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Abstract 

 

 The dynamics of any system, whether mechanical, electrical, thermal, economical, 

biological and so on, may be described in terms of difference or differential or integral 

equations. Such equations may be obtained by using physical laws governing a 

particular system, for example, Newton’s laws for mechanical systems, Kirchhoff’s 

laws for electrical systems, etc. We should continually keep in mind that deriving a 

reasonable, if not the best, mathematical model is an essential part of the complete 

analysis of any system.  

 The modelling assumes many different forms. Depending on the particular system 

and circumstances, one model may be better suited than others in given conditions. For 

example, using the state-space model in the optical control modelling is advantageous. 

On the other hand, the transfer function representation may be more convenient than 

any other for a transient response or the frequency response analysis of single-input-

single-output, linear time-invariant systems. After developing the mathematical model 

of a system, various analytical and computational tools can be used for analysis and 

synthesis purposes. 

 Models of any system in science come in a wide variety of forms. The well-known 

modelling expert, Babour G. Ian, lists four types of models in his extensive discussion 

of models. According to him, different modelling types are categorised under one of 

the following methods: material model, mathematical models, logical models, 

theoretical models. The simplified scaled-down or up miniatures, e.g., the wind tunnels, 

hydrodynamic models or analogue models, e.g., an electric circuit having the same 

behaviour as a mechanical system of springs & dampers, are available in the literature. 

They are helpful when it is too difficult to experiment on the actual system or when the 

mathematical equations are unknown or too complex to solve. Some models can 

be better than others, but that model also gives an idea of the functioning of the physical 

behaviour of the system. The model is a mental construct of the physical behaviour of 

any system.  

 A set of equations describes the mathematical model of a system’s behaviour’s 

functioning. We focus on developing dynamic models that will ultimately result in 
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differential equations. How to represent such differential equations in the form of a 

block diagram? It is not possible to develop a precise model of any Physical system. 

Many processes cannot be modelled even. So Model error or model uncertainties 

occur. Even if a model describes a part of the reality, it can be very useful for analysis 

and design if it describes the dominating dynamic properties of the system. Some 

models are based on the physical principles of the system. Models can also be 

developed from experimental (historical) data. This way of mathematical modelling is 

called system identification.  

  Most of the books on electronic circuits deal with the analysis of various types 

of passive and active circuits (containing BJTs, FETs, MOSFETs, and Operational 

Amplifiers) in the conventional way of replacing the BJTS, FETs, MOSFETs, and 

Operational Amplifiers by its small-signal equivalent circuits. Then the well-known 

tools of KCL, KVL, Thevenin’s, Norton’s etc., are taken to advantage for the solution 

of the given network. Chirlian. P. “Electronic Circuits-Physical Principles Analysis and 

Design” proposed a generalised network analysis method containing the BJTs, FET, 

MOSFETs, and Operational Amplifiers.   

 The model proposed by Chirlian was so general that this method seemed to be very 

cumbersome. The proposed work defines different functions of electronic circuits, the 

active ones, to solve them elegantly using the Floating Admittance Matrix (FAM) 

approach. This matrix is called floating as because the reference terminal (ground) for 

the potential is arbitrary and lies outside the selected multi-pole network. For any 

network solution, the floating admittance matrixes of active and passive networks are 

written separately and then merged according to the node numbers. Once the overall 

floating admittance matrix of the complete amplifier or any circuit (active device and 

passive components) is obtained, its various transfer and self-port functions such as the 

input impedance (resistance), the output impedance (resistance), the voltage gain, the 

current gain and the power gains are obtained in terms of the co-factors of the derived 

floating admittance matrix. The voltage-current relationship for even complicated 

passive networks is usually linear, and hence, the solution of such a network is simple, 

using well-known tools like the KCL, the KVL, the Thevenin’s, the Norton’s etc. 

 On the contrary, electronic devices such as the BJT, FET, MOSFET, and 

Operational Amplifier are governed by current-voltage relationships that are typically 
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nonlinear and somewhat complex. In general, it is not easy to analyse devices that obey 

nonlinear equations because there are much less developed design methods for circuits 

that include these devices. The basic concept of modelling of an electronic device is to 

replace the device as the circuit with linear components that approximate the voltage-

current characteristics of the device as the piecewise linear models. A model can then 

be defined as a collection of simple components or elements used to represent a more 

complex electronic device. Once the device is replaced in the circuit by the model, well-

known tools for the circuit analysis can be applied. 

 The necessity of modelling for engineering lies in the very nature of technology 

and its advancement. As technology approaches its limit, i.e. fundamental changes do 

not occur as used to occur previously, and the engineers have to find a suitable 

substitute.  

Our aim is to simplification of the analog circuit combining BJT, FET, MOSFET, and 

their combinations along with resisters and capacitors using properties of the Floating 

Admittance Matrix (FAM) technique. The gist of the development of the Thesis reviles 

as following.  

1) We have developed formulae for the Voltage gain, Current gain, Input Impedance, 

Output Impedance, and Power Gain using our technique (FAM) for all types of 

Circuit using BJT, FET/MOSFET, Op-Amp including resistances and Capacitances 

in the form of its cofactors. 

2) Solving Complicated Circuits such as Twin-T and Bridge T Networks is a very 

good example of applying our technique for achieving a simple solution.  

3) The Zero-Sum Property of all elements of any Row or any Column of FAM  

satisfies the superposition theorem. 

4) Once the FAM of any network is written, it is easy to find out transfer or self-port 

functions between as many ports as possible. 

5) We have shown that the FAM technique to solve cascaded or cascoded circuits 

become very easy with respect to conventional Methods.   
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Organization of the Thesis 

 

The thesis has been divided in six chapters. The first chapter deals with the modelling 

technique vis-à-vis literature survey. All types of transfer (voltage gain, current gain, 

power gain) or self-port functions (input and output resistances) have been derived in 

Chapter-2 in the form of cofactors of the floating admittance matrix of any circuit. 

Chapters-3 and 4 show the beauty of the FAM to obtain all types of transfer and self-

node functions easily in the form of cofactors only of the BJT and the FET/MOSFET 

amplifiers. Chapter-5 discusses the drawback of the four terminal MOSFET, if its body 

is not connected to the source terminal and this effect is included on its small-signal 

model. Thus, all the four terminals of a MOSFET play active role in functioning of the 

MOSFET. The sixth chapter is devoted the discussion and conclusion derived from 

Chapter-1 to Chapter-5. 
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Chapter 1 

 

 Modelling: Review of Literature  

 

1.1 Introduction  

We start with the question 'what is modelling'? Modelling is the process of making 

models. Its most straightforward answer would be that models are often simplified 

versions of a complicated one. We might have played with a small toy car during our 

childhood. It can be called a model of an actual car. They gave us a unique idea of 

what a real car looks like, but they are much smaller and oversimplified. A model 

cannot always be accurate. We must realize this so that we do not build up an 

incorrect idea about something. 

 One way of defining the model is that it is the essential theoretical construct of 

anything. It exists in our brain, and we use it to explain how the phenomena of any 

object work. What is gravity? It is almost like a black box or an abstract. We cannot 

touch it, but we get to develop models that help us to predict it. What was the gravity 

for Einstein? What was he doing when the model was already developed by Sir Isaac 

Newton? He was looking at the construct of the model. He was able to improve on 

that model based on the data he had received. So why does an apple fall to the Earth? 

It is not that there is some magical force pulling it there. What did Einstein say that 

they are wrapping time and these objects are travelling through the shortest path? 

Was he able to confirm that using data? Yes. 

 The model of any system might be of different in nature. It is important to note 

that a model is not the real world but merely a human construct to understand real-

world systems better. In general, all models include information input, an 

information processor, and the output of expected results. 

 The models are inherently inexact as they only approximate natural 

phenomena. The mathematical description may be imperfect, and/or our 

understanding of the phenomenon may or may not be complete. The mathematical 
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input parameters used in models to represent real processes might be uncertain as 

these input parameters are empirically determined or represent multiple input/output. 

Additionally, the initial conditions and/or the boundary conditions in a model may 

not be exactly known. 

 Despite the above-stated weaknesses, models are effective tools for describing 

natural processes. Often, models are the only means to extrapolate to large spatial 

scales. Because of their importance in the earth sciences, we assess model accuracy 

by calibrating and validating models. To quantify the model's uncertainty, we 

correlate the result's sensitivity to the model parameters. 

 It is well known that an atom is the smallest part of the element that can further 

be divided by nuclear reactions only. An atom is an ensemble of the smallest particles 

of energy that make up everything on the Earth. A variety of models have been used 

over the past decades to speculate on how an atom works and what particles it 

contains. 

 Before more discussion here, we describe first, the 4-research objectives to 

formulate the problem statement for the thesis. The third and the fourth objectives 

have been implemented in the papers published, which forms the basis of the problem 

statements. 

1.2 Objectives 

Objective 1: Design to formulate the mathematical model for active semiconductor 

devices. 

The proposed technique of the floating admittance matrix is an elegant mathematical 

modelling approach for both active and passive circuits. The fundamental benefit of the 

floating admittance matrix approach is that the algebraic sum of all elements in any row 

or column producing zero serves as a preliminary check that the circuit analysis and 

design process is going in the right direction. The remaining entries in the floating 

admittance matrix whole circuit incorporating passive components can be written by 

inspection without much difficulty once the floating admittance matrix of the active 

device is understood. This technique can be used to avoid performing a rigorous 

equivalent circuit analysis with more active devices in any circuit. Mathematical 

modelling should be the foundation of every educational system, especially engineering 
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education, because it shows where to put the right tools to get the job done. It is needless 

to say that stakeholders are students, guardians, faculty positions, management groups, 

and, very importantly, the industrialist as employers and others. These variables are 

correctly set in the mathematical model to achieve the desired outcome. If the desired 

result is not reached for a given set of inputs from all stakeholders, the mathematical 

modelling is revisited, with fine-tuning of one or more variables increased or decreased 

to get the desired result. As a result, mathematical modelling variables should be fine-

tuned so that the desired result is attained quickly and elegantly. (A paper as presented 

on “Mathematical modelling of semiconductor devices and circuits: A review,” 3rd 

International Conference on Intelligent Circuits and Systems (ICICS 2020) held on 

June 26-27th, 2020, organised by “The School of Electronics and Electrical 

Engineering” at Lovely Professional University, Punjab (India) 

DOI:10.1201/9781003129103-14). 

 

Objective 2: Performance validation of the developed models using the floating 

admittance technique. 

Problem Statement: Using the floating admittance matrix approach, all forms of 

transfer and self-port functions such as voltage gain, current gain, input resistance 

(impedance), output resistance (impedance), and power gains of any complicated 

circuit may be easily generated. The superposition theorem is nicely satisfied by this 

FAM approach. Because the method only uses co-factors from the created FAM, the 

computer can be used for complex networks. 

Work Explanation: The conventional approach to a mathematical model of the actives 

devices such as BJT, FET, MOSFET, and Op. Amp uses its equivalent circuit as per 

the requirement of (a) either large signal or small-signal models, (b) low frequency or 

high-frequency models, so and so forth. The typical way of equivalent circuit approach 

becomes quite onerous for cascaded or cascoded connections of several devices (BJTs. 

FETs, MOSFETs, and Op Amps) or combinations of BJTs  & FETs, MOSFETs, and 

Op Amps in any circuit. “Mathematical Modelling of Simple Passive RC Filters Using 

(FAM) Floating Admittance Technique” (2020 IEEE International Conference for 

Innovation in Technology (INOCON) Technically Cosponsored by IEEE Bangalore 
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Section 06th - 08th November 2020 DOI: 978-1-7281-9744-9/20/$31.00 ©2020 IEEE) 

was presented (IEEE, SCOPUS).  

  In this article, the problems relating to modelling simple electrical circuits 

consisting of resistors, capacitors, voltage sources, and current sources were taken up. 

Generally, we avoid using passive inductors because the planar spiral inductors are 

heavy, take more space, and dissipate considerable power with respect to resistors and 

capacitors. On the other hand, simulated inductances are frequently utilised in filters to 

achieve good performance, but that is the realm of active filters. Mesh equations, node 

equations, or Thevenin or Norton equivalent methods are used to solve fundamental 

networks consisting of resistances (R), capacitances (C), voltage sources, and current 

sources. These techniques do not conform to the state-space form of the mathematical 

model or, even later, cannot be converted by any means to the state space form. 

  The fundamental understanding of transfer function characterisation provides 

sufficient information to determine whether proper functioning has been attained. The 

circuit structure's input impedance and output impedances, power supply coupling and 

uncoupling, circuit component change, and other dynamic behaviour are all significant 

elements. 

Objective 3: Simulation and analysis of developed models using MATLAB/ 

SIMULINK/ LTSpice. 

Problem Statement: The analysis becomes lucid and corroborates the transfer 

functions obtained in the literature. These transfer functions are solely dependent on the 

co-factors of FAM of any circuit, whether active, passive or a combination of both. The 

floating admittance matrix has the distinct advantage of being able to be written by 

inspection for basic circuits. 

Work Explanation: The modelling and simulation of bridge -T network has been 

carried out using MATLAB’s Simulink system environment. This paper provides 

simulated and numerical validation of two forms of bridge -T network used for band 

pass filter. The MATLAB program developed for the transfer function for both types 

of the RC bridge-T network are plotted in the form of magnitude and phase w.r.t. 

frequency. The input and output impedances are derived and drawn using the FAM 

technique.  
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“Mathematical Modelling and Simulation of Band Pass Filters using the Floating 

Admittance Matrix Method” (WSEAS TRANSACTIONS on CIRCUITS and 

SYSTEMS E-ISSN: 2224-266X DOI: 10.37394/23201.2021.20.24) was another 

paper published (SCOPUS). 

Objective 4: Comparative analysis of floating-point admittance technique with 

existing methods for active semiconductor devices 

Problem Statement: The traditional analysis approach employs one of the widely used 

tools, such as KCL, KVL, Thevenin’s, Norton’s, and others, depending on the circuit’s 

suitability, whether active or passive. The floating admittance matrix technique 

proposed here is unique, and it may be used to any type of circuit. The matrix 

partitioning method is used to benefit the difficult network. The fact that all elements 

of any row or column add up to zero gives you the confidence to go deeper into analysis 

or re-observe the circuit at the first equation to save time and energy. Work 

Explanation: The floating admittance mathematical model presented here is so simple 

that anybody with slight knowledge of electronic devices, but an understanding of 

matrix maneuvering, can analyse the circuits to derive all types of transfer functions 

provided the parameters of devices are known to them. The floating admittance matrix 

model is used to analyse and subsequently build any circuit. It is based on pure 

mathematical maneuvering of matrix elements of the circuit. All transfer or self-port 

functions are defined as the ratios of co-factors of the first and or second order of the 

FAM. The FAM approach’s mathematical modelling allows the designer to adjust their 

design style at any analysis stage comfortably.  

“Unique Analysis Approach to Bridge-T Network using Floating Admittance 

Matrix Method” (INTERNATIONAL JOURNAL OF CIRCUITS, SYSTEMS 

AND SIGNAL PROCESSING Volume 15, 2021 DOI: 10.46300/9106.2021.15.140) 

was published (SCOPUS). 

Another paper, “Unique Analysis Technique for 4-Terminal MOSFET Amplifiers 

using Floating Admittance Matrix Approach” 2022 International Conference for 

Advancement in Technology (ICONAT) Goa, India. Jan 21-22, 2022, DOI: 978-1-

6654-2577-3/22/$31.00 ©2022 IEE was published (IEEE, SCOPUS). 
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 The paper presents an elegant technique of analysing the 4-terminal MOSFET 

amplifier circuit. The proposed technique helps in writing the floating admittance 

matrix (FAM) of any circuits by inspection once the FAM of electronic devices 

(BJT/FET/ MOSFET) is known. The matrix partitioning technique suits an extensive 

network well using the proposed technique. The proposed floating admittance matrix 

technique does not assume any reference terminal. For this reason, it is called the 

floating admittance matrix approach. 

1.3 Mathematics in modelling 

Mathematics helps engineers form, analyse, and optimize the functionality of the 

phenomena to design and develop a system. Mathematics enhances teachers' and 

students' ability to engage in abstract thinking and arouses their imagination. Innovative 

engineers and scientists are creative, and creativity is essential for strong imagination 

and abstract thinking. As a result, a successful innovative engineer is likely to have a 

solid understanding of mathematics. 

 

1.4 Modelling of physical environment 

Modelling also refers to the study of processes and items in one physical environment 

utilising processes and objects from another physical environment as models to 

replicate the system's behaviour. Collins, Brown, and Newman [1] believe modelling 

shows how and why an expert does a task. It is one method that is critical to expert 

teaching regarding any procedure or process.  

 The complexity of the processes in modern engineering, economics, and other 

systems is so powerful that they expect to have useful information and the 

characteristics of the complete systems and predictions of the consequences of their 

behaviours.  

 Modelling is a powerful technique that may be used in various fields. It's "a natural 

requirement of practically any engineering course," according to the author Crawley et 

al. [2]. Massoud Moussavi [3] in 1998 submitted a Ph.D. dissertation on Mathematics, 

Modelling, and Modular Curriculum. Grinter [4] proposed retraining programs in 

Engineering for Johnson & Wales University and School of Technology to emphasize 

the maneuverability of mathematical models in the curriculum. 
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 Modelling is part of the management process nowadays at every stage of human 

involvement. Engineering colleges/institutes should, for example, investigate the 

efficiency and efficacy of an engineering curriculum by: 

• Predict the program performance of the proposed curriculum. 

• Evaluate and assess the proposed curriculum. 

• Identify the points of deficiencies. 

Modelling becomes a powerful tool to accomplish these tasks for them. Fig. 1.1 shows 

a typical model for an effective engineering education program.  

 

 

 

 

 

 

 

Fig. 1.1 Model of an Effective Engineering Education Program 

 This model helps engineering education to continuously evaluate their proposed 

program, identify its deficiencies, and improve and modify it in a timely manner.  

 To model an effective engineering program, as an example, for Electronics 

Engineering students, we have first to define the Program's Educational Objectives as; 

(a) To enrol students having a basic knowledge of mathematics and science. 

(b) To train students so that they will be able to maintain and handle electronics 

systems, equipment, and component parts with creativity and critical spirit in 

Engineering Program 

(Objective) 

Proposes Teaching 

Learning Materials 

Develop a working 

model 

Utilize the model 

Model Performance 

Evaluation 
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YES 

Relook of Model 

 

Reimplementation with 

constant  

Evaluation 
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the technological development as per necessity and viability, globally, and 

especially for our country. 

(c) To enable the student to achieve employment in Electronics, Communication, 

and IT-related industries with appropriate title and compensation.  

(d) To enable the student to innovate, design, and develop hardware and software 

components and equip the student with technical and communication skills to 

function in national/international/multi-cultural corporations and 

organizations.  

(e) To build strong fundamental knowledge amongst students to pursue higher 

education and continue professional development in Electronics and other 

related fields. 

The syllabi's design comes into the picture as per the stated objectives with the target 

set. The working model defines the mechanism to meet the targeted objective. The 

working model is divided into many subheadings: Assignments, Quizzes, mid-term 

examinations, end-term examinations, seminars, projects, etc. The marks distribution is 

as per the weightage of all such subheadings assigned. The students go through this 

process, and their performance is analysed to suit the stated objectives. If the working 

model matches 75% to 80% of the objective set, then we assume the working model is 

successful. Even if the desired model results in acceptable limits, we try to input 

components from all stakeholders, such as students, alumni, guardians, industrialists, 

etc., to improve the model management. If the model does not result in an acceptable 

limit, we do in-house brainstorming, inviting experts to strengthen the program 

objectives to match the desired result. 

1.5 Advantages of Modelling 

 Modelling provides several advantages for engineers at the design and 

development stage. The modelling helps engineers to evaluate the unknown properties 

of objects. Modelling may become the sole viable approach for engineers to design, 

develop, and optimise new systems due to limited resources and options. Modelling is 

a valuable tool for engineers to avoid the consequences of bad technical decisions. Let 

us take another example of the automated manufacturing of an automobile. The 
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decision of optimum weight, speed, fuel consumption, etc., are designed and tested on 

the computer, and then only the industrialists go to manufacture the automobile. What 

should be the weight of the automobile if the break is suddenly applied when it is 

running at a certain speed so that it does not overturn? Many more iterations are 

performed on the computer before the final design is accepted for manufacturing.   

 Engineers may proceed in the following ways with regard to methods and 

methodology. They aim to acquire as much relevant information as possible for each 

challenge. Then they look for connections between the various themes to create a 

workable model. They then propose solutions that must be optimised for a variety of 

factors such as time, cost, size, and performance. According to Rodencker [5], the 

designing process is "a transition of knowledge, leading from the abstract to the 

concrete." He proposed eight rules for developing a technical system that starts by 

defining and abstracting the requirements.  

Rodencker's rules are: 

(a) Clarify the task (the required relationship) 

(b) Establish the function structure (the logical relationship) 

(c) Choose the physical process (the physical relationship) 

(d) Determine the embodiment (the constructional relationship) 

(e) The appropriate calculation can check the logical, physical, and 

constructional relationships. 

(f) Eliminate disturbing factors and errors. 

(g) Finalize the overall design. 

(h) Review the chosen design. 

 What Rodencker tried to establish is a model that employs mathematics to design 

a technical system. Rules' 'd', 'e,' and 'f' are nothing but formalizing the system using 

mathematics. In fact, these three rules are the heart of the design process. They show 

that a scientific, efficient, and cost-effective design would be possible only by the 

employment of modelling. 

 Electronic processes and objects, in general, are used as models because 

electronic systems have an unusual combination of properties and characteristics. The 

electronic process parameters and the structure of the connection between individual 
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elements can also be changed easily, explicitly, or implicitly. Along with rapid progress 

in the field of electronics, the calculation and designing of electrical devices and 

networks have become a much more sophisticated and challenging task than ever been 

taken. 

 Consequently, Electronic engineers must continuously improve the mathematical 

description, numerical analysis, and computer-aided design of electronic devices and 

systems. Modelling is the only effective technique that responds to the current 

marketplace, demanding fast and inexpensive design and production methods. 

 Mathematical modelling helps electronic engineers extensively to study and 

investigate the dynamic behaviour of electrical networks. Verlan [6] has developed a 

mathematical model called an integral equation. This is essentially the procedure which 

finds the integral mathematical relationships between the known source of data and 

unknown network parameters. The following brief description of Verlan's work depicts 

how mathematical modelling helps engineers study a system's behaviour to further 

develop a more accurate system.  

 The RC circuit can act as a simple integrator or a first-order low-pass filter. The 

signals of low frequencies pass approximately unchanged through the filter, while 

signals of high frequencies are filtered out (stopped). We will find the mathematical 

model to analyze it relating 𝑉𝑖𝑛 and 𝑉𝑜𝑢𝑡 = 𝑉𝐶. We start by considering the following 

RC circuit of Fig. 1.2.  

 

 

  

 

 

 

                       Fig. 1.2 Circuit Model of a passive RC Integrator 

 

We apply Kirchhoff's voltage law (KVL) in the circuit, which contains the input voltage 

terminals, the resistor, and the capacitor, considering the voltage drop positive in the 

clockwise direction. The non-homogeneous equation delineates the RC circuit's 
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response to a step input to the register's interconnected terminals and capacitance.If a 

step voltage (𝑉𝑖𝑛) is applied at 𝑡 = 0, what is the form of the output?               

Writing the KVL yields 

−𝑉𝑖 + 𝑉𝑅 + 𝑉𝐶 = 0 (1.5) 

If a step voltage (𝑉𝑖𝑛) is applied at 𝑡 = 0, what is the form of the output?  

For a capacitor 𝑖𝐶 = 𝐶
𝑑𝑉𝐶

𝑑𝑡
 (1.6) 

Current through the resistor = 𝑖𝑅 =
𝑉𝑅

𝑅
 (1.7) 

Since there is a single path for the current through the resistor and the capacitor, we can 

write  

 𝑖𝑅 = 𝑖𝐶  (1.8) 

Then, 𝑖𝑅 =
𝑉𝑅

𝑅
= 𝑖𝐶 = 𝐶

𝑑𝑉𝐶

𝑑𝑡
 (1.9) 

𝑉𝑅 = 𝑅𝐶
𝑑𝑉𝐶

𝑑𝑡
  (1.10)  

Substituting 𝑉𝑅 = 𝑉𝑖𝑛 − 𝑉𝐶 and rearranging yields 

 𝑅𝐶
𝑑𝑉𝐶

𝑑𝑡
= 𝑉𝑅 = 𝑉𝑖𝑛 − 𝑉𝐶 (1.11)  

Now separating the variables as 

  𝑑𝑡 = 𝑅𝐶
𝑑𝑉𝐶

𝑉𝑖𝑛−𝑉𝐶
 (1.12) 

Integrating ∫ 𝑑𝑡 = 𝑅𝐶 ∫
𝑑𝑉𝐶

𝑉𝑖𝑛−𝑉𝐶
 (1.13)  

Thus, 𝑡 = −𝑅𝐶 𝑙𝑛{𝑉𝑖𝑛 − 𝑉𝐶} + 𝑘(𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) (1.14) 

For 𝑡 = 0, 𝑉𝐶 = 0 (1.15) 

Slowly the charge builds up across the capacitor from zero value.  

