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ABSTRACT 

In the world of technology and modernization, the demand for electric power has 

increased to meet the power requirements of various sectors, such as agriculture, 

industries, and domestic and commercial applications. A recent survey reveals that the 

overall energy demand of the entire world is found to have increased by around 20%. 

Hydro, thermal, nuclear, oil, and natural gases are the most common available energy 

sources. The thermal energy obtained from the fossil fuel is the major ingredient for 

energy production on a large scale. It is the most convenient way of generating 

electricity in the world. The extreme utilization of these fossils could result in their 

quick fading in the upcoming years. Different steps have been initiated by almost all 

nations for efficient energy conservation. In the modern power system, along with 

conventional energy sources, renewable energy plays a major role in satisfying overall 

power demand. There is a significant global growth in renewable energy generation. 

Wind and solar PV electricity generation have grown by more than 10% and 20%, 

respectively. The total global contribution of renewable energy is now more than 9% 

of the global electricity supply. The large penetration of these intermittent energy 

sources has further increased the complexity of the power system. 

Because of the increase in renewable generation, other generation facilities, 

such as coal, gas, and nuclear power, have become congested. If the total hydro-power 

generation of 16% is included, the total renewable energy will reach 25%. Furthermore, 

10% of the world’s electricity is provided by a total 440 nuclear reactors. Nuclear power 

and renewable energy, which are low-carbon sources, account for a major share of our 

electricity production. The Unit commitment problem (UCP) is an optimization 

problem used to determine a particular generation schedule with adequate operating 

reserve to satisfy a forecasted load demand. UCP is a pre-planned process of selecting 

an economic generation schedule for a specified time interval of 24 hours to 168 hours 

in order to reduce the overall operational cost. Generation companies must bear the 

additional cost of spinning reserve in order to ensure the reliability and security of 

power supply based on load demand. 

The introduction of electric vehicles has accounted for a drastic change in 

conventional UC problems. This category of electric vehicles may be battery operated 
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vehicles, plug-in electric vehicles, or hybrid electric vehicles, which have bi-directional 

characteristics and depend upon the operation of electric vehicles under charging and 

discharging processes. During charging, these electric vehicles act as a load, while 

during discharging they feed back the stored power in their batteries to the grid and act 

as a source. 

 Due to development in power electronics and converter technology, the 

additional spinning reserve requirement could be waived off by utilizing renewables 

and V2G operations. But, this large penetration of renewables and electric vehicles may 

further result in system complexity. This type of energy management requires a proper 

selection of generating units in service in order to reduce the overall cost of generation, 

which includes fuel cost and operational cost and falls under the category of unit 

commitment problem. 

Load demand keeps on varying throughout the day and never remains constant. 

The load demand is at its peak value throughout the day and in the evening, while it is 

low during the late-night hours when most of the population is asleep. Also, the electric 

power demand is higher during the weekdays than on the other days. Thus, a systematic 

and intelligent approach in selecting the proper ON/OFF generation schedule could 

save a lot of money for an electric utility. Though energy production from fossil fuel is 

simpler, it also results in harmful hazardous effects on the environment by releasing 

fossil emissions. If the energy consumption process continues with no alternatives, it 

may result in the rapid use of fossil fuels and eventually reach its end one day. It 

becomes necessary to pay great attention to the usage of these conventional sources. 

However, with the participation of renewable energy sources, it has somehow lowered 

the burden on fossil fuels to satisfy load demand to some extent. Wind and solar are the 

principal renewable energy sources contributing towards total energy production 

throughout the world. 

This research is focused on ‘wind’ as renewable source. Wind energy is 

stochastic in nature meaning that its velocity and direction go on changing with time. 

This uncertain stochastic nature could be fixed by using various statistical techniques 

such as gamma function, and weibull probability distribution function, etc. To 
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determine the economic visuals of a wind farm, it is necessary to know the estimated 

power and energy output of each turbine. However, with large penetration of these 

sustainable energy sources, unit commitment problem has become even more complex. 

In the contemporary research an effort has been made to develop a cost effective 

solution strategy for solving unit commitment problem incorporating V2G/G2V 

operation under uncertain renewable energy sources. 

 The real outcome from the prescribed substantial prospect on current electrical 

power scenario, sustainable energy development finds wide scope of research in 

discovering new methods and techniques. Energy management has now became a mix-

technology wherein there should be an intelligent control of different level of 

penetration. Researchers are constantly working on finding most cost effective ways to 

provide an efficient solution to this crucial problem of energy management in complex 

stochastic environment. V2G looks to be the most profitable future technology which 

not only reduces the burden on generation companies but also helps to mitigate the 

environmental issues. 

This thesis deals with introductory aspects of current power generation scenario 

and significance of unit commitment in modern integrated power system. Also, this 

chapter includes various possible non-conventional alternatives for minimizing 

dependency of modern society for energy generation and transportation sector. Further, 

it includes the scope of utilizing vehicle to grid operation in presence of sustainable 

energy environment. 

Ensuring chapter explores literature review of recent optimization algorithms 

applied on various real world problems including the unit commitment problem. This 

chapter covers research work starting from 1959 to 2021 and an intense study of unit 

commitment problem along with benefits and hindrances has been presented in order 

to explore the research gap. Finally, the chapter has been concluded by exploring the 

scope of proposed research work. 

The succeeding chapter deals with various optimization methodologies to 

elucidate benchmark function, real-world problems and unit commitment problem. In 

this chapter theoretical and mathematical calculations to solve various optimization 
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problems has been explored. Three different algorithms have been developed using 

recent modern search algorithms such as Harris Hawk’s optimizer (HHO) and Slime 

mould algorithm (SMA) and improved grey wolf optimizer (IGWO). Two chaotic 

variants has been developed using Harris Hawks optimizer and slime mould algorithm. 

The next chapter deals with detailed description of 23 standard benchmark 

functions. In this chapter proposed algorithms i.e. Hybrid Harris Hawks optimizer 

(hHHO-IGWO), Chaotic HHO and Chaotic SMA has been used to test seven uni-

modal functions, six multi-modal functions and 10 fixed dimension functions. Further, 

10 practical engineering design problems are examined by applying proposed 

methodologies. To ensure that the suggested algorithm is effective, test results were 

compared to previous algorithms such as PSO, DE, GA, MVO, GWO, GSA, ACO, 

MFO, and others. 

The next chapter deals with solution to unit commitment problem for -10, -20, -

40 and 60- unit using proposed methods. The unit commitment problem for thermal 

units has been elucidated by hybrid Harris Hawk’s optimizer, Chaotic HHO method 

and Chaotic SMA method for conventional UC. A Comparative analysis 10-unit system 

with other methods has also been performed and it is perceived that proposed methods 

evaluates superior results when matched to other heuristic and meta-heuristic 

algorithms. 

The next chapter deals with solution to unit commitment problem for -10, -20, -

40 and 60- unit with wind and EV using proposed methods. The unit commitment 

problem for thermal units has been answered by implementing hybrid Harris Hawk’s 

optimizer, Chaotic HHO method and Chaotic SMA method for conventional UC with 

wind and UC with wind and electric vehicles (EV). A Comparative analysis of 10-unit 

system with other methods has also been performed and it is perceived that proposed 

methods performs better relative to other heuristic and meta-heuristic algorithms. 

The last chapter encapsulates the significance and contribution of the proposed 

research work.  A comparative result analysis including percentage cost saving for -10, 

-20, -40 and 60-units with wind and EV penetration has been summarized. Finally, 

suggestions for possible futuristic scope of proposed research work has been included. 
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CHAPTER-1 

INTRODUCTION
 

 

1.1 INTRODUCTION  

In the era of technology and modernization, the demand for electric power has increased 

due to the necessity of electricity in various sectors such as agriculture, industries, 

domestic, and commercial applications. According to a recent poll, the world's overall 

energy demand has grown by around 20% [1]. Hydro, thermal, nuclear, oil, and natural 

gases are the commonly available energy sources. The thermal energy obtained by 

burning fossil fuels is the major ingredient for energy production on large scale. It is 

the most convenient way of generating electricity throughout the world. The extreme 

utilization of these fossils could result in their quick disappearance in the upcoming 

years. So, it is essential to make proper and efficient utilization of conventional energy 

sources for their long existence [2].  

The rapid depletion of these nonrenewable energy sources was thought to be 

threatened by the fuel crisis of the early 1990s. Countries throughout the world are now 

become aware of this energy crisis issue and have developed a number of measures to 

use the conventional fuels that are now accessible for a long time [3]. The tracking and 

documentation of all information pertaining to the residual stock availability of the fuel 

sources is currently highly prioritized in the power industry. In the contemporary power 

system, the contribution of renewable power plays a vital role in meeting the overall 

power demand in addition to power generation from thermal energy [4].  

In recent years, the liability on conventional power sources has been reduced to 

some extent due to the integration of renewable power with utility grids. Wind and 

Solar energy are the major non-conventional sources for renewable energy production, 

but these renewable sources are intermittent and cannot provide constant output power. 

However, due to advancements in control systems and power electronic convertor 

technology, an efficient storage system could now be possible. These energy storage 

systems could be further modified to improve their efficiency and reliability. Large 
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penetration of these intermittent energy sources has further increased the power system 

complexity. There is significant global growth in sustainable energy generation. Wind 

and solar Photo Voltaic (PV) electricity generation has grown by more than 10% and 

20% respectively. Now total global contribution of renewable energy is more than 9% 

of the global electricity supply [5].  

The rise in renewable generation resulted in congestion on other generation 

facilities, namely coal, gas, and nuclear power. If the total hydro-power generation of 

16% is included, the total renewable power accounts around 25 %. Around 10% of the 

world’s electricity is provided by a total of 440 nuclear reactors. Nuclear and 

renewables which are the low-carbon sources account for a major share of electricity 

production. Further, the introduction of electric vehicles has accounted for the drastic 

change in a conventional power grid. In the modern power grid, electric vehicles can 

be utilized as another source of energy.  

 

Fig.1.1: Integrated Power System[6] 
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The electric vehicles may be battery-operated vehicles, plug-in electric vehicles, or 

hybrid electric vehicles. The characteristics of EVs depends upon the operation of 

electric vehicles under the charging and discharging process. During charging, these 

electric vehicles act as load, while during discharging drive back the stored power in 

batteries to the grid and act as a source. Now, the present power system is an integrated 

system constituting different sources such as conventional, renewable, and electric 

vehicles as shown in fig.1.1 [7].    

1.2 GENERATION SCHEDULING  

Today’s modern world rely on electrical energy to fulfill the human amenities. It now 

becomes essential to utilize available power generation sources more intelligently for 

the long existence of conventional energy sources. Power cannot be generated instantly 

as per wish. It requires appropriate planning and time duration to set a required number 

of generating units online or offline as per the load requirement. Further, the forecasted 

load never remains constant but keeps on varying every hour throughout the day. So, it 

is required to monitor the current load profile and accordingly turn on or turn off a 

particular generating unit with the adequate spinning reserve under unpredicted 

emergencies. This planned generation scheduling is referred to as Unit Commitment 

(UC) [8]. 

The generation scheduling plays a vital role in determining commitment status 

and load allocation for a specific time interval. The major objective of generation 

scheduling is identifying the most deserving combination of units and distributing the 

forecasted load to the number of committed units. Selection of an appropriate 

generation schedule could be beneficial in reducing the total fuel cost. Thus, the 

selection of a proper generation schedule not only decreases fuel cost amount but also 

results in an appreciable saving of money per year for power companies. Optimal 

generation scheduling is the major requirement of a power system considering technical 

and economic constraints over a scheduled time. Further, the introduction of electric 

vehicles has accounted for drastic change in conventional UC and generation 

scheduling [9]. 
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Generation scheduling may be short-term or long-term. The short-term and 

long-term scheduling has different operating constraints and thus subjected to certain 

limitations. Generation scheduling is the process of selecting the most economical unit 

for meeting the load demand. There may be a possibility of sudden failure of some 

generating units or intentional shut down for some maintenance purpose. For such 

situations, it is necessary to keep equipped a 5% or 10 % additional generation facility. 

This excess generation facility is called as ‘Spinning Reserve’. It is a waste of power 

and energy, because even if these units are not online, they keep on continuously 

spinning and thus termed as spinning reserve [10]. 

 In order to facilitate reliability and security of power supply as per the load 

demand, generation companies have to bear this additional cost of spinning reserve. 

Due to advancements in power electronics and converter technology, this additional 

spinning reserve requirement could be compensated by utilizing renewables and V2G 

power flow. But, the large penetration of renewables and electric vehicles may further 

result in system complexity. For this type of energy management, requires a proper 

selection of generating units in service to moderate the overall generation charge, which 

includes fuel price and operating charge, and falls under the category of unit 

commitment problem (UCP)[11].  

1.3 UNIT COMMITMENT PROBLEM 

Unit commitment is the optimization problem used to regulate generation schedule with 

sufficient spinning reserve subjected to different system and environment conditions. 

Though it is an old concept of selection of a particular combination of generating units, 

still plays a vital role in predicting the most appropriate solution for the economic 

operation of the power system. The unit commitment problem is an optimization issue to 

govern a particular generation scheduling with adequate operating reserve to meet a 

forecasted load demand. UCP is a pre-planned process of selecting an economic 

generation schedule for a specified time interval of 24 hours to 168 hours to reduce the 

overall operational cost [12].  

The need for an economic power schedule is subjected to the constraint of 
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committing enough generating units online to prevent any unavailability of power supply 

to the consumers, which are referred to as the ‘Unit commitment problem’. On the other 

hand, Economic Dispatch (ED) explores the progression of generation allocation of units 

within their minimum and maximum limits under different constraints and environmental 

conditions. UCP is a more critical and complex process than economic dispatch, where 

the decisions of committing or de-committing a generator have to be taken. The 

complexity associated with UCP is due to the presence of binary decision variables on 

the generating units ON/OFF status. 

UCP is a non-convex, non-linear optimization problem subjected to an extensive 

range of time-varying constraints. It contains load balancing, reserve constraints, unit 

limitations such as up/down ramp rates, timings, and generating limits. Beside these 

complexities demand fluctuates throughout the day and is never constant. It is illustrious 

that load demand is at peak value throughout the day and in the evening, while it is low 

during the late-night time when the record of the public is in sleep. Also, the electric 

power demand is higher on weekdays. Thus, a systematic intelligent approach for 

selecting a proper generation schedule could save a lot of money for an electric utility 

[13].  

1.4 VEHICLE TO GRID TECHNOLOGIES 

This section presents a brief overview of the historical background, benefits of electric 

vehicles, and detailed vehicle-to-grid operation. Vehicle to grid (V2G) is an emerging 

technology that allows to feed surplus power stored in the battery to the power grid. 

Presently, V2G is in the most advancing phase and falls under developing technologies. 

In the future, this technology can play a crucial role in reducing overall generation cost.  

  

1.4.1  Historical Background of Electrical Vehicles 

Nowadays all global countries throughout the world are getting more and more attracted 

to search new alternatives for energy sources after being acknowledged the threat of the 

fade of limited fossil fuels and environmental issues. A sufficient amount of 

coordinated Electric Vehicle (EVs) utilization for transportation could be a possible 

solution for minimizing emissions released from the conventional vehicle by 
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combustion of fossil fuels. Although electric vehicles seem to get more popularized 

these days, it has a surprising historical background. In 1834 Thomas Davenport 

developed the first non-rechargeable battery-operated EV in tricycle form. After the 

invention of lead-Acid batteries in 1874, David Salomon was successful in developing 

an electric vehicle with a rechargeable battery. In 1884, a famous electric vehicle known 

as ‘Electrobat’ was introduced by Electric Carriage and Wagon Company. This 

development led to the construction of commercial EVs in late 1886 by many 

companies [14].  

One of the examples is electric trolley developed by Frank Spraque in 1886. 

‘Victoria’ EV designed by Riker Electric Motor in 1887 which became the house name 

during that period. Between 1899 and 1906, Bouquet, Gracin, and Schivre (BGS) 

manufactured a large variety of cars, buses, etc. They invented an EV named ‘Jamais 

Contente’ in 1899, which performed a record run of 110 Km/Hr. All these 

developments were the major benchmarks for the popularization of electric vehicles. 

Historical data reveals that in 1900, out of 4200 vehicles sold in the USA, 38 % were 

EVs. A large number of companies in the US, England, and France were the leading 

countries, that started manufacturing EVs in 1900. Around 34000 registered EVs were 

used for transport in 1912. Eventually, EVs became the major mode of transport. The 

introduction of low-cost Internal Combustion engines (ICE) by Henry Ford and 

automobile starters by Charles Keetering [15]. These two developments made ICE 

vehicles more user-friendly and economical. Eventually, EVs got suddenly 

disappeared in the 1930s. After a gap of around 40 years in the 1970s, again resurgence 

was noted in the evolution of EVs because of two major circumstances. The first one 

was a search for alternative fuels by global countries due to the oil shortage faced by 

Arabian countries. Secondly, from the 1950s onwards many western countries, 

witnessed the worst type of Smog in nature. This captured the attention of governing 

bodies of these countries to frame strict restrictions and regulations to mitigate the 

impact of Smog on environmental issues. In 1990, famous regulation known as 

“California Air Resolution Board (CARB) was devised with a compulsion of 2 % EV 

sale annually out of total vehicles on the road [16].  
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Many new schemes offering opportunities and subsidiaries to the customers were 

introduced for promoting the participation of EVs in transportation. Due to strict 

regulations and opportunities for getting subsidies, many automakers in the US, Japan, 

and Europe started manufacturing more and more EVs. Some of the major companies 

included as follows: 

 General Motors introduced three series of EVs; Electrovair in 1966, Electrovan 

in 1968, and Electrovette in 1979. These vehicles were based on conventional 

separately excited dc motors with an SCR-based inverter since conventional IGBT-

based VSI was not available at that time. Ford EV projects resulted in Fiesta EV, Escort 

EV, Arostar, Ecostar, etc. in the 1970s. Nissan designed EV-4, EV-Resort, President 

EV, and Credric-EV in the late 1970’s /’80s. Toyota introduced a series of EVs named 

EV-10 to EV-40 in the 1980s. Fiat introduced X123, Y10 in the 1980s, and Electra in 

the 90s. BMW produced EV series such as E30E, E36E in the early 90s, and E1 in the 

mid-90s. During 1990-2000 many companies were liable to launch their own EVs. 

These vehicles were marked to have ratings in terms of performance and efficiency 

[17]. In the current scenario, EVs are extremely popular and can compete with 

conventional ICE. Some examples are; Tesla Road star (2007) and Model-S (2012). 

Also, some luxurious sedans are available such as Ford Fusion Hybrid, Lexus RX 450h, 

Volvo XC 60 T8, BMW 740e XDrive, etc [18]. 

1.4.2 Benefits of Electrical Vehicles 

The current global population is around 6 Billion. If the increase in population follows 

the same trends, then it may become 10 Billion by 2050, and vehicles on road would 

be around 2.5 Billion by 2050. Subsequently, if all the vehicles are ICEs, then all cities 

may be covered with permanent smog with extreme air pollution. It was reported by 

the Air research board (ARB) that around 9000 death every year due to fine particle 

matters in California. This calls up the necessity of identifying the most promising 

solution. Sustainable transportation could be an immediate solution to reduce the 

harness of air pollution. Sustainable transportation means making utilization of 

renewable energy sources for charging zero-emission vehicles. This also allows in 

reducing dependency on fossil fuels for charging these EVs. Thus, in short, the benefits 
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of EVs can be summarized as (i) alternative energy sources (ii) allowing energy 

diversification (iii) minimizing pollution (iv) enabling improved performance [19]. 

1.4.3 Vehicle to Grid operation  

V2G is an emerging technology composed of grid-able EVs, utility system and 

information technology. The EV batteries can store energy and may act as energy 

storage device. Thus, if there is an adequate facility to make these EVs grid-able and 

also bi-directional information exchange between grid and EV owners, it could be 

possible to use these batteries as power on-wheel generators. With the advancement in 

technology and improved power converter, it now became possible to fed back 

additional energy stored in batteries to the grid. This process of feeding power back to 

the utility from vehicles is termed as ‘Vehicle to Grid’[20] .  

In hybrid Electric vehicles categories, PHEV and HEV are grid-able means they 

can be connected to exchange energy with the grid. On the other hand, Electric vehicles 

charged their batteries from the grid supply. However, with an adequate energy 

exchange facility, it could be possible to have a bi-directional flow of energy; either 

from Grid to vehicle or Vehicle to grid [21].These days V2G is emerging as a new 

business model in power industry. In an average EVs can store or generate 4 kWh to 

80 kWh. So, if a properly coordinated system is available, it could be possible to make 

mass use of these EVs. The un-coordinated charging/discharging of such a huge number 

of EVs may cause disturbance in power system dynamics and stability. A typical V2G 

operation is depicted in Fig.1.2. 

          

Fig.1.2: A typical V2G Scenario[22] 
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It requires communication of EVs with grid operators such that the operator not only 

control the energy flow from battery to grid but also control the charging rate of 

batteries. Thus, it may be noticed that all these batteries if connected to grid, while 

vehicles are parked, each EV can typically provide energy between 4 kWh to 80 kWh 

[23].  

It is required that the power aggregator should have a quick watch such that a 

sufficient number of vehicles could participate in the V2G operation. This coordinated 

V2G participation could account for an appreciable amount of power contribution and 

would play a potential role in reducing greenhouse emissions. Assuming that in a huge 

building, there may possibility of large Electric vehicles say for 200 to 300 vehicles on 

an average, parked 90 percent of the total life span or some vehicles to homes located 

at a small distance may be connected to a common aggregator and having capabilities 

of V2V, V2B, V2H such that the efficiency of energy transfer is maximum[24].  

 

Fig.1.3: Different V2G Scenarios[25] 
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On the other hand, this power should have enough security to optimize voltage 

deviation if at any point of common coupling between the aggregator and utility grid 

Thus, the following are the schemes under which V2G operation can be implemented 

[26]. Fig.1.3 illustrates a simple model which explains different operations that comes 

under V2G operation. If there are many homes which are isolated but located nearby in 

a locality, they can be connected to a common aggregator. The aggregator will monitor 

the dynamics and energy flow within this pool of homes and vehicles. It is also possible 

to have similar situations when we have a common building. Nowadays in urban areas, 

very huge buildings are constructed with two or three basements for parking. So, it has 

a high pool of vehicles located or parked in the basement. Thus, similar things can also 

be done with the vehicles in the parking [20].  

In addition to that, V2G Technology has a lot of applications for the power 

system. Thus, if there are a lot of aggregators connected to the grid, it will act as a 

power generator system, capable of taking energy, storing energy, and capable of 

delivering energy. If such a system is linked to a utility grid, it can support the power 

system in many ways. The power generation always tries to match the load demand but 

there will be a lot of fluctuations between the peak hours during the day and off-peak 

hours at the night. The V2G operation can help the grid by energy generation during 

the daytime and support the peak load demand, which is called peak shaving. It can also 

support the regulation of grid voltage [27].  

EVs under V2G can support this by quickly supporting the peak demand in a 

very dynamic fashion. Secondly, it will not be an additional burden on the power system 

and will be correspondingly less expensive. It is possible to use the reactive power 

capability of EVs and help the grid with reactive power compensation. A lot of 

renewable power is getting added to the grid through wind and solar. But, these sources 

of energy are intermittent and depend on solar irradiance or wind availability. Thus, 

V2G and support of EVs could be utilized, such that these transients can be minimized  

in a highly dynamic fashion [26]. 

 



 

11 

 

1.5   SUSTAINABLE ENERGY ENVIRONMENT 

Electrical energy is the primary requirement for the functioning of almost all 

routine activities. With the development and advancement of modern civilised 

environments, the demand for energy for the fulfilment of requirements has increased 

enormously. Fossil fuels are the major ingredient for power industries to produce a large 

bulk of power. Though energy production from fossil fuels is simpler, it results in 

harmful and hazardous effects on the environment by releasing gaseous emissions. If 

the process of energy usage continues to stay with no alternatives, it may result in the 

fast usage of fossil fuels and ultimately reach an end one day. It becomes necessary to 

pay great attention to the usage of these conventional sources for their long existence. 

Nevertheless, the participation of sustainable energy sources has somehow lowered the 

burden on fossil fuels to satisfy load demand to some extent. 

The Per capita energy consumption reflects the prosperity of the population in 

any nation. Experts have an opinion that there is an urgent need for additional power 

generation capacity to retain sustained economic development. The Central Electricity 

Authority (CEA) has reported that with this generation level of about 2, 37,742.94 MW 

and leaving a gap of about 35,661 MW and it would be 85% only in the total installed 

capacity. Hence, the Indian power sector needs to cope with demand and supply. As 

per the CEA report, around 68% of power is contributed by the thermal power plant. 

Thus, it suggests that there is an immediate need of sustainable energy growth. Now, 

the scheme under ‘Power for all’ is encouraging the growth and development of 

renewable and sustainable energy sources such as biomass, wind, hydro, solar photo-

voltaic, etc [28].  

The governing authorities are now very much concerned about low-cost 

generation, utilization of available resources, optimization of generation possibilities 

such as fuel-mix technology, and promoting extensive usage of renewables and V2G 

technology. This suggests that there is a lot of scope for sustainable renewable energy 

sources in power production sector, to reduce greenhouse gases and climate change. 

Among list of renewable energy possibilities, wind energy is rapidly growing and seems 

to be one of the most promising sources of power generation in the future. The Global 

Wind Energy Council (GWEC) says that global wind energy generation is about 

318.14GW worldwide and contributes around 19% of the total power generation. China 
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is at the top, with the highest installed capacity of about 91.42 GW, followed by the 

USA, Germany, Spain, and India. Globally, India ranks 5th with an installed capacity 

of about 20.15 GW. The United States and China have 3% and 2% integration with the 

existing power system, while India is ahead with 3 to 4% penetration, respectively [29].  

1.6       OUTLINES OF THE DISSERTATION  

In contemporary work, a cost-effective solution strategy is explored for solving UCP 

incorporating V2G/G2V operation under uncertain renewable energy sources. Three 

different optimization strategies have been developed to investigate the optimum 

solution strategy for the economic operation of a single-area multi-objective 

framework. Furthermore, to check the proficiency of global and local search 

capabilities, developed strategies have been applied to standard test functions and real-

life design challenges. One hybrid algorithm and two chaotic algorithms have been 

tested to discover the optimal solution for UCP under different scenarios. The 

effectiveness of the suggested work has been validated by testing different IEEE test 

systems consisting of small, medium, and large systems. The detailed research work 

has been organized chapter-wise in the thesis as follows: 

Chapter-1 deals with introductory aspects of the current power generation scenario and 

presents the various adverse effects of the utilization of conventional fossil-based fuels 

on living organisms and the environment. This chapter also presents various possible 

non-conventional alternatives for minimizing the dependency of modern society on 

energy generation and the transportation sector. Furthermore, it outlines the benefits 

and scope of V2G technology in reducing the excessive burden on grids to satisfy the 

tremendous increase in load power demand. 

Chapter-2 comprises a literature review of numerous techniques effectively applied to 

various numerical and computational problems along with unit commitment problems. 

The chapter includes a general review of the related research papers starting from 1959 

to 2021 and an intense review of UCP employing different optimization methods along 

with advantages and disadvantages. These have been worked out to explore the research 

gap. The literature review is divided into three sections based on conventional unit 

commitment, unit commitment incorporating renewable sources, and unit commitment 

with V2G under sustainable energy sources. Furthermore, five research objectives have 
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been formulated to accomplish the proposed research work. Finally, the chapter has 

been concluded by exploring the scope of the proposed research work. 

Chapter-3 explores various optimization methodologies to elucidate benchmark 

functions, real-world problems, and unit commitment problems. In this chapter, the 

initial theoretical and mathematical necessities to solve various optimization problems, 

such as constrained, unconstrained, uni-modal, multi-modal, deterministic, stochastic, 

linear, nonlinear, convex, non-convex, etc., are presented. This chapter presents three 

novel optimization methods to accomplish the proposed research objectives. One 

hybrid algorithm has been developed by integrating the Harris Hawks optimizer with 

an improved Grey Wolf optimizer. Two chaotic variants are developed using the Harris 

Hawks optimizer and the slime mould algorithm. 

Chapter-4 deals with a detailed description of 23 standard test functions and 10 

practical design problems. Furthermore, this chapter deals with the testing of 23 

benchmark functions and 10 practical design problems using three different 

methodologies. The proposed algorithms are applied to test seven unimodal functions, 

six multi-modal functions, and 10 fixed dimension functions. To corroborate the 

usefulness of the proposed algorithm, test results were compared with recent algorithms 

such as PSO, ACO, DE, GA, MVO, GSA, GWO, MFO, etc. It is seen that simulation 

results of proposed algorithms outperform in comparison with other methods and give 

more efficient results. 

Chapter-5 deals with the solution to the unit commitment Problem incorporating 10, 

20, 40, and 60 units using proposed hHHO-IGWO, CHHO, and CSMA methodologies. 

Experimental results for 10 unit system were authenticated by performing comparative 

analysis with other universally accepted evolutionary, heuristic, and meta-heuristic 

optimization techniques.  

Chapter-6 deals with the unit commitment problem tackled by proposed methods for 

with wind and, wind & electric vehicles. Finally, comparative analysis has been 

performed for all three methods. Also, results for 10 unit system has been validated by 

comparing simulation results with other competitive algorithms and it is perceived that 
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proposed methods accomplishes better results in comparison to other heuristic and 

meta-heuristic algorithms. 

Chapter-7 deals with the conclusion of the proposed research accomplished to develop 

a cost-effective solution strategy for unit commitment problem incorporating 

V2G/G2V operation under uncertain renewable energy sources. Further, suggestions 

for future work have also been included. 
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CHAPTER-2 

LITERATURE SURVEY  

 

2.1 INTRODUCTION 

Unit commitment is the process of determining ON/OFF schedule of generating 

unit in order to fulfill load demand with adequate reserve margin within certain 

constraints. The objective of unit commitment problem is to minimize the overall 

operating cost. The overall operating cost includes fuel cost ( cos tF ), startup cost ( iSTC ) 

and shunt down cost.  In general the fuel cost is characterized by second order quadratic 

equation given as, 
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The startup cost is related to the boiler temperature and mathematically, startup 
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Where, 
iMDt  is the minimum down time of unit ‘i’, .

OFF
i hT  is the duration for which unit 

‘i’ is continuously OFF and
iCSh  is the cold start-up hours. 

Shut down cost is constant and taken as zero in standard systems. Now, the total operating 

cost FT is determined by summing up the generation cost of each unit and the start-up 

cost for a defined time interval. It can be mathematically represented as: 
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Unit commitment problem is restricted with large number of unit and system 

constraints. These operational and environmental constraints are explored in details in 

separate chapter. 
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Unit commitment is the process of determining optimum generation schedule 

within system operating constraints and environmental factors. The task of selection 

and allocation of generation scheduling under adequate spinning for the predicted load 

forecasting is the basic requirement of unit commitment problem. It is very simple and 

easy to implement a desired scheduling for conventional unit commitment problem 

based on priority list. However, the involvement of renewable energy sources and 

electric vehicles introduces increased complexities in determining the unit commitment 

problem with large number of constrictions. An appropriate solution strategy is 

necessary to fix the uncertainties associated with renewable energy sources and match 

charging / discharging behavior of electric vehicles. A large number of research 

endeavors have deeply explored the conventional unit commitment problem by 

applying different methods. Researchers are continuously giving their hard efforts to 

discover new advanced techniques and methodologies. The major objective intricate in 

these studies is to minimize the overall operating cost by applying different 

optimization techniques. The following section presents literature review relevant to 

proposed research work.  

 

2.2 REVIEW OF LITERATURES 

Power system optimization is a vast research area where research endeavors tend to 

apply different optimization algorithms. The researchers are trying to discover 

advanced optimization methods for solving various problems. Plenty of research effort 

is going on to discover new processes and build modified, hybrid and chaotic strategies 

to improve the solution efficiency of existing techniques. The successfully 

implemented methods on real-world problems including unit commitment problem, 

falls into two categories; viz conventional methods and non-conventional methods. The 

conventional methods such as Priority list method [30]–[32], De-commitment method 

[33], Dynamic programming method [34]–[37], Branch and Bound method [38], 

Integer and Mixed Integer programming [39]–[41], Lagrangian relaxation (LR) method 

[42]–[45], Simulated annealing method [46]–[50], Expert system[34], [51]–[53], The 

non-conventional methods; viz Genetic algorithm [54]–[56], Tabu Search [57], [58], 

Artificial Neural Network (ANN) [59]–[62], Memetic algorithm [63]–[66], Differential 

evolution (DE)[67]–[69], Harmony search algorithm (HSA) [70]–[74], Shuffled frog 
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leaping algorithm (SFLA)[75]–[77], Biogeography based optimization (BBO) [78]–

[83], Particle swarm optimization (PSO)[84], [85], Fuzzy Logic method [86]–[88], 

Evolutionary programming (EP)[89]–[91], Ant Colony Optimization (ACO) [92]–[98], 

Grey Wolf Optimizer (GWO) [99]–[103], Slime Mould Algorithm (SMA) [104]–[106], 

Hybrid methods [90], [107]–[112]. Baldwin was the first to publish research article on 

unit commitment problem in the year 1959 [113]. Thereafter, an appreciable research 

innovation has been carried out by many researchers in the area of a single area of unit 

commitment problem. 

             This subsequent section presents literature assessment of various optimization 

techniques pragmatic on various real-world problems along with unit commitment 

problem. A concise review for the study has been divided into three sections; viz (i) 

Classical UC (ii) UC incorporating wind as renewable energy and (iii) UC 

incorporating renewables and Electric vehicles. 

 

2.2.1 Review of literatures on Unit Commitment Problem 

Sheble et al. [114] presented a list of methods for solving unit commitment 

problem. Each classical approach for treating unit commitment problem has been 

elaborated to provide basic information. In this review paper, a large number of 

techniques and knowledge-based systems were explored systematically to provide 

different perspective of unit commitment problem. Lowery et al. [115] in 1966 

presented novel dynamic programming to reduce the computation time required for 

evaluating the economic generation schedule. It was noted that an IBM computer 

generates an economic generation schedule for 14 unit system in just six minutes which 

would rather take six hours to evaluate the same combination by manual calculation. 

Guy et al. [116] have focused on security constraint for ensuring reliability of 

ample generation in the event some faults or maintenance of any committed unit. A 

prediction model based on load curve information was suggested to fulfill criterion of 

reliability in operation and economic dispatch. Dillon et al. [117] have modified the 

branch and bound approach by integer programming to provide cost effective solution 

with sufficient reserve margin. Shoults et al. [118] have applied a modified priority list 

method for power dispatch for a multi-area import/export system. It has been observed 
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that the proposed study provides an excellent solution for multi-area, multi-objective 

problems. Cohen et al. [38] proposed a modified version of the branch and bound 

method for handling constraints to solve the unit commitment problem. Chen et al. 

[119] used the branch and bound method to appraise unit commitment problem 

involving a large number of units. In this work, the commitment problem for 10 units 

with 24 hours and 20 units with 36 hours was resolved with improved performance. 

Senjyu et al. [30] adopted an extended priority list method to tackle systems 

involving large units. The unit selection involves two steps for categorizing similar and 

dissimilar units.  In the first step, units are randomly selected in order of priority and 

the solutions obtained in the first step are modified by applying the heuristic approach. 

The same author has also worked on unit commitment problem using stochastic 

approach [120]. In this work, SPL was experimentally tested for different systems 

involving up to 100 units. The key objective identified in this method is to avoid 

repeated calculations and reduce ELD calculations by the protected sign vector method. 

 Kadam et al. [121] introduced a hybrid approach for tackling unit commitment 

problem which is highly non-linear, multi-constrained optimization problems. Daneshi 

et al. [35] incorporated a fuzzy dynamic programming-based technique. This method 

was found to be effective to solve UC in lesser time and reduced dimensions of neural 

networks by applying gray code. Chen et al. [36] have combined fuzzy iteration at the 

initial stage of dynamic programming.  It was noticed that proposed technique permits 

conventional dynamic programming to evaluate the decision process more 

appropriately for solving multi-objective problems. 

 Senthil Kumar et al. [37] used Hopfield neural network method by incorporating 

formulation computation instead of weighted factors. The authors have analyzed a case 

study comprising three units at Neyveli Thermal Power Station (NTPS), India, and also 

performed the analysis of a system consisting of 10 units. The main focus behind this 

work was to provide an efficient solution economic dispatch problem while considering 

ramp rate and security constraints. 
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Mokhtari et al. [51] utilized the Expert System (ES) based rule base for solving UC 

problem and observed that ES is more efficient than the knowledge rule base. Padhy et 

al. [34] presented an expert system to resolve UC problems by developing a new fuzzy 

train operator tool.  The suggested scheme is found resourceful in solving the UC 

problem compared to classical methods.  

Neiva et al. [42] utilized the Lagrangian method to reduce the number of iterations 

in successive approximation. The program code was tested using FORTRAN on a vax-

11/780 computing system. Large - scale unit commitment problem was tested and 

analyzed by implementing dynamic programming with the lagrangian relaxation 

method (DP-LR) and relaxed DP-LR approaches. Zhuang et al. [43] have applied 

Lagrangian method in three phases to resolute dispatch for a 100 unit system scheduled 

over a time duration of 168 hours. In the first phase maximization of dual function 

occurred.  Reserve feasibility search incurred in second phase and at last economic 

dispatch problem was solved using proposed method.  

Li et al. [122] presented a price-based unit commitment solution for a modified 118 

IEEE system with 54- thermal units, 7 cascaded-hydro and 3 pumped storage units. A 

comparative analysis was performed between the proposed mixed-integer approach and 

the classical Lagrangian method. It was noticed that mixed-integer programming 

performs better in solving UCP for small cascaded-hydro and pumped storage units. 

Takriti et al. [41] introduced an improved mixed-integer program (MIP) by applying 

Lagrangian method. The programing was performed by writing codes in C language.  

Guan et al. [39] have shown comparison between general integer programming and 

Lagrangian method. Test results for 10 and 24 units had been compared. Lagrangian 

method performs more efficiently in solving unit commitment problem compared to 

MIP. Damousis et al. [40] formulated a new integer-coded genetic algorithm. It was 

witnessed that the proposed method has the inherent ability to reduce the number of 

chromosome sizes compared to usual binary coding. Simulation results revealed that 

the LR gives a more robust performance in less period compared to other methods.  
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Zhuang et al. [46] in 1990 introduced the simulated annealing (SA) method to solve 

the unit commitment problem by utilizing the process of formation of annealing during 

the cooling process. The SA method was applied for up to 100 unit test systems. It was 

noted that SA effectively solves the UC problem more precisely due to its inherent 

characteristics of separating ‘easy’ and ‘difficult’ constraints. Mantawy et al. [49] have 

applied  SA algorithm for solving combinatorial optimization problems and a quadratic 

programming routine for handling non-linear programming problems. Simulation 

results revealed that the algorithm outperforms over LR and IP implemented for solving 

three different cases. 

 In 1999, Mantawy elaborated a hybrid version of SA by incorporating Tabu Search 

(TS) and Genetic Algorithm (GA). In this work, Tabu search was applied to generate a 

new population, and simulating annealing was programmed to improve the 

convergence rate by exploring annealing’s properties. The applicability of the proposed 

hybrid algorithm was validated by equating simulation results with conventional 

approaches such as LR, IP, GA, and SA[50]. Wong et al. [47] introduced an enhanced 

Simulated Annealing method by adopting the characteristics of the annealing formation 

process. Simulation results for 2 test systems containing of 13 and 32 generator units 

were compared with the dynamic programming method. Venkatesan et al. [48] have 

performed similar research. This method was effective in maintaining reliability and 

security by exchange of power between four different areas. Generation cost 

optimization with adequate reliability and security was the major objective achieved in 

this method.  

Ma et al. [54] have carried out extensive study of mutation control variables for 

solving non-convex combinatorial unit commitment problem. In this work, two 

different GA coding systems were applied on 10-unit generating system in FORTRAN 

77. The experiment was performed for different populations of 150, 250, 350, 450, and 

500. It was illustrated that GA explores the search more intensively to reach an optimal 

unit commitment solution. Kazarlis et al. [123] implemented varying search operators 

to search optimal solution for UCP. A 100-unit system was tested by applying the 

genetic algorithm. Simulation results were compared with LR and DP. It was noted that 

stochastic nature creates deterrents and thus optimal solution cannot be guaranteed. 
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 Orero et al. [56] have applied a genetic algorithm with sequential decomposition 

logic. The proposed method was found to be capable of exploring a good solution for a 

medium-sized system. The method guarantees a good solution for UCP without 

violating system or unit constraints. Huang et al. [124] applied a combination of genetic 

programming and dynamic programming to find an enhanced solution to UCP. The 

proposed method was tested for 43 thermal units of the Taiwan power system. Initially, 

a feasible generation schedule was obtained by genetic algorithm and then the pre-

committed solutions were enhanced by implementing a dynamic programming method.    

Mantawy et al. [57] presented the Tabu search method for enhancing the local 

search capability. This method generates memory structures to solve non-linearity and 

combinatorial optimization problems involved in unit commitment problem. Borghetti 

et al. [58] have accounted operating constraints and physical characteristics while 

solving short-term unit commitment optimization problems. However, after a concise 

comparison between LR and TS, for the more feasible solution, it was suggested to opt 

for the hybrid version of LR and TS.  

Sasaki et al. [59] developed a Hopfield neural network (HNN) to resolve the 

scheduling problem of a 30-unit system. In the beginning, generator initialization at 

each duration was resolute by the neural network and final solution was obtained by 

conventional algorithm. Similar work was demonstrated for anticipating mixed integer 

programming problem in identifying number of equality and inequality constraint [60]. 

Swarup et al. [62] anticipated the discrete and continuous conditions required to 

compute solutions for UC and ED using conventional methods. Initially, HNN was 

applied to get unit commitment outputs in discrete form, and then these Unit 

commitment solutions were applied for continuous HNN form to solve the economic 

dispatch problem.  Different test systems with varying load patterns for a duration of 

24 to 168 hours were simulated in MATLAB on a P-IV system. 

Padhy et al. [61] have analyzed unit commitment problem of practical system at 

Tamil Nadu for different load profiles. In the initial step, designing of non-linear fuzzy 

membership was evaluated while second step involves adjustment of generation 

schedule by using rule-base and inference mechanism of expert system. The results of 
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this method were found be progressive and encouraging in solving real-time 

optimization of power system.   

Valenzuela et al. [63] integrated genetic algorithm with lagrangian relaxation 

method to explore unit commitment problem with more enhanced performance 

compared GA, MA, DP and LR. It was proven that the seeded memetic GA-LR method 

gave better results compared with general methods. Sanusi et al. [64] performed a 

comparative analysis between the genetic algorithm and memetic algorithm applied to 

solve Knapsack Problem. It was observed that Roulette-Wheel selection excels over the 

Ranking and scaling method in terms of accuracy and optimality. Furthermore, it was 

also figured that the memetic algorithm outperforms over genetic algorithm when 

compared to Roulette-Wheel selection scale. Vaisakh et al. [125] utilized a genetic 

algorithm for finding optimal parameters for ACO and the optimum generation 

schedule for a system consisting of 4 and 10 units was recorded. The comparative 

results of these test systems with conventional methods such as DP, BB, and ACS show 

that the proposed method gave a more efficient operation.  

Mafteiu Scai et al. [65] applied the memetic approach to explore more optimal 

solution by exploiting global and local more intensively. Dual optimization was applied 

in the initial phase of the run process. The system was again subjected to the iterative 

method for extracting better results compared to the gradient and constraint 

optimization method. Li et al. [126] adopted memetic approach for solving multi-

objective unit commitment problem. Simultaneously economic dispatch and emission 

from generation issues were handled by combining non-dominated sorted genetic 

algorithm with a local search algorithm. The memetic algorithm was applied to 10 and 

100-units to resolute the approximation of the offered scheme. 

 Thomsen et al. [69] incorporated crowded scheme with differential evolution 

algorithm to explore more optima points that enables to extended performance with the 

high-quality solution for multi-modal optimization problems. Karaboga et al. [127] 

presented a more simplified method to solve the global optimization problem. The 

differential evolution method was applied to solve five benchmark functions with fine-

tuning of selection parameters. Keles et al. [128] implemented DE for solving standard 
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benchmarks and also on a real-world dataset of a Turkish interconnected power 

network. This was very simple research and further modified to enhance the 

performance. Muelas et al. [68] have presented a memetic differential evolution 

strategy for solving low or high-dimensional problems. A heuristic approach was 

adopted to intensify the exploration and exploitation phase.  It was shown that the DE 

gave excellent local search results which allow the proposed method to deal with 

problems of different dimensionality. 

Omran et al. [129] incorporated swarm intelligence with the improvisation process 

of harmony search to find a global-best position. The effect of noise using Harmony 

search (HS) variants have been tested and results were compared with HS and improved 

Harmony search (HIS). It was noticed that the global best harmony search method 

outperforms in searching global-best position more precisely for even extremely small 

value of PAR. Wang et al. [71] also utilized musical improvisation and also included 

low-discrepancy sequence during initialization process for finding global optima.  

Coelho et al. [70] included exponential distribution in the Harmony search method to  

improve performance. The cost of generation for a 13-unit system was found to be 

minimized by the proposed method.  

Paqaleh et al. [130] attempted to solve the unit commitment problem for two case 

studies by using HSA. A 10 and 26-unit system was experimented and outcomes were 

correlated with competitive algorithms such as EP, GA, improved lagrangian relaxation 

(ILR), and  improved priority list method with augmented Lagrange Hopfield (IPL-

ALH). Arul et al. [73] presented the applicability of HSA to workout exceptional load 

allocation considering line losses under capricious load forms. The algorithm was 

applied to the six-bus system, IEEE-14 & 30 bus system under an experimental load 

pattern. It was observed that the proposed method gave more optimized results 

compared to IFEP and PSO.  

Xue-hui et al. [75] introduced the SFLA method to rectify the errors in the original 

Travelling salesman problem (TSP) for managing tours of cities with accuracy. SFLA 

improves local exploration for small TSP with 51 cities. The algorithm finds six tours 

earlier compared to the optimal tour provided by TSP. Reddy et al. [131] modified 
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SFLA by introducing an accelerating factor, resolute power dispatching. The modified 

scheme was introduced to a standard IEEE bus system and results were compared with 

other competitive algorithms. It is noticed that this method gave more excellent and 

convergent results compared to other techniques.  

Simon et al. [78] introduced biogeography based optimization (BBO) algorithm 

based on the acquired experience from the mathematics applied to other biology-based 

algorithms such as genetic algorithm and artificial neural networks. The algorithm was 

tested for 13 benchmark functions and results were compared with seven competitive 

algorithms. Rarick et al. [132] applied BBO algorithm to solve optimal power flow 

problem for a 30-bus system. Authors revealed that BBO outperforms over GA in 

evaluating optimal power flow solution. It was reported that BBO method generated 

more feasible and economical solution compared to Lagrange multiplier and particle 

swarm optimizer. 

 Eberhart and Kennedy in 1995 introduced a simple and easily accessible algorithm 

by mimicking the behavior of bird flock or fish school. The procedure was tested for 

exploring global and local optima’s with reduced errors [133], [134]. Shi et al. [85] 

introduced initial weight and maximum velocity parameters, and provided guidelines 

for tuning these parameters. For getting more improved performance, time varying 

inertia weight was also employed. Ting et al. [135] used visual basic language for 

simulating a 10-unit system. The hybrid PSO method was applied to find cost effective 

solution with least possible errors. Zhao et al. [136]  proposed a hybrid PSO algorithm 

by integrating the interior point method with PSO for retrieving the economic dispatch 

of a system incorporating wind energy and V2G operation. This study also provides 

detailed modeling of uncertainties associated with wind and electric vehicles under 

different constraints and limitations.  

Zhao et al. [137] incorporated IPSO for resolving the UC problem. In this work, 

enhanced information of particles was incubated to control the mutation operation. It 

also provides a stratagem for choosing constraints and orthogonal design. The 

algorithm was tested for 10 to 100 unit systems, and results were authenticated with 

competitive algorithms such as EP and GA in terms of exploitation properties. 
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Pandian et al. [86] introduced a new methodology using the Fuzzy logic rule for 

investigating scheduling problem. Linguistic fuzzy control rules were employed for 

establishing relationships between inputs/outputs. The algorithm was tested for 10, 26, 

and 34 generating units of the power system. Numerical results show that proposed 

method gave the best cost solutions. Chen et al. [36] developed a modified algorithm 

by combing fuzzy iteration and dynamic programming model for solving multi-

objective optimization problems. The rule-base was framed in such a manner that, a 

new iteration generates decision operators for solving the specified problem. Saber et 

al. [88]  used enhanced fuzzy model along with linguistic fuzzy control. The adapted 

algorithm was effectively applied to examine economic dispatch for systems consisting 

of 10 to 100 units. Finally, it was concluded that the proposed method furnished 

superior performance with a good solution and faster response. 

Christober et al. [89] developed a new Tabu-search-based evolutionary 

programming method for solving scheduling problems. It was tested for systems 

entailing 10, 26, and 34 units. The results of the test system were compared to Tabu 

search, dynamic programming, simulated annealing, and the Lagrangian method. It was 

noticed that the proposed method gave more promising results in evaluating the optimal 

generation schedule. Bavafa et al. [91] applied a hybrid combination of Lagrangian, 

evolutionary and quadratic programming to tackle the economic dispatch problem of a 

26-unit IEEE system. It is noticed that the hybrid method gave superior search results 

within a short time. Selvi et al. [90] demonstrated the applicability of evolutionary 

programming with dynamic programming to rectify generation allocation problems for 

a multi-area system consisting of four area interconnected networks. A cost-centric 

comparison between EP, DP, and PSO also was acknowledged to authenticate the value 

of the proposed method. 

Sisworahardjo et al. [94] implemented an ant colony search method for evaluating 

the UC problem of a ten-unit system. The generation schedule was determined from the 

inherent searching characteristics of ants. The outcomes of proposed method were 

compared with meta-heuristic methods such as LR, DP, GA, and MA. Shi et al. [95] 

developed a stochastic mechanism by incorporating random perturbation behavior with 

an ant colony algorithm for solving UC problem. Adequate efforts had taken by the 
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authors to take care of reliability, security, and spinning reserve constraints. Saber et 

al. [138] formulated a modified memory-bounded algorithm by combing a local search 

heuristic approach to exclude possibilities of local entrapment and the probabilistic 

nearest neighbor method to intensify the search forgotten value. The algorithm was 

simulated for handling unit commitment to systems consisting of 10-100 units. It was 

noted that the proposed methods gave more cost-effective solutions for unit 

commitment problems compared to competitive methods such as integer-coded GA, 

LRGA, GA, LR, and DP. 

Venkatesan et al. [139] applied an ant colony optimization algorithm to select a 

combination of generating units with efficient operation. A case study was carried out 

considering 26 units under different load patterns. Based on information gathered from 

a case study, algorithm was accomplished in Matlab for a 24 hours’ time cycle. Chitra 

et al. [97] presented voltage frequency control and harmonic analysis for power quality 

improvement using ant colony optimization algorithm. Experiments were performed in 

matlab simulink environment for a 50 kW load under switching and sampling frequency 

of 10 kHz and 500 kHz.  

Singh et al. [117] developed upgraded GWO for solving power dispatch problem 

for systems consisting of 38, and 40 units with different parameter settings. FORTRAN 

software language was implemented to find the economic dispatch problem. The test 

outcomes revealed that the proposed technique was found to be generating an optimal 

generation schedule compared with other competing methods such as BBO, DE, PSO, 

etc. Yadav et al. [108] have developed a hybrid method by integrating PSO with DE 

for determining dispatch problem and economic emissions. The hybrid model was 

utilized to minimize overall generation costs and emission costs. The algorithm 

experimented on three separate bus systems, and the results were compared with basic 

methods and a recently developed hybrid model of PSO and DE.   

Fang et al. [109] used a combined-cycle gas turbines model considering minimum 

online/offline time and ramp rates without involving any additional binary variables in 

UC formulation compared to independent system operators. Chen et al. [140] provided 

a unique method for eliminating the difficulties involved in using the penalty function 
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method. It was observed that this method sometimes fails in determining optimal 

penalty coefficients during economic load dispatch calculation. This problem was 

resolved by implementing a two-stage strategy using an artificial bee colony algorithm. 

Kein et al. [141] used a social spider optimization algorithm to find the most feasible 

least-cost generation scheduling for systems consisting of 6 to 20 units.   

Kamboj et al. [142] implemented harmony search algorithm to resolute the UC 

problem. The proposed method was applied to 4, 10, 20, and 40 units. The simulation 

outcomes were equated with other methods such as GA, EP, PSO, IPSO, DPLR, etc. 

Results revealed that the algorithm gave better outcomes related to other algorithms. 

The same author has employed DE-random search method on similar grounds and 

solved unit commitment problem very precisely [143].     

2.2.2 Review of literatures on UCP with Renewable Energy Source 

 

Chao et al. [144] estimated a co-relation between historical wind speed with a 

simulation-based method such as Weibull parameters of hourly wind speed and the lag-

one autocorrelation of hourly wind speed values. A comparison was made on 

parameters such as wind power histograms, autocorrelation function, and mean 

persistence and recorded good resemble with simulated and actual data for a sample of 

six different wind turbines in three regional arrays. Billinton et al. [144] executed a 

similar study. The results were validated by F-criterion and Q-test. The simulated 

results were compared with the actual wind speeds. Giorsetto et al. [145] proposed 

cumulative distribution function to check the influence of wind generation on system 

reliability. This method was found useful in determining effective load carrying 

capability and contribution in overall power generation. 

Pappala et al. [146] applied particle swarm optimization for influential scheduling 

of a wind power system by employing a stochastic approach instead deterministic 

model. Methaprayoon et al. [147] introduced an artificial neural network-based wind 

power forecaster to take account of probable wind uncertainties while performing UC 

scheduling planning. Soman et al. [148] have presented an insight review on existing 

wind power prediction studies. This study covers various wind power forecasting 

methods such as numeric, statistical, artificial networks, and hybrid techniques. Siahkali 
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et al. [149] implemented a stochastic probabilistic model considering wind power 

uncertainties.  

 Kamalinia et al. [150] incorporated mixed-integer programming and develop a 

novel approach for solving security-constrained based unit  commitment problem to 

avoid  ramping requirements due to  the uncertainty of WG. Osorio et al. [151]  have 

applied the priority list method to solve probabilistic unit commitment for acquiring a 

cost-effective and consistent solution. Umamaheswaran et al. [152] have elaborated 

various reliability, financial constraints, and limitations for large-scale renewable 

participation in the Indian power sector. Foley et al. [153] reviewed historical and 

current wind power generation methods based on wind speed and weather forecasting. 

A large number of statistical, theoretical, and analytical methods have been studied to 

explore wind power generation complexities.  

Singh et al. [154] implemented forward-reduction algorithm and applied a bidding 

strategy to maximize profit. Wind uncertainties were modeled by adopting an 

overestimation and underestimation cost function. Zhao et al. [155] incorporated wind 

output and demand response by utilizing the properties of the cutting plane method to 

determine the optimum power flow solution. It is concluded that the robust unit 

commitment model reduces the total operational cost and computation time compared 

with traditional Benders decomposition. 

