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ABSTRACT 

The SarsCov2 virus is a potentially lethal infection that is little known and has the 

potential to pose a considerable risk to public health, given that it is one of the most 

serious viruses that can impact people. Everyone in this pandemic era is discussing the 

increase in the disease's infection rate as the epidemic expands. Researchers from a 

wide variety of backgrounds have applied a wide variety of conceptual frameworks to 

provide a variety of forecasts for countries like India. The main goal of this research is 

to utilise a suitable mathematical model to comprehend the dynamics of the Indian 

population that is afflicted with the Corona virus and the estimated number of people 

who will become infected in the near future.  In this work, many mathematical models 

were constructed, investigated, and verified for the COVID-19 epidemic to make 

predictions regarding the various repercussions of the disease. The data that is available 

in the public domain was utilised to make predictions about the cases that would occur 

soon, as well as basic reproduction and the case fatality ratio of the COVID-19. 

Additionally, a transmission model was discussed. The state of the pandemic outbreak 

in India was examined in this study, and several models were used to provide 

projections regarding its likely progression into the future. The Indian healthcare 

system faces a significant challenge when it comes to providing appropriate intensive 

care units for critically ill patients. It would be extremely beneficial if they had any idea 

of the cases that might arise in the future. 

The main objectives of the research work were: 

 To develop and validate the mathematical models on Covid-19 epidemic 

to forecast the different effects of the disease.  

 To anticipate and forecast the various effects of the disease using existing 

models and data available in public domain. 

 To determine the disease's Covid-19 case fatality ratio and basic 

reproduction number. 

 To formulate a mathematical model that will help to make strategies to 

control Covid-19 epidemic. 
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In the first chapter, a comprehensive introduction to mathematical biology, 

epidemic modelling, certain essential mathematical models, and other related topics has 

been provided. The section on the review of the literature sheds light on a few important 

studies that have been done by scholars in this field up to this point. In light of the 

aforementioned, the research gaps have been outlined, and the goals of the study have 

been suggested. This chapter also provides an explanation of the fundamental 

mathematical preliminaries as well as the significant ideas, phrases, and concepts that 

were employed throughout the entire research project. The conclusion of the chapter 

provides an overview of the other chapters that make up the thesis. 

In chapter 2, we have established that the COVID-19 outbreaks in India are a 

major cause for concern, and although a comprehensive scientific investigation of this 

pandemic has not yet been completed, it was necessary to calculate the parameters of 

the pandemic dynamics to design an appropriate quarantine area, determine the number 

of hospital beds available, and so on. We discussed the Polynomial Approximation 

Model in this chapter to determine how many people in India have the virus. 

In chapter 3, our attention has been directed toward the investigation of the 

SEIRD model for COVID-19. When trying to make predictions about the amount of 

cases and deaths, several different factors were taken into consideration. From the 

collected data on fatalities and confirmed cases of COVID-19, we attempted to 

determine the basic reproduction number. The basic reproduction number is also 

dependent on the clinical factors. Next, we have provided an estimation for the 

spectrum of probable future projections for the total number of fatalities in India. 

Since the Covid-19 disease has been deemed a threat on a global level and 

numerous studies are being published all over the world utilising several mathematical 

models to estimate the size of this epidemic, a simple econometric time series model 

was discussed in chapter 4. This was due to the fact that the disease has been declared 

a threat on a global level. As the weighty increase in the daily COVID-19 infected cases 

around us was frightening, many researchers are currently working on various 

mathematics-based estimation models to predict the subsequent trend of this pandemic. 

Some of India's COVID-19 trajectories were projected based on publicly available data. 
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This was because the weighty increase in the daily COVID-19 infected cases around us 

was frightening. A time series model known as the Auto-Regressive Integrated Moving 

Average Model was used to the Indian Dataset in order to estimate the daily number of 

COVID-19 infections in the near future. The results of our investigation projected 

several quite concerning outcomes. In order to avert such a potentially lethal scenario, 

a number of stringent preventative measures have been advocated. According to our 

estimates, Indian health officials ought to modify their warmongering interference in 

order to take into account the accelerated expansion, and rudimentary infection control 

efforts at hospital levels were immediately required in order to reduce the scale of the 

COVID-19 pandemic. It was possible that the impacts will become even more severe 

if the government of India does not adopt stringent prophylactic steps to stop the 

increase of COVID-19. 

In chapter 5, As a reminder that pandemics, as well as other uncommon but catastrophic 

catastrophes, have occurred in the past and will continue to do so in the future, we 

discussed the transmission model for COVID-19. Pandemics are rare, yet devastating 

when they do occur. Transmission models are useful tools for gaining an understanding 

of the behaviour of contamination when it enters a community and determining the 

circumstances under which it will be treated or processed. Consequently, there are very 

few remedies available in India for a severe problem. This is a scenario that is not 

unique to India; rather, it is shared by countries all over the world. First, a proposal for 

the model's specifics is made, and then, after that, a discussion of the model's potential 

benefits follows. Using RPGT, a Transition Diagram of the system as well as equations 

for Transition Probability and Mean Sojourn Times, Path Probabilities, and the mean 

time to epidemic impacted (𝑇଴), Average Healthy Time (𝐴଴), and Recovery Period (𝐵଴) 

were generated, and these were then followed by illustrations. After the creation of 

tables and graphs, analysis is performed. 

In chapter 6, we used a compartmental model with five compartments, i.e., the 

SEIRD Model, and we did analysis of the dynamics of COVID-19 in India. Through 

this data-based study, we concluded that inflammation can be controlled by public 

lockdowns because it will reduce the transmission rates, and due to limited health care 
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facilities, there will be more chances of recovery and hence the recovery rate will be 

increased. If we change these two parameters, the curve can be flattened. If we change 

the values of parameters in the model, we will get different results. As we know, these 

parameters are not constant over time. So, if we look for disease dynamics at different 

times, we should change these parameters accordingly. Also, there are a few limitations 

in our model, and those have been discussed in the earlier sections. These can be 

improvised in the future. Also, some more parameters can be added to enhance the 

validation of results, like under reported cases or asymptotic cases. 

In the end, the problems under investigation in the study have been justified by the 

bibliography given in the concluding part of the thesis. 
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Chapter-1 
 

General Introduction 
 

1.1  Introduction 

"Mathematical Biology" is a rapidly growing, unambiguous subject, and the most 

inspiring application of the new age of applied mathematics. The increasing broad 

scope of biomathematics is unavoidable as biology becomes highly quantitative as well 

as qualitative. The complicated nature of the biological sciences makes 

interdisciplinary collaboration essential. For a person from the background of science, 

mathematics, or biology, it opens new and exciting branches. Mathematical modelling 

gives another research tool. 

The study of how infectious diseases are transmitted through human populations is 

the focus of the scientific discipline known as epidemiology. Infectious diseases are 

among the most common reasons for people to pass away all over the world. Among 

these deadly diseases, HIV/AIDS, influenza, malaria, and tuberculosis are particularly 

potent. The health departments of any country are concerned about these diseases, 

despite their best efforts. Developing countries face a lot of these infectious diseases 

compared with developed nations. Although the medical facilities have improved in the 

past years, an epidemic usually disturbs the health care system and declares a health 

emergency. The cost of these infectious diseases is economically high as well. Due to 

the spread of these kinds of diseases, every country faces a downfall in the economic 

and social growth of the nation because of its effects on productivity, business, tourism, 

and educational institutes. 
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Although many international organisations like WHO and various NGOs are 

working hard for the improvement of the system of response and surveillance at the 

global level, But the desired success is still awaited. The major problem is the poor 

health care systems of developing countries. Although some factors, such as new 

medicines, the government's efforts to eliminate poverty, isolation, sanitation, and so 

on, reduce the likelihood of some diseases occurring, some factors, such as new 

medicines, the government's efforts to eliminate poverty, isolation, sanitation, and so 

on. 

 

1.2 History and Modelling of Infectious Diseases  

 

“As a matter of fact, all epidemiology, concerned as it is with the 

variation of disease from time to time or from place to place, must 

be considered mathematically, however many variables as 

implicated, if it is to be considered scientifically at all.”  

Sir Ronald Ross, MD 

According to historians, the first major epidemic occurred in Athens between the 

years 430 and 426 B.C.E. and was known as the plague. In his book "History of the 

Peloponnesian War," which he wrote between 460 and 400 B.C.E., the scientific 

historian Thucydides [1] (460–400 B.C.E.) provided the most correct explanation of 

the pandemic. He recounted everything based on his own first-hand experience, 

including how the epidemic spread, the symptoms it left behind, and the number of 

people who died. There is continuing discussion on the causative agent of plague [2-3]. 

Hippocrates, who lived from 459 to 337 B.C.E., was the first person to identify the 

variables that contributed to the epidemic of the period. Smallpox was also documented 

in the Roman Empire and Egypt between the years 165 and 180 CE by historians. 

Because of this, the deaths of millions of people were caused [4]. Between the years 

1348 and 1350, the number of people who died as a direct result of the Black Death is 

estimated to have ranged anywhere from 50 million to 100 million [4]. The Black Death 

was a pandemic that swept across Europe and the Mediterranean. Recent data obtained 

from the DNA of plague victims has led researchers to the conclusion that the infectious 
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agent Yersinia pestis is responsible for the myriad types of the plague [5]. Since the 

beginning of the last three centuries, researchers have been using epidemic modelling 

to study infectious diseases. Daniel Bernoulli constructed a mathematical model in the 

year 1760 with the intention of analysing the efficacy of variolation in healthy 

individuals who were infected with the smallpox virus. His goal was to determine 

whether or not the disease could be prevented through vaccination. His goal was to 

determine whether or not the virus could be prevented from spreading through 

variolation. It was the first use of mathematics to be done in order to research any of 

the infectious diseases. After a considerable amount of time had passed, in the year 

1840, In England and Wales, William Farr fitted a normal curve that was based on the 

number of deaths that were caused by smallpox. In the 19th century, the infectious agent 

that caused the Black Death reemerged in a few European countries. During the early 

part of the 20th century, a pandemic that was dubbed influenza was responsible for the 

deaths of nearly 20 million people. Pandemics such as the Bombay plague in 1905–

1906, SARS in 2003, and the H1N1 swine flu pandemic in 2009 have all occurred in 

the recent past. All of these pandemics began in India. There was an outbreak of the 

Bombay plague in 1905–1906, as well as the SARS and H1N1 pandemics in 2003 and 

2009, respectively. Because viruses evolve so quickly and even though they are capable 

of crossing species barriers, there is always the possibility of pandemics and epidemics 

breaking out. These diseases can infect vast numbers of people. John Graunt (1620–

1674) was an infectious disease researcher who published his findings in the book 

"Natural and Political Observations Made upon the Bills of Mortality." Daniel 

Bernoulli was the first person to use mathematical tools to the study mortality due to 

smallpox after a century had passed. In 1766, he was the first person to publish a model 

of epidemiology. Bernoulli believed that, while the inoculation itself was risky, 

immunising with a live virus obtained from a mild case of smallpox could reduce the 

amount of people who passed away from the disease. Louis Pasteur made a significant 

contribution to our understanding of the factors that contribute to disease in the middle 

of the 19th century. He developed the first vaccines against anthrax and rabies, which 

contributed to a decrease in deaths caused by puerperal fever. His findings in the field 

of medical sciences provided direct support for the hypothesis that germs are the cause 
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of disease. At roughly the same time, Robert Koch, who is credited with being the 

inventor of modern bacteriology, discovered the specific causal agents of tuberculosis, 

anthrax, and cholera. This provided empirical support for the theory that infectious 

diseases are contagious. Additionally, he was well-known for developing Koch's 

postulates, for which he is named. In the late 1800s, medical research at last provided 

an explanation for the processes that lead to illness. It was discovered that an infectious 

bacterial disease might be transmitted from a healthy person to an already diseased 

person through casual contact between the two parties. The mathematical modelling of 

infectious diseases received some new guidance as a result of this. William Hamer 

made an important contribution to the study of mathematical modelling of infectious 

diseases at the beginning of the 20th century. He was attempting to determine what 

factors contributed to the continued occurrence of measles. It is possible to deduce from 

past events that Hamer was the pioneer in the application of the mass action law to the 

modelling of infectious diseases. However, Sir Ronald Ross is regarded as the father of 

the contemporary field of mathematical epidemiology. He undertook extensive research 

on malaria, and one of his findings was that the disease is spread from human to human 

through mosquitoes. In 1902, Ross was awarded the Nobel Prize for his efforts in 

malaria treatment. The prevention of the spread of malaria was a top priority for him. 

Mathematical models of malaria transmission were developed in the second edition of 

his book, "The Prevention of Malaria," which was released in 1911. The essential 

reproduction number is now commonly referred to as the threshold quantity. Infectious 

disease mathematical modelling was not widely accepted at the time. But no matter how 

many variables epidemiology — which examines how disease spreads over space and 

time — contains, statistical analysis is required before it can be deemed scientific. He 

was an outspoken proponent of using mathematical methodologies in epidemiology. It 

doesn't tell us much about a condition if we just say that it depends on specific 

components, since we can't develop an estimate of how much each factor influences the 

overall result unless we know how much each factor influences it. The application of 

critical reasoning to the challenges at hand is what the mathematical technique of 

therapy entails, which is actually all that it is. 
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An epidemic's course is influenced by the rate at which infectious and susceptible 

populations come into contact, and John Brownlee utilised this data to create and fit a 

Pearson frequency distribution curve. This research paper was published in 1906 and 

given the title "Statistical Studies in Immunity, the Theory of Epidemic." It was written 

by John Brownlee. When it was first introduced in 1927, Kermack and McKendrick's 

infectious disease transmission model was a significant step forward in mathematical 

epidemiology. A contribution to the mathematical theory of epidemics [6] was 

published in which the model was described for the first time. As a result, their model 

can only replicate disease outbreaks because it doesn't account for natural birth and 

death rates. Second and third parts of "A Contribution to the Mathematical Theory of 

Epidemics" were published by Kermack and McKendrick in 1932 and 1933 to add 

epidemic modelling of illnesses that can become established in a population and 

continue to spread throughout a population [7, 8, 9]. The mathematical modelling of 

infectious diseases became increasingly significant in the 1980s, when the HIV 

epidemic began. Since then, many models have been created, tested, and used in studies 

on the spread of infectious illnesses. Mathematical epidemiology is already well-

established in the scientific literature, and mathematical modelling continues to make 

essential contributions to both the mathematical and public health fields. According to 

Sattenspiel [10], Some aspects of the disease's natural history and of the behaviour of 

its host population can be explained using models. These include the following:  

 the impact that an individual's fluctuating levels of infectiousness throughout 

the course of the disease have on the rate at which the infection is transmitted 

across the population; 

 Long incubation periods have been found to play a significant role in the course 

of the disease; 

 the relationship between a person's degree of sexual activity and the likelihood 

that they will become unwell; 

 risk and transmission rates within a population can be affected by assumptions 

about the degree to which various groups are intermingled; 

 the effects of various shifts in sexual behaviour; and 
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 pandemic's impact on the world's population, particularly in places where 

infection rates are very high, such Africa and parts of the Caribbean. 

For Kramer and colleagues [11], public health is all about controlling the spread of 

infectious diseases from one human being to another. Often referred to as the "basic 

science of public health," epidemiology studies the factors that influence illness risk in 

human populations and how they are distributed. Infectious disease epidemiology was 

first developed in the middle of the 19th century and uses the principles of 

epidemiology to research infectious diseases. It also addresses issues about the factors 

that lead to the emergence, spread, and persistence of disease. An epidemiological 

pattern can be identified by comparing the frequency and severity of infectious diseases 

in different parts of the world. The significance of epidemiological models can be 

summed up as [11, 12]: 

• Epidemic models have the potential to lead to a greater comprehension of the natural 

history of the disease. 

• To better comprehend the dynamics of disease transmission, epidemic models can 

play a crucial role in calculating and estimating crucial parameters. 

• To generate predictions about the success of various approaches to illness prevention 

and treatment, a model that precisely captures the basic characteristics of disease 

progression and transmission must first be constructed. 

• Epidemic models provide a deeper understanding of the characteristics of thresholds. 

• Epidemic models are able to compute an exact number of steady states (states in which 

the disease is endemic or not present) and can analyse the stability of those states. 

Additionally, it is capable of determining bifurcation values, which indicate a change 

in the qualitative nature of population dynamics. 

• The simulation of epidemics and the evaluation of the efficacy of various strategies 

for disease prevention and treatment can be done with the help of epidemiological 

models. 
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• It is possible to learn about the current surveillance system for a particular infectious 

illness and to propose more effective ways of surveillance through the use of epidemic 

models. 

• More evidence-based approaches to disease control can be guided by epidemic 

models, which can aid in the interpretation of epidemiological data and provide 

recommendations for specific actions. 

• Epidemic models can be used to link global environmental events to the transmission 

patterns of infectious illnesses. 

1.3 General Approach to Modelling 

A description of a system that makes use of mathematical concepts, techniques, and 

terminology is called a mathematical model. Transmissible diseases and the spread of 

those diseases through populations are what mathematical modelling will focus on, but 

in principle, mathematical modelling may be used on any system, whether it be 

biological or not. Mathematical models are built to assist in the explanation of a system, 

to investigate the consequences of the system's numerous components, and to provide 

forecasts regarding the behaviour of those components. Biological scenarios need to be 

transformed into mathematical ones to complete the modelling process. In most cases, 

scientists begin the process of modelling by providing a thorough description of the 

system's processes. There should be an objective or biological question in mind while 

turning this knowledge into mathematical formulae. An equation set is then generated 

using the system's verbal description. It is important to incorporate just the qualities of 

the model's components that are relevant to the specific purpose or scientific 

investigation at hand. 

After the model has been formulated, it can be analysed using a variety of mathematical 

tools, including [1] the following: 

• It is possible to analyse it to obtain crucial quantities, which are the factors that 

regulate how solutions behave as a whole. 

• It is possible to either fit it to the data that is already available or use it to encourage 

studies that can yield data. 

• The model's parameters can be estimated. 
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• To better comprehend the impact of each parameter on the outcome, it is possible to 

simulate it. 

After gaining an understanding of the model, the next step is to interpret the 

model's outputs in the context of the biological situation that was taken into account 

and possibly look for a solution to the biological issue that was posed at the outset. 

Mathematical models typically include both parameters and variables, which are linked 

to one another through various interactions. There are many different ways that models 

might be categorised: 

Linear/nonlinear: If a model has a reliance on the variables that does not follow a 

linear pattern, then it is referred to as a nonlinear model. If this is not the case, we must 

refer to it as linear. Most of the models that we have developed and applied in the 

process of this research are nonlinear. 

Static/dynamic: A dynamic model considers changes in the state of the system that are 

dependent on the passage of time, whereas a static model calculates the quantities of 

the system only if the state does not change over the course of time and is therefore 

time-invariant. Differential and difference equations are the typical mathematical tools 

used in the construction of dynamic models.  

Discrete/continuous: Time or system states are considered as discrete variables in 

discrete modelling. Time and system states are continuous variables that are included 

in continuous models. 

Deterministic/stochastic: A model is said to be deterministic if each and every 

possible combination of the states of its variables can be uniquely specified by the 

model's parameters as well as the values of the variables' starting points. Randomness 

is a unique characteristic of stochastic models, and probability distributions are used to 

characterise the states of variable models.  

The fields of the natural sciences, such as biology and epidemiology, place a 

significant emphasis on the use of mathematical models. They assist us in expanding 

our knowledge regarding a system, arranging biological data in a way that makes sense 

of it, determining the system's reaction behaviour, determining the most effective 

performance and intervention tactics, and formulating hypotheses regarding the system. 
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Mathematical modelling is a process by which we can describe a real - world problem 

in the Mathematical language. 

 

                           

Figure 1.1: Scientific Process to connect real world problem with Mathematics 

The concept of mathematical modelling is employed in nearly all disciplines, 

including physics, chemistry, engineering, etc. Our primary interest is epidemic 

modelling, or the study of disease patterns in populations. Epidemic modelling [13] 

helps us to 

(i) make prediction the status of disease in near future. 

(ii) understand transmission dynamics of the disease 

(iii) helps to make the effective control strategies. 

Basically, epidemic models are of two types: 

(i) Deterministic models 

(ii) Stochastic models 

Stochastic models usually depend on chance and may be used for a smaller 

population. These models are very complex and gives us a deeper insight. We can use 

the term individual-level modelling for such type of models. Such type of models is 

difficult to analyse, and it is tough to get some analytic results. Also, the diseases 

dynamics cannot be explained by these models. 
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On the other side, deterministic models, are used to deal with population of large 

size. Compartmental models are another name for these models, which may be found 

[14]. In these kinds of models, the population is partitioned up into a fair amount of 

different compartments. In deterministic models, chance has no role in the propagation 

of disease. Depending on the number of compartments, numerous models exist. Before 

developing these models, it is necessary to understand the following terminology: 

Susceptible: A person who is at risk of infection but is not yet infected.  

Exposed: A person who does not have visible symptoms but has contracted the 

infection. 

Infectious: A person who can pass infection to others and has the disease with 

symptoms. 

Recovered/Removed: After receiving therapy, etc., the symptoms disappear and the 

individual is no longer contagious. 

Incubation Period: It is the time elapsed between the onset of the first visible 

symptoms of the disease and exposure to the infection. 

Endemic: A disease is endemic when it occurs frequently in a population or region. 

Epidemic: In a given population, a disease is described to an epidemic if the number 

of cases increases dramatically and rapidly. 

Pandemic: A pandemic is a sickness that has spread throughout the entire country or 

the world. 

State variables are represented by capital letters such as S, E, I, R, etc. representing 

various compartments at any point in time t. Below is a summary of the different state 

variables that underlie these models. 

𝑆: Number of people who are susceptible 

𝐸: Number of exposed individuals  

𝐼: Individuals who have been exposed 

𝑅: Individuals who have been recovered 

𝑁 : Human population as a whole 

We begin with the simplest compartmental model with only two classes before moving 

on to more complex ones. 
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SI Model: This is the easiest epidemic model containing only two compartments i.e. 

Susceptible and Infected. 

The dynamics of SI model can be understood by 

𝑑𝑆(𝑡)

𝑑𝑡
= −𝛽

𝑆(𝑡)

𝑁
𝐼(𝑡)                                                       

 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽

𝑆(𝑡)

𝑁
𝐼(𝑡)  − 𝛾𝐼(𝑡)                                                   

Where 𝑆 > 0 ,  𝐼 > 0 and 𝑆 + 𝐼 = 𝑁   

Since it is an epidemic model, the births and natural deaths are not taken into 

consideration. 

SIS Model: This is the easiest epidemic model. Here, a susceptible catch the infection 

and again joins the class of susceptible as soon as the infection is over. The population 

flows as follows: 

                      

SIR Model: Here, recovered class is added. The population flows as follows: 

                      

SIR model for epidemic scenario is governed by following set of differential equations: 

It is assumed that 𝑆 + 𝐼 + 𝑅 = 𝑁   

𝑑𝑆(𝑡)

𝑑𝑡
= −𝛽

𝑆(𝑡)

𝑁
𝐼(𝑡)                                                       

𝑑𝐼(𝑡)

𝑑𝑡
= 𝛽

𝑆(𝑡)

𝑁
𝐼(𝑡) − (𝛾 + 𝛿)𝐼(𝑡)     

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡)      

SIRS Model: This is an expansion of the SIR model for endemic diseases as mentioned 

previously. Individuals who have recovered lose their temporary immunity and rejoin 
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the susceptible group. Observable population flow from one compartment to another is 

as follows: 

                                 

SEIR Model: In this case, it is believed that the sickness confers temporary immunity 

for a limited time. Consequently, the individual remains in the recovered compartment 

for that duration. 

