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ABSTRACT 

The thesis introduces us to the subject of Landmark Recognition in AI. Landmarks, in 

general, refer to any visible figure in a digital image that may be identified by a human 

eye. Landmark Recognition is of paramount importance in Artificial Intelligence (AI) 

since mostly the human eye focuses only on the tangible things visible to it. The 

tangible things in any digital image can mostly be classified as a Landmark. Landmark 

Recognition is a vast field and has to deal with extremely heavy sizes of datasets. 

Landmark classes also tend to be extremely huge because of their imperative nature. In 

this chapter, we have discussed the Machine Learning (ML) techniques applied to 

develop Artificial Intelligence models for Landmark Recognition. We have discussed 

the basic concepts of AI, ML, and DL (Deep Learning). We have discussed how DL 

models tend to be the best approach for the development of AI models. This thesis is 

devoted to exploring some new nature-inspired problem-solving approaches, modelling 

them into computerized programs, and applying these approaches to develop efficient 

machine-learning models for image classification. 

The research work has covered an extensive literature survey of the Machine Learning 

(ML) techniques that have been applied to Landmark Recognition. We show how 

Landmark Recognition is a topic of paramount importance in AI and how the 

Landmarks datasets have emerged as one of the heaviest datasets available in the 

literature on Image Processing. The techniques that have been used for Landmark 

Recognition, to date, have been discussed. It is clear from the survey of literature that 

the best solution currently available for creating highly sophisticated models for 

landmark recognition tends to be a special class of Artificial Neural Networks (ANNs) 

called CNNs or Convolutional Neural Networks. It has further been shown how Nature 

Inspired Computing (NIC) techniques have been used for this purpose. ANNs are a 

special class of NIC techniques since they are inspired by the working of biological 

neurons in living organisms. 

Also, we present three metaheuristic-based approaches for geographical landmark 

recognition. The three metaheuristics are namely Paddy Field Algorithm, Genetic 

Algorithm, and 3 Parent Genetic Algorithm. The metaheuristics are used to search for 
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the most optimal hyperparameters for the development of Convolutional Neural 

Networks for Geographical Landmark Recognition. The most optimal hyperparameters 

are searched for through a search space of more than a million hyperparametric 

combinations and thus specialized CNN architectures are evolved. The experiments 

were run successfully, and highly optimized CNN architectures were found to be 

evolving. The CNN hyperparameters highly different from those usually used were 

found to be highly competent. Kernels with shapes 5 x 5 and 7 x7 were found to perform 

better than 3 x 3 of some combinations. Relative accuracies of CNNs increased up to 

more than 40%, thereby indicating that the evolution of CNNs with evolutionary 

metaheuristics is highly desirable. 

A Parallel Bat Colony Optimization Algorithm based on the introduction of colonies to 

the usual Bat Algorithm is also proposed. Bat Algorithm is a popular evolutionary 

metaheuristic that is used to find solutions to NP-Hard problems like the Travelling 

Salesman Problem (TSP). The concept of colonies was introduced in the regular Bat 

Algorithm along with phenomena like reproductive crossover and migration. The 

resultant Parallel Bat Colony Optimization Algorithm (PBCOA) was tested on the 

standard CEC Benchmark Functions, implemented in MATLAB, and the performance 

was compared to that of 17 other algorithms. On 6 test functions, the proposed 

algorithm showed the best performance in comparison with other algorithms. 

Additionally, it came out to be the sole best performer for CEC functions F9, F14, F15, 

F16, F17, F19, F22, F24, F25, and F27. The proposed approach performed the best 

overall across 17 compared algorithms in terms of finding the minimal cost to 

maximum benchmark CEC-14 functions. 

The thesis proposes an evolutionary framework of CNNs with a Parallel Bat Colony 

Optimization Algorithm (PBCOA) over a geographical landmarks’ dataset. We discuss 

how the application of the PBCOA metaheuristic to CNNs to evolve its 

hyperparameters works towards the evolution of better hyperparameters out of a search 

space of more than a million hyperparameters. We evolved initial weights, kernel frame 

size, number of kernels, and other such parameters. It was found that hyperparametric 

combinations highly different from the usually used ones seemed to perform better. 

Also, the performance of CNNs was evaluated using Accuracy and F1 score, and it was 
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found that the evolved architectures performed much better in comparison to the 

unevolved architectures. The evolved CNN architectures seemed to perform better on 

the training sets as well as the test sets. 

We also describe a comparative analysis of all the developed Soft-Computing 

approaches. We have discussed all the metaheuristics which were used to evolve CNN 

architectures and in addition to this, we have discussed the differences in datasets that 

were used to evolve the CNN architectures. We have discussed how the size of datasets 

was varied to maintain a healthy specialization and generalization ratio. We discuss the 

concept of data augmentation and how it was used to develop better datasets. Every ML 

technique ranging from classical ML techniques to evolved CNN architectures has been 

discussed. The evolved hyperparametric combinations were used on a landmarks’ 

dataset with 200 classes and the performance of each architecture was measured using 

accuracy. It was concluded that the CNN hyperparameters evolved with PBCOA 

seemed to perform the best on the complete dataset. 

We have discussed all the research work accomplished and published until now. We 

have shown how we progressed on the thesis entitled “Development of new Soft-

Computing Based Approach for Landmark Recognition”. All the publications with 

their web links have been provided. The list of conferences and attended workshops 

along with their certificates has also been provided. 
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Chapter 1: Introduction 

This chapter introduces the subject of Landmark Recognition in AI. Landmarks, in 

general, refer to any visible figure in a digital image that may be identified by a human 

eye. Landmark Recognition is of paramount importance in Artificial Intelligence (AI) 

since mostly the human eye focuses only on the tangible things visible to it. The 

tangible things in any digital image can mostly be classified as a Landmark. Landmark 

Recognition is a vast field and has to deal with extremely heavy sizes of datasets. 

Landmark classes also tend to be extremely huge because of their imperative nature. In 

this chapter, we have discussed the Machine Learning (ML) techniques applied to 

develop Artificial Intelligence models for Landmark Recognition. We have discussed 

the basic concepts of AI, ML, and DL (Deep Learning). We have discussed how DL 

models tend to be the best approach for the development of AI models. This thesis is 

devoted to exploring some new nature-inspired problem-solving approaches, modeling 

them into computerized programs, and applying these approaches to develop efficient 

machine-learning models for image classification. 

1.1. Artificial Intelligence 

In recent years, computing powers have been increasing manifolds in very short time 

intervals. It would not be wrong on our part to claim that the growth is exponential in 

nature. According to a law given by computer scientist and mathematician Gordon E. 

Moore, computer power doubles every two years. Though it was thought to have 

achieved a saturation point a few years ago, with the onset of Artificial Intelligence, we 

can safely claim that computer power is again increasing at an exponential rate. 

Artificial Intelligence (AI) is a term coined by emeritus Stanford Professor John 

McCarthy in 1955, that was defined by him as “the science and engineering of making 

intelligent machines”. There are many computing devices in the market ranging from 

small calculators to supercomputers that can be intelligent. However, not all computing 

devices we see are intelligent. Smartphones are mostly intelligent. For example, the 

cameras of smartphones today can detect faces in a photograph. This is nothing but an 

example of an intelligent operating system of our smartphone. 



18 
 

Artificial Intelligence is a very broad area of computer sciences. One of the applications 

of Artificial Intelligence is Machine Learning. Machine Learning refers to the field of 

AI which deals with making intelligent machines. In other words, machines that are 

capable of doing work intelligently are dealt with in the area of Machine Learning. 

Machine Learning is an integral part of most of our lives, today. 

1.2. Machine Learning 

According to Tom Mitchell, “Machine learning is the study of computer algorithms that 

allow computer programs to automatically improve through experience.” Most of us, 

at least once in our lives, might have done, or at least been witness to, online shopping. 

On these online shopping websites or platforms, when we look out for any product we 

want or need, the website saves our preferences and shows us similar products in the 

future. This is nothing but an example of an artificially intelligent computer server or 

machine. Hence, in this example, we have made the machine learn our preferences. 

What is even better is that most of the time, our data is kept private using encryption 

mechanisms that do not allow any person except machines to process the data. 

1.3. Landmark Recognition 

The use of machine learning to identify landmarks in photographs has been the subject 

of much research [1]. An essential area of computer vision is landmark recognition. In 

this area, machine learning models are trained to find and recognise the closed, clearly 

identifiable objects in an image. A landmark is often believed to be included in that 

closed polygon produced by the pixels that may be considered to be a distinct and 

discernible entity in one sense or the other, if we consider a digital image to be a set of 

coordinates of various pixels [2]. 

Since landmark recognition is regarded as one of the foundational steps towards 

achieving a full computer vision, it is a crucial study issue in the field of image 

processing. Landmark Recognition is an important research area in the field of image 

classification since it is considered to be one of the first steps toward reaching a 

complete computer vision. An identifiable figure contained by a set of coordinates on 

an image is referred to as a landmark. Since they serve as the foundation for the 
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discipline of image classification, landmarks are a crucial research area in the broad 

field of computer vision.  

A landmark can be anything, from a structure to people to an X-ray of their brains. Yet, 

given the vast, intricate, and noisy datasets that are currently available in the literature, 

landmark recognition is a challenging task. The landmark image datasets that we 

receive typically have a lot of noise. Even though, since real-life images too are very 

noisy even at very high resolutions, noises are an essential component of image 

classification. The most common example of landmark recognition is the computerized 

verification of robots vs humans. Currently, only humans can distinguish between 

difficult landmark images. 

1.4. Soft Computing 

 

Figure 1.1: Soft computing methodologies. 

The solution to NP-Hard problems is a million-dollar problem in computing. The Clay 

Institute of Mathematics in the United States has offered this reward-cum-appreciation 

to anyone who can tell whether NP is equal to P or not. All the current encryption 

mechanisms are based on this problem with the currently accepted answer as NP ≠ P. 
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This is arguable since the scientists remain divided over the issue till acceptable proof 

is provided. 

This problem from the Clay Institute of Mathematics boils down to the answer to the 

query of whether any specified amount of looping can guarantee an exact answer to any 

mathematical problem using a computer system. There exist typical problems in 

computing like the Traveling Salesman Problem (TSP) that cannot be solved to the 

exact solution in some acceptable amount of time. A brute force logic for such problems 

can result in thousands of years for a computer program to run for getting the exact 

solution. Here, the concept of soft computing comes in. 

Soft Computing is the science of the development of algorithms and techniques to find 

an optimal solution to NP-Hard problems instead of the exact solution. These 

algorithms tend to find highly useful answers to queries that can be difficult for a brute 

hard logic system. Routing and pattern finding are some of the applications where soft 

computing can help.  

Figure 1.1 describes that soft computing broadly consists of nature-inspired-computing 

(NIC) approaches and probabilistic methods. Further, NIC approaches include 

Artificial Neural Networks (ANNs) and Evolutionary metaheuristics like Genetic 

Algorithms, Ant Colony Algorithm, Bat algorithms, etc. Parallelly, probabilistic 

methods include ensemble-based machine-learning approaches and fuzzy logic 

systems. 

The main components of Soft Computing are: 

i. Artificial Neural Networks – Artificial neural networks or ANNs are a Deep 

Learning paradigm that mimics human brain function to create artificially 

intelligent models for various tasks. 

ii. Evolutionary metaheuristics – This soft computing paradigm handles search 

and optimization problems by modeling searches based on nature-inspired 

techniques. Examples include the Genetic Algorithm, Bat Algorithm, Ant 

Colony Algorithm, etc. 

iii. Fuzzy Logic – Fuzzy logic is based on the probabilistic method of how 

decisions are taken. Instead of the hard brute logic, whereby the decision may 
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either be yes or no, the fuzzy logic presents itself such as: Mostly yes, probably 

yes, can’t say, probably no, mostly no, etc. 

iv. Ensemble learning – These methods are developed using statistical tools that 

include probability. Ensemble-based machine learning models exist that include 

regression, classification, clustering, etc. 

1.5. Machine Learning Working 

 

Figure 1.2: The designing and working of a machine learning model. 

Machine Learning models are designed in many ways. However, some steps are similar. 

The common working steps are: getting relevant input data and processing the input 

data to get the training data. Split training data to test the validity of the trained ML 

model. Train an AI model from the training data. Save the machine learning model. 

Test the ML model on test data. Get evaluation results in terms of Accuracy, Precision, 

Recall, F1 score, etc. Compare training, test, and validation results. If performance is 

fine, pass the model. If performance is low, consider re-training with different 

hyperparameters. 

1.6. Evaluation metrics for a successful model 

For evaluating the performance of an AI model, we may use one of the many parameters 

based on TP - True Positive, TN - True Negative, FP - False Positive, and FN - False 

Negative. True and false refer to the true and false classification of a class and positive 

and negative represent two binary classes that can be extrapolated. 
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Some of the available performance metrics are Accuracy, Precision, Recall, and F1 

score. These can be explained as follows: 

Accuracy =   
TP+TN

TP+FP+FN+TN
    …(1.1) 

Precision =   
TP

TP+FP
     …(1.2) 

Recall =   
TP

TP+FN
     …(1.3) 

F1 Score =   
2∗(Recall ∗ Precision) 

Recall + Precision
   …(1.4) 

Accuracy is the most intuitive parameter for the evaluation of an AI model. Each 

parameter has its benefits while assessing performance. However, we mostly use 

accuracy to evaluate the model since it is the most acceptable metric for the evaluation 

of any AI model and its questioning is highly improbable.  

1.7. Types of Machine Learning 

There are mainly three types of machine learning namely: 

a. Supervised Learning 

b. Unsupervised Learning 

c. Reinforcement Learning 

a. Supervised Learning 

Supervised learning is a sort of machine learning in which the output is predicted 

by the machines using well-labeled training data that has been used to train the 

machines. The term "labeled data" refers to input data that has already been assigned 

the appropriate output. In supervised learning, the training data that is given to the 

computers serve as the supervisor, instructing them on how to correctly predict the 

output. It employs the same idea that a pupil would learn under a teacher's guidance. 

The method of supervised learning involves giving the machine learning model the 

right input data as well as the output data. Finding a mapping function to link the 

input variable (x) with the output variable is the goal of a supervised learning 
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algorithm (y). Supervised learning has applications in the real world such as risk 

assessment, image categorization, fraud detection, spam filtering, etc.  

Regression and Classification are the common types of Supervised Learning. The 

machine learning techniques that perform supervised learning include Decision 

Tree Classifier, Random Forest Classifier, K Nearest Neighbours (KNN), and 

Support Vector Machines (SVM). Most deep-learning techniques also fall under 

this category. 

b. Unsupervised Learning 

Unsupervised learning is a type of machine learning in which models are not 

supervised using training datasets, as the name implies. Instead, models themselves 

decipher the provided data to reveal hidden patterns and insights. It is comparable 

to the learning process that occurs in the human brain while learning something 

new. 

Because, unlike supervised learning, we have the input data but no corresponding 

output data, unsupervised learning cannot be used to solve a regression or 

classification problem directly. Finding the underlying structure of a dataset, 

classifying the data based on similarities, and representing the dataset in a 

compressed format are the objectives of unsupervised learning. Clustering is the 

most common type of unsupervised learning. K means clustering is the best 

example of an unsupervised learning technique. 

c. Reinforcement Learning 

In reinforcement learning, the model learns by executing actions and observing the 

outcomes of those actions. Hence, an agent learns how to behave in a given 

environment via reinforcement learning, a feedback-based machine-learning 

technique. The agent receives a reward for each correct outcome and is penalized 

or given negative feedback for each negative action. 

In contrast to supervised learning, reinforcement learning uses feedback to 

autonomously train the agent without the use of labeled data. The agent can only 

learn from their experience because there is no labeled data. A certain class of 
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problems, such as those in robotics, gaming, and other time-consuming tasks, are 

solved using RL. 

The agent engages with the environment and independently explores it. In 

reinforcement learning, an agent's main objective is to maximize the reward while 

doing better. The agent learns through hit-and-trial, and based on its experience, it 

trains itself to carry out the task more effectively. 

1.8. Deep Learning 

 

Figure 1.3: Architecture of a simple ANN. 

Artificial Neural Networks (ANNs), also known as Deep Neural Networks (DNNs) 

serve as the foundation to the subset of Machine Learning (ML) paradigm known as 

Deep Learning (DL). The Artificial Neural Networks are structured similar to the neural 

networks existent in a human brain. They serve the purpose of learning patterns 

artificially from heavy volumes of data. This may be achieved in supervised, semi-

supervised or non-supervised fashion. 



25 
 

ANNs perform the tasks like image identification, speech recognition, and natural 

language processing. Deep learning models must learn efficient patterns in the provided 

data to build reliable models. Convolutional Neural Networks (CNNs), Recurrent 

Neural Networks (RNNs), and Feedforward neural networks are the three most popular 

deep learning designs. 

Although the ANNs employ a condensed set of ideas from biological brain systems, 

these networks mimic biological neural networks [3]. Particularly, ANN models mimic 

the electrical activity of the nerve system and brain. Since these are similar to different 

kinds of monitoring components are processing elements, they are also referred to as 

neurons or perceptrons. The perceptrons are typically stacked in layers or vectors, with 

the output from one layer acting as the input for the following layer and maybe others.  

A neuron may be connected to every neuron in the following layer or just some of them, 

replicating the synaptic connections seen in the brain. Weighted data signals mimic 

information transit within a network or brain by simulating the electrical excitement of 

a nerve cell when it enters a neuron. A connection weight that mimics the strengthening 

of neural connections in the brain is multiplied by the input values to a processing 

element. Learning is simulated in ANNs by varying the connection strengths or 

weights. 

The late nineteenth and early twentieth century witnessed the background research in 

the paradigm of Deep Learning related to Artificial Neural Networks. This mainly 

involved interdisciplinary study in the fields of neurophysiology, psychology, and 

physics. There were no detailed mathematical models of how neurons functioned in this 

early study; instead, it focused on generic theories of learning, perception, conditioning, 

etc. These fresh findings gave neural networks new life. 

Over the past 20 years, a large number of articles have been published and various ANN 

types have been studied. Neural networks have been employed in a wide range of 

industries, including aerospace, automotives, banking, defence, electronics, 

entertainment, financial, insurance, manufacturing, medical, oil and gas, speech, 

securities, telecommunications, transportation, and environment. 
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1.9. Artificial Neural Networks 

A neural network consists of three layers. The first layer, called the input layer. There 

are the input neurons that send information to the hidden layers. The hidden layers 

perform the calculations on the input data before sending the results to the output layer. 

The output layer includes the classes, labels and the data that must be linked to input in 

a regularised manner. Other things included in an ANN are weights, activation 

functions, and cost functions. 

Weight, which is the numerical value, is the term used to describe the connection 

strength between neurons. The weights between neurons govern how well a neural 

network can learn. Artificial neural networks learn by adjusting the weights between 

the neurons. 

The information is initially delivered into the input layer. Then, it is passed on to the 

hidden layers, where a subsequent interaction between these two layers first randomly 

chooses the weights for each input. After bias is added to each input neuron, the weight 

total—a combination of weights and bias—is then sent through the activation function. 

The activation function is responsible for selecting which node to fire for feature 

extraction and final output calculation. 

Therefore, the term "forward propagation" is used to describe the entire process. After 

getting the output model to compare with the original output and knowing the error, 

weights are modified in backward propagation to reduce the error. This procedure lasts 

for a predetermined number of iterations known as epochs and finally, the model 

weights get updated so that predictions can be made. 

1.10. Types of ANNs 

Artificial Neural Networks are constructed using a set of parameters and mathematical 

procedures that determine the output. Based on these criteria, let's examine a few neural 

networks: 

1. Feedforward Neural Network – Artificial Neuron 

2. Radial basis function Neural Network 
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3. Kohonen Self Organizing Neural Network 

4. Recurrent Neural Network (RNN) – Long Short Term Memory 

5. Convolutional Neural Network 

6. Modular Neural Network 

 

Figure 1.4: Types of ANN 

1. Feedforward Neural Network – Artificial Neuron: One of the most basic 

types of ANN, this neural network only transmits data in one direction. Data 

travels through input nodes before leaving on output nodes. The hidden layers 

of this neural network might or might not exist. Using a classifying activation 

function, it typically has a front propagated wave and no backpropagation. 

2. Radial basis function Neural Network: The separation between a point and 

the center is taken into account by radial basis functions. RBF functions have 

two layers: the inner layer, which combines the Radial Basis Function and the 

features, and the outer layer, which works as a kind of memory by accounting 
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for the output of the features while computing the same output in the next time-

step. 

3. Kohonen Self Organizing Neural Network: A Kohonen map's goal is to input 

vectors of any dimension to a discrete map made up of neurons. To organize the 

training data in a way unique to the map, it must be trained. Either one or two 

dimensions are present. The neuron's position is constant during training, but 

the weights change depending on the value. The first phase of this self-

organization process involves initializing each neuron value with a tiny weight 

and the input vector. 

4. Recurrent Neural Network (RNN) – Long Short Term Memory: The 

Recurrent Neural Network is based on the principle that by reusing a layer's 

output as input, it will be possible to predict the layer's outcome. The first layer 

is formed in this scenario similarly to the feed-forward neural network using the 

product of the sum of the weights and the features. When this is computed, the 

recurrent neural network process starts, which means that each neuron will carry 

over some of the knowledge it had in the previous time step from one time step 

to the next. 

5. Convolutional Neural Network: Tens or even hundreds of layers can be 

present in a convolutional neural network, and each layer can be trained to 

recognise various aspects of an image. Each training image is subjected to filters 

at various resolutions, and the result of each convolved image is utilised as the 

input to the following layer. Beginning with relatively basic properties like 

brightness and borders, the filters can get more complicated until they reach 

characteristics that specifically identify the object. 

6. Modular Neural Network: Multiple independent networks that work together 

to produce results make up modular neural networks. Each neural network's set 

of inputs is distinct from those of other networks building and carrying out 

subtasks. To complete the tasks, these networks do not communicate with one 

another or exchange signals. 
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ANNs are a network of many activation functions while data processing. Networks are 

trained in a manner so that the appropriate function gets activated from a function in 

the previous layer. The architecture includes many layers and performance is usually 

better with an increase in layers. This has made ANNs one of the best choices for 

Machine Learning (ML). 

However, not all types of data can be handled by all types of ANNs. The digital images 

need to be handled by a type of ANNs called Convolutional Neural Networks (CNNs). 

A digital image contains 2 dimensions of pixelated information where each pixel itself 

contains one color out of millions of colors. An 8-bit RGB encoding scheme contains 

around 16M colors and each pixel contains one color out of these. To handle this data 

in tensor form CNNs were developed. 

A typical CNN takes in parameters in the tensor form of: 

     …(1.5) 

Where x designates the input in the network, C designates the color scheme in vector 

form, W defines the width of an image in pixels, H defines the height of the image and 

n is the number of images provided to the network. 

When the network is trained, the activation functions that are mostly used are the 

Softmax activation functions: 

𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

Σ𝑗=1
𝑘 𝑒

𝑧𝑗
     …(1.6) 

where σ is the softmax activation function, zi is the input vector, 𝑒𝑧𝑖 is the standard 

exponential function for input vector, k is the number of classes in the multi-class 

classifier and 𝑒𝑧𝑗 standard exponential function for output vector. 

The network trains itself in the backpropagation phase where the information about 

correctness is fed back and appropriate measures have to be taken. These measures are 

known as in-built optimizers and currently there exist many optimizers like Gradient 

descent, Stochastic Gradient Descent, Adagrad, AdaDelta, and Adam. We have used 

AdaDelta optimization to improve the network. The equation for AdaDelta 

optimization is: 
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𝜂𝑡
′ =

𝜂

√𝑆𝑑𝑤𝑡+𝜀
 𝑤ℎ𝑒𝑟𝑒 𝑆𝑑𝑤𝑡 =  𝛽𝑆𝑑𝑤𝑡−1 + (1 − 𝛽)(

𝜕𝐿

𝜕𝑤𝑡−1
)2  …(1.7) 

 

Here η is the learning rate which changes with respect to 𝑆𝑑𝑤𝑡  which is the varied 

gradient descent, and it changes as the equation is shown on the right. Each layer L and 

weight w affect the optimization. 

Optimization gives us a hint that more layers can give us more performance. However, 

it has been seen after a certain number of layers, the performances tend to remain the 

same or even worsen. For this purpose, various architectures of CNNs were developed 

which include ResNets (Residual Networks) [4], LeNets [5], GoogLeNets [6], 

VGGNets (Visual Geometry Group Networks) [7], Inception Nets [8], DELF Nets 

(Deep Local Feature Networks) [9], and many more. 

