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ABSTRACT 

 

The primary thing in agriculture is the timely recognition of crop diseases. As the 

verification process is conducting manually it is becoming very difficult to recognize 

the disease categories. With an increase in cultivation, the early detection of disease 

symptoms can increase the productivity, address environmental and economic 

concerns. The most crucial thing in recognizing and classifying diseases efficiently 

depends on acquiring input datasets.  The disease identification has become very critical 

due to lack of infrastructure. Automatic recognition of crop diseases using 

hyperspectral images (HSI) is a complex and a challenging task for sustainable 

cultivation. Recent developments in deep learning have shown a remarkable 

improvement in the early recognition and classification of crop diseases. With computer 

vision techniques, segmenting the disease areas on the images can makes the 

classification process simple. Deep learning approach enables machines to adopt human 

behavior by learning image features from the input images. Convolutional Neural 

Networks is a comeback in applying deep learning that can effectively perform image 

processing, recognition, and classification as well. Since few decades, many researchers 

have proposed several algorithms to classify the diseases in crops with advancements 

in computer vision.   

 

In recent times, crop diseases classification has been performed using various newly 

developed architectures on the publicly accessible datasets. With transfer learning 

approach, many researchers developed new CNN models by modifying the pre-trained 

one. The models have performed effectively while classifying the images collected 

from Plant Village and Kaggle web resources. But the same models have failed when 

applied for images captured in the real-time agricultural field.       

 

In this research a convolutional neural networks-based approach has been followed to 

address seven different types of disease identification in maize crop. A systematic 

method has been followed to address the classification problem. First, a review of 

existing deep learning techniques, data acquisition, image processing techniques, image 
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augmentation techniques, neural network models and their performance have been 

conducted. Second, image acquisition and enrichment process to prepare training and 

testing image sets has been carried out. Third, a new CNN architecture named NPNet-

19 is proposed, designed and developed from the scratch. The model is trained using 

80% of images gathered from internet repositories. The model is tested with 20% of 

image acquired from real agricultural field.   

 

During experiments, a total of 15,960 images have been considered where 13,300 

images for training and 2660 images were used for classification. The images belong to 

seven unique disease classes including one healthy leaf. The model will be feed with 

the images after performing some preprocessing all the images like color, resizing to 

224 width and 224 heights, rescaling to 1/.255 resolution, and JPG image format. Forth, 

the performance of NPNet-19 model has observed with basic hyperparameters like 

image set split ratio, image size, kernel size, number of epochs, optimizer, learning rate, 

loss function, batch size with standard values. Fifth, several experiments have 

conducted to evaluate and improve the efficiency of NPNet-19 model by adjusting 

several hyperparameters like image set split ratio, image size, kernel size, number of 

epochs, optimizer, learning rate, loss function, batch size with different values. Sixth, a 

comparative analysis has conducted to assess the model performance with four pre-

trained models like CNN-SVM, DenseNet – 121, Shallow Net-8, and Inception V2. 

Seventh, the NPNet-19 model performance has compared with six existing transfer 

learning models like CNN-ST, Modified LeNet, Adoptive CNN, SoyNet, 9-layer and 

13-layered architectures. All the experiments were conducted using own datasets. 

Eighth, the efficiency has evaluated by training and testing with only the images 

collected from plant village repository.  

 

A total of fifty-five experiments have been conducted to validate the performance of 

NPNet-19. The experimental outcomes showed an accuracy of 97.5% on training image 

set and 88.72% of accuracy on testing image set when the model is designed with 

standard hyperparameters. During the first evaluation process several hyperparameters 

like image type as HSI, image size as 224 x 224, kernel size as 3 x 3, number of filters 

staring with 16, batch size as 32, classification type, optimizer as Adam, learning rate 
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of 0.001, activation functions as ReLU and softmax, number of layers as 19, and 

dropout percentage of 30% has been considered. The experimental approach explored 

the selection of several hyperparameters with different values. It is observed that the 

results show that the model trained and classified for 200 epochs improved the 

classification accuracy by 87.44%. The results show that the 168 x 168 and 224 x 224 

input image sizes resulted an improved classification accuracy of 84.66% and 85.23%, 

respectively. The model has achieved 85.83% classification accuracy when an Adam 

optimizer (learning rate of 0.001) is used. But the other optimizers RMSprop and SGD 

has achieved only 81.95% and 79.66% results.   

 

Several experiments have been performed to empirically compare the classification 

accuracy of the proposed model with CNN-SVM, DenseNet – 121, Shallow Net-8, and 

Inception V2 pre-trained models. The NPNet-19 proposed model has showed a 1.1%, 

10.57%, 2.15%, and 1.74% improvement respectively. When compared to existing 

models like CNN-ST, Modified LeNet, Adoptive CNN, SoyNet, 9-layer and 13-layered 

architectures the proposed model has shown an improvement of 14.52%, 10.12%, 

3.88%, 8.17%, 7.25%, and 3.39% in classification accuracy respectively. Finally, when 

the NPNet-19 is tested with images collected from the publicly available dataset (plant 

village) has obtained a very good classification accuracy of 97%. The results obtained 

are comparatively better than the pretrained and transfer learning CNN models and 

proved the novelty of the research. Therefore, it is even feasible that the model proposed 

in this work can also be applied to other crop diseases for transparent identification and 

classification purpose. 

 

The significance of the present work is to deal with the deep learning technologies by 

implementing on plant diseases. Developing more sophisticated model and analyse the 

classification of maize crop diseases based on hyperspectral images is the main motto. 

The literature reviewed in this work provides the future research to explore and learn 

more deep learning capabilities while classifying the diseases in crops accurately.  The 

present research can provide better experience and knowledge in designing a new CNN 

model to address the disease classification problem more efficiently. The selection of 

appropriate hyperparameters will also become easy and assist when dealing with multi-
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class image classification problem. The results clearly shown that the proposed NPNet-

19 model is best suitable to the maize crop disease classification and proved to be the 

best one even classifying the real-time images efficiently. 
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CHAPTER – 1 

INTRODUCTION 

 

Maize is one of the most important crops exported from India, with a substantial 

increase in cultivation area coverage and production rate growth. The country 

contributes about 2% to 3% of total crop production worldwide. 80 percent of India's 

corn crop is exported, with 33 percent going to Indonesia, 27 percent to Malaysia, and 

20 percent to Vietnam as shown in Fig 1.1. However, according to a statistical report 

[9] released by the Indian government, corn crop production was just 18.73 million tons 

in 2017-18, down 0.52 million tons from 2016-17. Improvement in the crop yield can 

help the country to improve in social and economic areas for the farmers and bring a 

rise in levels of foreign reserves. 

 

 

Fig 1.1. Export report of maize crop around the world 

 

The crop loss is subject to critical weed diseases, insects, and infestations, which reduce 

the overall yield significantly. Because of biotic stresses, it is estimated that around 

25% of maize yield was reduced during the last few years. The disease incidence is so 

difficult to predict and not possible or too late in some situations, due to lack of 

awareness. The early identification of disease symptoms for a crop is the main 

achievement to meet environmental and economic challenges. Increasing crop yield 

relies on reducing the yield loss that can further ensure food security for millions of 

people around the world. Consequently, the research must focus on several technical 

and non-technical aspects by targeting the issues that can be diagnosed, disease 

symptoms can be treated along with the prevention of epidemics even. The detection of 
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maize crop diseases is become difficult and requires a deep learning approach, and 

specific knowledge as identifying the symptoms was not developed well. This situation 

has focused on the importance of healthy and diseased images processing related to 

disease identification, diagnosis them in the early stages of development in such a way 

that the farmer can react in time. Simultaneously, the reliability of crop disease 

identification must be validated in real-time field environments. The complete process 

of validation and the workflow is shown in Fig 1.2. 

 

Fig 1.2. Process showing the research workflow  

 

Since 1950’s, computer experts in the field of Artificial Intelligence (AI) are trying to 

build machines that can able to understand and process the visual data. In the ensuing 

period this process is named as Computer Vision (CV). The primary functionality of 

computer vision is to define the process of image classification into various predefined 

classes. The field of computer vision is changing its shape to solve the most challenging 

problems. The concept of Deep Learning (DL) on the other side of CV and machine 

learning gaining numerous attentions in object recognition and AI in recent years.  

The Machine Learning (ML) algorithms are part of Artificial Intelligence (AI) that 

provides computer intelligence by understanding and learning the underlying links 

between data and decision making without any specialized programming. Various ML 

algorithms like speech and vision were developed since the late 1990's but have 

generally failed to achieve greater performance.  
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A special category of Neural Network (NN) known as the Convolutionary Neural 

Network or simply CNN [1,2] is created because of the difficult nature CV activities. It 

can be the best ways of learning the recognition of images. CNN's success outside the 

academy attracted attention of researchers and industry around the globe. Enterprises 

like Facebook, Microsoft, Google, AT&T, and NEC have formed research consortiums 

to test the new CNN architectures. Most of the image processing competitors today are 

using deep CNN models only. CNNs have demonstrated the state-of-the-art 

achievements in image recognition, segmentation, detection and recovery activities [2]. 

In 1989, CNN architecture is highlighted first by LeCun's efforts to solve grid-based 

topological information [1] [3]. Later, the success of CNN models has been contributed 

in large part to its ability to reconstruct the hierarchy. The CNN’s hierarchical structure 

emulates the layered and deep learning process in the human brain of the Neocortex 

that automatically extracts characteristics based on the underlying data. CNN learns 

during training by monitoring the input weight change through the propagation 

algorithm. The use of back propagation algorithms minimizes the cost function of a 

CNN model. CNN can extract low, medium and high features and a mixture of features 

at lower-level, mid-level, high-level and more abstract level also.  

Deep architectures have more advantage when compared with shallow architectures in 

solving the problems in complex learning. Multiple layers stacking of several linear and 

non-linear unit helps to learn more complex representations at different abstraction 

levels across deep networks. Technology advances and therefore high computing 

resources available are however also considered as one of the primary reasons for the 

recent advancement of the deep CNNs. The architectures of deep CNN have resulted 

substantial performance improvement over models that are based on low and traditional 

vision.  

The application in supervised analysis, deep CNNs can learn valuable representations 

from huge and unlabelled data. The mapping functions of CNN allows the extraction 

of invariant representations to be enhanced and therefore hundreds of category 

recognition functions can be performed. Recently, it was shown that different levels of 

usability, both high and low, can be converted into a 4-generic task to recognize with 

the theory of transfer learning [4][5]. The key characteristics of CNN include 
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hierarchical training, automated feature extraction, multiple classes and weight sharing 

[6–8, 10]. 

To overcome the difficulties, existing procedures must be better understood by 

monitoring, measuring, and analysing large amounts of agricultural data. It is also vital 

to understand both short-term crop management and large-scale ecosystems [11][12]. 

Big data analysis is one of the advanced deep learning approaches. In general, a deep 

learning model has at least three layers, with each layer including neurons that are 

linked to data features, producing more complicated information. Deep learning models 

learn input properties using a hierarchy of organised networks of neurons [13]. Recent 

research has focused on the evaluation of deep learning models based on hyperspectral 

imaging and data analysis to detect the diseases in plant [14-16]. 

 

The objective of this research is to propose an algorithm and generalize the presence of 

diseases like Anthracnose Leaf Blight (ALB), Anthracnose Stalk Rot (ASR), Eyespot 

(ES), Gibberella Stalk Rot (GSR), Healthy (H), Northern Leaf Blight (NLB), and 

Southern Rust (SR) by applying the deep learning techniques. The research proposed 

to develop and utilize a Deep CNN to perform disease-wise classification without the 

effect of other disease symptoms presented on the maize leaf. 
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1.1 Research Gaps Identified 

 

• Adopting modern computer vision technology is insufficient for automatic 

disease detection. 

• Environmental factors can have an impact on disease classification analysis 

while collecting input data. 

• Disease symptoms are not well defined, making it difficult to segment diseased 

and healthy portions. 

• Because of visual similarities in disease signs, existing approaches must rely on 

variances to differentiate. 

• It was ruled out for assessing disease severity and management.  

• The relevance of finding hyperspectral data from various sources of the internet 

is often not reliable.  

• Image capturing is finding difficult rather than acquiring in laboratory 

conditions.  

• The augmentation process to increase the image datasets and reduce overfitting 

during the training stage is performing very rarely.  

• Small datasets cannot train a model to predict with a minimal error rate and 

cannot guarantee the model perfection.  

• There is a challenging problem to process a huge volume of hyperspectral data 

represented in high dimensional imageries.  

• In existing neural networks, a complexity was observed due to its typical 

structure while making decisions.  

• Environmental conditions like light, angle, and practicality scale can also 

impact on analysing the disease classification.  

• Fine-tuned procedure for model modification and optimization requires a higher 

level of learning.  

• The computational workload in training a model is very high while using 

CPU’s. 
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The chapter has reviewed the literature related to deep convolutional neural networks 

to identify the current state of research. The obtained literature has extended over 

various domains health and agriculture areas. The study of literature brought a need to 

review certain representative factors for further analysis. Since the factors identified 

were considered enough to represent the current scenario of CNN performance and a 

need for modelling the effective network system. The existing systems need to be 

improved to consider the effect of combined constituent subsystems while integrating 

them to apply towards disease prediction quantification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

1.2 Objectives of the proposed work 

 

1. To acquire images of healthy and diseased maize crop leaves for enriching trainable 

and testing datasets using different fine-tuning and augmentation techniques.  

2. To design and develop CNN model for disease detection (such as anthracnose leaf 

blight, anthracnose stalk rot, eyespot, gibberella stalk rot etc.) based on leaf features 

of a maize crop.  

3. Verification and validation of the proposed model. 
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1.3 Research Methodology 

 

In this section, a complete step-by-step process of facilitating and implementing the 

CNN to model a network of convolutional layers for maize crop disease identification, 

classification and management and depicted in Fig 1.3. 

 

Fig 1.3. Research Methodology of the proposed work 
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A substantial image database must be created to develop an algorithm that can 

differentiate the disease at earlier stages for maize crop. A systematic approach is 

followed to acquire image datasets for all stages of disease recognition and 

classification.  

 

1.3.1 Image pre-processing, augmentation and labelling  

 

During this process, the proposed Deep CNN's classifiers are pre-processed to improve 

the feature extraction of maize leaf image and increase consistency before the model 

was trained. The other most significant phase is to normalize the image with .jpg format 

and 224 x 224 pixels size and 32 x 32 dots per every inch. The type of image processing 

can be done using python code on the Anaconda Python Distribution.  

 

Training any CNN requires substantial data. CNN must prepare with more data to 

obtain more features. If the number of images acquired (4,758) feels not enough for 

detection of diseases, then it is necessary to increase the images in the dataset by various 

methods to distinguish seven different diseases considered in this research. After the 

initialization of original healthy and diseased leaf images, some additional images were 

generated by rotating the existing images in various angles, mirroring each rotated 

image, and splitting the same image into several subparts with the same size etc. The 

process of dataset expansion can reduce overfitting during training phase [17]. Among 

the entire maize leaf images dataset, 80% are considered for training and the remaining 

20% for testing. Proper labelling for all the images was done with disease acronym to 

confirm the accuracy of 7 classes in the image dataset by human experts based on the 

disease symptoms. It will help to differentiate the training dataset with the validation 

dataset. 

