
DESIGN OF A RESOURCE MANAGEMENT SYSTEM FOR
FOG DRIVEN IOT APPLICATION

A Thesis
Submitted in partial fulfillment of the requirements for the

award of the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE AND ENGINEERING

By

Heena Wadhwa
41700045

Supervised By
Dr. Rajni

LOVELY PROFESSIONAL UNIVERSITY
PUNJAB
2021

DECLARATION

I hereby declare that thesis entitled "Design of a Resource Management System for Fog
driven IoT Application" submitted by me for Degree of Doctor of Philosophy in Computer
Science and Engineering is the result of my original and independent research work car-
ried out under the guidance of my Supervisor Dr. Rajni, Associate Professor, School of
Computer Science and Engineering, Lovely Professional University, Jalandhar. This work
has not been submitted for the award of any degree or fellowship of any other University or
Institution.

Heena Wadhwa
School of Computer Science and Engineering,
Lovely Professional University,
Phagwara, Punjab-144411, India
Date:

i

ABSTRACT

The group of real world physical devices like machines, vehicles and various “things” con-
nected to the Internet is called as Internet of things (IoT). Currently, with the expansion
of the Internet of Things (IoT) devices, the computing requires latency-sensitive support.
The cloud computing paradigm offers several services to handle a large amount of data.
However, the obstruction of the cloud computing framework is its inadequate flexibility
and problem of accommodating the diverse requirements generated from an IoT-based en-
vironment. Cloud computing is emerging with the latest paradigms to ensure that the
connected heterogeneous system can achieve High Performance Computing. The fog com-
puting paradigm provides solutions to real time applications that require computational
support near the edge devices. These latency sensitive applications execute all tasks in
the fog-cloud environment which is also known as fog assisted cloud computing. The fog
assisted cloud computing provides better Quality of Service (QoS) to the Internet of Things
(IoT) applications.
The huge amount of data transmitted by the IoT devices results in bandwidth overhead
and increased delay. However, Due to the increase in the Internet of Things (IoT) devices,
traditional computing systems are shifting to fog computing. Fog computing has become
a growing methodology to handle the network, resources and energy related issues of the
traditional cloud computing approach. Fog computing is a viable high performancemethod-
ology and deals with resources management, resource provisioning, task scheduling, and
load balancing to maintain the system’s high performance. In fog computing, resource
management is required to improve the performance of the system. In order to access the
resources needed at the right time, the resource management system should find out the
available resource and allocation of these resources. Therefore resource management has
become a key search area in fog computing and efficient resource utilization is required to
ensure the better performance of the system.
Furthermore, many of today’s requirements prefer diverse geographic distribution of re-
sources and near to the end device location. Hence, the new fog computing paradigm
provides some innovative solutions for real-time applications. Resource scheduling and
utilization are key challenges to handle resource management efficiently. To achieve the set
objective, a comprehensive literature review on the existing resource scheduling has been
done. A comparative study of existing approaches has been done and find out the gaps has
been analyzed.

iii

The fog computing framework’s prime agenda is to support latency-sensitive applications
by utilizing all available resources. These services include data storage, exploration, and
analysis. Due to the increase in the Internet of Things (IoT) devices, traditional comput-
ing systems are shifting to fog computing. Resource utilization is a complex task that is
often compromised due to the non-availability of required resources on the fog layer. The
dynamic nature of fog layer resources depends on the users’ requirements for resources.
Due to limited resources available at the fog layer, a resource utilization policy is required
to ensure efficient resource usability. Therefore, it is significant to allocate the resources
and scheduling tasks on the fog layer. Initially, tasks are considered from IoT devices and
calculate the requirement for resources. The allocation of resources are done through the
Zero Hour policy. This policy represents the allocation of resources from the fog layer to
the highest priority task for execution.
Moreover, a technique for resource allocation and management is proposed to ensure re-
source utilization at the fog layer. This technique is named as TRAM model. In this
proposed model, tasks from the IoT devices are clustered based on the priority and deadline
by implementing Expectation Maximization (EM) clustering to reduce the computational
complexity and bandwidth overhead. These clusters are generated based on the intensity
level of these tasks and categorize the tasks into high, medium and low intensity. The avail-
ability of resources is calculated and a prepared list of resources(LoR). TRAM effectively
minimizes execution time, network consumption, energy consumption and average loop
delay of tasks. OSCAR model is designed to schedule the clustered tasks by implementing
Heap Based Optimizer (HBO) based on the QoS and Service Level Agreement (SLA) con-
straints. The QoS parameters are used to check the performance of the proposed algorithm.
The allocation of resources performs the distributed resource management to the tasks
based on several multiple constraints. The Categorical Deep Q Network (C-DQN), a Deep
Reinforcement Learning (DRL) model, is implemented for this purpose. The dynamic
nature of tasks from the IoT devices is addressed by performing preemption of tasks using
the preference ranking method. The high priority task with a shorter deadline replaces the
low priority task having a longer deadline by moving it into the waiting state.
Due to limited resources available at the fog layer, a resource utilization policy is required
to ensure efficient resource usability. Therefore, it is significant to allocate the resources
and scheduling tasks on the fog layer. The proposed model is experimented with in the
iFogsim simulation tool and evaluated in terms of average response time, loss ratio, resource
utilization, average makespan time, queuing waiting time, percentage of tasks satisfying the

iv

deadline and throughput. The obtained simulation results are compared with other exist-
ing techniques. It has been obtained from the result graphs that our proposed approaches
outperform the existing approaches in terms of all considered QoS parameters.

v

ACKNOWLEDGEMENT

It is a pleasure for me to thank all those who have helped me accomplish this PhD thesis.
Firstly, I wish to express my deepest gratitude to Dr. Rajni for guiding me throughout this
research work. My supervisor has been a continuous source of knowledge, inspiration,
motivation and encouragement during the entire course of this research work.

A special thanks to the management of Lovely Professional University to support me
in the best possible manner and facilitate me in balancing my work and my research. The
doctoral programme of LPU has made it possible for me to pursue my dream of study and
upgrade my knowledge.

Special thanks to Examiners of end-term reports and reviewers of journals who vetted
my submissions and gave valuable comments to improve the work further.

I take this opportunity to express my gratitude to all my teachers who have shaped me
and have contributed immensely to my knowledge and skill development since childhood.

I wish to express my profound gratitude to my parents and all other members of my
family. Their love, support and unshakable faith in me provide strength to succeed in all
the goals of life.
I am also thankful to my husband, Ashish Wadhwa, who has offered full support to me
during the entire period of my research work. I would like to thank all my colleagues Dr.
Amanpreet Kaur for supporting and guiding me. Furthermore, I would thank my friends
Mandeep Kaur and Kanika Jindal for their endless support. Finally, I would like to thank
every person who has, directly and indirectly, helped and motivated me in this arduous task.

vi

TABLE OF CONTENTS

1 Introduction 1
1.1 Fog Computing: Overview . 2

1.1.1 Integration of IoT and Fog Computing 3
1.1.2 Evolution of Fog Computing . 4
1.1.3 Fog Computing Architecture . 6

1.2 Need of Fog Computing . 7
1.3 Fog Computing Key Issues . 8

1.3.1 Resource Management . 9
1.3.2 Data Management . 11
1.3.3 Security . 13

1.4 Research Motivation . 14
1.5 Thesis Organization . 16
1.6 Thesis Contribution . 18

2 Related Work 20
2.1 Resource Management System . 21
2.2 Resource Utilization . 22

2.2.1 Resource Utilization in Fog Computing 22
2.2.2 Existing Frameworks in Fog Computing 33

2.3 Classification of Architecture . 37
2.3.1 General Architecture . 38
2.3.2 Application Oriented Architecture 38

2.4 Fog Computing for Real Time Applications 40
2.5 Resource Scheduling Algorithm . 43
2.6 Fog Computing and its Related Concepts 45
2.7 Problem Formulation . 49

vii

2.7.1 Research Objectives . 51

3 Proposed Resource Utilization Framework 52
3.1 High Level View of Framework . 53

3.1.1 System Description . 54
3.1.2 Assumptions of the Study . 55
3.1.3 Applications and Services Workflow 55
3.1.4 Tri-fold Task Clustering . 55
3.1.5 Goals of the Proposed Framework 57
3.1.6 Framework Constraints . 58

3.2 Zero Hour Policy . 59
3.2.1 Mode of Operation . 59
3.2.2 Design and Working Principle of Zero-Hour Policy 62

3.3 TRAM: Technique For Resource Allocation and Management 65
3.3.1 Mode of Operation . 65
3.3.2 Task Clustering . 67

3.4 Expectation Maximization . 69
3.5 Verification of Resource Scheduling Framework 70

3.5.1 Simulation Model: iFogSim Toolkit 70
3.6 Experimental Scenario: Zero Hour Policy 73

3.6.1 Performance Metrics . 74
3.6.2 Experimental Scenario: TRAM 79

3.7 Performance Evaluation Criteria . 81
3.7.1 Results and Discussion . 81
3.7.2 Test Case 1: Energy Consumption 81
3.7.3 Test Case 2: Average Loop Delay 82
3.7.4 Test Case 3: Latency and Network Consumption 83
3.7.5 Test Case 4: Execution Time . 85

3.8 Applications of Proposed Architecture and Approach in Real Time Envi-
ronment . 85
3.8.1 Smart Traffic Light System . 85
3.8.2 Smart Leakage Detection in Smart Cities 86
3.8.3 Smart Healthcare Gateway at the Fog Layer 87

3.9 Summary . 88

viii

4 Resource Scheduling Algorithm 89
4.1 An Efficient Solution for Resource Scheduling Model 90

4.1.1 Availability of Resources for Allocation 90
4.1.2 Illustration of TRAM . 93

4.2 Optimized Task Scheduling and Preemption 96
4.2.1 Resource Intensive Task Scheduling 97
4.2.2 Heap Based Optimization . 98

4.3 Multi Constraint Based Resource Allocation 102
4.3.1 Deep Reinforcement Learning Model 103

4.4 Dynamic Task Preemptive Scheduling . 104
4.5 Comparative Analysis . 106

4.5.1 Impact of Average Response Time 106
4.5.2 Impact of Load Ratio . 108
4.5.3 Impact of Resource Utilization . 110
4.5.4 Impact of Average Makespan Time 111
4.5.5 Impact of Queueing Time . 112
4.5.6 Impact of Task Satisfying the Deadline 114
4.5.7 Impact of Throughput . 115

4.6 Test Cases for Evaluation . 116
4.6.1 Test case I: Cost Analysis . 117
4.6.2 Test Case II: Execution Time of Tasks 117
4.6.3 Test Case III: Energy Consumption of Tasks 118
4.6.4 Test Case IV: Response Time Analysis of Tasks 119

4.7 Statistical Analysis . 119
4.8 Summary . 122

5 Conclusion and Future Direction 123
5.1 Conclusion . 124

5.1.1 Main Contribution . 125
5.2 Limitations of the Research . 125
5.3 Future Work . 126

References 128

ix

LIST OF TABLES

1.1 IoT Challenges and its Solution With Fog Computing 4
1.2 Comparison Fog Computing and Cloud Computing 8

2.1 Comparison of Different Scheduling Techniques 28
2.1 Comparison of Different Scheduling Techniques 29
2.2 Gap Analysis . 30
2.3 Gap Analysis Based on Existing Evaluation Factors 34
2.4 Comparisons of Existing Fog Computing Frameworks 36
2.5 Details of Different Categories of Architecture 39
2.6 Attributes of Fog Computing Related Paradigms 47

3.1 Goals of the Tri-fold Task Clustering Framework 57
3.2 Physical Setup Configurations . 71
3.3 A Comparison Between Different Simulators 72
3.4 Tuple Type Description . 74
3.5 Values of Parameters in the Cloud Fog Environment 74
3.6 Host Configuration . 75
3.7 Used Notations . 76
3.8 System Parameters . 80
3.9 System Configurations . 80

4.1 Used Notations . 91
4.2 Simulation Parameters . 107
4.3 Analysis of Average Response Time . 107
4.4 Analysis of Load Ratio . 109
4.5 Analysis of Resource Utilization . 110
4.6 Analysis of Average Makespan Time . 111
4.7 Analysis of Queueing Time Without Task Preemption 113

x

4.8 Analysis of Queueing Time With Task Preemption 114
4.9 Analysis of Task Satisfies the Deadline 114
4.10 Analysis of Throughput . 116

xi

LIST OF FIGURES

1.1 The Evolution of Fog Computing . 5
1.2 The Layered Fog Computing Architecture 7
1.3 Multi-fold Framework . 12

2.1 Classification of Architecture . 37
2.2 Smart City Framework . 42
2.3 Distribution of Primary Studies . 45

3.1 High Level View of Tri-fold Task clustering 53
3.2 Application Workflow and Services Handle by Fog Server 54
3.3 Overall Architecture of Tri-fold Task Clustering Model 56
3.4 Fog Computing Framework . 60
3.5 Host Control Node with Resource Scheduler 61
3.6 Working Architecture of Zero Hour Policy Scheduler 63
3.7 Sequence Diagram of Resource Scheduling and Execution 64
3.8 Technique for Resource Allocation and Management 66
3.9 Task Clustering Result . 67
3.10 EM Clustering Result . 68
3.11 Application Model with Tuple Processing 73
3.12 Delay in Control Loop . 77
3.13 Network Usage . 78
3.14 Execution Cost . 78
3.15 Execution Time . 79
3.16 Energy Consumption . 82
3.17 Average Loop Delay . 83
3.18 Network Usage . 84
3.19 Execution Time of Simulation . 84

xii

3.20 Smart Traffic Light System . 86
3.21 Smart Healthcare Gateway . 87

4.1 Resource Scheduling . 90
4.2 Flow Chart of TRAM . 94
4.3 Intensity Based Resource Grading and Allocation 95
4.4 Task Scheduling . 99
4.5 Resource Allocation Flow . 101
4.6 a) Fog Topology b) Configure the Simulation c) Running Simulation Cost

Analysis of Different Workflows . 105
4.7 Number of Tasks vs. Average Response Time 108
4.8 Number of Tasks vs. Load Ratio . 109
4.9 Number of Fog Nodes vs. Resource Utilization 110
4.10 Number of Fog Nodes vs. Average Makespan Time 111
4.11 Queueing Time Without Task Preemption 112
4.12 Queueing Time With Task Preemption . 113
4.13 No. of Fog Nodes vs. Tasks Satisfying the Deadline 115
4.14 No of Fog Nodes vs. Throughput (Kbps) 116
4.15 Analysis of Cost . 117
4.16 Analysis of Execution Time . 118
4.17 Analysis of Energy Consumption . 119
4.18 Analysis of Response Time . 120
4.19 Paired t-test for Execution Time . 121
4.20 Paired t-test for Response Time . 121
4.21 Paired t-test for Energy Consumption . 122

xiii

LIST OF ABBREVIATIONS

IoT Internet of Things

EM Expectation Maximization

HPO Heap Based Optimization

LoR List of Resources

HPC High Performance Computing

FC Fog Computing

QoS Quality of Service

QoE Quality of Experience

EST Earliest Start Time

EFT Earliest Finish Time

DLS Dynamic Level Scheduling

BaTS Bag of Tasks

CS Consensus sensing

MPSO Modified Particle Swarm Optimization

DRL Deep Reinforcement Learning

FCFS First Come First Serve

FSM Fog Service Manager

MEC Multi Access Edge Computing

MCC Mobile Cloud Computing Architecture

VM Virtual Machine

RNC Radio Network Controller

MACC Mobile ad-hoc Cloud Computing

TRAM Technique for Resource Allocation and Management

OSCAR Optimized Task Scheduling and Preemption

SLA Service Level Agreement

C-DQN Categorical Deep Q Network

xiv

CHAPTER 1

Introduction

Fog computing is to enhance the proficiency of processes and diminish the transportation
of data from cloud to endpoints. There are numerous constraints in the traditional method-
ologies which show the need for a new computing paradigm for all real-time processing
applications and reduce bandwidth consumption. Fog computing provided computational,
data processing and storage services to the IoT applications or users.
The Fog computing enhance its services to cloud computing by local processing the data
instead of adding extra burden on the cloud by transferring all data and information to the
cloud. In this manner, fog computing enhances the performance of the system and enhances
its efficiency. Although numerous constraints show the need for a new computing methodol-
ogy for all real-time processing applications and reduce the bandwidth consumption. The
new inventions and developments for the design of fog computing framework have occurred
in the hybrid environment. and achieve high performance computing.
This chapter gives a high level view of the thesis. It discusses the need and basic principles of
fog computing. It describes the integration of IoT devices and fog computing. In this chap-
ter, the key issues have been discussed and provide the solutions to the problem that occurs
during the implementation of the cloud computing paradigm. It also motivates to propose a
resource scheduling and utilization based framework for the fog computing system. It con-
cludes with a consideration of the rest of the thesis’ organization as well as its contributions.

1

1.1 Fog Computing: Overview

Fog computing, a term introduced by CISCO in 2012 [13]. It is a new paradigm, that can
be implemented by using various sensors, wearable devices, smart gadgets and vehicles.
In this paradigm, the processing of jobs and computational tasks should be performed in
distributed manner [69]. Instead of generating a centralized data center, multiple devices
are used in the network. The calculation of latency starts from the end user to the cloud,
reducing the bandwidth utilization and latency in the network. Fog computing refining
data that is produced by the sensor and transferring to the cloud only after refinement.
This paradigm offers various facilities such as faster communication, power of execution,
monitoring and analyzing IoT services [34]. Information Technology (IT) plays a vital role
in everyone’s life. Advancement in IT has completely transformed the lifestyle of mankind.
Various sectors such as healthcare, agriculture, co-operate banks, entertainment, and many
other sectors have been impacted by significant IT resources, i.e. storage, computation
power, and network bandwidth. The demand for these IT resources has increased day by
day. Due to the growing demand for IT resources, various computing technologies such
as utility computing, parallel computing, grid computing and cloud computing have been
developed. Among these computing technologies, cloud computing allows users to perform
services on-demand basis and pay for these services as per the usage. Cloud Computing
has enabled on demand services to the computing resources.
Internet of Things (IoT) is growing in various private and industrial spaces, it requires
changes in the existing approach. Cloud computing is considered as the pillar of all
IoT services and it executes all IoT services in a centralized cloud. However, Due to a
lack of location awareness, excessive latency, and the lack of geo-distributed data centers
adjacent to IoT devices, cloud computing is unable to meet the stated requirements. Cloud
computing may be the attainable solution to satisfy the requirements of distributed IoT
based applications due to the issue of latency [15].
Information systems for IoT applications with a centralized global approach, in which IoT
devices rely on remote management systems [15]. But there is a drawback in the model in
terms of agility. In many real-time applications such as environmental analytics, ambient
assisted living and healthcare related applications, users want quick responses. Even after
the mobile internet speed has improved, the latency is quite high in the distant centralized
model. To handle this problem, fog computing provides data filtering with computers
available at local data centers and end user applications situated at the edge of the network

2

of IoT system [13]. All the resources used for fog computing are known as fog nodes, which
are connected with the edge network via the internet [77]. Some examples are set-up boxes,
industrial integrated routers and wireless access points, with virtualization technologies,
which permit clients to install software onto them [91].

1.1.1 Integration of IoT and Fog Computing

The integration of IoT and fog computing often depend upon a distributed networking system
to collect data from geographically distributed sources, such as sensors and datacentres [77].
Due to the high latency rate, the cloud is not a feasible approach to achieve the requirement
of distributed applications. An information system was designed in which IoT devices
depend upon the centralized datacentres [85]. This system was constructed for integrated
IoT applications. The combination of IoT and fog computing often depend upon a distributed
networking system to collect data from geographically distributed sources, such as sensors
and datacentres. It delivers more efficient and cost effective IoT services. Data processing
tasks can be performed by IoT devices to simplify by reducing the installation cost and
integration for complex data processing.
One of the significant features of fog computing is the capability to execute large-scale sensor
networks, which is a problem with many IoT devices. Various manufacturers invented a
number of IoT devices and sensors and it is a complicated task to select the best possible
components. However, each IoT application has different configurations and requirements.
The striking feature of IoT devices is the performance in case of change in their workflow
composition.

The whole business scenario gets affected by the next smart generation technologies.
The IoT can be represented as individually identified smart objects and devices [26]. The
IoT provides suitable solutions for a number of applications e.g. waste management system,
smart traffic light system, logistic control system, emergency services and industrial control
[75]. Smart healthcare devices and wearable sensor are the two most attractive areas for IoT.
According to T. Zhang and M. Chiang [33], Many issues can be resolved by fog computing
as defined in Table 1.1
Fog computing enlarges cloud computing performance and with more flexibility to the end
devices level of the main network. It also shared processing features to create a viable
solution that could be expanded.

3

Table 1.1: IoT Challenges and its Solution With Fog Computing

Sr.No. IoT Challenges How Fog can resolve the issues
1 IoT security Challenges A fog system can 1) perform mal-

ware scanning functions and ob-
serve the security status of nearby
devices. 2) behave as a proxy to up-
date software credentials and detect
threats in a timely manner.

2 Latency Constraints The fog performs different compu-
tation tasks, which are the ideal
method for time-sensitive data.

3 Network bandwidth con-
straints

Hierarchical data processing can be
enabled by fog computing, allowing
the transfer of data from the cloud
to IoT devices. Data processing oc-
curred if applications, network and
computing resources are available
on demand.

4 Uninterrupted Services fog computing can execute au-
tonomously to confirm uninter-
rupted services even it has some
problem with a network connection.

5 Resource constrained Devices fog computing can reduce device
complexity, life cost and power
consumption when some operations
cannot be uploaded to the cloud.

1.1.2 Evolution of Fog Computing

Fog computing(FC) is a developing methodology that enhances traditional cloud comput-
ing(CC) facilities to the network endpoints to provide low latency via spatial distribution
[85] [141]. The devices involved in distributed computing communicate through a message
passing interface and support decentralizedmodels of systemswhere all computational tasks
are performed through various network devices. Various novel computation paradigms have
emerged in distributed computing. Seven recognizable phases has been represented in Fig-
ure 1.1.
The first phase is mainframe computing, which uses batch processing. The mainframe en-
vironment was appropriate for the study of the impact of technology integration capability
[2]. In the early 1960s, cluster computing was conceptualized. The concept of virtualization

4

has started in the late 1960s. Grid computing and Utility computing [8] [7] has emerged
as the computing paradigm in the 1990s, where computational decisions are made jointly
by a group of connected computers to create a grid. Utility computing comes before the
cloud computing paradigm.Cloud computing [16] has become popular in the early 2000s.
Fog computing comes into the picture in 2012 as represented in Figure 1.1, which includes
computation over end devices like mobile phones, sensor boards and control systems.
Fog computing methodology could provide quicker access for end users. Therefore, the
edge capacity of an application supported the computing capacity of cloudlets and worked
with the cloud to serve a large variety of applications [42]. Cloudlets are small computing
capacity nodes at the base station of the users that work along with the cloud and fog to
provide facilities to a large scale of applications. All the applications related to fog com-
puting are developing in such a manner that high-performance computing(HPC) achieves
in interconnected systems [139].
In these interconnected systems, when devices and users switch from one point of access

Figure 1.1: The Evolution of Fog Computing

to another, all the data and processing related to the computer of each user often move
[110]. The movement of data can help users to access their data in critical conditions easily.
There are numerous Sensitive cases such as healthcare and transport systems where delays
can lead to dangerous conditions [76]. For all time centric applications, fog computing
methodology provides access to resources within a short span of time. The management of
resources to enhance the utilization to achieve maximum performance with less operational
cost. Resource utilization is vital for numerous reasons such as resource management,
cost and response time. However, it is very challenging to implement fog computing in a

5

real-time scenario. The high volume, data velocity and variety complicate the processing
of resources which can affect the utilization of resources [126].

1.1.3 Fog Computing Architecture

A fog computing architecture consists of three layers. In Figure 1.2 a basic overview of the
fog computing framework is depicted. The first and topmost layer represents a cloud, the
middle layer represents a fog layer and the bottom layer represents edge devices or sensors.

I Bottom Layer: In this framework, on the bottom layer, IoT devices and actuators work
to handle user requests. All the installed IoT devices will perform data collection.

II Lower middle layer: The lower middle level handles and manages data where the fog
devices perform the bulk of the processing. However, a fog device is a combination
of processing elements and application modules. The individual fog device has
microdata storage to save a small amount of data in the form of tuples. All the tuples
keep the record of every host. This lower level middle level is controlled by the upper-
middle level, which works as a fog broker. Fog broker represents a combination of
host control node and cloud-fog control middle layer.

III Upper middle layer: In this upper middle layer level, the fog broker manages all fog
devices. It is used to manage all scheduling policies and communication between
the layers in this framework. The connection type can be wired or wireless, which
can affect throughput and speed. In this case, a wireless connection was established
between endpoint, servers and fog devices. Resource utilization policy is implemented
on the middle layer so that the implementation of the SRT framework can represent
through multiple fog nodes and the cloud. This policy can help to resolve several
issues related to latency, mobility, scalability and decentralization management [105].

IV Top most layer: All the cloud level services exist on the topmost layer. These services
are only accessible through fog devices. This layer is used for heavy storage and
processing.

As shown in Figure 1.2, the end-user can only contact the top layer through middle layer
fog devices. The topmost layer is used for the permanent storage of data and outcomes for
applications. In this framework, fog devices can communicate with each other, but there is
no controlling node to keep the status of fog devices. There is a need for a controlling node

6

Figure 1.2: The Layered Fog Computing Architecture

in this framework to maintain all scheduling policies and to ensure the proper utilization of
all provisioned resources. In the proposed work, the processing of large files can be done
within less time span in an emergency. Along with this, computations can be rolled back to
the normal working state.

1.2 Need of Fog Computing

Fog computing is a revolutionary technology of cloud computing that has overcome cloud
computing’s problems. Low latency, high volume of data and location of data centers are
the main problem related to cloud computing. The cloud and fog have a correlation, which
helps in many areas such as analytics and data management.
Table1.2. represents the comparison between fog computing and cloud computing basis on
some parameters. Cloud computing builds up of two layer platform, where the bottom layer
consists of edge devices where data collection tasks are performed via sensors. The upper
layer performs analytic activities to provide services to the users. Fog computing permits
faster communication and data processing as it is nearer to the data source. It reduces the
risk of data loss during traveling on the network. When compared to a cloud system, a fog

7

system will have fewer computational resources such as memory, processor, and storage,
but these resources can be extended on demand.

Table 1.2: Comparison Fog Computing and Cloud Computing

Parameters Cloud computing Fog computing
Server nodes lo-
cation

Within the Internet At the edge of the local network

Server nodes lo-
cation

Within the Internet At the edge of the local network

client and server
distance

Multiple hops Single hop

Latency High Low
Delay Jitter High Very Low
Security Undefined Within the Inter Defined
Awareness about
location

No Yes

vulnerability High Probability Low Probability
Geographical dis-
tribution

Centralized Distributed

Number of server
nodes

Few Very Large

Real time interac-
tions

Supported Supported

kind of last mile
connectivity

Leased lines Wireless supported

Mobility Limited Support Supported

1.3 Fog Computing Key Issues

Fog computing has three key areas based on its functionality:

• ResourceManagement : IoT systems require resourcemanagement policies to assure
QoS, reduce energy waste. There is a need for an evaluation environment to explore
different resource management and scheduling strategies to stimulate innovation and
progress in fog computing that enables real-time analytics. In many cases, it is
too costly and does not give a testable and controllable environment for real time

8

IoT applications. In fog assisted cloud framework, the cloud will work with the
collaboration of fog nodes.