             

It is also feasible to develop more intricate models by considering additional features, 

such as passive immunity, deaths, vertical transmission, age structure, etc. “The number 

of secondary infections caused by a single infected person in a susceptible population 

is defined as Basic Reproduction Number [15]”. This number is a dimensionless 

parameter defined as 

𝑅଴=  (effective transmission rate) × (probability that an individual will survive until 

infectious) × (average duration of the infectious period). 

In modelling of epidemics, this number helps us to make forecasting about the spread 

of the disease. That is, if 𝑅଴ <  1 , we conclude that the disease will wipe out in a short 

duration of time, if 𝑅଴ ≥  1, there is an equilibrium, but if 𝑅଴ >>  1 then the disease is 

in epidemic state. 

Sensitivity Analysis: To tackle the issue of infectious disease and to reduce the fatality, 

we must observe the factors, which are responsible for the outbreak of the disease. We 

compute the sensitivity indices of the model's various parameters. 
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Numerical Simulation: Mathematical models are used to understand the spread of the 

disease and numerical simulation gives us idea of future scenario and can be done using 

various computer software like MATLAB, R, Julia, Python etc. Numerical Simulation 

helps us to forecast the spread of disease in future so that we can prepare ourselves and 

our health care system to control the damage. 

ARIMA Model: ARIMA is an abbreviation for a model in which AR stands for 

autoregressive model, MA stands for moving average model, and I stand for integrated 

[16]. ARIMA modelling is controlled by four steps: model evaluation, parameter 

estimation, diagnostics, and forecasting. Identifying if the time series dataset is seasonal 

and stationary is the first stage in this time series model. If a time series' statistical 

characteristics remain constant, it is stationary. The stationarity of the dataset is an 

important observation to make to obtain accurate forecasts. The unit root test is used to 

determine the stationarity of a time series. If the series is not stationary, differences are 

used to make the data stationary. Autocorrelation function (ACF) graphs and partial 

autocorrelation function (PACF) correlograms can be used to estimate ARIMA model 

parameters. The graph of the auto correlation function determines the relationship 

between previous and subsequent values in a time series. The partial auto correlation 

function graph computes the degree of correlation between lag and variable. We can 

estimate the best ARIMA model using maximum likelihood estimation (MLE). Once 

the best model for the time series data set has been chosen, the ARIMA model can be 

used as a forecasting model to predict future values using those parameters. 

Auto Correlation Function (ACF): As far as the lag unit goes, the ACF plot shows 

the connection between points. An autocorrelation is a measure of how closely a time 

series' values are linked to those of its predecessors. The x-axis of ACF shows the 

correlation coefficient, while the y-axis shows the amount of lags. Shows how closely 

connected the provided time series is with itself by plotting the Autocorrelation 

function. 

Partial Auto Correlation Function (PACF): A partial autocorrelation is a description 

of the relationship between an observation in a time series and previous observations. 

Deletion of inter-observational relations is a consequence of this procedure. The 

remaining correlation is known as the partial autocorrelation at lag k after any 
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correlations generated by words at lower lags have been removed. 

Stochastic Processes: It is possible to think of random variables as belonging to a 

family of stochastic processes [17]. A stochastic process has a state space, which is a 

collection of all possible outcomes at any given instant in time.. The process can be 

determined to be in exactly one of its states at any one time. Because of this, stochastic 

processes have both a time and a state structure. If 𝑋 represents the state of the system 

at time 𝑡଴  and 𝐸 is a set that describes a certain collection of states in the system, then 

the probability that the system, which at time (𝑡଴) is in the state (𝑋), will pass into one 

of the states of (𝐸) at time t is denoted as 𝑃{𝑡଴; 𝑡, 𝐸}.  This is because 𝑋 represents the 

state of the system at time 𝑡଴ and 𝐸 is a set that describes certain collection The process 

of transitioning from one state to another over the course of time and having the 

probability distribution 𝑃{𝑡଴; 𝑡, 𝐸} is referred to as a stochastic process.  

Markov Process: To describe a stochastic process as Markov, it must be possible to 

predict exactly where it will end up, regardless of how the current state has progressed. 

Mathematically, if {𝑋(𝑡), 𝑡 ∈ 𝑇} is a stochastic process such that given the value of 

𝑋(𝑠) the value of 𝑋(𝑡), 𝑡 > 𝑠, do not depend on the values of 𝑋(𝑢), 𝑢 < 𝑠 i.e., for 𝑡 >

𝑠, 𝑖 ∈ 𝑠 if Pr ቄ𝑋(𝑡) =
௜

௑(௨)
, 0 ≤ 𝑢 ≤ 𝑠ቅ = Pr {𝑋(𝑡) =

௜

௑(௦)
}, then the process {𝑋(𝑡), 𝑡 ∈

𝑇}  is called a Markov process. 

Transition Probabilities: These are the probabilities with which the system changes 

its state with the passage of time. These are defined as follows:  

n-Step Transition Probability: The n-step transition probability from state 𝑖 to the 

state 𝑗 is defined by and is denoted as Pr(𝑋௠ା௡ = 𝑗|𝑋௠ = 𝑖), 𝑛 ≥ 1 and is denoted as 

𝑃௜௝
௡. 

One- Step Transition Probability: It is defined by Pr(𝑋௡ = 𝑗|𝑋௡ିଵ = 𝑖), 𝑛 ≥ 1 and it 

is denoted 𝑃௜௝ 

Regenerative process: Smith (1955) is credited as being the one who initially 

described the regenerative process, and the analysis of complex systems makes 

significant use of this concept. During this step of the process, we select those time 

points for which the conditions of the system are not dependent on the behaviour of the 

system in the past. Regenerative points are the name given to these specific points. If 
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𝑋(𝑡) represents the state of system at time point 𝑡 and 𝑡ଵ, 𝑡ଶ …. are the time point at 

which process restarts probabilistically, then these time points are called regenerative 

points and the process {𝑋(𝑡), 𝑡ଵ, 𝑡ଶ ….  } is called a regenerative process. A technique 

based on regenerative process is called regenerative point technique. 

Regenerative Point Graphical Technique (RPGT): In the modern times graph theory 

is employed in many areas such as computers, engineering, communication, physical 

sciences etc. Regenerative point graphical technique [18] is a reliability technique 

which is a combination of graph theory and regenerative point technique. In this 

technique, the steady state transition probability of a process is calculated using 

applications of graph theory. 

Mean Time to System Failure (MTSF): 

Working of components or system depends on the mechanical, physical, or 

environmental conditions. They cannot be expected to work for an infinite interval of 

time as aging of components affects the working of the system. Therefore, it is quite 

important to measure the lifetime of the system, which is known as MTSF. It is the 

anticipated amount of time that the system will continue to function until it entirely 

breaks down. Mathematically, If 𝑓(𝑡) is the failure time density function of the life time 

of the system, then 

MTSF = ∫ 𝑡
ஶ

଴
𝑓(𝑡)𝑑𝑡 = − ∫ 𝑡

ௗோ(௧)

ௗ௧
𝑑𝑡 = − ∫ 𝑡𝑑𝑅(𝑡) = ∫ 𝑅(𝑡)𝑑𝑡 = lim

௦→଴
𝑅(𝑠)

ஶ

଴

ஶ

଴

ஶ

଴
 

Where 𝑅(𝑠) is Laplace transform of the reliability function 𝑅(𝑡). 

In RPGT, the mean time to system failure is given by 

MTSF=቎∑ {
൜୔୰൬଴

ೞೝ(ೞ೑೑)
ሱ⎯⎯⎯⎯⎯ሮ௜൰ൠ.ఓ೔

∏ {ଵି∑ ୔୰(௞భି௖௬௖௟௘)}ೖభಯబ

}

௜,௦ೝ
቏ ÷ ቎1 − ∑ {

൜୔୰൬଴
ೞೝ(ೞ೑೑)
ሱ⎯⎯⎯⎯⎯ሮ଴൰ൠ

∏ {ଵି∑ ୔୰(௞మି௖௬௖௟ )}ೖమಯబ

}

 ௦ೝ
቏ 

Where 

𝑖: A regenerative un-failed state to which the system can transmit before any failures 

from the initial state ‘0’ (at time 𝑡 = 0). 

𝑘௜ − 𝑐𝑦𝑐𝑙𝑒: A circuit whose terminals are at the regenerative point k. The circuit may 

be formed through regenerative /non-regenerative but un-failed states only. 
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𝑘௜: A regenerative state visited along the path 0
௦ೝ(௦௙௙)
ሱ⎯⎯⎯ሮ 𝑖,  at which a 𝑘௜ − 𝑐𝑦𝑐𝑙𝑒 is 

formed through regenerative un-failed states. 

൬0
௦ೝ(௦௙௙)
ሱ⎯⎯⎯ሮ 𝑖൰: The 𝑟௧௛ directed simple path from 0 state to 𝑖 state.  

  

𝜇௜: The mean sojourn time spent in state 𝑖 before visiting any other state.  

Mean Sojourn Time: It is the expected time taken by the system in each state before 

transiting to any other state. Sometimes it is also termed as mean survival time. If 𝑇௜ be 

the sojourn time in 𝑖௧௛state, then mean sojourn time 𝜇௜ in 𝑖௧௛ state is given by 

𝜇௜ = න Pr (𝑇௜ > 𝑡)𝑑𝑡
ஶ

଴

 

𝑓(𝑡) = 𝑟(𝑡)𝑒[ି ∫ ௥(௨)ௗ௨
೟

బ
] 

In the past twenty years, human beings have been suffered with lots of severe 

infectious diseases, like Ebola and SARS. In fact, if we consider the history perspective, 

infectious diseases which are our natural enemy, are always invading human beings. 

Smallpox, cholera, plague, tuberculosis, and syphilis have done great damage to 

humans in these years. While struggling with these infectious diseases, peoples have 

very less capabilities. Scientists have gained gradually a few scientific insights about 

infectious diseases in last hundred years. 

For instance, in 1928, a British scientist named Alexander Fleming developed 

penicillin, which is the first antibiotic ever created in the world. 

Infectious diseases caused by viruses are a much greater reason for concern than 

infectious diseases caused by bacteria. The removal of infectious diseases that are 

caused by viruses other than smallpox remains a persistent challenge for scientists. 

When we reach a standstill in the area of biological study, we ought to look for another 

approach. The study of well-known mathematical models of infectious diseases will 

unquestionably assist researchers in comprehending the different symptoms of these 

diseases, which is essential for preventing the spread of viruses. With the help of 

mathematical models, we can characterize the transmission rate, transmission path and 

spatial range of infectious disease. We can take guidance from these models to execute 

effective controls and prevention. We can divide common infectious disease models in 
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SI, SIR, SEIR, SIRS etc models. In addition, we are able to categorise these models 

into a great number of different types by modeling them on either partial differential 

equations, ordinary differential equations, or network dynamics. 

Bill Gates warned the world about the Ebola pandemic in Africa in 2015 in a 

lecture he gave. He said: “If anything kills over 10 million people in the next few 

decades, it's most likely to be a highly infectious virus rather than a war.” He ended up 

becoming a soothsayer, which was a shame. SARS-CoV-2, the virus that created the 

pandemic COVID-19, has been wreaking havoc on people all over the world since the 

third trimester of 2019. 

Epidemiology research focuses mostly on the dynamics of the disease's 

propagation. Epidemiological modelling is mainly responsible for analysing and 

tracking the factors that are reason for spread of disease over time and it tries to find 

the possible methods of control. In addition to Epidemiological modelling, 

mathematical modelling is also considered as a productive method for the infectious 

disease research. Mathematical modelling assists us to predict and analyse the 

behaviour of infectious disease. Scientists and mathematicians are studying 

mathematical epidemiological models since many decades. 

As we see the continuous spread of COVID-19, it is vital to find a significant 

mathematical model that can simulate this spread. This can be done with the help of 

many methods like polynomial regression, SEIR model, and ARIMA Neural networks. 

 

1.4 Literature Review 

Between January 1950 and December 1978, Kenneth C. Land and David Cantor [19] 

employed seasonal ARIMA time series analysis to study the monthly birth and death 

rates in the United States [20]. For the purpose of model selection, the traditional Box-

Jenkins diagnostic checks together with certain recommendations made by Nerlove et 

al. [20] were applied. There are strong second-order autoregressive components for 

both series, together with seasonal moving averages. There is also some evidence of 

weekly periodicities in the birth rate series that has been assembled. According to these 

findings, there must be a method of seasonal adjustment that is superior to the Census 
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X-II software that is utilised by the organisations that are in charge of providing vital 

statistics. 

Leonid A. Rvachev and Ira M. Longini, JR [21] first proposed a mathematical model 

in 1985 to anticipate the global blow-out of influenza by gathering data from the first 

city in the transportation network to contract the disease. From the city that first saw a 

case of the disease, this information has been collected. On the other hand, the work 

described in this study represents the first global application of these technologies. In 

this section, we discussed the model formulation and a method for calculating key 

parameters. When it came time to anticipate the global spread of "Hong Kong" in 1968-

1969, the model was utilised to do so. Expected factors from Hong Kong, where the 

new influenza was originally reported, were used to make these forecasts. an affliction. 

It was demonstrated that the forecast accurately reproduced the overall time and 

geographical distribution of the real epidemic, as verified by sources from the World 

Health Organization. Finally, the model predicted the general patterns of how the Hong 

Kong influenza will spread across the geographic region. This provides more evidence 

that the concepts utilised to construct the model are sound from a theoretical 

perspective. Almost 425 days of everyday happenings in world society have never been 

accurately predicted before, hence the forecasting interval from July 27 to September 

26 of 1969 may be considered a historical milestone. 

In the year 1994, Michael Y. Li and his colleagues [22] talked about the SEIR model 

in epidemiology with nonlinear incidence rates. This was accomplished by using the 

theory of competitive systems of differential equations. The following set of differential 

equations serves as a description of the SEIR model, which is used in epidemiology to 

analyse the transmission of infectious diseases: 

𝑑𝑆

𝑑𝑡
= −𝜆𝐼௣𝑆௤ + 𝜇 − 𝜇𝑆 

𝑑𝐸

𝑑𝑡
= 𝜆𝐼௣𝑆௤ − (𝜖 + 𝜇)𝐸 

𝑑𝐼

𝑑𝑡
= 𝜖𝐸 − (𝛾 + 𝜇)𝐼 
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𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝜇𝑅 

where 𝑝, 𝑞, 𝛾, 𝜇, 𝜆 and 𝜖 are all positive parameters and S, E, I, and R signify the 

fractions of the population that are susceptible, exposed, infected, and recovered, 

respectively. In this model, it was assumed that the birth rate and the death rate were 

equal (denoted by 𝜇) and as a result, the overall population was in a state of equilibrium. 

Two Ebola epidemics were simulated in 1996 by Jaime Astacio et al. [23] using SIR 

and SIR models. It began in 1976 with an epidemic in Yambuku and ended in 1995 in 

Kikwit, Zaire. Zaire was the site of both outbreaks. The infectiousness of the disease is 

quantified by a number known as 𝑅଴,  which is the basic reproductive number. An Ebola 

infection has an 8.60 relative risk, indicating that the disease is less contagious than 

previously thought. Scientists will be able to apply the results of these epidemic 

simulations in future outbreaks to limit the number of possible fatalities. 

In 1999, Michael Y. Li and colleagues [24] investigated the SEIR model for the 

transmission of an infectious disease in a population through direct contact between 

hosts. The infectious force exhibited characteristics of a proportionate mixing type. In 

order to better understand the dynamics of population sizes when the disease is 

eradicated and when it is still prevalent, they devised two criteria. The difference 

between the two circumstances can be summarised by these thresholds. Assumed that 

the population's spatial distribution was consistent, and that the mixing of hosts adhered 

to the notion of "mass action." To be more specific, they presumed that the local 

population density would remain unchanged over time, despite the fact that the total 

population size 𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) may shift throughout the course of 

the study. The sizes of the S class, the E class, the I class, and the R class at any given 

moment are denoted by the variables 𝑆(𝑡), 𝐸(𝑡),  𝐼(𝑡) and 𝑅(𝑡), respectively. The per 

capita contact rate, denoted by 𝜆, is defined as the average number of successful 

interactions with other individual hosts per unit of time. This rate remains unchanged. 

This model relies on a set of ordinary differential equations and was developed by P. 

van den Driessche [25] in 2002 for use in generic compartmental disease transmission. 

Both of these contributions were made in the context of disease transmission. It was 

shown that, if 𝑅଴ < 1 then the disease-free equilibrium is locally asymptotically stable, 
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whereas if 𝑅଴ > 1, then it is unstable. As a result, the value 𝑅଴ was designated as the 

model's threshold parameter. For a wide range of compartmental epidemic models, the 

approach described here is relevant (Disease Free Equilibrium). The threshold 

parameter for these models is the basic reproduction number, which is denoted by 𝑅଴. 

In addition to this, the local analysis of the centre manifold will produce a second 

parameter, the sign of which will indicate whether or not there is a branch of endemic 

equilibria that is stable close to the threshold 𝑅଴ = 1. The maintenance of these 

equilibriums is essential to the prevention and treatment of disease. As a result, bringing 

𝑅଴ closer to one causes the incidence of the disease to decrease, and this trend continues 

until the disease is eradicated entirely when 𝑅଴ falls below one. Throughout the entirety 

of the investigation, they have operated under the presumption that there is a DFE that 

is clearly defined. Although the total population number is not constant, some models 

can be recast as fractions in order to achieve an equilibrium distribution of individuals 

across the compartments. That way, the models will be able to take into consideration 

changes in overall population size. Using the percentages of people in each 

compartment, a threshold parameter may be determined in this particular case study. 

However, even though it is a threshold based on fractions rather than on the total 

number of infected people, the analysis for both the threshold and bifurcation direction 

is same. Although there are many people infected with Ebola, there are only a small 

number of people who have been infected at any given time. 

In 2003, G. Chowell and coworkers [26] introduced a simple model capable of 

capturing the influence of average infectiousness in a heterogeneous population. In 

addition, the effect of separating diagnosed patients was incorporated into the model to 

study the significance of patient isolation and diagnostic rate in managing a SARS 

outbreak. They were able to calibrate an SEIJR model with parameters by analysing 

two cases that had relatively clean exponential growth curves for the number of 

recognised cases. After that, they utilised the SEIJR model in order to investigate the 

non-exponential dynamics of the Toronto outbreak. SARS pandemic data was used to 

create a model of "SEIJR" (susceptible, exposed, infected, diagnosed, and recovered), 

which was used to derive average attributes and rate constants for those populations. 

On the basis of data from Ontario (Toronto), Hong Kong (Singapore), Hong Kong 
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(China), and Singapore, projections were developed based on assumptions and 

observations, including how isolating persons who have been diagnosed with SARS 

now affects the spread of the disease. They came to the conclusion that isolating people 

with diagnosed conditions is something that should be done. Although they do not 

examine the effect of quarantine by varying the parameter q (Relative measure of 

infectiousness for the asymptomatic class E), this is likely due to the fact that it is 

common sense that the total number of cases will decrease if individuals who have had 

close contact with those who have been positively diagnosed are isolated in a 

quarantine. In addition, the implementation of relative extreme isolation measures in 

conjunction with prompt diagnosis has a significant influence on the dynamics of the 

local environment (the situation in Toronto). On the other hand, the SARS outbreak 

demonstrated that local disease dynamics that go "undetected" and "unchecked" have 

the potential to rapidly become a problem on a global scale. 

As a result of an auto regression phenomena, Peng Guan and colleagues [27] undertook 

research in 2004 to examine how artificial neural networks (ANNs) could be used to 

predict the occurrence of hepatitis A. Using a time series analysis approach called 

autoregressive integrated moving average (ARIMA), they looked for any signs of an 

auto regression phenomenon. As a training and verification set, the data from 1981 to 

1997 were used, and as a test set, the data from 1998 to 2001 were used. Based on the 

findings presented in this paper, we are able to deduce that the linear auto regression 

model exhibited characteristics of a first order auto regression phenomenon. The graph 

of the regression showed that there was a clear linear tendency, but that did not mean 

that all of the values were perfectly fitted. There was a significant gap between the 

values in terms of the amount. Figure 12 291.79 shows that the sum square error of the 

model is 12 291.79, whereas the sum square error of the training set is 8 944.95 and 

sum square error of the testing set is 3 346.84. Extrapolation forecasting using ANN 

produced values that were mostly in line with actual values, but ARIMA model 

forecasting produced values that were, on average, slightly higher than actual incidence 

values. Although preliminary learning showed that ANN could recognise some rules, 

the influence of specific special values over sum square error led to false forecasts of 

low incidence. Combining traditional methods with artificial neural networks offers the 
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potential to increase accuracy in prediction by using the characteristics of both 

approaches. Forecasting the spread of infectious illnesses is critical for their prevention 

and control, thus they focused their efforts on doing so. You must be able to learn the 

unknown mapping or function entirely from the examples that are currently accessible 

in order to complete this issue. The artificial neural networks can predict the mapping 

even if only a few of its components are known after learning the mapping or one very 

similar to it. In summing up, ANN has the potential to be a useful instrument for the 

processing of time series data. Additional research needs to be done on the model's 

construction as well as its explanation. 

In 2004, Abba B. Gumel et al. [28] introduced modelling strategies for controlling 

SARS epidemics for the first time. There were 774 deaths and 8098 illnesses worldwide 

as a result of the novel and highly contagious viral disease known as SARS, which 

initially surfaced in China at the end of 2002 and quickly spread to 32 other countries 

and areas. SARS could not be quickly recognised or treated because there were no 

available rapid diagnostic tests, treatments, or vaccines, therefore people who had been 

exposed to the virus were quarantined. Only in mid-April did China begin reporting 

more accurate data on SARS-related deaths and cumulative infected cases in the first 

three regions, when the deterministic model was utilised. During the SARS epidemics 

in Toronto, Hong Kong, Singapore, and Beijing, they looked studied how isolation and 

quarantine affected the disease's control. Isolating infected people to reduce the number 

of people who come into touch with them is a critical part of any SARS epidemic 

management strategy, whether or not a quarantine is put in place. Effective isolation 

requires the timely execution of strict sanitary procedures, indicated by a critical 

threshold level. Values that are lower than this threshold indicate that SARS is under 

control, whereas values that are higher than this threshold are linked to the occurrence 

of new community outbreaks or nosocomial infections, both of which are known to 

contribute to the spread of SARS in each region. Quarantine and sub-optimal isolation 

should not be implemented at the same time since the available resources can be better 

used to achieve optimal quarantine. SARS can be eradicated from a population if 

effective isolation measures are combined with a thorough screening procedure at entry 

points. 
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While SARS was spreading in 2005, Arul Earnest et al. employed ARIMA models to 

anticipate the number of occupied beds at Tan Tock Seng Hospital in real-time. While 

the pandemic was still going on, these forecasts were made. This information was 

gathered from Tan Tock Seng Hospital between March 14, 2003 and May 31, 2003, 

when admissions and occupancy for isolation beds were tracked. A key finding was 

that ARIMA models can be a helpful tool in the planning of real-time bed capacity 

during infectious disease outbreaks such as SARS for administrators and clinicians. 

This model has the potential to be utilised in the process of planning for bed capacity 

during outbreaks of infectious diseases other than Ebola. 

Enteroviruses cause hand, foot, and mouth disease (HFMD), which mainly affects 

children under the age of 5, according to an explanation from 2005 by L. LIU. Children 

under the age of five are most commonly affected by HFMD. The situation with HFMD 

is becoming more severe in China, as evidenced by the rising number of cases reported 

across the country. As a result, tools for monitoring and forecasting the occurrence of 

HFMD are urgently required in order to improve management efforts. Autoregressive 

integrated moving average (ARIMA) models were used to construct forecasts about the 

prevalence of HFMD in China's Sichuan province, where this study was conducted. 