 

1.3.2 Evaluating, Improving and Tuning the Deep CNN model 

 

The results obtained from the evaluation of the model must be strengthened further and 

be capable of recognizing the presence of seven different diseases and the absence of 

other conditions of maize crop. If the results vary between the trained dataset and the 
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tested dataset, then the entire process should be repeated (backpropagation) by changing 

the priorities of the input parameters or symptoms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

1.4 Organization of the thesis 

 

In chapter 1, the importance of computer vision, machine learning, deep learning and 

convolutional neural networks to perform the identification and classification of various 

diseases of maize crop is discussed. Understanding how the convolutional neural 

networks can contribute to solve the disease classification problem is discussed. The 

research objectives are also discussed along with the methodology followed during the 

completion of the present research. 

 

In chapter 2, presents the literature reviewed in the field of agriculture specifically 

serving the identification of maize crop diseases is presented. The chapter also 

discussed the outline relevant to convolutional neural networks design and development 

including the architectures and their implementations.  

 

In chapter 3, the process of image acquisition process is clearly discussed. The image 

enrichment into training and testing datasets is discussed. Various image pre-processing 

techniques to standardize the input images are discussed. Several image augmentation 

techniques are also discussed to explain how the process has increased the quantity of 

training dataset. 

  

In chapter 4, the process of designing and developing a proposed convolutional neural 

network is discussed.  

 

In chapter 5, the verification and validation of the proposed model using experimental 

approach is discussed. The performance evaluation of the proposed model based on the 

selection of suitable hyperparameters is discussed. The comparative performance 

analysis of the proposed model has been carried out with the pre-trained and existing 

model is also discussed. 

     

In chapter 6, the conclusion of the thesis is presented by including the research problem, 

proposed approaches to address the research aims, outlining the major contributions, 

and summarizing the key findings. The observations made during the experimental 
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process is discussed as findings. The outcomes of every experiment conducted during 

this research is discussed clearly. 

 

In chapter 7, the future scope of the thesis is discussed including some limitations and 

open challenges. 
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CHAPTER – 2 

LITERATURE REVIEW 

 

This section presents literature in the field of agriculture, specifically serving the 

purpose of identifying maize crop diseases. The analysis of research articles was done 

keeping in view to represent existing models in a more concise and informative manner. 

The purpose of this phrase is to outline the present study relevant to the convolutional 

neural network design. The goal is to enlighten regular principles and practices 

associated with active model development. The literature review was organized around 

a basic and consistent framework, which is completely based on individual models 

proposed.  

 

2.1 Conduction 

 

The present thesis has collected numerous academic papers published between 2015 

and 2021. To begin, a keyword-based search has conducted using the sources listed in 

Table 2.1 and the list of search keywords listed in Table 2.2. 

 

Table 2.1. Sources selected for literature 

Sources Literature Type Locations Identified 

Journal Publications 
Review articles 

Content Specific 

Journal Databases 

Scientific Databases 

Free Downloadable Papers 

Scholarly Books 

Comprehensive Research 

Authors Perspectives 

Overviews 

Authoritative 

Historical 

Digital Library Catalogues 

 

Table 2.2. List of Search Keywords 

Search Keywords 

Deep Learning 

Convolutional  
Neural Network   

Imaging Crop Diseases 

Disease  

Prediction Image Data 

Sources 
Artificial Intelligence 

Convolutional Neural 

Networks 

Disease Identification Hyperspectral Imaging Model Hyperparameters 
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Image Identification Disease Identification Disease Classification 

Machine Learning 

Techniques 
Smart Learning Pre-trained model 

Transfer Learning 

Techniques  
Transfer Learning Models Maize Crop datasets 

Maize disease datasets Image Pre-Processing 
Image Augmentation 

Techniques 

Fine-Tuning Techniques CNN Models Hyperspectral Data 

Crop Diseases Computer Vision CNN Architectures 

Artificial Intelligence Activation Functions Optimization Techniques 

 

This subsection handle with reviewing, examining and organizing the selection process 

to evaluate the existing literatures based on plant diseases classification, deep learning 

techniques, and solutions of CNN model for the framed research questions.  

 

RQ1. What are the internet sources that provides maize crop images? 

RQ2. What are the deep learning techniques adopted to classify the different classes of 

maize crop diseases? 

RQ3. What are the CNN architectures adopted by existing literatures to classify plant 

diseases?  

RQ4. What are the pre-trained models contributing to the recognition of plant diseases 

using hyperspectral images? 

RQ5. What are the existing models contributing to the classification of plant diseases 

using hyperspectral images?  

 

2.2 Literature  

2.2.1 CNN Architectures 

The need of this literature is to identify several architectures developed in the area of 

computer vision and some open challenges. A systematic evaluation of academic 

articles published from 1962 to 2021 in various reputed articles has been conducted. 

Selected articles were divided into various domain areas combined into deep learning 

applications that represent a broad scope of available solutions in the area of computer 

vision. Further, the results can be used to feed machine learning algorithms and identify 

the situations for decision making. Based on the potential benefits of the architectures 
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of CNN models aims to understand the latest innovations in the field of computer vision 

and machine learning technologies. A step-by-step review of literature is conducted to 

identify the relevant academic and research journal articles for further analysis. 

 

The study conducted a web-based searching strategy through several meta-search 

engines and digital libraries. The obtained information is analysed to rearrange it into 

several solutions. Table 2.1 describes the list of various sources from where the 

information has been collected and the search queries used to extract the relevant 

information from various books, articles, and other journals using the 

queries/keywords. To ensure information quality, articles published in reputed journals 

only were considered for further review process. Initially, 172 papers were identified 

and filtered by removing the duplicates and conference papers based on the field names 

listed in Table 2.2 and finally selected 42 papers for review. The process flow followed 

during review of architectures is shown in Fig 2.1. 

 

 

 

Fig 2.1. Step-by-Step review process of architectures 

 

A network model for recognising and categorising maize crop diseases was entirely 

constructed using CNN by leveraging the principles of deep learning. The model can 

distinguish between three conditions: northern corn leaf blight, common rust, and grey 

leaf spot [3]. Deep learning frameworks were used to create an automated in-field 

disease diagnosis system for maize crops. The technique has integrated disease 

detection for training images in wild conditions [19]. To reduce the time consuming for 

diagnosis of maize crop northern leaf blight disease, a computational CNN was 

developed. The system can identify the conditions automatically by classifying small 
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portions of image regions and compare them with individual heat maps [20]. Improving 

the accuracy in identifying and reducing the parameters count of a maize crop disease 

is the motto. From sources like Plant Village and Google websites, nearly 500 maize 

crop images were collected and divided into nine categories with eight diseased classes 

and one healthy class. Two deep learning models like Google Net and CIFAR 10 were 

implemented to improve the precision and recognize leaf diseases in maize crop. The 

models are trained and tested with different types of maize images. Finally, a 

comparative study was made concerning the results obtained and analysed their 

efficiency [21]. From a publicly available repository over three datasets with 18,222 

maize crop images were collected on Open-Source Framework [22].  

 

By using deep structured concept of learning like CNN and using computer vision 

techniques, an integrated process for detecting leaf diseases was designed and by 

distinguishing them with the healthy one is designed. More than 50000 images of one 

healthy and five different classes of diseased leaves was acquired from a freely 

available Plant Village dataset. Among 900 images, 65% of images were used to train 

and 30% images for testing. The network was trained using an input hyperspectral 

dataset and attained accuracy in variation for different number of epochs and 

convolutional filter sizes [23]. A deep CNN is trained under controlled settings to 

identify 26 diseases among 14 crop types. The preparation was led with an open dataset 

of 54306 images including sound and sick harvest leaves [24]. Obtained datasets from 

116 spectral signature mark through foliar tests in 4 levels of infections. The 

investigation has connected artificial neural systems procedures to segregate and 

arrange diseases in oil palm trees [25].  

 

To encourage wheat crop infection conclusion more than 50000 annotated pictures 

including solid and harvest have been procured from Plant Village. In a transparent 

background, seven distinct maladies with 9230 images dataset were gathered from 

WDD2017 database [26]. About 93 images of cucumber downy mildew were obtained 

from web and nursery advancement base differentiated in Tianjin Academy of 

Agricultural Sciences utilizing a camera [26]. The hyperspectral information required 

to train and test the CNN were acquired from the field [27]. The dataset is gathered 
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from an open-access database with 50000 images of apple leaves for 30 class marks 

like early, intermediate and end stages infections [28]. As the neural system can't able 

to manage images, CNN design has been proposed with convolution and pooling layer 

for highlight extraction, order layer to characterize the images dataset. These layers are 

additionally associated with the convolutional and max-pooling layers [18]. A 

computerized framework for disease determination was created as different occurrences 

learning-based finding framework for wheat crop infections. The proposed framework 

was prepared with a start to finish dataset, and the outcomes are assessed to distinguish 

the exactness of perceiving the diseases and its classification [19].  

 

A pipelined computational model of CNN was created and prepared to separate little 

bits of images to test the presence of NLB injuries. The expectations from the warmth 

maps are sustained to the CNN and trains to arrange the entire image and identify the 

presence of infection. The model is furnished with aerial vehicles with robotized crop 

phenotyping, viable reproducing for contamination opposition and limits the utilization 

of pesticides [20]. Two profound learning models are exhibited to improve the 

exactness and perceive leaf illnesses in maize crop. The models are prepared and tried 

with several kinds of maize pictures. At last, a near report was made as for the outcomes 

got and examined their effectiveness [21]. Pursued and planned a half and a half to deal 

with recognize crop infections by executing vision-based procedures. The system was 

prepared with the hyperspectral information dataset and accomplished exactness in 

variety for a few numbers of disease stages and size of the convolutional channel [23].  

 

The model can ready to recognize 13 distinct assortments of plant diseases among the 

healthy leaves with a capacity to understand the surroundings of the plant leaves [14]. 

A coordinated framework named Farm-as-a-Service (FaaS) was created and assessed 

its presentation through investigation of foreseeing the sicknesses in the strawberry crop 

[29]. The DCNN model was created and led a procedure of perceiving the indications 

classification for four contaminations of a cucumber leaf. The design is a 

straightforward and quick way to handle little scale images [30]. An electronic model 

proposed has helped ranchers to distinguish the ailments in organic pomegranate 
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product. The framework works by transferring the image with the effectively-prepared 

dataset and recognizes the contaminations if any [31].  

 

Image pre-processing venture on the dataset was performed to resizing for each picture 

to 60 * 60 pixels and later changed over them into grayscale mode [32]. To improve the 

handling of images they were resized to 1824:1028 [33]. For early recognizable proof 

of infections, the input images were resized into not more than 224 pixels that may 

reduce the disease incipient that exists in small size. During the information 

accumulation, pictures whose goals are under 500 pixels were not considered. The other 

size pictures were resized into 256 * 256 pixels that can diminish the time taking to 

prepare the CNN [14]. The most common and widely recognized picture sizes are 60 x 

60, 96 x 96, 128 x 128, and 256 x 256 [34]. Image division is additionally one of the 

famous practices either to expand the number of pictures in a dataset or to encourage 

the profound learning process by distinguishing the areas of diseases [35-40].  

 

First, among the other, convolutional activity is to extricate the image highlights. It 

safeguards the spatial relationship among the pixels by knowing and highlighting 

through smaller parts of an input picture. For convolution, the mathematical equation 

is  

(𝑓 ∗ 𝑔) (𝑡) ≝ ∫ 𝑓(𝜏)𝑔 (𝑡 − 𝜏) 𝑑𝜏 ∞ −∞     (1)  

 

Noise filtering is one of the examination strategies used to alter the image and set it up 

for further handlings like upgrade, growth, division, and shading space change. The 

fundamental objective of the convolutional activity is to disengage the highlights like 

hone, obscure, edge recognition and improvement, and embellish from an information 

image. Each channel is connected to the leaf image to separate the red, green, and blue 

channels by processing a dot product between the input pixel and channel pixel [32].  

 

In a large area of systems, the CNN layer carries on as highlight extractor from the 

image whose measurements were diminished further by pooling layer [34]. Pooling 

layers are utilized to acquire spatial invariance and lessen the goals of an element map. 

One element guide relates to another element guide of the previous layer [41]. ReLU 
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activation function is considered to add or improve the non-linearity to the 

convolutional network and is faster and better than the sigmoid function.  

Here the function is represented as  

 

      𝑓(𝑥) = {𝑥, 𝑖𝑓 𝑥 > 0 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                    (2) 

 

In [23], SoftMax function is applied at the output layer to estimate the probability 

distribution of a specific event among n various events. For an event xi, SoftMax 

function can be represented as  

 

𝐹(𝑥𝑖) = Exp (𝑥𝑖) ∑ 𝐸𝑥𝑝 (𝑥𝑗), 𝑘 𝑗=0 Where i=0,1,2, ……, k  (3) 

 

In general, backpropagation [24] adjusts the weights of the input variable and 

considered as the most powerful learning algorithm [75]. For every node j in the output, 

layer perform  

Δ[j] ← f(inj) x (ti-qj)      (4) 

 

Repeat for m from M-1 to 1 for every node i in m layer as  

 

Δ[j] ← f(ini)Σj Wi,j Δ[j]     (5) 

 

Now, update the input variable weights for every  

 

Wi,j in nw do as 𝑊𝑖𝑗 ← 𝑊𝑖𝑗 + 𝛼 𝑋 ∆[𝑗]    (6) 

 

until the condition is terminated and finally return nn. 
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2.2.2 Image Augmentation Techniques 

Image augmentation has proved to be more effective method in image classification 

[42]. To amplify the count of images in a training dataset, data augmentation 

approaches was applied and thus improve the efficiency of CNN and deep learning 

sustainability. The most common methods of augmentation are rotation, zooming, 

shifting, modifications in color palette, and applying distortion. But these are not 

significantly enough to improve the efficiency of a CNN model or to handle the issue 

of overfitting [43]. Overfitting in a training dataset can be reduced by introducing 

distortion to the existing images. In the fully connected network, the regularization 

technique called dropout is implemented to reduce the overfitting [44]. In conjunction 

with deep learning architectures, data augmentation plays a vital role in handling the 

issue of overfitting [30].  

 

Simple image rotation, affine and perspective transformations are the other image 

augmentation approaches to increase the quantity of images in a training set [14]. Affine 

transformation and image rotation techniques are used on the original dataset to increase 

its size as the number of images on the dataset are very few [46]. Rotation image 

augmentation is implemented on the original dataset and rotated the images in 90, 120, 

and 270 degrees. Later horizontal and vertical flipping is applied to produce twelve 

augmented images dataset [30].  After initializing the original dataset, additional 

versions of images are created by rotating them in 90, 120, and 270 degrees and 

mirroring them. Later, the centre portion of the image is cropped by the same size and 

processed them to grayscale images [21]. The most common techniques like horizontal 

or vertical flip, rotation at few degrees, inward or outward scaling, random crop, 

translation and noise injection are implemented to increase the dataset size [48]. 

Cropping of images is important that are captured in uncontrolled conditions with 

background complexity. This process can be implemented manually or automatically 

[49].  

