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Abstract 

          This thesis focuses on nonlinear dynamics of different laser beams (𝑞-Gaussian, 

Cosh-Gaussian (ChG), Quadruple-Gaussian (Q.G.) laser beams) in different nonlinear 

media such as plasmas and narrow band gap semiconductors. Further, the impacts of self-

action effects that are self focusing, self defocusing, self trapping, self phase modulation 

etc. have been studied on higher harmonics and THz generation. Additionally, a scheme of 

THz generation by self focused surface plasma wave (SPW) at free space-semiconductor 

interface is developed in this thesis. 

          The nonlinear propagation of laser beams in different plasmas and narrow band gap 

semiconductors has been investigated analytically and numerically. Among different semi-

analytical approaches, variational approach has been opted to study the propagation of laser 

beams in nonlinear media under nonlinear regime. The nonlinear propagation of elliptical 

𝑞-Gaussian laser beam in plasma with ramp density is affected by deviation parameter ′𝑞′ 

and ellipticity of the laser beam. It has been observed that self focusing for 𝑞 = 3 is 

maximum, whereas the self focusing is decreased along the transverse direction along 

which the beam is more elliptic. In the case of Cosh-Gaussian laser beam, it has been found 

in collisional plasma that the uniform irradiance over cross section of laser beam helps to 

increase the efficiency of laser plasma coupling. It is observed that for 𝑏 = 1, the beam 

width is minimum because beam get equal contribution from off-axial rays. Whereas, the 

nonlinear characteristics of Q.G. laser beam have been observed in relativistic plasma. The 

comparisons between linear and nonlinear propagation of Q.G. and Gaussian laser beam 

have been made. It has been investigated that the extent of self focusing is enhanced at 

𝑥0

𝑟0
= 1.5 for Q.G. laser beam as compare to the Gaussian laser beam.   

          In this work, theoretical model has been developed for the generation of sub-

millimeter radiations in relativistic plasma and narrow band gap semiconductor. It has been 

derived on the basis of beating of two laser beams. It has been observed that yield of 

resonant THz radiations is affected significantly by cross focusing of 𝑞-Gaussian laser 

beams. As the 𝑞 value is increased that means 𝑞-Gaussian laser beam shifts towards 
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Gaussian distribution, the cross focusing is decreased. In this case, the contribution of off-

axial rays is obviated, the intensity of the pump laser beam is decreased, and therefore yield 

of the generation of THz radiation is decreased. The off-axial rays helps to enhance the 

intensity of laser beam which further increases the yield of THz radiation. A special 

treatment for generation of THz radiations by surface plasma wave (SPW) and 

filamentation of laser beam has been incorporated theoretically and numerically.   

          In addition, the generation of second harmonics of 𝑞-Gaussian and Q.G. laser beams 

has been developed in collisional plasma with upward density ramp. It has been found that 

the conversion efficiency of SHG is enhanced where the beam width is minimum. The 

density ramp of plasma is utilized to increase the density of plasma along the propagation 

direction. On propagation of two laser beams, the nonlinearity of the plasma is increased 

which increases the cross focusing of laser beam. In the results of which the yield of SHG 

is enhanced. 
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Preface 

          The present thesis focuses especially on the self-action effects of laser beams, THz 

generation, and higher harmonics generation in plasmas and narrow band gap 

semiconductors. The present work has been divided into twelve. Mostly, emphasis is given 

to investigating the effects of self-focusing on THz and second harmonics generation.  

          In particular, chapter 3 to chapter 6 incorporate the different self-action effects of 

different laser beams in different plasmas. Chapter 3 involves the description of the 

amplitude structures of 𝑞-Gaussian, cosh-Gaussian, and quadruple-Gaussian laser beams. 

In this chapter, different parameters of the laser beam have been described in detail which 

are useful for the next chapters. In chapter 4, emphasis is put on investigating the dynamics 

of beam width and axial phase of elliptical 𝑞-Gaussian laser beams using variational theory. 

The differential equations so obtained have been solved numerically to envision the effect 

of laser-plasma parameters on the propagation dynamics of the laser beam. Chapter 5 

includes the investigation of self focusing phenomenon of cosh-Gaussian laser beams in 

underdense plasmas. The effect of nonlinear absorption of laser energy in plasma also has 

been incorporated. The formulation is based on finding a semi-analytical solution of the 

nonlinear Schrodinger wave equation for the slowly varying beam envelope. In chapter 6, 

a theoretical investigation on linear and nonlinear propagation characteristics of a new class 

of laser beams known as multi Gaussian (M.G) laser beams have been presented. The 

optical nonlinearity of the plasma has been modeled by relativistic mass nonlinearity of the 

plasma electrons in the field of laser beam which causes self focusing. 

          In this thesis chapter 7 and chapter 8 is about the methods for the generation of 

THz radiation by 𝑞-Gaussian laser beam. Chapter 7 incorporates a method of generation 

of coherent terahertz (THz) radiations by nonlinear interaction of a pair of coaxial 𝑞-

Gaussian laser beams with underdense plasma. It explains the production of nonlinear 

current density due to propagation of two laser beams acts as the source of THz radiation. 

In chapter 8 is a theoretical investigation on THz generation by filmentation of two 𝑞-

Gaussian laser beams in narrow band gap semiconductors. The nonlinear dynamics of both 

beams have been studied by solving the nonlinear Schrodinger wave equation with 
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variational approach. The filamentations and their effects on THz generation have been 

studied numerically. 

           Chapter 9 and chapter 10 are focused on second harmonics generation of q-

Gaussian and quadruple-Gaussian (Q.G) laser beam in collisional plasma. Chapter 9 

represent an investigation of frequency up-conversion of a laser beam through the 

phenomenon of second harmonic generation (SHG) in collisional plasma with an upward 

density ramp is presented. By using a hydrodynamic fluid model of plasma, the source term 

for the SHG has been obtained. Emphasis is put on the investigation of the effect of various 

laser and plasma parameters on the propagation dynamics of the pump beam and the 

conversion efficiency of second harmonics. In Chapter-10, a scheme for the generation of 

second harmonics of intense quadruple Gaussian (Q.G) laser beams propagating through 

collisional plasmas has been presented. Variational theory has been adopted to find the 

semi-analytical solution of the wave equation for the slowly varying envelope of the laser 

beam.  

          In chapter 11, introduction to surface plasma waves (SPWs) and a method of 

generation of THz radiation with SPWs propagating over the semiconductor-free space 

interface are incorporated. Firstly the cross focusing of SPWs has been investigated. Then 

the investigation has been extended to see the effect of self focusing of the SPW on THz 

generations. Chapter 12 summarizes the obtained results on the basis of analytical and 

numerical investigations on the self-action effects, THz and higher harmonics generation 

in different nonlinear media. 
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Chapter 1 

Laser Plasma Interactions: Introduction 

1.1 Introduction 

          Light has always fascinated man and investigation of interaction of light with matter 

is as old as human civilization. Ancient people used glass made lenses to focus light to 

burn pieces of papers. However, the debut of LASER in 1960s [1] revealed the true beauty 

of light matter interactions. The unique characteristics of laser light are significantly 

applicable in different fields of science and technology [2-5] (fig.1.1). Laser has reserved 

a special place in scientific community due to its demand in daily life such as from CD 

player to medical imaging. Even high end applications such as inertial confinement fusion 

(ICF) [3, 6], laser driven particle accelerator [7], coherent radiation source [8] etc. are also 

abound. Over the last few decades, the Q-switching, mode locking and chirped pulse 

amplification techniques (CPA) [9, 10] have enabled researchers to obtain laser beams up 

to zettawatt of peak power [11-13]. The giant leap in laser technology during past few 

decades has led to a renaissance in the field of light matter interactions by giving birth to 

two entirely new areas of research known as “nonlinear optics” and “laser-plasma 

interactions (LPI)”. 

 

Fig.1.1: Laser in different fields of science and technology 
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       The interactions of intense coherent beams of light produced by modern laser systems 

with plasmas are rich in copious nonlinear phenomena [14,15] (fig.1.2) those were not 

possible before the invention of laser. The field of LPI is fascinating researchers because 

of its promising applications like compact particle accelerator [16], X-ray laser [17], THz 

generations [18], ICF [6] etc. The nonlinear phenomenon like higher harmonics generation 

(HHG) [19], sum frequency generation (SFG) [20], difference frequency generation (DFG) 

[21] etc. can be used to obtain laser beams at new frequencies those are not achievable 

from direct laser systems.   

 

 

Fig.1.2: Tree diagram for laser plasma interactions 

          In present research work, I have investigated some of nonlinear phenomena like self 

focusing, self trapping, second harmonics generation (SHG), terahertz (THz) generation 

[19,22, 23] occurring during LPI. As a special case of nonlinear interactions of laser beams 

with narrowband gap semiconductors also have been investigated. The effects of self 

focusing of laser beams on SHG and THz generation has been investigated in detail.  
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1.2 Mechanisms of Optical Nonlinearity in Plasma 

          In the linear regime, a highly collimated optical beam starts spreading along the 

transverse axes due to diffraction property of light. More tightly we try to confine the beam 

more it will spread. Before the invention of laser it was thought that diffraction broadening 

of optical beam is unavoidable as it arises at a fundamental level from uncertainty principle 

of quantum mechanics. Conventionally, the diffraction of an electromagnetic beam can be 

obviated by using optical fibers or waveguides. But, in applications involving laser plasma 

interactions, laser beams of intensities of the order of 1016𝑊/𝑐𝑚2 are being used. 

However, a glass fiber gets damaged only at intensity of 1012𝑊/𝑐𝑚2. Hence, for ultrahigh 

intensity laser beams optical fibers are not an appropriate solution for optical guiding. In 

1964, it was shown by Chiao et al. [24] that the spreading of an optical beam passing 

through a material medium could in principle be avoided if the medium start responding 

nonlinearly (i.e., if the index of refraction of the medium becomes a function of the 

intensity of light) to the incident beam. The electric breakdown strength of the normal 

materials limits the use of high intensity lasers. But, plasma have shown possibility to use 

these high intensity lasers. A plasma by definition is a quasineutral gas of charged particles 

that possess collective behaviour. However, being already ionized, plasmas (fig. 1.3) show 

almost infinite immunity against such kind of damages. Due to their inherent properties of 

quasi-neutrality and collective behaviour they also respond nonlinearly to intense optical 

beams. 

 

Fig.1.3: Plasma 
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The dielectric response of plasma to an incident optical beam of frequency 𝜔0 is given by 

𝜀 = 1 −
𝜔𝑝
2

𝜔0
2                                                                                      (1.1) 

where, 

𝜔𝑝 = √
4𝜋𝑒2

𝑚𝑒

𝑛𝑒                                                                                (1.2) 

Is the characteristic frequency of plasma which is known as plasma frequency. It is the 

natural frequency of oscillations of plasma electrons when they are perturbed from their 

equilibrium positions. Here, 𝑒,𝑚𝑒 , 𝑛𝑒 are the electronic charge, mass and density, 

respectively. Thus any mechanism by which laser beam can modify 𝑛𝑒or 𝑚𝑒 will result in 

nonlinear response of plasma to the incident optical beam.   

         There are mainly three mechanisms (fig.1.4) by which plasma can interact 

nonlinearly with laser.  These mechanisms are: 

1. Ponderomotive Force 

2. Ohmic Heating 

3. Relativistic increase in electron mass 

 

Fig.1.4:Various optical nonlinearities of plasma 
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          First two mechanisms involve the modification of electron density due to the 

physical movement of the plasma electrons under the effect of laser beam and thus show 

transient behaviour. Whereas, the third mechanism does not involve any modification of 

electron density and thus does not show any transient behaviour. It comes into picture 

alsmost instantaneously as soon as the intensity of the beam crosses the threshold intensity.  

1.2.1 Ponderomotive Nonlinearity 

          Generally the laser beams do not possess uniform amplitude structure over the cross 

sections. Due to their finite cross section laser beams are having some amplitude structure 

over their cross sections. The amplitude profiles of the laser beams depend upon the mode 

of laser cavity. At the lowest mode of the cavity operation i.e., TEM00 the amplitudue 

structure over the cross section of resulting beam of light is described by Gaussian 

distribution of the form 

𝐸0(𝑟) = 𝐸00𝑒
−
𝑟2

2𝑟0
2
                                                                               (1.3) 

where, 𝑟0 is the waist size of the beam and 𝐸00 is the axial amplitude. Thus, there exists a 

radial intensity gradient over the cross section of the laser beam. When such a laser beam 

propagates through plasma, the radial density gradient over its cross section results in a 

nonlinear force called as Ponderomotive force [25, 26, 27]. The magnitude of this 

ponderomotive force is directly proportional to the intensity gradient over the beam cross 

section i.e., 

𝐹𝑃𝑜𝑛𝑑 ∝ −∇𝐸0𝐸0
⋆                                                                       (1.4) 

          The DC component of this ponderomotive force results in the migration of plasma 

electrons in the illuminated portion of plasma from high intensity regions to low intensity 

regions (fig.1.5). Thus, the laser dugs a density channel into the plasma for its propagation. 

If 𝑛0 is the equilibrium electron density of the plasma, then its modified density in the 

presence of laser beam is given by [25] 

𝑛𝑒 = 𝑛0𝑒
−

𝑒2

8𝑚𝑒𝜔0
2𝐾0𝑇0

𝐸0𝐸0
⋆

                                                            (1.5) 
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where, 𝐾0 is the Boltzmann cosntant, 𝑇0 is the temperture of plasma electrons. This 

modification of electron density of plasma due to the ponderomotive force makes the index 

of refraction of plasma a fuction of laser beam intensity as 

 

Fig.1.5: Ponderomotive force acting on plasma electrons 

 

Fig.1.6: Variation of index of refraction of plasma with radial distance from beam axis 

𝜖 = 1 −
𝜔𝑝0
2

𝜔0
2 𝑒

−
𝑒2

8𝑚𝑒𝜔0
2𝐾0𝑇0

𝐸0𝐸0
⋆

                                                          (1.6) 

Here, 𝜔𝑝0 = √
4𝜋𝑒2

𝑚𝑒
𝑛0 is the equilibrium plasma frequency of the ecetrons i.e., plasma 

frequency in the absence of laser beam. The resulting transverse variation of index of 
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refraction of plasma is shown in fig.(1.6). Such an index of refraction resembles to that of 

graded index optical fiber. 

1.2.2 Ohmic Heating 

           During the propagation of intense laser beam through plasma, the nonuniform 

intensity distribution over its cross section produces the nonuniform Ohmic heating of 

plasma electrons [28, 29, 30] along the transverse axes. Due to the bell shape intensity 

distribution over the cross section of laser beam, the temperature of electrons in the 

illuminated portion of plasma becomes maximum at the beam center and it decreases 

radially towards the beam edges. This results in migration of plasma electrons from the 

center of beam towards its edges. The redistribution of plasma electrons in the presence of 

intense laser beam changes index of refraction of medium a function of laser intensity and 

thus plasma starts behaving nonlinearly to the incident beam.   

          Therefore, in this mechanism the nonuniform amplitude structure over the cross 

section of an optical beam results in nonuniform heating of plasma electrons due to their 

other species like ions and neutral particles. The resulting temperature of plasma electrons 

is given by 

𝑇𝑒 = 𝑇0 (1 +
𝑒2𝑀

6𝐾0𝑇0𝑚𝑒
2𝜔0

2 𝐸0𝐸0
⋆)                                                               (1.7) 

where, 𝑇0 is the equilibrium plasma temperature, 𝑀 is the mass of ions. This nonuniform 

heating of plasma electrons results in their evacuation from high intensity regions of the 

illuminated portion of plasma. These migrating electrons move towards the low intensity 

regions of plasma. The resulting electron density of plasma is given by 

𝑛𝑒 = 𝑛0 (
2𝑇0

𝑇0 + 𝑇𝑒
)
1−

𝑠

2

                                                                       (1.8) 

where, the phenominological parameter 𝑠 describes the nature of collisions of plasma 

electrons. 𝑠 = −3 corresponds to electron ion collisions, 𝑠 = 2 corresponds to collisions 

of plasma electrons with diatomic molecules and 𝑠 = 0 corresponds to velocity 
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independent collisions of plasma electrons. Thus, using eq.(1.1), the resulting intensity 

dependent dielctric function of plasma can be written as 

𝜖 = 1 −
𝜔𝑝0
2

𝜔0
2 (1 +

𝑒2𝑀

6𝐾0𝑇0𝑚𝑒
2𝜔0

2 𝐸0𝐸0
⋆)

𝑠

2
−1

                                                   (1.9) 

1.2.3 Relativistic Nonlinearity 

          If under the effect of intense laser beam the quiver velocity of plasma electrons 

become comparable to that of light in vacuum, then the electrons of plasma attain 

relativistic mass.  The effective mass of plasma electrons in eq.(1.2) need to be replaced by 

𝑚0𝛾, where, 𝑚0 is the rest mass of electron and 𝛾 is the relativistic Lorentz factor which 

is related to laser beam intensity as [31,32,33] 

𝛾 = (1 +
𝑒2

𝑚0
2𝑐2𝜔0

2 𝐸0𝐸0
⋆)

1

2

                                                                  (1.10) 

Thus, using eqs.(1.1) and (1.2) the intensity dependent dielectric function of plasma can be 

written as 

𝜖 = 1 −
𝜔𝑝0
2

𝜔0
2 (1 +

𝑒2

𝑚0
2𝑐2𝜔0

2 𝐸0𝐸0
⋆)

−
1

2

                                                       (1.11) 

It can be seen from eq.(1.11) that similar to the case of ponderomotive nonlinearity or 

thermal nonlinearity, in the case of relativistic nonlinearity also, the laser beam experiences 

maximum index of refraction where the intensity is maximum and vice versa. This gradient 

in the case of refraction of plasma again results in the self focusing of the laser beam known 

as relativistic self focusing.  

1.3 Self-Action Effects of Laser Beams in Nonlinear Media 

          In conventional optics, the geometric structure and propagation characteristics of an 

optical beam are generally controlled with the help of various optical elements such as 

lenses, prisms, mirrors, diffraction gratings etc. These elements are made by high-quality 

optical materials, i.e., materials having uniform index of refraction distribution. The 
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function of such an optical element is ensured by a regular variation of thickness, or 

equivalently, by the regular variation of optical path. For example, a convex lens can be 

used to converge an incident optical beam, whereas a concave lens is used to diverge the 

incident optical beam. If an ordinary quasi-parallel optical beam passes through a glass 

slab, the beam structure will not be changed because the thickness or optical path of the 

slab is the same over different sections of the incident beam.  

          In nonlinear optics, however, even the medium is equivalent to a parallel slab; the 

spatial structure of an intense laser beam may get changed due to the nonlinear interaction 

between the medium and the laser beam. These effects come into frame when an intense 

laser beam induces a change in refractive index of medium through which it is propagating. 

Indirectly, the self-action effects are occurred due to the dependence of complex dielectric 

function on the intensity of electromagnetic radiations. The change in medium properties 

reacts back to the laser beam in results of which the characteristics of the beam get altered. 

Thus, propagation characteristics of beam undergo different self-actions such as self 

focusing, self trapping, self defocusing, self phase modulation (Gouy phase) etc. 

          Consider the propagation of a linearly polarized, quasi parallel optical beam with 

electric field vector 

𝑬 = 𝐸0(𝑥, 𝑦)𝑒
𝜄(𝑘𝑧−𝜔0𝑡)𝒙                                                                         (1.12) 

through an isotropic nonlinear medium characterized by third order nonlinear susceptibility 

𝜒(3)(𝜔, −𝜔,𝜔). The third order change in the index of refraction of the medium produced 

by the optical beam is given by 

Δ𝑛(𝑥, 𝑦) = 𝑛2|𝐸0(𝑥, 𝑦)|
2                                                                  (1.13) 

where, 

𝑛2 =
1

2𝑛0
𝜒(3)(𝜔,−𝜔,𝜔)                                                                 (1.14) 

Usually the intensity of optical beams decreases with radial distance from the axis of the 

beam. Thus, depending on the values of 𝑛2 there are four different possibilities [22, 24, 31] 
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1.3.1 Linear Divergence: 𝒏𝟐 = 𝟎 

If the induced index of refraction change is negligible then the beam size increases 

gradually with the propagation distance owing to the diffraction-divergence of the 

incident beam. This is due to the fact that a laser beam with finite cross section can 

be considered as a superposition of plane waves, all having the same wave number, 

but with different angle with respect to the beam axis. Therefore, each component 

propagates at different phase velocity with respect to the longitudinal direction. 

Thus, each plane wave acquires a different phase and thus the beam broadens along 

the transverse directions. 

 

Fig.1.7: Linear divergence of an optical beam 

1.3.2 Self Focusing: 𝒏𝟐 > 0 

If the change in the index of refraction of the medium produced by optical beam is 

positive, then the laser beam focuses towards its axis by its own and this mode of 

propagation is known as self focusing. 

 

Fig.1.8: Self focusing of an optical beam 

This is due to the fact that being most intense, the axial part of optical beam gets 

maximum opposition from the medium for its propagation and this opposition 
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decreases with radial distance from the axis of beam. Hence the beam develops a 

velocity gradient over its cross section and thus the phase fronts of the beam bend 

as if the beam is passing through a converging lens. 

 

Fig. 1.9: Induced lens due to self focusing 

This fact can be understood with the help of following analogy: consider a family 

consisting of children, parents and grand parents going for walk. When they are 

leaving home grandparents are at center, then parents on each side and then children 

as shown in fig.(1.10). As they move parents lag behind children and grandparents 

lag behind parents. In this way respective positions of the family members develop 

a curvature as shown.   

 

Fig.1.10: Analogy for self focusing 

Similarly the velocity gradient over the cross section of optical beam results in its 

self focusing. 
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1.3.3 Self Trapping: 𝒏𝟐 > 0 

The Kerr nonlinearity [24] causes self trapping of laser beam. If 𝑛2 is positive and 

once the propagating beam is focused onto a small spot, the beam size remains 

unchanged over a longer propagation distance within the nonlinear medium, then 

the beam is said to be self trapped. In other words, the beam is finally confined in 

a waveguide channel formed by the induced refractive-index change; here we term 

this phenomenon the self trapping effect or uniform waveguide propagation and 

beam is said to constitute a spatial soliton [34].  

 

Fig.1.11: Self trapping of an optical beam 

To understand intuitively soliton formation in nonlinear optical media, consider a 

group of cyclists travelling into the wind and drafting off one another (that is, riding 

close together to cut wind resistance for those behind the leader) as depicted in 

fig.(1.12). In the absence of wind the cyclists would spread apart because of their 

different cycling speeds. However, the wind resistance impedes the stronger 

cyclists, who break the headwind for the weaker cyclists. Consequently they all 

travel together as a packet. The different cycling speeds are like the diffraction 

effect of optical beam, and the wind resistance is like the nonlinearity. 

 

Fig.1.12: Analogy for self trapping 
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1.3.4 Self Defocusing: 𝒏𝟐 < 0 

This aspect of nonlinear dynamic of laser beam comes into picture due to Kerr 

nonlinearity [24]. If 𝑛2 is negative, then the nonlinear medium behaves like a 

concave lens to the incident optical beam and hence, the beam spread into the 

transverse directions.  

 

Fig.1.13: Self defocusing of an optical beam 

Variation of the axial intensity of the optical beam with distance of propagation 

through the nonlinear medium for above mentioned self-action effects has been 

shown in fig.1.14. 

 

 

Fig.1.14: Variation of axial intensity of an optical beam during self-action effects 
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1.4 Variational Theory 

          Literature review reveals that almost the base of the nonlinear dynamics of laser 

beams have built on the paraxial theory [35]. Paraxial theory only takes into account the 

axial portion of the laser beam means it does not involve the effect off-axial part of laser 

beam. This approach is not properly suitable when we need to deal with situations related 

to non-Gaussian beams such as q-Gaussian, Cosh-Gaussian , super-Gaussian , Quadruple 

beams in which off-axial fields play a crucial role in propagation dynamics. In present 

work, I have proposed the application of variational theory which remove the shortcomings 

of paraxial theory. This methodology is obtained by examining some integral relations 

derived from the nonlinear Schrodinger equation (NLSE).This method is more acceptable 

from the elementary point of view, since the whole wavefront of the beam is examined in 

the interaction procedure. 

          Variational theory is based on variational calculus. It is a semi analytical technique 

to obtain approximate solutions to partial differential equations which cannot be solved 

analytically [36, 37, 38]. This technique replaces a set of partial differential equations with 

a set of coupled ordinary differential equations those can be solved either analytically or 

by using simple numerical techniques like Runge Kutta fourth-order method etc. It can be 

used successfully to have physical insight into number of nonlinear systems like 

propagation of waves in various nonlinear media, super conductors, Bose Einstein 

condensates etc. In present investigation, variational technique has been used to investigate 

nonlinear interactions of intense laser beams with plasmas and narrow band gap 

semiconductors. A detailed description of this technique is as follows: 

∇⊥
2𝐸0 +

𝜔0
2

𝑐2
Ф(𝐸0𝐸0

∗)𝐸0 − 2𝑖𝑘0
𝜕𝐸0
𝜕𝑧

= 0                                                      (1.15) 

where, ∇⊥
2=

𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
 is the transverse Laplacian and Ф(𝐸0𝐸0

∗) = 𝜀(𝐸0𝐸0
∗) − 𝜀0 is the 

intensity dependent nonlinear dielectric function of the medium. 

          Being nonlinear in nature superposition principle does not apply to eq. (1.15) i.e., 

linear combination of two solutions will not be a solution of this equation. Hence, 

traditional methods of solving partial differential equations are not applicable for this 
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equation. Although there exist a number of numerical methods to solve this equation, but 

these methods suffer from major difficulties due to dependence of accuracy and speed on 

the functional form and number of the nonlinear terms included in eq. (1.15). Careful 

selection of step sizes is an important issue in order to achieve the desired accuracy. All 

these difficulties can pose serious convergence problems for beam propagation algorithm. 

In contrast to this explicit analytical or semi-analytical solutions to eq. (1.15) are more 

advantageous rather than numerical methods, since they give an overall insight into the 

behavior of the system. 

          There are different semi analytical techniques for solving eq. (1.15) among which 

variational approach is one which is providing results very close to numerical results and 

in many cases it provides qualitative as well as quantitative results. This technique is based 

on Ritz’s optimization method and has been widely used when studying NLSE that appears 

not only in nonlinear optics, but also in many other physical problems where NLSE is 

encountered. It reduces the infinite-dimensional problem of the partial differential 

equations to a Newton-like second order ordinary differential equation for the parameters 

characterizing the solution. In other cases, however, the validity of the variational results 

is only qualitative i.e. if the shape of the actual solution is close to the trial function, the 

results obtained with the variational technique will be in good agreement with the real 

solutions, but in other cases the method can be very rough or even fail.  

We first write the Nonlinear Schordinger Wave Equation in the form: 

�̂�[𝛹] = 0 

We then define a Lagragian density £ [𝛹, 𝛹∗], such that: 

𝜕£

𝜕𝛹∗
= �̂�[𝛹] 

According to variational Method, we need to solve the following set of extended Euler-

Lagrange equation for the variational parameter 𝑔𝑖(𝑧) with i=1, 2, 3…..N: 
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𝑑

𝑑𝑧
(

𝜕𝐿

𝜕 (
𝜕𝑞𝑖

𝜕𝑧
)
) −

𝑑𝐿

𝑑𝑧
= 0                                                                        (1.16) 

Here, L is the average Lagrangian obtained by integration of £ over the transverse 

coordinates x and y. 

𝐿 = ∬£  𝑑𝑥𝑑𝑦 

For our particular problem, the Lagrangian density corresponding to eq.(1.15) is 

£ = i𝑘0 (𝛹
𝜕𝛹∗

𝜕𝑧
− 𝛹∗ 𝜕𝛹

𝜕𝑧
) + |

𝜕𝛹

𝜕𝑥
|
2

+ |
𝜕𝛹

𝜕𝑦
|
2

−
𝜔0
2

𝑐2
∫ Ф(
𝐸0𝐸0

∗

0
𝐸0𝐸0

∗)𝑑(𝐸0𝐸0
∗)                         (1.17)          

The variational method investigates the dynamic characteristics of the laser beam through 

medium under nonlinear regime by using different trial functions for laser beam. 

1.5  Second Harmonic Generation 

          Second-harmonic generation (SHG) or frequency doubling is a nonlinear optical 

effect [39, 40] that converts monochromatic coherent light of frequency 𝜔0 to another 

coherent light wave of frequency 2𝜔0 (fig.1.15) when it interacts with a second-order 

nonlinear medium. The invention of laser made it possible to treat light waves like radio 

waves, in other words, it extended the art of electronics to visual portion of the 

electromagnetic spectrum. One of the first successful experiments in optical electronics 

(now known as nonlinear optics) has been reported by Franken et al in 1961 who produced 

first overtone of laser light: the phenomenon which now a days is called as second 

harmonic generation [41, 42].   

          In ordinary electronic devices the production of harmonics, or overtones, is almost 

unavoidable. Unless a circuit element, such as an amplifier, is absolutely linear, (i.e., unless 

its output is exactly proportional to its input), the output will always contain harmonics of 

the input wave. For example, take the case of a full wave rectifier, whose actual motive is 

to eliminate the time variations of the signal, but along with that it generates multiple new 

frequency components. Although the amplitudes of these new frequency components are 

very small but still they are useful in number of applications. The only way to avoid 
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harmonics is to limit the input energy to a narrow range of frequencies over which the 

operation of the device is virtually linear. 

 

Fig.1.15: Second harmonic generation in nonlinear media 

          In ordinary electronic devices the production of harmonics, or overtones, is almost 

unavoidable. Unless a circuit element, such as an amplifier, is absolutely linear, (i.e., unless 

its output is exactly proportional to its input), the output will always contain harmonics of 

the input wave. For example, take the case of a full wave rectifier, whose actual motive is 

to eliminate the time variations of the signal, but along with that it generates multiple new 

frequency components. Although the amplitudes of these new frequency components are 

very small but still they are useful in number of applications. The only way to avoid 

harmonics is to limit the input energy to a narrow range of frequencies over which the 

operation of the device is virtually linear. 

          Optical circuit elements e.g., quartz are linear over a much wider range of energies. 

In fact, before the invention of laser it was impossible to concentrate enough energy to 

drive them into nonlinear regime. With ultra-intense lasers, this can be done. E.g., optical 

beams from commercially available Ruby laser can be focused so sharply as to produce in 

a small volume of quartz an electric field of some 105Vcm-1, at the accurately defined wave 

length of 6943Å in red region of the electromagnetic spectrum. Franken and his co-workers 

exposed a quartz crystal to the intense illumination and analyzed the emitted light with a 

spectroscope. They found a faint, though sharp, blue light close to 3472Å which was 

exactly the half of the fundamental wave. This is called as wavelength of the second 

harmonic or first overtone.       
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          In Franken’s experiment the interaction between the optical field and the crystal was 

not phase matched. Hence, ultraviolet output power was so small that the editors at Physical 

Review Letters mistook for a blemish the spot on Franken's spectrograph plate that 

demonstrated the new effect. They airbrushed it out of the published version (fig.1.16), 

rendering the first evidence of nonlinear frequency conversion truly invisible. Subsequent 

progress in the field was rapid. By the end of 1962 the classic paper had appeared in which 

Nicolaas Bloembergen and co-workers gave the theoretical [43] underpinnings for both the 

microscopic origins of the nonlinear susceptibilities and the propagation effects governing 

macroscopic nonlinear interactions between electromagnetic waves. 

 

Fig.1.16: SHG by Franken 

1.5.1 Second Harmonics Generation in Plasma 

          Although second harmonics of intense laser beams can be produced in a number of 

nonlinear media like solids, liquids or gases. However, ionization threshold of these media 

limits the power of generated harmonics. By contrast being already in ionized states 

plasmas are entirely immune to ionization induced damages. Hence, second harmonics of 

any power can be produced in plasmas [44-46]. In case of plasmas second harmonic 

radiation of the pump beam produced by the excitation of an electron plasma wave at pump 

frequency as follows:  

          Due to its quasi neutrality and collective behaviour plasma can support a number of 

modes of oscillations. Thus, an imbalance between the charge densities of electrons and 
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ions can be created by an intense laser beam propagating through plasma. The laser beam 

throws the electrons out of its way however, due to their large inertia the ions remain at 

rest. This redistribution of carriers results in the creation of the regions of excess positive 

and negative charges. The resulting electric field pulls the electrons towards the positive 

region of ions. As the electrons start moving towards the positive regions, they steadily 

gain momentum. This increased momentum causes the electrons to overshoot the positive 

region and thus reverses the direction of electric field [47]. This reversed field pulls back 

the electrons and thus slow down their motion. The process repeats itself and thus the 

electrons start oscillating with a frequency equal to that of pump beam.  The process repeats 

itself, establishing an electron oscillator (fig.1.17). 

 

Fig.1.17: Analogy of electron oscillations with motion of simple pendulum 

          Imagine thin cylinder of plasma, it long axis horizontal. Every electron oscillator is 

centered at different point in the cylinder and oscillates left and right, parallel to the axis. 

Suppose the oscillators are made to oscillate in the sequence. Suppose an oscillator at left 

end of plasma cylinder occupies it’s left most position. A small distance along the plasma 

cylinder another electron oscillator is in its center position and it is followed by an oscillator 

in its rightmost position. Next comes an oscillator at its center position and then one at its 

leftmost position. If all these electron oscillators were to start oscillating at the same 

frequency and achieve the same maximum amplitude, regions of negative or positive 

charge would appear to move along the cylinder in a travelling wave. The effect would 

resemble to light on a theatre marquee: although each bulb switches on and off in sequence, 

waves of light seem to move across the sign. In this way the combined motion of the 
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electron oscillators form a longitudinal wave of positive and negative regions travelling 

through the plasma (fig.1.18). 

 

Fig.1.18: Electron plasma wave 

          The electron oscillators can be set into motion by intense laser beams. As the laser 

beam enters into the plasma region, it exerts pressure on plasma electrons and hence the 

plasma electrons move out of the way. As the laser beam exits, leaving a region deficient 

of electrons, the plasma electrons rush back to re-establish equilibrium. This movement of 

plasma electrons initiates the oscillations of plasma electrons and results in plasma wave. 

The oscillations of these plasma electrons contain a frequency component twice of that of 

the pump beam and thus result in emission of coherent second harmonic radiation 

1.6 Terahertz (THz) Generation 

          THz radiations are also known as submillimeter radiations, terahertz waves, terahertz 

light, T-rays, T-waves, T-light, T-lux, or THz, consist of electromagnetic waves at 

frequencies from 0.3 to 10 terahertz (THz). The term applies to electromagnetic radiation 

with frequencies between the high-frequency edge of the millimeter wave band, 300 GHz 

and the low frequency edge of the far-infrared light band, 3000 GHz as shown in fig.(1.19). 

Corresponding wavelengths of radiation in this band range from 1 mm to 0.1 mm (or 

100 μm). The terahertz radiation begins at a wavelength of 1 mm and proceeds into shorter 

wavelengths hence, it is sometimes known as the submillimeter band and its radiation as 

submillimeter waves, especially in astronomy. These radiations possess following unique 

characteristics: 
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I. They can penetrate through many non-metallic and non-polar substances such as 

cloths, woods, papers and plastic. But it has restricted penetration through clouds 

and fog [48]. 

II. They are s phase sensitive to polar substances. It interacts with some molecules 

having rotational and vibrational absorption energy in the range of THz radiation 

such as water, carbon monoxide, oxygen etc. [49]. 

Fig.1.19: Electromagnetic spectra based on frequency and wavelength 

III. They cannot penetrate through metal, so it get reflected back from the surface of 

metal. 

IV. Their photon energy lies between 0.4meV to 41meV [50, 51].  Thus, they are non-

invasive and non-ionizing in nature. Hence, THz radiations are not harmful for 

living cells and tissues.  

          Due to these unique features of THz radiation, THz radiation has made remarkable 

place in electromagnetic spectrum. It is widely applicable in distinct fields such as 

biological imaging, remote sensing, explosive detection, medicines, broadband wireless 

communication technology etc. Due to their optical nonlinearity plasmas offer themselves 

as a promising medium [52, 53] to convert optical frequencies to THz frequency through 

the phenomenon of difference frequency generation (DFG). When two intense laser beams 

with frequencies 𝜔1 and 𝜔2 propagate simultaneously through plasmas, the oscillations of 

plasma electrons under the fields of these laser beams contain frequencies 𝜔1, 𝜔2, 𝜔1 + 𝜔2 

and 𝜔1 − 𝜔2 [54]. As an oscillating charge behaves as a tiny dipole antenna and emits the 
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electromagnetic radiation at the frequency of its oscillations, the oscillations of plasma 

electrons at frequency component 𝜔1 − 𝜔2 leads to generation of THz radiations (fig.1.20). 

 

Fig.1.20: Generation of THz radiation by beating of two laser beams in plasma. 

          Now a days, in laser plasma based experiments, THz radiations are generating with 

the use solid state devices. But with the proposed scheme THz intensity can be achieved 

efficiently. To make the results more realistic the irradiance profile has been modeled by 

𝑞-Gaussian laser beam.  

