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ABSTRACT 

Rheumatoid arthritis (RA) is an autoimmune or chronic disease that can cause damage 

to various joints such as knee, hands, spine, etc, in the body. This damage to knee 

joint can cause temporary or permanent stiffness and tenderness of joints. The 

assessment of knee RA can be performed based on changes and gradual loss of 

cartilage, meniscus, and synovial fluid. Its early assessment is necessary to stop 

further degradation of cartilage and other tissues. For early diagnosis of knee RA 

morphological and volumetric assessment such as joint space narrowing, volume, and 

thickness of tissues are suitable parameters. Till date magnetic resonance imaging 

(MRI) has proven to be better with exceptional outcome but with few limitations. 

These limitations are in terms of noise, weak tissue boundaries, and structural RA 

poorly characterized. Due to increasing vagueness and complexities, deriving 

information becomes challenge for the physicians. This challenge could lead to 

imprecise assessment and inaccurate diagnosis to the patients. Therefore, to avoid 

these uncertainties an intelligent diagnostic system must be developed to overcome 

the complex RA evaluation process.  

 

This motivates research to develop intelligent system to aid RA diagnosis from knee 

MRI and analyse their performance with statistical parameters. The methods proposed 

in this thesis use machine learning to characterise large volume of RA dataset with 

one experiment applying an algorithm over 10,000 images. A novel noise reduction 

technique called as sparse aware noise reduction convolutional neural network is 

proposed in this thesis that reduces noise, preserving the internal structure of the 

image. A dictionary is generated during training phase to reduce the computational 

time for testing.  

 

To overcome other difficulties in early prediction of RA, the thesis also proposes 

segmentation and feature extraction technique. Feature extraction and segmentation is 

performed using discrete wavelet transform (DWT) and MultiResUNet architecture, 

respectively. The method rearranges the data giving threshold to the wavelet 

coefficient using DWT. In the proposed MultiResUNet architecture the convolutional 
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network layers are replaced by MultiRes blocks with Res path. The knee tissues are 

segmented based on intensity levels such as cartilage and synovial fluid are 

segmented at foreground and bone tissue and meniscus at background. The diagnosis 

or prediction of RA is carried out with ResNet50 with fifty layers of neural network 

for precise outcome. The performance of proposed method is assessed in terms of 

qualitative and quantitative parameters on T1-weighted, T2-weighted and FLAIR MR 

images of 193 subjects. Various parameters such as peak signal to noise ratio (PSNR), 

structural similarity index (SSIM), dice similarity coefficient (DSC), root mean square 

distance (RMSD), sensitivity, specificity, and other performance parameters are 

estimated comparing with ground truth by expert rheumatologists. Experimental 

outcomes prove the credibility of proposed model in performing diagnosis and 

classification of RA with different severity levels assessing physicians with limited 

number of resources.            
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Chapter 1 

Introduction 

This chapter provides an overview of research presented in the thesis. Section 1.1 

discusses the medical background. Section 1.2 provides a detailed information about 

significance of intelligent systems. The motivation behind this proposed model is 

presented in Section 1.3. Section 1.4 defines the problem statement. Section 1.5 

describes the research objectives. Section 1.6 provides contribution of the thesis. A 

brief introduction about content of each chapter is outlined in Section 1.7. 

1.1 Background of Study 

Arthritis is joint inflammation featuring disorder of joints with wear and tear of 

tissues. In arthritis, common types are Osteoarthritis and rheumatoid arthritis. Firstly, 

Osteoarthritis causes degrading of cartilage, ligaments, and joints. Secondly, 

Rheumatoid arthritis (RA)is a chronic, inflammatory, and systematic autoimmune 

disorder that mainly affects the tissue regions such as (knee, spine, and hands) that 

causes erosion. The term rheumatoid comes from a Greek word meaning “flowing 

current”, indicates flow of pain and swelling in the entire body. Y. Tanaka defines RA 

as, “Rheumatoid arthritis is an autoimmune inflammatory disease primarily 

characterized by synovitis commonly affecting woman in their 30s and 50s 

accompanied by multi-organ disorder, pain swelling, and stiffness of multiple joints” 

[1].  

RA was first investigated in 1800 by a physician with severe joint pain mainly 

affected women often than men.Many studies have shown that genetics is not only 

sole determinant for RA, but there are many triggering roles such as cartilage 

thickness, meniscus and synovial fluid volume, tissue structure, thickness, erosion etc. 

Pain, inflammation, limited joint movement are the symptoms for RA. Pain is primary 

in the joint through activity, but as RA progresses it may be observed with minimal 

movement or even while resting. Joint space narrowing, damage of tissues can be 

observed as underlying feature in RA. RA commonly affects the joints of the knee, 

finger, spine, shoulder as shown in figure 1.1. Figure 1.1 illustrates the knee structure 
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affected by RA and comparison of normal knee with RA affected knee. The treatment 

and response vary from person to person: some develop mild problems and other 

develop disability. 

 

 

 

 

 

 

 

Fig. 1.1 (a) Normal and healthy knee (b) Rheumatoid arthritis knee(Source: 

OrthoInfo) 

1.1.1 Knee Structure and Epidemiology 

The section presents the data prevalence of RA and especially considering various 

factors associated with it. The occurrence of RA increases with age and commonly 

affects women more than men. RA affects joints of knee, finger, hips, and shoulder, 

but common in knee[2][3]. The RA has affected 44 million people globally with 18% 

of women and 9% of men aged over 50 years have symptomatic RA. It is estimated 

that nearly 78 million people may be affected by RA around 2045[4]. It is reported 

that the prevalence of RA in India is 22% to 39%. The data presented here varies 

accordingly with gender, weight, lifestyle, etc. 

The epidemiology data[5] presented that the knee RA is high worldwide and increases 

day-by-day. The development of knee RA is due to heterogenous conditions involving 

all components of joint associated with cartilage, fluids present between tissue and 

joint erosions[6]. Thus, it is important to understand the structure of knee and various 

symptoms in knee RA. The human knee is the major tissue region in the body consists 

of two joints one between femur and tibia, another between femur and patella. The 

knee is helpful for functional movement and for performing daily activities. Knee is 



3 
 

composed of several hard tissues such as femur, tibia, patella, fibula, and soft tissues 

such as cartilage, ligaments, synovial fluid, meniscus[6][7]. Understanding anatomical 

structure is important before proceeding to RA.  

 

Fig. 1.2 Knee structure (a) anterior view (b) posterior view (Source: OrthoInfo) 

Bones 

The knee structure consists of four bones femur, tibia, patella, and fibula [8] as shown 

in figure 1.2. It is the bones that provides strength, flexibility to the knee joint. 

Femoral tissue is known as thigh bone; it is the toughest and biggest bone in the 

human body. Tibia is also known as shin bone that starts from knee joint to ankle 

joint. Patella is also known as kneecap, that is wedge shaped bone provides movement 

to the leg. The patella is attached to femoris muscles facilitating strength increasing 

movement. Fibula is thin bone that runs alongside tibia from knee joint to ankle joint.  

Cartilage 

Cartilages is smooth elastic tissue that covers and protects the joint of the bones. 

Cartilage is composed of cells known as chondrocytes that produces large number of 

elastic fibers. In posterior view round knobs like structure at the end of the bone 

called as condyles. Another type of cartilage in knee joint is meniscus that acts as 

cushion performing shock absorption task. 
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Ligaments  

Ligaments are the link and fibrous connectivity between bone to bone ensuring the 

knee joint is resistant and stable, as shown in figure 1.2. Ligaments are not flexible 

but strong tough bands that stay stretched and retains their original shape. Ligaments 

are divided into different types such as medial ligament, lateral ligament, anterior 

ligament, and posterior ligament.  

Meniscus, Tendons, Synovial fluid 

Meniscus is C-shaped rubbery, tough cartilage that acts as shock absorber attached at 

end of tibia bone. The meniscus improves the congruency between the tibia and femur 

bone. The meniscus is common to get damage and torn easily due to various 

factors[9][10]. A tendon is tough tensile band of fibrous connective tissue that 

connects bones to muscle. These tendons are similar to ligament but made of collagen 

attaching muscles to bones. Synovial fluid is like egg-white like consistency to reduce 

friction between cartilage during movement. The synovial fluid enters joint space that 

lubricates the joints producing albumin and hyaluronic acid. 

1.1.2 Tissues Affected and Detection of Rheumatoid Arthritis 

Rheumatoid arthritis is the pervasive sort of chronic arthritis, that gradually increases 

to severity at older age[11]. It can be observed with various symptoms including 

increase in pain, inflammation, stiffness, decrease in mobility, difficulties in sitting 

and standing, and creaking sounds during knee movement[12]. Rheumatoid arthritis 

has the damage of cartilage, reduction in joint space, bone erosion, that leads to 

friction of bones as shown in figure 1.3. 

 

 

 

 

 

Figure 1.3 Knee joint affected by RA (Source: Creakyjoints) 
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The loss of cartilage can also be observed on patella, but early degradation starts 

between femur and tibia[13]. The bone erosion can be observed on early on femur and 

tibia tissues. Followed by these, the ligaments and tendons are stretched resulting in 

abnormal functioning of knee. As the cartilage has no nerves, so the degraded 

cartilage is not the only cause of pain in knee. The bone erosion, friction amongst 

knee bones causes pain and inflammation. Thus, early diagnosis of RA in early stage, 

will be better for patients as per the rheumatologist.  The only way to identify and 

monitor the progression is non-invasive modality like MR image. The severity of 

knee RA linked with tissues can be tracked in several stages using KL grading. 

Various studies are presented and are inconclusive in identifying the exact changes. 

Thus, this research investigates various associated features of RA through changes 

observed and quantifies the proposed techniques on dataset using MR images. 

1.1.3 Magnetic Resonance Imaging (MRI) 

The critical features are visible in medical modalities like X-ray[14], Computerized 

Tomography scan (CT)[15], ultrasound[16], and magnetic resonance imaging 

(MRI)[17][18]. Table 1 demonstrates the advantages and limitations of these 

modalities. Out of these modalities magnetic resonance (MR) imagesprovides in-

detail information regarding tissues and its structure. Although, X-ray, CT-Scan, 

Ultrasound can be used to detect several features as shown in table 1.1. Unfortunately, 

there are several limits involved to such procedures as exposure to radiation, intrusive 

experiments, low resolution of images. Non-invasive assessment for detection of RA 

features (volume, thickness, erosion, joint space narrowing) can accurately and 

consistently be performed using magnetic resonance imaging has not been studied for 

early detection of RA. Magnetic resonance images purvey structural and functional 

analysis of tissues in knee joint at various stages of RA development. MR images can 

be utilized to determine variations in joint space narrowing, cartilage volume, tissue 

erosion, etc. MR images are beneficial to analyze early RA provided well exactitude 

due to excellent structure presented in images[19]. 
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Table. 1.1 Difference among medical modalities 

Modality Pros Cons RA feature 

X-ray Dislocation and 

fracture of bones can 

be detected. 

Fails to detect 

muscle damage, soft 

tissues, organs. Body 

exposed to 

radiations. 

Joint space width 

Ultrasound Nerves, fascial 

planes can be 

identified. 

Artifacts are 

common occurred. 

Bone blocks the 

ultrasound waves. 

Inflammation, 

cartilage thickness, 

roughness, stiffness, 

water content, 

collagen content. 

CT-scan Detect severe 

injuries and blood 

vessels. 

Cannot detect the 

locations of diseases. 

More expensive than 

x-ray. 

Joint space width, 

cartilage surface, 

volume,roughness. 

MRI No radiation like X-

ray. Detects soft 

tissues, ligaments, 

tendons, joints. 

Expensive compared 

to other modalities. 

More acquisition 

time is required. 

 

Joint space width, 

Osteophytes, cartilage 

thickness, roughness, 

surface area, collagen 

content, water 

content, erosion. 

 

MRI is based on atomic nuclei's magnetizing capabilities. The protons that are usually 

randomly orientated inside the water nuclei of the tissue being studied are aligned 

using a strong, uniform outside magnetic field. The alignment (or magnetization), by 

introducing an external Radio Frequency (RF) energy, is next disturbed or disrupted. 

The nuclei are re-aligned by different relaxation processes and produce RF radiation. 

The emitted signals are measured after certain period after initial RF. The frequency 

information in the signal from each position in the image plane will be converted into 

matching intensity levels by Fourier processing. These are then presented as grey 
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tones in a matrix arrangement of pixels. Different image kinds are formed by variation 

in RF pulse sequence used. This research uses different commonly used MR images 

such as T1-weighted, T2-weighted, and FLAIR images associated with RA.  

Types of MR images 

T1-weighted image is basic pulse sequences in MR image produced by short 

Repetition time (TR) and Time to echo (TE). T1 characteristics of tissue determine 

predominantly the contrast and brightness of the image. In T1-weighted images the 

compartments with high fat content appear bright and compartments filled with water 

appears dark. If the knee images weighted by T1 had no short periods (TRs), all the 

protons would regenerate their alignment with the main magnet field and the image 

would be evenly intensive. Choosing a TR short of the recovery time of tissues helps 

you to distinguish between them, such as tissue contrast. The sequences of T1-

weighted images present the best contrast for paramagnetic disparity agents such as 

blood vessels around brain, spinal cord, substances passing through central blood 

system. T1-weighted shows the lesions and damages with black holes. 

T2-weighted image [19] is common sequences in MR images produced using longer 

TE and TR times. T2 characteristics of tissue determine predominantly the contrast 

and brightness of the image. In knee images with T2-weight compartments filled with 

water appear bright and dark appearance with fat content tissues. The T2-weighted 

images are used to detect vascular lesions and tissues. It is necessary to remove the 

abnormalities to produce appropriate peak signal to noise ratio (PSNR) and structural 

similarity index (SSIM). Dual Echo Steady State (DESS) is a constant state sequence 

of GRE. First, the TR is short compared to T2-weighted next to radio frequency (RF) 

is applied. Second, the RF pulses are evenly scattered with same flip angle with 

constant TR. Based on the concept explained in [20], the instantaneous acquisition of 

two independent steady state free precision (SSFP) echo allows two diverse contrast 

formation for MR images. S + = (FISP) fast imaging steady state precision, and S - = 

PSIF (Reverse of FISP). The PSIF leads to high contrast T2 images, whereas FISP 

leads to contrast dominated T1/T2 ratio images. The DESS images has potential to 

extract the morphological and functional analysis with high resolution.  
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The Flair sequence[21] is comparable to T2 images with the exception of that the TR 

and TE times are very prolonged. So that, bright region deformities remain in the 

image and fluid attenuated make it dark. Flair images are free of water is now dark 

and tissues remain dark. Table 1.2 discusses the different types of commonly used 

MR images with TE and TR times. As shown in the figure 1.4 the three different MR 

images are illustrated. Figure 1.5 shows the sagittal view, coronal view, and axial 

view of the same MR image. It can be observed that the tissues are clearly visible in 

all the plane views of knee structure.  

Table. 1.2 TR and TE time for MR image sequences. 

Type of MR Image TR (msec) TE(msec) 

T1-weighted 550 13 

T2-weighted 4700 91 

Flair 9800 114 

 

 

 

 

 

 

 

 

 

 

Fig. 1.4 Knee MR image types (a) T1-weighted (b) T2-weighted (c) Flair 
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Fig. 1.5 Knee MR image views (a) Coronal view (b) Sagittal view (c) Axial view 

 

1.2 Significance of Intelligent Medical Diagnostic System 

Intelligent medical diagnostic system(IMDS) is a term refers to techniques which can 

be applied to almost any complex medical problem[22]. IMDS enable computer 

systems to think and interpret, tocollect and integrate domain information, to learn 

from acquired information, to apply information and experience for manipulating the 

environment, to conclude condition with hairiness and vagueness, to identify and infer 

in rational ways, to retort quickly and efficiently to new circumstances, to 

differentiate the relative importance of dissimilar elements in astate, to alter their 

conduct and respond to changes in the outer environment and to make sense out of 

imprecise or incongruous information. IMDS generate solutions to complex medical 

problems; by capturing information, identifying hidden patterns in multi-dimensional 

data, that is too hard for humans to understand. IMDS provides solutions in domains 

like, image processing, expert systems, computer vision, etc. The major applications 

are medical application, manufacturing and business, web-based services. IMDS may 

adopt different styles in order to get efficient and precise results. The styles include 

supervised learning, unsupervised learning, reinforcement learning[23][24][25].  
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The supervised learning has labelled input data and a target variable in which the 

training process continues until the model achieves maximum possible accuracy. A 

few techniques for supervised learning are support vector machine (SVM), Decision 

trees (DT), K-nearest neighbor algorithm (KNN), etc. The second learning i.e., 

unsupervised learning has unlabeled data and do not have target variable to predict the 

model. A few techniques for unsupervised learning are neural network (NN), Apriori 

algorithm, principal component analysis (PCA)[26], independent component analysis 

(ICA), etc. Third learning is reinforcement learning where the input data consists of 

labelled and unlabeled instances, and system trains itself using trial and error to make 

decisions. A few techniques are temporal difference learning (TDL), Q-learning, 

state-action-reward-state-action (SARSA), etc. Knowledgebase (KB) or expert 

systems like fuzzy are specially defined to represent a set of rules for a specific task. 

These expert systems have potential dealing with uncertainty and imprecision. These 

expert systems [27] are capable of representing data in situations of inconsistency and 

imperfect data.  

Intelligent medical diagnostic systems (IMDS) are categorized into several groups 

that include clustering techniques, regression techniques, association rule-based 

techniques, artificial neural network techniques (ANN), instance-based techniques, 

ensemble techniques, clustering techniques, and deep learning (DL) techniques[28]. 

Clustering techniques arranges the instances into groups using hierarchal approaches. 

Regression approaches measure the error for refinement in predictions. In broad, 

multidimensional datasets, association-based rule learning approaches are in the form 

of rules in connection to characteristics. Artificial neural networks function through 

the selection of data, network creation and formation, the evaluation and validation of 

the objectives and performance using confusion matrices and medium square error. 

Instance-based techniques construct the training data model and then use similarity 

measurements between instances to predict fresh data. The ensemble is the 

combination of two or more self-trained procedures which integrate predictions to 

generate a final prediction. Deep learning[29] is a subset of machine learning that has 

networks capable of learning unlabeled data to build complex neural structures. 
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Computer aided diagnostic systems build using intelligent techniques provides 

efficient outcomes for all possible medical related problems[12]. These systems filter 

the information overflow, knowledge eventually to provide better outcome. Intra-

observer and Inter-observer are subjected to individual preferences and observations. 

Intelligent system improves the human decisions and provide ability to systems to 

learn from some tasks and act suitably with environment for increasing success of 

model. It makes automated system to learn with more data and cross validate the 

model with different methods like holdout method, stratified cross validation, leave-p-

out cross validation, k-fold cross validation to validate the performance of the 

approach. Performance is assessed employing various quantitative measurements like 

accuracy, precision, sensitivity, specificity, and many more. Selection of IMDS 

depends on volume, class, and structure of data. No intelligent system is dominant to 

all other on given problem. Sometimes a specific technique fits the problem, and best 

way is to try numerous techniques for finding the best fit.  

1.3 Motivation 

Modern computing has extended its reach to the intense and efficient use of intelligent 

medical systems. Owing to the ambiguity and intricacy in medical data, obtaining 

vital information turn out to be a foremost challenge for physicians. This challenge 

can lead to inaccurate diagnosis of the illness, which would extend lead to inadequate 

medication. Therefore, it is beneficial for patients if the medical professionals cross 

check their assessment with the help of intelligent medical diagnostic systems 

(IMDS). IMDS are developed resourcefully for analyzing complex and ambiguous 

medical data. IMDS efficiently persuade over the inadequacies, help in obtaining 

better classification and system performance adaptable. IMDS decreases the 

probability of diagnostic errors, reducing the cost, time and efforts needed in clinical 

trials. Nowadays, the IMDS are developed by integrating two or more techniques for 

more proficient learning and task completion. However, the individual techniques also 

produce same result as integrated depending on nature of problem. Research in this 

field is increasing year by year with new thoughts and methodologies. Few widely 

used IMDS are fuzzy theory and systems, neural networks, machine learning based on 

popularity for knee RA classification.  
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Early detection of knee rheumatoid arthritis (RA) has been considered as an important 

problem among rheumatologists, and researchers, as it stops further degradation of 

tissue, reducing inflammation, swelling in joints, stiffness, and pain in knee. This can 

be achieved by assessing the changes in knee tissue structure at early progression of 

disease using non-invasive imaging modalities. As discussed, early features that 

changes rapidly are essential to analyze early RA. A broad literature assessment has 

shown that the whole transition from no RA to early RA characteristics has not been 

quantified successfully and that studies are undertaken to assess features in separate 

studies or multiple features utilizing various modalities. Now, the challenge is to 

detect early RA to severe RA by combining one or more features to enable improved 

sensitivity and specificity in progression of RA. In addition, various morphological 

features associated with RA can precisely, non-invasively quantified using MR 

images. Thus, this motivated us to design and develop an intelligent medical 

diagnostic system (IMDS) for assessingthe progression RA. 

1.4 Problem Statement 

The main intention of this research study would be to develop an intelligent medical 

diagnostic system (IMDS) for assessment of knee RA using MR images based on 

KLgrading. Formulating a novel preprocessing technique along with efficient 

segmentation and feature extraction approach based on morphological structure 

through MR images for assessment.  

1.5 Research Objectives 

The objectives of the research are following: 

1) To remove the noise from Magnetic Resonance Images and to enhanceits color. 

2) To perform segmentation and feature extraction on MagneticResonance Images. 

3) To propose an intelligent medical diagnostic system for RheumatoidArthritis using 

machine learning. 

4) To compare the performance of proposed system with existingsystems. 

 



13 
 

1.6 Approach of the Study 

This work provides a survey on intelligent strategies used to treat arthritis, which will 

aid researchers in understanding the present state-of-the-art. The research describes 

the following forms of arthritis: rheumatoid arthritis, osteoarthritis, gout, juvenile 

idiopathic arthritis, psoriatic arthritis, and lupus. The study also discusses pros and 

cons of different diagnostic systems developed for arthritis. Further, several imaging 

modalities are reviewed, reveling that MR images has capability to measure early RA 

progression. The classification of knee RA is achieved in multiple stages that are 

broadly stated as follows: 

1. Preprocessing 

2. Segmentation and feature extraction 

3. Classification using KL grading 

Preprocessing involves denoising and contrast enhancement of MR images that is 

prior necessary to obtain accurate segmentation. MR images are affected by different 

types of noise that makes it difficult to feature the tissues. In this research study, a 

new methodology is proposed based on convolutional neural network (CNN) and 

dictionary learning that reduces noise from the MR image. This method also enhances 

the contrast of adjacent tissues by increasing pixel intensity. This approach is superior 

to many deep learning techniques used earlier in terms of peak to signal noise ratio 

(PSNR), structural similarity index (SSIM), mean square error (MSE). In this 

approach a dictionary is generated during training of the model to provide 

optimization of testing and reducing computational time. 

The development of segmentation and feature extraction model plays a great role in 

assessment of evaluation of features. A novel discrete-MultiResUNet architecture is 

proposed that is a structure of discrete wavelet transform and MultiResUNet. The 

morphological measurements such as cartilage thickness, joint space narrowing, 

meniscus volume for femur and tibia compartments are measurement for approach. 

Combining multiple features will increase the accuracy, sensitivity, specificity of 

intelligent system. However, after segmentation the images are classified using 



14 
 

ResNet50 and KL grading is applied ranging from 0 to4 (no arthritis to severe 

arthritis) respectively.  

The thesis contributes to the development of methodologies for quantification of 

framework needed for identifying early RA progression. In summary, the proposed 

model will be useful in assisting rheumatologist, in analyzing patients.  

1.6.1 MR Image Dataset 

In this research, two datasets are used, one is local collected dataset, second is 

collected from Osteoarthritis Initiative (OAI) database which is publicly available was 

used for test and validation of developed methodology. MR image dataset of knee 

consists of T1-weighted, T2-weighted and Flair images with different views (sagittal, 

coronal, and axial). The parameters of MR image dataset are described in table 1.2. 

