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Abstract

Big Data is one of the most discussed term by academicians and the IT industry

now days. The information is collected and produced at very fast speed which sur-

passes the limit. At present, more than two billion persons in world are connected

with Internet, and more than five billion people own mobiles. We are living in an

era where structured and unstructured data is produced, consumed and stored in

enormous amount on frequent basis. Database transactions, social media, images,

audios, videos etc. are the major sources responsible for generating big data in

huge capacity and diversity. This usually consists of large volumes of complex

and growing data sets with numerous self-regulating sources that are difficult to

process with the conventional techniques of data management. Using big data

mining, organizations are able to extract useful evidences from these large data

sets. In spite of big data gains, there are numerous challenges also and among

these challenges maintaining data privacy is the most important concern in big

data-mining applications since processing large scale of sensitive data sets such as

health record, banking transaction records needs to be maintained in such a way

that the private data should not be revealed to any unauthorized person.

In this epoch of data surge, big data is one of the significant areas of research be-

ing widely pondered over by computer science research community, and Hadoop

is the broadly used tool to store and process it. Hadoop is fabricated to work

effectively for the clusters having homogeneous environment but when the cluster

environment is heterogeneous then its performance decreases which result in var-

ious challenges surfacing in the areas like query execution time, data movement

cost, selection of best Cluster and Racks for data placement, preserving privacy,

load distribution: imbalance in input splits, computations, partition sizes and

heterogeneous hardware, and scheduling. The epicenter of Hadoop is scheduling

and all incoming jobs are multiplexed on existing resources by the schedulers.

Enhancing the performance of schedulers in Hadoop is very vigorous.
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MapReduce has emerged as a strong model for processing parallel and distributed

data for huge datasets. Hadoop, an open source implementation of MapReduce,

turns out to be de-facto platform which is appropriate for storage of data in dis-

tributed as well as local machines to analyze and process huge amount of infor-

mation on commodity hardware. Hadoop fragments the input file into number

of data blocks to allocate them to various DataNodes in cluster. Hadoop must

provide effective scheduling to process these data blocks in efficient way. One of

the issues that play vital role in efficient processing of MapReduce is Data Lo-

cality which is caused due to overhead of network. Data locality is equipped for

moving the computation adjacent to the data where it dwells. It is a key resource

in distributed environment which influences the tasks accomplishing time. The

issues which troubles data locality are cluster and network load, resource sharing,

cluster environment, size of data blocks, number of mappers and reducers.

Hiring different flavours of virtual machines for Hadoop virtual cluster hosted in

heterogeneous physical servers in cloud data-centre leads to many challenges for

MapReduce job and task schedulers. Heterogeneity in workloads and execution

environment is inevitable while processing huge volume of data in cloud environ-

ment. Maximizing data local execution is one of the challenging tasks in cloud

virtualized environment to improve job latency and throughput for a batch of jobs.

So, research in data block placement is at increasing pace as it is crucial for other

big data processing tools like Spark in cloud environment for effective and efficient

job and task scheduling. Once data blocks are loaded into virtual machines, it is

not generally expected to move them around the virtual cluster again unless there

is a requirement to meet replication factor. Because, it consumes huge network

bandwidth and takes significant time to move on virtual network. Therefore, it is

important to make right decisions before loading large datasets into virtual ma-

chines. Moreover, heterogeneous performance of virtual machines causes varying

latency for the same task due to disk IO contention by co-located virtual machines.

To handle these situations, initially the performance of individual disk in physical

machines is predict to choose the right disk to store data blocks. Based on the

performance of individual disk in a physical server, the number of data blocks to
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store in each virtual machine is determined. Moreover, map task execution is done

based on the heterogeneous performance of virtual machines. This increases the

number of data local execution leading to reduction in map phase latency, thereby

job latency and throughput is improved. The ideas are simulated and compared

with existing schedulers such as classical fair scheduler, RWS-based scheduler, and

HMJS. Results indicate that our proposed scheduler outperformed those existing

schedulers for makespan.

Improving the performance of the MapReduce scheduler is a primary objective,

especially in a heterogeneous virtual cloud environment. A map task is assigned

with an input split(IS) which consists of one or more data blocks. When a map

task is assigned to more than one data block, non-local execution is performed. In

classical MapReduce scheduling schemes, data blocks are copied over the network

to a node where the map task is running. This increases job latency and consumes

more network bandwidth within and between racks in the cloud data-center. Con-

sidering this situation, a methodology “Improving Data Locality using Ant Colony

Optimization (IDLACO)” is proposed to minimize the number of non-local execu-

tions and virtual network bandwidth consumption when IS are assigned to more

than one data block. First IDLACO determines a list of an optimal number of data

blocks for each map task of a job to perform a non-local execution reducing the

job latency and virtual network consumption. Then, the target virtual machine to

execute the map task is determined on the basis of its heterogeneous performance.

Finally, if a set of data blocks is transferred to the same node for repeated job

execution, it is decided to temporarily cache those data block in the target vir-

tual machine. The performance of IDLACO is analysed and compared with fair

scheduler and Holistic scheduler based on the parameters, such as the number of

non-local executions, average map task latency, job latency, and amount of band-

width consumed for a MapReduce job. Results show that our proposed IDLACO

significantly outperforms the classical fair scheduler and Holistic scheduler.
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Chapter 1

Introduction

1.1 Big Data

Now a day’s large amount of data is generating at a rapid fire speed and in vast

and diverse formats which are non-manageable by traditional databases. Hence,

the term ‘Big Data’ is coined which made it promising to store, process, access

and analyze this enormous measure of data. ‘Big Data’ doesn’t mean only large

quantity of data, it also includes the pace at which data is being generated, trans-

ferred, organized and re-organized. It also backs diversified formats of data like

text, audio, video, images, machine logs etc. Factors like volume, velocity and

variety make it radically different and divergent from conventional data . Further-

more, the word ‘Big Data’ is somewhat fresh and novel in field of IT and business

industry. In the recent literature various experts and researchers have used the

term and highlighted its use in a huge amount of scientific data for visualization

[1]. A Plethora of definitions of ‘Big Data’ are extant. Thus, Big Data is “the

amount of data just beyond technology’s capability to store, manage, and process

efficiently” [2].‘Big Data’ is primarily characterized by three Vs: Volume, Variety

and Velocity [3][4]. These terms were initially used by Gartner to define big data

1
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features. But some researchers do believe that Big data should not be categorized

by only three Vs given by Gartner but one more V i.e. Value should also be added

in its definition [5][6]. Study done by McKinsey [2], revealed that big data can en-

hance productivity, upsurge competitive advantage and upturn economic surplus

for consumers. As per a white paper of International Data Corporation [7] data

generation by year 2025 is all set to reach the level of 163 zettabytes as depicted

in Figure 1.1.

Figure 1.1: Projection big data 2010–2025, IDC’s data age 2025 study [7]

A distributed database system is a group of self-governing machines coupled by

participating networks that acts as single workstation [8]. To solve a complex

problem requires the problem to be partitioned into sub problems where every sub

problem is tackled by at least one of the computing node. These computing nodes

can talk to one another via sending and receiving messages. The present scenario

concerns about Big Data focuses on compute and data intensive tasks. A collection

of huge data sets which are non-manageable for conventional tool are termed as

Big Data [9]. Organizing Big Data is vital for business and big data analytics in

terms of accessing data that arouses the requirement of such applications that can

handle distributed processing of huge amount of data existing in different type of

formats [8][9][10].
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1.2 Hadoop

It is an open source framework of Apache Software foundation used for storage and

processing of large and huge data sets (however for small datasets it is not recom-

mended) with clusters of commodity hardware. Hadoop is written in Java and was

originally conceived and designed by Dough Cutting in year 2005 [11]. Hadoop

Ecosystem contains various tools such as HDFS, HBase, MapReduce, HCatalog,

Pig, Mahout, Flume, Chukwa, Avro, Hive, Oozie, Zookeeper, and Kafka. Two

central components of Hadoop are: HDFS and MapReduce [11].

Doug Cutting and Michael J. Cafarella, created Hadoop in context to be data

intensive to support Nutch search engine project [12]. Hadoop is designed on the

basis of master-slave architecture as shown in Figure 1.2. It offers easy solution

for distributed and parallel computing with an ability of skipping the descrip-

tion related to communication recovery program [13]. The master JobTracker is

responsible for management of resources of cluster, job scheduling, handling fault-

tolerance and monitoring the progress. The TaskTracker module, present on each

of the slave nodes, is accountable for throwing parallel tasks along with task status

to the JobTracker. Responsibility of slave node here is to run as well as execute

one or the other Map or Reduce tasks, and is bifurcated into static computing

slots [14]. As a typical Hadoop cluster contains number of commodity comput-

ers therefore the jobs allocated to TaskTrackers need not be all the time Data or

Rack local [15]. On deciding about the number of mappers and reducers, the user

programs are executed by splitting the input file into default 64MB blocks and

allocating these blocks among various slave nodes [15]. The physical distance of

nodes and clusters may cause communication delays, resulting in longer waiting

time for task’s I/O and low utilization of CPU resources [15]. Hadoop offers, a

replication policy for creating multiple copies of a block on different nodes plus

racks, enhanced scalability and capability of installation on low-budget hardware
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Figure 1.2: Hadoop Architecture

to deal fault tolerance [15]. It consists of modules Distributed file system (HDFS)

and MapReduce model for storing and processing of data.

1.2.1 HDFS

The responsibility of HDFS is to store and preserve the data. It is a specifically

intended file system utilized for storage of gigantic data sets on clusters of com-

modity hardware with streaming access pattern [16]. In HDFS the default block

size is of 64 MB (can assign also 128MB or 512MB) [17]. The reason behind block

size of minimum 64MB is that if block size is 4KB as in case of UNIX then HDFS

needs to maintain more METADATA for small size blocks i.e. why it is used only

for huge data sets [18]. HDFS follows master slave architecture as shown in Figure

1.3. Name Node, Secondary Name Node, DataNode, JobTracker, and TaskTracker

are five services of HDFS [19]. All services operate internally at the background.

All Master Services can communicate with each other and all the Slave Services

can converse to each other [20].
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Figure 1.3: HDFS Architecture

By default, the replication factor for a block in HDFS is three. HDFS default

replication policy only ensures two things [21]:

1. A DataNode cannot have more than one replica of any block.

2. A rack cannot have more than two copies of same block.

All DataNodes send ‘heartbeat message’ and block report to Name Node for every

short period of time to say that certain clients have stored some blocks in local

DataNode and are still alive, processing and working properly. If any of the

DataNode is not giving proper heartbeat in-time then NameNode may think that

DataNode has become dead and is removed from meta-data and then some other

DataNode is chosen to store the copy of file to maintain the default replication

property of HDFS. DataNode which was declared dead may start storing the data

freshly [20].

Being motivated by GFS, Hadoop Distributed File System (HDFS) is used for

storage of huge data (terabytes or even petabytes) and files on several computers

[15]. By replicating data on geographically diverse nodes and different servers

it attains reliability. These nodes dialogues to: rebalance scattered data, create

and transport replicas, and preserve high data replication rate. HDFS contains:

NameNode and DataNode where the NameNode acts as master in order to manage
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namespace and the DataNode is slave node used to store blocks of data nearby

and remote locations following distributed policy to perform read/write requests

[22].

1.2.2 Mapreduce

After storing data the next thing is processing the data which is performed using

MapReduce. It consists of two major components: JobTracker and TaskTracker.

JobTracker act as master and TaskTracker acts as workers [23]. JobTracker does

not know which data is placed on which DataNode because there is no one-to-one

communication between JobTracker and DataNode. JobTracker requests NameN-

ode which in turn goes through its metadata to get the locations [23][24]. Client

requests JobTracker to accept jobs which are in form of MapReduce programs

comprising mapper and reducer methods, and set of input/output files. Location

of these input files is retrieved from the metadata of NameNode by JobTracker.

TaskTrackers are assigned tasks by JobTracker, applying suitable scheduling algo-

rithm. The TaskTrackers apply the designated operations encoded in reducer, on

the data elements spilled from mapper and generates the outcomes in the form of

key-value pairs to write it on to HDFS [23].

MapReduce [25] is one of the main programming models that supports parallel

and distributed processing of a huge datasets. It is extremely scalable and efficient

platform because it allows use of number of commodity machines for distributed

computing and furthermore it provides application programmers a linear execu-

tion of logic stated with mappers and reducers. The lower level of parallelization

particulars are taken care at runtime. Important characteristics of MapReduce in-

cludes scaling, fault tolerant and it can be easily applied to data mining, machine

learning and technical simulations. Among Hadoop, Sphere, Mars etc. Hadoop is

commonly and extensively used MapReduce platform [26][27][13].
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Figure 1.4: Map Reduce Structure

For storage of data Hadoop consists of Hadoop Distributed file system (HDFS) and

processing of data is done via MapReduce model in HDFS following master-slave

architecture as depicted in Figure 1.4 [28][29]. The JobTracker is master node and

the TaskTrackers are slave nodes. Job is split into number of map and reduce

tasks. The input of a job in Hadoop is divided into fragments of same size called

input splits. Map tasks results are deposited to local disk and these intermediate

results are input for reduce tasks. Further, the output of reduce task is generated

and stored in HDFS [28]. Scheduling the reduce tasks in Hadoop comes up with

several problems related to congestion because task scheduling process in Hadoop

is based on pulling the data from source node. TaskTracker is responsible for

sending a heartbeat message periodically and carting map-reduce tasks by issuing

requests. JobTracker is responsible for ensuring each task to run on the designated

TaskTracker which holds the required input splits. Thus this is the reason for

MapReduce being data local at the time of map tasks scheduling. One of the

negatives of Hadoop is that any reduce task which is still not running is scheduled

to any of the demanding TaskTracker irrespective of location of TaskTracker in

network [30][19][31].
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1.3 Background

Exploding data growth [32] due to web and IoT based applications [33] has been

affecting businesses and government sectors for effective decision making. Hadoop

MapReduce [34] is one of the efficient batch processing tools for processing large

scale dataset using cluster of unreliable computers. Nowadays, Hadoop MapRe-

duce is offered as a service [35] on a cluster of virtual machines from cloud for

pay-per-use basis. This includes significant challenges to be addressed to improve

MapReduce job latency and throughput. In production environment, a batch

of MapReduce jobs is executed repeatedly on the same dataset to extract in-

formation at different times. However, heterogeneity in execution environment

[36] is a barrier to improving performance of MapReduce job scheduler further.

After Hadoop 2.0 [37], users can configure the resource requirement (container

size) of map and reduce tasks of each job in the batch. These will cause vast

resource under-utilization due to unmatched container size of map/reduce tasks

to fit in heterogeneous virtual machines. Moreover, hiring different flavours of

virtual machines hosted in heterogeneous physical servers in cloud data-centre, as

shown in Figure 1.5, leads to significant challenges [38], [39] for MapReduce job

and task scheduling. There were some efforts to improve MapReduce job latency

and throughput for a batch of heterogeneous MapReduce jobs while scheduling

in heterogeneous environment. Data block placement in Hadoop Distributed File

System (HDFS), and scheduling map/reduce tasks play a vital role in improving

the performance of MapReduce scheduler. In general, data blocks are stored in

HDFS with replication considering rack awareness in physical cluster, as shown in

Figure 1.6. Consider three racks each with four computers and a file with three

blocks. From Figure 1.6, it is easy to understand that rack-awareness is strictly

held rather than holding equal number of blocks in each machine. On the other

hand, virtual machines in the virtual cluster (Figure 1.5) are hosted in racks across

cloud data-centre [40]. Rack awareness is not provided to store replicated data
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Figure 1.5: Hadoop Virtual Cluster

blocks to achieve fault tolerance in virtual cluster [34]. So, data blocks are stored

evenly in virtual machines across virtual cluster. Moreover, once data blocks are

placed into virtual machines, it is not generally expected to move them around in

cluster again, unless there is a requirement to meet replication factor. Therefore,

it is important to make right decisions before loading large datasets into virtual

machines.

Secondly, opensource MapReduce job and task schedulers [41], [42] are mostly

based on resource availability in the virtual cluster. As servers in cloud datacentre

are highly heterogeneous in capacity and performance, virtual machines also ex-

hibit the heterogeneous performance [40]. If many virtual machines are hosted in

a physical server, sometimes their storage may be allocated to the same hard disk

drive even though there are many hard disk drives available, as shown in Figure

1.7. Generally, in a server computer, CPU and memory are space-shared while disk
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Figure 1.6: Rack-awareness

and network bandwidth are time-shared. This leads to varying latency for map

and reduce tasks of a MapReduce job due to disk IO contention/race. It highly

affects data local execution as disk IO is mostly busy [43]. To perform non-local

execution, data blocks must be brought from disks, that consumes more time. In

addition, the nature and resource requirement of map/reduce tasks of different

jobs are highly heterogeneous. Therefore, it is necessary to exploit the dynamic

performance of virtual machines based on the task requirement of different jobs

achieving data local execution.

