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Abstract

Fractional calculus is the generalized version of traditional calculus. Mathematical models
are more meaningful if they involve the fractional differential equations (FDEs), and to solve
those equations, effective techniques are needed. There are many analytical, semi analytical
and numerical techniques that have been used to solve the ordinary and partial differential
equations.

This work is about exploring analytical and numerical methods to solve the time-fractional
differential equations. Differential transform method (DTM) is a semi analytical method
that has evolved over years to solve FDEs. The differential quadrature method (DQM) is a
numerical technique that has also been modified to cater to the FDEs.

These methods are well established for the ordinary and partial differential equations and
they are used here to solve fractional differential equations.

In this work we solve

* the one dimensional fractional Bagley Trovik equation and fractional relaxation oscil-
lation equation using DTM.

* the one dimensional fractional Burgers’ equation and the inverse problem on fractional
Fisher’s equation using modified DQM.

* the two dimensional fractional diffusion equation using a hybrid method D(TQ)M.
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Chapter 1

Introduction

1.1 Fractional Calculus

In the creation, the only constant is change. And what can be a better way to study change,
than calculus! Issac Newton and Gottfried Leibniz are equally credited for discovering
calculus in the mid 17th century.

The notation propounded by Leibniz for the n'” order derivative of a function f(x) was

Fig. 1.1 Issac Newton Fig. 1.2 Gottfried Leibniz

given by d';{(gx) , where n is a positive integer. The idea of derivative can be better understood
by considering the distance as a function of time. Its first derivative w.r.t. time gives speed,
second derivative is understood as acceleration. The third derivative of distance function w.r.t.
time can be felt as a jerk and fourth order derivative is termed as jounce. Can one somehow
visualize the three fourth derivative of distance function w.r.t. time or a derivative of the
order 7w !!

In 1695, L’hopital wrote a letter to Leibniz asking what would happen for 'n = 1/2’ in his
notation. And Leibniz prophecized " This is an apparent paradox from which, one day, useful
consequences will be drawn." And thus began the journey of fractional calculus around 326
years ago.

The term fractional calculus is a misnomer [1] as it not only caters to the fractional values of n
but to any real or complex valued n. So if the integer order calculus is known as calculus, the
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arbitrary order calculus can be termed as ’super-calculus’. Yet its popular name ’fractional
calculus’ will be used in this thesis.

Fractional calculus [2] is one of the best tools to characterize long-memory processes and
materials, anomalous diffusion, long-range interactions, long-term behaviors, power laws,
allometric scaling laws, and so on. So the corresponding mathematical models are fractional
differential equations. Their evolutions behave in a much more complicated way. So to study
the corresponding dynamics is much more difficult. Although the existence theorems [3, 4]
for the fractional differential equations can be similarly obtained, not all the classical theory
of differential equation can be directly applied to the fractional differential equations.

To get a deeper understanding of this, some special functions need some explanation first.

1.1.1 Gamma function

Euler’s gamma function [5] is one of the most fundamental functions of the fractional
calculus. It is a generalization of factorial function 1! and allows 7 to take non integer and
even complex values. It is defined as

(n)= /we_tl‘n_ldt.
0

For n =x+iy,

I'(x+iy) :/0 e 't Veos(y logt) +i sin(y logt)]dt.

The expression cos(y logt) + i sin(y logt) is bounded for all 7; e~" provides convergence at
infinity and for the convergence at zero, x = Re(7n) must be greater than one. Therefore , the
gamma function converges in the right half of the complex plane Re(1) > 0. Moreover the
gamma function has simple poles at n = —k, (k=0,1,2,...).

The gamma function satisfies I'(n+1) =nI'(n) and I'(n + 1) = n!. The limit representation
of I'(n) is given as

- Kkl
= im
N S+ 1) (n+ k)

where —m < Re(n) < —m+ 1 and m is a positive integer.

1.1.2 Mittag-Leffler function

Mittag-Leffler function is the generalized exponential function.
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Fig. 1.3 Leonhard Euler Fig. 1.4 Mittag-Leffler

Its one parameter form is represented as

o k
<
Ex(z) =) —=———,X>0 (1.1)
,{;F(Nk%—l)
and two parameter form is defined as
o k
Z
Exg(z) =) ———F%, X>0,>0. (1.2)
F k;)r(wwﬁ)

Clearly E(z) = E1,1(z) = €.

1.2 Development of the definition of fractional derivative

The definition of integer order derivative is unique, which is not the case with the arbitrary
order deriative. This 326 years old topic took long time to grow and get popular. Euler came
up with Gamma function in 1729.

Lacroix’s in 1819 extended the n'” integer order derivative D"x” = (pf !n) 7XP 7" to the derivative
of arbitrary order ¥ by replacing the factorials by gamma function yielding:

F(p—|—]) XP_N.

DXy =L
I'(p—X+1)

(1.3)
Fourier in 1822 extended the definition for sine and cosine function for derivative of arbitrary
order X: .
b2
D¥sin(x) = sin(x+ T)
Abel provided the first application of fractional calculus in 1823 with his tautochrone problem.
Liouville was the first mathematician to study fractional calculus in depth. He published

three mammoth memoirs in 1832. He began with the arbitrary derivative for the exponential
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Fig. 1.5 Fourier

Fig. 1.6 Lacroix

function. The n'" order derivative of e™ is a”e®, where n is an integer. Liouville extended
this naturally to the derivative of arbitrary order X as:
DN o™ — aN o™

He framed some definitions of fractional derivative but those were not suitable for a wide
class of functions.

G. F. B. Riemann developed his theory on fractional integration, but his work was published
in 1892 when he was no more. He came up with a definition for the fractional integral which
is similar to Riemann-Liouville fractional integral. In 1867 Grunwald used the definition of
the derivative as a limit of a difference quotient to define the fractional derivative. Letnikov
completed the proof for Grunwald-Letnikov fractional derivative in 1868.

5
DX £(x) Lxg W(j—%ﬂx—km, X >0, (1.4)
where a is the lower limit of differentiation. In 1890 Oliver Heaviside’s operational calculus
was an important step in the development of applications of fractional derivatives. In 1899
onwards, Mittag-Leffler gave Mittag-Leffler function in one parameter form which added to
the field of fractional calculus. In the twentienth century G. H. Hardy and John Littlewood
studied the fractional integrals. In 1967, M. Caputo developed his definition of fractional
derivative. He basically framed his definition so that integer order initial conditions could be
used in a fractional differential equation. It is the most widely used definition till date. The
modern notion of fractional differentiation originates from the formula for n” integral:

// / f(xp)dx1dxy...dx, = o _11) /x(x—t)”_lf(z)dt, (15)
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If D is the differential operator and J(= D~!) is the integral operator, then Riemann-Liouville
fractional integral of order X is defined as

I ) = — )/Ox(x—s)*‘—lf(s)ds. (1.6)

I(X)

From this, the Riemann-Liouville fractional derivative (RLFD) is defined so that

D¥J¥ f(x) = f(x) (1.7)
and is given as
1 d" [r
DY f(x) = mdx”/o (x—8)"" X1 f(s)ds, n—1 < X <n (1.8)

where n is a positive integer. The Caputo’s definition of fractional derivative is obtained by
the reversal of order of operators in (1.7) and for positive integer n it is given as

DY f(x) = ! X /x(x—s)”_x_lf"(s)ds, n—1<X<n. (1.9)

I'(n— 0

Thus, the 2.5"* derivative of a function £(x), D?? f(x) = D3J% f(x) in the Riemann-Liouville’s
way and D> f(x) = J%3D3 f(x) in the Caputo’s way to obtain the fractional derivative of a
function. From this point onwards, the Riemann-Liouville and Caputo derivatives would be
represented as D and D respectively. The relation in these derivatives is given as

(x—a)P™ ¥, (1.10)

Both these definitions coincide for the initial conditions.

Having defined the most popular fractional derivatives, the definition of a fractional differ-
ential equation comes naturally as any equation containing the unknown function and its
fractional derivatives. Podlubny [2] has discussed the existence and uniqueness theorems
for linear fractional differential equations (FDE) with continuous coefficients and then for a
general FDE. To start with, in standard calculus, differentiation is symbolized by the operator
Dand D"f(t), n=1,2,... represents n'" derivative of f(¢). The particular n—fold integral of

f(t) t t 1 1,
/Odtl/oldtz Ozdt3.../0”1d(§)d§
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“Live fence” and its shadows: oI} f(t) a o7 f(2),
for a = 0.75, f(t) =t + 0.5sin(f), 0 <t < 10.

Fig. 1.7 ’Live fence’ and its shadows

is represented as D" f(r), n=1,2,... The study of the operator DX, where X (not necessar-
ily an integer), constitutes the soul of fractional calculus. The integer order derivatives and
integrals have evident physical interpretations. For example, the first derivative of distance
function w.r.t. time represents the speed; the first integral of a function of one variable w.r.t.
that variable represents the area under curve. The fractional calculus being the superset of
the standard calculus is expected to have such physical interpretations, but in literature not
many illustrations exist on this.

Some authors [6] consider the fractional operators as linear filters and also seek their geomet-
rical interpretation in the fractal geometry. Podlubny [3] provides a physical interpretation
of the fractional integration in terms of two different time scales, viz. the homogeneous,
equably flowing scale and the inhomogeneous time scale and introduced ‘ shadows on the
walls’ as shown in the Figure 1.7. In last ten years, it was proved that the fractional calculus
is suitable for describing the properties of real materials as polymers [2]. The new fractional
order models are more suitable as compared to the integer order models.

The first application of a half derivative was done by Abel [1] in 1823 to solve the integral
equation for the tautochrone problem. That problem deals with the determination of shape of
the curve such that the time descent of a frictionless point mass sliding down along the curve
under the action of gravity is independent of the starting point [5].

Now the Tautochrone problem [2] can be understood and role of Caputo derivative can be
seen in its solution clearly. Tautochrone problem is to find a curve in the (x,y) plane such
that the time required for a particle to slide down the curve to its lowest point is independent
of its initial placement on the curve; assuming the homogeneous gravity field and no friction.
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Let us s fix the lowest point of a curve at the origin and the position of a curve in the positive
quadrant of the plane, denoted by (x,y) the initial point and (x*,y*) any point intermediate
between (0,0) and (x,y).

According to the energy conservation law it may be written that

m, do 2

— (=) " =mg(y —y*

5 () =mely—yx)

where o is the length along the curve measured from the origin, m is the mass of the particle
and g is the gravitational acceleration. Cons1der1ng < 0and 0 = o(y*(t)) the formula

can be re-written in the form of the integral equatlon.

dyx*
e _

2 _
7 g(y—y%)

which is integrated from y* =y to y* =0 and from t = 0 to t = T. After some calculations
the obtained integral equation is

/ mdy*_\/_T

Here one can easily recognize the Caputo integral and write

12 503) = V28
€Dy’ o0) = 15T

Note that 7 is the time of descent, so it is a constant. By applying the half-integral to both
sides of the equation and by using the formulas for the composition of the Caputo derivatives
and for the fractional integral of the constant , the relation between the length along the curve
and the initial position in y direction is obtained,

I'(1/2)I'(3/2) T '
The formula describing coordinates of points generating the curve can be written by the help
of the relation:
do _ [, dx

dy +(dy)

which after the substitution of o (y) gives

dx 2gT? |
dy \| w2y '
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It can be shown that the solution of this equation is so-called tautochrone , i.e. one arch of
the cycloid which arises by rolling of the circle, whose parametric equations are given as,

At sina
x=—=[u+sinu
2 9
=Z[1-co
y 2[ cos u]
where )
4ot
T

Thus the knowledge of the rules of fractional calculus is very useful for solving this type of
integral equations.
The fractional ordinary differential equation may be written as,

D¥y(t) = f(t,y), X & (n—1,n],t€(0,1],n> 1 is an integer.

Here D¥ represents either Riemann-Liouville derivative or the Caputo derivative.
All the work done in this thesis is for solving the fractional differential equation of the type

oD (1) = f(t.y(1),0<t <T (1.11)

YO (0) =y k=0,1,2,...[R] -1 (1.12)

where y(()k) may be arbitrary real numbers and X > 0. Here oD~ y(¢) is Caputo derivative of

y(t) defined as

1

t
T X /0 (t —u)" X" (w)du, (1.13)

oD y(t) =

where n = [ X] is the smallest integer > X

The following section mainly looks into the various methods adopted to solve the fractional
differential equations over the time. The exact solutions of fractional differential equations
have been found by using Laplace transforms, Fourier transforms and Differential transform
method etc. and numerical solutions have been found in various ways as briefed in the review
of literature.
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1.3 Literature Review

The existence and uniqueness of the solutions for equations (1.11) and (1.12) was studied by
Podlubny [2] and Diethelm [10]. Numerical methods were used to find the solutions, some
of which are explained ahead.

Fractional differential equation was written as Abel-Volterra integral equation by Lubich. He
used the convolution quadrature method to approximate the fractional integral and obtained
approximate solutions of FDEs [11].

The fractional Riemann-Liouville derivative was written by using Hadamard finite part inte-
gral by Diethelm. He used a quadrature formula to approximate the integral [12].

Diethelm and Luchko expressed the FDE as a Mittag-Leffler type function and used convolu-
tion quadrature again along with discretised operational calculus to get the approximate the
Mittag-Leffler type function [13].

Collocation method was used by Blank to approximate the FDE [14] while Podlubny [2]
used the Grunwald and Letnikov method to approximate the fractional derivative. They
also defined an implicit finite difference method for solving 1.11 and 1.12 with order of
convergence as O(h), h being the step size. The above mentioned FDE was solved with
restrictive conditions with order of convergence as O(h?) by Gorenflo [15].

