
1 
 

DETECTION AND CLASSIFICATION OF WATER,  

NUTRIENT AND DISEASE STRESS IN WHEAT AND MAIZE 

USING PROXIMAL AND REMOTE SENSING 
           

 

Thesis Submitted for the Award of the Degree of 

   

 

DOCTOR OF PHILOSOPHY 
 

 

in  

Geospatial Information Science and Technology 
 

 

By 

Harpinder Singh 
 
 

 
Registration Number:41800522 

 

 

Supervised By Co-Supervised by 

Dr. Ajay Roy (22652) 

Department of Electronics and Electrical 

Engineering (Professor) 

Lovely Professional University 

 

Dr. Brijendra Pateriya, Dr. R.K. Setia 

Punjab Remote Sensing Centre (Director, 

Scientist) 

Punjab Remote Sensing Centre 

 

 

LOVELY PROFESSIONAL UNIVERSITY, PUNJAB 

2022 



 

I hereby declared that the presented work in the thesis entitled “Detection and 

Classification of Water, Nutrient and Disease Stress in Wheat and Maize using 

Proximal and Remote Sensing” in 

Philosophy (Ph.D.) is an 

supervision of  Dr. Ajay Roy

and Electrical Engineering

research work was co-supervised by Dr. Brijendra Pateriya (Director) and Dr. R.K. 

Setia (Scientist) from Punjab Remote Sensing Centre, Ludhiana, Punjab. 

keeping with the general practice of reporting scientific observations, due 

acknowledgements have been made whenever work described here has been based 

on findings of other investigator

to any other University or Institute for the award of any degree.

 

 

(Signature of Scholar)  

Name of the scholar: Harpinder Singh

Registration No.: 41800522

Department/School: School of Electronics and Electrical Engineering

Lovely Professional University, 

Punjab, India 

 

i 

DECLARATION 

I hereby declared that the presented work in the thesis entitled “Detection and 

Classification of Water, Nutrient and Disease Stress in Wheat and Maize using 

Proximal and Remote Sensing” in fulfillment of the degree of Doctor of 

an outcome of research work carried out by me under the 

Dr. Ajay Roy, working as a Professor, in the School of Electronics 

and Electrical Engineering of Lovely Professional University, Punjab, India

supervised by Dr. Brijendra Pateriya (Director) and Dr. R.K. 

Setia (Scientist) from Punjab Remote Sensing Centre, Ludhiana, Punjab. 

general practice of reporting scientific observations, due 

ave been made whenever work described here has been based 

on findings of other investigators. This work has not been submitted in part or full 

to any other University or Institute for the award of any degree. 

Harpinder Singh 

41800522  

School of Electronics and Electrical Engineering 

Lovely Professional University,  

 

I hereby declared that the presented work in the thesis entitled “Detection and 

Classification of Water, Nutrient and Disease Stress in Wheat and Maize using 

degree of Doctor of 

outcome of research work carried out by me under the 

School of Electronics 

of Lovely Professional University, Punjab, India. The 

supervised by Dr. Brijendra Pateriya (Director) and Dr. R.K. 

Setia (Scientist) from Punjab Remote Sensing Centre, Ludhiana, Punjab. In 

general practice of reporting scientific observations, due 

ave been made whenever work described here has been based 

. This work has not been submitted in part or full 

 



ii 
 

  



iii 
 

ABSTRACT 

Losses in agricultural fields are becoming a serious challenge to food security. Both 

biotic and abiotic stress conditions cause field losses. Since the effect of stress on crop 

growth is usually only noticed after it becomes visible, monitoring agricultural crop 

conditions throughout the growing season aids in accurate and timely estimation of 

yield losses. Regular and continuous field-scale crop condition monitoring (proximal 

sensing) is time-consuming, labour-intensive, and location-specific. For crop status 

monitoring, satellite remote sensing could be a viable alternative to field sampling. 

This study will attempt to identify the biotic and abiotic stress signatures from the 

vegetation in the Punjab region and further relate it to the multispectral satellite 

imagery, which is freely available. MODIS Enhanced Vegetation Index (EVI) was 

analyzed in Google Earth Engine to monitor the crop conditions in Punjab. Crop 

stress related to biotic and abiotic variables was identified in this study. The 

separation of abiotic and biotic stress is required for the site-specific management of 

crops. In order to discriminate the abiotic factors (like nutrients and water), a field 

experiment with a maize-wheat cropping system under various water and nutrient 

levels was carried out at Punjab Agricultural University, Ludhiana. The reflectance 

spectra of maize and wheat were collected at regular intervals using 

Spectroradiometer (wavelength interval between 400 - 2500 nm) on clear and 

cloudless days. The leaf samples were collected and analyzed for water content, 

chlorophyll, nitrogen (N), phosphorus (P) and potassium (K) using standard methods. 

The measured plant parameters were related to spectra hyperspectral data using 

machine learning and explainable artificial intelligence techniques to identify the 

optimum wavelengths for nutrient and water stress in maize and wheat. The selection 

of optimum wavelengths from field experiments under Indian conditions may not 

apply to other climatic and soil conditions. So similar studies were conducted on 

secondary datasets of Israel and the U.S.A. The wavelengths identified from 

hyperspectral data in abiotic stresses were compared with freely available 

multispectral satellite imagery (Sentinel-2 MSI, Landsat-8 OLI and Landsat-7 ETM+) 

for remote monitoring of stresses in crops. These studies identified the optimum 

spectral wavelengths for abiotic stresses in crops, but the spectral behaviour of biotic 

and abiotic stresses is quite different. In order to study the biotic stress in crops, 
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yellow rust of wheat (a major disease) was classified in the parts of Punjab from 

Sentinel-2 satellite imagery using deep learning artificial neural network. 
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Chapter 1   

Introduction           

 

1.1: Background and Introduction: 

The science and art of obtaining information about an object, area, or phenomenon 

without coming into physical touch with the object, area, or phenomenon under 

enquiry is referred to as remote sensing [1].  In remote sensing, information is 

transferred without direct contact through electromagnetic radiations (EMR). The 

EMR, which is reflected or emitted from an object, is the usual remote sensing data 

source. Only a part of the electromagnetic radiation in the wavelength range 0.4–

0.7µm is sensed by the human eye. Other reflecting and radiating (e.g. thermal) 

energy band-length ranges that reach or are emitted by Earth's surface, and even parts 

of Earth's atmosphere reflect, such as the EM reflective properties of clouds, can be 

detected using remote sensing technologies. 

Remote sensing is the measuring of the object's attributes on the Earth's surface using 

data collected from electromagnetic energy sensors operated from proximal and 

spaceborne platforms. Remote sensing sensors operate from proximal, air and 

spaceborne platforms. These sensors collect data on how various earth surface 

features emit and reflect electromagnetic radiation (EMR), which is then analyzed to 

provide information about the resources being studied.  

Data collection and processing are the two primary procedures involved in 

electromagnetic remote sensing of Earth's resources.  

The various elements of the data collection process are: 

1. Energy Sources (e.g. Sun, Radar etc.) 

2. Energy transmission through the atmosphere. 

3. Interaction of energy with earth's surface features. 

4. Retransmission of the energy through the atmosphere. 

5. Proximal/Spaceborne/ Airborne Sensor acquires this energy. 

6. Generation of sensor data in the form of tables or images.  

The various elements of the data processing module are: 
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1. The generated data, if in pictorial form, is examined using various 

interpretation and viewing devices and if in digital form, it is analyzed and 

interpreted using various specialized software. Reference data (rainfall, soil 

type, groundwater quality, administrative boundary, crop acreage statistics 

etc.) about the area under study are used if available to assist in the analysis. 

The analyst extracts information about the type, extent, condition and location 

of the resources over which the sensor data was collected. 

2. This data is compiled in DBMS/file-based systems as spatial layers, which can 

be used in a geographic information system (GIS) or printed as hardcopy 

maps. 

3. Users are provided with the information which they use in their decision-

making process.  

Remote Sensing Technology has proven capability for a quick and efficient 

survey and monitoring of natural resources like land, water, crops, soil, forests etc. 

Such information is vital for efficient and optimum utilization of these resources to 

meet an ever-increasing population's food, fuel, and fibre requirements. 

 Natural radiations that are either released or reflected from the Earth are 

detected by passive sensors. Active sensors illuminate the Earth's surface with 

electromagnetic radiation of a given wavelength or band of wavelengths. The primary 

parameters of a sensing system that can be utilized as indicators of data quality and 

have an impact on optimal data utilization for a certain end-use are listed below. [2]: 

1. The sensor's capacity to distinguish the tiniest thing on the ground is spatial 

resolution. 

2. The spectral bandwidth with which the data is obtained is spectral resolution. 

3. Radiometric resolution refers to a sensor's capacity to distinguish between two 

objects based on their reflective/emittance differences; it is evaluated in the 

smallest reflective/emittance that may be detected. 

4. The ability to examine the same target at regular intervals under the same 

conditions is termed temporal resolution. 

 Satellites, planes, and unmanned aerial vehicles are used in remote sensing to 

assist map the Earth's surface (UAV). On the other hand, Proximal sensing devices 

acquire detailed information near the object's surface being studied. These sensing 
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approaches have a considerable advantage over prior data sources since they allow for 

low-cost, repeatable wide-area coverage and non-destructive calculations. These 

sensors can collect a lot of information, which can help farmers and agricultural 

policymakers make better decisions. Remote and proximal sensing systems can 

provide a wealth of data for agricultural applications, with the primary goal of 

mapping, monitoring, and modelling agricultural resources and their environmental 

implications. 

 Losses in agricultural fields are becoming a serious challenge to food security. 

Both biotic and abiotic stress conditions cause field losses. Living species, such as 

bacteria, viruses, fungi, parasites, beneficial and harmful insects, weeds, and 

cultivated or native plants, can cause biotic stress in crops. On the other hand, abiotic 

stress is the negative influence of non-living forces on living organisms in a particular 

habitat. Abiotic stresses such as water (drought, flooding), fertility (nutrient 

deficiency), temperature (high/low), salinity, radiation (UV, ionizing radiation), and 

chemicals have a substantial impact on agricultural performance.  

Since the effect of stress on crop growth is usually only noticed after it 

becomes visible, monitoring agricultural crop conditions throughout the growing 

season aids in accurate and timely estimation of yield losses. Stress-related losses are 

critical in nations where agriculture is the primary source of income. 

Continuous crop condition evaluation on a field scale is time-consuming, 

labour-intensive, and location-specific. For crop status monitoring, satellite remote 

sensing could be a viable alternative to field sampling. It can also provide continuous 

coverage of a vast area. Hyperspectral proximal field spectroradiometer data has a 

higher spectral resolution than satellite-based multi and hyperspectral data, allowing 

for more precise detection of spectral changes related to crop condition changes. 

The number of bands and the wavelength width of each band are referred to as 

the data's spectral resolution. A band is a section of the electromagnetic spectrum that 

is very narrow. Higher spectral resolution data can distinguish shorter wavelength 

widths. Multispectral data (many popular satellite imagery datasets) may detect many 

broad wavelength bands, such as visible green and near-infrared. In comparison to 

multispectral imagery, hyperspectral data detects energy in narrower and more 
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numerous bands. Hyperspectral data has narrow bands that are more sensitive to 

fluctuations in energy wavelengths and hence have a greater ability to identify crop 

stress than multispectral data. 

The difference between a multispectral and hyperspectral dataset can be seen 

in Figure 1.1. 

Microwave  Infrared  Visible  Ultraviolet X-ray 

 

   

 

 

Multispectral Example: 5 wide bands (Image not drawn to scale) 

Microwave  Infrared  Visible  Ultraviolet X-ray 

 

 

 

 

Hyperspectral Example: Imagine hundreds of narrow bands  

Fig 1.1 Multispectral v/s Hyperspectral data 

Currently, satellite and airborne hyperspectral data are not readily available 

compared to multispectral satellite data. Limited multispectral data is also freely 

available for research studies by a few space agencies, like the Landsat and Sentinel 

satellite data from NASA (National Aeronautics and Space Administration) and ESA 

(European Space Agency), respectively. This study will attempt to identify the biotic 

and abiotic stress signatures from the vegetation in the Punjab region and further 

relate it to the multispectral satellite imagery, which is freely available. This work will 

help the researchers identify biotic and abiotic plant stress over large areas with less 

cost, time, and effort. 

 

 

5Band 4 1 2 3
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1.2 Literature Review 

The literature review has been categorized into four parts. The first part introduces the 

biotic and abiotic stress in plants and how proximal and remote sensing can be helpful 

in identifying it. The second part provides various studies which have used thermal, 

fluorescence and reflectance proximal/remote sensing techniques to identify stress in 

plants. The maximum studies reviewed are in this section. The third part describes the 

Artificial Intelligence (AI) algorithms and their use in crop stress identification. 

Finally, the last section reviews studies in which multispectral satellite imagery has 

been simulated using spectroradiometer data or various other models. 

 

1.2.1 Introduction to Biotic and Abiotic Stress and the role of proximal and remote 

sensing 

 Agricultural field losses are becoming a significant threat to food security. 

Biotic and abiotic stress factors are major causes of crop losses. While the abiotic 

stress may be due to adverse climatic conditions, salinity and insufficient nutrients or 

water, the biotic stress is caused by plant diseases and damage due to insects. Various 

physiological and anatomical changes occur in the plant due to these stress factors. 

The colour of the leaf changes, leaves may droop or curl, and the plant material may 

be ingested or detached also. Visual surveys and crop inspections are the most popular 

methods to detect stress. Although these methods are very accurate, they incur time, 

costs and human resources. Sensing of the reflected and emitted radiation by the 

stressed crops can be done by remote and proximal sensing techniques. These 

approaches are capable of sensing that radiation, allowing for quantitative assessment 

of plant stress induced by biotic and abiotic causes [3]. These stress factors are 

accountable for the significant decline in crop yield. Yield decline is critical for 

countries that are primarily dependent on agriculture.  

 The effect of stress on the crop is usually identified only when it is noticeable 

and visible. Hence, continuous monitoring of plant/crop conditions using proximal 

and remote sensing technologies can assist in the early diagnosis of the problem. Then 

timely measures can be applied to curb it. 

 Proximal sensing techniques involve time and human resources to identify 

stress in crops. The process is also very intricate and location-specific. On the other 
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hand, remote sensing provides continuous coverage over a larger area[4] 

. Proximal sensing systems provide better quality (spatial, spectral and 

radiometric resolution) data than remote sensing. Proximal sensor data have the upper 

hand primarily due to less interference of gases, air particles and water vapour in the 

atmosphere[5], [6]. Examples of various instruments used in the proximal techniques 

are the field spectroradiometer, camera, thermometer, SPAD etc. 

In contrast, the remote sensing instruments are various sensors (optical and 

non-optical) onboard a satellite, aeroplane or unmanned aerial vehicle (UAV). These 

sensors sense the electromagnetic waves in the visible, infrared, and microwave 

regions. Crop cover, crop health, soil moisture, nutrient stress, and crop yield have all 

been successfully monitored using visible red, green, and blue bands, as well as the 

red-edge and near-infrared (NIR) regions of the electromagnetic spectrum. According 

to the literature review, the spectral bands used to identify crop stress are green, red, 

red edge and NIR. 

  

 

 

 

 

 

 

 

 

 

 

 

Fig 1.2 Typical spectral reflectance curves of selected surfaces 

Figure 1.2 shows the typical spectral reflectance curves of vegetation and soil across 

various spectral bands. The difference between the dry and healthy vegetation 

reflectance curves can be seen in the figure above.  

 Proximal sensors usually output hyperspectral data, while remote sensors 

output both multi and hyperspectral datasets. A multispectral sensor senses the 
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electromagnetic energy in a few broad bands; on the other hand, the hyperspectral 

sensor data comprises numerous narrow bands. Narrow bands of the hyperspectral 

dataset are extremely sensitive and insightful to even small changes in the energy 

wavelengths. As a result, hyperspectral has a vast possibility for analyzing crop stress 

compared to the multispectral datasets. [7] and [8] reviewed the use of hyperspectral 

remote sensing for agriculture and vegetation studies. They have explained the 

important modelling and classification algorithms used to estimate and predict crop 

type using biophysical factors. [9] reviewed a range of hyperspectral crop data 

analysis techniques. The hyperspectral dataset is huge and intricate; therefore, its 

analysis techniques are also different from multispectral data.  

 

1.2.2 Thermal, Fluorescence and reflectance proximal/remote sensing techniques 

Crop stress is detected using the following proximal and remote sensing techniques: 

reflectance, thermal and fluorescence. This study will focus more on reflectance 

techniques. 

Thermal sensors measure the temperature of the objects under study. These 

sensors are generally used to study water-related stress for crop stress research. The 

probability of water stress is more if the temperature of the crops is higher. According 

to a study by [10], the crop water stress index (CWSI) is extremely useful to compute 

and check water-related stress in the corn crop. Proximal sensors have been employed 

to sense the vapour pressure, canopy and air temperature. These parameters were used 

to create the index. CSWI has also been successfully used by [11] to schedule the 

irrigation of soybean crops. They measured the air, plant canopy and vapour pressure 

using various proximal sensors. They initiated the irrigation of the crop when a 

particular CSWI threshold value was reached. They found that if the value of the 

CSWI threshold was higher, the grain yield was less. [12]have used a combination of 

thermal and optical sensing datasets to monitor the water shortage in the horticultural 

crop. According to the research, a multi-sensor approach has a great potential to sense 

water stress and further use it for scheduling irrigation. Thermal data from remotely 

sensed satellite imagery also identifies water stress. [13] have computed various 

vegetation and thermal indices from MODIS satellite data of crops in West Africa. 

They combined the generated indices with crop yield models and found that the 
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combined data gives better results for yield assessment than using the indices alone. 

The second sensing technique is fluorescence. During photosynthesis, plant 

leaves absorb solar radiation with the help of chlorophyll. Fluorescence is the process 

of re-emission of absorbed solar radiations at longer wavelengths. It is used to detect 

nutrient stress by monitoring the photosynthetic efficiency of a crop. [14]detected 

plant stress in early stages and developed a stress catalogue by combining thermal, 

fluorescence and video imagery. The research shows that fluorescence helps detect 

crops' nitrogen, pollutants, heavy metal and water-related stress. According to them, 

using multiple sensors in a study is more beneficial. [15] collected fluorescence data 

of crops using a narrow band multispectral airborne camera. The research on the olive 

and peach plantations established the possibility of detecting water stress using 

remotely sensed fluorescence data.    

The third sensing technique is reflectance. [16] reviewed various studies in 

which the crop reflectance data has been used to identify nutrient and water-related 

stress. Major bands helpful to sense crop stress are green, red, red-edge and near-

infrared. [17] has confirmed the possibility of using indices computed from 

hyperspectral imagery (airborne) to map water-related stress in maize crops. This 

research has sensed one hundred twenty-six spectral bands in the spectrum's near-

infrared and visible region (400 – 992 nm). [18] has used plant canopy reflectance 

data (350 - 2500nm) to estimate water stress. Parameters that were measured or 

computed in the research are 1) hyperspectral reflectance, 2) soil water potential, 3) 

leaf area index, 4) soil moisture, 5) chlorophyll content, 6) canopy water content, and 

7) various environmental factors. The relationship between the water content and 

reflectance of the crops was studied, and it was found that reflectance information 

could be beneficial in detecting crop stress. [19] has estimated the nitrogen values of 

wheat by simulating the reflectance values. For this purpose, the indices computed 

from the hyperspectral field dataset were compared with the partial least square 

regression (PLSR) model results. They found that for the estimation of N, PLRS 

model results are better than the spectral indices. [20] also experimented using PLS 

and spectroscopy data to calculate wheat's phosphorus(P) and potassium (K). The 

results concluded that PLS and narrow-band indices give better results than traditional 

broadband indices. Leaf area index is another parameter that effectively calculates 
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stress in crops. It is the projected plant leaf area over a unit of land. It is significant as 

it helps to monitor crop/vegetation properties like photosynthesis, evaporation and 

transpiration. [21]  has studied various methods to estimate the LAI of plants using 

data from a range of remote sensors.  

Many biotic stress factors affect the crops, but only yellow rust is reviewed in this 

study. Wheat, a vital cereal crop of Punjab state, is vulnerable to the attack of several 

diseases. Yellow rust is significant biotic stress developed during cool climate, rain, 

dew, fog, and favourable wind conditions [22]. A variety of techniques, sensors, 

datasets, and algorithms have been used for the timely identification of this disease. 

With the advancements in earth observation, new-age satellite data have better spatial, 

spectral, and radiometric resolutions than their predecessors. There are studies in 

which multi and hyperspectral remote and proximal sensing datasets have been used 

(in addition to meteorological data) to identify the yellow rust of wheat, but proximal 

hyperspectral datasets are more popular.  