1.7 Research Objectives  

          In the present research work, it is proposed to investigate the following problems 

theoretically as well as through numerical simulations. 

1. Self-focusing and Self-phase modulation of laser beams (q-Gaussian, Cosh-

Gaussian, Quadruple-Gaussian) in nonlinear media.  

2. Self-focusing of laser beams in nonlinear media and its effect on Terahertz 

generation.  

3. Terahertz generation by self-focused surface plasma waves at free space-

semiconductor interface.  

4. Terahertz generation by self-focused laser beams in semiconductor plasmas.  

5. Higher harmonic generation of self-focused intense laser beams in nonlinear media.  

6. Effect of laser beam filamentation on Terahertz and Higher Harmonic generation in 

nonlinear media. 
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Chapter 2 

      Literature Review 

2.1 Introduction 

          This chapter unravels the contribution of different researchers in the field of laser-

matter interactions. They are trying to enhance the efficiency of inertial confinement fusion 

(ICF). Besides, theoretical and experimental work on self-action effects, the yield of THz, 

and higher harmonics generation are hot topics. I have incorporated previous investigations 

of self-action effects, HHG, THz generation, filamentation, and surface plasma waves to 

support the different aspects of laser-matter interactions which are explained in chapter-1. 

Moreover, I have tried to explain briefly the different parameters which were used to 

enhance self-focusing, higher harmonics, and THz generations. 

2.2 Self-Action Effects 

          After the investigation of self-trapping of light by Chiao [24], Kelley [55] has 

reported first time the calculations of stationary self focusing of light which can enhance 

intensity of light.  He has explored the regime where the self focusing is not balanced by 

the inherent diffraction phenomenon. Piekara et al. [56] have extended the study of Chiao 

[24]. They have reported the theoretical investigation on self-trapping for higher order of 

electric field that is up to sixth power of electric field. Hora [57] has reported the self 

focusing characteristic of laser beam under the effect of nonuniform distribution of 

intensity of laser beam. He has reported that the ponderomotove force arises due to 

intensity gradient which further causes self focusing. Sodha et al. [58] have observed the 

self focusing and self trapping in magneto-plasmas by moment theory approach. They have 

observed that the qualitative results are in good agreement with paraxial theory results. 

Mori et al. [59] have studied the self action effects with the help of 2D PIC (particle in cell) 

simulation code wave. They have studied three effects, relativistic self focusing, 

ponderomotive and the filamentation of the laser in plasma. Anderson and Bonnedal [60] 

have analyzed the self-focusing and self-trapping of Gaussian laser beam in plasma by 

using variational approach. They have claimed the difference between the paraxial and 
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variational theory. He has also observed that the results obtained for beam width by 

variational theory exactly follow the moment theory. Anderson et al. [61, 62] have found 

solutions for self-trapping of laser beam when it propagates through nonlinear medium. By 

using Gaussian beam as a trial function, it has been revealed that variational approach 

shows good results as compare to paraxial theory which are in good agreement with 

numerical outcomes. Chen [63] has observed the self-trapping of laser beam in a saturable 

nonlinear medium. He has disclosed that the self trapping power is highly dependent on 

the effective propagation constant. Desaix [64] has first time explained the collapsing 

mechanism of laser beam by variational theory. It has been observed the variational theory 

can abolish the inaccuracy in results obtained by paraxial ray theory. Karlsson and 

Anderson [65, 66], have applied variational approach to study the nonlinear dynamics of 

super-Gaussian beam through nonlinear parabolic-index optical fiber.  The full explanation 

about longitudinal phase and amplitude of field of laser beam has been conveyed. Further, 

the comparison between Gaussian and super-Gaussian laser beam profiles has been 

incorporated. Dimitrevski et al. [67] have applied the variational method for achieving the 

stationary solution for super-Gaussian laser beam propagating through cubic quintic 

medium. The outcomes by variational theory are well satisfied with the numerical results. 

Chen and Wang [68] have investigated the nonlinear dynamics of Laguerre-Gaussian (LG) 

laser in cubic quintic medium with the help of variational theory. They have represented 

that the nonlinear dynamics results by variational theory match with the simulation results. 

Nanda et al. [69] have studied the relativistic self –focusing of Hermite-cosh-Gaussian 

beam in collision-less plasmas by applying paraxial ray approximation. It has been 

investigated that relativistic self-focusing can be stronger for mode 𝑚 = 0 and 1. Ianetz et 

al. [70] have predicted the propagation of asymmetric Gaussian beam through absorbing 

medium. The NLSE has been solved by using variational method for self-focusing of laser 

beam. They have introduced new phenomenon ‘beats’ during observing the self-focusing 

and self-defocusing behavior of laser beam. Wani and Kant [71] have analyzed self-action 

effects of chirped Guassian laser beam in collisionless plasma with linear absorption by 

paraxial approach. They have reported that self-focusing and de-focusing can be controlled 
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by the chirp parameter of the laser beam. Gupta and Singh [72, 73] have studied first time 

the propagation of quadruple laser beam through collisionless plasmas and cubic quintic 

nonlinear medium by using moment theory. They have reported that the self-focusing can 

be increased by controlling the ratio of position coordinate to the initial spot size of laser 

beams. Purohit et al. [74] have reported the impacts of two Cosh-Gaussian laser beams on 

each other during propagation in collisionless plasma. They have studied the nonlinear 

dynamics of both beams by taking relativistic and Ponderomotive nonlinearity into 

consideration. Further, the comparison study of Cosh-Gaussian and Gaussian laser beam 

has been also presented in this work. Kaur et al. [75] have used paraxial ray approximations 

for the investigation of self-action effects of Hermite-cosh-Gaussian laser beam in a non-

uniform rippled plasmas. Under the effect of relativistic nonlinearity the self focusing and 

defocusing is studied and it has been reported that for mode 0 and 1, with increase in de-

centered parameter of beam the self-focusing is enhanced up-to several Rayleigh length. 

Whereas for 𝑚 = 2 the diffraction of beam is dominated. Yadav et al. [76] have 

investigated the phenomenon of self-focusing of 𝑞-Gaussian laser beam. They have 

observed that self focusing of 𝑞-Gaussian laser beam in stronger than the Gaussian laser 

beam. They have also mentioned that 𝑞-Gaussian laser beam can generate EPW with high 

amplitude which can be used to accelerate electron with high energy. Walia and Singh [77] 

has studied nonlinear dynamics of laser beam in plasma under the effects of relativistic and 

Ponderomotive nonlinearities. They have reported the comparison of Cosh-Gaussian laser 

beam in quantum and relativistic plasma. Kant and Thakur [78] have presented a 

theoretical study on LG laser beam in relativistic plasma. They have applied the 

exponential ramp to enhance the self focusing of laser beam. They have promised that their 

study may be applied in laser-driven fusion. 

2.3 Higher Harmonics Generation 

          Bobin et al. [79] have explained that the harmonics generation are due to nonlinear 

electron current and density gradient of plasma which are produced when intense laser light 

passes through plasma. They have reported 2𝜔0,
3

2
𝜔0,

1

2
𝜔0 (ω0 is the laser frequency) 

https://www.sciencedirect.com/science/article/abs/pii/S0577907321000113#!
https://www.sciencedirect.com/science/article/abs/pii/S0577907321000113#!
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and further observed the parametric excitation of longitudinal plasma wave. Burnett et al. 

[80] have shown experimentally that interaction of CO2 laser beam with solid generates 

harmonics. They have reported a series of first six harmonics generation in the line of 

backscattered radiations when laser interacts with solid target. Sprangle et al. [81] have 

investigated an optical guiding, nonlinear plasma wake field and coherent harmonics 

generation of intense laser beam in plasma. It has been explained that harmonics generation 

are most efficient in case of short laser pulse and harmonics amplitude can be increased by 

high amplitude of wake-field. Rax and Fisch [82] have disclosed the method of generation 

of third harmonics by the ultrahigh laser pulse and plasma. It has been observed that plasma 

is efficient media for harmonics generation. Parashar and Pandey [83] have predicted the 

generation of second harmonics by propagating high power laser through plasma. They 

have explained that phase matching condition can be achieved by ripple density which 

further enhances the yield of second harmonics generation. Esarey et al. [84] have revealed 

that the relativistic harmonics amplitude is high when the laser plasma interaction length 

is an integral multiple of phase detuning length. Malka et al. [85] have observed first time 

the second harmonics in forward direction. It has been further reported stokes and anti-

stokes lines which are named as forward Raman scattering. This is produced due to 

nonlinear interactions between SHG and the relativistic plasma electrons wave. Jha et al. 

[86], have studied the propagation of laser pulse through uniformly magnetized plasma and 

found a scheme for SHG. It has been reported that the conversion efficiency is increased 

as the magnetic field is increased.  Rajput et al. [87] have investigated the generation of 

resonant third harmonics by laser pulse and plasma under the effect of wiggler magnetic 

field. It has been observed that amplitude of third harmonics generation can be increased 

by applying the wiggler field. This field provides the additional angular momentum to the 

photon of third harmonics. Singh and Walia [88] have observed the self-focusing of 

Gaussian laser beam through collision-less plasma. The density gradient produced by 

Ponderomotive force generates electron plasma wave (EPW). The EPW interacts with laser 

beam which leads to second harmonics generation. Whereas, Singh and Walia [89] have 

further reported the method for second harmonics generation by Gaussian laser beam and 
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collisional plasma. In collisional plasma, the electrons are heated non-uniformly which 

results in plasma wave. The second harmonics are generated due to the laser and plasma 

interactions. Singh and Gupta [90] have studied theoretically that the propagation 

dynamics of 𝑞-Gaussian laser beam through preformed collision-less plasma channel by 

using the moment theory. It has been predicted that self-focusing of 𝑞-Gaussian laser beam 

increases with decrease in 𝑞 value. It has been reported that the harmonics yield becomes 

maximum for 𝑞-Gaussian laser beam as compare to the Gaussian laser beam. Singh and 

Gupta [91] have studied the impact of relativistic self-focusing on second harmonic 

generation. They have considered that when a 𝑞-Gaussian beam passes through the 

preformed parabolic plasma the electrons density perturbation of plasma results in second 

harmonic generations. They have observed that the yield of harmonic generation is 

maximum for 𝑞-Gaussian as compare to the Gaussian beam and 𝑞-Gaussian is more 

suitable laser beam for SHG. Singh and Gupta [92] have utilized moment theory for 

investigation of relativistic self-focusing effect of cosh-Gaussian beam in under-dense 

plasma. The impact of relativistic self-focusing on second harmonics generation has also 

been studied. They have revealed that the self focusing and second harmonics are increased 

when decentered parameter of laser beam lies between zero and one. Gupta et al. [93] have 

reported a method for SHG in collisional plasma. They have studied the effects of a 

preformed parabolic plasma channel and nonlinear absorption on SHG. They have revealed 

that the nonuniform intensity distribution of the 𝑞-Gaussian laser beam excites an EPW. 

The second harmonic of the pump beam is generated when EPW interacts with the pump 

beam. It has been reported that a preformed channel can be used to control the effect of 

nonlinear absorption. Singh et al. [94] have investigated theoretically with moment theory 

the generation of second harmonics of Cosh-Gaussian laser beam in collisional plasma. 

The authors have taken nonlinear absorption into account. They have studied the self-

focusing of the laser beam and its effects on SHG in detail. They have observed that a 

Cosh-Gaussian laser beam is more suitable than a Gaussian laser beam for suppressing 

nonlinear absorption and increasing the efficiency of SHG. Recently, Bhatia et al. [95] 

have studied the SHG of LG laser beam in plasma. They have incorporated relativistic 
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nonlinearity and density transition for their analytical study. They have reported that self 

focused LG laser interacts with the induced EPW wave and generate second harmonics of 

the laser beam. Pathak et al. [96] have revealed the SHG by using relativistic and 

Ponderomotive nonlinearity of the plasma. They have used the rippled density plasma to 

obtain the phase matching condition for generation of second harmonics of laser beam. 

They have disclosed that instead the ripple density the yield of SHG can be enhanced by 

increasing the self focusing of laser beam.  

 

2.4 Generation of THz Radiations 

          Ample investigations have been performed for generation of THz radiation. In 

1990s, Hamster et al. [97] have observed THz generation due by the interactions of two 

laser pulses with solids and gases experimentally. On comparing with gas target, they have 

reported that the interaction of TW laser pulses with solid target produces more intense 

THz radiation along with X-rays and electrons of MeV energies. Onwards, Hamester et al. 

[98] have followed wake field method and generated THz radiation by the interactions of 

femtosecond laser pulse with solid. It has been observed that MeV X-rays and electrons of 

0.6 MeV are associated with 0.5𝜇𝐽 THz radiations. W.P. Leemans et al. [99] have revealed, 

generation of THz from high density solid-targets under relativistic regime has been 

investigated. It has been found that the relativistic effects come into picture when the laser 

of intensity is more than 1018W/cm2 is used to generate THz radiation. The relativistic 

electrons beams from laser-plasma based accelerators have been utilized to generate 

coherent THz radiation. Thomas et al. [100] have investigated that excitation of THz 

radiation by ponderomotive force with uniform plasma can be enhanced by using 

inhomogeneous (corrugated) plasma channel. Further, it has been revealed that the external 

electric field increases the oscillations of electrons which increase the amplitude of THz 

radiations linearly. Bhasin et al. [101] have explained the THz generation by propagating 

two collinear laser beams which induce ponderomotive force on the electrons of 

magnetized clustered plasma. Malik et al. [102] have revealed the method of generating 

THz radiation by two spatial-Gaussian beams in periodic ripple density plasma. They have 

https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorRaw=Pathak%2C+Nidhi
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explained that large amplitude of normalized ripple density can be utilized for obtaining 

intense THz radiation. It is further extended by Malik et al. [103] by applying perpendicular 

magnetic field on the rippled plasma. The applied magnetic field indirectly produces the 

perturbation in electron density of the plasma which helps to increase the nonlinear current. 

The ripples of plasma help to obtain the phase matching condition in results of which the 

efficiency for THz generation is enhanced. Malik and Malik [104] have shown work which 

improves THz radiations up to efficiency of the order of 0.006. It can be obtained by 

propagating two super Gaussian laser beams of higher beam index and smaller beam width 

through rippled plasma. Varshney et al. [105] have revealed the THz generation of 0.015 

efficiency by beating of extraordinary mode lasers in periodic rippled plasma under the 

effect of external magnetic field. Sharma and Singh [106] have observed the nonlinear 

dynamics of two Gaussian laser beams in plasma in collisional plasma. They have 

investigated the effects of self-action effects and applied electric field on THz generation. 

In collisional plasma where electron-ion collision is operative, the THz yield can be 

enhanced by two to three times. Singh and Malik [107] have found scheme for THz 

generation by propagating two super-Gaussian laser beams through collisional plasma 

where electron-neutral collision has been taken into account. It has mentioned that THz 

generation can be controlled by index of super-Gaussian laser beam. The effect of 

transverse magnetic field on THz radiation has been further evaluated by Singh et al. [108]. 

They have reported that the negative effect of electron-neutral collisions can be recovered 

by higher value of index of laser. Hussain et al. [109] have investigated THz generation by 

beating of dark hollow laser beams in magnetized collisionless plasma. They have 

considered a pre-excited electron plasma wave (EPW) for the enhancement of THz 

radiation. It has been reported that small beam width and density perturbation can enhance 

the conversion efficiency. Moreover, with increase in the width of the central shadow 

region the extent of self-focusing as well as the intensity of THz radiation is increased. 

Hussain et al. [110] have explained method for THz generation by beating of two super 

Gaussian beams in collisional plasma under the effect of dc electric field. It has been 

revealed in detail about the dependence of THz radiation on density of plasma, transverse 
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static electric field, index of super Gaussian beam and length of plasma column. Sobhani 

et al. [111] have reported the effect of pump depletion and cross focused Laguerre-

Gaussian (LG) lasers on twisted THz radiations. They have found that the presence of 

pump depletion reduces the ponderomotive force on the electrons of plasma. Hence, THz 

field is saturated along the propagation distance. Varaki and Jafari [112], have reported 

generation of THz radiation by propagating two cosh-Gaussian laser beams through 

collisional plasma. It has been revealed that under the effect of decentered parameter and 

wiggler field the THz power can be enhanced and the peak of the laser can be controlled.  

Varshney et al. [113] have found THz generation by two co-axial cosh-Gaussian laser 

beams and collisional plasma under the effect of magnetic field. It has been found that 

decentred parameter of cosh-Gaussian laser beam, ripples of plasma and the applied axial 

magnetic field can be used to enhance the THz field. Safari et al. [114], have come with 

new method of THz generation in which propagation of two different laser beams that are 

HG (Hermite-Gaussian) and LG (Laguerre-Gaussian) through magnetized collisional 

plasma is taken into account. It has been claimed that the generation of THz radiation can 

be enhanced by 4.5% by using different beam profiles. Ayoob et al. [115] have revealed 

the method for THz generation by propagating cosh-Gaussian and top-hat laser beams in 

an underdense plasma. They have investigated the impacts of laser profiles, frequency of 

collisions and magnetic field on THz generation. They have represented the comparison 

between the yield of cosh-Gaussian and top-hat laser beam and reported that top-hat laser 

profile can produce higher pondermotive nonlinearity, hence higher yield of THz radiation. 

Motahareh et al. [116] have developed a scheme for THz generation by the propagation of 

laser beams in warm collisional plasma under the effect of magnetic field. The have 

produced the resonant THz field by optimizing the values of magnetic field, collisional 

frequency, plasma density and chirp-ness of laser beams.  

2.5 Generation of Surface Plasma Waves 

          In 1902, after the diffraction grating experiment performed by Wood [117], the step 

was taken towards surface plasma wave (SPW). He found the bright and dark bands of 
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reflected light. Rayleigh [118] had theoretically represented these in 1907 and reported that 

this pattern of dark and bright bands as new spectral lines. Fano [119] had suggested 

theoretically that the pattern observed by Wood are the surface plasma waves produced at 

grating surface. These SPWs are similar to electromagnetic oscillations that excited at the 

dielectric-medium interface where relative permittivity switches sign. Stern and Ferrell 

[120] have examined the dispersion relation of surface plasma wave at metal-dielectric 

interface. Ritchie [121] have studied the interactions of fast electrons and the conduction 

electrons of the metal. The author has shown that incident fast electrons cause the plasma 

oscillations in an infinite foil.  In 1968, Otto [122] had used prism metal configuration for 

attenuated total reflection (ATR) for production of SPW which was further modified by 

Kretschmann and Raether [123] by depositing metallic layer of 50nm at the base of prism. 

Raether [124] have reported that the incident electromagnetic wave on the base generate 

SPW along the metal-free space interface with approximately hundred percent efficiency. 

It has been reported by Lee [125] that the resonant surface plasma waves can be excited by 

falling the light at the metal surface. The phase matching condition can be achieved by the 

laser parameters for the excitation of SPW. Yasumoto [126] has analyzed theoretically the 

shining p-polarized light obliquely on the vacuum- unmagnetised plasma interface. He has 

found the light decays into two surface plasma waves. Singh and Tripathi [127] have 

revealed the beating method for the generation of SPW and ablation of material. They have 

explained that the both lasers impose the pondermotive force on the electrons of metal and 

generate SPW at frequency difference in skin layer. Then it heats the electrons and ablation 

of material is taken place. Aliev and Brodin [128] have observed the generation of SPW in 

an inhomogeneous solid state plasma. They have investigated the interactions of p-

polarized wave and plasma boundaries. The growth of SPW due to p-polarized light is 

enhanced by taking thermal effects into account.  Macchi et al. [129] have investigated the 

surface electrons oscillations by impinging the laser pulse on over-dense plasma. They 

have developed a new parametric instability that depends upon the decay of 1D oscillations 

into two electrons surface waves. Parashar et al.  [130] have revealed that as the laser pulse 

strikes the metallic target the overdense plasma is created. The excitation of SPW for the 
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planar surface has been studied by stimulated Compton scattering. They have reported that 

the perturbation in density due to Ponderomotive force and the oscillatory oscillation of 

the electrons due to laser pulse couple together and produce nonlinear current. Hence, the 

surface wave if generated.  Raynaud et al. [131] have presented the significance of pulse 

duration and spectral width of the laser pulse for the generation of SPW and emitted fast 

electrons from over-dense plasma under relativistic regime. With the help of 2D-particle-

in-cell (PIC) simulations, it has been reported that the energy and charge of the emitted 

electron bunched are more dependent on energy of laser instead of profile of laser pulse. 

Kaur et al. [132] have studied the excitation of SPW by using femtosecond laser and metal 

sheet. They have reported that the generated SPW decays exponentially and is helpful to 

accelerate the electron. Marini et al. [133] have studied generation of SPW in over-dense 

plasma with intensity 1020 W/cm2. They have used the PIC simulation for explaining that 

the electron acceleration at ultra-high intensity can be possible with SPW. They have 

shown that the density of plasma and shape of plasma surface play vital role in excitation 

of SPW.  

2.6 Filamentation of Laser Beams 

          Kaw et al. [134] have presented theoretically the formation of filaments in 

collisionless plasma. They have explained filamentation and self-trapping of laser beam 

can be achieved by pondermotive nonlinearity of plasma. Salimullah et al. in 1987 [135] 

have explained about the filamentation of a circularly polarized Alfven wave by using 

compensated semiconductor (Ge). They have explained the differences of semiconductor 

plasma and gases plasma. They have revealed that holes produce higher nonlinearity as 

compare to the electrons of compensated semiconductor plasma. Stenflo and Shukla [136] 

have investigated filamentation of em waves in narrow band gap semiconductors under the 

effect of magnetic field. They have explained that the nonparabolicity of conduction band 

and magnetic field perturbation arise due to the radiation pressure which further produce 

filamentation. Young [137] has revealed the filamentation can be created by propagation 

of a laser beam of nonuniform intensity through plasma and filamentation can further 
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produce density perturbation. He has disclosed experiment technique for detecting 

filaments and intensities of filaments and he explained that these can be detected by 

identifying the density perturbation caused by filamentation of laser beam. Shukla [138] 

has reported analytically the filamentation of two coupled em waves plasmas. He has taken 

into account the relativistic effect and density perturbation due to Ponderomotive force. He 

has predicted that the instability is larger for two coupled em waves rather than single pump 

wave. Braun et al. [139] have revealed experimentally by using Ti: Al2 O3 CPA laser that 

due to the balance between the plasma refraction and natural diffraction the laser pulse get 

self-channeled into filaments. They have reported the filaments of intensity 7 ×

1013 𝑊/𝑐𝑚2 can propagate to 20 meter distance. Vidal and Johnston [140] have used 

nonlinear Schrodinger wave equation for understanding multiple filaments of 

electromagnetic wave. They have reported, self focusing of whole beam is known as 

multiple filaments. They have introduced a parameter with which one can control the 

number of filaments. Johnston et al. [141] have further implemented nonlinear Schordinger 

wave equation for investigating different aspects of laser plasma filmentation due to 

Ponderomotive nonlinearity. They have explained about one dimensional and two 

dimensional geometry of the filamentation and have told that filaments retain their 

properties once it is formed. They have followed the variational theory for understanding 

the filamenatation. Brodeur et al. [142] have reported that the filament in air is end at 

diffraction length of the laser when ionization of medium is taken into account.  They have 

mentioned that obtained results are similar to the moving focus model of self-focusing in 

which the filaments are formed from the continuous focal points of self-focusing. It has 

been observed that experimental and simulation results are in geed agreement with the 

moving focus model rather than self-channeling model. Berge et al. [143] have investigated 

experimentally and numerically the filamentation of TW laser pulse in air. The randomly 

emitted filaments helps to propagate laser pulse to more distance. Further, they have 

explained that the defects in spatial distribution of high intense laser beam results in 

filaments. Singh et al. [144] have investigated filamentation of laser beam in magnetized 

plasma by using the extended paraxial ray theory. Further they have reported that THz 
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radiation is induced at the frequency difference of laser beam and the ripple of plasma. 

They have further investigated filamentation impacts on the generation of THz radiation. 

Hassan et al. [145] have studied the filmentation of laser (CO2) beam when it passes 

through a collisionless plasma. They have considered non-paraxial theory and relativistic 

nonlinearity to investigate filamentation. They have also shown that in paraxial region the 

self focusing is greater than non-paraxial region.   
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Chapter 3 

Amplitude Structures of Laser Beams 

3.1 Introduction  

          One of the important characteristic parameter of the laser beam is its spatial 

amplitude structure over its cross section [146], as laser beams with different spatial 

amplitude profiles behave differently in nonlinear media [38, 55, 67-79, 147]. From review 

of literature it has been observed that most of the earlier theoretical investigations revealing 

the effect of self-action phenomena (i.e., self focusing/defocusing, self trapping) of intense 

laser beams on generation of their new frequency components in nonlinear media have 

carried out for ideal Gaussian amplitude structure of the laser beam [22, 24]. However, the 

experimental investigations carried out to measure the amplitude structures of laser beams 

(e.g., Vulcan petawatt laser at Rutherford Appleton laboratory) indicate that even the laser 

system is operating in its fundamental TEM00 mode, the amplitude structure over the cross 

section of the laser beam is not having ideal Gaussian profile [148]. A significant amount 

of laser energy has been found to be present outside the full width half maximum (FWHM) 

of the distribution i.e., compared to the Gaussian profile, the wings of the intensity profile 

of the laser system have been found to be expanded. By fitting into experimental data, it 

has been suggested by Nakatsutsumi et al. [149] that the actual amplitude structure over 

the cross section of the laser beam can be modeled by 𝑞-Gaussian distribution [150]. 

Hence, in the present investigation to get more realistic results on the effects of self 

focusing of laser beams on HHG and THz generation in nonlinear media, the amplitude 

structure over the cross section of the laser beam has been considered to be 𝑞-Gaussian. 

          In contrast to ideal Gaussian and 𝑞-Gaussian laser beams, now a days a new class of 

laser beams known as flat top laser  beams [65, 72, 73, 92] are gaining significant interest 

among researchers. These beams possess uniform irradiance over their cross section and 

thus possess more power and lesser divergence compared to the Gaussian and 𝑞-Gaussian 

beams. Thus, such laser beams may help to enhance the power of the generated harmonics 
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as well as THz radiations [90-92, 150, 152]. Mathematically the amplitude structure over 

the cross section of such beams is described by supper Gaussian function. But again supper 

Gaussian approximation is an ideal concept. The laser beams with flat top irradiance [153, 

154] produced in laboratory, have a uniform irradiance only up to some finite extent, after 

which the irradiance starts decreasing radially, as in case of Gaussian or 𝑞-Gaussian 

irradiance. The amplitude structure of such beams can be modeled by Cosh-Gaussian 

(ChG) function or Quadruple-Gaussian (Q.G) functions. 

       Thus, in the present investigation three types of amplitude profiles for the laser beams 

have been investigated: 

1. 𝑞-Gaussian 

2. Cosh-Gaussian (ChG) 

3. Quadruple-Gaussian (Q.G) 

Following sections describe the physical characteristics (amplitude profile, effective beam 

width, spectral width etc.) of these laser beams. 

3.2 𝒒-Gaussian Laser Beams 

          The transverse amplitude structure over the cross section of 𝑞-Gaussian laser beam 

[148-151] at the plane of incidence into the medium is given by 

𝐸0(𝑟) = 𝐸00 (1 +
𝑟2

𝑞𝑟0
2)

−
𝑞

2

                                                                    (3.1) 

where, 𝑟 = (𝑥, 𝑦) is the radial distance from the beam axis, 𝑟0 is the radius of the beam at 

the plane of incidence and 𝐸00 is the axial amplitude of the electric field of beam. The key 

parameter 𝑞 is related to the deviation of amplitude structure of the beam from ideal 

Gaussian beam. Thus, the parameter 𝑞 is termed as deviation parameter. Its value varies 

from laser system to system and for a given laser system it can be obtained by fitting into 

the experimental data. The amplitude structure of the laser beam deviates from ideal 

Gaussian profile due to cavity imperfections like misalignment of the end mirrors, 

nonuniform reflectivity of the mirrors and inclusion of impurities into the gain medium. 
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        Using L Hospital rule of limits it can be seen that 𝑞 = ∞ corresponds to ideal Gaussian 

profile i.e. 

lim
𝑞→∞ 

𝐸0(𝑟) = 𝐸00𝑒
−
𝑟2

2𝑟0
2
                                                                       (3.2) 

          In order to see the effect of deviation parameter 𝑞 on the irradiance over the cross 

section of the beam, I have shown the variation of irradiance over the cross section of the 

beam with radial distance from its axis for different values of 𝑞 in fig.(3.1). 

 

Fig. 3.1: Impact of deviation parameter 𝒒 on irradiance over the cross section of the laser beam 

          It can be seen that the deviation parameter 𝑞 does not affect the irradiance in the 

axial region of the beam, it only affects the irradiance in the off axial regions as the beams 

with lower value of 𝑞 are characterized by expanded wings. These expanded wings 

correspond to the additional beam energy that gets shifted to the off axial parts of the beam. 
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          Since, during the propagation of the beam through the medium, its beam width does 

not necessarily remains constant, we can write the instantaneous amplitude structure of the 

beam at a given point inside the medium as 

𝐸0(𝑟,  𝑧) =
𝐸00
𝑓(𝑧)

(1 +
𝑟2

𝑞𝑟0
2𝑓2(𝑧)

)

−
𝑞

2

                                                            (3.3) 

where, the function 𝑓(𝑧) is currently undetermined parameter and is termed as a 

dimensionless beam width parameter. Its significance is two-fold: (1) upon multiplication 

with equilibrium beam width 𝑟0 it gives the instantaneous spot size of the beam at a given 

location inside the medium. (2) upon division with amplitude it gives the measure of 

instantaneous intensity of the beam.  

3.2.1 Effective Beam Width of 𝒒-Gaussian Laser Beams 

          Any laser beam is not having a sharp boundary i.e., its intensity extends up to 

infinity; however after some finite distance from the beam axis it becomes insignificant. 

Hence, the effective beam width of a laser beam is defined in root mean square sense as 

〈𝑎2〉 =
1

𝐼0
∬𝐸0 𝑟

2𝐸0
∗𝑑2𝑟                                                                     (3.4) 

where, 

  𝐼0 =∬𝐸0 𝐸0
∗𝑑2𝑟                                                                              (3.5) 

𝑑2𝑟 = 𝑟𝑑𝑟𝑑𝜃 

Hence, the effective laser beam width of 𝑞-Gaussian beam is obtained as 

〈𝑎2〉 = 𝑟0
2𝑓2 (1 −

1

𝑞
)
−𝑞

                                                                   (3.6) 

The r.m.s beam width of a similar Gaussian beam is 𝑟0𝑓. Thus, the ratio of r.m.s beam 

widths of 𝑞-Gaussian and Gaussian beam can be written as 

Σ = (1 −
1

𝑞
)
−𝑞

                                                                             (3.7) 



 

39 
 

          In order to see the effect of deviation parameter 𝑞 on effective beam width of the 

laser beam, the variation of Σ with 𝑞 has been shown in fig.(3.2).  It can be seen that with 

increase in the value of deviation parameter 𝑞 the effective beam width of the beam 

decreases. This is due to the shifting of intensity of the beam towards in off axial parts with 

increase in the value of 𝑞. Thus, it can be seen that ideal Gaussian laser beams possess 

minimum beam width. As, the diffraction broadening of the laser beam varies inversely 

with its effective beam width, it can be predicted that compared to the beams with lower 

value of deviation parameter 𝑞, ideal Gaussian beams suffer more diffraction broadening 

while passing through vacuum or through a linear medium. 

 

Fig. 3.2: Variation of effective beam width of the laser beam with q 

3.3 Cosh-Gaussian (ChG) Laser Beams 

The amplitude structure over the cross section of ChG laser beam is given by [153] 

𝐸0(𝑟,  𝑧) =
𝐸00
𝑓
𝑒
−

𝑟2

2𝑟0
2𝑓2 cosh (

𝑏

𝑟0𝑓
𝑟)                                                            (3.8) 

Here, the parameter 𝑏 associated with cosh function is known as cosh factor. Eq.(3.8) can 

also be written as 
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𝐸0(𝑟,  𝑧) =
𝐸00
2𝑓

𝑒𝑏
2
[𝑒
−(

𝑟

𝑟0𝑓
−𝑏)

2

+ 𝑒
−(

𝑟

𝑟0𝑓
+𝑏)

2

+ 2𝑒
−(

𝑟2

𝑟0
2𝑓2

+𝑏2)
]

1

2

                               (3.9) 

From this equation it can be seen that ChG laser beams can be realized experimentally by 

the in-phase superposition of two otherwise identical Gaussian beams whose intensity 

maxima instead of lying at beam axes lie at coordinates (±
𝑏

2
, 0), respectively. Thus, the 

factor 𝑏 is associated with the displacement of the intensity maxima of the constituting 

beams from their axes. Thus, the parameter 𝑏 is also known as decentered parameter. 

a) b)   

c)    d)   

Fig 3.3: 3D intensity profile of ChG laser beam for a) 𝒃=0 b) 𝒃=0.5 c) 𝒃=1.0 d) 𝒃=1.45 

          In order to see the effect of decentered parameter 𝑏 on the irradiance over the cross 

section of the beam (i.e., its intensity profile) I have plotted 3-D intensity profile of the 
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ChG laser beam for different values of 𝑏 in fig.(3.3). The corresponding projections of the 

intensity profile along the transverse beam axes are shown in fig.(3.4).   

      It can be seen that for 0 ≤ 𝑏 ≤ 1, with increase in the value of decentered parameter 𝑏 

the irradiance over the beam cross section becomes more and more uniform. However, 

for 𝑏 > 1, a central dark region appears in the beam profile. Thus, the parameter 𝑏 acts as 

a control over the beam profile i.e., by optimizing this decentered parameter 𝑏 one can 

obtain desired irradiance over the beam cross section [92, 112,155]. 

a)  

 

b) 
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c)  

 

d)  

 

Fig.3.4: The transverse view of ChG laser beam for a) 𝒃=0 b) 𝒃=0.5 c) 𝒃=1.0 d) 𝒃=1.45 

3.3.1 Effective Beam Width of ChG Laser Beams 

          Using eq.(3.8) in eq.(3.4) and (3.5) the effective beam width of ChG laser beam has 

been obtained as 

< 𝑎2 ≥ 𝑟0
2𝑓2(1 + 𝑏2)                                                                     (3.10) 
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Thus, the ratio of effective beam width of ChG beam to that of Gaussian beam can be 

written as 

Σ = (1 + 𝑏2)                                                                             (3.11) 

          Variation of effective beam width of ChG laser beam with decentered parameter has 

been depicted in fig.(3.5). It can be seen that effect of decentered parameter 𝑏 of ChG laser 

beam is to increase its effective beam width. This is due to the shifting of axial intensity of 

the laser beam to the off axial regions with increase in the value of 𝑏. As, the ChG laser 

beams possess larger beam widths compared to corresponding Gaussian laser beams, it can 

be predicted that these beams may help to  reduce the beam divergence. This, built the 

impetus behind selecting ChG laser beams for the generation of coherent radiations with 

new frequencies.  

 
 

Fig.3.5: Variation of effective beam width of ChG laser beam with decentered parameter 

3.4 Quadruple-Gaussian (Q.G.) Laser Beams 

          Quadruple-Gaussian laser beams also named as multi-Gaussian laser beams and 

these are produced with the help of four decentered Gaussian laser beam [156, 157]. The 

intensity maxima of these Gaussian beams are located at coordinates (𝑥0, 0), (−𝑥0, 0), (0,

𝑥0), (0, −𝑥0). The decentered laser beams can be produced in the laboratory by the  
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reflection of Gaussian laser beams from a spherical mirror whose center is offset from the 

beam axis. An in phase superposition of these four decentered beams results in Q.G laser 

beam. The amplitude structure of such laser beams is expressed as 

𝐴0(𝑟,  𝑧) =
𝐸00
𝑓
{𝑒
−
(𝑥−𝑥0𝑓)

2+𝑦2

2𝑟0
2𝑓2 + 𝑒

−
(𝑥+𝑥0𝑓)

2+𝑦2

2𝑟0
2𝑓2 + 𝑒

−
𝑥2+ (𝑦−𝑥0𝑓)

2

2𝑟0
2𝑓2 + 𝑒

−
𝑥2+(𝑦−𝑥0𝑓)

2

2𝑟0
2𝑓2 }                 (3.12) 

          The plots in fig.3.6 illustrate that the laser beams for which the value of 
𝑥0

𝑟0
 lies in the 

range 0 ≤
𝑥0

𝑟0
≤ 1.5 possess uniform irradiance over a wider area of their cross section and 

the area of this uniform illumination region increases with increase in the value of 
𝑥0

𝑟0
. For 

𝑥0

𝑟0
> 1.50 the peaks of intensity profile appear in off axial parts of the cross section of the 

laser beam. Here, surrounded by four off axial peaks, a valley of intensity appears in the 

axial region of the laser beam. 

