location computations. To begin, the anchor and the target node 

distance is calculated after the notion of VN’s is proposed, with VN’s is being placed 

at certain angles in the field at a defined distance between the anchor and the target 

node. Then centroid is calculated, and DA is used to compute the localization error. 

The method described and proposed is used in a variety of applications, including 

logistics and military. In 3D localization, DA can also be used to determine 3D 

coordinates. The exploration ability boosts up the accuracy and efficiency which at 

the same time results in error reduction . The same has been verified by the 

comparison of our results with the existing algorithms This chapter presents another 

method named NNA meta-heuristic optimization localization technique to find 

locations of randomly organised target nodes. The computations of location have two 

components. After calculating the distance between AN and TN, the notion of VNs is 

offered, with VNs positioned in the field at certain angles and a set distance among 

both the nodes. The centroid is determined, and the localization error is estimated 

using NNA. The aforementioned strategy is employed in a range of applications, 

including logistics and military. The concept of NNA can also be utilized in 3D 

localization to find the nodes' exact location. To improve the findings, hybrid 

optimization strategies can be applied in the future. 
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CHAPTER -4 

 LOCALIZING MOBILE NODES IN RANGE BASED 3D 

HOMOGENEOUS WSN USING METAHEURISTIC 

ALGORITHM 

 

In 3D landscapes, sensors are put in mountains for tracking and in the air for pollution 

monitoring. Such applications cannot rely on 2D localization models. This presents 

additional issues for the design of 3D localization systems in WSNs. In this chapter, a 

single anchor node is utilized to locate unknown nodes in a 3D environment. In a 

simulation-based environment, the middle and lower levels include nodes with 

uncertain positions, whereas the top layer has a single anchor node. Adaptive Plant 

Propagation Algorithm (APPA) is a revolutionary soft computing approach presented 

to determine the optimal placements of these mobile nodes. These mobile target nodes 

are diverse and have been deployed in an anisotropic environment with a DOI value 

of 0.01. Simulation findings demonstrate that the proposed APPA method 

outperforms previous meta-heuristic optimization strategies in terms of localization 

error, computational time, and the sensor nodes that are located. 

 

4.1 INTRODUCTION 

Wireless Sensor Networks (WSNs) contain many small low-power sensor nodes 

(SNs) deployed randomly in the environment to determine the physical behavior. 

Sensors are often used to obtain measurements of location, temperature, humidity, 

irradiance, sound, and pressure [184]. In most of WSNs applications, location 

determination is crucially important and sensor nodes deployed in these areas are of 

utmost importance as no one is present in the field to locate and place the nodes 

personally. So, in these applications, sensor nodes are randomly deployed at unknown 

locations, and they adopt random locations in the sensor field. On the other hand, the 

exact location is not known of an occurring event the information gathered by these 

sensors is useless [185]. To locate the sensor nodes in WSN, GPS, which is one of the 

most widely used techniques for localization, was developed to overcome the 

limitations of previous navigation systems [186]. GPS is being used in military, 
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industry, and, more recently, consumer/civilian applications. However, GPS does not 

work with obstacles that limit LOS communications between the satellites and the 

GPS receiver; therefore, its utility is limited in dense forests, mountains, and also in 

indoor environments. To overcome GPS limitations, sensor networks can be applied 

for localization. An alternative way to find out all unknown nodes in the scenario is to 

deploy a few sensors within built GPS features that are known as anchor nodes. Thus, 

the exact location of these sensors is known after deployment in WSNs. By using the 

known locations of these anchors, many methods already available in the literature are 

used for the evaluation of the location of unknown nodes (or unknown nodes). Range-

based and Range-free algorithms are different algorithms that exist in the literature. 

The first one measures the distance between nodes using RSSI, AoA, and ToA [186-

187]. Thus, range-free strategies, distance vector hop, multidimensional signaling, and 

Adhoc positioning system provide the location of various targeted nodes with fewer 

infrastructure requirements. In WSN, providing exact localization is one of the 

greatest problems. Localization can be done precisely in static nodes, but it is much 

more difficult in moving nodes. We introduced the idea of using a novel APPA to 

target unknown nodes with the help of only one node, which is called the anchor, and 

an assumption is taken about this node virtually in six different directions. Whenever 

the nodes whose location is to be found outcomes under the range of anchor, virtual 

anchors are placed at 60 degrees angles, with the same range as that of anchor, and 

out of the six, only three nodes are nominated to trace the exact position of the 

unknown node because at least four SNs are needed to find out three-dimensional 

positions. Here, we are working to find out the evaluation and hence efficiency of 

localization problems with various meta-heuristics using APPA. 

 

4.2 ADAPTIVE PLANT PROPOGATION ALGORITHM (APPA) 

This algorithm is comprised of a population of shoots, and every shoot presents a 

solution in the search space. It is assumed that each shoot has taken root, which is 

equivalent to the objective function being assessed. Each shoot will then send runners 

out to explore the space around the solution. 
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      A plant is considered to be in a location where the 

dimension of the search space is given as . Let the population size be denoted as 

which determines the number of strawberry plants to be used initially. It is known 

that strawberry plants which are in poor spots propagate by sending long runners 

which are few in number, the process being known as exploration. The plants which 

are in location with abundance of essential nutrients, minerals and water propagate by 

sending many short runners, the process is known as exploitation. Maximum number 

of generations considered is  and maximum number of permissible runners per 

plant is . 

The objective function values at different positions are calculated. 

These possible candidate solutions will be sorted according to their fitness scores. 

Here the fitness is a function of value of the objective function under consideration. It 

is better to keep the fitness scores within ascertain boundary between 0 and 1, that is, 

. To keep the fitness values within this range, a mapping is done using 

the sigmoid function, described by Equation (4.1)  

                                                                              (4.1) 

The effect of this mapping function is that, it provides a means of emphasizing further 

better solutions over those which are not as good. 

    The number of runners that are found out by the solution and the distance of 

propagation of each of them are described. There exists a direct relation between the 

number of runners produced by a candidate solution and its fitness given by Equation 

(4.2). 

                                                         (4.2) 

Here, is the number of runners produced for solution in a particular generation or 

iteration after the population is sorted according to the fitness given in Equation (4.2), 

 is the number of runners which is maximum permissible, is the mapped 
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fitness as determined using Equation (4.2), is a random number lying between 0 

and 1 which is randomly selected for each individual in every iteration or generation, 

and  refers to the ceiling function. The minimum number of runners is 1 and 

maximum is . This function ensures that at least 1 runner should be there which 

may correspond to the long runner as described before. The distance of each runner is 

inversely related to its fitness as shown in Equation (4.3) 

                                    (4.3) 

where represents the dimension of the search space. So, each runner is restricted to 

a certain range between  and . The calculated distance of the runners is used 

to update the solution for further exploration and exploitation of the search space by 

the Equation (4.4). 