Table 1.2 MR Image Dataset Specification 

Sr. No Parameter Specifications 

Local dataset OAI dataset 

1 Repetition time (TR) 2280msec 16.3msec 

2 Echo time (TE) 38.1msec 4.7msec 

3 Field of view (FOV) 140 X 140 mm2 140 X 140 mm2 

4 Flip angle (FA) 25 Degree 25 Degree 

5 Slice thickness (ST) 0.7mm 0.7mm 

6 Matrix size (MS) 512 X 512 512 X 512 

7 Bandwidth (BW) 250Hz/pixel 185Hz/pixel 

8 No of slices 220 160 

 

1.6.2Architecture Assessment Parameters 

The implementation of developed architecture is scrutinized and assessed at early 

phase. This evaluationassessment is presented in terms of qualitative and quantitative 

ways. Qualitative factors include visual insight and assessment of results achieved, 
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however quantitative factors include numerousfactors that are conversed in-detail in 

the following sub-segments. 

Denoising and Contrast Enhancement 

The quantitative parameters for denoising and contrast enhancement technique 

proposed is measured in terms of following parameters: peak signal to noise ratio 

(PSNR), that evaluates the amount of noise present in medical image in terms of 

decibels (dB), structural similarity index (SSIM), that evaluates the similarity between 

denoised image and original image, mean squared error (MSE), that evaluates 

difference between actual value and obtained value, enhancement measure (EM), that 

evaluates degree of contrast enhancement. 

A. Peak signal to noise ratio (PSNR) 

PSNR is the proportion amongst determined possible power of an image and power of 

distortingdisturbance that influences the characteristic of its interpretation. It is 

necessary to estimate to compare the maximum clean image with possible power. 

PSNR can be estimated as shown in equation 1.1. 

𝑷𝑺𝑵𝑹 = 𝟏𝟎 𝒍𝒐𝒈 𝟏𝟎
(𝑰ି𝟏)𝟐

𝑴𝑺𝑬
       (1.1) 

where, I, is the maximum possible intensity in an image. 

B. Structural Similarity Index (SSIM) 

SSIM shows the resemblance of two medical images considering image degradation 

as ostensible transformation in structural data, including contrast masking. SSIM can 

be estimated as shown in equation 1.2. 

𝑺𝑺𝑰𝑴(𝒙, 𝒚) =
(𝟐𝝁𝒙𝝁𝒚ା𝑪𝟏)(𝟐𝝈𝒙,𝒚ା𝑪𝟐)

(𝝁𝒙
𝟐 ା𝝁𝒚

𝟐 ା𝑪𝟏)(𝝈𝒙
𝟐 ା 𝝈𝒚

𝟐ା𝑪𝟐)
      (1.2) 

where, μ, denotes average value of given image, σ, denotes standard deviation as 

shown in equation 3. 

𝝈𝒙,𝒚 =
𝟏

𝑵ି𝟏
∑ (𝒙𝒊 − 𝝁𝒙)(𝒚𝒊 − 𝝁𝒚)𝑵

𝒊ୀ𝟏       (1.3) 

where, x and y are the images compared. 
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C. Mean Squared Error (MSE) 

MSE is a metric that calculates the difference between the value and the value in 

effect. MSE is a risk estimator subsequent to the excepted value of the squared loss. 

MSE can be estimated as represented in the equation 1.4. 

𝑴𝑺𝑬 =
𝟏

𝑷𝑸
∑ ∑ (𝑿(𝒊, 𝒋) − 𝒀(𝒊, 𝒋))𝟐𝑸ି𝟏

𝒋ୀ𝟎
𝑷ି𝟏
𝒊ୀ𝟎      (1.4) 

where, X signifies the matrix data of original image. Y denotes the matrix of distorted 

image. P denotes the number of rows, Q denotes number of columns in pixels, i and j 

respectively signifies the index value of row and column.  

D. Enhancement Measure (EM) 

EM is a measure of contrast enhancement, estimating for both medical images: actual 

and enhancedmedical image. The disparity (contrast) of the medical image is 

enhanced measured on EM value of enhanced image is larger than that of actual 

image. EM can be estimated as shown in equation 1.5, where b1, b2, are non-

correspondingunits of size 3 X 3 and Imax, Imin, are intensity values. 

𝑬𝑴 =
𝟏

𝒃𝟏𝒃𝟐
∑ ∑ 𝟐𝟎 𝐥𝐨𝐠

𝑰𝒎𝒂𝒙

𝑰𝒎𝒊𝒏

𝒃𝟏
𝒊ୀ𝟏

𝒃𝟐
𝒋ୀ𝟏       (1.5) 

Segmentation and Feature Extraction 

The proposed segmentation with feature extraction model is measured in terms of dice 

similarity coefficient (DSC), volumetric difference (VD), volume overlap error 

(VOE), root mean square surface distance (RMSD), average surface distance (ASD), 

and meniscus thickness (V), length and width. The efficiency measures are compared 

by an expert with more than 25 years of expertise with the results produced from the 

suggested models to the ground reality. Ground truth prepares the manual outline of 

overall features by an expert rheumatologist. DSC is presented in terms of true-

positive, true-negative, false-positive, false-negative in the region of interest. These 

computations are corresponding the ground reality as shown in figure 1.6. True-

positive (TP) is the section labelled as foreground section, true-negative (TN) is the 

section correctly labelled as background section, false-positive (FP) is the 
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sectionincorrectly labelled as foreground section and false-negative (FN) is the 

section incorrectly labelled as background section. 

 

 

 

 

 

 

 

 

 

Fig. 1.6 Representation of TP, TN, FP, and FN 

A. Dice Similarity Coefficient (DSC) 

DSC is used to measure the similarity between two images. It evaluates the spatial 

overlap amongst two segmentations regions validating the segmentation. DSC can be 

estimated using equation 1.6 

𝑫𝑺𝑪 =  
𝟐 𝑿 (𝑷∩𝑸)

(|𝑷|ା |𝑸|)
        (1.6) 

B. Mean surface distance and Root mean square surface distance (MSD and 

RMSD) 

Mean or average surface distance (MSD) and root mean square surface distance 

(RMSD) are estimated on boundary coordinates of segmented tissues For each 

individual boundary the closest coordinate is examined, and relative Euclidean 

distance is mentioned. The procedure is repetitive performed for all the boundaries of 

the tissues. The RMSD is estimated similarly but the distance is squared before 

storing. The equations 1.7 and 1.8 provides MSD and RMSD values, respectively. 

𝑴𝑺𝑫 =
𝟏

𝜽𝒏𝑷ା𝜽𝒏𝑸
ൣ∑ (𝒎𝒊𝒏)𝜽𝑸‖𝑷𝒊 − 𝑸‖ + ∑ (𝒎𝒊𝒏)𝜽𝑷‖𝑸 − 𝑷‖𝟐

𝜽𝒏𝑷
𝒋ୀ𝟏

𝜽𝒏𝑺
𝒊ୀ𝟏 ൧ (1.7) 

𝑹𝑴𝑺𝑫 = ඥ𝒎𝒂𝒙𝜽𝑷𝒎𝒊𝒏𝜽𝑸‖𝑷 − 𝑸‖𝟐, ඥ𝒎𝒂𝒙𝜽𝑸𝒎𝒊𝒏𝜽𝑷‖𝑸 − 𝑷‖𝟐  (1.8) 
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C. Volume overlap error (VOE) and Volume difference (VD) 

The volumetric intersection error concerning the conventional voxels of segmentation 

P and manual segmentation Q as reference is shown in equation 1.9.The volumetric 

difference between P and Q is defined in equation 1.10 

𝑽𝑶𝑬 = 𝟏𝟎𝟎 ቀ𝟏 −
|𝑷∩𝑸|

|𝑷∪𝑸|
ቁ       (1.9) 

𝑽𝑫 = 𝟏𝟎𝟎 ቀ
|𝑷|ି|𝑸|

|𝑸|
ቁ        (1.10) 

Classification and Grading 

The proposed classification model for knee RA progression is assessed in factors of 

sensitivity, specificity, precision, f1-score, accuracy and mean absolute error. The 

result also defines joint space narrowing and KL grading for classifying the MR 

images accordingly. 

A. Accuracy 

Accuracy determines whetherthe technique is best at distinguishingassociations and 

relationshipsamongst variables in a dataset built on training data or dataset.  

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆ା𝑻𝒓𝒖𝒆 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆ା𝑻𝒓𝒖𝒆 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆ା𝑭𝒂𝒍𝒔𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆ା𝑭𝒂𝒍𝒔𝒆 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆
 

 (1.11) 

B. Precision 

Precision is the fraction of relevant instances among the retrieved instances. It also 

provides ratio of true-positive to total of true-positives and false-positives.  

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆ା𝑭𝒂𝒍𝒔𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆
     (1.12) 

C. Sensitivity or Recall 

Sensitivity is also known as recall or hit rate, that provides how well a model can 

identify true-positive values. It is also a measure of actual true-positive that are 

predicted as positive. 
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𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 𝒐𝒓 𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 

𝑻𝒓𝒖𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆ା𝑭𝒂𝒍𝒔𝒆 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆
   (1.13) 

D. Specificity 

Specificity is the estimate representing the portion of true-negative that are 

preciselyknown.  

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =
𝑻𝒓𝒖𝒆 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆

𝑻𝒓𝒖𝒆 𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆ା𝑭𝒂𝒍𝒔𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆
     (1.14) 

E. F1-Score 

F1-score measures the perfect precision and recall values. It is a measure to evaluate 

binary classification of model’s accuracy on a dataset. 

𝑭𝟏 − 𝑺𝒄𝒐𝒓𝒆 = 𝟐 𝑿 
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑿 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏ା𝑹𝒆𝒄𝒂𝒍𝒍
      (1.15) 

F. Mean Absolute Error (MAE) 

MAE is the enormity of disparity amongst the predicted value of an evaluation and 

actual value of evaluation. The absolute error provides ground truth difference with 

predicted value. 

𝑴𝑨𝑬 =
𝟏

𝑵
∑ ห𝒀𝒋 − 𝒀𝒋ห𝑵

𝒋ୀ𝟏        (1.16) 

1.7  Outline of the thesis 

This thesis is structured into six chapters, including first chapter describing medical 

background of arthritis disease, significance of intelligent system, motivation behind 

this research work, objectives of the study, and providing brief description of each 

chapter. 

Chapter 2 presents a comprehensive literature review on intelligent medical diagnostic 

system (IMDS) applied to arthritis disease. Intelligent systems are divided into three 

categories based on objectives. Preprocessing approaches, segmentation and feature 

extraction approaches, and prediction or diagnostic approaches. This chapter 

identifies the individual and integrated techniques applicable for arthritis disease. 
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Performance comparison along with advantages and disadvantages of applied 

intelligent medical diagnostic system (IMDS) are also presented.  

Chapter 3 describes the proposed scheme titled “SANR_CNN for preprocessing of 

MR images”. Preprocessing involves the denoising and contrast enhancement of knee 

MR images. Denoising and contrast enhancement are performed using proposed 

SANR_CNN technique. Efficiency of proposed denoising model is assessed with 

several parameters such as PSNR, SSIM, EM, and MSE.  

Chapter 4 discusses the proposed scheme titled “Discrete-MultiResUNet architecture 

for segmentation and feature extraction”. The region/ area of interest (R/AOI) is 

estimated by selecting tissue boundaries. Boundary displacement and extracting tissue 

interface is performed with masking and thresholding. Performance of the proposed 

model is measured using quantitative parameters such as dice similarity coefficient 

(DSC), voxel difference (VD), etc. 

Chapter 5 presents the proposed scheme titled “ResNet50 architecture for classifying 

the knee MR images with KL grading”. The preprocessed and segmented MR images 

are assessed for joint space narrowing (JSN) estimating KL grading. Performance is 

measured using sensitivity, specificity, accuracy, and confusion matrix. 

Chapter 6 draws the conclusion of the thesis with limitations of work. It also presents 

the future scope of work. The list of publications related to the research work is 

mentioned at the end of thesis.  
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Chapter 2 

Literature Review 

This chapter provides an in-detail review of existing systems with their advantages, 

limitations and applications involved. The chapter is structuredin following order: 

Section 2.1 introduces the need of literature and significance of intelligent medical 

diagnostic system (IMDS) in RA diagnosis. Section 2.2 presents the challenges in 

assessing the RA disease using MR images. Section 2.3 incorporates discussion on 

machine learning approaches followed by discussion on segmentation and feature 

extraction with manual and automatic approaches in Section 2.4. Section 2.5 presents 

diagnostic approaches with KL grading. Section 2.6 provides observations and finally 

concluded in Section 2.7.  

2.1 Introduction 

The nomenclature of rheumatoid arthritis was framed in 1941 by American 

Rheumatism Association (ARA), described as “a chronic inflammatory disease of 

connective tissues with constitutional symptoms of varying degree leading to joint 

deformities”[30]. However, the symptoms change inevitably due to various factors. 

So,the new revised definition of rheumatoid arthritis (RA) provided by D. 

Aletaha[31], “Rheumatoid arthritis (RA) is a chronic inflammation, life altering joint 

disease that are characterized by tenderness, destruction of synovial joints leading 

severe disability, and mortality”. Later, S. Murakami[32]defined RA as “autoimmune 

disease often leads to substantial disability and morbidity due to bone erosion 

considered irreversible”.The key components of RA are cartilage thickness, bone 

erosion, meniscus volume, synovial fluid volume, and wear and tear of 

ligaments.Despite these discrepancies, in definitions, RA comprise of bone erosion, 

cartilage thickness, and volume of synovial fluid.  

Thus, for exactness the definition of RA can be considered with four features to the 

joint space width/ narrowing between femur and tibia tissue[33], meniscus 

volume[34], accumulation of synovial fluid[35], and cartilage thickness[36]. The fact 

the changes in these features at initial stage has been taken into consideration to 
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define early RA. An example of normal knee and diseased knee structure is illustrated 

in figure 2.1. Early progression is observed in figure 2.1(b), where the changes are 

physically visible. In the research, it can be observed that the MR image is most 

promising modality approach to early assessment of RA. MR image has better soft-

tissue contrast, spatial resolution capability, multi planner view, and quantitative 

assessment abilities. MR images facilitates in accurate joint space narrowing, 

meniscus volume, cartilage thickness measurements compared to images produced by 

different imaging modality. Information about knee composition may also be used to 

accurately evaluate biochemical substance[37][38] assessment using quantitative MR 

measuring. Thus, in this research, MR images are considered as suitable modality to 

measure various RA features associated with early assessment. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 (a) Healthy knee joint (b) Rheumatoid arthritis knee joint 

Intelligent medical diagnostic system (IMDS) has played a vital role in knee arthritis 

diagnosis. From statistical techniques to neural networks, all these have extensively 

deployed on evaluating the clinical trials for arthritis. Due to escalating ambiguity and 

intricacies in datasets, extracting the valuable information becomes a major challenge 

for clinical trials. Further, this challenge leads to inaccurate assessment of the disease. 

So, to avoid uncertainties in treatment to patients, medical experts prefer intelligent 
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systems interpreting the patient’s data. IMDS are widely applied to diagnose and 

classify RA progression. These IMDS decrease the probability of occurrences of 

medical error, reduces the cost, time and efforts needed for diagnosis. The IMDS 

gathers the useful information extracting from medical images with different 

modalities for the treatment of RA. However, Magnetic resonance imaging (MRI) 

allow detailed analysis from several modalities. But these MR medical images cannot 

directly quantify the progression of RA due to certain challenges that are associated 

with acquisitionof MR data that are discussed in sub-section 2.2. 

2.2Challenges in Assessment from MR image 

In prior years, studies have shown various endeavors from MR images for quantifying 

the progression of rheumatoid arthritis. Normally, every recent technique was 

assessed with distinct constraints used on various test medical images. However, the 

approaches perform well for particular datasets, but don't give a general measuring 

solution globally. The main reason for this is the various features of knee joint RA 

and MR image capture which lead to challenges in analyzing MR knee pictures. 

2.2.1 Image Artifacts 

MR medical images are usually susceptible to several artefact kinds. These artefacts 

are evident in the form of chemical changes, pulsation, magic angle, volume effects, 

tendency which can lead to misdiagnosis in MR images [39][40]. The appearance of 

brilliant dark frames on the opposite margins of the same tissue results from the 

chemical artefacts shift. Due to differences in water and fat environments and the 

chemical shift influence on signal proton encoders of fat and water this distortion 

occurs[41]. In MR images the computational approach may wrongly interpret signal 

intensities for region of interest with inclusion and exclusion criteria as shown in 

figure 2.2(b)[42]. 

A propensity artifact is caused due to inhomogeneity in magnetic field that outcomes 

in abnormalsensitive tissue boundaries. It can be observed that metallic foreign 

bodies, hemosiderin from bleeding are various factors for propensity. This type of 

tendency might result in tissue areas being misinterpreted by techniques as shown in 

figure 2.2(a). The partial volume effect causes the shrunk feature of edges in the 
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region of sagittal plane of MR images. It is highly difficult for an expert to perform 

segmentation in these regions. Due to different signal intensities caused by variations 

in pulse sequencing that may lead difficulty in development of computational 

techniques as illustrated in figure 2.3. Prior to the development of technique for early 

diagnosis of RA, these artifacts should be considered. 

 

 

 

 

 

Figure 2.2 Artifacts Induced in MR Images (a) Propensity artifact (b) Substance shift 

(dotted arrows) and pulse artifacts (solid arrows) 

 

 

 

 

 

 

Figure 2.3 Volume effect(a) sharp edges on cartilage region (b) distorted edges on 

cartilage region. 

2.2.2 Image Properties 

The soft tissues cartilage, meniscus, and synovial fluid have an inhomogeneous 

intensity, poor contrast and an uneven form of MR images [43]. Due to local 

differences, numerous problems have been identified in the tissue characteristics 

which play an essential role in the development of techniques.These problems are 

found as low point visibility on image sequence datasets, low or high intensities on 
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soft tissue regions associated to neighboring tissue region[44]. The variable portions 

of MR images with different intensity variation [45] can be found in figure 2.4. 

 

 

 

 

Figure 2.4 (a) Low point visibility contrast (arrow denotes cartilage tissue). (b) low 

intensity in different tissues (c) variable intensities in cartilage region, (d) and (e) 

different slices of variable intensity 

2.2.3 Tissue Structure 

The cartilage, and meniscus tissue is about 2mm to 4mm thick, meniscus width of 9 to 

10mm, and synovial fluid of 1mm to 6mm thick, in every individual healthy human. 

These tissue thickness reduces at the rate of 2.43% [46] annually up to 60% [47] with 

progressive knee RA. These tissues turn into irregular shape and structure in severe 

RA stage. Figure 2.5(a) illustrates the abnormal structure of knee obtained in sagittal 

view. The boundaries between femur and tibia still present complexities as illustrated 

in figure 2.5(b). Consequently, manual and semi-automated segmentation techniques 

are utilized to deliver consistent assessment. 
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Figure 2.5 (a) Irregular shape of knee structure (b) diffused boundaries between femur 

and tibia tissues. 

2.2.4 MR Pulse Sequence  

In developing diagnosis technique, a selection of optimal MR pulse sequence for 

acquisition of MR knee joint images is vital. Research reveals that the MR pulse 

sequences that produce a high signal-to-noise ratio in soft tissue regions, a high noise 

contrast, and a high spatial resolution should be used for soft tissue imaging in a 

marginal scanning time with its capacity to decrease the artifact[48]. Several MR 

pulses are typically applied to the knee RA for evaluation purposes, e.g., T1 weighted, 

T2 weighted, Flair, density of the protons (PD), 3D spoil echo (SPGR), double echo 

stability (DESS). 

In previous studies, most of the researchers have used MR pulse sequences as 

standard practice and tested the applicability on single sequence images[49][43]. The 

conventional techniques use some complex information like pixels, edges, voxels, and 

knee MR scans. Profoundly, the techniques related to diagnosis utilize intensity/ pixel 

information as area of importance. However, the pulse sequence modification leads to 

intensity fluctuation and image contrast variationas shown in figure 2.6. This pulse 

sequence dependency fails many techniques due to pixel or intensity issues. Thus, it is 

challenging to diagnose the disease using pixel/intensity using different pulse 

sequencies. 
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Figure 2.6 MR pulse sequences (a) PD fat suppression (b) PD turbine spin echo (c) 

multi echo spin echo (d) T1-weighted spin echo (e) 3D spoiled gradient echo (f) 

3Ddual echo steady state (g) 3Ddissolute low angle shot (h) 3D multi echo data 

imaging combination 

2.2.5Magnetic Field Strength (MFS) 

The magnetic field strength (MFS) is proportional to nuclear magnetic resonance 

(NMR) that measures linearity with polarized magnetic field. This statement defines 

that 3T MRI systemyields double NMR as compared to 1.5T MRI system[50], 

resulting in peak to signal noise ratio (PSNR) to be doubled in acquired 3T MRI 

systems. As there is a compromise amongst scan time (ST) and PSNR. At 1.5T, 

identical PSNR can be achieved by improving the ST. However, increasing scan time 

certainly leads to increased artifacts in MR images. Thus, 3T MRI systems can be 

utilized with decreasing scan time to provide better quality images. Studies have 

shown no or little difference between 3T and 1.5T MRI Systems while assessing the 

RA diagnosis. However, at minimum magnetic strength (0.18t - 0.20T), contrast to 

noise properties and surrounding tissues make it difficult to diagnose with low PSNR. 

An increasing magnetic intensity leads to higher PSNR and high resolution of images 

but limitations owing to chemical changes, strength deposition and inhomogeneity. 
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For the diagnose of RA, MR images acquired from 3T and more (>7T), gain in PSNR 

are expected to improve the image quality. These different magnetic fields provide 

inhomogeneity leads to flip angle in T1-weighted images with varied contrast. In 

addition, in the case with T2-weighted images, the scan time interrupts artefacts 

which make interpreting the area of interest and other tissues challenging. These 

artefacts and other potential problems make it hard to create diagnostic 

procedures[39]. 

2.3Introduction to Machine Learning 

2.3.1 Machine Learning Paradigms 

Many different definitions have been framed, over the years, for the term machine 

learning (ML). A. Samuel [51] has defined ML as “Machine learning (ML) is the 

subfield of Computer Science (CS) that gives computers the ability to learn without 

being explicitly programmed”. It means the ML tasks are automatically performed 

without direct human interaction. Often, ML algorithms are data-driven effectively 

finding solutions to the problems with ability to generalize the data. ML methods 

usually characterize samples from the training dataset using function vectors to infer 

interpretations from their background data. A vector represents each sample in the 

exercise data set, which appropriately reflects the data extraction. The solution 

acquired from the data during training is a powerful tool to anticipate, analyze and 

interpret unseen information. It is vital thus that the solution be generalizable and that 

correct results can be achieved. 

A traditional categorization of machine learning paradigms are: 

Supervised learning: It is a learning process where the system learns based on labels 

assigned to the data. The performance of the system improves continuously in its 

learning process.  

Unsupervised learning: It is a learning process in absence of labelling the data. The 

machine needs to infer the hidden patterns of the data without any potential solution. 

Semi-supervised learning: It is learning process between supervised and un-

supervised process where some inputs are labelled, and some are not. 
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Reinforcement learning: It is a learning process to make sequence of decisions to 

achieve uncertain goal in potential complex environment.  

2.3.2 Supervised learning 

In supervised learning system receives feedback from the information available in the 

data for the correct solution. More meaningful, in supervised learning the model tries 

to solve the problem of categorization.  

Classification 

Classification is the dilemma of distinguishing the type to which new interpretation 

belongs based on resemblance with previous data. The classification process[52] is 

illustrated in figure 2.7. The classification is split into two phases: model construction 

and model usage. In first phase the model is built to explain the concept. The second 

phase classifies the samples generating a system the instances.However, the future 

instances are not available, therefore it is necessary to simulate the model usage. The 

simulation is done by dividing the data into training case and testing case. The 

training is making the model to learn the data from training set, and testing is to 

identify the correct input data. The general approach for validating the classification 

model is shown in figure 2.8. 