3.4.1 Effective Beam Width of Q.G Beams 

          Using the definition of effective beam width given by eq.(3.4), the effective beam 

width of Q.G laser beam at its focal spot has been obtained as 

< 𝑎𝑄.𝐺
2 > |𝑧=0 =

√2𝑟0

(1 + 3𝑒
−
𝑥0
2

2𝑟0
2
)

1

2

{(2 + 2
𝑥0
2

𝑟0
2) + (2 +

𝑥0
2

𝑟0
2) 𝑒

−
𝑥0
2

2𝑟0
2
+ 2𝑒

−
𝑥0
2

2𝑟0
2
}

1

2

                  (3.13) 

In deriving Eq. (3.13) use of following standard integrals has been made 

∫ 𝑒
−
(𝑥∓𝑥0𝑓)

2𝑟0
2𝑓2

∞

0

𝑑𝑥 =
√𝜋

2
𝑟0𝑓 (1 ± 𝑒𝑟𝑓 (

𝑥0
𝑟0
)), 

∫ 𝑒
−

𝑥2

𝑟0
2𝑓2

∞

0

𝑑𝑥 =
√𝜋

2
𝑟0𝑓 

∫ 𝑒
−
((𝑥−𝑥0𝑓)

2+(𝑥+𝑥0𝑓)
2)

2𝑟0
2𝑓2

∞

0

𝑑𝑥 =
√𝜋

2
𝑟0𝑓𝑒

−
𝑥2

𝑟0
2
 

∫ 𝑥2𝑒
−
(𝑥∓𝑥0𝑓)

2

𝑟0
2𝑓2 𝑑𝑥 =

∞

0

1

4
𝑟0𝑓𝑒

−
𝑥0
2

𝑟0
2
{±2𝑟0𝑥0𝑓

2 + (2𝑥0
2𝑓2 + 𝑟0

2𝑓2)𝑒
−
𝑥0
2

2𝑟0
2
√𝜋 (1 ± 𝑒𝑟𝑓 (

𝑥0
𝑟0
))} 
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Fig.3.6: 3D intensity profiles of the quadruple laser beam for 
𝒙𝟎

𝒓𝟎
=a) 0, b) 0.50, c) 1, d) 1.50 and e) 

1.75 
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The ratio Σ(0) of the r.m.s. beam widths of a Q.G beam to that of a Gaussian beam can be 

written as 

∑(0) =  
√2

(1 + 3𝑒
−
𝑥0
2

2𝑟0
2
)

1

2

{(2 + 2
𝑥0
2

𝑟0
2) + (2 +

𝑥0
2

𝑟0
2) 𝑒

−
𝑥0
2

2𝑟0
2
+ 2𝑒

−
𝑥0
2

2𝑟0
2
}

1

2

                            (3.14) 

 

Fig.3.7: Variation of the ration 𝚺(𝟎) of the r.m.s beam widths of an input Q.G beam to  

Gaussian beam with 
𝒙𝟎

𝒓𝟎
       

The effect of the parameter 
𝑥0

𝑟0
 on ratio Σ(0) has been depicted in Fig.3.7. Evidently, 

compared to the constituent Gaussian beams, Q.G beams with higher values of  
𝑥0

𝑟0
 are 

characterized by larger effective beam width. This is due to the fact that with increase in 
𝑥0

𝑟0
 

the intensities of the constituting Gaussian beam get more shifted towards the transverse 

directions. As a result the Q.G beams with larger values of 
𝑥0

𝑟0
 possess larger beam widths. 

3.4.2 Spectral Width of Q.G Beams 

          Due to its finite effective beam width, the laser beam behaves as if it is passing 

through a narrow slit and thus through position-momentum uncertainty (Δ𝑥Δ𝑝𝑥=constant) 
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experiences a spread in its transverse momenta and hence a shift in expectation values of 

the propagation constant. The r.m.s. spectral width 𝜎𝑘 of the laser beam can be obtained by 

the Fourier transform of the irradiance profile of the laser beam from coordinate space 

(𝑥, 𝑦) to 𝑘 space (𝑘𝑥, 𝑘𝑦) as 

𝑆(𝑘𝑥, 𝑘𝑦) =
1

2𝜋
∫ ∫ 𝐴0(𝑥, 𝑦)𝑒

−𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

                                             (3.15) 

Using eq.(3.12) in (3.15), one can obtain 

𝑆(𝑘𝑥, 𝑘𝑦) =
1

2𝜋
𝐸00𝑟0

2𝑓2𝑒−
𝑟0
2𝑓2(𝑘𝑥

2+𝑘𝑦
2)

2 (𝑒𝑖𝑥0𝑓𝑘𝑥 + 𝑒−𝑖𝑥0𝑓𝑘𝑥 + 𝑒𝑖𝑥0𝑓𝑘𝑦 + 𝑒−𝑖𝑥0𝑓𝑘𝑥)                   (3.16) 

The r.m.s. spectral width of the laser beam in 𝑘-space is defined as  

𝜎𝑘,𝑄.𝐺. = √< 𝑘𝑥
2 > +< 𝑘𝑦

2 >                                                                   (3.17) 

where 

< 𝑘𝑥
2 >=

∫ ∫ 𝑘𝑥
2𝑆(𝑘𝑥, 𝑘𝑦)𝑆

∗(𝑘𝑥 , 𝑘𝑦)𝑑𝑘𝑥𝑑𝑘𝑦
∞

−∞

∞

−∞

∫ ∫ 𝑆(𝑘𝑥 , 𝑘𝑦)𝑆
∗(𝑘𝑥 , 𝑘𝑦)𝑑𝑘𝑥𝑑𝑘𝑦

∞

−∞

∞

−∞

                                               (3.18) 

< 𝑘𝑦
2 >=

∫ ∫ 𝑘𝑦
2𝑆(𝑘𝑥 , 𝑘𝑦)𝑆

∗(𝑘𝑥 , 𝑘𝑦)𝑑𝑘𝑥𝑑𝑘𝑦
∞

−∞

∞

−∞

∫ ∫ 𝑆(𝑘𝑥 , 𝑘𝑦)𝑆
∗(𝑘𝑥, 𝑘𝑦)𝑑𝑘𝑥𝑑𝑘𝑦

∞

−∞

∞

−∞

                                              (3.19) 

The ratio Σk of the spectral widths of two otherwise identical beams with Q.G. and 

Gaussian irradiance profiles can be written as 

Σk =
𝜎𝑘,𝑄.𝐺
𝜎𝑘, 𝐺

=

{
 
 

 
 
1 + 𝑒

−
𝑥0
2

2𝑟0
2
(1 +

𝑥0
2

𝑟0
2)

1 + 𝑒
−
𝑥0
2

2𝑟0
2

}
 
 

 
 

1

2

                                                      (3.20) 

     The variation of Σk with 
𝑥0

𝑟0
 is shown in fig.3.8. It is evident that as a function of 

𝑥0

𝑟0
 this 

ratio Σk first decreases and then start increasing with a transition occurring at 
𝑥0

𝑟0
= 1.50. 

This is due to the fact that the spectral width of an optical beam in (𝑘𝑥, 𝑘𝑦) space is 

inversely proportional to the effective area over its cross section (i.e., in (𝑥, 𝑦) plane) where 
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its most of the intensity is concentrated. It can be seen from the surface plots of the laser 

beam for different values of  
𝑥0

𝑟0
 (fig.3.6) that the effective area where the most of the laser 

intensity is concentrated increases with 
𝑥0

𝑟0
 in the range 0 ≤

𝑥0

𝑟0
≤ 1.50 and the same 

decreases with  
𝑥0

𝑟0
 for 

𝑥0

𝑟0
> 1.50. Thus, the behaviour of the spectral width of the laser beam 

in (𝑘𝑥;  𝑘𝑦) shows a transitional dip at 
𝑥0

𝑟0
= 1.50. 

 

Fig.3.8: Variation of spectral width of Q.G laser beam with 
𝒙𝟎

𝒓𝟎
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Chapter-4 

Nonlinear Interaction of Elliptical 𝒒-Gaussian Laser Beams with 

Plasmas with Axial Density Ramp: Effect of Ponderomotive Force 

4.1 Introduction 

          Laser is one of the most important scientific inventions of the 20th century. When 

laser made its debut, it was referred to as solution in search of a problem. Today laser has 

become ubiquitous in consumer technology, from CD players to supermarket checkout 

scanners. Higher end applications of lasers are also abound. It includes medical diagnostics 

and treatment [158], nuclear fusion [159], particle accelerators [7], decommissioning of 

explosives [160] etc. The diversity in the applications of lasers can be felt from the fact 

that currently this instrument is being used for heating as well as for ultra-intense cooling. 

The same instrument can produce extremely hot state of matter (plasma) [161] as well as 

extremely cold state of matter (Bose Einstein Condensate) [162]. The impact of laser on 

society has changed over time, and is still changing. Already, lasers have provided the 

preferred solution to an impressive variety of real world situations, and it is expected that 

in coming years it will keep on enhancing quality of life and will contribute wealth to the 

world economy.  

          In most of the applications the laser intensity is the key parameter that decides their 

ultimate breath. Currently, due to the light’s inherent wave property to diffract, the laser 

power has gotten into bottleneck at the order of few petawatts. Initially it was believed that 

diffraction of the laser beam cannot be avoided during its propagation neither through 

vacuum nor through material media. However, Chiao et al [24]. showed that in media 

whose index of refraction depends on the intensity of light, the spreading of an optical 

beam in principle can be obviated. Hence, the expansion of optical beam due to diffraction 

is neither inevitable nor irreducible. 

          Self focusing and self trapping are two examples of nonlinear optical effects which 

may arise from one of many physical mechanisms. Self focusing describes the formation 

of a light induced channel in an illuminated material which confines the optical beam. This 

channel serves as a lens. Self trapping occurs when self focusing substantially exactly 
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counteracts beam spreading due to diffraction. When this happens, the cross section of the 

light induced channel remains substantially constant with propagation distance over the 

distance of the self trapping. There are another similar mechanisms exist under nonlinear 

regime. For example, a modified self trapping effect occurs when self focusing is somewhat 

larger than beam spreading due to diffraction. In that case the cross section of the beam 

vary in an oscillatory way i.e., it remains constant on average. In general, the diameter of 

a trapped beam may be slightly modulated along the propagation direction, as if wave 

guiding by the medium were due to a periodic sequence of convex lenses. This results in a 

channel with diameter variations. In this case, self focusing does not exactly balance 

diffraction point-by-point along the longitudinal direction. Nevertheless, on average, the 

beam is trapped. 

          Self focusing of the laser beams in different nonlinear media has been a hot topic of 

research since its discovery by Askaryan [22]. In past few years a vast literature has been 

reported by researchers from all over the globe on various aspects of this phenomenon [60-

66]. Early seminal work of Sodha et al. [25], gave a gravest blow to the investigation of 

this phenomenon for intense laser beams interacting with plasmas in different 

environments and regimes. Especially in context of inertial confinement fusion this 

phenomenon is at the vanguard of theoretical as well as experimental investigations [164, 

166]. Laser beams differing in irradiance over their cross sections behave differently in 

plasmas [72]. However, from literature review it has been seen that in previous 

investigations on self-action effects of elliptical laser beams in plasmas, the laser system 

operating in lowest order mode i.e., TEM00 mode the output beam is ideally Gaussian [164, 

165]. However, as discussed in chapter 3, the actual amplitude structure of the laser beam 

for a laser cavity operating in TEM00 mode is described by 𝑞-Gaussian distribution [148, 

149]. Since, no experimental or theoretical investigation on self focusing of elliptical 𝑞-

Gaussian laser beams in collisionless plasmas has been reported till date, this gave me a 

strong motivation to investigate the same. 
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4.2 Ponderomotive Nonlinearity of Plasma with Density Ramp 

          Consider the propagation of a laser beam with electric filed vector 

𝑬(𝒓, 𝒕) = 𝐴0(𝑥, 𝑦, 𝑧)𝑒
−𝑖(𝑘0𝑧−𝜔0𝑡)𝑒𝑥                                                        (4.1𝑎) 

𝐴0(𝑥, 𝑦, 𝑧) =
𝐸00

√𝑓𝑥𝑓𝑦
(1 +

1

𝑞
 (

𝑥2

𝑎2𝑓𝑥
2
+

𝑦2

𝑏2𝑓𝑦
2
))

−
𝑞

2

                                           (4.1𝑏) 

through a collisionless plasma whose equilibrium electron density is having an upward 

ramp shaped profile [172] i.e., it increases along longitudinal direction as 𝑛0(𝑧) = 𝑛0(1 +

𝑡𝑎𝑛(𝑑𝑧)). Here, (𝑘0, 𝜔0) are the vacuum wave number and angular frequency of the laser 

beam, respectively,𝑛0is the electron density at 𝑧 = 0, the constant 𝑑 is associated with the 

rate of increase of electron density with distance and hence is termed as slope of the density 

ramp. 𝑎 and 𝑏 are the initial widths of the laser beam along the transverse directions and 

𝑓𝑥, 𝑓𝑦 are the corresponding dimensionless beam width parameters, respectively. Due to the 

amplitude structure over the cross section of the laser beam given by Eq. (4.1b) the plasma 

electrons experience a Ponderomotive force that modifies the electron density of the 

plasma as [25] 

𝑛 = 𝑛0(𝑧)𝑒
−

𝑒2

8𝑚𝜔0
2𝑇0𝐾0

𝐴0𝐴0
∗

                                                                    (4.2) 

where, 𝑇0 is the equilibrium electron temperature of plasma and 𝐾0 is the Boltzmann 

constant. This modified electron density in turn alters the dielectric function 

(𝜀 = 1 −
4𝜋𝑒2𝑛

𝑚𝜔0
2 ) of plasma as 

𝜀 = 1 −
𝜔𝑝0
2

𝜔0
2
(1 + tan(𝑑𝑧))𝑒

−
𝑒2

8𝑚𝜔0
2𝑇0𝐾0

𝐴0𝐴0
∗

                                                 (4.3) 

Where, 𝜔𝑝0
2 =

4𝜋𝑒2𝑛0

𝑚
 is the unperturbed plasma frequency i.e., the plasma frequency in the 

absence of laser beam.  

          Thus, the ponderomotive force on the plasma electrons produced by the laser beam, 

makes the index of refraction of plasma intensity dependent which in turn due to the spatial 

dependence of the amplitude structure of the laser beam, resembles to that of graded index 

fiber. Separating the dielectric function of plasma into linear (𝜀0)and nonlinear (ɸ) parts 

as 
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𝜀 = 𝜀0 + ɸ(𝐴0𝐴0
∗)                                                                           (4.4) 

One can get 

𝜀0 = 1 −
𝜔𝑝0
2

𝜔0
2                                                                               (4.5) 

and 

ɸ(𝐴0𝐴0
∗) =

𝜔𝑝0
2

𝜔0
2
(1 + tan(𝑑𝑧)) (1 − 𝑒

−
𝑒2

8𝑚𝜔0
2𝑇0𝐾0

𝐴0𝐴0
∗

)                                    (4.6) 

 

4.3 Evolution of Beam Width of Laser Beam 

          The propagation of an optical beam through a nonlinear medium characterized by 

nonlinear dielectric function ɸ(𝐴0𝐴0
∗ )is governed by wave equation  

2𝑖𝑘0
𝜕𝐴0
𝜕𝑧

= ∇⊥
2𝐴0 +

𝜔0
2

𝑐2
ɸ(𝐴0𝐴0

∗)𝐴0                                                      (4.7) 

          In the present study variational method [30, 60-62] has been used to obtain a semi 

analytical solution of above NLSE [166, 167] for the nonlinear dielectric function given by 

eq.(4.6). According to this method the Lagrangian density corresponding to eq.(4.7) is 

given by  

£ = 𝑖 (𝐴0
𝜕𝐴0

∗

𝜕𝑧
− 𝐴0

∗
𝜕𝐴0
𝜕𝑧
) + |∇⊥𝐴0|

2 −
𝜔0
2

𝑐2
∫ ɸ(𝐴0𝐴0

∗)
𝐴0𝐴0

∗

𝑑(𝐴0𝐴0
∗)                         (4.8) 

Substituting the trial function given by Eq. (4.1b) in Lagrangian density and integrating 

over the entire cross section of the laser beam and one can get the reduced Lagrangian 

as 𝐿 = ∫£ 𝑑2𝑟. The corresponding Euler-Lagrange equations 

𝑑

𝑑𝑧
(

𝜕𝐿

𝜕 (
𝜕𝑓𝑥,𝑦

𝜕𝑧
)
) −

𝜕𝐿

𝜕𝑓𝑥,𝑦
= 0                                                                  (4.9) 

give 

𝑑2𝑓𝑥
𝑑𝑧2

=
1

2𝑘0
2𝑎4

1

𝑓𝑥
3
(1 −

1

𝑞
) (1 −

2

𝑞
) [(1 +

1

𝑞
)
−1

+ (
〈𝐿1〉

𝐸00
2 𝑓𝑥𝑓𝑦 +

2𝐸00
2

𝑓𝑥
2𝑓𝑦

𝜕〈𝐿1〉

𝜕𝑓𝑥
)]               (4.10𝑎) 

𝑑2𝑓𝑦

𝑑𝑧2
=

1

2𝑘0
2𝑏4

1

𝑓𝑦
3
(1 −

1

𝑞
) (1 −

2

𝑞
) [(1 +

1

𝑞
)
−1

+ (
〈𝐿1〉

𝐸00
2 𝑓𝑥𝑓𝑦 +

2𝐸00
2

𝑓𝑥𝑓𝑦
2

𝜕〈𝐿1〉

𝜕𝑓𝑦
)]               (4.10𝑏) 

where 

〈𝐿1〉 =
𝜔0
2

𝑐2
∫(∫ ɸ(𝐴0𝐴0

∗)𝑑(𝐴0𝐴0
∗)

𝐴0𝐴0
∗

)𝑑2𝑟 
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The set of eqs.(4.10) can be reduced to 

𝑑2𝑓𝑥
𝑑𝑧2

=
1

2𝑘0
2𝑎4

1

𝑓𝑥
3

(1 −
1

𝑞
) (1 −

2

𝑞
)

(1 +
1

𝑞
)

+
1

2

(1 −
2

𝑞
)

𝑎2𝜀0𝐼0
∫𝑥𝐴0𝐴0

∗
𝜕ɸ

𝜕𝑥
𝑑2𝑟                              (4.11𝑎) 

𝑑2𝑓𝑦

𝑑𝑧2
=

1

2𝑘0
2𝑏4

1

𝑓𝑦
3

(1 −
1

𝑞
) (1 −

2

𝑞
)

(1 +
1

𝑞
)

+
1

2

(1 −
2

𝑞
)

𝑏2𝜀0𝐼0
∫𝑦𝐴0𝐴0

∗
𝜕ɸ

𝜕𝑥
𝑑2𝑟                             (4.11𝑏) 

Using eqs. (4.1b) and (4.6) in eqs. (4.11) one can get 

𝑑2𝑓𝑥
𝑑𝜉2

=
(1 −

1

𝑞
) (1 −

2

𝑞
)

(1 +
1

𝑞
)

1

𝑓𝑥
3
+ (1 −

1

𝑞
) (1 −

2

𝑞
) (
𝜔𝑝0
2 𝑎2

𝑐2
) (1 + tan (𝑑′𝜉))

𝛽𝐸00
2

𝑓𝑥
2𝑓𝑦

𝐼                 (4.12𝑎) 

𝑑2𝑓𝑦

𝑑𝜉2
= (

𝑎

𝑏
)
4 (1 −

1

𝑞
) (1 −

2

𝑞
)

(1 +
1

𝑞
)

1

𝑓𝑥
3
+ (

𝑎

𝑏
)
2

(1 −
1

𝑞
) (1 −

2

𝑞
) (
𝜔𝑝0
2 𝑎2

𝑐2
) × (1 + tan (𝑑′𝜉))

𝛽𝐸00
2

𝑓𝑥𝑓𝑦
2
𝐼  (4.12𝑏)  

Where 

𝛽 =
𝑒2

8𝑚𝜔0
2𝑇0𝐾0

 

𝑑′ = 𝑑𝑘0𝑎
2 

𝜉 =
𝑧

𝑘0𝑎
2
 

𝐼 = ∫ 𝑡 (1 +
𝑡

𝑞
)
−2𝑞−1

𝑒
−
𝛽𝐸00

2

𝑓𝑥𝑓𝑦
(1+

𝑡

𝑞
)
−𝑞

𝑑𝑡
∞

0

 

          The set of eqs. (4.12) is the set of nonlinearly coupled differential equations 

governing the evolution of beam widths of the elliptical 𝑞-Gaussian laser beams along 𝑥 

and 𝑦 directions with longitudinal distance of propagation through collisionless plasmas. 

It can be seen that each of the eqs. (4.12) contains two terms on the right hand side. First 

term models the propagation of laser beams in linear media i.e., in vacuum and second term 

models the propagation of laser beams in nonlinear media. It can be seen that the although 

in linearly media (i.e., in the absence of second terms on the R.H.S of eqs.(4.12)  the beam 

widths of the laser beam along the two transverse directions evolve independently, however 

due the laser induced ponderomotive force they get coupled to each other. The set of eqs. 

(4.12) also indicate that variational theory has reduced the original problem of solving a 

nonlinear partial differential equation to a set of coupled ordinary differential equations. 

Also, this reduced set of coupled differential equations is also lacking from an exact closed 
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form solution, its approximate solution can be easily obtained by simple numerical 

techniques.  

 

4.4 Evolution of Axial Phase of Laser Beam 

          During the propagation of a laser beam through a nonlinear medium its axial phase 

changes due to its transverse spatial confinement resulting as a consequence of its nonlinear 

refraction. The transverse spatial confinement through the position momentum uncertainty 

gives an additional transverse momentum to the photons of the beam and thus changes the 

longitudinal momentum the photons and hence the axial phase of the beam. The overall 

wave number of the beam is related to its components through [168, 169] 

𝑘0
2 = 𝑘𝑥

2 + 𝑘𝑦
2 + 𝑘𝑧

2                                                                           (4.13) 

Defining the effective axial propagation constant for the laser beam weighted average as 

�̅�𝑧 = 𝑘0 −
〈𝑘𝑥

2〉

𝑘0
− 
〈𝑘𝑦

2〉

𝑘0
                                                                       (4.14) 

This effective propagation constant is associated with overall phase (𝜃𝑝) of the beam as 

𝜕𝜃𝑝

𝜕𝑧
= 𝑘0 −

〈𝑘𝑥
2〉

𝑘0
− 
〈𝑘𝑦

2〉

𝑘0
                                                                    (4.15) 

          The first term in this equation gives the phase 𝑘0𝑧 of an infinite plane wave 

propagating along 𝑧axis. However, the second term gives the axial phase shift 

 

𝜕𝜃

𝜕𝑧
= −𝑎2(〈𝑘𝑥

2〉 + 〈𝑘𝑦
2〉)                                                                    (4.16) 

 

Where 

〈𝑘𝑥,𝑦
2 〉 =

1

𝐼𝑘
∫ ∫ 𝑘𝑥,𝑦

2
∞

−∞

∞

−∞

�̃�0�̃�0
∗𝑑𝑘𝑥𝑑𝑘𝑦                                                         (4.17) 

 

𝐼𝑘 = ∫ ∫ �̃�0�̃�0
∗𝑑𝑘𝑥𝑑𝑘𝑦

∞

−∞

∞

−∞

                                                                (4.18) 

 

�̃�0(𝑘𝑥, 𝑘𝑦) =
1

2𝜋
∫ ∫ 𝐴0(𝑥, 𝑦, 𝑧)𝑒

−𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞

                                     (4.19) 
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4.5 Results and Discussion 

        In the present investigation, the coupled differential eqs.(4.12) have been solved with 

the help of Runge Kutta fourth order method for following set of laser-plasma parameters: 

                                   𝜔0 = 1.78 × 1015𝑟𝑎𝑑 𝑠𝑒𝑐−1 , 𝑎 = 10𝜇𝑚,

𝛽𝐸00
2 = 3 (Laser intensity = 4.5 × 1016𝑊/𝑐𝑚2),     

                      
𝜔𝑝0
2 𝑎2

𝑐2
= 9 (Plasma density = 3 × 1016𝑐 𝑐−3) 

and for different values of 𝑞, 𝑑′, and
𝑎

𝑏
 viz., 

𝑞 = (3,4,∞), 𝑑′ = (0.25, 0.35, 0.45) and 
𝑎

𝑏
= (1, 1.1, 1.2)  

under the boundary condition that at the plane of incidence the laser beam is having plane 

wavefront. Mathematically this condition means that at 𝜉 = 0: 

𝑓𝑥,𝑦 = 1 

𝑑𝑓𝑥,𝑦

𝑑𝜉
= 0 

            Firstly, in order to see the linear propagation of 𝑞-Gaussian laser beam, eqs. (4.12) 

have been solved in the absence of plasma medium for different values of deviation 

parameter 𝑞 and the corresponding variations of the beam width have been sown in figs. 

4.1 and 4.2. It can be seen that irrespective of the ellipticity of the beam or deviation 

parameter 𝑞, the beam widths of the laser beam along both the transverse directions 

broaden with distance of propagation. This is due to the fact that a laser beam with finite 

cross section can be considered as a superposition of plane waves, all having the same wave 

number, but with different angle with respect to the beam axis. Therefore, each component 

propagates at different phase velocity with respect to the longitudinal direction. Thus, each 

plane wave acquires a different phase and thus the beam broadens along the transverse 

directions. 

            It can also be seen in fig. 4.1 that although in vacuum the beam widths along 𝑥 and 

𝑦 directions broaden independently of each other, the beam width along 𝑦 direction 

broaden at a faster rate compared to that along 𝑥 direction. This is due to the fact that 

diffraction effect of the laser beam varies inversely as the square of the transverse spread 
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of the laser beam and in fig.4.2, I have taken 
𝑎

𝑏
= 1.1which means 𝑎 > 𝑏. As, a result the 

diffraction effect is more prominent along 𝑦 direction compared to that along 𝑥 direction. 

 

 

Fig. 4.1: Variation of beam width parameters 𝒇𝒙,𝒇𝒚 with distance of propagation 

 in vacuum for fixed ellipticity 
𝒂

𝒃
= 𝟏. 𝟏 

 

          The plots in fig. 4.2 depict that with increase in the value of deviation parameter 𝑞 

the diffraction broadening of the laser beam along both the transverse direction increases. 

This is due to the fact that as the value of deviation parameter increases the over whole 

cross section of the laser beam gets shrinked. Decrease in the effective spot size of the laser 

beam results in its enhanced diffraction with increase in deviation parameter 𝑞. Thus, it can 

be concluded that although the amplitude structure of the laser beam deviates from ideal 

Gaussian profile due to cavity imperfections, but it helps to obviate the diffraction 

broadening of the beam i.e., 𝑞-Gaussian beams are more directional compared to ideal 

Gaussian beams. 
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Fig. 4.2: Variation of beam width parameters 𝒇𝒙,𝒇𝒚with distance of propagation in vacuum 

 for different values deviation parameter q and at fixed ellipticity 
𝒂

𝒃
= 𝟏. 𝟏 

 

          Now in order to see the effect of deviation parameter 𝑞 on the evolution of beam 

widths of the laser beam in plasma medium, the set of eqs. (4.12) has been solved for 

different values of 𝑞 in the presence of plasma medium and the corresponding evolutions 

of the beam widths along 𝑥 and 𝑦 directions with longitudinal distance are sown in Figs. 

4.3 and 4.4. It can be seen that inside the plasma medium the beam widths of the laser beam 

along both the transverse directions show oscillatory behaviour over the longitudinal 

direction. This behaviour of the laser beam can be explained by analyzing the role and 

origin of various terms contained in the evolution equations for the beam widths i.e., eqs. 

(4.12). The first terms on the right hand side (R.H.S) of these equations that vary inversely 

as the cube of corresponding beam width (i.e., as 𝑓𝑥,𝑦
−3) are the spatial dispersive term that 

models the spreading of the laser beam in transverse 𝑥 and 𝑦 directions as a consequence 

of the diffraction divergence. The second terms on the R.H.S of these equations that have 

complex dependence on beam widths 𝑓𝑥,𝑦 originate as a consequence of ponderomotive 

force exerted by the laser beam on plasma electrons. These terms model the nonlinear 

refraction of the laser beam and the nonlinear coupling of the beam widths along transverse 

directions. 
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Fig. 4.3: Variation of beam width parameters 𝒇𝒙,𝒇𝒚with distance of propagation in plasma  

for 𝒒 = 𝟑, 𝒅′ = 𝟎. 𝟐𝟓 𝐚𝐧𝐝 
𝒂

𝒃
= 𝟏. 𝟏 

 

Fig. 4.4: Variation of beam width parameters 𝒇𝒙,𝒇𝒚with distance of propagation in plasma  

for 𝒒 = (𝟑, 𝟒,∞), 𝒅′ = 𝟎. 𝟐𝟓 𝒂𝒏𝒅 
𝒂

𝒃
= 𝟏. 𝟏 

 

As a result of laser induced nonlinearity of plasma the resulting nonlinear refraction of the 

laser beam tends to counter balance the effect of diffraction along both the transverse 

directions. Thus, during the propagation of laser beam through the plasma, there starts a 
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competition between the two phenomena of diffraction and nonlinear refraction. The 

winning phenomenon decides the ultimate behaviour of the laser beam i.e., whether the 

beam will converge or diverge. Thus, there exists a critical value of beam intensity (that 

can be obtained by balancing the two terms on the R.H.S of eqs. 4.12) above which the 

beam converges along both the transverse directions. In the present investigation the initial 

beam intensity has been taken to be greater than the critical intensity. That is why the beam 

widths of the laser beam along both the transverse directions converging initially. As the 

cross section of the laser beam shrinks, its intensity increases. When the intensity of the 

laser beam becomes too high, the illuminated portion of the plasma gets almost evacuated 

from the electrons. Hence, the beam now propagates as if it is propagating through vacuum. 

As an optical beam propagating through vacuum undergoes diffraction, the beam width of 

a laser beam propagating through plasma, after attaining possible minimum value, the 

beam bounces back towards its original value. As the widths of the laser beam along both 

the transverse directions start expanding, the competition between diffraction broadening 

and nonlinear refraction starts again. Now this competition lasts till 𝑓𝑥,𝑦 obtain their 

maximum possible values. These, processes keep on repeating themselves and thus give 

oscillatory behaviour to the beam widths of the laser beam along the two transverse 

directions. 

          Further it has been observed that after every focal spot, the maximum as well as the 

minimum of the beam width shift downwards. This is owing to the fact that the equilibrium 

electron density is an increasing function of longitudinal distance. Hence, the plasma index 

of refraction keep on decreasing with the penetration of laser beam into the plasma. 

Consequently, the self focusing effect gets enhanced and the maximum as well as minimum 

of the beam width go on shifting downwards after every focal spot. It is also seen that the 

frequency of oscillations of beam with increases with distance. The physics behind this fact 

is that denser is the plasma, higher will be the phase velocity of laser beam through it. 

Hence, in denser plasma laser beam takes less duration to get self focused. 

          It can be also be seen that initially the beam widths of the laser beam along the two 

transverse directions vary in phase with each other but over some distance of propagation 
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their oscillations establish a phase mismatch. This phase mismatch in the oscillations of 

beam widths along 𝑥 and 𝑦 directions is due to the fact that due its ellipticity the laser beam 

experience different indices of refraction along 𝑥 and 𝑦 directions i.e., for the elliptical 

beam the plasma behaves as an anisotropic medium. 

          It can also be seen that the extent of self focusing of the laser beam along 𝑥 direction 

is more compared to that along 𝑦 direction. This is due to the fact that initial width of the 

beam along 𝑥 direction is more compared to that along 𝑦 direction (
𝑎

𝑏
= 1.1). Thus, the 

opposition offered by diffraction effect to the nonlinear refraction is more along 𝑥 

direction. This results in reduced self focusing along 𝑦 direction. 

          The plots in Fig. 4.4 depict that with increase in the value of deviation parameter 𝑞, 

the extent of self focusing along both the transverse directions gets reduced. This is due to 

the fact for laser beams with larger value of 𝑞, most of the beam energy is concentrated 

around a narrow region around the beam axis. Hence, these beams get a little contribution 

from the off axial rays towards the nonlinear refraction. As the phenomenon of self 

focusing is a homeostasis of nonlinear refraction of the optical beam due to optical 

nonlinearity of the medium, increase in the value of deviation parameter 𝑞 reduces the 

extent of self focusing of the laser beam. Thus, compared to 𝑞-Gaussian laser beams, ideal 

Gaussian laser beams possess minimum focusing character. 

          It can also be seen that instead of their reduced focusing, laser beams with higher 

values of deviation parameter 𝑞 possess faster focusing along both the transverse 

directions. This is due to the faster focusing character of the rays closer to beam axis. Being 

away from the beam axis, off axial rays take more duration to get self focused. As there 

are more number of off axial rays in laser beams with lower values of deviation 

parameter 𝑞, these beams possess slower focusing character. 

          Figure 4.5 illustrates the effect of beam ellipticity along 𝑦 direction on self focusing 

of the laser beam. It can be seen that with increase in the beam ellipticity along 𝑦 direction 

there is reduction in extent of self focusing of the laser beam along 𝑦 direction. This is due 

to the fact that, at fixed value of 𝑎 increase in beam ellipticity (i.e.,
𝑎

𝑏
) means the reduction 
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in initial width of the beam along 𝑦 direction. Hence, with increase in beam ellipticity along 

𝑦 direction makes the diffraction effect stronger along 𝑦 direction. This results in the 

reduced focusing of the laser beam along 𝑦 direction 

 

                                                                                                           

Fig. 4.5: Variation of beam width parameters 𝒇𝒙, 𝒇𝒚 with distance of propagation in plasma  

for 𝒒 = 𝟑, 𝒅′ = 𝟎. 𝟐𝟓 𝒂𝒏𝒅 
𝒂

𝒃
= (𝟏, 𝟏. 𝟏, 𝟏. 𝟐) 

          It can also be seen that initially the increase in beam ellipticity does not produce any 

significant effect on self focusing of the beam along 𝑥 direction. However, as the beam 

penetrates deeper into the plasma the focusing along 𝑥 direction also decreases. This is due 

to the fact that as the beam penetrates deeper and deeper into the plasma, the nonlinear 

coupling between the two beam widths becomes stronger and stronger. 

          Fig.4.6 illustrates the effect of slope of density ramp on self focusing of the laser 

beam along the two transverse directions. It can be seen that with increase in the slope of 

density ramp the extent of self focusing of the laser beam along both the transverse 

directions increases. This is due to the fact that with increase in slope density of ramp, the 

number of electrons contributing to the ponderomotive nonlinearity increases along the 

direction of propagation. This results in enhanced transverse as well as longitudinal 

gradient in the index of refraction of plasma that in turn increases the extent of self focusing 

of the laser beam along the two transverse directions. 
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Fig.4.6: Variation of beam width parameters 𝒇𝒙,𝒇𝒚with distance of propagation in plasma  

for 𝒒 = 𝟑, 𝒅′ = (𝟎. 𝟐𝟓, 𝟎. 𝟑𝟓, 𝟎. 𝟒𝟓) 𝒂𝒏𝒅 
𝒂

𝒃
= 𝟏. 𝟏 

          Further, eq. (4.16) gives the evolution of axial phase of the laser beam during its 

propagation through the plasma. This equation has been solved in association with the set 

of eqs. (4.12a) and (4.12b), and the corresponding dynamics of the axial phase for different 

laser-plasma parameters has been depicted in figs. 4.7, 4.8 and 4.9. 

          It is observed that axial phase 𝜃 decreases monotonically with distance of 

propagation, showing abrupt jumps at the periodic positions of the minimum beam widths. 

These jumps of axial phase at the focal positions of the laser beam give it a step like 

behaviour. The monotonic decrease in axial phase with distance is due to the fact that the 

self focusing of the laser beams with distance of propagation leads to reduction in volume 

of space available for its propagation. This in turn through position momentum uncertainty 

along the transverse directions 

∆𝑥∆𝑝𝑥 = constant 

∆𝑦∆𝑝𝑦 = constant 

results in increase in the transverse momentum of the photons of the laser beam. This 

situation is similar to that observed for a quantum particle trapped in a tube or a photon 

confined in a waveguide. However, the interesting fact is that in the present case there is 

no physical boundary to confine the photons. Now, as the overall momentum should remain 

conserved, the increase transverse momentum results in reduction in the longitudinal 
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momentum of the photons. This reduction in the longitudinal momentum is the 

consequence of monotonic decrease in the axial phase of the laser beam. 

 

Fig. 4.7: Variation of axial phase 𝜽 with distance of propagation in plasma  

for 𝒒 = (𝟑, 𝟒,∞), 𝒅′ = 𝟎. 𝟐𝟓 𝒂𝒏𝒅 
𝒂

𝒃
= 𝟏. 𝟏 

           

          Step like behaviour of the axial phase, with each step occurring at positions of 

minimum beam width indicates that there is slowest decrement in 𝜃 at points of minimum 

beam width. This is opposite to the behaviour of phase in graded index fibers, where phase 

decreases slowest in the positions of minimum intensity i.e., maximum beam width. This 

difference in the behaviour of axial phase in plasmas and that in graded index fibers is due 

to the fact that due to their optical nonlinearity, plasmas behave as oscillating linear wave 

guides. In linear wave guides, the growth rate of axial phase is inversely proportional to 

the square of beam width. 