Diethelm et al. in [16] approximated the integral in the Volterra integral equation equiv-
alent to 1.11 and 1.12 using piecewise linear interpolation polynomial and introduced a
fractional Adam’s type predictor corrector method. They proved the order of convergence to
be min(2,1+ X) for X € (0,2]if §D~y(t) € C2[0,T]. This method was modified by Deng
[17] with the order of convergence as min(2,1+2X) for X € (0,1]. Deng and Zao [18]
introduced Jacobi predictor corrector approach based on the polynomial interpolation, with
which any desired convergence order can be obtained. Ford et al. [19] used non polynomial
collocation method and achieved good convergence without considering any smoothness of
the solution.

Recently, the authors in [20] used two approaches to solve 1.11 and 1.12. Direct discretiza-
tion of the integral form of the fractional differential operator with order X € (0, 1) led to
the order of convergence of O(h>~%). With the discretization of the integral form of the
FDE, fractional Adams type method for a non linear FDE of any order X > 0. The order of
convergence of the numerical method was proved to be O(k®) for X > 1 and O(h'*?¥) for
0 < X < 1 for sufficiently smooth solutions.

To begin with, Wyss [21] considered the time fractional diffusion equation and the solution
is given in closed form in terms of Fox functions, and Schneider and Wyss [22] considered
the time fractional diffusion and wave equations. The corresponding Green functions are
obtained in closed form for arbitrary space dimensions in terms of Fox functions and their
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properties are exhibited. Using the similarity method and the method of Laplace transform,
Gorenflo et al. [23] proved that the scale-invariant solutions of the mixed problem of sig-
naling type for the time-fractional diffusion-wave equation are given in terms of the Wright
function . The reduced equation for the scale-invariant solutions is given in terms of the
Caputo-type modification of the Erdelyi-Kober fractional differential operator.

Agrawal [24] considered a time fractional diffusion-wave equation in a bounded space do-
main. The fractional time derivative is described in the Caputo sense. Using the finite sine
transform technique and the Laplace transform, the solution is expressed in terms of the
Mittag-Leffler functions. Results showed that for fractional time derivatives of order 1/2 and
3/2, the system exhibits, respectively, slow diffusion and mixed diffusion-wave behaviours.
Mainardi et al. [25] considered the basic models for anomalous transport provided by the
integral equation for a continuous time random walk (CTRW) and by the time fractional
diffusion equation. They compared the corresponding fundamental solutions of these equa-
tions in order to investigate numerically the increasing quality of the approximation with
advancing time.

Chen et al. [26] derived the analytical solution for the time-fractional telegraph equation by
the method of separation of variables. Luchko and Gorenflo [27] developed an operational
method for solving fractional differential equations with Caputo derivatives and the obtained
solutions are expressed through Mittag-Leffler type functions. However, the analytic so-
lutions of most fractional differential equations are not usually expressed explicitly. As a
consequence, many authors have discussed approximate solutions of the FDE, which are
reviewed in the next section.

Most popular numerical solution techniques for equations involving fractional differential
operators are based on random walk models [36], the finite difference method [29], the finite
element method [30], numerical quadrature [? ], the method of Adomian decomposition
[32, 33], Monte Carlo simulation [34] or the matrix transform method [35]. Examples of ran-
dom walk model methods include the work done by Gorenflo and Mainardi, who constructed
random walk models for the space fractional diffusion processes [36] and the L evy-Feller
diffusion processes [37], based on the Gr unwald-Letnikov discretisation of the fractional
derivatives occurring in the spatial pseudo-differential operator.

Liu, Anh and Turner [38] proposed a computationally effective method of lines technique for
solving space fractional partial differential equations. They transformed the space FDE into a
system of ordinary differential equations that was then solved using backward differentiation
formulas.

Tadjeran et al. [39] examined a practical numerical method that is second-order accurate in
time and in space to solve a class of initial-boundary value fractional diffusion equations with
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variable coefficients on a finite domain. An approach based on the classical Crank-Nicolson
method combined with spatial extrapolation was used to obtain temporally and spatially
second-order accurate numerical estimates. Stability, consistency, and (therefore) conver-
gence of the method were also examined. Finite difference methods are also applicable in
the numerical solution of time FDE:s.

Zhuang and Liu [40] analysed an implicit difference approximation for the time fractional
diffusion equation, and discussed the stability and convergence of the method. Yuste and
Acedo [41] proposed an explicit finite difference method and a new von Neumann type
stability analysis for the fractional sub-diffusion equation. However, they did not give the
convergence analysis and pointed out that it is not such an easy task when implicit methods
are considered. Yuste [42] proposed a weighted average finite difference method for frac-
tional diffusion equations. Its stability is analyzed by means of a recently proposed procedure
akin to the standard von Neumann stability analysis.

Diethelm, Ford and Freed [43] presented an Adams-type predictor-corrector method for the
time FDE. They also discussed several modifications of the basic algorithm designed to
improve the performance of the method. In their later work [44], the authors presented a
detailed error analysis, including error bounds under various assumptions on the equation.
Authors who have applied finite difference methods to solve time-space FDEs include Liu
et al. [45] who investigated a fractional order implicit finite difference approximation for
the space-time fractional diffusion equation with initial and boundary values. Liu et al. [46]
also investigated the stability and convergence of the difference methods for the space-time
fractional advection-diffusion equation.

Gorenflo and Abdel-Rehim [47] discussed the convergence of the Gr unwald-Letnikov
scheme for a time-fractional diffusion equation in one spatial dimension. These difference
schemes can also be interpreted as discrete random walks. Lin and Xu [48] constructed
a stable and high order scheme to efficiently solve the time-fractional diffusion equation.
The proposed method is based on a finite difference scheme in time and Legendre spectral
methods in space. Stability and convergence of the method were rigorously established.
Zhuang et al. [49] presented an implicit numerical method for the time-space fractional
Fokker-Planck equation and discussed its stability and convergence.

Podlubny et al. [50] presented a matrix approach for the solution of time- and space-fractional
partial differential equations. The method is based on the idea of a net of discretisation nodes,
where solutions at every desired point in time and space are found simultaneously by the so-
lution of an appropriate linear system. The structure of the linear system, involving triangular
strip matrices, is exploited in the numerical solution algorithm. Aside from discrete random
walk approaches and the finite difference method, other numerical methods for solving the
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space or time, or space-time fractional partial differential equations have been proposed.
Fix and Roop [51] proved existence and uniqueness of the least squares finite-element solu-
tion of a fractional order two-point boundary value problem. Optimal error estimates were
proved for piecewise linear trial elements. Ervin and Roop [52] presented a theoretical frame-
work for the Galerkin finite element approximation to the steady state fractional advection
dispersion equation. Appropriate fractional derivative spaces were defined and shown to
be equivalent to the usual fractional dimension Sobolev spaces. Existence and uniqueness
results were proven, and error estimates for the Galerkin approximation derived.

Kumar and Agrawal [? ] presented a numerical method for the solution of a class of FDEs
for which there is a link between the FDE and a Volterra type integral equation. The FDEs
are expressed as initial value problems involving the Caputo fractional derivative, and this
allows the reduction to the Volterra type integral equation. The authors proposed using
quadratic interpolation functions over three successive grid points, which allows the integrals
to be computed, thereby yielding a system of algebraic equations to be solved. The scheme
handles both linear and nonlinear problems.

Agrawal [53] revisited earlier work by Yuan and Agrawal [54] on a memory-free formula-
tion (MFF) for the numerical solution of an FDE. The original MFF used Gauss-Laguerre
quadrature to approximate the integral that appears in the definition of the Caputo fractional
derivative. The new, modified MMF introduced a change of variable in the integration that
overcome some of the limitations of the original formulation, by correctly computing initial
compliance and more accurately simulating creep response over a much greater duration.
Jafari and Daftardar-Gejji [55] proposed an Adomian decomposition method for solving the
linear/nonlinear fractional diffusion and wave equations. Momani and Odibat [56] developed
two reliable algorithms, the Adomian decomposition method and variational iteration method,
to construct numerical solutions of the space-time FADE in the form of a rapidly convergent
series with easily computable components. However, they did not give its theoretical analysis.
Al-Khaled and Momani [57] gave an approximate solution for a fractional diffusion-wave
equation using the decomposition method. Ili“c et al. [58] considered a fractional-in-space
diffusion equation with homogeneous and nonhomogeneous boundary conditions in one
dimension, respectively. They derived the analytic solutions by a spectral representation, and
constructed numerical approximations by the matrix transform method (MTM), which is an
exciting new method with great promise for higher dimensions.

Research on numerical methods for higher dimensional FDEs has been limited to date. Roop
[59] investigated the computational aspects of the Galerkin approximation using continuous
piecewise polynomial basis functions on a regular triangulation of the bounded domain in R?.
Meerschaert et. al. [60] derived practical numerical methods to solve two-dimensional
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fractional dispersion equations with variable coefficients on a finite domain and obtained
first order accuracy in space and time. Zhuang and Liu [61] proposed a finite difference
approximation for the two-dimensional time fractional diffusion equation and discussed the
convergence and stability of the numerical method. Tadjeran and Meerschaert [62] presented
a second-order accurate numerical method for the two-dimensional fractional superdiffusive
differential equation. This numerical method combined the alternating directions implicit
(ADI) approach with a Crank-Nicolson discretisation and a Richardson extrapolation to
obtain an unconditionally stable second-order accurate finite difference method. The stability
and the consistency of the method were established.

An interesting and not so common method called the differential transform method (DTM)
was first applied in the engineering domain by Zhou [63]. The DTM is numerical method
based on the Taylor series expansion which constructs an analytical solution in the form of a
polynomial. The traditional high order Taylor series method requires symbolic computation.
However, the DTM obtains a polynomial series solution by means of an iterative procedure.
Arikoglu and Ozkol implemented this analytical technique for the field of fractional calculus,
for solving fractional type differential equations, named as Fractional Differential Transform
Method (FDTM) [64].

The majority of the previous research in this field has focused on one-dimensional problems,
and research on the numerical methods of the higher dimensional fractional differential
equations are limited to date.

1.4 A word on analytic and numerical methods

The difference between analytic and numerical approach to a problem is synonymous to the
difference in pure and applied mathematics. Practically both involve each other, there is no
fine demarcation between the two. As per the literature, however, mathematicians have used
this classification immensely.

Analytic approach gives deep insight of the problem leading to the exact solution or an
approximate solution while numerical approach is all about getting the best approximate
solution. Analytic approach uses the methods of analysis and numerical approach uses the
methods of numerical analysis. First approach gives a comprehensive general solution while
the second approach gives mostly a problem based single solution.

For example solving a differential equation using any transformation or special functions is
considered analytical and using approximate derivatives/ initial solutions etc. to solve the
differential equation comes in the numerical methods category.

In this thesis, the fractional differential equations have been solved using both ideologies.
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Out of many analytic and numerical methods, differential transform method and differential
quadrature method are used to solve fractional differential equations. These two methods
have a huge literature on the solution of ordinary and partial differential equations. They
have been used to solve various fractional differential equations in this work.

1.5 Differential Transform Method

Many problems involving higher order derivatives are dealt by using the transformations.
This method has a history of usage to solve linear as well as non linear ordinary differential
equations. The popular Laplace transform can solve the linear ODE nicely but for non linear
ODEs there are issues. Differential transform method fills the gap there.

The differential transform method was conceptualized by Zhou [63] in the context of electric
circuit analysis. It is an iterative procedure for obtaining analytic Taylor series solution. The
differential transform of the k'" order of a function y(x) is given by

(k) = % (dkalrla]c’iX))x—xo

and inverse differential transform of W(k) is

]

w(x) = ¥ W) -0

k=0

Differential transform of the different types of functions of x are mentioned in the following
table 1.1

Table 1.1 Differential transforms

Relation in ¢(x), y(x) and | Relation in ®(k), ¥(k) and
o(x) Q(k)

¢(x) = w(x) £ o(x) P(k) = W(k) +Q(k)

¢(x) = cy(x) (k) = CI:I’(k)

¢(x) = y(x)o(x) O(k) = L P()Qk—1)

0(x) = D"y(x) (k) = S (k+m)

¢(x) =x" Pk) =8 (k—m)

¢(x) = e (k) =
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where 8 (k —m) is the Kronecker delta function. It takes the value 1 when k = m and takes O
when k # m.

Consider a linear ordinary differential equation % = x? + x with initial condition y(0) = 0.
Using calculus, its exact solution is obtained as y = Xg + %2 Applying differential transform
on the differential equation, one gets, Y (k+ 1) = ﬁ [0(k—2)+ d(k—1)] and on taking the
inverse differential transform, the solution is obtained as

1 1
y(x) =0+0.x+ 3 x4+ g.x3 +0.x* + all zero terms

which is same as the exact solution.

Now consider a non linear ODE Z_)yc + 4xy = 2x, with conditions y(0) = 1,y'(0) = 0. The
exact solution of the problem can be verified to be %(1 + e‘z"z). Solving the problem by
DTM, the following recurrence relation is obtained:

k

(k+1DY(k+1)+4) 8(r—1)Y(k—r)=28(k—1)
r=0

and on taking the inverse differential transform, the solution is obtained as,
yx)=1—-x>+x*—28/34+8/34+....

On re arrangement of terms in the above series, one gets

2212 (—22)3
y(x)Z%—l-%(l—i-(—sz)—i-( ;) +( ;) —I—)

which is same as the exact solution.

From these examples, it is clear that DTM can efficiently be used to solve linear as well as
non linear ODEs. For non linear ODEs, the only challenge lies in checking the nature of the
series obtained.

