
An Improved Pre-Copy Technique for Container Migration

A

Thesis

Submitted to

For the award of

DOCTOR OF PHILOSOPHY (Ph.D.)

in

COMPUTER SCIENCE AND ENGINEERING

By

Gursharan Singh

41500180

Supervised By :

Dr. Parminder Singh

LOVELY FACULTY OF TECHNOLOGY AND SCIENCES

LOVELY PROFESSIONAL UNIVERSITY

PUNJAB

2022

DECLARATION

This thesis is an account of research undertaken between December 2015 and June 2022

at the School of Computer Science and Engineering, Lovely Professional University,

Phagwara, India.

Except where acknowledged customarily, the material presented in this thesis is, to

the best of my knowledge, original and has not been submitted in whole or part for a

degree in any university.

Gursharan Singh

Registration no. 41500180

Department of Computer Science and Engineering

Lovely Professional University, Phagwara, India

ii

CERTIFICATE

This is to certify that the declaration statement made by the student is correct to the

best of my knowledge and belief. He has submitted the Ph.D. thesis An Improved Pre-

Copy Technique for Container Migration under my guidance and supervision. The

present work results from his original investigation, effort, and study. No part of the

work has ever been submitted for any other degree at any university. The Ph.D. thesis is

fit for the submission and fulfillment of the conditions for the award of a Ph.D. degree

in Computer Science and Engineering from Lovely Professional University, Phagwara.

Dr. Parminder Singh

Associate Professor

Department of CSE

Lovely Professional University,

Phagwara, India

iii

ABSTRACT

Cloud computing is a cost-effective method of delivering numerous services. The de-

mand for dynamic cloud services is rising day by day, and because of this, data transit

across the network is extensive. Virtualization is a significant component, and the cloud

servers might be physical or virtual. Containerized services are essential for reducing

data transmission costs and time, among other things. Containers are lightweight virtual

environments that share the host operating system’s kernel. The majority of businesses

are transitioning from virtual machines to containers. The primary factor affecting the

performance is the amount of data transferred over the network. It has a direct impact

on migration time, downtime, and cost.

In this thesis, the pre-copy container live migration is analyzed in a detailed manner

to trace out the possibilities to improve the performance. The container migration tech-

nique used is pre-copy and, it is further divided into three phases: pre-dump, iterative

dump, and final dump. For the pre-dump phase, a migration technique has been pro-

posed through probability-based Particle Swarm Optimization (PSO) to overcome the

memory transmission limitations. The dirty pages are predicted during the migration

process using the meta-heuristic approach. The active set of pages and their update rate

has also been identified, and based on the threshold level of maximum update rate, the

pages have been shortlisted to be discarded from pre-dump. The proposed technique is

implemented and tested on various scenarios with different batch sizes and thresholds.

The next phase is iterative-dump, and a predictive iterative-dump approach is de-

signed using Long Short-Term Memory (LSTM) to anticipate which memory pages

iv

will be moved by limiting data transmission during the iterative phase. In each loop, the

pages are shortlisted to be migrated to the destination host based on predictive analysis

of memory alterations. Dirty pages will be predicted and discarded using a prediction

technique based on the alteration rate.

Container migration enables load balancing, system maintenance, and fault toler-

ance, among other things. When a container migrates to another host, after a successful

migration, the container image will be removed from the source host. But, in the case

of migrating back to the previous host, almost the same amount of data will be re-

transmitted. A dump reusing approach is proposed for container migration to migrate

back to the same host to address this issue. The original image kept on the source host

can be reused. The memory pages similar to the source image are not sent back. Only

the updated pages will be transferred. This approach helps in reducing the amount of

data transmission over the network. Furthermore, if the container image is kept on the

source host, it will provide demand paging and help recover from failure at the destina-

tion host.

The experiment results show a significant improvement in the reduction of data

transmitted, downtime, migration time, and the overall cost of migration compared to

existing techniques. The proposed predictive pre-copy approach is profitable for con-

tainer migration and ensures the live migration with minimal downtime.

v

ACKNOWLEDGEMENTS

I take this opportunity to express my sincere thanks to everyone who has helped me in

various capacities to carry out this research and prepare the report.

I am delighted to thank our respected supervisor, Dr. Parminder Singh, who has

offered tremendous support in completing this research. I would also like to thank my

former supervisor, Dr. Pooja Gupta, for the encouragement and advice she has provided

throughout my time as her student.

I acknowledge the School of Computer Science and Engineering, Lovely Profes-

sional University, for providing me with the appropriate resources and financial support

to pursue the doctoral degree. I am grateful to the administrative staff at the Centre for

Research Degree Programmes for the numerous applications.

I would also like to thank my parents, wife, son, daughter, friends, and colleagues

for their co-operation and compliance. Their care and love are indispensable to my

achievements. I cannot cherish a greater fortune other than having them in my life.

Gursharan Singh

vi

CONTENTS

Declaration ii

Certificate iii

Abstract iv

Acknowledegments vi

List of Figures xiii

List of Tables xv

List of Abbreviations xvi

1 Introduction 1

1.1 Open Container Initiative . 2

1.2 Migration Techniques . 3

1.2.1 Cold Migration . 4

1.2.2 Pre-copy Migration . 5

1.2.3 Post-copy Migration . 6

1.2.4 Hybrid Migration . 6

1.3 Checkpoint and Restore in Userspace 8

1.4 Types of Container . 9

1.5 Research Objectives . 10

vii

1.6 Thesis Contribution . 11

1.7 Thesis Organization . 12

2 Related Work 15

2.1 Introduction . 15

2.2 Taxonomy and Survey on Container Migration Techniques 16

2.3 Container Memory Dump Techniques 23

2.4 Memory Prediction . 31

2.5 Summary . 33

3 An Improved Container Migration Technique using PSO-based Predictive

Pre-dump 35

3.1 Introduction . 36

3.1.1 Major Contributions . 38

3.1.2 Chapter Structure . 39

3.2 Related Work . 39

3.3 Problem Formulation . 42

3.4 Modeling and Methodology . 44

3.4.1 System Model . 44

3.4.2 Proposed Pre-dump Technique 45

3.4.3 Probability-based Particle Swarm Optimization for Container

Migration . 46

3.4.4 Probability-based Particle Swarm Optimization 48

3.4.5 Probability Coefficients-based Selection Method 56

3.5 Experimental Evaluation . 60

3.5.1 Results and Discussions . 61

3.6 Summary . 71

4 A Predictive Checkpoint Technique for Iterative Phase of Container Mi-

gration 73

4.1 Introduction . 74

4.2 Related work . 77

4.3 Motivation and Research Gap . 81

4.4 Methodology . 84

viii

4.4.1 Machine learning-based predictive checkpoint 85

4.5 Results and Discussion . 88

4.6 Summary . 91

5 A Dump Reusing Technique For Container Migration Along With a Page

Recovery Mechanism 93

5.1 Introduction . 94

5.1.1 Background . 95

5.2 Related Work . 99

5.3 Problem Formulation . 101

5.4 System Model . 103

5.5 Experimental setup . 105

5.6 Performance and Evaluation . 109

5.7 Summary . 112

6 Conclusions and Future Directions 113

6.1 Summary of Contributions . 113

6.2 Future Research Directions . 115

6.2.1 Container applications . 115

6.2.2 Pre-dump . 116

6.2.3 Iterative dump . 116

6.2.4 Final dump . 116

6.2.5 Recovery Technique . 116

6.2.6 Memory Reusing . 117

6.3 Final Remarks . 117

References 131

List of Publications 132

ix

LIST OF FIGURES

1.1 Difference in the architecture of of virtual machine and container 2

1.2 Container run-time interface . 3

1.3 Phases of cold migration process of containers [1] 4

1.4 Phases of pre-copy container live migration [1] 5

1.5 Phases of post-copy container live migration [1] 6

1.6 Phases of different migration techniques of container [2] 7

1.7 Types of container . 9

1.8 Chapter wise thesis organization . 13

2.1 A taxonomy on container in cloud computing 17

3.1 The set of various phases of container migration process along with the

flow of execution. 43

3.2 The basic system architecture of container migration 44

3.3 The process of pre-dump steps to be followed in proposed pre-copy

container migration to shortlist the pages for transmission. 45

3.4 The step wise process of particle swarm optimization to achieve a opti-

mal solution . 48

3.5 The size of pre-dump using probability-based PSO with threshold level

60% . 63

3.6 The average size of different set of containers in pre-dump with thresh-

old level 60% . 63

x

3.7 The size of pre-dump using probability-based PSO with threshold level

70% . 65

3.8 The average size of different set of containers in pre-dump with thresh-

old level 70% . 65

3.9 The size of pre-dump using probability-based PSO with threshold level

80% . 67

3.10 The average size of different set of containers in pre-dump with thresh-

old level 80% . 68

3.11 Comparison of pre-dump size with all the threshold level 60%, 70%

and 80% with 5 test cases of each batch (5,10 and 15 containers). 69

3.12 Comparison of amount of data transferred after the per-dump phase of

migration with four migration schemes where VM is tested with the

batch of 5 and pre-copy (LXD/CR) , hybrid technique and proposed

pre-copy technique with PSO are implemented in the batch of 5,10 and

15 containers. 69

3.13 Time taken to migrate pre-dump is compared with four migration schemes

where VM is tested with the batch of 5 and pre-copy (LXD/CR) , hy-

brid technique and proposed pre-copy technique with probability-based

PSO are implemented in the batch of 5,10 and 15 containers. 70

3.14 Downtime comparison of four migration schemes where VM is tested

with the batch of 5 and pre-copy (LXD/CR) , hybrid technique and pro-

posed pre-copy technique with probability-based PSO are implemented

in the batch of 5,10 and 15 containers. 71

4.1 Architecture of long short-term memory [3]. 75

4.2 Process of transferring pages in an iterative phase of existing approach. 82

4.3 Process of transferring pages in an iterative phase according to dirty bits

in the existing approach . 82

4.4 Process of transferring pages in an iterative phase according to dirty bits

prediction in the proposed approach 83

4.5 LSTM network architecture [4] . 85

4.6 The proposed prediction model to shortlist the pages to be transferred . 86

xi

4.7 Comparison of various container migration techniques with batch of 5

containers where a). shows the total amount of data transfer during

iterative-dump, b). shows the time to transfer the iterative-dump, c).

indicates the overall downtime of a container including resume time on

destination host and d). shows the total time taken during the migration

process. 88

4.8 Comparison of various container migration techniques with batch of 10

containers where a). shows the total amount of data transfer during

iterative-dump, b). shows the time to transfer the iterative-dump, c).

indicates the overall downtime of a container including resume time on

destination host and d). shows the total time taken during the migration

process. 89

4.9 Comparison of various container migration techniques with batch of 15

containers where a). shows the total amount of data transfer during

iterative-dump, b). shows the time to transfer the iterative-dump, c).

indicates the overall downtime of a container including resume time on

destination host and d). shows the total time taken during the migration

process. 90

5.1 Categories of container migration . 95

5.2 System configuration and container placement when source host is idle

[5] . 96

5.3 System configuration and container placement when source host is over-

loaded [5] . 96

5.4 (a) The process of transferring the complete set of memory pages from

source to destination host during container migration and (b) shows the

process of transferring highlighted pages to the source host. Only mod-

ified pages will be migrated when migrating back to the same host. . . 102

5.5 The detailed process of proposed methodology 103

5.6 The ANN prediction model architecture used in proposed system model 104

5.7 LSTM cell architecture . 105

5.8 System architecture to identify updated pages using LSTM 107

xii

5.9 The process of transferring the container memory, where a). depicts

the existing approach, in which the container’s memory is deleted from

the source host when it is migrated to the destination host and b). is a

proposed approach for providing page recovery by keeping memory on

the source host following a successful migration. 108

5.10 The amount of data transferred when migrating back to the same host

with 15 test cases and test cases 1 to 5 implemented with 5 containers,

6 to 10 with 10 containers and 11 to 15 with 15 containers by using

the standard pre-copy, advanced pre-copy and the proposed technique

which revert only updated pages. 109

5.11 The amount of data transferred with the batch of 5 containers, 10 con-

tainers and 15 containers by using the standard pre-copy, advanced pre-

copy and the proposed technique. 110

5.12 The average rate of data transferred when migrating back to the same

host with the batch size of 5 containers, 10 containers and 15 containers

by using the standard pre-copy, advanced pre-copy and the proposed

technique. 111

xiii

LIST OF TABLES

2.1 A taxonomy based comparison on various container migration techniques 18

2.2 A prediction based comparison on various container migration techniques 24

2.3 A prediction based comparison on various container migration techniques 32

3.1 Symbols and letters . 49

3.2 The size of pre-dump using probability-based PSO with threshold level

60% . 62

3.3 The average size of different set of containers in pre-dump with thresh-

old level 60% . 62

3.4 The size of pre-dump using probability-based PSO with threshold level

70% . 64

3.5 The average size of different set of containers in pre-dump with thresh-

old level 70% . 64

3.6 The size of pre-dump using probability-based PSO with threshold level

80% . 66

3.7 The average size of different set of containers in pre-dump with thresh-

old level 80% . 66

3.8 The average amount of data transfer in all set of container migration

with various threshold levels . 67

4.1 A prediction based comparison on various container migration techniques 80

4.2 LSTM model configuration parameters 85

xiv

4.3 Comparison of various container migration techniques on the basis of

migration time, downtime, dump-time and amount of data transfer . . . 91

5.1 LSTM model configuration . 106

xv

LIST OF ABBREVIATIONS

ANN Artificial Neural Network

AODC Application Oriented Docker Container

CPU Central Processing Unit

CR Checkpoint and Restore

CRI Container Run-time Interface

CRIU Checkpoint and Restore in Userspace

DB Dirty Bits

ELM Extreme Learning Machines

EOP End of Memory Pool

GA Genetic Algorithm

HW Hot workspace

IaaS Infrastructure as a Service

LSTM Long short-Term Memory

LXC Linux Containers

MP Memory Pool

MSB Most Significant Bit

OCI Open Container Initiative

OPCA Optimized Pre-copy Algorithm

PID Process ID

PSO Particle Swarm Optimization

RNN Recurrent Neural Network

xvi

RunC Low-level container runtime

SLA Service Level Agreements

SRVM Single-Root Virtual Machine

TPU Tensor Processing Unit

xvii

CHAPTER 1

INTRODUCTION

Since software emulates components of a system, virtual machines have long been the

primary way of delivering virtualization in the cloud. Virtualization permit activities

to be performed in isolated environments, allowing for greater consistency because an

emulated one abstracts the entire underlying system [6]. Containers have emerged as a

viable alternative to virtual machines in the past few years. Containers have previously

existed, but they witnessed a significant surge in popularity when the container frame-

work Docker has introduced in 2013 and the capabilities that allowed users to quickly

construct, distribute, and build upon each other’s containers, which helped its growth

since users could utilize pre-existing containers [7]. Containers are frequently viewed as

lightweight virtual computers with short boot times and low resource consumption [8].

One significant reason for this is that containers, unlike virtual machines, run on the

host machine’s kernel, as shown in Figure 1.1. This is advantageous in multi-tenant

cloud providers and data centers since each bare-metal system is likely to run more in-

stances, and instances may be launched or restarted more effectively, resulting in a more

excellent quality of service. Migration is a critical technique in the context of virtual

machines and containers [9]. The process of moving an instance of a container that is

in running state across hosts is known as migration [10]. Depending upon the nature

of the task or according to the demand of the customer, a container migration can be

live or non-live. While moving an instance, live migration means the user is unaware

1

Figure 1.1: Difference in the architecture of of virtual machine and container

of this migration [11]. The state of the container is migrated prior to the container mi-

gration [12]. This technology is critical in various virtualized settings because it allows

instances of virtual machines or containers to be transferred across hosts while retain-

ing state, enabling effective load balancing and more straightforward maintenance with

minimum impact.

1.1 Open Container Initiative

Containers have been around since the chroot system function was added to the Linux

kernel in 1979. By enabling programs to alter their apparent root directory, this system

function facilitated the isolation of file system hierarchies.

Nowadays, there are several process isolation methods available for Industry 4.0.

Many of them are made possible by a Linux kernel feature known as namespaces. The

Namespaces enable the isolation of distinct aspects of a process within a namespace.

It restricts the process’s awareness to its current namespace or nested namespace. The

available namespaces are Cgroup, IPC, Network, Mount, PID, Time, User, and UTS.

Furthermore, the use of system resources by a process, such as central processing Unit

(CPU) and memory, may be restricted and monitored using cgroups, a component of

the Linux kernel. This allows us to construct container images made up of layers that

individually alter the underlying file system utilized by the container, and then share

these images according to the requirement.

Linux Foundation started a project with Docker in 2015. This project is named as

Open Container Initiative (OCI). In OCI, the migration process of the container has

two main parts: container runtimes and container images, as you can see in Figure 1.2.

To manage these two container runtime interfaces (CRI) is required. CRI supports low-

level container runtime (RunC) and container daemon. Daemon is taking care of storage

2

and libraries, and on the other side, Runs is handling container runtime. Daemon will

generate the pull request for the required container images from a registry. They work

together to get the required libraries and manage container runtime. RunC can initiate

the container process by communicating with the host kernel. It passes the command to

the kernel to startup the process in a particular namespace, Pid, Cgroups, etc.

Figure 1.2: Container run-time interface

The main purpose is to standardize the containers for global acceptance with a com-

plete architecture.

1.2 Migration Techniques

Container gained popularity when Docker introduced its natural flexibility [13]. It can

run in the kernel of the host’s operating system and be moved to another operating

system without the bundle of system dependencies. It can be done by using the concept

of namespaces as discussed in 1.1. Checkpoint and Restore in userspace (CRIU) has

provided the feature to make a checkpoint of a running container and migrate it to

another host [14]. The stateless migrations are not concerned with moving any state

3

across the hosts throughout the migrations, but stateful migrations are. As a result,

stateless migration procedures are typically fairly straightforward, with the only steps

necessary to conduct a stateless migration being to start a new container on the target

server and then delete the container on the source host [15]. Because of the ease of

stateless migrations, the migration mechanisms presented are all stateful.

Furthermore, these states are divided into runtime state and permanent storage. The

runtime state is generally composed of volatile data, such as CPU state, open file de-

scriptors, and memory pages, lost when the container quits. Permanent storage gener-

ally comprises data not destroyed when the container is shut down, such as volumes

mounted inside the container. The following migration strategies are primarily con-

cerned with runtime states because shared volume approaches often manage permanent

storage.

1.2.1 Cold Migration

This method is likely the easiest, but it has the most significant disadvantage due to its

lengthy downtime. Once the container dump is completed, the container is immediately

terminated [16]. The dumped state is then transferred to the destination host. The

container will be restarted with the same state from the received dump. The container

is simply terminated, its state is dumped, destination host will get that. The container is

restored with the received state dumped state at the destination host. As a result, long

overall migration time and downtime. This approach is frequently despised, as it offers

minimal benefits other than automating the migration process and transferring a small

quantity of data [17]. It is also known as offline migration.

Figure 1.3: Phases of cold migration process of containers [1]

4

The main drawback of this cold migration is the long downtime. The services pro-

vided by the container will be stopped for a long duration which is not accepted accord-

ing to the industry standards.

1.2.2 Pre-copy Migration

It is suitable for live migrations. While a container is running on the source host and it

is decided to migrate a container to the destination host, the pre-dump phase will be ini-

tiated, and it starts transferring state and the memory pages related to the container [18].

During this process, the container is still running on the source host. This pre-dumped

state often contains only the container’s memory pages, not the entire container’s state.

It may also contain additional running state data. The container state may be modified

again while transferring the state in the previous round and marked as updated with

dirty bits to avoid any conflict in the complete state of the container [19].

An iterative dump will be done to send the incremental state. Iterations may vary

depending upon container dump size or threshold. When the container’s iterative dump

state is completed, the last transfer will be initiated and called a final dump. It includes

all changes made after the last iterative dump and is used to set the state of the container

to the latest state [20].

Figure 1.4: Phases of pre-copy container live migration [1]

In pre-copy, the downtime is less, but the total migration time may be longer than in

cold migration. If the data transfer during the iterative phase can be controlled so that

re-transmission of pages is minimized, then this migration approach is best suited for

container migration with low downtime.

5

1.2.3 Post-copy Migration

Just transferring the state and restoring the container would be the same as cold migra-

tion. It stops the container when a migration request is granted and then dumps its state

to the destination host. Instead of sending the complete state, it just sends the necessary

execution state to start the container at the destination [21]. When the container starts

at the destination host then starts generating page faults according to the requirement.

The source will handle the request for a demanded page, and the required page will

be transferred to the destination. Once all the required pages are transferred, the dump

copy can be removed from the source. There are some major drawbacks:

1. If the target host crash in the process of demand paging, then the latest state of

the container becomes unrecoverable.

2. If the source host crashes, then the container can not access the remaining pages.

Figure 1.5: Phases of post-copy container live migration [1]

The post-copy and cold migration are not dependent on the rate of update of pages,

but in pre-copy, this is then a factor affecting the performance. Downtime will be more

in cold and post-copy migration. Considering the quality of service, our model prefers

pre-copy because of its minimal downtime. Furthermore, different techniques are ap-

plied on pre-copy to reduce re-transmission of pages, and it can be further reduced.

1.2.4 Hybrid Migration

As per the discussion in 1.2.2 and 1.2.3, both the migration schemes has their own

limitations. As an alternative, combining both techniques is known as hybrid migration.

6

First, the source container’s state is pre-dumped and transferred while the source is still

operating [22]. The source container is then stopped at the source, dump the current

state, and transmitted to the destination to restore the container. When the container is

restored at the destination, it only needs the modified pages instead of all the pages.

Figure 1.6: Phases of different migration techniques of container [2]

Compared to the pre-copy approach, the rate of update of pages will not affect the

downtime. It affects only the total migration time. The drawback is still the same as

discussed in post-copy, but the chances of such cases are rare in this approach. As

discussed about these four types of migration techniques, it is imperative to understand

what type of data is transferred. To understand this, first we should know the phases

of these migration techniques as shown in Figure 1.6. In this scenario, the focus is on

three main phases: pre-dump, dump, and Demand paging.

1. Cold migration: Nothing will be migrated in pre-dump. However, in the actual

dump, the state of the container and memory pages are transferred and complete

the migration process.

2. Pre-copy: The state of the container and the memory pages are transferred in

pre-dump, and the iterative phase is initiated to send the dirty pages.

3. Post-copy: There is nothing to transfer in the pre-dump phase and execution state

7

transferred in the dump phase. According to the request generated, all the mem-

ory pages will be transferred in the demand paging phase.

4. Hybrid: The state of the container and the memory pages are transferred in pre-

dump, and the iterative phase is initiated to send the dirty pages. It also transfers

the dirty pages in demand paging.

The actual number of phases is different depending on the type of migration. The

total migration time and downtime depend on the phases.

The proposed pre-copy technique addresses the issues of container migration. The

main objective is to minimize the amount of data transfer during the iterative dump.

1.3 Checkpoint and Restore in Userspace

The process of storing the runtime state of any running application and restoring the

same at a later stage is called checkpoint and restore [23]. It can be done on the same

machine or at a remote host. This technique is used to recover from unusual crashes

during the runtime of sensitive applications. After a particular time gap, it automatically

stores the application’s state [24].

In the last few years, demand for containerized applications has been increasing

continuously and is widely accepted in cloud computing [25, 26]. Checkpoints and re-

store are now very useful in container migration to make secure migrations. This tech-

nique is introduced by checkpoint and restore in userspace. Live container migration is

successful only with CRIU.

Checkpoint and restart allow a running container without a reboot to be transferred

from one host to another host. This feature of container migration is referred to as the

live migration of containers. In this process, steps should be followed:

1. Get access to the disk of the container file system.

2. The full state of the container, including all resources and processes, is stored in

a disk file called dump.

3. The file will be transferred to a second host.

4. On another host from the dump, the container is restarted.

8

Using live migration is a better option as it provides high availability, dynamic load

balancing, and fault tolerance.

1.4 Types of Container

System containers such as Linux Containers (LXC) are similar to virtual machines, as

they share the host operating system’s kernel and offer isolation of userspace. However,

hypervisors are not used in system containers. It allows you to install various libraries,

languages, databases, etc. Services running on each container use resources allocated

to that container alone. System containers allow you to run multiple simultaneous pro-

cesses, all under the same operating system. This improves efficiency and provides the

advantages of VMs, such as carrying out several processes, along with modern con-

tainer benefits, such as improved portability and fast startup times.

Figure 1.7: Types of container

Configuration containers encapsulate the application’s data, dependencies, and li-

braries to operate on an operating system. Application containers enable the consumer

to build and operate a single container for several individual programs or different re-

sources that shape one program.

Nowadays, a number of container orchestration tools are available for the overall

management of containers. Some of them are mentioned in Figure 1.7. A container that

9

runs a complete operation is a system container, and the application containers are used

to run isolated application software/processes.

1. To achieve the first objective, the meta-heuristic approach has been applied. The

PSO model has been selected for predicting the memory pages to be migrated to

the destination host in the pre-dump phase of pre-copy container migration. The

proposed model has been developed and analyzed using the container-Cloudsim

toolkit with heuristic model libraries. This model is used to decrease the size of

the pre-dump, which is directly proportional to the performance of migration.