Figure 2.7 Classification process 

The validation of model is evaluating how well the model performs with test 

instances. The performance of model is classified using confusion matrix parameters 

and Receiver Operating Characteristics (ROC) arc. The confusion matrix represented 
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in figure 2.9 usually represents positive and negative classes. A ROC curve is an 

illustration of how the model performs depending on true and false positive rates [53]. 

The true positive rate is same as sensitivity and represents the positive instances that 

are correctly classified. The false positive rate indicates negative samples that are 

incorrectly labelled as correct. The ROC score typically ranges between 0 and 1, often 

indicating the instance belonging to specific class. 

Figure 2.8 General classification model 

 

Figure 2.9 Confusion matrix 

2.3.3 Unsupervised learning 

Unsupervised learning is characterized as, making the model to learn without 

labelling. The system tries to identify patterns automatically within the data without 

any information about the solution.  

Clustering 

It is the task of grouping the same group participants as set of observation known as 

clusters. Clustering is an operation that can be performed on different algorithms with 

different measures to assess the similarity[54]. In clustering the k-means algorithm is 
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simplest and most used algorithm[55]. It works on process of centroids chosen for k 

parameters with desired clusters. Each datapointis selected based on nearest centroid 

with different metrics used to determine the distance between clusters using Euclidean 

distance algorithm. The process is repeated until no change in cluster points,or 

centroid remains same as shown in figure 2.10. 

 

 

 

 

 

 

 

 

Figure 2.10 K means clustering 

The principal component analysis (PCA)[56] is a process that aims to summarize the 

dataset into smaller set. The PCA preserves the size of original data regardless of 

transformation. The PCA provides weights needed to interpret a new variable using 

linear combination.  

2.3.4 Reinforcement Learning 

Reinforcement learning is a kind of machine learning approach in which the agent 

receives a reward in next time to assess previous action. It is capable of solving many 

complex problems with comprehensive setup of components that are an agent and an 

environment as shown in figure 2.11. An agent is apprentice and a decision maker, 

where the agent learns and determines the measures that must be implemented. The 

state is the phase, where the agent is present in the system. For every action by the 

agent, the system delivers reward, representing a mapping function from situations to 

actions. 
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Figure 2.11. Reinforcement learning 

2.4 Deep Learning 

There are several machine learning approaches in the literature with one or more 

transformations[57]. These architectures have been effective and yield promising 

outcomes for simple and well-constrained problems. However, deep learning can be 

effective and economical for difficult and complicated real-world situations. Deep 

learning is an aspect of the learning of machines and consists of multi-layered sensing 

algorithms using non-linear processing units. There are several layers in deep learning 

that learn the high-level characteristics from low levels. Deep learning technique is 

divided into three phases: a deep network for unsupervised or generative knowledge, 

a strong network for supervised learning or discriminatory knowledge and a deep 

hybrid network. 

Generative learning accepts high-level properties of the data and their associated 

attributes. Discriminative learning provides pattern classification characterizing the 

distribution of classes of the data. The hybrid learning is discrimination but generates 

the outcome of generative learning through better optimization. Deep neural network 

(DNN)[58], Recurrent Neural Network (RNN), Convolution Network[32], Deep 

Belief Networks, deeper stacking network (DBN), and advanced deep neural learning 

are among the most advanced techniques (DSN).  Out of these networks, CNN is 

tremendously used in many of the real-world applications.  
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2.4.1 Convolutional Neural Networks 

Convolutional neural networks (CNN) is a modification of multilayer perception, that 

is inspired by visible cortex and deep architecture. The feed-forward network 

generally comprises of multiple layers. CNN architecture is made up of some distinct 

layers that transforms the high volume of data through differential equations. Each 

layer consists of neurons with weights and distortions.Between input and exit layer 

one or more hidden layers are present. The entry layer (convolutional) learns the 

images and extracts features. The output is estimated by weighted average of all input 

neurons and passed through an activation function. The activation function such as 

Rectified linear unit (ReLU), and Sigmoid makes the layers into non-linear 

values.ReLU refers to non-linear function replacing all negative values by zeros. The 

ReLU activation layer will apply max (𝑜, 𝑥) function, thresholding at 0.Figure 2.12 

illustrates the CNN architecture with different layers as described. 

Figure 2.12. CNN architecture 

The convolutions obtained will lose data over borders, so zeros are appended and 

recalculation of convolution with all input values are made known to be padding. 

These all values or information are captured from obtained image with kernels with 

striding are estimated with dot product between set of weights. The convolution has 

some weights, and these weights are shared by all inputs and weight sharing by each 

input connected by output neuron. In pooling layer, the combination of factors 

decreases the number and enhances network efficiency. There are three pooling 

methods for instancetotal, mean, and maximum pooling, among which max pooling is 
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best one and most used. Always the last layer of CNN will be fully connected layer 

producing output vector with linear combination. In the volume of characteristics that 

are supplied, every node in that layer is linked to every other node. The class 

opportunities are calculated with measurements such as [1 X 1 X K], where K is total 

quantity of classes.  

Convolutional Layer 

Convolutional layers are basicunits of CNN. These layers are made of many filters, 

which are defined by width, height, and depth. Convolutional layers are reasonable 

solution for image categorization. Convolutional layers are comprised of subjective 

matrices called filters, generally known as kernels. These kernels slide moveacross 

the input image from to right covering part of the image known as striding. The depth 

of the filter is equivalent to quantity of filters in convolutional layer. The output 

feature map can be estimated with the following function as represented in equation 

2.1, where original input image is represented by f, and h denotes filter. The output 

matrix is represented with rows and columns as x,y.  

𝐺(𝑥, 𝑦) = (𝑓 ∗ ℎ)[𝑥, 𝑦] = ∑ ∑ ℎ[𝑖, 𝑗]𝑓(𝑥 − 𝑖, 𝑦 − 𝑗)    (2.1) 

Activation Layer 

After the convolutional layer, the input image is converted into a heap of feature 

maps. Every single feature map relates to visible feature at particular location within 

the image. This feature heap is equivalent to quantity of nodes (filters) in the 

convolutional layer. The activation function determines the relevance of model 

prediction. The activation function prevents the problem of vanishing gradient that 

changes the model prediction.  

Pooling Layer 

As the feature maps are stacked over the layers, the complexity increases. Each filter 

is assigned with task for identifying different features of the image that increases 

dimensionality, parameters of overfitting. So, pooling after convolutional layers 

performs down-sampling reducing the number of parameters for further layers. There 

are different types of pooling that can be performed in CNN. Basically, max pooling 
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takes two input arguments that are kernel height and width, and stride, then passes 

these values for corresponding node in the pooling layer. Global average pooling 

layer feature maps the dimensions reducing the feature stack into one-dimensional 

vector. 

Fully Connected Layer 

Fully connected layer makes the classification considering the input flattened vector 

of nodes The vector will be passed through two or three dense layers and 

decisiveinitiation function earlier sent to the output layer. There are two common 

functions such as sigmoid and SoftMax functions for classification. Sigmoid generally 

uses binary classification problems and SoftMax uses the sum of values and utilized 

for both binary and multi-class categorizationchallenges. The decisive vector size will 

be equivalent to quantity of classes for prediction. 

2.4.2 Feature Learning 

Feature learning implies to methods that transforms unprocessed data into efficient 

and usefulinterpretation for additional processing such as segmentation, diagnosis, 

and categorization. Feature learning captures accurate features by using large number 

of networks. The deep learning network are multi-layered network that can be applied 

to understand feature representation in the hidden layer(s).In recent years, these 

feature learning methods are fine-grained for categorization because of rich 

representation of shape features. The feature learning can be classified as observed: 

(a) Supervised feature learning, is recognized to learn features from designated 

labelled data. CNN, DBN and multi-tasking are some approaches used to 

learn supervised functionality. 

(b) Semi-supervised feature learning, utilizes unlabeled information to assist 

supervised data. Some semi-checked functional learning approaches include 

label propagation, pre-trained data from DBN and a ladder network. 

(c) Unsupervised feature learning ,is knowledge feature representation from data 

driven with no labels. The primary aim of this method is to identify and 

describe the details of unlabeled data. This method also helps to remove 

redundancies and preserve the essential feature information for classification. 
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Some of the techniques that adopt unsupervised feature learning are K-means 

clustering, Gaussian mixture model (GMM), principal component analysis 

(PCA), sparse coding, and autoencoders. 

2.5 Noise Model 

An image is nothing more than a two-dimensional array of numbers Preprocessing is 

a process of preparing the raw data into data that is suitable for machine learning 

model. An image can be specified by numerical function f(x,y), where x and y 

represents two coordinates horizontal and vertical respectively. MR images suffer 

from different artifacts that affects the accuracy of diagnosis. To solve this problem of 

artifacts image denoising should be prior step before segmentation the region of 

interest in the image. Image denoising is an unposed issue handled by the introduction 

of image priors[59]. Image patches consists of abundant information that provides 

sufficient priors for image denoising. The fault in acquisition process, transmission or 

compression may cause different noise. 

The noise model can be represented with equation 2.2. The image I, represents clean 

or original image, and Io represents observed image with noise induced in the image 

represented with N. 

𝐼 = 𝐼 + 𝑁          (2.2) 

Images can be affected by a variety of forms of noise, depending on the source and 

cause. Before applying any filter, it is necessary to determine what sort of noise in the 

image has to be eliminated. Here we are listing different types of noise that can affect 

the images and hence reducing performance of the model. 

2.5.1 Gaussian Nosie 

Gaussian Nosie is additionally known as electronic interference as it occurs from 

electronic devices such as detectors, amplifiers, etc. This type of noise cab directly 

affects or disturbs the gray values in an image causing blurred edges and details. The 

pdf function can be represented as shown in equation 2.3. 

𝑷(𝒊) =
𝟏

𝝈√𝟐𝝅
𝒆

ି
(𝒛ష𝝁)

𝟐𝝈𝟐         (2.3) 



37 
 

where, i is gray level intensity, μ is average value, and σ represents average deviation.  

The white Gaussian noise is a particular case when values are distributed equally and 

are statistically separate. 

2.5.2 Brownian Nosie 

Brownian interference is also commonlyknown as random walk noise as it is affected 

by signal produced by Brownian motion of suspended particles in fluid. In Brownian 

noise, its abilitydrops 1/4th of an interval, where the power intensity is proportionate 

to the square of the occurrence across that octave (6 dB per octave). The Brownian 

noise is represented in equation 2.4 and 2.5. 

𝐵(0) = 0          (2.4) 

𝐸{|𝐵(𝑡) − 𝐵(𝑡 − Δ)|ଶ} = 𝜎ଶ|Δ|ଶ     (2.5) 

The process follows normal distribution with fractal noise caused by natural process. 

The fractal noise decays continuously due to increase in frequency, mathematically 

represented as zero mean Gaussian process (Bh). 

2.5.3 Impulse or Salt and Pepper Nosie 

Impulse noise or data drop noise is also known as salt and pepper disturbance. This 

noise is caused by abrupt and precipitous disturbances in medical image. The salt and 

pepper noise will change some of the pixels or values replacing by corrupted values or 

minimum values. The salt and pepper noise is represented as shown in equation 2.6. 

𝑰(𝒙) = ൝
𝑰𝒂𝒇𝒐𝒓 𝒙 = 𝒂
𝑰𝒃𝒇𝒐𝒓 𝒙 = 𝒃

𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
       (2.6) 

where, a and b are respective intensities in the image.  

2.5.4 Rician Nosie 

Rician noise causes image quantitative estimation difficult. Rician noise is image 

dependent and computed for both real and imaginary image.Rician noise is 

mathematically represented by equation 2.7. 
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𝑰(𝑴) =
𝑴

𝝈𝟐 𝒆
ష(𝑴𝟐శ𝑨𝟐)

𝟐𝝈𝟐 𝑰𝟎 ቀ
𝑨.𝑴

𝝈𝟐 ቁ       (2.7) 

Where, A represents absence of noise, M is measured noise, I0 represents modified 

Bessel function of zeroth order, and σ represents standard-deviation. 

2.5.5 Quantization Nosie 

Quantization noise occurs from amplitude quantization process. It generally occurs 

due to data conversion from analog to digital. Quantization process can be represented 

with uniform distribution, so it is also known as uniform noise. Quantization noise 

can be represented as shown in equation 2.8, where minimum and maximum pixel 

values are represented with a, and b. 

𝑸(𝒙) = ቊ
𝟏

𝒃ି𝒂
, 𝒊𝒇 𝒂 ≤ 𝒙 ≤ 𝒃

𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
       (2.8) 

2.5.6 Speckle Nosie 

Speckle noise is as well referred as multiplicative noise. This type of noise isaffected 

by unwanted modification to a desired signal. The signal itself varies due to scatters 

causing difficulty for image interpolation. The speckle noise is represented as shown 

in equation 2.9 following gamma distribution. 

𝑺(𝒈) =
𝒈𝜶ష𝟏𝒆

ష𝒈
𝒂

𝜶ି𝟏!𝒂𝜶         (2.9) 

2.5.7 Photon Noise 

The photon noise is caused by electromagnetic radiations such as gamma, x-rays, etc. 

The noise causes random fluctuation of photons provided spatial and temporal 

randomness in the image. This type of noise is also well-known as Poisson noise or 

shot noise. The disturbance can be represented with Poisson distribution as 

represented in equation 2.10. 

𝑷(𝒇𝝅) =
𝝀𝒌𝒊𝒆ష𝝀

𝒌!
        (2.10) 

 



39 
 

2.5.8 Poisson-Gaussian Nosie 

The Poisson-Gaussian noise commonly occurs in MR images degrading the visual 

quality of the image. The joint noise models can cause difficulty in quantitative 

analysis of original image. The Poisson-Gaussian noise model can be represented as 

in equation 2.11. 

𝑷(𝒙, 𝒚) = 𝜶 ∗ 𝑷𝜶(𝒙, 𝒚) + 𝑮𝜶(𝒙, 𝒚)      (2.11) 

where, The Gaussian distribution (Gα) is followed by Poisson distribution (Pα), with 

alpha value (α > 0). 

2.5.9 Structured Noise 

Stationary or non-stationary in nature is a kind of structured noise. This form of noise 

is caused by static amplitude or occurrence. This type of noise occurs due to 

obstructions in electronic devices. Structured noise is represented as shown in 

equation 2.12 and 2.13. 

𝒀𝒑 = 𝒙(𝒑,𝒒) + 𝒗𝒑        (2.12) 

𝒀𝒑 = 𝑳(𝒑,𝒒) ∗ 𝜽𝒒 + 𝑺(𝒑,𝒓) ∗ 𝝓𝒓 + 𝒗𝒑      (2.13) 

where, p and q represent rows and columns respectively. yrepresents the recipient 

image; r represents the rank in subspace. L is transfer function of linear system. S 

represents subspace, θ represents signal parameter, ϕ represents linear system 

underlying process, and vector random noise is represented with vp. 

2.6Preprocessing Techniques for Knee MR Images 

In this segment, numerous techniques for CNN denoising are reviewed, which are 

specifically applied for (i) general images and (ii) particularmedicalimages. The 

initialmethodologyuses CNN represent common images such as natural images, 

symbolic images, etc. The second approach uses denoising CNN intentionally created 

for specific images such as medical images, remote sensing images, etc. The figure 

2.13 illustrates different CNN approaches used for denoising images. As the research 

concentrates on specific images i.e., medical images, are discussed further. The MR 

images are associated with some sort of noise or artifacts that causes inadequate 
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contrast between adjacent tissues introducing difficulties in segmenting of tissues. 

Thus, preprocessing of MR images like noise filtering or denoising can be beneficial 

without to increase the performance of classification model without affecting image 

details. Currently many machine learning techniques have been developed for 

denoising such as support vector machine (SVM), random forest (RF), and variations 

in neural network. H. Wang et al., [60] introduced joint denoising convolutional 

neural network (JD-CNN) that captures high level features among different b-value 

images by connecting subnetworks. This network is similar to U-Net architecture that 

preserves resolution of image.A convolutional neural network with SmooThness 

regularizations on manifolds (SToRM)[61] denoises the image structure iterating N 

times. 

To remove Gibbs artifacts and noise a CNN architecture in diffused images has been 

proposed. The model was demonstrated on canonical evaluation and image Structure 

was preserved, denoising with residual encoder and decoder introduced by M. Ran et 

al., [62]. Autoencoders with CNN for heterogenous images exploits the image details 

preserving local spatiality. The specific neighboring slicesare utilized on generative 

adversarial network (GAN) estimating the distances of feature space pretrained by 

VGG-19 network. These GAN are composed of a generative model and a 

discriminative model. To suppress the impulse noise a blind CNN model had been 

introduced by J. Chen et al., [63]. This CNN model adapted flexible noise ratio with 

clean pixel median deviation (CPMD) estimating the edge pixel difference (EPD). 

Islam et al.,[64] suggested a feedforward network to eliminate combined noise such as 

Gaussian-impulse noise. A rank-order filtering technique is applied on each stage with 

convolutional preceded with ReLU and pooling layers.  
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Figure 2.13. Denoising Techniques based on Convolutional neural network  

Yin et al.,[65] proposed a deep learning approach based on U-Net and Noise to Noise 

technique. Traditionally, Gerchberg-Saxton (GS) process was utilized to 

produceholographs with noise reduction mechanism, obtained with learning rate of 

0.001. Unlike other denoising methods SSDRN utilized batch normalization in 

everyunit of method creating patch group to reduce the noise. Similar to that DDANet 

utilized bucket signal with various noise intensity maps. DDANet has twenty-one 

layers consisting of entirely linked layers, dense units, and convolutional layers. 

Zhang et al., [66] suggested a deep spatio-spectral Bayesian posterior network 

(DSSBPNet) that produces spectral gradient for each part of the splitted image. A 

forward-backward propagation technique was applied to link up both deep spatio-

spectral (DSS) and Bayesian posterior (BP). 

Cascading residual CNN removed mixed noise combining dilated convolutional, and 

standard convolutional. The residual learning method estimates the calibration 

parameter with five feature blocks namely (feature extraction block (FEB), coarse-

fine convolutional (CF-Conv), and spatial channel disturbance attention block 

(SCNAB). Giannatou et al., [67] proposed a residual learning technique created on 

DnCNN to evaluate noise with every pixel of medical image. The input unit 
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comprises of convolutional layer followed by ReLU and batch normalization (BN). 

The output unitcomprises of only a convolutional filter for restoration of the medical 

image. Jiang et al., proposed generative adversarial network built on UDnNet. The 

UDnNet composes of two sub-networks (i) a generative network and (ii) a 

discriminator network. The generative network produces samples with asymmetric 

codec composition and skip connection. The outcome of this network has 

convolutional instance and Normalized Leaky ReLU. Finally, a combined CNN 

classifier (convolutional layer, pooling layer, fully connected layer) was applied to 

categorize the medical images. For the assessmentprocess, peak to signal noise ratio 

(PSNR), structural similarity index (SSIM), root mean squared error (RMSE), were 

used to denoise the image.A foremost challenge is labelling the speckle noise induced 

images and not labelling the ultrasound images, so it becomes difficult for identifying 

noise in the images. 

Feng et al., [68] suggested a fusion CNN architecture for speckle noise elimination. 

As speckle noise is similar to Gaussian noise, the distribution parameters estimated 

are in logarithmic form of transformation domain. The pre-trained residual model[69] 

for ultrasound images with speckle noise are trained with random patches. The 

pretrained model consists of 59 layers with Conv, ReLU, and batch normalization 

(BN). Kim et al., [70] suggested the conditional generative adversarial network 

(CGAN) for noise elimination and forecast model. The method consists of fourteen 

layers from random vector noise distribution and discriminative model with 4 layers. 

A novel CNN-DMRI technique [71] that used convolutional for extracting image 

features from noise to preserve the details of the image. A down selection and up 

selection factor was implemented with sixty-four filters followed by convolutional 

layers and 128 filters in down sampling filter. Eventually, a high-quality image was 

obtained by extracting noise from medical image with the neural network.Further, few 

denoising approaches are compared with input features and outcomes. Table 2.1 

illustrates several techniques for preprocessing the MR images. 
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Table 2.1 Preprocessing techniques with inputand output parameters 

Author, Year Input/ Attributes/ 

Features 

Techniques 

Used 

Outcome/ Results/ 

Application 

SYu et al., 

2016[72] 

Caltech101 dataset 30 

subjects. VOC 2021 

dataset. 

Discriminative 

Dictionary with 

Convolutional 

neural network. 

Accuracy with 

different images 

82.9%. 

H. Wang et al., 

2019[60] 

16 subjects with 400 

slices. 

Convolutional 

neural network. 

PSNR average 

43dB ± 1.5 

k. Shrinivasan et 

al., 2018[73] 

27 MR image dataset 

T1-weighted, 

T2weighted, PD 

images. 

Comparative 

study of 

different 

histogram 

algorithms. 

PD images: 

Average PSNR 

24.3dB. Average 

RSME 16.04. 

T2-weighted 

images: Average 

PSNR 22.15dB. 

Average RSME 

20.183. 

T1-weighted 

images: Average 

PSNR 23.30dB. 

Average RSME 

17.49. 

A. Selvi et al., 

2018 [74] 

Natural images with 

noise induced 

externally. 

Fuzzy logic 

with hybrid 

filter (mean 

and adaptive 

median). 

PSNR 55.49dB for 

60% noise level, 

63.24dB for 10% 

noise level. 

M. Sahnoun et al., 

2019 [75] 

120 low contrast T1-

weighted MR images. 

(256 X 256) pixel 

Discrete 

Wavelet 

Transform-

Structural 

similarity index 

(SSIM) was 0.98, 
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resolution. Singular Value 

Decomposition 

(DWT-SVD) 

PSNR value 

obtained was 

12dB. 

K. Chen et al., 

2020 [76] 

Dataset 1: T1-

weighted MR images. 

(181 X 217) 

resolution. Dataset 2: 8 

T1-weighted MR 

images. (192 X 170) 

resolution. 

Fuzzy C means 

and adaptive 

non-local 

means 

algorithm. 

PSNR value was 

31.8dB, SSIMwas 

0.83, and 

computational 

time was 16.93. 

H. Rai et al., 2019 

[77] 

T1 and T2 weighted 9 

subjects 27 slices 

images. (256 X 256) 

resolution. 

Wavelet 

transform and 

Independent 

component 

analysis. 

Noise level 10%: 

PSNR was 

27.84dB, SSIM 

was 0.8337 

Noise level 90%: 

PSNR was 

18.93dB, SSIM 

was 0.5215 

P. Kuppusamy et 

al., 2019 [78] 

T2 Fluid Attenuation 

Inversion Recovery 

(FLAIR) and T1 Fast 

Spin Echo Contrast 

Enhanced (FS-ECE) 

images with 5mm slice 

thickness. 

Non-local 

means adaptive 

filter. 

PSNR was 

28.9967dB ± 0.13 

I. Nagarajan et 

al., [79] 

160 MR images of 

type T1, T2, PD and 

810 simulated images. 

Block 

difference-

based filtering. 

PSNR was 

45.94dB at 3%, 

PSNR was 

30.16dB at 30% 

noise level. SSIM 

was 0.9956 at 3% 
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and 0.9671 at 30% 

noise level. 

Execution time for 

810 images 

26.28sec. 

N. Mittal et al., 

2019 [80] 

4 images of different 

body type with Haar 

level 2. 

Stationary 

Wavelet 

Transform 

(SWT). 

Average Entropy 

was 5.48 and 

average standard 

deviation was 

68.30. 

V. 

Magudeeswaran 

et al., 2017 [81] 

Gray MR images with 

10 subjects. 

Bi-level fuzzy 

histogram 

equalization. 

Average feature 

similarity index 

was 0.98, Average 

information 

contents was 7.36, 

Natural image 

quality evaluator 

was19.88. 

H. Lv et al., 2019 

[82] 

T1, T2, and PD 3D 

MR images (181 X 

181) resolution with 

voxel resolution of 

1mm. 