The ARIMA model was fit with data on HFMD infections from January 2010 to June 

2014 in order to get the best results. To determine whether or not the models that were 

constructed were accurate representations of the data, we used the coefficient of 

determination (𝑅ଶ), the normalised Bayesian Information Criterion (BIC), and the mean 

absolute percentage of error (MAPE). The ARIMA model that was customised to our 

data was used to make HMFD incidence projections from April to June of 2014. The 

goodness-of-fit test resulted in the generation of the best general multiplicative seasonal 

ARIMA(1,0,1)x(0,1,0)ଵଶ model (𝑅ଶ = 0·692, MAPE = 15·982, BIC = 5·265), which 

also exhibited autocorrelations in the model's residuals that were statistically 

insignificant (P = 0893). The ARIMA(1,0,1)x(0,1,0)ଵଶ model's forecast incidence 

values ranged from 4103 to 9987 from July 2014 all the way through December 2014. 

These values represented proximate forecasts. The ARIMA model can be used to 

anticipate future trends in HMFD incidence and to provide help for HMFD prevention 

and control. Due to the HMFD incidence not being fully stationary in the near future, 
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new observations should be carried out on a regular basis. Additional adjustments may 

be necessary to the model parameters. 

Dengue haemorrhagic fever (DHF) cases in southern Thailand were modelled and 

projected using a univariate time-series analysis method developed by S. Promprou [31] 

in a 2006 study. He built autoregressive integrated moving average (ARIMA) models 

using data acquired between 1994 and 2005. He then used the data collected between 

January and August 2006 to verify the models. Regressive forecast curves were shown 

to be consistent with actual value distributions, according to the results of the study. 

According to the Q-statistic (Q=4.446), the fitting of the ARIMA (1,0,1) model to the 

data was satisfactory. This suggested that the autocorrelation function did not 

significantly change when zero was introduced. 

A 2008 study fitted an autoregressive integrated moving average (ARIMA) model to 

dengue incidence in Rio de Janeiro, Brazil, from 1997 to 2004 using the Box-Jenkins 

technique. Luz, Paula M. et al. [32] conducted the study. They discovered that the 

number of dengue cases in the preceding one, two, or twelve months can be used to 

estimate the number of dengue cases in a particular month. They used their calibrated 

model to make a prediction about the incidence of dengue for the year 2005 using two 

different approaches: one that looks ahead 12 steps and another that looks ahead 1 step. 

Because the 1-step ahead technique offers more accurate predictions (P value = 0.002, 

Wilcoxon signed-ranks test) than the 12-step approach, they conclude that this method 

is superior. The researchers also looked at different ARIMA models with climate 

factors as external regressors to see how well they predicted the future. According to 

their research, ARIMA models are effective tools for tracking the prevalence of dengue 

in Rio de Janeiro. In addition, these models can be utilised by applying them to 

surveillance data in order to forecast shifting patterns in the occurrence of dengue. 

An SEIR model with variable population size was presented by Chengjun Sun and 

Ying-Hen Hsieh [33] in 2009. This model was used to investigate vaccination strategy. 

The total number of infectives as well as their proportion in the population were taken 

into consideration when developing the three threshold parameters that will govern the 

eradication of the disease. The global dynamics of the model's impact on the size of the 

population were investigated. They summarised and compared the correlations between 
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the two systems with regard to the eradication of diseases, the prevalence of diseases, 

and the outbreak of diseases. They hypothesised that the substantially low product of 

vaccination rate combined with the low efficacy of the vaccine might result in 

complicated dynamics for the system that was under investigation. 

For a SIR (susceptible–infected–recovered) epidemic model with time delay, Gul 

Zaman et al. [34] reported the optimal control tactics in 2009. An SIR epidemic model 

with a time delay will be used in order to achieve this. A strategy called "optimal 

control" was employed to increase the total number of susceptibles and recovered 

patients while reducing the risk of disease spread among those who were already 

afflicted. After that, they investigated the dynamical behaviour of the controlled SIR 

epidemic model and derived the basic reproduction number. On top of all this, they 

demonstrated that an optimal controller exists for the control system and provided 

numerical simulations based on data from the Ebola epidemic in Congo. For the 

objective of eradicating Ebola virus, they found that a low contact rate (chance of 

infection) was ideal, and this is one approach of developing the best treatment 

techniques for infectious hosts. 

The SIS epidemic model was created in 2010 by Julien Arino and a group of other 

academics [35]. People's journeys between different locations of the world are depicted 

using this concept. People who travel between n cities are at risk of contracting diseases, 

according to an analytical model they provided. It was used to study the transmission 

of disease in the model. They used the concepts of disease recovery, transmission, 

death, birth, and travel between cities in the formulation of their model, which was a 

system of 2𝑛ଶ ordinary differential equations. This article derived an explicit formula 

for calculating the fundamental reproduction number, and it was suggested that, to 

control the disease, actions should be done to reduce 𝑅଴  to a value less than 1. 

Additionally, they talked about that. There will be no disease outbreaks in any cities 

that can be reached through the disease-free equilibrium city, as long as the system is 

in a condition of equilibrium. Equilibrium indicates that all cities that may be reached 

from a city with an endemic illness level are in the same state of equilibrium. These 

findings are based on the hypothesis that the system is in an unchanging state. Each 

city's infective population can be calculated numerically by solving system equations 



General Introduction 

26 

 

in system form at the beginning of a disease epidemic in a single city (or cities). This 

can be done at the beginning of the disease outbreak. 

Peilin Shi and Lingzhen Dong [36] created and investigated models for the transmission 

of infectious diseases with fluctuating population sizes and vaccines on susceptible 

persons as early as 2011.These models were based on the assumption that susceptible 

individuals are vaccinated against the disease. To begin, they assumed that the 

susceptible individuals are continuously receiving vaccinations. As well as global 

stability of both forms of equilibrium, they found results that were similar to thresholds 

for disease-free and endemic equilibrium existence in these systems. In particular, they 

demonstrated that the endemic equilibriums are stable on a global scale by transforming 

the systems in question into integrodifferential equations. Second, they assumed that 

vaccinations were administered only once during each time period. It was possible for 

them to demonstrate the existence of systems with impulsive effects that have periodic 

solutions that are free of disease and are globally stable. They used a valuable 

bifurcation theorem to discover the presence of periodic solutions. In this scenario, 

disease-related deaths do not take place. In the end, they compared the results with and 

without vaccinations, and they illustrated their findings by using numerical simulations. 

On a SIR-model that incorporated immunisation and treatment, Urszula Ledzewicz and 

Heinz Schattler [37] began their research in 2011 on an optimal control problem. It is 

still required to complete this study by establishing the structure of feasible 

concatenations using bang-bang controls in order to find an ideal synergy of controlled 

trajectories, even though they studied the solitary controls' structure. They will be able 

to find the best mix of controlled trajectories using this information. It is expected that 

the most effective immunisation method will consist of a single regimen, whereas the 

most effective treatment schedule is expected to be a bang-bang schedule. Most likely, 

there will be just one switch from 𝑢௠௔௫ to 𝑢 = 0. 

Since the early detection and control of tuberculosis epidemics is critical, Shiyi Cao 

and colleagues [38] developed an appropriate model for predicting TB epidemics in 

2013. This was accomplished in order to better prepare for the possibility of a TB 

outbreak. The Chinese Ministry of Health provided data on the number of tuberculosis 

cases diagnosed each month between January 2005 and December 2011. The data from 
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2005 to 2010 was fitted using two models: a SARIMA model and a hybrid model 

combining a SARIMA model with a generalised regression neural network model. The 

hybrid model also included a generalised regression neural network model. They came 

to the conclusion that the hybrid model provided more accurate forecasting of TB 

incidence than the SARIMA model. In China, there is a discernible seasonal pattern to 

the occurrence of tuberculosis, which is not observed in other countries. 

In 2013, Howard (Howie) Weiss [39] presented and analysed a fundamental 

transmission model for an infectious disease that can be passed from person to person 

directly. There is no clear formula for solving the model's three connected non-linear 

ordinary differential equations. We can, however, get a lot of information about the 

answers by utilising some simple calculus tools. As he spoke, he highlighted how this 

simple model provides a theoretical framework for public health activities and how 

some fundamental aspects of public health require the illumination that this model 

offers. 

Optimal control can be helpful in testing and comparing different vaccination regimens 

for a particular disease, according to an article by M. H. A. Biswas [40]. SIR 

(Susceptible, Exposed, Infectious, and Recovered) model was used to an optimal 

control issue, and the authors of this study proposed to include state variables as 

constraints on the optimal control problem. They looked into how to deal with this type 

of problem while imposing upper limits on the number of vaccines that can be utilised 

at any given time using mixed state control restrictions. Additionally, they looked into 

the idea of limiting the number of people who could be vaccinated, both with and 

without constraints on the number of vaccines that might be provided. 

Anqi Li [41] presented a model in 2015 with the intention of maximising the 

effectiveness of Ebola eradication efforts. Since 2014, the disease has become 

increasingly severe, resulting in the deaths of more than 8966 people. If effective 

control measures are not taken, the human society will be put in grave danger. This 

paper primarily addresses the issue by making a forecast regarding the pattern of Ebola 

transmission by utilising a modified version of the SIR model known as the SEIR 

model. The parameters of this model are found by obtaining it and basing it on the data 

from the WHO. This allows for a clear picture of the epidemic situation in the future to 
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be obtained. In addition, data that is reasonably accurate in the short term can be 

obtained through the use of this Grey Prediction model, which makes up for the 

deficiencies of the SEIR model in its ability to predict the short term. As a result, the 

current state of the Ebola epidemic will almost certainly improve and may even be 

resolved within a certain amount of time. 

Compartmental models of disease transmission were described and analysed by 

Paritosh Bhattacharya and colleagues [42] in the year 2015. Models of outbreaks were 

used to demonstrate the fundamental reproduction number and overall epidemic size. 

In addition to this, they investigated models that contained multiple compartments, 

including treatment for infectious diseases. They also looked at models that included 

births and deaths and considered whether or not there was an endemic equilibrium in 

those models. Additionally, they stated that if we don't have a thorough understanding 

of how the transmission mechanism works, parameter estimates should be followed 

with a structural sensitivity analysis. This was in addition to the fact that they stated 

that the standard statistical uncertainty analysis was inadequate. 

According to Wenzhi Chen [43], who published their findings in 2015, the Ebola virus 

is capable of causing a severe disease, it is an infectious disease that is fatal without 

treatment, and it is prevalent in western African countries such as Guinea, Sierra Leone, 

and Liberia. They believed that the Ebola virus spread from person to person after being 

transmitted from infected animal blood, secretions, or organs first. After that, it was 

believed that the virus spread from person to person. The mortality rate averages out to 

be fifty percent. Since there is currently no Ebola vaccine that has been approved for 

use, active participation in the control of this epidemic disease is extremely vital. In this 

paper, a mathematical model of the Ebola virus and its spread is developed, along with 

an analysis of the relevant data. 

In 2015, Amenaghawon C. Osemwinyen and colleagues [44] studied and simulated the 

transmission dynamics of the Ebola Zaire virus using two models: a modified SIR 

model with the understanding that the recovered can become infected again and the 

infected die at a certain rate; and a quarantine model, which determined the effects of 

isolating the infected. Both models were used to explore and mimic the dynamics of 

Ebola Zaire virus transmission. In addition, a system of Ordinary Differential Equations 
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(ODE) was developed for the transmission, and a linearized stability methodology was 

used to solve the equations. This action was taken to simulate the transmission. 

According to the results of the stability analysis conducted on both models, the Disease-

Free Equilibrium (DFE) states are unstable, assuming they exist at all. These 

equilibrium states indicated that the disease can be quickly reactivated; hence, 

persistent vigilance and the installation of effective prevention measures are required 

to limit the disease's capacity to spread. In contrast, numerical experiments were 

undertaken in which the parameters of the models were assigned hypothetical values, 

and graphs were generated to determine the impact of these parameters on the spread 

of the disease. The findings indicated that, due to the features of the Ebola Zaire virus, 

uncontrolled transmittable interactions between people who are infected and those who 

are susceptible can result in a highly dangerous outbreak with a high mortality rate, 

especially since neither immunity nor medications exist to treat the disease at this time. 

On the other hand, if efficient structures for quarantining are put in place, it will be 

possible to better manage the situation and bring the outbreak under control. 

Figures from 2016 by Xueying Bai et al. [45] show the change in the proportion of each 

category of people. A total of six populations were studied: those who were susceptible 

to infection, those who were in the early stages of infection, those who had recovered, 

and those who died. When compared to the prior model, the new data provide a more 

detailed description of the proportion of each category of people. Because of this, these 

numbers show a sharper trend in the pandemic scenario even if humans are not involved 

in it. Using the model's capacity to represent the epidemic-controlling effects of 

medications and vaccinations, it is possible to generate predictions about their potential 

to limit the spread of the disease based on changes to a few parameters. This is 

conceivable due to the fact that the epidemic situation's variation trend was successfully 

realised without the involvement of humans. A precise prediction of the therapeutic 

effects of drugs and vaccines is now achievable because of this. 

In 2016, based on the traditional SIR model, Siyuan Zhang [46] improved the 

differential equation model to take into account the effect of drugs and vaccines on the 

appearance of Ebola viruses. This was done based on the classical SIR model. In spite 

of the advancements, the differential equation model continues to be the most important 



General Introduction 

30 

 

component of our model. This model, as well as the subsequent discussion, are based 

on a district that is relatively contained because the spread of Ebola is a concern for the 

region. They began by defining variables associated with medications and vaccinations, 

with the goal of increasing the likelihood of rehabilitation using the SIR model in 

relation to the dose of medicine. In addition to that, they included a new category of 

people in the crowd: the dead people. Despite this, they continued to count the dead as 

part of the overall population of the district and consider the overall population to be 

stable. A computational analysis sheds light on the tendency of the infectious agent 

under varying initial conditions, which can be interpreted as a reflection of the spread 

of Ebola. They constructed a relationship between the infective and the susceptible, and 

used this relationship to find the threshold concerned with medicine. This was all based 

on the phase trajectory. In addition to this, they examined the sensitivity as well as the 

robustness of the model, and they came to the conclusion that the values of the 

parameters will have a significant impact on the outcome. 

Ebola is a virus that causes a highly virulent infectious disease, as stated by Harout 

Boujakjian [47] in the year 2016. This disease has been plaguing Western Africa, 

having a significant impact on the countries of Liberia, Sierra Leone, and Guinea in 

2014. It is critical to the disease's containment and eventual elimination that we have a 

solid understanding of its transmission and its boundaries. An SEIR model was used to 

simulate the spread of the disease. The World Health Organization's data has been used 

to prove the model's validity. The optimum control theory is used to examine the effect 

of vaccination and quarantine rates on the SEIR model. An investigation into the 

feasibility of employing these steps in order to effectively limit Ebola was the goal of 

this study. 

T. Berge et al. [48] examined in 2016 if the intake of contaminated bush meat, funeral 

practises, and environmental contamination can explain the recurrence and durability 

of Ebola virus disease epidemics in Africa. So that Ebola viruses may be distributed, 

they created a SIR model that takes into account both direct and indirect Ebola viral 

transmissions. There is one (endemic) equilibrium in the model that is locally 

asymptotically stable, but in the absence of Ebola virus shedding in the environment, it 

is globally asymptotically stable. This was a significant finding. In the case where Ebola 
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viruses are not supplied, the sub model predicts that the disease will either become 

extinct or reach an endemic equilibrium on a global scale. More people in the complete 

model are infected than in the submodel that does not contain Ebola viruses at the 

endemic level. They came up with a nonstandard finite difference scheme and were 

able to keep the model's dynamics intact with it. Numerical simulations are provided. 

In 2016, Amira Rachah et al. provided a comparison of two independent mathematical 

models used to describe the transmission of the Ebola virus in West Africa at the time. 

During the time of the outbreak, the models were used to depict the spread of the virus. 

In order to improve the accuracy of predictions and the level of control that can be 

exercised over the progression of the virus, research into numerical simulations and 

optimal control of the two Ebola models is currently being carried out. In particular, 

they looked into the circumstances that must exist for the two models to generate results 

that are consistent with one another when compared side by side. 

The use of time series analysis in several research to predict the frequency of dengue 

hemorrhagic fever patients was explained in 2018 by Fazidah A. Siregar [50]. Due to 

the lack of a vaccine and a weak public health infrastructure, predicting the occurrence 

of dengue hemorrhagic fever (DHF) is critical. The goal of this study was to identify a 

pattern and make predictions about the frequency of DHF in the Asahan region of North 

Sumatera Province. The district health offices provided information regarding the 

number of monthly dengue cases reported during the years 2012-2016. In order to make 

a prediction regarding the occurrence of DHF, an autoregressive integrated moving 

average (ARIMA) model was utilised to carry out a time series analysis. The findings 

revealed that there was a seasonal difference in the number of DHF cases that were 

reported. The SARIMA(1,0,0) (0,1,1)ଵଶ model turned out to be the most suitable 

option and best model for the data. Predicting the occurrence of DHF in the Asahan 

district and developing public health interventions to prevent and manage disease are 

both made easier with the SARIMA model for DHF. 

In 2019, M Siva Durga Prasad Nayak et. al. [51] selected a Seasonal ARIMA 

(1,0,0) (0,1,1)ଵଶ as the best suited model to predict the future incidence of dengue 

fever cases in the forthcoming year. Administrators in the healthcare industry can utilise 

this information to better plan for an emergency. The model can be dynamically 
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modified to take into account the most recent data. For more accurate prediction, more 

complex predictive models that take into account factors such as precipitation, the 

extrinsic incubation period, and other factors could be developed. It is possible to use 

the model to predict dengue fever occurrences even in shorter time frames or higher 

geographic areas, such as districts. 

In the research that was published in 2019, Ghazala Nazir and Shaista Gul [52] looked 

into how the differential transformation method and the variational iteration method 

could be used to find an approximation of the solution to the Ebola model. In order to 

construct the correction functional for the problem, the variational iteration method 

makes use of the general Lagrange multiplier. On the other hand, the differential 

transformation method makes use of the function that has been transformed from the 

original nonlinear system. In light of the findings, it became clear that both approaches 

produce results that are accurate and reliable while also being highly effective for 

solving ODE systems. 

Alok Kumar Sahai [53] stated that their research indicates that India and Brazil will 

reach the mark of 1.38 million and 2.47 million respectively in the year 2020, while the 

United States will reach the mark of 4.29 million by the 31st of July. In light of the fact 

that there is currently no treatment that is proven to be successful, this prognosis will 

help governments become better prepared to combat the epidemic by increasing the 

capacity of their healthcare facilities. 

Md. Haider Ali Biswas and Sharmin Sultana Shanta created a generic model in 2020 

that was based on the SIR type. This model included a control variable function that 

was referred to as media awareness. According to the findings, more media attention 

raises awareness among the general public, separating those who are susceptible from 

those who have been infected in the process. Using the model, researchers have been 

able to determine how stable each of the equilibrium points is. With this information, 

numerical simulations have been conducted to examine the impacts of the control that 

was implemented. Persistent promotion of public health campaigns, the study 

concludes, has a major impact on reducing the spread of infectious diseases. As a result 

of the media's coverage of illness outbreaks, the number of people who are exposed to 

the disease is cut in half. This study also found that the reproduction number, which 



General Introduction 

33 

 

reflects a certain threshold in epidemiological terms, is altered by transmission and 

recovery rates. To assist lessen and limit the disease burden in any circumstance when 

there is a pandemic or epidemic, their research suggests that in the absence of effective 

antivirals or vaccinations, raising awareness about the disease through the media may 

be one of those supporting measures. 

In the year 2020, Zeynep Ceylan [55] discussed how the COVID-19 first showed up at 

the end of December 2019 in Wuhan city, China. As of the 15th of April in the year 

2020, there were 1.9 million confirmed cases of COVID-19 all over the world, 

including 120,000 deaths. While COVID-19 can be controlled through vaccination, 

there is an urgent need to monitor and forecast its spread, he said. Time series models 

can be useful in epidemiology, and he discussed how he utilised the Auto-Regressive 

Integrated Moving Average (ARIMA) model to construct a prediction from the WHO 

website data between 21 Feb 2020 and 15 Apr. 2020. This prediction was made for the 

period of time from 21 February 2020 to 15 April 2020. Ceylan predicted the deaths 

and confirmed cases in Italy, Spain, and France in the near future, based on his research. 

His research included the development of multiple ARIMA models, each with its own 

unique set of ARIMA parameters. The ARIMA (0,2,1), ARIMA (1,2,0), and ARIMA 

(0,2,1) models were chosen as the best ones for Italy, Spain, and France, respectively, 

because they had the lowest MAPE (Mean Absolute Percentage Error) values. These 

values were 4.7520, 5.8486, and 5.6335, respectively. His research demonstrates that 

ARIMA models are appropriate for use when attempting to forecast the incidence of 

COVID-19 in the years to come. In order to better comprehend the outbreak's current 

trends and epidemiological stage, the findings of the analysis can be utilised. In 

addition, the prediction of COVID-19 prevalence trends in Italy, Spain, and France can 

assist in the formulation of policy and preventative measures for this epidemic in other 

nations. In addition to this, he went over how time series models contribute significantly 

to both the analysis and forecasting of disease outbreaks. As a result of this analysis, 

political leaders and those in charge of public health will be able to better plan and 

supply resources for the following few days and weeks in order to properly handle the 

situation in these countries. Real-time updates to the data should be performed so that 

comparisons and projections into the future are more accurate. 
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This year's Coronavirus illness (COVID-2019) is a global concern, according to 

Domenico Benvenuto and colleagues [56]. Currently, a variety of mathematical models 

are being used to anticipate the likely progression of this epidemic. Because these 

mathematical models are based on a wide range of inputs and analyses, they are 

vulnerable to prejudice. Using epidemiological data from Johns Hopkins, he then 

developed a simple econometric model that might assist anticipate the spread of 

COVID-19. Finally, he used an Auto Regressive Integrated Moving Average (ARIMA) 

model to predict the epidemiological trend of the prevalence and incidence of COVID-

19. He proclaimed that case definition and data collection needed to be kept up to date 

in real time so that there could be further comparison or for future perspective. 

In the year 2020, Rajesh Ranjan [57] used the SIR model to make a prediction about 

the outbreak of Covid-19 in India. He found that the Basic Reproduction Number in 

India ranges from 1.4 to 3.9, and that the pace of infection increase in India is quite 

similar to that in Washington and California.. COVID-19 data from India was compared 

to data from various other countries and states in the US that were experiencing a major 

outbreak. A striking similarity was found between the rates of infection growth in India 

and Washington and California, as he discovered. Exponential and classic susceptible-

infected-recovered (SIR) models, both based on the data that was provided, were used 

to make daily short- and long-term projections. It was predicted that India would attain 

equilibrium by the end of May 2020, based on the SIR model, with a final pandemic 

magnitude of roughly 13,000 people. If India had progressed to the stage of community 

transmission, this estimate would be worthless. Comparing data from different 

geographical places also analysed the impact of social distance. Again, this rating was 

based on the assumption that there was no transmission from the community. The rate 

of COVID-19 transmission in India was found to be comparable to that in Washington 

State, the United States, based on the findings of this preliminary investigation. Curves 

from both places show that the outbreak's early stages were identical in both locations. 

Using data from the outbreak in Washington, which began 9 days earlier than in India, 

experts were able anticipate the spread of disease in the latter country more accurately. 

A poor transmission rate was suggested as the cause for the lower basic reproduction 

number in several papers that cast doubt on India's testing standards. As a result, the 
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model's predictions were just as accurate as the data it was built on. According to him, 

the forecasts will change as a result of the real-time changes in the data. As a result, this 

paper's conclusions should only be utilised for qualitative comprehension and fair 

estimates of the outbreak's nature. The conclusions of this research should not be used 

to make any choices or policy changes. 