 Li et al. [156] presented different techniques for wind power prediction along with 

their advantages and disadvantages. Further, characteristics of various methods for 

wind power generation were discussed. Hetzer et al. [157] introduced wind energy 

transfiguration system. In this work, the Weibull probability density function is utilized 

to find speed-power characteristics.  Reserve and cost penalty factors were also 

incorporated to a keep a balance between under-estimation and over-estimation of wind 

power. Purwadi et al. [158] elaborately described the determination of wind speed by 

measuring the output power of the turbine from voltage and current data. It enables the 

users not only to eliminate measurement errors but also allows them to measure wind 

speed directly as a function of output power. 
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Yu et al. [159] formulated an integrated hybrid model by combing the Markov 

strategy  and interval optimization approach to locate various nodes corresponding to 

wind energy. Mahari et al. [160] have applied modified Imperialistic Competition 

Algorithm (MICA) method to determine an optimal generation schedule for a hybrid 

system incorporating wind energy. The proposed technique was validated by applying 

MICA to various combinations of generating units at different wind penetration. 

Shahriar et al. [161] used fuzzy technique for incorporating uncertainty of wind power 

penetration. A system consisting of three units and one wind power generation unit was 

tested using the CPLEX optimizer. The fuzzy base-rule trained program was found to 

be effective in minimizing cost of generation. 

 Ban et al. [162] used mixed-integer linear programming with the benders 

decomposition technique. The uncertain wind power penetration had compensated by 

converting the excess wind power into hydrogen gas using an electrolyzer. Abujarad et 

al. [32] utilized the priority list method to solve the UC problem by incorporating solar 

and wind for a 10-unit system. The cost comparison was also provided for conventional 

UC, UC with solar, and UC with wind. Shao et al. [163] developed a robust security 

constraint method for mitigating the effect of hourly wind power uncertainties and also 

accounted for any disturbances due to any wind spillage. Azizipanah-Abarghooee et al. 

[164] applied an improved Jaya system to solve probabilistic power distribution 

problem of a 10 unit, 118-bus system. 

Saravanan et al. [165] applied the firefly algorithm for determining a cost-effective 

solution for a hybrid system consisting of 30 thermal generating units and 4 wind farms 

for five different population size. From the compared results, it was noted that as the 

population size decreases, the cost of generation also decreases. Esmaeeli et al. [166] 

introduced the Monte Carlo simulation approach to anticipate unseen forecasted 

weather uncertainties. A mixed-integer program was used to generate an appropriate 

spinning reserve requirement. Bhadoria et al. [167] incorporated BMFA to solve the 

numerical optimization problem for 23 standard benchmark functions. Further, the 

algorithm was applied to determine the optimum scheduling of systems consisting of 

small and medium-size with 5,7,10, 20, and 40 units.  
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Ji et al. [168]  adopted the scenario generation and reduction technique and applied 

GSA to solve the UCW problem. In this method, GSA explores local search intensively 

to reduce losses and improve reliability and security. Shilaja et al. [169] elaborated a 

new hybrid approach by integrating Moth swarm algorithm and gravitational search 

algorithm ( MSA–GSA) method for determining optimal power flow for power systems 

with wind energy sources.  

Lakshmi et al. [170] have used an Artificial Immune System approach for 

determining optimal generation scheduling for wind–thermal systems. The proficiency 

of the method was analyzed by applying the suggested algorithm to a scheme consisting 

of 10 thermal units with two wind farms.  

2.2.3 Review of literatures on UCP with RES and electric vehicles 

Saber et al. [3] introduced the PSO algorithm for charging /discharging patterns to 

discover the most economical cost and emission system. The research presents a cost 

and emission solution for a 10-unit system with a wind farm having 25.5 MW power 

capacity provided by 17 wind turbines (each 1.5 MW) and 50000 registered grid-able 

vehicles. The simulation results with RES and EVs revealed that the proposed method 

was effective in reducing total grid operational cost and emission for the suggested 

system. Khodayar et al. [171] included various constraints associated with the 

intermittent nature of wind power and charging/discharging characteristics.V2G 

operating costs and additional constraints that arose due to distributed storage were also 

addressed. The impact of integration PEV on the generation schedule was analyzed 

using mixed-integer programming.  

Yu et al. [172]  utilized chemical reaction algorithm for efficient utilization of 

energy stored in batteries through V2G operation. The major contribution of this 

research is to generate an optimal generation schedule by considering some part of 

energy via effective V2G operation. The simulation results of 10, 20, and 40 units 

systems were compared with competitive methods such as evolutionary programming 

and simulated annealing. It was noted that the proposed method explored excellent 

results over other methods. Chandrashekar et al. [173] introduced rolling horizon search 
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algorithm for providing controlled PEV operation to mitigate additional reserve cost 

requirements because of uncertain wind availability.    

Ghofrani et al. [174] integrated genetic algorithm with Monte Carlo simulation for 

optimizing the charging/discharging patterns of electric vehicles. In this work, a 

synergized control model is used to balance the cost penalty associated with the 

uncertain wind power penetration. Separate wind prediction and EV clustering models 

were provided to develop a collaborative strategy to benefit wind participants and EV 

owners. Gao et al. [175] developed a controlled stochastic optimization algorithm for 

the effective V2G operation in presence of intermittent wind power. Different 

controlled and uncontrolled charging/discharging strategies were demonstrated for 

mitigating fluctuations in wind power penetration by optimized V2G Control.   

Zhang et al. [176] introduced a fuzzy chance constraint program for anticipating the 

problems of time mismatch between supply and load demand by using Demand 

Response (DR) and  Electric Vehicle (EV) reserve during wind power fluctuations. A 

10-unit system with wind, DR, and EV was examined in MATLAB software under five 

scenarios using particle swarm optimization. Reddy et al. [19] investigated the 

performance of different systems consisting of 10, 20, 40, 60, and 100 units 

incorporating electric vehicles and renewable energy sources such as wind and solar by 

implementing modified firework algorithm. The results of the proposed algorithm were 

compared for different units with classical and modern methods such as LR, GA, EP, 

memetic algorithm (MA), Greedy randomized adaptive search procedure (GRASP), 

LRPSO, PSO, and IBPSO. It was observed that the proposed Binary firework algorithm 

(BFWA) method gave more precise results in comparison with other methods.  

  Zhang et al. [177] have proposed a highly coordinated scheme using multiple 

group optimization based on multi-objective decomposition by incorporating 

uncertainties of PEVs and wind power. The comparative assessment revealed that the 

proposed method is efficient in evaluating economic dispatch with superior 

convergence. Pal et al. [26] introduced a centralized system that allows various options 

of energy transfer for consumers profit. In this work, vehicle to home and vehicle to 

grid operations were explored systematically using mixed-integer programming. 
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 Clement-Nyns et al. [178] used Quadratic programming and dynamic 

programming to explore a coordinated charging of PHEVs for maintaining voltage 

profile and grid supply reliability. The uncertainties caused due to the stochastic nature 

of the charging/discharging pattern were retrieved by the probability density function.   

The impact of un-coordinated penetration of PHEVs is analyzed to explore the most 

economical solution. Su et al. [179] performed a survey to explore various opportunities 

and challenges for vehicle electrification and V2G technology. This research explores 

various aspects of battery technology, battery charging/discharging pattern, energy 

management, and V2G technologies infrastructure. 

Fernandez et al. [23] demonstrated possibilities of increased cost and distribution 

losses with three different levels of PEV penetration. The impact of tremendous 

penetration of PEV in two distribution areas was analyzed considering a probable 

percentage of PEV. This work explores different scenarios which support the 

probability of increased cost due to the large penetration of PEV. Ma et al. [180] tested 

an IEEE-30 bus system incorporating V2G operation for rectifying any flaws in 

supplying wind power that might occur due to probable uncertainties. In this work, 

various battery constraints concerning ratings, state of charge, real-time, extend of 

charge/discharge, the impact of EV penetration, and the cost is evaluated to know 

various terminologies and challenges associated with V2G operation. 

Yao et al. [136] presented a hierarchical decomposition approach to provide a 

coordinated charging/ discharging EV interpretation for maintaining power security 

and reliability. The proposed method was applied to a 118 bus system with 6 Electric 

vehicle Aggregators (EVA) with two level-model coordinated charging/discharging 

schedules. The simulation results suggest that a coordinated EV participation gave 

much cost-effective solution without any adverse effect on the security and economic 

operation of the power system. Darabi et al. [181] estimated various constraints and 

limitations that might occur while charging a large fleet of electric vehicles from the 

utility grid. The proposed method is experimented to evaluate the percentage of PHEVs 

that may be allowed to charge and the chances of the grid not to provide power for 

charging EVs. Two cases with 2-level charging were simulated based on various 
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scenarios and also on the information related to arrival- time, charging duration, wait-

time, and time of give-up.  

Wang et al. [182] investigated the impact of V2G penetration to mitigate the 

imbalance in power distribution during peak shaving due to uncertainties associated 

with wind availability and solar irradiance.  Cross-entropy (CE) algorithm was tested 

to determine results for a 33-node system for anticipating the unavailability of 

renewable power by energy transfer through V2G operation. Peng et al. [22] developed 

a novel dispatching strategy for V2G aggregators aimed to participate in regulating 

power, load frequency, and demand management. Ansari et al. [183] presented a fuzzy 

set theory for accounting uncertainties in market value and initiated efforts to maximize 

the profit of electric owners and aggregator service providers.  

Shekari et al. [184] applied multi-objective linear programming to maintain a 

proper balance between active and reactive power by incorporating a fleet of electric 

vehicles in a micro-grid. The results were analyzed in terms of voltage profile, 

generating units dispatch capacity, operation of under-load tap changers (ULTCs), and 

operational cost minimization of microgrid. Andervazh et al. [185] utilized a learning-

based approach for solving power dispatch and transportation emissions. Uncertainties 

associated with load, renewables, and plug-in-vehicles were addressed and modeled 

using specific techniques such as Monte-Carlo-based simulation, Weibull probability 

density function, and normal distribution function. 

2.3 RESEARCH FINDINGS & SCOPE OF RESEARCH 

The survey of the literature suggests that several optimization strategies have been used 

to address the unit commitment and economic dispatch problems. The following are a 

few techniques: Priority list, Differential Evolution, Genetic Algorithm, Particle Swarm 

Optimization, Bird Swarm Algorithm, gbest-Guided Search Algorithm, Binary Bat 

Algorithm, Binary Gravitational Search Algorithm, Flower Pollination Algorithm, 

Grey Wolf Optimization, Random Walk Grey Wolf Optimizer, Simulated Annealing, 

Teaching-Learning-Based Optimization, and Water Cycle Algorithm. From the 

reviewed literature, key findings related to unit commitment problem and economic 

load dispatch are discussed in the subsequent section.  
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Classical UC problems with fewer generating units employ traditional methods 

such as PL, Lagrangian method, DP, and branch and bound algorithm. Tabu search 

(TS) is a local search used to elucidate combinational optimization problems. It 

provides a flexible memory system to solve optimization problems. The major issue 

associated with TS is its inability to provide an effective solution for large problems of 

dimension. For the n–unit system, the classical numerical approach employs a 2N-1 

combination. It slows down the evaluation process and makes calculations complex for 

large dimensions. The dynamic programming method has the inherent capability to 

provide feasible solutions with reduced dimensionality. But, it requires more 

computation time. 

Genetic algorithm is capable of handling constraint and unconstrained optimization 

with less computational time but fails to explore global optima. DE has ability to 

explore global optima. It does not require initial control parameters. However, tends to 

get struck in local minima due to premature convergence and computational time is 

high. SA has superior local search capability but requires more time to find global 

optimal. GSA has excellent exploration capability but fails to explore local search. UCP 

is a complex non-linear problem due to the involvement of large number of constraints.  

A major weakness of these heuristic and meta-heuristic methods is poor exploration 

and exploitation capability and thus fails to tackle unit commitment problem with 

precision and accuracy.  

The foremost objective of UCP is to minimize overall generation costs by selecting 

the most economical combination of generating units. Various environmental issues, 

such as global warming and air pollution, have raised concerns in the search for 

alternative energy sources for transportation and power generation. In this regard, 

renewable resources and vehicles on the grid appears to be a prominent solution to these 

issues. However, because of the uncertainties associated with renewables, such as wind 

unavailability, solar irradiance, and V2G limitations, the addition of RERs and PHEVs 

to power systems increases system complexities. This research work, wind power 

penetration, is considered for renewable energy. It is the cleanest and most economical 

energy source, whose output power depends on wind speed. However, it does not 

produce constant output power and causes uncertainty in the scheduling and satisfaction 
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of forecasted load demand. Similarly, several uncertain factors are associated with the 

V2G operation. For example, the variation in the driving pattern of owners, start time, 

state of charge, and technical specifications of the vehicles. The penetration of PHEVs 

into the power system also introduces substantial levels of uncertainty in the existing 

power system. 

A wide range of research is in continuous progress to invent new and advanced 

methods for reducing problems associated with UCP by implementing various 

classical, heuristic, and meta-heuristic approaches. The literature review reveals that 

V2G is an emerging technology and is still in its development phase. Among all the 

reviewed research, the unit commitment problem involving renewables and V2G 

operation is tested only for small micro-grids or small systems with many assumptions 

and constraints. The key objective of all these methods is to determine an optimal 

solution for the unit commitment problem. 

It is observed that there is a wide scope of research in the area of unit commitment 

for V2G operation under uncertain stochastic environment. In most of the studied 

literature, the problem of economic dispatch was tackled for small system mostly 

consisting of 10-units. It could be possible to apply different algorithms to various small 

systems consisting 10-units, medium systems consisting of 20 and 40 -units and large 

system consisting of 60-units. A specific system with a particular number of generating 

units could be tested to determine optimal for different conditions such as Classical 

Unit commitment (UC), UC with renewables, UC with V2G, and combined system 

with UC, renewables and V2G operation. The work is therefore justified in presenting 

the proposed study. The research proposal therefore presents, “A Cost Effective 

Solution Strategy for Unit Commitment Problem for V2G operation in uncertain 

Sustainable Energy Environment” for electric power system. 

2.4 RESEARCH OBJECTIVES 

The proposed study aims to develop a solution strategy for the unit-commitment 

problem in the presence of renewables and electric vehicles. The following are the 

objectives of the proposed research work: 
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(1) To develop a hybrid optimization algorithm by combing local search algorithm 

with modern global search algorithm for constrained optimization problem 

using memetic algorithm approach. 

(2) To evaluate performance analysis of standard uni-modal, multi- model, fixed 

dimension and engineering benchmark problems. 

(3) To tackle the unit commitment problem of electric power system with due 

consideration of Vehicle to Grid operation in stochastic sustainable 

environment using proposed hybrid meta-heuristics search algorithm. 

(4) Testing the performance of the proposed algorithm for various IEEE 

benchmarks problems with incorporation of V2G operations in stochastic 

sustainable environment. 

(5) Analysis and Validation of results and publication of research work 

2.5 CONCLUSION 

This chapter deals with a specific review of literature related to the proposed work. The 

survey of literature has been explored in three sections. The first section includes a 

review of literature corresponding to convention unit commitment methodologies 

implemented to minimize overall generation cost. The second section covers the survey 

of literature corresponding to renewable energy penetration. It covers a review of 

optimization techniques incorporating wind energy considering wind uncertainties. The 

last section includes literature concerned with the unit commitment problem due to the 

penetration of renewables and electric vehicles. This section also presents optimization 

techniques promoting the advantages of coordinated V2G operation in the presence of 

sustainable energy sources. The extensive review reveals that there is a scope for 

research in solving unit commitment problems involving renewable and V2G 

penetration.  
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CHAPTER-3 

OPTIMIZATION METHODOLOGIES  

 

3.1   INTRODUCTION 

An optimization is process of determining different possibilities to discover the most 

precise solution. Optimization provides an appropriate solution for any simple or 

complex problem. It is an effective way to provide systematic and efficient ways to 

create new design solutions to achieve an optimal design. There are many real-world 

and practical examples where we can recognize the application of optimization. It is 

difficult to solve complex optimization problems analytically due to certain 

uncertainties. The advancement in computing techniques enables us to solve complex 

optimization problems more efficiently by selecting specific optimization tools. 

Optimization is the process of finding a better and more improvised solution in almost 

all fields, including science, technology, and engineering design problems. 

 Optimal control and machine learning are two fields where optimization plays 

a crucial role. Wing design, pressure vessel design, truss design, structural design, 

economic dispatch, beam design, mechanism design, gear train design, multi-cultch 

design, chemical process control, photo-voltaic storage design, and medicine 

manufacturing are only a few of the examples, where optimization acts as a key 

ingredient for achieving excellent performance and improved outcomes. 

 All the above design issues involve either minimization or maximization 

(collectively known as optimization) of an objective function. Certain specifications, 

such as initial design idea, conceptual review, market analysis, method/strategy opted, 

feasibility, efficiency, reliability, cost consideration, minimization of losses, and 

maximization of profits, needed for the successful implementation of any innovative 

realization. For understanding the difference between conventional and design 

optimization methods, a conceptual idea has been formulated in Fig.3.1. The manual 

optimization process is shown in Fig.3.1 (a). 
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Fig.3.1: (a) Manual optimization process 

 

Fig.3.1 (b) Optimization process through software 

From the gathered data, the problem is executed, and then the solution is verified 

by comparison with the previous analysis. If the solution obtained is found to be better 

than the previous experience, then that design is to be concluded as the final design. 

But, if it reaches an acceptable level, further iteration is repeated manually. In Fig.3.1 

(b), a flowchart for the optimization process through software is explored. In the case 

of design optimization, initial specification and data processing are similar to those of 

a conventional method. However, optimization involves problem formulation, variable 

design, and the desired objective under certain constraints and limitations. 

The optimization process generates the most feasible solution and allows the 

same program to perform different tasks by changing the design variables and related 



 

39 

 

constraints. The optimization algorithm uses stored information to generate a new 

optimized solution for the same problem. The process is repeated as per programmed 

command until the design reaches a satisfactory level. It allows automatic variations 

of programmed commands and keeps running the information in cycle form till the 

desired outcome. Due to the availability and capability of high-speed computers, 

optimization algorithms are progressively widespread in engineering design activities. 

Despite the numerous advantages of computational techniques such as 

accuracy, efficiency, and reliability, they introduce some non-linear constraints while 

solving optimization problems. Differentiability or convexity is the adverse result of 

riotous computation due to increased problem size or constraint violation. These 

problems are common even in the real world. Newton developed the gradient method 

for solving optimization problems involving real-valued continuous parameters. This 

development of Newton, also known as the steepest descent algorithm, was found to 

be capable of solving only problems involving continuously differentiable functions. 

But in real-world applications, the problem may be a discontinuous function with an 

incomplete definition. The designer has to adopt other search algorithms to solve the 

problem[186]–[189].  

In most real-world optimization problems are not isolated but interrelated with 

each other. Such optimization problems are called multiple objective design problems 

(MOD). Management terminology uses multiple criterion decision-making (MCDM) 

problems for such search and optimization problems.  

There is a possibility of having conflicting scenarios while solving a particular 

type of optimization problem. For instance, cost minimization and profit maximization 

are the two conflicting issues, and it is difficult to achieve both objectives 

simultaneously. The process of optimization proceeds with the initialization of the 

problem formulation and continues till an optimum or desired solution is generated 

[190]–[192].   

 

3.2   OPTIMIZATION PROBLEM FORMULATION 

The most important aspect of developing an optimal design process is converting an 

idea or intention into a mathematical format that an optimization algorithm can analyze. 

This mathematical format helps the designer to understand the design problem more 
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deeply. The problem statement should be defined more precisely to avoid any intrinsic 

weakness that may cause the optimization to congregate to undesirable or unrealistic 

optima. Fig.3.2. illustrates the procedure to formulate optimization problems. 

 

Fig.3.2: Steps in optimization problem formulation 

In the first step, description of system, statement of goals and requirements are written 

a design format. In the next step, all possible data and information about the problem is 

collected relevant to performance requirements and expectations. Adequate measures 

are needed to identify, gather and analyze all input and outputs to develop a sound 

formulation. The three crucial and necessary entities are elaborated as follows: 

(i) Design Variables: The highly sensitive parameters with inherent ability for 

proper working of desired strategy are known as decision or design variables. A specific 

example of design variables can be represented by a column vector as shown in eqn. 

(3.2). 

            1 2[ , ,........, ]nxx x x x                                                                        (3.2)  

The problem dimensionality depends upon the number of x design variables 

corresponding to different designs. The design variables should have specific identities 

such that the optimizer can select the elements of x independently. These decision 

variables should be fixed parameters throughout the optimization process. 

Nevertheless, despite all possible precautions, there is a chance of having a linear 

combination of design variables. It could result in an infinite number of variables with 
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a similar design. It is possible to define parameters of the same system with different 

units without changing the functional form of the problem. 

(ii) Objective function: The objective function is to execute the performance of the 

optimization problem for defined design variables. It is the task for formulating any 

optimization problem. There may be different objective functions associated with a 

particular design problem. Some functions may be designed for minimization while 

others may require maximization. In such cases, the principle of duality is applied 

which permits the same algorithm to accomplish both the task using non-linear 

programming [193]–[195].  

(iii)   Constraints: After choosing a specific objective function, the next step is to 

frame constraints associated with the design problem. These constraints may be those 

of equality or inequality, depending on the circumstances. The practical requirement is 

to apply constraints to minimize or maximize the objective function. Some functions 

need to be restricted to a fixed equality constraint. Although, for having a flexible range 

for a certain objective function, an inequality constraint is introduced by applying "less 

or equal" or "greater or equal" conventions. A generalized mathematical statement for 

a single-objective optimization problem can be written using eqn. 3.3 (a) & (b) given 

below. 

   minimize f ( x )   

By varying     1min max

i i i xx x i ,......,n                                  (3.3a)  

   Subjected to     
 
 

0 1

0 1
j g

l h

g x j ,.......,n

h x l ,.......,n

 

 
                           (3.3b)  

The above mathematical statement articulates that minimizing the objective 

function for the given set of defined decision variables within the minimum and 

maximum bounds is related to inequality and equality constraints. It is required to 

classify optimization problems for checking and choosing an appropriate optimization 

algorithm for solving a particular design [6]. As no single algorithm is proficient in 

solving all types of optimization problems, it is necessary to define an optimization 

problem. In general prospect, an optimization problem is classified based on three main 
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traits: the problem preparation, the features of the objective, and restriction functions, 

as shown in Fig.3. 3. 

 

Fig.3.3: Optimization Problem Classification 

Fig.3.3 explores the detailed classification of the optimization problem. The 

design variables may be continuous, discrete, or mixed. The Objectives may be single-

objective or multi-objective. Problems may be constrained or unconstrained.  Objective 

and constrained may be further classified depending on smoothness, linearity, modality, 

convexity, and stochasticity. Thus, the objective functions may be continuous, 

discontinuous, linear or nonlinear, unimodal or multi-modal, convex or non-convex. It 

may also be stochastic or deterministic. For the same initial conditions, a deterministic 
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optimization algorithm assesses the same points and converges to the same outcome, 

but a stochastic optimization algorithm evaluates a new set of points from the same 

initial conditions, even if performed numerous times [191]. Thus, stochastic algorithms 

are gaining more popularity than the deterministic approach and are more suitable for 

optimization problems [149] . Fig.3.4 illustrates the detailed classification of different 

optimization algorithms. 

 

Fig.3.4: Classification of optimization algorithms 

 

The optimization algorithms are classified based on order, search process, algorithm 

employed, function, type of stochasticity, and run time of the algorithm. The order may 

be zero, first, and second. The search may be local or global type depending upon the 

type of algorithm employed for the evaluation of a particular objective function to 

accomplish a prior defined optimization problem [196]–[198]. 
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3.3   OPTIMIZATION METHODOLOGIES 

Discrete optimization algorithms are proficient in solving simple engineering design 

problems by employing basic techniques with the accessibility and affordability of 

high-speed computation facilities. These algorithms are gradient-based techniques 

based on linear and non-linear programming methods, which search for an optimal 

solution near the initial starting point and require more gradient information. Gradient 

search algorithm generates worst results for more than one local optima and fails to find 

a global optimum. The computational drawbacks of prevailing linear and non-linear 

approaches have motivated researchers to opt for simulation-based meta-heuristic 

algorithms for solving multi-disciplinary engineering design problems. These meta-

heuristic algorithms are simple, easy to implement, and efficient for solving continuous, 

discrete, constrained, or unconstrained problems. Meta-heuristic algorithms may be 

single-solution or population-based and evolve a set of solutions during each iteration. 

These meta-heuristic algorithms are mainly categorized into four main groups and 

tabulated in Table-3.1 as Evolutionary, Physics-based, Human-based, and Swarm 

Intelligence type algorithms. 

Table-3.1: Advantages and Disadvantages of Meta-heuristic algorithms 

Algorithm Inspiration/Technique Advantages Disadvantages 

Genetic 

algorithm 

(GA) [199] 

This algorithm is based 

on Darwinian theory of 

evolution. 

It is capable in handling 

constraint and unconstrained 

optimization with less 

computational time.  

Faces difficulty in 

obtaining global solution 

with optimal result.  

Differential 

evolution 

(DE)[200] 

This is also an 

evolutionary algorithm 

and starts search with a 

randomly generated 

population. 

It has ability to explore 

global minima. It does not 

require initial control 

parameters. Requires only 

few control parameters. 

It tends to get struck in 

local minima due to 

premature convergence 

and computational time is 

high.  

Branch and 

bound(BB)[2

01]  

This algorithm is 

developed from the 

inspiration of branches 

of tree.  

It employs linear function to 

objective function within 

upper and lower bounds.  

Requires large execution 

time for systems with 

large size. 

Simulated 

Annealing[20

2]  

Based on Annealing 

process in metallurgy  

It has superior local search 

capability with less 

computational time 

It takes much time to 

explore global minima. 

Biogeograp

hy Based 

optimization 

(BBO)[78] 

This algorithm is based 

on bio geographical 

process 

Better global and local 

search capability and 

computational efficiency is 

high 

Poor convergence for 

medium and large scale 

systems  
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Table-3.1: Advantages and Disadvantages of Meta-heuristic algorithms (Continued.) 

Algorithm Inspiration/Technique Advantages Disadvantages 

Gravitationa

l search 

algorithm 

(GSA) [203] 

This method is based 

on Law of gravity and 

fitness function of 

masses. 

It has excellent exploration 

capability.  

It has poor exploitation 

capability due to close 

proximity in the 

neighboring masses 

progress of iterations. 

Harmony 

Search 

algorithm(H

AS)[70] 

This algorithm is 

inspired from searching 

of a perfect musical 

harmony.  

It is a divergence free 

method. It does not require 

any information regarding 

differential gradient and 

setting of variables. 

Lower exploitation in 

end search space results 

in slow convergence. 

Sine-Cosine 

algorithm 

(SCA)[204] 

It is random search 

population based 

technique which 

involves Sine cosine 

function. 

It has simple structure and 

fewer parameters and 

capable of determining 

optimal solution based on 

sine cosine function.  

It losses population 

diversity due to loss of 

control parameters in the 

successive runs of the 

algorithm. 

Tabu search 

(TS)[205] 

It is based on 

evaluation of 

neighborhood solution. 

It has a flexible memory 

system which enables search 

agents to explore search 

space efficiently 

Poor sensitivity for 

parameter selection. 

Computation time is 

high. 

Teaching 

learning 

Based 

Optimization 

(TLBO)[206] 

It is based on teaching 

learning behavior in 

classroom 

It requires less controlling 

parameters such as 

population size and number 

of generations 

Fails to explore search 

space efficiently for 

complex problems 

involving large matrix 

size. 

Particle 

Swarm 

Optimization 

(PSO) [207] 

This algorithm is a 

population based 

inspired from particles 

moving in search space  

It is simple, easy to 

implement and robust 

method. It is also insensitive 

to initial parameters and 

require less control 

parameters. 

It has a tendency to fall 

in local minima 

entrapment and results in 

inferior convergence. 

Ant Colony 

Optimization 

(ACO) [208] 

This algorithm is based 

on foraging strategy of 

real ants for food. 

It does not much parameter 

setting and hence provides 

optimal global solutions for 

complex problems involving 

large constraints. 

It has premature 

convergence and 

generates stagnating 

output. 

Artificial 

Bee Colony 

(ABC) [209] 

It is based on  Bees 

ability  to form colonies 

It is simple, easy to 

implement and possess good 

exploration capability 

It is inefficient to 

provide optimal solution 

for complicated 

optimization problems. 

Bat-inspired 

Algorithm 

(BA)[210] 

It is based on 

Echolocation 

characteristics of Micro-

bats.  

High convergence rate due 

to proper balance between 

exploration and exploitation. 

It has tendency to get 

capture in local search if 

loudness and pulse rate 

are not properly tuned 

Grey Wolf 

Optimization 

(GWO) [99] 

It is based on chasing, 

encircling and hunting 

strategy of grey wolves 

in a group. 

It is gradient free, simple, 

and scalable algorithm. 

Requires less parameter 

adjustment.  

It fails to exploit search 

space at the end of search 

space and results in early 

convergence. 

 



 

46 

 

Table-3.1: Advantages and Disadvantages of Meta-heuristic algorithms (Continued.) 

 

Algorithm Inspiration/Technique Advantages Disadvantages 

Moth Flame 

Optimization 

(MFO)[211] 

It is based on 

inclination of moths in a 

particular direction of 

flame 

It is simple method and has 

improved computational 

efficiency 

It has tendency to get 

entrap in diverse spiral 

path and thus convergent 

rate is slow. 

Whale 

optimizer 

algorithm(W

OA)[212] 

This algorithm is based 

on cooperative behavior 

of humpback whales. 

It has better convergence 

rate due to randomized 

operator. 

Immature convergence 

due wide local area 

stagnation. 

 

Grasshopper 

Optimization 

Algorithm 

[41] 

This algorithm is based 

on behavior of 

grasshopper swarms in 

nature 

It has high local optima 

avoidance due to high 

repulsion rate. 

Gravity force on the 

updated position results 

in poor convergence. 

Harris 

Hawks 

Optimizer(H

HO)[213] 

This algorithm is based 

on chasing, encircling 

and hunting strategy of 

Hawks for their survival 

It is simple, able to escape 

safely from  

local minima,  provides 

flexibility and ease of 

adoption 

The major limitations 

are possibility of being 

trapped in local minima 

while solving large 

multimodal and 

composition optimization 

problems. 

Slime 

Mould 

Algorithm(S

MA) [214] 

This algorithm is based 

on foraging strategy of 

moulds for food  

It is simple and easily 

adoptable to compute 

complex structural problems.  

It tends to fall easily in 

local optima due to 

improper transfer of 

exploration to 

exploitation phase. 

 

Although these optimizations compute various design and engineering problems with 

precision, local area stagnation is a crucial problem. This local stagnation forces the 

optimizer to get entrapped in nearby local minima points and resist the algorithm to 

search for the most feasible solution. It also reduces the proficiency of the optimizer to 

explore and exploit the search space accurately. Researchers are continuously 

contributing their efforts to develop advanced hybrid and chaotic methods to augment 

the local search fitness to find more efficient solutions to optimization problems   

In the present research work, three hybrid optimization algorithms are 

developed to solve different optimization problems. The suggested algorithms are 

applied to solve complex unit commitment problems involving wind and V2G 

penetration. The following section presents the detailed theory and mathematics of the 

optimization methodologies employed for solving engineering design problems and 

economic scheduling problems in a stochastic sustainable environment. 
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3.3.1   Harris Hawks Optimizer  

Harris Hawks are intelligent hunting birds residing in the United States and Mexico. 

For their survival, hawks used to hunt in groups. The hunting process begins with group 

members utilizing their ability to communicate, encircle the target, and attack by 

making soft and hard besieges. Meanwhile, if the target succeeds in escaping, the hawks 

again organize themselves for another attack by exchanging their positions. Finally, the 

exhausted prey loses its all energy and gets caught by the hawk’s group members [215]. 

Harris Hawks optimizer (HHO) developed by Heidari et al. [213] is a meta-heuristic 

algorithm search algorithm, based on the chasing strategy of Hawks to capture the 

escaping prey, most probably a rabbit.  

HHO is a simple and easily adaptable method and finds wide applications in 

meta-heuristic and hybrid variants of HHO developed by the researchers to fix different 

classes of stochastic complexities. Some of the examples where HHO was utilized are 

data-mining[216], environmental issues [217], medicine and drugs, materials [218], 

engineering design [219], image segmentation [220], power flow [221], solar PV 

modules [222], feature selection [223] and other variants [224]. HHO has the inherent 

capability of pursuing a proper balance between intensification and diversification. 

Studies reveal that slow convergence gives rise to reduced computational efficiency. 

The HHO algorithm does not require initial values for decision variables and instead 

employs stochastic indiscriminate search rather than gradient search.  

The main feature of HHO is to mimic collective hunting by adopting four 

strategies. These are encircling, surprise pouch, soft besiege, and hard besiege. It is a 

fast and efficient method to solve multifarious optimization problems, including 

discrete, incessant, constrained, and unconstraint issues. The advantages of HHO are 

simplicity in methodology, the ability to escape safely from local minima stagnation, 

flexibility in operation, improved performance, and ease of adoption. The mathematical 

formulation of the HHO algorithm is based on the 'seven kill strategy' of hawks and the 

escaping energy of rabbits. A successful hunting process involves soft besiege, hard 

besiege, soft-besiege with hard bounds, and hard besiege with hard bound, as depicted 

in Fig.3.5 
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Fig.3.5: Searching phases of HHO[213] 

The mathematical equations are developed based on the behavior of Harris hawks and 

chaotic strategy. This section includes the methodology for capturing the prey. The 

typical chasing technique of Harris birds is where they recognize the food and chase it 

by using their sharp judgments while the victim does not know about the hunters' plan. 

Let q    be the probability for each equalizing attempt which depends on the position of 

the other family members close enough to them, which is modeled  in eqn. (3.4a), when   

0 5q . or perch on randomly on tall trees and modeled as  in eqn. (3.4b) for 0 5q .  .  

 1 2( 1) ( ) ( ( ) 2 ( )); 0.5rand randX itn X itn r abs X itn r X itn q                                  (3.4a)                                                                                                            

 3 4( 1) ( ( ) ( )) (L ( )); 0.5prey mX itn X itn X itn r b r Ub Lb q                               (3.4b)  

Where, ( 1)X itn   represents the hawks position in next iteration ( )itn , 
rand

X ( )itn  

represents randomly selected hawks , corresponding to  the vectors 1 2 3 4, , ,r r r r  and q  are 

random values in between (0, 1) and these are modified in each iteration  between upper 

bound ( )Ub  and lower bound ( )Lb . ( )preyX itn  denotes the position of prey. ( )mX itn  

represents the mean position of Hawks which is determined by eqn. (3.5).  

1

1
( ) ( )

N

m i

i

X itn X itn
N 

 
  

 
                                                                                              (3.5)                              

Where, ( )X itn  is the hawk location in each iteration and N denotes total number of 

hawks. 



 

49 

 

Transition from Exploration to exploitation phase depends upon the absconding energy 

of the victim and is evaluated using eqn. (3.6) 

0

max

2 1A

itn
E E

itn

 
    

 
                                                                                          (3.6) 

Where, AE  is avoidance energy of the prey, E0 is the initial energy of the prey changing 

randomly between (-1, 1) and maxitn  is maximum iterations eqn. (3.6) is used to 

determine the upgraded position of hawks. The successful capture relies on attacking 

strategies of Hawks depending upon escaping energy and change of escape )(r . Hawks 

will first encircle and then surprise pounce is performed. Modeled in eqn. (3.7) & eqn. 

(3.8). Hawks perform a soft besiege for 0.5& 0.5r E  . 

( 1) ( ) ( ( ) ( ))
A prey

X itn X itn E abs J X itn X itn                                        (3.7) 

 ( ) ( ) ( )preyX itn X itn X itn                                                                                         (3.8) 

Where, ( )X itn is the variance between current location of prey and locality of Hawks 

at iteration itn . 
5 )2(1J r   is the Jump energy which alters randomly in every 

iteration. 5r  is the random numeral in the range (0, 1). The exhausted prey fails to escape 

and Hawks perform hard besiege as modeled in eqn. (3.9). Hawks perform a hard 

Besiege for 0.5 & 0.5r E  . 

          ( 1) ( ) ( ( ))
A

X itn Xprey itn E abs X itn                                                             (3.9) 

( ) ( ( ) ( ))Y Xprey itn E abs JXprey itn X itn                                            (3.10) 

( )
F

Z Y S L D                                                                                                         (3.11) 

Where, D  = Problem’s dimension, S  = Range of fractal flight path by size (1 )D  

The LF (D) based designs which follow the certain rule in eqn. (3.12) and eqn. (3.13) 

1
( ) 0.01FL x

v




 
 
 
 

 
                                                                                              (3.12) 

 

1

1 sin
2

1 1
2

2 2





 



  


 

  

  
  
 

 
    
    
    

                                                                     (3.13) 
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Where, ,   are signified as particular type of random value between (0, 1) and  is 

default constant fixed to 1.5.  

 At this stage the prey has enough energy and besiege during this phase depends on levy 

flight (LF) concept as modeled in eqn. (3.12). Hawks perform a soft besiege through 

rapid dives for 0.5 & 0.5E r  . 

; ( ) ( ( ))
( 1)

; ( ) ( ( ))

Y if F Y F X itn
X itn

Z if F Z F X itn






 


                                                    (3.14) 

Where, Y and Z are the positions based on soft besiege.  

( ) ( ( ) ( ))'
mY Xprey itn E abs JXprey itn X itn                                     (3.15)       

' '
( )

F
Z Y S L D                                                      (3.16)  

The Hawks are very close to prey and perform hard besiege as modeled in eqn. (3.17). 

Hawks perform hard besiege through rapid dives for 0.5 & 0.5E r  . 

'

'

'

'

; ( ) ( ( ))
( 1)

; ( ) ( ( ))
n

Y if F Y F X itn
X it

Z if F Z F X itn


 







                                                         (3.17) 

Where, 'Y  and  'Z  are the positions based on hard besiege. 

 

3.3.2   Improved Grey wolf optimizer Algorithm 

 

Grey wolf optimizer (GWO) is a newly proposed meta-heuristic algorithm developed 

by Mirjalili et al. [99] in 2014. The grey wolves stay in groups of 5–12 on average 

during hunting process with their inherent encircling and attacking strategies. The 

GWO algorithm adopts the wolf hierarchy and has different roles in the wolf pack. 

The Wolfs are divided into four groups based on their role during the hunting process. 

The four groups are alpha, beta, delta, and omega. Alpha represents the best solution 

found for hunting and is at the apex. A typical social dominant hierarchy is as shown 

in Fig. 3.6. 
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Fig.3.6: Social dominant hierarchy of grey wolves [99] 

The alphas may be male or female and responsible for making decisions and 

performing the dominant role of the wolf pack. The beta wolfs assisted the alphas in 

decision-making and initiating pack activities. Delta wolves follow the commands of 

alphas and betas, but they govern the omega wolves. The hunting process with 

mathematical steps is depicted in Fig.3.7. 

 

Fig.3.7: Hunting process of GWO [99] 

 In IGWO, a weighted average of alpha, beta and delta wolfs is evaluated and then best 

individual is assigned a weight obtained by multiplying its corresponding A and C. 

The IGWO optimization algorithm is used to update the positions of alpha ( )W , beta
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( )W , and delta wolves ( )W during the hunting process involving searching, 

encircling, and attacking the target prey. The best fitness value of grey wolves depends 

upon the fitness value evaluated as ‘a’ shown in eqn. (3.18). Mathematically, 

( 1)( ) & G itnwG W   vectors are defined through eqn. (3.19) and eqn. (3.20). 

max

2
2a t

itn
  

 
 
 

                                           (3.18) 

   W GpreyG C W itn W itn                                    (3.19) 

   1G Pr ey WW itn W itn A G                               (3.20) 

Where, 
1

2A a r a      And, 
2

2C r    

Here, 1 2
, (0,1)r r rand and a  reduces linearly from 2 to 0.The extreme search process 

takes place and various fitness values for  ( )W  , ( )W and ( )W  are updated using 

eqn.(3.21), (3.23) and eqn.(3.25).The final position for capturing the prey is evaluated 

by eqn. (3.27). 

 1 G
G abs C .W W


                            (3.21) 

1 1
W W A .G

 
                                                                                       (3.22)                       

 2 G
G abs C .W W


                                                                                                            (3.23) 

2 2
W W A .G

 
                                                                                                                                (3.24) 

      3 G
G abs C .W W


                                   (3.25)          

       3 3W W A .G                                         (3.26)                  

 
1 2 3

3
itn

W W W
W

 

 
 
 

                           (3.27) 

3.3.3   Hybrid Harris Hawks Optimizer Algorithm 

The detailed mathematical formulation for Harris Hawk’s optimizer has discussed in 

section 3.3.2. However, the local search of the basic HHO algorithm is slow due to its 

poor exploitation capability. The major flaws are the possibility of being trapped in 

local minima while dealing with multimodal and composition optimization problems, 
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an improper balance between global and a local search, and sluggish performance in 

handling the multi-dimensional issue [224].  

From the vast HHO variants, some of the specific work has been selected for 

comparison and fair interpretation. Yildiz et al. [225] developed an effective hybrid 

algorithm by combining HHO, GOA and MVO for solving manufacturing optimization 

problems. Abbasi et al. [219] provided prominent solution in lowering entropy 

generation by adopting HHO to explore more intensively micro channel for definite 

velocity and temperature. Moayedi et al. [226] incorporated HHO-ANN method to find 

stability of soil slopes with better fitted structure related to civil engineering problem. 

Chen et al. [227] have combined chaos maps with HHO to improve local search 

capability of basic HHO by adopting multi-population approach and differential 

strategy using logistic chaotic mapping.  

Firouzi et al. [228] have developed hybrid algorithms for solving complications 

associated with cracks in cantilever beam design for explored location and depth of 

crack for Euler–Bernoulli beam. Chiwen et al. [229] formulated improved HHO by 

information exchange between search agents and tested nine benchmark problems and 

seven engineering design problems. Elkadeem et al. [230] used hybrid HHO-PSO 

method for analyzing economic dispatch problem considering renewables and 

distributed generator. All these studies were attempted to optimize certain objective by 

modifying classical HHO.  

In the present work, the global and local search phases of HHO is enhanced by 

combining the Harris Hawk optimizer with the improved Grey Wolf optimizer 

(IGWO). The resultant algorithm is abbreviated as hybrid Harris Hawk’s optimizer 

(hHHO-IGWO). IGWO assists HHO in exploring the search space more intensively 

and prevents the algorithm from local minima stagnation or immature convergence. 

The steps of the HHO-IGWO method are as follows. 

            min imize f (X)                 3.28) 

Subjected to   1 2min max

i i ix x x i , ,.....,N                                                                 (3.29) 

Where,  1 2

T

NX x ,x ,......,x   is the set of design variables and N is the number of 

decision or design variables. 
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Algorithm  

The optimization procedure for the hHHO-IGWO method comprises of the subsequent 

ten steps: 

Step-1: Define algorithm parameters. 

Specify the input parameters required by the HHO and IGWO algorithms to solve the 

optimization problem defined by Eqn. (3.2), such as the number of solution vectors in 

HHO and IGWO. Position of Rabbits, Hawks, and Wolf Variables and parameter 

adjustments associated with hunting strategy. 

 Notations are specified as Updated position ( 1)X itn  , number of iteration ( )itn , 

random iteration randX ( )itn , random variables 1 2 3 4, , ,r r r r , mean position of Hawks

( )mX itn  , upper bound and lower bound ( )Ub , ( )Lb . 

Step-2: Initialization of stochastic population ( 1, 2,3......., )iX i N  and maximum 

iteration is itn   

Step-3: Initialization of exploration phase for each chance q , with condition 0.5q  and

0.5q  , 

 1 2( 1) ( ) ( ( ) 2 ( )); 0.5rand randX itn X itn r abs X itn r X itn q         

 3 4( 1) ( ( ) ( )) (L ( )); 0.5prey mX itn X itn X itn r b r Ub Lb q          

The mean position of Hawks which is determined by following equation. 

1

1
( ) ( )

N

m i

i

X itn X itn
N 

 
  

 
                                                                                                                                   

Step-4: Exploration to exploitation phase depends upon the Escaping energy ( )E   

0

max

2 1
itn

E E
itn

 
    

 
     

Step-5:  For 1E  , exploration phase is completed and the new position vector is 

determined .The difference between current and updated position of prey and hawks is 

evaluated for each jump energy J in each iteration within the range of (0, 1).                                                                                                                                

               ( 1) ( ) ( ( ) ( ))
prey

X itn X itn E abs JX itn X itn        

 ( ) ( ) ( )preyX itn X itn X itn                                                                                                                     

Step-6: At this stage hawks execute a hard Besiege for 0.5 & 0.5r E  . 
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           ( 1) ( ) ( ( ))
A

X itn Xprey itn E abs X itn       

           ( 1) ( ) ( ( ))
A

X itn Xprey itn E abs X itn                                                                           

           ( ) ( ( ) ( ))Y Xprey itn E abs JXprey itn X itn                                                                         

  ( )
F

Z Y S L D                                                                                                                                  

Step-7: Hawks execute a soft besiege via rapid dives for 0.5 & 0.5E r  . 

; ( ) ( ( ))
( 1)

; ( ) ( ( ))

Y if F Y F X itn
X itn

Z if F Z F X itn


 







                                                                     

( ) ( ( ) ( ))mY Xprey itn E abs JXprey itn X itn                                                             

( )
F

Z Y S L D                                      

Step-8: When hawks are very close to prey and perform hard besiege. Modeled in Eqn. 

(15). Hawks perform hard Besiege via rapid dives for 0.5 & 0.5E r  . 

'

'

'

'

; ( ) ( ( ))
( 1)

; ( ) ( ( ))
n

Y if F Y F X itn
X it

Z if F Z F X itn


 







  

Step-9: Initialization of the grey wolf population ,wG C and A  .After this, calculating 

the best fitness value search agents whose value is determined as follows 

_max

2
2

ter

a t
i

  
 
  
 

                                 

   W GpreyG C.W itn W itn                          

   1G Pr ey WW itn W itn A.G            

 Where, 1
2A a r a      And, 2

2C r    

Step-10: Allotting best fitness values to search agents , )w w wand   .Here, 

1 2
, (0,1)r r rand and a   reduces linearly from 2 to 0. In this this updated position vectors 

are determined by multiplying weighted position vectors with the global best values 

and final position is evaluated as follows. 

 
1 2 3

3
itn

W W W
W
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3.3.4   Chaotic Harris Hawks Optimizer  

The detailed mathematical formulation for HHO along with its merits and demerits has 

been discussed in section 3.3.2. According to research, meta-heuristic approaches face 

the issue of poor exploitation in some uni-modal and multi-modal benchmark functions. 

Researchers have developed many hybrid and chaotic algorithms. Such chaotic 

behavior has been utilized by researchers in algorithms like genetic algorithms[231], 

chaotic Krill Herd search [232], SCA [233], BA [234], GWO [235], PSO [236] ,WOA 

[237]. Slow convergence and the tendency to get trapped in local optima is the most 

commonly reported problem by many researchers[224].  

Specific work on recent HHO variants and different chaotic strategies has been 

investigated to find limitations and scope. Some examples of hybrid and chaotic 

variants of HHO are Chaotic Multi-Verse Harris Hawks Enhancement [238], SCA-

HHO Algorithm [239], Boosted Harris Hawk’s Optimization (BHHO) [240], Improved 

Harris’s Hawks Optimization(IHHO) [241], Enhanced Harris Hawks Optimization 

(EHHO) [242], Quasi-reflected Harris hawks optimization algorithm [243], HHO-ANN 

[222], Chaotic HHO [244], CHHO – QWSC [245], ANFIS-HHO [246], etc. 

 The literature survey reveals that different hybrid and chaotic variants of HHO 

have been developed by the researchers to fix various kinds of stochastic complexities. 

The solution accuracy of these algorithms depends on a proper balance between 

intensification and diversification. Studies reveal that slow convergence is the common 

problem of most heuristic algorithms and results in reduced sluggish convergence. 

Thus, to improve the performance, chaotic approaches are emerging widely. The 

ultimate aim of these techniques is to solve a pre-defined problem more precisely.  

Recently, a chaotic variant of HHO using the “logistic function” was implemented by 

Chen et al. [247] to estimate PV parameters. Current-Voltage characteristics of PV 

modules were upgraded by exploiting chaos periodicity and sensing temperature 

difference and irradiation variance.  

Ewes et al. [238] incorporated HHO for enhancing exploration phase of MVO 

and parameters were tuned by chaotic maps. Gao et al. [248]  have applied Tent Chaotic 

function to enhance the local search capability of HHO. The benchmark functions were 

not searched to an appreciable level. Also, the results have not justified by any 

comparative analysis. However, the No Free Lunch theorem permits researchers to 
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invent new optimization techniques for achieving good solution efficiency. Therefore, 

this research study intends to offer a novel chaotic HHO algorithm (CHHO). 

Table- 3.2: Chaotic Functions [249] 

 

In the proposed research, out of the 10 most commonly used chaotic strategies 

depicted in Table 3. 2, the Tent chaotic function has been combined with the basic HHO 

algorithm to search the space more intensively. To speed up the Harris Hawks search 

process and exploit the nearby search space of the Harris Hawks optimizer, a chaotic 

local search and abbreviated as Chaotic Harris Hawks-Optimizer (CHHO). The 

strategy is shown briefly in Fig.3.8.  

The concept of probability distribution has been introduced in many meta-

heuristics algorithms to gain randomness. Chaotic maps could be beneficial if 
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randomness due to ergodicity and idleness are utilized properly. These chaotic criteria 

are satisfied by eqn.3.30.         

  1 ( )k kO f O                                             (3.30) 

 In eqn. (3. 30) 1 &k kO O are the ( 1) &
th th

k k chaotic number, respectively.  

 

 

Fig.3.8: Improved Exploitation phase of HHO with Chaotic local search strategy  

The basic HHO is upgraded by combining the chaotic approach to further enhance the 

search accuracy. The Pseudo-code for proposed method is presented in Appendix-A (i). 

3.3.5 Slime Mould Algorithm  

Slime mould algorithm (SMA) is the meta-heuristic algorithm developed by Chen et al. 

[104] for solving stochastic optimization problems. The algorithm is formatted by 

imitating the behavior of slime moulds and their ability to search, approach, wrap, and 

grab food. The foraging behavior of pysarum polycephalum, commonly known as 

"slime mould," to search for food sites has been efficiently adopted by researchers to 

develop new algorithms with different objectives. A few examples of such analogical 

approaches are discussed below.  

The inherent ability of slime moulds to navigate through dissimilar channels 

and reach rich food sources via shortest path have been identified by Adamatzky et al. 

[250]. Andrew Adamatzky and Jeff Jones effectively developed a method for 
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reconfiguring transport networks by implementing the foraging capability moulds to 

search for optimal routes through transport networks [251]. An intensive study on 

ability of moulds for choosing optimal path was carried out by Beekman et al. [252]. 

Burgin et al. [253] designed structural machines modal by exploiting the intrinsic 

capacity of moulds to sense cell information to solve complex computational problems.  

Houbraken et al. have formulated an extended fault-tolerant algorithm to rectify 

the fault signals in the telecommunication [254]. Kouadri et al. have implemented SMA 

to solve the optimal power flow problem of a hybrid renewable with the thermal-wind 

system [255]. Kropat et al. incorporated a deterministic method for solving single-path 

and multi-path optimization problems under uncertainty to avoid emergencies and 

disasters [256]. Davut et al. utilized search capability of SMA and  develop a PID-

controlled DC motor and AVR system [257].    

 It was found that the organism’s behavior has been adopted and statistically 

modeled to solve unconstrained and non-convex mathematics. Slime molds have 

acknowledged ample interest in recent years. Typically, the plasmodium creates a 

protoplasmic tube linking the masses of protoplasm to the food sources [250]. Moulds 

use their venous for searching vast food sources by secreting enzymes to encircle the 

food centers. Moulds may even foster more than nine hundred cm2 when there is 

adequate food in the environment [256]. In the case of food scarcity, the slime mould 

even flows vibrantly, which helps to understand how slime mould search, moves, and 

connect food in the changing environment. When a secretion approaches the target, 

slime can judge the positive and negative feedback and find the ultimate route to grasp 

food in a better way. This suggests that slime mould can construct a concrete path 

subject to the level of food concentration as shown in Fig.3.9. 

Moulds prefers to select the region of high food concentration. Depending upon 

the food concentration and environmental risk, the mould weighs the speed and decides 

to leave the old location, and begins its new search during foraging. Slime mould adopts 

empirical rules based on currently available insufficient data to initialize new search 

and exit present location while foraging. It may dynamically adjust their search patterns 

as per the quality of food stock. The mathematics involve in searching the best food 

location by moulds is as shown in Fig.3.11 given below.   
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Fig.3.9: Searching structure of Slime Mould 

 

 

Fig.3.10: (a) possible position of moulds   (b) Fitness evaluation 

Following steps are involved during food searching process  

Step-1: In this step mathematics for the slime moulds behavior is formed and following 

rule is assigned to find updated position during search for food. The criteria for this 

depends upon r and p. This is the contraction mode of mould.  

  A( ) .(W. (t) ,
( 1)

. ( ) ,

Bb b

c

X itn v X X itn r p
X itn

v X itn r p

  
 







                                                   (3.31) 

Where, bv   is a parameter with a range of  , , ca a v    is the parameter which 

approaches linearly toward zero. itn  is the current iteration, bX   is the location of each 
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particle in region where odor is maximum, X  is the mould’s location, AX  and BX  are 

the randomly selected variables from the swarm, W   is the measure of weighs of masses. 

The maximum limit of ‘ p ’ is as follows: 

tan h ( )p S i DF                                                     (3.32) 

Where, 1, 2,..., n,i    ( )S i  = fitness of X , DF  = overall fitness from all steps. 

The eqn. of bv is as follows: 

     ,bv a a                                                           (3.33) 

    Where, 
max

arctan ( ) 1
itn

a h
itn

 
   

 
                                        (3.34) 

The eqn. of W  is listed as follows:   

 (i)

( )
1 . log 1 ,

W(smell index )
( )

1 . log 1 ,

bF S i
r condition

bF wF

bF S i
r others

bF wF


 





 



  
   


   

  

                       (3.35) 

               (S)Smell Index sort                                                             (3.36) 

Where, ( )S i ranks first half of the population, r = random value in the interval of  0,1 ，

bF = optimal fitness obtained in the current iterative process, wF = worst fitness value 

obtained in the iterative process, Sort (s) function sorts fitness values. 

Step-2: The eqn. for upgrading the positions of agents (i.e. to wrap food) is given as: 

 
*

. ,

( ) (W. ( ) ( ),

( ) ,

b b A B

c

rand UB LB LB rand

X X itn v X itn X itn r p

v X itn r p

z  

   






 




                                     (3.37) 

Where, LB  andUB  are the search limits, rand and r denote the random value  

Step-3: With the up gradation in the search process, the value of bv  vibrantly changes 

between  ,a a  and cv varies between  1,1  and at last shrinks to zero. This is known 

to be as ‘grabbling of food’  

3.3.6   Chaotic Slime Mould Algorithm 

The detailed mathematical formulation for the slime mould algorithm along with its 

merits and demerits has been discussed in section 3.3.5. From the reviewed survey, it 
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is seen that meta-heuristic approaches face the issue of poor exploitation in some uni-

modal and multi-modal benchmark functions. To resolve this problem, researchers have 

developed many hybrid and chaotic algorithms like genetic algorithms [231], chaotic 

Krill Herd search [232], SCA [233], BA [234], GWO [235], PSO [236] ,WOA [237].  

From the literature studies, it has been noticed that various variants of SMA 

have been developed by the researchers to fix different kinds of stochastic complexities. 

The ultimate aim of these techniques is to solve a pre-defined problem more precisely.  