• Data Management : The raw data generated by sensors is pre-processed on the
local fog layer in fog computing. After pre-processing, the cloud receives relevant
and efficient data with decreased volume and velocity. This information is used for
global processing and storage. As a middleware, fog computing may process raw
data gathered from end devices and transfer it to the cloud layer for storage. In
conclusion, the fog layer decreases the quantity of computing in the cloud layer by
producing meaningful results from raw data and the cloud layer’s network usage and
the monetary cost of computing.

• Security: Fog is usually required to operate in more sensitive situations, where they
can provide the best solution to the client’s needs and often wherever users want
them. The proximity of fog nodes and end-users enables the capacity to handle new
security challenges. On behalf of endpoints, fog systems can run security monitoring,
threat detection, and threat protection locally. Fog nodes can also help manage and
update end users’ security credentials, which eliminates the need for all endpoints to
communicate with remote cloud for such functions.

1.3.1 Resource Management

Resource management includes resource provisioning, allocation, estimation and schedul-
ing services in fog computing. Resource estimate supports the allocation of computational
resources according to rules, allowing for allocating needed resources for computing and
the achievement of the desired QoS. The policies of resource estimation were developed
in aspects of user characteristics, experienced Quality of Experience, features of service
accessing devices [21] [20].
In fog computing, resource allocation should be done so that resource utilization is maxi-
mized and computational idle time is reduced. A balanced load and efficient task assignment
on various components is verified to achieve the maximum utilization of resources. In fog
computing, resource scheduling and resource allocation strategies have been implemented
to manage the load on end devices and fog nodes [40].
This can enhance the QoE and handle the overhead on both sides. In the fog-cloud en-
vironment, a methodology for job allocation has been suggested that controls latency and

9

power consumption. All the fog resources are heterogeneous and resource constrained,so
coordination among various fog resources is very important for these frameworks. The
existing fog nodes on the fog layer handle distributively deployed large scale applications.
In such cases, it is not easy to attain desired performance without proper coordination of all
resources. A directed graph-based resource coordination approach has been developed for
fog resource management [25].
The systematic strategy to assigning available resources to required cloud customers vir-
tually is known as resource provisioning. These resources should be allocated to the
virtualized cloud environment’s applications [13]. The order and timing of resource al-
location is a crucial factor in achieving efficient resource allocation. The advantage of
resource allocation is that it eliminates the need for the user to increase their hardware
and software systems. Aggarwal et al. [32] discussed the issue of over-provisioning and
under-provisioning and proposed architecture to remove the problem in fog environment.
The fundamental goal of scheduling is to decide which process to execute in the next go by
implementing a set of applicable processes. Scheduling is the best use of processing time
and proper allocation of resources to programs. The scheduling is performed to manage
makespan, workload, cost, VM utilization, reliability awareness, energy consumption and
security awareness [62]. Scheduling techniques can also assist in managing latency, load
and duplication processes in fog computing. Scheduling algorithms and load balancing al-
gorithms are used in the area of cloud computing as well as in fog computing. Fog provider
can perform collaboration between cloud node and fog node for processing of offloading
applications [36]. In the heuristic environment, scheduling remains a big issue in fog com-
puting. The researcher has used task scheduling to align all processors to the scheduler to
reduce the makespan of the schedule. Earliest time first (ETF) Dynamic level scheduling
(DLS) and Heterogenous algorithm were used by Pham [36]. Task priority is determined
with the help of task graphs and processor graphs algorithms. Two parameters Earliest Start
Time (EST) and Earlier Finish Time (EFT), provided the methods are compared with nodes
information, which nodes are available for new tasks.

1.3.1.1 Scheduling of Resources

The scheduling technique is used to reduce the overall execution time of a job. A schedul-
ing algorithm helps in proper task scheduling and resource utilization. In fog computing
technology, scheduling is a new concept, and there are very few researches done in this

10

area. Scheduling mechanism plays a vital important role in fog computing. Fog comput-
ing, similar to cloud computing, uses resource allocation to assign available resources to
clients through the Internet. Scheduling is a challenging job in fog due to the availability
of resources vary dynamically scheduling policy also helps in the effective and efficient
utilization of virtualization machines. Fog computing contains a pool of virtualized com-
puting resources near the user’s end for fast computation, storing sensitive information and
knowledge over the internet.
An effective scheduling is required to increase the usage of all resources and benefits to
the providers of fog. Different scheduling approaches have been used to achieve better
performance. These approaches also help to attain reduced latency, more energy efficient,
active network, and geo-distribution.

1.3.2 Data Management

Fog computing paradigm permits processing, storage and networking services to transmit
data at the cloud and IoT region. In fog computing, the data generated by IoT devices are
pre-processed on the fog layer. When the processing is done on the fog layer, it can reduce
the volume of the data. The users must give flexibility and dynamically relocate storage,
processing, and control functions across various entities. As a result, the fog layer reduces
the amount of work required in the cloud layer by obtaining results from raw data and
minimizes the amount of work needed in the cloud layer. Fog computing performs three
types of communication for the data transfer process.
All the IoT device tasks are consolidated and sent to the fog server responsible for effec-
tively managing tasks. The data transfer in the fog-cloud environment is represented in
a multi-fold framework. The framework is represented in Figure 1.3. Each layer of the
framework is defined with its functionalities. The top layer is used for bulk data storage and
performs all high computational tasks. On this layer, the user application can be customized
and schedule resources to achieve better performance. On the middle layer, fog nodes are
implemented for real-time data processing and handle all sensitive data resources. Data
collection is done through sensors on the bottom layer and sent to the upper layers for
processing. a) fog to cloud b) fog to fog c) fog to IoT devices
a) Fog to cloud: The interface between fog and cloud layer is required to enable fog to cloud
and cloud to fog association. This association provides many services and functionalities.
Some functionalities are like

11

(i) supervised or managed at fog layer with the ability of cloud computing.
(ii) Transfer of data for processing and comparison
(iii) cloud can help to decide the schedule of fog nodes
(iv) all the services of the cloud can make its availability through the fog to its end users.
It is imperative to track which data and services should be transferred to the cloud through
the fog layer. The response of fog and cloud towards that information depends upon the
consistency and granularity of data.

Figure 1.3: Multi-fold Framework

b) Fog to fog: A pool of resources must exist in fog nodes to support each other and
to perform its functionalities. All the resources, such as data storage and computational
processing, can share by deployed fog nodes. It can prioritize nodes functionality for users’
applications. Several fog nodes might also perform their task together with the backup
provision of each other.
c) Fog to end user/IoT device: The Internet of Things (IoT) represents an environment
that involves objects such as computing machines, smart healthcare devices, vehicles, home
appliances etc, connected via heterogeneous networks. Fog computing provides services
to IoT devices such as smart devices and sensors. Its services are available to the widely

12

distributed structure to support smart devices.
In recent years, fog computing is acquiring attention to support time-sensitive applications
in smart Internet of Things IoT services, including smart healthcare and smart traffic man-
agement. The recent market research reports presented the market rate for fog computing
will increase up to $18.2 billion by 2022 [91]. This new paradigm is used in various
fields but the topmost five domains will be agriculture, smart healthcare, industry, smart
transportation and energy [81].
For the communication between users and fog or IoT interface to fog services, IoT access
for fog services is required in a user friendly environment. All the resources can be used
efficiently and securely. In the Figure 1.2., explains the interaction of fog with IoT and
Cloud both. It is visualized that the top layer represents cloud/fog communication and on
the right side of the picture it is pointed out that the communication between the fog layer
with IoT devices

1.3.3 Security

In the fog computing paradigm, constructed network become subject to spoofing attacks
due to exposing nature of wireless activities and between fog nodes and end users [84].
The protection of end users and fog nodes poses a significant challenge in the deployment
of a real-world situation. Security awareness is used to identify harmful behaviours that
might compromise the functioning or confidentiality of a real time fog system. To pro-
vide the security, Intrusion Detection Systems (IDS) are important system components that
intend to prevent networks from malicious activities that may interrupt with the network
and influence transmitted data. In the cloud computing, the cloud services managed by
the service providers. whereas in the fog computing paradigm various options are avail-
able by controlling cellular base station and establish fog environment with the existing
infrastructure.

1.3.3.1 Authentication

Trust based security solutions of fog nodes have been focused by industry and academia.
There are several trust-based models and resource access control mechanisms used to
provide security to the network devices. Internet service providers, cloud service providers
and end users can create their own fog infrastructure by expanding their cloud services
and convert the local private cloud into fog. These kind of expansion can complicates the

13

authentication and trust situation of fog. Damini et al. [6], proposed a system for resource
selection using a distributed polling algorithm for checking the reliability of resources
before downloading. There are some special hardware base trusting model to provide trust
utility in fog computing applications such as Trusted Execution Environment(TEE), Trusted
Platform Module(TPM) and Secure Element(SE).

1.3.3.2 Rogue Fog Device

A rogue fog device that claims to be authentic in order to get end users to connect to it. A
fog manager may be permitted to handle fog instances, but may create a rogue fog instance
instead of a valid one. Han et al. [12]have introduced a monitoring method for preventing
clients from connecting to rogue access points (AP). It is demonstrated that man in the
middle attack, the gateway should be replaced or compromised. After that it can manipulate
the requests from cloud and tamper the data to secretly launch further attack. This issue is
difficult to handle with fog computing for a variety of reasons.

• Different trust management techniques are required in a complicated trust scenario.

• The continuous creation and deletion of virtual machinesmakes it difficult to maintain
a blacklist of rogue nodes.

1.4 Research Motivation

Several challenges require to be handle in the area of resource scheduling and utilization.
Resource utilization ensures the proper usability of resources and manages the resources
dynamically. The motivation of this study is to find the optimal solution to ensure the
effective utilization of resources located in the fog layer. The mentioned solution will also
address various issues to improve the capability of fog nodes. The concept of using the
resource scheduling within the fog layer motivated the development of a robust framework
capable of processing real-time applications. The free accessible hardware resources of the
network would be track and utilized to complete the task.
The integration of fog computing and task cluster can explore a novel way to manage
resources for implementing real time services in a cloud-fog environment. Effectively
managing resources in the fog layer decreases the latency and response time and improves
performance. Thus, a framework based resource management technique can be designed

14

for prioritizing the tasks in a cloud-fog environment. In this environment, the rising trend of
resource scheduling is coupled with other parameters such as energy consumption, latency
and network consumption which as presented as QoS. Since the usage of IoT devices is
growing rapidly, therefore a framework is required that can assign the resources to the tasks
generated by IoT devices efficiently.

It also introduces new challenges which have been summarised up as follows:

• Cost: Nowadays, large networks are continuously being buffered with lots of raw data
generated through devices that are circulating in different data centres. Therefore,
bottlenecks have more susceptible to occur as the same resources are being utilized.
These kinds of problems are less frequent to take place in the fog computing since
less amount of data is being transferred throughout the centralized network [34]. This
may be less expensive in terms of network bandwidth transmission.

• Network Expedience: The ability to process and analyze data closer to its original
data source can dramatically reduce network latency [28]. This is a beneficial com-
putational approach for the data execution, which needs low latency to respond to an
action. IoT applications play an important role in effective computing in the banking
sector, traveling and healthcare services with as low latency as possible.

• Security and Privacy: Security and privacy play an important role in the area of the
latest applications. Since the data created by IoT applications are very sensitive and
store the personal information of users. The fog computing layer can have security and
privacy measures to prevent hackers from collecting sensitive data. It also includes
details on information technology security protocols.

• Dynamic Scheduling of task: Scheduling tasks on a set of heterogeneous and dynam-
ically changing resources is a difficult topic that necessitates sophisticated algorithms
to deal with the task and resource dynamic behaviour.
Due to all of these aspects, the goal of this research has been to address resource
utilization and scheduling of tasks in the fog computing environment.

The resource scheduling ensure that the distribution of resources among requested
tasks to avoid the delay. If there is non availability of resources at the fog layer, it

15

impacts the real time response and event detection. An efficient resource scheduling
framework must identify the availability of resources so that task can be assigned
for execution. Resource scheduling is required at the fog layer to achieve resource
utilizaation, maintain system performance and avoid overload in the network.

The next section discusses the organization of this thesis

1.5 Thesis Organization

After providing an overview on fog computing and its architecture in chapter1, the rest of
the thesis is organized as follows:
Chapter 2: This chapter provides the literature survey on fog computing and analyzes the
work done by other researchers on techniques used in scheduling on fog based applications
and problems related to tasks. A detailed description of the existing resource scheduling
techniques and existing framework have also been discussed. The chapter further discusses
the Problem Statement and contributions of the study. Chapter 2 is partially derived from:

• Wadhwa, Heena, and Rajni Aron. "TRAM: Technique for resource allocation and
management in fog computing environment." The Journal of Supercomputing 78.1
(2022): 667-690. (Impact Factor-2.6)

Wadhwa, H., Aron, R. Resource Utilization for IoT Oriented Framework Using Zero
Hour Policy. Wireless Personal Communication 122, 2285–2308 (2022). (Impact
Factor-1.6)

• Wadhwa, Heena, and Rajni Aron. "Fog computing with the integration of internet
of things: architecture, applications and future directions." 2018 IEEE Intl Conf on
Parallel Distributed Processing with Applications, Ubiquitous Computing Com-
munications, Big Data Cloud Computing, Social Computing Networking, Sustain-
able Computing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom).
IEEE, 2018.

Chapter 3 describes the proposed Resource utilization framework for scheduling on Fog
computing and the goals which it tends to achieve. In this chapter, the high level view of
framework presents resource management using zero hour policy. The requirements are
analyzed on the basis of QoS parameters. The working of framework has been described in

16

the form of a flow diagram that explains the whole procedure of implementation of resource
management technique in the fog layer. Moreover, this chapter represents the verification
of the resource scheduling framework. The experimental setup, a simulation environment,
and simulation tool for resource management present an experimental scenario.

Chapter 3 derives from:

• Wadhwa, H., Aron, R. Resource Utilization for IoT Oriented Framework Using Zero
Hour Policy. Wireless PersonalCommunication (2021). https://doi.org/10.1007/s11277-
021-08993-0

• Wadhwa, Heena, and Rajni Aron. "A Clustering-Based Optimization of Resource
Utilization in Fog Computing." In Proceedings of International Conference on Ad-
vanced Computing Applications, pp. 343-353. Springer, Singapore, 2022.

Chapter 4 presents Resource Scheduling algorithm based on dynamic task preemption
scheduling in the fog environment using heap based optimization(HBO). The task schedul-
ing is implemented to utilize the resources of the fog nodes. This chapter provides a clear
picture of the ways and methods for resource utilization for high medium and low intensity
tasks in the fog computing environment. Finally, at the end of this chapter the Deep Rein-
forcement Learning (DRL) model is implemented to manage the dynamic nature of tasks.
In this chapter, the performance evaluation criteria analyze the results based on test cases.
This chapter provides the design and implementation details of the proposed algorithm.
Chapter 4 derives from:

• Wadhwa, Heena, and Rajni Aron. "TRAM: Technique for resource allocation and
management in fog computing environment." The Journal of Supercomputing (2021):
1-24.

• Wadhwa, H., Aron, R. Resource Utilization for IoT Oriented Framework Using Zero
Hour Policy. Wireless PersonalCommunication (2021). https://doi.org/10.1007/s11277-
021-08993-0

Chapter 5: This chapter represents the conclusion and discusses the future scope of the
study.

17

1.6 Thesis Contribution

This Thesis contributes in the following ways:

• It analyzed the detailed literature of existing fog computing resource scheduling
algorithms and the implementation of these algorithms in different areas. It provides
a qualitative study of existing frameworks and their services.

• All the required QoS parameters have been identified to process resources scheduling
and utilization.

• To address the challenges of resource utilization and scheduling in fog computing, a
framework has been designed that offers resourcemanagement policies by considering
the dynamic behaviour of tasks.

• The proposed policies have been designed based on expectation maximization clus-
tering and heap based optimization. These policies address the challenges of resource
scheduling in fog computing.

• It provides the qualitative comparative study of resource management approaches
with respect to various parameters such as network consumption, latency, energy
consumption, throughput and resource utilization.

• The experimental findings represent that the proposed algorithm improves resource
utilization in comparison to the existing resource scheduling algorithms. It also shows
better results for throughput, execution time and network consumption etc.

• The usability of the proposed policies, their validation have been checked using
various parameters such as energy consumption, network usage, throughput, latency
and loop delay.

• Statistical study of simulation results has been determined to assess the accuracy of
the proposed algorithm.

Followings are the noteworthy contributions of this thesis:

• A Tri-fold task clustering framework is proposed using the concept of clustering. The
proposed framework efficiently manages resources for high priority task clusters in
the cloud-fog environment.

18

• In order to handle high priority task, zero hour policy is proposed that used to assign
resources to the tasks as per Heap Based Optimizer(HBO).

• For the assignment of resources, the Technique of Resource Allocation and Man-
agement(TRAM) is proposed that prepare list of resources(LoR) and schedule the
resources to reduce the network consumption and latency.

• For resource allocation, Categorical DQN(C-DQN) is used. It helps the task preemp-
tion to ensure high resource utilization.

19

CHAPTER 2

Related Work

The fog computing paradigm is an amalgamation of traditional technologies to assist mas-
sive data generated IoT environments. IT has emerged as an incredible technology that
supports innovative applications, high performance in critical scenarios.
The deployment of fog devices at the fog layer involves the proper utilization of resources
that are geographically and dynamically distributed in the system. The requirement of IoT
is increasing day by day that has also increased the need for information storage, enormous
power handling, and fast speed broadband systems that are required to process data stream.
These requirements are now completed by fog Computing. Resource management and the
efficient utilization is a fundamental task in fog computing. The resource management sys-
tem offers resource provisioning and scheduling to support resource management decisions.
This chapter discusses fog computing systems along with the description of resource man-
agement and resource utilization. It also discusses the key background information to
facilitate a better understanding of resource scheduling in fog computing. A comparative
study and analysis of the existing resource scheduling techniques has been done to under-
stand better resource scheduling and resource utilization in the fog environment. Further,
the existing framework and implemented scheduling terminology have been discussed to
design the gap analysis.
The last section highlights the problem formulation which is related to the dynamic nature
of tasks and resources. It also includes the latency related issues in real time applications.
Further, list down all the objectives of the thesis after problem formulation.

20

2.1 Resource Management System

Fog computing helps to enhance efficiency and speed while minimizing the quantity of
data sent to the cloud for processing, analysis, and storage. In fog computing, quality of
service (QoS) characterizes a service’s overall performance, particularly as experienced by
network users. Several network service elements, including throughput, latency, resource
availability, and jitter, are frequently evaluated when analyzing the quality of service.

It may take quite a long time to operate because it is stuck in long queues or chooses
a less direct path to avoid delays. Excessive latency can sometimes degrade application
performance. Due to the requirement for latency-sensitive applications and real-time data
processing and routing, fog computing attempts to extend cloud services and utilities to the
network edge [63].

In this new paradigm, computation is dynamically dispersed among cloud locations and
network components based on Quality of Service (QoS) requirements. Despite numerous
studies on cloud technology, the physical distance between cloud resources and end-users
prevents the implementation of IoT services with specific requirements. There are a number
of QoS parameters, which were introduced by different researchers. In a cloud-centric IoT,
the delay caused by communication between end-points contrasts with the desired QoS
on real-time services. Healthcare services may require immediate actions when abnormal
scenarios occurred. Similarly, autonomous cars must be able to detect changes in the
surroundings instantly. Real-time monitoring in manufacturing facilities and real-time
navigation in traffic control systems are two more sensitive IoT scenarios. The QoSMonitor
calculates network delay in relation to other system nodes and monitors the worker node’s
QoS features, such as availability and resource consumption [31]. C.-F. Lai et al. [144]
proposedNATbased load balancing approach for resources in fog computing. The suggested
load balancing system is ICE-based, and it employs a three-layer fog architecturewith TURN
servers at the network’s edge that are monitored by fog node controllers. For analysis, the
authors evaluated two parameters: maximum load and controller latency. It has been
observed that maximum load has been applied to the nodes and obtained that the proposed
method divides cloud load and prevent transfer server load to the users.

Furthermore, the successful deployment of real-time services, which necessitates a very
short delay in allocating distributed resources, depends on the evaluation of the influence of
regulating decisions on QoS. The control topology can significantly impact control decision
latency, which can significantly impact QoS-aware service allocation.

21

2.2 Resource Utilization

There are Various terms are associated with resource utilization, such as resource provi-
sioning and scheduling. For implementing the proposed work, resource utilization and
resource scheduling terms are used for the framework. Resource utilization is a process
that ensures the maximum usability of resources to efficiently complete the user require-
ment. High resource utilization can be achieved with proper resource allocation and split
up all available resources among users. Resource utilization directly affects the cost and
performance of any system. With the over-provisioning of resources, low utilization of
all assigned resources can be achieved and it can also increase the cost of such a system
whereas the under-provisioning resources and degrade the performance of system [72].

2.2.1 Resource Utilization in Fog Computing

In this section, a review has been done for existing resource utilization techniques in fog
computing. Fog computing methodology has been presented to handle all the issues related
to resource allocation for IoT applications.
In [9] researcher proposed BaTS (budget- constrained scheduler for Bag-of-Task applica-
tions). BaTS tracks the development of operations and re-configures the machines dynam-
ically as per the requirements. They executed many tests with a performance-price ratio.
Every test was performed on two separate clouds with the RR (Round-Robin) algorithm
and the second with BaTS.
In [47] represented a cloud-based fog system. In this research, a simulation was establish
based on discrete event specifications. The author has not used any specified load balancing
algorithm to reduce the use of the cloud.

Yangui et al. [39]developed the PaaS based architecture for the cloud-fog environment.
The fire detection applicationwas developed and intimatewith a robot to handle the situation.
Taneja and Davy [63] introduced an algorithm for resource-aware module mapping. The
developed algorithm selects suitable resources in the cloud-fog environment by considering
all resource constraints such as network consumption, RAM and CPU. Benamer et al. [70]
proposed an application placement algorithm to reduce latency. The implementation of
this algorithm is also done in the cloud-fog environment. Two heuristic algorithms [73]
[86] proposed for VM live migration and load balancing in the cloud-fog environment. The
researchers used the best fit decreasing (BF) and min-min conflict optimizing algorithms.

22

In these algorithms, better results represent compared to the traditional algorithms.
Researchers in [87] represented an algorithm Energy-Efficient Task Scheduling (MEET)

for homogeneous nodes to provide an energy-efficient solution. The total energy consump-
tion was reduced with their selection policy and allocation of offloading time slots. The
author in [104] proposed a greedy knapsack scheduling (GKS) algorithm for resource as-
signment in a fog network. Two case studies simulated the result of their study. The
result of their proposed algorithm was better as compare to the FCFS, concurrent and
delay-priority algorithms. A network-oriented scheduling methodology was implemented
for container-related applications [105]. They have used Kubernetes based fog computing
architecture and achieved 70% reduction in network latency. In [65], the author proposed a
hybrid method in fog network for service orchestration. Two stages were introduced named
South Bound and North Bound. In the South-Bound level, a choreography technique en-
abled automatic rapid decision making. On the other level, in the North-Bound centralized
orchestration is implemented on both cloud and fog levels.

Zeng et al. [40] presented a scheduling algorithm along with image placement in fog
computing. Embedded clients and fog nodes can perform all the computing tasks through
storage servers. Storage server stored job image, which is shared with clients and fog
nodes. The completion time can be minimized by scheduling all jobs. A dynamic resource
allocation methodology was presented by Ni et al. [59] based on the completion time
of any task and to improve resource utilization. A technique name Priced Timed Petri
Nets(PTPNs) was used for the credibility of fog nodes and improved the QoS for users.

Pooranian et al. [61] presented a resource allocation algorithm to optimize energy
consumption. It was heuristic based algorithm. The author proposed resource allocation
methodology and name it as "bin packing penalty" where fog servers represent bin. All the
virtual machines served based on frequency limitations and time. Another policy, named
"penalty and reward policy," is used to represented optimize energy consumption.

A two level resource scheduling scheme was proposed by sun et al. [83]. These authors
claim that they had achieved a short delay by allocating resources to various fog clusters.
Different fog nodes were allocated to the same clusters and performed scheduling for the
theory of improved non dominated stored generic algorithm-II. The implemented resource
scheduling between fog nodes for multi objective optimization.

An integrated framework was proposed by [120] to achieve awareness about vehicular
networks. They have been resorting to the OMNeT++ framework to check the flexibility.
In this research, a blockchain based Consensus sensing (CS) application was designed to

23

reconcile local information. Rafique at al. [103] proposed a novel bio-inspired hybrid algo-
rithm for efficient resource management in fog computing. The mentioned work assigned
the resources and managed them based on the demand of incoming requests. This work’s
main objective was to reduce the average response time and optimize resource utilization
by scheduling the tasks optimally. The scheduler deployed between the devices and fog
nodes was responsible for task scheduling. The task’s inefficient scheduling was overcome
by accomplishing the integration of Modified Particle Swarm Optimization (MPSO) and
Modified Cat Swarm Optimization (MCSO). This approach was validated and the results
showed that it has better accuracy in scheduling the tasks.

All the researches mentioned above have proposed a scheduling algorithm and did not
address the dynamic behaviour of user requests in the evolving environment of cloud-
fog. This has been found from the analysis of the current research that dynamic resource
management is mainly being studied in the cloud computing field. Therefore, this study
suggests a new resource provisioning and scheduling approach to dynamically managing
the application.

A game theory based scheduling approach named fog Match was proposed in [119].
This research work was based on matching the IoT devices tasks to appropriate fog nodes
to achieve minimum delay and effective resource management of the respective fog nodes.
The matching is based on the preferences of both IoT devices and fog nodes. The mentioned
approach introduced both centralized and distributed scheduling based on the requirement.
This work was validated and the outcome illustrated that it had better performance in
scheduling and resource management. However, the matching of fog nodes and the IoT
devices is efficient in resourcemanagement, however each task has different deadlines which
are not considered and this will increase the purpose of retransmission.

A task scheduling was implemented based on the ant colony system and combination of
laxity in cloud-fog environment [109]. The laxity was used to determine task priority and
the ant colony was implemented for scheduling. The cloud fog broker deployed between
the cloud and fog layer was responsible for allocating tasks based on the task specifications.
Initially, the requests from the IoT devices are decomposed into tasks and the computation
estimation of the task was carried out to determine the task nature. Then the task was
allocated for either fog or cloud. This method was tested and the output proved that it was
efficient in task scheduling. The task allocation was performed effectively by the mentioned
approach; however, the dynamic nature of the tasks is not considered, leading to a bottleneck
problem when the number of tasks is increased.

24

The multi-level feedback queuing was proposed for task offloading based on deadline
and priority in the fog computing framework [89]. Initially, the tasks were classified
into three types based on the deadlines: high priority, intermediate, and low priority
tasks. The virtual queue concept was implemented to queue the tasks and the tasks were
implemented according to the priority. If the low priority tasks were not implemented
for a particular period of time, then these tasks’ priority will be incremented by one. This
methodwas implemented and the output showed that it was efficient in task classification and
scheduling. Thementioned deadline and priority aware task schedulingmethodwas efficient
in task classification and scheduling, however the energy efficiency of the process was not
considered and it doesn’t select the fog node based on energy and resource availability.