Adaptive 

Multi-rank 

estimator. 

T1-weighted: 

PSNR was 

33.55dB and 

SSIM was 0.939. 

T2-weighted: 

PSNR was 

30.39dB and 

SSIM was 0.940. 

PD image: PSNR 

was 32.58dB and 

SSIM was 0.932. 

K. Sharma et al., 

2019 [83] 

T1-weighted and T2-

weighted simulated 

Sylvester-

Lyapunov 

As noise level 

increases the 
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MR images. equation and 

non-local 

means filtering. 

PSNR level 

decreases. Same 

was with SSIM 

value. 

P. Kandhway et 

al., [84] 

MIAS, LITFL 

database with X-ray, 

MRI, CT scan images. 

Krill herd 

optimization 

with histogram 

equalization. 

SSIM value was 

0.84, Edge 

preserve index 

was 1.68, Entropy 

was 5.06, Relative 

enhancement was 

1.01. 

X. You et al., 2019 

[85] 

40 T1w and T2w MR 

image. (181 X 181) 

and 1mm voxel 

resolution. 

Convolutional 

neural network. 

T1w: PSNR with 

5% noise level 

was 37.37dB and 

SSIM value was 

0.98. 

T2w: PSNR with 

5% noise level 

was 35.28dB and 

SSIM value was 

0.97. 

M. Elhoseny et al., 

2019 [86] 

MRI brain image 

dataset. 

Optimal 

bilateral filter 

and 

convolutional 

neural network. 

PSNR 44.2dB and 

RMSE 0.45 

V. Hanchate et al., 

2020 [87] 

 Block 

matching 

combined with 

3D filtering 

and variance 

PSNR value was 

43.01dB, SSIM 

value was 0.99, 

RMSE value was 

0.49, Edge 
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stabilization 

transform. 

intensity was 2.75 

and computation 

time was 

546.54sec. 

I. Isa et al., 2017 

[88] 

25 sequences of MRI 

axial mode T2-

weighted and FLAIR 

images. (512 X 512) 

resolution. 

Average 

Intensity 

Replacement 

based on 

Adaptive 

Histogram 

Equalization 

(AIR-AHE). 

Average PSNR 

value was 

87.36dB and 

average gradient 

value was 0.0008 

 

2.7 Segmentation and Feature Extraction Approaches 

Over the last two decades, numerous attempts have been made to quantify tissue 

morphology as far as spacing, volume and compositions, such as water, collagen, 

synovial fluid, are concerned. Out of which MR image has proven as gold standard as 

it produces excellent detailed joint resolution for quantification.Segmentation of 

tissues are performed by experts (manually), semi-automated approaches [89] or 

using automated approaches[90]. However, development of computational 

approaches is difficult due to challenges as discussed in section 2.2. 

2.7.1 Manual Techniques 

It is commonly found that manual MR-image segmentation procedures make 

computing approaches trustworthy and accurate. The tissue is divided by experts slice 

by slice from 2D MR images in manual procedures. Although, manually segmentation 

is referred as benchmark to assess the performance, but it requires more time for 

experts with efforts and may lead to inter-observer and intra-observer variability. As 

these manual techniques are not preferred in clinical practices. Figure 2.14 illustrates 

the pipeline architecture of manual segmentation that involves experts intra and inter 

observation. 
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Figure 2.14. Manual segmentation architecture 

 

 

 

 

 

 

 

 

 

Figure 2.15. Manually segmented femoral and tibial cartilage from MR image. 

2.7.2 Semi-Automatic Techniques 

Semi-automated segmentation methods [89] have minimal human interaction, which 

enables accurate illness detection with decreased effort. These methods carry out 

certain stages with automatic processing and remaining steps followed by human 

interaction intended for precise results. Generally, semi-automated methods segment 

different tissues from MR image involves combination of some image processing 

techniques such as region-based segmentation, active shape model, watershed 

method, graph-based model, etc. These quantitative approaches are utilized for the 

segmentation of knee MR imaging tissue. There are several quantitative parameters to 
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measure the performance using a validation method. Table 2.3 describes several semi-

automated methods for segmentation. Figure 2.16 shows semi-automatic 

segmentation process. 

 

 

 

 

 

 

 

 

 

Figure 2.16. Semi-automatic segmentation process 

M. Marcan and I. Voiculescu[91] proposed Image partition forest technique that 

increases the partitions layers across adjacency graph. Paired scan technique with 

initial evaluation for quantification using active contour model to refine segmented 

margin. H. Ng et al., [92] proposed improved watershed methodthat performs 

thresholding on gradient magnitude with histogram and provides edge map pixels 

with higher thresholding retains their original values. Quantitative measurement of 

local variation of joint space with high resolution images are initialized with snake 

contour method. The improved watershed transform [93] with prior information was 

proposed with mapping function between pixels. Triplanar convolutional neural 

network proposed by A. Paasoon et al., Convolutional layers learn small features with 

random patches from a large image. Subsampling layer reduces number of features to 

reduce computational complexity, and overfitting issues. M. Swanson et al., [94] 

proposed a Gaussian fit model using manually selected seed point within the meniscus 

and estimating the threshold level. 
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A patch-based iterative technique on atlas selection and label fusion for constructing a 

Gaussian image pyramid was suggested by Z. Wang et al., [95]. The patch-based 

method overcomes the problems of multi-atlas approach where structural 

inconsistency cannot be completely registered. K. Zhang et al., [96] proposed support 

vector machine combined with discriminative random fields for pixel classification of 

spatial dependency and to employ feature set encoding. The method also extracts 

local geometric structure-based features with Gaussian smoothed intensity.  

Table 2.2 Semi-Automatic Segmentation Techniques for Knee MR Images 

Author, Year Input/ Attributes/ 

Features 

Techniques Used Outcome/ Results/ 

Application 

M. Marcan et al., 

2016 [91] 

12 patients of 

proton density 

weighted sequence 

(PDW SPAIR) MR 

Imagewith femur 

and tibia bone 

obtained using 

Mimics software. 

Image Partition 

Forest. 

Average symmetric 

surface distance 

was 0.98mm for 

femur and 0.73mm 

for tibia. 

DSC was 0.95 for 

femur and 0.93 for 

tibia.  

M. Baldwin et al., 

2010 [97] 

MR Images with 

features such as 

femur, tibia, and 

patellar cartilage. 

Mesh-morphing 

platform 

Edge length of 

femoral cartilage 

was 2.0mm-

2.5mm, Medial and 

lateral tibial 

cartilage was 

1.8mm, and 

patellar cartilage 

and bone was 

2.8mm. 

A. Faisal et al., 

2015 [98] 

19 asymptomatic 

subjects parallel 

segmented for 

Local regional 

information on 

expandable 

DSC for femoral 

condyle was 0.91, 

meniscus was 0.88, 
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femur, tibia, and 

meniscus tissues. 

kernel(LREK) with 

Active contour. 

and tibial plateau 

was 0.94. 

H. Gan et al., 2016 

[99] 

DESS with water 

excitation for 

cartilage 

segmentation. 

Conventional semi-

automated seed 

generation model 

with k-means 

clustering. 

Dice coefficient of 

femur was 0.11, 

tibia was 0.10, and 

patella was 0.10. 

A. Faisal et al., 

2017 [100] 

80 subjects with 

short axis view of 

femoral cartilage 

with knee fully 

flexed. 

Locally statistical 

level set method 

(LSLSM). 

DSC and Hausdorff 

distance with 

average value of 

0.91 ± 0.01 and 

6.21 ± 0.59 

respectively. 

H. Ng et al., 2006 

[92] 

50 T1-weighted 

images with edge 

mapped. 

K-means clustering 

and improved 

watershed 

algorithm. 

Number of 

partitions for an 

image 

achievednearly 85-

90%.  

A. Prasoon et al., 

2013 [101] 

114 subjects with 2 

million voxels. 

Triplanar 

Convolutional 

Neural Network 

The average DSC 

of 0.79, accuracy of 

99.91%, sensitivity 

of 78.58%, and 

specificity of 

99.95%. 

Z. Zhou et al., 2017 

[102] 

20 subjects with 8 

channel phased 

array and 45 image 

slices. 

Convolutional 

Encoder Decoder 

architecture. 

DSC value of 0.97 

for femur, 0.96 for 

tibia, 0.93 for 

muscle, 0.91 for 

other tissues. 

DSC value of 0.806 

for femoral 
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cartilage, 0.801 for 

tibial cartilage, 

0.898 for patella, 

0.807 for patellar 

cartilage, 0.831 for 

meniscus, 0.815 for 

tendons. 

K. Zhang et al., 

2013 [103] 

MR sequence 

spatially associated 

using an automatic 

multi-modal 

registration 

algorithm. 

SVM with spatial 

dependencies.  

DSC value of 0.864 

for femoral, 0.880 

for tibial, and 0.841 

for patellar. 

Z. Wang et al., 

2013 [95] 

Multi-resolution 

with Atlas selection 

providing spatial 

information. 

Patch-based 

segmentation 

without 

registration. 

AvgD, and RMSD 

of 1.72mm, 

2.36mm for femur, 

1.74mm, 2.40mm 

for tibia 

respectively. 

Volumetric overlap 

error (VOE) of 

75.7mm for 

femoral cartilage, 

76.8mm for tibial 

cartilage. 

Volumetric 

difference (VD) of 

-6.3 for femoral 

cartilage and -2.2 

for tibial cartilage. 
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2.7.3 Automatic Techniques 

Automatic segmentation techniques are performed with extensive research where the 

process need to be complete fast and reliable. Research shows that development of 

segmentation technique to segment tissues from MR images are fully automated[89]. 

To assess the disease with valuable information segmenting various tissues, there are 

automated methods such as statistical methods, optimal graph, registration methods, 

etc. Table 2.2 illustrates several automated methods for segmentation of knee MR 

images. 

 

 

 

 

 

 

 

 

 

 

Figure 2.17. Automatic Segmentation process 

C. Ozturk and S. Albayrak[104] suggested auto-segmentation technique using the 

region-growing algorithm of an enhanced voxel classification. The central coordinate 

computation with subsampling and dimensionality reduction are significant features 

of the method. H. Seim et al., [105] suggested statistical shape model and graphic-

based optimization for the femur and tibia tissue surface segmentation. Bone regions 

are selected with side selection and positioning with parameter initialization and 

cartilage surface is selected with minimum and maximum intensity profile. 

Segmentation of levels based on adaptive strength function and template has been 
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proposed by C. Ahn et al. [106]. The contours are accepted and shifted by reducing 

local intensity using the automated initialization spatial fuzzy means. The template 

provides initial contours for femoral, tibial, and patella cartilage. F. Ambellan et al., 

[90] proposed convolutional neural network and statistical shape knowledge to extract 

anatomical shape. H. Bakir and J. Zrida[107] proposed a combined approach of vector 

field convolution (VFC) and radial search algorithm. The algorithm finds the femoral 

center, which receives the edge map with a canny detector. 

J. Folkesson et al., [108] proposed k nearest neighbor classifier for cartilage 

segmentation. The images were manually labelled to describe the geometry of the 

cartilage. Sixty features establishing a tolerancelevel for the method to perform 

posterior probability. A voxel classification (kNN classifier) [43] that defines three 

classes to separate tibial medial cartilage, femoral medial cartilage, and background. It 

selects randomly sampled voxels (cartilage), and process continues selecting 

neighboring voxels until no voxel is found. J. Lee et al., [109] proposed a multi-atlas 

and local structure analysis method that applies local weights and region adjustment 

by graph-cut method. This method optimizes the operational parameters and provides 

ability to examine internal operation.C. Kauffmann et al., [110] proposed 

quantification approach for volume, and thickness of cartilage. A two-dimensional 

active contour method was used to extract the edges with continuous iteration over the 

boundary. J. tang et al., [111] proposed directional gradient vector flow (GVF) snakes 

to extract surface and thickness of cartilages. The GVF are computed by diffusion 

process utilizes edge detection for estimating the boundaries using map function. 

Table 2.3 Automatic Segmentation Techniques for Knee MR Images 

Author, Year Input/ Attributes/ 

Features 

Techniques Used Outcome/ Results/ 

Application 

Z. Zhou et al., 

2017 [102] 

7 different tissues 

femoral cartilage, 

tibial cartilage, 

patella, patellar 

cartilage, 

Convolutional neural 

network 

Dice coefficient 

for femoral 

cartilage 0.806 ± 

0.062, tibial 

cartilage 0.801 ± 
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meniscus, 

quadriceps, 

patellar tendons, 

and infrapatellar 

fat pad. 

0.052, patella 

0.898 ± 0.033, 

patellar cartilage 

0.807 ± 0.101, 

meniscus 0.831 ± 

0.031, quadriceps 

and patellar 

tendons 0.815 ± 

0.029, infrapatellar 

fat pad 0.882 ± 

0.040. 

A. Tack et al., 

2018[112] 

88 subjects with 

Meniscus volume, 

tibial coverage, 

meniscus 

extrusion. 

U-Net architecture Dice similarity 

coefficient: medial 

meniscus 83.8%, 

lateral meniscus 

88.9%.  

L. Shan et al., 

2014 [113] 

Femoral cartilage, 

Tibial cartilage 

Three-label atlas 

method 

Femoral cartilage: 

mean value was 

0.856, median was 

0.862, standard 

deviation was 

0.057. 

Tibial cartilage:  

mean value was 

0.859, median was 

0.861, standard 

deviation was 

0.047. 

Computational 

time 9hours. 

A. Raj et al., 2018 176 knee MR Fully Volumetric Dice score of 
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[114] images with 

structures such as 

(femoral cartilage, 

left and right tibial 

cartilage, left and 

right menisci, and 

patellar cartilage) 

Convolutional neural 

network  

(μ-Net) 

femoral cartilage 

was 0.834 and 

tibial cartilage was 

0.825. Volume 

overlap error 

(VOE) was 28.302 

and volume 

difference was 

12.504.  

C. Lindner et al., 

2013 [115] 

Femur bone, tibia 

bone. 

Random forest 

regression voting 

Global search error 

99.0%, median 

value 91.2% 

S. Kashyap et al., 

2016 [116] 

15 subjects with 53 

MR images for 

femur and tibia 

tissues. 

Hierarchical 

Classifier and 

Random forest for 

feature set. 

Signed 0.03 and 

unsigned femur 

value 0.55. 

Signed 0.10 and 

unsigned tibia 

value 0.61. 

J. Fripp et al., 

2010 [40] 

20 subjects of FS 

SPGR MR 

sequence 

containing. Bone 

cartilage extraction 

and articular 

cartilage 

Flokesson method 

with non-rigid 

scheme registration. 

DSC of 0.83, 0.83, 

0.85 for patellar, 

tibial, and femoral 

cartilage 

respectively. 

Median volume 

difference error 

4.65, and absolute 

thickness 

difference was 

0.24mm.  

E. Dam et al., 

2015 [117] 

140 knee MR 

images with tibial 

Multi-atlas 

registration  

Volume overlaps 

for tibial and 
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lateral and medial 

cartilage, femoral 

lateral and medial 

cartilage, lateral 

and medial 

meniscus 

femoral medial 

cartilage 

compartments 

were 0.804 and 

0.866 respectively. 

C. Chu et al., 2015 

[118] 

30 CT scan images 

with inter-slice 

resolutions of 

1.6mm 

Multi-Atlas 

Segmentation 

Constrained Graph 

(MASCG) 

Average surface 

distance error of 

0.16mm, 0.21mm, 

0.20mm for 

acetabulum, left 

femur, right femur 

respectively. 

Computational 

time was 3.05 min 

A. Gandhamal et 

al., 2017 [119] 

160 slices of 

preprocessed MR 

images with tibia 

and femur bones. 

Seed point detection 

applying 3D multi-

edge 

intersectingapproach.  

Mean sensitivity 

91.14%, specificity 

99.12%, and dice 

similarity 

coefficient (DSC) 

90.28%. 

F. Ambellan et al., 

2018 [90] 

60 training 

samples applied 

for medial and 

lateral tibia 

cartilage. 

Statistical 

structurelearning and 

CNN. 

DSC was 98.6% 

for femur and 

98.5% for tibia 

tissue, 89.9% for 

femur and 85.6% 

for tibia cartilage. 

H. Seim et al., 

2010 [105] 

60 MR image 

subjects with no 

and mild 

symptoms.  

Side selection and 

positioning, with 

graph cut method. 

DSC achieved was 

0.84, sensitivity 

was 94.1%, 

specificity was 
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99.9%, and 

average surface 

distance was 

0.49mm. Cartilage 

was 54.4 ± 8.8 

points. 

C. Ahn et al., 2016 

[106] 

20 preprocessed 

cartilage samples 

with advanced 

normalization tool 

to create template 

image.  

Level-set based 

algorithm. 

DSC of 87.1%, 

84.8%, and 81.7% 

were achieved for 

femur, patella, and 

tibia cartilage.  

C. Ozturk et al., 

2016 [104] 

33 subjects 

preprocessed for 

noise removal with 

smoothed 

intensities. 

Seed selection and 

region growing 

algorithm. 

DSC of 82.6%, 

83.1%, and 72.6% 

for femur, tibia, 

and patella 

cartilage are 

achieved. 

Sensitivity of 

79.9%, 84.0%, 

71.5%, and 

specificity of 

99.8%, 99.9%, 

99.9% for femur, 

tibia, and patella 

cartilage are 

obtained. 

 

2.7.4 Feature Extraction Techniques 

Joint space narrowing (JSN), cartilage thickness, tissue erosion are few feature inputs 

for classification of RA severity. These individual features were continuously 
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assessed for evaluation of KL grading, and significant correlation between them. To 

examine the progress of knee tissue severity, B. Ashinsky et al., [120] suggested MR-

classification approach employing weighted neighboring distances using the complex 

hierarchy of morphological algorithms (WND-CHRM). The cartilage mask is 

segmented with medium femoral slices bearing center weight.The biomarker[13] in 

cartilage thickness loss was measured by analyzing central, external, internal, anterior, 

and posterior subregions of tibial with central, external, internal femoral subregions.  

N. Bien et al., proposed deep learning assisted diagnosis method (MRNET), a 

convolutional neural network with 50 iterations. A weighted average of 256 CNN 

feature maps is generated with logistic regression to weight the prediction. S. Gaj et 

al., suggested an automatic method forfeature segmentation of cartilage and meniscus 

with conditional generative adversarial networks (CGAN)[121]. Generative 

adversarial networks (GAN) consist of two networks, first network (G) producing 

synthetic samples, and second discriminator (D) acting as binary classifier. In CGAN, 

the G is a mapping function which is defined as 𝐺(𝑦) = 𝑥ො, where x-cap defines 

segmented mask. The loss function is solved by training the discriminator (D) with 

synthetic and manual segmentation masks.A computer aided method for meniscal 

tears was introduced by A. Saygili and S. Albayrak. HOG method (rectangular 

window) was implemented to extract the features containing spatial information and 

membership weights distributed across the image pixels. M. Byra et al.,[7] proposed 

attention U-Net by outlining region of interest (ROI) by manual experts. Self-attention 

mechanism was used to improve segmentation for small objects leading to more 

focused ROI. Table 2.4 describes the quantitative assessment features with MR image 

sequences. 

Table 2.4 Quantitative evaluation of RA Knee features 

Assessed features Image planes MR image sequences 

Bone lesions Axial, sagittal, coronal T2-weighted fat 

saturated FSE or PDw 

fat-saturated FSE or 
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STIR. 

Articular cartilage Sagittal 3D high resolution 

GRE sequence and T2-

weighted fat saturated 

FSE/ TSE. 

Synovitis or synovial 

fluid 

Sagittal T2-weighted fat-

saturated FSE/TSE or 

PDw fat-saturated 

FSE/TSE. 

Meniscus Coronal, sagittal T1-weighted fat-

saturated spin-echo. 

T2-weighted fat-

saturated FSE/TSE. 

PDwfat-saturated 

FSE/TSE. 

Ligaments Axial, coronal, and 

sagittal 

PDwfat-saturated FSE/ 

TSE. 

Osteophytes Axial, sagittal, coronal 3D high resolution 

GRE sequence and T2-

weighted spin-echo 

sequences. 

 

B. Normal et al., [34] proposed automated CNN for cartilage and meniscus feature 

extraction. The model experiment was performed on DESS datasets for evaluating 

dice coefficient. V.Pedoia et al., [122] suggested severe meniscus and cartilage 

staging that was utilized to assess with 3D CNN technique. Meniscus and patellar 

cartilaginous anterior and posterior areas have been assessed with the entire MR tissue 

image scoring method adjusted (WORMS). A. Tack et al.,[112] proposed statistical 

shape model (SSM) for lateral and medial meniscus generating triangulated meshes. 

SSM with CNN were employed for segmentation masks using voting scheme. 

Extreme learning machine was introduced by K. Zhang et al., [123] for discriminative 

random fields (DRF) to estimate neighboring voxels in spatial dependencies. 



61 
 

E. Choi et al., [124] proposed XGBoost algorithm that is combination of (random 

forest and extreme gradient boosting). This method evaluates synovial white blood 

cell (WBC) count to diagnose arthritis with multivariate analysis. The model was 

applied on independent dataset for estimating the probability and discriminatory 

power.R. Hemalatha et al., proposed automatic detection and diagnosis of arthritis 

with grading of synovial region. The process of localization for each segment are 

determined by different algorithms. Bone region localization is detected by Hit or 

miss transform (HMT) algorithm that works on intensity variation and signal strength. 

The joint region localization is detected by Euclidean distance map and intensity 

profile as shown in equation 2.13. The knee joint region is determined based on the 

distance between the bone structure. The position of tissue joint is defined with pixel 

intensity profile. The synovial region localization is detected by active contour 

technique. The synovial region is then graded with CNN with 20 layers consisting of 

input, output, kernels, pooling, and fully connected layers.  

𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) = ඥ∑ (𝑦 − 𝑥)ଶ
ୀଵ      (2.13) 

I. Iqbal et al., [125] suggested transfer learning method on knee joints to identify the 

synovial fluid. The residual network (ResNet) consisting of nine convolution layers 

for identifying unpretentious structures such as femoris and tibial tissue, thirty 

convolution layers for intricate areas such as patellar, seventy-five convolution layers 

for more multifacetedstructures such as synovial fluid, then remaining nine 

convolution layers for precise features. The Tensorflow interface library evaluates the 

model on COCO dataset. T. Perrry et al.,[126] proposed semi-automated quantitative 

approach for measurement of synovial tissue. The synovitis region was estimated 

using active appearance model (AAM), targeting the threshold synovitis voxels with 

manual editing the volume. B. Heard et al., [37] proposed a method for categorizing 

normal and abnormal patients in arthritis. The artificial neural network (ANN) 

technique significantly identifies cytokines biomarkers with high level of sensitivity 

and specificity. Table 2.5 describes the several features of knee and their techniques 

with outcome.  
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Table 2.5 List of features selected for knee RA 

Author, Year Features selected Techniques Used Outcome/ Results/ 

Application 

N. Bien et al., 2018 

[127] 

Anterior cruciate 

ligament (ACL) 

and meniscus tears 

MRNet with class 

activation mapping 

AUC of 0.937, 

0.965, and 0.847 for 

abnormality 

detection, ACL tear, 

and meniscus tear 

respectively. 

Kappa grade of 

0.508, 0.800, 

and0.745 for 

abnormality 

detection, ACL tear, 

and meniscus tear 

respectively. 

A. Saygili and S. 

Albayrak, 2017 

[128] 

Knee meniscus Extreme learning 

method (ELM) and 

random forest (RF) 

Dice similarity 

measurement of 

82%. Sensitivity 

99.78%. 

I. Stajduhar et al., 

2017 [129] 

ACL injury and 

rupture from 

sagittal knee MR 

images. 

Histogram of 

oriented gradient 

(HOG) descriptor, 

SVM and RF 

AUC of 0.894 for 

wrongdiscovery and 

0.943 for 

shatterrecognition. 