Ivan Korolev [58] used the SEIRD epidemic model for COVID-19 in 2020 to estimate 

the Basic Production number and Case fatality ratio of the United States of America 

and several other countries using the data provided by John Hopkins University in 

addition to other clinical parameters. The SEIRD model for COVID-19 was used in this 

study. A good place to start is with his demonstration of the model's inadequacy as 

highlighted by the number of deaths and confirmed cases thus far. There are many 

different sets of parameters, each of which can produce short-term observations that are 

equivalent to one another, but long-term forecasts that are significantly different. Next, 

he demonstrates that the fundamental reproduction number 𝑅଴ can be derived from the 

data, provided that the clinical parameters are taken into consideration. After that, he 

estimated it for the United States along with a number of other countries and regions, 

taking into account the possibility that the number of cases had been underreported. It 

was also shown that random tests can be used to calibrate the model's starting points 

and minimise the range of possible estimates for the expected number of deaths in the 

future. This information was obtained by using a statistical technique known as 

bootstrapping. 

According to Bhalchandra S. Pujari and Snehal Shekatkar [59], writing in the year 

2020, the ongoing pandemic of coronavirus has made it an urgent necessity to have 

reliable epidemiological modelling. Sadly, the majority of the currently available 

models either have a grain size that is too fine to be effective or a grain size that is too 

coarse to be reliable. A hybrid strategy that is computationally efficient and utilises the 

SIR model for specific cities was proposed as a result of this research in order to 

facilitate the movement of people between these cities, empirical transit networks are 

established between them. Over 300 Indian cities were taken into account when they 

applied their methodology to the country's transportation infrastructure. Based on their 

findings, it was hypothesised that a sizeable portion of the population living in the 
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United States would be exposed to the epidemic within a period of ninety days after it 

first appeared. Therefore, even after placing restrictions on international migration, it is 

necessary to conduct stringent surveillance of domestic transportation networks 

Because of their hybrid SIR model technique, they are able to anticipate the trajectory 

of the ongoing pandemic of COVID19 coronavirus in India. This approach includes 

well-mixed populations within cities as well as intercity coupling based on 

transportation networks. There only needs to be a relatively small number of people 

infected with the COVID19 virus in order for the pandemic to be maintained and further 

spread, as their research has demonstrated. This is due to the fact that the domestic 

transportation networks play an extremely important role. Therefore, it is of equal 

importance to monitor the domestic transportation, in addition to putting restrictions on 

international connections. 

Using a mathematical model with five compartments known as the SEIRD model, 

Vipin Tiwari and his colleagues [60] analysed and predicted the dynamics of COVID-

19's dissemination in India in the year 2020. The classic SEIRD model has been updated 

to account for the impact of India's COVID-19 mitigation policy, commonly known as 

a statewide lockdown. The modified transmission rate based on intervention techniques 

such as lockout, the time-dependent reproduction number, and the identification of 

underreported instances make up the core of their improvised SEIRD model. In addition 

to that, the data up to July 10, 2020 have been analysed as part of this study. Indian 

authorities were able to reduce inflammation caused by COVID-19 by as much as 50% 

via a public shutdown during the early stages of transmission, according to a research 

based on the data. During the time period covered by the lockdown, the effective 

reproduction number appeared to have ranged anywhere from two to three times its 

previous value, according to the findings. On the other hand, in an earlier study referred 

to as [61], a connection was found to exist between the effectiveness of testing and the 

transmission of disease. According to the findings of this study, one of the effective 

defences against the global distribution of COVID-19 is to improve the testing 

efficiency by conducting a greater number of sample tests. Overall, this study implies 

that a statewide public shutdown would be an effective means of stopping the spread 

of COVID-19, not only in India but also around the world. It is without a doubt going 
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to play a significant part in the epidemic peak suppression of the COVID-19 

dissemination. Even though the results that our improved SEIRD model produces are 

satisfactory, the validity of the mathematical model that is used to predict the spread of 

an epidemic can be improved by including a few additional parameters. Cases that are 

either imported or exported, asymptotic, or under-reported are all examples of 

additional parameters. 

An article written in 2020 by Aniruddha Adiga and colleagues [62] discussed several 

significant computational models for COVID-19 pandemic planning and response that 

had been developed by researchers in the United States, the United Kingdom, and 

Sweden. Policymakers and health professionals in each country have employed models 

to assess the pandemic's evolution, design and analyse control measures, and study a 

wide range of possible outcomes. As was mentioned, the availability of data, the rapidly 

developing pandemic, and the unprecedented control measures that were put into place 

posed challenges for all of the models. In spite of these obstacles, they were of the 

opinion that mathematical models have the potential to supply policy makers with 

information that is both helpful and timely. On the other hand, the modellers need to be 

open and honest about the descriptions of their models, state the limitations in a way 

that is easily understood, and carry out precise quantifications of sensitivity and 

uncertainty. It is unquestionably of great assistance to have these models evaluated by 

an impartial party. On the other hand, those in charge of formulating public policy ought 

to be aware of the fact that the use of mathematical models for pandemic planning and 

forecast response relies on a number of assumptions and lacks the data necessary to 

validate these assumptions. 

In 2020, Facal Ndarou et al. [63] proposed a compartmental mathematical model for 

the spread of COVID-19 disease. The model placed a particular emphasis on the 

transmissibility of individuals who were considered to be super-spreaders. Based on 

their findings, they were able to estimate a disease-free equilibrium's minimum basic 

reproduction number and determine how sensitive their model is to small changes in 

each of the model's parameters. It was possible for them to determine the fundamental 

reproduction number threshold in this way. The COVID-19 model that was proposed 



General Introduction 

38 

 

has been shown to be appropriate for the outbreak that took place in Wuhan, China, by 

means of numerical simulations. 

Iman Rahimi and colleagues [64] in 2020 described a few primary arguments that are 

worthy of further discussion and are as follows: 

• When it comes to the field of study, the areas of medicine, biochemistry, and 

mathematics are the ones that receive the most attention from academics. 

• According on keyword research, it indicates that interest in COVID-19 will grow over 

the next few months. In addition, academics are especially interested in coronavirus, 

epidemic, statistical analysis, human, hospitalisation, quarantine,mortality, and weather 

occurrences as keywords. 

• Several additional factors, such as confirmed cases, risk evaluations, stock markets 

and ventilation units and beds in intensive care units have been used by researchers in 

the forecasting process. In addition to China, Pakistan, France, Italy, the United States 

of America and the United Kingdom, Brazil, Nigeria and Iran were all studied in detail 

in the case studies. 

• Researchers have found that deep learning, SIR, and SEIR are the most effective 

epidemic models to date. Researchers employed these three models in their work. 

• The accuracy of forecasting methods can be improved through the application of 

hybrid algorithms. 

• The vast majority of studies take a deterministic approach, despite the pressing need 

to develop robust strategies for dealing with unpredictable circumstances. 

When Roman Cherniha [65] proposed a nonlinear ordinary differential equations model 

in 2020, he was hoping to provide a quantitative explanation of the new coronavirus 

pandemic's spread. One of the model's unique features is its complete integrability, 

which sets it apart from the rest. Exact model solutions (with the parameters accurately 

given) lead to findings that are in good agreement with the data from China and Austria, 

as demonstrated by comparison with publicly available data. Using data from Austria, 

France, and Poland, we can make some educated guesses about the total number of 

instances that COVID-19 will cause. respectively. Additionally, the model lends itself 

to some interesting generalisations. 
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In the year 2020, Gaetano Perone [66] explained that the novel Coronavirus disease, 

also known as COVID-19, is a severe respiratory infection that first appeared officially 

in Wuhan, China, in the month of December 2019. Late in the month of February, the 

disease started rapidly spreading across the world, which caused serious emergencies 

on multiple fronts, including the health, social, and economic fronts. Through the use 

of an autoregressive integrated moving average (ARIMA) model, which is applied to 

Italy, Russia, and the United States, the purpose of this paper is to make a prediction 

regarding the short- to medium-term incidence of the COVID19 epidemic. The 

Worldometer website (https://www.worldometers.info/coronavirus/) provides the data 

that is used for the analysis, which is based on the number of newly confirmed cases of 

COVID-19 that occur each day. Italy (4,2,4), Russia (1,2,1), and the United States of 

America had the best ARIMA models (6,2,3). The results revealed the following: I 

ARIMA models are sufficiently reliable when new daily cases begin to stabilise; ii) 

Italy, the United States of America, and Russia reached the peak of COVID-19 

infections in the middle of April, the middle of May, and early June, respectively; and 

iii) Russia and the United States of America will require significantly more time than 

Italy to reduce COVID-19 cases to near zero. 

This may indicate the importance of implementing swift and effective lockdown 

measures, which have historically been implemented to a larger extent in Italy. Even 

though the results should be interpreted with caution, it appears that ARIMA models 

are a useful tool for assisting health officials in monitoring the outbreak's spread. This 

is despite the fact that the results should be interpreted with caution. The continuous 

updating of these data, the addition of interventions and other real aspects, and the 

application of the model to other nations and/or regions all have the potential to produce 

additional forecasting that is both useful and accurate. 

Since the first SARS-CoV-2-infected patient was officially reported in the middle of 

November 2019, the new coronavirus has infected more than 10 million people, of 

whom half a million have perished in this short amount of time, according to a study 

published in 2020 by Ovidiu-Dumitru Ilie et al. The accuracy of COVID-19 monitoring 

and prediction systems, as well as containment procedures, must be improved as soon 

as possible. These last three countries are now the most affected by COVID-19, and as 
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a result, ARIMA models have been built and used to predict the epidemiological trend 

there. ARIMA models have been constructed and used to predict epidemiological 

COVID-19 trends in Ukraine. Romanian Government (GOV.RO), World Health 

Organization (WHO), and European Centre for Disease Prevention and Control 

(ECDPC) websites were used to acquire daily prevalence data from 10 March 2020 to 

10 July 2020 for COVID-19 (ECDC). This was done so that the data would be as 

accurate as possible. Multiple ARIMA models, each with their own unique set of 

ARIMA parameters, were developed. the most accurate model for Ukraine, Romania, 

Moldova, the Republic of Moldova, Serbia, Bulgarian, Hungarian and U.S. models 

were chosen based on their Mean Absolute Percentage Error (MAPE). These models 

include ARIMA (1, 1, 0), ARIMA (3, 2, 2), ARIMA (3, 2, 2), ARIMA (3, 1, 1), ARIMA 

(1, 0, 3), ARIMA (1, 2, 0), ARIMA (1, 1, 0), ARIMA (0, 2, 1), and ARIMA (4.70244, 

1.40016, 2.76751, 2.16733, 2.98154, 2.11239, 3.21569, 4.10596, 2.78051). This study 

provides an idea of the epidemiological stage that each of these regions is currently in 

and demonstrates that ARIMA models can be used effectively for forecasting during 

this current crisis. 

According to research published in 2020 by Kaustuv Chatterjee et al. [68], India is in 

the early stage of the COVID-19 epidemic despite having a slower growth rate than the 

other countries that were studied. Their mathematical model demonstrates that, if 

nothing is done to stop it, the epidemic will almost certainly reach 3 million cases by 

the 25th of May in 2020 and will completely overwhelm the healthcare resources that 

are currently available. The model also suggests that the immediate implementation of 

NPIs among the general population, including complete lockdowns, has the potential 

to slow the progression of the epidemic by April 2020, reduce the number of COVID-

19 cases, and reduce hospitalisation, ICU, and mortality rates by nearly 90 percent. This 

will make the disease more manageable, and it will fit within the purview of India's 

current healthcare resources. 

According to a study by Olumuyiwa James Peter and his colleagues [69] published in 

2021, the COVID-19 pandemic is one of the strange viruses that has the entire planet 

in a state of fear and confusion. Because of its elusive nature, the development of an 

effective vaccine against it has been slowed down. To prevent the virus from spreading 
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further, various preventative and protective actions, as well as recommendations from 

medical professionals and governing bodies, have been proposed. Using mathematics 

as an approach is one of the approaches to better comprehend the virus. In order to 

better understand the dynamics of the current pandemic, they developed a new 

mathematical model they dubbed "COVID-19." Several important characteristics of the 

novel model have been examined, including its invariant region, equilibrium state, 

fundamental reproduction number, and the global stability of the free disease 

equilibrium. All of these qualities are regarded valuable in their own right. The 

nonlinear least squares estimate technique implemented in the MATLAB function 

lsqcurvefit is used in conjunction with an actual statistical data set covering the period 

from July 1, 2020, to August 14, 2020, in Pakistan. Analyses of the parameters of the 

newly proposed model have been conducted in order to find which parameters are most 

susceptible to modification. These observations were validated by numerical 

simulations, which also led to the best-fitting curve being obtained for the proposed 

model. The techniques used by the public health sector and the government to address 

the circumstances that are causing the pandemic to spread faster will be more effective, 

according to the conclusions of this study. Efforts will be made to further investigate 

the recently suggested COVID-19 model to ensure that it complies with the methods 

used in studies that were recently published. 

It was discussed in 2021 that a mathematical analysis on the transmission dynamics of 

the novel COVID-19 pandemic had been completed [70]. This was done to learn more 

about how diseases spread and to look at possible preventative and control measures 

that could help to keep the tide of disease transmission from rising too quickly in the 

population. First, the human population was divided into those who were susceptible, 

those who were exposed, those who were infected, those who had recovered, and others 

under quarantine. If the basic number of fresh transmissions of coronavirus is less than 

one, the model has a disease-free equilibrium that is globally asymptotically stable, 

according to the stability analysis. This was discovered through the application of the 

stability analysis. The findings were analysed using a biological lens, which led to the 

following conclusions:  
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• If the management measures that are instated are able to reduce or maintain the basic 

reproductive number at a value that is less than one, then COVID-19 can be effectively 

managed or even eradicated. This is an indication that, despite the number of infectious 

individuals first brought into the community of completely vulnerable individuals, the 

illness was able to spread. 

• It is possible to exercise effective control over the distribution of COVID-19 in the 

population. It was also necessary to execute three separate simulations in order to 

compare the effectiveness of various control systems. 

• According to the findings of our study, the effects of three interventions with optimal 

costs of implementation are superior to the reduction in the disease epidemic. 

Archana Singh Bhadauria and colleagues [71] conducted research in 2021 to investigate 

how a lockdown affected the progression of a novel Corona Virus Disease (COVID-

19), which first appeared in Wuhan city in China in December 2019. India's government 

has banned international travel through land checkpoints due to the pandemic scenario, 

and a nationwide lockdown has been implemented as of March 24, 2020, across the 

country. In order to investigate the influence that lockdown has on the progression of 

disease, researchers considered a mathematical model with three dimensions that made 

use of nonlinear ordinary differential equations. The above-mentioned model was 

examined by using nonlinear ordinary differential equations and stability theory. 

Following the computation of the fundamental reproduction ratio, major parameters 

responsible for the preservation of a fundamental reproduction ratio lower than one are 

found. Only a complete lockdown, according to the study's conclusions, can wipe 

disease from the system; without it, disease would always be present in the population. 

However, if lockdown procedures are only partially applied, techniques such as contact 

tracing and quarantine can be used to keep the disease under control. 
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1.5 Proposed Objectives of Study 

In view of the above therefore, in the study mathematical modelling on 

COVID-19 epidemic was carried out. The objectives of the research work 

include the study: 

 To develop and validate the mathematical models on Covid-19 epidemic 

to forecast the different effects of the disease.  

 To predict and forecast the various effects of the disease using existing 

models and data available in public domain. 

 To calculate the basic reproduction number, case fatality ratio of the 

disease Covid-19. 

 To formulate a mathematical model that will help to make strategies to 

control Covid-19 epidemic. 

 

1.6 Main terms used in Thesis 

 

Susceptible: A person who is at risk of infection but is not yet infected.  

Exposed: A person who does not have visible symptoms but has contracted the 

infection. 

Infectious: A person who can pass infection to others and has the disease with 

symptoms. 

Recovered/Removed: After treatment etc., the symptoms are gone, and the person is 

no more infectious. 

Incubation Period: It is the time elapsed between the onset of the first visible 

symptoms of the disease and exposure to the infection. 

Endemic: A disease is referred as endemic if it is regularly found in a population or an 

area. 

Epidemic: A disease is referred as epidemic if the number of cases substantially 

increases within a short duration in given population. 

Pandemic: A disease is called pandemic if it is prevalent in the entire country or the 

world. 
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Basic Reproduction Number is defined as the number of secondary infections caused 

by single infected person in a susceptible population. This quantity is a dimensionless 

quantity defined as 

𝑅଴= (probability that an individual will survive until infectious) × (effective 

transmission rate) × (average duration of the infectious period). 

This list is in no way comprehensive in any way. In the many wonderful books that are 

available on the topic, you will find more comprehensive lists of the terms that are used 

in infectious disease epidemiology. (e.g., [72]). 

 

1.7 Summary of Thesis 

Owing to the fact that the SarsCov2 virus is one of the most dangerous diseases 

that can affect humans, the SarsCov2 virus is a potentially fatal pathogen that is poorly 

understood and has the potential to pose a significant risk to public health. During the 

pandemic, everyone was talking about the increasing number of people infected with 

the disease as it spread. Researchers from a wide variety of backgrounds have applied 

a wide variety of conceptual frameworks in order to generate a variety of forecasts for 

countries like India. Mathematical models will be used in this study to acquire insight 

into how many people in India are infected with the Corona virus and how many more 

will be affected soon. In this work, various mathematical models were developed, 

investigated, and validated for the COVID-19 epidemic in order to make predictions 

regarding the various effects of the disease. The data that is available in the public 

domain was used to make predictions about the cases that will occur in the near future, 

as well as basic reproduction and the case fatality ratio of the COVID-19. Additionally, 

a transmission model was talked about. The state of the epidemic outbreak in India was 

examined in this study, and several models were used to make projections regarding its 

likely progression into the future. The Indian healthcare system faces a significant 

challenge when it comes to providing appropriate intensive care units for critically ill 

patients. It would be very helpful if they had some idea about the cases that are coming 

up in the future. 

In the first chapter, a general introduction to mathematical biology, epidemic 

modelling, some fundamental mathematical models, and other related topics has been 
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provided. The section on the review of the literature sheds light on a few important 

works that have been done by researchers in this field up to this point. In light of the 

aforementioned, the research gaps have been outlined, and the goals of the study have 

been suggested. This chapter also provides an explanation of the fundamental 

mathematical preliminaries as well as the significant ideas, terms, and concepts that 

were utilised throughout the entire research project. The conclusion of the chapter 

provides a synopsis of the chapters that are included in the thesis. 

In chapter 2, we have established that the COVID-19 outbreaks in India are a 

major cause for concern, and although a comprehensive scientific investigation of this 

pandemic has not yet been completed, it was necessary to calculate the parameters of 

the pandemic dynamics in order to design an appropriate quarantine area, determine the 

number of hospital beds available, and so on. In this chapter, we covered the Polynomial 

Approximation Model for estimating the number of people infected across India. 

In chapter 3, our attention has been directed toward the investigation of the 

SEIRD model for COVID-19. When trying to make predictions about the number of 

deaths and cases, many different parameters were taken into consideration. From the 

collected data on fatalities and confirmed cases of COVID-19, we attempted to 

determine the basic reproduction number 𝑅଴. The basic reproduction number is also 

dependent on the clinical parameters. The next step that we took was to make an 

estimate of the possible range of forecasts regarding the future number of deaths in 

India. 

In chapter 4, in light of the fact that the COVID-19 disease has been identified as a 

potential threat on a global scale and that numerous studies are being published all over 

the world making use of a variety of mathematical models to estimate the size of this 

epidemic, a straightforward econometric time series model was discussed here. Many 

researchers are currently working on various mathematics-based estimation models to 

predict the subsequent trend of this pandemic, as the significant increase in daily 

COVID-19 infected cases around us is frightening. Some trajectories of COVID-19 in 

India were predicted using data that is available in the public domain. This was because 

the weighty increase in the daily COVID-19 infected cases around us is frightening. 

We applied a time series model to the Indian dataset known as the Auto-Regressive 
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Integrated Moving Average Model in order to make a prediction about the daily number 

of COVID-19 infections that will occur in the not-too-distant future. The results of our 

analysis are predicted to be extremely concerning. In order to avoid such a potentially 

lethal scenario, a number of stringent preventative measures have been proposed. 

According to our estimates, Indian health officials ought to modify their warmongering 

interference in order to take into account the accelerated growth, and rudimentary 

infection control actions at hospital levels were immediately required in order to reduce 

the scale of the COVID-19 pandemic. If the Indian government does not take stringent 

precautionary measures to control the spread of COVID-19, then the effects may 

become even worse. 

In chapter 5, there has been much discussion regarding the COVID-19 

transmission model as the outbreak serves as a sobering reminder that pandemics, along 

with other rare but catastrophic events, have occurred in the past and will continue to 

do so in the future. Transmission models are useful tools for gaining an understanding 

of the behaviour of contamination as it enters a community and determining the 

circumstances under which it will be treated or processed. As a consequence, there are 

very few treatments available in India for a severe problem. This is a situation that is 

not unique to India; rather, it is shared by countries all over the world. First, a proposal 

for the model's specifics is made, and then, after that, a discussion of the model's 

potential benefits follows. Using RPGT, a Transition Diagram of the system as well as 

expressions for Transition Probability and Mean Sojourn Times, Path Probabilities, and 

the mean time to epidemic affected (𝑇଴), Average Healthy Time (𝐴଴), and Recovery 

Period (𝐵଴) were derived, and they were then followed by illustrations. Following the 

creation of tables and graphs, analysis was performed. 

               In chapter 6, we have used a compartmental model with five compartments, 

i.e., the SEIRD Model, and we have done analysis on the dynamics of COVID-19 in 

India. Through this data-based study, we concluded that inflammation can be controlled 

by public lockdowns because it will reduce the transmission rates, and due to limited 

health care facilities, there will be more chances of recovery and hence the recovery 

rate will be increased. If we change these two parameters, the curve can be flattened. If 

we change the values of parameters in the model, we will get different results. As we 
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know, these parameters are not constant over time. So, if we look for disease dynamics 

at different times, we should change these parameters accordingly. Also, there are a few 

limitations in our model, and those have been discussed in the earlier sections. These 

can be improvised in the future. Also, some more parameters can be added to enhance 

the validation of results, like under reported cases or asymptotic cases. 

In the end, the problems under investigation in the study have been justified by the 

bibliography given in the concluding part of the thesis. 
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Chapter-2 

 

A Mathematical Model to Predict the Effect of 
Infection on Population of India by Covid-19 
Corona Virus 
 
2.1 Introduction  

Currently, the SarsCov2 virus is one of the most venomous pathogens for humans. The 

SarsCov2 virus is deadly, less understood, and has the capability of causing a large-

scale threat to public health. During the pandemic, everyone was talking about the 

increase in infected people. For a country like India, various predictions have been 

made by various researchers by using different models. The main aim of this work is to 

understand the dynamics of the Indian population infected by the coronavirus and how 

many people will be infected in the near future by using an appropriate mathematical 

model. We investigated a mathematical model that provides a good approximation of 

the COVID-19 outbreak in India. Before proceeding, we observed that the size of this 

outbreak in its starting stage was discussed by [73], [74], and [75], and they used SIR 

models and logistic models. In past years, at the time of other epidemics, various models 

were established, a few of them are analytical, stochastic, and phenomenological. Some 

of the most famous mathematical models used in epidemiology are mentioned below: 

2.1.1 The Logistic Model: The logistic growth model was introduced by Haberman in 

1998 for population dynamics. The basic assumption of the model is that the rate of 

change in the number of new cases per capita linearly decreases with the number of 
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cases. Hence, if 𝐼 is the number of Infected people, and t is taken as the time, then the 

model is written as  

1

𝐼
.
𝑑𝐼

𝑑𝑡
= 𝜔 ൬1 −

𝐼

𝑃
൰  

 

where 𝜔 is infection rate, and 𝑃 is the final epidemic size. This model can be solved 

easily by differential equations.  