          Fig. 4.7 depicts that with increase in the value of deviation parameter 𝑞 there is 

decrease in the rate of change of axial phase with distance. This is due to the fact that as 

the spatial profile of the laser beam converges towards ideal Gaussian profile the transverse 

confinement of the laser beam due to self focusing decreases. As spatial confinement of 

the laser beam is homeostasis for the axial phase shift, the reduction of self focusing with 

increase in deviation parameter 𝑞 results in reduction in the rate of change of axial phase 
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with distance. Thus, axial phase of the ideal Gaussian beams changes at slowest rate during 

their propagation through nonlinear media. 

          Fig. 4.8 illustrates the effect of beam ellipticity on the evolution of axial phase of the 

laser beam. It can be seen that with increase in the ellipticity of the laser beam its axial 

phase changes at a slower rate. This is due to the reduction in overall focusing of the laser 

beam with increase in its ellipticity. 

 

Fig. 4.8: Variation of axial 𝜽 phase with distance of propagation in plasma  

for 𝒒 = 𝟑, 𝒅′ = 𝟎. 𝟐𝟓 𝐚𝐧𝐝
𝒂

𝒃
= (𝟏, 𝟏. 𝟏, 𝟏. 𝟐) 

 

 

Fig. 4.9: Variation of axial phase 𝜽 with distance of propagation in plasma  

for 𝒒 = 𝟑, 𝒅′ = (𝟎. 𝟐𝟓, 𝟎. 𝟑𝟓, 𝟎. 𝟒𝟓)𝐚𝐧𝐝 
𝒂

𝒃
= 𝟏. 𝟏 
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          Fig. 4.9 depicts the effect of slope of plasma density ramp on the axial phase of the 

laser beam. It can be seen that in denser plasmas the axial phase of the laser beam changes 

at a faster rate. This is due to the fact that denser is the plasma, higher is the spatial 

confinement of the laser beam due to self focusing. As a result the axial phase of the beam 

changes at a faster rate in denser plasmas. 

4.6 Conclusions 

          In conclusion I have presented the effects of both ellipticity of the cross section of 

the laser beam as well as the deviation of amplitude structure from ideal Gaussian profile 

on its nonlinear propagation characteristics. It has been observed that although the 

deviation of amplitude structure from ideal Gaussian profile arises due to cavity 

imperfections, it helps to enhance the self focusing of the laser beam in nonlinear media. 

But along with enhancing the extent of self focusing it delays the self focusing of the laser 

beam. It is also observed that initial ellipticity of the beam also plays a significant role in 

determining the propagation characteristics of the beam. Self focusing of the laser beam is 

lesser along the transverse direction along which it is initially more elliptical. The results 

of present investigation may serve as a guide for the experimentalists working in the area 

of laser-plasma interactions and nonlinear optics. 
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Chapter-5 

Self Focusing of Cosh-Gaussian Laser Beam in  

Collisional Plasma: Effect of Nonlinear Absorption 

5.1 Introduction 

          Amelioration in laser technology fuelled by the advent of chirp pulse amplification 

(CPA) technique [9, 10] has led to a resurgence in the field of light matter interactions by 

giving birth to two entirely new areas of science i.e., nonlinear optics and laser plasma 

interactions. Interactions of intense coherent beams of light produced by modern laser 

systems with plasmas are rich in copious nonlinear phenomena those were not possible 

before the invention of laser. This includes a gamut from optical self-action effects like 

(self focusing, self guiding, self phase modulation etc.) to several frequency mixing 

processes like sum frequency generation, difference frequency generation, second 

harmonic generation (SHG) [19] etc. Being extremely complex but rich in physics, these 

nonlinear effects have the potential to keep researchers busy for several upcoming years. 

Over past few years veteran physicists are attempting to improve on the understanding of 

laser plasma interactions by carrying out experimental as well as theoretical investigations. 

The major impetus behind these investigations on laser-plasma interactions was built by 

the proposal of initiating controlled nuclear fusion reaction by using ultra intense laser 

beams. Fusion is considered to be the cleanest source of energy that bears the promise to 

quench means endless thirst for energy, without giving any harm to global climate change. 

Apart from fusion, several other applications have emerged as a consequence of laser 

plasma interactions. This include laser driven plasma accelerators [16], X-ray lasers [17], 

HHG [19] etc. The ultimate breath of all these applications is decided by the efficiency of 

laser plasma coupling. As, during the coupling of laser energy with plasmas, above 

mentioned processes play a significant role, therefore, it becomes essential to investigate 

some of these nonlinear phenomena in order to optimize the efficiency of laser plasma 

coupling. 

          Self focusing of the laser beam is such a nonlinear phenomenon that significantly 

affects the propagation of an intense laser beam through plasma. The propagation of an 
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intense laser beam through plasma modifies the index of refraction of plasma in such a way 

that the illuminated region of plasma behaves like a graded index fiber. Thus, the axial part 

of optical beam gets maximum opposition from the plasma for its propagation and this 

opposition decreases with radial distance from the axis of beam. Hence the beam develops 

a velocity gradient over its cross section and thus the phase fronts of the beam bend as if 

the beam is passing through a converging lens. 

          Self focusing of the laser beams in different nonlinear media has been a hot topic of 

research since its discovery by Askaryan [22]. In past few years a vast literature has been 

reported by researchers from all over the globe on various aspects of this phenomenon. 

Early seminal work of Sodha et al [25]. gave a gravest blow to the investigation of this 

phenomenon for intense laser beams interacting with plasmas in different environments 

and regimes. Especially in context of inertial confinement fusion this phenomenon is at the 

vanguard of theoretical as well as experimental investigations. 

          Laser beams differing in irradiance over their cross sections behave differently in 

plasmas. However, from literature review it has been observed that most of the earlier 

theoretical investigations on self focusing of laser beams in plasmas have been carried out 

for Gaussian laser beams. Only a few investigations on self focusing of laser beams with 

other irradiance profiles like Cosh-Gaussian, 𝑞-Gaussian, Quadruple-Gaussian etc. have 

been reported in the past. But all these investigations suffer from the limitation that they 

have been carried out under the assumption that there is no absorption of laser energy by 

plasma. However, in actual during its propagation through plasma the laser beam gets 

attenuated due to absorption of laser energy by plasma. If the index of plasma is a function 

of laser intensity, then the attenuation function of plasma is also a function of laser 

intensity, i.e., attenuation of the beam is also nonlinear in nature. Thus, the aim of present 

study to investigate self focusing of a ChG laser beam in collisional plasma under the effect 

of its nonlinear attenuation. 

5.2 Optical Nonlinearity of Plasma 

          The dielectric function of the plasma can be written as 

𝜀 = 𝜀𝑟 + 𝜀𝑖                                                                                         (5.1) 
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where, 𝜀𝑟 and 𝜀𝑖 are the real and imaginary parts of the dielectric function respectively. 

The real part is responsible for the nonlinear refraction of the laser beam whereas; 

imaginary part is responsible for its attenuation. The real part of dielectric function of 

plasma can be written as: 

𝜀𝑟 = 1 −
𝜔𝑝
2

𝜔0
2                                                                                       (5.2) 

Where 

𝜔𝑝
2 =

4𝜋𝑒2

𝑚
𝑛𝑒                                                                                      (5.3) 

is the plasma frequency in the presence of laser beam, and 𝑒,𝑚 are electronic charge and 

mass respectively. Here, the propagation of a laser beam with amplitude structure modeled 

by Cosh-Gaussian function defined as  

𝐸0 =
𝐸00
𝑓
𝑒
−

𝑟2

2𝑟0
2𝑓2𝐶𝑜𝑠ℎ (

𝑏

𝑟0𝑓
𝑟) 𝑒−𝑘𝑎𝑒𝑧                                                           (5.4) 

has been considered. Here, 𝑘𝑎𝑒is the attenuation coefficient of plasma. The nonuniform 

irradiance over the cross section of the laser beam leads to nonuniform heating of the 

plasma electrons. The resulting electron temperature of plasma is related to laser field 

amplitude as [25] 

𝑇𝑒
𝑇0
= 1 +

𝛽𝐸00
2

𝑓2
𝑒
−

𝑟2

𝑟0
2𝑓2 cosh2 (

𝑏

𝑟0𝑓
𝑟) 𝑒−2𝑘𝑎𝑏𝑧                                                   (5.5) 

where, 𝑇0 is the equilibrium electron temperature of the plasma i.e., the temperature of 

plasma electrons in the absence of laser beam. The parameter 𝛽 =
𝑒2𝑀

6𝐾0𝑇0𝑚2𝜔0
2 is the 

coefficient of collisional nonlinearity [93, 94]. From eq.(5.5) it can be seen that the 

transverse variation of electron temperature of plasma exactly follows the amplitude 

structure over the cross section of the laser beam. Thus, temperature of plasma electrons in 

the irradiated portion of plasma is maximum where intensity of the laser beam is maximum 

and vice versa. This results in the migration of plasma electrons from high intensity regions 

towards the low intensity regions. The resulting distribution of electrons is given by 

𝑛𝑒 = 𝑛0 (
2𝑇0

𝑇0 + 𝑇𝑒
)
1−

𝑠

2

                                                                     (5.6) 
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Using eqs. (5.3)-(5.6) in (5.2), the real part of dielectric function of plasma has been 

obtained as 

𝜀𝑟 = 1 −
𝜔𝑝0
2

𝜔0
2 {1 + 

1

2

𝛽𝐸00
2

𝑓2
𝑒
−

𝑟2

𝑟0
2𝑓2 cosh2 (

𝑏

𝑟0𝑓
𝑟) 𝑒−2𝐾𝑎𝑏𝑧}

𝑠

2
−1

                               (5.7) 

where, 𝜔𝑝0
2 =

4𝜋𝑒2

𝑚
𝑛0 is the plasma frequency in the absence of the laser beam. The 

parameter 𝑠 describes the nature of collisions and can be defined through the dependence 

of collision frequency 𝜈 on electron's random velocity 𝑣 and temperature 𝑇𝑒 as 𝜈𝛼 (
𝑣2

𝑇𝑒
)
𝑠

. 

For velocity independent collisions 𝑠 = 0, for collisions between electrons and diatomic 

molecules 𝑠 = 2, and for electron-ion collisions 𝑠 = −3. 

Taking 

𝜀𝑟 = 𝜀0 + 𝜑(𝐸0𝐸0
∗)                                                                           (5.8) 

where, 𝜀0 and 𝜑(𝐸0𝐸0
∗) are the linear and nonlinear parts of the dielectric function of the 

channel, respectively, one can obtain 

𝜀0 = 1 −
𝜔𝑝0
2

𝜔0
2                                                                              (5.9) 

And 

𝜑(𝐸0𝐸0
∗) =

𝜔𝑝0
2

𝜔0
2 {1 − (1 +

1

2

𝛽𝐸00
2

𝑓2
𝑒
−

𝑟2

𝑟0
2𝑓2 𝑐𝑜𝑠ℎ2 (

𝑏

𝑟0𝑓
𝑟) 𝑒−2𝐾𝑎𝑏𝑧)

𝑠

2
−1

}                      (5.10) 

5.3 Attenuation Function of the Plasma 

          Following Sodha et al [25], the imaginary part of the dielectric function of the plasma 

can be written as  

𝜀𝑖 =
4

3
√𝜋𝛤

(𝑠 + 5)

2
[
𝜔𝑝0
2

𝜔0
2

𝜈0
𝜔0
(1 +

𝛽𝐸00
2

𝑓2
𝑒
−

𝑟2

𝑟0
2𝑓2 cosh2 (

𝑏

𝑟0𝑓
𝑟))]

𝑠

2

                             (5.11) 

The nonlinear attenuation function of the plasma can be obtained by averaging the 

imaginary part of the dielectric function over the cross section of the laser beam as 

𝐾𝑎𝑏 =
𝜔0
2

𝑘0𝑐
2

∫ 𝜀𝑖
𝐸00
2

𝑓2
𝑒
−

𝑟2

𝑟0
2𝑓2 cosh2 (

𝑏

𝑟0𝑓
𝑟) 𝑟𝑑𝑟

∞

0

∫
𝐸00
2

𝑓2
𝑒
−

𝑟2

𝑟0
2𝑓2 cosh2 (

𝑏

𝑟0𝑓
𝑟) 𝑟𝑑𝑟

∞

0

                                           (5.12) 

Using eq.(5.11) in (5.12), one can get 
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𝐾𝑎𝑏 =
4

3
√𝜋

𝛤
(𝑠+5)

2

𝑒𝑏
2

1

𝑘0𝑟0
2 𝐼𝑎𝑏                                                           (5.13) 

Where 

𝐼𝑎𝑏 = ∫ {1 +
𝛽𝐸00

2

𝑓2
𝑒−𝑥

2
𝑐𝑜𝑠ℎ2(𝑏𝑥)}

𝑠

2

𝑒−𝑥
2
𝑐𝑜𝑠ℎ2(𝑏𝑥) 𝑥𝑑𝑥

∞

0

                                (5.14) 

𝑥 =
𝑟

𝑟0𝑓
 

5.4 Beam Width Evolution of Laser Beam 

          The nonlinear propagation of a laser beam through an absorptive medium is 

governed by the wave equation 

∇⊥
2𝐸0 +

𝜔0
2

𝑐2
 𝜑(𝐸0𝐸0

∗)𝐸0 − 𝑖𝐾𝑎𝑏𝐸0 − 2𝑖𝑘0
𝜕𝐸0
𝜕𝑧

= 0                                       (5.15) 

Using the same procedure as in chapter-4 i.e., variational analysis, the equation governing 

the evolution of beam width of the laser beam has been obtained as 

𝑑2𝑓

𝑑𝜉2
+

1

𝑓
(
𝑑𝑓

𝑑𝜉
)
2

=
1+𝑒−𝑏

2
(1−𝑏2)

2(1+𝑏2)

1

𝑓3
+

𝜔𝑝0
2 𝑟0

2

𝑐2
(
𝑠

2
− 1)

𝛽𝐸00
2

𝑓3
𝑒−𝐾𝑎𝑏

′ 𝜉 (
𝑒−𝑏

2

1+𝑏2
) (𝑇1 − 𝑏𝑇2)                      (5.16)  

Where, 𝜉 =
𝑧

𝑘0𝑟0
2 is the dimensionless distance of propagation,  

𝑇1 = ∫ 𝑥3 {1 +
1

2

𝛽𝐸00
2

𝑓2
𝑒−𝑥

2
𝑐𝑜𝑠ℎ2(𝑏𝑥)𝑒−2𝐾𝑎𝑏

′ 𝜉}

𝑠

2
−2

𝑒−2𝑥
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𝑐𝑜𝑠ℎ4(𝑏𝑥)𝑑𝑥

∞
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𝑇2 = ∫ 𝑥2 {1 +
1

2

𝛽𝐸00
2

𝑓2
𝑒−𝑥

2
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𝑠
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and 

𝐾𝑎𝑏
′ =

4

3
√𝜋

𝛤
(𝑠+5)

2

𝑒𝑏
2 𝐼𝑎𝑏  

is the dimensionless attenuation function of the plasma. For an initially plane wavefront, 

eq.(5.16) is subjected to boundary conditions 𝑓 = 1,
𝑑𝑓

𝑑𝜉
= 0 𝑎𝑡 𝜉 = 0.  

5.5. Results and Discussion 

          The evolution of spot size of ChG laser beam through collisional plasma with 

nonlinear absorption is governed by eq. (5.16). This equation has been solved numerically 

for the following set of laser as well as plasma parameters 

𝜔0 = 1.78 × 10
15𝑟𝑎𝑑/𝑠𝑒𝑐 
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𝜆 = 1.06𝜇𝑚 

𝑟0 = 15𝜇𝑚 

𝑇0 = 10
6𝐾 

to investigate the propagation dynamics of ChG laser beam. 

          Fig.5.1 illustrates the effect of decentered parameter of the ChG laser beam on its 

focusing/defocusing behavior. It is observed that initially the spot size of the laser beam 

decreases monotonically with distance of propagation and then after attaining a minimum 

value the spot size of the laser beam starts increasing monotonically. In other initially the 

self focusing of the laser beam is the dominant phenomenon and beyond the focus 

diffraction broadening becomes dominant. It can be seen that inside the plasma medium 

the beam widths of the laser beam along both the transverse directions show oscillatory 

behavior over the longitudinal direction. 

 

Fig. 5.1: Variation of beam width parameter 𝒇 with normalized distance of propagation 𝝃 for 

different values of decentered parameter 𝒃 viz., 𝒃 = 𝟎, 𝟎. 𝟐𝟓, 𝟎. 𝟓𝟎, 𝟏. 𝟎, 𝟏. 𝟏𝟓, 𝟏. 𝟑𝟎 and at fixed 

values of 𝜷𝑬𝟎𝟎
𝟐 = 𝟑. 𝟎, (

𝝎𝒑𝟎𝒓𝟎

𝒄
)
𝟐

= 𝟏𝟐,
𝝂𝟎

𝝎𝟎
= 𝟎. 𝟎𝟓, 𝒔 = −𝟑 

           This behavior of the laser beam can be explained by analyzing the role and origin 

of various terms contained in the evolution equation for the beam width i.e., eq.(5.16). The 

first terms on the right hand side (R.H.S) of this equation that vary inversely as the cube of 
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corresponding beam width (i.e., as 𝑓−3) is the spatial dispersive term that models the 

spreading of the laser beam in transverse directions as a consequence of the diffraction 

divergence. The second terms on the R.H.S of this equation that has complex dependence 

on beam width 𝑓 originates as a consequence of optical nonlinearity of plasma under the 

effect of intense field of the laser beam. This term models the nonlinear refraction of the 

laser beam. As a result of laser induced nonlinearity of plasma the resulting nonlinear 

refraction of the laser beam tends to counter balance the effect of diffraction along the 

transverse directions. Thus, during the propagation of laser beam through the plasma, there 

starts a competition between the two phenomena of diffraction and nonlinear refraction. 

The winning phenomenon decides the ultimate behavior of the laser beam i.e., whether the 

beam will converge or diverge. Thus, there exists a critical value of beam intensity (that 

can be obtained by balancing the two terms on the R.H.S of eq.(5.16) above which the 

beam converges along the transverse directions. In the present investigation the initial beam 

intensity has been taken to be greater than the critical intensity. That is why the beam width 

of the laser beam along the transverse directions converges initially. As the cross section 

of the laser beam shrinks, its intensity increases. When the intensity of the laser beam 

becomes too high, the illuminated portion of the plasma becomes almost evacuated from 

plasma electrons and thus the laser beam propagates as if it is propagating through vacuum. 

As an optical beam propagating through vacuum undergo diffraction, the beam width of a 

laser beam propagating through plasma, after attaining possible minimum value bounces 

back towards its original value. Now, as along with the distance of propagation the intensity 

of the laser beam is getting attenuated to collisional absorption, after a certain distance the 

intensity of the beam becomes lesser than the critical intensity for self focusing. Hence, 

beyond the focal spot, the laser beam keep on diffracting continuously. 

          The plots in fig.5.1 also depict that there is increase in the extent of self focusing of 

the laser beam with increase in the value of decentered parameter of the laser beam for 0 ≤

𝑏 ≤ 1. This is due to the fact that the intensity profile of the ChG laser beam resembles 

with that of at topped laser beams for 0 ≤ 𝑏 ≤ 1, and the degree of flatness increases with 

the increase in the value of 𝑏. Hence, for 0 ≤ 𝑏 ≤ 1, the ChG laser beam gets equal 
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contribution from off axial rays towards the nonlinear refraction as provided by the axial 

rays.  

          Also, it can be seen from fig.5.2 that with increase in the value of 𝑏 for 0 ≤ 𝑏 ≤ 1 

there is decrease in the attenuation of the beam. As a result, there is increase in the extent 

of self focusing of the laser beam with increase in the value of 𝑏 for 0 ≤ 𝑏 ≤ 1.  

 

Fig. 5.2 Variation of attenuation function 𝑲𝒂𝒃
′  with normalized distance of propagation 𝝃  

for different values of decentered parameter 𝒃 viz., 𝒃 = 𝟎, 𝟎. 𝟓𝟎, 𝟏. 𝟎 and at 

   fixed values, 𝜷𝑬𝟎𝟎
𝟐 = 𝟑. 𝟎, (

𝝎𝒑𝟎𝒓𝟎

𝒄
)
𝟐

= 𝟏𝟐,
𝝂𝟎

𝝎𝟎
= 𝟎. 𝟎𝟓, 𝒔 = −𝟑 

          It is also observed from fig.5.1 that there is decrease in the extent of self focusing of 

the laser beam with increase in the value of decentered parameter of the laser beam for 𝑏 >

1. This is due to the fact that the intensity maxima of the laser beam for 𝑏 > 1 appears in 

the off axial part of the laser beam rather than on axial part. As a result, the axial part of 

the laser beam becomes weaker as compared to the off axial part with increase in the value 

of 𝑏 beyond 1. Thus, for 𝑏 > 1 ChG laser beam gets a little contribution from axial rays 

for nonlinear refraction. The reduced nonlinear refraction of the laser beam with increase 

in the value of 𝑏 for 𝑏 > 1 results in decreased focusing of the laser beam. 

          It can also be seen from the plots in fig.5.1 that with increase in the value of 𝑏 the 

focal spot of the laser beam gets shifted longitudinally in the forward direction i.e., ChG 
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laser beams with higher value of 𝑏 show delayed focusing. This is due to the fact that with 

increase in the value of 𝑏 the intensity of the laser beam shifts from axial region to the off 

axial region of the laser beam and being away from the axis, off axial rays take more 

duration to get self focused. 

          Fig.5.3 illustrates the effect of initial beam intensity on focusing/defocusing 

characteristics of the laser beam. It is observed that there is decrease in the extent of rate 

of increase of the spot size of the laser beam beyond the focus with increase in its intensity. 

This is due to the fact that increase in the intensity of the laser beam leads to weakening of 

its nonlinear absorption. 

 

Fig. 5.3: Variation of beam width parameter 𝒇 with normalized distance of propagation 𝝃  

for different values of laser intensity 𝜷𝑬𝟎𝟎
𝟐  viz., 𝜷𝑬𝟎𝟎

𝟐 = 𝟑. 𝟎, 𝟑. 𝟓𝟎, 𝟒. 𝟎 and  

at fixed values of 𝒃 = 𝟎. 𝟐𝟓, (
𝝎𝒑𝟎𝒓𝟎

𝒄
)
𝟐

= 𝟏𝟐,
𝝂𝟎

𝝎𝟎
= 𝟎. 𝟎𝟓, 𝒔 = −𝟑 

          Fig.5.4 illustrates the effect of plasma density on the focusing/defocusing of the laser 

beam. The stronger focusing of the laser beam is observed with increase in the density of 

the plasma. The stronger focusing of the laser beam is due to the fact that the number of 

electrons contributing to the collisional nonlinearity also increases with increase in the 

density of plasma. Also, with increase in electron density of plasma the mean free path of 

electrons gets reduced and hence, the collisions of plasma electrons with other species 
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become more frequent. This results in enhanced optical nonlinearity of the plasma that in 

turn increases the self focusing of the laser beam. 

 

Fig. 5.4: Variation of beam width parameter 𝒇 with normalized distance of propagation 𝝃 

for different values of normalized plasma density (
𝝎𝒑𝟎𝒓𝟎

𝒄
)
𝟐

viz., (
𝝎𝒑𝟎𝒓𝟎

𝒄
)
𝟐

= 𝟏𝟐, 𝟏𝟒, 𝟏𝟔 and 

at fixed values of 𝒃 = 𝟎. 𝟐𝟓, 𝜷𝑬𝟎𝟎
𝟐 = 𝟑. 𝟎,

𝝂𝟎

𝝎𝟎
= 𝟎. 𝟎𝟓, 𝒔 = −𝟑 

 

          Fig.5.5 illustrates the effect of collisional frequency on focusing/defocusing of the 

laser beam. It is observed that there is decrease in the extent of self focusing of the laser 

beam with increase in the collisional frequency. This is due to the fact that increase in 

collisional frequency leads to enhanced damping of the laser energy. As a result, the 

nonlinear refraction of the laser beam becomes weaker. Hence, increase in collisional 

frequency leads to reduced focusing of the laser beam. 

          Fig.5.6 illustrates the effect of nature of collisions on self focusing/defocusing of the 

laser beam. It is observed that no self focusing of the laser beam takes place in plasmas 

dominant with collisions between electrons and diatomic molecules. This is due to the fact 

that 𝑠 = 2 corresponds to the situation, where 𝑛𝑒 = 𝑛0 = 𝑛0𝑖 and hence, no redistribution 

of electrons takes place. Thus, the magnitude of nonlinear refractive term in eq.(5.16) 

becomes zero. The diffraction divergence is a dominating mechanism in this case. 
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Fig. 5.5: Variation of beam width parameter 𝒇 with normalized distance of propagation 𝝃  

For different values of collisional frequency 
𝝂𝟎

𝝎𝟎
 viz., 

𝝂𝟎

𝝎𝟎
= 𝟎, 𝟎. 𝟎𝟓, 𝟎. 𝟏𝟎 and  

at fixed values of 𝒃 = 𝟎. 𝟐𝟓, 𝜷𝑬𝟎𝟎
𝟐 = 𝟑. 𝟎, (

𝝎𝒑𝟎𝒓𝟎

𝒄
)
𝟐

= 𝟏𝟐, 𝒔 = −𝟑 

 

Fig. 5.6: Variation of beam width parameter 𝒇 with normalized distance of propagation 𝝃  

For different values of 𝒔 viz., 𝒔 = −𝟑, 𝟎, 𝟐 and at fixed values 

 of 𝒃 = 𝟎. 𝟐𝟓, 𝜷𝑬𝟎𝟎
𝟐 = 𝟑. 𝟎, (

𝝎𝒑𝟎𝒓𝟎

𝒄
)
𝟐

= 𝟏𝟐,
𝝂𝟎

𝝎𝟎
= 𝟎. 𝟎𝟓 
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 5.6 Conclusions 

          I have investigated, the nonlinear propagation of ChG laser beams through 

collisional plasma by incorporating the effect of intensity dependent absorption of the laser 

beam. It has been observed that ChG laser beams can play a significant role in enhancing 

the efficiency of laser plasma coupling. The uniform irradiance over the cross section of 

the laser beam results in its enhanced self focusing in plasma by reducing the nonlinear 

attenuation. Further it has been observed that for a given laser beam the self focusing of 

the laser beam can be increased by increasing the electron density of plasma. The results 

of present investigation may serve as a guide for the experimentalists working in the field 

of laser plasma interactions. 
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Chapter-6 

Linear and Nonlinear Propagation Characteristics of  

Multi-Gaussian Laser Beams 

6.1 Introduction 

          The expansion of the transverse dimensions of a propagating beam is ubiquitous for 

all kinds of waves including electro-magnetic waves and even matter waves. It would seem 

that this kind of spreading is inevitable and therefore irreducible, since it originates at a 

fundamental level from light’s natural wave property of diffraction. However, Chiao et al. 

[24] showed that in media whose index of refraction depends on the intensity of light, and 

the spreading of an optical beam in principle can be obviated. Hence, the expansion of 

optical beam due to diffraction is neither inevitable nor irreducible. In nonlinear media, the 

presence of an optical beam modifies their optical properties like index of refraction, 

absorption, or conversion to higher frequencies. The resulting change in index of refraction 

resembles to that of a graded index fiber and thus the beam automatically becomes 

accumulated towards its axis. This phenomena is known as self focusing. When self 

focusing exactly balances the diffraction of the laser beam, the beam propagates in a stable 

self trapped mode. Since its discovery by Askaryan [22], the phenomenon of self focusing 

is at the vanguard of experimental as well as theoretical investigations due to its relevance 

in number of applications.  

          In the design of ultra intense laser systems such as those being used in laser driven 

nuclear fusion, the phenomenon of self focusing plays an important role. By producing 

intra cavity losses, it can limit the cavity intensity or can slow down the release of optical 

energy. It can also alter the transverse profile of the laser beam by producing wavefront 

distortions. It is well known fact that with respect to a reference on axis plane wave, a 

converging/diverging electromagnetic beam undergoes modulation of its longitudinal 

phase. This self phase modulation of the longitudinal phase of a laser beam is also known 

as Gouy phase shift, which is a matter of debate over past few years. Since this discovery, 

various theories (ranging from classical [170] to quantum [162]) have been used to explain 
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its origin. Classically, self phase modulation of the laser beam arises due to the contribution 

of an additional phase per unit length in the neighbourhood of beam focal spot arising from 

the second order derivative of field amplitude with respect to transverse coordinates. 

However, in quantum mechanical terms, the longitudinal phase shift is considered as a 

purely geometrical effect, resulting as a consequence of modification of volume of space 

available for the propagation of the beam. The consequent change in the transverse 

momentum of the photon changes the longitudinal momentum as well that in turn modifies 

the longitudinal phase of the laser beam. Precise knowledge of the behaviour of the overall 

phase of the laser beam is important to control and understand laser driven processes. In 

laser cavities, it plays a significant role in determining the resonant frequencies of the 

transverse modes. By increasing the frequency degeneracy of the resonant modes of the 

cavity, longitudinal phase shift [171] can influence the beam quality achieved in the laser 

resonator.  

          Since the seminal works of Chiao et al [24]., Kelley [55], Gupta et al. [172] and 

Gustafson et al. [173], extensive literature has been reported by several researchers 

highlighting various aspects of propagation characteristics of laser beams in various 

nonlinear media. Laser beams differing in intensity profile behave differently in nonlinear 

media. The reported review reveals the fact that most of the earlier theoretical 

investigations on nonlinear optical phenomena of laser beams have been directed towards 

revealing the propagation characteristics of laser beams with ideal Gaussian profile. 

However, in context of the ICF, there is growing interest in class of laser beams those are 

having uniform irradiance over wider area of their cross sections. In comparison to 

Gaussian beams, laser beams with uniform irradiance possess low divergence and thus can 

improve the efficiency of laser plasma coupling during the ICF. Also, these beams can 

deliver high power densities to the target while keeping power density below the threshold 

for other parametric instabilities. Mathematically such beam profiles are modeled by super 

Gaussian or the multi-Gaussian (M.G.) beam profiles [157]. Most of the earlier 

investigations on propagation characteristics of the M.G. laser beams in plasmas have been 

carried out in the framework of paraxial theory. Paraxial theory oversimplifies the analysis 
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by taking into consideration the effect of only the paraxial region of the cross section of 

the laser beam towards the optical nonlinearity of the medium. This approximation is valid 

up to some extent for Gaussian laser beams. But for the M.G laser beams those possess 

uniform irradiance over their cross section, this approximation is not valid.  

          The aim of the present study is to give more detailed analysis of the propagation 

characteristics of the M.G laser beams with the help of variational theory approach which 

is free from the limitations of paraxial theory. 

6.2 Intensity Profile of M.G. Laser Beam 

          The intensity profile of M.G. laser beams is modeled by the function 

𝐴𝐴∗|𝑧>0 =
𝐸00
2

𝑓2
[𝑒
−
(𝑥−𝑥0𝑓)

2+𝑦2

2𝑟0
2𝑓2 + 𝑒

−
(𝑥+𝑥0𝑓)

2+𝑦2

2𝑟0
2𝑓2 + 𝑒

−
𝑥2+(𝑦−𝑥0𝑓)

2

2𝑟0
2𝑓2 + 𝑒

−
𝑥2+(𝑦+𝑥0𝑓)

2

2𝑟0
2𝑓2 ]

2

                  (6.1) 

where 𝐴(𝑥, 𝑦, 𝑧) is the slowly varying beam envelope, 𝑟0 is the beam width at focal plane 

and 𝐸00 is the axial amplitude of the electric field, i.e. amplitude at the center (𝑥 = 0, 𝑦 =

0) of the focal plane. The parameter 𝑓(𝑧) is currently undetermined and upon 

multiplication with initial beam width 𝑟0 and gives the instantaneous beam width of the 

laser beam. Hence, 𝑓(𝑧) is termed as dimensionless beam width parameter. The M.G. laser 

beam provides a uniform irradiance over the cross section of spot size. It further improves 

the propagation of laser beam in a nonlinear media. 

6.3 Relativistic Nonlinearity of Plasma 

          The dielectric function of plasma can be written as  

𝜀0 = 1 −
𝜔𝑝
2

𝜔0
2                                                                                 (6.2) 

where 

𝜔𝑝
2 =

4𝜋𝑒2𝑛0
𝑚𝑒

                                                                             (6.3) 

𝑒,𝑚𝑒 , and 𝑛 are electronic charge, mass and density, respectively. The electric field vector  

𝑬 = 𝐴(𝑟, 𝑧)𝑒𝑖(𝜔0𝑡−𝑘0𝑧)(𝑒𝑥 + 𝑖𝑒𝑦)                                                           (6.4) 

imparts oscillatory velocity 

𝑣 =
𝑒𝐸

𝑖𝑚𝜔0
2                                                                                 (6.5) 
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to the plasma electrons. When this quiver velocity of the carriers approaches to that of light 

in vacuum under the effect of ultra-intense laser beam, the effective mass 𝑚𝑒 of the 

electrons in eq. (4) needs to be replaced by 𝑚0𝛾, where 𝑚0 is the rest mass of electron and 

𝛾 is the relativistic Lorentz factor. Following Akhiezer and Polovin, the relativistic Lorentz 

factor 𝛾 is related to laser field amplitude as [31] 

𝛾 = (1 + 𝛽𝐴𝐴∗)
1

2                                                                      (6.6) 

where the coefficient 𝛽 =
𝑒2

𝑚0
2𝑐2𝜔0

2 gives the strength of relativistic nonlinearity. Using eqs. 

(2), (4) and (7) in Eq. (3), the effective dielectric function of plasma for the M.G laser 

beams can be written as 

𝜀 = 1 −
𝜔𝑝0
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2

     (6.7) 

where 𝜔𝑝0
2 =

4𝜋𝑒2𝑛

𝑚0
 is the equilibrium plasma frequency, i.e. the plasma frequency in the 

absence of laser beam. For linearly polarized laser beam the relativistic Lorentz factor is 

given by 

𝛾 = (1 +
1

2
𝛽𝐴𝐴∗)

1

2

 

          Thus it can be predicted that for a given intensity circularly polarized laser beam 

produces more nonlinearity compared to that by linearly polarized laser beam. This is due 

to the fact that in case of circularly polarized laser beam propagating through relativistic 

plasma, a quasi-stationary magnetic field is produced. The pinching effect of this produced 

magnetic field gets added to plasma nonlinearity. Thus, due to this additional contribution 

of the pinching effect of the magnetic field, circularly polarized laser beam produces larger 

nonlinearity in the index of refraction of plasma compared to that by linearly polarized 

beam.  