2. To achieve the second objective, the short-term predictive approach is applied.

The model applied for prediction in the iterative dump is the LSTM. Because it is

iterative, the model is applied many times depending on the number of maximum

iterations and epochs. It will make the decision based on the initial input gener-

ated from the first objective, then analyze the time series prediction and produce

the list of pages to be migrated in every iteration.

3. To achieve the third objective, a memory reusing mechanism was designed with

a page recovery model. It handles the page fault after migration to keep the

container in the running state. When the container is migrating back to the same

host, then the image stored on the source host for page recovery is reused and

avoids the transmission of identical pages back to the host. The simulation is

performed on a container-Cloudsim toolkit with executor libraries.

4. The proposed model has been evaluated using a different batch size of the con-

tainer and with variable threshold levels. The main evaluation parameter is the

amount of data transmission, but the model is evaluated on other effecting param-

eters like migration time, downtime, and dump time.

1.5 Research Objectives

1. To design a predictive algorithm for initial phase of pre-copy container migration

to reduce pre-dump size.

2. To design an algorithm for iterative phase of pre-copy container migration to

minimize the page transfer rate.

10

3. To design a recovery algorithm, which provides page recovery to handle failures.

1.6 Thesis Contribution

To give the answer to defined research questions, the thesis contribution is mentioned

as per the following:

• A taxonomy and literature survey of pre-copy technique and other container mi-

gration techniques in cloud.

1. A detailed investigation has been done to study various existing migration

techniques in cloud computing.

2. The mentioned techniques classification has been done as per the common

characteristics.

3. Future research direction in the area of container migration is presented.

• A meta-heuristic approach to predict the memory modification in the pre-dump

phase of migration.

1. The prediction based particle swarm optimization model.

2. A memory classification technique based on dirty bits and updation rate.

3. A predictive pre-dump approach for forecasting active memory of container.

• A prediction model for iterative-dump to gain the highest accuracy in short-term

prediction.

1. A LSTM based prediction for container migration.

2. The design and development of prediction approach for minimizing the re-

transmission of pages in the iterative phase.

3. The design of a predictive algorithm to get the container memory status

• A Page recovery technique for container migration to recover from failure.

1. A recovery technique to handle page fault after migration.

2. A memory reusing technique is designed to minimize the dump size.

11

3. The reusing technique identifies the container memory to be discarded from

the dump.

1.7 Thesis Organization

The structure of the thesis and its dependencies are shown in Figure 1.8. Chapter 2 is re-

lated to the literature survey and taxonomy of container migration techniques. Chapter 3

is focused on the memory prediction of containers in cloud computing. Chapter 4 is pre-

sented the iterative prediction technique for the iterative dump. Chapter 5 is presented

the page recovery technique and the memory reusing technique in cloud computing. In

detail, the organization of the thesis is as follows:

• Chapter 2 presents the methodological survey and taxonomy on migration and

memory dump techniques for containers in cloud computing. This chapter is

partially derived from:

– Gursharan Singh, Pooja Gupta, “A review on migration techniques and

challenges in live virtual machine migration”, 5th International Conference

on Reliability, Infocom Technologies and Optimization (Published), 2016.

(Scopus)

– Gursharan Singh, Parminder Singh, “A Taxonomy and Survey on Con-

tainer Migration Techniques in Cloud Computing”, Sustainable Develop-

ment Through Engineering Innovations (Published), 2021. (Scopus)

• Chapter 3 describes the proposed model for memory prediction of the pre-dump

phase. This chapter is derived from:

– Gursharan Singh, Parminder Singh, Babar Shah, Farman Ali and Daehan

Kwak, “A Lightweight Migration Technique for Uninterrupted Health Care

System in Cloud”, Computational Intelligence and Neuroscience (Under

Revision), 2022. (Scopus, SCIE 3.63 IF)

• Chapter 4 presents the prediction-based proposed iterative-dump pre-copy tech-

nique to minimize the re-transmission of pages during container migration. This

chapter is derived from:

12

Figure 1.8: Chapter wise thesis organization

13

– Gursharan Singh, Parminder Singh, Mustapha Hedabou, Mehedi Masud

and Sultan S. Alshamrani, “A Predictive Checkpoint Technique for Itera-

tive Phase of Container Migration”, Sustainable Engineering and Science,

Sustainability (Published), 2022. (Scopus, SCIE 3.25 IF)

• Chapter 5 presents the page recovery technique for container migrations along

with the memory reusing approach from the source dump file. This chapter is

derived from:

– Gursharan Singh, Parminder Singh, Container Migration Technique to

Minimize the Network Overhead with Reusable Memory State, Interna-

tional Journal of Computer Networks and Applications (IJCNA) (Published),

2022. (Scopus)

• Chapter 6 presents the conclusion of the thesis finding and introduces the possible

future directions.

14

CHAPTER 2

RELATED WORK

The present container migration approaches in cloud computing are investigated and

reviewed in this chapter from various perspectives, including migration methodology,

environmental architecture, tools used, scope, and performance assessment. Separate

taxonomies for each perspective are offered based on a thorough review of the literature.

A thorough investigation of existing methodologies is carried out. Finally, the research

gaps that need to be filled in order to enhance the container migration paradigm are

identified and highlighted1.

2.1 Introduction

In the live migration of containers and with the increasing popularity and wide adoption,

page recovery is an important factor affecting performance. The container’s size is

already smaller compared to virtual machines, but still, the performance of containers

can be enhanced further. The most influential factor is the amount of data migration over

the network, which directly affects the cost and performance of container migrations in

a lightweight environment.

1This chapter is derived from:

Gursharan Singh and Parminder Singh. "A Taxonomy and Survey on Container Migration Techniques

in Cloud Computing." In Sustainable Development Through Engineering Innovations, pp. 419-429.

Springer, Singapore, 2021.

15

The checkpoint and restarting of a system have certain preconditions that the OS

needs to provide. Container infrastructure contains: Namespaces (Process ID (PID),

User, group Id, Network configuration, Mount points, Inter-process communication,

Hostname), and the cgroup subsystems (CPU cores, CPU time and utilization, Limit

memory consumption, Limit and observe I/O accesses).

• PID virtualization –guarantees that a process can be allocated the same PID dur-

ing restarting as before.

• Isolation of the process community–to ensure that the interaction between parents

does not lead to external containers.

• Network separation and virtualization–to ensure the isolation of all network con-

nections from the host operating system and all other containers.

• Virtualization of resources that is hardware-independent and can restart the con-

tainer on another server

During the design phase, considering other requirements:

1. A complete set of resources like delegated resources, register set, network con-

nections, address space, and other private information of each process is used by

the system to test and restart a container.

2. Size of file dump should be reduced, and all behavior between a freeze and a

resume streamlined so that the service is as late as possible.

2.2 Taxonomy and Survey on Container Migration Techniques

For a better understanding of containers, various techniques has been studied and come

up with a container taxonomy with six different parameters (Architecture, Tools, Pur-

pose, Scope, migration technique, and Evaluation) Figure 2.1.

Live migration service for container incorporates CRIU-based memory migration,

which reduces downtime in migration [10]. Containers will immediately re-operate on

the target host with a union view of the data between the source and the target hosts

while gradually transferring the disk state in the background. An optimized pre-copy

16

Figure 2.1: A taxonomy on container in cloud computing

algorithm that introduces a Gray-Markov prediction model, in which the memory pages

are added to the Hot Workspace by the prediction model with high re-modified rates,

and the stop copy is carried through on these memory pages designed by [27]. Exper-

iments show that iterations and downtime are reduced by the Optimized Pre-copy Al-

gorithm (OPCA). [28]. Presented the checkpoint and restart functionality for OpenVZ

containers.

The dump file size is reduced, and all activities between freeze and resume should

be streamlined so that the service time is sustainable and as short as possible. Instead of

initiating the migration based on thresholds, this migration is triggered by predictions,

determining performance metrics, addressing device failure, and preventing excessive

migration [29]. One of the methods to minimize the extra overheads of migration is to

identify the relatively stable memory pages. When the size is enormous, sturdy pages

should get the preference to reside in cache [30]. The detailed comparison of various

techniques based on the proposed taxonomy has been discussed, as shown in Table 3.1.

1. Characterize the memory pages actions based on the page flags accessible on the

proc file system of a Linux kernel.

2. Propose a forecast system that can be used to predict relatively stable memory

pages.

3. Analysis of the memory and the proposed prediction method in two applications:

memory deductions and live migration.

17

Table 2.1: A taxonomy based comparison on various container migration techniques

Ref. Archi -

tecture

Scope Purpose Tools Evaluation Migra

-tion

Technique

[31] Cloud Performance Deployment LXD,

CRIU

Tested Live Pre-

Copy

[Bhardwaj and

Krishna 2019]

Cloud Performance Deployment LXD/CR Tested Live Pre-

Copy

[32] Cloud Performance Scalability Kubernetes Tested Live

[Al-Dhuraibi et

al. 2018]

Cloud Performance Scalability Docker,

RUBiS,

KVM

Bechmarking

[Al-Dhuraibi et

al. 2017]

Cloud Performance Scalability Kubernetes,

Graylog

Bechmarking

[33] IOT Performance Deployment Docker Tested Live Pre-copy

[27] Cloud General Tools Sur-

vey

Docker ,

Spark

Tested Live Pre-

Copy

[Nadgowda et

al. 2017]

Cloud General Tools Sur-

vay

LXC,

CRIU

Tested Live Post

Copy

[34] Cloud Performance Tools Sur-

vey

Docker,

TOSCA

Tested Offline

[28] Cloud General Deployment OpenVZ,

LXC

Tested Live Pre-copy

[35] IOT General Tools Sur-

vey

OpenStack,

Kuber-

netes

Tested Live Pre-copy

[Raghunath and

Annappa 2017]

Cloud General Tools Sur-

vey

XEN, RU-

BiS

Tested Live

[36] Cloud General Tools Sur-

vey

Kubernetes Tested Live Pre-copy

[37] Cloud General Tools sur-

vey

CPLEX,

LXC

Tested Offline

[Elghamrawy et

al. 2017]

Cloud Performance Scalability LXC Tested Live Pre-

Copy

[38] IOT General Deployment Docker Tested Offline

[39] Cloud General Deployment OpenVZ,

LXC

Tested Offline

18

The updated pages in the last iteration but not modified in the current iteration are

separated in the first phase. Division of pages is done as per the second phase into two

types, i.e., pages with high dirty rate and normal depending upon the updation in the

last some iterations. The filtered pages from the first phase are checked for the number

of times the page modification has been done in history. The page that is modified more

times is required not to be sent during the current iteration [40].

Another container migration scheme is Application Oriented Docker Container (AODC)

to reduce Docker container application cost of deployment and to allow automated scal-

ing as the workload of cloud applications varies [37]. Pre-copy algorithms eliminate

repeated transfer of dirty pages based on the probability of prediction of memory pages

becoming dirty. When the dirty pages increase significantly, the possibility will fail

and raise sustainability issues. An adaptive bandwidth technique that improves trans-

mission bandwidth for decreasing transmission time when the dirty pages rate suddenly

increases was proposed [41]. It reduces the iterative transfer total time as well as down-

time.

Containers are handy in edge computing. The edge computing platform is based on

the concept of containers in which four key criteria were evaluated:

1. Deployment and termination

2. Management of resources and services

3. Fault tolerance

4. Caching

Docker container used in edge computing platform offers fast implementation, small

footprints, and good performance based on our assessment and testing [42]. The con-

tainers are more compact, powerful, and easier to manage based on lightweight virtu-

alization techniques. For live transportation of docker containers, both downtime and

total migration time can be reduced, helping to increase user experience with data cen-

ter services. The Docker container is migrated from the source host through logging

and replaying in the iterative phase. An optimized pre-copying approach based on time

series recognizes and transmits frequently updated dirty pages in the past and future

19

eras to reduce unwanted, repetitive dirty page transmission. This technique can reduce

the overall migration time significantly [39].

The pre-copy migration methods was proposed, including post-copying, pre-copy,

pre-copy methods, etc., are presented to solve the problem of the too-long pre-copy

migration period [36]. Pre-copy approaches can reduce the total migration time but

lead to more extended downtime. The suggested method can choose the best time

to carry out memory migrations according to the features of memory pages to reduce

unnecessary migrations and the total time of migration. Using the associated dirty rate

to enhance live migration, you choose which pages you want to migrate in the iterative

pre-copy stage or the stop-and-copy process.

Al-Dhuraibi et al. [12] introduced the container that autonomously supplies verti-

cal elasticity. The autonomous computing concept scales up and down both memory

allocation and CPU utilization of the container according to the workloads, which re-

duces the running cost of containers. This vertical elasticity improves the performance

by 37.63 percent compared to Horizontal elasticity by improving product quality and

maximizing resource usage. In the overall process of migration the downtime is reduces

with a huge difference by managing resources compared to auto-scaling in Kubernetes.

Ma lele et al. [33] introduced a new service management method that automati-

cally switches offloading services as the mobile customer travels to the nearest edge

server. His study revealed that hand-off service is accomplished by container migra-

tion. Further, they identified a vital performance problem during container migration.

A migration approach was proposed to minimize overhead file synchronization without

relying on the distributed file system, further based on a systematic analysis of con-

tainer layer management and file stacking. Testing results show that the framework

reduces the overall time of service delivery compared to modern hand-off systems de-

signed for edge computing platforms. This approach improves service transfer across

edge servers by leveraging the container layered storage system to enhance migration

efficiency. The technology helps the cutting-edge computing environment continuously

offer download services with low-end latency while retaining high consumer mobility

by using the layered file structure of containers to remove unnecessary transfers of a

redundant and substantial portion of the application file system. When the base mem-

ory image is transferred before the conversion and the incremental memory gap is only

20

transmitted by migration, the total transfer size decreases.

Authors in [39] illustrated the Pre-copy phases and how dirty pages are found when

migrate to live. Experimental results showed that all received packets could be effi-

ciently migrated by (SRVM) to ensure the integrity of application data as SRVM do

not maximize here. The equivalent framework helps to minimize container migration

downtime. Another approach is proposed by [43] to work on resource containers and

safety containers for standard, time-shared systems. They present the design and im-

plementation of Linux-VServer as a representative instance of container-based systems.

It also compares Linux-architecture VServer to current Xen generations and illustrates

how Linux-VServer supports comparably and superior device efficiency.

The method based on compression and deduplication of data is elaborated by Luo

et al. [44]. The authors used the RLE approach for migration to eliminate duplicate

memory data using the runtime storage image identity. For page similarity compu-

tations, hash-based fingerprints have been used, and for implementation, LRU Hash

tables FNHash and FPHash were utilized. The study made it clear that migration effi-

ciency improves in space with overhead CPU resources.

The basic technique of pre-copy transfer memory pages repeatedly at high replace-

ment rates during the incremental copying process is provided by Ansar et al. [45]. The

paper presented thus an OPCA, which includes a Gray-Markov model. They found out

the modification rate of every memory page based on the proposed prediction model

and shortlisted the pages with a high speed of modification. Results showed that the

total migration time and downtime are decreased with the decrease in the number of it-

erations. Moreover, the resource utilization is also increased by OPCA. In turn, the use

of resources is enhanced, and the user experience is improved. Experiments show that

OPCA minimizes iterations and downtimes, raises resource usage levels and improves

user experience. Additionally, it optimizes the conventional pre-copy algorithm to min-

imize downtime and displays Markow’s Gray model and the current space definition.

To get better results, the work area is divided by calculating the re-shaped probability

of the memory tab in which Highly changed memory pages are stored in the HW and

copied throughout the final process. The WW shall therefore be used to reduce errors.

The live container just-in-time migration service built-in line with OCI principles

was introduced by Nadgowda et al. [10]. A new file system and supplier-agnostic migra-

21

tion software voyager provides CRIU memory-based migration and union mount data

federation capabilities that minimize migration downtime. Containers are re-operated

on the server with combined data between the source and destination host, but the sta-

tus of the disk is increasingly transferred. Design and implementation employ a data

federation in several sources and host goals to allow this application to restart on time

at a host with remote readers and local-write access.

Molto et al. [34] describes an open standard tool-based workflow for implementing

consistent HDCI applications in VM as well as Docker containers. DevOps activities

have been introduced by using and enhancing the TOSCA standard and have resulted

from incoherent objects used to execute applications on different platforms. Ansible

Roles’ implementation and automated building capabilities allowed the Docker images

to be distributed simultaneously to containers. Applications can be automatically de-

ployed on vanilla VMs using DevOps. Additional modifications to the Simple TOSCA

YAML Profile 1.0 will support the implementation of new non-normal formats in other

scientific communities in future work.

Mirkin et al. [28] presented the OpenVZ container checkpoint and resume function.

This function makes it possible for the container to scan and restart apps and network

connections on the same host or an additional host transparently. Checkpoints and

restarts are implemented as loadable kernel modules plus various userspace utilities.

The fact is established that the size of the dump file should be minimized to reduce the

service delay as all the operations between stop at source and resume on destination

should be streamlined.

Elghamrawy et al. [30] described that there is a significant divergence between var-

ious prediction mechanisms in the present memory pages’ behavior. They describe the

behavior of the memory pages based on the prediction method for predicting reason-

ably stable memory pages. That is the void they hope will be reduced. The memory

page characterization to prioritize certain pages with live migration because these pages

will progressively be updated in the following iterations. The non-dominated Sorting

Genetic Algorithm (GA) is suggested to optimize containers’ assignment and manage-

ment elasticity to the extent of the proficient results on other cloud management prob-

lems achieved through this algorithm. Clusters, containers, micro resources, and four

optimization goals are supplied with a model. Experimental findings indicate that this

22

approach is a solution to the issue of container allocation and elasticity, achieving more

robust ethical standards than container management policies at Kubernetes.

2.3 Container Memory Dump Techniques

From the memory compression perspective, there are several drawbacks to consider,

and suggest an efficient scheduling model [12]. The container is scheduled on the cor-

responding server to accomplish load balancing. Likewise, dynamic migration core

implementation scenarios are elaborated [35]. To recover large data structures from a

catastrophe, a wide-scale dynamic migration mechanism relying on network conditions,

migration policies, controller categories, and memory allocation needs to be built. They

forecasted the often-changed memory pages using the prediction model of the time se-

ries and then moved them in the last copying round to the destination container [47].

The TPO method is to reduce the number of pages transferred in each iteration and

optimize the migration process.There are several techniques proposed to minimize the

dump size as illustrated in 2.2.

C Puliafito et al. [15] have carried out a detailed evaluation of various migration

techniques under four parameters like total migration time, downtime, dump-time, and

amount of data transferred data. They recognized several situations and suggested

which strategy would be most suited to them. The findings demonstrate that the cold

migration suffers from significant downtime, whereas hybrid migration suffers from a

longer overall migration time. Pre-copy and post-copy migrations may thus be the best

alternatives under specific scenarios.

Several standard memory compression methods are mentioned and studied from a

memory standpoint, including RLE, Huffman Coding, and a novel strategy for mini-

mizing migration time. There are numerous difficulties to consider regarding memory

compression, and an effective scheduling strategy is suggested [12], but the compres-

sion overhead affects migration time. To provide load balancing, the container is sched-

uled on the relevant server. The core implementation of dynamic migration scenarios

has been developed for IoT [35], the main motive is resource provisioning. It can be

more effective if it is manageable to reduce memory transfer. A successful migration

is needed to restore massive data structures following a disaster. Moreover, to reduce

the data transfer, prediction methods can be applied [47]. It can be reduced further

23

Table 2.2: A prediction based comparison on various container migration techniques

Author

/year

Migration

Tech-

nique

Prediction

Method

Outcome Platform

Used

[36] pre-copy Markov Predic-

tion, Related

Dirty Memory

Reduced Migration

Time

MATLAB

[27] pre-copy Grey-Markov

Prediction Model

Reduces downtime Docker

[46] pre-copy Average Dirty

page rate method

Reduces Migration

time by 11.76 and

Downtime by 13.94

XEN Hypervi-

sor

[47] pre-copy () Model Reduces Migration

time by 19.16 and

Downtime by 10.76

XEN Hypervi-

sor

[48] pre-copy Bitmap, Shadow

Paging

Reduce downtime

by 3

XEN Hypervi-

sor

[40] pre-copy Time series

Method of Dirty

Pages

Minimize data trans-

fer and downtime

CloudSim

[49] pre-copy Linear Regres-

sion

Minimize migration

cost

LXD, CRIU

[50] Hybrid Most Significant

bit (MSB)

Reduce Memory

Write cost

MATLAB

[51] pre-copy Extreme Learn-

ing Machines

(ELM)

Reduce mean pre-

diction error up to 99

per.

Google cluster

trace

[52] pre-copy meta-model-

based prediction

Reduce migration

cost

MAPE with

regression and

LSTM

24

with LSTM as suggested by [53]. The reuse distance concept is used, and the changed

memory pages are traced back during the copy process [54]. A model includes clusters,

containers, and micro resources with four optimization goals. The experimental results

show that this strategy is a solution to the issue of container allocation and flexibility,

attaining higher ethical standards than Kubernetes container management regulations.

Each method’s implementation scenarios are examined in [55]. For containers, pre-

copying is the predominant way of migration.

Elghamrawy et al. [30] described the fact that there is a significant discrepancy be-

tween distinct prediction systems in the behavior of current memory pages. That is the

hole they want to fill. They characterize the behavior of memory pages using a predic-

tion approach for relatively stable memory pages and using the memory page character-

ization to prioritize specific pages with live migration since these pages will be updated

gradually in subsequent cycles. The GA technique employing the non-dominated Sort-

ing Genetic Algorithm is recommended to maximize container assignment and man-

agement elasticity to the degree that this algorithm has produced good results on other

cloud management challenges.

Mirkin et al. [56] The OpenVZ container checkpoint and resume mechanism were

provided. This function allows the container to scan and restart programs and network

connections. Checkpoints and restarts work with the kernel directly to reduce service

delays and the size of the dump file.

Dump size can be further reduced for memory-intensive applications. Molto et

al. [34] designed a hybrid distributed computing for VMs and containers for a better

synchronization among hosts. In memory-intensive application, the repetition of mem-

ory may increase.

The live container just-in-time migration service was designed following OCI stan-

dards introduced by Nadgowda et al. [46]. Containers run on the server with the shared

file system, and some are with the local file system. CRIU helps to perform a live mi-

gration of the container and ensures the restart on the destination host. A union mount

file system and CRIU helps to reduce migration time and data transfer.

Luo et al. [44] developed a technique based on data compression and deduplication.

The authors employed the RLE technique and the runtime storage image identity to re-

duce duplicate memory data. Hash-based fingerprints were employed for page similar-

25

ity calculations. LRU, Hash tables FNHash and FPHash were used for implementation.

The efficiency of migration has increased in terms of space with the overhead of CPU

resources.

During the incremental copying procedure, the primary approach of pre-copy trans-

fer memory pages are duplicated repeatedly at high replacement rates is provided by

Ansar et al. [45]. Thus, the article developed an OPCA model with a Gray-Markov

model. They shortlist the pages based on modification rate, which decreases the num-

ber of iterations and other parameters. This increases resource utilization, which is

managed by using a hot and warm working set to categorize the pages. Now, the pages

only from the HW set will go through the process. Chronopoulos et al. [57] show the ef-

fective use of machine learning to build an artificial neural network for speech-language

therapy.

Slominski et al. [58] Creates a repeatable architectural pattern to transition a legacy

application to a cloud service. The workflow service verified the architecture because

it was built with minimum changes to a traditional workflow engine that only serviced

a single organization and wasn’t designed to be a cloud service. To quickly build a

multi-tenant, elastic, and highly available cloud service utilizing Docker containers to

manage various engines for each tenant, as well as a cloudant persistent layer and a

content-based router. The architectural pattern may be used by other legacy programs

that need to transfer to the cloud.

Guerrero et al. [59] Based on the results gained with resource management opti-

mization challenges in cloud architectures, a genetic algorithm technique is presented

to improve container allocation and elasticity management using the non-dominated

sorting GA II. The optimization technique improves system provisioning, system per-

formance, system failure, and network overhead, and it achieves better objective values

than the Kubernetes container management policies. The expenses of container-based

live migration might be investigated.

Huan et al. [39] when using containers based on the lightweight virtualization ap-

proach, live migration time may be drastically reduced, which is extremely useful to

data centers. This study described a live transfer of Docker containers using logging

and replay. The downtime and overall migration time in the trial were both minimized

using this method. Under three different scenarios, downtime has been reduced by

26

65%, 55%, and 44%, while overall migration time has been decreased by 27%, 47%,

and 38%, respectively, when compared to the technique for typical virtual machines.

Du et al. [60] Memory propagation has been accomplished successfully in the sug-

gested microwiper approach during live migration. It has two different strategies: or-

dered memory propagation and transfer throttling. Within VM memory, page rewriting

speeds vary dramatically. Pages with greater rewriting rates have a much higher chance

of being rewritten. If we send these pages, they will very likely get dirty again, re-

quiring re-transmission. The pages with the lowest rewriting rates, on the other hand,

will be the greatest candidates for priority transfer. They calculated the memory stripes

rewriting rates from the previous iteration in each iteration, then arranged the memory

stripes according to the rewriting rates. They shifted dirty pages of stripes in that order

and dynamically estimated network bandwidth; the sum of transferred stripes rewriting

rates will be calculated and compared to network bandwidth estimation; the next itera-

tion will begin immediately if the rewriting rate calculated after accumulation is greater

than the estimated bandwidth.