The integration of A3C learning and residual recurrent neural networks was deployed
in edge-cloud computing environments to perform dynamic scheduling [137]. The tasks
from the IoT devices were scheduled dynamically by implementing a resource management
system. The RMS decided the scheduling based on the task’s CPU, memory, bandwidth, ex-
pected completion time and deadline. The RMS consisted of Deep Reinforcement Learning
(DRL) model to predict the next scheduling decision and the CSMwill check the constraints
and provide the possible migration and scheduling decisions. The loss values were used to
update the parameters and the R2N2 was used to update the model parameters of the DRL
model. The prediction of the next scheduling decision is efficient. It reduces the average
response time of the process but the loss function of the upcoming scheduling task reduces
the efficiency of the process.

The placement of applications in edge and fog computing environments was proposed
in [123]. The weighted cost model for the resource hungry applications was implemented to
reduce the response time and energy consumption. The applications are divided into batches
for proper scheduling and a new application placement mechanism was proposed based on
the Memetic Algorithm. The parallel tasking approach was implemented with the help of a
lightweight pre-scheduling algorithm. The mentioned method has been experimented and
the output showed that it reduced the time taken in scheduling.

A hybrid meta-heuristic algorithm was proposed to perform energy aware task schedul-
ing in fog computing [124]. The tasks are constructed as a direct acyclic graph to exploit
the dependencies of the tasks. The voltage and frequencies of tasks are observed to com-
pute the task with minimal voltage, which will reduce the scheduling approach’s energy
consumption. The integration of Invasive Weed Optimization (IWO) and Culture evolu-
tionary Algorithm (CA) was implemented to schedule the task optimally. The reduction of

25

energy consumption was carried out by deploying Dynamic Voltage and Frequency Scaling
(DVFS). The presented approach was validated and the result proved that it had better
efficiency in reducing the energy consumption in task scheduling.

In this study [112], the author proposed the learning classifier system for efficient
resource management and workload allocation in the fog-cloud computing paradigm. The
power consumption of the edge to cloud nodes was balanced to manage the resources’
availability efficiently. Two learning classifier systems were proposed named XCS and
BCM-XCS to balance power consumption in the edge node. The edge node’s workload,
delay, and energy consumption was calculated to design an efficient resource management
approach. The reinforcement learning solutions were carried out to allocate the task
optimally and the BCM-XCS model was found to outperform the existing models in that
area.

An energy efficient task scheduling method for optimal planning of IoT devices was
proposed by Zhang et al. [94]. The existing problems on fog planning was overcome by
implementing two integer linear programming models. The first model was proposed to
reduce the CAPEX and OPEX costs involved in the planning and utilization of resources
in the fog nodes. The second model was proposed to reduce the energy consumption of the
fog nodes, thereby optimally allocating the tasks. The mentioned method was validated and
it was found to be effective in reducing the overheads that emerged in the planning process.

Abbasi et al. [114] proposed mobility aware task scheduling for healthcare applications
in a cloud-fog-IoT environment. The patient movements are monitored by the sensors and
are transfer to the fog nodes via sink devices. The scheduling and allocationmethod includes
two processes such as ranking process and the scheduling and allocation process. For the
ranking process, the author proposed a weighted sum model algorithm. For scheduling and
allocation, the author proposed the MobMBAR algorithm. The simulation result shows
that the proposed method achieves high performance in terms of makespan and energy
consumption. However, this algorithm does not consider a priority, thus reducing task
scheduling and allocation efficiency. It increases retransmission.

Zhang et al. [116] proposed a task scheduling process for a fog cloud environment
using Non-Dominated Sorting Genetic Algorithm II (NSGA-II). The main objective of this
research is to optimize the execution time and cost. The proposed algorithm overcomes
the issues of resource allocation and task scheduling. The simulation result shows that the
proposed model achieves cost and makespan compared to the existing works. However,
the allocation process does not consider energy consumption thus increase high energy

26

consumption during task allocation, which reduces the performance of the proposed model.
Chen et al. [121] proposed a profit optimization method for task scheduling in the cloud

environment. The proposed method includes cluster preprocessing, classification, profit
matrix construction and optimal scheduling method. The proposed model includes three-
layer architecture such as a bottom layer, middle layer and top layer. K means clustering
algorithm is used to cluster the tasks and VMs thus reduces the searching time. Here, the
k means clustering algorithm is used for task clustering, however the k means clustering
algorithm needs to initialize the value of k thus reduces clustering accuracy. Finally, the
simulation result shows that the proposed model achieves high performance in terms of
reliability and time of task scheduling.

Pang et al. [102] proposed an EDA-GA algorithm for task scheduling in the cloud envi-
ronment. The proposed model includes three components such as task manager, scheduler
and resource manager. The resource manager has the responsibility of VM information
and the task allocation is done by the scheduler using the EDA-GA algorithm. The main
objective of this research is to reduce the completion time and capacity of load balancing.
However, the task scheduling this process does not consider priority level thus increase
retransmission and task completion time. Comparison of different scheduling techniques
are represented in Table 2.1

27

Table 2.1: Comparison of Different Scheduling Techniques

Parameter

Author
(Journal
name/ Impact
factor)

Problem
undertaken

Optimization
technique
applied

Goals
achieved

Simula
tion
environ-
ment

Energy
consumption
and
network
usage

Rahbari
and
Nickray[62]
(IEEE
Conference)

Reduce
time delay
in allocation
of Virtual
machines
and get fast
results

KnapSOS
algorithm
was
implemented
with three
phase:-
Mutualism,
Commensalism,
Parasitism
phase

Reduction in
energy
consumption
by applying
changes
in original
scheduling
policy

iFogSim

Latency,
Network
congestion,
cost and
energy
consumption

Gupta et.
al[49]

(Software:
Practice and
Experience)
(SCIE-2.02)

To enhance the
quality of
services by
performing
resource
fragmentation
and
reduce energy
wastage

Power monitor-
-ing
and resource
management
services were
used
by iFogSim
packages.
Cloud only
placement
and Edge- ward
placement
strategies
were checked
different case
studies

Meet QoS
criteria
and verified
scalability

iFogSim

28

Table 2.1: Comparison of Different Scheduling Techniques

Parameter

Author
(Journal
name/ Impact
factor)

Problem
undertaken

Optimization
technique
applied

Goals
achieved

Simula
tion
environ-
ment

Time and
cost

Agarwal et.
al.[32]
(International
Journal of
Information
Engineering
and
Electronic
Business
(0.64)

Resource
Provisioning
in Fog
computing

Create Fog
data server
with Fog server
manager and
perform
Efficient
resource
allocation
algorithm

Minimize
overall
response time
and Cost

Cloud
Analyst

Performance
and Cost

Pham et.
al[36]

(IEEE
Conference)

Task
scheduling

Determine the
task priority
and choose
suitable node to
execute
each task

Obtain Highest
CMT(Cost
makespan
tradeoff)
value

Cloud
Analyst

Resource
Estimation
and mana-
gement

Aazam and
Huh[18][20]

(IEEE
Conference)

Service
oriented
resource
management
model

Resource
estimation
design with
relinquish
probability for
calculating
VRV(Virtual
resource
value) for
new customers

Allocate
resources
depending
upon the type
of service
and avoid
resource
wastage

Java
and
Cloud
Sim

29

Table 2.2: Gap Analysis

Author name Area Technology
used

Objective Gaps in Study

Dastjerdi et al.
[34]

• Resource al-
location
• Smart Traffic
detection

• Hierarchical
network topol-
ogy used with
cloudsim

• Incident de-
tection on basis
of congestion
calculation and
average speed
calculation

• In case of
Incident detec-
tion, no solu-
tion provided

Aazam M.
and Huh EN
[18][20][21]

• Resource uti-
lization
•Securitymea-
sure

• Different
scheduling
algorithm
• Cloudsim
toolkit

• To reduce
cloud burden
• Better ser-
vice provision-
ing by data pre-
processing and
data trimming

• Real time
processing of
data

Kabirzadeh et
al. [52]

• knapsack-
based schedul-
ing
• Hyper-
heuristic
scheduling

• Focused on
job schedul-
ing, energy
consumption

• Reduced En-
ergy consump-
tion and simu-
lation time

• There is no
Scheduling
approach fol-
lowed for the
IoT applica-
tions based on
fog networks

continued on next page

30

Author name Area Technology
used

Objective Gaps in Study

Zhou et al.
[[111]

• Resource al-
location

•Pricing-based
stable match-
ing algorithm

• To improve
performance •
To reduce pro-
cessing delay

• There is no
security mech-
anism imple-
mented
•This tech-
nique can
combine with
machine learn-
ing approaches
to handle more
complicated
scenarios.

Farahani et al.
[71]

• Survey on
IoT devices in
healthcare and
medicine

• Architecture
of Fog node
• Multilayer
architecture
of eHealth
-Cloud

• A transi-
tion from the
clinic-centric
treatment to
patient-centric
healthcare
• Design
smart glove
and smart
eyeglasses

• Security of
data
• Comparison
on basis of cer-
tain parameter

continued on next page

31

Author name Area Technology
used

Objective Gaps in Study

T. Gia et al.
[19][48]

• Health care
system

• Medical sen-
sor
• IPv6 Low-
Power Wire-
less Personal
Area Network
(6LowPAN)

• Analyze and
monitor real-
time health
data such as
Electrocardio-
gram (ECG)
and Elec-
tromyography
(EMG) data.

• Early detec-
tion system
Data filtering
and Data
compression
technique

Skarlat et al.
[37]

• Fog Orches-
tration Control
Node

• Fog Colonies
and micro data
centres are
used

• Time shared
and space
shared provi-
sioning

• Real time
testing of pro-
posed method-
ology is miss-
ing

Juan et al. [96] • Task schedul-
ing

• Two differ-
ent models,
Temporary
service model
and long term
service model
were used.

• Energy bal-
ancing strategy
to control
transmission
power by using
multi- fog
architecture

• The imple-
mented work
is difficult to
implement
with large
number of user
requests.

continued on next page

32

Author name Area Technology
used

Objective Gaps in Study

Rahmani et al.
[80]

• Smart
E-health Gate-
way UT-GATE

• Body sensor,
Environment
sensor used
with different
communi-
cation node
(6LowPAN,
wi-fi , BLE,
Bluetooth)

• Design
remote health-
care system
Generate
EWS(Early
warning
system)

• No notifi-
cation send
to Doctors
and family
member.

Goudarzi et al.
[123]

• Resource
Management

• Container
based frame-
work, NSGA2,
NSGA3 and
OHNSGA
algorithm

• Imple-
ment custom
scheduling
policies and
low overhead
communica-
tion

• Security of
resources on
the fog layer,
Performance
of available
resources

Zhou et al.
[143]

• Vehicular fog
computing

• Contract
theory based
vehicular
computational
resource man-
agement and
task offloading
mechanism

• Enhance
resource uti-
lization and
boost the Per-
formance of
task offloading
delay

• Task param-
eters do not
consider in the
study such as
task size, dis-
tance and en-
ergy state

2.2.2 Existing Frameworks in Fog Computing

There are implemented frameworks in the fog computing paradigm with the integration of
IoT devices and the cloud.
Liu et al. [54] proposed a framework for the reduction of latency of the resource allocation.

33

Table 2.3: Gap Analysis Based on Existing Evaluation Factors

Author Name Latency Reliability Resource
Management Security Cost/Energy

Consumption Provisioning

Dastjerdi et al. [34] 3 7 7 7 7 7

Aazam M.
and Huh EN [18][20][21] 3 7 3 7 3 3

Kabirzadeh et al. [52] 7 7 7 7 3 7

Zhou et al. [111] 3 7 3 7 7 7

Farahani et al [71] 3 7 3 7 7 7

T. Gia et al. [19][48] 7 7 7 7 3 7

Skarlat et al. [37] 3 7 7 7 7 3

Juan et al. [96] 3 7 7 7 3 7

Rahmani et al. [80] 7 3 7 3 3 7

Goudarzi et al. [123] 7 7 7 7 3 7

Zhou et al. [143] 7 7 3 7 7 7

Yousefpour et al. [110] 3 3 7 7 7 3

Adhikari et al. [89] 3 3 3 7 7 7

In this framework, vehicular Adhoc networks (VANET) application was represented to
transfer a large amount of data through communication channels. They have resolved
resource allocation and task scheduling problems byMU-MIMO channels where the data is
converted into chunks and transfers. They examined an application scenario and carried out
resource optimization by identifying the problem and resolving it with a genetic algorithm.

A lightweight framework named FogBus was developed by Tuli et al. [138] for integrat-
ing IoT-enabled systems. According to application demands, fog and cloud infrastructure
integrate both edge and central resources. The designed framework was implemented a
blockchain and authentication process to secure sensitive data. The representation of the
working framework was computed with a finger pulse oximeter for Sleep Apnea analysis.
FogBus integrally supports dispersed application execution. There were no policies de-
signed for dynamic resource management and migration of applications during execution
time.

Rathee at al. [133] defined a reliable technique that uses the tidal trust algorithm to
compute the Trust Value and Trust Factor (TV/TF) and successfully identifies authentic FN
and IoT devices. The Social Impact Theory Optimizer (SITO) was implemented on the
fog layer to calculate trust values in the proposed framework. In their study, they detected
the malicious nodes based on predefined values. The framework was tested on various
parameters and the NS2 simulator was used to create a virtual fog environment. In their
study, the dynamic nature of IoT devices was not considered for the proposed framework.

A framework was designed, which is called foggy by Yigitolglu et al. [67]. This frame-

34

work manages automated IoT application deployment in fog computing environments. The
foggy framework consists of components namely: version control server, container registry,
orchestration server, node, and continuous integration tool. The designed framework has
not been implemented for real-world IoT applications. Zhang et al. [68] designed the
Hierarchical Game Framework to handle resource allocation challenges in fog computing.
Apply the Stackelberg sub-game for the interaction between Data service operator(DSO)
and Authorized data service subscriber(ADSS), moral hazard modeling for the interaction
between DSOs and FNs. This study doesn’t evaluate the response time and cost.

Tuli et al. [138] proposed the FogBus framework and develop healthfog architecture. In
healthFog, worker nodes contain sophisticated deep learning models to process and analyze
the input data and generate results. They used data set of heart patients from the UCI
Machine Learning Repository. They have not considered the priority and availability of
resources.

Adhikari et al. [89] proposed a deadline and priority-aware task offloading in fog
computing framework leveraging multi-level feedback queuing. Initially, the tasks were
classified into three types based on the deadlines: highly-priority, intermediate, and low
priority tasks. The virtual queue concept was implemented to queue the tasks and the tasks
were implemented according to the priority. If the low priority tasks were not implemented
for a particular time, then these tasks’ priority will be incremented by one. This method was
implemented and the output showed that it was efficient in task classification and scheduling.

Lin at al. [127] hybrid deep learning framework to optimize production system. In
the proposed framework, visual sensors are embedded to detect the defective product and
calculate the degree of deficiency. This method represents the reduction in the workload on
the cloud layer. In the Table 2.4, a comparison of various studies and limitations have been
discussed.

35

Table 2.4: Comparisons of Existing Fog Computing Frameworks

Authors Problem Defined Limitations
Benamer
et al. [70]

This study presented the solution for
Latency- Aware Module Placement
Problem (LAMP) in a Cloud-Fog
environment. To find the placement
decision for each module.

The number of used IoT devices are
less. It was handling the latency
without considering the priority of
modules.

Rahbari et
al. [104]

A greedy knapsack scheduling
(GKS) algorithm was proposed for
resource assignment in a fog net-
work. The result of their proposed
algorithm was better as compare to
the FCFS, concurrent and delay-
priority algorithms.

The module list was sorted as per
the lowest time order which can
be changed during the execution.
There was no fault tolerance policy
available at the fog layer.

Bonadio et
al. [120]

A blockchain based consensus sens-
ing(CS) application was designed
for the reconciliation of local infor-
mation. They have been resorting to
the OMNeT++ framework to check
the flexibility.

A privacy mechanism is required to
protect the user data from tracking
at the fog layer. There is no resource
management scenario implemented
at the fog layer.

Rafique et
al. [103]

The resource management and as-
signment were based on the users
request. The scheduler deployed
between the devices and fog nodes
was responsible for task scheduling.
This work’s main objective was to
reduce the average response time
and optimize resource utilization by
scheduling the tasks optimally.

The mentioned approach does not
consider the dynamic nature of the
fog nodes of being varied with the
tasks and this will affect the effi-
ciency of the mentioned approach
when the number of tasks is in-
creased.

Tuli et al.
[138]

The designed frameworkwas imple-
mented a blockchain and authenti-
cation process to secure the sensitive
data. FogBus integrally supports
dispersed application execution.

There were no policies designed for
dynamic resource management and
migration of applications during ex-
ecution time.

36

2.3 Classification of Architecture

It has been discovered that the architecture structure generated by various researchers,
as well as the number of phases in it, are dependent on the type of the application, the
objective for which it is being created, the required update in the existing one, and the
level to which it will be deployed.There is wide variety of architecture are associated with
the fog computing paradigm. The combined review of research article falling in different
categories is represented in Figure 2.1.

Figure 2.1: Classification of Architecture

It is found that the large quantity of architectures of fog computing is mentioned in the
literature. The presented architectures are divided into two categories and it is found that
structure of architecture developed by various researchers is depend upon the nature of the
application. Two categories are specified as general architecture and application oriented
architecture. The details of different categories are mentioned in tabular form 2.5.

37

2.3.1 General Architecture

Bonomi et al. [13] have discussed basic three layer architecture along with the applica-
tions of fog computing whereas Dastjerdi et al. [34] represented the five layer reference
architecture to represent that fog computing uses sense-process- actuate process. Sarkar
et al. [29] also describe 3 tier architecture to analyzed the suitability of fog in IoT es-
tablishments through mathematical modeling. Chiang and Zhang [33] have discussed the
basic architecture and represented different opportunities related to fog computing. Puthal
et al.[78] have described security attacks and their solutions on each layer of architecture.
Mahmud at al. [77] mentioned the challenges about fog environment along with the basic
architecture. Munir at al. [58] have proposed an architecture to increase in the performance
using QoS parameters such scalability, localization accuracy and efficiency. The proposed
architecture named as an IFCIoT architecture to ensure the high performance and presented
reconfigurable fog nodes that adjusts to the workload.

Donassolo et al.[92] have proposed a novel approach for orchestration for IoT applica-
tions known as FITOR. They also addressed the issue of service provisioning by developing
O-FSP, a novel technique for optimising the location of IoT application components. Femto-
let architecturewas developed byMukherjee et al. [98],using a 5G device-based fog network
to reduce delay and energy usage. The simulation of proposed method was designed on
Qualnet 7. Mohammad and Huh [21] have proposed a smart gateway-based architecture
for fog computing. Lee et al. [35] have given a conceptual model that is a gateway-based
fog computing model for wireless sensor network (WSN’s). Gope et al. [93] have consider
security as major concerned for fog computing architecture. They have presented device to
device service level architecture and introduced authentication protocol for communicating
between architecture layers.

2.3.2 Application Oriented Architecture

Tang et al. [30] have proposed a distributed hierarchical Fog computing architecture that
combines the huge number of services and infrastructure components to be implemented
in smart city setups, in the future. Naranjo et al. [99] have proposed FOCAN. It is an

38

Table 2.5: Details of Different Categories of Architecture

Architecture
class Sub categorization Author

General
architecture

Layered
architecture

Bonomi et al. [13], Alli et al. [117],
Chiang and Zhang[33], Dastjerdi et al. [34],
Puthal et al.[78], Sarkar et al. [29]
Mahmud et al. [77], Yousefpour et al. [110]

Gateways Mohammad and Huh [21]
Lee et al. [35]

QoS based architecture
Munir et al. [58], Alturki et al. [90]
Donassolo et al. [92], Maiti et al. [97],
Wang et al. [108]

Others Byers et al. [44], Gope et al. [93]

Application
oriented
architecture

Healthcare Services Rahmani et al. [80], Dubey et al. [46]

Smart living Tang et al. [30], Naranjo et al. [99],
Tang et al. [106]

Vehicular based Datta et al. [23], Chang et al. [45],
Ning et al. [101]

Others
Sun et al. [38], Hao et al. [50],
Gazis et al. [24], Byers et al. [44],
Tortonesi et al. [107] Luo et al. [96]

architecture that allows application to compute and communicate with each other in a smart
city scenario.

Rahmani et al.[80] and Dubey et al. [46] have proposed IoT based system for health care
industry. The developed system supported immediate processing, storage, computations
ans transmission of data. Soumya et al. [23] have proposed fog computing architecture for
vehicles which are connected with M-M gateway. Chang et al. [45] developed fog comput-
ing environment using WiFi access point, routers and hubs. They have also discussed its
deployment over different platforms such as vehicular Smartphone platforms. Ning et al.
[101] have designed traffic management scheme for smart cities. The proposed architecture
works collaboratively in the sharing of load of the network.

Sun et al. [38]have created an edge-IoT architecture that can significantly reduce traffic,
as well as the volume of traffic and end-to-end delay among IoT devices. Hao et al. [50]
have created a flexible architecture that may be deployed based on the needs and demands
of the environment in which it is used. They have also talked about the WM-Fog computing

39

framework, which incorporates the software architecture. Gazis et al. [24] have proposed an
adaptive operation platformwhich works as per the operational requirement of the industrial
process. Tortonesi et al. [107] have demonstrated the use of custom designed service and
information models to aid in the comprehension of various fog services. Luo et al. [96]
have presented a multi-cloud to multi-fog architecture based on resource unit containers
and their implementation. This architecture’s key feature is that it leverages containers as
resource units to reduce request response times.

2.4 Fog Computing for Real Time Applications

Fog computing can be utilized in any latency-sensitive application, such as health care,
urgent services, and cyber-physical systems. Here are some examples of fog computing
applications.

The majority of researchers are interested in fog computing applications such as health
care. In recent years, a wide range of studies on health monitoring, detection, diagnosis, and
visualization have been offered [22]. Cao et al. proposed FAST, a fog computing enabled
distributed analytic system to track the fall for stroke migration by implementing a fall
detection algorithm. They have merged the proposed algorithm into a fog-based distributed
fall detection system. This method spread the analytical across the network by separating
the detection responsibility between the edge devices and the server.

In this paper rahmani et al. [80] prepared a guide tool Early Warning System(EWS)
for hospitals. This tool is used for Estimating the degree of Illness and predicting the risk.
They have done their research on physiological parameters like respiration rate, oxygen
saturation, temperature, systolic blood pressure, and heart rate. They implemented smart
E-health gateways to create a reliable, energy-efficient and scalable system using sensor
nodes and smart gateways remote server. The IoT based health monitoring system was
constructed by using a different integrated module.

Farahani at al. [71] proposed a transition from traditional clinic centric treatment to
patient oriented treatment. They have explained mobile clinics, telemedicine, and smart
homes to highlight the importance of IoT in the healthcare business. They developed smart
eyewear for heart rate monitoring and a fog node based on Qualcomm’s Snapdragon 410
quad-core CPU. Wi-Fi, Bluetooth, HDMI, SPI, and other connections are also included on
the board. The embedded fog computer (Edison or Raspberry Pi) serves as a data processing
platform as well as a gateway to the cloud.

40

Aazam et al. [20](Aazam and Huh, 2014) developed a layered fog node architecture
that allows the processing of local service requests. In fog nodes, smart gateways and a data
encryption layer have been implemented. They developed a layered architecture for a smart
network and smart gateway. To manage the system, they employed a variety of physical
nodes, wireless sensor networks, virtual nodes, and virtual sensor networks.

In follow up papers, Aazam et al. [20] [21] developed an architecture based on a similar
concept and working in the fog computing environment. The concept consists of three
layers: the cloud, the fog landscape, and IoT devices, each with its own set of control nodes
capable of arranging fog cells. The authors used an approach of organizingmicro DCs in the
smart gateway. Also provided is a thorough theoretical resourcemanagement model. Future
resource needs are forecasted using different types of access devices, relinquish probability
derived from past access data, pricingmodels, and service types. This resourcemanagement
approachwas distinguished for its ability to adapt to changing fog conditions. In their further
work, Aazamet al. presented an enhancement to the theoretical resourcemanagementmodel
in terms of specification of usage and QoS in the context of heterogeneous IoT devices.
There has been a lot of work put into building IoT-based remote health monitoring systems.

Gia et al. [19] proposed a method for continuous health monitoring based on a cus-
tomized 6LoWPAN. Through a secure network, the technology allows for remote and
real-time ECG monitoring. In the next paper, Nguyen et al. [48] provided an improved
real-time and remote health monitoring IoT system with the adoption of an energy-efficient
sensor node. The sensor node was designed based on a customized nRF protocol. In this
research, the author tried to reduce power consumption.

Smart cities architecture is proposed by [82] They presented an overview of the smart
campus project at IISC, Bangalore and designed a data driven IoT architecture. The IoT
architecture was divided into two parts. One of the IoT fabric’s functions is to control
hardware, while the other is to serve as a decision-making platform. Smart power metres
and a water level sensor were added to operate the water pumps. The installed system used
to check the depth of water. For high level communication Zigbee (IEEE 802.15.4 based)
protocol is used. LoRa WAN technology is used for long ranges of a kilometre. One portal
is also used to verify entries for several locations.

Tang et al. [64]proposed a four layer architecture system for smart cities to monitor haz-
ardous situations. They have used a fiber optic sensing network to detect physical changes
in the environment and identify the threat using a machine learning algorithm. A pipeline
prototype is prepared and implemented for event recognization. The designed system sends

41

the processed data to the cloud, and response time is very less in a hazardous situation. This
system may be used for the smart city monitoring system. The description of smart cities is

Figure 2.2: Smart City Framework
[118]

dissimilar for different researchers [14]. The smart city application has increased the usage
of smart city applications. Hence the security of this collected data and protection from
numerous threats is a critical task. Thus data integrity for all smart city applications and
protect the data from external attacks during transmission is compulsory for all applicants.
Many parameters impact the quality of data, modification of data, and transmission. There
are two approaches to evaluated data quality [118]. Smart city framework is represented in
Figure 2.2, which is described by [118] in his study.

A proactive approach can protect the data if it is updated within the defined appropriate
rate. The second reactive approach is used to maintain the database quality. In this research
[118] a framework is designed to support the integration of data that is collected from smart
cities. In their research, three technologies have emerged in their framework. However,
the proposed technique provides a data integration technique for sensitive data. In Figure
2.2 represents the working of the smart city framework, which represents the collection of
sensitive information on the secrete sharing layer, and the second level represents the transfer
of encrypted data to the fog layer. After performing these two-layer function data transfer

42

to the third blockchain layer. Blockchain is a developing technology that has chronological
attached blocks, including records that are repeated in each node of an existing network.
The network used in this blockchain is a peer to peer network. This technology is mainly
used in recording commercial transactions.
Blockchain is an amalgamation two different technologies such as cryptography and a shared
database, which permits several parties to have the transactional operational simultaneously
through and continuously maintained digital shared records. In this kind of technology,
transactions occur in a peer to peer system.

Microsoft HoloLens, Google Glass, and Sony Smart Eyeglass are just a few examples of
prominent technologies and projects that may be utilized in real-time applications. To
analyze video streaming, real-time applications often require a lot of bandwidth for data
transfer and a lot of processing power.They have designed ENORM-A Framework For Edge
NOde Resource Management [66].