 

Removal of distortion can improve the images for further pre-processing. Color space 

conversion including cropping and filtering are the pre-processing techniques in this 

aspect [50]. HSV color space is another pre-processing augmentation that resembles the 
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properties of human color sensing [51]. This technique is best suited to handle image 

identification challenges that occurs due to unclear objects. Comparative Analysis of 

significant research contributions affirm to several image augmentation techniques for 

class balancing of crop images is shown in Table 2.3. The performance measure is used 

to evaluate the efficiency of different augmentation techniques. In Table 2.3, 

performance measure is calculated using the equation 7 derived from [75] as follows:  

 

      𝑃𝑀 =  
𝑥2−𝑥1 

𝑥1
 𝑋 100     (7) 

 

where x1 is the initial input dataset size, x2 is the final dataset size, PM is the 

performance measure. 

Table 2.3 Significant research contributions 

RC.

No 

Authors 

and Year of 

publication 

Size of 

Input 

Dataset 

Traditional 

Augmentation 

Techniques 

Conventional 

Augmentation 

Techniques 

Final 

Dataset 

Performance 

Measure 

(enhancement) 

in terms of 

multiples 

1 Luis Perez 

et al [43], 

2017 

1000 shift, zoom 

in, zoom out, 

rotation, flip, 

distortion 

Enhance, 

cezanne, 

monet, ukiyoe, 

van gogh, and 

winter 

2000 100  

2 Shanqing 

Gu et al 

[48], 2019 

NM Flip, rotate, 

crop, scale, 

whitening 

NA 60000 ID 

3 Srdjan 

Sladojevic 

et al [77], 

2016 

4483 Rotation Affine 

Transformation 

and 

Perspective 

Transformation 

33469 746.5 

4 Ekin D et al 

[52], 2018 

NM Rotate, 

Invert, 

Contrast, 

Color, 

Brightness, 

Sharpness,  

Shear X/Y, 

Translate X/Y, 

Equalize, 

Solarize, 

Posterize, Auto 

Contrast, 

23591 ID 



22 
 

Sample 

Pairing, Cutout 

5 Ramcharan, 

A et al 

[53], 2017 

11670 Cropping NM 15000 128.5 

6 Juncheng 

Ma et al 

[30], 2018 

1184 Rotate 90, 

180, and 270 

degrees, flip 

horizontal 

and vertical 

NM 14208 1200 

7 Dyrmann 

M et al [46], 

2016 

10413 NM NM 50864 488.4 

8 Xihai 

Zhang et al 

[21], 2018 

500 Rotate 90, 

180, and 270 

degrees, crop, 

grayscale 

NA 3060 612 

9 Mohanty 

SP et al 

[45], 2016 

NM Color, and 

grayscale 

Leaf 

segmentation 

54306 ID 

10 Barbedo 

JGA et al 

[47], 2016 

NM Grayscale  Color 

Transformation 

1335 ID 

11 Proposed 

Work 

4758 Annexure 1 65470 1375 

ID-Insufficient Data, NA-Not Applied, NM- Not Mentioned 

 

This section presents and summarizes work related to our proposed work. Many 

researchers have put a lot of effort to detect diseases at an early stage. Different types 

of plant diseases have been identified using advanced machine learning methods and 

algorithms. A method for diagnosing diseases in grape leaves based on identification is 

proposed [54]. The input images were gathered from a variety of sources, including the 

internet and the field. Later, to maximise the number of training images, image 

augmentation techniques were used. The accuracy of the proposed model is 97.22 

percent, which is higher than some of the pre-trained models. An updated LeNet 

architecture based on CNN has been proposed [55]. The model was trained and tested 
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using images of maize leaf diseases from the Plant Village dataset, with a classification 

accuracy of 97.89%. 

 

An improved CNN model for classifying five diseases in apple leaves is proposed. The 

images were taken from the original field and scored 78.8 mAP in classification [56]. 

To detect maize leaf diseases, an AlexNet-based architecture is proposed. When 

compared to baseline approaches, the model showed a 98.62% accuracy [57]. To 

classify diseases in corn is proposed an approach based on a support vector machine 

(SVM). During the successful classification of diseases, the algorithm achieved a 97% 

accuracy rate [58]. A classification model for identifying diseases in cucumber is 

proposed. The SVM algorithm-based model achieved a total classification accuracy of 

98.13 percent, which included both healthy and diseased plants [59]. 

 

The study presented using the Fuzzy C-Means algorithm and K-fold cross-validation to 

detect the diseases in grapes. The model was capable of distinguishing the diseases with 

an overall accuracy of 98.6% [60]. An integrated CNN model for grape disease 

classification is suggested. The experimental results show that the model achieved 

98.57% average accuracy [62]. To detect the pest in rice plants an adoptive CNN model 

is proposed and developed. As compared to existing pre-trained models, the 

architecture achieved a 93.3 % accuracy rate [63]. A 9-layer CNN model was proposed 

to identify 39 different plant diseases [61]. An adoptive CNN model to detect the pest 

in rice plants is proposed and the architecture has gained 93.3% accuracy and compared 

its performance with the existing pre-trained models [63]. A 9-layer CNN model to 

classify 39 different diseases of various plants is proposed. The model's experimental 

results appeared higher than conventional methods, with 96.46% accuracy [61]. 
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CHAPTER 3 

DATA ACQUISITION AND ENRICHMENT 

 

The most considerable drawback while using deep learning models is the unavailability 

of large number of images in the training dataset. The size of the dataset can serve as 

the sufficient and proper input to the model during the training procedure. In reality, at 

least some hundreds of images are needed to use the model for efficient classification. 

The solution to increase the quantity of images in a dataset is applying image 

augmentations without losing the originality. The past researches have already proved 

that the image augmentation techniques can artificially increase the number of images 

in a training dataset. The techniques can improve the overall process of learning and 

model classification efficiency. Thus, two image acquisition approaches have been 

proposed to systematically obtain images from the internet sources and real agricultural 

field. Later, another algorithm is proposed to describe the procedure how the 

augmentation techniques can be applied to enhance the datasets.  

 

Fig 3.1 Four-step process of data collection 

During this study, various augmentation techniques like zoom, flip, shift, shear, resize, 

rescale and rotate with different values has been investigated. Later, the techniques are 

applied to an original image and observed that the size is increased more than 350 times 
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higher than the original dataset size. The application of augmentation techniques proved 

that the suggested techniques are the best while dealing with unbalance datasets and 

reduce model overfitting. The overall process followed during data acquisition and 

enrichment process is shown in Fig 3.1. 

3.1 Image Acquisition 

For object recognition and image classification, appropriate image datasets are required 

at training and testing phase to run the model. Initially, a total of 4758 maize crop 

images have used from Kaggle and Plant Village dataset [73] for classification. The 

images captured from real-field were used for testing the model. The images 

downloaded from the internet has searched by object name or its class name on various 

sources databases, repositories and websites in English language. A clear and detailed 

methodology to acquire datasets has been depicted in Fig 3.2.  

 

Fig 3.2.  Detailed methodology of image acquisition process 
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In this sub-section, two image acquisition algorithms have been proposed to 

systematically acquire and enrich the datasets for learning process of the CNN model. 

Algorithm1 describes the process of collecting the images required to train the model. 

Algorithm2 describes the process of capturing the images required to test the model.   

 

Algorithm 1: Image Data Acquisition Process for Training  

Step1: procedure Image_acquisition (X→ Images from Internet Sources)  

Step2: max_images → Set the maximum number of images required 

Step3: max_classes → Set the values as ‘7’ for seven disease classes 

Step4: object_properties → Set the object properties for each class 

Step5: Identify the image sources in Web(W) 

Step6: repeat 

Step7: for i < max_images do 

Step8:   for c < = 7 do 

Step9:    for m < max_per_class do 

Step10:    If found img then 

Step11:   Visit ‘W’ for ‘DS(img)’ and perform the search process  

Step12:   Identify img X with required ‘obj_properties’ 

Step13:   If found then 

Step14:     Compare ‘obj_ properties’ with requirements 

Step15:    else 

Step16:     Until img X is found 

Step17:     If matched then 

Step18:     Identify img class x of captured image X 

Step19:     else 

Step20:      Until X(obj_properties) is matched  

Step21:    Load X into dataset 

Step22:  end for 

Step23: Until ‘max_images’ is reached 

Step24:  end for 

Step 25: Repeat 

Step 26: Perform Image Augmentations 
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     procedure augmentation_process(imgx → original image) 

     Randomly select an image imgx from a training dataset DSinput 

     Initialize ‘imgx’ with pre-selected augmentation technique ti where i= 1 to n

      n ← Set the number of ‘imgy’ to be generated 

      m ← set the number of augmentations 

     Apply augmentations to obtain new image ‘imgy’  

      Apply for position augmentation 

       position_augment(augp);  

       Store imgy in DSinput = { DSinput,(imgx, imgy)}  

      Apply for color augmentation 

       color_augment(augc);  

       Store imgy in DSinput = { DSinput,(imgx, imgy)}  

     Until augt1 to augtn for each image of each image class 

Step27: Repeat 

Step28: Apply Image Fine Tuning 

      fine_tune(DSinput (new)); 

      Store HSI (imgy[i]) in DSinput 

Step29: Until augt1 to augtn for each image of each image class 

Step30: end procedure 

 

Algorithm 2: Image Data Acquisition Process for Testing 

Step1: procedure Image_acquisition (Y→ Images from real field)  

Step2: max_images → Set a value representing maximum number of images 

Step3: max_classes → Set a value of ‘7’ for seven disease classes 

Step4: object_properties → Set the object properties for each class 

Step5: Identify the real-field environment 

Step6: Visit the location 

Step7: Repeat 

Step8: for i < max_images do 

Step9:   for c < = 7 do 

Step10:  If found img then 

Step11:  Identify ‘Y’ with object 
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Step12:  Compare the object_properties with the requirements  

Step13:    If matched then 

Step14:   Capture ‘Y’ 

Step15: Identify the image class ‘y’ of ‘Y’ 

Step16:    else 

Step17:  Until object_properties are matched 

Step18:  Load Y into dataset 

Step19:  end for 

Step20: Until max_images are reached 

Step21:  end for 

Step22: end procedure 

 

The next process after image acquisition is to apply various augmentation techniques 

to enrich the training dataset with the existing images. The augmentation can help a 

CNN model to learn more image features that contribute for the better and more 

accurate image classification. 

3.2 Image Augmentations 

The most critical problem facing by the researchers is gathering good quality and 

quantity of data. Image Augmentation (IA) is crucial to enrich the input dataset and also 

enhances the performance of any deep learning models. The insufficient data issue has 

brought the life to image augmentation. Data Augmentation is a process to increase the 

numbers of image samples in a dataset using the images that already exists. The 

augmentation process is the most important technique that can be performed manually 

or automatically. The most popular augmentation techniques implemented in this 

research are position augmentation and color augmentation. 

Image Data Augmentation is necessary to determine the final size of the input dataset. 

The results after implementing IA techniques can improve the input dataset size from 

N to 2N. All the augmentation techniques like horizontal-vertical (HV), horizontal-

vertical shift (HVS), horizontal-vertical flip (HVF), random rotation (RR), random 

zooming (RZ), and random brightness (RB) are applied to the images in the input space.   
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Algorithm 3: Image Augmentation and Fine-Tuning Process 

Function color_augment(DSinput): 

 i=0 

 for c in image class do 

     Apply color augmentation augc to a selected imgx.   

     Select another augi. 

     Generate the output imgy of augi. 

 end for 

return augc [imgy] 

 

Function position_augment(DSinput): 

 i=0 

 for c in image class do 

     Apply position augmentation augp to a selected imgx.   

     Select another augi. 

     Generate the output imgy of augi. 

 end for 

return augc [imgy] 

 

Function fine_tune(DSinput (new)): 

 i=0 

 for c in image class do 

     for each imgy[i] in DSinput(new) 

Regularize the size of imgy using ‘w’ and ‘h’     

Generalize the resolution of imgy using ‘res’ 

Convert RGB (imgy[i]) to HSI (imgy[i]) 

      Increment ‘i’ in imgy[i] 

     end for 

return DS(HSI(imgy)) 
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Fig 3.3. Position Augmentations: (a) HV (b) HVS 

Fig. 3.3(a) represents a horizontal shifting (HS) augmentation technique with a range 

between [-200,200] pixels and generates new images. The image creates an instance for 

image augmentation and performs nine iterations plotting a copy at each iteration. The 

plotting results in a range of nine different randomly considered positive and negative 

HVS. The image corner is duplicated with the pixel values to fill the empty area of the 

image generated by the shift. Fig. 3.3(b) represents a vertical shift with a shift range of 

0.5, specifying the shift percentage as the image height. 

The HVF technique reverses the rows/columns pixels of an input leaf image. Fig. 3.4(a) 

demonstrates the horizontal shift by creating the nine augmented RGB images. The 

above figure shows the outcomes of the horizontal flips (HF) performed by applying 

the random flips (RF).   

  

Fig. 3.4 Position Augmentation: (a) HVF (b) RR 
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RR augmentation technique, when applied rotates the image pixels and fills the 

remaining area of the frame with no pixels. Fig 3.4 (a)(b) demonstrates the random 

rotation technique by generating nine images rotated by selecting random angles 

between 00 and 900.    

 

Fig. 3.5 Position and Color Augmentation: (a) RZ (b) RB 

Fig 3.5(a) demonstrates the RZ augmentation technique. The technique generates nine 

different RGB images with different randomly zooming the input image by adding the 

new pixels around the image or taking the pixel values and interpolates. Fig 3.5(b) 

outputs the new images by applying the random zooming with values ranging from 50% 

zooming (0.5) and no zooming (1.0).  

Fig 3.5(b) demonstrates the RZ augmentation technique. This technique's application 

generates nine different RGB images with varying levels of lighting either by 

darkening, brightening, or both to the images with random values between 20% 

brightness (0.2) and no intensity (1.0). 

The proposed algorithm3 has generated 8542 more new images with the existing 4758 

old images. After the augmentation process, the training set is ready with 13300 images 

to feed to the model. A total of 2660 images acquired from the real agriculture field 

were used to test the proposed CNN model to perform the classification of seven 

different disease classes. Among the classes, six are the common diseases and the other 

one is healthy leaf images of maize were considered.  The process followed during 

images collection is shown in Fig 3.6. The complete details of the image’s dataset are 

mentioned in Table 3.1 and some samples are shown in Fig 3.7. 
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Fig 3.6. Data collection process 

 

 
 

Fig 3.7 Seven Classes of maize crop disease categories (a) anthracnose leaf blight, (b) 

anthracnose stalk rot, (c) eyespot, (d) northern corn leaf spot, (e) southern rust, (f) 

Gibberella stalk rot (g) healthy 

Table 3.1. Details of maize crop images   

Disease Class 
# Images used 

for training 

# Images used 

for testing 

Total 

Number 

Anthracnose Leaf Blight (ALB) 1900 380 2280 

Anthracnose Stalk Rot (ASR) 1900 380 2280 

Eye Spot (ES) 1900 380 2280 

Gabriella Stalk Rot (GSR) 1900 380 2280 
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Health (H) 1900 380 2280 

Northern Corn Leaf Spot (NCLS) 1900 380 2280 

Southern Rust (SR) 1900 380 2280 

Total 13300 2660 15960 

 

3.3 Image Pre-processing 

Pre-processing is a technique for improving image quality by removing unwanted 

distortions and enhancing key features. It enables the proposed model to benefit from 

the learned features while understanding the image class. Image resize and rescale is 

used as pre-processing techniques. All of the images in the dataset have pre-processed 

to a regular size of 224 x 224 before being fed into the new model. To boost resolution, 

the dataset images are pre-processed to 1/.255 scaling. 