2.1.2 SIR Model: If 𝑆(𝑡), 𝐼(𝑡) and 𝑅(𝑡) are the Susceptible, Infected and Recovered 

peoples at any given time 𝑡   The equations of this compartmental model are 

𝑑𝑆

𝑑𝑡
= −

𝜔

𝑃
𝐼𝑆 

𝑑𝐼

𝑑𝑡
=

𝜔

𝑃
𝐼𝑆 − 𝜏𝐼 

𝑑𝑅

𝑑𝑡
= 𝜏𝐼 

In the above equations, 𝜔 is rate of infection and 𝜏 is recovery rate. It can be noticed 

that 𝑃 is total population and  𝑆 + 𝐼 + 𝑅 = 𝑃 

2.1.3. Polynomial Regression Model:  

We can use polynomial models if there is any curvilinear relationship between the 

explanatory variables and study. If range of explanatory variables is small, then we can 

model some nonlinear relationship with polynomials. We say a model is linear if its 

parameters are linear. So we can consider 𝑦 = 𝛽଴ + 𝛽ଵ𝑥ଵ + 𝛽ଶ𝑥ଶ + 𝛽ଵଵ𝑥ଵ
ଶ + 𝛽ଶଶ𝑥ଶ

ଶ +

𝛽ଵଶ𝑥ଵ𝑥ଶ + 𝜖 and the model 𝑦 = 𝛽଴ + 𝛽ଵ𝑥 + 𝛽ଶ𝑥ଶ + 𝜖 as linear model. These the 

polynomials of second order with one and two variables, respectively. 

Polynomial Models in One Variable:  The polynomial model of order k in one 

variable may be expressed as 𝑦 = 𝛽଴ + 𝛽ଵ𝑥 + 𝛽ଶ𝑥ଶ + ⋯ + 𝛽௞𝑥௞ + 𝜖. If we consider  

𝑥௝ = 𝑥௝, 𝑗 = 1,2, … , 𝑘, Then we refer to this model as a multiple linear regression model 

with k different variables to explain the data, written as 𝑥ଵ, 𝑥ଶ, … , 𝑥௞.  Therefore, it is 

clear to see that the polynomial regression model is incorporated into the linear 

regression model expressed as 𝑦 = 𝑋𝛽 + 𝜖 Therefore, the techniques that are used for 
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fitting the linear regression model can also be used for fitting the polynomial regression 

model. 

For example: 𝐸(𝑦) = 𝛽଴ + 𝛽ଵ𝑥 + 𝛽ଶ𝑥ଶ or 𝑦 = 𝛽଴ + 𝛽ଵ𝑥 + 𝛽ଶ𝑥ଶ + 𝜖 is a polynomial 

regression model of second order in one variable, and we will call this a quadratic model 

or a second order model. We will call the coefficients 𝛽ଵ and 𝛽ଶ  the parameters of 

linear effect and quadratic effect, respectively. We can use these polynomial models for 

the approximation of a complex nonlinear relationship. It is possible to make the 

observation that the polynomial models are nothing more than an expansion of the 

Taylor series of the unknown nonlinear function. 

Hierarchy: If a model includes terms 𝑥, 𝑥ଶ, 𝑥ଷ and so on in a hierarchy, then we refer 

to that model as being hierarchical. For instance, the hierarchical nature of the model 

𝑦 = 𝛽଴ + 𝛽ଵ𝑥 + 𝛽ଶ𝑥ଶ + 𝛽ଷ𝑥ଷ + 𝛽ସ𝑥ସ + 𝜖 can be seen from the fact that it contains all 

of the terms up to order four. The model 𝑦 = 𝛽଴ + 𝛽ଵ𝑥 + 𝛽ଶ𝑥ଶ + 𝛽ସ𝑥ସ + 𝜖 does not 

constitute a hierarchical structure because it does not include the term 𝑥ଷ. Because only 

hierarchical models are invariant under linear transformation, we can anticipate that all 

polynomial models will have this property. When viewed through the lens of 

mathematics, this requirement appears to be more appealing. It's possible that the 

requirements for the model will change depending on the context of the situation. The 

model 𝑦 = 𝛽଴ + 𝛽ଵ𝑥ଵ + 𝛽ଵଶ𝑥ଵ𝑥ଶ + 𝜖, for instance, requires a two-factor interaction, 

which is provided by the cross-product term. A hierarchical model requires the 

inclusion of 𝑥ଶ which is not required from the standpoint of the statistical significance 

of the data. 

Orthogonal Polynomials: When we are trying to fit a linear regression model to a 

particular data set, we need to start with a straightforward linear regression model. Let 

us assume that at a later stage, we come to the conclusion that we want to change it to 

a quadratic, or that we want to increase the order from a quadratic model to a cubic 

model, etc. In every instance, we will need to start the modelling process from the very 

beginning-that is, with the basic linear regression model. It would be preferable to have 

a situation in which adding an additional term merely refined the model in the sense 

that, by increasing the order, we did not need to do all of the calculations from scratch. 

This would make the situation more manageable. Prior to the invention of computers, 
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all of the calculations had to be done by hand, , this aspect was of much greater 

significance. Trying to accomplish this goal by sequentially applying the powers 𝑥଴ =

1, 𝑥, 𝑥ଶ, 𝑥ଷ will not be successful. On the other hand, we can accomplish this with the 

assistance of a set of orthogonal polynomials. A degree of k is assigned to the kth 

orthogonal polynomial. The Gram-Schmidt orthogonalization technique can be utilised 

to construct polynomials of this kind. It's possible that we'll run into another problem 

when we try to fit polynomials into one variable, and that problem is ill-conditioning. 

One of the assumptions that is made in a standard multiple linear regression analysis is 

that all of the variables that are considered independent are truly independent. This 

assumption does not hold true within the framework of the polynomial regression 

model. Even if poor conditioning is eliminated through centring, there is a possibility 

that high levels of multicollinearity will still be present. Orthogonal polynomials have 

the potential to eliminate such a challenge. The Legendre polynomials, Hermite 

polynomials, and Tehebycheff polynomials are responsible for the classical cases of 

orthogonal polynomials of special kinds. In this case, we are dealing with discrete 

orthogonal polynomials, whereas the previous example involved continuous 

orthogonal polynomials, where the integration step was part of the orthogonality 

relation (where the orthogonality relation involves summation). 

Notice that: 

 It is unnecessary for us to concern ourselves with the other terms in the model.  

 Instead, we should solely focus on the newly included term. 

  As a result, fitting polynomials of a higher order can be done easily. 

 When a model that fits the requirements appropriately is obtained, the process 

should come to an end. 

Piecewise polynomial (Splines): Sometimes, the data will show that a lower order 

polynomial does not provide a good fit for the data. Increasing the order of the 

polynomial is one potential solution to this problem; however, there is no guarantee that 

this will be successful. It's possible that the higher-order polynomial won't improve the 

fit all that much. Residuals are a useful tool for analysing situations like these; for 

instance, the residual sum of squares might not be able to stabilise, or the residual plots 
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might be unable to explain an unexplained structure. The fact that the response function 

can behave differently depending on the range of the independent variable is one of the 

possible explanations for why something like this would occur. To solve issues of this 

nature, one solution is to use an appropriate function to fit the data in a number of 

different ranges of the explanatory variable. Therefore, the polynomial will be broken 

up into its component parts. In order to achieve such a fitting of the polynomial in 

pieces, the spline function can be utilised. The method of least squares gives us point 

estimates of linear regression models that are free from deviations, provided that certain 

preconditions of the model's random error distribution probability are satisfied. 

In this chapter, we have tried to estimate the future number of infected people in India 

using the Polynomial Approximation Model. Generally, in the cases of pandemics, the 

data is fitted by some exponential functions. But at present, the data is fitted by the 

polynomial of degree three. The data used for calculation is taken from the websites of 

the Ministry of Health and Family Welfare from 27-03-2020 to 15-04-2020 and from 

the websites of John Hopkins University. In the next chapter, we will include other 

factors in our study. We tried to include the study of the treatment of infected people in 

the mathematical model. 

  

2.2 Considerations to Keep in Mind While Fitting Polynomial in Single 

Variable 

 

A few of the considerations, one should keep in mind while fitting polynomial models 

are as follows: 

2.2.1 Order of the Model: It is in our best interest to maintain as low an order for the 

polynomial model as we can. It may be possible to use only a few transformations in 

order to maintain the model's first-order status. In the event that this does not meet our 

expectations, we should move on to the second-order polynomial. It's possible that we'll 

be abusing regression analysis to a dangerous degree if we try to fit arbitrary higher-

order polynomials to the data. There is the possibility of taking into consideration a 

model that is consistent with the data knowledge and its environment. Because we 
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already know that a polynomial of order 𝑛 − 1 can always pass through n points, we 

can always find a polynomial of sufficiently high degree such that it provides a "good" 

data fit. This is possible because we already know that a polynomial of order 𝑛 − 1 can 

always pass through n points. These models are neither accurate predictors nor do they 

contribute to a deeper comprehension of the unknown function. 

2.2.2 Strategy of Model Building: When determining the order of an approximate 

polynomial, we need to come up with a more effective strategy. It's possible that we 

could try this by fitting the models one after the other in ascending order and evaluating 

the significance of the regression coefficients at each step of the model fitting process. 

It would be best if we kept increasing the order until the t-test became insignificant for 

the term with the highest order. A forward selection procedure describes this kind of 

process. We also have the option of utilising a different strategy, which consists of first 

fitting the appropriate highest order model, and then deleting terms one by one, 

beginning with the highest order. We are going to keep doing this process until the 

highest order term that is still remaining has a t statistic that is significant. This kind of 

process is known as an elimination backward procedure. The model that results from 

using forward selection and the model that results from using backward elimination are 

not always the same. In practise, first- and second-order polynomials are used the 

majority of the time. 

2.2.3 Extrapolation: When extrapolating with polynomial models, we need to proceed 

with extreme caution. There is a possibility that the curvatures of the data region and 

the extrapolation region will not be identical. It is possible to notice that the predicted 

response is not based on the actual behaviour of the data. In general, polynomial models 

have the potential to take unexpected turns in the wrong directions. This may lead to 

incorrect inferences being drawn when extrapolating or interpolating the data. 

 
2.3 Data Collection 

The data was collected from the website of the Ministry of Health and Family Welfare 

from 27-03-2020 to 15-04-2020 and from the website of John Hopkins University. The 

collected data is given the table 2.1 below: 
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Table 2.1: Covid-19 Confirmed Cases (March 27, 2020 to April 04, 2020) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The growth of infected people, recovered and deaths between the date 27-03-2020 to 

15-04-2020 are being shown with the help of graph plotted below: 

Date Infected  Recovered Death 

27-03-2020 887 73 20 

28-03-2020 987 84 24 

29-03-2020 1,024 95 27 

30-03-2020 1,071 100 29 

31-03-2020 1,251 102 32 

01-04-2020 1,590 148 45 

02-04-2020 2,032 148 58 

03-04-2020 2,567 192 72 

04-04-2020 3,082 229 86 

05-04-2020 3,588 229 99 

06-04-2020 4,314 328 118 

07-04-2020 4,858 382 136 

08-04-2020 5,360 468 164 

09-04-2020 5,916 506 178 

10-04-2020 7,600 645 249 

11-04-2020 8,446 840 288 

12-04-2020 9,205 951 331 

13-04-2020 10,453 1,052 358 

14-04-2020 10,541 1,205 358 

15-04-2020 12,456 1,513 423 
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Figure 2.1 Plot of Infected, Recovered and Deaths 

 

 

2.4 Model Formulation 

 In this chapter, we have created a Polynomial Approximation Model with the help of statistical 

tools. We have tried to fit the data with the polynomial of degree two. We have considered 

that 𝐼(𝑡) = 𝑎 + 𝑏𝑡 + 𝑐𝑡ଶ .Where 𝑡 is the time in days and 𝐼(𝑡)is number of infected people at 

time 𝑡. The constants 𝑎, 𝑏 and 𝑐 are real in above polynomial. 
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2.5 Result and Discussion 

After analyzing the data, we have found that the curve of Infected Individuals is best 

fitted with the polynomial  𝐼(𝑡) = 𝑎 + 𝑏𝑡 + 𝑐𝑡ଶ   when the estimated values of 

coefficients are given by 𝑎 = 955.30, 𝑏 = −88.11,  𝑐 = 33.74. 

The table 2.2 shows the calculation for Approximation of cases and the squared 

Normalized Error. Where squared normalized error is given by 

 ቀ
େ୭୬୤୧୰୫ୣୢ େୟୱୣ  ୉ୱ୲୧୫ୟ୲ୣୢ େୟୱୣୱ 

େ୭୬୤୧୰୫ୣୢ େୟୱୣୱ 
ቁ

ଶ 

 

Table 2.2: Calculation for Approximation of Cases and Squared Normalized Error 

Date Days Confirmed 
Cases 

Approximatio
n of Cases 

Normalized 
Error^2 

27-03-2020 1 887 900.9279495 0.000246563 

28-03-2020 2 987 914.0352972 0.005465015 

29-03-2020 3 1,024 994.6232611 0.000823014 

30-03-2020 4 1,071 1142.691841 0.004480851 

31-03-2020 5 1,251 1358.241038 0.007348647 

01-04-2020 6 1,590 1641.270851 0.001039793 

02-04-2020 7 2,032 1991.78128 0.00039175 

03-04-2020 8 2,567 2409.772325 0.003751511 

04-04-2020 9 3,082 2895.243987 0.003671841 

05-04-2020 10 3,588 3448.196265 0.001518213 

06-04-2020 11 4,314 4068.629159 0.003235084 

07-04-2020 12 4,858 4756.542669 0.000436166 

08-04-2020 13 5,360 5511.936796 0.000803519 

09-04-2020 14 5,916 6334.811539 0.005011652 

10-04-2020 15 7,600 7225.166898 0.002432477 
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11-04-2020 16 8,446 8183.002874 0.000969616 

12-04-2020 17 9,205 9208.319466 1.30044E-07 

13-04-2020 18 10,453 10301.11667 0.000211124 

14-04-2020 19 10,541 11461.3945 0.007624027 

15-04-2020 20 12,456 12689.15294 0.000350368 

Sum of Squared Normalized Error 0.049811362 

 

From table 2.2, we have observed that the sum of squared normalized errors is 

0.049811362, which is very low. So, with the same coefficients, we have approximated 

the growth of infected people and tried to explain the same with the graph (Figure 2.2) 

plotted below: 

 

Figure 2.2: Plot of Confirmed Cases and Approximated Cases 
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The table 2.3 provides the approximated cases of Infected individuals by the dates. This 

table is prepared by substituting the values of time in polynomial. 

Table 2.3: Covid-19 Approximated Cases (Up to July 04, 2020) 

Date Days Estimated Cases 

31-03-2020 5 1358.241038 

05-04-2020 10 3448.196265 

10-04-2020 15 7225.166898 

15-04-2020 20 12689.15294 

20-04-2020 25 19840.15439 

25-04-2020 30 28678.17124 

30-04-2020 35 39203.20351 

05-05-2020 40 51415.25118 

10-05-2020 45 65314.31425 

15-05-2020 50 80900.39274 

20-05-2020 55 98173.48663 

25-05-2020 60 117133.5959 

30-05-2020 65 137780.7206 

04-06-2020 70 160114.8607 

09-06-2020 75 184136.0163 

14-06-2020 80 209844.1872 

19-06-2020 85 237239.3735 

24-06-2020 90 266321.5753 

29-06-2020 95 297090.7924 

04-07-2020 100 329547.025 
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Figure 2.3 shows the future growth in the infected individuals in India. 

 

 

Figure 2.3: Forecast Plot of Covid-19 Infected Cases 
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Approximation Model with the help of polynomials and found the coefficients with the 

help of data, using the statistical tools. It is also being made clear that the approximation 
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Chapter- 3 
 

Estimation through the SEIRD Model for 
Covid-19 
 
3.1 Introduction 

The SIR model and its many variants are the types of epidemiological models that are 

used most frequently to understand how epidemics spread. Since the outbreak of the 

novel coronavirus, it has gained popularity among mathematicians who are trying to 

estimate the size of the outbreak and its consequences to make various policies, such as 

[76], [77], [78], [79], [80], [81], [82] and others. In this chapter, we have done a study 

of a modified SIR model, which is known as SEIRD (Susceptible, Exposed, Infectious, 

Recovered, and Dead), and established various findings. It is well known that the 

SEIRD model has various degrees of freedom, and it depends on the parameters that 

are being observed from the clinical diagnosis of the disease and the data of confirmed 

cases and deaths. The basic reproduction number 𝑅଴ can be identified from the data and 

model. Since it is also well known that the 𝑅଴ reveals the spread speed of the virus. In 

this chapter, we have estimated the case fatality ratio, which is also a key parameter in 

estimating the number of deaths. During the estimation of 𝑅଴
 for India, we observed a 

range from 1.75 to 4.6 depending upon the different values of clinical parameters and 

initial values. These outcomes reveal that there is no single value of the basic 

reproduction number that is associated with the data, at least for the short time of 

observation. Many values of the basic reproduction number that are being observed are 

right, and the exact value depends on the model and the country. 

In order to construct a model, it is necessary to simplify reality through the use of 

assumptions. The infected individuals are also infectious to others, which is the 

primary presumption underlying the Kermack–McKendrick model. The total number 
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of people in the population is assumed to stay the same, which is the second 

assumption the model makes. Epidemiological models are constructed using ordinary 

differential equations (ODEs), which are mathematical systems that describe the 

dynamics that are present in each class. The dynamics of susceptible individuals, 

infectious individuals, and recovered individuals is one of the earliest forms of 

epidemiological modelling. In the year 1927, Kermack and McKendrick made the 

initial suggestion for the model. In order to derive the differential equations, we must 

first consider the evolution of the classes over time. When an individual who is 

susceptible comes into contact with an individual who is infectious, the susceptible 

individual has a certain chance of becoming infected and moves from the class of 

individuals who are susceptible to the class of individuals who are infected. Every 

person who contracts the disease during a given period of time counts toward the 

reduction of the population that is susceptible to it. At the same time, the number of 

individuals belonging to the class of infectious agents who have recently become 

infected also rises. When we are developing a model, we need to make sure that the 

units of the quantities that are being considered are taken into consideration. The 

process of estimating parameters based on data also benefits from having units. The 

above equations require that both sides use the same units for their respective answers. 

Every derivative measures something in terms of units, such as the number of people 

per unit of time. For differential equation models to be mathematically acceptable and 

have significance in biology, the differential equations themselves must be well posed. 

Because the dependent variables in the model denote physical quantities, we also 

require, for the majority of models in biology and epidemiology, that solutions that 

begin from positive (nonnegative) initial conditions remain positive (nonnegative) for 

all. This is necessary because the dependent variables in the model denote physical 

quantities. 

This chapter is organised into four sections. The first is an introduction, and the second 

is a summary of the SEIRD model. In the next section, we will discuss the data and 

identify the model. The next section describes the procedure for the estimation and 

results, along with some figures. 
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3.2 SEIRD Model 

Kermarck and McKendrick proposed the first compartment model for infectious 

disease. Usually, in epidemiological models, the total population is divided into 

numerous compartments or categories.  To study the dynamics of infectious diseases, 

we generally use the SEIRD model that divides the total population into five 

compartments, such as susceptible, exposed, infectious, recovered, and dead. In this 

basic compartmental model, individuals move from one compartment to another 

depending upon their personal resilience, resistance, and interaction with the person 

they are infected with. 

Nowadays, we have observed that to analyse infectious diseases, researchers are widely 

using the SEIRD model. There are a few assumptions for this popular model, and those 

are as follows: 

 We do not consider the natural population dynamics such as nature death, 

population mobility, and birth. 

 It is assumed that contacts between the susceptible and infected are more than 

sufficient to spread the infection. 

 Individuals who were in the recovered compartment will not become infected 

again. 

 Only individuals in an infected compartment have the capability to transmit the 

disease. 

 

The SEIRD model may be applied to almost all infectious diseases, but there are a few 

limitations in the case of COVID-19. The study suggests that there is a property of 

COVID-19 that the individuals in the exposed compartment are also capable of disease 

transmission. Since we neglect the infectivity of the individuals during the incubation 

period in the SEIRD model, unreported cases were also ignored in this model. Since we 

were facing a huge pandemic, there was no certainty that all infected individuals were 

tested and reported. It was because of a shortage in medical resources and testing 

policies. Such individuals were probably spreaders, which are hidden in susceptible 

compartments. So, this model cannot be considered for simulation in the long term 
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because of its constant parameters. Because of the recovery rate, the transmission rate 

must be changed if considered for a long time. 

The rate of change in the number of infected individuals clearly indicates whether the 

epidemic is spreading or eradicating. 

In this chapter, we have studied a variant of the SIR model (a compartmental model) 

that includes exposed and dead bodies in its compartments. Various authors like [83], 

[84], and others have used similar epidemiological models. In fact, many authors have 

used many advanced variants of the model with more compartments like [85], [86]. We 

have considered a model containing five compartments for people: susceptible (𝑆) , 

exposed (𝐸), infectious (𝐼), recovered (𝑅), and dead (𝐷). The susceptible compartment 

has those who are not infected with the virus yet but can be infected. Those exposed 

are those who are infected but cannot spread it to others. This is called the incubation 

period. In the infectious compartment, we have those people who are infected with 

viruses and are capable of transmitting them. Recovered compartments have those who 

were infected with the virus in the past but recovered. The dead are those who were 

unable to survive after infection by the virus. The number of people in all five 

compartments keeps changing over time as follows: 

𝑑𝑆(𝑡)

𝑑𝑡
= −𝛽

𝑆(𝑡)

𝑁
𝐼(𝑡)                                                      (3.1) 

𝑑𝐸(𝑡)

𝑑𝑡
= 𝛽

𝑆(𝑡)

𝑁
𝐼(𝑡) − 𝜎𝐸(𝑡)                                        (3.2)  

𝑑𝐼(𝑡)

𝑑𝑡
= 𝜎𝐸(𝑡) − 𝛾𝐼(𝑡)                                                  (3.3) 

𝑑𝑅(𝑡)

𝑑𝑡
= (1 − 𝛼)𝛾𝐼(𝑡)                                                  (3.4) 

𝑑𝐷(𝑡)

𝑑𝑡
= 𝛼𝛾𝐼(𝑡)                                                              (3.5) 

𝑑𝐶(𝑡)

𝑑𝑡
= 𝜆𝛾𝐼(𝑡)                                                           (3.6) 
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N is total population of India and we will assume that it is fixed and does not change 

with time i.e., birth and death caused by any other reason are excluded in order to avoid 

unnecessary complications.  In most research papers and literature, the total population 

is fixed. C(t) is the total number of confirmed cases. It doesn't change how the model 

works, but it is used to match confirmed case data to the model. During the analysis of 

the model, it is assumed that the people in the infectious compartment, rather than those 

exposed are tested for the virus. In the computer programmes, we replaced I(t) in the 

equation (3.6) with E(t) and the results will remain unchanged. The solution of the 

SEIRD model has dependency on many parameters. We have used 𝛾 and 𝜎 as clinical 

parameters. 𝛾 is the parameter which reflects the estimated time of illness. Its value was 

found varying in the research papers from 1/18 to 1/5 in [84]. 𝜎 is the parameter which 

tells the estimated incubation period of COVID-19. Its value was found varying in the 

research papers from 1/5 in [87] to 1/3 in [84]. The parameter 𝛽 tells the infectious rate. 

Also, we have the relation 𝛽 = 𝑅଴𝛾, where 𝑅଴is known as the basic reproduction 

number, which is used to measures the disease transmission. 𝛼 is the case fatality ratio 

and we have referred it as CFR. As discussed in paper [88], the CFR has many 

limitations and depends on the infectious people. The CFR may not be constant and can 

increase if the system of health care in India becomes overloaded. But for the simplicity, 

we have assumed that 𝛼 is constant and tried to approximate it. Also, 𝜆 was estimated. 

The number of dead and recovered people at time zero are 𝑅(0) = 0 and 𝑅(0) = 0. 