Recently, a chaotic variant of SMA using “Chebyshev function” was developed by 

Zhao et al. [74]. In this work, 100 Monte Carlo trials were performed by using SMA 

and Chebyshev mapping. Only the “Sargan and sine wave function” were tested for 

unimodal function for 100 iterations. It was noticed that the results given by Chebyshev 

and sine wave function were not efficient in exploring search space precisely. 

Moreover, methodologies remain same, selection of chaos map makes a large 

difference in solution efficiency. In the projected research the exploration and 

exploitation phase of basic SMA has been boosted using “sinusoidal chaotic function”. 

It is observed that chaotic SMA helps to exploit the search space with superior 

convergence. Fig.3.11 illustrates 2D view of chaotic SMA along with fitness. 

 

Fig.3.11: (a) 2D View of possible position with chaotic search (b) Assessment of Fitness  

Algorithm  

The optimization procedure for the CSMA comprises of the ensuing eight steps: 

Step-1: Define algorithm parameters. 
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Specify the parameters required by SMA and random chaotic function to solve the 

optimization problem defined by eqn. (3.30) such as; solution vectors in SMA. Moulds 

position. population size, Maximum iteration and smell index  associated food 

searching., random iteration, random variables r , mean position of moulds , upper 

bound and lower bound ( )Ub , ( )Lb . 

Step-2: Nomination of stochastic populace ( 1, 2,3......., )iX i N  and maximum iteration 

number is taken as max
itn   

  Step-3: Calculate the fitness of all slime mould and estimating the updated position 

of moulds.  

  A( ) .(W. (t) ,
( 1)

. ( ) ,

Bb b

c

X itn v X X itn r p
X itn

v X itn r p

  
 







 

Step-4:   Enhancing the search process by clubbing chaotic strategy  

Step-5:  Calculating the (i)

( )
1 . log 1 ,

W(smell index )
( )

1 . log 1 ,

bF S i
r condition

bF wF

bF S i
r others

bF wF


 





 



  
   


   

  

                                                                                                                           

Step-6:   For each search iteration, the positions of  𝑝, 𝑣𝑏, 𝑣𝑐 are updated. 

2

0 0

1 0

;

( 1) 2.3 ( . )
( 1);

o

o

r rand

r itn r Sin Pi r
r r itn



   
 

  

Step-7:   The eqn. for upgrading the positions of agents (i.e. to wrap food) is given as: 

       

 
*

. ,

( ) (W. ( ) ( ),

( ) ,

b b A B

c

rand UB LB LB rand

X X itn v X itn X itn r p

v X itn r p

z  

   






 




      

Step-8: With the up gradation in the search process, the value of bv  vibrantly changes 

between  ,a a  and cv varies between  1,1  and at last shrinks to zero. This is known 

to be as ‘grabbling of food’.  

The Pseudo-code for Chaotic SMA is presented in Appendix-A (ii) 

 3.4  CONCLUSION 

This chapter deals with exploring detailed information about different recent 

optimization methodologies for solving complex design problems. Basic steps involve 
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the problem formulation for adopting specific optimization problem are explored in the 

earlier section. Finally, methodologies employed in the proposed research work were 

explained in detailed in separate sub-sections. Three different hybrid algorithms are 

developed using recent modern search algorithms such as Harris hawk’s optimizer, 

improved grey wolf and Slime mould algorithm. In the proposed work, one hybrid 

algorithm and two chaotic algorithms are developed as follows. 

(i) Hybrid Harris hawk’s optimizer by combing basic HHO with improved grey 

wolf optimizer. This new hybrid algorithm is abbreviated as hHHO-IGWO. 

(ii) Chaotic Harris Hawk optimizer (CHHO) algorithm by incorporating Tent 

chaotic function. 

(iii) Chaotic Slime Mould Algorithm (CSMA) by incorporating sinusoidal 

chaotic function. 
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CHAPTER-4 

BENCHMARK AND ENGINEERING OPTIMIZATION 

PROBLEM 

 

4.1    INTRODUCTION  

This chapter deals with testing of 23 commonly used benchmark functions 

corresponding to CEC-2005. These benchmark functions are categorize into three 

groups. The unimodal bench functions are from F1 to F7, multi-modal from F8 to F13, 

and fixed from F14 to F23. F32 to F43 comes under special benchmark functions noted 

as "Engineering Benchmark Functions." Three distinct algorithms have been tested for 

unimodal, multi-modal, and fixed-dimension in terms of average, mean, standard 

deviation, and worst value. Statistical non-parametric Wilcoxon is also performed to 

check the significance of the offered methods. The characteristics of benchmark 

functions differ from each other. Some functions show better performance in exploring 

local search, while a few functions are found to be excellent in determining global 

optima. These test functions have different global and local search capacities.  

Out of these benchmark functions, Griewank, Levy, Ackley, Rastrigin, 

Schwefel functions, and sphere functions are noted to have many local minima points, 

while sum square function and Zakharov have global minima points. Furthermore, the 

effectiveness of the proposed methods has been tested by independent trial runs for 

each benchmark function. All the experiments have been executed in the Matlab 

environment. Firstly, hHHO-IGWO algorithm is tested for benchmark and engineering 

design problems. Then testing of the chaotic variant of HHO using the Tent chaotic 

function was executed, and finally testing of the Sinusoidal chaotic variant Slime Mould 

algorithm has been accomplished. The potentiality and feasibility of these methods 

have been analyzed by comparing the test results for each benchmark function with 

other methods such as BA [258], BDA [259], MFO [211], GWO [99], GSA [203], 

BPSO [260], FEP [261], GOA [262], ALO [263], WOA [212], CS[264],  GA [265], 

MVO [266], DA [259],  BGSA [267], SCA [268], SSA [269], FEP [261].  
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4.2 STANDARD BENCHMARK FUNCTIONS 

In this section, 23 standard benchmark problems were analyzed in terms of average, 

standard deviation, median, and worst value by implementing proposed hybrid and 

chaotic optimization methodologies. These standard benchmark function are 

characterized by their objective fitness in parameter space within a particular dimension 

(Dim), range, and optimal value  minf .  

4.2.1 Unimodal Benchmark Function 

 In this section, seven unimodal benchmark function along with their fitness 

characteristics are elaborated. Unimodal benchmark functions are Sphere Function, 

Schwefel Absolute Function, Schwefel Double Sum Function, Schwefel max. 

Function, Rosenbrock Function, Step Function and Quartic Random Function. Each 

function has a dimension of 30 and optimum value  minf  . 

F1, F3, F4 and F6 has a range of -100 to 100, F2 has range of -10 to 10, and F5 

has range of 30 to 30, while F7 has range of 1.28 to 1.28. Fig.4.1 shows 3D view for 

unimodal benchmark function. The performance of any benchmark function depends 

upon its ability to explore the search space more accurately. The accuracy of any 

benchmark function can be examined from its convergence characteristics. The 

mathematical formulation for each function along with their range and optimal fitness 

value from F1 to F7 are illustrated in Table-4.1. 

 

Table-4.1: Unimodal Benchmark Function 

 

Uni-modal Test  Function Dim Range minf
 

2

1

1

( )
n

i
i

f y y


   30 [-100 , 100] 0 

2
1

1

( )
n n

i
i

i

f y y y




    30 [-10 ,10] 0 

2

3

1 1

( )
n i

j

i j

f y y
 


 
 
 

    30 [-100 , 100] 0 

 

 4
( ) max ,1

i i
f y i ny    

  

30 [-100 , 100] 0 
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Table-4.1: Unimodal Benchmark Function (Continued.) 

 

Uni-modal Test  Function Dim Range minf
 

1
2 2 2

5 1

1

100( ) ( ) ( 1)
n

i i i

i

f y y y y






        30 [-30 ,30] 0 

  
2

6

1

0.5( )
n

i

i

f y y


    30 [-100 , 100] 0 

 4

7

1

0,1( )
n

i

i

f y y random


    30 [-1.28, 1.28] 0 

 

 

 

 

 

Fig.4.1:   3D projection of UM function 
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Fig.4.1:  3D projection of UM function (Continued) 



 

69 

 

4.2.2 Multi-modal Benchmark Function 

Multi-modal benchmark functions are Schwefel Sine Function, Rastrigin Function, 

Ackley Function, Griewank Function, Pendlized Penalty#1 Function and Levi N. 13 

function and represented as F8 to F13 as Shown in Table- 4.2. Each function has a 

dimension of 30 and optimum value ( minf ) as zero in most of the cases. Multi-modal 

function has variable range corresponding to each function. Fig.4.2 shows 3D view for 

Multi-modal benchmark function. 

 

Table-4.2: Multi-modal benchmark Function 

 

Multi-modal  Test Function Dim Range minf  

8

1

(y) sin( )
n

i i

i

f y y


   30 [-500, 500] 

-

418.982

95 

2

9

1

10 2 10(y) [y cos( ) ]
n

i i

i

f y


    30 [-5.12, 5.12] 0 

1 12

10
1 1

(y) 20exp( 0.2 ) exp( cos(2 ) 20
n n

i in n
i i

y cf y 
 

      

 

30 [-32, 32] 0 

2

11 1
1 4000

(y )
(y) 1 cos

n
ni i
i

i

y
f

i




    30 [-600, 600] 0 

1
2 2 2

12 1 1

1

1

10 1 10

10,100, 4

(y) sin( ) ( 1) [ sin ( )] (z 1)

(y , )

n

i i n

n

i

i

i

f y y z
n

u


 










 

     
 







1

1
1

4

iy
z


  , 

,

( )

( , , ) 0

( )

n

i i

i i

n

i i

k y a y a

u y a k m a y a

k y a y a

 

   

   







 

30 [-50,50] 0 

     
2 22

13 1
1

2 2

1

1 1 sin 3 1( ) 0.1 sin 3

( 1) 1 sin (2 )

( ,5,100,4)

n

i i

i

n n

n

i
i

yf yy y

x x

u y









 
 
  
  
 
  

  

     

 





 

30 [-50,50] 0 
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Fig. 4.2:  3D projection of MM function 
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4.2.3 Fixed Dimension Benchmark Function 

Table- 4.3: Fixed Dimension Benchmark Function 

FD Test Function Dim Range fmin 

2

1

14
61

1

1 1
(y) 5

500
(y )

n
j

i ij
i

j a

f







 

 

 
 
 
 
 




 2 
[-65.536, 

65.536] 
1 

 
2

2
11

1 2

15 2

3 4
1

(y)
i i

i

i i i

b b
a

b b y

y y
f

y


 

 

 
 
 

  

4 [-5, 5] 0.00030 

2 4 6 2 4

1 1 1 1 2 2 216

1

3

4 2.1 4 4(y) y y y y y y yf        2 [-5, 5] -1.0316 

 2 [-5, 5] 0.398 

 

 
2

2
1 2

21 2
2 2

1 1 2
21 1 2 1 2 2

1 2 2

18

30 2 3
1 (y 1)

(y) 18 32 12 48
19 14 3 14 6 3

36 27

y y
y

y y y
y y y y y

y y

f
y

y

  
  

    
    

 

 
         

    

2 [-2,2] 3 

4 3
2

19

1 1

(y) exp (y )
i ij j ij

i j

f c a q
 

   
 
 
 

 

 

3 [1, 3] -3.32 

4 6
2

20

1 1

(y) exp (y )
i ij j ij

i j

f c a q
 

   
 
 
 

   
6 [0, 1] -3.32 

21

15

1

(y )
(y)

(y )
i

T

i ii

a
f

a d






 

 

 
  


 

4 [0,10] -10.1532 

22

17

1

(y )
(y)

(y )
i

T

i ii

a
f

a d






 

 

 
  



 

4 [0, 10] -10.4028 

1
10

23

1

(y )
(y)

(y )
i

T

i ii

a
f

a d






 

 

 
  


 

4 [0, 10] -10.5363 

 

Fixed Dimension (FD) functions are Shekel Foxhole Function, Brad Function, Camel 

Function – Six Hump, Branin RCOS Function, Goldstein-Price Function, Hartman 3 

Function, Hartman 6 Function, Hybrid Composition Function #1, Hybrid Composition 

2

2

17 2 1 1 12

5.1 5 1
(y) 6 10 1 cosy 10

4 8
f y y y      
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Function #2 and Hybrid Composition Function #3 and represented as F14 to F23 as 

shown in Table- 4.3. Each function have fixed dimension, optimum value ( minf ) and 

variable range corresponding to each function. Fig.4.3 shows 3D view for FD 

benchmark function. 

 

 

 

 

 

 

Fig. 4.3: 3D projection of FD function 



 

73 

 

 

 

 

Fig. 4.3: 3D projection of FD function (Continued)  
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4.3 ENGINEERING DESIGN OPTIMIZATION 

In this section, ten real-world design problems are tested, which include "3-bar truss 

problem; pressure vessel design; compression design; welded beam; cantilever beam 

design; gear train design problem; speed reducer problem; belleville spring problem; 

rolling element problem; and multidisc clutch brake problem" [270]. The abbreviations 

used for various multidisciplinary Engineering Function (EF) are shown in Table-4.4. 

Each design problem is tested by applying the proposed hybrid and chaotic algorithm.  

Table -4.4: Abbreviations for 10 types of design problems 

 

In this section, the theoretical description of each design problem has been elaborated. 

In addition, the mathematical analysis of each design problem along with associated 

constraints and optimization problems are deeply explored. The following are detailed 

descriptions of ten engineering design problems: 

4.3.1  Truss Design Problem 

Truss design as shown in Fig.4.4 [271]-[272] is tested by applying proposed 

methodologies. The main focus of truss design problem is to minimize weight. The 

various constraints involved in truss bar design problem are warping, deflection and 

stress. These constraints are optimized to achieve the desired objective. The 

mathematical modelling for 3-Bar Truss are illustrated through eqn. (4.1) to eqn.4.1 (d) 

subject to various constraints. It is seen that the suggested method appreciably improves 

the objective of cost minimization. The design problem is modeled as shown below:   

Consider, 
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   1 2 1 2
, y ,y y A A                                                                                                                                 (4.1) 

Minimize, 

   1 22 2f y y y l                                                                                                      (4.1a)                            

Subjected to: 

  
2

1 2

1

1 1 2

2
0

2 2

y y
g y P

y y y



  


                                                                                               (4.1b) 

  2
2 2

1 1 2

0
2 2

y
g y P

y y y
  


                                                                                                (4.1c) 

 3

2 1

1
0

2
g y P

y y
  


                                                                                                          (4.1d) 

 

Fig. 4.4: Truss Design 

4.3.2 Pressure Vessel Design 

The design specification for such kind of engineering problem as illustrated in Fig.4.5 

[271], [272]. All proposed three methodologies are applied to minimize overall cost, 

which includes the material and welding cost to form the pressure vessel in cylindrical 

form. The four variables for designing the vessel are:  (i) shell thickness (Ts) (ii) head 

thickness (Th) (iii) length of cylindrical unit (Lh). These four variables are modelled as 

y1 to y4. The mathematical formulations are given in equations (4.2) to 4.2(e).  

Consider: 
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   1 2 3 4 s h hy y y y y T T RL 
                                                                                                          (4.2) 

Minimize; 

2 2 2

1 3 4 2 3 1 4 1 3
(y) 0.6224 1.7781 3.1661 19.84f y y y y y y y y y   

                                       4.2(a) 

Subject to: 

 1 1 30.0193 0g y y y   
                                                                                                              (4.2b) 

 2 3 30.00954 0g y y y  
                                                                                                            (4.2c) 

  2 3

3 3 4 3

4
1296000 0

3
g y y y y     

                                                           (4.2d) 

 4 4 240 0g y y  
                                                                                                                            (4.2e) 

 

 

Fig.4.5:  Pressure Vessel Design 

4.3.3   Compression Spring Design 

The design of compression spring is a mechanical engineering problem [271], [272] as 

depicted in Fig.4.6. The major objective is to minimize spring weight. There are three 

design dimensions :-(i) No. of active coils (Nc) (ii) wire diameter (dr) and (iii) mean 

coil diameter (Dm).The design problem is formulated through eqn. (4.3) to eqn. 4.3(f). 

The proposed method is applied to test compression spring engineering design problem 

and validated by comparing results with other competitive methods.  
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Consider;     1 2 3y y y y drDmNc                                                                     (4.3) 

Minimize 

  2

3 2 1(y) 2f y y y                                                                                                4.3(a) 

Subject to: 

 
3

2 3
1 4

1

1 0
71785

y y
g y

y
   ,                                                                   4.3(b)          

 
 

2

2 1 2
2 23 4

12 1 1

4 1
0

510812566

y y y
g y

yy y y


  


,                                                      4.3 (c) 

 
 

2

2 1 2
2 23 4

12 1 1

4 1
0

510812566

y y y
g y

yy y y


  


                                                                        4.3(d) 

  1
3 2

2 3

140.45
1 0

y
g y

y y
   ,                                                     4.3(e)                                        

  1 2
4 1 0

1.5

y y
g y


   ,                                                                                           4.3(f)      

 

Fig.4.6: Compression Spring Design 

4.3.4   Welded Beam Design 

 

In this process, welding is carried out by fusing different sections of molten metal as 

shown in Fig.4.7 [271]. The main focus is minimization for overall cost of the welded 

beam. The four constraints are (i)bar thickness (b) is specified by y1, (ii)bar length (l) 

is specified by y2, (iii) weld thickness (h) is specified by y3 and (iv) the bar height (h)  

is specified by y4. The structure is modeled through eqn. (4.4) to 4.4(m). The proposed 

method is applied to solve welded design problem and noted that proposed method 

gives more precise results compared to other algorithms. 

Consider;    1 2 3 4y y y y y hltb                                                                                                          (4.4)  
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Minimize, 

 2

1 2 3 4 2
(y) 1.10471 0.04811 14.0f y y y y y                                                                          4.4(a) 

 Subject to  

1 maxi
(y) (y) 0,g                                                                                                             4.4(b)

2 maxi
(y) (y) 0g     ,                                                                                                               4.4(c) 

3 maxi
(y) (y) 0g     ,                                                                                    4.4(d) 

4 1 4
(y) 0g y y   ,                                                                                                           4.4(e) 

5
(y) (y) 0

i c
g P P   ,                                                                                                               4.4(f) 

6 1
(y) 0.125 0g y   ,                                                                                                      4.4(f) 

2

7 1 3 4 2
(y) 1.10471 0.04811 (14.0 ) 5.0 0g y y y y                                                         4.4(g) 

Variable range 0.1  1y 2, 0.1  2y 10, 0.1  3y 10, 0.1  4y 2, 

 Where, 

/ 2 / / / / / 22(y) ( ) 2 ( ) ,
2

y

R
                                                                                       4.4(h) 

/ / / 2

1 2

, , ,
22

i
i

P yMR
M P L

Jy y
 

 
    

 
                                                                           4.4(i) 

22

1 32 ,
4 2

y yy
R

 
   

 
                                                                                                     4.4(j) 

22

1 32
1 22 2

4 2

y yy
J y y

    
    

     

,                                                                                       4.4(k) 

3

2 2

4 3 2 4

6 6
(y) , (y)i iPL PL

y y Ey y
   ,                                                                                           4.4(l) 

2 6

3 4

3

2

4.013
36(y) 1

2 4
c

y y
E

y E
P

L L G
 

 
 
 

,                                                                     4.4(m) 

6 6

max

maxi maxi

6000 , 14 , 0.25 , 30 1 , 12 10 ,

13600 , 3000

i i
P lb L in in E psi G psi

psi psi
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Fig.4.7:  Welded Beam Design 

4.3.5   Cantilever Beam Design 

This is civil engineering problem concerned with minimization of beam weight as 

shown in Fig.4.8. In beam design there are five elements 1 2 3 4 5
, , ,l l l l and l  [272]. The main 

aim is weight minimization of the beam. Taking care that displacement of vertical 

constraint not to disturb during finishing process of the beam. The final optimal solution 

is estimated by using eqn. (4.5) to 4.5(b) as shown below:      

 

Fig.4.8: Cantilever Beam Design 

Consider;  1 2 3 4 5x l l l l l ,                                                                                                    (4.5) 

Minimize,   
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1 2 3 4 5
0.6224( ) ( ),l l l l lf x                                                                                         4.5(a) 

Subject to 

3 3 3 3 3

1 2 3 4 5

61 37 19 7 1
( ) 1

l l l l l
g x      

                                                                                       

4.5(b) 

 

4.3.6   Gear Train Design 

In this method the four variables 1 2 3 4
, , ,g g g and g   are estimated as shown in Fig.4.9 

[271]. Teeth’s on each gear are the decision variables in designing process. The gear 

train design problem is formulated through eqn. 4.6(a) to 4.6(b). From the analysis of 

test results, it is seen that proposed methods effectively evaluates the gear train ratio.    

Let, considering;  

   1 2 3 4 A B C D
M M M Mg g g g g                                                                                           4.6(a) 

Minimizing;  

2

3 4

1 4

1
( )

6.931

g g
f g

g g
 
 
 
 

                                                                                                         4.6(b) 

Subject to: 1 2 3 4
12 60, , ,g g g g                                                                     

 

Fig.4.9: Gear Train Design 
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4.3.7     Speed Reducer Design Problem 

The main concern in this design problem is to minimize the weight of the speed reducer. 

This type of design problem seven design variables are involved as shown in Fig.4.10 

[271]. The seven variables are face width 1
( )x , teeth module 2

( )x , pinion teeth 3
( )x , first 

shaft length 4
( )x , second shaft length 5

( )x , the first shaft diameter 6
( )x  and second shaft 

diameter 7
( )x . The mathematical equations are formulated as given below: 

 Minimizing; 

2 2 2 3 3

1 2 3 3 1 6 7 6 7

2 2

4 6 5 7

0.7854 7.4777

0.7854

( ) (3.3333 14.9334 43.0934) 1.508 (x ) (x )

(x )

f x x x x x x x x

x x x

      

 
 (4.7) 

Subject to;  

1 2

1 2 3

27
( ) 1 0g x

x x x
                                                                 4.7(a) 

2 2 2

1 2 3

397.5
( ) 1 0g x

x x x
                                            4.7(b) 

3

4
3 4

2 3 6

1.93
( ) 1 0

x
g x

x x x
                        4.7(c) 

3

5
4 4

2 3 7

1.93
( ) 1 0

x
g x

x x x
                        4.7(d) 

4

3

6

2 6

5

2 3

745.0

110

1
( ) ( ) 16.9 10 1 0

x

x
g x

x x
                              4.7(e) 

65

3

7

2

6

2 3

745.0
157.5 10

85

1
( ) ( ) 1 0

x

x
g x

x x
                                                           4. 7(f) 

2 3
7

40
(x) 1 0

x x
g                                                                                                                      4.7(g) 

2

8

1

5
(x) 1 0

x
g

x
                                                                                                                       4.7(h) 

2

1
9

12
( ) 1 0

x

x
g x                                                                                               4. 7(i) 

6

2

10

1.5 1.9

12
( ) 1 0

x

x
g x


                                                                                                         4.7(j) 

7
11

5

1.1 1.9
( ) 1 0

x
g x

x


                                                                                                           4.7(k) 

Where 
1 2 3 4 5 6 72.6 3.6,0.7 0.8,17 28,7.3 8.3,7.8 8.3,2.9 3.9 5 5.5x x x x x x and x               
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Fig.4.10: Speed reducer design  

4.3.8   Belleville Spring Design 

In this kind of design problem design parameters are selected according to variable ratio 

as shown in Fig.4.11 [271]. The major objective is to minimize weight within certain 

constraints. The designed variables are internal diameter of the spring (DIMI), external 

diameter of the spring (DIME), spring height (SH) and spring thickness (ST). The 

mathematical expressions are formulated through eqn. 4.8(a) to eqn.4.8 (i). 

Minimizing; 

2 2
( ) 0.07075 ( )
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Fig.4.11: Belleville Spring Design 

4.3.9   Rolling Element Bearing Design 

In rolling bearing design, dynamic load carrying capacity of rolling element is major 

concern as illustrated in Fig.4.12 [89].  

 

Fig.4.12: Rolling element bearing design 
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Five out of ten variables plays major role in the optimum design of bearing with greater 

load bearing capacity. These major variables are (a) diameter of the ball (DIMB), (b) 

diameter pitch (DIMP), (c) ball numbers (Nb), (d) Outer curvature coefficient and (e) 

inner curvature coefficient. Remaining five variables only disturb meanderingly to the 

inner part of the structure. The design equations are modeled through eqn. 4.9(a) to 

eqn.4.9 (k) as given below: 

Maximizing;   

2/3 1.8

D c B
C f N DIM                                                                                                                      4.9(a) 

25.4DIMif mm                                                                                                                            

2/3 1.4

3.647
D C B
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25.4if DIM mm                                                                                                                           
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4.3.10   Multi disc-clutch Design  

Multi disc-clutch design is the most crucial problem in engineering as illustrated in 

Fig.4.13 [273]. The structure is mainly fabricated to abate the overall weight. The five 

variables are (a) inner surface radius (Rin), (b) outer surface radius (Ro), (c) thickness 

of disc’s (Th), (d) actuating force (Fac) and count friction surface (Sf). The equations 

for design problem are illustrated through eqn.4.10 to 4.10(h). 

Minimizing; 

    2 2

0, , , 1in O f in ff R R S Th Th R R S                                                                               (4.10) 
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Fig.4.13:  Multidisc clutch break design 

 

4.4  RESULTS AND DISCUSSION 

 

In this section, test results of benchmark and engineering design problems are 

discussed. Twenty-three benchmark functions are tested by implementing the hHHO-

IGWO, CHHO, and CSMA methods. Also, 10 multidisciplinary engineering design 

problems have been tested. To authenticate the feasibility of the proposed 

methodologies, simulation results were compared with standard existing trends.    

4.4.1 Testing of benchmark problems using hHHO-IGWO, CHHO and CSMA  

 The benchmark problems were simulated in MATLAB 2018a Windows 10, 

CPU@2.10Ghz-4GB RAM Core i5. Test results for benchmark functions were 

recorded with their average, worst, best, median, standard deviation. The stochastic 

complexity of the proposed algorithms are investigated and justified by running the 

algorithm for 30 trial runs and 500 iterations. On similar grounds, results are compared 

with other competitive methods.  
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4.4.2 Test Results for hHHO-IGWO method 

(a) Test Results for UM function 

Table-4.5 presents the simulation results of UM function in terms of mean, 

standard deviation, best, worst, median and p-value.  

Table-4.5: Test results of UM function using hHHO-IGWO method 

Functions Mean SD Best Worst Median p-Value 

F1 4.17E-98 1.43E-97 2.2E-113 7.31E-97 2.7E-103 1.73E-06 

F2 1.26E-50 5.39E-50 2.72E-59 2.95E-49 7.68E-53 1.73E-06 

F3 2.68E-67 1.47E-66 2.2E-110 8.04E-66 3.34E-88 1.73E-06 

F4 1.43E-48 6.87E-48 4.17E-57 3.77E-47 3.36E-51 1.73E-06 

F5 0.011138 0.010195 4.06E-06 0.040574 0.008431 1.73E-06 

F6 0.000212 0.000368 2.76E-07 0.001957 0.000105 1.73E-06 

F7 0.000104 0.000107 1.72E-06 0.000403 6.56E-05 1.73E-06 

The p-value in table -4.5, 4.11 and 4.17 are the results of Wilcoxon rank-sum test. In 

proposed research, Wilcoxon rank-sum test has been used as a hypothesis test at 5% 

significance level to test the null hypothesis and alternative hypothesis. Null hypothesis 

indicates significant difference between compared algorithms; whereas, alternative 

hypothesis shows no significant difference between algorithms. If p-value is less than 

0.05, null hypothesis is accepted. If p-value is equal to or greater than 0.05, alternative 

hypothesis is accepted.  

In order to inspect the feasibility of the estimated method, test outcomes are cross 

examined with other meta-heuristic approaches such as  BA [258],BDA [259], MFO 

[211],GWO [99], GSA [203], BPSO [260], FEP [261], GOA [262], ALO [263],  WOA 

[212], CS[264], GA [265], MVO [266], DA [259],  BGSA [267], SCA [268], SSA [269], 

FEP [261] as shown in Table-4.6. The convergence curve of hHHO-IGWO compared 

with competence methodologies are shown in Fig.4.14 and the experimental runs for 

UM benchmark functions are shown in Fig.4.15. 
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Table-4.6: Comparison of UM test results of hHHO-IGWO with other methods 
 

 

Algorithms Parameters 
UM test functions  

F1 F2 F3 F4 F5 F6 F7 

GWO [99] 

Mean 0.000 0.000 0.000 0.000 26.813 0.817 -6120.000 

SD 0.000 0.029 79.150 1.315 69.905 0.000 -4090.000 

ALO [263] 

Mean 0.000 0.000 0.000 0.000 0.347 0.000 -1610.000 

SD 0.000 0.000 0.000 0.000 0.110 0.000 314.000 

GSA [203] 

Mean 0.000 0.056 896.535 7.355 67.543 0.000 -2820.000 

SD 0.000 0.194 318.956 1.741 62.225 0.000 493.000 

GA [265] 

Mean 0.119 0.145 0.139 0.158 0.714 0.168 -2090.000 

SD 0.126 0.053 0.121 0.862 0.973 0.869 2.470 

GOA [262] 

Mean 0.000 0.002 0.001 0.000 0.000 0.000 1.000 

SD 0.000 0.001 0.020 0.000 0.000 0.000 0.000 

MFO [211] 

Mean 0.000 0.001 696.731 70.68 139.14 0.000 -8500.000 

SD 0.000 0.001 188.528 5.275 120.26 0.000 726.000 

MVO [266] 

Mean 2.086 15.92 453.200 3.123 1272.1 2.295 -11700.000 

SD 0.649 44.74 177.097 1.583 1479.4 0.631 937.000 

DA [259] 

Mean 0.000 0.000 0.000 0.001 7.600 0.000 -2860.000 

SD 0.000 0.000 0.000 0.003 6.790 0.000 384.000 

BPSO [260] 

Mean 5.590 0.196 15.500 1.900 86.400 6.980 -989.000 

SD 1.980 0.053 13.700 0.484 65.800 3.850 16.700 

BGSA [267] 

Mean 83.000 1.190 456.000 7.370 3100.0 107.00 -861.000 

SD 49.800 0.228 272.000 2.210 2930.0 77.500 80.600 

SCA [268] 

Mean 0.000 0.000 0.037 0.097 0.001 0.000 1.000 

SD 0.000 0.000 0.137 0.582 0.002 0.000 0.004 

SSA [269] 

Mean 0.000 0.227 0.000 0.000 0.000 0.000 0.056 

SD 0.000 1.000 0.000 0.656 0.000 0.000 0.809 

WOA [212] 

Mean 0.000 0.000 0.000 0.073 27.866 3.116 -5080.000 

SD 0.000 0.000 0.000 0.397 0.764 0.532 696.000 

hHHO-PSO 

Mean 0.000 0.000 0.000 0.000 0.007 0.000 0.000 

SD 0.000 0.000 0.000 0.000 0.009 0.000 0.000174 

hHHO-

IGWO 

Mean 
4.17E-

98 

1.26E-

50 

2.68E-

67 

1.43E

-48 

0.01113

8 

0.00021

2 
0.000104 

SD 
1.43E-

97 

5.39E-

50 

1.47E-

66 

6.87E

-48 

0.01019

5 

0.00036

8 
0.000107 
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Fig.4.14: Assessment of convergence of UM with other methods  
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Fig.4.14: Assessment of convergence for UM with other methods (Continued) 
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Fig.4.14: Assessment of convergence for UM with other methods (Continued) 

 

 

Fig.4.15: Trials of UM function for hHHO-IGWO   
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Fig.4.15: Trials of UM function for hHHO-IGWO (Continued) 
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Fig.4.15: Trials of UM function for hHHO-IGWO (Continued) 

The quality of the solution is high, if average (mean) values are small, and for small 

standard deviation values, the algorithm is more stable. Table 4.6 presents the average 

and standard deviation of all test algorithms. It can be seen that the average and standard 

deviation values of hHHO-IGWO are much less than other techniques. This suggests 

that hHHO-IGWO can provide a high-quality solution with more stability. Fig. 4.14 

inferred that hHHO-IGWO rapidly convergences towards an optimum due to better 

exploitation. In Fig.4.14, F2, F3, and F4 have better convergence, while other 

algorithms seem to enter into local optimum. In the latter stages of iterations, F5 and 

F7 initially converge slowly but precisely converges to the global optimum. The above 

analysis reveals that hHHO-IGWO is capable in testing unimodal test functions.  

(b) Test Results for MM function 

Table-4.7 displays the simulation results of MM function using hHHO-IGWO  
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Table-4.7: Test results of MM benchmark function using hHHO-IGWO 

Functions Mean SD Best Worst Median p-Value 

F8 -12471 390.075 -12569.5 -10655.6 -12569.3 1.73E-06 

F9 0 0 0 0 0 1 

F10 8.88E-16 0 8.88E-16 8.88E-16 8.88E-16 4.32E-08 

F11 0 0 0 0 0 1 

F12 0 0 0 0 0 0 

F13 0 0 0 0 0 0 

 

The test results for MM benchmark function illustrated in Table-4.8 are compared with 

others meta-heuristics methods such as GWO [99], GSA [203], FEP [261], ALO [263], 

GA [265], GOA [262], MFO [211], BA [258], MVO [266], DA [259], BDA [259], 

BPSO [260], BGSA [267], SCA [268] , SSA [269], FEP [261] and WOA [212]. In 

Table 4.7, p-values for F8 and F10 are less than 0.005 and thus F8 and F10 are 

statistically significant. F9 and F11 shows values greater than 0.05 and null hypothesis 

is rejected.  

Table-4.8: Comparison of MM test results of hHHO-IGWO with other methods 

Algorithm 
Parame

ters 

Multi modal Benchmark functions 

F8 F9 F10 F11 F12 F13 

GWO [99] 
Mean -6.123E+224 0.31052 1.06E-13 0.00448 0.053438 0.654464 

SD -4087.44 47.3561 0.077835 0.00665 0.654464 0.004474 

PSO 
Mean -4841.29 46.7042 0.276015 0.00921 0.006917 0.006675 

SD 1152.814 11.6293 0.50901 0.00772 0.026301 0.008907 

GSA [203] 
Mean -2821.07 25.97 0.06 27.70 1.80 8.90 

SD 493.04 7.47 0.24 5.04 0.95 7.13 

DE[200] 
Mean -11080.10 69.20 0.00 0.00 0.00 0.00 

SD 574.70 38.80 0.000 0.000 0.00 0.00 

FEP [261] 
Mean -12554.50 0.05 0.02 0.02 0.00 0.00 

SD 52.60 0.01 0.00 0.02 0.00 0.00 

hHHO-PSO 

Mean -12568.8115 0.00 
8.88178E

-16 
0.00 

1.12558E-

05 

0.000113

306 

SD 0.946744548 0.00 0.00 0.00 
1.49725E-

05 

0.000166

039 

hHHO-

IGWO 

Mean -12471 0 8.88E-16 0 0 0 

SD 390.075 0 0 0 0 0 

The comparison of the hHHO-IGWO Convergence curves with other competing 

methods are shown in Fig.4.16. Figure 4.17 shows the 30 iterative runs for the MM 

functions. Since the multimodal have large number of local minima, the results shown 

in Table 4.8 reveals that hHHO-IGWO gives better exploration compared to other 

techniques. The Convergence curves reflects closeness in most of the test functions. 
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The above analysis reveals that hHHO-IGWO is competent in testing multimodal test 

functions. 

 

 

 

Fig.4.16: Assessment of convergence for MM with other methods  
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Fig.4.16: Assessment of convergence for MM with other methods (Continued) 

 

 

Fig.4. 17: Trials of MM function for hHHO-IGWO 
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Fig.4. 17: Trials of MM function for hHHO-IGWO (Continued) 

 (c) Test Results for FD function  

Table- 4.9 illustrates the simulation results of FD function in terms of mean, standard 

deviation, best, worst, median and p-value. The p-value in Table 4.9 are the results of 

Wilcoxon rank-sum test. The values less than 5% significance justifies the null 

hypothesis As the p-value for all test functions are less than 0.05, the proposed 

algorithm is statistically significant. 
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Table-4.9: Test results for FD functions using hHHO-IGWO 

Functions Mean SD Best Worst Median p-Value 

F14 1.75603 1.503635 0.998004 5.928845 0.998004 1.73E-06 

F15 0.000442 0.000315 0.000308 0.001547 0.000332 1.73E-06 

F16 -1.03163 1.08E-09 -1.03163 -1.03163 -1.03163 1.73E-06 

F17 0.397896 2.85E-05 0.397887 0.398041 0.397887 1.73E-06 

F18 3 8.75E-07 3 3.000004 3 1.73E-06 

F19 -3.86117 0.001996 -3.86278 -3.85506 -3.86214 1.73E-06 

F20 -3.08494 0.116906 -3.28159 -2.8059 -3.09637 1.73E-06 

F21 -5.20509 0.846908 -9.68909 -5.03506 -5.0521 1.73E-06 

F22 -5.00365 0.428369 -5.08767 -2.73596 -5.08399 1.73E-06 

F23 -5.2967 0.949332 -10.323 -5.09797 -5.12472 1.73E-06 

 

Table-4.10 illustrates comparative assessment with other similar approaches such as  

GWO [99], GSA [203], DE [200], FEP [261], ALO [263], GA [265], GOA [262], MFO 

[211], BA [258], MVO [266], DA [259], SCA [268], SSA [269], FEP [261]  and WOA 

[212]. Fig.4.18 illustrates convergence curves of hHHO-IGWO with other 

methodologies and iterative attempts are depicted in Fig.4.19.  

Table-4.10: Assessment of FD test results of hHHO-IGWO with other methods 

 

Algorithm 
Paramet

ers 
F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 

GWO [99] 
Mean 4.04 0.00 -1.03 0.40 3.00 -3.86 -3.29 -10.15 -10.40 -10.53 

SD 4.25 0.00 -1.03 0.40 3.00 -3.86 -3.25 -9.14 -8.58 -8.56 

PSO[274] 
Mean 3.63 0.00 -1.03 0.40 3.00 -3.86 -3.27 -6.87 -8.46 -9.95 

SD 2.56 0.00 0.00 0.00 0.00 0.00 0.06 3.02 3.09 1.78 

GSA [203] 
Mean 5.86 0.00 -1.03 0.40 3.00 -3.86 -3.32 -5.96 -9.68 -10.54 

SD 3.83 0.00 0.00 0.00 0.00 0.00 0.02 3.74 2.01 0.00 

DE[200] 
Mean 1.00 0.00 -1.03 0.40 3.00 N/A N/A -10.15 -10.40 -10.54 

SD 0.00 0.00 0.00 0.00 0.00 N/A N/A 0.00 0.00 0.00 

FEP [261] 
Mean 1.22 0.00 -1.03 0.40 3.02 -3.86 -3.27 -5.52 -5.53 -6.57 

SD 0.56 0.00 0.00 0.00 0.11 0.00 0.06 1.59 2.12 3.14 
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0.005765

656 

hHHO-

IGWO 

 

Mean 
1.7560

3 
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Fig.4.18: Assessment of convergence for FD function with other methods  
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Fig.4.18: Assessment of convergence for FD function with other methods (continued) 
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Fig.4.18: Assessment of convergence for FD function with other methods 

(Continued) 

 

Fig.4.19: Trials of FD function for hHHO-IGWO  
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Fig.4.19: Trials of FD function for hHHO-IGWO (Continued) 
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Fig.4.19: Trials of FD function for hHHO-IGWO (Continued) 
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Fig.4.19: Trials of FD function for hHHO-IGWO method (Continued) 
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Table 4.10 presents average and standard deviation values of hHHO-IGWO and other 

methods for FD test function. These values are smaller compared to GWO, PSO, and 

GSA. Thus, the proposed method gives high quality solution as compared to other 

methods in case of F14, F15, F18, and F23.The results are consistent in case of F19, 

F20, F18, and F23. It can be seen that F14, F15, F18, and F23 shows better convergence, 

while other methods are trapped in local optimum. It is also noted that F15 and F23 

have better convergence speed and settles to optimal value with less iterations. The 

above analysis reveals that hHHO-IGWO is capable in testing fixed dimension test 

functions. 

4.4.3 Test Results for benchmark function using CHHO method 

 

(a)Test Results for UM benchmark function using CHHO method 

Table-4.11 illustrates simulation results of UM benchmark function from F1 to F7. 

Simulation time for UM test function using Chaotic HHO algorithm are shown in 

Table-4.12.  

Table-4.11: Test results of UM benchmark functions using CHHO method 

Functi

on 

Objective Function fitness Wilcoxon    

rank Sum 

Test 

T-Test 

Mean STD Best Worst median p-value t-value h-value 

F1 2.29E-96 1.18E-95 1.5E-119 6.49E-95 2E-104 1.7344E-06 0.299955 0 

F2 1.08E-48 5.77E-48 2.12E-60 3.16E-47 4.43E-54 1.7344E-06 0.157795 0 

F3 1.54E-69 7.74E-69 7.32E-98 4.24E-68 1.56E-84 1.7344E-06 0.318537 0 

F4 1.4E-48 6.39E-48 2.94E-55 3.48E-47 2.68E-52 1.7344E-06 0.237638 0 

F5 0.013086 0.01999 1.59E-06 0.08431 0.003289 1.7344E-06 0.000232 1 

F6 0.00016 0.000299 1.99E-08 0.001119 5.94E-05 1.7344E-06 0.000957 1 

F7 0.00015 0.000159 2.54E-06 0.00069 9.11E-05 1.7344E-06 3.58E-06 1 

Table-4.12: Simulation time for UM test function using CHHO method
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Table-4.13 illustrates CHHO results authenticated with  techniques like PSO [275], 

GWO [99], GSA [276], BA [277], FA [278], GA [55], MFO [279], MVO[266], 

SMS[280], DE[281], ALO[263], WOA[212], etc. in terms of  standard and mean  

deviation. The algorithm is tested for 30 trial runs and 500 iterations as presented in 

Fig.4.21. The test outcomes of UM have some raised points with increased convergence 

using CHHO reveals the effectiveness of CHHO algorithm.  

Table-4.13:  Comparison of UM test results of CHHO with other methods 

Algorithm 
Para-

meter 

UM test function  

F1 F2 F3 F4 F5 F6 F7 

GWO [99] 
STD 6.3400E-07 0.02901 

7.9.1495E

+01 
1.31508 69.9049 0.00012 0.10028 

Mean 6.590E-29 7.180E-18 3.20E-07 5.610E-08 26.8125 0.81657 0.00221 

PSO [207] 

STD 
0.0002.0E-

04 
0.04542 

2.1192E+

01 

3.1703E+0

1 

6.01155E+

01 
8.28E-05 0.04495 

Mean 1.3E-04 0.04214 
7.01256E

+01 
1.08648 96.7183 0.00010 0.12285 

MFO [211] 

STD 0.00015 0.00087 188.527 5.27505 120.2607 9.87E-05 0.04642 

Mean 0.00011 0.00063 696.730 70.6864 139.1487 0.000113 
0.09115

5 

SCA [268] 
STD 0.000 0.0001 0.1372 0.5823 0.0017 0.0001 0.0014 

Mean 0.000 0.000 0.0371 0.0965 0.0005 0.0002 0.000 

MVO [266] 
STD 0.64865 44.7459 177.0973 1.58291 1479.47 0.63081 0.02961 

Mean 2.08583 15.9247 453.200 3.12301 1272.13 2.29495 0.05199 

SSA [269] 
STD 0.000 1.000 0.000 0.6556 0.000 0.000 0.007 

Mean 0.000 0.2272 0.000 0.000 0.000 0.000 0.0028 

TENT_CH

HO 

STD 1.18E-95 5.77E-48 7.74E-69 6.39E-48 0.01999 0.000299 0.00015 

Mean 2.29E-96 1.08E-48 1.54E-69 1.4E-48 0.013086 0.00016 0.00015 

 

Table 4.13 presents the average and standard deviation of all test algorithms. It can be 

seen that the average and standard deviation values of CHHO are much less than other 

techniques. This suggests that CHHO can provide a high-quality solution with more 

stability. In Fig.4.20, F5, F6, and F7 shows better convergence, while other algorithms 

are seem to be trapped in local optimum. However, unimodal involves only one global 

optimum, F1, F2, F3, and F4 shows inferior convergence compared to ALO, GWO, 

MFO and ALO. The above analysis reveals that CHHO is competent in testing 

unimodal test functions.  
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Fig.4.20: Assessment of convergence of CHHO with other algorithms for UM test 

function  
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Fig.4.20: Comparison of convergence of CHHO with other algorithms for UM test 

function (Continued) 
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Fig.4.20: Assessment of convergence of CHHO with other algorithms for UM test 

function (Continued) 

 

Fig.4.21: Trial runs of UM Benchmark function for CHHO 

(b)Test Results for Multi-Modal (MM) benchmark function using CHHO method 

Table-4.14 illustrates simulation results of multi-modal (MM) benchmark function. 

Simulation time for MM Benchmark Problems with best, mean and worst utilizing 

CHHO are shown in Table-4.15. Table-4.16 summarizes compared  results with other 

meta-heuristics search algorithms like PSO [275], GWO [99], GSA [276], BA [277], 

FA [278], GA [55], BDA [259], BPSO [282], MFO [279], MVO [266], SMS [280], DE 

[281], ALO [263], etc. 
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Table-4.14: Test results of MM benchmark functions using CHHO method 

Function 

 

Objective Function fitness 

Wilcoxon    

rank Sum 

Test 

 

T-Test 

Mean STD Best Worst median p-value t-value 
h-

value 

F8 -12569.1 0.661731 -12569.5 -12566.1 -12569.3 1.7344E-06 2.05E-28 1 

F9 0 0 0 0 0 1 0.0 1 

F10 8.88E-16 0 8.88E-16 8.88E-16 8.88E-16 4.320460E-09 0.0 1 

F11 0 0 0 0 0 1 0.0 1 

F12 5.78E-06 5.92E-06 1.41E-09 1.86E-05 3.38E-06 1.7344E-06 0.00057 1 

F13 8.42E-05 9.09E-05 3.99E-08 0.000374 5.94E-05 1.7344E-06 0.00062 1 

Table- 4.15: Simulation time for MM benchmark function using CHHO 

Functions 
Mean 

Time 
Best Time Worst Time 

F8 0.457 0.375 1.140 

F9 0.395 0.343 1.031 

F10 0.409 0.359 1.015 

F11 0.515 0.453 1.234 

F12 0.968 0.890 1.687 

F13 0.959 0.890 1.703 

Table-4.16:  Assessment of MM test of CHHO with competent methods 

Algorithms 
Parame

ter 

Multi- Modal test function 

F8 F9 F10 F11 F12 F13 

GWO [99] 
STD -4.0900E+02 4.740E+01 7.7800E-03 6.6600E-04 2.0700E-03 4.470E-03 

Mean -6.1200E+02 3.1100E-02 1.0600E-14 4.4900E-04 5.3400E-03 6.5400E-02 

PSO [207] 
STD 1.1500E+04 1.160E+01 5.090E-01 7.7200E-04 2.6300E-03 8.9100E-04 

Mean -4.8400E+04 4.670E+01 2.760E-01 9.2200E-04 6.9200E-04 6.6800E-04 

GSA [203] 
STD 4.930E+02 7.470E+00 2.360E-01 5.040E+00 9.510E-01 7.130E+00 

Mean -2.820E+03 2.600E+01 6.210E-02 2.770E+01 1.800E+00 8.900E+00 

MFO [211] 
STD 7.260E+02 1.620E+01 7.300E-01 2.170E-02 8.810E-01 1.930E-01 

Mean -8.500E+03 8.460E+01 1.260E+00 1.910E-02 8.940E-01 1.160E-01 

ALO [263] 
STD 3.14E+02 8.45E-06 1.50E-15 9.55E-03 9.33E-12 1.13E-11 

Mean -1.61E+03 7.71E-06 3.73E-15 1.86E-02 9.75E-12 2.00E-11 

GA [265] 
STD 2.470E+00 8.160E-01 8.080E-01 2.180E-01 2.150E-03 6.890E-02 

Mean -2.090E+03 6.590E-01 9.560E-01 4.880E-01 1.110E-01 1.290E-01 

MVO [266] 
STD 9.370E+02 3.930E+01 5.500E+00 6.000E-02 7.900E-01 9.000E-02 

Mean -1.170E+04 1.180E+02 4.070E+00 9.400E-01 2.460E+00 2.200E-01 

SCA [268] 
STD 3.600E-03 7.300E-01 1.000E+00 5.100E-03 0.000E+00 0.000E+00 

Mean 1.000E+00 0.000E+00 3.800E-01 0.000E+00 0.000E+00 0.000E+00 

DA [259] 
STD 3.840E+02 9.480E+00 4.870E-01 7.350E-02 9.830E-02 4.630E-03 

Mean -2.860E+03 1.600E+01 2.310E-01 1.930E-01 3.110E-02 2.200E-03 

SSA [269] 
STD 8.090E-01 0.000E+00 1.530E-01 6.510E-02 5.570E-01 7.060E-01 

Mean 5.570E-02 0.000E+00 1.950E-01 0.000E+00 1.420E-01 8.320E-02 

TENT_CHHO 
STD 0.661731 0 0 0 5.92E-06 9.09E-05 

Mean -12569.1 0 8.88E-16 0 5.78E-06 8.42E-05 
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Fig.4.22: Assessment of convergence of CHHO with other algorithms for MM test 

function 
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Fig.4.22: Assessment of convergence of CHHO with other algorithms for MM test 

function (Continued) 
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Fig.4.23: Trial runs of MM benchmark function for CHHO method 

The comparison of the CHHO convergence curves with other competing methods are 

shown in Fig.4.22. Figure 4.23 shows the 30 iterative runs for the MM functions. Since 

the multimodal have large number of local optimum, the results shown in Table 4.16 

reveals that CHHO gives better exploration compared to other techniques. The 

convergence curves reflects resemblance in most of the test functions. The above 

analysis reveals that CHHO is competent in testing multimodal test functions. 

(c)Test Results for FD benchmark function using CHHO  

The simulation results for FD test functions are illustrated in Table-4.17. Simulation 

time for FD Benchmark Problems utilizing CHHO is shown in Table-4.18.  

 Table-4.17: Test results of FD benchmark functions using CHHO method 

Functi

on 

Objective Function fitness 

Wilcoxon    

rank Sum 

Test 

T-Test 

Mean STD Best Worst median p-value t-value 
h-

value 

F14 1.590491 1.501409 0.998004 5.928845 0.998004 1.7344E-06 6.42E-07 1 

F15 0.000368 0.00019 0.000308 0.001364 0.000327 1.7344E-06 2E-10 1 

F16 -1.03163 1.38E-09 -1.03163 -1.03163 -1.03163 1.7344E-06 2.1E-260 1 

F17 0.397892 1E-05 0.397887 0.397929 0.397888 0 0 0 

F18 3 7.27E-08 3 3 3 1.7344E-06 1.2E-191 1 

F19 -3.85926 0.006377 -3.86278 -3.83785 -3.86186 1.7344E-06 4.68E-89 1 

F20 -3.11029 0.126286 -3.28658 -2.7957 -3.13992 1.7344E-06 8.66E-45 1 

F21 -5.21858 0.912798 -10.0515 -5.04081 -5.05327 1.7344E-06 2.49E-21 1 

F22 -4.97575 0.593354 -5.08766 -1.83423 -5.08605 1.7344E-06 3.45E-18 1 

F23 -5.1241 0.00409 -5.12839 -5.11147 -5.12541 1.7344E-06 3.84E-24 1 
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Table-4.18: Simulation time of FD benchmark function using CHHO 

Functions Mean Time Best Time Worst Time 

F14 2.5083333 2.39062 3.2343 

F15 0.3911458 0.32812 1 

F16 0.3744791 0.32812 0.96875 

F17 0.00 0.00 0.00 

F18 0.3322916 0.28125 0.875 

F19 0.4453125 0.375 1.10937 

F20 0.4442708 0.39062 1.0625 

F21 1.0484375 0.95312 1.79687 

F22 1.2630208 1.1875 2 

F23 1.6984375 1.48437 2.59375 

   

Table-4.19:  Comparison of FD test results of CHHO with other methods 

 

Fig.4.24: Assessment of convergence of CHHO with other algorithms for FD test 

function 

Algorithms Parameters 

FD benchmark function   

 

F14 

 

F15 

 

F16 

 

F17 

 

F18 

 

F19 

 

F20 

 

F21 

 

F22 

 

F23 

GSA [203] 
STD 3.83 0.00 0.00 0.00 0.00 0.00 0.02 3.74 2.01 0.00 

Mean 5.86 0.00 -1.03 0.40 3.00 -3.86 -3.32 -5.96 -9.68 -10.54 

GWO [99] 
STD 4.25 0.00 -1.03 0.40 3.00 -3.86 -3.25 -9.14 -8.58 -8.56 

Mean 4.04 0.00 -1.03 0.40 3.00 -3.86 -3.29 -10.15 -10.40 -10.53 

PSO 
STD 2.56 0.00 0.00 0.00 0.00 0.00 0.06 3.02 3.09 1.78 

Mean 3.63 0.00 -1.03 0.40 3.00 -3.86 -3.27 -6.87 -8.46 -9.95 

DE[200] 
STD 0.00 0.00 0.00 0.00 0.00 N/A N/A 0.00 0.00 0.00 

Mean 1.00 0.00 -1.03 0.40 3.00 N/A N/A -10.15 -10.40 -10.54 

CSMA[283] 

STD 9.26E-13 
0.00024

4 
1.51E-09 

6.82E-
08 

8.43E-12 4.21E-07 0.060654 0.000274 0.000208 0.000299 

Mean 0.998004 0.00055 -1.03163 
0.3978

87 
3 -3.86278 -3.25824 -10.1528 -10.4026 -10.536 

TENT_CHHO 

STD 1.501409 0.00019 1.38E-09 
1.00E-

05 
7.27E-08 0.006377 0.126286 0.912798 0.593354 0.00409 

Mean 1.590491 
0.00036

8 
-1.03163 

0.3978

92 
3 -3.85926 -3.11029 -5.21858 -4.97575 -5.1241 
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Fig.4.24: Assessment of convergence of CHHO with other algorithms for FD test 

function (Continued) 
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Fig.4.24: Assessment of convergence of CHHO with other algorithms for FD test 

function (Continued) 
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Fig.4.24: Assessment of convergence of CHHO with other algorithms for FD test 

function (Continued) 



 

118 

 

 

                       

Fig.4.25: Trial run of FD test function for CHHO method  

The results are compared with others methods such as, GWO [99], PSO [207], GSA 

[203], DE [200], ALO [263], BA[284], GA [265] , SSA [269],  DE [285], etc. in terms 

of  Mean  & standard deviation. Fig.4.25 shows the trial runs for fixed dimension 

function for CHHO method. Table 4.19 presents average and standard deviation values 

of CHHO and other methods. These values are smaller compared to GWO, PSO, and 

GSA. Thus, the proposed method gives high quality solution as compared to other 

methods in case of F15, F17, F18.The results are consistent in case of F14, F19, F20, 

F21, and F22. It is also noted that F15 and F28 have better convergence speed and 

settles to optimal value with less iterations. The above analysis reveals that CHHO is 

capable in testing fixed dimension test functions. 
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4.4.4 Test Results for  benchmark function using CSMA method 

 

(a)Test Results for UM benchmark function using CSMA method 

Table-4.20 illustrates simulation results of unimodal (UM) benchmark function using 

CSMA. Simulation time for F1 to F7 using CSMA method is shown in Table-4.21. 

Table-4.22 shows the comparison of the CSMA method with other techniques such as 

PSO [275], GWO [99], GSA [276], BA [277], FA [278], GA [55], BDA [259], BPSO 

[282], MFO [279], MVO [266], BGSA [267], SMS [280], DE [281], ALO [263], WOA 

[212], etc. Trial runs of unimodal benchmark function for CSMA method are shown in 

Fig.4.27. 