3.4 RGB to Hyperspectral Image Conversion 

A data-driven approach is followed to construct the hyperspectral images from RGB 

images. All the training and testing dataset RGB images are converted into 

hyperspectral images (HSI) with ‘n’ number of target spectral bands. Later, the HSI 

images are used to perform classification process.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



34 
 

CHAPTER – 4 

DESIGN AND DEVELOPMENT OF A CNN MODEL 

 

Identifying diseases in crops by accurately extracting the features is becoming more 

important and difficult task. The accurate recognition of diseases in crop is desired in 

the field of agriculture. A Convolutional Neural network or simply CNN is a special 

kind of multi-layer neural network model that performs the identification and 

classification of diseases in a systematic manner. CNN has been used to identify crop 

diseases in very few research so far. The motivation for proposing a new deep learning 

model is to help farmers identify maize crop diseases at the earlier stage only. An 

NPNet-19 model is designed, trained, and tested using a novel deep learning recognition 

and classification approach to identify diseases. The proposed deep learning model 

enhances the analytical outcomes by extracting features from raw images in a 

systematic manner. The model can recognize the diseases earlier by monitoring and 

classifying the images captured with a digital camera. 

 

4.1 Development of a CNN Model  

In this sub-section, a detailed and a systematic process of developing a proposed neural 

network model is described. The development approach is a step-by-step process that 

clearly describes how the fully connected deep convolutional neural network is 

developed.   

 

4.1.1 Convolutional Layer 

During this step, the development process of a convolution layer is clearly described. 

The first step is the convolution operation. It is a mathematical operation that can be 

applied on two functions ‘f’ and ‘g’ and outputs a third function ‘e’. The new function 

expresses how one disease symptom image is modified by the other.   

  

(𝑓 ∗ 𝑔)[𝑛] = ∑ 𝑓[𝑚]𝑔[𝑛 − 𝑚]
∞

𝑚=−∞
    (1) 
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for each value of ‘n’ and a dummy variable ‘m’. The convolutional operation has three 

elements, such as input symptom image, feature detection, and feature map. The input 

image is an infected one that can be represented as a pattern of 1’s and 0’s where 1 

indicates infected portion and 0 indicates noninfected portion. The image is represented 

as a 3 x 3 matrix or cells for smaller images and 5 x 5 or sometimes 7 x7 matrices for a 

larger one and is treated as a feature detector. The matrix is also often referred as “filter” 

or “kernel”. A Feature detector is an image processing function usually performs to 

examine every pixel of an input image to determine the presence of an infection feature 

(add symptoms here) present at that pixel. The detector slides through the image with 

certain infection information and filter the cells (a small portion of an image) that are 

integral to it by excluding the remaining cells. From the input image, CNN creates many 

feature maps to obtain the first convolutional layer. The research develops more feature 

detectors and uses them to generate various feature maps that are further referred to as 

a convolutional layer. Through proper training, the CNN understands the different 

features that exist on the input leaf images and categorizes them into different disease 

classes based on their similarities. 

 Convolutions or convolutional layers are the essential elements of neural networks. 

The convolution layer consists of several filters, filter size, input shape, padding, stride, 

and activation function. The layer filters are independent and generate feature maps by 

convolving around the input image as shown in Fig 4.1. Here, we convolve an image 

of size Iw width and Ih height with a filter of w x h and obtains an output feature map 

of size Ifw and Ifh as given in the equation 2 and 3 and shown in Fig 4.2.  

𝐼𝑓𝑤 =
𝐼𝑤−𝑤+2𝑝𝑤

𝑠𝑤
+ 1       (2) 

𝐼𝑓ℎ =
𝐼ℎ−ℎ+2𝑝ℎ

𝑠ℎ
+ 1       (3) 

In eqn (2) & (3), Ifw and Ifh are the width and height of the feature map generated after 

performing convolution of an image. Here, ph and pw are the height and width after 

zero padding, sw and sh are the strides in both horizontal and vertical directions 

respectively. 
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Fig 4.1. Feature map extraction from an infected leaf image 

 

 

Fig 4.2. First CNN layer development process 

 

Second process is applying the noise filter. Convolutional matrix is generated to adjust 

an image by reducing the noise. It is the concept called filter which is being applied to 

leaf images using sharpen, blur, edge detect, etc. These techniques are used to identify 

and alter the disease features in the same manner as the original one. Fig 4.3 shows 

some of the images adjust with a convolutional matrix using various filters. 

used 

 

Fig 4.3. Sample images generated after adjustment with filters 

 

 



37 
 

4.1.2 Activation Functions 

Step 1(c): ReLU Function 

The most common nonlinear activation function used in convolutional layers is 

Rectified Linear Unit, or simply ReLU. The nonlinearity is calculated using equation 4 

as follows:  

 

f(x)=max (0, x)      (4) 

 

While training a CNN, ReLU function is used to remove the linearity in an image 

because they have poor performance in terms of efficient identification of disease. Fig. 

4.4(a) shows the graphical representation of ReLU activation function and the process 

how non-linearity is removed from the image feature matrix is shown in Fig 4.4 (b).  

When a rectifier function is applied to a diseased leaf image that removes the black 

elements from it and keeps all the positive values like grey and white color.  

Third, categorical cross entropy is used for classification as there are more than two 

diseases being considered. The mathematical classification equation is denoted as 

  

Y(x) = WTΦ(x) + b      (5) 

 

where Y(x) is the output classifier with positive and negative values. Positive values 

denote the symptom feature belongs to one disease class, whereas negative values 

denote another disease class. Here, WT and b denote weight and bias. 

 

 

(a) Non-linear activation  
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(b) Application of ReLU 

 

Fig 4.4. Applying a rectifier function to remove non-linear image features 

 

The softmax activation function is applied to the classification of seven disease classes. 

This function normalizes the output image values to identify specific class probability. 

Fig 4.5 shows the multi-class activation graph of the function used during the 

classification process. 

 

Fig 4.5 Activation function SoftMax 

4.1.3 Batch Normalization 

The Batch Normalization (BN) technique is implemented while designing the CNN to 

normalize the given inputs to a specific layer for every mini-batch. Adding this layer 

can stabilize learning and reduce the required number of epochs for training the network 

dramatically. In general, BN layer is a 4-dimensional tensor representing both the input 

and output that refers to Ib,c,sd1,sd2 and Ob,c,sd1,sd2, respectively. Here b is a 'batch', c is the 

'number of color channels', sd1 and sd2 are the 'spatial dimensions'. For all the 
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activations, BN applies a similar normalization in a provided channel as given in 

equation. 6 [64]: 

𝑂𝑏,𝑐,𝑠𝑑1,𝑠𝑑2 ← 𝛾𝑐
𝐼𝑏,𝑐,𝑠𝑑1,𝑠𝑑2− 𝜇𝑐

√𝜎𝑐
2+𝜖

+ 𝛽𝑐        (6) 

where ′𝛽′ contains all channel ‘c’ activations, overall image features ‘b’ in the mini-

batch including all sd1, sd2 spatial locations. Meanwhile, BN divides the common 

activation using the standard deviation (sd) 𝜎𝑐 plus numerical stability ‘𝜖’ by following 

the 𝛾𝑐, 𝛽𝑐 channel-wise affine transformation parameters during the learning process. 

4.1.4 Max Pooling 

As a convolution process, Max Pooling (MP) extracts the maximum value of the image 

area it convolves. The pooling layer accumulates the feature maps generated while 

convolving the kernel over an input image. The MP reduces the spatial size 

representation by minimizing the number of parameters and the dimensionality of an 

image. It means that the MP operation reduces the number of pixels in every feature 

map and produces the summarized version of the input image with detected features. 

Now, the output feature map will contain only the most prominent values of features of 

the previous feature map. This process improves the model performance capability due 

to the reduced number of learning parameters and taking less computational time.  MP 

generates a filter for each layer as a single value using equation. 7 where 𝑍𝑓 is a feature 

vector, and ‘s’ is the number of strides [65]. 

𝑍𝑓 = max{𝑠} = max {𝑠1, 𝑠2, 𝑠3, . . , 𝑠𝑛}     (7) 

Max Pooling is concerned with training CNN in a way that it can be used to recognize 

the diseased leaf despite of all its representations like normal, rotate and squashed view. 

Fig 4.6 shows some sample images generated after performing random, rotate, and 

squashed transformation. The implementation of this process allows to detect the 

diseased image without worrying the difference in image textures, location, and the 

angle of an image captured or otherwise. The output of the previous step is a pooled 

feature map. This map is flattened into a column-wise representation that will be 



40 
 

inserted into CNN in further steps. Based upon the number of pooled features maps the 

number of layers in CNN depends.  

 

Fig 4.6. Different versions of image representations (a) original (b) rotated and (c) 

squashed 

4.1.5 Dropout 

The dropout (D) layer allows reducing the problem of overfitting before performing the 

classification. First, the vector Zd is being facilitated by randomly dropping some 

elements with a probability of p provided by the Bernoulli Distribution (BD). In the 

softmax layer, the class-wise prediction is computed with a reduced vector and weights 

as given in the equation. 8 [64]: 

𝑂 = 𝑍𝑑𝑊𝑠 + 𝑑 𝑤ℎ𝑒𝑟𝑒 𝑊𝑠  ∈  𝑅𝑚 𝑋 𝑘    (8) 

4.1.6 Fully Connected Layer 

Flatten or Fully Connected (FC) layer implies that all the previous network layer 

neurons connect to all the present network layer neurons. The number of neurons in the 

last layer will be the same as seven classes to be predicted as per the current work. In 

general, FC will have two parameters like weight w and bias b. The change in error 

during linear transformation is calculating using an equation. 9 as: 

𝑍 = 𝑊𝑇 . 𝑋 + 𝑏 where X is the input   (9) 

In this step, a fully connected convolutional neural network is created with an input 

layer, hidden layers, and output layer. The input layer is the vector of input data 

collected from step 3. This step will bring the proposed Deep CNN to the next level 

with more complexity and precision. The role of this step is to take the features data 
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into a variety of attributes to make the CNN more capable of classifying seven different 

input diseased leaf images as of Fig 4.8. 

 

Fig 4.7. Proposed fully connected CNN Model 

 

After the successful development of the model, the research continues with the 

implementation to identify the infected maize crop leaf, classifies them into seven 

classes based on the symptoms (features) and determines what type of infection the leaf 

is affected with. The complete process of implementation is described in the next 

sections. 

 

4.2 CNN Model Design 

 

CNN is a deep learning algorithm used for recognising and analysing visual imagery. 

Computer vision technology motivates CNN to learn features in an input image and 

allows to distinguish it from other images by allocating weight and bias to various 

objects. The CNN architecture is modelled with the human brain's neuron 

communication pattern. CNN is a multilayer perceptron with connectivity between 

adjacent layers of neurons. Every layer is a container for neurons, and layer N-1's input 

is a subset of neurons from layer N. 

 

After trying a number of designs approaches the model has been developed by 

overcoming the problem of overfitting.  The proposed NPNet-19 architecture is a CNN-

based sequential model designed with several layers like convolutions, batch 
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normalization, max pooling, dropout, flatten, and dense imported using Tensor Flow 

2.4.1 backend from the Keras library.  The proposed model is a 3-level network 

architecture with a total of 19 internal layers. The first network level holds 2 

convolutional layers with 32 filters (kernels) of size 3 x 3, one max-pooling layer, one 

batch normalization layer, and one layer with 30% dropout. The second network level 

holds 2 convolutional layers with 64 filters (kernels) of size 3 x 3, one max-pooling 

layer, one batch normalization layer, and one layer with 30% dropout. The third 

network level holds 2 convolutional layers with 128 filters (kernels) of size 3 x 3, one 

max-pooling layer, one batch-normalization layer, and one layer with 30% dropout. The 

model consists of 1 flatten layer and two dense layers. Among the dense layers, one 

layer is with 128 units and a ReLU non-linear activation function and the other layer is 

with 7 units and a 'softmax' multi-class classification function. Table 4.1 shows the 

summary of the proposed model. The three different architectures of the proposed CNN 

model are shown in Fig 4.8.  

 

Table 4.1. Proposed NPNet-19 model summary 

Layer Category Output Shape # of Param  

conv2d (Conv2D)               (218, 218, 32) 4736 

conv2d (Conv2D) (212, 212, 32) 50208 

Batch Normalization (212, 212, 32)       128 

Max_Pooling2D (106, 106, 32)       0 

Dropout (106, 106, 32)       0 

conv2d (Conv2D)               (100, 100, 64)       100416 

conv2d (Conv2D) (94, 94, 64)         200768 

Batch Normalization (94, 94, 64)         256 

Max_Pooling2D (47, 47, 64)         0 

Dropout (47, 47, 64)         0 

conv2d (Conv2D)               (41, 41, 128)        401536 

conv2d (Conv2D) (35, 35, 128)        802944 

Batch Normalization (35, 35, 128)        512 

Max_Pooling2D (17, 17, 128)        0 
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Dropout (17, 17, 128)        0 

Flatten (36992)              0 

Dense (128)                4735104 

Dropout (128)                903 

Dense (7)                  0 
 

 

 

(a) LeNet style 

 

(b) AlexNet style 

 

(c) Conventional style 

 

Fig 4.8. Proposed NPNet-19 Architecture styles 
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CHAPTER – 5 

VERIFICATION AND VALIDATION OF THE PROPOSED MODEL 

 

In this section, the performance of the proposed model is verified by changing the 

hyperparameter values. Next, the model performance has compared with the pre-trained 

models and other existing models. Images related to seven different classes of maize 

crop diseases is chosen for the experimental approach. A total of fifty-five experiments 

has carried out to validate the model performance. All the experiments have conducted 

using Keras library and Tensor Flow 2.4.1 backend.   

 

5.1 Work Environment 

 

The experiment has been performed on a Windows 10 Operating System with Intel 

CPU @ 2.3GHz i7 Processor and 16GB RAM.  The machine is accelerated by an 

NVIDIA GeForce RTX 2070 Super Max-Q GPU with 8GB GDDR6 card with CUDA 

2560 Cores.  

5.2 Verification of the model 

 

The evaluation of the proposed model has performed to determine the classification 

efficiency using several hyperparameters with their default values.  The process of 

classification performance of the proposed model using training and testing image sets 

is shown in Fig 5.1. 

 

Fig 5.1. Performance evaluation process of the proposed model 
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5.2.1 Performance Evaluation 

In this sub-section, the performance has observed by running the proposed model for 

different number of epochs. This process can allow to determine the best epoch value 

that can help to improve the model efficiency. 

