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Abstract 

 

Operational Research (OR) is the study of how complex problems in industrial 

engineering can be mathematically modeled and analyzed to acquire insight into 

possible solutions. Optimization, dynamic programming, Markov models, simulation, 

and data processing are among the most commonly used solutions. Optimization is 

concerned with the maximization or minimization of an arbitrary function subject to 

constraints, which often occurs in complex high-dimensional problems. The facility 

location problem is the branch of the Operational Research. The facility location 

problem (FLP) is concerned with the optimal distribution of facilities within a given 

area. The FLP has perturbed both the public and private sectors. The prime concern in 

FLP is the number of locations to be opened/located. 

The second major problem is to detect the optimal position after the discovery of the 

number of locations. It is also one of the most crucial decisions that service providers 

must take into account. The resulting challenges for public or private businesses are to 

provide goods or services to their respective consumers within an acceptable time and 

demand spectrum. Besides, most businesses are primarily aimed at maximizing 

revenues while minimizing overall costs.  

In a real-world scenario, there might be the capacity to know about the product's 

performance and features. As a result, the optimization of objective functions 

continuously varies. This thesis is concerned with these types of circumstances and 

creating an elegant procedure for resolving them. At first, fuzzy cluster technology 

relied on different distances to determine the number of clusters through fuzzy 

equivalence clustering. Then, we used the newly proposed clustering algorithms based 

on the suggested metric space, known as an alternative generalized hard c-mean 

(AGHCM) and an alternative generalized fuzzy c-mean (AGHFC), to find the best 

place for the facility. Following that, ideal locations have been identified, and fuzzy 

linear programming problems (FLLPs) for optimizing the objective function using a 
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different fuzzy number have been suggested. We aim to investigate both the feasibility 

and usefulness of the method through a real/artificial data set. 

Keywords: Facility location problem, optimization, Metric space, Fuzzy numbers, 

Fuzzy clustering, and fuzzy linear programming problem 

Thesis Layout 

The thesis is divided into the following chapters. 

Chapter 1: Introduction 

This chapter discusses clustering definitions and types of clustering. Discuss the two 

most frequently used clustering algorithms, such as k-means clustering and fuzzy C-

mean clustering algorithm. We also discussed the fundamental concepts of distance, 

fuzzy sets, and their components. Additionally, this chapter discusses the background 

of fuzzy clustering and fuzzy linear programming. Finally, clarify the study gap and the 

thesis's primary objectives. 

Chapter 2: Fuzzy Equivalence Relation Via Different Distance Measures and 

Its Utilizations 

This chapter aims to classify the performance grades of binders for NCHRP 90-07 

using fuzzy equivalence clustering via Minkowski, Mahalanobis, Cosine, Chebychev, 

and Correlation distance function. The performances of binders were graded in precise 

and equal stiffness temperatures at three different parameters. The five distance 

functions, namely Minkowski (𝑤 = 2), Mahalanobis, Cosine, Chebychev, and 

Correlation, are successfully applied in the clustering methodology to achieve a better 

separation analysis. The clusters are discovered by all five distances and distinguished 

for a suitable value of membership grade. We also include a theoretical comparison 

between the clustering performances by these distances. The Mahalanobis distance 

function trailed the first time in the equivalence fuzzy clustering methodology and 

accomplished the desirable objectives. The core effectuations of Mahalanobis and 
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Chebychev distance over the other four distances on the clustering performance of 

binders are investigated. 

Chapter 3: An Effective Generalized Exponential Metric Space Approach for 

C-Mean Clustering Analyzing 

Wu and Yang [1] suggested substituting the actual Euclidean distance in c-means 

algorithms, with the  Gaussian distance-dependent function, by AHCM and AFCM 

clustering algorithms. While it was more robust than the Euclidean distance, Zhang and 

Chen [2] have shown in this comment that Wu and Yang's distance is not a metric. In 

certain instances, the enhanced metric distance suggested by Zhang and Chen does not 

consider the consequence of clustering centroid as predicted due to the substantial value 

of 𝑏. In this chapter, we proposed a generalized new distance function by replacing the 

exponential constant (𝒆) with the arbitrary constant (𝒂). The initial criteria for new 

metrics are more stringent and precise, based on metric properties and experimental 

results. The focus is fogged upon clustering and developing new clustering algorithms. 

These algorithms are called the alternative generalized hard c-mean (AGHCM) and 

alternative generalized fuzzy c-mean. These alternative generalized c-mean clustering 

forms are faster and more robust than the alternative c-mean and other competitive 

algorithms. Experiments are carried out using two-and high-dimensional data such as 

Diamond data collection and Iris real-life data. The results rely on the demonstration of 

the robust simplicity and efficacy of the proposed algorithms. Furthermore, 

computational complexity is assessed. 

Chapter 4: A Novel Approach for Fuzzy Linear Programming Using 

Situational Based Composite Triangular Number 

In this chapter, we proposed a novel approach for fuzzy linear programming using 

situational-based composite triangular numbers. This model has been suggested to deal 

with probabilistic increment 𝜀𝑗   in one direction and probabilistic decrement 𝜀𝑖  in other 

direction in the basic availability 𝛽𝑖 of classical optimization and analyzing the result 

with targeted membership grade.  To validate the models with real-time phenomena, 

the Production cost data of Rail Coach Factory (RCF) Kapurthala has been taken.  
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Chapter 5: A Novel Approach for Fuzzy Linear Programming Using the 

Situational Based Trapezoidal Number 

In the previous chapter, we proposed FLLP through the composite triangular 

number. In this chapter, the comparative interpretation of optimization and modeling 

of the production cost through trapezoidal FLPP is proposed and describes different 

incertitude situations and evolved the realistic models to reduce the production cost.  

Chapter 6: An Advanced Optimization Technique for Smart Production Using 

𝜶 −Cut Based Quadrilateral Fuzzy Number 

In the design phase of a new smart product, production costs are unpredictable due 

to location, transport, and engineering design. In these situations, consequently, cost 

optimization becomes ambiguous. This chapter presents a methodology to obtain the 

optimization through fuzzy linear programming (FPL) in which fuzzy numbers signify 

the right-side parameters. The comparative investigation of modeling and optimizing 

creation cost through a new 𝛼 −cut based quadrilateral fuzzy number is proposed to 

solve the fuzzy linear programming and the basic operations on the proposed number. 

Due to the probabilistic increase and decrease in the accessibility of the various 

constraints, the actual expected total cost fluctuates. In this respect, a unique situation 

of instability is incorporated, and reasonable models to reduce the cost of eradication 

in the creation process are presented. The main endeavour is to look at the credibility 

of optimized cost employing the 𝛼 −cut based quadrilateral FLLP models, and the 

outcome is contrasted with its augmentation. The least lower, lower, upper, and most 

upper bounds are computed for each situation, and then systems of optimized FLLP are 

constructed. The credibility of quadrilateral FLLP concerning all situations is obtained 

and using this membership grade, the minimum and greatest minimum cost are 

illustrated.  
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Chapter 7: The Combined Study of Improved Fuzzy Optimization Techniques 

with the Analysis of the Upgraded Facility Location Center for the Covid-19 

Vaccine by Fuzzy Clustering Algorithms  

This chapter combines improved fuzzy optimization techniques with the analysis of 

upgraded cluster centers by fuzzy clustering algorithms. A smart mechanism for 

handling such a situation has been designed in this chapter. First, the fuzzy cluster 

technology offers such clustered locations so that the distance to different destinations 

between distribution centers is minimal. Subsequently, the ideal locations have been 

defined, and the fuzzy linear programming problems (FLLPs) are proposed via the 

composite fuzzy triangular number to calculate the highest possible distribution of the 

products so that transport costs can be reduced. We report on experimental studies by 

taking artificial data from the current warehouse to prove feasibility and showing that 

the proposed solution is applicable. 

Chapter 8: Conclusion and Future Directions 

This chapter concludes the various approaches already discussed and introduces new 

topics for the future. In terms of another group for fuzzy linear programming problems 

and clustering, this would put forward future aspirations for the area of optimization. It 

summarizes the inputs and identifies the areas that need attention in the near future. 
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Chapter 1 

Introduction  

“The significant problems we have cannot be solved at the same level of thinking 

with which we created them.” 

― Albert Einstein 

 

 

1.1 Clustering 

Clustering is a data analysis method used regularly in strategy formulation, market 

and business system planning. Partition of commodities is a conventional issue in 

inventory control and management. In most industries, there are different types of 

materials and components of machines or other apparatus to be managed to achieve the 

desired goal. An expert idea to enrich the efficiency of material management is to sort 

different materials into groups. Clustering helps to detect normal thresholds in the data. 

It is a multidisciplinary analysis branch and pattern recognition unsupervised learning. 

Clusters are most commonly used in numerous fields of science, such as machine 

learning, pattern recognition, optimization, image segmentation, taxonomy, medicine, 

geology, industry, engineering, etc. [3][4][5][6].  

1.1.1 Definitions  

Clustering is a collection of data features that are somewhat close among attribute 

values or separate from certain groups. Unsupervised learning to discover the collection 

of related data items by matching characteristics is known as clustering. As several 

definitions have been proposed in the past, there are a plethora of definitions to pick 

from [7] [8] [9]. These definitions are based on identical, comparable, or specific 

clusters and are mainly of an ambiguous, circular sort, as indicated in [9]. It shows how 

difficult it is to come up with a widely agreed definition for the word cluster. Several 
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working definitions of a cluster (see Figure 1.1) are commonly used, the most important 

of which are discussed below. 

 

Figure 1.1: Different type of the clustering  

1.1.1.1 Well-Separated Cluster Definition 

A cluster is a set of identical entities to one another than any other object that is not 

in a cluster. A threshold is often used to classify points (see Figure 1.2) relatively close 

to one another. However, a certain point in datasets on the precipice of a cluster might 

be more similar to objects in another cluster than objects from within the cluster. 

 

Figure 1.2: Four clusters of two-dimensional points well-separated 

1.1.1.2 Center-Based Cluster Definition 

Clusters are groups of objects that are more identical (closer) to the “center” of the 

cluster than to any other cluster in the group (see Figure 1.3). The centroid of a cluster 

is always located in the middle of the cluster. 
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Figure 1.3: Centre-based Cluster 

1.1.1.3 Contiguous Cluster Definition 

A cluster is a set of points in which the proximity of one point to another is not a 

characteristic of the cluster (see Figure 1.4). 

 

Figure 1.4: Contiguous Cluster 

1.1.1.4 Density-Based Cluster Definition 

Unsupervised learning approaches that identify recognizable classes or clusters (see 

Figure 1.5).in the data is known as density-based clustering. The concept that clusters 

in data space are areas of high point density isolated from several such clusters by areas 

of low point density. The dividing regions of low point density usually reflect 

noise/outliers. 
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Figure 1.5: Density-based Cluster 

1.1.1.5 Similarity-Based Cluster Definition 

A cluster is a group of "similar" objects, and objects are not similar (see Figure 1.6) 

in any other cluster. Alternatively, a cluster may be described as a collection of points 

that form a zone with a standardized characteristic, such as density or structure. 

 

Figure 1.6: Similarity-based Cluster 

1.2 Distance Measures  

The aim of determining the distance between clusters is necessary to differentiate 

them throughout the data set. The various distances have their advantages, but not a 

single one is suitable for all clustering problems. In Mathematics, the phenomenon of 

a metric space is fundamental and significant. Various metric functions construct 
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distinct metric spaces. In pattern recognition and machine learning, distance 

measurement and contrast between sample pairs play a very significant role 

[10][11][12][13][14][15]. With the assistance of sophisticated numerical optimization, 

we can acquire discriminatory characteristics through a rational description of distance 

function and decide whether two samples belong to the same class. In this perspective, 

the approaches of distance metric learning and dimensional reduction seek to learn 

high-level semantic distances where identical input objects are projected to close points, 

while distinct objects are differentiated from each other [16]. Distance metrics have 

been efficiently used for vast scenarios, including image selection, visual monitoring, 

and prototypes classification   [17][18][19]. 

1.2.1 Minkowski Distance 

Let 𝑋 be a universal space and 𝑋𝑖 𝑘 𝑎𝑛𝑑 𝑋𝑗 𝑘 ∈ 𝑋 then the Minkowski metric distance 

on crisp data is defined as[20] 

 𝐷𝑤(𝑖,𝑗)𝑘 =   [∑ |𝑋𝑖 𝑘 − 𝑋𝑗 𝑘|
𝑤𝑛

𝑘=1
]
1
𝑤 

(1.1) 

 Minkowski’s measure holds for w ∈ [1,∞). For the special case of w=1, it 

becomes Hamming distance, and when w=2, it is Euclidean distance. 

1.2.2 Mahalanobis Distance 

It is measured by deducting the Euclidean distance between two points through their 

standard deviation, which is expressed as [20] 

𝑀𝑑(𝑖,𝑗)𝑘 =   {[(𝑋𝑖 –𝑋𝑗 )
𝑇
𝑉−1 (𝑋𝑖 –𝑋𝑗 )]}

1/2  (1.2) 

where V is the sample covariance matrix. If the covariance matrix V is the identity 

matrix, then the  𝑀𝑑(𝑖,𝑗)  reduce to the Euclidean distance. If V is diagonal, then the 

determined distance measure is called a normalized Euclidean distance defined as 

 𝑀𝑑(𝑖,𝑗)𝑘 =
√ ∑ |𝑋𝑖 𝑘 − 𝑋𝑗 𝑘|

2𝑛
𝑘=1

𝑉
 

(1.3) 

https://en.wikipedia.org/wiki/Euclidean_distance
https://en.wikipedia.org/wiki/Diagonal_matrix
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1.2.3 Cosine Distance  

The Cosine of an angle is utilized to measure the resemblance between two vectors. 

It is described as[21] 

𝐷𝑐𝑜𝑠(𝑖,𝑗)𝑘 = 1 −
∑ 𝑋𝑖 𝑘. 𝑋𝑗 𝑘
𝑛
𝑘=1

√∑ (𝑋𝑖 𝑘)2
𝑛
𝑘=1 . √∑ (𝑋𝑗 𝑘)2

𝑛
𝑘=1

 

If 𝑋𝑖 𝑘. 𝑋𝑗 𝑘 ≥ 0, 𝑡ℎ𝑒𝑛 𝐷𝑐𝑜𝑠(𝑖,𝑗)𝑘 ∈ [0,1]. 

 

(1.4) 

1.2.4 Correlation Distance 

This distance measure is derived from the Spearman correlation coefficient(s) and 

is defined as[22] 

𝐷𝑐𝑜𝑟𝑟(𝑖,𝑗)𝑘 = 1 −
∑ (𝑋𝑖 𝑘 − 𝑋𝑖 𝑘
𝑛
𝑘=1  ). (𝑋𝑗 𝑘 − 𝑋𝑗 𝑘)

√∑ (𝑋𝑖 𝑘 − 𝑋𝑖 𝑘)2
𝑛
𝑘=1 . √∑ (𝑋𝑗 𝑘 − 𝑋𝑗 𝑘))2

𝑛
𝑘=1

 
 

(1.5) 

 Where  𝑋𝑖 𝑘 =
1

𝑛
∑ 𝑋𝑖 𝑘
𝑛
𝑘=1  and𝑋𝑗 𝑘 =

1

𝑛
∑ 𝑋𝑗 𝑘
𝑛
𝑘=1  

1.2.5 Chebyshev Distance 

It measures the distance between the characteristics of a pair of data points. It is 

represented as[23] 

𝐷𝑚𝑎𝑥(𝑖,𝑗) = 𝑚𝑎𝑥
𝑘
|𝑋𝑖 𝑘 − 𝑋𝑗 𝑘|  (1.6) 

 It would take less time to measure the distance between the data sets. 

1.3 Types of Clustering 

Clustering algorithms are classified into two main groups, partitional and 

hierarchical. 
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1.3.1 Hierarchical Clustering 

Hierarchical approaches generate a hierarchical breakdown of the data collection. 

Hierarchical clustering organizes smaller clusters as extensions of the larger ones (see 

Figure 1.7). Every clustering level is hierarchically nested in hierarchical clustering 

[24]. These clusters overlap and do not serve dynamism[25] [26]. Especially over the 

past analysis of the data decomposes the dataset into distinct subsets. This cluster tree 

is called a dendrogram, and it contains clusters of varying sizes. In hierarchical 

clustering, there are two different types [27]: agglomerative clustering and divisive 

clustering. 

1.3.1.1 Agglomerative Clustering 

The bottom-up technique is regarded as agglomerative. It creates a separate cluster 

for each entity in the first instance. Related clusters are then eventually combined into 

longer clusters until all particles are placed in one or more clusters or are terminated. 

1.3.1.2 Divisive Clustering 

Similarly, the up-bottom procedure is observed as Divisive clustering. Here, every 

data item begins with a cluster, the cluster is subdivided in several divisions until each 

data element enters a self-contained cluster, resulting to the establishment of a nested 

clustering. 

 

Figure 1.7: Hierarchical clustering 
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1.3.2 Partitional Clustering 

Partitional clustering decomposes a set of disjoint clusters [28][29]. To divide a 

database into sub-space partitions, consider running one or more clustering algorithms 

on the real data. Each cluster must have at least one object because the other objects 

are stored within it. To discover a high-quality partitioning, the data set into k of initial 

partitions, and then do multiple iterations to optimize the cluster quality Any objects 

are transferred during the iteration through one cluster to the other, increasing the 

clustering efficiency. If no object can be transferred, the algorithm stops when the 

quality cannot be improved.  

1.3.2.1 Type of the Partitional Clustering 

There are two kinds of partitional clustering (a) k-means clustering and (b) Fuzzy c-

means clustering (FCM). Hard c-means clustering (HCM), also known as k-mean 

clustering, is essentially a partitioning process that restricts each data point to precisely 

one cluster. Consequently, the issue of unclear boundary of the clusters can be solved 

by fuzzy clustering. The crisp partitioning of the data in fuzzy clustering is 

supplemented by a weaker partitioning requirement, where fuzzy relationships 

represent the connection between data. Fuzzy clustering is associated with complexity, 

softness, and ambiguity. The most frequently used fuzzy clustering algorithms in 

several essential areas is the Fuzzy c-means ( FCM) algorithm [30][31]. FCM is the 

HCM extension, and it is shown that FCM has superior results than HCM. Bezdek 's 

suggested FCM algorithms [32] is perhaps the most frequently used algorithm for 

clustering since it has stable uncertainty characteristics and can hold much more details 

than hard segmentation. FCM is the extension of Dunn's [33], which proposed a fuzzy 

ISODATA algorithm. The traditional FCM algorithm works well for most noiseless 

data, but it is susceptible to noisy prototypes because of its unusual feature data. 

1.3.2.1.1 The Hard C- Mean Clustering 

The hard-c-mean (k-mean) clustering is the key and most popular research method 

for hard clusters [34]. A set-up list of overlaps is the cluster assignment, namely ℧ =

{℧1 , ℧2 , … , ℧𝑘} where ℧𝑖 is the characterizing index-vector of samples for 𝑖th cluster. 
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Enable ℒ(𝑦𝑖) to be the 𝑦𝑖 Cluster. The objective function of the hard c-mean is the same 

as the sum of the fitness function square error (SSE), and it can easily be formulated to 

minimize the Euclidean distances in couples between points of the same cluster, i.e., 

𝑚𝑖𝑛 𝐽𝐻𝐶𝑀(𝑆𝑆𝐸) = ∑∑‖𝑦𝑘 − 𝑣𝑗  ‖
2

𝑐

𝑗=1

𝑁

𝑘=1

 

 

(1.7) 

Subject to           

𝑣𝑗=
∑ 𝑦𝑗𝑘
𝑛
𝑘=1

𝑛
 

(1.8) 

  Where 𝑦𝑘 , 𝑣𝑗 ∈ 𝜆𝑘  implies that both the 𝑦𝑘 and 𝑣𝑗  data points are allocated to 

the 𝑘th cluster 𝜆𝑘  While clustering can be effectively applied in 𝑘 −means, it is simple 

to converge to the local optimum, and besides, the clustering assignment relies heavily 

on the clustering number 𝐾, which users have to pre-assign empirically. 

1.3.2.1.2 Fuzzy C-Mean Clustering 

A statistical method in which experimental data sets are grouped according to 

similarities [16] is fuzzy clustering. The clustering technique that enables one collection 

of data to be used in two or more clusters is FCM. Dunn [17] introduced this technique 

in 1973 by and Bezdak [18] improved it in 1981. It was also widely used to identify a 

pattern. 

The data set 𝑥𝑘 is separated by the FCM algorithm into 𝑁 clusters [16]. The 

Clustering of the 𝑣𝑗  and 𝜇𝑗𝑘
𝑚  centers are by reducing the cost function. The objective 

function of FCM, mathematically, can be formulated as 

min 𝐽𝑓𝑐𝑚 =∑∑𝜇𝑗𝑘
𝑚

𝑐

𝑗=1

𝑁

𝑘=1

‖𝑦𝑘 − 𝑣𝑗‖
2
 

(1.9) 

  Where, 𝜇𝑗𝑘 is the membership grade of  𝑦𝑘 to the  𝑛𝑡ℎ clusters, the 𝑚 > 1 parameter 

of fuzzification controls the membership's softness. Higher mask estimating capacity 
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for 𝑚 = 2 has been recognized in [17]. The fuzzy partitioning process is carried out by 

an iterative optimization of the objective function shown above, with the updating of 

membership functions 𝜇𝑗𝑘 and cluster center 𝑣𝑗  by: 

𝑣𝑗 =
∑ 𝜇𝑗𝑘

𝑚𝑦𝑗𝑘
𝑛
𝑘=1

∑ 𝜇𝑗𝑘
𝑚𝑛

𝑘=1

                            𝑐 𝜖 𝑁  
(1.10) 

𝜇𝑗𝑘  =

{
  
 

  
 
[∑(  

‖𝑦
𝑘
− 𝑣𝑗‖

‖𝑦
𝑘  
− 𝑣𝑖‖

)

2
𝑚−1

𝑐

𝑖=1

]

−1

if ‖𝑦
𝑘
− 𝑣𝑗‖ > 0 , ∀ 𝑗

1 𝑖𝑓 ‖𝑦
𝑘
− 𝑣𝑗‖ = 0

0 𝑖𝑓 ∃ 𝑖 ≠ 𝑗      ‖𝑦
𝑘
− 𝑣𝑗‖ = 0

 

 

 

(1.11) 

  The calculation is based on such steps: 

Step-1) Initialization- U=[uij] matrix, U(0)  

Step-2) Centroid calculation – When each point in the dataset is assigned to a 

cluster, it is needed to recalculate the new 𝑣𝑖
1 , 𝑖 ∈ ℕ   centroids.  

Step-3) Updating of Membership function- Update U(k) , U(k+1) 

Step-4) If || U(k+1) - U(k)||<∈ then STOP; otherwise return to step 2. 

1.4 Related Work of FCM Based Techniques 

The traditional FCM algorithm works well for most noiseless data, but it is 

susceptible to noisy prototypes because of its unusual feature data. Researchers are 

considering different ways to accommodate this FCM limitation. Even so, one related 

form, Possible C-mean (PCM), suggested by Krishnapuram and Keller [35], interprets 

clustering as a partition of possibility. Nonetheless, clustering was impaired in one or 

two clusters. Pal et al. [36]  implemented Possible Fuzzy C-mean(PFCM) to resolve the 

problem of identical clusters, which produces membership and typicality values while 

clustering unlabelled data. PFCM has not given the optimal results when the data set 

consists of the unequal size of noise clusters. Therefore, some researchers[37] [38] have 

adopted the so-called robust distance measures such as the 𝐿𝑝 standards (0 <  𝑝 <
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 1) to replace the 𝐿2  norm within the FCM objective feature, to limit the effect of noise 

elements on clustering efficiency .  

In Noise Clustering(NC), Dave [39] [40][41][42]proposed the idea of noise cluster, 

which distinguishes outliers in their cluster. The problem with NC is not the identity of 

outliers between the clusters, and the number of clusters for a certain set of data is not 

independent[43]. Credibility Fuzzy c-means (CFCM) [44][45][46][47] developed a 

credibility feature to reduce the effect of outliers on cluster centroids. Also, if CFCM 

reduces outliers' influence, it assigns certain outliers to several clusters most of the time. 

One of the advances emerging from belief function theory is the credal partition. This 

definition generalizes current definitions of hard, fuzzy, or possible clusters by enabling 

an entity to belong to many groups. To remove certain credal partitions through data 

and improve their robustness against outliers, a variety of algorithms have been 

proposed,  Evidences cluster (EVCLUS) [48], Evidences c-means (ECM) [49][50], 

relation evidence c-means (RECM) [51] and Constrained evident evidence c means 

(CECM)[52] [53][54]. 

Various other distance measurements, such as Mahalanobis distance measurement, 

Kernel-based distance measurement in data space, and high-dimensional function 

space, can also identify non-hyper spherical/non-linear clusters[55][56]. 

1.5 Fuzzy Linear Programming 

In a crisp situation, linear programming problems (LLP) aim to maximize or 

minimize a linear objective function while maintaining linear constraints. But in cases 

in which the objective and/constraint functions cannot be defined exactly, such as 

network optimization, logistics, management problems, and assignments, the decision-

maker can only indicate the nature of these issues using concepts of high degrees of 

precision is not always possible. In certain cases, a certain kind of fuzzy linear 

optimization programming is ideal to ensure the decision-maker has efficient reliability. 

Fuzziness can occur in several different forms, and there is no standard form to describe 

a fuzzy linear programming problem (FLLP). 
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Classical LPPs are the minimum or maximum values under linear inequalities or 

linear function equations. The standard form of LPP is represented by 

Max /Min 𝑍 =∑ с𝑗𝑦𝑗

𝑛

𝑗=1

 

Subject to   ∑ 𝒶𝑖𝑗𝑦𝑗
𝑛
𝑗=1  ≤ 𝑜𝑟 ≥ 𝑏𝑖 

Where,  𝑦𝑗 ≥ 0, 𝑖, 𝑗 ∈ ℕ 

 

 

 

(1.12) 

 The function to be Max 𝑍 or Min 𝑍 is called an objective function. The 𝑐𝑗 are called 

cost coefficients. The A=[𝒶𝑖𝑗] matrix is called a restriction matrix, and the  

b=  < 𝑏1, 𝑏2, … , 𝑏𝑚 >𝑇 is called a vector on the right side. where y=  < 𝑦1, 𝑦2, … , 𝑦𝑛 >
𝑇 

is the vector of variables. Fuzzy sets theory could be used to deal with vague and 

indeterminate details in LPP by generalizing the concept of membership to include 

ambiguity. 

1.6  Fuzzy Set and its Components 

The system of the fuzzy set was presented by Zadeh [57], and it was further 

improved by Zadeh[58]. It is an impressive technique for signifying instinctive or 

inaccurate evidence in dissimilar situations. The applications of fuzzy sets, including 

decision-making [59], probability [60], control theory [61], medical studies [62], and 

the characterization of complex systems [63], are currently used in the majority of 

scientific disciplines. We analyze some of the fuzzy set theory's fundamental principles 

and terminology used for the other sections of this thesis. 

Definition 1.1.: A fuzzy set 𝐵̃ is defined on universe set Y defined as fellow: 

 𝐵̃ = {(y, 𝜇𝐵̃(𝑦): 𝑦𝜖𝑌} (1.13) 

Where 𝜇𝐵̃(𝑦) represent the membership function of a fuzzy set simplifies the 

predictor function in crisp sets, whose range covering the interval [0,1] operating on the 

domain of all possible values. 

https://en.wikipedia.org/wiki/Fuzzy_set
https://en.wikipedia.org/wiki/Indicator_function
https://en.wikipedia.org/wiki/Indicator_function
https://en.wikipedia.org/wiki/Set_(mathematics)
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Definition 1.2. A fuzzy set 𝐵̃ is called normal if there exists at least one element 𝑦𝜖𝑌 

with 

 𝜇𝐵̃(𝑦) = 1. (1.14) 

 Definition 1.3. Let 𝐵̃ be a fuzzy set in 𝑌 and 𝛼 ∈ [0,1]. The 𝛼-cut of a fuzzy set 𝐵̃ in 

Y is the crisp set 𝐵̃𝛼 given by 

𝐵̃𝛼 = {𝑦|μ𝐵̃(𝑌) ≥ 𝛼} (1.15) 

Definition 1.4. The support of the fuzzy set 𝐵̃  of Y is defined as follow: 

𝑠𝑢𝑝𝑝(𝐵̃) = {𝑦|μ𝐵̃(𝑌) >  0}   (1.16) 

Definition 1.5. A convex fuzzy set 𝐵̃  of 𝑌 is defined as follows 

 μ𝐵̃{ λ𝑦1 + (1 −  λ) 𝑦2} ≥ 𝑚𝑖𝑛 {μ𝐵̃(𝑦1), μ𝐵̃(𝑦2)} ,Where 0 ≤  λ ≤ 1 (1.17) 

  It is said to be a non-convex fuzzy set if the above inequality does not hold. 

Definition 1.6. A fuzzy set 𝐵̃  in ℝ is called a fuzzy number if it satisfies the following 

conditions: 

(i) 𝐵̃  𝑖𝑠 𝑛𝑜𝑟𝑚𝑎𝑙, 

(ii) 𝐼𝑡 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑥 𝑓𝑢𝑧𝑧𝑦 𝑠𝑒𝑡, 

(iii) 𝐼𝑡 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑  𝑖𝑛 [0,1]𝑎𝑛𝑑 

(iv) 𝑇ℎ𝑒 𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑜𝑓 𝐵̃  𝑖𝑠 𝑏𝑜𝑢𝑛𝑑𝑒𝑑. 

We denote the set of all fuzzy numbers on ℝ by 𝐹(ℝ): It is well known that if 𝐵̃ ∈

𝐹(ℝ), then the 𝛼-cut of 𝐵̃ is a closed interval for every 𝛼 ∈ [0,1], i.e., closed, bounded, 

and convex subset of ℝ. Therefore, the closed interval is denoted by  𝐵̃𝛼 = [𝐵𝛼̃
𝐿
 , 𝐵𝛼̃

𝑈
]. 

If 𝐵𝛼̃
𝐿
≥ 0 ∀ 𝛼 ∈ [0,1], then 𝐵̃  is called a non-negative fuzzy number. 

Definition 1.7. A fuzzy number 𝐵̃ = (𝛽𝑖, 𝛽𝑖 + 𝜀𝑖) is said to be a right triangular fuzzy 

number if its membership function is given by 
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𝐵̃={

1 𝑊ℎ𝑒𝑛 𝑦 ≤ 𝛽𝑖
𝛽𝑖𝑖+𝜀𝑖−𝑦

𝜀𝑖
𝑊ℎ𝑒𝑛 𝛽𝑖 ≤ 𝑦 ≤ 𝛽𝑖 + 𝜀𝑖

0 𝑤ℎ𝑒𝑛 𝑦 ≥ 𝛽𝑖 + 𝜀𝑖

 

 

(1.18) 

 

Figure 1.8: Representation of the right triangular membership function 

Definition 1.7. A fuzzy number 𝐵̃ = (𝛽𝑖 − 𝜀𝑖, 𝛽𝑖, 𝛽𝑖 + 𝜀𝑖
∗) is said to be a composite 

triangular fuzzy number if its membership function is given by 

𝐵̃ =

{
 
 

 
 
𝑦 − (𝛽𝑖 − 𝜀𝑖)

𝜀𝑖
𝛽𝑖 − 𝜀𝑖 ≤ 𝑦 ≤ 𝛽𝑖

1 𝑦 = 𝛽𝑖
𝑦 − (𝛽𝑖 − 𝜀𝑖

∗)

𝜀𝑖
∗ 𝛽𝑖 ≤ 𝑦 ≤ 𝛽𝑖 + 𝜀𝑖

∗

 

 

          

(1.19) 
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Figure 1.9: Representation of the composite triangular membership function 

If 𝜀𝑖 = 𝜀𝑖
∗  it called a symmetric triangular fuzzy number, otherwise non- symmetric. A 

triangular fuzzy number(𝛽𝑖 − 𝜀𝑖, 𝛽𝑖, 𝛽𝑖 + 𝜀𝑖
∗) is said to be a non-negative fuzzy number 

iff 𝛽𝑖 − 𝜀𝑖 ≥ 0. 

Definition 1.8. A fuzzy number 𝐵̃ = (𝛽𝑖 − 𝜀𝑖, 𝛽𝑖, 𝛽𝑖
∗, 𝛽𝑖

∗ + 𝜀𝑖
∗) is said to be a trapezoidal 

fuzzy number if its membership function is given by 

μ𝐵̃(𝑌) =

{
 
 

 
 
𝑦−(𝛽𝑖−𝜀𝑖)

𝜀𝑖
𝛽𝑖 − 𝜀𝑖 ≤ 𝑦 ≤ 𝛽𝑖

1 𝛽𝑖 ≤ 𝑦 ≤ 𝛽𝑖
∗

𝑦−(𝛽𝑖
∗−𝜀𝑖

∗)

𝜀𝑖
∗ 𝛽𝑖

∗ ≤ 𝑦 ≤ 𝛽𝑖
∗ + 𝜀𝑖

∗

 

 

(1.20) 

If 𝜀𝑖 = 𝜀𝑖
∗  it called a symmetric trapezoidal fuzzy number, otherwise non- 

symmetric. A trapezoidal fuzzy number ((𝛽𝑖 − 𝜀𝑖, 𝛽𝑖, 𝛽𝑖
∗, 𝛽𝑖

∗ + 𝜀𝑖
∗)  is said to be non-

negative fuzzy number 𝑖𝑓𝑓 𝛽𝑖 − 𝜀𝑖 ≥ 0. 
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Figure 1.10: Representation of the trapezoidal membership function 

where αμB
(𝑥) and α+μB

(𝑥)stands for the membership functions of fuzzy set 𝐵̃ and 

μ
𝐵̃

(𝑋) represents the α -cut of fuzzy set 𝐵̃ at the level.  

Height of a fuzzy set denoted by ℎ(𝐵̃) is defined as the largest of membership values 

of the elements contained in that set. For a normal fuzzy set, ℎ(𝐵̃) = 1. A fuzzy set will 

be convex, if μ
𝐵̃

{ λ𝑥1+(1- λ) 𝑥2}≥min {μ
𝐵̃

(𝑥1), μ𝐵̃(𝑥2)} ,Where 0 ≤ λ≤1.      

1.7 Background of Fuzzy Linear Programming Problems (FLP)   

FLP problems admit imprecise restrictions, resulting in more accurate versions. 

They have also been employed in scientific and industrial issues[64] [65][66][67][68]. 

The theory of fuzzy mathematical programming was first introduced by Tanaka et 

al.[69] & Bellman and Zadeh [58], which was based on fuzzy decision structure to 

address the imprecision of LP parameters issues with fuzzy imperatives and objective 

functions. Zimmerman [70] has implemented an FLP formula in a crisp problem model 

using an existing algorithm and categorized FLP problems into symmetric and non-

symmetric. Amid et al. [71] clarifies that there is no difference in the symmetric issue 

between the amounts of the objective and the restrictions, whereas the destinations and 

limitations are not identical in non-symmetric issues and have different amounts. 

Tanaka and Asai [72] proposed a likely formulation of LPP with crisp decision 

coefficient and fuzzy decision variables. Verdegay [73] proposed and used the idea of 
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a fuzzy objective constructed on the norm of fuzzification to explain FLP problems. 

Herrera et al. [74] analyzed the mathematical problem as fuzzy numbers and often 

included fuzzy coefficients as the concept of a feasibly specified set. Ganeshan and 

Veeramani [75]  have suggested an FLP model with symmetrical trapezoidal fuzzy 

numbers. They have demonstrated fuzzy analogs for some primary LP axioms without 

translating them into crisp LP problems. Dong et al. [76] were designed a new fuzzy 

linear model, with trapezoidal fuzzy numbers (TrFNs) being all target coefficients, 

scientific coefficients, and devices. The order relationship of the TrFNs is originally 

measured using the estimate of the TrFNs interval. The trapezoidal linear fuzzy system 

is converted into an objective interval program based on the order relationship of the 

TrFNs. 

With the existence of the fuzzy linear programming problems, many researchers 

introduced some methods for solving these problems [77][78] solved fuzzy linear 

programming problems through the simplex method. With ample literature, we deduce 

from an unusual perspective the theory and approach of optimization with the fuzzy-

valued objective function,[79][80][81][82][83] and their references. However, merely 

rare efforts recognize the feasible set and alternatives sets for the modeling, which are 

expressed through functional constraints. In [84] [85][86], the feasible set is described 

via inequalities functions specified through crisp functions, i.e., the only opportunity of 

survival of fuzziness in the areas is measured, and also studied that data in which the 

alternatives are not explained. It is very difficult to construct the models for uncertainty 

information, but authors try to hypothesis all possibilities according to given data. We 

approach to build the different fuzzy numbers for the constrains for which the achieved 

outcomes will be more conventional. 

Meanwhile, the concerned fuzzy numbers have a realistic approach in lots of the 

different fields like decision making, data analysis [87][88] and also engineering 

problems[89][90], etc. With the help of these fuzzy numbers’ assistance, we can resolve 

numerous optimization problems. In [91], they introduced a different process on fuzzy 

triangular numbers(FTN) improved subtraction and division. Also, there are a lot of 
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modified operations that are used to enhance triangular and trapezoidal fuzzy numbers 

[92][93][94] [95][96][97], and these might affect optimizing FLP.  

Aforementioned, many researchers had used applications of these fuzzy numbers to 

optimize the fuzzy linear programming problems, such as an approach of ranking a 

fuzzy number and fuzzy triangular number [98]to solve linear programming problems. 

A research paper by Chakraborty et al. [45] FLP states that a triangular fuzzy number 

represents all the coefficients and decision variables and all the constraints are fuzzy 

equality or inequality. An innovative way for solving Fully FLP by applying the 

Lexicography method [99]. In addition to classical linear programming, they proposed 

the latest pattern for solving FLP completely using (L-R) fuzzy numbers and a 

lexicographical method. A novel algorithm is proposed [100] built on an innovative 

lexicographic ordering on TFN to explain the FFLP by changing it to its correspondent 

a  MOLP. 

On the other hand, the various components of fuzzy triangular numbers[101][102] 

were used to design the reliability parameters to build the optimization model for the 

industrial systems. On the other hand, the various components of fuzzy triangular 

numbers[101][102] were used to design the reliability parameters to build the 

optimization model for the industrial systems. In these papers[103][75][104], 

symmetrical fuzzy number FLP problem-solving coefficients for the objective function 

and solution value for RHS restrictions were applied. 

Shaheen et al. [105] provided an alternative approach to range estimation based on 

a fuzzy set theory. It has provided a technique for the extraction and processing of fuzzy 

numbers by experts within the fuzzy framework of the study. A fuzzy State Estimation 

(FSE) model is used by [106] to model the uncertainty in estimating the state of the 

power system based on the optimization of restricted linear programming. Uncertain 

measurements are expressed as fuzzy numbers with a triangular and trapezoidal 

membership function with medium and propagated values. In the article Jagadeeswari 

and Nayagam [107], efforts were made for using the distance function in terms of the 

α-cuts to address the problem of triangular approximations of the fuzzy parabolic 

numbers. A new nearest trapezoidal approach operator with expected interval survival 
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is prescribed in [108]. Chen and Cheng [109] presented the subjective perspectives of 

decision-makers with trapezoidal fuzzy numbers in linguistic terms. An FLFP solution 

procedure where objective function, capital, and technical coefficients are fuzzy 

triangle numbers has been proposed [110]. Ebrahimnejad and Tavana [111] proposed 

an approach to address FLP problems in which symmetric fuzzy trapezoidal numbers 

are interpreted as objective function coefficients and right-side values, while real 

numbers are the components of the matrix coefficient. An approach has been suggested 

by [112] to solve the FFLP problem, with the symmetric trapezoidal fuzzy number 

representing the parameters without any conversion of crisp equivalent problem. Three 

cases of linear programming problems, such as real numbers, type-1 fuzzy numbers, 

and type-2 fuzzy sets, were discussed in [113]. A complete linear defuzzification 

function defined in a trapezoidal fuzzy number subsection of a fuzzy number vector 

space is the best way to solve a linear programming problem with real objects in the 

type-1 Fuzzy linear programming. The theorem α-level representation was the 

approach for obtaining the optimal type-2 solution. Dong and Wan [95] developed a 

new approach for the linear fuzzy system in which trapezoidal fuzzy numbers (TrFNs) 

are used to represent all objective coefficients, technology coefficients, and tools. Also, 

the proposed model of the paper is not only mathematically extensive as well as the 

degree of recognition of the fuzzy limitations is violated adequately. Karimi et al. [114] 

provide the best-worst method for addressing multi-attribute decision-making 

(MADM) issues in the fuzzy situation. Then the weight of the criterion is fully 

determined by a fuzzy linear mathematical model. In addition to that, all the weights 

are quantified by fuzzy triangular numbers. Bolos et al. [115] discussed a new hybrid 

model using linear schedules and fuzzy numbers to achieve tangible assets in the 

business. This hybrid model is suggested as the basis of decision variables, objective 

function coefficients, and a matrix of constraints for the resolution in the form of 

triangular fuzzy numbers. 

1.8 Research Gaps 

Based on the literature, the following research gaps have been identified: 
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1.8.1 Efficient Clustering Technique 

The primary issue for the clustering of data is identifying groups (or clusters), 

depending on the given data features of the data set. It is difficult to predict the number 

of clusters in most real-life scenarios. However, even after implementing the case-

sensitive and fuzzy clustering algorithms, there are still problems with the lack of non-

overlapping clusters due to the presence of non-members and outliers. Thus, a need to 

establish an efficient clustering strategy determines both the number of clusters and the 

clustering at runtime. 

1.8.2 Situational Based Fuzzy Linear Programming Problems  

It is not the exact number of restrictions that matters; it is the probability that a 

certain constraint has a given result that needs to be incremented or decremented that 

the problem definition of the target is ambiguous, allowing the objective to collapse. 

Many researchers have attempted to address these problems, but there is still scope for 

improvement. 

1.8.3 A Combined Study of Fuzzy Clustering and Fuzzy Linear 

Programming Problems  

Furthermore, the enhancement of fuzzy optimization by fuzzy clustering algorithms 

has a lag. 

1.9 Objectives of the Research 

• Intensive study of fuzzy clustering algorithms and optimization techniques. 

• To enhance the quality of fuzzy clustering and the optimization techniques 

using fuzzy membership functions/fuzzy numbers.  

• Combined study of improved fuzzy optimization techniques to analyze 

upgraded cluster centers by fuzzy clustering algorithms. 
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Chapter 2 

Fuzzy Equivalence Relation Via Different Distance 

Measures and Its Utilizations 

“A statistical analysis, properly conducted, is a delicate dissection of uncertainties, 

a surgery of suppositions.”  

−Michael J. Moroney 

 

 

2.1 Introduction 

Cluster analysis is one of the leading approaches to acknowledge the patterns., many 

researchers represented the idea of fuzzy clustering to get a better classification of 

objects. In this direction, they made significant contributions in deciding on the 

existence of fuzziness, incomplete information. The first fuzzy clustering approach was 

initiated by Bellman et al. [116]and Ruspini[117], then Dunn [118] explained the Well-

Separated Clusters and Optimal fuzzy Partitions. Tamura et al. [119] figured out an 𝑛-

step procedure using max-min fuzzy compositions (max-min similarity relation) and 

achieved a multi-level hierarchical clustering. Some interactions between fuzzy 

partitions and similar relations have been studied in [120]. Several hard cluster 

algorithms were indeed demonstrated [121] that could be derived from the theory of 

maximum likelihood estimator. 