          Separating effective dielectric function of plasma into linear 𝜀0 and nonlinear 

ɸ(𝐴0𝐴0
∗) parts as 

𝜀 = 𝜀0 + ɸ(𝐴0𝐴0
∗)                                                                       (6.8) 

𝜀0 = 1 −
𝜔𝑝0
2

𝜔0
2                                                                            (6.9) 
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ɸ(𝐴𝐴∗) =
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2𝑓2 )}]      (6.10) 

 

6.4 Evolution of Beam Width 

          The propagation of the laser beams in nonlinear media is governed by nonlinear 

Schrodinger wave equation (NLSE)  

𝑖
𝜕𝐴

𝜕𝑧
=

1

2𝑘0
∇⊥
2𝐴 +

𝑘0
2𝜀0

ɸ(𝐴𝐴∗)𝐴                                                            (6.11) 

where, ∇⊥
2=

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
 is the Laplacian along the transverse direction. Using the same 

analysis as that of chapter-4, one can get equation of motion of beam width of the laser 

beam as 
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2
(1 −

𝑥0
2

𝑟0
2) + 𝑒

−
𝑥0
2

2𝑟0
2
(2 −

𝑥0
2

𝑟0
2)

(2 + 2
𝑥0
2

𝑟0
2) + (2 + 2

𝑥0
2

𝑟0
2) 𝑒

−
𝑥0
2

𝑟0
2
+ 2𝑒

−
𝑥0
2

𝑟0
2

)

 
 
−

(

 
 

3

2𝜋
(
𝜔𝑝0𝑟0

𝑐
)
2 𝛽𝐸00

2

𝑓3
(𝐾1 +𝐾2 +𝐾3 + 𝐾4)

(2 + 2
𝑥0
2

𝑟0
2) + (2 + 2

𝑥0
2

𝑟0
2) 𝑒

−
𝑥0
2

2𝑟0
2
+ 2𝑒

−
𝑥0
2

𝑟0
2

)

 
 
       

(6.12) 

Where  

𝐾1 = ∫ ∫ 𝑡1 (𝑡1 −
𝑥0
𝑟0
) 𝑒−

(𝑡1−
𝑥0
𝑟0
)
2
+𝑡2
2

2 × 𝐺1
3(𝑡1, 𝑡2)𝐺2(𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2

∞

0

∞

0

 

𝐾2 = ∫ ∫ 𝑡1 (𝑡1 +
𝑥0
𝑟0
) 𝑒−

(𝑡1+
𝑥0
𝑟0
)
2
+𝑡2
2

2 × 𝐺1
3(𝑡1, 𝑡2)𝐺2(𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2

∞

0

∞

0

 

𝐾3 = ∫ ∫ 𝑡1
2𝑒−

𝑡1
2+(𝑡2−

𝑥0
𝑟0
)
2

2 × 𝐺1
3(𝑡1, 𝑡2)𝐺2(𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2

∞

0

∞

0

 

𝐾4 = ∫ ∫ 𝑡1
2𝑒−

𝑡1
2+(𝑡2+

𝑥0
𝑟0
)
2

2 × 𝐺1
3(𝑡1, 𝑡2)𝐺2(𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2

∞

0

∞

0

 

𝐺1(𝑡1, 𝑡2) = 𝑒
−
(𝑡1−

𝑥0
𝑟0
)
2
+𝑡2
2

2 + 𝑒−
(𝑡1+

𝑥0
𝑟0
)
2
+𝑡2
2

2 + 𝑒−
𝑡1
2+(𝑡2−

𝑥0
𝑟0
)
2

2 + 𝑒−
𝑡2
2+(𝑡2+

𝑥0
𝑟0
)
2

2  

𝐺2(𝑡1, 𝑡2) = [1 +
𝛽𝐴𝐴∗

𝑓2
𝐺1
2(𝑡1, 𝑡2)]

−
3

2

 

𝑡1 =
𝑥

𝑟0𝑓
,   𝑡2 =

𝑦

𝑟0𝑓
,    𝜉 =

𝑧

𝑘0𝑟0
2    

          Thus, it follows from eq. (6.12) that the problem of solving a partial differential 

equation, i.e., the NLSE (eq. (6.11)) has reduced to that of solving an ordinary differential 
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equation. Although this reduced equation is also lacking form exact analytical solution due 

to its non integrability, its approximate solution can be easily obtained with the help of 

simple numerical techniques by assuming that initially the beam is collimated, i.e. it 

satisfies the initial conditions  𝑓 = 1 and 
𝑑𝑓

𝑑𝜉
= 0 at 𝑥 = 0. 

6.5 Potential Well for Self Focusing 

          Equation (6.12) resembles to the equation of motion of a forced harmonic oscillator 

of unit mass and can be written as 

𝑑2𝑓

𝑑𝜉2
+
𝜕𝑉(𝑓)

𝜕𝑓
= 0                                                                           (6.13) 

𝑉(𝑓) = −∫ 𝐹(𝑓)𝑑𝑓
𝑓

                                                                        (6.14) 

𝐹(𝑓) =
1

4𝑓3

[
 
 
 
 1 + 𝑒

−
𝑥0
2

𝑟0
2
(1 −

𝑥0
2

𝑟0
2) + 𝑒

−
𝑥0
2

2𝑟0
2
(2 −

𝑥0
2

𝑟0
2)

(2 + 2
𝑥0
2

𝑟0
2) + (2 + 2

𝑥0
2

𝑟0
2) 𝑒

−
𝑥0
2

𝑟0
2
+ 2𝑒

−
𝑥0
2

𝑟0
2

]
 
 
 
 

+

(

 
 

1

2𝜋
(
𝑠

2
− 1) (

𝜔𝑝0𝑟0

𝑐
)
2 𝛽𝐸00

2

𝑓3
(𝐾1 + 𝐾2 + 𝐾3 + 𝐾4)

(2 + 2
𝑥0
2

𝑟0
2) + (2 + 2

𝑥0
2

𝑟0
2) 𝑒

−
𝑥0
2

2𝑟0
2
+ 2𝑒

−
𝑥0
2

𝑟0
2

)

 
 
−
1

𝑓
(
𝑑𝑓

𝑑𝜉
)
2

    

(6.15) 

          From Eqs.(6.12)–(6.15), it is clear that with the help of variational theory, the 

problem of nonlinear wave propagation has reduced to a simple mechanical problem with 

potential 𝑉(𝑓), where the particle’s coordinate is related to the beam width parameter 𝑓 , 

particle velocity to the wavefront curvature 
𝑑𝑓

𝑑𝜉
, and the time to axial distance 𝜉.  

          As 𝑉(𝑓) → ∞ for 𝑓 → 0  and 𝑉(𝑓) → 0 for 𝑓 → ∞, the potential function 𝑉(𝑓)  for 

self focusing resembles to that for Kepler’s attractive central force problem. Hence 𝑓 can 

be treated as radial coordinate of polar coordinate system (𝑓, 𝜃𝑓). The lagrangian 𝐿 for a 

particle of unit mass in (𝑓, 𝜃𝑓) plane is given by 

𝐿 =
1

2
[(
𝑑𝑓

𝑑𝜉
)
2

+ 𝑓2 (
𝑑𝜃𝑓

𝑑𝜉
)

2

] − 𝑈(𝑓)                                                        (6.16) 

Multiplying Eq. (6.13) by 
𝑑𝑓

𝑑𝜉
 and integrating both sides and we can get 

1

2
(
𝑑𝑓

𝑑𝜉
)
2

+ 𝑉(𝑓) = 𝐸                                                                          (6.17) 

where 𝐸 is the constant of integration and is known as energy function. The canonical 

momentum associated with polar angle 𝜃𝑓 
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𝑝𝜃𝑓 =
𝑑𝐿

𝑑𝜃�̇�
= 𝑓2𝜃�̇�                                                                             (6.18) 

where 𝜃�̇� =
𝑑𝜃𝑓

𝑑𝜉
. The corresponding Lagrange equation 

𝑑

𝑑𝜉
(
𝜕𝐿

𝜕𝜃�̇�
) −

𝜕𝐿

𝜕𝜃𝑓
= 0 

gives 

𝑑

𝑑𝜉
(𝑓2𝜃�̇�) = 0 

Which implies that 

𝑓2𝜃�̇� = 𝑙                                                                                    (6.19) 

          Hence, angular momentum corresponding to polar coordinate 𝜃𝑓 is conserved. The 

Lagrange equation for radial coordinate 𝑓 is 

𝑑

𝑑𝜉
(
𝜕𝐿

𝜕𝑓̇
) −

𝜕𝐿

𝜕𝑓
= 0 

Using eq. (6.16) we can obtain 

𝑑2𝑓

𝑑𝜉2
= −

𝑑

𝑑𝑓
(𝑈(𝑓) +

𝑙2

2𝑓2
) 

Integrating this equation after multiplying with 
𝑑𝑓

𝑑𝜉
, we can get 

1

2
(𝑓̇2 +

𝑙2

𝑓2
) + 𝑈(𝑓) = 𝐸                                                             (6.20) 

Comparing Eq. (6.17) with eq. (6.20) 

𝑉(𝑓) = 𝑈(𝑓) +
𝑙2

2𝑓2
                                                               (6.21) 

Comparing this Kepler’s potential with potential function (Eq. (6.14)) for self focusing we 

can obtain 

𝑙 =

[
 
 
 
 1 + 𝑒

−
𝑥0
2

𝑟0
2
(1 −

𝑥0
2

𝑟0
2) + 𝑒

−
𝑥0
2

2𝑟0
2
(2 −

𝑥0
2

𝑟0
2)

(2 + 2
𝑥0
2

𝑟0
2) + (2 + 2

𝑥0
2

𝑟0
2) 𝑒

−
𝑥0
2

2𝑟0
2
+ 2𝑒

−
𝑥0
2

𝑟0
2

]
 
 
 
 

 

          This is an interesting and curious result since it explains the dependence of 

divergence of laser beam on 
𝑥0

𝑟0
, as the angular momentum of the beam in (𝑓, 𝜃𝑓) plane is 

dependent on 
𝑥0

𝑟0
. Since, with increase in the value of 

𝑥0

𝑟0
, the magnitude of angular 
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momentum 𝑙 decreases (fig.6.1), hence with increase in the value of 
𝑥0

𝑟0
, the divergence of 

the laser beam decreases. 

 

Fig.6.1: Variation of angular momentum 𝒍 of M.G beam in (𝒇, 𝜽𝒇) plane with 
𝒙𝟎

𝒓𝟎
 

 

6.6 Self Channeling of Laser Beam 

          If while entering into the medium, the beam possesses at plane wavefront, i.e. if 𝑓 =

1, and 
𝑑𝑓

𝑑𝜉
= 0, at 𝜉 = 0, then the condition 

𝑑2𝑓

𝑑𝜉2
= 0 will maintain their values throughout 

the journey of the beam through the medium. Such a mode of propagation, when there is 

no change in the beam width of the laser beam, is called self trapped mode or spatial optical 

soliton [34]. Hence, for 
𝑑𝑓

𝑑𝜉
=

𝑑2𝑓

𝑑𝜉2
= 0, eq. (6.12) gives the relation between dimensionless 

beam width (
𝜔𝑝0𝑟0

𝑐
) and the critical beam intensity 𝛽𝐸00

2  as 

𝑟𝑒
2 =

𝜋

2𝛽𝐸00
2

[
 
 
 
 1 + 𝑒

−
𝑥0
2

𝑟0
2
(1 −

𝑥0
2

𝑟0
2) + 𝑒

−
𝑥0
2

2𝑟0
2
(2 −

𝑥0
2

𝑟0
2)

𝐾1
′ + 𝐾2

′ + 𝐾3
′ + 𝐾4^" 

]
 
 
 
 

                                             (6.22) 

where 

𝐾1
′ = 𝐾1|𝑓=1 , 𝐾2

′ = 𝐾2|𝑓=1 , 𝐾3
′ = 𝐾3|𝑓=1, 𝐾4

′ = 𝐾4|𝑓=1 
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  and  

𝑟𝑒 =
𝜔𝑝0𝑟0

𝑐
 

          The laser beam for which the point (𝛽𝐸00
2 , 𝑟𝑒) lies on the critical curve defined by 

eq. (6.18), 
𝑑2𝑓

𝑑𝜉2
 will vanish at 𝜉 = 0. This simply means that during the journey of the laser 

beam through the plasma, there will be no change in the curvature of the wavefront, i.e. 
𝑑𝑓

𝑑𝜉
 

will remain constant and value of this constant will be equal to initial value, that I have 

taken to be zero. Hence, 
𝑑2𝑓

𝑑𝜉2
=

𝑑𝑓

𝑑𝜉
= 0 at 𝜉 = 0 indicates that 

𝑑𝑓

𝑑𝜉
= 0 for 𝜉 > 0 also. 

Physically, this means that there will be no change in the spot size of the laser beam during 

its propagation. This mode of propagation is known as self trapped mode. Thus, the region 

of space lying on the critical curve corresponds to self channeling of the laser beam.  

If the point (𝛽𝐸00
2 , 𝑟𝑒) lies in the upper region of critical curve, then the initial value of 

𝑑2𝑓

𝑑𝜉2
 

will be positive and hence 𝑓 will increase monotonically with distance. This mode of 

propagation is known as self broadening of the beam. If the point (𝛽𝐸00
2 , 𝑟𝑒) lies below the 

critical curve then initial value of 
𝑑2𝑓

𝑑𝜉2
 will be negative and thus 𝑓 will decrease with 

distance. This mode is known as self focusing of the laser beam. Thus, the region below 

the critical curve corresponds to self focusing. 

 6.7. Self Phase Modulation of Laser Beam 

          The self phase modulation of the laser beam occurs due to shift in its longitudinal 

phase occurring from transverse spatial confinement [174]. Due to its finite effective beam 

width, the laser beam behaves as it is passing through a narrow slit and thus through 

position-momentum uncertainty (∆𝑥∆𝑝𝑥 = constant) experiences a spread in its 

transverse momenta and hence a shift in expectation value of the propagation constant. The 

r.m.s spectral width 𝜎𝑘 of the laser beam is defined as 

𝜎𝑘,𝑀.𝐺 = √〈𝑘𝑥
2〉 + 〈𝑘𝑦

2〉                                                                   (6.23) 

〈𝑘𝑥
2〉 =

∫ ∫ 𝑘𝑥
2∞

−∞
𝑆(𝑘𝑥 , 𝑘𝑦)𝑑𝑘𝑥𝑑𝑘𝑦

∞

−∞

∫ ∫ 𝑆(𝑘𝑥, 𝑘𝑦)𝑑𝑘𝑥𝑑𝑘𝑦
∞

−∞

∞

−∞

                                                   (6.24𝑎) 
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〈𝑘𝑦
2〉 =

∫ ∫ 𝑘𝑦
2∞

−∞
𝑆(𝑘𝑥, 𝑘𝑦)𝑑𝑘𝑥𝑑𝑘𝑦

∞

−∞

∫ ∫ 𝑆(𝑘𝑥, 𝑘𝑦)𝑑𝑘𝑥𝑑𝑘𝑦
∞

−∞

∞

−∞

                                                    (6.24𝑏) 

𝑆(𝑘𝑥 , 𝑘𝑦) = |∫ ∫ 𝐴0
∞

−∞
(𝑥, 𝑦)|𝑧=0𝑒

−𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑑𝑥
∞

−∞
𝑑𝑦|

2
                                       (6.25)   

          The ratio ∑ of𝑘  spectral widths of a M.G beam to that of a Gaussian beam 𝜎𝑘,𝐺  can 

be written as 

∑=

𝑘

 
𝜎𝑘,𝑀.𝐺
𝜎𝑘,𝐺

=

{
 
 

 
 
1 + 𝑒

−
𝑥0
2

2𝑟0
2
(1 −

𝑥0
2

𝑟0
2)

1 + 𝑒
−
𝑥0
2

2𝑟0
2

}
 
 

 
 

1

2

                                                (6.26) 

          The wave number 𝑘0 of the laser beam is related to transverse and longitudinal 

components through 

𝑘0
2 = 𝑘𝑥

2 + 𝑘𝑦
2 +  𝑘𝑧

2                                                                     (6.27) 

where 𝑘𝑧 is the axial wave number, and 𝑘𝑥and 𝑘𝑦 are the transverse wave numbers, 

respectively. The effective axial propagation constant of an optical beam is defined in r.m.s 

sense as 

�̅�𝑧 =
〈𝑘𝑧
2〉

𝑘0
= 𝑘0 −

〈𝑘𝑥
2〉

𝑘0
−

〈𝑘𝑦
2〉

𝑘0
                                                           (6.28)  

The overall on axis phase 𝜃(𝑧) is related to effective propagation constant as [169] 

�̅�𝑧 =
𝜕𝜃

𝜕𝑧
                                                                             (6.29)  

The first term in Eq. (6.28) gives the phase 𝑘0𝑧 of an infinite plane wave propagating along 

z-axis. The second term represents a phase shift of finite beam in comparison to infinite 

plane wave. 

𝑑𝜃𝑝

𝑑𝑧
= −

1

𝑘0
(〈𝑘𝑥

2〉 + 〈𝑘𝑦
2〉)                                                               (6.30) 

Thus, it can be seen that average value of the transverse momentum of the beam is measure 

of shift in its longitudinal phase. Using eqs. (6.24) and (6.25) in eq. (6.30) we can obtain 

𝑑𝜃𝑝

𝑑𝑧
= −

{
 
 

 
 
1+𝑒

−
𝑥0
2

2𝑟0
2
(1−

𝑥0
2

𝑟0
2)

1+𝑒
−
𝑥0
2

2𝑟0
2

}
 
 

 
 

1

2

1

𝑓2
                                                          (6.31)  
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6.8 Results and Discussion 

          In present analysis eqs.(6.12) and (6.31) have been solved with the help of Runge 

Kutta fourth order method for the following set of parameters: 𝜔0 = 1.78 × 1015rad/sec, 

𝜆 = 1.06𝜇𝑚, 𝑟0 = 15𝜇𝑚, (
𝜔𝑝0𝑟0

𝑐
)
2

= 12, and 𝛽𝐸00
2 = 3. 

          Before solving the beam width equation, i.e. eq. (6.12), it is important to study the 

role and origin of the various terms contained in it. The first term on the right hand side 

(R.H.S) that varies inversely as cube of the beam width, is the spatial dispersive term. It 

models the spreading of the laser beam in transverse directions occurring as a consequence 

of diffraction divergence. The second term which is having complex dependence on 𝑓, 

arises due to the relativistic mass nonlinearity of the plasma electrons and is responsible 

for nonlinear refraction of the laser beam. The relative magnitude of the two terms 

determines the behaviour of the beam width of the laser beam during its propagation.  

 

Fig.6.2: Variation of beam width parameter 𝒇 against the distance of propagation for different values 

of 
𝒙𝟎

𝒓𝟎
 viz., 

𝒙𝟎

𝒓𝟎
= 𝟎, 𝟏. 𝟓𝟎 𝐚𝐧𝐝 𝟏. 𝟖𝟎 in the absence of nonlinear refraction 

 

          Firstly, in order to investigate linear characteristics of the laser beam, its propagation 

in vacuum has been considered. Hence, eq.(6.12) has been solved for different values of 
𝑥0

𝑟0
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in the absence of nonlinear term. The corresponding variations of beam width with distance 

are plotted in fig.6.2. It can be easily seen that irrespective of the value of  
𝑥0

𝑟0
, the beam 

width of the M.G laser beams diverge monotonically during its propagation in vacuum. 

This is due to light’s natural wave property of diffraction. Due to its finite cross section, 

the laser beam behaves as it is passing through a slit whose width is equal to the radius of 

the laser beam. As an optical beam passing through a narrow slit diverge monotonically, 

similarly the laser beam of finite cross section undergoes monotonic increase in its radius 

during its propagation through a linear medium. However, the rate of divergence reduces 

by increasing 
𝑥0

𝑟0
. Thus, by optimizing the value of  

𝑥0

𝑟0
, one can control the diffraction 

broadening of the laser beam. From application point of view this is an important result as 

the M.G laser beams have smaller divergence compared to that with Gaussian beams. 

          The increase in the effective radius of the laser beam due to shifting of laser intensity 

to off axial regions with an increase in the value of  
𝑥0

𝑟0
. As the phenomenon of diffraction 

varies inversely with its effective beam width of an optical beam, an increase in the value 

of 
𝑥0

𝑟0
 leads to decrease in the divergence of the M.G laser beam due to diffraction 

divergence. Thus, it can be concluded that the diffraction of an optical beam depends on 

its effective cross section which is defined by its r.m.s beam width not by geometric 

radius 𝑟0. 

          Figs. 6.3 and 6.4 depict the effect of 
𝑥0

𝑟0
 on the evolution of beam width of the laser 

beam while propagating through plasma. The plots in these figures depict that during its 

propagation through the plasma, the beam width of the laser beam varies harmonically. 

These harmonic variations of the beam width can be explained as shown in fig.6.3-6.4. Due 

to the intensity gradient along the cross section of the laser beam, there is a nonuniform 

mass distribution of the plasma electrons. Mass of the plasma electrons is maximum where 

the laser intensity is maximum and vice versa. Hence, the central part of the beam 

experiences larger refractive index compared to its tails. The resulting gradient in the phase 

velocity of the laser beam along its cross section, bends its wave fronts in such a way that 

the laser beam is passing through a convex lens. 
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Fig.6.3: Variarion of beam width parameter 𝒇 with dimensionless distance of propagation 𝝃  

for different values of 
𝒙𝟎

𝒓𝟎
 viz., 

𝒙𝟎

𝒓𝟎
= 𝟎, 𝟎. 𝟕𝟓 𝐚𝐧𝐝 𝟏. 𝟓𝟎 

           The nonlinear refraction of the laser beam thus tends to counter balance the effect 

of diffraction. Thus, during the propagation of the laser beam through the plasma, there is 

a competition between the two phenomena of diffraction and nonlinear refraction. The 

winning phenomenon ultimately decides the behaviour of the laser beam, i.e. whether the 

beam will converge or diverge. Thus, there is a critical value of beam intensity (that can be 

obtained by equating the right hand side of eq. (6.12) with zero) above which the beam will 

converge. In the present investigation, the initial beam intensity has been taken greater than 

the critical intensity, i.e. why the laser spot size of the laser beam is converging initially. 

As the beam width decreases, its intensity increases. When the laser intensity becomes too 

high, the nonlinear refractive term in eq. (6.12) disappears, leaving only the diffraction 

effects to dominate. Hence, after focusing to minimum, the beam width bounces back to 

its original value. As the beam width of the laser beam starts increasing, the phenomena of 

diffraction divergence and nonlinear refraction again start competing each other. Now, this 

competition lasts till maximum value of 𝑓 is obtained. These processes go on repeating 

themselves and thus give breather like behaviour to beam width. 
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          Further, it is observed that an increase in the value of 
𝑥0

𝑟0
 for 0 ≤

𝑥0

𝑟0
≤ 1.5 results in 

enhancement of self focusing of the laser beam whereas beyond 
𝑥0

𝑟0
= 1.5 with an increase 

in the value of 
𝑥0

𝑟0
 the extent of self focusing of the laser beam decreases. This is because 

for 0 ≤
𝑥0

𝑟0
≤ 1.5 with an increase in the value of 

𝑥0

𝑟0
 the intensity distribution over the cross 

section of the laser beam becomes more and more uniform. As a consequence, the laser 

beam gets equal contribution from the off axial parts for nonlinear refraction as provided 

by axial part. As the phenomenon of self focusing is a homeostasis of nonlinear refraction, 

an increase in the value of 
𝑥0

𝑟0
 in the range 0 ≤

𝑥0

𝑟0
≤ 1.5 results in the enhancement of self 

focusing of the laser beam.  

 

Fig.6.4: Variarion of beam width parameter 𝒇 with dimensionless distance of 

 propagation 𝝃 for  different values of 
𝒙𝟎

𝒓𝟎
 viz., 

𝒙𝟎

𝒓𝟎
= 𝟏. 𝟔𝟎, 𝟏. 𝟕𝟎 𝐚𝐧𝐝 𝟏. 𝟖𝟎 

          The decrease in the extent of self focusing of the laser beam by increasing 
𝑥0

𝑟0
 beyond 

1.5 is because for 
𝑥0

𝑟0
> 1.5 the intensity maxima of individual Gaussian laser beams 

constituting the M.G laser beams are so far away from each other that after superposition 

the intensity maxima of the resulting beam appear in the off axial parts. This makes paraxial 

part of the laser beam weaker as compared to off axial part and hence the laser beam gets 
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a very little contribution from the axial part for nonlinear refraction. This in turn leads to 

the reduced focusing of the laser beam. Thus, by optimizing the value of 
𝑥0

𝑟0
, one can control 

the propagation dynamics of the laser beam in a nonlinear medium.  

          In order to have insight into the nature of periodicity of the oscillations of beam 

width of the laser beam I have plotted the phase space trajectories of the laser beam in figs. 

6.5 and 6.6. Closed phase space trajectories indicate the stable and periodic harmonic 

oscillations (i.e., oscillations containing a single resonant frequency) of the beam width 

whereas, spiral trajectories indicate quasi periodic oscillations (i.e., oscillations containing 

multiple resonant frequencies). Thus, it is clear from phase space plots that the M.G laser 

beams possess quasi periodic oscillations in their beam width.  

 

Fig.6.5: Phase space plots for self focused M.G laser beam for different values 

of 
𝒙𝟎

𝒓𝟎
 viz., 

𝒙𝟎

𝒓𝟎
= 𝟎, 𝟎. 𝟕𝟓 𝐚𝐧𝐝 𝟏. 𝟓𝟎 

          The underlying physics behind this fact can be explained by comparing the evolution 

equation of beam width with equation of motion of nonlinear oscillator. In case of nonlinear 

oscillator, resonance does not occur at same frequencies for all amplitudes. Depending on 

the nature of nonlinearity, the resonance frequency is an increasing or decreasing function 

of amplitude. Hence, the beam width of the laser beam exhibits quasi periodic behaviour. 
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Thus, it can be concluded that the beam width of an intense laser beam in a nonlinear 

medium behave like a nonlinear classical oscillator. 

 

Fig. 6.6: Phase space plots for self focused M.G laser beam for different values 

of  
𝒙𝟎

𝒓𝟎
 viz., 

𝒙𝟎

𝒓𝟎
= 𝟏. 𝟔𝟎, 𝟏. 𝟕𝟎, 𝟏. 𝟖𝟎 

          The phase space plots also depict that initially the laser beam focuses at a slower rate 

but as the laser beam gets more and more focused, there is an abrupt increase in the rate of 

focusing. This is due to the fact that with self focusing of the laser beam, plasma becomes 

more and more nonlinear. Also, it is observed that the laser beams with higher value of 
𝑥0

𝑟0
 

in the range 0 ≤
𝑥0

𝑟0
≤ 1.5 span larger phase space area. Whereas, the beams with larger 

value of 
𝑥0

𝑟0
 for 

𝑥0

𝑟0
> 1.5 cover lesser phase space area. This is due to the fact that area of 

phase space gives the measure of extent of self focusing of the laser beam. Further it can 

be seen that with an increase in 
𝑥0

𝑟0
 for 0 ≤

𝑥0

𝑟0
≤ 1.5, the phase space trajectories become 

more and more spiral. This is due to an increase in self focusing of the laser beam. An 

increase in self focusing leads to enhanced amplitude of the oscillations of the beam width 

that makes them highly nonlinear. Similarly, with an increase in 
𝑥0

𝑟0
 beyond 1.5, the phase 

space trajectories tend to become closed one. This is due to the reduction in self focusing 
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with an increase in 
𝑥0

𝑟0
 beyond 1.5 that results in more and more stable oscillations of beam 

width.  

          Figs. 6.7 and 6.8 illustrate the effect of 
𝑥0

𝑟0
 on potential function 𝑉(𝑓). It is observed 

that 𝑉(𝑓) → ∞ for 𝑓 → 0. This is because of the domination of diffraction effects for 𝑓 →

0. For 𝑓 → ∞, 𝑉(𝑓) → 0 because the laser beams with very large spot size are free from 

diffraction effects as well as they do not produce any nonlinearity in the medium.  

 

 

Fig. 6.7: Variation of potential function for self focused M.G laser beam for 

different values of 
𝒙𝟎

𝒓𝟎
 viz., 

𝒙𝟎

𝒓𝟎
= 𝟎, 𝟎. 𝟕𝟓 𝐚𝐧𝐝 𝟏. 𝟓𝟎 

          It is also observed that with an increase in the value of 
𝑥0

𝑟0
 for 0 ≤

𝑥0

𝑟0
≤ 1.5, the 

bottom of the potential well shifts upwards, and downwards with an increase in the value 

of 
𝑥0

𝑟0
 for 

𝑥0

𝑟0
> 1.5. This indicates that for 0 ≤

𝑥0

𝑟0
≤ 1.5, the M.G laser beams with higher 

value of 
𝑥0

𝑟0
 require lesser intensity to get self focused and for 

𝑥0

𝑟0
> 1.5, the M.G laser beams 

with higher value of require higher intensity to get self focused.  
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Fig. 6.8: Variation of potential function for self focused M.G laser beam for 

different values of 
𝒙𝟎

𝒓𝟎
 viz., 

𝒙𝟎

𝒓𝟎
= 𝟏. 𝟔𝟎, 𝟏. 𝟕𝟎 𝐚𝐧𝐝 𝟏. 𝟖𝟎 

            Figures 6.9 and 6.10 illustrate the effect of 
𝑥0

𝑟0
 on critical curves of the laser beam. 

It is observed that at lower laser intensity (𝛽𝐸00
2 ≪ 1), the equilibrium beam width 𝑟𝑒 

decreases very sharply and at very high laser intensity (𝛽𝐸00
2 ≫ 1), it becomes independent 

of laser intensity. This is because at very high intensities, in the region of plasma 

illuminated by the laser beam, all the electrons oscillate at same velocity and thus the 

relativistic nonlinearity gets saturated and hence the plasma dielectric function becomes 

independent of laser intensity. Hence, at high intensities, the beam width of the laser beam 

becomes independent of intensity. 

          It is also observed that self channeling cannot occur for very narrow laser beams. 

This is due to the fact that narrow beams possess large diffraction angles. Hence, in order 

to get self guided, they require larger index differences. 
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Fig.6.9: Variation of equilibrium beam width 𝒓𝒆 against the normalized intensity 

𝜷𝑬𝟎𝟎
𝟐  for different values of 

𝒙𝟎

𝒓𝟎
 viz., 

𝒙𝟎

𝒓𝟎
= 𝟎, 𝟎. 𝟕𝟓, 𝐚𝐧𝐝 𝟏. 𝟓𝟎 

 

Fig.6.10: Variation of equilibrium beam width 𝒓𝒆 against the normalized intensity 

𝜷𝑬𝟎𝟎
𝟐  for different values of 

𝒙𝟎

𝒓𝟎
 viz., 

𝒙𝟎

𝒓𝟎
= 𝟏. 𝟔𝟎, 𝟏. 𝟕𝟎, 𝟏. 𝟖𝟎 
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          It is also observed that with an increase in the value of 
𝑥0

𝑟0
 for 0 ≤

𝑥0

𝑟0
≤ 1.5, the 

critical curves shift downwards which means that the laser beams with higher values of 
𝑥0

𝑟0
 

in the range 0 ≤
𝑥0

𝑟0
≤ 1.5, can be self guided at relatively lower power. This is due to the 

fact that these laser beams get equal contribution from off-axial rays towards nonlinear 

refraction. 

          Figs. 6.11 and 6.12 illustrate that how the value of 
𝑥0

𝑟0
 affects the evolution of 

longitudinal phase 𝜃𝑝. It is observed that longitudinal phase 𝜃𝑝 decreases monotonically 

with distance of propagation, showing step-like behaviour. This is because self focusing of 

the laser beam increases its intensity and hence, the laser phase fronts start experiencing 

larger refractive indices. These results in decreased phase velocity of the phase fronts lead 

to decreased spacing between them. Hence, the longitudinal phase of the laser beam keep 

on decreasing with distance. 

          Step-like behaviour of the longitudinal phase, with each step occurring at positions 

of minimum beam width is also observed. This indicates that there is slowest decrement in 

𝜃𝑝 at points of minimum beam width. This is opposite to the behaviour of phase in graded 

index fibers, where phase decreases slowest in the positions of minimum intensity, i.e. 

maximum beam width. This difference in the behaviour of longitudinal phase in plasmas 

and that in graded index fibers is due to the fact that owing to relativistic nonlinearity, 

plasmas behave as oscillating linear wave guides. In linear wave guides, the growth rate of 

longitudinal phase is inversely proportional to the square of beam width (eq. (6.31)). 

          It can also be seen that there is an increase in the rate of the decrease of longitudinal 

phase 𝜃𝑝 with an increase in the value of  
𝑥0

𝑟0
 for 0 <

𝑥0

𝑟0
≤ 1.5. This is due to the dependence 

of longitudinal phase on beam width of the laser beam. The smaller is the spot size of the 

laser beam, the grater is the shift in its longitudinal phase through the position momentum 

uncertainty (∆𝑥∆𝑘𝑥 = constant). As, with an increase in the value of 
𝑥0

𝑟0
 in the range 0 <

𝑥0

𝑟0
≤ 1.5, there is an increase in the extent of focusing of the laser beam, and there is a 

corresponding increase in the rate of modulation its longitudinal phase.  
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Fig.6.11: Variation of longitudinal phase 𝜽𝒑 with dimensionless distance of 

 propagation 𝝃 for different values of 
𝒙𝟎

𝒓𝟎
 viz., 

𝒙𝟎

𝒓𝟎
= 𝟎, 𝟎. 𝟕𝟓 𝒂𝒏𝒅 𝟏. 𝟓𝟎 

 
Fig. 6.12: Variarion of longitudinal phase 𝜽𝒑 with dimensionless distance of 

 propagation 𝝃 for different values of 
𝒙𝟎

𝒓𝟎
 viz., 

𝒙𝟎

𝒓𝟎
= 𝟏. 𝟔𝟎, 𝟏. 𝟕𝟎, 𝟏. 𝟖𝟎 
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          It is also observed that for 
𝑥0

𝑟0
≥ 1.5, an increase in the value of 

𝑥0

𝑟0
 reduces the rate of 

modulation of longitudinal phase 𝜃𝑝. This is due to reduced focusing of the laser beam with 

an increase in the value of 
𝑥0

𝑟0
 beyond 

𝑥0

𝑟0
= 1.5. 

6.9 Conclusions 

          In this work, investigation on the linear and nonlinear dynamics of multi-Gaussian 

laser beam in relativistic plasma has been presented. Comparison between the dynamics of 

Gaussian and M.G laser beams has also been made. It has been observed that diffraction 

of Gaussian laser beam is higher than the M.G. laser beam. Whereas, that the diffraction 

broadening of M.G. laser beam can be controlled by optimizing the value of  
𝑥0

𝑟0
. The 

maximum intensity of M.G laser beam can be attained at 1.50 value of  
𝑥0

𝑟0
 which may be 

applicable in electron acceleration and uniform heating of fuel pellet in inertial 

confinement fusion.  
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Chapter-7 

Coherent Terahertz Generation by Cross Focused 𝒒-Gaussian Laser 

Beams in Plasma: Relativistic Effects 

7.1 Introduction 

          The expansion of man's spectrum of observation has led to an explosive increase in 

his physical knowledge and to unparalleled changes in his way of life. It has brought forth 

such inventions as radar, radio, television, medical uses of radiation, machines for chemical 

analyses, automatic factories and so on. It has in fact become our major instrument for 

investigating the nature of matter and many other mysteries of the universe. The subject of 

this article is a new frontier region within the spectrum namely, the submillimeter range of 

radio microwaves known as terahertz (THz) radiations [50]. The THz wavelength lies at 

the border between microwaves and the infrared. It was the last gap in the spectrum to be 

closed and is known as THz gap.  

          The terahertz range refers to frequencies between 0.3 and 10 THz or wavelengths 

from 1 mm to 30𝜇𝑚. Electromagnetic radiation at these frequencies has some unique 

properties. Terahertz waves pass through a variety of amorphous substances that are 

normally considered opaque, such as clothing, paper, or plastics [48]. The underlying 

principle is scattering: terahertz waves are not scattered as much as those at visible and 

near-infrared (IR) wavelengths, and reduced scattering means increased penetration depth. 

However, terahertz radiation is strongly absorbed by water molecules-and liquid water 

turns out to be a more dominant absorber than water vapor [49], so a single green plant leaf 

blocks a terahertz beam. 

          Another attractive scenario is to unite the advantages of imaging and spectral 

sensitivity characteristic of terahertz radiation. Many chemical compounds have distinct 

absorption lines at frequencies between 0.5 and 5 THz. Potentially, explosives or illicit 

drugs could not only be localized within a parcel or an envelope, but also identified 

unambiguously because of their spectral fingerprint. Other areas that would benefit from 
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an imaging terahertz spectrometer include quality control of pharmaceutical and the 

analysis of food stuffs inside air-tight packages [175]. 

          One early terahertz application is quality control of drug tablets [176]. Even for 

homogeneous tablets (as opposed to time-release or coated tablets), manufacturers need to 

know whether enough of the active ingredient is in a specific tablet and that it is evenly 

distributed. Current testing regimes for tablets tend to be destructive a few tablets from a 

batch are removed, and may be subjected to IR imaging before destructive testing, such as 

cutting and dissolving the tablet. The beauty of terahertz imaging is that it provides a 3-D 

chemical and structural map of a tablet in a nondestructive way. The terahertz radiations 

can scan a tablet, providing several point measurements showing the distribution and 

concentration of the active ingredient through the tablet. This method could provide 

nondestructive batch testing potentially through the packaging plastic.  

          In addition, providing a means to scan the bulk properties of a tablet and THz 

radiations can also image coatings. Many new tablets have complex coatings or other 

structures in them that are difficult to probe with other techniques. THz radiations 

potentially provide a solution to these issues. Tablets and pills are only one example of 

mixtures that could benefit from THz radiations. THz radiations could be used to examine 

many other mixtures, including chemicals mixed with a base carrier, metal flakes in paint, 

or tears in paper products-in paper mills, one of the biggest problems is paper tearing. It’s 

possible that the water absorption of terahertz radiation could be used to identify potential 

tears before they occur if tears occur where the paper contains more moisture. 

          Nature has a way of coupling risk and reward so that frequently those processes that 

have the greatest potential for benefiting mankind are also those that can be achieved only 

with the greatest difficulty. So it is with THz generation. THz frequencies are too high to 

be produced by semiconductor devices, yet too low to be produced by solid-state lasers. In 

this regard a promising hope is given by nonlinear optical phenomenon known as 

difference frequency generation. When two intense laser beams with slightly different 

frequencies propagate simultaneously through a medium whose index of refraction is a 

function of the intensity of the optical beam, the nonlinear coupling between the two beams 
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result in a third wave whose frequency is equal to the difference of the frequencies of the 

two beams. There for by suitably tuning the frequencies of the two pump beams one can 

generate THz radiations in nonlinear media. 