The field spectroradiometer was used to measure the leaf spectra by [23], [24], 

and the continuous wavelet analysis was applied on the hyperspectral data to generate 

the rust signatures. [25] also used the hyperspectral data collected from the field and 

found that normalized photochemical reflectance index (NPRI) can be used to identify 

rust. A spectrograph mounted on a spray broom level was used by [26] to capture in-

field spectral images ( wavelength between 463 and 895 nm. Neural networks were 

used to develop disease detection algorithms, which classified diseased and non-

diseased crops. [27] have also utilized the hyperspectral in-situ data collected in the 

spectral range of 350 to 2500nm. To estimate the severity of yellow rust in the wheat 

crop, they created models utilising partial least squares (PLS) and multiple linear 

regression (MLR). The coefficients of determination (R2) for both models were 0.96 

and 0.89, respectively. [28] evaluated ten common narrow-band spectral indices for 

identifying rusts from individual wheat leaves. These indices were based on the in-

situ spectrometer measurements in the electromagnetic spectrum's visible and near-

infrared regions. The yellow rust infected crop produced a strong response to all the 

indices. Using spectroradiometer data,  [29] created two spectral disease indices to 

identify wheat leaf rust. These indices were calculated using reflectance at 

wavelengths of 605, 695, and 455 nm. The R2 between the estimated and observed 
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values was as high as 0.94 in both indices. These studies show that the accuracy 

(classification of yellow rust) from proximal sensing methods was higher than remote 

sensing methods. However, it requires a lot of resources and time to collect the 

spectra of yellow rust. Although hyperspectral data is popular and provides accurate 

results, it requires a lot of resources (time, computing and equipment) to collect, 

process, and analyze such datasets. There are very few studies in which multispectral 

remote sensing data have been used for yellow rust identification.  

 [30] developed the yellow rust forecasting system for the Gurdaspur and 

Nawanshehar districts of Punjab using weather and land use information extracted 

from IRS-P6 AWiFS satellite data (spatial resolution = 56 m). In Hebei Province, 

China, the Red Edge Disease Stress Index (REDSI) [31], was utilized to identify 

yellow rust infection at various severity levels. Sentinel-2 multispectral bands were 

simulated using the canopy hyperspectral data. Canopy hyperspectral data were used 

to simulate the corresponding multispectral bands of Sentinel-2. [32] has also 

proposed an approach for monitoring yellow rust based on Sentinel-2 multispectral 

images, two-stage vegetation indices, and meteorological data. Similarly, [33] also 

asserted that deep learning has a great potential for increased accuracy to identify crop 

diseases from remote and proximal sensor data. [34] has applied the convolutional 

deep learning algorithm 'U-Net' on the multispectral images acquired from an 

unmanned aerial vehicle (UAV) to monitor wheat rust. [35] developed a similar 

approach to identify the rust, but they have acquired hyperspectral images from a 

UAV. A new deep convolutional neural network (DCNN)-based technique for 

automated crop disease detection has been suggested. The overall accuracy of their 

model was 0.85. [36] conducted field experiments and utilized MODIS satellite data 

and deep learning algorithms (like ANN, CNN, and recurrent neural networks) to 

monitor the wheat fungus. Automatically learned features were used for the model 

development. Most previous studies have used deep learning CNN algorithms for 

yellow rust identification. 

1.2.3 Role of Artificial intelligence (AI) algorithms in crop stress studies: 

 Artificial intelligence (AI) algorithms have transformed the research on crop 

stress identification. [37] highlighted the advantages of machine learning over the 
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conventional statistical techniques for detecting biotic stress in crops. Machine 

learning algorithms require very few statistical assumptions about the data and can be 

used to develop linear and non-linear models. [38] emphasized that machine learning 

is very promising in plant stress analytics. It can be used for Identification (K-Nearest 

Neighbour (K–NN), SVM, SOM, Bayes Classifier (BC), ANN, K–means, Linear and 

Quadratic Discriminant Analysis (LDA/QDA)), classification (Random Forest (RF), 

K-means, SVM, BC, LDA/ QDA, K–NN, SOM and RF), quantification (SVM) and 

prediction (SVM and ANN) of many parameters. Deep learning algorithms like 

artificial neural networks (ANN), convolutional neural networks (CNN), and 

recurrent neural networks (RNN) are gaining popularity due to their accurate results. 

[39] have reviewed the use of deep learning of images for plant stress phenotyping, 

and they concluded that deep learning algorithms require fewer data pre-processing 

before the modelling work. 

 Once the biophysical parameters have been predicted/classified from the 

hyperspectral data/images, the challenge is finding out the contribution of each 

spectral wavelength to the performance of regression or classification algorithm. 

There are many methods for calculating feature importance based on statistical or 

machine learning algorithms. These can be classified into model-dependent and 

model agnostic methods. Model agnostic methods can be applied to any algorithm 

(e.g. RF, SVM, ANN, kNN, etc.). In contrast, model-dependent methods are specific 

to a particular algorithm, like the Random Forest feature ranking method. Few studies 

have used machine learning algorithms to identify essential features. [40] computed a 

Relief-F value that uses a kNN-based scoring and is considered a reliable metric to 

calculate the feature score followed by top-scoring features.  

The machine learning models are usually considered "black boxes" because 

they do not explain how they arrive at the predictions. This is due to their non-linear, 

complicated, and nested structure. According to [41] and [42], the concept of 

Explainable artificial intelligence (XAI) has been getting very popular recently. XAI 

helps to visualize, explain and interpret the machine learning models. XAI is being 

applied in critical fields like biology and finance, where it is necessary to know the 

details of the models like its working and identification of essential features [43]. 
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These techniques help to build the trust and transparency of the machine learning 

models[44]. 

1.2.4 Simulation of multispectral satellite imagery 

Below is a review of studies in which multispectral satellite imagery has been 

simulated using spectroradiometer data or from data generated from various other 

models. The purpose of the pilot study [45] pilot study, which was carried out in a 

greenhouse using a hand-held spectroradiometer, was to examine if the same 

wavebands employed in the Sentinel-2 MSI could be used to assess and model coffee 

leaf rust (CLR) at the leaf level. [46] also examined Sentinel-2 red-edge bands for 

estimating green LAI and chlorophyll concentration empirically. They emphasize the 

significance of red-edge bands for operational biophysical parameter assessment from 

Sentinel-2. The objective of the [47] study was to see how well Sentinel-2 MSI 

spectral band reflectances performed in estimating fractional vegetation cover (FVC). 

Band 4 (Red), band 12 (SWIR2), and band 8a (NIR2) are the three most crucial 

Sentinel-2 MSI bands for FVC estimation[48][48][48]. The researchers used optical 

remote sensing data (proximal hyperspectral and Sentinel 2A) with a radiative transfer 

model (PROSAIL) to estimate leaf Area Index (LAI) and biomass in a dairy farming 

environment [48]. [49] investigated the Sentinel-2's potential for archaeological 

research. Known buried archaeological sites and entirely undiscovered locations were 

uncovered using a simulated Sentinel-2 image. Using high spatial resolution and 

multispectral WorldView-2 satellite images, the researchers[50]employed a neural 

network approach to detect water-stressed crops. 

Six multispectral satellites' radiometric signals were simulated using 

spectroradiometry: a) IKONOS, b) Landsat 5 TM, c) Landsat 8, d) Pléiades, e) 

Sentinel-2, and f) WorldView-2in [51]. The suitability of each sensor was evaluated 

to calculate the PV cover fraction recorded for five different habitat types during a 

vegetative cycle from February to October 2013. The most accurate PV is obtained 

using multivariate regression using Worldview-2 reflectance. 

[52] has used high-frequency ground-based hyperspectral canopy observations 

to simulate satellite reflectance data for in-season grain yield and nitrogen status 

estimation in winter wheat. 
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Variations in the spectral response function (SRF), which describes the 

sensitivity of each spectral band, have been identified as one of the most significant 

sources of uncertainty when using multisensory data. The SRF differences between 21 

Earth observation satellite sensors, as well as their cross-sensor adjustments for red, 

near-infrared (NIR), and shortwave infrared (SWIR) reflectance and the normalised 

difference vegetation index (NDVI) for worldwide vegetation monitoring, are shown 

in [53].  

Optical sensors onboard different platforms can record spectral features of 

vegetation cover. [21] aims to research the various uses and potential challenges 

linked to mapping leaf area index (LAI) by integrating remote sensing data obtained 

by several sensors, given the growing popularity of using UAVs to map plant cover. 
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1.3  Objectives of Research Work 

The objectives of the research work are given below: 

• Investigate the onset and the degree of water and nutrient stress in crops (maize 

and wheat) growing in fields using proximal and remote sensing techniques. 

• Development of the spectral indices from multi and hyperspectral data for 

accurately detecting the stress in plants using a spectroradiometer. 

• Simulate the multispectral satellite imagery from the data collected from a 

spectroradiometer so that in future the stress can be identified from the 

multispectral satellite imagery. 
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1.4  Research Methodology and Tools  

The proposed methodology for the achievement of the objectives is as mentioned in 
Table-1.1 

Table-1.1: Methodology/ Tools/ Instruments to be used 

Objective Analysis  to  be 

undertaken 
Instruments/  
processes/ 

software  to  be 

used 

In-house 

availability 

(Yes/ No) 

Organization/ 

Institute  

(where the 

facility is 

available) 
1 Create an AI 

model to classify 
the water and 
nutrient stress in 
crops. 

Free satellite 
imagery, Open 
Proximal Sensors 
Datasets, SNAP, 
QGIS, Weka, 
Python with the 
machine and deep 
learning libraries  

Yes NA 

2 Calculation of 
various vegetation 
spectral indices 
from multi and 
hyperspectral data 
for detecting the 
stress in plants. 
 

Free satellite 
imagery, Open 
Proximal Sensors 
Datasets, SNAP 
QGIS, Weka, 
Python with the 
machine and deep 
learning libraries 

Yes NA 

3 Identification of 
suitable 
wavelengths from 
the hyperspectral 
data and find the 
similar 
wavelengths in 
freely available 
multispectral 
satellite imagery 
datasets. 

Free satellite 
imagery, Open 
Proximal Sensors 
Datasets, SNAP, 
QGIS, Weka, 
Python with the 
machine and deep 
learning libraries 

Yes NA 

 

This thesis is a collection of various research activities ranging from field 

experiments, analysis of multispectral satellite images and also detecting water and 

nutrient stress in maize and wheat from hyper spectral data using machine learning 

techniques. There are eight chapters in thesis and the methodology in each chapter is 
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different from the others. Therefore, details of methodology is given in each chapter, 

however a brief methodology for chapter is given below. 

Mapping the crop stress for a whole state is a complex task involving many 

resources. The second chapter explores the computing capabilities of Google Earth 

Engine (GEE) to map the crop stress in the Punjab state using the remotely sensed 

Enhanced Vegetation Index(EVI) dataset from the MOD13A1.006 Terra Vegetation 

collection. The deviation of the EVI of the current (2019-2020) period from the 

reference period (2014-2019) has been analyzed to classify the crop stress as severe, 

high, no-change and improved. 

  In the third chapter, field experiments with a maize-wheat cropping system 

under various water and nutrient levels were carried out at Punjab Agricultural 

University, Ludhiana during 2019-20 and 2020-21. The reflectance spectra of crops 

were collected at regular intervals using Spectroradiometer (wavelength interval 

between 400 - 2500 nm) on clear and cloudless days. The leaf samples were collected 

and analyzed for water content, chlorophyll, nitrogen (N), phosphorus (P) and 

potassium (K) using standard methods. The measured plant parameters were related to 

spectra hyperspectral data using machine learning regression algorithms and 

explainable artificial intelligence techniques to identify the optimum wavelengths for 

nutrient and water stress in maize and wheat.  

 In fourth and fifth chapters, the secondary hyperspectral datasets (wavelength 

interval between 400 - 2500 nm) of maize and wheat collected from field experiments 

conducted in Israel and the United States of America were used. The relationship 

between spectral wavelength and measured plant parameters was studied using 

machine learning regression algorithms and explainable artificial intelligence 

techniques. These studies identified the optimum spectral wavelengths for abiotic 

stresses in crops. 

 In the seventh chapter, the wavelengths identified from hyperspectral data 

from the previous three studies were compared with freely available multispectral 

satellite imagery (Sentinel-2 MSI, Landsat-8 OLI and Landsat-7 ETM+) for remote 

monitoring of abiotic stresses in crops.  
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 In the sixth chapter, yellow rust of wheat (a major biotic stress) was classified 

in the parts of Indian Punjab from Sentinel-2 satellite imagery using deep learning 

artificial neural networks. A classifier was built that differentiated between an 

infected and a non-infected data point. The input to the neural network was the data 

generated from popular spectral indices generated from the satellite imagery. 
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1.5  Thesis Organization 

 

This thesis is organized into eight chapters. Chapter 1 provides the background and 

introduction and the previous studies on detecting and classifying water, nutrient and 

disease stress in crops using proximal and remote sensing. Mapping crop stress using 

spectral indices is helpful for crop growth monitoring at a coarser scale (1:50,000 

scale or higher). Therefore, crop conditions were monitored in the districts of Punjab 

using MODIS Enhanced Vegetation Index(EVI) in Google Earth Engine (Chapter 2). 

This study identified crop stress due to biotic and abiotic factors. The separation of 

abiotic and biotic stress is required for the site-specific management of crops.  

  In order to discriminate the abiotic factors (like nutrients and water), a field 

experiment with a maize-wheat cropping system under various water and nutrient 

levels was carried out at Punjab Agricultural University, Ludhiana. The reflectance 

spectra of crops were collected at regular intervals using Spectroradiometer 

(wavelength interval between 400 - 2500 nm) on clear and cloudless days (Chapter 

3). The leaf samples were collected and analysed for water content, chlorophyll, 

nitrogen (N), phosphorus (P) and potassium (K) using standard methods. The 

measured plant parameters were related to spectra hyperspectral data using machine 

learning and explainable artificial intelligence techniques to identify the optimum 

wavelengths for nutrient and water stress in maize and wheat. The selection of 

optimum wavelengths from field experiments carried out under Indian conditions may 

not be applicable to other climatic and soil conditions. Therefore, the secondary 

hyperspectral datasets (wavelength interval between 400 - 2500 nm)collected from 

field experiments conducted in Israel and the United States of America were used. 

The relationship between spectral wavelength and measured plant parameters was 

studied using machine learning and explainable artificial intelligence techniques 

(Chapters 4 and 5). The results were compared under Indian, Israel and US 

conditions to identify the optimum wavelength for nutrient and water stress. These 

studies identified the optimum spectral wavelengths for abiotic stresses in crops, but 

the spectral behaviour of biotic and abiotic stresses is quite different. In order to study 

the biotic stress in crops, yellow rust of wheat (a major disease) was classified in the 
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parts of Punjab from Sentinel-2 satellite imagery using deep learning artificial neural 

network (Chapter 6). The wavelengths identified from hyperspectral data in abiotic 

stresses were compared with freely available multispectral satellite imagery (Sentinel-

2 MSI, Landsat-8 OLI and Landsat-7 ETM+) for remote monitoring of stresses in 

crops (Chapter 7).  
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Chapter 2 

Spatio-Temporal analysis of crop conditions using MODIS EVI in Google Earth 

Engine 

 

2.1 Introduction 

The primary threat to food security is the biotic and abiotic stress in crops. Biotic 

stress occurs due to the harm done to the crops by living organisms like insects, 

fungus, viruses, weeds etc. Abiotic stress is usually caused by human activity. 

Examples of abiotic stress are floods, drought, nutrient deficiency, salinity and low 

and high temperature. These stress factors are the main reasons for crop yield decline 

[3].  

 The traditional way to monitor crop stress is by field surveys and proximal 

sensing techniques, but this process involves time, costs and human resources. 

Satellite remote sensing is an alternative by providing continuous coverage over large 

areas [54]. Remote sensing can aid in continuous monitoring of the crops, quickly 

diagnosing the problem, and applying timely measures. 

 [55] reviews many remote sensing techniques for detecting various plant 

diseases. Techniques like multispectral and hyperspectral imaging, multiband and 

fluorescence spectroscopy, visible and infrared are discussed. [56] also discusses 

various remote sensing tools for crop health assessment like popular vegetation 

indices and platforms like UAV. The study by [57] aims to present a comprehensive 

review of the widely used and popular crop water stress monitoring methods using 

remote sensing and machine learning.  

 Remote sensing researcher requires many resources to download, process, 

analyze and store BIG earth observation datasets [58]. Google earth engine (GEE) is 

the most popular modern cloud-based remote sensing platform, which provides ready-

to-use high computational capabilities for planetary-scale geospatial big data analytics 

[59]. This platform is free for research work. GEE includes all the popular remote 

sensing datasets and the algorithms for processing and analyzing them. [60] discusses 
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numerous application areas in which GEE is being used, like land use, land cover and 

crop mapping, agriculture, climate change and disaster management. 

 The remote sensing data is available in various spatial, spectral, temporal and 

radiometric resolutions. The data required for a crop stress study depends on the 

nature of the study(parameters to be identified, e.g. nutrients, water, salinity etc.) and 

its scale, i.e. if the analysis has to be done for a field, village, district, state or a 

country. For this research, the whole Punjab state was analyzed for crop stress. As the 

volume of remote sensing datasets was large, the GEE was exploited for this research. 

The enhanced vegetation index (EVI) MODIS VI satellite imageries are used for this 

research. Moderate Resolution Imaging Spectroradiometer (MODIS) [61] is based on 

the Terra and Aqua satellites. The normalised difference vegetation index (NDVI) and 

enhanced vegetation index (EVI) are two MODIS vegetation indices (VI) created at 1-

km and 500-m resolutions with 16-day compositing periods. These indices provide 

consistent spatial and temporal information about the vegetation canopy greenness, 

chlorophyll and canopy structure. [62] compared the MODIS data with other remote 

/proximal datasets. At four intensively studied test locations representing semi-arid 

grass/shrub, savanna, and tropical forest biomes, their results demonstrated a good 

correlation between airborne-measured top-of-canopy reflectances and vegetation 

indices values and those from the MODIS sensor. The MODIS data's scientific 

significance was confirmed by the derived field biophysical metrics.   

 The enhanced vegetation index (EVI) reduces canopy-soil variations and 

enhances sensitivity in dense vegetation. The formula of EVI [61] is given in equation 

(1),  

��� = �((��� − �
�)/(��� + �1 ∗ �
� − �2 ∗ ���
 + �))   (1) 

where Near infra-red (NIR), Red, and Blue bands are the surface reflectances, C1 and 

C2 are the coefficients of the aerosol resistance, L is the canopy background 

adjustment, and G is the scaling factor. For the above algorithm, the values of 

coefficients are L=1, G=2.5, C1=6 and C2=7.5. 

 MODIS EVI is used for various vegetation and agricultural-related 

applications like crop mapping, yield estimation, agricultural drought monitoring, 
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salinity mapping, water and other environmental stress. The time series of EVI was 

used by [63] to map crop cycles in China. [64] compared the NDVI and EVI products 

for the estimation of large-scale rice yield. They found that the EVI-based models 

were slightly more accurate than NDVI-based models. Extracting phenological 

characteristics from MODIS EVI is a possible approach for detecting soil salinity in 

rice-growing areas at regional scales, according to a study [65]. [66] used Google 

Earth Engine and MODIS EVI data to map crop phenology, identify cropping 

systems, detect land use change and drought risk in Ethiopia. The 16-day Terra-

MODIS composite and EVI products are sensitive to stresses associated with drought, 

according to a study by [67], and these products can aid in drought emergency 

monitoring.  

2.2 Objectives 

This research work aims to map the crop stress in the Punjab state using remotely 

sensed Enhanced Vegetation Index(EVI) datasets from the MOD13A1.006 Terra 

Vegetation collection. The deviation of the EVI of the current (2019-2020) period 

from the reference period (2014-2019) has been analyzed to classify the crop stress as 

severe, high, no-change and improved. 

2.3 Study Area and Datasets 

In this section, the study area is first introduced and subsequently, the information 

about the satellite datasets is provided. 

2.3.1. Study Area 

The whole Punjab (India) state is the study area of this research. It lies between 290 

33’ & 320 31’ N latitude and 730 53’ & 760 55' E longitude and covers 50,362 sq. km. 