Chen et al. [41] The pre-copy method repeatedly transfers memory pages. Iterative

means "three rounds" in pre-copying, which means that the pages that were relocated

in round n were those that were modified in round n-1. The more often alteration pages

are sent, the more likely they will be sent. As a result, the total volume of transmission

has increased. If the page changing often judgement was made in the previous round

but not during the current iterations to skip judgement, it would need to be delivered

again. There’s a good chance that these pages may change again in the next edition.

As a result, when page changes are frequent, the pre-copy approach does not operate

well. As a result of these flaws, this study recommends delaying the transfer of unclean

pages. This approach adds a new bitmap to delay for flagged pages that were changed

both in the previous iteration and the present iteration.

Yanqing et al. [61] as they mentions, that without a workload, the total migration

time will be directly proportional to the size of the VM memory. The address of meta-

data will be converted to the address of the real page. Then, they got page numbers

of complete VM memory. Bitmap bits will be set accordingly. Before each pre-copy

cycle, migration daemon would ask memory explorer for a bitmap. According to the

bitmap, the migration daemon will only send one byte data to the destination daemon

27

for unallocated pages. The RLE technique will be used by the migration daemon to en-

code allocated pages. If encoding is cost-effective, the migration daemon will send one

byte compressed in order for the destination migration daemon to decode compressed

data. If this is not the case, it will transmit a single byte to the destination with no

changes.

Bubai et al. [62] The source machine memory pages are divided into fixed-size

groups known as blocks. The size of the block will be determined by the number

of pages available on the system. Every page will have an array, the size of which

is determined by the threshold value, which is the maximum number of iterations a

machine can do. This array will hold the state of the page during each iteration. 1

indicates that the page has been updated, whereas 0 indicates that the page has not been

changed. When a page was last transmitted to destination, the first member of this array

will hold an iteration number. With the aid of the amount of 1’s a block has, the total

number of pages dirty throughout each iteration will be counted. Until the last iteration,

the blocks will be arranged based on dirty counts. The block with the least dirty count

(minimum of one) will be chosen. The array of pages with 0 in the current iteration will

now be examined for that block with the least dirty count. Pages with a number of 0s

equal to or more than the number of 1s in the array must be moved to the destination.

From the time it was last submitted to the final iteration, this will be verified. When the

page has been transmitted, the first element will now have an iteration number. This

prevents the page from being resent if it hasn’t been updated since the last iteration. If

a block does not have a page that meets the criterion, the block with the second-lowest

number of dirty counts is chosen. Only the pages with a low unclean probability (pages

that do not change frequently) were provided during the middle round of iteration. As a

result, the total number of pages that will be relocated to destination in the intermediate

rounds will drop. When the number of repetitions reaches a certain threshold, the source

VM is paused, all dirty pages that were not delivered to the destination are sent to the

destination, and the virtual machine at the target is resumed.

Jain et al. The suggested strategy is divided into two parts. The first phase separates

the pages that have been changed in the previous iteration but have not been amended in

the current iteration. Pages are divided into two groups in the second phase, pages with

a high unclean rate and regular pages, based on the updation in the previous iterations.

28

The number of times the page has been modified from history is verified on the filtered

pages from the first step. The page that has been updated the most times must not be

transmitted during the current iteration. Send page to target VM on the other hand. The

transfer of a page is determined by a simple idea. The page will be unclean if the num-

ber of changes on it exceeds the number of un-modifications in the history record. It

is implemented in the CloudSim simulator to evaluate the intended technique’s perfor-

mance and to compare it to an existing pre-copy strategy based on time series in terms

of overall migration time and down time. The outcome confirms that the recommended

technique [40] produces superior results.

Weiwen et al. looked at container migration strategies among cloud servers in order

to reduce migration costs while preserving load balance. Both techniques are stated

as optimization problems with constraints. To handle optimization difficulties across

different time scales, they present the balance aware container placement and adaptive

threshold container migration algorithms. In addition, container workload prediction is

presented as a way to improve the approach. Experiments indicate that we can achieve

load balancing while lowering migration costs. Further in [63], the suggested technique

outperforms meta-heuristic algorithms such as PSO and computer resource optimiza-

tion.

Mathematical modelling, heuristic, machine learning, and meta-heuristic are the

four basic types of container scheduling algorithms. Machine Learning is the ideal

solution for anticipating workloads and performance indicators because of its great ca-

pacity to validate the system to anticipate outputs based on prior data and training. In

complex work contexts, such a view helps schedulers with better resource allocation

while dealing with shifting user request rates [64].

Gundall et al. [65] provides a unique paradigm is offered that relies on both exist-

ing migration methodologies and virtualization technologies, with the primary goal of

reducing service downtime. A test set is also used to examine the notion. The results

suggest that the proposed strategy can achieve a reduced downtime. Furthermore, the

overall migration time for the maximum performance option is in milliseconds.

Terneborg et al. [66] expanding container migration with a proposed method that

supports fail-over and live migration, which means it might be incorporated into existing

container tools. Furthermore, evaluation results are supplied, which may be used to

29

compare to an existing migration approach. They have discussed the current migration

methodologies and metrics for assessing different migration approaches. They have

accomplish a lower total migration time and downtime similar as of pre-copy migration

[67].

Zhi et al. [68] intend to save cost on resources by using as little machine resources as

feasible by using a suitable dynamic container migration capability, therefore cluster-

scale layout of container has been the topic of this paper. A method is presented to

decrease fragmentation, hence improving machine resource efficiency and achieving

the cost-cutting aim. Experiments indicate that the method efficiently prevents frag-

mentation and reduces resource consumption in container layouts on a wide scale.

Zheng et al. [69] offers a scheduling technique for a two-level approach for con-

tainer real-time resources. To decide on container migration, LTSM is utilized to es-

timate resource use and select the environment. In addition, for simulation trials, they

used CloudSim, an open source programme. The results demonstrate that the method

may increase global resource utilization of containers while lowering data center energy

usage.

Yang et al. [70] to address the challenge in prediction accuracy, an online prediction

approach called user trajectories is given. A scheduling algorithm is designed to identify

servers based on user movement speeds and latency to reduce duplicate network traffic.

The results of our tests indicate that the proposed prediction methods outperform the

usual technique. It reduces network traffic by 65% while meeting task delay standards.

Furthermore, it adapts to changes in the user’s journey speed and surroundings to ensure

service stability.

Chen et al. [71] In the container migration, the PSO is used for hyper-parameter

adjustment in order to enhance the model’s prediction performance. The findings of

the experiments suggest that autonomous hyper-parameter adjustment can increase pre-

diction accuracy. Meanwhile, in MSE, R2, and MAE, the prediction performance is

better than the previous system without managing hyper-parameters by 19.3%, 4%,

and 11.7%, respectively, compared to the existing system without managing hyper-

parameters. Furthermore, the PSL beats other algorithms like as RNN, GRU, and LSTM

in terms of prediction performance.

Dai et al. [72] predicting failure before it occurs is critical for making the cloud ser-

30

vice more effective. The ability to forecast defective nodes allows service to be migrated

to healthy nodes, increasing service availability. To successfully handle this problem,

proactive fault prediction approaches to forecast future failures can be employed. In this

research, using time series data to forecast the failure in a cluster using the bidirectional

LSTM model.

2.4 Memory Prediction

There are other techniques as well; those are suitable for predicting memory. Sobia

Pervaiz et al. [73] conducted a detailed review of various Variants of PSO and high-

lighted the key features of every variant. It helps to identify the best-suited variant of

PSO depending on the nature of the problem. Waqas Haider Bangyal et al. A unique

quasirandom sequence termed the WELL sequence to initiate the PSO particles was

used [74]. The velocity and position vectors of particles are changed in random order.

The results show that the WE-PSO strategy outperforms the PSO, S-PSO, and H-PSO

approaches. Three sequence strategies Torus, Knuth, and WELL was proposed by [75].

All these techniques are tested with low-discrepancy sequences. The result shows that

the proposed methods outperform as compared to standard PSO and its other variants.

Migrating a container application can be accomplished using various container mi-

gration techniques, as shown in Table 2.3. Because of the container’s limited lifespan,

they used a pre-copy strategy to facilitate the migration procedure [27].

This research work carried out a review of various container migration techniques.

The essential factor is the amount of memory transfer from the source to the destina-

tion host and the repetition of the same in an iterative phase of memory migration. As

discussed in related work, some of the research work is carried out to predict memory

change. With the help of different prediction algorithms, researchers try to decrease the

number of pages transferred during the iterative migration phase. But the prediction

of memory change will also help in the pre-dump phase of pre-copy container migra-

tion. Pre-copy is the most commonly used migration technique, and it is best suited

for containers. As per the review of migrations techniques of containers, the pre-copy

technique outperforms in most of the cases as depicted in Table 3.1 and in Table 2.2.

Identification of research works related to container migration is recorded in the follow-

ing parameters: Architecture, Scope of the research, Purpose, Tools used, Evaluation,

31

Table 2.3: A prediction based comparison on various container migration techniques

Ref. Migration

Tech-

nique

Prediction

Method

Achieved Outcome

[12] pre-copy RLE, Huffman

Coding

memory compres-

sion

Compression overhead ef-

fects migration time

[35] CloudIoT LXC vertical offloading main motive is resource

provisioning

[47] pre-copy ARIMA Predict dirty pages,

reduce and compress

can be reduced further

with LSTM [53]

[54] pre-copy ARIMA Memory forecast can be reduced further us-

ing containers with LSTM

[53]

[55] pre-copy LXD Container resource

management

Resource provisioning

[56] pre-copy OpenVZ Incremental Check-

point

dirty pages transmission

can be minimized

[27] pre-copy Gray-Markov

prediction

model

reduce iterative cy-

cle

it shortlist the active pages

[53] pre-copy LSTM and

ARIMA

dirty page prediction600 times faster prediction

time than ARIMA

[76] pre-copy LSTM reduce the size of

iterative-dump

amount of data transfer is

reduced by 31.04%

32

Kind of migration method opted, and migration techniques.

Suppose the source has a running container that will be required to be shifted to the

destination. Pre-dump is the very first step to initialize the pre-copy container migration.

In this phase, the complete set of container memory is transferred to the destination

host, and the container is still running on the source host. Following are the steps of the

pre-copy migration technique.

1. First Phase: Only unmodified pages of memory (from the start of the container

up to the current state) will be transferred to the destination. Pages that have been

modified have a strong probability of updating in the next phase, need not to send

them in the initial phase.

2. Second Phase: It will be decided based on the proposed prediction model which

pages can be considered for transfer in the iterative phase. In the basic approach,

all updated pages are set to be sent in the same iteration. ,

3. Third Phase: If there is any page fault or any failure generated at the destination,

we can get it from the source host according to the proposed model. It also

supports decreasing data transmission while migrating back to the same host.

2.5 Summary

Prediction of memory changes is the core component of pre-copy container migration.

It should be chosen wisely according to pre-copy migration’s pre-dump, iterative, and

final dump phases. A prediction scheme or set of multiple methods should be applied

to the memory pages to be migrated to the destination host to improve the prediction

mechanism. Some of the popular schemes available are PSO-based prediction schemes,

LSTM-based schemes, and Artificial Neural Network (ANN) based schemes.

It is found that pre-copy needs to be appropriately discussed because of its popu-

larity in migration techniques. The pre-migration ensures the availability of resources

between destination and source. To pick a suitable destination host and confirm that,

source hosts share information like memory size and running application details with

the destination host. First, ensure the resources at the target host and acknowledge the

source host to start the migration for the resource reservation. For the pre-dump phase, a

33

probability-based PSO migration technique is proposed and implemented to reduce the

size of the memory dump. Furthermore, in iterative pre-copy, the source host starts the

iterative copying of memory pages. It sends all the memory pages updated in the previ-

ous iteration in the coming iteration. A predictive checkpoint for the iterative dump is

proposed to reduce the amount of data transfer. At last, the "Stop-and-Copy" container

will stop operating and move the remaining high dirty index memory pages to the des-

tination. In some cases, like fault tolerance, load balancing, etc., the container migrates

back to the same host. A memory reusing approach is proposed to minimize the overall

migration size, and it also provides support for page faults.

34

CHAPTER 3

AN IMPROVED CONTAINER

MIGRATION TECHNIQUE USING

PSO-BASED PREDICTIVE

PRE-DUMP

In this chapter, the proposed pre-copy container live migration using probability-based

particle swarm optimization to overcome the memory transmission limitations. The

pre-dump is the first phase of sending the container file system to the destination host.

Along with that, dirty pages are predicted during a migration process using the meta-

heuristic approach. After that, the active set of pages and their update rate has also

been identified. In addition, based on the threshold level of maximum update rate, the

pages have been shortlisted to be discarded from pre-dump1.

1This chapter is derived from:

Gursharan Singh, Parminder Singh, Babar Shah, Farman Ali and Daehan Kwak. "A Lightweight Migra-

tion Technique using PSO based Predictive Pre-dump in Cloud." (Under Review).

35

3.1 Introduction

In recent years, lightweight virtualization has ignited the interest of eminent researchers

around the globe because of its vital scope. The present research has found that con-

tainer virtualization systems are more effective and more straightforward to handle than

traditional virtualization systems. The live migration processes can be substantially re-

duced by using lightweight containers developed on the virtualization techniques. It

shrinks the suspension of service by transmitting minimum memory of the source with-

out stopping the migration process. Therefore, transferring many memory pages leads

to long migration time and downtime. Furthermore, it affects the overall system’s per-

formance, worsening the over long distance and slowing down of networks.

The container migration is the process of detaching all the processes running in the

container’s context. Further, they are transferred to a different host and synchronized

on the other side of the new operating system [77]. Live migration of containers be-

tween different physical hosts is known to be achievable with checkpoint and restore

techniques [78] [79]. To migrate a container while retaining the containerized software

log and keeping open network connections is achievable through live container migra-

tion techniques. Its significant benefits include clean hardware and software separation,

low-level device maintenance, fault tolerance, easy data access, and dynamic load bal-

ancing, which are checked with different physical hosts [80]. Migration may be used to

decrease the power consumption by placing containers on a specific host together and

enabling the release of hardware resources that are currently idle. It is found that many

resources are passed across the network during migration, such as CPU state, network

state, and memory state. The volume of the memory state depends on the form of appli-

cations being migrated [38]. The transfer of the whole memory state during migration

takes too long to be a realistic solution. This issue becomes especially problematic as

containerized programs change large amounts of memory more quickly than a container

can transmit across the network.

A significant concern in container live migration is to identify the method for trans-

mitting the container state of memory to a target host [33]. Reducing the downtime

and total migration time is the primary goal of improving the live migration algorithm’s

efficiency. The total migration time is the period between the migration cycle initiation

36

and completion. Downtime is the time when neither on the source nor on the destina-

tion, the container application migrated does not run. Live migration algorithms aim at

reducing downtime, during which the application process becomes completely inactive,

while maintaining the overall migration period as short as possible [81].

Over the past few years, various container live migration algorithms have been pro-

posed. These algorithms are divided into three groups of migration techniques. The first

is the pre-copy migration technique, and this migration starts by transferring the state

of the memory to the destination host. The root host stays attentive when copying and

proceeds to progress all operating applications. On the source platform, the memory

pages may be modified, and the solution utilizes methods to track page changes only

when they are transferred to the destination network [30]. The second migration process

is post-copy. It first suspends the running application on the source host to restore the

applications on the destination host. Another migration technique is hybrid migration.

This method uses a combination of both pre and post-copy. It first begins pre-copying

the application migration, which proceeds to operate on the source platform. When

the destination platform receives all the memory pages, the application is suspended

and copied to the processor state. Next, the application is automatically restored at the

destination host, and the post-copy algorithm further synchronizes the remaining mem-

ory pages [41]. Additionally, it transfers a minimum processor state, and then it starts

gathering memory pages from the source over the network.

The research reveals that most container migration implementations use the pre-

copy migration technique [82] and this method helps the transition of pages to be

streamlined and decreases the overall migration period and downtime by holding the

memory pages in volatile memory. The performance of pre-copy migration depends on

the intensity of application memory, and the total migration period and downtime rely

on the amount of memory consumed for the migration process. The live migration pro-

cess has drawn further publicity with the increasing interest in container technologies.

This method can be used by moving a running process from one machine to another to

allow load balancing or fault tolerance. Moreover, live migration is the process of mov-

ing an application to its destination host and restoring it to the original state [28]. The

live migration function can be applied to the process hierarchy, rendering it a suitable

container migration-based technology. Early checkpoint and restore implementation

37

were introduced in the context of an in-kernel approach. It is better to use a system that

will reduce the size of the pre-dump and reuse it in the subsequent phases.

A swarm of n particles communicates to find global optimum solutions by updat-

ing their position based on experience or its neighbor’s experience. The meta-heuristic

algorithm inspired by bird flocking and the intelligence of swarms to solve computa-

tionally complex problems is incorporated with migration techniques to boost the per-

formance. It is a robust technique used for a wide variety of search and optimization

problems [83]. There are a few initial parameters like size, particle position, particle

velocity, and several iterations [84]. In the same way, the control parameters are size,

inertial weight, acceleration coefficients, and iterations. We have applied PSO to predict

the pages to be updated to minimize the data transfer during container migration.

3.1.1 Major Contributions

The paper’s primary contributions include: addressing the issue of dirty pages in con-

tainer checkpoint files being repeatedly copied and communicated, resulting in more

extended application downtime and increased migration costs. A pre-copy migration

technique is developed that uses a probability-based PSO approach to detect dirty pages.

It decreases the size of the pre-dump, which further reduces data transmission over the

network and pre-dump transfer time because most container checkpoint methods in-

clude all pages in the pre-dump that may be re-transmitted during the subsequent phase

(iterative dump) of the container migration.

The major contributions of this chapter are:

1. A predictive pre-dump approach is designed to minimize the data transfer in

Phase 1 of container migration.

2. An algorithm is designed to keep track of memory pages and maintain activity

status.

3. Algorithms are framed to calculate the update rate of pages and to finalize the

checkpoint.

4. To identify the memory pages to be migrated or discarded, a probability-based

PSO algorithm is originated.

38

5. The experiments have been conducted on a container-Cloudsim 4.0 simulator,

and results show that the proposed probability-based PSO has reduced the size of

pre-dump.

3.1.2 Chapter Structure

In this chapter, the related research findings are discussed in Section 3.2. According

to the review conducted, the problem statement is discussed in Section 3.3. System

architecture is elaborated in Section 3.4.1 along with the proposed pre-dump model in

Section 3.4.2. The methodology used for the proposed pre-dump is discussed in detail.

The Probability-based PSO is elaborated in Section 3.4.3, apart from it, the experi-

mental evaluation and results are discussed in Section 3.5 and 3.5.1 and concluded in

Section 3.6.

3.2 Related Work

The live migration of containers refers to transferring applications among different

physical devices or clouds without disconnecting the clients. It is vitally observed that

the file system, memory, and network configuration of the containers running on top

of bare metal hardware are moved from the original host machine to the destination

holding the state with minimum possible downtime [36]. There are two main directions

of container migration: one is the selection of the container which can be moved, and

the second is the procedure of moving a container. The process of moving a container

application is executed by using any one of these methods, such as pre-copy migration,

post-copy migration, or hybrid migration approach [27]. Container migration’s main

task is to migrate memory pages. In pre-copy, the first copy of the memory page is

performed, and in phase two, the copying of the pages is performed iteratively. The

first stage in postponed copying is to shut off the process and transfer the container’s

state-specific information to its destination host. Then the container process is rebooted

on the destination host, and synchronized memory pages are received. Both the migra-

tion techniques take the appropriate time to configure the required resources. Delayed

copy output is primarily based on the pace of the workload and the network connection.

Based on the container’s limited life span, they opt for a pre-copy approach to simplify

39

the process of migration.

Authors in [39] illustrated the Pre-copy phases and how dirty pages are found when

we migrate to live. Experimental results showed that all received packets could be

efficiently migrated to ensure the integrity of application data as SRVM do not max-

imize here. The equivalent framework helps to minimize container migration down-

time. Another approach is proposed by [43] to work on resource containers and safety

containers for standard, time-shared systems. They present the design and implementa-

tion of Linux-VServer as a representative instance of container-based systems. It also

compares Linux-architecture VServer to current Xen generations and illustrates how

Linux-VServer supports comparably and superior device efficiency [85].

The method based on compression and deduplication of data is elaborated by Luo

et al. [44]. The authors used the RLE approach for migration to eliminate duplicate

memory data using the runtime storage image identity. For page similarity compu-

tations, hash-based fingerprints have been used, and for implementation, LRU Hash

tables FNHash and FPHash were utilized. The study made it clear that migration effi-

ciency improves in space with overhead CPU resources.

The basic technique of pre-copy transfer memory pages repeatedly at high replace-

ment rates during the incremental copying process is provided by Ansar et al. [45]. The

paper presented thus an OPCA, which includes a Gray-Markov model. They found out

the modification rate of every memory page based on the proposed prediction model

and shortlisted the pages with a high speed of modification. Results showed that the

total migration time and downtime are decreased with the decrease in the number of

iterations. Moreover, the resource utilization is also increased by OPCA. In turn, the

use of resources is enhanced, and the user experience is improved. Experiments show

that OPCA minimizes iterations and downtimes, raises resource usage levels and im-

proves user experience. Additionally, it optimizes the conventional pre-copy algorithm

to minimize downtime and displays Markow’s Gray model and the current space defi-

nition. The work area is divided by calculating the re-shaped probability of the memory

tab in which Highly changed memory pages are stored in the Hot Workspace (HW) and

copied throughout the final process. The WW shall therefore be used to reduce errors.

The live container just-in-time migration service built-in line with OCI principles

was introduced by Nadgowda et al. [10]. Voyager’s new file system and supplier-

40

agnostic migration software provide CRIU memory-based migration and minimize mi-

gration downtime. Design and implementation employ a data federation in several

sources and host goals to allow this application to restart on time at a host with remote

readers and local-write access. Containers are re-operated on the server with combined

data between the source and destination host, but the status of the disk is increasingly

transferred [86].

Each method’s implementation scenarios by contrasting the pre-copy, delayed copy,

and Hybrid copy are tested in [55] and pre-copying is the primary mode of migration.

The proposed pre-copy is further divided into sub-phases to minimize the number of

memory transfers and to minimize the container migration by forecasting the operations

trend [82]. The problem of migration from the traditional energy-saving viewpoint is

addressed by Patel et al. [46], which optimizes the actual migration technique to reduce

the consumption of energy [87]. However, the levels of energy use are not uniform,

so Comparison and assessment are not straightforward. The idea of reuse distance is

adopted, and the modified memory pages are tracked back within the copy process [54],

but the algorithm’s difficulty is hard to enforce. Several popular memory compression

algorithms are listed and analyzed from the memory perspective, including RLE and

Huffman Coding, and it proposes a new technique to minimize migration time.

From the memory compression perspective, there are several drawbacks to consider,

and suggest an efficient scheduling model [12]. The container is scheduled on the cor-

responding server to accomplish load balancing. Likewise, dynamic migration core

implementation scenarios are elaborated [35]. To recover large data structures from a

catastrophe, a wide-scale dynamic migration mechanism relies on network conditions,

migration policies, controller categories, and memory allocation [88]. They forecasted

the often-changed memory pages using the prediction model of the time series and

then moved them in the last copying round to the destination container [47]. The TPO

method reduces the number of pages transferred in each iteration and optimizes the

migration process.

It is found that pre-copy needs to be adequately discussed because of its popular-

ity in migration techniques. The pre-migration ensures the availability of resources

between destination and source. To pick a suitable destination host and confirm that,

source hosts share information like memory size and running application details with

41

the destination host. First, ensure the resources at the target host and acknowledge the

source host to start the migration for the resource reservation. Furthermore, in iterative

pre-copy, the source host starts the iterative copying of memory pages. It sends all the

memory pages in the first iteration, and the pages updated in the previous iteration will

be transferred in the upcoming iteration. At last, the "Stop-and-Copy" container will

stop operating and move the remaining high dirty index memory pages to the destina-

tion. To improve the throughput of this migration process, the prediction model should

be used to forecast the probability of memory pages being modified.

3.3 Problem Formulation

The containers provide a reliable environment for virtual computing. The selection of

container migration techniques is an essential factor affecting the performance of con-

tainer migration. All these techniques were discussed [82]. The Comparison shows that

pre-copy and hybrid copy perform better than "post-copy" and "stop and copy" migra-

tion techniques. Focusing on the pre-copy live migration technique, the task is divided

into three stages: pre-dump, iterative, and final. During these stages, the container is

running to perform live migration. All the memory pages related to that particular con-

tainer are sent to the destination host in the pre-dump phase. The rest of the pages are

sent iteratively in the second phase. The final set of memory pages is sent in the third

stage.

Almost all the research and findings related to container migration are either in

the iterative dump phase or final dump phase. The performance of containers has been

improved with these findings, to enhance the pre-dump phase. So, the primary objective

is to minimize the data transfer across different hosts during migration in the pre-dump

phase. Therefore, we conducted a detailed review of container migration techniques to

determine the scope of improvement which leads to the performance enhancement.