 Now fuzzy clustering has been extensively examined and practiced in multifarious 

areas [122][123] [124][125]. Groenen et al. [126] used the Minkowski distance function 

to get fuzzy cluster analysis.  Yang and Shih [127] concentrated on Cluster analysis 

based on fuzzy relations, and a clustering algorithm is created for the max-t similarity 

relation matrix. Then three critical max-𝑡 (max-min, max-prod, and max-∆) 

compositions are compared. Liang et al.[128] determined the best number of clusters 

using a cluster validity index by taking a suitable 𝜆 cut value. At first, the trapezoidal 
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fuzzy numbers are defined based on the subject’s attributes rating. The distance 

between two trapezoidal fuzzy numbers is computed subsequently to obtain the 

compatibility relation then the categorization of objects was done by a fuzzy 

equivalence relation. In articles [129][130] concentrated on fuzzy clustering analysis 

based on equivalence class and illustrated the desirable cluster. K. M. Bataineh et 

al.[131] compared the performances of fuzzy C-mean clustering algorithm and 

subtractive clustering algorithm according to their capabilities. This chapter aims to 

classify the binder’s performances using fuzzy equivalence clustering via Minkowski 

Cosine, Chebyshev, Correlation, and a new (Mahalanobis) distance function. The 

reliability and adequacy of the Mahalanobis distance on the clustering performance of 

Binders are examined over Minkowski and other distance functions. 

2.2 Preliminaries 

In this section, we address the following basic definitions: 

Definition2.1. Let 𝐴̃  and 𝐵̃ are two fuzzy sets, defined on universal spaces X and Y 

then a fuzzy relation on (X × Y), is defined by 

𝑅 ̃ = {[(𝑥, 𝑦),  𝜇𝑅̃(𝑥, 𝑦)]|(𝑥, 𝑦)𝜖 X × Y } 

Where, 𝜇𝑅̃(𝑥, 𝑦) ≤ min { 𝜇𝐴̃(𝑥),  𝜇𝐵̃(𝑥)} 

 

(2.1) 

Definition2.2. Let 𝑅̃1 on (X × Y) and 𝑅̃2 on (Y × Z) be two fuzzy relations than the 

max-min composition 𝑅̃1°𝑅̃2 is defined by 

𝑅̃1°𝑅̃2 = {[(𝑥, 𝑧),  
Yy

max  {min { 𝜇𝑅̃(𝑥, 𝑦),  𝜇𝑅̃(𝑦, 𝑧)}} ] |𝑥𝜖 X , 𝑦𝜖 Y, 𝑧𝜖Z } 
(2.2) 

Definition2.3. Let 𝑅̃ be a fuzzy relation on (X × Y), then  

(1) 𝑅̃ is called reflexive if   𝜇𝑅̃(𝑥, 𝑥) = 1, ∀ 𝑥 ∈ X 

(2) 𝑅̃ is called  𝜀 −reflexive if   𝜇𝑅̃(𝑥, 𝑥) ≥ 𝜀, ∀ 𝑥 ∈ X 

(3) 𝑅̃ is called weakly reflexive if 
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         𝜇𝑅̃(𝑥, 𝑦) ≤  𝜇𝑅̃(𝑥, 𝑥) 𝑎𝑛𝑑  𝜇𝑅̃(𝑦, 𝑥) ≤ 𝜇𝑅̃(𝑥, 𝑥)∀ 𝑥 ∈X. 

Definition2.4. A fuzzy relation 𝑅̃ is called symmetric if  

  𝜇𝑅̃(𝑥, 𝑦) =  𝜇𝑅̃(𝑦, 𝑥) ∀ 𝑥, 𝑦 ∈ X. (2.3) 

Definition2.5. A fuzzy relation 𝑅̃ is called transitive if  

𝜇𝑅̃(𝑥, 𝑧) ≥
Yy

max {min { 𝜇𝑅̃(𝑥, 𝑦),  𝜇𝑅̃(𝑦, 𝑧)}} ∀ 𝑥, 𝑦, 𝑧 ∈ X (2.4) 

Definition2.6. A fuzzy relation 𝑅̃ on X is said to be compatible with X if it is reflexive 

and symmetric. 

Definition2.7. A fuzzy relation 𝑅̃ on X is said to be transitive on X if it is reflexive, 

symmetric, and transitive. 

2.3 Clustering Methods Based upon Fuzzy Equivalence Relations: 

The distances between the crisp data sets are required to obtain the fuzzy cluster 

analysis through the equivalence class. We proposed the Mahalonobis, Chebychev, 

Minkowski, Cosine, and Correlation metric distance on crisp data.  

According to the distances, the fuzzy compatible relation matrix is yielded. For the 

Minkowski class (w=2), the relation matrix is   

 𝑅̃ (𝑋𝑖 , 𝑋 𝑗) = 1 − 𝛿 [∑ |𝑋𝑖 𝑘 − 𝑋𝑗 𝑘|
2𝑛

𝑘=1
]
 
1
2
 

 

(2.5) 

Where 𝛿 = {𝑚𝑎𝑥 [∑ |𝑋𝑖 𝑘 − 𝑋𝑗 𝑘|
2𝑛

𝑘=1
]
 
1
2
}

−1

 

 

(2.6) 

and the fuzzy compatible relation matrix for Mahalanobis distance is generated by 

𝑅̃ (𝑋𝑖 , 𝑋 𝑗) = 1 − 𝜆 {√ [(𝑋𝑖 –𝑋𝑗 )
𝑇
𝑆−1 (𝑋𝑖 –𝑋𝑗 )]  } 

   (2.7) 
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Where  𝜆 = {𝑚𝑎𝑥√ [(𝑋𝑖 –𝑋𝑗 )
𝑇
𝑆−1 (𝑋𝑖 –𝑋𝑗 )]  }

−1

 
   (2.8) 

The fuzzy compatible relation matrix for Cosine distance is        

𝑅̃ (𝑋𝑖 , 𝑋 𝑗) = 1 − 𝛾 {1 −
∑ 𝑋𝑖 𝑘. 𝑋𝑗 𝑘
𝑛
𝑘=1

√∑ (𝑋𝑖 𝑘)2
𝑛
𝑘=1 . √∑ (𝑋𝑗 𝑘)2

𝑛
𝑘=1

 } 
   (2.9) 

Where 𝛾 = {max{1 −
∑ 𝑋𝑖 𝑘.𝑋𝑗 𝑘
𝑛
𝑘=1

√∑ (𝑋𝑖 𝑘)
2𝑛

𝑘=1 .√∑ (𝑋𝑗 𝑘)
2𝑛

𝑘=1

}}

−1

 

 

(2.10) 

The fuzzy compatible relation matrix for Correlation distance is           

  𝑅̃ (𝑋𝑖 , 𝑋 𝑗) = 1 − 𝜌

{
 

 

1 −
∑ (𝑋𝑖 𝑘 − 𝑋𝑖 𝑘
𝑛
𝑘=1  ). (𝑋𝑗 𝑘 − 𝑋𝑗 𝑘)

√∑ (𝑋𝑖 𝑘 − 𝑋𝑖 𝑘)2
𝑛
𝑘=1 . √∑ (𝑋𝑗 𝑘 − 𝑋𝑗 𝑘))2

𝑛
𝑘=1

  

}
 

 

  

 

(2.11) 

Where 𝜌 =

{
 

 

max

{
 

 

1 −
∑ (𝑋𝑖 𝑘 − 𝑋𝑖 𝑘
𝑛
𝑘=1  ). (𝑋𝑗 𝑘 − 𝑋𝑗 𝑘)

√∑ (𝑋𝑖 𝑘 − 𝑋𝑖 𝑘)
2𝑛

𝑘=1 . √∑ (𝑋𝑗 𝑘 − 𝑋𝑗 𝑘))
2𝑛

𝑘=1

 

}
 

 

}
 

 

                                                        

−1

 

 

(2.12) 

The fuzzy compatible relation matrix for Chebychev distance is    

  𝑅̃ (𝑋𝑖 ,𝑋 𝑗)= 1−𝜎 {𝑚𝑎𝑥
𝑘

|𝑋𝑖 𝑘−𝑋𝑗 𝑘| }  (2.13) 

Where 𝜎 = {max {𝑚𝑎𝑥
𝑘

|𝑋𝑖 𝑘 − 𝑋𝑗 𝑘| } }
−1

                         
  (2.14) 

After the fuzzy compatible relation matrix, the fuzzy transitive closures were 

constructed for each matrix. If 𝑅̃ ∘ 𝑅̃ ⊆ 𝑅̃ then 𝑅̃ ∘ 𝑅̃ =  𝑅̃2𝑇 is said to be transitive 

closure of 𝑅̃ for 𝑘 = 1. If 𝑅̃ ∘ 𝑅̃ ⊈ 𝑅 ̃then construct  𝑅̃2 ∘ 𝑅̃2. If  𝑅̃2 ∘ 𝑅̃2 ⊆ 𝑅̃2 then 

 𝑅̃4𝑇 is said to be transitive closure of 𝑅̃2 for 𝑘 = 2.If there are 𝑛 −elements in the 

universal space, then the fuzzy transitive closure is achieved until 2𝑘 ≥ 𝑛 − 1. 

 The 𝛼-cut relation can be obtained from a transitive fuzzy relation by taking the 

pairs with membership degrees no less than 𝛼. 
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𝑅̃𝛼 = {[(𝑥, 𝑦),  𝜇𝑅̃(𝑥, 𝑦) ≥ 𝛼]|(𝑥, 𝑦)𝜖 X × Y }.   (2.15) 

2.4 A Comparative Fuzzy Cluster Analysis of the Binder's Performance 

Grades 

This chapter proposes the fuzzy equivalence class clustering using Minkowski, 

Mahalanobis, Cosine, Chebychev, and Correlation distance function on the 

performance grading of different binders used in Turner–Fairbank Highway Research 

Center Polymer Research Program [6]. It was observed by Aroon Shenoy in his 

research [6] that the super pave specification parameter |𝐺 ∗|/(
1

𝑆𝑖𝑛𝛿
)   is not tolerable in 

the classification of polymer modified binders for high-temperature performance 

grading of paving asphalts. It was a matter of concern to subtilize this parameter to gain 

more consciousness in the pavement performance and detect other latent parameters 

that may better relate to the rutting resistance. The refined super pave specification 

parameter, namely, |𝐺 ∗|/(1 −
1

𝑡𝑎𝑛𝛿.𝑆𝑖𝑛𝛿
) has the highest merit for possible use. It is a 

viable alternative for getting the high-temperature specification, such that it becomes 

more sensitive to field performance. Owing to the variations in the phase angle𝛿, the 

parameter |𝐺 ∗ |/(1 − (
1

𝑡𝑎𝑛𝛿.𝑠𝑖𝑛𝛿
) can easily attain its efficiency as compared to the 

original super pave specification parameter. Another alternative would be to first define 

an equal stiffness temperature(𝑇𝑒°C), when the complex shear modulus(|𝐺 ∗|) takes a 

specific value of 50 kPa. These parameters take care of the rheological contribution 

coming from one portion of the term |𝐺 ∗| [1 −
1

(𝑡𝑎𝑛𝛿.𝑆𝑖𝑛𝛿) 
]⁄ . the result in terms of high 

specification temperature (𝑇𝑇𝐻°C) being defined as(𝑇𝑒°C) [1 −
1

(𝑡𝑎𝑛𝛿.𝑆𝑖𝑛𝛿) 
]⁄  and it is 

more meaningful to achieve eminent high specification temperature. To get the better 

discrimination between the performances of binders at different membership grades 

with specification parameter|𝐺 ∗ |/(
1

.𝑠𝑖𝑛𝛿
), |𝐺 ∗ |/(1 − (

1

𝑡𝑎𝑛𝛿.𝑠𝑖𝑛𝛿
) and 

(𝑇𝑒°C) [1 −
1

(𝑡𝑎𝑛𝛿.𝑆𝑖𝑛𝛿) 
]⁄ , the fuzzy equivalence class clustering is proposed.  
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2.5 Experimental Data 

The experimental data used was taken from the research [16] under NCHRP 

(National Co-operative Highway Research Program) and TFHRC (Turner–Fairbank 

Highway Research Center). In terms of high specification temperatures, the 

performance grades were computed for different polymer-modified binders that were 

evaluated under the NCHRP 90-7 ongoing polymer research program carried out at 

Turner–Fairbank Highway Research Center.  

Here the performances of seventeen Binders are selected for criteria-based 

classification. All seventeen binders are categorized into five different sets based on 

super pave grades; the Pave Grade numbers shown are based on the super pave system 

description 

Set-A consist of a binder 𝑥1 = flux (B6224) with Pave Grade 52-28. 

Set-B consist of a binder 𝑥2 = unmodified base (B6225) with Pave Grade 64-28. 

Set-C consist of thirteen binders with Pave Grade 70-28; they are described as  

𝑥3 =Unmodified high grade (B6226), 𝑥4 =Air blown (B6227) and 8 Polymer-modified 

systems  { 𝑥5 =ElvaloyNo.1 (B6228) , 𝑥6 = Styrene–Butadiene–Styrene Linear-

Grafted (B6229),  𝑥7 = Styrene–Butadiene–Styrene Linear (B6230) , 𝑥8 = Butadiene–

Styrene Radial-Grafted (B6231), 𝑥9 = Ethylene–Vinyl– Acetate No. 1 (B6232), 𝑥10 = 

Ethylene–Vinyl–Acetate Grafted (B6233), 𝑥11 = Ethylene–Styrene–Inter polymer No. 

1 (B6243)  and  𝑥12 =Chemically Modified Crumb Rubber (B6251) }and  

𝑥13 =Ethylene–Vinyl–Aacetate No. 2 (B6254)  𝑥14 =Elvaloy No. 2 (B6257)  

𝑥15 =Elvaloy No. 3 (B6258).  

Set D consist a binder 𝑥16 = polymer-modified Ethylene–Styrene–Inter polymer No. 2 

(B6252) with Pave Grade 76-22 

Set E consists of a binder 𝑥17 = polymer-modified Ethylene–Styrene–Inter polymer 

No. 3 (B6253) with Pave Grade 70-22. 
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 The binder codes are the serial numbers assigned in the laboratory for logging 

purposes, and the numbers 1,2,3 after the name indicate that the polymer was used in 

different amounts in these three formulations. All the asphalts were from the same 

source, namely, Venezuelan crude (a blend of Boscan and Bachaquero). The air-blown 

grade (PG 70-28) was obtained by non-catalytic air blowing of a PG 52-28 (flux). The 

polymer-modified grades were obtained by addition of various amounts of different 

polymers to the PG 64-28 (base) or the PG 52-28 (flux) or a mixture of the PG 64-28 

(base) and the PG 52-28 (flux) in different proportions to achieve the same performance 

grading. All these asphalts were part of the extensive NCHRP 90-07 ongoing polymer 

research program at the Pavement Testing Facility located at the TFHRC.  

2.6 Result Analyzes of the Experimental Data 

The performance grades of binders were targeted using the described methodology 

for Mahalanobis metric, Minkowski (w = 2) metric, Chebychev matric, Cosine matric, 

and Correlation metric distances. The fuzzy compatible relation matrices and transitive 

closure are derived for each distance. The following matrices 𝑅1 and 𝑅1𝑇 represents the 

fuzzy compatible and transitive relation matrix for Minkowski (w = 2) distance. 





























































=

1.000.860.900.880.850.940.920.880.940.850.820.890.670.850.730.580.32

0.861.000.800.740.790.820.790.750.800.720.700.760.770.710.600.450.22

0.900.801.000.910.760.870.870.850.890.920.900.950.590.880.790.660.41

0.880.740.911.000.790.900.910.920.930.940.910.950.550.970.840.690.41

0.850.790.760.791.000.880.880.860.850.740.710.760.690.780.650.490.20

0.940.820.870.900.881.000.970.930.970.850.820.880.640.880.740.590.31

0.920.790.870.910.880.971.000.960.970.860.830.880.620.900.760.610.32

0.880.750.850.920.860.930.961.000.940.870.840.880.580.920.790.630.34

0.940.800.890.930.850.970.970.941.000.880.850.910.620.910.770.620.34

0.850.720.920.940.740.850.860.870.881.000.970.960.520.930.870.730.46

0.820.700.900.910.710.820.830.840.850.971.000.930.490.910.890.750.49

0.890.760.950.950.760.880.880.880.910.960.931.000.560.920.830.690.43

0.670.770.590.550.690.640.620.580.620.520.490.561.000.530.400.250.00

0.850.710.880.970.780.880.900.920.910.930.910.920.531.000.860.710.42

0.730.600.790.840.650.740.760.790.770.870.890.830.400.861.000.850.55

0.580.450.660.690.490.590.610.630.620.730.750.690.250.710.851.000.68

0.320.220.410.410.200.310.320.340.340.460.490.430.000.420.550.681.00

1
R

       ( 2.16) 
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








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

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





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
















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

















=

1.000.860.930.930.880.940.940.940.940.930.930.930.770.930.890.850.68

0.861.000.860.860.860.860.860.860.860.860.860.860.770.860.860.850.68

0.930.861.000.950.880.930.930.930.930.950.950.950.770.950.890.850.68

0.930.860.951.000.880.930.930.930.930.950.950.950.770.970.890.850.68

0.880.860.880.881.000.880.880.880.880.880.880.880.770.880.880.850.68

0.940.860.930.930.881.000.970.960.970.930.930.930.770.930.890.850.68

0.940.860.930.930.880.971.000.960.970.930.930.930.770.930.890.850.68

0.940.860.930.930.880.960.961.000.960.930.930.930.770.930.890.850.68

0.940.860.930.930.880.970.970.961.000.930.930.930.770.930.890.850.68

0.930.860.950.950.880.930.930.930.931.000.970.960.770.950.890.850.68

0.930.860.950.950.880.930.930.930.930.971.000.960.770.950.890.850.68

0.930.860.950.950.880.930.930.930.930.960.961.000.770.950.890.850.68

0.770.770.770.770.770.770.770.770.770.770.770.771.000.770.770.770.68

0.930.860.950.970.880.930.930.930.930.950.950.950.771.000.890.850.68

0.890.860.890.890.880.890.890.890.890.890.890.890.770.891.000.850.68

0.850.850.850.850.850.850.850.850.850.850.850.850.770.850.851.000.68

0.680.680.680.680.680.680.680.680.680.680.680.680.680.680.680.681.00

1T
R

        (2.17) 

The following matrices 𝑅2 and 𝑅2𝑇 represents the fuzzy compatible and transitive 

relation matrix for Mahalanobis metric distance. 

 

 

 

 

 

 (2.18) 
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
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

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


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

















=

1.000.610.690.750.660.830.750.700.850.850.840.900.350.730.640.430.36

0.611.000.400.370.360.530.370.360.530.500.540.550.160.350.270.070.26

0.690.401.000.720.450.560.660.530.590.720.680.730.540.630.620.560.42

0.750.370.721.000.680.740.910.800.770.840.780.800.360.910.850.650.35

0.660.360.450.681.000.800.770.860.780.650.620.630.190.740.620.390.12

0.830.530.560.740.801.000.780.820.960.800.790.800.230.780.660.420.29

0.750.370.660.910.770.781.000.860.800.790.730.760.350.910.790.580.27

0.700.360.530.800.860.820.861.000.830.750.710.710.210.880.760.520.23

0.850.530.590.770.780.960.800.831.000.840.830.840.250.810.700.450.32

0.850.500.720.840.650.800.790.750.841.000.930.940.310.820.770.560.45

0.840.540.680.780.620.790.730.710.830.931.000.930.260.770.720.520.49

0.900.550.730.800.630.800.760.710.840.940.931.000.330.770.710.510.45

0.350.160.540.360.190.230.350.210.250.310.260.331.000.280.230.210.00

0.730.350.630.910.740.780.910.880.810.820.770.770.281.000.870.630.32

0.640.270.620.850.620.660.790.760.700.770.720.710.230.871.000.750.38

0.430.070.560.650.390.420.580.520.450.560.520.510.210.630.751.000.37

0.360.260.420.350.120.290.270.230.320.450.490.450.000.320.380.371.00

2
R
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

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
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
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
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





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







=

1.000.610.730.840.840.850.840.840.850.900.900.900.540.840.840.750.49

0.611.000.610.610.610.610.610.610.610.610.610.610.540.610.610.610.49

0.730.611.000.730.730.730.730.730.730.730.730.730.540.730.730.730.49

0.840.610.731.000.860.840.910.880.840.840.840.840.540.910.870.750.49

0.840.610.730.861.000.840.860.860.840.840.840.840.540.860.860.750.49

0.850.610.730.840.841.000.840.840.960.850.850.850.540.840.840.750.49

0.840.610.730.910.860.841.000.880.840.840.840.840.540.910.870.750.49

0.840.610.730.880.860.840.881.000.840.840.840.840.540.880.870.750.49

0.850.610.730.840.840.960.840.841.000.850.850.850.540.840.840.750.49

0.900.610.730.840.840.850.840.840.851.000.930.940.540.840.840.750.49

0.900.610.730.840.840.850.840.840.850.931.000.930.540.840.840.750.49

0.900.610.730.840.840.850.840.840.850.940.931.000.540.840.840.750.49

0.540.540.540.540.540.540.540.540.540.540.540.541.000.540.540.540.49

0.840.610.730.910.860.840.910.880.840.840.840.840.541.000.870.750.49

0.840.610.730.870.860.840.870.870.840.840.840.840.540.871.000.750.49

0.750.610.730.750.750.750.750.750.750.750.750.750.540.750.751.000.49

0.490.490.490.490.490.490.490.490.490.490.490.490.490.490.490.491.00

2T
R

       (2.19) 

The following matrices 𝑅3 and 𝑅3𝑇 represents the fuzzy compatible and transitive 

relation matrix for Cosine distance. 














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

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
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
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





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
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






=

1.000.830.980.920.810.950.900.790.950.980.981.000.790.840.760.670.93

0.831.000.900.520.280.590.470.240.600.690.720.770.930.340.190.010.91

0.980.901.000.840.680.870.810.650.870.920.930.960.900.720.620.500.93

0.920.520.841.000.971.001.000.970.990.980.970.950.500.990.950.910.76

0.810.280.680.971.000.960.981.000.950.920.890.860.261.001.000.980.60

0.950.590.871.000.961.000.990.951.000.990.990.970.550.970.930.880.82

0.900.470.811.000.980.991.000.980.990.970.950.940.460.990.970.930.72

0.790.240.650.971.000.950.981.000.940.900.880.840.211.001.000.990.58

0.950.600.870.990.951.000.990.941.000.990.990.970.560.970.930.870.82

0.980.690.920.980.920.990.970.900.991.001.000.990.650.940.880.810.87

0.980.720.930.970.890.990.950.880.991.001.001.000.670.920.860.780.90

1.000.770.960.950.860.970.940.840.970.991.001.000.730.890.820.730.92

0.790.930.900.500.260.550.460.210.560.650.670.731.000.320.150.000.76

0.840.340.720.991.000.970.991.000.970.940.920.890.321.000.990.970.65

0.760.190.620.951.000.930.971.000.930.880.860.820.150.991.000.990.55

0.670.010.500.910.980.880.930.990.870.810.780.730.000.970.991.000.41

0.930.910.930.760.600.820.720.580.820.870.900.920.760.650.550.411.00

3
R

        (2.20) 
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(2.21) 

 

The following matrices 𝑅4 and 𝑅4𝑇 represents the fuzzy compatible and transitive 

relation matrix for Chebychev distance. 
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
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

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
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
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
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

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
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
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











=

1.000.790.880.830.810.940.900.840.910.830.810.880.600.790.640.480.37

0.791.000.730.620.760.730.690.630.700.610.600.670.730.580.430.270.19

0.880.731.000.890.700.830.830.810.850.890.870.940.540.850.710.540.44

0.830.620.891.000.790.890.920.900.920.940.900.950.430.960.810.650.42

0.810.760.700.791.000.870.870.870.840.730.710.740.580.810.670.510.24

0.940.730.830.890.871.000.960.900.970.860.830.870.540.850.700.540.35

0.900.690.830.920.870.961.000.940.960.860.820.880.500.890.740.580.34

0.840.630.810.900.870.900.941.000.930.840.820.850.440.920.800.640.36

0.910.700.850.920.840.970.960.931.000.890.860.900.520.880.730.570.38

0.830.610.890.940.730.860.860.840.891.000.970.940.430.920.820.660.49

0.810.600.870.900.710.830.820.820.860.971.000.930.410.900.840.680.52

0.880.670.940.950.740.870.880.850.900.940.931.000.480.910.760.600.46

0.600.730.540.430.580.540.500.440.520.430.410.481.000.390.250.090.00

0.790.580.850.960.810.850.890.920.880.920.900.910.391.000.860.690.43

0.640.430.710.810.670.700.740.800.730.820.840.760.250.861.000.840.54

0.480.270.540.650.510.540.580.640.570.660.680.600.090.690.841.000.66

0.370.190.440.420.240.350.340.360.380.490.520.460.000.430.540.661.00

4
R

  (2.22) 
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
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



=

1.000.910.980.990.990.990.990.990.991.001.001.000.910.990.990.990.93

0.911.000.910.910.910.910.910.910.910.910.910.910.930.910.910.910.91

0.980.911.000.980.980.980.980.980.980.980.980.980.910.980.980.980.93

0.990.910.981.000.991.001.000.991.000.990.990.990.910.990.990.990.93

0.990.910.980.991.000.990.991.000.990.990.990.990.911.001.000.990.93

0.990.910.981.000.991.001.000.991.000.990.990.990.910.990.990.990.93

0.990.910.981.000.991.001.000.991.000.990.990.990.910.990.990.990.93

0.990.910.980.991.000.990.991.000.990.990.990.990.911.001.000.990.93

0.990.910.981.000.991.001.000.991.000.990.990.990.910.990.990.990.93

1.000.910.980.990.990.990.990.990.991.001.001.000.910.990.990.990.93

1.000.910.980.990.990.990.990.990.991.001.001.000.910.990.990.990.93

1.000.910.980.990.990.990.990.990.991.001.001.000.910.990.990.990.93

0.910.930.910.910.910.910.910.910.910.910.910.911.000.910.910.910.91

0.990.910.980.991.000.990.991.000.990.990.990.990.911.001.000.990.93

0.990.910.980.991.000.990.991.000.990.990.990.990.911.001.000.990.93

0.990.910.980.990.990.990.990.990.990.990.990.990.910.990.991.000.93

0.930.910.930.930.930.930.930.930.930.930.930.930.910.930.930.931.00

3T
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(2.23) 

The following matrices 𝑅5 and 𝑅5𝑇 represents the fuzzy compatible and transitive 

relation matrix for Correlation distance. 
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

=

1.000.990.970.980.990.990.961.000.990.990.960.990.801.000.970.940.69

0.991.000.920.940.961.000.901.001.001.000.991.000.690.991.000.870.80

0.970.921.001.000.990.911.000.950.910.920.860.940.930.970.881.000.46

0.980.941.001.001.000.940.990.970.940.950.900.960.900.980.910.990.53

0.990.960.991.001.000.960.990.980.960.970.920.970.870.990.940.970.59

0.991.000.910.940.961.000.901.001.001.000.991.000.680.981.000.870.81

0.960.901.000.990.990.901.000.930.900.910.840.920.940.960.861.000.43

1.001.000.950.970.981.000.931.001.001.000.981.000.751.000.990.910.75

0.991.000.910.940.961.000.901.001.001.000.991.000.680.981.000.870.81

0.991.000.920.950.971.000.911.001.001.000.991.000.700.991.000.880.79

0.960.990.860.900.920.990.840.980.990.991.000.990.590.961.000.810.87

0.991.000.940.960.971.000.921.001.001.000.991.000.730.990.990.900.77

0.800.690.930.900.870.680.940.750.680.700.590.731.000.810.620.960.00

1.000.990.970.980.990.980.961.000.980.990.960.990.811.000.970.940.68

0.971.000.880.910.941.000.860.991.001.001.000.990.620.971.000.830.85

0.940.871.000.990.970.871.000.910.870.880.810.900.960.940.831.000.36

0.690.800.460.530.590.810.430.750.810.790.870.770.000.680.850.361.00
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   (2.24) 
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=

1.000.790.920.920.870.940.940.940.940.920.920.920.730.920.860.840.66

0.791.000.790.790.790.790.790.790.790.790.790.790.730.790.790.790.66

0.920.791.000.940.870.920.920.920.920.940.940.940.730.940.860.840.66

0.920.790.941.000.870.920.920.920.920.940.940.950.730.960.860.840.66

0.870.790.870.871.000.870.870.870.870.870.870.870.730.870.860.840.66

0.940.790.920.920.871.000.960.940.970.920.920.920.730.920.860.840.66

0.940.790.920.920.870.961.000.940.960.920.920.920.730.920.860.840.66

0.940.790.920.920.870.940.941.000.940.920.920.920.730.920.860.840.66

0.940.790.920.920.870.970.960.941.000.920.920.920.730.920.860.840.66

0.920.790.940.940.870.920.920.920.921.000.970.940.730.940.860.840.66

0.920.790.940.940.870.920.920.920.920.971.000.940.730.940.860.840.66

0.920.790.940.950.870.920.920.920.920.940.941.000.730.950.860.840.66

0.730.730.730.730.730.730.730.730.730.730.730.731.000.730.730.730.66

0.920.790.940.960.870.920.920.920.920.940.940.950.731.000.860.840.66

0.860.790.860.860.860.860.860.860.860.860.860.860.730.861.000.840.66

0.840.790.840.840.840.840.840.840.840.840.840.840.730.840.841.000.66

0.660.660.660.660.660.660.660.660.660.660.660.660.660.660.660.661.00

4T
R
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=

1.001.000.990.990.991.000.991.001.001.001.001.000.961.001.000.990.87

1.001.000.990.990.991.000.991.001.001.001.001.000.961.001.000.990.87

0.990.991.001.001.000.991.000.990.990.990.990.990.960.990.991.000.87

0.990.991.001.001.000.991.000.990.990.990.990.990.960.990.991.000.87

0.990.991.001.001.000.991.000.990.990.990.990.990.960.990.991.000.87

1.001.000.990.990.991.000.991.001.001.001.001.000.961.001.000.990.87

0.990.991.001.001.000.991.000.990.990.990.990.990.960.990.991.000.87

1.001.000.990.990.991.000.991.001.001.001.001.000.961.001.000.990.87

1.001.000.990.990.991.000.991.001.001.001.001.000.961.001.000.990.87

1.001.000.990.990.991.000.991.001.001.001.001.000.961.001.000.990.87

1.001.000.990.990.991.000.991.001.001.001.001.000.961.001.000.990.87

1.001.000.990.990.991.000.991.001.001.001.001.000.961.001.000.990.87

0.960.960.960.960.960.960.960.960.960.960.960.961.000.960.960.960.87

1.001.000.990.990.991.000.991.001.001.001.001.000.961.001.000.990.87

1.001.000.990.990.991.000.991.001.001.001.001.000.961.001.000.990.87

0.990.991.001.001.000.991.000.990.990.990.990.990.960.990.991.000.87

0.870.870.870.870.870.870.870.870.870.870.870.870.870.870.870.871.00

5T
R

    (2.25) 
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Figure 2.2. The graphical representation of results achieved by Mahalanobis distance 

Figure 2.1. The graphical representation of results achieved by Minskowski distance. 
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Figure 2.4. The graphical representation of results achieved by Chebychev distance. 

Figure 2.3. The graphical representation of results achieved by Cosine distance.  
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Figure 2.6: Clustering tree by Minkowski distance 

Figure 2.5. The graphical representation of results achieved by Correlation  

distance. 
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Figure 2.7: Clustering tree by Mahalanobis distance 

 

Figure 2.8: Clustering tree by Cosine distance. 
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. 

Figure 2.10: Clustering tree by Correlation distance. 

Figure 2.9: Clustering tree by Chebychev distance. 
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2.7 Analysis 

All the binders are separated according to their performances at a different level of 

𝛼 by using Minkowski, Mahalanobis, Cosine, Correlation, and Chebyshev distance 

differently. It is observed by figure 6 that Binder 𝑥1 = flux (B6224) is detached first 

at 𝛼 = 0.68, then Polymer-modified binder  𝑥5 =ElvaloyNo.1 (B6228) is separated at 

𝛼 = 0.77and after that 𝑥2 = unmodified base (B6225) separated at 𝛼 = 0.85. Similarly 

𝑥16, 𝑥13… , 𝑥12 are clustered successively at a different high degree of 𝛼. The desired 

clusters are also identified from the clustering tree for a suitable value of 𝛼 for example 

if 𝛼 = 0.90,then the clusters are: 

 {{𝑥1}, {𝑥5}, {𝑥2}, {𝑥16}, {𝑥13}, {𝑥3}, {𝑥4, 𝑥6, 𝑥7, 𝑥8, 𝑥14, 𝑥15}, {𝑥9, 𝑥10, 𝑥11, 𝑥12, 𝑥17}}. 

The total number of clusters can be obtained from clustering tree by Minkowski 

metric distance for different alpha and they are described as:  If 𝛼 ∈ [0 0.68] then N(c) 

= 1, If 𝛼 ∈ (0.68  0.77]  then N(c) =2. Similarly, if  𝛼 ∈ ( 0.77  0.85], N(c) = 3. If  𝛼 ∈

(0.85  0.86], N(c) =4. 

If 𝛼 ∈ (0.86  0.88], N(c) = 5. If 𝛼 ∈ (0.88  0.89] , N(c) = 6. If  𝛼 ∈ (0.89  0.93] , N(c) 

=7.  

If𝛼 ∈ (0.93  0.94], N(c) =8. If 𝛼 ∈ (0.94  0.95] ,N(c) =9. If𝛼 ∈ (0.95  0.96], N(c) 

=11. 

 If 𝛼 ∈ (0.96  0.97], N(c) =13.    If 𝛼 ∈ (0.97  1] N(c) =17. 

According to the Clustering tree by Mahalanobis metric distances, it is observed by 

Figure 2.7 that the binder 𝑥1 = flux (B6224) is detached the first at𝛼 = 0.49, then 

Polymer-modified binder  𝑥5 =ElvaloyNo.1 (B6228) is separated at 𝛼 = 0.54.After 

that 𝑥16 =  B6252 is separated at 𝛼 = 0.64. similarly 𝑥1, 𝑥2… , 𝑥8 are clustered 

successively at a different high degree of 𝛼. The desired clusters are also identified for 

a suitable value of 𝛼. If the  𝛼 = 0.90, then the binders are separated differently as 

compared to Minkowski, and other distance. The clusters are: 
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{{𝑥1}, {𝑥5}, {𝑥16}, {𝑥15}, {𝑥2}, {𝑥13}, {𝑥3}, {𝑥10}{𝑥4, 𝑥11, 𝑥14}, {𝑥9, 𝑥12}, {𝑥6, 𝑥7, 𝑥8}}  

The total number of clusters can be obtained from clustering tree by Mahalonobis 

metric distance or different alpha and they are described as: If 𝛼 ∈ [0 0.49] then N(c) 

=1. If 𝛼 ∈ (0.49 0.54]  then N(c) =2. Similarly, If 𝛼 ∈ (0.54 0.61],N(c) = 3. If 𝛼 ∈

(0.61 0.73],  N(c) = 4. 

If 𝛼 ∈ (0.73 0.75], N(c) = 5. If𝛼 ∈ (0.75 0.84], N(c) = 6. If 𝛼 ∈ (0.84 0.85], N(c) = 7. 

If 𝛼 ∈ (0.85 0.86],N(c) = 8. If 𝛼 ∈ (0.86  0.87], N(c) = 9. If 𝛼 ∈ (0.87 0.88], N(c) 

=10.If 𝛼 ∈ (0.88  0.90], N(c) =11.     If 𝛼 ∈ (0.90  0.91],N(c) = 12.     If 𝛼 ∈

(0.91 0.93], N(c) =14.If  𝛼 ∈ (0.93  0.94],  N(c) =15. If 𝛼 ∈ (0.94 0.96], N(c) = 16. If 

𝛼 ∈ (0.96 1], N(c) = 17. 

According to the Clustering tree by Correlation distances, it is observed by figure 8 

that Binder 𝑥1 = flux (B6224) is detached first at 𝛼 = 0.87, then Polymer-modified 

binder  𝑥5 =ElvaloyNo.1 (B6228) is separated at 𝛼 = 0.96. Similarly, the remaining 

binders are clustered into two groups after 𝛼 = 0.99. The desired clusters are also 

identified from the clustering tree for a suitable value of 𝛼 for example if  𝛼 = 0.90,  

then the clusters are:   

                         {{𝑥1}, , {𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10, 𝑥11, 𝑥12, 𝑥13, 𝑥14, 𝑥15, 𝑥16, 𝑥17}}. 

The total number of clusters can be obtained from clustering tree by Correlation 

distance for different alpha and they are described as:  If 𝛼 ∈ [0 0.87] then N(c) = 1, If 

𝛼 ∈ (0.87  0.96]  then N(c) =2. Similarly, if  𝛼 ∈ ( 0.96  0.99], N(c) = 3. If  𝛼 ∈

(0.99  1], N(c) =4. 

According to the Clustering tree by Chebychev distances, It is observed by figure 9 

that Binder 𝑥1 = flux (B6224) is detached first at 𝛼 = 0.66, then Polymer-modified 

binder  𝑥5 =ElvaloyNo.1 (B6228) is separated at 𝛼 = 0.73 and after that 𝑥16 = 

polymer-modified Ethylene–Styrene–Inter polymer No. 2 (B6252) is separated at 𝛼 =

0.79. Similarly 𝑥2, 𝑥3… , 𝑥9 are clustered successively at a different high degree of 𝛼. 

The binders are separated differently from the Mahalanobis Cosine and Correlation 



40 

 

distances, but the separation is similar to the Minkowski metric distance. The desired 

clusters are also identified from the clustering tree for a suitable value of 𝛼 for example 

if 𝛼 = 0.90, then the clusters are: 

{{𝑥1}, {𝑥5}, {𝑥16}, {𝑥2}, {𝑥3}, {𝑥13}, {𝑥4, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10, 𝑥11, 𝑥12, 𝑥14, 𝑥15, 𝑥17}}. 

The total number of clusters can be obtained from clustering tree by Chebychev 

distance for different alpha and they are described as:  If 𝛼 ∈ [0 0.66] then N(c) = 1, If 

𝛼 ∈ (0.66  0.73]  then N(c) =2. Similarly, if  𝛼 ∈ ( 0.73  0.79], N(c) = 3. If  𝛼 ∈

(0.79  0.84], N(c) =4. 

If  𝛼 ∈ (0.84  0.86], N(c) = 5.     If  𝛼 ∈ (0.86  0.87]  N(c) = 6.     If  𝛼 ∈ (0.87  0.92] 

, N(c) =7.  

If𝛼 ∈ (0.92  0.94], N(c) =8.      If 𝛼 ∈ (0.94  0.95] ,N(c) =12.        If𝛼 ∈ (0.95  0.96], 

N(c) =13. 

 If 𝛼 ∈ (0.96  0.97], N(c) =15.    If 𝛼 ∈ (0.97  1] N(c) =17. 

According to the Clustering tree by Cosine distances, it is observed by figure 10 that 

no binder is separated till  𝛼 = 0.91 and after 𝛼 = 0.91 two binders 𝑥5 =ElvaloyNo.1 

(B6228) and  𝑥16 = polymer-modified Ethylene–Styrene–Inter polymer No. 2 (B6252)  

are detached together as one cluster. After the 𝛼 = 0.93 binder 𝑥5 , 𝑥16 and binder 𝑥1 =

 flux (B6224) are detached separately. Similarly, remaining binders are clustered 

successively at a different high degree of 𝛼. The desired clusters are also identified from 

the clustering tree for a suitable value of 𝛼. 

The total number of clusters can be obtained from clustering tree for different alpha 

and they are described as:  If 𝛼 ∈ [0 0.91] then N(c) = 1, If 𝛼 ∈ (0.91  0.93]  then N(c) 

=2. Similarly, if  𝛼 ∈ ( 0.93  0.98], N(c) = 4. If  𝛼 ∈ (0.98  0.99], N(c) =5. If  𝛼 ∈

(0.99  1), N(c) = 6. If  𝛼 = 1 N(c) = 9. 

 The following graph shows the number of clusters achieved by Mahalanobis, 

Chebyshev, Minkowski(𝑤 = 2), Cosine, and Correlation distance concerning different 
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membership grades. All distances illustrate the same number of clusters (N(c) =1) till 

membership grade  𝛼 = 0.49. After the  𝛼 = 0.49, there exists a significant difference 

in the number of clusters by all five distance functions. The Mahalanobis distance 

quantize a greater number of a cluster than the other four distances function for each 

𝛼 ∈ (0.49  0.97]. The clustering performance achieved by the Chebychev distance 

function is quite better than Minkowski(𝑤 = 2) distance and substantially finer than 

the Cosine and Correlation distance function. The Mahalanobis, Chebychev, and 

Minkowski(𝑤 = 2) demonstrate the same number of clusters (N(c) =17) for each𝛼 ∈

(0.97  1]. Overall, the Mahalanobis distance shows the viable feasibility compared to 

Chebychev, Minkowski(𝑤 = 2), Cosine, and Correlation distance function in terms of 

the desired number of clusters. 

 

Figure 2.11: The comparison of clustering by Mahalanobis, Chebychev, Minkowski, 

Cosine, and Correlation distances  

2.8 Summary  

In this chapter, a comparative fuzzy equivalence class clustering of binders based on 

their performance is proposed. The performances of binders were graded in terms of 
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high specific temperature at three different parameters. Five distance functions, namely 

Minkowski (w =2), Mahalanobis, Cosine, Chebychev, and Correlation, are applied in 

the separation methodology, and it is a first attempt where the Mahalanobis distance 

function is used for fuzzy equivalence clustering. The fuzzy compatible relation 

matrices and transitive closures are derived for each distance function. Then the 

separate cluster analysis is done for Minkowski, Malonobis, Cosine, Chebychev, and 

Correlation distance function, and the desired clusters are identified for a suitable value 

of membership grade. It was observed that the overall clustering performance of binders 

by Mahalanobis distance function is better than the performance by Minkowski and 

other distance functions. The overall performance achieved by the Chebychev distance 

function is quite better than Minkowski(𝑤 = 2) distance and substantially finer than 

Cosine and Correlation distance function. Mahalanobis distance function produces a 

greater number of clusters at most of the 𝛼 −level. The separation stages by 

Mahalanobis distance are also extensively better than other distances. So, the fuzzy 

cluster analysis by Mahalanobis distance function can provide an effective grip in the 

separation analysis and strategy formulation. 
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Chapter 3 

An Effective Generalized Exponential Metric Space 

Approach for C-Mean Clustering Analyzing 

“The uncertainty where to look for the next opening of discovery brings the pain of 

conflict and the debility of indecision.” 

− Alexander Bain 

 

 

3.1 Introduction 

In Mathematics, the phenomenon of a metric space is fundamental and significant. 