Three distinct seasons occur in Punjab. The summer season extends from April to 

June, the monsoon season from July to September and the winter season extends from 

October to March. The cropping pattern of the state shows a majority of rice, wheat 

and cotton crops. The vegetation in the rabi season(October - March) has been 

analyzed for this research. Wheat is the major rabi crop grown in Punjab state.  
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2.3.2. Datasets 

The MODIS VI satellite data MOD13A1.006 Terra Vegetation Indices makes 

available the global vegetation conditions. This dataset consists of two indices: 

Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index 

(EVI). Both the datasets are provided every sixteen days at 500 (m) spatial resolution. 

For this research, the EVI dataset for the rabi season of the period 2014-2020 has been 

analyzed.     

 The European Space Agency's World Cover 10m v100 [68] is a 10-meter 

resolution worldwide land cover map for 2020 based on Sentinel-1 and Sentinel-2 

satellite data. This dataset has been used for masking the non-agricultural areas. 

2.4 Methods 

GEE, a modern cloud-based remote sensing platform, has been used for image 

analysis for this research. The methods include filtering the MODIS EVI images 

based on the geographic extent, cropping season and desired time periods, deviation 

calculation from the reference and current maximum images, reclassifying the 

deviation raster, masking out the non-cropland areas, and district-wise calculation of 

the stressed areas. The methodology of the research is shown in Figure 2.1. 

2.4.1. Preparing the MODIS EVI Dataset 

 The MOD13A1.006 Terra Vegetation Indices images were filtered based on 

three parameters index (EVI), study area (Punjab State) and acquisition dates. The 

images acquired between November 2014 and March 2019 were selected to create the 

reference dataset. The current dataset consisted of images between the period 

November-2019 and March 2020.  

 The reference dataset was prepared by computing the maximum (pixel value) 

of the seasonal (Rabi season) images for the last five years (2014-2019) and then 

calculating the mean of all the five images. The current dataset was created by taking 

a maximum of all the pixels of the EVI images of 2019-2020. Figure 2.2 represents 

the generated datasets. 
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Figure 2.1.  Research Methodology 

2.4.2. Deviation 

 The deviation or anomaly raster was calculated by subtracting the reference 

from the current dataset. The deviation represents the current crop conditions 

compared to the conditions from the last five years. This raster was reclassified into 

the following classes which are summarized in table 2.1. 

   

 

 

 



 

Table 2.1. Deviation Classes

S.N

o 

Deviation Value

1 -0.25 to 

2 -0.1 to 

3 -0.1 to 0.1

4 0.1 to 0.25

5 0.25 to 1.0

 

 

 

 

a) Reference Mean of 2014-

Figure 2.2.  Generated Datasets (a) Reference Mean of 2014
Maximum of 2019-2020 

 

 

 

25 

Deviation Classes 

Deviation Value Crop Conditions 

0.25 to -1.0 Severe Stress 

0.1 to -0.25 High Stress 

0.1 to 0.1 Normal (No Change) 

0.1 to 0.25 Improvement in crop 
conditions 

0.25 to 1.0 Very Good Conditions 

 

-2019 

 

b) Current Maximum of 2019-2020 

Generated Datasets (a) Reference Mean of 2014-2019, (b) Current 
 

 

2020  

2019, (b) Current 



Figure 2.3.  Deviation Raster (Red
positive deviations) 

 

2.4.3. Masking the Non-Cropland area

The non-cropland area, including forests, built

using the ESA World Cover 10m v100 dataset. This step was included so that the 

final statistics included only agricultural vegetation.  

2.4.4. District-Wise Analysis

The Punjab district layer was overlayed on the masked output to generate crop 

condition class-wise statistics for all the districts.

2.5 Results & Discussions

The results of the research were in the form of maps and tables. According to the 

results, the Gurdaspur district experienced maximum crop stress in the rabi cropping 

season of 2019-2020. Amritsar, Patiala, Pathankot and Fatehgarh Sahib followed the 

Gurdaspur District. The least stress was identified in the Patiala, Nawan Shehar and 

SAS Nagar(Mohali) districts. The district

The ‘very good class‘ was not found in any district during the analysis. 
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Deviation Raster (Red-Green Colour ramp shows areas of negative to 

Cropland area 

cropland area, including forests, built-up, water bodies etc., were masked 

using the ESA World Cover 10m v100 dataset. This step was included so that the 

final statistics included only agricultural vegetation.   

Wise Analysis 

Punjab district layer was overlayed on the masked output to generate crop 

wise statistics for all the districts. 

Results & Discussions 

The results of the research were in the form of maps and tables. According to the 

pur district experienced maximum crop stress in the rabi cropping 

2020. Amritsar, Patiala, Pathankot and Fatehgarh Sahib followed the 

Gurdaspur District. The least stress was identified in the Patiala, Nawan Shehar and 

ricts. The district-wise area statistics are provided in table 2

The ‘very good class‘ was not found in any district during the analysis.  

Green Colour ramp shows areas of negative to 

up, water bodies etc., were masked 

using the ESA World Cover 10m v100 dataset. This step was included so that the 

Punjab district layer was overlayed on the masked output to generate crop 

The results of the research were in the form of maps and tables. According to the 

pur district experienced maximum crop stress in the rabi cropping 

2020. Amritsar, Patiala, Pathankot and Fatehgarh Sahib followed the 

Gurdaspur District. The least stress was identified in the Patiala, Nawan Shehar and 

wise area statistics are provided in table 2.2. 
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Table 2.2. District-wise area statistics 

SN
o 

District Name Severe Stress High Stress No Change in 
crop conditions 

Improvement in 
crop conditions 

  Pixel 
Count 

Area 
(ha) 

Pixel 
Count 

Area 
(ha) 

Pixel 
Count 

Area 
(ha) 

Pixel 
Count 

Area 
(ha) 

1 Gurdaspur 2 50 106 2650 2271 56775 47 1175 

2 Amritsar   20 500 2142 53550 111 2775 

3 Patiala   17 425 2836 70900 150 3750 

4 Pathankot   15 375 536 13400 9 225 

5 Fatehgarh Sahib   12 300 1138 28450 26 650 

6 Bathinda   10 250 2953 73825 128 3200 

7 Kapurthala   8 200 1364 34100 148 3700 

8 Ludhiana   8 200 2977 74425 164 4100 

9 Muktsar   6 150 2323 58075 142 3550 

10 Sangrur   6 150 3300 82500 133 3325 

11 Hoshiarpur   6 150 2172 54300 86 2150 

12 Rupnagar   5 125 865 21625 32 800 

13 Mansa   5 125 2062 51550 33 825 

14 Jalandhar   5 125 2169 54225 221 5525 

15 Moga   4 100 2135 53375 46 1150 

16 Faridkot   4 100 1297 32425 53 1325 

17 Firozpur   3 75 2278 56950 84 2100 

18 Taran Taran   3 75 2288 57200 74 1850 

19 Barnala   2 50 1362 34050 44 1100 

20 Fazilka   2 50 2423 60575 127 3175 

21 SAS 
Nagar(Mohali) 

  1 25 742 18550 40 1000 

22 Nawan Shehar   1 25 987 24675 70 1750 

23 Patiala   0 0 11 275 0 0 

 



Although the stress pixels (Red Colour) were scattered all over the state (figure 

areas around Dera Baba Nanak (figure 

Pathana (figure 2.6) in Fatehgarh Sahib experienced extensive 

near these places were found in large clusters. It was also witnessed that the 

northwestern part of Punjab

Amritsar, witnessed more stress than the rest of Punjab. Some parts of

Ludhiana and Patiala districts also witnessed improvements in crop conditions.

Figure 2.4.  Stressed Areas (Red Colour) in Punjab State

Figure 2.5.  Stressed Areas (Red Colour) around Dera Baba Nanak in Gurdaspur
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Although the stress pixels (Red Colour) were scattered all over the state (figure 

areas around Dera Baba Nanak (figure 2.5) in the Gurdaspur district and Bassi 

6) in Fatehgarh Sahib experienced extensive stress. The stress pixels 

near these places were found in large clusters. It was also witnessed that the 

northwestern part of Punjab, comprising of districts of Pathankot, Gurdaspur and 

witnessed more stress than the rest of Punjab. Some parts of the Jalandhar, 

Ludhiana and Patiala districts also witnessed improvements in crop conditions.

 

Stressed Areas (Red Colour) in Punjab State 

Stressed Areas (Red Colour) around Dera Baba Nanak in Gurdaspur

Although the stress pixels (Red Colour) were scattered all over the state (figure 2.4), 

Gurdaspur district and Bassi 

stress. The stress pixels 

near these places were found in large clusters. It was also witnessed that the 

comprising of districts of Pathankot, Gurdaspur and 

the Jalandhar, 

Ludhiana and Patiala districts also witnessed improvements in crop conditions. 

 

Stressed Areas (Red Colour) around Dera Baba Nanak in Gurdaspur 



Figure 2.6. Stressed Areas (Red Colour) around Bassi Pathanan in Fatehgarh Sahib

 

According to the Statistical Abstract of Punjab 2020

wheat crop yield (Per Hectare in Kilogram) for the last few years of Gurda

Amritsar, Patiala, Pathankot and Fatehgarh Sahib Districts

According to the table, it can be seen that the crop yield has decreased in the 

Gurdaspur, Amritsar, Patiala, Pathankot and Fatehgarh Sahib Districts. This proves 

the relation between the decrease in the EVI and the crop yield.

Table 2.3. District-wise wheat yield (Per Hectare in Kilogram) statistics

Rabi Period Gurdaspur

2017-2018 4733 

2018-2019 4717 

2019-2020 4175 

 

Although research papers, newspapers and various reports of the study period were 

reviewed but the exact cause of the decrease in EVI could not be identified. 

Traditionally, field surveying is used to identify crop stress and estimate its area 

statistics. Therefore it is essential to develop an efficient method for crop stress 

mapping using remote sensing datasets. This study demonstrates an effective way of 

utilizing a cloud-based earth observation tool for producing a crop stress map of 
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Stressed Areas (Red Colour) around Bassi Pathanan in Fatehgarh Sahib

Statistical Abstract of Punjab 2020[69], 2019[70], 2018

wheat crop yield (Per Hectare in Kilogram) for the last few years of Gurda

Amritsar, Patiala, Pathankot and Fatehgarh Sahib Districts is given in table 

According to the table, it can be seen that the crop yield has decreased in the 

Gurdaspur, Amritsar, Patiala, Pathankot and Fatehgarh Sahib Districts. This proves 

elation between the decrease in the EVI and the crop yield. 

wise wheat yield (Per Hectare in Kilogram) statistics 

Gurdaspur Amritsar Patiala Pathankot 

4866 5272 4018 

4813 5472 3984 

4533 4771 3944 

Although research papers, newspapers and various reports of the study period were 

reviewed but the exact cause of the decrease in EVI could not be identified. 

Traditionally, field surveying is used to identify crop stress and estimate its area 

statistics. Therefore it is essential to develop an efficient method for crop stress 

mapping using remote sensing datasets. This study demonstrates an effective way of 

based earth observation tool for producing a crop stress map of 

 

Stressed Areas (Red Colour) around Bassi Pathanan in Fatehgarh Sahib 

, 2018[71], the 

wheat crop yield (Per Hectare in Kilogram) for the last few years of Gurdaspur, 

is given in table 2.3. 

According to the table, it can be seen that the crop yield has decreased in the 

Gurdaspur, Amritsar, Patiala, Pathankot and Fatehgarh Sahib Districts. This proves 

 

Fatehgarh 
Sahib 

5341 

5180 

4394 

Although research papers, newspapers and various reports of the study period were 

reviewed but the exact cause of the decrease in EVI could not be identified. 

Traditionally, field surveying is used to identify crop stress and estimate its area 

statistics. Therefore it is essential to develop an efficient method for crop stress 

mapping using remote sensing datasets. This study demonstrates an effective way of 

based earth observation tool for producing a crop stress map of 
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Punjab. Using the freely available MODIS datasets and openly available tools ensures 

other researchers' work extension. Such a large-scale investigation incorporating 

multiple satellite images necessitates a lot of resources (computation, storage, 

specialized software and time). This case study illustrates how to use GEE for 

massive geospatial data analytics in the cloud with just a normal computer and 

internet access. 
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Chapter 3 

Detection of nutrient and water stresses in maize and wheat using proximal 

sensing.          

3.1 Introduction 

Abiotic stress, particularly water and nutrient stress, is becoming a major challenge to 

food security [72] and 71% of the yield losses in crops are caused by abiotic factors 

[73]. Because the impact of abiotic stress on crop growth is usually only noticed after 

it becomes visible, assessing yield loss due to water and nutrient is critical for long-

term agricultural production. 

 Water content, nitrogen (N), phosphorus (P), potassium (K), 

chlorophyll a and chlorophyll b, and others are key biochemical components of crop 

organic matter. Nitrogen is a critical component of the chlorophyll molecule, which 

allows the plant to capture sunlight energy for carbohydrate generation, resulting in 

increased plant growth and output [74]. Phosphorus is required to develop new plant 

cells and transfer the genetic code from one cell to another [75]. Potassium is an 

activator of essential enzymes, such as protein synthesis, sugar transport, carbon and 

nitrogen metabolism, and photosynthesis [76].The function of chlorophyll is to absorb 

light for photosynthesis. Chlorophyll is classified into two types: a and b. The major 

photosynthetic pigment is chlorophyll a, while chlorophyll b is an accessory pigment 

that receives energy and transfers it on to chlorophyll a [77]. Chlorophyll a absorbs 

energy from blue-violet and orange-red light wavelengths, whereas chlorophyll b 

absorbs energy from green light wavelengths. 

Plants require high amounts of these key biochemical components, and 

estimating these nutrients on a spatiotemporal scale is required to improve 

macronutrient usage efficiency. Traditionally, these values have been assessed in a 

laboratory using invasive procedures on plant tissue. The laboratory methods are 

costly and time-consuming. The non-invasive estimation of these characteristics using 

multispectral and hyperspectral remote sensing aids in plant health monitoring [7]. 

The regular monitoring of crop conditions by field surveys is a resource-intensive task 

[78]. Proximal and remote sensing sensors provide a solution by collecting 

information about crop conditions non-invasively.  
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To estimate various plants parameters of plants from spectra, statistical and 

machine learning algorithms have been extensively applied [8]. Machine learning 

algorithms are more popular because they produce better results than statistical 

methods for predicting non-linear correlations [79].Though the machine learning 

algorithms have a better performance, but they are challenging to interpret due to their 

non-linear, nested, and complicated structure. Explainable artificial intelligence (XAI) 

techniques are gaining popularity because they make sophisticated 'black box' 

machine learning models easier to understand, visualise, and analyse [43]. The 

explanations and interpretations contribute to the machine learning models' 

transparency and trustworthiness. 

Many investigations have used machine learning approaches to estimate 

biochemical parameters in plants using hyperspectral images, but only a handful have 

combined machine learning and XAI techniques to estimate nutrient content in plants. 

As a result, combining machine learning and XAI approaches, a study was conducted 

to estimate water content and nutritional content in maize and wheat. The study's 

particular objectives were to develop machine learning models for estimating water 

content, N, P, K, chlorophyll a and chlorophyll b in maize and wheat using 

hyperspectral data, and (ii) apply XAI approaches to determine the best wavelengths 

for each parameter estimation. 

 

3.2 Materials and Methods 

3.2.1 Field Experiment and collection of hyperspectral data 

Field experiments with maize and wheat were conducted at Punjab Agricultural 

University farm, Ludhiana during 2019 and 2020. The experiment was laid out in 

three replicates in a split plot design with three irrigation treatments (IW/CPE 1.0, 

0.75 and 0.5) in main plots with five nutrient treatments (T1 = 100% NPK, T2 = 75% 

NPK, T3 = 50% NPK, T4 = 100% N, T5 = 100% NP) in subplots (IW: Irrigation 

Water, CPE: Cumulative Pan Evaporation). The recommended doses of fertilizers 

(100% NPK) for maize (variety PMH I) were Urea (90 kg / acre), Di-Ammonium 

Phosphate (55 kg/acre) and Muriate of Potash (20 kg /acre). The recommended 

fertilizer doses (100% NPK) for wheat (variety PBW725) were Urea (90 kg / acre), 

Single Superior Phosphate (55 kg/acre) and Muriate of Potash (20 kg /acre). The leaf 
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samples were collected at monthly interval during August-October 2019 and 2020 for 

maize, December 2019-March 2020 and December 2020-April 2021 for wheat. The 

crop field experiment photographs are presented in Annexure-1. The leaf samples 

were analysed for water content, chlorophyll, nitrogen (N), phosphorus (P) and 

potassium (K) using standard methods. The reflectance spectra of crops were 

collected on leaf sampling dates using ASD Field Spec-4 Spectroradiometer 

(wavelength interval between 350 - 2500 nm) on clear and cloudless days. 

 

3.2.2 Hyperspectral Data Processing 

 Two data transformation techniques were used to pre-process the raw data: 

Savitzky-Golay 1st derivative and Deresolve. By correcting the baseline effects in the 

spectra, Savitzky-1st Golay's derivative transformation removes nonchemical 

influences and generates strong calibration models.  Derivatives can help resolve 

overlapped bands.  Deresolve is commonly used for noise reduction.  It smooths the 

spectra with a resolution function, making it appear as if it was taken with a lower 

resolution equipment. Both Chlorophyll a and Chlorophyll b are sensitive between 

406 and 752 nm, therefore spectral subsetting was performed in this wavelength 

region to estimate these pigments from hyperspectral data.   

 

3.2.3 Estimation of water, chlorophyll, N, P and K contents in maize and wheat from 

hyperspectral data using machine learning techniques. 

 The water, chlorophyll, N, P and K contents in maize and wheat were 

estimated from hyperspectral data using the four machine learning regression 

algorithms: Random Forest (RF), Support Vector Regression (SVR), Gradient 

Boosting Regression (GBR) and Partial Least Square Regression (PLSR). In all these 

algorithms, reflectance values were used as the input parameters (X variables), and 

water content, chlorophyll, nutrient concentration and other parameters in maize and 

wheat were selected as the target variable (Y variable). The machine learning 

algorithms were implemented in Python [80] programming language using the Scikit-

learn [81] library. Scikit-learn is a standard, open-source library that integrates many 

ML algorithms. Google's Colaboratory [82] cloud-based environment was selected for 

developing and running the machine learning algorithms. Without installation or 
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configuration, Colaboratory allows the user to write and execute Python code in a 

basic browser. The GridSearchCV function was used to tune hyperparameters. This 

method assisted in determining the appropriate parameters for each regression 

algorithm. The various parameters used for the development of the models are listed 

in Table3.1. 

 The performance of the machine learning algorithms is also influenced 

by the sampling distribution of the training and the testing datasets. [83], [84] have 

recommended the 80% and 20% split for the training and validation datasets. The 

dataset was also randomly split into 80% and 20%. The performances of machine 

learning algorithms were evaluated using the coefficient of determination (R2) and 

mean-squared error (MSE). An overview of the methodology is given in Figure 3.1.  

Table3.1 Model Parameters 

 

 

 

 

 

 

 

 

 

3.2.4 Identification of important features (wavelengths) from hyperspectral data 

Machine learning models are frequently referred to as "black boxes," making it 

difficult to decode them and understand how they produced a specific output. Optimal 

wavelengths to quantify water content, chlorophyll, nutrients, and other characteristics 

were identified in our work using Explainable artificial intelligence (XAI) tools, 

which could be useful in interpreting and explaining complex AI models. [85] 

proposed the SHapley Additive explanations (SHAP) value, a critical XAI tool, for 

interpreting the machine learning models. SHAP values are based on shapley values 

that originated from the mathematical game theory. In the context of machine 

learning, the game is the outcome of a model, and the players are the features 

Machine Learning Model Model Parameters 

Random Forest 

max_depth, random_state, max_features, 
min_samples_leaf, min_samples_split, 
n_estimators  

Support Vector 

Regression kernel, C, gamma, epsilon, coef0 

Gradient Boosting 

Regression 

learning_rate, max_features, min_samples_leaf, 
n_estimators, max_depth 

Partial Least Square 

Regression copy, max_iter, n_components, scale, tol 



included in the model. SHAP helps to quantify the contribution that each feature 

(player) brings to the mo

show the impact of each feature. It can explain individual predictions and aggregate 

them to get powerful insights into the whole model. SHAP values calculations are 

explained in detail by [87]

library. The key benefit of using SHAP values for this study is the model's overall 

interpretability. The collective SHAP values are interpreted globally to find the 

critical wavelengths linked with

explained using the SHAP function "TreeExplainer" while the PLSR and SVR models 

were explained using the SHAP function "KernelExplainer".

