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Abstract

A STUDY ON PRIME CORDIAL LABELING AND DIVISOR CORDIAL

LABELING OF GRAPHS

by Vishally Sharma

Let G(V (G), E(G)) be the graph with a non empty vertex set V (G) and edge set E(G).

An assignment of integers to the vertices (edges) of a graph G under some constraints is

called a vertex labeling (edge labeling) of G. Most graph labelings finds their origins to

those presented by Alexander Rosa in his famous paper titled “On certain valuations of

the vertices of a graph” at International symposium held in Rome, in July 1966. Rosa

identified three types of labelings; α, β, and ρ labeling. Rosa called a function f a β-

valuation of G with q edges if f is an injection from V (G) to the set {0, 1, 2, ..., q} such

that, when each edge uv is assigned the label |f(u) − f(v)|, the resulting edge labels

are distinct. Golomb, later called β- labeling as graceful labeling. Graph labeling is

one of the most important concept in graph theory as it plays a vital role in different

domains especially, computer science and communication networks. The known appli-

cations are in coding theory, x− ray crystallography, computer network security, global

mobile communication, radar, circuit design, astronomy etc., yet finding the exclusive

applications of a particular graph labeling is still an open area of research. There are

numerous graph labeling techniques which are introduced and studied for various real

life applications, one of them is a cordial labeling which is actually a weaker version of

graceful and harmonious labeling. From time to time many variants of cordial labeling

have been explored, a few notable ones are prime cordial labeling and divisor cordial

labeling. A graph G is said to admit a prime cordial labeling if there exists a bijection

f : V (G) → {1, 2, 3, ..., |V (G)|} defined by the induced function f∗ : E(G) → {0, 1} such

that if, f∗(uv) = 1 if gcd(f(u), f(v)) = 1 and f∗(uv) = 0 if gcd(f(u), f(v)) > 1, then

the number of edges labeled with 0 and 1 differ by at most 1 i.e; |ef (0)− ef (1)| ≤ 1. If

a graph admits a prime cordial labeling, then it is called a prime cordial graph. Sim-

ilarly, a graph G is said to admit a divisor cordial labeling if there exists a bijection

f : V (G) → {1, 2, 3, ..., |V (G)|} defined by the induced function f∗ : E(G) → {0, 1}
such that if f∗(uv) = 1 if f(u)|f(v) or f(v)|f(u) and f∗(uv) = 0 otherwise, then

|ef (0) − ef (1)| ≤ 1. If a graph admits a divisor cordial labeling, then it is called a di-

visor cordial graph. Though a significant work has been done concerning prime cordial

labeling and divisor cordial labeling, yet a complete characterization of these labelings
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is still pending and they are the area of high interest. In pursuant of obtaining the com-

plete characterization of these labeling, researchers around the globe have established

the prime cordial and divisor cordial labeling for various classes of graphs and also in

the context of some graph operations such as join, union, intersection, disjoint union,

subdivision, vertex switching, duplication, Cartesian product, etc.

In the proposed work, a complete characterization has been done partially concerning

these labeling besides formulating some interesting conjectures and open problems as a

future direction of research. Further, two new variants of divisor cordial labeling are

also introduced and certain interesting results are established. Thus the thesis titled “A

Study on Prime Cordial Labeling and Divisor Cordial Labeling of Graphs”

deals with the following objectives:-

1. Deriving certain new classes of prime cordial graphs.

2. Obtaining some new classes of divisor cordial graphs.

3. Establishing the prime cordial labeling and divisor cordial labeling in the context of

extension of vertices in graphs.

4. Introducing and studying new variants of divisor cordial labeling for various classes

of graphs.

The thesis consists of six chapters where in chapter 1, a general overview of graph the-

ory and graph labeling has been given. Specifically, the literature review section recalls

some notable established results on prime cordial labeling and divisor cordial labeling

of graphs. Based on the review of literature, research gap has been identified and some

realistic objectives are proposed. This chapter also describes the relevant concepts, ter-

minologies, and mathematical preliminaries used throughout the study undertaken.

In chapter 2, certain general results on prime cordial labeling of graphs are established.

Some new results for graph operation named, corona, are investigated for prime cordial

labeling. Finally, a family of tree, named, lilly graph has been investigated under differ-

ent graph operations of high interest like duplication, degree splitting, subdivision, and

vertex switching.

In chapter 3, prime cordial labeling has been investigated for some standard graphs like,

path, cycle, wheel, gear, helm, flower, fan, double fan, star, bistar etc., in the context of

graph operations namely, extension of vertex and vertex duplication.

In chapter 4, some general results on divisor cordial labeling of graphs are investigated.

Some well known graphs are explored for divisor cordial labeling under the graph op-

eration called corona. Further, lilly graph, classes of planar graphs Plm and Plm,n are
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also studied under different graph operations for divisor cordial labeling.

In chapter 5, divisor cordial labeling of certain graphs viz; path, cycle, wheel, gear, helm,

flower, fan, double fan, star, bistar etc., in the context of graph operations namely, ex-

tension of vertex and vertex duplication are established.

In chapter 6, to further enrich the discipline, two new variants of divisor cordial label-

ing, namely, double divisor cordial labeling and average even divisor cordial labeling are

introduced and investigated for various graphs.

In the end, the study undertaken has been justified by an elaborative bibliography given

in the concluding part of the thesis.
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Chapter 1

Introduction

In this chapter, a brief and concise introduction to graph theory and graph labeling

along with a few notable applications are given. Basic definitions and terminologies are

also presented to understand the study under taken. The main theme of the thesis is

presented along with a short history and broad review of literature. Based on the review

of literature, the research gap is identified and consequently objectives of the present

work are proposed.

1.1 Introduction to Graph Theory

A graph is informally a pictorial representation of any real life phenomena where the

objects are treated as nodes and the relations among them are the edges. A study

about graphs and their properties is called graph theory. One of the more fascinating

uses of graph theory is in “biology and conservation where a node might represent

a location where particular species live and the edges can reflect migration patterns

or movements between the areas.” This knowledge is crucial for knowing the breeding

patterns, sickness, parasite distribution, or how changes in migration affect other species.

Graph theory has a long history that dates back to 1735, when L. Euler solved the

famous “Konigsberg bridge problem”. It was an old puzzle in which the goal was to

discover a path that walked over each of the seven bridges that were over a forked river

running past an island without crossing any of them more than once. According to

Euler, no such path exist. His solution to the riddle involved only references to the

physical arrangement of the bridges (see Figure 1.1), yet he established graph theory’s

first theorem.

Though graph theory was initially used to answer fun puzzles, but now has emerged

as a prominent field of multidisciplinary research due to its vast variety of applications

1
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Figure 1.1: (a)Konigsberg bridge problem (KBG) (b)Graphical representation
of KBG

in different fields. For instance, “in Computer Science, the link structure of a website

can be represented by a graph in which the nodes represent web pages and directed

edges represent links from one page to another. Similarly, in Chemistry, a graph is a

natural representation of a molecule, with nodes representing atoms, and edges repre-

senting bonds. This technology comes in handy in computer-assisted molecular structure

processing, which encompasses anything from chemical editors to database searches. In-

terestingly, though mathematical modeling in Organic Chemistry originates from many

branches of Mathematics, yet a special emphasis is given to Chemical graph theory

(CGT) [13] that applies graph theory to mathematical modeling of chemical phenom-

ena. Moreover, in Statistical Physics, graphs can represent local connections between

interacting parts of a system, as well as the dynamics of a physical process on such

systems. Micro-scale channels of porous medium are also represented using graphs,

with nodes representing pores and edges representing smaller channels linking the pores

[54].” Algebraic graph theory [12] emerged from the investigation of graphs with high

symmetry. It studies various classes of graphs with reference to certain properties of

automorphism groups, such as distance transitive graphs, vertex-transitive graphs, edge-

transitive graphs, semi-symmetric graphs, etc. Likewise, one can see that graph theory

has a numerous applications in other branches of Mathematics, Science, Engineering &

Technology, Communication Networks, and real-world problems [14, 49].

1.1.1 Preliminaries

The fundamental definitions, results and concepts discussed in this subsection are very

essential for the study undertaken and are mainly given by Harary [34] and Bondy and

Murthy [14]. Terms vertices, nodes and points mean the same. Similarly, edges, lines

and arcs mean the same.

Definition 1.1.1. “An undirected graph G(V,E, ϕ) consists of a non-empty set V (G) =

{v1, v2, ..., vn} called nodes and another set E(G) = {e1, e2, ..., en} called edges and an
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incidence function ϕ that associates with each edge of G an unordered pair of nodes of

G, not necessarily distinct. ϕ is not mentioned explicitly as it can be understood from

edges. If e is an edge and u, v are nodes such that ϕ(e) = uv, then e is said to be formed

by joining u and v. The ends of e are u and v.

By G, one means G(V,E) or G(V (G), E(G)). The set of vertices and edges of G are

denoted by V (G) and E(G) respectively. Also |V (G)| and |E(G)| denote the order and

size of G respectively. A graph of order p and size q is oftenly called a (p, q)-graph.

Graph G is called simple, if u and v are distinct, for every edge uv (see Figure 1.3). A

graph G(V,E) is said to be a finite graph if V and E are finite sets. An infinite graph

is the one with an infinite set of V or E or both. A graph with just one node is called

trivial and all other graphs non-trivial. For an edge e = uv of G, u and v are adjacent

and each is incident with e. If two distinct edges are incident with a common node, then

they are said to be adjacent edges. Two or more edges associated with a given pair of

nodes of G are called parallel edges. An edge of G associated with a node pair (vi, vi) is

called a self-loop or loop. A graph is multigraph if no loops are allowed but parallel edges

can be there. If both are permitted then the graph is called a pseudograph. For a node

v ∈ G, the degree dG(v) or simply, d(v) is the number of edges of G that are incident

with v. The maximum degree of G denoted by ∆(G) is the degree of the node with the

greatest number of edges incident to it whereas the minimum degree of G denoted by

δ(G), is the degree of the node with the least number of edges incident to it. A node of

degree zero and one are respectively known as an isolated node and pendant node of G.

In G, if dG(v) = k, ∀ v ∈ V (G), then G is called a k− regular graph. A regular graph is

a graph which is k − regular for some k. Neighbourhood or open neighbourhood N(u)

of a node u ∈ V (G) is the set of all the nodes which are adjacent to u. N [u] denotes a

closed neighbourhood of u is a set containing u and N(u).”

Definition 1.1.2. “A directed graph or digraph is a graph in which each edge has a

direction, thus the edges v1v2 and v2v1 are not same (see Figure 1.2).”

Figure 1.2: (a) Undirected graph (b) Directed graph

“In the Figure 1.4, one can observe the following:-

(i) G is not simple.
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Figure 1.3: Simple Graph

(ii) a = v1v3, b = v3v3, c = v3v4, e = d = v1v2, f = v2v3.

(iii) |V (G)| = 5 and |E(G)| = 6.

(iv) b is a loop whereas d, e are parallel edges.

(v) v1 and v2 are adjacent nodes whereas v1 and v4 are not.

(v) a and f are incident edges (d and c are not incident).

(vi) d(v3) = 5, d(v1) = d(v2) = 3, d(v4) = 1 and d(v5) = 0.

(vii) v5 is an isolated node whereas v4 is a pendant node.”

Figure 1.4: Graph G with self loop and multiple edges

Definition 1.1.3. “A graph H with V (H) ⊆ V (G) and E(H) ⊆ E(G) is called a

subgraph of G. A subgraph H of G is proper if either V (H) ̸= V (G) or E(H) ̸= E(G).”

Definition 1.1.4. “The subgraph obtained by deletion of a node from G is called a

node deleted subgraph of G whereas subgraph obtained by deletion of an edge from G

is called an edge deleted subgraph of G (see Figure 1.5).”

Definition 1.1.5. “A spanning subgraph of G is a subgraph H of G with V (G) =

V (H).”

Definition 1.1.6. “Let G(V,E) be a graph. Let V1 be a non-empty subset of V . The

subgraph G[V1] of G induced by V1 is a graph G[V1](V1, E1) with edge set E1. The set

E1 consists of those edges of G having both ends in V1. G[V1] is referred as an induced

subgraph of G.
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Figure 1.5: “Node deleted” and “edge deleted” subgraphs of G

A walk in G is an alternating sequence of nodes and edges v0, e1, v1, e2, ..., vn−1, en, vn

beginning with v0 and ending with vn such that ei = vi−1vi ; (i = 1, 2...n). It is called

a v0 − vn walk and n is called the length of the walk. A trial is a walk in which all the

edges are distinct. A walk in which all the nodes are distinct is called a path denoted by

Pn. If the two end points v0 and vn coincide in Pn, it is called a cycle Cn. Two nodes u

and v of G are said to be connected if there is a (u, v) − path in G. One can partition

the node set V into non-empty subsets V1 ,V2 , ...,Vk such that the two nodes u1 and

u2 are connected if and only if both the nodes u1 and u2 belong to the same set Vi. The

subgraphs G[V1], G[V2], ..., G[Vk] are called the components of G.”

Definition 1.1.7. “A graph G is said to be connected if it has exactly one component;

otherwise, it is called disconnected (see Figure 1.3).”

Definition 1.1.8. “A graph is considered acyclic if it without any cycle.”

Definition 1.1.9. “A connected, acyclic graph is referred as a tree.”

Definition 1.1.10. “Any graph without cycle is called a forest. Thus, the components

of a forest are trees.”

Definition 1.1.11. “ A connected graph with a cycle is called a unicyclic graph.”

Definition 1.1.12. “If every pair of distinct nodes of G are adjacent in G then it is

known as complete graph, denoted by Kn. The size of Kn is n(n−1)
2 (see Figure 1.6).”

Definition 1.1.13. “ A bipartite graph is a graph G(V,E) in which V (G) can be

partitioned into two non-empty subsets X and Y such that each edge of G has one end

in X and the other end in Y . The pair (X,Y ) is called a bipartition of G. Further, if

every node in X is adjacent to all the nodes of Y , then G is called a complete bipartite

graph. The complete bipartite graph with bipartition (X,Y ) such that |X| = m and

|Y | = n is denoted by Km,n (see Figure 1.7). The graph K1,n is called a star where the

node of degree n is called central node or apex.”
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Figure 1.6: K6

Figure 1.7: K3,4

Definition 1.1.14. “ Two graphs G1 and G2 are said to be isomorphic if there exists

a bijection ψ : V (G1) → V (G2) such that uv ∈ E(G1) if and only if ψ(u)ψ(v) ∈ E(G2);

such a function ψ is called an isomorphism from G1 to G2. If G1 and G2 are isomorphic,

it is written as G1
∼= G2 (see Figure 1.8).”

Figure 1.8: Isomorphic graphs G and H

Definition 1.1.15. “ The complement of G denoted by Ḡ is having same node set as

that of G and for each pair u, v of nodes of G, uv is an edge of Ḡ if and only if uv is not

an edge of G (see Figure 1.9).”

Remark 1.1. “The graph K̄n has n nodes and no edges. It is called an empty graph of

order n. Also K1 and K̄1 represent the same graph.”

Definition 1.1.16. “G1 and G2 are disjoint if they have no node in common and edge

disjoint if they have no edge in common.”
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Figure 1.9: Graph G and Ḡ

Definition 1.1.17. [77] “An edge e = uv is said to be subdivided if a new node of

degree 2 is inserted in it. A graph obtained by subdividing each edge of G is called the

subdivision of G and is denoted by S(G).”

Definition 1.1.18. “Let G1(V1, E1) and G2(V2, E2) be disjoint graphs. Join of G1 and

G2, denoted by G1 +G2 has V (G1 +G2) = V1 ∪ V2 and E(G1 +G2) = E1 ∪ E2 ∪ {uv :

u ∈ V1, v ∈ V2} (see Figure 1.10).”

Figure 1.10: G1 +G2

Definition 1.1.19. [17] “The graph fn = Pn +K1 is called a fan and Dfn = Pn + 2K1

is known as double fan.”

Definition 1.1.20. “Wheel graph Wn is formed by joining all the nodes of Cn to K1

(see Figure 1.11).”

Definition 1.1.21. “Gear graph Gn is obtained from Wn by subdividing each of its

edge on the rim.”

Definition 1.1.22. [61] Double wheel graph DWn is a join of 2Cn and K1.

Definition 1.1.23. “Helm graph Hn is obtained from Wn by attaching pendant edge

to each node on the rim (see Figure 1.11).”

Definition 1.1.24. [17] “Flower graph Fln is obtained from Hn when each pendant

node is joined to the apex node. It contains three types of nodes; an apex of degree 2n,

n nodes of degree 4 and n nodes of degree 2 (see Figure 1.11).”
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Figure 1.11: W6, H6 and Fl6

Definition 1.1.25. [47] “A globe graph Gl(n) is a join of K̄n and 2K1.”

Definition 1.1.26. [81] “Bistar Bm,n is obtained by connecting the the apex nodes of

K1,m and K1,n.”

Definition 1.1.27. “ The union of G1(V1, E1) and G2(V2, E2) is denoted by G1 ∪ G2

which has node set V1 ∪ V2 and edge set E1 ∪ E2 (see Figure 1.12).”

Figure 1.12: G1 ∪G2

Definition 1.1.28. “If V1∩V2 ̸= ϕ, thenG = (V,E), where V = V1∩V2 and E = E1∩E2,

is called the intersection of G1 and G2 and is denoted by G1 ∩G2.”

Definition 1.1.29. “For Cartesian product of G1 and G2, consider any two points

u = (u1, u2) and v = (v1, v2) in V = V1 × V2, then u and v are adjacent in G1 × G2
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whenever either u1 = v1 and u2 is adjacent to v2 or u2 = v2 and u1 is adjacent to v1. It

is denoted by G1 ×G2 (see Figure 1.13).”

Figure 1.13: G1 ×G2

Definition 1.1.30. “The graph Ln = Pn × P2 is called a ladder and Pm × Pn is called

a planar grid. The graph Cn × P2 is called a prism.”

Definition 1.1.31. “The corona G1 ⊙G2 of G1(p1, q1) and G2(p2, q2) is defined as the

graph obtained by taking one copy of G1 and p1 copies of G2 and then joining the ith

node of G1 to all the nodes of G2 in the ith copy (see Figure 1.14).”

Figure 1.14: G1 ⊙G2

Definition 1.1.32. “Pn ⊙K1 is called a comb whereas Cn ⊙K1 is called a crown.”

Definition 1.1.33. [78] “The one point union of n− copies of C3 is called a friendship

graph and is denoted by Fn.”

Definition 1.1.34. [80] “A square graph of G denoted by G2, is a graph having same

node set as that of G and the two nodes are adjacent in G2 if they are at a distance 1

or 2 apart in G (see Figure 1.15).”

Definition 1.1.35. [2] “The total graph T (G) of G is the graph whose node set is

V (G) ∪ E(G) and the two nodes are adjacent whenever they are either adjacent or

incident in G (see Figure 1.16).”



Chapter 1. Introduction 10

Figure 1.15: G and G2

Figure 1.16: G and T (G)

Definition 1.1.36. [32] “The middle graph M(G) of G is the graph whose node set is

V (G)∪E(G) and in which two nodes are adjacent if and only if either they are adjacent

edges of G or one is node of G and the other is an edge incident with it (see Figure

1.17).”

Figure 1.17: G and M(G)

Definition 1.1.37. [79] “The composition ofG1 andG2 denoted byG1[G2] has V (G1[G2]) =

V (G1) × V (G2) and E(G1[G2]) = {(u1, v1)(u2, v2) : u1u2 ∈ E(G1) or [u1 = u2 and

v1v2 ∈ E(G2)]} (see Figure 1.18).”

Figure 1.18: G1[G2]

Definition 1.1.38. [81] “The splitting graph S′(G) of G is obtained by adding for each

node v of G a new node v′ such that v′ is adjacent to every node that is adjacent to v

(see Figure 1.19).”
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Figure 1.19: S′(K1,5)

Definition 1.1.39. [50] “Let G with V (G) = S1∪S2, ...∪St∪T , where each Si consists
of a set of nodes containing not less than two nodes and having the same degree, and

T = V −
⋃
Si. The degree splitting graph of G denoted by DS(G) is constructed from

G by inserting nodes w1, w2, ..., wt and joining wi to each node of Si; 1 ≤ i ≤ t (see

Figure 1.20).”

Figure 1.20: DS(P5)

Definition 1.1.40. [66] “Duplication of a node vk of G produces a new graph G′ by

inserting a node v′k such that N(v′k) = N(vk).”

Vertex duplication operation has a lot of applications, especially when it comes to data

integrity and security [9]. In any network, one can duplicate a hub of maximum degree

so that if there is any fault in the hub accidentally, data may not be lost (since vertex

duplication creates a parallel network).

Definition 1.1.41. [41] “Vertex switching of v in G is done by removing all the edges

incident to v in G and adding edges that join v to every other node of G which are not

adjacent to v in G.”

Definition 1.1.42. [80] “A shadow graph D2(G) of G is obtained by taking 2-copies of

G, say, G1 and G2, and join each node ui in G1 to the neighbours of the corresponding

node vi in G2 (see Figure 1.21).”
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Figure 1.21: D2(K1,5)

1.2 Graph Labeling

Graph labeling is informally “an allocation of labels to the nodes or edges (or both) of a

graph under some conditions.” The origin of graph labeling believed to dates back to the

13th century when Yang Hui and others studied the labeling of geometric figures, which

are today categorised as planar graphs. Efforts to solve various practical difficulties in

real-world scenarios have also resulted in the creation of several graph labeling methods,

for instance, “creation of some significant classes of excellent non periodic codes for pulse

radar and missile guidance is similar to the labeling of complete graph with separate

edge labels. The time locations at which pulses are sent are then determined by the

node labels. Similarly, X -rays beam when collides with a crystal, diffracts in a variety

of ways, making X -ray diffraction one of the most powerful methods for evaluating the

structural characteristics of crystalline materials. In some cases, diffraction information

is shared by many structures. This assignment is analogous to locating all labeling

of relevant graphs that provide a given set of edge labels. Further, a communication

network is composed of nodes, each of which has a tendency to compute, transmit, and

receive messages over communication links. Graph labeling is also useful for allocating

a node label to each user terminal, subject to the restriction that all communication

links have unique labels, so that the numbers of any two communicating terminals

automatically specify the link label of the connecting path, and the path label uniquely

specifies the pair of user terminals it interconnects. Surprisingly, channel labeling is

used in order to decide the time at which sensors communicate whereas magic labeling

plays a vital role in communication field [39].” One can also use graph labeling for

issues in Mobile Adhoc Networks (MANET’s). Bloom and Golomb [10] linked graph

labeling to a number of applications, including radar, circuit design, network design, and

communication design. For more complicated families of graphs or unresolved issues, a

particular type of labeling is researched in depth. Meanwhile, additional variations of

labeling are discovered through breadth research by the modification of graph invariants
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like combining two types of labeling that already exist. Specifically most of the methods

in the study of graph labeling find their inception to the labeling concept introduced by

Rosa [62].

Definition 1.2.1. “A vertex labeling of G is a function f that assigns labels to the

vertices of G which induces for each edge uv a label depending on labels f(u) and f(v)

under some contraints. Similarly, an edge labeling of G is an assignment of labels to

the edges of G that induces for each vertex a label depending on the labels of the edges

incident to it.”

Number theory and graph structures are inextricably linked in graph theory. A vast

literature on graph labeling can be found in [23]. First, recall the basic graph labeling

techniques that are related to the present study.

Definition 1.2.2. [29] “A graph G(p, q) is graceful if there is an 1 − 1 mapping f :

V (G) → {0, 1, ..., q} such that the resulting difference of the node labels of all the edges

is the set {1, 2, ..., q} (see Figure 1.22).”

Figure 1.22: Graceful labeling of graph

Definition 1.2.3. [31] “A graph G(p, q) is harmonious, if there is an injection f from

V (G) to Zq, the group of integers modulo q such that when each edge xy is assigned the

label (f(x) + f(y))(mod q), the resulting edge labels are distinct (see Figure 1.23).”

Figure 1.23: Harmonious labeling of C7

Definition 1.2.4. [76] “A graph G(p, q) is said to admit a prime labeling if ∃ a bijection

f : V (G) → {1, 2, ..., p} such that for each edge e = uv, gcd(f(u), f(v)) = 1 (see Figure

1.24).”
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Figure 1.24: Prime labeling of G

Cahit [19] proposed the idea of “cordial labeling” in 1987 as a “weaker version of graceful

and harmonious graphs” [10, 11, 62, 65].

Definition 1.2.5. “Let G(V,E) be a graph. A mapping f : V (G) → {0, 1} is called a

binary vertex labeling of G. For an edge e = uv, the induced edge labeling f∗ : E(G) →
{0, 1} is given by f∗(e) = |f(u)− f(v)|.”

Definition 1.2.6. “A binary vertex labeling f of G is called cordial labeling if |vf (0)−
vf (1)| ≤ 1 and |ef (0) − ef (1)| ≤ 1. A graph which admits a cordial labeling is called

cordial. Here, vf (0), vf (1) denote the number of nodes having labels 0 and 1, respectively

and ef (0), ef (1) denote the number of edges with labels 0 and 1, respectively.”

A significant research has been done in cordial labeling. In addition to this, a few more

variants of cordial labeling are also introduced. Some of them are given here.

Definition 1.2.7. [35] “A k-cordial labeling of G(V,E) is defined by a function f :

V (G) → Zk so that when each edge xy is assigned the label (f(x) + f(y))(mod k), then

|vf (i)− vf (j)| ≤ 1 and |ef (i)− ef (j)| ≤ 1, ∀ i, j ∈ Zk.”

Definition 1.2.8. [88] “For a graph G(V,E), let f : E(G) → {0, 1}. Define f on V (G)

by f(v) =
∑

{f(uv) : uv ∈ E(G)}(mod 2). Then f is called E-cordial if |vf (0)−vf (1)| ≤
1 and |ef (0)− ef (1)| ≤ 1.”

Definition 1.2.9. [73] “A product cordial labeling of G(V,E) is a function f : V (G) →
{0, 1} such that if each edge uv is assigned the label f(u)f(v), then |ef (0)− ef (1)| ≤ 1

and |vf (0) − vf (1)| ≤ 1. A total product cordial labeling of G(V,E) is a function

f : V (G) → {0, 1} such that if each edge uv is assigned the label f(u)f(v) then |(vf (0)+
ef (0))− (vf (1) + ef (1))| ≤ 1.”

1.3 Prime Cordial Labeling and Divisor Cordial Labeling

First, recall some number theoretic concepts.
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Definition 1.3.1. [18] “An integer b is said to be divisible by an integer a ̸= 0, if ∃
some integer k such that b = ka, written as a|b.”

For example, −16 is divisible by 4, because −16 = 4(−4), however 10 is not divisible by

3.

Definition 1.3.2. [86] “The divisor function of integer, d(n), is defined by d(n) =
∑

1.

That is, d(n) denotes the number of all positive divisors of an integer n.”

For example, for an integer 8, d(8) = 4 as the divisors of 8 are 1, 2, 4, 8.

Definition 1.3.3. [86] “ Let n ∈ Z and x ∈ R. The divisor summability function is

defined as D(x) =
∑
n≤x

d(n).”

For example, if x = 6.4, then D(6.4) = d(1) + d(2) + d(3) + d(4) + d(5) + d(6) =

1 + 2 + 2 + 3 + 2 + 4 = 14.

Definition 1.3.4. “Let f(z) and g(z) be two functions defined on some subset of R.
f(z) = O(g(z)) as z → ∞ if and only if ∃ a positive real number M and z0 ∈ R such

that |f(z)| ≤M |g(z)| ∀ z > z0.”

Definition 1.3.5. “For x ∈ R and m,n ∈ Z, ceiling and floor functions are defined as

follows.

⌈x⌉ = min{n ∈ Z : n ≥ x} and

⌊x⌋ = max{m ∈ Z : m ≤ x}.
It can be seen that x− 1 < m ≤ x ≤ n < x+ 1.”

For example, ⌈2.4⌉ = 3 and ⌊2.4⌋ = 2.

Definition 1.3.6. [22] “Let a, b ∈ Z, (both not 0), then the greatest common divisor

(gcd) of a and b denoted by (a, b) or gcd(a, b), is the +ve integer d such that

(i) d|a and d|b
(ii) if c|a and c|b then c|d. ”

For example, (36, 48) = 6.

Theorem 1.3.1. [22] “A common divisor of m and n is a divisor of their ‘gcd’.”

Theorem 1.3.2. [22] If g = (a, b), then ∃ x, y ∈ Z such that g = (a, b) = ax+ by.

Definition 1.3.7. [22] “If (α, β) = 1 then α and β are said to be relatively prime.”

Theorem 1.3.3. [22] If α and β are relatively prime and if α|βγ, then α must divide

γ.
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Definition 1.3.8. [18] “Let n ∈ N. The Euler’s phi function ϕ(n) denotes the number

of positive integers ≤ n and relatively prime to n.”

For example, ϕ(1) = 1 and ϕ(10) = 4. For a prime p, ϕ(p) = p− 1.

Theorem 1.3.4. For n ∈ N,
(i) If n = pα1

1 pα2
2 ...pαk

k , then ϕ(n) = n(1− 1
p1
)(1− 1

p2
)...(1− 1

pk
).

(ii) ϕ(n) is even for n ≥ 3.

(iii)
∑
d|n
ϕ(d) = n.

Theorem 1.3.5. [18] Every integer ≥ 1 is either a prime number or a product of prime

factors, with the latter being unique up to the prime factor ordering.

Theorem 1.3.6. [7] For the set Fn = {1 , 2 , ...,n}, total number of relatively prime

pairs is given by
n∑
k=2

ϕ(k).

Theorem 1.3.7. [52] (i) Given odd integer m and t ∈ N, gcd(m,m+ 2t) = 1.

(ii) Given odd integer m, an odd prime q and t1, t2 ∈ N, if m ̸≡ 0(mod q), then

gcd(m,m+ 2t1 .qt2) = 1.

Prime numbers are unique and are rich in terms of their properties. In fact there are

now many applications of prime numbers with real life significance. One such area is

cryptography with the process of encryption of data as of the foremost applications of

prime numbers. The difficult task of factorizing exceptionally large numbers as product

of primes has turned out to be of great importance in keeping important information

safe [21]. For other interesting applications of prime number one can refer to [28].

In 2005, “Sundaram et al., [74] brought into being the concept of prime cordial labeling

inspired by prime labeling [76] and cordial labeling [19].”

Definition 1.3.9. [74] “A prime cordial labeling of G(V,E) is a bijection f : V (G) →
{1, 2, 3, ..., |V (G)|} defined by the induced function f∗ : E(G) → {0, 1} such that if,

f∗(uv) = 1 if gcd(f(u), f(v)) = 1 and f∗(uv) = 0 if gcd(f(u), f(v)) > 1, then the

number of edges labeled with 0 and 1 differ by at most 1 i.e; |ef (0) − ef (1)| ≤ 1. If

a graph admits a prime cordial labeling, then it is called a prime cordial (see Figure

1.25).”

Kn, n ≥ 3 is not prime cordial.

Varatharajan et al., in 2011,“first presented the notion of divisor cordial labeling [86].”

Definition 1.3.10. [86] “ A divisor cordial labeling of G(V,E) is a bijection f : V (G) →
{1, 2, 3, ..., |V (G)|} defined by the induced function f∗ : E(G) → {0, 1} such that if

f∗(uv) = 1 if f(u)|f(v) or f(v)|f(u) and f∗(uv) = 0 otherwise, then |ef (0)− ef (1)| ≤ 1.
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Figure 1.25: Prime cordial graph

If a graph admits a divisor cordial labeling, then it is called a divisor cordial graph (see

Figure 1.26).”

Figure 1.26: Divisor cordial graph

Kn, n ≥ 7 is not divisor cordial.

Note: If “G is a prime cordial graph (divisor cordial graph) and G is isomorphic to H

then H also admits a prime cordial labeling (divisor cordial labeling).”

1.4 Review of Literature

Throughout this thesis, “PCL, DCL, PCG and DCG” are used to denote “prime cordial

labeling, divisor cordial labeling, prime cordial graph and divisor cordial graph” respec-

tively. For prime cordial graphs and divisor cordial graphs, PCGs and DCGs are used

respectively.

1.4.1 Important Results on Prime Cordial Labeling

In this subsection, a few important established results on PCL of graphs are recalled.

Somasundram et al., in their introductory paper [74] proved that

� Cn is a PCG ⇐⇒ n ≥ 6.
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� Pn is a PCG ⇐⇒ n ̸= 3, 5.

� S (K1 ,n) is a PCG ⇐⇒ n > 2.

� The bistars, dragons, and crowns are PCGs. Triangular snakes are PCG if and

only if the snake has at least three triangles.

Vaidya et al., in [78, 79] established PCL of the following.

� The “path union” of k - copies of Cn.

� Fn, n ≥ 3.

� T (Pn) and T (Cn) for n ≥ 5.

� P2[Pm] for m ≥ 5.

� Two cycles joined by Pm, and a graph formed by “switching of an arbitrary node”

in Cn except n = 5.

Vaidya and Shah in [80, 81, 84, 85] established the following.

� P 2
n , n = 6, n ≥ 8 is a PCG.

� C2
n, n ≥ 10 is a PCG.

� B2
n,n admits a PCL.

� D2(Bn,n) is a PCG.

� D2(K1,n) is a PCG for n ≥ 4.

� S′(K1,n), S
′(Bn,n), and M(Pn) are PCGs.

� Wn, n ≥ 8 is a PCG.

� Gn, n ≥ 4 is a PCG.

� Hn is a PCG ∀ n.

� CHn, n ≥ 5 is a PCG.

� Fln is a PCG for n ≥ 4.

� DS(Pn) and DS(Bn,n) are PCGs.

� Dfn permits a PCL for n = 8, n ≥ 10.
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1.4.2 Important Results on Divisor Cordial Labeling

Some notable results on DCL of graphs are presented here. Vartharajan et al., in [86, 87]

proved the following results.

� Pn, Cn, Wn, K1,n,K2,n and K3,n are DCGs.

� Kn permits a DCL only for n = 3, 5, 6.

� S(K1,n) admits a DCL.

� Let G be a DCG of size m and K2,n be having bipartition V = V1 ∪ V2 with V1 =

{a1, a2} and V2 = {b1, b2, ..., bn}, then “G ⋆K2 ,n formed by identifying the nodes

a1 and a2 of K2,n with that labeled 1 and the largest prime p ≤ m respectively in

G is also a DCG”.

� Let G be a DCG of size m and K3,n be having the bipartition V = V1 ∪ V2 with

V1 = {a1, a2, a3} and V2 = {b1, b2, ..., bn} and n is even, then “G ⋆K3 ,n formed by

identifying the nodes a1, a2 and a3 of K3,n with that labeled 1, 2 and the largest

prime p ≤ m respectively in G is also a DCG”.

Vaidya and Shah in [82, 83] established the DCL of the following graphs.

� Hn, Fln, Gn.

� “Switching of a node” in Cn, “switching of a node at rim” in Wn and “switching

of apex node” in Hn.

� S′(K1,n), S
′(Bn,n).

� DS(Bn,n), D2(Bn,n), B
2
n,n.

Raj et al., in [55–57] proved the following results.

� S′(K2,m), S
′(K1,n,n), Pn+2K1, Cn+2K1, (K̄n ∪Pm)+ 2K1, (Pn ∪Pm)+ 2K1 are

DCGs.

� Corona of a graph formed by switching of any node of Cn for n ≥ 4, with K1 is

DCG.

� Graph acquired by joining the apex nodes of 2- copies ofWn to a new node admits

a DCL.
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� Graph formed by joining 2 copies of Wn using a path Pk admits a DCL, where

n ≥ 3.

� Disconnected graphs Pn∪Pm, Cn∪Cm, Pn∪Cm, Pn∪K1,m, Pn∪Wm, Cn∪K1,m,

Cn ∪Wm, Wn ∪Wm are DCGs.

Maya et al., in [41] established the following results.

� Fln for n ≥ 3, Hn, n > 3.

� Graph formed by switching a node at rim in Wn, n ≥ 4.

� Graph formed by switching apex node in Hn.

Bosmia et al., in [15, 16] established the following results.

� Bm,n, S
′(Bm,n), DS(Bm,n), D2(Bm,n) , B

2
m,n and S(Bm,n) are DCGs.

� S(K2,n) and S(K3,n) admit a DCL.

Ghodsara et al., in [27] established the following.

� The ring sum of the following graphs with K1,n admit a DCL (i) Cn (ii) Cn with

one chord (iii) Cn with triangle (iv) Cn with twin chords forming two triangles (v)

Pn (vi) Dfn.

Gondalia et al., in [30] contributed the following results.

� The ring sum of the following graphs with K1,n admit a DCL (i) Hn (ii) Gn (iii)

DWn (iv) Jn.

K. Thirusangu et al., in [75] established the following results.

� Extended duplicated graph of K1,n, Bn,n and K1,n,n are DCGs.

As every graph need not to admit a PCL or DCL, it becomes an interesting and chal-

lenging job to see the families of graphs that admit PCL or DCL. The graphs considered

in the thesis are mainly finite, simple, connected and undirected.