A predictive algorithm is designed to determine if the memory pages are updated

before sending them to the destination host. The study originated the idea that if the

content of memory pages changes, then the page becomes a dirty page. It identifies

recently updated pages according to the concept of dirty bits. In the proposed algo-

rithm, only shortlisted pages will be sent to the destination in stage one of the migration

process. In this way, data transfer will be reduced, which will impact the cost of net-

42

work overhead. The concept of pages with dirty bits provides us with the history and

pattern of page modification in recent times, but it is not sufficient to identify the set

of pages to be migrated to the destination host. Therefore, considering the possibility

of change soon, a predictive method is required. The PSO is selected to predict the

chances of modification of a memory page based on the history of a page. PSO will

shortlist the pages by using the page updation rate. Together, these methods can better

identify memory pages that need not be sent in the pre-dump phase.

The process of pre-copy container migration is divided into three phases known as

phase 1 (pre-dump), phase 2 (iterative-dump), and phase 3 (final-dump), as shown in

Figure 3.1.

Figure 3.1: The set of various phases of container migration process along with the flow

of execution.

These phases of the standard migration approach take a long time to perform the

migration of containers. This is due to the multiple transmissions of the same memory

in different phases. Although containers have already increased the performance of mi-

grations compared to virtual machines, there is still scope for further enhancement. Our

objective is to minimize the amount of data transfer over the network in the migration

process by reducing the dump size during the pre-dump phase. The proposed predic-

tion scheme for the pre-dump stage to reduce the size of memory pages is applicable to

phase 1 in Figure 3.1.

43

3.4 Modeling and Methodology

The present study will first present the system model in an explanation of all its com-

ponents in section 3.4.1 then the proposed methodology will be discussed in section

3.4.2.

3.4.1 System Model

The system architecture on the container is mentioned in Figure 3.2. It is observed that

when a container is created for a specific purpose, some sets of files get associated with

it. Working set, code, operating system, configuration files, and kernel dependencies

are required to run a container as container executions start once all the resources are

granted. Its engine monitors all the activities of a container, and then the container

engine handles all the activities of containers. For ease, multiple containers can be

created and monitored simultaneously. However, lightweight containers are designed

for a single task or process. But a container engine can create multiple containers to

handle various processes with complete isolation. If there is any need to migrate a

container to another host due to any reason, then a container image will be created with

all its dependencies and current status. Furthermore, you can migrate the container to

its destination host. In the case of container virtualization, no additional hypervisor is

required. It can directly run on the Kernel of the operating system.

Figure 3.2: The basic system architecture of container migration

44

3.4.2 Proposed Pre-dump Technique

In the proposed pre-dump technique, it is not required to dump all the pages at the

beginning as pages can be stored according to the steps mentioned in section 3.3.

Figure 3.3: The process of pre-dump steps to be followed in proposed pre-copy con-

tainer migration to shortlist the pages for transmission.

Following are the steps of the proposed pre-dump technique for container migration:

1. When it is decided to migrate a container, gather complete memory information

and make a pool of pages.

2. Track the activity and Dirty Bits (DB) status of every page based on the last few

minutes of execution.

3. If the page is not in Active Mode () or has dirty bits, then that page will be in

the sending pool. Include the pages with an updation rate less than the threshold

value. (50%)

4. If a page is in write/update mode, it need not be included in pre-dump. (it will be

changed again).

5. Repeat step3 until the End of Memory Pool (EOP) is not reached.

6. Once a decision is made for the Memory Pool (MP), then send the pre-dump

collection to the destination.

45

7. Read-only pages can be included now. (it will save time in the last dump).

3.4.3 Probability-based Particle Swarm Optimization for Container Migration

To execute the study, researchers minimized the pre-dump size by predicting the active

set of pages. The proposed prediction Algorithm 1 identifies the recently updated pages,

and these pages can be discarded from the pre-dump pool.

Algorithm 1 Pseudo code to identify active pages in pre-dump of container migration

process
Result: Pool of Active Pages

Pi = 0,Ri = 1,Rmax = 5

while Pi ≤ 5 do
Ri = 1

while Ri ≤ Rmax do

if DFlag[Pi][Ri] ̸=0 then
DFlag[Pi][Ri] = 1

Active[Pi] = 0

end

DFlag[Pi][Ri] = 0

Active[Pi]−= 1 Ri+= 1

end

Pi+= 1

end

return (Active[Pi])

Why PSO is selected for finding the probability of page update in container migra-

tion. There are several reasons behind the selection. As compared to the other genetic

algorithm, the PSO outperforms [89]. In Comparison to GA, PSO maintains a constant

situation when locating the best solution. There is no need to incorporate population

destruction procedures (like with genetic algorithms, which destroy populations that

have saturated after a specific number of iterations to increase their accuracy) because

PSO can obtain optimum solutions under a variety of scenarios. It produces the optimal

46

solution every time with the complexity of O(n). With more variables and constraints,

the number of iterations required will increase, but PSO can handle the same with few

iterations [90]. No additional technique is needed to produce an optimal solution. Fur-

thermore, the process of PSO is suitable for using the updation rate of pages as input to

the algorithm to find the final set of pages.

The parameters used in this algorithm are as: Pi = 0 and Ri = 1 is used to select the

page from memory pool, Rmax is the maximum number of iterations and DFlag is used

for dirty bits. According to the selected memory pool, the 0 ≤Pi ≤ 5 and0≤Ri ≤Rmax

and Rmax = 5.

Algorithm 2 Pseudo code to get the update rate of pages
Result: Updation Rate of page Pi

Pdb = 0,Rmax = 10

while Ri ≤ Rmax do

if DFlag[Pi][Ri]1 then
Pdb+= 1

end

Ri+= 1

end

return (Pdb/Rmax)

The dirty bits rate of memory pages is also taken into consideration. It will be de-

cided based on the probability of a page becoming modified, whether a page is included

in a dump or not, and it will be decided at the initial state of the migration process called

a pre-dump phase. Algorithm 2 is used to get the rate of update of every page belonging

to a container with a unique id. Pdb is the number of dirty bits, Rmax is the maximum

number of rounds, Pi is the page number and Ri is the ith iteration.

One way to finalize the checkpoint with a pool of memory pages to migrate to

the destination host is done with the help of Algorithm 3. The SPool[] is the pool of

shortlisted pages for transmission, and the pool of pages that are to be discarded are in

DPool[]. To enhance the performance, the probability-based PSO is chosen.

47

Algorithm 3 Pre dump checkpoint
Result: Final set of memory pages to be migrated

Access the memory pool of container Get the read write status of every memory page

while Mpool do

if UR(Pi)≤ threshold||Active(Pi) then
SPool.append(Pi) ▷ Page will be added to Send pool

else
DPool.append(Pi) ▷ Page will be added to Discard pool

end

end

Transfer the Spool[] to the destination host.

3.4.4 Probability-based Particle Swarm Optimization

A particular swarm consists of a certain number of particles within the PSO algorithm.

At every iteration, all particles move with a certain speed to locate the global optimum

in the N-dimensional problem field and i (1...N), where Dn
i is the vector at iteration n.

Figure 3.4: The step wise process of particle swarm optimization to achieve a optimal

solution

vn+1
i = wvn

i + c1r1(Bn
i −Dn

i)+ c2r2(Bn
g −Dn

i) (3.1)

48

Table 3.1: Symbols and letters

Symbol Description

Bn
i Local best position of ith particle at iteration n.

Bn
g Global best position of all the particles at iteration

n.

r1 and r2 are random numbers between 0 and 1.

w The inertia weight.

c1 and

c2

Constant cognitive confidence coefficient num-

bers.

Dn
i indicates the particle orientation at iteration n.

V n
i indicates the velocity of the vector at iteration n.

R1 and

R2

Matrices for the representation of random num-

bers and updation rate ranging from 0 to 1.

⊖ Subtraction from the matrix.

⊕ refers to the addition of matrices.

× Multiplication of the elements.

⊗ Modified matrix multiplication, where the values

over 1 are set to 1 .

Dn+1
i = Dn

i + vn+1
i (3.2)

Particle’s Representation

Usually, the feasible solution is immediately shown as a particle Di that can be mod-

ified according to Equation (3.1) while solving continuous optimization problems in

Equation (3.2). However, it is mainly pointless to upgrade a viable solution to discrete

problems until we have a possible solution. In other words, the main point is the relation

to the solution of the problem between particles. In this process, the memory pages are

represented as particles. Sequencing problems can be considered most discrete, and the

planning problem for a five-activity 1,2,3,4,5 can be called a five-component sequence

problem.

49

A permutation consists of such fundamental elements such as (1,2,3,4,5) permu-

tation, composed of essential elements (1,2),(2,3),(3,4) and (4,5) and each basic ele-

ment is called sub-permutation. Any relatively strong sub-permutations must be a supe-

rior permutation. The permutation is designed with two-dimensional arrays called the

adjacency matrix. In this matrix, the elements fit the sub-mutations set at 1. The other

elements are set at 0 to classify these successful sub-permutations according to Equa-

tion (3.1), Two examples of adjacent matrices that represent permutations are present:

The representation of (1,2,3,4,5) is :

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

(3.3)

and (2, 3, 1, 4, 5) can be described as

Dn
i =

0 0 0 1 0

0 0 1 0 0

1 0 0 0 0

0 0 0 0 1

0 0 0 0 0

(3.4)

In above adjacent matrix, where the equation a i, j = 1,

The number ′i′ is above the number ′ j′ and adjacent to the element’s permutation. The

location of the particle in our algorithm is a (0,1) in the adjacent matrix, that is a per-

mutation.

Operator Notation and Definitions

A matrix is used as a representation of both location and velocity, therefore operators

in Equation(3.1) and Equation (3.2) are redefined.

vn+1
i = wV n

i ⊕ c1 ⊗R1 × (Bn
i ⊖Dn

i)⊕ c2 ⊗R2 × (Bn
g ⊖Dn

i) (3.5)

50

BDn
i = fp(Dn

i) (3.6)

BDn+1
i = BDn

i ⊕V n+1
i (3.7)

Dn+1
i = fs(BDn+1

i) (3.8)

Where the Dn
i indicates the particle orientation at iteration n and the V n

i indicates the

velocity of the vector at iteration n. Bn
i is the best location at the ith portion at iteration

n, and Bn
g is the best global position at nth iteration for all of the particles. Dn

i , Bn
i and

Bn
gd are all matrices that fit their permutations, which are (0,1). R1 and R2 matrices

are the same sizes as Di for the representation of random numbers and updation rate

ranging from 0 to 1. w is considered the weight of inertia which has a value from 0 to 1.

c1 and c2 are constant numbers and cognitive trust coefficients. The ′⊖′ symbol implies

subtraction from the matrix to the negative elements in the resulting subtraction. The

symbol ′⊕′ refers to the addition of matrices, with the addition product of all elements

larger than 1 set to 1. The symbol ′×′ refers to a multiplication of the elements of each

matrix. There are two same-sized matrices, A and B. If A and B are identically sized,

then A×B is also identical in size with elements as respective A and B. The symbol ′⊗′

is used to denote a modified multiplication. c is a real integer, and then c ⊗ A implies

that all elements of matrix A are multiplied by c, and the values over 1 are set to 1.

The explanation for separating one permutation set from the other is its sub-permutation.

Consequently, a good permutation set must contain good and non-existent permutations

in other permutations. Probability coefficient selection approach has been developed

based on the above concepts. The basic principle is to produce new permutations based

on the specification of probabilities and to pick those successful sub-permutations. Us-

ing the PSO algorithm to locate these relatively strong sub-permutations and make them

more likely to be chosen for new permutations. According to Equation (3.8), V n+1
i in-

corporates three components of the vector of transfer probability: wV n
i ,c1⊗R1× (Bn

i ⊖

Dn
i), and c2 ⊗R2 × (Bn

g ⊖Dn
i).wV n

i is used to assess to what degree the old svelocity V n
i

51

specifies the current velocity V n+1
i . Typically w=0.9 and c1 and c2 are both learning

variables to monitor the impact on new velocity of local knowledge and global expe-

rience. They are normally set to 1. Bn
i ⊖Dn

i is used in the best positionBn
i . Bn

g ⊖Dn
i is

used in the global best place to locate the special sub mutations Bn
g but not in the single

Dn.An example is provided in Equations (3.2), (3.5), (3.6), (3.7), and (3.8). Let Dn
i be

the matrix of representing the permutation of (1,2,3,4,5) .

Dn
i =

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

(3.9)

and Bn
i is a matrix representing the permutation of (2,3,1,4,5).

Bn
i =

0 0 0 1 0

0 0 1 0 0

1 0 0 0 0

0 0 0 0 1

0 0 0 0 0

(3.10)

Then results show that the sub-permutations (3,1) and (1,4) are unique for Bn
i com-

pared with Dn
i .

Bn
i ⊖Dn

i =

0 0 0 1 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

(3.11)

These are the random numbers represented in the range between 0 to 1 as matrix R1.

52

0.3 0.3 0.3 0.5 0.4

0.8 0.6 0.4 0.6 0.6

0.6 0.4 0.6 0.3 0.5

0.9 0.5 0.6 0.8 0.9

0.6 0.3 0.9 0.4 0.3

(3.12)

In comparison to R1, the binary matrix is transformed by c1 ⊗R1 × (Bn
i ⊖Dn

i) and

V n
i =

0 0 0 0.5 0

0 0 0 0 0

0.6 0 0 0 0

0 0 0 0 0

0 0 0 0 0

(3.13)

The elements are highlighted in the matrix of sub-permutations (3,1) and (1,4),

increasing the probability of being selected in the new permutation. Probability coef-

ficients produce new particles. The main PSO concept requires considering the cur-

rent position and velocity to update the selection probability coefficients. Therefore,Dn
i

transform to a matrix of probability coefficients. The BDi is defined in Equation (3.6)

as an Dn
i matrix extracted from the Dn

i by the f (p) function. According to the following

rules, f (p) can be freely constructed by ensuring that the BDn
i elements corresponding

to the Dn
i elements have a strong probability and meaning the elements in BDn

i that can-

not be used to make a selection is 0.

Process 1: Pages shortlisted based on threshold

It corresponds to the same set of memory pages; the updation rate of pages is recorded

using Algorithm 2 and represented in the form of the same size matrix as R2.

53

0.8148 0.4821 0.0561 0.5682 0.0708

0.2857 0.5572 0.3868 0.5357 0.9968

0.9176 0.5387 0.0902 0.5562 0.9342

0.7294 0.7655 0.0884 0.4895 0.2468

0.9704 0.2687 0.8507 0.8149 0.4830

(3.14)

If the page updation rate is more than the threshold value, then the page represented as

the particle is replaced with value 0 in the BDn
i and 1 in the corresponding matrix Dn+1

i

based on the applied threshold value (0.8). It is tested on three threshold levels (0.6,

0.7, and 0.8).

BDn
i =

0 0.4821 0.0561 0.5682 0.0708

0.2857 0.5572 0.3868 0.5357 0

0 0.5387 0.0902 0.5562 0

0.7294 0.7655 0.0884 0.4895 0.2468

0 0.2687 0 0 0.4830

(3.15)

Dn+1
i =

1 0 0 0 0

0 0 0 0 1

1 0 0 0 1

0 0 0 0 0

1 0 1 1 0

(3.16)

The Dn+1
i is used as the first set of shortlisted pages to be discarded from the pre-

dump.

Process 2: Shortlist pages based on PSO

In addition to process 1, now the PSO-based selection method is discussed. Now Dn
i

starts with a permutation of(1, 2, 3, 4, 5) in the corresponding matrix.

54

Dn
i =

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

(3.17)

And the BDn
i is used with the same updation rate as in process 1. The outcome of

process 1 as an input to this process 2.

0.8148 0.4821 0.0561 0.5682 0.0708

0.2857 0.5572 0.3868 0.5357 0.9968

0.9176 0.5387 0.0902 0.5562 0.9342

0.7294 0.7655 0.0884 0.4895 0.2468

0.9704 0.2687 0.8507 0.8149 0.4830

(3.18)

Then, except for the items corresponding to an element in the Dn
i , and divide each

element by 1000. The diagonal elements in Dn
i are set to 0 because they are not equal,

and the corresponding elements in BDn
i cannot be used.

While considering the current position and velocity, the probability coefficient ma-

trix is modified as per the following.

V n+1
i =

0 0 0 0.5 0

0 0 0 0 0

0.6 0 0 0 0

0 0 0 0 0

0 0 0 0 0

(3.19)

then BDn+1
i = BDn

i ⊕V n+1
i is modified and represented as

BDn+1
i =

0.0008 0.4821 0.0001 0.5006 0.0001

0.0003 0.0005 0.3868 0.0005 0.0008

0.6009 0.0005 0.0001 0.5562 0.0008

0.0007 0.0008 0.0001 0.0005 0.2468

0.0008 0.0003 0.0008 0.0008 0.0005

(3.20)

55

Here in this equation, (BDn+1) this operation for the probability collection was

defined, which selects and sets the right elements in one Dn+1
i according to the given

probability coefficients in BDn+1
i . If an element in BDn+1

i is of a larger coefficient

probability value, the selection procedure shall follow the rule that the element with the

same index in Dn+1
i is more likely to be chosen and set to 1. so, for the new permutation,

the adjacency matrix is inserted and decoded.

3.4.5 Probability Coefficients-based Selection Method

The selection of probability coefficients can also split optimal conditions to find better

solutions. The selection process is outlined below:

• Step 1: Set Dn+1
i to 0.

• Step 2: choose a row based on the maximum number of elements of probability

BDn+1.

• Step 3: The relevant element in BDn + 1i is used, and from a row, a single ele-

ment is chosen randomly. selection based on elements with higher coefficients of

chance is more likely to be picked.

• Step 4: The selection is set to 1 and BDn+1 id to 0 with the corresponding so-

called contrasting elements. Three kinds of contrary elements exist:

1. Elements from same row

2. elements from same column

3. elements without complete permutation

• Step 5: jump to step 2 if the exit condition is not satisfied.

• step 6: Union of Process 1 and Process 2 are represented together.

Let’s start with Process 2:

56

BDn+1
i =

0 0.4821 0.0001 0.5006 0.0001

0.0003 0 0.3868 0.0005 0.0008

0.6009 0.0005 0 0.5562 0.0008

0.0007 0.0008 0.0001 0 0.2468

0.0008 0.0003 0.0008 0.0008 0

(3.21)

Dn+1
i =

1 0 0 0 0

0 0 0 0 1

1 0 0 0 1

0 0 0 0 0

1 0 1 1 0

(3.22)

The components in a row of (0.6009,0.0005,0,0.5562,0.0008) are used as coef-

ficients according to Process 2 as it comprises the most significant discrete dynamics

within the existence of the matrix of 5 values. Pick a column randomly depending on the

coefficients for each element except for the third element whose coefficients are equal

to zero, so it is decided by applying the selection policy. However, specific components

with higher probability coefficients are more likely to be picked and the first element

has been chosen. In this case, that particle is already set to 1, so there is no change in

the corresponding matrix. It is demonstrated through the example given below:

Dn+1
i =

1 0 0 0 0

0 0 0 0 1

1 0 0 0 1

0 0 0 0 0

1 0 1 1 0

(3.23)

and

57

BDn+1
i =

0 0.4821 0.0001 0.5006 0.0001

0 0 0.3868 0.0005 0.0010

0 0 0 0 0

0 0.0008 0.0001 0 0.2468

0 0.0003 0.0009 0.0008 0

(3.24)

The element BDn+1
i that is (1,3) is set to 0, according to section 3.4.5, step4 with

condition: iii). then, (0,0.4821,0.0001,0.5006,0.0001) fourth element is selected from

these coefficients. Then,

Dn+1
i =

1 0 0 1 0

0 0 0 0 1

1 0 0 0 1

0 0 0 0 0

1 0 1 1 0

(3.25)

and

BDn+1
i =

0 0 0 0 0

0 0 0.3868 0 0.0010

0 0 0 0 0

0 0.0008 0.0001 0 0.2468

0 0.0003 0.0009 0 0

(3.26)

BDn+1
i , (4,3) = 0, in that case, the permutation (3,1,4,3) would be created if the

matching element in Dn+1
i is chosen to 1.

In the next step, the second row is picked and used as a weight to select a particle

((0,0,0.3868,0,0.00010)) from the second row, and the third column is selected. Then,

58

Dn+1
i =

1 0 0 1 0

0 0 1 0 1

1 0 0 0 1

0 0 0 0 0

1 0 1 1 0

(3.27)

and

BDn+1
i =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0.0008 0 0 0.2468

0 0.0003 0 0 0

(3.28)

Next,(0,0.0008,0,0,0.2468) and fourth row and fifth column is selected. Then,

Dn+1
i =

1 0 0 1 0

0 0 0 0 1

1 0 0 0 1

0 0 0 0 1

1 0 1 1 0

(3.29)

and

BDn+1
i =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0.0003 0 0 0

(3.30)

and the whole 0-1 adjacency matrix is generated, and the new permutation is (2, 3,

1, 4, 5) based on the adjacency matrix of (0-1).

59

1 0 0 1 0

0 0 0 0 1

1 0 0 0 1

0 0 0 0 1

1 0 1 1 0

(3.31)

The probability-based PSO is used to identify the active set of pages to discard them

from the pre-dump because such pages have a strong possibility of change soon. In ma-

trix 18, this is an updation rate of pages. Now, the basis of threshold level applied to

(0.6,0.7 and 0.8) the pages will be discarded from pre-dump. All the pages represented

with 1 will be discarded in the final matrix. Whatever the sub-permutation shown by

probability-based PSO and the pages shortlisted by updation rate, the union of both will

be used as the final result.

3.5 Experimental Evaluation

The proposed system is implemented and tested with container-cloudsim 4.0 and LSTM

libraries in Eclipse. The implementation primarily focuses on the identification of mem-

ory pages related to the container and their read/write status. Pages are shortlisted to be

migrated with the help of a probability-based PSO prediction scheme.

The performance depends on the total number of pages transferred. In the worst-

case scenario, all the memory pages related to the container will be sent. The pre-dump

time is the time taken to migrate the shortlisted pages in phase 1 depending on the size

of the container, type of container application, and the kind of workload handled by

the container. In such a case, the prediction method can be an extra overhead on CPU

usage, but this overhead will not affect the cost over the network, which is our prime

objective. Furthermore, this additional overhead will not affect the dump time because

this is done in the preliminary phase of container migration, and the overhead impacts

the processing unit only. Moreover, dirty page rate and network bandwidth consump-

tion are some other parameters.

Before transferring the memory dump to the destination host during the migration pro-

cess. To check the dirty bits or read/write operation status on the running container is

60

possible within the last few minutes of execution of the container file system. It pro-

vides the details like the number of pages currently active and the modification rate of

pages.

3.5.1 Results and Discussions

The pre-dump checkpoint, as mentioned in Algorithm 3 for pre-dump migration, is im-

plemented with different scenarios based on the threshold of updating rate. Then, three

threshold levels are implemented (60%, 70%, and 80%), and each threshold level is

tested on three different sets of containers (5 containers, 10 containers, and 15 contain-

ers). The number of pages in send pool varies with the threshold value. Considering a

page in send pool only if it is modified upto the threshold level. The final set of pages

are selected through Algorithm 3 and the probability-based PSO.

The purpose of constructing such a scenario with varying threshold values is to

determine the average performance of approaches with variable update rates. This help

to identify the actual performance with different test cases. If a page has been modified

to the threshold level, and consider it inactive mode. The restriction is set to 60% at the

threshold level of 0.6. Additionally, at threshold level 0.7, the limit for identifying the

current page will be set to 70%, and similarly at threshold level 0.8.

In addition, each set of containers is tested with 5 test cases. The results of these mi-

grations have four parameters (Number of Containers, Test Cases, standard Pre-dump

Size, and Pre-Dump Size with probability-based PSO). In Figure 3.5 three sets of con-

tainers (5, 10 and 15 containers) are first implemented with threshold 0.6 (up to 60%

update). Test cases 1 to 5 are tested with 5 containers, 6-10 with 10 containers, and

11-15 with 15 containers. In the first set of 5 containers, the actual pre-dump size is

the same as 4367B in all the test cases because all the pages will be migrated to the

destination host in the standard approach. With the proposed technique, the migrated

data reduced by 34.74%. Furthermore, in 10 containers, the actual pre-dump size is

8176B, and with the proposed technique, the migrated data reduced by 33.89%. In 15

containers, the actual pre-dump size is 12387B, and with the proposed technique, the

migrated data reduced by 35.27%. The proposed technique improves the performance

with a huge difference and minimizes the requirement of resources over the network.

61

Table 3.2: The size of pre-dump using probability-based PSO with threshold level 60%

Containers Test Cases Pre-dump Size Pre-dump Size with Proposed Technique

1 4367 2848

2 4367 2876

5 3 4367 2950

4 4367 2742

5 4367 2833

1 8176 5340

2 8176 5312

10 3 8176 5462

4 8176 5575

5 8176 5335

1 12387 7818

2 12387 8157

15 3 12387 8226

4 12387 7998

5 12387 7890

The average of all the test cases with a threshold level of 0.6 is mentioned in Table

3.3. The difference in data migrated in both the approaches is evident in Figure 3.6.

Therefore the average of 5 containers is 2849.8B, 10 containers are 5404.8B, and 15

containers is 8017.8B.