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure

3.3 Results and Discussions

3.3.1 Selection of optimum machine learning regression models to estimate the crop 

parameters 
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Pre-Processing of Proximal 
Hyperspectral Data

Training/Validation Dataset Generation

Hyperparameter Tuning

Training Machine Learning Regression 
Models

Validating Machine Learning Regression 
Models

Identification of best  ML models for 
each crop parameters  

Identification of optimum  wavelengths 
associated with each crop parameter 

using Explainable Artificial Intelligence

included in the model. SHAP helps to quantify the contribution that each feature 

(player) brings to the model prediction (game) [86]. It breaks down the prediction to 

show the impact of each feature. It can explain individual predictions and aggregate 

to get powerful insights into the whole model. SHAP values calculations are 

[87]. We implemented the XAI in Python using the SHAP 

The key benefit of using SHAP values for this study is the model's overall 

interpretability. The collective SHAP values are interpreted globally to find the 

critical wavelengths linked with the target variables. The RF and GBR models were 

explained using the SHAP function "TreeExplainer" while the PLSR and SVR models 

were explained using the SHAP function "KernelExplainer". 

igure 3.1 An overview of the approach 

Discussions 

3.3.1 Selection of optimum machine learning regression models to estimate the crop 

included in the model. SHAP helps to quantify the contribution that each feature 

. It breaks down the prediction to 

show the impact of each feature. It can explain individual predictions and aggregate 

to get powerful insights into the whole model. SHAP values calculations are 

XAI in Python using the SHAP 

The key benefit of using SHAP values for this study is the model's overall 

interpretability. The collective SHAP values are interpreted globally to find the 

The RF and GBR models were 

explained using the SHAP function "TreeExplainer" while the PLSR and SVR models 

3.3.1 Selection of optimum machine learning regression models to estimate the crop 
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(a) Maize 

Four machine learning algorithms were used to estimate water, chlorophyll a and 

chlorophyll b, N, P and K contents in maize and wheat.  

The coefficient of determination (R2) and mean square error (MSE) to estimate the six 

plant parameters in maize are given in Table 3.2.  

The water content in maize leaves was better estimated with GBR followed RF 

models. The performance of GBR model was better than the other two models for 

estimation of chlorophyll a in maize leaves. The chlorophyll b was better predicted 

with the PLSR model. Among the three macronutrients, N in maize was estimated 

using PLSR, GBR and RF models, total P content using PLSR and RF models, and 

total K  using PLSR and RF models.  

Table 3.2 Coefficient of determination (R2) and mean square error (MSE) for the 

Maize models 

ML 

Algorithm 
Water 

Content Nitrogen Phosphorus Potassium 
Chlorophyll 

a Chlorophyll b 

  R
2 MSE R

2 MSE R
2 MSE R

2 MSE R
2 MSE R

2 MSE 

RF 0.21 17.7 0.55 0.04 0.56 0.001 0.63 0.027 0.55 0.065 0.47 0.005 

SVR 0.08 82.1 0.40 0.06 -1.69 0.009 -0.06 0.08 0.5 0.07 -0.4 0.015 

GBR 0.36 57.1 0.56 0.04 0.5 0.001 0.61 0.029 0.63 0.05 0.52 0.005 

PLSR 0.07 82.5 0.57 0.04 0.59 0.001 0.63 0.028 0.52 0.06 0.57 0.004 

 

(b) Wheat 

The water content in wheat leaves was better predicted with RF and GBR models, 

chlorophyll a and b with PLSR model, and total N, P and K with GBR model. The 

coefficient of determination (R2) and mean square error (MSE) to estimate the six 

plant parameters in wheat are given in Table 3.3.  

Table 3.3 Coefficient of determination (R2) and mean square error (MSE) for the 

Wheat models 

ML 

Algorithm 
Water 

Content Nitrogen Phosphorus Potassium Chlorophyll a Chlorophyll b 

  R
2 MSE R

2 MSE R
2 MSE R

2 MSE R
2 MSE R

2 MSE 

RF 0.87 27.78 0.72 0.078 0.63 0.004 0.72 0.035 0.49 0.14 0.6 0.005 

SVR 0.62 81.52 0.51 0.135 -0.33 0.017 0.46 0.068 -0.004 0.29 -0.78 0.025 

GBR 0.86 29.95 0.82 0.048 0.71 0.003 0.78 0.027 0.46 0.15 0.6 0.005 

PLSR 0.79 44.24 0.63 0.102 0.63 0.004 0.64 0.044 0.55 0.132 0.75 0.003 
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3.3.2 Sensitive bands for estimation of water content, chlorophyll a, chlorophyll b, 

nitrogen, phosphorus and potassium  

(a) Maize 

The important wavelengths predicted from the best performing machine learning 

model associated with each crop parameter were identified using the SHAP values. 

The important wavelengths associated with the parameters are given in Table 3.4 

(Maize) and Fig. 3.2.  

The most important wavelengths associated with water content for detecting water 

stress in maize are in the near infrared region (841, 842, 847 and 702 nm) using 

GBR). In general, weak water absorption bands are centred near 970 and 1200 nm 

(NIR region) and strong water absorption bands are centred on 1450, 1940, and 2500 

nm (SWIR region), but the water stress in our study was detected around 841-847 nm 

due to major water absorption shoulder around this wavelength because of the 

combined overtone of vibrational symmetric, asymmetric, and bending stretches of O-

H bands [88]. [89] found that leaf water content in maize is predicted from 700 nm, 

740 nm and 860 nm. [90] found that the wavelength interval of 689 and 720 nm, and 

755–842 nm including the other regions (553–556, 950–970, 1013–1034, and 1055–

1075 nm) are useful for predicting water content in plants.  

The sensitive bands were 599, 617, 600, 618, and 651 nm for estimation of 

chlorophyll a, and 486, 691, 599, 690 and 431 nm for chlorophyll b. The reflectance 

spectra is highly sensitive to chlorophyll content from 680 to 780 nm and the light is 

strong penetrating to leaves in this region [91]. Our results find support from the 

previous studies in which chlorophyll concentration within leaves can be better 

estimated from red and far red region of the spectrum ([92], [93]). [94] also found that 

red and red-edge bands are helpful for  estimation of chlorophyll in maize. 

 Though nitrogen content in maize leaves was predicted RF, GBR and PLSR 

models with R2 >0.50, but the wavelength predicted with the RF models were in the 

visible, near-infrared and SWIR region (617, 804, 1978, 1979 and 738 nm). Previous 

studies have also found that visible and near infrared (VNIR) region are mainly used 

for estimation of N in plants due to close relationship of N and chlorophyll which has 

deep absorption valleys in this region ( [95], [96] ). With GBR and PLSR, the most 
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important wavelength for estimation of N in maize was in the SWIR region. [97] also 

found that SWIR region of the spectra can also be used for estimation of N in plants. 

The total P content in maize leaves was better predicted using PLSR and RF models, 

but the sensitive bands were in the SWIR region using GBR, visible, NIR and SWIR 

region using RF model. In general, NIR and SWIR regions are helpful for detecting 

the P deficiency in plants. [98] and [99] also found the sensitive band in these regions 

for estimation of P in plants. There is a close relationship between P and reflectance in 

the NIR region because P is an energy supplier in energy-consuming processes such 

as photosynthesis. In combination with reflectance in visible or NIR region, 

reflectance in the SWIR range was found to monitor nitrogen, phosphorus, and 

potassium status of plants [100]. The total K in plants were better estimated using the 

RF amd PLSR models. The sensitive bands were in visible and NIR region with the 

RF model, but in SWIR region with PLSR model. [101] found that visible and NIR 

regions are useful for estimation of K stress in plants. The deficiency of K in plants 

causes reduces the translocation of photosynthates from leaves to fruits which results 

in lower chlorophyll concentration due to increased hexose, sucrose and starch 

contents in leaves. This results in changing the reflectance features of maize leaves. 

The K deficiency in plants is also related with the SWIR region because K ions 

regulate leaf water content through stomatal conductance. [100] and [102] also found 

that sensitive bands for K deficiency in plants are around the SWIR region.  

 

. Table 3.4 Important wavelengths associated with the parameters of Maize 

ML 

Algorithm 
Water 

Content Nitrogen Phosphorus Potassium 
Chlorophyll 

a 
Chlorophyll 

b 

Random 

Forest       

617,  1180, 
653, 651, 
560     

GBR 
841, 842,  
847, 702       

 599, 617, 
600, 618, 
651   

PLSR   

1726, 1725, 
1547, 1724, 
751 

1724, 1725, 
1726, 1723, 
1547 

1725, 1726, 
1724, 751, 
1344 

486, 691, 
599, 690, 
431 
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(b) Wheat 

The important wavelengths associated with the parameters are given in Table 3.5 

(Maize) and Fig. 3.2. The optimum bands for estimation of water content in wheat 

were visible, NIR and SWIR regions. The top most wavelength for estimation of 

water in wheat was in visible region due to fifth and sixth overtone of O–H bands at 

401 and 449 nm which cause water absorption bands in this region [103]. The 

optimum wavelength of 552 nm for estimation of water content in wheat leaves is due 

to third overtone of O–H bands at this wavelength (small absorption peak) [88]. The 

sensitive bands to estimate water content in SWIR region were 1168 and 1305 nm. 

[104] also found that the region between 1150 and 1260 nm is useful for estimation of 

leaf water content.  The most important bands for estimation of chlorophyll a and b 

were in the visible region (554, 553, 656, 555 and 405 nm for chlorophyll a, and 486, 

691, 599, 690 and 431 nm for chlorophyll b). [105] found that wavelength from 520 

to 550 nm and 695 to 705 nm was closely related with chlorophyll content in plant 

leaves. The sensitive bands to estimate N in wheat leave were 443 nm> 449 nm >597 

nm> 885 nm > 450 nm. Since nitrogen is a major component of the chlorophyll 

pigments which are sensitive in 406 and 752 nm, therefore VIS-NIR region of the 

spectra was useful for estimation of N content in leaves [106]. [107] developed two 

spectral indices(canopy chlorophyll content index from 670, 720, 790 nm and spectral 

ratio planer index from 445, 705 and 750 nm) to detect the N stress in crops. 

[108]used the hyperspectral data to identify the N status of wheat and they selected 

few features in the NIR region (> 750 nm) for estimating plant N content. The 

reflectance values 650–680 nm, adjacent to the Chl absorption peak at 675 nm 

coupled with PLSR are suitable for estimation of chlorophyll and N content in plants 

[109], which concurs with previous studies on spectroscopic estimation of plant N 

content. According to [110], shortwave infrared is associated with the leaf water 

content and biochemicals, near-infrared with cell structure and visible spectrum is 

with leaf pigments. According to [111], chlorophyll and N contents can be accurately 

remotely estimated from green and red-edge chlorophyll indices using near-infrared 

(780–800 nm) and either green (540–560 nm) or red-edge (730–750 nm) spectral 

bands. 
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 The optimum bands for estimation of total P in wheat leaves were in 1304, 

1305, 810, 1259 and 1505 nm. Among these five wavelengths, four are in the SWIR 

region and one in the NIR region. [20] also found that SWIR region is useful for 

estimation of P deficiency in wheat. [99] also found the sensitive band in NIR region 

for estimation of P in plant leaves. The sensitive bands for detecting K deficiency in 

wheat leaves were in the SWIR region because K ions regulate leaf water content 

through stomatal conductance. [100] and [102] also found that sensitive bands for K 

deficiency in plants are around the SWIR region.  [20] developed a vegetation index 

using wavelengths 1645 and 1715 nm (SWIR) to determine the potassium 

concentration in wheat. 

  

Table 3.5 Important wavelengths associated with the parameters of Wheat 

ML 

Algorithm 

Water 

Content 

Nitrogen Phosphorus Potassium Chlorophyll 

a 

Chlorophyll 

b 

Random 

Forest 

552, 762, 
450, 1168, 

868 

        

GBR   443, 449, 
597, 885, 

450 

1304, 1305, 
810, 1259, 

1505 

1305, 1504, 
1091, 1259, 

1505 

    

PLSR     554, 553, 
656, 555, 

405 

404, 656, 
405, 554, 

553 
 

 

 Maize Wheat 

Water 

Content 
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Nitrogen 

  
Phosphorus 

  
Potassium 

 

Chlorophyll 

a 

 
 

Chlorophyll 

b 

 
 

Figure 3.2 Output of XAI 
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The results of this study suggest that VIS-NIR–SWIR leaf reflectance can be a 

valuable tool for low-cost, non-destructive, high-throughput investigation of leaf 

physiological and biochemical characteristics (including N, P and K). The 

wavelengths identified for various parameters are useful for designing future 

multispectral satellites/super-resolution for multispectral and hyperspectral images 

which may help in remote monitoring of water and nutrient stress.  
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Chapter -4 

Estimation of nitrogen content in wheat from proximal hyperspectral data using 

machine learning and explainable artificial intelligence (XAI) approach.     40-52 

 

4.1 Introduction 

Nitrogen (N), a primary macronutrient, is a principal component of many plant 

structures (e.g., chlorophyll and amino acids etc.) and also required for metabolic 

processes (e.g., photosynthesis) of plants. It promotes rapid vegetation growth, gives 

plants a healthy green colour, and produces the greatest yield response in crop 

plants[112][113][114]. The insufficient supply of N leads to critical plant disorders. 

One of the main adverse effects is the reduction of chlorophyll, which damages the 

starch and protein contents. Therefore, it is essential to manage the N in the 

agriculture produce effectively. However, the over-application of N can also be a 

problem as it may pollute the underground water[115].  

The precision management of N is vital for increasing the N use efficiency. Its 

accurate measurement is required to optimize the application of N fertilizers in 

soils[116]. Traditionally, N concentration in plant tissues is determined in the 

laboratory using invasive procedures such as Kjeldahl-digestion and Dumas-

combustion, but these procedures are time-consuming and costly[117]. Remote 

sensing has a great potential to non-invasively assess the nutrient stress from the leaf 

to the landscape scale. Several studies have found significant relationships between 

crop physiological parameters and spectral reflectance. Hyperspectral (narrowband) 

remote sensing has been found more beneficial in assessing crop stress than 

multispectral (broadband) sensors[118]. Hyperspectral data, mostly from proximal 

sensors, provide an ideal opportunity to estimate the N content from the plants[119]. 

There are several tools and techniques to process and analyze hyperspectral 

data.[8]discussed various approaches to analyze the hyperspectral data for vegetation. 

These techniques include artificial intelligence, statistical regressions, physical 

modelling, and spectral positioning. Artificial intelligence techniques listed various 

studies that have exploited neural networks and machine learning based on regression 

trees. Among various statistical techniques, partial least square regression (PLSR) is 

the most popular technique for estimating plant biophysical parameters from 
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hyperspectral data[120]. [121] used PLSR to model the leaf N concentration and 

density, leaf area index, and dry leaf weight from hyperspectral reflectance of the 

plants.[122] computed the normalized difference vegetation indices of all possible 

combinations of wavelengths in the region from 438 to 884 nm. They found that leaf 

chlorophyll and nitrogen concentration can be estimated using linear regression and 

PLSR. [19]also estimated the canopy nitrogen content in winter wheat using 

optimised hyperspectral spectral indices coupled with partial least squares 

regression.[123] also used PLSR to estimate the plant biomass from the spectra (350-

2500nm) collected using a field spectroradiometer. According to the authors, the 

prediction quality of the estimation model could be increased by selecting suitable 

wavelengths and applying the derivatives to the raw spectra. The plant biomass was 

predicted with R2 of 0.70 using the PLSR model. 

 Besides PLSR, other machine learning algorithms are becoming more popular 

in analyzing many plant parameters from hyperspectral data.[37] highlighted the 

advantages of machine learning over the conventional statistical techniques for 

detecting biotic stress in crops. Machine learning algorithms require very few 

statistical assumptions about the data, and they can be used to develop both linear and 

non-linear models. [38] emphasised that machine learning is very promising in plant 

stress analytics. It can be used for Identification (K-Nearest Neighbour (K–NN), 

SVM, SOM, Bayes Classifier (BC), ANN, K–means, Linear and Quadratic 

Discriminant Analysis (LDA/QDA)), classification (Random Forest (RF), K-means, 

SVM, BC, LDA/ QDA, K–NN, SOM and RF), quantification (SVM) and prediction 

(SVM and ANN) of many parameters.  

 Once the biophysical parameters have been predicted/classified from the 

hyperspectral data/images, the challenge is finding out the contribution of each 

spectral wavelength to the performance of regression or classification algorithm. 

There are many methods for calculating feature importance based on statistical or 

machine learning algorithms. These can be classified into model-dependent and 

model agnostic methods. Model agnostic methods can be applied to any algorithm 

(e.g. RF, SVM, ANN and kNN etc.), whereas model-dependent methods are specific 

to a particular algorithm, like the feature ranking method of Random Forest. Few 

studies have used machine learning algorithms, especially to identify the essential 
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features. [40]computed a Relief-F value that uses a kNN based scoring and is 

considered a reliable metric to calculate the feature score followed by top-scoring 

features.  

The machine learning models are usually considered “black boxes” because 

they do not provide information about how they arrive at the predictions. This is due 

to their non-linear, complicated, and nested structure. According to[41] and [42]the 

concept of Explainable artificial intelligence (XAI) is getting very popular recently. 

XAI helps to visualize, explain and interpret the machine learning models. XAI is 

being applied in critical fields like biology and finance, where it is necessary to know 

the details of the models like its working and identification of essential features[43]. 

These techniques help to build the trust and transparency of the machine learning 

models [44]. 

 There are many studies in which hyperspectral data have been used to predict 

the N status of plants, but few studies have used machine learning techniques to 

estimate the N status of plants. Therefore, a study was carried out to estimate the N 

status of wheat using machine learning techniques. Specific objectives of the study 

were (i) Identification of spectra pre-processing techniques and their effect on 

prediction accuracy of the machine learning regression algorithms, (ii) development 

of machine learning models and (iii) the use of Explainable artificial intelligence 

(XAI) methods to explain the best performing machine learning model and 

identification of important hyperspectral wavelengths associated with N.    

 

4.2. Material and Methods 

4.2.1 Study area and Data Acquisition 

The secondary hyperspectral data of wheat was downloaded for the Gilat 

Agricultural Research Center, Israel. The dataset[124] was downloaded from the 

Ecological Spectral Information System (EcoSIS) website https://ecosis.org/. The 

proximal canopy measurements were taken in the year 2004 and 2005 using a 

spectroradiometer (ASD FieldSpec bare fiber). The data was collected throughout the 

growing season at 6, 45, 63-72 and 91-97 days of wheat growth. The plant tissues 

were collected and analysed for water content, dry weight, leaf area index (LAI) and 
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nitrogen content. The spectral range of the data is 400 to 2400 nm with a spectral 

sampling resolution of 2 nm (330 measurements). 

 

4.2.2  Hyperspectral Data Processing 

Based on the data transformation techniques, four input datasets were generated in 

this study: 

i. Raw spectra 

ii. 1st Derivative dataset: Savitzky-Golay 1st derivative transformation was 

applied on the raw spectra. Derivatives are applied to correct the baseline 

effects in spectra for removing nonchemical effects and creating robust 

calibration models. Derivatives may also aid in resolving overlapped bands 

which can provide a better understanding of the data, emphasizing small 

spectral variations not evident in the raw data. 

iii. Deresolved Dataset: Deresolve uses a triangle kernel filter for smoothing to 

convolve spectra with a resolution function to make it appear as if it had been 

taken on a lower resolution instrument. The inputs are the high-resolution 

spectra to be deresolved and the number of channels to convolve them over. 

The output is the estimate of the lower resolution spectra with the original 

number of variables maintained. Deresolve is also be used for noise reduction. 

iv. Deresolve and 1st Derivative dataset: In this dataset, both the data 

transformation techniques were applied. 

 

4.2.3 Estimation of N status in plants from hyperspectral data using machine 

learning analysis 

In the computational environment, reflectance values were used as the input 

parameters (X variables), and N concentration in wheat was selected as the target 

variable (Y variable). The spectra was pre-processed using first derivative, de-resolve, 

and both first derivative and de-resolve. Six regression machine learning algorithms 

(Support Vector Regression (SVR), Random Forest (RF), k-nearest neighbours 

(kNN), Multilayer Perceptron (MLP) and Gradient Boosting Regression (GBR) and 

partial least square regression (PLSR)) were used for retrieval of N from 

hyperspectral data. Cloud-based Google Colaboratory (Colab)[82] environment was 
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selected for developing and running the algorithms.  It allows writing and executing 

Python[80] code in the browser without installation and configuration. The machine 

learning algorithms were implemented using the Python language and the Scikit-

learn[81] package. Scikit-learn is a popular open-source library that integrates many 

ML algorithms[125].  The hyperparameter tuning was performed (using the 

GridSearchCV function) for each regression algorithm to select the parameters which 

gave the most accurate model in terms of root-mean-square error (RMSE).  