                                (4.4) 

The algorithm is modified to be an adaptive one in view of the limits of the search 

domain. Hence, the name is given as APPA. In the event that the limits are 

disregarded the point is changed in accordance to lie within the search space. 

Essentially,  and are the lower and upper boundaries of the jth coordinate of the 

search space respectively. New plants are polled and the entire extended population is 

organized after every single individual plant in the population has passed on their 

designated runners. To keep the population fixed, rather than the size of the 

population fixed, it is to be guaranteed that the candidates with lower growth are 

dispensed from the population. Another strategy is adopted to avoid being struck in 

the local minima. It might happen that for a certain number of generations, there is no 

improvement in a candidate solution; rather the runners it sends out are also not fit to 

remain in the population. So a threshold to be set for such a solution such that if the 

number of generations in which it is not enhancing surpasses the threshold, then the 

solution is discarded, and another fresh candidate solution or individual is produced 

within the limits of the search space. The working of APPA has been represented in 

the form of Figure 4.1. 
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4.3 SINGLE ANCHOR NODE LOCALIZATION CONCEPT 
 

In this 3D localization problem, a single anchor node with known location 

information is considered, and this location information of the anchor is utilized to 

find out the locations of randomly placed mobile nodes. These mobile nodes are 

grouped into three different layers with an anchor placed at the top most position, and 

unknown nodes are moving at the middle and the bottom layers. Anchor nodes 

transmit a beacon signal that will be sensed by mobile nodes, and using the concept of 

virtual anchors, three of these virtual anchors and the anchor node itself are selected 

to locate all the mobile nodes. Based on the received RSSI, the approximated distance 

between anchor and target node is estimated. A detailed description of localization 

using the APPA algorithm is given in Figure 4.2. 

 

Figure 4.1: Flowchart of the Adaptive Plant Propagation Algorithm (APPA) 
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The proposed algorithm has below mentioned properties and further steps for 

estimating location information have been discussed in this section. 

a) Using the APPA algorithm, a new method for projecting virtual nodes in the 

field to determine the exact locations of deployed sensor nodes in a three 

dimensional scenario. 

b) LOS problems will be reduced to a greater extent with virtual anchor nodes. 

c) Flip ambiguity issues in range-based methods are also minimized. 

 

 

Figure 4.2: Detailed description of 3D Localization using APPA 
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Firstly, the anchor and moving target distance are determined in 3D scenarios using 

RSS measures. Further, the anchor nodes, which are virtual (six in number), are 

placed at the same distance at an angle difference of sixty degrees, as given in Figure 

4.3. Here, for each target localization, an anchor with three virtual anchor nodes is 

selected in order to find coordinates in three-dimensional scenarios, respectively, as 

shown in Figure 4.4. This selection of virtual anchor nodes is made using directional 

information of the target node. The anchor and target node distance is given by 

Equation (4.5). 

                                (4.5) 

Here in 3D, the coordinates of the nodes which are targets is provided by ,  

and the current position of the anchor node is represented by  for 3D scenarios. 

Also, the centroid , is deduced by Equation (4.6) in 3D environments, and is 

inferred in Figure 4.5. 

xc,yc , zc,) =  
x + xv1 + xv2 +  xv3

3
,
y + yv1 + yv2 +  yv3

3
,
z + zv1 + zv2 +  zv3

3
  

          (4.6) 

It is being inferred by Figure 4.6 that proposed APPA is compute target node 

positions and is represented by . The distance among the estimated and 

actual location of target nodes has been inferred through the objective function as 

depicted in Equation (4.7) 

 

                       (4.7) 
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Figure 4.3: Umbrella projection to find out the position of mobile target nodes 

 

Figure 4.4: Sensor field in 3D environment with anchor and virtual anchor nodes 
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Here, the calculated position of the target node is represented by , 

calculated coordinates of the beacon node i and the target nodes is inferred by 

( ) (M > 4 to compute 3D location) respectively for 3D scenario.  

      Error in the process of localization is given by , and is found out by Equation 

(4.8) and is shown in Figure 4.7 for three dimensional scenarios.  

 

                     (4.8) 

 

Figure 4.5: Three dimensional calculation using centroid 

 
Figure 4.6: APPA particles deployed in 3D scenario 
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                            Figure 4.7: Estimated 3D location 

4.4 SIMULATION RESULTS AND DISCUSSION 

Here, a novel technique, APPA, is used for a three-dimensional localization problem 

where the concept of one anchor and six virtual anchors assumed in six directions 

placed is considered to find out the exact position of all unknown nodes. In three-

dimensional environments, the structure is divided into different layers, normally 

three, and it is a cubic structure. Here the unknown nodes whose position is to be 

found are placed at the lower two layers, and the known nodes are kept at the topmost 

layer. The number of unknown nodes at each layer is kept to be forty. To find out the 

positions of the unknown nodes in three-dimensional environments, an umbrella 

projection is created. Deployment of more than six virtual anchors is also practically 

possible, but in 3D settings, just six virtual anchors are retained to find unknown 

nodes by picking only the four closest anchors. Table 4.1 lists the parameters needed 

by several meta-heuristic optimization techniques.   
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Table 4.1: Parameter settings 

Algorithm  Parameters 

PSO  
NP=30; D=3; Gmax=100;  , , =1.494; w=0.729 

HPSO  
NP=30; D=3; Gmax=100; , , =1.494; ɳ=0.1; w=0.729 

BBO  
NP=30; D=3; Gmax=100;  =0.05 

FA 

GWO 

APPA 

TSNMRA 

  NP=30;D=3; Gmax=100;  

NP=20;D=3; Gmax=100; a  

NP=30;D=3; Gmax=100;  

NP=30;D=2; Gmax=50;  

Here, NP is number of population, D is dimension of problem, Gmax is number of 

iteration 

Where (c1), (c2) and (c3) are the cognitive, social and neighborhood learning 

parameters. Here w is the inertia weight and Pm is the probability of mutation. In FA 

x and  are randomizing and absorption coefficient. In mobility-based scenario, 

various optimization algorithms available in the literature are evaluated. Here the 

unknown nodes whose position is to be found out are placed at the lower two layers 

and the known nodes are kept at the top most layer. All the unknown nodes are 

moving while the anchor node is kept static. The average of the localization error 

given in Equation (4.8) is used to find out the fitness function. Figures 4.8, 4.9, 4.10, 

4.11, 4.12 and 4.13 represent the output obtained by various optimized algorithms. 