2.5 Resource Scheduling Algorithm

Scheduling is the best use of processing time and proper allocation of resources to programs.
The primary role of the resource scheduler is to choose which process to execute in the
next go by implementing a set of applicable processes. In fog computing, resource estimate
supports the allocation of computing resources according to certain criteria, ensuring that
adequate resources are available for future computation.

Resource estimation policies built in terms of user characteristics, experienced QoE
(Quality of Experience), features of service accessing devices [21] [20].In fog computing,
resource allocation should be done in such a way that resource usage is maximized and
computational idle time is reduced. A balanced load on various components is achieved
more precisely. A scheduling-based workload allocation approach is presented to balance
the computational load on fog nodes and client devices [40].

As a process, both parties’ overhead becomes more reasonable, enhancing QoE.In the
fog-cloud interaction, a task allocation paradigm has been developed that balances latency
and power usage. Although fog resources are diverse and resource restricted, coordination
among them is essential. Due to the decentralized aspect of fog computing, large-scale
applications are often distributed among several fog nodes. In such circumstances, achieving
the necessary performance will be difficult without effective fog resource coordination. A
directed graph-based resource management paradigm has been proposed for fog resource

43

management [25]. The systematic technique to providing available resources to needed
cloud customers over the internet is known as resource provisioning. These resources
should be assigned to the virtualized cloud environment’s applications as efficiently as
possible [13].

The arrangement and timing of resource distribution is a crucial factor in achieving
efficient resource allocation. The advantage of resource allocation is that it eliminates the
requirement for the user to increase their hardware and software systems.

Agarwal et al. [32] discussed the problem of over-provisioning and under-provisioning
and proposed architecture to remove the problem in the fog environment. Scheduling is the
best use of processing time and proper allocation of resources to programs. The main task
of scheduling is to choose which process to execute in the next go by implementing a set
of applicable processes. The scheduling objectives include cost, makespan, workload, VM
utilization, energy consumption, reliability awareness and security awareness [62].

Scheduling techniques can also assist in managing latency, load and duplication process
in fog computing. Scheduling algorithms and load balancing algorithms are used in the area
of cloud computing as well as in fog computing. Fog providers can perform collaboration
between cloud node and fog node for processing of offloading applications [36].

In the heuristic environment, scheduling still remains a big issue in fog computing.
Researchers have used task scheduling to align all processors to the scheduler to reduce the
makespan of the schedule. Earliest time first (ETF) Dynamic level scheduling (DLS) and
Heterogenous algorithm were used by Pham [36]. Task priority is determined with the help
of task graphs and processor graphs algorithms. Two parameters Earliest Start Time (EST)
and Earlier Finish Time (EFT) provided the methods are compared with nodes information,
which nodes are available for new tasks.

Rahbari [62] implemented scheduling techniques in many areas and represent an im-
provement in energy consumption, network usage, and cost. Two different case studies
were conducted for implementing scheduling algorithms. one case study is about in-
telligent surveillance through distributed camera networks [52]. The object and motion
recognition in raw video streams by the camera. The second case study is an application
based designed for elderly human activity detection. Cloudsim simulator with iFogsim
packages were used to implement KnapSOS and Knapsack scheduling algorithm. Network
usage, cost and energy consumption were calculated and compared with FCFS (First come
and first serve algorithm).

Agarwal et al. [32] performed an elastic resource allocationmethod to achieveminimum

44

response time and maximize resource utilization. In this study, a cloud-fog environment
was created to handle all resource related requests. Fog server manager (FSM)was designed
to check the availability of the processor. Fog server manager was created as a part of the
fog data server.

Oueis et al. [27]designed algorithms for mobile computation offloading. Three al-
gorithms EDC-PC, EDC-LAT, CS-LAT were designed for multi user scenarios. Figure

Figure 2.3: Distribution of Primary Studies

2.3, shows that out of total literature survey considered for the proposed problem, 33% of
researchers have emphasized on task scheduling and it should given utmost importance in
fog computing environment whereas 44% of researchers have point out that there is need of
resource management and should be given primary status. The figure also shows the bifur-
cation of the 23% represents the other area consideration of fog computing, out of which
7% of researchers have addressed real time application on fog computing environment and
16% of the researchers have already given a scheme to ensure load balancing mechanism.

2.6 Fog Computing and its Related Concepts

In the fog computing paradigm, resources at the edge of the network (nearby to end devices)
providemany benefits such as low latency and allows provisioning for user applications such
as mobile data offloading. In this section, the application provisioning technique at the edge
will be discussed. The difference between the related concepts of fog computing is repre-
sented in the Table 2.6. The fog computing related concepts are a)Cyber Foraging b)MEC
c)Cloudlet d)Edge Computing e)Mobile Cloud computing f) Mobile Edge Computing.

45

I Cyber Foraging: Cyber foraging [4] was the first concept related to edge computing,
but now recent and latest technology has been overcome with the concept of MEC
and cloudlet. Balan et al. [5] redefined the concept of cyber foraging. It allocates a
big computational job from one resource-limited device to one or more resourceful
servers and returns its final results to the preliminary devices. In this method, the
capabilities of nearby servers are exploited for resource limited mobile devices and
connected to the internet through high-bandwidth networks.

All these servers are known as substitutes and perform computing. All the substitute
servers help process a request such as a face recognition and access extensive volume
data for the matching process. The substitute may match the database on its local
disk and method on behalf of the mobile device.

II MEC (Multi-Access Edge Computing) is started in the year 2014. It is also known as
mobile edge computing (MEC). This technology is focused on mobile networks and
worked based on virtualization technology [41]. However, the scope of this concept
has been expanded in march 2017. All the computational functionalities of cloud
computing are providing at the edge of the network to achieve better QoS, and these
types of technologies allow computation at the edge. MEC is also known as mobile
cloud computing architecture (MCC) [11].In MCC, data storage and processing are
performed outside mobile devices. The working of mobile edge computing is sim-
ilar to fog networking, but it is mainly concentrated towards devices, whereas fog
computing is focusing on the infrastructure [33].

III Cloudlets: Cloudlets use attests cloud computing methodology such as virtual ma-
chine (VM) based upon virtualization. There are many resources or clusters of servers
located nearer to the mobile devices. They can execute on single or multiple VMs,
due to which mobile devices can perform offloading for exclusive computing. When
cloudlets are used with the face detection and matching process, it will perform all
matching processes on VMs. Cloudlets can shrink and expand dynamically. Cloudlet
can also behave like a full cloud at the edge and can work in an isolated form.
Cloudlets can survive in a standalone environment.

IV Edge Computing: Edge computing paradigm enhances cloud services and extends
older technologies like peer-to-peer networking, distributed data, and remote cloud
services. In this technology, computation and storage are performed on the edge

46

Table 2.6: Attributes of Fog Computing Related Paradigms

Attributes CC FC EC MCC MEC MACC
Real time re-
sponse

Relatively
slow

Fast Fast Slow Average Moderated

Data storage
capacity

Large scale
data cen-
tres

Only sensi-
tive data

Less
amount of
data

Mobile
devices,
Large
amount of
data

Small scale
database
with
devices

Mobile
devices,
Small
amount of
data

Virtualization
support

Highly
support

Devices
with virtu-
alization

No support No support Devices
with virtu-
alization

No support

Location Very Far Comparatively
close

close Far close Close

Architectural
Design

Centralized
/ Hierar-
chical

Decentralized/
Hierarchi-
cal

Localized/
distributed

Distributed
mobile de-
vices with
centralized
cloud

Localized /
Hierarchi-
cal

Distributed

Service
provider

Cloud
service
provider

Cloud
service
provider
and users

Local
Busi-
nesses and
network
infras-
tructure
providers

Mobile
users and
cloud
computing

Radio
Access
network-
based
network
infras-
tructure
provider

Self-
organized

Type of ser-
vice

Global Less global Local local less global local

Security Undefined,
provided
along
cloud
services

Implemented
on partici-
pant nodes

Provided
on edge
devices

Provided
on mobile
devices
and cloud
services

Implemented
on equip-
ment
of edge
network

Implemented
on mobile
devices

Applications virtualized
appli-
cations,
distributed
computing
for large
data sets

Real time
appli-
cations,
IoT, smart
healthcare,
smart cities
and vehicle

Traffic
control,
video
surveil-
lance
locally,
video
caching

Data pro-
cessing
collected
by dif-
ferent
sensors,
social net-
working

Real health
moni-
toring,
Content
Deliv-
ery,Video
analytic

Computing
for tragedy
relief
group, live
video and
Networking

47

devices or very close to the data sources Hu et al.[51]. The edge devices perform
several tasks such as data processing, device management and decision making to
decrease the traffic and network bandwidth between the cloud and end devices. The
processor is used to generate edge computing services with less power consumption
and provide better security. Edge computing reduces the problem of the bottleneck.
They can perform intercommunication due to the interconnection established in the
local network.

V Mobile edge computing: Mobile edge computing (MEC) mainly focuses on mobile
computing and virtual machines. The authors introduce the edge computing layer
in the fog layer, which contains many distributed telemetry stations [57]. In MEC,
the main focus is on mobile networks and virtualization. As per the previous scope
of extension aimed at providing cloud computing capabilities at the network’s end
point, the Radio Access Network (RAN). These abilities are provided by mobile edge
computing servers which can be deployed at LTE macro base stations (eNodeB) sites,
multi -Radio Access technology and 3G Radio Network Controller (RNC) sites.

VI Mobile cloud computing: Mobile cloud computing (MCC) is defined as a structure
where both the processing and storage of data occur separately from themobile device.
Due to MCC, the mobile application user can use it on smartphones. NIST extends
this definition to include mobile devices: cloud computing is the synergy between
IoT devices, mobile devices, and cloud computing that enables data-intensive and
CPU-intensive applications for IoT environments (NIST).

In MCC, mobile applications can be handled through adaptive offloading to be sep-
arated at execution time. MCC decides to run the selected computation-intensive
application, and it increases the battery life of a mobile device. All the cloud-based
services are highly available in MCC rather than mobile computing. MCC always
depends on cloud services for effectively operating high computation services. MCC
also has the same restrictions as mobile computing and cloud computing. First, a
sharing pool of all computation resources may not be suitable for all applications
as the generality of the device is desired. Second, both MCC and cloud computing
required internet access for all applications and facilities through the network core by
WAN connection. MCC is having some issues related to connectivity challenges.

VII Mobile ad-hoc cloud computing (MACC): It is a decentralized network build-up

48

by nodes to generate dynamic and temporary networks through transport protocols.
For networking, storage, and computing, clouds can be formed with ad hoc mobile
devices. Mobile ad hoc cloud computing can be used in group live video streaming
and an unnamed vehicular system. It is different from MCC and CC. MACC only
needs mobile devices, whereas MCC needs an extensive database used for cloud
computing. MACC used the technology of Bluetooth, Wi-Fi, and cellular protocol
for communication. In Table 2.6, some attributes are discussed by [110] which are
related to fog computing and its paradigms

2.7 Problem Formulation

Resource management is one of the crucial problems in the fog computing environment.
Task scheduling is an important process in managing resources efficiently. However, the
existing works focus on scheduling the tasks, the optimal schedulability of the tasks is not
addressed.

The optimization techniqueswere utilized to performproper scheduling of tasks [113][141].
The barriers involved in task scheduling of fog computing were eliminated by implement-
ing the Modified Marine Predators Algorithm [113]. The ranking approach was utilized to
determine the number of consecutive iterations required to achieve a better position than
the current one. An improved firework algorithm for optimal scheduling of tasks in the fog
computing environment was proposed byWang et al. [141]. The tasks were clustered based
on classification types and the available resources on the fog layer were also categorized ac-
cording to the classification of tasks. The major problems encountered in these approaches
are,

• The above work implemented marine predators algorithm for energy efficient task
scheduling. However, the problem between delay and load of the task is not consid-
ered, leading to wastage of resources in the fog node.

• The marine predator algorithm proposed in the paper scheduled the tasks without
considering the availability of resources in the fog node thiswill affect the performance
of this approach.

• This approach for task scheduling using an improved firework algorithm has many
constraints and one among that is the tasks are not allowed to be preempted. This
will reduce the efficiency of this approach.

49

• The dynamic nature of the fog node of being varied with the tasks is not addressed
and this will affect the performance of the mentioned task scheduling approach in IoT
based fog computing.

The management of resources for the purpose of execution of tasks was carried out by
Rafique et al. and Shardoo et al. [103] and [145]. The inefficient scheduling of tasks was
overcome by integrating Modified Particle Swarm Optimization (MPSO) and Modified Cat
Swarm Optimization (MCSO). This work assigned the resources and managed them based
on the demand of incoming requests [103]. The three methods, such as Self Organizing
Map (SOM) and auto encoder, were utilized for resource management [145]. The concept
of “earliest deadline first” was implemented for scheduling the tasks. The problems of these
approaches are as follows

• The bio-inspired hybrid algorithm does not satisfy the QoS and SLA constraints for
proper resource management and efficient task scheduling, which means the system’s
performance is ineffective.

• The Modified Particle Swarm Optimization (MPSO) implemented in this approach is
prune to converge prematurely, particularly during scattering, which will reduce the
efficiency of the approach.

• The mentioned approach of two phase scheduling efficiently scheduling the task
but the random allocation of task results in increased overload and retransmission,
increasing the average response time.

• The two phase scheduling directs the task to the nearest fog. This will affect the
efficiency of computation because the energy availability factor of the fog node is not
considered.

• Since all the tasks are scheduled in the fog layer, the missing rate of the tasks will lead
to retransmission of the task. This will further increase the response time involved in
the scheduling of tasks.

• While sustaining the workload in a fog-based cloud system, it becomes necessary to
keep the energy consumption of computing nodes at the fog layer.

• An effective framework is required to decrease the energy consumption of fog-based
cloud servers, which will aid in the optimal usage of fog nodes.

50

2.7.1 Research Objectives

The main objectives of the proposed work are:

• To design a framework for resource utilization in fog computing.

• To prepare a novel scheduling algorithm to minimize response time, latency and total
execution time.

• To test the proposed algorithm in the fog computing environment.

This chapter focused on exploring the existing resource scheduling techniques in the fog
computing environment. It analyzed the existing frameworks which are implemented on
fog computing methodology. It examined the existing resource management strategies and
their implementations on the fog layer. The next chapter proposes a resource scheduling
framework to address the issues identified in problem formulation and to accomplish the
objectives of this research work.

51

CHAPTER 3

Proposed Resource Utilization
Framework

The research work done in the domain of fog resource management and scheduling was
discussed in the previous chapter. According to the study, fog computing resource man-
agement and task scheduling challenges have not been adequately addressed. In real-time
applications, tasks require immediate resources to complete their processing in time. There
is a need for a proper resource management system, and resource scheduling is a must in
real-time applications. Resource utilization and scheduling framework have been devel-
oped to address resource management and scheduling issues proposed and designed in this
chapter.

In the fog environment, the proposed framework provides resource utilization strategies
based on QoS parameters and a scheduling algorithm. A four level framework has been
proposed in which end users are connected to the upper layer that is a communication
channel to transfer data to the layers above it. Cloud is at the top to provide centralized
control and other services. The next section describes tri-fold task clustering model that
categorizes the tasks according to the nature of tasks.

After the proposed framework description, Zero Hour policy is explained which de-
scribed the allocation of resource. The fog broker manages all the resources and allocates
resources to the tasks from fog layer or cloud level. The cluster of tasks are created and
handled with an expectation maximization algorithm.This chapter analyzes the proposed
framework and validates the results.

The experimental results have been discussed which are obtained after implementing
Zero Hour policy on the individual task. The simulation shows the performance of resources
in the fog computing system. There is a fog broker that monitors the resource allocation to
the tasks and their utilization. The TRAM performance evaluation is measured through the
processing cost, processing time and delay.

52

3.1 High Level View of Framework

The proposed resource utilization framework analyzes users’ requirements and describes
processes that contribute to resource allocation. It represents resource utilization in a
heterogeneous environment and the communication between these devices in a hierarchical
manner. The designed framework can assist user’s requests and assign resources for better
services.

The high level view of the existing fog computing framework is shown in Figure 3.1.
In this scenario, the hybrid approach of the cloud-fog paradigm is used where nodes on the
bottom layers can be physically implemented devices and sensors for data collection.

Figure 3.1: High Level View of Tri-fold Task clustering

The designed system simulates fog computingwith numerous resources and IoT devices.
When IoT devices request or send data back, many network resources would be consumed
[119]. A fog network consists of different edge nodes with limited computing capability
– these are often termed fog nodes. These fog nodes have storage as well as some limited
computation facility.

A fog network consists of heterogeneous edge nodes which are handled by a fog server.
Each edge node has its computing capabilities. A fog server selects one fog node for tasks
that exist in the system. Each task will be assigned to the fog nodes for resource allocation.

53

As there are distributed systems, there are multiple users who are using them. During the
application execution, tasks dynamically arrived and requested resources.

3.1.1 System Description

High level view of the system is represented in Figure 3.1. This view represents four levels
of the framework, where the bottom layer is represented as layer 0. This layer transfers the
user’s request to layer 1, which works as a communication channel to transfer the data from
edge devices to fog devices. After transfer data from layer 1 to layer 2, all the application
requests manage and validate by layer 2.

All the fog resources that are the main component of fog computing exist on the host
control node of layer 2. Each device has limited bandwidth, storage, processing capacity and
memory. On the management layer, the decentralized decision system will be implemented
and a number of fog servers are installed to provide resource orchestration services to all
the resources. There are fog servers that handle fog devices and deal with several queues
simultaneously.
In this four-level architecture, the topmost layer is the cloud layer works as a centralized

Figure 3.2: Application Workflow and Services Handle by Fog Server

system. After processing the data on the management layer, it sends data to the cloud layer.

54

3.1.2 Assumptions of the Study

This study will assume that the fog nodes in the network can transmit their locations via
GPS or GIS. Moreover, the fog layer comprises intelligent devices capable of routing and
transferring the data packets to the upper layer for computing and storing. The networking
devices available at the fog layer can share resources among themselves. All the fog
computing devices are capable of providing optimal support for terminal nodes. The more
specific assumptions are:

• Physical Security: Service providers and users both have access to fog devices. These
devices can be monitored, controlled and validated by the organizations through
known best practices. Physical security is crucial to ensuring high-level hardware
and software security for the components of fog-based region infrastructure.

• Fog device integrity: Clustering of tasks and resource allocation have been taken to
avoid the issues of non availability of fog resources to regions.

• Defined Policy: The LoR (List of Resources) depends upon the MIPS, bandwidth and
RAM of all virtual machines. The low-intensity tasks with longer deadlines can be
preempted so that high priority tasks with shorter deadlines can be executed.

3.1.3 Applications and Services Workflow

Real-time IoT application handles task request processing and assigns fog servers as per
their requests. The fog server provides multiple services to the terminal devices. The fog
application workflow is represented in Figure 3.2.

As represented in the figure, terminal devices generate massive data that fog servers
process that data through available resources. Fog server runs a computational process
based on soft real-time analysis and deep learning techniques. It also supports the dynamic
behaviour of clients andmanages resources through a resource scheduler. All the mentioned
techniques are used to provide numerous services such as real-time analysis, monitoring,
scheduling, task migration and communication between devices.

3.1.4 Tri-fold Task Clustering

All the IoT device tasks are consolidated and sent to the fog server responsible for effectively
managing tasks. The tri-fold task clustering is explained in Figure 3.3. Each layer of the

55

Figure 3.3: Overall Architecture of Tri-fold Task Clustering Model

framework is defined with its functionalities. The top layer is used for bulk data storage and
performs all high computational tasks. On this layer, the user application can be customized
and schedule resources to achieve better performance. On the middle layer, fog nodes are
implemented for real-time data processing and handle all sensitive data resources. Data
collection is done through sensors on the bottom layer and sent to the upper layers for
processing.

The Tri- fold task clustering on fog nodes is represented in Figure 3.3, where four
operations are performed by fog nodes. These operations are mentioned in Table3.1. Each
operation perform some functionality to accomplished the research objectives. where all

56

Table 3.1: Goals of the Tri-fold Task Clustering Framework

Sr.No Goals Improvement criteria
1 Task clustering (EM clus-

tering algorithm
Reduced Response Time
High Throughput

2 Clustered Tasks Schedul-
ing using HBO

Improve resource utilization
Queuing waiting time reduc-
tion

3 Resource Allocation (C-
DQN)

Less average makespan time
High priority tasks are im-
proved in resource utilization

4 Task Preemption High Resource Utilization
Optimized Deadline

the tasks received at the fog layer are classified into three categories.

I In the first category, the high intense tasks, the delay-sensitive activities need to be
handled immediately.

II In the second category, the moderated intense tasks, which have soft deadlines. All
the tasks have medium priority and soft real-time, which can be implemented through
a zero-hour policy.

III The third category is about those tasks which are mainly storage based tasks. The
task clustering is done by Expectation Maximization (EM) clustering, dividing the
tasks into three categories.

• High Intensity

• Medium Intensity

• Low Intensity

3.1.5 Goals of the Proposed Framework

This research work is concentrated on the efficient management of resources of fog com-
puting in the IoT environment. Figure 3.3 depicts the overall working of the proposed
framework. Major Goals of the proposed framework along with the improvement criteria
are represented in Table 3.1. These goals are described as follows:

57

• The implementation of this framework enables to categorize the tasks into three
categories depending upon the task’s nature.

• Providing scheduling policies and ensuring each task’s execution in an atomic manner
helps reduce the queuing waiting time.

• Providing efficient technique for resource allocation and management to handle high
priority tasks. management to handle the task preemption.

• The implementation of framework contributes to achieve high resource utilization.

3.1.6 Framework Constraints

The proposed work aims to classify the tasks and schedule the tasks stochastically based
on the resource availability of the fog nodes. The laid down research objectives have
been achieved via the proposed resource scheduling framework, where efficient resource
allocation and management techniques give the user better resource utilization. A realis-
tic scheduling and resource allocation scheme should satisfy the following constraints as
follows,

• Heterogeneity Task Constraints: All types of heterogeneous tasks are allocated and
executed for early completion. All tasks are atomic, which means that all tasks must
be executed without interruption

• Communication Constraints: All tasks must be executed without any latency and task
transmission rate from the source fog node to the destination fog node and two tasks
are assigned to fog at the same time.

• Storage Constraints: All tasks are serially executed to reduce the overlapping of
storage issues and performed without any interruptions

This is accomplished by the following processes listed below:
Let us assume that there are a number of tasks) = C1, C2. . . C= are arrived fromN number

of users. These tasks require resources ' = A1, A2. . . A< and task scheduling and resource
allocation is accomplished by follows,

• Task model:Each task arrived from the users include m numbers and the 8C ℎ task is
represented with a set of the attribute set �8 = C8 3 , C; , C2 ?, C12, CB2, C0 ? ? where C8 3 is the

58

task identifier,C; is the task length, C2 ? is the computing power, C12 is the bandwidth
capacity, CB2 is the storage capacity and C0??is the applications requested in the task.

• Resource model: In a fog environment, resources are available in fog nodes and
virtualization resources assigned to the particular task. Assume that m amount of
resources in the fog node is available which represented by ' 9 and the attribute set
of resource is defined as A83,A2?,A12,AB2 where A83 represents the resource identifier,
A2? is the resource computing power, A12 is the resource bandwidth capacity and AB2
is the storage capacity of the resource.

3.2 Zero Hour Policy

Zero Hour policy intends to ensure the maximum usability of allocated resources at the
fog layer [147]. This policy will understand user applications’ current requirements and
segregate the user’s requests to ensure all tasks’ executionwithout any delay. It facilitates the
delivery of the resource to the highly intense tasks and ensures proper resource utilization.
The following are steps to achieve resource utilization in the Zero hour policy

I The system will track all available resources at the fog layer to meet users’ require-
ments. The resource scheduler assigns users’ requests to the request manager. The
request manager will transfer these requests to the cloud or fog service provider.

II The fog service provider allocates fog resources to the tasks as per allocation policy.
The request manager allocates fog resources to the tasks as per the Zero hour resource
allocation policy.

III In the third step, after completing user tasks, the free resources will add to the pool
of resources and be ready for reallocation.

3.2.1 Mode of Operation

In the proposed framework, the upper layer contains processing units and large storage
capacity. In the Figure 3.4, the upper layer communicate with the fog devices with the
help of cloud-fog control middle layer. The host control node maintains information about
resources, and updates resource status dynamically. The middle layer of the framework is
responsible for all the computational and ensures resource utilization of various resources.

59

Figure 3.4: Fog Computing Framework

This layer contains processing element and application modules which behave as a small
micro data centers. Data filtration, data analysis, and event processing are some of the
data operations available in the main application module. Furthermore, the application
module’s execution can be completed with a notification and storage operation based on the
results of the overall data activities. This layer is responsible for the overall control of all
resources and manages the runtime environment. Furthermore, it can also synchronize all
the resources based on the desired need of applications. This approach is used to achieve
proper resource utilization for all the implemented fog devices.

In the Figure 3.5, host control node is a combination of resource scheduler and fog
service provider. The users’ requests communicate with the resource scheduler to ensure
maximum resource efficiency. The resource scheduler received a set of requests from
different devices and the resource manager manages all the received requests. A cloud
is located at a distance from the devices and offers many complex services that are not
time-bound. The terminal devices can access the fog node through different standards such
as Bluetooth, Z-Wave, ZigBee and 6LoWPAN [53].

Each fog node performs a chain of operations, including monitoring, analyzing and
communicating with other fog nodes. Once the fog node receives an event or request for
the resource from edge devices, the data for that specific event will store on the fog device.

60

Figure 3.5: Host Control Node with Resource Scheduler

For the processing of resource related requests, fog nodes have two components: resource
scheduler and resource manager.

The request manager checks the priority and requirements of requests. Resource sched-
uler tasks to allocate to the fog node or the cloud. All the directed requests towards the fog
node must be accomplished within the specified deadline. For the completion of the desig-
nated task, the fog node must have enough resources to allocate by the resource manager.
The task is considered as the smallest unit and cannot create a subtask.

All the fog devices are managed by a fog broker unit which has higher configurations as
compared to other fog devices. The significant role of a fog broker is to monitor different
resources units and datacentre broker and failure handling capacity. Resource units create
a pool of resources that can complete real-time tasks. Each unit of resource pool has its
own computing capacity, memory and communication power.The resource scheduler will
allocate resources for that request and send information about that event to the cloud.

All the fog device, create one fog localization area. The fog localization area will
perform the processing of requests after the appropriate resource allocation. Therefore, this
fog localization area must have virtualization to run fog applications. During the execution,

61

if a high priority task enters into the system then it will consider as a zeroth task for that
system and woks as per zero-hour policy. As per this policy, it will consider the priority of
users’ requests and assign the resources as per the current need of applications.

Algorithm 1 Zero-Hour Policy
Declare: A ← '>DC4 , �� ← �>6�4E824 , %) ← %A>24BB8=6)8<4 ,%← %A8>A8CH, C
for Method of Resource allocation Sr for all Fog nodes T do
while T,r← Y ≠ 0 do
0;;>20C43<>3D;4B← A

A403H<>3D;4B← 0
end while

end for
if % > ?A8>AB4C;8<8C then

A403H<>3D;4 ← A AND & = A403H<>3D;4

else
processing of r with set m

end if
for modules Q⇐= A403H<>3D;4B do
if A4@(%)&) ≥ 0E08; (%)A) and E0;D4(#&) ≥ E0;D4(#A) then
set New (PT&) and A43D24(%)A) else

place Q in the list of allocatedmodules
end if
C −→ B4CC8<4

3.2.2 Design and Working Principle of Zero-Hour Policy

This resource utilization policy has been made based on users’ requirements and considers
this information as input. The user provides the deadline for the submitted tasks. The
request manager calculates a list of required resources and the task’s priority to complete
the tasks. The resource manager checks the list of the available resources that can satisfy
the need of users. In the proposed Zero-hour policy, resources are assigned based on the
user’s request. The specified time for the beginning of an operation or activity, particularly
when a high priority task enters into the system it suspends all current activity, is known as
zero hour.