Chapter 1. Introduction 21

1.5 Research Gap and Objectives

Though an enormous work has been done concerning PCL and DCL, still there are

many open problems to work on. Especially, the complete characterization of PCGs

and DCGs are the main areas of high interest. The gap of establishing the PCL and

DCL of some new families of graphs has been filled. Researchers have studied the PCL

and DCL of certain graphs in the context of graph operations such as join, subdivision,

vertex duplication, vertex switching, edge duplication etc. but establishing the PCL and

DCL of graphs in context with extension of nodes is still open. Recently, researchers

have explored some new variants of DCL such as “sum divisor cordial labeling, square

divisor cordial labeling, cube divisor cordial labeling” etc., a few more new variants of

DCL which are not explored yet, such as “average even divisor cordial labeling, double

divisor cordial labeling” etc. can be introduced. Based on these research gaps, the

objectives of the thesis are framed.

1. Deriving certain new classes of PCL.

2. Obtaining some new classes of DCL.

3. Establishing the PCL and DCL in the context of extension of vertices in graphs.

4. Introducing and studying new variants of DCL for various classes of graphs.

1.6 Conclusion

In this chapter, a short introduction to graph theory and graph labeling and their uses

in real life situations have been given. Several graph labeling techniques specifically,

prime cordial labeling and divisor cordial labeling of graphs are recalled. Further, a

comprehensive review of literature along with research gap followed by the proposed

objectives is also presented.
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Results on PCL of Graphs

2.1 Introduction

In this chapter, a few new general results concerning PCL of graphs are derived. PCL

in the context of graph operation named, corona, is discussed in the second subsection

which is followed by the investigation of PCL of lilly related graphs.

2.2 Certain New General Results on PCL of Graphs

This section is dedicated for obtaining some general results concerning PCL of graphs.

First, a few established general results have been recalled.

Theorem 2.2.1. [1] “
n∑
i=2

ϕ(i) ≥ 1
2

(
n
2

)
+ 1.”

Theorem 2.2.2. [3] “If G(p, q) is a PCG, then G− e is also a PCG,

(i) ∀ e ∈ E(G) when q is even.

(ii) for some e ∈ E(G) when q is odd.”

Theorem 2.2.3. [3] “A maximum number of edges in a simple PCG having n nodes is

n2 − n+ 1− 2
n∑
k=2

ϕ(k).”

Theorem 2.2.4. [52] “For an odd prime graph G1(V1, E1), and another graph G2(V2, E2)

with |V1| = |V2| and |E1| = |E2|, disjoint union of G1 and G2 is a PCG.”

Theorem 2.2.5. [52] “Let G be an odd prime graph on n nodes and H be a graph

formed by joining any pair of corresponding nodes of two copies, G1 and G2, of G by an

edge. Then H is a PCG.”

22
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Theorem 2.2.6. [52] “Let G be an odd prime graph of order n and H be a graph

obtained by identifying each end node of Pk with corresponding nodes of each of the two

copies G1 and G2 of G. Then H is PCG, when one end node of Pk is identified with a

node in G1 having label 3 if

(i) k ≥ 4, k ̸= 5 and n ≥ 2

(ii) k = 3 and n ≥ 4

(iii) k = 5 and n ≥ 3.”

Motivated by these results, a few more general results are obtained concerning PCL of

graphs which are discussed as follows.

Lemma 2.2.1. [50] DS(Kn) gives rise to Kn+1.

Theorem 2.2.7. [74] Kn does not admit a PCL for n ≥ 3.

Theorem 2.2.8. DS(Kn) does not admit a PCL for n ≥ 2.

Proof. “Proof is obvious from Lemma 2.2.1 and Theorem 2.2.7.”

Theorem 2.2.9. Disjoint union of a finite copies of Pn admits a PCL.

Proof. Let G be constructed by taking the disjoint union of k -copies of Pn with V (G) =

{v1, v2, ..., vnk}. Clearly, |V (G)| = nk, and |E(G)| = k(n − 1). Consider ψ : V (G) →
{1 , 2, ..., nk}. Now three cases arise.

Case (i) If ‘k ’ is even.

There are exactly half even labels and half odd. Label the k
2 copies of path with even

labels in any pattern and for the remaining copies assign the odd labels simultaneously

from {1 , 2, ..., nk}. In this case, one can note that |eψ(0)− eψ(1)| = 0.

Case (ii) If ‘n’ is even and ‘k’ is odd.

Here, nk is even and therefore there are exactly half even and half odd labels available

for labeling. Assign all the nk
2 even labels to the first ⌊k2⌋ copies of Pn followed by n

2

nodes of ⌈k2⌉
th copy of Pn. Next, assign the remaining nk

2 odd labels to the remaining

nodes simultaneously. Clearly, |eψ(0)− eψ(1)| = 1.

Case (iii) If both ‘n’ and ‘k’ are odd.

Here, nk is odd and therefore there are ⌊nk2 ⌋ even labels and rest are odd. Labeling can

be done by assigning even labels excluding least even number divisible by 3, say r, to

the nodes of G begining with first copy of Pn. Let ψ(v⌈nk
2
⌉−1) = r and ψ(v⌈nk

2
⌉) = 3.

Now assign available odd labels simultaneously to the remaining nodes of G. One can

verify that |eψ(0)− eψ(1)| = 0.

Thus, in all the three cases, |eψ(0)− eψ(1)| ≤ 1. Hence, G is a PCG.

Theorem 2.2.10. Disjoint“union of finite copies of 2− regular graph”admits a PCL.
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Proof. Suppose G is constructed by considering the disjoint union of finite copies, say

k, of 2− regular graphs each having order n. Here V (G) = {gij : 1 ≤ i ≤ k, 1 ≤ j ≤ n}
where gi1, gi2, ..., gin denote the nodes of ith copy of 2−regular graph. Clearly, |V (G)| =
|E(G)| = nk. Consider a map ψ : V (G) → {1 , 2, ..., nk} defined under three conditions

Case (i) If ‘k ’ is even.

Assign all even labels to k
2 copies of 2−regular graph in any order and for the remaining

nodes of G assign the odd labels simultaneously from {1, 2, ..., nk} in such a way that

gcd(ψ(gi1), ψ(gin)) = 1 ; k2 + 1 ≤ i ≤ k. Clearly, |eψ(0)− eψ(1)| = 0.

Case (ii) If ‘n’ is even & ‘k ’ is odd.

Here, nk is even. Label ⌊k2⌋ copies of 2 − regular graph by using available even labels

except the least even number divisible by 3, say, r. For ⌈k2⌉
th copy, assign the unutilized

even labels in such a way that ψ(g⌈ k
2
⌉n
2
) = r. Now, fix ψ(g⌈ k

2
⌉(n

2
+1)) = 3. Label the

remaining nodes with odd labels simultaneously from {1, 2, ..., nk} in such a way that

gcd(ψ(gi1), ψ(gin)) = 1 for ⌈k2⌉ ≤ i ≤ k. Clearly, |eψ(0)− eψ(1)| = 0.

Case (iii) If both ‘n’ and ‘k ’ are odd.

Label the ⌊k2⌋ copies of 2− regular graph by using available even labels except the least

even number divisible by 3, say, s in any order. For ⌈k2⌉
th copy, assign the remaining

even labels in such a way that ψ(g⌈ k
2
⌉⌊n

2
⌋) = s. Now, fix ψ(g⌈ k

2
⌉⌈n

2
⌉)) = 3. Label the

remaining nodes of G with unutilized odd labels simultaneously from {1, 2, ..., nk} such

that gcd(ψ(gi1), ψ(gin)) = 1 for ⌈k2⌉ ≤ i ≤ k. Here, |eψ(0)− eψ(1)| = 1.

In the wake of above cases, it follows that G is a PCG.

Definition 2.2.1. [78] “Duplication of a vertex vk by a new edge e = v′kv
′′
k in a graph

G produces a new graph G′ such that N(v′k) ∩N(v′′k) = vk.”

Figure 2.1: PCL of a graph formed by“duplication of each node by an edge”in
H

Theorem 2.2.11. Let H be any PCG. The graph acquired by“duplicating a node by an

edge at all the nodes”of H admits a PCL.



Chapter 2. Results on PCL of Graphs 25

Proof. Let H be the given PCG on n nodes, namely, u1, u2, ..., un and size m with la-

beling f . Let G be formed by duplicating a node by an edge at all nodes of H (see

Figure 2.1). Let vi1, vi2; 1 ≤ i ≤ n, denote the end nodes of an edge introduced at node

ui. Clearly, |V (G)| = 3n and |E(G)| = m + 3n. Consider ψ : V (G) → {1 , 2, ..., 3n} by

letting ψ(ui) = f(ui) for 1 ≤ i ≤ n and to label the remaining 2n nodes of G, there arise

four cases.

Case (i) If both ‘n’ and ‘m’ are even.

Assign the n even labels to the end nodes of edges introduced at even labeled nodes of

H. One can easily observe that gcd(ψ(ui), ψ(vi1)) ̸= 1, gcd(ψ(ui), ψ(vi2)) ̸= 1 and

gcd(ψ(vi1), ψ(vi2)) ̸= 1. Now allot the unused n odd labels to the remaining end

nodes of edges introduced at odd labeled nodes in H such that gcd(ψ(ui), ψ(vi1)) =

1, gcd(ψ(ui), ψ(vi2)) = 1 and gcd(ψ(vi1), ψ(vi2)) = 1. An easy check shows that

|eψ(0)− eψ(1)| = 0.

Case (ii) If ‘n’ is even and ‘m’ is odd.

This case is treated in similar lines with that of Case (i) for assigning the labels. One

can see that |eψ(0)− eψ(1)| = 1.

Case (iii) If ‘n’ is odd and ‘m’ is odd.

Subcase (i) When ef (0) = ef (1) + 1.

Observe that there are n−1
2 number of even labeled nodes in H. Out of 2n labels, as-

sign n even labels excluding the least even number divisible by 3, say r, to the end

nodes of edges introduced at even labeled nodes of H. Assign r to one of the end

nodes of an edge introduced at a node having label 3. Observe that for these edges,

that gcd(ψ(ui), ψ(vi1)) ̸= 1, gcd(ψ(ui), ψ(vi2)) ̸= 1 and gcd(ψ(vi1), ψ(vi2)) ̸= 1. Allot

the unused n odd labels to the remaining end nodes of edges introduced at odd la-

beled nodes of H in such a way that gcd(ψ(ui), ψ(vi2)) = 1, gcd(ψ(ui), ψ(vi1)) = 1 and

gcd(ψ(vi1), ψ(vi2)) = 1. It is easy to see that |eψ(0)− eψ(1)| = 1.

Subcase (ii) When ef (1) = ef (0) + 1.

Here there are n−1
2 number of even labels for H. Assign n even labels excluding the least

even number divisible by 3, say r, to the end nodes of edges introduced at even labeled

nodes of H. Assign r to one of the end nodes of an edge introduced at node having label

3 and any odd number divisible by 5, say s, to one of the end nodes of an edge introduced

at the node having label 5. Observe that for the above edges gcd(ψ(ui), ψ(vi1)) ̸= 1,

gcd(ψ(ui), ψ(vi2)) ̸= 1 and gcd(ψ(vi1), ψ(vi2)) ̸= 1. Allot the unused labels to the re-

maining end nodes of edges introduced at odd labeled nodes of H in such a way that

gcd(ψ(ui), ψ(vi1)) = 1, gcd(ψ(ui), ψ(vi1)) = 1 and gcd(ψ(vi1), ψ(vi2)) = 1. An easy

check shows that |eψ(0)− eψ(1)| = 0.

Case (iv) If ‘m’ is even and ‘n’ is odd.

Observe that there are n−1
2 number of even labeled nodes in H. Out of 2n labels, assign

n even labels excluding the least even number divisible by 3, say r, to the end nodes of
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edges introduced at even labeled nodes of H. Assign r to one of the nodes of an edge

introduced at node having label 3. Observe that for these edges, gcd(ψ(ui), ψ(vi1)) ̸= 1,

gcd(ψ(ui), ψ(vi2)) ̸= 1 and gcd(ψ(vi1), ψ(vi2)) ̸= 1. Allot the unutilized n odd labels

to the remaining end nodes of edges introduced at odd labeled nodes of H in such a

fashion that gcd(ψ(ui), ψ(vi1)) = 1, gcd(ψ(ui), ψ(vi2)) = 1 and gcd(ψ(vi1), ψ(vi2)) = 1.

It is easy to see that |eψ(0)− eψ(1)| = 1.

Thus, in all the cases, ψ induces a PCL for G.

Theorem 2.2.12. If H is a PCG of even order, then G formed by subdividing all the

edges of H admits a PCL.

Proof. Given H a PCG, with order ‘n’ and size ‘m’ where n is even, with labeling f .

Let V1 = {vi : 1 ≤ i ≤ n
2 } & V2 = {vi : n

2 + 1 ≤ i ≤ n} such that V (H) = V1 ∪ V2

and E(H) = E1 ∪ E2 with f : V (H) → {1, 2, ..., n} given by f : V1(H) → {2, 4, ..., n}
and f : V2(H) → {1, 3, ..., n − 1} such that |ef (0) − ef (1)| ≤ 1. Let G be acquired by

subdividing all the edges ofH. One can easily see that |V (G)| = n+m and |E(G)| = 2m.

Consider ψ : V (G) → {1 , 2, ..., n +m}. Let ψ(vi) = f(vi); 1 ≤ i ≤ n. Now arises the

given conditions.

Case (i) If G ∼= G1, where G1 admits a PCL, nothing remains to prove.

Case (ii) If G ̸∼= G2, where G2 is yet to be proved a PCG. Define a PCL for G. One can

see that there are n +m labels and 2m edges. So exactly m edges receive label 1 and

the remaining edges label 0. Name the newly added nodes w1, w2, ..., wm. The available

labels are“n + 1, n + 2, ..., n +m.”Let w1, w3, ..., wm−1 be the nodes which are inserted

between the edges having odd end labels in H. Similarly, let w2, w4, ..., wm be the nodes

inserted between the edges having even end labels in H. Without loss of generality,

assign m
2 even labels to the nodes w2, w4, ..., wm. Note that gcd(ψ(vi), ψ(wj)) ̸= 1,

gcd(ψ(wj), ψ(vi+1)) ̸= 1 for 1 ≤ i ≤ n
2 − 1, 2 ≤ j ≤ m (j is even) where ψ(vi), ψ(vi+1)

are even. Similarly, assign the m
2 odd labels to the nodes w1, w3, ..., wm−1 in such a way

that gcd(ψ(vi), ψ(wj)) = 1, gcd(ψ(wj), ψ(vi+1)) = 1 for n
2 +1 ≤ i ≤ n−1, 1 ≤ j ≤ m−1

(j is odd) where ψ(vi), ψ(vi+1) are odd. Thus, there is an induced function ψ′ from E(G)

to {0, 1} such that |eψ(0)− eψ(1)| ≤ 1, so G is a PCG. This completes the proof.

Notation [n] and On denote the set of naturals ≤ n and set of first n odd naturals,

respectively.

Definition 2.2.2. [51] “A function ψ : V (G) → On is said to be an odd prime labeling

of G if for each uv ∈ E(G), gcd(ψ(u), ψ(v)) = 1. A graph which admits an odd prime

labeling is called an odd prime.”
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Figure 2.2: PCL of disjoint union of graphs

Theorem 2.2.13. Let Gr(Vr, Er) be odd prime graphs and Gs(Vs, Es) be any graphs

such that |Vr| = |Vs| and |Er| = |Es| where r = s ∈ N. Let
k⋃
r=1

(Gr(Vr, Er)) be odd prime

graph then the disjoint union of Gr and Gs is again a PCG.

Proof. Let Gr be odd prime graphs for 1 ≤ r ≤ k with |Vr| = n and |Er| = m and

Gs(Vs, Es) be graphs for 1 ≤ s ≤ k such that |Vs| = |Vr| = n and |Es| = |Er| = m. Since
k⋃
r=1

Gr(Vr, Er) is odd prime graph, there exists a bijection g1 :
k⋃
r=1

Vr → O2kn such that

for any edge xy ∈ Er; 1 ≤ r ≤ k, gcd(g1(x), g1(y)) = 1. Now define another bijective

function g2 :
k⋃
s=1

Vs → {1, 2, ..., 2kn}−O2kn. Observe that g2(u) is always an even number

for any u ∈ Vs; 1 ≤ s ≤ k. For any edge xy ∈ Es; 1 ≤ s ≤ k, gcd(g2(x), g2(y)) ̸= 1. Let

G(V,E) be acquired by taking disjoint union ofGr andGs where 1 ≤ r ≤ k and 1 ≤ s ≤ k

(see Figure 2.2). See that V (G) = (
k⋃
r=1

Vr)
⋃
(
k⋃
s=1

Vs) and E(G) = (
k⋃
r=1

Er)
⋃
(
k⋃
s=1

Es)

with |V (G)| = 2kn and |E(G)| = 2km. Define ψ : V (G) → {1 , 2, ..., 2kn} by fixing

ψ(u) = g1(u), if u ∈ Vr; 1 ≤ r ≤ k, ψ(u) = g2(u), if u ∈ Vs; 1 ≤ s ≤ k. The

induced labeling ψ′ : E(G) → {0, 1} is obtained as follows. For any edge e ∈ G,

ψ′(e) = 1, if e ∈
k⋃
r=1

Er and ψ′(e) = 0, if e ∈
k⋃
s=1

Es. Thus, eψ(1) =
k∑
r=1

|Er| = km

and eψ(0) =
k∑
s=1

|Es| = km establishing that |eψ(0) − eψ(1)| ≤ 1. Hence, G admits a

PCL.

Definition 2.2.3. [67] “Let G1, G2, ..., Gk, k ≥ 2 be the k − copies of G. Adding an

edge between Gi and Gi+1 for i = 1, 2, ..., k − 1 is called the path union of Gi.”

Theorem 2.2.14. Let Gi; 1 ≤ i ≤ k, k ≥ 2 be the ‘k’-copies of a graph G of even size.

Suppose that their disjoint union is a PCG then the graph acquired by taking the path

union of Gi also admits a PCL.
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Figure 2.3: Path union of graphs

Proof. Let G be the given PCG of even size and Gi; 1 ≤ i ≤ k, k ≥ 2 be the ‘k ’-copies

of G such that
k⋃
i=1

Gi is also a PCG with labeling g, thus eg(0) = eg(1). Let H de-

notes the graph formed by taking the path union of k -copies of G (see Figure 2.3). Let

p1, p2, ..., pk denote the nodes of path formed due to path union of ‘k ’- copies of Gi.

Clearly |E(H)| = |E(
k⋃
i=1

Gi)|+(k−1). Consider h : V (H) → {1 , 2, ..., k|V (Gi)|} defined

under three conditions.

Case (i) When ‘k ’ is even.

Superimposition of pi with nodes ofGi can be done in such a way that gcd(h(pi), h(pi+1)) =

1 for 1 ≤ i ≤ k
2 and gcd(h(pj), h(pj+1)) ̸= 1 for k

2 + 1 ≤ j ≤ k − 1. Clearly,

|eh(0)− eh(1)| = 1.

Case (ii) When ‘k ’ is odd.

Superimposition of pi with nodes ofGi can be done in such a way that gcd(h(pi), h(pi+1)) =

1 for 1 ≤ i ≤ k−1
2 and gcd(h(pj), h(pj+1)) ̸= 1 for k+1

2 ≤ j ≤ k − 1. Clearly,

|eh(0)− eh(1)| = 0.

Thus, in both the cases, |eh(0)− eh(1)| ≤ 1, which proves that H is a PCG.

Corollary 2.2.1. Let Gr(Vr, Er) be odd prime graphs and Gs(Vs, Es) are graphs such

that |Vs| = |Vr| and |Es| = |Er| where r, s ∈ N. Suppose that disjoint union of Gr and

Gs is a PCG. Then the graph acquired by taking the path union of these graphs also

admits a PCL.

Proof. The proof is evident from Theorem 2.2.13 and Theorem 2.2.14.

Theorem 2.2.15. If G1(V1, E1) is an odd prime graph and G2(V2, E2) be any graph of

same order and size as that of G1, then the graph formed by joining G1 and G2 using a

path of finite length, also admits a PCL.

Proof. Let G1(V1, E1) be an odd prime graph with |V1| = n and |E1| = m and G2(V2, E2)

be another graph such that |V2| = |V1| and |E2| = |E1|. Clearly, G1 ∪G2 is a PCG with
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Figure 2.4: PCL of a graph acquired by joining two graphs by Pt

labeling f . Let H be acquired by joining these graphs by Pt (see Figure 2.4) and

p1, p2, ..., pt denote the nodes of Pt such that p1 is superimposed with a node of G1, say,

r having label 1 and pt is superimposed with any node of G2. Clearly, |V (H)| = 2n+t−2

and |E(H)| = 2m+t−1. Define ψ : V (H) → {1 , 2, ..., 2n+t−2} by letting ψ(ui) = f(ui)

for ui ∈ G1 ∪G2. Now arise two cases.

Case (i) When ‘t’ is even.

Out of the remaining t − 2 labels, assign odd labels to p2, p3, ..., p t
2
and even labels to

p t
2
+1, p t

2
+2, ..., pt−1, simultaneously from {2n+1, 2n+2, ...2n+ t− 2}. Clearly, |eψ(0)−

eψ(1)| = 1.

Case (ii) When ‘t’ is odd.

Out of the remaining t− 2 labels, assign odd labels to p2, p3, ..., p⌊ t
2
⌋ and even labels to

p⌈ t
2
⌉, ..., pt−1, simultaneously from {2n+1, 2n+2, ..., 2n+t−2}. Clearly, |eψ(0)−eψ(1)| =

0.

Hence, H is a PCG.

Theorem 2.2.16. If G1(V1, E1) and G2(V2, E2) are of same order and size such that

their disjoint union is a PCG, then graph acquired by joining G1 and G2 using a path

of finite length admits a PCL.

The proof is in similar lines of Theorem 2.2.15.

2.3 PCL in the Context of Corona

Though, a significant amount of work concerning PCL of graphs using various graph

operations has been done, yet PCL of graphs in the context of an interesting graph

operation called corona has to be explored. The Corona product is of utmost significance

in data analytics, where enormous amounts of data must be evaluated quickly in order

to make a judgement. It can be applied to forensic analysis and DNA sampling in
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biotechnology besides understanding compound structures in chemistry. This makes

”corona” an important graph operation in graph theory. To begin with, a few notable

established results in PCL are recalled here.

Definition 2.3.1. [69] “Consider P
(1)
n and P

(2)
n with V (P

(1)
n ) = {u1, u2, ..., un} and

V (P
(2)
n ) = {v1, v2, ..., vn}. Join the nodes un+1

2
and vn+1

2
by an edge, if n is odd, otherwise

join un
2
with vn

2
+1. The resultant graph is called a H − graph on 2n nodes.”

Theorem 2.3.1. [70] Pn ⊙K1,n−1 is a PCG.

Theorem 2.3.2. [72] Corona of H − graph with K1 admits a PCL.

In pursuant of this, the following results are obtained.

Theorem 2.3.3. Pn ⊙ K̄1 permits a PCL ∀ n ≥ 2.

Proof. Let V (Pn) = {p1, p2, ..., pn} and“E (Pn) = {pjpj+1 : 1 ≤ j ≤ n − 1}. Let G be

acquired by taking the corona of Pn with K̄1 having V (G) = V (Pn) ∪ {p′1, p′2, ..., p′n}
and, E(G) = E(Pn) ∪ {pjp′j : 1 ≤ j ≤ n}. Clearly, |V (G)| = 2n and |E (G)| = 2n − 1.

Consider ψ : V (G) → {1 , 2, ..., 2n}.”Fix ψ(p1) = 2, ψ(pj) = ψ(pj−1) + 2, for 2 ≤ j ≤ n

and ψ(p′j) = ψ(pj) − 1; 1 ≤ j ≤ n. Evidently, eψ(0) = n − 1 and eψ(1) = n which

justifies that |eψ(0)− eψ(1)| ≤ 1. Hence, G is a PCG (see Figure 2.5).

Figure 2.5: PCL of P4 ⊙ K̄1

Theorem 2.3.4. Cn ⊙ K̄1 permits a PCL ∀ n ≥ 3.

Proof. Let V (Cn) = {c1, c2, ..., cn} and“E (Cn) = {cjcj+1 : 1 ≤ j ≤ n− 1} ∪ {cnc1}. Let
G = Cn ⊙ K̄1 with V (G) = V (Cn) ∪ {c′1, c′2, ..., c′n} and E(G) = E(Cn) ∪ {cjc′j : 1 ≤ j ≤
n}. Clearly, |V (G)| = 2n and |E(G)| = 2n. Consider ψ : V (G) → {1 , 2, ..., 2n}.”Fix
ψ(c1) = 2, ψ(cj) = ψ(cj−1) + 2; 2 ≤ j ≤ n and ψ(c′j) = ψ(cj)− 1; 1 ≤ j ≤ n. Following

the above pattern, eψ(0) = eψ(1) = n which shows that G is a PCG.

Theorem 2.3.5. Wn ⊙ K̄1 permits a PCL ∀ n ≥ 3.
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Proof. Let V (Wn) = {w0} ∪ {w1, w2, ..., wn} with w0 the apex node, and“E(Wn) =

{wjwj+1 : 1 ≤ j ≤ n − 1} ∪ {wnw1} ∪ {w0wj : 1 ≤ j ≤ n}. Let G = Wn ⊙ K̄1 with

V (G) = V (Wn)∪ {w′
0, w

′
1, w

′
2, ..., w

′
n} & E(G) = E(Wn)∪ {wjw′

j : 1 ≤ j ≤ n} ∪ {w0w
′
0}.

Clearly, |V (G)| = 2n+2 and E(G) = 3n+1. Consider ψ : V (G) → {1 , 2, ..., 2n+2}.”Let
ψ(w0) = 2 and ψ(w1) = 4. Now the given cases arise.

Case (i) If ‘n’ is even.

Fix ψ(w′
0) = 1, ψ(wn

2
) = 6, ψ(wn

2
+1) = 3, ψ(wj) = ψ(wj−1) + 4; n

2 + 2 ≤ j ≤ n,

ψ(w′
j) = ψ(wj) + 2; n2 + 1 ≤ j ≤ n and assign the remaining labels to unlabeled nodes

(see Figure 2.6). Observe that |eψ(0)− eψ(1)| ≤ 1.

Case (ii) If ‘n’ is odd.

Fix ψ(w′
0) = 2n+ 1, ψ(wn+1

2
) = 6, ψ(w′

n+1
2

) = 1, ψ(wn+1
2

+1) = 3, ψ(wj) = ψ(wj−1) + 4;
n+1
2 + 2 ≤ j ≤ n and ψ(w′

j) = ψ(wj) + 2; n+1
2 + 1 ≤ j ≤ n. Assign the remaining labels

to unlabeled nodes. Here eψ(0) = eψ(1).

Thus, G is a PCG.

Figure 2.6: PCL of W6 ⊙ K̄1

Theorem 2.3.6. DWn ⊙ K̄1 permits a PCL ∀ n ≥ 3.

Proof. Let V (DWn) = {x0, xi, yi : 1 ≤ i ≤ n} where xi; 1 ≤ i ≤ n and yi; 1 ≤ i ≤ n

are rim nodes of inner and outer cycles respectively. Let G = DWn ⊙ K̄1 with V (G) =

V (Wn) ∪ {x′0, x′i, y′i : 1 ≤ i ≤ n}. Clearly, |V (G)| = 4n + 2 and |E(G)| = 6n + 1.

Consider ψ : V (G) → {1 , 2, ..., 4n+2}. Let ψ(x0) = 2, ψ(x′0) = 3, ψ(y1) = 1, ψ(y′1) = 5,

ψ(y2) = 7, ψ(yi) = ψ(yi−1) + 4 ; 3 ≤ i ≤ n and ψ(y′i) = ψ(yi) + 2 ; 2 ≤ i ≤ n. Assign

the remaining labels to xi & x′i ; 1 ≤ i ≤ n. Clearly, |eψ(0) − eψ(1)| ≤ 1 establishing

that G is a PCG.

Theorem 2.3.7. Gn ⊙ K̄1 permits a PCL ∀ n ≥ 3.
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Proof. Let node and edge set of Gn are {v0, vj , uj : 1 ≤ j ≤ n} and, {v0vj : 1 ≤ j ≤
n}∪{ujvj : 1 ≤ j ≤ n}∪{ujvj+1 : 1 ≤ j ≤ n−1}∪{unv1} respectively. Let G = Gn⊙K̄1

with V (G) = V (Gn) ∪ {v′0, v′j , u′j : 1 ≤ j ≤ n} and E(G) = E(Gn) ∪ {uju′j , vjv′j :

1 ≤ j ≤ n} ∪ {v0v′0}. Clearly, |V (G)| = 4n + 2 and |E (G)| = 5n + 1. Consider

ψ : V (G) → {1 , 2, ..., 4n+2} defined by fixing ψ(v0) = 2, ψ(v′0) = 1 and ψ(v1) = 4. The

given cases arise.

Case (i) If ‘n’ is odd.

Let ψ(vn+1
2
) = 6, ψ(un+1

2
) = 3, ψ(vn+1

2
+1) = 7, ψ(vj) = ψ(vj−1) + 8 ; n+1

2 + 2 ≤ j ≤ n,

ψ(uj) = ψ(uj−1)+8 ; n+1
2 +1 ≤ j ≤ n, ψ(u′j) = ψ(uj)+2 ; n+1

2 ≤ j ≤ n, ψ(v′j) = ψ(vj)+2

for n+1
2 + 1 ≤ j ≤ n. Now assign unused even labels to unlabeled nodes.

Case (ii) If ‘n’ is even.

Let ψ(un
2
) = 6, ψ(vn

2
+1) = 3, ψ(un

2
+1) = 7, ψ(vj) = ψ(vj−1) + 8 ; n

2 + 2 ≤ j ≤ n,

ψ(uj) = ψ(uj−1) + 8 ; n2 + 2 ≤ j ≤ n, ψ(v′n
2
+1) = 9, ψ(u′n

2
+1) = 5, ψ(u′j) = ψ(uj) + 2 ;

n
2 + 2 ≤ j ≤ n, ψ(v′j) = ψ(vj) + 2 ; n

2 + 2 ≤ j ≤ n. Now assign unused even labels to

unlabeled nodes.

In both the cases, |eψ(0)− eψ(1)| ≤ 1 showing that G is a PCG.

Theorem 2.3.8. Fln ⊙ K̄1 permits a PCL ∀ n ≥ 3 .

Proof. Let V (Fln) = {v0, vi, ui : 1 ≤ i ≤ n} and E (Fln) = {v0vi, v0ui, viui : 1 ≤ i ≤
n} ∪ {vivi+1 : 1 ≤ i ≤ n − 1} ∪ {vnv1}, where vi , ui &, v0 are nodes of degree 4, 2

and 2n respectively. Let G = Fln ⊙ K̄1 with V (G) = V (Fln) ∪ {v′0, v′i, u′i : 1 ≤ i ≤ n}
and E(G) = E(Fln) ∪ {v0v′0} ∪ {viv′i : 1 ≤ i ≤ n} ∪ {uiu′i : 1 ≤ i ≤ n}. Clearly,

|V (G)| = 4n + 2, and |E(G)| = 6n + 1. Consider ψ : V (G) → {1 , 2, ..., 4n + 2}. Let

ψ(v0) = 2, ψ(v′0) = 1, ψ(v1) = 4, ψ(vi) = ψ(vi−1) + 4 ; 2 ≤ i ≤ n, ψ(v′i) = ψ(vi) + 2 ;

1 ≤ i ≤ n, ψ(ui) = ψ(vi) + 1 ; 1 ≤ i ≤ n and ψ(u′i) = ψ(vi) − 1; 1 ≤ i ≤ n. Following

this, |eψ(0)− eψ(1)| ≤ 1. Hence, G is a PCG (see Figure 2.7).

Theorem 2.3.9. fn ⊙ K̄1 permits a PCL ∀ n ≥ 3.

Proof. Let V (fn) = {u0, ui : 1 ≤ i ≤ n}, where u0 is apex node, and V (fn ⊙ K̄1) =

V (fn) ∪ {u′0, u′i : 1 ≤ i ≤ n}. Clearly, |V (fn ⊙ K̄1)| = 2n + 2 and |E(fn ⊙ K̄1)| = 3n.

Consider ψ : V (fn⊙ K̄1) → {1 , 2, ..., 2n+2}. Fix ψ(u0) = 2 and ψ(u′0) = 1. There arise

the given cases.

Case (i) If ‘n’ is even.

Fix ψ(un
2
) = 6, ψ(un

2
+1) = 3, ψ(ui) = ψ(ui−1) + 4 ; n2 + 2 ≤ i ≤ n, ψ(u′i) = ψ(ui) + 2 ;

n
2 + 1 ≤ i ≤ n. Assign even labels to unlabeled nodes. Note that eψ(0) = eψ(1).

Case (ii) If ‘n’ is odd.

Fix ψ(u⌈n
2
⌉) = 6, ψ(u′⌈n

2
⌉) = 3, ψ(u⌈n

2
⌉+1) = 5, ψ(ui) = ψ(ui−1) + 4 ; ⌈n2 ⌉ + 2 ≤ i ≤ n,
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Figure 2.7: PCL of Fl7 ⊙ K̄1

ψ(u′i) = ψ(ui) + 2 ; ⌈n2 ⌉ + 1 ≤ i ≤ n. Assigning even labels to unlabeled nodes yields,

eψ(0) = eψ(1) + 1.

Hence, fn ⊙ K̄1 is a PCG (see Figure 2.8).

Theorem 2.3.10. Dfn ⊙ K̄1 permits a PCL.

Proof. Let V (Dfn) = {x0, y0, ui : 1 ≤ i ≤ n}.“Consider Dfn⊙ K̄1 with V (Dfn⊙ K̄1) =

V (Dfn) ∪ {x′0, y′0, u′i : 1 ≤ i ≤ n} and E(Dfn ⊙ K̄1) = E(Dfn) ∪ {x0x′0, y0y′0, uiu′i :

1 ≤ i ≤ n}. Clearly, |V (Dfn ⊙ K̄1)| = 2n + 4 and |E (Dfn ⊙ K̄1)| = 4n + 1. Define

ψ : V (Dfn ⊙ K̄1) → {1 , 2, ..., 2n + 4} by fixing ψ(x0) = 2, ψ(y0) = 1, ψ(x′0) = 2n + 4,

ψ(y′0) = 2n + 3, ψ(u1) = 4, ψ(ui) = ψ(ui−1) + 2 ; 2 ≤ i ≤ n and ψ(u′i) = ψ(ui) − 1 ;

1 ≤ i ≤ n.”Note that |eψ(0)−eψ(1)| ≤ 1, which proves the theorem (see Figure 2.8).

Figure 2.8: PCL of f6 ⊙ K̄1 and Df5 ⊙ K̄1

Theorem 2.3.11. [3] “If G is a PCG then G± e is also a PCG.”

Theorem 2.3.12. K1,n ⊙ K̄1 admits a PCL ∀ n ≥ 2.
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Proof. Let V (K1,n) = {k0, ki : 1 ≤ i ≤ n}. Consider corona of K1,n with K̄1 with node

set V (K1,n) ∪ {k′0, k′i : 1 ≤ i ≤ n} and edge set E(K1,n) ∪ {k0k′0, kik′i : 1 ≤ i ≤ n}.
Note that cardinality of node and edge set of K1,n ⊙ K̄1 is respectively 2n + 2 and

2n+ 1. Consider ψ : V (K1,n ⊙ K̄1) → {1 , 2, ..., 2n+ 2} by fixing ψ(k0) = 2, ψ(k′0) = 1,

ψ(ki) = 2i+ 2; 1 ≤ i ≤ n and ψ(k′i) = ψ(ki)− 1; 1 ≤ i ≤ n. Clearly, |eψ(0)− eψ(1)| ≤ 1

proving that K1,n ⊙ K̄1 is a PCG.

Remark 2.1. S(K1,n)“is obtained from K1,n ⊙ K̄1 by deleting an edge. Thus, S(K1,n)

admits a PCL by Theorem 2.3.11 and Theorem 2.3.12.”

Theorem 2.3.13. Bn,m ⊙ K̄1 permits a PCL.

Proof. Let V (Bn,m) = {x0, y0, xi, yj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Let G = Bn,m ⊙ K̄1 with

V (G) = V (Bn,m)∪{x′0, y′0, x′i, y′j : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Clearly, |V (G)| = 2n+2m+4

and |E (G)| = 2n + 2m + 3. Consider ψ : V (G) → {1 , 2, ..., 2n + 2m + 4}. There arise

given cases.

Case (i) If n = m.

Let ψ(x0) = 2, ψ(x′0) = 2n + 2m + 4, ψ(y0) = 1, ψ(y′0) = 2n + 2m + 3, ψ(y1) = 3,

ψ(yi) = ψ(yi−1) + 4; 2 ≤ i ≤ m and ψ(y′i) = ψ(yi) + 2; 1 ≤ i ≤ m. Assign even labels to

xi & x′i ; 1 ≤ i ≤ n in any fashion. One can see that |eψ(0) − eψ(1)| ≤ 1 proving that

Bn,m ⊙K1 is a PCG.

Case (ii) If n ̸= m.

Assume that n > m. Fix ψ(x0) = 2, ψ(y0) = 1, ψ(y1) = 3, ψ(yi) = ψ(yi−1) + 4;

2 ≤ i ≤ m, ψ(y′i) = ψ(yi) + 2; 1 ≤ i ≤ m. Assign even labels to xi & x′i simultaneously

from available labels and once even labels are consumed, allot unused odd labels to

remaining xi and x′i in the same way that was followed for the labeling of yi and y′i.

Finally, allot the last unutilized label to x′0. Here |eψ(0) − eψ(1)| ≤ 1 and hence the

result.

Theorem 2.3.14. K4 ⊙ Pn permits a PCL ∀ n ≥ 2.