Various metric functions construct distinct metric spaces. In pattern recognition and 

machine learning, distance measurement and contrast between sample pairs play a very 

significant role [10][11][12][13][14][15]. With the assistance of sophisticated 

numerical optimization, we can acquire discriminatory characteristics through a 

rational description of distance function and decide whether two samples belong to the 

same class. In this perspective, the approaches of distance metric learning and 

dimensional reduction seek to learn high-level semantic distances where identical input 

objects are projected to close points, while distinct objects are differentiated from each 

other[16]. Distance metrics have been efficiently used for vast scenarios, including 

image selection, visual monitoring, and prototypes classification.[17][18][19].Wu and 

Yang [1] had introduced a new metric that was more stable than the widely used 

Euclidean norm. In c-means clustering, they substituted the Euclidean norm with the 

new metric. They then developed two new clustering approaches called the clustering 

algorithms for alternative hard c-means (AHCM) and alternative fuzzy c-means 

(AFCM). But in the papers [2] comment that the distance used by Wu and Yang is not 

a metric, it was a type of squared distance, and it is not generally a metric for a squared 

distance. 
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This chapter suggests a new Gaussian function-based distance that substitutes e with 

the arbitrary constant and takes the square root in the proposed distance that satisfies 

the metric space characteristics. Therefore, the alternative generalized hard c-means 

(AGHCM) and alternative generalized fuzzy c-means (AGFCM) clustering algorithms 

have been developed as two new clustering methods. These proposed algorithms 

strengthen the vulnerabilities in both AHCM and AFCM. 

3.2 Background Information  

This section explored the fundamental concept of metric space and its variants, 

replacing them in c-mean clustering algorithms. 

3.2.1  Matric space [132] 

If  𝑌 be any sets, then mapping 𝛿: 𝑌 × 𝑌 → ℝ such that  

(i) 𝛿(𝑦1, 𝑦2) ≥ 0  ∀ 𝑦1 , 𝑦2 ∈ 𝑌 

(ii) 𝛿(𝑦1, 𝑦2) = 𝛿(𝑦2, 𝑦1)  ∀ 𝑦1 , 𝑦2 ∈ 𝑌 

(iii) 𝛿(𝑦1, 𝑦2) = 0 𝑖𝑓𝑓 𝑦1 = 𝑦2 

(iv) 𝛿(𝑦1, 𝑦2) ≤ 𝛿(𝑦1, 𝑦3) + 𝛿(𝑦3, 𝑦2)   ∀ 𝑦1 , 𝑦2, 𝑦3 ∈ 𝑌 

is known as the metric on 𝑌 and (𝑌, 𝛿) is known as metric space. 

3.2.2  Euclidean Metric space 

As a metric, the Euclidean norm is well known and is widely used. However, the 

parameter estimation based on an objective function based on a Euclidean metric cannot 

be robust in a noisy setting. 

Suppose 𝑋 = {𝑦1, 𝑦2, … , 𝑦𝑛} is a data set, where 𝑦𝑗 is an 𝑚 −dimensional Euclidean 

space function vector 𝑅𝑚.  The Euclidean distance from the 𝑦𝑗 to the center, 𝑣 is defined 

as: 

Min  ∑||𝑦𝑗 − 𝑣||
2

𝑛 

𝑗=1

    
(3.1) 
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 Efficient center 𝑣 estimation can be obtained using a minimum sum of square error 

(SSE) procedure. This method of finding estimators is called the least square method. 

Thus, the minimization of Eq.(3.1) w.r.t 𝑣  can be achieved by the minimizer sample 

mean defined as: 

𝑣 =
∑ 𝑦𝑗
𝑛
𝑗=1

𝑛
 

(3.2) 

 The data set 𝑆1 ={3,4,4.4,4.7, 4.9,5, 5.1,5.3,5.6,5.7} taken from [133] to test and 

estimate 𝑣 is 5 by calculating Eq.(3.2). Nevertheless, 𝑆2 , 𝑆3, …, 𝑆8  defined as follows 

when we insert a noisy feature 20, 25 and 30 to new data sets: 

𝑆2 ={3,4,4.4,4.7, 4.9,5, 5.1,5.3,5.6,5.7,20} 

𝑆3 ={3,4,4.4,4.7, 4.9,5, 5.1,5.3,5.6,5.7,25} 

𝑆4 ={3,4,4.4,4.7, 4.9,5, 5.1,5.3,5.6,5.7,30} 

𝑆5 ={3,4,4.4,4.7, 4.9,5, 5.1,5.3,5.6,5.7,20,25} 

𝑆6 ={3,4,4.4,4.7, 4.9,5, 5.1,5.3,5.6,5.7,20,30} 

𝑆7 ={3,4,4.4,4.7, 4.9,5, 5.1,5.3,5.6,5.7,25,30} 

𝑆8 ={3,4,4.4,4.7, 4.9,5, 5.1,5.3,5.6,5.7,20,25,30} 

The values of 𝑣 using Eq.(3.2) of these sets 𝑆2 , 𝑆2, …, 𝑆8  are 6.25, 

6.67,7.08,7.69,8.08,8.46, and 9.29, respectively, which are outside the range of original 

data. It is not stable since the noisy features have a significant effect on performance. 

Centered on Euclidean metric space, two standard clustering methods have been 

classified into two groups, i.e., hard clustering and fuzzy c-mean clustering, to discover 

a space division scheme for function data sets. 

3.3 Exponential Function Based Metric Space  

This issue [133] therefore proposed a robust exponential metric defined as: 
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𝛿(𝑦1, 𝑦2) = 1 − 𝑒
−𝑏||𝑦1−𝑦2||

2

                 (3.3) 

However, the above metric function, in Eq. (3.3), was not a metric. The justification 

given in [2] for being a square distance form is not necessarily a metric. To resolve the 

issue, they, therefore, proposed a robust distance function as follows: 

𝛿(𝑦1, 𝑦2) =  
√1 − 𝑒−𝑏||𝑦1−𝑦2||

2

   
(3.4) 

 Where 𝑏 is a covariance defined as 

𝑏 =
∑ ||𝑦1 − 𝑦2||

2𝑛
𝑗=1

𝑛
 with 𝑦̅ =

∑ 𝑦𝑗
𝑛
𝑗=1

𝑛
           

(3.5) 

The distance function is a metric in Eq. (3.4), which fulfills all metric space axioms 

[132]. Consequently, the distance from 𝑦𝑗 to the centre 𝑣 is: 

Min  ∑√1 − 𝑒−𝑏|
|𝑦𝑗−𝑣||

2

     

𝑛 

𝑗=1

 

(3.6) 

 and minimizing Eq.(3.6) w.r.t 𝑣 can be achieved using the appropriate equation. 

𝑣 =  ∑

 𝑒−𝑏||𝑦𝑗−𝑣||
2

√1 − 𝑒−𝑏|
|𝑦𝑗−𝑣||

2

   

𝑦𝑗

∑
 𝑒−𝑏|

|𝑦𝑗−𝑣||
2

√1 − 𝑒−𝑏|
|𝑦𝑗−𝑣||

2

   

𝑛
𝑗=1  

𝑛

𝑗=1

 

= ∑
𝜔𝑗𝑦𝑗

∑ 𝜔𝑗
𝑛
𝑗=1  

𝑛

𝑗=1

 

 

 

 

 

 

(3.7) 

Where 𝜔𝑗 =
 𝑒−𝑏|

|𝑦𝑗−𝑣||
2

√1 − 𝑒−𝑏|
|𝑦𝑗−𝑣||

2

   

   𝑗 ∈ 1,2,3… , 𝑛 

 

(3.8) 
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 Consequently, 𝜔𝑗 is higher values to those 𝑦 which closer to 𝑣 and the data points 

further away from 𝑣 are lower in weight. Notice 𝑣 in Eq. (3.7) not resolved explicitly. 

But, to approximate it, use the fixed-point iterative approach.  

Fixed-point iteration  

Step 1) Consider the R.H.S of Eq.(3.7)in g(v). 

Step2) By solving the Eq. (3.2), which is the optimal initial value 𝑣(𝑡−1)   where t=1 

and fix ϵ>0. 

Step 3) In step 1, take the initial value of the  𝑣(0) calculation to find  𝑣(1). 

Step4) Convergence criteria – If ||𝑣𝑡-𝑣(𝑡−1)|| < 𝜖 ,,THEN stop; ELSE t=t+1 and go 

to step-3. 

The estimated values for the data sets 𝑆1 , 𝑆2, …, 𝑆8 represented in  

Table 3.2 showing the initial values of  𝑣(0) using Eq. (3.2) and  𝑣(1) by Eq. (3.7). 

Also, using this procedure's fixed-point iteration, obtain its estimated values  𝑣(𝑡) 

corresponding to the number of iterations that met the condition of step-4, i.e., ||𝑣𝑡-

𝑣(𝑡−1)|| < 𝜖 by fixing 𝜖 = 0.001. 

In the following section, based on the exponential metric described in Eq.(3.4), 

Improved alternative hard c-mean clustering (IAHCM) and Improved alternative fuzzy 

c-mean clustering (IAFCM) are discussed, which give us more robust results compared 

to the HCM and FCM. 

3.3.1 Alternative Hard C-Mean Clustering  

An alternative hard c-means (AHCM) clustering objective function is proposed as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛  𝐽𝐴𝐻𝐶𝑀 =∑∑   (1 − 𝑒−𝑏||𝑑𝑖𝑘||
2

)

𝑛

𝑘=1

𝑐

𝑖=1

                
(3.9) 
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Subject to 𝑣𝑗 =
∑ 𝑒−𝑏||𝑑𝑖𝑘||

2

𝑦𝑗𝑘
𝑛
𝑘=1

∑ 𝑒−𝑏||𝑑𝑖𝑘||
2

𝑛
𝑘=1

    
(3.10) 

Where 𝑏 is a constant which can be defined by 

                  𝑏 = (
∑ ||𝑦𝑖−𝑦 ̅||

2𝑛
𝑗=1

𝑛
)

−1

 with 𝑦̅ =
∑ 𝑦𝑗
𝑛
𝑗=1

𝑛 
    and 𝑗 ∈ 𝐼𝑖 

(3.11) 

This Eq.(3.11) shows that it is the sample covariance of the data sets (𝑦𝑖). 

e−b||dik||
2

 is one since b tends to be zero. The condition Eq. (3.10) appears to be 

necessary Eq. (3.2). So, we correlate AHCM and HCM when AHCM is typically HCM, 

as 𝑏 tends to be zero.  

3.3.2 Alternative Fuzzy C-Means Clustering 

An alternative fuzzy c-means (AFCM) clustering objective function as: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛  𝐽𝐴𝐻𝐶𝑀 =∑∑𝜏𝑗𝑘
𝑚(1 − 𝑒−𝑏||𝑑𝑖𝑘||

2

)

𝑛

𝑘=1

𝑐

𝑖=1

 
 

(3.12) 

𝑤ℎ𝑒𝑟𝑒 , 𝑚>1 and ∑ 𝜏𝑗𝑘 = 1𝑐
𝑖=1  constraint, 𝑗 = 1, . . . , 𝑛. Parameter 𝑏>0 is also known 

as Eq.(3.11), and there are the following criteria for 𝐽AFCM minimization: 

 𝑣𝑗 =
∑ 𝜏𝑗𝑘

𝑚 𝑒−𝑏||𝑑𝑖𝑘||
2

𝑦𝑗𝑘
𝑛
𝑘=1

∑  𝜏𝑗𝑘
𝑚 𝑒−𝑏||𝑑𝑖𝑘||

2
𝑛
𝑘=1

 

 

(3.13) 

𝜏𝑗𝑘
𝑚 =

(
1

(1 − 𝑒−𝑏||𝑑𝑖𝑘||
2)

1
(𝑚−1)

∑ (
1

(1 − 𝑒−𝑏|
|𝑑𝑖𝑗||

2)

1
(𝑚−1)

𝑐
𝑗=1

 

 

 

(3.14) 

If 𝑏 is minimal, then the AFCM membership curve with this parameter is like the 

FCM membership curve, which is well presented for fuzzy boundaries. When 𝑏 is 
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extremely high, the AFCM membership curve with this parameter is present for the 

separation characteristic. But the inverse of sample covariance is a good approximation 

for 𝑏, as per Eq. (3.11) 

3.4 The Purposed Metric Space  

The robust distance function shown in Eq. (3.4) is based on exponential 𝒆 whose 

approximation value is 2.7183. The baseline value is fixed for all types of data sets, but 

it is not appropriate for the same circumstances dependent value 𝒆; then it takes more 

iterations to achieve the center, and the convergence rate could be slow. So, to increase 

the rate of convergence, this article proposes a new generalized exponential distance 

function defined as:   

  𝛿(𝑦1, 𝑦2) =  
√1 − 𝑎−𝑏||𝑦1−𝑦2||

2

 
(3.15) 

 Where,𝑎 > 0, 𝑏 > 0 is a covariance defined in Eq.(3.5). Also, every 

𝛿(𝑦1, 𝑦2) distance function is a metric if the matric axiom in section 3.2.1 is fulfilled. 

Theorem-3.1 If 𝑋 = ℝ𝑛 = {(𝑦1 , 𝑦2…𝑦𝑛): 𝑦𝑖 ∈ ℝ  ∀ 𝑖 ∈ ℕ} and 𝑑: 𝑌 × 𝑌 → ℝ 

such that 𝑑(𝑦𝑖 , 𝑦𝑗) = √1 − 𝑎−𝑏||𝑦𝑖−𝑦𝑗||
2
   , where 𝑎 ∈ (1,∞) 𝑎𝑛𝑑 𝑏 ∈ (0,∞) then  

(𝑌, 𝑑) is metric space. 

Proof: Firstly, define Gaussian kernel function 

𝐾(𝑦𝑖, 𝑦𝑗) = 𝑎
−𝑏||𝑦𝑖−𝑦𝑗||

2

, therefore 𝑑(𝑦𝑖, 𝑦𝑗) = √1 − 𝐾(𝑦𝑖, 𝑦𝑗)   and according to 

the Mercer theorem [3], there exists some nonlinear map 𝜑: 𝑌 → 𝐹, satisfying 

𝐾(𝑦𝑖, 𝑦𝑗) = 𝜑(𝑦𝑖)
𝑇𝜑(𝑦𝑗), 𝑤ℎ𝑒𝑟𝑒 F is a compact subset of Hilbert space and (. )𝑇𝑖𝑠  

vector transpose. 

We have 𝐾(𝑦𝑖, 𝑦𝑖) = 𝐾(𝑦𝑗 , 𝑦𝑗) = 1 ( by definition of 𝐾), Thus  

|| 𝜑(𝑦𝑖) − 𝜑(𝑦𝑗)||
2 =  𝜑(𝑦𝑖)

𝑇𝜑(𝑦𝑖) + 𝜑(𝑦𝑗)
𝑇
𝜑(𝑦𝑗) − 2𝜑(𝑦𝑖)

𝑇𝜑(𝑦𝑗)  

=  𝐾(𝑦𝑖, 𝑦𝑖) + 𝐾(𝑦𝑗 , 𝑦𝑗) − 2𝐾(𝑦𝑖, 𝑦𝑗) 

= 2(1 − 𝐾(𝑦𝑖, 𝑦𝑗)) 
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⟹  𝑑(𝑦𝑖 , 𝑦𝑗) = √
1

2
|| 𝜑(𝑦𝑖) − 𝜑(𝑦𝑗)||   

 

(3.16) 

From the above equation satisfied (𝒊) to (𝒊𝒊𝒊) conditions of Metric space 𝒊. 𝒆  

𝛿(𝑦𝑖, 𝑦𝑗) = 𝛿(𝑦𝑗 , 𝑦𝑖) > 0, ∀ 𝑦𝑖 ≠ 𝑦𝑗  𝑎𝑛𝑑 𝛿(𝑦𝑖, 𝑦𝑖) = 0. 

And from Eq.(3.16) 

𝛿(𝑦𝑖 , 𝑦𝑗) =
1

√2
|| 𝜑(𝑦𝑖) − 𝜑(𝑦𝑗)|| 

≤
1

√2
(|| 𝜑(𝑦𝑖) − 𝜑(𝑦𝑘)|| + || 𝜑(𝑦𝑘) − 𝜑(𝑦𝑗)|| 

= 𝛿(𝑦𝑖, 𝑦𝑘) + 𝛿(𝑦𝑘, 𝑦𝑗). 

Thus, the triangular property (iv) is also satisfied. So, the proposed distance is a 

metric. 

Under the metric (3.15), we have an estimate 𝑣 using the same procedure with 

minimizing 

  Min  ∑ √1 − 𝑎−𝑏|
|𝑦𝑗−𝑣||

2

     𝑛 
𝑗=1  

(3.17) 

w.r.t 𝑣. It gives the necessary conditions with the equation (3.17) 

𝑣 =  ∑

 𝑎−𝑏||𝑦𝑗−𝑣||
2

√1 − 𝑎−𝑏|
|𝑦𝑗−𝑣||

2

   

𝑦𝑗

∑
 𝑎−𝑏|

|𝑦𝑗−𝑣||
2

√1 − 𝑎−𝑏|
|𝑦𝑗−𝑣||

2

   

𝑛
𝑗=1  

𝑛

𝑗=1

 

= ∑
𝜅𝑗𝑦𝑗

∑ 𝜅𝑗
𝑛
𝑗=1  

𝑛

𝑗=1

 

 

 

 

 

(3.18) 
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     Where 𝜅𝑗 =
 𝑎−𝑏|

|𝑦𝑗−𝑣||
2

√1 − 𝑎−𝑏|
|𝑦𝑗−𝑣||

2

   

   𝑗 ∈ ℕ   

 

(3.19) 

 The assessment of 𝜅𝑗 corresponding to 𝑦𝑗 is the same as the assigned value of 𝜔𝑗  

corresponding to 𝑦𝑗 .Similarly, Eq. (3.18) is not resolved directly. However, the iterative 

approach can be used to approximate it. 

Fixed- point iteration  

Step1) Compute the value 𝑣 by solving the Eq. (3.2), which is the optimal initial 

value of 𝑣(𝑡−1)  where 𝑡 = 1 𝑎𝑛𝑑 fix 𝜖 > 0. 

Step 2) Take the initial value of 𝑣(0) compute in step-1 to find  𝑣(1)  for the various 

values of a. 

Step 3) Find the optimal  𝑣(1) correspond to optimal value a. 

Step 4) After finding the optimal value of a, find the values of  𝑣(1),  𝑣(2),…,  𝑣(𝑡). 

Until step 5, a condition is satisfied. 

Step5) Convergence criteria – If ||𝑣𝑡-𝑣(𝑡−1)|| < 𝜖 , THEN stop; ELSE 𝑡 = 𝑡 + 1 and 

go to step-3. 
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Figure 3.1: The proposed metric space distance flow chart 

3.5 Experiment Result  

The data set 𝑆1 ={3,4,4.4,4.7, 4.9,5, 5.1,5.3,5.6,5.7} taken from [133] to test and 

estimate 𝑣 is 5 by calculating Eq.(3.2). The values of 𝑣 using Eq.(3.2) of these sets 

𝑆2 , 𝑆2, …, 𝑆8  are 6.25, 6.67,7.08,7.69,8.08,8.46, and 9.29, respectively, which are 

outside the range of original data. It is not stable since the noisy features have a 

significant effect on performance. Cantered on Euclidean metric space, two standard 

clustering methods have been classified into two groups, i.e., hard clustering and fuzzy 

c-mean clustering, to discover a space division scheme for function data sets. 
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The usefulness and robustness of the suggested distance function are illustrated in 

Table3.2. Figure 3.2 indicate that 𝑣(1) values for the various artificial data sets 

𝑆1 , 𝑆2, …, 𝑆8 suggest that e is not the optimum value for the foundation. For data sets, 

𝑆1 shows the value of 𝑣(1)=4.990981 at 𝒂=0.58, which is much closer than 

𝑣(1)=4.127468 at 𝑒 = 2.7183.Similar to the different values of a for other data sets 

𝑆2, …, 𝑆8 the values of 𝑣(1) are much closer than those shown in  

Table 3.2. Since these values are taken as the 𝑣(𝑡) end values in Table 3.3 along with 

the 𝑣(𝑡) end values in  

Table 3.2. The number of iterations is also smaller, which means that the suggested 

distance function's convergence rate is greater than that of the exponential distance 

function [1]. 
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Figure 3.2: show the initial value of 𝑣 corresponing to a for data sets 𝑆1 𝑡𝑜 𝑆8 

respectively 

The metric of AHCM Eq. (3.9) and AFCM Eq. (3.12) is replaced by the proposed 

metric Eq.(3.15); the clustering mechanism is addressed as follows. 

3.5.1 Alternative Generalized Hard C-Means Clustering 

Alternative generalized hard c-mean clustering (AGHCM) based on the cluster 

mentioned exponential metric in Eq.(3.15). Usage of the AGHCM and AHCM 

connection and comparison is significant. Therefore, the objective function of the 

alternative generalized c-mean hard clustering algorithm leads to the following concern 

of optimization: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛  𝐽𝐴𝐺𝐻𝐶𝑀(𝑉; 𝑋) =∑∑√(1 − 𝑎−𝑏||𝑑𝑖𝑘||
2

)   

𝑛

𝑘=1

𝑐

𝑖=1

 

Where 𝒂 > 1,𝑚 > 0, ||𝑑𝑖𝑘|| = ||𝑦𝑘 − 𝑣𝑖||, 𝑏 > 0. 

 

 

(3.20) 

6.24
6.26
6.28

6.3
6.32
6.34
6.36

0 5 10 15

In
it

ia
l V

al
u

e 
o

f 
 v

Value of a

3.2-e

5.75

5.8

5.85

5.9

5.95

0 5 10 15In
it

ia
l V

al
u

e 
o

f 
 v

Value of a

3.2-f

5.7

5.8

5.9

6

0 5 10 15In
it

ia
l V

al
u

e 
o

f 
 v

Value of a

3.2-g

5.7

5.8

5.9

6

0 5 10 15In
it

ia
l V

al
u

e 
o

f 
 v

Value of a

3.2-h



55 

 

 Theorem 3.2. The necessary condition for minimizing 𝐽𝐴𝐺𝐻𝐶𝑀(𝑉; 𝑌) only if  

𝑣𝑗 =

∑
𝑎−𝑏||𝑑𝑖𝑘||

2

√1 − 𝑎−𝑏||𝑑𝑖𝑘||
2

  𝑦𝑘
𝑛
𝑘=1

∑
𝑎−𝑏||𝑑𝑖𝑘||

2

√1 − 𝑎−𝑏||𝑑𝑖𝑘||
2

𝑛
𝑘=1

    𝑗 ∈ ℕ  

 

 

(3.21) 

 Where the 𝑣𝑖𝐼s the cluster centers 

Proof. We differentiate 𝐽𝐴𝐺𝐻𝐶𝑀(𝑉; 𝑌) w.r.t 𝑣𝑖 and set the derivative equal to zero. 

Thus, we get Eq. (3.21). The details, as given in Appendix A. 

Algorithmic steps for Alternative Generalized Hard C-Means Clustering are: 

Step-1) Initialization- Data-set (𝑌), number of clusters centers  𝑣𝑗
0  (𝑗 = 𝑐 + 1)𝑗 ∈

ℕ, fix  𝜖 > 0, m=2, 𝑏 > 0, 𝒂 > 0, and Number of Iterations. 

Step-2) Classification – Calculate the class with the smallest measure of distance 

Eq.(3.17) 

Step-3) Centroid calculation – Update the cluster centroid 𝑣𝑗
(𝑡−1)

 , 𝑡 ∈ ℕ 

Step-4) Convergence criteria – If ||𝑣𝑗
𝑡-𝑣𝑗

(𝑡−1)
|| < 𝜖 , THEN stop; ELSE 𝑡 = 𝑡 + 1 

and go to step-3. 

In AGHCM, if b=0, then Eq. (3.21) is equivalent to ||𝑦𝑖 − 𝑣𝑗||
2 =min

𝑘
||𝑦𝑖 − 𝑣𝑘||

2 , 

𝑘 = 1,2… 𝑐.  
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Figure 3.3: AGHCM flow chart 

𝒃 is defined in Eq. (3.11) by the sample covariance of the data sets. It means that it 

shows the linear transformation between the various characteristics of the data set. But 

there are several instances in the practical scenario that occur in such a relationship, i.e., 

𝑏 = 0. If 𝑏 tends to zero, then the AGHCM membership curve would be close to the 

HCM membership curve with this parameter, which is not stable for the noisy and 

outlier again. Thus, for all the possible values of a, we take 𝑏 > 0 in this chapter. 
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3.5.2  Alternative Generalized Fuzzy C-Means Clustering 

Similarly, the objective function of Alternative Generalized fuzzy c-means 

clustering algorithms as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛  𝐽𝐴𝐺𝐹𝐶𝑀(𝑈, 𝑉; 𝑌) =∑∑𝜇𝑖𝑘
𝑚(1 − 𝑎−𝑏||𝑑𝑖𝑘||

2

)

𝑛

𝑘=1

𝑐

𝑖=1

     
 

(3.22) 

𝑊𝑖𝑡ℎ 𝑡ℎ𝑒 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 𝑜𝑓  

∑𝜇𝑖𝑘 = 1; 𝑘 ∈ ℕ

𝑐

𝑖=1

   
 

(3.23) 

Where 𝒂 > 1, 𝑏,𝑚 > 0, ||𝑑𝑖𝑘|| = ||𝑦𝑘 − 𝑣𝑖||    

Theorem 3.3. The necessary condition for minimizing 𝐽𝐴𝐺𝐹𝐶𝑀(𝑈, 𝑉; 𝑌) under the 

constraint of Eq  

(3.23)only if  

𝜇𝑖𝑘 =
[
 
 
 

1

√1 − 𝑎𝑏||𝑑𝑖𝑘||
2

]
 
 
 

1
(𝑚−1)

∑

[
 
 
 

1

√1 − 𝑎𝑏|
|𝑑𝑖𝑗||

2

]
 
 
 

1
(𝑚−1)

𝑐
𝑗=1

 

 

 

 

    (3.24) 

𝑎𝑛𝑑 𝑣𝑖 =

∑ 𝜇𝑖𝑘
𝑚 𝑎−𝑏||𝑑𝑖𝑘||

2

√1 − 𝑎𝑏||𝑑𝑖𝑘||
2

  𝑦𝑘
𝑛
𝑘=1

∑ 𝜇𝑖𝑘
𝑚 𝑎−𝑏||𝑑𝑖𝑘||

2

√1 − 𝑎𝑏||𝑑𝑖𝑘||
2

𝑛
𝑘=1

 

 

 

(3.25) 

Proof. We differentiate 𝐽𝐴𝐺𝐻𝐶𝑀(𝑉; 𝑌) w.r.t 𝜇𝑖𝑘  and 𝑣𝑖 and set the derivative equal to 

zero. Thus, we get Eq. (3.24) and Eq. (3.25). The details, as given in Appendix B. 

Algorithmic steps for Alternative Generalized Fuzzy C-Means Clustering are: 
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Step-1) Initialization- Data-set (𝑌), number of clusters centers  𝑣𝑗
0  (𝑗 = 𝑐 + 1) 𝑗 ∈

ℕ, fix  𝜖 > 0, m=2, 𝑏 > 0, 𝒂 > 0, and Number of Iterations. 

Step-2) Classification – Calculate the class with the smallest measure of distance 

Eq.(3.17)  

Step-3) Membership calculation- Compute   𝜇𝑖𝑘𝑗𝑘
𝑚  by Eq. (3.24)  

Step-4) Centroid calculation – Update the cluster centroid 𝑣𝑗
(𝑡−1)

 , 𝑡 ∈ ℕ 

Step-5) Convergence criteria – If ||𝑣𝑗
𝑡-𝑣𝑗

(𝑡−1)
|| < 𝜖 , THEN stop; ELSE 𝑡 − 1 = 𝑡 and 

go to step-1. 
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Figure 3.4: AGFCM flow chart 

The most suitable value of the fuzziness index  𝑚 = 2 in AGFCM plays the same 

role In FCM, has been discussed in [32]. But as mentioned above, we do not take 𝑏 as 

the sample variance. In AGFCM we take the three possible value of 𝑏 which is 

dependent on the ratio 𝑅∗=
𝑏

2(𝑚−1)
 . The possible value of 𝑅 are defined as follow: 

𝑅∗ = {

𝑟1 𝑖𝑓 𝑏 > 2(𝑚 − 1)
1 𝑖𝑓 𝑏 = 2(𝑚 − 1)
𝑟2 𝑖𝑓 𝑏 < 2(𝑚 − 1)

   

Where 𝑟1 > 1 𝑎𝑛𝑑 𝑟2 < 1. 

 

 

(3.26) 
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The association of AGHCM and AGFCM with HCM, FCM, AHCM, and AFCM is 

shown in Figure 3.5. As described above, AGFCM is a generalized case of AFCM 

replacing 𝑒 with 𝒂 denoted by [𝑒/𝒂] and vice versa. Likewise, the same relation with 

AGHCM and AHCM. If in AFCM (or AHCM) 𝑏 → 0,  then it coincides as FCM 

(HCM). The specific case of AHCM and AFCM, respectively, is HCM and FCM. . 

HCM, AHCM, and AGHCM are fuzzy extensions of FCM, AFCM, and AGFCM. 

Eventually, the numerical example, including diamond data sets (𝑃10 𝑎𝑛𝑑 𝑃12 )   and 

Iris data set is analyzed with these six algorithms. All algorithms were started with the 

same initial values and stopped in the same illustrations under the same stop 

circumstances. 

 

Figure 3.5: The association between HCM, FCM, AHCM, AFCM, AGHCM, and 

AGFCM 

3.6 Result And Simulations  

This section addresses the findings of the conceptual approach to two real-life test 

data sets, including Iris and Diamond Data Sets [36]. The analyses are measured 

compared to HCM, FCM, AHCM, AFCM, and other competitive algorithms. 

MATLAB R2015a on intel i3-370M processor, 2.40 GHz with 4 GB RAM, is used to 

implement and simulate experiments. 
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The following typical parameters have been considered: 𝑚 =  2, 𝜖 =

0.00001 maximum iterations= 100.    

Example 3.1 

Data sets: Diamond dataset 𝑃10 

Algorithms: AGHCM and AGFCM 

 Initialization: 𝑉0
1 = (−3,0.5) and 𝑉0

2 = (3,0.5) 

The initialization is accomplished by choosing two 𝑃10 data points randomly. The 

result provided by the AGFCM algorithm for the different values of 𝒂 corresponding 

to the various values of  𝑏 according to 𝑅∗  is shown in Eq.(3.26)Analyse the best 

optimal value of 𝒂 with the FCM (𝐽𝑓𝑐𝑚)and AGFCM (𝐽𝐴𝐺𝐹𝐶𝑀) objective functions 

described in Eq.(1.8) and Eq. 

(3.22), respectively. It also indicates the number of iterations (𝑗) that have reached 

the ideal centroids 𝑉𝑖𝑑𝑒𝑎𝑙
1 = (−3.34,0)  and  𝑉𝑖𝑑𝑒𝑎𝑙

2 = (3.34,0). The best optimal value 

for 𝒂 =  𝟏. 𝟎𝟑 corresponds to 𝑏 = 1(𝑅∗  < 1) in which gives the optimal value 𝐽𝐹𝐶𝑀 =

 𝟑𝟓. 𝟏𝟗𝟖𝟗𝟓 and 𝐽𝐴𝐺𝐹𝐶𝑀 = 𝟏. 𝟔𝟖𝟓𝟒𝟐𝟗.  Only if  𝑏 =  1(𝑅∗  < 1) ) 𝒂 = 𝒆  give the 

clustering center 𝑉𝑖𝑑𝑒𝑎𝑙  with 𝐽𝐹𝐶𝑀 =  97.459761 and 𝐽𝐴𝐺𝐹𝐶𝑀 = 3.935991, does not 

consider the clustering center for the other value of 𝑏. Likewise, the performance 

AGHCM is provided in Table 3.4 ,where 𝑅∗ < 1 the optimal value 𝒂 =  𝟏. 𝟏 

correspond to 𝑏 = 1 , and this means that the clustering center 𝑉𝑖𝑑𝑒𝑎𝑙 with 

𝐽𝐴𝐺𝐻𝐶𝑀=12.114523. has been reached. Again, the clustering center and the value of 

𝐽𝐴𝐺𝐻𝐶𝑀=17.747997 for  𝒂 = 𝒆 at 𝑏(𝑅∗  < 1) . 

Example 3.2 

Data sets: Diamond dataset 𝑃12 P11 is a noiseless data set of points {𝑦𝑖}𝑖=1
11 .P12 is 

the union of P11 and outlier ×12. 

Algorithms: AGHCM and AGFCM  𝑅∗ < 1, 𝑏 = 0.5, 𝒂 =  𝟏. 𝟎𝟒 
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 Initialization:𝑉0
1 = (−3,0.5) and 𝑉0

2 = (3,0.5) 

Now consider the 𝑃12That includes two P11 and P12 outliers. Our suggested 

algorithms (AGHCM and AGFCM) provide the ideal centroids  𝑉𝑖𝑑𝑒𝑎𝑙
1 = (−3.34,0) 

and 𝑉𝑖𝑑𝑒𝑎𝑙
2 = (−3.34,0) for the various values seen in Table 3.6 and Table 3.7. This 

shows that the virtually identical centroid clusters 𝑉𝑖𝑑𝑒𝑎𝑙 have been found by the 

proposed algorithms and do not impact the two outliers P11 and P12. 

The consequence of AGFCM, as seen in Table 3.6, in the case of 𝑅∗ < 1 the 

optimum value of 𝒂 =  𝟏. 𝟎𝟒 corresponds to 𝑏 = 0.5, which reached the ideal 

clustering core for  𝐽𝐹𝐶𝑀 =  𝟗𝟑. 𝟗𝟏𝟗𝟕𝟎𝟐 and 𝐽𝐴𝐺𝐹𝐶𝑀 = 𝟐. 𝟏𝟎𝟑𝟒𝟒𝟎𝟔𝟏𝟗. Except in the 

case of 𝑅∗ < 1 if 𝑏 =  1, 𝒂 = 𝒆  gives the clustering center 𝑉𝑖𝑑𝑒𝑎𝑙  with 𝐽𝐹𝐶𝑀 =

 158.61536  and 𝐽𝐴𝐺𝐹𝐶𝑀 = 4.9359874. and 𝒂 = 𝒆   does not consider the clustering 

center for the other value instances. The efficiency of the AGHCM in Table 3.7 also 

indicates the optimum value 𝒂 =  𝟐. 𝟏 in the case of 𝑅∗ < 1, 𝑏 =  0.1 with the optimal 

value of 𝐽𝐴𝐺𝐻𝐶𝑀=16.69017. Instead, the clustering center and the value of 

𝐽𝐴𝐺𝐻𝐶𝑀=17.468363 at 𝑏 = 0.1(𝑅∗ < 1 ) and  𝐽𝐴𝐺𝐻𝐶𝑀 = 21.7479831 𝑎𝑡 𝑏 = 1(𝑅
∗ <

1) )  are supplied. Otherwise, the clustering core is not recognized by 𝒂 = 𝑒. 

Table 3.8 provides a comparison of other clustering algorithms to AGHCM and 

AGFCM, demonstrating that the best outcomes of our proposed algorithms are obtained 

after clustering centers. The result of the clustering centers of the FCM, PCM, PFCM, 

etc., is taken from [36] [134].  

Example 3.3 

Data sets: IRIS 

Algorithms: AGHCM and AGFCM 

 Initialization: 

𝑉0
1 =(5.01,3.42,1.42,0.25) 𝑉0

2 =(5.83,2.79,4.29,1.34) and    

𝑉0
3 =(6.41,3.04,5.55,2.07) 
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Size of clusters:50,50, 50  

We presently exhibit PFCM on a real data set, IRIS [35], with three clusters centroid. 

It is a four-dimensional data set consisting of 50 samples of each of the three Iris 

flowers. One of the three (class 1) clusters is well apart from the other two, while classes 

2 and 3 overlaps. We made several iterations of AGFCM and AGHCM on IRIS, 

showing different parameter choices in Table 3.8 and Table 3.9, respectively. 

The optimal clustering centroid is shown in Table 3.8 for different values 

corresponding to the different value of 𝑏, depending on 𝑅∗. We use the objective 

functions of FCM, AGFCM, and SSE specified in equations (1.8), (3.22), and (1.7) to 

verify the result. Optimal value of 𝐽𝐹𝐶𝑀=88.3648 and 𝐽𝐴𝐺𝐹𝐶𝑀= 0.609435938 

corresponding to 𝑏 = 0.1(𝑅∗ < 1). On the other hand, the optimal value for SSE is 

112.31439 at 𝒂=2.1 corresponding to 𝑏 = 0.1(𝑅∗ < 1). Similarly, the optimal value 

for SSE for AGHCM is 112.440683 at 𝒂=8 corresponding to 𝑏 = 4(𝑅∗ > 1). 

3.7 Summary  

This chapter proposed a new, improved, generalized approach to metric space to 

resolve the drawback of Gaussian distance-based functionality proposed by Wu and 

Yang [1]. Zhang and Chen [2] have expanded it further. The proposed metric is more 

robust than the Euclidean and Gaussian function distance. Two clustering algorithms, 

called AGFCM and AGHCM clustering algorithms, are based on the suggested metric 

space. Diamond data sets and Iris data sets are used to assess the proposed algorithms' 

efficiency, compare AFCM, AHCM, and other competitive algorithms such as FCM, 

PCM, FPCM, and PFCM. Compared to other proven algorithms, the performance of 

proposed algorithms has been found to work significantly better. We suggest using the 

AGFCM clustering algorithm for cluster analysis applications. In the future, we can 

also use the proposed metric and AGFCM in a PFCM, CFCM, and other clustering 

algorithms where metrics play an important role.  

  



64 

 

Chapter 4 

A Novel Approach for Fuzzy Linear Programming 

Using Situational Based Composite Triangular 

Number 

“An optimist is someone who believes the future is uncertain.” 

−Anonymous 

 

 

4.1 Introduction  

Unfortunately, sometimes, the actual practical situations are often not deterministic. 

Certain types of dubieties in social, industrial, and economic systems, such as 

randomness of occurrence of events can lead to improper optimization. Such types of 

dubieties (Feasible uncertainties) are associated with the difficulty of making a sharp 

or precise decision. Feasible uncertainties deal with the situation where the information 

cannot be valued sharply or cannot be described clearly in a linguistic term, such as 

preference-related information. At a certain point of time, the availabilities of m 

constraints can fluctuate in terms of probabilistic increment, probabilistic decrement, 

or both directions then general LPP cannot make explicit the proper optimization. 

The uncertainties in the realistic situation could not be overlooked in succession to 

create the organization's well-organized supply chain. These ambiguities are usually 

related to the product supply, customer demand, etc. [135]. The fuzzy numbers 

concerned, which have a realistic approach in many different fields like decision 

making, data analysis [87], and also engineering problems[81][89], etc. problem. With 

the assistance of these fuzzy numbers, numerous optimization problems can be 

resolved. In [90], they introduced the subtraction and division process with a triangular 

fuzzy number(FTN). Besides, many modified operations are used to promote triangular 



65 

 

and trapezoidal fuzzy numbers [136][137][138][139][93][140][95][141][97] and may 

have an impact on FLP optimization. An innovative way to resolve FLP fully through 

the use of the lexicography method [142], in addition to the traditional linear system, 

using the (LR) fuzzy numbers and the lexicography method, a recent FLP resolution 

trend. New algorithms [99] were build based on a new lexicographic TFN to explain 

the FFLP by switching to its multi-objective linear programming. In terms of the 

vendor's implementation costs reduction, two models [143] were introduced to reduce 

the overall device costs. In paper [144], the results of reduction in setup costs and 

increases in efficiency have been established in an increasing two-echelon chain model. 

The goal was to reduce the overall cost of the whole SCM model by minimizing 

construction expense, process efficiency, number of suppliers, and lot size at the same 

time. In paper [145], the distribution of probabilities for consumer demand was 

assumed only to have a known mean and standard deviation. The retailer's costs and 

developing competitive distribution arrangements were suggested as an effective 

solution. Often included in article [146] is a supply chain network, where a single 

manufacturer manufactures goods in a batch phase and delivers them over several times 

to a variety of customers. Chandrawat et.al. [147]conducted a modelling and 

optimization study using FLP with symmetrical and right-angle triangle fuzzy number. 

To illustrate the membership grade of optimized fuzzy LPP, they used the right angle 

triangular fuzzy number. The various components of triangular fuzzy numbers 

[101][102]were used on the other hand to develop trustworthiness parameters for the 

extraction of the industrial system. In these papers [148][104][75][149] they used 

symmetric trapezoidal numbers to represent the coefficients of the restriction’s 

objective function and solution value of the R.H.S to overcome FLP concerns. 

If the fluctuation is available in increment or decrement, then the use of right angles 

triangular fuzzy linear programming problem proposed [70] shows the benefits in 

introducing the credibility for the increase or decrease. This credibility fulfills the 

necessities to find out the lower and upper bounds for the initial LPP.  
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4.2 Problem Identification 

Rail Coach Factory, Kapurthala, a premier coach manufacturing unit of Indian 

Railways, was established in 1986. It is situated in the Kapurthala district of Punjab, 

India.  RCF has moved on to become the largest and most modern coach manufacturing 

unit of Indian Railways. We visited the site and observed the data that more than 36,000 

RCF built coaches are traversing our nation's length and breadth. Every year RCF is 

adding more than 1600 coaches to this fleet, including AC and Non-AC coaches for 

Broad Gauge. These coaches have higher speed potential (up to 180 kmph), higher 

carrying capacity, aesthetically pleasing looks, and above all, superior safety features 

built into their design.  

Though with selective indigenization, these coaches' costs have been brought down 

to one-third of their original cost, still these are 50% to 80% costlier than the 

conventional coaches. These coaches were hitherto confined to only premium trains 

like Rajdhani and Shatabdi Express due to higher costs. So, till 2009, RCF was 

manufacturing around 100 such coaches every year. Derive the benefits of this superior 

technology on a broader scale; a decision was taken in 2009-10 to switch over to 

stainless steel coach manufacturing completely. Hence the data of the production costs 

of different coaches for the year 2010-11 were considered input, and the total cost has 

been targeted as a prime objective see Table 4.1. It was observed that owing to certain 

procedural changes, maybe technical shifting, the actual production cost was 

fluctuating or uncertain, and the uncertainty is classified by Table 4.2. Hence it is 

challenging to optimize the production cost in this inflexibility of creation expenses for 

various mentors. Therefore, the present study is carried out by proposing newly 

constructed composite triangular and trapezoidal FLPP models to deal with it. 

4.3 Fuzzy Linear Programming using Right Angle Triangle  

Classical LPPs are the minimum or maximum values under linear inequalities or 

linear function equations. The standard form of LPP is represented by 
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Max/Min 𝑍 = ∑ с𝑗𝑦𝑗
𝑛
𝑗=1  

Subject to   ∑ 𝒶𝑖𝑗𝑦𝑗
𝑛
𝑗=1  ≤ 𝑜𝑟 ≥ 𝛽𝑖 

                                           Where,  𝑦𝑗 ≥ 0, 𝑖, 𝑗 ∈ ℕ                                                   

 

 

(4.1) 

The function to be Max 𝑍 or Min 𝑍 is called an objective function. The 𝑐𝑗 are called 

cost coefficients. The A=[𝒶𝑖𝑗] matrix is called a restriction matrix and the  

𝜷𝒊=  < 𝑏1, 𝑏2, … , 𝑏𝑚 >𝑇 is called a vector on the right side. where y=  <

𝑦1, 𝑦2, … , 𝑦𝑛 >
𝑇 is the vector of variables. 

The standard form of fuzzy linear programming is represented by 

Max 𝑍 = ∑ с𝑗𝑦𝑗
𝑛
𝑗=1

 

Subject to   ∑ 𝒶𝑖𝑗𝑦𝑗
𝑛
𝑗=1  ≤ 𝐵1̃  

Where,  𝑦𝑗 ≥ 0, 𝑖, 𝑗 ∈ ℕ 

 

 

(4.2) 

  Where 𝐵1̃ is the right triangle fuzzy number.  