As represented in algorithm 1, the resources recognized the most priority task as the
zeroth position. These kinds of requests are mostly unexpected to the resources. In this
research, when fog localization area is full of users’ requests and high priority tasks arrive

62

Figure 3.6: Working Architecture of Zero Hour Policy Scheduler

in the system is called zero hour has arrived. Moment of decision has occurred for all fog
devices. Fog broker will give a response to that high priority task and allocate all required
resources for that task.

Algorithm 1 shows how the Zero-Hour policy will be worked in the fog-Cloud environ-
ment. The input of this algorithm is the list of existing resources, available bandwidth and
latency. Algorithm 1, illustrates that the method of resource allocation is represented as
"A for all fog devices # . Before this, the fog devices, processing time of requests and route
is initialized. All the modules are processing through route A whereas the readymodule is
empty.

The priority % is selection criteria that check the user request and select the best appro-
priate route. Moreover, the elected route details have information about available resources.
Therefore, Processing time(%)) requires computing power by fog nodes compared with the
available resource capacity. Hence, after comparing the available resources’ capacity, new
values are assigned to the resources to high priority tasks. The value and PTs are period-
ically changed. The output of this algorithm is reset the time quantum for that particular
process.

63

The functionality of Zero Hour policy scheduler is presented in Figure 3.6. Six
operations occurred, which are represented as Op1 to Op6. Each operation has a specific
task to be performed. Op1 collects all data from sensors and creates a resource pool with
the variable request of resources generated by users. Op2, check the availability of the
resources with fog nodes. Op3, start entering each request into the waiting queue. The
created waiting queue is handled by the resource scheduler and the working of the resource
scheduler in explained in Figure 3.5. It also decides whether the request should assign to
the fog nodes or cloud. Op4When a request arrives from the sensor node with high priority
or from nearby fog devices, it is sent to the Zero hour policy scheduler. A separate priority
queue is created after this operation. Under Op5, the priority of existing and arrived request
checks through this operation. After that, Op6 allocates resources to the selected request.

Figure 3.7: Sequence Diagram of Resource Scheduling and Execution

All the sequence of operations, such as scheduling and its execution represented in
Figure 3.7. As shown in Figure 3.7, when a tuple is emitted a method collection() from one
sensor, it is sent to fog devices via message passing(). A send up (Req) send to zero hour
policy to check the priority of the request. This method checks the need for resources and
requests to be processed on this layer or transfer to the top layer. After receiving approval,
scheduled resources() operation execute the predefined operation and assign resources.
After that, the zero Hour policy shares the finish status() to the resource scheduler to check
the current status of resources.

64

3.3 TRAM: Technique For Resource Allocation andMan-
agement

Real-time IoT application handles task request and assigns resources as per their requests
through fog server [148]. The fog server provides multiple services to the terminal devices.
The fog application workflow is represented in Figure 3.2. As represented in the figure,
terminal devices generate massive data that fog servers process through available resources.

Fog server runs a computational process based on soft real-time analysis and deep
learning techniques. It also supports the dynamic behaviour of clients and manages re-
sources through a resource scheduler. All the mentioned techniques are used to provide
numerous services such as real-time analysis, monitoring, scheduling, task migration and
communication between devices.

TRAM , a technique for resource allocation and management, is proposed to ensure
resource utilization at the fog layer. TRAM implements through task clustering and resource
allocation. As represented in Figure 3.8, the data or requests are generated through IoT
devices, it directly passes to the fog layer and generates tasks. These tasks are processed
as per EM algorithm and create clusters. The information about the high, medium and low
intensity tasks are shared with fog server where the resource grading process will create
LoR(List of Resources).

In the hybrid fog-cloud architecture, cloud platform is used for the large and long-term
storage of application outcomes or analyzed data. The resources will allocate to the tasks
for the execution. If the tasks belong to the low intensity and very less priority then they can
be treated at cloud layer. High usability of the resources can be achieved with the proper
allocation of resources. In the end, data and processing details are shared with the cloud
for storage. This technique also deals with scalability, device mobility for an application.
The connection between all the devices, along with the fog server will be wireless.

3.3.1 Mode of Operation

All the tasks from the IoT devise are integrated and cumulatively sent to the task coordinator
which is responsible for the efficient organization of tasks. The task coordinator classifies
the tasks into three classes namely (i) highly intense (ii) moderately intense and (iii) less
intense. Figure3.9 provides the graphical representation of the classification process.

The highly intense represents the tasks that are delay-sensitive and need to be imple-

65

Figure 3.8: Technique for Resource Allocation and Management

mented immediately. The moderate intense tasks are the one which has a soft deadline and
are given medium priority. The less intense tasks are mostly storage based tasks that do not
have long deadlines.

The task coordinator clusters the tasks based on these three classes by using Expectation
Maximization (EM) clustering. Through this process, the network overhead is eliminated
which is raised due to the increase in the number of devices. This also reduces the
computational complexity. Task clustering is the process of combining the fine grained
tasks into coarse grained tasks.

The advantage of task clustering is that itminimizes the execution overhead and improves
the computational granularity of task scheduling for resource allocation. Based on the task
clustering, execution overhead is eliminated using small task clustering. This overhead
reduces the cloud environment overhead on the whole by minimizing the traffic rate. The
proposed work performs task clustering for fine grained tasks submitted by end users. For
the first step, dependencies of tasks are computed by the probability function as follows,

%
(
)8 |)9

)
=
%

(
)8 ∩)9

)
% ()8)

, % ()8) > 0 (3.1)

66

Figure 3.9: Task Clustering Result

Where)8 represents the probability of task)8 that occurs the given task)9 , that depen-
dency/similarity between the pair of tasks. In other words, it is called intercorrelation.

3.3.2 Task Clustering

Clustering of tasks improves the performance of individual tasks. Task clustering expressed
using the EM algorithm. The proposed EM algorithm determines theMaximum Likelihood
of the parameters of the probabilistic model. There are two steps utilized: expectation n
and maximization ` for optimum clustering.

Task clustering uses the Finite Gaussian Mixture Model and estimates the set of pa-
rameters for achieving the convergence value. The mixture of K probability distribution
functions can be represented to one cluster and each task is respected to assign to the cluster
through membership probability as represented in Figure 3.9 . Three steps are followed in
the EM algorithm for task clustering that is mentioned below,

• Step 1 - Initialize Parameters: Mean and Standard Deviation is estimated for the input
tasks i. This is implemented using the Normal Distribution Model.

• Step 2 - Refine Parameters for Iteration: Compute expectation n and maximization
` for computing the possibility of membership to teach task and new membership
possibility is computed in expectation and maximization.

67

• Step 3 – Assignment of Task to Cluster: Each task is assigned to the cluster based
on the highest membership possibility. A result of EM for the task clustering is
illustrated in Figure 3.10

Figure 3.10: EM Clustering Result

The complexity of tasks were reduced by representing the tasks in the form of self-
organized maps and were scheduled according to the deadline, but the tasks were directed
to the nearest fogs without considering the resource availability and energy availability
which led to retransmission of tasks[135].

The game theory concept was executed to perform matching tasks to the fog nodes by
considering the preference list; however, this concept did not address each task’s varied
deadline [119]. Various existing works classified the tasks based on the deadline. They
scheduled the tasks according to the tasks’ priority pattern, which reduced the problem
of missing deadlines and improved the process’s efficiency. However, the tasks’ dynamic
nature was not considered, which limited the implementation of these works in real-time
scenarios [109] [89]. The machine learning models were used to predict the nature of the
upcoming task to perform computations at a very low latency but the dynamic nature of
tasks restricted the performance of these works [137].

68

3.4 Expectation Maximization

The first step in identifying workloads with equivalent resource usage patterns is to perform
a cluster analysis [131]. In the fields of statistics, pattern recognition, optimization, and
machine learning, the clustering problem has been formulated in a number of different ways
[3] [74]. The main concern is clustering (grouping together) data elements that are similar
to one another. EM clustering is used in the proposed framework to build task clusters
based on the intensity level.

The EM algorithm (Expectation-Maximization) is a popular and successful method for
predicting mixture model parameters (cluster parameters and associated mixture weights)
[1] [146]. The EM approach refines initial mixture model parameter repeatedly estimates
in order to better accommodate the data and terminates at a locally optimal solution.

The maximum likelihood approach of evaluating design variables maximizes the likeli-
hood that the model will generate the observed data. By calculating the negative log of the
likelihood function, machine learningmethods decrease an error function. The Expectation-
Maximization (EM) algorithm is an iterative approach for calculating maximum likelihood
estimates for probabilistic models with latent variables (variables inferred from observed
data) [131]. The EM algorithm involves the following steps:

• Initialization: Using a random initialization, get an initial estimate of the model
parameters.

• Expectation Step: Estimate the latent variable values while keeping the model pa-
rameters constant. values for the model parameters that minimize an error function.
Maximization: Estimate the hidden variable values while keeping the model param-
eters constant.

• Termination: Steps 2 and 3 should be repeated until a convergence requirement is
reached.

The EM algorithm using statistics iteratively finds the maximum likelihood of server for
being in a particular cluster type. It determines parameters of probability distribution by
obtaining maximum likelihood and then tries to maximize the obtained data log likelihood
on the basis of the observations, revealing the cluster to which a server will belong. This
process keeps repeating until reaching the case where the same points are being assigned to

69

each cluster in consecutive rounds. Let {) = C 9 | 9 = 1, 2, ...=} be the set of n dimensional
points to be clustered into a set of k clusters, {� = 2: |: = 1, 2,:}. Mathematically, EM
clustering algorithm seek to minimize the squared error function.

� (�) =
 ∑
:=1

∑
C 9n2:

(��C 9 − `: ��)2 (3.2)

where
(��C 9 − `: ��)2 is a selected distance calculate between a data point C 9 and the mean

value `: of cluster 2: for all the tasks from their respective cluster centers.

3.5 Verification of Resource Scheduling Framework

Resource scheduling policies deal with the resources and the tasks. In latency, time, cost
and throughput based resource scheduling, the resources are allocated to those tasks whose
requirements such as deadline, latency and cost are fulfilled by the fog broker.

3.5.1 Simulation Model: iFogSim Toolkit

The proposed methodology is implemented in the simulation environment because the
actual setup is less convenient to use. Hence, iFogsim [49] is used to determine the
efficiency of the proposed methodology. The simulation environment offers an environment
where experiments can repeat with numerous parameters. Experiments were conducted by
increasing the time-sensitive task requests. For this research, synthetic and real time
workload was used to explore the resource allocation scenario [130].

The simulation has been done with four different setups with different configurations
by varying areas and sensor nodes. Initially, the topology is constructed to perform the
scheduling of tasks. Each sensor node is connected via the communication channel to the
fog server. The physical setup configuration of cloud devices, fog devices and end devices
are represented in Table 3.2.

In set up 1, the number of the working area is one and the number of fog nodes imple-
mented in that area is also one. However, the number of end devices is four. These devices
will collect the task from users and transfer it to the resource scheduler.
In set up 2, two areas are evaluated with two fog nodes and four end devices.
Similarly, set up 3, is created with three areas, four fog nodes and each area is connected

70

with four end devices.
Final set up 4 is build up with four areas, eight fog nodes and four end devices.

Table 3.2: Physical Setup Configurations

Physical
Setup
Name

Number of
areas

Number of
Fog nodes

Number
of end
devices

Set up 1 1 1 4
Set up 2 2 2 4
Set up 3 3 4 4
Set up 4 4 8 4

The proposed policy is evaluated in a simulation environment. There are many simula-
tors used by numerous researchers. Hence, a comparative study is done between different
simulators available for fog computing. Cloudsim is implemented by Calheiros et al. [10]
Cloudsim is an extensible framework that simulates the infrastructure of cloud computing
and tests the performance of all services of cloudsim.

A fog simulator, iFogSim has been developed by Gupta et al. [49] on the basis of
cloudsim in 2016. The authors listed that researchers and developers could use cloudSim to
check the performance and improve or upgrade the system’s services. iFogSim incorporates
principles of two different technologies, fog computing and IoT.

This toolkit can calculate the latency, network usage, power consumption, and cost
after implementing resource management techniques. The objective of cloud applications,
RECAP is advancement in edge computing technology and to construct a mechanism for
capacity provisioning[60].

In the previously designed simulators, a low level to QoS is retrieved. In RECAP, auto-
matic reconfiguration and remediation are in a preemptive manner. The RECAP approach
follows five different components for data collection, workload distributor, application
modeller, simulator, and optimizer. The RECAP project will explain architecture in or-
der to implement the ideas related to resource management, data analytics, and intelligent
automation.

FogNetSim++ [79] that gives users different configuration possibilities to build large
fog network. It facilitates researchers to implement scheduling algorithms and modified
mobility models for fog nodes. A traffic management system is assessed to demonstrate the
scalability and efficacy of the proposed simulator in terms of CPU and memory utilization.

71

Table 3.3: A Comparison Between Different Simulators

Authors Tools Used Year Task Lang-
uage

Open
Source

Mobile
Node

Schedule
algo-
rithm

Gupta[49] iFogSim 2017 Resource
management

Java Yes yes yes

Lopes[55] MyiFogSim 2017 Resource
management

Java Yes Yes yes

Östberg[60] RECAP 2017 Capacity
Provisioning

C++ N/A No No

Qayyum[79] FogNetSim++ 2018 Resource
Consump-
tion

C++ Yes Yes Yes

Brogi[43] FogTorch 2017 Resource
Consump-
tion

Java Yes No No

Mayer[56] EmuFog 2017 workload
management

Python Yes No Yes

Lopes et al. [55] defined MyFogSim extending the simulator for iFogSim to support
mobile appmigration policies. MyiFogSimmanages appModulesmigrationwhich supports
the application’s modules, similar to CloudSim methodology to handles the VMmigration.

In Table 3.3 comparison between simulators is represented. iFogsim simulator is used
to model the realistic fog environment. iFogSim is an efficient tool for simulation for
all resource management techniques in the cloud-fog environment. For the implementa-
tions, predefined classes were modified to implement the scheduler. All the predefined
classes include sensors class representing all edge devices and tuples class representing the
communication between two nodes.

72

3.6 Experimental Scenario: Zero Hour Policy

In iFogSim, tuples form a communication connection between source to destination enti-
ties, inherited from the cloudsim simulator. A tuple is characterized by type and processing
requirements. CPU length and network length are two attributes that specify the tuple type,
whereas CPU length measures in a million instructions per second (MIPS) and network
length are represented in bytes.

In Figure 3.11, six modules are represented, which perform six tuple processing. These
modules named are sensor, fog device, object based detector, user interface, clouds based
tracker and actuator and six tuple processing are know as raw Raw Data Collector (RDC),
Process data (PD), Detected Object Information (DOI), Process Information (PI), Issued
Instruction (�2) and Action Against Instruction(AAI).

For the algorithm placement strategy, ModulePlacement and Controller Classes are
used for all resources. All the properties related to tuples are described in Table 3.4. This
research represents the need for such a policy that can automatically analyze the raw data
collected from smart devices and review the result in such a manner that is useful to the
end-users.

Figure 3.11: Application Model with Tuple Processing

73

Table 3.4: Tuple Type Description

Tuple Type CPU length
(MIPS)

Network
Length
(Bytes)

RDC 1000 2000
PD 2000 2000
DOI 1000 200
PI 1000 500
�2 200 200
AAI 200 200

Table 3.5: Values of Parameters in the Cloud Fog Environment

Name LevelUpBw DownBwCPU RAM Busy
Power

Idle
power

(MB) (MB) (MIPS) (MB) (Watt) (Watt)
Cloud 0 1000 10,000 44,800 40,000 1648 1.332
Fog Server 1 10,000 10,000 2800 4000 107.339 83.4333
Fog Broker 2 10,000 10,000 2800 4000 107.339 83.4333
End Device 3 10,000 10,000 500 1000 87.53 82.44

3.6.1 Performance Metrics

The TRAM performance evaluation is measured through the processing cost, processing
time and delay. Cloud and fog devices have varied processing power and cost. The hybrid
computing environment is generally used for time-sensitive applications and always tracks
these applications’ processing time.

For example, we want to execute 900 million instructions and for this task, two nodes
are available. The nodes are available with 500 MIPS with 100 Mbps and 1000 MIPS with
10 Mbps ethernet connection. If these two systems’ performance checks and calculates the
task completion time, the second system takes more time to transfer the required data. Even
though the second system has a high processing capacity, it processes the task slower. The
response time needs to be considered along with the task’s finish time because if it is high,
it might not finish the task within the prescribed time limit.

Table 3.5, represents the resourced configuration of iFogsim. Each fog device, fog server
and end device has many parameters such as RAM, upper bandwidth, down bandwidth,
busy power and idle power. Table 3.6, represents the host configuration used for the study.

The simulation shows the performance of resources in the fog computing system. There

74

Table 3.6: Host Configuration

Parameters Value
Architecture X86
Bandwidth 10,000B/S
OS Linux
VM model Xen
Time Zone 5
Cost 2
Cost per memory 0.10
Cost per storage 0.01

is a fog broker that monitors the resource allocation to the tasks and their utilization. In this
study, the fractional Selectivity method was used by all the tuples. The experiment results
are compared with CLC (cloud level computing) policy. CLC is associated with Cloud
level resources and every computation is done at the cloud level. On the other side, Zero
Hour policy represents the computing near the user device and assigns resources per the
task’s priority.

For comparing these two policies, delay, network consumption, execution time and
execution cost are calculated. All the used notation for calculation purposes is represented
in Table 3.7.

As represented in equation 3.8, the delay is measured in the simulator as the amount of
time system has to wait before the assignment of task to the resources. The time when the
request for the first service in the loop arrives C(.� and the end time of services is represented
as C(.� . In the upward direction, data transfer from the sensor node to the high-level node
and downlink where the transfer of data forms the computing node to the actuators.

!C =

'∑ '4@ (C(.� − C(.�)
'

∨ '4@ n ;>>? ((� , (�)) (3.3)

In equation 3.9,)$8,′) 8 is representing network consumption of devices from the original
and targeted position of requests. #(A is the total request size sent on the network. The
total network consumption is calculated by adding the network consumption generated by

75

Table 3.7: Used Notations

Symbols Definition
� Bandwidth of Fog Nodes
�
G
BC Execution Start Time
�
G

5 C
Execution Finish Time

�2; : iFogSim Clock
�<8 ?B MIPS used by Host nodes
!*C Last Utilization Time
Fog nodes
#(A Total request size sent on

the network
'<8 ?B Rate Per MIPS
CB .� Start time of resources re-

quest
CB .� End time of resource re-

quest
)$8,)

′
8

Network consumption of
devices from the original
and targeted position of re-
quests

)2 Total Execution Cost
); Total Task Length
)� Input size of Task
*;0BC Last Utilization
+<8?B MIPS of Virtual machine

each request.

#4CF>A: �>=BD<?C8>= =

A ($8 ,)8)∑ (
)
;

$8,)
′
8

× #(A ($8,)
′
8)

)
)8<4

(3.4)

In the equation 3.10, execution cost is calculated based on the last utilization cost. The cost
also depends on the MIPS of the host node and the time to execute the task.

�G42DC8>= �>BC =)2 + (�2; : − !*C) × '<8 ?B (*; 0 BC) × �<8 ?B (3.5)

The equation 3.11 and 3.14, represents execution timewhich can calculate by subtracting the
task start time from the task finish time. However, �G

5 C
, depends upon specific parameters

76

such as task length, which is assigned to the readymodule. All the parameters used in
equations are mentioned in Table 3.7.

�G42DC8>=)8<4 = �
G
BC − �

G

5 C
(3.6)

�G5 C =

(
);

#
×+<8?B

)
+

(
);

�

)
(3.7)

Figure 3.12 to 3.15 represents the simulation results in various experimental settings. Four
different setups were considered to check the performance of the proposed policy. The
physical configurations of these setups are represented in Table 3.2.

Figure 3.12: Delay in Control Loop

In Figure 3.12, delay in the control loop represents both policies. There is a significant
difference in average delay for zero-hour policy for all four steup.

It represents that even with the increase in the number of areas and fog nodes, it reduces
all loops’ average delay. When the computing is done near edge devices, the delay time is
less for all four setups. The overall average delay is reduced by ≈68% compared with CLC
policy.
As represented in Figure 3.13, the Zero Hour policy can effectively reduce the unnecessary
use of network resources. The network usage in the CLC policy is high, where the
application consumes all the cloud resources. It can also reduce the performance of the
application. Network usage follows the increasing trend for all setups because the number

77

Figure 3.13: Network Usage

Figure 3.14: Execution Cost

of areas and fog nodes increases to collect more task requests. Network usage is calculated
in Kilobytes.

The execution cost of CLC and Zero Hour policy is represented in Figure 3.14.
The cost is degraded when the application used fog resources instead of cloud resources.

Total costs were reduced because execution time was less in the proposed algorithm. The
proposed algorithm allocates resources to those tasks which are at zeroth position.

In Figure 3.15, the simulation time of different policies is measured for different config-
urations. For setup 1, the average processing time decreased by 55%. For setup 2, the
average processing time decreased by 50%. For setup 3 and setup 4 it is decreased by

78

Figure 3.15: Execution Time

36% and 15% compared with CLC policy. Execution time decreased in zero-hour policy
because it constantly allocates resources available at the fog layer to the task generated by
end devices. Whereas in the CLC policy, tasks are directed to the cloud resources. Overall,
the zero-hour policy performs better than the CLC policy in execution time, network usage,
cost and delay.

3.6.2 Experimental Scenario: TRAM

The increased number of devices in the IoT environment exponentially increases the dynamic
nature of the tasks. The task preemption is an effective process in dynamically adapting
towards the computation demand of the tasks.

If the fog node having certain resources is computing a low priority task with a longer
deadline and the high priority task that needs to be executed immediately arises, task
preemption is used to enter the low priority task in the waiting state and implement the high
priority task. However, preemptive tasks can be interrupted during execution so that they
can be stopped during the execution.

For instance, in the Web Crawler application, when the preemptive task’s resources
are collided, tasks are reassigned to adjacent resources from collided point. Whereas
non-preemptive tasks are uninterrupted and cannot be dismissed during their execution as
Encoding, Rendering, Batch processing and Continuous Integration. When the resources
of non-preemptive tasks are depleted, then these tasks are reassigned from the start.

79

This significantly reduces the average response time of the tasks. The dynamic task
preemption is carried out using a preference ranking method, a multi-criteria decision-
making approach. In decision making, priority is decided by the fog node and computed
by the fairness, deadline and optimized response time. Furthermore, the study is focusing
on the challenge of task granularity. This way of executing the high intense task between
the low intense task is an efficient way of managing the resources. Moreover, errors in
high priority tasks implementation require lots of computation and high value of resources.
Hence performing preemption for low priority tasks and assign the resources to high priority
ones increases the resource availability and reduces the task failure rates.

The simulation of our proposedTRAMmodel is carried out using the iFogsim simulation
tool. The system configurations required for simulation of our model is presented in Table
3.9. Initially, the topology is constructed to perform the scheduling of tasks. The simulation
parameters used in our model are provided in Table 3.8. Figure 4.6 depicts the network
topology, simulation configuration and simulation results, respectively.

Table 3.8: System Parameters

IoT devices 15
Gateways 3
Task coordinators 3
Fog nodes 3
cloud server 1
Memory 10 MB
Bandwidth 1000 KBs
MIPS 1000
Capacity of RAM 10

Table 3.9: System Configurations

IDE Netbeans 8.0
Type of topology fully connected
development kit JDK 1.8
Operating System (Windows 7 ultimate [x86]-32 bit

processor
language Java
CPU Pentium (R) Dual-Core CPU E5700

@ 3 GHz
Memory 4GB

80

3.7 Performance Evaluation Criteria

In this section,the performance evaluation criteria for the zero-hour policy based hyper-
heuristic for resource scheduling have been defined. Four metrics, namely makespan, load,
deadline and throughput have been selected and calculated using the equations described
in Chapter 4 for evaluating the performance. The makespan, deadline, load and throughput
are measured in seconds and MegaByte(MB) respectively.

3.7.1 Results and Discussion

To validate the proposed algorithm, hundred tasks have been considered. The simulation
results have been presented using Rafique et al. [103] simulation model with the iFogSim
discrete event simulation to test the performance of the proposed algorithm. In addition,
a comparison of makespan, load, deadline and throughput of the proposed algorithm with
existing heuristic algorithms such as NBIHA, MMPA, SJF and FCFS has been presented.
The performance of the proposed approach is evaluated and investigated the effects of
the different number of tasks. In all the experiments, a comparison for consistent and
inconsistent parameters has been done.

3.7.2 Test Case 1: Energy Consumption

The fog devices energy can be determined by all hosts within specified time frame for
execution. In the Equation (3.8), consumed energy by fog device is represented as n�# ,
current energy consumption is represented as n2. As per the resources consumption, g8 is
time of the last resource utilization whereas g2 is current required time to complete the task
and P is last utilized host power.

Y�# = Y2 + (g2−g8) % (3.8)

k = min
(
�<

�<

)
(3.9)

In the Equation (3.9),last utilization(k) is calculated where �< is used for host allocated
mips and �< is total mips of all machines.

Figure 3.16, shows energy consumption by TRAM. The number of nodes involved in
the simulation is represented along X-axis and energy consumed is represented along Y-
axis. Energy consumed by FCFS, SJF, MPSO and proposed technique TRAM presented in

81

Figure 3.16: Energy Consumption

Figure 3.16. The energy consumption is high for the TRAM when the nodes count is 10,
20. However when the nodes count increases the energy consumption for the TRAM is low
as compared with FCFS, SJF and MPSO.

3.7.3 Test Case 2: Average Loop Delay

The represent end to end latency of all described modules is measured through control loop.
The loop delay and processing time of CPU()?) is calculated through Equation (3.10).

)? =
�(8 × # + �8

#
(3.10)

�(8 is the estimated service time time and �8 is the tuple ending execution time. Total
number of executed tuples are represented as N and individual tuple is represented as ith
tuple which is part of large tuple set T. By using Equation (3.11), calculated the execution
delay of each tuple.

{�8} = �8 − (8, ∀8 ∈) (3.11)

In Equation (3.11), T represents existing tuple set. The comparison of application loop
delays generated by the TRAM with the outcomes of implemented scheduling algorithm
FCFS is shown in Figure 3.17.

Average loop delay determined in milliseconds using proposed technique TRAM and
compared with the existing approaches such as FCFS, SJF and MPSO. Figure 3.17 shows

82

Figure 3.17: Average Loop Delay

the number of nodes along with the x-axis while the y-axis presented loop delay during
the simulation. This demonstrates that it takes less time to transfer data from one device
to another device by using the proposed technique. At the initial stage, each technique
represents the same results, when the number of nodes increases the loop delay for TRAM
is less as compared to the SJF, FCFS and MPSO.