Proof. Suppose V (K4⊙Pn) = {ki, p(j)i : 1 ≤ i ≤ 4, 1 ≤ j ≤ n} where {ki : 1 ≤ i ≤ 4} are

nodes of K4, and E(K4 ⊙ Pn) = E(K4) ∪ {kip(j)i : 1 ≤ i ≤ 4, 1 ≤ j ≤ n} ∪ {p(j)i p
(j+1)
i :

1 ≤ i ≤ 4, 1 ≤ j ≤ n− 1}. Note that |V (K4 ⊙ Pn)| = 4n+ 4 & |E (K4 ⊙ Pn)| = 8n+ 2.

Consider ψ : V (K4⊙Pn) → {1 , 2, ..., 4n+4} by taking ψ(k1) = 2, ψ(k2) = 4, ψ(k3) = 8,

ψ(k4) = 1, ψ(p
(n−1)
2 ) = 10, ψ(p

(n)
2 ) = 5, ψ(p

(1)
3 ) = 3, ψ(p

(2)
3 ) = 9. Assign the remaining

even labels to p
(j)
1 ; 1 ≤ j ≤ n and p

(j)
2 ; 1 ≤ j ≤ n − 2. Next, assign unused odd labels

simultaneously, to the remaining unlabeled nodes. Observe, gcd(ψ(k1), ψ(k2)) > 1,

gcd(ψ(k2), ψ(k3)) > 1, gcd(ψ(k1), ψ(k3)) > 1, gcd(ψ(k1), ψ(p
(j)
1 )) > 1; 1 ≤ j ≤ n,

gcd(ψ(k2), ψ(p
(j)
2 )) > 1; 1 ≤ j ≤ n − 1, gcd(ψ(p

(j)
1 ), ψ(p

(j+1)
1 )) > 1; 1 ≤ j ≤ n − 1,
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gcd(ψ(p
(j)
2 ), ψ(p

(j+1)
2 )) > 1; 1 ≤ j ≤ n−1, and gcd(ψ(p

(1)
3 ), ψ(p

(2)
3 )) > 1. The remaining

edges are labeled 1 (see Figure 2.9), resulting which eψ(0) = eψ(1) = 4n+ 1, hence the

result.

Figure 2.9: PCL of K4 ⊙ Pn

Theorem 2.3.15. K4 ⊙ K̄n permits a PCL ∀ n ≥ 2.

Proof. Let V (K4 ⊙ K̄n) = {ki, u(j)i : 1 ≤ i ≤ 4, 1 ≤ j ≤ n} where {ki : 1 ≤ i ≤ 4}
are nodes of K4, and E(K4 ⊙ K̄n) = E(K4) ∪ {kiu(j)i : 1 ≤ i ≤ 4, 1 ≤ j ≤ n}. Note

that |V (K4 ⊙ K̄n)| = 4n+ 4 and |E(K4 ⊙ K̄n)| = 4n+ 6. Consider ψ : V (K4 ⊙ K̄n) →
{1 , 2, ..., 4n+4} by taking ψ(k1) = 2, ψ(k2) = 6, ψ(k3) = 4, ψ(k4) = 1 and ψ(u

(n)
2 ) = 3.

Assign the remaining even labels to unlabeled u
(j)
1 ; 1 ≤ j ≤ n and u

(j)
2 ; 1 ≤ j ≤ n− 1,

and odd labels to u
(j)
3 and u

(j)
4 ; 1 ≤ j ≤ n. Observe that gcd(ψ(k1), ψ(k2)) > 1,

gcd(ψ(k2), ψ(k3)) > 1, gcd(ψ(k1), ψ(k3)) > 1, gcd(ψ(k1), ψ(u
(j)
1 )) > 1 ; 1 ≤ j ≤ n,

gcd(ψ(k2), ψ(u
(j)
2 )) > 1 ; 1 ≤ j ≤ n. Evidently, eψ(0) = eψ(1) = 2n+3 which proves the

result.

Theorem 2.3.16. “One point union of n-copies of K4 allows a PCL.”

Proof. Let G“be produced by taking the one point union of n − copies of K4 having

V (G) = {k0} ∪ {kij : 1 ≤ i ≤ n, 1 ≤ j ≤ 3} and E(G) = {k0kij : 1 ≤ i ≤ n, 1 ≤ j ≤
3} ∪ {ki1ki2, ki1ki3, ki2ki3 : 1 ≤ i ≤ n}. Clearly, |V (G)| = 3n + 1 and |E (G)| = 6n.

Consider ψ : V (G) → {1, 2, 3, ..., 3n+1} as given.”Choose the largest prime p such that

3p ≤ 3n+ 1. Fix ψ(k0) = 2p. Begining with k11, allocate all even labels simultaneously

to the nodes {k12, k13, k21, k22, k23, ....}. There arise given cases.

Case (i) If ‘n’ is odd.

Allocate odd labels simultaneously from {1 , 2, ..., 3n+ 1} to unlabeled nodes.
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Case (ii) If ‘n’ is even.

Fix ψ(kn
2
3) = 1, ψ(k(n

2
+1)1) = 3, ψ(k(n

2
+1)2) = 9 and assign unutilized labels to unlabeled

nodes namely, k(n
2
+1)3, k(n

2
+2)1, k(n

2
+2)2, ..., kn3 simultaneously from {5, 7, 11, 13, ..., 3n+

1}.
Thus, G is a PCG (see Figure 2.10).

Figure 2.10: PCL of “one point union of 4-copies of K4”

Theorem 2.3.17. Pn ⊙ K̄2 permits a PCL.

Proof. Let V (Pn) = {p1, p2, ..., pn} and G = Pn ⊙ K̄2“with V (G) = V (Pn) ∪ {p′i, p′′i :

1 ≤ i ≤ n} and E (G) = E(Pn) ∪ {pip′i : 1 ≤ i ≤ n} ∪ {pip′′i : 1 ≤ i ≤ n}. Clearly,

|V (G)| = 3n and |E(G)| = 3n− 1. Consider ψ : V (G) → {1 , 2, ..., 3n}”defined by given

cases.

Case (i) If ‘n’ is even.

Fix ψ(p1) = 2, ψ(pn
2
+1) = 1, ψ(p′n

2
+1) = 3, ψ(p′′n

2
+1) = 5. Next, ψ(pi) = ψ(pi−1) + 2;

2 ≤ i ≤ n
2 , ψ(pi) = ψ(pi−1) + 6; n2 + 2 ≤ i ≤ n, ψ(p′i) = ψ(p′i−1) + 6; n2 + 2 ≤ i ≤ n and

ψ(p′′i ) = ψ(p′′i−1) + 6; n2 + 2 ≤ i ≤ n. Assign the available even labels to p′i & p′′i where

1 ≤ i ≤ n
2 . Evidently, |eψ(0)− eψ(1)| ≤ 1.

Case (ii) When ‘n’ is odd.

Fix ψ(p1) = 2, ψ(pn+1
2
) = 6, ψ(p′n+1

2

) = 3, ψ(p′′n+1
2

) = 1, ψ(pn+1
2

+1) = 7, ψ(pi) =

ψ(pi−1) + 6; n+1
2 + 2 ≤ i ≤ n, ψ(p′i) = ψ(pi) + 2; n+1

2 + 1 ≤ i ≤ n, ψ(p′′i ) = ψ(pi) − 2;
n+1
2 + 1 ≤ i ≤ n. Assigning available even labels to unlabeled nodes yields eψ(0) =

eψ(1) =
3n−1

2 .

Hence, G is a PCG.

Theorem 2.3.18. Cn ⊙ K̄2 permits a PCL ∀ n ≥ 4.

Proof. Let V (Cn) = {c1, c2, ..., cn} and“G = Cn⊙ K̄2 with V (G) = V (Cn)∪{c′i, c′′i : 1 ≤
i ≤ n}, E (G) = E(Cn)∪{cic′i, cic′′i : 1 ≤ i ≤ n}. Clearly, |V (G)| = 3n and |E (G)| = 3n.

Consider ψ : V (G) → {1 , 2, ..., 3n} defined under two cases.”

Case (i) If ‘n’ is even.
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Fix ψ(c1) = 2, ψ(cn
2
) = 6, ψ(cn

2
+1) = 3, ψ(cn

2
+2) = 7, ψ(ci) = ψ(ci−1)+6; n2 +3 ≤ i ≤ n,

ψ(c′n
2
+1) = 1, ψ(c′n

2
+2) = 9, ψ(c′′n

2
+1) = 5, ψ(c′i) = ψ(c′i−1) + 6; n

2 + 3 ≤ i ≤ n and

ψ(c′′i ) = ψ(c′′i−1) + 6; n2 +2 ≤ i ≤ n. Assign the unused labels to remaining nodes in any

fashion implies |eψ(0)− eψ(1)| ≤ 1.

Case (ii) If ‘n’ is odd.

Follow the labeling pattern of Case (ii) of Theorem 2.3.17.

Thus, G is a PCG.

Theorem 2.3.19. Pn ⊙ K̄n permits a PCL.

Proof. Let V (Pn) = {p1, p2, ..., pn}. Let“G = Pn ⊙ K̄n with V (G) = V (Pn) ∪ {kij :

1 ≤ i ≤ n, 1 ≤ j ≤ n} and E (G) = E(Pn) ∪ {pikij : 1 ≤ i ≤ n, 1 ≤ j ≤ n}. Clearly,

|V (G)| = n2+n and |E (G)| = n2+n−1. Consider ψ : V (G) → {1 , 2, ..., n2+n} defined

under the given conditions.”

Case (i) If ‘n’ is even.

Fix ψ(p1) = 2, ψ(pi) = ψ(pi−1) + 2; 2 ≤ i ≤ n
2 , ψ(pn

2
+1) = 1. Consider the sequence of

consecutive primes, say qn
2
+2, qn

2
+3, ..., qn such that n2 + n ≥ qn > qn−1 >, ..., > qn

2
+2.

Fix ψ(pi) = qi for
n
2 + 2 ≤ i ≤ n. Assign available even labels to kij for 1 ≤ i ≤ n

2 ,

1 ≤ j ≤ n. Next, assign unused odd labels to kij for n
2 + 1 ≤ i ≤ n, 1 ≤ j ≤ n

simultaneously from {1, 2, ..., n2 + n}.
Case (ii) If ‘n’ is odd.

Fix ψ(p1) = 2, ψ(pi) = ψ(pi−1) + 2 for 2 ≤ i ≤ ⌈n2 ⌉, ψ(p⌈n
2
⌉+1) = 1. Consider the

sequence of consecutive primes, say q⌈n
2
⌉+2, q⌈n

2
⌉+3, ..., qn such that n2 + n ≥ qn >

qn−1 > ..., > q⌈n
2
⌉+2. Fix ψ(pi) = qi for ⌈n2 ⌉+ 2 ≤ i ≤ n. Assign available even labels to

kij for 1 ≤ i ≤ ⌊n2 ⌋, 1 ≤ j ≤ n and k⌈n
2
⌉j for 1 ≤ j ≤ ⌊n2 ⌋. Assign unused odd labels

to k⌈n
2
⌉j for ⌈n2 ⌉ ≤ j ≤ n and kij for ⌈n2 ⌉ + 1 ≤ i ≤ n, 1 ≤ j ≤ n simultaneously from

{1 , 2, ..., n2 + n}. Observe that |eψ(0)− eψ(1)| ≤ 1.

Hence, G is a PCG (see Figure 2.11).

Figure 2.11: PCL of P6 ⊙ K̄6
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Remark 2.2. One can also derive the PCL of Cn⊙K̄n in a similar way with the Theorem

2.3.19.

2.4 PCL of Lilly Related Graphs

A data structure is a particular way of organizing data in a computer and therefore trees

constitute an important class of graphs in graph theory. Many researchers are investi-

gating trees for different kind of graph labelings. Baskar Babujee et al., in [8] proved

that“the double star K1,n,n for n ≥ 3 and the full binary tree admits a PCL.”Motivated

by [8] and [64], some results on a tree family, named, lilly graph are derived here.

Definition 2.4.1. [64] “Lilly graph In, n ≥ 2 is formed by two star graphs 2K1,n, n ≥ 2

and two path graphs 2Pn, n ≥ 2 which share a common node. i.e; In = 2K1,n ⋄2Pn. For
illustration, refer to Figure 2.12.”

Figure 2.12: I4

Throughout this section V (In) = {u1, u2, ..., u4n−1} and E(In) = {u3nui : 1 ≤ i ≤
2n} ∪ {uiui+1 : 2n + 1 ≤ i ≤ 4n − 2}. Note that {u1, u2, ..., u2n} and {u2n+1, u4n−1}
are pendant nodes of In in which the former and latter are representing respectively

the star pendant nodes and path pendant nodes in In. Also u3n is apex node. Clearly,

|V (In)| = 4n− 1 and |E(In)| = 4n− 2.

Note: Edward samuel [64] used + sign to represent the definition of lilly graph. Since

+ denotes the join operation in general, so ⋄ is used in this thesis.

Theorem 2.4.1. In admits a PCL.

Proof. Let V (In) = {u1, u2, ..., u4n−1} and E(In) = {u3nui : 1 ≤ i ≤ 2n} ∪ {uiui+1 :

2n + 1 ≤ i ≤ 4n − 2}. Clearly, |V (In)| = 4n − 1 and |E (In)| = 4n − 2. Consider

ψ : V (G) → {1 , 2, ..., 4n − 1}. Fix ψ(u3n) = 2, ψ(u2n+1) = 4, ψ(ui) = ψ(ui−1) + 2;

2n + 2 ≤ i ≤ 3n − 1, ψ(u3n+1) = 3, ψ(u3n+2) = 9, ψ(ui) = ψ(ui−1) + 2; 3n + 3 ≤
i ≤ 4n − 1, ψ(u1) = ψ(u3n−1) + 2, ψ(ui) = ψ(ui−1) + 2; 2 ≤ i ≤ n − 1, ψ(un) = 1,
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ψ(un+1) = 5, ψ(un+2) = 7, ψ(un+3) = ψ(u4n−1)+2, ψ(ui) = ψ(ui−1)+2 ; n+4 ≤ i ≤ 2n.

Observe that gcd(ψ(u3n), ψ(ui)) ̸= 1; n − 1 ≥ i ≥ 1, gcd(ψ(u3n+1), ψ(u3n+2)) ̸= 1 and

gcd(ψ(ui), ψ(ui+1)) ̸= 1; 2n+ 1 ≤ i ≤ 3n− 1. Evidently, eψ(0) = eψ(1) = 2n− 1 which

shows that In is a PCG (see Figure 2.13).

Figure 2.13: PCL of I5

Theorem 2.4.2. Switching of an arbitrary pendant node in In admits a PCL for n ≥ 4.

Proof. Let G be constructed by switching an arbitrary pendant node of In say, uk, where

k ∈ {1 , 2, ..., 2n, 2n+1, 4n−1}.“Clearly, |V (G)| = 4n−1 and |E(G)| = 8n−6. Consider

ψ : V (G) → {1 , 2, ..., 4n− 1} defined under the given conditions.”

Case (i) When k ∈ {1 , 2, ..., 2n}.
Fix ψ(uk) = 2, ψ(u3n) = 6. Assign all available even labels out of {1, 2, ..., 4n − 1} to

u1, u2, ...uk−1, uk+1, ..., u2n as a result of which two nodes out of u1, u2, ...uk−1, uk+1, ..., u2n

can not be labeled (since there are exactly 4n
2 − 1 number of even labels available).

For unlabeled star pendant nodes, assign the labels 3 and 9. Next, fix ψ(u3n−1) =

1, ψ(u3n+1) = 15 and ψ(u3n+2) = p, where p is the largest prime ≤ 4n − 1, and assign

the unused (odd) labels simultaneously to unlabeled nodes (see Figure 2.14). Observe

that gcd(ψ(u3n), ψ(ui)) > 1, ; 1 ≤ i ≤ 2n, gcd(ψ(u3n), ψ(u3n+1)) > 1 and gcd of

ψ(uk) with all pendant nodes of star except for the those that are labeled with 3 and

9, is greater than 1. Clearly there are exactly 4n − 3 edges having label 0. Evidently,

|eψ(0)− eψ(1)| ≤ 1.

Case (ii) Switching of either u2n+1 or u4n−1.

Without loss of generality, switch u2n+1. Fix ψ(u2n+1) = 2, ψ(u3n) = 6, ψ(u1) = 4,

ψ(u2) = 8, ψ(ui) = ψ(ui−1)+2; 3 ≤ i ≤ 2n−3, ψ(u2n−2) = 3, ψ(u2n−1) = 5, ψ(u2n) = 9,

ψ(u3n−1) = 1 & ψ(u3n+1) = p, where p is the largest prime ≤ 4n − 1. Assign the un-

used labels out of {1, 2, ..., 4n − 1} simultaneously to remaining nodes. Observe that

gcd(ψ(u3n), ψ(ui)) > 1; i = 1, 2, ...2n, 2n + 1; i ̸= 2n − 1, gcd(ψ(u2n+1), ψ(ui)) > 1;

1 ≤ i ≤ 2n − 3. The edges formed using these nodes bear 0 which are 4n − 3 in

count. The remaining edges bear 1. Evidently, eψ(0) = eψ(1) = 4n − 3 which justifies
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|eψ(0)− eψ(1)| ≤ 1 (see Figure 2.15).

Hence the theorem.

Figure 2.14: PCL of a graph formed by switching of u1 in I5

Figure 2.15: PCL of a graph formed by switching of u11 in I5

Theorem 2.4.3. Switching of apex node in In admits a PCL.

Proof. LetG be acquired by switching u3n.“Clearly, |V (G)| = 4n−1 and |E (G)| = 4n−8.

Consider ψ : V (G) → {1 , 2, ..., 4n− 1} as per the following algorithm.”Fix ψ(u3n) = 1,

ψ(u2n+1) = 2, ψ(ui) = ψ(ui−1) + 2 ; 2n + 2 ≤ i ≤ 3n − 1, ψ(u3n+1) = ψ(u3n−1) + 2,

ψ(ui) = ψ(ui−1) + 2; 3n+2 ≤ i ≤ 4n− 1. Assign unused labels to the remaining nodes.

Clearly, eψ(0) = eψ(1) = 2n − 4 which justifies that |eψ(0) − eψ(1)| ≤ 1. Thus, G is a

PCG (see Figure 2.16).

Theorem 2.4.4. Duplication of apex node with a node in In admits a PCL for n > 2.

Proof. Suppose G is formed by duplicating u3n by a node, say, v. Here V (G) = V (In)∪
{v} and E (G) = E(In) ∪ {uiv : 1 ≤ i ≤ 2n} ∪ {u3n−1v, u3n+1v}. Clearly,“|V (G)| = 4n

and |E (G)| = 6n. Consider ψ : V (G) → {1 , 2, ..., 4n}.”Fix ψ(u3n) = 2, ψ(v) = 4,

ψ(u4n−1) = 3, ψ(u4n−2) = 6. Assign unused even labels to all ui’s where i ∈ {1, 2, ..., n}∪
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Figure 2.16: PCL of a graph formed by switching of u9 in I3

{3n + 1} ∪ {3n + 2, ..., 4n − 3} in any order. Next, assign ψ(un+1) = 1, ψ(un+2) = 5,

ψ(ui) = ψ(ui−1) + 2; n + 3 ≤ i ≤ 3n − 1. Observe that gcd(ψ(u3n), ψ(ui)) > 1;

1 ≤ i ≤ n, gcd(ψ(ui), ψ(ui+1)) > 1; 3n ≤ i ≤ 4n − 2, gcd(ψ(v), ψ(ui)) > 1; 1 ≤ i ≤ n

and gcd(ψ(v), ψ(u3n+1)) > 1. Clearly, eψ(0) = eψ(1) = 3n showing that G is a PCG

(see Figure 2.17).

Figure 2.17: PCL of a graph formed by duplication of u3n in I4

Theorem 2.4.5. Duplication of any pendant node in In, n ≥ 2 permits a PCL.

Proof. Let G be formed by duplicating any pendant node of In say, uk, by a node

v.“Clearly, |V (G)| = 4n and |E (G)| = 4n−1. Consider ψ : V (G) → {1 , 2, ..., 4n}”defined
by letting ψ(v) = 1, ψ(u3n) = 2, ψ(u1) = 4, ψ(ui) = ψ(ui−1) + 2 ; 2 ≤ i ≤ n,

ψ(u2n+1) = ψ(un) + 2, ψ(ui) = ψ(ui−1) + 2 ; 2n + 2 ≤ i ≤ 3n − 1, ψ(un+1) = 3,

ψ(ui) = ψ(ui−1) + 2 ; n + 2 ≤ i ≤ 2n, ψ(u3n+1) = ψ(u2n) + 2, ψ(ui) = ψ(ui−1) + 2 ;

3n+ 2 ≤ i ≤ 4n− 1. Clearly, eψ(0) = 2n− 1 and eψ(1) = 2n which proves that G is a

PCG (see Figure 2.18).
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Figure 2.18: PCL of a graph formed by duplication of u3 in I4

Theorem 2.4.6. Duplication of an arbitrary path node (except pendant and apex) in In

permits a PCL.

Proof. Let G be acquired by duplicating an arbitrary path node of In, say, uk with a

node v, where k ∈ {2n+2, 2n+3, ..., 3n−1}∪{3n+1, 3n+2, ..., 4n−2}.“Clearly, |V (G)| =
|E(G)| = 4n. Consider ψ : V (G) → {1 , 2, ..., 4n}.”Fix ψ(u3n) = 2, ψ(v) = 1, ψ(u3n+1) =

3, ψ(u3n+2) = 9, ψ(u1) = 4, ψ(ui) = ψ(ui−1) + 2; 2 ≤ i ≤ n, ψ(u2n+1) = ψ(un) + 2,

ψ(ui) = ψ(ui−1) + 2; 2n + 2 ≤ i ≤ 3n − 1. Assign unused labels simultaneously to the

unlabeled nodes begining with u3n+3 and heading to u4n−1. Next, assign the unused

labels to ui where n + 1 ≤ i ≤ 2n, in any order. Observe that gcd(ψ(u3n), ψ(ui)) > 1;

1 ≤ i ≤ n, gcd(ψ(ui), ψ(ui+1)) > 1; 2n+1 ≤ i ≤ 3n−1 and gcd(ψ(u3n+1), ψ(u3n+2)) > 1.

Evidently, eψ(1) = 2n and eψ(0) = 2n which proves that G is a PCG (see Figure

2.19).

Figure 2.19: PCL of a graph formed by duplication of u12 in I5

Theorem 2.4.7. DS(In), n ≥ 4 permits a PCL.

Proof. Let V (DS(In)) = V (In)∪{v, w} and E(DS(In)) = E(In)∪{uiv : 1 ≤ i ≤ 2n}∪
{u2n+1v, u4n−1v} ∪ {uiw : 2n+ 2 ≤ i ≤ 4n− 2, i ̸= 3n}. Clearly, |V (DS(In))| = 4n+ 1

and |E(DS(In))| = 8n−4. Define ψ : V (DS(In)) → {1 , 2, ..., 4n+1} by fixing ψ(v) = 4,

ψ(w) = 1, ψ(u3n) = 2, ψ(u2n+1) = 15, ψ(u2n+2) = 9, ψ(u2n+3) = 3, ψ(u1) = 6 and
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ψ(ui) = ψ(ui−1) + 2 ; 2 ≤ i ≤ 2n− 2. Assign unused labels simultaneously to unlabeled

nodes. Observe that gcd(ψ(u3n), ψ(ui)) > 1, ; 1 ≤ i ≤ 2n−2, gcd(ψ(u2n+1), ψ(u2n+2)) >

1, gcd(ψ(u2n+2), ψ(u2n+3)) > 1 and gcd(ψ(v), ψ(ui)) > 1 ; 1 ≤ i ≤ 2n − 2. It can be

found that eψ(1) = 4n− 2 and eψ(0) = 4n− 2 which shows that DS(In) is a PCG (see

Figure 2.20).

Figure 2.20: PCL of DS(I4)

Theorem 2.4.8. S(In) permits a PCL.

Proof. Let G be formed by taking the subdivision of In. Clearly, V (G) = V (In) ∪
{v1, v2, ..., v2n, v2n+1, ..., v4n−2} and E(G) = {u3nvi : 1 ≤ i ≤ 2n} ∪ {viui : 1 ≤ i ≤
2n} ∪ {uivi : 2n + 1 ≤ i ≤ 4n − 2} ∪ {viui+1 : 2n + 1 ≤ i ≤ 4n − 2}. Clearly,

|V (G)| = 8n − 3 and |E(G)| = 8n − 4. Consider ψ : V (G) → {1 , 2, ..., 8n − 3}. Fix

ψ(u3n) = 2, ψ(u2) = 3, ψ(v2n) = 1, ψ(u2n) = 5, ψ(v1) = 4, ψ(vi) = ψ(vi−1) + 2 ;

2 ≤ i ≤ 2n − 1. Assign even labels to ui’s where 1 ≤ i ≤ 2n − 1, i ̸= 2, in any order.

Next, fix ψ(u2n+1) = 7, ψ(v2n+1) = 9, ψ(ui) = ψ(ui−1) + 4 ; 2n + 2 ≤ i ≤ 3n − 1,

ψ(vi) = ψ(vi−1)+4 ; 2n+2 ≤ i ≤ 3n−1, ψ(v3n) = ψ(v3n−1)+2, ψ(u3n+1) = ψ(v3n)+2,

ψ(vi) = ψ(vi−1) + 4 ; 3n + 1 ≤ i ≤ 4n − 2, ψ(ui) = ψ(ui−1) + 4 ; 3n + 2 ≤ i ≤ 4n − 1.

Clearly, eψ(1) = 4n − 2 and eψ(0) = 4n − 2 showing that G is a PCG (see Figure

2.21).

Figure 2.21: PCL of S(I3)
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Open Problems and Conjectures

Some open problems and conjectures on PCL are given here which are formulated after

a keen study of literature and present work which will further fill the gap.

Conjecture 1. Pn ⊙ K̄m permits a PCL.

This conjecture can be proved if one can find a labeling pattern. One can get the idea

from Theorem 2.3.19.

Conjecture 2. If G is a k-regular PCG, then G⊙ K̄1 is a PCG.

Since corona has been discussed for numerous graphs in this chapter, the above conjec-

ture once proved can characterize the regular graphs for PCL.

Open problem 1. Investigate whether the graph acquired by duplicating each edge by

a node, each edge by an edge and each node by a node, of a given PCG admits a PCL?

Open problem 2. Investigate whether the following graphs permit a PCL?

Cn ⊙ K̄m, Wn ⊙ K̄m, Fln ⊙ K̄m, Gn ⊙ K̄m

Open problem 3. If G is a k-regular PCG, then does G ⊙ K̄n also permit a PCL?

More generally, whether corona of a given PCG with any given graph, permit a PCL?

The solution to open problem 3 can eventually settle open problem 2.

Open problem 4. To investigate the PCL of graphs acquired using other graph oper-

ations.

2.5 Conclusion

In this chapter, some general results for PCL of graphs are derived. Further, PCL of

corona of Pn, Cn, Wn, Gn, Fln, K1,n, Bn,m etc. with K̄1 has been established, in

addition to corona of Pn with K̄n. The PCL of lilly graph with various graph operations

namely, switching of a node, duplication of node by a node, degree splitting graph and

barycentric subdivision are discussed besides formulating some interesting conjectures

and open problems for future work.



Chapter 3

PCL in the Context of Extension

3.1 Introduction

In this chapter, PCL of certain graphs in context to graph operation named, extension

of a node, is explored. The concept of extension is motivated by duplication which is

used in network data security. Vertex duplication acts as a foundation in Reordering

Assisted Duplication/Duplication Assisted Reordering (RADAR), a method that inte-

grates duplication and reordering into a single graph processing optimization, reaping

their advantages and doing away with their disadvantages.

3.2 PCL in the Context of Extension of a node

PCL of graphs obtained by duplication operation has been investigated for various graph

families. A few have been recalled with necessary definitions as follows.

Definition 3.2.1. [78] “Duplication of an edge e = uv by a new vertex w in a graph G

produces a new graph G′ such that N(w) = {u, v}.”

Definition 3.2.2. [85] “Duplication of an edge e = uv by a new edge e′ = u′v′ produces

a new graph G′ such that N(u′) = N(u) ∪ {v′} − {v} and N(v′) = N(v) ∪ {u′} − {u}.”

Theorem 3.2.1. [78] “(i) Duplicating each edge by a node in Cn admits a PCL ∀ n

except 4. (ii) Duplicating each node by an edge in Cn permits a PCL. ”

Theorem 3.2.2. [85] “(i) Duplication of an arbitrary rim edge by an edge in Wn, ∀
n ≥ 6 is a PCG. (ii) Duplication of an arbitrary spoke edge by an edge in Wn is a PCG

for n = 7, n ≥ 9.”

45
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Theorem 3.2.3. [66] Duplication of a rim node by node in Hn admits a PCL.

Motivated by the concept of duplication, some results on duplication are presented.

Moreover, an operation named, extension of a node, given by [48], is considered and a

few more results on PCL are obtained.

Definition 3.2.3. [48] “An extension of a node u of H by a new node w, results in a

new graph K such that N(w) = N [u] (see Figure 3.1).”

Figure 3.1: Graph G and extension of node b by w in G

Throughout this thesis extension means extension of node by a node.

Lemma 3.2.1. Extension of an arbitrary node in Kn gives rise to Kn+1.

Proof. Since the newly added node is joined with all the nodes of Kn including the node

itself as every pair of nodes in Kn are adjacent, which eventually gives rise to Kn+1.

Theorem 3.2.4. Graph G formed by performing extension of an arbitrary node in Kn

does not admit a PCL for n ≥ 2.

Proof. Proof is evident from Lemma 3.2.1 and Theorem 2.2.7.

Theorem 3.2.5. Duplicating each node with a node in Pn results in a PCG.

Proof. Let {ui : 1 ≤ i ≤ n} denote the node set of Pn. Suppose G be formed by

duplicating each node by a node in Pn with“V (G) = V (Pn) ∪ {vi : 1 ≤ i ≤ n} and

E(G) = E(Pn) ∪ {ui−1vi : 2 ≤ i ≤ n} ∪ {viui+1 : 1 ≤ i ≤ n − 1}. Clearly |V (G)| = 2n

and |E (G)| = 3n − 3. Consider ψ : V (G) → {1 , 2, ..., 2n}”defined under the given

conditions.

Case (i) When ‘n’ is odd and n ≥ 7.

Fix ψ(u⌈n
2
⌉) = 6, ψ(v⌈n

2
⌉) = 2, ψ(u⌈n

2
⌉+1) = 5, ψ(v⌈n

2
⌉+1) = 3. Allot the remaining

even labels to ui; 1 ≤ i < ⌈n2 ⌉ and to vj ; 2 ≤ j < ⌈n2 ⌉ in any fashion. Next, fix

ψ(ui) = ψ(ui−1) + 6; i > ⌈n2 ⌉ + 1, ψ(vi) = ψ(vi−1) + 6; i > ⌈n2 ⌉ + 1. Assume that uk is



Chapter 3. PCL in the Context of Extension 47

the farthest node that can be labeled by using above pattern. Assign the largest unused

label out of {1 , 2, ..., 2n} to uk+1. Assign ψ(ui) = ψ(ui−1) − 12 ; i ≥ k + 2 and for

unlabeled vi, fix ψ(vi) = ψ(ui) − 6 for i ≥ k + 1. Once this pattern ends, allot the

unutilized labels to the remaining unlabeled node/nodes.

Case (ii) When ‘n’ is even and n ≥ 6.

Fix ψ(un
2
) = 6, ψ(vn

2
) = 2, ψ(un

2
+1) = 5, ψ(vn

2
+1) = 3. Allot the available even labels

to ui’s and vi’s for 1 ≤ i < n
2 in any fashion. Next, fix ψ(ui) = ψ(ui−1) + 6 ; i > n

2 + 1,

ψ(vi) = ψ(vi−1) + 6 ; i > n
2 + 1. Assume that uk and vl are the farthest nodes that

can be labeled by using above pattern. Label uk+1 with largest unused odd label out

of {1, 2, ..., 2n}. Next, let ψ(ui) = ψ(ui−1) − 12; k + 2 ≤ i ≤ n and ψ(vi) = ψ(ui) − 6

; k + 1 ≤ i ≤ n(if choice exists). Once this pattern ends, assign the unutilized label, if

any, to the unlabeled node/nodes.

In view of the above cases, it follows that |eψ(0)− eψ(1)| ≤ 1. Hence, G is a PCG (see

Figure 3.2).

Figure 3.2: PCL of a graph formed by duplicating each node in P8

Remark 3.1. It is easy to deduce the PCL of the graph formed by duplicating each node

of Cn and Wn on similar lines with Theorem 3.2.5.

Theorem 3.2.6. Extension of an arbitrary node of Cn results in a PCG for n > 6.

Proof. Let V (Cn) = {ci : 1 ≤ i ≤ n} and G be produced by taking the extension of an

arbitrary node of Cn.“Consider the extension of c1 and w be the freshly inserted node.

Clearly, |V (G)| = n + 1 and |E(G)| = n + 3. Consider ψ : V (G) → {1, 2, ..., n + 1}
defined by letting ψ(c1) = 6, ψ(cn) = 2 and ψ(w) = 4”defined under two conditions.

Case (i) If ‘n’ is even.

Let ψ(ci) = ψ(ci−1)+2 ; 2 ≤ i ≤ n
2 −2, ψ(cn

2
−1) = 1, ψ(ci) = ψ(ci−1)+2 ; n2 ≤ i ≤ n−1.

Case (ii) If ‘n’ is odd.

Let ψ(ci) = ψ(ci−1) + 2 ; 2 ≤ i ≤ n−1
2 − 1, ψ(cn−1

2
) = 1, ψ(ci) = ψ(ci−1) + 2 ;

n−1
2 + 1 ≤ i ≤ n− 1.

Clearly, |eψ(0)− eψ(1)| ≤ 1 which ensures that G is a PCG (see Figure 3.3).

Theorem 3.2.7. Extension of an arbitrary node at rim of Wn, n > 7 allows a PCL.
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Figure 3.3: PCL of a graph formed by taking the extension of v1 in C7

Proof. Let V (Wn) = {w0, w1, w2, ..., wn} and G be produced by taking extension of

an arbitrary rim node. Without loss of generality suppose extension of w1 is taken

and x is newly added node.“Clearly, |V (G)| = n + 2 and |E(G)| = 2n + 4. Consider

ψ : V (G) → {1, 2, ..., n+ 2} defined under three conditions.”

Case (i) If ‘n’ is even.

Let ψ(w0) = 2, ψ(x) = 6, ψ(w1) = 8, ψ(wn) = 4, ψ(wn
2
−1) = 1, ψ(wn

2
) = 3, ψ(wn

2
+1) =

9, ψ(wi) = ψ(wi−1)+2; 2 ≤ i ≤ n
2 −2. Allocate the unutilized labels to unlabeled nodes

simultaneously from {1, 2, ..., n+ 2}.
Case (ii) If ‘n’ is odd.

Subcase (i) If n ≡ 2(mod 3).

Let ψ(w0) = 2, ψ(x) = 6, ψ(w1) = 8, ψ(wn) = 4, ψ(wn−1) = 1, ψ(wn+1
2

−2) = 3,

ψ(wn+1
2

−1) = 9 and ψ(wi) = ψ(wi−1) + 2; 2 ≤ i ≤ n+1
2 − 3. Allocate unutilized labels to

unlabeled nodes namely, wn+1
2
, wn+1

2
+1, ..., wn−2 simultaneously from {1, 2, ..., n+ 2}.

Subcase (ii) If n ̸≡ 2(mod 3).

Let ψ(w0) = 2 , ψ(x) = 8, ψ(w1) = 10, ψ(wn) = 4, ψ(wn+1
2

−3) = 6, ψ(wn+1
2

−2) = 3,

ψ(wn+1
2

−1) = 9 and ψ(wi) = ψ(wi−1) + 2; 2 ≤ i ≤ n+1
2 − 4, (if the case exists).

Allocate unutilized labels to unlabeled nodes wn+1
2
, wn+1

2
+1, ..., wn−1 simultaneously from

{1, 2, 3, ..., n+ 2}.
In all the three cases, |eψ(0) − eψ(1)| ≤ 1, which ensures that G is a PCG (see Figure

3.4).

Remark 3.2. Duplication of an arbitrary rim node in Wn admits a PCL ∀ n > 7 and its

proof is same as that of Theorem 3.2.7.

Theorem 3.2.8. Extension of apex node of Hn admits a PCG ∀ n ≥ 2.

Proof. Let V (Hn) = {h0, hi, h′i : 1 ≤ i ≤ n} ; h0, hi, h
′
i represent the nodes of degree n,

4 and 1 respectively. Let G be produced by taking extension of apex node and w be the

newly added node. Clearly, |V (G)| = 2n+2 and |E(G)| = 4n+1. Consider ψ : V (G) →



Chapter 3. PCL in the Context of Extension 49

Figure 3.4: PCL of a graph obtained by taking the extension of rim node in W9

{1, 2, ..., 2n + 2} as given. Let ψ(w) = 1, ψ(h0) = 2, ψ(h1) = 4, ψ(hi) = ψ(hi−1) + 2;

2 ≤ i ≤ n & ψ(h′i) = ψ(hi)− 1 ; 1 ≤ i ≤ n following which G is a PCG.

Remark 3.3. Duplication of an apex node of Hn is a PCG ∀ n ≥ 2 and the its proof is

same as that of Theorem 3.2.8.