The line of sight disadvantage is also reduced a lot with the help of assuming various 

nodes at different angles. It has been proved with the help of the results that using 

APPA, accurate locations are being found as compared to other algorithms and 

convergence characteristics are also faster. In future, with the help of hybridization of 

few optimized algorithms more accuracy could be achieved.  
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    The average localization error for all competitive algorithms is computed in Table 

4.2 and shown in Figure 4.14. When compared to other competitive algorithms tested 

for the same situation, APPA has a much faster convergence time. 

 

Figure 4.8: Representation of node movement through BBO 

 

Figure 4.9: Representation of node movement through PSO 
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Figure 4.10: Representation of node movement through FA 

 

Figure 4.11: Representation of node movement through HPSO 
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Figure 4.12: Representation of node movement through GWO 

 

Figure 4.13: Representation of node movement through APPA 
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The localization optimization using algorithms viz. PSO, HPSO, BBO, GWO, and FA 

are already available in the literature with static scenarios. In this paper, these 

algorithms are also implemented with the proposed technique of having a single 

anchor node with umbrella-based projection. Further, these algorithms are compared 

with the APPA algorithm, given in Table 4.2.     

 

Figure 4.14: Comparison of average localization error for all the six algorithms 

The performances of all algorithms have been compared with the proposed scheme in 

dynamic scenarios. It has been analyzed from the results given in Table 4.2 that the 

Average Localization error is coming out to be the minimum for all the various 

movements when we are using APPA Algorithm. This has basically been achieved 

due to the Exploitation and Exploration properties of APPA. Exploitation means 

searching near to optimum solutions and Exploration means coverage of search space. 

Similarly, Table 4.3 signifies the error values for localizing 21 nodes by all the 

approaches, including the proposed one.   
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Table 4.2: Comparison of meta-heuristic algorithms 

 

Algorithms Movements 

Number 

Max 

Localization 

error  

Min 

Localization 

error  

Average 

error 

Number of 

located 

targets 

PSO 1 3.9358 0.0554 0.9958 80 

 2 5.3379 0.0831 0.9839 80 

 3 5.0108 0.0800 0.9267 80 

 4 

5 

5.1655 

5.1325 

0.0367 

0.0812 

0.9757 

0.9612 

80 

80 

HPSO 1 3.1204 0.1044 0.6742 80 

 2 5.0134 0.0647 0.4876 80 

 3 4.8279 0.0976 0.4032 80 

 4 

5 

5.2376 

5.2134 

0.0230 

0.0316 

0.5546 

0.5324 

80 

80 

BBO 1 5.8904 0.1822 1.1892 80 

 2 5.3500 0.3318 1.2560 80 

 3 5.5989 0.1822 1.1585 80 

 4 

5 

5.6348 

5.9014 

0.1528 

0.1911 

1.2818 

1.1916 

80 

80 

GWO 1 3.1101 0.0944 0.6442 80 

 2 4.9834 0.0547 0.4776 80 

 3 4.8134 0.0876 0.3932 80 

 

 

FA 

 

 

 

 

 

APPA 

 

 

 

4 

5 

1 

2 

3 

4 

5 

1 

2 

3 

4 

5 

4.7976 

4.9776 

6.1101 

6.3120 

6.6990 

6.8912 

6.9036 

3.1101 

4.3983 

4.8032 

4.7679 

4.3108 

0.0430 

0.0513 

0.1922 

0.3412 

0.1923 

0.1627 

0.2010 

0.0964 

0.0437 

0.0721 

0.0412 

0.0403 

0.4946 

0.4713 

2.2234 

2.3124 

2.4651 

2.5123 

2.2013 

0.6415 

0.4732 

0.3841 

0.4471 

0. 4312 

80 

80 

80 

80 

80 

80 

80 

80 

80 

80 

80 

80 
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4.5  TUNICATE SWARM ALGORITHM NAKED MOLE-RAT ALGORITHM 

The TSNMRA takes the fundamental framework of NMRA and adds all of TSA's 

mathematical equations to the worker phase, keeping the breeder phase untouched. 

Here, breeder phase is meant for exploitation and the worker phase is for exploration, 

combining the two algorithms in their respective phases should result in a hybrid 

TSNMRA with proper exploration and exploitation. For localization, the proposed 

approach uses just one anchor node; the complicated hardware required to obtain the 

distance between both the anchor and target nodes is not necessary. Merely RSS data 

is enough to locate the location of the target nodes. The direction from which the 

distances between two nodes, one known and the other unknown, may be predicted is 

given by this information.  

TSA and NMRA lower the localization error by optimizing their edge weights. 

Because just a single node has been employed for localization and the rest of the 

nodes are virtual, the suggested technique is anticipated to save energy. 

    Table 4.4 presents various optimization techniques used to localize the moving 

target nodes in the sensing field like PSO, HPSO, BBO, GWO, FA, APPA and 

TSNMRA for five movements corresponding to average localization error. 

Table 4.3: Comparison of proposed algorithm based on localization error with 

existing optimization techniques 

Algorithms Movements 

Number 

Max 

Localization 

error(m) 

Min 

Localization 

error(m) 

Average 

error(m) 

Number 

of 

located 

targets 

PSO 1 3.9358 0.0554 0.9958 80 

2 5.3379 0.0831 0.9839 80 

3 5.0108 0.08 0.9267 80 

4 5.1655 0.0367 0.9757 80 

5 5.1325 0.0812 0.9612 80 

HPSO 1 3.1204 0.1044 0.6742 80 

2 5.0134 0.0647 0.4876 80 

3 4.8279 0.0976 0.4032 80 

4 5.2376 0.023 0.5546 80 
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5 5.2134 0.0316 0.5324 80 

BBO 1 5.8904 0.1822 1.1892 80 

2 5.35 0.3318 1.256 80 

3 5.5989 0.1822 1.1585 80 

4 5.6348 0.1528 1.2818 80 

5 5.9014 0.1911 1.1916 80 

GWO 1 3.1101 0.0944 0.6442 80 

2 4.9834 0.0547 0.4776 80 

3 4.8134 0.0876 0.3932 80 

4 4.7976 0.043 0.4946 80 

5 4.9776 0.0513 0.4713 80 

FA 1 6.1101 0.1922 2.2234 80 

2 6.312 0.3412 2.3124 80 

3 6.699 0.1923 2.4651 80 

4 6.8912 0.1627 2.5123 80 

5 6.9036 0.201 2.2013 80 

APPA 1 3.1101 0.0964 0.6415 80 

2 4.3983 0.0437 0.4732 80 

3 4.8032 0.0721 0.3841 80 

4 4.7679 0.0412 0.4471 80 

5 4.3108 0.0403 0. 4312 80 

TSNMRA 1 2.9902 0.0754 0.5516 80 

2 4.2552 0.0395 0.4328 80 

3 4.2005 0.0698 0.3526 80 

4 4.2548 0.0386 0.4032 80 

5 4.1108 0.0375 0.412 80 

 

The representation of the five movements pertaining to average localization error 

corresponding to optimization methods namely PSO, HPSO, BBO, GWO, FA, APPA 

and TSNMRA has been depicted 4.15 to 4.19.  