The coefficient on the right is the membership function, i.e., the availability of 

restrictions. Optimize such a problem; the optimum values' lower and upper boundaries 

need to be estimated. The lower bound (Zl) value is 

Max 𝒁𝒍 = ∑ с𝑗𝑦𝑗
𝑛
𝑗=1

 

Subject to   ∑ 𝒶𝑖𝑗𝑦𝑗
𝑛
𝑗=1  ≤ 𝛽𝑖 

Where,  𝑦𝑗 ≥ 0, 𝑖, 𝑗 ∈ ℕ 

 

 

 (4.3) 

   The optimal values upper bound ( 𝒁𝒖) is as follows 
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Max 𝒁𝒖 = ∑ с𝑗𝑦𝑗
𝑛
𝑗=1

 

Subject to   ∑ 𝒶𝑖𝑗𝑦𝑗
𝑛
𝑗=1  ≤ 𝛽𝑖+ 𝜀𝑖 

Where,  𝑦𝑗 ≥ 0, 𝑖, 𝑗 ∈ ℕ 

 

 

 (4.4) 

 Where, 𝜀𝑖 is an increase in the probabilistic availability of restrictions. In this case, 

the total probabilistic increase of access to restrictions are determined by the right 

coefficient. 

The Simplex method can now be used to find a solution for the lower and upper 

bounds of the LPPs. Using these lower and upper bounds, the optimized FLLP is 

obtained as follows. 

Max Z= 𝜆 

Subject to     𝜆 (𝑍𝑢 − 𝑍𝑙) − ∑ с𝑗𝑦𝑗
𝑛
𝑗=1 ≤ −𝑍𝑙 

𝜆𝜀𝑖  +∑ 𝒶𝑖𝑗𝑦𝑗
𝑛
𝑗=1  ≤ 𝛽𝑖+ 𝜀𝑖 

Where,  𝑦𝑗 ≥ 0, 𝑖, 𝑗 ∈ ℕ and 𝜆 ∈ [0,1] is membership grade 

 

 

(4.5) 

4.4 Fuzzy Linear Programming using a Composite Fuzzy Triangular 

Number   

According to the composite fuzzy triangular number 𝐵̃2 = (𝛽𝑖 − 𝜀𝑖 , 𝛽𝑖, 𝛽𝑖 + 𝜀𝑖
∗) the 

general structure of the optimal values of the lower, static, and upper bounds are defined 

below: 

The lower bound (𝒁𝒍) – 

Max 𝒁𝑳 = ∑ с𝑗𝑦𝑗
𝑛
𝑗=1

 

Subject to   ∑ 𝒶𝑖𝑗𝑦𝑗
𝑛
𝑗=1  ≤ 𝛽𝑖 − 𝜀𝑖 

Where,  𝑦𝑗 ≥ 0, 𝑖, 𝑗 ∈ ℕ 

 

 

(4.6) 
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 The static bound (Zs) – 

Max 𝒁𝒍 = ∑ с𝑗𝑦𝑗
𝑛
𝑗=1

 

Subject to   ∑ 𝒶𝑖𝑗𝑦𝑗
𝑛
𝑗=1  ≤ 𝛽𝑖 

Where,  𝑦𝑗 ≥ 0, 𝑖, 𝑗 ∈ ℕ 

 

 

(4.7) 

 The upper bound (Zu) – 

Max 𝒁𝒖 = ∑ с𝑗𝑦𝑗
𝑛
𝑗=1

 

Subject to   ∑ 𝒶𝑖𝑗𝑦𝑗
𝑛
𝑗=1  ≤ 𝛽𝑖+ 𝜀𝑖

∗ 

Where,  𝑦𝑗 ≥ 0, 𝑖, 𝑗 ∈ ℕ 

 

 

(4.8) 

 The solution for lower and upper bounds of LPP’s is obtained by the Simplex 

method. Find the two different optimized FLPP model will be obtained by using these 

lower and upper bounds

 

4.4.1.1 Optimized Composite Triangular FLPP Model -I: - 

Max Z = 𝜆,  

Subject to 

𝜆(𝑍𝑠 − 𝑍𝑙) −∑𝑐𝑗𝑦𝑗

𝑛

𝑗=1

≤ −𝑍𝑙 

𝜆(𝜀𝑖) +∑𝑎𝑖𝑗𝑦𝑗 ≤ 𝑏𝑖,

𝑛

𝑗=1  

𝜆(𝑍𝑢 − 𝑍𝑠) −∑𝑐𝑗𝑦𝑗

𝑛

𝑗=1

≤ −𝑍𝑠 

𝜆(𝜀𝑖
∗) + ∑ 𝑎𝑖𝑗𝑦𝑗

𝑛
𝑗=1 ≤ 𝛽𝑖+ 𝜀𝑖

∗ 

 

 

 

 

 

 

(4.9) 
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Where,  𝑦𝑗 ≥ 0, 𝑖, 𝑗 ∈ ℕ, 𝜆 ∈ [0,1] 

4.4.1.2  Optimized Composite Triangular FLPP Model-II:- 

Max Z =𝜆, Subject to 

𝜆(𝑍𝑠 − 𝑍𝑙) −∑𝑐𝑗𝑦𝑗

𝑛

𝑗=1

≤ −𝑍𝑙 

𝜆(𝜀𝑖) +∑𝑎𝑖𝑗𝑦𝑗 ≤ 𝛽𝑖

𝑛

𝑗=1  

𝜆(𝑍𝑢 − 𝑍𝑙) −∑𝑐𝑗𝑦𝑗

𝑛

𝑗=1

≤ −𝑍𝑙 

𝜆(𝜀𝑖∗+𝜀𝑖) + ∑ 𝑎𝑖𝑗𝑦𝑗
𝑛
𝑗=1 ≤ 𝛽𝑖+ 𝜀𝑖

∗ 

Where,  𝑦𝑗 ≥ 0, 𝑖, 𝑗 ∈ ℕ, 𝜆 ∈ [0,1] 

 

 

 

 

 

 

(4.10) 

 The membership grade on behalf of our primary LPP will be given by the above 

equations (4.9) and (4.10)fuzzy optimized LPP. Here 𝜆 signifies the membership grade 

and 𝑍𝑢, 𝑍𝑠  𝑎𝑛𝑑 𝑍𝑙 are the upper, static, and lower bounds. ∑ 𝑐𝑗𝑦𝑗
𝑛
𝑗=1  is the objective 

function of the primary LPP, 𝜀𝑖
∗ 𝑎𝑛𝑑 𝜀𝑖 is the probabilistic increment and decrement 

respectively in the availability of the constraints. 

4.4.2 Case Study and Data Identification 

The data specified under is of the Rail Coach Factory (RCF), Kapurthala, Punjab, 

India of 2010-2011. This data indicates the built-up cost (in ‘lacs’ ‘1,00,000’) of 

different kinds of constraints of coaches.  

According to the complexity of the data, the optimization of targeted constraints 

might vary. Study of optimization strategies for realistic situations, the skewness and 

Kurtosis characteristics play a broader role. In the year 2010-11, different coaches' total 

production cost is taken as an objective function to be minimized concerning the other 

constraints. The total availability of constraints 𝑪𝑳𝒂𝒃.,𝑪𝑴𝒂𝒕., 𝑪𝒇𝒐𝒉 , 
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𝑪𝑨𝒐𝒉, 𝑪𝑻𝒐𝒉, 𝑪𝑺𝒐𝒉, 𝑪𝑻𝒐𝒕 , 𝑪𝑷𝒄 and 𝑪𝑻𝒄 are 153.2, 2328.22, 256.56, 197.13, 41.23, 18.67, 

513.61, 93.83 and 3088.88 lacs respectively. Modeling for system of Optimal Solution 

for Case-I 

Objective function    

Let 𝑦1, 𝑦2, … , 𝑦20 be variables for different constraints. 

Minimize Z: 66.4𝑦1 + 61.58𝑦2 + 64.47𝑦3 + 264.12𝑦4 + 69.17𝑦5 + 130.48𝑦6 + 

46.03𝑦7+ 164.11𝑦8+ 262.29𝑦9 + 129.41𝑦10 + 52.16𝑦11 + 202.79𝑦12 + 206.74𝑦13 + 

142.17𝑦14 + 236.53𝑦15+ 302.08𝑦16 + 234.01𝑦17  + 236.54𝑦18  + 98.67𝑦19 + 119.13𝑦20 

Subjected to constraints: - 

4.38𝑦1+ 4.07𝑦2 + 4.04𝑦3 + 9.88𝑦4 + 4.10𝑦5 + 7.38𝑦6+ 2.5𝑦7 + 8.11𝑦8 + 14.81𝑦9 + 

7.22𝑦10 + 3.05𝑦11+ 9.18𝑦12  + 10.70𝑦13  + 6.38𝑦14  + 10.38𝑦15 + 10.51𝑦16 + 11.24𝑦17 

+ 11.57𝑦18   + 5.91𝑦19  + 7.79𝑦20≥𝐵lab  

45.7𝑦1 + 41.99𝑦2  + 44.49𝑦3  + 211.93𝑦4  + 49.13𝑦5 + 94.06𝑦6  + 33.62𝑦7+ 124.32𝑦8 

+ 190.08𝑦9  +93.76𝑦10 + 37.29𝑦11 + 156.57𝑦12  + 153.98𝑦13  + 110.86𝑦14 + 184.34𝑦15 

+ 246.6𝑦16 + 178.25𝑦17+179.28𝑦18   + 70.13𝑦19  + 81.84𝑦20 ≥ 𝐵mat  

7.33𝑦1 + 6.81𝑦2  + 6.77𝑦3  + 16.55𝑦4  + 6.87𝑦5 + 12.36𝑦6  + 4.58𝑦7+ 14.35𝑦8 + 24.4𝑦9  

+ 13.17𝑦10 +5.55𝑦11 + 15.27𝑦12  + 17.84𝑦13 + 10.59𝑦14 + 16.98𝑦15+ 17.19𝑦16 + 

18.42𝑦17 + 18.97𝑦18   + 9.70𝑦19  +12.86𝑦20≥ 𝐵foh  

5.8𝑦1 + 5.39𝑦2  + 5.35𝑦3  + 13.09𝑦4  + 5.43𝑦5 + 9.78𝑦6 + 2.91𝑦7 + 9.14𝑦8 + 19.3𝑦9  

+ 8.39𝑦10 + 3.54𝑦11+ 12.08𝑦12  + 14.11𝑦13  + 8.38𝑦14 + 13.43𝑦15 + 13.59𝑦16 + 14.57𝑦17 

+ 15.01𝑦18   + 7.67𝑦19  + 10.17𝑦20≥  𝐵aoh   

1.17𝑦1 + 1.09𝑦2  + 1.08𝑦3  + 2.65𝑦4  + 1.10𝑦5+ 1.98𝑦6 + 0.75𝑦7 + 2.35𝑦8 + 3.91𝑦9  + 

2.16𝑦10 + 0.91𝑦11 + 2.45𝑦12 + 2.86𝑦13  + 1.70𝑦14  + 2.72𝑦15 + 2.75𝑦16 + 2.95𝑦17 + 

3.04𝑦18   + 1.55𝑦19  + 2.06𝑦20≥𝐵tooh   
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0.37𝑦1 + 0.34𝑦2  + 0.36𝑦3  + 1.74𝑦4  + 0.40𝑦5+ 0.77𝑦6  + 0.23𝑦7 + 0.85𝑦8 + 1.56𝑦9  

+ 0.64𝑦10 + 0.25𝑦11+ 1.28𝑦12  + 1.26𝑦13  + 0.91𝑦14  + 1.51𝑦15 + 2.02𝑦16 + 1.46𝑦17+ 

1.47𝑦18   + 0.58𝑦19 + 0.67𝑦20≥ 𝐵soh   

14.69𝑦1 + 13.63𝑦2  + 13.57𝑦3  + 34.04𝑦4  + 13.80𝑦5 + 24.89𝑦6 + 8.47𝑦7 + 26.68𝑦8 + 

49.16𝑦9  + 24.35𝑦10 + 10.26𝑦11 + 31.09𝑦12  + 36.07𝑦13 + 21.58𝑦14 + 34.64𝑦15 + 

35.56𝑦16 + 37.39𝑦17 + 38.49𝑦18  + 19.49𝑦19   + 25.76𝑦20  ≥   𝐵toh    

1.63𝑦1 + 1.89𝑦2 + 2.37𝑦3 + 8.27𝑦4 + 2.13𝑦5 + 4.14𝑦6  + 1.44𝑦7+ 5𝑦8 + 8.23𝑦9  + 4.07𝑦10 

+ 1.57𝑦11+5.96𝑦12  + 5.99𝑦13  + 3.35𝑦14  + 7.17𝑦15 + 9.42𝑦16 + 7.12𝑦17+ 7.20𝑦18   + 

3.14𝑦19  + 3.74≤𝐵prof  

 For all 𝑦𝑖 ≥  0 (4.11) 

4.4.3 Numerical Result:                                                      

The following cases have been identified to deal with the described situations. 

MATLAB R2015a on intel i3-370M processor, 2.40 GHz with 4 GB RAM, is used to 

implement and simulate experiments. 

4.4.3.1 Case I: Unbounded Feasibility with Zero Skewness – 

The production cost is targeted with at least basic availability for all constraints. It 

is optimized when basic availability fluctuates by incrementing average quantity in one 

direction and decreasing average quantity in another direction. The fluctuation is shown 

by Table (4.2) in one direction and intensified by the average in another direction. 

4.4.3.1.1 Result Case-I 

Using the described methodology, the modeling of production cost is being done, 

and the fuzzy numbers for all cost parameters have been derived. The lower bound, 

static bound, and upper bound are calculated, and the optimized fuzzy linear 

programming problem (OFLPP) has been constructed using the lower and upper bound. 
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The mathematically described membership grades of all Cases I and II constraints 

are shown in equations (4.12) to (4.19).   

Let 𝐵𝑙𝑎𝑏be the membership grade for labor cost, and it varies as:- 

𝐵𝑙𝑎𝑏 =

{
 
 

 
 

1                              𝑤ℎ𝑒𝑛 𝑦 = 153.2
𝑦 − 145.54

66.7
𝑤ℎ𝑒𝑛  145.54 ≤ 𝑦 ≤ 153.2

160.86 − 𝑦

7.66
𝑤ℎ𝑒𝑛  153.2 ≤ 𝑦 ≤ 160.86

0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(4.12) 

Let 𝐵𝑚𝑎𝑡be the membership grade for Material cost, and it varies as:- 

𝐵𝑚𝑎𝑡 =

{
 
 

 
 

1                              𝑤ℎ𝑒𝑛 𝑦 = 2328.22
𝑦 − 2211.81

116.41
      𝑤ℎ𝑒𝑛  2211.81 ≤ 𝑦 ≤ 2328.22

2444.63 − 𝑦

116.41
         𝑤ℎ𝑒𝑛  2328.22 ≤ 𝑦 ≤ 2444.63

0                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒          

  

 

 

(4.13) 

Let 𝐵𝑓𝑜ℎbe the membership grade for Factory overhead charge, and it varies as:- 

𝐵𝑓𝑜ℎ =

{
 
 

 
 

1                              𝑤ℎ𝑒𝑛  𝑦 = 256.56
𝑦 − 243.73

12.83
         𝑤ℎ𝑒𝑛  243.73 ≤ 𝑦 ≤ 256.56

269.39 − 𝑦

12.83
         𝑤ℎ𝑒𝑛  256.56 ≤ 𝑦 ≤ 269.39

0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     

 

 

(4.14) 

Let 𝐵𝑎𝑜ℎbe the membership grade for Administrative, and it varies as:- 

𝐵𝑎𝑜ℎ =

{
 
 

 
 

1                              𝑤ℎ𝑒𝑛 𝑦 = 197.13
𝑦 − 187.27

9.85
𝑤ℎ𝑒𝑛  187.27 ≤ 𝑦 ≤ 197.13

206.98 − 𝑦

9.85
𝑤ℎ𝑒𝑛  197.13 ≤ 𝑦 ≤ 206.98

0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(4.15) 

Let 𝐵𝑡𝑜ℎbe the membership grade for Township overhead charge, and it varies as: - 
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𝐵𝑡𝑜ℎ =

{
 
 

 
 

1                              𝑤ℎ𝑒𝑛𝑦 = 41.23
𝑦 − 39.16

2.06
𝑤ℎ𝑒𝑛  39.16 ≤ 𝑦 ≤ 41.23

43.29 − 𝑦

2.06
𝑤ℎ𝑒𝑛  41.23 ≤ 𝑦 ≤ 43.29

0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(4.16) 

Let 𝐵𝑠𝑜ℎbe the membership grade for Shop overhead charge, and it varies as: - 

𝐵𝑠𝑜ℎ =

{
 
 

 
 

1                              𝑤ℎ𝑒𝑛𝑦 = 18.67
𝑦 − 17.73

93.0
𝑤ℎ𝑒𝑛  17.73 ≤ 𝑦 ≤ 18.67

19.60 − 𝑦

0.93
𝑤ℎ𝑒𝑛  18.67 ≤ 𝑦 ≤ 19.60

0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(4.17) 

Let 𝐵𝑡𝑜ℎbe the membership grade for Total overhead charge, and it varies as: - 

𝐵𝑡𝑜ℎ =

{
 
 

 
 

1                              𝑤ℎ𝑒𝑛𝑦 = 513.61
𝑦 − 487.92

68.25
𝑤ℎ𝑒𝑛  487.92 ≤ 𝑦 ≤ 513.61

539.29 − 𝑦

25.68
𝑤ℎ𝑒𝑛  513.61 ≤ 𝑦 ≤ 539.29

0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(4.18) 

Let 𝐵𝑝𝑟𝑜𝑓be the membership grade for Proforma charge, and it varies as: - 

𝐵𝑝𝑟𝑜𝑓 =

{
 
 

 
 

1                              𝑤ℎ𝑒𝑛     𝑦 = 93.83
𝑦 − 89.13

69.4
                   𝑤ℎ𝑒𝑛  89.13 ≤ 𝑦 ≤ 93.83

98.52 − 𝑦

4.69
              𝑤ℎ𝑒𝑛  93.83 ≤ 𝑦 ≤ 98.52

0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(4.19) 

4.4.3.1.2 Optimized Fuzzy Linear Programming Problem of Case-I  

Using the described methodology, the modeling of production cost is being done, 

and the fuzzy numbers for all cost parameters have been derived. The lower bound, 

static bound, and upper bound are calculated the value of lower, static, and upper bound 
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are rupees 2934.3116711695(lakhs), rupees 3088.7495985759(lakhs), and rupees 

3243.1771372067(lakhs), respectively.  

The Table 4.1 shows the solutions for the optimized value of lower, static and upper 

bound and for the optimized membership grade for case-I and model I and II. 

4.4.3.1.3 Result Analysis Case-I 

The production cost of RCF can be minimized using the cost parameter. The 

production's total basic cost is rupees 3088.749 (in lacs), and it can be extended and 

declined until rupees 3243.177, 2934.311(in lacs), respectively. The optimum 

production cost has been obtained to get the maximum membership grade. It shows that 

total production cost provides the highest credibility if the optimized cost is considered 

equal to rupees 3088.749 (in lacs). The credibility of production cost is being decreased 

if it is tending towards rupees 2934.311 and 3243.177 (in lacs).  

Eq. (4.20) and figure 4.13 show the fuzzy number for optimized membership grade: 

𝛌 =

{
 
 

 
 

1                              𝑤ℎ𝑒𝑛 𝑦 = 3088.7496
𝑦 − 2934.3116

154.438
𝑤ℎ𝑒𝑛  2934.3116 ≤ 𝑦 ≤ 3088.7496

3243.1771 − 𝑦

154.42
𝑤ℎ𝑒𝑛  3088.7496 ≤ 𝑦 ≤ 3243.1771

0                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    

 

 

(4.20) 

 

Figure 4.1: The relation between membership grade of optimized production cost with 

𝜆1and𝜆2 of case-I. 
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Using the structure of optimized composite triangle fuzzy LPP, Model-I illustrate 

the Optimized minimum cost 3088.7273 unit with the membership grade 𝜆1 =

0.00104521, and the minimized and greatest minimized costs 2934.466 and 3243.017 

units, respectively. Similarly, optimized composite triangle fuzzy LPP, Model-II 

illustrate the Optimized minimum cost of 3027.414 unit with the membership grade 

𝜆2 = 0.30143, and minimized and the greatest minimized costs 2980.86 and 3196.62 

units, respectively. 

4.4.3.2 Case II: Bounded Feasibility with Zero Skewness –  

Case –II is like the case –I to justify the feasible bounded region, the Performa charge 

is included with at least availability, and all other constraints are included with at most 

availability. Here, the Performa charge is considered at least availability because this 

situation provides the bounded solution and gives the optimal value nearest to the 

feasible most optimum solution. 

4.4.3.2.1  Optimized Fuzzy Linear Programming Problem of Case-II  

  The described methodology models the production cost done, and the cost parameters 

of fuzzy numbers have been derived and explained in equations (4.12) to (4.19).  Figure 

4.1 to Figure 4.8 The lower bound, static bound, and upper bound are calculated the 

value of lower, static, and upper bound are rupees 2943.959308 (lakhs), rupees 

3098.912497 (lakhs), and rupees 3253.835047 (lakhs), respectively. 

The optimized fuzzy linear programming problem (OFLPP) has been constructed 

using the lower, static, and upper bound. 

The Table 4.2:  shows the solutions for the optimized value of lower, static, and 

upper bound and the optimized membership grade. 

4.4.3.2.2 Result Analysis Case-II 

In this situation, the production cost can be increased and reduced to 3243.1770 and 

2934.3110 (in lakes), respectively, and the total cost of production is 3088.7490 (in 

lakes). The optimal cost of production has been achieved to achieve optimum 
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membership grades. The overall production cost is shown to have an optimum 

reputation if the optimized costs are substantially equal to 3088,749 (in lakes). 

However, if the production cost remains at 2934.3110 and 3243.1770 (in lakes), the 

reputation of production costs is declining. 

Eq. (4.21) and Figure 4.10 show the fuzzy number for optimized membership grade: 

 

𝛌 =

{
 
 

 
 

1                              𝑤ℎ𝑒𝑛 𝑦 = 3098.9125
𝑦 − 2943.9593

154.9500
𝑤ℎ𝑒𝑛  2943.9593 ≤ 𝑦 ≤ 3098.9125

3253.8350 − 𝑦

154.9500
𝑤ℎ𝑒𝑛  3098.9125 ≤ 𝑦 ≤ 3253.8350

0                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(4.21) 

  

Figure 4.2: The relation between membership grade of optimized production cost with 

𝜆1and𝜆2 of case − II. 

Model-I then reveals the Optimized Minimum Cost 3098.997 unit for membership 

grade 𝜆1 = 0.0005434397443, and the minimized and greatest minimized costs 

respectively 2944.0435 and 3253.7509 units, respectively, and Model-II, emphasizes 

the optimized minimum cost of 3037.033 points for membership grade𝜆2 =

0.3003278249 and the minimized and greatest minimized costs of 2990.4961 and 

3207.2998 units, respectively. 

4.4.3.3 Case-III: Unbounded Feasibility with Positive Skewness-  

The production cost is targeted with at least basic availability for all constraints. It 

is optimized when the basic availability of all constraints fluctuates by decrement of 
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average quantity in one direction and by incrementing maximum quantity in another 

direction. The fluctuation is shown in Table 4.5. 

4.4.3.3.1 Result of Case-III 

Using the described methodology, the modeling of production cost is being done, 

and the fuzzy numbers for all cost parameters have been derived. The lower bound, 

static bound, and upper bound are calculated, and the optimized fuzzy linear 

programming problem (OFLPP) has been constructed using the lower and upper bound. 

Likewise, for Case III, the mathematically defined membership grades of all 

constraints are seen in equations (4.22) to (4.29). Also, Figure 4.11  to Figure 4.18  show 

graphical representations, which are listed below: 

Let 𝐵𝑙𝑎𝑏be the membership grade for Labour cost, and it varies as: - 

𝐵𝑙𝑎𝑏 =

{
 
 

 
 

1                                    𝑤ℎ𝑒𝑛   𝑦 = 153.2
𝑦 − 145.54

66.7
     𝑤ℎ𝑒𝑛  145.54 ≤ 𝑦 ≤ 153.2    

168.01 − 𝑦

14.81
        𝑤ℎ𝑒𝑛  153.2 ≤ 𝑦 ≤ 168.01     

0                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

 

 

 

(4.22) 

 

Figure 4.3: Membership grade for labor cost. 

Let 𝐵𝑚𝑎𝑡be the membership grade for Material cost, and it varies as: - 
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𝐵𝑚𝑎𝑡 =

{
 
 

 
 

1                              𝑤ℎ𝑒𝑛     𝑦 = 2328.22
𝑦 − 2211.81

116.41
   𝑤ℎ𝑒𝑛 2211.81 ≤ 𝑦 ≤ 2328.22

2574.82 − 𝑦

246.6
   𝑤ℎ𝑒𝑛 2328.22 ≤ 𝑦 ≤ 2574.82

0                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(4.23) 

 

Figure 4.4: Membership grade for Material cost. 

Let 𝐵𝑓𝑜ℎbe the membership grade for Factory overhead charges, and it varies as: - 

𝐵𝑓𝑜ℎ =

{
 
 

 
 

1                              𝑤ℎ𝑒𝑛 𝑦 = 256.56
𝑦 − 243.73

12.83
𝑤ℎ𝑒𝑛  243.73 ≤ 𝑦 ≤ 256.56

280.96 − 𝑦

24.4
𝑤ℎ𝑒𝑛  256.56 ≤ 𝑦 ≤ 280.96

0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(4.24) 
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Figure 4.5: Membership grade for Factory overhead charge. 

Let 𝐵𝑎𝑜ℎbe the membership grade for Administrative overhead charge, and it varies 

as: - 

𝐵𝑎𝑜ℎ =

{
 
 

 
 

1                              𝑤ℎ𝑒𝑛 𝑦 = 197.13
𝑦 − 187.27

9.85
𝑤ℎ𝑒𝑛  187.27 ≤ 𝑦 ≤ 197.13

216.14 − 𝑦

19.3
𝑤ℎ𝑒𝑛  197.13 ≤ 𝑦 ≤ 216.14

0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(4.25) 

 

Figure 4.6: Membership grade for Administrative overhead charge. 

Let 𝐵𝑡𝑜ℎbe the membership grade for Township Overhead charge, and it varies as:- 
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𝐵𝑡𝑜ℎ =

{
 
 

 
 
1                              𝑤ℎ𝑒𝑛 𝑦 = 41.23
𝑦 − 39.16

06.2
𝑤ℎ𝑒𝑛  39.16 ≤ 𝑦 ≤ 41.23

45.14 − 𝑦

3.91
𝑤ℎ𝑒𝑛  41.23 ≤ 𝑦 ≤ 45.14

0                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                   

 

 

(4.26) 

 

Figure 4.7: Membership grade for Township overhead charge. 

Let 𝐵𝑠𝑜ℎbe the membership grade for Shop overhead charge, and it varies as:- 

𝐵𝑠𝑜ℎ =

{
 
 

 
 

1                              𝑤ℎ𝑒𝑛 𝑦 = 18.67
𝑦 − 17.73

93.0
𝑤ℎ𝑒𝑛  17.73 ≤ 𝑦 ≤ 18.67 

20.69 − 𝑦

2.02
𝑤ℎ𝑒𝑛  18.67 ≤ 𝑦 ≤ 20.69

0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(4.27) 

 

Figure 4.8: Membership grade for Shop overhead charge. 

Let 𝐵𝑡𝑜ℎbe the membership grade for Total overhead charge, and it varies as: - 
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𝐵𝑡𝑜ℎ =

{
 
 

 
 

1                              𝑤ℎ𝑒𝑛 𝑦 = 513.61
𝑦 − 487.92

68.25
𝑤ℎ𝑒𝑛  487.92 ≤ 𝑦 ≤ 513.61

562.77 − 𝑦

49.16
𝑤ℎ𝑒𝑛  513.61 ≤ 𝑦 ≤ 562.77

0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(4.28) 

 

Figure 4.9: Membership grade for Total overhead charge. 

Let 𝐵𝑝𝑟𝑜𝑓be the membership grade for Proforma Charge, and it varies as: - 

𝐵𝑝𝑟𝑜𝑓 =

{
 
 

 
 

1                              𝑤ℎ𝑒𝑛 𝑦 = 93.83
𝑦 − 89.13

69.4
𝑤ℎ𝑒𝑛  89.13 ≤ 𝑦 ≤ 93.83

103.25 − 𝑦

9.42
𝑤ℎ𝑒𝑛  93.83 ≤ 𝑦 ≤ 103.25

0                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                            

 

 

(4.29) 
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Figure 4.10: Membership grade for Proforma charge. 

4.4.3.3.2 Optimized Fuzzy Linear Programming Problem of Case-III  

Using the described methodology, the modeling of production cost is being done, 

and the fuzzy numbers for all cost parameters have been derived. The lower bound, 

static bound, and upper bound are calculated the value of lower, static, and upper bound 

are rupees 2934.3116711695 (lakhs), rupees 3088.7495985759(lakhs), and rupees 

3409.20227 (lakhs), respectively.  

The optimized fuzzy linear programming problem (OFLPP) has been constructed 

using the lower, static, and upper bound. 

The following Table 4.6 shows the solutions for the optimized value of lower, static, 

and upper bound and the optimized membership grade. 

4.4.3.3.3 Result Analysis of Case-III 

The production cost of RCF can be minimized using the cost parameter. The total 

basic cost of the production is rupees 3088.749(in lakhs), and it can be extended and 

declined to rupees 3409.20, 2934.311(in lakhs), respectively. The optimum production 

cost has been obtained to get the maximum membership grade. It shows that total 

production cost will provide the highest credibility if the optimized cost is considered 

equal to rupees 3088.749(in lakhs), and the credibility of production cost is being 
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decreased if it is tending towards rupees 2934.311 and 3409.20(in lakhs). The following 

Eq. (4.30) and Figure 4.19 show the fuzzy number for optimized membership grade: 

𝛌 =

{
 
 

 
 

1                              𝑤ℎ𝑒𝑛 𝑦 = 3088.7496
𝑦 − 2934.3116

154.438
𝑤ℎ𝑒𝑛  2934.3116 ≤ 𝑦 ≤ 3088.7496

3409.2022 − 𝑦

320.452
𝑤ℎ𝑒𝑛  3088.7496 ≤ 𝑦 ≤ 3409.2022

0                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(4.30) 

 

Figure 4.11: The relation between membership grade of optimized production cost 

with 𝜆1and𝜆2 of case − III. 

Using the structure of optimized composite triangle fuzzy LPP, Model-I illustrate 

the Optimized minimum cost 3088.979 unit and with the membership grade 𝜆1 =

0.0007146777 and the minimized and greatest minimized costs 2934.422, 3408.973 

units, respectively.  

Similarly, optimized composite triangle fuzzy LPP, Model-II illustrate the 

Optimized minimum cost of 3042.507unit with the membership grade 𝜆2 = 0.2278,  

and the minimized and greatest minimized costs 2969.4975, 3336.193units, 

respectively. 

4.5 Summary 

This chapter utilizes fuzzy composite triangular to suggest a new structure for two 

models of fuzzy linear programming problems. We applied these two FLLP models in 
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three cases, comparing each case to the existing FLP using due to the uncertainty of 

practical circumstances. After evaluating the outcomes of all the cases, it was 

discovered that the proposed models offered the best values for objective functions 

corresponding to membership functions. We propose to expand the same FLLP 

technique with the trapezoidal number in the next chapter. Furthermore, compare the 

proposed FLLP methods for fuzzy composite triangular numbers and fuzzy trapezoidal 

numbers. 
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Chapter 5 

A Novel Approach for Fuzzy Linear Programming 

Using the Situational Based Trapezoidal Number 

“The world is continuous, but the mind is discrete “. 

−David Mumford 

 

 

5.1 Introduction 

In some certain situations, the total availability of any constrain can be inflexible 

from one requirement to other, and again it can be intensified and declined by any 

probabilistic increment and decrement. The trapezoidal fuzzy number can represent 

such types of problems. The first attempt is made to examine the credibility of 

optimized cost via different composite FLP models, and the results were compared with 

its extension, i.e., the trapezoidal FLP model. To validate the models with real-time 

phenomena, the Production cost data of Rail Coach Factory (RCF) Kapurthala has been 

taken. The lower, static, and upper bounds have been computed for each situation, and 

then systems of optimized FLP are constructed. The credibility of each model of 

trapezoidal FLPP concerning all situations are obtained. Using this membership grade, 

the minimum and the greatest minimum costs have been illustrated. The performance 

of each composite triangular FLPP model is compared to trapezoidal FLPP models, and 

the intense effects of trapezoidal on composite triangular FLPP models are investigated.  

Dong et al. [76] were designed a new fuzzy linear model with trapezoidal fuzzy 

numbers (TrFNs) being all target coefficients, scientific coefficients, and devices. The 

order relationship of the TrFNs is initially measured using the estimate of the TrFNs 

interval. The trapezoidal linear fuzzy system was converted into an objective interval 

program based on the order relationship of the TrFNs. Taleshian and Rezvani [150] 

presented two trapezoidal fuzzy numbers with methods for solving the multiplication 

http://www.dam.brown.edu/people/mumford/
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operation. Banerjee [151] mentioned the four basic arithmetic operations of generalized 

trapezoidal fuzzy numbers. A new nearest trapezoidal approach operator with expected 

interval survival is prescribed in [108]. Chen and Cheng [109] presented the subjective 

perspectives of decision-makers with trapezoidal fuzzy numbers in linguistic terms. An 

FLFP solution procedure where objective function, capital, and technical coefficients 

are fuzzy triangle numbers has been proposed [110]. Ebrahimnejad and Tavana [111] 

proposed an approach to address FLPP problems in which symmetric fuzzy trapezoidal 

numbers are interpreted as objective function coefficients and right-side values, while 

real numbers are the components of the matrix coefficient. An approach has been 

suggested by [112] to solve the FFLP problem, with a symmetric trapezoidal fuzzy 

number representing the parameters without any conversion of crisp equivalent 

problem. A complete linear defuzzification function defined in a trapezoidal fuzzy 

number subsection of a fuzzy number vector space is the best way to solve a linear 

programming problem with real objects in the type-1 fuzzy linear programming. 

5.2 Fuzzy Linear Programming using the Trapezoidal Number   

According to the trapezoidal fuzzy number 𝐵̃ = (𝛽𝑖 − 𝜀𝑖, 𝛽𝑖, 𝛽𝑖
∗, 𝛽𝑖

∗ + 𝜀𝑖
∗),the least 

lower, lower, upper bounds and the most upper bound of the optimal values are defined 

below.  

The least lower bound (𝒁𝒍
∗) – 

Max𝒁𝒍
∗ = ∑ с𝑗𝑦𝑗

𝑛
𝑗=1

 

Subject to   ∑ 𝒶𝑖𝑗𝑥𝑗
𝑛
𝑗=1  ≤ 𝛽𝑖 − 𝜀𝑖 

Where,  𝑦𝑗 ≥ 0, 𝑖, 𝑗 ∈ ℕ 

 

 

(5.1) 

The lower bound (Zl) – 

Max 𝒁𝒍 = ∑ с𝑗𝑦𝑗
𝑛
𝑗=1
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Subject to   ∑ 𝒶𝑖𝑗𝑦𝑗
𝑛
𝑗=1  ≤ 𝛽𝑖 

Where,  𝑥𝑗 ≥ 0, 𝑖, 𝑗 ∈ ℕ 

(5.2) 

The upper bound (Zu) – 

Max 𝒁𝒖 = ∑ с𝑗𝑦
𝑛
𝑗=1

 

Subject to   ∑ 𝒶𝑖𝑗𝑦
𝑛
𝑗=1  ≤ 𝛽𝑖

∗ 

Where,  𝑦𝑗 ≥ 0, 𝑖, 𝑗 ∈ ℕ 

 

 

(5.3) 

Now the most upper bound (𝒁𝒖
∗ ) – 

Max𝒁𝒖
∗ = ∑ с𝑗𝑦𝑗

𝑛
𝑗=1

 

Subject to   ∑ 𝒶𝑖𝑗𝑦𝑗
𝑛
𝑗=1  ≤ 𝛽𝑖

∗ + 𝜀𝑖
∗ 

Where,  𝑦𝑗 ≥ 0, 𝑖, 𝑗 ∈ ℕ 

 

 

(5.4) 

The solution for lower and upper bounds of LPP’s can be obtained by using the 

Simplex method. To get the two different optimized FLPP model will be obtained by 

using these lower and upper bounds 

5.2.1 Optimized Trapezoidal FLPP Model-I:- 

 Max Z = 𝜆,  

Subject to 

𝜆(𝑍𝑠 − 𝑍𝑙) −∑𝑐𝑗𝑦𝑗

𝑛

𝑗=1

≤ −𝑍𝑙 

𝜆(𝜀𝑖) +∑𝑎𝑖𝑗𝑦𝑗 ≤ 𝑏𝑖,

𝑛

𝑗=1  
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𝜆(𝑍𝑢
∗ − 𝑍𝑢) −∑𝑐𝑗𝑦𝑗

𝑛

𝑗=1

≤ −𝑍𝑢 

𝜆(𝜀𝑖
∗) + ∑ 𝑎𝑖𝑗𝑦𝑗

𝑛
𝑗=1 ≤ 𝛽𝑖+ 𝜀𝑖

∗ 

Where,  𝑦𝑗 ≥ 0, 𝑖, 𝑗 ∈ ℕ, 𝜆 ∈ [0,1] 

 

(5.5) 

5.2.2 Optimized FLPP Model (II):- 

𝑀𝑎𝑥𝑍 = 𝛾 

Subject to 

𝜆(𝑍𝑢 − 𝑍𝑙
∗) −∑𝑐𝑗𝑦𝑗

𝑛

𝑗=1

≤ −𝑍𝑙
∗ 

  𝜆 (𝜀𝑖+𝛽𝑖
∗
−𝛽𝑖) + ∑ 𝛼𝑖𝑗

𝑛
𝑗=1 𝑦𝑗 ≤ 𝛽𝑖

∗
 

𝜆(𝑍𝑢
∗ − 𝑍𝑙

∗) −∑𝑐𝑗𝑥𝑗

𝑛

𝑗=1

≤ −𝑍𝑙
∗ 

𝜆 (𝛽𝑖
∗
−𝛽𝑖+ 𝜀𝑖

∗+ 𝜀𝑖) +∑𝛼𝑖𝑗

𝑛

𝑗=1

𝑦𝑗 ≤ 𝛽𝑖
∗
+𝜀𝑖∗ 

𝑦𝑗 > 0, 𝑖, 𝑗𝜖ℕ, 𝜆 ∈ [0,1] 

 

 

 

 

 

 

 

 

 

(5.6) 

This fuzzy optimized LPP will give the trapezoidal membership grade for our 

primary LPP. Here 𝜆 signifies the trapezoidal membership grade and 𝑍𝑙
∗, 

𝑍𝑙 , 𝑍𝑢 𝑎𝑛𝑑 𝑍𝑢
∗    are the least lower, lower, upper, and most upper bounds, respectively. 

∑ 𝑐𝑗𝑥𝑗
𝑛
𝑗=1 is the objective function of the initial LPP, 𝜀𝑖

∗ and 𝜀𝑖is the probabilistic 

increment and decrement respectively in the availability of the constraints. 

5.3 Numerical Result: 

The following cases have been identified to deal with the described situations 
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5.3.1 Case IV: Bounded Feasibility with Zero Skewness 

This case is an extension of the case –II of FLLP based on a composite triangular 

number where the trapezoidal membership grade is constant and gives a full degree of 

satisfaction for a small fluctuation, say minimum quantity in both directions of the basic 

availability of all constraints. The trapezoidal membership grade is further declined if 

certain increments and decrements are in the inflexible interval of basic availability. 

The minimum production cost is targeted with almost basic availability for all 

constraints and the least basic Proforma charge availability. The fluctuation is shown 

by the following  Table 5.18. 

5.3.2 Result of Case IV 

Using the described methodology, the modeling of production cost is being done, 

and the fuzzy trapezoidal numbers for all cost parameters have been derived. The upper, 

lower, most upper, and least lower bounds are calculated, and the optimized fuzzy linear 

programming problem (OFLPP) has been constructed using the lower and upper bound. 

The mathematically described membership grades of all Cases IV and V constraints 

are shown in Eq. (5.7) to (5.14).   

Let 𝐵𝑙𝑎𝑏be the trapezoidal membership grade for Labour cost, and it varies as:- 

𝐵𝑙𝑎𝑏 =

{
 
 

 
 
1                              𝑤ℎ𝑒𝑛    150.7 ≤ 𝑦 ≤ 155.7
𝑦 − 145.54

5.16
      𝑤ℎ𝑒𝑛 145.54 < 𝑦 < 150.7

160.86 − 𝑦

5.16
        𝑤ℎ𝑒𝑛 155.7 < 𝑦 < 160.86

0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                    

  

 

(5.7) 

Let𝐵𝑚𝑎𝑡 be the trapezoidal membership grade for Material cost, and it varies as:- 

𝐵𝑚𝑎𝑡 =

{
 
 

 
 
      1                          𝑤ℎ𝑒𝑛    2294.6 ≤ 𝑦 ≤ 2361.84
𝑦 − 2211.81

82.79
     𝑤ℎ𝑒𝑛 2211.81 < 𝑦 < 2294.6

2444.63 − 𝑦

82.69
        𝑤ℎ𝑒𝑛 2361.84 < 𝑦 < 2444.63

0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

               

 

 

(5.8) 
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Let 𝐵𝑓𝑜ℎ be the membership grade for Factory overhead charge, and it varies as:- 

𝐵𝑓𝑜ℎ =

{
 
 

 
 
1                              𝑤ℎ𝑒𝑛    251.98 ≤ 𝑦 ≤ 261.14
𝑦 − 243.73

8.25
        𝑤ℎ𝑒𝑛 243.73 < 𝑦 < 251.98

269.38 − 𝑦

8.25
            𝑤ℎ𝑒𝑛 261.14 < 𝑦 < 269.38

0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(5.9) 

Let𝐵𝑎𝑜ℎbe the Trapezoidal membership grade for Administrative overhead charge, and 

it varies as:- 

𝐵𝑎𝑜ℎ =

{
 
 

 
 
1                              𝑤ℎ𝑒𝑛    194.22 ≤ 𝑦 ≤ 200.04
𝑦 − 187.27

6.95
𝑤ℎ𝑒𝑛 187.27 < 𝑦 < 194.22

206.98 − 𝑦

6.95
𝑤ℎ𝑒𝑛 200.04 < 𝑦 < 206.98

0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(5.10) 

Let 𝐵𝑡𝑜ℎ be the trapezoidal membership grade for Township overhead charge, and it 

varies as:- 

𝐵𝑡𝑜ℎ =

{
 
 

 
 
1                              𝑤ℎ𝑒𝑛    40.48 ≤ 𝑦 ≤ 41.98
𝑦 − 39.1685

1.3115
𝑤ℎ𝑒𝑛 39.1685 < 𝑦 < 40.48

43.2915 − 𝑦

1.3115
𝑤ℎ𝑒𝑛 41.98 < 𝑦 < 43.2915

0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(5.11) 

Let 𝐵𝑠𝑜ℎ be the trapezoidal membership grade for Shop overhead charge, and it varies 

as:- 

𝐵𝑠𝑜ℎ =

{
 
 

 
 
1                                  𝑤ℎ𝑒𝑛    18.44 ≤ 𝑦 ≤ 18.9
𝑦 − 17.73

0.71
                  𝑤ℎ𝑒𝑛 17.73 < 𝑦 < 18.44

19.60 − 𝑦

0.71
                 𝑤ℎ𝑒𝑛 18.9 < 𝑦 < 19.6

0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(5.12) 

Let 𝐵𝑡𝑜ℎbe the membership grade for Total overhead charge, and it varies as:- 
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𝐵𝑡𝑜ℎ =

{
 
 

 
 
1                              𝑤ℎ𝑒𝑛    505.14 ≤ 𝑦 ≤ 522.08
𝑦 − 487.93

17.21
              𝑤ℎ𝑒𝑛 487.93 < 𝑦 < 505.14

539.29 − 𝑦

17.21
              𝑤ℎ𝑒𝑛 522.08 < 𝑦 < 539.29

0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(5.13) 

Let 𝐵𝑝𝑟𝑜𝑓 be the trapezoidal membership grade for Proforma charge, and it varies as:- 

𝐵𝑝𝑟𝑜𝑓 =

{
 
 

 
 
          1                    𝑤ℎ𝑒𝑛    505.14 ≤ 𝑦 ≤ 522.08
𝑦 − 487.93

17.21
       𝑤ℎ𝑒𝑛 487.93 < 𝑦 < 505.14

539.29 − 𝑦

17.21
         𝑤ℎ𝑒𝑛 522.08 < 𝑦 < 539.29

0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(5.14) 

Using the described methodology, the modeling of production cost is being done, 

and the fuzzy numbers for all cost parameters have been derived. The least lower, lower, 

upper, and most upper bounds are rupees 2943.959308 (lakhs), rupees 3098.912497 

(lakhs), and rupees 3253.835047 (lakhs), respectively. 