One of the objectives of this research work is to investigate on the usage of differential
transform method for solving the fractional differential equations. For this, the corresponding
definitions would modify as follows:

The fractional differential transform of the k" order of function y(x) would inherently
involve the fractional derivative of order X. Considering Caputo derivative the differential
transform of y(x) is given as

Wi (k) = m [(Dii)(k)w(x)} (1.14)
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and inverse differential transform is given as
Z‘Pg (x — x0)F¥. (1.15)

Fractional differential transforms of the initial conditions are given as

i d"*‘w(x)} - t k= L) _1,ni
B(k) = (kR)![ W ifkR €7 ,k—O,l,...,(x) 1,n is the order of the FDE

0, otherwise.
(1.16)
Let us assume that ®(k), ¥(k) and Q(k) are the fractional differential transforms of ¢ (x),
y(x) and o(x) respectively. The results for the stated functions and their differential trans-
forms [64, 65] are mentioned in the Table 2.1. The proofs of some of the results are mentioned
ahead.

Table 1.2 Fractional differential transforms

Relation in ¢ (x), y(x) and o(x) | Relation in ®(k), ¥(k) and Q(k)
0(x) = y(x) + 0(x) P(k) = W(k) £ Q(k)
0(x) = cy(x) D(k) = cW(k)
¢(x) = y(x)o(x) Ok) = L PH)Qk—1)
9(x) = D w(x) @ (k) = i Pk + 1)
¢§f) = Z(x - x0)% g =|Pk)=05(k—+)
nX; ne
0(x) = DL y().m—1 <& <m | (k) = " W (k+ § )

Theorem 1. [f ¢ (x) = y(x) £ ®(x) then ®(k) = ¥ (k) = Q(k).
Proof. By definition, the right hand side can be written as,

]

60 = ¥ W) (r—30) £ ¥ QK) (x — x0)F
k=0 k=0

- é_io (k) = Q(K)) (6 — o)
Thus, ®(k) = P(k) £ Q(k). .

Theorem 2. [If ¢ (x) = cy(x) then ®(k) = ¥V (k).
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Proof. By definition of inverse differential transform,

o) = ¥ W(k) (x—xo) ¥
k=0

= ¥ W) (x—x0)"F
k=0

Therefore, ®(k) = P (k). O
Theorem 3. If ¢ (x) = y(x)®(x) then (k) = T*_ P (r)Q(k—r).
Proof. By definition,

¢ (x) = y(x)o(x)
o ok

= Y YO -0 Y W) = Y Y Wk ) (x—x0)

k=0 k=0 k=07r=0

Thus, U (k) = ZX_ W (r)Q(k—r). O

Theorem 4. f ¢ (x) = DX y(x) then (k) = “FE W (k+1).

Proof. Applying the definition,

(k) = m (DY) P, ,

1
T T(Rk+1) [(D;z)kﬂ V/(x)]x:xo

T(Rk+ X +1) kit
T T(Rk+ DI(Rk+ X+ 1) [( ) "’(x)]
T(Rk+ X +1)

T LRkt 1) Plk+1)

X=Xo

Therefore, ®(k) = "W (k+ 1), O

Theorem 5. If ¢ (x) = (x—x0)%; g=nN; ne€Z then®(k) =8 (k—).
Proof. Here §(k — n) is Kronecker delta function defined as
1, ifk=n.

O(k—n)= (1.17)
0, otherwise.
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ro(x— x0)¥ 8 (k— %)

By definition ¢ (x) =
= é( %) O

Therefore, ®(k)

Theorem 6. If ¢ (x) = D3, y(x),m—1 < & < m then d(k) = %ﬁ)l)qj(ﬂ%)

Proof. By definition of inverse differential transform,

I
r(xk+1)(DN) [Dé v )}
1
= ey [ )]
 T(Rk+E+1) i
T T(Rk+ DD(Rk+E+ 1) [(D ™ "’(x)]

(
T(Rk+E+1) £
= TrRkr) ¢ <k+§>

(k) =

X=X(

X=Xo

X=X0

Therefore, ® (k) = %q] (k+ %) . 0

In 2009, Turkish mathematician Keskin [66] had devised method of reduced differential
transform (RDTM) involving reduction of a variable . Consider a function ¢ (x,?) repre-
sentable as a product of a function of x only and a function of 7 only, i.e. ¢(x,z) = 6(x)0(z).
Using the properties mentioned above, the function ¢ (x,¢) can be written as follows:

¢(x,t):ZA() Z t’—ZCDk (t—10)*

where @y (x) is called spectrum function of ’t” dimension of ¢(x,#). If function ¢ (x,?) is

analytic with respect to both independent variables in the domain of interest, then

ok (x,1
Py (x) = °9(x1) (1.18)
k‘ Cooxk =t
where the t-dimensional spectrum function @y (x) is the transformed function.
The inverse differential transform of the function ®;(x) is given as
):cbk (r—10)". (1.19)

The fractional counterpart [67] of RDTM is modified fractional differential transform method
(MFDTM). Suppose that the variable of interest is ¢, then the Taylor series of the function
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@ (x,t) can be defined as follows:
= 1 o~k Xk
olar) = eo(en| @™ (1.20)
kgbl“(xk—i-l) ot Xk i—to
The differential transform of the function ¢ (x,7) is thus given as
1 P Xk
B(x) = o] (1.21)
C(Rk+1) | dr¥k -
The inverse transform is then given as
0 (x,1) =Y D(x)(r—10)*. (1.22)

k=0

The properties related to the MFDTM are in the Table 1.3. Extending the method for three

Table 1.3 Modified fractional differential transforms for one dimensional space variables

Relation in ¢(x,z), y(x,t) and | Relation in ®(x), ¥(x) and Q(x)
o(x,t)

¢(x.1) = y(x,1) £ O(x,1) Dy (x) = Wie(x) = Q (x)

(P(xvt) = cy(x,1) de(x) = c¥(x)

¢(x,1) = fx)o(x,1) Dy (x) = () (x)

9 (x,1) = (x—x0)"(t —19)"" Dy (x) = (x—x0)"8(k —n)

9 (x,1) = DY y(x,1) () = MW (v)

dimensions (two dimensional space variables) i.e. for a function w(x,y,), continuously

differentiable and analytic in the domain of interest, the MFDT is given as,

1

Dy (x,y) = T(Rk+ 1)

[szk(b(xayvt)}t

The inverse MFDT of ®;(x,y) is given as

Oleyt) = Y Belxy)(t —10) .
k=0

k=0,1,2,....
fo

(1.23)

(1.24)
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Combining equations (1.23) and (1.24),

> 1
O(x,y,t) = k:zbm {Df%(%%l)] (t —10)™*. (1.25)

=1y
The properties related to the MFDTM are in the Table 1.4. The property ¢ (x,y,t) = (x —

Table 1.4 Modified fractional differential transforms for two dimensional space variables

Relation in ¢(x,y,7), y(x,y,7) | Relation in ®(x,y), ¥(x,y) and

and o(x,y,t) Q(x,y)
P(x,3,1) =yl ) Eolnyt) | Pelx,y) =Pilry) £ Q(x,y)
¢ (x,,1) = cy(x,y,t) Py (x,y) = ¥rlx,y)
¢ (x,3,1) = f(x,y)0(x,y,1) Dy (x,y) = f(x,3)Qu(x,y)
P(x,y,1) = (x = x0)"(y — | Plxy) = (x — x)"0 -
o)™ (t —19)"" y0)™8(k—n)
¢(x,y, ) _DxMONW(xayvt) q)k(x y) =

k+M X+1)
NkJrl \Pk-i-l(x?y)

x0)™(y — o)™ (t — )" ¥ has a differential transform ®(x,y) = (x —x0)"(y — o)™ 8 (k —n),
is proved here as the result shows a variation [67—-69] in the literature.
For a function

O (x,v.t) = (x —x0)"(y — yo)™ (t — )"~ its differential transform is written as,
o 1 Pl
O (x,x.1) =X o mrm?
I akN _ 4 \nX
= T o(x —20)"(y — Y0)"™ Ty g (t — 1)
= Z?:Oq)(xv.%k) (t - Z‘O)k}z

And (9“( ) <
1 t—1)"
q) — _ m _ m
Or
0, ifkX #nX
q)(x7y7k) = (x_x())m(y_y())ml
1, ifkX =nX.
Or
0, ifk#n
q)(x7y7 k) = (X—xo)m(y—YO)ml .
1, ifk=n
Or

CD(xvyv k) = (x_xO)m(y _yO)mlé(k_ }’l)
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where J is the Kronecker delta.

1.6 What is B-spline?

First of all spline, literally is a device used by the draftsmen, aircraft and shipbuilding
industries to draw a curve through the pre plotted points such that the curve, the slope of the
curve and the curvature of the curve are continuous.

The idea of spline can also be established by the problem of fitting a polynomial passing
through points whose functional values are there. For two such points, a linear polynomial
can be fitted, for five such points, a biquadratic polynomial can be fitted and so on. More
the number of points, higher will be the degree of the polynomial. And higher degree
polynomials are cumbersome to deal with. To resolve this issue, piecewise polynomials
came to the rescue; i.e. instead of using a single polynomial over the whole domain, the
function can be approximated by many polynomials defined over the sub domains. These
piecewise polynomials are continuous as they are polynomials but may not be continuously
differentiable on the interval of approximation. The concept of spline addresses this issue.
The spline constructs a piecewise polynomial approximation that interpolates the given
functional values ensuring that it is also smooth upto a certain degree.

Consider a uniform partition xg <xj < ... < x,_1 < x, of the domain [a, b] with xo = a,x,, = D.
The x; are called knots. A function S(x) is called a spline of degree k if it is a k" degree
polynomial P(x) in each of the interval [x;,x;41],i = 0,1,2,...n — 1 with the property that
P(x) and its first (k — 1) derivatives are also continuous everywhere in the domain [xg, x;].
Thus a spline S(x) on domain [xo,x,] can be defined as S(x) = ¥ | P(x) Here, P(x) is a k'
degree polynomial in each partition.

Schoenberg in 1946 coined the term B-spline which is an abbreviation for basis spline. A
B-spline is defined as a spline function that has minimum support w.r.t. a given degree,
smoothness and domain partition. The core aspect of the basis function is the knot sequence
x;. Let X be a set of N + 1 real numbers called knots such that xo < x; <xp <...xy. The set
X is called the knot vector. If the knots are equi-spaced, the knot vector is said to be uniform.
Each B-spline function of degree k covers k intervals or k+ 1 knots.

The B-spline basis function happens to have various degrees and forms. For a zero degree
B-spline i.e. k = 0, the basis function is just a step function given as

1 x € X, Xme1
Bm70 _ [ msAm-+ )

0 otherwise.
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Thus, a zero degree B-spline is equal to zero at all points except on the clopen interval

[Xm,Xm+1). B-spline of first degree is like a tent function which is non-zero for two knot

spans [X;;, Xpm+1) and [X,,+1,Xn,42) and is given as

X—Xm
Xm+1—Xm X e [Xm 1 Xm+1 )
B — Xm+2 —X
m,1 Yot € omt1,%m+2)
0 otherwise.

The quadratic B-spline basis function looks like Gaussian curve. It is non-zero between three

knot spans X, Xpm41), [Xm-t1,Xm+2) and [Xy+2,Xm+3) and is given as

Bm,2 =

( (x—x)?

(2 =%m) X1 —%m)
(x=xm) (X2 —x)

(K3 =) (¥ —Xm+1)

X e [xmvmerl)

(X 2=Xm) (X 2—Xm1 1)
(X3 —x)

(X3 =Xt 1) (Xms3—Xm12)

0

(3= X+ 1) (Xm 2~ X 1)

X € Dot 1 12)
X e [xm+2 5 xm+3)

otherwise.

The next in line is the cubic B-spline (CBS) and it too takes the bell shape. The associated

basis function is given by the formula

(X —xp_2)>

| (X —xp_2)°

Bz = w (Xm12 —x)3
(Xm+2 —x)3

where h = x,,11 — X, 18 the pre defined step size.

X e

_—

xm—27xm—1)

X e

_—

Xm—1,Xm)

PSS

_—

xmaxm-i-l)

X e

_—

Xm4-1, Xm+2)

otherwise

And in the similar manner standard quartic, quintic etc. forms of B-spline can be defined.
Let T;,(x) be the trigonometric B-spline (TBS) with knots at the points x; where the N knots
a=2x1 <x <..<xy=b are uniformly distributed with a width of A. Then the TBS,
T, T5,...,Tyy form a basis for the functionson [ a, b ].
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The m'" order TBS T; (x) for j=1,2,...,N is given as
. X—Xj . Xjtm—X
sin—2Tj p—1(x) + sin Tj1m—1(x)
T"i’m(x) - : = sianer_ij : = : (130)

T; n 1s a piecewise trigonometric function with properties like C* continuity, non negativity

and partition of unity. These can be classified according to their degree.
The zero degree TBS basis function for m = 1,2,3, ... is defined as

1 x€xy,x
TBm7()= [m m+1)

0 otherwise.

The first degree TBS basis function can be written as

] P(xm) X € [Xmaxm—i-l)
TBmJ = W] Q(merZ) DS [xn1+17xm+2)

0 otherwise.

The second degree TBS basis function can be written as

P?(xn) X E [XmyXmt1)
TBya— 1 POn) Q(m12) + Q(m13)P(Xmr1) X € Xt 15Xm12)
W) Q*(Xm+3) X € [Xnt2,Xm+3)
0 otherwise.