Table-4.20: Test results of UM benchmark functions using CSMA method 

Functions 
Average 

Value 
STD Best value Worst value Median value p-Value 

F1 1.2E-280 0 0 3.5E-279 0 0.5 

F2 3.4E-156 1.7E-155 3E-258 9.4E-155 1.3E-188 1.7344E-06 

F3 0 0 0 0 0 1 

F4 5.1E-134 2.8E-133 1.5E-269 1.5E-132 2.7E-190 1.7344E-06 

F5 5.035453 9.27916 0.044388 28.19006 1.219173 1.7344E-06 

F6 0.004431 0.003059 2.06E-05 0.016714 0.004434 1.7344E-06 

F7 0.0003 0.000211 2.17E-05 0.000935 0.000274 1.7344E-06 

 

Table-4.21: Simulation time for UM test function using CSMA method 

Functions Best Time(sec) Mean Time(sec) Worst Time(sec) 

F1 2.71875 2.915625 3.453125 

F2 2.78125 2.890625 3.375 

F3 2.984375 3.295313 4.078125 

F4 2.84375 3.039583 3.875 

F5 2.84375 2.991667 3.578125 

F6 2.8125 2.955208 3.453125 

F7 2.9375 3.077604 3.59375 

 

Table 4.22 presents the average and standard deviation of all test algorithms. It can be 

seen that the average and standard deviation values of CSMA are much less than other 

techniques. This suggests that CSMA can provide a high-quality solution with more 

stability. In Fig.4.26, F5, F6, and F7 have better convergence, while other algorithms 

seem to be trapped in local optimum. However, unimodal involves only one global 

optimum, F1, F2, F3, and F4 shows earlier convergence compared to ALO, GWO, 

MFO and ALO. The above analysis reveals that CSMA is capable in testing unimodal 

test functions.  
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Table-4.22: Comparison of UM test results of CSMA with other methods 

Algorithm Parameters 
UM Test Function 

  F1 F2 F3 F4 F5 F6 F7 

PSO [275] 
AVG 1.3E-04 0.04214 7.016E+01 1.08648 96.7183 0.00010 0.1228 

SD 0.02.0E-06 0.04542 2.119E+01 3.17E+01 6.0115E+01 8.28E-05 0.0449 

GWO [99] 
AVG 6.590E-29 7.180E-18 3.20E-07 5.610E-08 26.8125 0.81657 0.0022 

SD 6.3400E-07 0.02901 7.9.5E+01 1.31508 69.9049 0.00012 0.1002 

GSA [203]  
AVG 2.530E-17 0.05565 896.534 7.35487 6.7543E+01 2.50E-17 0.0894 

SD 9.670E-18 0.19407 318.955 1.741452 6.2225E+01 1.740E-17 0.0433 

DE [200] 
AVG 8.200E-15 1.50E-09 6.80E-11 0.00 0.00 0.00 0.0046 

SD 5.900E-15 9.900E-11 7.40E-11 0.00 0.00 0.00 0.0012 

ALO [263] 
AVG 2.59E-10 1.84E-06 6.07E-10 1.36E-08 0.3467724 2.56E-10 0.004292

49 SD 1.65E-10 6.58E-07 6.34E-10 1.81E-09 0.10958 1.09E-10 0.00508 

BA[210]  
AVG 0.77362 0.33458 0.11530 0.19218 0.33407 0.77884 0.13748 

SD 0.52813 3.81602 0.76603 0.890266 0.30003 0.67392 0.11267 

CS [286] 
AVG 0.0065 0.212 0.247 1.120E-06 0.00719 5.95E-06 0.00132 

SD 0.00020 0.0398 0.0214 8.250E-07 0.00722 1.08E-07 0.00072 

MFO [211] 
AVG 0.00011 0.00063 696.730 70.6864 139.1487 0.000113 0.091155 

SD 0.00015 0.00087 188.527 5.27505 120.2607 9.87E-05 0.04642 

SCA [268] 
AVG 0.000 0.000 0.0371 0.0965 0.0005 0.0002 0.000 

SD 0.000 0.0001 0.1372 0.5823 0.0017 0.0001 0.0014 

SSA [269] 
AVG 0.000 0.2272 0.000 0.000 0.000 0.000 0.0028 

SD 0.000 1.000 0.000 0.6556 0.000 0.000 0.007 

WOA [212] 
AVG 1.410E-31 1.060E-22 5.390E-08 7.258E-02 27.8655 3.11626 0.00142 

SD 4.910E-31 2.390E-22 2.930E-07 3.9747E-01 7.6362E-01 0.53242 0.00114 

CSMA 
AVG 1.2E-280 3.4E-156 0 5.1E-134 5.035453 0.00443 0.0003 

SD 0 1.7E-155 0 2.8E-133 9.27916 0.003059 0.00021 

 

      

Fig.4.26: Assessment of convergence of CSMA with other algorithms for UM test 

function 
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Fig.4.26: Assessment of convergence of CSMA with other algorithms for UM test 

function (Continued) 
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Fig.4.26: Assessment of convergence of CSMA with other algorithms for UM test 

function (Continued) 
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Fig.4.27:  Trial run of UM test function for CSMA method 

(b)Test Results for MM benchmark function using CSMA method 

 Table-4.23 illustrates simulation results of Multi-modal benchmark function from F8 

to F13.Simulation time for multi-modal (MM) Benchmark Problems with best, mean 

and worst utilizing CHHO are shown in Table-4.24. The convergence curve of SMA 

and CSMA are indicated by yellow and red curve respectively  

Table-4.23: Test results of MM benchmark functions using CSMA method 

Functions 
Average 

Value 
STD Best value Worst value 

Median 

value 
p-Value 

F8 -12569.1 0.319584 -12569.5 -12568.1 -12569.2 1.7344E-06 

F9 0 0 0 0 0 1 

F10 8.88E-16 0 8.88E-16 8.88E-16 8.88E-16 4.32046E-08 

F11 0 0 0 0 0 1 

F12 0.003937 0.006237 5.64E-07 0.032017 0.002066 1.7344E-06 

F13 0.00664 0.00989 7.428E-05 0.05034892 0.00270 1.7344E-06 

 

Table-4.24: Simulation time for MM test function using CSMA method 

Functions Best Time Mean  

Time 

Worst  

Time 

F8 2.796875 2.929167 3.421875 

F9 2.765625 2.911458 3.546875 

F10 2.828125 2.948438 3.40625 

F11 2.84375 2.996875 3.6875 

F12 3.09375 3.206771 3.765625 

F13 3.09375 3.198958 3.765625 

Table-4.25 illustrates results compared with other meta-heuristics search algorithms 

like PSO [275], GWO [99], GSA [276], BA [277], FA [278], GA [55], BDA [259], 
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BPSO [282], MFO [279], MVO [266], BGSA [267], SMS [280], DE [281], ALO [263], 

WOA [212], etc. in terms of average value and std. deviation. The comparison of the 

CHHO convergence curves with other competing methods are shown in Fig.4.28. 

Figure 4.29 shows the 30 iterative runs for the MM functions. Since the multimodal 

have large number of local optimum, the results shown in Table 4.8 reveals that CSMA 

gives better exploration compared to other techniques. The convergence curves reflects 

closeness in most of the test functions. The above analysis reveals that CSMA is capable 

in testing multimodal test functions. 

Table-4.25: Comparison of MM test results of CSMA with other methods 

Algorithm Parameter 
MM benchmark function 

F8 F9 F10 F11 F12 F13 

PSO [207] 
AVG -4.8400E+04 4.670E+01 2.760E-01 9.2200E-04 6.9200E-04 6.6800E-04 

SD 1.1500E+04 1.160E+01 5.090E-01 7.7200E-04 2.6300E-03 8.9100E-04 

GWO [99] 
AVG -6.1200E+02 3.1100E-02 1.0600E-14 4.4900E-04 5.3400E-03 6.5400E-02 

SD -4.0900E+02 4.740E+01 7.7800E-03 6.6600E-04 2.0700E-03 4.470E-03 

GSA [203] 
AVG -2.820E+03 2.600E+01 6.210E-02 2.770E+01 1.800E+00 8.900E+00 

SD 4.930E+02 7.470E+00 2.360E-01 5.040E+00 9.510E-01 7.130E+00 

DE [200] 
AVG -1.110E+04 6.920E+01 9.700E-08 0.000E+00 7.900E-15 5.100E-14 

SD 5.750E+02 3.880E+01 4.200E-08 0.000E+00 8.000E-15 4.800E-14 

ALO [263] 
AVG -1.61E+03 7.71E-06 3.73E-15 1.86E-02 9.75E-12 2.00E-11 

SD 3.14E+02 8.45E-06 1.50E-15 9.55E-03 9.33E-12 1.13E-11 

BA [210] 
AVG -1.070E+03 1.230E+00 1.290E-01 1.450E+00 3.960E-01 3.870E-01 

SD 8.580E+02 6.860E-01 4.330E-02 5.700E-01 9.930E-01 1.220E-01 

CS[278] 
AVG -2.090E+03 1.270E-01 8.160E-09 1.230E-01 5.600E-09 4.880E-06 

SD 7.620E-03 2.660E-03 1.630E-08 4.970E-02 1.580E-10 6.090E-07 

GA [265] 
AVG -2.090E+03 6.590E-01 9.560E-01 4.880E-01 1.110E-01 1.290E-01 

SD 2.470E+00 8.160E-01 8.080E-01 2.180E-01 2.150E-03 6.890E-02 

MFO [211] 
AVG -8.500E+03 8.460E+01 1.260E+00 1.910E-02 8.940E-01 1.160E-01 

SD 7.260E+02 1.620E+01 7.300E-01 2.170E-02 8.810E-01 1.930E-01 

MVO 

[266] 

AVG -1.170E+04 1.180E+02 4.070E+00 9.400E-01 2.460E+00 2.200E-01 

SD 9.370E+02 3.930E+01 5.500E+00 6.000E-02 7.900E-01 9.000E-02 

DA [259] 
AVG -2.860E+03 1.600E+01 2.310E-01 1.930E-01 3.110E-02 2.200E-03 

SD 3.840E+02 9.480E+00 4.870E-01 7.350E-02 9.830E-02 4.630E-03 

BPSO 

[260] 

AVG -9.890E+02 4.830E+00 2.150E+00 4.770E-01 4.070E-01 3.070E-01 

SD 1.670E+01 1.550E+00 5.410E-01 1.290E-01 2.310E-01 2.420E-01 

SCA [268] 
AVG 1.000E+00 0.000E+00 3.800E-01 0.000E+00 0.000E+00 0.000E+00 

SD 3.600E-03 7.300E-01 1.000E+00 5.100E-03 0.000E+00 0.000E+00 

 

CSMA 

AVG -12569.1 0 8.88E-16 0 0.003937 0.00664 

SD 0.319584 0 0 0 0.006237 0.00989 
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Fig.4.28: Assessment of convergence of CSMA with other algorithms for MM test 

function 
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Fig.4.28: Assessment of convergence of CSMA with other algorithms for MM test 

function (Continued) 



 

127 

 

 

Fig.4.29:  Trial run of MM test function for CSMA method 

(c) Test Results for Fixed dimension (FD) benchmark function using CSMA 

method  

The simulation outcomes for fixed dimension (FD) test functions has been illustrated 

in Table-4.26. Simulation time for FD Benchmark Problems utilizing CSMA is shown 

in Table-4.27.  

Table-4.26: Test outcomes of FD functions using CSMA method 

 

Functions AVG SD  Best value Worst value Median value p-Value 

F14 0.998004 9.26E-13 0.998004 0.998004 0.998004 1.7344E-06 

F15 0.00055 0.000244 0.00031 0.001223 0.000469 1.7344E-06 

F16 -1.03163 1.51E-09 -1.03163 -1.03163 -1.03163 1.7344E-06 

F17 0.397887 6.82E-08 0.397887 0.397888 0.397887 1.7344E-06 

F18 3 8.43E-12 3 3 3 1.7344E-06 

F19 -3.86278 4.21E-07 -3.86278 -3.86278 -3.86278 1.7344E-06 

F20 -3.25824 0.060654 -3.32199 -3.20008 -3.20309 1.7344E-06 

F21 -10.1528 0.000274 -10.1532 -10.1519 -10.1529 1.7344E-06 

F22 -10.4026 0.000208 -10.4029 -10.4021 -10.4027 1.7344E-06 

F23 -10.536 0.000299 -10.5364 -10.5354 -10.5361 1.7344E-06 
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Table-4.27:  Simulation time for FD test function using CSMA method 

Functions Best Time Mean Time Worst Time 

F14 1.140625 1.215104 1.921875 

F15 0.671875 0.788021 1.34375 

F16 0.53125 0.623438 1.171875 

F17 0.5 0.582813 1.21875 

F18 0.5 0.595313 1.125 

F19 0.59375 0.680729 1.265625 

F20 0.859375 0.971354 1.46875 

F21 0.8125 0.941146 1.4375 

F22 0.859375 0.972917 1.40625 

F23 0.9375 1.065104 1.59375 

 

Table-4.28  illustrates CSMA results compared with others variants such as GWO [99], 

PSO [207], GSA [203], DE [200], FEP [261] in terms of  average(AVG) & standard 

deviation (SD). From the compared convergence curves shown in Fig.4.30, it is 

observed that proposed CSMA gives more superior results in terms of convergence. 

Fig.4.31 shows the trial runs for fixed dimension function.  

Table-4.28: Comparison of FD test results of CSMA with other methods 

Algorithm Parameter 
FD Test Function 

F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 

GWO [99] 
AVG 4.04 0.00 -1.03 0.40 3.00 -3.86 -3.29 -10.15 -10.40 -10.53 

SD 4.25 0.00 -1.03 0.40 3.00 -3.86 -3.25 -9.14 -8.58 -8.56 

PSO[287] 
AVG 3.63 0.00 -1.03 0.40 3.00 -3.86 -3.27 -6.87 -8.46 -9.95 

SD 2.56 0.00 0.00 0.00 0.00 0.00 0.06 3.02 3.09 1.78 

GSA [203] 
AVG 5.86 0.00 -1.03 0.40 3.00 -3.86 -3.32 -5.96 -9.68 -10.54 

SD 3.83 0.00 0.00 0.00 0.00 0.00 0.02 3.74 2.01 0.00 

DE[200] 
AVG 1.00 0.00 -1.03 0.40 3.00 N/A N/A -10.15 -10.40 -10.54 

SD 0.00 0.00 0.00 0.00 0.00 N/A N/A 0.00 0.00 0.00 

FEP [261] 
AVG 1.22 0.00 -1.03 0.40 3.02 -3.86 -3.27 -5.52 -5.53 -6.57 

SD 0.56 0.00 0.00 0.00 0.11 0.00 0.06 1.59 2.12 3.14 

CSMA(Pro

posed 

Method) 

AVG 
0.99800

4 
0.00055 

-

1.03163 

0.39788

7 
3 

-

3.8627

8 

-

3.25824 

-

10.1528 

-

10.4026 
-10.536 

SD 
9.26E-

13 

0.00024

4 

1.51E-

09 

6.82E-

08 

8.43E-

12 

4.21E-

07 

0.06065

4 

0.00027

4 

0.00020

8 

0.00029

9 
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Fig.4.30:  Assessment of CSMA with other algorithms for FD test function  



 

130 

 

 

 

 

Fig.4.30:  Assessment of CSMA with other algorithms for FD test function 

(Continued) 
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Fig.4.30:  Assessment of CSMA with other algorithms for FD test function 

(Continued) 

 

Fig.4.31: Trial run of FD test function for CSMA method 
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Fig.4.31: Trial run of FD test function for CSMA method 

(continued) 

Table 4.28 presents average and standard deviation values of CSMA and other methods. 

These values are smaller compared to GWO, PSO, and GSA. Thus, the proposed 

method gives high quality solution as compared to other methods in case of F14, F15, 

F18, and F23.The results are consistent in case of F19, F20, F18, and F23. It can be 

seen that F14, F15, F18, and F23 shows better convergence, while other methods are 

trapped in local optimum. It is also noted that F15 and F23 have better convergence 

speed and settles to optimal value with less iterations. The above analysis reveals that 

CSMA is capable in testing fixed dimension test functions. 

4.5     RESULTS AND DISCUSSION FOR ENGINEERING DESIGN   

     PROBLEMS 

  

 Table-4.29 illustrates test results of ten engineering problems. In Table-4.30 illustrates 

simulation time in term of mean, best and mean value for corresponding design 

problems.  

Table-4.29: Test Results for Engineering Design Problems by using hHHO-IGWO, 

CHHO and CSMA 

Engineering 

Functions(EF) 
Mean 

STD 

value 
Best value Worst value 

Median 

value 
p-Value 

EF1(hHHO-IGWO) 264.0243 0.149207 263.8959 264.4953 263.9697 1.73E-06 

EF1(CHHO) 264.00 0.3.19 264.00 265.00 264.00 1.73E-06 

EF1(CSMA) 270.7824 1.791805 265.4599 273.3948 271.2534 1.7344E-06 

EF2(hHHO-IGWO) 3694.179 628.0672 3002.04 5241.398 3483.753 1.73E-06 

EF2(CHHO) 3750.00 737.00 3010.00 5260.00 3360.00 1.73E-06 
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Table-4.29: Test Results for Engineering Design Problems by using hHHO-IGWO, 

CHHO and CSMA (Continued) 

Engineering 

Functions(EF) 
Mean STD value Best value Worst value Median value p-Value 

EF2(CSMA) 2994.48 0.005837 2994.474 2994.495 2994.479 1.7344E-06 

EF3(hHHO-IGWO) 9010.828 12492.69 6086.874 75122.61 6730.517 1.73E-06 

EF3(CHHO) 7020.00 363.00 6290.00 7710.00 7090.00 1.73E-06 

EF3(CSMA) 6427.41 531.9222 5885.341 7318.996 6195.263 1.7344E-06 

EF4(hHHO-IGWO) 0.013457 0.000997 0.012666 0.017775 0.013238 1.73E-06 

EF4(CHHO) 1.40E-02 1.38E-03 1.27E-02 1.78E-02 1.33E-02 1.73E-06 

EF4(CSMA) 3.34E-11 6.46E-11 4.82E-14 2.91E-10 7.56E-12 1.7344E-06 

EF5(hHHO-IGWO) 2.147051 0.408326 1.770391 3.440706 1.952591 1.73E-06 

EF5(CHHO) 2.140E+00 3.610E-01 1.740E+00 3.490E+00 2.040E+00 1.73E-06 

EF5(CSMA) 1.740409 0.052373 1.724899 2.00749 1.726646 1.7344E-06 

EF6(hHHO-IGWO) -70571.6 15121.97 -83014 -42057 -80687.1 1.73E-06 

EF6(CHHO) -6.740E+04 1.630E+04 -8.410E+04 -4.240E+04 -7.370E+04 1.73E-06 

EF6(CSMA) -85534.4 10.61208 -85539.2 -85498.2 -85538.7 1.7344E-06 

EF7(hHHO-IGWO) 0.444596 0.052704 0.389663 0.563677 0.432178 1.73E-06 

EF7(CHHO) 4.47E-01 4.64E-02 3.90E-01 5.71E-01 4.42E-01 1.73E-06 

EF7(CSMA) 0.392818 0.005457 0.389654 0.404654 0.389664 1.7344E-06 

EF8(hHHO-IGWO) 0 0 0 0 0 1 

EF8(CHHO) 0 0 0 0 0 1 

EF8(CSMA) 0.014245 0.001415 0.012715 0.017524 0.013955 1.7344E-06 

EF9(hHHO-IGWO) 2.65E+22 2.7E+22 1.981265 5.3E+22 2.65E+22 1.44E-06 

EF9(CHHO) 2.65E+22 2.70E+22 1.98E+00 5.30E+22 2.65E+22 1.29E-06 

EF9(CSMA) 5.24E+22 5.87E+22 1.57E+21 1.79E+23 1.21E+22 1.7344E-06 

EF10(hHHO-GWO) 1.31E+00 1.68E-03 1.30E+00 1.31E+00 1.31E+00 1.73E-06 

EF10(CHHO) 1.31E+00 1.68E-03 1.30E+00 1.31E+00 1.31E+00 1.73E-06 

EF10(CSMA) 1.303713 0.000368 1.303281 1.30519 1.303612 1.7344E-06 

Table-4.30:  Computation time for EF1 to EF10 using hHHO-IGWO, CHHO and 

CSMA method 

Functions Best Time Mean Time Worst Time 

EF1(hHHO-IGWO) 0.421875 0.494271 1.3125 

EF1(CHHO) 0.328125 0.388541667 0.96875 

EF1(CSMA) 0.5 0.584896 1.390625 

EF2(hHHO-IGWO) 0.59375 0.665104 1.6875 

EF2(CHHO) 0.40625 0.566145833 1.34375 

EF2(CSMA) 0.984375 1.063021 1.453125 

EF3(hHHO-IGWO) 0.453125 0.513021 1.3125 

EF3(CHHO) 0.3125 0.4203125 0.953125 

EF3(CSMA) 0.671875 0.814063 1.359375 

EF4(hHHO-IGWO) 0.46875 0.529167 1.40625 

EF4(CHHO) 0.359375 0.463020833 1.015625 

EF4(CSMA) 0.578125 0.663542 1.3125 

EF5(hHHO-IGWO) 0.53125 0.595833 1.54687 

EF5(CHHO) 0.3125 0.4203125 0.953125 
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Table-4.30:  Computation time for EF1 to EF10 using hHHO-IGWO, 

CHHO and CSMA method (Continued) 

Functions Best Time Mean Time Worst Time 

EF5(CSMA) 0.671875 0.829167 1.515625 

EF6(hHHO-IGWO) 0.8125 0.891146 2.15625 

EF6(CHHO) 0.296875 0.510416667 1.109375 

EF6(CSMA) 1.21875 1.301042 1.796875 

EF7(hHHO-IGWO) 0.515625 0.61875 1.46875 

EF7(CHHO) 0.578125 0.7828125 1.640625 

EF7(CSMA) 0.734375 0.829688 1.28125 

EF8(hHHO-IGWO) 0.359375 0.429688 1.09375 

EF8(CHHO) 0.375 0.484375 1.234375 

EF8(CSMA) 0.6875 0.784375 1.5 

EF9(hHHO-IGWO) 0.46875 0.579167 1.34375 

EF9(CHHO) 0.265625 0.35 0.796875 

EF9(CSMA) 0.671875 0.782813 1.359375 

EF10(hHHO-IGWO) 0.328125 0.449479167 1.236 

EF10(CHHO) 0.3125 0.492708333 1.078125 

EF10(CSMA) 0.75 0.833333 1.359375 

4.5.1 Analysis of Truss design problem using hHHO-IGWO, CHHO and 

CSMA method 

 

Table-4.31 shows the comparative analysis of results for hHHO-IGWO, CHHO and 

CSMA, HHO, CS, Ray and Sain and TSA method for 3-bar truss Design.  

Table - 4.31: hHHO-IGWO, CHHO and CSMA results compared with other 

methods for 3-bar truss Design 

Algorithm 
hHHO-

IGWO 
CHHO CSMA HHO 

CS 

[288]  

Ray and 

Sain 

[289] 

TSA 

[195] 

Optimal 

values for 

variables 

y1 0.786672 0.763 0.766 0.7886 0.789 0.795 0.788 

y2 0.413943 0.494 0.494 0.4082 0.409 0.395 0.408 

Optimal weight 263.891 263.898 263.45 263.899 263.972 264.3 263.68 

 

Table 4.31 presents results of hHHO-IGWO, CHHO and CSMA compared with other 

methods for 3-bar truss design. It is inferred that results of proposed methods are very 

close to those of CS, Ray and sain and TSA. It is evident from results that CSMA 

outperforms other methods in cost minimization of 3-bar truss design. 

4.5.2 Analysis of speed reducer problems Using hHHO-IGWO, CHHO and 

CSMA method 

Table-4.32 shows the comparative analysis of hHHO-IGWO, CHHO and CSMA 

results compared with HHO, MDE, PSO-DE and MBA method for speed reducer 

problem.  
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Table -4.32: Comparison of results for speed reducer problem with other methods 

 

It can be seen from the comparative analysis that CHHO and CSMA gives 2994.473 

and 2993.4738 respectively. The results reveals that CSMA gives least optimum cost 

compared to other techniques. It is evidence from the compared results that CSMA is 

more effective in cost minimization due to better exploitation.  

  

4.5.3 Analysis of Pressure Vessel Design problems Using hHHO-IGWO, 

CHHO and CSMA method 

Table-4.33 shows the comparative analysis of hHHO-IGWO, CHHO and CSMA with 

PSO, GA, HHO, ACO, GWO, GSA, DE, and branch &bound method for pressure 

vessel design problem.  

Table-4.33: Comparative analysis of hHHO-IGWO, CHHO and CSMA with 

classical heuristic algorithms for Pressure Vessel Design 

 

 

Method hHHO-IGWO CHHO CSMA HHO MDE [290] 
PSO-

DE[291] 
MBA[271] 

Fitness values 

for variables 

z1 3.5074 3.5 3.5 3.56 3.50001 3.50 3.5 

z2 0.7 0.7 0.7 0.7 0.7 0.7 0.7 

z3 17 17 17 17 17 17 17 

z4 7.3 7.3 7.3 8.0186 7.300156 7.3 7.300033 

z5 7.759 7.71541 7.715418 8.01891 7.800027 7.8 7.715772 

z6 3.35065 3.35021 3.350215 3.4948 3.350221 3.3502 3.350218 

z7 5.2922 5.28665 5.286655 5.2867 5.286685 5.2866 5.286654 

Optimum Cost 3002.0401 2994.473 2993.4738 3060.37 2996.3566 2996.3 2994.482 

Algorithm 
hHHO-

IGWO 

 

CHHO 

 

CSMA 

 

HHO 

GWO 

[103] 

GSA 

[276] 

PSO 

[213] 

GA 

[292] 

DE 

[293] 

Branch-

bound 

[212] 

 

O
p

ti
m

u
m

 V
a
lu

e 

Ts 

 

0.86996 

 

0.88649 0.77817 0.81758 0.84806 1.125 0.8125 0.812 0.812 1.125 

Th 0.42783 0.48604 0.3846 0.4312 0.4345 0.625 0.4375 0.434 0.437 0.625 

R 

 

44.7916 

 

45.8502 40.38 42.0917 42.8279 55.98 42.091 40.32 42.09 47.7 

L 
145.896 

 
135.125 199.99 167.836 176.758 84.454 176.74 200 176.63 117.701 

Optimum 

Cost 
6086.87 6193.94 5885.34 6286.33 

 

7016.96 

 

6051.5 8538.8 6061.0 6059.7 7198.04 
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The comparative assessment presented in Table 4.33 suggests that hHHO-IGWO, 

CHHO and CSMA methods are efficient in handling pressure vessel design problem. It 

can be seen that CSMA most gives most cost effective solution compared with other 

methods. 

4.5.4 Analysis of Cantilever beam design problem using hHHO-IGWO, 

CHHO and CSMA method 

Table-4.34 shows the comparative analysis of hHHO-IGWO, CHHO and CSMA 

results compared with HHO, CS, ALO, SOS, MMA and GCA_I method for cantilever 

beam design problem. 

Table-4.34: Comparison of results for Cantilever beam design problem with other 

methods 

 

 

The results shown in Table 4.34 suggest all three methods outperforms other methods 

in handling cantilever beam design problem. The optimal value evaluated by hHHO-

IGWO and CSMA are 1.30337 and 1.3031. It can be seen from above table that CSMA 

gives more precise results as compared to HHO, CS, ALO, SOS, and GCA_I due to 

better exploitation and local minima avoidance. 

4.5.5 Analysis of Spring design problem using hHHO-IGWO, CHHO and 

CSMA method 

Table-4.35 presents the comparative analysis of hHHO-IGWO, CHHO and CSMA 

results compared with HHO, GWO, GSA, CPSO, ES, GA, HS and DE method for 

spring design problem.  

 

 

Method 
hHHO-

IGWO 

 

CHHO 

 

CSMA HHO 

 

CS 

[288] 

ALO 

[263] 

SOS 

[294] 

MMA 

[295] 

GCA_I 

[295] 

  
v

ar
ia

b
le

s 

l1 5.97504 6.048512 5.970 5.977 6.0089 6.0181 6.0188 6.01 6.01 

l2 4.848219 4.838525 4.8841 5.000 5.3049 5.3114 5.3034 5.3 5.304 

l3 4.485641 4.460903 4.4544 4.479 4.5023 4.4884 4.4959 4.49 4.49 

l4 3.456451 3.471295 3.4738 3.361 3.5077 3.4975 3.499 3.49 3.498 

l5 2.175804 2.113283 2.1571 2.134 2.1504 2.1583 2.1556 2.15 2.15 

Optimum 

weight 
1.30337 1.30328 1.3031 1.304 1.3399 1.3399 1.33995 1.3399 1.34 
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Table-4.35: Comparison of hHHO-IGWO, CHHO and CSMA with other methods for 

Compression Spring Design Problem 

 

Method 
hHHO-

IGWO 
CHHO CSMA HHO 

GWO 

[296] 

GSA 

[276] 

CPSO 

[297] 

ES 

[196] 

GA 

[298] 

HS 

[299] 

DE 

[300] 

V
a

r
ia

b
le

 ‘d’ 0.05187 0.05170 0.05 0.05179 0.0516 0.0503 0.0517 0.052 0.0515 0.0512 0.0516 

‘D’ 0.36127 0.35712 0.3174 0.35930 0.3567 0.3237 0.3576 0.364 0.3517 0.3499 0.3547 

‘N’ 11.0267 11.2652 11.2889 11.1388 11.2889 13.5254 11.2445 10.890 11.632 12.076 11.4108 

Optimum 

weight 
0.01266 0.01266 0.01267 0.01269 0.01195 0.01267 0.0127 0.0126 0.0126 0.0127 0.01267 

 The results shown in Table 4.35 reveals that hHHO-IGWO, CHHO and CSMA are 

effective in determining optimum cost for spring design problem. Results of proposed 

methods are very close to GSA, CPSO, ES, GA, HS and DE. 

4.5.6 Analysis of rolling design problems Using hHHO-IGWO, CHHO and 

CSMA method  

Table-4.36: Comparison of hHHO-IGWO, CHHO and CSMA with other methods for 

rolling design problem 

Method 
hHHO-

IGWO 
CHHO CSMA HHO 

WCA 

[301] 

SCA 

[302] 

MFO 

[279] 
MVO [266] 

Values for 

variables 

r1 125 125.7227 125.7227 125 125.72 125 125 125.6002 

r2 21 21.4233 21.4233 20.99292 21.42300 21.0328 21.0328 21.32250 

r3 11.092500 11.00146 11.00116 11.10833 10.01030 10.9657 10.9657 10.97338 

r4 0.515 0.515 0.515 0.515 0.515000 0.515 0.515 0.515 

r5 0.515 0.51500 0.515 0.515 0.515000 0.515 0.51500 0.515000 

r6 0.4 0.4954 0.4944 0.4 0.401514 0.5 0.5 0.5 

r7 0.6 0.6996 0.6986 0.6 0.659047 0.7 0.67584 0.68782 

r8 0.3 0.3 0.3 0.3 0.300032 0.3 0.30021 0.301348 

r9 0.0648640 0.03398 0.03346 0.057948 0.040045 0.02778 0.02397 0.03617 

r10 0.6 0.60034 0.60049 0.6 0.600000 0.62912 0.61001 0.61061 

Optimum fitness 83014.012 83455.82 85534.16 83043.30 85538.48 83431.1 84002.5 84491.266 

 

Table-4.36 shows the comparative analysis of hHHO-IGWO, CHHO and CSMA 

results compared with HHO, WCA, SCA, MFO and MVO method for rolling design 

problem.It is noticed from the analysis that the proposed method gives competitive 

results to other stochastic techniques. It can be seen that hHHO-IGWO excels in 

achieving optimal fitness compared to CHHO, CSMA and other techniques.    



 

138 

 

4.5.7 Analysis of welded beam design problems Using hHHO-IGWO , CHHO 

and CSMA method 

 

Table-4.37 shows the comparative analysis of hHHO-IGWO, CHHO and CSMA 

results compared with HHO, GSA, HS and GA, Random, Simplex, and Approx. It is 

revealed from the comparative analysis that the proposed method gives more precise 

results compared to other methods. It can be seen that CSMA is more effective in 

evaluating optimal cost for welded beam design due to randomness introduced by 

chaotic function. 

Table-4.37: Relative analysis of welded beam design problem with other methods 

 

Method 

  

hHHO-

IGWO 

 

CHHO 

 

CSMA HHO 
GSA 

[212] 

HS 

[303] 

GA 

[298] 

Random 

[304] 

Simplex 

[304] 

APPRO

X 

[304] 

Optimum 

Variables 

h 0.19655 0.2028 0.2057 0.2040 0.244 0.182 0.2489 0.4575 0.2792 0.2444 

l 3.68507 3.5452 3.4710 3.5310 6.223 3.857 6.173 4.7313 5.6256 6.2189 

t 9.02302 9.0050 9.0366 9.0274 8.291 10 8.1789 5.0853 7.7512 8.2915 

b 0.21012 0.2073 0.2057 0.2061 0.244 0.202 0.2533 0.66 0.2796 0.2444 

Optimal Cost 

  
1.77039 1.7369 1.7248 1.8112 1.88 2.380 2.4331 4.1185 2.5307 2.3815 

4.5.8 Analysis of Belleville spring design problems using hHHO-IGWO, 

CHHO and CSMA method 

Table-4.38 shows the comparative analysis of hHHO-IGWO, CHHO and CSMA 

results compared with HHO, TLBO, and MBA method for Belleville spring design 

problem.  

Table-4.38: Relative analysis of design variables with other 

algorithms for Belleville Spring Design 

Method 
hHHO-

IGWO 
CHHO CSMA HHO TLBO[206] MBA[271] 

Variables 

x1 11.99338 11.98694 8.83686 11.93789 12.01 12.01 

x2 10.00925 10.00147 4.81595 9.939825 10.0304 10.0304 

x3 0.204184 0.204191 0.2 0.204267 0.20414 0.20414 

x4 0.200003 0.2 0.2 0.2 0.2 0.2 

Optimal Cost 1.98126 1.9798 0.0572 1.98465 1.98966 1.98965 

 

The comparative analysis presented in Table 4.38 reveals that the hHHO-IGWO, 

CHHO and CSMA gives precise results compared with other techniques. The optimal 

value evaluated by CHHO and CSMA are 1.9798 and 0.0572.  It can be seen that CSMA 

has better search capability compared to hHHO, CHHO and other methods. 
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4.5.9 Analysis of Gear Train Design problem using hHHO-IGWO , CHHO 

and CSMA method 

Table-4.39 shows the comparative analysis of hHHO-IGWO, CHHO and CSMA 

results compared with HHO, GeneAS, Kannan and Kramer and Sandgren method for 

Gear Train design problem.   

Table-:4.39: Relative analysis of Gear Train problem with other methods 

 

Method 
hHHO-

IGWO 

 

CHHO 

 

CSMA 

 

HHO 

GeneAS 

[292] 

Kannan and 

Kramer 

[292] 

Sandgren 

[292] 

Optimal 

values for 

variables 

g1 41 41 41 56 50 41 60 

g2 47 46 33 58 33 33 45 

g3 16 16 15 22 14 15 22 

g4 17 15 13 21 17 13 18 

Optimum fitness 0.1434 0.14423 0.144124 0.14563 0.144242 0.144242 0.144124 

 

The comparative analysis reveals that the proposed methods gives competitive results 

with other techniques. It is also worth noticing that gear ratio variables are different. 

This suggests that proposed methods finds a new optimal design for this problem. The 

optimal fitness evaluated by CHHO and CSMA are 0.1434 and 0.144124. It can be seen 

that CSMA is effective in evaluating optimal fitness for Gear Train due to randomness 

introduced by chaotic function. 

4.5.10 Analysis of multiple disc clutch brake design using hHHO-IGWO, 

CHHO and CSMA method 

Table-4.40 presents the comparative analysis of hHHO-IGWO, CHHO, CSMA HHO, 

WCA, TLBO and PVS for multi disc clutch design problem. 

Table-4.40: Relative analysis for multiple disc clutch brake design with other 

algorithms 

  

Method 
hHHO-

IGWO 
CHHO CSMA HHO 

WCA 

[305] 

TL-

BO[306] 

PVS 

[307] 

Fitness 

variables 

x1 69.99998 69.9991 69.99 70 70 70 70.00 

x2 90 90 90 90 90 90 90 

x3 2.31286 2.31812 2.312 2.32929 3 3 3 

x4 1.5 1.5 1.5 1.5 1 1 1 

x5 999.9671 997.702 1000 992.915 910 810 880 

Optimum fitness 0.3896 0.24697 0.38965 0.39159 0.3166 0.31365 0.32365 
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It is observed that results of proposed methodologies are very close to other algorithms. 

The optimal fitness evaluated by CHHO and CSMA are 0.24697 and 0.38965. It can be 

seen that CHHO is more effective in evaluating optimal fitness for said problem due to 

randomness introduced by chaotic property. 

4.6  Conclusion 

This chapter deals with the testing of 23 test functions and 10 real-world engineering 

design problems. Three different algorithms are developed using recent modern search 

algorithms such as Harris Hawk’s optimizer and Slime mould algorithm. One hybrid 

and two chaotic algorithms are applied to test benchmark and design complications. To 

check the accurateness of the proposed methods, test results were equated with recent 

algorithms such as PSO, DE, GA, MVO, GWO, GSA, ACO, MFO, etc. It is seen that 

simulation results of proposed algorithms outperform other methods in testing 

benchmark and engineering design problems. 
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CHAPTER-5 

UNIT COMMITMENT PROBLEM WITH THERMAL 

GENERATING UNIT 

 

5.1 INTRODUCTION 

Unit commitment is the process used to determine the ON/OFF status of generating 

units to meet forecasted load demand with sufficient reserve margin. In a unit 

commitment problem, it is desirable to have economic generation by selecting a 

particular combination of generation units. From the available number of generating 

units, the units with the lowest operating costs should be given first priority to be turned 

on, and the units with the highest operating costs will be given the least priority. In 

today’s smart grid power system, besides the main coal-fired generation, a large number 

of power sources are integrated. 

 To address this complex unit commitment problem, the contribution of 

electricity by a large number of renewables participation and a significant quantity of 

V2G in the current grid has a broad scope in reducing our dependence on fossil-based 

fuels for energy production and transportation. However, the high penetration of 

renewable energy and the unregulated structure of the electricity grid, unit commitment 

has become a more challenging and complicated task. This huge penetration of 

sustainable sources has rather made the unit commitment problem more complex. This 

creates a necessity for immediate attention to developing new advanced optimization 

topologies to resolve commitment problems with great precision and approximations. 

Thus, optimization of power systems has gained great importance in modern power 

systems to cope with the economic dispatch problem.  

In the traditional power system network, power is generated by a variety of 

generating stations, including thermal, hydro, nuclear, and others. Hydro and nuclear 

units are classified as base load plants and must be maintained operational at all times. 

Thermal units cannot be started immediately and must wait six to eight hours before 

they can be used. Furthermore, the load demand changes throughout the day and 

reaches various peak levels. The classical unit commitment problem in electric power 
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systems focuses on developing optimum methods for assigning available power 

generation optimally to various generating units in order to maintain power balance 

with adequate reserve capacity under various constraints.  

As a precautionary measure, there should be an adequate reserve margin to 

avoid any malfunction in the event of a fault in the generating or transmission lines or 

a sudden increase in load demand. Such units are to be kept ready for any emergency 

and keep spinning all the time, even if they are not connected to the grid, and are termed 

"Spinning Reserve". It is known that a definite cost is associated with starting and 

switching off any generating unit. For an economical operation, a proper generation 

allocation is needed. So, it is necessary to fulfill the forecasted load demand by selecting 

low-cost units in operation and putting off the units with higher costs. 

The units that are connected to the utility are termed "committed units," while 

the units that are disconnected are called "de-committed units." The complete process 

of selecting the most feasible generation schedule and load allocation comes under the 

economic operation of a power system. Unit commitment is the task of identifying most 

economical generation schedule subjected to operational constraints such that (i) 

generated power should be equal to demand and losses (ii) there should be sufficient  

reserve margin, (iii) the generator should be loaded to maximum capacity and (iv) 

operation time of each unit must be realistic for proper service operation [308] , [274].  

In recent years, many traditional methods have been applied to handle unit 

commitment problems. For efficient implementation of these methods, there is a need 

for an exact mathematical model and an adequate formulation. Moreover, despite all 

the possible cautions taken during problem formulation while designing a particular 

algorithm, there may be a chance of being trapped in local minima. This may prevent 

the optimizer from giving a desirable performance in determining global search points. 

[296], [309].  

Over the last two decades, a significant research effort has been made to 

improve the current UC problems. The primary scalability factors for measuring the 

performance of any optimizing technique are computational ability, memory allocation 

requirements, and computational time. Based on these measuring factors, some flaws 

are seen in the existing conventional optimization methods for solving the UC problem. 
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Numerical techniques [310] and dynamic programming method [115], [311] has 

limited estimation of the problem, requires huge time. The MIP method [312], [313] 

faces problems in handling the economic power dispatch particularly when subjected 

to the increased number of units and produce computational delays due to requirement 

of large memory size. Gradient descent method is found to be unfocused in selecting 

units. The lagrangian relaxation [42] obsolete to explore feasible solutions and creates  

problems for systems with large number of units. The BB method [38], [119]  is 

subjected to exponential time growth to execute problems with large systems. An expert 

system [51] is efficient in solving complex calculations in less computational time. But, 

inefficient in solving problems with new schedule.  

The fuzzy theory [314] fuzzy set are used to determine the schedules error, but 

produces more complexities. Gravitational search algorithm has inherent ability to 

discover search space optimally. But, with the progress of subsequent iterations masses 

gets heavier and remains in close proximity and restrict algorithm to exploit search 

space with optimal fitness [276], [315].  

One of the major observations from the above discussion is that some 

algorithms give better performance in solving a particular parameter but fail to give an 

optimal solution at the other end. It may be simple but optimal, and the other one may 

be complex but precise. [316]–[318]. So, in order to anticipate these complications, a 

trend of developing hybrid algorithms is advancing to evolve more efficient solutions 

[319], [320]. 

Chen et al. [36] have combined fuzzy iteration at the initial stage of dynamic 

programming. It was noticed that this fuzzy-based technique permits conventional 

dynamic programming to evaluate decision process more appropriately for solving 

multi-objective problems. Valenzuela et al. [63] integrated genetic algorithm with 

Lagrangian relaxation method to explore unit commitment problem with more 

enhanced performance compared GA, MA, DP and LR. It was proven that the seeded 

memetic GA-LR method gave better results compared with general methods.  

Omran et al. [129] incorporated swarm intelligence with improvisation process 

of harmony search to find global-best position. The effect of noise on three Harmony 

search (HS) variants had been tested and results were compared with HS and improved 

Harmony search (IHS). It was noticed that global best harmony search method 
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outperforms in searching global-best position precisely for even extremely small value 

of PAR. 

 Bavafa et al. [91] applied a hybrid combination of Lagrangian, evolutionary 

and quadratic programming to resolute UC problem of a 26 unit IEEE system. The 

advantages of both methods were integrated to provide superior search results within a 

short time. Yadav et al. [108] have developed a hybrid method by assimilating PSO 

with DE for solving dispatch and economic emissions. The hybrid model was utilized 

to minimize overall generation costs and emission costs. Now, after getting familiar 

with sufficient literature corresponding to the classical unit commitment problem, the 

following section presents the unit commitment problem formulation. 

 

5.2 UNIT COMMITMENT PROBLEM FORMULATION 

Unit commitment is a mixed-integer non-linear optimization problem due to the 

involvement of a large number of unit and system constraints. Classical UCP is 

subjected to various equality and inequality constraints. The objective of cost 

minimization can be brought into realization by selecting a particular combination of 

generating units for scheduling. The following section includes the UCP formulation 

for conventional power systems. 

5.2.1 Unit commitment problem formulation for conventional power system 

Electricity is generated primarily from thermal energy derived from the combustion of 

expensive fossil fuels. Fuel cost depends upon cost coefficients associated with each 

individual generator's characteristics. In a more broad sense, these generating units need 

a specific cost to start up before being available for service, and this cost is termed the 

"start-up cost". Once a generating unit is put online and connected with the system, it 

should be kept connected, as turning off a unit also has some associated costs. This cost 

is known as the "shut-down cost". So, the total cost of power generation is the algebraic 

addition of fuel cost, shut-down cost, and startup cost. The system and unit constraints 

are discussed in detail as follows:  

5.2.1.1   Operating Cost 

In general the fuel cost is characterized by second order quadratic equation given 

as, 
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          (5.1) 

Where,  are the fuel cost function expressed in 2
$ / h,$ / , $ /MWh and MWh

respectively. 

The startup cost is related to the boiler temperature and mathematically, startup 

cost iSTC  can be expressed in terms of hot start-up cost  and cold startup ( )CSc  

of ith unit respectively. 
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        (5.2)  

Where, 
iMDt  is the minimum down time of unit ‘i’, .

OFF
i hT  is the duration for which unit 

‘i’ is continuously OFF and
iCSh  is the cold start-up hours. 

Shut down cost is constant and taken as zero in standard systems. Now, the total operating 

cost FT is determined by summing up the generation cost of each unit and the start-up 

cost for a defined time interval. It can be mathematically represented as: 

 2

, , , i( 1) ,

1 1

( [ (1 ) ] $ / hr
H N

T i i h i i h i i h i h i h

h i

F a P b P c U STC U U

 

                                       (5.3) 

Unit commitment problem needs to provide optimum solution within certain constraints. 

The major constraints involved in UC problem are:  

5.2.1.2 Operating Limits Constraints 

This constraint deals with the maximum and minimum power generation. There is a limit 

below which power generation is not economical due to some technical limitations. 

Similarly, power generation should not be more maximum power generation limit. These 

power generation limits for a particular unit are calculated from the heat rate curve and 

fuel cost coefficient limits. 

min max
( 1,2,...., ; 1,2,...., )i iPG PG PG i N h H                          (5.4) 

5.2.1.3 Load Balance Constraints 

The load demand never remains constant and continuously changes over the entire span 

of the time interval. It is desired that the overall power produced by all the committed 

i i ia b and c

( )HSch
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units (N) for a particular duration (h) should always satisfy the connected load demand 

(DL). Therefore, at any instant of time, the power supplied by thermal unit should always 

be equal to power demand. 

 
1

1 2 1 2 3
N

i i ,h L

i

PG .U D i , ,........,N;h , , ....,H


                   (5.5) 

5.2.1.4 Spinning Reserve Constraints 

 The additional generation capacity is referred to as Spinning Reserve. At any instant, the 

generated power should be equal to load demand and spinning reserve.  

Mathematically,  

 
1

1 2 1 2 3
N

i i ,h L( h ) ( h )

i

PG .U D SR i , ,........,N;h , , ....,H


                                                          (5.6)                  

5.2.1.5  Thermal Constraints 

A generating unit cannot be instantly turned on and produce power. Before putting a 

particular generating unit online, it should meet certain thermal constraints.  

5.2.1.6 Minimum Up-time Constraints 

This constraint gives the minimum time to put a generating unit online after it has already 

been shut down. 

 Mathematically expressed as: 

,
ON

ii hT MUT                                (5.7) 

5.2.1.7 Minimum down time Constraints 

This constraint gives the minimum amount of time for which a particular unit should be 

kept in off condition before putting it online.  

Mathematically expressed as: 

,
OFF

ii hT MDT                               (5.8)  

5.2.1.8 Crew Constraints 

This constraint is related to the probability of unavailability of sufficient crew members 

to monitor all units at the same time during the start-up process. 

5.2.1.9 Initial States of units 

It gives information related to the unit on-line/off-line status of each unit and helps to 
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select minimum up /downtime based on data of the previous day’s schedule. The initial 

state is indicated by either plus or minus signs. A ‘+’ sign is for online status and a ‘-

‘sign is for offline status for a particular generating unit. 

5.3 SOLUTION METHODOLOGIES FOR UNIT COMMITMENT 

PROBLEM 

In this section, UC problem has been resolved by applying hHHO-IGWO, CHHO and 

CSMA. Subsequent section present various steps for spinning reserve and minimum 

up/down constraints repairing to minimize the overall generation cost.  

5.3.1 Spinning Reserve Constraint Repairing 

In order to update spinning reserve requirement of various thermal generating units, 

Minimum down time ( )iMDT  of each generating unit along with duration for which ith 

generating unit is continuously OFF ,( )OFF

i hT  is taken into consideration. Spinning 

reserve constraint is repaired as per code mentioned below and flow chart for spinning 

reserve repair mechanism is shown in Fig.5.1. 

Step1: list the units in descending as per maximum generation. 

Step2:    for i = 1 to N 

if , 0i hu   

then , 1i hu   

else if ,
OFF

i h iT MDT   

then , , 1 1ON ON
i h i hT T   and , 0OFF

i hT   

end if 

end for 

Step-3: Verify new generating power of units. 

Step-4:  if ,max ,

1

N

j j h Lh h

j

P u D SR


    then stop the algorithm, else go to step-2. 

Step-5: if ,
OFF

i h iT MDT   then do , 1OFF

i hl h T    and set , 1i hu   

Step-6: Calculate 1, 1l ON
i l iT T    and , 0

OFF

i hT   

Step-7: if l >h, Verify generator output power for j,max ,

1

N

h j h h

j

P u D R


  , else increment 

l by 1 and go to step-5. 
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START

Sort the Generator in Descending order of Power 

Capacity 

STOP

YES

YES

YES

NO

NO

NO

NO

, 1OFF

i hl h T  

l h

, 0OFF

i hT 

(max) ,
1

N

gi i h h h
i

P U D SR


 

1i 

, 0i hU 

, 1i hU 

,

OFF

i h gT MDT

, 1i lU 

1l l 

1i i 

, , 1 1ON ON

i l i lT T  

, 0OFF

i lT 

, ,( 1) 1ON ON

i h i hT T  

 

Fig.5.1:  Spinning reserve repairing 
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5.3.2 Minimum Up/Down constraints repairing  

To satisfy Minimum up/down time requirement of generating units, following repairing 

mechanism is adopted as follows. 

 

5.3.3 De-commitment of excessive generating units 

In unit commitment problem, it is beneficial to shut-down the excessive units to avoid 

power wastage. In order to de-commit excessive generating units for which ith 

generating unit is continuously OFF is taken into consideration and constraint is 

repaired as represented in Fig.5.2 (a) and process is illustrated in Fig.5.2 (b) 

 

Fig.5.2 (a): De-commitment of excessive generative units 

for h=1 to H 

if h==1 

            Compute 
ON

hT =
0

ON

hT
,i hU + ,i hU ' 

Compute
OFF

hT =
0

'( )OFF

hT
ON

hT +
ON

hT   

else 

        Compute 
ON

hT = 1
ON

hT  ,i hU '+ ,i hU ' 

Compute 
OFF

hT = 1
OFF

hT 
ON

hT +
ON

hT  

end 

end 

where,  

, ,( 1) ,i h i h i hU U F U F   and 
1 1 1 1)0& 0[ (' ]| & 'OFF ON ON OFF T

h h h hF MUT MT DT T T T         
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START

Sort the Generator in order of minimum Power 

Capacity

STOP

1i 

, 1i hU 

(max) , (max)
1

NG

g i h i g h h
i

P U P D SR


  

YES

NO

1i i 

, 0h iU 

, ,( 1) 1OFF OFF

i h i hT T  
, 0ON

i hT 

,
ON

gi hT MUT

NO

YES
NO

, 1ON

h iT 

YES

NO

YES

 

Fig.5.2 (b): De-commitment procedure of disproportionate generative units 
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5.4 HYBRID HARRIS HAWKS OPTIMIZER  

In order to implement Hybrid Harris Hawks optimizer (hHHO-IGWO), the general 

operators of HHO algorithm and IGWO algorithm are integrated.  

The optimization procedure for the hHHO-IGWO algorithm shown in Fig.5.3.consists 

of the following ten steps: 

Step-1: As indicated below, configure UCP parameters and individuals in the 

population: 

 The unit's ON/OFF schedule is saved as an integer-matrix, which is technically 

described as: 

111 12

221 22

1 2

NG

NG

hi

H H HNG H NG

uu u

uu u
U

u u u

 

 



  



 
 
 


 
 
  

 

 

Step-2: Reconfigure the schedule. 

Step-3: Change the individual status. 

Step-4: Repair unit status for minimum up/down time defilements. 

Step-5: De-commit the population's extra units  

Step-6: The problem of cost-effective load dispatch is then solved, and fuel costs for 

each hour are determined. 

Step-7: Apply HHO and perform exploration phase to generate updated target vector

( 1)X itn  . 

Step-8: Apply Levy flight to further update to generate ( 1)newX itn . 

Step-9: Replace worst positions vector ( 1)worstX itn  with ( 1)newX itn   

Step-10: Determine overall generation cost for ( )nit   

Step-11: If max

nnit it , then go to step 13.  

Step-12: If max

nnit it , increase nit  by one and return to step 3 and repeat. 

Step-13: Stop and evaluate best solution in the population  

 



 

152 

 

START

Initialize the HHO-IGWO Search 

agents, Maximum Iterations ,etc  

Set iteration counter ,i = 0

Modify Search agent position in the population 

to satisfy reserve constriants

NO

Make final generation Schedule committed Units

Calculate Priority List of each search agent

According to characteristics of each generating 

unit 

Initialize Random Position of Search agents

Increment 

Iteration 

Count by 1

STOP

If iteration 

counter = max 

iteration

Repair each search agent position for minimum up 

down time violation

Decommited position of each units in the population 

to reduce excessive spinning reserve due to MUT/

MDT repairing 

Calculate fuel cost using fuel cost equation and start 

up cost repairing considering MDT/MUT 

,CSH,CSC,HSC and Initial Status of generating Units

Evaluate the total generating cost using equation() 

for each position of search agents

Compare overall generation cost of each population 

with its best TFC and determine global value

Update the unit status using Hybrid HHO-IGWO 

algorithm

Print Committed Status and generation schedule of 

generating unit and save . Xis format 

No

            Yes

Enter UCP Input Parameter i.e 

Pgmin,,Pg.max,

Fuel cost coefficient, Mup, MDN , 

CScH,HScH, SI  

 

Fig.5.3: Flowchart of UC process using Hybrid HHO-IGWO 
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5.5      CHAOTIC HARRIS HAWKS OPTIMIZER 

In order to utilize the chaotic algorithm for unit commitment issue, the general operators 

of Harris Hawks are integrated with Tent chaotic function. Initially, a random solution 

is generated within the entire population by clubbing corresponding chaotic function. 

This best solution is then compared with the solution obtained by HHO algorithm. In 

proposed algorithm, chaotic search is applied to optimize a group of units to be 

committed for mininizing the overall cost. The succeeding steps in the proposed CHHO 

algorithm are: 

Step-1: Initialization of UCP and Chaotic parameters of the algorithm.  

Step-2:Enter UCP input parameters and generate random vectors as many Hawks 

position using eqn.(5.1).Each random vector  is defined as generating unit ON/OFF (or 

1/0) status, defined as: 

111 12

221 22

1 2

NG

NG

hi

H H HNG H NG

uu u

uu u
U

u u u

 

 



  



 
 
 


 
 
  

  

 

Step-3: Arrange the generating units in descending order according to their maximum 

generation capability. 