The sampling distribution of the training and the testing datasets impacts the machine 

learning algorithms. Many previous studies by[83] and [84]have advised splitting 

training and validation datasets into 80% and 20%, respectively. In our study, the 

dataset was randomly split into 80% and 20%.  The performances of machine learning 

algorithms were evaluated using the coefficient of determination (R2) and mean-

squared error (MSE). The methodology is given in Figure-4.1.  

 

Table-4.1: Results of the statistical parameters (Coefficient of determination, R2 and 
Mean Square Error, MSE) for the machine learning  models 

Machine Learning 

Model 

Raw De-Resolve I
st
 Derivative 

De-Resolve + 1
st 

Derivative 

R
2
 MSE R

2
 MSE R

2
 MSE R

2
 MSE 

Support Vector 
Regression 

0.72 2.42 0.79 2.36 0.74 3 0.74 3 

Random Forest 0.60 4.53 0.59 4.71 0.88 1.38 0.89 1.26 

k-nearest 
neighbours 

0.42 6.65 0.42 6.65 0.73 3.04 0.73 3.01 

Multilayer 
Perceptron 

0.69 3.52 0.32 7.81 0.07 0.0001 0.2 9.2 

Gradient Boosting 
Regression 

0.64 4.13 0.62 4.36 0.87 1.49 0.87 1.39 

Partial Least Square 
Regression 

0.73 2.89 0.74 2.9 0.78 2.51 0.79 2.4 
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Table-4.2: Hyper parameters selected for the machine learning models 

 

 

 

 

 

 

Machine 

Learning Model 
Raw De-Resolve Ist Derevative 

De-Resolve + 1st 

Derevative 

Support Vector 

Regression 

kernel='linear', 
C=5, gamma=0.1, 
epsilon=.0001 

kernel='linear', 
C=10, coef0=0, 
gamma=0.1, 
epsilon=.0001 

kernel='linear', 
C=100, gamma=0.1, 
epsilon=.0001 

kernel='poly', 
C=5, gamma=0.1, 
epsilon=.0001, 
coef0=10 

Random Forest 

max_depth=40, 
max_features='auto', 
min_samples_leaf=1,mi
n_samples_split=2, 
n_estimators=200 

max_depth=40, 
max_features='auto', 
min_samples_leaf=1, 
min_samples_split=2, 
n_estimators=400 

max_depth=20, 
max_features='sqrt', 
min_samples_leaf=1,
min_samples_split=5, 
n_estimators=200 

max_depth=20, 
random_state=0, 
max_features='sqrt',
min_samples_leaf=2, 
min_samples_split=2
, n_estimators=200  

k-nearest 

neighbours 

algorithm= 'brute', 
leaf_size=30, 
metric='euclidean', 
n_neighbors=5, 
weights='distance' 

algorithm= 'brute', 
leaf_size=30, 
metric='euclidean', 
n_neighbors=5, 
weights='distance' 

algorithm= 'auto', 
leaf_size=30, 
metric='manhattan', 
n_neighbors=5, 
weights='distance' 

algorithm= 'brute', 
leaf_size=30, 
metric='manhattan', 
n_neighbors=3, 
weights='distance' 

Multilayer 

Perceptron 

activation: 'relu', 
solver: 'lbfgs',    alpha: 
0.0001, 
hidden_layer_sizes: 
(1000,),  'learning_rate': 
'constant', 

activation = 'relu', 
solver='lbfgs', 
alpha=0.0001, 
learning_rate='constan
t', 
hidden_layer_sizes=(1
000,) 

activation = 'tanh', 
solver='adam', 
alpha=0.05, 
learning_rate='constan
t', 
hidden_layer_sizes=(1
000,) 

activation = 'relu', 
solver='adam', 
alpha=0.0001, 
random_state=1 

Gradient 

Boosting 

Regression 

learning_rate= 0.1, 
max_features=0.3, 
min_samples_leaf=5, n
_estimators=1000, 
max_depth=4 

learning_rate= 0.1, 
max_features=0.5, 
min_samples_leaf=3, 
n_estimators=500, 
max_depth=4 

learning_rate= 0.1, 
max_features=0.3, 
min_samples_leaf=3,n
_estimators=500, 
max_depth=6 

learning_rate= 0.1, 
max_features=0.3, 
min_samples_leaf=3, 
n_estimators=500, 
max_depth=4 

Partial Least 

Square 

Regression 

copy=True, 
max_iter=500, 
n_components=8, 
scale=True, tol=1e-06 

copy=True, 
max_iter=500, 
n_components=8, 
scale=True, tol=1e-06 

copy=True, 
max_iter=500, 
n_components=8, 
scale=True, tol=1e-06 

copy=True, 
max_iter=500, 
n_components=5, 
scale=True, tol=1e-
06 
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4.2.4 Identification of important features (wavelengths) from hyperspectral data 

 SHapley Additive explanations (SHAP) value is an essential tool of the 

Explainable artificial intelligence (XAI) which was proposed by[85]. It is used to 

interpret and explain any sophisticated machine learning model SHAP values are 

based on shapley values, a concept originating from the game theory. In the game 

theory there is a game and players. In the context of machine learning, the game is the 

outcome of a model, and the players are the features included in the model. SHAP 

helps to quantify the contribution that each feature (player) brings to the model 

prediction (game)[86]. It can explain individual predictions and aggregate these 

predictions to get powerful insights into the whole model. The details of the 

calculation of SHAP values are explained by [87].      

 The XAI was implemented in Python using the SHAP library[126]. There are 

two main advantages of using SHAP values in this study:  

a) Global Interpretability:  SHAP provides a global interpretation of the whole 

model. The collective SHAP values can show how much each wavelength 

(predictor/variable) contributes positively or negatively to the target variable (N 

status in plants).  

b) Local Interpretability: Each observation (or spectra) gets its own set of SHAP 

values. Using these SHAP values, the contributions of the predictors is explained. 

It also helps to pinpoint and contract the impact of factors at various growth 

stages of wheat. 
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Figure-4.1: Methodology 

 

Table-4.3: Important Wavelengths (associated with N) at various growth stages of 
wheat crop (Local Interpretability of Random Forest Model). 

 

 

 

3.  

 

 

 

 

 

 

 

 

 

 

Wheat sample 

1 2 3 4 5 
6 Days 

806 806 806 806 806 
794 794 794 804 820 
804 804 804 794 804 
672 672 820 820 794 
820 820 438 796 672 

45 Days 

806 806 806 806 806 
804 804 794 860 794 
794 862 1422 794 804 
790 796 716 804 790 
796 794 804 820 796 

63- 72 Days 

1554 1556 806 806 724 
1662 1582 820 724 1182 
1732 2080 804 820 720 
1556 1344 822 862 1272 
1582 1734 816 816 1300 

91 -97 Days 

724 806 1272 724 1556 
1300 884 724 718 1272 
720 740 1300 716 1736 

1182 942 718 1278 1288 
816 1728 1276 1272 1586 
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4.3 Results & Discussions 

4.3.1 Comparison of spectral pre-processing techniques and machine learning 

techniques  

 Using the four pre-processing techniques, six machine learning techniques 

produced 24 models with different performances for estimating N status in plants. It 

was found that coefficient of determination (R2) was the lowest for raw spectra, 

irrespective of any machine learning algorithm.  Among all the 24 models, random 

forest (RF) model with both De-Resolve plus 1st derivative pre-processing techniques 

was better than the other models (R2 = 0.89). The RF model was followed by gradient 

boosting regression (GBR) model with both De-resolve plus 1st derivative pre-

processed for predicting N status of plants (R2 of 0.87) on data. The performance of 

PLSR with 1st derivative and both De-resolve and 1st derivative pre-processed was 

almost similar. The R2 and MSE of all the models is given in Table 4.1. The ML 

models hyper parameters which gave the best predictions, are given in Table 4.2. 

4.3.2 Machine Learning Model explanation 

4.3.2.1 Global Interpretability: 

 The top four machine learning models (RF, GBR, PLSR and SVR) with higher 

R2 values were explained using SHAP values. The important wavelengths related to 

N, lies between 790 and 862 nm for both RF and GBR models, between 658 - 672nm 

for PLSR model, and between 600-2000 nm for SVR. The SHAP function 

"TreeExplainer" has been used to explain the RF and GBR models, whereas 

"KernelExplainer" has been used to explain the PLSR and SVR models.   

 The global interpretability for RF model showed that the wavelengths 

predicting N status of the plant were 790,794, 796, 804, 806, 816, 820, 862, 848, 860 

nm, irrespective of the growth stage. These wavelengths lie in between reference 

wavelength (typically between 750 and 900 nm). The reference wavelengths are 

independent of the stage of leaf development due to negligible chlorophyll absorption, 

and reflectance at these wavelengths is mostly regulated by light scattering properties 

of the leaves[104]. For GBR model, the important wavelengths predicting N status of 
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the plant were 406, 408, 790, 792, 796, 802, 806, 804, 816 and 820 nm. For PLSR 

model, the bands predicting N status of the plant were 658, 662, 664, 666, 668, 670, 

672, 766, 1662, 2258 nm. The selected bands in the PLSR model were primarily 

within the range of 650–680 nm, adjacent to the Chl absorption peak at 675 nm 

[109]which concurs with previous studies on spectroscopic estimation of plant N 

content. In addition to these bands, 1662 and 2258 nm were also selected as the 

important bands to predict N status of plants. These bands correspond to leaf dry 

matter content, which is often correlated with the N concentrations[127].  

 In the SHAP variable importance plot of the random forest model (Figure-

4.2), every feature's SHAP values for every sample are plotted to get an overview of 

the important features. The important features are ranked in descending order 

(vertically). A wider spread of SHAP values signifies more differentiation in model 

output, and therefore the feature has higher importance. This plot also shows how 

each feature tends to influence the model predictions. The red and blue colour of the 

scale shows the high and low values of a feature, respectively. In the RF model plot, 

the lower values of the wavelengths (blue) results in increasing the N status of plants. 

The SHAP variable importance plot for GBR model is shown in Figure 4.3.    

4.3.2.2 Local Interpretability: 

The random forest model was selected for the local interpretability for identifying the 

important wavelengths at various growth stages of wheat. It was found that 

wavelengths 672, 794, 804, 806, 816 and 820 nm were important predicting N status 

of the plant during the first six days of wheat growth (Table 4.3), 716, 794, 804 and 

806 nm after 45 days of wheat growth, 724, 806, 820, 1556 and 1582 after 63-72 days 

of wheat growth and 718, 720, 724 and 1272 nm at the end of the wheat growth (91 -

97 days). Most of these wavelengths estimated at different growth stages of wheat 

have been used for predicting the N status of wheat crop.  

 [107]developed two spectral indices (canopy chlorophyll content index from 

670, 720, 790 nm and spectral ratio planer index from 445, 705 and 750 nm) to detect 

the N stress in crops.[108]used hyperspectral data to identify the nitrogen status of 

wheat. The genetic algorithm selected relatively few features in the NIR region (>750 
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nm) for estimating plant N content. Reflectance features were commonly selected 

between 583 and 722 nm in the two growing seasons, encompassing the primary 

wavelengths for visible red light absorption by chlorophyll.  

The study results suggest that ML can be effectively used to estimate the N 

status of wheat from the hyperspectral data. The eXplainable Artificial Intelligence 

(XAI) tools can be efficiently used to explain the complex black box ML models, 

which will help remote monitoring of N nutrition of wheat crop.  

 

 

Fig.4.2. SHAP variable importance plot (Random Forest) 
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Fig.4.3. SHAP variable importance plot (Gradient Boosting Regression) 
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Chapter 5 

Estimation of chlorophyll, macronutrients and water content in maize from 

hyperspectral data using machine learning and explainable artificial intelligence 

techniques           

 

5.1 Introduction 

The abiotic stress, mainly water and nutrient stress, is becoming a major threat to 

food security[72], and 71% of the yield losses in crops are caused by abiotic factors 

[73]. The effect of abiotic stress on crop growth is usually detected only after it 

becomes visually apparent; therefore, assessment of yield loss due to water and nutrient 

stresses is essential for sustainable crop production.  

 The essential biochemical components of crop organic matter are water content, 

chlorophyll, nitrogen (N), phosphorus (P), and potassium (K). Chlorophyll helps plants 

to make their food through photosynthesis. Nitrogen is an essential component of the 

chlorophyll molecule, which enables the plant to capture sunlight energy by 

photosynthesis for carbohydrate formation, driving plant growth and grain yield [74]. 

Phosphorus is required to develop new plant cells and transfer the genetic code from 

one cell to another [75]. Potassium is an activator of essential enzymes, such as protein 

synthesis, sugar transport, carbon and nitrogen metabolism, and photosynthesis [76]. 

These essential macronutrients are required by plants in large amounts, and estimation 

of these nutrients on a spatio-temporal scale is required for increasing macronutrient 

use efficiency. Traditionally these parameters are determined from the plant tissue 

using invasive methods in a laboratory. The laboratory methods are costly and time-

consuming. Estimation of these parameters non-invasively using multispectral and 

hyperspectral remote sensing helps monitor the plants' health [7]. The regular 

monitoring of crop conditions by field surveys is a resource-intensive task [78]. 

Proximal and remote sensing sensors provide a solution by collecting information 

about crop conditions non-invasively.  

Visible (VIS, 400–700 nm), near-infrared (NIR, 700–1100 nm), and short-

wave infrared (SWIR, 1100–2500 nm) spectroscopy is quite helpful in measuring the 

leaf biochemical and nutrient properties quickly and non-destructively [9].[118] 
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discussed the advantages of analyzing hyperspectral data to detect various types of 

crop stress for leaf, canopy and field levels. [128] studied the effects of N on corn 

canopies' growth, yield, and reflectance characteristics. They found decreased 

reflectance in the near-infrared band and increased reflectance in the red band in the 

N-stressed canopies. [129] studied the estimation of N and chlorophyll content of 

maize leaves using hyperspectral data from 400 to 1100 nm. The 520-600nm 

wavebands gave a better estimate of N and chlorophyll concentrations. [130] used the 

regression analysis to identify the sensitive wavelengths for detecting N deficiencies 

in a corn canopy using a spectroradiometer in the range of 350 -1100 nm. They found 

that the radiations near 550 and 710 nm were superior for detecting N deficiencies. 

[99] found that the red and green regions were best suited for predicting N stress, NIR 

and blue regions for early season P stress in maize.  

[131] found the 11 wavelengths (609,647,651,654,669,675,676,680,721,727 

and 760 nm ) for estimating N, two wavelengths (675 and 680 nm) for P and 15 

wavelength (410, 411, 417, 422, 460, 463, 468, 646, 651, 658, 669, 670, 674, 676 and 

682 nm) for K in corn leaves. [89] found that 700 nm, 740 nm and 860 nm bands were 

related to leaf water content and 540 nm, 780 nm and 860 nm with leaf N in maize.  

The statistical and machine learning algorithms have been extensively used to 

analyze the crop spectra and estimate various elements [8]. The machine learning 

algorithms are more popular as they give better results than statistical methods as non-

linear relationships are better predicted with machine learning approaches [79]. 

Though the machine learning algorithms have a better performance, they are 

challenging to interpret due to their non-linear, nested, and complicated structure. 

Explainable artificial intelligence (XAI) techniques are becoming very attractive as 

they facilitate explaining, visualizing, and interpreting complex ‘black box’ machine 

learning models [43]. The explanations and interpretations help build transparency 

and trust in the machine learning models. 

Many studies have used machine learning techniques to estimate the 

biochemical, N, P and K content in plants from hyperspectral images [132], 

[133][134][135], but there are very few studies that have applied machine learning 

along with XAI techniques on hyperspectral data to estimate the nutrient content in 

plants. Therefore, a study was conducted to estimate water content, chlorophyll, N, P 
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and K content in maize using machine learning and XAI techniques. Specific 

objectives of the study were (i) to develop the machine learning models for estimation 

of water content, chlorophyll, N, P and K content in maize using hyperspectral data, 

(ii) the use of XAI methods to identify the optimum wavelengths for estimation of 

each parameter.  

 

5.2. Material and Methods 

5.2.1 Study area and Data Acquisition 

The secondary hyperspectral dataset of maize crop in this study was the output 

of a field experiment conducted on Havelock Research Farm and Greenhouse 

Innovation Centre of the University of Nebraska-Lincoln (U.S.). This dataset [136] 

was downloaded from the Ecological Spectral Information System (EcoSIS) website 

https://ecosis.org/. Maize association panel was grown in the Havelock Research 

Farm in 2018 and 2019 under low nitrogen conditions (−N) and high N conditions 

(+N). In addition, the panel was also grown in the Greenhouse Innovation Center with 

optimum conditions in 2018. Hyperspectral reflectance was measured at the leaf level. 

Ground truth data were collected for fresh and dry leaf weight, chlorophyll, nitrogen 

(N), phosphorus (P), potassium (K) and leaf area. The spectral range of the data is 350 

to 2500 nm with a spectral sampling resolution of 1 nm (1210 measurements). The 

details of this experiment are given in [137].  

 

5.2.2 Hyperspectral Data Processing 

The raw data was pre-processed with two data transformation techniques: Savitzky-

Golay 1st derivative and Deresolve. Savitzky-Golay's 1st derivative transformation 

removes the nonchemical effects and creates robust calibration models by correcting 

the baseline effects in the spectra. Derivatives may also help resolve the overlapped 

bands, and Deresolve is generally used for noise reduction. It uses a kernel filter to 

smooth the spectra with a resolution function, appearing as if it had been taken on a 

lower resolution instrument.  

 

5.2.3 Estimation of the status of various parameters of plants from hyperspectral 

data using machine learning techniques. 
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[137] reported the results of the dataset used in this study by employing partial 

least squares regression and support vector regression to estimate the leaf properties 

from hyperspectral data. In our study, the chemical properties of maize leaves were 

derived from hyperspectral data using six machine learning regression algorithms: 

Random Forest (RF), Support Vector Regression (SVR), k-nearest neighbours (kNN), 

Multilayer Perceptron (MLP), Gradient Boosting Regression (GBR) and Partial Least 

Square Regression (PLSR). In all these algorithms, reflectance values were used as 

the input parameters (X variables), and water content, chlorophyll, N, P and K 

concentration in maize were selected as the target variable (Y variable). The machine 

learning models were built for all the chemical parameters in low nitrogen, high 

nitrogen and glasshouse regimes. The machine learning algorithms were implemented 

in Python [80] programming language using the Scikit-learn (Developers n.d.) library. 

Scikit-learn is a standard, open-source library that integrates many ML algorithms 

(Pedregosa et al., 2011). Google's Colaboratory (Google Research n.d.) cloud-based 

environment was selected for developing and running the machine learning 

algorithms. Colaboratory allows writing and executing Python code in a simple 

browser without installation and configuration. GridSearchCV function was employed 

for hyperparameter tuning. This process helped in the selection of the best parameters 

for each regression algorithm.  

 The performance of the machine learning algorithms is also influenced by the 

sampling distribution of the training and the testing datasets. Verrelst et al. (2012) and 

Verrelst et al. (2011) have recommended the 80% and 20% split for the training and 

validation datasets. The dataset was also randomly split into 80% and 20%. The 

performances of machine learning algorithms were evaluated using the coefficient of 

determination (R2) and mean-squared error (MSE). An overview of the methodology 

is given in Figure-5.1.  

 

5.2.4 Identification of important features (wavelengths) from hyperspectral data 

Machine learning models are usually considered "black boxes"; therefore, it is 

challenging to interpret them and get an inside view of how the model resulted in a 

particular output. [137] predicted the leaf chemical parameters from hyperspectral 

used in our study by employing partial least squares regression and support vector 



59 
 

regression, but they didn’t identify the optimum wavelengths to estimate the chemical 

parameters of leaves. However, they used the Green Normalized Difference 

Vegetation Index (GNDVI), Red-edge Normalized Difference Vegetation Index 

(RENDVI, and Normalized Difference Water Index (NDWI) to quantify the chemical 

traits of leaves. In our study, optimum wavelengths to quantify the N, P, K, 

chlorophyll and water were identifying using the Explainable artificial intelligence 

(XAI) tools which may be helpful to interpret and explain the complex AI models. 

Lundberg and Lee (2017) proposed the SHapley Additive explanations (SHAP) value, 

a critical XAI tool, for interpreting the machine learning models. SHAP values are 

based on shapley values that originated from the mathematical game theory. In the 

context of machine learning, the game is the outcome of a model, and the players are 

the features included in the model. SHAP helps to quantify the contribution that each 

feature (player) brings to the model prediction (game) (Mazzanti 2020). It breaks 

down the prediction to show the impact of each feature. It can explain individual 

predictions and aggregate them to get powerful insights into the whole model. SHAP 

values calculations are explained in detail by [87]. We implemented the  XAI in 

Python using the SHAP library (Lundberg n.d.). The main advantage of using SHAP 

values for this study is the Global Interpretability of the whole model. Global 

interpretation of the collective SHAP values helps identify the important wavelengths 

associated with the target variables.  