We have chosen the number of infected people at initial stage 𝐼(0) and exposed people 

as 𝐸(0). We also made discussion on their choice. At initial stage, Susceptible peoples 

are 𝑆(0) = 𝑁 − 𝐼(0) − 𝐸(0) − 𝑅(0) − 𝐷(0) = 𝑁 − 𝐼(0) − 𝐸(0). 

3.3 Data of Model 

In this estimation, we are dependent on the data of confirmed cases and deaths due to 

COVID19. The data used by us was collected from the website of Johns Hopkins 

University. The population of India is taken as 1378159530. The observations were 

collected from the date January 22, 2020 to May 20, 2020. 
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3.4 Estimation and Results  

In this section, we have described the procedure of estimation used by us. It is same 

method as used by Ivan Korolev [88]. We have fixed  𝑇଴ = 1,  𝐼଴ = 0 and increase 𝐸଴ 

(if needed) starting from 𝐸଴ = 1. For any vector (𝛼, 𝑅଴, 𝜆)  of parameters and each value 

of 𝑡, we have calculated the number of deaths 𝐷(𝑡, 𝛼, 𝑅) and the number of reported 

cases 𝐶(𝑡, 𝑅, 𝜆). Then we have calculated the residual sum of squares for the death’s 

series, given by 

𝑅𝑆𝑆஽(𝛼, 𝑅) = ෍(𝐷(𝑡) − 𝐷(𝑡, 𝛼, 𝑅))ଶ

௧ୀଵ

 

and the residual sum of squares for the reported cases series, given by 

𝑅𝑆𝑆஼(𝑅, 𝜆) = ෍(𝐶(𝑡) − 𝐶(𝑡, 𝑅, 𝜆))ଶ

௧ୀଵ

 

Where 𝐷(𝑡) and 𝐶(𝑡)  are the original data reported. Then, we found the values 

(𝛼஽, 𝑅஽) that minimize 𝑅𝑆𝑆஽  and the values (𝑅஼ , 𝜆஼) that minimize 𝑅𝑆𝑆஼  and then 

we have estimated jointly (𝛼, 𝑅଴, 𝜆) by minimizing 

𝑅𝑆𝑆்(𝛼, 𝑅, 𝜆) =
𝑅𝑆𝑆஽(𝛼, 𝑅)

𝑅𝑆𝑆஽(𝛼஽, 𝑅஽)
+

𝑅𝑆𝑆஼(𝑅, 𝜆)

𝑅𝑆𝑆஼(𝑅஼ , 𝜆஼)

 

We used the normalization by the preliminary values of the 𝑅𝑆𝑆஽ and reported cases 

so that both series contribute roughly equally to the final objective function. If their 

contribution is not normalized, then 𝑅𝑆𝑆஼ may dominate. If any of the 𝛼஽ , 𝜆஼ , 𝛼 or 𝜆 

are at the upper bound of 1, the value of  𝐸଴ will be increased until we get rid of the 

constraint. Then the least value of 𝐸଴ was considered for which we do not have any 

parameter constraint. Others can use the value 𝐸଴ = 1  always and leave the 

constraints. Because in this attempt of ours, we used the least value of 𝐸଴ so that we 

can obtain fatality rate close to its upper bound. The number of deaths, which are 

being forecasted might be considered as highest. But the declaration should also be 

kept in mind that the model may be incorrect because some of our assumptions, such 
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as the fatality rate may not be constant over a given time period. This may appear 

unrealistic. 

Next, we discussed the results and calculated parameters with the help of some 

computer programmes using the languages R and Julia. We have represented the 

results and estimated parameters with the help of table and graphs. If we consider the 

COVID-19 confirmed cases and deaths due COVID-19 in India from the date 22-01-

2020 to 20-04-2020 with clinical parameters  𝜎 = 1/4 and 𝛾 = 1/10. Here we have 

fixed 𝐸଴ = 3 and 𝐼଴ = 0 

Table 3.1 Assumed and Calculated Parameters (January 22, 2020 to April 20, 2020) 

Total 
Population 

𝜎 

(Assumed) 
𝛾 

(Assumed) 
𝑅଴ 

(Calculated) 
𝛼 

(Calculated) 
𝛽 = 𝑅଴𝛾 

(Calculated) 
𝜆 

(Calculated) 

1378159530 0.25 0.1 3.005737 0.0326966 0.3005737 0.903463 

  

 

 

Figure 3.1: Plot of Confirmed and Estimated Deaths (January 22, 2020 to April 20, 
2020) 
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Figure 3.2: Plot of Confirmed and Estimated Cases (January 22, 2020 to April 20, 
2020) 

If we consider the data from the date 22-01-2020 to 20-05-2020 with clinical parameters 

 𝜎 =
ଵ

ସ
 and 𝛾 =

ଵ

ଵ଴
. Here we have fixed 𝐸଴ = 3 and 𝐼଴ = 0 

 

Table 3.2: Assumed and Calculated Parameters (January 22, 2020 to May 20, 2020) 

 

Total 
Population 

𝜎 

(Assumed) 
𝛾 

(Assumed) 
𝑅଴ 

(Calculated) 
𝛼 

(Calculated) 
𝛽 = 𝑅଴𝛾 

(Calculated) 
𝜆 

(Calculated) 

1378159530 0.25 0.1 2.6920 0.0373527 0.26920 0.99 
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Figure 3.3: Plot of Confirmed and Estimated Cases (January 22, 2020 to May 20, 
2020) 

 

        

 

Figure 3.4: Plot of Confirmed and Estimated Deaths (January 22, 2020 to May 20, 
2020) 

If we keep on changing the value of the clinical parameters and the values of 𝐸଴ and 𝐼଴. 

We will get different results. 
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As we know, the data spread trend of COVID-19 is different for different time periods. 

We have observed that the SEIR model is considered as the most commonly used 

method for simulation of COVID-19 data. Individuals in exposed compartments in the 

SEIRD model are not capable of disease transmission, which is not consistent with 

COVID-19. 

We evaluated the progression of COVID-19 under the assumption of a "one-time 

enforcement of containment measures" scenario, in which the lockdown and other 

social distancing norms are maintained for an unspecified amount of time. However, a 

more realistic reconstruction of the pandemic situation would be to impose an 

"intermittent lockdown" in specific regions. In this scenario, the containment and other 

social distancing measures are enforced once the number of active infections reaches a 

threshold that is determined by the capacity of the regional healthcare system. In this 

scenario, the containment and other social distancing measures are enforced once the 

number of active infections reaches a threshold that is determined by the capacity of 

the regional healthcare system. The measures that were put into place during the 

lockdown were eventually eased or lifted as the number of active infections dropped 

below a certain threshold. This was referred to as "unlocking" the lockdown. This 

cycling between the phases of "lockdown" and "unlock" continues until either the 

contagion is completely brought under "control" or the possibility of an infection 

spreading "out of bound" is no longer a concern. The manner in which intermittent 

intervention is carried out is determined by a variety of controlling factors, including 

the acquisition of "herd immunity," the availability of appropriate vaccines, the capacity 

of public health facilities at which all patients can be accommodated and treated, and 

other such factors. We have found that the number of cases without symptoms is 

significantly higher than the number of cases with symptoms in the parameter regime 

that is currently being investigated for this model. In point of fact, individuals who were 

exhibiting symptoms were given priority when it came to undergoing tests, despite the 

fact that the number of tests has been significantly increased. This made it impossible 

to identify a significant portion of the asymptomatic population in a country like India, 

which has a massive population. For this reason, in order to determine the exact ratio 

of symptomatic to asymptomatic populations, we require extensive data curation across 
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the country as well as additional research in this area. The infectiousness of a person 

who is asymptomatic may be comparable to that of a person who is experiencing 

symptoms. Because the asymptomatically infectious population freely interacts with 

the healthy susceptible population, the infection continues to spread throughout the 

population, resulting in an increase in the number of symptomatic as well as 

asymptomatic cases. It was essential to identify the origin of the infection and then cut 

it off from the population of healthy people who were susceptible to it if the infection 

is to be contained. The only data that was available to validate our prediction of the 

asymptomatically infected population were those that are scant and sparse. India 

performs a serology-based (antibody test) survey in selected districts in order to 

determine the extent of the disease's spread throughout communities and the frequency 

of asymptomatic cases. The purpose of the test is to determine whether or not the 

infected individual possesses a particular antibody that was produced by their immune 

system in response to the viral infection. Regardless of the testing policy, it is essential 

to keep a social distance between affected areas while also implementing measures of 

containment, either continuously or intermittently. In addition to this, it was essential 

for all members of the population to cover their faces with cloth or wear masks. To 

summarise, a "indefinite lockdown" is not a viable option for putting an end to the 

spread of the COVID-19 virus. The imposition of a lockdown in India served the larger 

purpose of providing the opportunity to buy 'time.' In a nutshell, the lockdown slows 

down the infection, and the time window provided by the lockdown gives us the 

opportunity to ramp up the healthcare facilities, testing capacity, and other aspects of 

preparedness so that the COVID-19 does not catch us by surprise when the lockdown 

is lifted. The effect of lockdown was felt even during the gradual "unlock" phases if 

social distance, sanitation protocols, and proper mask wearing in public places are 

adopted by every individual as the "new normal" of lifestyle. 
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Chapter-4 
 

Prediction of Covid-19 Infected Cases in India 

Using Time Series Model  
 

4.1 Introduction  

Coronavirus was detected as a new type of virus and the disease COVID-19 is 

spreading quickly in humans from humans. It was declared as a most prevalent 

epidemic that may raise a horrific tragedy. Research shows that this virus is a member 

of zoonotic coronaviruses family and type of severe acute respiratory syndrome 

coronavirus hence it was known by SARS-CoV. The origin of this virus was from a 

Chinese city named Wuhan, and the first loss of life was reported in late 2019. The 

coronavirus disease has affected more than 200 countries. There were several adverse 

effects due to SARS-CoV particularly on old people and persons with chronic illness. 

COVID-19 had a very red-blooded structure and growing rapidly. Discouragingly, as 

of May 22, 2021, approximately 26530132 cases were confirmed in India. The virus 

has expanded its radius all over India as of today. Due to absence of proper method of 

treatment of this virus, the fruitful planning of the health sector was essential to 

minimize the damage done by this disease. In such grave circumstances, for the 

effective planning, the estimation of the cases and deaths were necessary, so that 

management of our health care system can be done properly. The statistical and 

mathematical modelling tools was used for making long-term or short-term estimation 

to plan the resources and supply of material to handle this pandemic. Expected load 

estimation is necessary for officials in health department to control the damage and 

resource management. The Automatic Regressive Integrated Moving Average 
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(ARIMA) model has a simple structure and due to its capacity to explain any time 

series data set and fast applicability, it has been applied in the different fields, as well 

as in health sector. In the previous years, Automatic Regressive Integrated Moving 

Average (ARIMA) model was fruitful in the estimation of various infectious diseases 

like influenza and malaria. We used this data to observe a prediction model by 

applying heterogeneous ARIMA models. This model may be helpful to predict the 

health care system needs that may be helpful for patients in India. 

The aim of this chapter is to provide estimation of the covid-19 in India. The data 

examined in this chapter was firstly taken of the period from 22 January 2020 to 15 

June 2020 and after that the period from 22 January 2020 to 22 May 2021. The data 

was used to examine a case estimation model by applying different ARIMA models. 

These models may be helpful to estimate the needs of health care system that patients 

will need in India soon. 

4.2 ARIMA Model 

The ARIMA is the abbreviation for a model in which AR means autoregressive model 

and MA means moving average model and I means integrated. The procedure of 

ARIMA [89-93] modelling is basically controlled by four steps: model assessment, 

parameter estimation, diagnostics, and forecasting. The first step of this time series 

model is to check whether the dataset of time series is seasonal and stationary. A time 

series is called stationary if the properties of statistical nature are constant. The 

stationarity of dataset is important observation to get accurate forecasts. The unit root 

test is used to check the stationarity of time series data, If the series is not stationary 

then differences are used to make the data stationary. The estimation of ARIMA model 

parameters can done by graph of autocorrelation function (ACF) and partial 

autocorrelation (PACF) correlogram. The graph of auto correlation function determines 

the relation of previous and following values in the time series. The graph of partial 

auto correlation function calculates the correlation degree between lag and variable. 

Using maximum likelihood estimation (MLE), we can estimate the best ARIMA model. 

Once the best model is selected for the time series data set, then by using those 
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parameters, ARIMA model can be taken as a forecasting model for making predictions 

for future values. 

4.2.1 Auto Correlation Function (ACF): The autocorrelation function (ACF) is the 

plot that is used to see the correlation between the points, up to and including the lag 

unit. The autocorrelation of a time series is the degree to which it is correlated with its 

previous values. When displaying an ACF, the correlation coefficient is plotted along 

the x-axis, and the number of lags is displayed along the y-axis. The plot of the 

autocorrelation function informs us of the nature of the correlation between the given 

time series and itself. 

4.2.2 Partial Auto Correlation Function (PACF): A summary of the relationship 

between an observation in a time series and observations at prior time steps is called a 

partial autocorrelation. This means that the relationships between the observations that 

occurred in the intervening time steps have been removed. After removing the effect of 

any correlations that may have been caused by the terms at shorter lags, the correlation 

that remains is referred to as the partial autocorrelation at lag k. 

4.3 Prediction of Covid-19 Cases from June 16, 2020, to July 10, 2020 

4.3.1 Data Collection (January 22, 2020, to June 15, 2020):   In this estimation, we 

have applied the model to the data of confirmed cases and deaths due to COVID-19. 

The data, we were using is collected on June 16, 2020, from the website of Johns 

Hopkins University. The observations are collected from January 22, 2020, to June 15, 

2020. 

Table 4.1: Data of Confirmed Cases 

Date Cases Date Cases Date Cases 

22-01-2020 0 11-03-2020 62 29-04-2020 33062 

23-01-2020 0 12-03-2020 73 30-04-2020 34863 

24-01-2020 0 13-03-2020 82 01-05-2020 37257 

25-01-2020 0 14-03-2020 102 02-05-2020 39699 

26-01-2020 0 15-03-2020 113 03-05-2020 42505 
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27-01-2020 0 16-03-2020 119 04-05-2020 46437 

28-01-2020 0 17-03-2020 142 05-05-2020 49400 

29-01-2020 0 18-03-2020 156 06-05-2020 52987 

30-01-2020 1 19-03-2020 194 07-05-2020 56351 

31-01-2020 1 20-03-2020 244 08-05-2020 59695 

01-02-2020 1 21-03-2020 330 09-05-2020 62808 

02-02-2020 2 22-03-2020 396 10-05-2020 67161 

03-02-2020 3 23-03-2020 499 11-05-2020 70768 

04-02-2020 3 24-03-2020 536 12-05-2020 74292 

05-02-2020 3 25-03-2020 657 13-05-2020 78055 

06-02-2020 3 26-03-2020 727 14-05-2020 81997 

07-02-2020 3 27-03-2020 887 15-05-2020 85784 

08-02-2020 3 28-03-2020 987 16-05-2020 90648 

09-02-2020 3 29-03-2020 1024 17-05-2020 95698 

10-02-2020 3 30-03-2020 1251 18-05-2020 100328 

11-02-2020 3 31-03-2020 1397 19-05-2020 106475 

12-02-2020 3 01-04-2020 1998 20-05-2020 112028 

13-02-2020 3 02-04-2020 2543 21-05-2020 118226 

14-02-2020 3 03-04-2020 2567 22-05-2020 124794 

15-02-2020 3 04-04-2020 3082 23-05-2020 131423 

16-02-2020 3 05-04-2020 3588 24-05-2020 138536 

17-02-2020 3 06-04-2020 4778 25-05-2020 144950 

18-02-2020 3 07-04-2020 5311 26-05-2020 150793 

19-02-2020 3 08-04-2020 5916 27-05-2020 158086 

20-02-2020 3 09-04-2020 6725 28-05-2020 165386 

21-02-2020 3 10-04-2020 7598 29-05-2020 173491 

22-02-2020 3 11-04-2020 8446 30-05-2020 181827 

23-02-2020 3 12-04-2020 9205 31-05-2020 190609 
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24-02-2020 3 13-04-2020 10453 01-06-2020 198370 

25-02-2020 3 14-04-2020 11487 02-06-2020 207191 

26-02-2020 3 15-04-2020 12322 03-06-2020 216824 

27-02-2020 3 16-04-2020 13430 04-06-2020 226713 

28-02-2020 3 17-04-2020 14352 05-06-2020 236184 

29-02-2020 3 18-04-2020 15722 06-06-2020 246622 

01-03-2020 3 19-04-2020 17615 07-06-2020 257486 

02-03-2020 5 20-04-2020 18539 08-06-2020 265928 

03-03-2020 5 21-04-2020 20080 09-06-2020 276146 

04-03-2020 28 22-04-2020 21370 10-06-2020 286605 

05-03-2020 30 23-04-2020 23077 11-06-2020 297535 

06-03-2020 31 24-04-2020 24530 12-06-2020 308993 

07-03-2020 34 25-04-2020 26283 13-06-2020 320922 

08-03-2020 39 26-04-2020 27890 14-06-2020 332424 

09-03-2020 43 27-04-2020 29451 15-06-2020 343091 

10-03-2020 56 28-04-2020 31324   

4.3.2 Discussion and Results: Fruitful strategies were required to control and prevent 

the spread of the outbreak. Forecasting the epidemiological trend was needed for the 

deployment of the medical staff and resources as well as for the economic growth of 

the country. Thus, it was a necessity of the hour to create a well-grounded model for 

forecasting, which may be helpful for the government in deciding strategies for the 

country. Time series analysis is significant in making hypotheses for understanding the 

trend of disease and forecasting the phenomena. The ARIMA model was one of the 

most popular forecasting methods for time series data due to its structure, simplicity, 

and acceptable performance in forecasting. The first step was to convert the collected 

univariate data set into time series data by running R code and observing the graph of 

the cumulative data of COVID-19 confirmed cases. 
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Figure 4.1: Cumulative Confirmed Cases of Covid-19 in India 

Now we did some data analysis to find the seasonality and non-stationary in our 

data set. We used autocorrelation analysis to check the dependence, i.e., we examined 

the correlation between past and current value to get the value of p, d, and q. We used 

unit root test with the help of R code to examine what should be used to make data 

stationary. 

 

Figure 4.2: Residual from Test Regression 
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Since the time series data was not stationary at initial level, after applying 

differencing, we have obtained the plot of stationary data: 

 

Figure 4.3: Stationary Data Plot 

 

Now, since the data is ready, and all assumptions are satisfied for the modelling. For 

the values of p and q in ARIMA(p,d,q), we run the functions acf() and pacf() in R. 

These three variables are all positive integers that describe the model's autoregressive 

order, integrated order, and moving average order. The maximum likelihood (ML) 

method was used to estimate the model. A Box-Ljung test was performed to test the 

overall randomness based on the number of lags. It was applied to the residuals of the 

fitted model instead of the original series. 
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Figure 4.4: Series Residual 

 

Figure 4.5: Ljung-Box Q Test and Normal Q-Q Plot 
 

Several ARIMA models like ARIMA (2,2,2), ARIMA (0,2,0), ARIMA (1,2,0), 

ARIMA (0,2,1), ARIMA (1,2,1), ARIMA (0,2,2), ARIMA (1,2,2), ARIMA (0,2,3), 

ARIMA (1,2,3) were selected for test and ARIMA (0,2,2) was selected as the best 

ARIMA model. R code was used to perform to the analysis. Level of statistical 
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significance was set to 5%. Then using the parameters of the best model, prediction 

values and graph of confirmed cases of COVID-19 in India was obtained as in table 

below: 

Table 4.2: Prediction Values of Covid-19 Cases 
 

Date Lower Mean Upper 

16-06-2020 353657 354795.9 355935 

17-06-2020 364783 366692.7 368603 

18-06-2020 376043 378780.5 381518 

19-06-2020 387404 391058.5 394714 

20-06-2020 398850 403525.9 408202 

21-06-2020 410375 416181.9 421989 

22-06-2020 421973 429025.6 436078 

23-06-2020 433639 442056.3 450474 

24-06-2020 445369 455273 465178 

25-06-2020 457158 468675.2 480192 

26-06-2020 469005 482261.8 495519 

27-06-2020 480904 496032.1 511160 

28-06-2020 492853 509985.4 527118 

29-06-2020 504849 524120.9 543393 

30-06-2020 516888 538437.7 559987 

01-07-2020 528968 552935.1 576902 

02-07-2020 541085 567612.2 594140 

03-07-2020 553236 582468.4 611701 

04-07-2020 565419 597502.8 629587 

05-07-2020 577631 612714.8 647799 

06-07-2020 589869 628103.4 666338 

07-07-2020 602130 643667.9 685206 

08-07-2020 614412 659407.7 704404 

09-07-2020 626711 675321.8 723932 

10-07-2020 639027 691409.7 743793 



Prediction of Covid-19 Infected Cases in India Using Time Series Model  

80 

 

 

Figure 4.6: Forecast from ARIMA (0,2,2) 

 

In the above study, the situation of the epidemic outbreak on June 16, 2020 in India was 

discussed, and future trends are estimated by the Automatic Regressive Integrated 

Moving Average model. This was a great problem for the Indian health care system to 

arrange intensive care units for the neediest patients. If they had any idea about the 

future cases, it could be a great help. The number of confirmed cases in India was 

growing by the day. The country needed an improved health care system to avoid 

unmanageable damage. 