 It has been inferred from the figure 4.14 that FA is having the highest localization 

error corresponding to movement 1 in contrast to other approaches. Also TSNMRA is 

9 % more effective than APPA and APPA is almost working in a similar manner like 

the GWO. 
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Figure 4.15: Localization error based comparison under first movement for 3D range 

based localization 

 

Figure 4.16: Localization error based comparison under second movement for 3D 

range based localization 
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Figure 4.17: Localization error based comparison under third movement for 3D range 

based localization 

Similar kinds of results are being inferred from the other results under various 

movements as depicted in figure 4.16 to 4.19. Here TSNMRA and APPA perform 

almost in the similar fashion 

 

Figure 4.18: Localization error based comparison under fourth movement for 3D 

range based localization 
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Figure 4.19: Localization error based comparison under fifth movement for 3D range 

based localization 

From above all the results depicting the node five movements it is being clearly 

inferred that localization error of TSNMRA is minimal one for all the node 

movements corresponding to all other counter approaches. Similarly APPA 

outperforms other techniques such as PSO, HPSO, BBO, GWO and FA and thus is 

efficient one. 

4.6 CONCLUSION AND FUTURE SCOPE 

The single anchor node method has been used to obtain 3D positions of unknown 

nodes with a range-based technique using a meta-heuristic algorithm called APPA in 

this chapter. The idea of an anchor and virtual anchor node forms an umbrella 

projection for finding all unknown nodes. When the mobile nodes come in the 

projection of the known node, then with the help of anchor as well as virtual anchors, 

the position of unknown nodes is found. A variety of applications exists where sensor 

node location is critical, including logistics, underwater scenarios, and localization of 

occurring events in remote and hilly regions. The performance of the APPA algorithm 

in order to find out the exact location of the nodes is found to be a lot better than its 

competitive algorithms. It has been proved with the help of the results that using 



90 

APPA, accurate locations are being found as compared to other algorithms, and 

convergence characteristics are also faster. In the future, with the help of the 

hybridization of a few optimized algorithms, more accuracy could be achieved. 
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CHAPTER -5 

LOCALIZING MOBILE NODES IN RANGE FREE 3D 

HOMOGENEOUS WSN USING METAHEURISTIC 

ALGORITHM 

 

The TSNMRA approach targeting anisotropic WSNs has been suggested in this 

chapter as a range-free 3D node localization method using TSA and NMRA 

algorithms. For localization, the proposed approach uses just one anchor node; the 

complicated hardware required to obtain the distance between both the anchor and 

target nodes is not necessary. Merely RSS data is enough to locate the location of the 

target nodes. The direction from which the distances between two nodes, one known 

and the other unknown, may be predicted is given by this information. Additionally, 

the weights of the edges among each target node and its neighbors are employed, and 

these weights are represented using the Fuzzy Logic System (FLS). TSA and NMRA 

lower the localization error by optimizing their edge weights. Because just a single 

node has been employed for localization and the rest of the nodes are virtual, the 

suggested technique is anticipated to save energy. 

 

5.1 FUZZY LOGIC SYSTEMS 

Real estimates of variables in fuzzy logic could be any number between 0 and 1, 

which is multiple-valued reasoning. In 1965, Lotfi Zadeh proposed fuzzy set theory 

and coined the phrase "fuzzy logic." To cope with the notion of half-truth, where 

actual worth may exist somewhere between the two extremes of truth and lies, Fuzzy 

logic has been and is still being used by many academics in fields ranging from theory 

to AI. The resilience of a system may be improved by using fuzzy logic. The basic 

structure of fuzzy logic is made up of the exponential function of the input, the 

fuzzifier, the inference engine, the defuzzification, and the output scale parameter, as 

shown in figure 5.1.  
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Figure 5.1: Working of the FLS through the components 

 Input/Output Scaling Factor: A nonlinear matching of the input data set to 

the scalar output data is the simplest definition. The input scaling factor in 

FLS is used for transformation between crisp input data and the universe of 

discourses of the fuzzy input variables, and the output scaling factor is used to 

tune the output gain of the FLS. 

 Fuzzifier: At this point, the clear input data is mixed. Using a collection of 

fuzzy linguistic parameters, linguistic concepts, and Fuzzy membership, this 

translation is carried out. 

 Inference Engine: Decision-making is the core function of the inference 

engine. The output of the inference engine is always fuzzy irrespective of its 

input, i.e., whatever is the input (fuzzy or crisp) of the inference engine, the 

output is always fuzzy. Rule base, database, decision-making unit, and 

fuzzification interface unit are the functional blocks of a fuzzy inference 

system. 

 Fuzzy Rules: This system uses a basic if-then rule with a criterion and a 

resolution to manage an output variable. 
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 Defuzzifier: A fuzzy dataset is defuzzified in this block. This defuzzification 

is done by using membership functions and crisp output is taken from this 

block. 

The structures of rule base can be given by Equation (5.1) 

Ri  :  if x1 is Ai1 and x2 is Ai2 and ..... xn is Ain then yi is Wi    (5.1) 

 

Here, Ri signifies ith rule and xj is the jth intake variable of FLS. yi  signifies the ith  

output  variable while n is the number of input variables; Aij represents the 

membership functions for the input while Wi signifies the functions for output. In this 

work, Mamdani implication, has been used for an input. 

 

5.2 HYBRID TSNMRA APPROACH 

Tunicate Swarm Algorithm (TSA) [188] and Naked Mole-Rat Algorithm (NMRA) 

[189] are two of the most recent advances in the field of swarm intelligence-based 

nature-inspired algorithms. Despite the fact that both TSA and NMRA are newer 

versions, they have been found to outperform other algorithms such as GWO, PSO, 

Gravitational Search Algorithm (GSA) [190], and others, as reported in the literature. 

The development of TSA is inspired by tunicates jet propulsion and swarming 

behavior when navigating and foraging, while the mating behavior of semi-arid mole 

rats is used to develop the NMRA. Both of these algorithms have one thing in 

common: they tackle the problem by using basic foraging patterns and interactions 

between different species. Let's go over the fundamentals of each of these algorithms 

one by one before discussing the hybrid approach. 