In all these architectures, it was seen that as the sizes and variety of data increased, the 

techniques failed miserably due to their heavy resource consumption. It demanded a 

newer way of looking at the problem and today we have evolutionary computing to 

evolve the architectures of ANNs in an automated fashion. This is known as Neural 

Architecture Search (NAS). 

Image Processing is extremely important in areas like Entertainment, Health, Defence 

Technologies, etc. In Defence, Artificial Intelligence (AI) is used for target 

identification, Computer Vision, etc. Computer Vision has become an indispensable 

necessity in the field of Artificial Intelligence and Computing. We see instances of 

Computer Vision almost daily. The AI cameras in our smartphones, and the 

identification of objects in an image, are all instances of Computer Vision. Large tech-

giants like Google provide us with facilities like these, even for free.  

Since AI works much like a living being trying to comprehend nature, we intend to use 

Nature-Inspired Computing Algorithms for the process of Computer Vision. Nature-

Inspired Computing (NIC), as the name suggests, proposes algorithms inspired by 

natural phenomena, to achieve specific goals. We have used NIC algorithms for 
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Landmark Recognition in digital images. Landmark recognition is important for things 

ranging from recognizing places from old photographs to training robot vision etc. 

Google, the well-known provider of search engines, regularly announces prizes for the 

best accurate AI models for landmark recognition. We discovered from the literature 

review that the algorithms used for landmark recognition do not provide good accuracy 

for the emergence of increasingly large datasets. Hence, methods that can accurately 

execute landmark recognition while also being time-efficient are the need of the hour. 

1.11. Problem Formulation 

Landmark Recognition is an essential task in the field of Computer Vision. Landmark 

recognition is important for things like recognizing places from old photographs to 

training robot vision, etc. Image Processing is extremely important in the fields of 

medicine, defence, automobiles, etc. From the literature, we observed that the 

algorithms that have been applied to landmark recognition don’t give high accuracies 

for the increasingly vast datasets that are emerging. Landmark recognition datasets are 

highly noisy, unregulated, and complex even for a normal human to identify. Landmark 

recognition is performed mostly with the help of sophisticated Machine Learning 

paradigms known as Deep Neural Networks. Literature in the field of Soft Computing 

describes that Nature-Inspired-Computing including evolutionary algorithms help 

evolve the architectures of Artificial Neural Networks and this can further be applied 

for Landmark Recognition. These automated Deep Learning paradigms tend to 

outperform the regular unevolved ANNs on various evaluation metrics. Also, these are 

expected to outperform the best of ANNs developed till date. Hence there is a need for 

approaches that can accurately perform Landmark Recognition by exploring all the 

possible architectures of an AI model. 

1.12. Research Objectives 

We aimed to work on finding the best models for landmark recognition using soft 

computing algorithms and neural networks since these approaches are assumed to be 

both accurate and fast. 

The agreed-upon objectives are underlined as follows: 
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a. To study, analyze and evaluate various classical and soft-computing-based 

algorithms applied to landmark recognition available in the literature. 

b. To propose one nature-inspired-computing-based approach and evaluate its 

performance on standard benchmark problems. 

c. To propose a new landmark recognition approach based upon 

proposed/existing nature-inspired computing algorithms. 

d. To evaluate and compare the performances of the proposed landmark 

recognition approach with existing landmark recognition approaches using 

Python along with Google Colab. 

1.13. Organization of the Thesis 

The thesis has been organized into 7 chapters which can be underlined as follows: 

• The first chapter introduces us to the research topic of Landmark Recognition 

in AI and the techniques that are used in the area. It introduces AI, ML, Soft 

Computing, DL, and Artificial Neural Networks 

• The second chapter is an extensive survey of the Machine Learning and Deep 

Learning techniques that have been applied in the area of Landmark 

Recognition. The literature survey suggests that landmark recognition is an 

extremely broad research area with many possibilities for improvement. 

• The third chapter presents the evolution of convolutional neural networks with 

three metaheuristics namely the Paddy Field Algorithm (PFA), Genetic 

Algorithm (GA), and 3 Parent Genetic Algorithm (3PGA).  

• The fourth chapter describes the benchmarking of the metaheuristic proposed 

by us i.e. the Parallel Bat Colony Optimization Algorithm (PBCOA).  

• The fifth chapter is about the application of the Parallel Bat Colony 

Optimization Algorithm (PBCOA) for evolving CNNs.  

• The sixth chapter is the comparative analysis of all the approaches. A 

comparison is drawn between various approaches linked to landmark 

recognition and the important feats of PBCOA evolved CNN has been 

highlighted. 
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• The seventh chapter concludes the thesis with all the work that has been done 

till now. Our research works like the publications and other areas have been 

provided.  
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Chapter 2: Literature Survey 

This chapter has covered an extensive literature survey of the Machine Learning (ML) 

techniques that have been applied to Landmark Recognition. We show how Landmark 

Recognition is a topic of paramount importance in AI and how landmark datasets have 

emerged as one of the heaviest datasets available in the literature on Image Processing. 

The techniques that have been used for Landmark Recognition, to date, have been 

discussed. It is clear from the survey of literature that the best solution currently 

available for creating highly sophisticated models for landmark recognition tends to be 

a special class of Artificial Neural Networks (ANNs) called CNNs or Convolutional 

Neural Networks. It has further been shown how Nature Inspired Computing (NIC) 

techniques have been used for this purpose. ANNs are a special class of NIC techniques 

since they are inspired by the working of biological neurons in living organisms. 

2.1. Introduction 

A human brain can correctly classify visually identifiable items known as landmarks in 

a digital image. Landmark recognition is a crucial subject in the science of computer 

vision since it deals with the fundamental capability of computers to recognize things 

in an image. A machine must first be trained on the most fundamental landmarks to 

recognize everything in an image. However, recognizing landmarks is not a simple task. 

The extensively used datasets in the field of landmark identification are not only very 

big, which harms training, but also exceedingly noisy and complex. Even the greatest 

photographs taken tend to have a lot of noise in the data after processing. To solve this 

issue, we trained a Convolutional Neural Network (CNN) on a dataset of geographical 

landmarks that was made available to the public. We discovered that the training and 

test accuracies of CNNs were higher than those of traditional machine learning 

techniques (98% and 73%, respectively). Additionally, it was observed that CNNs had 

reduced model overfitting. 

A landmark in a digital image is defined as a distinguishable figure enclosed by a set 

of coordinates on the image. Landmarks are an important concept in computer vision 

because they set the basis for the field of Image Classification. A landmark in an image 

can be anything ranging from a building to humans to the X-ray image of their brains. 
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But landmark Recognition is currently a challenging task at hand due to the large, 

complex, and noisy available datasets. The datasets of images of landmarks that we get 

mostly include lots of noise. Noise is an integral part of image classification because 

real-life images are extremely noisy even at very high resolutions.  

Landmark recognition is important because it is one of the first steps in imparting 

artificially intelligent (AI) systems a complete computer vision. It is also one of the first 

steps in giving robots some sort of vision. The current research is consistently trying to 

better the accuracy in the field of landmark recognition. If high accuracies are possible 

in this field, it could be very much possible that robotic systems can visualize and 

comprehend the normal world. Then they may also be able to make decisions that could 

be physical in nature. This also leads to another subject of cyber-physical systems. 

However, the current AI systems are not able to verify objects in an image accurately 

and many times this concept is used to verify humans vs. computers [10]. If high 

accuracies become possible, this could become a thing of the past soon. 

Figure 2.1: Various geographical landmarks in Google Landmarks Dataset V2. [2] 

Artificial Intelligence (AI) has become an indispensable part of today’s life. We use 

instances of AI in many spheres of everyday life. AI has also been termed the future of 

Computing and most computer systems will have to adapt to infuse the power of AI 

within them. The most common example of AI being used in everyday life is the 
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cameras of our mobile phones being able to detect our faces and them being able to 

beautify our photographs accordingly [2], [10]. 

In the field of AI, computer vision is an integral part. Computer vision refers to the 

ability of a computer system being able to comprehend visual data in the form of digital 

images or videos and give results after processing them in novel ways. Image 

processing, deep fakes, etc. are examples of some of the topics included in computer 

vision [2]. 

We have focused on the task of image classification on geographical landmarks with 

the very popular convolutional neural networks (CNNs). For this task, we have taken a 

publicly available dataset from Kaggle. The geographical landmarks that we have used 

are the famous monuments from Delhi, India. We have recognized the famous 

geographical landmark places in images using different machine learning techniques of 

AI.  

Many companies invest hefty amounts in this research area. Google regularly 

announces competitions on Kaggle (which is a famous website that organizes AI 

competitions) to reward those who come up with good techniques to recognize 

landmarks in an image [11]. Rewards of hefty amounts are given to those who come up 

with the best techniques for this task. Figure 1 shows some images from Google 

Landmarks Dataset V2. 

It has been seen that as the sizes of datasets of landmark images increase, the current 

techniques for Landmark Recognition fail miserably [12]. Though high accuracies have 

been achieved on datasets of very large sizes, however, it is estimated that these 

techniques, too, will underperform when larger datasets come to the fore. 

Landmark Recognition from images is a challenging issue in the field of Computer 

Vision due to the large and complex available datasets. Thus, we present a summary of 

different AI (Artificial Intelligence) based approaches for Landmark Recognition. To 

understand the scope of improvement, we have done a comparative analysis of the 

different approaches and datasets available in the State of the Art. From this study, we 

observed that the sizes and complexities of Landmark Recognition datasets are 

increasing with time. As the sizes are increasing, the accuracies of the available 
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approaches are decreasing. In this paper, we observed that up to now, Google 

Landmarks Dataset V2 is the largest available dataset and the SE RestNetXT152 

approach achieved the best training and validation accuracy on this dataset as compared 

to the other approaches. In the Future Scope section, we proposed that we can optimize 

the performance of different AI-based approaches for Landmark Recognition by using 

Nature Inspired Computing (NIC) based Search and Optimization Approaches. 

Artificial Intelligence is the branch of computer science that deals with making 

computers efficient so that they can make good, well-informed decisions on their own. 

An artificially intelligent computer system learns from the existing knowledge very fast 

and can make decisions (sometimes) better than humans. AI learns from existing 

knowledge, builds models for a better understanding of a scenario, and delivers 

intelligent decisions. AI systems mostly work on statistical procedures to learn from 

the data provided to them in the form of knowledge, build models for a better 

understanding, and then deliver good, well-informed decisions based on the models 

formed from the data provided. For a good AI model, not only high-tech hardware is 

required but better AI models would have to be created. This requires both, good 

machinery and a good human brain for building the AI system. If developed aptly, AI 

models can outperform humans in delivering insightful answers and decisions. 

Out of many uses of AI, one of the uses includes processing media. Recently, AI has 

been used to identify objects from an image. This area is known as Image Processing 

by AI. This area in AI is extremely important in the long run if we want machines to 

learn and understand the process of Visioning and comprehending what exists in the 

environment or even in a 2D image. In this, we can present an image to a computer 

system and ask it to identify what exists in that image. This field of Intelligence Systems 

is known as Computer Vision. An intelligent computer system can identify most of the 

objects in the image. A lot of research has been done and is ongoing in this field. AI 

systems can identify many things in photos, images, and even videos. These things 

include plants, fruits and vegetables, crops, animals, colors, and even human emotions.  
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Today, there exist many application software that can even process images and videos 

to the extent that the software recognizes any face in an image and uses it on some other 

face that exists in a video. This concept is known as Video Morphing. However, there 

are things which still most computer systems are not able to figure out. One of these is 

the important Landmarks in a picture which may include historical monuments, 

buildings, wonders of the world as well as simple immovable objects, etc. An AI system 

has been trained for single Landmarks but as dataset size increases, the AI systems also 

tend to suffer and fail. 

Figure 2.2: Examples of Landmarks from Weyand, Tobias, et al. (2015) [9] 

However, Landmark Recognition is an important task in the field of Computer Vision 

because it is one of the first steps in enabling full-fledged Computer Vision. A properly 

enabled AI system will be able to identify almost everything with human-like precision 

or more. Work is ongoing to identify such Landmarks with high accuracy by a computer 

system. However, we still have a great deal to accomplish. A dataset of landmarks can 

be extremely large. Therefore, training a computer system to learn and identify these 

landmarks is a difficult task. A great deal of work has been already done in this area 

and a great deal more is required. Training accuracies of 90% and more have been 

achieved on small datasets but on larger ones, training accuracies don’t cross 70% [13]. 

Google routinely announces new competitions to improve accuracy in this field [14]. 

However, as the datasets become more exhaustive, the out-of-the-sample accuracies are 

no more than 40%. We need much better techniques to handle such large datasets and 

improving validation accuracy i.e. accuracy for data outside training data, is needed to 

a very large extent [15]. The work in this field of Computer Vision is ongoing and a lot 
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more is required yet. We, still, have a long way to reach an era when AI systems or 

robots will be able to identify everything in our surroundings just by Artificial 

Computer Vision. 

A lot of research in Landmark Recognition focuses particularly on robot navigation 

only. Literature tells us how landmarks have been used continually for developing a 

Robot or Computer Vision. If we wish to see a machine being able to identify things 

with precision close to humans, training the AI systems on Landmarks shall be the first 

and foremost step. Landmarks are immovable or inanimate objects in our surroundings 

that do not usually change shapes too frequently. Due to such properties of Landmarks, 

AI systems, at a younger stage, should be trained with Landmarks only. 

2.2. Survey for Landmark Recognition 

Work on Landmark Recognition is progressing, and a lot of success has been 

accomplished. The research articles like Ozaki, Kohei, and Shuhei Yokoo. (2019), have 

tried to better the accuracies for large datasets available for Landmark Recognition [3]. 

The dataset used in the article is noisy and diverse. The approach in this research article 

is based on Deep Convolutional Neural Networks with Metric Learning, trained using 

cosine-softmax-based losses. These methods are sensitive to noise, and this could 

hinder in development of a reliable metric. To address the issue, the authors have 

developed an automated data-cleaning system. Similarly, more works that are ongoing, 

and which are accomplished have been discussed. The articles have been surveyed in 

terms of their datasets, approaches used, accomplishments, and the technologies they 

produced. 

In this section, we survey trends in features of available datasets in the field of 

Landmark Recognition. As we can see in Table 2.1, in the article, Torii, Akihiko, et al. 

(2015), there was a dataset of just 125 landmarks and still, the accuracy was only 85% 

[16]. This is very less accurate considering the size of the dataset. In this research paper, 

125 landmarks were used although the images totaled up to 1,000 out of which 315 

were used as test images. Though this dataset was very small, however, the dataset in 

it could be used at any time meaning that the dataset was stable.  
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Table 2.1. The table shows some research papers along with the datasets they used for landmark recognition and their accuracies. 

S. 

No. 

Year Research Article Authors Dataset Used Landmarks Technique Training 

Accuracy 

Validation 

Accuracy 

1 2019 Google Landmarks 

Dataset v2-A Large-

Scale Benchmark for 

Instance-Level 

Recognition and 

Retrieval [1] 

T. Weyand, A. 

Araujo, B. Cao, 

J. Sim 

Google 

Landmarks 

Dataset v2 

200000 ResNet101 + 

ArcFace 

70% 40% 

2 2019 2nd Place and 2nd 

Place Solution to 

Kaggle Landmark 

Recognition and 

Retrieval Competition 

2019 [14] 

Chen, Kaibing, 

et al. 

Google 

Landmarks 

Dataset v2 

200000 SE 

ResNeXt152 

81% 60% 

3 2017  LargeScale Image 

Retrieval with 

Attentive Deep Local 

Features [17] 

H. Noh, A. 

Araujo, J. Sim, 

T. Weyand, and 

B. Han 

Google 

Landmarks 

30000 DELF 81% 62% 

4 2015 Visual landmark 

recognition from 

Internet photo 

collections: A large-

scale evaluation [18] 

T. Weyand and 

B. Leibe 

Paris500k 13000 Voting 61% 43% 

5 2016 Fine-tuning CNN 

Image Retrieval with 

No Human Annotation 

[19] 

F. Radenovic, 

G. Tolias, and 

O. Chum. 

Flickr-SfM 713 CNN 90% 65% 
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6 2016 Deep Image Retrieval: 

Learning Global 

Representations for 

Image Search [20] 

A. Gordo, J. 

Almazan, J. 

Revaud, and D. 

Larlus 

Landmark URLs 586 Deep Nets 83% 63% 

7 2018 Revisiting Oxford and 

Paris: Large-Scale 

Image Retrieval 

Benchmarking [21] 

F. Radenovic, 

A. Iscen, G. 

Tolias, Y. 

Avrithis, and O. 

Chum 

Revisited Oxford 11 HesAff–rSIFT–

SMK 

95% 82% 

8 2015 24/7 place recognition 

by view synthesis [16] 

A. Torii, R. 

Arandjelovic, J. 

Sivic, M. 

Okutomi, and 

T. Pajdla.  

24/7 Tokyo 125 View Synthesis 85% 62% 

9 2012 Worldwide Pose 

Estimation using 3D 

Point Clouds [22] 

Y. Li, N. 

Snavely, D. 

Huttenlocher, 

and P. Fua 

Landmarks-

PointCloud  

1k 3D Point 

Clouds 

73% 45% 

10 2011 Building Rome in a 

Day [23] 

S. Agarwal, Y. 

Furukawa, N. 

Snavely, I. 

Simon, B. 

Curless, S. 

Seitz, and R. 

Szeliski 

San Francisco  15k ANN SIFT 70% 44% 

11 2010 City-Scale Landmark 

Identification on 

Mobile Devices [24] 

D. Chen, G. 

Baatz, K. 

Koser, S. Tsai, 

R. Vedantham, 

European Cities 

50k  

20 PFI Pipeline 95% 67% 
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T. Pylvanainen, 

K. Roimela, X. 

Chen, J. Bach, 

M. Pollefeys, B. 

Girod, and R. 

Grzeszczuk 

12 2010 Feature Map Hashing: 

Sub-linear Indexing of 

Appearance and Global 

Geometry [25] 

Y. Avrithis, G. 

Tolias, and Y. 

Kalantidis 

Geotagged 

StreetView  

--- FMH --- --- 

13 2010 Avoiding Confusing 

Features in Place 

Recognition [26] 

J. Knopp, J. 

Sivic, and T. 

Pajdla 

Rome 16k  69 Confuser 

suppression + 

Query 

expansion 

48% --- 

14 2008 Lost in Quantization: 

Improving Particular 

Object Retrieval in 

Large Scale Image 

Databases [27] 

J. Philbin, O. 

Chum, M. Isard, 

J. Sivic, and A. 

Zisserman 

Paris  11 Soft 

Assignment 

72% 48% 

15 2008 Hamming Embedding 

Â´and Weak 

Geometric Consistency 

for Large Scale Image 

Search [28] 

H. Jegou, M. 

Douze, and C. 

Schmid 

Holidays  500 HE + WGC 53% 40% 

16 2015 Landmark recognition 

with sparse 

representation 

classification and 

Cao, Jiuwen, et 

al. 

NTU Campus 1 Sparse 

Representation 

Classification 

93% 83% 
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extreme learning 

machine [29] 

17 2019 Large scale landmark 

recognition via deep 

metric learning [30] 

Boiarov, 

Andrei, and 

Eduard Tyantov 

Scenes 4 Deep Metric 

Learning 

90% 80% 

18 2018 An accurate retrieval 

through R-MAC+ 

descriptors for 

landmark recognition 
[31] 

Magliani, 

Federico, and 

Andrea Prati 

Holidays  500 R-MAC+ with 

retrieval 

91% 75% 

19 2017 A location-aware 

embedding technique 

for accurate landmark 

recognition [32] 

Magliani, 

Federico, Navid 

Mahmoudian 

Bidgoli, and 

Andrea Prati. 

ZuBuD 460 locVLAD 86% 70% 

20 2018 Efficient nearest 

neighbors search for 

large-scale landmark 

recognition [33] 

Magliani, 

Federico, 

Tomaso 

Fontanini, and 

Andrea Prati 

Holidays  500 BoI adaptive 

multi-probe 

LSH 

86% 63% 

21 2018 Landmark detection in 

2D bioimages for 

geometric 

morphometrics: a 

multi-resolution tree-

based approach [34] 

Vandaele, 

Rémy, et al. 

Geometric 

Morphometrics 

20 Tree Based 82% 70% 
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22 2019 Fast Landmark 

Recognition in Photo 

Albums [35] 

S. Pierre, and C. 

Oprean 

Film Simulation 

HALDCLUT 

--- --- --- --- 

23 2016 Bee-inspired landmark 

recognition in robotic 

navigation [36] 

CA Kodi 

Cumbo, et al. 

Robot Camera --- --- --- --- 

24 2008 Multiscale 

Unsupervised 

Segmentation of SAR 

Imagery Using the 

Genetic Algorithm [37] 

Xian Bin Wen, 

Hua Zhang and 

Ze Tao Jiang 

--- --- Genetic 

Algorithm 

93% --- 

25 2008 Perceptual Image 

Segmentation Using 

Fuzzy-Based 

Hierarchical Algorithm 

and Its Application to 

Dermoscopy 

Images[38] 

J. Maeda, A. 

Kawano, S. 

Yamauchi, Y. 

Suzuki A. R. S. 

Marcal and T. 

Mendonc 

--- --- Fuzzy 

Algorithm 

90% --- 

26 2007 A QuantumInspired 

Evolutionary 

Algorithm for 

Multiobjective Image 

Segmentation [39] 

Hichem Talbi, 

Mohamed 

Batouche and 

Amer Draa 

--- --- --- --- --- 

27 1996 Neural-based color 

image segmentation 

and classification using 

self-organizing maps 

[40] 

Jander Moreira 

and Luciano Da 

Fontoura Costa 

--- --- --- --- --- 



45 
 

In contrast to this, Weyand, Tobias, and Bastian Leibe. (2015), has a dataset of 501k 

images and landmarks amounting to 13k [18]. However, in this dataset accuracy was 

drastically reduced to just 61% and the dataset was unstable meaning that it could not 

be used for further uses. This article, published in 2015, showed that in that year neither 

the large datasets could be stable, nor could we get high accuracy on such datasets. 

Therefore, it was implicit that we required better AI models for competent Computer 

Vision. 

In Gordo, Albert, et al. (2016), authors analyze how making a computer learn Global 

Representations could be used for image search [20]. An AI model can be trained using 

Global Representations by which they can learn how to distinguish different things 

from others. In this article, there were 586 landmarks, and still, the accuracy was just 

about 83% on testing data.  

 Figure 2.3: Dataset Size trends with Time 

Then, Radenović, Filip, Giorgos Tolias, and Ondřej Chum. (2018) was published which 

came up with an accuracy of 90% on a dataset with 713 landmarks. Although the 

accuracy is considerable, however, in comparison to [18], the number of landmarks is 
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too small and so was the dataset with just 120k images which included training and test 

images. Noh, Hyeonwoo, et al. (2017) published a paper published taking the Google 

dataset as a training dataset [17]. 

Figure 2.4: Accuracy trends with Dataset Sizes 

This was an unstable dataset but a large one. It had about 30k landmarks and 1.2M 

images. This research article came up with an accuracy of approximately 81% which is 

not considerable but taking into consideration, the size of the dataset, this dataset was 

able to achieve some accomplishments at least. Then, in 2018, an article named 

Radenović, Filip, et al. (2018) was published [21]. This article had only 11 test 

landmarks and was able to achieve 95% accuracy. It was not a big achievement, but the 

article was very important because introduced new methods of benchmarking for areas 

like Landmark Recognition. This paper had 70 images and all of them were used as test 

images. 

From Figure 2.3, we observe that the trends show that the dataset sizes have, 

continuously, been increasing with each passing year. Though the datasets might not 

be robust, however, sizes are increasing which means variability in the data is 

increasing and thus machine learning algorithms are becoming more powerful with 

each passing year. The year 2019 shows a dataset of 200,000 landmarks which 

amounted to more than 4.1M images meaning that an average landmark class had over 

200 images. Also, we observed that there were articles with very few landmarks that 
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were not that relevant since dataset sizes have seen an increasing trend after any number 

of articles with small datasets. 

Figure 2.5: Accuracies on Google Landmarks Dataset 

Table 2.2. Training and Validation Accuracies of various techniques on Google 

Landmarks Datasets [9] 

 

Fig. 2.4 shows the trends in accuracies achieved in datasets as their sizes increase. As 

we notice, when first, the size of datasets increases considerably, the accuracy also falls 

by considerable numbers. However, when years pass by and the dataset size remains 

almost the same or does not increase by a considerable level, the accuracy increases by 

substantial amounts. We can infer from the figure that though, accuracy decreases with 

drastically increasing dataset sizes, however, substantial accuracies are achieved as 

years pass by. 