4.4 Prediction of Covid-19 Cases from May 23, 2021, to June 16, 2021 

4.4.1 Data Collection (January 22, 2020, to May 22, 2021): In this part, we employed 

the model on the data set of COVID-19 confirmed cases. The data, we used, was 

collected from the Johns Hopkins University’s website. The observations were 

collected from January 22, 2020, to May 22, 2021. 
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Table 4.3: Data of Confirmed Cases 

Date Confirmed 

Cases 

Date Confirmed 

Cases 

Date Confirmed 

Cases 

22-01-

2020 

0 03-07-2020 648315 12-12-

2020 

9857029 

23-01-

2020 

   0 04-07-2020 673165 13-12-

2020 

9884100 

24-01-

2020 

0 05-07-2020 697413 14-12-

2020 

9906165 

25-01-

2020 

0 06-07-2020 719664 15-12-

2020 

9932547 

26-01-

2020 

0 07-07-2020 742417 16-12-

2020 

9956557 

27-01-

2020 

0 08-07-2020 767296 17-12-

2020 

9979447 

28-01-

2020 

0 09-07-2020 793802 18-12-

2020 

10004599 

29-01-

2020 

0 10-07-2020 820916 19-12-

2020 

10031223 

30-01-

2020 

1 11-07-2020 849522 20-12-

2020 

10055560 

31-01-

2020 

1 12-07-2020 878254 21-12-

2020 

10075116 

01-02-

2020 

1 13-07-2020 906752 22-12-

2020 

10099066 

02-02-

2020 

2 14-07-2020 936181 23-12-

2020 

10123778 

03-02-

2020 

3 15-07-2020 968857 24-12-

2020 

10146845 
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04-02-

2020 

3 16-07-2020 1003832 25-12-

2020 

10169118 

05-02-

2020 

3 17-07-2020 1039084 26-12-

2020 

10187850 

06-02-

2020 

3 18-07-2020 1077781 27-12-

2020 

10207871 

07-02-

2020 

3 19-07-2020 1118206 28-12-

2020 

10224303 

08-02-

2020 

3 20-07-2020 1155338 29-12-

2020 

10244852 

09-02-

2020 

3 21-07-2020 1193078 30-12-

2020 

10266674 

10-02-

2020 

3 22-07-2020 1238798 31-12-

2020 

10266674 

11-02-

2020 

3 23-07-2020 1288108 01-01-

2021 

10286709 

12-02-

2020 

3 24-07-2020 1337024 02-01-

2021 

10323965 

13-02-

2020 

3 25-07-2020 1385635 03-01-

2021 

10340469 

14-02-

2020 

3 26-07-2020 1435616 04-01-

2021 

10356844 

15-02-

2020 

3 27-07-2020 1480073 05-01-

2021 

10374932 

16-02-

2020 

3 28-07-2020 1531669 06-01-

2021 

10395278 

17-02-

2020 

3 29-07-2020 1581963 07-01-

2021 

10413417 

18-02-

2020 

3 30-07-2020 1634746 08-01-

2021 

10413417 
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19-02-

2020 

3 31-07-2020 1695988 09-01-

2021 

10450284 

20-02-

2020 

3 01-08-2020 1750723 10-01-

2021 

10466595 

21-02-

2020 

3 02-08-2020 1803695 11-01-

2021 

10479179 

22-02-

2020 

3 03-08-2020 1855745 12-01-

2021 

10495147 

23-02-

2020 

3 04-08-2020 1908254 13-01-

2021 

10512093 

24-02-

2020 

3 05-08-2020 1964536 14-01-

2021 

10527683 

25-02-

2020 

3 06-08-2020 2027074 15-01-

2021 

10542841 

26-02-

2020 

3 07-08-2020 2088611 16-01-

2021 

10557985 

27-02-

2020 

3 08-08-2020 2153010 17-01-

2021 

10571773 

28-02-

2020 

3 09-08-2020 2215074 18-01-

2021 

10581823 

29-02-

2020 

3 10-08-2020 2268675 19-01-

2021 

10595639 

01-03-

2020 

3 11-08-2020 2329638 20-01-

2021 

10610883 

02-03-

2020 

5 12-08-2020 2396637 21-01-

2021 

10625428 

03-03-

2020 

5 13-08-2020 2461190 22-01-

2021 

10639684 

04-03-

2020 

28 14-08-2020 2525922 23-01-

2021 

10654533 
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05-03-

2020 

30 15-08-2020 2589952 24-01-

2021 

10667736 

06-03-

2020 

31 16-08-2020 2647663 25-01-

2021 

10676838 

07-03-

2020 

34 17-08-2020 2702681 26-01-

2021 

10689527 

08-03-

2020 

39 18-08-2020 2767253 27-01-

2021 

10701193 

09-03-

2020 

43 19-08-2020 2836925 28-01-

2021 

10720048 

10-03-

2020 

56 20-08-2020 2905825 29-01-

2021 

10733130 

11-03-

2020 

62 21-08-2020 2975701 30-01-

2021 

10746174 

12-03-

2020 

73 22-08-2020 3044940 31-01-

2021 

10757610 

13-03-

2020 

82 23-08-2020 3106348 01-02-

2021 

10766245 

14-03-

2020 

102 24-08-2020 3167323 02-02-

2021 

10777284 

15-03-

2020 

113 25-08-2020 3224547 03-02-

2021 

10790183 

16-03-

2020 

119 26-08-2020 3310234 04-02-

2021 

10802591 

17-03-

2020 

142 27-08-2020 3387500 05-02-

2021 

10814304 

18-03-

2020 

156 28-08-2020 3463972 06-02-

2021 

10826363 

19-03-

2020 

194 29-08-2020 3542733 07-02-

2021 

10838194 
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20-03-

2020 

244 30-08-2020 3621245 08-02-

2021 

10847304 

21-03-

2020 

330 31-08-2020 3691166 09-02-

2021 

10858371 

22-03-

2020 

396 01-09-2020 3769523 10-02-

2021 

10871294 

23-03-

2020 

499 02-09-2020 3853406 11-02-

2021 

10880603 

24-03-

2020 

536 03-09-2020 3936747 12-02-

2021 

10892746 

25-03-

2020 

657 04-09-2020 4023179 13-02-

2021 

10904940 

26-03-

2020 

727 05-09-2020 4113811 14-02-

2021 

10916589 

27-03-

2020 

887 06-09-2020 4204613 15-02-

2021 

10925710 

28-03-

2020 

987 07-09-2020 4280422 16-02-

2021 

10937320 

29-03-

2020 

1024 08-09-2020 4370128 17-02-

2021 

10950201 

30-03-

2020 

1251 09-09-2020 4465863 18-02-

2021 

10963394 

31-03-

2020 

1397 10-09-2020 4562414 19-02-

2021 

10977387 

01-04-

2020 

1998 11-09-2020 4659984 20-02-

2021 

10991651 

02-04-

2020 

2543 12-09-2020 4754356 21-02-

2021 

11005850 

03-04-

2020 

2567 13-09-2020 4846427 22-02-

2021 

11016434 



Prediction of Covid-19 Infected Cases in India Using Time Series Model  

86 

 

04-04-

2020 

3082 14-09-2020 4930236 23-02-

2021 

11030176 

05-04-

2020 

3588 15-09-2020 5020359 24-02-

2021 

11046914 

06-04-

2020 

4778 16-09-2020 5118253 25-02-

2021 

11063491 

07-04-

2020 

5311 17-09-2020 5214677 26-02-

2021 

11079979 

08-04-

2020 

5916 18-09-2020 5308014 27-02-

2021 

11096731 

09-04-

2020 

6725 19-09-2020 5400619 28-02-

2021 

11112241 

10-04-

2020 

7598 20-09-2020 5487580 01-03-

2021 

11124527 

11-04-

2020 

8446 21-09-2020 5562663 02-03-

2021 

11139516 

12-04-

2020 

9205 22-09-2020 5646010 03-03-

2021 

11156923 

13-04-

2020 

10453 23-09-2020 5732518 04-03-

2021 

11173761 

14-04-

2020 

11487 24-09-2020 5818570 05-03-

2021 

11192045 

15-04-

2020 

12322 25-09-2020 5903932 06-03-

2021 

11210799 

16-04-

2020 

13430 26-09-2020 5992532 07-03-

2021 

11229398 

17-04-

2020 

14352 27-09-2020 6074702 08-03-

2021 

11244786 

18-04-

2020 

15722 28-09-2020 6145291 09-03-

2021 

11262707 
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19-04-

2020 

17615 29-09-2020 6225763 10-03-

2021 

11285561 

20-04-

2020 

18539 30-09-2020 6312584 11-03-

2021 

11308846 

21-04-

2020 

20080 01-10-2020 6394068 12-03-

2021 

11333728 

22-04-

2020 

21370 02-10-2020 6473544 13-03-

2021 

11359048 

23-04-

2020 

23077 03-10-2020 6549373 14-03-

2021 

11385339 

24-04-

2020 

24530 04-10-2020 6623815 15-03-

2021 

11409831 

25-04-

2020 

26283 05-10-2020 6685082 16-03-

2021 

11438734 

26-04-

2020 

27890 06-10-2020 6757131 17-03-

2021 

11474605 

27-04-

2020 

29451 07-10-2020 6835655 18-03-

2021 

11514331 

28-04-

2020 

31324 08-10-2020 6906151 19-03-

2021 

11555284 

29-04-

2020 

33062 09-10-2020 6979423 20-03-

2021 

11599130 

30-04-

2020 

34863 10-10-2020 7053806 21-03-

2021 

11646081 

01-05-

2020 

37257 11-10-2020 7120538 22-03-

2021 

11686796 

02-05-

2020 

39699 12-10-2020 7175880 23-03-

2021 

11734058 

03-05-

2020 

42505 13-10-2020 7239389 24-03-

2021 

11787534 
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04-05-

2020 

46437 14-10-2020 7307097 25-03-

2021 

11846652 

05-05-

2020 

49400 15-10-2020 7370468 26-03-

2021 

11908910 

06-05-

2020 

52987 16-10-2020 7432680 27-03-

2021 

11971624 

07-05-

2020 

56351 17-10-2020 7494551 28-03-

2021 

12039644 

08-05-

2020 

59695 18-10-2020 7550273 29-03-

2021 

12095855 

09-05-

2020 

62808 19-10-2020 7597063 30-03-

2021 

12149335 

10-05-

2020 

67161 20-10-2020 7651107 31-03-

2021 

12221665 

11-05-

2020 

70768 21-10-2020 7706946 01-04-

2021 

12303131 

12-05-

2020 

74292 22-10-2020 7761312 02-04-

2021 

12392260 

13-05-

2020 

78055 23-10-2020 7814682 03-04-

2021 

12485509 

14-05-

2020 

81997 24-10-2020 7864811 04-04-

2021 

12589067 

15-05-

2020 

85784 25-10-2020 7909959 05-04-

2021 

12686049 

16-05-

2020 

90648 26-10-2020 7946429 06-04-

2021 

12801785 

17-05-

2020 

95698 27-10-2020 7990322 07-04-

2021 

12928574 

18-05-

2020 

100328 28-10-2020 8040203 08-04-

2021 

13060542 
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19-05-

2020 

106475 29-10-2020 8088851 09-04-

2021 

13205926 

20-05-

2020 

112028 30-10-2020 8137119 10-04-

2021 

13358805 

21-05-

2020 

118226 31-10-2020 8184082 11-04-

2021 

13527717 

22-05-

2020 

124794 01-11-2020 8229313 12-04-

2021 

13689453 

23-05-

2020 

131423 02-11-2020 8267623 13-04-

2021 

13873825 

24-05-

2020 

138536 03-11-2020 8313876 14-04-

2021 

14074564 

25-05-

2020 

144950 04-11-2020 8364086 15-04-

2021 

14291917 

26-05-

2020 

150793 05-11-2020 8411724 16-04-

2021 

14526609 

27-05-

2020 

158086 06-11-2020 8462080 17-04-

2021 

14788003 

28-05-

2020 

165386 07-11-2020 8507754 18-04-

2021 

15061805 

29-05-

2020 

173491 08-11-2020 8553657 19-04-

2021 

15320972 

30-05-

2020 

181827 09-11-2020 8591730 20-04-

2021 

15616130 

31-05-

2020 

190609 10-11-2020 8636011 21-04-

2021 

15930774 

01-06-

2020 

198370 11-11-2020 8683916 22-04-

2021 

16263695 

02-06-

2020 

207191 12-11-2020 8728795 23-04-

2021 

16610481 
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03-06-

2020 

216824 13-11-2020 8773479 24-04-

2021 

16960172 

04-06-

2020 

226713 14-11-2020 8814579 25-04-

2021 

17313163 

05-06-

2020 

236184 15-11-2020 8845127 26-04-

2021 

17636186 

06-06-

2020 

246622 16-11-2020 8874290 27-04-

2021 

17997113 

07-06-

2020 

257486 17-11-2020 8912907 28-04-

2021 

18376421 

08-06-

2020 

265928 18-11-2020 8958483 29-04-

2021 

18762976 

09-06-

2020 

276146 19-11-2020 9004365 30-04-

2021 

19164969 

10-06-

2020 

286605 20-11-2020 9050597 01-05-

2021 

19557457 

11-06-

2020 

297535 21-11-2020 9095806 02-05-

2021 

19925517 

12-06-

2020 

308993 22-11-2020 9139865 03-05-

2021 

20282833 

13-06-

2020 

320922 23-11-2020 9177840 04-05-

2021 

20664979 

14-06-

2020 

332424 24-11-2020 9222216 05-05-

2021 

21077410 

15-06-

2020 

343091 25-11-2020 9266705 06-05-

2021 

21491598 

16-06-

2020 

354065 26-11-2020 9309787 07-05-

2021 

21892676 

17-06-

2020 

366946 27-11-2020 9351109 08-05-

2021 

22296081 
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18-06-

2020 

380532 28-11-2020 9392919 09-05-

2021 

22662575 

19-06-

2020 

395048 29-11-2020 9431691 10-05-

2021 

22992517 

20-06-

2020 

410451 30-11-2020 9462809 11-05-

2021 

23340938 

21-06-

2020 

425282 01-12-2020 9499413 12-05-

2021 

23703665 

22-06-

2020 

440215 02-12-2020 9534964 13-05-

2021 

24046809 

23-06-

2020 

456183 03-12-2020 9571559 14-05-

2021 

24372907 

24-06-

2020 

473105 04-12-2020 9608211 15-05-

2021 

24684077 

25-06-

2020 

490401 05-12-2020 9644222 16-05-

2021 

24965463 

26-06-

2020 

508953 06-12-2020 9677203 17-05-

2021 

25228996 

27-06-

2020 

528859 07-12-2020 9703770 18-05-

2021 

25496330 

28-06-

2020 

548318 08-12-2020 9735850 19-05-

2021 

25772440 

29-06-

2020 

566840 09-12-2020 9767371 20-05-

2021 

26031991 

30-06-

2020 

585481 10-12-2020 9796744 21-05-

2021 

26289290 

01-07-

2020 

604641 11-12-2020 9826775 22-05-

2021 

26530132 

02-07-

2020 

625544     
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4.4.2 Discussion and Results: High-yielding strategies were the requirement of time 

to control and prevent the spread of COVID-19. Estimating the trend of the epidemic 

was required to deploy the medical staff and available resources in view of the growth 

of the country in every aspect. Thus, it was the demand of the time to make a well-

designed model for estimation, which would be productive for the government to make 

strategies for the country. Analysis using time series is significant to make hypotheses 

for awareness of the trend of COVID-19 and estimation of phenomena. The Automatic 

Regressive Integrated Moving Average model was one of the most prevalent estimating 

methods for data in time series because of its simplicity, structure, and sustainable 

performance in estimation. The initial step is to convert the data collected in the 

univariate time series dataset by running R code and noticing the cumulative data graph 

of confirmed cases. 

 

Figure 4.7: Cumulative Confirmed Cases of Covid-19 in India 

Now we should perform some data analysis to figure out the seasonality and non-

stationarity in time series data. Autocorrelation analysis was used to determine the 

dependence, i.e., the correlation between current and past values was examined to 

obtain the value of 𝑝, 𝑑, and 𝑞. Also, unit root test was used with the help of R code 

to conclude what to do to make data stationary. 
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Figure 4.8: Residuals from regression 

We applied differencing to data to make it stationary because at Initial level, time 

series data was not stationary. The plot obtained was of stationary data:  

 

Figure 4.9: Stationary Data Plot 

 

Now, since the data was well prepared and all presumptions were well satisfied for 

the modelling, We will run the predefined functions acf() and pacf() in R for the 

values of p and q in ARIMA(p, d,q). These three variables are referred to as the 

autoregressive order, integrated and moving average order of this model, 
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respectively, and are whole numbers. We have used the maximum likelihood (ML) 

method for the prediction of the model. We also used the Box-Ljung test for testing 

of overall randomness based on the number of lags. This test was not applied to the 

original series but to the residuals of the fitted model. 

 

 

Figure 4.10: Time Series Data 

 

Figure 4.11: Time Series Residuals 
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Figure 4.12: Ljung-Box Test and Normal Q-Q Plot 

Several ARIMA models like ARIMA (2,2,2), ARIMA (0,2,0), ARIMA (1,2,0), 

ARIMA (0,2,1), ARIMA (1,2,2), ARIMA (2,2,1), ARIMA (3,2,2), ARIMA (2,2,3), 

ARIMA (1,2,3), ARIMA (3,2,3), ARIMA (2,2,4), ARIMA (1,2,4), ARIMA (3,2,4) 

were selected for test and ARIMA (0,2,2) was selected as the best model. We used 

R code to perform the above analysis. Level of statistical significance was set to 

5%. By using the best model’s parameter, estimation values and graphs for the 

COVID-19 cases was obtained for India as in the table below:   

Table 4.4: Forecast Table for COVID-19 Cases 

Date Lower Mean Upper 

23-05-2021 26746058 26766883 26787707 

24-05-2021 26957364 27006525 27055686 

25-05-2021 27161399 27243945 27326491 

26-05-2021 27361266 27483073 27604879 

27-05-2021 27555625 27720888 27886151 

28-05-2021 27746514 27959712 28172909 

29-05-2021 27932985 28197761 28462536 

30-05-2021 28116321 28436405 28756489 
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31-05-2021 28295939 28674592 29053245 

01-06-2021 28472648 28913130 29353612 

02-06-2021 28646115 29151398 29656681 

03-06-2021 28816856 29389874 29962892 

04-06-2021 28984693 29628190 30271688 

05-06-2021 29149962 29866629 30583297 

06-06-2021 29312576 30104974 30897372 

07-06-2021 29472760 30343391 31214022 

08-06-2021 29630483 30581753 31533022 

09-06-2021 29785898 30820157 31854415 

10-06-2021 29939006 31058528 32178050 

11-06-2021 30089915 31296925 32503935 

12-06-2021 30238642 31535302 32831962 

13-06-2021 30385267 31773694 33162121 

14-06-2021 30529816 32012075 33494333 

15-06-2021 30672350 32250464 33828578 

16-06-2021 30812898 32488847 34164795 

 

In this investigation, the current situation of the COVID-19 outbreak on May 22, 

2021 in India was investigated, and future trends were predicted by the ARIMA 

model. The main problem for the healthcare system in India was to make 

arrangements for the intensive care units, ventilators, etc. for the needy patients. As 

the number of COVID-19 cases is increasing day by day, if the officials in the 

healthcare system have information about the approximation of future cases, it 

might be helpful for them. The Indian health care system must be improved to avoid 

a chaotic blow: 
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Figure 4.13: Ljung-Box Test and Normal Q-Q Plot 

 

4.5 Conclusion 

The estimation of epidemiological data was essential for health care departments in 

order to improve the distribution and monitoring of available resources. When it comes 

to the analysis of epidemics and the estimation of confirmed cases, models of time 

series play a significant role. In this chapter, we took the Indian data set and applied the 

ARIMA model to it. The authorities of health departments in India may benefit from 

these findings to formulate their policies regarding resource supply, management of 

staff, hospital beds, and extra care facilities in order to better handle the situation in 

India over the next few weeks. In order to ensure accurate results for the specific 

calculations in the future, one must regularly update the data in the R code.
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Chapter-5 
 

RPGT-Transmission Model to Control Covid-19 

Epidemic 
 

5.1 Introduction 

COVID-19 first showed up in Wuhan, and because of its high transmission rate, the 

infection has been quickly spreading everywhere in the world. Coronaviruses are a huge 

group of zoonotic viruses, i.e., they are communicated from animals to people, and 

cause side effects ranging from the basic virus to more serious illnesses like Middle 

East Respiratory Syndrome, which is sent from dromedaries to people, and serious 

intense respiratory syndrome, which is sent from civets to people. A few known 

COVID-19 variants that have not yet contaminated people are flowing into certain 

creatures. The current episode has had seriously adverse health and financial outcomes 

across the globe, and it does not appear as though any nation will be unaffected. This 

affects not only the health and economy, but the entire society, causing emotional 

changes in how organisations and buyers act. Researchers from all fields have been 

keeping an eye on the spread of the virus. They have stepped up their efforts to speed 

up new diagnostics and are working on different antibodies to protect against COVID-

19. Zeb et al. [94] investigated the mathematical model of COVID-19 with confinement 

class. Cao et al. [95] determined the clinical highlights of COVID-19 and contemplated 

the momentary aftereffects of 18 patients and 102 patients with COVID-19 in escalated 

care units. Zhu et al. [96] inspected that few local health facilities reported a group of 

patients with pneumonia for obscure reasons connected to the seafood and wholesale 

wet animal market in Wuhan, Hubei Province, China. The Place for Disease Control 

and Prevention dispatched a fast reaction group to help wellbeing experts in Hubei 



RPGT-Transmission Model to Control Covid-19 Epidemic 

99 

 

Province and Wuhan City and lead an epidemiological investigation to find the 

wellspring of pneumonia groups. This prompted a portrayal of another Coronavirus 

found in examples of pneumonia patients toward the start of the pestilence. Ghostine et 

al. [97] examined the Extended SEIR Model with Vaccination for Forecasting the 

covid-19 Pandemic in Saudi Arabia using an Ensemble Kalman Filter. Sarkar et al. [98] 

talked about the numerical models which have been created to examine the transmission 

elements of covid-19. Nonetheless, these models experience the ill effects of different 

wellsprings of vulnerabilities, because of the fragmented depiction of the natural cycles 

overseeing the illness spread, and furthermore because of some elaborate boundaries 

being ineffectively known. One approach to relieve these vulnerabilities is to oblige 

plague estimating models with accessible information. Singh and Yadav [99] discussed 

Forecasting the size of covid-19 in India utilizing the ARIMA Model. Gumel et al. 

[100] examined the introduction on utilizing math to comprehend covid-19 dynamics: 

Modelling, examination, and recreations. Kumar et al.  [101] dissected the washing unit 

in a paper factory utilizing RPGT. Kumar et al. [102] examined the bread-making 

system and considered the behaviour analysis. Singh and Yadav [103] studied the 

SEIRD model for covid-19. In this chapter, parameters were observed to make forecasts 

about deaths and the number of cases. Kumar et al. [104] contemplated the benefit of 

an edible oil refinery plant. Singh and Yadav [105] discussed the Polynomials 

Approximation Model for the estimation of the number of infected peoples in India 

Using Regenerative Point Graphical technique (RPGT) Transition Diagram of the 

system, expressions for Transition Probability and Mean Sojourn Times, Path 

Probabilities, Mean time to Epidemic affected (T0), Average Healthy Time (A0), and 

Recovery Period (B0) were derived followed by illustrations. Tables and graphs are 

drawn followed by analysis. 

5.2 Notations 

 E: F: G: H :: Sanitization: Wearing Mask: Social Distancing: Quarantine State. 

 e, f, g, h :: denotes corresponding failure in observing precautions respectively. 

 H1, H2 :: Signify home isolation, Lockdown including micro lockdown which 

are standby to Quarantine State (H) 
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 ni /mi (i=1, 2, 3, 4):: recovery/causing pandemic mean rates due to non-wearing 

mask, not keeping social distance, non-observing sanitization, non-observing 

Quarantine properly. 

𝑓௝:  Fuzziness measure of the j-state. 

5.3 Assumptions 

 Affected and recovery rates are exponentially distributed and are independent. 

 On recovery, an affected person is as healthy as not affected due to COVID-

19.    

 The rates of recovery and being affected are independently distributed. 
 When a person is tested for COVID-19 positivity, no further covid-19 

affection is possible.  
 A study is carried out for a steady state. 

5.4 State Transitions Diagrams 

 

Figure 5.1: Transition Diagram of the system 
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The states C1, C5, C9 are the healthy states, C2, C3, C4, C6, C7, C8, C10, C11, C12, C13 are 

virus affected states in which a human is said to be COVID-19 affected. Whereas C1 is 

taken as the initial (base) state of system. 

 
 

C1 = EFGH, C2 =eFGH,  C3 =EfGH,  C4 =EFgH,  
C5 =EFGH1, C6 =eFGH1,  C7 =EfGH1,  C8 =EFgH1,  
C9 = EFGH2, C10 =eFGH2,  C11 = EfGH2,  C12 = EFgH2, 

C13 = EFGh 
 

5.5 Transition Probability and Mean Sojourn Times 

pi,j(t) : Probability distribution function from i to j. qij: Transition probability from i to 

j. qi,j = pi,j*(0); where * designate Laplace transform. 

where  𝜂௜
ଵ  is waiting period for detection/testing. 