  TSA is based on the ability of tunicates to find the best food resources (optimal 

answer) in the water. However, the tunicate behaviors of jet propulsion and SI are 

utilized to choose the optimal source of food, i.e., the global optimum, in the defined 

search area. Tunicates must avoid conflicts among search agents, migrate toward the 

top search agent's location, and remain close to the best one in order to represent jet 

propulsion behavior. Search agent's placements will be regularly updated by SI  

activity, which is designed to identify the best possible answer. These two behaviors 
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collectively estimate the algorithm's exploration and exploitation capabilities and 

found that parameters used for avoidance of conflicts among search candidates are 

varied for a better exploration phase. So, from the original TSA, it may be observed 

that the algorithm is potentially useful for exploratory operations, but much work 

needs to be done to improve its exploitation properties. 

     NMRA method is another contribution to the swarm intelligence-based algorithm 

and has been proven to produce more trustworthy and more efficient outcomes in 

comparison with other potential algorithms given in the literature. To provide a 

feasible solution to the problem under discussion, the algorithm employs the 

principles of worker and breeder naked mole-rats mating habits with the queen. Here, 

simpler concepts are used, and the likelihood of a breeder transitioning to a worker 

phase, and vice versa, is very high. It's critical that a potential male who will mate 

with the queen be present while moving breeders to workers or workers to breeders. 

This continual search for the best rat and hence a viable solution aids the NMRA in 

running a more efficient exploitation operation. The worker phase has a lot to give, 

and the global solution of the problem under test is found using two randomly picked 

solutions from the search space. The search space is governed by a simple scaling 

factor in this case, resulting in the algorithm becoming stuck in some optima or a bad 

exploration operation in general.  Naked mole rats have bloody skirmishes called as 

mole rat wars which normally breaks whenever any intruder is inspected in the 

colony. Aside from that, the NMRA is quite easy to build and has excellent 

convergence features. However, the algorithm is likely to become trapped in some 

local optima as a result of the inadequate exploration operation. 

      From the foregoing description of TSA and NMRA, it is clear that both algorithms 

are efficient but have inherent flaws in terms of TSA's exploitation and NMRA's 

exploration. Thus, these algorithms exhibit premature convergence, which results in a 

stagnation of locally optimal solutions. As a result, we can conclude that 

improvements are required to increase the performance of these algorithms and 

proposed hybrid TSNMRA which is based on the exploration features of TSA and 

exploitation patterns of NMRA. Self-adaptive qualities have also been added to 

TSNMRA, in addition to exploration and exploitation properties, to make it a viable 
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fit for addressing complicated real-world optimization issues. The TSNMRA takes the 

fundamental framework of NMRA and adds all of TSA's mathematical equations to 

the worker phase, keeping the breeder phase untouched. Here, breeder phase is meant 

for exploitation and the worker phase is for exploration, combining the two 

algorithms in their respective phases should result in a hybrid TSNMRA with proper 

exploration and exploitation. Aside from the TSA/NMRA fusion, adaption of 

NMRA’s mating factor  is done with simulated annealing  mutation operato 

so that algorithm's parameter become self-adaptive. The inclusion of self-adaptive 

features makes the algorithm self-sufficient, requiring no user-based adjustment for 

evaluation of the problem under discussion. The hybrid TSNMRA broadly classified 

among 3 stages (Initialization, Worker and Breeder) and discussed as:  

Initialization phase: The first phase of TSNMRA begins with initialization of mole-

rats’ population (P) randomly within a specified search range, and implemented by 

equation as: 

    (5.2) 

where ,  defines the new rat solution 

generated for yth dimension,  and  corresponds to search space lower and 

upper boundary respectively. The parameter ( ) reflects the problem’s dimension 

taken into consideration. 

Worker phase:  During the worker phase, two randomly selected solutions from the 

search pool contribute significantly to discovering a solution close to the optimal 

solution in classical NMRA. It is taken as the exploration phase of the algorithm and 

found that less efficient, so the additional effort is needed to enhance its functioning 

properties. Thus, NMRA's worker phase working capability is improved by adding 

the characteristics of TSA. 

About half of the iteration were indeed a success, mathematical equations of TSA’s 

jet propulsion and swarm behaviour are incorporated to NMRA’s worker phase. The 

jet propulsion behaviour is implemented by taking the three conditions under 

evaluation such as conflicts avoidance between search candidates, approaching of 
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search candidate towards best position and preserves its position near to best 

candidate. The vector  is used for avoiding conflicts among search agents and is 

given as: 

                                     (5.3) 

                                                          (5.4) 

                            (5.5) 

where  signifies gravity force,  signifies water flow in sea, 3 parameters 

 are allocated in random fashion between 0 and 1,  concerns with forces 

between search candidates and incurred as: 

                           (5.6) 

where  and  signifies search candidates speed of interaction and its value is 

considered as 4 and 1 respectively. 

After avoiding conflicts, tunicates begin to move towards the best candidate’s 

position, which is computed as follows: 

                                                     (5.7) 

where  corresponds to distance among food’s position and search agent,  is value of 

present iteration,  is divided in range [0,1] randomly,  presents food’s optimal 

location and  signifies search candidate’s position for present iteration. 

In the last condition of jet propulsion behaviour, search candidates must keep their 

location near the best search candidates (location of food) and be characterized as 

follows: 

                                                (5.8) 
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here  performs position updation of search agents with respect to location of food 

 . 

The second behaviour exhibits by tunicates are swarm intelligent and describe as: 

                                                            (5.9) 

here  and  treated as two best solutions and these solutions are kept for 

updating other candidate’s result in accordance with location of best candidate. 

For the second half of iterations, worker phase is implemented with general equation 

used in original NMRA and calculated as: 

                                              (5.10) 

where  defines worker’s solution for  iteration,  is newly 

generated solution,  represents rats’ mating behaviour,  are two 

results that are randomly chosen from pool of worker mole-rats. 

Breeder phase This phase of hybrid TSNMRA is considered as exploitation phase and 

performed by a limited number of breeders rats for mating with the queen (optimal 

global solution). The main reason for using exploitation in the global search phase is 

that it looks for a solution that is close to the current best solution and is predicted to 

produce a global solution near the end of iterations. The breeding phase for the hybrid 

TSNMRA is identical to that of classical NMRA, and no changes have been made to 

this phase. The equation for updating the breeder rat solution is as follows: 

                                        (5.11) 

where  represents the breeder rats' solution in the  iteration,  regulates the 

frequency of mating and   represents the new solution developed in the 
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next cycle. The breeding probability (bp) is used to update the fitness of these 

breeders in consideration with the beginning best solution . 