The experiment has carried out with different training and testing dataset split ratios. 

Initially, the experiment has conducted with a train and test dataset split ratio of 80:20 

for the proposed model. To observe the performance, the new model has been trained 

and tested for different epochs like 35, 50, 100, 200, 300, and 500 with a batch size of 

32. The performance evaluation results in terms of accuracies are shown in Table 5.1. 

Table 5.1. Accuracy results of six different epochs 

Train-

Test ratio 

Training and Testing 

Accuracies 

# of 

epochs 

Training 

Accuracy 

Testing 

Accuracy 

80:20 

35 89.71% 70.64% 

50 91.29% 81.43% 

100 94.16% 83.42% 

200 95.71% 86.24% 

300 94.65% 83.46% 

500 97.51% 88.72% 

The results mentioned in Table 5.1 has described that the classification accuracy 

obtained is high when the model is trained with dataset split ratio of 80:20 and with 500 

epochs. Fig 5.2 shows the curves of training and validation accuracies including losses. 

Fig 5.3 shows the training/validation accuracy and loss curves of results mentioned in 

Table 5.1. The performance improvement of the proposed model over the number of 

epochs is shown in Fig 5.4. 
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(a) Accuracies curves     (b) Loss curves 

Fig 5.2. Accuracy and loss curves of the training and testing image sets

 
(a) 35 epochs 

 

 
(b) 50 epochs 

 

 

(c) 100 epochs 
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(d) 200 epochs 

 

 
(e) 300 epochs 

 

  
(f) 500 epochs 

 

Fig 5.3. Training and Testing Accuracy and Loss Curves 

 

Fig 5.4. Performance improvement of the proposed model 
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5.3 Classification Performance 

In this section, the evaluation of classification performance based on each disease class 

confusion matrix is presented. The confusion matrix provides a standard format for 

accuracy assessment by defining ‘n' rows and ‘m' columns using precision, recall, and 

F1-score. The number of class instances is represented by each row in the matrix, while 

the number of predicted class instances is represented by each column. 

Table 5.2. Confusion matrix of seven diseases classification 

Class 

Index 
Precision Recall F1-Score Support 

0 88% 86% 87% 380 

1 93% 100% 96% 380 

2 81% 61% 69% 380 

3 100% 93% 96% 380 

4 90% 95% 93% 380 

5 78% 87% 82% 380 

6 91% 100% 95% 380 

Accuracy 89% 2660 

Macro 

Avg 
89% 89% 88% 2660 

Weighted 

Avg 
89% 89% 88% 2660 

Table 5.2 shows the precision, recall, and F1-score of seven maize crop disease classes. 

The top F1 scores obtained by the proposed model for disease type 1 (anthracnose stalk 

rot) and type 3 (gibberella stalk rot) is 96%. When compared with each class precision 

and recall value, the difference of type 0 disease (anthracnose leaf blight) is 88% ~ 86%. 

It describes that the model classified most images with type 0 disease as disease type 0. 

When compared with each class precision and recall value, the difference of type 2 

disease (eyespot) is 81% ~ 61%. It describes that the model classified only few images 

with type 2 disease as disease type 2. The classification report in Fig 5.5 shows the 

confusion matrix with and without the normalization for results mentioned in Table 5.2. 
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         (a) classification level    (b) without normalization  (c) with normalization 

Fig 5.5. Confusion matrix representations 

To assess the efficiency of the proposed model, a variety of experimental methods are 

used. To begin, additional training and testing dataset ratios are considered in the 

experimentation. The classification accuracy results for the proposed model are shown 

in Table 5.3 for three different train and test ratios as defined in Table 1. The class-wise 

performance values in Table 5.3 with 500 epochs is shown in Table 5.4.

Table 5.3. Classification results of different image set split ratios 

Training-Testing 

Image set Ratio 

in % 

Classification Accuracies 

100 epochs 500 epochs 

50-50 66% 72% 

75-25 76% 81% 

80-20 83% 89% 

From Table 5.3, it is observed that the proposed model performed the classification 

problem well for the 80:20 dataset split ratio compared with split ratios 50:50 and 75:25. 

The comparative results are shown in Fig 5.6 and the class-wise accuracy values for 

different split ratios and 500 epochs are mentioned in Table 5.4. 
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Fig 5.6. Classification accuracies with different image sets split ratios 

Table 5.4. Class-wise classification accuracies   

Image set Split 

Ratio in % 

 

Classes 

Classification 

Accuracy 

Overall Average 

Classification 

Accuracy 

 

50-50 

ALB 61% 

 

72% 

ASR 85% 

ES 67% 

GSR 90% 

H 70% 

NCLS 57% 

SR 71% 

 

75-25 

ALB 84% 

 

81% 

ASR 95% 

ES 63% 

GSR 98% 

H 72% 

NCLS 67% 

SR 86% 
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80-20 

ES 69  

89% GSR 96 

H 93 

NCLS 82 

SR 95 

 

The experimentation has so far been carried out with a 3 x 3 kernel scale. The proposed 

model is once again updated to increase classification accuracy by changing the kernel 

size from 3 x 3 to 5 x 5 and 7 x 7. Table 5.5 shows the results for the same dataset with 

various kernel sizes based on the confusion matrix. From Table 5.5, it is evident that 

both the kernel size 5 x 5 and 7 x 7 outperformed the 3 x 3 kernel size after evaluating 

for 100 epochs. The new model performed well with a 3% higher classification 

accuracy than the kernel size 3 x 3. Training the same model for 500 epochs, the kernel 

size 3 x 3 outperformed better than 5 x 5 and 7 x 7 kernel sizes. The performance 

evaluation results of the proposed model for different kernel sizes have presented in 

Table 5.5 and the same have been shown in Fig 5.7. 

Table 5.5. Classification accuracies with three different kernel sizes 

Training 

and Testing 

Ratio in % 

# of 

epochs 

Classification Accuracies 

Kernel Size 

3 x 3 

Kernel Size 

5 x 5 

Kernel Size 

7 x 7 

50-50 100 66% 68% 66% 

75-25 100 76% 75% 77% 

80-20 100 83% 85% 85% 

80-20 500 89% 85% 87% 

 

Initially, the evaluation process of the proposed model has been carried out with 

different data split ratios and kernel sizes for 100 epochs. Later, the process has been 

continued for 500 epochs with a dataset split ratio of 80:20 and different kernel sizes to 

observe the improvement in accuracy. The green bars in figure 5.7 are showing the 

results observed during the experiment.   
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Fig 5.7. Performances measures with different kernel sizes 

5.4 Performance Analysis using selective hyperparameters 

The selection of appropriate hyperparameters such as the input image size, optimizers, 

learning rate, kernel sizes, the number of hidden layers, batch size, number of epochs 

are the major barriers to apply CNN and requires considerable skill and experience. 

Internal dependencies in these hyper-parameters make tuning them more costly and 

time consuming. There is no standard procedure or technique that can help in selecting 

the suitable values for hyperparameters. The selection process should be done on the 

trial-and-error basis only. Through experimental approach it is observed that the inter 

dependencies among the hyperparameters can affect the performance of any CNN 

model through experimental approach. A total of fourteen experiments were conducted 

on selecting the suitable hyperparameters. During the experiments, the model is trained 

and tested for 100 epochs. 

The hyperparameters used while training the model are presented in Table 5.6. During 

the model evaluation, the states in which the network presented the accuracy and loss 

for the training and testing datasets were saved. Later, the saved results were evaluated 

in terms of precision, recall and F1 score.    
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Table 5.6. List of hyperparameters for tuning the model 

Parameter Value 

Image size 112 x 112, 168 x 168, and 224 x 224 

Batch size 32, 64, and 128 

Number of epochs 50, 100, and 200 

Optimizers Adam, RMSprop, and SGD 

Learning rate 0.001, 0.01, and 0.005 

Kernel size 3 x 3, 5 x 5, and 7 x 7 

Number of hidden 

layers 

15, 17, and 19 

Loss function Cross-Entropy 

 

5.4.1 Image Size 

The resolution of the input images may impact the performance of image detection and 

classification. To understand the truth behind this statement, the proposed disease 

detection and classification CNN model has been trained by considering the input 

images with different resolutions for analysis. The model is trained on the images with 

varied resolutions like 112 x 112, 168 x 168 and 224 x 224 and evaluated its 

performance.  The performance measure of the proposed model for 100 epochs, 32 

batch size, 19 hidden layers and with three different image sizes are shown in Table 

5.7. 

Table 5.7. Accuracies with different image sizes 

Image Size Kernel Size Optimizer 
Learning 

Rate 

Training 

Accuracy 

Testing 

Accuracy 

112 x 112 3 x 3 Adam 0.001 default 94.83% 85.83% 

168 x 168 3 x 3 Adam 0.001 default 94.07% 84.66% 

224 x 224 5 x 5 Adam 0.001 default 94.46% 85.26% 

 

As shown in Fig 5.8 (a), the training process of the model is stable upto 10 epochs and 

started convergence at about 25 epochs and achieved an accuracy of 94.83% for an 
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image size 112 x 112. The training process is stable upto 5 epochs and started 

convergence at about 18 epochs and achieved an accuracy of 94.07% for an image size 

168 x 168. The training process of the model is stable upto 10 epochs and started 

convergence at about 16 epochs and finally achieved an accuracy of 94.46% for an 

image size 224 x 224. As shown in Fig 5.8 (b), the model tested on input images of size 

112 x 112 started to converge after 21 epochs and finally achieved an optimal 

classification performance of 85.83%. The model tested on input images of size 168 x 

168 started to converge after 21 epochs and finally achieved an optimal classification 

performance of 84.66%. The model tested on input images of size 224 x 224 started to 

converge after 15 epochs and finally achieved an optimal classification performance of 

85.26%.  

 

 
(a)                 (b) 

    

Fig 5.8. Accuracy and loss curves with different image sizes 

Fig 5.9(a) shows the confusion matrix associated with results obtained with input image 

size of 112 x 112. The classification results of ASR, GSR, H, and SR were consistent 

for four disease classes with 99%, 97%, 90%, and 94% respectively except ALB, ES, 

and NCLS. The results presented a considerable sum of classification errors for disease 

classes ALB and NCLS with 20% and 19% respectively. Fig 5.9(b) shows the confusion 

matrix associated with results obtained with input image size of 168 x 168. The 

classification results of ASR, GSR, H, and SR were consistent for four disease classes 

with 99%, 93%, 93%, and 98% respectively except ALB, ES, and NCLS. The results 

presented a considerable sum of classification errors for disease class ALB with 24%. 

Fig 5.9(c) shows the confusion matrix associated with results obtained with input image 

size of 224 x 224. The classification results of ASR, H, and SR were consistent for three 

disease classes with 100%, 91%, and 94% respectively except ALB, ES, GSR, and 
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NCLS. The results presented a considerable sum of classification errors for disease 

classes GSR and NCLS with 24% and 26%. Fig 5.10 shows the performance measures 

chart with different image sizes.  

 
(a)        (b) 

 

 
        (c)  

 

Fig 5.9. Confusion matrices with different image sizes  

 

Fig 5.10. Comparison of model performance with different image sizes 
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5.4.2 Batch Size 

The batch size hyperparameter can also influence the performance of a CNN model. 

This parameter supports the neural network to learn the image features more quickly 

and stable the learning process. The proposed CNN model is trained by feeding it with 

different batch sizes to determine its performance. The model is trained with different 

batch sizes like 32, 64, and 128 for analysis. The performance measure of the proposed 

model for 3 x 3 kernel size, 100 epochs, 19 hidden layers and with three different batch 

sizes are shown in Table 5.8. 

Table 5.8. Accuracies with different batch sizes 

Image Size Batch Size Optimizer 
Learning 

Rate 

Training 

Accuracy 

Testing 

Accuracy 

112 x 112 32 Adam 
0.001 

default 
94.83% 85.83% 

112 x 112 64 Adam 0.001 95.19% 80.23% 

112 x 112 128 Adam 
0.001 

default 
95.98% 83.91% 

 

As shown in Fig 5.11 (a) the training process of the model is stable upto 10 epochs and 

started convergence at about 25 epochs and finally achieved an accuracy of 94.83% for 

batch size 32. The training process of the model is stable upto 5 epochs and started 

convergence at about 18 epochs and finally achieved an accuracy of 95.19% for batch 

size 64. The training process of the model is stable upto 10 epochs and started 

convergence at about 16 epochs and finally achieved an accuracy of 95.98%. As shown 

in Fig 5.11 (b), the model tested with batch size 32 started to converge after 21 epochs 

and finally achieved an optimal classification performance of 85.83%. The model tested 

with batch size 64 started to converge after 21 epochs and finally achieved an optimal 

classification performance of 80.23%. The model tested with batch size 128 started to 

converge after 15 epochs and finally achieved an optimal classification performance of 

83.91%.  
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(a)               (b) 

Fig 5.11. Accuracy and loss curves with different batch sizes 

Fig 5.12(a) shows the confusion matrix associated with results obtained for batch size 

32. The classification results of ASR, GSR, H, and SR were consistent for four disease 

classes with 99%, 97%, 90%, and 94% respectively except ALB, ES, and NCLS. The 

results presented a considerable sum of classification errors for disease classes ALB 

and NCLS with 20% and 19% respectively. Fig 5.12(b) shows the confusion matrix 

associated with results obtained for batch size 64. The classification results of ASR, 

and SR were consistent for two disease classes with 99% and 93% respectively except 

ALB, GSR, H, and NCLS. The results presented a considerable sum of classification 

errors for disease classes ALB, H, and NCLS with 13%, 16%, and 20%. Fig 5.12(c) 

shows the confusion matrix associated with results obtained with batch size 128. The 

classification results of ASR, GSR, and SR were consistent for three disease classes 

with 99%, 96%, and 98% respectively except ALB, ES, H, and NCLS. The results 

presented a considerable sum of classification errors for disease class H with 11%. Fig 

5.13 shows the performance measures chart with different batch sizes. 

 

(a)        (b) 
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        (c)  

Fig 5.12. Confusion matrices with different batch sizes  

 

Fig 5.13. Comparison of model performance with different batch sizes 

 

5.4.3 Number of Epochs 

The performance of a CNN model can be tuned using one of the parameters like 

‘epoch’. The number of epochs can definitely influence the performance of the model. 

The proposed model is trained with 50, 100, and 200 optimal number of epochs and 

the results were analysed to determine the learning capability of a model. The 

performance measure of the proposed model for 3 x 3 kernel size, 32 batch size, 19 

hidden layers and with three different number of epochs are shown in Table 5.9. 
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Table 5.9. Accuracies with different number of epochs 

Image Size Optimizer 
Learning 

Rate 

# of 

epochs 

Training 

Accuracy 

Testing 

Accuracy 

112 x 112 Adam 0.001 default 50 90.15% 74.85% 

112 x 112 Adam 0.001 default 100 94.83% 85.83% 

112 x 112 Adam 0.001 default 200 96.16% 87.44% 

 

As shown in Fig 5.14 (a), the training process of the model is stable upto 10 epochs and 

started convergence at about 25 epochs and finally achieved an accuracy of 90.15% 

with 50 epochs. The training process of the model is stable upto 5 epochs and started 

convergence at about 18 epochs and finally achieved an accuracy of 94.83% with 100 

epochs. The training process of the model is stable upto 10 epochs and started 

convergence at about 16 epochs and finally achieved an accuracy of 96.16% with 200 

epochs. As shown in Fig 5.14(b), the model tested with 50 epochs started to converge 

after 21 epochs and finally achieved an optimal classification performance of 74.85%. 