Figure 1.7: Resource Sharing [39]

To handle these situations, performance of individual disks in physical machines
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must be measured, because disk IO rate becomes a bottleneck when many Hadoop/non-

Hadoop virtual machines get allocated storage in the same disk [40].

In general, MapReduce jobs tend be more disk-intensive, which needs constant

disk bandwidth to bring input data blocks for map tasks execution. However, each

virtual machine hosted in that physical server tries to share the disk bandwidth.

This specifically leads to an increase in map task latency as map tasks read data

blocks for preliminary processing. Therefore, data blocks must be stored based

on the performance of disks, so that map tasks get input data blocks seamlessly.

Moreover, as virtual machines in the hired virtual cluster could be of different

flavour, the number of blocks processed per unit time significantly varies. So, it

is important to understand the capacity and processing performance of different

virtual machines before loading data blocks.

To achieve this, we initially find the performance of individual disk in a physical

machine to choose the right disk to store data blocks. Based on the performance

of individual disk in a physical server, the number of data blocks to store in

each virtual machine is determined. MapReduce jobs in the batch can be CPU-

intensive, network-intensive, memory-intensive, and IO-intensive. When they are

scheduled without understanding its nature, for example, CPU-intensive job may

be scheduled onto virtual machine which faces CPU bottleneck leading to increase

in task latency, which in turn increases job latency. Therefore, understanding

the performance of each virtual machine for map tasks of different jobs could help

schedule map/reduce tasks in right virtual machine. Because, executing map tasks

demand data locality to the maximum without moving them around in cluster

while reduce tasks require to minimize bandwidth consumption. This can improve

MapReduce job latency and throughput when MapReduce jobs are submitted as

a batch.
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1.4 Heterogeneity in Mapreduce for Cloud

As VMs for Hadoop virtual cluster are hosted across racks in a cloud data centre

(CDC), it introduces various heterogeneities at different levels in a virtualized en-

vironment: hardware heterogeneity, VM heterogeneity, performance heterogeneity,

and workload heterogeneity, as shown in Figure 1.8.

Figure 1.8: Heterogeneity at different levels [39]

1. A CDC containing physical servers of different configuration (processor type,

memory size, etc.) and capacity is called hardware heterogeneity.

2. VMs in the virtual cluster could belong to different flavours, such as small,

medium, and large, and be hosted in heterogeneous physical machines. It is

called VM heterogeneity.

3. Hardware heterogeneity, VM heterogeneity, and co-locating VMs interfer-

ence together cause heterogeneous performance of same map/reduce task

running in a VM. It is called performance heterogeneity, which makes VM

performance unpredictable at the infrastructure level. This causes various

problems for data-intensive applications. For example, a low-performing

VM might receive a greater number of data blocks to process, while a high-

performing VM might receive very less number. This increases the map task
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latency; thereby, increasing the MapReduce job latency. Thus, it is essential

to consider the heterogeneous performance of VMs to improve MapReduce

scheduler performance.

4. Varying number of tasks and its resource demand denote workload hetero-

geneity. In MapReduce, map and reduce tasks can be configured with differ-

ent size of containers (resource size). More specifically, the number of blocks

processed by map task of different jobs can also be customized. Even though

it minimizes the number of map tasks, it can increase the number of non-

local executions [32] and local bandwidth consumption at the MapReduce

level.

1.5 Data Locality in Mapreduce

Data locality is an influential metric of Hadoop which makes considerable impact

on system performance. Elements that play vital role in data locality include

number of replicas, cluster size, and job execution time and stage. Creating more

number of replicas results in improved data locality but it employs more storage

space. If size of cluster is huge then it ventures reduced data locality. When job is

in initial stage, the input data is on nodes and there are more number of tasks that

are not mapped then there is high probability of data locality, consequently at time

of job end the probability of data locality is low. Default scheduling algorithm of

Hadoop, First in first out (FIFO), supports concept of data locality. The master

JobTracker node when receives a heartbeat message from slave node, then initially

attempts to look for a map task in the queue for a job whose input data is with

that node. If searching of data is successful it results in node level locality and

task is launched on particular node, but if node level locality not achieved then

JobTracker efforts for rack locality as shown Figure 1.9. Further if again flops

then a task is picked randomly which provides rackoff locality. FIFO is in support
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of data locality but it does have shortcoming of performing scheduling task to task

irrespective of its impact on other tasks [27][28]. In view of balancing the load,

data is disseminated by Hadoop to numerous nodes on the basis of approachability

of disk space.

Figure 1.9: Types of data local execution during MapReduce job execution

The default policy for data locality is concrete and effective for homogeneous

environment when nodes are indistinguishable i.e. workload of all nodes is equal

which signifies that there is no requirement of shifting data from one to another

node. When cluster environment is heterogeneous, local data can be processed

fast by a node with high-performance than a node with low performance. Once

the high-performance node completes local disks data processing, it is given the

data residing in a distant sluggish node. Moving unprocessed data from a sluggish

node to a high-performance node increases overhead if volume of data is enormous

[29][30].

There are different types of data locality [44], as shown in Figure 1.10: Node

local (NL), rack local (RL), and cluster local (CL) execution. Consider a cluster

with two racks (rack1 and rack2), each with two physical servers (node1...node4).

There is a set of data blocks (b1...b9) loaded in these physical servers. Assume

each map task is assigned with an IS that refers to two data blocks.
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Figure 1.10: Types of data local execution

1. NL is executing a map task where the required data block resides. Thus,

map task1 processes b1 and b2 locally in node1. This does not transfer data

outside the server.

2. If a data block is copied from one server to another server in the same rack,

it is called RL execution. Thus, map task2 in node2 processes b4 and b3,

where b3 is retrieved from node1. The latency of RL is considerably higher

than that of NL since it consumes real network bandwidth. If there is more

than one virtual machine hosted in a single server, there could be virtual

network bandwidth consumption between virtual machines hosted in the

same server.

3. If a data block is moved off the rack across the data center, it is called CL

execution. Blocks that are copied must cross three switches (top of the rack

(ToR) switches and a central switch) to reach the target node. As shown in

Figure 1.10, IS for map task3 includes b9 and b6, where b6 is copied over

network to node where map task3 is hosted. It increases job latency and
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consumes more physical network bandwidth. So, closer racks are preferred

for non-local execution in this case.

1.6 Data blocks and Input splits

Typically, a MapReduce job consists of a set of map and reduces tasks. A map

task is assigned with an input split (IS), which points to one or more physical data

blocks. It is worth noting that data block and IS are not the same. A data block

is a physical entity in Hadoop distributed file system (HDFS) while IS is a logical

entity in the MapReduce during a job execution. IS points to one or more data

blocks processed by a map task. As shown in Figure. 1.11, consider a file of size

256 MB with a data block size of 64 MB.

Figure 1.11: HDFS data blocks vs Mapreduce IS

This results in four data blocks in HDFS with the desired number of replications.

If each IS is configured to point two data blocks, only two map tasks are launched.

These two data blocks are logically linked and processed by each map task. Thus,

the MapReduce scheduler forms a logical link to execute all data blocks sequen-

tially for a map task. As shown in Figure. 1.11, consider the map task (map1)



Chapter:1 Introduction 17

launched in node1 where the first data block resides. Now, block2 is copied from

node2 over the virtual network to node1 to finish the first map task execution.

Similarly, if an IS is configured to contain five data blocks, a map task is launched

in the node where first data block resides. The other four data blocks are copied

from their respective node to the node where the map task is launched. When

the number of data blocks in an IS for a map task increases, the number of non-

local executions (NNLE) increases, consuming more virtual network bandwidth.

Besides, data blocks are stored on the basis of topological (rack) awareness, which

is feasible only in the physical cluster. It is not yet known to be implemented

for a virtual cluster in a cloud environment. Thus, VMs in the virtual cluster for

MapReduce could be in the same rack or distributed across racks in the CDC. If

all virtual machines in the virtual cluster are hosted in a single physical machine,

there will not be any non-local executions. When VMs are hosted in different

racks across the CDC, network bandwidth consumption is highly critical since it

must transfer data through hierarchical switch connections. Sometimes, non-local

execution is performed when slave nodes do not have any free slots to process data

blocks locally. Thus, data blocks are copied over the local network, which incurs

communication costs.

1.7 Motivation of the study

Heterogeneity in workloads and execution environment of Hadoop mapreduce is

unavoidable while processing huge amount of data in the cloud virtualized envi-

ronment. Therefore it affects the performance of hadoop mapreduce schedulers.

This motivated us to design scheduling algorithm’s, for heterogeneous virtualized

environment, to increase the number of data local execution for improving job

latency, throughput, number of non-local executions, average map task latency,

and the amount of bandwidth consumed for a MapReduce job. Problems with the

existing works(research gaps) are:
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1. Heterogeneous performance: Just understanding the performance of a

node from the near past may not improve task latency and resource utiliza-

tion. For example, the map phase requires more of disk IO and CPU, while

reduce phase requires network IO and CPU. When performance for a node

is calculated based on CPU and Disk IO, reduce task might face bottleneck

due to network congestion. Performance of a VM also varies dynamically

due to the interference of co-located VMs. Also, independent jobs go for

non-local execution due to static scheduling decision. Moreover:

(a) All these works suffer from computational load imbalance as data lo-

cality is mandatory to minimize the number of non-local execution.

(b) Data locality is significantly affected while concentrating on the perfor-

mance of a node to place tasks.

(c) Dynamically tuning container configurations minimizes the latency but

at the cost of resource under-utilization.

2. Heterogeneous workloads: While placing heterogenous tasks in heteroge-

neous VMs, a large portion of virtual cluster resource is wasted. So, finding

the right combination of tasks to schedule in each VM is a possible option

for task scheduling.

1.8 Objectives of the study

In order to explore and enhance the working of Hadoop in heterogeneous multi-

node clusters, this research aims to achieve following objectives:

1. To design a novel scheduling algorithm to improve the Data Locality in

Hadoop’s heterogeneous multi node cluster.

2. To improve the amount of data processed in Hadoop’s heterogeneous multi

node cluster.
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3. To integrate the designed algorithm with Hadoop.

4. Testing of results to analyse the performance of algorithm.

1.9 Thesis Contribution

The research objectives are achieved by categorizing them into two works:

Work 1(Chapter 3):

1. To improve the amount of data processed in Hadoop’s heterogeneous multin-

ode cluster.

2. To integrate the designed algorithm with Hadoop.

3. Testing of results to analyse the performance of algorithm.

Work 2(Chapter 4):

1. To design a novel scheduling algorithm to improve the Data Locality in

Hadoop’s heterogeneous multi node cluster.

2. To integrate the designed algorithm with Hadoop.

3. Testing of results to analyse the performance of algorithm.

Focus of thesis is to to design scheduling algorithm’s to improve data locality and

improving the amount of data processed in heterogeneous multi node cluster of

hadoop. The contribution of thesis can be categorized as:

1. A review of various existing scheduling algorithms in hadoop along with their

key features and challenges.
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2. A review and comparison of Scheduling Algorithms that are aware of Data

locality in Hadoop with their shortcomings.

3. Prediction based data block placement algorithm to improve amount of data

processed.

(a) Predicting disk IO bandwidth of every disk in each physical machine

before loading data blocks.

(b) Scheduling map tasks of different jobs based on the heterogeneous per-

formance each virtual machine.

4. An ACO based map task scheduler algorithm to improve data locality.

(a) To calculate heterogeneous performance of virtual machines.

(b) To find a list of data blocks for each IS that can minimize the number

of non-local executions and bandwidth consumption using ACO.

(c) To cache data blocks that are frequent in the target virtual machine.

1.10 Thesis Outline

The thesis is organized in five chapters. A brief outline of the chapters is given

below:

Chapter 1 introduces to the domains of Big Data, Hadoop, Data Locality along

with background and motivation behind this work. It also highlights objectives of

study and contribution of thesis.

Chapter 2 presents the allied research work done by different researchers in this

domain. Literature review has been classified into sub-parts. Initially, the existing

default algorithms were compared with other popular schedulers in Hadoop along

with their key features and challenges . Secondly, features and drawbacks of
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various scheduling algorithms related to data locality and then review of data

block placement in hadoop to improve amount of data processing.

Chapter 3 proposes a method to predict IO bandwidth of every disk and migrating

the data blocks. The aim of proposed method is to improve amount of data

processed in heterogeneous hadoop clusters. The results along with experiments

conducted are discussed in this chapter.

Chapter 4 proposes a method to minimize the number of non-local executions and

virtual network bandwidth to minimize global transfer cost using ACO. The basic

idea of this proposed method is to improve data locality in heterogeneous hadoop

clusters. The results along with experiments and comparison to existing methods

are discussed in this chapter.

Chapter 5 conclude the thesis underlining the key conclusions of the current re-

search and author’s significant contribution in the thesis. The scope for future

research in this area is also notified.



Chapter 2

Review Of Literature

2.1 Literature Review

2.1.1 Scheduling Algorithms in MapReduce

Several regions of attempt have concerns with enormous information and more

or less traditional business applications have confronted enormous information for

quite a while, such as aircraft reservation frameworks, and more modern business

applications to exploit massive information are under development for e.g. infor-

mation sharing hubs, groups of databases). Big data problem can be split into

two individual issues: Big data objects and big data collections [1]. Scientists in

computer field as well as biologists are struggling with more and more huge data

sets these days [45]. Various problems that surface and required to be surmounted

while processing big data includes timeliness, scalability, privacy, error handling,

visualization and heterogeneous data and the same must be taken into consider-

ation for highly effective and accomplished processing of big data. This chapter

also seeks to compare some of the Hadoop’s components like Hive, HBase, Cas-

sandra, MongoDB and Redis of Hadoop [46]. Public-key based extensions: Public

22
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Key cryptography for INITial Authentication in Kerberos (PKINIT), Public Key

utilizing Tickets for APPlication servers (PKTAPP) and Public Key Cryptogra-

phy for CROSS-Realm Authentication in Kerberos (PKCROSS) in [47] provides

extra support to public-key cryptography in Kerberos framework at various stages

which results in enhanced and improved security and as well as scalability.

Comparison of performance of Hadoop clusters in homogeneous and heterogeneous

environments was made and a new load balancing framework for MapReduce was

for chalked out much more efficacious performance better in both environments.

Furthermore, instead of bifurcating the tasks for participating nodes equally, as

in conventional framework of MapReduce, MARLA (“MApReduce with adaptive

Load balancing for heterogeneous and Load imbalAnced clusters”) forms a large

number of tasks conceived from input divisions, more noteworthy in number than

the summation of its nodes. Thus, this load balancing technique permits the

contributing nodes to themselves appeal the tasks as and when previous task is

completed [48]. Load balancing scheme in [49] has taken advantage of Cloud

Storage’s grey prediction theory to predict the load rate for various replicas at

some particular instance for a node to perform different operations efficiently. Yet

another forsighted and pioneering dynamic strategy envisaged to balance the load

in HDFS is by placing blocks on DataNodes considering metrics bandwidth of

network and fault tolerance [50].

Information dispersal algorithm in [51] along with data placement strategy is used

for encoding the files to the blocks and for storing the blocks in cluster to im-

prove storage efficiency to enhance availability of data and for better network load

both the storage load of DataNode and usage of network were combined. Data

placement solution in [52] improves data transfer time in Hadoop by calculating

the bandwidth among the DataNode and client periodically, and exhausting the

DataNode having maximum bandwidth placing data blocks. By combining Disk

Utilization and Service Blocking Rate Model’s new improved technique in [53]

has been proposed to balance the load in HDFS as compared to load balancing
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method used in existing HDFS. Workload imbalance of unbalanced node can be

balanced by minimizing the data transfer time by computing the capacity of each

node and balancing the data stored in each node dynamically for heterogeneous

Hadoop environment [54]. Load balancing can be improved by heightening the

execution of reduce task as referred to [55] by accomplishing all reduce tasks at

same time based on performance of nodes by utilizing the historical information

and assigning the tasks to the nodes as per performance i.e. the input to nodes

with poor execution is diminished. In [56] the authors introduced a new node

called BalanceNode with which DataNodes having heavy-load and light-load can

be compared, to enable the light loaded nodes to share a portion of load from

heavy loaded nodes, consequently to minimize the blocks movement cost. Based

on system information a load balancing method envisaged by [57] undertakes total

available CPU cores and the memory size at disposal to identify the performance

of each Data Node and implements the algorithm with sufficient and insufficient

memory environment.