The formula for the cubic TBS basis function at the knot points is specified by

P’ (Xm)
P(2n) (P(xim) Q(%m1+2) + Q(m+3) P (X 1 1) + QX 4) P2 (X 41))

1
TBpj3= Wz Q(xm+4)(P(xm+l)Q(xm+3) + Q(xm+4)P(xm+2) + P(xm)Qz(xm-l—?a)
Q3 (xm+4)
0

[ Xm, xm+1

€ Xt 1,Xm+2)

[xm+2 s Xm+3)
€ Pom+3,Xm+4)

otherwise
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Table 1.5 Value of B, (x) for the CBS and its derivatives at the knots

X Xm—2 | Xm—1 | Xm Xm+1 | Xm+2
B,,(x) | 0 1 4 1 0
B (x) |0 3h |0 3/h |0
B, (x) |0 6/h% | -12/h% | -6/h2 | 0
_ 1
where W = Sl
_ 1
W2 B sin%sinh’
W; = 1

sin(%)sin(h)sin(%) ’

P(x;,) = sin(*5")and
O(xm) = sin(@).
Throughout this work, the modified cubic B-spline [107] basis function B{,B,, ..., By is

given as:
Bi(x) = Bi(x)+2By(x),
Ba(x) = By(x)—Bo(x),
Bnu(x) = Bp(x) for m=3,4,..N—-2,
By-1(x) = By-1(x) —Bny1(x),
By(x) = Bw(x)+2Byi1(x)

And the modified trigonometric cubic form is given as:

TBi(x) = Ti(x)+2To(x),

TBa(x) = Ta(x)—To(x),

TB,(x) = Tu(x) for m=3,4,...N—2,
TBy-1(x) = Tn-1(x) = Tn+1(x),

TBy(x) = Tn(x)+2Tn11(x).



1.7 Differential Quadrature Method 25

Table 1.6 Value of 7B, (x) for the cubic TBS and its derivatives at the knots

X Xm=2 | Xm—1 | Xm | Xm41 | Xm+2
0 D, D, | Dy 0
TB, (x) | 0 D; |0 |[Dsy |O
0 Ds |Dg¢|Ds |0

The values of Dgs in the Table 1.6 are as follows:

_ sin*(h/2)
D= S msin3h2)’
2
P2 = T acesny
Di — -3
7 4sin(3h)2)
3
b = ZmGnny
Do — 3(1+3cos(h)
ST 16sin2(h/2)(2cos(h/2) +cos(3h/2))’
D — —3cos?(h/2)
6 = sin2(h/2)(2+4cos(h))

1.7 Differential Quadrature Method

The differential quadrature method is a numerical solution technique for solving IVPs and
BVPs. The method was conceived by Bellman and Casti in early seventies. It has been modi-
fied since then and has been used to solve problems of physical sciences and engineering. For
instance, fluid mechanics, structural mechanics, lubrication mechanics, transport processes,
biosciences etc. This method was supposed to be an alternate choice for finite difference
method and finite element method.

This method was brought up as an analogy to integral quadrature where a definite integral
is approximated as a weighted sum of the integrand on a set of points. This concept was
extended by Bellman and Casti in 1971 for the derivatives under the name of differential
quadrature.

This method reduces the differential equation into a system of algebraic equations or ordinary
differential equations. The space derivatives are written as the weighted sum of the functional
values at the pre defined grid points of the given domain. The choice of weights is of the
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utmost importance. There are various test functions that are used to calculate the weighting
coefficients or just weights such as the Lagrange interpolation polynomial, cubic B-Spline,
trigonometric B-spline, modified B-spline etc.

It is a well-known fact that a function u(x,#) can be estimated by interpolation at N discrete
grid points as

N
u(x,t) = Z cju(xj,t), 1<i<N
=1

where c; is the basis function and u(x;,¢) is the value of the function u(x,) at arbitrary knot
point x; in the domain [a,b]. The first derivative of the same function, by virtue of DQM,

can then be written as,

8u(xl-,t)
ox

N
~ Za,-ju(xj,t), 1<i<N (1.35)
j:

—

Similarly, the second derivative can be approximated as

0%u(x;,t N
% ~ Y biju(xj,r), 1<i<N (1.36)
=1

where a;; and b;; are the weight coefficients to be determined by a suitable method. The
literature speaks of many ordinary and partial differential equations that have been solved by
DQM and the weight coefficients have been calculated using cubic B-splines [88], modified
cubic B-spline [89, 90], quintic B-spline [91], Lagrange polynomial [126], trigonometric
B-splines [93] etc. In this work a hybrid B-spline is used to get a basis function and hence
the weight coefficients.

1.7.1 Hybrid B-spline
The linear combination of the CBS and the cubic TBS basis functions is defined as
H,y, (x) = ﬁBm (x) +YT'By (x) (1.37)

where Y =1 — 8 and T'B,,(x) depicts modified cubic TBS and B,,(x) depicts modified CBS
function. When y = 0, 8 = 1, the basis function becomes standard cubic B-spline and in case
vy =1, = 0, the basis function turns into a trigonometric cubic B-spline.
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The first order derivative approximation at the knots x;.i = 1,2,...N can be written as
Zau (xj)for m=1,2,..N.

For the first knot point x| the approximation is given as
Zall (xj)for m=1,2,..N.

which gives a tri-diagonal system of equations of the form AX = B where

[ y(2D1+Dy)+6B  yDi+B
0 YDy +4B YD1+ B
YD1+ B  yDr+4B yDi+p

YD1+ B yDy+4B yDi+p
YD1+ B yD2+4pB 0
YD1+ B  y(2D1+D;)+6 |

ar

an

aiN-1

aiN

_2D4ry_ 2
(D3;D4)y+ %B

i 0 i

This tri-diagonal system of equations can be solved for the weight coefficients a;(,ai2,...,ain
using the Thomas algorithm.
Now for the first derivative at the second knot x, can be approximated as follows

N
H’ (x2) Zazl m(x;) for m=12...N.
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The tri-diagonal system for x; is given as

Y(2D1+D>)+6B  yDi+f
0 ’)/D2+4[3 }’D1+ﬁ
YD+ B  yDy+4B yDi+p

YD1+B yDy+4B YD1+ B
YD1+B  yD>+4B

Solution of the above system gives the weight coefficients az1,az9,...,azy. In the similar
fashion, the tri-diagonal system for the first order derivative approximation at the point xy_

is given as,

Y(2D1+Dy)+6B  vydi+
0 YDy +4B YD1+
YD1+B yD,+4B YD1+ B

YD1 +B yDy+4B YD +p
YD1+ yD2+4p

0

YD1+ B y(2Di+D;)+6f |

0

YD1+ B  Y(2D1+D;)+68 |
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an-—11
an-12

aAN—1IN—1

aN—1N

Dyy—3
0
| D3v+3B

Solution of the above system gives the weight coefficients ay_11,av—_12,...,ay—1n. And on

the last knot xp, the respective tri-diagonal system becomes

Y(2D1+Dy)+6B  yDi+ B
0 YDy +4B YD1+ B
YD1+ B  yD2+4B yDi+p

yDi+B yDy+4B YD1+ P
}/D1—|-ﬁ 7D2+4ﬁ 0
YD1 +B  y(2D1+D2)+6B |
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This tri-diagonal system gives the weight coefficients ay1,an?,...,ayny. The weight coef-
ficients for the approximation of second order derivatives [108] can be calculated by the
following formula:

Zaij(al-i—xl_%x) for l?é]

b=y o .
— Y140 for i=j.

1.7.2 Two dimensional differential quadrature method

For any function ¥ = W¥(x,y,#) having its field on rectangle 0 < x < a,0 <y < b, let the
rectangle be further divided into a grid by taking M points on x-axis and N points on the
y-axis. Then, the p'" derivative [105] of the said function at a point x = x; along any line

y=yjis

&P‘P

o Kinvist) ZA (xeyjs0); i=1,2,....M (1.38)
and the ¢ derivative at a point y =y ;j along the line x = x; is given as

aqql S _

£ (xi,yj51) g Y(xiyet); j=12,...,N (1.39)

where p e Z",1 <i<M,1 < j<N and Ag,f ) and Bg.‘l[) are respective weight coefficients
(WCs) that give the approximate p'" and ¢’ derivative at the knots. The WCs Al(,i ) and BE.IIC)
are calculated by the same process as mentioned in the section 1.7.1. Then to approximate
the second order derivative, the following formula is to be used.

(1) [ 4(1) :
(2) _ 2A <Al — % IXk) fOI‘ 1 # k
)

-y, l#kAl(k for i=k

and

(i) _ 2B.(i;€) (Bg';) N in}'k> for j#k
/ — fcv:L#kBﬁ) for j=k.
Having obtained the weight coefficients corresponding to both space variables x and y, the
space-derivatives of first order and second order can be approximated as in equations (1.38)

and (1.39). And once the space derivatives get approximated, the time derivative can be
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treated using some transformation or by using discretization, leading to the solution of
fractional differential equations.

1.8 Objectives of the research work

The objectives as approved in the state of the art (SOTA) seminar are as follows:

* To apply analytic methods such as differential transform method to solve fractional
differential equations.

* To find an efficient technique to find the solution of fractional differential equation.

* To solve the fractional differential equations in higher dimensions.

1.8.1 Organisation of the thesis

This thesis aims to find an efficient technique to solve the fractional differential equations.
The methods of differential transform and differential quadrature are well established for the
ordinary and partial differential equations already. In this work, these methods have been
applied with some variations on the different fractional differential equations.

In the second chapter, the fractional Bagley Torvik equation and the fractional relaxation
oscillation equation has been solved, using the differential transform method.

In the third chapter, Fractional Burgers’ equation has been solved using the differential
quadrature method. One great application of any method is to solve the inverse problems.
The inverse problem related to the fractional Fisher equation has also been solved by the
same methodology.

In the fourth chapter, a hybrid method D(TQ)M is proposed to solve a two dimensional
fractional diffusion equation. This method consists of the treatment of the equation with
DTM and then DQM and then obtaining the final solution by using inverse DTM.

The fifth chapter is about the conclusions and the future scope of this work.



Chapter 2

Solution of one dimensional fractional
differential equation using Differential
Transform Method

In this chapter differential transform method has been used to solve one dimensional fractional
differential equations namely the fractional Bagley Torvik equation (FBTE) and the fractional
relaxation oscillation equation (FROE).

In day to day life one comes across structures containing elastic and viscoelastic components.
Mathematical model for such kind of material is well described by Bagley Torvik equation.

L7 (x)+ M2 (x) + Nz(x) = w(x); L#0, NE€R. @.1)

This fractional differential equation was given by P. J. Torvik and R. L. Bagley [72] in 1984
in their work on the manifestation of the non integer order derivative in the behavior of real
materials. They concluded with the finest of statements, "The fractional derivative appears
naturally in the behavior of real materials. Thus, there is some basis for suspecting that the
utility of constitutive relationships involving fractional derivatives for describing the behavior
of real materials may not be just a happy coincidence."

This equation has been since solved for its analytic and numerical solution by many scholars.
Igor Podlubny [2] in 1999 proposed a numerical method for inhomogeneous BT equation and
also solved the constant coefficient Bagley Torvik (BT) equation analytically using fractional
Green’s G3(t) function. Afterwards many authors worked upon the numerical solution of BT
equation such as Leszczynski et. al. [73], Erturk et. al. [74], El-Sayed et. al.[75], Edwards
et. al.[76], Diethelm et. al. [77] etc. There were authors [78] who worked upon the analytic
solutions rather than numerical ones. Ray and Bera [79] had found the analytic solution of
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BT equation by Adomian method verified by Podlubny’s results. The same has been used as
a benchmark for our result in the second example. Arikoglu and Ozkol [64] applied DTM to
BT equation in brief for specified initial conditions and a specific function. Yiicel Cenesiz et
al [71] solved the BT equation with generalized Taylor collocation method. T. Mekkaoui,
Z.. Hammouch [80] used fractional iteration method to get an approximate solution of BT
equation.

In this chapter fractional DTM is implemented on general and particular forms of BT equation
and comparison has been made with the analytic solution and the solution by generalized
Taylor collocation method.

On the other hand the relaxation oscillation equation is a significant equation of relaxation
and oscillation processes, based on the behavior of physical system’s return to equilibrium
after being disturbed. The process of relaxation oscillation is significant in the phenomenon
where the physical system tends to return to equilibrium after being disturbed. The process
of relaxation oscillation is omnipresent as in a pneumatic hammer, the scratching noise of a
knife on a plate, the waving of a flag in the wind, the periodic re-occurrence of epidemics
and of economical crises [81], the beating of the heart [82] etc. Such process is depicted as
an ordinary linear differential equation of order 1 or 2. For instance D'y(t) +Ay(t) = f(t) is
a relaxation equation, where time is the independent variable and A is a positive constant and
D?y(t) 4 Ay(r) = f(t) is an oscillation equation.

Francesko Mainardi [83] in 1995 came up with its fractional analogy. The process of
relaxation oscillation in many branches of Physics and Biology [81] can better be explained
by fractional relaxation oscillation (FRO) equation.

It is one of the simplest fractional order differential equations given as:

DYy(t)+Ay(1) = f(t) t>0; yH0)=0, k=0,1,2,...n—1 (2.2)

wheren—1 < X <n.

For 0 < X < 1, this equation is called fractional relaxation equation and for 1 < X <2 itis
fractional oscillation equation specifically. The first kind of system was tagged as ultraslow
processes and latter as intermediate processes by [83] Mainardi.

The analytic solution of this equation in terms of Green’s function [2] is given as

¥ = [ Gate =) (e)ar (2.3)

where
Gh(x) = XN_IEN,N (—Axx)
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Many methods have been employed to find the solution of this equation. In this chapter
fractional DTM is implemented on general FRO equation and its particular forms employing
Caputo’s definition of fractional derivative. A comparison has been made with the analytic
solution and the solution by cubic B-spline wavelet collocation method.The series solution
obtained using DTM is compared with the existing results. Two examples are given to
demonstrate the validity and applicability of the method.

2.1 Implementation of method on fractional Bagley Torvik
Equation (FBTE)

Consider equation (2.1) equipped with the initial conditions z(0) =0, Z/(0) =0.
The differential transform (Section:1.5) of equation (2.1) can be written as,

TE+ 1)K —N Z(k)]-M T(k+2.5)Z(k+3)

Z(k+4) = : (2.4)
(k+4) L T(5+3)
Using inverse differential transform, the series solution can be obtained as:
2(x) = I¢ g Z(k) (x = x0)*¥. (2.5)

It is to be noted that the initial conditions will give Z(k) for k =0, 1,2, 3 and the rest of them
are to be obtained from the recurrence relation (2.4).