The model tested for 100 epochs started to converge after 21 epochs and finally 

achieved an optimal classification performance of 85.83%. The model tested with 200 

epochs started to converge after 15 epochs and finally achieved an optimal classification 

performance of 87.44%.  

 

   (a)                    (b)  

Fig 5.14. Accuracy and loss curves with different number of epochs 

 

Fig 5.15(a) shows the confusion matrix associated with results obtained after running 

the model with 50 epochs. The classification result of GSR is consistent for one disease 
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class with 92% except ASR, ALB, ES, H, NCLS, and GSR. The results presented a 

considerable sum of classification errors for disease classes ASR, H, NCLS, and SR 

with 17%, 11%, 21%, and 15% respectively. Fig 5.15(b) shows the confusion matrix 

associated with results obtained after running the model with 100 epochs. The 

classification results of ASR, GSR, H, and SR were consistent for four disease classes 

with 99%, 97%, 90%, and 94% respectively except ALB, ES, and NCLS. The results 

presented a considerable sum of classification errors for disease classes ALB with 20% 

and 19% respectively. Fig 5.15(c) shows the confusion matrix associated with results 

obtained after running the model with 200 epochs. The classification results of ASR, 

GSR, H, and SR were consistent for four disease classes with 98%, 99%, 96%, and 94% 

respectively except ALB, ES, and NCLS. The results presented a considerable sum of 

classification errors for disease classes ALB and NCLS with 16% and 13%. Fig 5.16 

shows the performance measures chart with different epochs. 

 
(a)        (b) 

 
        (c)  
 

Fig 5.15. Confusion matrices with different number of epochs 
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Fig 5.16. Comparison of model performance with different number of epochs 

5.4.4 Optimizers 

The selection of optimization algorithm can show the difference in terms of learning 

time for any neural network model. The most popular optimization algorithms that are 

supported by deep learning like Stochastic Gradient Descent (SGD), RMSprop, and 

Adam are applied to the proposed model. The performance measure of the proposed 

model for 3 x 3 kernel size, 32 batch size, 100 epochs, 19 hidden layers and with three 

different optimizers are shown in Table 5.10. 

Table 5.10. Accuracies with different optimizers 

Image Size Optimizer 
Learning 

Rate 

Training 

Accuracy 

Testing 

Accuracy 

112 x 112 Adam 0.001 default 94.83% 85.83% 

112 x 112 RMSprop 0.001 default 90.83% 81.95% 

112 x 112 SGD 0.01 default 89.99% 79.66% 

 

As shown in Fig 5.17(a), the model tested using Adam optimizer started to converge 

after 21 epochs and finally achieved an optimal classification performance of 85.83%. 

The model tested using RMSprop optimizer started to converge after 21 epochs and 

finally achieved an optimal classification performance of 81.95%. The model tested 

using SGD optimizer started to converge after 15 epochs and finally achieved an 

optimal classification performance of 79.66%. As shown in Fig 5.17 (b), the training 

50

90.15
74.85

100 94.83 85.83

200

96.16 87.44

0

50

100

150

200

250

# of epochs Training Accuracy Testing Accuracy

Number of Epochs



62 
 

process of the model is stable upto 10 epochs and started convergence at about 25 

epochs and achieved an accuracy of 94.83% with Adam optimizer. The training process 

of the model is stable upto 5 epochs and started convergence at about 18 epochs and 

achieved an accuracy of 90.83% with RMSprop optimizer. The training process of the 

model is stable upto 10 epochs and started convergence at about 16 epochs and achieved 

an accuracy of 89.99% with SGD optimizer.  

 

           (a)             (b)       

Fig 5.17. Accuracy and loss curves with different optimizers 

Fig 5.18(a) shows the confusion matrix associated with results obtained using Adam 

optimizer. The classification result is consistent for one disease class GSR with 92% 

except ALB, ASR, ES, H, NCLS, and SR. The results presented a considerable sum of 

classification errors for disease classes ASR, H and SR with 17%, 11% and 15% 

respectively. Fig 5.18(b) shows the confusion matrix associated with results obtained 

using RMSprop optimizer. The classification results of ASR, H, and SR were consistent 

for three disease classes with 97%, 92%, and 95% respectively except ALB, ES, GSR 

and NCLS. The results presented a considerable sum of classification errors for disease 

class GSR and NCLS with 12% and 20% respectively. Fig 5.18(c) shows the confusion 

matrix associated with results obtained using SGD optimizer. The classification results 

of ASR, H, and SR were consistent for three disease classes with 98%, 92%, and 97% 

respectively except ALB, ES, GSR, and NCLS. The results presented a considerable 

sum of classification errors for disease class GSR with 26%. Fig 5.19 shows the 

performance measure chart with different optimizers. 
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(a)        (b) 

 

        (c)  

Fig 5.18. Confusion matrices with different optimizers 

 

Fig 5.19. Comparison of model performance with different optimizers 
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5.4.5 Learning Rate 

The adjustment of the learning rate parameter value can also impact the performance 

of classification. The learning rate hyperparameter can control the change in model 

each time when the weights are updated for each estimated error. Here, the Adam 

optimizer is selected and experiments are conducted by changing the value of learning 

rate to 0.001, 0.01, and 0.005. The performance measure of the proposed model for 3 

x 3 kernel size, 32 batch size, 100 epochs, 19 hidden layers and with three different 

learning rates are shown in Table 5.11. 

Table 5.11. Accuracies with different learning rates  

Image Size Optimizer 
Learning 

Rate 

Training 

Accuracy 

Testing 

Accuracy 

112 x 112 Adam 0.001 default 94.83% 85.83% 

112 x 112 Adam 0.01 75.26% 76.88% 

112 x 112 Adam 0.005 89.22% 81.50% 

 

As shown in Fig 5.20(a), the training process of the model is stable upto 10 epochs and 

started convergence at about 25 epochs and finally achieved an accuracy of 94.83% 

with learning rate 0.001. The training process of the model is stable upto 5 epochs and 

started convergence at about 18 epochs and finally achieved an accuracy of 75.26% 

with learning rate 0.01. The training process of the model is stable upto 10 epochs and 

started convergence at about 16 epochs and finally achieved an accuracy of 89.22% 

with learning rate 0.005. As shown in Fig 5.20(b), the model tested using Adam 

optimizer and learning rate of 0.001 started to converge after 21 epochs and finally 

achieved an optimal classification performance of 85.83%. The model tested using 

Adam optimizer and learning rate of 0.01 started to converge after 21 epochs and finally 

achieved an optimal classification performance of 76.88%. The model tested using 

Adam optimizer and learning rate of 0.005 started to converge after 15 epochs and 

finally achieved an optimal classification performance of 81.50%.  
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(a)                (b)  

Fig 5.20. Accuracy and loss curves with different learning rate 

Fig 5.21(a) shows the confusion matrix associated with results obtained using Adam 

optimizer and learning rate of 0.001. The classification results of GSR is consistent for 

one disease class with 92% except ASR, ALB, ES, H, NCLS and SR. The results 

presented a considerable sum of classification errors for disease classes ASB, H and SR 

with 17%, 11% and 15% respectively. Fig 5.21(b) shows the confusion matrix 

associated with results obtained using Adam optimizer and learning rate of 0.01. The 

classification results of ASR and GSR were consistent for two disease classes with 97% 

and 93% respectively except ALB, ES, H, NCLS, and GS. The results presented a 

considerable sum of classification errors for disease class H, NCLS and SR with 23%, 

23%, and 13%. Fig 5.21(c) shows the confusion matrix associated with results obtained 

using Adam optimizer and learning rate of 0.005. The classification results of ASR and 

H were consistent for two disease classes with 100% and 90% respectively except ALB, 

ES, GSR, NCLS and SR. The results presented a considerable sum of classification 

errors for disease classes GSR, NCLS, and SR with 19% and 17%. Fig 5.21 shows the 

confusion matrix with and without normalization and Fig 5.22 shows the performance 

measure chart with different learning rates. 
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(a)             (b) 

 

            (c)  
 

Fig 5.21. Confusion matrices with different learning rates 

 

Fig 5.22. Comparison of model performance with different learning rate 
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5.4.6 Kernel Size 

Kernel size manages to reduce the model weights while learning deeper. A fully 

connected layer connects each output in terms of kernel size. Even the number of 

weights depends on the kernel size. Here, the experimentation is conducted with three 

different kernel sizes like 3 x 3, 5 x 5, and 7 x 7 to analyse the model performance. The 

performance measure of the proposed model for 32 batch size, 100 epochs, 19 hidden 

layers and with three different kernel sizes is shown in Table 5.12. 

Table 5.12. Accuracies with different kernel sizes 

Image Size Kernel Size Optimizer 
Learning 

Rate 

Training 

Accuracy 

Testing 

Accuracy 

112 x 112 3 x 3 Adam 0.001 default 94.83% 85.83% 

224 x 224 5 x 5 Adam 0.001 default 94.46% 85.26% 

224 x 224 7 x 7 Adam 0.001 default 94.58% 84.59% 

 

As shown in Fig 5.23(a), the training process of the model is stable upto 10 epochs and 

started convergence at about 25 epochs and finally achieved an accuracy of 94.83% 

with kernel size 3 x 3. The training process of the model is stable upto 5 epochs and 

started convergence at about 18 epochs and finally achieved an accuracy of 94.46% 

with kernel 5 x 5. The training process of the model is stable upto 10 epochs and started 

convergence at about 16 epochs and finally achieved an accuracy of 94.58% with kernel 

size 7 x7. As shown in Fig 5.23 (b), the model tested using kernel size of 3 x 3 started 

to converge after 21 epochs and finally achieved an optimal classification performance 

of 85.83%. The model tested on input images using kernel size of 5 x 5 started to 

converge after 21 epochs and finally achieved an optimal classification performance of 

85.26%. The model tested on input images using kernel size of 7 x 7 started to converge 

after 15 epochs and finally achieved an optimal classification performance of 84.59%.  
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(a)             (b)  

Fig 5.23. Accuracy and loss curves with different kernel size 

Fig 5.24(a) shows the confusion matrix associated with results obtained using kernel 

size of 3 x 3. The classification result of GSR is consistent for one disease classes with 

92% except ASR, ALB, ES, H, NCLS and SR. The results presented a considerable 

sum of classification errors for disease classes ASR, H and SR with 17%, 11% and 15% 

respectively. Fig 5.24(b) shows the confusion matrix associated with results obtained 

using kernel size of 5 x 5. The classification results of ASR, H and SR were consistent 

for three disease classes with 100%, 91% and 94% respectively except ALB, ES, GSR 

and NCLS. The results presented a considerable sum of classification errors for disease 

class ALB, GSR and NCLS with 22%, 14%, and 16%. Fig 5.24(c) shows the confusion 

matrix associated with results obtained using kernel size of 7 x 7. The classification 

results of ASR, GSR, H, and SR were consistent for four disease classes with 96%, 

98%, 91% and 96% respectively except ALB, ES and NCLS. The results presented a 

considerable sum of classification errors for disease classes ALB and NCLS with 22% 

and 17%. Fig 5.25 shows the performance measure chart for different kernel size.  
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(a)        (b) 

 

        (c)  

Fig 5.24. Confusion matrices with different kernel sizes 

 

Fig 5.25. Comparison of model performance with different kernel sizes 
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5.4.7 Number of hidden layers 

Few numbers of hidden layers would work if the input is less complex and fewer 

features. To obtain an optimal solution a higher number of layers need to be selected. 

To determine the required number of layers and obtain better classification, the 

experimentation is conducted with 15, 17, and 19 layers. The performance evaluation 

of the proposed model for 3 x 3 kernel size, 32 batch size, 100 epochs and with three 

different hidden layers are shown in Table 5.13. 

Table 5.13. Accuracies with different number of hidden layers 

Image Size Optimizer 
Learning 

Rate 

# of hidden 

layers 

Training 

Accuracy 

Testing 

Accuracy 

112 x 112 Adam 0.001 default 15 89.75% 72.07% 

112 x 112 Adam  0.001 default 17 90.92% 78.72% 

112 x 112 Adam 0.001 default 19 94.83% 85.83% 

 

As shown in Fig 5.26(a), the training process of the model are stable upto 10 epochs 

and started convergence at about 25 epochs and finally achieved an accuracy of 89.75% 

with 15 hidden layers. The training process of the model are stable upto 5 epochs and 

started convergence at about 18 epochs and finally achieved an accuracy of 90.92% 

with 17 hidden layers. The training process of the model are stable upto 10 epochs and 

started convergence at about 16 epochs and finally achieved an accuracy of 94.83% 

with 19 hidden layers. As shown in Fig 5.27(b), the model tested using 15 hidden layers 

started to converge after 21 epochs and finally achieved an optimal classification 

performance of 72.07%. The model tested using 17 hidden layers started to converge 

after 21 epochs and finally achieved an optimal classification performance of 78.72%. 

The model tested using 17 hidden layers started to converge after 15 epochs and finally 

achieved an optimal classification performance of 85.83%.  
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(a)          (b)  

Fig 5.26. Accuracy and loss curves with different number of hidden layers 

Fig 5.27(a) shows the confusion matrix associated with results obtained using 15 hidden 

layers. The classification results of ASR, H, and SR were consistent for three disease 

classes with 100%, 94% and 92% respectively except ALB, ES, GSR and NCLS. Fig 

5.28(b) shows the confusion matrix associated with results obtained using 17 hidden 

layers. The classification results of ASR, GSR, H, and SR were consistent for four 

disease classes with 97%, 92%, 94%, and 91% respectively except ALB, ES, and 

NCLS. Fig 5.27(c) shows the confusion matrix associated with results obtained using 

19 hidden layers. The classification results of GSR are consistent for one disease class 

with 92% except ASR, ALB, ES, H, NCLS and SR. The results presented a 

considerable sum of classification errors for disease classes ASR, H and SR with 17%, 

11% and 15%. Fig 5.28 shows the performance measure chart for different hidden 

layers. 