Then the next article that introduced very large-scale and stable datasets in 2019. This 

article named Weyand, Tobias, et al. (2019) uses more than 4.1M images as training 

and test data [1]. Just like [17], the dataset used in this article has been published by 
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Google but unlike [20], the dataset was stable, meaning the data could be used for later 

uses. Also, the accuracy was reduced considerably to 70%. This was the testing 

accuracy using training data itself, whereas validation accuracy was below 40% which 

is extremely low accuracy. Since then, Google has regularly announced competitions 

to reward those who come up with better accuracies on such large datasets. 

Figure 2.6: Accuracies on Google Landmarks Dataset V2 

Table 2.3 Training and Validation Accuracies on Google Landmarks Datasets V2 for 

various teams along with the techniques used by them [1]. 

 

Figures 2.5 and 2.6 show the training and validation accuracies achieved by various 

techniques and teams on Google Landmarks Dataset and Google Landmarks Dataset 

V2 [1]. As we can see Google Landmarks Dataset had lower accuracies as compared to 

Google Landmarks Dataset V2, thereby meaning that, Dataset V2 was more robust as 

compared to the previous version. Though the dataset size of version 2 was larger, 

getting better results meant that AI techniques bettered manifolds. 

Team Name  Technique  Training  Validation
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Table 2.4 Research articles with the need addressed in them and work accomplished. 

Research Article Need Addressed Work Accomplished 

Babenko, Artem, et al. 

(2014) [41] 

Image Recognition and 

Retrieval  

Built Convolutional Neural 

Networks 

Suau, Pablo. (2005) [42] Robust Landmark 

Recognition 

Developed Polar 

Histograms 

Chen, Yuntao, et al. 

(2019) [43] 

Deal Large Datasets Design Distributed 

Frameworks 

Crall, Jonathan P., et al. 

(2013) [44] 

Instance Recognition Neural Nets for Species 

Recognition 

Scheirer, Walter J., et al. 

(2011) [45] 

Assigning scores for 

Image Recognition 

Theory and Practice 

Methods Discussed 

Teichmann, Marvin, et al. 

(2019) [46] 

Image Classification Efficient Regional 

Aggregation 

Zitová, Barbara, and Jan 

Flusser (1999) [47] 

Better Landmark 

Recognition 

Landmark Recognition 

using invariant features 

Cao, Jiuwen, et al. (2015) 

[29] 

Better Landmark 

Recognition 

Extreme Learning 

Machines 

Srinivasan, Sridhar, and 

Laveen Kanal. (1997) 

[48] 

Qualitative Landmark 

Recognition 

Visual cues for image 

recognition 

Cao, Jiuwen, Tao Chen, 

and Jiayuan Fan. (2014) 

[49] 

Feature Extraction for 

Landmark Recognition 

SLFNs 

Chen, Tao, and Kim-Hui 

Yap. (2013) [50] 

Qualitative Landmark 

Recognition 

Mobile Landmark 

Recognition 

Chen, Tao, Kim-Hui Yap, 

and Dajiang Zhang. 

(2012) [51] 

Qualitative Landmark 

Recognition 

BoW Framework 

Li, Xiaowei, et al. (2008) 

[52] 

Landmark Recognition 

and Modelling  

Iconic scene graphs 

 

The article Babenko, Artem, et al. (2014) tries to make neural networks for image 

recognition and retrieval [41]. It shows that simple machine learning techniques cannot 

work on image retrieval and we need more complex techniques. So, authors build neural 

networks including Convolutional Neural Networks (CNNs) which help us in image 

retrieval and classification. Suau, Pablo. (2005), had developed polar histograms for 

robust Landmark Recognition [42]. 
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Chen, Yuntao, et al. (2019) discuss how distributed frameworks help us in dealing with 

large datasets such as those for instance recognition [43]. We can design simple and 

versatile distributed frameworks for this matter. One of the developed frameworks: 

SimpleDet; has been discussed in the research article. According to “Chen, Yuntao, et 

al.”, “SimpleDet supports up-to-date detection models with best practice. SimpleDet 

also supports distributed training with near-linear scaling out of the box.”  

Crall, Jonathan P., et al. (2013) deal with one of the instance recognition frameworks 

namely species recognition [44]. This article discusses neural nets built for animal and 

plant species recognition. Though the article has little to do with Landmark 

Recognition, it was also one of the good articles in establishing procedures related to 

instant recognition. Using a labeled database and a quick, accurate algorithm, 

HotSpotter can detect particular animals. It makes use of an algorithm for competitive 

scoring called the Local Naive Bayes Nearest Neighbour Algorithm. 

Scheirer, Walter J., et al. (2011) discuss the important theory and practice methods 

followed while analyzing scores for image recognition [45]. The AI systems are 

assigned scores according to how well they fare at a task. For the task of Image 

Processing and Instance Recognition, this research article discussed how the scores are 

created, assigned, analyzed, and interpreted. Both theory and practice methods have 

been discussed conveniently.  

Teichmann, Marvin, et al. (2019) discuss how Efficient Regional Aggregation can be 

used to identify images in an image classification dataset [46]. This is yet another 

technique used for image search. “Teichmann, Marvin, et al.” demonstrate how a 

trained landmark detector, using their new dataset, could be leveraged to index image 

regions and improve retrieval accuracy while being much more efficient than existing 

regional methods. Zitová, Barbara, and Jan Flusser (1999) discussed landmark 

recognition with features that remain invariant in data images [47]. This technique 

helped to further the research on Landmark Recognition by using similar features in 

different images.  

The research article by Cao, Jiuwen, et al. (2015) discusses more complex techniques 

namely sparse representation classification and extreme learning machines [29]. “Cao, 
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Jiuwen, et al.” showed how these techniques, combined, produced good results for the 

field of Landmark Recognition. Srinivasan, Sridhar, and Laveen Kanal. (1997) 

discusses visual cues for image recognition [48]. The article explains how there are 

some visual cues in an image that may be used for Qualitative Landmark Recognition. 

Cao, Jiuwen, Tao Chen, and Jiayuan Fan. (2014) article proposed a fast online learning 

framework based on the Single Hidden Layer Feedforward Neural Networks (SLFNs) 

[49]. This technique is also based on the bag-of-words (BoW) method which is used 

for feature extraction for Landmark Recognition. Chen, Tao, and Kim-Hui Yap. (2013), 

discusses a discriminative BoW framework for mobile Landmark Recognition [50]. 

Chen, Tao, Kim-Hui Yap, and Dajiang Zhang. (2012) was a research article published 

in 2012, which used the technique of Discriminative bag-of-visual phrase learning for 

Landmark Recognition [53]. Li, Xiaowei, et al. (2008), published in 2008, developed 

Landmark Recognition and Modelling using iconic scene graphs [52]. 

Chen, Tao, et al. (2009) was another survey article published in 2009 for information 

retrieval for mobile landmark recognition [54]. Chen, Wei-Chao, et al., (2009) was a 

research article published in 2009 that developed benchmarks for summarising 

Landmarks from community photo collections [55]. Li, Hao, and Simon X. Yang. 

(2002) discussed the evolution of visual Landmark Recognition systems [56]. 

Chen, Tao, Kim-Hui Yap, and Dajiang Zhang. (2014), published in 2014, discussed the 

technique named Discriminative soft bag-of-visual phrase which has been used for 

mobile Landmark Recognition [51]. Chen, Tao, Kim-Hui Yap, and Lap-Pui Chau. 

(2011) published in 2011, uses integrated content and content analysis for mobile 

Landmark Recognition [57]. 

Stefani, Pierre, and Cristina Oprean. (2019) discussed landmark recognition in photo 

albums which were both fast and comprehensive [35]. In this article, a DELF network 

is used with a VLAD layer in a CNN network. Guo, Jianya, Xi Mei, and Kun Tang. 

(2013) discussed 3D techniques for the identification of 3D things [58]. This article 

used landmark annotations and a technique named dense correspondence registration 

for building 3D human facial images. The article describes how landmarks can be used 

in other fields.  
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Table 2.5 Research articles in the area of Instance Recognition Addressed 

Research Article Area Addressed 

Chen, Tao, et al. (2009) [57] Mobile landmark recognition  

Li, Hao, and Simon X. Yang. (2002) [56] Visual Landmark Recognition 

systems 

Chen, Tao, Kim-Hui Yap, and Dajiang 

Zhang. (2014) [51] 

Mobile landmark recognition  

Hui Yap, and Lap-Pui Chau. (2011) [57] Mobile landmark recognition  

Stefani, Pierre, and Cristina Oprean. (2019) 

[35] 

Landmark recognition in photo 

albums  

Guo, Jianya, Xi Mei, and Kun Tang. 

(2013) [58] 

Identification of 3D things 

Kragskov, Jens, et al. (1997) [59] Landmark identification in 

craniofacial items  

Déniz, Oscar, et al. (2011) [60] Face recognition  

Van Asselen, Marieke, Eva Fritschy, and 

Albert Postma. (2006) [61] 

Better navigations  

Epstein, Russell A., and Lindsay K. Vass. 

(2014) [62] 

Landmarks Based wayfinding 

Magliani, Federico, Tomaso Fontanini, and 

Andrea Prati. (2019) [63] 

Small Scale to Large Scale 

Datasets 

Zheng, Yan-Tao, et al. (2009) [64] Web-scale Landmark 

Recognition 

Wu, Jianixn, and James M. Rehg. (2008) 

[65] 

Spatial Navigation 

 

Kragskov, Jens, et al. (1997) discussed important landmark identification in 

craniofacial items using cephalometric radiographs and CT scans [59]. This article, just 

like [58], is a case of landmarks other than inanimate objects. Déniz, Oscar, et al. (2011) 

discuss face recognition using oriented gradient technology in histograms [60]. This 

article, again like [58], [59], is another instance of recognition of landmarks for animate 

objects. 

Van Asselen, Marieke, Eva Fritschy, and Albert Postma. (2006) discusses the 

psychological behaviors of humans in how they acquire spatial knowledge for 

navigation and how machines can be developed for better navigation using this learning 

[61]. Similarly, Epstein, Russell A., and Lindsay K. Vass. (2014) discuss neural systems 
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for landmark-based wayfinding in humans [62]. This is a technique that is used not only 

by animate organisms but using this technique, we may even be able to train an 

Artificial Intelligent computer System.  

Magliani, Federico, Tomaso Fontanini, and Andrea Prati. (2019) discusses the datasets 

ranging from scale to large scale that have been used to date for Landmark Recognition 

and Retrieval [63]. This was also a comprehensive study that discussed all the simple 

and difficult traits of Landmark Recognition. Also, it discussed the achievements and 

research gaps of various datasets ranging from very small ones to ones having a million 

images. Zheng, Yan-Tao, et al. (2009) published in 2009, also aimed to develop a web-

scale Landmark Recognition engine that could be used for later uses as well [64]. Wu, 

Jianixn, and James M. Rehg. (2008) used PACT technology to determine the 

whereabouts of a person or robot [65]. The technique uses histograms to know where a 

person is in space. 

Li, Hao, and Simon X. Yang (2003). was a research article published in 2003 that built 

a fully autonomous mobile robot [66]. It developed various modules that could 

implement different levels of competence and behaviors in the robots. Similarly, Nasr, 

Hatem, and Bir Bhanu. (1988) also worked on developing autonomous mobile robots 

[67]. This research article, however, was published in 1988, when not too much 

hardware existed. This article was more dealt with more theoretical aspects of building 

an autonomous mobile robot. The authors didn’t practically implement anything, but 

the article paved the way for a better understanding of future aspects. Trahanias, Panos 

E., Savvas Velissaris, and Thodoris Garavelos. (1997) published in 1997 had more 

success in Landmark extraction and recognition [68]. This article was one of the early 

articles published for autonomous robot navigation development. It was quite 

successful in bettering autonomous robot navigation.  

Lee, Jung-Sub, et al. (2009) published in 2009, developed In-pipe robot navigation 

based on Landmark Recognition using shadow images [69]. This article, also for 

navigation of robots, dealt with developing robot navigation using a technique named 

In-pipe robot navigation. The technique used images of shadows of landmarks in an 

image to navigate through the surroundings. Elmogy, Mohammed, and Jianwei Zhang. 

(2008) was a research article published in 2008, which developed robust and real-time 
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techniques for Landmark Recognition that were used for humanoid robot navigation 

[70]. The authors discuss humanoid robot navigation which intends to make robots 

navigate their environment like humans. Mata, Mario, et al. (2001) published in 2001 

discussed visual Landmark Recognition systems for the topological navigation of 

mobile robots [71]. It discussed how robots can be trained to deal with all the 3-

dimensional obstacles that enter their pathways. Liu, Tingting, et al. (2019) discuss how 

Infrared Spectral Imaging can be used to sense objects by robots [72]. This would lead 

to better robotic vision. 

Table 2.6: Research articles in the area of Robotic Technologies 

Research Article Work Accomplished 

Li, Hao, and Simon X. Yang (2003) 

[73] 

Fully autonomous mobile robot  

Nasr, Hatem, and Bir Bhanu. (1988) 

[67] 

Autonomous mobile robots 

Trahanias, Panos E., Savvas 

Velissaris, and Thodoris Garavelos. 

(1997) [68] 

Autonomous robot navigation 

Lee, Jung-Sub, et al. (2009) [69] In-pipe robot navigation  

Elmogy, Mohammed, and Jianwei 

Zhang. (2008) [70] 

Humanoid robot navigation 

Mata, Mario, et al. (2001) [71] Topological navigation of 

mobile robots 

Liu, Tingting, et al. (2019) [72] Infrared (IR) spectral imaging 

sensing 

Yang, Simon X., and Hao Li. (2002) 

[73] 

Mobile robots  

Do, Quoc V., and Lakhmi C. Jain. 

(2006) [74] 

Autonomous robot navigation 

Luo, Ren C., Harsh Potlapalli, and 

David W. Hislop (1992) [75] 

Robot navigation 

 

Yang, Simon X., and Hao Li. (2002) published 2002, succeeded in developing mobile 

robots that not only were autonomous but could avoid obstacles in their path with a 

fuzzy logic behavior. This article was also used as a visual Landmark Recognition 

System [73]. 
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Do, Quoc V., and Lakhmi C. Jain. (2006), published in 2006, was yet another attempt 

to develop landmark recognition systems for autonomous robot navigations [74]. Luo, 

Ren C., Harsh Potlapalli, and David W. Hislop (1992) discussed how neural networks 

could be used for robot navigation [75]. This was developed using Landmark 

Recognition for robotic technologies developed using neural networks. 

Table 2.7: Various types of optimizations discussed by various research articles. 

Year Research Article Authors Optimization 

2005 Ga-facilitated knn classifier 

optimization with varying similarity 

measures [76] 

Peterson, Michael 

R., Travis E. 

Doom, and 

Michael L. 

Raymer 

Optimized KNN 

with Genetic 

Algorithm 

2008 Particle swarm optimization for 

parameter determination and feature 

selection of support vector [77] 

Lin, Shih-Wei, et 

al. 

Optimized SVM 

with Particle 

Swarm 

Optimization 

2012 Simultaneous feature selection and 

SVM parameter determination in 

classification of hyperspectral 

imagery using ant colony 

optimization [78] 

Samadzadegan, 

Farhad. Hadiseh 

Hasani, and Toni 

Schenk. 

Optimized SVM 

with Ant Colony 

Optimization 

2017 A hybrid approach from ant Colony 

optimization and K-nearest 

neighbor for classifying datasets 

using selected features [79] 

El Houby, Enas 

MF, Nisreen IR. 

Yassin, and 

Shaimaa Omran 

Optimized KNN 

with Ant Colony 

Optimization 

2017 An improved grey wolf 

optimization strategy enhanced 

SVM and its application in 

predicting the second major [80] 

Wei Yan, et al. Optimized SVM 

with Grey Wolf 

Optimization 

2019  Optimization of K-nearest neighbor 

using particle swarm optimization 

for face recognition [81] 

Sasirekha, K., and 

K. Thangavel 

Optimized KNN 

with Particle 

Swarm 

Optimization 

2019 GA-SVM based feature selection 

and parameter Optimized SVM with 

optimization in hospitalization 

expense modelling [82] 

Tao, Zhou, et al. Optimized SVM 

with Genetic 

Algorithm 

2020 Binary Grey Wolf Optimizer with 

K-Nearest Neighbor classifier for 

Feature Selection [83] 

Al-wajih, Ranya, 

et al. 

Optimized KNN 

with Grey Wolf 

Optimization 
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We have seen that a lot of work has been done in the field of Landmark Recognition. 

We see that with time, the sizes of datasets are growing as they might be expected to. 

However, as the dataset sizes increase, accuracies seem to go down. The techniques 

that seem to do well on smaller datasets fail miserably on larger ones. Hence, there is a 

need for developing techniques that do well not only on datasets of smaller sizes but on 

datasets of relatively all sizes. 

Today, there exist many Nature Inspired Computing (NIC) Algorithms [76]–[83]. These 

algorithms are based on the working of natural phenomena in the environment and can 

be used for different areas like routing in computer networks, test case generations, 

image processing, etc [84]–[91]. The NIC algorithms can also be used to optimize the 

existing AI techniques like KNN, SVMs, etc. 

As we are trying to develop AI models using and for natural elements in the 

surroundings, it might not be a thing of surprise that using a touch of nature should 

better the AI models currently being used for Image Processing for Landmark 

Recognition. No wonder, most of the algorithms and techniques developed today, for 

instance, recognition, is based on the natural processes and phenomena occurring in our 

environment. 

The processes and phenomena on which they are based include how organisms 

reproduce [88], how bats see [89] and how our universe started [90]. These techniques 

provide a strong basis for the development of better AI models since AI is expected to 

work like natural processes. No wonder, Nature-Inspired Computing is widely used to 

optimize AI techniques today [76]–[116]. NIC algorithms work more like phenomena 

inspired by nature and hence are closer to functioning in a way that delivers nature-like 

results. Viewing is a natural phenomenon that we aim to pass on to machines. So, 

Nature Inspired Techniques can go a long way in developing Artificially Intelligent 

models.  

We predict that Nature Inspired Computing techniques which include Neural Networks 

will supposedly be used mostly in all future developments. They would be used to 

manufacture machines that would have abilities like those of living beings. An AI 
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model that might be able to work close to the abilities that nature has provided should 

be inspired by nature. 

We have surveyed the research articles ranging from 1988 till the present date related 

to Landmark Recognition and Instance Recognition. From the survey, we observed that 

since the sizes of datasets in the field of Landmark recognition have been growing (as 

they are expected to), the accuracies have been decreasing and there is a constant need 

for better technologies. Though better AI techniques have continuously been 

developing, however, to expect robotic vision, we either need even better AI techniques 

better hardware, or both. From the survey, we have concluded that the field of 

Landmark Recognition is given high importance in AI but it still has a long way to go 

due to various issues including the large size of datasets. Datasets in this field are 

extremely large and AI computer systems fail to train themselves in a proper manner 

and limited time. To make an AI system visualize things close to human-like precision, 

we need much better AI models and/or better hardware configurations. We also 

presented an implementation of classical Machine Learning Techniques on a part of 

Google Landmarks Dataset V2 and we could infer that these techniques will not work 

on datasets of such large sizes. A lot of research has already been done in this field and 

a lot more has yet to be done. If researchers reach appropriate results, this field can 

change the future of AI and robotic technologies. 

2.3. Survey of Classical Machine Learning Techniques 

A Survey of the Literature reveals that many approaches are being developed for the 

process of Landmark Recognition which includes RESNETs, DELF networks, 

VGGNETS, etc. This section focuses on the implementation of a simple CNN 

architecture for geographical landmark recognition and compares it with classical 

machine learning algorithms like KNN, Decision trees, and SVM. 

In this section, we analyze the performance of SVM, KNN, Decision Tree, and Random 

Forest, the four most popular classical Machine Learning Approaches. We analyzed the 

performance of these approaches on 1000 images out of Google Landmarks Dataset 

V2. The performance results are shown in Table 2.8 and Fig. 2.7. 
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Table 2.8: Performance analysis of classical ML approaches on 1000 images out of 

Google Landmarks Dataset V2. 

 Figure 2.7: Training and Test Accuracies for various ML Approaches. 

2.4. Survey of Convolutional Neural Networks: Performance Analysis 

Figure 2.8: Images of Qutub Minar (left) and Alai Darwaza (right) from our dataset. 

ML Approach Training 

Accuracy 

(in%)

Test 

Accuracy 

(in %)

SVM 51 11

KNN 45 11

Decision Tree 42 10

Random Forest 58 12

0

10

20

30

40

50

60

70

SVM KNN Decision Tree Random Forest

A
cc

u
ra

cy
 (

in
 %

)

ML Technique

Training Accuracy (in%) Test Accuracy (in %)



59 
 

CNNs can be designed in plenty of ways to make them perform better on a particular 

dataset. Today there exist complex CNN architectures namely ResNets, VGGNets, 

Inception Nets, etc [117]. We take a very simple CNN architecture with just a single 

Convolutional Layer which is singularly able to perform better than all the classical ML 

approaches that we discuss later in the section. 

We took our dataset from a Kaggle Competition named Qutub Complex Monuments’ 

Images Dataset (https://www.kaggle.com/varunsharmaml/Qutub-complex-

monuments-images-dataset). The dataset was published in 2018 as a public dataset and 

consisted of five famous Landmarks from the National Capital Region, Delhi, India. 

The dataset consisted of Landmark places namely Alai Darwaza, Alai Minar, Iron 

Pillar, Jamali Kamali Tomb, and Qutub Minar. Figure 2.8 shows two images from this 

dataset. 

The original dataset consisted of 1286 image files which were not very uniform in 

nature. Some image files were in JPEG format and some were in PNG format. A few 

image files were in grayscale and others were colored in nature. Out of the colored 

images, some files used only three color channels, namely Red Green Blue (RGB) while 

a few used four color channels, namely Cyan Magenta Yellow Key (CMYK). 

Figure 2.9: Architecture of a Convolutional Neural Network with two convolutional 

layers [13] 

It is seen that CNNs perform best when all the images that are used for training have 

the same shape (dimensionality) throughout. So, we decided to make the data uniform 

to run our codes efficiently and without hassle. We decided to run our codes on Jupyter 

https://www.kaggle.com/varunsharmaml/
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Python Notebooks. So, the shape function from the NumPy library was run to identify 

the shape of each image and images that could have caused trouble were identified. 

We could make the data uniform by identifying the images that were causing non-

uniformity and then removing them. We identified 16 images that were either Grayscale 

images or with 4 Color channels and removed them from our dataset. The remaining 

dataset consisted of 1270 files which consisted of only the colored images with 3 color 

channels namely RGB. This was a good size for a dataset for comparing various ML 

techniques. 

Also, since the image files had varying image dimensions of 64 x 64. So, one image 

file had a shape of (64,64,3) which included 64 pixels of height, 64 pixels of width, and 

3 channels of colors namely RGB (Red Green Blue). Every channel of color could take 

256 (0-255) shades of each color. Figure 2.9 shows the architecture of the neural 

network developed by us. 

Figure 2.10: Summary of the Convolutional Neural Network model designed by us. 

We divided our dataset into training and test files with a ratio of 75:25 for classical ML 

Approaches and 70:30 for CNN. We provided more training data to classical machine 

learning techniques and less training data to CNN and still, CNN could outperform 
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classical ML techniques like SVM, Decision Tree, and KNN even with fewer training 

files.  We shall discuss this, in detail, in the next sections. 

2.4.1. Layers in CNNs 

Figure 2.9 describes how a simple Convolutional Neural Network can be designed [5], 

although the CNN designed by us has only one Convolutional Layer. The above 

architecture exemplifies that there are two Convolutional Layers, two pooling layers, 

and one fully connected layer in the network.  

In the Convolutional Neural Network designed by us, there is a single Convolutional 

Layer, one max-pooling layer, and two fully connected layers. The model designed by 

us can be summarized in the manner shown in Figure 2.10. The working of the 

convolution operation is described in Figure 2.11. 

 

Figure 2.11: A depiction of Convolution operation in a Convolutional Neural Network 
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Figure 2.12: The depiction of the Max-Pooling Operation 

First, a convolutional layer is initialized. This layer will train the weights and biases for 

developing the model. Then we apply the Max Pooling Layer to downsample the 

excessive number of images that have been created. Then a dropout function is applied 

to reduce the overfitting of the model. Then, a flatten layer converts high-dimensional 

data into single-dimensional data. Figure 2.12 shows how the computer achieves max-

pooling. 

Then fully connected layers are applied with a dropout function in between to connect 

our final classes to the learned weights and biases. Once weights and biases are trained, 

we can run the network numerous times hoping to get better weights. Weights in CNNs 

are also known as filters or kernels and are matrices only. Once trained, these kernels 

can detect many things of interest in an image. 