Theorem 3.2.9. Extension of an arbitrary node of degree 4 in Hn results in a PCG ∀
n ≥ 6.

Proof. Let V (Hn) = {h0, hi, h′i : 1 ≤ i ≤ n}; h0, hi, h′i represent the nodes of degree n,

4 and 1 respectively. Let G be produced by taking extension of h1 and w be the freshly

inserted node.“Clearly, |V (G)| = 2n + 2 and |E(G)| = 3n + 5. Consider ψ : V (G) →
{1 , 2, ..., 2n+ 2}.”Fix ψ(w) = 4, ψ(h0) = 2, ψ(hn) = 8. The given cases arise.

Case (i) If ‘n’ is even.

Let ψ(hn
2
−1) = 10, ψ(h′n

2
−1 ) = 1 , ψ(hn

2
) = 3, ψ(hi) = ψ(hi−1) + 4; n2 + 1 ≤ i ≤ n − 1,

ψ(h′i) = ψ(h′i−1) + 4; n
2 ≤ i ≤ n − 1 . Assign remaining even labels to unlabeled nodes

in any order.

Case (ii) If ‘n’ is odd.

Let ψ(h⌊n
2
⌋−1) = 10, ψ(h⌊n

2
⌋) = 1, ψ(h′⌊n

2
⌋) = 3, ψ(hi) = ψ(hi−1)+4; ⌊n2 ⌋+1 ≤ i ≤ n−1,

ψ(h′i) = ψ(h′i−1) + 4 ; ⌊n2 ⌋ + 1 ≤ i ≤ n − 1 . Allot remaining even labels to unlabeled

nodes.

It follows that G is a PCG (see Figure 3.5).

Remark 3.4. Proof of Theorem 3.2.9 holds good even if duplication of a node of degree

4 by a node in Hn is taken.

Theorem 3.2.10. Extension of a pendant node in Hn results in a PCG ∀ n ≥ 5.

Proof. Let V (Hn) = {h0, hi, h′i : 1 ≤ i ≤ n}; h0 is apex, h′i represent the pendant nodes

of Hn. Let G be produced by taking extension of h′1 and w be the added node. Clearly,
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Figure 3.5: PCL of a graph acquired by taking extension of h1 in H7

|V (G)| = 2n + 2 & |E(G)| = 3n + 2. Consider ψ : V (G) → {1 , 2, ..., 2n + 2} as given.

Let ψ(w) = 12, ψ(h0) = 2, ψ(h1) = 6, ψ(hn) = 4 and ψ(h′1) = 3. The given cases arise.

Case (i) If ‘n’ is even.

Let ψ(hn
2
−1) = 8, ψ(hn

2
) = 5, ψ(h′n

2
) = 1 , ψ(hi) = ψ(hi−1) + 4; n

2 + 1 ≤ i ≤ n − 1 ,

ψ(h′i) = ψ(hi)− 2 ; n2 + 1 ≤ i ≤ n− 1. Assign remaining even labels simultaneously to

unlabeled nodes.

Case (ii) If ‘n’ is odd.

Let ψ(h⌊n
2
⌋) = 8, ψ(h′⌊n

2
⌋) = 1 , ψ(h⌊n

2
⌋+1) = 5, ψ(h′⌊n

2
⌋+1) = 7, ψ(hi) = ψ(hi−1) + 4;

⌊n2 ⌋+ 2 ≤ i ≤ n− 1 , ψ(h′i) = ψ(hi) + 2 ; ⌊n2 ⌋+ 2 ≤ i ≤ n− 1 . The remaining labels are

assigned simultaneously to unlabeled nodes.

It follows that G is a PCG.

Remark 3.5. The proof of Theorem 3.2.10 can be used in proving the PCL of a graph

acquired by duplicating a pendant node at random, by a node in Hn, ∀ n > 7.

Theorem 3.2.11. Extension of all pendant nodes in Hn results in a PCG ∀ n ≥ 5.

Proof. Let V (Hn) = {h0, hi, h′i : 1 ≤ i ≤ n} where h′i’s are pendant nodes. Let G

be produced by taking extension of all pendant nodes and {wi : 1 ≤ i ≤ n} be the

freshly inserted nodes. Clearly, |V (G)| = 3n+ 1 & |E (G)| = 5n. Consider ψ : V (G) →
{1 , 2, ..., 3n+ 1}. Let ψ(h0) = 2 and ψ(h1) = 4. There arise the given cases.

Case (i) If ‘n’ is even.

Let ψ(wn) = 1, ψ(hn
2
) = 6, ψ(h′n

2
) = 12, ψ(hn

2
+1) = 9, ψ(hn

2
+2) = 11, ψ(wn

2
) = 3,

ψ(h′n
2
+1) = 5, ψ(wn

2
+1) = 7, ψ(hi) = ψ(hi−1) + 6; n

2 + 3 ≤ i ≤ n, ψ(h′i) = ψ(hi) + 2;
n
2 + 2 ≤ i ≤ n, ψ(wi) = ψ(hi) + 4; n

2 + 2 ≤ i ≤ n − 1. Assigning the remaining labels

simultaneously to unlabeled nodes gives eψ(0) = eψ(1) =
5n
2 .

Case (ii) If ‘n’ is odd.

Let ψ(h⌈n
2
⌉) = 6, ψ(h′⌈n

2
⌉) = 3, ψ(w⌈n

2
⌉) = 1, ψ(h⌈n

2
⌉+1) = 5, ψ(hi) = ψ(hi−1) + 6;
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⌈n2 ⌉+2 ≤ i ≤ n, ψ(h′i) = ψ(hi)+2; ⌈n2 ⌉+1 ≤ i ≤ n, ψ(wi) = ψ(hi)+4; ⌈n2 ⌉+1 ≤ i ≤ n.

Assign the remaining labels to unlabeled nodes results in eψ(0) =
5n−1

2 & eψ(1) =
5n+1

2 .

For both the cases, G is a PCG (see Figure 3.6).

Figure 3.6: PCL of a graph acquired by taking extension of all pendant nodes in H7

Remark 3.6. Graph acquired by duplicating each rim node by an edge in Wn is a PCG

as it is isomorphic to a graph obtained by taking extension of each pendant node in Hn.

Remark 3.7. Proof of Theorem 3.2.11 can be used to prove that graph acquired by

duplicating each pendant node by a node in Hn admits a PCL.

Theorem 3.2.12. Extension of apex node by a node in Fln admits a PCL ∀ n ≥ 5.

Proof. Let V (Fln) = {v0, vi, ui : 1 ≤ i ≤ n} where vi & ui have degrees 4 & 2 re-

spectively and v0 is apex node. Let G be produced by taking extension of apex node

and w be the added node.“Clearly, |V (G)| = 2n + 2 and |E (G)| = 6n + 1. Consider

ψ : V (G) → {1 , 2, ..., 2n + 2}”given by assigning ψ(v0) = 2, ψ(w) = 4, ψ(v1) = 6,

ψ(u1) = 3, ψ(v2) = 10, ψ(u2) = 5, ψ(vn) = 9, ψ(un) = 1 and ψ(vn−1) = 12. As-

sign remaining even labels to unlabeled nodes of degree 4. Next, ψ(ui) = ψ(vi) − 1;

3 ≤ i ≤ n− 1. Following this, G is a PCG.

Remark 3.8. Duplication of an apex node of Fln results in a PCG ∀ n ≥ 5. Labeling is

same as that of Theorem 3.2.12.

Theorem 3.2.13. Extension of an arbitrary node of degree 2 in Fln results in a PCG

∀ n ≥ 3.

Proof. Let V (Fln) = {v0, vi, ui : 1 ≤ i ≤ n} where vi & ui have degrees 4 & 2 re-

spectively and v0 is apex node. Let G be produced by taking extension of u1 and w

be the newly added node. Clearly, |V (G)| = 2n + 2 and |E(G)| = 4n + 3. Consider

ψ : V (G) → {1 , 2, ..., 2n+2} given by fixing ψ(v0) = 2, ψ(v1) = 6, ψ(u1) = 3, ψ(v2) = 4,
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ψ(u2) = 5 and ψ(w) = 1. Allocate the available unutilized even labels simultaneously

to vi; 3 ≤ i ≤ n. Next, set ψ(ui) = ψ(vi)− 1; 3 ≤ i ≤ n. Following this G is a PCG (see

Figure 3.7).

Figure 3.7: PCL of G acquired by taking extension of u1 in Fln

Remark 3.9. Duplicating an arbitrary node of degree 2 by a node in Fln admits a PCL

and its proof is same as that of Theorem 3.2.13.

Theorem 3.2.14. Extension of an arbitrary node of degree 4 in Fln results in a PCG

∀ n ≥ 4.

Proof. Let V (Fln) = {v0, vi, ui : 1 ≤ i ≤ n} where vi & ui have degrees 4 & 2 respec-

tively. Let G be produced by taking extension of an arbitrary node of degree 4. With-

out loss of generality, consider the extension of v1 and w be the added node. Clearly,

|V (G)| = 2n + 2 and |E (G)| = 4n + 5. Consider ψ : V (G) → {1 , 2, ..., 2n + 2}. Fix

ψ(v0) = 2, ψ(v1) = 6, ψ(v2) = 8, ψ(u1) = 3, ψ(vn) = 4, ψ(un) = 5, ψ(vn−1) = 10,

ψ(un−1) = 1, and ψ(w) = 9. Allocate available unutilized even labels to vi; 3 ≤ i ≤ n−2.

Next, set ψ(ui) = ψ(vi)− 1; 2 ≤ i ≤ n− 2. Clearly, G is a PCG. (see Figure 3.8).

Remark 3.10. Duplicating an arbitrary node of by a node of degree 4 in Fln results in

a PCG ∀ n ≥ 4 and its proof is same as that of Theorem 3.2.14.

Theorem 3.2.15. Extension of apex node in Gn permits a PCL ∀ n ≥ 4.

Proof. Let V (Gn) = {v0, vi, ui : 1 ≤ i ≤ n} and“E(Gn) = {v0vi : 1 ≤ i ≤ n} ∪ {viui :
1 ≤ i ≤ n} ∪ {uivi+1 : 1 ≤ i ≤ n− 1} ∪ {unv1}. Here v0, vi and ui represent respectively
the apex, node of degree 3 and 2. Let H be obtained by taking extension of v0 in Gn

by adding a new node, say, w. Clearly |V (H)| = 2n+ 2 and |E(H)| = 4n+ 1. Consider

ψ : V (H) → {1 , 2, ..., 2n + 2} as per the given algorithm.”Fix ψ(v0) = 2, ψ(w) = 6,

ψ(v1) = 4, ψ(vn) = 3, ψ(vn−1) = 10, ψ(un) = 1 and ψ(un−1) = 5. Assign even labels
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Figure 3.8: PCL of a graph acquired by taking extension of v1 in Fl7

simultaneously from unused labels to vi; 2 ≤ i ≤ n − 2 and ψ(ui) = ψ(vi+1) − 1;

1 ≤ i ≤ n− 2, resulting which |eψ(0)− eψ(1)| ≤ 1. Hence, H is a PCG.

Remark 3.11. Duplication of an apex node by a node in Gn permits a PCL ∀ n ≥ 4 and

its proof is same as that of Theorem 3.2.15

Theorem 3.2.16. Extension of an arbitrary node of degree 3 in Gn permits a PCL ∀
n ≥ 4.

Proof. Let V (Gn) = {v0, vi, ui : 1 ≤ i ≤ n} where vi and ui are respectively the nodes

of degree 3 and 2. Without loss of generality, let H be obtained by taking the extension

of v1 and w be the added node. Clearly |V (H)| = 2n+2 and |E (H)| = 3n+4. Labeling

is defined by ψ : V (H) → {1 , 2, ..., 2n+2} as per the following algorithm. Fix ψ(v0) = 8,

ψ(w) = 2 and ψ(un) = 4. Now given cases arise.

Case (i) If ‘n’ is even.

Let ψ(un
2
−1) = 6, ψ(vn

2
) = 3, ψ(un

2
) = 1, ψ(vn

2
+1) = 5, ψ(vi) = ψ(vi−1)+4; n2+2 ≤ i ≤ n

and ψ(ui) = ψ(vi) + 2; n
2 + 1 ≤ i ≤ n − 1. Next assign the remaining labels in any

fashion. Note that eψ(0) = eψ(1) =
3n+4

2 which proves that H is a PCG.

Case (ii) If ‘n’ is odd.

Let ψ(v⌊n
2
⌋) = 6, ψ(u⌊n

2
⌋) = 3, ψ(v⌈n

2
⌉) = 1, ψ(u⌈n

2
⌉) = 5, ψ(ui) = ψ(ui−1)+4; ⌈n2 ⌉+1 ≤

i ≤ n−1 and ψ(vi) = ψ(ui−1)+2; ⌈n2 ⌉+1 ≤ i ≤ n. Next allot the remaining even labels

in any fashion. Note that eψ(0) = eψ(1) + 1 which proves that H is a PCG.

Remark 3.12. Duplication of an arbitrary node of degree 3 in Gn permits a PCL ∀ n ≥ 4.

The proof is same as that of Theorem 3.2.16.

Remark 3.13. One can also establish the PCL of graphs obtained by taking extension

as well as duplication of an arbitrary node of degree 2 in Gn.

Theorem 3.2.17. Extension of all nodes of Pn allows a PCL.
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Figure 3.9: PCL of a graph acquired by taking extension of (a) v1 in G7 and (b) u1
in G7

Proof. Suppose node set of Pn is {ui : 1 ≤ i ≤ n} and G be acquired by taking extension

of all nodes of Pn.“Let V (G) = V (Pn) ∪ {vi : 1 ≤ i ≤ n} and E (G) = E(Pn) ∪ {uivi :
1 ≤ i ≤ n}∪{viui−1 : 2 ≤ i ≤ n}∪{viui+1 : 1 ≤ i ≤ n−1}. The cardinality of node and

edge set of G is respectively 2n and 4n− 3. In order to define ψ : V (G) → {1 , 2, ..., 2n},
refer to Theorem 3.2.5.”

Theorem 3.2.18. Extension of all nodes of Cn, n > 8, allows a PCL.

Proof. Suppose node set of Cn is {u1, u2, ..., un} and G be produced by taking extension

of all nodes of Cn. Note that“V (G) = V (Cn) ∪ {vi : 1 ≤ i ≤ n} and E(G) = E(Cn) ∪
{uivi : 1 ≤ i ≤ n}∪{viui−1 : 2 ≤ i ≤ n}∪{viui+1 : 1 ≤ i ≤ n−1}∪{v1un, vnu1}. Clearly,
|V (G)| = 2n whereas |E (G)| = 4n. In order to define ψ : V (G) → {1 , 2, ..., 2n}, one
can refer to Theorem 3.2.5, except for the following few changes. Replace ψ(un

2
+1) = 9,

ψ(vn
2
+1) = 3, ψ(un

2
+2) = 11, ψ(vn

2
+2) = 5, ψ(un

2
+3) = 17, ψ(vn

2
+3) = 15. (Similar

pattern when n is odd).”

Remark 3.14. One can deduce the PCL of a graph acquired by performing the extension

of all the rim nodes of Wn on similar lines.

Theorem 3.2.19. [81] S′(K1,n) admits a PCL.

Theorem 3.2.20. Extension of all nodes of K1,n allows a PCL.

Proof. Let V (K1,n) = {k0, ki : 1 ≤ i ≤ n};“k0 is apex node. Let G be produced by

performing extension of each node of K1,n and u0, u1, u2, ...un be the freshly inserted

nodes with V (G) = V (K1,n) ∪ {u0, u1, u2, ..., un} and E(G) = E(K1,n) ∪ {kiui : 1 ≤
i ≤ n} ∪ {k0u0} ∪ {k0ui : 1 ≤ i ≤ n} ∪ {u0ki : 1 ≤ i ≤ n}. One can see that

|V (G)| = 2n + 2 & |E(G)| = 4n + 1. Consider ψ : V (G) → {1, 2, ..., 2n + 2}.”Fix
ψ(k0) = 2, ψ(k1) = 3, ψ(k2) = 4, ψ(k3) = 8, ψ(ki) = ψ(ki−1) + 2; 4 ≤ i ≤ n, ψ(u0) = 6,
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ψ(u1) = 1, ψ(u2) = 5, ψ(ui) = ψ(ki) − 1; 3 ≤ i ≤ n. Note that gcd(ψ(k0), ψ(ki)) > 1;

2 ≤ i ≤ n, gcd(ψ(k0), ψ(u0)) > 1 and gcd(ψ(u0), ψ(ki)) > 1; 1 ≤ i ≤ n. The edges due

to above observation are labeled 0 and the remaining are labeled 1. Note eψ(0) = 2n

and eψ(1) = 2n+ 1 implies G is a PCG (see Figure 3.10).

Figure 3.10: PCL of a graph acquired by taking extension of all nodes of K1,n

Remark 3.15. Duplication of each node with a node in K1,n results in S′(K1,n) which

admits a PCL by Theorem 3.2.19.

Theorem 3.2.21. [81] S′(Bn,n) admits a PCL.

Theorem 3.2.22. Extension of all nodes of Bn,n admits a PCL.

Proof. Let V (Bn,n) = {u0, v0, ui, vi : 1 ≤ i ≤ n}“where u0, v0 represent the apex nodes.

Let G be produced by performing extension of each node of Bn,n and let u′0, v
′
0, u

′
i, v

′
i be

the freshly added nodes, 1 ≤ i ≤ n. Clearly, V (G) = V (Bn,n)∪{u′0, v′0, u′i, v′i : 1 ≤ i ≤ n}
and E(G) = E(Bn,n)∪{uiu′i : 1 ≤ i ≤ n}∪{viv′i : 1 ≤ i ≤ n}∪{u0v′0, v0u′0, u0u′0, v0v′0}∪
{u0u′i, v0v′i : 1 ≤ i ≤ n} ∪ {u′0ui : 1 ≤ i ≤ n} ∪ {v′0vi : 1 ≤ i ≤ n}. Apparently,

|V (G)| = 4n + 4 & |E (G)| = 8n + 5. Consider ψ : V (G) → {1 , 2, ..., 4n + 4}.”Fix
ψ(u0) = 2, ψ(v0) = 4, ψ(u′0) = 6, ψ(v′0) = 1, ψ(u1) = 3, ψ(u′1) = 12. Allot the unutilized

even labels to ui and u
′
i; 2 ≤ i ≤ n in any order. Next, ψ(v1) = 5, ψ(vi) = ψ(vi−1) + 4;

2 ≤ i ≤ n and ψ(v′i) = ψ(vi) + 2; 1 ≤ i ≤ n. Observe that eψ(1) = 4n + 3 and

eψ(0) = 4n+ 2 which proves that G is a PCG (see Figure 3.11).

Figure 3.11: PCL of a graph acquired by taking extension of all nodes in B3,3
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Remark 3.16. Duplication of each node with a node in Bn,n results in S′(Bn,n) which is

a PCL by Theorem 3.2.21.

Open Problems

The following open problems arose due to the results established in this chapter.

1. If G is a PCG, then does graph obtained by performing extension of each node of G

also permit a PCL?

2. Is there a characterization of graphs that do not admit a PCL but whose extension

admits a PCL?

3.3 Conclusion

In this chapter, duplication and extension, which are widely used graph operations in

many real life problems, permits PCL for the following graphs; arbitrary rim node in

Wn, apex node in Hn, Gn & Fln, pendant node in Hn, node of degree 1 & 3 in Hn,

node of degree 2 & 4 in Fln, apex node, node of degree 2 & 3 in Gn. Further, it has

been established that duplication and extension of all nodes in Pn, Cn, Wn, K1,n and

Bn,n permit a PCL, while formulating some open problems.



Chapter 4

Results on DCL of Graphs

4.1 Introduction

In this chapter, certain general results concerning DCL of graphs are derived. The DCL

of some familiar families of graphs in the frame of various notable graph operations has

also been discussed.

4.2 Certain New General Results on DCL of Graphs

In this section, some general results on DCL of graphs are presented. Babitha et al., [3]

studied the PCL of the construction of a new graph by using an existing PCG, say, H,

and then gluing a node of some particular class of graph to one of the selected node of

H. Motivated by this, some new graphs by using an existing DCGs are constructed.

Definition 4.2.1. [3] “Let H1 (p1 , q1 ) and H2(p2, q2) be two connected graphs, then

H1 ôH2 is acquired by overlaying any chosen node of H2 on any selected node of H1 .

The resultant graph H = H1 ô H2 has p1 + p2 − 1 number of nodes and q1 + q2 number

of edges.”

Theorem 4.2.1. “If G(p, q) is a DCG with labeling g, then Gôfm admits a DCL when

(i) q is even

(ii) q is odd with eg(0) =
⌈ q
2

⌉
. ”

Proof. Suppose G is a DCG having V (G) = {u1, u2, ..., up} under the labeling g. Let

uk ∈ V (G) such that g(uk) = 1 . Consider fm with V (fm) = {v0, vi : 1 ≤ i ≤ m} and

E (fm) = {v0vi : 1 ≤ i ≤ m} ∪ {vivi+1 : 1 ≤ i ≤ m− 1}. Let H = Gôfm be obtained by

superimposing v0 on uk of G (see Figure 4.1). Then V (H) = V (G) ∪ {vi : 1 ≤ i ≤ m}

57
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and E(H) = E(G) ∪ {ukvi : 1 ≤ i ≤ m} ∪ {vivi+1 : 1 ≤ i ≤ m − 1}. Consider

ψ : V (H) → {1 , 2, ..., p, p+ 1 , ..., p+m} defined by ψ(ui) = g(ui) for 1 ≤ i ≤ p. Recall

that g(uk) = ψ(v0) = 1, fix ψ(vi) = p + i for 1 ≤ i ≤ m. Next to show that Gôfm is a

DCG for the following cases.

Case (i) ‘q’ is even.

Then eg(0) = eg(1) =
q
2 . Note that |E(H)| = q + 2m− 1 and observing ψ, one can see

that for edges e = ukvi; 1 ≤ i ≤ m, ψ(e) = 1 and ψ(vivi+1) = 0 ; 1 ≤ i ≤ m− 1. Hence,

eψ(1) =
q
2 +m and eψ(0) =

q
2 +m− 1 which justifies that |eψ(0)− ev(1)| ≤ 1.

Case (ii) ‘q’ is odd with eg(0) =
⌈ q
2

⌉
i.e; eg(0) = eg(1) + 1.

Keeping ψ in view, one can verify that ψ(ukvi) = 1 ; 1 ≤ i ≤ m and ψ(vivi+1) = 0 ;

1 ≤ i ≤ m− 1. Consequently, eψ(1) =
⌊ q
2

⌋
+m and eψ(0) =

⌈ q
2

⌉
+m− 1 which justifies

that |eψ(0)− eψ(1)| ≤ 1.

Hence, H is a DCG.

Figure 4.1: DCL of G ô fm

Remark 4.1. If G(p, q) is a DCG then, GôWm and GôF lm admit a DCL. One can easily

prove this in accordance with Theorem 4.2.1.

Theorem 4.2.2. “If G(p, q) is a DCG then, GôK1,m admits a DCL when

(i) m is even

(ii) m is odd and

(a) q is even

(b) Both p and q are odd with eg(1) =
⌊ q
2

⌋
(c) p is even and q is odd with eg(1) =

⌈ q
2

⌉
.”

Proof. Let G be a DCG having V (G) = {u1, u2, ..., up} and labeling g. Let uk ∈ V (G)

such that g(uk) = 2. Consider K1,m having V (K1,m) = {v0, vi : 1 ≤ i ≤ m} and

E(K1,m) = {v0vi : 1 ≤ i ≤ m}. LetH = GôK1,m be obtained by superimposing v0 on uk

of G. Clearly, V (H) = V (G)∪{vi : 1 ≤ i ≤ m} and E(H) = E (G)∪{ukvi : 1 ≤ i ≤ m}.
Consider ψ : V (H)t→ {1, 2, ..., p, tp+1, ..., p+m} defined by ψ(ui) = g(ui) for 1 ≤ i ≤ p.

Recall that g(uk) = ψ(v0) = 2, fix ψ(vi) = p + i for 1 ≤ i ≤ m. Next is to show that
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GôK1,m is a DCG for the given conditions.

Case (i) ‘m’ is even.

If ‘q’ is even, then eg(0) = eg(1) =
q
2 . Note that |E(H)| = q +m, one can see that the

aggregate count of edges bearing labels 1 and 0 are respectively q
2 +

m
2 and q

2 +
m
2 which

justifies that |eψ(0)− eψ(1)| ≤ 1.

If ‘q’ is odd, then either eg(0) = eg(1) + 1 or eg(1) = eg(0) + 1. On the other hand

m being even always yield equal count of edges labeled with 1 and 0. Thus, either

eψ(0) = eψ(1) + 1 or eψ(1) = eψ(0) + 1 justifiying that |eψ(0)− eψ(1)| ≤ 1.

Case (ii) When ‘m’ is odd.

Subcase (i) When ‘q’ is even.

Since q is even, eg(0) = eg(1) =
q
2 . Note that |E(H)| = q +m. Following the labeling

pattern ψ, one can see that either eψ(1) = eψ(0) + 1 or eψ(0) = eψ(1) + 1.

Subcase (ii) When both ‘q’ and ‘p’ are odd with eg(1) =
⌊ q
2

⌋
. Then eg(0) =

⌊ q
2

⌋
+ 1.

Following ψ, one can observe that eψ(1) =
⌊ q
2

⌋
+
⌈
m
2

⌉
and eψ(0) = (

⌊ q
2

⌋
+1)+(

⌈
m
2

⌉
−1)

which justifies that |eψ(0)− eψ(1)| ≤ 1.

Subcase (iii) When ‘q’ is odd and ‘p’ is even with eg(1) =
⌈ q
2

⌉
. Then eg(0) =

⌈ q
2

⌉
− 1.

Following ψ, one can see that eψ(1) =
⌈ q
2

⌉
+ (

⌈
m
2

⌉
− 1) and eψ(0) = (

⌈ q
2

⌉
− 1) +

⌈
m
2

⌉
which justifies that |eψ(0)− eψ(1)| ≤ 1.

Hence, H is a DCG under all the mentioned conditions.

Theorem 4.2.3. Let H(p1, q1) and K(p2, q2) be two disjoint DCGs such that H ∪ K
is a DCG with labeling ψ, then the graph formed by joining H and K by an edge also

admits a DCL when

(i) q1 and q2 are even.

(ii) Both q1 and q2 are odd with

(a) eψ(1) =
⌊ q1

2

⌋
+
⌈ q2

2

⌉
(b) eψ(1) =

⌈ q1
2

⌉
+
⌊ q2

2

⌋
.

Proof. Given that H ∪K is a DCG with labeling ψ, where union is taken over disjoint

DCGs H and K. Join H with K by an edge e. Denote the newly obtained graph by G

with V (G) = V (H ∪K) and E(G) = E(H)∪E(K)∪{e}. Clearly, |V (G)| = p1+ p2 and

|E(G)| = q1 + q2 + 1. Next to show that G is DCG for the following cases.

Case (i) When both ‘q1’ and ‘q2’ are even.

This implies q1+q2 is even and therefore edges having labels 1 and 0 are equal. JoiningH

with K by an edge ‘e’ contribute either label 1 or 0 and in both way |eψ(0)− eψ(1)| ≤ 1.

Case (ii) Both ‘q1’ and ‘q2’ are odd then q1+q2 is even. Consider the following subcases.

Subcase (i) When eψ(1) =
⌊ q1

2

⌋
+
⌈ q2

2

⌉
then eψ(0) = (

⌊ q1
2

⌋
+1)+ (

⌈ q2
2

⌉
− 1). In this case

adding an edge contributes edge label 1 or 0 and in either of the case |eψ(0)−eψ(1)| ≤ 1.

Subcase (ii) When eψ(1) =
⌈ q1

2

⌉
+

⌊ q2
2

⌋
then eψ(0) = (

⌈ q1
2

⌉
− 1) + (

⌊ q2
2

⌋
+ 1). Again,

adding an edge leads to |eψ(0)− eψ(1)| ≤ 1. Thus, G is a DCG.
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Theorem 4.2.4. [86] Kn does not admit a DCL for n ≥ 7.

Theorem 4.2.5. DS(Kn) does not permit a DCL for n ≥ 6.

Proof. Proof is evident from Theorem 4.2.4 and Lemma 2.2.1.

Lemma 4.2.1. Extension of any arbitrary node of Kn yields Kn+1.

Theorem 4.2.6. The graph G produced by performing extension of any arbitrary node

in Kn does not admit a DCL for n ≥ 6.

Proof. Proof is evident from Theorem 4.2.4 and Lemma 4.2.1.

Lemma 4.2.2. The graph formed by switching any arbitrary node in Kn admits a DCL

for n ≤ 8.

Proof. Switching of any arbitary node in Kn yields a disconnected graph whose com-

ponents are Kn−1 and K1. The result clearly follows for switching of node in Kn for

n = 3, 4, 6, 7 (see Figure 4.2). Consider the DCL of graph produced by switching of a

node in K5 and K8.

Case (i) When n = 5.

Label the isolated node with 4 and assign the remaining labels to the nodes of K4.

Clearly, e(0) = e(1) = 3.

Case (ii) When n = 8.

Label the isolated node with 7 and assign the remaining labels to the nodes of K7. Here

e(0) = 10 and e(1) = 11.

Figure 4.2: DCL of a graph formed by switching of a node in K4, K6 and K7

Theorem 4.2.7. Switching of an arbitrary node in Kn for n ≥ 9 does not admit a DCL.

Proof. Switching of an arbitrary node in Kn; n ≥ 9 yields a disconnected graph G whose

components are Kn−1 and K1. Consider n = 9 for the sake of discussion. A disconnected

graph G is produced by switching a node in K9 whose components are K8 and K1. A

method of contradiction is used in proving this. Assume that G admits a DCL. Without
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loss of generality, label the isolated node with the largest prime p where p ≤ 9 (i.e.,

7) in order to get more edges having label 1, and assign the remaining labels to nodes

of K8 in any pattern. Here e(0) = 15, e(1) = 13 which results in |e(0) − e(1)| > 1, a

contradiction. The other possibilities of assigning different labels to the isolated node

can be dealt in the similar lines. The similar argument holds good for n ≥ 10. Hence

the theorem.

4.3 DCL in the Context of Corona

In this section, DCL of corona of some known graphs has been discussed. First, some

established results are recalled.

Theorem 4.3.1. [17] “K1,n⊙K1, K2,n⊙K1, K3,n⊙K1, Wn⊙K1, Hn⊙K1, Fln⊙K1,

fn ⊙K1, Dfn ⊙K1 and S(K1,n)⊙K1 admit DCL.”

Motivated by this, a few more results in the context of corona operation are derived.

Theorem 4.3.2. G⊙ K̄1 admits a DCG where G(n,m) is a k − regular DCG.

Proof. Suppose“G is a k − regular graph with node set {v1, v2, ..., vn} that admits a

DCL say g. Clearly, |V (G)| = n and |E (G)| = nk
2 . For ease of computation, fix

g(vi) = i; 1 ≤ i ≤ n. Let H = G ⊙ K̄1 with V (H) = V (G) ∪ {u1, u2, ..., un} and

E (H) = E (G) ∪ {viui : 1 ≤ i ≤ n}. Clearly, |V (H)| = 2n and E (H) = nk
2 + n.”Define

ψ : V (H) → {1 , 2, ..., n, n + 1 , ..., 2n} as follows. Fix ψ(vi) = g(vi) for 1 ≤ i ≤ n. For

labeling of ui’s the below mentioned cases arise.

Case (i) When both ‘n’ and ‘m’ are even.

For odd values of i, fix ψ(ui) = 2g(vi) ; n
2 < i < n, and label ψ(ui) with the largest

value of i(2l) such that i(2l) ≤ 2n for 1 ≤ i ≤ n
2 and l ∈ N. Now label u2, u4, ..., un

simultaneously from {n + 1, n + 3, ..., 2n}. Since m is even therefore, eg(0) = eg(1). In

the wake of above pattern one can find that eψ(0) = eψ(1) proving that H is a DCG.

Case (ii) When ‘n’ is even and ‘m’ is odd.

Since m is odd, therefore, either eg(0) = eg(1) + 1 or eg(1) = eg(0) + 1. Following the

labeling pattern of Case (i), it is an easy check that |eψ(0)− eψ(1)| ≤ 1.

Case (iii) When ‘n’ is odd and ‘m’ is even.

For odd values of i, fix ψ(ui) = 2g(vi) ;
⌈
n
2

⌉
≤ i ≤ n and label ψ(ui) with the largest

value of i(2l) such that i(2l) ≤ 2n for 1 ≤ i <
⌈
n
2

⌉
and l ∈ N. Label the remaining ui’s

simultaneously with unused labels out of {n+1, n+2, ..., 2n}. Since m is even, therefore,

eg(1) = eg(0). Following the labeling pattern, eψ(1) = eψ(0) + 1 which justifies that

|eψ(0)− eψ(1)| ≤ 1.
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Case (iv) When both ‘n’ and ‘m’ are odd.

Here, either eg(0) = eg(1) + 1 or eg(1) = eg(0) + 1 for G. Now three subcases arise.

Subcase (i) If eg(0) = eg(1) + 1, then follow the labeling pattern of Case (iii).

Subcase (ii) If eg(1) = eg(0) + 1, and n ̸= 5 + 4m, where m ∈ {0, 1, 2, ...}. Label ψ(u1)

with the largest value of
⌊
n
2

⌋
2l such that

⌊
n
2

⌋
2l ≤ 2n, l ∈ N. For odd values of i,

fix ψ(ui) = 2g(vi);
⌈
n
2

⌉
≤ i ≤ n and label ψ(ui) with the largest value of i(2l) for

3 ≤ i ≤
⌊
n
2

⌋
− 2. Next, assign remaining one even label to u⌊n

2 ⌋. For u2, u4, ..., un−1,

label these nodes simultaneously with unused labels out of {n+1, n+2, ....2n}. Following
above pattern, eψ(1) = eψ(0) which justifies that |eψ(0)− eψ(1)| ≤ 1.

Subcase (iii) If eg(1) = eg(0) + 1, and n = 5 + 4m, where m ∈ {0, 1, 2, ...}. Fix ψ(u1)

with the largest value of (
⌊
n
2

⌋
− 1)2l such that (

⌊
n
2

⌋
− 1)2l ≤ 2n. For odd values of

i, put ψ(ui) = 2g(vi) ;
⌈
n
2

⌉
≤ i ≤ n and label ψ(ui) with the largest value of i(2l) for

3 ≤ i ≤
⌊
n
2

⌋
−2 and l ∈ N. Assign remaining one even label out of {n+1, n+2, ..., 2n} to

u⌊n
2 ⌋−1. For remaining nodes, namely, u2, u4, ..., un−1, label them simulatenously with

unconsumed labels out of {n + 1, n + 2, ....2n}. Following the above pattern, one can

find that eψ(1) = eψ(0) which justifies that |eψ(0)− eψ(1)| ≤ 1.

Thus, under all the cases, H is a DCG.

Definition 4.3.1. [56] “Shell graph Shn is obtained by taking n− 3 concurrent chords

in Cn. The node at which all chords are concurrent is called an apex node.”

Theorem 4.3.3. Shn ⊙ K̄1 is a DCG, n ≥ 5.

Proof. Suppose“{u1, u2, ..., un} and {uiui+1 : 1 ≤ i ≤ n− 1} ∪ {unu1} ∪ {u1ui : 3 ≤ i ≤
n− 1} represent respectively the node and edge set of Shn. Let G = Shn ⊙K1 having

V (G) = V (Shn) ∪ {u′i : 1 ≤ i ≤ n} and E(G) = E(Shn) ∪ {uiu′i : 1 ≤ i ≤ n}.”Here,
|V (G)| = 2n, whereas |E(G)| = 3n − 3. Consider ψ : V (G) → {1, 2, ..., 2n}. The

following possibilities arise.

Case (i) If ‘n’ is even.

Put ψ(u1) = 1, ψ(u′1) = 2, ψ(u2) = 4, ψ(u3) = 6, ψ(ui) = ψ(ui−1) + 4; 4 ≤ i ≤ n
2 + 1,

ψ(un
2
+2) = 8, ψ(ui) = ψ(ui−1) + 4; n

2 + 3 ≤ i ≤ n, ψ(u′2) =
ψ(un

2 +1)

2 , ψ(u′i) = ψ(ui)
2 ;

3 ≤ i ≤ n
2 , ψ(u

′
n
2
+1) = ψ(u′2) + 2, ψ(u′i) = ψ(u′i−1) + 2; n

2 + 2 ≤ i ≤ n. Observe that

eψ(1) =
3n
2 − 2 and eψ(0) =

3n
2 − 1.

Case (ii) If ‘n’ is odd.

Put ψ(u1) = 1, ψ(u′1) = 2, ψ(u2) = 4, ψ(u3) = 6, ψ(ui) = ψ(ui−1) + 4; 4 ≤ i ≤ ⌈n2 ⌉+ 1,

ψ(u⌈n
2
⌉+2) = 8, ψ(ui) = ψ(ui−1) + 4; ⌈n2 ⌉+ 3 ≤ i ≤ n, ψ(u′2) =

ψ(u⌈n
2 ⌉+1)

2 , ψ(u′i) =
ψ(ui)

2 ;

3 ≤ i ≤ ⌈n2 ⌉, ψ(u
′
⌈n
2
⌉+1) = ψ(u′2) + 2, ψ(u′i) = ψ(u′i−1) + 2; ⌈n2 ⌉ + 2 ≤ i ≤ n. Observe

that eψ(1) = eψ(0) =
3n−3

2 .