Table 5.1: Transition Probabilities 
 

pi,j(t) 
 

qij = p*i,j(0) 

𝑝ଵ,௜(𝑡) = 𝑚௝𝑒ି(௠భା௠మା௠యା௠ర)௧; 
 i =2,3,4,5 & j = 1,2,3,4 

𝑞ଵ,௜= mj/(m1+m2+m3+m4) 
i =2,3,4,5 & j = 1,2,3,4 

𝑝ଶ,ଵ= 𝑛ଵ𝑒ି௡భ௧ 𝑞ଶ,ଵ= 1 
𝑝ଷ,ଵ= 𝑛ଶ𝑒ି௡మ௧ 𝑞ଷ,ଵ= 1 

𝑝ସ,ଵ= 𝑛ଷ𝑒ି௡య௧ 𝑞ସ,ଵ= 1 

𝑝ହ,ଵ(𝑡) = 𝑛ସ𝑒ି(௠భା௠మା௠యା௠రା௡ర)௧ 
𝑝ହ,௜(𝑡) = 𝑚௝𝑒ି(௠భା௠మା௠యା௠రା௡ర)௧ 
i =6,7,8,9 & j = 1,2,3,4 

𝑞ହ,ଵ= 
n4/(m1+m2+m3+m4+n4) 

𝑞ହ,௜= 
mj/(m1+m2+m3+m4+n4) 

i =6,7,8,9 & j = 1,2,3,4 
𝑝଺,ହ= 𝑛ଵ𝑒ି௡భ௧ 𝑞଺,ହ= 1 
𝑝଻,ହ= 𝑛ଶ𝑒ି௡మ௧ 𝑞଻,ହ= 1 

𝑝଼,ହ= 𝑛ଷ𝑒ି௡య௧ 𝑞଼,ହ= 1 

𝑝ଽ,ହ(𝑡) = 𝑛ସ𝑒ି(௠భା௠మା௠యା௠రା௡)௧ 
𝑝ଽ,௜(𝑡) = 𝑚௝𝑒ି(௠భା௠మା௠ା௠రା௡ర)௧ 
i =10,11,12,13 & j = 1,2,3,4 

𝑞ଽ,ହ= n4/(r1+r2+r3+r4+n4) 
𝑞ଽ,௜= 

mj/(m1+m2+m3+m4+n4) 
i =10,11,12,13 & j = 1,2,3,4 

𝑝ଵ଴,ଽ= 𝑠ଵ𝑒ି௦భ௧ 𝑞ଵ଴,ଽ= 1 
𝑝ଵଵ,ଽ= 𝑠ଶ𝑒ି௦మ௧ 𝑞ଵଵ,ଽ= 1 

𝑝ଵଶ,ଽ= 𝑠ଷ𝑒ି௦య௧ 𝑞ଵଶ,ଽ= 1 
𝑝ଵଷ,ଽ= 𝑠ସ𝑒ି௦ర௧ 𝑞ଵଷ,ଽ= 1 
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Table 5.2: Mean Sojourn Time 

 
Si(t) 
 

𝞰i=Si*(0) 
 𝑆ଵ(t)= 𝑒ି(௠భା௠మା௠యା௠ర)௧ 𝞰1 = 1/(m1+m2+m3+m4) 

𝑆ଵା௜(𝑡)= 𝑒ି୬೔௧, 𝑖 = 1,2,3 𝞰1+i= 1/ni, 𝑖 = 1,2,3 
𝑆௜(t)= 𝑒ି(௠భା௠మା௠యା௠రା௡ర)௧, 𝑖 =

5,9 
𝞰i= 1/(m1+m2+m3+m4+n4), 𝑖 =

5,9 
𝑆ହା௜(𝑡)= 𝑒ି௜௧ , 𝑖 = 1,2,3 𝞰5+i= 1/ni, 𝑖 = 1,2,3 
𝑆ଽା௜(𝑡)= 𝑒ି௜௧ , 𝑖 = 1,2,3,4 𝞰9+i= 1/ni, 𝑖 = 1,2,3,4 

 
 

 

From Table 5.2 the expressions for 𝞰1, 𝞰5, 𝞰9, it was observed that if rates for being 

COVID-19 effective were higher, then the mean sojourn time for a person to remain 

healthy was very small, hence such an atmosphere should be created so that causes 

which lead to covid-19 affected should be the bare minimum and from the expressions 

for states when a person is covid-19 affected i.e., 𝞰1+i, where i= 2, 3, 4, 6, 7, 8, 10, 11, 

12, 13 if the values of recovery rates are higher, then the mean sojourn time for a human 

to remain covid-19 affected will be small, hence recovery rates should be maintained 

higher. 

5.6 Evaluation of Path Probabilities (Ei,,j) 

Applying RPGT and using ‘1’ as the initial state of the framework: Transition 

probability factors of all reachable states from the initial (base) state ‘ξ’ = ‘1’ are: 

Probabilities from state ‘1’ to various vertices are given as 

E1,1 = 1 

E1, i = q1, i; where i = 2, 3, 4 

E1,5 = q1,5/(1-q5,6q6, 5)(1-q5,7q7,5)(1-q5,8q8,5){(1-q5,9q9,5)/(1-q9,10q10,9)(1-q9,11q11,9) 

(1-q9,12q12, 9)(1-q9,13q13,9)} 

E1,i = q1,5q5,i/(1-q5,6q5,6)(1-q5,7q7,5)(1-q5,8q8,5){(1-q5,9q9,5)/(1-q9,10q10,9)(1-q9,11q11,9) 
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(1-q9,12q12, 9)(1-q9,13q13,9)}; i = 6,7, 8. 

E1,9 = q1,5q5,9/(1-q5,6q6,5)(1-q5,7q7,5)(1-q5,8q8,5)(1-q9,10q10,9)(1-q9,11q11,9)(1-q9,12q12,9) 

(1-q9,13q13, 9){(1-q5,9q9,5)/(1-q9,10q10,9)(1-q9,11q11,9)(1-q9,12q12,9)(1-q9,13q13,9)} 

E1,i =  q1,5q5,9q9,i/(1-q5,6q6,5)(1-q5,7q7,5)(1-q5,8q8,5)(1-q9,10q10,9)(1-q9,11q11,9)(1-q9,12q12,9) 

(1-q9,13q13, 9){(1-q5,9q9,5)/(1-q9,10q10,9)(1-q9,11q11,9)(1-q9,12q12,9)(1-q9,13q13,9)};  

where i = 10, 11, 12, 13.  

Probabilities from state ‘9’ to different vertices are given as 

E9,1 = q9,5q5,1/(1-q5,6q6,5)(1-q5,7q7,5)(1-q5,8q8,5)(1-q1,2q2,1)(1-q1,3q3,1)(1-q1,4q4,1) 

{(1-q5,1q1,5)/(1-q1,2q2,1)(1-q1,3q3,1)(1-q1,4q4,1)} 

E9,i =  q9,5q5,1q1,i/(1-q5,6q6,5)(1-q5,7q7,5)(1-q5,8q8,5)(1-q1,2q2,1)(1-q1,3q3,1)(1-q1,4q4,1) 

{(1-q5,1q1,5)/(1-q1,2q2,1)(1-q1,3q3,1)(1-q1,4q4,1)}; where i = 2, 3, 4. 

E9,5 = q9,5/(1-q5,6q6,5)(1-q5,7q7,5)(1-q5,8q8,5){(1-q5,1q1,5)/(1-q1,2q2,1)(1-q1,3q3,1)(1-q1,4q4,1)} 

E9,i = q9,5q5,i/(1-q5,6q6,5)(1-q5,7q7,5)(1-q5,8q8,5){(1-q5,1q1,5)/(1-q1,2q2,1)(1-q1,3q3,1)(1-

q1,4q4,1)};  

Where i = 6,7, 8. 

E9,9 = 1  

E9, i = q9, i; where ‘i’ = 10, 11, 12, 13 

5.7 Measures of Covid-19 Virus effectiveness  

The MTEE, A0, and B0 measures due to the virus are evaluated under steady state 

condition and utilizing C1 is the initial (base) state. 
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5.8 Mean time to Epidemic affected (T0)  

Regenerative healthy states to which a human can transit (initial state ‘1’), before 

entering any virus affected state are: ‘i’ = 1, 5, 9, Mean time to Epidemic affected 

(T0), using RPGT is given as T0 = (E1,1𝞰1+E1,5𝞰5+E1,9𝞰9)/(1-q1,5q5,1) 

5.9 Average Healthy Time (A0)  

Regenerative states at which the system is available are ‘j’ = 1, 5, 9, & regenerative 

states are ‘i’ = 1 to 13. Average Healthy Time (A0) using RPGT is as under 

 A0 = ൣ∑ 𝑬𝝃,𝒋𝒋 𝒇𝒋𝜼𝒋൧ ÷ ൣ∑ 𝑬𝝃,𝒊𝒊 𝒇𝒋 𝜼𝒊
𝟏൧ 

A0 = (E9,1𝞰1+E9,5𝞰5+E9,9𝞰9)/D 

Where D = E1, i𝞰i; 1 ≤ i ≤ 13 

5.10 Recovery Period (B0) 

Regenerative states where in which virus affected person is busy in recovery are j = 2 

to13, & regenerative states are ‘i’ = 1 to 13. Recovery Period (B0) using RPGT is 

given as under 

B0 =ൣ∑ 𝑬𝝃,𝒋𝒋 𝜼𝒋൧ ÷ ൣ∑ 𝑬𝝃,𝒊𝒊  𝜼𝒊
𝟏൧ 

B0 = (E1, j𝞰j)/D; 2 ≤ j ≤ 13.  

5.11 Illustrations 

 

Assuming ni = n (1 ≤ i ≤ 4) and mi = m (1 ≤ i ≤ 4) for ease of calculations and taking 

m= 0.10, 0.20, 0.30 and n= 0.50, 0.60. 0.70, we get 
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5.11.1 Mean time to Epidemic affected (T0) 

 

Table 5.3: Mean time to Epidemic affected (T0) 
 

m n 0.50 0.60  0.70 

0.10 3.77 3.63  3.56 

0.20 2.42 1.39  1.29 

0.30 1.45 1.30  1.23 

 

Figure 5.2: Mean time to Epidemic affected (T0) 

 

From Table 5.3 and Graph 5.2, as we see in columns, it is concluded that the value of 

T0 decreases rapidly, i.e., with the increase in virus causing rates, while observing along 

rows, it is concluded that the value of T0 is not significantly increased with the 

increasing recovery rates, which is practically observed too. 
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5.11.2 Average Healthy Time (A0)  

Table 5.4: Average Healthy Time (A0) 
 

m n 0.50 0.60 0.70 

0.10 0.71 0.78 0.82 

0.20 0.68 0.75 0.82 

0.30 0.40 0.47 0.55 

 
 
 

 
 

Figure 5.3: Average Healthy Time (A0) 
 
From Table 5.4 and Graph 5.3, as we see in columns, it is concluded that the value 

of A0 decreases rapidly, i.e., with the increase in virus causing rates while observing 

along the rows, it is concluded that the value of A0 is not significantly increased with 

the increasing recovery rates, which is practically observed too. 

5.11.3 Recovery Period (B0) 

Table 5.5: Recovery Period (B0) 
 

m n 0.50 0.60 0.70 

0.10 0.31 0.25 0.21 

0.20 0.49 0.44 0.40 

0.30 0.69 0.62 0.59 

0

0.2

0.4

0.6

0.8

1

m = 0.10 m = 0.20 m = 0.30

n = 0.50

n = 0.60

n = 0.70



RPGT-Transmission Model to Control Covid-19 Epidemic 

107 

 

 
 

 
 

Figure 5.4: Recovery Period (B0) 
 

From Table 5.5 and Graph 5.4, as we see in columns, it is concluded that the value 

of B0 increases rapidly, i.e., with the increase in virus causing rates, while observing 

along the rows, it is concluded that the value of B0 decreases with the increasing 

recovery rates, which is practically observed too. 

5.12 Conclusion 

The application of RPGT has been used to discuss the transmission analysis of COVID-

19. In this chapter, three main reasons which cause positivity for COVID-19 affected 

have been discussed, considering isolation and lockdown situations also. If rates of 

recovery and causes of a pandemic are known before hand, then exact calculations can 

be determined by applying the derived formulae in this chapter. In the future, there may 

be more factors that cause the effects of COVID-19 that may also be included in the 

study. 
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Chapter-6 
 

A Compartmental Model on Covid-19 
Transmission  
 
6.1 Introduction 

The coronavirus disease (Covid-19) is an infectious disease at the present time. 

Recently, almost every country is facing serious problems due to this virus. Many 

people were being confirmed as patients with COVID-19. The asymptotic and exposed 

were more harmful to society. Because this asymptotic class was more dangerous than 

any other class, because they were not showing any symptoms, as a result, more people 

were interacting with them without taking any care. Because of this, the disease was 

spreading rapidly. Also, since we had limited medical capacity in most countries and 

the cases were increasing faster, but due to this limited medical capacity, most countries 

were doing fewer tests to diagnose the disease. This fact also increased the number of 

infected cases. The spread of any epidemic depends on the infectivity of the pathogen 

and the availability of a susceptible population. Since the way things work is still not 

clear, math is used to estimate the number of worst-case and best-case scenarios. Our 

main objective of this work was to study the dynamics of the disease COVID-19 by 

considering a deterministic compartmental model based upon the data set of India, so 

that we could take some of the preventive measures to control its effects on the nation. 

We estimated the basic reproduction number and tried to figure out how the disease 

spreads by using the number of reported cases and the estimated parameters of the 

model. 

 The SIR model and its advanced variants are epidemiological models, which are used 

mostly, so that one can understand the spread of epidemics. Since the outbreak of 

SarsCov-2, it has gained popularity among researchers who are trying to make some 
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estimations about the size of this epidemic outbreak and its consequences to formulate 

some policies. 

In this chapter, we considered a modified SIR model, which was known as SEIRD 

(Susceptible, Exposed, Infectious, Recovered, and Dead), and concluded with various 

findings. It is well known in the field of mathematical modelling that the SEIRD model 

has many degrees of freedom and depends upon the clinical parameters that can be 

taken from the clinical diagnosis of COVID-19 and the data of confirmed cases and 

deaths. We have identified 𝑹𝟎 (basic reproduction number) from the available data and 

this model. As we know from the previous research on epidemics that the 𝑹𝟎 reveals 

the speed of spread of the virus. In this study, we also predicted the case fatality ratio, 

which is again an important parameter to predict the number of deaths. When we tried 

to estimate 𝑹𝟎 for India, we noticed a range from 1.75 to 4.6 depending upon the initial 

values and distinct values of clinical parameters. The outcome from this study show 

that a single value of basic reproduction number cannot be calculated by the available 

dataset, at least for the short time of observation. There were many values of the 𝑹𝟎 

that were being observed were correct and the exact value depends on the model and 

the country. 

The chapter is structured into five partitions. The first portion is introductory, next part 

contains an introduction to the SEIRD model. The data and identification of models 

have been discussed in the third section. The last portion describes the procedure for 

the prediction and results along with some graphs, and then we have discussed the 

limitations and future scope. We have concluded. 

6.2 Mathematical Model 

Here we have studied a variant of the SIR model (a compartmental model), in which 

two more compartments were exposed, and two dead were included. Many authors have 

discussed such epidemiological models in their research papers. In fact, a few of them 

have used many similar variants of this model, which were more advanced and had 

more compartments. We have considered a model containing five compartments of the 

population: susceptible (𝑆), exposed (𝐸), infectious (𝐼), recovered (𝑅), and dead (𝐷). 
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People in susceptible compartments were those who were not infected with the virus 

yet but had the possibility of being infected. People who got infection and could not 

spread infection further were in the exposed compartment. This period is known as the 

incubation period. In the third compartment, we put those people who got infected with 

viruses and were proficient at transmitting the diseases. We called this compartment 

"infectious." We put those people who were infected by the virus in the trial period and 

recovered successfully in a separate compartment and named the compartment 

"Recovered compartment." We placed those who became infected with the virus but 

were unable to survive in the dead compartment. 

The population in all the five compartments keeps changing over time as follows: 

𝑑𝑆(𝑡)

𝑑𝑡
= −𝛽

𝑆(𝑡)

𝑁
𝐼(𝑡)                                                      (6.1) 

𝑑𝐸(𝑡)

𝑑𝑡
= 𝛽

𝑆(𝑡)

𝑁
𝐼(𝑡) − 𝜎𝐸(𝑡)                                        (6.2)  

𝑑𝐼(𝑡)

𝑑𝑡
= 𝜎𝐸(𝑡) − 𝛾𝐼(𝑡)                                                  (6.3) 

𝑑𝑅(𝑡)

𝑑𝑡
= (1 − 𝛼)𝛾𝐼(𝑡)                                                  (6.4) 

𝑑𝐷(𝑡)

𝑑𝑡
= 𝛼𝛾𝐼(𝑡)                                                              (6.5) 

 

The total population of India was considered as and it was assumed that it is fixed 

and will not change as the time changes, i.e., birth and death caused by any possibility 

are not included, so that unnecessary complications may not arise. The majority of 

research articles available in the literature have considered a fixed total population. 

Total number of confirmed cases with time was taken as C(t) and does not make any 

impression on the model dynamics but we can use it to match the data of confirmed 

cases with the model. When we do the analyses of the model, we assumed that people 

in the Infectious compartment are tested positive with the virus. Many parameters had 

impact on the solution of this SEIRD model like the clinical parameters as 𝛾 and 𝜎 and 

the parameter of estimated time of illness, which is taken as  𝛾 . The value of  𝛾 may be 

found distinct in the research articles from 1/18 to 1/5 in [84]. The estimation of 

incubation period for the disease was given by the parameter 𝜎. Its value was observed 
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between the range 1/5 in [87] and 1/3 in [84]. The parameter 𝛽 gave us the rate of 

infectious. Also, we know the relation 𝛽 = 𝑅଴𝛾, where 𝑅଴ was considered as the basic 

reproduction number, we used it to measures the transmission of disease. Case fatality 

ratio was denoted by 𝛼 and we used the term CFR for case fatality ratio. As observed 

in paper [88], there were many limitations on CFR and had dependency on the 

infectious people. The CFR was not constant and might increase if the health care 

system of India becomes overloaded. But to avoid complications, we considered that 𝛼 

is constant and tried to make estimation of it. Also, we estimated  𝜆. The number of 

dead and recovered people at initial time were taken as zero. At the initial stage, we 

assumed that the number of infected people was 𝐼(0) and exposed people were as 𝐸(0). 

At initial time, Susceptible peoples were taken as the expression below: 𝑆(0) = 𝑁 −

𝐼(0) − 𝐸(0) − 𝑅(0) − 𝐷(0) = 𝑁 − 𝐼(0) − 𝐸(0). 

6.3 Data of the Model 

In this study of approximation, we were strongly dependent on the data of confirmed 

cases and death due to this disease, COVID-19 caused by the infection from the deadly 

virus Sars-Cov2. We used the data that we have collected from the website of Johns 

Hopkins University. We have taken the Indian population as 1380004385.  

6.4 Methods and Results 

In this part of chapter, we have tried to elaborate the process of estimation used by 

us. This method has been used by various authors. The values of 𝑇଴ = 1, 𝐼଴ = 0 is taken 

as fixed and we started from 𝐸଴ = 1 and then 𝐸଴ may be increased (if needed). Let 

(𝛼, 𝑅଴, 𝜆) be a vector of parameters then for this vector and every value of 𝑡, 𝐷(𝑡, 𝛼, 𝑅) 

(number of deaths) and 𝐶(𝑡, 𝑅, 𝜆) (number of reported cases) was calculated. Then the 

residual sum of squares for the series of deaths was calculated, which is given by 

𝑅𝑆𝑆஽(𝛼, 𝑅) = ෍(𝐷(𝑡) − 𝐷(𝑡, 𝛼, 𝑅))ଶ

௧ୀଵ
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and for the series of reported cases, we calculated the residual sum of squares by 

 

𝑅𝑆𝑆஼(𝑅, 𝜆) = ෍(𝐶(𝑡) − 𝐶(𝑡, 𝑅, 𝜆))ଶ

௧ୀଵ

 

 

Where 𝐶(𝑡) and 𝐷(𝑡)  are the original values as reported. Then, next step was to find 

the values (𝛼஽ , 𝑅஽) so that 𝑅𝑆𝑆஽ can be minimized and to find the values (𝑅஼ , 𝜆஼) so 

that 𝑅𝑆𝑆஼ can be minimized and after that we predicted (𝛼, 𝑅଴, 𝜆) by minimizing 

 

𝑅𝑆𝑆்(𝛼, 𝑅, 𝜆) =
𝑅𝑆𝑆஽(𝛼, 𝑅)

𝑅𝑆𝑆஽(𝛼஽ , 𝑅஽)
+

𝑅𝑆𝑆஼(𝑅, 𝜆)

𝑅𝑆𝑆஼(𝑅஼ , 𝜆஼)
  

 

The preliminary values of the 𝑅𝑆𝑆஽ and reported cases have been used for 

normalization for almost equal contribution in final objective function.  If we do not 

normalize their contribution, then 𝑅𝑆𝑆஼ will dominate. We increased the value of 𝐸଴ to 

get shot of the constraint if some of the values of 𝛼஽ , 𝜆஼ , 𝛼  or 𝜆 have reached at upper 

bound of 1. We considered the least value of 𝐸଴, so that we had no parameter constraint. 

We have chosen the least value of 𝐸଴ to obtain the rate of fatality near the upper bound. 

Any other person may use the value 𝐸଴ = 1 and ignore the constraints. We should 

consider the number of deaths the highest in this forecast. This may seem unrealistic, 

but we should declare that one should keep in mind that the model may not be correct 

as a few of our assumptions, like the fatality rate, may not remain constant over any 

specific period. Now let us discuss the results and the parameters that were calculated 

with the help of some computer programmes using the language R. Next, we 

represented the estimated parameters and obtained results in the form of graphs and 

tables. We have taken the following values: 
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Table 6.1: The values of Parameters used in Model 

Parameters Value Assigned Sources 

𝛽 

𝜎 

0.4809 

0.1923 

Adapted from 16. 

Adapted from 17. 

𝛼 

𝛾 

0.0215 

0.1 

Adapted from 16. 

Assumed 

𝑅଴ 4.809 𝛽

𝛾
= 𝑅଴ 

 

 

Then we got summary of the model as follows: 

 

 

 

 

 

 

 

Table 6.2: Summary of the Model 

 S E I R D 

Min. 11259477 8.189788e-01 0.000000e+00 0.000000e+00 0.000000e+00 

1st Qu. 38204543 1.669369e+03 1.227928e+03 7.440355e+02 1.634825e+01 

Median 1365789511 6.058544e+05 3.752063e+06 2.907367e+06 6.388185e+04 

Mean 878725877 3.454894e+07 6.627867e+07 3.918412e+08 8.609694e+06 

3rd 

Qu. 

1380000728 2.046555e+07 7.038617e+07 9.993779e+08 2.195874e+07 
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6.5 Limitations and Future Scope  

As we all know, an epidemic model can only be useful if the data and assumptions are 

as close to original as possible. We have also made some unrealistic assumptions. A 

few of them are described below: 

 Since the population of India is large and we have non-uniform mixing. People 

are more likely to get in touch with individuals in their locality. This can be 

tackled in some other advanced models. 

 We have an assumed isolated population in the mode. But population mixing 

allows this virus to spread multiple times. 

 If we consider the model for a longer times, we must make the model more 

sophisticated by considering the factor of birth rate. Because people are 

generally not born with immunity. 

  As we know, the virus spreads faster among young populations, or densely 

populated areas.  But it may be more deadly for the older generation. So, we 

must consider some more complex models that take care of age structure. 

 This model ignores the variations of its parameters and considers their average. 

But as we have observed, a few individuals stay infectious for many days. Also, 

some people might make contact with a very large population. If we are 

 

Figure 6.1: SEIRD Model 
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considering a high-level epidemic, then it is suitable, but if we are looking for a 

smaller scale, we must change the model. 

Regardless of its limitations, the SEIRD model is a great start to understanding the 

epidemic dynamics. Also, the approach of differential equations for the inter- 

compartment flow in the model is very powerful. 

6.6 Conclusion 

In this study we have used compartmental model with five compartments i.e., 

SEIRD Model and we have done analysis about the dynamics of COVID-19 in India. 

Through this data-based study, we can conclude that Inflammation can be controlled 

by public lockdowns because it will reduce the transmission rates and due to limited 

health care facilities, there will be more chances of recovery and hence recovery rate 

will be increased. If we change these both parameters, the curve can be flattened. If we 

change the values of parameters in the model, we will get different results. As we know 

that these parameters are not constant over the time. So, if we look for disease dynamics 

in different time, we should change these parameters accordingly. Also, there are few 

limitations in our Model and those have been discussed in earlier section. These can be 

improvised in future. Also, some more parameters can be added to enhance the 

validation of results like under reported cases, asymptotic cases.
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