2.4.2. Training CNNs 

As we discussed earlier, the images are first resized to the shape (64,64,3) and then this 

batch of images has to be fed to the network for training. Every image in our training 

dataset has a height and width of 64 pixels and 3 color channels are used in each image 

which is namely Red, Green, and Blue (RGB).  

Then we pass each image through the Convolutional Neural Network designed by us. 

The images are to go through the neural network in batches and we give a batch of 32 

images at once which is an optimal number to train the weights of the neural network 

in an appropriate time frame considering limited memory usage. 
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The basic equations that describe the working of our CNN can be given as under: 

(32) Batch Size X (64 X 64) Images
Convolution
→        (64) Kernels X (64 X 64) Convolved I

mages          …(2.1) 

(64) Kernels X (64 X 64) Convolved Images

MaxPooling
→        (64) Kernels X (32 X 32) Pooled Images    …(2.2) 

(64) Kernels X (32X  32) Pooled Images
Fully Connected Activation
→                    (5) Classes 

…(2.3) 

When this process completes, the trained weights are further optimized using the 

AdaDelta optimization algorithm. To train the weights to a considerable accuracy, 

many epochs have to be given meaning that many similar cycles have to run again and 

again. 

 

Figure 2.13: The complete process of training a Convolutional Neural Network 

One epoch of the training process follows the given algorithm: 

ALGORITHM 2.1: Procedure for one epoch of our Convolutional Neural Network 

Step I.  Initialize 64 kernels and convolve each image with each kernel. 

Step II.  Downsample images by max-pooling arrays of 2 x 2. 
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Step III.  Dropping out nodes by 0.25 to avoid overfitting. 

Step IV. Flattening the high dimensional input to a single dimension. 

Step V.  Reducing the count of outputs by a Dense function. 

Step VI.  Dropping out nodes again by 0.5 to avoid overfitting. 

Step VII.  Connecting final output to the exact category of image. 

First, we initialize our CNN with a convolutional layer that creates 64 kernels of size 3 

x 3 for training purposes. These kernels must convolve with the batch of 32 images at 

a single time for one epoch. Then, we applied a max-pooling layer which reduces the 

dimensions of convolved images by a factor of 4. Then we apply the dropout function 

which drops nodes randomly to reduce the overfitting of the model. Then we flatten 

high-dimensional data into a single dimension with a flattened layer. Finally, we 

connect all the nodes from the fully connected layer to our 5 classes using a Softmax 

activation. We then select the best kernels from the total kernels created and these are 

then chosen for further epochs. The optimization happens using the process of 

backpropagation where an optimization algorithm feeds backward important 

information in the network that includes weights and biases. 

200 epochs of Algorithm 2.1 were given while training our model with the dataset 

discussed in Section 2. The model is compiled with the optimizer ‘AdaDelta’ which is 

a decent optimizing algorithm and a learning rate of 0.01 which is considered good 

enough to train a CNN so that neither the model misses the optimal weight nor slows 

down very much. The loss reduced in this network is the categorical cross-entropy loss 

which is the standard loss parameter to be reduced while training a network on a multi-

class classification problem. The evaluation metric for validating our model is accuracy 

which includes both training and test accuracy to determine if the model is under-fit or 

over-fit. 
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After the compilation and execution processes of our code, the model delivered a 

training accuracy of 98% and a test accuracy of 73% with 200 epochs. As we can see 

in Fig. 2.14, CNN fares much better than other classical ML Algorithms. We 

implemented SVM, KNN, and Decision Tree Classifier, in addition to CNN to compare 

the performance of each technique, and from the data, it was clear that Convolutional 

Neural Networks performed much better than other classical Machine Learning 

algorithms. Complete details of the implementation of each ML technique are 

discussed. 

Figure 2.14: Percentage accuracies for Landmark Recognition. 

After proper cleaning of our dataset, we ran codes to implement four ML techniques on 

our dataset which included the CNNs. The codes were used to classify images amongst 

five famous Landmark places in the National Capital Region, Delhi, India. Three ML 

techniques that were implemented are the famous classical Machine Learning 

techniques namely Support Vector Machines (SVMs), Decision Tree Classifier, and K-

Nearest Neighbour (KNN) Algorithm. The last technique we applied was the recently 

developed, Convolutional Neural Networks (CNNs). CNNs are the subset of the latest 

ML techniques which are broadly included in the Deep Learning paradigm. Deep 

Learning is concerned with relatively deeper models that are developed for an Artificial 
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Intelligence task. In classical Machine Learning Techniques, we have only one 

activation function that controls the entire model, whereas, in Deep Learning, we 

develop models that consist of a network of activations. This is the same way that the 

neurons work in our body. So, Convolutional Neural Networks, as the name suggests, 

belong to the category of Machine Learning known as Neural Networks. 

Today, there exists a variety of Neural Networks that perform various Artificial 

Intelligence tasks better than their classical counterparts. Similarly, Convolutional 

Neural Networks have emerged as one of the most efficient techniques in the field of 

Image Processing, Recognition, Retrieval, etc. 

First, we shall discuss the results of classical ML algorithms on our dataset. Out of the 

classical machine learning algorithms listed earlier, the best performance was given by 

Support Vector Machines which delivered a test accuracy of 64% and a considerable 

training accuracy of 89% for the classification of the geographical landmarks in our 

dataset. This suggests that there was overfitting of the model but this overfitting was 

less than what we found for the other two algorithms. 

TABLE 2.9: Training and test accuracies for various ML techniques on a landmark 

dataset. 

ML Technique 
Training 

Accuracy (in %) 

Test Accuracy 

(in %) 

Support Vector Machine 

(SVM) 
89 64 

K-Nearest Neighbor 74 54 

Decision Tree Classifier 99 49 

Convolutional Neural 

Network 
98 73 

 

K-nearest neighbor algorithm fared second best with a test accuracy of around 54% in 

which the value of K used was 3. Its training accuracy was 74% which again suggests 

that the model was overfitting. The worst recorded performance overall was given by 

the Decision Tree Classifier with a test accuracy of 49%. It also recorded a training 
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accuracy of almost 99% which gives us a hint that the technique produced a highly 

overfit model to be of very little use for generalized tasks. 

In this regard, a relatively simple Convolutional Neural Network designed by us fared 

much better than any of these algorithms. A CNN with just one Convolutional Layer, 

designed by us, recorded a test accuracy of 73%. Also, the training accuracy was 98% 

which suggests overfitting, but the test accuracy is considerably higher than other 

machine learning techniques which makes it a better competitor for Image classification 

tasks. 

For classical machine learning techniques, we gave a train-to-test set ratio of 75:25 

while for CNN we gave a more rigorous train-to-test ratio of 70:30. Still, we can see 

that CNN fared better than all the classical Machine Learning Algorithms. 

2.5. Research Gaps 

Today, there exist many NIC algorithms like Genetic Algorithm, Ant Colony 

Algorithm, Particle Swarm Optimization, etc. which are used to optimize existing AI 

techniques to get the best results for problems. However, it is believed that by using 

more such algorithms, we would be able to evolve CNNs to get even better 

performances. The research gaps in the existent literature can be described as follows: 

• Convolutional Neural Networks are based on the working of Neural Networks 

in a living being. Neural Networks are inspired by the mechanisms of neurons, 

the spinal cord, and the brain in our body. However, every living being has a 

different set of neural networks in its body. We believe that neural networks can 

be evolved for even better performances if we evolve them with the Nature-

Inspired-Computing (NIC) Algorithms. 

• CNNs have a huge set of combinations of hyperparameters that can vary and 

produce striking results. Some CNN hyperparametric combinations are thought 

to perform well in a well-established manner but there have been instances of 

irregulated CNN architectures performing exceedingly well. 

• Current Deep Learning techniques fare exceedingly poor on the large, complex, 

and noisy landmarks datasets. As seen from the survey, as the dataset sizes 

increase, CNNs tend to underperform, a challenge that needs to be undertaken. 
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2.6. Conclusion 

Various Machine Learning approaches including the Convolutional Neural Networks 

have been surveyed for the classification of a landmark in an image. It is established 

how the increasing sizes of datasets degrade the performance of AI models. A 

performance analysis was also conducted, and the CNNs performed way better than 

classical ML approaches, implying that classical ML approaches cannot and should not 

be used for image classification. We also saw that CNNs are much more capable of 

variations in them making them highly flexible for better usage. Classical ML 

approaches like SVMs, Decision Tree, and KNN fared poorly on the task of Image 

Classification plus they are not very flexible for variations. With varying parameters in 

a CNN, we can and have achieved milestones that could not have been expected earlier. 
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Chapter 3: Geographical Landmark 

Recognition: Three Metaheuristic - Based 

Approaches 

In this chapter, we present 3 metaheuristic-based approaches for geographical landmark 

recognition. The three metaheuristics are namely Paddy Field Algorithm, Genetic 

Algorithm, and 3 Parent Genetic Algorithm. The metaheuristics are used to search for 

the most optimal hyperparameters for the development of Convolutional Neural 

Networks for Geographical Landmark Recognition. The most optimal hyperparameters 

are searched for through a search space of more than a million hyperparametric 

combinations and thus specialized CNN architectures are evolved. The experiments 

were run successfully, and highly optimized CNN architectures are evolving. The CNN 

hyperparameters highly different from those usually used were found to be highly 

competent. Kernels with shapes 5 x 5 and 7 x7 were found to perform better than 3 x 3 

of some combinations. Relative accuracies of CNNs increased up to more than 40%, 

thereby indicating that the evolution of CNNs with evolutionary metaheuristics is 

highly desirable. 

3.1. Introduction 

NP-Hard problems have existed from times unknown. An NP-Hard problem refers to a 

problem in the computing arena that is not known to be solved in polynomial time. No 

definite amount of looping can guarantee an answer to these problems. To find a 

solution to such problems, soft computing is required [118]. Soft computing tends to 

find the most optimal approximate solution to the problem instead of an exact solution 

[119]. The best instances of soft computing are the evolutionary algorithms, and they 

can be used to find highly optimal solutions to NP-Hard problems. 

Millions of hyperparameters in Artificial Neural Architectures can be changed to create 

the most suitable networks [120]. However, we risk major resource exhaustion 

problems when evaluating so many parameters in an ANN. A distinct strategy for best-

fit ANN search is required due to constraints on time, memory, processing power, etc. 
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Here is where the concept of NAS comes into play. Neural Architecture Search (NAS) 

amalgamates evolutionary computing and ANNs to produce better-fit artificial neural 

networks [121]. These ANNs are evolved on limited data and when tested on complete 

data, they prove to be highly proficient. Today NAS has been tried with many 

techniques like Genetic Algorithms (GA) and variants of Particle Swarm Optimization 

(PSO) [122], [123]. 

3.2. CNN Evolution with Paddy Field Algorithm 

The practice of using metaheuristic methods to address optimization issues is known as 

metaheuristic optimization. Almost everywhere, from engineering to economics, 

optimization takes place. Making the most of the available resources is essential 

because time, money, and resources are all limited. 

Figure 3.1: The complete process followed in the Paddy Field Algorithm. 

The majority of optimizations are extremely nonlinear and multimodal under a variety 

of challenging constraints. Different hyperparameters may commonly conflict with a 

single neural network. There are circumstances where ideal solutions don't exist, even 
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for a single purpose. Finding a perfect, or even close to perfect, answer is a difficult 

task in general. 

Paddy Field Algorithm (PFA) is a metaheuristic that is used to search for the best 

individuals out of a generated population. It was introduced by Premaratne U, et al. in 

2009 inspired by the biological process of pollination of seeds of paddy crop [124]. As 

shown in Figure 3.1, The Paddy Field Algorithm decides the best solution to a problem 

as paddy seeds spread themselves in a growing area to find the most suitable places to 

grow. 

When one paddy crop grows in an area, the future generations of that crop are decided 

based on fitness due to pollination. Some seeds are distributed in the neighboring areas 

and the viability of those seeds is maximum with maximum fitness. A seed with lesser 

fitness will produce fewer seeds when it grows. This process repeats till the most 

optimal population of paddy seeds is found. To avoid the possibility of getting caught 

in a local optimum, seeds are dispersed to search for better spaces. This ensures that 

most of the search space is searched over by the algorithm. 

Algorithm 3.1: Paddy Field Algorithm 

 

Step 1: Initialize a random population of seeds. 

Step 2: Calculate the fitness of each seed as: 

   …(3.11) 

The maximum fitness value is expressed as max y, y indicates the fitness value of seeds 

and 𝑦𝑡 indicates the threshold. 

Step 3: Sort the seeds in order of fitness. 

Step 4: Produce seeds from the best individuals where best fits produce more seeds 

Step 5: Pollinate seeds in the neighboring space: 

 

   …(3.1) 
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Wherein, . Given a circle radius a, for two plants X j and Xk, they  will be 

neighbors to each other if they meet the following (3) and thus determining the neighbor 

number j v of each plant and the maximum neighbor number of the plant in the same 

generation is expressed as max v, the (4) is as follows: 

 

  …(3.2) 

    …(3.3) 

Step 6: Disperse the plants with some function: 

According to Gaussian distribution, the next generation of seeds produced by each plant 

is scattered in the parameter space, the positions of seeds are expressed as: 

   …(3.4) 

σ is the coefficient of dispersion, which can determine the dispersion degree of 

produced seeds. 

Step 7: Reach termination if one of the termination conditions is met.  

Otherwise, repeat from Step 2 Termination condition used by us was a time 

boundary of 8 hours. 

      …(3.5) 

 E(n) is the event after n iterations. 

Step 8: Produce output as  when the termination condition is met. 

 

We can also do a pattern search in the given algorithm if we have enough computing 

resources. 

3.2.1. Dataset Pre-Processing 

We used the Google Landmarks dataset available at 

https://www.kaggle.com/c/landmark-recognition-2021 for doing Network Architecture 

Search (NAS). It is a dataset comprising around 1.59M images including the ones 

shown in Figure 2. However, training on such a huge dataset would have taken 

extremely long. So, for the evolution of the network, we used only 600 images out of 

the dataset. Also, it was seen that one landmark class had a very small number of 

https://www.kaggle.com/c/landmark-recognition-2021
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images, hence the data was augmented 15 times to about 9000 images. The data was 

augmented in terms of translation, rotation, and scaling. cropping. flipping, etc. 

Augmentation paved the path for improved generalization of neural networks. 

Each picture was tested to be in an RGB color encoding scheme to ensure proper 

dimensions in colors. After this, each picture was tested to be of size (64,64). An image 

of inappropriate size was resized to the given dimensions. 

 

Figure 3.2: Landmark Images from Google Landmarks Dataset V2 [8]. 

Then the entire dataset was processed so that the input variable had the tensor of shape: 

x = (9000,64,64,3)    …(3.6) 

The output tensor had the following shape: 

y = (9000,24)    …(3.7) 

This meant that the input tensor had 110,592,000 parameters in total. The output had to 

be one out of 24 classes as depicted by the output tensor. The dataset was converted 

into the input tensor variable and the output tensor was assigned one out of 0-23 

numbers for each of the 9000 images. After this, the x tensor and y tensor were used 

for training. The TensorFlow library by Google was imported for creating tensors. 

However, the overall algorithm was self-designed. 

3.2.2. Experimentation and Results 

We ran the experiment on a laptop Asus VivoBook S15 with 8 GB RAM, 4 GB 

NVIDIA Graphics Card, and an intel CORE i7 processor. A self-designed code was run 

in a loop indefinitely for 8 hours. In the code, a 3-layer CNN is designed which is then 

evolved with the Paddy Field Algorithm and the results are observed.  

 

Figure 2: Landmark Images from Google Landmarks Dataset V2. 
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Figure 3.3: The basic architecture of the designed CNN. 

As shown in Figure 3.3, the designed CNN consisted of three convolutional layers 

which were followed by three max-pooling layers all of which are afterward followed 

by a fully connected layer with 100 neurons which are varied afterward, and 200 

neurons which are kept constant. 

Here T and F stand for True and False respectively, Cn stands for the nth class. Accuracy 

is one of the performance parameters which decide the goodness of a CNN. The 

complete hyperparameters that were evolved can be described as: 

1. Kernel Frame Size: 3 x 3 kernel frames are considered highly optimal for CNNs. 

However, varying the kernel frame size, we saw that 7 x 7 was the kernel size for 

the best-fit seed. It performed the best with other arrangements of hyperparameters. 

The kernel frame sizes chosen were between 1 * 1 and 11 * 11. These were in the 

form of square matrices. 
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2. Number of Kernels: The number of kernels was varied to check the best number 

that could be checked for within 22 and 42. It is said that 32 or 64 kernels seem to 

work well but for us 42 was the variant in the best seed. Other numbers could have 

worked even better if we had increased the search space. 

3. Learning Rate: The learning rate is the speed with which the network trains itself. 

With a slower learning rate, a network can achieve better accuracy, but it increases 

its chances of running into a local minimum. It also takes more time to run. A fast 

learning rate will quicken the rate of learning and run into a problem of deviation 

from the global-minima. A learning rate of 0.01 is considered optimal for usual 

cases, and indeed 0.099 was the best parameter found. The learning rate was varied 

between 0.001 and 0.99. 

4. Batch Size: Batch size is the number of images given to the network for training in 

one go. A batch size of 32 is considered good and it was found that 32 is optimal 

and seemed to perform well. A little variation was found good in the batch size 

which included 33 and 34 even though it varied between 22 and 42. 

5. Neurons: Neurons were also varied to check for the best type of connections. The 

initial 100 neurons were altered between 90 and 110 and results showed that many 

variations lying in this range seemed to do well though the end best fit was 102. 

When the CNN is run the backpropagation runs in the following form: 

𝑊𝑥
𝑛𝑒𝑤 = 𝑊𝑥

𝑜𝑙𝑑 − 𝑎
𝑑(𝐸𝑟𝑟𝑜𝑟)

𝑑𝑊𝑥
    …(3.8) 

where, 𝑊𝑥
𝑛𝑒𝑤 are the newly trained weights, 𝑊𝑥

𝑜𝑙𝑑 are the old weights, a is the learning 

rate, and 𝑎
𝑑(𝐸𝑟𝑟𝑜𝑟)

𝑑𝑊𝑥
 is the change an error with respect to the weights. It is run with 

AdaDelta optimizer using Keras in-built libraries for optimal change of weights [125]–

[129]. 
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In the code, the CNN hyperparameters were replaced by variables, and these variables 

were initially assigned default CNN hyperparameter values. The accuracy was 

measured in the first place. Then these variables were varied by the means of the Paddy 

Field Algorithm in the search space formed and the accuracies were consistently 

recorded. The best seed found based on accuracy was [7,42,0.0099,32,102]. This was 

in the Format [Kernel Frame Length, Number of Kernels, Learning Rate, Batch Size, 

Neurons]. 

Figure 3.4:  Accuracies of evolved PFANET variants as time elapses 

Figure 3.4 describes how the maximum accuracy of the evolved networks elapsed over 

time. Figure 3.5 shows the accuracy of checked seeds as time progresses. It gives an 

idea of how the accuracy changes with the number of seeds that were checked. Figure 

3.6 shows the accuracy change from start to finish as time progresses when a default 

CNN is compared to evolved CNN. 

. 
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Figure 3.5: Accuracies for the evolved seeds in the network. 

 

Figure 3.6: Accuracy change in evolved CNN vs. Default CNN. 
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Table 3.1: Accuracies in a default CNN and the network evolved with PFA compared 

over best fits and shown as steps of time and epochs elapsed. 

   Accuracy 

S.No. Epochs 
Time (in 

mins.) 

Default CNN 

(approx. in %) 

PFANET (Best Fit) 

(approx. in %) 

1 13 5 8 12 

2 25 10 16 24 

3 38 15 24 35 

4 50 20 31 45 

5 63 25 37 55 

6 75 30 43 63 

7 88 35 48 70 

8 100 40 53 76 

 

Table 3.1 gives an insight into how well the self-designed PFANET fared when 

compared to a regular CNN with default hyperparameters. Each network has been 

compared based on the approximate accuracy gained by each network over time. As it 

is apparent, the best fit PFANET variant gains more accuracy in shorter time frames as 

compared to a regular CNN. The key observations that should be made are: 

• The best kernel frame length is 7 while the normally used length was 3. A kernel 

frame length of 5 also performed better than 3 in some combinations. One striking 

observation was that an unusual kernel frame length of 4, which is not expected to 

be good because of an even kernel frame, also performed better in many regards. 

• The number of kernels after optimization was 42 in the range of 22-42 meaning the 

maximum number of kernels improved accuracy. However, more research would 

be required to validate how many kernels are optimum. 
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• The usually used learning rate is 0.01 and there was a good observation that the best 

learning rate came out to be 0.0099 which is almost 0.01. 

• The number of optimum epochs is 100 but that was chosen manually since the 

network did not require much processing in one go 

• The best batch size that was seen was the regularly used 32. 

• The neurons did not seem to vary much, and the best number was 102 when 

initialized with 100. 

• The code was run for 8 hours and as many as 18 seeds were checked over a wide 

variety of combinations. 

• In 18 seeds only, the accuracy improved considerably from 53% of default CNN to 

76%. 

• The experiment showed that the Paddy field Search Algorithm is a very viable 

evolutionary metaheuristic for searching best-fit hyperparameters. 

 

Figure 3.7: Confusion matrix for the trained model. 
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Figure 3.7 shows the confusion matrix developed for the trained CNN with evolved 

hyperparameters. Figure 3.8 shows the best-evolved hyperparameters. The study 

concluded that there can be a high change in the performance of a CNN when evolved 

with an evolutionary metaheuristic such as Paddy Field Algorithm.  

 

Figure 3.8: The best-fit seed after the evolution of CNN architecture with PFA. 

We see how to evolve a Convolutional Neural Network with the Paddy Field Algorithm 

(PFA). We see that there is a big hyperparametric space to search for the best 

combination in a CNN and the evolutionary metaheuristics help us find the best possible 

combinations out of the big search space. It was found that high performance was 

recorded by the hyperparameters found by the Paddy Field Algorithm and the accuracy 

improved a lot when the CNN was trained. We also see that the hyperparameters, very 

different from the regularly used hyperparameters, performed much better. We drew a 

comparison between default CNN and evolved CNN and the evolved CNN or PFANET 

seems to perform much better. However, more research is required to establish if a 

particular hyperparameter can work with all combinations. Moreover, the evolution of 

networks can take too much time and we need to improve algorithms to evolve the 

ANNs quickly and with stable hyperparameters. Data augmentation helps in the overall 

improvement of the network. 

3.3. CNN Evolution with GA and 3PGA 

Massive amounts of data are continually being thrown at Computer Vision (CV). 

Imagery data is one of the most difficult types of data for an artificial intelligence (AI) 

system to process. Convolutional neural networks (CNNs) are used to handle this kind 

of Big Data, although advancement is slow. This study uses the 3 Parent Genetic 

Algorithm (3PGA), an evolutionary computation technique, to create a default CNN. 

An extension of GA called 3PGA has been improved for better optimization. 

According to the literature, 3PGA performs far better on common benchmark functions 

than other more modern soft-computing-based methods. With a net improvement of 

7 42 0.0099 32 102

Kernel Frame Length Number of Kernels Learning Rate Batch Size Neurons
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more than 40%, the evolved CNN's accuracy rose from 53% to 75%. It was also found 

that a CNN's hyperparametric combinations or features, which are extremely different 

from those that are frequently used, appear to perform better. For testing, a Google 

collection of geographic markers was utilized. The optimization of a network on a 

landmarks dataset demonstrates that evolutionary computation can be significantly 

used in the future for the evolution of Artificial Neural Networks (ANNs), which is one 

of the most time-consuming tasks for an AI system. 

Convolutional Neural Networks or CNNs are one of the most widely used machine 

learning architectures today. Almost all major projects in computer vision are built 

using CNNs and their subtypes today. CNNs were introduced in the 1980s by a then 

post-doctoral research fellow Yann LeCun [130] Since then, a lot of research has been 

done on CNNs, and they have emerged as the best possible solution for computer vision 

tasks today. The extreme flexibility of CNN architectures makes them well-suited for 

the broad-ranging tasks in today’s world. 

Numerous hyperparameters in a CNN can be optimized to get the best performance out 

of it. CNNs are highly flexible and highly efficient in delivering accurate image 

recognition, retrieval, and segmentation tasks. CNNs or Convolutional Neural 

Networks work on the concept of convolutions of images with trained kernels. In a 

specialized dot product, the convolution operation takes two apparent images and 

produces a new image out of them.  