5.3. Results & Discussions 

5.3.1 Comparison of machine learning techniques across three nitrogen regimes  

[137]estimated the water content, chlorophyll, N, P and K in maize leaves under the 

three regimes of N (Green House, Low and High N) using SVM and PLSR. Since we 

used six machine learning algorithms, therefore these parameters were estimated 

using 90 models (30 for each N regime, 5 chemical parameters x 6 machine learning 

algorithms) with different performances. Among the 90 models, RF and PLSR 

performed better than the other models for estimating N, P, K and chlorophyll content 

across the three N regimes. The coefficient of determination (R2) and mean square 

error (MSE) of all the models are given in Table 5.1. 
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 The water content in leaves was better predicted using SVR under high N 

status. However, the performance of the algorithms under high N status were in the 

order: SVR>RF>PLSR>GBR. The RF algorithm performed better than the other 

models under the greenhouse and low N conditions. The MLP algorithm was 

unsuitable for estimating water content under greenhouse, low and high N conditions. 

For chlorophyll content, the three algorithms (RF, SVR and PLSR) performed better 

than the other three algorithms. However, chlorophyll content was estimated using 

PLSR and RF algorithms with good accuracy under high N and greenhouse conditions 

(Table 5.1).    

 Among greenhouse, low N and high N status, nitrogen was best predicted for 

low N status and the performance of the algorithms were in the order: 

PLSR>RF>GBR. These three models also predicted N content in leaves under high N 

and greenhouse samples with similar performance order, except GBR, which 

performed better than RF under greenhouse conditions. The coefficient of 

determination was less than 0.30 for all the models to estimate P concentration in 

leaves. Among the three conditions, R2 was 0.29 to estimate P content in leaves under 

greenhouse conditions (Table 5.1). The algorithms' performance was in the order 

PLSR>GBR>RF. For low N status, the PLSR model was better than the remaining 

algorithms, but RF and PLSR performed better than the other models under high N 

status. Potassium content in the leaves under high N was better predicted using the 

PLSR and RF, followed by GBR. However, under low N status, the algorithms' 

performance was in the order RF>PLSR>GBR. The GBR was better than RF and 

PLSR under greenhouse conditions, and MLP and SVR were unsuitable for this 

dataset.     

The partial least-square(PLSR) and support vector machine (SVM) regression 

methods were compared by [138]to predict N, P and K in crops, and they found that 

SVM achieved better accuracies than PLSR in estimating the nutrient concentration. 

A gradient-boosting machine model was developed by [139] to estimate N from the 

hyperspectral images. The red-edge bands (700–725 nm) helped estimate N in maize. 

[137] found that PLSR and SVR were the best algorithms for estimating chlorophyll, 

N, P and K in maize leaves. In their study, N and chlorophyll were estimated 
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accurately, K and leaf water content with moderate accuracy, and P  with low 

accuracy. 

 

5.3.2 Machine learning model explanations 

 Out of the 90 machine learning models developed in this study, the two 

models with higher R2 values for all the five parameters under greenhouse, low and 

high N status were explained globally using the SHAP values to identify the 

important wavelengths associated with the crop parameters. The three most important 

wavelengths associated with the crop parameters are given in Table 5.2. The SHAP 

function "TreeExplainer" was used to explain the RF and GBR models, whereas 

"KernelExplainer" was used to explain the PLSR, kNN, MLP and SVR models.  

Under greenhouse conditions, important wavelengths for estimating water 

content in maize leaves are 1688, 2200 and 2202 nm using the RF model. However, 

the important wavelengths were 1979, 1982 and 1978 (SWIR region) under low N 

status using RF and GBR algorithms, and 1894, 1967 and 1894 nm under high N 

status using RF algorithm. The SVR and kNN algorithms showed similar wavelengths 

in the violet region under high N and greenhouse conditions. Since the average 

wavelength was 0.07% in the violet region (Fig. 5.2), therefore this band is not useful 

for detecting water stress in plants. It is well known that water absorption by leaf 

occurs in the SWIR range; thus, reflectance in the SWIR band is negatively correlated 

with leaf water content. According to [110] also, short-wave infrared is associated 

with the leaf water content and biochemicals. The study by [140] suggests that the IR 

and SWIR bands help estimate leaf water content.  

 For the low N treatments, the important wavelengths for estimating 

chlorophyll in maize leaves were 741, 750 and 751 nm. This red edge region indicates 

the sharp increase in reflectance from the VIS to NIR regions associated with strong 

chlorophyll absorptions and internal leaf structure. Using the SVR model, the 

important wavelengths were 367, 363 and 378 nm, which correspond to the violet 

region of the visible spectrum. The important wavelengths identified using the SVR 

model were not important as the reflectance was 0.06% in the violet region. These 

bands are not important for detecting chlorophyll in plants.    However, with the RF 
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model, the average reflectance was 0.43% in this red edge/NIR region, which is 

helpful in determining chlorophyll in plants. Under greenhouse and high N status, the 

important wavelengths were in the red edge region using the RF algorithm, but 

wavelengths identified using PLSR were 539, 540, 741, 745 and 747 nm. The green 

peak (central wavelength of 550 nm), as a representation of chlorophyll content, has 

demonstrated importance in classifying different crop species. Additionally, 

absorption in wavebands within the green region adjacent to the reflectance peak is 

associated with xanthophylls and anthocyanins. Anthocyanins can be estimated using 

anthocyanin’s absorption maximum near 550 nm and a band from the red edge, 

usually 700 nm. According to [111], chlorophyll and N contents can be accurately 

remotely estimated using green and red-edge chlorophyll indices using near-infrared 

(780–800 nm) and either green (540–560 nm) or red-edge (730–750 nm) spectral 

bands. [94] also asserted that the red and red-edge bands are useful for the estimation 

of chlorophyll in maize. 

 For the low N treatments, the optimum wavelengths for estimating N in maize 

leaves were 528, 527 and 584 nm with the RF model, and all these wavelengths 

correspond to the green region of the visible spectrum. The reflectance was 0.16% in 

these regions. The plants with N stress are subjected to degradation of active pigments 

with an increase in reflectance in the visible region. However, with the PLSR model, 

the wavelengths were mainly in the SWIR region (2145, 2139 and 2136 nm), and the 

corresponding reflectance was 0.14% in this region. Under greenhouse conditions, the 

wavelengths were in the SWIR region with GBR and PLSR algorithms. These bands 

correspond to leaf dry matter content, which is often correlated with N concentration 

in plants. The important wavelengths under high N status were 772, 773 and 775 nm 

using the RF model and 2218, 2151, and 2158 nm using the PLSR model. The 

important wavelength in the NIR region are related to the cellular structure of maize 

leaves. Higher reflectance due to high N in the NIR region is related to the spreading 

of radiation from this spectrum region due to spongy mesophiles and a higher volume 

of vacant spaces. Canopy nitrogen and chlorophyll content of maize were closely 

related [111]. Green and red-edge bands are useful for the estimation of N in maize. 



63 
 

Results from a study by [141] reveal a firm advantage for the SWIR-based indices in 

their ability to predict and in their sensitivity to N content in potatoes. 

 The important wavelengths for estimation of P in maize leaves were 1088, 

1262 and 1263 nm under low N status, 2217, 2158, 2159 nm under high N status and 

2153, 2154 and 2166 nm under greenhouse conditions using the PLSR model. These 

results show that NIR and SWIR region is useful for detecting P deficiency in 

plants.There is a close relationship between P and reflectance in the NIR region 

because P plays a critical role as an energy supplier in energy-consuming processes 

such as photosynthesis. In combination with reflectance in the visible or NIR regions, 

reflectance in the SWIR range was found to monitor nitrogen, phosphorus, sulphur 

and potassium status in plants [100]. 

 The important wavelengths of detecting K deficiency in maize leaves were 

2239, 2238, 2239 and 2260 nm (SWIR region) under low N status with the RF 

algorithm. Similar wavelengths in the SWIR regions were also found for high N and 

greenhouse conditions.   Potassium in plants is responsible for activating several 

enzymes in plants that affect starch and protein content. The SWIR band identified for 

K deficiency in plants corresponds to starch and protein absorption features. [20] 

developed a vegetation index using wavelengths of 1645 and 1715 nm (SWIR) to 

determine wheat's potassium concentration. VIS–NIR–SWIR leaf reflectance can be a 

valuable tool for low-cost, non-destructive, high-throughput investigation of leaf 

physiological and biochemical characteristics (including N, P and K), according to 

[137]. 

5.4. Conclusions 

This suggests that machine learning algorithms coupled with eXplainable 

Artificial Intelligence (XAI) tools can be effectively used to estimate the status of 

various crop parameters from the hyperspectral data and explain the complex black-

box machine learning models. Among various machine learning techniques applied 

on the low nitrogen dataset (N stress), the water content may be better predicted with 

RF, chlorophyll with SVR, N with PLSR, P and K with RF algorithm. It was found 

that the SWIR band was helpful in the estimation of water content; red & IR for 

chlorophyll; red, IR & SWIR for nitrogen; NIR & SWIR for P and SWIR for K. The 
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hyperspectral data can be used to differentiate nutrient deficiency in plants, and the 

proposed framework of machine learning and XAI tools have the potential to apply in 

different agricultural management regions on various spatial scales (within a 

field/region).  

 

Table-5.1: Results of the statistical parameters for water content, chlorophyll and 
macronutrients estimated using the six machine learning  regression models  

Green House Dataset 

Machine 

Learning 

Algorithm 
 

Water 

Content 
Chlorophyll Nitrogen Phosphorus Potassium 

R2 MSE R2 MSE R2 MSE R2 MSE R2 MSE 

RF 0.12 117 0.86 1172 0.44 0.175 0.17 0.01 0.18 0.26 

SVR -0.39 186 0.85 1216 0.2 0.25 0.003 0.015 -0.02 0.33 

kNN 0.12 116 0.65 2890 0.17 0.26 0.12 0.013 0.005 0.328 

MLP -0.06 141 0.84 1355 -0.009 0.32 -0.04 0.01 -0.02 0.33 

GBR 0.03 128 0.84 1339 0.5 0.158 0.24 0.011 0.23 0.25 

PLSR 0.09 120 0.86 1134 0.51 0.15 0.29 0.01 0.17 0.27 

 

Low Nitrogen Dataset 

Machine 

Learning 

Algorithm 
 

Water 

Content 
Chlorophyll Nitrogen Phosphorus Potassium 

R2 MSE R2 MSE R2 MSE R2 MSE R2 MSE 

RF 0.21 22.6 0.95 287 0.74 0.067 0.12 0.003 0.33 0.09 

SVR 0.05 27.4 0.96 245 0.68 0.08 -0.25 0.004 0.06 0.13 

kNN -0.03 29.9 0.87 807 0.64 0.09 -0.05 0.004 0.2 0.11 

MLP -0.09 31.6 0.94 388 0.66 0.27 -0.03 0.004 0.21 0.11 

GBR 0.19 23.2 0.95 320 0.73 0.07 -0.07 0.004 0.29 0.1 

PLSR 0.19 23.3 0.95 301 0.78 0.05 0.21 0.003 0.32 0.09 

High Nitrogen Dataset 
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Machine 

Learning 

Algorithm 
 

Water 

Content 
Chlorophyll Nitrogen Phosphorus Potassium 

R2 MSE R2 MSE R2 MSE R2 MSE R2 MSE 

RF 0.38 41.4 0.74 1291 0.64 0.07 0.21 0.003 0.34 0.13 

SVR 0.41 39.2 0.74 1301 0.35 0.13 -0.07 0.004 0.05 0.19 

kNN 0.24 50.7 0.55 2261 0.4 0.12 0.1 0.003 0.2 0.15 

MLP 0.01 66.2 0.67 1644 0.36 0.13 

-

0.0001 0.004 0.03 0.19 

GBR 0.32 45.2 0.73 1324 0.62 0.07 0.15 0.003 0.3 0.14 

PLSR 0.36 42.6 0.79 1020 0.67 0.06 0.2 0.003 0.34 0.13 

RF : Random Forest, SVR: Support Vector Regression, kNN: k-nearest neighbours, 
MLP: Multilayer Perceptron, GBR: Gradient Boosting Regression, PLSR: Partial 
Least Square Regression 
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Table-5.2: Optimum three important wavelengths estimated for different crop 
parameters using explainable artificial intelligence for the six machine learning  
regression models 

Green House Dataset 

Machine 

Learning 

Algorithm 
Water 

Content 
Chlorophyll Nitrogen Phosphorus Potassium 

RF 

1688, 2202, 
2200 743, 745, 742   

1844, 2251, 
2247 

kNN 355, 359, 351     

GBR   
2139, 2137, 

539 
1833, 1846, 

623 
2251, 2241, 

1844 

PLSR  540, 539, 745 
2163, 2164, 

2165 
2154, 2153, 

2166  
 

Low Nitrogen Dataset  

Machine 

Learning 

Algorithm 
Water 

Content 
Chlorophyll Nitrogen Phosphorus Potassium 

RF 

1979, 1982, 
1978 

750, 751, 
741 528, 527, 584 

1183, 1443, 
1444 

2239, 2238, 
2260 

SVR  
367, 363, 

378    

GBR 

1983, 2261, 
1657     

PLSR   
2145, 2139, 

2136 
1262, 1263, 

1088 
2249, 2255, 

2253 
 

High Nitrogen Dataset  

Machine 

Learning 

Algorithm 
Water 

Content 
Chlorophyll Nitrogen Phosphorus Potassium 

RF 

1967, 1894, 
1978 

755, 741, 
750 773, 772, 775 

1440, 1458, 
1443 

2247, 2249, 
2248 

SVR 

364, 369, 
361     

PLSR  
540, 751, 

747 
2218, 2151, 

2158 
2217, 2158, 

2159 
2251, 2249, 

2254 
(RF : Random Forest, SVR: Support Vector Regression, kNN: k-nearest neighbours, 
MLP: Multilayer Perceptron, GBR: Gradient Boosting Regression, PLSR: Partial 
Least Square Regression) 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure5.1: An overview of the approach
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Identification of best  ML models for 
each crop parameters  

Identification of pptimum  wavelengths 
associated with each crop parameter 

using Explainable Artificial Intelligence

overview of the approach 
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Figure-5.2: Average spectral reflectance of maize leaves under greenhouse, low and 

high nitrogen datasets 
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Chapter 6 

Classification of yellow rust of wheat from Sentinel-2 satellite imagery using 

deep learning artificial neural network      

 

6.1. Introduction 

Wheat, an important cereal crop of Punjab state, is vulnerable to the attack of 

several diseases. Among these, yellow rust is major biotic stress which is developed 

during cool climate, rain, dew, fog, and favourable wind conditions [22]. The main 

symptom of the disease is the appearance of stripes of yellow dust on the leaves.  It 

reduces the green leaf area, followed by a decline in the crop yield [142].  There are 

reports that crop yield losses due to fungal infection can be significant as it is one of 

the most destructive of the various rust diseases in wheat crop [143]. The northern 

Indian region (including Punjab and Himachal Pradesh) are in severe danger of this 

disease during the winter season when the climate is constructive for it [144]. 

A variety of techniques, sensors, datasets, and algorithms have been used for the 

timely identification of this disease. With the advancements in the field of earth 

observation, new-age satellite data have better spatial, spectral, and radiometric 

resolutions than their predecessors. There are studies in which multi and hyperspectral 

remote and proximal sensing datasets have been used (in addition to meteorological 

data) for identification of the yellow rust of wheat, but proximal hyperspectral 

datasets are more popular.  

The field spectroradiometer was used to measure the leaf spectra by [23], [24], 

and the continuous wavelet analysis was applied on the hyperspectral data to generate 

the rust signatures. [25] also used the hyperspectral data collected from the field and 

found that normalized photochemical reflectance index (NPRI) can be used to identify 

rust. A spectrograph mounted on a spray broom level was used by [26] to capture in-

field spectral images (wavelength between 463 and 895 nm). Neural networks were 

used to develop disease detection algorithms, which classified diseased and non-

diseased crops. [27] have also utilized the hyperspectral in-situ data collected in the 

spectral range of 350 to 2500nm. They developed models using partial least squares 

(PLS) and multiple linear regression (MLR) to assess the severity of yellow rust in the 

wheat crop. Both the models yielded a coefficient of determination (R2) of 0.96 and 
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0.89, respectively. [28] evaluated ten common narrow-band spectral indices for the 

identification of rusts from individual wheat leaves. These indices were based on the 

in-situ spectrometer measurements in the visible and the near-infrared regions of the 

electromagnetic spectrum. The yellow rust infected crop produced a strong response 

to all the indices. Using spectroradiometer data [29] created two spectral disease 

indices to identify wheat leaf rust. These indices were calculated using reflectance at 

wavelengths of 605, 695, and 455 nm. The R2 between the estimated and observed 

values was as high as 0.94 in both indices. These studies show that the accuracy 

(classification of yellow rust) from proximal sensing methods was higher than remote 

sensing methods but it requires a lot of resources and time to collect the spectra of 

yellow rust.  Although hyperspectral data is popular and provides accurate results, it 

requires a lot of resources (time, computing and equipment) to collect, process, and 

analyze such datasets. There are very few studies in which multispectral remote 

sensing data have been used for yellow rust identification.  

 Due to its high spatial, spectral, and temporal resolution, freely available 

Sentinel-2 satellite data has made revolutions in the field of agriculture. [30] 

developed the yellow rust forecasting system for the Gurdaspur and Nawanshehar 

districts of Punjab using weather and land use information extracted from IRS-P6 

AWiFS satellite data (spatial resolution = 56 m) satellite data. In Hebei Province, 

China, the Red Edge Disease Stress Index (REDSI) [31], was utilised to detect yellow 

rust infection at various severity levels. Sentinel-2 multispectral bands were simulated 

using the canopy hyperspectral data. [32] have also proposed a model for yellow rust 

monitoring based on Sentinel-2 multispectral images and a series of two-stage 

vegetation indices and meteorological data. Though few studies have used 

multispectral data to identify disease, there are very few studies in which Sentinel-2 

data has been used to identify yellow rust using machine learning techniques. 

Artificial intelligence (AI) algorithms have transformed the research on crop stress 

identification. Deep learning algorithms like artificial neural networks (ANN), 

convolutional neural networks (CNN), and recurrent neural networks (RNN) are 

gaining popularity due to their accurate results.  [39] have reviewed the use of deep 

learning of images for plant stress phenotyping, and they concluded that deep learning 
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algorithms require less data pre-processing before the modelling work. These 

algorithms are faster, give better performance, and are more reliable. Similarly, [33] 

also asserted that deep learning has a great potential for increased accuracy to identify 

crop disease from remote and proximal sensor data. [34] has applied the convolutional 

deep learning algorithm 'U-Net' on the multispectral images acquired from an 

unmanned aerial vehicle (UAV) to monitor wheat rust. [35] developed a similar 

approach to identify the rust, but they have acquired hyperspectral images from a 

UAV. A new deep convolutional neural network (DCNN)-based technique for 

automated crop disease diagnosis has been suggested. The overall accuracy of their 

model was 0.85. [36] conducted field experiments and utilized MODIS satellite data 

along with deep learning algorithms (like ANN, CNN, and recurrent neural networks) 

to monitor the wheat fungus. Automatically learned features were used for the model 

development.  Most of the previous studies have used deep learning CNN algorithms 

for yellow rust identification, but there is no study in which Sentinel-2 images have 

been analyzed for yellow rust of wheat using deep learning ANN's. Therefore, a study 

was planned to identify the yellow rust of wheat in the parts of Indian Punjab using 

Sentinel-2 and deep learning ANN’s. Various spectral indices were used to build a 

model which is a classifier differentiating between the yellow rust infected and the 

non-infected crop data points using free and open-source data, software, and 

programming tools. 

 

6.2. Materials and Methods 

6.2.1. Study Area 

The villages in the northeast zone (Rupnagar district) and Central zone 

(Jalandhar and Kapurthala districts) of Indian Punjab were selected in this study 

(Table 6.1 and Figure 6.1). There are reports that the wheat crop in the villages of 

these districts is prone to yellow rust. In these districts, south-western monsoon 

showers constitute about 73 per cent of the annual rainfall. The monsoon begins in the 

first week of July and extends up to mid-September. The hottest and coldest months 

in the study area are June and January, respectively.  