C. Ozturk and S. 

Albayrak, 2016 

[104] 

Cartilage Voxel 

classification 

driven region 

growing algorithm 

and vicinity 

correlated 

subsampling 

Mean DSC value 

82.6%, 83.1%, and 

72.6%, Sensitivity of 

79.9%, 84.0%, and 

71.5%, and 

specificity of99.8%, 

99.9%, and 99.9%, 
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for femur, tibia, and 

patella 

cartilagerespectively. 

R. Cheng et al., 

2019 [130] 

2D sagittal surface 

of femur, patella. 

Holistically nested 

network (HNN) 

architecture 

Average absolute 

error value 0.33mm, 

dice coefficient of 

97%, 94% for patella 

and femur. 

E. Dam et al., 

2018 [131] 

Cartilage cavity 

and lesion volume. 

Gradient peak 

method 

Cartilage cavity was 

7.1%/3.0%. 

 

F. Liu et al., 2017 

[132] 

Tibia, femur, and 

patella cartilage 

SegNet CNN 

architecture 

(Volumetric 

difference (VD), 

Volume overlap 

error (VOE)) values 

for femur tibial, and 

patellar cartilage are 

(29.1%, 4.6%), 

(33.4%, 1.6%), and 

(24.2%, 7.1%) 

T. Perry et al., 

2018 [126] 

Synovial tissue 

volume 

Active appearance 

modelling (AMM) 

Mean difference 

207.2mm, 

confidence interval 

95%, intra-observer 

correlation 

coefficient 0.83.  

 

2.8 Diagnostic and Grading Approaches 

Knee arthritis scoring/ grading depends upon pathological features like tissueerosion, 

changes in tissues and joint space width. These parameters are directly associated 

with scoring system such as KL grading system. Kellgren and Lawrence (KL) 
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classifying method measures RA severity of knee under five categories. In this 

literature review the categorization evaluation for analysis of knee severity is 

approached in two ways (i) classification based on grading system such as KL grade, 

(ii) classification based on quantification of features. 

An automatic diagnosis for RA with KL-score was suggested for knee MR image 

assessment was achieved, applying various transformations. Simple weighted nearest 

neighbor (SWNN) was applied to categorize the basic modality images with KL 

score. The method was enhanced employing a new method using morphological 

algorithm. The method first extract features and further classifies the images into 

normal and abnormal. The extracted features are then classified using support vector 

machine (SVM) and random forest (RF) to standardize the automatic classification of 

knee RA. T. Yang et al., [133] classified ultrasound images with SVM and various 

feature descriptors. The method separates synovial region and phalangeal bone region 

with Otsu’s method. 

A fine-tuned CNN architecture proposed by J. Antony et al., [134] quantifies the 

severity of knee arthritis. The CNN architecture uses 5D fully connected layer, 

softmax function and regression network with linear activation. The regression 

network is trained with regression loss and rounded labels. P. Chen et al., [58] 

proposed fully automatic severity grading using CNN classifier. The ResNet34 

architecture also provides cross entropy loss and ordinal loss to achieve best accuracy. 

The artificial neural network (ANN) proposed by Y. Du et al., [135] consists of single 

hidden layer with n neurons constructing hyperplanes with map function. Y. Feng et 

al., [136] proposed a combined architecture of highway network, CNN, a residual 

network. The highway network is likelong shortterm memory (LSTM) in conjunction 

with 18 layers and 150 units in each layer. CNN consisting of 32 filters and residual 

network (ResNet) with 20 layers that solves the degradation problem.  
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Table 2.6 Classification Techniques with KL-grading for Knee MR Images 

Author, Year Input/ Attributes/ 

Features 

Techniques Used Outcome/ Results/ 

Application 

K. Ureten et al., 

2019 [137] 

180 Images of 

normal and 

rheumatoid arthritis 

(RA) cases with 

swelling, pain. 

Data augmentation 

is used for 

irrelevant patterns, 

and overfitting 

problems. 

Convolutional 

Neural Network 

(CNN). 

Accuracy of 

73.33%, error rate 

of 0.0167, 

sensitivity of 

0.6818, specificity 

of 0.7826, and 

precision of 0.7500 

was achieved. 

B. Liu et al., 

2019[138] 

2770 random 

images were 

labelled into 5 

groups using KL 

grade scheme. 

Faster R-

Convolutional 

Neural Network 

(FCNN). 

Standard precision 

of 0.82, sensitivity 

of 78%, specificity 

of 94%.It took 

0.33s to test each 

individual image. 

P. Chen et al., 2019 

[58] 

1656 knee image 

joints splitted into 

639 for grade 0, 

296 for grade 1, 

447 for grade 2, 

223 for grade 3, 51 

for grade 4 

manually annotated 

to measure joint 

space.  

Convolutional 

Neural Network. 

Accuracy of 

70.4%, Mean 

absolute error 

(MAE) of 0.358. 

K. Thomas et al., 

2020 [139] 

4090 images 

pretrained from 

169-layer 

convolutional 

Accuracy 87.2%, 

Precision 0.884, 
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ImageNet. neural network. Recall 0.849, F1-

score 0.866. 

B. Norman et al., 

2018 [140] 

40490 bilateral PA 

fixed-flexion 

images localized 

using U-Net model. 

Densely Connected 

Convolutional 

Neural Network 

(Dense-Net) 

Sensitivity value 

for no arthritis was 

83.7%, mild 

arthritis was 

70.2%, moderate 

arthritis was 

68.9%, and severe 

arthritis was 

86.0%. 

Corresponding 

specificity values 

were 86.1%, 

83.8%, 97.1%, 

99.1%. 

Y. Huang et al., 

2020 

3740 images 

segmented of 

metacarpal bones 

and analyzed for 

textual features. 

Deep ten-network ROC curve was 

0.69, positive 

predicted value was 

0.64. 

J. Antony et al., 

2016 [134] 

4476 images with 

grade 0 consisting 

of 3233, grade 1 

with 1589, grade 2 

with 2355, grade 3 

with 1222, and 

grade 4 with 295. 

Convolutional 

Neural Network. 

The multiclass 

classification 

accuracy of 

network with 

regression loss was 

59.6%. Mean 

precision was 0.43, 

recall was 0.44, f1-

score was 0.43. 

J. Antony et al., Automatically Fully Accuracy 60.3%, 
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2017 [141] localized and 

extracted knee 

joints from 1200 

images. 

Convolutional 

Neural Network 

(FCNN). 

Mean-squared error 

0.898. ROC (AUC) 

for grade 0 was 

0.87, grade 1 was 

0.71, grade 2 was 

0.82, grade 3 was 

0.96, and grade 4 

was 0.99. 

S. Dang et al., 2020 

[142] 

416 samples with 

hand joints one 

joint at least 

scoring 3 and 

above.  

Convolutional 

Neural Network. 

Accuracy was 

90.8%, Root mean 

square standard 

deviation (RMSD) 

was 15.6635. 

J. Cheung et al., 

2020 [143] 

Images annotated 

with distal femur 

and proximal tibia 

for estimating 

tibiofemoral joint. 

Convolutional 

neural network 

with ResU-Net 

architecture.  

Joint space width 

(JSW) of 0.7801. 

For 32-point 

multiple JSW AUC 

score was 0.656 

progression to 

0.587 and 0.554. 

R. Hemalatha et 

al., 2019 [35] 

Preprocessed 

images with bone 

localization using 

HMT algorithm, 

and synovial region 

localization with 

active contour 

technique. 

Convolutional 

neural network. 

Accuracy 95.02 ± 

2.78, Precision 

95.42 ± 2.08, 

Specificity 95.86 ± 

1.98, Sensitivity 

98.02 ± 0.78. 

T. Hirano et al., 

2019 [144] 

108 subjects 

clipped and scored 

for bone erosion 

Convolutional 

neural network. 

Accuracy of model 

and clinical data 

was 49.3-65.4% for 
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and joint space 

narrowing. 

JSN, and 70.6-

74.1% for erosion. 

Sensitivity and 

specificity were 

88.0-94.2% and 

52.0-74.8% for 

JSN and 34.8-

42.4% and 88.2-

89.4% for erosion 

respectively. 

S. Murakami et al., 

2017 [32] 

129 cases with 

removal of soft 

tissues, initializing 

phalanges region 

by multiple scale 

gradient vector 

flow. 

Deep CNN. Bone erosion: 

Average True 

positive rate 

80.5%, false 

positive rate 

0.84%. 

J. Rohrbach et al., 

2019 [145] 

Images with 

Ratingen score 

stage 0: 69067, 

stage 1: 27853, 

stage 2: 2316,  

stage 3: 1041, 

stage 4: 597, 

stage 5: 1391. 

VGG16 with Adam 

optimization. 

Global accuracy of 

77.5%, Balanced 

accuracy of 82.9%.  

R. Wahyuningrum 

et al., 2019 [146] 

4796 preprocessed 

images and feature 

extracted using 

Visual geometry 

group (VGG-16). 

CNN combined 

with LSTM 

Average accuracy 

of 75.28% is 

achieved. 

S. Shanmugam et Learning data with Machine learning AdaBoost gave 
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al., 2018 [147] sample set 

independently that 

fit in memory.  

based Ensemble 

Analytic Approach 

(MLEAA).  

best accuracy of 

85%, then SVM 

provided with 

75.4%, ANN and 

Naïve Bayes 

provided 72.2% 

and 71.1% 

respectively. 

H. Nguyen et al., 

2019 [148] 

3445 images with 

grade 0 consisting 

of 1550, grade 1 

with 568, grade 2 

with 520, grade 3 

with 559, and grade 

4 with 248.  

Semixup: In and 

out manifold 

regularization. 

Accuracy of 70.9% 

± 0.8 was achieved. 

Mean squared error 

(MSE) was 0.440, 

and AUC was 

0.963 for (KL>2). 

 

2.9 Observations 

Joint space narrowing evaluation is the primary stage in determining knee rheumatoid 

arthritis development (RA). The assessment can be done with proper segmentation 

and feature extraction from MR images. The segmentation can be discussed into three 

different categories manual, semi-automatic and automatic. Manual segmentation is 

very tedious due to difference in inter-observer and intra-observer assessment. Studies 

have shown significantly large variations resulting lower clinical significance. In 

comparison to the conventional approach, the semi-automatic would be less tedious, 

but the intra- and inter outcomes stay the same. All the semi-automatic techniques 

quantify maximum specificity and sensitivity by using watershed-based methods. 

Many researchers have developed automated segmentation approaches with a view to 

eliminating the intra- and inter-server unpredictability that generates mistakes, both 

manually and semi-automatically. 
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Automated techniques are very reliable and robust, but validation of these techniques 

is required for satisfactory results. These automated techniques are abed on region 

growing, seed selection point, and based on voxels of tissues. Some researchers have 

also came up with techniques such as multi-object, multi-contrast, and multi-level 

segment. Although there are numerous automated segmentation approaches accessible 

in the study, many of which have gaps as outlined in Table 2.6. All the preceding 

studies indicate substantial changes which might lead to low clinical relevance. Based 

on the above studies table 2.7 have been prepared. This table illustrates the detailed 

applicability of techniques with arthritis disease, and diversified features applicable 

for the disease. 

Table 2.7 Techniques applied for arthritis disease 

 Arthritis disease features  

Cartilage Meniscus Lesions Ligaments Synovial 

fluid 

Femur 

bone 

Tibia 

bone 

Patella 

bone 

SVM 2 1    1 1 1 

RF 1 1    1 1  

DT  1       

ANN 1 1    1 1 1 

CNN 4 2 1 1 1 5 5 5 

K-

means 

1 1       

Seg-

Net 

1 1    1 1 1 

U-Net 2     2 3 1 

ResNet 2 1       

VGG 2     1 1  

HNN       1 1 

Dense-

Net 

1 1       

AMM     1    
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During the study it has been observed that the term “Intelligent medical diagnostic 

system” has not at all used as keyword in any article. Instead of this many articles 

refer the terms like ANN, CNN, hybrid technique, or integrated technique, DWT, etc. 

So, in this thesis we introduce a new keyword “Intelligent Medical Diagnostic 

System” which refers to all the methodologies mentioned in this thesis. Along with 

many benefits, preparing the literature review also has several limitations. The author 

must gather extensive information for studying, and classifying the articles based on 

techniques used, publication language other than English cannot be included, limit the 

number of databases and time constraint. Hopefully, this thesis provides researchers a 

quantitative state-of-the-art and systematic review in developing medical decision-

making for assessing the rheumatoid arthritis (RA). 

Many quantitative approaches are based on a KL grade provided in Table 2.8 to 

evaluate the progression or diagnosis of MR images.The joint space width/ narrowing 

assessment is involved in RA progression, where knee whose KL grade is ≤ 1, is 

considered normal or doubtful RA. If KL grade ≥ 2, then considered as mild, 

moderate, or severe RA. Therefore, grading is foremost important for fair 

measurement of RA progression.Automated RA severity assessment comprises two 

phases: (i) automatic area of concern detection (ROI), (ii) knee joint 

classification.Many researchers have examined automated techniques;however, this is 

a challenge. 

Table 2.8 KL grading for arthritis progression 

KL grade Description 

0 Normal joint space and no possibility of RA. 

1 Uncertainreduction of joint space and possibilityof RA. 

2 Potentialreduction of joint space and significant(mild) 

RA. 

3 Obviousreduction of joint space and moderate RA. 

4 Apparentreduction of joint space and critical RA. 
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2.10 Conclusion 

This chapter addresses the issues in the present techniques such as to denoise, 

automatic segmentation with no human intervention. Mostly, the CNN and its variant 

techniques outperforms most of the studies. Some approaches areassessed on ground 

truth and existing techniques for comparison.The subsequent chapters discuss 

proposed architecture of denoising, segmentation, and classification in detail. 

Researchers have proposed many studies based on segmentation, feature extraction, 

and classification approach as reviewed and discussed in previous sections. These 

approaches are preferred on different selection criteria such as features (cartilage, 

meniscus, synovial fluid, lesions, and tissues). There are various techniques to knee 

RA assessment in the literature using image functionality extracted, particularly 

GLCM, statistical features, local binary pattern. There are some approaches that uses 

large number of feature set based on pixel, objects, edge, texture, histogram, and 

transforms. Various ML classifications such as K neighbor (KNN), vector aid (SVM) 

as well as decision tree model (RF) have been introduced. But these techniques still 

have inadequate multi-class assessment effectiveness, and a difficulty continues to 

classify the knee RA. 

In recent years, the use of deep learning approaches has outperformed many 

techniques. Specially in deep learning work in the realm of disease, such as formal 

feature extraction, segmentation of tissue in knee MR image, deep neural network 

(CNN) has proven immensely effective. Even though automatic techniques provide 

best outcomes and have much scope in the research but lacks as discussed above. 

Most approaches initially need a high level of training and even a minor change in 

training instances influences the result. The approaches offered demand a significant 

amount of time and even significant computations. This thesis therefore gives 

investigators with an opportunity to provide efficient time and computation 

approaches to this area of study. The performance of the proposed new architecture is 

also analyzed on a comparable scale with the existing system for a reasonable and 

accurate evaluation. Further, the subsequent chapters discuss the proposed 

architecture in-detail.  
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Chapter 3 

Denoising MR Images Using Sparse Aware Noise Reduction 

with Convolutional Neural Network and Dictionary 

Learning 

This chapter presents the proposed denoising technique using CNN. The chapter is 

organized as follows: Section 3.1 describes the need of preprocessing.Section 3.2 

presents the introduction. Section 3.3 describes the pre-processing methodology used 

for denoising knee MR images. Section 3.4 discusses the details of the experiment 

carried out and the findings achieved. The chapter concludes with Section 3.5. 

3.1 Need of Preprocessing 

Intelligence medical diagnostic systems (IMDS) or Computer aided diagnosis (CAD) 

systems are growing rapidly to detect and diagnose RA automatically. Such systems 

rely on the images obtained from the various medical imaging modalities. 

Segmentation and feature extraction are important steps in diagnosis of RA from MR 

images using intelligent systems. These images are prone to noise, inadequate 

contrast, and brightness that restricts the diagnosis of disease. Performance of these 

intelligent systems are also degraded by misinterpretation of knee features by experts. 

The design and development of IMDS depends on image quality and features to be 

used[149]. Now-a-days due to high quality medical machines the contrast and 

brightness are of superior quality. However, most of the images acquired using MR 

imaging modality exhibit noise that leads to difficulties in quantitative measurements 

such as segmentation, categorization and assessment of tissue-related morphological 

characteristics. 

Insufficient brightness also negatively impacts the possibility to segment and classify 

the inadequate tissue limits of the intelligent system. Other challenges in MR images 

also includes the complex knee structure, varying intensities of single tissue due to the 

preferential impact of volume[150]. The in-detail challenges are discussed in section 

2.2, that leads to improper diagnosis of RA. Figure 3.1 shows the noise and contrast 

issues in knee MR images.Therefore, pre-processing is important step because of 
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noise present in medical images that leads to inaccurate segmentation of tissues and 

in-turn affects the diagnosis capability of IMDS. Therefore, the Gaussian noise is 

recommended to be filtered from medically based images as part of the pre-procedure 

approach to this thesis Sparse Aware Noise Reduction using Convolutional Neural 

Networks (SANR CNN). 

 

 

 

 

 

 

 

 

 

Figure 3.1. Challenges in MR images (a) Noise present, (b) complex structure of 

knee, (c) inadequate contrast of knee MR image. 

3.2Introduction 

Chronic diseases are generally defined as long lasting disease with limitations to day-

toady activities. Common talk about chronic disease refers to cancer, heart disease, 

and diabetes. On contrary, there is no such alertness about arthritis disease and its 

leading cause of mobility and mortality around the globe.Arthritis is the swelling and 

tenderness of one or more joints causing inflammation, stiffness, and pain. Arthritis 

disease is of different types (i) Osteoarthritis (OA), (ii) Rheumatoid arthritis (RA), 

(iii) Gout (iv) Juvenile arthritis (JA), (v) Spondyloarthropathies (vi) Reactive and 

infectious arthritis (IA)[151]. Osteoarthritis is a kind of degenerative arthritis that 

breaks down the joints causing inflammation, bone injury, and pain. This type of 

arthritis is caused by wear and tear/ damage of cartilage and joints. Rheumatoid 
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arthritis is caused by lining of joints, tough membrane causing swollen and 

inflammation of joints with destroying cartilage and bone joints. RA affects hands, 

arms, knee making it difficult for daily tasks. Juvenile arthritis (JA) mostly affects the 

children causing autoimmune disorder. JA causes joints to misalign, muscle and 

tissues to tighten, bones to erode, swelling, and stiffness. Spondyloarthropathies 

attacks the tendons and ligaments attached to spine and pelvis bones. SA causes spinal 

deformity and arm and knee instability. Reactive and infectious arthritis (IA) is an 

infection of joint causing pain and swelling. This type of arthritis is caused by 

bacteria, viruses, or parasites. IA when causes infection in one part of body triggers 

dysfunction of immune system. Gout is a chronic autoimmune disease induced by 

urinary crystal buildup in the tissues. Gout causes big toe and potential affects other 

joints with swelling, and redness.  

Medical interpretations from clinical and laboratory data are highly demanded for 

arthritis diagnosis. Analyzing these medical records or images are complex due to 

fuzziness present in it. Fuzziness may be in terms of noise, and artifacts that causes 

difficult for processing of images. Moreover, accurate diagnosis is not guaranteed as 

human experts are prone to errors due to abundant clinical workload, and other health 

issues. In recent years, intelligent medical diagnostic system (IMDS) has been widely 

used in hospitals for assisting experts in analyzing the patients’ health. For 

experimentation and learning medical images are stored in large datacenters, created 

with the use of useful resources. Intelligent systems are applied on these images for 

providing information for diagnosing the diseases. Each intelligent system has unique 

steps for processing the data and producing distinct outcomes. However, the primary 

step in image processing is pre-processing when thereis raw data or primary data. Pre-

processing is a stage of reducing or removing the raw data such as noise, and 

irregularities (artifacts) in the image. During these past few years, a broad variety of 

preparatory procedures for MR pictures to improve the quality of MR images were 

created.Most methods come from the non-local mean filter (NLM) [76] to estimate 

their comparable patches in the search window by weighted average, in the current 

pixel. One of the critical drawbacks of NLM filter is time consuming. NLM has been 

explored extensively in several forms to improve the problem of MR denoising. 



76 
 

Specifically, the optimized block-wise version of NLM (ONLM) reduces 

computational complexity. In addition, other state-of-the-art techniques such as block-

matching and 3D (BM3D) combines nonlocality and domain transform using DCT for 

estimating multiple arrogates at each location. An improved version of BM3D has 

been introduced, BM4D for processing of volumetric data and adapting analytical 

transforms. 

In recent years, deep learning has made tremendous impact on image processing field. 

In addition, deep learning is being implemented for low-level tasks, like denoise, 

deblurring and contrast improvement, except forcomprehensive study on high-level 

tasks. The multilayered sensing, autoencoders and neural nets were used for image 

restore and outcomes were achieved which are commensurate with advanced 

techniques. However, to the best of our understanding, MR image denoising research 

seems to be quite restricted as representedin [4]. Despite significant study into MR 

image de-noising, approaches still suffer from a number of shortcomings like 

computational complexity, enhancement and parameter estimation. 

The original MR images are associated with the noise in the form of speckles and 

insufficient contrast of tissues causing difficulties in segmentation and diagnosis of 

tissues. Thus, preprocessing of MR images like noise reduction is performed using the 

Sparse aware noise reduction with Convolutional neural network (SANR_CNN) 

approach[149]. The denoising approach should filter the noise present in the MR 

images with affecting the essential information such as edges, contrast, brightness, 

etc. Many techniques have been proposed but fail to preserve the image information. 

Thus, the image details are preservedusing proposed SANR_CNN technique for 

further process. 

3.2.1 Noise Distribution 

In general, Gaussian noise degrades medical MR pictures, which are simple to deal 

with and are signal dependent.The visual quality and quantitative features are 

impeded by the noise. The Gaussian noise disrupts the gray value in medical MR 

images, the distribution function is shown in equation 3.1. 
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𝑷(𝑮) =
𝟏

𝝈√𝟐𝝅
−𝒆

(𝒊ష𝝁)𝟐

𝟐𝝈𝟐        (3.1) 

where, i is gray intensity, σ is standard deviation, μ is average value.The Rician noise 

is represented as in equation 3.2. 

𝑹(𝒏) = 𝒀𝒊 + 𝒀𝒐       (3.2) 

Where, Yi, and Yo, are imaginary and original values. 

𝒀𝒊 = 𝑰𝑪𝒐𝒔𝜽 + 𝝎𝟏       (3.3) 

𝒀𝒐 = 𝑰𝑺𝒊𝒏𝜽 + 𝝎𝟐       (3.4) 

3.3Preprocessing of Knee MR Images 

The proposed methodology SANR_CNN is divided into subsequent stages: (i) 

Dictionary creation stage, (ii) fusing the sparse data with dictionary phase, and (iii) 

parametric restoration of MR image. The CNN architecture includes several specific 

hidden layers with scarce characteristics to generate images of high quality. The CNN 

design relies primarily on image interpretation based on past expertise and appropriate 

noise training. As seen in Figure 3,2 the image is partitioned into chunks by the 

window technique. 

The proposed CNN architecture as illustrated in figure 3.3 estimates the weights for 

each layer obtained and creates a dictionary by storing them for further processing. 

During testing of the model these generated dictionary values are applied, to enhance 

the model and increase the performance. The model reconstructs the input image into 

high-quality and denoised MR image. There are two benefits to the suggested CNN 

architecture: (i) local reliance, and ii) variability of scale. Local dependency indicates 

that the information may be linked to the information around the point at the present 

moment. Variability of scale indicates that in the magnitude, recurrence, and 

synchronization the study item does not vary. The CNN was set with initial 

parameters of learning rate 1 X 10-3, epsilon 1 X 10-8. 
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Figure 3.2. Proposed Sparse aware noise removal with Convolutional neural network 

(SANR_CNN) architecture. 