The original image is convolved with a trained microscopic image or set of images 

(mostly 3 x 3 pixels), and a network is trained. The network or model is trained using 

activation functions known as activation functions and linking all the original images 

to their respective classes via a network of activation functions. In the experiment 

performed, the task of the evolution of the hyperparameters with metaheuristics was 

undertaken in a Convolutional Neural Network. For this purpose, a dataset related to 

landmark recognition was deployed. 

Evolutionary meta-heuristics are nature-inspired search algorithms that work based on 

inspiration from some natural phenomenon. These algorithms derive their working 

from evolutionary processes in nature like reproduction, the creation of the universe, 
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ant behavior, etc. Based on the inspiration, the algorithms that followed are the Genetic 

Algorithm (GA), Big Bang Big Crunch (BBBC) algorithm, and the Ant Colony 

Optimization (ACO) algorithm. The 3-parent genetic algorithm is another metaheuristic 

that derives its inspiration from the reproduction phenomenon but is just a little different 

from GA [84], [89], [131]. 

A genetic algorithm in nature-inspired computing is a meta-heuristic used to search for 

optimal solutions to complex problems in the least possible time. The criteria they use 

for working is the reproductive process in living organisms. ‘Survival of the fittest’ is 

a famous statement and the genetic algorithm finds the optimal solutions just like nature 

finds the best living beings through evolution [86]. Genetic algorithms fall in the 

category of evolutionary algorithms. Three parents’ genetic algorithm is a well-

established nature-inspired-computing algorithm derived from the working of another 

well-established algorithm, namely the genetic algorithm. The genetic algorithm is a 

NIC algorithm that has been inspired by the natural process of reproduction in living 

beings. The genetic algorithm takes in an input of two-parent members and gives 

offspring, whereas the 3-parent genetic algorithm takes in an input of three parents 

instead of two [132]. 

A 3-parent genetic algorithm is used to optimize the hyperparameters in a CNN. It is 

discussed how the optimization of parameters leads to better accuracies in CNNs. The 

results of implementation have been discussed and it was inferred that 3PGA is one of 

the best meta-heuristics for bettering the hyperparameters. Also, 3PGA seems to fare 

better than the regular genetic algorithm. Like other neural networks, a CNN consists 

of layers of activation functions that are trained properly so that they get activated only 

upon reasonable information in the network. CNNs are a part of the Deep Learning 

paradigm that is used for heavy image processing. The designs and types of CNNs used 

for heavy imagery data processing are discussed in further sections. 

3.3.1. CNN architecture 

CNNs have an architecture like neurons in the human body that can help in the 

development of large-scale computer vision. What happens is that there is a network of 
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activation functions that get activated on a particular input. These activation functions 

are primarily the dot product between image pixels and kernels in a CNN [133]. 

 

Figure 3.9: A simple CNN architecture [134] 

The way this dot product acts as an activation function in Figure 2 is described as 

follows: 

C[m, n] = ∑u∑υA[m + u, n + υ] ⋅ B[u, υ]   …(3.9) 

such that C[m, n] stands for convolution operation at mth row and nth column. 

u and υ stand for pixels of the kernel to be convolved. 

𝐴 stands for Image with  m+ u pixels length and n + υ width. 

After a Convolutional layer, a pooling layer is added to add non-linearity to the data. 

The pooling can be an average pooling layer, minimum pooling, or maximum pooling. 

Mostly, max-pooling (maximum pooling) is used for this purpose. The equation 

describing a max-pooling operation is as follows: 

𝐼𝑙+1
1 = max (𝐼𝑙

2) ∀ 𝐼𝑙
2 ∈  𝐼𝑙

𝑛           … (3.10) 

where 𝐼𝑙
2 is the part of the image at layer 𝑙 as a square of length 2 pixels. 
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After all the layers, fully connected layers are added to train the network into 

appropriate linear categories. The equation for the linear network layer can be given as: 

𝐼𝑙
𝑛 = 𝐴𝑙+1

𝑛∗𝑛    …(3.11) 

such that A is a 1-dimensional array of length n*n and 𝑙 is the layer number. 

In a typical CNN, the kernels act as an activation function and are trained with 

appropriate numerical values to activate when needed. Usually, the kernels in the first 

few layers in a CNN detect the most essential elements in a picture like borders, 

boundaries, and basic shapes. The following layers can evaluate complex objects like 

the nose, ears, and other small things, and the last layers can evaluate the complete 

subject like a person in an image [135]. 

 

Figure 3.10: Sub-types of Convolutional Neural Networks 

All the information travels back into the network in the backpropagation stage so that 

the associated data can be linked. However, there exist problems like linearity. To 

reduce the amount of linearity in the network, layers like Max-Pooling are introduced 

in the network [136]. This layer takes the maximum value from a group of pixels and 
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creates a new image in the network. Then, the fully connected layers can connect all 

the related data points. 

Convolutional Neural Networks or CNNs are a type of Artificial Neural Network 

(ANN) which are used for image recognition, retrieval, and classification [85]. 

Introduced by Yann LeCun in the 1980s, CNNs are the most used machine learning 

architecture in computer vision today.  

Almost all the major computer vision models are designed using one or the other sub-

architecture of CNNs today. There exist many CNN architecture sub-types today. These 

are summarised in Figure 3. It shows the various types of CNNs that have been 

developed to date. These architectures of CNN are categorized based on variations in 

their hyperparameters, primarily the number of layers. These CNN architectures vary 

significantly in the hyperparameters given to them. Usually, a greater number of layers 

in a CNN means greater accuracy. However, the ResNets developed in 2015 show that 

a different architecture for lesser layers can also help improve the accuracies [137]. It 

means that varying the hyperparameters in a CNN can improve its performance. All the 

above-given networks have been applied for usage for large-scale landmark 

recognition. 

3.3.2. 3 Parent Genetic Algorithm: The Concept 

There exist such problems in computing in which finding the exact, deterministic 

solutions is non-feasible. Here, the concept of soft computing comes in. Soft computing 

is that branch of computing that focuses on approximate, non-deterministic solutions 

that may or may not be the true solution but an optimal solution to the problem posed 

in front of us [91]. 

There are many types of soft computing today, including whole neural networking and 

evolutionary metaheuristics [138]. Metaheuristics are search algorithms that are used to 

find optimal solutions to seemingly complex computing problems. In other words, these 

algorithms are used to optimize solutions for complex computing problems, including 

the NP-complete and NP-hard problems [118].  
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Figure 3.11: The process behind the 3-parent genetic algorithm. 

Many types of optimization algorithms have been developed. These include the Big 

Bang Big Crunch algorithm, the genetic algorithm, ant colony optimization, the 3-

parent genetic algorithm, and many more [87], [88], [139].  The 3-parent genetic 

algorithm is used for the optimization of a simple CNN architecture. A standard genetic 

algorithm finds out the best solutions to a problem by working in a way similar to the 

reproduction of organisms and is considered one of the best and most stable 

metaheuristics [140]. The best genes in a generation are carried forward, and the 

relatively poor ones are left behind. The usual crossover between two parents happens, 

and then mutation occurs [141]. However, this algorithm produces mutations at a 

relatively prolonged rate. This is where a 3-parent genetic algorithm comes in better.  

Figure 3.11 shows the 3-parent baby concept. In 3-parent baby concept, crossover takes 

place between three parents instead of two. The purpose of this process is to generate 

the new offsprings from healthy mitochondria [142]–[144]. The concept of 3rd parent is 

to remove weak mitochondrial defects from a parent. Today, doctors produce a 3-parent 

baby by removing the maternal genome from a mother with abnormal mitochondria 

and replacing the genome of a healthy mother’s egg. Then the resultant egg is fertilized 

by the father’s sperm.  
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3.3.3. Proposed 3PGA-CNN Approach 

In 3PGA, instead of the usual two parents, features from 3 parents are selected to go 

into the next generations. The concept of a three-parent baby was introduced in 2016 

and it includes a process of fertilizing a donor female’s egg with a father’s sperm and 

then replacing the nuclei of the donor female with the nuclei of the mother in the embryo 

[145]. This process infuses the features of three parents and quickens the process of 

evolution. The complete process behind 3PGA is shown in Figure 3.12. 

 

Figure 3.12: Implementation process of 3PGA explained. 

The steps followed while implementing 3PGA can be given in Figure 3.13. As 

explained in Figure 3.13, to run a three-parent genetic algorithm, the first step is to 

generate a new population of at least three individuals. Then an affected egg is taken, 

and its mitochondria are replaced with mitochondria from a donor egg. Then the egg 

and sperm crossover, thus crossing genes from the chromosomes of these individuals. 

Then, mutations are brought into the developmental stage of progeny, and fitness is 

evaluated. The three from best fit then become the parents, and then the process repeats 

[146]. It is the same as reproduction. 

3.3.4. Dataset Pre-Processing 

Landmark Recognition is a central field in computer vision due to its imperative nature. 

Landmarks refer to any physically distinguishable object in any digital image that is 

expected to be identified by an AI system. Landmarks occur in almost all computer 
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vision works except that the nature of landmarks varies. There are 48 classes of 

geographical landmarks through a dataset derived from Google. 

  

Figure 3.13: Two images from the Landmark dataset. 

For the implementation of the proposed approach CNN optimization approach, a robust 

dataset was required. For this purpose, a very popular landmarks dataset from the 

literature was used. This is the Google Landmarks Dataset V2 [1]. Since the original 

dataset is extremely large and complex, just 48 classes out of the 200,000 classes of the 

dataset were used for experimentation. 12 images were kept in each class totaling up to 

576 image files. 

All the images have 3 color channels namely Red, Green, and Blue (RGB), and 

dimensions of (256,256) which were converted to (64,64). The images were placed in 

48 folders with their respective class of landmarks. The shape of the X_train 

placeholder, that is the total set consisting of training and test images, is: 

X.shape = (576,64,64,3)   …(3.12) 

The input set X was divided into two subsets namely X_train and X_test in the ratio of 

70:30. This ratio is considered optimal in machine learning since it includes an optimal 

ratio of the test set data to test appropriately for over-fitting and underfitting. The shapes 

of X_train and X_test were now: 

x_train shape: (403, 64, 64, 3)   …(3.13) 
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x_test shape: (173, 64, 64, 3)    …(3.14) 

All the image datasets were converted from a pixelated format to a NumPy array with 

RGB values for each of the pixels. Every pixel contained one out of the 256 shades of 

Red, Green, and Blue. This amounts to more than 16M colors. The values for pixels 

were first normalized by scaling them to a range of (0,1) instead of (0,256). 

3.3.5. Materials and Methodology 

The designed CNN has an architecture with three convolutional and max-pooling layers 

and two fully connected layers. Also, the last fully connected layer has an output shape 

of (None, 48) since there are exactly 48 classes in the dataset. 

In this experiment, many significant hyperparameters have been evolved for the 

betterment after which the performance of the models was evaluated. The 

hyperparameters were varied within certain specific ranges for each hyperparameter. 

The hyperparameters that were varied and evolved are: 

1. Kernel Frame Size: It is a popular belief that 3 x 3 is the most optimal size for 

kernel frames. However, after varying the kernel frame size, it was seen that other 

frame sizes like 5 x 5 also do well and even better with certain specific arrangements 

of hyperparameters [147]. The kernel frame size was varied as a square matrix of 

lengths varying from 1 to 11. 

2. Number of Kernels: It is also an arguable parameter to vary while designing a 

CNN architecture. Usually, it is said that 32 or 64 kernels seem to work well but it 

was discovered that unusual figures like 41 and 24 also seemed to do well [148]. 

The number was checked between 22 and 42. 

3. Learning Rate: The learning rate is the speed with which the network trains itself. 

A slower learning rate means that a network can achieve better accuracy, but it can 

also run into local minima. Also, it takes more time to run. A fast learning rate will 

quicken the task of learning and run into a problem of deviating from the global 

minima. A learning rate of 0.01 is considered optimal for usual cases, but other 

learning rates also did well [126]. The learning rate varied between 0.001 and 0.99. 
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4. Batch Size: Batch size is the number of images given to the network for training in 

one go. A batch size of 32 is considered good and it was found that 32 is optimal 

and seemed to perform well [149]. A little variation was found good in the batch 

size which included 33 and 34. It varied between 22 and 42 

5. Neurons: Another hyperparameter that was found worth evolving was the number 

of neurons in a layer. 100 neurons were altered between 90 and 110 and results 

showed that many variations lying in the range seemed to do well [150]. 

There exist other hyperparameters that can be optimized. These include strides, 

padding, the number of layers, and the backpropagation optimizer. However, the above-

listed 5 parameters only were chosen for optimization. So, the stride in the network was 

the usual ‘1’, the padding used was ‘Same’, and the number of layers was ‘3’ [140], 

[151], [152]. Alongside that, the backpropagation optimizer used was ‘AdaDelta’. There 

exist many backpropagation optimizers in the literature today. These include Simple 

Gradient Descent, Stochastic Gradient Descent, RMSProp, AdaGrad, AdaM, and 

AdaDelta [125], [127]–[129], [153], [154]. 

The usual backpropagation equation is: 

𝑊𝑥
𝑛𝑒𝑤 = 𝑊𝑥

𝑜𝑙𝑑 − 𝑎
𝑑(𝐸𝑟𝑟𝑜𝑟)

𝑑𝑊𝑥
        …(3.15) 

where, 𝑊𝑥
𝑛𝑒𝑤 are the newly trained weights, 

𝑊𝑥
𝑜𝑙𝑑 are the old weights, 

a is the learning rate, and 

𝑑(𝐸𝑟𝑟𝑜𝑟)

𝑑𝑊𝑥
 is the change is an error with respect to the weights. 

The way these weights are updated defines the type of optimizer used by us. And the 

AdaDelta optimizer is used for the CNN architecture which is fixed and does not vary. 

Backpropagation is the actual step where all the training takes place. 

3.3.6. Experimentation 

Figure 3.15 describes how the hyperparameters of the designed CNN evolved with two 

well-known nature-inspired-computing algorithms namely the genetic algorithm and 
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the 3-parent genetic algorithm. The choice was based on the feasibility and usability of 

algorithms. The proposed approach was implemented in Python language using the 

Jupyter Notebook program and the program was tested using an Asus Vivobook with a 

Core i7 processor, 8GB RAM, and an Nvidia GPU with a 2 GB graphics card.  

Reproduction from two parents can be a slow process to run the process of evolution. 

Here is where the concept of a third parent comes in and helps. The third parent 

increases the randomness in the population even when it would be highly fit. All this 

procedure was executed with the help of Keras-built CNN and a 3 Parent Genetic 

Algorithm.  

A population of eligible chromosomes was developed each containing five genes 

namely kernel frame length, number of kernels, learning rate, batch size, and neurons. 

After this, the fitness function evaluating the fitness of each individual was run. The 

evaluation metric was accuracy for this purpose [119]. The individuals with the best 

accuracy in training the network were kept for future generations and the recessive ones 

did not make it further. 

A 3-parent genetic algorithm was used to extract the best hyperparametric features out 

of the population of eligible chromosomes of neural network architectural features. The 

base 3 parent population of the regularly used hyperparameters was used to generate 

offspring and the best offspring were evaluated based on the accuracy of the network 

architecture, thus produced. 

The figure 3.14 shows the working of proposed 3PGA based approach to evolve the 

near-optimal architectures of CNN for landmark recognition. The proposed approach 

starts with random generation of CNN hyperparameters population generation. This 

population is called as two-parent population. For, 3 parent population generation 

purpose, we add or subtract a small random number in current population and generate 

a new population. This population is integrated with existing two parent population and 

three parent population is generated. Further, we apply all the genetic operations to 

evolve the neural network architectures. This process continues until termination 

criteria is met. The proposed approach would be terminated if any one of following 

conditions is true: 



92 
 

A. Maximum number of iterations reached. 

or 

B. Desired performance of the proposed approach is achieved. 

 

Figure 3.14: Working of the 3PGA optimization process. 

 

Figure 3.15: A typical chromosome in the population 

The base variant of chromosomes in the population looked like the one in Figure 3.15. 

During mutation, the kernel frame length varied from a size of merely 1 x 1 to 11 x 11.  

Similarly, the number of kernels and batch size varied between 22 and 42. The learning 

rate varied between 0.001 and 0.999 and neurons varied from 90 to 110 randomly in 

one iteration. 
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For, a regular genetic algorithm, the two best-fit parents were selected for crossover to 

produce the next generation. However, for a 3-parent genetic algorithm, three best-fit 

parents were selected for crossover. After the crossover and mutation, progeny is again 

evaluated for fitness and the best-fit progeny makes it to the next generations. The code 

is run in an infinite loop till convergence is not apparent.  

3.3.7. Results and Discussions 

The code optimizing CNN hyperparameters with the 3 Parent Genetic Algorithm was 

executed and some striking observations were made. For 100 epochs in the model, the 

best accuracy was observed not in the base variant chromosome but in a different 

chromosome. Even the expected kernel frame size was not the best kernel frame size. 

Instead of 3 x 3, the best kernel frame size came out to be 5 x 5. Figure 9 shows the 

hyperparametric space that was found after the code seemed to run into convergence. 

Table 2 shows all the best-fit chromosomes and accuracies. 

 

Figure 3.16: The base variant of chromosome and some chromosomes that performed 

better than the base variant. 

The base variant of the chromosome [3, 32, 0.01, 32, 100] shown in Figure 3.16 gave 

an accuracy of 53%. However, some chromosomes were seen to perform better. These 

are the chromosomes as shown in Figure 3.17. The first chromosome is the base variant 

and the rest are the chromosomes that were found upon the apparent convergence of 

code. The results were noted when the algorithms that were deployed seemed to reach 

convergence and they are meticulously depicted in Figures 3.18 and 3.19. 
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Table 3.2: Best Fit chromosomes in 3PGA (left) and in GA (right) as [Kernel Frame 

Length, Number of Kernels, Learning Rate, Batch Size, and Neurons] and their 

approximate accuracies. 

3PGA GA 

Chromosome (in 3PGA) Accuracy Chromosome (in GA) Accuracy 

[5, 24, 0.02, 34, 107] 75.24% [3, 25, 0.06, 33, 100] 71.05% 

[5, 41, 0.94, 33, 105] 72.36% [3, 38, 0.06, 33, 100] 68.24% 

[4, 32, 0.94, 34, 104] 69.13%     

 

 

Table 3.3: Accuracies for the Classical Machine Learning models namely SVM, KNN, 

Decision Tree, and Random Forest on Landmark Recognition dataset. 

ML Algorithm Accuracy 

SVM 55% 

KNN 48% 

Decision Tree Classifier 42% 

Random Forest Classifier 54% 

 

For a comparison of these accuracies with the classical Machine Learning counterparts, 

the codes for four algorithms namely Support Vector Machines (SVM), K Nearest 

Neighbours (KNN), Decision Tree Classifier, and Random Forest Classifier were run 

and the results are noted as shown in Table 3.3. 
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Figure 3.17: Best fit chromosomes as [Kernel Frame Length, Number of Kernels, 

Learning Rate, Batch Size, and Neurons] in 3 Parent Genetic Algorithm with their 

respective accuracies. 

 

Figure 3.18: Best fit chromosomes as [Kernel Frame Length, Number of Kernels, 

Learning Rate, Batch Size, and Neurons] in Genetic Algorithm with their respective 

accuracies. 
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Figure 3.19: Various ML techniques with their respective accuracies for the Landmark 

Recognition task. 

 

Figure 3.20: Best Accuracies from all the techniques compared. 
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As it is apparent from Table 3.3, Figure 3.20, and Figure 3.21, SVM performs the best 

in the Landmark Recognition task with an accuracy of 55%. It is followed by the 

Random Forest Classifier with an accuracy of 54% which is followed by the KNN and 

Decision Tree Classifier with accuracies of 48% and 42% respectively [155]. 

When a CNN is designed with the default or most used hyperparameters, referred to 

here as the base variant, an accuracy of 53% with 100 epochs was observed. This 

accuracy was bettered using metaheuristics namely the Genetic algorithm and its 

variant named 3 Parent Genetic algorithm. 

Table 3.4: Training process of Default CNN and the Best fit chromosomes in GA and 

3PGA. 

 Default CNN 
Genetic Algorithm 

[Best Chromosome] 

3 Parent Genetic 

Algorithm [Best 

Chromosome] 

S.No. Epochs Accuracy 

Time 

(in 

mins) 

Accuracy 

Time 

(in 

mins) 

Accuracy 

Time 

(in 

mins) 

1 0 0 0 0 0 0 0 

2 10 7 15 9 15 10 15 

3 20 15 30 17 30 19 30 

4 30 22 60 26 60 28 60 

5 40 28 90 35 90 37 90 

6 50 34 120 43 120 45 120 

7 60 40 150 50 150 52 150 

8 70 44 180 56 180 59 180 

9 80 48 210 62 210 65 210 

10 90 51 240 67 240 70 240 

11 100 53 300 71 300 75 300 
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Figure 3.21: Variation in accuracy with time for optimization with 3PGA and GA. 

The hyperparametric space was found after the evolution of CNN architectures as 

explained in Table 3.4 and the following observations were made: 

• Figure 3.17 shows the best-fit hyperparameters and the basal variant 

chromosome. Table 3.2 summarizes these hyperparameters with their 

accuracies. 

• The number of epochs was taken to be 100 and accuracy mostly showed an 

increasing trend by the time these epochs were completed. 
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• The dataset was reduced in size to allow room for more epochs and accuracy. 

With a larger dataset, the time for each iteration of 3PGA increased manifolds. 

• Each iteration of 3PGA took three parents and tried to better these with three 

progenies. One iteration of 3PGA took approximately 15-20 mins while that of 

GA took around 10 mins. The program was run for 5 hours for both algorithms. 

• The basal variant produced an accuracy of around 53% while the best-fit 

chromosome produced an accuracy of around 75% for 3PGA and 71% for GA. 

• One striking observation was that the basal variant uses a 3 x 3 kernel frame 

size. But after optimization, the best frame size came out to be 5 x 5 and even 

some variants of 4 x 4 did better in 3PGA while GA was clogged with 3 x 3. 

• 3PGA took longer for one iteration but it tended to introduce more variation and 

produced better results in the same time for which both the algorithms were run. 

• Learning rates varied in a high range and many good variants used a learning 

rate of as high as 0.94. 

• Batch size did not vary much and was seen to be around 32 only. 

• The number of kernels and the neurons used varied highly with each better 

variant as expected. 

• GA was a good choice for optimization but 3PGA did better in almost all 

respects. 

• 3PGA proved to be a good choice for the evolution of a Convolutional Neural 

Network, giving at least 40% more average accuracy than the regular 

hyperparameters. 

• An ANOVA test or analysis of variance provided insight that the number of 

kernels is the most significantly varying variable. It is also imperative since the 

number of kernels varied till 64 also gives good results whereas we varied it 

between 22 and 42 only. 
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The results showed us how a CNN can be evolved for better hyperparameters using a 3 

3-parent Genetic Algorithm. The 3-parent genetic algorithm not only improved the 

accuracy of a CNN but also fared better than the Genetic algorithm with 2 parents for 

the evolution of the architecture of the CNN. One can safely assume that the 

hyperparametric space searched by these metaheuristics can help in improving the 

CNNs for even better performance. The code run for just 576 images found good 

hyperparameters which can be employed for further improvement of CNNs with a huge 

number of images.  

With data augmentation on the available dataset, it was found that the accuracies 

reached as high as 92%, and with the application of 3PGANET, this accuracy improved 

to more than 98%. The hyperparametric space developed by the 3PGANET was used 

for training the Convolutional Neural Network (CNN), and the results as shown above 

were promising. 

Further, it was found that by building up on a small part of the dataset, one can improve 

upon the hyperparametric space which can be then deployed for the complete large 

dataset. The default hyperparameters can be replaced by the hyperparameters found by 

the metaheuristics available in the literature and thus the accuracy is improved. 

It has been seen in the literature that accuracy decreases miserably for larger datasets 

that include more than 100,000 images. For such datasets, it is highly advisable to find 

suitable hyperparameters first using the metaheuristics available in AI literature. The 

metaheuristics like GA and 3PGA can be applied to a small part of the dataset and best-

suited hyperparameters are found. 