Triple-H hybrid design for heterogeneous storage architecture given by [58] hides

the disk access cost for Read/Write operations, cutting down I/O bottlenecks, en-

sures the trustworthiness by using SSD-based staging for HDFS and efficient use

of different types of devices on High Performance Computing Clusters. Multiple

partitioning technique[59], resolves the problem of load imbalance at MapReduce

stage, instigated by Hadoop’s default partition algorithm, by refining the tasks

and balancing the reducer input in the map phase to improve job scheduling and

resource utilization. To deal with problem of maintaining privacy while execut-

ing the sensitive and critical data on unsecured cluster [60] introduces a dynamic

scheduling algorithm to balance the load and transfer data among Hadoop racks

on the basis of log files without revealing the private information. Anonymization

algorithm for probabilistic inference attack and similarity attack by [61] provides

better and effective privacy and data utility on the basis of resilient and cluster-

ing. Data encryption scheme for HDFS given by [62] for ARIA and Advanced
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Encryption Standard algorithms together on Hadoop provides splitting of blocks

and data processing component for variable-length blocks to implement encryp-

tion and decryption in efficient way for various applications, such as sorting, word

counting, k-Means, and hierarchical clustering.

Dynamic Information as a Service architecture for Hadoop cluster by [63] using

Scheduling, Monitoring, Virtual Machine Management, and Virtual Machine Mi-

gration modules highly useful in providing load balancing which in turn enhances

data locality, resource scheduling. For maximum utilization of the resources which

are held by idle slots [29] held out BASE (Benefit Aware Speculative Execution) as

resource stealing scheduling algorithm which improves execution time of job and

reduces the speculative tasks which are not advantageous in MapReduce by steal-

ing the resources from idle slots. Longest Approximate Time to End scheduling

in [64] overcomes the weaknesses of both progress-rate-based and threshold-based

scheduling by detecting straggler tasks early and improves the response time of

Hadoop by factor of 2 on a cluster of 200 machines on Amazon’s Elastic Compute

Cloud. Deadline Constraint algorithm envisaged in [65] for scheduling confirms

execution of jobs for which deadlines can be encountered through a cost model for

executing the job, but it does not pay any head to features like estimating filter

ratio and run time for MapReduce task, distribution of data. Dynamic Priority

Multiqueue algorithm [66] renders the tasks near to finish the job on a priority to

adorn the response time for Hadoop jobs in MapReduce phase.

2.1.2 Data Locality in HDFS

Google [8] has been productively using the MapReduce programming model for

diverse purposes and this achievement can be endorsed for numerous causes:
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i. Even the programmers who have no exposure to distributed and parallel systems

can use MapReduce model as it conceals the subtle elements of parallelization,

fault tolerance, locality optimization, and load balancing.

ii. Extensive problems like generating data for Google’s Web search service, sort-

ing, machine learning, data mining, and lots of other systems, can be expressed

easily as MapReduce computations.

iii. Made it possible for MapReduce to scale to huge clusters consist of enormous

number of machines by efficiently utilizing the resources and is appropriate for

computational problems come across at Google.

Degraded performance of Hadoop due to heterogeneity inspires to propose a data

placement strategy [28] for placing data across nodes, to improve data locality,

in manner that every node has stable load of data processing. Furthermore this

scheme smartly performs load balancing to attain enriched data-processing on the

data stored in each node. The performance evaluation on actual data-intensive ap-

plications Grep and WordCount reveals that data rebalancing among participating

nodes earlier than data-intensive operation consequently improves performance of

heterogeneous clusters in MapReduce.

A new task scheduler [30] introduced specifically for scheduling reduce tasks to en-

hance its data locality to effectively increasing the processing of requesting nodes.

The technique confirms run the reduce tasks right TaskTracker so that network

bandwidth can be used better. This proposed scheduler can minimize local data

shuffling by 11-80% as shown in experiments.Dynamic task scheduler [67] used for

predicting performance of number of MapReduce jobs and dealing with designation

of resources to each job at runtime to accomplish the target without squander-

ing resources. This scheduler foresees the expected finishing time for individual

MapReduce job by exploiting fact that job in MapReduce is comprised of several

tasks (include mappers and reducers) to accomplish, in addition the number of

tasks are deliberated ahead of time amid the phase of job initialization at the time
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of input split, and observing performance of job at runtime. Considering both

individually submitted and yet not finished jobs, the scheduler observes the time

taken by previously finished tasks to know average task length for envisaging the

job finishing time. This estimation allows the scheduler to adapt required task

slots for each job to be allocated at runtime. Experiments conducted to study the

influence of data locality and the problems allied with usage of memory in MapRe-

duce phase of Hadoop reveals that reading of data locally is quicker (around 1.5-2

seconds instead of 3 seconds) than reading from distant nodes in HDFS which

attributes to distress data transfer on network, and large inputs leads to failure

of one slave node which in turn affects the other slave node resulting in degrading

performance in terms to run task and serving data to distant TaskTracker.

Prefetching and Pre-shuffling schemes [68], implemented in High Performance

MapReduce Engine (HPMR), proved to enhance the performance of shared en-

vironment of MapReduce computation, as a solution to problem that Hadoop-

On-Demand (HOD) upsurges the use of resources on the cost of performance

when number of users are in race for network and hardware resources which sig-

nificantly deteriorates the performance, in contrast to dedicated environment for

MapReduce. Prefetching scheme enhances data locality using intra-block prefetch-

ing and inter-block prefetching. Two issues of intra-block prefetching: essential

to synchronize the computation and catch suitable prefetching rate, tackled by

introducing concept of bi-directional processing bar to synchronize computation

along with assessing the efficacy of technique, look for suitable prefetching rate to

maximize performance by reducing I/O overhead and eliminating duplicate read

operations. Inter-block prefetching, pre-fetch the required replica of block to the

local rack by perused it from the node with minimum loaded replica’s so as not

to limit the effect of performance as whole. Pre-shuffling drops the shuffling’s re-

quired for intermediary outputs by observing the participating node data or input

splits at map phase to envisage which reducer the pairs of key-value are segre-

gated. Data locality is main concern of prefetching scheme while pre-shuffling is
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responsible for moderating the overhead of shuffling overhead in reduce phase.

In [69] authors designed a parallel task scheduler which can control the allotted

capacity of resources to users via regulating their time spent and capable of effec-

tive preemption and work conservation. This dynamic priority technique provides

effective decisions regarding prioritization of jobs and tool for users for improv-

ing and altering the capacity to cope with their job requirements. Due to light-

weight design its plus side includes improved data locality, enhanced scalability

and overhead of virtualization. Whenever required the users can also scale back

the consumption of resources, but the cost of this is too expensive. The major

drawback of this approach is not strictly imposing the properties of isolation and

no proper mechanism of dealing with long running tasks. A fair scheduler [70] is

designed, to elucidate the clash among data locality and fairness, by proposing

a delay scheduling technique, for a cluster of 600 nodes, at Facebook. The jobs

are scheduled according to fairness and need to wait slightly to let the other jobs

to launch tasks. This algorithm claims to attain almost optimum data locality

and fairness for variety of assignments and upturns the throughput. If fairness is

imposed strictly it results in loss of locality in two ways: sticky slots and head-of-

line scheduling, although 100% locality can be attained by slightly compromising

fairness. Whenever the number of jobs is changed, resources are reallocated by

killing the executing tasks to entertain new job and wait to let the running task

finish for better fair sharing. This delay scheduling method has been executed in

Hadoop Fair Scheduler and improves the response times by 5x for light jobs while

and doubles the throughput for heavy assignments.

A mathematical model was proposed in [71] to calculate the cost involved in as-

signing tasks for MapReduce framework of Hadoop. Outcomes of this model in-

clude: Optimal assignment of tasks cannot be achieved unless P = NP, discards

the supposition that more replicas into system always results in better load bal-

ancing, algorithm for overall Hadoop task assignment by offering maximum flow

and improved threshold procedures using additional constant that bank on merely
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number of servers and cost function for data locality. To improve data locality in

homogeneous environment [72] introduces NKS (next-k-node) scheduling strategy

for map task by analyzing probability of all map tasks to schedule highest prob-

ability task. Low probability tasks can be reserved for nodes that satisfies node

locality. The problem with default policy is that it processes some of the map

tasks irrespective of node locality by choosing the task which is traversed first,

irrespective of whether the nodes having input data for task’s may issue requests

later on. Experimental results of NKS strategy shows: 77% network load reduc-

tion, 78% decrease in those map tasks that are processed without node locality

and enriched performance of MapReduce. Distributed adaptive data replication

algorithm [73] aims to increase data locality with an adaptive replication method

having minimum overhead, via automatically creating more replicas for popular

datasets and least replications for unpopular datasets. The method promises min-

imum network traffic, flexibly adapting changing file access methods and put a

budgetary limit on additional memory space to be occupied by replicas of data.

By using probabilistic sampling along with aging algorithm individually for re-

spective node this technique resolve issues of creating lots of replicas for every file

and where to store these replicas. It increases data locality by 7x as compared to

FIFO scheduler and reduces turnaround time by 19% and job slowdown 25%.

The algorithm in [74] proposes a method to reduce access latency by foreseeing

the forthcoming file usages. In order to increase locality Predictive Hierarchal Fast

Spread (PHFS) algorithm pre-replicates data in hierarchal order and attempts to

upsurge locality in accesses by calculating user’s dynamic adaptability for repli-

cas and with assumption that users working in on the similar environment will

demand high probability files. As compared to common fast spread, PHFS re-

sults in improved access latency. An algorithm to provide optimal data locality

by scheduling multiple tasks simultaneously by emphasizing merely on locality

at node level i.e. placing data and compute on same node is proposed in [75].

Scheduling the tasks one-by-one without caring about its influence of one task
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on other tasks makes default scheduling methods non-optimal. Therefore Linear

Sum Assignment Problem has been integrated with proposed method to consider

all the available multiple tasks and idle slots at once. Considering the state when

tasks to be scheduled are not more than available idle slots, experiments performed

on different parameters: number of tasks, number of nodes, slots per node, idle

slots ratio and replication factor that affects the impact of data locality reflects

enhancement in goodness of data locality by 14%. Authors mainly focus on de-

termining optimality of default algorithms in Hadoop as compared to Linear Sum

Assignment Problem.

To address the overheads allied to data locality in Hadoop [76] proposed a repli-

cation scheme for data on the basis mechanism access count prediction to enhance

data locality and minimizing data transfer time resulting in reduction of overall

processing time. This technique uses Lagrange’s interpolation to envisage the suc-

ceeding access count of the data files, consequently to decide about whether to

create a new replica or to use dynamically the loaded block of data in place of

cache in order to optimize replication factor. The experimental results illustrates

that mapping phase completion time shrinks by 9.6%, map tasks with node local-

ity grows by 6.1%, decrease of map tasks by 45.6% in rack locality and 56.5% in

rack-off locality. To interpret problem of data locality in MapReduce from per-

spective of network [77] introduced a joint scheduler for scheduling and routing

with an aim of utilizing the resources and network by pre-processing the routing

information of few tasks, and not waiting for some idle machine to demand it. This

scheduler can work efficiently with any workload within the determined capacity

region. It considerably increases the throughput by more than 30% and minimizes

delay for different workloads.

Pause-resume preemption [78] algorithm, which first time considers both Map

and Reduce functions to improve execution time and data locality. It safeguards

schedulers to choose among kill and wait processes. Furthermore, the preemption

increases the overhead but it has improved map tasks locality by nearly 5%. This
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algorithm performs better for the circumstances where the share changes contin-

uously because of appearance of fresh jobs. Based on prefetching the resources,

[79] gives a novel scheduling policy to improve data locality by evaluating left over

time to finish some task. It pre-fetches the resources for a remote map tasks with

some overhead for disk space and network to provide better data locality. The

outcomes with experimental setup of 4 computers, 1-JobTracker, 3-TaskTrackers

and Hadoop0.20.2 on dataset WordCount, the algorithm illustrates enriched data

locality of map tasks by nearly 15%, and a little bit reduction in response time of

a job.

To increase overall working of MapReduce along with data locality and task com-

pletion time in heterogeneous cluster environments [80] offers techniques to con-

tribute following:

i. Every node implements dynamic data partitioning regardless of various nodes

in network.

ii. Particular physical machine is allocated reducer on the basis of virtual machine’s

readiness and size of partition.

iii. Offers priority to those specific reducers that do not obtain proportional data

from particular machine.

By considering speed of every virtual machine the reducers with high workloads

are allocated to those with fast processing speed.

A new task scheduling method [81] proposed for MapReduce framework in Hadoop

which emphasizes to increase both locality of cache and locality of data along with

minimizing the data transfer cost for task operation. The relationship among

tasks and resources is given by a selection matrix in addition with bipartite graph

according to locality of data. Experiments conducted in environment consisting

one NameNode and 3-racks, Ubuntu 14.04.1, and Hadoop 2.3.0 with every rack
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comprises two DataNodes results in efficient improvement in data locality and

cache locality.

A novel dynamic IaaS architecture [63] for Hadoop cluster designed by adding

the features: monitoring, scheduling, Virtual machine management and Virtual

machine migration as solutions to scheduling resources and data locality. The

monitoring unit gathers load of Virtual machines and physical hosts for fabricating

and fixing data locality and resource scheduling. Resource scheduling based on

load-feedback succeeds in solid scaling for virtual clusters by varying the count of

virtual machines. These techniques results in overall better system and efficient

load balance.

A multi-objective model [82] proposed with an intend to build up the connection

between assignment of resources and scheduling of jobs for streamlining MapRe-

duce task scheduling in the cloud considering minimizing cost and time completion

models. It offers enhanced throughput using low latency and reduced runtime of

complex jobs in a parallel environment. Furthermore, this model attains a predic-

tion of MapReduce job with high probability on cloud using the multi-objective

scheme to confirm noble trade-off conclusions.

Using algorithm [83] execution time variation of Map tasks’ in MapReduce frame-

work, as a result of data skew and intensified by interference of virtual machines,

can be handled. Randomly dividing tasks among subsets, proposed method result

in reducing virtual machine cost and further reduced execution time by 46.7%

when contrasted with some past methodologies. Experiments were performed in

homogeneous cluster environment with assumption that standard deviation of task

and mean are identical for each node. Consequently, heterogeneous groups were

not considered because of need of evaluating the normal distribution of assign-

ments for every arrangement independently.
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2.1.3 Handling Non-Local Executions

Task scheduling in MapReduce prefers data blocks to be processed where they re-

side. However, it is not possible in many cases. For instance, when slave nodes do

not have any free slots it cannot accept any more map tasks to process data blocks

locally. So, data blocks are transferred over network, which incurs communication

cost. To investigate more about non-local executions, this section elaborately dis-

cusses the past works that focus on improving the number of data local executions,

thereby minimizing network bandwidth, map task latency, and job latency.

Big data challenges and some of the big data frameworks are surveyed in [84]

to show their importance in real-world applications. Authors did a comparative

study and have presented an experimental evaluation based on batch and iterative

workloads for machine learning, graph processing, and stream processing applica-

tions. Dongjoo Choi et al. [85] proposed a data locality classifier considering the

location of all data blocks that constitute IS. After the classification, map tasks

are scheduled sequentially based on the number of non-local executions, which is

denoted as priority. Authors have claimed that the proposed algorithm improved

total processing time and data copying frequency up to 25% and 28% respectively

when compared to the classical MapReduce scheduler. A novel data placement

technique [86] is proposed to maximize the MapReduce scheduler performance in

virtualized cloud environment. Authors devised a data block placement model as

NP hard problem to minimize the unexpected global data transfer cost by mod-

elling replica balanced distribution tree. Results were compared based on data

locality and overall data transfer cost.

Data blocks placement and intermediate shuffle phase data transfer are discussed

in [87]. Authors also considered cost, deadline, and energy for scheduling and

provisioning the frequently executed MapReduce job in cloud. They proposed two

heuristic algorithms for scheduling tasks and allocate resources for MapReduce

jobs in cloud and compared its performance with classical MapReduce schedulers.
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Ankita Atrey et al. [88] discussed data block placement in geo-distributed cloud

using spectral cluster on hypergraph. They initially calculated spectral approxi-

mation for finding approximate low-rank solution from hypergraph. Then, authors

devised an algorithm (spectradist) to extract a list of data blocks to place across

clouds in distributed environment. Typically, hybrid cloud scales geographically

to huge network, which incurs huge bandwidth consumption cost when data blocks

are moved across clusters. A similar work is done in [89] to solve data placement

problem in geo-distributed cloud environment for data-intensive applications. Au-

thors devised an algorithm “Virtual Data Agent” to minimize the transmission

time of data blocks across data-centre. They mapped data blocks to virtual data

agent, which in turn maps them to data-centre. The proposed algorithm mini-

mized 5%-20% data transmission overhead between the data-centre.

A scheduling aware data prefetching is introduced by Chunlin Li et al. [90] for

hybrid cloud data transfer to minimize non-local map tasks by using bandwidth

of idle network. Authors determine the popular data blocks to cache for the

repeated job execution. The proposed algorithm was compared with capacity and

fair scheduler to show its effectiveness. Replication helps not only mitigate the data

loss due to node failure or corruption and also minimizes the network bandwidth

consumption when more non-local execution happens. In generl, replication factor

is statically set. But, a dynamic prefetching-aware bock replication is proposed

in [91] by N. Mansouri et al. Authors determine which blocks of the dataset to

replicate at present by using previous log files. However, high replication factor

occupies more storage space resulting to store a smaller number of original data

blocks. To handle this, a fuzzy inference system is used considering parameters

such as number of accesses, cost of replica, last time data block accessed, and

availability of data blocks. Authors claimed that response time of tasks improved

up to 35% compared to other classical algorithms.