          There is range of media (dielectrics [177], semiconductors [178] etc.) that can 

respond nonlinearly to intense laser beams. But due to their susceptibility towards 

ionization induced damages limits their power handling capacity. Also, their lower 

conversion efficiency to the THz radiation does not fulfill the requirement of power levels 

of THz radiations those are required for practical purposes. In contrast to this being already 

in an ionized state plasma is not susceptible to ionization induced damages. At least in 

theory it is having almost infinite immunity to ionization induced damages. Also, their 

highly nonlinear nature and higher conversion efficiency to THz frequency make them an 

ideal candidate for generation of coherent THz radiations [8]. 

          This chapter presents theoretical investigation on THz generation by cross focused 

q-Gaussian laser beams in underdense plasma targets. 

7.2 Relativistic Nonlinearity of Plasma 

          The dielectric function of a plasma with electron density 𝑛𝑒, for an electromagnetic 

beam with frequency 𝜔𝑗 is given by 

𝜀 = 1 −
𝜔𝑝
2

𝜔𝑗
2                                                                            (7.1) 

where, 

𝜔𝑝
2 =

4𝜋𝑒2𝑛0
𝑚𝑒

                                                                        (7.2) 

is the natural frequency of oscillations of plasma electrons i.e., plasma frequency. When 

under the effect of intense fields of the incident laser beams the quiver velocity of plasma 

electrons becomes comparable to that of speed of light in vacuum, then the effective mass 

𝑚𝑒 of electron in eq. (7.2) need to be replaced by 𝑚0𝛾, where, 𝛾 is the relativistic Lorentz 

factor and 𝑚0 is the rest mass of electron. Following Akhiezer and Polovin [31] the 

relativistic Lorentz factor can be related to the total intensity of the laser beams as 
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𝛾 = (1 +∑
1

𝜔𝑗
2

𝑗

𝐴𝑗𝐴𝑗
∗)

1

2

                                                               (7.3) 

Where, 𝛽𝑗 =
𝑒2

𝑚0
2𝑐2𝜔𝑗

2 is the coefficient of relativistic nonlinearity.  

        Since, the effective dielectric function of plasma depends on effective mass of plasma 

electrons through the plasma frequency (eq.7.2). Hence, intensity dependence of electron 

mass in turn affect the optical properties of plasma in a nonlinear manner. The resulting 

intensity dependence of dielectric function of plasma for 𝑞-Gaussian laser beams can be 

written as 

𝜀𝑗 = 1 −
𝜔𝑝0
2

𝜔𝑗
2 (1 +∑

𝛽𝑗𝐸𝑗0
2

𝑓𝑗
2 (1 +

𝑟2

𝑞𝑟𝑗
2𝑓𝑗

2)

𝑗

)

−
1

2

                                        (7.4) 

Where, 

𝜔𝑝0
2 =

4𝜋𝑒2

𝑚0

𝑛𝑒 

is the plasma frequency in the absence of laser beams. Eq.(7.4) can be written as 

𝜀𝑗 = 𝜀0𝑗 + Ф𝑗(𝐴1𝐴1
∗ , 𝐴2𝐴2

∗)                                                             (7.5) 

Where 

𝜀0𝑗 = 1 −
𝜔𝑝0
2

𝜔𝑗
2                                                                          (7.6) 

are the linear parts of dielectric function and 

Ф𝑗(𝐴1𝐴1
∗ , 𝐴2𝐴2

∗) =
𝜔𝑝0
2

𝜔𝑗
2

{
 

 
1 − (1 +∑

𝛽𝑗𝐸𝑗0
2

𝑓𝑗
2 (1 +

𝑟2

𝑞𝑗𝑟𝑗
2𝑓𝑗

2)

−𝑞𝑗

𝑗

)

1

2

}
 

 
                      (7.7) 

are the nonlinear parts of dielectric function. 

7.4 Cross-Focusing of Laser Beams 

          The evolution of beam envelope of an optical beam through a nonlinear medium is 

governed by the wave equation [156] 
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𝑖
𝜕𝐸𝑗

𝜕𝑧
=

1

2𝑘𝑗
∇⊥
2𝐸𝑗 +

𝑘𝑗

2𝜀0𝑗
ɸ𝑗(𝐴1𝐴1

∗ , 𝐴2𝐴2
∗)𝐴𝑗                                         (7.8) 

          According to variational method [60-62] eq.(7.8) is a variational problem for action 

principle based on Lagrangian density 

£ = 𝑖 (𝐴1
𝜕𝐴1

∗

𝜕𝑧
− 𝐴1

∗
𝜕𝐴1
𝜕𝑧
) + 𝑖 (𝐴2

𝜕𝐴2
∗

𝜕𝑧
− 𝐴2

∗
𝜕𝐴2
𝜕𝑧

) + |∇⊥𝐴1|
2 + |∇⊥𝐴1|

2 −
𝜔1
2

𝑐2
∫ Ф(𝐴1𝐴1

∗ , 𝐴2𝐴2
∗)𝑑(𝐴1𝐴1

∗)
𝐴1𝐴1

∗

−
𝜔2
2

𝑐2
∫ Ф(𝐴1𝐴1

∗ , 𝐴2𝐴2
∗)𝑑(𝐴2𝐴2

∗)
𝐴2𝐴2

∗

                                                                                                        (7.9) 

Substituting the trial function for 𝑞-Gaussian beam profile in lagrangian density and 

integrating over the entire cross section of the laser beam we get the reduced lagrangian as 

𝐿 = ∫ £ 𝑑2𝑟. The corresponding Euler-Lagrange equations 

𝑑

𝑑𝑧
(

𝑑𝐿

𝜕 (
𝜕𝑓𝑗

𝜕𝑧
)
) −

𝜕𝐿

𝜕𝑓𝑗
= 0                                                              (7.10) 

give 

𝑑2𝑓𝑗

𝑑𝜉2
+
1

𝑓𝑗
(
𝑑𝑓𝑗

𝑑𝜉
)

2

=
1

𝑘𝑗
2𝑟𝑗

4𝑓𝑗
3

(1 −
1

𝑞𝑗
) (1 −

1

𝑞𝑗
)

(1 +
1

𝑞𝑗
)

+
(1 −

2

𝑞𝑗
)

𝑟𝑗
2𝜀0𝑗𝐼0𝑗

∫𝑟2𝐴𝑗𝐴𝑗
∗
𝜕ɸ𝑗

𝜕𝑟
𝑑2𝑟           (7.11) 

Using eq. (7.7) in (7.11), the set of coupled differential equations for beam widths of the 

two laser beams are obtained 

𝑑2𝑓1
𝑑𝜉2

+
1

𝑓1
(
𝑑𝑓1
𝑑𝜉
)
2

=
(1 −

1

𝑞1
) (1 −

1

𝑞1
)

(1 +
1

𝑞1
)

1

𝑓1
3 − 2(

𝜔𝑝0𝑟1

𝑐
)
2

(1 −
1

𝑞1
) (1 −

2

𝑞1
) 𝐽1                    (7.12) 

 
𝑑2𝑓2
𝑑𝜉2

+
1

𝑓2
(
𝑑𝑓2
𝑑𝜉
)
2

= (
𝑟1
𝑟2
)
4

(
𝜔1
𝜔2
)
2

(
𝜀01
𝜀02
)
(1 −

1

𝑞2
) (1 −

1

𝑞2
)

(1 +
1

𝑞2
)

1

𝑓2
3 − 2(

𝜔𝑝0𝑟1

𝑐
)
2

(1 −
1

𝑞2
) (1 −

2

𝑞2
) 𝐽2      (7.13) 

where, 𝜉 =
𝑧

𝑘1𝑟1
2 is the dimensionless distance of propagation, and 

𝐽1 =
𝛽1𝐸10

2

𝑓1
3 𝑇1 +

𝛽2𝐸20
2

𝑓1
3 (

𝑟1
𝑟2
)
2

(
𝑓1
𝑓2
)
4

𝑇2 

𝐽2 =
𝛽1𝐸10

2

𝑓2
3 𝑇3 +

𝛽2𝐸20
2

𝑓2
3 (

𝑟1
𝑟2
)
2

(
𝑓1
𝑓2
)
4
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𝑇1 = ∫ 𝑥3
∞

0

(1 +
𝑥2

𝑞1
)

−2𝑞1−1

𝐺(𝑥)𝑑𝑥 

𝑇2 = ∫ 𝑥3
∞

0

(1 +
𝑥2

𝑞1
)

−𝑞1

(1 +
𝑥2

𝑞2
(
𝑟1𝑓1
𝑟2𝑓2

)
2

)

−𝑞2−1

𝐺(𝑥)𝑑𝑥 

𝑇3 = ∫ 𝑥3
∞

0

(1 +
𝑥2

𝑞1
)

−𝑞1−1

(1 +
𝑥2

𝑞2
(
𝑟1𝑓1
𝑟2𝑓2

)
2

)

−𝑞2

𝐺(𝑥)𝑑𝑥 

𝑇4 = ∫ 𝑥3
∞

0

(1 +
𝑥2

𝑞2
(
𝑟1𝑓1
𝑟2𝑓2

)
2

)

−2𝑞2−1

𝐺(𝑥)𝑑𝑥 

𝐺(𝑥) = 𝑒
−{
𝛽1𝐸10

2

𝑓1
2 (1+

𝑥2

𝑞1
)
−𝑞1

+
𝛽2𝐸20

2

𝑓2
2 (1+

𝑥2

𝑞2
(
𝑟1𝑓1
𝑟2𝑓2

)
2
)

−𝑞2

}

 

𝑥 =
𝑟

𝑟1𝑓1
 

          Equations (7.12) and (7.13) are the coupled nonlinear differential equations 

governing the cross focusing of two coaxial 𝑞-Gaussian laser beams in collisionless 

plasma. For initially plane wavefronts these equations are subjected to boundary conditions 

𝑓𝑗 = 1 and 
𝑑𝑓𝑗

𝑑𝜉
= 0 𝑎𝑡 𝜉 = 0. Numerical computational techniques are used to investigate 

the beam dynamics as analytic solutions of these equations are not possible. 

7.4 Excitation of Electron Plasma Wave (EPW) 

          EPW that results in the generation of THz radiations can be excited into the plasma 

due to remarkable properties of plasma [179, 180]. Plasma as a whole possesses quasi 

neutrality i.e., it contains almost equal number of free electrons and ions. But, as the 

electrons and net positively charged ions are separated, a disturbance can create regions of 

net negative and regions of positive charges acting like the plates of a charged parallel plate 

capacitor. Such an uneven distribution of charges results in an electric field running from 

positive to negative regions. This electric field pulls the electrons and ions towards each 

other with equal forces. Ions being much heavier than the electrons remain at rest and the 

electrons move towards the positive regions. As the electrons move towards the ions, they 

steadily gain velocity and momentum like a pendulum moving towards its mean position 

from an extreme position. Due to this gain in momentum, the electrons overshoot their 
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equilibrium positions resulting in reversing the direction of electric field. Now the reversed 

electric field opposes the motion of electrons and slow them down and then pulling them 

back again. The process repeats itself, establishing electron oscillations. In the presence of 

thermal velocities these electrons oscillations form a longitudinal wave of positive and 

negative regions travelling through the plasma. 

          The electron oscillators can be set in motion by intense laser beams. As the laser 

beams enter the plasma region, they exert pressure on plasma electrons and hence the 

plasma electrons move out of the way. As the laser beams exit, leaving a region deficient 

of electrons, the plasma electrons rush back to establish equilibrium. This movement of 

plasma electrons initiates the oscillations and results in a plasma wave. 

          As the two laser beams with different frequencies are propagating simultaneously 

through the plasma, the plasma oscillations of the plasma electrons under the fields of the 

two laser beams also contain a frequency component equal to the difference of the 

frequencies of the two laser beams. The electron density perturbation 𝑛′ associated with 

the excited EPW evolves according to the wave equation [76] 

𝜕2𝑛′

𝜕𝑡2
− 𝑣𝑡ℎ

2 ∇2𝑛′ + 𝜔𝑝
2𝑛′ =

𝑒

𝑚
𝑛0∇𝛴𝑗𝐸𝑗                                               (7.14) 

Taking 

𝑛′ = 𝑛1𝑒
𝑖(𝜔𝑡−𝑘𝑧) 

where, 𝜔 = 𝜔2 − 𝜔1 and 𝑘 = 𝑘2 − 𝑘1, we get the amplitude of density perturbation 

associated with plasma wave 

𝑛1 =
𝑒𝑛0
𝑚

1

(𝜔0
2 − 𝑘0

2𝑣𝑡ℎ
2 − 𝜔𝑝

2)
[
𝐸10

𝑟1
2𝑓1

3 (1 +
𝑟2

𝑞1𝑟1
2𝑓1

2)

−
𝑞1
2
−1

+ 
𝐸20

𝑟2
2𝑓2

3 (1 +
𝑟2

𝑞2𝑟2
2𝑓2

2)

−
𝑞1
2
−1

] 𝑟      (7.15) 

7.6 THz Generation 

          The density perturbation associated with excited EPW results in a nonlinear current 

density at frequency 𝜔 = 𝜔2 − 𝜔1 that acts as source for the THz radiation. The generated 

current density is given by 

𝐽𝑇 =
𝑒2𝑛0
𝑚𝜔

(
𝑛1
𝑛0
) 𝑒𝑖(𝜔𝑡−𝑘𝑧) (𝐸1 + 𝐸2)                                                    (7.16) 

The electric field of the resulting THz evolves according to the wave equation 
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∇2𝐸𝑇 =
1

𝑐2
𝜕2𝐸𝑇
𝜕𝑡2

+
4𝜋

𝑐2
𝜕𝐽𝑇
𝜕𝑡
                                                             (7.17) 

This equation gives the magnitude of electric field of THz radiation as 

𝐸𝑇 = 𝑖
(
𝜔𝑝0
2

𝑐2
)

(
𝜔2

𝑐2
− 𝑘2)

𝑛1
𝑛0
(𝐸1 + 𝐸2)                                                      (7.18) 

Defining the normalized power of THz radiation as 

𝑃𝑇 =
∫ 𝐸𝑇𝐸𝑇

∗𝑟𝑑𝑟
∞

0

∫ 𝐴1𝐴1
∗𝑟𝑑𝑟

∞

0

                                                                    (7.19) 

We get 

𝑃𝑇 = 
(
𝜔𝑝0
2

𝑐2
)
2

(
𝜔2

𝑐2
− 𝑘2)

2

∫ (
𝑛1

𝑛0
)
2
(𝐸1 + 𝐸2)

2𝑟𝑑𝑟

∫𝐴1𝐴1
∗𝑟𝑑𝑟

                                           (7.20) 

Equation (7.20) gives the normalized power of the THz radiation produced by the two laser 

beams while propagating through the plasma.  

7.6 Results and Discussion 

          To analyze the effect of deviation of intensity distribution of laser beams from 

Gaussian distribution and plasma density on cross focusing of the laser beams eqs.(7.12)-

(7.13) have been solved for following set of laser-plasma parameters: 

𝜔1 = 1.758 × 1014𝑟𝑎𝑑 𝑠−1,        𝜔2 = 1.75 × 10
14𝑟𝑎𝑑 𝑠−1   

𝑟1 = 15𝜇𝑚, 𝑟2 = 16𝜇𝑚, 𝛽2𝐸20
2 = 1.5, 𝑇0 = 107𝐾 

and for different values of 𝑞1, 𝑞2,
𝜔𝑝0
2 𝑟1

2

𝑐2
 and β1E00

2 viz., 

𝑞1 = 𝑞2 = (3,4,∞),
𝜔𝑝0
2 𝑟1

2

𝑐2
= (9, 12, 15), 𝛽1𝐸10

2 = (3, 3.5, 4) 

          Figures 7.1 and 7.2 illustrate the effect of deviation parameter 𝑞1 of beam1 on 

focusing/defocusing of the two laser beams. It can be seen that during the propagation of 

the laser beams through plasma their beam width vary harmonically with distance. This 

behaviour of the beam widths of the laser beams can be explained by examining the role 

and origin of various terms contained in equations (7.12) and (7.13).  

          The first terms on the right hand sides (R.H.S) of these equations that vary inversely 

with the cube of their beam widths, are the spatial dispersive terms that model the spreading 
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of the laser beams in transverse directions occurring as consequence of light's wave nature 

of diffraction. The second terms on the R.H.S of these equations that have complex 

dependence on beam widths 𝑓1 and 𝑓2 of the two laser beams arise as a consequence of 

relativistic nonlinearity of plasma and nonlinear coupling the laser beams with each other. 

It can be seen that although two copropagating laser beams through vacuum don't interact 

with each other, but during their propagation through plasma medium they get coupled 

with each other. As a consequence of the relativistic nonlinearity of plasma the resulting 

nonlinear refraction of the laser beams tend to counter balance the effect of diffraction by 

inducing a convex lens like structure into the plasma. Thus, during the propagation of the 

laser beams through plasma, there starts a competition between the two phenomena of 

diffraction and nonlinear refraction. The winning phenomenon ultimately decides the 

behaviour of the laser beams i.e., whether the beams will converge or diverge. Thus, there 

exists a critical value of the total beam intensity above which the beams will converge.  

          In the present investigation the initial beam intensity has been taken to be greater 

than the critical intensity i.e., why the spot sizes of the two laser beams are converging 

initially. As the beam widths of the laser beams get reduced, their intensity increases. When 

the intensity of the laser beams become too high, the mass of plasma electrons and thus the 

optical nonlinearity of plasma gets saturated. Thus, the laser beams propagate as if they are 

propagating through a linear medium. Hence, after attaining minimum possible value, the 

beam widths of the two laser beams bounce back to their initial values. As the beam widths 

of the laser beams start increasing, the competition between diffraction and nonlinear 

refraction starts again. Now, the competition lasts till maximum values of 𝑓1 𝑎𝑛𝑑 𝑓2 are 

obtained. These processes go on repeating themselves and thus give breather like behaviour 

to the spot sizes of the laser beams. 

          The plots in fig.7.1 depict that increase in the value of 𝑞1 leads to decrease in the 

extent of self focusing of first laser beam. This is due to the fact that as the value of 𝑞1 

increases towards higher values, the intensity of the first laser beam shifts towards the axial 

region of the wavefront. As a result, laser beams with higher 𝑞 value get lesser contribution 

from the off axial rays towards nonlinear refraction. As nonlinear refraction of the laser 
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beam is a homeostasis for self focusing, increase in the value of 𝑞1 results in reduced 

focusing of beam 1. It is also observed from fig.7.1 that the laser beams with higher 𝑞 

values possess faster focusing. The underlying physics behind this fact is the slower 

focusing character of the off axial rays. 

 

Fig. 7.1: Variation of beam width parameter 𝒇𝟏 of beam 1 with distance of propagation in 

plasma for different values of 𝒒𝟏 and at fixed values of 𝒒𝟐 = 𝟑, 
𝝎𝒑𝟎
𝟐 𝒓𝟏

𝟐

𝒄𝟐
= 𝟗 𝐚𝐧𝐝 𝜷𝟏𝑬𝟏𝟎

𝟐 = 𝟑 

 

          The plots in fig. 7.2 depict that increase in the value of 𝑞1 leads to increase in the 

extent of self focusing of the second laser beam. This is due to the fact that due to nonlinear 

coupling between the two laser beams the increase in value of 𝑞1favours the nonlinear 

refraction of beam2.  

          Figs. 7.3 and 7.4 depict the effect of deviation parameter 𝑞2 of beam 2 on evolution 

of the beam widths of the two laser beams. It can be seen that increase in value of 𝑞2 

decreases the self focusing of beam 2 and increases that of beam 1. 
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Fig. 7.2: Variation of beam width parameter 𝒇𝟐 of beam 2 with distance of propagation in 

plasma for different values of 𝒒𝟏 and at fixed values of 𝒒𝟐 = 𝟑, 
𝝎𝒑𝟎
𝟐 𝒓𝟏

𝟐

𝒄𝟐
= 𝟗 𝐚𝐧𝐝 𝜷𝟏𝑬𝟏𝟎

𝟐 = 𝟑 

           

Fig. 7.3: Variation of beam width parameter 𝒇𝟏 of beam 1 with distance of propagation in 

plasma for different values of 𝒒𝟐 and at fixed values of 𝒒𝟏 = 𝟑, 
𝝎𝒑𝟎
𝟐 𝒓𝟏

𝟐

𝒄𝟐
= 𝟗 𝐚𝐧𝐝 𝜷𝟏𝑬𝟏𝟎

𝟐 = 𝟑 
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Fig. 7.4: Variation of beam width parameter 𝒇𝟐 of beam 2 with distance of propagation in 

plasma for different values of 𝒒𝟐 and at fixed values of 𝒒𝟏 = 𝟑, 
𝝎𝒑𝟎
𝟐 𝒓𝟏

𝟐

𝒄𝟐
= 𝟗 𝐚𝐧𝐝 𝜷𝟏𝑬𝟏𝟎

𝟐 = 𝟑 

 

          Figs.7.5 and 7.6 depict the effect of plasma density on self focusing of the two laser 

beams. It can be seen that increase in plasma density increases the self focusing of both the 

laser beams.  

 

Fig. 7.5: Variation of beam width parameter 𝒇𝟏 of beam 1 with distance of propagation in 

plasma for different values of 
𝝎𝒑𝟎
𝟐 𝒓𝟏

𝟐

𝒄𝟐
 and at fixed values of 𝒒𝟏 = 𝒒𝟐 = 𝟑 𝐚𝐧𝐝 𝜷𝟏𝑬𝟏𝟎

𝟐 = 𝟑 
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          This is due to the fact that increase in plasma density increases the number of plasma 

electrons contributing to the relativistic nonlinearity of plasma. As self focusing of the laser 

beams results from relativistic nonlinearity, increase in plasma density increases the self 

focusing of the two laser beams. 

 
Fig. 7.6: Variation of beam width parameter 𝒇𝟐 of beam 2 with distance of propagation in 

plasma for different values of 
𝝎𝒑𝟎
𝟐 𝒓𝟏

𝟐

𝒄𝟐
 and at fixed values of 𝒒𝟏 = 𝒒𝟐 = 𝟑 𝐚𝐧𝐝 𝜷𝟏𝑬𝟏𝟎

𝟐 = 𝟑 

 

 

Fig. 7.7: Variation of beam width parameter 𝒇𝟏 of beam 1 with distance of propagation in 

plasma for different values of 𝜷𝟏𝑬𝟏𝟎
𝟐  and at fixed values of 𝒒𝟏 = 𝒒𝟐 = 𝟑 𝐚𝐧𝐝 

𝝎𝒑𝟎
𝟐 𝒓𝟏

𝟐

𝒄𝟐
= 𝟗 



 

113 
 

          Figs.7.7 and 7.8 depict the effect of initial intensity of beam 1 on self focusing of the 

two laser beams. It can be seen that increase in intensity of beam 1 leads to increase in self 

focusing of the two laser beams. This is again due to the increase in the magnitude of 

relativistic with increase in initial beam intensity. 

 

 

Fig. 7.8: Variation of beam width parameter 𝒇𝟐 of beam 2 with distance of propagation in 

plasma for different values of 𝜷𝟏𝑬𝟏𝟎
𝟐  and at fixed values of 𝒒𝟏 = 𝒒𝟐 = 𝟑 𝐚𝐧𝐝 

𝝎𝒑𝟎
𝟐 𝒓𝟏

𝟐

𝒄𝟐
= 𝟗 

 

          Further, eq. 7.20 has been solved numerically in association with the beam width 

equations 7.12 and 7.13 and the corresponding evolutions of the normalized power with 

distance of propagation for different values of 𝑞, plasma density and initial beam intensity 

have been depicted in figs. 7.9-7.12. 

          Figs.7.9 and 7.10 depict the effect of 𝑞1 and 𝑞2 on evolution of normalized power of 

generated THz radiation with distance. It has been observed that the power of THz radiation 

is a monotonically increasing function of propagation, showing step like behaviour. Each 

step occurs at the position of the minimum beam width of the two laser beams. This is 

because as the pump beams get self focused their intensity increases and consequently the 

oscillation amplitude of the plasma electrons also increases which in turn increases the 

amplitude of the generated EPW. Since, the density perturbation associated with EPW acts 

as source for nonlinear current density for THz, there is monotonic increase in the second 
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harmonic power with distance. The step like behaviour of the power of THz radiation at 

the positions of the minimum beam width of the pump beams is owing to the fact that these 

are the regions of highest intensity and hence the current density for THz radiation is 

maximum there. 

 

Fig. 7.9 Variation of beam width parameter 𝑷𝑻 of THz radiation with distance of propagation in 

plasma for different values of 𝒒𝟏 and at fixed values of 𝒒𝟐 = 𝟑,  𝜷𝟏𝑬𝟏𝟎
𝟐 = 𝟑 𝐚𝐧𝐝 

𝝎𝒑𝟎
𝟐 𝒓𝟏

𝟐

𝒄𝟐
= 𝟗 

 

 
Fig. 7.10: Variation of beam width parameter 𝑷𝑻 of THz radiation with distance of propagation in 

plasma for different values of 𝒒𝟐 and at fixed values of 𝒒𝟏 = 𝟑,  𝜷𝟏𝑬𝟏𝟎
𝟐 = 𝟑 𝐚𝐧𝐝 

𝝎𝒑𝟎
𝟐 𝒓𝟏

𝟐

𝒄𝟐
= 𝟗 
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          Hence, after attaining its maximum value the power of THz radiation moves towards 

its next possible higher value at next focal spot. These transitions of THz power form one 

maximum value to next maximum value give it a step like behaviour. 

          Reduction in the second THz power 𝑃𝑇 with increase in the value of deviation 

parameter 𝑞1 of beam 1 has also been observed from the plots in fig.7.9. The underlying 

physics behind this is the one to one correspondence between the power of THz radiation 

and the degree of self focusing of the pump beams. As increase in the value of 𝑞1 reduces 

the extent of focusing of the pump beam 1 (beam with higher initial intensity) and increases 

the focusing of beam 2. However, in producing THz radiation, dominant role is played by 

beam with higher initial intensity. Hence, there is corresponding decrease in the power of 

THz radiation with increase in 𝑞1. Same is the reason behind the observed increase in the 

power of THz radiation with increase in the value of deviation parameter 𝑞2 of beam 2 (fig. 

7.10). 

          Figs. 7.11 and 7.12 depict that by increasing either plasma density or initial pump 

beam intensity there is increase in the power of THz radiation. This is again due to the fact 

that with increase in plasma density or initial pump intensity there is increase in the extent 

of self focusing of both the laser beams. 

 

Fig. 7.11: Variation of beam width parameter 𝑷𝑻 of THz radiation with distance of propagation in 

plasma for different values of 
𝝎𝒑𝟎
𝟐 𝒓𝟏

𝟐

𝒄𝟐
 and at fixed values of 𝒒𝟏 = 𝒒𝟐 = 𝟑 𝐚𝐧𝐝  𝜷𝟏𝑬𝟏𝟎

𝟐 = 𝟑 
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Fig. 7.12: Variation of beam width parameter 𝑷𝑻 of THz radiation with distance of propagation in 

plasma for different values of  𝜷𝟏𝑬𝟏𝟎
𝟐  and at fixed values of 𝒒𝟏 = 𝒒𝟐 = 𝟑 𝐚𝐧𝐝 

𝝎𝒑𝟎
𝟐 𝒓𝟏

𝟐

𝒄𝟐
 = 𝟗 

 

7.7 Conclusions 

          In conclusion I have investigated the effect of cross focusing of intense laser beams 

on generation of coherent THz radiations in plasma under the effect of relativistic 

nonlinearity. Effect of the deviation of amplitude structure of laser beams from ideal 

Gaussian profile has been incorporated through 𝑞-Gaussian distribution. It has been 

observed that deviation parameters of the laser beams significantly affect the cross focusing 

and hence the power of generated THz radiations. As the amplitude structure of laser beam 

with higher initial intensity (i.e., pump beam) converges towards the ideal Gaussian profile, 

there is decrease in the power of generated THz radiations. However, in case the amplitude 

structure of laser beam with lower initial intensity (i.e., probe beam) converges towards the 

ideal Gaussian profile, there is increase in the power of generated THz radiations. Thus, by 

controlling the deviation parameters of the pump and probe beams one can optimize the 

power of generated THz radiations for given set of plasma parameters. The results of 

present study may be helpful for the experimentalists working in the field of LPI. 
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Chapter-8 

THz Generation by Filamentation of 𝒒-Gaussian Laser Beams 

in Narrow Band Semiconductor 

8.1 Introduction 

          The advent of laser in the early 1960's set in motion a train of events that led to a 

renaissance in the field of light-matter interactions. The past few years have seen two 

important advances. One was the proposal of initiating fusion reactions [3, 163] for viable 

energy production that would quench humanity's endless thirst for energy without 

worsening the global climate change. Another noteworthy advance was the laser driven 

particle accelerators [7]. Particle acceleration by laser driven plasma wave is an extremely 

interesting and far-reaching idea that can bring huge particle accelerators to bench top. The 

efforts to translate these concepts into reality, however, have to surmount two serious 

problems: (1) the creation of relativistic plasmas requires ultrahigh laser intensities in the 

excess of 1018 − 1020𝑊/𝑐𝑚2, and (2) the plasmas have to be extremely homogeneous. 

These rather daunting requirements have made it difficult even to carry out exploratory 

experiments to test the proposed ideas.  

          Therefore, there have been ongoing efforts to find alternatives to standard plasma 

experiments, where these severe constraints could be mitigated. One could then validate 

the theoretical frameworks, and shed light on the eventual feasibility of these ideas. 

Fortunately, such an alternative exists; it is provide by certain special plasmas found in the 

narrow-band semiconductors [25]. Plasmas contain negative and positive carriers under 

conditions in which they do not combine. In the fig.(8.1) a red dot is an electron, or negative 

charge, a blue dot containing a plus sign is a positive charge and neutral atoms are shown 

green. In a gas there are two kinds of charge carrier: electrons and positive ions (atoms 

lacking electrons). In a simple metal the only mobile carriers are electrons; positive ions 

are locked in the crystal lattice. A semiconductor has two kinds of mobile carrier: electrons 

and positive "holes," or missing electrons. All three plasmas can transmit waves. 
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Fig.8.1: Three kinds of plasmas a) gaseous plasma b) metallic plasma c) semiconductor plasma 

          Interaction of intense laser beams with semiconductor plasmas are rich in copious 

nonlinear effects. This span a gamut from parametric instabilities to several nonlinear 

effects such as self focusing, self trapping, HHG, THz generation etc. [25, 42, 97, 98]. 

Among these nonlinear optical effects, THz radiations have influenced the researchers due 

to its non-ionizing character and penetrating power. These radiations are broadly applicable 

in the field of medical imaging, short range communication, surveillance and security 

scanning [48, 50, 51]. The unique properties of THz radiations further open numerous 

opportunities in industrial and basics research. 

          A number of methods have been established for the generation of THz radiation such 

as optical rectification, gyrotron-method, photo-conductive antennas, conventional 

accelerator etc. But, due to the limitations of conventional methods, the generation of THz 

radiation is restricted up to some μJ. Therefore, in this regards the plasma [109, 112] and 

narrow band semiconductor [178, 181, 182] candidates have appeared which are most 

suitable for attaining new level of high-power THz radiation. In this chapter generation of 

THz radiation by two 𝑞-Gaussian laser beams and narrow band semiconductor has been 

investigated.  

8.2. Relativistic Dielectric Function of Narrow Band Semiconductor 

          The temperature of free carriers, in semiconductors at equilibrium, is same as that of 

crystal so that the net energy exchange between the carriers and the lattice of the crystal is 

zero. However, in the presence of laser electric field, the free carriers gain energy from the 

electric field, which causes their temperature to be higher than that of the crystal in the 

steady state [181]. The exchange of energy between electrons and lattice in a 
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semiconductor can be explained by hydraulic analogy shown in fig.(8.2). The movement 

of water through the system shown here is analogous to the flow of energy in a 

semiconductor. The open tap corresponds to the electric field of the laser beam. Energy is 

transferred from the field to the electrons (container at the left), which it accelerates. The 

electrons in turn transfer their energy to the crystal lattice (container at the right). The size 

of the tube between the two containers represents the strength of the interaction of the 

electrons with the lattice. Electrons can also transfer energy out of the crystal by 

electromagnetic radiation, whereas the lattice can lose energy by heat conduction or 

convection. If the leaks to the outside are small, the containers will fill up when the tap is 

turned on. This retention of energy results in heating the crystal. If the tap is merely 

dripping, the water in the two containers will be at the same level, in other words, if the 

laser beam is sufficiently weak the effective temperature of the electrons and lattice will 

be same. 

 

Fig.8.2: Hydraulic analogy of laser interaction with semiconductor 

          On the other hand, if the laser beam is sufficiently intense i.e., when the tap is opened 

all the way, the electron-lattice pipe may be too small to keep the water in the two 
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containers at the same level. The water level in the left container will then be higher and 

the effective temperature of electrons will be greater than that of lattice. 

          In narrow band gap semiconductors, for moderate values of the electric field, the 

increase in temperature of carriers is proportional to the square of the electric field. The 

change in temperature of carriers leads to corresponding change in the effective mass of 

carriers. This effect is one of the important mechanisms of self-focusing of laser beams in 

semiconductors. 

          In narrow-band semiconductors large non-parabolicity of the conduction band 

dispersion relation also causes laser self-focusing. This is because, in narrow band 

semiconductors, the velocity of the conduction electrons can become relativistic even when 

moderate intensity laser fields are applied. It just so happens that in the two band 

approximation of Kane's model [182], the Hamiltonian of the conduction band electrons 

mimics the relativistic form 𝐻 = (𝑚∗
2𝑐∗
2 + 𝑐∗

2𝑝2)
1

2. Here, 𝑐∗ = (
𝐸𝑔

2𝑚∗
)

1

2
 plays the part of 

speed of light, 𝑚∗ is the effective mass of electrons at the bottom of the conduction band, 

𝐸𝑔 is the width of forbidden band, and 𝑝 is the electron quasi momentum. In several 

semiconductors, the characteristic velocity 𝑐∗ that enters the Kane's dispersion law is much 

less than the speed of light e.g., for InSb, 𝑐∗ = 3 × 10−3𝑐. Because of this, the quiver 

velocity of the conduction electrons can become relativistic even at moderate laser 

intensities. A relativistic jitter is possible because the conduction band is partially empty, 

and as result the electrons can become accelerated under the effect of electric field. The 

non parabolicity of the conduction band implies a nonlinear electron velocity-momentum 

dependence which, in turn, leads to a nonlinear dependence of the current density on the 

electric field. This nonlinearity dominates the nonlinearity due to electron heating, 

provided the relevant wave frequencies are much higher than the effective collision 

frequency. 

          Consider the simultaneous propagation of two circularly polarized laser beam having 

electric field vector 

𝑬𝒋(𝑥, 𝑦, 𝑧, 𝑡) =
1

2
[𝜓𝑗(𝑟)𝑒

𝑖(𝜔0𝑡−𝑘0𝑧)+𝑐.𝑐](𝑒𝑥 + 𝑖𝑒𝑦)                                           (8.1) 
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through a semiconductor plasma having dielectric function  

𝜀 = 𝜀0 −
𝜔𝑝∗ 
2

𝜔0
2                                                                          (8.2) 

where, 𝜔0 and 𝑘0 respectively are angular frequency and vacuum wave number of the laser 

beam, (𝑥, 𝑦) is the slowly varying amplitude of the laser beam and 

𝜔𝑝∗
2 =

4𝜋𝑒2𝑛0
𝜀0𝑚∗

                                                                         (8.3) 

is the plasma frequency in the presence of the laser beam. Here, 𝜀0 is the dielectric constant 

of the lattice, 𝑚∗ is the effective mass of the electron at the bottom of the conduction band 

in the presence of the laser beam. 