3.7.4 Test Case 3: Latency and Network Consumption

In the this evaluation, #F parameter is used for network usage. As the number of devices
grows, network usage will also increase and it can develop network congestion. By dispers-
ing the load on some other fog devices, TRAM helps to minimize network congestion.

!0C4=2H =

=∑
8=1
(�G?42C43 4G42DC8>= C8<4 − �2CD0; 4G42DC8>= C8<4) (3.12)

In Equation(3.13), network usage #F is computed with latency L and network size n.
Network usage is computer of ith tuple form complete tuple set T.

#F =

)∑
8=1

!8 × [(3.13)

83

Figure 3.18: Network Usage

Figure 3.19: Execution Time of Simulation

Figure 3.18, represents the comparison of the proposed technique TRAM with existing
approaches SJF, FCFS and MPSO. The number of nodes is presented along the X-axis
and network usage is presented along the y-axis. In this evaluation, total execution cost is
computed using Equation (3.14). The cost of applying TRAM method is calculated and
compared with implemented techniques. Present cost, current execution time and updated
last utilization time is represented as %2,)2 and)8 respectively. The value of (k) is calcu-
lated through Equation (3.9). R is rate per mips and �< is total mips of all host machines.

84

�>BC =

�=∑
8=1

%2 + ()2 −)8) × ' × k × �< (3.14)

3.7.5 Test Case 4: Execution Time

In this fourth evaluation, the execution time for the proposed technique is represented for
60 nodes. The execution time of TRAM was compared with SJF, MPSO and FCFS. As
fog infrastructures are dynamic and changes in the scheduling algorithm can also change
simulation execution time. In Figure 3.19, execution time comparison is represented. The
result represents that the proposed technique’s execution time can save 48% of the execution
time for the first four scenarios when the number of nodes is 40. The maximum number of
nodes is 60, When the nodes extend, the execution time decrease upto 24%. However, in
the last scenario 6, where the number of nodes is 60 it can save upto 60% time.

3.8 Applications of Proposed Architecture and Approach
in Real Time Environment

3.8.1 Smart Traffic Light System

The proposed work can be used to implement real time application i.e a smart traffic light
system to control the traffic of smart city. Sensor-based traffic control device that will be
connected to the traffic signals. Due to the rapid increment in the number of vehicles in
the metro cities, it has become necessary to take some initiative so that road congestion can
control and make a path for emergency vehicles. The invention is aimed to create a traffic
control system to avoid road congestion and reroute the emergency vehicle.

This system can be designed by implanting sensors at a distant location from traffic
lights, which can directly be connected to the controlling system of fog nodes. This fog
node can be associated with the traffic light system and the main server. The first sensor
counts the vehicles and fog nodes will inform the nearby hospitals about the road congestion
so that emergency vehicles can reroute the path. The actuators linked with traffic lights
change the timing of signals to clear the road congestions. It works on the principle of IoT

85

Figure 3.20: Smart Traffic Light System

and is connected to the cloud to manage the traffic log. As represented in Figure 3.20, The
proposed invention can used to reduce road congestion in metro cities and build smart cities.
It also helps emergency vehicles to reach their destination on time, which save human life.
This can also help in saving time of any person who stuck on signals and waits very long
for their turn.

3.8.2 Smart Leakage Detection in Smart Cities

An architecture based on hierarchical distributed Fog computing is represented by Tang et
al. [106] [30] to help the reconciliation of a vast number of designing smart devices and
services in future urban communities. They had analyzed case studies of smart gas pipeline
system which was developed by learning algorithms and fiber optical sensor to identify the
risk in 12 distinct events. In the proposed 4-layer architecture, layer 4 was generated with

86

sensing networks which were distributed at different public locations. Layer 3, included
high performance computing nodes and these nodes are also known as edge devices. Layer
2, Contain intermediate nodes connected with a group of edge devices. If one section of
gas pipeline is encountered with a leakage or a fire then Fog layer (layer 2 and layer 3)
computing node will detect the risk and shutdown the gas supply in the area. Layer 1, Cloud
computing database layer to provide monitoring services, long term analysis and pattern
recognition to support decision making.

Figure 3.21: Smart Healthcare Gateway

3.8.3 Smart Healthcare Gateway at the Fog Layer

Fog layer is extended to develop fog enabler by i) creating an arranged gateway network
and ii) employing numerous abilities like acting as local repository for temporarily storage
of data and combining it with different techniques. Local preprocessing is very essential

87

part for creating smart e-Health Gateway. Figure 3.21 shows a theoretical architecture
of a smart e-health gateway using a local database for data filtering and data processing:
Fog computing having an significant feature that data can be processed locally to offer
intelligence at the gateway [80].

In Fog computing, fog layer deals with vast amount of data generated by sensors
and respond within short period of time. This is very important step in case of any
medical emergency. Basic data analysis is performed before advance level processing. In
the medical scenario, all bio signals collected from user’s body are the main source for
evaluating a patient health status. While getting input from sensors, noise can alter the
quality of signal. Such noise is created by various reasons like inappropriate attachment of
sensors to users’ body. After receiving these digitalized signals via different communication
protocols, some data filtering techniques may use to remove noise factor from signals.
Before performing data analysis, smart healthcare gateway enables data compression and
data fusion for improving high latency problem. In data compression, both lossy and
lossless compression approaches are beneficial. For real-time applications such as ECG
monitoring, lossless compression system is followed[17]. These techniques will ensure the
high accuracy in the received signals. Data analysis technique checks the sensitivity of data
and assists the fog layer to detect emergency situations. The system reacts faster to the
emergency situations. In this paper, Rahimi et al. [80] proposed an approach for healthcare
systems with some processing control at the end points.

3.9 Summary

This chapter discussed the proposed resource utilization based on the resource management
policies. The detailed workflow of the Zero Hour policy and TRAM have been analyzed.
Further, themode of operation of resource allocation is discussed in the proposed framework.
It has been observed that Zero hour policy helps in reducing the delay, network usage and
execution time but increases the communicational and mobility overhead. In the next
chapter, the proposed resource scheduling algorithm has been explained, covering all the
framework’s scheduling aspects.

88

CHAPTER 4

Resource Scheduling Algorithm

The previous chapter discussed in detail the design and working architecture of the resource
management framework. In this chapter, a resource scheduling algorithm has been designed
considering the intensity of tasks that are generated by IoT devices.

A resource scheduling algorithm has been proposed which is based on heap based opti-
mization. The algorithm schedules the tasks and assigns resources for execution effectively
in a hybrid environment. In the previous chapter, QoS parameter based resource policies
have been discussed which is the idea behind the proposed algorithm.
This chapter initially presents the TRAMmodel for the resource allocation and management
and discussed the working of the model through flow chart. Then the resource intensive task
scheduling model represents the heap based optimization.Further, Multi constraint based
resource allocation is allocated the resources in the markov decision process environment.
The statistical analysis of simulation results of the proposed resource scheduling algorithm
has been verified to check the system’s performance. The implementation of the proposed
algorithm is done via the iFogSim toolkit. The simulator selection is made after comparing
the six simulators used by other researchers in their study.
This section discuss the dynamic nature of tasks. where thee high priority task executes im-
mediately with task preemption and switch the the low priority task in the waiting state. The
proposed algorithm reduce the execution time, latency and network consumption. Further,
performing preemption for low priority tasks and assign the resources to high priority ones
increases the resource availability.
Finally, the last section discuss the integration of optimal scheduling of clustered tasks
using HBO and preemption of tasks dynamically by executing a preference ranking method
based on QoS and SLA constraints achieves minimal makespan time and queueing time
with a maximal percentage of tasks satisfying the deadline maximal throughput. To check
the accuracy of the proposed technique, a comparative analysis is represented to validate
the study from various other perspectives similar to the existing frameworks such as NBIHA,
MMPA, SJF and FCFS.

89

4.1 An Efficient Solution for Resource Scheduling Model

Resource scheduling refers to the efficiently assignment of resources to the tasks. Resource
scheduling techniques are required to manage the resources at fog layer. All the available
resources are identified and assigned as per the tasks requirements. For the efficient
scheduling model, the resources allocation should be done so that tasks do not have to wait
long. Resource allocation is a method of scheduling and effectively allocating available
resources to achieve resource utilization.

4.1.1 Availability of Resources for Allocation

In the proposed resource availability checking algorithm, compute the ranking of each
resource available on the fog server. If the request resources are less or equal to the
available resources, then the availability value is set to 1. If the value of requested resources
is high from the available resources, the value is set to 0. The amount of data is also
considered during processing. As represented in Figure 4.1, the resources are available on
the fog layer and allocates to the tasks after evaluation.

Figure 4.1: Resource Scheduling

90

Table 4.1: Used Notations

Symbols Definition
a Initialization of bandwidth and processing

value
AssignResList List of resource selected for assignment
B Bandwidth availability
Bi Bandwidth of every instances
Bm Minimum Availability of bandwidth
Br Requested bandwidth
CL Cloud resources
D Delay
Es Start time of task execution
Fd Fog device
Fs Fog server
GradeResource List of graded resources
Ltr Required Latency
LoR List of resources
P Accessible Processing capacity
Pi An individual instance processing power
Pm Minimum processing power availability
Pr Requested required Processing power
Pt Processing Time(x=cl,fd,fs)
Parameters(Pp,Nb,Rt) Parameters<Processing power,Network

bandwidth and response time
Rr Requested resources
RS Store information of all available re-

sources
Tr Rank value of total resources
User Request
List(Pp,Nb,Rt)

Tasks with required Processing power,
Network bandwidth and Response time

Us User task submission time
X Transferred data volume

91

Algorithm 2, represents the resource ranking process in the cloud-fog environment. In
this algorithm list of resources (LoR) is prepared with available bandwidth. All the symbols
and notations used are presented in Table 4.1.

This algorithm prepares all available resources list which can assign to the users for the
processing (P) with bandwidth (B). Initially, processing value and bandwidth values are
set to 0. The minimum available bandwidth and processing of each virtual machine are
represented as (Bm) and (Pm) in the fog server.

The input of this algorithm is all the available resources and tasks along with processing
capacity(Pp), bandwidth(Nb) and latency(Lt). This algorithm’s output is to create LoR(list
of resources) as per the capacity of resources. The requested processing, latency and band-
width are represented as (Pr), (Ltr) and (Br) respectively.

If the requested processing value is less than the (Pm), then the resource is ranked and
add into LoR. In such a case where the task’s requested processing value is equal to the (Pm)
then calculate the rank by dividing the requested processing by the individual processing
power of an instance.

The algorithm 2 executes in two sections. The first section will check the network
bandwidth and processing power of available resources. The second portion of an algorithm
will prepare the temporary list of resources and check whether the system is in a safe state.
When the system is in a safe state, then this resources list assume as the final list of resources.

The algorithm starts with checking available resources in the list and check it are full or
not. If the resource list can accommodate new resources then we will check the minimum
available processing power. If the value of minimum available processing power is higher
processing power available in the resources list then assign a new value for minimum
available processing power. After evaluating processing power, the minimum bandwidth
compares with the available bandwidth in the resource list. The network bandwidth is
revised if the value is high than the available resource list.

In the second section of algorithm, network bandwidth compare with the amount of
data required for data transfer, requested processing power compared with the minimum
processing capabilities and prepare a list of temporary resources. If the requirement of tasks
are completed then this list will consider as final list of resources(LoR).

92

Algorithm 2 Creating LoR in hybrid environment
Input: AssignResList< Pp,Nb,Rt >, a<Pp,Nb>,X, Pr
Output: LoR<Pp,Nb,Rt>

1 Pm←a.Pp Bm←a.Nb RS [] ← �E08;01;4'4B>DA24 < %?, #1, 'C > if '([].=D<14A ≠
=D;; then

2 for RS[] do
3

if RS[i].Pp<Pm then Pm=RS[i].Pp

end if

if RS[i].Nb<Bm then Bm=R[i].Nb

for RS [] do
if P< > %A then
%A [8] = '([8] .%?/%A
else

Pr[i]=(Pr/RS[i].Pp)
if B< > - then

�r[i]=RS[i].Nb/X
else

Br[i]=(X/RS[i].Nb)
if X>RS[i]Nb then
RA [8] = '([8] (G/'([8] .#1)
else

RA [8] = '([8]! t
TA = %A [8] + �A [8] + !CA [8]
end if

LoR ←list of resources as per TA Check current status of tasks and resources Return
LoR[] else

Return Null

4.1.2 Illustration of TRAM

The next phase after developing the resource list is to provide services from the LoR by
considering the demand of the tasks. Resource provisioning will be achieved in a hybrid
and hierarchical manner.

93

The proposed technique reviews the LoR of fog devices and assigns all fog resources.
In the unavailability of resources in the fog devices, all tasks will be assigned to the fog
server or if the resources are not sufficient on the fog server and fog devices, then the
proposed approach will allocate resources and provision them using cloud services. TRAM
can provision resources through the cloud and fog server both.

Figure 4.2: Flow Chart of TRAM

If all the above mentioned provisioned fail then a resource unavailability message will
be generated. In this procedure, each resource has been identified at its assigned position
in LoR. As represented in Figure 4.2, Each resource has three parameters Processing,
Bandwidth, Response Time.

The working of fog servers in the TRAM represents in Figure 4.3. All the received tasks
are divided into three categories such as high-intensity task, medium intensity task and

94

Figure 4.3: Intensity Based Resource Grading and Allocation

low-intensity task by using Expectation Maximization(EM) algorithm [74]. EM algorithm
calculates the similarities among IoT tasks. High-intensity tasks are represented as Tm
and Tn. Medium intensity tasks are represented as Tx and Ty and low-intensity tasks are
represented as Ta and Tb. The EM algorithm is a probability clustering algorithm [74].

This algorithm is implemented on the lower level of the host control node(layer 2 of
Figure 3.1). When the tasks are separated based on intensity, it will submit these tasks
to the management layer. This management layer works as a distributed decision support
and imitates the resource grading process to compute these tasks’ requirements for resource
allocation. All these tasks arrange in a queue as per their ranking. If the system has more
than one high-intensity task, then the arrival time will be considered for the grading process.
These tasks allocate to the fog devices, which are part of the existing LoR. This LoR was
created by implementing an algorithm 2.

This TRAM has the following steps.

95

I Initiate each parameter

II Evaluate the value of processing power, response time and bandwidth of all available
resources.

III Collect tasks from IoT devices

IV Divide the tasks into three categories High, Medium and Low intensity tasks

V Comparison of available resource with the requested resources processing power,
amount of data transfer and latency.

VI Create LoR by the resource grading process

VII Change the minimum available processing capacity, bandwidth availability.

VIII Assign resources to complete the user’s request and check that the resources must
allocate to the high intensity task first then medium intensity tasks.

IX If the resources for the low intensity tasks are not available then assign these tasks to
the cloud for execution

4.2 Optimized Task Scheduling and Preemption

The implementation of task scheduling was done to utilize the resources of the fog nodes.
For energy efficient task scheduling, optimization algorithms was used however the delay
and load of the tasks were not addressed which resulted in wastage of resources [142]
[125]. The complexity of tasks was reduced by demonstrating the tasks in the mapform and
scheduled according to the deadline. However, without considering the resource and energy
availability, the tasks were directed to the nearest fogs, which directed to rechanneling of
tasks [98].

The game theory concept was executed to perform the matching of tasks to the fog nodes
by considering the preference list; however this concept did not address the varied deadline
of each task [129]. The tasks were classified based on the deadline in various existing
works. They scheduled the tasks as per the priority pattern of the tasks which decreased
the problem of missing deadlines and improved the efficiency of the process. The dynamic
nature of the tasks, on the other hand, was not taken into consideration, which restricted the
implementation of these works in real-time circumstances.

96

However, the tasks dynamic naturewas not consideredwhich limited the implementation
of the study in real-time scenarios [100] [88]. The machine learning models were used to
predict the nature of the upcoming task to perform computations at a very low latency but
the dynamic nature of tasks restricted the performance of these works [136] [128].

An application placement technique was executed to schedule resource hungry applica-
tions to increase the average response time by using a new application placement approach
based on memetic algorithm [95] [132]. Several existing works implemented various tech-
niques such as optimization and learning classifier systems to obtain optimal scheduling
of tasks and had some limitations in achieving efficient resource management [115] [140]
[122]. The stochastic nature of tasks is to be considered to manage the resources signifi-
cantly and reduce the response time. Optimized Task Scheduling and Preemption (OSCAR)
model is designed to overcome the limitations of network overhead.
The OSCAR model involved the following steps.

• Scheduled the clustered task using Heap Based Optimizer(HBO)

• Resource management in a distributed manner

• Multiple constraint based resource allocation

• Dynamic nature of tasks for preemption

4.2.1 Resource Intensive Task Scheduling

The scheduling of tasks is the primitive process in efficiently managing the fog computing
resource in an IoT environment. The task scheduling model ensures the completion of tasks
within stipulated time frame with all required resources. The clustered tasks are further
scheduled based on the QoS and SLA constraints such as task size(()), task type())), task
deadline()�), task arrival time()�), device energy level(��), CPU required(�'), memory
required ("') and I/O bandwidth required (�').

The optimal scheduling of tasks is carried out by executing Heap Based Optimizer
(HBO). This process of optimally selecting the task which needs to be processed first
improves the efficient management of resources.

97

4.2.2 Heap Based Optimization

Heap based optimizer used heap based data structure to map the concept of corporate rank
hierarchy. The first step of the HBO is initialization.

We initialize the input parameters(() ,)) ,)� ,)�, �� , �', "', �') and population, which
is defined as follows,

� =


HC1
HC2
...

HC=


=


H1

1 H2
1 H3

1 . . . H31
H1

2 H2
2 H3

2 . . . H32
...

...
...

...
...

H1
= H2

= H3
= . . . H3=


(4.1)

The next step is heap building which includes d-ary tree and can use a ternary heap for
task scheduling. Let consider the heap is generated in an array and that is received from the
parent node index which is calculated as follows,

%(8) =
⌊
8 + 1
3

⌋
(4.2)

Where, p represents the parent node and represents the floor function that produces
a greatest integer value that is less than or equal to the input. The parent node consist
maximum of three child nodes which is defined as follows,

� (8, 9) = 8 × 3 − 3 + 9 + 1 (4.3)

The depth of the heap tree is defined as follows,

� (8) =
⌈
log3 (3 × 8 − 8 + 1)

⌉
− 1 (4.4)

Where D represents the depth and represents the function of ceil that returns the
minimum integer that is greater than or equal to the input. The next step is to calculate the
colleague, which means the node level that returns the random selection of colleagues. The
calculation of colleague is represented as follows,

98

[
33� (8−1) − 1

3 − 1
+ 1,

33� (8−1) − 1
3 − 1

]
(4.5)

The final process is heapify-up () that searches upward and detects the correct location
to insert the new node. Figure 4.4 depicts the task scheduling process using HBO.

Figure 4.4: Task Scheduling

Finally, the input task is scheduled by following the above mentioned step.

Algorithm 3 represents the process of resource intensive task scheduling. The tasks are
scheduled based on the parameters(()),())),()�),()�),(��),(�'), ("') and (�') which
are considered for every task in the environment. Here, %(8) represents the parent index

99

Algorithm 3 Resource Intensive Task Scheduling
INPUT: Task (t) and population (I)
OUTPUT: Scheduled task
Begin
Initialize population
for each task (t) do
Compute S)�><?DC4))

Compute T��><?DC4)�
Compute D��><?DC4�'
Compute M'�><?DC4�'

while (iRoot and heap[i].Key<Heapt[P(i).Key) do
SWAP (heap[i],heap[parent(i)])
i←P(i)
end while
for i←n do
Heap [i].Value←i
Heap [i].key←g(x)
Heapify up ()
end for
for r i← = do(3>F=F0A3BC>2)
i←Heap(i).Value
P(i)←Heap[P(i).Value]
C(i)=Heap[colleague(i).Value
Position←y(%(8))'�¸H (� (8))
for j←1 to D do

P← '0=3><()
y:C 4< ? ← D?30C4H:

8
(C)

end for

if F(yC 4< ?) < � (®H8 (C)) then ®H8 (C + 1) ← ®H8 (C)
end
Heapify up()
end
end
return y(Heap[1].Value)

100

Figure 4.5: Resource Allocation Flow

and � (8) represent the random colleague index and RC represent the position of a random
colleague.

101

4.3 Multi Constraint Based Resource Allocation

Resource allocation is the process of tendering the available resources to compute the sched-
uled tasks. The allocation of resources is based on the parameters such as latency, network
delay, bandwidth, resource consumption, execution time, resource availability, energy and
number of tasks.

The DQN performs the allocation of resources in the markov decision process(MDP)
environment. Once the resource allocation process is executed, the tasks scheduled in the
prior process are computed with the available resources. The tasks are allocated based on
the resources such as a load of the running task, makespan time of the required task, energy
level of the node, resource availability etc.
Markov decision process is a generic mathematical problem that describes the optimal route
subsequent decision. The agent (actor) decides on an action and moves to the next stage at
each step of the sequence. Some rewards are accessible to get either positive or negative,
depending on the present condition. A MDP is defined by:

• A set of states s n S

• A set of action a n A

• A transition function T(S,a,S’) which generates a probability of landing from S to S’
and took action a, i.e P(S’|S,a)

• A reward function R(S,a,S’) which can represent as R(S) or R(S’)

MDP has a Policies Solution which describe a strategy and rule specifying what action to
adopt in each scenario.

The tasks are allocated by considering the status of the fog nodes, through this process
the resources of the fog nodes are managed efficiently. Figure 4.5 illustrates the overall flow
of the resource allocation process. The set of fog resources available in the fog nodes can
be represented as follows

' = [A1, A2, A3 . . . A<] (4.6)

For each fog node, resource constraints are represented as follows

102

' =


A11 A12 . . . A1=

A21 A22 . . . A2=

A<1 A<2 . . . A<=

 (4.7)

However, resource allocation and management usually manage the allocation and deal-
location of computing and storage resources. Further, selecting the fog for the given task
or suitable match of the resource allocation or the set of nodes is selected to distribute
resources to fulfill the users’ tasks QoS / application service requirement.

4.3.1 Deep Reinforcement Learning Model

The proposed categorical DQN provides the absolute solution for the incoming tasks by
experience replay, freeze target Q-network, and clip rewards in the sensible range that are
detailed in the following

• Experience Replay: Based on the agents experience, correlations are removed and
take action 0C , store transition BC , 0C , AC , B(C + 1) in replay memory D, sample random
mini-batch of transitions (B, 0, A, B′) from replay memory D. Optimize MSE between
Q network and Q-learning targets,

!8 (\8) = �(0,B,A,B′)∼* (�)
{
A + Wmax

0′
&

(
0′, B′, \−8

)
−& (0, B, \8)}2

(4.8)

• Freeze Target Q-Network: Q-learning target is going to fix for avoiding the oscilla-
tions and calculate the Q-learning target with respect to the previous set of parameters
as follows,

A + Wmax
0′
&

(
B′, 0′, \−8

)
(4.9)

Optimize the performance of the MSE between the Q-learning agents and network
by follows,

103

!8 (\8) = �(0,B,A,B′)∼* (�)
{
A + Wmax

0′
&

(
0′, B′, \−8

)
−& (0, B, \8)}2

′
(4.10)

Then periodically update the fixed parameters.

• Clip Rewards in Sensible Range:
Based on the reward/value range, DQN clips the reward to -1 and +1, preventing too
large Q-values. Ensure the gradient for well-conditioned. Based on the categorical
DQN, the fog resources are allocated to the respective tasks as follows,

– Utilization / amount of resources free

– Distance / location of fog nodes

– Response time / execution time / migration time

– CPU, and memory availability / fluctuation behavior Energy availability of fog
nodes

Therefore, resource availability for executing the task can be disguised by follows,

04 =

(
"% −

(
A ; × 34

)
/"%

)
(4.11)

Where 04 represents the resource availability, MP represents the measurement period,
A ; represents the likelihood of resource loss for the given time period and 34 is the
expected downtime from the resource of the loss.

4.4 Dynamic Task Preemptive Scheduling

The increased number of devices in the IoT environment exponentially increases the dynamic
nature of the tasks. The task preemption is an effective process in dynamically adapting
towards the computation demand of the tasks.

If the fog node having certain resources is computing a low priority task with a longer
deadline and the high priority task that needs to be executed immediately arises, task
preemption is used to enter the low priority task in the waiting state and implement the

104

(a) A

(b) B

(c) C

Figure 4.6: a) Fog Topology b) Configure the Simulation c) Running Simulation Cost
Analysis of Different Workflows

105

high priority task. However, preemptive tasks can be interrupted during execution so that
can be stopped during the execution. For instance, in the Web Crawler application, when
the preemptive tasks resources have collided, tasks are reassigned to adjacent resources
from collided point, whereas in the non-preemptive tasks are uninterrupted and cannot be
dismissed during their execution as Encoding, Rendering, Batch Processing and Continuous
Integration.

When the resources of non-preemptive tasks are depleted, then these tasks are reassigned
from the start. This significantly reduces the average response time of the tasks. The
dynamic task preemption is carried out using a preference ranking method, a multi-criteria
decision-making approach. In decision making, priority is decided by the fog node and
computed by the fairness, deadline and optimized response time. Furthermore, the study is
focusing on the challenge of task granularity. This way of executing the high intense task
in between the low intense task is an efficient way of managing the resources. Moreover,
errors in high priority tasks implementation require lots of computation and high value of
resources.

Hence performing preemption for low priority tasks and assign the resources to high
priority ones increases the resource availability and reduces the task failure rates.

4.5 Comparative Analysis

In this sub-section, the OSCAR model is evaluated by comparing with several existing
approaches such as MMPA (Energy-Aware Marine Predators Algorithm for task scheduling
in IoT-based fog computing Applications) [113] and NBIHA (A Novel Bio-Inspired Hybrid
Algorithm (NBIHA) for Efficient Resource Management in fog computing) [103] in terms
of performance metrics such as, average response time, loss ratio, resource utilization,
average makespan time, queueing waiting time, percentage of tasks satisfying the deadline
and throughput.

4.5.1 Impact of Average Response Time

The response time is referred to as the measure of time taken to respond to a particular task.
The response time can be computed as the summation of waiting time and service time. In
Figure 4.7 the comparison of the average response time of the proposed OSCAR model and
other existing models with respect to the number of tasks is provided. The average response

106

time increases with an increase in the number of tasks.

Table 4.2: Simulation Parameters

iFogSim Configuration

Network Topology

IoT Devices 15
Gateways 3
Task Coordinators 3
Fog Nodes 3
Cloud Server 1

Application Module

Memory 10 MB
Bandwidth 1000KBs
MPS 1000
Capacity of RAM 10

Fog Node

RAM (GB) 16
Resource Cost 3.0
MIPS 2800
Memory Cost 0.05
Bandwidth 100000
Storage Capacity 11TB
Storage Cost 0.001

Cloud Server

RAM(GB) 40
MIPS 44800
Delay 1000ms and More
Bandwidth 100000

IoT Devices
Delay 1 ms
RAM(GB) 4
MIPS 1500

Table 4.3: Analysis of Average Response Time

Technique No. of Task
MMPA 45.5 ± 5
NBIHA 25±3
OSCAR 9.75±2

The average response time of our proposed model is low than other models due to
the proper allocation of resources and preemption of tasks. The resource allocation is

107

Figure 4.7: Number of Tasks vs. Average Response Time

performed by using C-DQN based on the factors such as latency, network delay, execution
time, bandwidth, resource consumption, energy consumption, number of tasks and resource
availability and the status of current tasks. Further, the preemption of tasks provides
execution of tasks in a dynamic manner. The existing approaches lack in the adoption
of preemption of tasks which increases the response time of those approaches. Table 4.3
presents the numerical analysis of the response time of the proposed model and other
existing approaches with respect to the number of tasks. The average response time of
our model is found to be 9.75 seconds whereas the existing approaches possess up to 45.5
seconds of average response time which is five times greater than the proposed work. From
this, we can conclude that our proposed model is efficient to achieve the QoS and SLA of
task completion.