Apart from TSA and NMRA hybridization in TSNMRA, it also includes parameter 

adaptation of NMRA’s mating factor  with simulated annealing  mutation 

operator and mating component doesn't need a random or constant quantity to be 

assigned. The convergence speed of the optimization method is improved by the 

mutation operator, which is defined as:                

                                 (5.12) 

where ,  and  distributed randomly in the range [0,1] and  is fixed to 

0.95. 

A greedy selection strategy is used to narrow the field of potential candidates for 

TSNMA's final step of evaluation. There should be no need to keep a pre-computed 

answer if a freshly generated one has a superior fitness score than that of that earlier 

produced one. 

5.3 TSNMRA INTEGRATION WITH FLS 

Many present methods of localization rely on a perfect spectrum rather than taking 

Degree of Irregularity (DOI) into account at all. In reality, however, this is not 

achievable. Radio-irregularity is thus an important consideration when examining a 

pattern in the actual world. In wireless networks, it is impossible to ignore the issue of 

radio irregularity. Various radio anomalies are also taken into account in our 

methodology. The radio trend will become unpredictable as a result of the signal 

being sent with varying RF strengths and path losses. A Radio Irregularity Model 

(RIM) is taken into account to determine the propagation medium's anisotropic 

features [104]. A DOI parameter in figure 5.2 calculates the irregularity in the 

radiation pattern. 
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Figure 5.2: DOI representation for irregular radio patterns for different values 

5.3.1 Formulation of Problem 

Using anchor and target nodes in a three-layer framework, sensors may be located in a 

3D environment. Because it is movable, the anchor node changes location at various 

times. An anchor node's range encompasses the whole area, which is organized into 

grids. The whole area is believed to be covered by the motion of an anchor node. 

Most unknown nodes receive beacon details from an anchor node and use them to 

calculate their distance from the anchor node. Distance may be calculated using just 

the RSSI data collected as part of a range-free localization method. 

     In order to calculate the target node's position, a new idea of selecting virtually 

distributed anchors is added as soon as it arrives inside the scope of the anchor node. 

Each anchor node calculates the Euclidean distance for each move. To be deemed 

localizable, a target node must be closer to the anchor node's reach than the Euclidean 

distance. The antenna node is broadcast in tandem with six 'virtually assumed' 

anchors. To determine the distance between a target node and an anchor node using 

the range-free approach, all that is needed is RSS data. The route of a signal may alter 

throughout the process of acquiring RSS information owing to environmental 

obstructions. Path loss, lognormal fading, and Rayleigh fading are the most often 

utilized propagation methods in WSN. Over a shorter distance, the RSS signal 
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fluctuates. In our work, we take into account all environmental factors that might 

affect efficiency. 
 

5.3.2 TSNMRA with Fuzzy Logic Based Localization 

    All of the target nodes in a 3D sensing region are thought of as being located by a 

singular anchor node in this work. The two levels of the sensing field are randomly 

distributed with target nodes. This sensor field has a top-to-bottom structure with 

anchor and target nodes arranged in a random fashion. Nodes in the moving target 

network use the beacon signals sent by the anchor node to assist them in determining 

their location. The anchor node's RSS data may be calculated and collected by 

listening to the beacon for a certain amount of time once the target nodes are within 

its range. A moving target node's Euclidean distance from an anchor node is 

determined.  

   An umbrella projection is then used to locate the target node after computing the 

Euclidian distance, as seen in figure 5.3. Due to radio irregularity and diversity, the 

transmission distances are not similar in this work, and as a result, radio propagation 

is indeed not exactly spherical. Through GPS or any other method, the location of the 

anchor node may be determined. 

                     

                          Figure 5.3: Localization process based on 3D 
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3D dynamic node localization is carried out in the manner described below. 

1. The middle and bottom layers of the 3D sensing area have a random distribution of 

mobile target nodes (M), whereas the top layer has a single anchor node. 

2. Anchor and target nodes are separated by the RIM and heterogeneity properties by 

using equation 5.13. 

                                        diˆ  = di−(Dp+F )                                            (5.13) 

in which di signifies actual distance, Dp represents DOI adjusted path  loss and F 

signifies fading. 

3. Collect the IDs and positions of anchor and virtual anchor nodes and compute their 

RSS through equation 5.14 

                                                                      (5.14) 

Where RSSij signifies RSS among ith target and jth anchor node. In our scenario, the 

value of j is equal to 1. υ is the constant and α is the attenuation exponent and dij is the 

distance among ith target and jth anchor node. 

4. Check whether the count of adjacent anchor and virtual anchor node ≥ 4 

5. Moving target nodes are connected to their anchor and virtual anchors by edge 

weights. FLS was used to simulate these edge weights. 

6. TSA and NMRA are used to build the weights and fuzzy sets of the rule base, 

which are then used to construct an adequate and less repetitive rule base for precise 

target node positions. 

7. Determine the location of target nodes by utilizing the edge weights among each 

surrounding anchor and virtual anchor node by equation 5.15. 

  (5.15) 

 

5.3.3 Fuzzy Modelling Through Edge Weights 
 

Basically, RSS is the measured voltage by the receiver from the anchor node. The 

distance between the anchor and the destination node is given as an indication. FLS 

with Mamdani inference has been utilized in this work to simulate the connection 
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between the weight of an anchor node and its RSS in order to solve RSS uncertainty 

and nonlinearity among RSS and distance estimates. 

     The variable in Figure 5.4 shows how RSS is plotted into five parameters using S, 

triangular, and Z-type membership functions. Put either of these membership group 

values into the rule set to finish it off, i.e., Wi is either very low, low, medium, high, 

and very high. A degree of importance is applied to each rule, given by equation 

(5.16). Where µ(x) is the membership grade of the input and µ(y) is the membership 

grade of the output. Through Equation 5.16, redundant rules from the rules are 

eliminated. 

                                  Degree of importance = µ(x) × µ(y)                                  (5.16) 

 

 

Figure 5.4: Initial RSS fuzzy membership functions 

 

5.4 IMPLEMENTATION AND ANALYSIS  
 

In this chapter, the novel idea of 3D range free node localization has been proposed 

with umbrella-based projection. TSA and NMRA-based CI techniques are employed 

in range-free scenarios to get the 3D location information of target nodes termed 

TSNMRA. Hierarchical node heterogeneity and a very chaotic cubic architecture are 
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explored in this chapter. 3 D simulations have been carried out on a 10x 10x10m3 

area, and the anchor node is placed at [5 5 5], i.e., the top layer. Target nodes are 

placed on the second and third layers, which are moving in a random pattern at 

random intervals. Using umbrella projection, six virtual anchor nodes in the nearby 

region are projected, and three virtual anchor nodes (next to the anchor and moving 

target) are picked to identify the 3D location. The edge weights among nearby anchor 

nodes and each moving target node are also used. FLS was used to simulate these 

weights in the final product. The optimization of these edge weights is done by TSA 

and NMRA to reduce the localization error. The strategic settings for both techniques 

are given by Table 5.1. 