0 = −𝑅𝐶 𝑙𝑛{𝑉𝑖𝑛 − 0} + 𝑘  

𝑘 = 𝑅𝐶 𝑙𝑛𝑉𝑖𝑛  (1.16) 

Now, 𝑡 = −𝑅𝐶 𝑙𝑛{𝑉𝑖𝑛 − 𝑉𝐶} + 𝑅𝐶 𝑙𝑛𝑉𝑖𝑛 = 𝑅𝐶 [𝑙𝑛{𝑉𝑖𝑛 − (𝑉𝑖𝑛 − 𝑉𝐶)}] (1.17) 
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𝑡

𝑅𝐶
= 𝑙𝑛 {𝑉𝑖𝑛 − (𝑉𝑖𝑛 − 𝑉𝐶)} = 𝑙𝑛

𝑉𝑖𝑛

𝑉𝑖𝑛−𝑉𝐶
 (1.18) 

𝑒𝑥𝑝 (
𝑡

𝑅𝐶
) =

𝑉𝑖𝑛

𝑉𝑖𝑛−𝑉𝐶
  

 

{𝑉𝑖𝑛 − 𝑉𝐶} =
𝑉𝑖𝑛

𝑒𝑥𝑝(
𝑡

𝑅𝐶
)
  

 

𝑉𝐶 = 𝑉𝑖𝑛 −
𝑉𝑖𝑛

𝑒𝑥𝑝(
𝑡

𝑅𝐶
)
 (1.19) 

𝑉𝐶 = 𝑉𝑖𝑛 [1 −
1

𝑒𝑥𝑝(
𝑡

𝑅𝐶
)
] = 𝑉𝑖𝑛 [1 − 𝑒𝑥𝑝 (−

𝑡

𝑅𝐶
)] (1.20) 

If we substitute 𝑡 = 0 in Eq. (1.20),  𝑉𝐶 = 𝑉𝑖𝑛[1 − 𝑒𝑥𝑝(−0)] = 0 (1.21) 

This condition verifies that at the moment 𝑡 = 0, the capacitor was fully discharged. 

At 𝑡 = ∞, 𝑉𝐶 = 𝑉𝑖𝑛[1 − 𝑒𝑥𝑝(−∞)] = 𝑉𝑖𝑛 (1.22) 

  Equation (1.22) reveals that the capacitor is charged to the input voltage's full 

value after a considerable time. The plot of this response for unit values of capacitor 

C, resistor R, and input step voltage 𝑉𝑖𝑛 is given as in Fig. 1.3.  

 The RC is the product of resistance R (Ohms), and capacitance C (Farads) has the 

unit of seconds and is always constant. The Greek letter  (tau) is usually used to denote 

this variable.  

The output voltage (𝑉𝐶) reaches 63.2% of its final value in 1 time constant (1 second in 

this case). The time taken to reach a particular value is related to the number of time 

constants given in Table 1.1. 

 

              Fig. 1.3 Response of RC Integrator for input step 
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Table 1.1 Required number of time constants  to reach a proportion of the final value 

𝜏  2𝜏 3𝜏 4𝜏 5𝜏 6𝜏 7𝜏 

63.2% 86.5% 95.0% 98.2% 99.3% 99.7% 99.9% 

 

Reducing the value of  (i.e., reducing R or C) means that the output will change faster, 

and any given voltage will be reached sooner.  

 Thus, the integral equations provide a most common and convenient means to 

examine and determine the inherent and the induced part of the components of 

processes that may take place in linear circuits. The use of integral equations for 

describing electrical networks' dynamic behaviour results in several specific methods 

for their quantitative and numerical analysis.  

 Another straightforward example of mathematical modelling is the relationship 

between the voltage across and current through a resistor. The relationship between 

current and voltage for the resistor, capacitor, and inductor is depicted in Fig. 1.4. 

 If the current through the component is I (A) and the voltage drop across the 

component is 𝑣 (V). The current and voltage are then related as follows. 

 Resistor→ 𝑅𝑖(𝑡) → 𝑂ℎ𝑚′𝑠 𝐿𝑎𝑤 (1.23) 

 Capacitor → 𝑖(𝑡) = 𝐶
𝑑𝑣(𝑡)

𝑑𝑡
 (1.24) 

 Inductor → 𝑣(𝑡) = 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
 (1.25) 

 

   

 

 

 

 

          Fig. 1.4 Circuit symbol Model of Resistor, Capacitor, and Inductor 

Power →Instantaneous Power: 

When current 𝑖(𝑡) flows through the resistor (R), the power delivered to the resistor is 

given as; 

 𝑃(𝑡) = 𝑣(𝑡)𝑖(𝑡) (1.26) 

𝑖(𝐴) 

+ −  

(H) 

𝑣(V ) 

Inductor 

R () 

𝑖(𝐴) 
+ − 𝑣(V ) 

C (F) 

𝑖(𝐴) 

+ − 𝑣(V) 
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Mean Power: When an alternating (sinusoidal) current of amplitude I flows through a 

resistor R (for example, a heating element), the mean or average power delivered to the 

resistor is written as; 

 𝑃̂ =
1

2
𝑅𝐼2 =

1

2

𝑉2

𝑅
 (1.27) 

A resistor is a two-terminal component described by the mathematical model in terms 

of voltage and current as; 

 R (Ohm) =
𝑉(𝑣𝑜𝑙𝑡)

𝐼 (𝑎𝑚𝑝)
        (1.28) 

Where V and I are the voltage across and current through the resistor, the large signal 

Model of the resistor is described by Eq. (1.28). However, a resistor dissipates power, 

and as it dissipates power, it gets heated. Depending upon the material of the resistor, 

the heat can change the value of the resistor. Hence, considering the effect of heat, the 

large-signal model of the resistor could be written as; 

 𝑅(𝑡) = 𝑅(𝑡𝑜)𝑓1(𝑡 − 𝑡𝑜)      (1.29) 

Where 𝑅(𝑡𝑜) is the resistance at the reference temperature 𝑡𝑜 and 𝑓(𝑡 − 𝑡𝑜)  is a suitable 

function that represents the variation in the value of the resistor. This function is 

dependent on the power dissipation in the resistor and its thermal properties. So, we can 

write the value of the resistor at any terminal voltage as 

 𝑅(𝑉) = 𝑅(𝑉𝑜)𝑓2(𝑉 − 𝑉𝑜)        (1.30) 

Where R(V) is the value of resistance at a reference voltage  𝑉𝑜 and 𝑓2 is a function of 

terminal voltage V and the reference voltage 𝑉𝑜. It is possible to interrelate the function 

𝑓1 and 𝑓2 through the physics of heating and thermal properties of the material. The 

nature of these functions also depends upon the nature of variation of resistance with 

temperature. The resistance of metal film resistors increases linearly with temperature. 

On the contrary, the resistance of a Thermistor made of semiconducting material 

decreases linearly with temperature. Therefore, we may have a simple or a complex 

large-signal model of the resistor depending on the resistor's material.   

The small-signal model of a resistor is simply a dynamic resistance that changes with 

respect to the change in the operating points that can be represented by  

 ∆𝑅(𝑉) =
∆𝑉

∆𝐼
 (1.31) 

Where ∆𝑅(𝑉) is the ratio of  
∆𝑉

∆𝐼
  and I and  V are small signal variations.  
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Modelling is one of the most important means for accelerating scientific and 

technological progress. 

The modelling also intensifies the development of science and the economy, but 

unfortunately, it is given the least priority in Indian engineering education, mainly at 

the Undergraduate College Level. Several factors play a role in de-emphasizing 

modelling in engineering education globally. The Grinter [4] report supports converting 

engineering colleges to research institutes and takes away the engineering curriculum 

design. The Grinter report is one of the essential documents followed in engineering 

education in the United States. 

 The U.S. had much better resources and options after World War II  than any 

other well-developed nation. The defence budget and military spending were very high, 

and engineering colleges were funded by the armed forces and Government.  "Only 

research that helped to war-making was rewarded," presumably, "to keep alive the 

expectations of a perpetual war economy." by Ferguson [7]. Almost unlimited resources 

left no room for modelling instead, a philosophy of "trial-and-error" became popular in 

engineering development and design. 

 As global marketplaces got more intensive in their pursuit of re-engineering, 

American companies have adapted to the concepts of re-engineering, continuous 

design, just-in-time strategy, and product cost reduction. Consequently, modelling is 

getting attention among engineers and engineering schools. 

 A mathematical model uses mathematical language to explain a system. 

Mathematical models area unit used not solely within the natural sciences and 

engineering disciplines (such as physics, biology, natural science, meteorology, and 

electrical engineering) however conjointly within the social sciences (such as political 

economy, sociology, and political science); physicists, engineers, pc scientists, and 

economists use mathematical models most extensively. Eykhoff [8] outlined a 

mathematical model as an illustration of the essential aspects of the Associate in 

Nursing existing system (or a system to be constructed) that presents information of 

that system in usable form'. However, mathematical models will take several forms, not 

restricted to resurgent systems, applied math models, differential equations, or game-

theoretic models. These different kinds of models will overlap with a given model 

involving a range of abstract structures. 
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1.6 Background of Modelling 

Often, once engineers analyze a controlled or optimized system, they use a 

mathematical model. Within the analysis, engineers will build a descriptive model of 

the system as a hypothesis; however, the system might work or try {an} estimate. 

However, an unpredictable event might affect the system. Similarly, engineers will try 

totally different management approaches in simulations on top of things of a system.

 The mathematical model typically describes a system by a collection of variables 

and a collection of equations that establish relationships between the variables. The 

values of the variables are often anything; real or numbers, Boolean values, or strings, 

for instance. The variables are some properties of the system; as an example, the 

measured system outputs typically within the variety of signals, temporal arrangement 

knowledge, counters, and event prevalence (yes/no). The particular model is the set of 

functions describing the various variables' relations. 

 

1.7 Building Blocks of Modelling 

There are six basic groups of variables; input variables, state variables, exogenous 

variables, random variables, and output variables. Since there may be several variables 

of every sort, the variables are typically denoted by vectors, call variables, or are 

typically referred to as freelance variables. Exogenous variables are typically referred 

to as parameters or constants. The variables do not seem to be freelance of every 

alternative because the state variables are captivated by the choice, input, random, and 

exogenous variables. Moreover, the output variables are captivated by the state of the 

system. The system's objectives and constraints are represented as functions of the 

output variables or state variables. The target functions can depend upon the angle of 

the model's user. Counting on the context, the Associate in Nursing objective operates 

additionally referred to as the Associate in Nursing index of performance because it is 

a few life of interest to the user. Though there is no limit to the number of objective 

functions and constraints a model will have, mistreatment or optimizing it becomes an 

additional concern (computationally). 

1.8 Classification of Mathematical Models 

Mathematical models may be classified in some of the following ways; 
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(a) Linear vs nonlinear→the linear systems are of two types, namely, 

• Linear time-invariant, and 

• Linear time-varying systems. 

A differential equation is linear if its coefficients are constants or functions of the only 

independent variable. Dynamic systems composed of linear time-invariant lumped-

parameter may be described by a linear time-invariant (or linear constant-coefficient) 

system. Systems that are represented by differential equations with their coefficients as 

functions of time are called linear time-varying systems. An example of a time-varying 

control system is a spacecraft control system—the mass of the aircraft changes due to 

fuel consumption.  

Nonlinear Systems: A nonlinear system where the principle of superposition does not 

hold well. The response to two inputs cannot be calculated by treating the one input at 

a time and adding the result for a nonlinear system. Examples of nonlinear differential 

equations are; 

 
𝒅𝟐𝒙

𝒅𝒕𝟐
+ (

𝒅𝒙

𝒅𝒕
)
𝟐

+ 𝒙 = 𝑨 𝒔𝒊𝒏𝝎𝒕 (1.32) 

 
𝒅𝟐𝒙

𝒅𝒕𝟐
+ (𝒙𝟐 − 𝟏)

𝒅𝒙

𝒅𝒕
+ 𝒙 = 𝟎 (1.33) 

 
𝒅𝟐𝒙

𝒅𝒕𝟐
+
𝒅𝒙

𝒅𝒕
+ 𝒙 + 𝒙𝟑 = 𝟎 (1.34) 

 If operators in a mathematical model are linear, the resulting mathematical model 

of the linear system suggested by Olof Staffans [9] is linear; otherwise, a model is 

considered nonlinear.  

 The question of linearity and nonlinearity depends on the context. A linear model 

might have nonlinear expressions. For instance, a linear statistical model assumes a 

linear relationship in parameters, but it might be nonlinear among predictor variables.  

  Similarly, a differential equation is alleged to be linear if it is often written with 

linear differential operators. However, it will still have nonlinear expressions in it. In 

an exceedingly mathematical programming model, if the target functions and 

constraints square measure diagrammatic entirely by linear equations, then the model 

is thought to be a linear model. If one or a lot of the target functions or constraints 

square measure diagrammatic with a nonlinear equation, then the model is thought of 

as a nonlinear model. Even in relatively simple systems, nonlinearity is usually related 

http://en.wikipedia.org/wiki/Linear_model


 

22 
 

to phenomena like chaos and un-changeableness. Though there square measure 

exceptions, nonlinear systems and models tend to be tougher to check than linear ones. 

a typical approach to nonlinear issues is linearization. However, this could be 

problematic if one attempts to check aspects like un-changeableness, that square 

measure powerfully tied to nonlinearity. 

(b) Deterministic vs probabilistic (stochastic)→ A deterministic model of Lin and Segel 

[10] is one within which variable states are unambiguously determined by 

parameters within the model and by sets of previous states of those variables. 

Therefore, settled models perform a similar method for a given set of initial 

conditions. Conversely, randomness is a gift in an exceedingly random model, and 

variable states don't seem to be delineated by distinctive values but rather by 

likelihood distributions. 

(c) Static vs dynamic→ the static model does not account for the time of elements, but 

a dynamic model does. Dynamic models are represented either in the form of 

difference or differential expressions. 

(d) Lumped versus distributed parameters→ if the model is homogeneous, the 

parameters are lumped. If the model is heterogeneous (a varying state within the 

system), then the System's parameters are distributed. Distributed parameters are 

represented with partial differential equations and in many more ways. 

1.9 Priori Information of Models 

 According to how much a priori information suggested by Jason and Jenkins 

[11,12] is available, Black box and white box models are commonly used to classify 

mathematical modelling difficulties. A black-box model is a system in which there is 

no a priori information available. A white-box model is known as a system where all 

necessary information required is available for use. In practice, all systems fall in-

between black-box and white-box models. So, this concept works as an intuitive guide 

only. 

 It is desirable to use the maximum amount of a priori data to make the model a 

lot of correct predictions. The white-box models are typically thought of as softer due 

to acquired knowledge correctly; the model can behave appropriately. Often, a priori 

http://en.wikipedia.org/wiki/Distributed_parameter_systems
http://en.wikipedia.org/wiki/Partial_differential_equation
http://en.wikipedia.org/wiki/A_priori_(philosophy)
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data comes within the type of knowing the kind of functions regarding totally different 

variables. For Associate Nursing instance, if we tend to create a model of how a drug 

works in a human system, we all know that the number of drugs within the blood is 

associated with Nursing exponentially decaying performance. However, our tendency 

is still to live with many unknown parameters. How speedily will the medication 

quantity decay, and what is the initial quantity of drugs in the blood? In this instance, it 

is not a very simple white-box model. These parameters have to be calculable through 

some suggestions before using the model. 

 In black-box models, one tries to estimate each useful type of relationship 

between variables and, therefore, the numerical parameters in those functions. 

Employing a priori data, we tend to find ourselves, for instance, with a group of 

functions that most likely may describe the system adequately. If there is no a priori 

data, we will try to use functions as general as possible to hide all different models. In 

Nursing's often-used approach for black-box models, associates are neural networks 

that generally do not assume nearly one thing regarding the incoming information. 

Using a vast set of functions to elucidate a system estimates the parameters becomes 

increasingly powerful once the number of parameters (and different types of functions) 

increases. 

 

1.10 Subjective Information of Models 

Many a time, incorporating subjective information into a mathematical model is useful. 

This may be done based on intuition, experience, expert opinion, or mathematical 

convenience.  

 Bayesian statistics suggest a theoretical framework for incorporating a subjective 

approach in rigorous analysis. One specifies a prior subjective probability distribution 

and then updates it based on empirical data. An example of one such Associate in 

Nursing approach would be a necessary scenario within which an Associate in Nursing 

experimenter bends a coin slightly and tosses it once, recording whether or not the head 

comes up gives a chance of predictions that the following flip comes up heads. The 

probability of the coin coming up with a head after tossing is unknown. So, the 

experimenter makes an arbitrary decision (perhaps by looking at the shape of the coin) 

http://en.wikipedia.org/wiki/Intuition
http://en.wikipedia.org/wiki/Experience
http://en.wikipedia.org/wiki/Expert_opinion
http://en.wikipedia.org/wiki/Bayesian_statistics
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about what prior distribution to use. Incorporating subjective information is necessary 

to predict the next flip accurately; being head would lead to wrong predictions.   

 MacKay's contribution to machine learning and information theory is based on the 

development of Bayesian methods for neural networks, called the rediscovery (with 

Radford M. Neal Shahbaba, B. and Neal, R. M. (2005). Improving classification when 

a class hierarchy is available using a hierarchy-based prior (Technical Report No. 0510, 

Dept. of Statistics, 11 pages.) of low-density parity-check codes and the invention of 

Dasher. This software application for communication was most popular with those who 

cannot use a traditional keyboard. MacKay [13] in 2003 he published a book on  

Information Theory, Inference, and Learning Algorithms based on the above 

statements. 

1.11 Complexity of Models 

Usually, the model complexity involves a trade-off between the simplicity and accuracy 

of the model. Occam Razor’s [14] principle is particularly relevant to modelling; the 

essential idea is that the simplest one is the most desirable among models with roughly 

equal predictive power. On the one hand, adding complexity usually improves the fit 

of a model; it may make the model too difficult to understand and work with and pose 

computational problems, including Numerical instability. Thomas Kuhn [15] argues 

that explanations become more complex as science progresses before a Paradigm shift 

offers radical simplification. For example, when modelling an aircraft's flight, we 

embed each mechanical part of the aircraft into our model to acquire an almost white-

box model of the system. Moreover, the computational cost of adding such a massive 

amount of details would not allow the use of such a complicated model. 

 Additionally, the uncertainty would increase thanks to a very sophisticated system 

due to every separate half induces some quantity of variance in the model. It is, 

therefore, typically acceptable to create some approximations to scale back the model 

to an acceptable size. Engineers typically will settle for some approximations to get a 

lot of sturdy and easy models. As an example, Newton's classical mechanics is an 

approximate model of the real world. Still, Newton's model is comfortable for many 

ordinary-life things, that is, as long as particle speeds are well below the sunshine's 

speed and we solely study macro-particles. 

 

http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Bayesian_method
http://en.wikipedia.org/wiki/Neural_network
http://en.wikipedia.org/wiki/Low-density_parity-check_code
http://en.wikipedia.org/wiki/Dasher
http://en.wikipedia.org/wiki/Occam%27s_Razor
http://en.wikipedia.org/wiki/Numerical_instability
http://en.wikipedia.org/wiki/Thomas_Kuhn
http://en.wikipedia.org/wiki/Paradigm_shift
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1.12 Training of Models 

Any model which is not a pure white box contains some parameters that may be 

accustomed to match the model of the system it describes. If a neural network completes 

the modelling, the optimization of parameters is named coaching. In addition, standard 

modelling through expressly given mathematical functions determines parameters by 

curve fitting. 

 

1.13 Model Evaluation 

A crucial part of the modelling method is evaluating whether a given mathematical 

model accurately describes a system. This question will be challenging to answer 

because it involves many different kinds of analysis. 

 

1.14 Model Fitting of Empirical Data 

Usually, the best part of the model analysis checks whether or not a model fits 

experimental measurements or different empirical information. A typical approach to 

check this work is to separate {the information} into 2 disjoint subsets in models with 

parameters: coaching information and verification data. The coaching information 

measure would not estimate the model parameters. The correct associate model can 

closely match the verification information even though it did not set the model's 

parameters. The cross-validation of the regression model by Richard and Dennis [16] 

was presented in statistics. 

 Defining a metric to live the deviation between ascertained and foretold 

knowledge could be an excellent tool for assessing model work. A loss performs a 

similar role in statistics, call theory, and a few economic models. It is very tough to 

check the validity of a model's general mathematical kind when it is comparatively 

simple to check the parameters' appropriateness. In general, additional mathematical 

tools are developed to check applied math models' work than models involving 

Differential equations. Tools from statistic statistics will typically not measure; 

however, good knowledge fits a known distribution or comes back up with a general 

model that creates marginal assumptions regarding the model's mathematical kind. 
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1.15 Model's Scope 

Assessing the model's scope is crucial. What things the model applies to may be less 

straightforward. If the model was created supported by a collection of information, one 

should confirm what systems or things could be a typical set of information. Whether 

or not the model describes well the properties of the system between knowledge points 

is named interpolation and it was suggested by Crochiere and Rabiner [17], and 

therefore the same question for events or knowledge points outside the determined 

knowledge is named extrapolation That was the suggestion of Brezinski and Zaglia 

[18].  Likewise, he did not include molecules' movements and different tiny particles. 

However, macroparticles were solely considered. It is then not stunning that his model 

does not extrapolate well into these domains, although his model is entirely decent for 

standard life physics. 

1.16 Philosophical Considerations of Models 

Many types of modelling implicitly involve claims concerning relation. This is often 

typically (but not always) true of models involving differential equations because 

modelling aims to extend our understanding of the globe. However, the validity of a 

model rests not solely on its acceptable empirical observations but also on its ability to 

extrapolate to things or information on the far side that was originally delineated within 

the model. One argues that a model is nugatory unless it provides some insight that goes 

on the far side of what's already notable from the development's direct investigation. 

 An example of such criticism is that the mathematical models of the optimum 

forage theory projected by Graham H. Pyke [19] do not supply insight that goes on the 

far side of the common-sense conclusions of evolution and alternative basic principles 

of ecology. We would discuss the general topic of deriving equivalent circuits from the 

differential equations that determine a given system's response. This is the procedure 

usually followed in modelling solid-state devices, where the distributed parameters of 

the equivalent circuits are derived from the solutions to Laplace or Poisson equations. 

The circuital visualization of this process provides insights that are extremely helpful 

in understanding the system response.  

  Mathematical modelling is the process of representing a physical system 

(structure, automobiles, graphs, diagrams, scattered plots, tree diagrams, circuits, etc.) 
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in the form of mathematical expressions that can predict the behaviour of the system. 

The model provides an insight into the physical system that reduces the problem to its 

essential characteristics. 

  A continuous model can use an ordinary or partial differential equation to 

describe a physical problem. This type of model may not necessarily contain any 

analytical solution. Hence, they require approximate solution methods such as finite 

differences, boundary elements, finite volumes, etc. These methods involve splitting 

the region of interest into a set of small elements. These elements produce a discrete 

approximation of the differential equations in each element and are required to solve 

all the discrete approximations simultaneously. Brief uses of continuous modelling are; 

 

• Heat flow 

• Acoustic 

• Electromagnetic wave propagation 

• Vibration analysis 

• Active device modelling 

As stated previously, mathematical modelling is a powerful tool in engineering 

education that enables its users to minimize time and cost in the design process. Also, 

mathematical modelling usage facilitates the process of redesign or concurrent 

engineering, a relatively new addition to American engineering education.  

  We are particularly interested in the mathematical modelling of electronic devices 

and their integration with passive components using a neat method called "Floating 

Admittance Matrix (FAM)"[20,21]. First, we would like to develop a floating 

admittance matrix of one of the devices, the Field Effect Transistor (𝐹𝐸𝑇 𝑜𝑟 𝑀𝑂𝑆𝐹𝐸𝑇) 

and then Bipolar Junction Transistor (𝐵𝐽𝑇), and then integrate them in all types of 

circuits. The failure mechanism modelling of devices was taken up by Li ,Tian, and 

Wang [22]. 

  Thus, the methodology of analysis used is to form a Floating Admittance Matrix 

of the circuit, including active devices and passive components (resistances and 

capacitances) for any complicated circuit. Then any mathematical tool such as 

MATLAB or MATHEMATICA can be used to get the result of the simulated 

mathematical model in the form of the matrix for complicated active circuits. 
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Chapter 2 

 

Transfer Function Generation of Three 

Terminal Devices (Two-Port Model) 

 

2.1 Introduction 

The small-signal models of a transistor (BJT), FET, MOSFET, and Op Amp can 

either be in terms of mathematical relationships between input and output variables 

or in the form of equivalent circuits. Equivalent circuit models are popular for several 

reasons, such as;  

• Circuit designers tend to feel more at ease with a circuit diagram rather than 

a set of numbers or mathematical relationships.  

• Transistor and integrated circuit designers prefer a model that reflects the 

device's construction, enabling modifications to the construction to be 

mapped onto the model.  

• Many circuit analysis packages are now available that use equivalent circuit 

models of transistors and other devices used in larger circuits to be analysed. 

 In general, it is easy to analyse an electrical network with its equivalent model, 

giving the relationship between input and output variables. This is the reason we use 

a two-port [1-14] representation for any network. Port-1 functions as the input port 

and two-2 functions as the output port [4-7, 10-12]. In one port network, the current 

enters from one terminal and leaves from the other terminal. All types of passive 

components such as resistors, capacitors, and inductors are examples of one-port 

networks because each of them has only two terminals indicated in Fig. 2.1.  
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  Fig. 2.1 Circuit Model of One Port Network 

The pair of terminals, 1 & 1′, represents a port, i.e., port-1. This is the case of only 

one port because it has only two terminals. 

2.2 Two-Port Network Model 

Similarly, a two-port network has four terminals. A pair of two-terminal electrical 

networks in which current enters through one terminal and leaves through another 

terminal of each port. The two-port network representation is shown in Fig. 2.2.  

 

 

 

                                

                   Fig. 2.2 Circuit Model of Two-Port Network 

 The pair of terminals, 1 & 1′, represents one port called the input port-1, and 

the other pair of terminals, 2 & 2′, represents another port, which is called the output 

port-2.  

 The two-port network has four variables 𝑉1, 𝑉2, 𝐼1, and 𝐼2 as shown in Fig. 2.2. 

Out of these four variables, we can choose any two variables as independent, and 

then another two variables become dependent on them. It results in six possible pairs 

of equations. These equations have dependent variables and independent variables. 

The coefficients of independent variables are called parameters. Thus, each pair of 

equations results in 4-parameters. 
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A single-phase transformer is an ideal example of a two-port network shown in 2.2 (b). 