Step-4: Modification of units’ status of every entities in the population obeying reserve 

restrictions as mentioned in 5.3.1. 

Step-5: Repair unit status for minimum up/down time defilements as per section 5.3.2.  

Step-6: De-commit the population's extra units  

Step-7: Apply HHO and perform exploration phase to generate updated target vector

( 1)X itn  . 

Step-8: Apply Levy flight to further update ( 1)X itn   to generate ( 1)newX itn . 

Step-9: Replace worst positions vector ( 1)worstX itn  with ( 1)newX itn  using eqn. (2.13) 

Step-10: Determine overall generation cost for ( )nit .  

Step-11: If max

nnit it , then go to step 13.  
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Step-12: If max

nnit it , increase nit  by one and return to step 3 and repeat. 

Step-13: Break and figure out the most profitable solution to the unit commitment 

dilemma. 

 

5.6 CHAOTIC SLIME MOULD ALGORITHM   

The detailed theoretical and mathematical aspects of CSMA has been already discussed 

in chapter 3. In proposed algorithm, chaotic search is applied to optimize a vector NP
U

of units to be committed for mininizing the overall cost. The various steps for the 

proposed CHHO algorithm are mentioned below: 

Step-1: Initialization of UCP and Chaotic parameters of the algorithm  

Step-2: Enter UCP input parameters and generate random vectors as many Slime mould 

position using eqn (5.1).  

Step-3: Display the generating units in descending order according to their maximum 

generation capability. 

Step-4: Modification of units’ status of every individuals in the population  

Step-5: Repair individual unit status time defilements  

Step-6: De-commit the population's extra units for reducing spinning reserve  

Step-7: Apply SMA and perform exploration to generate updated target vector ( 1)X itn 

.Step-8: Apply Chaotic strategy further update ( 1)X itn   using smell index generate

( 1)newX itn . 

Step-9: Replace worst positions vector ( 1)worstX itn  with ( 1)newX itn   

Step-10: Determine overall generation cost for ( )nit   

Step-11: If max

nnit it , then go to step 13.  

Step-12: If max

nnit it , increase nit  by one and return to step 3 and repeat. 

Step-13: End and figure out the most profitable solution to the unit commitment 

dilemma. 
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5.7   SYSTEM DATA 

 In this research work, to resolute unit commitment problem for small, medium and 

large system, standard IEEE system data consisting of 10, 20, 40 and 60 units has been 

analyzed by implementing proposed algorithms. The system data used in the proposed 

study are load demand, fuel cost coefficients of each generating unit, MUT, MDT and 

Initial State (IS).  

5.7.1 Ten Unit System 

The test data for 10- unit system is specified in Table-5.1 and fuel cost coefficients for 

corresponding units are given in Table-5.2. The load demand profile for 24-hours is 

presented in Table-5.3. 

Table-5.1: Test data for 10-unit system  

Unit 

No. 

Pmax 

(MW) 

Pmin 

(MW) 

Minimum Up-

Down Time (h) 

Start-up 

Costs ($) 
CSH 

(h) 
IS 

MUT MDT HSC CSC 

U1 455 150 8 8 4500 9000 5 8 

U2 455 150 8 8 5000 10000 5 8 

U3 130 20 5 5 550 1100 4 -5 

U4 130 20 5 5 560 1120 4 -5 

U5 162 25 6 6 900 1800 4 -6 

U6 80 20 3 3 170 340 2 -3 

U7 85 25 3 3 260 520 2 -3 

U8 55 10 1 1 30 60 0 -1 

U9 55 10 1 1 30 60 0 -1 

U10 55 10 1 1 30 60 0 -1 

 

Table-5.2: Fuel cost coefficients for 10-generating units  

Unit No. 
Fuel Cost Coefficients 

a ($/MW2h) b ($/MWh) c ($/h) 

U1 1000 16.19 0.00048 

U2 970 17.26 0.00031 

U3 700 16.6 0.002 

U4 680 16.5 0.00211 

U5 450 19.7 0.00398 

U6 370 22.26 0.00712 

U7 480 27.74 0.00079 

U8 660 25.92 0.00413 

U9 665 27.27 0.00222 

U10 670 27.79 0.00173 
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Table-5.3: Demand for 10, 20, 40 and 60 units for 24-hours 

Hour 10-Units 20-Units 40-units 60-Units 

h1 700 1400 2800 4200 

h2 750 1500 3000 4500 

h3 850 1700 3400 5100 

h4 950 1900 3800 5700 

h5 1000 2000 4000 6000 

h6 1100 2200 4400 6600 

h7 1150 2300 4600 6900 

h8 1200 2400 4800 7200 

h9 1300 2600 5200 7800 

h10 1400 2800 5600 8400 

h11 1450 2900 5800 8700 

h12 1500 3000 6000 9000 

h13 1400 2800 5600 8400 

h14 1300 2600 5200 7800 

h15 1200 2400 4800 7200 

h16 1050 2100 4200 6300 

h17 1000 2000 4000 6000 

h18 1100 2200 4400 6600 

h19 1200 2400 4800 7200 

h20 1400 2800 5600 8400 

h21 1300 2600 5200 7800 

h22 1100 2200 4400 6600 

h23 900 1800 3600 5400 

h24 800 1600 3200 4800 

 

5.8 RESULTS AND DISCUSSION 

This section presents UC problem resolved by proposed hybrid and chaotic algorithms 

such as hHHO-IGWO, CHHO and CSMA. The solution for standard test systems 

entailing of 10, 20, 40 and 60 generating units has been discussed. The proposed 

algorithms have been simulated in MATLAB 2018a Windows 10, CPU@2.10Ghz-

4GB RAM Core i5.  

5.8.1   Testing of unit commitment problem by using hHHO-IGWO method 

The hHHO-IGWO is applied to systems entailing 10, 20, 40 and 60 units and simulation 

results are recorded for corresponding thermal units. Due to stochastic nature of hHHO-
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IGWO algorithm, program is simulated for 30 trials runs and 500 iterations for better 

solution efficiency. 

 (a) Testing of 10 -unit system using hHHO-IGWO  

The proposed algorithm is applied to standard test systems of 10-units with 10% SR. 

The simulation results for Classical UC consisting of conventional thermal units has 

been recorded. Due to stochastic nature of hHHO-IGWO algorithm, program is 

simulated for 30 trials runs and 500 iterations for better solution efficiency.  

 

Fig.5.4: Convergence for 10 unit system using hHHO-IGWO  

Referring Table 5.4 , U1 and U2 are the most cost efficient units and thus run for total 

24 hours duration to meet the corresponding load deamd. During the peak hours, U3 to 

U9 units contribute their power to meet the corresponding load demand.At 12th hour , 

load is at Peak demand and thus all the units are in ON state. U10 act as the reserve unit 

and runs only during the peak demand.Start-up cost depends upon the operating 

temperature of particular unit.The total operating cost is the sum of start-up cost and 

generation cost of units for a 24 hour duration. The simulation results for HHO-IGWO 

algorithm for 10 units with 10% SR  shows that  total cost of generation with UC is $ 

563435.9964. Fig. 5.4 shows that evaluaion for 10 units using hHHO-IGWO 

convergences effciently towards best fitness.The results shows that proposed algorithm 

effeciently selects a particular combination of units to meet the hourly load demand and 

evaluates a cost effective solution to unit commitment problem.  
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Table-5.4: Scheduling for 10 units using hHHO-IGWO 

Time 

(h) 

Generation scheduling 
Power 

(MW) 

Start-Up 

Cost 

Hourly 

Fuel 

Cost 
U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 

1 455 245 0 0 0 0 0 0 0 0 700 1020 13683 

2 455 295 0 0 0 0 0 0 0 0 750 550 14554 

3 455 370 0 0 25 0 0 0 0 0 850 900 16809 

4 455 455 0 0 40 0 0 0 0 0 950 0 18598 

5 455 390 0 130 25 0 0 0 0 0 1000 0 20020 

6 455 360 130 130 25 0 0 0 0 0 1100 0 22387 

7 455 410 130 130 25 0 0 0 0 0 1150 0 23262 

8 455 455 130 130 30 0 0 0 0 0 1200 0 24150 

9 455 455 130 130 85 20 25 0 0 0 1300 430 27251 

10 455 455 130 130 162 33 25 0 10 0 1400 60 30076 

11 455 455 130 130 162 73 25 10 10 0 1450 60 31916 

12 455 455 130 130 162 80 25 43 10 10 1500 60 33890 

13 455 455 130 130 162 33 25 10 0 0 1400 0 30058 

14 455 455 130 130 85 20 25 0 0 0 1300 0 27251 

15 455 455 130 130 30 0 0 0 0 0 1200 0 24150 

16 455 310 130 130 25 0 0 0 0 0 1050 0 21514 

17 455 260 130 130 25 0 0 0 0 0 1000 0 20642 

18 455 360 130 130 25 0 0 0 0 0 1100 0 22387 

19 455 455 130 130 30 0 0 0 0 0 1200 0 24150 

20 455 455 130 130 162 33 25 10 0 0 1400 490 30058 

21 455 455 130 130 85 20 25 0 0 0 1300 0 27251 

22 455 455 0 0 145 20 25 0 0 0 1100 0 22736 

23 455 425 0 0 0 20 0 0 0 0 900 0 17645 

24 455 345 0 0 0 0 0 0 0 0 800 0 15427 

Worst 

Cost($)=565425.50222 
 

Best 

Cost($)=563435.9964 
 

Mean Cost($)=564452.7594 Total= 

563435.9

964($) 
Worst Time(Sec.)= 

0.0625 

Best Time(Sec.)= 

0.03125 
Mean Time(Sec.)= 0.04895 

 

  (b) Testing of 20 -unit system using hHHO-IGWO  

For 20-unit test system, the data from the 10-unit system was copied and multiplied by 

two. For all 30 trial runs with 500 iterations, the population size is set to 80, and 

simulation results for corresponding thermal units are recorded. 

Optimal solution of 20-unit test system using hHHO-IGWO is illustrated in Table-5.5. 

Referring Table 5.5, U1, U2, U11 and U12 are the most cost efficient units and thus run 

for total 24 hours duration to meet the corresponding load demand. During the peak 

hours, U3 to U19 units contribute their power to meet the corresponding load demand. 

At 12th hour, load is at maximum and thus all the units are in ON state. U10 and U20 

act as the reserve unit and runs only during the peak demand. 
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Table-5.5:  Scheduling of 20-units using hHHO-IGWO 

Time 

(h) 

Scheduling for 20-unit Hourly 

Fuel 

Cost U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

1 455 245 0 0 0 0 0 0 0 0 455 245 0 0 0 0 0 0 0 0 27366 

2 455 295 0 0 0 0 0 0 0 0 455 295 0 0 0 0 0 0 0 0 29109 

3 455 382 0 0 25 0 0 0 0 0 455 382 0 0 0 0 0 0 0 0 33111 

4 455 418 0 130 25 0 0 0 0 0 455 418 0 0 0 0 0 0 0 0 37197 

5 455 403 0 130 25 0 0 0 0 0 455 403 0 130 0 0 0 0 0 0 39533 

6 455 372 130 130 25 0 0 0 0 0 455 372 130 130 0 0 0 0 0 0 44266 

7 455 410 130 130 25 0 0 0 0 0 455 410 130 130 25 0 0 0 0 0 46524 

8 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 48301 

9 455 455 130 130 98 20 25 0 0 0 455 455 130 130 98 20 0 0 0 0 53839 

10 455 455 130 130 162 33 25 10 0 10 455 455 130 130 162 33 25 0 0 0 60144 

11 455 455 130 130 162 73 25 10 10 0 455 455 130 130 162 73 25 10 10 0 63832 

12 455 455 130 130 162 80 25 43 10 10 455 455 130 130 162 80 25 43 10 10 67780 

13 455 455 130 130 162 33 25 10 10 0 455 455 130 130 162 33 25 0 0 0 60133 

14 455 455 130 130 98 20 25 0 0 0 455 455 130 130 98 20 0 0 0 0 53839 

15 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 48301 

16 455 310 130 130 25 0 0 0 0 0 455 310 130 130 25 0 0 0 0 0 43027 

17 455 260 130 130 25 0 0 0 0 0 455 260 130 130 25 0 0 0 0 0 41284 

18 455 350 130 130 25 20 0 0 0 0 455 350 130 130 25 0 0 0 0 0 45243 

19 455 450 130 130 25 20 0 0 0 0 455 450 130 130 25 0 0 0 0 0 48744 

20 455 455 130 130 162 33 25 10 0 0 455 455 130 130 162 33 25 0 10 0 60133 

21 455 455 130 130 95 0 25 0 0 0 455 455 130 130 95 20 25 0 0 0 54092 

22 455 455 0 130 50 0 25 0 0 0 455 455 0 130 0 20 25 0 0 0 45039 

23 455 315 0 130 0 0 0 0 0 0 455 315 0 130 0 0 0 0 0 0 35528 

24 455 345 0 0 0 0 0 0 0 0 455 345 0 0 0 0 0 0 0 0 30855 

 

Overall Cost of Generation =1124860.6904($) 
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The convergence curves with for 20-unit system is shown in Fig.5.5. The simulation 

results for Hybrid Harris Hawks algorithm shows that total cost of generation with 

thermal units is $ 1124860.6904. 

The results shows that proposed algorithm efficiently selects a particular 

combination of units to meet the hourly load demand and evaluates a cost effective 

solution to unit commitment problem.  

  

Fig.5.5: Convergence for 20-units using hHHO-IGWO 

(c) Testing of 40 -unit system using hHHO-IGWO  

The hHHO-IGWO method is tested for solving unit commitment problem 40-unit 

system. The data of 10-unit system was replicated and load demand is multiplied by 4 

for forty units. Population size of 80 is taken into consideration for all trial solutions. 

Table-5.6(a) and 5.6(b) illustrates optimal dispatch for 40-unit system. The 

convergence curve for 40-unit system is shown in Fig.5.6. 

Referring Table 5.6(a) and 5.6(b), U1, U2, U11, U12,U21,U22,U31 and U32 are the 

most cost efficient units and thus run for total 24 hours duration to meet the 

corresponding load demand. For rest of hours, U3 to U9, U13 to U19, U23 to U29 and 

U33 to U39 contributes their power meet the corresponding load demand. At 12th hour, 

load is at maximum and thus all the units are in ON state. U10, U20, U30 and U40 act 

as the reserve unit and runs only during the peak demand. The total operating cost is 

the sum of start-up cost and generation cost of units for a 24 hour duration. 



 

161 

 

Table-5.6(a): Scheduling of 1 to 20 for 40 units using hHHO-IGWO 

Time 

(h) 

Scheduling for 1 to 20 units 

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

1 455 245 0 0 0 0 0 0 0 0 455 245 0 0 0 0 0 0 0 0 

2 455 295 0 0 0 0 0 0 0 0 455 295 0 0 0 0 0 0 0 0 

3 455 363 0 0 0 0 0 0 0 0 455 363 0 0 0 0 0 0 0 0 

4 455 363 0 130 0 0 0 0 0 0 455 363 0 130 0 0 0 0 10 0 

5 455 350 130 130 0 0 0 0 0 0 455 350 130 130 0 0 0 0 0 0 

6 455 379 130 130 25 0 0 0 0 0 455 379 130 130 0 0 0 0 0 0 

7 455 416 130 130 25 0 25 0 0 0 455 416 130 130 25 0 0 0 0 0 

8 455 454 130 130 25 0 25 0 0 0 455 454 130 130 25 0 25 0 0 0 

9 455 455 130 130 103 20 25 0 0 0 455 455 130 130 103 20 25 0 0 0 

10 455 455 130 130 162 33 25 10 0 0 455 455 130 130 162 33 25 10 0 0 

11 455 455 130 130 162 73 25 10 10 0 455 455 130 130 162 73 25 10 10 0 

12 455 455 130 130 162 80 25 43 10 10 455 455 130 130 162 80 25 43 10 10 

13 455 455 130 130 162 33 25 10 0 0 455 455 130 130 162 33 25 10 0 0 

14 455 455 130 130 104 20 25 0 0 0 455 455 130 130 104 20 0 0 0 0 

15 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 

16 455 310 130 130 25 0 0 0 0 0 455 310 130 130 25 0 0 0 0 0 

17 455 260 130 130 25 0 0 0 0 0 455 260 130 130 25 0 0 0 0 0 

18 455 360 130 130 25 0 0 0 0 0 455 360 130 130 25 0 0 0 0 0 

19 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 

20 455 455 130 130 162 33 25 10 0 0 455 455 130 130 162 33 25 10 0 0 

21 455 455 130 130 113 20 25 0 0 0 455 455 130 130 113 20 25 0 0 0 

22 455 438 130 130 0 20 25 0 0 0 455 438 0 130 0 20 25 0 0 0 

23 455 348 0 130 0 0 0 0 0 0 455 348 0 130 0 0 0 0 0 0 

24 455 345 0 0 0 0 0 0 0 0 455 345 0 0 0 0 0 0 0 0 
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Table-5.6(b): Scheduling of 21-40 units for 40 units using hHHO-IGWO 

Time 

(h) 

Scheduling for 21 to 40-Units  

Hourly 

Fuel 

Cost 

U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 U31 U32 U33 U34 U35 U36 U37 U38 U39 U40  

1 455 245 0 0 0 0 0 0 0 0 455 245 0 0 0 0 0 0 0 0 54733 

2 455 295 0 0 0 0 0 0 0 0 455 295 0 0 0 0 0 0 0 0 58218 

3 455 363 0 0 0 0 0 0 0 0 455 363 0 130 0 0 0 0 0 0 65794 

4 455 363 0 130 0 0 0 0 0 0 455 363 0 130 0 0 0 0 0 0 75314 

5 455 350 0 130 0 0 0 0 0 0 455 350 0 130 0 0 0 0 0 0 79285 

6 455 379 130 130 0 0 0 0 0 0 455 379 130 130 0 0 0 0 0 0 88025 

7 455 416 130 130 0 0 0 0 0 0 455 416 130 130 0 0 0 0 0 0 92770 

8 455 454 130 130 25 0 0 0 0 0 455 454 130 130 0 0 0 0 0 0 97518 

9 455 455 130 130 103 20 0 0 0 0 455 455 130 130 103 0 0 0 0 0 107269 

10 455 455 130 130 162 33 25 10 0 0 455 455 130 130 162 33 25 10 0 0 120230 

11 455 455 130 130 162 73 25 10 10 0 455 455 130 130 162 73 25 10 10 0 127664 

12 455 455 130 130 162 80 25 43 10 10 455 455 130 130 162 80 25 43 10 10 135561 

13 455 455 130 130 162 33 25 10 0 0 455 455 130 130 162 33 25 10 0 0 120230 

14 455 455 130 130 104 20 0 0 0 0 455 455 130 130 104 20 0 0 0 0 107016 

15 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 96601 

16 455 310 130 130 25 0 0 0 0 0 455 310 130 130 25 0 0 0 0 0 86055 

17 455 260 130 130 25 0 0 0 0 0 455 260 130 130 25 0 0 0 0 0 82567 

18 455 360 130 130 25 0 0 0 0 0 455 360 130 130 25 0 0 0 0 0 89548 

19 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 96601 

20 455 455 130 130 162 33 25 10 0 0 455 455 130 130 162 33 25 10 0 0 120230 

21 455 455 130 130 113 20 25 0 0 0 455 455 130 130 0 20 25 0 0 0 108593 

22 455 438 0 130 0 20 25 0 0 0 455 438 0 130 0 20 25 0 0 0 90488 

23 455 348 0 130 0 0 0 0 0 0 455 348 0 0 0 0 0 0 0 0 70466 

24 455 345 0 0 0 0 0 0 0 0 455 345 0 0 0 0 0 0 0 0 61710 

 

Overall Cost of Generation =2249657.3623($) 
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Fig.5.6: Convergence Curve for 40-unit system using hHHO-IGWO 

The simulation results for hHHO-IGWO method for 40 units shown in above results 

shows that total cost of generation with thermal units is $ 2249657.3623. The results 

shows that proposed algorithm efficiently selects a particular combination of units to 

meet the hourly load demand and evaluates a cost effective solution to unit commitment 

problem. 

(d) Testing of 60-unit system using hHHO-IGWO  

The hHHO-IGWO method is tested for solving unit commitment problem for 60-units. 

The statistics of 10-unit system was replicated and multiplied by 6 for sixty units. Table-

5.7 (a), 5.7(b) and 5.7(c) illustrates optimal dispatch for 60-unit system. The 

convergence curve for 60-unit system is shown in Fig.5.7. 

In Table 5.7(a), 5.7(b) and 5.7(c), U1, U2, U11, U12, U21, U22, U31, U32, 

U41, U42, U51 and U52 are the most cost efficient units and thus run for total 24 hours 

duration to meet the corresponding load demand. For rest of hours, U3 to U9, U13 to 

U19, U23 to U29, U33 to U39, U43 to U49 and U53 to U59 contributes their power to 

meet the corresponding load demand. At 12th hour, load is at peak demand and thus all 

the units are in ON state. U10, U20, U30, U40, U50 and U60 act as the reserve unit and 

runs only during the peak demand. The total operating cost is the sum of start-up cost 

and generation cost of units for a 24 hour duration.
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Table-5.7(a): Scheduling of 1 to 20 for 60 units using hHHO-IGWO 

Time 

(h) 

Scheduling for 1 to 20 units 

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

1 455 223 0 0 0 0 0 0 0 0 455 223 130 0 0 0 0 0 0 0 

2 455 273 0 0 0 0 0 0 0 0 455 273 130 0 0 0 0 0 0 0 

3 455 352 0 130 0 0 0 0 0 0 455 352 130 0 0 0 0 0 0 0 

4 455 363 0 130 0 0 0 0 0 0 455 363 130 130 0 0 0 0 0 0 

5 455 350 130 130 0 0 0 0 0 0 455 350 130 130 0 0 0 0 0 0 

6 455 377 130 130 25 0 0 0 0 0 455 377 130 130 25 0 0 0 0 0 

7 455 418 130 130 25 0 0 0 0 0 455 418 130 130 25 0 0 0 0 0 

8 455 455 130 130 29 0 0 0 0 0 455 455 130 130 29 0 0 0 0 0 

9 455 455 130 130 102 20 25 0 0 0 455 455 130 130 102 20 0 0 0 0 

10 455 455 130 130 162 35 25 10 0 0 455 455 130 130 162 35 25 10 0 0 

11 455 455 130 130 162 75 25 10 10 10 455 455 130 130 162 75 25 10 10 0 

12 455 455 130 130 162 80 25 45 10 10 455 455 130 130 162 80 25 45 10 10 

13 455 455 130 130 162 35 25 10 0 0 455 455 130 130 162 35 25 10 0 0 

14 455 455 130 130 102 20 25 0 0 0 455 455 130 130 102 20 0 0 0 0 

15 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 

16 455 310 130 130 25 0 0 0 0 0 455 310 130 130 25 0 0 0 0 0 

17 455 260 130 130 25 0 0 0 0 0 455 260 130 130 25 0 0 0 0 0 

18 455 356 130 130 25 0 0 0 0 0 455 356 130 130 25 0 0 0 0 0 

19 455 455 130 130 26 0 0 0 0 0 455 455 130 130 26 0 0 0 0 0 

20 455 455 130 130 162 35 25 10 0 0 455 455 130 130 162 35 25 10 0 0 

21 455 455 130 130 131 20 25 0 0 0 455 455 130 130 131 20 25 0 10 0 

22 455 453 0 130 0 20 25 0 0 0 455 453 0 130 0 20 25 0 0 0 

23 455 377 0 130 0 0 0 0 0 0 455 377 0 130 0 0 0 0 0 0 

24 455 345 0 0 0 0 0 0 0 0 455 345 0 0 0 0 0 0 0 0 
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Table-5.7(b): Scheduling of 21 to 40 units for 60 units using hHHO-IGWO 

Time 

(h) 

Scheduling for 21 to 40 units 

U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 U31 U32 U33 U34 U35 U36 U37 U38 U39 U40 

1 455 223 0 0 0 0 0 0 0 0 455 223 130 0 0 0 0 0 0 0 

2 455 273 0 0 0 0 0 0 0 0 455 273 130 0 0 0 0 0 0 0 

3 455 352 0 130 0 0 0 0 0 0 455 352 130 0 0 0 0 0 0 0 

4 455 363 0 130 0 0 0 0 0 0 455 363 130 130 0 0 0 0 0 0 

5 455 350 130 130 0 0 0 0 0 0 455 350 130 130 0 0 0 0 0 0 

6 455 377 130 130 25 0 0 0 0 0 455 377 130 130 25 0 0 0 0 0 

7 455 418 130 130 25 0 0 0 0 0 455 418 130 130 25 0 0 0 0 0 

8 455 455 130 130 29 0 0 0 0 0 455 455 130 130 29 0 0 0 0 0 

9 455 455 130 130 102 20 25 0 0 0 455 455 130 130 102 20 0 0 0 0 

10 455 455 130 130 162 35 25 10 0 0 455 455 130 130 162 35 25 10 0 0 

11 455 455 130 130 162 75 25 10 10 10 455 455 130 130 162 75 25 10 10 0 

12 455 455 130 130 162 80 25 45 10 10 455 455 130 130 162 80 25 45 10 10 

13 455 455 130 130 162 35 25 10 0 0 455 455 130 130 162 35 25 10 0 0 

14 455 455 130 130 102 20 25 0 0 0 455 455 130 130 102 20 0 0 0 0 

15 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 

16 455 310 130 130 25 0 0 0 0 0 455 310 130 130 25 0 0 0 0 0 

17 455 260 130 130 25 0 0 0 0 0 455 260 130 130 25 0 0 0 0 0 

18 455 356 130 130 25 0 0 0 0 0 455 356 130 130 25 0 0 0 0 0 

19 455 455 130 130 26 0 0 0 0 0 455 455 130 130 26 0 0 0 0 0 

20 455 455 130 130 162 35 25 10 0 0 455 455 130 130 162 35 25 10 0 0 

21 455 455 130 130 131 20 25 0 0 0 455 455 130 130 131 20 25 0 10 0 

22 455 453 0 130 0 20 25 0 0 0 455 453 0 130 0 20 25 0 0 0 

23 455 377 0 130 0 0 0 0 0 0 455 377 0 130 0 0 0 0 0 0 

24 455 345 0 0 0 0 0 0 0 0 455 345 0 0 0 0 0 0 0 0 
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Table-5.7(c): Scheduling of 41 to 60 for 60 units using hHHO-IGWO 

Time 

(h) 

Scheduling  for 41 to 60 units 

Hourly 

Fuel 

Cost 

U41 U42 U43 U44 U45 U46 U47 U48 U49 U50 U51 U52 U53 U54 U55 U56 U57 U58 U59 U60 

1 455 223 0 0 0 0 0 0 0 0 455 223 0 0 0 0 0 0 0 0 82728 

2 455 273 0 0 0 0 0 0 0 0 455 273 0 0 0 0 0 0 0 0 87952 

3 455 352 0 0 0 0 0 0 0 0 455 352 0 0 0 0 0 0 0 0 99016 

4 455 363 0 130 0 0 0 0 10 0 455 363 0 0 0 0 0 0 0 0 112620 

5 455 350 0 130 0 0 0 0 0 0 455 350 0 130 0 0 0 0 0 0 118928 

6 455 377 130 130 0 0 0 0 0 0 455 377 130 130 0 0 0 0 0 0 132291 

7 455 418 130 130 0 0 25 0 0 0 455 418 130 130 0 0 0 0 0 0 138787 

8 455 455 130 130 29 0 25 0 0 0 455 455 130 130 0 0 0 0 0 0 145851 

9 455 455 130 130 102 20 25 0 0 0 455 455 130 130 102 20 0 0 0 0 160855 

10 455 455 130 130 162 35 25 10 0 0 455 455 130 130 162 35 25 0 0 0 179653 

11 455 455 130 130 162 75 25 10 0 0 455 455 130 130 162 75 25 10 0 0 190802 

12 455 455 130 130 162 80 25 45 10 10 455 455 130 130 162 80 25 45 10 0 202656 

13 455 455 130 130 162 35 25 10 0 0 455 455 130 130 162 35 25 0 0 0 179653 

14 455 455 130 130 102 20 0 0 0 0 455 455 130 130 102 20 0 0 0 0 160855 

15 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 144902 

16 455 310 130 130 25 0 0 0 0 0 455 310 130 130 25 0 0 0 0 0 129082 

17 455 260 130 130 25 0 0 0 0 0 455 260 130 130 25 0 0 0 0 0 123851 

18 455 356 130 130 25 0 0 0 0 0 455 356 130 130 25 0 0 0 0 0 135059 

19 455 455 130 130 26 0 0 0 0 0 455 455 130 130 26 0 0 0 0 0 145578 

20 455 455 130 130 162 35 25 0 0 0 455 455 130 130 162 35 25 10 0 0 179653 

21 455 455 130 130 0 20 25 0 0 0 455 455 130 130 0 20 25 0 0 0 162767 

22 455 453 0 130 0 20 25 0 0 0 455 453 0 130 0 20 25 0 0 0 134691 

23 455 377 0 0 0 0 0 0 10 0 455 377 0 0 0 0 0 0 10 0 106344 

24 455 345 0 0 0 0 0 0 0 0 455 345 0 0 0 0 0 0 0 0 92565 

 Overall Cost of Generation = 3374668.8771($) 
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The simulation results for hHHO method for 60 unit system shows that total cost of 

generation with thermal units is $ 3374668.8771. Fig. 5.7 shows that Convergence 

Curve for 60 unit system using hHHO-IGWO convergences efficiently towards best 

fitness.  

 

Fig.5.7: Convergence curve for 60-units using hHHO-IGWO method 

The analysis revealed that the suggested algorithm generates a specific combination of 

units to match the hourly load requirement and evaluates a cost-effective solution to the 

unit commitment problem. 

5.8.2 Testing of Unit Commitment Problem by CHHO method 

The propose algorithm is applied to standard test systems consisting of 10,20, 40 and 

60-units and simulation results are recorded for Classical UC consisting of conventional 

thermal. Each run begins with a new set of population. For all runs, the population size 

is set to 40 for the 10-units. The population size for the 20-units is set at 80, while the 

population size for the 40-unit test system is set at 160. 

(a) Testing of 10 -unit system using CHHO  

The CHHO is applied to 10-unit system with 10% SR and simulation results are 

recorded for corresponding thermal units. Due to stochastic nature of CHHO algorithm, 

program is simulated for 30 trials runs and 500 iterations for better solution efficiency. 

Table-5.8 illustrates their corresponding power dispatch. The convergence curves for 

10-unit system is shown in Fig.5.8. 
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Table-5.8: Scheduling of 10-units using CHHO method 

Tim

e 

(h) 

Scheduling for 10 units 
 Power 

(MW) 

Start-Up 

Cost 

Hourly 

Fuel Cost 

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 

1 405 150 0 0 0 0 0 0 0 0 555 0 11208 

2 450 150 0 0 0 0 0 0 0 0 601 1070 11957 

3 455 258 0 0 0 0 0 0 0 0 713 560 13914 

4 455 367 0 0 25 0 0 0 0 0 847 0 16763 

5 455 401 0 0 25 0 0 0 0 0 881 1070 17352 

6 455 392 0 130 25 0 0 0 0 0 1002 0 20059 

7 455 434 0 130 25 0 0 0 0 0 1044 0 20783 

8 455 355 130 130 25 0 0 0 0 0 1095 0 22294 

9 455 397 130 130 25 0 0 0 0 0 1137 0 23039 

10 455 455 130 130 44 0 25 0 0 0 1239 170 25595 

11 455 455 130 130 85 20 25 0 0 0 1300 60 27246 

12 455 455 130 130 121 20 25 0 0 0 1336 260 27995 

13 455 455 130 130 49 20 0 0 0 0 1239 0 25354 

14 455 449 130 130 25 0 0 0 0 0 1189 60 23937 

15 455 382 130 130 25 0 0 0 0 0 1122 120 22772 

16 455 206 130 130 25 0 0 0 0 0 946 0 19699 

17 455 192 130 130 25 0 0 0 0 0 932 0 19455 

18 455 310 130 130 25 0 0 0 0 0 1050 0 21515 

19 455 402 130 130 25 0 0 0 0 0 1142 0 23115 

20 455 455 130 130 53 0 0 10 0 0 1233 340 25531 

21 455 416 130 130 25 0 0 0 0 0 1156 60 23374 

22 455 331 130 0 0 0 0 0 0 0 916 0 18067 

23 455 249 0 0 0 0 0 0 0 0 704 0 13754 

24 431 150 0 0 0 0 0 0 0 0 581 0 11626 

Worst 

Cost($)=492502.5759 
 

Best 

Cost($)=490174.8291 
 

Mean Cost($)=491308.0262 Total=490

174.8291(

$) 
Worst Time(Sec.)= 

0.046875 

Best Time(Sec.)= 

0.015625 
Mean Time(Sec.)= 0.0291 

 

 

Fig.5.8: Convergence Curve 10 unit system using CHHO method 
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Referring Table 5.8 , U1 and U2 are the most cost efficient units and thus run for total 

24 hours duration to meet the corresponding load deamd. During the peak hours, U3 to 

U9 units contribute their power meet the corresponding load demand.At 12th hour , load 

is at maximum and thus all the units are in ON state. U10 act as the reserve unit and 

runs only during the peak demandd. Start-up cost depends upon the operating 

temperature of particular unit.The total operating cost is the sum of start-up cost and 

generation cost of units for a 24 hour duration. The simulation results for CHHO 

algorithm for 10 units with 10% SR  shown in  above results shows that  total cost of 

generation with UC is $ 563387.6874.The results reveals that proposed algorithm 

selects a particular combination of units to fulfill the hourly load demand and estimates 

a superior solution to unit commitment problem.   

  (b) Testing of 20 units using CHHO  

The CHHO method is applied to standard test system of 20-units with 10% SR. The 

data of 10-units was replicated and is multiplied by 2 for obtaining the results of 20-

units test system. Population size is taken as 80 for all 30 trial runs with 500 iterations 

and simulation results are recorded for conventional thermal units. Table-5.9 illustrates 

optimal status of committed generators. The convergence plot of 10-unit system is 

illustrated in Fig.5.9. 

 
 

Fig. 5.9: Convergence Curve for 20 units using CHHO method
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Table-5.9: Scheduling of 20-units using CHHO 

Time 

(h) 

Scheduling for 20-unit 
Hourly  

Cost 

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20  

1 455 245 0 0 0 0 0 0 0 0 455 245 0 0 0 0 0 0 0 0 27366 

2 455 295 0 0 0 0 0 0 0 0 455 295 0 0 0 0 0 0 0 0 29109 

3 455 330 0 130 0 0 0 0 0 0 455 330 0 0 0 0 0 0 0 0 33191 

4 455 300 0 130 0 0 0 0 0 0 455 300 130 130 0 0 0 0 0 0 37197 

5 455 350 0 130 0 0 0 0 0 0 455 350 130 130 0 0 0 0 0 0 39457 

6 455 425 0 130 25 0 0 0 0 0 455 425 130 130 25 0 0 0 0 0 44158 

7 455 455 0 130 45 0 0 0 0 0 455 455 130 130 45 0 0 0 0 0 46009 

8 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 48301 

9 455 455 130 130 103 0 0 0 0 0 455 455 130 130 103 20 25 0 10 0 53920 

10 455 455 130 130 162 33 25 10 0 0 455 455 130 130 162 33 25 10 0 0 60115 

11 455 455 130 130 162 73 25 10 10 0 455 455 130 130 162 73 25 10 10 0 63832 

12 455 455 130 130 162 80 25 43 10 10 455 455 130 130 162 80 25 43 10 10 67780 

13 455 455 130 130 162 33 25 10 0 0 455 455 130 130 162 33 25 10 0 0 60115 

14 455 455 130 130 105 20 0 0 0 0 455 455 130 130 105 20 0 0 0 10 53839 

15 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 48301 

16 455 310 130 130 25 0 0 0 0 0 455 310 130 130 25 0 0 0 0 0 43027 

17 455 260 130 130 25 0 0 0 0 0 455 260 130 130 25 0 0 0 0 0 41284 

18 455 360 130 130 25 0 0 0 0 0 455 360 130 130 25 0 0 0 0 0 44774 

19 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 48301 

20 455 455 130 130 162 33 25 10 0 0 455 455 130 130 162 33 25 0 10 0 60115 

21 455 455 0 130 150 20 25 0 0 0 455 455 130 130 150 20 25 0 0 0 54293 

22 455 455 0 130 0 20 25 0 0 0 455 455 0 0 160 20 25 0 0 0 45255 

23 455 433 0 0 0 0 0 0 0 0 455 433 0 0 25 0 0 0 0 0 35447 

24 455 345 0 0 0 0 0 0 0 0 455 345 0 0 0 0 0 0 0 0 30855 

 Overall Cost of Generation = 1124685.2088 ($) 
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Referring Table 5.9, U1, U2, U11 and U12 are the most cost economical units and thus 

run for total 24 hours duration to match the corresponding load demand. During the 

peak hours, U3 to U19 units supplies power to meet the corresponding load demand. 

At 12th hour, load is at maximum and almost all units are in ON state. U10 and U20 act 

as the reserve unit and runs only during the peak demand. The total operating cost is 

the sum of start-up cost and generation cost of units for a 24 hour duration. The 

simulation results for CHHO shows that total cost of generation with thermal units is $ 

1124685.2088. 

The convergence curves with only UC for 20-unit system is shown in Fig.5.9. 

It shows that proposed algorithm selects a particular combination of units from 20 units 

satisfying all system and unit constraints to meet the hourly load demand with superior 

convergence. 

(c) Testing of 40-unit system using CHHO  

The CHHO method is tested for solving unit commitment problem of 40-unit system. 

Population size of 80 is taken into consideration for all trial solutions.Table-5.10(a) and 

(b) illustrates optimal dispatch for 40-unit system. The convergence curve for 40-unit 

system is depicted in Fig.5.10. 

Table 5.10(a) and 5.10(b) illustrates that U1, U2, U11, U12, U21, U22, U31 and 

U32 are the most cost efficient units and thus run for total 24 hours duration to meet 

the corresponding load demand. For rest of hours, U3 to U9, U13 to U19, and U23 to 

U29 and U33 to U39 contributes their power meet the corresponding load demand.  

During 12th hour, load is at peak and thus most of the units are in ON state. U10, 

U20, U30 and U40 act as the reserve unit and runs only during the peak demand. The 

total operating cost is the sum of start-up cost and generation cost of units for a 24 hour 

duration. 

The simulation results for CHHO method for 40 units shown in Table-5.10(a) 

and 5.10(b) results shows that total cost of generation with thermal units is $ 

2257230.8455. It shows that proposed chaotic algorithm efficiently picks a specific 

combination of units from 40-units to meet the forecasted load demand and determines 

a unique solution to unit commitment problem.
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Table-5.10(a): Scheduling of 1 to 20 for 40 units using CHHO 

Time 

(h) 

Scheduling for 1 to 20 units 

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

1 455 245 0 0 0 0 0 0 0 0 455 245 0 0 0 0 0 0 0 0 

2 455 289 0 0 0 0 0 0 0 0 455 289 0 0 0 0 0 0 0 0 

3 455 318 0 0 0 0 0 0 0 0 455 318 130 0 25 0 0 0 0 0 

4 455 418 0 0 0 0 0 0 0 0 455 418 130 0 25 0 0 0 0 0 

5 455 429 130 0 0 0 0 0 0 0 455 429 130 0 25 0 0 0 0 0 

6 455 431 130 130 0 0 0 0 0 0 455 431 130 130 25 0 0 0 0 0 

7 455 444 130 130 0 0 0 0 0 0 455 444 130 130 25 0 0 0 0 0 

8 455 455 130 130 0 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 

9 455 455 130 130 104 20 0 0 0 0 455 455 130 130 104 20 0 0 0 0 

10 455 455 130 130 162 33 25 10 10 0 455 455 130 130 162 33 25 0 0 0 

11 455 455 130 130 162 73 25 10 10 0 455 455 130 130 162 73 25 10 10 0 

12 455 455 130 130 162 80 25 43 10 10 455 455 130 130 162 80 25 43 10 10 

13 455 455 130 130 162 33 25 10 0 0 455 455 130 130 162 33 25 10 10 0 

14 455 455 130 130 104 20 25 0 0 0 455 455 130 130 104 20 0 0 0 0 

15 455 450 130 130 25 20 0 0 0 0 455 450 130 130 25 0 0 0 0 0 

16 455 300 130 130 25 0 0 0 0 0 455 300 130 130 25 0 0 0 0 10 

17 455 260 130 130 25 0 0 0 0 0 455 260 130 130 25 0 0 0 0 0 

18 455 348 130 130 25 0 0 0 0 0 455 348 130 130 25 0 0 0 0 0 

19 455 429 130 130 25 0 0 0 0 0 455 429 130 130 25 20 25 0 0 0 

20 455 455 130 130 162 33 25 10 0 0 455 455 130 130 162 33 25 10 0 0 

21 455 455 130 130 123 20 25 0 0 0 455 455 130 130 123 20 25 0 0 0 

22 455 450 130 130 0 20 25 0 0 0 455 450 0 130 25 20 0 0 0 0 

23 455 348 0 130 0 0 0 0 0 0 455 348 0 130 0 0 0 0 0 0 

24 455 345 0 0 0 0 0 0 0 0 455 345 0 0 0 0 0 0 0 0 
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Table-5.10(b): Scheduling of 21 to 40 for 40 units using CHHO 

Time 

(h) 

Scheduling  for 21 to 40-Units  Hourly 

Fuel 

Cost U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 U31 U32 U33 U34 U35 U36 U37 U38 U39 U40 

1 455 245 0 0 0 0 0 0 0 0 455 245 0 0 0 0 0 0 0 0 54733 

2 455 289 0 0 25 0 0 0 0 0 455 289 0 0 0 0 0 0 0 0 58727 

3 455 318 0 130 25 0 0 0 0 0 455 318 0 0 0 0 0 0 0 0 67431 

4 455 418 0 130 25 0 0 0 0 0 455 418 0 0 0 0 0 0 0 0 74426 

5 455 429 0 130 25 0 0 0 0 0 455 429 0 0 25 0 0 0 0 0 79051 

6 455 431 130 130 25 0 0 0 0 0 455 431 0 0 25 0 0 0 0 0 87840 

7 455 444 130 130 25 0 0 0 0 0 455 444 130 0 25 20 0 0 0 0 92426 

8 455 455 130 130 30 0 0 10 0 0 455 455 130 130 30 20 0 0 0 0 97294 

9 455 455 130 130 104 20 25 0 0 0 455 455 130 130 104 20 0 0 0 0 107016 

10 455 455 130 130 162 33 25 10 10 0 455 455 130 130 162 33 25 0 0 0 120267 

11 455 455 130 130 162 73 25 10 10 0 455 455 130 130 162 73 25 10 10 0 127664 

12 455 455 130 130 162 80 25 43 10 10 455 455 130 130 162 80 25 43 10 10 135561 

13 455 455 130 130 162 33 25 0 10 0 455 455 130 130 162 33 25 0 0 0 120267 

14 455 455 130 130 104 20 0 10 0 0 455 455 130 130 104 0 0 0 0 10 108066 

15 455 450 130 130 25 20 0 0 0 0 455 450 130 130 25 0 0 0 0 0 97488 

16 455 300 130 130 25 20 0 0 0 0 455 300 130 130 25 0 0 0 0 10 88071 

17 455 260 130 130 25 0 0 0 0 0 455 260 130 130 25 0 0 0 0 0 82567 

18 455 348 130 130 25 0 25 0 0 0 455 348 130 130 25 0 25 0 0 0 91022 

19 455 429 130 130 25 0 25 0 0 0 455 429 130 130 25 20 25 0 10 0 100458 

20 455 455 130 130 162 33 25 10 0 0 455 455 130 130 162 33 25 10 0 0 120230 

21 455 455 130 130 123 20 0 0 0 0 455 455 130 130 0 20 0 10 0 10 108732 

22 455 450 0 130 0 20 0 0 0 0 455 450 0 130 0 20 0 0 0 0 88788 

23 455 348 0 130 0 0 0 0 0 0 455 348 0 0 0 0 0 0 0 0 70466 

24 455 345 0 0 0 0 0 0 0 0 455 345 0 0 0 0 0 0 0 0 61710 

 

Overall Cost of Generation = 2257230.8455 ($) 
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Fig.5.10: Convergence Curve for 40 units using CHHO method 

 (d) Testing of 60-unit system using CHHO  

The CHHO method is tested for solving unit commitment problem for 60-unit system. 

The statistics of 10-unit system was replicated and multiplied by 6 for sixty units. Table-

5.11 (a), 5.11(b) and 5.11(c) illustrates optimal dispatch for 60-unit system. The 

convergence curve for 60-unit system is shown in Fig.5.11.  

 

 

Fig. 5.11: Convergence curve for 60-units using CHHO method 
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Table-5.11(a): Scheduling of 1 to 20 units for 60 unit system using CHHO 

Time 

(h) 

Scheduling for 1 to 20 units 

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

1 455 294 0 0 0 0 0 0 0 0 455 294 0 0 0 0 0 0 0 0 

2 455 354 0 0 0 0 0 0 0 0 455 354 0 0 0 0 0 0 0 0 

3 455 344 0 130 0 0 0 0 0 0 455 344 0 130 0 0 0 0 0 0 

4 455 334 130 130 0 0 0 0 0 0 455 334 130 130 0 0 0 0 0 0 

5 455 337 130 130 25 0 0 0 0 0 455 337 130 130 0 0 0 0 0 0 

6 455 437 130 130 25 0 0 0 0 0 455 437 130 130 25 0 0 0 0 0 

7 455 455 130 130 53 20 0 0 0 0 455 455 130 130 53 0 0 0 0 0 

8 455 455 130 130 89 20 0 0 0 0 455 455 130 130 89 20 0 0 0 0 

9 455 455 130 130 102 20 25 0 0 0 455 455 130 130 102 20 25 0 0 0 

10 455 455 130 130 162 35 25 10 0 0 455 455 130 130 162 35 25 10 0 0 

11 455 455 130 130 162 75 25 10 0 10 455 455 130 130 162 75 25 10 0 10 

12 455 455 130 130 162 80 25 45 10 10 455 455 130 130 162 80 25 45 10 10 

13 455 455 130 130 162 35 25 0 0 0 455 455 130 130 162 35 25 10 10 0 

14 455 455 130 130 0 20 25 10 0 0 455 455 130 130 117 0 25 10 0 0 

15 455 455 130 130 0 20 0 0 0 0 455 455 130 130 28 0 0 0 0 0 

16 455 314 130 130 0 0 0 0 0 0 455 314 130 130 25 0 0 0 0 0 

17 455 264 130 130 0 0 0 0 0 0 455 264 130 130 25 0 0 0 0 0 

18 455 338 130 130 0 0 25 0 0 0 455 338 130 130 25 20 25 0 0 0 

19 455 425 130 130 0 0 25 10 0 0 455 425 130 130 25 20 25 0 0 0 

20 455 455 130 130 162 35 25 10 0 10 455 455 130 130 162 35 25 0 0 0 

21 455 455 130 130 135 20 25 10 0 0 455 455 130 130 135 20 0 0 0 0 

22 455 455 130 0 102 20 0 10 0 0 455 455 130 0 0 20 0 0 0 0 

23 455 455 130 0 27 0 0 0 0 0 455 455 0 0 0 0 0 0 0 0 

24 455 383 0 0 25 0 0 0 0 0 455 383 0 0 0 0 0 0 0 0 
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Table-5.11(b): Scheduling of 21 to 40 units for 60 units using CHHO 

Time 

(h) 

Scheduling for 21 to 40 units 

U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 U31 U32 U33 U34 U35 U36 U37 U38 U39 U40 

1 455 294 0 0 0 0 0 0 0 0 455 294 0 0 0 0 0 0 0 0 

2 455 354 0 0 0 0 0 0 0 0 455 354 0 0 0 0 0 0 0 0 

3 455 344 0 130 0 0 0 0 0 0 455 344 0 130 0 0 0 0 0 0 

4 455 334 0 130 0 0 0 0 0 0 455 334 130 130 0 0 0 0 0 0 

5 455 337 130 130 0 0 0 0 0 0 455 337 130 130 0 0 0 0 0 0 

6 455 437 130 130 25 0 0 0 0 0 455 437 130 130 25 0 0 0 0 0 

7 455 455 130 130 53 0 0 0 0 0 455 455 130 130 53 0 0 0 0 0 

8 455 455 130 130 89 20 0 0 0 0 455 455 130 130 89 20 0 0 0 0 

9 455 455 130 130 102 20 0 0 0 0 455 455 130 130 102 20 0 0 0 0 

10 455 455 130 130 162 35 25 0 0 0 455 455 130 130 162 35 25 10 0 0 

11 455 455 130 130 162 75 25 10 10 0 455 455 130 130 162 75 25 10 0 0 

12 455 455 130 130 162 80 25 45 10 10 455 455 130 130 162 80 25 45 10 10 

13 455 455 130 130 162 35 25 10 0 0 455 455 130 130 162 35 25 10 0 0 

14 455 455 130 130 117 20 0 0 0 0 455 455 130 130 117 20 25 0 0 0 

15 455 455 130 130 28 20 0 0 0 0 455 455 130 130 28 0 0 0 0 0 

16 455 314 130 130 25 0 0 0 0 0 455 314 130 130 25 0 0 0 0 0 

17 455 264 130 130 25 0 0 0 0 0 455 264 130 130 25 0 0 0 0 0 

18 455 338 130 130 25 0 25 0 0 0 455 338 130 130 25 20 25 0 0 0 

19 455 425 130 130 25 20 25 0 0 0 455 425 130 130 25 20 25 0 0 0 

20 455 455 130 130 162 35 25 10 0 0 455 455 130 130 162 35 25 0 0 0 

21 455 455 130 130 135 20 25 0 0 0 455 455 130 130 0 0 25 0 0 0 

22 455 455 0 130 102 20 25 0 0 0 455 455 0 0 0 0 0 0 0 0 

23 455 455 0 0 27 0 0 10 0 0 455 455 0 0 0 0 0 0 0 0 

24 455 383 0 0 0 0 0 0 0 0 455 383 0 0 0 0 0 0 0 0 
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Table-5.11(c): Scheduling of 21 to 40 units for 60 unit system using CHHO 

Time 

(h) 

Scheduling  41 to 60 units Hourly 

Fuel 

Cost U41 U42 U43 U44 U45 U46 U47 U48 U49 U50 U51 U52 U53 U54 U55 U56 U57 U58 U59 U60 

1 455 294 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 81151 

2 455 354 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 86389 

3 455 344 0 130 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 99819 

4 455 334 130 130 0 0 0 0 0 0 455 0 0 130 0 0 0 0 0 0 113373 

5 455 337 130 130 0 0 0 0 0 0 455 0 130 130 0 0 0 0 0 0 120364 

6 455 437 130 130 25 0 0 0 0 0 455 0 130 130 0 0 0 0 0 0 132894 

7 455 455 130 130 53 0 0 0 0 0 455 0 130 130 53 0 0 0 0 0 139536 

8 455 455 130 130 89 20 0 0 0 0 455 0 130 130 89 0 0 0 0 0 147267 

9 455 455 130 130 102 20 0 0 0 0 455 455 130 130 102 20 0 0 0 0 160855 

10 455 455 130 130 162 35 25 10 0 0 455 455 130 130 162 35 25 10 0 0 179653 

11 455 455 130 130 162 75 25 10 10 0 455 455 130 130 162 75 25 10 10 0 190812 

12 455 455 130 130 162 80 25 45 10 10 455 455 130 130 162 80 25 45 10 0 202656 

13 455 455 130 130 162 35 25 0 0 0 455 455 130 130 162 35 25 10 0 0 179671 

14 455 455 130 130 117 20 0 0 0 0 455 455 130 130 117 20 0 0 0 0 162133 

15 455 455 130 130 28 0 0 0 0 0 455 455 130 130 28 0 0 0 0 0 145294 

16 455 314 130 130 25 0 0 0 0 0 455 314 130 130 25 0 0 0 0 0 128573 

17 455 264 130 130 25 0 0 0 0 0 455 264 130 130 25 0 0 0 0 0 123342 

18 455 338 130 130 25 0 0 0 0 0 455 338 130 130 25 20 0 0 0 0 138168 

19 455 425 130 130 25 20 0 0 0 0 455 425 130 130 25 20 25 0 0 0 151083 

20 455 455 130 130 162 35 25 10 0 0 455 455 130 130 162 35 25 0 0 10 179710 

21 455 455 130 130 135 20 25 0 0 0 455 455 0 130 135 20 25 0 0 0 162533 

22 455 455 130 0 0 20 25 0 0 0 455 455 0 130 102 20 25 0 0 0 134530 

23 455 455 0 0 0 0 25 0 0 0 455 0 0 130 27 20 0 0 0 0 106831 

24 455 383 0 0 0 0 0 0 0 0 455 0 0 130 0 0 0 0 0 0 92731 

 Overall Cost of Generation = 3386078.2574 ($) 
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From Table 5.11(a), 5.11(b) and 5.11(c), it can be seen that U1, U2, U11, U12, U21, 

U22, U31, U32, U41, U42, U51 and U52 are the most cost efficient units and thus run 

for total 24 hours duration to meet the corresponding load demand. For rest of hours, 

U3 to U9, U13 to U19, U23 to U29, U33 to U39, U43 to U49 and U53 to U59  

contributes their power meet the corresponding load demand. At 12th hour, load is at 

peak and thus most of the units are in ON state. U10, U20, U30, U40, U50 and U60 act 

as the reserve unit and runs only during the peak demand. The simulation results for 

CHHO method for 60 units evaluates $ 3386078.2574 total cost of generation. The 

analysis reveals that proposed algorithm is effective in solving unit commitment 

problem. 

5.8.3 Testing of Unit Commitment Problem by CSMA method 

The proposed algorithm is applied to standard test systems consisting of 10, 20, 40 and 

60 units and simulation results are recorded for corresponding systems consisting of 

conventional thermal units.  

(a) Testing of 10-unit system using CSMA 

The proposed algorithm is applied to 10-unit system with 10% SR and 

simulation results are recorded for classical UC consisting of conventional thermal 

units.Table-5.12 represents their corresponding power dispatch. The convergence 

curves for 10-unit system is depicted in Fig.5.12. 

 
 

Fig.5.12: Convergence Curve for 10-unit using CSMA method 
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Table-5.12: Scheduling for 10 units using CSMA method 

Time 

(h) 

Optimal scheduling 
Power 

(MW) 

Start-

Up 

Cost 

Hourly 

Fuel 

Cost 
U1 U2 U3 U4 U5 U6 U7 U8 U9 

U1

0 

1 455 245 0 0 0 0 0 0 0 0 700 1620 13683 

2 455 295 0 0 0 0 0 0 0 0 750 0 14554 

3 455 370 0 0 25 0 0 0 0 0 850 560 16809 

4 455 455 0 0 40 0 0 0 0 0 950 0 18598 

5 455 390 130 0 25 0 0 0 0 0 1000 0 20051 

6 455 360 130 130 25 0 0 0 0 0 1100 520 22387 

7 455 410 130 130 25 0 0 0 0 0 1150 0 23262 

8 455 455 130 130 30 0 0 0 0 0 1200 170 24150 

9 455 455 130 130 85 20 25 0 0 0 1300 180 27251 

10 455 455 130 130 162 33 25 10 0 0 1400 0 30058 

11 455 455 130 130 162 73 25 10 10 0 1450 60 31916 

12 455 455 130 130 162 80 25 43 10 10 1500 30 33890 

13 455 455 130 130 162 33 25 10 0 0 1400 0 30058 

14 455 455 130 130 85 20 25 0 0 0 1300 0 27251 

15 455 455 130 130 30 0 0 0 0 0 1200 0 24150 

16 455 310 130 130 25 0 0 0 0 0 1050 0 21514 

17 455 260 130 130 25 0 0 0 0 0 1000 120 20642 

18 455 360 130 130 25 0 0 0 0 0 1100 60 22387 

19 455 455 130 130 30 0 0 0 0 0 1200 430 24150 

20 455 455 130 130 162 33 25 10 0 0 1400 30 30058 

21 455 455 130 130 85 20 25 0 0 0 1300 0 27251 

22 455 455 0 0 145 20 25 0 0 0 1100 0 22736 

23 455 420 0 0 25 0 0 0 0 0 900 0 17685 

24 455 345 0 0 0 0 0 0 0 0 800 0 15427 

Worst 

Cost($)=565398.9054 
 

Best 

Cost($)=563698.15824 
 

Mean Cost($)=564310.5195 Total= 

563698.1

5824 
Worst Time(Sec.)= 

0.04687 

Best Time(Sec.)= 

0.015625 
Mean Time(Sec.)= 0.0307291 

 

Referring Table 5.12 , U1 and U2 are the most cost efficient units and thus run for total 

24 hours duration to meet the corresponding load deamd. During the peak hours, U3 to 

U9 units contribute their power meet the corresponding load demand. 