The experimentation proves that the default or regularly used hyperparameters may not 

be the best-suited hyperparameters for some Machine Learning tasks. Thus, 3PGA has 

been used to find the best hyperparametric space for less than the 1000th part of Google 

Landmarks Dataset V2 and the accuracies have been improved. The found 

hyperparameters are then applied to the augmented dataset and test accuracies are 

found. The training and testing, both accuracies were better for evolved CNN as 

compared to default CNN. Hence it is advisable to evolve ML techniques with nature-

inspired metaheuristics for better results. 
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3.4. Conclusion 

Convolutional Neural Networks (CNNs) are one of the most widely used techniques in 

computer vision today. It is discussed that CNNs also have a chance of improvement 

through an automated evolution of their architecture. Nature-inspired computing helps 

in the evolution of CNN architectures by varying hyperparameters automatically. It was 

seen that a specific NIC algorithm named the genetic algorithm can substantially 

automate the evolution of a CNN. It was also seen that the introduction of a third parent 

helps hasten the process of evolution. It was found that CNN’s usual hyperparameters 

can be evolved for better performance. Fine-tuning was performed and it produced 

strikingly different results and hyperparameters better than the regular hyperparameters 

were seen. Hence, based on the experiment, it is advisable that one should try evolving 

the hyperparameters on a part of the dataset before training an AI model on an entire 

dataset. However, the initial evolution of hyperparameters can become cumbersome 

and time-consuming. Also, we might not receive the expected results after the evolution 

of hyperparameters. Hence, more research is required to quicken the process of 

evolution, and that too in a stabilized manner. 
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Chapter 4: Parallel Bat Colony Optimization 

Algorithm: An Improved Metaheuristic for 

Global Optimization 

A Parallel Bat Colony Optimization Algorithm based on the introduction of colonies to 

the usual Bat Algorithm is proposed in this chapter. Bat Algorithm is a popular 

evolutionary metaheuristic that is used to find solutions to NP-Hard problems like the 

Travelling Salesman Problem (TSP). The concept of colonies was introduced in the 

regular Bat Algorithm along with phenomena like communicative search and 

migration. The resultant Parallel Bat Colony Optimization Algorithm (PBCOA) was 

tested on the standard CEC Benchmark Functions, implemented in MATLAB, and the 

performance was compared to that of 17 other algorithms. On 6 test functions, the 

proposed algorithm showed the best performance in comparison with other algorithms. 

Additionally, it came out to be the sole best performer for CEC functions F9, F14, F15, 

F16, F17, F19, F22, F24, F25, and F27. The proposed approach performed the best 

overall across 17 compared algorithms in terms of finding the minimal cost to 

maximum benchmark CEC-14 functions. 

4.1. Introduction 

Figure 4.1: The bat sends ultrasound in the surrounding environment, and it reflects 

from the object. In this way, the bat finds prey and makes a virtual view of the world. 
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The Parallel Bat Colony Optimization Algorithm or PBCOA is based on the concept of 

the evolution of environmental conditions of bats while living in their Colonies. The 

bat Algorithm is a powerful algorithm designed by Xin She Yang in 2010 based on the 

echolocation behavior of bats. Bats are the only existent mammalian creatures that can 

fly. The extraordinary thing about bats is that they have very poor eyesight and rely on 

echolocation to find their way out in the wild. As shown in Figure 4.1, Echolocation is 

the phenomenon of the transmission of ultrasounds through the surroundings to 

communicate with the surroundings [156]. 

 

Figure 4.2: Actual visual of Bat Colonies. 

The Parallel Bat Colony Optimization Algorithm (PBCOA) takes into consideration the 

all-around behavior of bats when they live in their colonies. PBCOA takes into account 

the generalized environmental conditions of a bat including food, warmth, moisture, 

proximity to their mates, etc. PBCOA works on the operations of echolocation using 

which the bat models its immediate surroundings. Then the communicative search is 

used which is the social communication calls within the bats. Bats use a variety of 

encoded roosts for communication of different environmental conditions [157]–[160]. 

Migration helps in the search for the best possible and safest surroundings for a bat to 

live in. 

The ultrasounds are high-frequency sound waves that can go beyond 20KHz, which is 

the upper listening limit for a normal human. Bats transmit these ultrasounds in the 

environment and an echo of these sounds is heard by the bats. Bats receive these echoes 

and develop a worldly view of themselves. The existent bat algorithms, as shown in 
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Figure 4.2, only consider the echolocation behavior of a singular bat to develop the 

metaheuristic algorithm that tends to find a global optimum. However, bats always exist 

in colonies themselves. Here, the concept of the Parallel Bat Colony Optimization 

algorithm is a major improvement over existing Bat Algorithms [161]. 

The Parallel Bat Colony Optimization algorithm extends the Bat Algorithm to include 

colonies of bats instead of a single bat. The concept is to find the best environmental 

conditions for a bat which can be done inside one colony as well as many colonies at a 

time. The Parallel Bat Colony Optimization algorithm does not only include the 

echolocation behavior of bats but also the guided communication of bats within a 

colony and the migration of bats outside their current environmental condition to find 

better environmental conditions for themselves [100]. 

In the proposed algorithm, the best sustaining environmental conditions for a bat are 

found via echolocation first and then through the communications between the bats and 

also the migration of bats from one location to another. The communicative search 

follows almost the same procedure as the genetic algorithm. The migration follows the 

same procedure as Migratory Birds Optimization (MBO). Combined with echolocation, 

finding the best suitable environmental conditions for a bat becomes easy. 

Figure 4.3: Various improvements in the Bat Algorithm. 
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In PBCOA, echolocation is not the only criterion for deciding where the bat will move. 

Reproductive crossover and migration additionally ease the exploitation and 

exploration processes. PBCOA works based on the introduction of 2-dimensional 

colonies to the regular Bat Algorithm. A singular bat is designed as a 1-dimensional 

object of N decision variables. The decision variables act as the environmental 

conditions of a bat that it might want to optimize. The algorithm works on the process 

of survival of the fittest whereby only the bats with the best or appropriate 

environmental conditions can survive. 

A bat has very poor eyesight, and it relies on bio sonars for modeling the real world for 

survival. A bat sends ultrasounds in the environment to model the real world. Based on 

the model that it develops, bats forage into surroundings in search of the best possible 

locations to survive. Usually, bats live in colonies where they bring their food, 

reproduce, and live in a place that feels the safest to them. Based on this phenomenon, 

the parallel bat colony optimization algorithm is designed. 

The environmental conditions of a bat act as the decision variables of the algorithm. 

The exploration process is guided by the migration of bats from one colony to another 

in search of better environmental conditions. The process of echolocation additionally 

helps in this process. The process of communicative search helps the bats in the 

exploitation process and it maintains the best features in bats, generation after 

generation. 

Table 4.1: Possible decision variables of the Parallel Bat Colony Optimization 

Algorithm. 

Var1 Var2 Var3 Var4 Var5 

Preys Mates Predators Warmth Moisture 

The constraints that the bats undergo are the movement constraints that decide how 

much energy, a bat can expend to reach the best possible and safest environmental 

situation. A bat cannot send infinite bio sonars. This provides the constraints to the 

algorithm to prevent it from webbing into an infinite loop. Under these constraints, the 

bat might want to optimize food choices, warmth, moisture, proximity to mates, safety 

from predators, etc. 
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Figure 4.4: Representation of a bat colony. A tuple represents a single bat and its 

environmental features or decision variables are described by each entity of a single 

row. 

PBCOA has been compared with 17 other algorithms including the United Multi-

Operator Evolutionary Algorithms (UMOEAS) [162], LSHADE [163], Differential 

Evolution with Replacement Strategy (RSDE) [164], Memetic Differential Evolution 

Based on Fitness Euclidean-Distance Ratio (FERDE) [165], Partial Opposition-Based 

Adaptive Differential Evolution Algorithms (POBL_ADE) [166], Differential 

Evolution strategy based on the Constraint of Fitness values classification (FCDE) 

[167], Mean-Variance Mapping Optimization (MVMO) [168], RMA-LSCh-CMA 

[169], Bee-Inspired Algorithm for Optimization (OptBees) [170], Simultaneous 

Optimistic Optimization (SOO) [171], SOO+ Bound Optimization BY Quadratic 

Approximation (SOO + BOBYQA) [171], Fireworks Algorithm with Differential 

Mutation (FWA-DM) [172], algorithm Based on Covariance Matrix Leaning and 

Searching Preference (CMLSP) [173], Gaussian Adaptation Based Parameter 

Adaptation for Differential Evolution (GaAPADE) [174], Non-Uniform Mapping in 

Real-Coded Genetic Algorithms (NRGA) [175], and DE_b6e6rlwithrestart [176]. It is 

clear from Table 4.4 that PBCOA has outshone most other candidates in state-of-the-

art technology. PBCOA emerged a clear sole winner on 10 out of the 30 test benchmark 

functions while it shared a draw with a 0 Fitness Cost on the other 6 benchmark 

functions. Thus, it performed best on 16 out of the 30 provided test benchmark 

functions.  
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4.2. Working Example 

Let us assume that we have the following problem before us: 

Statement: Find the minima to the function: 𝑓(𝑥): 𝑥1
2 + 𝑥2

2 + 𝑥3
2 | 𝑥1, 𝑥2, 𝑥3 ∈ ℝ. 

Applied Approach: Let 𝑥1, 𝑥2, 𝑥3 be the environmental conditions of the bats which 

will act as decision variables. We aim to assign four optimizable environmental 

conditions to bats and create bat colonies of multiple bats. Let us make 2 bat colonies 

using 3 bats each. Then we have to initialize the random population. Let the initial 

population be: 

[
4 9 1
2 4 6
5 3 8

]    [
3 5 1
2 3 2
5 9 1

] 

Now, communicative search works towards the exploitation process, and migration 

supports exploration. Each row in the colony matrices represents a bat with the decision 

variables as environmental conditions. Echolocation works towards getting the best 

possible environmental condition using a constrained search. 

Similarly, communicative search helps in the exchange of better features in the bats 

over the generations. And best local bats or local elites, migrate to other colonies in 

search of more optimal environmental conditions. In this manner, along with the 

continuity of the regular bat algorithm, the algorithm can decide on better 

environmental conditions more discretely. 

Echolocation of bats, in search of the best possible conditions, changes the initial 

population to: 

[
3 7 1
0 2 4
3 1 6

]    [
1 3 1
0 1 1
3 7 1

] 

Then, the communicative search between bats results in a change of worthwhile 

features, and [3 7 1] changes feature with [0 2 4] to become [0 2 1] and [3 2 1] via a 

change of dominant features. Thus, changes look like this: 
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[
0 2 1
3 2 1
0 1 4

]    [
1 1 1
0 1 1
0 7 1

] 

Now the best bat from colony 2 i.e. [0 1 1] migrates from colony 2 and displaces the 

worst performing bat of colony 1 i.e. [0 1 4] and hence the structure changes to: 

[
0 1 1
0 2 1
3 2 1

]    [
1 1 1
0 1 1
0 7 1

] 

The code is run till the termination conditions are met. In this working example, 

environmental conditions are optimized using integer decision variables for ease of 

understanding. The bat colonies, at termination, will look something like this: 

[
0 0 1
2 1 1
0 3 1

]    [
0 1 1
2 1 2
3 3 1

] 

Thus, the bats echolocate, search due to communication, and migrate in search of the 

best environmental conditions and as shown in the matrices, the best bat or the local 

elite of the most optimal colony is considered the global elite. Here [0,0,1] has been 

declared the global elite. 

The algorithm for PBCOA can be shown as follows: 

Algorithm 4.1: Parallel Bat Colony Optimization Algorithm 

 

Begin 

Generate a random population of bats as a 2nd-degree tensor of colonies of bats 

including their environmental condition vectors. 

   𝐶 = ℝ𝐷∗𝑁      (4.1) 

where C is a bat Colony, and N is the number of bats from D environmental 

conditions. 

For Bats=1:N 

      For Env. Cond.s=1:D 

In each colony, bats search for better environmental conditions using a guided 

communicative search: 

Bat1 = α.x + (1-α).y      (4.2) 
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Bat2 = α.x + (1-α).y      (4.3) 

where α is a random number, and x and y are guided communications from the 

best bats of a colony. 

Migration operation is defined as: 

   𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑇|𝐵𝑖𝑗 ⟷ 𝐵𝑖′𝑗′     (4.4) 

Where 𝐵𝑖𝑗 are the environmental conditions of ith Bats in the jth Colony that 

travels to better colony j’ in search of better environmental conditions by 

removing the worse performing bat i’ in that colony. 

Bats travel via echolocation with frequency f, velocity v, and position x: 

   𝑓𝑡 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛽,    (4.5) 

   𝑣𝑖
𝑡 = 𝑣𝑖

𝑡−1 + (𝑥𝑖
𝑡−1 − 𝑥∗)𝑓𝑖,    (4.6) 

   𝑥𝑖
𝑡 = 𝑥𝑖

𝑡−1 + 𝑣𝑖
𝑡     (4.7) 

where β ∈ [0, 1] is a random vector drawn from a uniform distribution. 

The best bats travel to other habitats in search of better conditions. The 

condition for the selection of local elite bats is: 

   𝑞𝑖𝑗 = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐵𝑖𝑗)     (4.8) 

   𝑞𝑚𝑎𝑥 = max (𝑞𝑖𝑗)     (4.9) 

The fittest bats survive in the process and the worse ones die off. 

End for 

End for 

Output is produced after termination: 

   𝑆𝑏𝑒𝑠𝑡 = 𝐵𝑖𝑗|𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝐵𝑖𝑗) = 𝑞𝑚𝑎𝑥   (4.10) 

End 

 

4.3. CEC-14 Benchmark Functions 

The best standards developed in the field of computation are updated regularly by the 

Institute of Electrical and Electronic Engineers (IEEE). The IEEE Congress on 

Evolutionary Computation is one of the procedures handled by IEEE [112]. The 

formation of standard benchmarks used for the evaluation of evolutionary computation 

algorithms is determined by CECs held by IEEE regularly [86], [177]. Table 4.2 



110 
 

displays the 30 benchmark test functions that are still used today by the IEEE CECs to 

determine whether an evolutionary metaheuristic is effective. Every metaheuristic 

development should have the goal of bringing these benchmark test functions' costs 

down. 

𝐶𝐹(𝑿) = 𝑀𝑖𝑛(𝐹𝑇[𝑥1, 𝑥2,𝑥3, … , 𝑥𝐷]) | 𝐶𝐹 ≥ 0, 0 < 𝑇 ≤ 30 

where CF is the Cost Function that is always greater than or equal to 0. The aim of a 

good algorithm should be to reduce the value of CF as close to 0 as possible. Cost is 

the outcome of minimizing the value of the test function that can take in D variables or 

dimensions, in other words. According to IEEE CEC-14, the test functions can be tested 

with either 10, 30, 50, or 100 dimensions. All these values range from [-100,100]. 

The code for the Parallel Bat Colony Optimization Algorithm was developed in 

MATLAB and implemented. The CEC-14 benchmark test functions for MATLAB 

were downloaded from the internet. The code for the Parallel Bat Colony Optimization 

Algorithm was modified according to the requirements of CEC-14 benchmark 

functions. 10 dimensions were provided as D. The lower bound and upper bound of 

these 10 variables were respectively [-100,100]. Fitness functions were provided from 

the MATLAB library. Costs were evaluated and noted. 

The hyperparameters in the Parallel Bat Colony Optimization Algorithm were fine-

tuned for the best performance. The code was run continuously for more than 2 days 

with 50,000 generations provided before each benchmark function recorded its results. 

The machine used for the implementation of the code was an Asus VivoBook S15 PC 

with 8GB RAM, 512 GB SSD, NVIDIA 2GB Graphics card, and an Intel Core i7 

processor. The observations were noted down and compared with the state-of-the-art 

technology. The results are promising. 

4.4. Results and Discussions 

The Parallel Bat Colony Optimization Algorithm was compared with the state-of-the-

art metaheuristics on the CEC-14 benchmark test functions and the results that were 

seen, seem to be promising. Out of 30 benchmark functions, it was noteworthy that, in 

some cases, the Fitness Cost (FC) reached exact zero meaning thereby global optima. 
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In other cases, while an FC of 0 was not seen, instances of FC nearly equal to zero were 

seen. However, it is seen that in other state-of-the-art algorithms, an FC that nearly 

equals 0 is seen. Here, the concept of precision decides the goodness of one algorithm 

over the other. 

As it is discussed, fitness costs nearly equal to zero were noted. However, the algorithm 

with the smallest value even after the decimal is declared the winner. There were 

instances where precision as low as E-03 was required to decide the winner over a 

benchmark test function. The Parallel Bat Colony Optimization Algorithm or PBCOA 

was tested alongside 17 other algorithms as shown in Table 4.3 referred from [146]. 

The results clearly depict the goodness of PBCOA over every other algorithm given in 

the literature. 

Table 4.2: Fitness Costs of PBCOA over each of the 30 Benchmark Functions in the 

CEC-14 Benchmark Functions List [178] 

Type S. No. Functions Cost 

Unimodal  

Functions  

F1 Rotated High Conditioned Elliptic 

Function  

4.73E-01 

F2 Rotated Bent Cigar Function  7.32E+02 

F3 Rotated Discus Function  0.00E+00 

Simple  

Multimodal  

Functions  

F4 Shifted and Rotated Rosenbrock’s 

Function  

5.20E-05 

F5 Shifted and Rotated Ackley’s 

Function  

2.00E+01 

F6 Shifted and Rotated Weierstrass 

Function  

0.00E+00 

F7 Shifted and Rotated Griewank’s 

Function  

0.00E+00 

F8 Shifted Rastrigin’s Function  0.00E+00 

F9 Shifted and Rotated Rastrigin’s 

Function  

9.95E-01 

F10 Shifted Schwefel’s Function  0.00E+00 
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F11 Shifted and Rotated Schwefel’s 

Function  

1.34E+01 

F12 Shifted and Rotated Katsuura 

Function  

8.64E-12 

F13 Shifted and Rotated HappyCat 

Function 

4.22E-02 

F14 Shifted and Rotated HGBat 

Function  

8.55E-03 

F15 Shifted and Rotated Expanded 

Griewank’s plus  Rosenbrock’s 

Function  

2.85E-01 

F16 Shifted and Rotated Expanded 

Scaffer’s F6  Function  

9.72E-02 

Hybrid  

Function 1  

F17 Hybrid Function 1 (N=3)  2.08E-01 

F18 Hybrid Function 2 (N=3)  4.42E+01 

F19 Hybrid Function 3 (N=4)  1.97E-02 

F20 Hybrid Function 4 (N=4)  1.19E-01 

F21 Hybrid Function 5 (N=5)  2.48E-01 

F22 Hybrid Function 6 (N=5)  2.61E-02 

Composition  

Functions  

F23 Composition Function 1 (N=5)  3.29E+02 

F24 Composition Function 2 (N=3)  1.05E+02 

F25 Composition Function 3 (N=3)  1.12E+02 

F26 Composition Function 4 (N=5)  1.00E+02 

F27 Composition Function 5 (N=5)  2.94E-01 

F28 Composition Function 6 (N=5)  3.54E+02 

F29 Composition Function 7 (N=3)  2.54E+02 

F30 Composition Function 8 (N=3)  4.98E+02 
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Table 4.3: Comparative performance of 18 algorithms from the literature shown over the 30 benchmark test functions. [179], [180] 

ALGORITHM F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 

NRGA 27900 915 1520 15.4 19.6 2.45 0.203 5.59 8.69 119 

FWA-DM 5010 0.000134 0 1.41 20 0.706 0.0948 0.254 6.01 1.59 

UMOEAS 0 0 0 0 16.8 0 0 0 2.73 0.374 

SOO+BOBYQA 4570 0.036 5840 0 20 0.002 0.049 18.9 8.96 130 

SOO 8810000 6.64 6640 0.678 20 0.002 0.049 18.9 8.96 130 

RSDE 0 0 0 2.81 19.2 0.0529 0.0355 0.661 8.52 68.4 

POBL_ADE 16200 2270 0.000574 25.5 19.1 1.04 0.163 7.81 7.63 153 

FERDE 2.37 6.29E-05 0.00135 0 19.1 0.889 0.0188 0 5.64 0.0367 

FCDE 0 0 0 18.4 20.3 3.57 0.196 16.1 21 292 

DE_b6e6rlwithrestart 0 0 0 1.13 18.5 0 0.0169 0 4.9 0.00123 

CMLSP 1.77E-07 0 0.000106 0 16.9 0.062 0 2.07 1.66 196 

GaAPADE 0 0 0 30.7 19.7 0.148 0.00316 0 3.38 0.152 

OptBees 784 0.00988 0.921 2.69 20 3.02 0.156 0 20.8 219 

LSHADE 0 0 0 29.4 14.2 0.0175 0.00304 0 2.35 0.00857 

RMA-LSCh-CMA 0 0 1.03E-07 0.085 13.7 0.000148 0 0 3.32 7.68 

MVMO 0.000495 0 0 9.55 16.6 0.00345 0.0186 0 3.49 2.14 

P3PGA 17.6 14.8 0 0.0572 0 0.724 0.0986 0 1.16 0 

PBCOA 0.473 732 0 0.000052 20 0 0 0 0.995 0 
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ALGORITHM F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 

NRGA 576 0.124 0.158 0.254 1.02 2.75 16100 7420 2.09 1720 

FWA-DM 372 0.0425 0.121 0.214 0.775 1.76 255 25.2 1.3 13.4 

UMOEAS 144 0 0.00944 0.11 0.667 1.53 8.48 0.784 0.2 0.371 

SOO+BOBYQA 349 0 0.03 0.13 0.42 2.52 423 3950 0.55 6930 

SOO 349 0 0.03 0.13 0.44 2.52 3120000 12900 0.55 9360 

RSDE 291 0.221 0.128 0.136 0.983 2.23 47.7 2 1.03 0.722 

POBL_ADE 208 0.269 0.131 0.26 0.712 1.41 257 33.2 2.09 12.6 

FERDE 75.5 0.123 0.116 0.0936 0.673 1.53 8.23 2.73 0.509 1.7 

FCDE 75.5 0.123 0.116 0.0936 0.673 1.53 8.23 2.73 0.509 1.7 

DE_b6e6rlwithrestart 197 0.293 0.128 0.111 0.832 1.87 1.4 0.621 0.142 0.0559 

CMLSP 153 0.0303 0.0273 0.189 0.897 1.56 313 30.9 1.25 19.9 

GaAPADE 183 0.14 0.0601 0.0942 0.606 1.98 9.91 0.223 0.257 0.432 

OptBees 393 0.13 0.416 0.369 2.44 2.64 684 33.5 
9.330-

01 
8.96 

LSHADE 32.1 0.0682 0.0516 0.0814 0.366 1.24 0.977 0.244 0.0773 0.185 

RMA-LSCh-CMA 20.1 0.0165 0.0329 0.127 0.472 1.05 78.3 5.22 0.0766 8.06 

MVMO 96.3 0.0422 0.0355 0.0891 0.435 1.45 9.36 0.783 0.158 0.313 

P3PGA 3.56 
1.37E-

06 
0.0388 0.0254 0.329 0.166 48.2 6.33 0.0489 0.0768 

PBCOA 13.4 
8.64E-

12 
0.0422 0.00855 0.285 0.0972 0.208 44.2 0.0197 0.119 
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ALGORITHM F21 F22 F23 F24 F25 F26 F27 F28 F29 F30 

NRGA 4820 37.6 329 131 184 100 281 477 413 1730 

FWA-DM 94.6 34.1 330 127 179 100 321 347 212 394 

UMOEAS 0.54 0.245 330 108 126 100 25.5 313 196 234 

SOO+BOBYQA 1940 127 200 116 139 100 200 200 200 200 

SOO 24700 127 200 116 145 100 200 200 200 200 

RSDE 1.21 11.7 330 119 130 100 91.3 387 213 505 

POBL_ADE 103 30 329 124 186 100 256 423 355000 638 

FERDE 8.54 3.24 330 115 136 100 366 366 318 535 

FCDE 148 27.5 330 137 184 100 47.5 457 34100 867 

DE_b6e6rlwithrestart 0.787 0.154 330 112 129 100 61.6 363 218 467 

CMLSP 36.4 89.5 202 110 128 100 41.1 280 200 216 

GaAPADE 0.509 3.25 330 109 164 100 89.7 383 222 467 

OptBees 57.1 17 272 137 146 100 7.42 307 220 389 

LSHADE 0.408 0.0441 330 108 133 100 58.1 381 222 465 

RMA-LSCh-CMA 49.3 8.48 330 108 175 100 185 389 227 585 

MVMO 1.94 0.263 330 109 116 100 17.2 361 181 492 

P3PGA 0.213 0.119 329 107 113 100 1.27 356 203 492 

PBCOA 0.248 0.0261 329 105 112 100 0.294 354 254 498 
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Table 4.4: Number of benchmark functions over which each of the candidate 

algorithms showed their best performance. 