Table 5.1: Parameters taken for TSA and NMRA 

TSA NMRA 

Parameter Value Parameter Value 

Population size 20 Population size 20 

Maximum count of 

iterations  100 
Maximum count of 

iterations 100 

Inertia Weight (ω) 0.729 
Probability of 

Mutation of Particle 

Weight 

0.05 

Cognitive, Social 

and Neighborhood 

Learning Parameters 

1.429 
Maximum Rate of 

Emigration 
1 

Random Value Interval 
0 to 1 

Maximum 

Rate of Immigration 1 

Noise Variance 0.02 Noise Variance 0.02 

DOI 0.01 DOI 0.01 

 
 

The simulation is done for a single trial having 100 iterations. The simulation is done 

for single trial because there is a requirement of less convergence rate in dynamic 

scenarios. Figures 5.5 and 5.6 give the optimization results of the edge weights. 
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Spatial results of proposed localizing techniques using TSNMRA algorithm has given 

by figures 5.7. 

 

 

Figure 5.5: TSA optimized fuzzy membership edge weights 
 

 

Figure 5.6: NMRA optimized fuzzy membership edge weights 
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It is in this chapter that the suggested algorithm TSNMRA is evaluated to various 

meta-heuristics that have been established. Tables 5.2 show the simulation findings. It 

gives the results of the proposed algorithms for dynamic scenarios (mobile target 

nodes). Maximum Localization Error, Minimum Localization Error and Average 

Localization Error (ALE) are considered as performance indices of the proposed 

techniques.  
 

 
                                      Figure 5.7: TSNMRA based 3D node localization 
 

 

    Table 5.2: Comparative analysis of TSNMRA with other met heuristic approaches   
 

 

Algorithms Movements 

Number 

Max 

Localization 

error(m) 

Min 

Localization 

error(m) 

ALE(m) Number of 

located 

targets 

 

 

PSO 

1 3.9358 0.0554 0.9958 80 

2 5.3379 0.0831 0.9839 80 

3 5.0108 0.08 0.9267 80 

4 5.1655 0.0367 0.9757 80 

5 5.1325 0.0812 0.9612 80 

 1 3.1204 0.1044 0.6742 80 
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HPSO 

2 5.0134 0.0647 0.4876 80 

3 4.8279 0.0976 0.4032 80 

4 5.2376 0.023 0.5546 80 

5 5.2134 0.0316 0.5324 80 

 

 

BBO 

1 5.8904 0.1822 1.1892 80 

2 5.35 0.3318 1.256 80 

3 5.5989 0.1822 1.1585 80 

4 5.6348 0.1528 1.2818 80 

5 5.9014 0.1911 1.1916 80 

 

 

GWO 

1 3.1101 0.0944 0.6442 80 

2 4.9834 0.0547 0.4776 80 

3 4.8134 0.0876 0.3932 80 

4 4.7976 0.043 0.4946 80 

5 4.9776 0.0513 0.4713 80 

 

FA 

1 6.1101 0.1922 2.2234 80 

2 6.312 0.3412 2.3124 80 

3 6.699 0.1923 2.4651 80 

4 6.8912 0.1627 2.5123 80 

5 6.9036 0.201 2.2013 80 

 

 

APPA 

(Proposed) 

1 3.1101 0.0964 0.6415 80 

2 4.3983 0.0437 0.4732 80 

3 4.8032 0.0721 0.3841 80 

4 4.7679 0.0412 0.4471 80 

5 4.3108 0.0403 0. 4312 80 

 

TSNMRA 

(Proposed) 

1 2.9902 0.0754 0.5516 80 

2 4.2552 0.0395 0.4328 80 

3 4.2005 0.0698 0.3526 80 

4 4.2548 0.0386 0.4032 80 

5 4.1108 0.0375 0.412 80 
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Figure 5.8: Graphical comparison of TSNMRA with other metaheuristic approaches 

 

As indicated in Table 5.2, the algorithms we have developed are contrasted to those 

that exist already. In general, this table shows that the mobility-based algorithm 

described in our work surpasses the static methods despite the fact that mobile 

contexts have various hurdles. This is basically achieved due to the hybridization of 

TSA and NMRA which involves the Exploitation features of TSA and Exploration 

features of NMRA. 

  Table 5.3 gives the results of the proposed algorithms for dynamic scenarios (mobile 

target nodes). Here, ALE is considered as performance indices of the proposed 

technique and it is being compared with other techniques considering their range free 

nature.  
 

                    Table 5.3: ALE analysis for range free localization methods 

Algorithm Details  Average Localization 

 Error(m) 

Weighted Centroid 4.306 

RF-HPSO 3.268 

RF-BBO 3.17 

RF-BFO 2.898 

RF-IWO 2.767 
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RF-HPSO 0.869 

RF-BBO 0.917 

RF-APPA 0.904 

RF-TSNMRA 0.785 

   

Figure 5.8 represents the variation of ALE for the various range free approaches. It is 

being inferred that the RF-TSNMRA (Proposed) has the least value of ALE and thus 

it is effective in contrast to other methods. 

 

                     Figure 5.9: Analysis of ALE for range free approaches  

As given in Table 5.4, results of localization algorithms used for static scenarios, viz. 

weighted centroid, RF-HPSO, RF-BBO, RF-IWO, RF-APPA and RF-BFO are 

compared with proposed localization technique (RF-TSRMA) used for dynamic 

scenarios. 
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Table 5.4: Comparative analysis based on static and dynamic scenarios with 

minimum anchor   

 

Algorithm Static/Dy

namic 

Area (m3) Number 

of 

Anchors 

(In 

Percentag

e)  

correspon

ding to 

Target 

Nodes 

Maximum 

Localization 

 Error(m) 

Minimum 

Localization 

 Error(m) 

Average 

Localization 

 Error(m) 

Weighted 

Centroid 

Static 10 × 10 × 5 4% 7.601 1.011 4.306 

RF-HPSO Static 10 × 10 × 5 4% 5.811 0.726 3.268 

RF-BBO Static 10 × 10 × 5 4% 5.612 0.729 3.17 

RF-BFO Static 150 × 150 

× 150 

4% 5.118 0.679 2.898 

RF-IWO Static 150 × 150 

× 150 

4% 4.902 0.632 2.767 

RF-HPSO Dynamic 10 × 10 × 5 only 1 

(Single) 

2.063 0.131 0.869 

RF-BBO Dynamic 10 × 10 × 5 only 1 

(Single) 

2.126 0.219 0.917 

RF-APPA Dynamic 10 × 10 × 

10 

only 1 

(Single) 

2.005 0.204 0.904 

RF-

TSNMRA 

Dynamic 10 × 10 × 

10 

only 1 

(Single) 

1.985 0.19 0.785 

 

The results with the minimum number of anchor nodes for the static scenario using 

various CI techniques have been considered for comparison. The proposed range-free 

algorithm (RF-TSRMA) considers only a single anchor node has better localization 

accuracy on account of less  ALE, whereas localization error is very high while 

considering a minimum 4 % anchor node with respect to target nodes for other static 

scenarios. 