This shows that G is a DCG.
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Theorem 4.3.4. DWn ⊙ K̄1, n ≥ 3 is a DCG.

Proof. Let“V (DWn) = {v0, ui, vi : 1 ≤ i ≤ n}; ui and vi respectively the internal and

external rim nodes of DWn with v0, the apex node. Let G = DWn ⊙ K̄1 with V (G) =

V (DWn) ∪ {v′0, u′i, v′i : 1 ≤ i ≤ n}, and E(G) = E(DWn) ∪ {uiu′i, viv′i, v0v′0 : 1 ≤ i ≤ n}.
Clearly, |V (G)| = 4n+2, and |E(G)| = 6n+1. Consider ψ : V (G) → {1, 2, ..., 4n+2}”by
fixing ψ(v0) = 1, ψ(u1) = 6, ψ(ui) = ψ(ui−1) + 4; 2 ≤ i ≤ n such that ψ(u1) ̸ |ψ(un)
(If this happens, swap the labels of un and u′n). Next, let ψ(u′i) = ψ(ui)

2 ; 1 ≤ i ≤ n,

ψ(v1) = ψ(u′n) + 2, ψ(vi) = ψ(vi−1) + 2; 2 ≤ i ≤ n such that ψ(v1) ̸ |ψ(vn) (If this

happens, swap the labels of vn and v′n) ψ(v
′
1) = 2, ψ(v′2) = 4, ψ(v′i) = ψ(v′i−1) + 4;

3 ≤ i ≤ n and remaining even label to v′0. It can be seen that G is a DCG (see Figure

4.3).

Figure 4.3: DCL of DW5 ⊙ K̄1

Definition 4.3.2. [66] “The jewel graph Jn has V (Jn) = {x, y, u, v, zi : 1 ≤ i ≤ n} and

E(Jn) = {xu, xv, yu, yv, uv, xzi, yzi : 1 ≤ i ≤ n}.”

Theorem 4.3.5. Jn ⊙ K̄1 is a DCG.

Proof. Let“G = Jn ⊙ K̄1 with V (G) = V (Jn) ∪ {x′, y′, u′, v′, z′i :≤ i ≤ n} and E(G) =

E(Jn) ∪ {xx′, yy′, uu′, vv′, ziz′i : 1 ≤ i ≤ n}. It can be seen that |V (G)| = 2n + 8 and

|E(G)| = 3n+ 9.”Consider ψ : V (G) → {1, 2, ..., 2n+ 8} under the given possibilities.

Case (i) If ‘n’ is even.

Fix ψ(x) = 2, ψ(y) = 1, ψ(z1) = 4, ψ(zi) = ψ(zi−1) + 2; 2 ≤ i ≤ n
2 , ψ(z

′
i) = ψ(zi) − 1;

1 ≤ i ≤ n
2 , ψ(zn

2
+1) = ψ(z′n

2
)+ 2, ψ(zi) = ψ(zi−1)+ 2; n2 +2 ≤ i ≤ n, ψ(z′i) = ψ(zi)+ 1 ;

n
2 +1 ≤ i ≤ n. Next put ψ(x′) = ψ(zn)+ 2, ψ(u) = ψ(z′n)+ 2, ψ(u′) = ψ(u)+ 1, ψ(v) =

ψ(z′n) + 4, ψ(v′) = ψ(v) + 1, ψ(y′) = ψ(z′n) + 6. One can verify that eψ(1) = eψ(0) + 1.

Case (ii) If ‘n’ is odd.

Put ψ(x) = 2, ψ(y) = 1, ψ(z1) = 4, ψ(zi) = ψ(zi−1) + 2; 2 ≤ i ≤ ⌊n2 ⌋, ψ(z
′
i) =
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ψ(zi) − 1; 1 ≤ i ≤ ⌊n2 ⌋, ψ(z⌈n
2
⌉) = ψ(z′⌊n

2
⌋) + 2, ψ(zi) = ψ(zi−1) + 2; ⌈n2 ⌉ + 1 ≤ i ≤ n,

ψ(z′i) = ψ(zi) + 1 ; ⌈n2 ⌉ ≤ i ≤ n. Next, fix ψ(x′) = ψ(zn) + 2, ψ(u) = ψ(z′n) + 2,

ψ(u′) = ψ(u) + 1, ψ(v) = ψ(z′n) + 4, ψ(v′) = ψ(v) + 1, ψ(y′) = ψ(z′n) + 6. One can

observe that eψ(1) = 2n− ⌈n2 ⌉+ 5 & eψ(0) = 2n− ⌊n2 ⌋+ 4.

Thus, G admits a DCL (see Figure 4.4).

Figure 4.4: DCL of J4 ⊙ K̄1

Theorem 4.3.6. Gl(n)⊙ K̄1, n ≥ 2 admits a DCL.

Proof. Suppose node and edge set of Gl(n) are respectively“{u, v, ui : 1 ≤ i ≤ n} and

{uui, vui : 1 ≤ i ≤ n}. Let G = Gl(n)⊙ K̄1 with V (G) = V (Gl(n))∪ {u′, v′, u′i : 1 ≤ i ≤
n} & E(G) = E(Gl(n)) ∪ {uu′, vv′, uiu′i : 1 ≤ i ≤ n}. Observe that |V (G)| = 2n + 4 &

|E(G)| = 3n+2. Consider ψ : V (G) → {1, 2, ..., 2n+4} given by underlying conditions.”

Case (i) When ‘n’ is even. Fix ψ(u) = 1, ψ(u′) = 2n + 4, ψ(v) = 2, ψ(v′) = 3,

ψ(u1) = 4, ψ(ui) = ψ(ui−1) + 2; 2 ≤ i ≤ n
2 , ψ(un

2
+1) = ψ(un

2
) + 3, ψ(ui) = ψ(ui−1) + 2;

n
2 +2 ≤ i ≤ n, ψ(u′i) = ψ(ui)+ 1; 1 ≤ i ≤ n

2 and ψ(u′i) = ψ(ui)− 1; n2 +1 ≤ i ≤ n. Note

that eψ(0) = eψ(1) =
3n+2

2 , hence G is a DCG (see Figure 4.5).

Case (ii) When ‘n’ is odd.

Put ψ(u) = 1, ψ(u′) = 2n + 4, ψ(v) = 2, ψ(v′) = 3, ψ(u1) = 4, ψ(ui) = ψ(ui−1) + 2;

2 ≤ i ≤ ⌈n2 ⌉, ψ(u⌈n
2
⌉+1) = ψ(u⌈n

2
⌉) + 3, ψ(ui) = ψ(ui−1) + 2; ⌈n2 ⌉ + 2 ≤ i ≤ n,

ψ(u′i) = ψ(ui) + 1; 1 ≤ i ≤ ⌈n2 ⌉ and ψ(u′i) = ψ(ui) − 1; ⌈n2 ⌉ + 1 ≤ i ≤ n. Note that

eψ(1) = eψ(0) + 1, establishing the DCL of G.

Theorem 4.3.7. Fn ⊙ K̄1 is a DCG for n ≥ 4.

Proof. Let V (Fn) = {u0, ui1, ui2 : 1 ≤ i ≤ n} and E(Fn) = {u0ui1, u0ui2, ui1ui2 : 1 ≤
i ≤ n}. Let G = Fn ⊙ K̄1 with V (G) = V (Fn) ∪ {u′0, u′i1, u′i2 : 1 ≤ i ≤ n} and
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Figure 4.5: DCL of Gl(8)⊙ K̄1

E(G) = E(Fn) ∪ {u0u′0, ui1u′i1, ui2u′i2 : 1 ≤ i ≤ n}. Observe that |V (G)| = 4n + 2

& |E(G)| = 5n + 1. Consider ψ : V (G) → {1, 2, ..., 4n + 2} for the under mentioned

possibilities.

Case (i) When ‘n’ is even.

Fix ψ(u0) = 1, ψ(u′0) = 4n+2, ψ(u11) = 2, ψ(ui1) = ψ(u(i−1)1)+4; 2 ≤ i ≤ n, ψ(u12) =

4, ψ(ui2) = ψ(u(i−1)2) + 4; 2 ≤ i ≤ n, ψ(u′i1) =
ψ(ui1)

2 ; 2 ≤ i ≤ n
2 , ψ(u

′
i1) = ψ(ui1) + 1;

n
2 + 1 ≤ i ≤ n, ψ(u′i2) = ψ(ui2) + 1; n

2 + 1 ≤ i ≤ n. Assign the unused odd labels

simultaneously to the remaining nodes. Observe that eψ(1) = eψ(0) + 1 which proves

that G is a DCG.

Case (ii) When ‘n’ is odd.

Fix ψ(u0) = 1, ψ(u′0) = 4n + 2, ψ(u11) = 2, ψ(ui1) = ψ(u(i−1)1) + 4; 2 ≤ i ≤ n,

ψ(u12) = 4, ψ(ui2) = ψ(u(i−1)2) + 4; 2 ≤ i ≤ n, ψ(u′i1) = ψ(ui1)
2 ; 2 ≤ i ≤ ⌊n2 ⌋,

ψ(u′i1) = ψ(ui1) + 1; ⌈n2 ⌉ ≤ i ≤ n, ψ(u′i2) = ψ(ui2) + 1; ⌈n2 ⌉ ≤ i ≤ n. Allot the unused

odd labels simultaneously to the remaining nodes gives eψ(0) = eψ(1), therefore G is

DCG.

4.4 DCL of Lilly Related Graphs

Only a few results are available in the literature considering the DCL of tree related

graphs except that Vartharajan et al. in [87] proved that full binary tree admits a

DCL. Motivated by this, one of the families of tree called, lilly graph, for different graph

operations has been investigated.
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Theorem 4.4.1. In admits a DCL.

Proof. Let V (In) = {x1, x2, ..., x4n−1} and E(In) = {x3nxi : 1 ≤ i ≤ 2n}∪{x3n−1x3n, x3nx3n+1}∪
{xixi+1 : 2n+1 ≤ i ≤ 3n−2}∪{xixi+1 : 3n+1 ≤ i ≤ 4n−2}. Clearly, |V (In)| = 4n−1 &

|E(G)| = 4n− 2. Define ψ : V (In) → {1, 2, ..., 4n− 1} by letting ψ(x3n) = 2, ψ(x1) = 4,

ψ(xi) = ψ(xi−1)+2 ; 2 ≤ i ≤ 2n−2, ψ(x2n−1) = 1, ψ(xi) = ψ(xi−1)+2 ; 2n ≤ i ≤ 3n−1,

ψ(x3n+1) = ψ(x3n−1) + 2, ψ(xi) = ψ(xi−1) + 2 ; 3n + 2 ≤ i ≤ 4n − 1. Observe that

eψ(0) = eψ(1) = 2n− 1 which establishes that In is a DCG (see Figure 4.6).

Figure 4.6: DCL of I5

Theorem 4.4.2. Switching of an arbitrary node in In admits a DCL.

Proof. Let V (In) = {x1, x2, ..., x4n−1}. Here, x1, x2, ..., xn, xn+1, ..., x2n, x2n+1, x4n−1 are

pendant nodes. Let G be constructed by switching arbitrary pendant node of In, say,

xk. Clearly, |V (G)| = 4n− 1 & |E(G)| = 8n− 6. Consider ψ : V (G) → {1, 2, ..., 4n− 1}
by assigning ψ(xk) = 1 and ψ(x3n) = p,where p is the largest prime, ≤ 4n − 1. Label

the remaining nodes simultaneously with unutilized labels out of {1, 2, ..., 4n− 1} gives,

|eψ(0)− eψ(1)| ≤ 1.

Corollary 4.4.1. Switching of any node of degree 2 in In admits a DCL.

Proof. Switching a node of degree 2 in In results in a graph having 4n − 1 nodes and

8n− 8 edges. The labeling is done on the similar lines as in Theorem 4.4.2.

Theorem 4.4.3. Switching of the apex node in In, n ≥ 2 admits a DCL.

Proof. Let V (In) = {x1, x2, ..., x4n−1} and G be formed by switching the apex node of

In, namely, x3n. Clearly, |V (G)| = 4n − 1 & |E(G)| = 4n − 8. Define ψ : V (G) →
{1, 2, ..., 4n− 1} by assigning ψ(x3n) = 1, ψ(x2n+1) = 4, ψ(xi) = ψ(xi−1) + 2 ; 2n+ 2 ≤
i ≤ 3n − 1, ψ(x3n+1) = ψ(x3n−1) + 2, ψ(xi) = ψ(xi−1) + 2; 3n + 2 ≤ i ≤ 4n − 1. Now

assigning of unutilized labels to unlabeled nodes in any order yields |eψ(0)− eψ(1)| ≤ 1

(see Figure 4.7).
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Figure 4.7: DCL of a graph acquired by switching of x9 in I3

Theorem 4.4.4. Duplication of the apex node by a node in In, n ≥ 3 admits a DCL.

Proof. Let V (In) = {x1, x2, ..., x4n−1} and G be formed by duplicating the apex node

x3n of In by the newly added node, say, s. Clearly, |V (G)| = 4n & |E(G)| = 6n. Define

ψ : V (G) → {1, 2, ..., 4n} by assigning ψ(x3n) = 2, ψ(s) = 4, ψ(x1) = 1, ψ(x2) = 6,

ψ(xi) = ψ(xi−1) + 2; 3 ≤ i ≤ 2n− 1, ψ(x2n) = 5, ψ(x2n+1) = 3 and ψ(x2n+2) = 9. Now

allocate the unutilized labels from {1, 2, ..., 4n} simultaneously to the unlabeled nodes

xj ; 2n + 3 ≤ j ≤ 4n − 1 and j ̸= 3n. It is clear that |eψ(0) − eψ(1)| ≤ 1 which shows

that G is a DCG.

Theorem 4.4.5. The duplication of an arbitrary node of degree 1 or 2 by a node in In

permits a DCL for n ≥ 3.

Proof. Let V (In) = {x1, x2, ..., x4n−1} and G be formed by duplication of an arbitrary

node of degree 1 or 2, say, xk of In by a new node s. Observe that |V (G)| = 4n. Now

the given cases arise.

Case (i) When duplication of a node of degree 1 is taken.

In this case, |E(G)| = 4n − 1. Define ψ : V (G) → {1, 2, ..., 4n} by fixing ψ(x3n) = 2,

ψ(x1) = 1 and ψ(s) be the largest prime p ≤ 4n. Assign unutilized even labels to xi;

2 ≤ i ≤ 2n and odd labels simultaneously to xj ; 2n+ 1 ≤ j ≤ 4n− 1, j ̸= 3n.

Case (ii) When duplication of a node of degree 2 is taken.

In this case, |E(G)| = 4n. Labeling is done by using the pattern of Case (i) (see Figure

4.8).

In both the cases, G is a DCG.

Theorem 4.4.6. DS(In) permits a DCL.

Proof. Let V (In) = {x1, x2, ..., x4n−1}. Consider DS(In) with V (DS(In)) = V (In) ∪
{v, w} and E(DS(In)) = E(In) ∪ {xiv : 1 ≤ i ≤ 2n} ∪ {x2n+1v, x4n−1 v} ∪ {xiw :
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Figure 4.8: DCL of a graph acquired by duplication of x12 by s in I5

2n + 2 ≤ i ≤ 4n − 2, i ̸= 3n}. Observe that |V (DS(In))| = 4n + 1 & |E(DS(In))| =
8n−4. Consider ψ : V (DS(In)) → {1, 2, ..., 4n+1} determined by choosing ψ(x3n) = 1,

ψ(v) = 4, ψ(w) = 2, ψ(x4n−1) = 4n − 2, ψ(x1) = 3, ψ(xi) = ψ(xi−1) + 2; 2 ≤ i ≤ 2n

and ψ(x2n+1) = 6. Assign the unutilized labels simultaneously to the remaining nodes.

It follows that DS(In) is a DCG (see Figure 4.9).

Figure 4.9: DCL of DS(I4)

Theorem 4.4.7. S(In) permits a DCL.

Proof. Let V (In) = {x1, x2, ..., x4n−1}, and E(In) = {x3nxi : 1 ≤ i ≤ 2n}∪{x3n−1x3n, x3nx3n+1}∪
{xixi+1 : 2n + 1 ≤ i ≤ 3n − 2} ∪ {xixi+1 : 3n + 1 ≤ i ≤ 4n − 2}. Consider S(In) with

V (S(In)) = V (In) ∪ {v1, v2, ..., v2n, v2n+1, ..., v4n−2} and E(S(In)) = {x3nvi : 1 ≤ i ≤
2n} ∪ {vixi : 1 ≤ i ≤ 2n} ∪ {xivi : 2n + 1 ≤ i ≤ 4n − 2} ∪ {vixi+1 : 2n + 1 ≤
i ≤ 4n − 2}. Clearly, |V (S(In))| = 8n − 3 & |E(S(In))| = 8n − 4. Consider ψ :

V (S(In)) → {1, 2, ..., 8n− 3} by choosing ψ(x3n) = 2, ψ(x1) = 1, ψ(v1) = 4, ψ(v2) = 6,

ψ(vi) = ψ(vi−1)+4; 3 ≤ i ≤ 2n−1, ψ(xi) =
ψ(vi)
2 ; 2 ≤ i ≤ 2n−1, ψ(v2n) = ψ(x2n−1)+2
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and ψ(x2n) = ψ(v2n) + 2. Next, fix ψ(x2n+1) = 8, ψ(v2n+1) = 12, ψ(xi) = ψ(xi−1) + 8;

2n+2 ≤ i ≤ 3n− 1, ψ(vi) = ψ(vi−1)+ 8; 2n+2 ≤ i ≤ 3n− 2, ψ(x4n−1) = ψ(x3n−1)+ 4,

ψ(v3n−1) = ψ(x2n)+2, ψ(v3n) = ψ(v3n−1)+2, ψ(x3n+1) = ψ(v3n)+2, ψ(vi) = ψ(vi−1)+4;

3n+1 ≤ i ≤ 4n−2 and ψ(xi) = ψ(xi−1)+4; 3n+2 ≤ i ≤ 4n−2. Evidently, eψ(1) = 4n−2

& eψ(0) = 4n− 2 which ensures that S(In) is a DCG (see Figure 4.10).

Figure 4.10: DCL of S(I3)

Theorem 4.4.8. Extension of all pendant nodes in In permits a DCL.

Proof. Let V (In) = {x1, x2, ..., x4n−1} and G be formed by performing the extension of

all pendant nodes of In with V (G) = V (In) ∪ {v1, v2, ..., v2n, v2n+1, v4n−1} and E(G) =

E(In)∪{xivi : 1 ≤ i ≤ 2n}∪ {vix3n : 1 ≤ i ≤ 2n}∪{x2n+1v2n+1, x2n+2v2n+1, x4n−1v4n−1, x4n−2v4n−1}.
Clearly, |V (G)| = 6n + 1 & |E(G)| = 8n + 2. Consider ψ : V (G) → {1, 2, ..., 6n + 1}
defined by letting ψ(x3n) = 2, ψ(x1) = 1, ψ(x2) = 6, ψ(v1) = 4. Now the given possibil-

ities are there.

Case (i) when ‘n’ is even.

Choose ψ(xi) = ψ(xi−1)+4; 3 ≤ i ≤ n+ n
2 , ψ(vi) =

ψ(xi)
2 ; 2 ≤ i ≤ n+ n

2 , ψ(xn+n
2
+1) = 8,

ψ(xi) = ψ(xi−1) + 8; n + n
2 + 2 ≤ i ≤ 2n, ψ(vi) = ψ(xi) + 4; n + n

2 + 1 ≤ i ≤ 2n,

ψ(v2n+1) = ψ(vn+n
2
) + 2 and ψ(v4n−1) = 6n + 1. Assign all the unutilized even labels

first and then odd labels simultaneously to x2n+1, x2n+2, ..., x4n−1 (excluding x3n).

Case (ii) When ‘n’ is odd.

Fix ψ(xi) = ψ(xi−1) + 4; 3 ≤ i ≤ n + ⌈n2 ⌉, ψ(vi) = ψ(xi)
2 ; 2 ≤ i ≤ n + ⌈n2 ⌉,

ψ(xn+⌈n
2
⌉+1) = 8, ψ(xi) = ψ(xi−1) + 8; n + ⌈n2 ⌉ + 2 ≤ i ≤ 2n, ψ(vi) = ψ(xi) + 4;

n + ⌈n2 ⌉ + 1 ≤ i ≤ 2n, ψ(v2n+1) = ψ(vn+⌈n
2
⌉) + 2 and ψ(v4n−1) = 6n + 1. Allocate all

unutilized even labels first and then odd labels simultaneously to x2n+1, x2n+2, ..., x4n−1

(excluding x3n) from {1, 2, ..., 6n+ 1}.
In both the cases, ψ induces a DCL for G.

Theorem 4.4.9. Extension of the apex node in In permits a DCL.
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Proof. Let G be constructed by taking the extension of the apex node of In where

V (In) = {x1, x2, ..., x4n−1}.“Clearly, V (G) = V (In) ∪ {w}, and E(G) = E(In) ∪ {xiw :

1 ≤ i ≤ 2n} ∪ {x3nw, x3n−1w, x3n+1w}. Note here, |V (G)| = 4n and |E(G)| = 6n + 1.

Consider ψ : V (G) → {1, 2, ..., 4n}”and fix ψ(x3n) = 2, ψ(w) = 4, ψ(x1) = 6, ψ(xi) =

ψ(xi−1) + 2; 2 ≤ i ≤ 2n − 2, ψ(x2n−1) = 1 and ψ(x2n) = 3. Assigning unutilized odd

labels simultaneously to x2n+1, x2n+2, ..., x4n−1 yields G a DCG.

4.5 DCL of Classes of Planar Graphs

Euler’s polyhedral formula, which is connected to polyhedron edges, nodes, and faces,

serves as the foundation for planar graph theory. This section focuses on exploring the

DCL of certain classes of planar graphs obtained from Kn and Km,n. These graphs are

investigated for some graph operation. Recall, a graph is planar “if it can be embedded

in the plane.” Planar graphs are of great importance due to their variety of applications

in circuit design, networking and cryptography [9]. A careful thought is given to the

crossings especially at the crowded places. As planarity ensures the zero crossing, most

of the daily life problems can be dealt by considering the planar graphs.

Though, Euler’s Inequality and Kuratowski Theorem can be used to check planarity

of graph, the use of planar graphics in Printed Circuit Board (PCB) manufacturing is

intended to put an effort for efficient working of design process. A 2D board called a

PCB contains every component and circuit that will be utilised in an electronic network.

A graph can be used to represent an electrical circuit. The idea of a planar graph can

then be used to create a 2D board PCB. First, recall the definitions given in [6] and [59].

Definition 4.5.1. [6] “The class of graph, denoted by Pln has V (Pln) = {v1, v2, ..., vn}
and E(Pln) = E(Kn) \ {vkvl : 1 ≤ k ≤ n− 4, k + 2 ≤ l ≤ n− 2}.”

Definition 4.5.2. [59] “Let Vm = {vi : 1 ≤ i ≤ m} and Un = {uj : 1 ≤ j ≤ n}
be the bipartition of Km,n. The class of graph Plm,n has the node set Vm ∪ Un and

E(Plm,n) = E(Km,n) \ {vluk : 3 ≤ l ≤ m, 2 ≤ k ≤ n− 1}.”

The embedding used for Pln is discussed as follows.“Lay v1, v2, ..., vn−2 along a vertical

line with v1 at top and vn−2 at the bottom. Place vn−1 and vn as the end points of a

horizontal line perpendicular to the line having v1, v2, ..., vn−2, at the bottom in such a

fashion that vn−2, vn−1, vn makes a triangular face, see Figure 4.11(a).

Similarly, for embedding of Plm,n that is going to be used for proofs is explained here.

First place u1, u2, ..., un horizontally with u1 and un respectively at left and right ends.

Next, place v2, v3, ..., vm vertically above the segment u1, u2, ..., un, with v2 at bottom

and vm at the top of the segment. Then place v1 below the segment u1, u2, ..., un so that



Chapter 4. Results on DCL of Graphs 71

Figure 4.11: The class of (a) Pln (b) Plm,n

v1, uk, v2, uk+1 forms a face of length 4 for 1 ≤ k ≤ n − 1. Remember, this discussion

is about segment placement; no edges other than those indicated in the definitions are

to be introduced, see Figure 4.11 (b).”

Cordial labeling of Pln & Plm,n has been established in [59]. DCL of Pln and Plm,n in

addition to exploring these two classes for graph operations are presented here.

Theorem 4.5.1. Pln admits a DCL.

Proof. Suppose node and edge set of Pln are given by {vi : 1 ≤ i ≤ n} and {vivi+1 :

1 ≤ i ≤ n − 3} ∪ {vn−1vn} ∪ {vnvi, vn−1vi : 1 ≤ i ≤ n − 2} respectively. One can see

that |V (Pln)| = n and |E(Pln)| = 3n − 6. Consider ψ : V (Pln) → {1, 2, ..., n} for the

following three cases.

Case (i) When n ≥ 5 is odd.

Let ψ(vn−1) = 1, ψ(vn) = 2, ψ(vi) = 2 + i; 1 ≤ i ≤ n− 2. Clearly, eψ(1) = eψ(0) + 1.

Case (ii) When n ≥ 10 is even such that n
2 is odd.

Let“p be the largest prime < n.”Fix ψ(vn−1) = 1, ψ(vn) = p. Label the remaining nodes

begining with vn−2 and proceeding to v1 in the following fashion

2, 2.2, 2.22, ..., 2.2k1 ,

3, 3.2, 3.22, ..., 3.2k2 ,

..., ..., ..., ..., ...,

upto, n2 − 2, (n2 − 2).2,..., (n2 − 2)2kt , where (2t− 1)2kt ≤ n and t ≥ 1, kt ≥ 0. Assign the

unutilized labels simultaneously to the remaining nodes. Observe that eψ(0) = eψ(1) =
3n
2 − 3.

Case (iii) When n ≥ 8 is even such that n
2 is even.

Let p be the largest prime < n. Fix ψ(vn−1) = 1, ψ(vn) = p. Label the remaining nodes
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begining with vn−2 and proceeding to v1 in the following fashion

2, 2.2, 2.22, ..., 2.2k1 ,

3, 3.2, 3.22, ..., 3.2k2 ,

..., ..., ..., ..., ...,

upto, n
2 − 3, (n2 − 3).2,..., (n2 − 3)2kt , where (2t − 1)2kt ≤ n and t ≥ 1, kt ≥ 0. Now

assigning unutilized labels simultaneously to the remaining nodes shows that eψ(0) =

eψ(1) =
3n
2 − 3.

Hence, Pln is a DCG.

Theorem 4.5.2. Plm,n admits a DCL.

Proof. Let Vm = {vi : 1 ≤ i ≤ m} and Un = {uj : 1 ≤ j ≤ n}. Let V (Plm,n) = Vm ∪ Un
and E(Plm,n) = E(Km,n)\{vluk : 3 ≤ l ≤ m, 2 ≤ k ≤ n−1}. Clearly, |V (Plm,n)| = m+n

and |E(Plm,n)| = 2m + 2n − 4. Consider ψ : V (Plm,n) → {1, 2, ...,m + n}. Now three

cases arise.

Case (i) When m = n with m ≥ 4, m ̸= 5.

Let p1, p2 be sufficiently large primes : p2 < p1 ≤ m + n. Fix ψ(u1) = p1, ψ(un) = p2,

ψ(v1) = 1 and ψ(v2) = 2. Assign even labels to unlabeled ui; 2 ≤ i ≤ n−1 and remaining

labels simultaneously to unlabeled nodes. Observe that eψ(0) = eψ(1) = 2m− 2, which

ensures that Plm,m is a DCG.

Case (ii) When m > n where m ≥, n ≥ 2.

Let p1, p2 be sufficiently large primes : p2 < p1 ≤ m + n. Fix ψ(u1) = 1, ψ(un) = p1,

ψ(v1) = 2 and ψ(v2) = p2. Assign even labels to unlabeled ui; 2 ≤ i ≤ n − 1 and

remaining labels simultaneously to unlabeled vj ; 3 ≤ j ≤ m. Observe that eψ(0) =

eψ(1) = m+ n− 2, which proves that Plm,n is a DCG.

Case (iii) When m < n where m ≥ 2, n ≥ 3.

Let p1, p2 be sufficiently large primes so that p2 < p1 ≤ m + n. Fix ψ(u1) = 2,

ψ(un) = p1, ψ(v1) = 1 and ψ(v2) = p2. Assign even labels to unlabeled vj ; 3 ≤ j ≤ m

and remaining labels to unlabeled ui; 2 ≤ i ≤ n − 1, simultaneously. Observe that

eψ(0) = eψ(1) = m+ n− 2 showing that Plm,n is a DCG.

Thus, in all the cases, Plm,n admits a DCL.

Theorem 4.5.3. Duplicating a node by a node in Pln, n ≥ 4 admits a DCL.

Proof. Let V (Pln) = {vi : 1 ≤ i ≤ n} and E(Pln) = {vivi+1 : 1 ≤ i ≤ n − 3} ∪
{vn−1vn} ∪ {vnvi, vn−1vi : 1 ≤ i ≤ n − 2}. Suppose G is acquired by duplicating a

node of highest degree namely, vn, by a node, say, w. Here, V (G) = V (Pln) ∪ {w} and
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Figure 4.12: DCL of a graph acquired by duplication of v10 in Pl10

E(G) = E(Pln) ∪ {vn−1w, viw : 1 ≤ i ≤ n − 2}. See that |V (G)| = n + 1, whereas

|E(G)| = 4n− 7. Consider ψ : V (G) → {1, 2, ..., n+ 1} for the under mentioned cases.

Case (i) When n ≡ 0(mod 2) and n ≥ 4.

Fix ψ(vn−1) = 1, ψ(w) = 2, ψ(vn) = 4. For odd values of i, 1 ≤ i ≤ n
2 − 2, put

ψ(vi) = 2 + i, ψ(vi+1) = 2(ψ(vi)) and for the remaining nodes, assign the unused labels

simultaneously. Here, eψ(0) = eψ(1) + 1( see Figure 4.12).

Case (ii) When n ≡ 1(mod 2) and n ≥ 5.

Fix ψ(vn−1) = 1, ψ(w) = 2, ψ(vn) = 4. For odd values of i, 1 ≤ i ≤ n+1
2 − 2, put

ψ(vi) = 2+ i and ψ(vi+1) = 2(ψ(vi)), and for remaining nodes, assign the unused labels

simultaneously. Here, eψ(1) = eψ(0) + 1.

In both the cases, G is a DCG.

Theorem 4.5.4. Duplicating a node in Plm,n admits a DCL ∀ m,n ≥ 4.

Proof. Let V (Plm,n) = Vm∪Un where Vm = {vi : 1 ≤ i ≤ m} and Un = {uj : 1 ≤ j ≤ n},
and E(Plm,n) = E(Km,n) \ {vluk : 3 ≤ l ≤ m, 2 ≤ k ≤ n − 1}. Let G be produced by

duplicating a node namely, un by a node, say, w. Here, V (G) = V (Plm,n) ∪ {w} and

E(G) = E(Plm,n) ∪ {viw : 1 ≤ i ≤ m}. Clearly, |V (G)| = m + n + 1 and |E(G)| =
3m+2n−4. Consider ψ : V (G) → {1, 2, ...,m+n+1}. Now the under mentioned cases

arise.

Case (i) When n = m.

Let k be the largest odd integer ≤ ⌊2n+1
3 ⌋. Fix ψ(u1) = 1, ψ(v1) = 2, ψ(v2) = 4,

ψ(un) = 8 and ψ(w) = k. Assign even labels to ui for 2 ≤ i ≤ n−2. Next assign unused

labels simultaneously to unlabeled nodes {un−1, v3, v4, ..., vm}.
Case (ii) When n > m.

Choose p1, p2 sufficiently largest prime such that p2 < p1 ≤ m+ n+ 1. Fix ψ(u1) = 2,
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ψ(un) = 4, ψ(v1) = 1, ψ(v2) = p2, ψ(v3) = 8 and ψ(w) = p1. There arise two subcases.

Subase (i) If m is odd.

Fix ψ(vi) = ψ(vi−1) + 4; 4 ≤ i ≤ ⌈m+1
2 ⌉ + 1, ψ(v⌈m+1

2
⌉+2) = 6, ψ(vi) = ψ(vi−1) + 4;

⌈m+1
2 ⌉+ 3 ≤ i ≤ m. Allot unused labels simultaneously to remaining unlabeled nodes.

Subcase (ii) If m is even.

Fix ψ(vi) = ψ(vi−1)+4; 4 ≤ i ≤ m
2 +1, ψ(vm

2
+2) = 6, ψ(vi) = ψ(vi−1)+4; m2 +3 ≤ i ≤ m.

Allot unused labels simultaneously to unlabeled nodes. Clearly, |eψ(0)− eψ(1)| ≤ 1.

Case (iii) When m > n.

Figure 4.13: DCL of a graph obtained by duplicating u6 in Pl6,6

Let“p1 and p2 be sufficiently large primes such that p2 < p1 ≤ m+n+1.”Fix ψ(u1) = 1,

ψ(v1) = 3, ψ(v2) = p2, ψ(un) = 2, ψ(vn) = 4, ψ(u2) = 6, ψ(w) = p1, ψ(ui) =

ψ(ui−1) + 3; 3 ≤ i ≤ k < n such that ψ(uk) ≤ m + n + 1. Next assigning of unused

labels simultaneously to unlabeled nodes shows that |eψ(0)− eψ(1)| ≤ 1.

Hence, G is a DCG (see Figure 4.13).

Theorem 4.5.5. Pln ⊙K1 admits a DCL.

Proof. Let G = Pln ⊙ K1 with“V (G) = V (Pln) ∪ {ui : 1 ≤ i ≤ n} and E(G) =

E(Pln) ∪ {viui : 1 ≤ i ≤ n}. Clearly, |V (G)| = 2n and |E(G)| = 4n − 6. Consider

ψ : V (G) → {1, 2, ..., 2n}”defined by fixing ψ(vn−1) = 1, ψ(vn) = 2, ψ(un−1) = 4,

ψ(un) = 3, ψ(v1) = 6, ψ(vi) = ψ(vi−1) + 2; 2 ≤ i ≤ n − 3, ψ(ui) = ψ(vi) − 1 ;

1 ≤ i ≤ n − 3, ψ(vn−2) = ψ(vn−3) + 1 and ψ(un−2) = ψ(vn−2) + 1. Observe that

eψ(0) = eψ(1) = 2n− 3, proving that G is a DCG (see Figure 4.14).

Theorem 4.5.6. Plm,m ⊙K1 admits a DCL.

Proof. Let V (Plm,n) = Vm ∪ Un where“Vm = {vi : 1 ≤ i ≤ m} and Un = {uj :

1 ≤ j ≤ n} and E(Plm,n) = E(Km,n) \ {vluk : 3 ≤ l ≤ m, 2 ≤ k ≤ n − 1}. Let
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Figure 4.14: DCL of Pln ⊙K1

G = Plm,m ⊙ K1 with V (G) = V (Plm,n) ∪ {v′i, u′j : 1 ≤ i ≤ m, 1 ≤ j ≤ n} and

E(G) = E(Plm,n) ∪ {viv′i, uju′j : 1 ≤ i ≤ m, 1 ≤ j ≤ n}. The cardinality of node

and edge set of G is respectively 4m and 6m − 4.”Consider ψ : V (G) → {1, 2, ..., 4m}
given by fixing ψ(u1) = 1, ψ(u2) = 8, ψ(ui) = ψ(ui−1) + 4 ; 3 ≤ i ≤ n − 1, ψ(un) = 6,

ψ(v1) = 2, ψ(v2) = 4, ψ(v′1) = 4m−1, ψ(u′1) = 4m, ψ(v′2) = ψ(v2)−1, ψ(u′i) = ψ(ui)−1

; 2 ≤ i ≤ n. Assigning available odd labels to vi ; 3 ≤ i ≤ m and ψ(v′i) = ψ(vi) + 1 ;

3 ≤ i ≤ m implies that eψ(0) = eψ(1) = 3m− 2, which shows that G is a DCG.

Considering the fact that characterization of DCGs is challenging in general, the follow-

ing conjecture is formulated.

Conjecture 4.5.1. For a given graph G, establishing a DCL of G is NP-hard.

Remark 4.2. The conjecture can be true as there are no algorithm available in the

literature and devising a particular pattern of DCG is also the hardest.

4.6 Conclusion

This chapter has dealt with certain interesting general results on DCL of graphs besides,

formulating an impressive conjecture on DCL. Some new results for graph operation

named, corona, for various notable graphs have been derived. Further, a class of tree

named, lilly graph, has been investigated for various graph operations. Also, DCL

of certain classes of planar graphs, in addition to exploring these graphs for graph

operations of high interest are also established.



Chapter 5

DCL in the Context of Extension

5.1 Introduction

In this chapter, certain results concerning the DCL of graphs in the context of “dupli-

cation of a node by a node”, “duplication of edge by a node”, “duplication of a node

by an edge” are recalled. The DCL of some well-known graphs in the frame of a graph

operation known as extension of a vertex in addition to a few results on duplication

operation are also been investigated.

5.2 DCL in the Context of Extension of a node

No significant work has been done concerning DCL of graphs in the context of extension

operation. Motivated by this fact and inspired by [48], DCL of standard graphs in the

context of extension of a node and, a few results on duplication operation are derived.

First, recall some established results on duplication.

Theorem 5.2.1. [56] “Duplicating an arbitrary node by a node in Cn, n ≥ 3 admits a

DCL.”