 At 12th hour , load is at maximum and thus all the units are in ON state. U10 act 

as the reserve unit and runs only during the peak deamd.Start-up cost depends upon the 

operating temperature of particular unit.The total operating cost is the sum of start-up 

cost and generation cost of units for a 24 hour duration. The simulation results for 

CSMA algorithm for 10 units with 10% SR  shows that  total cost of generation with 

UC is $ 563698.15824. Fig. 5.12 shows that evaluaion for 10 units using CSMA 

convergences effciently towards best fitness.  
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  (b) Testing of 20-unit system using CSMA 

The CSMA method is applied to standard test systems of 20-units with 10% SR. 

Population size is taken as 80 for all 30 trial runs with 500 iterations and simulation 

results are recorded for classical UC consisting of conventional thermal units. Table-

5.13 illustrates optimal generation of committed generators.  

In Table 5.13, U1, U2, U11 and U12 are the most cost efficient units and thus remains 

ON for total time duration to meet the load demand. During the peak hours, U3 to U19 

units contribute their power meet the corresponding load demand. At 12th hour, load is 

at maximum and thus maximum units are in ON state. U10 and U20 act as the reserve 

unit and runs only during the peak demand.  

The simulation results for CSMA shows that total cost of generation with thermal units 

is $ 1124242.1047.The results shows that CSMA efficiently selects a particular 

combination from available 20 units to meet corresponding demand and evaluates a 

cost effective solution to unit commitment problem. The convergence curve in Fig.5.13 

illustrates that CSMA is efficient in evaluating UC problem.  

 

 

Fig. 5.13: Convergence Curve for 20 unit system using CSMA method
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Table-5.13: Scheduling of 20-units using CSMA method 

 
Time 

(h) 

Scheduling for 20 units Hourly 

Cost 

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

1 455 245 0 0 0 0 0 0 0 0 455 245 0 0 0 0 0 0 0 0 27366 

2 455 295 0 0 0 0 0 0 0 0 455 295 0 0 0 0 0 0 0 0 29109 

3 455 330 0 0 0 0 0 0 0 0 455 330 0 130 0 0 0 0 0 0 33191 

4 455 418 0 0 0 0 0 0 0 0 455 418 0 130 25 0 0 0 0 0 37197 

5 455 455 0 0 25 0 0 0 0 0 455 455 0 130 25 0 0 0 0 0 39457 

6 455 425 130 130 25 0 0 0 0 0 455 425 0 130 25 0 0 0 0 0 44158 

7 455 455 130 130 45 0 0 0 0 0 455 455 0 130 45 0 0 0 0 0 46009 

8 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 48301 

9 455 455 130 130 105 20 0 0 0 0 455 455 130 130 105 20 0 0 0 10 53920 

10 455 455 130 130 162 33 25 10 0 0 455 455 130 130 162 33 25 10 0 0 60115 

11 455 455 130 130 162 73 25 10 10 0 455 455 130 130 162 73 25 10 10 0 63832 

12 455 455 130 130 162 80 25 43 10 10 455 455 130 130 162 80 25 43 10 10 67780 

13 455 455 130 130 162 33 25 10 0 0 455 455 130 130 162 33 25 10 0 0 60115 

14 455 455 130 130 98 20 25 0 0 0 455 455 130 130 98 20 0 0 0 0 53839 

15 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 48301 

16 455 310 130 130 25 0 0 0 0 0 455 310 130 130 25 0 0 0 0 0 43027 

17 455 260 130 130 25 0 0 0 0 0 455 260 130 130 25 0 0 0 0 0 41284 

18 455 360 130 130 25 0 0 0 0 0 455 360 130 130 25 0 0 0 0 0 44774 

19 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 48301 

20 455 455 130 130 162 33 25 10 0 0 455 455 130 130 162 33 25 10 0 0 60115 

21 455 455 130 130 150 20 25 0 0 0 455 455 0 130 150 20 25 0 0 0 54293 

22 455 455 0 130 0 20 25 0 0 0 455 455 0 0 160 20 25 0 0 0 45255 

23 455 367 0 130 0 0 0 0 0 0 455 367 0 0 25 0 0 0 0 0 35447 

24 455 345 0 0 0 0 0 0 0 0 455 345 0 0 0 0 0 0 0 0 30855 

 

Overall Cost of Generation = 1124242.1047($) 
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  (c) Testing of 40-unit system using CSMA  

The CSMA method is tested for solving unit commitment problem 40 units. The data 

of 10-unit system is multiplied by 4 for obtaining the results of 40-units test system. 

Population size of 80 is taken into consideration for all trial solutions. Table-5.14 (a) 

and 5.14(b) illustrates optimal dispatch for 40-unit system. The convergence curve for 

40-unit system is shown in Fig.5.14. 

 

Fig.5.14: Convergence Curve for 40-unit system using CSMA method 

 

Referring Table 5.14(a) and 5.14(b), U1, U2, U11, U12, U21, U22, U31 and U32 are 

the most economical units and thus for most of the hours to meet the corresponding 

load demand. For rest of hours, U3 to U9, U13 to U19, and U23 to U29 and U33 to 

U39 contributes their power to meet the corresponding load demand.  

At 12th hour, load is at maximum and thus maximum units are in ON state. U10, U20, 

U30 and U40 act as the reserve unit and runs only during the peak demand. The total 

operating cost is the sum of start-up cost and generation cost of units for a 24 hour 

duration. 

The simulation results for CSMA method for 40 unit shows that total cost of 

generation with thermal units is $ 2246297.7597. The convergence curve illustrated in 

Fig.5.14 reveals that it converges sharply up to 50 iteration, and then settles to final 

value after 200 iterations. The analysis shows that CSMA is effective in effective in 

solving UC problems for large system. 
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Table-5.14(a): Scheduling of 1 to 20 units for 40 unit system using CSMA 

Time 

(h) 

Scheduling for 1 to 20 units 

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

1 455 245 0 0 0 0 0 0 0 0 455 245 0 0 0 0 0 0 0 0 

2 455 295 0 0 0 0 0 0 0 0 455 295 0 0 0 0 0 0 0 0 

3 455 363 0 0 0 0 0 0 0 0 455 363 0 0 0 0 0 0 0 0 

4 455 391 0 0 0 0 0 0 0 0 455 391 130 0 25 0 0 0 0 0 

5 455 403 0 0 0 0 0 0 0 0 455 403 130 0 25 0 0 0 0 0 

6 455 405 130 130 0 0 0 0 0 0 455 405 130 130 25 0 0 0 0 0 

7 455 444 130 130 25 0 0 0 0 0 455 444 130 130 25 20 0 0 0 0 

8 455 455 130 130 62 0 0 0 0 0 455 455 130 130 62 20 0 0 0 0 

9 455 455 130 130 103 20 0 0 0 0 455 455 130 130 103 20 0 0 0 0 

10 455 455 130 130 162 33 25 10 0 10 455 455 130 130 162 33 25 10 0 0 

11 455 455 130 130 162 73 25 10 10 10 455 455 130 130 162 73 25 10 10 0 

12 455 455 130 130 162 80 25 43 10 10 455 455 130 130 162 80 25 43 10 10 

13 455 455 130 130 162 33 25 10 0 0 455 455 130 130 162 33 25 10 0 0 

14 455 455 130 130 104 20 25 0 0 0 455 455 130 130 104 20 0 0 0 0 

15 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 

16 455 310 130 130 25 0 0 0 0 0 455 310 130 130 25 0 0 0 0 0 

17 455 260 130 130 25 0 0 0 0 0 455 260 130 130 25 0 0 0 0 0 

18 455 360 130 130 25 0 0 0 0 0 455 360 130 130 25 0 0 0 0 0 

19 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 

20 455 455 130 130 162 37 25 0 10 0 455 455 130 130 162 37 25 10 0 10 

21 455 455 130 130 122 20 25 0 0 0 455 455 130 130 122 20 25 0 0 0 

22 455 444 130 130 0 20 25 0 0 0 455 444 0 130 0 20 25 0 0 0 

23 455 348 0 0 0 0 0 0 0 0 455 348 0 130 0 0 0 0 0 0 

24 455 345 0 0 0 0 0 0 0 0 455 345 0 0 0 0 0 0 0 0 
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Table-5.14(b): Scheduling of 21 to 40 units for 40 unit system using CSMA 

Time 

(h) 

Scheduling for 21 to 40 Units Hourly 

Fuel 

Cost U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 U31 U32 U33 U34 U35 U36 U37 U38 U39 U40 

1 455 245 0 0 0 0 0 0 0 0 455 245 0 0 0 0 0 0 0 0 54733 

2 455 295 0 0 0 0 0 0 0 0 455 295 0 0 0 0 0 0 0 0 58218 

3 455 363 0 130 0 0 0 0 0 0 455 363 0 0 0 0 0 0 0 0 65794 

4 455 391 0 130 0 0 0 0 0 0 455 391 130 0 0 0 0 0 0 0 74534 

5 455 403 0 130 0 0 0 0 0 0 455 403 130 130 25 0 0 0 0 0 79128 

6 455 405 0 130 0 0 0 0 0 0 455 405 130 130 25 0 0 0 0 0 87916 

7 455 444 0 130 0 0 0 0 0 0 455 444 130 130 25 0 0 0 0 0 92395 

8 455 455 0 130 0 20 25 0 0 0 455 455 130 130 62 0 0 0 0 0 97381 

9 455 455 130 130 103 20 25 0 0 0 455 455 130 130 103 0 25 0 0 0 107269 

10 455 455 130 130 162 33 25 10 0 0 455 455 130 130 162 33 25 0 0 0 120259 

11 455 455 130 130 162 73 25 10 0 0 455 455 130 130 162 73 25 10 10 0 127674 

12 455 455 130 130 162 80 25 43 10 10 455 455 130 130 162 80 25 43 10 10 135561 

13 455 455 130 130 162 33 25 10 0 0 455 455 130 130 162 33 25 10 0 0 120230 

14 455 455 130 130 104 20 0 0 0 0 455 455 130 130 104 20 0 0 0 0 107016 

15 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 96601 

16 455 310 130 130 25 0 0 0 0 0 455 310 130 130 25 0 0 0 0 0 86055 

17 455 260 130 130 25 0 0 0 0 0 455 260 130 130 25 0 0 0 0 0 82567 

18 455 360 130 130 25 0 0 0 0 0 455 360 130 130 25 0 0 0 0 0 89548 

19 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 96601 

20 455 455 130 130 162 37 25 10 0 0 455 455 130 130 162 37 0 10 0 0 120364 

21 455 455 130 130 122 20 25 0 0 0 455 455 130 130 0 20 0 0 0 0 107934 

22 455 444 0 130 0 20 25 0 0 0 455 444 0 130 0 20 0 0 0 0 89753 

23 455 348 0 130 0 0 0 0 0 0 455 348 0 130 0 0 0 0 0 0 70466 

24 455 345 0 0 0 0 0 0 0 0 455 345 0 0 0 0 0 0 0 0 61710 

 

Overall Cost of Generation = 2246297.7597($) 
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(d) Testing of 60-unit system using CSMA  

The CSMA method is tested for solving unit commitment problem for 60-unit test 

system. The statistics of 10-unit system was replicated and multiplied by 6 for sixty 

units. Table-5.15 (a), 5.15(b) and 5.15(c) illustrates optimal dispatch for 60-unit system. 

The convergence curve for 60-unit system is Fig.5.15.  

 

 

 

Fig.5.15: Convergence Curve for 60-unit system using CSMA method 

Referring Table 5.15(a), 5.15(b) and 5.15(c), U1, U2, U11, U12, U21, U22, U31, U32, 

U41, U42, U51 and U52  are the most appropriate units and thus remains in ON state 

for maximum time duration. For rest of hours, U3 to U9, U13 to U19, U23 to U29, U33 

to U39, U43 to U49 and U53 to U59 contributes power to meet the predicted load 

demand. During 12th hour, load is at peak and thus most of the units are in ON state. 

U10, U20, U30, U40, U50 and U60 act as the reserve units.  

The simulation results for CSMA method for 60 units shown in above results 

shows that total cost of generation with thermal units is $ 3375159.0917. Fig. 5.15 

shows that Convergence Curve for 60 unit system using CSMA convergences 

efficiently towards best fitness. It shows that the curve converges steeply till 200 

iterations and then settles to optimum value. Thus, it reveals that proposed CSMA 

method is effective in estimating UC problem.  
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Table-5.15(a): Scheduling of 1 to 20 units for 60 unit system using CSMA 

Time 

(h) 

Scheduling for 1 to 20 units 

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

1 455 245 0 0 0 0 0 0 0 0 455 245 0 0 0 0 0 0 0 0 

2 455 295 0 0 0 0 0 0 0 0 455 295 0 0 0 0 0 0 0 0 

3 455 358 0 130 0 0 0 0 0 0 455 358 0 0 0 20 0 0 10 0 

4 455 436 0 130 0 0 0 0 0 0 455 436 130 0 0 20 0 0 0 0 

5 455 421 0 130 0 0 0 0 0 0 455 421 130 0 0 20 0 0 0 0 

6 455 455 0 130 40 0 0 0 0 0 455 455 130 130 0 20 25 0 0 0 

7 455 455 0 130 44 0 0 0 0 0 455 455 130 130 0 0 25 0 0 0 

8 455 455 0 130 40 0 0 0 0 0 455 455 130 130 40 0 25 0 0 0 

9 455 455 130 130 102 0 0 0 0 0 455 455 130 130 102 0 25 0 0 0 

10 455 455 130 130 162 35 25 10 0 0 455 455 130 130 162 35 25 10 0 0 

11 455 455 130 130 162 75 25 10 10 0 455 455 130 130 162 75 25 10 10 0 

12 455 455 130 130 162 80 25 45 10 10 455 455 130 130 162 80 25 45 10 10 

13 455 455 130 130 162 35 25 10 0 0 455 455 130 130 162 35 25 10 0 0 

14 455 455 130 130 103 20 25 0 0 0 455 455 130 130 103 20 0 0 0 0 

15 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 

16 455 310 130 130 25 0 0 0 0 0 455 310 130 130 25 0 0 0 0 0 

17 455 260 130 130 25 0 0 0 0 0 455 260 130 130 25 0 0 0 0 0 

18 455 360 130 130 25 0 0 0 0 0 455 360 130 130 25 0 0 0 0 0 

19 455 453 130 130 25 0 0 0 0 0 455 453 130 130 25 0 25 0 0 0 

20 455 455 130 130 162 35 25 10 0 0 455 455 130 130 162 35 25 10 0 0 

21 455 455 130 130 128 20 25 0 0 0 455 455 130 130 128 20 25 0 0 0 

22 455 453 0 130 0 20 25 0 0 0 455 453 0 130 0 20 0 0 0 0 

23 455 358 0 130 0 0 0 0 0 0 455 358 0 130 0 0 0 0 0 0 

24 455 345 0 0 0 0 0 0 0 0 455 345 0 0 0 0 0 0 0 0 
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Table-5.15(b): Scheduling of 21 to 40 units for 60 unit system using CSMA 

Time 

(h) 

Scheduling for 21 to 40 units 

U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 U31 U32 U33 U34 U35 U36 U37 U38 U39 U40 

1 455 245 0 0 0 0 0 0 0 0 455 245 0 0 0 0 0 0 0 0 

2 455 295 0 0 0 0 0 0 0 0 455 295 0 0 0 0 0 0 0 0 

3 455 358 0 0 25 0 0 0 0 0 455 358 0 0 25 0 0 0 0 0 

4 455 436 0 0 25 0 0 0 0 0 455 436 0 0 25 0 0 0 0 0 

5 455 421 130 0 25 0 0 0 0 0 455 421 0 130 25 0 0 0 0 0 

6 455 455 130 0 40 0 0 0 0 0 455 455 0 130 40 0 0 0 0 0 

7 455 455 130 0 44 0 0 0 0 0 455 455 130 130 44 0 0 0 0 0 

8 455 455 130 130 40 20 0 0 0 0 455 455 130 130 40 0 0 0 0 0 

9 455 455 130 130 102 20 0 0 0 0 455 455 130 130 102 20 25 0 0 0 

10 455 455 130 130 162 35 25 10 0 0 455 455 130 130 162 35 25 10 0 0 

11 455 455 130 130 162 75 25 10 10 0 455 455 130 130 162 75 25 10 10 0 

12 455 455 130 130 162 80 25 45 10 10 455 455 130 130 162 80 25 45 10 10 

13 455 455 130 130 162 35 25 10 0 0 455 455 130 130 162 35 25 10 0 0 

14 455 455 130 130 103 20 0 0 0 0 455 455 130 130 103 20 25 0 0 0 

15 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 

16 455 310 130 130 25 0 0 0 0 0 455 310 130 130 25 0 0 0 0 0 

17 455 260 130 130 25 0 0 0 0 0 455 260 130 130 25 0 0 0 0 0 

18 455 360 130 130 25 0 0 0 0 0 455 360 130 130 25 0 0 0 0 0 

19 455 453 130 130 25 0 0 0 0 0 455 453 130 130 25 0 0 0 0 0 

20 455 455 130 130 162 35 25 10 0 0 455 455 130 130 162 35 25 10 0 10 

21 455 455 130 130 128 20 25 0 0 0 455 455 130 130 128 20 25 0 0 0 

22 455 453 130 130 0 20 25 0 0 0 455 453 0 130 0 20 25 0 0 0 

23 455 358 0 130 0 0 0 0 0 0 455 358 0 130 0 0 0 0 0 0 

24 455 345 0 0 0 0 0 0 0 0 455 345 0 0 0 0 0 0 0 0 
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Table-5.15(c): Scheduling of 41 to 60 units for 60 unit system using CSMA 

Time 

(h) 

Scheduling  for 41 to 60 units Hourly 

Fuel 

Cost U41 U42 U43 U44 U45 U46 U47 U48 U49 U50 U51 U52 U53 U54 U55 U56 U57 U58 U59 U60 

1 455 245 0 0 0 0 0 0 0 0 455 245 0 0 0 0 0 0 0 0 82099 

2 455 295 0 0 0 0 0 0 0 0 455 295 0 0 0 0 0 0 0 0 87327 

3 455 358 0 0 0 0 0 0 0 10 455 358 0 0 0 0 0 0 0 0 101417 

4 455 436 0 0 0 0 0 0 0 0 455 436 0 0 25 0 0 0 0 0 111509 

5 455 421 0 0 0 0 0 0 0 0 455 421 0 130 25 0 0 0 0 0 118544 

6 455 455 0 130 0 0 25 0 0 0 455 455 0 130 40 0 0 0 0 0 132350 

7 455 455 130 130 44 0 25 0 0 0 455 455 0 130 44 0 0 0 0 0 138961 

8 455 455 130 130 40 0 25 0 0 0 455 455 130 130 40 0 0 0 0 0 146375 

9 455 455 130 130 102 0 25 10 0 0 455 455 130 130 102 20 25 0 0 0 161668 

10 455 455 130 130 162 35 25 10 0 0 455 455 130 130 162 35 25 0 0 0 179653 

11 455 455 130 130 162 75 25 10 10 0 455 455 130 130 162 75 25 10 0 0 190792 

12 455 455 130 130 162 80 25 45 10 10 455 455 130 130 162 80 25 45 10 0 202656 

13 455 455 130 130 162 35 25 10 0 0 455 455 130 130 162 35 25 0 0 0 179653 

14 455 455 130 130 103 20 0 0 0 10 455 455 130 130 103 0 0 0 0 0 161190 

15 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 144902 

16 455 310 130 130 25 0 0 0 0 0 455 310 130 130 25 0 0 0 0 0 129082 

17 455 260 130 130 25 0 0 0 0 0 455 260 130 130 25 0 0 0 0 0 123851 

18 455 360 130 130 25 0 0 0 0 0 455 360 130 130 25 0 0 0 0 0 134322 

19 455 453 130 130 25 0 0 0 0 0 455 453 130 130 25 20 0 0 0 0 146033 

20 455 455 130 130 162 35 25 0 0 0 455 455 130 130 162 35 25 0 0 0 179682 

21 455 455 130 130 0 20 25 0 0 0 455 455 130 130 0 20 25 0 0 0 162693 

22 455 453 0 130 0 20 25 0 0 0 455 453 0 130 0 20 25 0 0 0 134691 

23 455 358 0 0 0 0 0 0 0 0 455 358 0 0 0 0 0 0 0 0 105405 

24 455 345 0 0 0 0 0 0 0 0 455 345 0 0 0 0 0 0 0 0 92565 

 Overall Cost of Generation = 3375159.0917($)  
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Table 5.16:  Cost comparison for 10, 20, 40 and 60 unit system with best, mean and 

worst values 

Units 
Method 

Best Cost ( 

$/day) 

Mean Cost( 

$/day)  

Worst Cost( 

$/day) 
Time (s) 

10 

hHHO-

IGWO 
563435.9964 564452.7594 565425.30224 0.03628 

CHHO 563387.6874 564379.5791 565305.50224 0.015625 

CSMA 563698.1582 564310.5195 565398.9054 0.030729 

20 

hHHO-

IGWO 
1124860.6904 112615.1648 1128872.8693 0.054688 

CHHO 1124685.2088 1126291.9476 1128859.9733 0.029688 

CSMA 1124242.1047 1125317.9113 112622.1086 0.046875 

40 

hHHO-

IGWO 
2249657.3623 2252698.0896 2256317.4070 0.078125 

CHHO 2257230.0455 2260310.6018 2264045.7170 0.046875 

CSMA 2246297.7597 2249497.0688 2252324.6943 0.06657 

60 

hHHO-

IGWO 
3374668.8771 3378103.0758 3381703.9070 0.096875 

CHHO 3386078.2574 3392629.3063 3402247.3615 0.086834 

CSMA 3375159.0917 3377469.9456 3378854.9012 0.076875 

Table 5.16 illustrates cost comparison for 10, 20, 40 and 60 unit system with best, mean 

and worst values for the proposed hybrid and chaotic methods. As the stochastic meta-

heuristic methods have a tendency to get entrap in local minima, algorithms perform 

differently for a particular unit system.   It can be seen from table that CHHO gives better 

result compared to hHHO-IGWO and CSMA for 10 unit system. CSMA is found to be 

efficient in handling 20 and 40 units, whereas hHHO-IGWO method shows better 

performance in handling 60 unit system. 

The results have been compared with other heuristic and meta-heuristic methods 

such as SM, GA, ESA, PSO, EP, BPSO, BGSA, HPSO, BF, SGA, hGWO-RES, EACO, 

etc. Table-5.17 illustrates comparison of 10-unit system (10% SR) for UC problem using 

hHHO-IGWO, CHHO and CSMA with competent algorithms. From the comparative 

table, it is observed that proposed methods gives superior performance compared to other 

methods. 

 



 

190 

 

Table-5.17:  Cost comparison for 10- unit system with other methods 

Method 
Overall Generation Cost ($) Average 

Time(Sec.) Best  Average Worst 

SM[12] 566686 566787 567022 --- 

LR[12] 566107 566493 566817 --- 

 GA [12] 565866 567329 571336 --- 

ESA [252] 565828 565988 566260 3.35 

 LRGA [321] 564800 564800 --- 518 

EP [310] 564551 565352 --- 5.61 

Evolutionary Programming [12] 564551 565352 566231 100 

 PSO [262] 564212 565103 565783 --- 

BDE [322] 563,997 563,997 563,997 --- 

Ant Colony Search Algorithm (ACSA) 

[94] 
564049 --- --- --- 

Particle Swarm-Based- Simulated 

Annealing (PSO-B-SA)[323] 
563938 564115 564985 --- 

Quantum-Inspired Binary PSO 

(QIBPSO)[324] 
563977 563977 563977 --- 

Hybrid Ant System/Priority List 

(HASP[44] 
564029 564324 564490 --- 

B. SMP[325] 564,017.73 564121.46 564401.08 --- 

 (AGA)[326] 564005 --- --- --- 

GA [327] 563977 564275 5665606 221 

IBPSO[323] 563977 564155 565312 --- 

IQEA-UC[328] 563938 563938 563938   

Binary PSO[278] 563977 563977 563977 --- 

IPSO [262] 563954 564162 564579 --- 

Advanced Fuzzy Controlled Binary 

PSO(AFCBPSO)[329] 
563947 564285 565002 5.54 

Hybrid PSO(HPSO)[330] 563942.3 564772.3 565782.3 --- 

QEA-UC[263] 563938 564012 564711   

GSA[2] 563938 564008 564241 2.89 

 HSA[331] 563977 564168.6 --- 3 

Integrated DE-HS algorithm [272] 565089.6 565509.90 565681.27 133.7055 

Hybrid HS- Random Search algorithm 

[142] 
563937.7 563965.30 563995.33 16.8312 

Hybrid DE-Random Search algorithm 

[143] 
563937.7 563958.28 563994.82 186.6578 

Harmony Search Algorithm (HAS)[331] 563977 564168.6 --- 3 

Hybrid HHO-IGWO(Proposed Method) 563435.9964 564452.7594 565425.30224 0.03628 

Chaotic HHO(Proposed Method) 563387.6874 564379.5791 565305.50224 0.015625 

Chaotic SMA(Proposed Method) 563698.1582 564310.5195 565398.9054 0.030729 

 

Table 5.18 illustrates results of proposed methods for 20-unit system compared with other 

methods in terms of best, average and worst. The comparative analysis revealed that 

CSMA method is more cost effective compared to other methods. 
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Table-5.18:  Cost comparison for 20-unit system with other methods 

Method 
Overall Generation Cost ($) Average 

Time(Sec.) Best  Average Worst 

GA[332] 1128876 1130160 1131565 - 

SM[332] 1128192 1128213 1128444 - 

LR[332] 1128362 1128395 1128444 - 

Enhanced Simulated 

Annealing[47] 
1126251 1127955 1129112 16.8 

Particle swarm optimization[137] 1125983 - 1131054 - 

Evolutionary Programming 

(EP)[310] 
1125494 1127257 - 340 

Improved PSO[333] 1125279 - 1127643 - 

B.SMP[324] 1124839 1125102 1125283 - 

Hybrid HS-Random Search[142] 1124889.39 1124912.84 1124951.55 35.01 

Hybrid HHO-IGWO(Proposed 

Method) 

1124860.6904 112615.1648 1128872.8693 0.054688 

Chaotic HHO(Proposed Method) 
1124685.2088 1126291.9476 1128859.9733 0.029688 

Chaotic SMA(Proposed Method) 
1124242.1047 1125317.9113 112622.1086 0.046875 

Table 5.19 illustrates results of proposed methods for 40-unit system with other methods 

in terms of best, average and worst. The comparative analysis revealed that CSMA 

method is more cost effective compared to other methods. 

Table-5.19:  Cost comparison for 40- unit system with other methods 

Method 
Overall Generation Cost ($) Average 

Time(Sec.) Best  Average Worst 

GA[332] 2249715 - 2256824 2697- 

SM[332] 2249589 2249589 2249589 - 

LR[332] 2250223 2250223 2250223 - 

Enhanced Simulated 

Annealing[47] 
2255864 2256971 2258897 199.55 

Particle swarm 

optimization[137] 
2250012 - 2257146 - 

Evolutionary Programming 

(EP) 
2249093 2252612 - 1176 

Improved PSO[333] 2401728 - - 316.86 

Harmony Search[334] - 2250968 - 467 

Hybrid HS-Random 

Search[142] 
2248508 2248652.78 2248.757 179.66 

Hybrid HHO-

IGWO(Proposed Method) 

2249657.3623 2252698.0896 2256317.4070 0.078125 

Chaotic HHO(Proposed 

Method) 

2257230.0455 2260310.6018 2264045.7170 0.046875 

Chaotic SMA(Proposed 

Method) 

2246297.7597 2249497.0688 2252324.6943 0.06657 
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Table 5.18 illustrates results of proposed methods for 40-unit system compared with other 

methods in terms of best, average and worst. The comparative analysis revealed that 

hHHO-IGWO method is more cost effective compared to CHHO, CSMA and other 

methodologies. 

Table-5.20:  Cost comparison for 60- unit system with other methods 

Method 
Overall Generation Cost ($) Average 

Time(Sec.) Best  Average Worst 

GA[310] 3376625 - 3384252 5840 

MINLP 3392140 - - 69.721 

IBPSO[333] 3367865 3368278 3368779 172 

Evolutionary Programming (EP)[55] 3371611 3376255 3381012 2267 

Improved PSO[137] 3370979 - 3379125 - 

Hybrid HHO-IGWO(Proposed 

Method) 

3374668.8771 3378103.0758 3381703.9070 0.096875 

Chaotic HHO(Proposed Method) 
3386078.2574 3392629.3063 3402247.3615 0.086834 

Chaotic SMA(Proposed Method) 
3375159.0917 3377469.9456 3378854.9012 0.076875 

 

5.9   CONCLUSION 

This chapter comprises solution to unit commitment problem by implementing proposed 

hHHO-IGWO, CHHO and CSMA method. Each method has been employed to solve UC 

problem for 10, 20, 40 and 60 unit system. The simulation outcomes for the test systems 

are recorded in terms of best, worst and average value. In order to inspect validity of 

proposed method, final outcomes were authenticated with other competitive algorithms 

such as SM, GA, ESA, LRGA, EP, PSO, IBPSO, binary PSO, GSA, HSA, etc. It is 

observed that proposed method is effective in handling unit commitment problem 

meritoriously with improved convergence.  
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CHAPTER-6 

UNIT COMMITMENT PROBLEM WITH RENEWABLE SOURCE 

AND ELECTRIC VEHICLES
 

 

6.1   INTRODUCTION 

 A contemporary electrical power system is associated with a wide range of conventional 

and non-conventional energy sources. Since conventional energy sources are increasingly 

depleting, they must be used wisely. Renewable energy sources are inherently 

intermittent and do not deliver steady output power. The process of deciding the ON/OFF 

status of a generating unit in order to minimize total operating costs is known as unit 

commitment. Due to the large penetration of renewables, the UC problem has become 

even more complex. Furthermore, as battery technology, storage capacity, and energy 

policies have advanced, a large number of EVs have been introduced in recent years. As 

these EVs are charged from the existing grid, it may result in additional power demand. 

However, the energy stored in EVs could be fed back to the grid through V2G operation. 

It requires a coordinated charging and discharging schedule of PEVs in accordance with 

the system operator. An intelligent scheduling of generating units with significant V2G 

power would result in significant power generation savings.    

Some research-related work is explored for better disclosure of problems concerned 

with wind and EV. Saber et al. [3] utilized the PSO method for selecting charging and 

discharging patterns in order to achieve the most economical operation and reduce 

emissions. A 10 unit system with a wind farm has a total output power of 25.5 MW from 

17 wind turbines (each 1.5 MW) and 50,000 registered vehicles. The proposed method 

was found to be operative in reducing total operational costs. Khodayar et al. [171] 

explored various constraints associated with the intermittent nature of wind power. 

Furthermore, charging and discharging characteristics, V2G operating costs, and 

additional constraints due to storage are also included. In this work, uncertainties related 

to the vehicle to grid operation and wind power penetration were modeled by applying 

mixed-integer programming.  
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Yu et al. [172]  used a chemical reaction algorithm for the utilization of energy stored 

in batteries via V2G. The major influence of this work is to provide an optimal generation 

schedule by diverting some part of energy via effective V2G operation. It was observed 

that the proposed method explored excellent results over other competitive algorithms. 

Chandrashekar et al. [173] incorporated rolling horizon search algorithm for controlled 

PEV operation to compensate for additional reserve cost requirements occurring due to 

uncertain wind availability.    

Ghofrani et al. [174] integrated genetic algorithm with Monte Carlo simulation for 

getting optimal charging and discharging patterns of EVs. A control model was designed 

to balance the cost penalty with the uncertain wind power penetration. Gao et al. [175] 

introduced a controlled stochastic optimization technique for the effective V2G operation 

in the presence of intermittent wind power. The uncertainties associated with renewable 

penetration were compensated for by optimizing V2G control.   

Zhang et al. [176] employed a fuzzy chance-constraint based program to solve 

problems of time mismatch between supply and load demand by using particle swarm 

optimization.  Reddy et al. [19] explored the performance of different systems consisting 

of 10, 20, 40, 60, and 100 units in the presence of electric vehicles and renewable energy 

sources by implementing a modified firework algorithm. It was reported that the proposed 

Binary Firework Algorithm (BFWA) method gave more precise results when compared 

with other methods.  Zhang et al. [177] developed a highly coordinated scheme using 

multiple group optimization based on multi-objective decomposition for eliminating 

uncertainties associated with PEVs and wind power. Pal et al. [26] proposed a centralized 

system modes of power transfer for direct benefit to consumers involved in vehicle to 

home and vehicle to grid operations using mixed integer programming. 

 Clement-Nyns et al. [178] incorporated quadratic programming and dynamic 

programming and introduced coordinated charging of PHEVs for maintaining a constant 

voltage profile and reliability. The stochastic nature of charging and discharging was 

mitigated by applying a probability density function. Su et al. [179] surveyed various 

opportunities and challenges for electrification of vehicles and V2G operation. Fernandez 

et al. [23] suggested methods to reduce different possibilities of increased cost and 
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distribution losses with variable PEV penetration. This work explores different scenarios 

of increased cost due to large penetration of PEV. Ma et al. [180] investigated V2G 

operation for an IEEE-30 bus system and predicted problems in energy supply to 

customers in the case of wind power unavailability owing to likely uncertainties. Yao et 

al. [136] introduced a hierarchical decomposition approach by applying a coordinated 

charging/ discharging EV interpretation in order to maintain power supply security and 

reliability.  

Darabi et al. [181] investigated various constraints and limitations while charging a 

large fleet of electric vehicles from the supply system. The proposed method was tested 

to determine percentage of PHEV allowed to charged, uncharged. Wang et al. [182] 

elaborated the impact of large V2G operation in existing grid. In order to minimize the 

power imbalance in distribution network during peak shaving, cross-entropy (CE) 

algorithm was tested for a 33-node system. Peng et al. [22] proposed a novel dispatching 

strategy for V2G aggregators to participate in power regulation, load frequency and load 

demand fulfillment.  

Shekari et al. [184] applied linear programming to regulate the balance between 

active and reactive power by connecting a fleet of EVs in a micro-grid. The results were 

analyzed in terms of voltage profile, generating unit dispatch capacity, and operational 

cost minimization of the micro grid. Andervazh et al. [185] used the Weibull probability 

density function and the normal distribution function to revive uncertainties related with 

demand, renewables, and plug-in vehicles. Zhao et al. [335] devised a hybrid PSO 

algorithm by combining interior point method with PSO for solving economic dispatch 

involving wind and V2G penetration. This study also provides detailed modeling of 

uncertainties associated with wind and electric vehicles under diverse constraints and 

restrictions. 

This chapter is committed to explore Unit commitment problem with thermal and wind 

(UC+W) and thermal with wind and electric vehicles (UC+W+EV). Unit commitment 

problem with wind and EV for -10, -20, -40 and -60 units has been tackled by 

incorporating one hybrid algorithm i.e. hHHO-IGWO and two chaotic variants i.e. 

CHHO and CSMA.    
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6.2   PROBLEM FORMULATION 

The total generation cost is associated with cost for starting and shut down units, 

minimum up/down time, IS, SR and other system and environmental constraints. In 

general, the fuel cost is characterized by second order quadratic equation given as, 

  2

cos , ,
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[ ]
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t i i h i i h i

i

F a P b P c


         (6.1) 

Where,  are the fuel cost function expressed in 2
$ / h,$ / , $ /MWh and MWh

respectively. 

The startup cost is related to the boiler temperature and mathematically, startup 

cost iSTC  can be expressed in terms of hot start-up cost  and cold startup ( )CSc  of 

ith unit respectively. 
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Where, 
iMDt  is the minimum down time of unit ‘i’, .

OFF
i hT  is the duration for 

which unit ‘i’ is continuously OFF and
iCSh  is the cold start-up hours. 

 Now, the total operating cost FT is determined by summing up the generation cost of each 

unit and the start-up cost for a defined time interval. It can be mathematically represented 

as: 
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                                 (6.3) 

The UC is associated with following system and unit constraints.  

6.2.1 Operating Limits Constraints 

These generation limits for a particular unit are calculated from the heat rate curve and fuel 

cost coefficient limits. Each generator is limited to maximum and minimum generation 

limit   

   
min max

( 1, 2,...., ; 1, 2,...., )
i i

PG PG PG i N h H                                           (6.4) 

6.2.1.1 Load Balance Constraints 

To maintain reliability and security of power supply, total power demand should always 

meet the forecasted load demand. 

i i ia b and c

( )HSch
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                 (6.5) 

6.2.1.2 Spinning Reserve Constraints 

It is the additional generation capacity to satisfy the demand with sufficient reserve margin 

should always be available. Mathematically, Spinning Reserve is given as: 

   
1

1 2 1 2 3
N

i Li ,h ( h ) ( h )
i

PG .U D SR i , ,........,N;h , , ....,H


                                                 (6.6)        

6.2.1.3 Minimum Up-time Constraints 

This constraint gives the minimum time to put a generating unit online after it has already 

been shut down. 

 Mathematically expressed as: 

,
ON

ii hT MUT                                     (6.7) 

6.2.1.4 Minimum down time Constraints 

This constraint gives the minimum amount of time for which a particular unit should be 

kept in off condition before putting it online.  

Mathematically expressed as: 

,
OFF

ii hT MDT                                    (6.8)  

6.2.2   Mathematical modeling of Wind Uncertainties 

Electrical energy is the primary requirement for the functioning of almost all day-to-day 

activities. Fossil fuels are the major ingredient for power industries to produce a large 

amount of power. Though energy production from fossil fuel is simpler, it also results in 

harmful hazardous effects on the environment by releasing fossil emissions. If the process 

of energy usage continues to stay with no alternatives, it may result in the fast usage of 

fossil fuels and ultimately reach its end one day. It becomes necessary to pay great 

attention towards the usage of these non-conventional sources for their long existence. 

The participation of renewable energy sources has lowered the burden on fossil fuels to 

satisfy load demand to some extent. Wind and solar are the principal renewable energy 

sources contributing towards total energy production throughout the world. Wind energy 

is stochastic in nature, with its velocity and direction changing over time. This uncertain 

stochastic nature could be revive by using various statistical techniques, such as the 
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gamma function and the weibull probability distribution function, etc. It is necessary to 

understand the amount of energy produced by various turbines at various speeds 

Mathematical formulation 

We know, 31

2
P Av                                                                                                (6.9) 

Equation (6.9) determines the wind power produced by wind turbine at rated wind 

velocity ‘V’. There is a limit for maximum produced by wind at any velocity ‘V’ 

investigated by German physicist Albert Betz in 1919. This limit turned to as power 

coefficient (CP max). At any instant, only 59% energy can be extracted from wind. Wind 

turbines, too, are unable to function at this maximum capacity. The power coefficient is 

a function of the turbine's operational wind speed. Even with the finest-designed turbines, 

the best power coefficient is determined to be between 0.35-0.45. Only about 10-30% of 

the wind's power can be transformed into useful electricity when numerous elements are 

taken into account, such as the gearbox, bearings, generators, and so on. As a result, the 

power coefficient element in eqn. (6.9) must be included, and the real extractable power 

from the wind is provided by,     

 31
.

2
P Av Cp                                                                                     (6.10) 

The power produced by wind turbines varies to cube of the rated speed. This however is 

applicable for certain range of speed. Indeed, for a small wind speed, there is not enough 

torque to rotate the turbine. The wind speed at which the rotor start to rotate is called the 

cut-in-speed. Below cut-in-speed, no power is produced. The cut-in-speed is typically 

around 3 to 4 m/s. On the other hand, if the wind is strong, the rotor cannot produce large 

power because of mechanical constraints. Therefore, the so called cut-out-speed is the 

maximum speed at which power can be safely produced. The cut-out-speed lies typically 

around 15 m/s. Finally, electrical generator also imposes a limit on the power that can be 

produced as output power. Thus, beyond a certain wind speed, the power is limited to a 

constant value.  

The most often used distribution in reliability engineering is the Weibull 

distribution function, which was devised by Swedish academic Waloddi Weibull in 1951. 

It is a flexible distribution function dependent on the shape and scale factor. The function 

for the evaluation of wind energy is,    
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in out

cdf v cdf v                   (6.13) 

For Pw=0, Pr =  1 exp exp

k k

in outv v

 

      
         

         

                       (6.14)  

 

1 1

( ) exp

k

w W
in in

WR WRin

wr

LP LP
v v

P PKLv
pdf PW

P
  

                      
           

             (6.15) 

 In the present research, Shape factor=2, Scale factor = 7,   Cut-in Speed= 3 m/s, Cut-out 

speed = 15 m/s, Rated speed = 11-15 m/s are taken into consideration. 

  

6.2.3    Unit commitment problem formulation for integrated system consisting   

  of thermal units and wind as renewable source  

Case-1: UCP with RES  

The power balance is achieved when overall generation meets the allocated load as, 

 
1

1 2 1 2 3
N

w

i i ,h g L

i

PG .U P D i , ,........,N;h , , ....,H


                    (6.16) 

 For arbitrary free unit power outputs Phi, within minimum and maximum power limit. 

min(i) ( ) max)(i)
( 1,2,...., ; 1,2,...., )

g g i g
P P P i N h H    .   

It is assumed that the Rth reference unit power output is constrained by the power balance 

eqn. as: 

( ) ,h

1

( ) ( 1,2,..., )
NG

w

hR L g i i g

i
i R

P D P U P h H



                                       (6.17) 
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Case-2: UCP with RES and EVs 

In this section, unit commitment problem formulation for an integrated system consisting 

of thermal units, wind as a renewable source, and electric vehicles. 

It is assumed that there is a fleet of 40,000 registered vehicles. As all the EVs 

cannot be charged and discharged simultaneously, only 20 % of the vehicles are involved 

in G2V/V2G operation. The battery capacity of each vehicle is 15 KW, the departure 

state of charge (δ) = 0.50% and efficiency (η). Thus, only 8000 vehicles can participate 

returning back a net power of 51 MW for a typical charging/discharging pattern as 

depicted in Table .6.1 given below. During charging, these electric vehicles act as load 

and consumes energy, while during discharging they perform V2G operation and fed 

back stored energy in batteries to the grid. A typical charging/discharging is considered 

for G2V and V2G operation. 

Table-6.1: A typical charging/ discharging scenario 

Time(H) Number of EVs PG2V (MW) PV2G (MW) 

1 5096 32.4 0 

2 3378 21.5 0 

3 3646 21.24 0 

4 6643 42.35 0 

5 1918 22.99 0 

6 6155 39.24 0 

7 3633 13.54 0 

8 577 3.67 0 

9 7335 0 46.76 

10 7134 0 45.48 

11 5213 0 33.23 

12 7541 0 48.73 

13 7330 0 46.73 

14 388 0 2.47 

15 4552 29.02 0 

16 1069 6.81 0 

17 5460 34.8 0 

18 6363 40.56 0 

19 4426 41.21 0 

20 7367 0 46.96 

21 2606 0 16.58 

22 7442 0 47.44 

23 5635 0 35.92 

24 6967 0 44.41 
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Condition-1: During Charging of Vehicle (Grid to Vehicle) 

( ) ,
1

( 1,2,....., )V

L h

N

gg i i h
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             (6.18) 

Condition-2: During Discharging (Vehicle to Grid) 

( ) ,
1

( 1,2,....., )V

h L

N

gg i i h
i

wP U P D D i N


               (6.19) 

. For arbitrary free unit power outputs Phi, (i=1, 2, NG), it is implicit that the Rth 

reference output is controlled by the power balance eqn. as: 

( ) ,
1

( 1,2,....., )Rh L

N
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i
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                            (6.20)  

 

Condition-3: During Charging of Vehicle 
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                (6.21) 

 

Condition-4: During Discharging 

( ) ,
1
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                            (6.22) 

 

V2G Constraint: V2G technology enables a fixed number of registered vehicle to 

participate in UC. Electric vehicles are assumed to be charged during off-load period 

by utility grid or from renewable energy sources. Charging- discharging duration 

depends upon battery size and charging facilities. It is assumed that all vehicles charged 

by stand-alone system available at the parking slot. It is also assumed that only %  of 

total vehicles can participate in V2G operation 

 2 2

1

( ) % ( )
H

Max

V G V G

t

N t N t


            (6.23) 

 

6.3 SOLUTION METHODOLOGIES FOR UNIT COMMITMENT 

PROBLEM 

In this section UCP is tested by applying hybrid Harris hawks algorithm, Chaotic Harris 

Hawks algorithm and Chaotic Slime Mould Algorithm. Subsequent section presents 

various spinning reserve and minimum up/down constraints. 
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6.3.1 Spinning Reserve Constraint Repairing 

 Spinning reserve constraint is repaired as per code illustrated in appendix-A (iii) and 

flow chart for spinning reserve repair mechanism as shown in Fig.6.1. 

Step1: Align the generators in order of generating capacity in descending order. 

Step2:    for i = 1 to N 

if , 0i hu   

then , 1i hu   

else if ,
OFF

i h iT MDT  

then , , 1 1ON ON
i h i hT T   and , 0OFF

i hT   

end if 

end for 

Step-3: Verify new generating power of units. 

Step-4:  if (max) ,

1

N
RES v

gi i h h h h h

i

P U P D D R


     then stop the iterations, else go to step-2. 

Step-5: if  ,
OFF

i h iT MDT  then do , 1OFF
i hl h T    and set , 1i hu   

Step-6: Calculate 1, 1l ON
i l iT T    and , 0

OFF

i hT   

Step-7: if l >h, Verify generator output power for (max) ,

1

N
RES v

gi i h h h h h

i

P U P D D R



    , else 

increment l by 1 and go to step-5. 

6.3.2 Minimum Up/Down constraints repairing  

To satisfy Minimum up/down time requirement of generating units, repairing mechanism 

is presented in Appendix-A (iii) 

6.3.3 De-commitment of Excessive Generating Units  

In order to update spinning reserve requirement of various thermal generating units, 

Minimum down time ( )iMDT  of each generating unit along with duration for which ith 

generating unit is continuously OFF ,( )OFF

i hT   is taken into consideration and constraint is 

repaired as presented in Appendix-A (iv). The flow chart is illustrated in Fig.6.2. 
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Fig. 6.1:  Spinning reserve repairing in presence RES and EV 
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Fig.6.2: Flow chart for de-commitment of excessive generative units 
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6.4 HYBRID HARRIS HAWKS OPTIMIZER  

In order to develop Hybrid Harris Hawks optimizer (hHHO-IGWO), the general 

operators of HHO algorithm and IGWO algorithm are integrated. The procedure for unit 

commitment using hHHO-IGWO algorithm is explained below. 

The optimization procedure for the hHHO-IGWO algorithm consists of the following 13 

steps: 

Step-1: As indicated below, configure UCP parameters and individuals in the population: 

 The unit's ON/OFF schedule is saved as an integer-matrix, which is technically described 

as: 

111 12

221 22

1 2

NG

NG

hi

H H HNG H NG

uu u

uu u
U

u u u

 

 



  



 
 
 


 
 
  

( 1,2,..., ; 1,2,..., ; 1,2,..., )h H i N NP    

Step-2: In descending order, generating units are prioritized based on their greatest 

generation capacity. 

Step-3: Individual unit status is changed to meet the spinning reserve constrictions. 

Step-4: Repair unit status for minimum time defilements. 

Step-5: De-commit the population's extra units to reduce reserve requirement 

Step-6: The problem of UC is solved, and fuel costs for each hour are determined. 

Step-7: Apply HHO and perform exploration phase to generate updated target vector

( 1)X itn  . 

Step-8: Apply Levy flight to further update to generate ( 1)newX itn . 

Step-9: Replace worst positions vector ( 1)worstX itn  with ( 1)newX itn   

Step-10: Determine overall generation cost for ( )nit   

Step-11: If max

nnit it , then go to step 13.  

Step-12: If max

nnit it , increase nit  by one and return to step 3 and repeat. 

Step-13: Stop and determine best solution for UC. 
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6.5 CHAOTIC HARRIS HAWKS OPTIMIZER   

In order to develop the chaotic algorithm for solving unit commitment problem, the 

general operators of Harris Hawks are integrated Tent chaotic function. Initially, a 

random solution is generated within the entire population by clubbing corresponding 

chaotic function.  In proposed algorithm, chaotic search is applied to optimize a vector of 

units to be committed for mininizing the overall cost. The following are the various steps 

in the proposed CHHO algorithm: 

Step-1: Initialization of UCP and Chaotic parameters of the algorithm.  

Step-2:Enter UCP input parameters and generate random vectors as many Hawks 

position using eqn.(6.1).Each random vector  is defined as generating unit ON/OFF (or 

1/0) status, defined as: 

111 12

221 22

1 2

NG

NG

hi

H H HNG H NG

uu u

uu u
U

u u u

 

 



  



 
 
 


 
 
  

 ( 1,2,..., ; 1,2,..., ; 1,2,..., )h H i N H    

Where, hiu is unit ON/OFF status of ith unit at hour h (i.e. hiu =1/0 for ON/OFF). 

Step-3: Arrange the generating units in descending order according to their maximum 

generation capability. 

Step-4: Modification of units’ status of every entities in the population obeying reserve 

restrictions as mentioned in section -5.3.1. 

Step-5: Repair individual unit status for minimum up/down time defilements as per 

section -5.3.2.  

Step-6: De-commit the population's extra units to reduce spinning reserve due to less 

up/down time mending. 

Step-7: Apply HHO and perform exploration phase to generate updated target vector

( 1)X itn  . 

Step-8: Apply Levy flight to further update ( 1)X itn   to generate ( 1)newX itn . 

Step-9: Replace worst positions vector ( 1)worstX itn  with ( 1)newX itn  using eqn. (2.13) 

Step-10: Determine overall generation cost for ( )nit .  
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Step-11: If max

nnit it , then go to step 13.  

Step-12: If max

nnit it , increase nit  by one and return to step 3 and repeat. 

Step-13: Stop and figure out the most profitable solution to the unit commitment 

dilemma. 

6.6 CHAOTIC SLIME MOULD ALGORITHM   

The detailed theoretical and mathematical aspects of CSMA has been already discussed 

in chapter 3. In proposed algorithm, chaotic search is applied to optimize a vector NP
U of 

units to be committed for mininizing the overall cost. The various steps for the proposed 

CHHO algorithm are mentioned below: 

Step-1: Initialization of UCP and Chaotic parameters of the algorithm  

Step-2: Enter UCP input parameters and generate random vectors as many Slime mould 

position using eqn (6.1).  

Step-3: Display the generating units in descending order according to their maximum 

generation capability. 

Step-4: Modification of units’ status of every individuals in the population  

Step-5: Repair individual unit status for minimum up/down time defilements  

Step-6: De-commit the population's extra units to reduce spinning reserve due to less 

up/down time mending. 

Step-7: Apply SMA and perform exploration to generate updated target vector ( 1)X itn 

Step-8: Apply Chaotic strategy further update ( 1)X itn   using smell index generate

( 1)newX itn . 

Step-9: Replace worst positions vector ( 1)worstX itn  with ( 1)newX itn   

Step-10: Determine overall generation cost for ( )nit   

Step-11: If max

nnit it , then go to step 13.  

Step-12: If max

nnit it , increase nit  by one and return to step 3 and repeat. 

Step-13: Stop and figure out the most profitable solution to the unit commitment 

dilemma. 
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6.7   Testing of Unit Commitment Problem with RES and EV 

Standard IEEE system data consisting of 10, 20, 40 and 60 units has been analysed by 

implementing three proposed algorithms. The system data used in the proposed study are 

load demand, fuel cost coefficients of each generating unit, MUT, MDT and Initial State 

(IS).  

6.7.1   Testing of Unit Commitment Problem with RES and EV by Hybrid Harris 

Hawks Algorithm 

The proposed algorithm is applied to standard test systems consisting of 10, 20, 40 and 

60 units and simulation results are recorded for UC with wind as renewable energy source 

and UC with wind and Electric vehicle. Each run is performed starting with different 

initial population size.  

(a)Testing of 10-unit system using hHHO-IGWO 

The hHHO-IGWO algorithm is applied to standard test systems consisting of 10-

units with 10% SR and simulation results are recorded for wind and wind & EV. Table-

6.2 represents their corresponding power dispatch for each unit with wind penetration. 

Table-6.3 shows corresponding power dispatch with wind & EV penetration. The 

convergence curves with wind and with wind & EV for 10-unit system are demonstrated 

in Fig.6.3 and Fig.6.4 separately. 

 

Fig.6.3: Convergence Curve 10 unit system with wind using hHHO-IGWO  
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Table-6.2: Scheduling of 10-unit system with wind  

Time 

(h) 

Scheduling of 10 units Generate

d Power 

(MW) 

Start-

Up 

Cost 

Hourly 

Fuel 

Cost U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 

1 373 150 0 0 0 0 0 0 0 0 523 550 10672 

2 429 150 0 0 0 0 0 0 0 0 579 260 11600 

3 455 237 0 0 0 0 0 0 0 0 692 560 13544 

4 455 350 0 0 0 0 0 0 0 0 805 400 15515 

5 455 378 0 0 25 0 0 0 0 0 858 900 16949 

6 455 455 0 0 53 0 0 0 0 0 963 0 18859 

7 455 420 130 0 25 0 0 0 0 0 1030 0 20576 

8 455 455 130 0 51 0 0 0 0 0 1091 0 21710 

9 455 444 130 130 25 0 0 0 0 0 1184 0 23858 

10 455 455 130 130 89 0 25 0 0 0 1284 260 26515 

11 455 455 130 130 118 20 25 0 0 0 1333 170 27928 

12 455 455 130 130 160 20 25 10 0 0 1385 60 29721 

13 455 455 130 130 71 20 25 0 0 0 1286 60 26967 

14 455 451 130 130 25 0 0 0 0 0 1191 90 23981 

15 455 353 130 130 25 0 0 0 0 0 1093 0 22265 

16 455 199 130 130 25 0 0 0 0 0 939 0 19580 

17 455 157 130 130 25 0 0 0 0 0 897 0 18851 

18 455 250 130 130 25 20 0 0 0 0 1010 0 21277 

19 455 340 130 130 25 20 0 0 0 0 1100 60 22863 

20 455 455 130 130 90 20 0 0 0 0 1280 340 26179 

21 455 433 130 130 25 0 0 0 0 0 1173 0 23665 

22 455 455 0 0 53 0 0 0 0 0 963 0 18859 

23 455 285 0 0 0 0 0 0 0 0 740 0 14380 

24 455 170 0 0 0 0 0 0 0 0 625 0 12379 

Worst Cost($)=495978.9707 

 

Best Cost($)=492400.2699 

 

Mean Cost($)=494231.2616 Total= 

492400.2

699($) 
Worst Time(Sec.)= 0.09375 Best Time(Sec.)= 0.03125 Mean Time(Sec.)= 0.0526 

  

Referring Table 6.1 , U1 and U2 are the most cost efficient units and thus run for total 24 

hours duration to meet the corresponding load demand. Start-up cost depends upon the 

operating temperature of particular unit and initial state. At 9th to 13th  hour , load is at 

peak demand and thus units U1 to U7 are in ON state. U8 to U10 act as the reserve unit 

and runs only during the peak load.The total operating cost is the sum of start-up cost and 

generation cost of units for a 24 hour duration.  