2.2 Numerical examples on FBTE

2.2.1 Example

Consider the BT equation
Z'(x) + 22 (x) +2(x) = 1 +x

with initial conditions z(0) =1 and 7/(0) =l i.e. L=1,M=1,N=1and y(x) =1 +xin
generalized BT equation (2.1). Using the results of section 1.5, the fractional differential
transform of the equation can be written as

T+ 1)[8(k)+8(k—2)—Z(k)] - T (& +2.5)Z(k+3) _ k

F(;+3) @6

Z(k+4) =
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The initial conditions imply

From equation (2.4) we obtain
Z(k)y=0 V k>3.
Thus the solution by inverse fractional differential transform is
zZ(x) =1+x.

The solution obtained is exactly same as the analytic solution.

2.2.2 Example

Consider the BT equation
" 3/2 _
7 (x)+0.5277%(x) +0.5z(x) = 8

with initial conditions z(0) =0 and 7/(0) =0i.e. L=1,M =0.5,N = 0.5 and y(x) =8 in
generalized BT equation (2.1). The fractional differential transform 1.5 of the equation can

be written as

I(k+1) [-0.50(5 +2.5)Z(k+3)
r'(5+3) rs+1)

Z(k+4) = —0.5Z(k)+88(k) | . 2.7)

The initial conditions imply
Z(k)=0 for k=0,1,2,3.

From equation 2.7 we obtain



2.3 Implementation of method on fractional relaxation oscillation equation (FROE)

37

Table 2.1 Comparison of fractional DTM solution of FBTE with GTCM and analytic solution

height x GTCM Analytic solution Fractional DTM
0 0 0 0

0.1 0.036485547  0.036487479 0.036487479
0.2 0.140634716  0.140639621 0.140639621
0.3 0.307476229  0.307484627 0.307484626
0.4 0.533271294  0.533284110 0.533284108
0.5 0.814735609  0.814756950 0.814756938
0.6 1.148805808 1.148837428 1.148837373
0.7 1.532521264 1.532565443 1.532565254
0.8 1.962974991 1.963029298 1.963028738
0.9 2437455982  2.437334072 2.437332615
1.0 2.954070000  2.952584099 2.952580672

Thus the approximate solution can be given as

2(x) = 4x? — 1.203604445x>> +0.333333333x° — 0.085971745x>> — 0.145833333x*
+0.0716431216x*> — 0.023958333x° +0.0067301113x>° — 0.000934500x°
+0.0002564803x° — 0.000740702x” + 0.0095069366x" — 0.427803803x5.

The same problem has been solved in [71] by using Generalized Taylor Collocation Method
(GTCM). The comparison is mentioned in Table 2.1 and it leaves no doubt in the capability of
the fractional DTM to solve a fractional differential equation. The results of our calculations

are in agreement with the analytical solution [79] by Adomian decomposition method.

2.3 Implementation of method on fractional relaxation os-
cillation equation (FROE)

Consider equation (2.2) equipped with the general initial conditions. Applying fractional
differential transform 1.5 to equation (2.2), it can be written as,

T(Xk+ 1) (F(k) — AY (k)

YD = =Rk +1)

(2.8)
Using inverse differential transform, the series solution can be obtained as:

(1) = Z2 oY (k) (t —10)*¥. (2.9)
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It is to be noted that the initial conditions will give Y (k) for k =0,1,2,3,....n— 1 and the
rest of them are to be obtained from the obtained recursive relation.

2.4 Numerical examples on FROE

To show the effectiveness of the method, two examples are discussed. The solution obtained
by the fractional differential transform method has been compared with the analytic solution

in both the examples.

2.4.1 Example

Consider the fractional relaxation oscillation equation
D'?y(x)+y(x) =0

with initial condition y(0) = 1 i.e. A =1, f(x) =0 in generalized FRO equation. Using
theorems in section 3, the fractional differential transform of the equation can be written as

I'(0.5k+1)

Ylk+1)= " T(0.5k+ 1.5)

Y (k). (2.10)

The initial condition imply
Y(0)=1.

And the approximate solution by inverse fractional differential transform is

y(x) =1—1.12837916714x%3 + 1x — 0.7522527780x" + 0.4999999999x> —
0.3009011111x*3 4 0.1666666665x> — 0.0859717459x> + 0.0416666665x* —
0.0191048323x*> 4 0.0083333332x — 0.0034736058x> + 0.0013888888x° —
0.0005344008x5% 4-0.0001984126x” — 0.0000712534x" +0.0000248015x5 —

0.0000083827x% 4 0.0000027357x” — 0.00000088238549x°> +
0.00000028254315x' — 0.000000086163217x'%->,

The table 2.2 shows the results from wavelet collocation method [85] for J=5 , analytic
method , fractional DTM and the last column depicts the absolute error in the solution
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Fig. 2.1 Comparison of solutions obtained in example 2.4.1

Table 2.2 Comparison of fractional DTM solution of FRO equation with existing solutions

X Wavelet collocation method [85] Analytic solution(A) Fractional DTM(F) Error(IA-Fl)
0.0 1.0000000 1.0000000 1.0000000 0.0000e-000
0.1 0.7235784 0.7235784 0.7235784 1.3611e-013
0.2 0.6437882 0.6437882 0.6437882 9.9298e-013
0.3 0.5920184 0.5920184 0.5920184 1.8488e-012
04 0.5536062 0.5536062 0.5536062 2.2161e-012
0.5 0.5231565 0.5231565 0.5231565 3.9851e-011
0.6 0.4980245 0.4980245 0.4980245 2.3950e-010
0.7 0.4767027 0.4767027 0.4767027 1.0558e-009
0.8 0.4582460 0.4582460 0.4582460 3.8471e-009
0.9 0.4420214 0.4420214 0.4420213 1.2184e-008
1.0 0.4275835 0.4275835 0.4275835 3.4561e-008

obtained by analytic method and fractional DTM. It’s explicit that with fractional DTM the

results are fairly near to the analytic solution.

2.4.2 Example

Consider another FRO equation

D*y(x) +y(x) =0
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Fig. 2.2 Comparison of solutions obtained in example 2.4.2

with initial conditions y(0) = 1 and y'(0) =0 i.e. A= 1,f(x) =0 in generalized FRO
equation.

Using theorems in section (1.5), the fractional differential transform of the equation can be

written as F(1LSk4 1)
Y(k4+1)=——=———"-"27Y(k). 2.11
S T (2.11)
The initial conditions imply
Y(0)=1.

The approximate solution is

y(x) = 1—0.75225277806367508x" 4 0.16666666666666669x" —
0.019104832458760004x* 4 0.0013888888888888892.x° —
7.1253454391645706¢ — 5x"-> +2.7557319223985897¢ — 6x° —
8.4037687620988591¢ — 8x'%3 1 2.08767569878681¢ — 9x'% —
4.3304444506789613¢ — 11x'3° +7.6471637318198184¢ — 13x!° —
1.1677471805518486¢ — 14x'%° + 1.561920696858623¢ — 16x'8 —
1.8497133837075119¢ — 18x'%3 + 1.9572941063391266¢ — 20x>'.

Table 2.3 is self explanatory and strengthens the efficiency and applicability of fractional
DTM. Besides many applications of FBTE in viscoelasticity problems and of FROE in many
realms of nature, these serve more like miniature fractional differential equations. Their
solution by any method would lead to innovation in the bigger family of fractional differential
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Table 2.3 Comparison of fractional DTM solution of FRO equation with existing solutions

X Wavelet collocation method [85] Analytic solution(A) Fractional DTM(F)  Error(IA-Fl)
0.0 1.0000000 1.0000000 1.0000000 0.0000e-000
0.1 0.9763777 0.9763777 0.9763777 0.0000e-000
0.2 0.9340362 0.9340362 0.9340362 0.0000e-000
03 0.8808084 0.8808084 0.8808084 1.1102e-016
04 0.8200563 0.8200563 0.8200563 0.0000e-000
0.5 0.7540488 0.7540488 0.7540488 0.0000e-000
0.6 0.6845298 0.6845298 0.6845298 0.0000e-000
0.7 0.6129215 0.6129215 0.6129215 0.0000e-000
0.8 0.5404169 0.5404169 0.5404169 1.1102e-016
0.9 0.4680306 0.4680306 0.4680306 0.0000e-000
1.0 0.3966293 0.3966293 0.3966293 0.0000e-000

equations. In this chapter, we have solved the two equations using fractional differential

transform method and established it with two examples. The results are as good as the

available analytic solutions.



Chapter 3

Solution of one dimensional fractional
differential equation using Differential
Quadrature Method

This chapter is about the application of the modified differential quadrature method (DQM)
on the fractional differential equations. In first part of the chapter the fractional Burgers’
equation has been solved using DQM with a hybrid cubic modified B-spline (section:1.7)
and in the second part an inverse problem has been solved for fractional Fisher’s equation by

the same methodology.

3.1 The fractional Burgers’ equation (FBE)

In 1915, a British mathematician Harry Bateman gave a partial differential equation relating
the velocity and its space and time derivatives along with the initial and boundary conditions.
The same equation, in 1948, was used by a Dutch physicist Johannes Martinus Burgers
to model the turbulence. To regard his contribution in fluid mechanics, this equation is
addressed as Burgers’ equation [94, 95] and is given as:

up+uuy =viy, 0<x<L, 0<t<7T 3.1

with conditions,
u(x,0)=y(x), 0<x<L

and
u(0,0) =&1(r), u(L,t)=6&((), 0<t<rt



Solution of one dimensional fractional differential equation using Differential Quadrature
44 Method

where u is the velocity, x is the space coordinate, ¢ is time coordinate, Vv is the kinematic
viscosity and y(x),&;(z),&,(¢) are the fuctions depending upon specific conditions of the
problem. Burgers’ equation arises as a result of combining the phenomenon of nonlinear
advection with linear diffusion of non-Newtonian fluid (e.g. glycerin, paints) flow. These
fluids hold the characteristics of elasticity and retention of memory. Burgers’ equation (3.1)
has the same importance in the theory of viscoelasticity as the energy-mass equation has
in the theory of relativity. With the advent and exploration of fractional calculus, it was
understood that the fractional Burgers’ equation is a better model for analyzing fluid motion.
The equation was modified to fractional form by writing the derivative with respect to time
by the Caputo differential operator and thus the fractional Burgers’ equation is given as:

X u(x,t)
ot ¥

2
—I—u(x,t)aug;t) )2 giﬁ”) — fnt), 0<X<1 (3.2)

with conditions,

and
u(a,t) =& (1), u(b,t)=20&(t), 1=0

where X is the order of the fractional derivative and rest of the variables have the same
meaning as for equation (3.1).

The fractional Burgers’ equation (3.2) has been solved for approximate solutions by analytical
methods such as variational iteration method [96, 97], Adomian decomposition method [98]
as well as by numerical methods like finite element method [99], finite difference method
[100] etc.

In this chapter, the solution of time fractional Burgers’ equation has been introduced with
differential quadrature method (DQM). It is a way of approximating the derivative of a
function by linear addition of the values of the function at nodal points of the domain. This
method is well known among all numerical methods for its computational efficiency and
accuracy.

The fractional time derivative has been discretized using modified Lubich’s approximation
[124]. We have used a convex combination of modified CBS and cubic TBS functions to
calculate the weight coefficients in order to approximate the space derivatives. This hybrid
B-spline function enables one to get the solutions with standard spline only as well as with
trigonometric spline only. Moreover it holds the properties of both standard and trigonometric
splines simultaneously.
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3.1.1 Discretization of time derivative

In 1986, Lubich [124] devised the vih order ( v < 6) derivative approximation of the X' h
derivative by corresponding coefficients of the generating functions § ¥ ({) given as

v X
§%() = (zlu—c)") . (33)

i—1t

For v =3 and for all |{| < 1 equation (3.3) takes the form
=Y ¥k (3.4)
k=0

where

,]gxr:( ) ]Zf)mzo<7+\/ )>m<7—¢1—39>)j_’ CRRS )

The symbols are well described in reference [124].

The relation in Riemann-Liouville and Caputo fractional derivative

n—1 (p)
X X fP(a) -x
Dy f(x) = Dg f(x) +p);0 w9 (3.6)

can be modified as

'"il fP)(x,0) T(p+ )P~

X =D f(x.t) — .
D f(XJ)—]D) f( /t) = F(p_|_1) F(p—kl—&)

or

m_l £(p)(x,0
D¥ f(x,1) :Dxf(x,t)—lgoﬁ[ﬂ)xtp]. (3.7)

Using equation (3.4) in (3.7), the Caputo time derivative takes the form
X 1 ¢ X g
Df(x,t)zK—NZlk (X, tp—k) — NZlkfxO)—l—O( 3). (3.8)
k=0

The above expression is the required discretized fractional time derivative involved in frac-
tional Burgers’ equation.
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Apply DOQM on the space
Discretize the time derivatives, using convex
derivative using combination of standard and
Lubich's approach trigonometric cubic B-spline
basis function

Apply matrix inversion

Get the complete Reiterate the process method on the
solution for each time level obtained system of
equations

Fig. 3.1 Brief methodology

3.2 Implementation of method

On putting together the above-defined methodology with discretized time derivative and
space derivatives, the numerical scheme for equation (3.2) :

n

N N

X n—1 n X n__ X n— k+1 X rn. .

K™ uj Zaijuj—lc VZbU”J’_Z © Ui —Zl +x"fiy i=23,..,N-1
j=1 j=1 —

) (3.9)

which on simplification takes the form of linear equations given as CY = F where

kX (ua;; — vb;; ifi#j
o= ) * e =vhy) 7 (3.10)
11}2 -I-K'N(u?al‘j—\/b,'j) ifi=j,

Y=} uf ...ufy_ ) andFisa column matrix with elements k™ (f7 — ull~lag u —
uy~ lagNuX, + Vberu + vbenuy) + X5 lk Y 21*z n—k+1 where € varies from 2 to
N-—1.