 

 

 

 

 Fig. 2.2 (b) Circuit Model of Single-Phase Transformer as two-port Network 

2.3 Two-Port Network Model Parameters 

The parameters of a 2-port network are called two-port network parameters or, only, 

two-port parameters. The following are the important types of two-port network 

parameters [1-13]. 

• Z parameters 

• Y-parameters 

• h-parameters 

• g-parameters 

We proceed with the discussion about the above-mentioned 2-port parameters one by 

one. in the sequence. 

Z-parameters 

Assuming variables 𝑉1 & 𝑉2 as dependent and 𝐼1 & 𝐼2 as independent, results in the 

following two sets of equations. The coefficients of independent variables, 𝐼1 and 𝐼2  

are called Z parameters. 

 𝑉1 = 𝑍11𝐼1 + 𝑍12𝐼2 

𝑉2 = 𝑍21𝐼1 + 𝑍22𝐼2  

The Z parameters are 

 𝑍11 =
𝑉1

𝐼1
|
𝐼2=0

(Open circuit parameter) 

 𝑍12 =
𝑉1

𝐼2
|
𝐼1=0

(Open circuit parameter) 

 𝑍21 =
𝑉2

𝐼1
|
𝐼2=0

(Open circuit parameter) 

 𝑍22 =
𝑉2

𝐼2
|
𝐼1=0

 (Open circuit parameter) 

 

 

 

NP 
NS V2 V1 

I1 I2 
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 The Z-parameters are called impedance parameters because these are simply 

the ratios of voltages and currents. The units of Z parameters are Ohm (Ω). 

We can obtain two Z-parameters, 𝑍11 and 𝑍21 by opening the circuit of port-

2. Similarly, we may obtain the other two Z parameters, 𝑍12 and 𝑍22 by opening the 

circuit of port-. So, the Z parameters are the open circuit parameter. 

Y-parameters 

Assuming variables 𝐼1 & 𝐼2 as dependent and 𝑉1 & 𝑉2 as independent, two sets of 

equations will result. The coefficients of independent variables, 𝑉1 and 𝑉2 are called 

Y parameters. 

 𝐼1 = 𝑌11𝑉1 + 𝑌12𝑉2 

𝐼2 = 𝑌21𝑉1 + 𝑌22𝑉2  

The Y parameters are 

𝑌11 =
𝐼1

𝑉1
|
𝑉2=0

 (Short circuit parameter) 

𝑌12 =
𝐼1

𝑉2
|
𝑉1=0

 (Short circuit parameter) 

𝑌21 =
𝐼2

𝑉1
|
𝑉2=0

 (Short circuit parameter) 

𝑌22 =
𝐼2

𝑉2
|
𝑉1=0

 (Short circuit parameter) 

The Y-parameters are called admittance parameters because these are simply the 

ratios of currents and voltages. Units of Y-parameters are mho. 

We can obtain two Y-parameters, 𝑌11 and 𝑌21 by doing a short-circuiting of 

port-2. Similarly, we can obtain the other two Y parameters, 𝑌12 and 𝑌22 by short-

circuiting of port-1. Hence, the Y-parameters are also called short-circuit admittance 

parameters.  

h-parameters 

Assuming 𝑽𝟏 & 𝑰𝟐 as dependent variables and 𝑰𝟏 & 𝑽𝟐 as independent variables, 

results in the following two sets of equations. The coefficients of independent 

variables, 𝑰𝟏 and 𝑽𝟐  are called h-parameters. 

 𝑉1 = ℎ11𝐼1 + ℎ12𝑉2 

𝐼2 = ℎ21𝐼1 + ℎ22𝑉2   
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The h-parameters are defined as; 

 ℎ11 =
𝑉1

𝐼1
|
𝑉2=0

(Short circuit parameter) 

 ℎ12 =
𝑉1

𝑉2
|
𝐼1=0

(Open circuit parameter) 

ℎ21 =
𝐼2

𝐼1
|
𝑉2=0

 (Short circuit parameter) 

ℎ22 =
𝐼2

𝑉2
|
𝐼1=0

  (Open circuit parameter) 

 The h-parameters are called hybrid parameters. The parameters ℎ12 

and ℎ21 are unitless since those are the ratio of similar quantities, i.e., either ratio of 

two currents or two voltages and become dimensionless. The units of parameters, 

ℎ11 and ℎ22 are Ohm and Mho, respectively. 

 We can obtain two parameters, ℎ11 and ℎ21 by doing short-circuiting of port2. 

Similarly, we can obtain the other two parameters, ℎ12 and ℎ22 by opening the circuit 

of port-1. For modelling the transistor (BJT), the h-parameters or hybrid parameters 

are useful. 

g-parameters 

Assuming variables 𝐼1 & 𝑉2 as dependent and 𝑉1 & 𝐼2 as independent, two sets of 

equations result. The coefficients of independent variables, 𝑉1 and 𝐼2 are called g-

parameters.  

 𝐼1 = 𝑔11𝑉1 + 𝑔12𝐼2 

𝑉2 = 𝑔21𝑉1 + 𝑔22𝐼2  

The g-parameters are defined as; 

𝑔11 =
𝐼1

𝑉1
|
𝐼2=0

 (Open circuit parameter) 

𝑔12 =
𝐼1

𝑉2
|
𝑉1=0

 (Short circuit parameter) 

𝑔21 =
𝑉2

𝑉1
|
𝐼2=0

 (Open circuit parameter) 

𝑔22 =
𝑉2

𝐼2
|
𝑉1=0

 (Short circuit parameter) 

 The g-parameters are called inverse hybrid parameters. The parameters, 𝑔12 

and 𝑔21  are unitless since those are ratios of similar quantities. The units of 

parameters, 𝑔11  and 𝑔22 hybrid parameters are mho and ohm, respectively. 
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We can obtain two parameters, 𝑔11 and 𝑔21 by doing open circuiting of port-2. 

Similarly, we can obtain the other two parameters, 𝑔12 and 𝑔22 by doing short-

circuiting of port-1. These two-port models have been described here only for 

academic purposes. Presently, it is very rarely used in the design and analysis of 

active devices. 

 The BJTs, FETs, MOSFETs, and Op. Amp. are important three-terminal 

electronic devices that may be modelled as four-terminal or two-port devices. 

Electronic circuits' performance evaluation appropriately incorporating electronic 

devices is a difficult proposition in the absence of a mathematical model. The usual 

practice is to visualize the circuit physically and make measurements in the absence 

of a mathematical model, but very often, it is not feasible, and we have to choose the 

alternative method called simulation. For simulation also, we need all the variables 

affecting the properties and behaviour of devices and circuits. The properties of the 

devices are captured using mathematical relationships among different variables of 

the devices. The passive and active electrical and electronic components are 

characterized by terminal voltages and the current relationship between them. 

Therefore, the circuits and devices' behaviour is modelled by thinking a voltage 

depends on currents, or currents depend on a voltage, or the suitable combination of 

one set of currents and voltages depends on another set of currents and voltages.  

 This dependency of one variable or a set of variables on the other set of 

variables of any device or circuit is given the name of mathematical modelling. In 

essence, mathematical modelling predicts the physical behaviour of any device or 

circuit. The two-port model developed based on voltage, and current variables is used 

in deriving different transfer functions such as the voltage transfer ratio, the current 

transfer ratio, the mutual transfer function between current and voltage ratio, and 

power transfer ratios.   

2.𝟒  𝐌𝐨𝐝𝐞𝐥 𝐃𝐞𝐯𝐞𝐥𝐨𝐩𝐦𝐞𝐧𝐭 of two-port Network 

The Model development is a crucial part of the devices and circuits to predict their 

behaviour. A very simple model may not reflect the devices' complete behaviour and 

circuits using its terminal voltages and currents. There is not only one relationship 
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between voltage and current but a set of relationships will be required to accurately 

predict any circuit and device [1-32].  

 It is desirable to have one relationship between the terminal voltage and the 

terminal current of the device for convenience, but most often, it does not serve the 

purpose. Hence, a number of equations of dependent variables and independents are 

used to cover all aspects of the devices and circuits' behaviour. However, different 

applications require a different model, and many times these prove to be 

contradictory constraints necessitating a compromise between them. A few of the 

requirements of different models and their applications are listed below: 

1. The physical understanding of the device depends on the relationship between 

its terminal voltage and current.  

2. Representation of device in circuits with  

(i) Accuracy for achieving the desired characteristic  

(ii) Simplicity to use in the real-world problem.  

(iii) Division of nonlinear characteristics of the device in different zones 

for better understanding and model development 

(iv) The use of an empirical relationship that fits in the voltage-current 

relationship to predict the expected characteristics. 

(v) Observable effects in the variation of the values of the variables. 

(vi) A minimum number of parameters to describe the behaviour of the 

device completely.  

3. Process control should be 

(i) Simple  

(ii) Reversible 

(iii) Available off the self. 

 The state-of-the-art technology encounters many physical effects in the 

manufacturing of any device. While the development of a complete theoretical model 

of any device based on physical effects is practically intractable.  The Development 

of a Mathematical model base on empirical data results in a loss of predictive 

capabilities. It suggests a compromise between them to model the device for circuit 

simulation. 

 The device model should be of two basic categories: 
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• Primary, and 

• Secondary 

 The model's primary category has a close relationship between understanding 

of device physics and aid to process control.  

 The secondary category of the model partly uses empirical relation to simplify 

the desired characteristics.  

 The device's mathematical equation should be such that it directly affects the 

variation of its characteristic. Sometimes different parameters affect the device 

characteristics in different zones. This helps in decoupling the model parameters with 

minimal iterations and its extraction.  

 The Newton-Rapson is a very well-known numerical technique for 

convergence of the relationship between terminal current or charges with its terminal 

voltages' continuous function. This method takes the help of the computation based 

on its 1st derivative. However, in some cases, it is very tedious, cumbersome, and 

prone to error to compute its derivatives analytically. The finite difference is another 

method to be used in such a situation, but it increases the computation time.    

 The device's operating ranges are often divided into different regions of its 

operation to formulate the model equation easily. Different mathematical models are 

developed in different device operations zones with the condition that the device 

current and voltages are continuous across the zones of boundaries to make the 

problems simpler. The terminal capacitance should be based on the charge control 

model of the device.   

 The modelling paradox states that a complex model is potentially better capable 

of producing accurate characteristics of the device. On the contrary, it is more 

difficult to extract all the parameters from such a complex model, and if the model 

parameters are not specified properly, it may not result in the device's desired 

characteristics. 

2.5 Model Specifications 

We start the explanation of model specification with an example of the model of the 

transistor [2-13]. The model development of the transistor depends on three pieces 

of information; 
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1. Fundamental constant 

2. Operating conditions, and  

3. Model parameters. 

 The fundamental constants, such as electronic charges or currents, are defined 

in the circuit. The operating condition defines the environment in which the model 

equations are evaluated. For instance, the bias voltage is taken as one of the operating 

conditions for transistors' model development [1-15]. The temperature variations are 

another operating condition that disturbs the device's quiescent point, and its 

parameters change as per the temperature variations. The values of any transistor's 

parameters vary very widely on the variation of the bias conditions and temperature.   

 The third condition requires the extraction of a set of model parameters for 

each and every device in a given circuit. The discrete circuit may have many discrete 

devices of similar types. A similar type of device in an integrated circuit undergoes 

similar types of fabrication steps. They may exhibit similar behaviour. Hence, such 

model parameters can be specified only once instead of repeating for all such 

components. So, there is a large number of parameters, which are common to similar 

devices. These parameters are generally related to the device geometry in an 

integrated circuit. The mathematical equation using terminal voltage and currents are 

used to realize any circuit. Such circuits are given the name of the equivalent circuit 

[11-22]. In essence, the model and the equivalent circuit mimic the property of 

components very closely. 

 As already discussed, many electronic or electrical components cannot be 

expressed by a single mathematical model or by a single equivalent circuit in all their 

operations regions. Then the models are developed in the regions valid and usable 

under the restricted condition such as terminal voltages, currents, and regions of 

operation and or other external conditions to cite the temperatures. The development 

of low-frequency models, high-frequency models, small-signal models, and large-

signal models are important model development schemes for analyzing and 

designing amplifiers incorporating electronic devices such as BJT, FETs, MOSFETs, 

and Op Amp. The switching model, noise model, and thermal model are developed 
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for special functions of the devices and circuits, but small signal and large signal 

models are prevalent in the analysis of circuits containing electronic devices.  

2.6. Large Signal Model  

A large-signal model takes into account the fact that the large signal does affect the 

operating point. Also, elements are nonlinear, and power supply values can limit 

circuits. A small-signal model ignores simultaneous variations in the gain and supply 

values. 

 The large-signal model [5-6, 9-11] of the active and passive components must 

be used when components are subjected to large signal variation with respect to the 

maximum permissible swing that the device can withstand without getting damaged. 

The large-signal model development is based on the nonlinear nature of the 

components. The popular use of large-signal models of the BJT is in the circuits of 

power amplifiers, switches, comparators, limiters, etc. It is said that most of the time, 

large-signal models are inaccurate, as they have to represent devices over a wide 

range of terminal voltage and current with nonlinearity. The large-signal model of a 

diode and a BJT are shown in Figs. 2.3 and 2.4, respectively. 

 

 

 

 

 

  

 Fig. 2.3 Large-signal model of Semiconductor Diode 
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            Fig. 2.4 Large Signal circuit Model of the BJT 

 The built-in potential, 𝑉𝛾 is the internal DC voltage present across the base-

emitter junction as in Fig. 2.4. The base-emitter junction is forward-biased if the 

externally applied voltage across 𝑉𝐵𝐸 is more than 𝑉𝛾. In an ideal diode, it is assumed 

that 𝑉𝛾 = 0, and hence the diode current becomes infinite for 𝑉𝐵𝐸 = 0 as in Fig. 2.3. 

If 𝑉𝛾 ≠ 0, the device is a practical diode, and current once again becomes infinite at 

𝑉𝐵𝐸 = 𝑉𝛾 as in Fig. 2.3.   

2.7. Small-Signal Model 

As the name suggests, "small signal" deals with very low amplitude signals. With 

the quiescent point concept, we may say that the small-signal operation of a BJT or, 

for that matter, MOSFETs, JFETs, anything should not disturb the quiescent point. 

In essence, the types of signals which are small enough and do not push the circuit 

out of its linearity (should not be confused with the linear region of MOSFET/ BJT). 

  The small-signal model [5-16, 18-32] is based on very small fluctuations in the 

device's current and voltage around its Q-point. How do we quantify this small 

fluctuation of voltage and current? This is taken as small as measurable. Someone 

can measure it in microvolt, but others can measure it in millivolts. Hence, the small 

quantity is different for different people. The accuracy may be more for the 

measurement in microvolt than the measurement is done in millivolt.  

 The small-signal model is called the linear model, as the voltage and current 

produce small signal variations in magnitude. The small-signal models are used in 

all configurations of BJT amplifiers, FET, MOSFET, and Op. Amp., differential 

amplifiers, low noise amplifiers, and filters. A very important property of a small 
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signal model for any linear amplifier circuit is that the superposition theorem should 

hold good and produces accurate results. The small-signal models are generally used 

to analyze all transfer functions (voltage gain, current gain, input resistance, output 

resistance, power gain) of any amplifier configuration. The hybrid, hybrid-, and T- 

model of the BJT is shown in Fig. 2.5. Fig. 2.5 includes the small-signal FET/ 

MOSFET model also. 

 

 

 

 

 

 

(a) L.F. Hybrid model of a BJT 

 

 

                       

 

(b) L.F. hybrid- model of a BJT 
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                                    (d) L. F. small-signal model of a MOSFET 

Fig. 2.5 Small-signal circuit models of BJT & FET   

2.8. Low-Frequency Model 

The same electronic and electrical circuit components behave differently at low and 

high frequencies. At high frequencies, parasitic capacitances start appearing across 

the device and components. As the impedance of capacitance is frequency-

dependent, the value of its impedance changes with a change in frequencies. The 

low-frequency models [4-16] are used both at low and medium frequency ranges. 

The model developed for the low-frequency range does not operate appropriately at 

high frequencies. Hence, each electronic device has its equivalent circuit model 

different at different frequencies: low frequency, medium frequency, and high-

frequency models.  The low-frequency representation of common emitter and 

Common-source devices is shown in Fig. 2.6. The low-frequency model is also called 

the mid-band model because there is no capacitive reactance present in this frequency 

range. The small-signal models drawn in Fig. 2.5 also do not have any capacitance.  

 

 

 

 

 

         Fig. 2.6 Low-Frequency Symbolic Models of the BJT,  MOSFET 
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Generally, the hybrid- model) is used for analysis at a high frequency of any 

amplifier, including the parasitic capacitances. Figure 2.5 also displays the small -

signal models at low frequencies.  

2.9. High-Frequency Model 

The manufacturers specify the operating frequency range of electronic and electrical 

components for their best use. At high frequency [4-16], the parasitic capacitances 

appear between the BJT/ FET terminals, resistance, inductance, and even across big 

capacitors, as in Fig. 2.7.  

 

 

 

 

 

 

      Fig. 2.7 High-Frequency Circuits of BJT & MOSFET 

 

 

 

 

 

 

 

 

 

          Fig. 2.8 High-Frequency Models of The BJT and MOSFET 
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The parasitic capacitances across the junctions of active devices start 

appearing at high frequencies. This parasitic capacitance produces an undesirable 

effect. The manufacturers specify the value of any device's parasitic capacitance, but 

it may not be very accurate and hence produce undesirable performance behaviour. 

For general purposes, manufacturers' parasitic values work well, but they should be 

measured and used for higher accuracy, such as military purposes. Fig. 2.8 shows the 

presence of parasitic capacitances 𝐶𝑏′𝑒, 𝐶𝑏′𝑐, 𝐶𝑐𝑒, 𝐶𝑔𝑠, 𝐶𝑔𝑑, and 𝐶𝑑𝑠  These 

capacitances provide effective short circuits across the BJTs and FETs junctions and 

hence gain, or the output voltage starts decreasing as the frequency increases. Apart 

from these capacitances, the stray capacitances also become effective at high 

frequencies. 

2.10. Floating Admittance Model 

We would be proposing a model of the electronic devices using a floating admittance 

matrix approach. The inverse of resistance R is given as; 

 𝐺 =
1

𝑅
  

Here, G is given the name of conductance having a dimension of Siemens (S) or 

mho. Similarly, the inverse of impedance (Z) is admittance (Y) expressed as;  

    𝑌 =
1

𝑍
 

The dimension of Y is again S or mho.  

 Since the circuit generally consists of active devices and passive components 

such as resistances and capacitance, the inverse of resistance and the inverse of 

capacitive impedances have been given the name of admittance for the analysis. 

Though resistances may be used, yet the name of its inverse is assumed as 

admittance, not the conductance, for generality. 

 A new approach in developing models of the active and passive components is 

proposed here. This method is given the name floating admittance matrix approach 

[17-25] to the model development, especially for active devices such as BJT and 

FET/ MOSFET. All network functions of any amplifier incorporating these devices 

may be obtained in the form of ratios of the 1st-order and or 2nd-order cofactors 
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 [25-32] of the circuit's floating admittance matrix. The conventional analysis of an 

n-port circuit or amplifier assumes anyone terminal as the reference node, and all 

other node voltages are defined w.r.t. this reference node. On the contrary, if all 

nodes of an n-port network are accessible nodes to which external voltage 

connections are made, it is called an n-port live network of floating nodes. Hence, 

such networks are named the floating admittance matrix network. The n-port network 

is very easily analysed using the floating admittance matrix approach. The definite 

admittance matrix network uses at least one node as a reference node for all other 

nodes, but the floating admittance matrix approach does not use any reference node.  

 A general topology of an n-terminal network consisting of arbitrary active and 

passive components connected in any manner is shown in Fig. 2.9. None of the 

terminals of Fig. 2.9 is taken as the reference terminal. All terminals are live in this 

network. In other words, if any reference terminal at all is there, it falls outside the 

purview of the network. For such a statement to hold good, all node currents are 

independent, and its initial conditions are set to zero. [17-24]. 

 

 

 

 

 

 

 

                  Fig. 2.9 𝑛-terminal Network Model 

The current entering from terminal-1 of Fig. 2.9 is expressed as; 

 𝑖1 = 𝑌11𝑣1 + 𝑌12𝑣2 + ………… . . 𝑌1𝑛𝑣𝑛 + 𝐼𝑜1 (2.1) 

Similarly, the other 𝑛-terminal currents of Fig. 2.9 can be expressed as; 
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 𝑖2 = 𝑌21𝑣1 + 𝑌22𝑣2 + ………… . . 𝑌2𝑛𝑣𝑛 + 𝐼𝑜2 (2.2) 

          :        :                                           :           :  

          :        :                                           :           :  

 𝑖𝑛 = 𝑌𝑛1𝑣1 + 𝑌𝑛2𝑣2 + ………… . . 𝑌𝑛𝑛𝑣𝑛 + 𝐼𝑜𝑛 (2.3) 

where, 𝑣1, 𝑣2, ……𝑣𝑛 are the potentials connected at terminals 1, 2…..n and to some 

arbitrary but unspecified reference point and 𝑖1, 𝑖2, …….𝑖𝑛 are currents entering 

through terminals 1, 2, ……n from outside the network with initial conditions 𝐼𝑜1, 

𝐼𝑜2, ……..𝐼𝑜𝑛. The 𝑛-terminal network, together with the load, is assumed to be 

linear. Its voltage and current relationship from Eqs. (2.1) through (2.3) can be 

arranged in the form of a matrix as;  
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𝐼0𝑛]
 
 
 
 
 
 

 (2.4) 

Equation (2.4) is further simplified in the form of a mathematical equation relating 

its terminal voltage and currents as; 

 𝑖𝑖 = 𝑌𝑖𝑗𝑣𝑛 + 𝐼𝑜𝑖 (2.5) 

Where in the subscript ′𝑖′ indicates the row value and ′𝑗′ the indicates the column 

value from 1 to 𝑛 of 𝑌𝑖𝑗.  

  To verify the special conditions on the row elements of a FAM, if a voltage 

(𝑣𝑜) [19-20, 25-32] is added to all existing terminal voltages 𝑣1, 𝑣2, ……𝑣𝑛, the 

terminal currents are given by Eq. (2.4) changes to  
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Subtracting Eq. (2.4) from Eq. (2.6) yields as; 
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= 0 (2.7) 

For quick and better understanding, we would like to reduce this matrix to represent 

the three-terminal devices such as BJTs, FETs, and MOSFETs using Eq. (2.7). So, 

Eq. (2.7) simplifies to a 3 x 3 floating admittance matrix of three-terminal electronic 

devices as; 
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= 0 (2.8) 

The equation of each current 𝑖1, 𝑖2, and 𝑖3 from Eq. (2.8) is written as; 

 𝑖1 = 𝑖2 = 𝑖3 = 0, (2.9) 

Substituting the values of 𝑖1, 𝑖2 and 𝑖3 from Eq. (2.8) in Eq. (2.9) yields; 

 

𝑖1 = (𝑌11 + 𝑌12 + 𝑌13)𝑣𝑜 = 0

𝑖2 = (𝑌21 + 𝑌22 + 𝑌23)𝑣𝑜 = 0

𝑖3 = (𝑌31 + 𝑌32 + 𝑌33)𝑣𝑜 = 0}
 
 

 
 

 (2.10) 

From Eq.  (2.10), 𝑖1 = (𝑌11 + 𝑌12 + 𝑌13)𝑣𝑜 = 0  

We have connected 𝑣𝑜, an additional voltage to all terminals, and so 𝑣𝑜 0, then 

 𝑌11 + 𝑌12 + 𝑌13 = 0  (2.11) 

Similarly, from Eq. (2.10), 𝑖2 = (𝑦21 + 𝑦22 + 𝑦23)𝑣𝑜 = 0 and 𝑣𝑜 0, then (2.12) 

 𝑌21 + 𝑌22 + 𝑌23 = 0  (2.13) 

Again from Eq. (2.10), 𝑖3 = (𝑦31 + 𝑦32 + 𝑦33)𝑣𝑜 = 0 and 𝑣𝑜 0, then  (2.14) 
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 𝑌31 + 𝑌32 + 𝑌33 = 0  (2.15) 

 Equations (2.11), (2.13), and (2.15) reveal a very important hypothesis that the 

sum of all elements of any row of a floating admittance matrix must be equal to zero.   

 Now, we would like to demonstrate the condition of all elements of any column 

of a floating admittance matrix. It is well known from KCL that the sum of all 

currents entering the network must be equal to the sum of leaving the currents of the 

network. In other words, the algebraic sum of the currents in any network must be 

zero i.e. 
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 (2.16) 

Setting initial conditions zero i.e. 𝐼𝑜1 = 𝐼𝑜2 = 𝐼𝑜3 = 0 in Eq. (2.16) yields,  
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  (2.17) 

Expanding currents 𝑖1, 𝑖2, and 𝑖3 from Eq. (2.17) yields; 

 𝑖1 = 𝑌11𝑣1 + 𝑌12𝑣2 + 𝑌13𝑣3  (2.18) 

 𝑖2 = 𝑌21𝑣1 + 𝑌22𝑣2 + 𝑌23𝑣3  (2.19) 

 𝑖3 = 𝑌31𝑣1 + 𝑌32𝑣2 + 𝑌33𝑣3  (2.20) 

As no current comes out from any terminal of Fig. 2.6, currents entering from all the 

three-terminal can be equated as;  

 𝑖1 + 𝑖2 + 𝑖3 = 0 (2.21) 

Substituting the values of 𝑖1, 𝑖2, and 𝑖3 from Eqs. (2.18), (2.19), and (2.20) in Eq. 

(2.21) yield as; 

 𝑌11𝑣1 + 𝑌12𝑣2 + 𝑌13𝑣3 + 𝑌21𝑣1 + 𝑌22𝑣2 + 𝑌23𝑣3 

                                                       +𝑌31𝑣1 + 𝑌32𝑣2 + 𝑌33𝑣3 = 0  (2.22) 

Let us suppose that all but terminal-1 of the three-terminal network is grounded i.e. 