 In Table 6.2 , U1 and U2 are the most cost efficient units and thus run for total 24 

hours duration to meet the corresponding load deamd. During the peak hours, U3 to U5 

units contribute their power meet the corresponding load demand. During  9th to 13th  hour 

, load is at peak demand and thus units U1 to U7 are in ON state. U8 to U10 act as the 

reserve unit and runs only during the peak demand.  
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 The simulation results for HHO-IGWO algorithm for 10 unit shows total cost of 

UC,  UC+W and UC+W+EV are $ 563435.9964, $ 492400.2699 and $ 489514.5979 

respectively. The results shows that there is cost saving of $ 73921.3985  with coordinated 

charging/discharging of EV for V2G operation.Thus, the proposed method is cost 

effective in dealing unit commitment problem under uncertain sustainable environment. 

Table-6.3: Scheduling of 10 units with wind & EV using hHHO-IGWO method 

Time 

(h) 

Generation scheduling Power 

(MW) 

Start-

Up Cost 

Hourly 

Fuel Cost 
U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 

1 405 150 0 0 0 0 0 0 0 0 555 0 11208 

2 450 150 0 0 0 0 0 0 0 0 601 960 11957 

3 455 258 0 0 0 0 0 0 0 0 713 820 13914 

4 455 367 0 0 25 0 0 0 0 0 847 90 16763 

5 455 401 0 0 25 0 0 0 0 0 881 550 17352 

6 455 392 130 0 25 0 0 0 0 0 1002 0 20090 

7 455 434 130 0 25 0 0 0 0 0 1044 0 20814 

8 455 355 130 130 25 0 0 0 0 0 1095 60 22294 

9 455 397 130 130 25 0 0 0 0 0 1137 0 23039 

10 455 455 130 130 44 0 25 0 0 0 1239 600 25595 

11 455 455 130 130 85 20 25 0 0 0 1300 120 27246 

12 455 455 130 130 121 20 25 0 0 0 1336 0 27995 

13 455 455 130 130 49 20 0 0 0 0 1239 0 25354 

14 455 449 130 130 25 0 0 0 0 0 1189 0 23937 

15 455 382 130 130 25 0 0 0 0 0 1122 60 22772 

16 455 336 0 130 25 0 0 0 0 0 946 0 19073 

17 455 322 0 130 25 0 0 0 0 0 932 320 18828 

18 455 440 0 130 25 0 0 0 0 0 1050 0 20897 

19 455 455 0 130 82 20 0 0 0 0 1142 170 23116 

20 455 455 0 130 153 20 0 0 10 10 1233 120 26476 

21 455 455 0 130 96 20 0 0 0 0 1156 30 23418 

22 455 331 0 130 0 0 0 0 0 0 916 60 18036 

23 455 249 0 0 0 0 0 0 0 0 704 0 13754 

24 431 150 0 0 0 0 0 0 0 0 581 0 11626 

Worst 

Cost($)=492893.0072 
 

Best 

Cost($)=489514.5979 
 

Mean Cost($)=491394.7670 Total= 

489514.59

79($) 
Worst Time(Sec.)= 

0.0625 

Best Time(Sec.)= 

0.046875 
Mean Time(Sec.)= 0.05 
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Fig.6.4: Convergence Curve 10 unit system with wind and EV using hHHO-IGWO 

 (b) Testing of 20-unit system using hHHO-IGWO 

Population size is taken as 80 for all 30 trial runs with 500 iterations and simulation results 

are recorded for UC with wind and UC with wind & EV. Table-6.4 illustrates optimal 

status of committed generators with wind. Table-6.5 shows their corresponding power 

dispatch with wind & EV penetration. The convergence curves with (UC + W) and (UC 

+W+EV) for 20-unit system are demonstrated in Fig.6.5 and Fig.6.6. 

 
Fig.6.5: Convergence Curve for 20-unit system with wind using hHHO-IGWO
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Table-6.4: Scheduling of 20 units with wind using hHHO-IGWO 

Time 

(h) 

Scheduling for 20 unit Hourly 

Fuel 

Cost U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

1 455 157 0 0 0 0 0 0 0 0 455 157 0 0 0 0 0 0 0 0 24289 

2 455 197 0 0 25 0 0 0 0 0 455 197 0 0 0 0 0 0 0 0 26641 

3 455 304 0 0 25 0 0 0 0 0 455 304 0 0 0 0 0 0 0 0 30351 

4 455 410 0 0 25 0 0 0 0 0 455 410 0 0 0 0 0 0 0 0 34074 

5 455 397 130 0 25 0 0 0 0 0 455 397 0 0 0 0 0 0 0 0 36493 

6 455 369 130 0 25 0 0 0 0 0 455 369 130 130 0 0 0 0 0 0 41283 

7 455 363 130 130 25 0 0 0 0 0 455 363 130 130 0 0 0 0 0 0 43917 

8 455 406 130 130 25 0 0 0 0 0 455 406 130 130 25 0 0 0 0 0 46366 

9 455 455 130 130 59 0 25 0 0 0 455 455 130 130 59 0 0 0 0 0 50658 

10 455 455 130 130 134 20 25 0 0 0 455 455 130 130 134 20 0 10 0 0 56285 

11 455 455 130 130 162 32 25 10 0 10 455 455 130 130 162 32 0 10 0 0 59844 

12 455 455 130 130 162 65 25 10 10 0 455 455 130 130 162 65 25 10 10 0 63483 

13 455 455 130 130 128 20 25 0 0 0 455 455 130 130 128 20 25 0 0 0 56269 

14 455 455 130 130 63 0 0 0 0 0 455 455 130 130 63 0 25 0 0 0 50799 

15 455 407 130 130 25 0 0 0 0 0 455 407 130 130 25 0 0 0 0 0 46401 

16 455 254 130 130 25 0 0 0 0 0 455 254 130 130 25 0 0 0 0 0 41092 

17 455 209 130 130 25 0 0 0 0 0 455 209 130 130 25 0 0 0 0 0 39491 

18 455 302 130 130 25 0 25 0 0 0 455 302 130 130 25 0 0 0 0 0 43931 

19 455 398 130 130 25 0 25 0 0 0 455 398 130 130 25 0 0 0 0 0 47267 

20 455 455 130 130 132 20 25 0 0 0 455 455 130 130 132 20 0 10 0 0 56201 

21 455 455 130 130 99 20 25 0 0 0 455 455 130 0 99 20 0 0 0 0 51040 

22 455 455 130 0 0 20 0 0 0 0 455 455 0 0 73 20 0 0 0 0 41144 

23 455 365 0 0 0 0 0 0 0 0 455 365 0 0 0 0 0 0 0 0 31554 

24 455 258 0 0 0 0 0 0 0 0 455 258 0 0 0 0 0 0 0 0 27802 

 

Overall Cost of Generation =1052906.5262($) 
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Table-6.5: Scheduling of 20 units with Wind and EV using hHHO-IGWO 

Time 

(h) 

Scheduling for 20 units Hourly 

Fuel 

Cost U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

1 445 150 0 0 0 0 0 0 0 0 445 150 0 0 0 0 0 0 0 0 23741 

2 455 199 0 0 0 0 0 0 0 0 455 199 0 0 0 0 0 0 0 0 25757 

3 455 305 0 0 0 0 0 0 0 0 455 305 0 0 0 0 0 0 0 0 29471 

4 455 389 0 0 25 0 0 0 0 0 455 389 0 0 0 0 0 0 0 0 33333 

5 455 440 0 0 25 20 0 0 0 0 455 440 0 0 0 0 0 0 0 0 35944 

6 455 455 0 0 27 20 0 0 0 0 455 455 0 130 27 0 0 0 0 0 40350 

7 455 455 0 130 33 20 0 0 0 0 455 455 0 130 33 0 0 0 0 0 43464 

8 455 455 0 130 29 20 0 0 0 0 455 455 130 130 29 0 0 0 0 0 46174 

9 455 455 130 130 80 20 0 0 0 0 455 455 130 130 80 0 0 0 10 0 52086 

10 455 455 130 130 145 20 25 10 0 0 455 455 130 130 145 20 25 0 0 0 57885 

11 455 455 130 130 162 41 25 10 0 0 455 455 130 130 162 41 25 0 10 0 60503 

12 455 455 130 130 162 80 25 15 10 10 455 455 130 130 162 80 25 15 10 0 65360 

13 455 455 130 130 146 20 25 10 0 0 455 455 130 130 146 20 25 0 0 0 57953 

14 455 455 130 130 88 20 0 0 0 0 455 455 130 130 0 20 25 0 0 0 51246 

15 455 404 130 130 25 0 0 0 0 0 455 404 130 130 0 0 0 0 0 0 45386 

16 455 264 130 130 25 0 0 0 0 0 455 264 130 130 0 0 0 0 0 0 40464 

17 455 204 130 130 25 0 0 0 0 0 455 204 130 130 0 0 0 0 0 0 38376 

18 455 307 130 130 25 0 0 0 0 0 455 307 130 130 0 0 0 0 0 0 41977 

19 455 402 130 130 25 0 0 0 0 0 455 402 130 130 0 0 0 0 0 0 45302 

20 455 455 130 130 151 20 0 0 10 0 455 455 130 130 151 20 25 0 10 0 57928 

21 455 455 130 0 107 20 0 0 0 0 455 455 130 130 107 20 25 0 0 0 51380 

22 455 455 0 0 0 20 0 0 0 0 455 455 0 130 95 20 25 0 0 0 42744 

23 455 370 0 0 0 0 0 0 0 0 455 370 0 0 25 0 0 0 0 0 32690 

24 455 267 0 0 0 0 0 0 0 0 455 267 0 0 25 0 0 0 0 0 29085 

 Overall Cost of Generation = 1057895.7527($) 
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Fig.6.6: Convergence Curve for 20-unit system with wind &EV using hHHO-IGWO 

 Referring Table 6.4, U1, U2, U11 and U12 are the most cost efficient units and thus 

run for total 24 hours duration to meet the corresponding load demand. At 8th to 10th  

hour, load is at peak demand and thus units U1 to U6 and U11 to U16 are in ON state. 

U7 to U10 and U17 to U20 act as the reserve unit and runs only during the peak demand.      

 Referring Table 6.5, U1, U2, U11 and U12 are the economical units and thus run 

for total 24 hours to meet the corresponding load demand. At 10th to 13th  hour, load is at 

peak demand and thus units U1 to U6 and U11 to U16 are in ON state. U7 to U10 and 

U17 to U19 act as the reserve unit and runs only during the peak demand.  

The simulation results for HHO-IGWO algorithm for 20 unit system shows total cost of 

UC, UC+W and UC+W+EV are $ 1124860.6904, $ 1052906.5262 and $ 1057895.7527 

respectively.  

 The results shows that there is cost saving of $ 66964.9377  with coordinated 

charging/discharging of EV for V2G operation.It can be seen from Fig.6.5 and Fig.6.5 

that the curves converges smothly to an optimal value.Thus, the proposed method is cost 

effective in dealing unit commitment problem under uncertain sustainable environment.  
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  (c) Testing of 40-unit system using hHHO-IGWO 

The hHHO-IGWO method is tested for solving unit commitment problem for 40-unit 

system with wind and EV. Table-6.6 (a) and 6.6(b) illustrates optimal dispatch for 40-

unit system with wind. Table-6.7 (a) and 6.7(b) illustrates optimal dispatch for 40-unit 

system with wind & EV. The convergence curves with wind and wind & EV for 40-unit 

system are demonstrated in Fig.6.7 and Fig.6.8. 

 

Fig.6.7: Convergence Curve for 40-units with wind using hHHO-IGWO 

Referring Table 6.6(a) and 6.6(b), U1, U2, U11, U12,U21,U22,U31 and U32 are 

the most cost efficient units and thus remains ON for maximum hours to meet the 

corresponding power demand. For rest of hours, U3 to U9, U13 to U19, U23 to U29 and 

U33 to U39 contributes their power meet the corresponding power demand. At 12th hour, 

load is at peak and thus all the units are in ON state. U10, U20, U30 and U40 act as the 

reserve unit and runs only during the peak demand.  

Referring Table 6.7(a) and 6.7(b), U1, U2, U11, U12,U21,U22,U31 and U32 are 

the most cost efficient units and thus run for total 24 hours duration to meet the 

corresponding load demand. For rest of hours, U3 to U9, U13 to U19, U23 to U29 and 

U33 to U39 contributes their power meet the corresponding load demand. During 12th 

hour, load is at maximum demand and thus most of the units are in ON state. U10, U20, 

U30 and U40 act as the reserve unit and runs only during the peak demand.  
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Table-6.6(a): Scheduling of 1 to 20 units for 40 units system with wind using hHHO-IGWO 
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Table-6.6(b): Scheduling of 21 to 40 units for 40 unit system with wind using hHHO-IGWO 

Time 

(h) 

Scheduling for 21-40 Units Hourly 

Fuel Cost U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 U31 U32 U33 U34 U35 U36 U37 U38 U39 U40 

1 455 201 0 0 0 0 0 0 0 0 455 201 0 0 0 0 0 0 0 0 51653 

2 455 252 0 0 0 0 0 0 0 0 455 252 0 0 0 0 0 0 0 0 55238 

3 455 356 0 0 0 0 0 0 0 0 455 356 0 0 0 0 0 0 0 0 62444 

4 455 441 0 0 25 0 0 0 0 0 455 441 0 0 25 20 0 0 0 0 71157 

5 455 455 0 0 25 0 0 0 0 10 455 455 0 0 25 20 0 0 0 10 76843 

6 455 431 0 130 25 0 0 0 0 0 455 431 0 130 25 20 0 0 0 0 84755 

7 455 414 130 130 25 0 0 0 0 0 455 414 0 130 25 20 0 0 0 0 90292 

8 455 434 130 130 25 0 0 0 0 0 455 434 130 130 25 20 0 0 0 0 94603 

9 455 455 130 130 81 20 0 0 0 0 455 455 130 130 81 20 0 0 0 0 103982 

10 455 455 130 130 154 20 25 0 0 0 455 455 130 130 154 20 25 0 0 0 115582 

11 455 455 130 130 162 51 25 10 10 0 455 455 130 130 162 51 25 10 0 0 122837 

12 455 455 130 130 162 80 25 22 10 0 455 455 130 130 162 80 25 22 10 0 130491 

13 455 455 130 130 154 20 25 0 0 0 455 455 130 130 154 20 25 0 0 0 115624 

14 455 455 130 130 83 20 0 0 0 0 455 455 130 130 83 20 0 0 0 0 104125 

15 455 433 130 130 25 0 0 0 0 0 455 433 130 130 25 0 0 0 0 0 94677 

16 455 282 130 130 25 0 0 0 0 0 455 282 130 130 25 0 0 0 0 0 84118 

17 455 234 130 130 25 0 0 0 0 0 455 234 130 130 25 0 0 0 0 0 80774 

18 455 332 130 130 25 0 0 0 0 0 455 332 130 130 25 0 0 0 0 0 88435 

19 455 421 130 130 25 0 25 0 0 0 455 421 130 130 25 0 0 0 0 0 96783 

20 455 455 130 130 153 20 25 0 0 0 455 455 130 130 153 20 25 0 0 0 115498 

21 455 455 130 130 0 20 25 0 0 0 455 455 130 130 0 20 25 0 0 0 105171 

22 455 455 0 130 0 20 0 0 0 0 455 455 0 0 0 20 25 0 0 0 87124 

23 455 399 0 0 0 0 0 0 0 0 455 399 0 0 0 0 0 0 0 0 66415 

24 455 301 0 0 0 0 0 0 0 0 455 301 0 0 0 0 0 0 0 0 58654 

 

Overall Cost of Generation = 2172364.1608($) 
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Table-6.7(a): Scheduling of 1 to 20 units for 40 unit system with wind and EV using hHHO-IGWO 
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Table-6.7(b): Scheduling of 21 to 40 units for 40 unit system with wind and EV using hHHO-IGWO 

Time 

(h) 

Scheduling for 21 to 40 Units Hourly 

Fuel 

Cost U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 U31 U32 U33 U34 U35 U36 U37 U38 U39 U40 

1 455 193 0 0 0 0 0 0 0 0 455 193 0 0 0 0 0 0 0 0 51090 

2 455 247 0 0 0 0 0 0 0 0 455 247 0 0 0 0 0 0 0 0 54863 

3 455 350 0 0 0 0 0 0 0 0 455 350 0 0 0 0 0 0 0 0 62072 

4 455 403 0 0 0 0 0 0 0 0 455 403 0 0 25 0 0 0 0 0 70530 

5 455 426 0 0 0 0 0 0 0 0 455 426 0 0 25 0 0 0 0 0 75008 

6 455 393 0 130 0 0 0 0 0 0 455 393 0 130 25 0 0 0 0 0 84215 

7 455 419 130 130 0 0 0 0 0 0 455 419 0 130 25 0 0 0 10 0 89843 

8 455 438 130 130 0 0 0 0 0 0 455 438 130 130 25 0 0 0 0 0 94071 

9 455 455 130 130 93 20 0 0 0 0 455 455 130 130 93 20 0 0 0 0 104936 

10 455 455 130 130 162 20 25 0 0 0 455 455 130 130 162 20 25 0 0 0 117247 

11 455 455 130 130 162 57 25 10 10 0 455 455 130 130 162 57 25 10 0 0 124310 

12 455 455 130 130 162 80 25 31 10 0 455 455 130 130 162 80 25 31 10 0 132451 

13 455 455 130 130 162 21 25 0 0 0 455 455 130 130 162 21 25 10 0 0 117321 

14 455 455 130 130 86 0 0 0 0 0 455 455 130 130 86 20 0 0 0 0 104499 

15 455 426 130 130 25 0 0 0 0 0 455 426 130 130 25 0 0 0 0 0 94169 

16 455 281 130 130 25 0 0 0 0 0 455 281 130 130 25 0 0 0 0 0 84000 

17 455 226 130 130 25 0 0 0 0 0 455 226 130 130 25 0 0 0 0 0 80168 

18 455 321 130 130 25 0 0 0 0 0 455 321 130 130 25 0 25 0 0 0 87996 

19 455 416 130 130 25 0 0 0 0 0 455 416 130 130 25 0 25 0 0 0 95584 

20 455 455 130 130 162 20 25 0 10 0 455 455 130 130 162 20 25 0 0 0 117239 

21 455 455 130 130 0 20 25 0 0 0 455 455 130 130 0 20 0 0 0 0 105974 

22 455 451 130 130 0 20 25 0 0 0 455 451 0 0 0 20 0 0 10 0 88364 

23 455 349 0 0 0 0 0 0 0 0 455 349 0 0 0 0 0 0 0 0 67709 

24 455 312 0 0 0 0 0 0 0 0 455 312 0 0 0 0 0 0 0 0 59429 

 

Overall Cost of Generation = 2179556.0791 ($) 
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Fig.6.8: Convergence Curve for 40-units with wind and EV using hHHO-IGWO 

The simulation results for Hybrid Harris Hawks algorithm for 40 unit system 

shows that total cost of generation with thermal with UC, UC+W and UC+W+EV are is 

$ 2249657.3623, $ 2172364.1608 and $ 2179556.0791 respectively. The results shows 

that there is cost saving of $ 2030101.2832 with coordinated charging/discharging of EV 

for V2G operation. Thus, the proposed method is cost effective in dealing unit 

commitment problem in presence of renewable and EV. 

  (d) Testing of 60-unit system using hHHO-IGWO 

The hHHO-IGWO method is tested for solving unit commitment problem for 60-unit 

system. Table-6.8 (a), 6.8(b) and 6.8(c) illustrates optimal dispatch for 60-unit system 

with wind. Table-6.9 (a), 6.9(b) and 6.9(c) illustrates optimal dispatch for 60-unit system 

with wind & EV. The convergence curve for 60-unit system with wind and with wind & 

EV are depicted in Fig.6.9 and Fig.6.10.  

Referring Table 6.8(a), 6.8(b) and 6.8(c), U1, U2, U11, U12, U21, U22, U31, 

U32, U41, U42, U51 and U52  are the most economical units and thus run for maximum 

hours duration to meet the forecasted load demand. For rest of hours, U3 to U9, U13 to 

U19, U23 to U29, U33 to U39, U43 to U49 and U53 to U59  contributes their power meet 

the corresponding load demand. At 12th hour, load is at peak demand and thus all the 

units are in ON state. U10, U20, U30, U40, U50 and U60 act as the reserve unit and runs 

only during the peak demand. 
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Table-6.8(a): Scheduling of 1 to 20 for 60 unit system with wind using hHHO-IGWO 
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Table-6.8(b): Scheduling of 21 to 40 for 60 unit system with wind using hHHO-IGWO 
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Table-6.8(c): Scheduling of 41 to 60 for 60 unit system with wind using hHHO-IGWO 

Time 

(h) 

Scheduling  for 41 to 60 units Hourly 

Fuel 

Cost U41 U42 U43 U44 U45 U46 U47 U48 U49 U50 U51 U52 U53 U54 U55 U56 U57 U58 U59 U60 

1 455 216 0 0 0 0 0 0 0 0 455 216 0 0 0 0 0 0 0 0 79018 

2 455 258 0 0 0 0 0 0 0 0 455 258 0 0 0 0 0 0 0 0 85365 

3 455 357 0 0 0 0 0 0 0 0 455 357 0 0 0 0 0 0 0 0 97581 

4 455 453 0 0 0 0 0 0 0 0 455 453 0 0 25 0 0 10 0 0 108556 

5 455 440 0 0 0 0 0 0 0 0 455 440 0 0 25 0 0 0 0 0 114868 

6 455 455 0 130 0 0 0 0 0 0 455 455 0 130 39 0 25 0 0 0 129031 

7 455 452 0 130 0 0 0 0 0 0 455 452 0 130 25 0 25 0 0 0 136286 

8 455 435 130 130 0 0 0 0 0 0 455 435 130 130 25 0 25 0 0 0 144083 

9 455 455 130 130 86 20 0 0 0 0 455 455 130 130 86 20 25 0 0 0 157820 

10 455 455 130 130 161 20 25 0 0 0 455 455 130 130 161 20 25 0 0 0 175681 

11 455 455 130 130 162 59 25 10 0 0 455 455 130 130 162 59 25 10 0 0 186665 

12 455 455 130 130 162 80 25 29 10 0 455 455 130 130 162 80 25 29 10 0 198268 

13 455 455 130 130 161 20 25 0 0 0 455 455 130 130 161 20 25 0 0 0 175695 

14 455 455 130 130 92 20 0 0 0 0 455 455 130 130 92 20 0 0 0 0 157299 

15 455 442 130 130 25 0 0 0 0 0 455 442 130 130 25 0 0 0 0 0 142954 

16 455 290 130 130 25 0 0 0 0 0 455 290 130 130 25 0 0 10 0 0 127891 

17 455 243 130 130 25 0 0 0 0 0 455 243 130 130 25 0 0 0 0 0 122057 

18 455 345 130 130 25 0 0 0 0 0 455 345 130 130 25 0 0 0 0 0 132740 

19 455 443 130 130 25 0 0 0 0 0 455 443 130 130 25 0 0 0 0 0 143084 

20 455 455 130 130 160 20 25 0 0 0 455 455 130 130 160 20 25 0 0 0 175597 

21 455 455 130 130 128 20 25 0 0 0 455 455 130 130 0 20 25 0 0 0 159677 

22 455 455 0 130 0 32 25 0 0 0 455 455 0 0 0 32 25 0 0 0 132947 

23 455 371 0 0 0 0 0 0 0 0 455 371 0 0 0 0 0 0 0 0 102170 

24 455 316 0 0 0 0 0 0 0 0 455 316 0 0 0 0 0 0 0 0 89508 

 

Overall Cost of Generation = 3299960.8457($) 
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Table-6.9(a): Scheduling of 1 to 20 for 60 unit system with wind and EV using hHHO-IGWO 
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Table-6.9(b): Scheduling of 21 to 40 for 60 unit system with wind and EV using hHHO-IGWO 
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Table-6.9 (c): Scheduling of 41 to 60 for 60 unit system with wind and EV using hHHO-IGWO 

Time 

(h) 

Scheduling  for 41 to 60 units Hourly 

Fuel 

Cost U41 U42 U43 U44 U45 U46 U47 U48 U49 U50 U51 U52 U53 U54 U55 U56 U57 U58 U59 U60 

1 455 210 0 0 0 0 0 0 0 0 455 210 0 0 0 0 0 0 0 0 78455 

2 455 255 0 0 0 0 0 0 0 0 455 255 0 0 0 0 0 0 0 0 84990 

3 455 335 0 0 0 0 0 0 0 0 455 335 0 0 0 0 0 0 0 0 96311 

4 455 426 0 0 0 0 0 0 0 0 455 426 0 0 0 0 0 0 0 0 107872 

5 455 433 0 0 0 0 0 0 0 0 455 433 0 0 0 0 0 0 0 0 115154 

6 455 441 0 130 0 0 0 0 0 0 455 441 0 130 0 0 0 0 0 0 128308 

7 455 415 130 130 0 0 0 0 0 0 455 415 0 130 0 0 0 0 0 0 136032 

8 455 439 130 130 25 0 0 0 0 0 455 439 130 130 0 0 0 0 0 0 143283 

9 455 455 130 130 96 20 0 0 0 0 455 455 130 130 96 0 0 0 0 0 159099 

10 455 455 130 130 162 25 25 0 0 0 455 455 130 130 162 25 25 0 0 0 177379 

11 455 455 130 130 162 62 25 10 0 0 455 455 130 130 162 62 25 10 0 0 188140 

12 455 455 130 130 162 80 25 35 10 0 455 455 130 130 162 80 25 35 10 0 200231 

13 455 455 130 130 162 25 25 0 0 0 455 455 130 130 162 25 25 0 0 0 177463 

14 455 455 130 130 91 20 0 0 0 0 455 455 130 130 91 0 25 0 0 0 157603 

15 455 430 130 130 25 0 0 0 0 0 455 430 130 130 25 0 25 0 0 0 143648 

16 455 289 130 130 25 0 0 0 0 0 455 289 130 130 25 0 0 0 0 0 127800 

17 455 237 130 130 25 0 0 0 0 0 455 237 130 130 25 0 0 0 0 0 121451 

18 455 335 130 130 25 0 0 0 0 0 455 335 130 130 25 0 0 10 0 0 133540 

19 455 437 130 130 25 0 0 0 0 0 455 437 130 130 25 0 0 0 0 0 142361 

20 455 455 130 130 162 27 25 0 10 10 455 455 130 130 162 27 0 0 0 0 177472 

21 455 455 130 130 0 20 25 0 0 0 455 455 130 130 0 20 0 0 0 0 160078 

22 455 455 0 0 0 20 25 0 0 0 455 455 0 0 0 20 0 0 0 0 132841 

23 455 377 0 0 0 0 0 0 0 0 455 377 0 0 0 0 0 0 0 0 102600 

24 455 323 0 0 0 0 0 0 0 0 455 323 0 0 0 0 0 0 0 0 90283 

 

Overall Cost of Generation = 3309624.5229($) 
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Fig.6.9: Convergence curve for 60-units with wind using hHHO-IGWO method 

 

 
Fig.6.10: Convergence curve for 60-units with wind & EV Using hHHO-IGWO 

 

 Referring Table 6.9(a), 6.9(b) and 6.9(c), U1, U2, U11, U12, U21, U22, U31, 

U32, U41, U42, U51 and U52  are the most cost efficient units and thus run for total 24 

hours duration to meet the corresponding load demand. For rest of hours, U6 to U8, U15 

to U18, U25 to U29, U36 to U39, U45 to U49 and U59 to U59  contributes their power 

meet the corresponding load demand. At 12th hour, load is at peak demand and thus all 

the units are in ON state. U10, U20, U30, U40, U50 and U60 act as the reserve unit and 

runs only during the peak demand. The simulation results for hHHO-IGWO for 60 unit 

system illustrates that total cost of generation with  thermal, wind and thermal and wind 
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& EV are $ 3374668.8771  $ 3299960.8457 and $ 3309624.5229 respectively. The results 

shows that there is cost saving of $ 65044.3542 with coordinated charging/discharging 

of EV for V2G operation. Thus, the proposed hHHO-IGWO method is effective in 

dealing unit commitment problem under uncertain sustainable environment. 

6.7.2 Testing of  Unit Commitment Problem with RES and EV by CHHO  

The CHHO algorithm is applied to standard test systems consisting of 10, 20, 40 and 

60-units and simulation results are recorded for UC with wind and with wind and EV. 

(a) Testing of 10-unit system using CHHO 

The CHHO algorithm is applied to standard test systems consisting of 10-units with 10% 

SR and simulation results are recorded for UC with wind and wind & EV.  

 

Fig.6.11: Convergence Curve 10 unit system with wind using CHHO method 

Table-6.10 represents their corresponding power dispatch for each unit with wind 

penetration. Table-6.11 shows corresponding power dispatch with wind & EV 

penetration. The convergence curves with wind and with wind & EV for 10-unit system 

are described in Fig.6.11 and Fig.6.12.  

Referring Table 6.10, U1 and U2 are the most appropriate units and thus remains online 

for total 24 hours duration to meet the load demand. Start-up cost depends upon the 

operating temperature of particular unit and initial state. During 10th to 13th hour, load is 

at peak demand and thus units U3 to U5 are in ON state. U6 to U9 act as the reserve unit 

and runs only during the peak demand. Referring Table 6.11, U1 and U2 are the most 

economical units and thus remains ON for maximum duration to satisfy the 

corresponding load demand. During the peak hours, U3 to U5 units contribute their 

power meet the corresponding load demand 
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Table-6.10: Scheduling of 10-units with wind using CHHO 

Time 

(h) 

Scheduling of 10 units 
Power 

(MW) 

Start-

Up 

Cost 

Hourly 

Fuel 

Cost 
U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 

1 373 150 0 0 0 0 0 0 0 0 523 0 10672 

2 429 150 0 0 0 0 0 0 0 0 579 730 11600 

3 455 237 0 0 0 0 0 0 0 0 692 550 13544 

4 455 350 0 0 0 0 0 0 0 0 805 900 15515 

5 455 378 0 0 25 0 0 0 0 0 858 0 16949 

6 455 455 0 0 53 0 0 0 0 0 963 0 18859 

7 455 420 0 130 25 0 0 0 0 0 1030 0 20545 

8 455 455 0 130 51 0 0 0 0 0 1091 0 21679 

9 455 444 130 130 25 0 0 0 0 0 1184 690 23858 

10 455 455 130 130 69 20 25 0 0 0 1284 60 26926 

11 455 455 130 130 118 20 25 0 0 0 1333 0 27928 

12 455 455 130 130 160 20 25 10 0 0 1385 90 29721 

13 455 455 130 130 86 20 0 10 0 0 1286 0 27017 

14 455 451 130 130 25 0 0 0 0 0 1191 0 23981 

15 455 353 130 130 25 0 0 0 0 0 1093 0 22265 

16 455 199 130 130 25 0 0 0 0 0 939 0 19580 

17 455 157 130 130 25 0 0 0 0 0 897 170 18851 

18 455 270 130 130 25 0 0 0 0 0 1010 180 20807 

19 455 360 130 130 25 0 0 0 0 0 1100 0 22394 

20 455 455 130 130 90 20 0 0 0 0 1280 30 26179 

21 455 413 130 130 25 20 0 0 0 0 1173 0 24133 

22 455 455 0 0 33 20 0 0 0 0 963 30 19276 

23 455 285 0 0 0 0 0 0 0 0 740 0 14380 

24 455 170 0 0 0 0 0 0 0 0 625 0 12379 

Worst 

Cost($)=494816.9018 
 

Best 

Cost($)=492466.6232 
 

Mean Cost($)=493656.7593 Total=49

2466.623

2($) 
Worst Time(Sec.)= 

0.0625 

Best Time(Sec.)= 

0.03125 
Mean Time(Sec.)= 0.03802 

 

During 9th to 13th  hour , load is at peak demand and thus units U6 to U8 are in ON state 

to balance load demand.It can be seen that U9 and U10 remains in OFF state thus saving 

an appreciable cost. The simulation results for CHHO algorithm for 10 unit shows total 

cost of UC,  UC+W and UC+W+EV are $ 563387.6874 , $492466.6232 and $ 

490174.8291 respectively. The results shows that there is cost saving of $ 514212.8583   

with coordinated discharging of EV for V2G operation. It can be seen from Fig.6.12 that 

the curve converges to optimum within 50 iterations. Thus, the proposed method is 

efficient in solving unit commitment problem under uncertain sustainable environment.   
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Table-6.11: Scheduling of 10 units with wind & EV using CHHO method 

Time 

(h) 

Scheduling of 10 units  Power 

(MW) 

Start-Up 

Cost 

Hourly 

Fuel Cost U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 

1 405 150 0 0 0 0 0 0 0 0 555 0 11208 

2 450 150 0 0 0 0 0 0 0 0 601 1070 11957 

3 455 258 0 0 0 0 0 0 0 0 713 560 13914 

4 455 367 0 0 25 0 0 0 0 0 847 0 16763 

5 455 401 0 0 25 0 0 0 0 0 881 1070 17352 

6 455 392 0 130 25 0 0 0 0 0 1002 0 20059 

7 455 434 0 130 25 0 0 0 0 0 1044 0 20783 

8 455 355 130 130 25 0 0 0 0 0 1095 0 22294 

9 455 397 130 130 25 0 0 0 0 0 1137 0 23039 

10 455 455 130 130 44 0 25 0 0 0 1239 170 25595 

11 455 455 130 130 85 20 25 0 0 0 1300 60 27246 

12 455 455 130 130 121 20 25 0 0 0 1336 260 27995 

13 455 455 130 130 49 20 0 0 0 0 1239 0 25354 

14 455 449 130 130 25 0 0 0 0 0 1189 60 23937 

15 455 382 130 130 25 0 0 0 0 0 1122 120 22772 

16 455 206 130 130 25 0 0 0 0 0 946 0 19699 

17 455 192 130 130 25 0 0 0 0 0 932 0 19455 

18 455 310 130 130 25 0 0 0 0 0 1050 0 21515 

19 455 402 130 130 25 0 0 0 0 0 1142 0 23115 

20 455 455 130 130 53 0 0 10 0 0 1233 340 25531 

21 455 416 130 130 25 0 0 0 0 0 1156 60 23374 

22 455 331 130 0 0 0 0 0 0 0 916 0 18067 

23 455 249 0 0 0 0 0 0 0 0 704 0 13754 

24 431 150 0 0 0 0 0 0 0 0 581 0 11626 

Worst 

Cost($)=492502.5759 
 

Best 

Cost($)=490174.8291 
 

Mean Cost($)=491308.0262 Total=490

174.8291(

$) 
Worst Time(Sec.)= 

0.046875 

Best Time(Sec.)= 

0.015625 
Mean Time(Sec.)= 0.0291 

 

Fig.6.12: Convergence Curve 10 unit system with wind and EV using CHHO method 
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  (b) Testing of 20 units using CHHO 

Population size is taken as 80 for all 30 trial runs with 500 iterations and simulation results 

are recorded for UC with wind and UC with wind & EV. Table-6.12 illustrates optimal 

status of committed generators with wind. Table-6.13 shows their corresponding power 

dispatch with wind & EV penetration. The convergence curves with UC + W and UC 

+W+EV for 20-unit system are depicted in Fig.6.13 and Fig.6.14. 

 

Fig.6.13:   Convergence Curve for 20 units with wind using CHHO method 

 

 

Fig. 6.14: Convergence Curve for 20 units with wind and EV using CHHO method 
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Table-6.12: Scheduling of 20 units with wind using CHHO 

Time 

(h) 

Scheduling for 20 units Hourly 

Fuel 

Cost U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

1 455 157 0 0 0 0 0 0 0 0 455 157 0 0 0 0 0 0 0 0 1880 

2 455 210 0 0 0 0 0 0 0 0 455 210 0 0 0 0 0 0 0 0 900 

3 455 316 0 0 0 0 0 0 0 0 455 316 0 0 0 0 0 0 0 0 620 

4 455 358 0 130 0 0 0 0 0 0 455 358 0 0 0 0 0 0 0 0 560 

5 455 344 0 130 0 0 0 0 0 0 455 344 130 0 0 0 0 0 0 0 0 

6 455 422 0 130 25 0 0 0 0 0 455 422 130 0 25 0 0 0 0 0 0 

7 455 455 0 130 50 0 0 0 0 0 455 455 130 0 50 0 0 0 0 0 0 

8 455 455 0 130 41 0 0 0 0 0 455 455 130 130 41 0 0 0 0 0 1360 

9 455 455 130 130 62 20 0 0 0 0 455 455 130 130 62 0 0 0 0 0 0 

10 455 455 130 130 134 20 0 0 0 0 455 455 130 130 134 20 25 0 10 0 1200 

11 455 455 130 130 162 25 25 10 0 0 455 455 130 130 162 25 25 10 0 0 120 

12 455 455 130 130 162 65 25 10 10 0 455 455 130 130 162 65 25 10 10 0 120 

13 455 455 130 130 135 20 25 0 0 0 455 455 130 130 135 20 0 10 0 0 0 

14 455 455 130 130 65 20 0 0 0 0 455 455 130 130 65 0 0 0 0 0 0 

15 455 407 130 130 25 0 0 0 0 0 455 407 130 130 25 0 0 0 0 0 30 

16 455 254 130 130 25 0 0 0 0 0 455 254 130 130 25 0 0 0 0 0 0 

17 455 204 130 130 25 0 0 0 0 0 455 204 130 130 25 0 0 0 0 10 0 

18 455 315 130 130 25 0 0 0 0 0 455 315 130 130 25 0 0 0 0 0 690 

19 455 400 130 130 25 20 0 0 0 0 455 400 130 130 25 0 0 0 0 0 0 

20 455 455 130 130 132 20 25 10 0 0 455 455 130 130 132 20 0 0 0 0 340 

21 455 455 130 130 68 20 25 0 0 0 455 455 130 130 0 20 0 0 0 0 60 

22 455 359 130 130 0 0 25 0 0 0 455 359 0 130 0 20 0 0 0 0 0 

23 455 365 0 0 0 0 0 0 0 0 455 365 0 0 0 0 0 0 0 0 0 

24 455 258 0 0 0 0 0 0 0 0 455 258 0 0 0 0 0 0 0 0 0 

 

Overall Cost of Generation = 1052294.5319 ($) 
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Table-6.13: Scheduling of 20 units with wind and EV using CHHO 

Time 

(h) 

Scheduling for 20-unit Hourly 

Fuel 

Cost U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

1 445 150 0 0 0 0 0 0 0 0 445 150 0 0 0 0 0 0 0 0 23741 

2 455 199 0 0 0 0 0 0 0 0 455 199 0 0 0 0 0 0 0 0 25757 

3 455 305 0 0 0 0 0 0 0 0 455 305 0 0 0 0 0 0 0 0 29471 

4 455 389 0 0 0 0 0 0 0 0 455 389 0 0 25 0 0 0 0 0 33333 

5 455 438 0 0 25 0 0 0 0 0 455 438 0 0 25 0 0 0 0 0 35983 

6 455 455 130 0 37 0 0 0 0 0 455 455 0 0 37 0 0 0 0 0 39962 

7 455 455 130 0 43 0 0 0 0 0 455 455 130 0 43 0 0 0 0 0 43108 

8 455 455 130 0 39 0 0 0 0 0 455 455 130 130 39 0 0 0 0 0 45786 

9 455 455 130 130 75 20 0 0 0 0 455 455 130 130 75 20 0 0 0 0 51763 

10 455 455 130 130 145 20 25 10 0 0 455 455 130 130 145 20 25 0 0 0 57885 

11 455 455 130 130 162 41 25 10 0 0 455 455 130 130 162 41 25 10 0 0 60485 

12 455 455 130 130 162 80 25 15 10 10 455 455 130 130 162 80 25 15 10 0 65360 

13 455 455 130 130 146 20 25 10 0 0 455 455 130 130 146 20 25 0 0 0 57953 

14 455 455 130 130 67 20 0 0 0 0 455 455 130 130 67 0 0 0 0 0 50594 

15 455 392 130 130 25 0 0 0 0 0 455 392 130 130 25 0 0 0 0 0 45893 

16 455 251 130 130 25 0 0 0 0 0 455 251 130 130 25 0 0 0 0 0 40973 

17 455 191 130 130 25 0 0 0 0 0 455 191 130 130 25 0 0 0 0 0 38886 

18 455 294 130 130 25 0 0 0 0 0 455 294 130 130 25 0 0 0 0 0 42485 

19 455 390 130 130 25 0 0 0 0 0 455 390 130 130 25 0 0 0 0 0 45809 

20 455 455 130 130 151 20 25 0 10 0 455 455 130 130 151 20 0 10 0 0 57909 

21 455 455 130 130 85 20 25 0 0 0 455 455 130 130 0 20 0 0 0 0 51166 

22 455 438 0 130 0 20 25 0 0 0 455 438 0 130 0 20 0 0 0 0 42632 

23 455 318 0 130 0 0 0 0 0 0 455 318 0 0 0 0 0 0 0 0 32771 

24 455 280 0 0 0 0 0 0 0 0 455 280 0 0 0 0 0 0 0 0 28576 

 Overall Cost of Generation = 1056942.8444 ($) 
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In Table 6.12, U1, U2, U11 and U12 are the most economical units and thus run for total 

24 hours duration to meet the corresponding load demand. At 8th to 10th hour, load is at 

peak demand and thus units U1 to U6 and U11 to U16 are in ON state. U7 to U10 and 

U17 to U20 act as the reserve unit and runs only during the peak demand. Referring Table 

6.13, U1, U2, U11 and U12 are the most cost efficient units and remains online for 

maximum duration. At 10th to 13th hour, load is at peak value and thus units U1 to U6 and 

U11 to U16 are in ON state. U7 to U10 and U17 to U19 act as the reserve unit and supplies 

power only during the peak demand. The simulation results for CHHO algorithm for 20 

unit system shows total cost of UC, UC+W and UC+W+EV are $ 1124685.2088,, 

$1052294.5319 and $1056942.8444 respectively. The results shows that there is cost 

saving of $ 67742.3644 with coordinated charging/discharging of EV for V2G operation. 

Thus, the proposed method is effective in dealing UCP under uncertain sustainable 

environment.  

  (c) Testing of 40-unit system using CHHO 

The CHHO method is tested for solving unit commitment problem for 40-unit system 

with wind and EV. Table-6.14 (a) and 6.14(b) illustrates optimal dispatch for 40-unit 

system with wind. Table-6.15 (a) and 6.15(b) illustrates optimal dispatch for 40-unit 

system with wind & EV. The convergence curves with wind and wind & EV for 40-unit 

system are presented in Fig.6.15 and Fig.6.16. 

 

Fig.6.15: Convergence Curve for 40 units with wind using CHHO method 
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Table-6.14(a): Scheduling of 1 to 20 units for 40 unit system with wind using CHHO 
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Table-6.14(b): Scheduling of 21 to 20 units for 40 unit system with wind using CHHO 

Time 

(h) 

Scheduling for 21 to 40 Units Hourly 

Fuel 

Cost U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 U31 U32 U33 U34 U35 U36 U37 U38 U39 U40 

1 455 268 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 50700 

2 455 336 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 54294 

3 455 344 0 130 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 63278 

4 455 308 130 130 0 0 0 0 0 0 455 0 0 130 0 0 0 0 0 0 72945 

5 455 324 130 130 0 0 0 0 0 0 455 0 130 130 0 0 0 0 0 0 77620 

6 455 443 130 130 25 0 0 0 0 0 455 0 130 130 0 0 0 0 0 0 85722 

7 455 455 130 130 59 20 0 0 0 0 455 0 130 130 59 0 0 0 0 0 90838 

8 455 455 130 130 94 20 0 0 0 0 455 0 130 130 94 20 25 0 0 0 96868 

9 455 455 130 130 79 20 0 0 0 0 455 455 130 130 79 20 25 0 0 0 104491 

10 455 455 130 130 158 20 0 10 10 0 455 455 130 130 158 20 25 0 0 0 116430 

11 455 455 130 130 162 51 25 10 0 0 455 455 130 130 162 51 25 10 0 0 122847 

12 455 455 130 130 162 80 25 22 0 0 455 455 130 130 162 80 25 22 10 0 130501 

13 455 455 130 130 154 20 25 0 0 10 455 455 130 130 154 20 25 0 10 0 116710 

14 455 455 130 130 100 0 25 0 10 0 455 455 130 130 100 0 0 0 0 0 106732 

15 455 440 130 130 25 0 0 0 0 0 455 440 130 130 25 0 0 0 0 0 94171 

16 455 289 130 130 25 0 0 0 0 0 455 289 130 130 25 0 0 0 0 0 83609 

17 455 241 130 130 25 0 0 0 0 0 455 241 130 130 25 0 0 0 0 0 80264 

18 455 327 130 130 25 0 0 0 0 0 455 327 130 130 25 20 0 0 0 0 89133 

19 455 415 130 130 25 20 0 0 0 0 455 415 130 130 25 20 0 0 0 0 96906 

20 455 455 130 130 153 20 25 0 0 0 455 455 130 130 153 20 25 0 0 0 115498 

21 455 455 130 130 0 20 25 0 0 0 455 455 130 130 0 0 25 10 0 0 106192 

22 455 455 0 0 0 0 25 10 0 0 455 455 0 130 0 0 25 0 0 0 87044 

23 455 399 0 0 0 0 0 0 0 0 455 399 0 0 0 0 0 0 0 0 66415 

24 455 393 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 58229 

 

Overall Cost of Generation = 2172364.1608 ($) 
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Table-6.15(a): Scheduling of 1 to 20 units for 40 unit system with wind and EV using CHHO 
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Table-6.15(b): Scheduling of 21 to 40 units for 40 unit system with wind and EV using CHHO  

Time 

(h) 

Scheduling for 21 to 40 Units Hourly 

Fuel 

Cost U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 U31 U32 U33 U34 U35 U36 U37 U38 U39 U40 

1 455 257 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 50135 

2 455 329 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 53918 

3 455 372 0 0 0 0 0 0 0 0 455 0 0 0 25 0 0 0 0 0 62826 

4 455 373 130 0 0 0 0 0 0 0 455 0 130 0 25 0 0 0 0 0 71535 

5 455 360 130 130 0 0 0 0 0 0 455 0 130 130 25 0 0 0 0 0 76598 

6 455 430 130 130 25 0 0 0 0 0 455 0 130 130 25 0 0 0 0 0 85034 

7 455 455 130 130 55 0 0 0 0 0 455 0 130 130 55 0 0 0 0 0 90565 

8 455 455 130 130 96 20 0 0 0 0 455 0 130 130 96 20 0 0 0 0 96285 

9 455 455 130 130 93 20 0 0 0 0 455 455 130 130 93 20 0 0 0 0 104936 

10 455 455 130 130 162 20 25 0 0 0 455 455 130 130 162 20 25 10 0 0 117266 

11 455 455 130 130 162 57 25 10 0 0 455 455 130 130 162 57 25 10 0 0 124310 

12 455 455 130 130 162 80 25 31 10 10 455 455 130 130 162 80 25 31 10 10 132461 

13 455 455 130 130 162 22 0 10 0 0 455 455 130 130 162 22 25 10 0 0 118117 

14 455 455 130 130 82 20 0 0 0 0 455 455 130 130 82 20 0 0 0 0 104429 

15 455 426 130 130 25 0 0 0 0 0 455 426 130 130 25 0 0 0 0 0 94169 

16 455 281 130 130 25 0 0 0 0 0 455 281 130 130 25 0 0 0 0 0 84000 

17 455 226 130 130 25 0 0 0 0 0 455 226 130 130 25 0 0 0 0 0 80168 

18 455 305 130 130 25 0 0 0 0 0 455 305 130 130 25 20 25 0 0 0 89671 

19 455 402 130 130 25 0 0 0 0 0 455 402 130 130 25 20 25 0 0 0 96492 

20 455 455 130 130 162 20 25 0 0 0 455 455 130 130 162 20 25 0 0 0 117210 

21 455 455 130 130 0 20 25 0 0 0 455 455 130 130 115 20 25 0 0 0 105919 

22 455 431 130 0 0 20 25 0 0 0 455 431 130 0 0 0 0 0 0 0 87112 

23 455 375 0 0 0 0 0 0 0 0 455 375 0 0 0 0 0 0 0 0 67661 

24 455 312 0 0 0 0 0 0 0 0 455 312 0 0 0 0 0 0 0 0 59429 

 

Overall Cost of Generation = 2185806.0424 ($) 
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Fig.6.16: Convergence Curve for 40 units with wind and EV using CHHO method 

Referring Table 6.14(a) and 6.14(b), U1, U2, U11, U12,U21,U22,U31 and U32 

are the most cost efficient units and thus run for maximum duration to fulfill the load 

demand. For rest of hours, U3 to U9, U13 to U19, U23 to U29 and U33 to U39 contributes 

their power match the forecasted load demand. During 12th hour, load is at peak and thus 

all the units are in ON state. U10, U20, U30 and U40 act as the reserve unit and runs only 

during the peak demand.  

In Table 6.15(a) and 6.15(b), U1, U2, U11, U12,U21,U22,U31 and U32 are the 

most cost efficient units and thus run for total 24 hours duration to meet the corresponding 

load demand. For rest of hours, U3 to U9, U13 to U19, U23 to U29 and U33 to U39 

contributes their power meet the corresponding load demand. At 12th hour, load is at peak 

demand and thus all the units are in ON state. U10, U20, U30 and U40 act as the reserve 

unit and runs only during the peak demand.  The simulation results for CHHO algorithm 

for 40 unit system shows that total cost of generation with thermal with UC, UC+W and 

UC+W+EV are is $ 2257230.8455, $ 2172364.1608and $ 2185806.0424 respectively. 

The results shows that there is cost saving of $ 71424.8031 with coordinated discharging 

of EV for V2G operation. It can be seen from Fig.6.16 that the curve converges to 

optimum within 50 iterations. Thus, the proposed method is effective in handling unit 

commitment problem in presence of wind and EV. 
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  (d) Testing of 60-unit system using CHHO  

The CHHO method is tested for solving unit commitment problem for 60-unit system. 

Table-6.16 (a), 6.16(b) and 6.16(c) illustrates optimal dispatch for 60-unit system with 

wind. Table-6.17 (a), 6.17(b) and 6.17(c) illustrates optimal dispatch for 60-unit system 

with wind & EV. The convergence curve for 60-unit system with wind and with wind 

& EV are presented in Fig.6.17 and Fig.6.18.  

 

 

Fig.6.17: Convergence curve for 60-units with wind using CHHO method  

 

Fig.6.18: Convergence curve for 60-units with wind and EV using CHHO method  
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Table-6.16(a): Scheduling of 1 to 20 units for 60 unit system with wind using CHHO 
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Table-6.16(b): Scheduling of 21 to 40 units for 60 unit system with wind using CHHO 
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Table-6.16(c): Scheduling of 41 to 60 units with for 60 units with wind using CHHO 

Time 

(h) 

Scheduling  for 41 to 60 Units Hourly  

Cost 
U41 U42 U43 U44 U45 U46 U47 U48 U49 U50 U51 U52 U53 U54 U55 U56 U57 U58 U59 U60 

1 455 216 0 0 0 0 0 0 0 0 455 216 0 0 0 0 0 0 0 0 79018 

2 455 241 0 0 0 0 0 0 0 0 455 241 0 0 0 0 25 0 0 0 85681 

3 455 317 0 0 0 0 0 0 0 0 455 317 130 0 0 0 25 0 0 0 97502 

4 455 396 0 0 0 0 0 10 0 0 455 396 130 0 0 0 25 0 0 0 109551 

5 455 388 0 0 25 0 0 0 0 0 455 388 130 130 0 0 0 0 0 0 117570 

6 455 455 0 0 38 0 0 0 0 0 455 455 130 130 0 0 0 0 0 0 129381 

7 455 448 0 0 25 0 0 0 0 0 455 448 130 130 0 0 0 0 0 0 137053 

8 455 455 0 0 39 0 0 0 0 0 455 455 130 130 39 20 25 0 0 0 145000 

9 455 455 130 130 96 20 0 10 0 0 455 455 130 130 96 20 25 0 0 0 159035 

10 455 455 130 130 161 20 25 0 0 0 455 455 130 130 161 20 25 0 0 0 175653 

11 455 455 130 130 162 58 25 10 10 0 455 455 130 130 162 58 25 10 0 10 186675 

12 455 455 130 130 162 80 25 29 10 0 455 455 130 130 162 80 25 29 10 0 198268 

13 455 455 130 130 161 20 25 0 0 0 455 455 130 130 161 20 25 0 10 0 175713 

14 455 455 130 130 92 20 0 0 0 0 455 455 130 130 92 20 0 0 0 0 157299 

15 455 429 130 130 25 20 0 0 0 0 455 429 130 130 25 0 0 0 0 0 144824 

16 455 290 130 130 25 0 0 0 0 0 455 290 130 130 25 0 0 10 0 0 127891 

17 455 231 130 130 25 0 0 0 0 0 455 231 130 130 25 0 0 0 0 0 125062 

18 455 331 130 130 25 0 0 0 0 0 455 331 130 130 25 0 0 0 0 0 135697 

19 455 428 130 130 25 0 0 0 0 0 455 428 130 130 25 0 0 0 0 0 145758 

20 455 455 130 130 160 20 25 0 0 0 455 455 130 130 160 20 25 0 0 0 175587 

21 455 455 130 130 0 20 25 0 0 0 455 455 130 130 0 20 25 0 0 0 159751 

22 455 455 0 130 0 20 25 0 0 0 455 455 0 130 0 20 25 0 0 0 131051 

23 455 387 0 0 0 0 0 0 0 0 455 387 0 0 0 20 0 0 0 0 102251 

24 455 0 0 0 0 0 0 0 0 0 455 375 0 0 0 0 0 0 0 0 90065 

 

Overall Cost of Generation = 3316505.9939 ($) 
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Table-6.17(a): Scheduling of 1 to 20 units for 60 unit system with wind and EV using CHHO 
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Table-6.17(b): Scheduling of 21 to 40 units for 60 unit system with wind and EV using CHHO 
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Table-6.17(c): Scheduling of 41 to 60 units for 60 unit system with wind and EV using CHHO 

 

Time 

(h) 

Scheduling  for 41 to 60 Units Hourly 

Cost U41 U42 U43 U44 U45 U46 U47 U48 U49 U50 U51 U52 U53 U54 U55 U56 U57 U58 U59 U60 

1 455 210 0 0 0 0 0 0 0 0 455 210 0 0 0 0 0 0 0 0 78455 

2 455 204 0 0 0 20 0 10 0 0 455 204 130 0 0 0 0 0 0 0 89114 

3 455 263 0 0 25 20 0 0 0 0 455 263 130 0 0 0 0 0 0 0 99319 

4 455 337 0 130 25 20 0 0 0 0 455 337 130 0 0 0 0 0 0 0 110707 

5 455 348 0 130 25 0 0 0 0 0 455 348 130 130 25 0 0 0 0 0 117289 

6 455 402 0 130 25 0 0 0 0 0 455 402 130 130 25 0 0 0 0 0 128823 

7 455 411 130 130 25 0 0 0 0 0 455 411 130 130 25 0 0 0 0 0 136799 

8 455 435 130 130 25 20 0 0 0 0 455 435 130 130 25 0 0 0 0 0 143979 

9 455 455 130 130 90 20 0 0 10 0 455 455 130 130 90 20 0 0 0 0 160477 

10 455 455 130 130 162 25 25 0 10 0 455 455 130 130 162 25 25 0 0 10 177408 

11 455 455 130 130 162 62 25 10 0 10 455 455 130 130 162 62 25 10 0 0 188150 

12 455 455 130 130 162 80 25 35 10 0 455 455 130 130 162 80 25 35 10 0 200231 

13 455 455 130 130 162 25 25 0 0 0 455 455 130 130 162 25 25 0 0 0 177453 

14 455 455 130 130 91 0 0 0 0 0 455 455 130 130 91 0 25 0 0 0 157857 

15 455 434 130 130 25 0 0 0 0 0 455 434 130 130 25 0 0 0 0 10 143991 

16 455 287 130 130 25 0 0 0 0 0 455 287 130 130 25 0 0 0 0 10 128574 

17 455 234 130 130 25 20 0 0 0 0 455 234 130 130 25 0 0 0 0 0 121921 

18 455 333 130 130 25 20 0 0 0 0 455 333 130 130 25 0 0 0 0 10 133274 

19 455 424 130 130 25 20 0 0 0 0 455 424 130 130 25 0 0 0 0 0 144776 

20 455 455 130 130 162 24 25 0 0 10 455 455 130 130 162 24 25 10 0 0 177332 

21 455 455 130 130 0 0 25 0 0 0 455 455 130 130 0 20 25 0 0 0 160358 

22 455 455 0 130 0 0 25 0 0 0 455 455 0 130 0 20 25 0 0 0 132918 

23 455 376 0 0 0 0 0 0 0 0 455 376 0 130 0 0 0 0 0 0 103274 

24 455 360 0 0 0 0 0 0 0 0 455 0 0 0 0 0 0 0 0 0 90702 

 

Overall Cost of Generation = 3328971.6499 ($) 
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Referring Table 6.16(a), 6.16(b) and 6.16(c), U1, U2, U11, U12, U21, U22, U31, 

U32, U41, U42, U51 and U52  are the most cost efficient units and thus run for maximum 

hours to meet the corresponding demand. For rest of hours, U3 to U9, U13 to U19, U23 

to U29, U33 to U39, U43 to U49 and U53 to U59  contributes their power meet the 

corresponding load demand. During 12th hour, load is at peak demand and thus all the 

units are in ON state. U10, U20, U30, U40, U50 and U60 act as the reserve unit and runs 

only during the peak demand.  