3.3.1 Denoising of Knee MR Image using SANR_CNN 

The proposed Convolutional neural network (CNN) architecture consists of 17 layers 

with different layers such as: convolutional layer, Rectified linear unit (ReLU), and 

dilated convolutional network layer. The 1st and 16th layer of the architecture are 

convolutional and ReLU combined. The second, fifth, ninth, and twelfth layers are 

dilated convolutional layers, with the last layer functioning as a convolutional layer. 

The kernel size of 128 X 1 X 40 X 40 for first and final layer and 128 X 64 X 40 X 40 

for other remaining layers. 

Figure 3.3. Proposed Dilated convolutional neural networks architecture 
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In classic CNN design, the pooling procedure can provide the kernels a bigger 

appropriate field. Extensive aggregating procedures, on the other hand, eventually 

result in additional information loss. As a result, the dilated convolution operation 

extends the corresponding field without aggregating, providing every other 

convolution to hold a diverse range of information. The dilated convolution layer is a 

discrepancy on the standard convolutional procedure. The basic idea behind dilated 

convolutional is to provide a constant factor 0 that would not change throughout the 

process of learning amongst kernel and accomplish the goal of dilating the relevant 

field without increase in the number of factors associated. The dilation rate with one-

dimensional convolution is denoted by equation 3.5, wherein x(i) and z(i) indicate the 

input and output signals, correspondingly, 'y' signifies the size of the convolutional 

kernel, and 'd' is the dilatation rate. In equation 3.6, d is the dilation factor, 1 * K, 

represent convolution kernel. 

𝑧(𝑖) = ∑ 𝑥(𝑖 + 𝑑𝑦)𝑤(𝑦)
        (3.5) 

𝐾(𝑑) = 𝐾 + (𝑘 − 1)(𝑑 − 1)       (3.6) 

3.3.2Dictionary Learning 

In recent years the convolutional dictionary learning has been aroused as better 

learning approach[152][153]. The approach is an enhancement of conventional 

dictionary learning, with the goal of capturing the essential features of image data and 

increasing feature classification ability.Convolutional dictionary learning adheres to 

CNN's design yet employs a hierarchical approach. In dictionary learning, the 

convolutional correlates to the independent variables in this study stages. Let {𝐷}ୀଵ
ே  

be N-layer convolutional dictionary, with 𝐷𝜖𝑅ௗ is the dictionary in the n-th layer 

dictionary and Kn, being the value of Dn. The convolutional representation may be 

written as𝑍 ≈ 𝐷ଵ𝐷ଶ  … . . 𝐷ே𝐴ே. The composition can be expressed in depth as shown 

in equation 3.7. 

𝑍 ≈ 𝐷ଵ𝐴ଵ, 𝑍 ≈ 𝐷ଵ𝐷ଶ𝐴ଶ, 𝑍 ≈ 𝐷ଵ𝐷ଶ𝐷ଷ𝐴ଷ, … … 𝑍 ≈ 𝐷ଵ𝐷ଶ … . 𝐷ே𝐴ே  (3.7) 
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The dictionary learning method is performed to optimize the denoising approach for 

knee MR images. Let ‘n’ be the noise blended with input image indicated by patch 

intensity ‘i’ as given in the equation 3.8. 

𝑌 = 𝑖 + 𝑘       (3.8) 

Each patch is measured as m X m, with ‘k’ value ranging from 8 to 12 pixels. All 

these patches are integrated together inside a frame to reconstruct the image. As an 

initiation procedure, the feature component ranges are supplied, and a sparse linear 

technique is applied to eliminate noise all chaotic patches obtained from the medical 

image. As demonstrated in equation 3.6, the noisy error can be minimized by 

designating with a pre-defined factor (𝜖) and Y as a noisy patch. 

minห|𝛼|ห


𝑠 . 𝑡||𝐷ఈ − 𝑌||ଶ ≤∈       (3.9) 

The pseudo normalization parameter is used to impose sparsity characteristics (l0). 

However, the normalization problem cannot be solved using pseudo parameter. So, 

epsilon (𝜖) was chosen for better approximation of normalization error defined by its 

variance. As stated in equation 3.10, dictionary learning may be split into rows and 

columns using a fitness function. The dictionary can be updated using the equation 

3.11, with Z denoting the weighted sparse factor and Di, signifies the dictionary. 

𝐷(𝑗) = 𝑋𝑍
்|ห𝑋𝑍

்ห|ଶ       (3.10) 

𝐷 = minห|𝑋 − 𝐷𝑍|ห


ଶ
, 𝑑||ଶ ≤ 1      (3.11) 

Algorithm: Creation and Updating the dictionary 

Input 

A training subclass from categoryi, the factors Zi, the dictionary Di 

Let Zi = [Z1, Z2, ……, Zn] and Di = [d1, d2, …, dn] where i= 1,2, …, n, ith is 

the row vector of Zi and jth is the column vector of Di 

for j=1 to n do 

Fix all di, i ≠ j, and update dj. Let X be the minimization function 
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Place equation 3.8 here, 

By solving this objective function  

Place equation 3.9 here, 

End for 

Output 

Update of dictionary (equation 3.10) 

 

3.4 Results and Discussion 

The knee dataset obtained from local hospital and from Osteoarthritis Initiative (OAI) 

was used in this experimental study. Investigations were performed out on several 

MR Image datasets to illustrate the applicability of the suggested method. 

Additionally, quantitative analysis was used to assess the effectiveness of the de-

noising approach. Peak signal to noise ratio (PSNR), structural similarity index 

(SSIM), mean squared error (MSE), and enhancement measure (EM) were used in 

quantitative research, as indicated in formulas 1.1, 1.2, 1.3, 1.4, and 1.5. The 

suggested approach's performance characteristics were evaluated with those of the 

conventional and most extensively used approaches. 

The details of knee MR image dataset are given in the section 1.2. The 

aforementioned denoising method was trained on 12000 pictures of 512 X 512 

resolution. T1-weighted images totaled 5600, T2-weighted images were 3800, and 

Flair images totaled 2600. The dataset includes of three different kinds of MR images 

(i) T1-weighted with TE of 9.7 and TR of 760.0, (ii) T2-weighted with TE of 34.7 and 

TR of 2740.0, and (iii) Flair images with TE of 104.9 and TR of 3360.0. Table 3.1 

describes the quantitative parameterswith trials for proposed model.The table 

demonstrates an average PSNR value of 41dB and 0.87 as SSIM value. Many trials 

are carried out for obtaining better quantitative values. The comparative techniques 

used in the experiment are Block Matching 3D Denoising (BM3D), Trainable 

Nonlinear Reaction Diffusion (TNRD), Denoising Convolutional Neural Network 

(DnCNN), Convolutional Neural Network with joint loss function (MP-DCNN) and 
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proposed Sparse Aware Noise Reduction with Convolutional Neural Network 

(SANR_CNN). For obtaining better results the experiment was conducted with many 

trials. But for illustration just 7 trials are described. Table 3.6 describes the 

computational time or execution time required to process the knee MR images. As 

computational time is the major issue with image processing, the proposed approach 

utilizes the time efficiently by creation of dictionary learning concept and reducing 

the testing time. 

Table 3.1. Quantitative parameters with trials 

Parameter Trial 

run 1 

Trial 

run 2 

Trial 

run 3 

Trial 

run 4 

Trial 

run 5 

Trial 

run 6 

Trial 

run 7 

Summary 

PSNR 

(dB) 

40.59 41.72 40.17 43.81 42.92 41.23 41.58 41 ± 

3.00 

SSIM 0.81 0.92 0.86 0.90 0.87 0.89 0.92 0.87 ± 

0.08 

MSE 0.005 0.003 0.004 0.006 0.006 0.005 0.005 0.004 ± 

0.002 

EM 55.13 58.78 58.56 61.63 62.79 60.10 61.95 59.84 ± 

3.00 

Table 3.2. Comparative analysis of PSNR value.  

Techniques Trial 

run 1 

Trial 

run 2 

Trial 

run 3 

Trial 

run 4 

Trial 

run 5 

Trial 

run 6 

Trial 

run 7 

Summary 

BM3D 19.21 19.23 19.11 19.23 19.26 19.09 19.27 19 ± 0.30 

TNRD 23.45 25.81 24.15 24.68 23.86 23.94 24.79 24 ± 3.00 

DnCNN 29.92 32.43 30.52 31.12 32.71 31.01 32.30 31 ± 2.00 

MP-DCNN 17.51 20.72 18.53 18.51 19.56 20.76 20.85 19 ± 3.00 

SANR_CNN 40.59 41.72 40.17 43.81 42.92 41.23 41.58 41 ± 3.00 
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Table 3.3. Comparative analysis of SSIM value. 

Techniques Trial 

run 1 

Trial 

run 2 

Trial 

run 3 

Trial 

run 4 

Trial 

run 5 

Trial 

run 6 

Trial 

run 7 

Summary 

BM3D 0.64 0.68 0.63 0.68 0.69 0.63 0.65 0.65 ± 

0.05 

TNRD 0.59 0.54 0.58 0.60 0.56 0.58 0.59 0.57 ± 

0.05 

DnCNN 0.78 0.79 0.74 0.76 0.73 0.76 0.77 0.75 ± 

0.7 

MP-DCNN 0.67 0.63 0.64 0.66 0.69 0.62 0.65 0.65 ± 

0.05 

SANR_CNN 0.81 0.92 0.86 0.90 0.87 0.89 0.92 0.87 ± 

0.08 

 

Table 3.4. Comparative analysis of MSE value 

Techniques Trial 

run 1 

Trial 

run 2 

Trial 

run 3 

Trial 

run 4 

Trial 

run 5 

Trial 

run 6 

Trial 

run 7 

Summary 

BM3D 0.015 0.015 0.013 0.015 0.015 0.012 0.015 0.014 ± 

0.003 

TNRD 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 ± 

0.001 

DnCNN 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 ± 

0.003 

MP-DCNN 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 ± 

0.001 

SANR_CNN 0.005 0.003 0.004 0.006 0.006 0.005 0.005 0.004 ± 

0.002 
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Table 3.5. Comparative analysis of EM value 

Techniques Trial 

run 1 

Trial 

run 2 

Trial 

run 3 

Trial 

run 4 

Trial 

run 5 

Trial 

run 6 

Trial 

run 7 

Summary 

BM3D 21.98 22.07 22.05 22.27 23.10 24.20 24.25 22.84 ± 

2.00 

TNRD 30.92 32.24 31.66 32.30 33.66 33.81 33.67 32.60 ± 

1.70 

DnCNN 33.29 33.77 33.90 34.38 35.54 34.92 35.98 34.54 ± 

1.80 

MP-DCNN 39.23 41.55 41.92 41.12 43.06 44.18 44.72 42.25 ± 

2.00 

SANR_CNN 55.13 58.78 58.56 61.63 62.79 60.10 61.95 59.84 ± 

3.00 

 

Table 3.6. Computational time for different techniques 

Techniques Time(sec) 

BM3D[154] 835.12 

TNRD[155] 792.53 

DnCNN[156] 654.09 

MP-DCNN[157] 631.31 

SANR_CNN 567.77 

 

The experiment was conducted on T1, T2, and Flair MR images. Table 3.2 shows the 

PSNR value with seven different trails. The proposed SANR_CNN model produces 

outstanding result with PSNR value of 42.92dB in trial 5.The average PSNR for all 7 

trials is 41dB and the nearest value with DnCNN on trial 7 is 32.30dB. The results 

obtained in table 3.3 provides the SSIM values, that shows the similarity of image 

structure. For proposed technique 0.92 value was obtained for trial 2 and trial 7, and 

average value of 0.87. The SSIM values shows the edge contents and details of knee 
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MR images are preserved. This value restoration aids post-processing operations such 

as MR dimensionality reduction, feature extraction, and classifications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Denoised Knee MR images achieved with SANR_CNN. 
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Figure 3.5. Computational time estimated for comparative techniques. 

Figure 3.4 illustrates the input images and denoised images. In table 3.4 the mean 

squared error (MSE) value for proposed technique obtained was 0.005. The TNRD 

also for some good result for MSE value. Table 3.5 describes the enhancement 

measure (EM) obtained for comparative techniques. The EM obtained for proposed 

SANR_CNN technique was 59.84 on average trials. Comparatively with proposed 

technique, MP-DCNN technique also performs better in conditions of different 

considerations. Figure 3.4 shows the comparative analysis of computational time 

taken for execution of proposed and similar techniques.From the figure 3.5 it can be 

visualized that the computational time of proposed technique is lesser than the similar 

compared techniques. 

3.5Conclusion 

Implementation of these intelligent medical diagnostic system (IMDS) has 

contributed to major transformation in the field of information retrieval and 

processing.The IMDS with proper decision making can be helpful in diagnosing the 

chronic disease such as rheumatoid arthritis. As a part of constant effort of making 

knee arthritis diagnosis, preprocessing is an important phase, as the MR images are 

affected to noise artifacts during image acquisition. So, in this chapter a new 

denoising technique for knee MR images is proposed. Inadequate contrast and noise 

are issues in MR images that cause ineffective segmentation and classification 

outcomes. Denoisingobtained by proposed dictionary CNN approach reduces the 
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noise artifacts present in the knee MR images. The dictionary approach with CNN 

exceptionally reduces the computational time required for testing phase.  

The outcomes of the experiment conducted shows capability of SANR_CNN over 

other compared methods.The new denoising technique helps to resolve erroneous and 

inappropriate MR data.The improved knee MR images may be utilized to segment 

hard tissues such as joints and give a significant increase in classifications. 
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Chapter 4 

Hybrid Architecture for Knee MR Image Segmentation and 

Feature Extraction 

This chapter presents the proposed hybrid architecture of discrete wavelet transform 

(DWT) and MultiResUNet. The following is how the chapter is structured: Section 

4.1 introduces segmentation and feature extraction techniques, Section 4.2 discusses 

seed point selection approach and bone area retrieval utilizing the suggested 

MultiResUNet architecture, Section 4.3 demonstrates performance assessment and 

discussion, and Section 4.4 closes the chapter. 

4.1 Introduction 

Segmentation and feature extraction in knee MR images are challenging task that 

involves challenges like complicated knee structure, MR image artifacts, partial 

volume effect, varying intensity level, etc., as discussed in section 2.2. Many 

approaches are shown in the review to autonomously slice the ROI and extraction of 

features from MR images, but they all have drawbacks, as mentioned in the review. 

The majority of existing approaches are training-based, model-based, or atlas-based, 

requiring large datasets, model, and atlas development. Slight variation in the training 

data, model or atlas demand the retraining of entire system otherwise it affects whole 

system outcome. Even the model training and designing phase requires huge time and 

manual efforts of experts to annotate training data and designing the model. This 

increases inter and interobservers inconsistency, which has a significant impact on the 

performance of morphological operations and extraction approaches. 

Thus, in this research a new model automatic multi-stage architecture is proposed for 

segmentation and feature extraction. Figure 4.1 illustrates the different sagittal views 

of knee MR image, and it can be observed that the femur, and tibia bones occupy 

major portion of MR image. Tables 2.2 and 2.3 indicate that the computational 

approaches for segmentation seem to be either automated or semi-automatic. Whereas 

semi-automatic approaches produce effective outcome, but are limited by manual 

intervention, which could lead to dependability issues.The fully automatic methods 
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had gained lot of attraction and are either supervised or unsupervised. These 

approaches yielded substantial findings, but they resulted in varied intra and inter-

observer unpredictability, resulting in divergent conclusions amongst experts working 

with the same dataset.  

Figure 4.1. Different views of knee MR image (Sagittal view) 

Thus, to address the issues related to segmentation and feature extraction, a fully 

automatic technique is proposed in this work. Bone segmentation is obtained in two 

stages such as initial bone region extraction, that extracts the bone regions but with 

boundary loss because of weak tissues. The bone region extraction is performed with 

MultiResUNet architecture followed by boundary correction. Second stage involves 

post processing with masking the tissue structure surrounded by femur and tibia 

bones. As shown in figure 4.2 the multi-level architecture proposed for segmentation 

and feature extraction is followed in three stages: pre-processing, region of interest 

extraction, and post-processing.The developed framework initially takes input as 

stacked sequences of knee MR images. Next, in first stage the noise and contrast 

issues are resolved by applying proposed SANR_CNN approach.  

Using the proposed MultiResUNet architecture, the preprocessed knee medical 

images are then utilized to identify seed point selection. The seed point initializes the 

bone region extraction stage.  The boundary leakages and corrections are applied after 

segmenting the bones from knee MR images. Finally, the required feature set are 

extracted from knee MR images using discrete wavelet transform, and further which 
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will help for classification of knee MR images. A detailed discussion is presented in 

subsequent sections. 

Figure 4.2. Multi-level architecture for automatic segmentation and feature extraction 

4.2 Methodology 

The MR images are prone to noise that are introduced during image acquisition 

process. These images cause difficulties in segmentation and feature extraction and 

further classification. As a result, there is a requirement to filter away noise in MR 

images, which enhances subsequent algorithm development. In this research 

SANR_CNN filtering is used as denoising technique that reduces the interference in 

knee MR images and preserves the image features such as edges, and intensity level. 

The detailed discussion about SANR_CNN is done in earlier section 3.3. 

To acquire the seed points autonomously, the middle 25% of the data slices are 

analyzed, i.e., given a sequence of 160 slices, 61-100 are chosen depending on actual 

positioning inside the image stack. The centre is chosen due to the obvious defined 

and maximum bone area in those slices, as described in figure 4.3. Edge detection is 

used on transitional slices, and images are layered on top of one another. Determining 

the azimuth and elevation, image intensity characteristics in 3D generated from multi-

edge overlapped slices identifies the region with low edge intensity. As shown in 
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figure 4.3 (b), the deepest and vertical intensity profile with local valleys are selected 

to recognize the seed points in femoral and tibial tissues.  

Figure 4.3. (a) MR Slice number 81 with edge recognition (b) Seed point detection. 

4.2.1 Discrete-MultiResUNet Architecture 

 

 

 

 

 

 

 

Figure 4.4. Proposed segmentation architecture 
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The suggested MultiResUNet architecture improves on U-Net in order to execute 

segmentation tasks properly. The design is adapted to the assigned task, including 3 x 

3 convolution layer, a 2 X 2 maximum pooling procedure, a 2 X 2 transposed 

convolution, and a 1 X 1 sigmoid activation function.The model convolution is 

equipped with a rectifier linear unit to ensure the effectiveness of the segmentation 

job (ReLU). The wavelet transform is used to provide spatial support during the 

feature extraction process. To evaluate the image's characteristics, the segmented 

image is split into sub-bands. Despite previous methods, wavelet transformations 

allow for signal time-frequency localization. 

4.2.2 Initialization of Bone Region Extraction 

The first bone segments belonging to the femur and tibia are retrieved through using 

MultiResUNet architecture, which includes automated seed point determination. The 

seed points generated from the 3D overlapped technique are first utilized to build an 

appropriate level in MultiResUNet, which develops across the femur and tibia bone 

areas and retrieves initial bone sections from the MR image. After that, the bone areas 

are extended further to identify geometrical coordinates. The coordinates found is 

then utilized to initialize the subsequent slices. This method is repeated for the entire 

dataset, and geometrical coordinates are updated for every slice taken from the femur 

and tibia bone areas. If the thresholding goes below a specific level, the algorithm 

ends the bone region's initialization procedure. Figure 4.5 depicts roughly 40 bone-

free slices at the commencement and conclusion of the slice series. When the region 

of the femur and tibia bone slices becomes less than 100 pixels, the procedure 

immediately ends. 
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Figure 4.5. Slices consisting of bone and no-bone regions. 

Figure 4.6. Bone region extraction (a) Seed selection, (b) Intermediate stage, (c) Final 

stage of bone region extraction. 

Figure 4.6 depicts the extraction of a bone area using an automated seed selection 

technique. Other tissues, in addition to bone areas, are retrieved in this 

illustration.These other tissues are corrected or removed during post processing 

process. Once the bone region is corrected then the remaining region is masked to 

obtain the joint space narrowing (JSN) between femur and tibia. 
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4.2.3 Boundary Leakage Correction 

Point-to-point endpoints are calculated by calculating the distance between both the 

present and subsequent endpoints in two successive slices. The variation in bone 

tissue architecture is quite tiny and changes gradually. Distances that exceed a 

predetermined threshold are labeled as leakages, and they are rectified by moving the 

points corresponding to the outliers from the neighboring border. The proposed 

boundary correction is provided in following equations. The current boundary 

coordinates (Bcur), and adjacent boundary coordinates (Badj) are shown as follows in 

equation 4.1 and 4.2. 

𝐵௨ = {𝑥, 𝑦|(𝑥, 𝑦), 𝑖 = 1: 𝑁}       (4.1) 

𝐵ௗ = {𝑥, 𝑦|(𝑥, 𝑦), 𝑗 = 1: 𝑀}       (4.2) 

where x, y are the bone's coefficient vectors and M, N are the number of cartesian 

coordinates in the neighboring and contemporary boundaries, appropriately. To 

calculate the point-to-point proximity, the number of data points in each dataset is 

equalized utilizing normal approximation. As indicated in equation 4.3, the distance 

amongst consecutive slice boundaries is calculated using Euclidean distance. 

𝐸(𝑑𝑖𝑠𝑡) = 𝑑𝑖𝑠𝑡൫𝐵௨, 𝐵ௗ൯ = ඥ(𝑌௨ − 𝑌ௗ)ଶ + (𝑋௨ − 𝑋ௗ)ଶ  (4.3) 

The present and neighboring boundaries are identified as set outlier's points based on 

the point-to-point distance computed utilizing equation 4.3,(P(cur)o, P(adj)o), and non-

outlier’s points (P(cur)no, P(adj)no). 

𝑃(𝑐𝑢𝑟) = {𝑥, 𝑦|𝐵௨(𝑋, 𝑌), 𝑖𝑓𝑑𝑖𝑠𝑡 > 𝜏}     (4.4) 

𝑃(𝑎𝑑𝑗) = ൛𝑥, 𝑦ห𝐵ௗ(𝑋 , 𝑌), 𝑖𝑓𝑑𝑖𝑠𝑡 > 𝜏ൟ     (4.5) 

𝑃(𝑐𝑢𝑟) = {𝑥, 𝑦|𝐵௨(𝑋, 𝑌), 𝑖𝑓𝑑𝑖𝑠𝑡 ≤ 𝜏}     (4.6) 

𝑃(𝑎𝑑𝑗) = ൛𝑥, 𝑦ห𝐵ௗ(𝑋, 𝑌), 𝑖𝑓𝑑𝑖𝑠𝑡 ≤ 𝜏ൟ     (4.7) 

where, threshold distance is denoted with τ. If the Euclidean distance exceeds this 

preset criterion, the points are classed as outliers; otherwise, they are labelled as non-

outliers. After identifying specific locations, the border is adjusted by moving the 
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points pertaining to the outliers from the neighboring and contemporary contours. 

This is quantitatively expressed by equations 4.8 and 4.9, wherein x(dis) and y(dis) 

are displacement position information from the neighboring boundaries and d(dis) is 

the averaged displaced distance from the neighboring to the contemporary contour, as 

indicated in equation 4.10. 

𝑥(𝑑𝑖𝑠) = 𝑥 +
ௗೞ

ඥଵା()మ
       (4.8) 

𝑦(𝑑𝑖𝑠) = 𝑦 +
ௗೞ

ඥଵା()మ
       (4.9) 

𝑑(𝑑𝑖𝑠) = 𝜇(𝑑𝑖𝑠𝑡(𝑝(𝑐𝑢𝑟), 𝑃(𝑎𝑑𝑗)))     (4.10) 

In equation 4.10 the 𝑑𝑖𝑠𝑡(𝑝(𝑐𝑢𝑟), 𝑃(𝑎𝑑𝑗)), is estimated as shown in equation 

4.3. The set of displaced point coordinates are given by the equation 4.11. 

𝑃
ௗ௦(𝑖) = 𝑃

ௗ(𝑖) + 𝑑(𝑑𝑖𝑠) = {𝑥, 𝑦|𝑥ௗ௦(𝑖), 𝑦ௗ௦(𝑖)}   (4.11) 

The corrected boundary coordinates (Bcur) corresponding to non-outlier set of points is 

shown in equation 4.12 and 4.13. 