The Table 5.2 shows the solutions for the optimized value of super lower, lower 

upper, and super upper bound and optimized membership grades. 

5.3.2.1 Result Analysis of Case-IV 

The production cost of RCF can be minimized using the cost parameter. The total 

basic cost of the product will illustrate the full degree of satisfaction, and it is from 

rupees 3026.4 to 3118 (in lakhs). It can be extended and declined further till rupees 

3225.8, 2918.6(in lakhs), respectively. The optimum production cost has been obtained 

to get the maximum membership grade. It shows that total production cost will provide 

the highest credibility if the optimized cost is considerably near the basic cost (from 

3026.4 to 3118), for which the membership grade is inflexible. The credibility of 

production cost decreases if it tends towards the extended costs, say rupees 2918.6 and 

3225.8(in lakhs). The following equation and figure show the fuzzy number for 

optimized membership grade: 
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𝛌 =

{
 
 

 
 

1                              𝑤ℎ𝑒𝑛    3026.4 ≤ 𝑦 ≤ 3118
𝑦 − 2918.6

107.8
                   𝑤ℎ𝑒𝑛 2918.6 < 𝑦 < 3026.4

3225.8 − 𝑦

107.8
            𝑤ℎ𝑒𝑛 3118 < 𝑦 < 3225.8

0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(5.15) 

 

Figure 5.1: The relation between Trapezoidal membership grade of optimized 

production cost with 𝜆1and 𝜆2 of case-IV. 

 Table 5.20 displays the calculated values of Model-I and Model-II using the structure 

optimized trapezoidal FLPP. 

5.3.3 Case V: Unbounded Feasibility with Zero Skewness 

This case is an extension of the case –I of FLLP based on a composite triangular 

number where the Trapezoidal membership grade is constant and gives a full degree of 

satisfaction for a small fluctuation, say minimum quantity in both directions of the basic 

availability of all constraints. The membership grade is further declined if certain 

increments and decrements are in the inflexible interval of basic availability. The 

minimum production cost is targeted with at most basic availability for all constraints. 

The fluctuation is shown in Table 5.21. 

5.3.3.1  Result and Optimized Fuzzy Linear Programming Problem of Case-V 

The modeling of production cost and the fuzzy numbers for all cost parameters are 

derived, in equations 22 to 29 and figure from 178 to 185. The least-lower, lower, upper, 

and most upper bounds are 2934.320953, 3042.7297, 3134.788898, and 

3243.19684rupees in lakhs, respectively. The optimized fuzzy linear programming 
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problem (OFLPP) has been constructed using the least lower, lower, upper, and most 

upper bounds 

The Table 5.5 shows the solutions for the optimized value of super lower, lower 

upper, and super upper bound and optimized membership grades. 

5.3.3.2 Result Analysis of Case-V 

The production cost of RCF can be minimized using the cost parameter. The total 

basic cost of the product will illustrate the full degree of satisfaction, and it is from 

rupees 3042.7297 to 3134.788898(in lakhs). It can be extended and declined further to 

rupees 3243.19684, 2934.320953(in lakhs), respectively. The optimum production cost 

has been obtained to get the maximum membership grade. It shows that total production 

cost will provide the highest credibility if the optimized cost is considerably neat to the 

basic cost [3042.7297to 3134.78889], for which the membership grade is inflexible. 

The credibility of production cost decreases if it is tending towards the extended costs, 

say rupees 2934.320953and 3243.19684(in lakhs) respectively. The following 

Eq.(5.16) and Figure 5.10 show the fuzzy number for optimized membership grade: 

𝜆 =

{
 
 

 
 

1                              𝑤ℎ𝑒𝑛    3042.729 ≤ 𝑦 ≤ 3134.788
𝑦 − 2934.32

108.41
                   𝑤ℎ𝑒𝑛 2934.32 < 𝑦 < 3042.729

3243.196 − 𝑦

108.41
            𝑤ℎ𝑒𝑛 3134.788 < 𝑦 < 3243.196

0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(5.16) 
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Figure 5.2: The relation between Trapezoidal membership grade of optimized 

production cost with 𝜆1and  𝜆2 of case-V. 

Likewise, Table 5.22 displays the measured values of Model I and Model II with the 

structure of Trapezoidal optimized FLPP 

5.4 Comparison Between All the Models with Different Cases 

Figure 5.3: The performances of different models for different cases and their 

extension, in the form of a bar chart, show different models' performances to get 

optimized. It is observed that the costs obtained by model II are more appropriate as 

compared to a model I of composite triangular LPP, and the cost obtained by model I 

are more appropriate as compared to the model II of trapezoidal LPP. The overall 

performance of the trapezoidal LPP model – I is better than all other models. 

Trapezoidal LPP model – I reduced approximately 50% destruction in production cost 

compared to 26% of trapezoidal LPP model – II, 0.1% of the Composite triangular LPP 

model - I, and 30% of Composite triangular LPP model - II. The overall performance 

of the trapezoidal LPP model - I is better than all other models. Trapezoidal LPP model 

– I reduced approximately 62% production cost compared to 32% of trapezoidal LPP 

model – II, 0.05% of the Composite triangular LPP model - I, and 30% of Composite 

triangular LPP model - II. 



96 

 

 

5.5 Summary  

In this chapter, the comparative study of modeling and optimizing the production 

cost of railway coaches of RCF Kapurthala via composite triangular fuzzy and 

trapezoidal fuzzy linear programming problem (FLPP) is proposed. Due to probabilistic 

increment and decrement in the availability of different constraints, the real production 

cost was fluctuating or uncertain. Therefore, the descriptions of five different 

incertitude situations are formulated, and the realistic models to extenuate the 

annihilation in the production cost optimization have been given in the article. Here, in 

the first attempt, the credibility of optimized cost via two different composites 

triangular FLPP models is examined, and the results were compared with its extension, 

i.e., trapezoidal FLPP model. The entire cost has been aimed to optimize regarding the 

constraints of 𝑪𝑳𝒂𝒃., 𝑪𝑴𝒂𝒕., 𝑪𝒇𝒐𝒉 𝑪𝑨𝒐𝒉, 𝑪𝑻𝒐𝒉,𝑪𝑺𝒐𝒉, 𝑪𝑻𝒐𝒕 , 𝑪𝑷𝒄 and 𝑪𝑻𝒄. The lower, least 

lower, static, upper, and most upper bounds have been calculated for each situation, and 

2750
2800
2850
2900
2950
3000
3050
3100
3150
3200
3250
3300

C
as

e-
I,

 M
o

d
el

-I
  m

in
im

u
m

C
as

e-
I,

 M
o

d
el

-I
 o

p
ti

m
iz

ed
 m

in
im

u
m

C
as

e-
I,

 M
o

d
el

-I
 g

re
at

es
t 

m
in

im
u

m

C
as

e-
I,

 M
o

d
el

-I
I  

m
in

im
u

m
C

as
e-

I,
 M

o
d

el
-I

I o
p

ti
m

iz
ed

 m
in

im
u

m
C

as
e-

I,
 M

o
d

el
-I

I g
re

at
e

st
 m

in
im

u
m

C
as

e-
II

, M
o

d
el

-I
  m

in
im

u
m

C
as

e-
II

, M
o

d
el

-I
 o

p
ti

m
iz

ed
 m

in
im

u
m

C
as

e-
II

, M
o

d
el

-I
 g

re
at

e
st

 m
in

im
u

m

C
as

e-
II

, M
o

d
el

-I
I  

m
in

im
u

m
C

as
e-

II
, M

o
d

el
-I

I o
p

ti
m

iz
ed

 m
in

im
u

m
C

as
e-

II
, M

o
d

el
-I

I g
re

at
es

t 
m

in
im

u
m

C
as

e-
II

I, 
M

o
d

e
l-

I  
m

in
im

u
m

C
as

e-
II

I, 
M

o
d

e
l-

I o
p

ti
m

iz
ed

 m
in

im
u

m
C

as
e-

II
I, 

M
o

d
e

l-
I g

re
at

es
t 

m
in

im
u

m

C
as

e-
II

I, 
M

o
d

e
l-

II
  m

in
im

u
m

C
as

e-
II

I, 
M

o
d

e
l-

II
 o

p
ti

m
iz

ed
 m

in
im

u
m

C
as

e-
II

I, 
M

o
d

e
l-

II
 g

re
at

es
t 

m
in

im
u

m

C
as

e-
IV

, M
o

d
el

-I
  m

in
im

u
m

C
as

e-
IV

, M
o

d
el

-I
 o

p
ti

m
iz

ed
 m

in
im

u
m

C
as

e-
IV

, M
o

d
el

-I
 g

re
at

e
st

 m
in

im
u

m

C
as

e-
IV

, M
o

d
el

-I
I  

m
in

im
u

m
C

as
e-

IV
, M

o
d

el
-I

I o
p

ti
m

iz
ed

 m
in

im
u

m
C

as
e-

IV
, M

o
d

el
-I

I g
re

at
es

t 
m

in
im

u
m

C
as

e-
V

, M
o

d
el

-I
  m

in
im

u
m

C
as

e-
V

, M
o

d
el

-I
 o

p
ti

m
iz

e
d

 m
in

im
u

m
C

as
e-

V
, M

o
d

el
-I

 g
re

at
es

t 
m

in
im

u
m

C
as

e-
V

, M
o

d
el

-I
I  

m
in

im
u

m
C

as
e-

V
, M

o
d

el
-I

I o
p

ti
m

iz
ed

 m
in

im
u

m
C

as
e-

V
, M

o
d

el
-I

I g
re

at
e

st
 m

in
im

u
m

P
ro

d
u

ct
io

n
 c

o
st

Performances of  different Models

Targeted cost

Calculated cost
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then systems of optimized FLPP were constructed. The credibility of each model of 

composite triangular and trapezoidal FLPP for all situations has been obtained and 

using these membership grades, the minimum and greatest minimum cost have been 

exemplified. The performance of each model of composite triangular fuzzy linear 

programming to all situations was compared with the trapezoidal fuzzy linear 

programming problem model. In all proposed situations for the greatest lower and least 

upper cost, it was observed that the composite triangular FLPP model II is more 

appropriate than model I, and trapezoidal FLPP model I is more appropriate than model 

II and model I & II of composite triangular FLPP. Hence, overall, the trapezoidal FLPP 

model I performance is the best among all proposed models. It shows a better degree 

of conciliation than composite triangular FLPP models and trapezoidal FLPP model II.  
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Chapter 6 

An Advanced Optimization Technique for Smart 

Production Using 𝜶 −Cut Based Quadrilateral Fuzzy 

Number 

“Obvious is the most dangerous word in mathematics." 

− E. T. Bell 

 

 

6.1 Introduction  

Fuzzy number, a crucial component of fuzzy set theory, is very prominent when 

describing the unknown phenomena in real issues. Two unique perspectives are fuzzy 

numbers, the first one is their membership function, and the second being their alpha-

cut. The two considerations are equivalent, and one may be superior to the other, 

depending on the details that we want to consider. Triangular and trapezoidal numbers 

are mostly used. The grade of satisfaction at  𝛽𝑖 is 1 in the triangular fuzzy number 

𝑖. 𝑒 (𝛽𝑖 − 𝜀𝑖, 𝛽𝑖, 𝛽𝑖 + 𝜀𝑖
∗), but the grade of satisfaction from 𝛽𝑖 − 𝜀𝑖 to 𝛽𝑖 is determined 

by the angle of elevation, the scale from 0 to 1, and from 𝛽𝑖 to 𝛽𝑖 + 𝜀𝑖
∗ is defined by the 

angle of the depression, which is from  1 to  0. Similarly, the level of satisfaction for 

𝛽𝑖 to 𝛽𝑖
∗  is 1 for a trapezoidal number (𝛽𝑖 − 𝜀𝑖, 𝛽𝑖, 𝛽𝑖

∗, 𝛽𝑖
∗ + 𝜀𝑖

∗). Nevertheless, the 

degree of satisfaction from 𝛽𝑖 − 𝜀𝑖  to 𝛽𝑖  is shown by an elevated angle from 0 to 1 and 

from 𝛽𝑖
∗ to 𝛽𝑖

∗ + 𝜀𝑖
∗ by a slump angle of 1 to 0. In some cases, however, these fuzzy 

numbers do not reflect the actual description of realistic situations. In this article, a 

newly developed fuzzy number is suggested, ``𝛼 −cut based on a fuzzy quadrilateral 

number (𝛽𝑖 − 𝜀𝑖 , 𝛽𝑖, 𝛽𝑖
∗, 𝛽𝑖

∗ + 𝜀𝑖
∗)  in which the degree of satisfaction from 𝛽𝑖 − 𝜀𝑖 to 

𝛽𝑖  is expressed by an angle of elevation, the range of which is from 0 to β and between  

𝛽𝑖 to 𝛽𝑖
∗  is ß to 1, where 𝛽 ∈ [0,1]. The depression angle with a range of 1 to 0 is also 

represented from 𝛽𝑖
∗ to 𝛽𝑖

∗ + 𝜀𝑖
∗. 
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The interpretation of fuzzy numbers from an alpha-cut perspective is an interval 

approach. In contrast, with the assistance of various arithmetic operations which have 

the prerequisites, the different characteristics of the fuzzy number could be found. 

Different features of the fuzzy number could also be identified [152] using the various 

arithmetic operations with the necessary criteria. To study some properties of fuzzy 

arithmetic operations, [153] and Guerra have analyzed the decomposition of fuzzy 

numbers and have compared the proposed approximation to standard fuzzy arithmetic. 

Taleshian and Rezvani [150] presented two trapezoidal fuzzy numbers with methods 

for solving the multiplication operation. Banerjee [151] mentioned the four basic 

arithmetic operations of generalized trapezoidal fuzzy numbers. While using the 

definition of distribution and complementary distribution functions, Garg, H, and 

Ansha [154] studied the basic arithmetic operations for two generalized positive 

parabolic fuzzy numbers. As a significant piece of mathematical programming, linear 

programming is one of the applied operation research systems. Due to the vulnerability 

of objective objects and the fluctuation of human muses, there are many situations in 

which target values, technological coefficients, and assets cannot be precisely 

incorporated into the linear programming model. Fuzzy numbers of techniques have 

been proposed to deal with fuzzy linear programming problems. Numerous researchers 

have extensively studied a triangular and trapezoidal fuzzy linear programming model 

as a typical fuzzy linear program. In this paper, we proposed a newly constructed 

𝛼 −cut based quadrilateral fuzzy number on the right-hand side of the fuzzy linear 

programming problem, which gives a clear picture of the optimization in uncertain 

conditions through the general framework of FLP [155] we assess the optimal values 

of different situations.     

6.2 Proposed Membership Function for the 𝜶 − 𝒄𝒖𝒕 Based Quadrilateral 

Fuzzy Number 

A fuzzy number 𝑩̃ = ⟨(𝛽𝑖 − 𝜀𝑖, 𝛽𝑖, 𝛽𝑖
∗, 𝛽𝑖

∗ + 𝜀𝑖
∗) | 𝛽𝑖, 𝛽𝑖

∗ ∈  ℝ, 𝑎𝑛𝑑 𝜀𝑖  , 𝜀𝑖
∗ ∈ ℝ+⟩, is 

said to be a  𝜶 − 𝒄𝒖𝒕 based quadrilateral fuzzy number if its membership function 

𝐵𝑖(𝑦): ℝ → [0,1]  satisfies the following properties.  
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(i) It is compact in ℝ. 

(ii) It is continuous over ℝ. 

(iii) It is monotonic increasing on [𝛽𝑖 − 𝜀𝑖 , 𝛽𝑖
∗]  and monotonic decreasing on 

[𝛽𝑖
∗ , 𝛽𝑖

∗ + 𝜀𝑖
∗]. 

(iv) It is zero for all 𝑦 ∈(−∞ , 𝛽𝑖 − 𝜀𝑖)  ∪ ( 𝛽𝑖
∗ + 𝜀𝑖

∗, ∞). 

(v) It is normal. 

(vi) It is a triangular fuzzy number when 𝛽 = 0 and 𝛽 =
𝜀𝑖

𝛽𝑖
∗−(𝛽𝑖−𝜀𝑖)

 ∀ 𝛼𝜖[0,1]. 

(vii) It is a trapezoidal fuzzy number when 𝛽 = 1,∀ 𝛼𝜖[0,1]. 

(viii) It is convex according to (vi), (vii) and 𝜃1 ≥ 𝜃2 ∀  𝛼 ≤ 𝛽 , 𝛼 ,𝛽 ≠ 0. 

(ix) It is non-convex when𝜃1 < 𝜃2 ∀  𝛼 ≤ 𝛽 , 𝛼 ,𝛽 ≠ 0. 𝑤ℎ𝑒𝑟𝑒 𝜃1 =

tan−1(
𝛽

𝜖𝑖
) 𝑎𝑛𝑑 𝜃2 = tan−1(

𝛽̅

𝛽𝑖
∗−𝛽𝑖

). 

A fuzzy number 𝑩̃ = ⟨(𝛽𝑖 − 𝜀𝑖, 𝛽𝑖, 𝛽𝑖
∗, 𝛽𝑖

∗ + 𝜀𝑖
∗) | 𝛽𝑖, 𝛽𝑖

∗ ∈  ℝ, 𝑎𝑛𝑑 𝜀𝑖  , 𝜀𝑖
∗ ∈ ℝ+⟩, is 

called a quadrilateral fuzzy number, and its membership function is defined by   

𝐵𝑖(𝑦)=

{
  
 

  
 𝛽 + (

𝑦−𝛽𝑖

𝛽𝑖
∗−𝛽𝑖

) 𝛽̅ 𝑊ℎ𝑒𝑛 𝛽𝑖 ≤ 𝑦 ≤ 𝛽𝑖
∗

(
𝑦−𝛽𝑖+𝜀𝑖

𝜀𝑖
)𝛽 𝑊ℎ𝑒𝑛 𝛽𝑖 − 𝜀𝑖 ≤ 𝑦 ≤ 𝛽𝑖

𝛽𝑖
∗+𝜀𝑖

∗−𝑦

𝜀𝑖
∗

0

𝑊ℎ𝑒𝑛 𝛽𝑖
∗ ≤ 𝑦 ≤ 𝛽𝑖

∗ + 𝜀𝑖
∗

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

 

(6.1) 

  

Where 𝛽 represents the membership grade and 𝛽̅ represents the complement of 𝛽. 

Meanwhile, the quadrilateral membership function shown in Figure 6.1 is most 

frequently used to represent α-cut of the fuzzy quadrilateral number 𝑩̃ . 
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Figure 6.1: Membership grade for the fuzzy quadrilateral number 

The 𝛼 −cut of the fuzzy quadrilateral number 𝑩̃ is closed interval is defined below: 

𝐵𝛼 =

{
 
 

 
 

[ 𝛽𝑖 + 𝛼(𝛽𝑖
∗ − 𝛽𝑖) , (𝛽𝑖

∗ + 𝜀𝑖
∗) − 𝛼𝜀𝑖

∗] 𝛽 = 0,   𝛼𝜖[0,1]

[(𝛽𝑖 − 𝜀𝑖) + 𝛼𝜀𝑖 ,   (𝛽𝑖
∗ + 𝜀𝑖

∗) − 𝛼𝜀𝑖
∗] 𝛽 = 1,   𝛼𝜖[0,1]

[(𝛽𝑖 − 𝜀𝑖) + 𝛼(𝛽𝑖
∗ − 𝛽𝑖 + 𝜀𝑖), (𝛽𝑖

∗ + 𝜀𝑖
∗) − 𝛼𝜀𝑖

∗]  
𝐼1 ∪ 𝐼2 ∪ 𝐼3      

𝛽 =
𝜀𝑖

𝛽𝑖
∗ − (𝛽𝑖 − 𝜀𝑖)

 , 𝛼𝜖[0,1] 

𝛼 ≤ 𝛽 , 𝛼 , 𝛽 ≠ 0

 

 

  
(6.2) 

 𝑊ℎ𝑒𝑟𝑒 , 𝐼1 = [𝛽𝑖 − 𝜀𝑖 , (𝛽𝑖 − 𝜀𝑖) + 
𝛼𝜀𝑖

𝛽1
)      ,  𝐼2 = [𝛽𝑖 ,   𝛽𝑖 +

𝛼̅−𝛽

𝛽̅
(𝛽𝑖

∗ − 𝛽𝑖))      𝑎𝑛𝑑 

𝐼3 = [𝛽𝑖
∗ , (𝛽𝑖

∗ + 𝜀𝑖
∗) − 𝛼𝜀𝑖

∗) 

6.3 Proposed Arithmetic Operations Between 𝜶 − 𝒄𝒖𝒕 Based Quadrilateral 

Fuzzy Numbers    

In this section, the improved arithmetic operations have been proposed between 𝛼 −

𝑐𝑢𝑡 based quadrilateral fuzzy numbers using 𝛼 − 𝑐𝑢𝑡𝑠.    

Lets 𝐵̃𝑖
𝑝
 = (𝛽𝑖

𝑝
− 𝜀𝑖

𝑝
 , 𝛽𝑖

𝑝
 , 𝛽𝑖

𝑝∗
 ,  𝛽𝑖

𝑝∗
+ 𝜀𝑖

𝑝∗
 )   and  𝐵̃𝑖

𝑞
= (𝛽𝑖

𝑞
− 𝜀𝑖

𝑞
 , 𝛽𝑖

𝑞
 , 𝛽𝑖

𝑞∗
 ,  𝛽𝑖

𝑞∗
+ 

𝜀𝑖
𝑞∗

 )  be two 𝛼 − 𝑐𝑢𝑡 based quadrilateral fuzzy numbers which membership functions  

𝐵𝑖
𝑝
 and 𝐵𝑖

𝑞
 respectively, which can be written as 

𝐵𝑖
𝑝(𝑦)=

{
  
 

  
 𝛽𝑝 + (

𝑦−𝛽𝑖
𝑝
 

𝛽
𝑖
𝑝∗
−𝛽

𝑖
𝑝) × 𝛽𝑝̅̅̅̅ 𝑊ℎ𝑒𝑛 𝛽𝑖

𝑝 ≤ 𝑦 ≤ 𝛽𝑖
𝑝∗

(
𝑦−𝛽𝑖

𝑝
+ 𝜀𝑖

𝑝

𝜀
𝑖
𝑝 ) × 𝛽𝑝 𝑊ℎ𝑒𝑛 𝛽𝑖

𝑝 − 𝜀𝑖
𝑝 ≤ 𝑦 ≤ 𝛽𝑖

𝑝

𝛽𝑖
𝑝∗
− 𝜀𝑖

𝑝∗
 −𝑦

𝜀
𝑖
𝑝∗

0

𝑊ℎ𝑒𝑛 𝛽𝑖
𝑝∗ ≤ 𝑦 ≤ 𝛽𝑖

𝑝∗ + 𝜀𝑖
𝑝∗ 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

 

(6.3) 

Where 𝛽𝑝 represents the membership grade and 𝛽𝑝̅̅̅̅ represents the complement of  

𝛽𝑝. 
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𝐵𝑖
𝑞(𝑦)=

{
  
 

  
 𝛽𝑞 + (

𝑦−𝛽𝑖
𝑞
 

𝛽
𝑖
𝑞∗
−𝛽

𝑖
𝑞) × 𝛽𝑞̅̅̅̅ 𝑊ℎ𝑒𝑛 𝛽𝑖

𝑞 ≤ 𝑦 ≤ 𝛽𝑖
𝑞∗

(
𝑦−𝛽𝑖

𝑞
+ 𝜀𝑖

𝑞

𝜀
𝑖
𝑞 ) × 𝛽𝑞 𝑊ℎ𝑒𝑛 𝛽𝑖

𝑞 − 𝜀𝑖
𝑞 ≤ 𝑦 ≤ 𝛽𝑖

𝑞

𝛽𝑖
𝑞∗
− 𝜀𝑖

𝑞∗
 −𝑦

𝜀
𝑖
𝑞∗

0

𝑊ℎ𝑒𝑛 𝛽𝑖
𝑞∗ ≤ 𝑦 ≤ 𝛽𝑖

𝑞∗ + 𝜀𝑖
𝑞∗ 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

 

(6.4) 

Where 𝛽𝑞 represents the membership grade and 𝛽𝑞̅̅̅̅  represents the complement of  

𝛽𝑞 . 

Where 𝛽𝑖
𝑝
 , 𝛽𝑖

𝑝∗
 , 𝛽𝑖

𝑞  𝑎𝑛𝑑  𝛽𝑖
𝑞∗

  are real number, 𝜀𝑖
𝑝 ,  𝜀𝑖

𝑝∗ , 𝜀𝑖
𝑞  𝑎𝑛𝑑  𝜀𝑖

𝑞∗  are the 

positive real numbers, such that  𝛽𝑝 ≤ 𝛽𝑞.  Take  𝛽𝑠 ∈ [𝛽𝑝, 𝛽𝑞], then make a 𝛽𝑠 − cut 

of fuzzy number 𝐵̃𝑖
𝑞
 such that 𝐵̃𝑖

𝑞
 will transform into a new 𝛼 − 𝑐𝑢𝑡 based quadrilateral 

fuzzy number as 𝐵̃𝑖
𝑞+

 = (𝛽𝑖
𝑞 − 𝜀𝑖

𝑞
 , 𝛽𝑖

𝑞+ , 𝛽𝑖
𝑞∗

 ,  𝛽𝑖
𝑞∗ + 𝜀𝑖

𝑞∗
 ), where 𝛽𝑖

𝑞+ = 𝛽𝑖
𝑞 − 𝜀𝑖

𝑞 +

𝛽𝑟

𝛽𝑞
× 𝜀𝑖

𝑞   for membership function. Clearly if 𝛽𝑝 = 𝛽𝑞 then 𝛽𝑟 = 𝛽𝑝 = 𝛽𝑞, 𝛽𝑖
𝑞+ = 𝛽𝑖

𝑞  

and hence the new 𝛼 − 𝑐𝑢𝑡 based quadrilateral fuzzy number 𝐵𝑖
𝑞+

  is same as that of 

𝛼 − 𝑐𝑢𝑡 based quadrilateral fuzzy number  𝐵𝑖
𝑞 .  

Now the a 𝛽𝑠 −cut of fuzzy number 𝐵̃𝑖
𝑝
 and   𝐵̃𝑖

𝑞
 become the 𝛼𝑝 −cut of the 𝛼 − 𝑐𝑢𝑡 

based quadrilateral fuzzy number 𝑩𝒑̃ is closed interval is defined below: 

𝐵𝛼
𝑝
=

{
 
 
 

 
 
 

[ 𝛽𝑖
𝑝
+ 𝛼𝑝(𝛽𝑖

𝑝∗
− 𝛽𝑖

𝑝
) , (𝛽𝑖

𝑝∗
+ 𝜀𝑖

𝑝∗) − 𝛼𝑝𝜀𝑖
𝑝∗] 𝛽𝑝 = 0,   𝛼𝑝𝜖[0,1]

[(𝛽𝑖
𝑝

 
− 𝜀𝑖

𝑝
) + 𝛼𝑝𝜀𝑖

𝑝
 ,   (𝛽𝑖

𝑝∗
+ 𝜀𝑖

𝑝∗) − 𝛼𝑝𝜀𝑖
𝑝∗] 𝛽𝑝 = 1,   𝛼𝑝𝜖[0,1]

[(𝛽𝑖
𝑝

 
− 𝜀𝑖

𝑝
) + 𝛼𝑝(𝛽𝑖

𝑝∗
− 𝛽𝑖

𝑝
+ 𝜀𝑖

𝑝
), (𝛽𝑖

𝑝∗
+ 𝜀𝑖

𝑝∗) − 𝛼𝑝𝜀𝑖
𝑝∗] 

𝐼1
𝑝
∪ 𝐼2

𝑝
∪ 𝐼3

𝑝
     
𝛽𝑝 =

𝜀𝑖
𝑝

𝛽𝑖
𝑝∗
− (𝛽𝑖

𝑝
− 𝜀𝑖

𝑝
)
 , 𝛼𝑝𝜖[0,1]

𝛼𝑝 ≤ 𝛽𝑝 , 𝛼𝑝 , 𝛽𝑝  ≠ 0

 

   

 

(6.5) 

 𝑊ℎ𝑒𝑟𝑒 , 𝐼1
𝑝 = [𝛽𝑖

𝑝 − 𝜀𝑖
𝑝 , (𝛽𝑖

𝑝 − 𝜀𝑖
𝑝) + 

𝛼𝑝𝜀𝑖
𝑝

𝛽𝑝
),𝐼2

𝑝 = [𝛽
𝑖
𝑝 ,   𝛽

𝑖
𝑝 +

𝛼𝑝̅−𝛽𝑝

𝛽𝑝̅̅ ̅̅
(𝛽

𝑖
𝑝∗ − 𝛽

𝑖
𝑝))      𝑎𝑛𝑑 

𝐼3
𝑝 = [𝛽

𝑖
𝑝∗ , (𝛽

𝑖
𝑝∗ + 𝜀𝑖

𝑝∗) − 𝛼𝑝𝜀𝑖
𝑝∗) 

The 𝛼𝑞 −cut based quadrilateral fuzzy number 𝑩𝒒̃ is closed interval defined below: 
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𝐵𝛼
𝑞
=

{
 
 
 

 
 
 

[ 𝛽𝑖
𝑞
+ 𝛼𝑞(𝛽𝑖

𝑞∗
− 𝛽𝑖

𝑞
) , (𝛽𝑖

𝑞∗
+ 𝜀𝑖

𝑞∗) − 𝛼𝑞𝜀𝑖
𝑞∗] 𝛽𝑞 = 0,   𝛼𝑞𝜖[0,1]

[(𝛽𝑖
𝑞

 
− 𝜀𝑖

𝑞
) + 𝛼𝑞𝜀𝑖

𝑞
 ,   (𝛽𝑖

𝑞∗
+ 𝜀𝑖

𝑞∗) − 𝛼𝑞𝜀𝑖
𝑞∗] 𝛽𝑞 = 1,   𝛼𝑞𝜖[0,1]

[(𝛽𝑖
𝑞

 
− 𝜀𝑖

𝑞
) + 𝛼𝑞(𝛽𝑖

𝑞∗
− 𝛽𝑖

𝑞
+ 𝜀𝑖

𝑞
), (𝛽𝑖

𝑞∗
+ 𝜀𝑖

𝑞∗) − 𝛼𝑞𝜀𝑖
𝑞∗]  

𝐼1
𝑞
∪ 𝐼2

𝑞
∪ 𝐼3

𝑞
     
𝛽𝑞 =

𝜀𝑖
𝑞

𝛽𝑖
𝑞∗
− (𝛽𝑖

𝑞
− 𝜀𝑖

𝑞
)
 , 𝛼𝑞𝜖[0,1] 

𝛼𝑞 ≤ 𝛽𝑞  , 𝛼𝑞  , 𝛽𝑞  ≠ 0

 

 

 

(6.6) 

 𝑊ℎ𝑒𝑟𝑒 , 𝐼1
𝑞 = [𝛽𝑖

𝑞
− 𝜀𝑖

𝑞 , (𝛽𝑖
𝑞
− 𝜀𝑖

𝑞
)+ 

𝛼𝑞𝜀𝑖
𝑞

𝛽
𝑞 ) ,  𝐼2

𝑞 = [𝛽
𝑖
𝑞 ,   𝛽

𝑖
𝑞 +

𝛼𝑞̅−𝛽𝑞

𝛽𝑞̅̅ ̅̅
(𝛽

𝑖
𝑞∗ −

𝛽
𝑖
𝑞))      𝑎𝑛𝑑𝐼3

𝑞 = [𝛽
𝑖
𝑞∗ , (𝛽

𝑖
𝑞∗ + 𝜀𝑖

𝑞∗) − 𝛼𝑞𝜀𝑖
𝑞∗) 

Thus, we quantify improved arithmetical operations based on these 𝛽𝑠 − cuts: 

addition, subtraction, scalar propagation, division, etc., between the two quadrilateral 

fuzzy numbers. 

Theorem 6.1. Addition of two 𝛼 − 𝑐𝑢𝑡 based quadrilateral fuzzy number 𝐵̃𝑖
𝑝
 = 

(𝛽𝑖
𝑝 − 𝜀𝑖

𝑝
 , 𝛽𝑖

𝑝 , 𝛽𝑖
𝑝∗

 ,  𝛽𝑖
𝑝∗ + 𝜀𝑖

𝑝∗
 )   and  𝐵̃𝑖

𝑞
= (𝛽𝑖

𝑞 − 𝜀𝑖
𝑞
 , 𝛽𝑖

𝑞 , 𝛽𝑖
𝑞∗

 ,  𝛽𝑖
𝑞∗ + 𝜀𝑖

𝑞∗
 ) with two 

different confidence levels generates a 𝛼 − 𝑐𝑢𝑡 based quadrilateral fuzzy number 𝐵̃𝑖
𝑠 = 

𝐵̃𝑖
𝑝
 + 𝐵̃𝑖

𝑞
 = (𝛽𝑖

𝑠 − 𝜀𝑖
𝑠 , 𝛽𝑖

𝑠 , 𝛽𝑖
𝑠∗ ,  𝛽𝑖

𝑠∗ + 𝜀𝑖
𝑠∗ )   where 

 𝛽𝑖
𝑠 − 𝜀𝑖

𝑠 = (𝛽𝑖
𝑝 − 𝜀𝑖

𝑝) + (𝛽𝑖
𝑞 − 𝜀𝑖

𝑞) (6.7) 

 𝛽𝑖
𝑠 = 𝛽

𝑖
𝑝 + 𝛽

𝑖
𝑞 −

𝛽𝑠

𝛽𝑝
𝜀𝑖
𝑞
 (6.8) 

 𝛽𝑖
𝑠∗ = 𝛽𝑖

𝑝∗ + 𝛽𝑖
𝑞∗

 (6.9) 

𝛽𝑖
𝑠∗ + 𝜀𝑖

𝑠∗ = (𝛽𝑖
𝑝∗ + 𝜀𝑖

𝑝∗) + (𝛽𝑖
𝑞∗ + 𝜀𝑖

𝑞∗)  (6.10) 

Proof: See Appendix-C 

Theorem 6.2.  If 𝐵̃=⟨(𝛽𝑖 − 𝜀𝑖 , 𝛽𝑖, 𝛽𝑖
∗, 𝛽𝑖

∗ + 𝜀𝑖
∗) | 𝛽𝑖, 𝛽𝑖

∗ ∈  ℝ, 𝑎𝑛𝑑 𝜀𝑖 , 𝜀𝑖
∗ ∈ ℝ+⟩ be a 

𝛼 − 𝑐𝑢𝑡 based quadrilateral fuzzy number then  𝑘𝐵̃   is again a 𝛼 − 𝑐𝑢𝑡 based 

quadrilateral fuzzy number given by  

𝑘𝐵̃={
(𝑘(𝛽𝑖 − 𝜀𝑖), 𝑘𝛽𝑖, 𝑘𝛽𝑖

∗, 𝑘(𝛽𝑖
∗ + 𝜀𝑖

∗)) ; 𝑘 > 0

(𝑘(𝛽𝑖
∗ + 𝜀𝑖

∗), 𝑘𝛽𝑖
∗, 𝑘𝛽𝑖, (𝑘(𝛽𝑖 − 𝜀𝑖)) ; 𝑘 < 0

 
(6.11) 

 𝐹𝑜𝑟 𝑘 > 0 the membership function is given by   



104 

 

𝐵𝑘𝑖(𝑦)=

{
  
 

  
 𝛽 + (

𝑦−𝑘𝛽𝑖

𝛽𝑖
∗−𝛽𝑖

) × 𝛽̅ 𝑊ℎ𝑒𝑛 𝑘𝛽𝑖 ≤ 𝑦 ≤ 𝑘𝛽𝑖
∗

(
𝑦−𝑘(𝛽𝑖−𝜀𝑖)

𝜀𝑖
) × 𝛽 𝑊ℎ𝑒𝑛 𝑘(𝛽𝑖 − 𝜀𝑖) ≤ 𝑦 ≤ 𝑘𝛽𝑖

𝑘(𝛽𝑖
∗+𝜀𝑖

∗)−𝑦

𝜀𝑖
∗

0

𝑊ℎ𝑒𝑛 𝑘𝛽𝑖
∗ ≤ 𝑦 ≤ 𝑘(𝛽𝑖

∗ + 𝜀𝑖
∗)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(6.12) 

Proof: See the Appendix -C 

Theorem 6.3 Subtraction of two 𝛼 − 𝑐𝑢𝑡 based quadrilateral fuzzy number 𝐵̃𝑖
𝑝
 = 

(𝛽𝑖
𝑝 − 𝜀𝑖

𝑝
 , 𝛽𝑖

𝑝 , 𝛽𝑖
𝑝∗

 ,  𝛽𝑖
𝑝∗ + 𝜀𝑖

𝑝∗
 )   and  𝐵̃𝑖

𝑞
= (𝛽𝑖

𝑞 − 𝜀𝑖
𝑞
 , 𝛽𝑖

𝑞 , 𝛽𝑖
𝑞∗

 ,  𝛽𝑖
𝑞∗ + 𝜀𝑖

𝑞∗
 ) with two 

different confidence levels generates a 𝛼 − 𝑐𝑢𝑡 based quadrilateral fuzzy number 𝐵̃𝑖
𝑠 = 

𝐵̃𝑖
𝑝
 − 𝐵̃𝑖

𝑞
 = (𝛽𝑖

𝑠 − 𝜀𝑖
𝑠 , 𝛽𝑖

𝑠 , 𝛽𝑖
𝑠∗ ,  𝛽𝑖

𝑠∗ + 𝜀𝑖
𝑠∗ )   where 

𝛽𝑖
𝑠 − 𝜀𝑖

𝑠 = (𝛽𝑖
𝑝 − 𝜀𝑖

𝑝) − (𝛽𝑖
𝑞∗ + 𝜀𝑖

𝑞∗) (6.13) 

𝛽𝑖
𝑠 = 𝛽

𝑖
𝑝 − (𝛽𝑖

𝑞∗ + 𝜀𝑖
𝑞∗) −

𝛽𝑠

𝛽𝑝
 𝜀𝑖
𝑞∗   

(6.14) 

𝛽𝑖
𝑠∗ = 𝛽𝑖

𝑝∗ − 𝛽𝑖
𝑞∗

 (6.15) 

𝛽𝑖
𝑠∗ + 𝜀𝑖

𝑠∗ = (𝛽𝑖
𝑝∗ + 𝜀𝑖

𝑝∗) − (𝛽𝑖
𝑞 − 𝜀𝑖

𝑞) (6.16) 

𝑷𝒓𝒐𝒐𝒇 : Follow from theorem 6.1 and 6.2, so we omit here. 

Theorem 6.4. Multiplication of two 𝛼 − 𝑐𝑢𝑡 based quadrilateral fuzzy number 𝐵̃𝑖
𝑝
 

= (𝛽𝑖
𝑝 − 𝜀𝑖

𝑝
 , 𝛽𝑖

𝑝 , 𝛽𝑖
𝑝∗

 ,  𝛽𝑖
𝑝∗ + 𝜀𝑖

𝑝∗
 )   and  𝐵̃𝑖

𝑞
= (𝛽𝑖

𝑞 − 𝜀𝑖
𝑞
 , 𝛽𝑖

𝑞 , 𝛽𝑖
𝑞∗

 ,  𝛽𝑖
𝑞∗ + 𝜀𝑖

𝑞∗
 ) with 

two different confidence levels generates a quadrilateral fuzzy number 𝐵̃𝑖
𝑠 = 𝐵̃𝑖

𝑝
 × 𝐵̃𝑖

𝑞
 

= (𝛽𝑖
𝑠 − 𝜀𝑖

𝑠 , 𝛽𝑖
𝑠 , 𝛽𝑖

𝑠∗ ,  𝛽𝑖
𝑠∗ + 𝜀𝑖

𝑠∗ )   where 

 𝛽𝑖
𝑠 − 𝜀𝑖

𝑠 = (𝛽𝑖
𝑝 − 𝜀𝑖

𝑝)(𝛽𝑖
𝑞 − 𝜀𝑖

𝑞) (6.17) 

 𝛽𝑖
𝑠 = 𝛽

𝑖
𝑝(𝛽𝑖

𝑞 − 𝜀𝑖
𝑞) +

𝛽𝑠

𝛽𝑞
𝛽
𝑖
𝑝𝜀𝑖
𝑞
 (6.18) 

𝛽𝑖
𝑠∗ = 𝛽𝑖

𝑝∗𝛽𝑖
𝑞∗

 (6.19) 

                           𝛽𝑖
𝑠∗ + 𝜀𝑖

𝑠∗ = (𝛽𝑖
𝑝∗ + 𝜀𝑖

𝑝∗)(𝛽𝑖
𝑞∗ + 𝜀𝑖

𝑞∗) (6.20) 
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 𝐵𝑖
𝑠(𝑦)=

{
 
 
 
 

 
 
 
 
𝛽𝑠 +

−Κ1+√Κ1
2+4Μ1(𝑦−Ν1)

2Μ1
𝑊ℎ𝑒𝑛 𝛽𝑖

𝑠 ≤ 𝑦 ≤ 𝛽𝑖
𝑠∗

−Κ2+√Κ2
2+4Μ2(𝑦−Ν2)

2Μ2
𝑊ℎ𝑒𝑛 𝛽𝑖

𝑠 − 𝜀𝑖
𝑠 ≤ 𝑦 ≤ 𝛽𝑖

𝑠

Κ3+√Κ3
2+4Μ3(𝑦−Ν3)

2Μ3

0

𝑊ℎ𝑒𝑛 𝛽𝑖
𝑠∗ ≤ 𝑦 ≤ 𝛽𝑖

𝑠∗ + 𝜀𝑖
𝑠∗ 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

 

(6.21) 

Where, 

Κ1 =
𝛽𝑖
𝑝
(𝛽𝑖

𝑞∗
−𝛽𝑖

𝑞
)

 𝛽𝑞̅̅ ̅̅
 +
𝛽𝑖
𝑞
(𝛽𝑖

𝑝∗
−𝛽𝑖

𝑝
)

𝛽𝑠̅̅̅̅
 , Κ2 =

(𝛽𝑖
𝑝
−𝜀𝑖

𝑝
)(𝜀𝑖

𝑞+
−𝜀𝑖

𝑞
)

 𝛽𝑞̅̅ ̅̅
  +

(𝛽𝑖
𝑞
− 𝜀𝑖

𝑞
)𝜀𝑖
𝑝

𝛽𝑠̅̅̅̅
 

 Κ3 = (𝛽𝑖
𝑝∗ + 𝜀𝑖

𝑝∗)(𝜀𝑖
𝑞∗) + (𝛽𝑖

𝑞∗ + 𝜀𝑖
𝑞∗)𝜀𝑖

𝑝∗
 

Μ1 = 
(𝛽𝑖

𝑝∗
−𝛽𝑖

𝑝
)(𝛽𝑖

𝑞∗
−𝛽𝑖

𝑞
)

𝛽𝑠̅̅ ̅̅  𝛽𝑞̅̅ ̅̅
  , Μ2 = 

𝜀𝑖
𝑝
(𝜀𝑖
𝑞+
−𝜀𝑖

𝑞
)

𝛽𝑠̅̅̅̅  𝛽𝑞̅̅ ̅̅
    ,  Μ3 = 𝜀𝑖

𝑝∗𝜀𝑖
𝑞∗

 

Ν1 = 𝛽𝑖
𝑝𝛽𝑖

𝑞
  , Ν2 = (𝛽𝑖

𝑝 − 𝜀𝑖
𝑝)(𝛽𝑖

𝑞 − 𝜀𝑖
𝑞),  Ν3 = (𝛽𝑖

𝑝∗ + 𝜀𝑖
𝑝∗)(𝛽𝑖

𝑞∗ + 𝜀𝑖
𝑞∗) 

Proof: See the Appendix D. 