 

(a)        (b) 
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        (c)  

Fig 5.27. Confusion matrices for different hidden layers 

 

Fig 5.28. Comparison of model performance with different number of hidden layers 
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Table 5.14 Confusion metric values with different image sizes   

Image 

Size 
112 x 112 168 x 168 224 x 224 

Disease 

Class 
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 

Precision 0.84 0.95 0.74 0.99 0.86 0.71 0.92 0.84 0.95 0.75 1.00 0.84 0.74 0.81 0.82 0.87 0.77 1.00 0.91 0.75 0.86 

Recall 0.80 0.99 0.60 0.97 0.90 0.81 0.94 0.76 0.99 0.64 0.93 0.93 0.70 0.98 0.78 1.00 0.64 0.86 0.91 0.84 0.94 

F1 Score 0.82 0.97 0.66 0.98 0.88 0.76 0.93 0.80 0.97 0.69 0.96 0.88 0.72 0.89 0.80 0.93 0.70 0.92 0.91 0.79 0.90 

 

Table 5.15 Confusion metric values with different image sizes  

Batch 

Size 
32 64 128 

Disease 

Class 
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 

Precision 0.84 0.95 0.74 0.99 0.86 0.71 0.92 0.76 0.72 0.77 1.00 0.92 0.72 0.84 0.89 0.97 0.73 0.99 0.83 0.75 0.74 

Recall 0.80 0.99 0.60 0.97 0.90 0.81 0.94 0.87 0.99 0.51 0.67 0.84 0.80 0.93 0.73 0.99 0.58 0.96 0.89 0.74 0.98 

F1 Score 0.82 0.97 0.66 0.98 0.88 0.76 0.93 0.81 0.83 0.61 0.80 0.88 0.76 0.88 0.80 0.98 0.65 0.98 0.86 0.74 0.84 

 

Table 5.16 Confusion metric values with different number of epochs  

# of 

epochs 
50 100 200 

Disease 

Class 
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 
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Precision 0.79 0.93 0.73 0.91 0.75 0.51 0.78 0.84 0.95 0.74 0.99 0.86 0.71 0.92 0.87 0.96 0.79 0.99 0.88 0.75 0.88 

Recall 0.51 0.83 0.46 0.92 0.89 0.79 0.85 0.80 0.99 0.60 0.97 0.90 0.81 0.94 0.84 0.98 0.57 0.96 0.96 0.87 0.94 

F1 Score 0.62 0.87 0.56 0.92 0.81 0.62 0.81 0.82 0.97 0.66 0.98 0.88 0.76 0.93 0.85 0.97 0.66 0.97 0.92 0.80 0.91 

 

Table 5.17 Confusion metric values with different optimizers 

Optimizer Adam RMSprop SGD 

Disease 

Class 
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 

Precision 0.84 0.95 0.74 0.99 0.86 0.71 0.92 0.91 0.90 0.65 0.99 0.79 0.75 0.80 0.91 0.85 0.77 0.98 0.79 0.74 0.65 

Recall 0.80 0.99 0.60 0.97 0.90 0.81 0.94 0.56 0.97 0.66 0.88 0.92 0.80 0.95 0.58 0.98 0.56 0.84 0.92 0.73 0.97 

F1 Score 0.82 0.97 0.66 0.98 0.88 0.76 0.93 0.70 0.93 0.66 0.93 0.85 0.78 0.87 0.71 0.91 0.65 0.91 0.85 0.74 0.78 

 

Table 5.18 Confusion metric values with different learning rates 

Learning 

Rate 
0.001 0.1 0.005 

Disease 

Class 
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 

Precision 0.84 0.95 0.74 0.99 0.86 0.71 0.92 0.77 0.91 0.64 0.97 0.82 0.51 0.89 0.85 0.80 0.68 0.99 0.82 0.70 0.94 

Recall 0.80 0.99 0.60 0.97 0.90 0.81 0.94 0.52 0.97 0.55 0.93 0.77 0.77 0.87 0.77 1.00 0.62 0.78 0.90 0.81 0.83 
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F1 Score 0.82 0.97 0.66 0.98 0.88 0.76 0.93 0.62 0.94 0.59 0.95 0.79 0.61 0.88 0.81 0.89 0.64 0.88 0.86 0.75 0.88 

 

Table 5.19 Confusion metric values with different kernel sizes  

Kernel 

Size 
3 x 3 5 x 5 7 x 7 

Disease 

Class 
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 

Precision 0.84 0.95 0.74 0.99 0.86 0.71 0.92 0.82 0.87 0.77 1.00 0.91 0.75 0.86 0.80 0.91 0.83 0.96 0.79 0.77 0.86 

Recall 0.80 0.99 0.60 0.97 0.90 0.81 0.94 0.78 1.00 0.64 0.86 0.91 0.84 0.94 0.78 0.96 0.50 0.98 0.91 0.83 0.96 

F1 Score 0.82 0.97 0.66 0.98 0.88 0.76 0.93 0.80 0.93 0.70 0.92 0.91 0.79 0.90 0.79 0.94 0.62 0.97 0.84 0.80 0.91 

 

Table 5.20 Confusion metric values with different number of hidden layers 

# of 

hidden 

layers 

15 17 19 

Disease 

Class 
0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 

Precision 0.90 0.72 0.64 1.00 0.57 0.67 0.81 0.93 0.86 0.64 0.96 0.75 0.64 0.84 0.84 0.95 0.74 0.99 0.86 0.71 0.92 

Recall 0.46 1.00 0.54 0.64 0.94 0.55 0.92 0.37 0.97 0.73 0.92 0.94 0.67 0.91 0.80 0.99 0.60 0.97 0.90 0.81 0.94 

F1 Score 0.60 0.84 0.58 0.78 0.71 0.60 0.86 0.53 0.91 0.68 0.94 0.84 0.65 0.87 0.82 0.97 0.66 0.98 0.88 0.76 0.93 
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5.5 Comparative Analysis 

To evaluate the classification efficiency of the proposed work, this sub-section 

examined at state-of-the-art deep learning models and existing frameworks. We have 

performed forty-one experiments to test the accuracy of proposed model and validate 

its results. 

5.5.1 Pre-Trained Models 

In this sub section, the experiments carried out to compare the performances of different 

pre-trained models [66-69] with the proposed has been reported. The evaluation process 

of the pre-trained models using own image sets is shown in Fig 5.29. 

 

Fig 5.29 Performance evaluation process using Pre-Trained Models 

The performance of all the models have been evaluated for 100 number of epochs. The 

training and testing accuracy results obtained after conducting the experiments are 

summarized in Table 5.14. 
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Table 5.21. Performance results of pre-trained model and proposed model 

Reference Model Name Dataset Training 

Accuracy 

Testing 

Accuracy  

# of Wrong 

Predictions 

[66] Dense Net 121 Own 94.04% 74.59% 676 

[67] Inception V2 Own 94.16% 83.42% 441 

[68] Shallow Net 8 Own 96.86% 83.01% 452 

[69] CNN-SVM Own 94.15% 84.06% 421 

 Proposed NPNet-

19 Model 

Own 94.52% 85.16% 401 

 

The findings show that the proposed classification system achieves improvements in 

accuracy of 10.57%, 1.74%, 2.15%, and 1.1%, respectively, as compared to pre-trained 

models [66-69]. The proposed model has shown a higher classification accuracy of 

85.16% compared with the other pre-trained models. Table 5.6 displays the confusion 

matrix values after the evaluating operation and Fig 5.30 depicts the findings outlined 

in Table 5.14. 

 

(a) DenseNet – 121 
 

 
 

(b) Inception V2 
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(c) Shallow Net 8 

  

(d) CNN-SVM 

Figure 5.30 Accuracy and Loss curves of pre-trained models 

Table 5.22. Class-wise classification accuracies for pre-trained and proposed models 

References 
Class 

Index 
Precision  Recall F1 Score 

 

 

 

[66] 

0 79% 61% 69% 

1 93% 96% 58% 

2 61% 56% 58% 

3 96% 94% 95% 

4 51% 79% 62% 

5 69% 64% 66% 

6 88% 72% 79% 

 

 

 

0 92% 99% 95% 

1 82% 64% 72% 

2 98% 98% 98% 
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[67] 3 83% 75% 79% 

4 71% 79% 75% 

5 71% 79% 75% 

6 75% 95% 75% 

 

 

 

[68] 

0 82% 84% 83% 

1 91% 100% 95% 

2 72% 60% 66% 

3 100% 92% 96% 

4 82% 79% 81% 

5 69% 79% 74% 

6 87% 87% 87% 

 

 

 

[69] 

0 90% 75% 82% 

1 88% 100% 93% 

2 76% 70% 73% 

3 100% 92% 96% 

4 87% 78% 82% 

5 69% 82% 75% 

6 83% 91% 87% 

 

 

Proposed 

NPNet-19 Model 

0 88% 82% 85% 

1 92% 98% 95% 

2 75% 73% 74% 

3 98% 93% 96% 

4 83% 89% 86% 

5 83% 77% 80% 

6 85% 91% 88% 

 

Table 5.15 compares the precision, recall, and F1-score of seven maize crop diseases 

for the pre-trained models. The top F1 score obtained by [66] model on disease type 3 

(GSR) is 95%. The difference between precision and recall values of type 0 disease 

(ALB) is 79% ~ 61%. It describes that only few images with type 0 disease are classified 

as disease type 0. The difference between precision and recall values of type 3 disease 
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(NLB) is 96% ~ 94%. It means that most of the images with type 3 disease are classified 

as disease type 3.  

 

The top F1 score obtained by [67] model on disease type 2 (ES) is 98%. The difference 

between the precision and recall values of type 1 disease (ASR) is 88% ~ 64%. It 

describes that only few images with type 1 disease are classified as disease type 1. The 

difference between precision and recall values shows that type 2 disease (ES) is 98% ~ 

98%. It means that all the images with type 2 disease are classified as disease type 2. 

The top F1 score obtained by [68] model on disease type 3 (GSR) is 96%. The 

difference between precision and recall values of type 2 disease (ES) is 72% ~ 60%. It 

describes that only few images with type 2 disease are classified as disease type 2. The 

difference between precision and recall values of type 6 disease (NLS) is 87% ~ 87%. 

It means that all the images with type 6 disease are classified as disease type 6. 

The top F1 score obtained by [69] model on disease type 3 (GSR) is 96%. The 

difference between precision and recall values of type 0 disease (ALB) is 79% ~ 69%. 

It describes that only few images with type 0 disease are classified as disease type 0. 

The difference between precision and recall values of type 3 disease (GSR) is 100% ~ 

92%. It means that most of the images with type 3 disease are classified as disease type 

3. 

The top F1 score obtained by the proposed model on disease type 1 (ASR) is 96%. The 

difference between precision and recall values of type 0 disease (ALB) is 88% ~ 86%. 

It describes that most of the images with type 0 disease are classified as disease type 0. 

The difference between precision and recall values of type 2 disease (ES) is 81% ~ 

61%. It means that only few images with type 2 disease are classified as disease type 2. 

The proposed model has performed the classification of type 0, 1, 3, 4 and 5 with a 

higher level of accuracy.  The overall observations describe that disease type 1,2 and 3 

has obtained higher F1 score. Later, the performance of existing and proposed models 

is evaluated and the results obtained are shown in Table 5.16 and depicted Fig 5.31. 
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Fig 5.31. Performance measures of pre-training and proposed models  

5.5.2 Transfer Learning Models 

In this sub section, the experiments are carried out to compare the performance of six 

different existing model developed using transfer learning approach. Later, the 

performance of the models is compared with the proposed one. 

Table 5.23. Performance evaluation of existing models and the proposed model 

Reference Model Name Dataset 
Training 

Accuracy 

Testing 

Accuracy  

# of Wrong 

Predictions 

[57] Modified LeNet  Own 89.17% 75.04% 664 

[70] CNN-ST  Own 82.93% 70.64% 781 

[71] SoyNet  Own 93.33% 76.99% 612 

[63] Adoptive CNN Own 94.22% 81.28% 498 

[61] 9-Layered  Own 93.17% 77.91% 579 

 

[72] 13-Layered  Own 96.32% 81.77% 485 

Proposed 

Model 

NPNet-19 Own 94.52% 85.16% 401 

 

In comparison to current transfer learning models [57, 61, 63, 70-72] the proposed 

method achieves an improvement in accuracy of 10.12%, 14.52%, 8.17%, 3.88%, 

7.25%, and 3.39% as mentioned in Table 5.16. According to the findings, the proposed 

model outperforms other existing models in terms of classification accuracy. The 

94.04 94.16 96.86 94.15 94.52

74.59
83.42 83.01 84.06 85.16

0
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NPNet-19
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analysis described in Table 5.16 is shown in Fig 5.32. After comparing the performance 

of pre-trained models and the proposed model. Table 5.17 displays the confusion matrix 

values. 
 

 

Fig 5.32. Performance measures of existing and proposed models 

Table 5.24. Confusion matrix for existing and proposed models  

Reference 
Class 

Index 
Precision Recall F1 Score 

 

 

 

[57] 

0 80% 70% 75% 

1 81% 90% 85% 

2 76% 55% 64% 

3 90% 92% 91% 

4 75% 82% 78% 

5 53% 78% 63% 

6 83% 58% 69% 

 

[70] 

0 87% 49% 83% 

1 79% 87% 83% 

2 63% 65% 64% 

3 88% 90% 89% 

4 75% 72% 74% 

89.17
82.93

93.33 94.22 93.17 96.32 94.52

75.04
70.64

76.99
81.28 77.91

81.77 85.16
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5 48% 74% 58% 

6 74% 56% 64% 

 

[71] 

0 59% 53% 64% 

1 94% 95% 94% 

2 68% 63% 65% 

3 100% 84% 91% 

4 56% 83% 67% 

5 56% 83% 67% 

6 72% 94% 81% 

[63]  

0 86% 62% 72% 

1 95% 97% 96% 

2 65% 57% 61% 

3 97% 97% 97% 

4 81% 82% 82% 

5 65% 80% 72% 

6 82% 94% 88% 

[61] 

0 74% 76% 75% 

1 94% 96% 95% 

2 75% 57% 65% 

3 96% 98% 97% 

4 89% 67% 76% 

5 55% 84% 66% 

6 79% 69% 74% 

[72] 

0 79% 61% 69% 

1 93% 96% 94% 

2 61% 56% 58% 

3 96% 94% 95% 

4 51% 79% 62% 

5 69% 64% 66% 

6 88% 72% 79% 

 0 88% 82% 85% 
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Proposed 

NPNet-19 Model 

1 92% 98% 95% 

2 75% 73% 74% 

3 98% 93% 96% 

4 83% 89% 86% 

5 83% 77% 80% 

6 85% 91% 88 

 

Table 5.17 compares the precision, recall, and F1-score of seven maize crop diseases 

for the pre-trained models. The top F1 score obtained by [57] model on disease type 3 

(GSR) is 91%. The difference between precision and recall values of type 2 disease 

(ES) is 76% ~ 55%. It describes that only few images of type 2 disease are classified as 

disease type 2. The difference between precision and recall values of type 3 disease 

(GSR) is 90% ~ 92%. It means that most of the images of type 3 disease are classified 

as disease type 3. 

The top F1 score obtained by [70] model on disease type 3 (GSR) is 90%. The 

difference between precision and recall values of type 2 disease (ES) is 87% ~ 49%. It 

describes that very few images with type 2 disease are classified as disease type 2. The 

difference between precision and recall values of type 3 disease (GSR) is 75% ~ 72%. 

It means that most of the images with type 3 disease are classified as disease type 3. 

The top F1 score obtained by [71] model on disease type 1 (ASR) is 94%. The 

difference between precision and recall values of type 4 disease (H) is 56% ~ 83%. It 

describes that only few images of type 4 disease are classified as disease type 4. The 

difference between precision and recall values of type 1 disease (ASR) is 94% ~ 95%. 

It means that most of the images of type 1 disease are classified as disease type 1. 