 Rupnagar district is part of the Kandi belt of Punjab and lies between latitudes 

of 30°   44’ & 31° 26’ N and longitudes of 76° 17’ & 76° 44’ E covering an area of 
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1376 sq. km. It is situated on the eastern side of Punjab and shares its borders with 

Himachal Pradesh and Haryana in the north and northeast, respectively. Jalandhar 

district is situated in the central part of Punjab. It lies between latitudes of 30° 58’ & 

31° 37’ N and longitudes of 75° 04’ & 75° 58’ E. Kapurthala district lies between the 

latitudes of 31° 07’ & 31 39’ N and the longitudes of 74° 58’ & 75 55’ E. It is 

bounded by the Beas River in the North West and Jalandhar and Firozepur districts in 

the South and southwest, respectively.  

Figure 6.1: Study Area 

 

Table 6.1: Villages in the study area 

SN

o 

District Villages Yellow Rust 

Infestation Status 

Date of 

Satellite Pass 

1 Rupnagar Nikku Nangal, Dokli and 
Patti 

Yes 20-Jan-2020 

2 Rupnagar Takhtgarh, Bajroor, Bahman 
Majra, Asalatpur, Lahrian, 
Lalpur, Chanauli, Bhatauli, 
Kheri, Gopalpur, Dumewal 

No 20-Jan-2020 

3 Jalandhar Mansurpur, Badala Yes 07-Feb-2020 
4 Kapurthala Maqsoodpur, Raipur Pirbax 

Wala, Ibrahimpur, Nangal 
Labana, Fatehpur 

No 07-Feb-2020 
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6.2.2 Satellite Data 

Severe yellow rust of wheat was reported in the Rupnagar region [145] on 29th 

January 2020, but it was on 9th February 2020  in the Jalandhar district [146]. The 

normalized difference vegetation index (NDVI) time series profile of wheat crop in 

the villages (Table 1) was assessed from December 2019 to March 2020 using the 

Sentinel-2 data in the Sentinel Hub EO Browser portal (https://apps.sentinel-

hub.com/eo-browser). It was observed that there was a dip in the NDVI values around 

the same period. A ground truth survey was also carried out to confirm the disease 

infestation. The Sentinel-2 satellite data (Level-2A product) of January and February 

2020 was downloaded from the "Copernicus Open Access Hub: 

https://scihub.copernicus.eu/" portal (Table 6.2). The datum and projection of the data 

are WGS 84 and UTM, respectively.   The methodology or the process flow of the 

research work is given in Figure 6.2. 



Figure 6.2: Process Flow of the Research work

 

Table 6.2: Characteristics of the Sentinel

 

Step 1
• Download Sentinel

Step 2
• Pre-processing of the data: Resample and Subset the Satellite Imagery.

Step 3

• Generation of the six spectral indices.

• NDVI, NDWI, NDMI, MCARI, 

Step 4

• Digitization of Agricultural area in both the healthy and disease infested 
parts of the study area.

• Generation of random points in the digitized area.

Step 5

• Overlay the point layer on the indices and extract their pixel values.

• Extract the attribute data in tabular form with an attribute “Class” having 
values infected/not infected.

Step 6

• Design and development of the Deep learning ANN model.

• Training of the model.

Step 7

• Cross validation of the Deep learning ANN Model.

• Accuracy Assessment of the model. 

Band 

Number 

Sentinel-2 MSI Bands

B1 Band 1: Coastal Aerosol
B2 Band 2: Blue
B3 Band 3: Green
B4 Band 4: Red
B5 Band 5: Red
B6 Band 6: Red
B7 Band 7: Red
B8 Band 8: NIR
B8a Band 8a: NIR narrow
B9 Band 9: Water Vapor
B10 Band 10: SWIR Cirrus
B11 Band 11:
B12 Band 12: SWIR
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2: Process Flow of the Research work 

2: Characteristics of the Sentinel-2 satellite data 

Download Sentinel-2A Satellite Data.

processing of the data: Resample and Subset the Satellite Imagery.

Generation of the six spectral indices.

NDVI, NDWI, NDMI, MCARI, Cl-Red Edge, S2REP

Digitization of Agricultural area in both the healthy and disease infested 
parts of the study area.

Generation of random points in the digitized area.

Overlay the point layer on the indices and extract their pixel values.

Extract the attribute data in tabular form with an attribute “Class” having 
values infected/not infected.

Design and development of the Deep learning ANN model.

Training of the model.

Cross validation of the Deep learning ANN Model.

Accuracy Assessment of the model. 

2 MSI Bands Spatial 

Resolution 

(m) 

Central 

Wavelength 

(nm) 

Band 1: Coastal Aerosol 60 443 
Band 2: Blue 10 490 

Band 3: Green 10 560 
Band 4: Red 10 665 

Band 5: Red-edge 1 20 705 
Band 6: Red-edge 2 20 740 
Band 7: Red-edge 3 20 783 

Band 8: NIR 10 842 
Band 8a: NIR narrow 20 865 
Band 9: Water Vapor 60 945 

Band 10: SWIR Cirrus 60 1375 
Band 11: SWIR 20 1610 
Band 12: SWIR 20 2190 

 

processing of the data: Resample and Subset the Satellite Imagery.

Digitization of Agricultural area in both the healthy and disease infested 

Overlay the point layer on the indices and extract their pixel values.

Extract the attribute data in tabular form with an attribute “Class” having 

Wavelength 

Band 

Width 

(nm) 

20 
65 
35 
30 
15 
15 
20 

115 
20 
20 
30 
90 

180 
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6.2.3. Pre-processing of Satellite Data 

All thirteen Sentinel-2 bands were resampled to 10 m using the SNAP 7.0 (Sentinel 

application programme) tool before the data was analysed. Resampling was done to 

combine all the bands of Sentinel in a single raster stack with uniform pixel size. The 

data was subset to the geographic extent of the study area.  Quantum GIS 2.14.3 

(QGIS) was used to analyze the composite dataset, which was converted to GeoTIFF 

format. 

 

6.2.4. Generation of spectral indices to extract crop data 

The six spectral indices were generated using the "Raster Calculator" tool in 

QGIS: NDVI, MCARI, Cl-Red Edge, S2REP, NDWI and NDMI, and the details of 

these indices are given in Table 6.3.  

 Normalized difference vegetation index (NDVI) is used for the assessment of 

crop or plant health. Its value ranged between -1 and 1. Higher values of NDVI 

indicate healthy and dense plants [147]. Modified chlorophyll absorption in 

reflectance Index (MCARI) helps in enhancing the relative abundance of chlorophyll 

in plants. It is sensitive to the variations in the chlorophyll concentrations and leaf 

area index. It is also not affected by the background reflectance of the soil and non-

photosynthetic materials [148]. Chlorophyll red edge (Cl-Red Edge) is also an 

indicator of vegetation growth [149]. Sentinel-2 red-edge position (S2REP) is useful 

to quantify chlorophyll contents [150].  Normalized difference water index (NDWI) 

reflects the moisture status in crops and soil. Higher NDWI values correspond to high 

plant water content and coating of high plant fraction [151]. Normalized difference 

moisture index (NDMI) is used to determine the vegetation water content or the crop's 

water stress levels [152].  
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Table 6.3: Spectral Indices used in the study for discrimination of yellow rust of 

wheat 

SNo Index Details General Formula Formula using Sentinel-2 

bands 

1 NDVI Normalized 
difference 
vegetation index 

(NIR - RED) / (NIR + 
RED) 
 

(B08 - B04) / (B08 + B04) 
 

2 MCARI Modified 
Chlorophyll 
Absorption in 
Reflectance Index 

((700nm - 670nm) - 
0.2 * (700nm - 
550nm)) * (700nm 
/670nm) 

((B05 - B04) - 0.2 * (B05 - 
B03)) * (B05 / B04) 

3 Cl-Red 
Edge 

Chlorophyll  red-
edge 

([760:800][690:720])p
ow (−1) 

(B7/B5)(−1) 

4 S2REP Sentinel-2 red-edge 
position 

705 + 35 * ((((NIR + 
R)/2) − RE1)/(RE2 − 
RE1))  

705 + 35 * ((((B08 + B4)/2) 
− B5)/(B6 − B5))  

5 NDMI Normalized 
Difference 
Moisture Index 

(820nm - 1600nm) / 
(820nm + 1600nm) 

(B08 - B11) / (B08 + B11) 
 

6 NDWI Normalized 
Difference Water 
Index 

(NIR - SWIR) / (NIR 
+ SWIR) 

(B08 - B011)/(B08 + B011) 

 

6.2.5. Preparation of the data to be fed to the ANN 

The steps by which the data was prepared for input to the ANN are given below: 

1) The cropped area was classified using Sentinel-2 data for the four study 

locations using QGIS, and 4000 points were randomly generated in each of the 

four digitized cropped areas (infected and non-infected regions of both the 

study areas).  

2) The points were overlaid on the spectral indices. The pixel values for all the 

indices were extracted using the vector points. Finally, four vector datasets 

(shapefiles) were generated, which contained seven attributes each for every 

index pixel value. The Point Sampling Tool, a QGIS plug-in, was used for this 

work. 

3) The attributes of the point layer generated in the previous step were extracted 

in a tabular form. A new attribute, "Class", was added, and the class had the 

values 1 (infected) or 0 (non-infected).  The data of infected and non-infected 
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areas were appended in a single file for 14 villages in Rupnagar and seven in 

Jalandhar and Kapurthala districts, respectively. 

4) The final experimental data were categorized into training and test datasets in 

the ratio of 80:20. The training dataset was used to train the neural network, 

learn from the input data and identify the biases and weights.  The test dataset 

was used to measure the performance of the network by classifying unseen 

data. It can also help in the calibrations to prevent the overtraining of the 

network. 

5) Finally, data scaling was performed to remove the effects of the attributes 

having large values.  

6.2.6. ANN model design and development 

A Backpropagation neural network (Figure 6.3) was designed for this study. In 

this network, the input layer has six input neurons. Each neuron corresponds to the six 

index attributes generated from satellite imagery. The output layer has one neuron 

which represents whether the point is yellow rust infected (1) or not (0). Two hidden 

layers were added to the network to get higher accuracy. There is no rule of thumb to 

decide about the number of neurons in the hidden layers, but we used a value of four 

(average of the sum of the total number of input attributes plus one). Rectified linear 

unit (ReLu) activation function was used in both the hidden layers to avoid negative 

values. The Sigmoid activation function was used in the output layer because of its 

soft-switching ability and simplicity in derivatives. Adam optimizer, along with the 

binary cross-entropy function, was used during the compilation of the network. This 

optimizer can efficiently adjust the weights. Being a binary classification problem, a 

binary cross-entropy function was used along with the optimizer. During the fitting of 

the model, epoch’s value of two hundred and batch size of five were used. The 

generated model can be visualized as given in Figures 6.3(a) and 6.3(b). 

Implementation of these models was performed in Python language using Jupyter 

notebooks. Standard python libraries like NumPy, Pandas and Keras were also used. 

Training of the model was performed using 80% of the experimental dataset and 

validation using the remaining 20% datasets.  

 Accuracy, precision, recall and F1 were calculated to find out the efficiency of 

multispectral data for accurately detecting the disease using deep learning models. 
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Accuracy is a metric that is used to evaluate classification models. It is the fraction of 

predictions the model got right. Precision answers the question about the proportion 

of positive identifications which were actually correct.  Recall calculates the 

proportion of actual positives which were identified correctly. F1-score is interpreted 

as the weighted average of precision and recall. A sampling procedure, k-fold cross-

validation, was also used to evaluate the above models. The 10-fold cross-validation 

was used to train and validate the model. The whole dataset is randomly partitioned 

into 10 folds (depending on the data size), and the model is fitted with nine folds 

which are used as a training set and validate the model using the remaining set. This 

process is repeated until every 10-fold has been served as the test set. 

 

 

 

 

 

 

 

 

Figure 6.3 (a): ANN Layout 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3(b): Model Structure 
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6.3. Results and Discussion 

6.3.1 Response of spectral indices to yellow rust 

Spectral indices are used for the identification and monitoring of crop diseases due to 

changes in the biochemical content of diseased and healthy crops. Upon infestation, 

the yellow rust rapidly consumes the chlorophyll, nutrients and water content of the 

plants, causing changes in the chlorophyll content of leaves leading to decrease in 

crop biomass [143].  Sentinel-2 has the red edge band which makes it unique for 

monitoring crop growth and diseases [31].  In this study, it was found that the six 

spectral indices (NDVI, MCARI, Cl-Red, S2REP, NDMI and NDWI) are useful for 

detecting yellow rust crop disease and these indices use the three Red-edge, NIR, Red 

and Green bands which capture the destruction in chlorophyll and tissues of crops 

followed by shifting of the spectrum from visible to NIR band. NDMI and NDWI 

were used to study the effect of a decrease in moisture of the crop and soils due to 

disease. 

 The responses of spectral indices to yellow rust are given in Fig 6.4 (A) and 

(B), where the average of each spectral index has been compared in diseased and 

healthy plants. The values of the NDVI, MCARI, Cl-Red and S2REP vegetation 

indices were decreased in the disease-infested plants of both areas. The NDVI was 

decreased by 27 % in disease-infested plants than healthy plants of 

Jalandhar/Kapurthala and 15% in the Rupnagar area. The MCARI was 1.5 times 

higher in healthy plants also in the Jalandhar/Kapurthala and 1.25 times% in the 

Rupnagar area. The Cl-Red was decreased by 30% in diseased plants than healthy 

plants in Jalandhar/Kapurthala and 5% in the Rupnagar area. The S2REP was 14% 

higher in healthy plants than diseased plants in the Jalandhar/Kapurthala and 26% in 

the Rupnagar area.  Similarly, there was a decrease in the NDMI and NDWI in 

disease-infested plants for both Rupnagar and Jalandhar/Kapurthala areas.   

 In order to maintain the same magnitude of spectral indices between -1 and 

+1, the scaling of spectral indices for disease-infested and healthy plants showed that 

the magnitude of the difference was higher with MCARI followed by NDVI, Cl-Red, 

NDWI, S2REP and NDMI for the Jalandhar/Kapurthala, but it was higher with 

MCARI, S2REP, NDVI, NDMI, Cl-Red and NDWI for the Rupnagar area.   
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6.3.2. Classification of healthy and diseased plants 

The classified data of healthy and diseased plants using deep learning ANN showed 

that the accuracy and F1-score for the Rupnagar area were 0.91, whereas there were 

0.95 for the Jalandhar/Kapurthala. The classification reports of the Rupnagar and 

Jalandhar/Kapurthala studies are given in Table 6.4. The data of Jalandhar/Kapurthala 

could not be classified using the Rupnagar trained model and vice-versa. The 10-fold 

cross-validation results were 0.97 with a variance of 0.12 for the Roopnagar area and 

0.91 with a variance of 0.13 for the Jalandhar/Kapurthala.  

 The ANN created in this study can be trained to classify the data points from 

healthy and diseased plants based on the spectral indices values. Proximal sensing, 

high-resolution images, classical machine learning algorithms, and CNN's have been 

of primary interest to researchers for the identification of wheat rust, but our findings 

advance the understanding of AI for the identification of biotic stress in plants using 

freely available Sentinel 2 data. It offers a novel perspective by demonstrating that 

multispectral satellite imagery along with ANN's could be used effectively to identify 

the yellow rust of wheat. The various advantages of the current approach compared 

with the conventional ones are:  (i) high spectral resolution and proximal data are 

costly, (ii) The multispectral imagery used in this study is open and freely available. 

(iii) Training a CNN (Image data) is computationally very expensive, whereas the  

ANN (Tabular Data) used in this study has been trained on a simple desktop computer 

without a GPU. Classical statistical and machine learning algorithms require an 

extensive workflow for data pre-processing, feature engineering, and feature 

selection. In contrast, there are very few requirements in deep learning, with a little bit 

of pre-processing, the data can be fed into the network. However, there are a few 

limitations in this study. The yellow rust usually attacks during winters when there is 

fog and cloud cover in Indian Punjab, and it is difficult to get a cloud-free satellite 

image during this period.  There is a small period between the onset of the yellow rust 

and the application of fungicide to control it. Therefore, finding a satellite image on a 

suitable satellite pass date is a big challenge. Finally, the model varies with the 

season. In our study, the data of Jalandhar/Kapurthala could not be classified using 

the Rupnagar trained model as there was a time difference between the satellite 
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images of both study locations. The yellow rust infected the crop during January in 

the Rupnagar area, whereas wheat was infected during February in the 

Jalandhar/Kapurthala area crops. The spectral indices change with time [147] which is 

one of the major reasons for not developing a global model for yellow rust of wheat.   

 

 
Table 6.4: Summary statistics of the ANN model in the areas of Indian Punjab for 
discrimination of yellow rust of wheat 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Class Precision Recall F1-score   Accuracy 

Jalandhar/Kapurthala  

Healthy 0.99 0.92 0.95  

Diseased 0.92 0.99 0.95 0.95 

Rupnagar 

Healthy 0.92 0.88 0.90   

Diseased 0.89 0.93 0.91 0.91 
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Figure 6.4: Spectral indices in healthy and diseased wheat plants in (A) 
Jalandhar/Kapurthala, and (B) Rupnagar area. 
 

6.4. Conclusions 

 The results of this study showed that deep learning ANN can be used to 

classify the wheat yellow rust extracted from the spectral indices generated from 

Sentinel-2 satellite imagery.   The proposed model is suitable for monitoring of 

yellow rust of wheat in crops on a local scale, but a global model couldn’t be 

developed in this data. Future work is required to develop a regional/global model for 

monitoring of disease. However, this disease is also affected by meteorological 

variables (like sunshine hours, relative humidity and temperature etc.); therefore, 

coupling meteorological variables with spectral indices may help to develop reliable 

crop disease, forecasting models.  
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Chapter 7   

Simulation of multispectral data using hyperspectral data for crop stress studies

            

7.1 Objective 

           This research aims to find the suitable bands of freely available multispectral 

satellite imagery associated with the crop parameters, which will help in crop stress 

identification. Important wavelengths identified in Chapters 3, 4 and 5 for various 

crop parameters using AI techniques have been used for the analysis. The satellite 

imagery selected for this analysis is Sentinel-2 MSI[153], Landsat-8 OLI [154]and 

Landsat-7 ETM+[155]. These multispectral imageries are chosen because they have 

the best spatial and spectral resolutions among today's freely available earth 

observation datasets. The results under Indian, Israel and US conditions were 

compared to identify the optimum wavelength for nutrient and water stress. 

7.2 Material and Methods 

7.2.1 Hyperspectral Data 

Wheat and Maize Data (Punjab) from Chapter 3:Field experiments with maize 

and wheat were conducted at Punjab Agricultural University farm, Ludhiana, in 2019, 

2020 and 2021. The experiment was laid out in three replicates in a split-plot design 

with three irrigation treatments (IW/CPE 1.0, 0.75 and 0.5) in main plots with five 

nutrient treatments (T1 = 100% NPK, T2 = 75% NPK, T3 = 50% NPK, T4 = 100% 

N, T5 = 100% NP) in subplots. The recommended doses of fertilizers (100% NPK) 

for maize (variety PMH I) were Urea (90 kg / acre), Di-Ammonium Phosphate (55 

kg/acre) and Muriate of Potash (20 kg /acre). The recommended fertilizer doses 

(100% NPK) for wheat (variety PBW725) were Urea (90 kg / acre), Single Superior 

Phosphate (55 kg/acre) and Muriate of Potash (20 kg /acre). The leaf samples were 

collected at monthly intervals from August-October 2019 and 2020 for maize, 

December 2019-March 2020 and December 2020-April 2021 for wheat. The leaf 

samples were analysed for water content, chlorophyll, nitrogen (N), phosphorus (P) 

and potassium (K) using standard methods. The reflectance spectra of crops were 

collected on leaf sampling dates using ASD Field Spec-4 Spectroradiometer 
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(wavelength interval between 350 - 2500 nm) on clear and cloudless days. There were 

103 measurements for maize and 135 for the wheat experiment. 

 

Wheat (Israel) from Chapter 4:The secondary hyperspectral data of wheat was 

downloaded for the Gilat Agricultural Research Center, Israel. The dataset [97] was 

downloaded from the Ecological Spectral Information System (EcoSIS) website 

https://ecosis.org/. The proximal canopy measurements were taken in the year 2004 

and 2005 using a spectroradiometer (ASD FieldSpec bare fiber). The data was 

collected throughout the growing season at 6, 45, 63-72 and 91-97 days of wheat 

growth. The plant tissues were collected and analysed for water content, dry weight, 

leaf area index (LAI) and nitrogen content. The spectral range of the data is 400 to 

2400 nm with a spectral sampling resolution of 2 nm (330 measurements). 