4.5.2 Impact of Load Ratio

The load ratio is referred as the ratio of load occupied by the VMs in the fog layer. The
load ratio is influenced by the proper allocation of resources in the VMs. The load ratio of

108

our proposed OSCAR model and existing approaches with respect to the number of tasks
is presented in Figure 4.8.

Table 4.4: Analysis of Load Ratio

Technique No. of Task
MMPA 96.5 ± 4
NBIHA 94.5±3
OSCAR 92.5±2

Figure 4.8: Number of Tasks vs. Load Ratio

The load ratio increases with an increase in the number of tasks. The load ratio of our
proposed model is lower than the existing models due to the proper allocation of resources
carried out by the C-DQN model based on several significant characteristics of tasks. The
existing approaches lack consideration of task characteristics to allocate resources, thereby
increasing load ratio effectively. The Table 4.4 provides the numerical analysis of the load
ratio of the proposed model and existing approaches with respect to number of tasks. The
load ratio of our OSCAR model is found to be 92.5% whereas the existing approaches
possess about 96.5% of load which affects the execution of tasks resulting in increased
delay.

109

4.5.3 Impact of Resource Utilization

Resource utilization means the utilization of available resources for the computation of
tasks. The higher the utilization of resources the more efficient the approach will be. The
comparison of resource utilization of our proposed OSCAR model and existing approaches
in relation to the number of fog nodes is presented in Figure 4.9.

Figure 4.9: Number of Fog Nodes vs. Resource Utilization

Table 4.5: Analysis of Resource Utilization

Technique No. of Task
MMPA 13.4 ±3
NBIHA 18.5±2
OSCAR 21.6±1

The distribution of tasks due to an increase in the number of fog nodes reduces the
utilization of resources. The proposed model’s resource utilization is higher than the
existing approaches due to the proper management of resources in the VMs by using the
C-DQN model. The existing approaches lack proper allocation of resources resulting in
reduced utilization of resources. The numerical comparison of resource utilization of our
proposed approach and existing approaches are presented in Table 4.5. The proposed work

110

possesses 21.6% resource utilization per fog node whereas the existing approaches have
only 18.5% of resource utilization. This study concludes that the proposed work is efficient
in utilizing the resource resulting in reduced response time.

4.5.4 Impact of Average Makespan Time

The makespan time means the total time required for the completion time. It differs from
the response time in which the transmission time is not considered. The makespan time
is the summation of transmission time, system time and waiting time. The comparison of
makespan time of the proposed approach and existing approaches is presented in Figure
4.10.

Figure 4.10: Number of Fog Nodes vs. Average Makespan Time

Table 4.6: Analysis of Average Makespan Time

Technique No. of Fog nodes
MMPA 49.6 ± 4
NBIHA 40.3±3
OSCAR 26.6±2

The makespan time of our proposed OSCAR model is high due to the implementation
of preference rank method based task preemption in which the completion of both low

111

intensity and high intensity tasks is ensured within the deadline. The existing approaches
lack in the proper execution of tasks within the deadline which affects the completion of
tasks resulting in increased makespan time. Table 4.6 presents the numerical analysis of the
makespan time of the proposed approach and other existing approaches in relation to the
number of fog nodes. The makespan time of our proposed work is found to be 26.6 seconds
whereas the existing approaches possess makespan time up to 49.6 seconds from this we
can conclude that the proposed work outperforms the existing approaches in completing the
tasks with reduced makespan time.

4.5.5 Impact of Queueing Time

The queueing time refers to themeasure of time the task is placed in a queue before executing
it. The queue time of the task must be less than that of the deadline to complete the task
successfully. The queueing time of the proposed OSCAR model without preemption is
compared with the existing approaches in relation to fog nodes is presented in Figure 4.11.

It is found that the queueing time of the proposed model without the preemption of tasks
is high than the existing approaches due to the scheduling of tasks by implementing HBO
based on the QoS and SLA constraints.

The existing approaches also implemented optimization based task scheduling but the

Figure 4.11: Queueing Time Without Task Preemption

112

Table 4.7: Analysis of Queueing Time Without Task Preemption

Technique No. of Fog nodes
MMPA 34 ± 4
NBIHA 27.25±3
OSCAR 23.1±2

convergence of those approaches was not effective than the proposed approaches resulting in
increased queueing time. Further, the clustering of tasks based on intensity initially reduces
the complexity which supports the reduced queueing time of the proposed approach. The
numerical analysis of queueing time of the proposed work without preemption is compared
with that of existing approaches with respect to the number of fog nodes is presented in
Table 4.7.

The queueing time without preemption was 23.1 seconds whereas the existing ap-
proaches possess high queueing time up to 34 seconds. This proves that even without
preemption the proposed approach performs better than that of the existing approaches.
The queueing time of the proposed approach with preemption is compared with the existing
approaches in relation to the number of fog nodes is presented in Figure 4.11

Figure 4.12: Queueing Time With Task Preemption

The queueing time of our proposedOSCARmodel with task preemption is very low than

113

Table 4.8: Analysis of Queueing Time With Task Preemption

Technique No. of Fog nodes
MMPA 34 ± 4
NBIHA 27.25±3
OSCAR 12.75±2

the existing approaches due to the execution of dynamic switching from low intense task
having a longer deadline to the newly obtained high intense task having a shorter deadline.

By doing both the low intense and high intense tasks are completed resulting in an
increase in the percent of tasks dissatisfied the deadline. The existing approaches lack
consideration of the dynamic nature of incoming tasks from the IoT devices resulting in
increased queue time. Table 4.8 presents the numerical comparison of the proposedOSCAR
model with preemption and existing approaches in relation to a number of fog nodes. The
queueing time of our approach with task preemption is found to be 12.75 seconds and the
queueing time of our approach without queueing time is 23.1 seconds from this we can say
that by performing preemption of tasks the queueing time of tasks can be reduced.

4.5.6 Impact of Task Satisfying the Deadline

This metric is used to measure the number of tasks completed successfully within the dead-
line. The proposed OSCAR model is compared with existing approaches in terms of tasks
satisfying the deadline with respect to a number of fog nodes, presented in Figure 4.13

Table 4.9: Analysis of Task Satisfies the Deadline

Technique No. of Fog nodes
MMPA 85.75± 3
NBIHA 92±2
OSCAR 96.75±1

The task satisfies the deadline of the proposed approach which is higher than other
existing approaches due to the scheduling of tasks and dynamically preempting the sched-
uled tasks. The existing approaches perform any of these processes, affecting the proper
allocation of tasks, thereby possessing more failed tasks.

The numerical analysis of tasks satisfying the deadline of the proposed model and the
existing approaches in relation with the number of fog nodes is presented in Table 4.9. The

114

Figure 4.13: No. of Fog Nodes vs. Tasks Satisfying the Deadline

average number of tasks satisfying the deadline by implemented our proposed approach is
96.75% whereas the existing approaches possess up to 92%. The lack of consideration of
the dynamic nature of incoming tasks increases the failure rate of tasks.

4.5.7 Impact of Throughput

The throughput is defined as the measure of the completion rate of a task by an approach
within a specific time period. The throughput of the proposed OSCAR model and other
existing approaches with respect to the number of fog nodes is illustrated in Figure 4.14 The
proposed OSCAR model seems to have high throughput than the existing models due to the
integration of both task scheduling and resource allocation. The task coordinator schedules
the tasks based on intensity and the fog nodes allocate the resources required for the com-
putation of tasks. By doing so, the utilization of resources becomes high thereby achieving
maximum throughput. The existing approaches performed either of these processes which
affect the execution of tasks within the deadline.

Table 4.10 presents the numerical analysis of throughput of the proposed approach and
the existing approaches in relation to the number of fog nodes. The throughput of our

115

Figure 4.14: No of Fog Nodes vs. Throughput (Kbps)

Table 4.10: Analysis of Throughput

Technique No. of Fog nodes
MMPA 88.75± 3
NBIHA 91.5±2
OSCAR 94.3±1

proposed approach is found to be 94.3% whereas the existing approaches possess up to
91.5%. It is concluded from the study that our proposed OSCAR model is efficient in
completing more tasks within the simulation period.

4.6 Test Cases for Evaluation

This work provides four test cases to represents the experimental results of evaluated tasks.
The considered tasks data set [134] are run on the iFogSim to evaluated execution time,
cost, energy consumption and response time in the fog environment. The dataset describes
the requirements of future crowd-based IoT applications. This dataset is developed for
scheduling/rescheduling/monitoring algorithms to handle massively dynamic situations in
crowd-based resource allocation. For simulation results, iFogSim has been checked the
performance of the proposed technique. The proposed OSCAR technique is a combined

116

form of the HBO and C-DQN model. The proposed technique’s results are compared with
existing techniques to verify the performance of the OSCAR model.

Figure 4.15: Analysis of Cost

4.6.1 Test case I: Cost Analysis

Different tasks are assigned to the fog nodes and their performance is analyzed. This work
has considered 700 tasks for execution and compared the existing approaches with the
proposed model.
In Figure 4.15 shows the number of tasks on theX-axis and the cost on theY-axis. The results
represent that with the increase of tasks, the implementation cost will also be increased.
The proposed model reduced the cost and compared with the other techniques i.e., NBIHA,
MMPA and SJF. The OSCAR model reduces implementation costs by approximately 29

4.6.2 Test Case II: Execution Time of Tasks

Execution time increases when a large number of tasks are parsed to the fog nodes. The fog
layer required more resources to execute a large number of tasks. The proposed approach
has been implemented and analyzed for all the tasks in the fog layer. It represents the effect
of increasing the number of tasks while keeping the constant number of fog nodes. In

117

this experiment, 700 tasks are executed with a varying number of resources. Figure 4.16
represents the execution time which is calculated by the time taken from the submission
of tasks till execution is completed. The X-axis shows the number of tasks and the y-axis
represents execution time in the graph. The results indicate that with increasing the number
of tasks, the execution time decreases as compared to the other existing techniques.x The
Figure4.16 shows that the execution time decrease by 33% in the same proportion as increase
the number of tasks. This observation indicates that OSCAR has given good performance
in comparison to NBIHA, SJF and MMPA.

Figure 4.16: Analysis of Execution Time

4.6.3 Test Case III: Energy Consumption of Tasks

In this case, different tasks are analzed to compute energy consumption in the fog layer.
When the tasks increases, energy consumption will also be increased. The Figure 4.17
represents the energy consumption in the fog layer, where the x-axis representing the
number of tasks and energy consumption on the y-axis. The proposed approach reduced the
energy consumption and compared the results with already existing techniques. OSCAR
tries to reduce energy consumption by 7% .

118

Figure 4.17: Analysis of Energy Consumption

4.6.4 Test Case IV: Response Time Analysis of Tasks

The response time is calculated when the task sends a request for resources allocated to
the task as per the requirement. The proposed model mainly works to reduce the response
time. The Figure 4.18 represents the response time analysis for 700 tasks. In this figure,
the x-axis represents the tasks and y-axis represents the response time. The results are
compared with the existing approaches such as MMPA, NBIHA and SJF. In the proposed
approach, response time is reduced by 39% as compared to the MMPA approach.

4.7 Statistical Analysis

Resource utilization and scheduling framework can be verified by a formal language like
paired t test. In the paired t test, a comparison of mean is done when the observation
have been obtained in pairs. Paired T test is used to testing two sample means when
their respective population and standard deviation are unknown. The paired sample t-test
hypotheses are describe below:

• The null hypothesis (�0) assumes that the mean energy consumption, response time
and execution time are same. There is no difference in the mean (`3) and it is equal
to zero.

119

Figure 4.18: Analysis of Response Time

• The two tailed alternation hypothesis (�1) assumes that mean difference (`3) is not
equal to zero.

The purpose of paired t test to find out the statistical evidence that the means difference
between paired observation is significantly different from zero. In the table, the obtained p
value to the given test t is less than U.

The p value for the energy consumption is ? < 0.05 represent that mean difference
between OSCAR and NBIHA approach is statistically significantly different from zero.
The obtained values revealed that the energy consumption, response time and execution
time in the NBIHA is greater than the proposed OSCAR technique. In Figure 4.19, P(T<=t)
two tail(0.002694) gives the probability that the absolute value of the t-statistic(-3.765) is
less than the critical t values (2.178). Since the p- value is less than alpha 0.05, the null
hypothesis is rejected that there is no significant difference in the sample means.

In Figure 4.20, P(T<=t) two tail(4.15839E-21) gives the probability that the absolute
value of the t-statistic(-152.76) is less than the critical t values. Since the p- value is less
than alpha 0.05, the null hypothesis is rejected that there is no significant difference in the
sample means.

In Figure 4.21, P(T<=t) two tail(0.000123) gives the probability that the absolute value
of the t-statistic(-5.56619) is less than the critical t values (2.178). Since the p- value is less
than alpha 0.05, the null hypothesis is rejected that there is no significant difference in the

120

Figure 4.19: Paired t-test for Execution Time

Figure 4.20: Paired t-test for Response Time

121

Figure 4.21: Paired t-test for Energy Consumption

sample means.

4.8 Summary

This chapter represented the resource scheduling model and the resource allocation based
algorithm. A detail description about the proposed model provided through the flow chart.
A Heap Based Optimization resource scheduling algorithm has been proposed to map tasks
on the resources to ensure the resource intensive task scheduling. Further, the dynamic
behaviour of tasks has analyzed and allocated resources to ensure high utilization. The
next chapter discusses the verification and validation of the proposed model and resource
scheduling algorithm.

122

CHAPTER 5

Conclusion and Future Direction

The main contribution of the thesis are concluded in this chapter. A detailed study is done in
the area of fog computing along with its application, key issues, architecture and research
challenges. Fog computing provides services to the end devices and reduce the burden of
cloud. By deployment of its nodes near to network edge, fog computing has resolved the
main issue of delay which is faced by cloud computing. There are number of other issues
such as resource management and task scheduling at the fog layer which can needs to be
handled with some efficient techniques. Various existing approaches have been studied and
their literature review have been provided. To resolve the problem of resource management
in fog computing environment , Tri-fold Task Clustering framework has been designed.

Further, the proposed framework has been designed to resolve the issue of resource
scheduling and allocation in the fog-cloud environment. To evaluate and analyse the pro-
posed framework, a zero hour policy has been developed. Further a technique for resource
allocation and management(TRAM) has been developed. For the implementation of task
clustering and resource allocation, TRAM method has been used. For the resource alloca-
tion, heap based optimisation (HBO) algorithm is used and assigned the resources to the
tasks.The proposed approach has been analyzed through the iFogsim simulator.The experi-
mental results have been compared and analyzedwith the existing approaches. The obtained
results represent that the proposed approaches outperforms the existing approaches.

This chapter concludes the research work done in this thesis by highlighting its main
contributions. It also discussed about the resource management and task scheduling in fog
computing. The Chapter gives the briefing about the research work conducted in this thesis.
In the end the chapter provides future scope of work and research direction for further
researchers.

123

5.1 Conclusion

Resource utilization and Scheduling is a crucial aspect of fog Computing, which has a
significant impact on system performance. The objective of this research was to minimize
the complexity of resource allocation and increase the resource utilization in a cloud-fog
environment.The dynamic nature of incoming tasks in the fog layer increases the makespan
time and introduces a delay in completing tasks. In the fog computing environment, changes
in the resource requirements depend upon the user’s need and can change at any time. This
eventually increases the failure rate of the task computation. The proposed method over-
comes the limitations by optimally performing scheduling and preemption of tasks.

For this, we have implemented Heap based optimization algorithm for task scheduling
and preemption of tasks to attain proper resource utilization.The proposed algorithmnot only
stabilize the resource management but also improves the whole framework performance.

The main contributions of this research work are described as follows:

– A Tri-fold task clustering framework is proposed for resource scheduling. The
proposed framework collects all the tasks and create cluster based on the intensity of
tasks.

– A Zero hour policy is designed to minimize the complexity of resource allocation
in the fog-cloud environment. All the task consider and process in atomic manner.
The dynamic nature of tasks are handled to design the resource grading process.The
user’s requirements were evaluated by the resource scheduler and allocate resources
as per zero hour policy.

– A TRAM model is designed for resource allocation and management. TRAM model
is used to create the LoR based on the availability of resources. Initially, the tasks are
clustered based on the intensity by using the EM clustering model.The performance
of proposed model is evaluated and concluded that the TRAM model is efficient in
achieving the increased throughput and reduced response time in the completion of
tasks.

– A Heap based optimization algorithm has been proposed for task scheduling and
preemption of tasks to attain proper resource utilization to improve the overall system
performance. The clustered tasks are scheduled based on theQoS and SLAconstraints
by implementing HBO resulting in reduced makespan time

124

– The allocation of resources is carried out based on the current and required resources
for the effective computation of tasks using the C-DQN model. The preemption of
tasks is performed to reduce the tasks’ waiting time, thereby increasing the percentage
of tasks satisfying the deadline and reducing the loss ratio.

– The proposed model is experimented using the iFogsim simulation tool and evaluated
in terms of average response ratio, loss ratio, resource utilization, average makespan
time, queuingwaiting time, percentage of tasks satisfying the deadline and throughput.

– The comparative output analysis revealed that the proposed model has superior per-
formance in terms of average loop delay, network consumption, execution time and
energy consumption.

5.1.1 Main Contribution

The main contribution of this research work are summarised as follows:

– Resource utilization based task scheduling framework has been proposed that ensure
the maximum utilization of available resources in the fog computing.

– A resource scheduling approach has been proposed to optimize the resources in the
fog layer.

– Four main parameters have been considered to analyze the proposed resource utiliza-
tion based resource scheduling framework and reinforcement Learning, i.e., Energy
consumption, Response time, Network consumption and Execution time

– This thesis presents the development and implementation of the proposed Tri-fold
task clustering framework and resource scheduling approaches.

– The proposed framework provides efficient resource scheduling and maximizes re-
source utilization in the fog layer, minimizing energy consumption.

5.2 Limitations of the Research

Due to the nature of fog devices, it will increase the complexity of the system in the network.
The main limitations are mentioned as below.

125

– The main focus of the study is to minimize the latency and response time but the
security of fog nodes are not considered at the fog layer.

– The proposed Zero Hour policy is designed to complete users’ resources requests
with all available resources at fog layer but there is no encryption algorithms which
can lead to exposure of data to the hackers.

– The implementation is done on the iFogSimulator with number of tasks in the for of
DAG and it is representing better resource utilization, whereas the results can vary in
real-time applications and scenarios.

– The proposed framework can be deployed at any systemwith Java andAndroidmobile
phones.

5.3 Future Work

This research has developed a lot of possibilities for future research. Fog computing
methodology is developed to resolve the issues which are remain unhandled in the cloud
computing methodology. All the possible future directions are mentioned as below:

• The approach ahead for sustainable directions will be focused on the use of Artificial
Intelligence in the optimization approach.

• The resource security will be handled via implementing security policies and extends
its usability beyond automotive industry.

• The application of artificial intelligence will help to handle the overloaded issue of
fog nodes and bring the benefits to all enterprises. Moreover, artificial intelligence
techniques can be implemented and embedded near the user’s tasks on the fog layer.

• The prospective of fog computing in 5G enabled environments extends the benefits
if AI at the edge level.

• In the case of extensive task, resource consumption in fog computing increases. Hence
there is a need to evaluate the scalability and relability of resources in real-time fog
computing applications, i.e., e-healthcare, smart traffic management system.

126

• Although fog computing is used in almost all areas now, fog is not very secure. A
full security solution must be developed to determine all the security mechanisms
required for all fog devices used in smart applications.

• The Fog system needs focus to decentralize the security model and best solution
in the current time in Blockchain. However, Blockchain needs substantial research
contributions to make it suitable for the fog system.

• The use of rule-based and module deployment algorithms increases the computa-
tional overhead at the proposed layer. As a result, optimization algorithms can be
designed that take into account the other factors to make the Optical-Fog layer more
computational.

127

References

1. Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the Royal Statistical Society: Series B
(Methodological) 39, 1–22 (1977).

2. Iansiti, M. & Clark, K. B. Integration and dynamic capability: evidence from product
development in automobiles and mainframe computers. Industrial and corporate
change 3, 557–605 (1994).

3. Bradley, P. S., Fayyad, U., Reina, C., et al. Scaling EM (expectation-maximization)
clustering to large databases. Microsoft Research, 0–25 (1998).

4. Satyanarayanan, M. Pervasive computing: Vision and challenges. IEEE Personal
communications 8, 10–17 (2001).

5. Balan, R., Flinn, J., Satyanarayanan, M., Sinnamohideen, S. & Yang, H.-I. The case
for cyber foraging in Proceedings of the 10th workshop on ACM SIGOPS European
workshop (2002), 87–92.

6. Damiani, E., di Vimercati, D. C., Paraboschi, S., Samarati, P. & Violante, F. A
reputation-based approach for choosing reliable resources in peer-to-peer networks
in Proceezdings of the 9th ACM conference on Computer and communications secu-
rity (2002), 207–216.

7. Ernemann, C., Hamscher, V., Schwiegelshohn, U., Yahyapour, R. & Streit, A. On
advantages of grid computing for parallel job scheduling in 2nd IEEE/ACM Inter-
national Symposium on Cluster Computing and the Grid (CCGRID’02) (2002), 39–
39.

8. Krauter, K., Buyya, R. & Maheswaran, M. A taxonomy and survey of grid resource
management systems for distributed computing. Software: Practice and Experience
32, 135–164 (2002).

128

9. Oprescu, A.-M. & Kielmann, T. Bag-of-tasks scheduling under budget constraints
in 2010 IEEE second international conference on cloud computing technology and
science (2010), 351–359.

10. Calheiros, R.N., Ranjan, R., Beloglazov, A., DeRose, C.A.&Buyya, R. CloudSim: a
toolkit for modeling and simulation of cloud computing environments and evaluation
of resource provisioning algorithms. Software: Practice and experience 41, 23–50
(2011).

11. Çiftçioğlu, E. N. & Gürbüz, Ö. Scheduling for next generation WLANs: filling the
gap between offered and observed data rates. Wireless Communications and Mobile
Computing 11, 654–666 (2011).

12. Han, H., Sheng, B., Tan, C. C., Li, Q. & Lu, S. A timing-based scheme for rogue
AP detection. IEEE Transactions on parallel and distributed Systems 22, 1912–1925
(2011).

13. Bonomi, F., Milito, R., Zhu, J. & Addepalli, S. Fog computing and its role in the
internet of things in Proceedings of the first edition of the MCC workshop on Mobile
cloud computing (2012), 13–16.

14. Bakıcı, T., Almirall, E. & Wareham, J. A smart city initiative: the case of Barcelona.
Journal of the knowledge economy 4, 135–148 (2013).

15. Gubbi, J., Buyya, R., Marusic, S. & Palaniswami, M. Internet of Things (IoT): A
vision, architectural elements, and future directions. Future generation computer
systems 29, 1645–1660 (2013).

16. Sharkh, M. A., Jammal, M., Shami, A. & Ouda, A. Resource allocation in a network-
based cloud computing environment: design challenges. IEEE Communications
Magazine 51, 46–52 (2013).

17. Touati, F. & Tabish, R. U-healthcare system: State-of-the-art review and challenges.
Journal of medical systems 37, 1–20 (2013).

18. Aazam, M. & Huh, E.-N. Fog computing and smart gateway based communication
for cloud of things in 2014 International Conference on Future Internet of Things
and Cloud (2014), 464–470.

19. Gia, T. N. et al. Customizing 6LoWPAN networks towards Internet-of-Things based
ubiquitous healthcare systems in 2014 NORCHIP (2014), 1–6.

129

20. Aazam, M. & Huh, E.-N. Dynamic resource provisioning through fog micro data-
center in 2015 IEEE international conference on pervasive computing and commu-
nication workshops (PerCom workshops) (2015), 105–110.

21. Aazam, M. & Huh, E.-N. Fog computing micro datacenter based dynamic resource
estimation and pricing model for IoT in 2015 IEEE 29th International Conference
on Advanced Information Networking and Applications (2015), 687–694.

22. Cao, Y., Chen, S., Hou, P. & Brown, D. FAST: A fog computing assisted distributed
analytics system to monitor fall for stroke mitigation in 2015 IEEE international
conference on networking, architecture and storage (NAS) (2015), 2–11.

23. Datta, S. K., Bonnet, C. & Haerri, J. Fog computing architecture to enable consumer
centric internet of things services in 2015 International Symposium on Consumer
Electronics (ISCE) (2015), 1–2.

24. Gazis, V. et al. Components of fog computing in an industrial internet of things context
in 2015 12th Annual IEEE International Conference on Sensing, Communication,
and Networking-Workshops (SECON Workshops) (2015), 1–6.

25. Giang, N. K., Blackstock, M., Lea, R. & Leung, V. C. Developing iot applications
in the fog: A distributed dataflow approach in 2015 5th International Conference on
the Internet of Things (IOT) (2015), 155–162.

26. Islam, S. R., Kwak, D., Kabir, M. H., Hossain, M. & Kwak, K.-S. The internet of
things for health care: a comprehensive survey. IEEE access 3, 678–708 (2015).

27. Oueis, J., Strinati, E. C. & Barbarossa, S. The fog balancing: Load distribution for
small cell cloud computing in 2015 IEEE 81st vehicular technology conference (VTC
spring) (2015), 1–6.

28. Saharan, K. & Kumar, A. Fog in comparison to cloud: A survey. International
Journal of Computer Applications 122 (2015).

29. Sarkar, S., Chatterjee, S. &Misra, S. Assessment of the Suitability of Fog Computing
in the Context of Internet of Things. IEEE Transactions on Cloud Computing 6, 46–
59 (2015).

30. Tang, B. et al. in Proceedings of the ASE BigData & SocialInformatics 2015 1–6
(2015).

130

31. Yi, S., Qin, Z. & Li, Q. Security and privacy issues of fog computing: A survey in
International conference on wireless algorithms, systems, and applications (2015),
685–695.

32. Agarwal, S., Yadav, S. & Yadav, A. K. An efficient architecture and algorithm
for resource provisioning in fog computing. International Journal of Information
Engineering and Electronic Business 8, 48 (2016).

33. Chiang, M. & Zhang, T. Fog and IoT: An overview of research opportunities. IEEE
Internet of Things Journal 3, 854–864 (2016).

34. Dastjerdi, A. V., Gupta, H., Calheiros, R. N., Ghosh, S. K. & Buyya, R. in Internet
of things 61–75 (Elsevier, 2016).

35. Lee, W., Nam, K., Roh, H.-G. & Kim, S.-H. A gateway based fog computing ar-
chitecture for wireless sensors and actuator networks in 2016 18th International
Conference on Advanced Communication Technology (ICACT) (2016), 210–213.

36. Pham, X.-Q. & Huh, E.-N. Towards task scheduling in a cloud-fog computing system
in 2016 18th Asia-Pacific network operations and management symposium (AP-
NOMS) (2016), 1–4.