Theorem 5.2.2. [41] “Duplicating an edge by an edge in Cn admits a DCL.”

Theorem 5.2.3. [43] “Duplication of an arbitrary node by an edge in Cn and duplication

of an arbitrary edge by a node in Cn permits a DCL.”

Theorem 5.2.4. The extension of both pendant nodes of Pn, n ≥ 3 admits a DCL.

Proof. Suppose the node set of Pn is given by“{vi : 1 ≤ i ≤ n} and G be acquired

by taking extension of both pendant nodes of Pn with newly added nodes, u1 and

76
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u2. Clearly, V (G) = V (Pn) ∪ {u1, u2} and E(G) = E(Pn) ∪ {v1u1, v2u1, vnu2, vn−1u2}.
The cardinality of node and edge set of G is respectively n + 2 and n + 3. Consider

ψ : V (G) → {1, 2, ..., n+ 2} for the given cases.”

Case (i) When ‘n’ is even.

Fix ψ(u1) = n+1, ψ(u2) = n− 1 and label the remaining nodes begining with v1 in the

following fashion

1, 1.21, 1.22, ..., 1.2k1 ,

3, 3.21, 3.22, ..., 3.2k2 ,

5, 5.21, 5.22, ..., 5.2k3 ,

..., ..., ..., ..., ..., ...,

where (2t− 1)2kl ≤ n+ 2 and l ≥ 1, kl > 0. Evidently, |eψ(0)− eψ(1)| ≤ 1.

Case (ii) When ‘n’ is odd.

Fix ψ(u1) = n + 2, ψ(u2) = n and label the remaining nodes begining with v1 in the

following fashion

1, 1.21, 1.22, ..., 1.2k1 ,

3, 3.21, 3.22, ..., 3.2k2 ,

5, 5.21, 5.22, ..., 5.2k3 ,

..., ..., ..., ..., ..., ...,

where (2t− 1)2kl ≤ n+ 1 and l ≥ 1, kl > 0. Observe that |eψ(0)− eψ(1)| ≤ 1.

Thus, G admits a DCL.

Theorem 5.2.5. Extension of an arbitrary node of Cn, n ≥ 4 permits a DCL.

Proof. Suppose node set of Cn is {vi : 1 ≤ i ≤ n} and G be formed by operating

extension of a random node of Cn. Without loss of generality, suppose extension of v1

is taken and let w be the newly added node.“The cardinality of node and edge set of G

is respectively n + 1 and n + 3. Consider ψ : V (G) → {1, 2, ..., n + 1}. Fix ψ(vn) = 2,

ψ(vn−1) = 1 and ψ(w) = p; p is the largest prime ≤ n + 1.”Label the remaining nodes

begining with v1 in the following pattern

2.2, 2.22, 2.23, ..., 2.2k1 ,

3, 3.21, 3.22, ..., 3.2k2 ,

5, 5.21, 5.22, ..., 5.2k3 ,

..., ..., ..., ..., ..., ...,



Chapter 5. DCL in the Context of Extension 78

such that (2t− 1)2kt ≤ n+ 1 and t ≥ 1, kt > 0. Allot unused labels out of the available

labels to unlabeled nodes. Obviously, |eψ(0)− eψ(1)| ≤ 1 which proves that G is a DCG

(see Figure 5.1).

Figure 5.1: DCL of a graph formed by taking an extension of v1 in C9

Remark 5.1. For C3, the above theorem does not hold good.

Theorem 5.2.6. Extension of apex node in Wn, n ≥ 3 permits a DCL.

Proof. Let V (Wn) = {v0, vi : 1 ≤ i ≤ n} where v0 is apex node and G be acquired by

taking extension of v0. Let w be the newly added node. Clearly, |V (G)| = n + 2 and

|E(G)| = 3n + 1. Define ψ : V (G) → {1, 2, ..., n + 2} by fixing ψ(w) = 1, ψ(v0) = 2,

ψ(v1) = 3 and ψ(vi) = ψ(vi−1) + 1; 2 ≤ i ≤ n with the condition that ψ(v1) ̸ |ψ(vn) (If
this occurs, swap the labels of vn with vn−1). Observe that |eψ(0)− eψ(1)| ≤ 1 proving

that G is a DCG (see Figure 5.2).

Remark 5.2. Graph acquired by duplicating apex node by a node in Wn permits a DCL

for n ≥ 3 and the proof is same as that of Theorem 5.2.6.

Theorem 5.2.7. Extension of an arbitrary node at rim of Wn, n ≥ 3 permits a DCL.

Proof. Let V (Wn) = {v0, vi : 1 ≤ i ≤ n} where v0 is apex node and vi are rim nodes.

Let G be acquired by taking extension of a random rim node of Wn, say, v1 and let w

be the added node.“Clearly, |V (G)| = n+ 2 & |E(G)| = 2n+ 4. Consider ψ : V (G) →
{1, 2, ..., n+2}”by taking ψ(v0) = 1, ψ(v1) = n+1, ψ(v2) = 2 and ψ(vi) = ψ(vi−1)+ 1 ;

3 ≤ i ≤ n and ψ(w) = n+ 2. Clearly, |eψ(0)− eψ(1)| ≤ 1 which shows that G is a DCG

(see Figure 5.3).

Remark 5.3. Duplication“of an arbitrary rim node by a node in Wn permits a DCL for

n ≥ 3 and its proof is same as that of Theorem 5.2.7.”
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Figure 5.2: DCL of a graph acquired by performing the extension of w0 in W9

Figure 5.3: DCL of a graph acquired by taking an extension of v1 in W7

Theorem 5.2.8. Extension of apex node in Hn permits a DCL for n > 3.

Proof. Let V (Hn) = {v0, vi, ui : 1 ≤ i ≤ n} where v0, vi and ui; 1 ≤ i ≤ n represent

respectively the apex, rim and pendant nodes. Let G be formed by taking an extension of

v0 in Hn and w be added node.“Clearly, |V (G)| = 2n+2 and |E(G)| = 4n+1. Consider

ψ : V (G) → {1, 2, ..., 2n+ 2}.”Fix ψ(w) = 1, ψ(v0) = 2, ψ(v1) = 4, ψ(vi) = ψ(vi−1) + 2

; 2 ≤ i ≤ n, ψ(ui) = ψ(vi)− 1 ; 1 ≤ i ≤ n, with the condition that neither ψ(vn)|ψ(v1)
nor ψ(v1)|ψ(vn) (if such a case happens, swap the labels of vn−1 and vn). Observe that

|eψ(0)− eψ(1)| ≤ 1, which shows that G is a DCG (see Theorem 5.4).

Remark 5.4. Duplication of apex node by a node in Hn permits a DCL for n > 3 and

its proof is same as that of Theorem 5.2.8.

Theorem 5.2.9. Extension of an arbitrary rim node of Hn, n ≥ 3 permits a DCL.

Proof. Let V (Hn) = {v0, vi, ui : 1 ≤ i ≤ n} where v0, vi and ui; 1 ≤ i ≤ n represent

respectively the apex, rim and pendant nodes of Hn. Let G be formed by taking ex-

tension of an arbitrary rim node of Hn. Suppose extension of v1 is taken and let w

be the newly added node. Clearly, |V (G)| = 2n + 2 and |E(G)| = 3n + 5. Consider
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Figure 5.4: DCL of a graph acquired by taking extension of v0 in H10

ψ : V (G) → {1, 2, ..., 2n + 2}. Fix ψ(w) = 2n + 1, ψ(v0) = 2, ψ(v1) = 1, ψ(v2) = 4,

ψ(vi) = ψ(vi−1) + 2 ; 3 ≤ i ≤ n, ψ(un) = ψ(vn) + 2, ψ(ui) = ψ(vi)
2 such that ψ(vi)

2 is

odd. Assign the remaining labels to unlabeled ui’s simultaneously from {1, 2, ..., 2n+2}.
Observe that |eψ(0)− eψ(1)| ≤ 1 which shows that G is a DCL (see Figure 5.5).

Figure 5.5: DCL of a graph formed by taking the extension of v1 in H9

Remark 5.5. Duplication of rim node by a node in Hn permits a DCL for n > 3 and its

proof is same as that of Theorem 5.2.9.

Theorem 5.2.10. Extension of an arbitrary node of degree 1 in Hn permits a DCL.

Proof. Let V (Hn) = {v0, vi, ui : 1 ≤ i ≤ n} where v0, vi and ui; 1 ≤ i ≤ n represent

respectively the apex, rim and pendant nodes of Hn. Let G be formed by taking exten-

sion of u1 and w be the added node.“Clearly, |V (G)| = 2n + 2 and |E(G)| = 3n + 2.

Define ψ : V (G) → {1, 2, ..., 2n + 2} as given.“Let ψ(w) = 2, ψ(v0) = 1 & ψ(v1) = 3.

Now arise the under mentioned cases.

Case (i) When ‘n’ is even.
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Let ψ(vi) = ψ(vi−1) + 2 ; 2 ≤ i ≤ n such that ψ(v1) ̸ |ψ(vn) (If such a case happens,

swap the labels of vn and un). Next, let ψ(ui) = 2ψ(vi) ; 1 ≤ i ≤ n
2 , ψ(un

2
+1) = 4,

ψ(ui) = ψ(ui−1) + 4; n2 + 2 ≤ i ≤ n. Observe that |eψ(0)− eψ(1)| ≤ 1.

Case (ii) When ‘n’ is odd.

Let ψ(vi) = ψ(vi−1) + 2; 2 ≤ i ≤ n such that ψ(v1) ̸ |ψ(vn) (If such a case happens,

swap the labels of vn and un). Next, fix ψ(ui) = 2ψ(vi) ; 1 ≤ i ≤ ⌊n2 ⌋, ψ(u⌊n
2
⌋+1) = 4,

ψ(ui) = ψ(ui−1) + 4; ⌊n2 ⌋+ 2 ≤ i ≤ n. One can find that |eψ(0)− eψ(1)| ≤ 1.

Thus, G is a DCG.

Theorem 5.2.11. Extension of apex node of Fln, n ≥ 3 permits a DCL.

Proof. Let V (Fln) = {v0, vi, ui : 1 ≤ i ≤ n} where v0 is apex node and vi, ui are the

nodes of degree 4 and 2 respectively. Let G be acquired by taking an extension of v0

and w be the newly introduced node.“Clearly, |V (G)| = 2n + 2 and |E(G)| = 6n + 1.

Consider ψ : V (G) → {1, 2, ..., 2n+ 2}”given by fixing ψ(w) = 2, ψ(v0) = 1, ψ(v1) = 3,

ψ(vi) = ψ(vi−1)+2; 2 ≤ i ≤ n and ψ(ui) = ψ(vi)+1; 1 ≤ i ≤ n with the restriction that

neither ψ(v1)|ψ(vn) nor ψ(vn)|ψ(v1). It can be seen that |eψ(0) − eψ(1)| ≤ 1 proving

that G is a DCG.

Remark 5.6. Duplication of apex node by a node in Fln, n ≥ 3 permits a DCL and its

proof is same as that of Theorem 5.2.11.

Theorem 5.2.12. Extension of an arbitrary node of degree 2 in Fln permits a DCL.

Proof. Let {v0, vi, ui : 1 ≤ i ≤ n} be the node set for Fln where v0 is apex node and

vi, ui are the nodes of degree 4 and 2 respectively. Let G be acquired by taking an

extension of u1 and w be the newly introduced node.“The cardinality of node and edge

set of G is respectively 2n+2 and 4n+3. Labeling is defined in a similar way as defined

in Theorem 5.2.11.”

Remark 5.7. Duplication of an arbitrary node of degree 2 by a node in Fln, n ≥ 3

permits a DCL and its proof is same as Theorem 5.2.11.

Theorem 5.2.13. Extension of an arbitrary node of degree 4 in Fln, n ≥ 3 permits a

DCL.

Proof. Proof is same as that of Theorem 5.2.11.

Remark 5.8. Duplication of an arbitrary node of degree 4 by a node in Fln, n ≥ 3

permits a DCL and its proof is same as that of Theorem 5.2.11.

Theorem 5.2.14. Duplication of each node of degree 2 by a node in Fln permits a DCL.
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Proof. Let V (Fln) = {v0, vi, ui : 1 ≤ i ≤ n} where v0 is apex node and vi, ui are the

nodes of degree 4 and 2 respectively. Let G be acquired by duplicating each node of

degree 2 by a node in Fln with V (G) = V (Fln) ∪ {u′i : 1 ≤ i ≤ n}.“Clearly, |V (G)| =
3n+ 1 and |E(G| = 6n. Consider ψ : V (G) → {1, 2, ..., 3n+ 1}”defined by given cases.

Case (i) If ‘n’ is even.

Fix ψ(v0) = 1, ψ(v1) = 4, ψ(vi) = ψ(vi−1)+3 ; 2 ≤ i ≤ n, ψ(u1) = 3, ψ(ui) = ψ(ui−1)+3

; 2 ≤ i ≤ n, ψ(u′1) = 5, ψ(u′i) = ψ(u′i−1) + 3 ; 2 ≤ i ≤ n− 1 and ψ(u′n) = 2. Evidently,

eψ(0) = eψ(1) = 3n.

Case (ii) If ‘n’ is odd.

Fix ψ(v0) = 1, ψ(v1) = 4, ψ(vi) = ψ(vi−1) + 3 ; 2 ≤ i ≤ n − 1, ψ(un) = ψ(vn−1) + 3,

ψ(u1) = 3, ψ(ui) = ψ(ui−1)+3 ; 2 ≤ i ≤ n−1, ψ(vn) = ψ(un−1)+3, ψ(u′1) = 5, ψ(u′i) =

ψ(u′i−1) + 3 ; 2 ≤ i ≤ n− 1 and ψ(u′n) = 2. One can check that eψ(0) = eψ(1) = 3n.

Thus in both the cases, G is a DCG (see Figure 5.6).

Figure 5.6: DCL of a graph formed by duplicating each ui by a node in Fl7

Theorem 5.2.15. Extension of apex node in Gn, n ≥ 3 permits a DCL.

Proof. Let“V (Gn) = {v0, vi, ui : 1 ≤ i ≤ n} and E(Gn) = {v0vi : 1 ≤ i ≤ n}∪{viui : 1 ≤
i ≤ n}∪{uivi+1 : 1 ≤ i ≤ n−1}∪{unv1}. Let G be obtained by taking extension of apex

(v0) of Gn by a node, say, w. Clearly, |V (G)| = 2n+ 2 and |E(G)| = 4n+ 1. Consider

ψ : V (G) → {1, 2, ..., 2n + 2} as per the given algorithm.”Fix ψ(w) = 2, ψ(v0) = 1,

ψ(v1) = 4, ψ(un) = 3, ψ(vi) = ψ(vi−1) + 2; 2 ≤ i ≤ n such that ψ(un) ̸ |ψ(vn), (if this
happens then swap the labels of vn−1 and vn) and ψ(ui) = ψ(vi) + 1; 1 ≤ i ≤ n − 1.

Note that |eψ(0)− eψ(1)| ≤ 1 which proves that G is a DCG (see Figure 5.7).

Remark 5.9. Duplication of apex node by a node in Gn permits a DCL and the proof is

same as that of Theorem 5.2.15.
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Figure 5.7: DCL of a graph formed by taking the extension of v0 in G7

Theorem 5.2.16. Extension of an arbitrary node of degree 2 in Gn, n ≥ 3 permits a

DCL.

Proof. Let“V (Gn) = {v0, vi, ui : 1 ≤ i ≤ n} and E(Gn) = {v0vi : 1 ≤ i ≤ n} ∪ {viui :
1 ≤ i ≤ n} ∪ {uivi+1 : 1 ≤ i ≤ n − 1} ∪ {unv1}. Let G be formed by taking extension

of an arbitrary node of degree 2 say u1 in Gn by adding a new node, say, w. Clearly,

|V (G)| = 2n+2 and |E(G)| = 3n+3. Consider ψ : V (G) → {1, 2, ..., 2n+2} as per the

given possibilities.”

Case (i) If ‘n’ is even.

Fix ψ(v0) = 1, ψ(w) = 2, ψ(v1) = 3, ψ(vi) = ψ(vi−1)+ 2; 2 ≤ i ≤ n and ψ(ui) = 2ψ(vi);

1 ≤ i ≤ n
2 . Now assign the remaning unused labels simultaneously to unlabeled nodes.

Case (ii) If ‘n’ is odd.

Fix ψ(v0) = 1, ψ(w) = 2, ψ(v1) = 4, ψ(v2) = 3, ψ(vi) = ψ(vi−1) + 2; 3 ≤ i ≤ n,

ψ(un) = 2n+1, ψ(u1) = 6, ψ(u2) = 8 and ψ(ui) = 2ψ(vi); 3 ≤ i ≤ ⌈n2 ⌉. Now assign the

remaning unused labels simultaneously to unlabeled nodes.

In both the cases, |eψ(0)− eψ(1)| ≤ 1 which proves that G is a DCG.

Theorem 5.2.17. Duplication of an arbitrary node of degree 2 by a node in Gn, n ≥ 3

permits a DCL.

Proof. Let“V (Gn) = {v0, vi, ui : 1 ≤ i ≤ n} and E(Gn) = {v0vi : 1 ≤ i ≤ n} ∪ {viui :
1 ≤ i ≤ n} ∪ {uivi+1 : 1 ≤ i ≤ n − 1} ∪ {unv1}. Let G be formed by duplicating an

arbitrary node of degree 2 say u1 in Gn by a node, say, w. Clearly, |V (G)| = 2n+2 and

|E(G)| = 3n+ 2. Consider ψ : V (G) → {1, 2, ..., 2n+ 2} as given here.”

Case (i) If ‘n’ is even.

Fix ψ(v0) = 1, ψ(w) = 2, ψ(v1) = 6, ψ(u1) = 3, ψ(v2) = 5, ψ(vi) = ψ(vi−1) + 2;

3 ≤ i ≤ n and ψ(ui) = 2ψ(vi); 2 ≤ i ≤ n
2 . Assign the remaning labels simultaneously

to unlabeled nodes with the condition that ψ(un) ̸ |ψ(v1) (If such a case happens then
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swap the labels of vn and un).

Case (ii) If ‘n’ is odd.

Follow the Case (ii) of Theorem 5.2.16. In both the cases, |eψ(0) − eψ(1)| ≤ 1 showing

that G is a DCG.

Theorem 5.2.18. Extension of an arbitrary node of degree 3 of Gn, n ≥ 3 permits a

DCL.

Proof. Let“V (Gn) = {v0, vi, ui : 1 ≤ i ≤ n} and E(Gn) = {v0vi : 1 ≤ i ≤ n} ∪ {viui :
1 ≤ i ≤ n} ∪ {uivi+1 : 1 ≤ i ≤ n − 1} ∪ {unv1}. Let G be formed by taking extension

of an arbitrary node of degree 3 of Gn, say, v1, by adding a new node, say, w. Clearly,

|V (G)| = 2n + 2 and |E(G)| = 3n + 4. Consider ψ : V (G) → {1, 2, ..., 2n + 2} as given

below.”

Case (i) If ‘n ’is even.

Fix ψ(v0) = 1, ψ(w) = 2n+1, ψ(v1) = 2, ψ(v2) = 3, ψ(vi) = ψ(vi−1)+ 2; 3 ≤ i ≤ n− 1,

ψ(vn) = 2n, ψ(un) = 2n − 1 & ψ(ui) = 2ψ(vi); 1 ≤ i ≤ n
2 + 1. Alloting the remaining

labels simultaneously to unlabeled nodes gives |eψ(0)− eψ(1)| ≤ 1 which proves that G

is a DCL.

Case (ii) If ‘n’ is odd.

Fix ψ(v0) = 1, ψ(w) = 2n+1, ψ(v1) = 2, ψ(v2) = 3, ψ(vi) = ψ(vi−1)+ 2; 3 ≤ i ≤ n− 1,

ψ(vn) = 2n + 2, ψ(un) = 2n − 1 & ψ(ui) = 2ψ(vi); 1 ≤ i ≤ ⌈n2 ⌉. Assigning the

remaining labels simultaneously to unlabeled nodes gives |eψ(0)− eψ(1)| ≤ 1. Hence, G

is a DCG.

Remark 5.10. Duplication of an arbitrary node of degree 3 by a node in Gn, n ≥ 3

permits a DCL and its proof is same as Theorem 5.2.18.

Theorem 5.2.19. [82] S′(K1,n) permits a DCL.

Theorem 5.2.20. Extension of each node in K1,n admits a DCL.

Proof. Let {v0, vi : 1 ≤ i ≤ n} be the node set of K1,n where v0 is apex node and G be

obtained by taking the extension of each node of K1,n having V (G) = V (K1,n)∪{u0, ui :
1 ≤ i ≤ n}, and E(G) = E(K1,n) ∪ {viui, v0ui, u0vi : 1 ≤ i ≤ n} ∪ {v0u0}. Note that

|V (G)| = 2n + 2, whereas |E(G)| = 4n + 1. Consider ψ : V (G) → {1, 2, ..., 2n + 2}
defined by fixing ψ(v0) = 2, ψ(u0) = 1, ψ(v1) = 4, ψ(vi) = ψ(vi−1) + 2; 2 ≤ i ≤ n,

ψ(ui) = ψ(vi)−1; 1 ≤ i ≤ n. Observe that ψ(v0)|ψ(vi); ∀ i, ψ(u0)|ψ(v0) and ψ(u0)|ψ(vi);
∀ i, it implies that eψ(1) = 2n+1 and eψ(0) = 2n which establishes that G is a DCG.

Theorem 5.2.21. Duplicating each node by a node in K1,n for n ≥ 3 results in a DCG.
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Proof. Duplication of each node by node in K1,n results in S′(K1,n) which is a DCG by

Theorem 5.2.19.

Theorem 5.2.22. Duplicating each edge by a node in K1,n, n ≥ 3 admits a DCL.

Proof. Let V (K1,n) = {v0, vi : 1 ≤ i ≤ n}, and E(K1,n) = {v0vi : 1 ≤ i ≤ n} and

G be formed by duplicating each edge with a node in K1,n having node and edge set

respectively V (K1,n) ∪ {ui : 1 ≤ i ≤ n} and E(K1,n) ∪ {viui, v0ui : 1 ≤ i ≤ n}.
See that the cardinality of node, and edge set of G is respectively 2n + 1 and 3n.

Consider ψ : V (G) → {1, 2, ..., 2n+ 1} given by fixing ψ(v0) = 2, ψ(v1) = 1, ψ(v2) = 4,

ψ(vi) = ψ(vi−1) + 2; 3 ≤ i ≤ n, ψ(ui) = ψ(vi)
2 such that ψ(ui) is odd. Assign the

remaining odd labels simultaneously to the unlabeled nodes. Observe that if n is odd

then eψ(1) = eψ(0)+1 while eψ(0) = eψ(1), if n is even. For both the cases, G is a DCG

(see Figure 5.8).

Figure 5.8: DCL of a graph formed by duplicating each edge by a node in K1,4

Remark 5.11. Duplicating each edge by a node in K1,n results in a friendship graph

which is eventually a DCG by Theorem 5.2.22.

Theorem 5.2.23. [82] S′(Bn,n) permits a DCL.

Theorem 5.2.24. Extension of each node in Bn,n admits a DCL.

Proof. Let V (Bn,n) = {v0, u0, vi, ui : 1 ≤ i ≤ n} and E(Bn,n) = {v0vi, u0ui, v0u0 : 1 ≤
i ≤ n}.“Let G be formed by taking the extension of each node in Bn,n with V (G) =

V (Bn,n)∪{v′0, u′0, v′i, u′i : 1 ≤ i ≤ n} and E(G) = E(Bn,n)∪{v0v′i, u0u′i, viv′i, uiu′i, v′0vi, u′0ui :
1 ≤ i ≤ n}∪{v0v′0, u0u′0, v′0u0, u′0v0}. See that |V (G)| = 4n+4 and |E(G)| = 8n+5. Con-

sider ψ : V (G) → {1, 2, ..., 4n + 4}”defined by fixing ψ(v0) = 1, ψ(v′0) = 2, ψ(u′0) = 4,

ψ(u0) = t, where t is the largest odd number ≤ 4n + 4. Next, ψ(v1) = 3, ψ(vi) =
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ψ(vi−1) + 2; 2 ≤ i ≤ n, ψ(v′i) = 2ψ(vi); 1 ≤ i ≤ n, ψ(u1) = 8, ψ(ui) = ψ(ui−1) + 4;

2 ≤ i ≤ n, ψ(u′1) = ψ(vn) + 2 and ψ(u′i) = ψ(u′i−1) + 2; 2 ≤ i ≤ n. Observe

that ψ(v0)|ψ(vi), ψ(v0)|ψ(v′i), ψ(vi)|ψ(v′i), ψ(v0)|ψ(v′0), ψ(v0)|ψ(u0), ψ(v0)|ψ(u′0) and

ψ(u′0)|ψ(ui) for all i; 1 ≤ i ≤ n. Therefore, eψ(1) = 4n+ 3 and eψ(0) = 4n+ 2 resulting

which G is a DCG (see Figure 5.9).

Figure 5.9: DCL of a graph formed by taking extension of each node in B4,4

Remark 5.12. Duplication of each node by a node in Bn,n results in S′(Bn,n) which is a

DCG by Theorem 5.2.23.

Theorem 5.2.25. Duplication of each edge by a node in Bn,n admits a DCL.

Proof. Let V (Bn,n) = {v0, u0, vi, ui : 1 ≤ i ≤ n} andtE(Bn,n) = {v0vi, u0ui, v0u0 :

1 ≤ i ≤ n}. Let G be formed by “duplicating each edge by a node” in Bn,n having

V (G) = V (Bn,n) ∪ {w, v′i, u′i : 1 ≤ i ≤ n} and E(G) = E(Bn,n) ∪ {v0v′i, u0u′i, u′iui, v′ivi :
1 ≤ i ≤ n} ∪ {v0w, u0w}. Clearly, |V (G)| = 4n + 3. Define ψ : V (G) → {1, 2, ..., 4n +

3} by fixing ψ(v0) = 1, ψ(u0) = 2, ψ(v1) = 3, ψ(vi) = ψ(vi−1) + 2; 2 ≤ i ≤ n,

ψ(v′1) = 4, ψ(v′i) = ψ(v′i−1) + 2; 2 ≤ i ≤ n, ψ(u1) = ψ(vn) + 2, ψ(ui) = ψ(ui−1) + 2;

2 ≤ i ≤ n, ψ(u′1) = ψ(v′n) + 2, ψ(u′i) = ψ(v′i−1) + 2; 2 ≤ i ≤ n and ψ(w) = 4n + 3.

Observe, ψ(v0)|ψ(vi), ψ(v0)|ψ(v′i), ψ(v0)|ψ(w), ψ(v0)|ψ(u0), ψ(u0)|ψ(u′i); 1 ≤ i ≤ n.

Here, eψ(1) = 3n+ 2 and eψ(0) = 3n+ 1, proving that G is a DCG.

Open Problems

The following open problems are framed due to the study done in this chapter.

1. If G is a DCG, then does graph obtained by performing extension of each node of G

also permit a DCL?

2. Is there a characterization of graphs that do not admit a DCL but whose extension

admits a DCL?
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5.3 Conclusion

This chapter has dealt with certain results on graph operations namely, duplication

of node by a node, duplication of edge by a node and extension of node for various

well-known graphs viz; Pn, Cn, Wn, Hn, Fln, Gn, K1,n and Bn,n for DCL.



Chapter 6

New Variants of DCL

6.1 Introduction

Murugesan et al.,“in [42] introduced a variant of DCL named, square divisor cordial

labeling. Kanani et al., [37] introduced the notion of cube divisor cordial labeling and

contributed some standard results. Later, Lourdusamy [40] coined a new variant of

DCL named sum divisor cordial labeling. Motivated by this, two new variants of DCL

namely, double divisor cordial labeling (DDCL) and average even divisor cordial labeling

(AEDCL) are introduced and studied in this chapter. Throughout this chapter, DDCL,

AEDCL, DDCG and AEDCG are used to denote respectively the double divisor cordial

labeling, average even divisor cordial labeling, double divisor cordial graph and average

even divisor cordial graph.”

6.2 Double Divisor Cordial Labeling

In this section, certain general results concerning DDCL of graphs are established be-

sides, exploring the same for some well known graphs. First, definition of DDCL is

introduced.

Definition 6.2.1. “A double divisor cordial labeling (DDCL) of G(V,E) is a bijection

ψ from V to {1, 2, 3, ..., |V (G)|} defined by the induced function ψ⋆ : E → {0, 1} such

that for each edge yz, ψ⋆(yz) is given label 1 if 2ψ(y)|ψ(z) or 2ψ(z)|ψ(y) and label 0

otherwise, then the modulus of the difference of edges having labels 0 and labels 1 do

not exceed 1 i.e; |eψ(0) − eψ(1)| ≤ 1. If a graph permits a DDCL, then it is known as

double divisor cordial graph (DDCG).”

88
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6.2.1 DDCL of Some Well Known Graphs

In this section, DDCL of some standard graphs has been studied.

Theorem 6.2.1. For a given t ∈ N, ∃ a DDCG, G on t nodes.

Proof. There can be two cases for t.

Case (i) When t is even.

Construct a path having t
2+1 nodes say v1, v2, ..., v t

2
+1. Attach

t
2−1 nodes namely, v t

2
+2,

v t
2
+3, ..., vt to v1. Define a labeling ψ by fixing ψ(vi) = 2i−1 for 1 ≤ i ≤ t

2 , ψ(v t
2
+1) = 2,

ψ(v t
2
+i) = ψ(v t

2
+(i−1)) + 2 for 2 ≤ i ≤ t

2 . Observe that edges v1vi;
t
2 + 2 ≤ i ≤ t are

labeled 1 and the remaining edges are labeled 0. Clearly, eψ(1) =
t
2 − 1 and eψ(0) =

t
2 .

Case (ii) When t is odd.

Construct a path having t+1
2 nodes say v1, v2, ..., v t+1

2
and attach t−1

2 nodes namely,

v t+3
2
, v t+5

2
, ..., vt to v1. Define a labeling ψ by taking ψ(v1) = 1, ψ(vi) = ψ(vi−1) + 2 for

2 ≤ i ≤ t+1
2 , and label {v t+3

2
, v t+5

2
, ..., vt} with unutilized even labels out of {1, 2, ..., t}.

Observe that edges v1vi;
t+3
2 ≤ i ≤ t are labeled 1 and the remaining edges are labeled

0. Clearly, eψ(0) = eψ(1) =
t−1
2 .

Hence, G is a DDCG (see Figure 6.1).

Figure 6.1: Construction of a DDCG on 11 nodes

Theorem 6.2.2. If G(p, q) is a DDCG with q even, then G± e admits a DDCL.

Proof. Since G is DDCG with labeling ψ and q is even therefore, eψ(0) = eψ(1). Thus,

addition or deletion of one edge yields either eψ(0) = eψ(1) + 1 or eψ(1) = eψ(0) + 1

which justifies that |eψ(0)− eψ(1)| ≤ 1.

Theorem 6.2.3. If G(p, q) is a DDCG with q odd, then G− e admits a DDCL.

Proof. Let G be a DDCG with q odd. Then either eψ(0) = eψ(1)+1 or eψ(1) = eψ(0)+1.

Suppose eψ(0) = eψ(1)+1, then removing the edge having label 0 yields |eψ(0)−eψ(1)| ≤
1.

Remark 6.1. Theorem 6.2.3 holds good for G+ e.
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Definition 6.2.2. [87] “A full binary tree is a binary tree in which each internal vertex

has exactly two children.”

In this chapter, by full binary tree one means a binary tree having 2i nodes at ith level,

where i = 0, 1, 2....

Theorem 6.2.4. Every full binary tree admits a DDCL.

Proof. Let Tn denotes the full binary tree of n levels and t0 is fixed as root node. It is

noteworthy that V (Tn) is always odd and therefore yield even count of edges. The root

node is also called as zero level. Clearly, ith level has 2i nodes. Clearly, |V (Tn)| = 2n+1−1

and |E(T )| = 2n+1−2. Consider ψ : V (Tn) → {1, 2, ..., 2n+1−1} and define according to

the given pattern. Fix ψ(t0) = 1. Next, assign the labels 2i, 2i + 1, 2i + 2,...,2i+1 − 1 to

the ith level nodes where 1 ≤ i ≤ n. Observe that 2(2i+m)|2i+1+2m for 0 ≤ m ≤ 2i−1

and 2(2i + m) does not divide 2i+1 + 2m + 1 for 0 ≤ m ≤ 2i − 1 resulting which

|eψ(0)− eψ(1)| = 0 which proves that Tn is a DDCG (see Figure 6.2).

Figure 6.2: DDCL of T3

Theorem 6.2.5. Pn, n ≥ 3 admits a DDCL.

Proof. Let V (Pn) = {pi : 1 ≤ i ≤ n}. Consider ψ : V (Pn) → {1, 2, ..., n} as given.

Assign labels begining with p1, according to the given pattern.

1, 1.21, 1.22, ..., 1.2k1 ,

3, 3.21, 3.22, ..., 3.2k2 ,

5, 5.21, 5.22, ..., 5.2k3 ,

..., ..., ..., ..., ..., ...,
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where (2d − 1)2kd ≤ n, d ≥ 1, kd ≥ 0. Note that (2d − 1)2r|(2d − 1)2s ; (r < s) and

(2d− 1)2kd does not divide (2d+1). Now, alloting unutilized labels out of {1, 2, .......n}
simultaneously to the unlabeled nodes yields |eψ(0)− eψ(1)| ≤ 1, hence Pn is a DDCG.

Theorem 6.2.6. Cn, n ≥ 3 admits a DDCL.

Proof. Let V (Cn) = {c1, c2, c3, ..., cn}. Consider ψ : V (Cn) → {1, 2, ..., n} explained as

follows. Allocate labels, begining with c1, according to the given pattern.

1, 1.21, 1.22, ..., 1.2k1 ,

3, 3.21, 3.22, ..., 3.2k2 ,

5, 5.21, 5.22, ..., 5.2k3 ,

..., ..., ..., ..., ..., ...,

where (2d−1)2kd ≤ n, d ̸= 2 and d ≥ 1, kd ≥ 0. Alloting unutilized labels simultaneously

to unlabeled nodes yields |eψ(0)− eψ(1)| ≤ 1. Hence the result.

Theorem 6.2.7. Wn, n ≥ 3 admits a DDCL for odd values n.

Proof. Let V (Wn) = {w0, w1, w2, ..., wn} where w0 denotes the apex node. Consider

ψ : V (Wn) → {1, 2, ..., n+1}. Fix ψ(w0) = 1. Assign labels begining with w1 according

to the given pattern.

2, 2.21, 2.22, ..., 2.2k1 ,

3, 3.21, 3.22, ..., 3.2k2 ,

5, 5.21, 5.22, ..., 5.2k3 ,

..., ..., ..., ..., ..., ...,

where (2d−1)2kd ≤ n+1 and d ≥ 1, kd > 0. Allocate the unutilized labels simultaneously

to unlabeled nodes. Observe that |eψ(0) − eψ(1)| = 0, which gives Wn a DDCG (see

Figure 6.3).

Remark 6.2. Note that Wn does not admit DDCL for n = 4, 6, 8, 10.

Theorem 6.2.8. Wn, n ≥ 12 admits a DDCL for even values of n.

Proof. Let V (Wn) = {w0, w1, w2, ..., wn} where w0 denotes the apex node. Consider

ψ : V (Wn) → {1, 2, ..., n + 1}. Fix ψ(w0) = 1, ψ(wn) = 12, ψ(wn−1) = 3, and assign
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the labels 3.21, 3.23, 3.24, ..., 3.2k2 to wn−2, wn−3, .... Now begining with w1, assign the

labels according to the given pattern.

2, 2.21, 2.22, ..., 2.2k1 ,

5, 5.21, 5.22, ..., 5.2k3 ,

7, 7.21, 7.22, ..., 7.2k4 ,

..., ..., ..., ..., ..., ...,

where (2d − 1)2kd ≤ n + 1 and d ≥ 1, kd > 0. Allocating the unutilized labels simulta-

neously to unlabeled nodes gives Wn a DDCG (see Figure 6.3).

Figure 6.3: DDCL of W7 and W12

Theorem 6.2.9. Hn, n ≥ 3 admits a DDCL.

Proof. Let V (Hn) = {x0} ∪ {x1, x2, x3, ..., xn} ∪ {y1, y2, ..., yn} ;x0, xi and yi represent

respectively the apex, rim and pendant nodes. Clearly, |V (Hn)| = 2n+1 and |E(Hn)| =
3n. Consider ψ : V (Hn) → {1, 2, ..., 2n + 1} defined by letting ψ(x0) = 1 and assign

labels begining with x1 according to the given pattern.

2, 2.21, 2.22, ..., 2.2k1 ,

6, 6.21, 6.22, ..., 6.2k2 ,

..., ..., ..., ..., ..., ...,

where (4d−2)2kd ≤ 2n+1 and d ≥ 1. Note that 2(4d−2)2r divides (4d−2)2s ; (r < s).

Allocating the unutilized labels simultaneously to the remaining nodes, begining with

y1 yields |eψ(0)− eψ(1)| ≤ 1, which proves that Hn is a DDCG.

Theorem 6.2.10. fn, n ≥ 3 admits a DDCL.

Proof. Let V (fn) = {x0, x1, x2, ..., xn} where x0 is an apex node. Clearly, |V (fn)| =
n + 1 and |E(fn)| = 2n − 1. Consider ψ : V (fn) → {1, 2, ..., n + 1}. Assign labels to
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x0, x1, x2, ..., simultaneously, according to the given pattern.