Rank Algorithm Sole 

Winner 

Joint 

Winner 

Best 

Performance 

1 PBCOA 10 6 16 

2 UMOEAS 1 9 10 

3 b6e6rlwithrestart 1 6 7 

3 P3PGA 2 5 7 

4 GaAPADE 1 5 6 

5 OO+BOBYQA 0 5 5 

5 LSHADE 0 5 5 

5 MA-LSCh-CMA 0 5 5 

5 MVMO 1 4 5 

6 SOO 0 4 4 

6 RSDE 0 4 4 

6 FCDE 0 4 4 

6 CMLSP 0 4 4 

7 FERDE 0 3 3 

8 FWA-DM 0 2 2 

8 OptBees 0 2 2 

9 POBL_ADE 0 1 1 

10 NRGA 0 0 0 

 

As shown in Table 4.3, we have compared the performances of PBCOA with 17 other 

algorithms over the 30 benchmark functions. It is clear from Table 4.5 that PBCOA has 

outshone most other candidates in state-of-the-art technology. PBCOA emerged as a 

clear sole winner on 10 out of the 30 test benchmark functions while it shared a draw 

with a 0 Fitness Cost on the other 6 benchmark functions. Thus, it performed best on 

16 out of the 30 provided test benchmark functions.  
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None of the competing algorithms could stand up to the performance of PBCOA and 

while it outperformed most other candidates, the fitness costs are jotted down in Table 

4.2 for future reference. 

 

Figure 4.5: The description of best performances by all the candidate algorithms. 

It is clear from Table 4.4 that it was only the Parallel Bat Colony Optimization 

Algorithm that performed best on the maximum number of benchmark test functions 

under consideration. The PBCOA performed best on 16 benchmark test functions with 

10 where it was the sole winner. The second-best performance was shown by 

‘b6e6rlwithrestart’ which showed the best performance on 7 test functions. However, 

it is noteworthy that, on only 1 benchmark test function it was declared the sole winner. 

Thereby, meaning that PBCOA, by far, performed best out of all the candidate 

algorithms. 
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4.5. Conclusion 

It has been seen that the introduction of the concept of colonies in the regular Bat 

Algorithm greatly improves the performance of the metaheuristic. Additional 

phenomena like communicative search and migration, as would be seen in real bat 

populations, tend to improve the metaheuristic. The performance of PBCOA is tested 

on IEEE CEC-14 Benchmark test functions and compared with the state-of-the-art 

algorithms. Out of all the candidate algorithms, found in the literature, Parallel Bat 

Colony Optimization Algorithm fares best in almost all respects. The results of the 

Fitness Costs on each Benchmark function have been provided for future reference. The 

algorithm is compared on the grounds of results from 30 test functions available from 

the literature and the performance is unparalleled by any other candidate algorithm. 
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Chapter 5: Evolution of CNN Over Geographical 

Landmarks Dataset Using Parallel Bat Colony 

Optimization Algorithm 

This chapter proposes an evolutionary framework of CNNs with a Parallel Bat Colony 

Optimization Algorithm (PBCOA) over a geographical landmarks’ dataset. We discuss 

how the application of the PBCOA metaheuristic to CNNs to evolve its 

hyperparameters works towards the evolution of better hyperparameters out of a search 

space of more than a million hyperparameters. We evolved initial weights, kernel frame 

size, number of kernels, and other such parameters. It was found that hyperparametric 

combinations highly different from the usually used ones seemed to perform better. 

Also, the performance of CNNs was evaluated using Accuracy and F1 score, and it was 

found that the evolved architectures performed much better in comparison to the 

unevolved architectures. The evolved CNN architectures seemed to perform better on 

the training sets as well as the test sets. 

5.1. Introduction 

Massive amounts of data are always being generated for Computer Vision (CV). Images 

are one of the data categories that Artificial Intelligence (AI) systems find the most 

difficult to process. Although progress is slow, convolutional neural networks (CNNs) 

are used to handle such kinds of Big Data. In this study, a default CNN is evolved using 

the Parallel Bat Colony Optimization Algorithm (PBCOA), an evolutionary 

computation technique. PBCOA is an improvement over BA that has been further 

refined for greater optimization. In comparison to other current soft-computing-based 

techniques, we found from the literature that PBCOA produces good performance on 

common benchmark functions. With a considerable improvement in F1 scores and 

accuracy, PBCOA produced better performance over an unevolved CNN with regularly 

used hyperparameters and also over the CNN evolved with regular BA. 

 

 



120 

 

5.2. Proposed Methodology and Data Pre-processing 

The experiment was conducted on an Asus VivoBook S15 laptop equipped with 8 GB 

RAM, 4 GB NVIDIA graphics card, and an Intel CORE i7 processor. The experimental 

programs were written in Python using Jupyter Notebooks. The Convolutional Neural 

Networks were designed and applied on Google Landmarks Dataset V2 (accessed on 

29th January 2022). The network architecture was evolved using two evolutionary 

metaheuristics namely Bat Algorithm and a self-created and improvised Parallel Bat 

Colony Optimization Algorithm. The performances were evaluated based on accuracy 

and F1 score metrics. 

The Google Landmarks Dataset V2 originally contained more than 4 million images 

spread throughout 200,000 classes. These images were of variable resolutions and their 

color schemas were also different. Some of them were in RGB color schema while few 

were in CMYK color schema. A subset of a little more than 1000 images was 

downloaded from the Kaggle website. These images were spread through 50 

geographical landmark classes. These images were checked for their color schema first. 

The ones in an 8-bit RGB color schema were kept and others were discarded. 

Also, the resolution of each image was changed to 64*64 from all the higher 

resolutions. Then, to maintain generalization in the data, the data was augmented in 5 

ways namely scaling, cropping, flipping, rotation, and translation. The initial number 

of images was 1000 which changed to 6000 after data augmentation. After this, the 

combined dataset was split into training and test sets in the ratio of 70:30. Hence the 

training and test set tensors had the shape of: 

𝑋𝑡𝑟𝑎𝑖𝑛. 𝑠ℎ𝑎𝑝𝑒 = (4200,64,64,3)  …(5.1) 

𝑋𝑡𝑒𝑠𝑡. 𝑠ℎ𝑎𝑝𝑒 = (1800,64,64,3)  …(5.2) 

𝑋. 𝑠ℎ𝑎𝑝𝑒 = (6000,64,64,3)   …(5.3) 

The shape of output tensor Y can be given by: 

𝑌. 𝑠ℎ𝑎𝑝𝑒 = (6000,50)   …(5.4) 
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A convolutional neural network was designed with 5 convolutional layers each 

followed by a Max-Pooling layer. After these layers, two fully connected layers connect 

these hidden layers to the output node. The early convolutional layers perform the task 

of identification of broader features in an image and as we go deeper, the convolutional 

layers help in the recognition of very specified and minute characteristics in an image 

that can help in its characterization into one of the Landmark classes. The Max-Pooling 

layers help in the reduction of linearity in the network so that the activation functions 

get trained properly without facing issues of vanishing or exploding gradients. 

The designed CNN architecture, as described in Figure 5.1, can be summarised as: 

o Inputting images in the specified size of 64*64 with RGB encoding 

 

Figure 5.1: The layered architecture of 5-layered CNN 

o Convolutional Layers 

o 5 layers in a fixed value 

o Kernels with variable Frame Size 

o Strides of variable value 
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o ‘Same’ padding to reduce anomalies 

o Variable Learning Rate 

o Variable Batch Size 

o Max-Pooling Layers 

o 5 layers each followed after a convolutional layer 

o Stride fixed to 2 

o Window size fixed to 2 

o Fully Connected Layers 

o 2 layers containing variable neurons 

o Last layer connecting to the output node with 50 classes 

o Use of Softmax Activation Function 

 

Figure 5.2: The process of evolution of the network through BA and PBCOA is 

described diagrammatically 
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Figure 5.2 shows the working of proposed PBCOA based approach to evolve the 

architecture of CNN for landmark recognition. Initially, the proposed approach 

generates the random multiple populations of CNN hyperparameters. Then, the 

proposed Parallel Bat Colony Optimization Algorithm produces new architectures of 

the Convolutional Neural Networks based on their performance on landmark 

recognition. The new architectures are produced by varying the hyperparameters of 

regularly used CNN architectures. The termination criteria of the proposed approach is 

same as 3-parent genetic algorithm based approach (already discussed in Chapter 3 of 

the thesis). 

The Bat Algorithm evolved architectures based on the regular echolocation 

phenomenon where Bats (combination of hyperparameters) were evaluated based on 

two metrics namely Accuracy and F1 score of the CNN. Parallelly, the Bats were 

evolved based on the survival of bats in colonies in PBCOA. The fittest bats were 

observed after the algorithms tended to reach convergence. 

The list of hyperparameters that are evolved in the network is listed in Table 5.1. 

Table 5.1: A list of the evolved hyperparameters along with the range in which they 

were varied. 

 

Hyperparameters Range 

Initial Weights 0-5 

Kernel Frame Size 1-11 

Stride 1-5 

Number of Kernels 32-96 

Learning Rate 0.001-0.999 

Batch Size 16-48 

Neurons 80-120 
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5.3.Results and Discussions 

 

Figure 5.3: The graph depicting network performances along with their respective 

evolution mechanisms. As it is clear, CNN with PBCOA performs the best in all 

categories, and the pre-evolution CNN fares worst. Evolution with BA shows drastic 

improvements over unevolved CNN. 

Before evolving the network, the 5-layered CNN was tested with the most commonly 

used hyperparameters. These hyperparameters, as shown in Table 5.1, showed an F1 

score of 0.767. After this, initial combinations of hyperparameters as shown in Table 

5.2 were provided to BA and PBCOA as one bat each. The evolution of networks was 

done till an apparent convergence was not reached. After evolution, some striking 

observations were made. The hyperparametric combinations, quite different from those 

used normally, were seen to perform better. Also, the best fits, which are described in 

Table 5.3 were extremely different from regular CNNs. It is described in Figure 5.3. 
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Figure 5.4: The graph depicts the changes in F1 Scores and accuracies of the Best Fit 

networks as epochs progress. 

Table 5.2: The hyperparameters set for the initial CNN for the purpose of comparison 

with evolved networks. These hyperparameters are the ones that are most commonly 

used while designing CNNs. 

Hyperparameter Value 

Initial Weights 1 

Kernel Frame Size 3 

Stride 1 

Number of Kernels 64 

Learning Rate 0.01 

Batch Size 32 

Neurons 100 
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Table 5.3: The network architectures before evolution, after evolution with BA, and 

after evolution with PBCOA. The hyperparametric combinations are described in the 

format [Initial Weights, Kernel Frame Size, Stride, Number of Kernels, Learning Rate, 

Batch Size, Neurons]. Each architecture’s train and test set accuracy and F1 scores have 

been provided. (V in the Best Fit stands for Variable) 

  
Accuracy F1 Score 

Network Architecture Best Fit Train Test Train Test 

Pre-evolution CNN [1,3,1,64,0.01,32,100] 0.804 0.591 0.767 0.539 

CNN evolved with BA [V,7,2,42,0.009,33,108] 0.945 0.854 0.951 0.874 

CNN evolved with 

PBCOA [V,5,1,46,0.012,34,110] 0.993 0.892 0.993 0.885 

 

Table 5.4: The F1 Scores and Accuracies of networks as time passes and epochs elapse. 

Clearly, PBCOA shows maximum accuracy within the minimum time frame.  

  Unevolved CNN CNN evolved with BA CNN evolved with PBCOA 

Epoch

s 

Time 

(in 

mins) 

F1 Score 

(approx.

) 

Accurac

y 

(approx.

) 

Time 

(in 

mins) 

F1 Score 

(approx.

) 

Accurac

y 

(approx.

) 

Time 

(in 

mins) 

F1 Score 

(approx.

) 

Accurac

y 

(approx.

) 

0 0 0 0 0 0 0 0 0 0 

10 15 0.105 0.103 15 0.124 0.126 13 0.134 0.132 

20 30 0.225 0.223 30 0.236 0.238 25 0.262 0.261 

30 60 0.33 0.329 60 0.363 0.364 50 0.386 0.385 

40 90 0.42 0.42 90 0.49 0.49 75 0.51 0.51 

50 120 0.51 0.51 120 0.603 0.602 100 0.621 0.621 

60 150 0.6 0.601 150 0.701 0.7 125 0.717 0.718 

70 180 0.66 0.668 180 0.786 0.784 150 0.814 0.816 

80 210 0.72 0.731 210 0.87 0.868 175 0.896 0.899 

90 240 0.746 0.769 240 0.941 0.938 200 0.965 0.968 

100 300 0.767 0.804 300 0.951 0.945 250 0.993 0.993 
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Figure 5.5: The graph depicts that the network evolved by PBCOA shows higher 

accuracies and F1 Scores in lesser time frames as compared to BA and unevolved CNN. 

As shown in Figures 5.4 and 5.5, the networks evolved by PBCOA and BA trained 

faster than unevolved networks. The network evolved by PBCOA evolved faster than 

the one evolved by BA. Table 5.4 gives a complete review of this. From Figure 5.6, it 

was noteworthy that PBCOA not only gave a better overall performance but as time 

elapsed, it seemed to reach convergence earlier than BA. Thus, PBCOA evolved the 

networks more quickly and efficiently than BA. This data has been provided in Table 

5.5. 
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Table 5.5: The table shows how accuracies and F1 scores vary as the networks evolve 

over time. 

 

The network evolved by 

BA 

The network evolved by 

PBCOA 

Time (in mins) F1 Score Accuracy F1 Score Accuracy 

0 0.000 0.000 0.000 0.000 

30 0.767 0.804 0.767 0.804 

60 0.806 0.842 0.811 0.821 

90 0.824 0.867 0.855 0.838 

120 0.839 0.892 0.871 0.855 

150 0.859 0.903 0.898 0.872 

180 0.882 0.914 0.940 0.934 

210 0.910 0.924 0.961 0.960 

240 0.935 0.935 0.987 0.984 

270 0.945 0.940 0.992 0.990 

300 0.951 0.945 0.993 0.993 

 

 

Figure 5.6: The graph depicting accuracies and F1 Scores of networks as they evolve 

toward better performance. 
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The network gets trained in the backpropagation phase when the learned weights are 

fed back to the network. This can be described by: 

𝑊𝑥
𝑛𝑒𝑤 = 𝑊𝑥

𝑜𝑙𝑑 − 𝑎
𝑑(𝐸𝑟𝑟𝑜𝑟)

𝑑𝑊𝑥
    …(5.5) 

where, 𝑊𝑥
𝑛𝑒𝑤 are the newly trained weights, 𝑊𝑥

𝑜𝑙𝑑 are the old weights, a is the learning 

rate and 𝑎
𝑑(𝐸𝑟𝑟𝑜𝑟)

𝑑𝑊𝑥
 is the change an error with respect to the weights. For an optimal 

change of weights, Keras' built-in libraries and the AdaDelta optimizer are used. 

As described in Figure 5.2, the hyperparameters to be evolved were fed to Bat 

Algorithm (BA) and Parallel Bat Colony Optimization Algorithm (PBCOA). These 

metaheuristics selected the best combination of hyperparameters as the best bats and 

continued their characteristics into newer generations. Slowly, the metaheuristics 

evolved these bats into bats with the fittest characteristics suited for the network.  

As shown in Figure 5.5, After the evolution of networks with PBCOA and BA, we saw 

drastic improvements in the performances of networks along with a major change in 

the optimal hyperparameters for designing the architectures of CNNs for geographical 

landmark recognition. The ranges in which these hyperparameters were varied are 

described in Table 5.6. Some changes that were observed in the evolved 

hyperparameters were: 

o The optimal initial weights evolved from a set of 3X3 kernels of all 1s changed 

to a kernel of 5X5 with extremely unpredictable values in each pixel. Although 

seemingly symmetric, the kernel with the best initial weights from PBCOA was: 

 

o The optimum kernel frame size was a square kernel of length 7 in BA and a 

square kernel of size 5 in PBCOA. This was against the common notion that a 

kernel frame size of 3X3 is the best. 

0 1 2 1 0

1 2 4 2 1

2 4 15 4 2

1 3 4 2 1

0 1 2 1 0
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o The optimal stride evolved by BA was 2 but PBCOA suggested that a stride of 

1 was only better. The unevolved CNN was also designed with a stride of 1. 

o In the range of 32–96, the number of kernels after optimization with BA was 42 

while it was 46 with PBCOA, indicating that varying the number of kernels 

increased the model's accuracy. To confirm the ideal number of kernels, an 

additional study would be needed. 

o The standard learning rate is 0.01; however, it was discovered that the optimal 

learning rate was 0.009 and 0.012, which are nearly equal to 0.01. 

o Since the network did not then demand a lot of processing power at once, the 

number of optimum epochs was manually set at 100. And the accuracies seemed 

to converge after 100 epochs as suggested by Figures 5.5 and 5.6. 

o The standard batch size of 32 was the best one that was observed. The BA 

evolved it to 33 while PBCOA evolved it to 34 which can be safely ignored. 

o The best result was 110 when initiated with 100, suggesting that the neurons did 

not appear to affect the performance significantly. This was with PBCOA. BA 

evolved it to 110. 

o In total, the codes for evolution were run for more than 10 hours checking over 

40 bats with different hyperparametric combinations. After 5 hours each for BA 

and PBCOA, convergence seemed to be reached. 

o PBCOA seemed to reach convergence earlier and with higher performance than 

BA. As provided in Table 5.4, BA reached an F1 Score of 0.952 while PBCOA 

reached 0.993. 

o The final training and test accuracies and F1 scores are shown in Table 5.5. It 

was clear that PBCOA not only fared well on training sets but also on test sets. 

Overfitting was lesser in the network that evolved with PBCOA. 

5.4. Conclusion 

From the experiments conducted, it was clear that the evolution of Deep Neural 

Networks with evolutionary metaheuristics is highly desirable before building 
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cumbersome architectures which might not perform as well on specified datasets. 

Evolutionary metaheuristics help in searching the most desirable hyperparametric 

combinations for building DNN architectures that would improve the overall 

performance of networks for certain specified tasks. Finding a suitable set of 

hyperparameters for building DNNs can become a tedious task either manually or by 

brute force in the search space consisting of more than a million combinations. The bat 

Algorithm and the improvised Parallel Bat Colony Optimization Algorithm help in this 

search and optimize the structures to a great extent which is not expected manually. 
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Chapter 6: Comparative Analysis of All the 

Proposed Approaches 

This chapter describes a comparative analysis of all the developed Soft-Computing 

approaches. We have discussed all the metaheuristics which were used to evolve CNN 

architectures and in addition to this, we have discussed the differences in datasets that 

were used to evolve the CNN architectures. We have discussed how the size of datasets 

was varied to maintain a healthy specialization and generalization ratio. We discuss the 

concept of data augmentation and how it was used to develop better datasets. Every ML 

technique ranging from classical ML techniques to evolved CNN architectures has been 

discussed. The evolved hyperparametric combinations were used on a landmarks 

dataset with 200 classes and the performance of each architecture was measured using 

accuracy. It was concluded that the CNN hyperparameters evolved with PBCOA 

seemed to perform the best on the complete dataset. 

6.1. Introduction 

In our study, we have developed many soft-computing-based techniques for landmark 

recognition in images. Starting from classical Machine Learning ensemble-based AI 

models, we developed regularly built Convolutional Neural Networks (CNNs) and 

evolved them further with evolutionary metaheuristics. We used various geographical 

landmark recognition datasets and experimented with them with many AI techniques. 

These include Support Vector Machines (SVMs), Decision Tree Classifiers, Random 

Forest Classifiers, K-Nearest Neighbors, regular CNNs, CNNs using transfer learning, 

and last but not the least, CNNs evolved with evolutionary metaheuristics like Paddy 

Field Algorithm, Genetic Algorithm, 3 Parent Genetic Algorithm, and our own 

developed Parallel Bat Colony Optimization Algorithm. 

The Landmark Recognition datasets that were used included geographical landmarks 

datasets of Delhi’s famous monuments and a subset of Google Landmarks Dataset V2. 

The subset of Google Landmarks Dataset V2 that was extracted was further augmented 

in many ways including shearing, cropping, translation, zooming, etc. This paved the 
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way for more generalization in our models and thus more test accuracy. A comparison 

between different techniques studied and developed by us has been drawn. 

 

6.2. Classical Machine Learning Techniques vs CNN 

In this section, we discuss the implementation of some machine learning algorithms on 

the task of landmark recognition. We use a publicly available dataset taken from the 

renowned machine-learning platform Kaggle. The dataset named Qutub Complex 

Monuments’ Images Dataset consisted of 1286 image files belonging to 5 classes. Out 

of these 1286 image files, 1270 images had a 3-color coding. We used only the 3 color-

coded images (RGB) for the sake of uniformity. 

So, our dataset was appropriately cleaned for being fed to various machine learning 

models. We trained 4 machine-learning models with this dataset. These models were 

namely: 

1. Convolutional Neural Network 

2. Support Vector Machine 

3. K Nearest Neighbours 

4. Decision Tree Classifier 

 

Figure 6.1: Implementation of various ML techniques on Landmark Recognition 
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 A generalized algorithmic approach for the implementation of a Machine Learning 

Technique for image classification can be shown in Figure 6.2. 

On implementing the above-mentioned ML techniques, we found the training and test 

accuracies as mentioned in Table 6.1. Where all the training accuracies were quite high, 

the test accuracies were considerably lower than the training accuracy, thereby, 

indicating overfitting of the models. 

 

Figure 6.2: Process of training an ML model. 

All the ML models were run in their most basic form without any changes in 

hyperparameters. The convolutional neural network was run with a single layer. In 

SVM too, no kernel or hyperparameters were changed. Similarly, KNN and Decision 

Tree Classifier were also run in their default form. As it is imperative from Table 6.1, 

Convolutional Neural Networks fared better than all other Machine Learning 

techniques. 
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Table 6.1: Summarising training and test accuracies for various ML models 

ML Technique Training Accuracy (in 

%) 

Test Accuracy (in %) 

Support Vector Machine 

(SVM) 

89 64 

K-Nearest Neighbour 74 54 

Decision Tree Classifier 99 49 

Convolutional Neural 

Network 

98 73 

 

It should not be difficult to understand that CNNs belong to a whole new class of 

Machine Learning algorithms named the “Deep Learning” techniques. In Deep 

Learning, instead of a single model being trained to classify data, we have a whole 

network of activation functions that work like a neuron in our body. The deep learning 

paradigm may also be thought of as a model trained from numerous models. 

 

Figure 6.3: Summarising training and test accuracies for various ML models 
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As we can see from Table 6.1, CNN performs the best on our dataset both in terms of 

training and test accuracy. Though the test accuracy is a little lower than the training 

accuracy, thereby, indicating overfitting; the accuracies are much better than the rest of 

the techniques. Out of the rest of the techniques known as the classical machine learning 

techniques, Support Vector Machines fare the best. 

As shown in Figure 6.3, out of the classical machine learning approaches, SVMs are 

known to fare the best. It is also thought that SVMs can achieve 100% training accuracy 

if appropriate parameters are changed. However, a 100% training accuracy does not 

imply that our model is good enough to be generalized. Also, the other two algorithms 

do not seem to fare that well. Though decision trees seem to give a training accuracy of 

99%, a test accuracy of 49% makes it inappropriate to be used for practical uses. 

6.3. Unevolved CNN vs CNNs evolved with Metaheuristics 

We have seen that CNNs perform the best out of all the Machine Learning techniques 

in the previous section. However, the test accuracy of CNN was barely sufficient to be 

of any much practical usage. Hence, the accuracies still need to be improved for the 

CNNs. One way that the researchers have developed, is to use heavily generalized 

models with complex architectures that improve performance in a generalized manner 

for many datasets. 

The highly complex and generalized model is expected to not only perform well on the 

dataset on which it was trained but also on the ones on that, it was not trained. If a 

positive transfer of knowledge is seen in these architectures, they are made public so 

that a variety of AI models can be trained without much hassle. 

The other way around, a method called NAS or Neural Architecture Search is used to 

search for the most optimal architectures of Artificial Neural Networks for a specific 

task. This architecture is mostly evolved with evolutionary metaheuristics and such 

architectures tend to overperform other architectures at the task at hand. 

In our study, we applied NAS with some evolutionary metaheuristics like Paddy Field 

Algorithm, Genetic Algorithm, 3 Parent Genetic Algorithm, and an algorithm 
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developed by us namely the Parallel Bat Colony Optimization Algorithm which is an 

inspiration by the previously existent Bat Algorithm. 

The datasets that we used were different subsets of the same dataset named Google 

Landmarks Dataset V2 which is a highly recognized dataset for the development of 

robust AI models for landmark recognition. These subsets were used in various forms 

which are depicted as follows: 

1. Subset 1: This dataset had an initial number of 600 images spread over 24 

classes. Each class had an equal number of images i.e. 25. This dataset was 

augmented by a massive 15 times to create a dataset of 9000 images. This was 

done to improve generalization in the dataset and the model generalized well 

over the larger dataset. 