𝑣2 = 𝑣3 = 0 and   𝑣1 ≠ 0,  then Eq. (2.22) reduces to   

 𝑌11𝑣1 + 𝑌21𝑣1 + 𝑌31𝑣1 = (𝑌11 + 𝑌21 + 𝑌31)𝑣1 = 0 (2.23) 
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 𝑌11 + 𝑌21 + 𝑌31 = 0 (2.24) 

 This proves that the sum of all elements of the first column of a three-terminal 

floating admittance matrix is zero. 

 Similarly, if we suppose that all but terminal-2 is grounded i.e. 𝑣1 = 𝑣3 = 0 and 

 𝑣2 ≠ 0, then Eq. (2.22) reduces to  

 𝑌12𝑣2 + 𝑌22𝑣2 + 𝑌32𝑣2 = (𝑌12 + 𝑌22 + 𝑌32)𝑣2 = 0 (2.25) 

 𝑌12 + 𝑌22 + 𝑌32 = 0 (2.26) 

 Equation (2.26) suggests that the sum of all elements of the second column of the 

three-by-three matrix is zero.  

Lastly, let us suppose that all but terminal-3 are grounded i.e. 𝑣1 = 𝑣2 = 0 and 𝑣3 ≠

0, then Eq. (2.22) reduces to  

  𝑌13𝑣3 + 𝑌23𝑣3 + 𝑌33𝑣3 = (𝑌13 + 𝑌23 + 𝑌33)𝑣3 = 0 (2.27) 

Since, 𝑣3 ≠ 0, 

  𝑌13 + 𝑌23 + 𝑌33 = 0 (2.28) 

 Equation (2.28) reveals that the sum of all elements of the 3rd column of a 3x3 

matrix is zero.  

  So one by one, it has been proved that the sum of all elements of any row or 

any column of any floating admittance matrix becomes zero.   

 The coefficient matrix 𝑌𝑖𝑗 relating voltages 𝑣1, 𝑣2, …….𝑣𝑛 and currents 𝑖1, 

𝑖2, …….𝑖𝑛 in Eq. (2.4) is separated as; 

  

[
 
 
 
 
 
𝑌11

𝑌21

𝑌𝑛1

     

𝑌12… .
…… . .
𝑌22… .
…… . .
…… . .
𝑌𝑛2… .

     

𝑌1𝑛

𝑌2𝑛

𝑌𝑛𝑛]
 
 
 
 
 

  (2.29) 

 This coefficient matrix in Eq. (2.29) is also called the floating admittance 

matrix of any 𝑛-terminal network because the reference point for the potentials is 

some arbitrary but unspecified point outside the network. Here coefficient matrix 

[𝑌𝑖𝑗] is called the floating admittance matrix (FAM). As stated above, the short circuit 

initial current 𝐼𝑜𝑖 results from the independent sources and/ or initial conditions in 

the interior of the 𝑛-port network. For this purpose, we shall consider all independent 
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sources outside the network, and all initial conditions are set to be zero. Hence, 𝐼𝑜𝑖 

is supposed to be zero, and Eq. (2.5) further simplifies to  

 𝑖𝑖 = 𝑌𝑖𝑗𝑣𝑖 (2.30) 

 Since BJTs, FET, and MOSFETs are 3-terminal active devices, the coefficient 

matrix can be stated to a 3-terminal devices matrix as; 

  

[
 
 
 
 
𝑌11

𝑌21

𝑌31

         

𝑌12

𝑌22

𝑌32

         

𝑌13

𝑌23

𝑌33]
 
 
 
 

 (2.31) 

  Equation (2.31) represents the floating admittance matrix of any 3-terminal 

device.  

  If any of the terminals are made common to the other two, the corresponding 

row and column are deleted from the floating admittance matrix. For example, say 

terminal '3' is made common, then the 3rd row and 3rd column of the coefficient 

matrix are deleted, and the coefficient matrix of Eq. (2.31) reduces to; 

  [

𝑌11

𝑌21

       

𝑌12

𝑌22

] (2.32) 

Equation (2.32) is the 2 x 2 matrix reduced from the above Eq. (2.31).  

  The floating admittance matrix finds extensive use in designing and analysing 

complicated circuits using active devices such as BJTs, FETs, MOSFETs, and Op. 

Amp. and complex passive circuits. Since each of these active devices has three 

terminals, their 3-terminal currents and voltages are denoted as;  

Base current and base voltage of the BJT = 𝑖𝑏 , 𝑣𝑏 

Gate current and gate voltage of the FET/ MOSFET = 𝑖𝑔, 𝑣𝑔 

Collector current and voltage of the BJT= 𝑖𝑐, 𝑣𝑐 

Drain current and drain voltage of the FET/ MOSFET = 𝑖𝑑, 𝑣𝑑 

Emitter current and emitter voltage of the BJT = 𝑖𝑒 , 𝑣𝑒 

Source current and the source voltage of the FET/ MOSFET = 𝑖𝑠, 𝑣𝑠 
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  As the vacuum tube has become obsolete, except for any special purpose, we 

take up the more frequently used active devices in electronic circuits such as BJTs, 

FETs, MOSFETs, and Op. Amps. Usually, these are used as 3-terminal devices, 

though their variant as four-terminal devices is also available. The four-terminal BJT 

and MOSFET are used at high frequencies. Even the BJTs and MOSFETs 

manufactured for low-frequency operations are also represented as a 4-terminal or 

two-port network by making one of its terminals common to both input and output 

sides in any of the configurations of BJTs, FETs, MOSFETs, and Op. Amp. We will 

be analysing these devices throughout our thesis work, assuming BJTs, FETs, 

MOSFETs, and Op. Amps. as two-port networks. The symbolic representation of 

typical 3-terminal devices is shown in Fig. 2.10.  

 These devices can be presented as a two-port network if any one of the terminals 

is referred to as common to both the input and output sides of the network in Figs. 

2.11 and 2.12.  

 

 

 

 

 

 

 

 

         Fig. 2.10 Circuit Symbolic Model of BJT, MOSFET, Op. Amp. 
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                       Fig. 2.11 Two-port Circuit Model of the npn Transistor  

 

 

 

 

  

          Fig. 2.12 Two-port Circuit Model of n-channel MOSFET  

Figure 2.13 is the generalized two-port network. For the analysis of the circuits 

incorporating electronic devices using FAM, the 3-terminals of these active devices 

are assigned here numerics instead of their usual terminal symbolic letters such as 

B→1 for the base, C→2 for the collector, E→3 for the emitter, 𝐺→1 for the gate, 

D→2 for drain, S→3 for source. These numbers have been assigned for generalized 

description and analysis of the floating admittance matrix of these devices. With 

their terminal letters and numbers, these devices are shown in Figs. 2.11 and 2.12. 

 

 

 

 

 

              

Fig. 2.13 Generalized 2-port network Model 
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  The common base configuration is analogous to the common-gate of the 

FET, and MOSFET. common emitter configuration is analogous to a common-source 

and common collector configuration is analogous to a common drain.  

  Here, current 𝑖1 and voltage 𝑣1 are the generalized representation of the base 

current and base voltage of the BJT or gate current and the gate voltage of the FET/ 

MOSFET, 𝑖2 and 𝑣2 are the generalized representation of the collector current and 

collector voltage of the BJT or drain current and drain voltage of the FET/ MOSFET, 

𝑖3 and 𝑣3 represent the emitter current and emitter voltage of the BJT or source 

current and the source voltage of the FET/ MOSFET. Equation (2.20) represents the 

generalized floating admittance matrix relationship between voltages and currents of 

any 2-port network. The generalized form of a 2-port network for BJT in common 

emitter (CE) configuration and MOSFET in common-source (CS) configuration are 

shown in Figs. 2.11 and 2.12.  

 The 3-terminal currents and voltages of the BJT and FET/MOSFET can be 

expressed [17-32] in the form of a matrix as; 

 

[
 
 
 
 
𝑖1 = 𝑖𝑏/𝑖𝑔

𝑖2 = 𝑖𝑐/𝑖𝑑

𝑖3 = 𝑖𝑒/𝑖𝑠]
 
 
 
 

[
 
 
 
 
𝑌11

𝑌21

𝑌31

        

𝑌12

𝑌22

𝑌32

        

𝑌13

𝑌23

𝑌33]
 
 
 
 

[
 
 
 
 
𝑣1 = 𝑣𝑏/𝑣𝑔

𝑣2 = 𝑣𝑐/𝑣𝑑

𝑣3 = 𝑣𝑒/𝑣𝑠 ]
 
 
 
 

  (2.33) 

 

To demonstrate the beauty of the floating admittance matrix and how the common 

base, collector, and emitter configurations of the BJTs are easily obtained, we take 

them up one by one. Eq. (2.33) is easily converted to the common emitter (CE) or 

common-source (CS) by just deleting the 3rd row and 3rd column of the floating 

admittance matrix of Eq. (2.33) as; 

 

[
 
 
 
 
𝑖1 = 𝑖𝑏/𝑖𝑔

𝑖2 = 𝑖𝑐/𝑖𝑑

∗   =          ∗]
 
 
 
 

[
 
 
 
 
𝑌11

𝑌21

∗

         

𝑌12

𝑌22

∗

         

∗

∗

∗ ]
 
 
 
 

[
 
 
 
 
𝑣1 = 𝑣𝑏/𝑣𝑔

𝑣2 = 𝑣𝑐/𝑣𝑑

∗        =        ∗]
 
 
 
 

 (2.34) 

The simplification of Eq. (2.34) can be done as; 
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 [

𝑖1 = 𝑖𝑏/𝑖𝑔

𝑖2 = 𝑖𝐶/𝑖𝐷

] = [
𝑌11 𝑌13

𝑌31 𝑌33

] [

𝑣1 = 𝑣𝑏/𝑣𝑔

𝑣2 = 𝑣𝐶/𝑣𝐷

]  (2.35) 

  

The common collector/ common-source configuration may be represented by 

deleting the 2nd row and 2nd column of Eq. (2.33) as; 

 

[
 
 
 
 
𝑖1 = 𝑖𝑏/𝑖𝑔

∗     =      ∗

𝑖3 = 𝑖𝑒/𝑖𝑠]
 
 
 
 

[
 
 
 
 
𝑌11

∗

𝑌31

        

∗

∗

∗

        

𝑌13

∗

𝑌33]
 
 
 
 

[
 
 
 
 
𝑣1 = 𝑣𝑏/𝑣𝑔

∗    =          ∗

𝑣3 = 𝑣𝑒/𝑣𝑠 ]
 
 
 
 

 (2.36) 

 

Equation (2.36) is further simplified as; 

  [

𝑖1 = 𝑖𝑏/𝑖𝑔

𝑖3 = 𝑖𝑒/𝑖𝑠

] = [
𝑌11 𝑌13

𝑌31 𝑌33

] [

𝑣1 = 𝑣𝑏/𝑣𝑔

𝑣3 = 𝑣𝑒/𝑣𝑠

]  (2.37) 

Finally, the common base/ common-gate configuration can be represented by 

deleting 1st row and 1st column of the floating admittance matrix of Eq. (2.33) as; 

 

[
 
 
 
 
∗     =      ∗

𝑖2 = 𝑖𝑐/𝑖𝑑

𝑖3 = 𝑖𝑒/𝑖𝑠]
 
 
 
 

[
 
 
 
 
∗

∗

∗

       

∗

𝑌22

𝑌32

       

∗

𝑌23

𝑌33]
 
 
 
 

[
 
 
 
 
∗     =        ∗

𝑣2 = 𝑣𝑐/𝑣𝑑

𝑣3 = 𝑣𝑒/𝑣𝑠 ]
 
 
 
 

 (2.38) 

 

Equation (2.38) further simplifies as; 

  [

𝑖2 = 𝑖𝑐/𝑖𝑑

𝑖3 = 𝑖𝑒/𝑖𝑠

] = [
𝑌22 𝑌23

𝑌32 𝑌33

] [

𝑣2 = 𝑣𝑐/𝑣𝑑

𝑣3 = 𝑣𝑒/𝑣𝑠

] (2.39) 

The next section covers the mathematical tool that makes the information 

transformation possible. 

2.11 First Order Cofactor of Matrix Model 

The sub-matrix of the matrix [Y] is denoted as 𝑌𝑖𝑗 and obtained from it by deleting 

the 𝑖𝑡ℎ row and 𝑗𝑡ℎ column.  

The first-order cofactor [17-24, 28-32] is denoted by the symbol 𝑌𝑖𝑗 of [Y] matrix is 

defined as; 
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 𝑌𝑖𝑗 = (−1)𝑖+𝑗 the determinant of [Y] (2.40) 

 The main difference between cofactors and minors is the sign. Minors with the 

sign are called cofactors. 

 A class of matrix arises in linear systems analysis, known as the Equicofactors 

because all the first-order cofactors are equal. 

 As a consequence of the sum of all elements of any row producing zero and the 

sum of all elements of any column producing zero properties, all the cofactors of the 

elements of the floating admittance matrix are equal. A square matrix is an 

Equicofactors Matrix if the SUM of the elements of every row or every column 

equals zero. If 'Y' is an Equicofactors matrix, then all of its first-order cofactors are 

equal. Since the FAM of a linear, lumped, and time-invariant multi-terminal network 

has the property that the sum of elements of every row or every column is equal to 

zero, it is an Equicofactors Matrix. If 𝑌𝑚𝑛 and 𝑌𝑖𝑗 are any 2-cofactors of the matrix 

[Y], then 

  𝑌𝑚𝑛 = 𝑌𝑖𝑗 (2.41) 

2.12. Second Order Cofactors of Matrix Model 

If the sub-matrix 𝑌𝑟𝑠,𝑝𝑞 is obtained from the floating admittance matrix [Y] by 

deleting two rows' r' & 's' and two columns 'p' & 'q', the second-order cofactor [17-

32] results. The second-order cofactor is denoted by the symbol 𝑌𝑟𝑠,𝑝𝑞 of the element 

𝑌𝑟𝑝 and 𝑌𝑠𝑞 of the matrix [Y] and is the scalar quantity defined by the relationship 

after prefixing the sign,  

 𝑌𝑟𝑠,𝑝𝑞 = 𝑠𝑔𝑛(𝑟 − 𝑠)𝑠𝑔𝑛(𝑝 − 𝑞)(−1)
𝑟+𝑠+𝑝+𝑞𝑑𝑒𝑡𝑦𝑟𝑝,𝑠𝑞 (2.42) 

 𝑤ℎ𝑒𝑟𝑒 𝑟 ≠ 𝑠, 𝑝 ≠ 𝑞 𝑎𝑛𝑑 (2.43) 

 𝑠𝑔𝑛(𝑥) = 1, 𝑖𝑓 𝑥 > 0 

 𝑠𝑔𝑛(𝑥) = 0, 𝑖𝑓 𝑥 = 0 

 𝑠𝑔𝑛(𝑥) = −1, 𝑖𝑓 𝑥 < 0 

It is convenient to define  

 𝑌𝑟𝑠,𝑝𝑞 = 0, for r = p and s = q  (2.44) 

This convention will follow throughout the remainder section. 
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 The FAM greatly facilitates the formulation of the driving point or transfer 

functions between any pair of nodes or from any pair of nodes to any other pair of 

nodes in the network. The network functions can be expressed as the ratios of the 

second and/or first-order cofactors of the FAM. Because of its importance and its 

further applications in this work, it is repeated here. 

 

2.13 Transfer Function Model of 2-Port Network 

The network transfer functions [17-32] are important for analysing the active 

network. Hence, we would like to obtain different types of network functions of two-

port networks in a generalized form. For this purpose, Figs. 2.14 and 2.15 are 

considered here. In Fig. 2.14, terminal 4 is grounded, whereas, in Fig. 2.15, terminal 

2 is grounded, but terminal 3 is open-circuited in both of Figs. 2.14 and 2.15 (without 

load). 

 

 

 

 

 

   Fig. 2.14 Two-Port Network Model with V4 = 0 

  We would like to derive all types of transfer functions of BJTs, FETs, and 

MOSFETs, considering them as two-port networks. It is evident from Fig. 2.14 that 

the output port is open, and the 4th terminal is grounded. The transfer impedance 

between nodes 3 & 4 and 1 & 2 is defined as the ratio of potential difference 

measured between nodes 3 & 4 to the current extracted from nodes 1 & 2. It is 

mathematically written as 
𝑣34

𝑖12
 where 𝑣34 is the voltage across terminals 3 & 4, and 

the current source 𝑖12 connected between terminals 1 & 2. The generalized floating 

admittance matrix of the 4-pole network can be written as the extension 4-terminal 

network of Eq. (2.4) as; 
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[
 
 
 
 
 
 
𝑖1

𝑖2

𝑖3

𝑖4 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑌11

𝑌21

𝑌31

𝑌41

      

𝑌12

𝑌22

𝑌32

𝑌42

      

𝑌13

𝑌23

𝑌33

𝑌43

      

𝑌14

𝑌24

𝑌34

𝑌44]
 
 
 
 
 
 

[
 
 
 
 
 
 
𝑣1

𝑣2

𝑣3

𝑣4]
 
 
 
 
 
 

 (2.45) 

From Fig. 2.14, the terminal variables (voltages and currents) of the 2-port 

network (without load) can be expressed as; 

 

𝑖12 = 𝑖1 = −𝑖2

𝑣4 = 0,

𝑣34 = 𝑣3, 𝑎𝑛𝑑

𝑖3 = 𝑖4 = 0 }
 
 
 

 
 
 

  (2.46) 

 Substituting the terminal variable of Fig. 2.14 from Eq. (2.46) in (2.45) yields as;  

  

[
 
 
 
 
 
 
𝑖1

−𝑖2

𝑖3 = 0

𝑖4 = 0]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑌11

𝑌21

𝑌31

𝑌41

      

𝑌12

𝑌22

𝑌32

𝑌42

      

𝑌13

𝑌23

𝑌33

𝑌43

      

𝑌14

𝑌24

𝑌34

𝑌44]
 
 
 
 
 
 

[
 
 
 
 
 
 
𝑣1

𝑣2

𝑣3

𝑣4 = 0]
 
 
 
 
 
 

 (2.47) 

 Since, 𝑣4 = 0, means the 4th terminal is grounded. This condition simplifies Eq. 

(2.47) after deleting the 4th row and the 4th column as; 

  

[
 
 
 
 
𝑖1

−𝑖2

𝑖3 = 0]
 
 
 
 

=

[
 
 
 
 
𝑌11

𝑌21

𝑌31

       

𝑌12

𝑌22

𝑌32

       

𝑌13

𝑌23

𝑌33]
 
 
 
 

[
 
 
 
 
𝑣1

𝑣2

𝑣3]
 
 
 
 

 (2.48) 

 Now, Eq. (2.48) is further simplified, substituting terminal variables from Eq. 

(2.46) as; 
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[
 
 
 
 
𝑖1

−𝑖2

𝑖3 = 0]
 
 
 
 

=

[
 
 
 
 
𝑌11

𝑌21

𝑌31

       

𝑌12

𝑌22

𝑌32

       

𝑌13

𝑌23

𝑌33]
 
 
 
 

[
 
 
 
 

𝑣1

𝑣2

𝑣3 = 𝑣34]
 
 
 
 

 (2.49) 

 The node voltage 𝑣3 = 𝑣34 is obtained from Eq. (2.49) using the property of 

matrix as;  

Hence,𝑣3 = 𝑣34 =

|
|

𝑌11

𝑌21

𝑌31

        

𝑌12

𝑌22

𝑌32

         

𝑖1

−𝑖2

0

|
|

|𝑌4
4|

=
𝑌21𝑌32−𝑌22𝑌31+𝑌11𝑌32−𝑌12𝑌31

|𝑌4
4|

𝑖12 (2.50) 

Rearranging floating admittance element in Eq. (2.50) as; 

  𝑣3 = 𝑣34 =
(𝑌11+𝑌21)𝑌32−(𝑌12+𝑌22)𝑌31

|𝑌4
4|

𝑖12 (2.51) 

Applying the zero-sum property for the 1st column in Eq. (2.47) yields as; 

   𝑌11 + 𝑌21 = −𝑌31 − 𝑌41 = −(𝑌31 + 𝑌41) (2.52) 

Similarly, applying the zero-sum property for the 2nd column in Eq. (2.47) yields; 

   𝑌12 + 𝑌22 = −𝑌32 − 𝑌42 = −(𝑌32 + 𝑌42) (2.53) 

Substituting Eqs. (2.52) and (2.53) in Eq. (2.51) yields; 

  𝑣34 =
−(𝑌31+𝑌41)𝑌32+(𝑌32+𝑌42)𝑌31

|𝑌4
4|

𝑖12 =
−𝑌41𝑌32+𝑌31𝑌42

|𝑌4
4|

𝑖12 (2.54) 

   𝑣34 =
𝑌31𝑌42−𝑌32𝑌41

|𝑌4
4|

𝑖12 =

|
𝑌31

𝑌41
     
𝑌32

𝑌42
|

|𝑌4
4|

𝑖12 (2.55) 

Rearranging elements of the floating admittance matrix of Eq. (2.55) in the form of 

the cofactor of matrix yields; 

   𝑣34 =

|
𝑌31

𝑌41
     
𝑌32

𝑌42
|

|𝑌4
4|

𝑖12 =
|𝑌34
12|

|𝑌4
4|
𝑖12 (2.56) 

 The minor of any element of a matrix is the determinant of the matrix obtained 

by deleting the row and column that intersect the particular element.  
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Example 

  [𝑌] =

[
 
 
 
 
 
 
𝑌11

𝑌21

𝑌31

𝑌41

        

𝑌12

𝑌22

𝑌32

𝑌42

        

𝑌13

𝑌23

𝑌33

𝑌43

        

𝑌14

𝑌24

𝑌34

𝑌44]
 
 
 
 
 
 

 (2.57) 

 The minor of the element intersecting 1st row and 3rd column of Eq. (2.57) is 

expressed as; 

  𝑀𝑖𝑛𝑜𝑟 𝑌13 =

|

|

𝑌11

𝑌21

𝑌31

𝑌41

       

𝑌12

𝑌22

𝑌32

𝑌42

       

𝑌13

𝑌23

𝑌33

𝑌43

       

𝑌14

𝑌24

𝑌34

𝑌44

|

|

=
|
|

𝑌21

𝑌31

𝑌41

     

𝑌22

𝑌32

𝑌42

     

𝑌24

𝑌34

𝑌44

|
|
 (2.58) 

 We know that a cofactor is it's minor with the proper sign. The sign of any  

element of the floating admittance matrix is given as; 

   = (−1)𝑖+𝑗.  (2.59) 

  where i =j ≠ 0 

Thus, cofactors concerning 2-rows (1 & 2) and 2-columns (3 &4) are expressed as; 

  Cofactor |𝑌34
12| = Minors of the matrix in Eq. (2.58) after eliminating 1st and 

2nd rows and eliminating 3rd and 4th columns with proper signs as;  

  |

𝑌31

𝑌41

     

𝑌32

𝑌42

| = 𝑠𝑔𝑛(1 − 2)𝑠𝑔𝑛(3 − 4)(−1)1+2+3+4|𝑌34
12| (2.60) 

 In Eq. (2.60), after deleting the 1st & 2nd rows and 3rd & 4th columns of the 4x4 

floating admittance matrix, one of the cofactors is  |
𝑌31 𝑌32
𝑌41 𝑌42

|. Hence, Eq. (2.56) can 

now be written as; 

  
𝑣34

𝑖12
=

|
𝑌31

𝑌41
     
𝑌32

𝑌42
|

|𝑌4
4|

= 𝑠𝑔𝑛(1 − 2)𝑠𝑔𝑛(3 − 4)(−1)1+2+3+4
|𝑌34
12|

|𝑌4
4|

 (2.61) 
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 Equation (2.61) is the transfer impedance between terminal voltage 𝑣3 and 

terminal current 𝑖1 as; 

   
𝑣34

𝑖12
=

𝑣3

𝑖1
= 𝑍31. (2.62) 

2.14. Self-Admittance Model of 2-Port Network 

One of the important transfer functions of the two-port networks is the input 

impedance. The input impedance is also referred to the self-impedance [17-32]. In 

order to obtain the self-port driving point impedance, let us modify the two-port 

network of Fig. 2.14 to Fig. 2.15 by grounding the 2nd node and not the 4th as in 

Fig. 2.14. The self-port driving port impedance is defined as the ratio of the self-port 

voltage to the self-port current. Mathematically it is expressed between nodes 1 and 

2, forming ports 1-2 as; 

  Self-port driving port impedance =
𝑣12

𝑖12
 (2.63) 

 

                                                         

 

 

       Fig. 2.15 Two-Port Network Model with V2 = 0 

Where, 𝑣12 = 𝑣1 is the potential difference between terminals 1 & 2 of Fig. 2.15, 

with terminal 2 connected as the reference node and 𝑖12 = 𝑖1. This leads to two-port 

voltage and current variables of Fig. 2.15 as; 

 

𝑖12 = 𝑖1 = 0

𝑖2 = 0

𝑣12 = 𝑣1,

𝑣2 = 0, 𝑎𝑛𝑑

𝑖3 = 0 }
 
 
 
 

 
 
 
 

  (2.64) 

 

Two Port Network 

 
𝑣34  𝑣12 

𝑖3 

𝑖4 

𝑖2 

𝑖1 

𝑣3  

𝑣4 

𝑣1 

𝑣2  

𝑖12 
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 Since terminal 2 is grounded, Eq. (2.47) is further simplified by substituting 

terminal variables at 2 by shorting 2nd row and 2nd column and substituting 

conditions written in Eq. (2.64) for Fig. 2.15 as; 

  

[
 
 
 
 
 
 
𝑖1

𝑖2

𝑖3 = 0

𝑖4 = 0]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝑌11

𝑌21

𝑌31

𝑌41

       

𝑌12

𝑌22

𝑌32

𝑌42

       

𝑌13

𝑌23

𝑌33

𝑌43

       

𝑌14

𝑌24

𝑌34

𝑌44]
 
 
 
 
 
 

[
 
 
 
 
 
 
𝑣1

𝑣2 = 0

𝑣3

𝑣4 ]
 
 
 
 
 
 

 (2.65) 

 

 The floating admittance matrix for Fig. 2.15 with substitution of Eq. (2.65) after 

deleting the 2nd row and 2nd column (since terminal 2 is grounded) is expressed as;  

  

[
 
 
 
 
𝑖1

𝑖3 = 0

𝑖4 = 0]
 
 
 
 

=

[
 
 
 
 
𝑌11

𝑌31

𝑌41

      

𝑌13

𝑌33

𝑌43

      

𝑌14

𝑌34

𝑌44]
 
 
 
 

[
 
 
 
 
𝑣1

𝑣3

𝑣4]
 
 
 
 

 (2.66) 

Rearranging port variable 𝑖12 = 𝑖1 of Eq. (2.66) results in; 

 

[
 
 
 
 
𝑖12

0

0 ]
 
 
 
 

=

[
 
 
 
 
𝑌11

𝑌31

𝑌41

       

𝑌13

𝑌33

𝑌43

       

𝑌14

𝑌34

𝑌44]
 
 
 
 

[
 
 
 
 
𝑣12

𝑣3

𝑣4 ]
 
 
 
 

 (2.67) 

The input port voltage is obtained using the property of the matrix as; 

Now,  𝑣12 =

|
|

𝑖12

0

0

        

𝑌13

𝑌33    

𝑌43

     

𝑌14

𝑌34

𝑌44

|
|

|𝑌2
2|

=

|
𝑌33

𝑌43

        
𝑌34

𝑌44

|

|𝑌2
2|

𝑖12 (2.68) 

Since |
𝑌33 𝑌34
𝑌43 𝑌44

| is one of the cofactors deleting 1st & 2nd rows and 1st and 2nd 

columns of the 4x4 floating admittance matrix of Eq. (2.65) and is expressed as; 

  |
𝑌33 𝑌34
𝑌43 𝑌44

| = 𝑠𝑔𝑛(1 − 2)𝑠𝑔𝑛(1 − 2)(−1)1+2+1+2|𝑌12
12| (2.69) 

Now Eq. (2.68) is written as; 
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𝑣12

𝑖12
=

|
𝑌33 𝑌34
𝑌43 𝑌44

|

|𝑌2
2|

= 𝑍12 = 𝑠𝑔𝑛(1 − 2)𝑠𝑔𝑛(1 − 2)(−1)
1+2+1+2 |𝑌12

12|

|𝑌2
2|

 (2.70) 

Hence, the voltage transfer function 
𝑣34

𝑣12
 can be expressed by combining Eqs. (2.70) 

and (2.61) as; 

 
𝑣34

𝑖12
/
𝑣12

𝑖12
 = 𝑠𝑔𝑛(1 − 2)𝑠𝑔𝑛(3 − 4)(−1)1+2+3+4

|𝑌34
12|

|𝑌4
4|
/
|𝑌12
12|

|𝑌2
2|

 (2.71) 

Since terminal 2 is taken as a reference terminal in one case and terminal 4 is taken 

as the reference for the other case, then |𝑌2
2| = |𝑌4

4|, then Eq. (2.71) simplifies as; 

 
𝑣34

𝑣12
= 𝑠𝑔𝑛(3 − 4)𝑠𝑔𝑛(1 − 2)(−1)3+4+1+2

|𝑌34
12|

|𝑌12
12|

  (2.72) 

Equation (2.72) gives the voltage gain [29-32] between output port voltage 𝑣34 and 

input port voltage 𝑣12.  