𝑃(𝑐𝑜𝑟𝑟) = ൣ𝑃
௨, 𝑃

ௗ௦൧       (4.12) 

𝐵௨
ᇱ = {𝑥, 𝑦|𝑃(𝑐𝑜𝑟𝑟)(𝑥, 𝑦)}       (4.13) 

If the outlier points set is non-empty, boundary adjustment is necessary; alternatively, 

the adjusted boundary parameters are the same as existing boundary parameters.The 

boundary correction algorithm is illustrated in algorithm 1. Thus, the new corrected 

coordinates serve same as adjacent boundary coordinates and this process is repeated 

until all boundary parameters in the dataset have been adjusted. The equation 4.14, 

and 4.15 shows the current adjacent reference values estimated to boundary 

coordinates. 

𝐼𝑓, 𝑃(𝑐𝑢𝑟) = ∅       (4.14) 

Then, 

𝐵௨
ᇱ = 𝐵௨        (4.15) 
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Algorithm 1. Boundary Correction and displacement 

Input: MR slices 

Output: Boundary corrected and masked MR slice 

 

1.Determine the set of boundary parameters for an MR slice.  

2. Interpolate the points to make equal slices. 

3. Using equation 4.3, calculate the point-to-point distance 

between the two coordinates. 

4. Applying equations (4.4, 4.5, 4.6, 4.7), categorize points as 

outlier or non-outliers. 

5. If the outlier pointsare set as null (𝑃(𝑐𝑢𝑟) = ∅), then go to 

step 8, else go to step 5. 

6. Using equations (4.10, 4.11), reposition the endpoints in the 

slice that corresponds to the outlier by 𝑑(𝑑𝑖𝑠). 

7. Applying equation 4.15, incorporate the relocated endpoints 

from the slice with the non-outlier set of endpoints. 

8. Populate in any boundary gap that exists to obtain a final 

adjusted contour. 

9. Repeating steps 1–7 to adjust the boundaries all throughout 

dataset. 

 

4.2.4 Feature Extraction using DWT 

The proposed architecture uses discrete wavelet transforms (DWT) for extracting the 

features from segmented image. Higher - level wavelet coefficients are adjusted, and 

the continuous wavelet transformation f(x) and real – valued discrete wavelet function 

f(x) are used Ψ(x), is described in equation 4.1. In equation the scaled and transition 

parameters are represented as s and t respectively. The wavelet function Ψs,t(x) is 

generated from Ψ(.), by constraining s and t to a discrete lattice with s=2j and t=2jk, 

and as illustrated in equation 4.18. 

𝑊ஏ(𝑠, 𝑡) = ∫ 𝑓(𝑥)Ψ௦,௧(𝑥)𝑑𝑥
ஶ

ିஶ
       (4.16) 
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where, 

Ψ௦,௧(𝑥) =
ଵ

√௦
Ψ ቀ

௫ି௧

௦
ቁ ; 𝑠𝜖ℜ, 𝑡𝜖ℜ       (4.17) 

𝐷𝑊𝑇() = ቊ
𝐴,(𝑛) = ∑ 𝑓(𝑛)𝐺

∗(𝑛 − 2𝑘)

𝐷,(𝑛) = ∑ 𝑓(𝑛)𝐻
∗(𝑛 − 2𝑘)

    (4.18) 

 

 

 

 

 

 

  

Figure 4.7. 2D discrete wavelet transform. 

Figure 4.7 depicts the images adhered to every dimension individually into rows and 

columns of the image after it has been subjected to linear and two-dimensional 

Wavelet transform. As a consequence, four bands are produced to get pictures at 

every level (LL: low-low, LH: low-high, HL: high-low, HH: high-high). Images from 

three specific sub-bands are included, LH (𝐷
), HL (𝐷

௩), HH (𝐷
ௗ) are detailed 

images that run horizontally, vertically, and diagonally. The approximation image 

applied for two-dimensional estimation at the following level is LL (𝐴) sub-band. 

Figure 4.8 depicts a knee MR image with a two-channel discrete wavelet transform. 
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Figure 4.8. Knee MR Image with wavelet transforms coefficient at two-channel 

decomposition. 

There are several varieties of wavelet transforms, the most common of which being 

the Harr wavelet. Because the Harr wavelet is both orthogonal and symmetrical, it 

produces satisfactory accuracy. Furthermore, it is computationally efficient when 

extracting morphological information from the images.In this dissertation, we 

analyzed and calculated the two-channel decomposition of the Harr wavelet as a 

feature vector (FV) for every image. By aggregating all of the FV from N pictures, an 

approximate feature vector of size N X M comprising M features with each image is 

generated. Algorithm 2 shows the processes for creating a feature extraction matrix. 

The feature vector obtained by the two-channel decomposition is pretty excellent and 

result in higher computational efficiency. To address the issue of the system's reduced 

capability to deal with missing information, feature normalization is employed, 

thereby boosting the overall efficiency of the system.For example, if the image size is 

256 X 256, the feature vector size is 32 X 32 = 1024. In general, all characteristics are 

irrelevant for categorization and are utilized to reduce the dimensionality. Algorithm 3 

depicts the feature normalization algorithm. The techniques of two-channel 

dimensionality of the Harr wavelet for feature extraction decrease the number of 

parameters to 32 X 32 = 1024. These major characteristics are merely normalized 

while maintaining the same quantity of features, i.e., 1024. However, the feature 
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vector size is still too huge and therefore should be minimized. As a consequence, 

feature reduction is often used to reduce the dimension of the feature vector. 

Algorithm 4 depicts the feature reduction. 

Algorithm 2. Feature Extraction Process 

Input: N: Total quantity of knee MR images with size K X K 

Output: Feature Matrix (FM): [1: N, 1: M], wavelet coefficient 

of level-2 Harr wavelet. 

 

1. Initialize i<- 1, M <- k/8 X K/8 = Total number of features to 

be obtained from the image. 

2. Empty matrix (EM) and empty vector (EV) to be created. 

3. for n <- 1 to N do 

4. Get MRI(n) 

5. EM(n) [1: k/8, 1: k/8] <- wavelet coefficient 

6. whileI <- M do 

7. for s <- 1 to (k/8) do 

8. for t <- 1 to (k/8) do 

9. FV(n) [1:i]<- EM(n) [s,t] 

10. i<- i+1 

11. end for 

12. end for 

13. end while 

14. FM[n, 1:M] <- [1, 1:M] 

15. end for 
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Algorithm 3. Feature Normalization Process 

Input: FM [1: N, 1: M]: Feature Matrix (N: Total quantity of 

images, M: Total quantity of features) 

Output: NFM [1: N, 1: M]: StandardizedFM, avg(), and std(). 

 

1. Empty matrix NFM [1: N, 1: M] and two empty matrices MU 

[1, 1: M] and SU [1, 1: M] to be created. 

2. MU [1, 1:M] <- avg(FM) 

3. SU [1,1: M] <- std(FM) 

4. fori<- 1 to M do 

5.      NFM [1: N, i] <- (FM [1: N, i] – MU [1,i]) / SU [1,i] 

6. end for 

 

Algorithm 4. Feature Reduction Process 

Input: NFM [1: N, 1: M]: Feature Matrix (N: Total quantity of 

images, M: Total quantity of features) 

Output: X [1: N, 1: R]: MinimizedFM., ca (): compute coefficient 

 

1. Choose R: Minimized dimension. 

2. Empty matrix X [1: N, 1: R] to be created. 

3. X[1: N, 1: R] <- ca(NFM,R) 

4. Get empty matrix X. 

 

4.2.5 Masking 

The extraction of cartilage and synovial fluid is attached to the subchondral bone such 

as femur and tibia can be localized and masked by proposed architecture. The 

architecture involves several steps using proposed technique to mask the boundary 

points. Therefore, the design of masking for whole dataset is proposed in this 

research. The bone segmentation is followed by multiple levels such as cartilage and 

synovial fluid masking.  
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The extraction of bone cartilage interface is given by simple dot operation as shown in 

equation 4.19. In equation 4.20 the dilation operator and erosion operator represented 

as ⊕, and ⊖. The corrected bone segments are shown as Stack (corr), and S(mask) is 

the structuring element for dilation and erosion. The bone cartilage interface (BCI) 

such as cartilage, meniscus and synovial fluid can be obtained through masked BCI 

image.Use of Otsu’s thresholding as shown in equation 4.21 for estimating the 

BCIimage into three classes background, non-cartilage, and cartilage-synovial region. 

In equation 4.21 T1 and T2 defines optimal threshold values with a maximum variance 

defined by σv, and L defines the maximum gray level. Through the studies carried out 

the cartilage thickness is 4mm, synovial tissue thickness is limited to 4mm. As the 

segmented region of cartilage and synovial fluid are different, so it is required to 

obtain accurate estimation. However, there are some additional features that are 

incorporated with tissue structure. Therefore, the curvature of individual boundary 

pixel is estimated with equation 4.22. 

𝐵𝐶𝐼 = 𝐼𝑚𝑎𝑔𝑒 𝑋 𝑀𝑎𝑠𝑘𝑖𝑛𝑔       (4.19) 

𝑀𝑎𝑠𝑘𝑖𝑛𝑔 = ൫𝑆𝑡𝑎𝑐𝑘(𝑐𝑜𝑟𝑟) ⊕ 𝑆(𝑚𝑎𝑠𝑘)൯ − (𝑆𝑡𝑎𝑐𝑘(𝑐𝑜𝑟𝑟) ⊖ 𝑆(𝑚𝑎𝑠𝑘)) (4.20) 

𝜎
ଶ(𝑇ଵ, 𝑇ଶ) = max

ଵஸ భ் మ்ஸ
𝜎

ଶ(𝑇ଵ, 𝑇ଶ)      (4.21) 

𝐾(𝑛) =
௫ᇲ()௫ᇲᇲ()ି௬ᇲ()௬ᇲᇲ()

((௫ᇲ()మା௬ᇲ()మ)
య

మൗ
       (4.22) 

where K(n) is the curvature of individual boundary point. x’(n), x’’(n), y’(n), y’’(n) 

are first as well as second order derivatives of boundary point w.r.t x and y 

coordinates respectively. The curvature for classification of synovial fluid is estimated 

using equation 4.23. 

𝜏௧ = 𝑚𝑒𝑎𝑛(𝐾) − 0.75 ∗ 𝑠𝑡𝑑(𝐾)      (4.23) 

The boundary points with higher than curvature threshold (τ) is classified as cartilage 

points and lower threshold values are classified as synovial points. 
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4.3 Performance Evaluation and Discussions 

Experimentation on several MR datasets were carried out to illustrate the applicability 

of the suggested method. T1, T2, and Flair images from a local infirmary and the 

Osteoarthritis Initiative (OAI) dataset were used for the training assessment. Dice 

similarity coefficient (DSC), average surface distance (ASD), root mean squared error 

(RMSE), volume difference (VD), and volume overlap error (VOE) were used to 

improve the performance of the developed Discrete-MultiResUNet architecture. To 

demonstrate the increase in architectural effectiveness, the model was trained without 

entropy loss. These performance assessment measures are derived by comparing the 

outcomes of the proposed methodology to the ground facts achieved by experienced 

manual segmentation. Figure 4.9 depicts the automated seed point selection procedure 

in MR slices, as well as the related first bone area extraction procedure. The suggested 

approach can locate and pick seed locations in extremely tiny areas of bones. 

 

 

 

 

 

 

 

 

 

 

Figure 4.9. Automated seed point identification and bone region extraction. (Row 1) 

Original image, (Row 2) Identification of seed point in femur and tibia bones. (Row 

3) Evolution of femur and tibia bone regions. (Row 4) Bone region extracted for 

femur and tibia bones. 
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The outcomes of the initial bone feature extraction stage, as illustrated in figure 4.9, 

demonstrate that curved evolved not only removes bone but also part of the tissues 

around the bone. Figure 4.10 depicts the ultimate segmentation accuracy of boundary 

detection and analysis. To illustrate the resilience of the proposed approach, slices 

from datasets are displayed. The very first column displays the initial MR image, the 

second column displays the manual segmented MR image, the third column displays 

bone extraction prior to boundary adjustment, the fourth column displays the 

significant findings MR image, and the last column displays segmentation overlain on 

the actual images. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10. (a) Original image (b) Manual segmentation (c) Bone extraction (d) Bone 

extraction after boundary correction (e) Segmentation overlain on original image. 
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Figure 4.11. Masked MR images surrounded the bone tissues. 

Figure 4.11 depicts the masking of the femoral and tibialtissue boundaries.Figure 

illustrates different MR images that shows bone and tissue boundary masked. The 

effectiveness of the suggested approach is assessed in this dissertation employing 

measures such as dice similarity coefficient (DSC), average surface distance (ASD), 

root mean square distance (RMSD), volume difference (VD), and volume overlap 

error (VOE), which are mentioned in the preceding chapter. These performance 

measurements are derived from the suggested approach and compared to expert-

provided ground truth data.  

Independent quantitative analyses for the femoral and tibial bones were performed to 

offer a better understanding of the suggested approach. As observed in the table 4.1 

the DSC, ASD, and RMSD values for femur bone were 98.3%, 0.16mm ± 0.08, and 

0.36mm ± 0.04 respectively. Similarly, the DSC, ASD, and RMSD values for tibia 

bone were 98.5%, 0.17mm ± 0.04, and 0.37mm ± 0.04 respectively.The femoral 

cartilage values for VD and VOE are1.4 ± 5.93 and 18.3 ± 5.56 respectively. The 

tibial cartilage values for VD and VOE are -1.0 ± 11.82 and 24.5 ± 6.43respectively. 

The results obtained for Osteoarthritis Initiative (OAI) were quite similar to local 

dataset. In table 4.2demonstrates the DSC, ASD, and RMSD values for femoral tissue 

such as 97.6 ± 0.33, 0.14mm ± 0.03, and 0.38mm ± 0.08 respectively. Similarly, the 

DSC, ASD, and RMSD values for tibial tissue were 96.2%, 0.15mm ± 0.04 and 

0.39mm ± 0.06 respectively. The VD and VOE for femoral and tibial cartilage were 

1.7 ± 6.68, 19.4 ± 3.79, -1.4 ± 9.12 and 21.3 ± 2.90 respectively.  
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Table 4.1. DSC, ASD, and RMSD values for local dataset. 

 DSC (%) ASD (mm) RMSD 

(mm) 

VD (%) VOE 

(%) 

Femoral 

bone 

98.3 ± 

0.40 

0.16 ± 

0.08 

0.36 ± 

0.04 

-0.07 ± 

0.88 

2.7 ± 

0.52 

Tibial bone 98.5 ± 

0.37 

0.17 ± 

0.04 

0.37 ± 

0.06 

-0.04 ± 

0.84 

2.8 ± 

0.61 

Femoral 

cartilage 

88.4 ± 

3.48 

0.18 ± 

0.07 

0.38 ± 

0.11 

1.4 ± 

5.93 

18.3 ± 

5.56 

Tibia 

cartilage 

85.4 ± 

4.57 

0.22 ± 

0.16 

0.63 ± 

0.36 

-1.0 ± 

11.82 

24.5 ± 

6.43 

 

Table 4.2. DSC, ASD, and RMSD values for OAI dataset. 

 DSC (%) ASD (mm) RMSD 

(mm) 

VD (%) VOE 

(%) 

Femoral 

bone 

97.6 ± 

0.33 

0.14 ± 

0.03 

0.38 ± 

0.08 

-0.17 ± 

0.57 

2.5 ± 

0.83 

Tibial bone 96.2 ± 

0.42 

0.15 ± 

0.04 

0.39 ± 

0.06 

-0.14 ± 

0.92 

2.2 ± 

0.31 

Femoral 

cartilage 

86.4 ± 

2.77 

0.16 ± 

0.06 

0.40 ± 

0.14 

1.7 ± 

6.68 

19.4 ± 

3.79 

Tibia 

cartilage 

83.4 ± 

5.13 

0.23 ± 

0.19 

0.69 ± 

0.29 

-1.4 ± 

9.12 

21.3 ± 

2.90 

 

The assessment for lateral and medial meniscus of femur and tibia bones are shown in 

table 4.3. The mean difference (MD) values obtained are -33.53mm3, and -25.26mm3 

for lateral and medial meniscus volume.The standard deviation (SD) values for lateral 

meniscal length and width obtained were 0.37mm and 0.45mm. The SD values 

obtained for lateral and medial meniscal volume were 35.62mm and 33.75mm. The 

lower limit (LL) value obtained for lateral and medial meniscal length were -0.54mm 
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and -0.32mm. The upper limit (UL) values obtained for lateral and medial meniscal 

volume were 32.70mm3 and 41.54mm3. 

Table 4.3. Assessment of meniscus for knee MR image 

 MD SD LL (d-2s) UL (d+2s) 

Lateral 

meniscal 

length (mm) 

0.21 0.37 -0.54 0.94 

Lateral 

meniscal 

width (mm) 

0.45 0.45 -0.49 1.31 

Medial 

meniscal 

length (mm) 

0.52 0.42 -0.32 1.35 

Medial 

meniscal 

width (mm) 

0.18 0.46 -0.72 1.10 

Lateral 

meniscal 

volume 

(mm3) 

-33.53 35.62 -95.80 32.70 

Medial 

meniscal 

volume 

(mm3) 

-25.26 33.75 -96.66 41.54 

 

4.4 Conclusion 

This chapter discusses the automatic segmentation technique from knee MR images. 

This segmentation is obtained in several stages like denoising, initial seed selection, 

bone area extraction, lastly boundary outflowrecognition and adjustment, and lastly 

masking the tissues. In order to separate cartilage from synovial tissue curvature 
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estimation is adopted that is capable of partitioning these tissues with BCI. Since, 

cartilage being on the surface of bones whereas synovial fluid has no curvature 

because of fluid nature direct segmentation from MR images is difficult due to 

variation in intensity values.This technique overcomes the present leakages of 

boundary selection of cartilage, non-cartilage (synovial) regions and corrects the 

tissue selection. This proposed technique has presented exemplary performance in 

selection and masking the knee tissue structure. The performance of proposed 

technique is validated through various quantitative and qualitative parameters such as 

DSC, ASD, RMSD, VD, and VOE for femur and tibia bone, and for meniscus MD 

and SD. The parameters obtained for both local and OAI datasets are of significantly 

high value in terms of performance and clinical applicability of proposed system. 
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Chapter 5 

Automatic Classification of Rheumatoid Arthritis with KL 

Grading 

This chapter presents the proposed architecture of ResNet50 with optimization of 

model. The chapter is structuredin following manner: Section 5.1 describes 

introduction about classification using KL grading, Section 5.2 describes ResNet50 

architecture with Adam optimizer, Section 5.3 illustrates results and discussions, 

finally concludes the chapter in Section 5.4. 

5.1 Introduction 

The main proportion of the expense of treatmentarises from patients' lack of 

awareness and unable to detect and diagnose symptoms early since their impact may 

be reduced or their progression of future incapacitation can be slowed. Only 

accessible health support alternatives for early diagnosis and behavioral intervention 

due to the severe stage of RA. Medical imaging has been used to make an early 

diagnosis of RA. These MR images have been effectively used in a wide range of 

applications, including medical issue monitoring, treatment, and assessment.Advances 

in intelligent systems and medical imaging methods have resulted in a rapid increase 

in the potential use of AI Technology in different medical activities such as diagnoses, 

early evaluation, and classification. These medical imaging techniques produce a 

visual depiction of the interior of the body. MR images have been shown to be 

trustworthy and gold standard for clinical examination of tissue and joints among 

numerous medical modalities such as X-ray[138], Computerized tomography, 

Ultrasonography, and MR imaging to identify obvious stages of knee Arthritis[58]. 

X-ray images of Arthritis are often inspected by healthcare professionals, who 

subsequently define the seriousness of knee Arthritis according on KL grade 

levels[158]. KL assessment is the standard method for assessing the seriousness of 

knee Arthritis and is widely adopted worldwide. As illustrated in figure 5.1, the KL 

grading divides the knee MR images into five classes ranging from zero to four. The 

diagnosis accuracy varies and is dependent on the expertise and cautiousness of the 
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health care professional. Fine-grained classification of images is necessary for 

effective categorization of knee RA diagnosis. However, if conventional procedures 

meant for classification are used, this classification process will be extremely difficult 

for features, pixel, transforms, histogram, etc. These manual methods require expert in 

domain knowledge, efforts, and laborious task. Therefore, the classification process 

has been automated instead of manual. 

Figure 5.1. KL grading stages for knee RA (Source: [159]) 

Intelligent technologies have ushered in a new era of computer-assisted diagnostics. 

As sophisticated models, intelligent systems that enable clinical assessment and have 

the ability to achieve human-level performance are utilized. Convolutional neural 

networks (CNN) [145] have indeed been commonly used in medicine imaging, 

segmentation, and classification tasks, acquiring all significant and usefulimage 

characteristics.These intelligent systems investigated the study of RA-affected knee 

joints and offered an end-to-end categorization framework. These advanced 

technologies additionally assist high - dimensional data in not only classifying and yet 

also predicting the course of knee RA. 

The primary pathological characteristics are obvious on MR imaging as cartilage 

erosion may be evaluated by seeing joint space narrowing/ width (JSN/ JSW) and 

bone degradation in the joint region. As previously stated, the KL classification is the 

standard method for diagnosing knee RA. Unfortunately, the KL classification suffers 

from expertise subjectivity, and its effectiveness is dependent on healthcare 
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professionals' expertise, which may be influenced by intra- and inter observer 

inconsistency. Even the same specialist might misinterpret the seriousness of RA 

development in the knee over time. Misinterpretation in the near grading (grades 3 

and 4) is yet another significant shortcoming of the KL grading system. The 

Osteoarthritis Research Society International (OARSI) recently proposed an 

alternative grading system which is more feature specific. The new approach is based 

on characteristics such as femoral osteophytes, tibial osteophytes, and joint space 

narrowing / breadth, which are evaluated individually in a specific way. 

Furthermore, the revised OARSI system grading method, like KL classification, 

suffers from subjectivity such as intra- and inter observer inconsistency, making early 

development of knee RA diagnosis a difficult task. Rheumatologists utilize the 

intelligent medical diagnostic system (IMDS) to evaluate the severity of knee RA in 

order to create a common basis for them. Because of the prevalence of knee RA, a 

completely automated knee RA severity rating system is desperately required. 

Numerous approaches for automatically identifying the seriousness of knee RA based 

on the clinical characteristics of the knee joint have already been explored in this 

research. These machine learning and deep learning-based approaches may have 

adequately assessed the seriousness of knee RA. Furthermore, the diagnostic accuracy 

of these approaches has surpassed that of humans and exceeds that of experienced 

professionals. Deep learning (DL) is a machine learning approach that learn from the 

characteristics of an MR image in order to better understand and categorize the KL 

classification of knee RA. In this research, a deep learning approach (ResNet50) with 

an optimization technique is developed. Section 5.2 goes through the suggested 

technique with further detail. 

5.2Methodology 

Framework for the diagnosis of RA with KL grading is depicted in figure 5.2. This 

framework is capable of classifying the knee MR images using KL grading system. 

The steps carried out are denoising, segmentation (tissue selection, boundary 

correction, and masking), and followed by classification. Step by step discussion on 

the process of grading is discussed in this section. The MR images are autonomously 
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evaluated in this research, revealing the presence of bone deterioration and joint space 

narrowing abnormalities. The framework uses ResNet50 architecture that is variant of 

ResNet model consisting of 48 layers of convolutional along with 1 max-pooling, and 

1 average pool. In figure 5.2 the knee input data images are denoised with proposed 

SANR_CNN architecture [149][150] as discussed in section 3.3, the preprocessed 

knee MR images are then segmented using the developed hybrid approach,i.e. 

Discrete-MultiResUNet [160] with boundary correction and masking the tissue 

structure as discussed in section 4.2. The features such as joint space narrowing, 

synovial fluid, cartilage thickness, meniscus volume with width is extracted for 

further classification using KL grading. 