37. Skarlat, O., Schulte, S., Borkowski, M. & Leitner, P. Resource provisioning for IoT
services in the fog in 2016 IEEE 9th international conference on service-oriented
computing and applications (SOCA) (2016), 32–39.

38. Sun, X. & Ansari, N. EdgeIoT: Mobile edge computing for the Internet of Things.
IEEE Communications Magazine 54, 22–29 (2016).

39. Yangui, S. et al. A platform as-a-service for hybrid cloud/fog environments in 2016
IEEE International Symposium on Local and Metropolitan Area Networks (LAN-
MAN) (2016), 1–7.

40. Zeng, D., Gu, L., Guo, S., Cheng, Z. & Yu, S. Joint optimization of task schedul-
ing and image placement in fog computing supported software-defined embedded
system. IEEE Transactions on Computers 65, 3702–3712 (2016).

41. Abbas, N., Zhang, Y., Taherkordi, A. & Skeie, T. Mobile edge computing: A survey.
IEEE Internet of Things Journal 5, 450–465 (2017).

42. Bittencourt, L. F., Diaz-Montes, J., Buyya, R., Rana, O. F. & Parashar, M. Mobility-
aware application scheduling in fog computing. IEEE Cloud Computing 4, 26–35
(2017).

131

43. Brogi, A. & Forti, S. QoS-aware deployment of IoT applications through the fog.
IEEE Internet of Things Journal 4, 1185–1192 (2017).

44. Byers, C. C. Architectural imperatives for fog computing: Use cases, requirements,
and architectural techniques for fog-enabled iot networks. IEEE Communications
Magazine 55, 14–20 (2017).

45. Chang, C., Srirama, S. N. & Buyya, R. Indie fog: An efficient fog-computing infras-
tructure for the internet of things. Computer 50, 92–98 (2017).

46. Dubey, H. et al. inHandbook of Large-Scale Distributed Computing in Smart Health-
care 281–321 (Springer, 2017).

47. Etemad, M., Aazam, M. & St-Hilaire, M. Using devs for modeling and simulat-
ing a fog computing environment in 2017 International Conference on Computing,
Networking and Communications (ICNC) (2017), 849–854.

48. Gia, T. N. et al. Low-cost fog-assisted health-care IoT system with energy-efficient
sensor nodes in 2017 13th international wireless communications and mobile com-
puting conference (IWCMC) (2017), 1765–1770.

49. Gupta, H., Vahid Dastjerdi, A., Ghosh, S. K. & Buyya, R. iFogSim: A toolkit for
modeling and simulation of resource management techniques in the Internet of
Things, Edge and Fog computing environments. Software: Practice and Experience
47, 1275–1296 (2017).

50. Hao, Z., Novak, E., Yi, S. & Li, Q. Challenges and software architecture for fog
computing. IEEE Internet Computing 21, 44–53 (2017).

51. Hu, P., Dhelim, S., Ning, H. & Qiu, T. Survey on fog computing: architecture,
key technologies, applications and open issues. Journal of network and computer
applications 98, 27–42 (2017).

52. Kabirzadeh, S., Rahbari, D.&Nickray,M.A hyper heuristic algorithm for scheduling
of fog networks in 2017 21st Conference of Open Innovations Association (FRUCT)
(2017), 148–155.

53. Kocakulak,M.&Butun, I.An overview ofWireless Sensor Networks towards internet
of things in 2017 IEEE 7th Annual Computing and Communication Workshop and
Conference (CCWC) (2017), 1–6.

54. Liu, Y., Fieldsend, J. E. & Min, G. A framework of fog computing: Architecture,
challenges, and optimization. IEEE Access 5, 25445–25454 (2017).

132

55. Lopes, M. M., Higashino, W. A., Capretz, M. A. & Bittencourt, L. F. Myifogsim: A
simulator for virtual machine migration in fog computing inCompanion Proceedings
of the10th International Conference on Utility and Cloud Computing (2017), 47–52.

56. Mayer, R., Graser, L., Gupta, H., Saurez, E. & Ramachandran, U. Emufog: Extensible
and scalable emulation of large-scale fog computing infrastructures in 2017 IEEE
Fog World Congress (FWC) (2017), 1–6.

57. Mouradian, C. et al.A comprehensive survey on fog computing: State-of-the-art and
research challenges. IEEE communications surveys & tutorials 20, 416–464 (2017).

58. Munir, A., Kansakar, P. & Khan, S. U. IFCIoT: Integrated Fog Cloud IoT: A novel
architectural paradigm for the future Internet of Things. IEEE Consumer Electronics
Magazine 6, 74–82 (2017).

59. Ni, L., Zhang, J., Jiang, C., Yan, C. & Yu, K. Resource allocation strategy in fog
computing based on priced timed petri nets. IEEE Internet of Things Journal 4,
1216–1228 (2017).

60. Östberg, P.-O. et al. Reliable capacity provisioning for distributed cloud/edge/fog
computing applications in 2017 European conference on networks and communica-
tions (EuCNC) (2017), 1–6.

61. Pooranian, Z., Shojafar, M., Naranjo, P. G. V., Chiaraviglio, L. & Conti, M. A novel
distributed fog-based networked architecture to preserve energy in fog data centers
in 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems
(MASS) (2017), 604–609.

62. Rahbari, D. & Nickray, M. Scheduling of fog networks with optimized knapsack by
symbiotic organisms search in 2017 21st Conference ofOpen Innovations Association
(FRUCT) (2017), 278–283.

63. Taneja, M. &Davy, A. Resource aware placement of IoT application modules in Fog-
Cloud Computing Paradigm in 2017 IFIP/IEEE Symposium on Integrated Network
and Service Management (IM) (2017), 1222–1228.

64. Tang, B. et al. Incorporating intelligence in fog computing for big data analysis in
smart cities. IEEE Transactions on Industrial informatics 13, 2140–2150 (2017).

65. Velasquez, K. et al. Service orchestration in fog environments in 2017 IEEE 5th
International Conference on Future Internet of Things and Cloud (FiCloud) (2017),
329–336.

133

66. Wang, N., Varghese, B., Matthaiou, M. & Nikolopoulos, D. S. ENORM: A frame-
work for edge node resource management. IEEE transactions on services computing
(2017).

67. Yigitoglu, E., Mohamed, M., Liu, L. & Ludwig, H. Foggy: A framework for contin-
uous automated iot application deployment in fog computing in 2017 IEEE Interna-
tional Conference on AI & Mobile Services (AIMS) (2017), 38–45.

68. Zhang, H., Zhang, Y., Gu, Y., Niyato, D. & Han, Z. A hierarchical game framework
for resource management in fog computing. IEEE Communications Magazine 55,
52–57 (2017).

69. Albahri, O. S. et al. Systematic review of real-time remote health monitoring system
in triage and priority-based sensor technology: Taxonomy, open challenges, motiva-
tion and recommendations. Journal of medical systems 42, 1–27 (2018).

70. Benamer, A. R., Teyeb, H.&Hadj-Alouane, N. B.Latency-aware placement heuristic
in fog computing environment in OTM Confederated International Conferences" On
the Move to Meaningful Internet Systems" (2018), 241–257.

71. Farahani, B. et al. Towards fog-driven IoT eHealth: Promises and challenges of IoT in
medicine and healthcare. Future Generation Computer Systems 78, 659–676 (2018).

72. Ghobaei-Arani, M., Jabbehdari, S. & Pourmina, M. A. An autonomic resource pro-
visioning approach for service-based cloud applications: A hybrid approach. Future
Generation Computer Systems 78, 191–210 (2018).

73. Kamal, M. B. et al. Heuristic min-conflicts optimizing technique for load balanc-
ing on fog computing in International Conference on Intelligent Networking and
Collaborative Systems (2018), 207–219.

74. Lee, D. & Lee, H. IoT service classification and clustering for integration of IoT
service platforms. The Journal of Supercomputing 74, 6859–6875 (2018).

75. Liu, J. et al. Secure intelligent traffic light control using fog computing. Future
Generation Computer Systems 78, 817–824 (2018).

76. Mahmud, R., Koch, F. L. & Buyya, R. Cloud-fog interoperability in IoT-enabled
healthcare solutions in Proceedings of the 19th international conference on dis-
tributed computing and networking (2018), 1–10.

77. Mahmud, R., Kotagiri, R. & Buyya, R. in Internet of everything 103–130 (Springer,
2018).

134

78. Puthal, D. et al. Secure and sustainable load balancing of edge data centers in fog
computing. IEEE Communications Magazine 56, 60–65 (2018).

79. Qayyum, T., Malik, A. W., Khattak, M. A. K., Khalid, O. & Khan, S. U. FogNet-
Sim++: A toolkit for modeling and simulation of distributed fog environment. IEEE
Access 6, 63570–63583 (2018).

80. Rahmani, A. M. et al. Exploiting smart e-Health gateways at the edge of healthcare
Internet-of-Things: A fog computing approach.FutureGenerationComputer Systems
78, 641–658 (2018).

81. Saroa, M. K. & Aron, R. Fog computing and its role in development of smart
applications in 2018 IEEE Intl Conf on Parallel & Distributed Processing with
Applications, Ubiquitous Computing & Communications, Big Data & Cloud Com-
puting, Social Computing&Networking, Sustainable Computing&Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom) (2018), 1120–1127.

82. Simmhan, Y., Ravindra, P., Chaturvedi, S., Hegde, M. & Ballamajalu, R. Towards a
data-driven IoT software architecture for smart city utilities. Software: Practice and
Experience 48, 1390–1416 (2018).

83. Sun, Y., Lin, F. & Xu, H. Multi-objective optimization of resource scheduling in fog
computing using an improved NSGA-II. Wireless Personal Communications 102,
1369–1385 (2018).

84. Tu, S. et al. Security in fog computing: A novel technique to tackle an impersonation
attack. IEEE Access 6, 74993–75001 (2018).

85. Wadhwa, H. & Aron, R. Fog computing with the integration of Internet of Things:
architecture, applications and future directions in 2018 IEEE Intl Conf on Parallel
& Distributed Processing with Applications, Ubiquitous Computing & Communi-
cations, Big Data&Cloud Computing, Social Computing&Networking, Sustainable
Computing&Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom) (2018),
987–994.

86. Xu, X. et al. A heuristic virtual machine scheduling method for load balancing in fog-
cloud computing in 2018 IEEE 4th International Conference on Big Data Security on
Cloud (BigDataSecurity), IEEE International Conference on High Performance and
Smart Computing,(HPSC) and IEEE International Conference on Intelligent Data
and Security (IDS) (2018), 83–88.

135

87. Yang, Y. et al. MEETS: Maximal energy efficient task scheduling in homogeneous
fog networks. IEEE Internet of Things Journal 5, 4076–4087 (2018).

88. Zhang, G. et al. DOTS: Delay-optimal task scheduling among voluntary nodes in
fog networks. IEEE Internet of Things Journal 6, 3533–3544 (2018).

89. Adhikari, M., Mukherjee, M. & Srirama, S. N. DPTO: A deadline and priority-
aware task offloading in fog computing framework leveraging multi-level feedback
queueing. IEEE Internet of Things Journal (2019).

90. Alturki, B., Reiff-Marganiec, S., Perera, C. & De, S. Exploring the effectiveness of
service decomposition in fog computing architecture for the Internet of Things. IEEE
Transactions on Sustainable Computing (2019).

91. Chang, C., Srirama, S. N. & Buyya, R. Internet of things (IoT) and new computing
paradigms. Fog and Edge Computing: Principles and Paradigms, 1–23 (2019).

92. Donassolo, B., Fajjari, I., Legrand, A. & Mertikopoulos, P. Fog based framework for
IoT service provisioning in 2019 16th IEEE Annual Consumer Communications &
Networking Conference (CCNC) (2019), 1–6.

93. Gope, P., Lee, J., Hsu, R.-H. & Quek, T. Q. Anonymous communications for secure
device-to-device-aided fog computing: architecture, challenges, and solutions. IEEE
Consumer Electronics Magazine 8, 10–16 (2019).

94. He, Z., Zhang, Y., Tak, B.& Peng, L. Green fog planning for optimal internet-of-thing
task scheduling. IEEE Access 8, 1224–1234 (2019).

95. Krishnan, P. & Aravindhar, D. J. Self-adaptive PSO memetic algorithm for multi
objective workflow scheduling in hybrid cloud. Int. Arab J. Inf. Technol. 16, 928–
935 (2019).

96. Luo, J. et al. Container-based fog computing architecture and energy-balancing
scheduling algorithm for energy IoT. Future Generation Computer Systems 97, 50–
60 (2019).

97. Maiti, P., Shukla, J., Sahoo, B. & Turuk, A. K. in Emerging Technologies in Data
Mining and Information Security 13–21 (Springer, 2019).

98. Mukherjee, M., Guo, M., Lloret, J., Iqbal, R. & Zhang, Q. Deadline-aware fair
scheduling for offloaded tasks in fog computing with inter-fog dependency. IEEE
Communications Letters 24, 307–311 (2019).

136

99. Naranjo, P. G. V., Pooranian, Z., Shojafar, M., Conti, M. & Buyya, R. FOCAN: A
Fog-supported smart city network architecture for management of applications in the
Internet of Everything environments. Journal of parallel and distributed computing
132, 274–283 (2019).

100. Nguyen, B. M., Thi Thanh Binh, H., Do Son, B., et al. Evolutionary algorithms
to optimize task scheduling problem for the IoT based bag-of-tasks application in
cloud–fog computing environment. Applied Sciences 9, 1730 (2019).

101. Ning, Z., Huang, J. & Wang, X. Vehicular fog computing: Enabling real-time traffic
management for smart cities. IEEE Wireless Communications 26, 87–93 (2019).

102. Pang, S., Li, W., He, H., Shan, Z. & Wang, X. An EDA-GA hybrid algorithm for
multi-objective task scheduling in cloud computing. IEEE Access 7, 146379–146389
(2019).

103. Rafique, H. et al. A novel bio-inspired hybrid algorithm (NBIHA) for efficient
resource management in fog computing. IEEE Access 7, 115760–115773 (2019).

104. Rahbari, D. & Nickray, M. Low-latency and energy-efficient scheduling in fog-based
IoT applications. Turkish Journal of Electrical Engineering & Computer Sciences
27, 1406–1427 (2019).

105. Santos, J., Wauters, T., Volckaert, B. & De Turck, F. Resource provisioning in Fog
computing: From theory to practice. Sensors 19, 2238 (2019).

106. Tang, C. et al. Fog-enabled smart campus: Architecture and challenges in Interna-
tional Conference on Security and Privacy in New Computing Environments (2019),
605–614.

107. Tortonesi, M. et al. Taming the IoT data deluge: An innovative information-centric
service model for fog computing applications. Future Generation Computer Systems
93, 888–902 (2019).

108. Wang, W. et al. Data scheduling and resource optimization for fog computing archi-
tecture in industrial IoT in International Conference on Distributed Computing and
Internet Technology (2019), 141–149.

109. Xu, J., Hao, Z., Zhang, R. & Sun, X. A method based on the combination of laxity
and ant colony system for cloud-fog task scheduling. IEEE Access 7, 116218–116226
(2019).

137

110. Yousefpour, A. et al. All one needs to know about fog computing and related edge
computing paradigms: A complete survey. Journal of Systems Architecture (2019).

111. Zhou, Z. et al. Computation resource allocation and task assignment optimization
in vehicular fog computing: A contract-matching approach. IEEE Transactions on
Vehicular Technology 68, 3113–3125 (2019).

112. Abbasi, M., Yaghoobikia, M., Rafiee, M., Jolfaei, A. & Khosravi, M. R. Efficient
resource management and workload allocation in fog–cloud computing paradigm
in IoT using learning classifier systems. Computer Communications 153, 217–228
(2020).

113. Abdel-Basset, M. et al. Energy-aware marine predators algorithm for task scheduling
in IoT-based fog computing applications. IEEE Transactions on Industrial Informat-
ics (2020).

114. Abdelmoneem, R.M., Benslimane, A.&Shaaban, E.Mobility-aware task scheduling
in cloud-Fog IoT-based healthcare architectures. Computer Networks 179, 107348
(2020).

115. Abualigah, L. & Diabat, A. A novel hybrid antlion optimization algorithm for multi-
objective task scheduling problems in cloud computing environments. Cluster Com-
puting, 1–19 (2020).

116. Ali, I. M. et al.AnAutomated Task SchedulingModel using Non-Dominated Sorting
Genetic Algorithm II for Fog-Cloud Systems. IEEE Transactions on Cloud Comput-
ing (2020).

117. Alli, A.A.&Alam,M.M.The fog cloud of things:A survey on concepts, architecture,
standards, tools, and applications. Internet of Things 9, 100177 (2020).

118. Altulyan, M., Yao, L., Kanhere, S. S., Wang, X. & Huang, C. A unified framework
for data integrity protection in people-centric smart cities. Multimedia Tools and
Applications 79, 4989–5002 (2020).

119. Arisdakessian, S., Wahab, O. A., Mourad, A., Otrok, H. & Kara, N. FoGMatch: an
intelligentmulti-criteria IoT-Fog scheduling approach using game theory. IEEE/ACM
Transactions on Networking 28, 1779–1789 (2020).

120. Bonadio, A., Chiti, F., Fantacci, R. & Vespri, V. An integrated framework for
blockchain inspired fog communications and computing in internet of vehicles.
Journal of Ambient Intelligence and Humanized Computing 11, 755–762 (2020).

138

121. Chen, L., Guo, K., Fan, G., Wang, C. & Song, S. Resource constrained profit opti-
mization method for task scheduling in edge cloud. IEEE Access 8, 118638–118652
(2020).

122. Chen, X. et al. A woa-based optimization approach for task scheduling in cloud
computing systems. IEEE Systems Journal 14, 3117–3128 (2020).

123. Goudarzi, M., Wu, H., Palaniswami, M. S. & Buyya, R. An application placement
technique for concurrent IoT applications in edge and fog computing environments.
IEEE Transactions on Mobile Computing (2020).

124. Hosseinioun, P., Kheirabadi, M., Tabbakh, S. R. K. & Ghaemi, R. A new energy-
aware tasks scheduling approach in fog computing using hybrid meta-heuristic algo-
rithm. Journal of Parallel and Distributed Computing 143, 88–96 (2020).

125. Hussein, M. K. &Mousa, M. H. Efficient task offloading for iot-based applications in
fog computing using ant colony optimization. IEEE Access 8, 37191–37201 (2020).

126. Jie, Y., Guo, C., Choo, K.-K. R., Liu, C. Z. & Li, M. Game-Theoretic Resource
Allocation for Fog-based Industrial Internet of Things Environment. IEEE Internet
of Things Journal (2020).

127. Lin, S.-Y. et al. Fog Computing Based Hybrid Deep Learning Framework in effective
inspection system for smart manufacturing. Computer Communications 160, 636–
642 (2020).

128. Lohi, S. A. & Tiwari, N. A high performance machine learning algorithm TspINA;
scheduling multifariousness destined tasks by better efficiency in 2020 Fourth World
Conference on Smart Trends in Systems, Security and Sustainability (WorldS4)
(2020), 603–607.

129. Madeo, D., Mazumdar, S., Mocenni, C. & Zingone, R. Evolutionary game for task
mapping in resource constrained heterogeneous environments. Future Generation
Computer Systems 108, 762–776 (2020).

130. Naha, R. K., Garg, S., Chan, A. & Battula, S. K. Deadline-based dynamic resource
allocation and provisioning algorithms in fog-cloud environment. Future Generation
Computer Systems 104, 131–141 (2020).

131. Patel, E. & Kushwaha, D. S. Clustering cloud workloads: k-means vs gaussian
mixture model. Procedia Computer Science 171, 158–167 (2020).

139

132. Rahman, H. F., Chakrabortty, R. K. & Ryan, M. J. Memetic algorithm for solving
resource constrained project scheduling problems. Automation in Construction 111,
103052 (2020).

133. Rathee, G., Sandhu, R., Saini, H., Sivaram, M. & Dhasarathan, V. A trust computed
framework for IoT devices and fog computing environment. Wireless Networks 26,
2339–2351 (2020).

134. Rezaee, A. & Adabi, S. Jobs (DAG workflow) and tasks dataset with near 50k job
instances and 1.3 Millions of tasks. Sept. 2020.

135. Shadroo, S., Rahmani, A. M. & Rezaee, A. The two-phase scheduling based on deep
learning in the Internet of Things. Computer Networks, 107684 (2020).

136. Shetty, C. & Sarojadevi, H. Framework for Task scheduling in Cloud using Machine
Learning Techniques in 2020 Fourth International Conference on Inventive Systems
and Control (ICISC) (2020), 727–731.

137. Tuli, S., Ilager, S., Ramamohanarao, K.&Buyya, R. Dynamic scheduling for stochas-
tic edge-cloud computing environments using a3c learning and residual recurrent
neural networks. IEEE Transactions on Mobile Computing (2020).

138. Tuli, S. et al. Healthfog: An ensemble deep learning based smart healthcare sys-
tem for automatic diagnosis of heart diseases in integrated iot and fog computing
environments. Future Generation Computer Systems 104, 187–200 (2020).

139. Tychalas, D. & Karatza, H. A scheduling algorithm for a fog computing system with
bag-of-tasks jobs: Simulation and performance evaluation. Simulation Modelling
Practice and Theory 98, 101982 (2020).

140. Vĳayalakshmi, R., Vasudevan, V., Kadry, S. & Lakshmana Kumar, R. Optimization
of makespan and resource utilization in the fog computing environment through
task scheduling algorithm. International Journal of Wavelets, Multiresolution and
Information Processing 18, 1941025 (2020).

141. Wang, S., Zhao, T. & Pang, S. Task scheduling algorithm based on improved firework
algorithm in fog computing. IEEE Access 8, 32385–32394 (2020).

142. Wang, X., Gu, H. & Yue, Y. The optimization of virtual resource allocation in
cloud computing based on RBPSO. Concurrency and Computation: Practice and
Experience 32, e5113 (2020).

140

143. Zhou, Z., Liao, H., Wang, X., Mumtaz, S. & Rodriguez, J. When vehicular fog
computing meets autonomous driving: Computational resource management and
task offloading. IEEE Network 34, 70–76 (2020).

144. Lai, C.-F., Weng, H.-Y., Chou, H.-Y. & Huang, Y.-M. A Novel NAT-based Approach
for Resource Load Balancing in Fog Computing Architecture. Journal of Internet
Technology 22, 513–520 (2021).

145. Shadroo, S., Rahmani, A. M. & Rezaee, A. The two-phase scheduling based on deep
learning in the Internet of Things. Computer Networks 185, 107684 (2021).

146. Wadhwa, H. & Aron, R. A Clustering-Based Optimization of Resource Utilization in
Fog Computing in Proceedings of International Conference on Advanced Computing
Applications (2022), 343–353.

147. Wadhwa, H. & Aron, R. Resource Utilization for IoT Oriented Framework Using
Zero Hour Policy. Wireless Personal Communications 122, 2285–2308 (2022).

148. Wadhwa, H. & Aron, R. TRAM: Technique for resource allocation and management
in fog computing environment. The Journal of Supercomputing 78, 667–690 (2022).

141

LIST OF PUBLICATIONS

• Journal Publication
Wadhwa, Heena, and Rajni Aron. "TRAM: Technique for resource allocation and
management in fog computing environment." The Journal of Supercomputing 78.1
(2022): 667-690. (Impact Factor-2.6)

Wadhwa, H., Aron, R. Resource Utilization for IoT Oriented Framework Using Zero
Hour Policy. Wireless Personal Communication 122, 2285–2308 (2022). (Impact
Factor-1.6)

• International Conference
Wadhwa, H., Aron, R. (2018, December). Fog computing with the integration of
Internet of Things: architecture, applications and future directions. In 2018 IEEE Intl
Conf on Parallel Distributed Processing with Applications, Ubiquitous Computing
Communications, Big Data Cloud Computing, Social Computing Networking, Sus-
tainableComputing Communications (ISPA/IUCC/BDCloud/SocialCom/SustainCom)
(pp. 987-994). IEEE.

Wadhwa, Heena, and Rajni Aron. "A Clustering-Based Optimization of Resource
Utilization in Fog Computing." In Proceedings of International Conference on Ad-
vanced Computing Applications, pp. 343-353. Springer, Singapore, 2022.

Wadhwa, H., Aron, R. (2020). Energy Based Resource Provisioning For IoT Appli-
cation in Fog Computing. Journal of Natural Remedies, 21(3), S1.
Fog computing framework for multi constraints based resource utilization in 2nd
International Conference on Computational Methods in Science Technology [Pre-
sented]

• Communicated
Optimized Task Scheduling And Preemption For Distributed Resource Management
In Fog Assisted IoT Environment [Communicated]

142

	Introduction
	Fog Computing: Overview
	Integration of IoT and Fog Computing
	Evolution of Fog Computing
	Fog Computing Architecture

	Need of Fog Computing
	Fog Computing Key Issues
	Resource Management
	Data Management
	Security

	Research Motivation
	Thesis Organization
	Thesis Contribution

	Related Work
	Resource Management System
	Resource Utilization
	Resource Utilization in Fog Computing
	Existing Frameworks in Fog Computing

	Classification of Architecture
	General Architecture
	Application Oriented Architecture

	Fog Computing for Real Time Applications
	Resource Scheduling Algorithm
	Fog Computing and its Related Concepts
	Problem Formulation
	Research Objectives

	Proposed Resource Utilization Framework
	High Level View of Framework
	System Description
	Assumptions of the Study
	Applications and Services Workflow
	Tri-fold Task Clustering
	Goals of the Proposed Framework
	Framework Constraints

	Zero Hour Policy
	Mode of Operation
	Design and Working Principle of Zero-Hour Policy

	TRAM: Technique For Resource Allocation and Management
	Mode of Operation
	Task Clustering

	Expectation Maximization
	Verification of Resource Scheduling Framework
	Simulation Model: iFogSim Toolkit

	Experimental Scenario: Zero Hour Policy
	Performance Metrics
	Experimental Scenario: TRAM

	Performance Evaluation Criteria
	Results and Discussion
	Test Case 1: Energy Consumption
	Test Case 2: Average Loop Delay
	Test Case 3: Latency and Network Consumption
	Test Case 4: Execution Time

	Applications of Proposed Architecture and Approach in Real Time Environment
	Smart Traffic Light System
	Smart Leakage Detection in Smart Cities
	Smart Healthcare Gateway at the Fog Layer

	Summary

	Resource Scheduling Algorithm
	An Efficient Solution for Resource Scheduling Model
	Availability of Resources for Allocation
	Illustration of TRAM

	Optimized Task Scheduling and Preemption
	Resource Intensive Task Scheduling
	Heap Based Optimization

	Multi Constraint Based Resource Allocation
	Deep Reinforcement Learning Model

	Dynamic Task Preemptive Scheduling
	Comparative Analysis
	Impact of Average Response Time
	Impact of Load Ratio
	Impact of Resource Utilization
	Impact of Average Makespan Time
	Impact of Queueing Time
	Impact of Task Satisfying the Deadline
	Impact of Throughput

	Test Cases for Evaluation
	Test case I: Cost Analysis
	Test Case II: Execution Time of Tasks
	Test Case III: Energy Consumption of Tasks
	Test Case IV: Response Time Analysis of Tasks

	Statistical Analysis
	Summary

	Conclusion and Future Direction
	Conclusion
	Main Contribution

	Limitations of the Research
	Future Work

	References