In Table 6.17(a), 6.17(b) and 6.17(c), U1, U2, U11, U12, U21, U22, U31, U32, 

U41, U42, U51 and U52  are the most economical units and thus run for total 24 hours 

duration to meet the corresponding power demand. For rest of hours, U6 to U8, U15 to 

U18, U25 to U29, U36 to U39, U45 to U49 and U59 to U59  contributes their power meet 

the corresponding load demand. At 12th hour, load is at peak and thus most of the units 

are in ON state. U10, U20, U30, U40, U50 and U60 act as the reserve unit and runs only 

during the peak demand.  

The simulation results for CHHO method for 60 unit system illustrates that total 

cost of generation with  thermal, wind and thermal and wind & EV are $ 3386078.2574,  

$ $3316505.9939 and $3328971.6499 respectively. The results shows that there is cost 

saving of $ 57106.6075 with coordinated charging/discharging of EV for V2G operation. 

Thus, the proposed method is efficient in solving unit commitment problem under 

uncertain sustainable environment. 

 

6.7.3   Testing of Unit Commitment Problem with RES and EV by CSMA  

The CHHO algorithm is applied to test systems consisting of 10, 20, 40 and 60-units and 

simulation results are recorded for UC with wind and with wind and EV.  

 (a) Testing of 10-unit system using CSMA 

The CSMA method is applied to standard test systems consisting of 10-units with 10% 

SR and simulation results are recorded for with wind and with wind & EV. Table-6.18 

represents their corresponding power dispatch for each unit with wind penetration. Table-

6.19 shows corresponding power dispatch with wind & EV penetration. The convergence 

curves with wind and with wind & EV for 10-unit system are described in Fig.6.19 and 

Fig.6.20. 
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Table-6.18: Scheduling of 10 units with wind using CSMA 

Time 

(h) 

Generation scheduling 
Power 

(MW) 

Start-

Up 

Cost 

Hourly 

Fuel 

Cost 
U1 U2 U3 U4 U5 U6 U7 U8 U9 

U1

0 

1 455 245 0 0 0 0 0 0 0 0 700 1620 13683 

2 455 295 0 0 0 0 0 0 0 0 750 0 14554 

3 455 370 0 0 25 0 0 0 0 0 850 560 16809 

4 455 455 0 0 40 0 0 0 0 0 950 0 18598 

5 455 390 130 0 25 0 0 0 0 0 1000 0 20051 

6 455 360 130 130 25 0 0 0 0 0 1100 520 22387 

7 455 410 130 130 25 0 0 0 0 0 1150 0 23262 

8 455 455 130 130 30 0 0 0 0 0 1200 170 24150 

9 455 455 130 130 85 20 25 0 0 0 1300 180 27251 

10 455 455 130 130 162 33 25 10 0 0 1400 0 30058 

11 455 455 130 130 162 73 25 10 10 0 1450 60 31916 

12 455 455 130 130 162 80 25 43 10 10 1500 30 33890 

13 455 455 130 130 162 33 25 10 0 0 1400 0 30058 

14 455 455 130 130 85 20 25 0 0 0 1300 0 27251 

15 455 455 130 130 30 0 0 0 0 0 1200 0 24150 

16 455 310 130 130 25 0 0 0 0 0 1050 0 21514 

17 455 260 130 130 25 0 0 0 0 0 1000 120 20642 

18 455 360 130 130 25 0 0 0 0 0 1100 60 22387 

19 455 455 130 130 30 0 0 0 0 0 1200 430 24150 

20 455 455 130 130 162 33 25 10 0 0 1400 30 30058 

21 455 455 130 130 85 20 25 0 0 0 1300 0 27251 

22 455 455 0 0 145 20 25 0 0 0 1100 0 22736 

23 455 420 0 0 25 0 0 0 0 0 900 0 17685 

24 455 345 0 0 0 0 0 0 0 0 800 0 15427 

Worst 

Cost($)=494987.2356 
 

Best 

Cost($)=492522.21780 
 

Mean Cost($)=493701.8040 Total= 

492522.

21780 
Worst Time(Sec.)= 

0.046875 

Best Time(Sec.)= 

0.015625 
Mean Time(Sec.)= 0.02916 

 

 

Fig.6.19: Convergence Curve for 10-unit with Wind using CSMA method 



 

249 

 

 

Fig.6.20: Convergence Curve for 10-unit with Wind and EV using CSMA method 

Table-6.19: Scheduling of 10 units with wind and EV using CSMA method 

Time 

(h) 

Scheduling of 10 units 
Power 

(MW) 

Start-

Up 

Cost 

Hourly 

Fuel 

Cost 
U1 U2 U3 U4 U5 U6 U7 U8 U9 

U1

0 

1 405 150 0 0 0 0 0 0 0 0 555 1450 11208 

2 450 150 0 0 0 0 0 0 0 0 601 0 11957 

3 455 258 0 0 0 0 0 0 0 0 713 170 13914 

4 455 367 0 0 25 0 0 0 0 0 847 560 16763 

5 455 401 0 0 25 0 0 0 0 0 881 60 17352 

6 455 392 0 130 25 0 0 0 0 0 1002 0 20059 

7 455 434 0 130 25 0 0 0 0 0 1044 0 20783 

8 455 355 130 130 25 0 0 0 0 0 1095 60 22294 

9 455 397 130 130 25 0 0 0 0 0 1137 750 23039 

10 455 455 130 130 49 20 0 0 0 0 1239 30 25339 

11 455 455 130 130 85 20 25 0 0 0 1300 60 27246 

12 455 455 130 130 121 20 25 0 0 0 1336 0 27995 

13 455 455 130 130 44 0 25 0 0 0 1239 0 25610 

14 455 449 130 130 25 0 0 0 0 0 1189 0 23937 

15 455 382 130 130 25 0 0 0 0 0 1122 60 22772 

16 455 206 130 130 25 0 0 0 0 0 946 260 19699 

17 455 192 130 130 25 0 0 0 0 0 932 170 19455 

18 455 310 130 130 25 0 0 0 0 0 1050 0 21515 

19 455 402 130 130 25 0 0 0 0 0 1142 60 23115 

20 455 455 130 130 53 0 0 0 0 10 1233 0 25560 

21 455 416 130 130 25 0 0 0 0 0 1156 0 23374 

22 455 436 0 0 25 0 0 0 0 0 916 0 17957 

23 455 249 0 0 0 0 0 0 0 0 704 0 13754 

24 431 150 0 0 0 0 0 0 0 0 581 0 11626 

Worst 

Cost($)=492676.0864 
 

Best 

Cost($)=490013.6840 
 

Mean Cost($)=491389.1473 Total= 

490013.

6840 
Worst Time(Sec.)= 

0.0625 

Best Time(Sec.)= 

0.015625 
Mean Time(Sec.)= 0.03125 
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 Referring Table 6.18 , U1 and U2 are the most economical units and thus run for 

total 24 hours duration to meet the corresponding load demand. Start-up cost depends 

upon the operating temperature of particular unit and initial state. At 9th to 13th  hour , 

load is at peak demand and thus units U1 to U7 are in ON state. U8 to U10 act as the 

reserve unit and runs only during the peak demand..The total operating cost is the sum of 

start-up cost and generation cost of units for a 24 hour duration.  

 In Table 6.19 , U1 and U2 are the most cost efficient units and thus runs for 

maximum hours to meet the corresponding load deamd. During the peak hours, U3 to U5 

units contribute their power meet the corresponding load demand. During 9th to 13th  hour 

, load is at peak demand and thus units U1 to U8 are in ON state. U9 to U10 act as the 

reserve unit and runs only during the peak demand. The simulation results for CSMA 

algorithm for 10 unit shows total cost of UC,  UC+W and UC+W+EV are $ 563698.1582, 

$492522.21780 and $490013.6840 respectively.  

 The results shows that there is cost saving of $ 73684.4742 with coordinated 

discharging of EV for V2G operation.Thus, the proposed method is efficient in solving 

unit commitment problem under uncertain sustainable environment.   

(b) Testing of 20-unit system using CSMA 

 The CSMA method is applied to standard test system of 20-units with 10% SR. The data 

of 10-units was replicated and is multiplied by 2 for obtaining the results of 20-units test 

system.  

Table-6.20 illustrates optimal status of committed generators with wind. Table-

6.21 shows their corresponding power dispatch with wind & EV penetration. The 

convergence curves with UC + W and UC +W+EV for 20-unit system are presented in 

Fig.6.21 and Fig.6.22. 

 Referring Table 6.20, U1, U2, U11 and U12 are the most cost efficient units and 

thus run for total 24 hours duration to meet the corresponding load demand. At 8th to 10th 

hour, load is at peak demand and thus units U1 to U6 and U11 to U16 are in ON state. 

U7 to U10 and U17 to U20 act as the reserve unit and runs only during the peak demand. 
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Table-6.20: Scheduling of 20-units with wind using CSMA method 

Time 

(h) 

Scheduling for 20 Units Hourly 

Cost U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

1 455 245 0 0 0 0 0 0 0 0 455 245 0 0 0 0 0 0 0 0 27366 

2 455 295 0 0 0 0 0 0 0 0 455 295 0 0 0 0 0 0 0 0 29109 

3 455 330 0 0 0 0 0 0 0 0 455 330 0 130 0 0 0 0 0 0 33191 

4 455 418 0 0 0 0 0 0 0 0 455 418 0 130 25 0 0 0 0 0 37197 

5 455 455 0 0 25 0 0 0 0 0 455 455 0 130 25 0 0 0 0 0 39457 

6 455 425 130 130 25 0 0 0 0 0 455 425 0 130 25 0 0 0 0 0 44158 

7 455 455 130 130 45 0 0 0 0 0 455 455 0 130 45 0 0 0 0 0 46009 

8 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 48301 

9 455 455 130 130 105 20 0 0 0 0 455 455 130 130 105 20 0 0 0 10 53920 

10 455 455 130 130 162 33 25 10 0 0 455 455 130 130 162 33 25 10 0 0 60115 

11 455 455 130 130 162 73 25 10 10 0 455 455 130 130 162 73 25 10 10 0 63832 

12 455 455 130 130 162 80 25 43 10 10 455 455 130 130 162 80 25 43 10 10 67780 

13 455 455 130 130 162 33 25 10 0 0 455 455 130 130 162 33 25 10 0 0 60115 

14 455 455 130 130 98 20 25 0 0 0 455 455 130 130 98 20 0 0 0 0 53839 

15 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 48301 

16 455 310 130 130 25 0 0 0 0 0 455 310 130 130 25 0 0 0 0 0 43027 

17 455 260 130 130 25 0 0 0 0 0 455 260 130 130 25 0 0 0 0 0 41284 

18 455 360 130 130 25 0 0 0 0 0 455 360 130 130 25 0 0 0 0 0 44774 

19 455 455 130 130 30 0 0 0 0 0 455 455 130 130 30 0 0 0 0 0 48301 

20 455 455 130 130 162 33 25 10 0 0 455 455 130 130 162 33 25 10 0 0 60115 

21 455 455 130 130 150 20 25 0 0 0 455 455 0 130 150 20 25 0 0 0 54293 

22 455 455 0 130 0 20 25 0 0 0 455 455 0 0 160 20 25 0 0 0 45255 

23 455 367 0 130 0 0 0 0 0 0 455 367 0 0 25 0 0 0 0 0 35447 

24 455 345 0 0 0 0 0 0 0 0 455 345 0 0 0 0 0 0 0 0 30855 

 

Overall Cost of Generation = 1052668.6335 ($) 
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Table-6.21: Scheduling of 20 units with wind and EV using CSMA method 

Time 

(h) 

Scheduling for 20 units Hourly  

Cost U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13 U14 U15 U16 U17 U18 U19 U20 

1 445 150 0 0 0 0 0 0 0 0 445 150 0 0 0 0 0 0 0 0 23741 

2 455 199 0 0 0 0 0 0 0 0 455 199 0 0 0 0 0 0 0 0 25757 

3 455 305 0 0 0 0 0 0 0 0 455 305 0 0 0 0 0 0 0 0 29471 

4 455 336 0 0 0 0 0 0 0 0 455 336 130 0 0 0 0 0 0 0 33444 

5 455 333 0 0 0 0 0 0 0 0 455 333 130 130 0 0 0 0 0 0 36171 

6 455 414 0 0 25 0 0 0 0 0 455 414 130 130 0 0 0 0 0 0 39980 

7 455 408 0 130 25 0 0 0 0 0 455 408 130 130 25 0 0 0 0 0 43570 

8 455 455 0 130 39 0 0 0 0 0 455 455 130 130 39 0 0 0 0 0 45755 

9 455 455 130 130 80 20 0 0 0 0 455 455 130 130 80 0 0 10 0 0 52068 

10 455 455 130 130 145 20 25 10 0 0 455 455 130 130 145 20 25 0 0 0 57885 

11 455 455 130 130 162 41 25 10 0 0 455 455 130 130 162 41 25 10 0 0 60485 

12 455 455 130 130 162 80 25 15 10 10 455 455 130 130 162 80 25 15 10 0 65360 

13 455 455 130 130 146 20 25 0 0 0 455 455 130 130 146 20 25 10 0 0 57953 

14 455 455 130 130 67 20 0 0 0 0 455 455 130 130 67 0 0 0 0 0 50594 

15 455 455 130 130 27 0 0 0 0 0 455 455 0 130 27 0 0 0 0 0 45289 

16 455 316 130 130 25 0 0 0 0 0 455 316 0 130 25 0 0 0 0 0 40348 

17 455 256 130 130 25 0 0 0 0 0 455 256 0 130 25 0 0 0 0 0 38256 

18 455 347 130 130 25 0 0 0 0 0 455 347 0 130 25 0 25 0 0 0 42601 

19 455 432 130 130 25 0 0 0 0 0 455 432 0 130 25 20 25 0 0 0 46398 

20 455 455 130 130 143 20 25 0 0 0 455 455 130 130 143 20 25 0 10 0 57851 

21 455 455 130 130 85 20 25 0 0 0 455 455 130 130 0 20 0 0 0 0 51166 

22 455 383 0 130 0 20 25 0 0 0 455 383 130 130 0 0 0 0 0 0 42779 

23 455 318 0 0 0 0 0 0 0 0 455 318 130 0 0 0 0 0 0 0 32802 

24 455 215 0 0 0 0 0 0 0 0 455 215 130 0 0 0 0 0 0 0 29204 

 Overall Cost of Generation = 1057617.1687($) 
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Fig.6.21: Convergence Curve for 20 unit system with Wind using CSMA method 

 

Fig.6.22: Convergence Curve for 20 unit system with wind and EV using CSMA 

Referring Table 6.21, U1, U2, U11 and U12 are the most cost efficient units and 

thus run for total 24 hours duration to meet the corresponding load demand. At 10th to 

13th hour, load is at peak demand and thus units U1 to U6 and U11 to U16 are in ON 

state. U7 to U10 and U17 to U19 act as the reserve unit and runs only during the peak 

demand. The simulation results for CHHO algorithm for 20 unit system shows total cost 

of UC, UC+W and UC+W+EV are $1124242.1047, $1052668.6335 and $1057617.1687 

respectively. The results shows that there is cost saving of $ 66624.936 with coordinated 

charging/discharging of EV for V2G operation. Thus, the proposed method is cost 

effective in solving unit commitment problem under uncertain sustainable environment.  
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  (c) Testing of 40-unit system using CSMA 

The CSMA method is tested for solving unit commitment problem for 40-unit system 

with wind and EV. Table-6.22 (a) and 6.22(b) illustrates optimal dispatch for 40-unit 

system with wind. Table-6.23 (a) and 6.23(b) illustrates optimal dispatch for 40-unit 

system with wind & EV. The convergence curves with wind and wind & EV for 40-unit 

system are explored in Fig.6.23 and Fig.6.24. 

 

Fig.6.23: Convergence curve for 40-unit system with wind using CSMA method 

 

Fig.6.24: Convergence curve for 40-unit system with wind and EV using CSMA 
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Table-6.22(a): Scheduling of 1 to 20 units for 40 unit system with wind using CSMA method 

 

 



 

256 

 

Table-6.22(b): Scheduling of 21 to 40 units for 40 unit system with wind using CSMA method 

Time 

(h) 

Scheduling for 21 to 40 Units Hourly 

Fuel 

Cost U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 U31 U32 U33 U34 U35 U36 U37 U38 U39 U40 

1 455 201 0 0 0 0 0 0 0 0 455 201 0 0 0 0 0 0 0 0 51653 

2 455 252 0 0 0 0 0 0 0 0 455 252 0 0 0 0 0 0 0 0 55238 

3 455 356 0 0 0 0 0 0 0 0 455 356 0 0 0 0 0 0 0 0 62444 

4 455 388 0 0 0 0 0 0 0 0 455 388 130 0 0 0 0 0 0 0 71411 

5 455 400 0 0 0 0 0 0 0 0 455 400 130 0 0 0 0 0 0 0 76088 

6 455 431 0 0 0 20 0 0 0 0 455 431 130 0 0 0 0 0 0 0 84817 

7 455 420 130 0 0 20 0 0 0 0 455 420 130 130 0 0 0 0 0 0 89816 

8 455 435 130 130 0 20 0 0 0 0 455 435 130 130 0 0 0 0 0 0 94564 

9 455 455 130 130 80 20 0 0 0 0 455 455 130 130 80 0 0 0 0 0 104237 

10 455 455 130 130 154 20 25 10 0 0 455 455 130 130 154 20 25 0 0 0 115582 

11 455 455 130 130 162 51 25 10 0 0 455 455 130 130 162 51 25 10 0 0 122837 

12 455 455 130 130 162 80 25 22 10 0 455 455 130 130 162 80 25 22 10 0 130491 

13 455 455 130 130 154 20 25 0 0 0 455 455 130 130 154 20 25 0 0 0 115624 

14 455 455 130 130 82 0 0 0 0 0 455 455 130 130 82 20 0 0 0 0 104379 

15 455 433 130 130 25 0 0 0 0 0 455 433 130 130 25 0 0 0 0 0 94677 

16 455 282 130 130 25 0 0 0 0 0 455 282 130 130 25 0 0 0 0 0 84118 

17 455 234 130 130 25 0 0 0 0 0 455 234 130 130 25 0 0 0 0 0 80774 

18 455 332 130 130 25 0 0 0 0 10 455 332 130 130 25 0 0 0 0 0 89485 

19 455 430 130 130 25 20 0 0 0 0 455 430 130 130 25 0 0 0 0 0 95275 

20 455 455 130 130 153 20 25 0 0 0 455 455 130 130 153 20 25 0 0 0 115516 

21 455 455 130 130 0 20 25 0 0 0 455 455 130 130 0 20 25 0 0 0 105578 

22 455 441 0 130 0 0 25 0 0 0 455 441 0 0 0 20 25 0 0 0 87037 

23 455 393 0 0 0 0 0 0 0 0 455 393 0 0 0 0 25 0 0 0 67381 

24 455 301 0 0 0 0 0 0 0 0 455 301 0 0 0 0 0 0 0 0 58654 

 

Overall Cost of Generation = 2172364.1608($) 
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Table-6.23(a): Scheduling of 1 to 20 units for 40 unit system with wind and EV using CSMA method 
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Table-6.23(b): Scheduling of 21 to 40 units for 40 unit system with wind and EV using CSMA method 

Time 

(h) 

Scheduling for 21 to 40 Units Hourly 

Fuel 

Cost U21 U22 U23 U24 U25 U26 U27 U28 U29 U30 U31 U32 U33 U34 U35 U36 U37 U38 U39 U40 

1 455 193 0 0 0 0 0 0 0 0 455 193 0 0 0 0 0 0 0 0 51090 

2 455 247 0 0 0 0 0 0 0 0 455 247 0 0 0 0 0 0 0 0 54863 

3 455 350 0 0 0 0 0 0 0 0 455 350 0 0 0 0 0 0 0 0 62072 

4 455 403 0 0 0 0 0 0 0 0 455 403 0 0 25 0 0 0 0 0 70530 

5 455 394 0 0 0 0 0 0 0 0 455 394 130 0 25 0 0 0 0 0 75654 

6 455 455 0 0 0 0 0 0 0 0 455 455 130 0 51 20 0 0 0 0 84104 

7 455 438 0 130 0 0 0 0 0 0 455 438 130 0 25 20 0 0 0 0 89940 

8 455 455 0 130 0 0 0 0 0 0 455 455 130 130 32 20 0 0 0 0 94447 

9 455 455 130 130 85 20 25 0 0 0 455 455 130 130 85 20 0 0 0 0 105854 

10 455 455 130 130 162 20 25 0 0 0 455 455 130 130 162 20 25 0 0 0 117247 

11 455 455 130 130 162 57 25 10 0 0 455 455 130 130 162 57 25 10 0 0 124310 

12 455 455 130 130 162 80 25 31 10 0 455 455 130 130 162 80 25 31 10 0 132451 

13 455 455 130 130 162 21 25 0 0 0 455 455 130 130 162 21 25 0 0 0 117321 

14 455 455 130 130 86 20 0 0 0 0 455 455 130 130 86 20 0 0 0 0 104481 

15 455 426 130 130 25 0 0 0 0 0 455 426 130 130 25 0 0 0 0 0 94169 

16 455 281 130 130 25 0 0 0 0 0 455 281 130 130 25 0 0 0 0 0 84000 

17 455 226 130 130 25 0 0 0 0 0 455 226 130 130 25 0 0 0 0 0 80168 

18 455 325 130 130 25 0 0 0 0 0 455 325 130 130 25 0 0 0 0 0 88032 

19 455 425 130 130 25 0 0 0 0 0 455 425 130 130 25 0 0 0 0 0 94085 

20 455 455 130 130 162 20 25 0 0 0 455 455 130 130 162 20 25 0 0 0 117192 

21 455 455 130 130 0 32 25 0 0 0 455 455 130 130 0 32 25 0 10 0 107100 

22 455 448 0 130 0 20 25 0 0 0 455 448 0 0 0 20 25 0 0 0 88337 

23 455 379 0 0 0 0 0 10 0 0 455 379 0 0 0 0 0 0 0 0 67866 

24 455 312 0 0 0 0 0 0 0 0 455 312 0 0 0 0 0 0 0 0 59429 

 

Overall Cost of Generation = 2181710.3802($) 
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Referring Table 6.22(a) and 6.22(b), U1, U2, U11, U12,U21,U22,U31 and U32 are the 

most cost efficient units and thus provides power for maximum duration to meet the 

corresponding power demand. For rest of hours, U3 to U9, U13 to U19, U23 to U29 and 

U33 to U39 contributes their power meet the corresponding power demand. At 12th hour, 

load is at maximum and thus all the units are in ON state. U10, U20, U30 and U40 act as 

the reserve unit and runs only during the peak demand.  

In Table 6.23(a) and 6.23(b), U1, U2, U11, U12,U21,U22,U31 and U32 are the 

most cost efficient units and thus run for total 24 hours duration to meet the corresponding 

load demand. For rest of hours, U3 to U9, U13 to U19, U23 to U29 and U33 to U39 

contributes their power meet the corresponding load demand. During 12th hour, load is at 

peak demand and thus all the units are in ON state. U10, U20, U30 and U40 act as the 

reserve unit and runs only during the peak demand.   

The simulation results for CSMA algorithm for 40 unit system shows that total 

cost of generation with thermal with UC, UC+W and UC+W+EV are is $ 2246297.7597, 

$ 2162363.1908 and $ 218170.3802 respectively. The results shows that there is cost 

saving of $ 2028127.3795 with coordinated charging/discharging of EV for V2G 

operation. Thus, the proposed method is cost effective in dealing unit commitment 

problem in presence of wind and EV. 

  (d) Testing of 60-unit system using CSMA 

The CSMA method is tested for solving unit commitment problem for 60-unit system 

with wind and EV penetration. Table-6.24 (a), 6.24(b) and 6.24(c) illustrates optimal 

dispatch for 60-unit system with wind. Table-6.25(a), 6.25(b) and 6.25(c) illustrates 

optimal dispatch for 60-unit system with wind & EV. The convergence curve for 60-unit 

system with wind and with wind & EV are illustrated in Fig.6.25 and Fig.6.26.  

Referring Table 6.24(a), 6.24(b) and 6.24(c), U1, U2, U11, U12, U21, U22, U31, U32, 

U41, U42, U51 and U52  are the most cost efficient units and thus run for total 24 hours 

duration to meet the corresponding load demand. For rest of hours, U3 to U9, U13 to 

U19, U23 to U29, U33 to U39, U43 to U49 and U53 to U59  contributes their power meet 

the corresponding load demand.  
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Fig.6.25: Convergence Curve for 60-units system with Wind using CSMA method 

 

Fig.6.26: Convergence Curve for 60-units system with Wind and EV using CSMA 

During 12th hour, load is at peak demand and thus most of the units are in on state. U10, 

U20, U30, U40, U50 and U60 act as the reserve unit and runs only during the peak 

demand. 

Referring Table 6.25(a), 6.25(b) and 6.25(c), U1, U2, U11, U12, U21, U22, U31, 

U32, U41, U42, U51 and U52  are the most cost efficient units and thus run for total 24 

hours duration to meet the corresponding power demand. For rest of hours, U6 to U8, 

U15 to U18, U25 to U29, U36 to U39, U45 to U49 and U59 to U59  contributes their 

power meet the corresponding load demand. At 12th hour, load is at peak demand and 

thus all the units are in ON state. U10, U20, U30, U40, U50 and U60 act as the reserve 

unit and runs only during the peak load.
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Table-6.24(a): Scheduling of 1 to 20 units for 60 units with wind using CSMA method 
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Table-6.24(b): Scheduling of 21 to 40 units for 60 units with wind using CSMA method 

 

Table-6.24(c): Scheduling of 41 to 60 units for 60 units with wind using CSMA method 
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Time 

(h) 

Scheduling  for 41 to 60 Units Hourly 

Fuel 

Cost U41 U42 U43 U44 U45 U46 U47 U48 U49 U50 U51 U52 U53 U54 U55 U56 U57 U58 U59 U60 

1 455 216 0 0 0 0 0 0 0 0 455 216 0 0 0 0 0 0 0 0 79018 

2 455 267 0 0 0 0 0 0 0 0 455 267 0 0 0 0 0 0 0 0 84346 

3 455 335 0 130 25 0 0 0 0 0 455 335 0 0 0 0 0 0 0 0 97349 

4 455 412 0 130 25 0 0 0 0 0 455 412 0 130 0 0 0 0 0 0 109166 

5 455 436 0 130 25 0 0 0 0 0 455 436 0 130 0 0 0 0 0 0 115596 

6 455 455 0 130 41 0 0 0 0 0 455 455 130 130 41 0 0 0 0 0 128477 

7 455 455 130 130 26 0 0 0 0 0 455 455 130 130 26 0 0 0 0 0 135695 

8 455 455 130 130 52 0 0 0 0 0 455 455 130 130 52 0 0 0 0 0 142622 

9 455 455 130 130 91 0 25 0 0 0 455 455 130 130 91 0 0 0 0 0 157969 

10 455 455 130 130 161 20 25 0 0 0 455 455 130 130 161 20 25 0 0 0 175671 

11 455 455 130 130 162 59 25 10 0 0 455 455 130 130 162 59 25 10 0 0 186665 

12 455 455 130 130 162 80 25 29 10 10 455 455 130 130 162 80 25 29 10 0 198278 

13 455 455 130 130 161 20 25 0 0 0 455 455 130 130 161 20 25 0 0 0 175695 

14 455 455 130 130 92 0 0 10 0 0 455 455 130 130 92 20 0 0 0 0 158338 

15 455 437 130 130 25 0 0 0 0 0 455 437 130 130 25 0 0 0 0 0 144194 

16 455 290 130 130 25 0 0 0 0 0 455 290 130 130 25 0 0 0 0 0 127891 

17 455 243 130 130 25 0 0 0 0 0 455 243 130 130 25 0 0 0 0 0 122057 

18 455 337 130 130 25 0 0 0 0 0 455 337 130 130 25 0 0 0 0 0 133946 

19 455 436 130 130 25 0 0 0 0 0 455 436 130 130 25 0 0 0 0 0 144287 

20 455 455 130 130 160 20 25 0 0 0 455 455 130 130 160 20 25 0 0 0 175597 

21 455 455 130 130 0 20 25 0 0 0 455 455 130 130 128 20 25 0 0 0 159677 

22 455 453 0 0 0 20 25 10 0 0 455 453 0 130 0 20 25 0 0 0 131984 

23 455 373 0 0 0 0 0 0 0 0 455 373 0 0 0 0 0 0 0 0 102237 

24 455 316 0 0 0 0 0 0 0 0 455 316 0 0 0 0 0 0 0 0 89508 

 

Overall Cost of Generation = 3303824.3855($)  
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Table-6.25(a): Scheduling of 1 to 20 units for 60 units with wind and EV using CSMA method 
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Table-6.25(b): Scheduling of 21 to 40 units for 60 units with wind and EV using CSMA method 
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Table-6.25(c): Scheduling of 41 to 60 units for 60 units with wind and EV using CSMA method 

Time 

(h) 

Scheduling  for 41 to 60 Units Hourly 

Fuel 

Cost U41 U42 U43 U44 U45 U46 U47 U48 U49 U50 U51 U52 U53 U54 U55 U56 U57 U58 U59 U60 

1 455 210 0 0 0 0 0 0 0 0 455 210 0 0 0 0 0 0 0 0 78455 

2 455 263 0 0 0 0 0 0 0 0 455 263 0 0 0 0 0 0 0 0 83971 

3 455 318 0 0 0 0 0 0 0 0 455 318 0 0 0 0 0 0 0 0 96362 

4 455 390 0 0 0 0 0 0 0 0 455 390 0 0 0 0 0 0 0 0 107836 

5 455 388 130 130 25 0 0 0 0 0 455 388 0 0 25 0 0 0 0 0 116202 

6 455 455 130 130 33 0 0 0 0 0 455 455 0 0 33 0 0 0 0 0 127693 

7 455 455 130 130 41 0 0 0 0 0 455 455 130 0 41 0 0 0 0 0 135574 

8 455 455 130 130 51 0 0 0 0 0 455 455 130 0 51 0 0 0 0 0 142548 

9 455 455 130 130 92 0 25 0 0 0 455 455 130 130 92 20 25 0 0 0 159536 

10 455 455 130 130 162 25 25 0 0 0 455 455 130 130 162 25 25 0 0 0 177389 

11 455 455 130 130 162 62 25 10 0 0 455 455 130 130 162 62 25 10 0 0 188140 

12 455 455 130 130 162 80 25 35 10 0 455 455 130 130 162 80 25 35 10 0 200231 

13 455 455 130 130 162 25 25 0 0 0 455 455 130 130 162 25 25 0 0 0 177434 

14 455 455 130 130 92 20 0 0 0 0 455 455 130 130 92 20 0 0 0 0 157349 

15 455 432 130 130 25 0 0 0 0 10 455 432 130 130 25 0 0 0 0 0 143685 

16 455 290 130 130 25 0 0 0 0 0 455 290 130 130 25 0 0 0 0 0 127027 

17 455 237 130 130 25 0 0 0 0 0 455 237 130 130 25 0 0 0 0 0 121451 

18 455 335 130 130 25 0 0 0 0 0 455 335 130 130 25 0 0 0 0 0 132500 

19 455 432 130 130 25 0 0 0 0 0 455 432 130 130 25 0 0 0 0 0 143591 

20 455 455 130 130 162 24 25 0 0 0 455 455 130 130 162 24 25 0 0 0 177304 

21 455 455 130 130 0 20 25 0 0 0 455 455 130 130 0 20 25 10 0 0 160330 

22 455 455 0 0 0 22 25 0 0 0 455 455 0 130 0 22 25 0 0 0 133633 

23 455 393 0 0 0 0 0 0 0 0 455 393 0 0 0 0 0 0 0 0 104464 

24 455 323 0 0 0 0 0 0 0 0 455 323 0 0 0 0 0 0 0 0 90283 

 

Overall Cost of Generation = 3309829.4010 ($) 



 

267 

 

The simulation results for CSMA method for 60 unit system illustrates that total 

cost of generation with  thermal, wind and thermal and wind & EV are $ 3375159.0917,  

$ 3303824.3855 and $ 3309829.4010  respectively. The results shows that there is cost 

saving of $ 65329.6907 with coordinated charging/discharging of EV for V2G operation. 

Thus, the proposed method is cost effective in dealing unit commitment problem under 

uncertain sustainable environment. 

 

6.8 COMPARISON OF RESULTS 

Table-6.26 illustrates comparison of Results for 10, 20, 40 and 60 unit for UC, UC+W 

and UC+W+EV using hHHO-IGWO method. The results of total cost of generation are 

presented in terms of best, average and worst values along with best execution time for 

each system. Cost comparison statistics for 10, 20, 40 and 60-units using hHHO-IGWO 

method are shown in Fig.6.27, Fig.6.28, Fig.6.29 and Fig.6.30. It is observed that cost of 

generation has been reduced to an appreciable level in almost all systems with wind and 

EV penetration. 

 Table-6.26: Comparison of Results for 10, 20, 40 and 60 unit using hHHO-IGWO method 

Unit Test System Best  Mean  Worst  Time 

10 

UC 563435.9964 564452.7594 565425.30224 0.03628 

UC+Wind 
492400.2699 494231.2616 495978.9707 0.05204 

UC+Wind+EV 489514.5979 491394.7670 492893.0072 0.05625 

20 

UC 1124860.6904 112615.1648 1128872.8693 0.054688 

UC+Wind 1052906.5262 1055303.1323 1058600.3826 0.062083 

UC+Wind+EV 1057895.7527 1057895.10060 1062786.4854 0.066875 

40 

UC 2249657.3623 2252698.0896 2256317.4070 0.078125 

UC+Wind 2172364.1608 2178985.5088 2181325.2861 0.0725 

UC+Wind+EV 2179556.0791 2185560.2438 2189993.7649 0.09375 

60 

UC 3374668.8771 3378103.0758 3381703.9070 0.096875 

UC+Wind 3299960.8457 3303839.6671 3306076.762979 0.098126 

UC+Wind+EV 3309624.5229 3314324.769 331985.2642 0.098257 
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Fig.6.27: Cost comparison for 10-units system using hHHO-IGWO  

 

Fig.6.28: Cost comparison for 20-units system using hHHO-IGWO 

 

Fig.6.29: Cost Comparison for 40-units system using hHHO-IGWO 
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Fig.6.30: Cost Comparison for 60-units system using hHHO-IGWO 

Table-6.27 illustrates Comparison of Results for 10, 20, 40 and 60 unit for Classical UC, 

UC+W and UC+W+EV for CHHO method. The results of total cost of generation are 

presented in terms of best, average and worst values along with best execution time for 

each system. Cost Comparison Curves for 10, 20, 40 and 60 -units using hHHO-IGWO 

method are shown in Fig.6.31, Fig.6.32, Fig.6.33 and Fig.6.34. It is observed that cost of 

generation has reduced to an appreciable level in almost all systems with wind and EV 

penetration. 

Table-6.27: Comparison of Results for 10, 20, 40 and 60 unit using CHHO method 

Unit  Best Mean Worst Time 

10 

UC 563387.6874 564379.5791 565305.50224 0.015625 

UC+Wind 492466.6232 493656.7593 494816.90 0.03168 

UC+Wind+EV 490174.8291 491308.0262 492502.5759 0.039167 

20 

UC 1124685.2088 1126291.9476 1128859.9733 0.029688 

UC+Wind 1052294.5319 1056184.5351 1058983.5529 0.030208 

UC+Wind+EV 1056942.8444 1061277.7213 1066429.9377 0.03689 

40 

UC 2257230.0455 2260310.6018 2264045.7170 0.046875 

UC+Wind 2185306.3264 2188505.8828 2196914.7090 0.056865 

UC+Wind+EV 2185806.0424 2192999.6662 2194941.8292 0.070625 

    60 

UC 3386078.2574 3392629.3063 3402247.3615 0.086834 

UC+Wind 3316505.9939 3326614.6644 3333139.78003 0.090625 

UC+Wind+EV 3328971.6499 3332280.3385 3334514.6621 0.09826 
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Fig.6.31: Cost Comparison for 10-units system using CHHO 

 

Fig.6.32: Cost Comparison for 20-units system using CHHO 

 

 Fig.6.33: Cost comparison for 40-units system using CHHO 
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Fig.6.34: Cost Comparison for 60-units system using CHHO 

Table-6.28 illustrates comparison of results for 10, 20, 40 and 60 unit for Classical UC, 

UC+W and UC+W+EV for CHHO method. The results of total cost of generation are 

presented in terms of best, average and worst values along with best execution time for 

each system. Cost Comparison Curves for 10, 20, 40 and 60 -units using hHHO-IGWO 

method are shown in Fig.6.35, Fig.6.36, Fig.6.37 and Fig.6.38. It is observed that cost of 

generation has reduced to an appreciable level in almost all systems with wind and EV 

penetration. 

Table-6.28: Comparison of Results for 10, 20, 40 and 60 unit using CSMA Method 

Unit Test System Best  Mean Cost  Worst Cost Time 

10 

UC 563698.1582 564310.5195 565398.9054 0.030729 

UC+Wind 492522.21780 493701.8040 494987.2356 0.035625 

UC+Wind+EV 490013.6840 491389.1473 492676.0864 0.045625 

20 

UC 1124242.1047 1125317.9113 112622.1086 0.046875 

UC+Wind 1052668.6335 1053792.1979 104989.191 0.0754389 

UC+Wind+EV 1057617.1687 106050.3888 10605924.4393 0.076876 

40 

UC 2246297.75978 2249497.06888 2252324.6943 0.06657 

UC+Wind 2175383.9024 2176205.2983 2177753.5051 0.06783 

UC+Wind+EV 2181710.3802 225070.6386 227366.6806 0.06832 

60 

UC 3375159.0917 3377469.9456 3378854.9012 0.076875 

UC+Wind 3303824.3855 3304168.7654 3304510.1825 0.086838 

UC+Wind+EV 3309829.4010 3332280.3385 3334514.6621 0.08964 
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Fig.6.35: Cost comparison for 10-units system using CSMA  

 

Fig.6.36: Cost comparison for 20-units system using CSMA 

 

Fig.6.37: Cost comparison for 40-units system using CSMA 
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Fig.6.38: Cost comparison for 60-units system using CSMA  

Fig.6.39, Fig.6.40, Fig.6.41 and Fig.6.42 illustrates the comparative analysis for 10, 20, 

40 and 60 units using hHHO-IGWO, CHHO and CSMA method with UC, UC-Wind 

and UC with wind and EV 

  

Fig.6.39: Cost comparison UC with wind, and UC with wind & EV using proposed 

methods for 10-units system 
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Fig.6.40: Cost comparison with UC, UC with Wind and EV using proposed methods 

for 20-units system 

 

Fig.6.41: Cost comparison with UC, UC with Wind and EV using proposed methods 

for 40-units system 
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Fig.6.42: Cost comparison for UC, UC with Wind and EV using proposed methods for 

60-units system 

Percentage Cost saving for 10, 20, 40 and 60 units for hHHO-IGWO, CHHO and CSMA 

are illustrated in shown in Table-6.29, 6.30 and 6.31 given below 

Table- 6.29:  Percentage Cost saving for hHHO-IGWO method 

Unit UC 

UC with Wind 

and EV 

  

Cost of 

generation 
% Cost Saving 

10 563435.7594 
UC+W 492400.2699 12.60% 

UC+W+EV 489514.5979 13.75% 

20 1124860.6904 
UC+W 1052906.5262 6.39% 

UC+W+EV 1057895.7527 5.95% 

40 2249657.3623 
UC+W 2172364.1608 3.16% 

UC+W+EV 2179556.0791 2.27% 

60 3374668.8771 
UC+W 3209960.8457 0.49% 

UC+W+EV 3309624.5229 1.34% 

 

Table- 6.30:  Percentage Cost saving for CHHO method 

Unit UC 

UC with Wind 

and EV 

  

Cost of 

generation 
% Cost Saving 

10 563387.6874 
UC+W 492466.6232 12.58% 

UC+W+EV 490174.8291 12.85% 

20 1124685.2088 
UC+W 1052294.5319 6.43% 

UC+W+EV 1056942.8444 6.02% 

40 2257230.8455 
UC+W 2172364.1608 3.75% 

UC+W+EV 2185806.0424 3.16% 

60 3386078.2574 
UC+W 3316505.9939 2.05% 

UC+W+EV 3328971.6499 1.71% 
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Table- 6.31:  Percentage Cost saving for CSMA method 

Table-6.32 illustrates comparison of 10-unit system (10% SR) for thermal-wind using 

hHHO-IGWO, CHHO and CSMA with other algorithms. In Table-6.33 cost comparison 

of 10-unit system (10% SR) for thermal-V2G with other algorithms is illustrated. From 

the comparative Tables (6.32 and 6.33), it is observed that proposed methods gives better 

performance compared to other methods. 

Table-6.32:  Cost comparison of 10-unit system (10% SR) for thermal-wind system 

with other algorithms 

Unit UC 

UC with Wind 

and EV 

  

Cost of 

generation 
% Cost Saving 

10 564310.5195 
UC+W 492522.21780 12.72% 

UC+W+EV 490013.6840 13.16% 

20 1124242.1047 
UC+W 1052668.6335 6.36% 

UC+W+EV 1057617.1687 5.92% 

40 2246297.7597 
UC+W 2162363.1908 3.29% 

UC+W+EV 2181710.3802 2.87% 

60      3375159.092 
UC+W 3303824.386 2.11% 

UC+W+EV 3309829.401 1.97% 

Method Best cost Mean Worst cost 
CPU time (in 

seconds) 

Operational cycle based algorithm [272] 563,937.70 564,227 – 19.4 

GA [137] 563,977 564,275 565,606 221 

EACO [272] 563,938 564,831 565,869 – 

DBDE [336] 563,977 564,028 564,241 3.6 

PSO [137] 564,212 565,103 565,783 120 

Clustering method [272] 563,938 563,945 563,976 39.6 

QBGSA [272] 515,339.6 516,425.4 517,156.8 49 

BPSO [272] 516,778.5 518,304.5 519,963.0 61 

BGSA [272] 517,736.6 519,254.8 520,577.2 61 

EP [310] 564,551 565,352 566,231 100 

HPSO [272] 563,942 564,772 565,785 – 

BF [337] 564,842 NA 565,872 110 

SGA [137] 565,943 569,042 570,121 – 

hGWO-RES [272] 511,680 511,683 511,687 80.3 

hHHO-IGWO[Proposed Method] 492400.2699 494231.2616 495978.9707 0.05204 

CHHO[Proposed Method] 492466.6232 493656.7593 494816.90 0.03168 

CSMA[Proposed Method] 492522.2178 493701.8040 494987.2356 0.035625 
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Table-6.33: Comparison of 10-unit system (10% SR) for thermal-V2G with other 

algorithms 

 

Method 

Cost 

Without V2G 

in $ 

Cost With 

V2G in $ 

HSA[331] 573,879.34 554,134.59 

CRO[172] - 564,727.87 

PM[338] 564,714 557,554.9 

PSO[339] 563,741.83 559,0813.6 

CS[340] 561,284.56 554,016.60 

hHHO-IGWO[Proposed Method] 563435.9964 489514.5979 

CHHO[Proposed Method] 563387.6874 490174.8291 

CSMA[Proposed Method] 563698.1582 490013.6840 

 

6.9   CONCLUSION 

This chapter deals with solution to unit commitment Problem for 10, 20, 40 and 60 unit 

using three distinct methodologies. Three different scenarios have been considered for 

solving unit commitment problem. Firstly, the unit commitment problem has been 

resolved by hybrid Harris Hawk’s optimizer for conventional UC, UC+W and UC+ W+ 

EV. Secondly, the unit commitment problem has been solved by Chaotic HHO method 

on similar platform. Finally, the problem by solved by using Chaotic SMA method. 

Comparative analysis has been performed for all three methods and it is observed that 

proposed methods gives better results as compared to other heuristic and meta-heuristic 

algorithms. 
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CHAPTER-7 

CONCLUSION AND FUTURE SCOPE
 

 

7.1   INTRODUCTION 

In this research work, an attempt has been made to develop a cost-effective solution 

strategy for solving the unit commitment problem incorporating V2G/G2V operation 

under uncertain renewable energy sources. Three different optimization strategies have 

been developed to examine the optimum solution strategy for the economic operation of 

a power system. 

7.2   SIGNIFICANCE AND CONTRIBUTION 

In this research, the details of various recent methodologies to solve complex design 

problems have been discussed. Unit commitment problems are one of the critical tasks of 

selecting an appropriate number of generating units to meet the required load demand. 

However, due to the possibility of the early existence of non-replaceable energy sources, 

tremendous efforts have been initiated to find new energy alternatives. Many small and 

medium microgrids are focusing on using renewable, sustainable energy sources. Solar 

and wind-based stations are evolving rapidly to cope with this crucial problem of 

increased power demand. But, as these energy sources cannot produce constant output 

power and depend totally on environmental conditions, it creates difficulties in supplying 

power with reliability. Moreover, due to advancements in power electronics and control 

engineering, renewable energy could be store in storage systems. These days, a new 

technology known as V2G is emerging rapidly to anticipate uncertainties associated with 

these intermittent energy sources, wherein the stored energy in electric vehicles is fed 

back to the grid. It seems that with sufficient charging/discharging facilities, an 

appreciable amount of power could be fed back to the grid during peak load and save a 

large quantity of energy. After acknowledging the efficiency of the proposed methods, a 

solution to the unit commitment problem has been determined for different IEEE systems 

consisting of 10, 20, 40, and 60 units. 

In almost all the research work, conventional UC problems have been resolved, but 

research involving renewables and electric vehicles is still in an advanced stage. In the 
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proposed research work, solutions to different unit commitment problems have been 

solved to develop a cost-effective solution strategy with substantial wind and EV 

penetration. In the proposed work, one hybrid algorithm and two chaotic algorithms are 

developed. The significant contributions from this research study are elaborated in the 

following section. 

1. Initially, to check the effectiveness of the proposed methods, 23 standard test 

functions has been tested. The proposed algorithms are applied to seven unimodal 

benchmark functions from F1 to F7, six multi-modal benchmark functions from F8 

to F13, and ten fixed-dimension benchmark functions from F14 to F23. The 

comparative analysis reveals that CHHO and CSMA yield improved feasible 

solutions compared to the hHHO-IGWO method. Further, it is inspected that CHHO 

gives better convergent results compared to hHHO-IGWO and CSMA due to better 

exploitation capability in the initial phase. This suggests that CHHO has better 

computational efficiency compared to other methods. 

2. Furthermore, to validate the feasibility of the proposed research work, 10 real-world 

engineering design problems such as truss design problems, rolling element 

problems, welded beam designs, pressure vessel designs, etc. has been tested 

successfully, and validated by comparing with competitive algorithms.   

3. Unit commitment is a non-convex, non-linear, mixed-integer optimization problem. 

A single-area, single-objective unit commitment problem has been analyzed to 

optimize the overall cost of generation while satisfying physical and technological 

constraints. To tackle the UC problem, two recently developed algorithms, Harris 

Hawk’s optimizer (HHO) and Slime Mold Algorithm (SMA), are used. One hybrid 

algorithm has been developed by combing basic HHO with an improved grey wolf 

optimizer (IGWO). This new hybrid algorithm is abbreviated as hHHO-IGWO. Two 

chaotic variants of HHO and SMA have been developed. The Chaotic HHO method 

is developed by integrating the Tent Chaotic Map with the basic HHO method, while 

the Chaotic SMA method is developed by incorporating sinusoidal function with the 

basis SMA. These developed algorithms have been implemented to solve the UC 

problem to obtain the most cost-effective schedule for operating the generating units 

to meet the load demand. These methods are successfully implemented on standard 

test systems comprising 10, 20, 40, and 60 generating units. 
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4. Experimentally, it has been found that, for 10 unit generating system with wind 

penetration, hHHO-IGWO method gives 12.60 % cost saving, CHHO gives 12.58 

% cost saving and CSMA gives 12.72% cost saving. Results revealed that CHHO is 

found to be more appropriate method to solve UC problem with thermal generating 

units. 

5. On similar grounds for 10 unit generating system with wind and EV penetration, 

hHHO-IGWO method gives a 13.07 % cost saving, CHHO gives 12.85 % cost 

saving, while CSMA gives 13.16% cost saving. This suggests that CHHO is more 

efficient method compared to hHHO-IGWO and CSMA to tackle unit commitment 

problem for system with wind and EV. 

6. The experimental results for 20 thermal units with wind penetration, hHHO-IGWO 

method demonstrate a cost saving of 6.39% while in case of CHHO and CSMA, 

6.43% and 6.39% has been recorded. 

7. Simulation results for 20 thermal units with wind and EV penetration, hHHO-IGWO 

method gives a 5.95% cost saving, CHHO gives 6.02% cost saving and CSMA gives 

5.92% cost saving. 

8. In case of 40 unit generating with wind penetration, hHHO-IGWO method gives a 

3.16% cost saving, CHHO gives 3.75% cost saving and CSMA gives 3.29% cost 

saving. 

9. In case of 40 unit generating system with wind and EV penetration, hHHO-IGWO 

method gives a 2.27% cost saving, CHHO gives 3.16% cost saving and CSMA gives 

a 2.87% cost saving. 

10.  For 60 unit generating system with wind penetration, hHHO-IGWO method gives    

 0.49% cost saving, CHHO gives 2.05% cost saving and CSMA gives 2.11% cost  

 saving. 

11.  For 60 units generating system with wind and EV penetration, hHHO-IGWO  

 method gives 1.34% cost saving, CHHO gives 1.71% cost saving and CSMA  

 gives 1.97% cost saving. From the above summarized percentage cost saving 

analysis, it is concluded that proposed methodologies are effective in solving unit 

commitment problem with RES and EV penetration. 
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FUTURE SCOPE OF PROPOSED RESEARCH WORK 

The possible area of research includes the following as future research directions for 

young researchers: 

 The proposed method can be applied to solve multi-objective unit 

commitment problem, where emission cost can be included along with 

generation cost. 

 Profit based unit commitment problem can be solved using proposed 

methodologies where the objective function of the problem is to maximize the 

profit instead of minimizing the generation cost.  

 The Multi-area unit commitment problem can be solved with the help of 

proposed methodologies, where more number of areas can be included along 

with tie-line constraints. 

 Combined cycle heat and power plants may be taken into consideration for 

futuristic research where the entire objective is to fulfill the heat demand 

along with the power demand. 
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Appendix-A 

(i) Pseudo-code of CHHO 

Pseudo-code for CHHO 

INPUTS-: The population range is taken as N  and maximum iteration number is taken as itn  

OUTPUTS- : The target position  and fitness  

Initialization of stochastic population ( 1, 2, 3......., )
i

X i N  

While (iteration 
max

itn ) 

      For calculating the  optimum robustness  of Harris birds 

      Setting the parameter ( )prey
X  

      for (each Harris birds 
i

X )  

                  Do Update energy at primary condition 
O

E   

                  
0,1r =rand; 

                  if 
0,1

0.7r   

                 
0,1r  (t+1)= 

0,1
0.7/r ; 

                   end 

                  if 
0,1

0.7r              

                 
0,1r  (t+1)=(10/3)*(1- 

0,1r ); 

                 end 

                          0,1( 1);Uptate q r t   

                           0,1( 1);Uptate r r t   

                  if 1E   then                                        Phase of Exploration     

                    else if 0.5q  then  

                            1 2( 1) ( ) ( ( ) 2 ( ))randm randmX itn X itn r abs X itn r X itn        

                   else if 0.5q  then 

                            3 4( 1) ( ( ) ( )) ( ( ))prey mX itn X itn X itn r Lb r Ub Lb         

                 Position vector updated using 
0

max

2 1
itn

E E
itn

   
 
 
 

        

                       if 1E   then                                                 Phase of Exploitation 

                            ( 1) ( ) ( ( ) ( ))preyX itn X itn E abs JX itn X itn       

                   if ( 0.5)r  and 0.5E   then                              placid bound 

                         Position vector updated using  ( ) ( ) ( )preyX itn X itn X itn                      

                     else if ( 0.5)r   and 0.5E  then                   Hard bound 

                          Position vector updated using ( 1) ( ) ( ( ))
prey

X itn X itn E abs X itn      

                     else if ( 0.5)r  and 0.5E   then     placid bound with fast dives  

                      Position vector updated using ( ) ( ( ) ( ))prey preyY X itn E abs JX itn X itn     

                    else if ( 0.5)r   and 0.5E   then      Hard bound with fast dives  

                      Position vector updated using ( 1) ( ) ( ( ) ( ))
prey

X itn X itn E abs JX itn X itn                         

                       end 

               end 

         end 

   end 

Return preyX   
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(ii) Pseudo code of CSMA 

 

(iii) Minimum up-down Constraint 
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(iv) Pseudo code for de-commitment of excessive generative units 
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