To minimize data block movement for non-local map task execution, Hemant
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Kumar et al. [92] proposed data partitioning and placement aware computa-

tion scheduling scheme (DPPACS) algorithm based on data blocks availability.

Authors clustered data blocks based on inter-dependency of task execution by

building a graph for data block and map tasks running in geo-distributed cloud

data-centre. Therefore, only data blocks required by map tasks are copied to

certain cluster. This way authors minimized the number of non-local executions.

Resource allocation for data-intensive tasks is always a difficult task as it is uncer-

tain how the resource usage scales up or down. In cloud virtual environment, data

transfer is critical as many users share the virtual network. Authors in [93] de-

vised a scheduling strategy for distributing data-intensive virtual machines based

on the characteristics of job running in the virtual machines. Similarly, to han-

dle real-world skewed data distribution, DALM (Dependency-Aware Locality for

MapReduce) was presented in [94] by Xiaoqiang Ma et al. Even though replicat-

ing blocks multiple-times could minimize the number of non-local execution, this

idea enormously consumes disk storage. Copying data blocks frequently around

the cluster cause block thrashing, which is not desired in a multi-tenant envi-

ronment. Moreover, heterogeneous performance of nodes in virtual environment

affect performance of scheduler. To address this, Li Chunlin et al. [95] proposed

a dynamic multi-objective optimized replica placement and migration strategies

for cloud environment. Authors focus on improving network utilization, response

time, and balancing data node storage. Despite replication of data blocks im-

prove the distributed system performance, replica placement policy with budget

and deadline constraint affects energy of cloud data-centre in [96]. Similarly, Ri-

hab Derouiche et al. [97] proposed a data placement strategy based on formal

concept analysis to minimize data block movement, overall network bandwidth

consumption, and more specifically energy consumed by servers. Authors consid-

ered various parameters such as input dataset, communication levels (switches,

routers), and resources used in the cluster for analysis. The aim of the authors

was to group datasets and tasks into servers that are closer thereby minimizing
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network bandwidth consumption.

A centralized mapping strategy [44] is proposed to minimize the inter-rack com-

munication cost by cutting down the NNLE in a virtualized and heterogeneous

environment. Authors logically divided map and reduce tasks of different jobs

and form groups to improve data local executions and minimize communication

cost. Based on the number of data local executions of different jobs, map tasks

are grouped and scheduled. Based on the communication cost, reduce tasks are

grouped and scheduled.

A hybrid scheduling algorithm, HybSMRP, is proposed in [98] to improve data

local execution and job latency. Authors proposed two techniques to achieve their

objectives: dynamic priority and localization ID. Dynamic priority helps to de-

termine which tasks from which jobs should be assigned to the available resource

node. Localization ID is assigned to each node in the cluster to get fair amount

of data local executions. Chunlin Li et al. [99] proposed a replica-aware task

scheduling and cache mechanism to improve job latency and minimize unneces-

sary replications. Initially, non-local executions for respective blocks and frequent

failed tasks are traced from the logs to identify where repeated executions hap-

pening in multi-cloud heterogeneous environment. To minimize makespan and

improve resource utilization for a batch of MapReduce jobs in heterogeneous en-

vironment, a novel task scheduler is proposed in [100]. It includes two policies

HaSTE, HaSTE-A for YARN distributed system. The scheduler assigns resources

to the tasks whenever resources become available based on tasks urgency and fit-

ness, especially, for iterative jobs. To improve resource utilization and job latency,

DRMJS is proposed in [39] to exploit heterogeneous performance in a virtualized

environment. DRMJS calculates the performance score for map and reduce tasks

separately. Based on the performance score, map and reduce tasks of different

jobs are scheduled. There are various classical MapReduce scheduling strategies

(FIFO, Capacity, Fair) discussed in [101]. FIFO schedules jobs and allocates en-

tire cluster resources in sequential order as they arrive. Capacity scheduler shares
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the cluster resources in different proportions based on the requirement of each

job. Fair scheduler shares resources equally among all the jobs that are currently

running. These schedulers do not consider heterogeneity and frequent non-local

executions.

Chi-Ting Chen et al. categorizes a batch of MapReduce jobs into two groups

(CPU-intensive and IO-intensive) using ”dynamic grouping integrated neighbour-

ing search strategy” [102] to improve resource utilization and number of data-local

executions in heterogeneous computing environment. There are four phases in this

proposed method. Phase 1 classifies the MapReduce jobs into two groups. A ra-

tio table is created in Phase 2 for both Task Tracker in MapReduce and Data

Node in HDFS. Phase 3 groups a set of data blocks and map tasks. In phase

4, neighbouring approach is used to schedule tasks that consume CPU and IO

separately. Data locality and resource utilization aware scheduler is proposed in

[103] to save energy cost in heterogeneous cluster. Authors proposed a framework

that contains three modules: constructing task list, scheduling, and updating task

list. Fuzzy logic is used to calculate the availability of slots in each node based

on processor, RAM, and bandwidth availability for allocating tasks. Based on

this scheme, data-local and rack-local executions are preferred. Once tasks are

scheduled, the task list is updated for upcoming schedule using fuzzy logic. To

improve the makespan and resource utilization, a heuristic method is proposed in

[104] to estimate the MapReduce job latency. Firstly, log analysis is performed to

profile the jobs already executed several times and understand the variables that

affect the job latency. Then, a machine learning algorithm is used to estimate the

execution time, which is used to calculate the makespan for a batch of jobs.

Improving data local executions also improves profit of service providers. Authors

employed dynamic programming and ChainMap/ChainReduce in [105] to mini-

mize data transmission time during MapReduce workflow execution. The proposed

approach largely relies on data locality to minimize the job latency with frequent
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replications of data blocks on demand. A holistic scheduler was designed by Mo-

hamed Handaoui et al. in [106] to improve resource utilization and job latency.

It consists of three components: resource utilization prediction, determining data

local executions, minimizing interferences from co-locating workloads. Authors

have demonstrated the proof of concept with the help of constraint programming,

genetic algorithm, and local search-based algorithms.

2.1.4 Data Block Placement

Due to the prevalent use of cloud-based data processing service, managing vir-

tual resources offered to the users is becoming difficult to improve MapReduce

job latency and throughput. Therefore, big data processing with tools offered

by cloud is increasingly becoming a research hotspot. Different block placement

and MapReduce job/tasks scheduling play a vital role in improving job latency,

and throughput. Over a decade, there have been many data block placement algo-

rithms [107] [108] proposed to improve throughput and novel scheduling algorithms

[8] to exploit dynamic performance to improve job latency in cloud environment.

This section discusses some significant previous works on data placement and

MapReduce job scheduling, focussing on heterogeneity.

Distributed file system such as Google File System [107] and Hadoop Distributed

File System [109] divide input dataset into fixed size chunk, called blocks. These

blocks are stored based on rack-awareness in case of physical cluster, which leads

to different number of blocks in each physical machine in the cluster. But, in cloud

virtual cluster environment, there is no rack-awareness and number of blocks in

each virtual machine is same regardless of the performance of virtual machine.

An efficient modified version hash algorithm [110] is introduced for block place-

ment to minimize energy consumption and improve throughput in virtual cluster

environment. It is done in terms of CPU-intensive, IO-intensive, and interactive

jobs to justify the claim made by the author. It is also important to consider
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geo-distributed data-centres while placing data blocks. A 2-stage block placement

and job scheduling strategy [111] is discussed by Shao-Wei Liu et al. for efficient

workflow execution. The objective is to place the related blocks in the same data-

centre by identifying data dependency among tasks in workflow build time. So,

the map tasks of a job are not scheduled to many data-centres. Results show that

significant data transfer reduction is achieved in virtual network. Similarly, if huge

dataset is stored in multiple data-center, running workflow involves large amount

of data transfer among data-centres during shuffle phase. Therefore, a k-means

based data block placement strategy [112] for scientific workflows is proposed by

Dong Yuan et al. The downside of this approach is that algorithm does not main-

tain the information on load of each virtual machine in the virtual cluster deployed

in different data-centres. Despite it could minimize the amount of data transfer

during shuffle phase, latency of jobs is a big concern. Roulette wheel scheme-based

data block placement and heuristic based MapReduce job scheduler are proposed

[43] to improve number of data local execution for map tasks, job latency, and

throughput. In this work, authors have considered computing capacity of virtual

machines but not the heterogeneous performance virtual machines. More specif-

ically, disk IO performance largely affects map phase latency even though CPU

and memory are available for map tasks.

Heterogeneity in different level of cloud environment is considered before data

block distribution in virtual cluster by using a framework, called MRA++ [113].

This method uses some sample map tasks to gather information on capacity and

performance of individual node in the cluster. If a node is performing up to the

mark than other nodes, then it does not attract tasks that are compute-intensive.

Thus, straggler is avoided. Balancing data load among the nodes in Hadoop clus-

ter is very difficult to determine in heterogeneous environment as performance of

individual node highly varies. Therefore, performance is quantified [114] to place

data blocks, such that, latency of job and throughput are improved. A novel

collaboration-based scheduling strategy is proposed by Deng K et al. [115] for
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placing data sets and scheduling tasks based on the dependency that exists among

them to improve MapReduce scheduler performance. This approach also tried to

balance the load in each node and maintain the dependency for datasets loaded in

different data-centre during execution. Zheng et al. [116] developed an intelligent

data placement method to improve data local tasks thereby improving the perfor-

mance of MapReduce scheduler of data-intensive applications. Genetic algorithm

was used by authors to devise a 3-stage data placement strategy to minimize data

transmission time across data-center. A novel data placement technique was pro-

posed by Vrushali Ubarhande et al. [108] to minimize makespan in heterogeneous

cloud environment. Computing performance is determined for each virtual node

using some heuristics and data blocks placed accordingly. Authors claim that data

locality and makespan improved improved, compared to classical methods. Chia-

Wei Lee et al. [54] also proposed a similar work calculating the processing capacity

of virtual machines in heterogeneous cloud environment to improve MapReduce

scheduler performance. Workload type and processing capacity are identified to

load data blocks accordingly. 23.5% of performance is improved when compared to

classical MapReduce schedulers. To balance optimal load across virtual cluster, a

topology aware heuristic algorithm was developed [86] focussing to minimize non-

local execution for map tasks and minimize the global data access during shuffle

phase. Authors claim that computation cost was minimized up to 32.2% when

compared to classical MapReduce schedulers.

In production environment, a batch of jobs is periodically executed to extract in-

sight from huge data in physical/virtual cluster in different time. Nature of jobs

would not change mostly and reveal more information about the workload be-

haviour. Therefore, understanding them is very much important. Zujie Ren et al.

[117] devised a workload generator, called Ankus, to perform performance eval-

uation and debugging in distributed environment for big data processing. They

designed a scheduling algorithm, Fair4S, that gives importance for small jobs in
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the batch. They performed MapReduce workload analysis using the trace col-

lected from Taobao, an online E-commerce enterprise to identify the size of jobs in

the batch. In order to adapt various dynamic parameters in big data applications

to improve energy efficiency, workload analysis [118] was performed to select the

optimal configuration and system parameters. They used micro-benchmark and

real-world applications to demonstrate the idea proposed. It is a study conducted

to experiment with various processing elements along with system and Hadoop

configuration parameters. These parameters highly emphasize the performance

of MapReduce scheduler performance. Identifying right combination of these pa-

rameters is a challenging task which cannot be done at the time of execution.

Therefore, Metric Important Analysis (ensemble learning) is done by Zhibin Yu et

al. [119] using MIA-based Kiviat Plot (MKP) and Benchmark Similarity Matrix

(BSM). This produces more insight than traditional based dendrogram to under-

stand job behaviour by using three different benchmarks: iBench, CloudRank-D

and SZTS.

2.2 Outcome of Literature Review

� Scheduling Algorithms in Hadoop

By default Hadoop attained three configurable scheduler policies: First Come

First Serve (FCFS), Hadoop Fair Scheduler (HFS), and Capacity Scheduler pol-

icy. FCFS scheduler processes the jobs in accordance with their submission. Its

major demerit is low resource utilization. It does not pave the way for reasonable

sharing among users and furthermore deficit in response time for processing of

minor jobs. Capacity Scheduler was envisioned and propounded by Yahoo to ren-

der the partaking of cluster possible among organizations. Therefore, to achieve

unbiased sharing of cluster a minimum guaranteed capacity of the queues was set.

Further Facebook planned HFS to moderately segment the cluster among different
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applications and users. Consequently, it ensures an evenhanded segmentation of

the capacity of cluster over the time [11][21][46].

Drawback in default scheduling algorithms of MapReduce is that these algorithms

assume that the nodes and environment are homogeneous. These scheduling al-

gorithms randomly select the DataNodes for processing and storage. The period

of time for MapReduce jobs fluctuate from seconds to days [61].

Table 2.1: Scheduling Policies comparison

Sr. No Scheduling Policy Key Features Challenges

1

First Come First
Serve (FCFS)
Scheduler
[11][21][46][65]

Resources are allocated
as per arrival.
Jobs are executed in the
similar manner in which
they are submitted.
High Throughput.

Data Locality and starvation is
reduced.
Resources are not fairly distributed
which leads to low resource
utilization.
Non pre-emptive.
Suitable to clusters having
Homogeneous Environment.

2
Capacity scheduler by
Yahoo
[11][21][46][65]

It brings about fare
distribution of resources
among different users with
minimum assured capacity.
High resource utilization
and more rapidly response
time.

Maximum capacity is need to set,
to limit the number of users who
can access the resources.
It does not make sure the fairness
and stability for pending jobs in
queue.
Performance decreases in
Heterogeneous Environment.

3
Hadoop Fair Scheduler
(HFS) by Facebook
[11][21][46][65]

Individual task is confirmed
with a rational portion of the
resource.
Provide reasonable share of
the cluster capacity over
time.

Does not consider the job weight
for individual which results in
unbalanced performance of nodes.
Restriction on number of jobs to
be placed in pool.
Performance decreases in
Heterogeneous Environment.

4

Longest Approximate
Time to End
(LATE)
[64]

Ponders heterogeneity of
cluster.
Flourishes in refining the
data locality.

Slightly negotiates fairness and
reliability.
Static scheduler.

5 Delay scheduler [66]

Ponders data locality issue.
For execution of complex
calculations no overhead is
required.

If majority of tasks are considerably
more than an average job then it is
not effective.
Not suitable for Heterogeneous
environment.
No resource sharing.
Static scheduler.

6
Deadline Constraint
Scheduler
[65][120]

Originate least count
criteria for map and reduce
task.
Specifies the deadlines to
improve system utilization.

Not considered aspects runtime
estimation for map and reduce
task, filter ratio approximation,
distribution of data and execution
of more than one MapReduce tasks.
Identical nodes are required which
leads to more cost.
Constraint about deadline for
individual job is to be stated by user.
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Based on up to examined literature, authors comprehend that there are a glut

of challenges which are being encountered by Hadoop. The major challenges in

Hadoop are Query execution time, Data movement cost, Selection of best clus-

ter and racks for data placement, Preserving privacy, Overall load distribution to

handle: Imbalance in input splits, computations, partition sizes and heterogeneous

hardware, and Scheduling. The average interval of map and reduce tasks is differ-

ent for each task and job depending upon the available number of TaskTrackers.

The JobTracker assigns TaskTracker a task which is nearby locality to the Task-

Tracker. Each application is taken as job in MapReduce framework and a lot of

map and reduce tasks constitute a job. A variety of factors like number of running

jobs, wait time, response time, and run time plays an essential role while inducing

the load in MapReduce. Hadoop scheduler makes use of Queue data structure

to assigns the tasks [23]. Table 2.1 shows comparison on features of default and

some other scheduling algorithms.

� Data Locality in HDFS

The Table 2.2, illustrates the Key features and drawbacks of scheduling algorithms

that are aware of Data locality in Hadoop.

� Handling Non-Local Executions

Data block thrashing is the result of copying around the cluster, which cannot be

minimized unless IS size set to low. As number of blocks in an IS increases, the

non-local executions also increase. Even though non-local execution can be min-

imized with the help of too many replications, it is not suitable for huge dataset

as it enormously wastes storage capacity. Despite the past works focussed to im-

prove scheduler performance in terms of number of non-local executions, network

bandwidth consumption, and job latency, there are few other factors listed below

that can be considered to maximize the scheduler performance, by minimizing the
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NNLE and ABC during data block movement across virtual networks, while facing

too many non-local executions.

1. Heterogeneous performance virtual machines.

2. Caching data blocks that are frequent to copy over network.

� Data Block Placement

Existing works largely depend on finding the processing performance of virtual ma-

chine to place data blocks to improve data local execution. However, they do not

consider performance degradation when many virtual machines are hosted in a sin-

gle disk drive in a server. Moreover, performance of virtual machines fluctuate due

to co-located virtual machines resource consumption interference. Therefore, the

following works are proposed to increase number of data local execution, thereby

improving MapReduce job latency and throughput for a batch of workloads.