 

5.5 CONCLUSION AND FUTURE WORK 

In this chapter, a range-free fuzzy logic-based 3D dynamic node localization 

technique has been proposed using TSA and NMRA-based CI concepts for 
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anisotropic WSNs. Target and nearby anchor node distance information can be 

obtained using the proposed approaches with minimal hardware. The position of the 

moving target node can be estimated by RSS information only. As a result of this, 

edge weights are employed to describe weights among target nodes and their nearby 

anchor and virtual anchor nodes. The optimization of these edge weights is done by 

TSA and NMRA to reduce the localization error. According to the simulation results, 

the RF-TSNMRA approach has greater localization accuracy than other methods in 

the literature, such as the weighted centroid method and the RF-HPSO, RF-BBO, and 

RF-IWO. Because mobile circumstances provide a number of unique obstacles, the 

mobility-based algorithm described in our work outperforms static methods. Better 

localization accuracy may be achieved in the future using hybrid localization, a mix of 

range-based and range-free techniques utilizing the CI approach. 
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CHAPTER -6 

SUMMARY 

This chapter presents a concise outline of the research work done with key findings 

and significant contributions. A summary of the work in this thesis with its future 

scope describing the areas in which further advancement of the research work can be 

done is presented below. 

 

6.1 CONCLUSIONS 

Chapter 1 explores the basics of WSNs with their architecture and characteristics, 

which make them promising for a number of applications in real life. Further, it 

extends to the application areas and various research challenges in WSNs. This has 

been followed by the basics of the WSN localization process. It also covers the major 

classification of localization algorithms. Motivation, main objectives, and 

contributions in this thesis have been discussed. The chapter concludes with the 

organization and outlines of the remaining chapters. 

 

    Chapter 2 provided an extensive survey related to range-free and range-based 

localization techniques. The reviews of the various localization techniques for static 

and dynamic WSNs have been done. A lot of work has been reported in the literature 

based on target node localization and the usage of Meta heuristic concepts for 

accurate localization. The literature on WSN localization describes in-depth the 

numerous obstacles in identifying the sensor node. This chapter has shown some of 

these nature-inspired approaches and their application in different WSN scenarios. 

Furthermore, the parameters that are relevant for evaluating the localization 

algorithms are emphasized. 

  

In chapter 3, the DA Meta heuristic optimization localization technique for identifying 

locations of randomly arranged target nodes has been proposed. To begin, the anchor 

and the target node distance is calculated after the notion of VN’s is proposed, with 

VN’s being placed at certain angles in the field at a fixed distance between the anchor 

and the target node. Then centroid is computed, and DA is used to compute the 
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localization error. The proposed technique can be used in a variety of applications, 

including logistics and military. For 3D localization, DA can also be used to 

determine 3D coordinates efficiently. Similarly to the DA approach, one new method 

based on NN has been provided. This chapter presents the NNA meta-heuristic 

optimization localization technique. The computations of location have been 

performed using two components. After calculating the distance between AN and TN, 

the notion of VNs is offered, with VNs positioned in the field at certain angles and a 

set distance among both the nodes. Afterward, the centroid is determined, and the 

localization error is estimated using NNA. 

   

In chapter 4, a range-based strategy and a meta-heuristic algorithm known as APPA 

has been proposed. The 3D locations of unknown nodes are obtained using a single 

anchor node. The concept of an anchor and virtual anchor node provides a projection 

umbrella for locating all unknown nodes. When mobile nodes enter the projection of a 

known node, the location of unknown nodes is estimated using both physical and 

virtual anchors. Using the findings, it has been shown that APPA finds more precise 

locations than other algorithms and that convergence features are also quicker.   

 

In chapter 5, the TSNMRA approach targeting anisotropic WSNs has been suggested, 

which is a range-free 3D node localization method using TSA and NMRA algorithms. 

For localization, the proposed approach uses just one anchor node; the complicated 

hardware required to obtain the distance between both the anchor and target nodes is 

not necessary. Merely RSS data is enough to locate the location of the target nodes. 

Additionally, the weights of the edges among each target node and its neighbors are 

employed, and these weights are represented using the Fuzzy Logic System (FLS). 

TSA and NMRA lower the localization error by optimizing their edge weights. To 

reduce computational complexity, FLS has been used to simulate RSS and edge 

weight. The simulation results revealed that the RF-TSNMRA approach has greater 

localization accuracy than other methods in the literature, such as the weighted 

centroid method and the RF-HPSO, RF-BBO, and RF-IWO. Because mobile 

circumstances provide a number of unique obstacles, the mobility-based algorithm 

(TSNMRA) outperforms static methods. 
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6.2 LIMITATIONS AND FUTURE WORK 

Typically, a solution to a problem produces several difficulties that must be examined. 

This work does not deviate from this fundamental rule. In both instances, the 

performance of the suggested strategies for WSN localization is superior (range-based 

and range-free). There is, however, always room for development in every effort. The 

following are the future study directions pertinent to this thesis: 

 

 The analysis and the implementation of range free localization algorithms in 

other deployment models apart from the regular model is being required.  

 

 Nature inspired schemes has been utilized for range based & range free 2D/3D 

dynamic node localization. Some hybridization of these nature inspired 

algorithms may be a better solution to minimize the localization error. 

 

 Security of the localization process in terms of the authenticity of the nodes 

involve in the process under the presence of various attacks can be done in 

future research. 

 

 The real time implementation of the proposed approaches either using the test 

beds or deploying them in some scenarios likes habitat monitoring and defense 

side can be looked upon. 

 

 The strategical parameters for all Algorithms were not that strict. These could 

be modified. 

 

 A lot of work can be done on Energy Conservation, which was slightly 

challenging aspect in this research.  
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