Theorem 6.5. If  𝑩̃ = (𝛽𝑖 − 𝜀𝑖 , 𝛽𝑖, 𝛽𝑖
∗, 𝛽𝑖

∗ + 𝜀𝑖
∗) represents a 𝛼 − 𝑐𝑢𝑡 based 

quadrilateral fuzzy number then the inverse of 𝑩̃ i.e 𝑩̃−1 = ( (𝛽𝑖
∗ + 𝜀𝑖

∗)−1,

(𝛽𝑖
∗)−1, (𝛽𝑖)

−1, (𝛽𝑖 − 𝜀𝑖)
−1) is also a 𝛼 − 𝑐𝑢𝑡 based quadrilateral fuzzy number whose 

membership function is given by 

𝐵𝑖
−1(𝑦)=

{
  
 

  
 𝛽∗ + (

𝑦−(𝛽𝑖
∗)
−1

(𝛽𝑖)
−1−(𝛽𝑖

∗)
−1) 𝛽∗̅̅ ̅ 𝑊ℎ𝑒𝑛 (𝛽𝑖

∗)−1 ≤ 𝑦 ≤ (𝛽𝑖)
−1

(
𝑦−(𝛽𝑖

∗+𝜀𝑖
∗)
−1

(𝛽𝑖
∗)
−1
−(𝛽𝑖

∗+𝜀𝑖
∗)
−1) 𝛽

∗ 𝑊ℎ𝑒𝑛 (𝛽𝑖
∗ + 𝜀𝑖

∗)−1 ≤ 𝑦 ≤ (𝛽𝑖
∗)−1

(𝛽𝑖−𝜀𝑖)
−1−𝑦

(𝛽𝑖−𝜀𝑖)
−1−(𝛽𝑖)

−1

0

𝑊ℎ𝑒𝑛 (𝛽𝑖)
−1 ≤ 𝑦 ≤ (𝛽𝑖 − 𝜀𝑖)

−1

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(6.22) 

Where 𝛽∗ represents the membership grade and 𝛽∗̅̅ ̅ represents the complement of  𝛽∗. 
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Theorem 6.6. Division  of two 𝛼 − 𝑐𝑢𝑡 based quadrilateral fuzzy number 𝐵̃𝑖
𝑝
 = (𝛽𝑖

𝑝 − 

𝜀𝑖
𝑝
 , 𝛽𝑖

𝑝 , 𝛽𝑖
𝑝∗

 ,  𝛽𝑖
𝑝∗ + 𝜀𝑖

𝑝∗
 )   and  𝐵̃𝑖

𝑞
= (𝛽𝑖

𝑞 − 𝜀𝑖
𝑞
 , 𝛽𝑖

𝑞 , 𝛽𝑖
𝑞∗

 ,  𝛽𝑖
𝑞∗ + 𝜀𝑖

𝑞∗
 ) with two 

different confidence levels generates a 𝛼 − 𝑐𝑢𝑡 based quadrilateral fuzzy number 𝐵̃𝑖
𝑠 =  

𝐵̃𝑖
𝑝

𝐵̃
𝑖
𝑞  = 𝐵̃𝑖

𝑝
 × (𝐵̃𝑖

𝑞)−1 =(𝛽𝑖
𝑠 − 𝜀𝑖

𝑠 , 𝛽𝑖
𝑠 , 𝛽𝑖

𝑠∗ ,  𝛽𝑖
𝑠∗ + 𝜀𝑖

𝑠∗ ), Where 

𝛽𝑖
𝑠 − 𝜀𝑖

𝑠 = (𝛽𝑖
𝑝 − 𝜀𝑖

𝑝) × (𝛽𝑖
𝑞∗ + 𝜀𝑖

𝑞∗)−1 (6.23) 

𝛽𝑖
𝑠 = 𝛽𝑖

𝑝 × (𝛽𝑖
𝑞∗)−1 (6.24) 

𝛽𝑖
𝑠∗ = 𝛽𝑖

𝑝∗ × (
1

(𝛽
𝑖
𝑞 − 𝜀𝑖

𝑞
) +

𝛽𝑠

𝛽𝑞
𝜀𝑖
𝑞
) 

     

(6.25) 

 𝛽𝑖
𝑠∗ + 𝜀𝑖

𝑠∗ = (𝛽𝑖
𝑝∗ + 𝜀𝑖

𝑝∗) × (𝛽𝑖
𝑞 − 𝜀𝑖

𝑞)−1 (6.26) 

Proof. As 𝐵̃𝑖
𝑞
= (𝛽𝑖

𝑞 − 𝜀𝑖
𝑞
 , 𝛽𝑖

𝑞 , 𝛽𝑖
𝑞∗

 ,  𝛽𝑖
𝑞∗ + 𝜀𝑖

𝑞∗
 ). Thus 

1

𝐵̃
𝑖
𝑞 = (

1

𝛽
𝑖
𝑞∗
+ 𝜀

𝑖
𝑞∗
 
 

, 
1

𝛽
𝑖
𝑞∗  ,

1

𝐵̃
𝑖
𝑞  ,

1

𝛽
𝑖
𝑞
− 𝜀

𝑖
𝑞) and 𝐵̃𝑖

𝑝 ×
1

𝐵̃
𝑖
𝑞 .Therefore, the proof of this theorem from theorem 6.4, 

so we omit.  

6.4 Fuzzy Linear Programming through the  𝜶 − 𝒄𝒖𝒕 Based Quadrilateral 

Fuzzy Number 

The standard form of FLP in equation (4.2) is considered to be the quadrilateral 

fuzzy number 𝑩̃ = (𝛽𝑖 − 𝜀𝑖 , 𝛽𝑖, 𝛽𝑖
∗, 𝛽𝑖

∗ + 𝜀𝑖
∗) as a consequence of increased and 

decreased availability of restrictions instead of the right triangle fuzzy number 𝛽𝑖̃. 

Therefore, the general structure of the least lower, lower, upper bounds and the most 

upper bound of the optimal values are defined below.  

The least low bound (𝒁𝒍
∗)  

Max𝒁𝒍
∗ =∑с𝑗𝑦𝑗

𝑛

𝑗=1

 

Subject to   ∑ 𝒶𝑖𝑗𝑥𝑗
𝑛
𝑗=1  ≤ 𝛽𝑖 − 𝜀𝑖 
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Where,  𝑦𝑗 ≥ 0, 𝑖, 𝑗 ∈ ℕ 

 

(6.27) 

The lower bound (Zl)  

Max 𝒁𝒍 =∑с𝑗𝑦𝑗

𝑛

𝑗=1

 

Subject to   ∑ 𝒶𝑖𝑗𝑦𝑗
𝑛
𝑗=1  ≤ 𝛽𝑖 

Where,  𝑥𝑗 ≥ 0, 𝑖, 𝑗 ∈ ℕ 

 

 

 

(6.28) 

The upper bound (Zu)  

Max 𝒁𝒖 =∑с𝑗𝑦

𝑛

𝑗=1

 

Subject to   ∑ 𝒶𝑖𝑗𝑦
𝑛
𝑗=1  ≤ 𝛽𝑖

∗ 

Where,  𝑦𝑗 ≥ 0, 𝑖, 𝑗 ∈ ℕ 

 

 

 

(6.29) 

Now the most upper bound (𝒁𝒖
∗ )  

Max𝒁𝒖
∗ =∑с𝑗𝑦𝑗

𝑛

𝑗=1

 

Subject to   ∑ 𝒶𝑖𝑗𝑦𝑗
𝑛
𝑗=1  ≤ 𝛽𝑖

∗ + 𝜀𝑖
∗ 

Where,  𝑦𝑗 ≥ 0, 𝑖, 𝑗 ∈ ℕ 

 

 

 

(6.30) 
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Using the techniques of the simplex method to find the values of the optimization of 

these bounds i.e. 𝓏𝑢, 𝓏𝑙, 𝓏𝑢
∗ 𝑎𝑛𝑑 𝓏𝑙

∗are the upper, lower, most upper, and least lower 

bounds.   

6.4.1  Optimized FLLP Model for 𝜶 − 𝒄𝒖𝒕 Based Quadrilateral Fuzzy 

Number 

Here an optimized FLLP model based on an 𝛼 − 𝑐𝑢𝑡 based quadrilateral fuzzy 

number is proposed to obtain the optimized values of these limits is defined below:  

𝑀𝑎𝑥 𝑍 = λ 

Subject to 

λ(𝓏𝑙 − 𝓏𝑙
∗)−𝜍𝑦 ≤ −𝓏𝑙

∗ 

λ(𝜀𝑖) +∑𝛼𝑖𝑗

𝑛

𝑗=1

𝑦𝑗 ≤ 𝛽𝑖 

λ(𝓏𝑢 − 𝓏𝑙
∗)−𝜍𝑦 ≤ −𝓏𝑙

∗ 

λ (𝜀𝑖+𝛽𝑖
∗
−𝛽𝑖) +∑𝛼𝑖𝑗

𝑛

𝑗=1

𝑦𝑗 ≤ 𝛽𝑖
∗
 

λ(𝓏𝑢
∗ − 𝓏𝑙

∗)−𝜍𝑦 ≤ −𝓏𝑙
∗ 

λ (𝛽𝑖
∗
−𝛽𝑖+𝜀𝑖

∗+𝜀𝑖) +∑𝛼𝑖𝑗

𝑛

𝑗=1

𝑦𝑗 ≤ 𝛽𝑖
∗
+𝜀𝑖∗ 

𝑦𝑗 > 0, 𝑖, 𝑗𝜖ℕ 

 

 

 

 

 

 

 

 

 

 

(6.31) 

This fuzzy optimized LPP will give the membership grade for our initial LPP. Here 

λ represents the membership grade and 𝓏𝑢, 𝓏𝑙, 𝓏𝑢
∗ 𝑎𝑛𝑑 𝓏𝑙

∗are the upper, lower, most 

upper, and least lower bounds. 
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𝜍𝑦 is the objective function of the initial LPP. The term with summation sign 

represents the constraints of given LPP and 𝜀𝑖
∗and 𝜀𝑖  is the probabilistic increment and 

decrement respectively in the availability of the constraints. In Figure 6.2 demonstrates 

the flow chart of the FLLP based on the proposed fuzzy number. 

 

 

Figure 6.2:Flow chat of the FLLP based on proposed fuzzy number 
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6.5  Numerical Experiment 

The crisp optimization techniques are not good enough to illustrate the targeted 

optimum result in the fluctuated situation or feasible uncertainty in the followings 

situations.  

6.6 Data and Problem Identification 

The data in Table 4. 1 are from The Railway Industry in Kapurthala for 2010-2011. 

This data shows the manufacturing cost (‘in lacs,’ i.e., 1,00,000) of different coaches' 

constraints. Kapurthala Railway Industry was established in 1986. It is a coach 

manufacturing unit of Indian Railways and manufactured more than 30000 passenger 

coaches of different types. 

But they can be extended with some probabilistic increment, decrement, and reach 

to (𝛽𝑖 − 𝜀𝑖), 𝛽𝑖,  𝛽𝑖
∗

 , (𝛽𝑖
∗ + 𝜀𝑖

∗). In this situation, we propose a newly constructed 

quadrilateral FLLP to minimize the total cost of production. Similarly, in certain 

situations, the total availability of any constraint can be inflexible from one requirement 

to another. Again, it can be intensified and declined by any probabilistic increment and 

decrement; then, we are also presenting the trapezoidal FLLP to minimize the total cost 

of production.  

The membership grade is declined if there is certain increments and decrements in 

the inflexible interval of basic availability. For example - (𝛽𝑖 − 𝜀𝑖)~ 𝛽𝑖~𝛽𝑖
∗~ (𝛽𝑖

∗ +

𝜀𝑖
∗). The minimum production cost is targeted with almost basic availability for all 

constraints and at least basic availability for Performa change. 

The fluctuation is given in  Table 6.23: 

6.2 Modelling for the System of Optimal Solution  

Using the values shown in Table 4.1 and Table 6.23: shows the probabilistic 

increments and decrements in the cost parameter, the standard form of fuzzy linear 

programming is defined below: 
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6.3. Numerical Results 

Using the described methodology, the production cost modeling is being done, and 

the fuzzy quadrilateral numbers have been constructed. The optimized fuzzy linear 

programming problem has been constructed using the bounds least lower, lower, upper, 

and greatest upper bound, which are calculated. Demonstrating the membership grade 

of all constraints is represented by equations (6.32) to (6.39) and graphically 

summarizing the constraints shown in Figure 6.3 to Figure 6.10 at the different value 

of the significance level. 

Let 𝐵lab be the membership grade for Labor cost, and it varies as: - 

       𝐵lab=

{
 
 

 
 𝛽 + (

𝑦−150.7

5
) × 𝛽̅ 𝑊ℎ𝑒𝑛 150.70 ≤ 𝑦 ≤ 155.7

(
𝑦−145.54

5.16
) × 𝛽 𝑊ℎ𝑒𝑛 145.54 ≤ 𝑦 ≤ 150.7

160.86 −𝑦

5.16

0

𝑊ℎ𝑒𝑛 155.7 ≤ 𝑦 ≤ 160.86
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(6.32) 

 

Figure 6.3: Membership grade for labor cost 
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Let 𝐵𝑚𝑎𝑡 be the membership grade for material cost, and it varies as: - 

𝐵mat=

{
 
 

 
 𝛽 + (

𝑦−2294.6

67.24
) × 𝛽̅ when 2294.60 ≤ 𝑦 ≤ 2361.84

(
𝑦−2211.81

82.79
) × 𝛽 when 2211.81 ≤  𝑦  ≤  2294.60

 2444.63 −𝑦

82.79

0

when2361.84 ≤ 𝑦 ≤  2444.63
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(6.33) 

 

Figure 6.4: Membership grade for material cost 

Let 𝐵𝑓𝑜ℎ be the membership grade for factory overhead charges, and it varies as: - 

𝐵foh=

{
 
 

 
 𝛽 + (

𝑦−251.98

9.16
) × 𝛽̅ when 251.98 ≤ 𝑦 ≤ 261.14

(
𝑦−243.73

8.25
) × 𝛽 when 243.73 ≤  𝑦  ≤  251.98

 269.38 −𝑦

8.24

0

when 261.14 ≤ 𝑦 ≤  269.38
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(6.34) 
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Figure 6.5: Membership grade for factory overhead charges 

Let 𝐵𝑎𝑜ℎ be the membership grade for administrative overhead charges, and it varies 

as:- 

𝐵aoh =

{
 
 

 
 𝛽 + (

𝑦−194.22

5.82
) × 𝛽̅ when 194.22 ≤ 𝑦 ≤ 200.04

(
𝑦−187.27

6.95
) × 𝛽 when 187.27 ≤  𝑦  ≤  194.22

 206.98 −𝑦

6.94

0

when 200.04 ≤ 𝑦 ≤  206.98
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(6.35) 

  

 

Figure 6.6: Membership grade for administrative charges 
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Let 𝐵𝑡𝑜oℎ be the membership grade for township overhead charges, and it varies as: - 

𝐵tooh =

{
 
 

 
 𝛽 + (

𝑦−40.48

1.5
) × 𝛽̅ when 40.48 ≤ 𝑦 ≤ 41.98

(
𝑦−39.19

1.3115 
) × 𝛽 when 39.17 ≤  𝑦  ≤  40.48

 41.98 −𝑦

1.31 

0

when 41.98 ≤ 𝑦 ≤  43.29
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(6.36) 

  

 

Figure 6.7: Membership grade for township overhead charges 

Let 𝐵𝑠𝑜ℎ be the membership grade for overhead shop charges, and it varies as:- 

 𝐵soh =

{
  
 

  
 𝛽 + (

𝑦 − 18.44

0.46
) × 𝛽̅ when 18.44 ≤ 𝑦 ≤ 18.90

(
𝑦 − 17.73

 0.71
) × 𝛽 when 17.73 ≤  𝑦  ≤  18.44

 18.90 − 𝑦

0.70 
0

when 18.90 ≤ 𝑦 ≤  19.60
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

 

(6.37) 
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Figure 6.8: Membership grade for shop overhead charges 

Let 𝐵𝑡𝑜ℎ be the membership grade for total overhead charges, and it varies as: - 

𝐵toh =

{
 
 

 
 𝛽 + (

𝑦−505.14

16.94
) × 𝛽̅ when 505.14 ≤ 𝑦 ≤ 522.08

(
𝑦−487093

 17.21
) × 𝛽 when 487.93 ≤  𝑦  ≤  505.14

 522.08 −𝑦

17.21 

0

when 522.08 ≤ 𝑦 ≤  539.29
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(6.38) 

 

Figure 6.9: Membership grade for total overhead charges 
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Let 𝑩𝒑𝒓𝒐𝒇 be the membership grade for Performa charge, and it varies as: - 

𝐵prof =

{
 
 

 
 𝛽 + (

𝑦−92.39

2.88
) × 𝛽̅ when 92.39 ≤ 𝑦 ≤ 95.27

(
𝑦−89.13

 3.26
) × 𝛽 when 89.13 ≤  𝑦  ≤  92.39

 95.27 −𝑦

3.26 

0

when 95.27 ≤ 𝑦 ≤  98.52
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 

(6.39) 

 

Figure 6.10: Membership grade for Performa charge  

6.4 Optimal Result of Numerical Result 

Using the described methodology, the modeling of production cost is being done, 

and quadrilateral fuzzy numbers for all cost parameters have been derived. The least 

lower, lower, upper, and greatest upper bounds are 2918.6, 3026.4, 3118, and 3225.8 

rupees in lacs (Indian rupees), respectively. The optimized fuzzy linear programming 

problem (OFLPP) has been constructed using the least lower, lower, upper, and greatest 

upper bounds. 

Table 6.24: Optimized membership grade shows the solutions for the optimized 

value of least low, lower, upper, and most upper bound and the optimized membership 

grade. 
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6.5 Analysis of Numerical Result 

The production cost of RCF is to be minimized using the cost parameter. The 

optimum production cost has been obtained to get the maximum membership grade. It 

shows that total production cost will provide the highest credibility if the optimized cost 

is considered equal to the basic cost range [3026,3118]. The following equation and 

figure show the fuzzy number for optimized membership grade. 

 

Figure 6.11: Membership grade for optimal cost 

 𝐵Optimized cost−I =   

{
  
 

  
 𝛽 + (

𝑦 − 3026.4

91.6
) × 𝛽̅ when 3026.4 ≤ 𝑦 ≤ 3118

(
𝑦 − 2918.6

 107.8
) × 𝛽 when 2918.6 ≤  𝑦  ≤  3026.4

 3225.8 − 𝑦

107.8 
0

when 3118 ≤ 𝑦 ≤  3225.8
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(6.40) 
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Figure 6.12: Representation of the β spectrum corresponding to the optimum value of 

𝜆 

In Figure 6.11, L1 and L2 represented the range of optimal costs lies between 

[2918.6, 3026.4] and [3026.4,3118] respectively, which are dependent on the different 

value of 𝛽, while, L3 is the targeted optimal cost, i.e., 3118 and L4 the optimal cost lies 

between [3118, 3225.8] which are independent 𝛽.  

In Figure 6.12, the line graph shows the performance in terms of optimized cost 

through these lines utilizing the different values of β of  𝛼 − 𝑏𝑎𝑠𝑒𝑑 quadrilateral fuzzy 

LPP.From the given availably of the data, the basic targeted cost is in-between lower 

and upper bound that is L3=3118 unit, respectively. In the proposed model using 𝛼 −

𝑏𝑎𝑠𝑒𝑑 quadrilateral fuzzy number, the performance of different values of 𝛽 (degree of 

grade satisfaction) are observed values to achieve targeted cost, which lies between 

[0.17,0.30]. 

6.7  Summary 

In this chapter, a 𝛼 − cut based quadrilateral fuzzy number is proposed with the 

proof of basic mathematical operations and shows the application of it in the fuzzy 

linear programming problems. This fuzzy number in R.H.S of the FLLP assists in 

showing the uncertainty in solution values due to chances of increment and decrement 

in the availability of different constraints. So, the description of a case of incertitude 
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and the realistic model to extenuate the destruction in the optimization is shown. The 

comparative analysis of modeling and optimization of production cost of the various 

coaches of RCF Kapurthala has been done through a 𝛼 − cut based quadrilateral fuzzy 

linear programming problem. The credibility of optimized cost via a 𝛼 −

𝑐𝑢𝑡 𝑏𝑎𝑠𝑒𝑑 quadrilateral FLLP model is examined. The total cost has been targeted to 

optimize the constraints of different expenses to construct the different types of 

coaches. The lower, least lower, upper, and most upper bounds have been calculated 

for the model, and then systems of optimized FLLP were constructed. The credibility 

of the model has been obtained and using these memberships grade the minimum, and 

greatest minimum cost have been exemplified. It is observed that the performances 

obtained by a 𝜶 − cut based  quadrilateral FLLP through the different value of 𝛽 ∈

[0.17 , 0.30] shows the degree of satisfaction in vague situations. Further, these 

numbers will be used for optimization through the other groups of FLPP, and by using 

different operations, the suggested methodology can be extended to include the study 

of uncertainty issues that can be used for further work. 
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Chapter 7 

The Combined Study of Improved Fuzzy Optimization 

Techniques with the Analysis of the Upgraded Facility Location 

Center for the Covid-19 Vaccine by Fuzzy Clustering Algorithms 

“Abstraction consists essentially in the creation and utilization of ambiguity.” 

−William Byers 

 

 

7.1 Introduction  

With the latest vaccine production after clinical trials in India, one of the next steps 

is to administer this vaccine to the consumer. The supply must be specifically 

positioned to ensure optimal distribution, and it also optimizes the transportation cost. 

The significant concern of the location of facilities is a major logistic extent of decision-

making for the vaccine distribution. How the material is passed to customers is one of 

the vital characteristics of a conversion process (manufacturing system). This fact 

involves deciding where the building or facility should be located.  

The most effective method of avoiding and/or managing infectious disease 

outbreaks is vaccination. This surgical technique also poses a host of technical 

concerns. In recent years, a growing curiosity in the conceptual implications of 

vaccinations has been shown to the Operations Research/Operations Managing 

community. We could have a Covid-19 vaccine by this year, with around eight 

applicants completing the completion of drug testing. The next challenge is to get the 

vaccines securely shipped to specific locations and finally to hospitals and clinics. Since 

certain Covid-19 vaccines demand varying climates and different manipulation 

techniques, the cold chain infrastructure, including transport and storage equipment and 

processes, is vital before delivered to the masses. The World Health Organization 



121 

 

(WHO) claims that the cold chain is a system of keeping and delivering vaccines from 

the production point to the usage point. 

A variety of factors can cause a shortage of vaccines. Export monopoly, complicated 

production procedures, expanded control of processing plants, unexpected changes in 

demand, and decreased producers are the most commonly cited reasons for vaccine 

shortages [156][157][158]. The final delivery operation is administering the vaccines 

from the manufacturer to the customers. At the time of preparation of vaccines, store 

the vaccines in suitable places for monitoring. The vaccine distribution system includes 

an effective overall framework, an analysis of the demand rate and inventory needs, 

and selecting appropriate vaccine distribution sites. 

Healthcare facility (HCF) is one of the major strategic problems for healthcare services, 

emergency relief, and humanitarian logistics received substantial interest from the 

working academic community over nearly four decades. The article [159] includes 

tables with detailed statistics on HCF position problems for ten dimensions. To address 

the needs of people impacted by disasters, a model [160]  was developed to assess the 

quantity and position of the delivery centers in the aid system and the number of relief 

supplies to be handled at each manufacturing facility. The goal of the paper [161] was 

to undertake a survey on the position of facilities associated with immediate relief 

warehousing, concentrating on all aspects of data modeling and problem categories, 

and to address the pre-and post-disaster situations related to the location of facilities, 

such as the location of distribution centers, stores, hospitals, debris disposal sites, and 

medical centers. An Integrated Facility Location (IFLP) problem was described in [162] 

that incorporates risks of facility disruption, obstruction of en-route transport, and delay 

of in-facility queuing into a single issue. The primary factors considered for selecting 

the location of the humanitarian relief warehouse as requirements for AHP are 

empirically specified in [163]. 

In several fields of research, clusters are found [3][6].  Clustering analysis is an 

important method that is used when deciding the optimum position for a facility. A 

clustered ant colony algorithm [164] was addressed to solve the more complicated 

location routing problem. A complete 52 algorithm [165] for reducing the supply chain 
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disturbances. A fuzzy integration and clustering approach were used to correctly 

produce position clustering based on different hierarchical validation requirements. 

Then a similar approach to assess and pick the best candidate for each cluster can be 

applied for order collection. Customers are classified according to their duties and 

assigned to the nearest facility available. In [166], the clustering method was contrasted 

with other general-purpose clustering algorithms. They also demonstrate how the 

combination location and riding problem can be solved using an iterative heuristic 

approach. The problem with several facilities is to classify the locations with medical 

waste. An Artificial Bee Colony (ABC) algorithm [167] was proposed for cluster 

analysis to solve continuous multiple facility position issues. The ABC clustering 

algorithm was implemented to solve the healthcare waste disposal site in Istanbul. 

7.2 Problem Definition and Proposed Model 

Flu viruses are associated with the cold seasons and transmission of infectious 

illnesses. The flu impacts millions of individuals and leads to thousands of deaths. This 

year's fall and winter (i.e., 2020), the world's population, along with COVID-19, will 

be threatened. Although there are many variants of the flu virus and the mutated virus 

vaccine is developed and delivered annually [167], the vaccine is available and is 

manufactured and sold in a limited number of countries. 

Many nations are unable to have flu vaccinations due to seasonal deficiencies. It is 

important to establish successful national plans to distribute vaccines equitably. The 

distribution in which more vulnerable individuals have priority over others is as 

important as the optimum allocation of individuals. This chapter implements fuzzy c-

mean clustering for the accurate estimate of influenza vaccines to various groups of 

citizens. A compromise between promoting society and customer support is required 

for the application. The delivery location (i.e., the distribution center) and certain 

demand locations are two stages of the supply chain: (i.e., city, state, etc.). To obtain 

an optimum supply point, the desired point has a minimum distance from the demand 

point. Therefore, the cost of transportation should be minimal. Health professionals 

classify individuals according to their predetermined preferences. This classification 

would calculate the vaccine prescription for each point of demand. However, in a 
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practical situation, the supply and demand for vaccines could vary. We also suggested 

a fuzzy linear programming problem via a fuzzy triangular number to minimize 

transport costs in such circumstances. The proposed model is used to equitably 

distribute the vaccines across demand points according to the following assumptions: 

• The number of the cluster center are pre-defined. 

• The distance between the supply point and demand point should be 

Euclidean distance. 

• To find the minimum transportation cost. 

• There is a multi-period distribution model with one single product. 

• The availability of the optimal location of supply points is available. 

• There is a range of the availability of the supply and demand of the 

product. 

The complete mechanism of the proposed method is shown in Figure 7.1. 
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Figure 7.1: The mechanism of the proposed method 

7.3 Mathematical Modeling 

In this section, we first discuss the proposed fuzzy linear programming problem 

through a composite fuzzy triangular number 

7.3.1 Solution Methodology 

According to the composite fuzzy triangular number𝜂𝑖̃(𝜂𝑖 − 𝑝𝑖 ~𝜂𝑖~𝜂𝑖 + 𝑝𝑘 ) the 

general structure of the optimal values of the lower, static, and upper bounds are defined 

below: 

The lower bound (𝒵𝒍) – 
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Max 𝒵𝒍 =∑с𝑗𝑦𝑗

𝑛

𝑗=1

 

Subject to   ∑ 𝒶𝑖𝑗𝑦𝑗
𝑛
𝑗=1  ≤ 𝜂𝑖 − 𝑝𝑖  

Where,  𝑦𝑗 ≥ 0, 𝑖, 𝑗 ∈ ℕ 

 

 

 

(7.1) 

The static bound (𝒵 s) – 

Max 𝒵𝒔 =∑с𝑗𝑦𝑗

𝑛

𝑗=1

 

Subject to   ∑ 𝒶𝑖𝑗𝑦𝑗
𝑛
𝑗=1  ≤ 𝜂𝑖 

Where,  𝑦𝑗 ≥ 0, 𝑖, 𝑗 ∈ ℕ 

 

 

 

(7.2) 

The upper bound (𝒵 u) – 

Max 𝒵𝒖 =∑с𝑗𝑦𝑗

𝑛

𝑗=1

 

Subject to   ∑ 𝒶𝑖𝑗𝑦𝑗
𝑛
𝑗=1  ≤ 𝜂𝑖 + 𝑝𝑘  

Where,  𝑦𝑗 ≥ 0, 𝑖, 𝑗 ∈ ℕ 

 

 

 

(7.3) 

The solution for lower and upper bounds of LPP’s is obtained by the Simplex 

method. Find the two different optimized FLLP model will be obtained by using these 

lower and upper bounds

 

7.3.2  Optimized Composite Triangular FLLP Model III 

𝑀𝑎𝑥  𝜆,  

Subject to   
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𝜆(𝒵𝑠 − 𝒵𝑙) −∑𝑐𝑗𝑦𝑗

𝑛

𝑗=1

≤ −𝒵𝑙 

𝜆(𝑝𝑖) +∑𝒶𝑖𝑗𝑦𝑗 ≤ 𝜂𝑖 ,

𝑛

𝑗=1

 

𝜆(𝒵𝑢 − 𝒵𝑠) −∑𝑐𝑗𝑦𝑗

𝑛

𝑗=1

≤ −𝒵𝑠 

𝜆(𝑝𝑖) +∑𝒶𝑖𝑗𝑦𝑗 ≤ 𝜂𝑖 + 𝑝𝑘,

𝑛

𝑗=1

 

𝜆(𝒵𝑢 − 𝒵𝑙) −∑𝑐𝑗𝑦𝑗

𝑛

𝑗=1

≤ −𝒵𝑙 

𝜆(𝑝𝑖 + 𝑝𝑘) +∑𝒶𝑖𝑗𝑦𝑗 ≤ 𝜂𝑖 + 𝑝𝑘,    

𝑛

𝑗=1

 

𝑦𝑗 ≥ 0 and𝜆 ∈ [0,1] 

 

 

 

 

 

 

 

 

 

 

(7.4)  

  

7.4 Experiment Result and Discussion  

In this section, we discuss a problem in which we find the proposed plant 𝑖 (location 

centers) by the FCM clustering method. After the find, the location site j, we find the 

distance matrix from the plant 𝑖 to the proposed potential site 𝑗; then we find the optimal 

total cost with the help of the transportation method. 

Example 7.1 

An organization has warehouses for life-saving drugs at 30 different locations, 

whose coordinates are given in Table 7.25. The organization is locating critical central 

warehouses that will distribute drugs to all the existing warehouses on emergency 
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request. Find the numbers of the optimum location of the new facility (warehouse) 

based on the fuzzy C-means clustering concept. 

 

Figure 7.2: Show the geographical location of the existing warehouse 

 The data are also shown in Figure 7.2. Assume that we want to determine a fuzzy 

pseudo partition with two clusters (i.e., c =3). Assume further that we choose 𝑚 =

2,𝜖 > 0.00001; ||. || is the Euclidean distance, and the initial fuzzy pseudo partition is 

U(0) =[U1, U2, U3] with membership grade shown in Table 7.26. 

Then, the algorithm stops for 𝑘 = 6, because max {|| U(k+1) - U(k)||} < 3.8545-7 and 

we obtain the pseudo partition defined in Table 7.26, the three clusters are 

V1 = (2.77,3.22) ,  V2  = (6.39, 7.07) and V3 = (12.29,13.05), Jm = 92.6823. 

Now, In organization has 3 new facilities(warehouses) W1, W2 & W3 which supply 

to 30 warehouses at H1, H2, H3,…, H30. Due to the uncertainty of the demand and supply, 

the availability of drugs might vary. The fuzzy triangular number represents this 

variation.  

The availability of the drugs of W1, W2 & W3 are (330, 400,460) units, (200,260,300) 

units & (273, 340,447) units, respectively. The fuzzy triangular number also represents 

the monthly requirement for the warehouses, so the demand of H1, H2, H3,…, H30. are 
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(30, 40,50) units, (25, 30,40) units, (15, 20,25) units & (12,20,29) units. respectively. 

The company wants to make sure they keep a steady, adequate flow of drugs to the 

existing warehouses to capitalize on the consumers' demand. Secondary, but still 

important to him, is to minimize the cost of transportation. The distance between the 

new warehouses and existing warehouses shown in Table 7.27. The average haul cost 

is $1 per mile for both loaded and empty trucks.  

The data are shown below. 

7.5 Modeling for the System of Optimal Solution 

We can set up the FLP of the eq. (7.1) to eq. (7.3) for cost minimization; in such a way 

that to satisfy the demands of existing warehouses - 

We can formulate the problem in Eq. (7.4) as: Let 𝑌𝑖𝑗 = Transportations costs from 

new site  𝑖 to existing  𝑗  

𝑖 =  1, 2, 3 (𝑛𝑒𝑤 𝑠𝑖𝑡𝑒𝑠)𝑗 =  1, 2, … , 30  (𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑠𝑖𝑡𝑒𝑠 ) 
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Objective function  

Min z =  0.39𝑦11  + ⋯+ 14.81𝑦1𝟑𝟎 +⋯+ 5.28𝑦21 +⋯+  9.57𝑦230

+ …+ 13.68𝑦31 +⋯+  1.67𝑦330 

𝑦11 + 𝑦12 +⋯+ 𝑦130  ≤ 𝐹1̃ 

𝑦21 + 𝑦22 +⋯+ 𝑦230  ≤ 𝐹2̃ 

𝑦31 + 𝑦32 +⋯+ 𝑦330  ≤ 𝐹3̃ 

𝑦11 + 𝑦21 + 𝑦31  ≥ 𝐿1̃ 

𝑦12 + 𝑦22 + 𝑦32  ≥ 𝐿2̃ 

: 

𝑦130 + 𝑦230 + 𝑦330  ≥  𝐿30̃ 

 

 

 

 

 

 

 

 

 

(7.5) 
 

7.6 Numerical Results 

Using the equation (7.1) to (7.3) of the proposed FLP, the optimal value of the lower 

bound (𝒁𝒍) is 933.22, static bound (Zs) is 1067.90 and the upper bound (Zu) = 1440.50. 

The value of 𝑌𝑖𝑗  are shown in the Table 7.28 to Table 7.30.  

7.6.1 Optimized Composite Triangular FLLP Model 

The optimized fuzzy linear programming problem (OFLPP) has been constructed 

defined in Eq. (7.4) using the lower, static, and upper bound is shown in Eq.(7.5): 

 Max  𝑍 =  𝜆 

Subject to  
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372.60 𝜆 − (−0.39𝑦11 −⋯− 14.81𝑦1𝟑𝟎 −⋯− 5.28𝑦21 −⋯−

 9.57𝑦230 − …− 13.68𝑦31 −⋯−  1.67𝑦330) ≤ −1067.90 

60𝜆 + 𝑦11 + 𝑦12 +⋯+ 𝑦130  ≤ 460 

40𝜆 + 𝑦21 + 𝑦22 +⋯+ 𝑦230  ≤ 300 

107𝜆 + 𝑦31 + 𝑦32 +⋯+ 𝑦330  ≤ 447 

10𝜆 − 𝑦11 − 𝑦21 − 𝑦31  ≤ −50 

10𝜆 − 𝑦12 − 𝑦22 − 𝑦32  ≤ −40 

9𝜆 −  𝑦130 − 𝑦230 − 𝑦330  ≤ −29 

507.26𝜆 − (−0.39𝑦11 −⋯+ 14.81𝑦1𝟑𝟎 +⋯+ 5.28𝑦21 +⋯+

 9.57𝑦230 + …+ 13.68𝑦31 +⋯+  1.67𝑦330) ≤ −933.22 

130𝜆 + 𝑦11 + 𝑦12 +⋯+ 𝑦130  ≤ 460 

100𝜆 + 𝑦21 + 𝑦22 +⋯+ 𝑦230  ≤ 300 

174𝜆 + 𝑦31 + 𝑦32 +⋯+ 𝑦330  ≤ 447 

20𝜆 − 𝑦11 − 𝑦21 − 𝑦31  ≤ −50 

15𝜆 − 𝑦12 − 𝑦22 − 𝑦32  ≤ −40 

: 

17𝜆 −  𝑦130 − 𝑦230 − 𝑦330  ≤ −29 

134.68𝜆 − (−0.39𝑦11 −⋯− 14.81𝑦1𝟑𝟎 −⋯+ 5.28𝑦21 −⋯−

 9.57𝑦230 − …− 13.68𝑦31 −⋯−  1.67𝑦330) ≤ −933.22 

70𝜆 + 𝑦11 + 𝑦12 +⋯+ 𝑦130  ≤ 400 
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60𝜆 + 𝑦21 + 𝑦22 +⋯+ 𝑦230  ≤ 260 

67𝜆 + 𝑦31 + 𝑦32+. . . + 𝑦330  ≤ 340 

10𝜆 − 𝑦11 − 𝑦21 − 𝑦31  ≤ −40 

5𝜆 − 𝑦12 − 𝑦22 − 𝑦32  ≤ −30 

8𝜆 −  𝑦130 − 𝑦230 − 𝑦330  ≤ −20 

𝑦𝑖𝑗 ≥ 0  and 𝜆 ∈ [0,1] 

 

 

 

 

(7.6) 

 

Figure 7.3: Show the optimal value of 𝝀 for minimal transportation cost  

 The proposed FLP issue the delivery of the vaccine from the warehouses W1, W2 & 

W3 to the hospitals H2, H3,…, H30 is shown in Table 7.30. This indicates the optimum 

distributions of the vaccinations that are given with poor accuracy in three different 

scenarios. Reinforcing the proposed approach specified in Eq.(7.5), we can find the 

optimal degree of satisfaction value of 𝜆 to be 0.4153 which can be seen in Figure 7.3. 

At this amount, the optimum supply of the vaccine is (884,84,895), which gives us a 

transport cost of $564,37, which is at least as minimal as the availability of the vaccine. 
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Figure 7.4:Comparison of transportation cost and availability of the vaccine   

Figure 7.4 indicates the optimal costs of transport following vaccine supply. With 

the assistance of the conversational FLP method defined in Eq (7.6) to Eq.(7.8), we 

determine the cost of transport from the new warehouses to the current warehouse for 

the lower bound, the static bound, and the upper bound for blocks 1, 3, and 4. When the 

market for the commodity rises, so does the cost of shipping. From the above examples, 

it can be shown that block 2 indicates the correct outcome of the proposed FLLP. This 

implies that the cost of transport is less than the availability of the commodity. This 

fulfills the needs of the customer. 

7.7 Summary  

This chapter applies the FCM algorithms to find the optimum location of vaccine 

delivery warehouses in current warehouses/hospitals. Our key goal here is to minimize 

the cost of travel from the new site to current facilities so that the measured new sites 

meet the needs of existing locations. We have therefore suggested a new FLP problem, 

which has yielded a spectacular outcome. In the future, we will try to locate positions 

using better FCM algorithms using various distance metrics and apply new fuzzy linear 

programming problems using other fuzzy numbers that describe real-world scenarios. 
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Chapter 8 

Conclusions and Future Scope 

"Endings are thus formally unappealing to me, more than beginning or ending, in life, 

I enjoy continuing. Continuing is my only focus or concern." 

−Brian D'Ambrosio 

 

 

This research has focused on providing better and practical approaches for the FLP. 

We suggested finding the number of clustering centers that used fuzzy equivalence 

clustering via Minkowski, Mahalanobis, Cosine, Chebychev, and the Correlation 

distance function. The performances of binders were graded in precise and equal 

stiffness temperatures at three different parameters. The Mahalanobis distance function 

trailed first time in the equivalence fuzzy clustering methodology and accomplished the 

desirable objectives. To find the optimal clustering, we proposed AGFCM and 

AGHCM clustering algorithms, are based on the suggested metric space. Diamond data 

sets and Iris data sets are used to assess the proposed algorithms' efficiency, compared 

to AFCM, AHCM, and other competitive algorithms such as FCM, PCM, FPCM, and 

PFCM.  

After establishing the desired locations for FLP, the availability and demands of the 

goods/ services might vary due to the uncertainty. So, optimizations of profit and cost 

are also ambiguous. To find the optimizations for these unpredictable situations, we 

proposed FLPP through the different fuzzy numbers, i.e., composite fuzzy triangular 

number, trapezoidal fuzzy number, and a 𝛼 − cut based quadrilateral fuzzy number. 

To check the validation of these models with the Production cost data of Rail Coach 

Factory (RCF), Kapurthala has been taken. In all the different situations, we find the 

optimal solutions of objective functions. 
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The work discussed in this study has the potential to be enhanced in the following 

directions: 

• The proposed metric is applied to fuzzy equivalence clustering algorithms to 

find the desired number of clustering. Also, we can use the proposed metric 

and AGFCM in PFCM, CFCM, and other clustering algorithms where 

metrics play an important role. 

• An 𝛼 − 𝑐𝑢𝑡 𝑏𝑎𝑠𝑒𝑑 quadrilateral fuzzy numbers will be used for optimization 

through the other groups of FLPP, and by using different operations, the 

suggested methodology can be extended to include the study of uncertainty 

issues that can be used for further work. 

• The complete mechanism of this thesis will be applied in the same data- sets 

of facility location problems and compared with the existing approaches. 
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Appendix A 

Alternative Generalized Hard C-Means Clustering 

 

In Appendix A, we give AGHCM's proof. The problem of minimizing the objective 

function is described in Eq.(3.20). 