1. Despite there are works to improve data locality in heterogeneous virtual

environment, it is important to consider the disk IO performance before

loading blocks. A simple linear regression algorithm is used to predict the

performance of disk IO over time.

2. In addition, virtual machine performance varies due to co-located virtual ma-

chine interference. Therefore, there is a need to model dynamic performance

of a virtual machine for launching map tasks.
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Table 2.2: Comparison of Scheduling Algorithms

Sr. No Algorithm Key features Drawbacks

1
Data
placement
strategy [28]

Considers Heterogeneity of nodes.
It offers Enhanced Data Locality and improved
Load balancing.

Suffers from data redundancy problem while
allocating data in cluster.
The mechanism for distribution of data is static.

2
Prefetching
and Pre-shuffling
schemes [68]

No wastage of system resources.
Predicts the straggler.
Reduces execution time in shared
environment.

Performance reduces in when with
complex load.

3
Parallel Task
scheduler [69]

Regulates the time spent.
Effective pre-emption.
Work conservation.
Improves Data Locality, scalability,
and reduces virtualization overhead

It is expensive.
The properties of isolation not strictly
implemented.
No appropriate tool for long running tasks.

4 Delay Scheduler [70]
Nearly optimum data locality and
fairness for variety of assignments.
Increases the throughput.

Does not allow resource sharing.
It is suitable only for homogeneous environment.
Not suitable when more number of tasks are
heavy than average size of task.

5
NKS (next k-node)
scheduling
strategy [72]

It boosts Data locality.
Capably manage and reduces network
load.

Only suitable for homogeneous environment.

6
Distributed adaptive
data replication
algorithm [73]

Increase data locality.
Minimum overhead of replicas and
network traffic.
Reduces turnaround time.

No progress is shown for the output-bound
tasks by dynamic replication.

7

Predictive
hierarchical
fast spread
(PHFS)[74]

Reduces access latency.
Upturn the data locality.
Efficient for such tasks where clients
works on a particular framework.

Not suitable when clients requests
are random.

8

Linear Sum
Assignment
Problem
lsap-sched [75]

Provide optimal data locality at low cost.
Able to Schedule multiple tasks
simultaneously.

Performs well when resources at
disposal are more.

9
Adaptive Data
Replication
Scheme [76]

Enhance data locality and minimizes data
transfer time.
Reduction of over-all processing time,
rack locality and rack-off locality.
Optimized node locality, replication factor.

Node locality drops as the size of
data blocks is increased.

10 Joint Scheduler [77]
Advance routing information of some tasks
results in better network load balancing.
Improves throughput and delay performance.

Not able to include scheduling at job level.

11
Pauseresume
preemption
algorithm [78]

Improves execution time and data locality.
Allows pre-emption of Map and Reduce
functions.

Pre-emption increases the overhead.

12

Job scheduling
algorithm
based on data
locality [79]

Improve data locality.
Pre-fetches the resources for a remote map
tasks.

Increases the overhead for disk space and
network.

13
Load Aware Virtual
Machine Mapper [80]

Divides input data dynamically to improve
data locality, total job completion time and
the Reduce-phase completion time.

Cannot decide on count of reducers to be
used in MapReduce phase which results in
more cost.

14
Map task scheduling
method [81]

Progresses both data and cache locality.
Minimizes the data transfer cost for task
operation.

No consideration given to clusters current
load which results in load imbalance.

15
Multi-objective
algorithm [82]

Improve the workflow by minimizing cost
and time.
Efficient resource usage.
Offer better throughput with minimum delay.

Increased number of tasks results in
longer finishing time for job.

16
Locality and
Interference
aware scheduler [83]

Enhances data locality.
Tackles the time variation when executing
map tasks’ in MapReduce phase.
Execution time improves and cost of virtual
machines reduced.

Suitable only for homogeneous clusters.

17
Data locality
based scheduler [121]

Nodes allocated data blocks on basis of
processing capacity.
It is suitable for heterogeneous environment.
Minimizes average job execution time and
improves data locality.

Suitable for only small clusters.



Chapter 3

PBDBP: Prediction Based Data
Block Placement

3.1 Introduction

Heterogeneous disk performance due to VMs hosted in the same disk affects data

local execution and stores equal number of data blocks in each VM regardless

of its performance. Therefore, heterogeneous performance in terms of disk IO

is focussed in this chapter to improve data local execution, thereby improving

MapReduce job latency and throughput for a batch of MapReduce jobs, in-order

to improve amount of data processed per second. The significant contributions of

this chapter are:

1. Predicting disk IO bandwidth of every disk in each physical machine before

loading data blocks.

2. Scheduling map tasks of different jobs based on the heterogeneous perfor-

mance of each VM.

The rest of the chapter is organized as follows. Section 3.3 provides some back-

ground on Hadoop MapReduce and the motivation that helps workout this prob-

lem. Subsequently, proposed methodologies are justified and explained in Section

46
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3.4. Section 3.5 discusses the results and analysis of proposed methodologies fo-

cusing data local execution to improve MapReduce job latency and throughput,

resulting in improved amount of data processed per second. Finally, a summary

is drawn in Section 3.6.

3.2 Problem Definition

Improving the performance of Hadoop MapReduce in terms of amount of data

processed by placing HDFS data blocks based on the workloads behavior in het-

erogeneous virtual environment to improve latency and throughput.

3.3 Background and Motivation

This section outline’s the background concepts on the Hadoop big data analytics

framework and motivations that inspired to work on this problem.

3.3.1 Hadoop MapReduce

When data size exceeds the storage capacity of a single machine, it is divided and

distributed to multiple machines in the cluster. Hadoop [34] is a framework that

includes a stack of distributed processing tools, as shown in Figure 3.1.

Hadoop Distributed File Systems (HDFS) helps to manage data across multiple

computers in the cluster using streaming data access pattern. MapReduce is a

distributed programming tool to process data stored in multiple machines and

combine the result. HDFS and MapReduce can make use of commodity servers

that are low in cost to store and process huge data. Early problem with Hadoop

framework was, if MapReduce was deployed in a cluster, no other distributed

processing can be installed. Therefore, tool like Yet Another Resource Negotiator
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Figure 3.1: Hadoop Framework

(YARN) [39] is used to manage cluster resources and share them among multiple

frameworks. Upon installing YARN, other distributed processing framework like

Spark, Storm, etc. can be installed for various purposes. Once big data is uploaded

onto HDFS, MapReduce jobs can be launched. A MapReduce job consists of two

phases, as shown in Figure 3.2: map and reduce.

Figure 3.2: MapReduce Phases

A map phase executes a set of map tasks. Each map task processes a data block

and produces an arbitrary number of intermediate outputs. Reduce phase executes

a set of reduce tasks. Reduce phase can be started along with map phase but

reduce function in reduce phase can be executed only after map phase is finished.

Each reduce task collects its portion of input from each map task and consolidates
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them. Then, each reduce task goes through a sequence of steps (merge, sort,

group) before reduce function gets executed. Reduce function gets a list of input

from group function and writes output onto HDFS. In this execution sequence,

moving output of all map tasks to each reduce task is called shuffle, in reduce

phase.

3.3.2 Motivation

YARN comprises two major services: Resource Manager and Node Manager. Re-

source manager shares the pooled cluster resources (CPU, memory, storage) among

different frameworks (like Hadoop, Spark). Consider two nodes, as shown in Figure

3.3, in which Node Manager (NM) manages local resources in the server.

Figure 3.3: Map task completion

In map phase, many map tasks of a MapReduce job are executed in these two

NMs. But, the latency of all map tasks need not necessarily be the same. For

instance, latency of Map task 5 is three times higher than Map task 1. One of the

reasons is heterogeneous performance of VM due to disk bandwidth sharing. So,

Map task 5 must wait for a long time to bring its data block to process, which

causes map phase to be longer despite all other map tasks are completed. To avoid

this, non-local execution must be performed. However, map task must still wait

for data blocks to read from disk for performing non-local execution. Therefore,

understanding the dynamic consumption of disk IO bandwidth is very important
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before loading large data set into virtual cluster to improve map task latency,

thereby improving throughput for a batch of workloads.

Another important thing is to understand the reduce task completion in reduce

phase. As shown in Figure 3.4(a), consider four map task to be executed. Once

all map tasks are completed, copy phase (also called as shuffle) starts to move map

tasks output to node where reduce tasks are running. After shuffle process is exe-

cuted for each reduce task separately, sort function is executed to facilitate reduce

function for smooth running. At the time of second reduce task running reduce

function (Figure 3.4(b)), other reduce tasks are still in copy phase. Similarly,

third and fourth reduce tasks still run slowly with copy phase (Figure 3.4(c))

while the first two reduce tasks run into completion. Finally, all reduce tasks

finish its execution (Figure 3.4(d)). The longest latency of reduce task leads to

huge job latency. This is because, either reduce tasks run in node where the re-

source requirement of reduce tasks is not met, or dynamic performance of VMs

causes reduce tasks to run slower. Therefore, map tasks should be executed where

bandwidth is not a constraint, so that map tasks produce map outputs seamlessly

to node where reduce tasks are running. This helps all reduce tasks to finish its

execution almost in equal time.
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3.4 Proposed Methodology

3.4.1 Predicting disk IO performance to place data blocks
using regression

Hadoop is offered as a service on a cluster of VMs, hosted in different physi-

cal servers in cloud data-centre, as shown in Figure 1.5. There are many racks

(Rack1, Rack2, etc.) in cloud data-centre each with different physical machines

lodged (node1, node2, etc.). Each physical machine (node) hosts many VMs (VM1,

VM2, etc.). These VMs can be of Hadoop/non-Hadoop VMs. Hadoop VMs are

highlighted with shade and clustered virtually. HDFS services such as NameN-

ode (NN), Secondary NameNode (SNN), and Data Node (DN) run in separate

nodes. Similarly, YARN components such as Resource Manager (RM), and Node

Manager (NM) run in different nodes. These Hadoop VMs in the virtual cluster

are spread across cluster wherever physical resources are available. These physical

servers can be of different capacity and performance. Therefore, heterogeneity in

physical environment is unavoidable. Thus, it causes various heterogeneity [39]

for the same task in different time. Sometimes, VMs hosted in a node may be

allocated in same hard disk drive, despite there being many disks attached. Even

though CPU and memory are available for launching map tasks, due to contention

created by co-located VMs in the same hard disk drive, it takes time to bring data

blocks into memory for map tasks. This affects overall job latency and the number

of local tasks. Therefore, it is important to consider hard disk drive performance

before loading large data blocks. So the disk IO bandwidth rate is predicted over

time to decide the target disk for loading data blocks. The detailed steps are

given in Algorithm 1, as shown in Figure 3.5. Mostly Hadoop is hosted in a

cluster of VMs for easy provisioning/deprovisioning, which adds the complexity

of capturing the virtual resource usage. However, Hadoop VM resource consump-

tion is observed by calculating the percentage of usage at point of time (Hadoop

resource consumption/overall resource consumption). As it is periodic, so it is
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predicted using regression. The number of disk IO access (read+write) is directly

proportional to the amount disk IO bandwidth has consumed most of the time

in cloud environment, because applications running in the VMs exhibit a similar

behaviour of disk access. As a result, the simple linear regression algorithm, which

is a supervised learning model that aids in numeric prediction, is applied. It takes

an input variable (independent variable) and produces an approximate/estimated

output (dependent variable), as shown in Eq. 3.1.

predicted disk IOk
i = mx+ c (3.1)

Here, i, k, and x indicate physical machine, disk number, and input value respec-

tively. Therefore, predicted disk IOk
i indicates kth disk in ith physical machine.

In our case, we used ”number of disk IO access (read+write)” as input variable

recorded every five seconds. While reading/writing happens in disk, some amount

of data is transferred back and forth by consuming disk bandwidth. Even though

one cannot predict the behaviour of applications running inside non-Hadoop VMs,

using bandwidth consumption over time, but one can approximate the amount of

disk bandwidth consumed. So, here ”bandwidth consumption rate in %” is used

as output variable. This is calculated by averaging the disk IO consumption rate

of every second up to five seconds. By recording thousands of such samples, a

linear model is built using regression algorithm.

In general, VMs are not migrated very frequently. Therefore, the predicted IO rate

can be useful maximum time. Prediction is done for each disk in the machine and

for all machines in the data-centre. Despite many Hadoop VMs are hosted in the

same hard disk drive, data blocks are stored in drive which gives high performance.

By default, three copies of a data block are stored across virtual cluster. What if

three copies are stored in three different VMs hosted in same physical machine?

The aim of multiple copies of same block is to achieve fault-tolerance. But there

is no way to ensure rack awareness to achieve fault tolerance in virtual cluster.

Therefore, after predicting the IO performance of individual disk, it is guaranteed
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that no copies of a block are stored in VMs hosted in same physical machine.

Moreover, if disk IO performance is predicted to be high, then the number of

blocks stored in that VM is high, as given in Eq. 3.2. In general, the number

of data blocks stored in each VM is equal. But, in the proposed approach, the

number of data blocks stored in a disk for a VM is directly proportional to the

performance of disk IO in that machine. If performance is 100%, then exactly

equal number of data blocks is stored in that VM.

∀i,j,k (No. of blocks stored)ki,j ∝

(predicted disk IO)ki ∗ equal share of blocks
(3.2)

Figure 3.5: Prediction-based data block placement

3.4.2 Scheduling map tasks based on dynamic performance
of VMs

Typically, Hadoop VMs are co-located with non-Hadoop VMs, which affect the

performance of Hadoop VMs by sharing the IO resources of underlying physical

machine. Even though performance of disk is high, there could be a chance that

CPU and memory are tightly shared by tenants. Therefore, it is also important to

observe that data local execution is minimized due to unavailability of resources.

So, the performance of each Hadoop VM’s is dynamically monitored, as shown in
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Figure 3.5 and given in Algorithm 1. If performance of a VM is not as desired, then

frequently accessed data blocks from that VM are migrated to other VM that gives

high performance. Thus, there is an opportunity to increase the number of local

executions, thereby improving the latency and makespan for a batch of MapReduce

jobs. To calculate the VM performance hosted in physical machines, we need to

find the physical machine that has high CPU frequency. CPU performance of

jth virtual machine (V Node) in ith physical machine (P Node) (V NodeCPU
ij )

is calculated by finding the physical machine having maximum CPU frequency

(CPU freq) among all the physical machines in which Hadoop virtual machines

have been hosted, as given in Eq. 3.3.

V NodeCPU
ij =

V NodeCPU freq
ij

max(∀P NodeCPU freq
i )

(3.3)

Eq. 3.4 calculates the Disk IO performance, (V NodeDiskIO
ij ), of jth V Node in

ith P Node considering current disk bandwidth rate, (V Nodecurr disk band
ij ), of jth

V Node in ith P Node over the disk bandwidth, (P NodeDisk band
ij ), of kth disk in

ith P Node.

∀i, j V NodeDiskIO
ij = ∀k,

∑
V Nodecurr disk band

ij

P NodeDisk band
ik

(3.4)

Map/reduce tasks have different resource requirements. Map tasks demand more

of CPU and storage accesses while reduce tasks need CPU and network bandwidth.

Therefore, to launch map tasks in VMs, it should have seamless disk bandwidth

while the job begins and seamless network bandwidth while moving map outputs

to reduce nodes where reduce tasks are running. To find the virtual node which

is suitable for running map tasks, the influence of jth V Node in ith P Node for

map (V Nodemap inf
ij ) is calculate by considering the latency of last z map/reduce

tasks executed in jth V Node, using Eq. 3.5.

∀j, V Nodemap inf
ij = min

(
∀z,

map latencyjz∑z
m=1map latencyjm

)
(3.5)
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Algorithm 1: Loading data blocks based on the predicted disk IO performance

1 Notations Used
2 V Node− Virtual machine

3 V Nodeij− jth virtual machine hosted in ith physical machine

4 V NodeCPU
ij − CPU frequency of jth virtual machine hosted in ith physical

machine
5 V NodeDiskIO

ij − Disk IO usage of ith physical machine where jth virtual machine
hosted

6 V Nodemap inf
ij − map task influence of jth virtual machine hosted in ith physical

machine
7 V Nodemap perf

ij − map task performance of jth virtual machine hosted in ith

physical machine
8 Data loading stage
9 Input: Disk IO usage

10 Output: Predicted Disk IO performance
11 while true do
12 Independent variable= number disk IO access (read+write)
13 Dependent variable = average (disk IO rate in every second up to five seconds)
14 Predict disk rate using Eq. 3.1
15 Determine number of data blocks to load using Eq. 3.2
16 Redistribute blocks if too much variation after data blocks loaded

17 end
18 Launching map tasks stage
19 Input: V Node parameters (virtual CPU, virtual disk, and virtual network),

system-level parameters (Disk)
20 Output: V Node performance in terms of map tasks
21 while true do

22 Calculate the CPU performance V NodeCPU
ij using (Eq. 3.3)

23 Calculate the disk IO rate V NodeDiskIO
ij using (Eq. 3.4)

24 Calculate the map task influence V Nodemap
ij using (Eq. 3.5)

25 Calculate the map task performance V Nodemap perf
ij using Eq. 3.6

26 Find the rank list of map nodes by sorting V Nodemap perf
ij in descending order

to find map rank using (Eq. 3.7)
27 end

Typically, overall performance of a V Node is calculated regardless of tasks type.