The top F1 score obtained by [63] model on disease type 3 (GSR) is 97%. The 

difference between precision and recall values of type 0 disease (ALB) is 86% ~ 62%. 

It describes that only few images of type 0 disease are classified as disease type 0. The 

difference between precision and recall values of type 3 disease (GSR) is 97% ~ 97%. 

It means that all the images of type 3 disease are classified as disease type 3. 
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The top F1 score obtained by [61] model on disease type 3 (GSR) is 97%. The 

difference between precision and recall values of type 3 disease (GSR) is 96% ~ 98%. 

It describes that most of the images of type 3 disease are classified as disease type 3. 

The difference between precision and recall values of type 2 disease (ES) is 75% ~ 

57%. It means that only few images of type 2 disease are classified as disease type 2. 

The top F1 score obtained by [72] model on disease type 3 (GSR) is 94%. The 

difference between precision and recall values of type 0 disease (ALB) is 79% ~ 61%. 

It describes that only few images of type 0 disease are classified as disease type 0. The 

difference between precision and recall values of type 3 disease (GSR) is 96% ~ 94%. 

It means that most of the images of type 3 disease are classified as disease type 3. 

The top F1 score obtained by the proposed model on disease type 3 (GSR) is 96%. The 

difference between precision and recall values of type 3 disease (GSR) is 88% ~ 86%. 

It describes that most of the images with type 3 disease are classified as disease type 3. 

The difference between precision and recall values of type 2 disease (ES) is 81% ~ 

61%. It means that very few images with type 2 disease are classified as disease type 2. 

 

The results of the experiments show that the new model is capable of accurately 

detecting maize crop diseases in real-time agriculture fields. In comparison to pre-

trained models and other transfer learning methods, this model has shown considerable 

better accuracy.  

 

5.5.3 Plant Village Dataset 

Finally, the proposed model's classification efficiency is tested using images collected 

from the Plant Village dataset [73]. A total of 3852 maize crop images of four different 

classes including healthy are used for classification. The dataset is randomly distributed 

into training and testing datasets at a ratio of 80:20. The training dataset is used to train 

the NPNet-19. The testing dataset is then used to evaluate the NPNet-19 model 

performance. The performance of proposed model has been evaluated for 100 epoch 

and finally achieved a classification accuracy of 96.76%. The results have proved that 

the new model is efficient in classifying the images collected from the internet sources 

as well. The classification report, including the confusion matrix is shown in Table 5.18. 
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The training and validation classification accuracies including losses is shown in Fig. 

5.33. The confusion matrix with and without normalization is shown in Fig 5.33. 

 

Table 5.18 shows the precision, recall, and F1-score of four maize crop diseases. The 

top F1 score obtained by the proposed model on disease type 2 (H) is 100%. The 

difference between precision and recall values of type 2 disease (H) is 100% ~ 100%. 

It describes that all the images with type 2 disease are classified as disease type 2. The 

difference between precision and recall values shows that type 3 disease (NLB) is 99% 

~ 88%. It means that only few images with type 3 disease are classified as disease type. 

 

Table 5.25. Confusion Matrix of four-class classification problem 

Class Index Precision  Recall  F1-Score  Support 

0 99% 99% 99% 193 

1 89% 99% 94% 193 

2 100% 100% 100% 193 

3 99% 88% 93% 193 

Accuracy 97% 193 

Macro Avg 97% 97% 97% 772 

Weighted Avg 97% 97% 97% 772 

Total Number of Test Cases: 772 

Number of Wrong Predictions: 25 
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                     (a) Accuracies          (b) Losses 

Fig 5.33. Training and Testing curves with plant village image sets 

 

Fig 5.34. Confusion Matrix for without and with normalization values 
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CHAPTER – 6 

CONCLUSION 

 

In this research, a survey of deep learning techniques was conducted to see how useful 

they are in the agricultural area. We concentrated on the data sources, models used, pre-

processing strategies used, and overall efficiency of the suggested CNN models. The 

results showed that most existing CNN models were limited in their ability to interpret 

unstructured raw image input. Deep learning systems require systematic engineering 

and expert design skills to extract features from unstructured data and convert them into 

feature vectors, which are then used by subsystems to recognise and categorise certain 

patterns in input data. The goal of this survey is to encourage researchers to use deep 

learning approaches for plant disease identification and classification using image 

analysis. 

Most of the data augmentation techniques are designed and applied manually that need 

knowledge and implementation time. Common augmentation methods to recognize 

images are manually designed and are dataset specific.  Such methods based on affine 

and color transformations are very easy and fast to implement but they have not proved 

to be the best methods to increase the images in a training dataset. Moreover, the 

traditional augmentation methods do not create any new visualize features of an image 

that can improve the performance of a learning model significantly. The methods 

mentioned are not popular and all of them are not considered as the common one to 

increase the images in a training dataset. An image acquisition and augmentation 

method proposed in this research takes advantage of the techniques of transfer learning 

and increase of image size in terms of quantity. In this research, a wide variation of 

commonly used position and color augmentations is presented and proposed many new 

and advanced techniques. The first two algorithms developed in this research can be 

used to acquire the images from internet and real-world sources to train and test a CNN 

deep learning model. The next developed algorithm can improve the implementation 

strategy to acquire more images from an original image and increase the training dataset 

size. Later, we analyse 52 techniques of augmentation by applying them to an original 

input image. The results of the analysis are observed and proved that the proposed new 
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techniques will be the best way to deal with unbalanced datasets. The future scope of 

this work is to apply more augmentation techniques like mixing images, pooling, 

perspective transform, segmentation, convolutional and geometric that can bring 

enormous potential to improve the data insufficiency to train deep learning models. 

Convolutional neural networks have accomplished remarkable improvement in 

strengthening researcher’s interest in the field of vision-related tasks and machine 

learning. As a classification of artificial intelligence, CNN has become more dominant 

in various domains like natural language processing, image classification, motion 

detection, speech recognition, and many more. In this research, an extensive survey on 

CNN based on architectures, building blocks, spatial exploitations, and applications 

were done. Beyond surveying every aspect of CNN, we also reviewed the development 

of CNN’s architecture based on design changes in processing units and therefore 

suggested the taxonomy of CNN architectures. In addition to differentiating CNNs into 

various classes, the research provides a better understanding of the evolution, 

implementation challenges, and possible directions. 

This research has proposed a new CNN architecture named NPNet-19 for the detection 

and classification of six common maize crop diseases and healthy leaves. Based on 

4758 collected maize crop images, 13330 images were created using image 

augmentation techniques. The deep separable convolutions and regularization 

techniques like batch normalization and dropout was applied to the model to alleviate 

overfitting. In this research, the potential performance efficiency of the proposed model 

has examined first by varying the parameters like train-test dataset split ratio, kernel 

size, and the number of epochs. Later, the performance of NPNet-19 has compared with 

the four pre-trained models like DenseNet-121, Inception V2, ShallowNet-8, and CNN-

SVM. The proposed model has shown an improvement of 10.57%, 1.74%, 2.15%, and 

1.1% respectively. Finally, the performance of the proposed model has compared with 

six existing models like Modified LeNet, CNN-ST, SoyNet, Adaptive CNN, 9-layer, 

and 13-layered architectures. The new model showed an improved classification 

accuracy of 10.12%, 14.52%, 8.17%, 3.88%, 7.25%, and 3.39% respectively. After 

analysing the results, it has been proved that NPNet-19 is outperformed while 

classifying real-time maize crop images.   



90 
 

The selection of appropriate hyperparameters such as the input image size, optimizers, 

learning rate, kernel sizes of convolutional layer, the number of hidden layers, batch 

size, number of epochs are the major barriers to apply CNN and requires considerable 

skill and experience. Internal dependencies in these hyper-parameters make tuning 

them more costly and time consuming. There is no standard procedure or technique that 

can help in selecting the suitable values for hyperparameters. The selection process 

should be done on the trial-and-error basis only. The present research has shown the 

inter dependencies among the hyperparameters that can affect the performance of any 

CNN model through experimental approach. It has been proved that the learning time 

of a model mainly depends on the hyperparameters like image size, kernel size, number 

of hidden layers and number of epochs. The selection of higher values for these 

parameters can increase the running time of the model and need a machine accelerated 

with a high-capacity GPU.  

The experimental results also describe that running the model for a higher number of 

epochs can improve the classification accuracy while classifying real-time field data. 

The NPNet-19 model used in this study has achieved a classification accuracy of 

87.44% when it is trained for 200 number of epochs. It is also describing that the 

selection of input image size with 168 x 168 and 224 x 224 have achieved a higher 

classification accuracy of 84.66% and 85.23% respectively. The model achieved a 

classification accuracy of 85.83% when it is optimized with an Adam optimizer and a 

learning rate of 0.001. The results are higher than the other optimization techniques like 

RMSprop with 81.95% and SGD with 79.66% only.   

6.1 Findings 

 

This sub section summarized and documented the experimental results and the 

observations made during the evaluation process. 

In this research, NPNet-19 deep learning network were investigated for classifying 

maize crop diseases. First CNN hyperparameters and their values were explored and 

later investigated the model performance. The input image size of 224 x 224 has 

outperformed when compared with 112 x 112 and 168 x 168. The Adam optimizer 

performed better than RMSprop and SGD. Hence it is recommended to use Adam 
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optimizer while performing maize crop disease classification. The Adam optimizer with 

a learning rate of 0.001 performed well when compared with learning rates 0.01 and 

0.005. The number of hidden layers should be at least 17 layers when feeding a model 

with an image size of 224 x 224. The kernel size should be at least 5 x 5 or 7 x 7 when 

training the model using images of size 224 x 224. The number of epochs should be 

more than 200 so that the model can learn more features and performs the classification 

well. The model outperformed when the image size of 224 x 224, batch size 32, 200 

number of epochs, Adam optimizer with a learning rate of 0.001, kernel size 5 x 5, and 

19 number of hidden layers hyperparameter values were selected. Computational power 

will be more when the model is trained with an image size of 224 x 224 and the kernel 

size of 7 x 7. It is adequate to provide graphical processing units (GPUs) to optimize 

the model configurations in reasonable period.    

The images of crop leaf for a specific disease are very difficult to acquire. This fact is 

visible by observing the limited size of image datasets used in the literature. Only less 

than 30% of the studies have used large datasets ranging in thousands. The most 

common observation is using a small dataset of images during testing and large 

propagation during training. It is analysed that an efficient image augmentation is 

needed to balance the count of images among the different classes.  Table 2.3. clearly 

mentioned various literatures consider for the comparative analysis and impact of 

various traditional and conventional augmentation techniques. The observations 

showed how augmentation techniques plays a vital role in improving the size of the 

datasets that can be further used to train any model to obtain efficient results in disease 

identification and classification. The techniques implemented by the literatures 

improved the dataset size at a minimum of 100 times and maximum of 1200 times than 

the size of original dataset. The present study has identified 52 techniques with different 

types like position transformation, color transformation, color augmentation and affine 

transmission. It is observed that after applying the techniques the dataset has increased 

1375 times than the size of original input dataset which is 175 times higher than the 

existing techniques in the literature. The study also mentioned how the newly identified 

advanced augmentation techniques are best to improve that size of the input datasets.  
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6.2 Observations 

A classification accuracy of 88.72% has achieved when the proposed model is trained 

for 500 epochs. The obtained accuracy is 5.3% higher than the results achieved after 

running the same model for 100 epochs. A classification accuracy of 89% has achieved 

when the proposed model is trained for 500 epochs on the dataset split ratio of 80:20. 

A higher accuracy of 7% has obtained when the model is trained for 100 epochs on the 

same dataset split ratio. 

A classification accuracy of 85% has achieved when the proposed model is trained with 

kernel size 5 x 5 and 7 x 7 and for 100 number of epochs. The proposed model has 

obtained accuracy of 4% higher than the kernel size 3 x 3 is obtained. But the same 

kernel sizes have shown less performance of 2-4% when the same model is trained with 

kernel size 3 x 3 for 500 epochs.  

The proposed model has achieved 97% classification accuracy when it is trained for 

only 100 epochs using the images collected from the Plant Village and Kaggle data 

sources. A classification accuracy of 85.16% has achieved when the model is trained 

and tested for 100 epochs. When compared with four pre-trained model the proposed 

model has achieved a higher average accuracy of 3.76%. A classification accuracy of 

85.16% has achieved when the proposed model is trained and tested for 100 epochs. 

The proposed model has achieved an average accuracy of 7.89% that is higher than the 

accuracy obtained by the other six existing models.  

6.3 Discussions 

In connection to the observations in the previous section, we provide few discussions. 

It is observed that the image size 224 x 224 can make the model learn more features by 

using all the pixel values during the classification process. It is proved that the kernel 

size 3 x 3 is the standard and most effective one while dealing with real-time images. It 

is best practice to use a small number of filters for the first convolutional layers to make 

the model learn more image features. Forth, A higher classification accuracy of the 

proposed model can be obtained by running it at least for 500 epochs. Adam optimizer 

has proved to be more effective again as an optimization function during multi-class 

image classification.  
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The dropout regularization technique and image augmentations can reduce model 

overfitting while identifying new testing dataset images. Regression predictive 

modelling technique can be used to evaluate the performance of the proposed model in 

terms of error metrics. The metrics values of the training and testing datasets generated 

by the proposed model are same for both the datasets and shows that most of the actual 

images of the crop are correctly predicted as the same actual class.  

It has been observed that the CNN models have performed well on the datasets extracted 

from the internet sources with a higher level of classification accuracies. But the same 

models have shown low accuracy levels when testing with real-time images. 

In future research, we are planning to conduct more experiments based on several 

hyperparameters like different image size, kernel size, optimizer, learning rate, number 

of epochs, loss function and number of hidden layers. This approach can help the future 

research in selecting suitable hyperparameters while designing a new model. It will also 

be possible to investigate how these hyperparameters can affect the performance of a 

model. 
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CHAPTER – 7 

FUTURE SCOPE 

 

CNN has achieved good reliability in results either by its form or by a topology grid. 

CNN’s vision function is one of the shortcomings. CNN may provide little robustness 

in the face of noise and other image changes. CNN learning requires strong hardware 

resources like GPU. CNN architecture is expected to be a field of research in the future. 

Attention is one of the key mechanisms for the capture of image information in the 

human visual system. CNN can increase model’s representation efficiency by using 

generative learning capabilities. Deep CNN has many hyperparameters including 

activation function, kernel length, layer-set neurons, etc. The choice of hyperparameters 

and their measurement time is very difficult to set parameters in deep learning. The 

hyperparameters tuning is a tedious process of intuition-driven which may not be 

described explicitly. In this regard, the use of genetic algorithms can optimize the 

hyperparameter automatically through random searches and guidance of previous 

searches. 

Researchers might benefit from familiarity with cutting-edge research methodology 

more generally. The research goal is to identify and predict numerous crop diseases at 

an early stage of infection using deep learning technologies in agriculture. When it 

comes to plant disease identification and classification, it's been found that DL does 

both. DL applications on disease recognition/classification and many others involving 

neural networks should be examined now. More deep learning approaches are expected 

to improve their performance in the future. Researchers will eventually have to use 

datasets obtained from real-world experiments to test their newly designed or developed 

models. 
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