From self-port driving point impedance, 𝑖12 = 𝑖1 =
|𝑌2
2|

|𝑌12
12|
𝑣12 (2.73) 

From the equation of the voltage transfer function 𝑖34 = 𝑖3 = 𝑣34𝐺𝐿 

 𝑣34 = 𝑠𝑔𝑛(3 − 4)𝑠𝑔𝑛(1 − 2)(−1)3+4+1+2
|𝑌34
12|

|𝑌12
12|
𝑣12 

 𝑖34 = 𝑖3 = 𝑣34𝐺𝐿 = 𝑠𝑔𝑛(3 − 4)𝑠𝑔𝑛(1 − 2)(−1)3+4+1+2
|𝑌34
12|

|𝑌12
12|
𝑣12𝐺𝐿 (2.74) 

 𝑣12 =
|𝑌12
12|

|𝑌2
2|
𝑖12 (2.75) 

 𝑖34 = 𝑣34𝐺𝐿 = 𝑠𝑔𝑛(3 − 4)𝑠𝑔𝑛(1 − 2)(−1)3+4+1+2
|𝑌34
12|

|𝑌12
12|
𝑥
|𝑌12
12|

|𝑌2
2|
𝑖12𝐺𝐿 (2.56) 

Hence, Current gain [29-32] =
𝑖34

𝑖12
 

 
𝑖34

𝑖12
= 𝑠𝑔𝑛(3 − 4)𝑠𝑔𝑛(1 − 2)(−1)3+4+1+2

|𝑌34
12|

|𝑌12
12|
𝑥
|𝑌12
12|

|𝑌2
2|
𝐺𝐿  

 

 
𝑖34

𝑖12
= 𝑠𝑔𝑛(3 − 4)𝑠𝑔𝑛(1 − 2)(−1)3+4+1+2

|𝑌34
12|

|𝑌2
2|
𝐺𝐿 (2.77) 
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The transfer impedance between output port voltage and input port current can now 

be generalized to n-pole networks as [17-24, 28-32]; 

 𝑍𝑚𝑛
𝑖𝑗

=
𝑣𝑖𝑗

𝑖𝑚𝑛
= 𝑠𝑔𝑛(𝑖 − 𝑗)𝑠𝑔𝑛(𝑚 − 𝑛)(−1)𝑖+𝑗+𝑚+𝑛

|𝑌𝑖𝑗
𝑚𝑛|

|𝑌𝑛
𝑛|

 (2.78) 

Self-port driving point impedance 𝑍𝑚𝑛 =
𝑣𝑚𝑛

𝑖𝑚𝑛
=

|𝑌𝑚𝑛
𝑚𝑛|

|𝑌𝑛
𝑛|

 (2.79) 

Voltage Gain = 𝐴𝑣|𝑚𝑛
𝑖𝑗

=
𝑣𝑖𝑗

𝑣𝑚𝑛
 

  
𝑣𝑖𝑗

𝑣𝑚𝑛
= 𝑠𝑔𝑛(𝑖 − 𝑗)𝑠𝑔𝑛(𝑚 − 𝑛)(−1)𝑖+𝑗+𝑚+𝑛

|𝑌𝑖𝑗
𝑚𝑛|

|𝑌𝑚𝑛
𝑚𝑛|

 (2.80) 

Current Gain = 𝐴𝑖|𝑚𝑛
𝑖𝑗

=
𝑖𝑖𝑗

𝑖𝑚𝑛
 

  
𝑖𝑖𝑗

𝑖𝑚𝑛
= 𝑠𝑔𝑛(𝑖 − 𝑗)𝑠𝑔𝑛(𝑚 − 𝑛)(−1)𝑖+𝑗+𝑚+𝑛

|𝑌𝑖𝑗
𝑚𝑛|

|𝑌𝑛
𝑛|
𝐺𝐿   (2.81) 

Power Gain = 𝐴𝑝|𝑚𝑛
𝑖𝑗

= 𝐴𝑣|𝑚𝑛
𝑖𝑗
𝑥𝐴𝑖|𝑚𝑛

𝑖𝑗
=

𝑣𝑖𝑗

𝑣𝑚𝑛
𝑥

𝑖𝑖𝑗

𝑖𝑚𝑛
 (2.82) 

𝑤ℎ𝑒𝑟𝑒  𝑖 ≠ 𝑗,𝑚 ≠ 𝑛 𝑎𝑛𝑑   

𝑠𝑔𝑛(𝑥) =  +1  𝑓𝑜𝑟 𝑥 > 0  

𝑠𝑔𝑛(𝑥) =  0  𝑓𝑜𝑟 𝑥 = 0  

𝑠𝑔𝑛(𝑥) =  −1  𝑓𝑜𝑟 𝑥 < 0 (2.83) 

|𝑦𝑖𝑗
𝑚𝑛| = |

𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡 𝑜𝑓 𝑠𝑢𝑏𝑚𝑎𝑡𝑟𝑖𝑥 𝑑𝑒𝑙𝑒𝑡𝑖𝑛𝑔 𝑚𝑡ℎ, 𝑛𝑡ℎ  𝑟𝑜𝑤𝑠 𝑎𝑛𝑑

𝑖𝑡ℎ , 𝑗𝑡ℎ 𝑐𝑜𝑙𝑢𝑚𝑛𝑠 𝑜𝑓|𝑦|
| 

Here, 𝑚 & 𝑛 are excitation terminals, and ′𝑖′&′𝑗′ are response terminals.  

2.15. Conclusions 

Different transfer functions such as voltage gain, current gain, power gain, input 

impedance, and output impedance of any three-terminal device, amplifiers 

containing three-terminal devices or circuits can be easily obtained, have been 

demonstrated here in this chapter. Additionally, how any n-port network can be 

described using the floating admittance matrix has also been shown. It has been 

demonstrated that all transfer functions can be obtained in the form of ratios of 

𝑥 −𝑥 

+1 

−1 

0 

𝑠𝑔𝑛(𝑥) 
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cofactors of the floating admittance matrix. This elegant approach is superior to the 

equivalent circuit approach for analysing the amplifier transfer functions of two-port 

networks. 
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Chapter 3 

 

Modelling of the BJT Amplifiers 

 
3.1 Introduction  

The BJT is modelled by the circuit elements such as a current source or voltage source, 

resistances, and capacitances. The modelling technique [1-1] is much simpler than the 

graphical analysis procedures of BJT amplifiers. The use of models may result in some 

loss of accuracy since the representation of a device by a model assumes some degree 

of approximation. However, the approximations are often very good, resulting in the 

most accurate circuits. Appropriate approximations are important in most analysis and 

design procedures for practical devices.  

 When the signal levels are small, electronic devices can be represented by linear 

models consisting of linear circuit elements like a voltage source, current source, 

resistance, and capacitances. Such models are applied to many amplifier circuits, except 

in the case of the power amplifier.  

 When the signal levels are large, the models assume the nonlinearities of the 

device. Such models are applied to large-signal amplifiers or digital circuits.  

 There are many ways to characterise the BJT Amplifiers. One way of 

categorisation is based on its frequency [4] response i.e. 

1. Low frequency 

2. Mid-frequency, and  

3. High Frequency 

 Consequently, the low-frequency BJT model [1-26] has two prevalent categories, 

namely, 
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• the h-parameter model 

• hybrid-  model.  

• T-model 

For high frequency again, there are two models called 

• Hybrid- model, and  

• 𝑌-parameter model 

These days hybrid- or T-model provides a much simpler analysis technique and is 

normally used to analyse the BJT amplifier.  

3.2 Small-Signal Model Development of the BJT 

The BJT starts functioning as an amplifier if the base-emitter junction (VBE or VEB) is 

forward-biased and the collector-base (VCB or VBC) junction is reverse-biased [1-40]. 

For that, let us consider the circuit of Fig. 3.1.  

The relationship between DC voltages and DC current in the circuit [1-26] of Fig. 3.1 

is expressed as; 

  𝐼𝐶 = 𝐼𝑆𝑒𝑥𝑝 (
𝑉𝐵𝐸

𝜂𝑉𝑇
) ≅ 𝐼𝑆𝑒𝑥𝑝 (

𝑉𝐵𝐸

𝑉𝑇
);  

  𝜂 → 1 for the simplification of analysis and 𝑉𝐵𝐸 ≫ 𝑉𝑇.  (3.1) 

  𝐼𝐶 = 𝛼𝐼𝐸   (3.2) 

 

 

 

 

 

Fig. 3.1 Circuit Model of the BJT amplifier with DC and AC superimposed 

  𝐼𝐶 = 𝛽𝐼𝐵   (3.3) 

  𝐼𝐸 = 𝐼𝐶 + 𝐼𝐵  (3.4) 

𝑖𝐶  

RC 

VCC 

VBE 

𝑣𝐶𝐸  

+ 

− 

+ 

− 

𝑖𝐵  

𝑣𝑏𝑒  

𝑖𝐸  

 

𝑣𝐶𝐵  
+ 

− 

𝑣𝐵𝐸  
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  𝑉𝐶𝐸 = 𝑉𝐶 = 𝑉𝐶𝐶 − 𝐼𝐶𝑅𝐶 (3.5) 

 Obviously, the voltage at the collector point (𝑉𝐶 = 𝑉𝐶𝐸) should be larger than the 

voltage at the base point (𝑉𝐵) for the npn transistor to operate in the active region. 

Conversely, 𝑉𝐶 should be more negative than 𝑉𝐵 in the case of a pnp transistor to remain 

in the active region. 

 The circuit of Fig. 3.1 has the pure ac input voltage (𝑣𝑏𝑒) and pure DC voltage (𝑉𝐵𝐸) 

connected in series to set the required biased point taking into consideration of the DC 

supply voltage 𝑉𝐶𝐶 and the dc load resistance 𝑅𝐶. Now, the effective base-emitter 

voltage in Fig. 3.1 is given as; 

  𝑣𝐵𝐸 = 𝑉𝐵𝐸 + 𝑣𝑏𝑒 (3.6) 

Merging Eq. (3.1) and (3.6) yields the collector current as; 

  𝑖𝐶 = 𝐼𝑆𝑒𝑥𝑝 (
𝑣𝐵𝐸

𝑉𝑇
) = 𝐼𝑆𝑒𝑥𝑝 (

𝑉𝐵𝐸+𝑣𝑏𝑒

𝑉𝑇
) = 𝐼𝑆𝑒𝑥𝑝 (

𝑉𝐵𝐸

𝑉𝑇
) 𝑒𝑥𝑝 (

𝑣𝑏𝑒

𝑉𝑇
) 

   = 𝐼𝐶𝑒𝑥𝑝 (
𝑣𝑏𝑒

𝑉𝑇
) (3.7) 

Since, 𝑣𝑏𝑒 ≪ 𝑉𝑇, the exponential function of Eq. (3.7) can be expanded as; 

  𝑖𝐶 = 𝐼𝐶𝑒𝑥𝑝 (
𝑣𝑏𝑒

𝑉𝑇
) = 𝐼𝐶 {1 +

1

1!
(
𝑣𝑏𝑒

𝑉𝑇
) +

1

2!
(
𝑣𝑏𝑒

𝑉𝑇
)
2

+⋯ . . }  (3.8) 

Again, since, 𝑣𝑏𝑒 ≪ 𝑉𝑇, the higher-order terms of Eq. (3.8) can be neglected to yield; 

  𝑖𝐶 = 𝐼𝐶 {1 + (
𝑣𝑏𝑒

𝑉𝑇
)} = 𝐼𝐶 + (

𝐼𝐶

𝑉𝑇
) 𝑣𝑏𝑒 (3.9) 

The dimensionally (
𝐼𝐶

𝑉𝑇
) is conductance; more appropriately transfer conductance 

between the output current (𝐼𝐶) and the thermal voltage (𝑉𝑇); which changes the input 

voltage (𝑉𝐵𝐸). This transfer conductance is given the name mutual conductance, 𝑔𝑚. 

Hence, Eq. (3.9) simplifies as; 

  𝑖𝐶 = 𝐼𝐶 + (
𝐼𝐶

𝑉𝑇
) 𝑣𝑏𝑒 = 𝐼𝐶 + 𝑔𝑚𝑣𝑏𝑒 = 𝐼𝐶 + 𝑔𝑚𝑣𝑏𝑒 (3.10) 
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Equation (3.10) indicates that the total collector current consists of (a) DC collector 

current (𝐼𝐶) and the (b) ac collector current (𝑖𝑐). So, Eq. (3.10) relates the ac collector 

current as; 

  𝑖𝑐 =
𝐼𝐶

𝑉𝑇
𝑣𝑏𝑒 = 𝑔𝑚𝑣𝑏𝑒 (3.11) 

  𝑖𝐶 = 𝐼𝐶 + 𝑔𝑚𝑣𝑏𝑒 = 𝐼𝐶 + 𝑖𝑐 (3.12) 

Here, 𝑔𝑚 =
𝐼𝐶

𝑉𝑇
   (3.13) 

We observe from Eq. (3.13) that the transconductance (𝑔𝑚) of the BJT is directly 

proportional to the collector bias current (𝐼𝐶). The value of the transconductance of the 

BJT is always higher than that of the MOSFET because 𝑔𝑚 of the MOSFET depends 

on the dimension (L & W) of the MOSFET. The small-signal representation of the 𝑔𝑚 

is approximately equated to the tangent at the Q-point in Fig. 3.2.  

Similarly, the base current is defined as; 

  𝑖𝐵 =
𝑖𝐶

𝛽
=

𝐼𝐶+𝑔𝑚𝑣𝑏𝑒

𝛽
=

𝐼𝐶

𝛽
+

1

𝛽
(
𝐼𝐶

𝑉𝑇
𝑣𝑏𝑒) = 𝐼𝐵 + 𝑖𝑏  (3.14) 

The total base current in Eq. (3.14) is composed of the dc base current (IB) and the ac 

base current (𝑖𝑏). The swing of the ac input voltage produces the corresponding swing 

in the collector current as indicated in Fig. 3.2 at the Q-point. 

 

 

 

 

 

 

  Fig. 3.2 Graphical model representation of IC vs VBE 

 

𝑖𝐶  

𝑣𝐵𝐸  

Q IC 

𝑣𝑏𝑒  

𝑖𝑐  

Tangent 
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3.3  Circuit model of CE for Input resistance 

3.4 The base current is the input current that drives the transistor in the 

conduction region, as in Fig. 3.3 (a).  

3.5  The dc base current is written as; 

   𝐼𝐵 =
𝐼𝐶

𝛽
  and  (3.15) 

Similarly, the ac base current is expressed as; 

   𝑖𝑏 =
1

𝛽
(
𝐼𝐶

𝑉𝑇
𝑣𝑏𝑒) =

𝑔𝑚

𝛽
𝑣𝑏𝑒 (3.16) 

 

 

 

 

                         

 Fig. 3.3 Circuit Symbol model of the BJT (a) CE and (b) CB configurations  

The small-signal input resistance looking into the base terminal in the CE configuration 

of the BJT is shown in Fig. 3.3 (a), given the name 𝑟𝜋, is expressed as; 

   𝑅𝑖𝑛(𝐶𝐸) = 𝑟𝜋 =
𝑣𝑏𝑒

𝑖𝑏
=

𝑣𝑏𝑒

𝑖𝑐/𝛽
= 𝛽

𝑣𝑏𝑒

𝑖𝑐
=

𝛽

𝑔𝑚
 (3.17) 

Merging Eqs. (3.16) and (3.17) yield; 

   𝑅𝑖𝑛(𝐶𝐸) =
𝑣𝑏𝑒

𝑖𝑏
=

𝛽

𝑔𝑚
= 𝑟𝜋  (3.18) 

Hence, 𝛽 = 𝑔𝑚𝑟𝜋  (3.19) 

Equation (3.18) indicates [3-16] that the small-signal input resistance of a CE 

configuration of the BJT is directly proportional to 𝛽 and Eq. (3.17) indicates that it is 

inversely proportional to the bias collector current, 𝐼𝐶. Substituting for 𝑔𝑚 in Eq. (3.18) 

from Eq. (3.13) yields; 

  𝑟𝜋 =
𝛽

𝑔𝑚
=

𝛽
𝐼𝐶
𝑉𝑇

= 𝛽
𝑉𝑇

𝐼𝐶
=

𝑉𝑇

𝐼𝐶/𝛽
=

𝑉𝑇

𝐼𝐵
 (3.20) 

+ 

− 

𝑣𝑏𝑒  

𝑖𝑏  

𝑅𝑖𝑛 = 𝑟𝜋 

b 

c 

e 

𝑖𝑐  

𝑖𝑒  + 

− 

𝑣𝑏𝑒  

𝑖𝑒  

c 

b 

e 

𝑖𝑐  

𝑖𝑏  

𝑅𝑖𝑛 = 𝑟𝑒 
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In the case of the MOSFET, the gate current corresponds to the base current in the BJT. 

The gate current in MOSFET is zero (0), so input resistance is infinite.  

3.4 Circuit model of CB for Input resistance  

In the case of a common-base configuration of the BJT, the input drives current is the 

emitter current, as in Fig. 3.3 (b). To find the input resistance seen at the input (emitter) 

terminal, we have to represent the base current in terms of the emitter current i.e. 

 𝑖𝐸 =
𝑖𝐶

𝛼
=

𝐼𝐶

𝛼
+
𝑖𝑐

𝛼
= 𝐼𝐸 + 𝑖𝑒 (3.21) 

The ac emitter current is now expressed as; 

 𝑖𝑒 =
𝑖𝑐

𝛼
     (3.22) 

Substituting for 𝑖𝑐 from Eq. (3.11) in Eq. (3.22) yields; 

 𝑖𝑒 =
𝑖𝑐

𝛼
=

1

𝛼
𝑥
𝐼𝐶

𝑉𝑇
𝑣𝑏𝑒 = (

𝐼𝐶

𝛼
) 𝑥

1

𝑉𝑇
𝑣𝑏𝑒 =

𝐼𝐸

𝑉𝑇
𝑣𝑏𝑒 (3.23) 

Now, the small-signal input resistance looking into the emitter terminal in the common-

base configuration shown in Fig. 3.3 (b) of the BJT, represented by 𝑟𝑒, is defined as; 

  𝑅𝑖𝑛(𝐶𝐵) = 𝑟𝑒 =
𝑣𝑏𝑒

𝑖𝑒
=

𝑉𝑇

𝐼𝐸
 (3.24) 

Substituting for (
𝑣𝑏𝑒

𝑖𝑒
) from Eq. (3.23) in Eq. (3.24) yields; 

  𝑟𝑒 =
𝑣𝑏𝑒

𝑖𝑒
=

𝑣𝑏𝑒
𝐼𝐸
𝑉𝑇
𝑣𝑏𝑒

=
𝑉𝑇

𝐼𝐸
 (3.25) 

  𝑅𝑖𝑛(𝐶𝐵) = 𝑟𝑒 =
𝑣𝑏𝑒

𝑖𝑒
=

𝑉𝑇

𝛼𝐼𝐸/𝛼
= 𝛼

𝑉𝑇

𝐼𝐶
=

𝛼

𝑔𝑚
 (3.26) 

  𝛼 = 𝑔𝑚𝑟𝑒    (3.27) 

Now, from Eq. (3.17), 𝑣𝑏𝑒 = 𝑟𝜋𝑖𝑏 = 𝑟𝜋
𝑖𝑒

1+𝛽
 

  
𝑣𝑏𝑒

𝑖𝑒
=

𝑟𝜋

1+𝛽
= 𝑟𝑒 

  𝑟𝜋 = (1 + 𝛽)𝑟𝑒  (3.28) 

Equation (3.28) gives a relationship between input resistances of common-emitter (𝑟𝜋) 

and common-base (𝑟𝑒) configurations of the BJT.  
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3.5 T-model of the BJT 

Although the hybrid-- model of the BJT is simple and suitable for analysing the 

amplifiers, the other model variant is more convenient in some situations. This variant 

is called the T-model, [4-16] as drawn in Fig. 3.4 (a).  

 If we just rotate the Fig. 3.4 (b) by 900 left and then horizontally, the structure looks 

like a T and hence its name was given as the T-model small-signal equivalent circuit as 

in Fig. 3.4 (b). We know that the plot of the collector current versus collector-to-emitter 

voltage does not remain constant but rather increases very slowly for a large change in 

the VCE due to the Early effect. Hence, the BJT has a finite output resistance 𝑟𝑜. The 

small-signal T-model of the BJT including the output resistance 𝑟𝑜 is drawn in Figs. 3.4 

(c).   

 

 

 

 

 

 

                                    

     Fig. 3.4 (a) Vertical Circuit T-model of the BJT 

 

 

 

 

                    

    Fig. 3.4 (b) Horizontal Circuit T-model of the BJT 
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   Fig. 3.4 (c) Vertical Circuit T- model of BJT including 𝑟𝑜 

3.6 Hybrid- Circuit model of the BJT 

The hybrid- circuit model of the BJT drawn in Fig. 2.8 (b) is repeated here for deriving 

the floating admittance matrix of the BJT, assuming 𝑟𝜇 as large as open-circuited and 

𝑟𝑏𝑏′ as small as short-circuited and hence considering these facts the hybrid- small-

signal equivalent circuit model of the BJT is shown in Fig. 3.4 (d).  