Using Eq. 3.6, the map task performance (V Nodemap perf
ij ) in each V Node based

on CPU frequency and Disk IO bandwidth of respective V Node hosted in each

P Node is determined.

∀i,j, V Nodemap perf
ij = V NodeCPU

ij ×

(1− V NodeDiskIO
ij )× (1− V Nodemap inf

ij )
(3.6)
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Finally, virtual machines are sorted, using Eq. 3.7, based on its performance to

launch map tasks, else reduce tasks could be launched in place map tasks.

map rank = sort(V Nodemap perf
ij ) (3.7)

This map rank list is used to schedule the map tasks of nth job Jn as given in

following procedure.

Launch maptask based on performance of virtual machine

Notations used:
n map − number of map tasks of a job Jn
map tasknp− pth map task of nth job
∀p,map tasknp = 0
C mapn = 0− number of completed map tasks of job Jn

Input: map tasks of a job, map rank of virtual machines
Output: assign map tasks to the right V Nodeij

while C mapn < n map do
Pick up a map task (p) from task list
if map tasknp == 0 then

Choose top 20% VMs from V Nodemap perf
ij rank list

while until 20% nodes do
if containers possible for map tasknp && local execution then

map tasknp=1
Launch map task, C mapn++
break

else if map tasknp == 0 then

Choose rest 80% VMs from V Nodemap perf
ij rank list

while until 80% nodes do
if containers possible for map tasknp && local execution then

map tasknp=1
Launch map task, C mapn++
break

else if map tasknp == 0 then
perform non-local execution
map tasknp=1
Launch map task, C mapn++

else
add map tasknp into task queue
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Here map tasknp is pth map task of nth job and it’s initial value is 0 as no map

tasks are scheduled yet. In the beginning, uppermost 20% of map nodes from the

map rank list is preferred for scheduling the map tasks. If containers are possible

for map task and local execution, then map task is launched. Otherwise if there

are not sufficient resources available to form container and then remaining 80% of

the map nodes in the map rank list is considered to schedule the map tasks. But

performance of these 80% of nodes’ for map task would be less when compared

with topmost 20% of nodes in the map rank list.If local execution is not possible,

then non-local execution is performed. If at any moment there is no possibility

for a map task, it is added back to the task queue. When map rank for virtual

machines is calculated, map tasks are scheduled by MRAppMaster. Figure 3.6

depicts a flowchart for steps of PBDBP.

Figure 3.6: Flowchart for PBDBP
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3.5 Performance Evaluation

3.5.1 Experimental Setup

Proposed methodology ideas are simulated in the Ubuntu server with 12-core CPU

(hyper-threaded), 64 GB memory, storage 4 x 1 TB HDD and disk bandwidth

rate 100 MB maximum. Proposed ideas are compared with classical scheduler

[122], and [43] based on the quality of service parameters such as number of non-

local execution, MapReduce job latency, and throughput, using Hadoop 2.7.0.

Assumptions about workload size and virtual machine’s configuration parameters

as discussed below. Physical servers and VMs in cloud data-centre are assumed

to be highly heterogeneous. Moreover, these VMs can be of different flavours

(very small (1 vCPU, 2 GB memory), small (2 vCPU, 4 GB memory), medium (4

vCPU, 4 GB memory), large (8 vCPU, 16 GB memory), extra-large (12 vCPU,

24 GB memory)). Hundred VMs (20 VMs in each flavour) are considered and

deployed across racks in cloud data-centre. The disk IO interference by co-located

VMs is simulated in random. Workloads considered are wordcount, wordmean,

wordmedian, and kmean to process datasets of size 128 GB, 64 GB, 256 GB,

and 192 GB respectively, altogether 640 GB in total. Wordcount job finds the

frequency of word occurrence in a file. Average length of words is calculated by

wordmean job. Median length of words in a file is calculated by wordmedian job.

Kmean job finds clusters from the given input data file. The work environment

is static and tasks are independent. For all datasets, input block size is 128 MB

and the replication factor is 3. The number of map/reduce tasks and its resource

requirements is given in Table 3.1. The number of map and reduce tasks are given

in Table 3.1.

One map task is assigned for a block, such that the number of map tasks for each

job is 1000, 500, 2000, and 1500 respectively. Map task latency and reduce task
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Table 3.1: Resource requirements of each job

MapReduce
Job

No. of map
tasks

No. of reduce
tasks

vCPU Memory Map task
latency

Reduce task
latencymap reduce map reduce

wordcount 1000 20 1 1 2 1 21 39
wordmean 500 15 1 2 1 1 18 33

wordmedian 2000 15 1 2 1.5 2 15 30
kmean 1500 10 2 2 1.5 2.5 21 60

latency are also fixed and given in the table. These latencies are approximated

and taken from our lab experiments.

3.5.2 Results and Analysis

To predict the performance of disks IO rate, the trace of disks IO access recorded

every five seconds is used . Consider three physical machines (nodes) each with

one hard disk drive. Assume first node hosting five VMs, second node hosting

three VMs, and third node hosting one VM. IO intensive applications like web

applications are run in VM to record the disk IO access behaviour, as shown in

Figure 3.7.

Figure 3.7: IO access pattern in different hard disk drives

Disk access of Node 1 fluctuates between 70 MB/s and 89 MB/s because of hosting

five VMs. Each VM races each other holding disk access such that disk IO is busy

always delivering data to running tasks. If many map tasks are launched in Node

1, then bringing data blocks into memory takes more time. Moreover, data blocks
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might be in different sector/disk in hard disk drive. Similarly, in Node 2, disk

access ranges between 55 MB/s and 74 MB/s as three virtual machines are hosted

in this machine. Node 3 disk access varies between 20 MB/s and 39 MB/s. In

general, classical scheduler places data blocks across virtual machines evenly, but

the proposed method places data blocks based on the performance of hard drives.

Figure 3.7 shows the record disk IO access for every 5 seconds. However, it is

recorded over different time spans and used for predicting disk access in the future.

Simple linear regression is used for predicting disk IO access pattern based on the

observed data. As given in Table 3.2, Node 1 is predicted to use 80 MB/s in

the future. Therefore, 80% of data is to be store in Node 1 from its equal share.

Similarly, Node 2 and Node 3 are predicted to use disk IO access to be 65 MB/s

and 30 MB/s.

Table 3.2: Disk IO rate in different machines

No.
of observations

Predicted
Bandwidth Used (MB/s)

Node 1 Node 2 Node 3
1152 80 65 30

Secondly, heterogeneous performance of VMs causes varying latency of same task

in different VMs. As shown in Figure 3.3, if a map task execution lasts for a long

time, then latency of map phase is extended. As batch of MapReduce jobs is ex-

ecuted periodically, data blocks could be shifted to VM with higher performance.

Therefore, the number of map tasks completed per unit time by high performing

VM is higher than the VM with large capacity but varying performance. So, VMs

are dynamically monitored for varying performance and data blocks are moved

from one VM to another VM. The proposed approach is compared with existing

schedulers: Fair scheduler [122], Rowlett Wheel Scheme (RWS) based job sched-

uler and Heuristics based MapReduce Job Scheduler (HMJS) [43] based on the

configuration mentioned in Experimental setup. The number of non-local execu-

tions by these schedulers with different workloads is given in Table 3.3. Figure 3.8
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shows the number of non-local execution achieved with different schedulers for a

batch of four different workloads.

Table 3.3: Number of data non-local executions

Job Fair scheduler RWS HMJS Prediction-based
wordcount 29 28 5 8
wordmean 12 41 21 2
wordmedian 73 49 38 31
k-mean 112 69 18 10

Figure 3.8: Number of non-local execution with different schedulers for dif-
ferent jobs

Prediction-based scheduler outperformed classical fair scheduler by 76% in average

considering all four workloads. Similarly, 72% improvement in minimizing num-

ber of non-local execution in average is recorded when compared to RWS-based

scheduler while using our proposed approach. Minimizing the number of non-local

execution leads to reduction in job latency, as shown in Table 3.4 and Figure 3.9.

Table 3.4: Job latency(in seconds)

Job Fair scheduler RWS HMJS Prediction-based
wordcount 272 219 189 161
wordmean 219 223 172 148
wordmedian 573 380 332 221
k-mean 780 690 492 279

It is observed that job latency is minimized up to 49% in average while using

our proposed method over classical fair scheduler. This is because, fair scheduler
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Figure 3.9: MapReduce job latency with different schedulers

partitions the resources for all the jobs, so number of local executions is very

less resulting to increase in job latency (not the map task latency). Similarly,

in average, 40% improvement is observed while using prediction-based approach

when compared to RWS-based scheduler. It is because, RWS-based scheduler

focuses on computing capacity of a VM while prediction-based approach considers

the disk IO performance for making map phase latency to minimize.

Despite HMJS considering the heterogeneous performance to minimize job latency,

prediction-based scheduler considers the number of disks available in each physical

machine and its performance over time. Therefore, prediction-based scheduler

outperforms HMJS by 26% only. Finally, to emphasize the effectiveness of the

proposed method, makespan is also compared , as in Table 3.5, of each scheduler

for a batch of jobs. Prediction-based scheduler improves makespan up to 66%

when compared to traditional fair scheduler, as shown in Figure 3.10.

Table 3.5: Makespan of schedulers(in seconds)

Algorithm Makespan (in seconds) Improvement (%age) over
Fair scheduler 1189 66.6947
RWS 829 52.2316
HMJS 489 19.0184
Prediction-based 396 N.A

Similarly, it outperformed RWS-based approach by 52%. It is important to note

that improvement of the proposed approach is 19% when compared to HMJS.
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Figure 3.10: Makespan for different schedulers

HMJS used bin packing based approach that randomly fits the best combination

of containers in each VM. In contrast, the proposed method takes different ap-

proach to load data blocks in advance to minimize map phase latency. When

bin packing is focussed, data local execution is compromised to get the best com-

bination of containers. Therefore, the number of non-local execution is steadily

increasing while working with bin packing based approach in HMJS. In the pro-

posed approach, this limitation is overcome by loading data blocks in the very

beginning based on the performance of disk in physical machines where VMs have

been hosted. Moreover, disk IO performance could be limited over time due to

co-located virtual machines interference. So, the change of disk IO performance

is observed periodically and the data blocks are moved accordingly based on the

disk IO persistence. This significantly caused improvement in makespan when

compared to HMJS.

3.6 Summary

Without cloud service, it is impossible to use big data processing frameworks as it

is expensive to set up on-premise. Hadoop is one of the efficient processing tools
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for crunching a large volume of data. It is also offered as cloud service on a cluster

of VMs hosted in a cluster of physical servers in a cloud data-center. In this case,

heterogeneity in physical servers and VM performance are unavoidable. Therefore,

the main focus is at disk IO performance due to many VMs hosted in a same hard

disk drive. It highly affects map task execution in map phase due to delay in

bringing data blocks from disk into memory. This motivated us to investigate

the disk performance when VMs are hosted in same disk. To distribute data

blocks based on the performance of disk IO, simple linear regression algorithm

is used to predict disk IO performance and distribute data blocks accordingly.

Therefore, data blocks for map tasks are brought into memory quickly. Moreover,

varying performance of VM due to co-located virtual machine’s interference affects

MapReduce job latency. Therefore, heterogeneous performance is dynamically

exploited, and if any high variation in performance for long time persists, then data

blocks are redistributed in such a way that, data local execution is improved. At

any time, the number of data blocks in a VM are stored based on the performance

of that VM. The ideas are finally simulated based on Hadoop 2.7.0 and compared

with classical fair scheduler, RWS-based scheduler, and HMJS. Results indicated

that the proposed scheduler outperformed by 66%, 52%, and 19% when compared

to those existing schedulers for makespan.



Chapter 4

IDLACO: An ACO based Map
Task Scheduler

4.1 Introduction

Collecting big data is becoming more common in academia, industry, and research

sectors. Hadoop [107] is one of the efficient big data processing tools for making

decisions out of big data. Nowdays, Hadoop framework and relevant applications

are offered as a service [36] on demand by various cloud service providers(CSP)

over the internet, on-premise IT infrastructure for Hadoop MapReduce is not

affordable for short-term users. CSP deliver MapReduce service to end users on

different schemes hosted in virtual machine (VM).

� Private Hadoop MapReduce (pay per VM)

– Purchase VMs from CSP and setup MapReduce manually.

– Purchase MapReduce as a service on a cluster of VMs.

� Sharing MapReduce service with more than one user (pay per job basis)

MapReduce scheduler performance is highly affected if there is a greater number

of non-local executions, especially in a virtualized environment. While offering

66
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MapReduce as a service, virtual network bandwidth availability is always not

guaranteed in a multitenant environment since it is shared. Besides, more virtual

network bandwidth is consumed in the shuffle phase during the MapReduce job ex-

ecution. It is a critical situation when the map phase of one job occurs along with

the shuffle phase of another job. To overcome these situations and improve the

MapReduce performance, in this chapter IDLACO is proposed to minimize the

NNLE, thereby, minimizing job latency. Firstly, it minimizes the overall band-

width consumption during job execution by finding a list of data blocks for each

map task of a job to copy across the virtual cluster. Secondly, the target VM is de-

termined based on its performance to copy the data blocks to perform a non-local

execution. Since VM performance is heterogeneous, it is essential to dynamically

determine the target VM. Finally, if a set of data blocks is copied frequently for

repeated job execution, it is temporarily cached to avoid consuming bandwidth

during job execution.

In summary, the proposed works in this chapter are listed below.

1. To calculate heterogeneous performance of virtual machines.

2. To find a list of data blocks for each IS that can minimize the number of

non-local executions and bandwidth consumption using ACO.

3. To cache data blocks that are frequent in the target virtual machine.

Rest of the chapter is organized as follows. Section 4.2 includes problem definition

and section 4.3 provides background and motivation behind this study. All the

proposed methods are modelled and discussed in detail in Section 4.4 while Section

4.5 includes results and analysis of proposed methodology by comparing with fair

scheduler and Holistic scheduler. Finally, summary is given in Section 4.6.
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4.2 Problem Definition

Improving hadoop mapreduce performance by minimizing global virtual network

bandwidth consumption to handle non-local execution to improve job latency by

increasing data locality.

4.3 Background and Motivation

MapReduce task scheduling prefers data blocks to be processed where they reside.

However, non-local executions are unavoidable when IS is assigned with more than

one blocks, and required resources are not available in a node. To investigate more

about data locality, non-local executions in a heterogeneous virtualized environ-

ment, some of the previous works are referred based on the parameters H, V, DL,

IS, NLe, JL, and B, as tabulated in Table 4.1.

Table 4.1: Literature survey

PW H V DL IS NLe JL B
[86] X X X X
[85] X X X X X
[90] X X X X X
[44] X X X X X
[98] X X
[99] X X X X
[100], [102], [105], [106] X X X
[39] X X X
[103] X X
[104] X X
IDLACO X X X X X X X
PW- Previous Works, H- Heterogeneity ,
V- Virtualized, DL- Data Locality, IS- Input Split,
NLe- Non-Local execution, JL-Job Latency, B-Bandwidth

As tabulated in Table 4.1, most of the previous works try to target job latency

by improving data locality in heterogeneous environment. In proposed method

“IDLACO”, all the parameters are considered to improve MapReduce scheduler
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performance. Fair scheduler and Holistic scheduler with genetic algorithm are used

for comparing the results of proposed method.

4.4 Proposed Methodology

MapReduce scheduler performance is affected if there are a greater NNLE, espe-

cially in a virtualized environment. Thus, a methodology IDLACO is proposed, as

presented in Algorithm 2, to minimize the NNLE and and amount of bandwidth

consumed (ABC) during data block movement across virtual networks. IDLACO

consists of the following steps:

1. Calculating the heterogeneous performance of VMs.

2. Modeling the NNLE and ABC.

3. Finding a set of data blocks for each IS using Ant Colony Optimization

(ACO).