Proof 

By taking the partial derivatives of 𝐽𝐴𝐺𝐻𝐶𝑀(𝑉; 𝑌) with respect to 𝑣𝑗  

𝜕𝐽

𝜕𝑣𝑗
=∑∑ 

𝑛

𝑘=1

𝑐

𝑖=1

1

2√(1 − 𝑎
−𝑏||𝑦𝑘−𝑣𝑗||

2

)  

(−𝑎
−𝑏||𝑦𝑘−𝑣𝑗||

2

) log 𝑎   (−2b|| 𝑦𝑘 − 𝑣𝑗 ||) (−1)     
(A1) 

Equating (A1) to zero leads to  

𝜕𝐽

𝜕𝑣𝑗
= 0  

⇒ ∑ ∑
 b log𝑎 (−𝑎

−𝑏||𝑦𝑘−𝑣𝑗||
2

)  || 𝑦𝑘−𝑣𝑗 ||) 

√
(1−𝑎

−𝑏||𝑦𝑘−𝑣𝑗||
2

)  

𝑛
𝑘=1

𝑐
𝑖=1  = 0               (𝑏 𝑙𝑜𝑔𝑎 ≠ 0)  

∑∑ 

𝑛

𝑘=1

𝑐

𝑖=1

𝑎−𝑏|
|𝑦𝑘−𝑣𝑗||

2

𝑦𝑘

√(1 − 𝑎−𝑏|
|𝑦𝑘−𝑣𝑗||

2

)  

−∑∑
𝑎−𝑏|

|𝑦𝑘−𝑣𝑗||
2
 𝑣𝑗

√(1 − 𝑎−𝑏|
|𝑦𝑘−𝑣𝑗||

2

)  

 

𝑛

𝑘=1

𝑐

𝑖=1

   = 0 

𝑣𝑗 =

∑
𝑎−𝑏||𝑑𝑖𝑘||

2

√1 − 𝑎−𝑏||𝑑𝑖𝑘||
2

  𝑦𝑘
𝑛
𝑘=1

∑
𝑎−𝑏||𝑑𝑖𝑘||

2

√1 − 𝑎−𝑏||𝑑𝑖𝑘||
2

𝑛
𝑘=1

    𝑗 ∈ ℕ     

 

 

(A2) 
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Appendix B  

Alternative Generalized Fuzzy C-Means Clustering 

 

We include AGFCM proof in Appendix B. The problem of minimizing the objective 

function described in Eq.(3.22) under restricted Eq.(3.23) is solved by minimizing the 

objective constraint defined in Eq.(B1). 

Proof 

𝐽𝐴𝐺𝐹𝐶𝑀(𝑈, 𝑉; 𝑌) =∑∑𝜇𝑖𝑘
𝑚(1 − 𝑎−𝑏|

|𝑦𝑘−𝑣𝑗||
2

)

𝑛

𝑘=1

𝑐

𝑖=1

+ 𝜆(1 −∑𝜇𝑖𝑘 )   

𝑐

𝑖=1

 
(B1) 

Where 𝜆 𝑖𝑠 Langrage multipliers. 

By taking the partial derivatives of 𝑱𝑨𝑮𝑭𝑪𝑴(𝑼,𝑽; 𝒀) with respect to 𝝁𝒊𝒌 

𝜕𝐽

𝜕𝜇𝑖𝑘
=∑∑𝑚𝜇𝑖𝑘

𝑚−1(1 − 𝑎−𝑏|
|𝑦𝑘−𝑣𝑗||

2

)

𝑛

𝑘=1

𝑐

𝑖=1

− 𝜆         
(B2) 

Equating (B2) to zero leads to  

𝜕𝐽

𝜕𝜇𝑖𝑘
= 0 

𝜇𝑖𝑘 =

(

 
𝜆

𝑚√(1 − 𝑎−𝑏|
|𝑦𝑘−𝑣𝑗||

2

)  )

 

1
𝑚−1

 

 

(B3) 

 Using Eq.(3.23), we get  
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(
𝜆

𝑚
)

1

𝑚−1
= 

1

(

 
 1

∑
√
(1−𝑎

−𝑏||𝑦𝑘−𝑣𝑗||
2

)  𝑐
𝑘=1 )

 
 

1
𝑚−1

 
 

(B4) 

From (B3) and (B4) 

=> 𝜇𝑖𝑘 =
[
 
 
 

1

√1 − 𝑎𝑏|
|𝑦𝑘−𝑣𝑗||

2

]
 
 
 

1
(𝑚−1)

∑

[
 
 
 

1
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|𝑦𝑘−𝑣𝑗||
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1
(𝑚−1)

𝑐
𝑗=1

 

 

 

 

(B5) 

By taking the partial derivatives of 𝑱𝑨𝑮𝑭𝑪𝑴(𝑼,𝑽; 𝒀) with respect to 𝒗𝒋 

𝜕𝐽

𝜕𝑣𝑗
= ∑ ∑  𝑛

𝑘=1 𝜇𝑖𝑘
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2
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(B6) 

Equating (B6) to zero leads to  
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Appendix C 

Addition of Two 𝜶 − 𝒄𝒖𝒕 Based Quadrilateral Fuzzy 

Number 

 

Proof: Let 𝐵̃𝑖
𝑝
 and 𝐵̃𝑖

𝑞
 be quadrilateral fuzzy numbers with different confidence 

levels such that  𝛽𝑝 ≤ 𝛽𝑞 . Take  𝛽𝑠 ∈ [𝛽𝑝, 𝛽𝑞]  i.e. 𝛽𝑠 = 𝛽𝑝 then 𝛼𝑠 −cut of 𝐵̃𝑖
𝑝
 and 

𝐵̃𝑖
𝑞
  are 

When  𝛼𝑝 ≤ 𝛽𝑝 , 𝛼𝑝 , 𝛽𝑝  ≠ 0 

𝐵̃𝑖
𝑝
= [𝛽𝑖

𝑝
− 𝜀𝑖

𝑝
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𝑝
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𝑝
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𝑝
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𝑝
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𝛽𝑝̅̅̅̅
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𝑞
)] 

𝐵̃𝑖
𝑞+
= [𝛽𝑖

𝑞
− 𝜀𝑖

𝑞
 , 𝛽𝑖

𝑞
− 𝜀𝑖

𝑞
 +  

𝛼𝑞𝜀𝑖
𝑞+

𝛽𝑞
) ∪ [𝛽𝑖

𝑞
,   𝛽𝑖

𝑞
+
𝛼𝑞̅̅̅̅ − 𝛽𝑞

𝛽𝑞̅̅̅̅
(𝛽𝑖

𝑞∗
− 𝛽𝑖

𝑞
))

∪ [𝛽𝑖
𝑞∗
 , 𝛼𝑞𝜀𝑖

𝑞∗
 + (𝛽𝑖

𝑞∗
− 𝛽𝑖

𝑞
)] 

𝛽𝑖
𝑞
− 𝜀𝑖

𝑞+
= (𝛽𝑖

𝑞
− 𝜀𝑖

𝑞
) +

𝛽𝑠

𝛽𝑞
𝜀𝑖
𝑞
 ⇒ 𝜀𝑖

𝑞+
= 𝛽𝑖

𝑞
− (𝛽𝑖

𝑞
− 𝜀𝑖

𝑞
) −

𝛽𝑠

𝛽𝑞
𝜀𝑖
𝑞
 

Let  𝐵̃𝑖
𝑠  = 𝐵̃𝑖

𝑝
 + 𝐵̃𝑖

𝑞+
= {𝑦 ∣ 𝑦 ∈  𝐵̃𝛼

𝑠} ∀  𝛼𝑠𝜖[0,1] . Here 𝐵̃𝛼
𝑠 = [ 𝐵̃𝛼

𝑠𝐿(𝛼𝑠), 𝐵̃𝛼
𝑠𝑈(𝛼𝑠)]be 

its 𝛼𝑠-cuts such that 𝐵̃𝛼
𝑠𝐿(𝛼𝑠) = 𝐵̃𝑖

𝑝𝐿
(𝛼𝑝) + 𝐵̃𝑖

𝑞𝐿
(𝛼𝑞) and 𝐵̃𝛼

𝑠𝑈(𝛼𝑠) = 𝐵̃𝑖
𝑝𝑈

(𝛼𝑝) + 

𝐵̃𝑖
𝑞𝑈

(𝛼𝑞) i.e. 

  𝐵̃𝛼
𝑠 = [𝐵̃𝑖

𝑝𝐿(𝛼𝑝) + 𝐵̃𝑖
𝑞𝐿(𝛼𝑞) , 𝐵̃𝑖

𝑝𝑈
(𝛼𝑝) + 𝐵̃𝑖

𝑞𝑈
(𝛼𝑞)]  

𝐵̃𝛼
𝑠 = 𝐼1

𝑠  ∪  𝐼2
𝑠 ∪ 𝐼3

𝑠 , where 
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   𝐼1
𝑠 = [𝛽𝑖

𝑝 − 𝜀𝑖
𝑝 + 𝛽𝑖

𝑞 − 𝜀𝑖
𝑞 , 𝛽𝑖

𝑝 − 𝜀𝑖
𝑝 + 

𝛼𝑝𝜀𝑖
𝑝

𝛽𝑝
 +  𝛽𝑖

𝑞 − 𝜀𝑖
𝑞  + 

𝛼𝑞𝜀𝑖
𝑞+

𝛽𝑞
  ) 

   𝐼2
𝑠 =[𝛽𝑖

𝑝 + 𝛽𝑖
𝑞 , 𝛽𝑖

𝑝
+

𝛼𝑝̅̅ ̅̅ −𝛽𝑝

𝛽𝑝̅̅ ̅̅
(𝛽𝑖

𝑝∗
− 𝛽𝑖

𝑝
)  + 𝛽𝑖

𝑞
+

𝛼𝑞̅̅ ̅̅ −𝛽𝑞

𝛽𝑞̅̅ ̅̅
(𝛽𝑖

𝑞∗
− 𝛽𝑖

𝑞
) ] 

  𝐼3
𝑠 =  [𝛽𝑖

𝑝∗ + 𝛽𝑖
𝑞∗, (𝛽𝑖

𝑝∗ + 𝜀𝑖
𝑝∗) − 𝛼𝑝𝜀𝑖

𝑝∗ + (𝛽𝑖
𝑞∗ + 𝜀𝑖

𝑞∗) − 𝛼𝑞𝜀𝑖
𝑞∗] 

Now, 

𝐼1
𝑠 = [𝛽𝑖

𝑝 + 𝛽𝑖
𝑞−(𝜀𝑖

𝑝 + 𝜀𝑖
𝑞), 𝛽𝑖

𝑝 + 𝛽𝑖
𝑞−(𝜀𝑖

𝑝 + 𝜀𝑖
𝑞)  +  

𝛼𝑝𝜀𝑖
𝑝

𝛽𝑝
  + 

𝛼𝑞𝜀𝑖
𝑞+

𝛽𝑞+
  ) 

𝛼𝑝 = 𝛼𝑞 = 𝛼𝑠 

𝐼1
𝑠 = [𝛽𝑖

𝑝 + 𝛽𝑖
𝑞−(𝜀𝑖

𝑝 + 𝜀𝑖
𝑞), 𝛽𝑖

𝑝 + 𝛽𝑖
𝑞−(𝜀𝑖

𝑝 + 𝜀𝑖
𝑞)  + 𝛼𝑠( 

𝜀𝑖
𝑝

𝛽𝑝
  + 

𝜀𝑖
𝑞+

𝛽𝑞
 ) ) 

𝛽𝑖
𝑝 + 𝛽𝑖

𝑞−(𝜀𝑖
𝑝 + 𝜀𝑖

𝑞)  + 𝛼𝑠( 
𝜀𝑖
𝑝

𝛽𝑝
  + 

𝜀𝑖
𝑞+

𝛽𝑞
 ) – 𝑦 = 0 

𝑓𝐵𝑠
𝑈 (𝑦) =  

𝑦 − (𝛽𝑖
𝑝 − 𝜀𝑖

𝑝) + (𝛽𝑖
𝑞 − 𝜀𝑖

𝑞)

( 
𝜀𝑖
𝑝

𝛽𝑝
  +  

𝜀𝑖
𝑞+

𝛽𝑞+
 ) 

 

 𝑤ℎ𝑒𝑛 𝛽𝑝 = 𝛽𝑞+ = 𝛽𝑠 

𝑔𝐵𝑠
𝑈 (𝑦) = 𝛽𝑠 (

𝑦 − [(𝛽𝑖
𝑝 − 𝜀𝑖

𝑝) + (𝛽𝑖
𝑞 − 𝜀𝑖

𝑞)]

𝜀𝑖
𝑝
+ 𝜀𝑖

𝑞+ )  

𝑔𝐵𝑠
𝑈 (𝑦) = 𝛽𝑠 (

𝑦 − [(𝛽𝑖
𝑝 − 𝜀𝑖

𝑝) + (𝛽𝑖
𝑞 − 𝜀𝑖

𝑞)]

𝜀𝑖
𝑝 + 𝛽

𝑖
𝑞 − (𝛽

𝑖
𝑞 − 𝜀𝑖

𝑞
) −

𝛽𝑟

𝛽𝑝
𝜀𝑖
𝑞 

)  

𝑔𝐵𝑠
𝑈 (𝑦) = 𝛽𝑠 (

𝑦 − [(𝛽𝑖
𝑝 − 𝜀𝑖

𝑝) + (𝛽𝑖
𝑞 − 𝜀𝑖

𝑞)]

𝛽
𝑖
𝑝 + 𝛽

𝑖
𝑞 −

𝛽𝑠

𝛽𝑝
𝜀𝑖
𝑞  − [(𝛽𝑖

𝑝 − 𝜀𝑖
𝑝) + (𝛽𝑖

𝑞 − 𝜀𝑖
𝑞)]
)  
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𝑔𝐵𝑠
𝑈 (𝑦) = 𝛽𝑠 (

𝑦 − (𝛽𝑖
𝑠 − 𝜀𝑖

𝑠)

𝛽
𝑖
𝑝 + 𝛽

𝑖
𝑞 −

𝛽𝑠

𝛽𝑝
𝜀𝑖
𝑞  − (𝛽𝑖

𝑠 − 𝜀𝑖
𝑠)
)  

𝑤ℎ𝑒𝑟𝑒 𝛽𝑖
𝑠 = 𝛽𝑖

𝑝 + 𝛽𝑖
𝑞 , 𝜀𝑖

𝑠=𝜀𝑖
𝑝 + 𝜀𝑖

𝑞
 

(𝛽𝑖
𝑠 − 𝜀𝑖

𝑠) ≤ 𝑦 ≤ 𝛽
𝑖
𝑝 + 𝛽

𝑖
𝑞 −

𝛽𝑠

𝛽𝑝
𝜀𝑖
𝑞
 

Now  

   𝐼2
𝑠 =[𝛽𝑖

𝑝 + 𝛽𝑖
𝑞 , 𝛽𝑖

𝑝 +
𝛼𝑝̅̅ ̅̅ −𝛽𝑝

𝛽𝑝̅̅ ̅̅
(𝛽𝑖

𝑝∗ − 𝛽𝑖
𝑝)  + 𝛽𝑖

𝑞 +
𝛼𝑞̅̅ ̅̅ −𝛽𝑞

𝛽𝑞̅̅ ̅̅
(𝛽𝑖

𝑞∗ − 𝛽𝑖
𝑞) ] 

   𝐼2
𝑠 =[𝛽𝑖

𝑝 + 𝛽𝑖
𝑞 , 𝛽𝑖

𝑝 + 𝛽𝑖
𝑞 +

𝛼𝑝̅̅ ̅̅ −𝛽𝑝

𝛽𝑝̅̅ ̅̅
(𝛽𝑖

𝑝∗ − 𝛽𝑖
𝑝)  +

𝛼𝑞̅̅ ̅̅ −𝛽𝑞

𝛽𝑞̅̅ ̅̅
(𝛽𝑖

𝑞∗ − 𝛽𝑖
𝑞) ] 

     ℎ𝑒𝑟𝑒  
𝛼𝑝̅̅ ̅̅ −𝛽𝑝

𝛽𝑝̅̅ ̅̅
=

𝛼𝑞̅̅ ̅̅ −𝛽𝑞

𝛽𝑞̅̅ ̅̅
=

𝛼𝑠̅̅̅̅ −𝛽𝑠

𝛽𝑠̅̅̅̅
 

   𝐼2
𝑠 = [𝛽𝑖

𝑝 + 𝛽𝑖
𝑞 , 𝛽𝑖

𝑝 + 𝛽𝑖
𝑞 + (𝛼𝑠̅̅ ̅ − 𝛽𝑠) (

𝛽𝑖
𝑝∗ − 𝛽𝑖

𝑝

𝛽𝑝̅̅̅̅
+
𝛽𝑖
𝑞∗ − 𝛽𝑖

𝑞

𝛽𝑞̅̅̅̅
)] 

𝛽𝑖
𝑝 + 𝛽𝑖

𝑞 + (𝛼𝑠̅̅ ̅ − 𝛽𝑠) (
𝛽𝑖
𝑝 − 𝛽𝑖

𝑝

𝛽𝑝̅̅̅̅
+
𝛽𝑖
𝑞 − 𝛽𝑖

𝑞

𝛽𝑞̅̅̅̅
) − 𝑦 = 0 

𝑤ℎ𝑒𝑛 𝛽𝑝̅̅̅̅ =  𝛽𝑞̅̅̅̅ = 𝛽𝑠̅̅ ̅ 

𝑔𝐵𝑠
𝑈 (𝑦) = 𝛼𝑠̅̅ ̅ − 𝛽𝑠 = (

𝑦 − (𝛽𝑖
𝑝 + 𝛽𝑖

𝑞)

𝛽𝑖
𝑝∗ − 𝛽𝑖

𝑝 + 𝛽𝑖
𝑞∗ − 𝛽𝑖

𝑞) × 𝛽
𝑠̅̅ ̅ 

𝛼𝑠̅̅ ̅  = 𝛽𝑠 + (
𝑦 − (𝛽𝑖

𝑝 + 𝛽𝑖
𝑞)

𝛽𝑖
𝑝∗ − 𝛽𝑖

𝑝 + 𝛽𝑖
𝑞∗ − 𝛽𝑖

𝑞) × 𝛽
𝑠̅̅ ̅ ⇒ 𝛼𝑠̅̅ ̅  = 𝛽𝑠 + (

𝑦 − 𝛽𝑖
𝑠

𝛽𝑖
𝑠∗ − 𝛽𝑖

𝑠) × 𝛽
𝑠̅̅ ̅ 

𝑤ℎ𝑒𝑟𝑒 𝛽𝑖
𝑠∗ =  𝛽𝑖

𝑝∗ + 𝛽𝑖
𝑞∗ ,  𝛽𝑖

𝑠 = 𝛽𝑖
𝑝 + 𝛽𝑖

𝑞
 

  𝐼3
𝑠 =  [𝛽𝑖

𝑝∗ + 𝛽𝑖
𝑞∗, (𝛽𝑖

𝑝∗ + 𝜀𝑖
𝑝∗) − 𝛼𝑝𝜀𝑖

𝑝∗ + (𝛽𝑖
𝑞∗ + 𝜀𝑖

𝑞∗) − 𝛼𝑞𝜀𝑖
𝑞∗] 
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𝛼𝑝 = 𝛼𝑞 = 𝛼𝑠 

  𝐼3
𝑠 =  [𝛽𝑖

𝑝∗ + 𝛽𝑖
𝑞∗, (𝛽𝑖

𝑝∗ + 𝜀𝑖
𝑝∗)  + (𝛽𝑖

𝑞∗ + 𝜀𝑖
𝑞∗) − 𝛼𝑠(𝜀𝑖

𝑝∗ + 𝜀𝑖
𝑞∗) ] 

𝑦 − (𝛽𝑖
𝑝∗ + 𝜀𝑖

𝑝∗) − (𝛽𝑖
𝑞∗ + 𝜀𝑖

𝑞∗) + 𝛼𝑠(𝜀𝑖
𝑝∗ + 𝜀𝑖

𝑞∗) = 0 

𝑔𝐵𝑠
𝑈 (𝑦) = 𝛼𝑠 = (

(𝛽𝑖
𝑝∗ + 𝜀𝑖

𝑝∗)  + (𝛽𝑖
𝑞∗ + 𝜀𝑖

𝑞∗) − 𝑦

𝜀𝑖
𝑝∗ + 𝜀𝑖

𝑞∗ ) ⇒ 𝑔𝐵𝑠
𝑈 (𝑦) = (

(𝛽𝑖
𝑠∗ + 𝜀𝑖

𝑠∗)  − 𝑦

𝜀𝑖
𝑠∗ ) 

𝑤ℎ𝑒𝑟𝑒 , 𝛽𝑖
𝑠∗ = 𝛽𝑖

𝑝∗ + 𝛽𝑖
𝑞∗

 , 𝜀𝑖
𝑠∗ = 𝜀𝑖

𝑝∗ + 𝜀𝑖
𝑞∗

 

𝐵𝑖
𝑠(𝑦)=

{
 
 
 

 
 
 𝛽𝑠 + (

𝑦−𝛽𝑖
𝑠 

𝛽𝑖
𝑠∗−𝛽𝑖

𝑠) × 𝛽
𝑠̅̅ ̅ 𝑊ℎ𝑒𝑛 𝛽𝑖

𝑠 ≤ 𝑦 ≤ 𝛽𝑖
𝑠∗

𝛽𝑠 (
𝑦−(𝛽𝑖

𝑠−𝜀𝑖
𝑠)

𝛽
𝑖

𝑝
+𝛽

𝑖

𝑞
−
𝛽𝑠

𝛽𝑝
𝜀𝑖
𝑞
 −(𝛽𝑖

𝑠−𝜀𝑖
𝑠)
) 𝑊ℎ𝑒𝑛 𝛽𝑖

𝑠 − 𝜀𝑖
𝑠 ≤ 𝑦 ≤ 𝛽

𝑖
𝑝 + 𝛽

𝑖
𝑞 −

𝛽𝑠

𝛽𝑝
𝜀𝑖
𝑞

(𝛽𝑖
𝑠∗+𝜀𝑖

𝑠∗) −𝑦

𝜀𝑖
𝑠∗

0

𝑊ℎ𝑒𝑛 𝛽𝑖
𝑠∗ ≤ 𝑦 ≤ 𝛽𝑖

𝑠∗ + 𝜀𝑖
𝑠∗ 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝛽𝑖
𝑠 − 𝜀𝑖

𝑠 = (𝛽𝑖
𝑝 − 𝜀𝑖

𝑝) + (𝛽𝑖
𝑞 − 𝜀𝑖

𝑞) 

𝛽𝑖
𝑠 = 𝛽

𝑖
𝑝 + 𝛽

𝑖
𝑞 −

𝛽𝑠

𝛽𝑝
𝜀𝑖
𝑞
 

𝛽𝑖
𝑠∗ = 𝛽𝑖

𝑝∗ + 𝛽𝑖
𝑞∗

 

𝛽𝑖
𝑠∗ + 𝜀𝑖

𝑠∗ = (𝛽𝑖
𝑝∗ + 𝜀𝑖

𝑝∗) + (𝛽𝑖
𝑞∗ + 𝜀𝑖

𝑞∗) 
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Appendix D 

Multiplication of Two 𝜶 − 𝒄𝒖𝒕 Based Quadrilateral Fuzzy 

Number 

 

Proof As the quadrilateral membership functions of 𝐵̃𝑖
𝑝
 and 𝐵̃𝑖

𝑞
 are given in equation 

() and () respectively. Thus, To find the membership of  𝐵̃𝑖
𝑠 = 𝐵̃𝑖

𝑝
 × 𝐵̃𝑖

𝑞
 = (𝛽𝑖

𝑠 − 𝜀𝑖
𝑠 , 

𝛽𝑖
𝑠 , 𝛽𝑖

𝑠∗ ,  𝛽𝑖
𝑠∗ + 𝜀𝑖

𝑠∗ )    

Let  𝐵̃𝑖
𝑠  = 𝐵̃𝑖

𝑝
 × 𝐵̃𝑖

𝑞+
= {𝑦 ∣ 𝑦 ∈  𝐵̃𝛼

𝑠} ∀  𝛼𝑠𝜖[0,1] . Here 𝐵̃𝛼
𝑠 = [ 𝐵̃𝛼

𝑠𝐿(𝛼𝑠), 𝐵̃𝛼
𝑠𝑈(𝛼𝑠)]

 be its 𝛼𝑠-cuts such that 𝐵̃𝛼
𝑠𝐿(𝛼𝑠) = 𝐵̃𝑖

𝑝𝐿
(𝛼𝑝) × 𝐵̃𝑖

𝑞𝐿
(𝛼𝑞) and 𝐵̃𝛼

𝑠𝑈(𝛼𝑠) =

𝐵̃𝑖
𝑝𝑈

(𝛼𝑝) × 𝐵̃𝑖
𝑞𝑈

(𝛼𝑞) i.e. 

  𝐵̃𝛼
𝑠 = [𝐵̃𝑖

𝑝𝐿(𝛼𝑝) × 𝐵̃𝑖
𝑞𝐿(𝛼𝑞) , 𝐵̃𝑖

𝑝𝑈
(𝛼𝑝) × 𝐵̃𝑖

𝑞𝑈
(𝛼𝑞)]  

𝐵̃𝛼
𝑠 = 𝐼1

𝑠  ∪  𝐼2
𝑠 ∪ 𝐼3

𝑠 , where 

   𝐼1
𝑠 = [(𝛽𝑖

𝑝
− 𝜀𝑖

𝑝
)( 𝛽𝑖

𝑞
− 𝜀𝑖

𝑞
), {𝛽𝑖

𝑝
− 𝜀𝑖

𝑝
+ 

𝛼𝑝𝜀𝑖
𝑝

𝛽𝑝
 }{ 𝛽𝑖

𝑞
− 𝜀𝑖

𝑞
 +  

𝛼𝑞𝜀𝑖
𝑞+

𝛽𝑞
 } ) 

   𝐼2
𝑠 =[𝛽𝑖

𝑝
 𝛽𝑖
𝑞 , {𝛽

𝑖
𝑝 +

𝛼𝑝̅−𝛽𝑝

𝛽𝑝̅
(𝛽

𝑖
𝑝∗ − 𝛽

𝑖
𝑝)} { 𝛽

𝑖
𝑞 +

𝛼𝑞̅−𝛽𝑞

𝛽𝑞̅
(𝛽

𝑖
𝑞∗ − 𝛽

𝑖
𝑞)} ] 

  𝐼3
𝑠 =  [𝛽𝑖

𝑝∗
 𝛽𝑖
𝑞∗, {(𝛽𝑖

𝑝∗ + 𝜀𝑖
𝑝∗) − 𝛼𝑝𝜀𝑖

𝑝∗}{(𝛽𝑖
𝑞∗ + 𝜀𝑖

𝑞∗) − 𝛼𝑞𝜀𝑖
𝑞∗}] 

Now, 

𝐼1
𝑠 = [(𝛽𝑖

𝑝 − 𝜀𝑖
𝑝)( 𝛽𝑖

𝑞 − 𝜀𝑖
𝑞), {𝛽𝑖

𝑝 − 𝜀𝑖
𝑝 + 

𝛼𝑝𝜀𝑖
𝑝

𝛽𝑝
 }{ 𝛽𝑖

𝑞 − 𝜀𝑖
𝑞  +  

𝛼𝑞𝜀𝑖
𝑞+

𝛽𝑞
 } ) 

𝛼𝑝 = 𝛼𝑞 = 𝛼𝑠  𝑎𝑛𝑑  𝛽𝑝 = 𝛽𝑞+ = 𝛽𝑠  

{𝛽𝑖
𝑝 − 𝜀𝑖

𝑝 + 
𝛼𝑝𝜀𝑖

𝑝

𝛽𝑝
 }{ 𝛽𝑖

𝑞 − 𝜀𝑖
𝑞  +  

𝛼𝑞𝜀𝑖
𝑞+

𝛽𝑞
 }−𝑦 = 0 
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 (𝛼𝑠)2
𝜀𝑖
𝑝
(𝜀𝑖
𝑞+
−𝜀𝑖

𝑞
)

𝛽𝑠̅̅̅̅  𝛽𝑞̅̅ ̅̅
    + 𝛼𝑠 {

(𝛽𝑖
𝑝
−𝜀𝑖

𝑝
)(𝜀𝑖

𝑞+
−𝜀𝑖

𝑞
)

 𝛽𝑞̅̅ ̅̅
  +

(𝛽𝑖
𝑞
− 𝜀𝑖

𝑞
)𝜀𝑖
𝑝

𝛽𝑠̅̅̅̅
} + (𝛽𝑖

𝑝 − 𝜀𝑖
𝑝)(𝛽𝑖

𝑞 − 𝜀𝑖
𝑞) − 𝑦 =

0 

Take Μ2 = 
𝜀𝑖
𝑝
(𝜀𝑖
𝑞+
−𝜀𝑖

𝑞
)

𝛽𝑠̅̅̅̅  𝛽𝑞̅̅ ̅̅
    , Κ2 =

(𝛽𝑖
𝑝
−𝜀𝑖

𝑝
)(𝜀𝑖

𝑞+
−𝜀𝑖

𝑞
)

 𝛽𝑞̅̅ ̅̅
  +

(𝛽𝑖
𝑞
− 𝜀𝑖

𝑞
)𝜀𝑖
𝑝

𝛽𝑠̅̅̅̅
  , and Ν2 = (𝛽𝑖

𝑝 −

 𝜀𝑖
𝑝)(𝛽𝑖

𝑞 − 𝜀𝑖
𝑞) 

(𝛼𝑠)2 Μ2   + 𝛼𝑠Κ2+ Ν2 − 𝑦 = 0. 

𝛼𝑠 =
−Κ2 ±√Κ2

2 + 4Μ2(𝑦 − Ν2)

2Μ2
 

Similarly,  𝐼𝑛   𝐼2
𝑠 =[𝛽𝑖

𝑝
 𝛽𝑖
𝑞 , {𝛽

𝑖
𝑝 +

𝛼𝑝̅−𝛽𝑝

𝛽𝑝̅
(𝛽

𝑖
𝑝∗ − 𝛽

𝑖
𝑝)} { 𝛽

𝑖
𝑞 +

𝛼𝑞̅−𝛽𝑞

𝛽𝑞̅
(𝛽

𝑖
𝑞∗ − 𝛽

𝑖
𝑞)} ] 

𝛼𝑠 = 𝛽𝑠 +
−Κ1 +√Κ1

2 + 4Μ1(𝑦 − Ν1)

2Μ1
 

And    𝐼3
𝑠 =  [𝛽𝑖

𝑝∗
 𝛽𝑖
𝑞∗, {(𝛽𝑖

𝑝∗ + 𝜀𝑖
𝑝∗) − 𝛼𝑝𝜀𝑖

𝑝∗}{(𝛽𝑖
𝑞∗ + 𝜀𝑖

𝑞∗) − 𝛼𝑞𝜀𝑖
𝑞∗}] 

𝛼𝑠 = 
Κ3+√Κ3

2+4Μ3(𝑦−Ν3)

2Μ3
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Appendix E 

Tables 

Table 2.1: Performance Grades for NCHRP 90-07 Binders Used in Turner–Fairbank 

Highway Research Center Polymer Research Program 

Where  |𝐺 ∗| = Complex shear modulus (kPa),T = temperature (degrees), 𝑇𝐻𝑆 (°C) = 

high specification temperature,  (𝑇𝑒°C) =equi- stiffness temperature, δ = phase angle 

(degrees or radians), , 𝜔 = frequency of oscillatory motion (rad/s). 

NCHRP 

90-07 

Binder 

Code 

Super 

pave 

grade 

𝑇𝐻𝑆 (°C) when 

|𝐺∗|
1

𝑆𝑖𝑛𝛿

=2,200pa at 𝜔 =10rad/s 

𝑇𝐻𝑆 (°C)when 

|𝐺 ∗|  [1 −
1

(𝑡𝑎𝑛𝛿.𝑆𝑖𝑛𝛿) 
]⁄   = 

2,200Pa at  𝜔 =10 rad/s 

𝑇𝐻𝑆 (°C) =

(𝑇𝑒°C) [1 −
1

(𝑡𝑎𝑛𝛿.𝑆𝑖𝑛𝛿) 
]⁄  

at  𝜔 =0.25 rad/s when 

|𝐺 ∗| =50 Pa 

B6224 PG52-28 55.1 55.7 66.0 

B6225 PG64-28 67.0 67.8 69.1 

B6226 PG70-28 71.3 72.1 74.9 

B6227 PG70-28 74.6 76.2 80.1 

B6228 PG70-28 78.3 89.1 102.0 

B6229 PG70-28 72.2 75.1 83.4 

B6230 PG70-28 70.9 73.0 80.8 

B6231 PG70-28 71.8 74.2 81.4 

B6232 PG70-28 75.9 78.0 84.6 

B6233 PG70-28 77.5 78.7 82.0 

B6243 PG70-28 76.7 79.4 84.1 

B6251 PG70-28 76.9 79.0 85.6 

B6252 PG76-22 81.5 83.2 86.8 

B6253 PG70-22 73.9 76.5 81.6 

B6254 PG70-28 70.6 75.9 85.5 

B6257 PG70-28 74.4 79.5 95.3 

B6258 PG70-28 74.8 78.5 87.7 
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Table 3.2: Result of Gaussian function-based distance defined in Eq. (3.4) 

Data set  𝑣(0)  𝑣(1). 𝑏 𝑣𝑡  𝑁𝑜. 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑗) 

𝑆1 5.0000 4.1275 0.9158 4.9991 19 

𝑆2 6.2500 5.2243 0.0507 5.0010 11 

𝑆3 6.6700 5.4115 0.0291 5.0004 13 

𝑆4 7.0833 5.6973 0.0188 5.0021 14 

𝑆5 7.6923 6.2687 0.0222 5.0008 14 

𝑆6 8.0769 5.7623 0.0163 5.0007 16 

𝑆7 8.4615 5.5649 0.0136 5.0002 16 

𝑆8 9.2857 5.5642 0.0130 5.0004 20 

Table 3.3: Result of the proposed distance metric defined in Eq. (3.17) 

Dataset  𝑣(0)  𝑣(1). The optimal 

value for 𝒂 

𝑏 𝑣𝑡 𝑁𝑜. 𝑜𝑓 

 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 (𝑗) 

𝑆1 5.0000 4.3077 1.1000 0.9158 4.9986 14 

𝑆2 6.2500 5.2223 1.5600 0.0507 5.0006 11 

𝑆3 6.6700 5.4066 1.5400 0.0291 5.0001 13 

𝑆4 7.0833 5.6927 1.5300 0.0188 5.0001 14 

𝑆5 7.6923 6.2617 1.9400 0.0222 5.0003 15 

𝑆6 8.0769 5.7623 2.6900 0.0163 5.0003 15 

𝑆7 8.4615 5.7623 3.2500 0.0136 5.0003 15 

𝑆8 9.2857 5.7623 3.4600 0.0130 5.0003 15 
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Table 3.4: Ideal Clustering centroid produced by AGFCM for the different values 

of 𝐚 for diamond data-set 𝐏𝟏𝟎 
𝑅 𝑏 𝑎 𝐽𝐹𝐶𝑀 𝐽𝐴𝐺𝐹𝐶𝑀  𝑁𝑜. 𝑜𝑓  

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑗) 

 

 

 

𝑅 < 1 

0.1 1.4 36.2183  1.7785 7 

2.7183 Does not recognize clusters 

4 58.6216  2.8856 6 

0.5 1.06  35.0936 1.6752 7 

1.07 36.2639  1.7825 7 

2.7183 Does not recognize clusters 

7 97.2327 3.9308 5 

8 97.7625 3.9429 5 

9 98.1519 3.9517 5 

100 100.2256 3.9983 4 

1 1.03 35.1990 1.6854 7 

2.5 96.6946 3.9185 5 

2.7183 97.4598 3.9360 5 

3 98.1519 3.9517 5 

8 100.1614 3.9969 4 

9 100.2002 3.9978 4 

10 100.2256 3.9983 4 

100 100.3002 4.0000 3 

 

 

 

𝑅 = 1 

2 1.07 58.0736 2.8669 6 

1.6 96.9307 3.9239 5 

1.7 97.9126 3.9463 5 

2.7183 Does not recognize clusters 

3 100.2002 3.9978 4 

8 100.2999 4.0000 3 

9 100.3001 4.0000 3 

10 100.3002 4.0000 3 

 

 

 

𝑅 > 1 

4 1.7 100.1771 3.9973 4 

2.7183 Does not recognize clusters 

3 100.3001 4.0000 3 

50 100.3003 4.0000 2 

100 100.3003 4.0000 2 

10 1.1 97.0542 3.9267 5 

1.6 100.3002 4.0000 3 

2.7183 Does not recognize clusters 

5 100.3003 4.0000 2 

5.5 100.3003 4.0000 2 

6 100.3003 4.0000 2 

20 1.05 97.2574 3.9314 5 

2.2 100.3003 4.0000 2 

2.3 100.3003 4.0000 2 
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Table 3.5: Ideal Clustering centroid produced by AGHCM for the different values of 

a diamond data-set P10 

𝑅 𝒃 𝒂 𝐽𝐴𝐺𝐹𝐶𝑀  𝑁𝑜. 𝑜𝑓  

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑗) 

 

 

 

 

 

 

 

 

 

𝑅 < 1 

0.1 1.7 12.3927 72 

1.9 12.8576 30 

2 13.0360 24 

2.1 13.1898 21 

2.2 13.3243 18 

2.3 13.4435 17 

2.5 13.6465 14 

2.7183 Does not recognize clusters 

3 14.0211 11 

4 14.4886 9 

5 14.7858 8 

7 15.1635 7 

0.5 1.1 12.1145 100 

1.2 13.6357 14 

1.5 15.2450 7 

2.7183 Does not recognize clusters 

7 17.7280 6 

8 17.7747 6 

9 17.8092 6 

1 1.05 12.1764 100 

1.06 12.6257 43 

1.07 12.9804 26 

1.08 13.2711 19 

1.09 13.5166 16 

1.1 13.7289 13 

2.5 17.6806 6 

2.7183 17.7480 6 

3 17.8092 6 

5 17.9543 5 

5.5 17.9650 5 

100 18.0000 3 

 

 

2 1.03 12.6609 40 

1.04 13.3131 18 

1.05 13.7779 13 

1.07 14.4403 9 

1.08 14.6970 8 

2.5 100.3003 4.0000 2 

2.7183 Does not recognize clusters 
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𝑅 = 1 

1.6 17.7014 6 

1.7 17.7880 6 

2.2 17.9500 5 

2.3 17.9610 5 

2.7183 Does not recognize clusters 

3.5 17.9962 4 

4 17.9982 4 

10 18.0000 3 

 

 

 

 

 

 

 

 

 

𝑅 > 1 

4 1.02 13.3344 18 

1.03 14.1697 10 

1.04 14.7349 8 

1.05 15.1693 7 

1.5 17.9559 5 

1.9 17.9968 4 

2 17.9982 4 

2.7183 Does not recognize clusters 

3.5 18.0000 3 

50 18.0000 2 

100 18.0000 2 

10 1.02 15.1983 7 

1.1 17.7122 6 

1.6 18.0000 3 

2.7183 Does not recognize clusters 

5 18.0000 2 

5.5 18.0000 2 

6 18.0000 2 

20 1.01 15.2081 7 

1.05 17.7302 6 

1.08 17.9444 5 

1.09 17.9668 5 

2.2 18.0000 2 

2.3 18.0000 2 

2.5 18.0000 2 

2.7183 Does not recognize clusters 

Table 3.6: Ideal Clustering centroid produced by AGFCM for the different values of a 

diamond data-set P12 

𝑅 𝑏 𝑎 𝐽𝐹𝐶𝑀 𝐽𝐴𝐺𝐹𝐶𝑀  𝑁𝑜. 𝑜𝑓  

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑗) 

 

 

 

0.1 1.6 100.7136 2.8482 12 

2 106.1032 3.2032 11 

2.1 107.2254 3.2659 11 

2.7183 112.7549 3.5392 10 

4 119.7772 3.8291 9 

7 127.7734 4.1104 8 
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𝑅 < 1 

50 144.2153 4.5873 6 

0.5 1.04 93.9197 2.1034 14 

1.1 100.8764 2.8607 12 

1.5 128.7653 4.1426 8 

1.7 135.2797 4.3418 7 

2.2 144.3814 4.5916 6 

2.3 145.5470 4.6216 6 

2.7183 Does not recognize clusters 

7 158.3883 4.9308 5 

8 158.9181 4.9429 5 

9 159.3075 4.9517 5 

100 161.3812 4.9983 4 

1 1.02 93.9658 2.1112 14 

1.03 96.3545 2.4410 13 

1.05 101.1581 2.8820 12 

1.07 105.7170 3.1810 11 

1.08 107.8514 3.2996 11 

1.1 111.8018 3.4955 10 

1.2 126.2041 4.0584 8 

1.5 144.9824 4.6071 6 

2.5 157.8502 4.9185 5 

2.7183 158.6154 4.9360 5 

3 159.3075 4.9517 5 

8 161.3170 4.9969 4 

9 161.3558 4.9978 4 

10 161.3812 4.9983 4 

100 161.4558 5.0000 3 

 

 

 

𝑅 = 1 

2 1.01 93.9894 2.1151 14 

1.05 112.2660 3.5169 10 

1.07 119.2292 3.8082 9 

1.1 127.2756 4.0941 8 

1.6 158.0863 4.9239 5 

1.7 159.0682 4.9463 5 

2.7183 Does not recognize clusters 

3 161.3558 4.9978 4 

8 161.4555 5.0000 3 

9 161.4557 5.0000 3 

10 161.4558 5.0000 3 

 

 

 

 

 

4 1.05 127.8440 4.1127 8 

1.07 135.7558 4.3557 7 

1.1 143.6551 4.5727 6 

1.7 161.3327 4.9973 4 

2.7183 Does not recognize clusters 

3 161.4557 5.0000 3 

50 161.4559 5.0000 2 

100 161.4559 5.0000 2 

10 1.01 112.6549 3.5347 10 

1.02 128.1965 4.1242 8 



150 

 

 

 

 

 

𝑅 > 1 

1.04 144.2706 4.5887 6 

1.1 158.2098 4.9267 5 

1.6 161.4558 5.0000 3 

2.7183 Does not recognize clusters 

5 161.4559 5.0000 2 

5.5 161.4559 5.0000 2 

6 161.4559 5.0000 2 

20 1.001 94.0108 2.1187 14 

1.01 128.3161 4.1281 8 

1.02 144.4806 4.5942 6 

1.05 158.4130 4.9314 5 

2.2 161.4559 5.0000 2 

2.3 161.4559 5.0000 2 

2.5 161.4559 5.0000 2 

2.7183 Does not recognize clusters 

Table 3.7: Ideal Clustering centroid produced by AGHCM for the different values of 

a diamond data-set P12 

𝑅 𝑏 𝑎 𝐽𝐴𝐺𝐻𝐶𝑀 𝑁𝑜. 𝑜𝑓 

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛(𝑗) 

 

 

 

 

 

 

 

 

 

𝑅 < 1 

0.

1 

2.1 16.6902 100 

2.2 16.8539 100 

2.3 16.9992 72 

2.5 17.2467 47 

2.7183 17.4684 35 

3 17.7020 28 

3.5 18.0213 22 

4 18.2628 19 

4.5 18.4546 17 

5 18.6122 16 

5.5 18.7449 15 

6 18.8589 14 

7 19.0460 13 

8 19.1947 12 

10 19.4197 11 

100 20.7922 7 

0.