 

 

 

 

 

 

 

                  Fig. 3.4 (d) hybrid- circuit model of the BJT including 𝑟𝑜 

The currents and voltages [1-39] are related from Fig. 3.4 (d)  as; 

 𝑖1 = 𝑖𝑏 = 𝑔𝜋(𝑣𝑏 − 𝑣𝑒) = 𝑔𝜋(𝑣1 − 𝑣3) = 𝑔𝜋𝑣1 + (0)𝑣2 − 𝑔𝜋𝑣3  (3.29) 

 𝑖2 = 𝑖𝑐 = 𝑔𝑜(𝑣𝑐 − 𝑣𝑒) + 𝑔𝑚(𝑣𝑏 − 𝑣𝑒) = 𝑔𝑚𝑣𝑏 + 𝑔𝑜𝑣𝑐 − (𝑔𝑚 + 𝑔𝑜)𝑣𝑒  

 𝑖2 = 𝑖𝑐 = 𝑔𝑚𝑣𝑏 + 𝑔𝑜𝑣𝑐 − (𝑔𝑚 + 𝑔𝑜)𝑣𝑒  (3.30) 

 𝑖3 = 𝑖𝑒 = 𝑔𝜋(𝑣𝑒 − 𝑣𝑏) + 𝑔𝑜(𝑣𝑒 − 𝑣𝑐) − 𝑔𝑚(𝑣𝑏 − 𝑣𝑒) 

 𝑖3 = 𝑖𝑒 = −(𝑔𝜋 + 𝑔𝑚)𝑣𝑏 − 𝑔𝑜𝑣𝑐 + (𝑔𝜋 + 𝑔𝑚 + 𝑔𝑜)𝑣𝑒 (3.31) 
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𝑣1 
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B 
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+ 

− 
𝑣𝜋  

𝑖𝑏  

𝛽𝑖𝑏  

𝑟𝑜  

𝑖𝑒  

𝑣1 
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The above equations (3.29), (3.30), and (3.31) are arranged in the form of a matrix [34-

41] as; 

 

[
 
 
 
 
 
𝑖1 = 𝑖𝑏

𝑖2 = 𝑖𝑐

𝑖3 = 𝑖𝑒]
 
 
 
 
 

=

[
 
 
 
 
 

1
𝑔
𝜋

𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

   

2
0

𝑔𝑜

−𝑔𝑜

    

3
−𝑔𝜋

−𝑔𝑚 − 𝑔𝑜

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑜]
 
 
 
 
 

[
 
 
 
 
 
𝑣1 = 𝑣𝑏

𝑣2 = 𝑣𝑐

𝑣3 = 𝑣𝑒]
 
 
 
 
 

   (3.32) 

Where, 𝑔𝜋 = 1/𝑟𝜋, 𝑔𝑚 = 𝛽/𝑟𝜋, and 𝑔𝑜0 

   The coefficient matrix in Eq. (3.32) is called the floating admittance matrix of the 

BJT as none of its terminals is taken as a reference for the other terminals. This Eq. 

(3.32) will be used to derive all transfer functions of any configuration BJT amplifier 

using low-frequency FAM of hybrid- model.  

 Now, we would like to demonstrate the use of the floating admittance matrix 

developed for BJT in the hybrid- model to obtain its different transfer functions in 

different configurations.   

3.7 Circuit Model of the BJT Phase-Splitter Amplifier 

The BJT phase-splitter amplifier [1-33] provides two types of amplified output 

voltages; one in phase with the input signal at the emitter terminal and the other out of 

phase of the input signal at the collector terminal. i.e. 𝑣𝑒 = 𝐴𝑒𝑣𝑠∠0
0 and 𝑣𝑐 = −𝐴𝑐𝑣𝑠 =

𝐴𝑐𝑣𝑠∠180
0 as depicted in Figs 3.5. An elementary circuit of the BJT phase-splitter 

amplifier with two supply voltages 𝑉𝐶𝐶 and 𝑉𝐸𝐸 used to bias it is shown in Fig. 3.5. The 

ac circuit, shorting all capacitors and the dc supply voltages at low frequency, is drawn 

in Fig. 3.6.   

Since the analysis is proposed to be done using the floating admittance matrix, the three 

terminals of the BJT are denoted as B→1 for the base, C→2 for the collector, and E→3 

for the emitter.  

 The floating admittance matrix of a BJT in hybrid- model [34-41] of Eq (3.32) 

 is repeated here for ease in further analysis. 
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[
 
 
 
 
 
𝑖1 = 𝑖𝑏

𝑖2 = 𝑖𝑐

𝑖3 = 𝑖𝑒]
 
 
 
 
 

=

[
 
 
 
 
 

1
𝑔
𝜋

𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

   

2
0

𝑔𝑜

−𝑔𝑜

    

3
−𝑔𝜋

−𝑔0 − 𝑔𝑚

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑜]
 
 
 
 
 

[
 
 
 
 
 
𝑣1 = 𝑣𝑏

𝑣2 = 𝑣𝑐

𝑣3 = 𝑣𝑒]
 
 
 
 
 

   (3.33) 

 

 

 

 

 

 

                   Fig. 3.5 Circuit Model of the BJT Phase-Splitter Amplifier             

 

 

 

 

 

 

              Fig. 3.6 AC circuit model of the BJT Phase-Splitter Amplifier 

 As the BJT phase-splitter has 4-nodes, the coefficient floating admittance matrix in 3 

x 3 of the BJT (active element) in hybrid- model in Eq. (3.33) is now transformed to 

4 x 4 as;  

 

[
 
 
 
 
 
 
 

1
𝑔𝜋

𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

0

        

2
0

𝑔𝑂

−𝑔𝑂

0

          

3
−𝑔𝜋

−𝑔𝑚 − 𝑔𝑂

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂

0

     

4
0

0

0

0

 

]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
1

2

3

4 ]
 
 
 
 
 
 
 

  (3.34) 

−VEE 

RC 

+VCC 

𝑣𝑐  

RB 

𝑟𝑠  

𝑣𝑠  

RE1 

𝑣𝑒  

RL2 

RL1 
CB 

CC 

 CE 

RB

RB 

𝑟𝑠  

𝑣𝑠  
RE 

𝑣𝑒  

R14 

R24 

+ 

− 

 

1 2 

3 

4 

𝑣𝑏  

𝑣𝑐  

𝑅𝐿=𝑅𝐶 ∥ 𝑅𝐿1 

R34 
𝑅𝐸=𝑅𝐸1 ∥ 𝑅𝐿2 



 

76 
 

 Similarly, the 4 x 4 floating admittance matrix of passive elements present in Fig. 

3.6 of the BJT phase-splitter amplifier is written as; 

 

[
 
 
 
 
 
 
 
 

1
𝑔𝑠 + 𝐺𝐵

0

0

−𝑔𝑠 − 𝐺𝐵

      

2
0

𝐺𝐿

0

−𝐺𝐿

       

3
0

0

𝐺𝐸

−𝐺𝐸

         

4
−𝑔𝑠 − 𝐺𝐵

−𝐺𝐿

−𝐺𝐸

𝑔𝑠 + 𝐺𝐵 + 𝐺𝐸 + 𝐺𝐿

 

]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
1

2

3

4 ]
 
 
 
 
 
 
 

  (3.35) 

 The overall floating admittance matrix of active and passive elements present in a 

BJT phase-splitter circuit of Fig. 3.6 can be obtained by merging Eqs. (3.34) and (3.35) 

as per node specifications that yields; 

[
 
 
 
 
 
 
 
 

1
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵

𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

−𝑔𝑠 − 𝐺𝐵

    

2
0

𝑔𝑂 + 𝐺𝐿

−𝑔𝑂

−𝐺𝐿

    

3
−𝑔𝜋

−𝑔𝑚 − 𝑔𝑂

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸

−𝐺𝐸

    

4
−𝑔𝑠 − 𝐺𝐵

−𝐺𝐿

−𝐺𝐸

𝑔𝑠 + 𝐺𝐵 + 𝐺𝐸 + 𝐺𝐿]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
1

2

3

4 ]
 
 
 
 
 
 
 

  (3.36) 

 Eq. (3.36) is the floating admittance matrix of a BJT phase-splitter circuit of Fig. 

3.6. Now, we are interested in getting the overall floating admittance matrix of the 

common-emitter amplifier from the BJT phase-splitter amplifier [34-41] of Fig. 3.6. 

For that, the 3rd column is added to the 4th column in Eq. (3.36) to yield; 

[
 
 
 
 
 
 
 
 

1
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵

𝑔𝑚

−𝑔𝜋 + 𝑔𝑚

−𝑔𝑠 − 𝐺𝐵

    

2
0

𝑔𝑂 + 𝐺𝐿

−𝑔𝑂

−𝐺𝐿

    

3
−𝑔𝜋

−𝑔𝑚 − 𝑔𝑂

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸

−𝐺𝐸

    

4
−𝑔𝜋 − 𝑔𝑠 − 𝐺𝐵

−𝑔𝑚 − 𝑔𝑂 − 𝐺𝐿

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸 − 𝐺𝐸

−𝐺𝐸 + 𝑔𝑠 + 𝐺𝐵 + 𝐺𝐸 + 𝐺𝐿]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
1

2

3

4 ]
 
 
 
 
 
 
 

  (3.37) 

 

Simplification of Eq. (3.37) yields; 
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[
 
 
 
 
 
 
 
 

1
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵

𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

−𝑔𝑠 − 𝐺𝐵

    

2
0

𝑔𝑂 + 𝐺𝐿

−𝑔𝑂

−𝐺𝐿

    

3
−𝑔𝜋

−𝑔𝑚 − 𝑔𝑂

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸

−𝐺𝐸

    

4
−𝑔𝜋 − 𝑔𝑠 − 𝐺𝐵

−𝑔𝑚 − 𝑔𝑂 − 𝐺𝐿

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂

𝑔𝑠 + 𝐺𝐵 + 𝐺𝐿 ]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
1

2

3

4 ]
 
 
 
 
 
 
 

  (3.38) 

Again, adding the 3rd row to the 4th row in Eq. (3.38) yields; 

[
 
 
 
 
 
 
 
 

1
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵

𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

−𝑔𝜋 − 𝑔𝑚 − 𝑔𝑠 − 𝐺𝐵

    

2
0

𝑔𝑂 + 𝐺𝐿

−𝑔𝑂

−𝑔𝑂 − 𝐺𝐿

    

3
−𝑔𝜋

−𝑔𝑚 − 𝑔𝑂

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸 − 𝐺𝐸

    

4
−𝑔𝜋 − 𝑔𝑠 − 𝐺𝐵

−𝑔𝑚 − 𝑔𝑂 − 𝐺𝐿

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝑔𝑠 + 𝐺𝐵 + 𝐺𝐿]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
1

2

3

4 ]
 
 
 
 
 
 
 

 

      (3.39) 

 Simplifying Eq. (3.39) yields; 

[
 
 
 
 
 
 
 
 

1
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵

𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

−𝑔𝜋 − 𝑔𝑚 − 𝑔𝑠 − 𝐺𝐵

    

2
0

𝑔𝑂 + 𝐺𝐿

−𝑔𝑂

−𝑔𝑂 − 𝐺𝐿

    

3
−𝑔𝜋

−𝑔𝑚 − 𝑔𝑂

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂

    

4
−𝑔𝜋 − 𝑔𝑠 − 𝐺𝐵

−𝑔𝑚 − 𝑔𝑂 − 𝐺𝐿

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝑔𝑠 + 𝐺𝐵 + 𝐺𝐿]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
1

2

3

4 ]
 
 
 
 
 
 
 

 

      (3.40) 

Now, deleting the original 3rd row and the 3rd column from Eq. (3.40) yields; 

[
 
 
 
 
 
 
 
 

1
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵

𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

−𝑔𝜋 − 𝑔𝑚 − 𝑔𝑠 − 𝐺𝐵

    

2
0

𝑔𝑂 + 𝐺𝐿

−𝑔𝑂

−𝑔𝑂 − 𝐺𝐿

    

3
−𝑔𝜋

−𝑔𝑚 − 𝑔𝑂

𝑔𝜋 + 𝑔𝜋 + 𝑔𝑂 + 𝐺𝐸

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂

    

4
−𝑔𝜋 − 𝑔𝑠 − 𝐺𝐵

−𝑔𝑚 − 𝑔𝑂 − 𝐺𝐿

𝑔𝜋 + 𝑔𝑂

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝑔𝑠 + 𝐺𝐵 + 𝐺𝐿]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
1

2

3

4 ]
 
 
 
 
 
 
 

 

      (3.41) 

 Simplification of Eq. (3.41) yields; 
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[
 
 
 
 
 

1
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵

𝑔𝑚

−𝑔𝜋 − 𝑔𝑚 − 𝑔𝑠 − 𝐺𝐵

    

2
0

𝑔𝑂 + 𝐺𝐿

−𝑔𝑂 − 𝐺𝐿

    

4
−𝑔𝜋 − 𝑔𝑠 − 𝐺𝐵

−𝑔𝑚 − 𝑔𝑂 − 𝐺𝐿

𝑔𝜋+𝑔𝑚 + 𝑔𝑂 + 𝑔𝑠 + 𝐺𝐵 + 𝐺𝐿]
 
 
 
 
 

[
 
 
 
 
 
1

2

4 ]
 
 
 
 
 

 (3.42) 

 

3.8 Circuit Model of the Common-Emitter Amplifier 

 Since the 3rd row and the 3rd column have been merged to the 4th row and the 4th 

column, the 4th row and the 4th column of Eq. (3.42) are now assigned the 3rd row and 

the 3rd column, and then Eq. (3.42) simplifies to; 

[
 
 
 
 
 

1
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵

𝑔𝑚

−𝑔𝜋 − 𝑔𝑚 − 𝑔𝑠 − 𝐺𝐵

       

2
0

𝑔𝑂 + 𝐺𝐿

−𝑔𝑂 − 𝐺𝐿

         

3
−𝑔𝜋 − 𝑔𝑠 − 𝐺𝐵

−𝑔𝑚 − 𝑔𝑂 − 𝐺𝐿

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝑔𝑠 + 𝐺𝐵 + 𝐺𝐿]
 
 
 
 
 

[
 
 
 
 
 
1

2

3 ]
 
 
 
 
 

 (3.43) 

 This Eq. (3.43) is the floating admittance matrix of a common-emitter amplifier in 

hybrid- model. The circuit of a common-emitter amplifier is drawn as in Fig. 3.7 using 

this Eq.  (3.43). 

 

 

 

            Fig. 3.7 AC Circuit Model of the Common-Emitter Amplifier  

The floating admittance matrix for the circuit in Fig. 3.7, including the node currents 

and node voltages, is written as; 

[
 
 
 
 
𝑖1 = 𝑖𝑏

𝑖2 = 𝑖𝑐

𝑖3 = 𝑖𝑒]
 
 
 
 

[
 
 
 
 
 

1
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵

𝑔𝑚

−𝑔𝜋 − 𝑔𝑚 − 𝑔𝑠 − 𝐺𝐵

    

2
0

𝑔𝑂 + 𝐺𝐿

−𝑔𝑂 − 𝐺𝐿

    

3
−𝑔𝜋 − 𝑔𝑠 − 𝐺𝐵

−𝑔𝑚 − 𝑔𝑂 − 𝐺𝐿

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝑔𝑠 + 𝐺𝐵 + 𝐺𝐿]
 
 
 
 
 

[
 
 
 
 
𝑣1 = 𝑣𝑏

𝑣2 = 𝑣𝑐

𝑣3 = 𝑣𝑒]
 
 
 
 

  (3.44)  

RB

RB 

𝑟𝑠  

𝑣𝑠  
R13 R23 

+ 

− 

 

1 2 

3 

3 

𝑣𝑏  

𝑣𝑐  𝑅𝐿=𝑅𝐶 ∥ 𝑅𝐿1 
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 The voltage gain [34-41] between the output terminals 2 & 3 and the input 

terminals 1 & 3 of a common-emitter amplifier in Fig. 3.7 using Eq. (3.44) is expressed 

as; 

 𝐴𝑣|13
23 = 𝑠𝑔𝑛(2 − 3)𝑠𝑔𝑛(1 − 3)(−1)2+3+1+3

|𝑌23
13|

|𝑌13
13|
= −

|𝑌23
13|

|𝑌13
13|

  (3.45) 

 From Eq. (3.44), |𝑌23
13| = 𝑔𝑚, |𝑌13

13| = 𝑔𝑂 + 𝐺𝐿 

 𝐴𝑣|13
23 = −

|𝑌23
13|

|𝑌13
13|
= −

𝑔𝑚

𝑔𝑂+𝐺𝐿
= −𝑔𝑚(𝑟𝑂||𝑅𝐿) ≅ −𝑔𝑚𝑅𝐿  (3.46) 

 The input resistance [34-41] between the input terminals 1 & 3 of a common-

emitter amplifier in Fig. 3.7 using Eq. (3.44) is expressed as; 

 𝑅𝑖𝑛(13) =
|𝑌13
13|

|𝑌3
3|
𝑔𝑠=0

     (3.47) 

 |𝑌13
13| = 𝑔𝑂 + 𝐺𝐿  

 |𝑌3
3|𝑔𝑠=0 = |

𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵
𝑔𝑚

    
0

𝑔𝑂 + 𝐺𝐿
|  

                = (𝑔𝜋 + 𝐺𝐵)(𝑔𝑂 + 𝐺𝐿) = (𝑔𝜋 + 𝐺𝐵)(𝑔𝑂 + 𝐺𝐿) 

 𝑅𝑖𝑛(13) =
|𝑌13
13|

|𝑌3
3|
𝑔𝑠=0

=
𝑔𝑂+𝐺𝐿

(𝑔𝜋+𝐺𝐵)(𝑔𝑂+𝐺𝐿) 
=

1

𝑔𝜋+𝐺𝐵 
= 𝑟𝜋 ∥ 𝑅𝐵 ≅ 𝑟𝜋  (3.48) 

 The output resistance [34-41] between the output terminals 2 & 3 of a common-

emitter amplifier in Fig. 3.7 using Eq. (3.44) is expressed as; 

 𝑅𝑂(23) =
|𝑌23
23|

|𝑌3
3|
𝐺𝐿=0

    (3.49) 

 |𝑌23
23| = 𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵  

 |𝑌3
3|𝐺𝐿=0 = (𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵)(𝑔𝑂 + 𝐺𝐿) = (𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵)𝑔𝑂  

 𝑅𝑂(23) =
|𝑌23
23|

|𝑌3
3|
𝐺𝐿=0

=
𝑔𝜋+𝑔𝑠+𝐺𝐵

(𝑔𝜋+𝑔𝑠+𝐺𝐵)𝑔𝑂
=

1

𝑔𝑂
= 𝑟𝑂  (3.50) 

 The current gain [34-41] between the output terminals 2 & 3 and the input terminals 

1 & 3 of a common-emitter amplifier in Fig. 3.7 using Eq. (3.44) is expressed as; 
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 𝐴𝑖|13
23 = 𝑠𝑔𝑛(2 − 3)𝑠𝑔𝑛(1 − 3)(−1)9

|𝑌23
13|

|𝑌3
3|
𝐺𝐿 = −

|𝑌23
13|

|𝑌3
3|
𝐺𝐿   (3.51) 

 𝐴𝑖|13
23 = −

|𝑌23
13|

|𝑌3
3|
𝐺𝐿 = −

𝑔𝑚

(𝑔𝜋+𝑔𝑠+𝐺𝐵)(𝑔𝑂+𝐺𝐿)
𝐺𝐿 

   = −
𝑔𝑚

(𝑔𝜋+𝑔𝑠)(𝑔𝑂+𝐺𝐿)
𝐺𝐿 = −𝑔𝑚

𝑟𝜋𝑟𝑠

(𝑟𝜋+𝑟𝑠)
= −𝑔𝑚(𝑟𝜋 ∥ 𝑟𝑠) = −𝛽  (3.52) 

 The Power gain [34-41] between the output terminals 2 & 3 and the input terminals 

1 & 3 of a common-emitter amplifier in Fig. 3.7 is written as; 

 𝐴𝑃|13
23 = 𝐴𝑣|13

23𝑥𝐴𝑖|13
23 = (−𝑔𝑚𝑅𝐿)(−𝛽 ) = 𝛽𝑔𝑚𝑅𝐿  (3.53) 

3.9 Circuit Model of the Common-Collector Amplifier 

The common-collector amplifier can be analysed using the floating admittance matrix 

of the BJT phase-splitter amplifier of Eq. (3.36). For that, the 2nd row is added to the 4th 

row in Eq. (3.36) to yield; 

 

[
 
 
 
 
 
 
 
 

1
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵

𝑔𝑚

−𝑔𝜋−𝑔𝑚

𝑔𝑚 − 𝑔𝑠 − 𝐺𝐵

    

2
0

𝑔𝑂 + 𝐺𝐿

−𝑔𝑂

𝑔𝑂 + 𝐺𝐿 − 𝐺𝐿

    

3
−𝑔𝜋

−𝑔𝑚 − 𝑔𝑂

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸

−𝑔𝑚 − 𝑔𝑂 − 𝐺𝐸

    

4
−𝑔𝑠 − 𝐺𝐵

−𝐺𝐿

−𝐺𝐸

−𝐺𝐿 + 𝑔𝑠 + 𝐺𝐵 + 𝐺𝐸 + 𝐺𝐿]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
1

2

3

4 ]
 
 
 
 
 
 
 

  (3.54) 

 

Simplification of Eq. (3.54) yields; 

 

[
 
 
 
 
 
 
 
 

1
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵

𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

𝑔𝑚 − 𝑔𝑠 − 𝐺𝐵

    

2
0

𝑔𝑂 + 𝐺𝐿

−𝑔𝑂

𝑔𝑂

    

3
−𝑔𝜋

−𝑔𝑚 − 𝑔𝑂

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸

−𝑔𝑚 − 𝑔𝑂 − 𝐺𝐸

    

4
−𝑔𝑠 − 𝐺𝐵

−𝐺𝐿

−𝐺𝐸

𝑔𝑠 + 𝐺𝐵 + 𝐺𝐸]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
1

2

3

4 ]
 
 
 
 
 
 
 

  (3.55) 

 

Now, adding the 2nd column to the 4th column in Eq. (3.55) yields; 
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[
 
 
 
 
 
 
 
 

1
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵

𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

𝑔𝑚 − 𝑔𝑠 − 𝐺𝐵

    

2
0

𝑔𝑂 + 𝐺𝐿

−𝑔𝑂

𝑔𝑂

    

3
−𝑔𝜋

−𝑔𝑚 − 𝑔𝑂

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸

−𝑔𝑚 − 𝑔𝑂 − 𝐺𝐸

    

4
−𝑔𝑠 − 𝐺𝐵

𝑔𝑂 + 𝐺𝐿 − 𝐺𝐿

−𝑔𝑂 − 𝐺𝐸

𝑔𝑂 + 𝑔𝑠 + 𝐺𝐵 + 𝐺𝐸]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
1

2

3

4 ]
 
 
 
 
 
 
 

 (3.56) 

Simplification of Eq. (3.56) yields; 

[
 
 
 
 
 
 
 
 

1
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵

𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

𝑔𝑚 − 𝑔𝑠 − 𝐺𝐵

    

2
0

𝑔𝑂 + 𝐺𝐿

−𝑔𝑂

𝑔𝑂

    

3
−𝑔𝜋

−𝑔𝑚 − 𝑔𝑂

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸

−𝑔𝑚 − 𝑔𝑂 − 𝐺𝐸

    

4
−𝑔𝑠 − 𝐺𝐵

𝑔𝑂

−𝑔𝑂 − 𝐺𝐸

𝑔𝑂 + 𝑔𝑠 + 𝐺𝐵 + 𝐺𝐸]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
1

2

3

4 ]
 
 
 
 
 
 
 

  (3.57) 

 

Now, deleting the original 2nd row and the 2nd column of Eq. (3.57) yields; 

[
 
 
 
 
 
 
 
 

1
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵

𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

𝑔𝑚 − 𝑔𝑠 − 𝐺𝐵

    

2
0

𝑔𝑂 + 𝐺𝐿

−𝑔𝑂

𝑔𝑂

    

3
−𝑔𝜋

−𝑔𝑚 − 𝑔𝑂

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸

−𝑔𝑚 − 𝑔𝑂 − 𝐺𝐸

    

4
−𝑔𝑠 − 𝐺𝐵

𝑔𝑂

−𝑔𝑂 − 𝐺𝐸

𝑔𝑂 + 𝑔𝑠 + 𝐺𝐵 + 𝐺𝐸]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
1

2

3

4 ]
 
 
 
 
 
 
 

  (3.58) 

Equation (3.58) simplifies after assigning the 2nd row and the 2nd column to the 4th row 

and 4th column that yields; 

 

[
 
 
 
 
 

1
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵

−𝑔𝜋 − 𝑔𝑚

𝑔𝑚 − 𝑔𝑠 − 𝐺𝐵

    

3
−𝑔𝜋

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸

−𝑔𝑚 − 𝑔𝑂 − 𝐺𝐸

    

2
−𝑔𝑠 − 𝐺𝐵

−𝑔𝑂 − 𝐺𝐸

𝑔𝑠 + 𝑔𝑜 + 𝐺𝐵 + 𝐺𝐸]
 
 
 
 
 

[
 
 
 
 
 
1

3

2 ]
 
 
 
 
 

  (3.59) 

Equation (3.59) is the floating admittance matrix of the common-collector amplifier 

derived from Eq. (3.36) of the BJT phase-splitter circuit in Fig. 3.6. The common-

collector amplifier circuit is drawn from the floating admittance matrix of the Eq. (3.59) 

as Fig. 3.8. The conductance GE may be equal to GE1+GL.  
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                 Fig. 3.8 AC Circuit Model the Common-Collector Amplifier  

 The collector terminal of the BJT is common to both the input and output sides in 

Fig. 3.8, and hence it is called a common-collector amplifier. The floating admittance 

matrix for the circuit in Fig. 3.8, along with the currents and voltages, is written as; 

 

[
 
 
 
 
 
𝑖1 = 𝑖𝑏

𝑖3 = 𝑖𝑒

𝑖2 = 𝑖𝑐]
 
 
 
 
 

[
 
 
 
 
 

1
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵

−𝑔𝜋 − 𝑔𝑚

𝑔𝑚 − 𝑔𝑠 − 𝐺𝐵

    

3
−𝑔𝜋

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸

−𝑔𝑚 − 𝑔𝑂 − 𝐺𝐸

    

2
−𝑔𝑠 − 𝐺𝐵

−𝑔𝑂 − 𝐺𝐸

𝑔𝑂 + 𝑔𝑠 + 𝐺𝐵 + 𝐺𝐸]
 
 
 
 
 

[
 
 
 
 
 
𝑣1 = 𝑣𝑏

𝑣3 = 𝑣𝑒

𝑣2 = 𝑣𝑐 ]
 
 
 
 
 

  (3.60) 