4.4.1 Calculating Heterogeneous Performance of VMs

Multiple users share the virtual machines commonly in the CDC. VMs are typ-

ically placed across racks in a CDC based on the resource availability. Thus,

the performance of each virtual machine is based on the resource consumption of

neighboring VMs. DRMJS [39] can be used to model the heterogeneous perfor-

mance of VMs hosted in a physical server. DRMJS calculates performance of a

VM based on map and reduced tasks separately. This study, as shown in Figure

4.1, considers only the performance and suitability of map tasks of a job along

with the node attraction of data block to perform a non-local execution instead

of using the map task performance in each VM. Along with the heterogeneous

performance model proposed, few more components are introduced to maximize

the map task performance.
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Figure 4.1: IDLACO

First, as given in Algorithm 2, the performance of vCPU of a virtual machine is

calculate. As given in Eq. 4.1, CPU performance of jth virtual machine (V Node)

in ith physical machine (P Node) (V NodeCPU
ij ) is calculated by finding the physi-

cal machine with a maximum CPU frequency (CPU freq) among all physical ma-

chines where Hadoop VMs have been hosted. Besides, the performance of V Node

is based on the number of cores allocated from the total number of P Node cores

(P Nodeci). Thus, the performance factor of V Node in terms of the number of

cores (V Nodecij) allocated to it is introduced.

V NodeCPU
ij =

V NodeCPU freq
ij

max(∀i, P NodeCPU freq
i )

×
V Nodecij
P Nodeci

(4.1)

Since map tasks require huge disk IO interaction, the disk IO performance of

jth V Node in ith P Node (V NodeDiskIO
ij ) is calculate based on the current disk

bandwidth rate of jth V Node in ith P Node (V Nodecurr disk band
ij ) over the disk

bandwidth of kth disk in ith P Node (P NodeDisk band
ik ) (Eq. 4.2). Besides, it is

essential to determine the capability of executing more number data local map

tasks performed in a specific V Node. To specify the disk IO performance based

on the data block size, one more component, data locality (DLj
i ), is added in this

equation to emphasize that a V Node can run more data local map tasks over

time. It indicates the number of data local executions in jth V Node hosted in ith
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P Node.

∀i, j V NodeDiskIO
ij = ∀k,

∑
V Nodecurr disk band

ij

P NodeDisk band
ik

×DLj
i (4.2)

MapReduce tasks of a job have different resource requirements since users can

configure it explicitly. A map task requires more CPU and storage accesses, while

a reduced task needs CPU and network bandwidth. To launch map tasks in VMs, it

should have seamless disk bandwidth while starting the job and seamless network

bandwidth while moving map outputs to reduce nodes where reduce tasks are

running. To find the virtual node suitable for running map tasks, the influence of

jth V Node in ith P Node for map (V Nodemap inf
ij ) is calculate by considering the

latency of the last z number of map and reduced tasks executed in jth VNode, using

Eq. 4.3. If the number of map tasks considered in a V Node occurs differently,

there is no point in considering them. However, as MapReduce jobs in a production

environment are periodically executed, it is essential to consider the map tasks of

the same job execution in the recent past.

∀i,j, V Nodemap inf
ij = min

(
∀z,

map latencyjz∑z
m=1map latencyjm

)
(4.3)

Using Eq. 4.4, the map task performance (V Nodemap perf
ij ) in each V Node is

obtained based on the CPU performance and Disk IO bandwidth of respective

V Node hosted in each P Node.

∀i,j, V Nodemap perf
ij = V NodeCPU

ij ×

(1− V NodeDiskIO
ij )× (1− V Nodemap inf

ij )
(4.4)

Finally, virtual machines are sorted, with help of merge sort, to prepare a rank

list, using Eq. 4.5, based on its performance to launch map tasks, else reduce tasks

could be launched in place map tasks.

map rank = sort(V Nodemap perf
ij ) (4.5)
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4.4.2 Modelling NNLE and ABC

The number of data blocks for an IS is configured before launching MapReduce

jobs. When the number of data blocks in an IS increases, the NNLE increases.

The number of data blocks to transfer over a network for a non-local execution

can be intra-rack or inter-rack communication. If blocks are copied between the

racks, it introduces more network traffic for other applications. Thus, aim should

be to minimize the NNLE considering the racks in data center, which minimizes

the ABC as well.

As discussed in Section 4.1, there are three types of data local execution: , NL,

RL, and CL. If IS comprises s data blocks for a map task to process, then we must

track the s data block from the previous execution log (Figure 4.1) of previous

schedule. Using such information, it can decided whether a data block should be

moved for non-local execution or to cache in the target VM. Block information is

maintained as a triplet Bb
j(NL,RL,CL) ∈ ISx. Each block b of a data-set that

belongs to an IS x and resides in jth VM contains information on how a block

is executed (NL, RL, and CL). Consider an instance B5
2(NL,RL,CL) ∈ IS4. It

means that the 5th block that belongs to 4th IS has been executed as NL in 2nd VM.

Here, the number of IS is equivalent to the number of map tasks. For instance,

if there is 1 GB input data and the block size is 64 MB, then the number of

blocks is 16. If an IS is configured to contain the data block of size 128 MB, it

can comfortably include two physical data blocks. This forms 8 IS, which results

in eight map tasks. Similarly, each IS information is represented as a triplet

ISx(NL,RL,CL), indicating the information of xth IS. If an IS contains n data

blocks, then the number of data blocks executed as NL/RL/CL is denoted in the

IS triplet. Consider IS4(1, 2, 1). It means that the 4th IS contains four data blocks,

where one data block is executed within the node, two data blocks are executed

within the rack as non-local executions, and one data block is executed across

racks as a non-local execution. Thus, the 4th IS accounts for one local and three
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non-local executions. The residence of each block is denoted using the first triplet

Bb
j(NL,RL,CL) ∈ ISx to calculate the virtual network traffic between the servers

in a rack and between the racks in a cluster. Algorithm 2 elaborately explains

this sequence.

Notations used in algorithm:

Input dataset (ds) – in GB

Block size (bs) – 64/128 MB

Number of data blocks (b) – ds/bs

Input Split (IS) size – >= 1 bs

Number of IS (y) – 1...x...y

Number of blocks in an IS (s) – 1...z...s

Type of locality – NL/RL/CL

V Node− Virtual machine

P Node− Physical machine

V Nodeij− jth - V Node hosted in ith P Node

V NodeCPU
ij − CPU frequency of jth V Node hosted in ith P Node

V NodeDiskIO
ij − Disk IO usage of ith P Node where jth V Node hosted

V Nodemap inf
ij − map task influence of jth V Node hosted in ith P Node

V Nodemap perf
ij − map task performance of jth V Node hosted in ith P Node

Bb
j(NL,RL,CL) ∈ ISx – Data locality information for each b that belongs to IS

Bb
j(NL,RL,CL) – IS information

REPb – Replication of each block

BCd
(j,k)bw – Bandwidth consumption

From the log files, one can find the number of NL, RL, and CL for each map task

of a job in the past. The, initial plans for map and reduce tasks are prepared

by the scheduler. The number of non-local executions in each IS and the overall

NNLE can be calculated using Eq. 4.6. This information is used, to find the VMs,
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Algorithm 2: Improving Data Locality using Ant Colony Optimization (ID-
LACO)

1 Load input dataset
2 Find the number of data blocks stored in HDFS
3 Set IS size
4 Launching map tasks stage
5 Input: V Node parameters (virtual CPU, virtual disk, and virtual network),

system-level parameters (Disk)
6 Output: V Node performance in terms of map tasks
7 while true do

8 Calculate the CPU performance V NodeCPU
ij

9 Calculate the disk IO rate V NodeDiskIO
ij

10 Calculate the map task influence V Nodemap
ij

11 Calculate the map task performance V Nodemap perf
ij

12 Find the rank list of map nodes by sorting V Nodemap perf
ij in descending order

to find map rank
13 end
14 Find a set of blocks for each IS using ACO
15 Get information form scheduler
16 Control parameter initialization
17 τx,z – Pheromone matrix initialization
18 while (true) do
19 RWS calculation (ρij)
20 Path construction (Pathx,z)
21 Ants generation
22 Mapping ants with path
23 Evaluate objective function for the candidate solution constructed
24 Calculate the NNLE and ABC for each block including replicated blocks

25 REPb(B
b
j(NL,RL,CL) ∈ ISx, ISx(NL,RL,CL))

26 Min (NNLE) and Min (ABC)
27 Local pheromone update
28 Global pheromone update

29 end
30 Get a set of data blocks for each IS that minimizes the NNLE and bandwidth

consumed.
31 Get the list of target V Nodes based on the performance.
32 Schedule tasks.
33 Record the schedule into log for future use.

which attract more data blocks and the amount of data consumed across a virtual

cluster. To represent the network bandwidth relationship among VMs, consider

a graph (G) with a set of vertices (V) and a set of edges (E). In a connected
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graph G, V denotes VMs, and E denotes the bandwidth connection between VMs.

Bandwidth consumed between the vertices and reading time of a data block from

the busy VM denote the cost of a block in IS. Bandwidth consumption data

structure (BCd
(j,k)bw) is used to record the number of data blocks (d) transferred

and the amount of bandwidth (bw) consumed (in MBs) between VMs (j and k).

For instance, BC4
(2,3)300 indicates the bandwidth consumption between VMs 2 and

3. There are four data blocks transferred and 300 MB of bandwidth consumed

between VMs 2 and 3. Using this data structure, an analysis on the ABC can be

performed using Eq. 4.7. The number of data blocks transferred between each

VM can also be found. Besides, the number of replications for each block plays

a significant role in minimizing non-local executions. REPb(B
b
j(NL,RL,CL) ∈

ISx, ISx(NL,RL,CL)) denotes the information of three replications of block b.

The downside is, if the replication factor is high, finding the right copy of the

respective blocks is not easy and takes time to find the solution. Thus, it is

essential to decide the right replication factor for data blocks. In general, default

replication factor (three) is considered.

NNLE =

y∑
x=1

(RLx + CLx) (4.6)

ABC =
n∑

j=1

n∑
k=1

BCd
(j,k)bw (4.7)

4.4.3 Finding a set of data blocks for each IS using ACO

In the previous section, the number of data local executions and the ABC are

modelled when a MapReduce job is periodically executed. With log information,

we can infer the blocks that are frequently executed non-local in different VMs.

To decide dynamically, scheduling information from the MapReduce job scheduler

is obtained. With this information, we can find a set of data blocks to transfer

over a virtual network, which can minimize NNLE and ABC. It is ensured that
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the resulting data block set for each IS constitutes minimal NNLE and overall

bandwidth consumption. To achieve this, ACO algorithm is employed for finding

a set of data blocks for each IS that can optimize the NNLE and overall bandwidth

consumed. The reason for using ACO is to deal with discrete solution space.

Proposed model is mapped with the ACO algorithm, such that parameters in ACO

will determine an optimal result. IDLACO ultimately finds a set of data blocks

that belong to different IS and minimizes NNLE and overall bandwidth consumed.

The block selection problem is mapped with the optimization problem and give

a short glimpse of the ACO algorithm and the parameters used in ACO. Ants

foraging behavior can be mapped with optimization problem as a tree structure

with more than one level to find an optimal solution. As shown in Figure 4.2,

there are y IS for a MapReduce job.

Each IS consists of s data blocks. Each level is a decision variable (IS) in an

objective function, and nodes (data block) in each level denote possible solutions

from search space. Each block in IS contains information whether it is NL/RL/CL

and the amount of data to transfer. Moreover, each block has r replications, which

complicate further the selection of the right blocks to move. Thus, based on this

Figure 4.2: Finding a set of data blocks for IS using ACO
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information, different data blocks are used to find a set of blocks to perform a non-

local execution. For example, if the replication factor is 3 for each data block, s

data blocks are chosen in each level. Once all decision variables obtain a set of data

blocks, one can evaluate an objective function and update the solution iteratively

until the optimal solution or specified iteration limit is reached. Algorithm 2

briefly describes the ACO algorithm for this problem.

To discuss the approach more elaborately the steps of the ACO algorithm are

used to map this problem with ACO and include objective function. There are

problem-specific parameters, such as IS and the number of data blocks in an

IS. Besides, there are algorithm-specific parameters. Some of the problems and

algorithm-specific parameters are mapped as presented in Table 4.2.

Table 4.2: Parameter mapping

Algorithm specific
parameters

Notation
Problem specific
parameters

Decision variable (level) y IS
Nodes in each level s Blocks in IS

Pheromone is initialized between every level for each edge in the tree. This value

is not a problem specific parameter. Thus, a random value is assigned for the

pheromone matrix in each level and each edge in the tree. Then, based on roulette

wheel scheme (RWS) selection, a path from source to destination is selected. In the

later iterations, this selection is affected by the amount of pheromone accumulated

in the path. Eq. 4.8 is used to calculate the density of pheromone in each level,

where Pathx,z is a path matrix and τx,z is a pheromone matrix for each path in

the tree.

px,z =
τx,z∑s
z=1 τx,z

x = 1...y, z = 1...s (4.8)

Using this pheromone matrix (px,z), a path is constructed for ants to get chosen in

random. However, instead of creating a random path, we construct a path using
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RWS based path, using Eq. 4.9. The path for each level is constructed using

probability matrix. If there are four paths in a level, we construct a range for each

path. After constructing a path between each level, several ants are randomly

generated at each level. Here, an artificial ant is a random number generated

between 0 and 1. The number of ants is equal to the number of candidate solutions.

These ants are mapped with each path at the respective levels.

Pathx,z =



0 px,z

px,z px,z + px,z+1

px,z + px,z+1 px,z + px,z+1 + px,z+2

. .

. .

. px,z + px,z+1 + ...+ px,s


(4.9)

Finally, one ant from each level is selected. If the number of ants is greater, the

optimal solution may be reached quicker. However, it takes more computation

time. Once a (node) block in each level is chosen, it is then combined to ob-

tain the result. Each node contains two data structures which have already been

explained: ISx(NL,RL,CL) and Bb
j(NL,RL,CL) ∈ ISx. ISx denotes NNLE

initially decided by the task scheduler. If there are RL/CL executions mentioned

in IS, Bb
j is explored to find the right block number (b) residing in three VMs (j)

according to the replication factor. From these three VMs, the amount of band-

width currently available and size of the data block are noted along with the total

number of blocks to be processed in all target VMs. This is done in every level,

resulting in combination of data blocks in each IS. These values are then passed

to the objective functions Eqs. 4.6 and 4.7.

The combination that gives the optimal value for NNLE and overall bandwidth

consumed is selected from the best path. Subsequently, pheromone from the best

path is updated with the new probability value in the path matrix. Finally, the
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respective local and global paths are updated with the pheromone to increase the

chance of the current best path to have chosen in the upcoming iterations. Once

the algorithm produces a set of data blocks for each IS, they are scheduled for

execution based on the performance of target VMs, as presented in the Launching

map tasks stage part of Algorithm 2. Information on those data blocks was noted

for repeated execution of the same job. Over time, if those data blocks are frequent

to the same target VMs, they are cached in the target VM until the storage gets

exhausted. If this information is not useful later times, it is discarded from the

scheduler, which will remove the cached blocks from the target VMs. Figure 4.3

depicts a flowchart for steps of IDLACO.

4.5 Performance Evaluation

4.5.1 Experimental Setup

MapReduce task scheduler is simulated (Hadoop 2.7.0) to evaluate the proposed

methodology on Ubuntu server with 12-core CPU (hyper-threaded), 64 GB mem-

ory, storage 4 x 1 TB HDD, and disk bandwidth rate 100 MB maximum. IDLACO

is compared with classical fair scheduler and Holistic scheduler [106] based on pa-

rameters, such as the NNLE, average map task latency, job latency, and the ABC

(within and between racks). These parameters are analyzed for various configu-

rations of the number of blocks and IS. The configuration of the simulator with a

1 TB input file and 128 MB of HDFS block size is assumed . Word count job is

used to compare the performance of IDLACO with other schedulers for those pa-

rameters. Besides, we assumed a CDC with physical servers and VMs to be highly

heterogeneous. The work environment is static and tasks are independent. Here

ten racks are considered each with ten physical machines that belong to different

types, as given in Table 4.3, to launch VMs of different flavours, as given in Table

4.4. Altogether, we consider 100 physical machines of different types and, 100

VMs (20 VMs in each flavour) are launched across racks in the cluster. Each VM
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Figure 4.3: Flowchart for IDLACO

is a Hadoop node. In total, 98 slave nodes, one resource manager, and one name

node are configured. The schedulers are experimented for different combinations

of replication factor (RF) and the number of blocks (s) in an IS, as given in Table

4.5.
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Table 4.3: Physical machines configuration

PMs Types Configuration of physical machines

PM Type1
Intel(R) Xeon(R) CPU E5-2420 0 @ 1.90GHz 6 cores,
32 GB memory, 1 TB HDD

PM Type2
Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GHz 28 cores,
132 GB memory, 3 TB HDD

PM Type3
Intel(R) Core(TM) i5 CPU 650 @ 3.20GHz 4 cores,
8 GB memory, 1 TB HDD

PM Type4
Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz 4 cores,
8 GB memory, 1 TB HDD

Table 4.4: VM Types

VM Type vCPU Memory (GB)
Very small 1 2
Small 2 4
Medium 4 4
Large 8 16
Extra large 12 24

Table 4.5: RF and s combinations

RF 3 3 3 3 3 6 6
s 1 2 3 4 8 4 8

4.5.2 Results and Analysis

In Hadoop 2.x version, resource manager, a component of YARN (cluster resource

manager), looks after the scheduling of jobs from different distributed processing

tools, such as MapReduce, and Spark. Once a MapReduce job is scheduled by re-

source manager, application master (MRAppMaster), a component of MapReduce

2.x, schedules the map and reduce tasks. Each MapReduce job gets an MRApp-

Master to manage their map and reduce tasks running independently. MRApp-

Master collects log information and data block locations from the namenode, a

component in HDFS, for scheduling map tasks across virtual cluster. Log infor-

mation is used to understand the repeated pattern of data blocks copied to different

VMs. As shown in Figure 4.1, MapReduce job log is maintained to identify a set of

data blocks frequently copied to different VMs. Initially, MRAppMaster schedules
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map tasks by following locality principle. Then, using the proposed methodology,

the NNLE and overall ABC across clusters are significantly minimized.