5 

1.2 17.2336 47 

1.4 18.7145 15 

1.6 19.4642 11 

1.7 19.7250 10 

2.1 20.4015 10 

2.5 20.7834 7 

2.7183 Does not recognize clusters 

7 21.7279 6 

8 21.7747 6 
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9 21.8092 6 

1 1.08 16.7891 100 

1.09 17.0883 60 

1.1 17.3471 41 

1.2 18.8985 42 

1.6 20.8268 7 

2.5 21.6805 6 

2.7183 21.7480 6 

3 21.8092 6 

5 21.9543 5 

5.5 21.9650 5 

100 22.0000 3 

 

 

 

𝑅 = 1 

2 1.04 16.8402 100 

1.05 17.4067 38 

1.06 17.8464 25 

1.07 18.2055 20 

1.08 18.5086 17 

1.09 18.7701 15 

1.1 18.9995 13 

1.2 20.3687 8 

1.6 21.7013 6 

1.7 21.7880 6 

2.2 21.9500 5 

2.3 21.9609 5 

2.7183 Does not recognize clusters 

3.5 21.9962 4 

4 21.9982 4 

10 22.0000 3 

 

 

 

 

 

 

 

 

 

𝑅 > 1 

4 1.02 16.8662 100 

1.03 17.8816 24 

1.04 18.5529 16 

1.05 19.0525 13 

1.06 19.4463 11 

1.07 19.7670 10 

1.08 20.0340 9 

1.1 20.4531 8 

1.5 21.9559 5 

1.9 21.9968 4 

2 21.9982 4 

2.7183 Does not recognize clusters 

3.5 22.0000 3 

50 22.0000 2 

100 22.0000 2 

10 1.01 17.4558 36 

1.02 19.0853 13 

1.03 19.9509 9 

1.05 20.8890 7 
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1.1 21.7122 6 

1.6 22.0000 3 

2.7183 Does not recognize clusters 

5 22.0000 2 

5.5 22.0000 2 

6 22.0000 2 

20 1.05 21.7301 6 

1.08 21.9444 5 

1.09 21.9668 5 

2.2 22.0000 2 

2.3 22.0000 2 

2.5 22.0000 2 

2.7183 Does not recognize clusters 

Table 3.8: Comparison of AGFCM and AGHCM with other clustering algorithms for 

diamond data-set P12 

Name of the algorithms Values of Parameters Clustering Centers 

FCM 𝑚 = 2 (−2.99,0.54) 

(2.99,0.54) 

PCM 𝜂 = 2 (−2.15,0.02) 

(2.15,0.02) 

PFCM 𝑎 = 1, 𝑏 = 1,𝑚 = 2, 𝜂 = 2 (−2.84,0.36) 

(2.84,0.36) 

KFCM 𝑚 = 2, ℎ = 20, 𝑎 = 1, 𝑏 = 5 (3.252,0.003) 

(−3.224,0.002) 

FCM-𝜎 𝑚 = 2 (3.62,0.280) 

( −2.14,5.249) 

KFCM-𝜎 𝑚 = 2, ℎ = 20, 𝑎 = 1, 𝑏 = 5 (3.315,0.0006) 

(−3.073,0) 

DOFCM 𝑚 = 2,𝛼 = 0.09 (3.1672,0) 

(−3.167,0) 

DKFCM-new 𝑚 = 2, 𝛼 = 0.09, ℎ = 19, 𝑎 = 1, 𝑏 = 6 (3.324,0) 

(−3.3291,0) 

AGFCM 𝑹∗ < 𝟏, 𝒃 = 𝟎. 𝟓, 𝒂 =  𝟏. 𝟎𝟒 (𝟑. 𝟑𝟒, 𝟎) 

(−𝟑. 𝟑𝟒, 𝟎) 

AGHCM 𝑹∗ < 𝟏, 𝒃 = 𝟎. 𝟏, 𝒂 =  𝟐. 𝟏 (𝟑. 𝟑𝟒, 𝟎) 
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(−𝟑. 𝟑𝟒, 𝟎) 

Table 3.9: Ideal Clustering centroid produced by AGFCM for the different values of a 

for Iris data-set 

𝑅 𝑏 𝑎 Cluster centroid 𝐽𝐹𝐶𝑀 𝐽𝐴𝐺𝐹𝐶𝑀 𝐽𝐻𝐶𝑀 

(𝑆𝑆𝐸) 

𝑅 < 1 0.1 1.001 𝑉1 =(5.01475297, 3.393472061, 1.485005985, 0.236244565) 

𝑉2 =5.940022499, 2.835643956, 4.41071469, 1.405165193) 

𝑉3 =(6.553298701, 3.003865605, 5.407513896, 1.992010429) 

88.36848 

 

0.60943598 

 

112.8848 

 

2.1 𝑉1 = (5.015997456, 3.395103404,1.481501119,0.233793726) 

𝑽𝟐 = (5.875161645, 2.819768542, 4.341745798, 1.371643275) 

𝑉3 =( (6.521501312, 2.993799345, 5.365430872, 1.973036811) 107.56538 15.502268 112.31439 

2.7183 𝑉1 =(5.016505529, 3.395658339, 1.480497649 ,0.233093163) 

𝑉2 =(5.8521626, 2.814598, 4.3174327, 1.3598113) 

𝑉3 =(6.512591947, 2.99081334, 5.351135531, 1.967379725) 

114.7852097 17.600824 112.3701866 

0.5 1.001 𝑉1 = (5.014758982, 3.393480039, 1.484987232, 0.236230735) 

𝑉2 = (5.939810712, 2.835591577, 4.410481148, 1.405048987) 

𝑉3 = (6.553109679, 3.003809861, 5.407300302, 1.991910289) 

88.45851458 1.36221893 112.8817517 

1.2 𝑉1 =(5.016328282, 3.395471844, 1.480823712, 0.233322462) 

𝑉2 = (5.859612595, 2.816240547, 4.325340132, 1.363663949) 

𝑉3 = (6.515492773, 2.991787749, 5.35592026, 1.969214669) 112.3143 16.93179 112.3382 

2.7183 𝑉1 = (5.024289736, 3.401390852, 1.474544358, 0.228295603) 

𝑉2 = (5.75227205, 2.80496812, 4.211179297, 1.309148081) 

𝑉3 = (6.468968763, 2.979276432, 5.25726459,1.94582964) 

195.2740812 30.8028020 115.2126236 

1 1.001 𝑉1 = (5.014766496, 3.393490031, 1.484963748, 0.236213438) 

𝑉2 = (5.939543373, 2.835525356, 4.410186497, 1.40490245) 

𝑉3 = (6.552873655, 3.003740189, 5.40703313, 1.99178504) 

88.57134278 1.92554756 112.8778545 

1.08 𝑉1 =(5.016050451, 3.395164376, 1.48138596, 0.233714013) 

𝑉2 = (5.872522777, 2.819161332, 4.338969313, 1.370294599) 

𝑉3 = (6.520482024, 2.993459165, 5.363854482, 1.972387568) 108.3386 15.75029 112.3146 

2.7183 𝑉1 = (5.032076096, 3.405841879, 1.47267414, 0.226464499) 

𝑉2 = (5.728250125, 2.812352852, 4.183969268, 1.298560098) 

𝑉3 = (6.474954988,2.988669846, 5.22976066, 1.962999865) 

244.9658305 36.4021425 116.3911632 

𝑅 = 1 2 1.001 𝑉1 = (5.014781523, 3.393510085,1.484916638,0.236178811) 

𝑉2 = (5.938999926,2.835390408, 4.409588038,1.404605076) 

𝑉3 = (6.552402453, 3.003600865, 5.406498171,1.991534291) 

88.79792857 2.72053324 112.8699315 

1.04 𝑉1 =(5.016078966, 3.395196859, 1.481325102, 0.233671829) 

𝑉2 = (5.871126425, 2.818841363, 4.337499057, 1.369580105) 

𝑉3 = (6.519942995, 2.993279055, 5.363014819, 1.972044259) 108.75268 15.880408 112.31528 
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2.7183 Does not recognize clusters    

𝑅 > 1 4 1.001 𝑉1 = (5.014811589, 3.393550467, 1.484821879, 0.236109437) 

𝑉2 = (5.937877322, 2.835110383, 4.408353898, 1.403992868) 

𝑉3 = (6.55146338, 3.003322288, 5.405425652, 1.991031722) 

89.25477876

 

  

3.84006943 112.8535713 

1.02 𝑉1 = (5.016093823, 3.395213697, 1.481293692, 0.23365004) 

𝑉2 = (5.870405361, 2.818676501, 4.336739511, 1.369210908) 

𝑉3 = (6.519664686, 2.993186008, 5.362579647, 1.971867024) 108.96787 15.94732 112.31582 

2.7183 Does not recognize clusters    

10 1.001 𝑉1 = (5.014902134,3.393673802, 1.484533817,0.235900638) 

𝑉2 = (5.934212529, 2.834187731, 4.404343576, 1.402012185) 

𝑉3 = (6.548671956,3.002486815, 5.402184392, 1.989514276) 

90.65392852 6.03703545 112.8004401 

1.01 𝑉1 = (5.016495482, 3.395647951, 1.480515516, 0.233105778) 

𝑉2 = (5.852569167, 2.814686711, 4.317865071, 1.360022059) 

𝑉3 = (6.512750975, 2.990866768, 5.351401198, 1.967480032) 114.646 17.5644 112.368 

2.7183 Does not recognize clusters    

20 1.001 𝑉1 = (5.015055712, 3.393886363, 1.484044719, 0.235552201) 

𝑉2 = (5.927072232,2.832375249,4.396602241, 1.398218513) 

𝑉3 = (6.544100981, 3.001093863, 5.396687004, 1.986947545) 

93.07531406 8.45700085 112.6997986 

2.7183 Does not recognize clusters    

Table 3.10: Ideal Clustering centroid produced by AGFCM for the different values of 

𝐚 for Iris data-set 

𝑅 𝑏 𝑎 Cluster centroids 𝐽𝐴𝐺𝐹𝐶𝑀 𝐽𝐻𝐶𝑀 

(𝑆𝑆𝐸) 
𝑅 < 1 0.1 100 𝑉1 = (5.011930487,3.393791826,1.485613428,0.238885186) 

𝑉2 = (6.189412669,2.875467344,4.817854227,1.64730742) 

𝑉3 = (6.189412775, 2.875467356, 4.817854444,1.647307572) 

329.7014 172.4445 

 

2.7183 𝑉1 = (6.094634271, 2.892675452, 4.580886928, 1.518111308) 

𝑉2 = (6.094634271, 2.892675452, 4.580886928, 1.518111308) 

𝑉3 = (6.094634271, 2.892675452, 4.580886928, 1.518111308) 

224.1475741

  

807.2233032 

0.5 2.5 𝑉1 = (5.01197183, 3.393744093, 1.485795006,0.23896825) 

𝑉2 = (6.189464144,2.875464877, 4.81791004,1.647344656) 

𝑉3 = (6.189464246, 2.875464889, 4.81791025, 1.647344803) 

329.4568903

  

172.4434976 

2.7183 𝑉1 = (5.011357583, 3.39446424, 1.483025132, 0.2377082) 

𝑉2 = (6.188478055, 2.875532038,4.816647305, 1.646505395) 

𝑉3 = (6.188478151, 2.875532049, 4.816647503, 1.646505534) 

333.5867113

  

172.4703471 

1 100 𝑉1 = (5.020055672, 3.392520125, 1.474537983, 0.229101053) 

𝑉2 = (5.708767226, 2.794682102, 4.142707427,1.281791777) 

𝑉3 = (6.52804663, 3.011175095, 5.426000467,2.048037041) 

421.3935961

  

112.5014197 

2.7183 𝑉1 = (5.009625295, 3.394923022, 1.475274796, 0.233383198) 

𝑉2 = (6.177302899, 2.877493772,4.793358345,1.62916556) 

(6.177302899, 2.877493772,4.793358345,1.62916556) 

365.5699438

  

173.1670764 

𝑅 = 1 2 10 𝑉1 = (5.020055672, 3.392520125,1.474537983, 0.229101053) 

𝑉2 = (5.708767226, 2.794682102,4.142707427,1.281791777) 

𝑉3 = (6.52804663, 3.011175095, 5.426000467,2.048037041) 

421.3935961

  

112.5014197 

2.7183 𝑉1 = (5.009918901, 3.390831889, 1.475698828, 0.231488463) 

𝑉2 = (6.157106524, 2.886295432, 4.728320662,1.573883054) 

394.5020737

  

175.8010882 
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𝑉3 = (6.157998924, 2.886150764, 4.730741847, 1.575853672) 

𝑅 > 1 4 8 𝑉1 = (5.055698026, 3.421693732, 1.465263395, 0.230916849) 

𝑉2 = (5.697550887, 2.802865412, 4.124742898, 1.283416894) 

𝑉3 = (6.492155687,2.979992958,5.463932575, 1.991995453) 

432.1769765

  

112.440683 

2.7183 𝑉1 = (5.016677713, 3.390659611, 1.475171351,0.229409264) 

𝑉2 = (5.716592997, 2.795769929, 4.154922482, 1.284109676) 

𝑉3 = (6.482214975, 2.989330209, 5.344632186, 1.990377817) 

418.2288567

  

113.4860286 

10 2.3 𝑉1 = (5.055812027, 3.42180432, 1.465223604, 0.230924933) 

𝑉2 = (5.6975419, 2.802889227, 4.124728097,1.283426284) 

𝑉3 = (6.491312332, 2.979706781, 5.463889492, 1.990374926) 

432.197223

  

112.4493339 

2.7183 𝑉1 = (5.070077256, 3.437199189, 1.458865561, 0.232009298) 

𝑉2 = (5.696532278, 2.806095258, 4.123292779, 1.284681498) 

𝑉3 = (6.456878051, 2.992732157, 5.486992997,1.864147983) 

434.6668374

  

113.7502553 

20 1.6 𝑉1 = (5.06551018, 3.431894891, 1.461245793,0.231645538) 

𝑉2 = (5.696841274, 2.805005385, 4.12365768, 1.284261797) 

𝑉3 = (6.45842299, 2.98603903, 5.480396405, 1.887736102) 

433.8849331

  

113.3786165 

2.7183 Does not recognize clusters   

Table 3.11: Comparison of AGFCM and AGHCM with other clustering algorithms 

for Iris data-set 

Name of the 

algorithms 

Values of Parameters Cluster centroids 𝐽𝐻𝐶𝑀  

(𝑆𝑆𝐸) 

Misclassi-

-fication  

Accuracy  

FCM 
𝑚 = 2 𝑉1 = (5.00, 3.41, 1.48, 0.25) 

𝑉2 = (5.89, 2.76, 4.36, 1.40) 

𝑉3 =(6.77, 3.05, 5.65, 2.05) 

113.4650 16 0.8933 

PCM 
𝜂 = 2 𝑉1 = (5.00, 3.41, 1.48, 0.25) 

𝑉2 = (6.17, 2.88, 4.76, 1.61) 

𝑉3 = (6.17, 2.88, 4.76, 1.61) 

174.2570 50 0.6667 

PFCM 
𝑎 = 1, 𝑏 = 1,𝑚 = 2, 𝜂 = 2 𝑉1 = (5.00, 3.41, 1.48, 0.25) 

𝑉2 = (5.89, 2.76, 4.36, 1.40) 

𝑉3 =( (6.77, 3.05, 5.65, 2.05) 

112.2140 13 0.9133 

FPCM 
𝑎 = 1, 𝑏 = 1,𝑚 = 2, 𝜂 = 2 𝑉1 = (5.00, 3.41, 1.48, 0.25) 

𝑉2 = (5.92, 2.79, 4.40, 1.41) 

𝑉3 = (6.62, 3.01, 5.46, 1.99) 

126.480 13 0.9133 

AFCM 
𝑹∗ < 𝟏, 𝒃 = 𝟎. 𝟏, 𝒂 =  𝒆 𝑉1 = (5.02,3.40,1.48 ,0.23) 

𝑉2 = (5.85, 2.81, 4.32, 1.36) 

𝑉3 = (6.51, 2.99, 5.35, 1.97) 

112.3702 13 0.9133 

AHCM 
𝑹∗ > 𝟏, 𝒃 = 𝟒,, 𝒂 =  𝒆 𝑉1 = (5.02,3.39, 1.48, 0.23) 

𝑉2 = (5.72,2.80, 4.15, 1.28) 

𝑉3 =( (6.48, 2.99, 5.34, 1.99) 

113.4860 16 0.9067 
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AGFCM 
𝑹∗ < 𝟏, 𝒃 = 𝟎. 𝟏, 𝒂 =  𝟐. 𝟏 𝑉1 = (5.02, 3.40,1.48,0.23) 

𝑽𝟐 = (5.88, 2.82, 4.34, 1.37) 

𝑉3 = (6.52, 2.99, 5.37, 1.97) 

112.2170 11 0.9267 

AGHCM 
𝑹∗ > 𝟏, 𝒃 = 𝟒,, 𝒂 =  𝟖 𝑉1 = (5.06, 3.42, 1.47, 0.23) 

𝑉2 = (5.70, 2.80, 4.12, 1.28) 

𝑉3 = (6.49,2.98,5.46, 1.99) 

112.4407 12 0.92 

Table 4.12: Coach wise different manufacturing cost for the year 2010-11 

COACH TYPE 𝑪𝑳𝒂𝒃. 𝑪𝑴𝒂𝒕. 𝑪𝒇𝒐𝒉 𝑪𝑨𝒐𝒉. 𝑪𝑻𝒐𝒉. 𝑪𝑺𝒐𝒉. 𝑪𝑻𝒐𝒕. 𝑪𝑷𝒄. 𝑪𝑻𝒄. 

SCN/AB 4.38 45.70 7.33 5.80 1.17 0.37 14.69 1.63 66.40 

SLR/AB 4.07 41.99 6.81 5.39 1.09 0.34 13.63 1.89 61.58 

GS/AB 4.04 44.49 6.77 5.35 1.08 0.36 13.57 2.37 64.47 

MEMU/MC 9.88 211.93 16.55 13.09 2.65 1.74 34.04 8.27 264.12 

MEMU/TC 4.10 49.13 6.87 5.43 1.10 0.40 13.80 2.13 69.17 

ACCN/SG 7.38 94.06 12.36 9.78 1.98 0.77 24.89 4.14 130.48 

RA SHELL 2.50 33.62 4.58 2.91 0.75 0.23 8.47 1.44 46.03 

LWSCZ 8.11 124.32 14.35 9.14 2.35 0.85 26.68 5.00 164.11 

LWSCZDAC 14.81 190.08 24.40 19.30 3.91 1.56 49.16 8.23 262.29 

WGCWNAC 7.22 93.76 13.17 8.39 2.16 0.64 24.35 4.07 129.41 

VPHX 3.05 37.29 5.55 3.54 0.91 0.25 10.26 1.57 52.16 

FAC (LC) 9.18 156.57 15.27 12.08 2.45 1.28 31.09 5.96 202.79 

ACCW(LC) 10.70 153.98 17.84 14.11 2.86 1.26 36.07 5.99 206.74 

WGCB(LC) 6.38 110.86 10.59 8.38 1.70 0.91 21.58 3.35 142.17 

EOG/LHB/ACCB 10.38 184.34 16.98 13.43 2.72 1.51 34.64 7.17 236.53 

EOG/LHB/ 

WLRRM 

10.51 246.60 17.19 13.59 2.75 2.02 35.56 9.42 302.08 

EOG/LHB/ 

ACCW 
11.24 178.25 18.42 14.57 2.95 1.46 37.39 7.12 234.01 

EOG/LHB/ 

ACCN 
11.57 179.28 18.97 15.01 3.04 1.47 38.49 7.20 236.54 

LGSLR 5.91 70.13 9.70 7.67 1.55 0.58 19.49 3.14 98.67 

LGS(LC) 7.79 81.84 12.86 10.17 2.06 0.67 25.76 3.74 119.13 

TOTAL 153.20 2328.22 256.50 197.10 41.20 18.60 513.61 93.83 3088.88 

Where  

𝑪𝑳𝒂𝒃.= Labor cost of different coaches,  

𝑪𝑴𝒂𝒕.= Material cost of different coaches,   

𝑪𝑨𝒐𝒉= Administrative overhead charge of different coaches,  
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𝑪𝒇𝒐𝒉= Factory overhead charges of different coaches,  

𝑪𝑻𝒐𝒉= Township overhead charges of different coaches,  

𝑪𝑺𝒐𝒉= Shop overhead charges of different coaches,  

𝑪𝑻𝒐𝒕 = Total overhead cost including the petty overhead of different coaches,  

𝑪𝑷𝒄= Performa charges of different coaches  

𝑪𝑻𝒄= Total cost of different coaches. All costs are in lacs (Indian National Rupees). 

Table 4.13: show the average fluctuation in cost  

 

 

Table 4.14: Lower bound, static bound, and upper bound for case I. 

Parametric 

variable 

 
𝛽𝑖 − 𝜀𝑖 𝛽𝑖 𝛽𝑖 + 𝜀𝑖

∗ Model-I (𝜆1) Model-II (𝜆2) 

𝑦1 0.0000 0.0000 0.0000 5.4554 0.9105 

y2 4.9800 5.0490 4.7181 0.0000 0.0000 

y3 0.0000 0.2615 0.1169 2.8959 0.0000 

y4 0.0000 0.0000 0.0000 0.0000 0.0784 

y5 0.0000 0.0000 0.0000 8.8780 10.4587 

y6 0.0000 0.0000 0.0000 0.0000 0.0000 

y7 0.0000 0.0000 0.0000 0.0000 0.0000 

y8 1.2745 1.5254 1.3331 1.7857 0.0000 

y9 0.0000 0.0000 0.0000 0.0000 0.0000 

y10 0.0000 0.0000 0.0000 0.8873 0.0000 

y11 3.1783 2.8653 3.7039 0.0000 6.6930 

y12 6.1425 6.7252 7.0252 0.0000 0.0000 

 Cost 

parameters 

𝛽𝑖 − 𝜀𝑖 𝛽𝑖  𝛽𝑖 + 𝜀𝑖
∗ 

𝑪𝑳𝒂𝒃. 153.2000 145.5400 160.8600 

𝑪𝑴𝒂𝒕. 2328.2200 2211.8090 2444.6310 

𝑪𝒇𝒐𝒉 256.5600 243.7320 269.3880 

𝑪𝑨𝒐𝒉 197.1300 187.2735 206.9865 

𝑪𝑻𝒐𝒉 41.2300 39.1685 43.2915 

𝑪𝑺𝒐𝒉 197.1300 187.2735 206.9865 

𝑪𝑻𝒐𝒕 513.6100 487.9295 539.2905 

𝑪𝑷𝒄 93.8300 89.1385 98.5215 
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y13 0.0000 0.0000 0.0000 0.0000 0.0000 

y14 0.0000 0.0000 0.0000 0.0000 0.0000 

y15 0.0000 0.0000 0.0000 3.4852 0.0000 

y16 1.5120 1.4496 1.5572 2.2963 2.0666 

y17 0.0000 0.0000 0.0000 0.0000 0.0000 

y18 0.0000 0.0000 0.0000 0.0000 5.2821 

y19 5.5772 5.6702 6.4669 0.0000 0.0000 

y20 0.0000 0.0000 0.0000 0.0000 0.0000 

Z 2934.3117 3088.7496 3243.1771 λ1=0.001045 λ2=0.301433 

Table 4.15: The optimized value of lower, static and upper bound for case II 

Parametric 

variable 
𝛽𝑖 − 𝜀𝑖 𝛽𝑖 𝛽𝑖 + 𝜀𝑖

∗ Model-I 

(𝜆1) 
Model-II 

(𝜆2) 

y1 0.0000 0.0000 0.0000 0.0000 0.0000 

y2 0.0000 0.0000 0.0000 0.0000 0.0000 

y3 20.6343 21.7223 22.8062 21.7186 21.6790 

y4 0.0000 0.0000 0.0000 0.0000 0.0000 

y5 0.0000 0.0000 0.0000 0.0000 0.0000 

y6 0.0000 0.0000 0.0000 0.0000 0.0000 

y7 0.0000 0.0000 0.0000 0.0000 0.0000 

y8 2.4364 2.5637 2.6920 2.5636 2.5249 

y9 0.0000 0.0000 0.0000 0.0000 0.0000 

y10 0.0000 0.0000 0.0000 0.0000 0.0000 

y11 0.0000 0.0000 0.0000 0.0000 0.0000 

y12 0.0000 0.0000 0.0000 0.0000 0.0000 

y13 0.0000 0.0000 0.0000 0.0000 0.0000 

y14 0.0000 0.0000 0.0000 0.0000 0.0000 

y15 0.0000 0.0000 0.0000 0.0000 0.0000 

y16 4.0182 4.2298 4.4417 4.2309 4.0553 

y17 0.0000 0.0000 0.0000 0.0000 0.0000 
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y18 0.0000 0.0000 0.0000 0.0000 0.0000 

y19 0.0000 0.0000 0.0000 0.0000 0.0000 

y20 0.0000 0.0000 0.0000 0.0000 0.0000 

Z 2943.9593 3098.9125 3253.8350 λ1=0.0005 λ2=0.3003 

Table 4.16: Unbounded fluctuation is shown 

Cost parameters 𝜷𝒊 − 𝜺𝒊 𝜷𝒊 𝜷𝒊 + 𝜺𝒊
∗ 

𝑪𝑳𝒂𝒃. 153.2000 145.5400 168.0100 

𝑪𝑴𝒂𝒕. 2328.2200 2211.8090 2574.8200 

𝑪𝒇𝒐𝒉 256.5600 243.7320 280.9600 

𝑪𝑨𝒐𝒉 197.1300 187.2735 216.4300 

𝑪𝑻𝒐𝒉 41.2300 39.1685 45.1400 

𝑪𝑺𝒐𝒉 197.1300 187.2735 216.4300 

𝑪𝑻𝒐𝒕 513.6100 487.9295 562.7700 

𝑪𝑷𝒄 93.8300 89.1385 103.2500 

Table 4.17: The optimized value of lower, static, and upper bound 

Parametric variable 𝛽𝑖 − 𝜀𝑖 𝛽𝑖 𝛽𝑖 + 𝜀𝑖
∗ Model-I (𝜆1) Model-II (𝜆2) 

y1 0.0000 0.0000 0.0000 5.4563 2.2976 

y2 4.9800 5.0490 1.0089 0.0000 0.0000 

y3 0.0000 0.2615 0.0000 2.8940 0.0000 

y4 0.0000 0.0000 1.0863 0.0000 0.0000 

y5 0.0000 0.0000 0.0000 8.8892 8.8154 

y6 0.0000 0.0000 0.0000 0.0000 0.0000 

y7 0.0000 0.0000 1.4821 0.0000 0.0000 

y8 1.2745 1.5254 2.1461 1.7898 0.0000 

y9 0.0000 0.0000 0.0000 0.0000 0.0000 

y10 0.0000 0.0000 0.0000 0.8829 2.8219 

y11 3.1783 2.8653 0.0000 0.0000 0.0000 

y12 6.1425 6.7252 8.6262 0.0000 0.0000 
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y13 0.0000 0.0000 0.0000 0.0000 0.0000 

y14 0.0000 0.0000 0.2163 0.0000 0.0000 

y15 0.0000 0.0000 0.0000 3.4781 0.0000 

y16 1.5120 1.4496 0.0000 2.2993 2.0618 

y17 0.0000 0.0000 0.0000 0.0000 0.0000 

y18 0.0000 0.0000 0.0000 0.0000 5.4628 

y19 5.5772 5.6702 8.7129 0.0000 0.0000 

y20 0.0000 0.0000 0.0000 0.0000 0.0000 

Z 2934.317 3088.7496 3409.2023 𝜆1 = 0.0007 𝜆2 = 0.2278 

Table 5.18: The probabilistic increments and decrements in the extension of total 

basic available cost 

Cost 

parameters 
𝛽𝑖 − 𝜀𝑖  𝛽𝑖  𝛽𝑖

∗ 𝛽𝑖
∗ + 𝜀𝑖

∗ 

𝑪𝑳𝒂𝒃. 145.5400 150.7000 155.7000 160.8600 

𝑪𝑴𝒂𝒕. 2211.8090 2294.6000 2361.8400 2444.6310 

𝑪𝒇𝒐𝒉 243.7320 251.9800 261.1400 269.3880 

𝑪𝑨𝒐𝒉 187.2735 194.2200 200.0400 206.9865 

𝑪𝑻𝒐𝒉 39.1685 40.4800 41.9800 43.2915 

𝑪𝑺𝒐𝒉 17.7365 18.4400 18.9000 19.6035 

𝑪𝑻𝒐𝒕 487.9295 505.1400 522.0800 539.2905 

𝑪𝑷𝒄 89.1385 92.3900 95.2700 98.5215 

Table 5.19: Least lower bound, lower bound, upper bound, and most upper for case 

IV. 

Parametric 

variable  
𝛽𝑖 − 𝜀𝑖 𝛽𝑖 𝛽𝑖

∗  𝛽𝑖
∗ + 𝜀𝑖

∗ Model-I 

    (𝛌𝟏) 

 

Model-II 

    (𝛌𝟐) 

 

 

y1 9.4114 9.7992 9.9621 10.3750 0.0000 0.0000 

y2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

y3 0.0000 0.0000 0.0000 0.0000 21.0075 21.2973 

y4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

y5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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y6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

y7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

y8 1.8638 1.5673 2.4520 2.1101 2.3617 2.3040 

y9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

y10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

y11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

y12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

y13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

y14 13.982 14.901 14.4480 15.4080 0.0000 0.0000 

y15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

y16 0.0000 0.0000 0.0000 0.0000 4.1163 4.1928 

y17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

y18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

y19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

y20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

λ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Z 2918.6 3026.4 3118 3225.8 𝛌𝟏=0.6195 𝛌𝟐=0.3226 

Table 5.20: Show calculated values of Model I and Model II of FLLP of case-IV. 

Trapezoidal FLPP Model-I Model-II 

𝜆1 0.6195 _ 

𝜆2  _ 0.3226 

Optimized minimum cost 2985.3840 units 3042.507 units 

Minimized cost 2985.3840 units 2953.3765 units 

Greatest Minimized Costs 3159.0163 units 3,191.0235 units 

Table 5.21: Least lower bound, lower bound, upper bound, and most upper for case V. 

Parametric 

variable  𝛽𝑖 − 𝜀𝑖 𝛽𝑖 𝛽𝑖
∗  𝛽𝑖

∗ + 𝜀𝑖
∗ Model-I 

    (𝛌𝟏) 

 

Model-II 

    (𝛌𝟐) 

 

 

y1 0.0000 0.0000 0.0000 0.0000 2.2161 2.2209 

y2 2.5638 2.5569 2.6988 2.8337 0.0000 0.0000 

y3 0.0000 0.1433 0.0000 0.0000 0.4444 0.4422 

y4 0.6561 0.4911 0.6906 0.7252 0.0000 0.0000 

y5 0.0000 0.0000 0.0000 0.0000 9.8671 10.0016 

y6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
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y7 0.4097 0.0000 1.4313 0.4528 0.0000 0.0000 

y8 1.4807 1.5098 1.5586 1.6366 0.0342 0.0349 

y9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

y10 0.0000 0.0000 0.0000 0.0000 2.5556 2.5044 

y11 2.2907 2.0603 2.4113 2.5318 0.0000 0.0000 

y12 6.7120 7.2621 7.0653 7.4186 0.0000 0.0000 

y13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

y14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

y15 0.0000 0.0000 0.0000 0.0000 6.9804 7.0909 

y16 0.6019 0.7044 0.6336 0.6653 0.4731 0.4631 

y17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

y18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

y19 6.8800 7.1514 7.2421 7.6042 0.0000 0.0000 

y20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Z 2934.3209 3042.7297 3134.7889 3243.1968 𝜆1=0.5010 𝜆2=0.2600 

Table 5.22: Show calculated values of Model I and Model II of FLLP of case-V. 

Trapezoidal FLPP Model-I Model-II 

𝜆1 0.5010 _ 

𝜆2 _ 0.2603 

Optimized minimum cost 3014.7300 units 3014.7200 units 

Minimized cost 2988.6364 units 2962.5421 units 

Greatest Minimized Costs 3188.8819 units 3214.9759 units 

Table 6.23: shows the probabilistic increments and decrements in the cost parameter 

Cost parameters 𝜷𝒊 − 𝜺𝒊 𝜷𝒊 𝜷𝒊
∗ 𝜷𝒊

∗ + 𝜺𝒊
∗ 

Labour cost 145.5400 150.7000 155.7000 160.8600 

Material cost 2211.8090 2294.6000 2361.8400 2444.6300 

Factory overhead 

Charges 243.7320 251.9800 261.1400 269.3900 

Administrative overhead 

Charge 187.2735 194.2200 200.0400 206.9900 

Township overhead 

Charges 39.1685 40.4800 41.9800 43.2900 

Shop overhead charges 
17.7365 18.4400 18.9000 19.6000 
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Total overhead charges 
487.9295 505.1400 522.0800 539.2900 

Performa charges 89.1385 92.3900 95.2700 98.5215 

Table 6.24: Optimized membership grade 

Parametric 

variable 

(𝜷𝒊 − 𝜺𝒊) 𝜷𝒊 𝜷𝒊
∗ (𝜷𝒊

∗ + 𝜺𝒊
∗) 𝝀 

𝒚𝟏 
9.4114 9.7992 9.9621 10.3750 0.0023 

𝒚𝟐 0.0000 0.0000 0.0000 0.0000 0.0000 

𝒚𝟑 0.0000 0.0000 0.0000 0.0000 0.5872 

𝒚𝟒 0.0000 0.0000 0.0000 0.0000 0.0000 

𝒚𝟓 0.0000 0.0000 0.0000 0.0000 0.0097 

𝒚𝟔 0.0000 0.0000 0.0000 0.0000 0.0000 

𝒚𝟕 0.0000 0.0000 0.0000 0.0000 0.0000 

𝒚𝟖 1.8638 1.5670 2.4520 2.1101 0.0722 

𝒚𝟗 0.0000 0.0000 0.0000 0.0000 0.0000 

𝒚𝟏𝟎 0.0000 0.0000 0.0000 0.0000 0.0024 

𝒚𝟏𝟏 0.0000 0.0000 0.0000 0.0000 0.0000 

𝒚𝟏𝟐 0.0000 0.0000 0.0000 0.0000 0.0000 

𝒚𝟏𝟑 0.0000 0.0000 0.0000 0.0000 0.0000 

𝒚𝟏𝟒 13.9820 14.900 14.4480 15.4080 0.0000 

𝒚𝟏𝟓 0.0000 0.0000 0.0000 0.0000 0.0069 

𝒚𝟏𝟔 0.0000 0.0000 0.0000 0.0000 0.5196 

𝒚𝟏𝟕 0.0000 0.0000 0.0000 0.0000 0.0000 

𝒚𝟏𝟖 0.0000 0.0000 0.0000 0.0000 0.0000 

𝒚𝟏𝟗 0.0000 0.0000 0.0000 0.0000 0.0000 

𝒚𝟐𝟎 0.0000 0.0000 0.0000 0.0000 0.0000 

𝝀 0.0000 0.0000 0.0000 0.0000 0.2992 

Z 2918.600 3026.4 3118.0000 3225.8000 0.2992 

Table 7.25:Show the geographical coordinates of the existing warehouse 

Existing 

warehouse number 

Coordinate

s of centroids 

1 (2.5,3.5) 

2 (2.7,3.6) 

3 (2.2,3.2) 

4 (3.0,3.0) 

5 (2.7,3.1) 
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6 (2.3,3.5) 

7 (3.1,3.0) 

8 (3.3,2.9) 

9 (3.0,3.5) 

10 (2.9, 2.9) 

11 (6.0,7.2) 

12 (6.5,7.0) 

13 (5.9,6.9) 

14 (6.3,7.3) 

15 (5.9,7.0) 

16 (6.8,7.0) 

17 (6.5,6.9) 

18 (6.2,7.1) 

19 (7.2,7.2) 

20 (6.6,7.1) 

21 (11.1,13.5) 

22 (12.2,12.5) 

23 (11.5,11.9) 

24 (13.2,13.3) 

25 (11.5,12.5) 

26 (12.0,15.0) 

27 (13.2,13.2) 

28 (11.2,11.9) 

29 (12.9, 13.7) 

30 (13.9,13.0) 

Table 7.26: Initial membership grade to the input data 

 Input data Membership function for fuzzy clustering 

X1 X2 U1 U2 U3 

2.5 3.5 .9  .05 .05 

2.7 3.6 .89 .055 .055 

2.2 3.2 .88 .06 .06 

3.0 3.0 .87 .065 .065 
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2.7 3.1 .86 .07 .07 

2.3 3.5 .84 .09 .07 

3.1 3.0 .81 .11 .08 

3.3 2.9 .8 .1 .1 

3.0 3.5 .79 .11 .1 

2.9 2.9 .75 .15 .1 

6.0 7.2 .05 .9 .05 

6.5 7.0 .055 .89 .055 

5.9 6.9 .06 .88 .06 

6.3 7.3 .065 .87 .065 

5.9 7.0 .07 .86 .07 

6.8 7.0 .09 .84 .07 

6.5 6.9 .11 .81 .08 

6.2 7.1 .1 .8 .1 

7.2 7.2 .11 .79 .1 

6.6 7.1 .15 .75 .1 

11.1 13.5 .05 .05 .9 

12.2 12.5 .055 .055 .89 

11.5 11.9 .06 .06 .88 

13.2 13.3 .065 .065 .87 

11.5 12.5 .07 .07 .86 

12.0 15.0 .07 .09 .84 

13.2 13.2 .08 .11 .81 

11.2 11.9 .1 .1 .8 

12.9 13.7 .1 .11 .79 

13.9 13.0 .1 .15 .75 

Table 7.27:Distance between the new warehouses to existing warehouses 

          Distance matrix [d] 

 

Warehouses 

Factories Requirement 

W1 W2 W3 

H1 0.39 5.28 13.68 (30, 40,50) 

H2 0.38 5.07 13.46 (25, 30,40) 

H3 0.57 5.71 14.10 (15, 20,25) 

H4 0.32 5.30 13.69 (5, 10,15) 

H5 0.14 5.42 13.82 (40, 50, 60) 

H6 0.55 5.43 13.82 (52, 60,66) 
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H7 0.40 5.24 13.62 (64, 70,76) 

H8 0.62 5.19 13.56 (7, 10,15) 

H9 0.36 4.93 13.32 (16, 20,23) 

H10 0.35 5.44 13.83 (26, 30, 38) 

H11 5.12 0.41 8.59 (31, 40,46) 

H12 5.31 0.13 8.37 (22, 25,31) 

H13 4.83 0.52 8.87 (29, 35, 42) 

H14 5.39 0.24 8.30 (38, 45, 52) 

H15 4.91 0.50 8.80 (11, 15, 23) 

H16 5.52 0.41 8.17 (16, 25, 32) 

H17 5.24 0.20 8.45 (28, 35,44) 

H18 5.18 0.19 8.51 (36,45,53) 

H19 5.95 0.82 7.75 (30, 35, 40) 

H20 5.45 0.21 8.23 (24,30,35) 

H21 13.23 7.97 1.27 (10, 20,26) 

H22 13.22 7.95 0.56 (27, 30, 38) 

H23 12.31 7.03 1.39 (13, 20, 28) 

H24 14.5 9.23 0.95 (50, 60,70) 

H25 12.74 7.45 0.96 (42, 50,57) 

H26 14.96 9.71 1.97 (37, 40, 44) 

H27 14.43 9.96 0.92 (11, 20,26) 

H28 12.1 6.81 1.58 (22, 30, 35) 

H29 14.57 9.29 0.89 (34, 40, 48) 

H30 14.81 9.57 1.61 (12,20,29) 

Production (330, 400,460) (200,260,300) (273, 340,447) (803,1001,1207) 

Table 7.28: Show the optimal value of the lower bound (Zl) of Yij  

Existing 

Warehouses/New 

Warehouses 

W1 W2 W3 

H1 30 0 0 

H2 2 23 0 

H3 0 0 15 

H4 5 0 0 

H5 0 40 0 

H6 0 0 52 

H7 64 0 0 

H8 0 0 7 
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H9 0 0 16 

H10 26 0 0 

H11 0 31 0 

H12 0 0 22 

H13 29 0 0 

H14 0 20 18 

H15 0 0 11 

H16 16 0 0 

H17 0 28 0 

H18 0 0 36 

H19 30 0 0 

H20 0 24 0 

H21 0 0 10 

H22 27 0 0 

H23 0 0 13 

H24 0 0 50 

H25 42 0 0 

H26 37 0 0 

H27 0 0 11 

H28 22 0 0 

H29 0 34 0 

H30 0 0 12 

Table 7.29: Show the optimal value of the Static bound (Zs)  of Yij  

Existing 

Warehouses/New 

Warehouses 

W1 W2 W3 

H1 40 5 0 

H2 10 0 0 

H3 70 0 0 

H4 30 0 0 

H5 35 0 0 

H6 25 0 0 

H7 35 0 0 

H8 30 0 0 

H9 50 40 0 

H10 30 0 0 

H11 0 25 0 

H12 0 50 0 

H13 0 0 0 

H14 0 40 0 

H15 0 40 0 

H16 0 35 0 

H17 0 30 0 
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H18 0 0 0 

H19 0 0 0 

H20 0 40 0 

H21 0 0 20 

H22 0 0 60 

H23 0 10 20 

H24 0 0 25 

H25 0 5 15 

H26 0 0 45 

H27 0 0 20 

H28 0 20 60 

H29 0 0 20 

H30 0 0 20 

Table 7.30: Show the optimal value of the upper bound (Zu) of Yij  

Existing 

Warehouses/New 

Warehouses 

W1 W2 W3 

H1 50 0 0 

H2 15 0 0 

H3 76 0 0 

H4 38 0 0 

H5 42 0 0 

H6 32 0 0 

H7 40 0 0 

H8 38 0 0 

H9 57 37 0 

H10 35 0 0 

H11 0 40 0 

H12 0 60 0 

H13 0 0 0 

H14 0 46 0 

H15 0 20 0 

H16 0 44 0 

H17 0 35 0 

H18 0 0 0 

H19 0 7 0 

H20 0 48 0 

H21 0 0 25 

H22 0 0 66 

H23 0 15 23 

H24 0 0 31 

H25 0 32 23 
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H26 0 0 53 

H27 0 0 26 

H28 0 28 70 

H29 0 0 26 

H30 0 0 29 

Table 7.31: Show the optimal value of the proposed FLP of 𝒀𝒊𝒋  

Existing Warehouses/New 

Warehouses 

W1 W2 W3 

H1 32 0 0 

H2 25 0 0 

H3 18 0 0 

H4 8 0 0 

H5 42 0 0 

H6 56 0 0 

H7 66 0 0 

H8 9 0 0 

H9 20 0 0 

H10 27 0 0 

H11 0 37 0 

H12 0 23 0 

H13 0 31 0 

H14 0 40 0 

H15 0 12 0 

H16 0 21 0 

H17 0 28 0 

H18 0 39 0 

H19 0 33 0 

H20 0 28 0 

H21 0 0 17 

H22 0 0 28 

H23 0 0 15 

H24 0 0 52 

H25 0 0 45 

H26 0 0 39 

H27 0 0 17 

H28 0 0 28 

H29 0 0 34 

H30 0 0 14 
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