2. Subset 2: This dataset had an initial number of only 576 images spread over 48 

classes uniformly. This dataset was divided in the ratio of 70:30 for training and 

test images meaning that there were 403 images available for training and 173 

images for the test. The dataset was not augmented, and it was seen that the 

model showed relatively lesser generalization of data. 

3. Subset 3: This dataset had an initial 1000 images spread uniformly over 50 

classes. The data was augmented 6 times to 6000 images and divided into 

training and test images with a ratio of 70:30. The model not only performed 

exceedingly well on the trained dataset but also on the test data. 

As shown in Figures 6.4, 6.5, and 6.6, the dataset sizes were varied not only based 

on the amount of generalization required but also to test whether our model evolved 

successfully or not. We used the Paddy Field Algorithm for the first dataset, GA 

and 3PGA for the second, and our own proposed Parallel Bat Colony Optimization 

algorithm for the third dataset. 

For the first experiment, we relied on augmentation entirely for generalization and 

we saw good results. For the second experiment, we did not use augmentation. The 

results were slightly worse but the evolution with better metaheuristics made up for 

the worsening in the AI model. 

 



138 

 

Figure 6.4: Number of Classes in each subset of dataset 

Figure 6.5: Number of images in the original subset 

Figure 6.6: Total number of images in each dataset after augmentation of datasets 
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For the third experiment, we had to test on a holistic approach since the metaheuristic 

was proposed by us. First, we benchmarked the algorithm on available CEC 14 

benchmark functions and the results made it outstanding when compared to current 

counterparts. After that, the CNN was evolved with an extended experiment to observe 

training and test accuracies and F1 scores. The results clearly showed that PBCOA 

outperformed regular BA while evolving the CNN hyperparameters. 

6.4. Evaluation of CNNs over Evolved Hyperparameters 

The hyperparameters evolved by different metaheuristics over different Landmark 

Recognition datasets were evaluated over a larger dataset that comprised 200 classes. 

Each class had 50 images and the dataset was not further augmented to produce any 

generalization. The larger dataset was also a subset of the Google Landmarks Dataset 

V2 just like any other smaller subset. 

Smaller subsets with more generalization were used to evolve better CNN 

hyperparameters and now, the evolved hyperparameters were tested on the larger 

dataset with lesser generalization. The larger dataset was also divided into training and 

test sets and accuracies were checked. The tensors involved in this experiment were: 

𝑋. 𝑠ℎ𝑎𝑝𝑒 = (10000,64,64,3)   …(5.1) 

𝑋𝑡𝑟𝑎𝑖𝑛. 𝑠ℎ𝑎𝑝𝑒 = (7000,64,64,3)  …(5.2) 

𝑋𝑡𝑒𝑠𝑡. 𝑠ℎ𝑎𝑝𝑒 = (3000,64,64,3)  …(5.3) 

𝑌. 𝑠ℎ𝑎𝑝𝑒 = (10000,200)   …(5.4) 

Where X is the input tensor, 𝑋𝑡𝑟𝑎𝑖𝑛 is the input tensor used for training purposes, 𝑋𝑡𝑒𝑠𝑡 

is the input tensor used for test purposes. Y is the output tensor. The shape function is 

used to determine the dimensional information of each tensor. 

Every input tensor has the first dimension of 3 consisting of 3 color channels 

corresponding to RGB, 64 x 64 image height and width, and each 4th dimension 

containing the number of images in each tensor. 

The performances of CNN architectures evolved with each metaheuristic have been 

provided in Table 6.2. 
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Table 6.2: Training and test accuracies achieved by CNN architectures evolved with 

each metaheuristic. Each evolved architecture has been named after the evolutionary 

metaheuristic used to evolve it. 

  Accuracy 

Evolved CNN Training Test 

PFANET 98.56 90.15 

GANET 99.48 92.37 

3PGANET 99.14 94.47 

PBCOANET 99.20 95.11 

 

Figure 6.7: Training and test accuracies achieved by CNN architectures evolved with 

each metaheuristic. 

Although the evolved hyperparameters showed significant improvements over an 

unevolved one, it was decided that a faster, quicker, and more space-efficient CNN be 

evolved. For this purpose, while evolving the hyperparameters, the learning rate was 

abruptly kept as high as 0.9. This was done to ensure a very quick training of the network. 
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Similarly, the layers in the network were artificially selected to be 3 to ensure that the 

network doesn’t become too complex. Alongside the artificially selected 

hyperparameters, other hyperparameters were varied to produce the most efficient 

architecture. 

It was observed that with the two hyperparameters being kept static, the other 

hyperparameters automatically align themselves to produce the most accurate results. 

The resulting network led to quicker training and lesser space complexity while 

maintaining the highest possible performance. This network was further applied to larger 

datasets and the results were noted. It was noted that, when applied to larger datasets, 

the network produced very high-performance results as compared to those that were 

expected. 

6.5. PBCOA-CNN variation with dataset sizes 

The evolution of CNN architectures with an artificial selection of features for better time 

and space complexity was automated and applied to datasets with higher amounts of 

data. The evolved architectures were tested on datasets with sizes of 200, 500, 800, and 

1000 classes. The evolved architectures not only trained quickly due to the faster learning 

rate but also occupied lesser memory storage since layers of the architecture were limited 

to 3. Despite these constraints, the network evolved other hyperparameters in such a 

manner that CNN architectures with very high performance were trained. 

Table 6.3: Table depicting performance of an evolved network of larger datasets in terms 

of accuracy and F1 Score. 

  Performance 

Dataset Size (Number of 

Classes) 
Accuracy 

F1 

Score 

200 94.59 93.21 

500 90.25 89.52 

800 85.21 84.56 

1000 79.51 79.48 
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Figure 6.8: Performance analysis of evolved architecture on a higher number of 

classes while giving them 200 epochs to train. 

From table 11, it is observed that as the dataset sizes are increased, the accuracies and 

F1 scores of the dataset seem to show a downward trend. As expected, the data shows 

an exponential decrease in performance. Hence, it is advisable to evolve the networks 

before training on larger datasets. 

As expected, the training times were considerably lesser than what was expected, the 

memory usage was minimal as well. The performance with these parameters static did 

tend to somewhat show an unexpected decline with an increase in dataset sizes but it is 
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6.6. Conclusion 

Thus, we conclude that the evolution of Artificial Neural Networks should be highly 

desirable before experimenting on the entire dataset. The evolved CNN architectures 

tend to outperform their unevolved CNN counterparts in almost all respects. While 

dealing with large datasets, it should be desirable that we first evolve proper CNN 

architectures for the task at hand and then pursue the training. This helps the AI model 

to perform well on the task at hand. 
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Chapter 7: Conclusions and Future Scope 

In our research work, we proposed the “Development of new Soft-Computing Based 

Approach for Landmark Recognition”. We approached the research work by 

development of a new evolutionary metaheuristic named ‘Parallel Bat Colony 

Optimization Algorithm’ (PBCOA) and applying it to automatically evolve the 

architectures of Convolutional Neural Networks for Landmark Recognition. We have 

also benchmarked the newly developed PBCOA against the state-of-the-art nature-

inspired evolutionary metaheuristics and its supremacy was established.  

7.1. Conclusions 

Chapter 1 introduces the fields of Artificial Intelligence, Machine Learning, Deep 

Learning and Artificial Neural Networks. The topic of landmark recognition with the 

help of soft computing is introduced and the problem formulation is presented. Also, 

the first chapter describes the organization of the thesis. 

Chapter 2 presents the literature survey conducted in the field of landmark recognition 

using AI. An extensive survey is presented that describes how performances in the field 

of landmark recognition fared over the times. Also, a short survey of the classical 

machine learning approaches is conducted along with its comparison with the 

Convolutional Neural Networks. 

Chapter 3 proposes integrated CNN approaches along with three different evolutionary 

metaheuristics namely Paddy Field Algorithm, Genetic Algorithm and 3 Parent Genetic 

Algorithm. It is established, how the evolution of Convolutional Neural Networks using 

evolutionary metaheuristics tends to evolve CNN architectures that are seemingly very 

different from the ones used regularly and still perform much better than the regularly 

used CNN architectures. 

Chapter 4 proposes a new soft computing nature-inspired evolutionary metaheuristic 

namely the Parallel Bat Colony Optimization Algorithm and its comparison is drawn 

with state-of-the-art optimization algorithms. Its supremacy over the other algorithms 

is properly established via the standard CEC Benchmarking Functions and all the 
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algorithmic comparisons are drawn inspired from the natural phenomenon of Bat 

livelihoods. 

Chapter 5 proposes the integration of PBCOA with CNN to evolve architectures for 

geographical landmark recognition. All the data related to performance of CNNs is 

provided and it has been described how the evolution of networks using PBCOA 

produces highly efficient CNN architectures that tend to overperform the architectures 

evolved using regular Bat Algorithm even.  

Chapter 6 is the comparative analysis of all the proposed approaches, datasets used, 

augmentation preferences and other things. The overall comparative analysis clearly 

shows supremacy of PBCOA integrated CNN over others and suggests the evolution 

of networks before training. 

Chapter 7, that is, this chapter tends to conclude all the research work and intends to 

provide future scope for the current thesis work. Also, some brief details have been 

mentioned about the publications that came out as a result of the current research work. 

All the research that has been published has been summarised in the current section and 

a future scope provided. 

For the research work, first an extensive survey of the existent techniques for landmark 

recognition was conducted. This survey was communicated to ‘International 

Conference on Innovations, Research and Challenges in Emerging Technologies’ 

(IRCET 2022) held in November 2022 and the article was presented as a conference 

article and is currently under process for publication in Springer CCIS 

(Communications in Computing and Information Sciences) Conference Proceedings. 

We also developed a self-designed Convolutional Neural Network that was aimed at 

improving accuracy in the field of geographical landmark recognition. An article in this 

regard was communicated to the “3rd International Conference (online) on Innovations 

in Communication Computing and Sciences (ICCS 2021)”. The conference article was 

presented and is currently available online in the “American Institute of Physics 

Conference Proceedings”.
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Based on the amalgamation of two realms of NIC i.e. Evolutionary Metaheuristics and 

Artificial Neural Networks, we have developed a 3PGANET based on the search for 

the best neural architecture of Convolutional Neural Networks by the evolutionary 

metaheuristic named 3 Parent Genetic Algorithm. We have compared the performance 

of the evolution of CNN architectures from the regular 2-parent genetic algorithm and 

our 3 Parent Genetic Algorithm. Similarly, we evolved a CNN with Paddy Field 

Algorithm thus creating a PFANET.  

We also worked on the VGG-16 transfer learning technique for Geographical 

Landmark Recognition. In this research work, we used the VGG-16 deep learning 

model trained on the ImageNet dataset. We used it to train a geographical landmarks 

dataset and a positive transfer of knowledge was seen. A conference article was 

communicated in this regard and accepted at the RACS 2022 (Recent Advances in 

Computing Sciences), Lovely Professional University. The article was accepted, 

presented, and will soon be published in Taylor and Francis Conference Proceedings. 

Also, we worked to develop a Parallel Bat Colony Optimization Algorithm (PBCOA) 

based on the concept of the introduction of colonies in the regular bat algorithm 

metaheuristic. It was benchmarked on 30 CEC 14 test benchmark functions and the 

results were compared with those of 17 algorithms available in the literature. In most 

regards, PBCOA performed the best out of all the other algorithms giving the best 

performance on 16 out of the provided 30 benchmark functions to be tested on. We then 

used the proposed Parallel Bat Colony Optimization Algorithm for evolving 

Convolutional Neural Networks on popular Landmarks Recognition datasets.  A 

journal article has been accepted in the reputed Springer journal “Soft Computing” with 

an impact factor of 3.7. 

It has been seen that Landmark datasets are usually very complex and building models 

to predict them correctly is not a very easy task. So, we have deployed evolutionary 

computation for the improvement of existing CNNs. We optimize the hyperparameters 

of CNN with evolutionary metaheuristics to get the maximum possible performance. 

We have used the accuracy metric in our research for evaluation purposes since it is the 

most basic and intuitive metric to evaluate the performance of an AI model. 
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We published a Book chapter named “Landmark Recognition Using Ensemble-Based 

Machine Learning Models” in the Book entitled “Machine Learning and Data Analytics 

for Predicting, Managing, and Monitoring Disease” by the IGI Global publishers. The 

book has been included in the Web of Science database. 

Two research articles were presented at International Conferences which will be 

published in Web of Science-indexed Conference Proceedings. The first conference 

article entitled “Geographical Landmark Recognition: Using CNN-Based approach to 

improve accuracy” was presented at the “3rd International Conference (online) on 

Innovations in Communication Computing and Sciences (ICCS 2021)”. It will be 

published in the “American Institute of Physics Conference Proceedings” which is a 

Web of Science Indexed Conference Proceedings. 

The second conference article that was entitled “Landmark Recognition with Artificial 

Intelligence: A State of the Art”, was presented at the “International Conference on 

Innovation, Research, and Challenges in Emerging Technologies (IRCET-2021)”. It 

will be published in the “Communications in Computer and Information Science 

Conference Proceedings”. It is a Web of Science Indexed Conference Proceedings. 

A third conference article entitled “Analysis of CNNs built using Transfer Learning 

and Data Augmentation on Landmark Recognition datasets” was presented at the 

conference “Recent Advances in Computing Sciences (RACS 2022)”. It will be 

published in the “Taylor and Francis” Conference Proceedings which is a Scopus 

Indexed Conference Proceeding. 

Finally, two journal articles were published in Web of Science Indexed journals. The 

first one entitled “Evolving CNN with Paddy Field Algorithm for Geographical 

Landmark Recognition” was published in the MDPI journal “Electronics”. This was 

published in March 2022. The second one entitled “Automated evolution of CNN with 

3PGA for geographical landmark recognition” was published in “Journal of Intelligent 

and Fuzzy systems” in September 2022. Both journals are indexed by the Web of 

Science as well as Scopus Indexing. 

One journal article entitled “Development of VGG-16 transfer learning framework for 

geographical landmark recognition” has been published in the journal of “Intelligent 
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Decision Technologies” in May 2023 for publication. This article provides insight into 

how to use existent CNN architectures for the purpose of geographical landmark 

recognition. 

The separate sections for all the list of publications, conference certificates and the list 

of attended workshops along with their certificates have also been provided in the 

following sections. 

7.2. Future Scope 

Soft computing contains both the fields of Evolutionary Algorithms and Artificial 

Neural Networks. However, the integration of two, to search for optimal architectures 

of ANNs remains a topic less researched into. Through this thesis, we claim that the 

two can be amalgamated to produce highly efficient AI models. However, the 

standards, the efficacy and the results continue to be a topic of debate. We propose that 

new integrated soft computing paradigms can be developed to create intensely 

meaningful Deep Learning models. New researchers can establish the new benchmarks 

in this research area. 

This research area that includes the amalgamation of two Soft computing techniques 

namely Evolutionary metaheuristics and Artificial Neural Networks has a significant 

scope into the future. The evolution of ANNs with evolutionary metaheuristics has been 

shown in the thesis research work to produce highly efficient non-regular neural 

architectures. It is expected that just like the biological neurons, ANNs too may be 

evolved, with variety of hyperparametric combinations that may work in parallel to 

produce highly efficient, non-obvious artificial neural architectures. 

In our research work, we proposed 1 nature-inspired-computing algorithm and 4 

approaches for landmark recognition. The performance of the nature inspired 

computing algorithms is evaluated on standard CEC-Benchmark functions. The 

performances of all proposed landmark recognition approaches are evaluated on 

Google Landmarks Dataset V2. The proposed PBCOA approach can be used to solve 

different kinds of non-linear problems. The PBCOA can be used for machine learning 

model development, energy efficiency in wireless sensor networks, routing in wireless 

mesh networks. In future, all the 4 proposed approaches for landmark recognition can 
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be implemented for medical diagnoses, plant disease detection and engineering defects 

detection. In future, new multi-objective metaheuristic algorithms could be developed 

and implemented in different application areas. 
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Intelligence: A State of the Art” was presented in the “International Conference 

on Innovations, Research and Challenges in Emerging Technologies” (IRCET 

2022) held in November 2021 and the article is currently under process for 

publication in “Springer CCIS (Communications in Computing and Information 

Sciences) Conference Proceedings.”. The Conference Proceedings is a Web of 

Science Indexed Conference Proceedings. 

3. The conference article entitled “Analysis of CNNs built using Transfer Learning 

and Data Augmentation on Landmark Recognition datasets” was presented in 

the “Recent Advances in Computing Sciences (RACS 2022)” held in November 

2022 and the article is currently under process for publication in “Taylor and 

Francis Conference Proceedings.”. The Conference Proceedings is a Scopus 

Indexed Conference Proceedings. 

 

Book Chapter 

One book chapter entitled “Landmark Recognition Using Ensemble-Based Machine 

Learning Models” was published in the IGI Global publishers book named “Machine 

Learning and Data Analytics for Predicting, Managing, and Monitoring Disease” 

published in June 2021. 
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Detail of the 

journal/ Book / 

Book chapter/ 

website link 

Year of 

Publication 

Indexing of 

journal 

(Scopus/ 

WOS index 

etc.) 

Main findings 

or conclusion 

relevant to 

proposed 

research work 

Remarks 

https://link.spring

er.com/article/10.

1007/s00500-023-

08846-x 

2023 Scopus and 

WOS 

A new parallel 

bat colony 

optimization 

algorithm and 

its application 

for evolving 

CNN 

architectures 

with artificial 

selection 

Journal Article 

accepted in a 

Springer 

journal "Soft 

Computing". 

The Journal 

impact factor 

is 3.7 

https://content.ios

press.com/articles

/intelligent-

decision-

technologies/idt2

30048 

2023 Scopus and 

WOS 

Development 

of VGG-16 

transfer 

learning 

framework for 

geographical 

landmark 

recognition 

Journal Article 

published in 

the journal 

"Intelligent 

Decision 

Technologies". 

https://content.ios

press.com/articles

/journal-of-

intelligent-and-

fuzzy-

systems/ifs22147

3 

2022 Scopus and 

WOS 

Automated 

evolution of 

CNN with 

3PGA for 

geographical 

landmark 

recognition 

Journal Article 

published in 

"Journal of 

Intelligent and 

Fuzzy 

Systems". 

https://www.mdpi

.com/2079-

9292/11/7/1075 

2022 Scopus and 

WOS 

Evolving CNN 

with Paddy 

Field 

Algorithm for 

Geographical 

Landmark 

Recognition 

Journal Article 

published in 

MDPI 

‘Electronics’ 

https://link.springer.com/article/10.1007/s00500-023-08846-x
https://link.springer.com/article/10.1007/s00500-023-08846-x
https://link.springer.com/article/10.1007/s00500-023-08846-x
https://link.springer.com/article/10.1007/s00500-023-08846-x
https://content.iospress.com/articles/intelligent-decision-technologies/idt230048
https://content.iospress.com/articles/intelligent-decision-technologies/idt230048
https://content.iospress.com/articles/intelligent-decision-technologies/idt230048
https://content.iospress.com/articles/intelligent-decision-technologies/idt230048
https://content.iospress.com/articles/intelligent-decision-technologies/idt230048
https://content.iospress.com/articles/intelligent-decision-technologies/idt230048
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs221473
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs221473
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs221473
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs221473
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs221473
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs221473
https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs221473
https://www.mdpi.com/2079-9292/11/7/1075
https://www.mdpi.com/2079-9292/11/7/1075
https://www.mdpi.com/2079-9292/11/7/1075
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https://aip.scitatio

n.org/doi/abs/10.1

063/5.0105666 

2021 Scopus and 

WOS 

Geographical 

Landmark 

Recognition: 

Using CNN-

Based 

approach to 

improve 

accuracy 

Conference 

article 

presented in 

ICCS 2021. It 

is published in 

the American 

Institute of 

Physics 

Conference 

Proceedings. 

Landmark 

Recognition with 

Artificial 

Intelligence: A 

State of the Art  

2021 Scopus and 

WOS 

Landmark 

Recognition 

with Artificial 

Intelligence: A 

State of the Art 

Conference 

article 

accepted and 

presented for 

CCIS Springer 

Proceedings 

and is under 

process for 

publication. 

Analysis of CNNs 

built using 

Transfer Learning 

and Data 

Augmentation on 

Landmark 

Recognition 

datasets  

2022 Scopus Analysis of 

CNNs built 

using Transfer 

Learning and 

Data 

Augmentation 

on Landmark 

Recognition 

datasets 

Conference 

article 

accepted and 

presented in 

RACS 2022 

and is under 

process for 

publication. 

https://www.igi-

global.com/chapt

er/landmark-

recognition-

using-ensemble-

based-machine-

learning-

models/286243 

2021 NA Landmark 

Recognition 

Using 

Ensemble-

Based 

Machine 

Learning 

Models 

Book Chapter 

published in 

IGI Global 

Book named 

“Machine 

Learning and 

Data Analytics 

for Predicting, 

Managing, and 

Monitoring 

Disease” 

 

https://aip.scitation.org/doi/abs/10.1063/5.0105666
https://aip.scitation.org/doi/abs/10.1063/5.0105666
https://aip.scitation.org/doi/abs/10.1063/5.0105666
https://lpuin-my.sharepoint.com/:b:/g/personal/kanishk_11915015_lpu_in/ERcftOyNoCtEtOhJ5utVmbEBAPsiJ6J25Djz6EMq0F0dpg?e=SDAWhk
https://lpuin-my.sharepoint.com/:b:/g/personal/kanishk_11915015_lpu_in/ERcftOyNoCtEtOhJ5utVmbEBAPsiJ6J25Djz6EMq0F0dpg?e=SDAWhk
https://lpuin-my.sharepoint.com/:b:/g/personal/kanishk_11915015_lpu_in/ERcftOyNoCtEtOhJ5utVmbEBAPsiJ6J25Djz6EMq0F0dpg?e=SDAWhk
https://lpuin-my.sharepoint.com/:b:/g/personal/kanishk_11915015_lpu_in/ERcftOyNoCtEtOhJ5utVmbEBAPsiJ6J25Djz6EMq0F0dpg?e=SDAWhk
https://lpuin-my.sharepoint.com/:b:/g/personal/kanishk_11915015_lpu_in/ERcftOyNoCtEtOhJ5utVmbEBAPsiJ6J25Djz6EMq0F0dpg?e=SDAWhk
file:///C:/Users/Asus/OneDrive%20-%20Lovely%20Professional%20University/RACS%20Certificate.pdf
file:///C:/Users/Asus/OneDrive%20-%20Lovely%20Professional%20University/RACS%20Certificate.pdf
file:///C:/Users/Asus/OneDrive%20-%20Lovely%20Professional%20University/RACS%20Certificate.pdf
file:///C:/Users/Asus/OneDrive%20-%20Lovely%20Professional%20University/RACS%20Certificate.pdf
file:///C:/Users/Asus/OneDrive%20-%20Lovely%20Professional%20University/RACS%20Certificate.pdf
file:///C:/Users/Asus/OneDrive%20-%20Lovely%20Professional%20University/RACS%20Certificate.pdf
file:///C:/Users/Asus/OneDrive%20-%20Lovely%20Professional%20University/RACS%20Certificate.pdf
file:///C:/Users/Asus/OneDrive%20-%20Lovely%20Professional%20University/RACS%20Certificate.pdf
https://www.igi-global.com/chapter/landmark-recognition-using-ensemble-based-machine-learning-models/286243
https://www.igi-global.com/chapter/landmark-recognition-using-ensemble-based-machine-learning-models/286243
https://www.igi-global.com/chapter/landmark-recognition-using-ensemble-based-machine-learning-models/286243
https://www.igi-global.com/chapter/landmark-recognition-using-ensemble-based-machine-learning-models/286243
https://www.igi-global.com/chapter/landmark-recognition-using-ensemble-based-machine-learning-models/286243
https://www.igi-global.com/chapter/landmark-recognition-using-ensemble-based-machine-learning-models/286243
https://www.igi-global.com/chapter/landmark-recognition-using-ensemble-based-machine-learning-models/286243
https://www.igi-global.com/chapter/landmark-recognition-using-ensemble-based-machine-learning-models/286243
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LIST OF CONFERENCES 

The certificates to the attended conferences are provided below: 

1. International Conference in Innovations in Communication Computing and 

Sciences (ICCS 2021) 

 

2. International Conference on Innovation, Research and Challenges in Emerging 

Technologies (IRCET-2021) 
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3. International Conference on Recent Advances in Computing Sciences (RACS-

2022) 
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LIST OF WORKSHOPS 

1. One-week online Short Term Training Program (STTP) on “Design of Soft 

Computing Based Machine Learning Models”. 

 

2. A+ grade in the one Week Faculty Development Programme on “Data Analytics 

and Modelling Tools for Research” 

 