Figure 4.4: NNLE during execution

Table 4.6: Comparison of NNLE during execution

Configuration
parameters

Number of non-local executions
Improvement in

IDLACO (%age) over
Fair

Scheduler
Holistic

Scheduler
IDLACO

Fair
Scheduler

Holistic
Scheduler

RF=3 s=1 1290 1023 732 43.26 28.45
RF=3 s=2 3456 2659 2245 35.04 15.57
RF=3 s=3 4082 3769 3290 19.40 12.71
RF=3 s=4 4929 4721 3921 20.45 16.95
RF=3 s=8 6429 5782 5230 18.65 9.55
RF=6 s=4 5902 4100 3890 34.09 5.12
RF=6 s=8 6320 6129 5743 9.13 6.30

Average NNLE 25.72 13.52

Figure 4.4 shows the NNLE performed with fair scheduler, Holistic scheduler,

and IDLACO. It is observed that IDLACO considerably has shown improvement

up to 25.2% and 13.5% on average over fair scheduler and Holistic scheduler (as

shown in Table 4.6). The objective of IDLACO is to minimize the NNLE; thereby,

minimizing ABC across racks in the virtual cluster. Initially ACO is used to find

the set of data blocks to copy on the virtual network. When s is increased for

different RF, the NNLE increases. This is because a map task is executed in

the node, where the first data block of IS is stored. Thus, other blocks in the
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IS must be copied to the node where the map task is processing the first block.

Fair scheduler copies the data blocks by default and causes to increase in NNLE.

However, IDLACO minimized it when s is increased in each IS. For instance,

consider RF=3, s=4 and RF=6, s=8. IDLACO improved, on average, up to

20.4% and 17% compared to fair scheduler and Holistic scheduler for RF = 3, s

= 4. Similarly, 9.1% and 6.3% improvement is observed using IDLACO compared

fair scheduler and Holistic scheduler for RF = 6, s = 8. ACO is time consuming,

typically for NPH problems, when input search space is countably infinite. In the

proposed algorithm, the search space for ACO is the number of IS (map task) for

the next schedule. So, ACO does not take much time (not more than 3 seconds)

to arrive optimal solution for the next schedule.

Based on the observation, when s is increased, NNLE significantly increases with

fair scheduler and Holistic scheduler. In contrast, IDLACO showed its considerable

performance improvement, as it initially finds a set of data blocks for each IS using

ACO. When RF is increased, the number of combination of data blocks in each

level increased, but it helps to identify the data blocks that need not be moved

or that consumes less bandwidth for a map task. Thus, IDLACO finds a set of

data blocks for each IS that could minimize the NNLE for a MapReduce job. This

minimized map task latency up to 20.6% and 15.8% in average, as shown in Figure

4.5, when compared to fair scheduler and Holistic scheduler for different cases (as

shown in Table 4.7). When s is increased in an IS, it minimized map task latency.

However, when RF is doubled for s in an IS,there is a little improvement for map

task latency in average. The reason is, even though RF increased that placed a

copy of data blocks across the cluster, map task is executed where the first data

block resides. Rest of the data blocks are yet to be copied over virtual network.

So, the number of data blocks are high to copy across the cluster. Therefore, it is

important to note that doubling the RF and s in an IS does not result in doubling

the performance.
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Figure 4.5: Average map task latency

Table 4.7: Comparison of average map task latency

Configuration
parameters

Map task latency (seconds)
Improvement in

IDLACO (%age) over
Fair

Scheduler
Holistic

Scheduler
IDLACO

Fair
Scheduler

Holistic
Scheduler

RF=3 s=1 7.5 7.4 7.0 6.67 5.41
RF=3 s=2 15.2 15.4 11.2 26.32 27.27
RF=3 s=3 24.7 22.1 16.3 34.01 26.24
RF=3 s=4 31.9 27.9 24.3 23.82 12.90
RF=3 s=8 53.0 48.0 39.0 26.42 18.75
RF=6 s=4 37.5 37.0 33.4 10.93 9.73
RF=6 s=8 46.0 43.0 38.5 16.30 10.47

Average map task latency 20.64 15.82

MapReduce job latency is minimized further by scheduling map tasks based on

the dynamic performance of VMs. Figure 4.6 shows the job latency of different

schedulers for different combinations of RF and s..
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Figure 4.6: Job latency using different schedulers

Table 4.8: Comparison of Job latency using different schedulers

Configuration
parameters

Job latency
Improvement in

IDLACO (%age) over
Fair

Scheduler
Holistic

Scheduler
IDLACO

Fair
Scheduler

Holistic
Scheduler

RF=3 s=1 13 12.9 11.1 14.62 13.95
RF=3 s=2 21 19.8 18 14.29 9.09
RF=3 s=3 34 29 26 23.53 10.34
RF=3 s=4 47 39.3 33 29.79 16.03
RF=3 s=8 62 57 49 20.97 14.04
RF=6 s=4 51 50 45 11.76 10.00
RF=6 s=8 59 58.2 49 16.95 15.81

Average job latency improvement 18.84 12.75

High degree of heterogeneous configuration of physical machines and different

flavours of VMs cause heterogeneity in performance. So, even though schedul-

ing a map task in a node, there may be high-performing VMs to process all data

blocks in the IS in a short time. Therefore, soon after finding a set of data blocks

for an IS that constitutes small NNLE, all VMs that contain data blocks from

IS are examined whether the current VM performance is good enough to finish

the task quickly. So, IDLACO schedules the map tasks to the VM that delivers

high performance in processing data blocks. In effect, it improved job latency

up to 18.8% and 12.7% on average for all different configurations compared fair

scheduler and Holistic scheduler as shown in Table 4.8.
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More specifically, when s and RF increased, job latency was minimized. When

RF is high, there is a greater number of blocks residing across the virtual cluster

hosted in a CDC. Thus, MRAppMaster gets more opportunity to examine the

performance of different VMs and assign map tasks accordingly. This ultimately

caused reduction in the job latency. However,the number of combinations to check

in each IS by ACO will be high when RF and s are increased. For instance,

when RF and s are doubled like in RF=3, s=2 and RF=6, s=4, job latency is

minimized up to 11.7% and 10% when compared to fair scheduler and Holistic

scheduler. Thus, it is essential to understand the heterogeneous performance in

heterogeneous environment to schedule map tasks. Another important claim of

IDLACO is to minimize the ABC during the map task execution. We assumed

no other MapReduce job stands in the shuffe phase. As NNLE minimized, with

no surprise, the ABC during the map task execution is also minimized, as shown

in Figure 4.7, up to 25.7% and 15.2% for all different combinations of RF and s

compared to the fair scheduler and Holistic scheduler (as shown in Table 4.9).

Figure 4.7: Overall ABC during non-local executions
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Table 4.9: Comparison of overall ABC during non-local executions

Configuration
parameters

Amount of bandwidth consumed (MB)
Improvement in

IDLACO (%age) over
Fair

Scheduler
Holistic

Scheduler
IDLACO

Fair
Scheduler

Holistic
Scheduler

RF=3 s=1 165120 129408 93696 43.26 27.60
RF=3 s=2 442368 364864 287360 35.04 21.24
RF=3 s=3 522496 471808 421120 19.40 10.74
RF=3 s=4 630912 566400 501888 20.45 11.39
RF=3 s=8 822912 746176 669440 18.65 10.28
RF=6 s=4 755456 626688 497920 34.09 20.55
RF=6 s=8 808960 772032 735104 9.13 4.78

Average ABC 25.72 15.23

This significant performance gain is due to caching frequent set of data blocks

copied over the virtual network. Once the data blocks are cached in the target VM,

they are used for future map task execution, as MapReduce jobs in a production

environment are periodically executed. If the pattern of data blocks executed is

not the same, the cached data blocks are removed from the target VM.

Figure 4.8: ABC within rack during job execution

Even though IDLACO performed better than fair scheduler and Holistic scheduler

in minimizing the ABC, it is essential to analyse the bandwidth consumption

within and between racks. Figure 4.8 shows the difference between the schedulers

based on ABC within racks. Since there is no rack awareness in the Hadoop

virtual cluster, it is not easy to achieve the RL execution. Here, IDLACO always
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Figure 4.9: ABC across racks during job execution

prefers the VM located in the same rack for bringing data blocks mentioned in IS.

Thus, moving data blocks between racks is mostly avoided. IDLACO aims to copy

the data blocks required for different IS within the rack and avoids transferring

them over a network. Thus, the proposed method minimized the number of non-

local executions across the cluster. Due to this, IDLACO observed RL bandwidth

consumption up to 78.7% and 25.6%, in average, to keep the relevant data blocks

within the rack compared to the fair scheduler and Holistic scheduler.

Table 4.10: Comparison of ABC within-rack and across-racks during job ex-
ecution

Configuration
parameters

Rack Local Across Racks
Across Racks

Improvement in
IDLACO (%age) over

Fair
Scheduler

Holistic
Scheduler

IDLACO
Fair

Scheduler
Holistic

Scheduler
IDLACO

Fair
Scheduler

Holistic
Scheduler

RF=3 s=1 49469 56066.5 62664 115651 73341.5 31032 73.17 57.69
RF=3 s=2 66879 81003.5 95128 375489 283860.5 192232 48.80 32.28
RF=3 s=3 55257 76234.5 97212 467239 395573.5 323908 30.68 18.12
RF=3 s=4 68734 74764.5 80795 562178 491635.5 421093 25.10 14.35
RF=3 s=8 43836 84779.5 125723 779076 661396.5 543717 30.21 17.79
RF=6 s=4 69168 98984 128800 686288 527704 369120 46.22 30.05
RF=6 s=8 57452 90667.5 123883 751508 681364.5 611221 18.67 10.29

Average improvement in across-rack bandwidth consumption 38.98 25.80

Therefore, bandwidth consumption between racks, as shown in Figure 4.9, is min-

imized up to 38.9% and 25.8% compared with fair scheduler and Holistic sched-

uler. When s is high RF=3,s=8, and RF=6,s=8 for an IS, IDLACO minimized the
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ABC up to 30.2% and 18.6% over fair scheduler and 17.7% and 10.2% over Holistic

scheduler. When s is a small number with default replication, it has little chance

of getting data blocks from the VM residing in the rack. This is because there

are an insuffcient number of copies of the same data block, especially in the same

rack. Thus, it is essential to consider RF high when the number of data blocks

in an IS is high. This is the case when RF=3,s=1, for which 73.1% and 57.6% of

overall bandwidth consumption is recorded between racks for fair scheduler and

Holistic scheduler. Thus, using the right combination of RF and s in an IS plays a

significant role in improving the job latency by minimizing the NNLE and ABC.

4.6 Summary

Hadoop MapReduce is widely used as a service by different sectors. Improving

the performance of the MapReduce is a primary objective, especially, in a het-

erogeneous virtualized cloud environment. When an IS is assigned with a greater

number of data blocks, NNLE increases, leading to high bandwidth consumption

and job latency. To overcome this, IDLACO is proposed to find a set of data

blocks for each map task of a job to minimize NNLE and ABC. Then, the target

virtual machine is determined based on its heterogeneous performance to perform

non-local execution. Finally, if a set of data blocks are copied over a network

repeatedly, it is decided to temporarily cache those data blocks in the target VM.

IDLACO outperformed the fair scheduler for about 25.7%, 20.6%, 18.8%, 25.7%,

and for the Holistic scheduler for about 13.5%, 15.8%, 12.7%, 15.2%, on aver-

age for parameters NNLE, average map task latency, job latency, and the ABC,

respectively, for a MapReduce job.



Chapter 5

Conclusion and Future Scope

5.1 Conclusion

Big data refers to the complex and huge data sets and big data mining is a process

of discovering unknown patterns from big data.With the rising and quickly grow-

ing data, things are varying in the business environment. Big data is fetching the

hottest ultimate edge for data research and for many business applications. Com-

panies are currently using big data analysis to forecast the upcoming trends so

that enormous value can be produced out of it. Because of tremendous measure

of information around us, the current database tools face issues identified with

colossal measure of information, speed of data, data sharing, scalability, efficiency,

privacy and security of data. This thesis demonstrates a review of various schedul-

ing algorithms used in MapReduce phase of Hadoop. The default schedulers of

Hadoop: FIFO, Capacity Scheduler and Fair Scheduler accept the cluster envi-

ronment to be homogeneous and work viably in homogeneous condition. In case

the cluster is heterogeneous, the execution of Hadoop is significantly cut down.

Various scheduling algorithms have been envisioned but they do bargain on some

attributes or metrics to improve one or more attribute. This thesis, also device a

review on data locality in MapReduce to find out few factors that troubles data lo-

cality and harms overall performance. A couple of issues that inconveniences data

90
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locality are mechanism for distribution of data, cluster and network load, complex

load, cost, resource sharing, cluster environment (homogeneous or heterogeneous),

unplanned clients requests, size of data blocks, number of mappers and reducers.

Without cloud service, it is impossible to use big data processing frameworks as it

is expensive to set up on-premise. Hadoop is one of the efficient processing tools

for crunching a large volume of data. It is also offered as cloud service on a cluster

of virtual machines hosted in a cluster of physical servers in a cloud data-center.

In this case, heterogeneity in physical servers and virtual machine performance

is unavoidable. Therefore, we mainly focus on disk IO performance due to many

virtual machines hosted in a same hard disk drive. It highly affects map task

execution in map phase due to delay in bringing data blocks from disk into mem-

ory. This motivated us to investigate the disk performance when virtual machines

are hosted in same disk. To distribute data blocks based on the performance of

disk IO, simple linear regression algorithm is used to predict disk IO performance

and distribute data blocks accordingly. Therefore, data blocks for map tasks are

brought into memory quickly. Moreover, varying performance of virtual machine

due to co-located virtual machine’s interference affects MapReduce job latency.

Therefore, a methodology ”PBDBP” is proposed to dynamically exploit heteroge-

neous performance, and if any high variation in performance for long time, then

data blocks are redistributed in such a way that, data local execution is improved.

At any time, the number of data blocks in a virtual machine are stored based on

the performance of that virtual machine. Finally the ideas are simulated based on

Hadoop 2.7.0 and compared with classical fair scheduler, RWS-based scheduler,

and HMJS. Results claim that the proposed scheduler outperformed up to 66%,

52%, and 19% compared to those existing schedulers for makespan.

Hadoop MapReduce is widely used as a service by different cloud service providers.

Thus, improving the performance of the MapReduce scheduler is a primary objec-

tive, especially in a heterogeneous virtualized cloud environment. When an IS is

assigned with a greater number of data blocks, NNLE increases, leading to high
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bandwidth consumption and job latency. To overcome this situation, a method-

ology “IDLACO” is proposed to find a list of data blocks for each map task of

a job for performing non-local execution, minimizing the job latency and virtual

network consumption. Then, the target virtual machine is determined on the basis

of its heterogeneous performance to copy these data blocks. Finally, if a specific

set of data blocks are transferred over a network for repeated job execution, it is

decided to temporarily cache those data blocks in the target VM. IDLACO out-

performed the fair scheduler for about 25.7%, 20.6%, 18.8%, 25.7%, and for the

Holistic scheduler for about 13.5%, 15.8%, 12.7%, 15.2%, on average for parame-

ters NNLE, average map task latency, job latency, and the ABC, respectively, for

a MapReduce job.

5.2 Future Scope

There is always chance of improvements. Nobody can claim that no further im-

provements beyond this point. So the parameters job latency, makespan, number

of non-local executions, average map task latency, and the amount of bandwidth

consumed to improve data locality and amount of data processed in heterogeneous

virtualized environment can further be improved. One of the important research

question here is that whether we can extend this work for reduce phase also?

As we have considered parameters job latency, makespan, average map task la-

tency, NNLE and ABC to enhance the performance. Therefore, in future the work

can be extended by considering few other parameters like flow-time, resource uti-

lization, utilization of machines and designing more specific cost evaluation model

for reduce phase also. We have floated an idea by considering different types of het-

erogeneities in physical and virtual machines. The heterogeneity and dynamism

for both physical and virtual machines can also be increased in future to test

schedulers with increased cluster size along with more workloads of varying sizes

to compare and contrast the performance on virtual as well as real environment.
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