Further in Figure 3.7 again, the same three sets of containers are implemented with a

threshold of 0.7 (up to 70% update). In the first set of 5 containers, the probability-based

PSO pre-dump size is (3251, 3175, 3133, 3215, 3163) with an average of 3187.4B, but

Table 3.3: The average size of different set of containers in pre-dump with threshold

level 60%

Threshold 0.6 5 Containers 10 Containers 15 Containers

Data Migrated with Proposed Technique 2849.8 5404.8 8017.8

Standard Migration Technique 4367 8176 12387

62

 2000

 4000

 6000

 8000

 10000

 12000

 0 2 4 6 8 10 12 14 16

M
em

or
y

(B
yt

e)

Test cases

Standard scheme
Proposed Scheme

Data Transfer During Pre-dump

Figure 3.5: The size of pre-dump using probability-based PSO with threshold level 60%

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Batch 5 Batch 10 Batch 15

M
em

or
y(

by
te

s)

Containers

Standard
Proposed

Average of Threshold level 60%

Figure 3.6: The average size of different set of containers in pre-dump with threshold

level 60%

63

Table 3.4: The size of pre-dump using probability-based PSO with threshold level 70%

Containers Test Cases Pre-dump Size Pre-dump Size with Proposed Technique

1 4367 3251

2 4367 3175

5 3 4367 3133

4 4367 3215

5 4367 3163

1 8176 5991

2 8176 5862

10 3 8176 6170

4 8176 5936

5 8176 6243

1 12387 9079

2 12387 8940

15 3 12387 8667

4 12387 9118

5 12387 8814

Table 3.5: The average size of different set of containers in pre-dump with threshold

level 70%

Threshold 0.7 5 Containers 10 Containers 15 Containers

Data Migrated with Proposed Technique 3187.4 6040.4 8923.6

Standard Migration Technique 4367 8176 12387

in the standard approach, this size is 4367B. Now, with the proposed technique, the

migrated data reduced by 27.01%. Therefore, in a set of 10 containers, the proposed

pre-dump size is 6040.4B, and the actual was 8176B which is reduced by 26.12%. In

the group of 15 containers, the actual pre-dump size is 12387B, and the proposed tech-

nique is 8923.6, which 27.9% reduces.

The average of all the test cases with a threshold level of 0.7 is mentioned in Table

3.5. The difference in data migrated in both the approaches is apparent in Figure 3.8.

Therefore, the average of 5 containers is 2187.4B, 10 containers are 3978.4B, and 15

containers are 6534.2B.

64

 2000

 4000

 6000

 8000

 10000

 12000

 0 2 4 6 8 10 12 14 16

M
em

or
y

(B
yt

e)

Test cases

Standard scheme
Proposed Scheme

Data Transfer During Pre-dump

Figure 3.7: The size of pre-dump using probability-based PSO with threshold level 70%

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Batch 5 Batch 10 Batch 15

M
em

or
y(

by
te

s)

Containers

Standard
Proposed

Average of Threshold level 70%

Figure 3.8: The average size of different set of containers in pre-dump with threshold

level 70%

65

Table 3.6: The size of pre-dump using probability-based PSO with threshold level 80%

Containers Test Cases Pre-dump Size Pre-dump Size with Proposed Technique

1 4367 3654

2 4367 3457

5 3 4367 3316

4 4367 3723

5 4367 3765

1 8176 6573

2 8176 6842

10 3 8176 6588

4 8176 7146

5 8176 6816

1 12387 10063

2 12387 9996

15 3 12387 10231

4 12387 10128

5 12387 10482

Table 3.7: The average size of different set of containers in pre-dump with threshold

level 80%

Threshold 0.8 5 Containers 10 Containers 15 Containers

Data Migrated with Proposed Technique 3583 6793 10180

Standard Migration Technique 4367 8176 12387

Furthermore, in figure 3.9 again, the same three sets of containers are implemented

with a threshold of 0.8. In the first set of 5 containers, the probability-based PSO pre-

dump size is (3654, 3457, 3316, 3723, 3765) with an average of 3583B, but in the

standard approach, it is 4367B. With the proposed technique, it is reduced by 17.95%.

Therefore, in a set of 10 containers, the proposed pre-dump size is 6793B which orig-

inally was 8176B but got reduced by 16.91%. In the set of 15 containers, the actual

pre-dump size is 12387B, and the proposed technique is 10180B which is reduced by

17.81%.

The average of all the test cases with a threshold level of 0.8 is mentioned in Ta-

66

 2000

 4000

 6000

 8000

 10000

 12000

 0 2 4 6 8 10 12 14 16

M
em

or
y

(B
yt

e)

Test cases

Standard scheme
Proposed Scheme

Data Transfer During Pre-dump

Figure 3.9: The size of pre-dump using probability-based PSO with threshold level 80%

Table 3.8: The average amount of data transfer in all set of container migration with

various threshold levels

Average 5 Containers 10 Containers 15 Containers

Data Migrated after probability-based PSO 3206.7 6079.4 9040.5

Standard Migration Technique 4367 8176 12387

ble 3.7. The difference in data migrated in both the approaches is evident in Figure

3.10. Therefore, the average of 5 containers is 3206.7B, 6079.4B for 10 containers, and

9040.5B for 15 containers.

The overall performance of probability-based PSO is discussed in Table 3.8 and

shown in Figure 3.11. To reiterate, it can be concluded that the present study started

with the status of pages related to containers. Then, the observations were focused on

two main parameters; whether a page is currently active or not and the update rate.

The sending pool and non-sending pools are finalized based on these two parameters.

The probability-based PSO is designed to improve further the results, which provides

an accurate set of pages to be migrated. Further, each page is represented in the form

of a particle, to use the updation rate of pages instead of random numbers with this

algorithm. If the particle is 1, it means that the page will be migrated, and if the particle

67

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Batch 5 Batch 10 Batch 15

M
em

or
y(

by
te

s)

Containers

Standard
Proposed

Average of Threshold level 80%

Figure 3.10: The average size of different set of containers in pre-dump with threshold

level 80%

is 0, it will not be sent to the destination in the current phase. This process is repeated

for every single container and to all its memory pages.

Now, compare the pre-dump size of all the sets of containers in various container

migration techniques such as cold migration, pre-copy migration, post-copy migration,

Hybrid migration, and VM migration technique with the proposed pre-copy migration

technique. The result shows that in the case of cold migration and post-copy migra-

tion schemes, they are not participating in pre-dump because no data is dumped in the

pre-dump phase. In post-copy methods, the dump will be started after the container is

migrated to the host, and in cold migration, the container stops at the source, and then

the complete dump is migrated to the destination. In Figure 3.12, a comparison of the

amount of data transferred after the pre-dump phase of migration with four migration

schemes where VM is tested with the batch of 5 and pre-copy (LXD/CR), hybrid tech-

nique, and proposed pre-copy technique with probability-based PSO is implemented

in the batch of 5,10 and 15 containers. Compared to container migration techniques,

VM is sending a large amount of data. Where in containers, the maximum data is mi-

grated in the case of hybrid. The dump also migrates the container state. Moreover, the

pre-copy is the second-largest pre-dump size because it transfers the complete dump.

However, in the proposed pre-copy, the pre-dump size is smaller compared to other

methods because it sends the shortlisted pages according to the probability-based PSO.

68

 2000

 4000

 6000

 8000

 10000

 12000

 0 2 4 6 8 10 12 14 16

M
em

or
y

(B
yt

e)

Test cases

Threshold 0.6
Threshold 0.6
Threshold 0.8

Data Transfer During Pre-dump

Figure 3.11: Comparison of pre-dump size with all the threshold level 60%, 70% and

80% with 5 test cases of each batch (5,10 and 15 containers).

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

VM Pre-copy Hybrid Proposed

M
em

or
y

(B
yt

e)

Batch 5
Batch 10
Batch 15

Amount of Data Transferred

Figure 3.12: Comparison of amount of data transferred after the per-dump phase of

migration with four migration schemes where VM is tested with the batch of 5 and

pre-copy (LXD/CR) , hybrid technique and proposed pre-copy technique with PSO are

implemented in the batch of 5,10 and 15 containers.

69

The remaining pages are migrated in the next phases before the container stops at the

destination host.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

VM Pre-copy Hybrid Proposed

T
im

e
(S

ec
)

Batch 5
Batch 10
Batch 15

Migration Time

Figure 3.13: Time taken to migrate pre-dump is compared with four migration schemes

where VM is tested with the batch of 5 and pre-copy (LXD/CR) , hybrid technique and

proposed pre-copy technique with probability-based PSO are implemented in the batch

of 5,10 and 15 containers.

The most important factor affecting the performance of the container migration pro-

cess is the time to migrate to the destination host. Here, pre-dump time is discussed

which further affects the overall time. In Figure 3.13, the time taken to migrate pre-

dump is compared with four migration schemes where VM is tested with the batch

of 5 and pre-copy (LXD/CR), hybrid technique and proposed pre-copy technique with

probability-based PSO are implemented in the batch of 5,10 and 15 containers. In the

case of cold migration and post-copy migration, no data is dumped in the pre-dump

phase, and the time taken is zero. As in post-copy methods, the dump will start after the

container is migrated to the host. The maximum time is taken in the case of VM and

from container schemes the hybrid approach because with the complete dump, it also

migrated the container state, which takes more time over the network. Additionally, the

pre-copy is in third place in terms of pre-dump time because it transfers the complete

dump. In contrast, in the proposed pre-copy, the pre-dump time is shorter than other

70

 50

 100

 150

 200

 250

 300

VM Pre-copy Hybrid Proposed

T
im

e
(m

se
c)

Batch 5
Batch 10
Batch 15

Downtime

Figure 3.14: Downtime comparison of four migration schemes where VM is tested

with the batch of 5 and pre-copy (LXD/CR) , hybrid technique and proposed pre-copy

technique with probability-based PSO are implemented in the batch of 5,10 and 15

containers.

methods because it sends the shortlisted pages due to the small pre-dump size using

probability-based PSO.

The probability-based proposed scheme outperforms in the case of migration time

and size of pre-dump. As shown in Figure 3.14, the downtime of the overall migration

process is reduced. Of course, the downtime will be more in the case of VM. But in

container migration techniques, the proposed migrations techniques have less down-

time, which is very close to the hybrid scheme.

3.6 Summary

The evolution of containers in cloud computing has changed the industry trends towards

lightweight virtualization. There are various improved versions of migration techniques

for containers. Yet, the migration phase is used in the same standard approach in the pre-

dump phase. All the memory pages related to the container are sent to the destination

host. This is a primary objective to reduce the data transmission during this phase.

We can achieve a reduction in pre-dump size. In the standard approach, if we migrate

71

a set of 5 containers to the destination host, then 4367 B is transmitted, but in the

proposed approach, it is reduced to 3206.7B approximately. In the same way, in the set

of 10 containers, it was 8176B, which is now reduced to 6079.4B, and in the set of 15

containers where it was 12387B, now it is just 9040.5B.

Probability-based PSO reduced the size of the pre-dump phase, which led to less mi-

gration time, minimized the data transfer over the network, and minimized the resource

requirement. Compared to the standard pre-dump migration technique of container

migration, the proposed pre-dump technique outperforms with a 26.48% reduction in

pre-dump size. In the future, this technique can be used in the next phases of container

migration to minimize the overall dump size.

72

CHAPTER 4

A PREDICTIVE CHECKPOINT

TECHNIQUE FOR ITERATIVE PHASE

OF CONTAINER MIGRATION

Containers are lightweight virtual environments that share the host operating system’s

kernel. Containerized services are essential for reducing data transmission, cost, and

time, among other things. The primary factor affecting the performance is the amount of

data transferred over the network. It has a direct impact on migration time, downtime,

and cost. This chapter presenting a predictive iterative-dump approach using LSTM to

anticipate which memory pages will be moved by limiting data transmission during the

iterative phase. In each loop, the pages are shortlisted to be migrated to the destination

host based on predictive analysis of memory alterations. Dirty pages will be predicted

and discarded using a prediction technique based on the alteration rate. The results

show that the suggested approach surpasses existing alternatives in overall migration

time and amount of data transmitted. There is 49.42% decrease in migrations time and

31.04% reduction in the amount of data transferred during the iterative phase1.

1This chapter is derived from:

Gursharan Singh, Parminder Singh, Mustapha Hedabou, Mehedi Masud, and Sultan S. Alshamrani. "A

Predictive Checkpoint Technique for Iterative Phase of Container Migration." Sustainability 14, no. 11

(2022): 6538.

73

4.1 Introduction

Cloud computing is a cost-effective method of delivering numerous services in Industry

4.0. The demand for dynamic cloud services is rising day by day, and because of this,

data transit across the network is extensive. Virtualization is a significant component,

and the cloud servers might be physical or virtual. The majority of businesses are

transitioning from virtual machines to containers [91].

Since software emulates components of a system, virtual machines have long been

the primary means of delivering virtualization in the industrial Internet of Things (IIoT).

Virtualization permits activities to be performed in isolated environments, allowing for

greater consistency because an emulation abstracts the entire underlying system [6].

Containers have emerged as a viable alternative to virtual machines in the past few

years [92]. Containers existed previously, but they witnessed a significant surge in

popularity when the container framework Docker was introduced in 2013. Docker in-

troduced capabilities that allowed users to quickly construct, distribute, and build upon

each other’s containers, which helped their growth since users could utilize pre-existing

containers [93].

Containers are frequently viewed as lightweight virtual computers with short boot

times and low resource consumption [8]. One significant reason for this is that con-

tainers, unlike virtual machines, run on the host machine’s kernel, as shown in Figure

1.1. This is advantageous in multi-tenant cloud providers and data centers since each

bare-metal system is likely to run more instances, and instances may be launched or

restarted more effectively, resulting in a much higher quality of service [94]. Migra-

tion is a critical technique in the context of virtual machines and containers [9]. The

process of moving an instance of a container that is running across hosts is known as

migration [10]. Depending upon the nature of the task or according to the customer’s

demands, a container migration can be live or non-live. While moving an instance, live

migration means the user is unaware of this migration. The state of the container is mi-

grated before the container migration [12]. This technology is critical in various virtu-

alized settings because it allows instances of virtual machines or containers to be trans-

ferred across hosts while retaining state, enabling effective load balancing and more

(https://www.mdpi.com/2071-1050/14/11/6538)

74

https://www.mdpi.com/2071-1050/14/11/6538

straightforward maintenance with minimum impact [95].

subsectionLong Short-Term Memory

Long short-term memory networks are used to learn order dependence in sequence

prediction tasks [96]. This has been shown to overcome the Recurrent Neural Network

(RNN)’s vanishing gradient constraints [97]. LSTM is ideally suited to forecasting

time series data because of its capability. The LSTM network comprises a series of

interconnected LSTM units/cells.

The cell state, shown as dotted lines in Figure 4.1, is the most significant component

of the LSTM because the data from the gates is retained. The LSTM is divided into

three layers known as gates: forget, input and output. The forget gate decides whether

the data coming from a previous timestamp is relevant to remember or appropriate to

forget. The input gate tries to learn and provide new data to the cell. The third is the

output gate, which passes the data for the current cycle to the next timestamp.

Figure 4.1: Architecture of long short-term memory [3].

LSTM has a hidden state as well, where h(t − 1) represents the hidden state of

the previous iteration and h(t) provides the hidden state of the current iteration. Both

these handle “short-term memory”. In the same way, the cell state of the previous

iteration is C(t − 1) and for the current iteration is C(t). The cell states handle “long-

term memory”.The unit processes the input data for each input vector to the LSTM

network as follows:

1. A new vector will be created by adding the ht−1 (hidden state vector) and the xt

75

(input vector). The newly created vector will be input to the tanh function and

the three gates.

2. The flow of previously stored cell states is regulated by the forget gate:

ft = sig(Wh f ∗ht−1 + xt ∗Wx f +b f)

where Wh f is the weight of the previous hidden state ht−1 and Wx f is the weight

of the input. xt is the input at timestamp t and b f is the bias parameter. Further,

by applying a sigmoid function, the ft ranges between 0 and 1. If ft = 0, then

forget everything and if ft = 1 that means forget nothing.

3. The input gate quantifies the data from input:

it = sig(Whi ∗ht−1 + xt ∗Wxi ∗bi)

where, Whi is the weight of input for the hidden state ht−1 and Wxi is the weight of

the input. xt is the input at timestamp t. The sigmoid function manages the input

value between 0 and 1.

4. The new data needs to be passed to the cell state:

Nt = tahn(Whc ∗ht−1 + xt ∗Wxc +bc)

Here, the activation function is tahn, which manage the value of Nt between −1

to 1. If it is positive, then data will be added to the cell state, and if negative, the

data is discarded from Ct .

5. The final calculated Ct is:

Ct = ft ∗Ct−1 + it ∗Nt

6. The output gate determines how much Ct is passed to the next cell. The hidden

state ht is calculated as follows:

ot = sig(Wo ∗ht−1 + xt ∗bo))

ht = ot ∗ tanh(Ct)

The output gate is further subdivided. The sigmoid function is applied to the filter

h(t−1), h(t), and these are used to scale the values of the vector generated from the tanh

cell, which manages the values from −1 to 1. Then, the product of the filter mentioned

above and the vector is the output state for the next cell state.

Various migration techniques has been surveyed and pointed out their advantages

and disadvantages [82].

76

1. The pre-copy migration technique is chosen to perform live migration. It is pre-

ferred for live container migration, but the factor affecting its performance is the

amount of data transferred in the iterative dump. The proposed work is carried

out in the iterative phase only. The pre-dump phase is discussed in our previous

research paper.

2. A predictive container migration technique is proposed for the iterative dump to

minimize the data transfer over the network.

3. A prediction model is designed and implemented with LSTM.

4. Consideration of experimental results implemented in different scenarios and

compared with other migration techniques shows that the proposed system out-

performs other techniques.

The rest of the chapter is organized as follows: Section 4.2 describes the literature

review and the research gap. The problem identification, along with the main objective

of the study, is discussed in Section 4.3. The tools and techniques used in the proposed

system and the prediction model using LSTM are discussed in Section 4.4. In Section

4.5, the evaluation of the system model is elaborated in detail and concluded in Section

4.6.

4.2 Related work

The live migration of containers is prevalent, and challenges also arise with the increas-

ing popularity and broad adoption. The container’s size is already smaller than virtual

machines, but containers’ performance can still be enhanced further. The most influ-

ential factor is the data migration over the network, which directly affects the cost and

performance of container migrations in a lightweight environment. There are several

techniques proposed to minimize the dump size.

C Puliafito et al. [15] have carried out a detailed evaluation of various migration

techniques under four parameters like total migration time, downtime, dump-time, and

amount of data transferred data. They recognized several situations and suggested

which strategy would be most suited to them. The findings demonstrate that the cold

migration suffers from significant downtime, whereas hybrid migration suffers from a

77

longer overall migration time. Pre-copy and post-copy migrations may thus be the best

alternatives under specific scenarios.

A successful migration is needed to restore immense data structures following a dis-

aster. Several standard memory compression methods are mentioned and studied from

a memory standpoint, including RLE, Huffman Coding, and a novel strategy for mini-

mizing migration time. There are numerous difficulties to consider regarding memory

compression, and an effective scheduling strategy is suggested [12], but the compres-

sion overhead affects migration time. To provide load balancing, the container is sched-

uled on the relevant server. The core implementation of dynamic migration scenarios

has been developed for IoT [35], the main motive is resource provisioning. It can be

more effective if it is manageable to reduce memory transfer. Moreover, to reduce the

data transfer, prediction methods can be applied [47]. It can be reduced further with

LSTM as suggested by [53]. The reuse distance concept is used, and the changed mem-

ory pages are traced back during the copy process [54]. A model includes clusters,

containers, and micro resources with four optimization goals. The experimental results

show that this strategy is a solution to the issue of container allocation and flexibility,

attaining higher ethical standards than Kubernetes container management regulations.

Each method’s implementation scenarios are examined in [55]. For containers, pre-

copying is the predominant way of migration.

Elghamrawy et al. [30] described the fact that there is a significant discrepancy

between distinct prediction systems in the behavior of current memory pages. That

is the hole they want to fill. They characterize the behavior of memory pages using

a prediction approach for relatively stable memory pages and using the memory page

characterization to prioritize specific pages with live migration since these pages will

be updated gradually in subsequent cycles. The genetic algorithm technique employing

the non-dominated Sorting Genetic Algorithm is recommended to maximize container

assignment and management elasticity to the degree that this algorithm has produced

good results on other cloud management challenges [98].

Mirkin et al. [56] The OpenVZ container Checkpoint and Resume (CR) mechanism

were provided. This function allows the container to scan and restart programs and net-

work connections. Checkpoints and restarts work with the kernel directly to reduce ser-

vice delays and the size of the dump file.Dump size can be further reduced for memory-

78

intensive applications. Molto et al. [34] designed a hybrid distributed computing for

VMs and containers for a better synchronization among hosts. In memory-intensive

applications, the repetition of memory may increase [99].

The live container just-in-time migration service was designed following OCI stan-

dards introduced by Nadgowda et al. [46]. Containers run on the server with the shared

file system, and some are with the local file system. CRIU helps perform a live migra-

tion of containers and ensures the destination host’s restart. A union mount file system

and CRIU helps to reduce migration time and data transfer.

Luo et al. [44] developed a technique based on data compression and de-duplication.

The authors employed the RLE technique and the runtime storage image identity to re-

duce duplicate memory data. Hash-based fingerprints were employed for page similar-

ity calculations. LRU, Hash tables FNHash and FPHash were used for implementation.

The efficiency of migration has increased in terms of space with the overhead of CPU

resources.

During the incremental copying procedure, the primary approach of pre-copy trans-

fer memory pages are duplicated repeatedly at high replacement rates is provided by

Ansar et al. [45]. Thus, the article developed an optimized pre-copy method (OPCA)

with a Gray-Markov model. They shortlist the pages based on modification rate, which

decreases the number of iterations and other parameters. This increases the resource

utilization, which is managed by using hot and warm working sets to categorize the

pages. The pages only from the HW set will go through the process. Chronopoulos et

al. [57] show the effective use of machine learning to build an artificial neural network

for speech-language therapy.

There are other techniques as well, suitable for predicting memory. Sobia Pervaiz et

al. [73] conducted a detailed review of various Variants of PSO and highlighted the key

features of every variant. It helps to identify the best-suited variant of PSO depending

on the nature of the problem. Waqas Haider Bangyal et al. [74] have used a unique

quasirandom sequence termed the WELL sequence to initiate the PSO particles. The

velocity and position vectors of particles are changed in random order. In [75] presented

three sequence strategies Torus, Knuth, and WELL. All these techniques are tested with

low-discrepancy sequences. The results show that the WE-PSO strategy outperforms

the PSO, S-PSO, and H-PSO approaches. The result shows that the proposed techniques

79

outperform standard PSO and other variants.

Moving a container application can be accomplished using various container mi-

gration techniques, and to increase the performance, various alternatives are there, as

shown in Table 4.1. Because of the container’s limited lifespan, they used a pre-copy

strategy to facilitate the migration procedure. [27].

Table 4.1: A prediction based comparison on various container migration techniques

Ref. Migration

Tech-

nique

Prediction

Method

Achieved Outcome

[12] pre-copy RLE, Huffman

Coding

memory compres-

sion

Compression overhead

effects migration time

[35] CloudIoT LXC vertical offloading main motive is resource

provisioning

[47] pre-copy ARIMA Predict dirty pages,

reduce and compress

can be reduced further

with LSTM [53]

[54] pre-copy ARIMA Memory forecast can be reduced further

using containers with

LSTM

[55] pre-copy LXD Container resource

management

Resource provisioning

[56] pre-copy OpenVZ Incremental Check-

point

dirty pages transmis-

sion can be minimized

[27] pre-copy Gray-Markov

prediction

model

reduce iterative cy-

cle

it shortlist the active

pages

[53] pre-copy LSTM and

ARIMA

dirty page prediction 600 times faster predic-

tion time than ARIMA

[76] Pre-copy LSTM reduce the size of

iterative-dump

amount of data transfer

is reduced by 31.04%

80

4.3 Motivation and Research Gap

Containers provide a robust environment for virtualized computing. The choice of con-

tainer migration mechanisms significantly impacts container migration performance.

The comparison demonstrates that pre-copy and hybrid copy migration approaches out-

perform post-copy migration techniques. This work is separated into three steps based

on the pre-copy live migration technique: pre-dump, iterative dump, and final dump.

During these phases, the container is running to accomplish live migration in Industry

4.0 applications. All of these strategies were covered in [82].

When it is determined to migrate a container using the existing technique of pre-

copy container migration, then all the associated memory pages and their configuration

are sent to the destination host in the pre-dump phase. Further, in the iterative phase,

all the updated pages will be migrated in every iteration, and there are chances that

a single page may be migrated several times. This overhead directly impacts several

parameters, including the performance and the operating cost. In an iterative phase,

the data transfer is hugely dependent upon the size of the container and the kind of

operation it is handling. Sometimes containers send data more than the actual data size

due to the re-transmission of updated pages. This is the primary factor affecting the

performance. Our main objective is to lower the data transfer size across the network

during the iterative phase.

An algorithm designed for the iterative phase of pre-copy container migration to

minimize page transfer for cross-domain and cross-border Industry Internet of Things

() applications. In this algorithm, instead of sending updated pages in every iteration,

predicts the chances of modification in the subsequent few iterations to minimize re-

transmission. If sending the active pages in the last few iterations is possible, the data

transmission can be minimized.

If we focus on container migration for any reason, then the main concern is about

container image and runtime, as highlighted in Figure 1.2. CRI handles all the con-

tainer activities such as start, manage and stop. When there is a requirement to start a

container, CRI takes control, and the CRI daemon and Runs work together to initiate a

container. There is a total of three phases in pre-copy container migration.