          When circularly polarized laser beam propagates through the semiconductor plasma, 

the circular polarization of the electric field of the laser beam makes the conduction 

electrons to move along circular orbits with frequency 𝜔0 and due to high field associated 

with the laser beam the jitter velocity of conduction electrons becomes relativistic. Hence, 

the effective mass 𝑚∗ of the conduction electrons in eq.(8.3) gets replaced by 𝑚0∗𝛾, where 

𝑚0∗ is the effective mass of the conduction electron in the absence of the laser beam and 𝛾 

is the relativistic Lorentz factor. Following Akhiezer and Polovin [31] 

−𝑒∑𝜓𝑗
𝑗

=
𝑚0∗𝑣

√1 −
𝑣2

𝑐∗
2

 

From which, we get 

𝛾 =∑(1 + 𝛽𝜓𝑗𝜓𝑗
∗)

1

2  

𝑗

                                                            (8.4) 

Where, 𝛽 =
𝑒2

𝑚0∗
2 𝑐∗

2𝜔0
2 

 is the coefficient of relativistic nonlinearity. Hence, effective 

dielectric function of semiconductor plasma can be written as 

𝜀 = 𝜀0 −
𝜔𝑝0∗
2

𝜔0
2𝛾
                                                                      (8.5) 

where, 𝜔𝑝0∗
2 = (

4𝜋𝑒2𝑛0

𝜀0𝑚0∗ 
) is the plasma frequency in the absence of the laser beam. eq.(8.5) 

can be written as 

𝜀 = 𝜀0
′ + ɸ(𝜓𝜓∗)                                                                 (8.6)  
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Where 

𝜀0
′ = 𝜀0 −

𝜔𝑝0∗
2

𝜔0
2                                                                        (8.7) 

is the linear part of dielectric function and 

ɸ(𝜓𝜓∗) =
𝜔𝑝0∗
2

𝜔0
2 [1 −

1

𝛾
]                                                              (8.8) 

is the nonlinear part of dielectric function. For 𝑞-Gaussian amplitude structure, eq.(8.8) can 

be written as  

Ф𝑗(𝐸1𝐸1
∗, 𝐸2𝐸2

∗) =
𝜔𝑝0∗
2

𝜔0
2

{
 

 
1 − [1 +∑

𝛽𝑗𝐸𝑗0
2

𝑓𝑗
2

𝑗

(1 +
𝑟2

𝑞𝑗𝑟𝑗
2𝑓𝑗

2)

−
𝑞

2

]

1

2

}
 

 
                     (8.9) 

8.3 Cross-focusing of Laser Beam 

          The evolution of beam envelope of an optical beam through a nonlinear medium is 

governed by the wave equation 

𝑖
𝜕𝐸𝑗

𝜕𝑧
=

1

2𝑘𝑗
∇⊥
2𝐸𝑗 +

𝑘𝑗

2𝜀0𝑗
ɸ𝑗(𝐸1𝐸1

∗, 𝐸2𝐸2
∗)𝐸𝑗                                        (8.10) 

According to variational method, eq.(8.10) is a variational problem for action principle 

based on Lagrangian density [60-62, 64,65] 

£ = 𝑖 (𝜓1
𝜕𝜓1

∗

𝜕𝑧
− 𝜓1

∗
𝜕𝜓1
𝜕𝑧

) + 𝑖 (𝜓2
𝜕𝜓2

∗

𝜕𝑧
− 𝜓2

∗
𝜕𝜓2
𝜕𝑧

) + |∇⊥𝜓1|
2 + |∇⊥𝜓2|

2 −
𝜔1
2

𝑐2
∫ Ф(𝐸1𝐸1

∗, 𝐸2𝐸2
∗)𝑑(𝐸1𝐸1

∗)
𝐸1𝐸1

∗

−
𝜔2
2

𝑐2
∫ Ф(𝐸1𝐸1

∗, 𝐸2𝐸2
∗)𝑑(𝐸2𝐸2

∗)
𝐸2𝐸2

∗

                                                                                                       (8.11) 

Substituting the trial function for 𝑞-Gaussian beam profile in lagrangian density and 

integrating over the entire cross section of the laser beam we get the reduced lagrangian as 

𝐿 = ∫ £ 𝑑2𝑟. The corresponding Euler-Lagrange equations 

𝑑

𝑑𝑧
(

𝑑𝐿

𝜕 (
𝜕𝑓𝑗

𝜕𝑧
)
) −

𝜕𝐿

𝜕𝑓𝑗
= 0                                                      (8.12) 

give 

𝑑2𝑓𝑗

𝑑𝜉2
+
1

𝑓𝑗
(
𝑑𝑓𝑗

𝑑𝜉
)

2

=
1

𝑘𝑗
2𝑟𝑗

4𝑓𝑗
3

(1 −
1

𝑞𝑗
) (1 −

1

𝑞𝑗
)

(1 +
1

𝑞𝑗
)

+
(1 −

2

𝑞𝑗
)

𝑟𝑗
2𝜀0𝑗𝐼0𝑗

∫𝑟2𝜓𝑗𝜓𝑗
∗
𝜕ɸ𝑗

𝜕𝑟
𝑑2𝑟         (8.13) 
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Using eq.(8.9) in (8.13), the set of coupled differential equations for beam widths of the 

two laser beams are obtained as 

𝑑2𝑓1
𝑑𝜉2

+
1

𝑓1
(
𝑑𝑓1
𝑑𝜉
)
2

=
(1 −

1

𝑞1
) (1 −

1

𝑞1
)

(1 +
1

𝑞1
)

1

𝑓1
3 − 2(

𝜔𝑝0∗𝑟1

𝑐∗
)
2

(1 −
1

𝑞1
) (1 −

2

𝑞1
) 𝐽1                 (8.14) 

𝑑2𝑓2
𝑑𝜉2

+
1

𝑓2
(
𝑑𝑓2
𝑑𝜉
)
2

= (
𝑟1
𝑟2
)
4

(
𝜔1
𝜔2
)
2

(
𝜀01
𝜀02
)
(1 −

1

𝑞2
) (1 −

1

𝑞2
)

(1 +
1

𝑞2
)

1

𝑓2
3 − 2(

𝜔𝑝0∗𝑟1

𝑐∗
)
2

(1 −
1

𝑞2
) (1 −

2

𝑞2
) 𝐽2    (8.15) 

where, 𝜉 =
𝑧

𝑘1𝑟1
2 is the dimensionless distance of propagation, and 

𝐽1 =
𝛽1𝐸10

2

𝑓1
3 𝑇1 +

𝛽2𝐸20
2

𝑓1
3 (

𝑟1
𝑟2
)
2

(
𝑓1
𝑓2
)
4

𝑇2 

𝐽2 =
𝛽1𝐸10

2

𝑓2
3 𝑇3 +

𝛽2𝐸20
2

𝑓2
3 (

𝑟1
𝑟2
)
2

(
𝑓1
𝑓2
)
4

𝑇4 

𝑇1 = ∫ 𝑥3
∞

0

(1 +
𝑥2

𝑞1
)

−2𝑞1−1

𝐺(𝑥)𝑑𝑥 

𝑇2 = ∫ 𝑥3
∞

0

(1 +
𝑥2

𝑞1
)

−𝑞1

(1 +
𝑥2

𝑞2
(
𝑟1𝑓1
𝑟2𝑓2

)
2

)

−𝑞2−1

𝐺(𝑥)𝑑𝑥 

𝑇3 = ∫ 𝑥3
∞

0

(1 +
𝑥2

𝑞1
)

−𝑞1−1

(1 +
𝑥2

𝑞2
(
𝑟1𝑓1
𝑟2𝑓2

)
2

)

−𝑞2

𝐺(𝑥)𝑑𝑥 

𝑇4 = ∫ 𝑥3
∞

0

(1 +
𝑥2

𝑞2
(
𝑟1𝑓1
𝑟2𝑓2

)
2

)

−2𝑞2−1

𝐺(𝑥)𝑑𝑥 

𝐺(𝑥) = 𝑒
−{
𝛽1𝐸10

2

𝑓1
2 (1+

𝑥2

𝑞1
)
−𝑞1

+
𝛽2𝐸20

2

𝑓2
2 (1+

𝑥2

𝑞2
(
𝑟1𝑓1
𝑟2𝑓2

)
2
)

−𝑞2

}

 

𝑥 =
𝑟

𝑟1𝑓1
 

Equations (8.14) and (8.15) are the coupled nonlinear differential equations governing the 

cross focusing of two coaxial 𝑞-Gaussian laser beams in narrow band semiconductors. For 

initially plane wavefronts these equations are subjected to boundary conditions 𝑓𝑗 =
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1 and 
𝑑𝑓𝑗

𝑑𝜉
= 0 𝑎𝑡 𝜉 = 0. Numerical computational techniques are used to investigate the 

beam dynamics as analytic solutions of these equations are not possible.  

8.4 Excitation of Electron Plasma Wave (EPW) 

          The electron density perturbation 𝑛′ associated with the excited EPW evolves 

according to the wave equation 

𝜕2𝑛′

𝜕𝑡2
− 𝑣𝑡ℎ

2 ∇2𝑛′ +𝜔𝑝0∗
2 𝑛′ =

𝑒

𝑚0∗

𝑛0∇∑𝐸𝑗
𝑗

                                              (8.16) 

Taking 

𝑛′ = 𝑛1𝑒
𝑖(𝜔𝑡−𝑘𝑧) 

where, 𝜔 = 𝜔2 − 𝜔1 and 𝑘 = 𝑘2 − 𝑘1, we get the amplitude of density perturbation 

associated with plasma wave 

𝑛1 =
𝑒𝑛0
𝑚0∗ 

1

(𝜔0
2 − 𝑘0

2𝑣𝑡ℎ
2 − 𝜔𝑝∗

2 )
[
𝐸10

𝑟1
2𝑓1

3 (1 +
𝑟2

𝑞1𝑟1
2𝑓1

2)

−
𝑞1
2
−1

+ 
𝐸20

𝑟2
2𝑓2

3 (1 +
𝑟2

𝑞2𝑟2
2𝑓2

2)

−
𝑞1
2
−1

] 𝑟    (8.17) 

8.5 THz Generation  

          The density perturbation associated with excited EPW results in a nonlinear current 

density at frequency 𝜔 = 𝜔2 − 𝜔1 that acts as a source for the THz radiation. The 

generated current density is given by 

𝐽𝑇 =
𝑒2𝑛0
𝑚0∗𝜔

(
𝑛1
𝑛0
) 𝑒𝑖(𝜔𝑡−𝑘𝑧) (𝐸1 + 𝐸2)                                              (8.18) 

The electric field of the resulting THz evolves according to the wave equation 

∇2𝐸𝑇 =
1

𝑐2
𝜕2𝐸𝑇
𝜕𝑡2

+
4𝜋

𝑐2
𝜕𝐽𝑇
𝜕𝑡
                                                          (8.19) 

This equation gives the magnitude of electric field of THz radiation as 

𝐸𝑇 = 𝑖
(
𝜔𝑝0∗
2

𝑐∗
2 )

(
𝜔2

𝑐∗
2 − 𝑘

2)

𝑛1
𝑛0
(𝐸1 + 𝐸2)                                                  (8.20) 

Defining the normalized power of THz radiation as 

𝑃𝑇 =
∫ 𝐸𝑇𝐸𝑇

∗𝑟𝑑𝑟
∞

0

∫ 𝜓1𝜓1
∗𝑟𝑑𝑟

∞

0

                                                                (8.21) 
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We get 

𝑃𝑇 = 
(
𝜔𝑝0∗
2

𝑐∗
2 )

2

(
𝜔2

𝑐∗
2 − 𝑘

2)
2

∫ (
𝑛1

𝑛0
)
2
(𝐸1 + 𝐸2)

2𝑟𝑑𝑟

∫𝜓1𝜓1
∗𝑟𝑑𝑟

                                     (8.22) 

Equation (8.22) has been solved numerically in association with the beam width equations 

(8.14) and (8.15) and the corresponding evolutions of the normalized power with distance 

of propagation for different values of 𝑞. 

8.6 Results and Discussion 

          To investigate the effect of deviation of intensity distribution of laser beams from 

Gaussian distribution and plasma density on cross focusing of the laser beams eqs. (8.4)-

(8.15) have been solved for following set of laser-plasma parameters: 

𝜔1 = 1.758 × 1014𝑟𝑎𝑑 𝑠−1,        𝜔2 = 1.75 × 10
14𝑟𝑎𝑑 𝑠−1   

𝑟1 = 15𝜇𝑚, 𝑟2 = 16𝜇𝑚, 𝛽1𝐸10
2 = 3,    𝛽2𝐸20

2 = 1.5 , 𝑞2 = 3, (
𝜔𝑝0∗𝑟0

𝑐∗
)
2

= 9  

and for different values of 𝑞1 viz., 𝑞1 = (3,4,∞). In the present investigation Eq. (26) has 

been solved numerically for typical parameters of n-InSb plasma. The parameters are: 

𝐸𝑔 = 0.234𝑒𝑉, 𝑇 = 77𝐾, 𝑚0∗ =
𝑚𝑒

74
, 𝜀0 = 16, 𝑐∗ =

𝑐

253
, 𝑛0 = 10

15𝑐𝑚−1. 

          The plots in figs. 8.3 and 8.4 depict that during their propagation through 

semiconductor, the laser beam break up into narrow localized structure called as filaments.  

These filamentation of laser beams occurs due to the periodic focusing/defocusing of the 

laser beams occurring as a consequence of optical nonlinearity of semiconductor.  

          The plots in fig.8.3 depict that with increase in the value of deviation parameter 𝑞1 

of beam1, the brightness of its filaments decreases, however the number of filaments in a 

given distance of propagation increases. This is due to the faster but reduced self focusing 

of beam1 with increase in its deviation parameter. 

          The plots in fig.8.4 depict that increase in the deviation parameter of beam1, makes 

the filaments of beam2 more localized, i.e., brightness of the filaments of beam2 increases. 

This is due to the nonlinear coupling between the two beams. With increase in 𝑞1, the axial 

part of beam2 becomes stronger that enhances the brightness of the filaments of beam2. 
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Fig.8.3: Effect of 𝒒𝟏 on filamentation of beam 1 a) 𝒒𝟏 = 𝟑, b) 𝒒𝟏 = 𝟒, c) 𝒒𝟏 = ∞ 

 

Fig.8.4: Effect of 𝒒𝟏 on filamentation of beam 2 a) 𝒒𝟏 = 𝟑, b) 𝒒𝟏 = 𝟒, c) 𝒒𝟏 = ∞ 
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          Fig.8.5 illustrates the impact of deviation parameter of beam1 that is  𝑞1 on evolution 

of normalized power of produced THz radiation with distance of propagation. It has been 

investigated that the power of THz radiation is monotonically increasing along the 

direction of propagation, showing step like behaviour. Each step occurs approximately at 

the position of filaments of the laser beams. This is because as the pump beam gets self 

focused their intensity increases and as the result of which the amplitude of oscillations of 

the plasma electrons also increases. Hence, the amplitude of the generated EPW increases. 

Since, the density perturbation associated with EPW acts as source for nonlinear current 

density for THz, there is monotonic increase in the THz power with distance. 

 

Fig.8.5: Effect of 𝒒𝟏 on power of THz radiation 

          Decrease in the THz power 𝑃𝑇 with increase in deviation parameter 𝑞1 of beam1 has 

also been depicted from the plots in fig.8.5. The reason behind this is the one to one 

correspondence between the THz power and the degree of self focusing of the pump beam. 

As increase in the value of 𝑞1 reduces the extent of focusing of the pump beam1 (beam 

with higher initial intensity) and increases the focusing of beam 2. However, in producing 
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THz radiation dominant role is played by beam with higher initial intensity. Hence, there 

is corresponding decrease in the power of THz radiation with increase in 𝑞1.  

8.7 Conclusions 

          It has been observed that filamentations in narrow band semiconductors are produced 

due to the self focusing/defocusing of both 𝑞-Gaussian laser beams under the effects of 

each other and the relativistic nonlinearity of narrow band semiconductor. The brightness 

of filamentations is reduced as the 𝑞1 is increased. It means, the intensities of filaments are 

decreased due to which the oscillations of electrons are decreased. Consequently, the yield 

of THz radiation is reduced.  
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Chapter-9 

Generation of Second Harmonics of q-Gaussian Laser Beams in 

Collisional Plasma with Upward Density Ramp 

9.1 Introduction 

          The quest for short-wavelength coherent radiation sources for medical treatment and 

diagnostics [183], homeland security [184], plasma diagnostics [185] etc. has a long 

history. For the past few decades, only two main types of facilities, namely free electron 

lasers (FELs) [186] and synchrotrons [187], have been considered for this purpose. Such 

large facilities have provided scientists with the tools to probe and image matter on very 

small length scales and over very short periods of time, enabling ground breaking work in 

fields as diverse as biology and archaeology. A large infrastructure involving accelerators, 

beam lines and massive gantries of more than 1000 tons is required for these facilities. 

Hence, significant capital investment is required for the construction and maintenance of 

these so-called third generation (synchrotrons) and fourth generation (FELs) radiation 

sources. As a result, these facilities are not affordable for less affluent institutes such as 

universities and hospitals. Therefore, research related to them is not growing very fast. 

          By producing similar extreme ultraviolet and soft x-ray radiation on a bench top 

scale, the phenomenon of high harmonic generation (HHG) can serve as a cost-effective 

means of extending access to and application of light in this part of the spectrum. The 

reduction in cost is due not only to the replacement of the accelerator but also to the fact 

that there will be no requirement for large building footprints and massive gantries. HHG 

can be produced in a number of nonlinear media such as gases [188], dielectrics [41], 

semiconductors [189] and plasmas [27, 44, 82-88]. Plasmas have several interesting 

advantages over normal states of matter (i.e. solids, liquids and gases) that make them ideal 

candidate for HHG. Firstly, being already ionized, plasmas are immune to material 

damage. Hence, there is no upper limit on the intensity of the pump beam. Secondly, HHG 

in plasmas is associated with free electrons, and therefore there is no upper bound on the 

frequency of the generated harmonics either, i.e. higher harmonics of desirable order and 

intensity can be produced in plasmas. 
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          Several mechanisms such as parametric instabilities [190], resonance absorption 

[191], ionization absorption [192], photon acceleration [193], density gradients due to 

filamentation of light [194] and excitation of electron plasma waves (EPW) [88, 109, 179, 

180] are thought to be responsible for HHG in plasmas. For second harmonic generation 

(SHG), excitation of EPWs has been found to be the most efficient mechanism [39]. By 

interacting nonlinearly with the pump beam, the excited EPW converts it to its second 

harmonics through the phenomenon of sum frequency generation.  

          The phenomenon of SHG was first reported by Franken et al in 1961 [41], very soon 

after the invention of laser by Maiman in 1960 [1]. Since then, a number of investigations 

by several researchers have highlighted theoretical as well as experimental aspects of SHG. 

The main aim of all these investigations was to increase the efficiency of SHG so that one 

can get more and more intense short-wavelength coherent radiation sources at moderate 

pumps. This chapter presents an investigation of SHG of 𝑞-Gaussian laser beams in 

collisional plasma with an upward density ramp. The density ramp will enhance the 

interaction of the laser beam with plasma, and therefore an enhanced conversion efficiency 

of second harmonics can be expected. 

9.2 Nonlinear Dynamics of Pump Beam 

           Consider the interaction of a linearly polarized laser beam having electric field 

𝑬(𝒓, 𝒛, 𝒕) = 𝐴0(𝑟, 𝑧)𝑒
𝑖(𝑘0𝑧−𝜔0𝑡)𝑒𝑥                                                            (9.1) 

with collisional plasma having an upward density ramp [77]. The Ohmic nonlinearity of 

the plasma electrons is modelled by the dielectric function 

ɸ(𝐴0𝐴0
∗) =

𝜔𝑝
2(𝑧)

𝜔0
2 (1 − (1 +

1

2
𝛽𝐴0𝐴0

∗)

𝑠

2
−1

)                                               (9.2) 

where 𝜔𝑝
2 =

4𝜋𝑒2𝑛(𝑧)

𝑚
 is the plasma frequency, 𝑛(𝑧) being the axially increasing electron 

density of plasma, and 𝛽 =
𝑒2𝑀

6𝐾0𝑇0𝑚2𝜔0
2 is the coefficient representing the strength of 

collisional nonlinearity. The nature of collisions is expressed by the parameter 𝑠 and 𝑠 = 0 

indicates velocity-independent collisions, 𝑠 = 2 corresponds to collisions between 
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electrons and diatomic molecules and 𝑠 = −3 indicates collisions between electrons and 

ions. 

          Laser beam propagation through such a medium is modeled by the wave equation 

(which can be obtained from Maxwell’s equations)  

2𝑖𝑘0
𝜕𝐴0
𝜕𝑧

= ∇⊥
2𝐴0 +

𝜔0
2

𝑐2
ɸ(𝐴0𝐴0

∗)𝐴0                                                      (9.3) 

Equation (9.3) is identical to a well-known wave equation known as the nonlinear 

Schrödinger equation (NLSE) that governs the transmission of electromagnetic waves 

through nonlinear media and is a statement of interplay between nonlinearity and spatial 

dispersion. 

          Being nonlinear in nature, the superposition principle does not apply to equation 

(9.3), i.e., a linear combination of two solutions is not a solution. Mathematically this 

means that the conventional method of solving partial differential equations, i.e. expansion 

in power series, is not applicable to NLSE. In fact no exact analytical solution exists for 

this equation. In order to obtain physical insight into the propagation dynamics of the laser 

beam, I have adopted a semi-analytical technique known as the variational method [38, 60-

62, 64, 68]. This method replaces a partial differential equation with a set of coupled 

ordinary equations for the various parameters of the laser beam. According to this method 

equation (9.3) is a variational problem for the action principle based on Lagrangian density: 

£ = 𝑖 (𝐴0
𝜕𝐴0

∗

𝜕𝑧
− 𝐴0

∗
𝜕𝐴0
𝜕𝑧

) + |∇⊥𝐴0|
2 −

𝜔0
2

𝑐2
∫ ɸ(𝐴0𝐴0

∗)
𝐴0𝐴0

∗

𝑑(𝐴0𝐴0
∗)                          (9.4) 

In the present analysis, I have assumed that 𝐴0(𝑟, 𝑧) takes the form of the function given 

by  

𝐴0(𝑟, 𝑧) =
𝐸00
𝑓
(1 +

𝑟2

𝑞𝑟0
2𝑓2

)

−
𝑞

2

                                                       (9.5) 

where the parameter 𝑓(𝑧) is currently undetermined and upon multiplication with initial 

beam width 𝑟0 it gives the waist size of the laser beam at a particular location inside the 

medium. Hence, the parameter 𝑓(𝑧) can be referred to as a dimensionless beam width 

parameter. The phenomenological parameter 𝑞 is related to the deviation of the irradiance, 

over the cross section of the beam, from the ideal Gaussian profile. Substituting the trial 
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function (equation (9.5)) in the Lagrangian density and integrating over 𝑟, I get the reduced 

Lagrangian as 𝐿 = ∫ £ 𝑟𝑑𝑟
∞

0
. The corresponding Euler–Lagrange equation 

𝑑

𝑑𝑧
(

𝜕𝐿

𝜕 (
𝜕𝑓

𝜕𝑧
)
) −

𝜕𝐿

𝜕𝑓
= 0                                                                 (9.6) 

gives the following ordinary differential equation describing the dynamical variations of 

beam width with propagation distance: 

𝑑2𝑓

𝑑𝜉2
=
(1 −

1

𝑞
) (1 −

2

𝑞
)

(1 +
1

𝑞
)

1

𝑓3
+ (

𝜔𝑝(𝜉)𝑟0

𝑐
)

2

(1 −
1

𝑞
) (1 −

2

𝑞
) (
s

2
− 1)

𝛽𝐸00
2

𝑓3
𝑇                  (9.7) 

where 

𝑇 = ∫ 𝑥 (1 +
𝑥

𝑞
)
−2𝑞−1

{1 +
1

2

𝛽𝐸00
2

𝑓2
(1 +

𝑥

𝑞
)
−𝑞

}

𝑠

2
−2

𝑑𝑥
∞

0

 

𝑥 =
𝑟2

𝑟0
2𝑓2

 

𝜉 =
𝑧

𝑘0𝑟0
2 

          Thus, it follows from equation (9.7) that the problem of solving a partial differential 

equation, i.e. NLSE (equation (9.3)), has reduced to that of solving an ordinary differential 

equation. Although this reduced equation is also lacking an exact analytical solution due 

to its non-integrability, its approximate solution can be easily obtained with the help of 

simple numerical techniques. 

          Considering the plasma density to be increasing axially as 𝑛(𝜉) = 𝑛0(1 + tan(𝜉𝑑)), 

where 𝑛0 [172] is the plasma density seen by the laser beam while entering the plasma and 

𝑑 is the measure of the rate of increase of plasma density with distance, one can write the 

plasma frequency as  

 

𝜔𝑝
2(𝜉) = 𝜔𝑝0

2 (1 + tan(𝜉𝑑))                                                          (9.8) 

with  

𝜔𝑝0
2 =

4𝜋𝑒2𝑛0
𝑚𝑒
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9.3 Generation of Second Harmonics 

          The nonuniform irradiance over the cross section of the laser beam produces a 

transverse density gradient in the plasma by evacuating electrons from high-intensity 

regions. This density gradient results in an EPW at pump frequency 𝜔0, whose amplitude 

is governed by the wave equation [92] 

−𝜔0𝑛
′ + 𝑣𝑡ℎ

2 ∇2𝑛′ + 𝜔𝑝
2(𝜉)𝑛′ =

𝑒

𝑚
𝑛(𝜉)∇𝐴0                                                  (9.9) 

From this wave equation we can get the amplitude of the plasma wave as 

𝑛′ =
𝑒𝑛(𝜉)

𝑚

𝐸00

𝑟0
2𝑓3

𝑟

(𝜔0
2 − 𝑘0

2𝑣𝑡ℎ
2 − 𝜔𝑝

2(𝜉))
×

(1 +
𝑟2

𝑞𝑟0
2𝑓2
)
−
𝑞

2
−1

{1 +
𝛽𝐸00

2

𝑓2
(1 +

𝑟2

𝑞𝑟0
2𝑓2
)
−𝑞

}

𝑠

2
−1
               (9.10) 

The generated EPW interacts nonlinearly with the incident beam to produce its second 

harmonics. The electric field vector 𝐸2 of the second harmonics satisfies the wave equation 

∇2𝐸2 +
𝜔2
2

𝑐2
𝜀2(𝜔2)𝐸2 =

4𝜋𝑒2

𝑐2
𝑛′𝐴0                                                      (9.11) 

which gives 

𝐸2 =
4𝜋𝑒2

𝑚𝑐2
𝑛′

𝐴0

𝑘2
2 − 4𝑘0

2                                                                (9.12) 

Defining the yield 𝑌2 of second harmonics as 

𝑌2 =
𝑃2
𝑃0
                                                                             (9.13) 

where  

𝑃2 = ∫ 𝐸2𝐸2
∗𝑟𝑑𝑟

∞

0

 

𝑃0 = ∫ 𝐴0𝐴0
∗𝑟𝑑𝑟

∞

0

 

we can get 

𝑌2 =
8

9

𝐾0𝑇0
𝑚𝑐2

(
𝜔0
2𝑟0

2

𝑐2
)
𝛽𝐸00

2

𝑓4
(1 −

1

𝑞
)𝐻                                                     (9.14) 

 

𝐻 = ∫
(1 +

𝑥

𝑞
)
−2𝑞−2

[(
𝜔0
2𝑟0
2

𝑐2
) −

𝜔0
2𝑟0
2

𝑐2

𝜀0𝑣𝑡ℎ
2

𝑐2
−

𝜔𝑝0
2 𝑟0

2

𝑐2
(1 + tan(𝜉𝑑)) (1 +

𝛽𝐸00
2

𝑓2
(1 +

𝑥

𝑞
)
−𝑞

)

𝑠

2
−1

]

2

∞

0

𝑥𝑑𝑥 
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Equation (9.14) governs the evolution of second harmonic yield 𝑌2 with distance of 

propagation.  

9.4 Results and Discussion 

          In the present analysis solution of equation (9.7) in association with equation (9.8) 

has been obtained with the help of the Runge–Kutta fourth order method for the following 

set of laser and medium parameters  

𝜔0 = 1.78 ×
1015𝑟𝑎𝑑

𝑠𝑒𝑐
,         𝑟0 = 15𝜇𝑚,         𝑠 = −3,     

𝜔𝑝0
2 (𝑧)𝑟0

2

𝑐2
= 6 ,        𝑇0 = 10

6𝐾. 

In solving equation (9.7) it has been assumed that initially the beam is collimated, i.e., it 

satisfies the initial conditions 𝑓 = 1 and 
𝑑𝑓

𝑑𝜉
= 0 at 𝜉 = 0.  

          The corresponding evolution of the beam width with distance through the plasma is 

shown in fig.9.1. Breather-like behaviour, i.e. harmonic variations in the beam width with 

distance of propagation through the medium, can be clearly seen from the plots in fig.9.1.  

 

Fig.9.1: Effect of 𝒒, i.e. the deviation of the intensity profile of the laser beam from a Gaussian 

profile, on the evolution of the width of the laser beam with distance of propagation. 

 

These harmonic variations of the beam width can be explained by examining the role and 

origin of various terms in equation (9.7). The first term on the right-hand side, which is 
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proportional to 𝑓−3, is the spatial dispersive term, which models the spreading of the laser 

beam in transverse directions that occurs as a consequence of diffraction divergence. The 

second term, which has a complex dependence on 𝑓, arises due to the nonuniform Ohmic 

heating of plasma and is responsible for the nonlinear optical response of the plasma to the 

pump beam. As a consequence of this optical nonlinearity of the plasma the resulting 

nonlinear refraction of the laser beam tends to counter balance the effect of diffraction. 

Thus, during the propagation of the laser beam through collisional plasma, a competition 

arises between the two phenomena of diffraction and nonlinear refraction. The winning 

phenomenon ultimately decides the behaviour of the laser beam, i.e. whether it will 

converge or diverge. Thus, there exists a critical value of beam intensity (which can be 

obtained by balancing the two terms on the right-hand side of equation (9.7)) above which 

the beam will converge. In the present investigation the initial beam intensity has been 

taken to be greater than the critical intensity, i.e. why the laser spot size of the laser beam 

is converging initially. As the beam width decreases, its intensity increases. When the laser 

intensity becomes too high then the Ohmic nonlinearity gets saturated and thus the 

nonlinear refraction vanishes, leaving only the diffraction effects to dominate. Hence, after 

focusing to a minimum, the beam width bounces back to its original value. As the width of 

the laser beam starts increasing, the competition between diffraction and nonlinear 

refraction starts again. This competition now lasts until a maximum value of 𝑓 is obtained. 

These processes go on repeating themselves and thus give breather-like behaviour to the 

spot size of the laser beam. Furthermore, it has been observed that after every focal spot 

the maximum as well as the minimum of the beam width shifts downwards. This is owing 

to the fact that the equilibrium electron density is an increasing function of longitudinal 

distance. Hence, the plasma index of refraction keeps on decreasing with the penetration 

of the laser beam into the plasma. Consequently, the self focusing effect gets enhanced and 

the maximum as well as minimum of the beam width goes on shifting downwards after 

every focal spot. It is also seen that the frequency of oscillations of the beam width 

increases with distance. The physics behind this fact is that the denser the plasma, the 
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higher will be the phase velocity of the laser beam through it. Hence, in denser plasma a 

laser beam takes less time to get self focused. 

          Reduced focusing of laser beams with a higher value of 𝑞 can also be seen from 

fig.9.1. The reason behind this effect is that for laser beams with higher value of 𝑞 most of 

the intensity is concentrated in a narrow region around the axis of the beam. Hence, these 

beams receive a much reduced contribution from the off-axial part in order to produce 

nonlinearity in the medium. As the phenomenon of self focusing is a homeostasis of 

nonlinear refraction of the laser beam due to optical nonlinearity of the medium, an increase 

in the value of 𝑞 reduces the extent of self focusing. 

          The plots in fig.9.1 also indicate that instead of their reduced focusing, laser beams 

with a higher value of 𝑞 possess a faster focusing character. This is due to the faster 

focusing character of axial rays. Being away from the axis, off-axial rays take longer 

duration to get self focused. There are more off-axial rays in laser beams with lower 𝑞 

values, and hence the focusing of the laser beam becomes faster with increasing 𝑞. Hence, 

by optimizing the value of 𝑞, one can control the extent of self focusing as well as the 

location of the focal spot of a laser beam. 

          In order to see the effect of initial plasma density on the behaviour of the envelope 

of the pump beam, equation (9.7) has been solved for different values of normalized plasma 

density 
𝜔𝑝0
2 (𝑧)𝑟0

2

𝑐2
 at fixed values of 𝑞 and beam intensity 𝛽𝐸00

2 . The resulting behaviour of 

the beam width has been shown in fig.9.2. The substantial increase in the extent of self 

focusing is a consequence of the increase in initial plasma density. It is because of this 

increase in plasma density that the mean free path of plasma electrons decreases. As a 

result, their collisions with other species become more frequent, leading to the 

enhancement of optical nonlinearity of the plasma. As self focusing of the laser beam is a 

homeostasis of optical the nonlinearity of the medium, an increase in plasma density results 

in an increase in the extent of self focusing of the laser beam. 
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Fig.9.2: Effect of normalized plasma density on the evolution of the width of the laser beam with 

distance of propagation 
          Fig.9.3 illustrates the effect of initial beam intensity on self focusing of the laser 

beam. It can be seen that with increasing initial intensity of the laser beam, there is 

enhancement in the extent of its self focusing and also it becomes faster. This occurs 

because with increasing intensity of the pump beam, the kinetic energy of the plasma 

 

Fig.9.3: Effect of normalized laser intensity on evolution of the width of the laser 

 beam with distance of propagation. 
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electrons increases, which in turn increases the collisional nonlinearity via nonuniform 

Ohmic heating. Thus an increase in the laser intensity enhances the amount of focusing of 

the laser beam. 

          Further, equation (9.14) has been solved numerically in association with equation 

(9.7) in order to envision how the power of generated second harmonics evolves with 

longitudinal distance through the plasma. The corresponding variation of 𝑌2 with distance 𝜉 

is depicted in fig.9.4.  

 

Fig 9.4: Effect of 𝒒, i.e. deviation of the intensity profile of the laser beam from a Gaussian profile, on 

the evolution of the yield of second harmonics with distance of propagation. 

 

          It has been observed that the power of second harmonic radiation is a monotonically 

increasing function of propagation, showing step-like behaviour. Each step occurs at a 

position of minimum beam width. This is because as the pump beam gets self focused its 

intensity increases, and consequently the oscillation amplitude of the plasma electrons also 

increases, which in turn increases the amplitude of the generated EPW. Since the density 

perturbation associated with an EPW acts as a source for nonlinear current density for SHG, 

there is a monotonic increase in the conversion efficiency of second harmonics with 

distance. 

          The step-like behaviour of the power of harmonic radiation at the positions of minim 
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-um width of the pump beam is owing to the fact that these are the regions of highest 

intensity and hence the current density for SHG is maximum there. Hence, after attaining 

its maximum value the harmonic power moves towards its next possible higher value at 

the next focal spot. These transitions of harmonic power from one maximum value to the 

next give it a step-like behaviour. 

           Further, it is observed that with longitudinal distance the steepness of the steps goes 

on increasing whereas their size decreases. This is due the fact that the steepness of the 

steps is proportional to the extent of self focusing, and the step size is inversely proportional 

to the frequency of oscillations of the beam width. Since, the extent as well as the frequency 

of self focusing increase with distance,  𝑟𝑒 is an increase in the steepness of the steps of the 

curve of 𝑌2 versus 𝜉 whereas the size of steps goes on decreasing. 

          A reduction in the efficiency 𝑌2 of conversion to second harmonics with increasing 

𝑞 has also been observed from the plots in fig.9.4. The underlying physics behind this is 

the one-to-one correspondence between the conversion to higher harmonics and the degree 

of self focusing of the pump beam. An increase in the value of 𝑞 reduces the extent of 

focusing of the pump beam, hence there is a corresponding decrease in the conversion 

efficiency of second harmonics. 

  

Fig 9.5: Effect of normalized plasma density on the evolution of the yield of second harmonics with  

distance of propagation. 
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Fig.9.6: Effect of normalized laser intensity on the evolution of the yield of second harmonics with 

distance of propagation 

 

          The plots in figs.9.5-9.6 indicate that an increase in initial plasma density or intensity 

of the pump results in enhancement of the conversion efficiency of second harmonics. This 

is due to the increase in the extent of self focusing with increasing plasma density or 

intensity of the pump beam. 

9.5 Conclusions 

          In the present investigation, study on the effect of self focusing on SHG of 𝑞-

Gaussian laser beam in collisional plasma with ramped density. It has been observed that 

the self focusing and yield of SHG of 𝑞-Gaussian laser beam can be increased by including 

the off-axial contribution of the cross section of the laser beam. In addition, the self 

focusing and SHG can also be enhanced with increase in initial intensity of 𝑞-Gaussian 

laser beam and density of plasma. The obtained results of self focusing and SHG can be 

fruitful in plasma diagnostics, inertial confinement fusion (ICF) and other investigations 

on laser plasma interactions. 
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Chapter-10 

Generation of Second Harmonics of Self focused Quadruple-Gaussian 

Laser Beams in Collisional Plasmas with Density Ramp 

10.1 Introduction 

          The revolution in the field of laser has made it useful in interdisciplinary fields of 

research. Among these fields, generation of harmonics of electromagnetic radiation in 

plasma is a hot topic of research due to its vast applications such as plasma based electron 

accelerator [7, 16], inertial confinement fusion [6], medical diagnostics [183], plasma 

diagnostics [185] etc. The deep penetration of laser beams in plasma is preliminary 

requirement for all these applications. The propagation of laser beam through nonlinear 

medium reveals different nonlinear self-actions effects e.g. self focusing, self trapping, X-

ray laser and harmonics generation [22, 24, 60-63]. In the absence of these self-action 

effects, due to diffraction property, laser beam only propagate a Rayleigh length. Among 

different nonlinear mechanisms, higher harmonics generation play vital role as these can 

penetrate deep into the plasma and provide plasma diagnostics such as local plasma 

density, temperature of plasma, opacity, electrical conductivity of plasma etc.  