 The voltage gain [34-41] between the output terminals 3 & 2 and the input 

terminals 1 & 2 of a common-collector amplifier in Fig. 3.8 is written as; 

 𝐴𝑣|12
32 = 𝑠𝑔𝑛(3 − 2)𝑠𝑔𝑛(1 − 2)(−1)8

|𝑌32
12|

|𝑌12
12|
= −

|𝑌32
12|

|𝑌12
12|

  (3.61) 

 From Eq. (3.60),  |𝑌32
12| = −𝑔𝜋 − 𝑔𝑚, |𝑌12

12| = 𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸 

 𝐴𝑣|12
32 = −

|𝑌32
12|

|𝑌12
12|
= −

−𝑔𝜋−𝑔𝑚

𝑔𝜋+𝑔𝑚+𝑔𝑂+𝐺𝐸
=

𝑔𝜋+𝑔𝑚

𝑔𝜋+𝑔𝑚+𝐺𝐸
=

(1+𝛽)𝑅𝐸

𝑟𝜋+(1+𝛽)𝑅𝐸
 

  =
𝑅𝐸

𝑅𝐸+
𝑟𝜋

(1+𝛽)

=
𝑅𝐸

𝑅𝐸+
(1+𝛽)𝑟𝑒
(1+𝛽)

 =
𝑅𝐸

𝑅𝐸+𝑟𝑒
≅ 1 (ideal condition of EF) (3.62) 

 The current gain [34-41] between the output terminals 3 & 2 and the input terminals 

1 & 2 of a common-collector amplifier in Fig. 3.8 using Eq. (3.60) is expressed as; 

 𝐴𝑖|12
32 = 𝑠𝑔𝑛(3 − 2)𝑠𝑔𝑛(1 − 2)(−1)8

|𝑌32
12|

|𝑌2
2|
𝐺𝐸 = −

|𝑌32
12|

|𝑌2
2|
𝐺𝐸  (3.63) 

From Eq. (3.60), |𝑌32
12| = −𝑔𝜋 − 𝑔𝑚  

 |𝑌2
2| = |

𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵 −𝑔𝜋
−𝑔𝜋 − 𝑔𝑚 𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸

| 

v1 

t 

v3 

t 
RB

RB 

𝑟𝑠  

𝑣𝑠  
RE 

𝑣𝑒  

R12 

 

1 2 

3 

2 

𝑣𝑏  

R32 

𝑅𝐸=𝑅𝐸1 ∥ 𝑅𝐿2 
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  = |
𝑔𝜋 −𝑔𝜋

−𝑔𝜋 − 𝑔𝑚 𝑔𝜋 + 𝑔𝑚 + 𝐺𝐸
| = |

𝑔𝜋 0
−𝑔𝜋 − 𝑔𝑚 𝐺𝐸

| = 𝑔𝜋𝐺𝐸  

 𝐴𝑖|12
32 = −

|𝑌32
12|

|𝑌2
2|
𝐺𝐸 = −

−𝑔𝜋−𝑔𝑚

𝑔𝜋𝐺𝐸
𝐺𝐸 = (1 + 𝛽)      (CC current gain) (3.64) 

 The input resistance [34-41] between terminals 1 & 2 of a common-collector 

amplifier in Fig. 3.8 using Eq. (3.60) is expressed as; 

 𝑅𝑖𝑛(12) =
|𝑌12
12|

|𝑌2
2|
𝑔𝑠=0

    (3.65) 

 From Eq. (3.60), |𝑌12
12| = 𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸  

 |𝑌2
2|𝑔𝑠=0 = |

𝑔𝜋 + 𝐺𝐵 −𝑔𝜋
−𝑔𝜋 − 𝑔𝑚 𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸

| = |
𝑔𝜋 0

−𝑔𝜋 − 𝑔𝑚 𝑔𝑂 + 𝐺𝐸
|   

                 = 𝑔𝜋(𝑔𝑂 + 𝐺𝐸)  

 𝑅𝑖𝑛(12) =
|𝑌12
12|

|𝑌2
2|
𝑔𝑠=0

 =
𝑔𝜋+𝑔𝑚+𝑔𝑂+𝐺𝐸

𝑔𝜋(𝑔𝑂+𝐺𝐸)
=

𝑔𝜋+𝑔𝑚+𝐺𝐸

𝑔𝜋𝐺𝐸
= 𝑟𝜋 + (1 + 𝛽)𝑅𝐸 

           = (1 + 𝛽)𝑟𝑒 + (1 + 𝛽)𝑅𝐸 = (1 + 𝛽)(𝑟𝑒 + 𝑅𝐸)   (3.66) 

 The output resistance [34-41] between terminals 3 & 2 of a common-collector 

amplifier in Fig. 3.8 is expressed as; 

 𝑅𝑂(32) = 
|𝑌32
32|

|𝑌2
2|
𝐺𝐸=0

    (3.67) 

 From Eq. (3.60), |𝑌32
32| = 𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵  

 |𝑌2
2|𝐺𝐸=0 = |

𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵 −𝑔𝜋
−𝑔𝜋 − 𝑔𝑚 𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸

|  

  = |
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵 −𝑔𝜋
−𝑔𝜋 − 𝑔𝑚 (1 + 𝛽)𝑔𝜋

| = |
𝑔𝜋 + 𝑔𝑠 𝑔𝑠
−𝑔𝜋 − 𝑔𝑚 0

|  

  = (𝑔𝜋 + 𝑔𝑚)𝑔𝑠 

 𝑅𝑂(32) =
|𝑌32
32|

|𝑌2
2|
𝐺𝐿=0

=
𝑔𝜋+𝑔𝑠+𝐺𝐵

(𝑔𝜋+𝑔𝑚)𝑔𝑠 
=

𝑔𝜋+𝑔𝑠

𝑔𝜋(1+𝛽)𝑔𝑠 
=

𝑟𝜋+𝑟𝑠

1+𝛽 
   (3.68) 

 The power gain [34-41] between the output terminals 3 & 2 and input terminals 1 

& 2 of a common-collector amplifier in Fig. 3.8 is written as; 

 𝐴𝑃|12
32 = 𝐴𝑣|12

32𝑥𝐴𝑖|12
32 = (

𝑅𝐸

𝑅𝐸+𝑟𝑒
) (1 + 𝛽 ) ≅ 1 + 𝛽   (3.69) 
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 3.10 Circuit Model of the Common-Base Amplifier 

The floating admittance of the common-base amplifier using the hybrid- model of the 

BJT can be obtained using Eq. (3.36) of a BJT phase-splitter amplifier in Fig. 3.6. For 

that, the 1st row is added to the 4th row in Eq. (3.36) to yield; 

[
 
 
 
 
 
 
 
 

1
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵

𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵 − 𝑔𝑠 − 𝐺𝐵

    

2
0

𝑔𝑂 + 𝐺𝐿

−𝑔𝑂

−𝐺𝐿

    

3
−𝑔𝜋

−𝑔𝑚 − 𝑔𝑂

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸

−𝑔𝜋 − 𝐺𝐸

    

4
−𝑔𝑠 − 𝐺𝐵

−𝐺𝐿

−𝐺𝐸

−𝑔𝑠 − 𝐺𝐵 + 𝑔𝑠 + 𝐺𝐵 + 𝐺𝐸 + 𝐺𝐿]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
1

2

3

4 ]
 
 
 
 
 
 
 

   

      (3.70) 

Simplification of Eq. (3.70) yields; 

[
 
 
 
 
 
 
 
 

1
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵

𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

𝑔𝜋

    

2
0

𝑔𝑂 + 𝐺𝐿

−𝑔𝑂

−𝐺𝐿

    

3
−𝑔𝜋

−𝑔𝑚 − 𝑔𝑂

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸

−𝑔𝜋 − 𝐺𝐸

    

4
−𝑔𝑠 − 𝐺𝐵

−𝐺𝐿

−𝐺𝐸

𝐺𝐸 + 𝐺𝐿 ]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
1

2

3

4 ]
 
 
 
 
 
 
 

  (3.71) 

Now, adding the 1st column to the 4th column in Eq. (3.71) yields; 

[
 
 
 
 
 
 
 
 

1
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵

𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

𝑔𝜋

    

2
0

𝑔𝑂 + 𝐺𝐿

−𝑔𝑂

−𝐺𝐿

    

3
−𝑔𝜋

−𝑔𝑚 − 𝑔𝑂

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸

−𝑔𝜋 − 𝐺𝐸

    

4
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵 − 𝑔𝑠 − 𝐺𝐵

𝑔𝑚 − 𝐺𝐿

−𝑔𝜋 − 𝑔𝑚 − 𝐺𝐸

𝑔𝜋 + 𝐺𝐸 + 𝐺𝐿 ]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
1

2

3

4 ]
 
 
 
 
 
 
 

  (3.72) 

Simplification of Eq. (3.72) and deleting the original 1st row and the 1st column yields; 

[
 
 
 
 
 
 
 
 

1
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵

𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

𝑔𝜋

    

2
0

𝑔𝑂 + 𝐺𝐿

−𝑔𝑂

−𝐺𝐿

    

3
−𝑔𝜋

−𝑔𝑚 − 𝑔𝑂

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸

−𝑔𝜋 − 𝐺𝐸

    

4
𝑔𝜋

𝑔𝑚 − 𝐺𝐿

−𝑔𝜋 − 𝑔𝑚 − 𝐺𝐸

𝑔𝜋 + 𝐺𝐸 + 𝐺𝐿 ]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
1

2

3

4 ]
 
 
 
 
 
 
 

  (3.73) 
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Eq. (3.73) simplifies as; 

 

[
 
 
 
 
 

2
𝑔𝑂 + 𝐺𝐿

−𝑔𝑂

−𝐺𝐿

    

3
−𝑔𝑚 − 𝑔𝑂

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸

−𝑔𝜋 − 𝐺𝐸

    

4
𝑔𝑚 − 𝐺𝐿

−𝑔𝜋 − 𝑔𝑚 − 𝐺𝐸

𝑔𝜋 + 𝐺𝐸 + 𝐺𝐿 ]
 
 
 
 
 

[
 
 
 
 
 
2

3

4 ]
 
 
 
 
 

  (3.74) 

 Since the 1st row and the 1st column were added to the 4th row, and 4th column, the 

4th row and 4th column are designated as the 1st row and  the 1st column with 𝐺𝐸 = 𝐺𝐸 +

𝑔𝑠 as; 

 

[
 
 
 
 
 

2
𝑔𝑂 + 𝐺𝐿

−𝑔𝑂

−𝐺𝐿

       

3
−𝑔𝑚 − 𝑔𝑂

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝑔𝑠 + 𝐺𝐸

−𝑔𝜋 − 𝑔𝑠 − 𝐺𝐸

       

1
𝑔𝑚 − 𝐺𝐿

−𝑔𝜋 − 𝑔𝑚 − 𝑔𝑠 − 𝐺𝐸

𝑔𝜋 + 𝑔𝑠 + 𝐺𝐸 + 𝐺𝐿 ]
 
 
 
 
 

[
 
 
 
 
 
2

3

1 ]
 
 
 
 
 

  (3.75) 

Equation (3.75) is the floating admittance matrix of common-base amplifier in the 

hybrid- model. Eq. (3.75) suggests a common-base amplifier’s circuit of Fig. 3.9. The 

base terminal of the BJT is common to both input and output sides in Fig. 3.9, and hence 

it is called a common-base amplifier.  

 

 

  

 

 

 

 

          Fig. 3.9 AC Circuit Model of the Common-Base Amplifier  

 

The load resistance could be 𝑅𝐿 = 𝑅𝐶 ∥ 𝑅𝐿1.  

 The voltage gain [34-41] between the output terminals 2 & 1 and the input 

terminals 3 & 1 of a common-bas amplifier in Fig. 3.9 is written as; 

 𝐴𝑣|31
21 = 𝑠𝑔𝑛(2 − 1)𝑠𝑔𝑛(3 − 1)(−1)2+1+3+1

|𝑌21
31|

|𝑌31
31|
= −

|𝑌21
31|

|𝑌31
31|

  (3.76) 

t 

𝑣2  
vs 

t 

𝑅𝐿=𝑅𝐶 ∥ 𝑅𝐿1 

 
𝑖𝑒 

2 

1 

3 

𝑅𝐿  𝐺𝐸  
𝑟𝑠  

𝑣𝑠  

𝑣𝑐  𝑣2 

𝑣1 

𝑣3 

𝑖𝑐 

R21 
R31 
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From Eq. (3.75), |𝑌21
31| = −𝑔𝑚 − 𝑔𝑂, |𝑌31

31| = 𝑔𝑂 + 𝐺𝐿 

 𝐴𝑣|31
21 = −

|𝑌21
31|

|𝑌31
31|
= −

−𝑔𝑚−𝑔𝑂

𝑔𝑂+𝐺𝐿
=

𝑔𝑚

𝐺𝐿
= 𝑔𝑚𝑅𝐿  (3.77) 

 The current gain [34-41] between the output terminals 2 & 1 and the input terminals 

3 & 1 using Eq. (3.75) of a common-bas amplifier in Fig. 3.9 is expressed as; 

 𝐴𝑖|31
21 = 𝑠𝑔𝑛(2 − 1)𝑠𝑔𝑛(3 − 1)(−1)2+1+3+1

|𝑌21
31|

|𝑌1
1|
𝐺𝐿 = −

|𝑌21
31|

|𝑌1
1|
𝐺𝐿  (3.78) 

From Eq. (3.75), |𝑌1
1| = |

𝑔𝑂 + 𝐺𝐿 −𝑔𝑚 − 𝑔𝑂
−𝑔𝑂 𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝑔𝑠

| = (𝑔𝜋 + 𝑔𝑚)𝐺𝐿  

  𝐴𝑖|31
21 = −

|𝑌21
31|

|𝑌1
1|
𝐺𝐿 = −

−𝑔𝑚−𝑔𝑂

(𝑔𝜋+𝑔𝑚)𝐺𝐿 
𝐺𝐿 =

𝑔𝑚

𝑔𝜋+𝑔𝑚 
=

𝛽

𝛽+1
= 𝛼  (3.79) 

 The input resistance [34-41] between the input terminals 3 & 1 of a common-base 

amplifier in Fig. 3.9 is expressed as; 

 𝑅𝑖 = 𝑅𝑖(31) =
|𝑌31
31|

|𝑌1
1|
𝑔𝑠=0

    (3.80) 

From Eq. (3.75), |𝑌31
31| = 𝑔𝑂 + 𝐺𝐿  

 |𝑌1
1|𝑔𝑠=0 |

𝑔𝑂 + 𝐺𝐿
−𝑔𝑂

    
−𝑔𝑚 − 𝑔𝑂

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝑔𝑠 + 𝐺𝐸
| = {𝑔𝜋 + 𝑔𝑚 + 𝐺𝐸}𝐺𝐿  

  = {𝑟𝜋 + (1 + 𝛽)𝑅𝐸}𝐺𝐿𝑔𝜋𝐺𝐸  

 𝑅𝑖 = 𝑅𝑖(31) =
|𝑌31
31|

|𝑌1
1|
𝑔𝑠=0

=
𝑔𝑂+𝐺𝐿

{𝑟𝜋+(1+𝛽)𝑅𝐸}𝐺𝐿𝑔𝜋𝐺𝐸
=

𝑟𝜋𝑅𝐸

{𝑟𝜋+(1+𝛽)𝑅𝐸}
  

  =
𝑟𝜋𝑅𝐸

(1+𝛽)(𝑟𝑒+𝑅𝐸)
=

𝑟𝜋

(1+𝛽)
=

(1+𝛽)𝑟𝑒

(1+𝛽)
= 𝑟𝑒 =

1

𝑔𝑚
    (3.81) 

 The output resistance [34-41] between the output terminals 2 & 1 of a common-

base amplifier in Fig. 3.9 is expressed as; 

 𝑅𝑂(21) =
|𝑌21
21|

|𝑌1
1|
𝐺𝐿=0

    (3.82) 

From Eq. (3.75), |𝑌21
21| = 𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝑔𝑠 + 𝐺𝐸 = {𝑟𝜋 + (1 + 𝛽)𝑅𝐸}𝑔𝜋𝐺𝐸  
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 |𝑌1
1|𝐺𝐿=0 = |

𝑔𝑂 + 𝐺𝐿 −𝑔𝑚 − 𝑔𝑂
−𝑔𝑂 𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝑔𝑠 + 𝐺𝐸

| 

      = |
𝑔𝑂 −𝑔𝑚 − 𝑔𝑂
−𝑔𝑂 𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸

|  

                = |
𝑔𝑂 −𝑔𝑚 − 𝑔𝑂
0 𝑔𝜋 + 𝐺𝐸

| = 𝑔𝑂(𝑔𝜋 + 𝐺𝐸) = 𝑔𝑂(𝑟𝜋 + 𝑅𝐸)𝑔𝜋𝐺𝐸     

 𝑅𝑂 = 𝑅𝑂(21) =
|𝑌21
21|

|𝑌1
1|
𝐺𝐿=0

=
{𝑟𝜋+(1+𝛽)𝑅𝐸}𝑔𝜋𝐺𝐸

𝑔𝑂(𝑟𝜋+𝑅𝐸)𝑔𝜋𝐺𝐸
 =

{𝑟𝜋+(1+𝛽)𝑅𝐸}

𝑔𝑂(𝑟𝜋+𝑅𝐸)
  

  =
𝑟𝜋+(1+𝛽)𝑅𝐸

𝑔𝑂𝑅𝐸
=

(1+𝛽)𝑅𝐸

𝑔𝑂𝑅𝐸
= (1 + 𝛽)𝑟𝑂  (3.83) 

If we look at the output resistance through 𝑅𝐿
′ , then 

 𝑅𝑂(21) = (1 + 𝛽)𝑟𝑂 ∥ 𝑅𝐶 ≅ 𝑅𝐶  (3.84) 

 The power gain [34-41] between the output terminals 2 & 1 and the input terminals 

3 & 1 of a common-base amplifier in Fig. 3.9 is written as; 

 𝐴𝑃|31
21 = 𝐴𝑣|31

21𝑥𝐴𝑖|31
21 = (𝑔𝑚𝑅𝐿) (

𝛽

1+𝛽 
) ≅ 𝑔𝑚𝑅𝐿 (3.85) 

3.11 Circuit Model of the BJT Phase-Splitter Amplifier (Complete 

Analysis) 

Now, we will analyse the BJT phase-splitter amplifier in detail using Fig. 3.5 and the 

corresponding floating admittance matrix of Eq (3.36). The common-emitter amplifier 

with an unbypassed emitter resistor (RE), as shown in Fig. 3.6, is called a phase-splitter 

circuit. The floating admittance matrix of Eq (3.36) for the BJT phase-splitter amplifier 

shown in Fig. 3.6 is repeated here for ease in the further analysis.    

[
 
 
 
 
 
 
 
 

1
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵

𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

−𝑔𝑠 − 𝐺𝐵

    

2
0

𝑔𝑂 + 𝐺𝐿

−𝑔𝑂

−𝐺𝐿

    

3
−𝑔𝜋

−𝑔𝑚 − 𝑔𝑂

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑂 + 𝐺𝐸

−𝐺𝐸

    

4
−𝑔𝑠 − 𝐺𝐵

−𝐺𝐿

−𝐺𝐸

𝑔𝑠 + 𝐺𝐵 + 𝐺𝐸 + 𝐺𝐿]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
1

2

3

4 ]
 
 
 
 
 
 
 

  (3.86) 
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 The voltage gain [34-41] between the output terminals 2 & 4 and the input terminals 

1 & 4 of Fig. 3.6 using Eq. (3.86) is expressed as; 

 𝐴𝑣|14
24 =

𝑣24

𝑣14
= 𝑠𝑔𝑛(2 − 4)𝑠𝑔𝑛(1 − 4)(−1)11

|𝑌24
14|

|𝑌14
14|
= −

|𝑌24
14|

|𝑌14
14|

 (3.87) 

From Eq. (3.86),|𝑌24
14| = |

𝑔𝑚
−𝑔𝑖 − 𝑔𝑚

   
−𝑔𝑚 − 𝑔𝑜

𝑔𝑖 + 𝑔𝑚 + 𝑔𝑜 + 𝐺𝐸
| 

 = |
𝑔𝑚

−𝑔𝑖 − 𝑔𝑚
   

−𝑔𝑚
𝑔𝑖 + 𝑔𝑚 + 𝐺𝐸

| = |
𝑔𝑚

−𝑔𝜋 − 𝑔𝑚
   
0
𝐺𝐸
| = 𝑔𝑚𝐺𝐸  

 |𝑌14
14| = |

𝑔𝑜 + 𝐺𝐿
−𝑔𝑜

   
−𝑔𝑚 − 𝑔𝑜

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑜 + 𝐺𝐸
| = (𝑔𝜋 + 𝑔𝑚 + 𝐺𝐸)𝐺𝐿  

 𝐴𝑣|14
24 =

𝑣24

𝑣14
= −

𝑔𝑚𝐺𝐸

(𝑔𝜋+𝑔𝑚+𝐺𝐸)𝐺𝐿
=

𝑔𝑚𝑟𝜋𝐺𝐸𝑅𝐸

(𝑟𝜋+(1+𝛽)𝑅𝐸)𝐺𝐿
 =

𝛽

(𝑟𝜋+(1+𝛽)𝑅𝐸)𝐺𝐿
 

    = (−
𝛽𝑅𝐿

𝑟𝜋+(1+𝛽)𝑅𝐸
) = −1 for RE = RL = 1 k  (3.88) 

 The input resistance [34-41] between input terminals 1 & 4 of a BJT phase-splitter 

circuit in Fig. 3.6 is expressed as; 

 𝑅𝑖𝑛 = 𝑅14 =
|𝑌14
14|

|𝑌4
4|
𝑔𝑠=0

 (3.89) 

From Eq. (3.86), |𝑌4
4|𝑔𝑠=0 = |

𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵
𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

   
0

𝑔𝑜 + 𝐺𝐿
−𝑔𝑜

   

−𝑔𝑖
−𝑔𝑚 − 𝑔𝑜

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑜 + 𝐺𝐸
|  

 ≅ |
𝑔𝜋 + 𝐺𝐵
𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

   
0
𝐺𝐿
0
   

−𝑔𝑖
−𝑔𝑚

𝑔𝜋 + 𝑔𝑚 + 𝐺𝐸
| ≅ |

𝑔𝜋
𝑔𝑚

−𝑔𝜋 − 𝑔𝑚
   
0
𝐺𝐿
0
   

−𝑔𝜋
−𝑔𝑚

𝑔𝜋 + 𝑔𝑚 + 𝐺𝐸
|  

 = |

𝑔𝜋
𝑔𝑚

−𝑔𝜋 − 𝑔𝑚
   
0
𝐺𝐿
0
   
0
0
𝐺𝐸

| = 𝑔𝜋𝐺𝐿𝐺𝐸  

 𝑅𝑖𝑛 = 𝑅14 =
(𝑔𝜋+𝑔𝑚+𝐺𝐸)𝐺𝐿

𝑔𝜋𝐺𝐿𝐺𝐸
= 𝑟𝜋 + (1 + 𝛽)𝑅𝐸 = (1 + 𝛽)(𝑟𝑒 + 𝑅𝐸) (3.90) 

 The current gain [34-41] between the output terminals 3 & 4 and the input terminals 

1 & 4 of a BJT phase-splitter circuit in Fig. 3.6 is expressed as; 

 𝐴𝑖|14
24 =

𝑖2

𝑖1
= 𝑠𝑔𝑛(2 − 4)𝑠𝑔𝑛(1 − 4)(−1)11

|𝑌24
14|

|𝑌4
4|
𝐺𝐿 = −

|𝑌24
14|

|𝑌4
4|
𝐺𝐿 (3.91) 

From Eq. (3.86), |𝑌4
4| = |

𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵
𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

   
0

𝑔𝑜 + 𝐺𝐿
−𝑔𝑜

   

−𝑔𝜋
−𝑔𝑚 − 𝑔𝑜

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑜 + 𝐺𝐸
|  
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   ≅ |
𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵

𝑔𝑚
−𝑔𝜋 − 𝑔𝑚

   
0
𝐺𝐿
0
   

−𝑔𝜋
−𝑔𝑚

𝑔𝜋 + 𝑔𝑚 + 𝐺𝐸
| ≅ |

𝑔𝜋 + 𝑔𝑠 + 𝐺𝐵
𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

   
0
𝐺𝐿
0
   
𝑔𝑠 + 𝐺𝐵

0
𝐺𝐸

|   

   = {(𝑔𝜋 + 𝐺𝐵)𝐺𝐸 + (𝑔𝜋 + 𝑔𝑚)𝐺𝐵}𝐺𝐿 = 𝑔𝜋𝐺𝐸𝐺𝐿 

 |𝑌24
14| = 𝑔𝑚𝐺𝐸  

 𝐴𝑖|14
24 = −

𝑔𝑚𝐺𝐸

𝑔𝜋𝐺𝐸𝐺𝐿
𝐺𝐿 = −

𝑔𝑚

𝑔𝜋
= −𝛽   (3.92) 

To derive the current gain including the source current, the voltage source is converted 

to the current source as in Fig. 3.10.  