To understand the scope of improvement, let us discuss the iterative phase at the

81

memory level. When a container runs on a machine, some memory is allotted to that

container. These memory pages are in use by the container and modified frequently.

When it is decided to migrate a container to a target host, the whole container memory

set is transferred to the destination host at the initial state of migration. The same set of

memory pages will be migrated repeatedly to synchronize the destination host memory

with current changes on the source host, as illustrated in Figure 4.2.

Figure 4.2: Process of transferring pages in an iterative phase of existing approach.

Nowadays, Industry widely adopts containers, and researchers are also working on

the same. If we talk about the latest version of pre-copy migration, then there is no

need to retransfer the same memory page in the iterative phase. Depending upon the

data updated in the last iteration, it can be decided whether a page will be migrated

to its destination or not, as shown in Figure 4.3. So in this Figure, the iterative phase

is explained with the number of rounds. Each round handles a set of memory pages

represented with a rectangular box and subdivided into individual pages.

Figure 4.3: Process of transferring pages in an iterative phase according to dirty bits in

the existing approach

Furthermore, the pages have categorizations as follows:

1. Pages with no color denotes no updation compared to the previous iteration.

82

2. Pages with red color denotes that they are updated after the previous iteration.

In Figure 4.3 you can see that in round 1, all the pages are transferred from source

one to the target host because there was no updation in the memory pages. If we check

round 2, two pages have dirty bits from this chunk of pages. Only these updated pages

will be migrated to the destination host, whereas other pages will be discarded from this

retransfer. The exact process will be followed in alliterative rounds, and this helps to

minimize the data transfer during this iterative phase of pre-copy container migration.

Figure 4.4: Process of transferring pages in an iterative phase according to dirty bits

prediction in the proposed approach

A detailed review has been conducted for container migration techniques and iden-

tified the scope of enhancement in the iterative phase. We can further reduce the data

transmission during the iterative phase. This method works on the concept of dirty bit

and is based on the updation rate of pages. As you can see in Figure 4.4, in rounds 1 to

3, there is no page transferred from source to target host. It will wait for the first three

iterations to analyze which page will be migrated to the source host and which page

will be discarded.

To identify the pages that need to migrate will be shortlisted using the record of the

last three iterations. If a particular page is in the update, discard that page from the

dump, and if a page is not updated during the previous three iterations, that will migrate

to the destination host. It has a significant impact on memory-intensive application

containers. It will minimize the cost over the network by reducing the data transfer to

the destination host.

83

4.4 Methodology

A new algorithm is designed, which helps to minimize the dump size. In this Algorithm

4, the first three iterations will only record the activities of every page. Starting from the

fourth iteration, a decision will be taken according to the activity status of the last three

iterations. If a page is not modified in the previous three iterations, that page will be

added to Spool; otherwise, the page remains inactive set. This process will be repeated

for all remaining iterations. Then the status of pages will be provided to the proposed

prediction scheme for the final decision of iterative-dump.

Algorithm 4 Iterative-dump/checkpoint
Result: Prediction of memory pages to be migrated in iterative phase

Access the memory pool of the container. Get the read-write status of every memory

page in every iteration

while Mpool do

if DB(Pi) == 1 then
Pi.active+= 1; ▷ Page will be added to active pool

else

if Pi.active ≥ 1 then
Pi.active = 0;

else
Pi.active−= 1;

end

end

if Pi.active ≤−2 then
SPool.append(Pi) ▷ Page will be added to send pool

end

end

84

4.4.1 Machine learning-based predictive checkpoint

The LSTM is used in a network model to predict the memory load to be migrated. In this

network model, the input cells layer is used as 3, LSTM layer units are 10, and 1 output

layer cell as shown in Figure 4.5. The input layer of this network model receives the

modification data of the previous three iterations to predict the chances of modification

in the next iteration. This model aids in generalizing the training data, allowing us to

adjust the input size.

Figure 4.5: LSTM network architecture [4]

The architecture of the prediction model is designed using LSTM, that works on-

page history generated by a prediction model. This model works with three inputs that

interact with the hidden layer with a size of 10 units and finalizes the result with a single

output layer.

Table 4.2: LSTM model configuration parameters

Parameters Range

LSTM units 10

Kernel initializer Random uniform

Loss function MSE

Batch size 64

Size of input 3

Layers of LSTM 1

Size of Output 1

epochs 10

85

Parameter’s description is mentioned in Table 4.2. This works in a serial order after

the process of Figure 4.6. The loss function for training LSTM prediction models is

mean square error. The sample input is divided into a batch size of 64, which works

with a maximum of 10 iterations. Then these iterations with the weighted input will be

further processed in each epoch. To set the initial random weight, the initializer used is

"RandomUniform" and the bias initializer is "zeros".

Figure 4.6: The proposed prediction model to shortlist the pages to be transferred

The suggested approach is significantly minimizing the size of the checkpoint. In

this approach, the active set of pages minimizes the re-transmission of pages because

the incremental checkpoint ignores dirty pages, frequent copying, and transmission.

It has a direct impact on application downtime. As a result, this research proposes

a delayed checkpoint approach based on the prediction of dirty pages, which can re-

86

duce application downtime by reducing the time spent copying and transmitting dirty

pages regularly. Following is a detailed explanation of the proposed prediction model

as shown in Figure4.6.

1. In every iteration of this prediction model, the activities related to the memory

pages are recorded and stored in "Page modification History."

2. based on memory status, Algorithm 4 will shortlist the pages in sendpool .

3. These pages will be further passed to the input gate of the LSTM module, and it

works as mentioned in Figure 4.1. It works on the provided input according to

the mentioned epochs and generates an output with a timestamp.

4. Depending upon the condition of iterative-dump, if the stopping criteria do not

match, the next iteration is initiated.

5. Now, the iterative algorithm again fetches memory pages’ latest status and passes

it to the LSTM module. Along with that, the previous timestamp output is also

provided to the current state of LSTM.

6. In every iteration, the sorted pages after the LSTM module are migrated to the

destination host.

7. When stopping criteria match, then the control shift to the final dump of the pre-

copy migration technique.

The parameter (P1,P2 . . .Pn) represent pages related to a container, and (R1,R2 . . .Rn)

represents the iteration number. During this iterative phase, the dirty bit status of each

page in every iteration is stored in "Page History." The same input will be provided to

an iterative algorithm to sort the pages. Then both the inputs will be provided to the

proposed LSTM module to predict the final set of pages to be migrated in the next iter-

ation. The total number of iteration depends on the dynamic conditions, such as if the

updation rate of memory pages reach the set threshold level or When the iteration count

reaches the specified maximum limit, then the iterative phase ends immediately. The

maximum threshold value "Tmax is set as 70%, and the maximum iteration "Imax" is 10.

87

4.5 Results and Discussion

This prediction model was developed using a direct multi-step process to forecast the

number of dynamic pages migrated in the following round. Cloudsim 4.0 libraries are

used to simulate the environment for container migration, and the Keras library manages

the implementation of these prediction models with the help of DL4J. LSTM is used to

predict short-term memory changes. The Tensor Processing Unit () was used to train

the model. The Mean Squared Error () is used to measure the degree of errors. If there

is no error, the MSE generates a value of 0. Calculating the average time to predict after

ten attempts, the model will be examined using the mean square error.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Cold Pre-copy Post-copy Hybrid Proposed

M
em

or
y

(B
yt

es
)

Container Migration Techniques

Pre-dump
Dump

Demand paging

Amount of Data Transferred

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Cold Pre-copy Post-copy Hybrid Proposed

T
im

e
(S

ec
on

ds
)

Container Migration Techniques

Dump Transfer Time

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Cold Pre-copy Post-copy Hybrid Proposed

T
im

e
(S

ec
on

ds
)

Container Migration Techniques

Dump Transfer Time
Resume Time

Downtime

(c)

 0

 20

 40

 60

 80

 100

 120

 140

Cold Pre-copy Post-copy Hybrid Proposed

T
im

e
(S

ec
on

ds
)

Container Migration Techniques

Pre-dump
Dump

Demand paging
Resume Time

Total Migration Time

(d)

Figure 4.7: Comparison of various container migration techniques with batch of 5 con-

tainers where a). shows the total amount of data transfer during iterative-dump, b).

shows the time to transfer the iterative-dump, c). indicates the overall downtime of a

container including resume time on destination host and d). shows the total time taken

during the migration process.

There are some container migration techniques and Figure 4.7 shows the compar-

88

ison of various container migration techniques with a batch of 5 containers where a).

displays the total amount of data transfer during the iterative dump, b). shows the time

to transfer the iterative dump, c). indicates the overall downtime, including resume time

on the destination host, and d). shows the total time taken during the migration process.

The proposed container migration technique is implemented as a pre-copy. Com-

pared to the existing pre-copy, the amount of data transfer is reduced in the proposed

approach, dump-time, downtime and total migration time are also minimized.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Cold Pre-copy Post-copy Hybrid Proposed

M
em

or
y

(B
yt

es
)

Container Migration Techniques

Pre-dump
Dump

Demand paging

Amount of Data Transferred

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Cold Pre-copy Post-copy Hybrid Proposed

T
im

e
(S

ec
on

ds
)

Container Migration Techniques

Dump Transfer Time

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Cold Pre-copy Post-copy Hybrid Proposed

T
im

e
(S

ec
on

ds
)

Container Migration Techniques

Dump Transfer Time
Resume Time

Downtime

(c)

 0

 20

 40

 60

 80

 100

 120

 140

Cold Pre-copy Post-copy Hybrid Proposed

T
im

e
(S

ec
on

ds
)

Container Migration Techniques

Pre-dump
Dump

Demand paging
Resume Time

Total Migration Time

(d)

Figure 4.8: Comparison of various container migration techniques with batch of 10

containers where a). shows the total amount of data transfer during iterative-dump, b).

shows the time to transfer the iterative-dump, c). indicates the overall downtime of a

container including resume time on destination host and d). shows the total time taken

during the migration process.

The proposed container migration technique is implemented as a pre-copy com-

pared to the existing pre-copy; the amount of data transfer is reduced in the proposed

approach, while the dump time downtime and the total migration time are also mini-

mized.

89

We are implementing the proposed container migration technique as a pre-copy. In

Figure 4.8 the comparison of various container migration techniques with a batch of 5

containers where a). shows the total amount of data transfer during the iterative dump,

b). shows the time to transfer the iterative dump, c). indicates the overall downtime,

including resume time on the destination host, and d). shows the total time taken during

the migration process. Compared to the existing pre-copy, the amount of data transfer

is reduced in the proposed approach, and dump-time downtime and total migration time

are also minimized.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Cold Pre-copy Post-copy Hybrid Proposed

M
em

or
y

(B
yt

es
)

Container Migration Techniques

Predump
Dump

D-pag.

Amount of Data Transferred

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Cold Pre-copy Post-copy Hybrid Proposed

T
im

e
(S

ec
on

ds
)

Container Migration Techniques

Dump Transfer Time

(b)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

Cold Pre-copy Post-copy Hybrid Proposed

T
im

e
(S

ec
on

ds
)

Container Migration Techniques

Dump Transfer Time
Resume Time

Downtime

(c)

 0

 20

 40

 60

 80

 100

 120

 140

Cold Pre-copy Post-copy Hybrid Proposed

T
im

e
(S

ec
on

ds
)

Container Migration Techniques

Pre-dump
Dump

D-paging
Resume

Total Migration Time

(d)

Figure 4.9: Comparison of various container migration techniques with batch of 15

containers where a). shows the total amount of data transfer during iterative-dump, b).

shows the time to transfer the iterative-dump, c). indicates the overall downtime of a

container including resume time on destination host and d). shows the total time taken

during the migration process.

The results shown in Figure 4.9 indicates almost the same ratio as discussed in the

previous two scenarios with batch size 5 and 10 containers. The pooled results of all

three batches show that the proposed technique outperforms in comparison to existing

90

pre-copy. The post copy and hybrid technique show that downtime and dump-time are

less than the proposed technique. In these techniques, some of the processes are carried

out after migration, and that increases the amount of data transfer and the total migration

time as shown in Figure 4.9(a) and Figure 4.9(d).

4.6 Summary

In this chapter, our approach minimizes the data transfer over the network. We have

implemented the proposed approach as pre-copy migration. The result shows that the

proposed approach outperforms existing approaches regarding the amount of data trans-

ferred and total migration time. In case of time taken to transfer the dump, the proposed

technique takes less time than cold and pre-copy migration. However, the time taken by

post-copy and a hybrid approach is lesser than the proposed. Same in case of downtime,

the cold and pre-copy approaches downtime is more than the proposed, but post-copy

and hybrid have lesser downtime. Because in both post-copy and hybrid, most of the

data is transferred after the container is initiated on the destination host. The proposed

technique outperforms for "total migration time" and amount of data migrated," but

post-copy gives better results in the remaining two parameters(downtime and dump-

time) as shown in Table 4.3.

Table 4.3: Comparison of various container migration techniques on the basis of migra-

tion time, downtime, dump-time and amount of data transfer

Total Migration Time Downtime dump-time Data Migrated

Cold 64.00 64.00 181.00 8310.00

Pre-copy 85.67 25.67 65.00 8427.67

post-copy 73.67 11.00 21.00 8091.00

Hybrid 95.67 14.00 28.00 8556.67

"Proposed Pre-copy" 43.33 20.67 51.00 5811.33

Nevertheless, compared to pre-copy only:

1. Total migration time is decreased by 49.42%

2. The downtime is decreased by 19.47%.

91

3. The dump-time is minimized by 21.53%.

4. The amount of data transfer is reduced by 31.04%

Because of the increasing demand for containers, the amount of data transfer is

a crucial factor for overall performance. In future scope, the memory prediction in

live container migration can be evaluated at a large scale on real scenarios for detailed

insights. It can be tested with other alternative prediction schemes, such as ANN,

ARIMA, etc., to establish future directions. Depending upon the type of application

running in the container may affect the prediction results. We plan to extend our study

to different types of applications.

92

CHAPTER 5

A DUMP REUSING TECHNIQUE FOR

CONTAINER MIGRATION ALONG

WITH A PAGE RECOVERY

MECHANISM

In this chapter, we describe the proposed approach for container migration to migrate

back to the same host. In some cases, the container will migrate back to the same host.

The original image kept on the source host can be reused in such cases. The memory

pages similar to the source image will not be sent back; only the updated pages will be

transferred. This approach helps in reducing the amount of data transmission over the

network. Furthermore, if the container image is kept on the source host, it will provide

demand paging and help recover from failure at the destination host. The result shows

the average rate of reduction in the data transfer over the network by 60.68% compared

to standard pre-copy and 52.30% compared to advanced pre-copy1.

1This chapter is derived from:

Gursharan Singh, Parminder Singh. "A Container Migration Technique to Minimize the Network Over-

head with Reusable Memory State."IJCNA Volume 9, Issue 3, June(2022).

(https://www.ijcna.org/abstract.php?id=1848)

93

https://www.ijcna.org/abstract.php?id=1848

5.1 Introduction

Cloud computing is a new computing technique for massive data centers that keeps

computational resources online rather than on local machines. As cloud computing

grows in popularity, so does the need for cloud resources [100]. Container placements

on physical hosts in Infrastructure-as-a-Service (IaaS) data centers are constantly tuned

in response to the usage of host resources. When migrating a container to another

host, the container image will be removed from the source host after the successful

migration [20]. Container migration enables load balancing, system maintenance, and

fault tolerance, among other things [101]. The need for cloud computing has eased

the dynamic deployment of computing, networking, and storage resources to provide

on-demand services [102]. Traditionally, the process of directly executing on the op-

erating systems has been the core piece for hosting the service by employing the re-

sources [103]. With the advancement of virtualization, one of the vital virtualization

technologies used to host cloud services, virtual computers (containers) may share pro-

cessing, networking, and storage resources from actual machines. Due to its flexibility

and tiny footprint, the container, on the other hand, is the growing virtualization in-

stance to offer a more elastic services architecture [6]. Under various Service Level

Agreements (SLA’s), application providers can lease virtualized instances (containers)

from cloud providers of several types. The instances are then initialized by the con-

tainer or container administrators, and the cloud broker or orchestrator chooses the best

possible placement based on the available resources and the allocation rules [104].

The live migration of processes, virtual machines, containers, and storage is a crit-

ical component in cloud computing for supporting dynamic resource management. It

can migrate and synchronize the operating state of an instance of the container from

one host to another without affecting services. [105]. Live migration provides a gen-

eral solution that does not require application-specific configuration or administration.

Many studies have been conducted on resource utilization through live migration, such

as fault tolerance, load balancing, system upgrade, hardware and software maintenance,

etc. AWS, Azure, Google, IBM, RedHat, and other cloud service providers have begun

to integrate live container migration.

94

5.1.1 Background

Migration management must reduce migration costs and maximize migration perfor-

mance while meeting resource utilization goals. Live migration and virtualization are

the leading performance factors of cloud computing. The virtualization is achieved with

the live migration of container instances, where the type of migration and the amount

of data transfer are the two main factors [106]. We highlight solutions for migration

management and problems since dynamic resource management necessitates several

instances of migrations to fulfill the objectives. In addition, we examine relevant state-

of-the-art works and identify future research opportunities.

Figure 5.1: Categories of container migration

Virtualization

The virtual machine and the container are the two industry-standard solutions for vir-

tualization used in live migration. This part introduces the container runtimes and the

memory tracking method that enables isolation and virtualization of resources [107].

The container runtime is software that generates and maintains containers on a com-

puting node. Apart from Docker, there are many others, including containers, CRI-O,

and runs. The standard for live container migration is CRIU [108]. It uses ptrace to cap-

ture processes and inject parasite code that dumps the process’s memory pages into the

image file using its address space. Additionally, the state of the task assigned, registry

entries, linked files, and the credentials are captured and preserved in the container’s

95

dump files [22]. While a process tree is being checked, CRIU produces checkpoint

files for each linked child process. CRIU uses information from the dump files created

during checkpointing to restore processes on the destination host [109].

Figure 5.2: System configuration and container placement when source host is idle [5]

If a system is in the ideal situation, then it can handle the containers. When a system

is overloaded, it will initiate the migration process of some instances (containers) to

transfer them to another available host. This can happen in other situations, like fault

tolerance, load balancing, system upgrade, etc.

Figure 5.3: System configuration and container placement when source host is over-

loaded [5]

As shown in Figure 5.2, "Host A" is managing all the containers from C1 to C6.

96

But when the host system is overloaded, it may start migrating the containers to other

available hosts. The scenario after the migration is shown in Figure 5.3.

Migration Types

Migration allows accessing the resources, processes, and containers virtually. The mi-

gration of instances and storage may be classified as "cold" and "live". There are three

types of live migration: pre-copy, post-copy, and hybrid migration.

The system design of live migration and its continual adjustment and refinement

aims to reduce total migration time and the amount of data transmission. The migration

time for a single instance is the time between the start of the pre-dump phase and the

completion of the post-migration phase during which the instance is operating on the

destination host [77]. The time when the container service is unavailable due to syn-

chronization requirements is counted as downtime. Memory transfer of container may

be classified into three phases to do a performance trade-off analysis:

1. The push phase, during which the instance continues to execute on the source

host and the related memory and data are pushed to the destination host across

the network.

2. A stop-and-copy phase in which the instance is first stopped, then memory and

data are transferred over the network to the destination. The instance will con-

tinue at the destination after the conclusion of the phase.

3. The pull phase, during which the new instance operates while retrieving faulty

memory pages.

Cold Migration: Compared to live migrations, it includes transferring a single copy

of memory and disc or a dump file for a single container checkpoint from the source to

the destination host. In other words, this category includes the stop-and-copy approach.

In comparison, cold migration is more straightforward than live migration. The amount

of data transfer and the migration time directly depends on the nature of the task and

the amount of data assigned.

Pre-copy migration: It transfers the container memory in multiple iterations. A

single page is migrated many times depending o the number of iterations. Optimized

97

pre-copy on transferring the modified pages in these iterations. During this process, the

container is running [2]. It is classified into the following phases:

1. Initialization: The first step is to select the target host to expedite subsequent

migrations.

2. Reservation: configures the shared file server (optional) and initializes an instance

container on the destination host for the reserved resources.

3. Iterative pre-copy migration: It transfers the modified pages to the destination

host. In the initial round, the initial memory states are duplicated.

4. Stop-and-Copy: When this process meets the threshold value in terms of a num-

ber of iterations or amounts of data transfer, that is the last iteration.

5. Commitment: The sync of the source host will get the destination host’s commit-

ment to the successfully cloned instance.

6. Activation: The new instance is allocated reserved resources.

Post-copy container migration technique suspends the instance at the source and

restarts the same instance on the destination host by transferring a container execution

state and the remaining pages. If any page is unavailable at the destination host, the

page fault occurs, and the same page will be accessed from the source host. Compared

to pre-copy migration, a post-copy technique can significantly reduce the time taken by

the migration process. The service will also break if the running instance fails since the

originating host does not have a running example with its memory set. The main reason

for the decreased performance is the steady demand for memory pages from the source

copy.

To strike a balance between the three phases of live migration, Hybrid post copy

[110] uses a hybrid approach. Pre-copy and post-copy migrations can also be used as an

optimization approach. It all starts with the pre-copy approach, which copies dirty pages

repeatedly. If the memory copy iteration fails to attain a specific percentage increase

over the previous iteration, the post-copy migration will be activated. The migration

time will be reduced in some cases, but the downtime will be somewhat higher. There

98

are certain downsides to post-copy migration, such as slower processing speeds and the

possibility of container reboots if the network is unstable when extracting faulty pages.

This chapter is organized as follows: Section 5.2 describes the literature review and

the research gap. The problem identification, along with the objective of the study,

is discussed in Section 5.3. The tools and techniques used in the proposed system

and the memory reusing model are discussed in Section 5.4. The experimental setup is

discussed in Section 5.5. In Section 5.6, the evaluation of the system model is elaborated

in detail and concluded in Section 5.7.

5.2 Related Work

Virtualization in cloud computing has dramatically improved due to the development of

containers. When compared to virtual machines, container migration is much more effi-

cient [111]. Cloud services are now migrating to a container environment, necessitating

new research to improve this technique. Karhula et al. [112] Examined the notion of

function as a service concerning IoT edge devices. We used the checkpointing method

to conserve resources on resource-constrained devices to halt long-running blocking

functions. Additionally, we successfully demonstrated live container migration using

CRIU [76]. The assessment indicates good results for cloud device checkpoints capa-

bility. cloud systems can use these building pieces for fault-tolerant, offload resources,

and boost efficiency and availability at the IoT edge. To freeze a running container,

Jiaxin Feng et al. [113] describe the checkpoint/restore in userspace. Compared to the

re-deployment technique, the restored container takes advantage of stateful migration to

retain its state after being frozen. The CSS approach selects and migrates the container

with the capacity(512MB). The container migration time is 48 seconds, which is signif-

icantly faster than the time required for standard minute-level wireless reconfiguration.

Janaina Schwarzrock et al. [114] highlighted the concept of virtual memory, like

page faults and TLB, which increases control switching between hosts and affects the

overall performance. Load balancing is presented using the migration method based

on the two options. Compared to the conventional wireless reconfiguration technique,

the migration mechanism may preserve the DU/state CU’s while requiring minimal

service interruption to handle memory adequately. The transition overhead establishes

99

a reliance between various local setups and should be considered in online techniques

[114].

Ranjan Sarpangala et al. [115] described the development and operation of VAS

CRIU, a novel technique for reducing memory snapshot and restoring time by utilizing

task address space. After their first launch phase, applications may be snapshotted into

a VAS and then immediately restored into fresh container instances. Microservices and

NFVs are two use cases that we consider. Additionally, the snapshot might contain in-

formation about popular pages, which could be used for page pre-copying. A system

that monitors containers’ performance and the hosts on which they run. Analyzing,

describing, and developing forecast models can benefit from this data. They have fine-

tuned resource provisioning techniques by analyzing data from the monitoring system

to establish a cloud provisioning platform that enhances container workload utilization

and implementation through live migration. All the details of our lightweight resource

monitoring tool, which allows for the offline and real-time examination of active migra-

tion workloads, along with the impact on their hosts, are described [116].

Florian Hofer et al. [117] propose a migration architecture and demonstrate, via the

use of a custom-built orchestration tool, that containerized apps may run on shared re-

sources without jeopardizing planned execution within specified time restrictions. They

investigate the boundaries of three system configurations using latency and compu-

tational performance studies and write a summary. They were using Layrub, a data

placement approach for GPU-accelerated deep learning. DNN models of all shapes and

sizes may be trained using Layrub’s extraordinary memory optimization. Experimenta-

tion has shown that Layrub can reuse a consistent amount of memory space no matter

how deep the network is. The authors further highlight the advantages of Layrub by

comparing it favorably with GeePS, vDNN, MXNet, and TensorFlow on many DNN

models and datasets. Using Layrub might help you keep your memory as efficient as

possible [118].

Evangelos Vasilakis et al. [119] Provides a novel data migration technique for hybrid

memory systems that accounts for the overheads as mentioned earlier and significantly

increases migration efficiency and effectiveness. It is based on discovering that mi-

grating memory segments stored in the last level cache reduce migration load. Their

100

solution is based on the current status of the previous level cache to forecast reuse and

prioritize memory segments for transfer [120,121]. Thus, when segments are present in

the last level cache, they are transferred at a lower cost. The results demonstrate that our

technique beats existing state-of-the-art migration designs by 12.1% in terms of system

performance and 13.2% in memory system dynamic energy reduction.