          Due to the applications of harmonics of laser beam, the researchers are busy in 

producing higher harmonics generation. It is well-known fact that laser beams differing in 

intensity profile behave differently in nonlinear media. Literature review reveals the fact 

that most of the earlier theoretical investigations on nonlinear optical phenomena of laser 

beams have been directed toward revealing the propagation characteristics of laser beams 

with ideal Gaussian profile. However, in context of ICF [16, 163] there is growing interest 

in class of laser beams those are having uniform irradiance over wider area of their cross 

sections.   

          In comparison to Gaussian beams, laser beams with uniform irradiance possess low 

divergence and thus can improve the efficiency of laser plasma coupling during ICF. Also, 

these beams can deliver high power densities to the fuel pellet without crossing the 

threshold for other parametric instabilities. Mathematically, such beam profiles are 
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modeled by super Gaussian or Q.G beam profiles. To the best of authors knowledge no 

earlier theoretical investigation on S.H.G of Q.G laser beams in plasmas has been reported 

in the past. This article aims to investigate for the first time generation of second harmonics 

of Q.G laser beams in collisional plasmas with density ramp.  

10.2 Thermal Nonlinearity of Plasma with Density Ramp 

          Propagation of a laser beam with amplitude 𝐴0 through a plasma dominated with 

collisional nonlinearity is governed by the wave equation 

2𝑖𝑘0
𝜕𝐴0
𝜕𝑧

= ∇⊥
2𝐴0 +

𝜔𝑝
2(𝑧)

𝑐2
(1 − (1 +

1

2
𝛽𝐴0𝐴0

∗)

𝑠

2
−1

)𝐴0                                   (10.1) 

Where, the symbols have the usual meaning as defined in chapter-1. The Lagrangian 

density corresponding to eq.(10.1) is 

£ = 𝑖 (𝐴0
𝜕𝐴0

∗

𝜕𝑧
− 𝐴0

∗
𝜕𝐴0
𝜕𝑧
) + |∇⊥𝐴0|

2 −
𝜔𝑝
2(𝑧)

𝑐2
∫ (1 − (1 +

1

2
𝛽𝐴0𝐴0

∗)

𝑠

2
−1

)
𝐴0𝐴0

∗

𝑑(𝐴0𝐴0
∗)     (10.2) 

          In the present analysis we assume that the trial function 𝐴0(𝑥, 𝑦, 𝑧) takes the form of 

quadruple-Gaussian ansatz 

𝐴0𝐴0
⋆ =

𝐸00
2

𝑓2
[𝑒
−
(𝑥−𝑥0𝑓)

2+𝑦2

2𝑟0
2𝑓2 + 𝑒

−
(𝑥+𝑥0𝑓)

2+𝑦2

2𝑟0
2𝑓2 + 𝑒

−
𝑥2+(𝑦−𝑥0𝑓)

2

2𝑟0
2𝑓2 + 𝑒

−
𝑥2+(𝑦+𝑥0𝑓)

2

2𝑟0
2𝑓2 ]

2

          (10.3) 

Substituting the above anstz in Lagrangian density and using variational analysis and 

upward ramp density 𝑛 = 𝑛0(1 + tan (𝑧/𝑑)) [172] (explained in chapter-4), the equation 

of motion of beam width of laser beam has been obtained as  

𝑑2𝑓
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1

4𝑓3
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+
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(𝐾1 + 𝐾2 + 𝐾3 + 𝐾4)  

(10.4) 

Where, 

𝐾1 = ∫ ∫ 𝑡1 (𝑡1 −
𝑥0
𝑟0
) 𝑒−

(𝑡1−
𝑥0
𝑟0
)
2
+𝑡2
2

2 × 𝐺1
3(𝑡1, 𝑡2)𝐺2(𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2

∞

0

∞
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𝑠𝐾2 = ∫ ∫ 𝑡1 (𝑡1 +
𝑥0
𝑟0
) 𝑒−
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𝑥0
𝑟0
)
2
+𝑡2
2

2 × 𝐺1
3(𝑡1, 𝑡2)𝐺2(𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2

∞

0

∞

0

 

𝐾3 = ∫ ∫ 𝑡1
2𝑒−

𝑡1
2+(𝑡2−

𝑥0
𝑟0
)
2

2 × 𝐺1
3(𝑡1, 𝑡2)𝐺2(𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2

∞

0

∞

0
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𝐾4 = ∫ ∫ 𝑡1
2𝑒−

𝑡1
2+(𝑡2+

𝑥0
𝑟0
)
2

2 × 𝐺1
3(𝑡1, 𝑡2)𝐺2(𝑡1, 𝑡2)𝑑𝑡1𝑑𝑡2

∞

0

∞

0

 

𝐺1(𝑡1, 𝑡2) = 𝑒
−
(𝑡1−

𝑥0
𝑟0
)
2
+𝑡2
2

2 + 𝑒−
(𝑡1+

𝑥0
𝑟0
)
2
+𝑡2
2

2 + 𝑒−
𝑡1
2+(𝑡2−

𝑥0
𝑟0
)
2

2 + 𝑒−
𝑡2
2+(𝑡2+

𝑥0
𝑟0
)
2

2  

𝐺2(𝑡1, 𝑡2) = [1 +
𝛽𝐴𝐴∗

𝑓2
𝐺1
2(𝑡1, 𝑡2)]

−
3

2

 

𝑡1 =
𝑥

𝑟0𝑓
,   𝑡2 =

𝑦

𝑟0𝑓
 , 𝜉 =

𝑧

𝑘0𝑟0
2  , 𝑑

′ =
𝑑

𝑘0𝑟0
2 

10.3 Current Density for SHG 

          In hydrodynamic model of plasma, the evolution of density perturbation of plasma 

associated with EPW excited by the laser beam evolves according to wave equation 

𝜕2𝑛′

𝜕𝑡2
− 𝑣𝑡ℎ

2 ∇2𝑛′ + 𝜔𝑝
2𝑛′ =

𝑒

𝑚
𝑛0∇𝑬                                                  (10.5) 

taking 

𝑛′ = 𝑛′′𝑒𝑖(𝜔0𝑡−𝑘0𝑧) 

where 𝑛′′ is the amplitude of EPW, one can obtain 

−𝜔0
2𝑛′ + 𝑘0

2𝑣𝑡ℎ
2 𝑛′ + 𝜔𝑝

2𝑛′ =
𝑒

𝑚
𝑛0∇𝐸                                                (10.6) 

Using eq. (10.3) in eq. (10.6), the source term for SHG of Q.G laser beam in collisional 

plasma is obtained as 

𝑛′′ =
𝑒𝑛0
𝑚

𝐹(𝑥, 𝑦)

(𝜔0
2 − 𝑘0

2𝑣𝑡ℎ
2 − 𝜔𝑝0

2 (1 + tan (
𝑧

𝑑
)) (1 +

1

2
𝛽𝐴𝐴∗)

𝑠

2
−1

)

                          (10.7) 

where  

𝐹(𝑥, 𝑦) = [
(𝑥 − 𝑥0𝑓)

𝑟0
2𝑓2

𝑒
−
(𝑥−𝑥0𝑓)

2+𝑦2

2𝑟0
2𝑓2 +

(𝑥 + 𝑥0𝑓)

𝑟0
2𝑓2

𝑒
−
(𝑥+𝑥0𝑓)

2+𝑦2

2𝑟0
2𝑓2 +

𝑥

𝑟0
2𝑓2

𝑒
−
𝑥2+(𝑦−𝑥0𝑓)

2

2𝑟0
2𝑓2 +

𝑥

𝑟0
2𝑓2

𝑒
−
𝑥2+(𝑦+𝑥0𝑓)

2

2𝑟0
2𝑓2

+
𝑦

𝑟0
2𝑓2

𝑒
−
(𝑥−𝑥0𝑓)

2+𝑦2

2𝑟0
2𝑓2 +

𝑦

𝑟0
2𝑓2

𝑒
−
(𝑥+𝑥0𝑓)

2+𝑦2

2𝑟0
2𝑓2 +

(𝑦 − 𝑥0𝑓)

𝑟0
2𝑓2

𝑒
−
𝑥2+(𝑦−𝑥0𝑓)

2

2𝑟0
2𝑓2

+
(𝑦 + 𝑥0𝑓)

𝑟0
2𝑓2

𝑒
−
𝑥2+(𝑦+𝑥0𝑓)

2

2𝑟0
2𝑓2 ] 

The interaction of pump beam with EPW results in a nonlinear current density at frequency 

double of that of pump beam as 

𝐽2 =
𝑒2𝑛0𝐴

𝑚𝜔0
(
𝑛′′

𝑛0
) 𝑒𝑖(𝜔2𝑡−𝑘2𝑧)                                                     (10.8) 
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10.4 Generation of Second Harmonics 

          The current density given by eq.(10.8) act as a source of second harmonics of the 

incident beam. The generated harmonics are governed by eq. 

∇2𝐸2 +
𝜔2
2

𝑐2
𝜀2(𝜔2)𝐸2 =

4𝜋

𝑐2
𝜕𝐽2
𝜕𝑡
                                                     (10.9) 

Using Eq. (10.8) in (10.9), the amplitude of the second harmonics is obtained as from above 

equation, the expression for field 𝐸2 of second harmonic is obtained as 

𝐸2 =
𝜔𝑝
2

𝑐2
𝑛′′

𝑛0

𝐸0
(𝑘2

2 − 4𝑘0
2)
                                                         (10.10) 

Defining normalized power 𝜂 of second harmonics in the same way as defined in chapter-

9. We can get 

𝜂 =
4

3

𝑚

𝑀
(
𝐾0𝑇0
𝑚𝑐2

)
𝛽𝐸00

2

𝑓4
𝐻                                                        (10.11) 

where 

𝐻 = ∫ ∫
𝐹2(𝑡1, 𝑡2)

[
𝜔0
2𝑟0
2

𝑐2
−

𝜀0𝑣𝑡ℎ
2

𝑐2

𝜔0
2𝑟0
2

𝑐2
−

𝜔𝑝0
2 𝑟0

2

𝑐2
(1 + tan (

𝜉

𝑑′
)) (1 +

𝛽𝐸00
2

2𝑓2
𝐺1
2(𝑡1, 𝑡2))

𝑠

2
−1

]

2

∞

0

𝑑𝑡1𝑑𝑡2

∞

0

 

𝐹2(𝑡1, 𝑡2) = [(𝑡1 −
𝑥0
𝑟0
) 𝑒−

(𝑡1−
𝑥0
𝑟0
)
2
+𝑡2
2

2 + (𝑡1 +
𝑥0
𝑟0
) 𝑒−

(𝑡1+
𝑥0
𝑟0
)
2
+𝑡2
2

2 + 𝑡1𝑒
−
𝑡1
2+(𝑡2−

𝑥0
𝑟0
)
2

2 + 𝑡1𝑒
−
𝑡1
2+(𝑡2+

𝑥0
𝑟0
)
2

2

+ 𝑡2𝑒
−
(𝑡1−

𝑥0
𝑟0
)
2
+𝑡2
2

2 + 𝑡2𝑒
−
(𝑡1+

𝑥0
𝑟0
)
2
+𝑡2
2

2 + (𝑡2 −
𝑥0
𝑟0
) 𝑒−

𝑡1
2+(𝑡2−

𝑥0
𝑟0
)
2

2 + (𝑡1 −
𝑥0
𝑟0
) 𝑒−

𝑡1
2+(𝑡2+

𝑥0
𝑟0
)
2

2 ]

2

 

10.5 Results and Discussion 

          Approximate solution of equation (10.4) has been obtained with the help of Runge 

Kutta fourth-order method for the following set of parameters: 

𝜔0 = 1.78 × 10
15𝑟𝑎𝑑 𝑠−1,    𝜆 = 1.06𝜇𝑚, 𝑟0 = 15𝜇𝑚,   𝑠 = −3, 𝑑′ = 10 

by assuming that initially the beam is collimated, i.e., it satisfies the initial conditions 𝑓 =

1 and 
𝑑𝑓

𝑑𝜉
= 0 at 𝜉 = 0. 

          Figs. 10.1 and 10.2 depict the effect of 
𝑥0

𝑟0
 on the evolution of beam width of the laser 

beam while propagating through collisional plasma. It is observed that increase in the value 

of 
𝑥0

𝑟0
 for 0 ≤

𝑥0

𝑟0
≤ 1.5 results in enhancement of self-focusing of the laser beam whereas 
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beyond 
𝑥0

𝑟0
= 1.5 with increase in the value of 

𝑥0

𝑟0
 the extent of self-focusing of the laser 

beam decreases. This is because for 0 ≤
𝑥0

𝑟0
≤ 1.5 with increase in the value of 

𝑥0

𝑟0 
 the 

intensity distribution over the cross section of the laser beam becomes more and more 

uniform. As a consequence of which the laser beam gets equal contribution from the off 

axial parts for nonlinear refraction as provided by axial part. As the phenomenon of self 

focusing is a homeostasis of nonlinear refraction, increase in the value of 
𝑥0

𝑟0
 in the range 

0 ≤
𝑥0

𝑟0
≤ 1.5 results in the enhancement of self-focusing of the laser beam. 

 

Fig. 10.1: Variation of beam width against the distance of propagation for different values of 
𝒙𝟎

𝒓𝟎
 viz. 

𝒙𝟎

𝒓𝟎
= 𝟎, 𝟎. 𝟕𝟓, 𝟏. 𝟓𝟎 in plasma with density ramp 

 

          Decrease in the extent of self-focusing of the laser beam by increasing 
𝑥0 

𝑟0
 beyond 1.5 

is because of the reason that for 
𝑥0

𝑟0
> 1.5 the intensity maxima of individual Gaussian laser 

beams constituting the Q.G laser beams are so far away from each other that after 

superposition the intensity maxima of the resulting beam appear in the off axial parts. This 

makes paraxial part of the laser beam weaker as compared to off axial part and hence the 
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laser beam gets a very little contribution from the axial part for nonlinear refraction. This 

in turn leads to reduced focusing of the laser beam as shown in fig.10.2. 

 

 

Fig. 10.2: Variation of beam width against the distance of propagation for different values of 
𝒙𝟎

𝒓𝟎
 viz. 

𝒙𝟎

𝒓𝟎
= 𝟏:𝟔𝟎;  𝟏: 𝟕𝟎;  𝟏: 𝟖𝟎 in plasma with density ramp 

 

          Fig. 10.3 illustrates the effect of initial beam intensity on self-focusing of the laser 

beam. It can be seen that with increase in the initial intensity of the laser beam, there is 

enhancement in the extent of self-focusing of the laser beam and also it becomes faster. 

This occurs because with increase in the intensity of pump beam, the kinetic energy of the 

plasma electrons increases that in turn increases the collisional nonlinearity via nonuniform 

Ohmic heating. Thus, increase in the laser intensity enhances the amount of focusing of the 

laser beam. 

          Equation (10.11) describes the evolution of normalized power of second harmonic 

power  𝜂 with distance and has been solved numerically in association with eq. (10.4). The 

corresponding variations of the power of second harmonics have been depicted in figs.10.4, 

10.5 and 10.6. 
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Fig. 10.3: Variation of beam width against the distance of propagation for different values of laser 

intensity viz. 𝜷𝑬𝟎𝟎
𝟐 = 𝟏;  𝟏: 𝟐𝟓;  𝟏: 𝟓𝟎 in plasma with density ramp 

 

          From the plots in fig. 10.4 it is observed that the laser beams with higher value of 
𝑥0

𝑟0
 

in the range 0 ≤
𝑥0

𝑟0
≤ 1.5 produce second harmonics with higher power as compared to 

that produced by beams with lower value of 
𝑥0

𝑟0
. This is due to one to one correspondence 

between extent of focusing and power of generated harmonics. As the pumps with larger 

value of 
𝑥0

𝑟0
 in the range 0 ≤

𝑥0

𝑟0
≤ 1.5 possess enhanced self-focusing, thus they produce 

harmonics with higher power. Similarly, as the extent of focusing of Q.G decreases 

(fig.10.5) with increasing the value of 
𝑥0

𝑟0
 for 

𝑥0

𝑟0
> 1.5, hence reduction in the power of 

second harmonics with increase in the value of 
𝑥0

𝑟0
 for 

𝑥0

𝑟0
> 1.5 is observed from fig. 10.5. 

          Figure 10.6 illustrates that with increase in the intensity of the pump beam the 

intensity of generated second harmonics increases. This is due to enhanced focusing of the 

pump beam by increasing its intensity. 
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Fig.10.4: Variation of normalized power 𝜼 of second harmonics against the distance of propagation 

for different values of  
𝒙𝟎

𝒓𝟎
 viz. 

𝒙𝟎

𝒓𝟎
= 𝟎, 𝟎. 𝟕𝟓, 𝟏. 𝟓 in the plasma with density ramp. 

 

 

Fig. 10.5: Variation of normalized power 𝜼 of second harmonics against the distance of propagation 

for different values of 
𝒙𝟎

𝒓𝟎
 viz. 

𝒙𝟎

𝒓𝟎
= 𝟏. 𝟔𝟎, 𝟏. 𝟕𝟎, 𝟏. 𝟖𝟎 in the plasma with density ramp. 
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Fig. 10.6: Variation of normalized power 𝜼 of second harmonics against the distance of propagation 

for different values of laser intensity viz. 𝜷𝑬𝟎𝟎
𝟐 = 𝟏, 𝟏. 𝟐𝟓, 𝟏. 𝟓𝟎 in plasma with density ramp 

 

10.6 Conclusions 

          In the present work, we have revealed the nonlinear characteristics of propagation of 

Q.G. laser beam in collisional plasma. It has been observed that one can control the self 

focusing by optimizing the laser and plasma parameters. Further, the effects of self 

focusing on second harmonic generation of Q.G. laser beam have been reported. It has been 

noted that the self focusing and efficiency of SHG can be maximum at normalized value 

1.50 of the decentering parameter  
𝑥0

𝑟0
. The results of this chapter can be applied in plasma 

diagnostics and inertial confinement fusion (ICF).  
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Chapter 11 

THz Generation by Cross Focused Surface Plasma Waves 

11.1 Introduction 

          The planar interface of two dissimilar materials plays a vital role in many optical 

phenomena [121, 122, 127]. In elementary optics, for instance, the interface between two 

optically rarer and denser media forms the principle of total internal reflection. Optical 

fibers based on this total internal reflection are now spanning the entire globe. Round the 

clock optical fibers are guiding light signals that convey voluminous streams of voice 

communications and vast amounts of data. Due to this gargantuan data carrying capacity 

of optical fibers some researchers believe that someday photonic devices (i.e., the devices 

based on manipulation of light or other electromagnetic waves) will entirely replace 

electronic devices i.e., transistors in microprocessors and other chips [195]. However, 

unfortunately the inherent wave property of light to get diffract puts a constraint on the size 

and performance of photonic devices. Due to the possibility of inference between two 

closely spaced light waves, the diameter of an optical fiber carrying them must be at least 

half the wavelength of light inside that material. The chips based on optical circuits, for 

example, most probably will be based on near infrared wavelength (1500 nm). Thus, the 

minimum width of the photonic device (750 nm) will be much larger than the smallest 

transistor (100 nm) those are currently in use. 

          During past few decades a new technique of transmitting electromagnetic waves 

known as surface plasma waves [120-126], through nanoscale structures has gained 

significant interest among researchers. Such a wave travels in a direction parallel to the 

interface but, on either side of the interface, its amplitude is minuscule after a certain 

distance from the interface. This localization is a propitious quality that is exploited, for 

example, in some extremely sensitive bio/chemical sensors. The present chapter is focused 

on the investigation on terahertz generation by two cross focused surface plasma waves 

propagating over semiconductor free space interface.  
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11.2 Cross Focusing of Surface Plasma Waves 

          Consider an interface formed between free space (𝑥 > 0) and a narrow band 

semiconductor (𝑥 < 0). The simultaneous propagation of two surface plasma waves over 

this interface is governed by equation [196] 

2𝜄𝑘𝑗
𝜕𝐴𝑗

𝜕𝑧
+
𝜕2𝐴𝑗

𝜕𝑦2
+ 𝛽𝜙𝑗(𝐴1𝐴1

∗ , 𝐴2𝐴2
∗)𝐴𝑗  ; 𝑗 = 1,2                                     (11.1) 

where, 𝐴1 and 𝐴2 are the amplitudes of the two waves and 𝜙𝑗 is the nonlinear dielectric 

function of the interface for the 𝑗th wave and   

𝛽 =
∫ 𝑒𝛼2𝑥𝑑𝑥
0

−∞

∫ 𝑒−𝛼1𝑥𝑑𝑥
∞

0
+ ∫ 𝑒𝛼2𝑥𝑑𝑥

0

−∞

                                                  (11.2) 

Here, 𝛼1 and 𝛼2 are the attenuation coefficients for the surface plasma waves above the 

interface and beneath the interface respectively. 

is given by 

Ф𝑗(𝐴1𝐴1
∗ , 𝐴2𝐴2

∗) =
𝜔𝑝0∗
2

𝜔𝑗
2

{
 

 
1 − (1 +∑

𝛽𝑗𝐸𝑗0
2

𝑓𝑗
2 (1 +

𝑟2

𝑞𝑗𝑟𝑗
2𝑓𝑗

2)

−𝑞𝑗

𝑗

)

1

2

}
 

 
           (11.3) 

The Lagrangian density for equation 11.1 is 

£ = 𝑖 (𝐴1
𝜕𝐴1

∗

𝜕𝑧
− 𝐴1

∗
𝜕𝐴1
𝜕𝑧
) + 𝑖 (𝐴2

𝜕𝐴2
∗

𝜕𝑧
− 𝐴2

∗
𝜕𝐴2
𝜕𝑧

) + |∇⊥𝐴1|
2 + |∇⊥𝐴1|

2

− 𝛽
𝜔1
2

𝑐2
∫ Ф(𝐴1𝐴1

∗ , 𝐴2𝐴2
∗)𝑑(𝐴1𝐴1

∗)
𝐴1𝐴1

∗

− 𝛽
𝜔2
2

𝑐2
∫ Ф(𝐴1𝐴1

∗ , 𝐴2𝐴2
∗)𝑑(𝐴2𝐴2

∗)
𝐴2𝐴2

∗

                                                                                (11.4) 

Substituting the trial function for 𝑞-Gaussian beam profile  

𝐴𝑗 =
𝐸0𝑗

√𝑓𝑗
 (1 +

𝑦2

𝑞𝑗𝑟𝑗
2𝑓𝑗

2)

−
𝑞𝑗

2

                                                           (11.5) 

in lagrangian density and integrating over the entire cross section of the laser beam we get 

the reduced lagrangian as 𝐿 = ∫ £ 𝑑2𝑟. The correspondingEuler-Lagrange equations 

𝑑

𝑑𝑧
(

𝑑𝐿

𝜕 (
𝜕𝑓𝑗

𝜕𝑧
)
) −

𝜕𝐿

𝜕𝑓𝑗
= 0                                                          (11.6) 
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the set of coupled equations governing the evolution of beam width of surface plasma 

waves has been obtained as follows: 

𝑑2𝑓1
𝑑𝜉2

+
1

𝑓1
(
𝑑𝑓1
𝑑𝜉
)
2

=
(1 −

1

𝑞1
) (1 −

1

𝑞1
)

(1 +
1

𝑞1
)

1

𝑓1
3 − 2(

𝜔𝑝0∗𝑟1

𝑐
)
2

(1 −
1

𝑞1
) (1 −

2

𝑞1
) 𝐽1                    (11.7) 

𝑑2𝑓2
𝑑𝜉2

+
1

𝑓2
(
𝑑𝑓2
𝑑𝜉
)
2

= (
𝑟1
𝑟2
)
4

(
𝜔1
𝜔2
)
2

(
𝜀01
𝜀02
)
(1 −

1

𝑞2
) (1 −

1

𝑞2
)

(1 +
1

𝑞2
)

1

𝑓2
3 − 2(

𝜔𝑝0∗𝑟1

𝑐
)
2

(1 −
1

𝑞2
)

× (1 −
2

𝑞2
) 𝐽2    (11.8) 

Where, 

𝐽1 =
𝛽1𝐸10

2

𝑓1
3 𝑇1 +

𝛽2𝐸20
2

𝑓1
3 (

𝑟1
𝑟2
)
2

(
𝑓1
𝑓2
)
4

𝑇2 

𝐽2 =
𝛽1𝐸10

2

𝑓2
3 𝑇3 +

𝛽2𝐸20
2

𝑓2
3 (

𝑟1
𝑟2
)
2

(
𝑓1
𝑓2
)
4

𝑇4 

𝑇1 = ∫ 𝑥3
∞

0

(1 +
𝑥2

𝑞1
)

−2𝑞1−1

𝐺(𝑥)𝑑𝑥 

𝑇2 = ∫ 𝑥3
∞

0

(1 +
𝑥2

𝑞1
)

−𝑞1

(1 +
𝑥2

𝑞2
(
𝑟1𝑓1
𝑟2𝑓2

)
2

)

−𝑞2−1

𝐺(𝑥)𝑑𝑥 

𝑇3 = ∫ 𝑥3
∞

0

(1 +
𝑥2

𝑞1
)

−𝑞1−1

(1 +
𝑥2

𝑞2
(
𝑟1𝑓1
𝑟2𝑓2

)
2

)

−𝑞2

𝐺(𝑥)𝑑𝑥 

𝑇4 = ∫ 𝑥3
∞

0

(1 +
𝑥2

𝑞2
(
𝑟1𝑓1
𝑟2𝑓2

)
2

)

−2𝑞2−1

𝐺(𝑥)𝑑𝑥 

𝐺(𝑥) = 𝑒
−{
𝛽1𝐸10

2

𝑓1
2 (1+

𝑥2

𝑞1
)
−𝑞1

+
𝛽2𝐸20

2

𝑓2
2 (1+

𝑥2

𝑞2
(
𝑟1𝑓1
𝑟2𝑓2

)
2
)

−𝑞2

}

 

𝑥 =
𝑦

𝑟1𝑓1
 

11.3 Excitation of Electron Plasma Wave (EPW) 

          As the two SPWs with different frequencies are propagating simultaneously over the 

semiconductor free space interface, the electron oscillations of the plasma electrons under 
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the fields of the two waves also contain a frequency component equal to the difference of 

the frequencies of the two waves. The electron density perturbation 𝑛′ associated with the 

excited EPW evolves according to the wave equation  

𝜕2𝑛′

𝜕𝑡2
− 𝑣𝑡ℎ

2 ∇2𝑛′ + 𝜔𝑝
2𝑛′ =

𝑒

𝑚
𝑛0∇𝛴𝑗𝐸𝑗                                               (11.9) 

Taking 

𝑛′ = 𝑛1𝑒
𝑖(𝜔𝑡−𝑘𝑧) 

where, 𝜔 = 𝜔2 − 𝜔1 and 𝑘 = 𝑘2 − 𝑘1, we get the amplitude of density perturbation 

associated with plasma wave 

𝑛1 =
𝑒𝑛0
𝑚

1

(𝜔0
2 − 𝑘0

2𝑣𝑡ℎ
2 −𝜔𝑝

2)
[
𝐸10

𝑟1
2𝑓1

3 (1 +
𝑟2

𝑞1𝑟1
2𝑓1

2)

−
𝑞1
2
−1

+ 
𝐸20

𝑟2
2𝑓2

3 (1 +
𝑟2

𝑞2𝑟2
2𝑓2

2)

−
𝑞1
2
−1

] 𝑟      (11.10) 

11.4 THz Generation 

          The density perturbation associated with excited EPW results in a nonlinear current 

density at frequency 𝜔 = 𝜔2 − 𝜔1 that acts as source for the THz radiation. The generated 

current density is given by 

𝐽𝑇 =
𝑒2𝑛0
𝑚0
∗𝜔
(
𝑛1
𝑛0
) 𝑒𝑖(𝜔𝑡−𝑘𝑧) (𝐸1 + 𝐸2)                                                    (11.11) 

The electric field of the resulting THz evolves according to the wave equation 

∇2𝐸𝑇 =
1

𝑐2
𝜕2𝐸𝑇
𝜕𝑡2

+
4𝜋

𝑐2
𝜕𝐽𝑇
𝜕𝑡
                                                             (11.12) 

This equation gives the magnitude of electric field of THz radiation as 

𝐸𝑇 = 𝑖
(
𝜔𝑝0
2

𝑐2
)

(
𝜔2

𝑐2
− 𝑘2)

𝑛1
𝑛0
(𝐸1 + 𝐸2)                                                      (11.13) 

Defining the normalized power of THz radiation as 

𝑃𝑇 =
∫ 𝐸𝑇𝐸𝑇

∗𝑟𝑑𝑟
∞

0

∫ 𝐴1𝐴1
∗𝑟𝑑𝑟

∞

0

                                                                   (11.14) 

We get 
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𝑃𝑇 =
(
𝜔𝑝0
2

𝑐2
)
2

(
𝜔2

𝑐2
− 𝑘2)

2

∫ (
𝑛1

𝑛0
)
2
(𝐸1 + 𝐸2)

2𝑟𝑑𝑟

∫𝐴1𝐴1
∗𝑟𝑑𝑟

                                             (11.15) 

Equation (11.15) gives the normalized power of the THz radiation produced by the SPWs 

while propagating through the plasma.  

11.5 Results and Discussion 

          To analyze the effect of deviation of intensity distribution of laser beams from 

Gaussian distribution and plasma density on cross focusing of the laser beams eqs.(11.7), 

(11.8), (11.15) have been solved for following set of  parameters: 

𝜔1 = 1.758 × 1014𝑟𝑎𝑑 𝑠−1,        𝜔2 = 1.75 × 10
14𝑟𝑎𝑑 𝑠−1 , 𝑞2 = 3 

𝑟1 = 15𝜇𝑚, 𝑟2 = 16𝜇𝑚, 𝛽1𝐸10
2 = 2, 𝛽2𝐸20

2 = 1.5, 𝑇0 = 10
3𝐾,

𝜔𝑝0
2 𝑟1

2

𝑐2
= 9 

and for different values of 𝑞1viz., 𝑞1 = (3,4,∞) 

          Fig.11.1 shows the effect of 𝑞1on the power of THz radiation. It can be seen that the 

effect of increase in 𝑞1 is to reduce the power of THz radiation. This means ideal Gaussian 

SPW are not suitable for the efficient generation of THz radiations. 

 

Fig.11.1: Effect of 𝒒𝟏 on power of THz radiation generated by SPW 
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11.6 Conclusions 

          The generation of THz radiation has been obtained with the help of surface plasma 

waves propagating over the semiconductor-free space interface. Firstly, the cross focusing 

of 𝑞-Gaussian SPW has been developed. The cross-focusing results in nonlinear current at 

difference frequency which act as a source of THz radiation. It has been observed that the 

power of generated THz radiation has been increased for 𝑞1 = 𝑞2 = 3 parameters. It 

indicates that an ideal Gaussian SPW are not suitable for the efficient generation of THz 

radiations. 
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Chapter-12 

Conclusion and Future Scopes 

 

12.1 Conclusion 

          In present work, I have investigated analytically and numerically (i) self-action 

effects of various laser beams such as 𝑞-Gaussian, Quadruple-Gaussian (Q.G) and Cosh-

Gaussian laser beams through different nonlinear media (ii) Impacts of self-action effects 

of different laser beams on the higher harmonics and THz generations. The main emphasis 

is given to enhance the intensity of laser, HHG and THz generation. I have explored the 

chances to enhance the yield of HHG and THz generation by optimizing laser and plasma 

parameters. 

1) Conclusions of self-action effects of the present thesis work is summarized as:  

It has been depicted that self focusing of laser beam can be enhanced by including 

the contribution of off-axial intensity of laser beam and ramped density plasma. 

a) In case of q-Gaussian laser beam, the maximum self focusing is achieved for 

𝑞 = 3 by considering the off-axial rays into account which enhances the 

nonlinearities of plasma. Whereas, for elliptical 𝑞-Gaussian laser beam, it has 

been revealed that with increase in the ellipticity, diffraction effect starts 

dominating. Therefore, the self focusing is decreased for higher ellipiticity of 

elliptical 𝑞-Gaussian laser beam.  

b) In case of Cosh-Gaussian laser beam, self focusing of laser beam can be 

enhanced by optimizing the decentered parameter of the laser beam. The self 

focusing of Cosh-Gaussian laser beam can be maximized by increasing the 

decentered parameter (𝑏) from 0 to 1. The collisions of the constituents of 

plasma with each other decreases the self focusing of Cosh-Gaussian laser beam 

in collisional plasma, even collisions of electrons with diatomic molecules (𝑠 =

2) vanishes the self focusing of Cosh-Gaussian laser beam.  
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c) In case of Q.G. laser beam, the diffraction broadening of Q.G. laser beam can 

be controlled as compare to Gaussian laser beam. The self focusing of the Q.G. 

laser beam can be maximized by controlling the 
𝑥0

𝑟0
 values. As the value of 

𝑥0

𝑟0
 is 

increased from 0 to 1.50 the self focusing is enhanced and when we increase 

the values from 1.60 to 1.80 the self focusing starts decreasing. The phase shift 

of the Q.G. laser beam decreases monotonocally as the values of 
𝑥0

𝑟0
 is increased 

from 0 to 1.50. Whereas, reverse nature of self focusing and phase shift is 

observed when 
𝑥0

𝑟0
 is increased from 1.50 to 1.80. The phase shift plots show the 

step like behavior at the minimum beam width distance.   

2) In the present thesis work on THz generation, beating of two laser beams scheme 

has been adopted. To obtain efficient THz radiation, relativistic plasma and narrow 

band gap semiconductor have been chosen. It is concluded that 

a) Resonant THz generation is highly dependent on the relativistic self focusing. It 

is observed that the relativistic self focusing is increased with increase in plasma 

density, therefore yield of THz generation is increased.  

b) THz radiation with good efficiency can be achieved by beating of two laser 

beams under the effect of relativistic nonlinearity of the plasma. 

c) Excitation of electron plasma wave is a remarkable property of plasma that is 

used for THz generations. 

d) Enhancement in brightness of filamentation of 𝑞-Gaussian laser beam increases 

the THz generation. 

e) It has been observed that the ideal Gaussian SPWs are not suitable for the 

efficient generation of THz radiations. 

3) Conclusions of HHG of the present thesis work is summarized as: 

a) The second harmonics generation can be achieved by propagating 𝑞-Gaussian 

laser beam in collisional plasma with density ramp. The density ramp of plasma 

participate to enhance the self focusing of 𝑞-Gaussian laser beam. Therefore, the 

intensity of laser beam is increased which enhances the conversion efficiency of 
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SHG. The yield of SHG is increased monotonically as we include the off-axial 

rays of cross section of laser beam because the off-axial intensity increases the 

nonlinearity of plasma. The increase in initial intensity or initial density the yield 

of SHG is enhanced. 

b) In the case of Quadruple-Gaussian laser beam, the self focusing and yield of the 

SHG is maximum at normalized value 1.50 of the 
𝑥0

𝑟0
. Further, the self focusing 

and yield of SHG is enhanced as the density of the plasma is increased. 

12.2 Future Scopes 

          Different projects such as plasma-based electron accelerator [7], inertial confinement 

plasma (ICF) [3, 6], tabletop THz source [18], etc. are going on for serving society. These 

projects are dependent on (i) lasers having uniform irradiance over cross-sections of their spot 

size (ii) highly intense laser beam. In the present research work, I have provided different 

models for (a) 𝑞-Gaussian laser beam (b) cosh-Gaussian laser beam (c) quadruple-Gaussian 

laser beams for achieving these two main prerequisites for different laser beams. 

         I have reported theoretically and numerically that the intensity and region for uniform 

intensity can be enhanced for q-Gaussian, cosh-Gaussian, and Q.G. laser beams. I have 

reported that wide uniform intensity regime over cross-section for parameters 𝑏 = 1 and 
𝑥0

𝑟0
=

1.5 of cosh-Gaussian and Q.G. laser beam respectively. In achieving ICF, among different 

challenges, the primary one is delivering uniform energy to the target for which laser beams 

must be precise and smooth laser. The outcomes of the present work may help in achieving 

the uniform heating of the target.  

          Nowadays, THz radiation is of great experimental and theoretical interest because of 

its non-ionizing character and penetrating power. The present work can generate THz with 

yield nearly 0.045 for 𝑞1 = 3 and 𝑞2 = ∞. The off-axial intensity of the beams play vital role 

which enhance the THz yield. These radiations can be further useful for THz spectroscopy, 

security, and communication purposes. 

          I have reported the generation of EPW for 𝑞-Gaussian and Q.G. laser beams in 

collisional plasma with ramp density. It has been reported that maximum electric field can be 
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obtained for 𝑞 = 3 and 
𝑥0

𝑟0
= 1.5 of 𝑞-Gaussian and Q.G. laser beams. The plasma based 

electron acceleration project depends upon the electric field of EPW. Hence, the achieved 

results of EPW may be used for electron trapping mechanism.  
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