 

Maize (USA) from Chapter 5:The secondary hyperspectral dataset of maize crop 

used for this work was the output of the field experiment conducted on Havelock 

Research Farm and Greenhouse Innovation Centre of the University of Nebraska-

Lincoln (U.S.). This dataset [136] was downloaded from the EcoSIS website 

https://ecosis.org/. Maize association panel was grown in the Havelock Research 

Farm in 2018 and 2019 under control and nitrogen deficiency conditions. In addition, 

the panel was also grown in the Greenhouse Innovation Center in 2018. Hyperspectral 

reflectance was measured at the leaf level. Ground truth data were collected for 

chlorophyll, nitrogen, phosphorus, potassium, fresh and dry leaf weight, and leaf area. 

The data consisting of 1210 measurements has a spectral range of 350 to 2500 nm and 

a spectral sampling resolution of 1 nm. 

 

7.2.2AI Techniques 

The raw hyperspectral data was pre-processed with two data transformation 

techniques, Savitzky-Golay 1st derivative and Deresolve. 

Reflectance data were utilized as input parameters (X variables) in the 

machine learning analysis environment, and water content, N, P, K, and Chlorophyll 

concentrations in maize and wheat were chosen as the target variable (Y variable). Six 

machine learning regression algorithms (k-nearest neighbours (kNN), Random Forest 
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(RF), Support Vector Regression (SVR), Multilayer Perceptron (MLP), Gradient 

Boosting Regression (GBR), and Partial Least Square Regression (PLSR)) were used 

to retrieve various maize parameters (from hyperspectral data). The machine learning 

algorithms were developed using the Python [80] programming language and the 

Scikit-learn[81] library. Scikit-learn is an open-source library that integrates various 

machine learning methods[125]. The ML algorithms were developed and executed in 

a cloud-based environment, Google's Colaboratory[82]. Without the need for 

installation or configuration, Colaboratory allows creating and executing Python code 

in a simple browser. GridSearchCV function was employed for hyperparameter 

tuning. This process helped select the best parameters for each regression algorithm. 

Finally, the models with the best coefficient of determination (R2) and mean-squared 

error (MSE) were chosen. 

Machine learning models are frequently referred to as "black boxes," meaning that 

deciphering them and understanding how they produced a specific output is difficult. 

Explainable AI (XAI) technologies can aid in the interpretation and explanation of 

sophisticated AI models.[85] The SHapley Additive explanations (SHAP) value, an 

important XAI tool, was proposed by[86]. SHAP values are derived from shapley 

values found in mathematical game theory. The game is the result of a model in 

machine learning, and the players represent the features contained in the model. 

SHAP aids in quantifying each feature's (player's) contribution to the model 

prediction (game)[86]. It dissects the prediction to show how each element affects the 

outcome. It can explain individual forecasts and aggregate them to provide valuable 

insights into the entire model. SHAP values calculations are explained in detail by 

[87].      

 The SHAP library[126]was used to implement XAI in Python [126]for this 

study. The key benefit of adopting SHAP values for this study is the model's overall 

interpretability. The collective SHAP values are interpreted globally to find the 

important wavelengths related to the target variables. 

 

7.2.3 Suitable bands in multispectral satellite imagery 

Suitable bands of freely available multispectral satellite imagery associated 

with the crop parameters are discussed in this section. The satellite imagery selected 
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for this analysis is Sentinel-2 MSI, Landsat-8 OLI and Landsat-7 ETM+. These 

multispectral imageries are selected because they have the best spatial and spectral 

resolutions among today's freely available earth observation datasets. Table-7.1, 

Table-7.2, and Table-7.3 outline the spectral bands and resolutions of the Sentinel-2 

MSI, Landsat-8 OLI, and Landsat-7 ETM+ datasets, respectively. Figure-7.1 

compares the spectral bands of Sentinel-2, Landsat 7 ETM+, and Landsat 8 OLI. 

Those bands are identified in these freely available datasets, similar to those 

identified by the explanation of the ML models in the previous steps.  

 

Table-7.1: Spectral bands of Sentinel-2 MSI sensor 

Band Spectral Region/Band 

Description 

Wavelength 

range (nm) 

Central 

Wavelength 

(nm) 

Resolution 

(m) 

B1 Coastal Aerosol 433 - 453 443 60 
B2 Blue 458 - 523 490 10 
B3 Green Peak 543 - 578 560 10 
B4 Red  650 - 680 665 10 
B5 Red-Edge 1 698 - 713 705 20 
B6 Red-Edge 2 733 - 748 740 20 
B7 Red-Edge  773 - 793 783 20 
B8 Near-infrared (NIR) 785 - 900 842 10 
B8A Near-infrared narrow (NIRn) 855 - 875 865 20 
B9 Water vapour 935 - 955 945 60 
B10 Shortwave infrared /Cirrus 1360 - 1390 1375 60 
B11 Shortwave infrared 1 (SWIR1) 1565 - 1655 1610 20 
B12 Shortwave infrared 2 (SWIR2) 2100 - 2280 2190 20 
 

Table-7.2: Spectral bands of Landsat-8 OLI sensor 

Band Spectral Region/Band 

Description 

Wavelength 

range (nm) 

Central 

Wavelength 

(nm) 

Resolutio

n (m) 

1 Coastal Aerosol 433 - 453 443 30 
2 Blue 450 - 515  483 30 
3 Green 525 - 600 560 30 
4 Red 630 - 680 660 30 
5 Near-infrared (NIR) 845 - 885 865 30 
6 Shortwave infrared 1 (SWIR1) 1560 - 1660 1650 30 
7 Shortwave infrared 2 (SWIR2) 2100 - 2300 2220 30 
8 Panchromatic 500 - 680 640 15 
9 Shortwave infrared /Cirrus 1360 - 1390 1375 30 
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Table-7.3: Spectral bands of Landsat-7 ETM+ sensor 

Band Spectral Region/Band 

Description 

Wavelength 

range (nm) 

Central 

Wavelength 

(nm) 

Resolution 

(m) 

1 Blue 450 - 520 483 30 
2 Green 520 - 600 560 30 
3 Red 630 - 690 662 30 
4 Near-infrared (NIR) 770 - 900 835 30 
5 Shortwave infrared 1 (SWIR1) 1550 - 1750 1648 30 
6 Thermal 10400 - 12500 11335 30 
7 Shortwave infrared 2 (SWIR2) 2090 - 2350 2206 30 
8 Panchromatic 520 - 900 706 15 

Figure-7.1: Comparison of the bands of Sentinel-2, Landsat 7 and 8. 
 

7.3 Results & Discussions 

7.3.1Suitable bands in multispectral satellite imagery 

Maize and Wheat (Punjab): The bands of freely available multispectral satellite 

imagery associated with the six crop (maize and wheat of Punjab) parameters are 

given in Table-7.4 (Maize) and Table-7.5 (Wheat). According to the analysis, for 

maize, the SWIR1 band in all the three earth observation datasets is associated with 

the water nitrogen, phosphorus and potassium parameters.NIR and blue bands are 

associated with the water content, and red and green bands are with chlorophyll.  

For the wheat dataset, SWIR1, NIR and Shortwave infrared /Cirrus are associated 

with the phosphorus and potassium parameters. Green, NIR and coastal aerosols are 
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associated with nitrogen. Green peak, green and red are associated with chlorophyll. 

Green, NIR, blue and green peak are associated with the water content.  

 

Table-7.4: Bands of freely available multispectral satellite imagery associated  
with the maize(Punjab) parameters 

 
Crop Parameter Sentinel-2 LANDSAT-8 OLI LANDSAT-7 

ETM+ 

Water Content Near-infrared 

(NIR), Blue 

NIR, SWIR2, Blue NIR, Blue 

Nitrogen SWIR1 (B11), 

Red-Edge2 (B6) 

SWIR1 SWIR1 

Phosphorus SWIR1 (B11) SWIR1 SWIR1 

Potassium SWIR1 (B11), 

Red-Edge2 (B6), 

Red (B4) 

SWIR1 SWIR1 

Chlorophyll a Red (B4) Red Green, Red 

Chlorophyll b Red (B4) Green, Red Green, Red 

 

Table-7.5: Bands of freely available multispectral satellite imagery associated  
with the wheat (Punjab) parameters 

 
Crop Parameter Sentinel-2 LANDSAT-8 

OLI 

LANDSAT-7 

ETM+ 

Water Content Green peak (B3), Red 

Edge2 (B6), Coastal 

Aerosol (B1), Water 

Vapour (B9)   

Green, NIR Green, NIR, 

Blue  

Nitrogen Coastal Aerosol (B1), 

Green Peak (B3), NIR 

Coastal Aerosol, 

Green, NIR,  

Green, NIR, 

Blue 

Phosphorus Shortwave infrared 

/Cirrus, SWIR1, NIR 

Shortwave 

infrared /Cirrus, 

SWIR1, NIR 

SWIR1, NIR 

Potassium Shortwave infrared 

/Cirrus, SWIR1 

Shortwave 

infrared /Cirrus, 

SWIR1 

SWIR1, NIR 

Chlorophyll a Green Peak (B3), Red(B4)  Green, Red Green, Red 

Chlorophyll b Green Peak (B3), Red(B4) Green, Red Green, Red 
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Wheat (Israel): The bands of freely available multispectral satellite imagery 

associated with Nitrogen are given in Table-7.6. The random forest(RF) algorithm 

was the best performing model, and according to it the important wavelengths were: 

790,794, 796, 804, 806, 816, 820, 862, 848 and 860. According to the analysis, the 

SWIR2 band in all the three earth observation datasets is associated with the water 

content, nitrogen, phosphorus and potassium parameters.  

 

Table-7.6: Bands of freely available multispectral satellite imagery associated  
with the wheat (Israel) parameters 

 
Crop 

Parameter 

Sentinel-2 LANDSAT-8 OLI LANDSAT-7 

ETM+ 

Nitrogen NIR (B8), Red-Edge 

(B7), Near-infrared 

narrow (NIRn) (B8A)  

Near-infrared (NIR) Near-infrared 

(NIR) 

 

Maize(US): The bands of freely available multispectral satellite imagery associated 

with the five crop (maize US) parameters are given in Table-7.7. According to the 

analysis, the SWIR2 band in all the three earth observation datasets is associated with 

the water content, nitrogen, phosphorus and potassium parameters. The red-edge2 

band of the Sentinel-2 is associated with chlorophyll and nitrogen. In comparison, the 

Green and NIR bands of both Landsat datasets are associated with chlorophyll. For 

the water content parameter, the most related bands of Landsat are SWIR1 and 

SWIR2. 
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Table-7.7: Bands of freely available multispectral satellite imagery associated  
with the maize(US) parameters 

 
Crop Parameter Sentinel-2 LANDSAT-8 OLI LANDSAT-7 

ETM+ 

Water Content SWIR2 (B12) SWIR2, SWIR1 SWIR1, SWIR2,  

Nitrogen SWIR2 (B12), 

Red-Edge (B7), 

SWIR2, Green SWIR2, Green, 

NIR 

Phosphorus SWIR2 (B12) SWIR2 SWIR2 

Potassium SWIR2 (B12) SWIR2 SWIR2 

Chlorophyll Red-Edge 2 

(B6), Green 

Peak (B3) 

Green, NIR PAN, NIR, Green 

 

According to [110] also, shortwave infrared is associated to the leaf water content and 

biochemicals, near-infrared with cell structure and visible spectrum is with leaf 

pigments. [107]developed two spectral indices (canopy chlorophyll content index 

from 670, 720, 790 nm and spectral ratio planer index from 445, 705 and 750 nm) to 

detect the N stress in crops. [108] used hyperspectral data to identify the nitrogen 

status of wheat. The genetic algorithm selected relatively few features in the NIR 

region (>750 nm) for estimating plant N content. Reflectance features were 

commonly selected between 583 and 722 nm in the two growing seasons, 

encompassing the primary wavelengths for visible red light absorption by chlorophyll.  

The results show that NIR and SWIR region is useful for detecting P 

deficiency in plants. There is a close relationship between P and reflectance in the 

NIR region because P plays a critical role as an energy supplier in energy-consuming 

processes such as photosynthesis. In combination with reflectance in the visible or 

NIR regions, reflectance in the SWIR range was found to monitor nitrogen, 

phosphorus, sulphur and potassium status in plants [100]. 

The SWIR band identified for K deficiency in plants corresponds to starch and 

protein absorption features. [20] developed a vegetation index using wavelengths of 

1645 and 1715 nm (SWIR) to determine wheat's potassium concentration. VIS–NIR–

SWIR leaf reflectance can be a valuable tool for low-cost, non-destructive, high-
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throughput investigation of leaf physiological and biochemical characteristics 

(including N, P and K), according to [137].  

According to [111], chlorophyll and N contents can be accurately remotely 

estimated using green, red and red-edge chlorophyll indices using near-infrared (780–

800 nm) and either green (540–560 nm) or red-edge (730–750 nm) spectral bands. 

[94] also asserted that the red and red-edge bands are useful for the estimation of 

chlorophyll in maize. 

Although various bands are associated with the crop parameters, there are 

certain limitations of the available datasets. The spatial and spectral resolution of the 

freely available datasets is not suitable for crop or farm-level studies. Almost all 

spectral bands' bandwidth ranges in reference datasets are quite wide for precision or 

higher-resolution studies. Also, according to Table 4, the SWIR2 band overlaps in the 

four crop parameters, so it is difficult to distinguish between various parameters 

individually. Thus, due to the broader bandwidth range, the generalization of 

information takes place. The minimum spatial resolution dataset is Sentinel-2 with 

10m; such data may be used for large farms or a complete administrative unit like a 

block or a district. It will not be suitable for precision farming applications.  

The findings imply that machine learning may be utilized to accurately 

evaluate the status of various crop parameters using hyperspectral data. The 

eXplainable Artificial Intelligence (XAI) tools can be used to effectively explain 

sophisticated black box ML models, which will aid remote monitoring of various 

agricultural parameters and maize crop nutrition. Furthermore, currently available 

earth observation datasets are appropriate for medium/small scale studies but not for 

large-scale studies or precision farming to diagnose crop stress. 
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Chapter 8 

Summary and Future Work 

 The effect of abiotic and biotic stresses on the crop is usually identified only 

when these are noticeable and visible. Therefore, continuous monitoring of crop 

conditions using proximal and remote sensing technologies can assist in the early 

diagnosis of the problem. Therefore, a study was carried out to detect the water, 

nutrient and disease stress in wheat and maize using proximal and remote sensing. 

Mapping and monitoring crop stress using spectral indices is helpful for 

understanding the crop growth trends. In order to understand the crop conditions on 

1;50,000 scale, MODIS Enhanced Vegetation Index(EVI) was used in Google Earth 

Engine. The results of the study showed that maximum crop stress was observed in 

the Gurdaspur district of Punjab during the Rabi (Winter) cropping season of 2019-

2020, and the least stress was identified in Patiala, Nawan Shehar and SAS 

Nagar(Mohali) districts of Punjab. 

In order to identify the stress due to abiotic factors (like nutrients and water), a field 

experiment with a maize-wheat cropping system under various water and nutrient 

levels was carried out at Punjab Agricultural University, Ludhiana. The reflectance 

spectra of crops were collected at regular intervals using Spectroradiometer 

(wavelength interval between 400 - 2500 nm) on clear and cloudless days. The leaf 

samples were collected and analyzed for water content, chlorophyll, nitrogen (N), 

phosphorus (P) and potassium (K) using standard methods. The measured plant 

parameters were related to spectra hyperspectral data using machine learning (RF, 

SVR, GBR, PLSR) and explainable artificial intelligence (XAI) techniques to identify 

the optimum wavelengths for nutrient and water stress in maize and wheat. It was 

found that one machine learning technique was not suitable for every parameter. For 

example, the water content in maize leaves was better estimated with GBR followed 

RF models. N in maize was estimated using PLSR, GBR and RF models, total P 

content using PLSR and RF models, and total K  using PLSR and RF models. The 

most important wavelengths associated with water content for detecting water stress 

in maize are in the near-infrared region  (841, 842, 847 and 702 nm) using GBR. The 

optimum bands for estimation of water content in wheat were visible, NIR and SWIR 
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regions. The sensitive bands were 599, 617, 600, 618, and 651 nm for estimation of 

chlorophyll a, and 486, 691, 599, 690 and 431 nm for chlorophyll b in maize leaves. 

The most important bands for estimation of chlorophyll a and b in wheat leaves were 

in the visible region (554, 553, 656, 555 and 405 nm for chlorophyll a, and 486, 691, 

599, 690 and 431 nm for chlorophyll b). The wavelength predicted with the RF 

models for estimation of N in maize leaves were in the visible, near-infrared and 

SWIR region (617, 804, 1978, 1979 and 738 nm). The sensitive bands to estimate N 

in wheat leaves were 443 nm> 449 nm >597 nm> 885 nm > 450 nm. The important 

bands for detecting P stress in maize were in the SWIR region using GBR, visible, 

NIR and SWIR region using the RF model. The optimum bands for estimation of total 

P in wheat leaves were in 1304, 1305, 810, 1259 and 1505 nm. The total K in maize 

were better using visible and NIR region with the RF model, but in the SWIR region 

with the PLSR model. The sensitive bands for detecting K deficiency in wheat leaves 

were in the SWIR region  

  These studies identified the optimum spectral wavelengths for abiotic stresses 

in crops, but the spectral behaviour of biotic and abiotic stresses is quite different. In 

order to study the biotic stress in crops, yellow rust of wheat (a major disease) was 

classified in the parts of Punjab from Sentinel-2 satellite imagery using deep learning 

artificial neural network. The values of the normalized difference vegetation index 

(NDVI), modified chlorophyll absorption in reflectance Index (MCARI), chlorophyll 

red edge (Cl-Red) and sentinel-2 red-edge position (S2REP) vegetation indices were 

decreased in the disease-infested plants of both areas. Similarly, there was a decrease 

in the normalized difference moisture index (NDMI) and normalized difference water 

index (NDWI) in disease-infested plants for both Rupnagar and Jalandhar/Kapurthala 

areas. The classified data of healthy and diseased plants using deep learning artificial 

neural network (ANN) showed that the accuracy and F1-score for the Rupnagar area 

were 0.91, whereas there were 0.95 for the Jalandhar/Kapurthala.    

 The wavelengths identified from hyperspectral data in abiotic stresses were 

compared with freely available multispectral satellite imagery (Sentinel-2 MSI, 

Landsat-8 OLI and Landsat-7 ETM+) for remote monitoring of stresses in crops. The 

SWIR2 band in all three earth observation datasets is associated with the water 
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content, nitrogen, phosphorus and potassium parameters. The red-edge2 band of 

Sentinel-2 is associated with chlorophyll and nitrogen. In comparison, the green and 

NIR bands of both Landsat datasets are associated with chlorophyll. The most related 

bands of Landsat were SWIR1 and SWIR2 for the estimation of water content.  

Although various bands are associated with the crop parameters, the available 

datasets have certain limitations. The spatial and spectral resolution of the freely 

available datasets is unsuitable for crop or farm-level studies. All spectral bands' 

bandwidth ranges in reference datasets are wide for precision or higher-resolution 

studies. Also, the SWIR2 band overlaps in the four crop parameters, so it isn't easy to 

distinguish between various parameters individually. Thus, due to the broader 

bandwidth range, information generalization occurs. The minimum spatial resolution 

dataset is Sentinel-2 with 10m; such data may be used for large farms or a complete 

administrative unit like a block or a district. It will not be suitable for precision 

farming applications.   

The major findings of this study are that machine learning techniques are 

useful for estimating the various crop parameters using hyperspectral data. The 

eXplainable Artificial Intelligence (XAI) tools can be used to explain the ML models, 

which will aid remote monitoring of various crop growth parameters and crop 

nutrition. 

 In order to better understand the implications of these results, future studies 

could address the issues of the generalization of the results due to the broader 

bandwidth of the freely available satellite imagery. New AI techniques and future 

higher resolution (spatial and spectral) earth observation datasets could be used to 

lessen the gap between the proximal and remote sensing datasets. 
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Annexure-1 

Crop Experiment Photographs 

Wheat at P.A.U. Field- 2020-21 

 

Wheat at P.A.U. Field- January 2021 

 

N: Nitrogen, P: Phosphorus, K: Potassium, IW: Irrigation Water, CPE: Cumulative 

Pan Evaporation, PAU: Punjab Agricultural University 
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Maize at P.A.U. Field- August 2020 

 

Maize at P.A.U. Field- 2020 

 

N: Nitrogen, P: Phosphorus, K: Potassium, IW: Irrigation Water, CPE: Cumulative 

Pan Evaporation, PAU: Punjab Agricultural University 
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