5.3 Problem Formulation

With the increasing popularity of containers in cloud computing, the data transmission

also increases over the network, which leads to high network traffic.

Although the container helps to minimize the migration size compared to VMs [14],

it can still be reduced further. The primary disadvantage of existing live migration

approaches is that they need extensive data transfer to relocate a container. Transferring

a massive volume of data introduces two complications:

1. The migration process results in memory accesses that decrease the performance

of containerized apps.

2. Consolidating several containers onto a single host congests the host’s network

and slows the consolidation.

We suggest a memory reuse approach to minimize the quantity of data exchanged

during live migration. A container may migrate back to the host on which it was pre-

viously operated. When the container migrates away from the host, the memory image

is retained on the host, and the image is reused when the container migrates back to the

host later. The reduced data volume results in a faster migration time and enhanced op-

timization via container placement algorithms. The container migration technique used

in this method is pre-copy, and in the case of the pre-copy migration technique, the pro-

cess is divided into three phases. These phases are called pre-dump, iterative dump, and

final dump. As mentioned earlier, the method we will discuss comes after all three of

these three phases. We will reuse memory in the event of container migration to reduce

the data transmission over the network.

As you can see in Figure 5.4(a) shows the migration from source to destination,

where the first three phases of pre-copy are applicable. In the case of standard pre-

copy migration, all the memory pages or the related configuration are migrated to the

101

Figure 5.4: (a) The process of transferring the complete set of memory pages from

source to destination host during container migration and (b) shows the process of trans-

ferring highlighted pages to the source host. Only modified pages will be migrated when

migrating back to the same host.

destination host. Now we are going to extend this migration process further. Suppose a

container is migrated to another host due to any of the following reasons: fault tolerance,

system update, load balancing, or any other reason. In that case, there is a chance that

the container will come back to the same host once the purpose of migration is achieved.

In the case of standard techniques, while migrating back to the source host, We have to

follow the same migration process of copying memory pages from the destination host

back to the source host.

102

Figure 5.5: The detailed process of proposed methodology

In the proposed technique, when it is decided to migrate back to the same host,

we will not send back all the memory pages on the destination host. As you can see in

Figure 5.4(b), the pages indicated in red are those that the destination host has modified.

Only the modified pages will be transmitted to the source host when migrating back.

5.4 System Model

The proposed migration model is working in two different phases. Phase 1 is the mi-

gration of containers from source to destination using the predictive pre-copy approach.

103

LSTM predicts the set of pages to be migrated in an iterative dump in this approach.

Memory migration is predicted using the LSTM in a network model.

Figure 5.6: The ANN prediction model architecture used in proposed system model

An ANN is used to create the prediction model’s architecture. This model utilizes

three input layers that interact with a hidden layer of ten cells (LSTM cells) to produce

a single output layer, as shown in Figure5.6. Where t1, t2, t3 are representing the input

layers, n1,n2...n3 are denoting the LSTM cells and t in the final single layer output.

Each LSTM cell used in Figure5.6 as n1,n2...n3 is represented as show in Figure5.7.

The LSTM module comprises three gates: forget gate, input gate, and output gate. The

quantity of data that can pass via these gates is limited. A sigmoid function and an

operation are used in each gate. The dotted line handles the data generated by these

gates. The union of h(t − 1) and x(t) determines the value of the Sigmoid function,

which is between 0 and 1.

The output is obtained by multiplying the sigmoid result by the gate’s input. For

example, if the sigmoid result is 1, the gate output will be the same as the input since

it is multiplied by one. The unit processes the input data for each input vector to the

LSTM network as follows:

1. A new vector will be created by adding the h(t −1) (hidden state vector) and x(t)

(input vector). The newly created vector will be input to the tanh function and

the three gates.

104

Figure 5.7: LSTM cell architecture

2. The flow of previously stored cell states regulated by the forget gate:

f (t) = sig(W f ∗ [h(t −1),x(t)]+b f)

3. The C(t) candidate value for the present cell state is calculated as follows:

C(t) = tahn(Wc ∗ [h(t −1),x(t)]+bc))

4. The amount of C(t) to be added to current cell is fixed by input gate and then C(t)

multiplies with i(t).

i(t) = sig(Wi ∗ [h(t −1),x(t)]+bi))

5. The final calculated C(t) is as:

C(t) = f (t)∗C(t −1)+ i(t)∗C(t)

6. The output gate determines how much C(t) is passed to the next cell. The hidden

state h(t) is calculated as follows:

O(t) = sig(WO ∗ [h(t −1),x(t)]+b0))

h(t) = O(t)∗ tanh(C(t))

5.5 Experimental setup

Using the time series observation of the prior three iterations, this network design can

anticipate the next batch of pages that will be transferred. There are two possible cir-

cumstances in which this model can be used. The first approach is called single-step

105

prediction, and it makes a single forecast based on several time-series inputs. Direct

and recursive prediction are the other two methods of multi-step prediction.

Table 5.1: LSTM model configuration

Parameters Range

Input size 3

Output size 1

Number of LSTM Layers 1

Number of LSTM Units 1

Kernel initializer Lecun uniform

Loss function MSE

Optimizer adam

Batch size 64

Number of epochs 10

The mean square error is the loss function used to train LSTM and ANN prediction

models. This prediction model is trained using a multi-step direct technique to forecast

the number of active pages moved in the subsequent round. The model was trained

using a Tensor Processing Unit (TPU) supplied by colab.

Algorithm 5 To identify modified pages in pre-copy container migration process
Result: Set of Modified Pages

db,Pgi,r,Rmax

while r ≤ Rmax do

while (mempool) do

if Pgi.db T RUE then
Modpool.append(pgi)

end

end

r+= 1
end

return (Modpool[Pgi])

106

The parameters used in this Algorithm 5 are as: Pid is representing pages of memory

pool with page id, Rmax is the maximum number of iterations and db is a Boolean

data member to store dirty bit status, r is set to 1 and it is used for rounds/iterations.

According to the selected memory pool 1 ≤r≤Rmax and Rmax = 10. Algorithm ?? will

return the set of modified memory pages.

Figure 5.8: System architecture to identify updated pages using LSTM

The cell structure of LSTM cells is used in the ANN network. Now we will in-

tegrate this method with the proposed prediction system. As shown in Figure5.8, the

array represents the memory pages in each round. Where P1,P2,Pn are representing the

memory pages and R1,R2,Rn are denoting number of iterations. The updated status of

each page will be stored in "Page Modification History". This will be provided as input

to the LSTM module.

107

Figure 5.9: The process of transferring the container memory, where a). depicts the

existing approach, in which the container’s memory is deleted from the source host

when it is migrated to the destination host and b). is a proposed approach for providing

page recovery by keeping memory on the source host following a successful migration.

In this module, the cells mentioned in the ANN network are used to predict the

updated pages. This process will be repeated upto the maximum iterations. This module

will produce the final set of memory pages to be migrated to the destination host.

When a container is migrated from any source host to a destination, all its memory

and system configuration is sent to the destination host. Everything related to that con-

tainer is available on the destination host only. Once the receiving host acknowledges

it, then the memory dump is removed from the source host as shown in Figure 5.9(a).

In this standard pre-copy technique, there is no option to recover the pages from the

source host.

The proposed technique provides the page recovery and reuses the memory while

migrating back to the same host. The LSTM is used to migrate from source to desti-

nation only. When it is decided to migrate back to the same host, then we will migrate

back only the modified pages, and the rest of the pages will be recovered from the copy

108

of dump at the host as shown in Figure 5.9(b). The set of pages identical to the pages at

the source host will be discarded. This complete scenario is implemented with container

cloudsim 4.0 and LSTM with dl2j used to predict memory pages to be migrated.

5.6 Performance and Evaluation

Migration performance and cost modeling is an essential component of migration man-

agement to assess and forecast migration requests’ overall cost and performance. Single

migration performance indicators have been the subject of several studies. We catego-

rize these indicators according to time and data quantity. Data transmission size is the

critical element for determining the network overhead associated with network migra-

tion. It is substantially positively associated with the migration time for pre-copy migra-

tion. The overall quantity of data transmitted equals the sum of the amounts transferred

on each occasion. It consists of two components: memory data and storage data.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 2 4 6 8 10 12 14 16

M
em

or
y

(B
yt

e)

Test cases

Standard scheme
Advanced Precopy

Memory Reusing

Data Transfer When Migrating Back

Figure 5.10: The amount of data transferred when migrating back to the same host

with 15 test cases and test cases 1 to 5 implemented with 5 containers, 6 to 10 with 10

containers and 11 to 15 with 15 containers by using the standard pre-copy, advanced

pre-copy and the proposed technique which revert only updated pages.

The proposed memory reusing approach is tested on different set of containers for

better understanding and outcomes. As mentioned in Figure 5.10, the number of bytes

109

transferred during the migration of containers is specified. There are 15 test cases,

where in the first 5 test cases, the set of 5 containers is implemented. The memory

transfer with the existing approach [55] is represented in red color.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Batch-5 Batch 10 Batch 15

M
em

or
y

(B
yt

e)

Set of Containers

Standard Scheme
Advanced Pre-copy

Memory Reusing

Amount of Data Transfer while Migrating Back

Figure 5.11: The amount of data transferred with the batch of 5 containers, 10 con-

tainers and 15 containers by using the standard pre-copy, advanced pre-copy and the

proposed technique.

You can see the difference in data transferred in the proposed technique as illustrated

in red-green color. The yellow color represents the migration from source to destination

with the proposed scheme of our previous research. And according to the proposed

approach, when it is migrating back to the same host, we are reverting only the updated

pages.

The memory dump copies of the containers migrated to the destination host are

stored at source host. Because in some of the cases when containers are migrated due

to load balancing, fault tolerance, system upgrade, etc., the container migrates back

to the same host. As we mentioned in the process of memory reusing in Section 5.3

when the container is migrated back to the same host, then we send only the modified

memory pages, and these copies of memory are dumped at the source will be used to

initiate the containers on the source host. In the case of the proposed technique, there

is an additional space overhead on the source host. This additional space overhead will

110

occupy memory from the host system only. But with this small overhead, we can reduce

the costly data transmission over the network. The result shows that the data transfer

during migrating back is reduced.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 4 6 8 10 12 14 16

M
em

or
y

(B
yt

e)

Number of Containers

Standard Scheme
Advanced Pre-copy

Memory Reusing

Average Amount of Data Transfer while Migrating Back

Figure 5.12: The average rate of data transferred when migrating back to the same

host with the batch size of 5 containers, 10 containers and 15 containers by using the

standard pre-copy, advanced pre-copy and the proposed technique.

Results show that if the container number increases in a batch of migration, the

percentage of data transmission over the network improves. In the same way, we have

run containers in three batches as a set of 5,10, and 15 containers. Further, in Figure

5.11, the amount of data transferred during the existing approach of container migra-

tion and the proposed technique are shown. Here we can identify the difference in the

transmission.

The average rate of data transferred when migrating back to the same host with

the batch size of 5 containers, 10 containers and 15 containers is specified in Figure

5.12. The rate of data transfer in the standard pre-copy approach [55], advanced pre-

copy and the proposed pre-copy approach are discussed in detail. The number of bytes

transferred in the proposed technique is much lesser than the existing techniques. It

shows the average rate of reduction in the data transfer over the network by 60.68%

compared to standard pre-copy and 52.30% compared to advanced pre-copy.

111

5.7 Summary

The migration process is divided into three phases in the pre-copy container migra-

tion technique. The first two phases are pre-dump and iterative dump. The pre-dump

was implemented with the PSO algorithm and the iterative dump is implemented with

LSTM. After that in the final dump, the memory related to the container will be removed

from the source host. We recognized a few cases (fault tolerance, system upgrade, load

balancing, etc.), where containers go back to the same host. In such cases, we have

implemented the proposed migration technique that helps to reduce the data transfer

over the network and it outperforms compared to the existing system. As a future direc-

tion, this technique can be implemented in various cloud environments like VMs used

for various services, fog, edge computing, etc., where the instances are moving rapidly.

The other alternative is to use the centralized instance image to reduce data transfer

between source and destination host.

112

CHAPTER 6

CONCLUSIONS AND FUTURE

DIRECTIONS

This chapter concludes the thesis, including a summary of work and significant con-

tributions. It then suggests and analyses several potential future research topics for

improving container migration paradigms.

6.1 Summary of Contributions

Chapter 1: An introduction to related topics has been explored in detail in chapter 1 of

this thesis. Containers, including how they vary from VMs, types of containers, con-

tainer migration, and numerous container migration methodologies, are all thoroughly

covered.

Chapter 2: The key component of pre-copy container migration is memory change

prediction. It should be carefully chosen based on pre-copy migration’s pre-dump, it-

erative, and final dump phases. To improve the prediction mechanism, a prediction

scheme or collection of multiple approaches should be applied to the memory pages to

be migrated to the destination host. PSO-based prediction schemes, LSTM-based pre-

diction schemes, and ANN-based prediction schemes are all common options. Because

of its prominence in migration procedures, it has been discovered that pre-copy has to

be properly described. Pre-migration guarantees that resources are available between

113

the source and destination. Source hosts transmit information such as memory size and

running application data with the destination host to select a suitable destination host

and confirm that. To begin the migration for resource reservation, first check that the

target host has enough resources and recognize the source host. To decrease the size of

the memory dump during the pre-dump phase, a probabilistic PSO migration strategy is

developed and implemented. Furthermore, the source host initiates the iterative copying

of memory pages in iterative pre-copy. The next iteration sends all of the memory pages

that were changed in the previous iteration. To limit the quantity of data transmitted, a

predictive checkpoint for the iterative dump has been proposed. Finally, the "Stop-and-

Copy" container will shut down and copy the remaining dirty index memory pages to

their new location. The container migrates back to the same host in various instances,

such as failure tolerance, load balancing, etc. A memory reuse technique is provided to

reduce the total migration size, which also supports page faults.

Chapter 3: The rise of containers in cloud computing has shifted industry trends

away from heavy virtualization and lightweight virtualization. There are several up-

dated variants of container migration algorithms. Nonetheless, the migration step fol-

lows the same basic procedure as the pre-dump phase. The destination host receives all

of the memory pages associated with the container. The reduction of data transmission

during this period is a primary goal. We can reduce the size of the pre-dump. If we

migrate a group of 5 containers to the destination host using the standard method, we

will send 4367 B. However, using the proposed method, we will send about 3206.7B.

Similarly, it was 8176B in the ten containers, but it is now 6079.4B, and it was 12387B

in the fifteen containers, but it is now just 9040.5B.

Chapter 4: Virtual machines are more efficient than native servers for application de-

ployment, and moving to containers can provide even more value to the IIoT ecosystem.

Containers are becoming increasingly popular in IT businesses due to rising demand.

Container migration has been deployed in several batches of containers to improve per-

formance. These batches are divided into five, ten, and fifteen containers. This chapter

shows how we can reduce data transfer across the network. The recommended method

has been implemented as a pre-copy migration. The suggested technique exceeds pre-

vious alternatives in terms of the volume of data moved and overall migration time.

When it comes to transferring the dump, the recommended method is faster than cold

114

and pre-copy migration. However, post-copy and a hybrid technique require less time

than the suggested method. In terms of downtime, the cold and pre-copy procedures

have more than the recommended, while the post-copy and hybrid options have less.

Because the majority of data is sent after the container is started on the destination

host in both post-copy and hybrid scenarios. In terms of "total migration time" and

"amount of data moved," the suggested approach outperforms, but post-copy excels in

the remaining two criteria, downtime and dump-time.

Chapter 5: The pre-copy container migration approach divides the migration proce-

dure into three steps. Pre-dump and iterative dump are the first two processes that have

previously been addressed in our past study. The PSO algorithm was used to create

the pre-dump phase, while the LSTM method was used to perform the iterative dump

phase. The memory associated with the container will then be deleted from the source

host in the final dump. We identified a few instances where the container returns to the

same host (fault tolerance, system upgrade, load balancing, and so on). In such cases,

we’ve applied the recommended migration approach, which helps to decrease network

data transmission. They can be improved even further by determining whether or not

the container will be moved back. As a result, the migration strategy will be determined.

Multiple migration approaches to minimize dump size in various phases of pre-copy

container migration are shown in the chapters above, which is a relevant contribution to

the state-of-the-art.

6.2 Future Research Directions

This thesis addressed several memory-related concerns in the container migration paradigm.

However, container migration approaches can be enhanced much further by addressing

a few critical difficulties that need to be investigated further.

6.2.1 Container applications

Container success in the deployment of cloud applications stems from their loosely

connected architecture, modularity, and flexibility. To address the obstacles, containers

placement approaches should consider the context of applications and data before mi-

grating them. Containers loosely connected and lightweight architecture also facilitates

115

the transfer of containerized applications. As a result, different migration models (e.g.,

pre-copy, post-copy, hybrid) should be thoroughly investigated in real cloud environ-

ments for a smooth migration, considering the type and structure of cloud applications.

6.2.2 Pre-dump

The pre-copy container migration is divided into three phases, as discussed in chap-

ter 3. The size of the pre-dump phase was reduced by using probability-based PSO,

which resulted in shorter migration time, less data transmission over the network, and

reduced resource use. The suggested pre-dump approach surpasses the usual pre-dump

migration technique of container migration, with a 26.48 percent reduction in pre-dump

size. This strategy can be utilized in the future to reduce the overall dump size during

container migration in cloud and edge computing.

6.2.3 Iterative dump

Because of the increasing demand for containers, the amount of data transfer is a cru-

cial factor for the overall performance. In future research, the memory prediction in live

container migration can be evaluated at a large scale in real scenarios to obtain detailed

insights. The type of application running in the container may affect the prediction re-

sults. We plan to extend our study to different applications and test these with alternative

prediction schemes, such as ANN, ARIMA, etc., to determine future directions.

6.2.4 Final dump

The final dump is the last phase of pre-copy container migration and is discussed in

chapter 5. The complete dump is transferred to the destination host in the standard

approach. The data transmission in the final dump is dependent on the memory migrated

in the previous two phases. With the proper synchronization in these phases, the final

dump size can also be reduced.

6.2.5 Recovery Technique

The successful migration of containers and resumes to the destination host is an essen-

tial factor affecting the migration. There are chances that the container resume fails on

the destination host due to data loss during data transmission. Some effective methods

116

to handle page faults can be discussed further. The online shared dump is one of the

options to address the issue.

6.2.6 Memory Reusing

As stated in Chapter 5, the container will most likely migrate back to its original host

in some instances. We can minimize the amount of data transmission in such cases by

recycling the dump from the source host. Pages that are identical to the source material

will not be returned. It would be a huge benefit if it could be expanded further in a cloud

setting.

6.3 Final Remarks

The cloud computing paradigm has evolved into the backbone of today’s digital world,

allowing numerous solutions to be implemented for various use cases, including com-

puting clouds, data centers, science, and entertainment, to name a few. To fully realize

the potential of cloud computing, effective container migration is a critical challenge,

influencing container application execution costs, user QoE, and operational expenses.

This thesis examined how to migrate containers efficiently for the smooth execu-

tion of processes on resource-constrained systems. The techniques and system designs

suggested in this thesis reduce the time it takes to migrate containerized processes, the

amount of data transferred, and downtime while also improving user QoE. The limi-

tation of the system is the extra overhead on the host system. The cause of this extra

overhead is the time and resources taken by the probability calculation. Still, this over-

head is comparatively less than the overhead over the network. Container migration

research, such as those provided in this thesis, will allow cloud service providers to mi-

grate containers in cloud computing environments at scale successfully and efficiently.

Furthermore, the findings of this research can help promote container migration inno-

vations and advances.

117

REFERENCES

[1] R. Synytsky. Containers live migration: Behind the scenes. [Online]. Available:

https://www.infoq.com/articles/container-live-migration/

[2] C. Puliafito, C. Vallati, E. Mingozzi, G. Merlino, F. Longo, and A. Puliafito,

“Container migration in the fog: A performance evaluation,” Sensors, vol. 19,

no. 7, p. 1488, 2019.

[3] J. Tang, Y. Li, M. Ding, H. Liu, D. Yang, and X. Wu, “An ionospheric

tec forecasting model based on a cnn-lstm-attention mechanism neural

network,” Remote Sensing, vol. 14, no. 10, 2022. [Online]. Available:

https://www.mdpi.com/2072-4292/14/10/2433

[4] P.-P. Phyo and C. Jeenanunta, “Advanced ml-based ensemble and deep learn-

ing models for short-term load forecasting: Comparative analysis using feature

engineering,” Applied Sciences, vol. 12, no. 10, p. 4882, 2022.

[5] A. F. Leite, A. Boukerche, A. C. Magalhaes Alves de Melo, C. Eisenbeis, C. Ta-

donki, and C. G. Ralha, “Power-aware server consolidation for federated clouds,”

Concurrency and Computation: Practice and Experience, vol. 28, no. 12, pp.

3427–3444, 2016.

[6] D. Merkel et al., “Docker: lightweight linux containers for consistent develop-

ment and deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.

118

https://www.infoq.com/articles/container-live-migration/
https://www.mdpi.com/2072-4292/14/10/2433

[7] Q. Huang, L. Sun, F. Jia, J. Yuan, Y. Wu, and J. Pan, “Automatic scaling mech-

anism of intermodal edi system under green cloud computing,” Journal of Ad-

vanced Transportation, vol. 2022, 2022.

[8] Q. Zhang, L. Liu, C. Pu, Q. Dou, L. Wu, and W. Zhou, “A comparative study

of containers and virtual machines in big data environment,” in 2018 IEEE 11th

International Conference on Cloud Computing (CLOUD). IEEE, 2018, pp.

178–185.

[9] J. Mellado and F. Núñez, “Design of an iot-plc: A containerized programmable

logical controller for the industry 4.0,” Journal of Industrial Information Inte-

gration, vol. 25, p. 100250, 2022.

[10] S. Nadgowda, S. Suneja, N. Bila, and C. Isci, “Voyager: Complete container

state migration,” in 2017 IEEE 37th International Conference on Distributed

Computing Systems (ICDCS). IEEE, 2017, pp. 2137–2142.

[11] H. Korala, D. Georgakopoulos, P. P. Jayaraman, and A. Yavari, “A survey of

techniques for fulfilling the time-bound requirements of time-sensitive iot appli-

cations,” ACM Computing Surveys, 2022.

[12] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Autonomic vertical elas-

ticity of docker containers with elasticdocker,” in 2017 IEEE 10th international

conference on cloud computing (CLOUD). IEEE, 2017, pp. 472–479.

[13] P. Chaurasia, S. B. Nath, S. K. Addya, and S. K. Ghosh, “Automating the se-

lection of container orchestrators for service deployment,” in 2022 14th Inter-

national Conference on COMmunication Systems & NETworkS (COMSNETS).

IEEE, 2022, pp. 739–743.

[14] C. Prakash, D. Mishra, P. Kulkarni, and U. Bellur, “Portkey: hypervisor-assisted

container migration in nested cloud environments,” in Proceedings of the 18th

ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-

ronments, 2022, pp. 3–17.

119

[15] C. Puliafito, C. Vallati, E. Mingozzi, G. Merlino, and F. Longo, “Design and

evaluation of a fog platform supporting device mobility through container mi-

gration,” Pervasive and Mobile Computing, p. 101415, 2021.

[16] S. Hu, W. Shi, and G. Li, “Cec: A containerized edge computing framework

for dynamic resource provisioning,” IEEE Transactions on Mobile Computing,

2022.

[17] S.-H. Choi and K.-W. Park, “Icontainer: Consecutive checkpoint with a rapid

resilience for immortal container-based services,” Available at SSRN 4034464.

[18] M. P. Yadav, H. A. Akarte, and D. K. Yadav, “Container elasticity: Based on

response time using docker,” Recent Advances in Computer Science and Com-

munications (Formerly: Recent Patents on Computer Science), vol. 15, no. 5, pp.

773–785, 2022.

[19] A. K. Gupta, A. Sharma, A. Pandey, P. Kaustubh, and S. Sharma, “Live migra-

tion in hpc,” in Cybersecurity and High-Performance Computing Environments.

Chapman and Hall/CRC, 2022, pp. 191–227.

[20] C. Pu, H. Xu, H. Jiang, D. Chen, and P. Han, “An environment-aware and dy-

namic compression-based approach for edge computing service migration,” in

2022 2nd International Conference on Consumer Electronics and Computer En-

gineering (ICCECE). IEEE, 2022, pp. 292–297.

[21] C. Puliafito, L. Conforti, A. Virdis, and E. Mingozzi, “Server-side quic connec-

tion migration to support microservice deployment at the edge,” Pervasive and

Mobile Computing, vol. 83, p. 101580, 2022.

[22] B. Shi, H. Shen, B. Dong, and Q. Zheng, “Memory/disk operation aware

lightweight vm live migration,” IEEE/ACM Transactions on Networking, 2022.

[23] A. K. Dash, “Understanding migration mechanisms of containers using criu,”

2022.

[24] R. Hemalatha, D. Akila, D. Balaganesh, and A. Paul, The Internet of Medical

Things (IoMT): Healthcare Transformation. John Wiley & Sons, 2022.

120

[25] Y. S. Abdulsalam and M. Hedabou, “Decentralized data integrity scheme for

preserving privacy in cloud computing,” in 2021 International Conference on

Security, Pattern Analysis, and Cybernetics (SPAC). IEEE, 2021, pp. 607–612.