1, 1.21, 1.22, ..., 1.2k1 ,

3, 3.21, 3.22, ..., 3.2k2 ,

5, 5.21, 5.22, ..., 5.2k3 ,

..., ..., ..., ..., ..., ...,

where (2d − 1)2kd ≤ n + 1 and d ≥ 1. Assign unutilized labels simultaneously to the

unlabeled nodes. Clearly, |eψ(0)−eψ(1)| ≤ 1 which justifies that fn admits a DDCL.

Definition 6.2.3. [66] “Jelly fish graph denoted by J(m,n) is obtained from a 4-cycle

x1, x2, x3, x4 by joining x1 and x3 by an edge and adding m pendant edges to x2 and n

pendant edges to x4.”

Theorem 6.2.11. J(m,n) admits a DDCL.

Proof. Let V (J(m,n)) = {x1, x2, x3, x4, yi, zj : 1 ≤ i ≤ m, i ≤ j ≤ n} and E(J(m,n)) =

{x1x2, x1x3, x1x4, x2x3, x4x3} ∪ {x2yi : 1 ≤ i ≤ m} ∪ {x4zj : 1 ≤ j ≤ n}. Clearly,

|V (J(m,n))| = n +m + 4 and |E(J(m,n))| = n +m + 5. Consider ψ : V (J(m,n)) →
{1, 2, ..., n+m+ 4} for the given cases.

Case (i) When n = m.

Label ψ(x1) = 2 , ψ(x2) = 1, ψ(x3) = 4, ψ(x4) = 3. Now assign all the unused even

labels to yi; 1 ≤ i ≤ m and unused odd labels to zj where 1 ≤ j ≤ n.

Case (ii) When n > m.

Fix ψ(x1) = 2, ψ(x2) = 3, ψ(x3) = 4, ψ(x4) = 1. Now assign all unused even labels to

zj ’s where 1 ≤ i ≤ n and once even labels are consumed, assign unused labels (odd) to

remaining zj ’s if any, and to all yi’s where 1 ≤ 1 ≤ m.

Case (iii) When m > n.

Fix ψ(x1) = 2, ψ(x2) = 1, ψ(x3) = 4, ψ(x4) = 3. Allocate all the unutilized even labels

to yi where 1 ≤ i ≤ m and once even labels are consumed, assign unused odd labels to

remaining yi’s and to all zj ’s where 1 ≤ j ≤ n.

In all the cases, one can establish that |eψ(0)−eψ(1)| ≤ 1 which proves the theorem.

Theorem 6.2.12. Fn admits a DDCL.

Proof. Let V (Fn) = {k0, ki1, ki2 : 1 ≤ i ≤ n} and E(Fn) = {k0ki1, ki1ki2, k0ki2 : 1 ≤ i ≤
n}. Clearly, |V (Fn)| = 2n+1 and |E(Fn)| = 3n. Consider ψ : V (Fn) → {1, 2, ..., 2n+1}.
Fix ψ(k0) = 1, ψ(k11) = 2, ψ(k21) = 3, ψ(ki1) = ψ(k(i−1)1) + 2; 3 ≤ i ≤ n, ψ(ki2) =

2ψ(ki1) for 1 ≤ i ≤ n
2 . Now assign remaining labels out of {1, 2, ..., 2n+1} simultaneously
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to unlabeled nodes. (If n is odd then ψ(ki2) = 2ψ(ki1) for 1 ≤ i ≤ ⌈n2 ⌉). Consequently,

|eψ(0)− eψ(1)| ≤ 1, which shows that Fn is a DDCG.

Theorem 6.2.13. Kn does not admit a DDCL for n ≥ 5.

Proof. Let V (Kn) = {k1, k2, ..., kn}. Clearly, |V (Kn)| = n and |E(Kn)| = n(n−1)
2 .

Suppose Kn allows a DDCL, say, ψ for n ≥ 5. Fix ψ(ki) = i; i = 1, 2, ..., n. Now, arise

two possibilities.

Case (i) n ≡ 0, 1(mod 4).

Since ψ is DDCL on Kn, therefore eψ(0) = eψ(1) = n(n−1)
4 should hold. Observing

ψ, k1 contributes ⌊ n
2.1⌋ edges having label 1, k2 contributes ⌊ n

2.2⌋ edges having label

1, k3 contributes ⌊ n
2.3⌋ edges having label 1 and so on, thus eψ(1) = ⌊ n

2.1⌋ + ⌊ n
2.2⌋

+ ⌊ n
2.3⌋+...+⌊ n

2.m⌋, where m is the largest positive integer such that 2m ≤ n. By

assumption, eψ(1) =
n(n−1)

4 , but n(n−1)
4 > ⌊ n

2.1⌋ + ⌊ n
2.2⌋ + ⌊ n

2.3⌋ +...+⌊ n
2.m⌋, which leads

to a contradiction.

Case (ii) n ≡ 2, 3(mod 4).

Then either eψ(1) = ⌈n(n−1)
4 ⌉ and eψ(0)= ⌊n(n−1)

4 ⌋ or eψ(0) = ⌈n(n−1)
4 ⌉ and eψ(1)

= ⌊n(n−1)
4 ⌋ should hold. Observing ψ, k1 contributes ⌊ n

2.1⌋ edges having label 1, k2

contributes ⌊ n
2.2⌋ edges having label 1, k3 contributes ⌊ n

2.3⌋ edges having label 1, and so

on, thus eψ(1) = ⌊ n
2.1⌋+ ⌊ n

2.2⌋+ ⌊ n
2.3⌋+...+⌊ n

2.m⌋, where m is the largest positive integer

such that 2m ≤ n. Again, eψ(1) = ⌊ n
2.1⌋ + ⌊ n

2.2⌋ + ⌊ n
2.3⌋ +...+ ⌊ n

2.m⌋ < ⌊n(n−1)
4 ⌋ <

⌈n(n−1)
4 ⌉, a contradiction.

Hence, if n ≥ 5, then Kn does not allow a DDCL (see Figure 6.4).

Remark 6.3. One can obtain the DDCL of Kn for n = 2, 3, 4.

Figure 6.4: K2 and K3 are DDCG whereas K4 is not

Remark 6.4. One can observe that not every DCG is DDCG as such it becomes very

intresting to look for classes of graph that admit DCL but not DDCL. For example, K5

andK6 are DCG but not DDCG. Similarly, not every DDCG is DCG, it becomes equally

interesting to see the families of graph that are DDCG but not DCG. For instance, K4

is DDCG but not DCG.

One more example is flower graph. For instance, consider Fl3, which exhibits DCL but

not DDCL.
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6.2.2 DDCL of Some Star Related Graphs

In this section, star related graphs are investigated for DDCL.

Theorem 6.2.14. K1,n admits a DDCL.

Proof. Let V (K1,n) = {x0, xi : 1 ≤ i ≤ n} with x0 as apex node. Consider ψ :

V (K1,n) → {1, 2, ..., n + 1}. Fix ψ(x0) = 1 and allot the unutilized labels to remaining

nodes yields the result.

Theorem 6.2.15. Bn,m admits a DDCL.

Proof. Let V (Bn,m) = {x0, y0, xi, yj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} where x0, y0 are apex

nodes. Clearly, |V (Bn,m)| = n +m + 2 and |E(Bn,m)| = n +m + 1. Consider a map

ψ : V (B(n,m)) → {1, 2, ..., n+m+ 2} defined by the below mentioned cases.

Case (i) When n = m.

Put ψ(x0) = 1, ψ(x1) = 2, ψ(y0) = q where q is the largest prime ≤ n + m + 2,

ψ(xi) = ψ(xi−1) + 2; 2 ≤ i ≤ n and allot the remaining labels to yj ’s where 1 ≤ j ≤ m.

Case (ii) n > m or n < m.

First suppose n > m, fix ψ(x0) = 1, ψ(x1) = 2, ψ(y0) = q where q is the largest prime

≤ n+m+2, ψ(xi) = ψ(xi−1)+2 ; 2 ≤ i ≤ n. Once even labels are consumed fully, assign

unutilized labels to remaining unlabeled nodes xi, if any, and to all yj ’s, simultaneously

from {1, 2, ..., n+m+ 2}.
Similar argument holds good for n < m too.

Evidently, |eψ(0)− eψ(1)| ≤ 1, which shows that Bn,m is a DDCG (see Figure 6.5).

Figure 6.5: DDCL of B4,4

Theorem 6.2.16. S(K1,n) admits a DDCL.

Proof. Let“V (K1,n) = {x0, xi : 1 ≤ i ≤ n} and E(K1,n) = {x0xi : 1 ≤ i ≤ n}. For

S(K1,n), V (S(K1,n)) = V (K1,n) ∪ {yi : 1 ≤ i ≤ n} and E(S(K1,n)) = {x0yi : 1 ≤ i ≤
n}∪{yixi : 1 ≤ i ≤ n}. Clearly, |V (S(K1,n))| = 2n+1 and |E(S(K1,n))| = 2n. Consider

ψ : V (S(K1,n)) → {1, 2, ..., 2n + 1}.”Fix ψ(x0) = 1, ψ(y1) = 2, ψ(yi) = ψ(yi−1) + 2;
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2 ≤ i ≤ n and ψ(xi) = ψ(yi) + 1; 1 ≤ i ≤ n. Evidently, |eψ(0)− eψ(1)| = 0 which proves

that S(K1,n) is a DDCG (see Figure 6.6).

Figure 6.6: DDCL of S(K1,6)

Theorem 6.2.17. S(Bn,n) admits a DDCL.

Proof. Let V (Bn,n) = {x0, y0, xi, yi : 1 ≤ i ≤ n} and E(Bn,n) = {x0xi : 1 ≤ i ≤
n}∪{y0yi : 1 ≤ i ≤ n}∪{x0y0}.“Consider S(Bn,n) with V (S(Bn,n)) = V (Bn,n)∪{x′i, y′i :
1 ≤ i ≤ n} ∪ {u} and E(S(Bn,n)) = {x0x′i : 1 ≤ i ≤ n} ∪ {x′ixi : 1 ≤ i ≤ n} ∪ {y0y′i :
1 ≤ i ≤ n} ∪ {y′iyi : 1 ≤ i ≤ n} ∪ {x0u, uy0}. Clearly, |V (S(Bn,n))| = 4n + 3 and

|E(S(Bn,n))| = 4n + 2. Consider ψ : V (S(Bn,n)) → {1, 2, ..., 4n + 3}”defined by fixing

ψ(x0) = 1, ψ(u) = 4, ψ(y0) = 2, ψ(x′1) = 6, ψ(y′1) = 3, ψ(y′2) = 8, ψ(y1) = 5,

ψ(x′i) = ψ(x′i−1) + 4; 2 ≤ i ≤ n, ψ(xi) = ψ(x′i) + 1; 1 ≤ i ≤ n, ψ(y′i) = ψ(y′i−1) + 4;

3 ≤ i ≤ n and ψ(yi) = ψ(y′i) + 1; 2 ≤ i ≤ n. Evidently, |eψ(0)− eψ(1)| ≤ 1 which proves

that S(Bn,n) is a DDCG.

Remark 6.5. As subdivision of Pn and Cn yields path and cycle again, therefore S(Pn)

and S(Cn) are DDCGs.

Theorem 6.2.18. S′(K1,n) permits a DDCL.

Proof. Let V (K1,n) = {x0, xi : 1 ≤ i ≤ n} and E(K1,n) = {x0xi : 1 ≤ i ≤ n}.
Consider“S′(K1,n) with V (S′(K1,n)) = V (K1,n)∪{u0, ui : 1 ≤ i ≤ n} and E(S′(K1,n)) =

E(K1,n) ∪ {x0ui : 1 ≤ i ≤ n} ∪ {u0xi : 1 ≤ i ≤ n}. Clearly, |V (S′(K1,n))| = 2n + 2

and |E(S′(K1,n))| = 3n. Consider ψ : V (S′(K1,n)) → {1, 2, ..., 2n + 2}.”Fix ψ(x0) = 1,

ψ(u0) = 2, ψ(x1) = 4, ψ(xi) = ψ(xi−1) + 2; 2 ≤ i ≤ n and allocate the unutilized odd

labels to ui; 1 ≤ i ≤ n. Observe that when n is even, eψ(0) = n+ n
2 = 3n

2 and eψ(1) =
3n
2 ,

and when n is odd, eψ(0) = n + ⌊n2 ⌋ and eψ(1) = n + ⌈n2 ⌉. Thus, |eψ(0) − eψ(1)| ≤ 1

and hence the result.

Theorem 6.2.19. S′(Bn,m) permits a DDCL.
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Proof. Let V (Bn,m) = {x0, y0, xi, yj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and E(Bn,m) = {x0xi :
1 ≤ i ≤ n} ∪ {y0yj : 1 ≤ i ≤ m} ∪ {x0y0}. Let S′(Bn,m) be having V (S′(Bn,m)) =

V (Bn,m) ∪ {x′0, y′0, x′i, y′j : 1 ≤ i ≤ n, 1 ≤ j ≤ m} and E(S′(Bn,m)) = E(Bn,m) ∪ {x0x′i :
1 ≤ i ≤ n}∪{x′0xi : 1 ≤ i ≤ n}∪{y0y′j : 1 ≤ j ≤ m}∪{y′0yj : 1 ≤ j ≤ m}∪{x0y′0, y0x′0}.
Clearly, |V (S′(Bn,m)| = 2n + 2m + 4 and |E(S′(Bn,m)| = 3n + 3m + 3. Consider

ψ : V (S′(Bn,m) → {1, 2, ..., 2n+ 2m+ 4} under the below mentioned cases.

Case (i) When n = m.

Let ψ(x0) = 1, ψ(x′0) = 2, ψ(y0) = 4, ψ(x1) = 8, ψ(xi) = ψ(xi−1) + 4; 2 ≤ i ≤ n

and ψ(y′0) = p; p is the largest prime ≤ 4n + 4. Assign the unutilized even labels to

x′i; 1 ≤ i ≤ n and odd labels to yj and y′j ; 1 ≤ j ≤ n, in any order. Observe that

eψ(1) = 3n+ 2 and eψ(0) = 3n+ 1.

Case (ii) When n ̸= m.

Without“loss of generality, suppose n > m. Let p1, p2 be sufficiently large primes

and”p2 < p1 ≤ 2n + 2m + 4. Fix ψ(y0) = p1, ψ(y
′
0) = p2, ψ(x0) = 1, ψ(x′0) = 2,

ψ(x1) = 4, ψ(xi) = ψ(xi−1) + 4; i ≥ 2 such that ψ(xk) ≤ 2n + 2m + 4 for some k ≤ n.

Next allocate the unutilized even labels to x′i; i ≥ 1 in such a way that ψ(x′t) ≤ 2n+2m+4

for some t ≤ n, and to unlabeled xi, if any. Next, assign the unconsumed labels to un-

labeled nodes in any fashion.

In both the cases, |eψ(0)−eψ(1)| ≤ 1 and hence S′(Bn,m) is a DDCG (see Figure 6.7).

Figure 6.7: DDCL of S′(B6,4)

Theorem 6.2.20. S′(S(K1,n)) permits a DDCL.

Proof. Let V (S(K1,n)) = {x, yi, zi : 1 ≤ i ≤ n} and V (S′(S(K1,n))) = V (S(K1,n)) ∪
{x′, y′i, z′i; 1 ≤ i ≤ n}. Clearly, |V (S′(S(K1,n)))| = 4n + 2 and |E(S′(S(K1,n)))| = 6n.

Consider the function ψ : V (S′(S(K1,n))) → {1, 2, ..., 4n+2} defined by taking ψ(x) = 1,

ψ(x′) = 2, ψ(yi) = 4i; 1 ≤ i ≤ n, ψ(y′i) = 4i + 2; 1 ≤ i ≤ n, ψ(zi) = 4i + 1; 1 ≤ i ≤ n;

ψ(z′i) = 4i− 1; 1 ≤ i ≤ n. It follows that eψ(0) = eψ(1) = 3n proving that S′(S(K1,n))

is a DDCG.

Definition 6.2.4. [87] “G =
〈
K

(1)
1,n,K

(2)
1,n, ...,K

(m)
1,n

〉
denote the graph formed by joining

the apex nodes of K
(t−1)
1,n and K

(t)
1,n, to a newly inserted node rt−1 where 2 ≤ t ≤ m.”



Chapter 6. New Variants of DCL 98

Theorem 6.2.21. G =
〈
K

(1)
1,n,K

(2)
1,n

〉
admits a DDCL.

Proof. Let G be formed by joining the apex nodes, say, x0 and y0 respectively of K
(1)
1,n

and K
(2)
1,n, to a new node, say, w.“ The cardinality of node and edge set of G is 2n+3 and

2n + 2 respectively. Consider ψ : V (G) → {1, 2, ..., 2n + 3}”given by fixing ψ(x0) = 1,

ψ(w) = 2 and ψ(y0) = p; p is the largest prime ≤ 2n + 3. Allocate all the unused

even labels to the pendant nodes of K
(1)
1,n and remaining labels to unlabeled nodes.

Consequently, |eψ(0)− eψ(1)| ≤ 1, establishing that G is a DDCG (see Figure 6.8).

Figure 6.8: DDCL of
〈
K

(1)
1,4 ,K

(2)
1,4

〉
Theorem 6.2.22.

〈
K

(1)
1,n,K

(2)
1,n,K

(3)
1,n

〉
permits a DDCL.

Proof. Let x
(i)
0 , x

(i)
1 , x

(i)
2 , ..., x

(i)
n represent the nodes of K

(i)
1,n where x

(i)
0 ; 1 ≤ i ≤ 3 stands

for apex nodes. Let r1 and r2 be the newly introduced nodes such that x
(1)
0 and x

(2)
0 are

adjacent to r1, and x
(2)
0 and x

(3)
0 are adjacenttto r2 to form G =

〈
K

(1)
1,n,K

(2)
1,n,K

(3)
1,n

〉
. One

can see that |V (G)| = 3n+5 andt|E(G)| = 3n+4. Consider ψ : V (G) → {1, 2, ..., 3n+5}
defined by fixing ψ(r1) = 4, ψ(x

(1)
0 ) = 1, ψ(x

(2)
0 ) = 2 and ψ(x

(3)
0 ) = p; p is the largestt

prime ≤ 3n+5. Now allocate all unused even labels of the form 4n; n ∈ N to the pendant

nodes of K
(2)
1,n and remaining even labels to the unlabeled nodes of K

(1)
1,n. Allocating the

remaining labels simultaneously to the remaining unlabeled nodes yields G a DDCG.

Inspired by definition 6.2.4, a similar construction for bistar is proposed.

Definition 6.2.5. “G =
〈
B

(1)
n,n, B

(2)
n,n, ..., B

(m)
n,n

〉
denotes the graph by connecting the

apex nodes of B
(t−1)
n,n and B

(t)
n,n, to new nodes rt−1, st−1 where 2 ≤ t ≤ m (see Figure

6.9).”

Theorem 6.2.23.
〈
B

(1)
n,n, B

(2)
n,n

〉
admits a DDCL.

Proof. Let V (B
(i)
n,n) = {x(i)0 , y

(i)
0 , x

(i)
j , y

(i)
j : 1 ≤ j ≤ n} and E(B

(i)
n,n) = {x(i)0 y

(i)
0 , x

(i)
0 x

(i)
j , y

(i)
0 y

(i)
j :

1 ≤ j ≤ n}. Let G =
〈
B

(1)
n,n, B

(2)
n,n

〉
and r, s be newly introduced nodes such that r is
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Figure 6.9:
〈
B

(1)
3,3 , B

(2)
3,3 , B

(3)
3,3 , B

(4)
3,3

〉
adjacent to x

(1)
0 and x

(2)
0 , and s is adjacent to y

(1)
0 and y

(2)
0 . Clearly, |V (G)| = 4n + 6

and |E(G)| = 4n + 6. Consider ψ : V (G) → {1, 2, ..., 4n + 6} defined as follows. Fix

ψ(x
(1)
0 ) = 1, ψ(x

(2)
0 ) = 2, ψ(y

(1)
0 ) = 6, ψ(y

(2)
0 ) = 3, ψ(r) = 4, ψ(s) = 9. Assign even

labels of the form 4t; t ∈ N to x
(2)
j ; 1 ≤ j ≤ n and remaining even labels to x

(1)
j ;

1 ≤ j ≤ n. Next, allocating the unused labels to unlabeled nodes simultaneously shows

that G is a DDCG.

6.2.3 DDCL in the Context of Ring Sum

In this section, ring sum of G with K1,m is discussed.

Definition 6.2.6. [27] “Ring sum of two graphs G1 and G2 denoted by G1 ⊕G2 have

node set V1 ∪ V2 and edge set (E1 ∪ E2)− (E1 ∩ E2).”

Note: The ring sum of G with K1,m is taken by fixing one node of G and the apex node

of K1,m as a common node.

Theorem 6.2.24. For a DDCG, G(p, q) with labeling g, G⊕K1,m admits a DDCG for

the following conditions.

(i) Even values of m

(ii) Odd values of m and

(a)“q is even

(b) Both q and p are odd with eg(1) =
⌊ q
2

⌋
(c) q is odd and p is even with eg(1) =

⌈ q
2

⌉
.”

Proof. Given G(p, q) a DDCG, with labeling g, and V (G) = {u1, u2, ..., up}. Choose

u1 ∈ V (G), such that g(u1) = 1. Consider K1,m with V (K1,m) = {v0 = u1, vi :

1 ≤ i ≤ m} and E(K1,m) = {v0vi; 1 ≤ i ≤ m}. Let H = G ⊕ K1,m with V (H) =

V (G) ∪ {vi : 1 ≤ i ≤ m} and E(H) = E(G) ∪ {u1vi : 1 ≤ i ≤ m}. Consider ψ :

V (H) → {1, 2, ..., p, p+ 1, ..., p+m} defined by ψ(ui) = g(ui) for 1 ≤ i ≤ p. Recall that
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ψ(v0) = g(u1) = 1, fix ψ(vi) = p+ i for 1 ≤ i ≤ m. Next is to show that G⊕K1,m is a

DDCL for the under mentioned conditions.

Case (i) ‘m’ is even.

If ‘q’ is even, then eg(0) = eg(1) = q
2 . Also |E(H)| = q + m and 2ψ(u1) divides

every even number, see that eψ(1) = q
2 + m

2 and eψ(0) = q
2 + m

2 which justifies that

|eψ(0) − eψ(1)| ≤ 1. If q is odd, then either eg(0) = eg(1) + 1 or eg(1) = eg(0) + 1. On

the other hand m being even always yields equal count of edges having labels 1 and 0

(because 2ψ(u1) divides every even label that appears on pendant nodes of K1,m). Thus,

either eψ(0) = eψ(1) + 1 or eψ(1) = eψ(0) + 1, which justifies that |eψ(0)− eψ(1)| ≤ 1.

Case (ii) ‘m’ is odd.

The following subcases arise.

Subcase (i) ‘q’ is even and ‘p’ is even.

Since q is even, eg(0) = eg(1) =
q
2 . Also |E(H)| = q +m, following ψ, one can see that

eψ(1) =
q
2 +

⌈
m
2

⌉
− 1 and eψ(0) =

q
2 +

⌈
m
2

⌉
which justifies that |eψ(0)− eψ(1)| ≤ 1.

Subcase (ii) ‘q’ is even and ‘p’ is odd.

Since q is even, eg(0) = eg(1) = q
2 . Also, |E(H)| = q + m. Following ψ, see that

eψ(1) =
q
2 +

⌈
m
2

⌉
and eψ(0) =

q
2 +

⌈
m
2

⌉
− 1 which justifies that |eψ(0)− eψ(1)| ≤ 1.

Subcase (iii) Both ‘q’ and ‘p’ are odd with eg(1) =
⌊ q
2

⌋
.

Then eg(0) =
⌊ q
2

⌋
+ 1. By looking at ψ, one can find that eψ(1) =

⌊ q
2

⌋
+

⌈
m
2

⌉
and

eψ(0) = (
⌊ q
2

⌋
+ 1) + (

⌈
m
2

⌉
− 1) which justifies that |eψ(0)− eψ(1)| ≤ 1.

Subcase (iv) ‘q’ is odd, ‘p’ is even, with eg(1) =
⌈ q
2

⌉
.

Then eg(0) =
⌈ q
2

⌉
− 1. Observing ψ, one can find eψ(1) =

⌈ q
2

⌉
+ (

⌈
m
2

⌉
− 1) and eψ(0) =

(
⌈ q
2

⌉
− 1) +

⌈
m
2

⌉
which gives |eψ(0)− eψ(1)| ≤ 1.

Hence, G⊕K1,m admits a DDCL (see Figure 6.10).

Figure 6.10: DDCL of G⊕K1,4

Corollary 6.2.1. Pm ⊕K1,m is a DDCG.
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Proof. Let V (Pm ⊕K1,m) = V1 ∪ V2; V1 = {p1, p2, ..., pm}, V2 = {v0 = p1, v1, v2, ..., vm}
represent V (Pm) and V (K1,m), respectively with v0 apex node of K1,m. Note that

|V (Pm ⊕K1,m)| = 2m and |E(Pm ⊕K1,m)| = 2m − 1. Consider ψ : V (Pm ⊕K1,m) →
{1, 2, ..., 2m}. Fix ψ(p1) = 1, ψ(v1) = 2, ψ(vi) = ψ(vi−1) + 2; 2 ≤ i ≤ m, ψ(pi) =

ψ(pi−1) + 2; 2 ≤ i ≤ m. One can see that eψ(0) = m − 1 and eψ(1) = m resulting in

DDCL of Pm ⊕K1,m.

Corollary 6.2.2. Cm ⊕K1,m is a DDCG.

Proof. Let V (Cm⊕K1,m) = V1∪V2 ; V1 = {c1, c2, ..., cm} and V2 = {v0 = c1, v1, v2, ..., vm}
represent V (Cm) and V (K1,m) respectively. Observe that |V (Cm ⊕ K1,m)| = 2m and

|E(Cm ⊕K1,m)| = 2m. Consider ψ : V (Cm ⊕K1,m) → {1, 2, ..., 2m} defined by fixing

ψ(c1) = 1, ψ(v1) = 2, ψ(vi) = ψ(vi−1) + 2; 2 ≤ i ≤ m, ψ(ci) = ψ(ci−1) + 2; 2 ≤ i ≤ m.

Note that eψ(0) = m and eψ(1) = m, therefore Cm ⊕K1,m is a DDCG.

Corollary 6.2.3. G⊕K1,m is a DDCG, where “G is cycle with 1 chord.”

Proof. Let V (G⊕K1,m) = V1∪V2; V1 = {c1, c2, ..., cm} and V2 = {v0 = c1, v1, v2, ..., vm}
represent V (Cm) and V (K1,m) respectively. Also e = c2cm be a chord of Cm and v0

an apex node of K1,m. Observe, |V (G ⊕ K1,m)| = 2m and |E(G ⊕ K1,m)| = 2m + 1.

Labeling is done by ψ : V (G ⊙K1,m) → {1, 2, ..., 2m} as defined here. Let ψ(c1) = 1,

ψ(v1) = 2, ψ(vi) = ψ(vi−1) + 2; 2 ≤ i ≤ m, ψ(ci) = ψ(ci−1) + 2; 2 ≤ i ≤ m. Observe

that eψ(0) = m+ 1 and eψ(1) = m, thus proving that G⊕K1,m is a DDCG.

Corollary 6.2.4. fm ⊕K1,m permits a DDCL.

Proof. Consider fm ⊕ K1,m with V1 ∪ V2; V1 = {u0, u1, u2, ..., um} and V2 = {u0 =

v0, v1, v2, ..., vm} representing V (fm) and V (K1,m) respectively. Clearly, |V (fm⊕K1,m)| =
2m + 1 and |E(fm ⊕ K1,m)| = 3m − 1. Labeling function ψ : V (fm ⊕ K1,m) →
{1, 2, ..., 2m + 1} is defined by fixing ψ(u0) = 1, and assigning the available even la-

bels to ui; 1 ≤ i ≤ m in the following fashion.

2, 2.21, 2.22, ..., 2.2k1 ,

6, 6.21, 6.22, ..., 6.2k2 ,

..., ..., ..., ..., ..., ...,

such that (4t−2)2kt ≤ 2m+1 and t ≥ 1. Assigning the remaining labels to vi; 1 ≤ i ≤ m

yields |eψ(0)− eψ(1)| ≤ 1 establishing that fm ⊕K1,m is a DDCG.

Corollary 6.2.5. Dfm ⊕K1,m permits a DDCL.
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Proof. Let Dfm ⊕ K1,m with V1 ∪ V2; V1 = {x0, y0, u1, u2, ..., um} and V2 = {x0 =

v0, v1, v2, ..., vm} representing V (Dfm) and V (K1,m) respectively. Clearly, |V (Dfm ⊕
K1,m)| = 2m + 2 and |E(Dfm ⊕ K1,m)| = 4m − 1. Consider ψ : V (Dfm ⊕ K1,m) →
{1, 2, ..., 2m+ 2} by fixing ψ(x0) = 1, ψ(y0) = 2 and assign the available even labels to

ui; 1 ≤ i ≤ m in the following fashion.

2, 2.21, 2.22, ..., 2.2k1 ,

6, 6.21, 6.22, ..., 6.2k2 ,

..., ..., ..., ..., ..., ...,

such that (4t−2)2kt ≤ 2m+2 and t ≥ 1. Assigning the remaining labels to vi; 1 ≤ i ≤ m

gives |eψ(0)− eψ(1)| ≤ 1 showing that Dfm ⊕K1,m is a DDCG (see Figure 6.11).

Figure 6.11: DDCL of Df5 ⊕K1,5

Corollary 6.2.6. K1,m ⊕K1,m permits a DDCL.

Proof. Let K1,m⊕K1,m be with V1 ∪V2, where V1 = {u0, u1, u2, ..., um} and V2 = {v0 =
u1, v1, v2, ..., vm}. Clearly, |V (K1,m ⊕ K1,m)| = 2m + 1 and |E(K1,m ⊕ K1,m)| = 2m.

Consider ψ : V (K1,m⊕K1,m) → {1, 2, ..., 2m+1} defined by letting ψ(u0) = 1, ψ(v0) = 2.

Assign the remaining even labels to ui; 2 ≤ i ≤ m and odd labels to vi; 1 ≤ i ≤ m. Note

that |eψ(0)− eψ(1)| ≤ 1 which settles that K1,m ⊕K1,m is a DDCG.

6.2.4 DDCL of Corona of Certain Graphs

Here, certain results on DDCL of different graphs under a graph operation named,

corona, are derived.
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Theorem 6.2.25. Wn ⊙K1 permits a DDCL.

Proof. Let V (Wn) = {w0, wi : 1 ≤ i ≤ n}, w0 the apex node and G = Wn ⊙ K1 be

formed with V (G) = V (Wn) ∪ {w′
0, w

′
i : 1 ≤ i ≤ n}. Clearly, |V (G)| = 2n + 2 and

|E(G)| = 3n + 1. Consider ψ : V (G) → {t1, 2, ..., 2n + 2} given by fixing ψ(w0) = 1,

ψ(w′
0) = 2n + 2 and assign the available even labels to wi; 1 ≤ i ≤ n in the following

fashion.

2, 2.21, 2.22, ..., 2.2k1 ,

6, 6.21, 6.22, ..., 6.2k2 ,

..., ..., ..., ..., ..., ...,

such that (4t−2)2kt ≤ 2n and t ≥ 1. Note that 2(4t−2)2r|(4t−2)2s; r < s. Fix ψ(w′
1) =

3 and ψ(w′
i) = ψ(w′

i−1) + 2; 2 ≤ i ≤ n. One can easily see that |eψ(0) − eψ(1)| ≤ 1

establishing that G is a DDCG.

Theorem 6.2.26. DWn ⊙K1 permits a DDCL.

Proof. Let V (DWn) = {x0, xi, yi : 1 ≤ i ≤ n} where x0, xi, and yi; 1 ≤ i ≤ n are

respectively the apex, rim nodes of inner and outer circles. Let G = DWn ⊙ K1 with

V (G) = V (DWn)∪{x′0, x′i, y′i : 1 ≤ i ≤ n}. Clearly, |V (G)| = 4n+2 and |E(G)| = 6n+1.

Labeling function ψ : V (G) → {1, 2, ..., 4n+ 2} is given by fixing ψ(x0) = 1, ψ(x′0) = 3,

ψ(x1) = 6, ψ(x′1) = 2, ψ(xi) = ψ(xi−1) + 4; 2 ≤ i ≤ n, ψ(x′i) = ψ(xi)
2 ; 2 ≤ i ≤ n,

ψ(y1) = 4, ψ(yi) = ψ(yi−1) + 4; 2 ≤ i ≤ n, ψ(y′1) = ψ(x′n) + 2, ψ(y′i) = ψ(y′i−1) + 2;

2 ≤ i ≤ n. Clearly, |eψ(0) − eψ(1)| ≤ 1 establishing that G is a DDCG (see Figure

6.12).

Figure 6.12: DDCL of DW5 ⊙K1
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Theorem 6.2.27. fn ⊙K1 permits a DDCL.

Proof. Let fn ⊙ K1 be formed by adding u′0, u
′
1, u

′
2, ..., u

′
n corresponding to nodes u0,

u1, u2,...,un of fn where u0 is apex node of fn. Clearly, |V (fn ⊙ K1)| = 2n + 2 and

|E(fn ⊙K1)| = 3n. Consider ψ : V (fn ⊙K1) → {1, 2, ..., 2n + 2} given by ψ(u0) = 1,

ψ(u′0) = 2n+ 1, ψ(u′n) = 2n+ 2 and assign the available even labels to ui; 1 ≤ i ≤ n in

the following fashion.

2, 2.21, 2.22, ..., 2.2k1 ,

6, 6.21, 6.22, ..., 6.2k2 ,

..., ..., ..., ..., ..., ...,

such that (4t − 2)2kt ≤ 2n and t ≥ 1. Note that (4t − 2)2r|(4t − 2)2s; r < s and

2(4t− 2)2kj does not divide (4t+ 2) (nor 2(4t+ 2) divides (4t− 2)2kj ). Fix ψ(u′1) = 3

and ψ(u′i) = ψ(u′i−1) + 2; 2 ≤ i ≤ n − 1. Note that |eψ(0) − eψ(1)| ≤ 1 which makes

fn ⊙K1 a DDCG.

Theorem 6.2.28. Dfn ⊙K1 permits a DDCL.

Proof. Let V (Dfn) = {x0, y0, ui : 1 ≤ i ≤ n} and V (Dfn ⊙K1) = V (Dfn) ∪ {x′0, y′0, u′i :
1 ≤ i ≤ n} . Clearly, |V (Dfn ⊙K1)| = 2n + 4 and |E(Dfn ⊙K1)| = 4n + 1. Consider

ψ : V (Dfn ⊙ K1) → {1, 2, ..., 2n + 4}. Let ψ(x0) = 1, ψ(y0) = 2, ψ(x′0) = 2n + 4,

ψ(y′0) = 2n + 3 and assign the available even labels to ui; 1 ≤ i ≤ n in the following

fashion.

2, 2.21, 2.22, ..., 2.2k1 ,

6, 6.21, 6.22, ..., 6.2k2 ,

..., ..., ..., ..., ..., ...,

such that (4t − 2)2kt ≤ 2n + 2 and t ≥ 1. Fix ψ(u′1) = 3 and ψ(u′i) = ψ(u′i−1) + 2;

2 ≤ i ≤ n. Observe that |eψ(0)− eψ(1)| ≤ 1, which shows that G is a DDCG.

Theorem 6.2.29. Gl(n)⊙K1 permits a DDCL.

Proof. Let“V (Gl(n)) = {x0, y0, ui : 1 ≤ i ≤ n} and V (Gl(n) ⊙ K1) = V (Gl(n)) ∪
{x′0, y′0, u′i : 1 ≤ i ≤ n}. Clearly, |V (G)| = 2n + 4 and |E(G)| = 3n + 2. Consider

ψ : V (G) → {1, 2, ..., 2n + 4} given”by fixing ψ(x0) = 1, ψ(y0) = 2, ψ(x′0) = 2n + 4,

ψ(y′0) = 2n+3, ψ(u1) = 4, ψ(ui) = ψ(ui−1)+2; 2 ≤ i ≤ n, ψ(u′i) = ψ(ui)−1; 1 ≤ i ≤ n.

Clearly, Dfn ⊙K1 is a DDCG (see Figure 6.13).
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Figure 6.13: DDCL of Gl(5)⊙K1

Theorem 6.2.30. Fln ⊙K1 permits a DDCL.

Proof. Let V (Fln) = {x0, ui, vi; 1 ≤ i ≤ n},“where x0, ui and vi represent respectively
the apex, nodes of degree 4 and 2. Let G = Fln ⊙K1 with V (G) = V (Fln)∪ {x′0, u′i, v′i:
1 ≤ i ≤ n} and E(G) = E(Fln)∪{x0x′0, uiu′i, viv′i : 1 ≤ i ≤ n}. Clearly, |V (G)| = 4n+2

and |E(G)| = 6n+1. Consider ψ : V (G) → {1, 2, ..., 4n+2} given by assigning”ψ(x0) =

1, ψ(x′0) = 2, ψ(u1) = 6, ψ(ui) = ψ(ui−1) + 4; 2 ≤ i ≤ n, ψ(u′i) = ψ(ui)
2 ; 1 ≤ i ≤ n,

ψ(vi) = ψ(ui) − 2; 1 ≤ i ≤ n, ψ(v′1) = ψ(u′n) + 2 and ψ(v′i) = ψ(v′i−1) + 2; 2 ≤ i ≤ n.