On solving this matrix system, we obtain the solution at one time level and reiteration of this
leads to the solution at next time levels.

The algorithm is briefly described in Figure4.1.

3.3 Stability of the scheme

In this work, we have approximated the derivatives by specific sums, so the obtained numeri-
cal scheme has to be checked for its stability [109]. In layman language, stability of a system
ensures that the errors do not grow, as one moves ahead with the recursions.

As discussed in previous sections, Burgers’ fractional differential equation can be written as
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a numerical scheme which can be translated in matrix form [110] as
Guw't' =Hw +d’
and can eventually be reframed as
W =M+ f. (3.11)

For stability, norm [110] of matrix M from equation (3.11) compatible with norm of u must
satisfy ||M|| < 1. Moreover the system is stable if the largest of the moduli of the eigenvalues
('spectral radius ) of the matrix M satisfies p(M) <1 .

The system is considered to be convergent if

p(M) <|M||<1 as N —oo. (3.12)

Stability and convergence have been discussed example-wise, for a particular number of
partitions and time level in the section on numerical examples.

3.3.1 Error analysis

The properties of cubic B-spline interpolation can be used to get the error bounds of ap-
proximations of equations (1.35) and (1.36) as described in [111, 112]. We have considered
the hybrid B-spline basis function as a convex combination of modified standard cubic and
trigonometric cubic B-splines. Here we assume that the linear combination of any two cubic

splines is a cubic spline.

Theorem 7. Let u(x) € C%a,b]. Then, the approximations
N
() =U' (1) = Z a;jU(7j),1<i<N
i1

and v
u'(5) =~ U"() =) bijU(1)),1 <i<N
j=1

have the error bounds for 1 <i < N as follows:

W (%) = U'(%;)| = O(h*),
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[u" (1) = U"(%)| = O(h*)

Proof: Let H(x) be a cubic spline interpolant of u(x) defined by

N N

= Z cmHp(x) = Z cm[NTn(x) + (1 —1)Bm(x)]
m=1 m=1

where ¢, are the constant coefficients obtained by using the interpolation conditions as

described in section 2 of [112]. Now using the triangular inequality,

/(%) = U'(%)| < /(%) — H' ()| +|H'(z;) = U' (7). (3.13)

Referring theorem 2.1 and 2.2 of [111], first expression in the inequality 3.13 is of order 4

and the second expression can be analyzed as follows:

N N
H'(t)-U'(n) = ; Zal,U 7))
N
= Y eanTh(w)+(1—1) Zau

3
l

N
Zau +(1=n) Zaiij(Tj) — ZaijU T
J=1 j=1

Il
Mz

m=1

= Zlal][H(rj) U(t))]

=

=

= an[H(n) - U(m)]+ 22 ai; [H(t)) = U(t))] + am[H (%) — U(%,)]
L

= O(h*)+0+0(h"
= o(h"

In a similar manner; for the following inequality

lu" (1) = U" ()| < |u" (%) — H" (%) |+ |H" (%) — U" (%))



3.4 Numerical examples on FBE 49

the value of

N
H'(t)-U"(1;) = Zbij [H(Tj)—U(Tj)}

j=1
N—1

= bulH(n)-U(n)]+ Z,zbij [H(tj) = U(7))] +bin[H () = U(74)]
=

= o(h*).

And using the interpolation conditions as described in section 2 of [112], u"(7;) —H"(7;) =
]f—;u””(r,-) + O(h*). Thereby proving that |u" (t;) — U" (%)) | is of O(h?). Thus, the error bounds
are established for the approximations.

3.4 Numerical examples on FBE

In this segment three examples have been discussed to validate the presented method. Other
than exact solutions (i, in tables) our results (udqmbspline in tables) have been compared
with DQM where the weight coefficients have been calculated using Lagrange polynomial
[113, 114] with CGL grid points (#ggm, ,,, in tables). The accuracy of the proposed method
has been mentioned by presenting L, and L., errors defined as

N
Ly error=,|h Z |ttexact — Unumericat|* (3.14)
j=1
and
L., error = max |uexact — Unumerical | (3.15)

All the calculations are done with MATLLAB programming. For the sake of simplicity, we
have considered the viscosity parameter v to be unity, throughout this chapter.

3.4.1 Example

Examine equation (3.2) with v = 1 under the conditions

u(x,00=0, u(0,8)=r> u(l)=e?, 0<x<1, >0 (3.16)

and
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Table 3.1 Pointwise error in exact and numerical solutions in example 3.4.1 with X =
0.5,N=181,1=0.5

X | A(texaer) B(uagmy,ie) | C(tagmy,,) |a€. inAandB | ae. inAandC
001 1 1 0 0
0.1 | 1.105170918 | 1.106402844 | 1.106396405 | 0.001231926 | 0.001225487
0.2 | 1.221402758 | 1.223784549 | 1.223778603 | 0.002381791 0.002375844
0.3 | 1.349858808 | 1.353292948 | 1.353287917 | 0.003434141 0.003429109
0.4 | 1.491824698 | 1.496181607 | 1.496177658 | 0.004356909 | 0.00435296
0.5 | 1.648721271 | 1.653816094 | 1.653813339 | 0.005094823 0.005092069
0.6 | 1.8221188 1.827675917 | 1.827674465 | 0.005557116 | 0.005555665
0.7 | 2.013752707 | 2.019350154 | 2.01935012 | 0.005597446 0.005597413
0.8 | 2.225540928 | 2.230521345 | 2.230522817 | 0.004980416 0.004981889
0.9 | 2.459603111 | 2.462927637 | 2.462930439 | 0.003324525 | 0.003327328
1.0 | 2.718281828 | 2.718281828 | 2.718281828 | 0 0
2—X x
flx) = % +rteR 1%, (3.17)

The exact solution of the problem is given as u(x,r) = t2¢*. The equation has been solved by
using the methodology as reported in section 1.7. The results are recorded in Table 1 and
Figure 3.2. Here a.e. stands for absolute error.

As discussed in section 3.3, stability and convergence have been verified for this example.
The spectral radius (0.4757) and norm of the matrix (0.4842) fulfil the desired stability
criterion given by equation (3.12).

The hybrid spline i.e. the convex combination shows an unexpected trend as it must be
affected by variation in 1) but the performance of the scheme does not change with the values
of 1 as is recorded in Table 3.1. Therefore, it can be said that the research work which is just
replicating the standard cubic spline work into trigonometric spline, is not different, in case
of fractional Burgers’ equation.

Since the time step is inversely proportional to the execution time in any algorithm, it plays
a major role in the numerical scheme. In our discretization scheme, the function at a time,
depends upon all the previous time levels i.e. there is global dependence of time so we used
the time step of 0.01 and obtained decent results within 16 seconds.

The same example is solved by Esen et. al. [115] using the Galerkin method with time step
0.00025, X =0.5,v =1,T =1 and different values of N. They reported L., error of the
order 1073, In our example we took time step of 0.01, and it resulted in an error of order
1072



3.4 Numerical examples on FBE 51
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26 +  exact value
numerical value
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u(x,t)

1.8

161

1.4r

121

X

Fig. 3.2 Comparison of numerical and exact solution for example 3.4.1 with N=181, v=I,
1n=0.5 and X=0.5

Thus the time step of 0.01 is resulting in error of order 1072. A smaller time step leads to
even reduced error.

Moreover we compared our results with DQM with Lagrange polynomial with CGL points
and observed from Table 1 that the results are comparable.

3.4.2 Example

Examine equation (3.2) with v = 1 under the conditions

w(x,0)=0, u(0,)=1, u(l,t)=—1, 0<x<1, >0 (3.18)
and
flx,t)= %tl_x —0.5725in27x + T tcosTx. (3.19)

The exact solution of the problem is given as u(x,t) = tcosmx.

This equation is solved using the procedure as described in section (1.7) and the obtained
results are presented in Table 2 and Figure 3.3. The condition regarding stability and
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Table 3.2 Pointwise error in exact and numerical solutions for example 3.4.2 with X =
0.5,N=181,1=0.5

X | A(ttexaer) B(tagmypie) | Cagm,ey) a.e.inAandB | a.e. in Aand C
00 |1 1 1 0 0

0.1 | 0951056516 | 0.950826031 | 0.950752904 | 0.000230485 | 0.000303612
0.2 | 0.809016994 | 0.808637779 | 0.808573079 | 0.000379215 0.000443915
0.3 | 0.587785252 | 0.587397487 | 0.587350518 | 0.000387765 | 0.000434735
0.4 | 0.309016994 | 0.308773601 | 0.308749004 | 0.000243393 | 0.00026799
0.5 | 0.000000000 | 0.000000000 | 0.000000000 | 0.000000000 0.000000000
0.6 | -0.309016994 | -0.308773601 | -0.308749004 | 0.000243393 | 0.00026799
0.7 | -0.587785252 | -0.587397487 | -0.587350518 | 0.000387765 0.000434735
0.8 | -0.809016994 | -0.808637779 | -0.808573079 | 0.000379215 0.000443915
0.9 | -0.951056516 | -0.950826031 | -0.950752904 | 0.000230485 | 0.000303612
1.0 | -1 -1 -1 0 0

Table 3.3 Error norms for different values of N in example 3.4.2 for fixed parameters

N L. error L, error
21 9.7918e-04 | 0.0261
51 4.7483e-04 | 0.0180
101 | 4.1647e-04 | 0.0164
121 | 4.1068e-04 | 0.0163
151 | 4.0614e-04 | 0.0161
181 | 4.0366e-04 | 0.0160
1001 | 3.9818e-04 | 0.0159

convergence given by equation (3.12) is getting satisfied for the obtained values of spectral
radius (0.4469) and norm (0.4473).

For fractional order & = 0.5, time level k = 0.01 and 7 = 0.5 in the convex combination
term, the results are presented for various values of N in Table 3. It is inferred that L., and L,
errors reduce as N increases.

3.4.3 Example

Examine fractional Burgers’ equation (3.2) with a unit viscosity constant under the conditions

u(x,0)0=0, u(0,t)=r> u(l,)=—r*, 0<x<1, >0 (3.20)
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:
+  exact value
numerical value |

u(x,t)
o
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t

Fig. 3.3 Comparison of numerical and exact solution for example 3.4.2 with N=181, v=I,
1n=0.5 and X=0.5

and

2t2_ X

G-X) (sintx+ cosmx) + mr* cos2mx + 1> w? (sinmx + cosmx). (3.21)

flxt) =
The exact solution of the problem is given as u(x,t) = t*(sinmx + cosmx). This equation is
solved using the proposed methodology and the results are presented in Table 4 and Figure
3.4.
The spectral radius for this problem is 0.4441 and norm of the matrix as discussed in section
3.3 is 0.4466 which establishes the stable nature of the scheme.
The Figures 3.5, 3.6 and 3.7 represent the solution surface for the three examples respectively
for time in the range [0:0.1:1].
We observe from all three numericals that the standard and trigonometric B-splines are
behaving in the same way for fractional Burgers’ equation. Also the reference [102] suggests
that the Lagrange polynomial with CGL points based DQM is better than the B-Spline based
DQM, but that was for ordinary and partial diffrential equations. For fractional Burgers’
equation, our examples suggest that DQM with both approaches to calculate the weight
coefficients are comparable.
A numerical scheme is executed on the fractional Burgers’ equation by hybridizing cubic and
trigonometric B-splines for the differential quadrature method. The time fractional derivative
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Table 3.4 Pointwise error in exact and numerical solutions in example 3.4.3 with X =
0.5,N=181,1=0.5

X | A(texaer) B(uagmypime) | Ctagm,,) a.e.inAandB | a.e. in A and C
001 1 1 0 0

0.1 | 1.260073511 | 1.260006533 | 1.259927293 | 6.69776E-05 0.000146217
0.2 | 1.396802247 | 1.396124783 | 1.396058361 | 0.000677463 0.000743886
0.3 | 1.396802247 | 1.395204587 | 1.39515773 0.00159766 0.001644516
0.4 | 1.260073511 | 1.257600653 | 1.257577727 | 0.002472857 0.002495783
0.5 | 1.000000000 | 0.997058789 | 0.997063467 | 0.002941211 0.002936533
0.6 | 0.642039522 | 0.639249341 | 0.639283924 | 0.002790181 0.002755598
0.7 | 0.221231742 | 0.219158367 | 0.219222568 | 0.002073375 0.002009174
0.8 | -0.221231742 | -0.222337667 | -0.222248088 | 0.001105925 0.001016346
0.9 | -0.642039522 | -0.642357727 | -0.642254071 | 0.000318205 0.000214549
1.0 | -1 -1 -1 0 0

1.5

T
+  exact value

numerical value

X

Fig. 3.4 Comparison of numerical and exact solution for example 3.4.3 with N=181, v=I,
n=0.5 and X=0.5
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Fig. 3.5 Solution surface of example 3.4.1

Fig. 3.6 Solution surface of example 3.4.2

Fig. 3.7 Solution surface of example 3.4.3
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Table 3.5 Error norms for different values of 1 for fixed parameters

Example 3.4.1 Example 3.4.2 Example 3.4.3
N L. error | L, error | L., error | L error | L. error | L, error
0 0.0058 | 0.0613 | 0.0031 0.0385 | 0.000404 | 0.160
0.2 | 0.0058 | 0.0613 | 0.0031 0.0385 | 0.000404 | 0.160
0.5 ] 0.0058 | 0.0613 | 0.0031 0.0385 | 0.000404 | 0.160
0.7 |1 0.0058 | 0.0613 | 0.0031 0.0385 | 0.000404 | 0.160
1 0.0058 | 0.0613 | 0.0031 0.0385 | 0.000404 | 0.160

was discretized by Lubich’s approach and space derivatives by differential quadrature. The
scheme is verified on three examples where the numerical results were available in literature
for the first example. The presented numerical scheme has a global dependence on time,
so the best feasible time step was chosen to be 0.01. It is observed that if the time step is
reduced further, the errors would reduce but execution time of the program would increase.
From all the presented examples, it can be depicted that the L., as well as L errors remain
unaffected with the variation of value of 1 for a fixed value of N. Thus, it can be concluded
that the results due to standard and trigonometric B-splines are same for fractional Burgers’
equation and so DQM is independent of choice of spline (standard or trigonometric). The
above discussed concept can be verified for other fractional differential equations for general-
ized results.