[26] A. Bentajer and M. Hedabou, “Cryptographic key management issues in cloud

computing,” Adv. Eng. Res, vol. 34, pp. 78–112, 2020.

[27] H. Nie, P. Li, H. Xu, L. Dong, J. Song, and R. Wang, “Research on optimized

pre-copy algorithm of live container migration in cloud environment,” in In-

ternational Symposium on Parallel Architecture, Algorithm and Programming.

Springer, 2017, pp. 554–565.

[28] A. Mirkin, A. Kuznetsov, and K. Kolyshkin, “Containers checkpointing and live

migration,” in Proceedings of the Linux Symposium, vol. 2, 2018, pp. 85–90.

[29] B. R. Raghunath and B. Annappa, “Prediction based dynamic resource provi-

sioning in virtualized environments,” in 2017 IEEE International Conference on

Consumer Electronics (ICCE). IEEE, 2017, pp. 100–105.

[30] K. Elghamrawy, D. Franklin, and F. T. Chong, “Predicting memory page stability

and its application to memory deduplication and live migration,” in 2017 IEEE

International Symposium on Performance Analysis of Systems and Software (IS-

PASS). IEEE, 2017, pp. 125–126.

[31] Y. Qiu, C.-H. Lung, S. Ajila, and P. Srivastava, “Experimental evaluation of lxc

container migration for cloudlets using multipath tcp,” Computer Networks, vol.

164, p. 106900, 2019.

[32] D. Kim, H. Muhammad, E. Kim, S. Helal, and C. Lee, “Tosca-based and

federation-aware cloud orchestration for kubernetes container platform,” Applied

Sciences, vol. 9, no. 1, p. 191, 2019.

[33] L. Ma, S. Yi, and Q. Li, “Efficient service handoff across edge servers via docker

container migration,” in Proceedings of the Second ACM/IEEE Symposium on

Edge Computing, 2017, pp. 1–13.

[34] G. Moltó, M. Caballer, A. Pérez, C. de Alfonso, and I. Blanquer, “Coherent

application delivery on hybrid distributed computing infrastructures of virtual

121

machines and docker containers,” in 2017 25Th Euromicro International Con-

ference on Parallel, Distributed and Network-Based Processing (PDP). IEEE,

2017, pp. 486–490.

[35] C. Dupont, R. Giaffreda, and L. Capra, “Edge computing in iot context: Hori-

zontal and vertical linux container migration,” in 2017 Global Internet of Things

Summit (GIoTS). IEEE, 2017, pp. 1–4.

[36] T. Wu, N. Guizani, and J. Huang, “Related dirty memory prediction mechanism

for live migration enhancement in cloud computing environments,” Journal of

Network and Computer Applications, vol. 3, pp. 1–14, 2017.

[37] X. Guan, X. Wan, B.-Y. Choi, S. Song, and J. Zhu, “Application oriented dy-

namic resource allocation for data centers using docker containers,” IEEE Com-

munications Letters, vol. 21, no. 3, pp. 504–507, 2016.

[38] C. Kan, “Docloud: An elastic cloud platform for web applications based on

docker,” in 2016 18th international conference on advanced communication

technology (ICACT). IEEE, 2016, pp. 478–483.

[39] C. Yu and F. Huan, “Live migration of docker containers through logging and

replay,” in 2015 3rd International Conference on Mechatronics and Industrial

Informatics (ICMII 2015). Atlantis Press, 2015.

[40] P. Jain and R. Agrawal, “An improved pre-copy approach for transferring the vm

data during the virtual machine migration for the cloud environment,” Interna-

tional journal of engineering and manufacturing, vol. 6, no. 6, pp. 51–60, 2016.

[41] Y. Fang, Y. Chen, and J. Ge, “Improvement of live migration mechanism for

virtual machine based on pre-copy,” in 2016 3rd International Conference on

Materials Engineering, Manufacturing Technology and Control. Atlantis Press,

2016.

[42] E. Mostajeran, M. F. Khalid, M. N. M. Mydin, B. I. Ismail, and H. Ong, “Mul-

tifaceted trust assessment framework for container based edge computing plat-

form,” in Fifth InternationalConference On Advances in Computing, Control and

Networking-ACCN 2016, 2016.

122

[43] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson, “Container-

based operating system virtualization: a scalable, high-performance alternative

to hypervisors,” in Proceedings of the 2Nd ACM SIGOPS/EuroSys european con-

ference on computer systems 2007, 2007, pp. 275–287.

[44] S. Luo, G. Zhang, C. Wu, S. Khan, and K. Li, “Boafft: distributed deduplication

for big data storage in the cloud,” IEEE transactions on cloud computing, 2015.

[45] M. Ansar, M. W. Ashraf, M. Fatima et al., “Data migration in cloud: A systematic

review,” American Scientific Research Journal for Engineering, Technology, and

Sciences (ASRJETS), vol. 48, no. 1, pp. 73–89, 2018.

[46] M. Patel, S. Chaudhary, and S. Garg, “vmeasure: Performance modeling for

live vm migration measuring,” in Advances in Data and Information Sciences.

Springer, 2019, pp. 185–195.

[47] M. Patel and S. Chaudhary, “Improved pre-copy algorithm using statistical pre-

diction and compression model for efficient live memory migration,” Interna-

tional Journal of High Performance Computing and Networking, vol. 11, pp.

55–65, 2018.

[48] S. Sharma and M. Chawla, “A three phase optimization method for precopy

based vm live migration,” SpringerPlus, vol. 5, no. 1, p. 1022, 2016.

[49] R. de Jesus Martins, C. B. Both, J. A. Wickboldt, and L. Z. Granville, “Virtual

network functions migration cost: from identification to prediction,” Computer

Networks, vol. 181, p. 107429, 2020.

[50] X.-Z. Xie, C.-C. Chang, and K. Chen, “A high-embedding efficiency rdh in en-

crypted image combining msb prediction and matrix encoding for non-volatile

memory-based cloud service,” IEEE Access, vol. 8, pp. 52 028–52 040, 2020.

[51] J. Kumar and A. K. Singh, “Decomposition based cloud resource demand pre-

diction using extreme learning machines,” Journal of Network and Systems Man-

agement, vol. 28, no. 4, pp. 1775–1793, 2020.

[52] X. Wang, C. Xu, K. Wang, F. Yan, and D. Zhao, “Memory scaling of cloud-based

big data systems: A hybrid approach,” IEEE Transactions on Big Data, 2020.

123

[53] M. Imdoukh, I. Ahmad, and M. G. Alfailakawi, “Machine learning-based auto-

scaling for containerized applications,” Neural Computing and Applications,

vol. 32, no. 13, pp. 9745–9760, 2020.

[54] M. Masdari and H. Khezri, “Efficient vm migrations using forecasting techniques

in cloud computing: a comprehensive review,” Cluster Computing, pp. 1–30,

2020.

[55] A. Bhardwaj and C. R. Krishna, “A container-based technique to improve virtual

machine migration in cloud computing,” IETE Journal of Research, pp. 1–16,

2019.

[56] A. Mirkin, A. Kuznetsov, and K. Kolyshkin, “Containers checkpointing and live

migration,” in Proceedings of the Linux Symposium, vol. 2, 2018, pp. 85–90.

[57] S. K. Chronopoulos, E. I. Kosma, K. P. Peppas, D. Tafiadis, K. Drosos, N. Zi-

avra, and E. I. Toki, “Exploring the speech language therapy through information

communication technologies, machine learning and neural networks,” in 2021

5th International Symposium on Multidisciplinary Studies and Innovative Tech-

nologies (ISMSIT), 2021, pp. 193–198.

[58] A. Slominski, V. Muthusamy, and R. Khalaf, “Building a multi-tenant cloud ser-

vice from legacy code with docker containers,” in 2015 IEEE International Con-

ference on Cloud Engineering. IEEE, 2015, pp. 394–396.

[59] C. Guerrero, I. Lera, and C. Juiz, “Genetic algorithm for multi-objective opti-

mization of container allocation in cloud architecture,” Journal of Grid Comput-

ing, vol. 16, no. 1, pp. 113–135, 2018.

[60] Y. Du, H. Yu, G. Shi, J. Chen, and W. Zheng, “Microwiper: efficient memory

propagation in live migration of virtual machines,” in 2010 39th International

Conference on Parallel Processing. IEEE, 2010, pp. 141–149.

[61] Y. Zhong, J. Xu, Q. Li, H. Zhang, and F. Liu, “Memory state transfer optimization

for pre-copy based live vm migration,” in 2014 IEEE Workshop on Advanced

Research and Technology in Industry Applications (WARTIA). IEEE, 2014, pp.

290–293.

124

[62] B. Das, K. K. Mandal, and S. Das, “Improving total migration time in live virtual

machine migration,” in Proceedings of the Sixth International Conference on

Computer and Communication Technology 2015, 2015, pp. 57–61.

[63] W. Zhang, L. Chen, J. Luo, and J. Liu, “A two-stage container management in the

cloud for optimizing the load balancing and migration cost,” Future Generation

Computer Systems, 2022.

[64] W. Moussa, M. Nashaat, W. Saber, and R. Rizk, “Comprehensive study on ma-

chine learning-based container scheduling in cloud,” in International Conference

on Advanced Machine Learning Technologies and Applications. Springer, 2022,

pp. 581–592.

[65] M. Gundall, J. Stegmann, M. Reichardt, and H. D. Schotten, “Downtime op-

timized live migration of industrial real-time control services,” arXiv preprint

arXiv:2203.12935, 2022.

[66] M. Terneborg, “Enabling container failover by extending current container mi-

gration techniques,” 2021.

[67] M. Terneborg, J. K. Rönnberg, and O. Schelén, “Application agnostic container

migration and failover,” in 2021 IEEE 46th Conference on Local Computer Net-

works (LCN). IEEE, 2021, pp. 565–572.

[68] Z. Zhi, Z. Zhuofeng, and L. Han, “Static layout and dynamic migration method

of a large-scale container,” in 2021 IEEE 5th Advanced Information Technology,

Electronic and Automation Control Conference (IAEAC), vol. 5. IEEE, 2021,

pp. 1897–1901.

[69] S. Zheng, F. Huang, C. Li, and H. Wang, “A cloud resource prediction and mi-

gration method for container scheduling,” in 2021 IEEE Conference on Telecom-

munications, Optics and Computer Science (TOCS). IEEE, 2021, pp. 76–80.

[70] R. Yang, H. He, and W. Zhang, “Multitier service migration framework based on

mobility prediction in mobile edge computing,” Wireless Communications and

Mobile Computing, vol. 2021, 2021.

125

[71] L. Chen and W. Zhang, “A deep learning-based approach with pso for workload

prediction of containers in the cloud,” in 2021 13th International Conference on

Advanced Infocomm Technology (ICAIT). IEEE, 2021, pp. 204–208.

[72] D. Dai Vu, X. T. Vu, and Y. Kim, “Deep learning-based fault prediction in cloud

system,” in 2021 International Conference on Information and Communication

Technology Convergence (ICTC). IEEE, 2021, pp. 1826–1829.

[73] S. Pervaiz, Z. Ul-Qayyum, W. H. Bangyal, L. Gao, and J. Ahmad, “A systematic

literature review on particle swarm optimization techniques for medical diseases

detection,” Computational and Mathematical Methods in Medicine, vol. 2021,

2021.

[74] W. H. Bangyal, A. Hameed, W. Alosaimi, and H. Alyami, “A new initializa-

tion approach in particle swarm optimization for global optimization problems,”

Computational Intelligence and Neuroscience, vol. 2021, 2021.

[75] W. H. Bangyal, K. Nisar, A. Ibrahim, A. A. Bin, M. R. Haque, J. J. Rodrigues,

and D. B. Rawat, “Comparative analysis of low discrepancy sequence-based ini-

tialization approaches using population-based algorithms for solving the global

optimization problems,” Applied Sciences, vol. 11, no. 16, p. 7591, 2021.

[76] G. Singh, P. Singh, M. Hedabou, M. Masud, and S. S. Alshamrani, “A predictive

checkpoint technique for iterative phase of container migration,” Sustainability,

vol. 14, no. 11, p. 6538, 2022.

[77] R. Stoyanov and M. J. Kollingbaum, “Efficient live migration of linux contain-

ers,” in International Conference on High Performance Computing. Springer,

2018, pp. 184–193.

[78] A. Widjajarto, D. W. Jacob, and M. Lubis, “Live migration using checkpoint

and restore in userspace (criu): Usage analysis of network, memory and cpu,”

Bulletin of Electrical Engineering and Informatics, vol. 10, no. 2, pp. 837–847,

2021.

[79] S. Oh and J. Kim, “Stateful container migration employing checkpoint-based

restoration for orchestrated container clusters,” in 2018 International Conference

126

on Information and Communication Technology Convergence (ICTC). IEEE,

2018, pp. 25–30.

[80] R. Torre, E. Urbano, H. Salah, G. T. Nguyen, and F. H. Fitzek, “Towards a better

understanding of live migration performance with docker containers,” in Euro-

pean Wireless 2019; 25th European Wireless Conference. VDE, 2019, pp. 1–6.

[81] Y. Al-Dhuraibi, F. Zalila, N. Djarallah, and P. Merle, “Coordinating vertical elas-

ticity of both containers and virtual machines,” 2018.

[82] G. Singh and P. Singh, “A taxonomy and survey on container migration tech-

niques in cloud computing,” in Sustainable Development Through Engineering

Innovations: Select Proceedings of SDEI 2020. Springer Singapore, 2021, pp.

419–429.

[83] M. A. Haghighi, M. Maeen, and M. Haghparast, “An energy-efficient dynamic

resource management approach based on clustering and meta-heuristic algo-

rithms in cloud computing iaas platforms,” Wireless Personal Communications,

vol. 104, no. 4, pp. 1367–1391, 2019.

[84] T. G. Rodrigues, K. Suto, H. Nishiyama, and N. Kato, “A pso model with vm

migration and transmission power control for low service delay in the multiple

cloudlets ecc scenario,” in 2017 IEEE International Conference on Communica-

tions (ICC). IEEE, 2017, pp. 1–6.

[85] M. S. Sheela and C. Arun, “Hybrid pso–svm algorithm for covid-19 screening

and quantification,” International Journal of Information Technology, pp. 1–8,

2022.

[86] P. Rawat and S. Chauhan, “Particle swarm optimization based sleep scheduling

and clustering protocol in wireless sensor network,” Peer-to-Peer Networking

and Applications, vol. 15, no. 3, pp. 1417–1436, 2022.

[87] U. S. Bist and N. Singh, “A novel chaotic kernel framework for support vector

machines using probability-based feature extraction method,” in 2022 9th Inter-

national Conference on Computing for Sustainable Global Development (INDI-

ACom). IEEE, 2022, pp. 885–890.

127

[88] Y. Liu and M. Zhao, “An obsolescence forecasting method based on improved

radial basis function neural network,” Ain Shams Engineering Journal, vol. 13,

no. 6, p. 101775, 2022.

[89] X. Zhu, N. Li, and Y. Pan, “Optimization performance comparison of three dif-

ferent group intelligence algorithms on a svm for hyperspectral imagery classifi-

cation,” Remote Sensing, vol. 11, no. 6, p. 734, 2019.

[90] F. Wihartiko, H. Wijayanti, and F. Virgantari, “Performance comparison of ge-

netic algorithms and particle swarm optimization for model integer programming

bus timetabling problem,” in IOP Conference Series: Materials Science and En-

gineering, vol. 332, no. 1. IOP Publishing, 2018, p. 012020.

[91] Y. Hu, H. Wang, Y. Zhang, and B. Wen, “Frequency prediction model combin-

ing isfr model and lstm network,” International Journal of Electrical Power &

Energy Systems, vol. 139, p. 108001, 2022.

[92] Y. Xu, C. Hu, Q. Wu, S. Jian, Z. Li, Y. Chen, G. Zhang, Z. Zhang, and S. Wang,

“Research on particle swarm optimization in lstm neural networks for rainfall-

runoff simulation,” Journal of Hydrology, vol. 608, p. 127553, 2022.

[93] N. Elizabeth Michael, M. Mishra, S. Hasan, and A. Al-Durra, “Short-term solar

power predicting model based on multi-step cnn stacked lstm technique,” Ener-

gies, vol. 15, no. 6, p. 2150, 2022.

[94] L. Du, R. Gao, P. N. Suganthan, and D. Z. Wang, “Bayesian optimization based

dynamic ensemble for time series forecasting,” Information Sciences, vol. 591,

pp. 155–175, 2022.

[95] M. Xu, J. Du, Z. Xue, Z. Guan, F. Kou, and L. Shi, “A scientific research topic

trend prediction model based on multi-lstm and graph convolutional network,”

International Journal of Intelligent Systems, 2022.

[96] W. Jiang, “Internet traffic matrix prediction with convolutional lstm neural net-

work,” Internet Technology Letters, vol. 5, no. 2, p. e322, 2022.

[97] “Understanding lstm networks,” https://colah.github.io/posts/

2015-08-Understanding-LSTMs/, accessed: 2021-11-22.

128

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

[98] K. Cho and Y. Kim, “Improving streamflow prediction in the wrf-hydro model

with lstm networks,” Journal of Hydrology, vol. 605, p. 127297, 2022.

[99] J. Chen, X. Wang, and X. Xu, “Gc-lstm: Graph convolution embedded lstm for

dynamic network link prediction,” Applied Intelligence, vol. 52, no. 7, pp. 7513–

7528, 2022.

[100] O. Osanaiye and S. Adeshina, “Service availability of virtual machines in cloud

computing,” in Cloud and Fog Computing Platforms for Internet of Things.

Chapman and Hall/CRC, 2022, pp. 129–141.

[101] D. N. Nirmala and K. S. Vengatesh, “Research challenges in pre-copy virtual ma-

chine migration in cloud environment,” The Internet of Medical Things (IoMT)

Healthcare Transformation, pp. 45–72, 2022.

[102] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,

D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud computing,” Commu-

nications of the ACM, vol. 53, no. 4, pp. 50–58, 2010.

[103] S. Marston, Z. Li, S. Bandyopadhyay, J. Zhang, and A. Ghalsasi, “Cloud com-

puting—the business perspective,” Decision support systems, vol. 51, no. 1, pp.

176–189, 2011.

[104] A. M. Joy, “Performance comparison between linux containers and virtual ma-

chines,” in 2015 International Conference on Advances in Computer Engineer-

ing and Applications. IEEE, 2015, pp. 342–346.

[105] Y. Mao, Y. Fu, S. Gu, S. Vhaduri, L. Cheng, and Q. Liu, “Resource management

schemes for cloud-native platforms with computing containers of docker and

kubernetes,” arXiv preprint arXiv:2010.10350, 2020.

[106] K. Govindaraj and A. Artemenko, “Container live migration for latency critical

industrial applications on edge computing,” in 2018 IEEE 23rd International

Conference on Emerging Technologies and Factory Automation (ETFA), vol. 1.

IEEE, 2018, pp. 83–90.

129

[107] W. Liang, L. Cui, and F. P. Tso, “Low-latency service function chain migration

in edge-core networks based on open jackson networks,” Journal of Systems Ar-

chitecture, p. 102405, 2022.

[108] CRIU. Live migration. [Online]. Available: https://criu.org/Live_migration

[109] V. Kulkarni, S. S. Aldi, M. M. Mulla, D. Narayan, and P. Hiremath, “Dynamic

live vm migration mechanism in openstack-based cloud,” in 2022 International

Conference on Computer Communication and Informatics (ICCCI). IEEE,

2022, pp. 1–6.

[110] T. He, A. N. Toosi, and R. Buyya, “Performance evaluation of live virtual ma-

chine migration in sdn-enabled cloud data centers,” Journal of Parallel and Dis-

tributed Computing, vol. 131, pp. 55–68, 2019.

[111] C. Sunil, K. Raghunandan, K. Ranjit, H. Chethan, and G. H. Kumar, “An inno-

vative approach for cloud-based web dev app migration,” in ICT with Intelligent

Applications. Springer, 2022, pp. 807–817.

[112] P. Karhula, J. Janak, and H. Schulzrinne, “Checkpointing and migration of iot

edge functions,” in Proceedings of the 2nd International Workshop on Edge Sys-

tems, Analytics and Networking, 2019, pp. 60–65.

[113] J. Feng, J. Zhang, Y. Xiao, and Y. Ji, “Demonstration of containerized vdu/vcu

migration in wdm metro optical networks,” in 2020 Optical Fiber Communica-

tions Conference and Exhibition (OFC). IEEE, 2020, pp. 1–3.

[114] J. Schwarzrock, M. G. Jordan, G. Korol, C. C. de Oliveira, A. F. Lorenzon, M. B.

Rutzig, and A. C. S. Beck, “Dynamic concurrency throttling on numa systems

and data migration impacts,” Design Automation for Embedded Systems, vol. 25,

no. 2, pp. 135–160, 2021.

[115] R. S. Venkatesh, T. Smejkal, D. S. Milojicic, and A. Gavrilovska, “Fast in-

memory criu for docker containers,” in Proceedings of the International Sym-

posium on Memory Systems, 2019, pp. 53–65.

130

https://criu.org/Live_migration

[116] A. E. González and E. Arzuaga, “Herdmonitor: Monitoring live migrating con-

tainers in cloud environments,” in 2020 IEEE International Conference on Big

Data (Big Data). IEEE, 2020, pp. 2180–2189.

[117] F. Hofer, M. Sehr, A. Sangiovanni-Vincentelli, and B. Russo, “Industrial control

via application containers: Maintaining determinism in iaas,” Systems Engineer-

ing, vol. 24, no. 5, pp. 352–368, 2021.

[118] H. Jin, B. Liu, W. Jiang, Y. Ma, X. Shi, B. He, and S. Zhao, “Layer-centric mem-

ory reuse and data migration for extreme-scale deep learning on many-core ar-

chitectures,” ACM Transactions on Architecture and Code Optimization (TACO),

vol. 15, no. 3, pp. 1–26, 2018.

[119] E. Vasilakis, V. Papaefstathiou, P. Trancoso, and I. Sourdis, “Llc-guided data

migration in hybrid memory systems,” in 2019 IEEE International Parallel and

Distributed Processing Symposium (IPDPS). IEEE, 2019, pp. 932–942.

[120] K. Kaur, F. Guillemin, and F. Sailhan, “Container placement and migration

strategies for cloud, fog and edge data centers: A survey,” 2022.

[121] R. M. Haris, K. M. Khan, and A. Nhlabatsi, “Live migration of virtual ma-

chine memory content in networked systems: A review,” Computer Networks,

p. 108898, 2022.

131

LIST OF PUBLICATIONS

– Gursharan Singh, Pooja Gupta, “A review on migration techniques and

challenges in live virtual machine migration”, 5th International Conference

on Reliability, Infocom Technologies and Optimization (Published), 2016.

(Scopus)

– Gursharan Singh, Parminder Singh, “A Taxonomy and Survey on Con-

tainer Migration Techniques in Cloud Computing”, Sustainable Develop-

ment Through Engineering Innovations (Published), 2021. (Scopus)

– Gursharan Singh, Parminder Singh, Babar Shah, Farman Ali and Daehan

Kwak, “A Lightweight Migration Technique for Uninterrupted Health Care

System in Cloud”, Computational Intelligence and Neuroscience (Under

Revision), 2022. (Scopus, SCIE 3.63 IF)

– Gursharan Singh, Parminder Singh, Mustapha Hedabou, Mehedi Masud

and Sultan S. Alshamrani, “A Predictive Checkpoint Technique for Iterative

Phase of Container Migration”, Sustainability (Published), 2022. (Scopus,

SCIE 3.25 IF)

– Gursharan Singh, Parminder Singh, Container Migration Technique to

Minimize the Network Overhead with Reusable Memory State, Interna-

tional Journal of Computer Networks and Applications (IJCNA) (Published),

2022. (Scopus)

132

	Declaration
	Certificate
	Abstract
	Acknowledegments
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Open Container Initiative
	Migration Techniques
	Cold Migration
	Pre-copy Migration
	Post-copy Migration
	Hybrid Migration

	Checkpoint and Restore in Userspace
	Types of Container
	Research Objectives
	Thesis Contribution
	Thesis Organization

	Related Work
	Introduction
	Taxonomy and Survey on Container Migration Techniques
	Container Memory Dump Techniques
	Memory Prediction
	Summary

	An Improved Container Migration Technique using PSO-based Predictive Pre-dump
	Introduction
	Major Contributions
	Chapter Structure

	Related Work
	Problem Formulation
	Modeling and Methodology
	System Model
	Proposed Pre-dump Technique
	 Probability-based Particle Swarm Optimization for Container Migration
	Probability-based Particle Swarm Optimization
	Probability Coefficients-based Selection Method

	Experimental Evaluation
	Results and Discussions

	Summary

	A Predictive Checkpoint Technique for Iterative Phase of Container Migration
	Introduction
	Related work
	Motivation and Research Gap
	Methodology
	Machine learning-based predictive checkpoint

	 Results and Discussion
	Summary

	A Dump Reusing Technique For Container Migration Along With a Page Recovery Mechanism
	Introduction
	Background

	Related Work
	Problem Formulation
	System Model
	Experimental setup
	Performance and Evaluation
	Summary

	Conclusions and Future Directions
	Summary of Contributions
	Future Research Directions
	Container applications
	Pre-dump
	Iterative dump
	Final dump
	Recovery Technique
	Memory Reusing

	Final Remarks

	References
	List of Publications