Note that |eψ(0)− eψ(1)| ≤ 1 establishing that Fln ⊙K1 is a DDCG.

Theorem 6.2.31. K1,n ⊙K1 admits a DDCL.

Proof. Let“V (K1,n) = {k0, ki : 1 ≤ i ≤ n} where k0 is apex node. Consider K1,n ⊙K1

with V (K1,n ⊙ K1) = V (K1,n) ∪ {k′0, k′i : 1 ≤ i ≤ n} and E(K1,n ⊙ K1) = E(K1,n) ∪
{k0k′0, kik′i : 1 ≤ i ≤ n}. Clearly, |V (K1,n ⊙K1)| = 2n+2 and |E(K1,n ⊙K1)| = 2n+1.

Let ψ : V (K1,n ⊙K1) → {1, 2, ..., 2n + 2}”defined by fixing ψ(k0) = 1, ψ(k′0) = 2n + 2,

ψ(ki) = 2i; 1 ≤ i ≤ n and ψ(k′i) = ψ(ki) + 1; 1 ≤ i ≤ n. Observe, |eψ(0) − eψ(1)| ≤ 1

which establishes that K1,n ⊙K1 is a DDCG.

Theorem 6.2.32. K2,n ⊙K1 admits a DDCL.

Proof. Let U = {x1, x2} and V = {y1, y2, ..., yn}, be the bipartition of node set of

K2,n. Let K2,n ⊙ K1 be having V (K2,n ⊙ K1) = V (K2,n) ∪ {x′1, x′2, y′1, y′2, ..., y′n} and

E(K2,n⊙K1) = E(K2,n)∪{x1x′1, x2x′2, yiy′i : 1 ≤ i ≤ n}. Clearly, |V (K2,n⊙K1)| = 2n+4

and |E(K2,n⊙K1)| = 3n+2. Consider ψ : V (K2,n⊙K1) → {1, 2, ..., 2n+4} defined by
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fixing ψ(x1) = 1, ψ(x′1) = 2n+ 4, ψ(x2) = 2, ψ(x′2) = 2n+ 3, ψ(yi) = 2i+ 2; 1 ≤ i ≤ n

and ψ(y′i) = ψ(yi)− 1; 1 ≤ i ≤ n. Observe that |eψ(0)− eψ(1)| ≤ 1, showing K2,n ⊙K1

a DDCG.

Theorem 6.2.33. K3,n ⊙K1 admits a DDCL.

Proof. Let U = {x1, x2, x3} and V = {y1, y2, ..., yn} be the bipartition of node set ofK3,n.

Let K3,n ⊙K1 with V (K3,n ⊙K1) = V (K3,n) ∪ {x′1, x′2, x′3, y′1, y′2, ..., y′n} and E(K3,n ⊙
K1) = E(K3,n)∪{x1x′1, x2x′2, x3x′3, yiy′i : 1 ≤ i ≤ n}. Observe, |V (K3,n⊙K1)| = 2n+6

and |E(K3,n⊙K1)| = 4n+3. Consider ψ : V (K3,n⊙K1) → {1, 2, ..., 2n+6} defined by

fixing ψ(x1) = 1, ψ(x′1) = 6, ψ(x2) = 2, ψ(x3) = 2n+ 5, ψ(x′2) = 4, ψ(x′3) = 2n+ 3 and

ψ(y1) = 10. There arise below mentioned possibilities.

Case (i) When ‘n’ is odd.

Let ψ(yi) = ψ(yi−1)+4; 2 ≤ i ≤ ⌊n2 ⌋, ψ(y⌈n
2
⌉) = 8, ψ(yi) = ψ(yi−1)+4; ⌈n2 ⌉+1 ≤ i ≤ n,

ψ(y′i) =
ψ(yi)
2 ; 1 ≤ i ≤ ⌊n2 ⌋. Assign the unused labels simultaneously to unlabeled nodes.

Case (ii) When‘ n’ is even.

Let ψ(yi) = ψ(yi−1) + 4; 2 ≤ i ≤ n
2 , ψ(yn

2
+1) = 8, ψ(yi) = ψ(yi−1) + 4; n2 + 2 ≤ i ≤ n,

ψ(y′i) = ψ(yi)
2 ; 1 ≤ i ≤ n

2 . Assign the unconsumed labels simultaneously to unlabeled

nodes.

In both the cases, |eψ(0)− eψ(1)| ≤ 1. Hence K3,n ⊙K1 is a DDCG (see Figure 6.14).

Figure 6.14: DDCL of K3,6 ⊙K1

Theorem 6.2.34. Bn,n ⊙K1 permits a DDCL.

Proof. Let {x′0, y′0, x′i, y′i; 1 ≤ i ≤ n} be the added nodes corresponding to {x0, y0, xi, yi;
1 ≤ i ≤ n} ofBn,n, for the construction of Bn,n⊙K1. Clearly, |V (Bn,n⊙K1)| = 4n+4 and

|E(Bn,n⊙K1)| = 4n+3. Consider ψ : V (Bn,n⊙K1) → {1, 2, ..., 4n+4} defined by letting
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ψ(x0) = 1, ψ(x′0) = 4n+ 4, ψ(y0) = 2, ψ(y′0) = 4n+ 3, ψ(x1) = 6, ψ(xi) = ψ(xi−1) + 4;

2 ≤ i ≤ n, ψ(y1) = 4, ψ(yi) = ψ(yi−1) + 4; 2 ≤ i ≤ n, ψ(x′i) = ψ(xi) − 1; 1 ≤ i ≤ n

and ψ(y′i) = ψ(yi) − 1; 1 ≤ i ≤ n. One can see that |eψ(0) − eψ(1)| ≤ 1 proving that

Bn,n ⊙K1 is a DDCG.

6.3 Average Even Divisor Cordial Labeling

In this section, a few general results concerning AEDCL of graphs are established.

AEDCL of various families of graphs are investigated for different graph operations

of high interest.

Definition 6.3.1. “An average even divisor cordial labeling (AEDCL) of G(V,E) is a

bijection ψ : V → {2, 4, 6, ..., 2|V (G)|} defined by the induced function ψ⋆ : E → {0, 1}
such that for each edge yz, ψ⋆(yz) is given label 1 if 2|ψ(y)+ψ(z)2 and label 0 otherwise,

then |eψ(0) − eψ(1)| ≤ 1. If a graph permits an AEDCL, then it is known as average

even divisor cordial graph (AEDCG).”

Theorem 6.3.1. If G(p, q) admits an AEDCL with q even, then G ± e is also an

AEDCG.

Proof. Since G(p, q) is an AEDCG with labeling ψ therefore eψ(0) = eψ(1) (q is even).

Clearly, an addition or deletion of one edge yield either eψ(0) = eψ(1) + 1 or eψ(1) =

eψ(0) + 1 which in turn justifies that |eψ(0)− eψ(1)| ≤ 1.

Theorem 6.3.2. If G(p, q) is an AEDCG with q odd, then G−e also admits an AEDCL.

Proof. Since G(p, q) is an AEDCG with labeling ψ with q odd, therefore, either eψ(0)

= eψ(1)+1 or eψ(1) = eψ(0)+1. Suppose eψ(0) = eψ(1)+1. Removing an edge having

label 0 yields |eψ(0) − eψ(1)| ≤ 1. Similarly, if eψ(1) = eψ(0) + 1, then removing any

edge having label 1 results in AEDCG again.

Remark 6.6. On similar lines of proof one can observe that Theorem 6.3.2 also holds

good for G+ e.

Theorem 6.3.3. Kn does not admit AEDCL for n ≥ 4.

Proof. Let V (Kn) = {ki : 1 ≤ i ≤ n}. Consider ψ : V (Kn) → {2, 4, 6, ..., 2n} defined by

fixing ψ(ki) = 2i; 1 ≤ i ≤ n. Now the below mentioned cases arise.

Case (i) When ‘n’ is even.

Observing the labeling pattern, one can see that eψ(1) = eψ(0) − n
2 which implies that
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|eψ(0)− eψ(1)| = n
2 or |eψ(0)− eψ(1)| ≥ 2.

Case (ii) When ‘n’ is odd.

Observing ψ, one can find that eψ(1) = eψ(0)− ⌊n2 ⌋ which shows that |eψ(0)− eψ(1)| =
⌊n2 ⌋ or |eψ(0)− eψ(1)| ≥ 2.

Thus, for both the cases Kn, n ≥ 4 is not an AEDCG (see Figure 6.15).

Figure 6.15: K2 are K3 admitting AEDCL and K4 is not

Remark 6.7. For K2 and K3, result is obvious (see Figure 6.15).

Observation 1: If G admits an AEDCL, its supergraph need not admit AEDCL, for

instance Kn is always a supergraph of a given graph on same number of nodes.

Observation 2: For a graph G admitting an AEDCL, its subgraph need not admit an

AEDCL. For the sake of explanation, it is clear that C10 is a subgraph of W10 and W10

admits an AEDCL but C10 does not admit (see Figure 6.16).

Figure 6.16: C10 is not admitting an AEDCL whereas W10 is admitting

Theorem 6.3.4. Km,n admits an AEDCL.

Proof. Let V (Km,n) = V1 ∪ V2 where V1 = {xi : 1 ≤ i ≤ m} and V2 = {yj : 1 ≤ j ≤ n}.
Consider ψ : V (Km,n) → {2, 4, 6, ..., 2m + 2n} given by fixing ψ(x1) = 2, ψ(xi) =

ψ(xi−1) + 2; 2 ≤ i ≤ m, ψ(y1) = ψ(xm) + 2, ψ(yi) = ψ(yi−1) + 2; 2 ≤ i ≤ n. Observe

that if mn is even, then eψ(0) = eψ(1) =
mn
2 and if mn is odd then |eψ(0)− eψ(1)| = 1,

which shows that Km,n admits an AEDCL.
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Theorem 6.3.5. Let G and H be isomorphic graphs. If G admits an AEDCL then H

also does.

Proof. LetG andH be isomorphic graphs with isomorphism ψ from V (G) = {u1, u2, ..., up}
to V (H) = {v1, v2, ..., vp}. Let g be an AEDCL of G. If e = uiuj ∈ E(G) =⇒ ψ(e =

uiuj) ∈ E(H) for any i, j. Let g(ui) = r, g(uj) = s for some r, s ∈ {2, 4, ..., 2p} such

that |eg(0) − eg(1)| ≤ 1. Define h : V (H) → {2, 4, ..., 2p} such that h(ψ(ui)) = g(ui);

1 ≤ i ≤ p. Then h is a desired AEDCL of H as |eg(0)− eg(1)| = |eh(0)− eh(1)| ≤ 1.

Theorem 6.3.6. All trees are AEDCG.

Proof. Let T (n) denote a tree with n edges. To show that T (n) is an AEDCG, principle

of mathematical induction is followed. Suppose n = 2, the T (2) is a path on 3 nodes

which is an AEDCG. Suppose that the result holds for n = k − 1, i.e; T (k−1) is an

AEDCG. Next is to show that T (k) is an AEDCG. Adding an edge to T (k−1) yields T (k)

which is an AEDCG by Theorem 6.3.1 which completes the induction. Hence T (n) is an

AEDCG.

Corollary 6.3.1. Full n− ary tree admits an AEDCL, where n = 2k, k ∈ N.

Proof. Let T(n,m) denotes the full n− ary tree having m levels. Clearly, zeroth level has

one node, first level has n nodes, second level has n2 nodes, third level has n3 nodes and

mth level has nm nodes. Define ψ : V (T(n,m)) → {2, 4, 6, ..., 2(nm + nm−1 + nm−2 + ...+

n+ 1)} such that the node of zeroth level be labeled 2. For first level, assign the labels,

begining from leftmost node and proceeding to right, simultaneously from the available

labels. By doing so, the last node of the first level is labeled with 2n+ 2. Similarly, for

second level, the last node has label 2n2 + 2n + 2. Proceeding this way, one can find

that the last(rightmost) node in mth level has 2nm+2nm−1+2nm−2+ ...+2n+2 label.

Note that in every level, eψ(0) = eψ(1) which means that |eψ(0)− eψ(1)| = 0 and hence

T(n,m) admits an AEDCL (see Figure 6.17).

Figure 6.17: AEDCL of full 4− ary tree with 2 levels
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Corollary 6.3.2. Pn admits an AEDCL.

Proof. Let V (Pn) = {pi : 1 ≤ i ≤ n}. Consider ψ : V (Pn) → {2, 4, 6, ..., 2n} defined

under the below mentioned cases.

Case (i) When ‘n’ is even.

Let ψ(p1) = 2, ψ(pi) = ψ(pi−1) + 2; 2 ≤ i ≤ n
2 , ψ(pn

2
+1) = ψ(pn

2
) + 4.

Now two subcases arise.

Subcase (i) When ‘n2 ’ is even.

Fix ψ(pi) = ψ(pi−1)+4; n2 +2 ≤ i ≤ n
2 +

n
4 , ψ(pn

2
+n

4
+1) = ψ(pn

2
)+2, ψ(pi) = ψ(pi−1)+4;

n
2 + n

4 + 2 ≤ i ≤ n. One can see that |eψ(0)− eψ(1)| ≤ 1.

Subcase (ii) When ‘n2 ’ is odd.

Fix ψ(pi) = ψ(pi−1) + 4; n
2 + 2 ≤ i ≤ n

2 + ⌊n4 ⌋, ψ(pn
2
+⌊n

4
⌋+1) = ψ(pn

2
) + 2, ψ(pi) =

ψ(pi−1) + 4; n2 + ⌊n4 ⌋+ 2 ≤ i ≤ n. One can see that |eψ(0)− eψ(1)| ≤ 1.

Case (ii) When ‘n’ is odd.

Fix ψ(p1) = 2, ψ(pi) = ψ(pi−1) + 2; 2 ≤ i ≤ ⌊n2 ⌋, ψ(p⌊n
2
⌋+1) = ψ(p⌊n

2
⌋) + 4, ψ(pi) =

ψ(pi−1) + 4; ⌊n2 ⌋+ 2 ≤ i ≤ k < n, where ψ(pk) ≤ 2n. Next, let ψ(pk+1) = ψ(p⌊n
2
⌋) + 2,

ψ(pk+2) = ψ(pk+1) + 4, ψ(pi) = ψ(pi−1) + 4; k + 3 ≤ i ≤ n. An easy check shows that

|eψ(0)− eψ(1)| ≤ 1.

Lemma 6.3.1. Cn admits an AEDCL for all n except when n
2 is odd.

Proof. Let V (Cn) = {ci : 1 ≤ i ≤ n}. Consider ψ : V (Cn) → {2, 4, 6, ..., 2n} defined by

the given cases.

Case (i) When ‘n’ is odd.

Fix ψ(c1) = 2, ψ(ci) = ψ(ci−1) + 2; 2 ≤ i ≤ ⌊n2 ⌋, ψ(c⌊n
2
⌋+1) = ψ(c⌊n

2
⌋) + 4, ψ(ci) =

ψ(ci−1) + 4; ⌊n2 ⌋ + 2 ≤ i ≤ k < n, where ψ(ck) ≤ 2n. Next, ψ(ck+1) = ψ(c⌊n
2
⌋) + 2,

ψ(ck+2) = ψ(ck+1) + 4, ψ(ci) = ψ(ci−1) + 4; k + 3 ≤ i ≤ n. Here, |eψ(0)− eψ(1)| = 1.

Case (ii) When ‘n2 ’ is even.

Fix ψ(c1) = 2, ψ(ci) = ψ(ci−1)+2; 2 ≤ i ≤ n
2 , ψ(cn

2
+1) = ψ(cn

2
)+4, ψ(ci) = ψ(ci−1)+4;

n
2 + 2 ≤ i ≤ n

2 + n
4 , ψ(cn

2
+n

4
+1) = ψ(cn

2
) + 2, ψ(ci) = ψ(ci−1) + 4; n

2 + n
4 + 2 ≤ i ≤ n.

One can see that |eψ(0)− eψ(1)| = 1.

For both the cases, Cn is an AEDCG.

Remark 6.8. When n
2 is odd in Cn then either eψ(0) = eψ(1) + 2 or eψ(1) = eψ(0) + 2,

which means that Cn is not an AEDCL.

Definition 6.3.2. [44] “The Mycielskian of G(V,E) denoted by µ(G) has V ∪V ′ ∪ z as

its node set where V ′ = {v′ : v ∈ V (G)} and E(µ(G)) = {uv′ : uv ∈ E(G)} ∪ {v′z : v′ ∈
V ′}.”

Theorem 6.3.7. µ(Pn) admits an AEDCL ∀ n ≥ 3.
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Proof. Let“{pi : 1 ≤ i ≤ n} and {pipi+1 : 1 ≤ i ≤ n − 1} represent respectively

the node and edge set of Pn. Let V (µ(Pn)) = V (Pn) ∪ {p′i : 1 ≤ i ≤ n} ∪ {z} and

E(µ(Pn)) = E(Pn) ∪ {pip′i+1 : 1 ≤ n − 1} ∪ {pip′i−1 : 2 ≤ i ≤ n} ∪ {p′iz : 1 ≤ i ≤ n}.
Clearly, |V (µ(Pn))| = 2n + 1 and |E(µ(Pn))| = 4n − 3. Consider ψ : V (µ(Pn)) →
{2, 4, ..., 2(2n+1)} defined”by fixing ψ(z) = 2, ψ(p1) = 4, ψ(pi) = ψ(pi−1)+4; 2 ≤ i ≤ n,

ψ(p′1) = 6 and ψ(p′i) = ψ(p′i−1)+4; 2 ≤ i ≤ n. One can observe that |eψ(0)−eψ(1)| ≤ 1,

which proves the theorem (see Figure 6.18).

Figure 6.18: AEDCL of µ(Pn)

Theorem 6.3.8. µ(Cn) admits an AEDCL ∀ n ≥ 3.

Proof. Let“{ci : 1 ≤ i ≤ n} and {cici+1 : 1 ≤ i ≤ n− 1} ∪ {cnc1} represent respectively

the node and edge set of Cn. Let V (µ(Cn)) = V (Cn) ∪ {c′i : 1 ≤ i ≤ n} ∪ {z} and

E(µ(Cn)) = E(Cn)∪{cic′i+1 : 1 ≤ n−1}∪{cic′i−1 : 2 ≤ i ≤ n}∪{c1c′n, cnc′1}∪{c′iz : 1 ≤
i ≤ n}. Note that |V (µ(Cn))| = 2n+1 and |E(µ(Cn))| = 4n. Consider ψ : V (µ(Cn)) →
{2, 4, ..., 2(2n+1)}”defined by fixing ψ(z) = 2, ψ(c1) = 4, ψ(ci) = ψ(ci−1)+4; 2 ≤ i ≤ n,

ψ(c′1) = 6 and ψ(c′i) = ψ(c′i−1) + 4; 2 ≤ i ≤ n. Observe that |eψ(0)− eψ(1)| ≤ 1, which

proves the theorem.

Theorem 6.3.9. T (Pn) admits an AEDCL ∀ n ≥ 3.

Proof. Let node and edge set of T (Pn) be given respectively“by V (Pn) ∪ {ei : 1 ≤ i ≤
n − 1} and E(Pn) ∪ {piei, pi+1ei : 1 ≤ i ≤ n − 1} ∪ {eiei+1 : 1 ≤ i ≤ n − 2} where,

V (Pn) = {pi : 1 ≤ i ≤ n} and E(Pn) = {ei = pipi+1 : 1 ≤ i ≤ n − 1}. One can

see that |V (T (Pn))| = 2n − 1 and |E(T (Pn))| = 4n − 5. Consider ψ : V (T (Pn)) →
{2, 4, ..., 2(2n − 1)} defined”by fixing ψ(p1) = 2, ψ(pi) = ψ(pi−1) + 4; 2 ≤ i ≤ n,

ψ(e1) = 4, ψ(ei) = ψ(ei−1) + 4; 2 ≤ i ≤ n − 1. Consequently, |eψ(0) − eψ(1)| ≤ 1 (see

Figure 6.19).

Remark 6.9. T (Cn) permits an AEDCL as one can define the labeling in a same way as

in Theorem 6.3.9.
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Figure 6.19: AEDCL of T (Pn)

Theorem 6.3.10. P 2
n admits an AEDCL ∀ n ≥ 3.

Proof. Let V (Pn) = {pi : 1 ≤ i ≤ n}. Consider P 2
n having V (P 2

n) = V (Pn) and

E(P 2
n) = E(Pn) ∪ {pipi+2 : 1 ≤ i ≤ n − 2}. Clearly, |V (P 2

n)| = n & |E(P 2
n)| = 2n − 3.

Define ψ : V (P 2
n) → {2, 4, ..., 2n} by fixing ψ(p1) = 2, ψ(pi) = ψ(pi−1) + 2; 2 ≤ i ≤ n.

One can verify that eψ(0) = eψ(1) + 1 which proves that P 2
n is an AEDCL.

Remark 6.10. C2
n admits an AEDCL for even values of n and proof is similar to Theorem

6.3.10. Moreover, for odd values of n, C2
n does not admit an AEDCL as |eψ(0)−eψ(1)| ≥

2.

Lemma 6.3.2. Wn admits an AEDCL ∀ n ̸= 4k + 3, k ∈ N.

Proof. Let V (Wn) = {x0, xi : 1 ≤ i ≤ n} and E(Wn) = {x0xi, xixi+1 : 1 ≤ i ≤
n− 1} ∪ {xnx1}. Consider ψ : V (Wn) → {2, 4, 6, ..., 2n+ 2}. Now the given cases arise.

Case (i) If n = 4k.

Fix ψ(x0) = 2, ψ(x1) = 4, ψ(xi) = ψ(xi−1) + 2; 2 ≤ i ≤ n
2 − 1, ψ(xn

2
) = ψ(xn

2
−1) + 4,

ψ(xi) = ψ(xi−1) + 4; n
2 + 1 ≤ i ≤ k < n, such that ψ(xk) ≤ 2n + 2. Next, ψ(xk+1) =

ψ(xn
2
−1) + 2, ψ(xi) = ψ(xi−1) + 4; k + 2 ≤ i ≤ n. See that |eψ(0)− eψ(1)| = 0.

Case (ii) If n = 4k + 2.

Fix ψ(x0) = 4, ψ(x1) = 2, ψ(x2) = 6, ψ(xi) = ψ(xi−1) + 2; 3 ≤ i ≤ n
2 , ψ(xn

2
+1) =

ψ(xn
2
) + 4, ψ(xi) = ψ(xi−1) + 4; n

2 + 2 ≤ i ≤ k < n, such that ψ(xk) ≤ 2n + 2. Next,

fix ψ(xk+1) = ψ(xn
2
) + 2, ψ(xi) = ψ(xi−1) + 4; k + 2 ≤ i ≤ n. In this case also,

|eψ(0)− eψ(1)| = 0.

Case (iii) If n = 4k + 1.

Fix ψ(x0) = 2, ψ(x1) = 4, ψ(xi) = ψ(xi−1) + 2; 2 ≤ i ≤ n−1
2 , ψ(xn+1

2
) = ψ(xn−1

2
) + 4,

ψ(xi) = ψ(xi−1) + 4; n+1
2 + 1 ≤ i ≤ k < n, such that ψ(xk) ≤ 2n+ 2. Next, ψ(xk+1) =

ψ(xn−1
2
) + 2, ψ(xi) = ψ(xi−1) + 4; k + 2 ≤ i ≤ n. Observe that |eψ(0)− eψ(1)| = 0.

Hence, Wn is an AEDCG.
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Remark 6.11. If n = 4k + 3 in Wn, then either eψ(0) = eψ(1) + 2 or eψ(1) = eψ(0) + 2,

which means that Wn is not an AEDCG.

Theorem 6.3.11. If G(p, q) is an AEDCG, then G ⊙ K̄t admits an AEDCL for t ≡
0(mod 2).

Proof. Given G(p, q) is an AEDCG with V (G) = {u∗i : 1 ≤ i ≤ p}, therefore ∃ a

labeling function ψ : V (G) → {2, 4, 6, ..., 2p} on G such that |eψ(0)− eψ(1)| ≤ 1. Given

t ≡ 0(mod 2), fix t = 2m. Consider G ⊙ K̄2m with V (G ⊙ K̄2m) = V (G) ∪ {k(i)j : 1 ≤
i ≤ p, 1 ≤ j ≤ 2m} and E(G ⊙ K̄2m) = E(G) ∪ {u∗i k

(i)
j : 1 ≤ i ≤ p, 1 ≤ j ≤ 2m}.

Consider f : V (G⊙ K̄2m) → {2, 4, 6, ..., 2p, 2p+ 2, ..., 2p+ 2p(2m)} defined as here. Let

f(u∗i ) = ψ(u∗i ); 1 ≤ i ≤ p. Assign {2p+ 2, 2p+ 4, ..., 2p+ 2p(2m)} labels simultaneously

to unlabeled nodes, begining with first copy of K̄2m that is attached to u∗1 and then

slowly proceeding to the right most copy, i.e; the one attached with u∗p. Here are the

following observations.

(i) If q is even, then eψ(0) = eψ(1) and pendant nodes that appear at each u∗i yields

equal number of edges with labels 1 and 0. Thus, ef (0) = ef (1).

(ii) If q is odd, then either eψ(0) = eψ(1)+1 or eψ(1) = eψ(0)+1. But pendant edges at

each u∗i yield same count of edges having labels 1 and 0 showing that |ef (0)−ef (1)| = 1,

which proves that G⊙ K̄2m is an AEDCG (see Figure 6.20).

Figure 6.20: AEDCL of G⊙ K̄2m

Corollary 6.3.3. Pn ⊙ K̄2m is an AEDCG.

Proof. Follows directly from Corollary 6.3.2 and Theorem 6.3.11.

Corollary 6.3.4. Cn ⊙ K̄2m, n ̸= 4k + 2, k ∈ N is an AEDCG.

Proof. The“proof is evident from Lemma 6.3.1 and Theorem 6.3.11.”
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Figure 6.21: “Disjoint union of ‘n’-copies of H”

Theorem 6.3.12. The disjoint-union of ‘n’-copies of H(p, q) admits an AEDCL, where

H is an AEDCG with q even.

Proof. ConsiderH(p, q), which is an AEDCG, with labeling h. Let V (H) = {v1, v2, ..., vp}.
Let G = nH as shown in Figure 6.21 with V (G) = {vij : 1 ≤ j ≤ p, 1 ≤ i ≤ n}. De-

fine a function ψ : V (G) → {2, 4, ..., 2np} as follows. Let ψ(v1j ) = h(v1j ); 1 ≤ j ≤ p,

ψ(v2j ) = ψ(v1j ) + 2p; 1 ≤ j ≤ p, ψ(v3j ) = ψ(v2j ) + 2p; 1 ≤ j ≤ p. Proceeding this way,

ψ(vnj ) = ψ(vn−1
j ) + 2p; 1 ≤ j ≤ p. It can be seen that eψ(0) = eψ(1) which establishes

that G is an AEDCG.

Corollary 6.3.5. Let G be an AEDCG of even size and G∗ be a copy of G. Then G∪G∗

is also an AEDCG.

Proof. Since G with V (G) = {u1, u2, ..., un} is an AEDCG of even size, with labeling

f , therefore ef (0) = ef (1). Let G∗ be a copy of G with V (G∗) = {u′1, u′2, ..., u′n}.
Let H = G ∪ G∗, define labeling ψ on V (H) by fixing ψ(ui) = f(ui); 1 ≤ i ≤ n and

ψ(u′i) = ψ(ui)+2n; 1 ≤ i ≤ n. This way, eψ(0) = eψ(1), hence G∪G∗ is an AEDCG.

Theorem 6.3.13. Let G(p, q) be an AEDCG with q even. Then G + G is also an

AEDCG.

Figure 6.22: G+G

Proof. The proof is evident from Theorem 6.3.4 and Corollary 6.3.5 (see Figure 6.22).
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Theorem 6.3.14. Ladder graph Ln = Pn × P2 is an AEDCG.

Proof. Let V (Ln) = {ui, vi : 1 ≤ i ≤ n} andtE(Ln) = {uiui+1 : 1 ≤ i ≤ n−1}∪{vivi+1 :

1 ≤ i ≤ n−1}t∪t{uivi : 1 ≤ i ≤ n}. Here, |V (Ln)| = 2n and |E(Ln)| = 3n−2. Labeling

is done by considering a ψ : V (Ln) → {2, 4, 6, ..., 4n} defined for under mentioned

conditions.

Case (i) When n = 4k, k ∈ N.
Let ψ(u1) = 2, ψ(ui) = ψ(ui−1)+2; 2 ≤ i ≤ n−1, ψ(un) = ψ(un−1)+4, ψ(v1) = 4n−2,

ψ(vi) = ψ(vi−1) − 4; 2 ≤ i ≤ n
2 − 1, ψ(vn

2
) = 4n, ψ(vi) = ψ(vi−1) − 4; n

2 + 1 ≤ i ≤ n.

Evidently, eψ(0) = eψ(1).

Case (ii) When n = 4k − 1, k ∈ N.
Let ψ(u1) = 2, ψ(ui) = ψ(ui−1) + 2t; 2 ≤ i ≤ n, ψ(v1) = 4n − 2, ψ(vi) = ψ(vi−1) − 4;

2 ≤ i ≤ ⌊n2 ⌋, ψ(v⌈n
2
⌉) = 4n, ψ(vi) = ψ(vi−1) − 4; ⌈n2 ⌉ + 1 ≤ i ≤ n. One can verify that

eψ(0) =
3n−1

2 and eψ(1) =
3n−3

2 .

Case (iii) When n = 4k − 3, k ∈ N− {1}.
Let ψ(u1) = 2, ψ(ui) = ψ(ui−1) + 2t; 2 ≤ i ≤ n − 2, ψ(un−1) = ψ(un−2) + 4, ψ(un) =

ψ(un−1) + 4, ψ(v1) = 4n − 2, ψ(vi) = ψ(vi−1) − 4; 2 ≤ i ≤ ⌊n2 ⌋ − 1, f(v⌊n
2
⌋) = 4n,

ψ(vi) = ψ(vi−1)−4; ⌊n2 ⌋+1 ≤ i ≤ n. It can be seen that eψ(0) =
3n−3

2 and eψ(1) =
3n−1

2 .

Case (iv) When n = 4k − 2, k ∈ N− {1}.
Let ψ(u1) = 2, ψ(ui) = ψ(ui−1) + t2; 2 ≤ i ≤ n − 2, ψ(un−1) = ψ(un−2) + 4, ψ(un) =

ψ(un−1) + 4, ψ(v1) = 4n, ψ(vi) = ψ(vi−1) − 4; 2 ≤ i ≤ n
2 − 1, ψ(vn

2
) = 4n − 2,

ψ(vi) = ψ(vi−1)− 4; n2 + 1 ≤ i ≤ n. Here, eψ(0) = eψ(1).

Thus, in all the cases, |eψ(0)− eψ(1)| ≤ 1 which proves that Ln is an AEDCG.

Theorem 6.3.15. Triangular ladder TLn is an AEDCG.

Proof. Let V (TLn) = {ui, vi : 1 ≤ i ≤ n} and E(TLn) = {uiui+1 : 1 ≤ i ≤ n −
1} ∪ {vivi+1 : 1 ≤ i ≤ n − 1} ∪ {uivi : 1 ≤ i ≤ n} ∪ {viui+1 : 1 ≤ i ≤ n − 1}.
Consider ψ : V (TLn) → {2, 4, 6, ..., 4n} defined by fixing ψ(u1) = 2, ψ(ui) = ψ(ui−1)+4;

2 ≤ i ≤ n, ψ(v1) = 4, ψ(vi) = ψ(vi−1)+4; 2 ≤ i ≤ n. It is noted that |eψ(0)−eψ(1)| ≤ 1

which implies that TLn is an AEDCG.

Theorem 6.3.16. Pn × Pn admits AEDCL.

Proof. Let V (Pn × Pn) = {v(j)i : 1 ≤ i ≤ n, 1 ≤ j ≤ n}, where v(j)i represents the ith

node of jth copy. Clearly, |V (Pn × Pn)| = n2 and |E(Pn × Pn)| = 2n2 − 2n. Consider

ψ : V (Pn × Pn) → {2, 4, 6, ..., 2n2} defined by the given cases.

Case (i) When‘ n’ is even.

Let ψ(v
(1)
1 ) = 2, ψ(v

(1)
i ) = ψ(v

(1)
i−1) + 4; 2 ≤ i ≤ n, ψ(v

(2)
1 ) = 4, ψ(v

(2)
i ) = ψ(v

(2)
i−1) + 4;

2 ≤ i ≤ n, ψ(v
(3)
1 ) = ψ(v

(1)
n )+ 4, ψ(v

(3)
i ) = ψ(v

(3)
i−1)+ 4; 2 ≤ i ≤ n, ψ(v

(4)
1 ) = ψ(v

(2)
n )+ 4,
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ψ(v
(4)
i ) = ψ(v

(4)
i−1) + 4; 2 ≤ i ≤ n, ..., ..., ..., ψ(v

(n−1)
1 ) = ψ(v

(n−3)
n ) + 4, ψ(v

(n−1)
i ) =

ψ(v
(n−1)
i−1 ) + 4; 2 ≤ i ≤ n, ψ(v

(n)
1 ) = ψ(v

(n−2)
n ) + 4 and ψ(v

(n)
i ) = ψ(v

(n)
i−1) + 4; 2 ≤ i ≤ n.

It can be verified that eψ(0) = eψ(1) = n2 − n.

Case (ii) When ‘n’ is odd.

For first n − 1 rows, follow the pattern of Case (i). For last row, proceed with the

remaining labels as per Corollary 6.3.2. In this case, |eψ(0)− eψ(1)| ≤ 1.

Thus, Pn × Pn is an AEDCG (see Figure 6.23).

Figure 6.23: AEDCL of P5 × P5

Definition 6.3.3. [38] The stack Sk of books is a union of k− copies of triangular book
B5 = K1,1,5, joined in a way that their spines form a path.

Lemma 6.3.3. K1,1,n admits an AEDCG.

Proof. LetK1,1,n with node set {x0, x′0}∪{xi : 1 ≤ i ≤ n} and edge set {x0xi, x0x′0, x′0xi :
1 ≤ i ≤ n}. Consider ψ : V (K1,1,n) → {2, 4, ..., 2n+ 4} defined by fixing ψ(x0) = 2 and

ψ(x′0) = 4 and allocate the unused labels to remaining nodes in any fashion.

Theorem 6.3.17. Sk admits an AEDCG.

Proof. Let V (Sk) = V (Pk+1) ∪ {v(j)i : 1 ≤ i ≤ 5, 1 ≤ j ≤ k} and E(Sk) = E(Pk+1) ∪
{pjv(j)i , pj+1v

(j)
i : 1 ≤ i ≤ 5, 1 ≤ j ≤ k} where v

(j)
i represents the ith node of jth copy.

Clearly, |V (Sk)| = 6k+1 and |E(Sk)| = 11k. Consider ψ : V (Sk) → {2, 4, 6, ..., 2(6k+1)}.
First label the k + 1 nodes of Pk+1 by using Corollary 6.3.2. This way {2, 4, ..., 2k + 2}
labels are consumed. Now start assigning the remaining labels simultaneously, begining

with the first node of degree 2 of first copy of B5 and proceeding to the last node of the

last copy. Clearly, |eψ(0) − eψ(1)| ≤ 1 which shows that Sk is an AEDCG (see Figure

6.24).
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Figure 6.24: AEDCL of Sk

Open Problems

Since the two new variants are introduced in this chapter, a lot can be done towards

characterization of these labelings. Thus, the following open problems are proposed.

1. To investigate DDCL and AEDCL of other graph families for different graph opera-

tions.

2. To investigate DDCL and AEDCL for real life apllications.

6.4 Conclusion

In this chapter,“new variants of DCL, namely, double divisor cordial labeling and aver-

age even divisor cordial labeling are introduced and have been investigated for various

classes of graphs.” Similarly, other interesting variants of these kind can be introduced

and studied to enrich the discipline. Moreover, one can investigate the necessary and

sufficient condition for a graph to admit DCL, DDCL and AEDCL.



Conclusion

In this thesis, “prime cordial labeling” (PCL) and “divisor cordial labeling” (DCL) of

graphs are discussed for various classes of graphs such as “path, cycle, wheel, helm,

flower, fan, gear, double fan, star, bistar, regular graph, lilly graph, some classes of

planar graphs” in the context of some graph operations along with some notable general

results. Specifically, the PCL and DCL of some families of graphs in the context of

graph operations namely, “corona, duplication of a node by a node, duplication of a

node by an edge, duplication of edge by a node, subdivision, degree splitting, extension

of a node” etc. are derived. The different graphs and graph operations considered

in the present work are due to their utility and applications nowadays. Motivated by

some of the variants of DCL, two more variants namely “double divisor cordial labeling”

(DDCL) and “average even divisor cordial labeling” (AEDCL) are introduced and some

remarkable results are also obtained. Moreover, a few interesting conjectures and open

problems are also formulated specifically “establishing the DCL for the given graph is

NP-hard”. A complete characterization of PCL and DCL is yet to be done, but this thesis

may serve as a path in achieving the characterization of PCL and DCL either partially or

fully. One can also explore PCL, DCL, DDCL and AEDCL for other classes of graphs

and graph operations which are not discussed in the thesis and this is for the future

work. Though, graph labeling finds applications in numerous fields, yet discovering the

exclusive applications of PCL, DCL, DDCL and AEDCL in different domains is also an

interesting and open area of research.
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