The acquired numerical outcomes agreed with the exact solutions, along with the stability
conditions. Hence it can be concluded that the presented scheme can further be implemented
to find the solution of space and time-space fractional differential equations.

3.5 The fractional Fisher’s equation (FFE)

The Fisher’s equation is a reaction diffusion equation which represents the problem of

biological invasion. It finds its place in ecology, physiology, and in general phase transition

problems etc. and is considered a population growth model. Its equation is given as
du(x,t) Dazu(x,t) u(x,t)

ot axz +Nu(x,t)(1— oo )

(3.22)

where u is the population, x is the space coordinate, ¢ is time coordinate and D, X, u.. are
positive constant parameters that represent diffusivity, growth rate and number of individuals
respectively.
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Using the following transformations:

T = Xt,

X

= X _

““ND

and

t

L uwn)

Uoo

Its much popular dimensionless form is given as:

ov(z,T)  9*v(z,7)

%~ o7 +v(1—v).

Writing the time derivative as Caputo’s fractional derivative, one easily gets the fractional
form of Fisher’s equation:

9*v(z,7)  9*v(z,7)
ot 972

In the recent past the fractional differential equations have proved to be better models [2].

+v(l—v).

Fractional partial differential equations (FPDEs) have generated quite interest in mathematics
fraternity. Besides modeling the physical, biological and chemical processes [1, 2], they have
applications in sampling, signal processing etc. There are various analytic and numerical
methods [117-120] for solving nonlinear FPDEs. In this chapter, the focus is to solve the
inverse problem of fractional Fisher’s equation using additional information.

3.6 Inverse problem

For a completely known physical system, the mathematical description of its uniqueness,
stability, existence of a solution etc. and all the parameters must be known. But if one of the
unknown parameters describing this system is to be found from some extra information, then
that kind of problem is called an inverse problem.

In literature, there are mainly three categories of inverse problem viz. coefficient inverse
problems, boundary value inverse problems and evolutionary inverse problems. In this work
we intend to discuss the boundary value inverse problem on fractional Fisher equation.
Inverse problems came into sight around twentieth century. It is a mathematical problem
in which some unknown fact can be found out with the help of information in hand. This
unknown element can be a coefficient, a boundary condition or an initial condition primarily.
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In this work, the inverse problem is to find the unknown boundary condition. The problem is
solved in two parts, wherein the first part is a direct problem defined on one part say P of the
domain and the inverse problem is then defined on the second say P as mentioned ahead.
In this work, we consider time fractional inverse Fisher’s equation of order X, 0 < X <1
for the function u(x,?) as

O u(x,t)  9u(x,t)

+u(x, )1 —ulx, )]+ f(x,1), 0<x<1, 0<r<T (3.23)

¥ ox?
with initial condition
u(x,0)=a(x), 0<x<1, (3.24)
and boundary conditions
u(x®,0)=b(1), u(l,r)=c(t), 0<x®<1, 0<t<T (3.25)

where a(x), b(t), c(t) are known functions and a(x) is continuous while b(¢) and c(z) are
infinitely differentiable and T is the known time level. The function u(x,?) and boundary
value u(0,¢) is to be determined. This problem can be bifurcated on two sub-parts of the
domainie. P={x:0<x<x®}andon P = {x:x® <x < 1}.

The direct problem is stated as

OFu(x,t)  9u(xt)
oY ox?

+u(x, )l —ulx, )]+ f(x,1), 0<x<1, 0<r<T (3.26)

with initial condition

u(x®,0)=b(r), u(l,r)=c(r), 0<x®<1, 0<r<T.

The inverse problem is then defined as

ofu(x,t)  9u(x,t)

p I +u(x)[1—u(x.0)]+ f(x.1), 0<x<x®, 0<t<T (3.27)

with initial condition
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Table 3.6 Discretization of derivatives

Direct /Inverse problem | Discretization

: O¥u o 1 X 1 yn X
Direct ?}? N w Lo o ulntn k) — —x Xpog fp ulx, 1)
Direct % ~ r;:l b,-juj(x,t)
I Nu ~ 1 v IX L yn X 1
nverse o T i k)u(x,(tn_k+;) —( T—NZk:)l ou(x, 1)

9%u ~ 6 U(Xit1, ler1) —2u(xi, 1) Fulxi—1, frr

Inverse 23 2

and boundary conditions
u(x®,t)=b(t), 0<t<T.

In this chapter, the direct problem is solved with the help of differential quadrature method
(DQM) using B-spline [130] and comparison has been made with the solutions obtained by
DQM using Chebyshev-Gauss-Lobatto (CGL) points [114] and the inverse problem is solved
using fourth order accurate compact approximation finite difference method.

3.6.1 The discretizations

Consider a uniform mesh of size # and T on x and ¢ axes respectively such that 7 = 1%, and
7= %. The grid points are defined by

x;=ih, i=1,2,...N,
th=kt, k=1,2,..,N.

Let uf ~ u(x;, ;) be the numerical approximation and x© be arbitrarily any point in the grid,
according to which we bifurcate the x-axis into two parts. As x© is an interior point, let
x@ =mh= X, for some integer 2 < m < N — 1. The direct problem and then the inverse
problem are solved on the suitable parts. The solution of inverse problem [128, 129] depends
upon the solution of direct problem. For the direct problem, the second order derivative is
discretized using the DQM [130] and for inverse problem, fourth order accurate compact
approximation finite difference method [131] is used to discretize the second order derivative.
In both cases, Caputo’s definition of fractional derivative has been used and is discretized
using Lubich’s approach as in [105, 124, 130].
The symbols have usual meanings as described in the reference [130].
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3.7 Solution of the direct problem

Using the discretizations as in Table 3.6, the equation (3.26) can be written in the following
form: N N N
NZ ka“i—Ztﬂ‘j+”i( wp )+ fi - (3.28)
k1 k1 j=1
Taking i = m+ 1 to N — 1 equation (3.28) results into the matrix system AU = B where

IF = (14 by —uy )T —b(mi1)3 T bl yn—1)T
A ~b(m 22T 1Y = (b 23—ty )T bim 1 2)(N-1) T
—by_1)2T —bn-1)3T" I = (14 bpv_nyv—1) — Uy
U:[”%H u%ﬂ u%—l]
and
T (for + )1”11V+b(m+l)NUz<Jv)+ZN I ;In+1 Zz il*‘ %éﬂ
B— (fm+2 +2)14] +b(m+2)NUN)+Zk 11}2 Upio Z ZN erZJr

The matrix system can be solved for u(x,?) in part P of the domain.

3.8 Solution of inverse problem

The inverse problem of the fractional Fisher’s equation is defined in equation (3.27) and on
applying the discretizations as mentioned in Table 3.6, the following formulation is obtained:

1 N B 1 N 6u5€+1 2ul_€+1 + kj—l
T—NZl,fuf-v kH_TzZlk” = _ il };2 Lk (=) + 1 (3.29)
k=1 k=1

)
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Varying i from 2 to m — 1 equation (3.27) results in the matrix system CU = D where

(1 -2 1 0... 00 O]
0O 1 -21... 00 O
C= ;
0O 0 O 0... 01 =2
0 0 0 0...00 1|
0= [ukt! kit Wk M]fnﬂ]la

1 k1
(1 —uh) + f5+ — e (T T Y )
ki1 k1
(1 =) + £ = e (T 5+ Y )

k1 ki1
u§171(1 —”571)+fmt1 - k%(Zivzllzfu%_ﬁ +22]:111§”£1—1)+“§1+1

k k ktl 1N X N-ktl | yvN X1 ki1 Kt 1
Lt (L —1a,) + o — 1w (Epy I g X1 I ) 1ty — 2up,

Using the solution of direct problem, inverse problem can be solved and required boundary
condition can be obtained.

3.9 Numerical examples on FFE

The method presented above can be used to solve inverse problems and some examples are
given to establish the same. We have used the DQM with hybrid B-spline in solving the
direct problem and compared the results with the DQM with CGL points.

3.9.1 Example

Consider equation (3.23) - (3.25) with the following conditions:
u(x,0)=0, 0<x<I,
Lt(x@,t) = ex@tz, 0<t<T,
(1,1) = e, 0<t<T where x@ = 0.5. The exact solution of the problem is
u(x,t) = ¢ 1> and

u

zext2—x
)= ——— — 2% + 277
f(x,1) rG-x) et +e
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For fixed value of k=0.01,7 =1, ¥ = 0.2 the absolute errors were found for various number
of mesh points and recorded in the Table 3.7.

Table 3.7 Table of errors in DQM with B-spline and DQM with CGL points for different
values of N and & = 0.2 for example 3.9.1

N | Direct/Inverse problem | DQM with B-spline | DQM with CGL points
7 | Direct 8.1778e-06 3.7370e-06
7 | Inverse 0.0070 0.0515

9 | Direct 5.6622e-06 3.2963e-06
9 | Inverse 0.0062 0.0374

11 | Direct 4.5481e-06 3.0955e-06
11 | Inverse 0.0058 0.0290

21 | Direct 3.1091e-06 2.7561e-06
21 | Inverse 0.0049 0.0125

41 | Direct 2.7580e-06 2.6711e-06
41 | Inverse 0.0045 0.0045

45 | Direct 2.7162e-06 2.6665e-06
45 | Inverse 0.0044 0.0037

51 | Direct 2.7162e-06 2.6620e-06
51 | Inverse 0.0044 0.0029

From the Table 3.7 it can be concluded that N = 41 is the best choice for the number of grid
points. For N =41, k=0.01, T = 0.1, the change in the behaviour of the solution can be

observed with different values of Y.

3.9.2 Example

Consider equation (3.23) - (3.25) with the following conditions:

u(x,0) =0,
@nN=0 0<r<T,

(
u(l,t)=—t, 0<t<T where x® = 0.5. The exact solution of the problem is
u(x,t) =t cosmx and
1-X
t T
flt) = r(z;_o;)x +1 cosmix (n* — 1 +tcosmx).

0<x<1,

3.9.3 Example

Consider equation (3.23) - (3.25) with the following conditions:

u(x,0) =0,

0<x<1,
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Table 3.8 Table of errors in DQM with B-spline and DQM with CGL points for different
values of X

N Problem| DQM with | DQM with CGL
B-spline points

0.1 Direct | 2.8166e-06 2.7282e-06
0.1 Inverse | 0.0027 0.0027
0.25 | Direct | 2.7173e-06 2.6313e-06
0.25 Inverse | 0.0057 0.0057

0.5 Direct | 2.3503e-06 2.2748e-06
0.5 Inverse | 0.0177 0.0177
0.75 | Direct | 1.5337e-06 1.4804e-06
0.75 Inverse | 0.0317 0.0317

1.0 Direct | 1.1091e-06 1.1862e-06
1.0 Inverse | 0.0471 0.0471

Solution of direct problem of Example1 using DQM with B-spline

Solution of the inver

07 0.75
x

rse problem of Example1 using DQM with B-spline

+++++

+++++

bt

+ o+

+++++

Fig. 3.8 Example 3.9.1 using DQM with B-spline



Solution of one dimensional fractional differential equation using Differential Quadrature

64

Method

Solution of direct problem of Example1 using DQM with CGL points

Solution of inverse problem of Example1 using DQM with CGL points

Fig. 3.9 Example 3.9.1 using DQM with CGL points

Table 3.9 Table of errors in DQM with B-spline and DQM with CGL points for different
values of X in example 3.9.2

X Direct/Inverse problem | DQM with B-spline | DQM with CGL points
0.1 | Direct 1.9667¢e-05 2.0304¢e-05
0.1 | Inverse 0.0054 0.0690
0.25 | Direct 1.9801e-05 2.0471e-05
0.25 | Inverse 0.0045 0.0754

0.5 | Direct 2.0688e-05 2.1297e-05
0.5 | Inverse 0.0487 0.1002
0.75 | Direct 2.8089e-05 2.7660e-05
0.75 | Inverse 0.1429 0.1453

1.0 | Direct 1.0753e-04 1.0434e-04
1.0 | Inverse 0.1404 0.1553
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Solution of direct problem in Example2 using DQM using B-spline

T T T
Exact solution
Numerical solution

O Numeri

Uit
o
2
2

T
1)
Lo}
o
0
1

“oo ! ! | ! ! !

Fig. 3.10 Example 3.9.2 using DQM with B-spline

Solution of direct problem in Example2 using DQM using CGL points
002 T T T T T T

055 06 065 07 075 08 085 0.9 0.95

Solution of inverse problem in Example2 using DQM using CGL points
0.4 T T T

0 0.1 02 03 04 05 0.6 0.7

Fig. 3.11 Example 3.9.2 using DQM with CGL points
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Table 3.10 Table of errors in DQM with B-spline and DQM with CGL points for different
values of X in example 3.9.3

N Problem| DQM with | DQM with CGL
B-spline points

0.1 Direct | 5.3382e-07 2.3550e-06
0.1 Inverse | 4.3953e-04 0.0081
0.25 | Direct | 5.3334e-07 2.3465e-06
0.25 | Inverse | 0.0023 0.0106

0.5 Direct | 5.3338e-07 2.3260e-06
0.5 Inverse | 0.0138 0.0206
0.75 | Direct | 5.3158e-07 2.2852e-06
0.75 Inverse | 0.0311 0.0318

1.0 Direct | 5.1385e-07 2.1846e-06
1.0 Inverse | 0.0226 0.0236

ux@,)=r*, 0<r<T,

u(l,t)=—1>, 0<t<T
The exact solution of the problem is u(x,t) = t*(sin x + cos mx) and

f(x,1) = (sin wx+ cos mx)[

where x@ = 0.5.