Figure 5.2. Proposed classification frameworkwith KL Grading. 

5.2.1 ResNet50 Architecture 

The ResNet architecture is inspired by VGG architecture that concentrates on depth of 

network. This ResNet design is basically identical to networks with convolutional, 

pooling, activation function, and a fully - connected layer. Figure 5.3 demonstrates the 

ResNet framework with skip connection. The skip connection in the ResNet 

architecture ignores certain layers and sends the data from one layer as the input to the 

appropriate layers. Due to skip connection the weights are not biased, and they will 

allow the lower layers of model to learn as good as higher layer. The information 
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from the initial layers is passed to deeper layers by matrix dot product 

calculation.These ResNet layers are residual network made up from residual blocks 

where the weights will get multiplied with input ‘x’. The activation function f(), with 

output as h(x) is denoted as shown in equation 5.1 and 5.2. The skip connection is 

padded with zero values to increase the dimension where equation 5.3 denotes the 

projection method. 

ℎ(𝑥) = 𝑓(𝑤𝑥 + 𝑏)        (5.1) 

ℎ(𝑥) = 𝑓(𝑥) + 𝑥        (5.2) 

ℎ(𝑥) = 𝑓(𝑥) + 𝑤. 𝑥        (5.3) 

 

 

 

 

 

 

Figure 5.3. Skip connection used in ResNet architecture. 

Identity Block 

The identity block is a typical component in residual network (ResNet) design that 

conforms to the scenario in which the input activation and output activation have the 

same dimensions. Figure 5.4 depicts the identification block. 

 Figure 5.4. Identity block in ResNet architecture. 

𝑦 = 𝐹[𝑥, (𝑊)] + 𝑥         (5.4) 
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The identity component is described in equation 5.4, wherein x and y are input, and 

output vectors of the layer under consideration. The residual function mappingis 

denoted as F{x, {Wi}}.The first component in figure 5.4 consists of two-dimensional 

convolutional layer with (1 X 1) kernel size, a stride of (1,1). The second component 

is identicalto the first but hasa filter size of (f X f), while the third component is 

similar to the first component but lacks activation component i.e., ReLU. 

Convolutional Block 

When the input and output parameters don't really coincide, the convolution 

component is utilized. Figure 5.5 depicts a convolutional component with a Conv2D 

layer in the shortcut path. These pathways are determined depending on the size of the 

incoming information. 

 

Figure 5.4. Convolutional block between shortcut path of ResNet architecture. 

As illustrated in equation 5.5, the shortcut connections use linear projection Ws to 

enlarge the dimensionality between x and F, wherein F is the output of the 

multilayered layer and x and y are the input layer and aggregated corresponding 

output of the convolutional component, correspondingly. The design of the 

convolution component is built in much the same fashion as the identity component, 

but with an additive 2D convolutional layer instead of a 3D convolutional layer. The 

input 'x' is aligned with the primary route in this shortcut. Depending on the output 

dimension, the convolutional kernel size (1 x 1) with stride (s, s). Eventually, the 

shortcut is merged with the primary path's output. The primary objective of shortcut is 

to overcome the problem of disappearing gradients. 

𝑦 = 𝐹{[𝑥, (𝑊)] + 𝑊௦𝑥}       (5.5) 
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The ResNet50 design is divided into five stages, each of which has a convolutional 

component and an identity component. Each convolutional block has three 

convolutional layers, so each identity block contains three convolutional layers as 

well. Over 23 million learnable characteristics are available in the ResNet50 

framework.Several low- and high-level characteristics are learned by the architecture 

from input layers. Table 5.1 depicts the ResNet50 design with detailed information for 

every layer. The ResNet design includes filter configurations with varying sizes and 

channel numbers. For example, at Conv_x (x – denotes layer to x at Conv3, wherein 

x=1, 2, 3, because [size of filter, total number of channels X 3]. 

Table 5.1. ResNet50 architecture Layer Description. 

Layer Name 50-Layer 

Conv1 7 X 7, 64, stride 2 

Conv2_x 3 X 3 max pool, stride 2 

     1 X 1, 64 

     3 X 3, 64          X 3 

     1 X 1, 256 

Conv3_x      1 X 1, 128 

     3 X 3, 128        X 4 

     1 X 1, 512 

Conv4_x      1 X 1, 256 

     3 X 3, 256        X 6 

     1 X 1, 1024 

Conv5_x      1 X 1, 512 

     3 X 3, 512       X 3 

     1 X 1, 2048 

Average pool, 1000-d Fully connected (FC), Soft-max layer 
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The ResNet50 architecture is comprised of 5 stages is demonstrated in stages as 

follows: 

Stage 1: The phase is made up of 2D convolutional filters with 7 X 7 dimensions and 

a stride of (2, 2). The channel's standardization is finished by batch normalization and 

the activation function ReLU, accompanied by max-pooling with stride (2, 2). 

Stage 2: The phase is made up of one 2D convolution block and three identity blocks, 

each having (64, 64, 256) filters, a kernel size of (3 X 3) and a stride of (1, 1). 

Stage 3: The phase is made up with one convolution component and four identity 

blocks, each of which employs three filters of size (128, 128, 512), with kernel size (3 

X 3) and stride (2,2). 

Stage 4: The stage consists with one convolution component and six identity blocks, 

including both filter sizes (256, 256, 1024) and kernel sizes (3 x 3) and stride (2, 2). 

Stage 5: The phase is made up with one convolution component and three identity 

blocks, each with a different filter size (512, 512, 2048), kernel size (3 X 3), and 

stride (2, 2). Ultimately, using an aggregate pooling layer paired with a 1000-d fully 

connected layer and a soft-max layer. 

5.2.2 Adam Optimization Technique 

Adam is the adaptive learning algorithm developed for the advancement of deep 

neural network algorithms. The Adam is combined with momentum from the 

RMSprop and the Stochastic gradient descent. Squared gradients are used to scale the 

learning rate such as RMSprop and employ momentum by utilizing moveable 

gradient averages rather than gradients themselves, like SGDs, with momentum. The 

algorithm calculates individual learning rates for various parameters and uses adaptive 

learning rate techniques to determine the various learning rates for each parameter. 

Adagrad also offers benefits that function in sparsely graded environmentsbut 

struggles to optimize neural networks non-convexly and RMSprop to overcome some 

of Adagrad issues and operate inline. 
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Adam employs first and second gradients estimations to modify the neural network's 

learning rate for specific weights. The Nth moment of a random variable, described in 

equation 5.6 to the order of n, wherein m represents momentum and x is a random 

process. 

𝑚 = 𝐸[𝑋]        (5.6) 

The first is average momentum, while the second is uncentered variance momentum. 

Adam utilises exponentially weighted moving average values estimated on gradients 

with mini batches to compute momentum, as illustrated in equations 5.7 and 5.8, 

wherein m and v are moving average values, g is slope on existing mini batches, and 

beta is the computation hyper-tuning parameter. Because m and v are approximations 

of first and second moments, we get the condition given in equations 5.9 and 5.10. 

𝑚௧ = 𝛽ଵ𝑚௧ିଵ + (1 − 𝛽ଵ)𝑔௧       (5.7) 

𝑣௧ = 𝛽ଶ𝑣௧ିଵ + (1 − 𝛽ଶ)𝑔௧
ଶ       (5.8) 

𝐸[𝑚௧] = 𝐸[𝑔௧]        (5.9) 

𝐸[𝑣௧] = 𝐸[𝑔௧
ଶ]        (5.10) 

The estimators' assumed outcomes must approximate the parameter being assessed. If 

the properties in equation 5.9 and 5.10 are true, then we have unbiased estimators.As 

the values won’t be held true for moving averages because the averages are initialized 

to zeros. To prove this, the initial value of m is first gradient as shown in equation 

5.11. The equation 5.11 can be rewritten as shown in equation 5.12. 

బୀ
భୀఉభబା(ଵିఉభ)భୀ(ଵିఉభ)భ

𝑚ଶ = 𝛽ଵ𝑚ଵ + (1 − 𝛽ଵ)𝑔ଶ = 𝛽ଵ(1 − 𝛽ଵ)𝑔ଵ + (1 − 𝛽ଵ)𝑔ଶ

𝑚ଷ = 𝛽ଵ𝑚ଶ + (1 − 𝛽ଵ)𝑔ଷ = 𝛽ଵ
ଶ(1 − 𝛽ଵ)𝑔ଵ + 𝛽ଵ(1 − 𝛽ଵ)𝑔ଶ + 𝛽ଵ(1 − 𝛽ଵ)𝑔ଷ

 (5.11) 

𝑚௧ = (1 − 𝛽ଵ) ∑ 𝛽ଵ
௧ି𝑔

௧
ୀ        (5.12) 

Let’s the expected value of m is denoted as shown in equation 5.13 with bias 

correction in first momentum estimator. 
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𝐸[𝑚௧] = 𝐸[(1 − 𝛽ଵ) ∑ 𝛽ଵ
௧ି𝑔]௧

ୀଵ

= 𝐸[𝑔](1 − 𝛽ଵ) ∑ 𝛽ଵ
௧ି + 𝜁௧

ୀଵ

= 𝐸[𝑔](1 − 𝛽ଵ
௧) + 𝜁

      (5.13) 

The following equation 5.13 reveals two aspects: (i) They have a biased estimator. (ii) 

It may have little impact unless it is applied at the start of the learning since the beta 

coefficient to the order of t is nil. Equations 5.14 and 5.15 illustrate the approximated 

formulae with the necessary modification to anticipated values. 

𝑚ෝ௧ =


ଵିఉభ
        (5.14) 

𝑣ො௧ =
௩

ଵିఉమ
        (5.15) 

𝑤௧ = 𝑤௧ିଵ − 𝜂
ෝ 

ඥ௩ොାఢ
       (5.16) 

Equation 5.16 shows exactly Adam conducts the weight update, wherein w is the 

model parameters and eta is the scaling factor. However, the Adam has some 

disadvantages related to weight decay. So, slight modification in Adam optimizer to 

use weight decay with update rule is shown in equation 5.17. The equation defines 

regularization by small relative amount (λ) of weight decay parameter than other 

weights. The weight decaying adaptable formula is shown in Equation 5.18, wherein 

b is the batch size, B is the overall number of input points per epoch, and T is the 

maximum number of epochs. The weight decay rate is used to regularise all weights. 

Using Adam weight decay reduces testing errors, aids in the decoupling of learning 

algorithm, and regularises hyper-parameters. 

𝑤௧ = 𝑤௧ିଵ − 𝜂 ൬
ෝ 

ඥ௩ොାఢ
+ 𝜆𝑤௧ିଵ൰       (5.17) 

𝜆 = 𝜆ට


்
        (5.18) 

5.3Results and Discussions 

To illustrate the experimental observations, the proposed ResNet50 technique's 

performance was evaluated with a variety of characteristics such as confusion matrix, 

efficiency, precision, sensitivity, specificity, F1-measure, mean absolute error (MAE), 
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and joint space narrowing (JSN). Purpose of providing linearity in training using 

Adam optimizer, the dataset is generally split by k-fold cross validation. The training 

rate was set to 0.001, while the weight decaying was adjusted to 0.0001. The proposed 

research performed on an Intel core i3-7130U Processor operating at 2.70GHz with 

12 GB RAM. The dataset was classified by the model based on its KL classification / 

scoring. If the JSN value is zero, the arthritis is labelled as grade 0; if the JSN value is 

less than 10%, the arthritis is labelled as grade 1,(doubtful arthritis). If the JSN value 

is between 11% and 25%, it is labelled as mild arthritis; if it is between 26% and 75%, 

it is labelled as moderate arthritis; and if it is higher than 75%, it is labelled as 

degenerative arthritis (severe arthritis). 

Table 5.2 demonstrates the datasets used for analysis of results for progression of 

arthritis. First dataset was collected from local hospital and second collected from 

Osteoarthritis Initiative (OAI) database. The local dataset was a raw data so, needed 

to be pre-process as discussed in chapter 3. The OAI dataset was a pre-processed data 

so directly used for experiments. Both datasets were consisting of different training, 

testing and validation samples. The data was divided according to k-fold cross 

validation approach into training set (70%), validation (10%), and testing set (20%). 

Table 5.2. Datasets used for experimental analysis. 

Dataset Local OAI 

Training Testing Validation Training Testing Validation 

Grade 0 10115 2578 1193 2286 639 328 

Grade 1 7132 1783 967 1046 296 153 

Grade 2 5256 1329 650 1516 447 212 

Grade 3 4379 1052 508 757 223 106 

Grade 4 4833 1186 624 173 51 27 

 

As the proposed architecture uses transfer learning that helps in convergence of deep 

learning model (ResNet50). Table 5.3 describes the performance parameters used for 

local dataset. The JSN values for grades from 0 to 4 are well estimated and grade 4 
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has value of 0.99. The proposed model achieved sensitivity of 0.97 on an average 

value for all grades. The specificity achieved for grade 1 and grade 4 are 0.84 and 

0.92 respectively. The model also achieved an accuracy of 97.98%, 95.50%, 95.26%, 

96.73%, and 98.15%, for grade 0, 1, 2, 3, and 4 respectively. The MAE estimated was 

0.092 and 0.203 for grade 0 and grade 2 respectively. Table 5.4 describes the 

performance parameters used for OAI dataset. 

Table 5.3. Different performance parameters with KL grade on local dataset. 

KL 

grades 

JSN Precision 

(%) 

Sensitivity Specificity F1-

score 

Accuracy 

(%) 

MAE AUC 

Grade 

0 

0.98 0.99 0.97 0.90 0.98 97.98 0.092 0.97 

Grade 

1 

0.98 0.95 0.98 0.84 0.97 95.50 0.197 0.96 

Grade 

2 

0.97 0.95 0.98 0.87 0.97 95.26 0.203 0.96 

Grade 

3 

0.98 0.98 0.97 0.86 0.98 96.73 0.119 0.97 

Grade 

4 

0.99 0.99 0.99 0.92 0.99 98.15 0.088 0.97 

 

Table 5.4. Different performance parameters with KL grade on OAI dataset. 

KL 

grades 

JSN Precision 

(%) 

Sensitivity Specificity F1-

score 

Accuracy 

(%) 

MAE AUC 

Grade 

0 

0.96 0.97 0.96 0.91 0.96 97.68 0.082 0.97 

Grade 

1 

0.96 0.97 0.97 0.86 0.97 96.37 0.317 0.97 

Grade 

2 

0.95 0.95 0.96 0.85 0.98 96.76 0.283 0.96 

Grade 

3 

0.96 0.98 0.97 0.87 0.97 97.10 0.039 0.97 
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Grade 

4 

0.98 0.98 0.98 0.88 0.98 98.77 0.028 0.97 

 

Table 5.5. Comparative analysis of different techniques related to lateral and medial 

femur and tibia tissue with JSN value. 

Techniques Femur Tibia JSN Accuracy 

(%) 

MAE 

L M L M L M 

SVM [133] 0.71 0.73 0.78 0.77 0.91 0.87 86.53 0.319 

RF [161] 0.68 0.69 0.80 0.78 0.90 0.87 87.84 0.308 

VGG [58] 0.84 0.81 0.82 0.79 0.91 0.87 90.45 0.216 

CNN [137] 0.83 0.84 0.82 0.79 0.91 0.87 91.89 0.285 

Dense-Net 

[58] 

0.85 0.84 0.83 0.80 0.92 0.88 93.77 0.270 

ResNet34 

[162] 

0.86 0.86 0.84 0.82 0.92 0.88 94.39 0.216 

Proposed 

Model 

0.88 0.86 0.86 0.89 0.93 0.91 96.85 0.105 

 

Table 5.5 provides a comparative analysis of several techniques used to address 

femoral and tibial tissues, wherein L indicates lateral, and M represents medial. Only 

the medial and lateral compartments of femoral and tibial tissue are examined.The 

proposed architecture achieved an accuracy of 96.85% which is quite good compared 

to other existing techniques. The residual network of 34 layers (ResNet34) also 

achieved goo results with an accuracy of 94.39% which is near to proposed 

architecture. The Dense-Net model gained good result for lateral JSN value of 

0.92.For the lateral compartment, the support vector machine (SVM), oxfordNet 

(VGG), and convolutional neural network (CNN) methods simultaneously obtained a 

really reasonable result of 0.91. The random forest (RF) gained less attention for 
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every compartment analysed. Table 5.6 illustrates the performance measures achieved 

for proposed model. Figure 5.6 illustrates the confusion matrix estimated for proposed 

model. The confusion matrix illustrates the classification model's performance on the 

testing dataset. The true-positive were 4433 knee MR images, the true-negative 

sample images were 3245. Table 5.6 shows some parameters such as false negative 

and positive rate that are 0.0378 and 0.0229 respectively. It also has a coefficient of 

correlation of 0.9258 and a false discovery rate of 0.0169. 

Table 5.6. Performance parameters achieved for proposed model. 

Performance parameters Obtained value 

Sensitivity or Recall 0.9622 

Specificity 0.9771 

Precision 0.9831 

Negative predicted value 0.9491 

False-positive rate 0.0229 

False discovery rate 0.0169 

False-negative rate 0.0378 

Accuracy 0.9685 

F1 score 0.9726 

Matthew’s correlation coefficient 0.9258 

 

 

 

 

 

 

 

 

Figure 5.6. Confusion matrix for proposed architecture (ResNet50) 
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A unique technique for automatically identifying and evaluating knee RA is proposed 

in this research. The model used Knee MR images that are collected from local and 

OAI dataset. The proposed approach that is residual network (ResNet50) was trained 

with Adam optimizer with slight modification in weight decay hyper-

parameter.Therefore, the training provided less errors in testing of knee images.To my 

knowledge, Oka et al.,[163] used to evaluate knee characteristics, whereas Tiulpin et 

al.,[158] used a systematic technique to evaluate form and texture characteristics to 

diagnose arthritis. Unfortunately, these experiments had flaws, such as the fact that 

the text size chosen was excessively tiny in comparison to previous research, because 

there was prejudice in arthritis assessment. Unlike the prior research, the suggested 

model chose a complete contrast amongst training, testing, and validation datasets. 

The proposed technique's primary benefit was that it demonstrated the model's 

potential to learn important RA characteristics from diverse datasets. The technique 

involves many phases to improve the robustness of the system in order to generate a 

clinically relevant model. The model pre-processed with proposed denoised approach, 

then segmented for region of interest with masking the tissue structure. Then the 

relevant features are extracted and utilized for classifying the knee images with 

grading using JSN value. With the Adam optimizer, the approach regularises the 

learning and introduces additional variability into the dataset. 

5.4 Conclusion 

There are numerous constraints to the proposed study. The validation dataset was 

chosen through both datasets; however, an alternate method would have been to 

exclude this data. Nevertheless, the developed model outperformed the other models 

in terms of clinical performance; it learnt local dataset results and produced higher 

classification efficiency for early RA assessment. Another disadvantage is the lower 

image quality, which may result in the loss of fine-grained detail in the images. It is 

feasible to even use the actual image resolution with suitable information to enhance 

the output. Moreover, following ground truth assessment, the professionals 

significantly happen to disagree with KL classification in several of the incorrectly 

classified images. As a result, it is conceivable that the KL grading system in the RA 

dataset is incorrect in some situations. Furthermore, the suggested model might be 
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enhanced significantly by using a new loss function that optimises and utilises a 

bigger quantity of data from diverse sources during learning. Finally, the images 

adopted for the study have been captured in uniform circumstances, with a positioning 

frame added. As a result, the technique cannot be immediately applied to every health 

care, and more research is required to comprehend the approach, which was trained 

using local and OAI datasets. 

The likelihood offered for certain KL grades mirrors the selection process of experts, 

who choose amongst different KL grade levels (grade 1 and 2) by taking the closest 

one into account.This will help the healthcare in general providing several benefits by 

reducing cost and focusing on RA conditions. The research community benefits from 

using the proposed methodology as a framework for assessing big datasets (local and 

OAI). 
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Chapter 6 

Conclusion and Future Scope 

This dissertation' significance may be divided into two main categories, which are as 

follows: Section 6.1 summarizes the work presented in the thesis, highlighting the 

significant contribution of the proposed approach for knee arthritis, and Section 6.2 

addresses the research's future opportunities. 

6.1 Summary of Deductions 

In past few years, machine learning techniques, particularly CNN, have proven to be 

extremely effective in a wide range of complicated medical applications. This 

dissertation was a study and develop an intelligent medical diagnostic system (IMDS) 

based on machine learning for the diagnosis of knee arthritis. Implementation of these 

models has contributed to major transformation in the field of information retrieval 

and medical domain has also affected by this renovation. Intelligent system imitates 

diagnostic systems to work like human brain. In this research the intelligent system 

was proposed for denoising the MR images, segmentation the region of interest, and 

classify the image with KL grading. The primary goal of this thesis is to enhance the 

state-of-the-art in intelligent systems for assessing the severity of knee RA by using 

machine learning-based approaches. According to the research, automated evaluation 

of knee RA severity techniques have a low effectiveness for grade assessment. The 

suggested method explored and developed novel approaches for automatically 

classifying knee RA images employing convolutional neural networks (CNN). 

This thesis describes a system for assessing RA development and classifying knee 

MR images. The cornerstone of this approach is denoising, which includes reducing 

noise levels while retaining the integrity of MR images using the developed sparse 

aware noise reduction convolutional neural network (SANR CNN). The challenge 

was to preserve the information and reduce computational time, which the proposed 

model achieved better in terms of PSNR, SSIM, MSE, and EM values. The dictionary 

learning approach storesthe weights during training combined with CNN, obtained 

possibly reduced complexity of testing the images. 
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The automatic segmentation approach suffers from various challenges that are 

addressed with design of hybrid model proposed Discrete-MultiResUNet. The 

proposed model has demonstrated to perform in compliance with manual 

segmentation by experts. The quantitative measures based on segmentation shown 

good outcomes that can demonstrate that involves zero human intervention. The 

available techniques havedependencies in terms of training and testing datasets that 

involves human interventions at some stage that turn into biasing errors. The proposed 

modelachieves accurate and efficient segmentation of femoral and tibial tissues. This 

is achieved through seed selection, boundary leakage identification, and boundary 

correction. The model also achieves good result for masking of tissue outliers. The 

performance of proposed segmentation architecture is validated through various 

quantitative parameters such as DSC, VD, VOE, ASD, and RMSE values. 

The new approach is presented based on ResNet50 to automatically quantify the knee 

RA features specifically JSN. The ResNet50 architecture is trained separately based 

on lateral and medial features obtained from feature extraction phase. The ResNet50 

architecture is trained with Adam optimizer with slight modification in weight decay 

to increase the training accuracy. The approach provided better classification accuracy 

along with KL grades. High classification performance for KL grading and JSN value 

was obtained, which was similar to the gold standard for knee RA assessment. A 

progressive improvement was achieved for other performance metrics with error 

analysis compared with previous methods. The proposed study's predicted outcome is 

categorical KL grading (0, 1, 2, 3, and 4). Because the RA is progressive rather than 

discrete, the proper quantification is required. 

6.2 Future Scope of Work 

Artificial intelligence in medical application is a dynamic and worthy research 

domain. Intelligent techniques have been continuously improved and combined with 

other techniques for efficient diagnosis of knee arthritis. Likewise, the proposed 

framework in this research can be extended for predicting other types of arthritis like 

Osteoarthritis, Gout, Juvenile arthritis, and Psoriatic arthritis. Further, several 

possibilities are there in future validating large number of samples. The suggested 
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work's limitations can be solved in future advancements to enable the capacity to 

segment extremely tiny bone areas from knee slices. In the event of bone splitting, the 

proposed technique is incapable of segmenting several bone sections. Because the 

technique works on single level set function initialization for each femur and tibia 

tissue. As, the technique can be extended to patella tissue, but the thesis limits to 

femur and tibia tissue only. The suggested research may be expanded to various 

datasets for future investigation and clinical analysis after validation. The thesis can 

also be extended with other features related to RA to design intelligent medical 

diagnostic system. 
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