22X

I(3—X)

+12 (1 — 1 41> (sin wx + cos mx))].

The results can be seen in Table 3.10 and Figure 3.12 and 3.13.

As established in the popular book by G.D. Smith [110], the scheme

TUk+1 — Ql’l—k+1 +Rk+1 +Sk

is stable if the absolute value of eigen values of the inverse of the matrix P are less than or

equal to one. In the numerical scheme given by equation (3.29), The eigen values of inverse

of the matrix 7T satistfy

X

h< 2,

T
ﬁlzlv

Thus for all suitable values of h,k and X the system is stable. And in all the three examples

the absolute values of the eigen values of the inverse of matrix involved for direct as well

as inverse problem are less than or equal to one, hence the scheme is stable. Therefore, the

methodology presented here can be used to solve inverse problems of similar nature.
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Solution of direct problem of Example3 using DQM with B-spline
T T T

uixh

-0.005

-0.01
05 055 06 0.65 0.7 0.75 08 085 09 0.95

Solution of inverse problem of Example3 using DQM with B-spline
T T T

009000
0.014{— c0®? 200 —
° o
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0011 ° °
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Fig. 3.12 Example 3.9.3 using DQM with B-spline

Solution of direct problem of Example3 using DQM with CGL points
T T T

Uit

-0.005

-001
05 055 06 0.65 0.7 0.75 08 085 09 0.95

uixd
o

0.005— o -

Fig. 3.13 Example 3.9.3 using DQM with CGL points



Chapter 4

Solution of two dimensional fractional
differential equation using the hybrid
D(TQM

In this chapter a two dimensional fractional diffrential equation namely the diffusion equation
has been solved by using a novel hybrid of DTM and DQM. First of all the DTM is applied
on the equation, and then in the transformed equation, the space derivatives are approximated
using the DQM. Then by inverse DTM the solution can be found.

4.1 The fractional Diffusion Equation

Diffusion is the most commonly occuring phenomenon in our day to day life. It is the
movement of a substance from a highly concentrated area to a lowly concentrated area.
Needless to say that it happens in liquids and gases because their particles move randomly.
The particles collide among themselves or with the vessel containing them. Thus they move
in different directions and finally the particles are spread in the whole vessel. The process of
diffusion happens on its own, without stirring, shaking or wafting. Osmosis and respiration
are some examples of diffusion happening in living beings. Mathematically this process had
been described as a partial differential equation and the model has evolved with time into a

two dimensional fractional differential equation which is given as follows:

9% u(x,y,1) 9%u(x,y,t) 9%u(x,y,t)

al‘}z :a(x7y7t)T+b(x7yvt) ayz +C(X,y,f) (41)
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on a finite domain 0 < x < B;,0 <y < Brand 0 <t <T. Here X is the arbitrary order of the
time derivative such that 0 < X < 1 and a(x,y,7) and b(x,y,t) being the non zero diffusion
coefficients. The function c(x,y,t) is used to represent sources and sinks.

Along with the initial condition u(x,y,0) = Fi(x,y), 0<x<B;, 0<y<B,;andthe
boundary conditions:

u(Ovyat):F2(y7t)vu(Blvyvt):F3(y7t) 0S)’§32,0<T§T (42)

u(x,0,1) = Fy(x,t),u(x,By,t) = Fs(x,t) 0<x<B,0<t<T 4.3)

X u(,\ 1) .

where By,By. Fi(x,y),Fa(y,t),F3(y,t), F4(x,t) and Fs(x,t) are given and is the Ca-

puto’s definition of the time fractional derivative.

4.2 Implementation of the method

Applying DTM to the equation (4.1), the following expression is obtained, where the A, B,C
are the differential transforms of a, b, ¢ occuring in the diffusion equation.

a2U

—l+1 k
e TRB0

rwx+x+1
(kX + 1

82U( —1+1)
dy?

Ui = ZA +C(k). (4.4)

The space derivatives can be approximated by using DQM and the above relation can be
written as,

k M, k
U.A’.“:W—H ZA ) Y amUS "+ Y B() ):b Ug 't +cl| . @5)
1] F(kx+x+1 = m mj & Jm .

From here, US, Uf], U;;’ . can be calculated and then by using the inverse DTM, the approx-

imate solution of the equation (4.1) can be written as,

M(X,y,t) = Uli'i‘Ulz][N +U£}.t2x +.... (4.6)

4.3 Numerical examples

To check the methodology, two problems solved in [135] are considered. Throughout this
section, in order to show the precision of the proposed technique, the maximum absolute
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error between exact and approximate solutions is given by
Error = max|Exact value of @(x,y,t) —Approximate value of ¢(x,y,t)|.
4.3.1 Example
Consider the equation (4.1) with
212X 3 12X 212X +25t2_x(t2—|—1) S
= b=—F——, = | =+ =—=———| sinmxsinmy.
(1 —-X)’ 12721°(1 — R)’ r—x) 12 I(l-x) Y
On taking the differential transform on both sides of equation (4.1)
D(kX + X +1) a2q> —z+1 k a2q>( —l+1)
—CD A(l —————=+C(k). 4.7
TkR+1) 17 Z ; )2 +C(k). (4.7

The differential transforms of a, b, ¢ are given as

0= ()

1 2- R
BU) = o x)‘s(l_ X )

2 2—-X
W= (5

> SINTTXSINTTY

25 4— X 2—X . .

Thus, the recurrence relation from equation (4.7) can be written as

LkR+1) & 82q>( —l+1 k 82<I>( —l+1)
@ =— 2: 2: 4 Ck
ket 1 TR 11 & Lz 972 +C(k)]
or
a1 = T(kX +1)

k M k N
k141 ke—1+ 1
aim® + ) B(l imPin, +C .
I (kx N 1 ; mgl mj ; Z )
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Thus, <I>l.2j, CID?]., fID?j, ... can be calculated from the above recurrence formula and then by using
the inverse DTM, the approximate solution of this specific case of (4.1) can be written as,

O(xy,1) =D} + 5% +@f 7N 4

Table 4.1 Error for M =N =21,T =0.1

X Maximum absolute error

0.1 0.0100

0.25 0.0077
0.4 0.0148

0.5 0.0212

0.75 0.0100
1 0.0900

Exact solution Solution by hybrid DTG

¢yt
¢ byt

Fig. 4.1 Comparison of obtained and exact solution of diffusion equation with M = N = 30,
X=0.4 and T=1

It can be observed that the for X = 1 and 0.4 the two solutions are agreeing and the error is
zero. For different values of X the Table 4.3 shows no monotonic nature of the error.

4.3.2 Example
Consider the equation (4.1) with

2—-X

L b=lec=2|—t
LT he [r(3—x)

+ tz] sinxsiny.

On taking the differential transform on both sides of equation (4.1),
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Table 4.2 The error w.r.t. ’t’ value and the number of terms in the approximate solution by
DTM for 21#21 mesh and X = 0.4

Number of terms

’t’

Maximum absolute error with DTM

3 1
0.5 0.25
0.25 0.0625
0.1 0.0100
0.01 9.9¢-05
4 1 1
0.5 0.25
0.25 0.0625
0.1 0.0100
0.01 9.9¢-05
5 1 2.2e-16
0.5 0.0798
0.25 0.0463
0.1 0.0151
0.01 5.3e-04
6 1 2.2e-16
0.5 0.0798
0.25 0.0463
0.1 0.0151
0.01 5.3e-04
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Table 4.3 The error w.r.t. ’t’ value and the number of terms in the approximate solution by
the D(TQ)M method for M =N =21,X =0.4

Number of terms  °t"  Max. absolute error with hybrid method

3 1 1
0.5 0.25
0.25 0.0625
0.1 0.0100
0.01 9.9e-05
4 1 1
0.5 0.25
0.25 0.0625
0.1 0.0100
0.01 9.9e-05
5 1 0.0081
0.5 0.0798
0.25 0.0463
0.1 0.0151
0.01 5.3e-04
6 1 0.0081
0.5 0.0798
0.25 0.0463
0.1 0.0151

0.01 5.3e-04
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Exact solution Solution by DTM
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Fig. 4.2 Comparison of obtained and exact solution of diffusion equation with M = N = 101,
X=1and T=1

20k — k 20k —
DR+ 841 ZA aq>( 1+1)+):B(l)acp(k l+1)+C(k)_ “8)

C(kX+1) ox? P dy?
The recurrence relation from equation (4.8) can be written as

e _ l"(kN +1

_ k
where
8 (k—(3Y)) 2 .
Cll‘j =2 1“(3——:;) +0 | k— X sinxsiny.

Thus, dblzj, (191 i @;‘j, ... can be calculated from the above recurrence formula and then by using
the inverse DTM, the approximate solution of this specific case of equation (4.1) can be

written as,
P (x,,1) = D+ DFr ¥ + D7 4

Some error values are mentioned in Table 4.4, 4.5 and 4.6. It is observed that the series
obtained due to DTM is absolutely convergent for various values of X. However, the

theoretical analysis of the convergence of D(TQ)M is to be attempted as a future work.
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Table 4.4 The error for different values of X and for different number of non zero terms(K)
in the series solution by the DTM (at t=0.5), M= N= 15

X K=3 K=4 K=5
1 0.2500 0.2500 0.2500
2/3 0.0707 0.0998 0.0880
1/2 0.0129 0.1307 0.0543
2/5 0.0587 0.2015 0.1963

Table 4.5 The error for different values of X and for different number of non zero terms(K)
in the series solution by the D(TQ)M (at t=0.5, M= N= 15) in example 4.3.2

X K=3 K=4 K=5

1 0.75000 0.68762 0.67520
2/3 0.03872 0.35016 0.55380
172 0.07775 0.85338 1.5244
2/5 0.18509 1.31846 2.5550

Table 4.6 The error for different values of X and for different number of non zero terms(K)
in the series solution by the D(TQ)M (at t=0.01) in example 4.3.2

X K=3 K=4 K=5

1 0.99990 0.99989 0.99989
2/3 093084 0.93093 0.93092
172 0.83427 0.83476 0.83478
2/5 0.73638 0.73260 0.73353
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From the numerical examples, it can be observed that DTM is an efficient method for solving
two dimensional fractional diffusion equation. The hybrid method though, approximates the
solution for small values of time as can be seen in Tables 4.2 and 4.3. In the first example,
the solution obtained from the hybrid method is same as exact solution for ¥ = 1. Moreover
as the time is getting smaller, the error is also reducing; for r < 1.

In second example, as the value of X is decreasing, the errors are also decreasing in case of
the D(TQ)M at time ¢ = 0.01. However, this pattern is not there for the greater value of time
't as well as for the DTM.

Thus, this work is an experiment of combining a semi analytical method with a numerical
method. The experiment can be called successful as the results were near to the exact solution
for small values of time. However, the method can be explored for its efficiency for large
value of time, along with its theoretical analysis.



Chapter 5
Conclusion

This work is about the application of well established methods that have been used to solve
the ordinary and partial differential equations, on the fractional differential equations. Though
there are many ways to define the fractional derivatives, the Caputo’s definition has been
used, as it is the most acceptable one because of its characteristics. Differential transform
method, a well known analytic method and differential quadrature method, an efficient
numerical method have been used to solve the fractional differential equations in one and
two dimensions. A hybrid of both these methods is also proposed.

5.1 Results

The first chapter is about various pre requisites. The details of DTM and DQM are explained
for one dimensional and two dimensional form of fractional differential equations. A part of
the introductory chapter is published in International Journal of Mathematical, Engineering
and Management Sciences, in 2018.

In the second chapter the DTM has been used to solve fractional Bagley Torvik equation and
fractional relaxation oscillation equation. The obtained numerical results are very near to the
available exact solution. Paper on Bagley Torvik equation is published in AIP Conference
Proceedings in 2017. The paper on fractional relaxation oscillation equation was presented
in CONIAPS XX in 2017.

The analytic methods have a limitation that they can not be applied on any and every frac-
tional differential equation, therefore a numerical method is needed! So in third chapter
modified DQM is applied on the fractional Burger’s equation and on fractional Fisher’s
equation. The results are good in terms of the absolute error. This work has been published
in Nonlinear Studies in 2019 and in Journal of Physics in 2020, respectively.



80 Conclusion

The fourth chapter is about the solution of a two dimensional fractional differential equation.
The trend with two dimensional fractional differential equation is different as compared to
the one dimensional equations. The DTM gives the exact solution in some cases only and
DQM gives good result for very small time step. The proposed hybrid method is giving good
results for specific cases only for instance X = 1 and 0.4 in one of the examples. This work
is presented in ICMMAAC-21 and is accepted in Nonlinear Engineering. Modeling and
Application on March 28, 2022.

Thus it can be concluded that the methods like DTM and DQM and the hybrid DTM-DQM
are easy to understand, use and are effective to solve the fractional differential equations to a
decent level of accuracy.

5.2 Future Scope

The future scope of this work includes:

» This work can be tested with the concept of fractional B-splines.
* The experiment with the new definitions of the fractional derivatives can be done.

e While using DQM, the weight coefficients can be found by using any other test
function.

¢ For the discretization of the time derivative, Lubich’s approach of third order was used
in the third Chapter. The order can be increased and checked for its accuracy for the
same differential equation.

* The hybrid method can be tested for various one dimensional fractional differential
equations.

¢ The higher order differential equations can be tried for a solution using the quintic or
higher order B-spline.

* For the space fractional differential equations, DQM can be improvised.

¢ The hybrid method and the DQM for two dimensional fractional differential equations
worked well for small values of time only. For large value of time, some modifications
can be looked into!

» This work had the experiment based results for the D(TQ)M hybrid method. Its theory
and stability can be looked into detail.
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