 

 

 

   

      Fig. 3.10 Model of Voltage source converted to Current source 

 

From Fig. 3.4, 𝑖1 = 𝑖𝑏 = 𝑖𝑠
𝑟𝑠

𝑟𝑠+𝑅𝑖
= 𝑖𝑠

𝑟𝑠

𝑟𝑠+𝑟𝜋+(1+𝛽)𝑅𝐸
    

 
𝑖1

𝑖𝑠
=

𝑟𝑠

𝑟𝑠+𝑟𝜋+(1+𝛽)𝑅𝐸
   (3.93) 

 The current gain [34-41], including source resistance in Fig. 3.10, is written as; 

 𝐴𝑖𝑠|14
24 =

𝑖2

𝑖1
𝑥
𝑖1

𝑖𝑠
=

𝑖2

𝑖𝑠
= (−𝛽) {

𝑟𝑠

𝑟𝑠+𝑟𝜋+(1+𝛽)𝑅𝐸
} = −

𝛽𝑟𝑠

𝑟𝑠+𝑟𝜋+(1+𝛽)𝑅𝐸
 (3.94)

  

 𝑣14 = 𝑣𝑠
𝑅𝑖

𝑟𝑠+𝑅𝑖
= 𝑣𝑠

𝑟𝜋+(1+𝛽)𝑅𝐸

𝑟𝑠+𝑟𝜋+(1+𝛽)𝑅𝐸
= 𝑣𝑠   (3.95) 

 The voltage gain, including the source resistance of the signal, is; 

  𝐴𝑣𝑠 =
𝑣𝑜

𝑣14
𝑥
𝑣14

𝑣𝑠
= (−

𝛽𝑅𝐿

𝑟𝜋+(1+𝛽)𝑅𝐸
) (

𝑟𝜋+(1+𝛽)𝑅𝐸

𝑟𝑠+𝑟𝜋+(1+𝛽)𝑅𝐸
) = −

𝛽𝑅𝐿

𝑟𝑠+𝑟𝜋+(1+𝛽)𝑅𝐸
(3.96) 

 The output resistance [34-41] between the output terminals 2 and 4 of a BJT phase-

splitter circuit in Fig. 3.6 is expressed as; 

   𝑅𝑜 = 𝑅24 =
|𝑌24
24|

|𝑌4
4|
𝐺𝐿=0

  (3.97)  

From Eq. (3.86), |𝑌4
4|𝐺𝐿=0 = |

𝑔𝜋 + 𝑔𝑠
𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

   
0
𝑔𝑜
−𝑔𝑜

   

−𝑔𝜋
−𝑔𝑚 − 𝑔𝑜

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑜 + 𝐺𝐸
| 

𝑖𝑖 = 𝑖𝑏  

𝑣𝑠  
4 

1 

𝑟𝑠  

 𝑅14 

𝑖𝑖 = 𝑖𝑏  

𝑖𝑠  

4 

1 

𝑟𝑠   𝑅14 
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 = |

𝑔𝜋 + 𝑔𝑠
𝑔𝑚
𝑔𝑠

   
0
𝑔𝑜
0
 − 

−𝑔𝜋
𝑔𝑚 − 𝑔𝑜
𝐺𝐸

|=  𝑔𝑜{(𝑔𝜋 + 𝑔𝑠)𝐺𝐸 + 𝑔𝜋𝑔𝑠} 

 |𝑌24
24| = |

𝑔𝜋 + 𝑔𝑠
−𝑔𝜋 − 𝑔𝑚

   
−𝑔𝜋

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑜 + 𝐺𝐸
| = |

𝑔𝑠
𝑔𝑜 + 𝐺𝐸

   
−𝑔𝜋

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑜 + 𝐺𝐸
|  

 = 𝑔𝜋(𝑟𝜋 + 𝑔𝑚𝑔𝜋𝑅𝐸 + 𝑅𝐸)𝑔𝑠𝐺𝐸 + 𝑔𝜋𝐺𝐸 = 𝑔𝜋{𝑟𝜋 + (1 + 𝛽)𝑅𝐸}𝑔𝑠𝐺𝐸 + 𝑔𝜋𝐺𝐸 

 = 𝑔𝜋[{𝑟𝜋 + (1 + 𝛽)𝑅𝐸} + 𝑟𝑠]𝑔𝑠𝐺𝐸  

 𝑅𝑜 = 𝑅24 =
𝑔𝜋[{𝑟𝜋+(1+𝛽)𝑅𝐸}+𝑟𝑠]𝑔𝑠𝐺𝐸

𝑔𝑜{𝑔𝜋𝑔𝑠(𝑟𝜋+𝑟𝑠)𝐺𝐸+𝑔𝜋𝑔𝑠}
 =

𝑔𝜋[{𝑟𝜋+(1+𝛽)𝑅𝐸}+𝑟𝑠]𝑔𝑠𝐺𝐸

𝑔𝑜{𝑟𝜋+𝑟𝑠+𝑅𝐸}𝑔𝜋𝑔𝑠𝐺𝐸
 

   =
{(𝑟𝑠+𝑟𝜋)+(1+)𝑅𝐸}

{𝑟𝜋+𝑟𝑠+𝑅𝐸}
𝑟𝑜 = 𝑟𝑜 [1 +

𝑅𝐸

𝑟𝜋+𝑟𝑠+𝑅𝐸
]  (3.98) 

 The voltage gain [34-41] between the output terminals 3 & 4 and the input terminals 

1 & 4 of a BJT phase-splitter circuit in Fig. 3.6  is written as; 

 𝐴𝑣|14
34 =

𝑣24

𝑣14
= 𝑠𝑔𝑛(3 − 4)𝑠𝑔𝑛(1 − 4)(−1)12

|𝑌34
14|

|𝑌14
14|
=

|𝑌34
14|

|𝑌14
14|

  (3.99) 

From Eq. (3.86), |𝑌34
14| = |

𝑔𝑚
−𝑔𝜋 − 𝑔𝑚

   
𝑔𝑜 + 𝐺𝐿
−𝑔𝑜

| = (𝑔𝜋 + 𝑔𝑚)𝐺𝐿 = (1 + 𝛽)𝑔𝜋𝐺𝐿  

 |𝑌14
14| = |

𝑔𝑜 + 𝐺𝐿
−𝑔𝑜

   
−𝑔𝜋 − 𝑔𝑚

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑜 + 𝐺𝐸
| = 𝐺𝐿(𝑔𝜋 + 𝑔𝑚 + 𝐺𝐸)  

 𝐴𝑣|14
34 =

𝑣24

𝑣14
=

(𝑔𝜋+𝑔𝑚)𝐺𝐿

𝐺𝐿(𝑔𝜋+𝑔𝑚+𝐺𝐸)
=

𝑔𝜋+𝑔𝑚

𝑔𝜋+𝑔𝑚+𝐺𝐸
=

(1+𝛽)𝑅𝐸

𝑟𝜋+(1+𝛽)𝑅𝐸
≅ 1  (3.100) 

 The current gain [34-41] between the output terminals 3 & 4 and the input terminals 

1 & 4 of BJT phase-splitter circuit in Fig. 3.6  is written as; 

 𝐴𝑖|14
34 =

𝑖2

𝑖1
= 𝑔𝑛(3 − 4)𝑠𝑔𝑛(1 − 4)(−1)12

|𝑌34
14|

|𝑌4
4|
𝐺𝐸 =

|𝑌34
14|

|𝑌4
4|
𝐺𝐸  

          =
(1+𝛽)𝑔𝜋𝐺𝐿

𝑔𝜋𝐺𝐸𝐺𝐿
𝐺𝐸 = 1 + 𝛽  (3.101) 

The phase shift between voltages gains at the collector point and emitter point of a BJT 

phase-splitter circuit in Fig. 3.6 is given as; 

  𝐴𝑣|14
34 = −𝐴𝑣|14

24 = 𝐴𝑣|14
241800.   

  The output resistance [34-41] between the output terminals 3 & 4 of a BJT phase-

splitter amplifier in Fig. 3.6 is expressed as; 

 𝑅𝑜 = 𝑍34 =
|𝑌34
34|

|𝑌4
4|
𝐺𝐸=0

  (3.102) 

 |𝑌34
34| = |

𝑔𝜋 + 𝑔𝑠
𝑔𝑚

   
0

𝑔𝑜 + 𝐺𝐿
| = (𝑔𝑜 + 𝐺𝐿)(𝑔𝜋 + 𝑔𝑠) = 𝐺𝐿(𝑔𝜋 + 𝑔𝑠) 
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 |𝑌4
4|𝐺𝐸=0 = |

𝑔𝜋 + 𝑔𝑠
𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

   
0

𝑔𝑜 + 𝐺𝐿
−𝑔𝑜

   

−𝑔𝜋
−𝑔𝑚 − 𝑔𝑜

𝑔𝜋 + 𝑔𝑚 + 𝑔𝑜
| = |

𝑔𝜋 + 𝑔𝑠
𝑔𝑚

−𝑔𝜋 − 𝑔𝑚

   
0
𝐺𝐿
0
   

𝑔𝑠
𝐺𝐿
0
|  

       = 𝐺𝐿(𝑔𝜋 + 𝑔𝑚)𝑔𝑠  

 𝑅𝑜 = 𝑅34 =
𝐺𝐿(𝑔𝜋+𝑔𝑠)

𝐺𝐿(𝑔𝜋+𝑔𝑚)𝑔𝑠
 =

𝑔𝜋𝑔𝑠(𝑟𝜋+𝑟𝑠)

𝑔𝜋(1+)𝑔𝑠
 =

𝑟𝜋+𝑟𝑠

1+
 (3.103) 

The LTSpice simulation and Differential Amplifier using varies topologies have been 

discussed by Ibrahim, Hisham, Soh, Hamzah, Othman, Shilpa and Srilatha [42-43]. 

3.12 Simulation and Validation of Common Emitter Amplifier  

The Common Emitter Amplifier discussed in Fig. 3.7 is constructed in LTSpice shown 

in Fig. 3.11. The biasing of the BJT with amplification factor β =100 is set to give 

𝐼𝐸 =2.85 mA. This results in 𝑟𝑒 =
26𝑚𝑉

2.85 𝑚𝐴
 9  and 𝑟𝜋 = 919 . Thus the theoretical 

voltage gain obtained from Eq. (3.46) is  

 𝐴𝑣 = −𝑔𝑚𝑅𝐿 = −
100

919
2000 = −217.6  

 

Fig. 3.11 LTSpice Circuit for Common Emitter Amplifier 

The LTSpice plot is shown in Fig. 3.12. The 𝑣𝑂(𝑝𝑝) ≅ 440 𝑚𝑉 for an input voltage of 

2 mV is shown in the plot of the LTSpice circuit. So, the practically achieved gain from 

the plot is  

 𝐴𝑣 = −
440

2
= −220 

This value of the gain from the plot of LTSpice is close to the theoretical gain obtained 

from our Eq. (3.46) derived.  
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Fig. 3.12 LTSpice Response of the Common-Emitter Amplifier 

3.13 Conclusions 

All equations of the transfer function and self-port functions of the CE, CC, CB, and 

the phase-splitter amplifier circuits derived elegantly in this chapter using the floating 

admittance matrix approach corroborates the equations obtained using the conventional 

tools of KCL, KVL, and Thevenin’s. Norton’s etc. The advantage of computers can be 

taken for the complicated network to obtain the solution easily. Without the knowledge 

of electronics, even a pure mathematician can obtain the complete solution of any 

network, provided they know the matrix maneuvering technique. The LTSpice plot of 

Common Emitter Amplifier very closely results the voltage gain obtained theoretically. 
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Chapter 4 

 

Modelling of FET Amplifier  

 

4.1 Introduction: 
Before we start dealing with the modelling of the FET amplifier, the parameters that 

affect the model is discussed here. A simplified cross-section of symmetrical n-channel 

and p-channel JFETs is shown in Figs. 4.1 and 4.2, respectively [1-18]. In the n-channel 

between the two p-regions, the majority of carrier electrons flow from the source to the 

drain terminal. Hence, the JFET is called a majority-carrier device. It is normally ON 

device. The two gate terminals shown in Figs. 4.1 and 4.2 are connected together to 

form a single gate terminal. The gate-to-source i.e. 𝑣𝐺𝑆 or 𝑣𝑆𝐺  is always reverse biased 

that appears across the two p-n junctions from both upper and lower sides. This 

increases the depletion width and decreases the thickness of the channel opening, 

reducing the flow of negative or positive charge carriers (electrons/ holes) from the 

source to the drain. Thus, the drain current, 𝑖𝐷 flows in the direction of the flow of the 

holes and opposite to the flow of electrons.  

  

 

 

 

 

 

 

 

 

        Fig. 4.1 Physical Cross-section of a symmetrical n-channel JFET      
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        Fig. 4.2 Physical Cross-section of a symmetrical p-channel JFET 

 

 The current direction and voltage polarities in the p-channel JFET are reversed 

from those in the n-channel device. Also, the p-channel JFET is generally a lower 

frequency device than the n-channel JFET because the hole mobility is approximately 

two and half times lower than the electron mobility. Thus, the same dimension and 

external voltages applied across the nJFET produce more drain current than the pJFET.  

 Figure 4.3 (a) shows an n-channel JFET with zero volts applied to the gate i.e. 𝑣𝐺𝑆 =

0. If the source is at ground potential, and if a small positive drain voltage is applied, a 

linear drain current 𝑖𝐷 is produced between the source and drain terminals. Since the n-

channel acts essentially as a resistance, the 𝑖𝐷 versus 𝑣𝐷𝑆 characteristic for small 𝑣𝐷𝑆 

values are approximately linear, as shown in the Fig. 4.3 (a). 
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                  (a)                                                            (b) 

 

 

 

 

 

                                          

        (c) 

Fig. 4.3 Gate-to-channel space-charge regions and current-voltage characteristics for 

very small 𝑣𝐷𝑆 with (a) zero gate voltage, (b) small reverse-biased gate voltage, and (c) 

a gate voltage that achieves pinch-off. 

 If a reverse bis voltage (-V1) is applied to the gate of a pn JFET, the channel 

constriction increases, and the channel conductance changes as in Fig. 4.3 (b). If a 

further negative gate voltage is applied to the n-channel JFET in Fig. 4.3 (b) and (c), 

the gate-to-channel pn junction becomes more reverse-biased. The space-charge region 

widens, the channel region narrows, the resistance of the n-channel increases, and the 

slope of the 𝑖𝐷 versus 𝑣𝐷𝑆 curve, for small 𝑣𝐷𝑆, decreases. These effects are shown in 

Fig. 4.3 (b) by dotted lines. If a larger negative gate voltage is applied, the condition 

shown in Fig. 4.3 (c) can be achieved (-Vp). The reverse-biased gate-to-channel space-

charge region completely fills the channel region. This condition is known as pinch-

off. Since the depletion region isolates the source and drain terminals, the drain 

current at the physical pinch-off is essentially zero. The 𝑖𝐷 versus 𝑣𝐷𝑆 curves are 

shown by the dotted line in Fig. 4.3 (c). The gate voltage controls the current in the 
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channel. The control of the current in one part of the device by a voltage in another part 

of the device is the basic FET transistor action. The pn JFET is a “normally on,” or 

depletion mode device; that is, a voltage must be applied to the gate terminal to turn the 

device OFF. 

 Consider the situation in which the gate voltage is zero, 𝑣𝐺𝑆 = 0, and the drain voltage 

change is very small as shown in Fig. 4.4 (a). The channel is maximum open and hence 

maximum drain current flows [4]. As the reverse bias between gate-to-source is 

increased (-V1) as in Fig. 4.4 (b), the channel thickness decreases, and the drain current 

decreases. With increasing reverse bias, a point is reached when the depletion region 

occupies the complete channel width, and physically no channel exists between the 

drain and the source and hence no current can flow. This condition is called the physical 

pinch-off and is illustrated in Fig. 4.4 (c). The VP = −𝑉𝐺𝑆 denotes the voltage at which 

the physical pinch-off occurs.  

 VGS = VGS(OFF)|𝐼𝐷=0,𝑉𝐷𝑆=𝑣𝑒𝑟𝑦 𝑠𝑚𝑎𝑙𝑙
 (4.1) 

 

 

 

 

 

 

 

            (a)                                       (b)                                    (c) 

   Fig. 4.4 Illustration of physical pinch-off with increasing reverse VGS  

 When drain to source voltage is very small with 𝑉𝐺𝑆 = 0, the channel is maximum 

open and 𝑖𝐷 versus 𝑣𝐷𝑆 characteristic is linear as ondicated in Fig. 4.5 (a) [4]. As the 

drain voltage increases (positive), the gate-to-channel pn junction becomes reverse-

biased near the drain terminal, and the space-charge region widens, extending farther 

into the channel. The channel acts essentially as a variable resistor, and the effective 
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channel resistance increases as the space-charge region widen; therefore, the slope of 

the 𝑖𝐷 versus 𝑣𝐷𝑆 characteristic decreases are shown in Fig. 4.5 (b) by dotted lines. The 

effective channel resistance now varies along the channel length, and, since the channel 

current must be constant, the voltage drop through the channel becomes dependent on 

the position. 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                 (b)                                                      (c) 

Fig. 4.5 Gate-to-channel space-charge regions and current-voltage characteristics for 

zero gate voltage with (a) a small drain voltage, (b) a larger drain voltage, and (c) a 

drain voltage that achieves pinch-off at the drain terminal 

 If the drain voltage increases further, the condition shown in Fig. 4.5 (c) can result. 

The channel is electrically pinched-off at the drain terminal. Any further increase in 

drain voltage will not increase the drain current. The 𝑖𝐷-𝑣𝐷𝑆 Characteristic for this 

condition is also shown in the Fig. 4.5 (c). The drain voltage at pinch-off is 𝑣𝐷𝑆(𝑠𝑎𝑡). 

Therefore, for 𝑣𝐷𝑆 > 𝑣𝐷𝑆(𝑠𝑎𝑡)The JFET is biased in the saturation region, and the drain 

current for this ideal case is independent of 𝑣𝐷𝑆. 
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 All books use small-signal equivalent circuit models to analyse and design circuits 

incorporating FET and MOSFETs. Our approach to the analysis follows a mathematical 

model of the FET/ MOSFET using its floating admittance matrix. First, we write the 

expressions of both input and output currents as functions of the voltage of the FET/ 

MOSFET as in Fig. 4.6.  

    

𝐼𝐺 = 𝑓1(𝑉𝐺𝑆)

𝐼𝐷 = 𝑓2(𝑉𝐺𝑆, 𝑉𝐷𝑆)
} (4.2) 

 

 

 

 

 

 

     

   Fig. 4.6 Circuit Symbol Representation of three-terminal FETs 

 

4.2 FET Small-Signal Equivalent Model 

 The small fluctuation of DC current yields AC current. The small fluctuations in 

DC current [4] of Eq. (4.2) yield; 

 ∆𝐼𝐺 = 𝑖𝑔 =
𝜕𝐼𝐺

𝜕𝑉𝐺𝑆
∆𝑉𝐺𝑆 (4.3) 

 
𝜕𝐼𝐺

𝜕𝑉𝐺𝑆
=

∆𝐼𝐺

∆𝑉𝐺𝑆
= 𝑔𝑔 (4.4) 

 Now, ac gate current as a function of change in the gate to source voltage is 

expressed as; 

 𝑖𝑔 =
𝜕𝐼𝐺

𝜕𝑉𝐺𝑆
∆𝑉𝐺𝑆 = 𝑔𝑔𝑣𝑔𝑠 (4.5) 

 The total deviation in the drain current due to partial deviation in the gate to source 

voltage and also partial deviation in the drain to source voltage is expressed as;  

 ∆𝐼𝐷 = 𝑖𝑑 =
𝜕𝐼𝐷

𝜕𝑉𝐺𝑆
|
𝑉𝐷𝑆=𝑘

∆𝑉𝐺𝑆 +
𝜕𝐼𝐷

𝜕𝑉𝐷𝑆
|
𝑉𝐺𝑆=𝑘

∆𝑉𝐷𝑆 (4.6) 

 
𝜕𝐼𝐷

𝜕𝑉𝐺𝑆
≅ 

∆𝐼𝐷

∆𝑉𝐺𝑆
= 𝑔𝑚  (4.7) 

2 

1 

S 

3 

D 

G 
𝑣𝐷𝑆  

+ 

− 

𝑖𝐷  

𝑣𝐺𝑆  

 

 
+ 

− 2 

3 

D 

S 

G 

𝑣𝑆𝐷  

+ 

− 

𝑖𝐷  

𝑣𝑆𝐺  + 

− 
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𝜕𝐼𝐷

𝜕𝑉𝐷𝑆
=

∆𝐼𝐷

∆𝑉𝐷𝑆
= 𝑔𝑑 (4.8) 

Substituting Eqs. (4.7) and (4.8) in Eq. (4.6) yields; 

 𝑖𝑑 = 𝑔𝑚𝑣𝑔𝑠 + 𝑔𝑑𝑣𝑑𝑠  (4.9)

  The negligible amount of gate current 𝑖𝑔 from Eq. (4.5) that can flow even though 

the gate-to-source under reverse biased is a function of only the gate-to-source voltage, 

and hence it can be expressed in the circuit by a conductance 𝑔𝑔 across the input 

terminals, i.e. between the gate to the source.   

The drain current from Eq. (4.9) is the sum of two current sources; 

• Input voltage-controlled output current source (𝑔𝑚𝑣𝑔𝑠), and  

• Output voltage- output current source (𝑔𝑑𝑣𝑑𝑠) 

For developing the floating admittance matrix of the FET shown in Fig. 4.7, the small-

signal equivalent circuit of FET is drawn as in Fig. 4.7. Thus, the drain current is the 

algebraic sum of the two current sources, as in Fig. 4.7.  

 

 

 

controlled 

 

 

 

 

 

     Fig. 4.7 Current Source small-signal model of a 3-terminal FET 

 

  

 

 

 

 

 

      Fig. 4.8 Modified small-signal circuit model of a 3-terminal FET 

𝑖𝑠 = 𝑖3 

𝑖𝑑 = 𝑖2 𝑖𝑔 = 𝑖1 
 G  D 

 S 

𝑔𝑚𝑣𝑔𝑠 𝑔𝑑 𝑣𝑑𝑠 𝑔𝑔 

2 1 

3 

𝑣𝑔𝑠 

𝑖𝑠 = 𝑖3L 

𝑖𝑑 = 𝑖2 𝑖𝑔 = 𝑖1 

 G  D 

 S 

𝑔𝑚𝑣𝑔𝑠 𝑔𝑑𝑣𝑑𝑠 𝑔𝑔  

2 1 

3 

𝑣𝑔𝑠 𝑣𝑑𝑠 
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From Eq. (4.5), a conductance (𝑔𝑔) is connected between the gate and the source 

terminals, i.e. across the input terminals. Similarly, from Eq. (4.9), two current sources 

are connected across the drain and the source terminals as in Fig. 4.7.  

 Since the current source 𝑔𝑑𝑣𝑑𝑠 is across the self-voltage node voltage 𝑣𝑑𝑠 in Fig. 

4.7, it can be reduced in Fig. 4.8 [2-17] by a conductance 𝑔𝑑 after dividing the current 

source  𝑔𝑑𝑣𝑑𝑠  by 𝑣𝑑𝑠 as; 

  
𝑔𝑑𝑣𝑑𝑠

𝑣𝑑𝑠
= 𝑔𝑑  (4.10) 

Writing current equations [2-17] at all nodes of Fig. 4.8 yields; 

 𝑖𝑔 = 𝑖1 = 𝑔𝑔(𝑣𝑔 − 𝑣𝑠) = 𝑔𝑔𝑣1 + (0)𝑣2 − 𝑔𝑔𝑣3 (4.11) 

 𝑖𝑑 = 𝑖2 = 𝑔𝑑(𝑣𝑑 − 𝑣𝑠) + 𝑔𝑚(𝑣𝑔 − 𝑣𝑠) 

  = 𝑔𝑚𝑣1 + 𝑔𝑑𝑣2 − (𝑔𝑚 + 𝑔𝑑)𝑣3     (4.12) 

 𝑖𝑠 = 𝑖3 = 𝑔𝑔(𝑣𝑠 − 𝑣𝑔) − 𝑔𝑚(𝑣𝑔 − 𝑣𝑠) + 𝑔𝑑(𝑣𝑠 − 𝑣𝑑)  

                = −(𝑔𝑔 + 𝑔𝑚)𝑣1 − 𝑔𝑑𝑣2 + (𝑔𝑔 + 𝑔𝑚 + 𝑔𝑑)𝑣3 (4.13) 

Equations (4.11), (4.12), and (4.13) can be expressed in the form of a matrix [19-26] 

as; 

 

[
 
 
 
 
𝑖𝑔 = 𝑖1

𝑖𝑑 = 𝑖2

𝑖𝑠 = 𝑖3]
 
 
 
 

=

[
 
 
 
 
 
 

1
𝑔𝑔

𝑔𝑚

−𝑔𝑔 − 𝑔𝑚

   

2
0

𝑔𝑑

−𝑔𝑑

   

3
−𝑔𝑔

−𝑔𝑚 − 𝑔𝑑

𝑔𝑔 + 𝑔𝑚 + 𝑔𝑑]
 
 
 
 
 
 

[
 
 
 
 
 
 
𝑣𝑔 = 𝑣1

𝑣𝑑 = 𝑣2

𝑣𝑠 = 𝑣3 ]
 
 
 
 
 
 

   (4.14) 

Since, 𝑟𝑔 →very large, as the gate is always reverse biased, it is approximated to be 

infinity () and 𝑔𝑔 → 0. Hence, the floating admittance matrix of the FET only can be 

approximated as;   

 [𝑌] =

[
 
 
 
 
 
 

1
𝑔𝑔

𝑔𝑚

−𝑔𝑔 − 𝑔𝑚

   

2
0

𝑔𝑑

−𝑔𝑑

   

3
−𝑔𝑔

−𝑔𝑚 − 𝑔𝑑

𝑔𝑔 + 𝑔𝑚 + 𝑔𝑑]
 
 
 
 
 
 

≅

[
 
 
 
 
 
1
0

𝑔𝑚

−𝑔𝑚

   

2
0

𝑔𝑑

−𝑔𝑑

   

3
0

−𝑔𝑚 − 𝑔𝑑

𝑔𝑚 + 𝑔𝑑 ]
 
 
 
 
 

  (4.15) 
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Though 𝑔𝑔 is negligibly small w.r.t. the 𝑔𝑚 and 𝑔𝑑, yet we will carry the same for the 

analysis of different types of amplifier configurations. Hence, the coefficient matrix 

from the floating admittance matrix [18-24] of the FET in Eq. (4.14) is written as; 

 [𝑌𝐷] =

[
 
 
 
 
 
 

1
𝑔
𝑔

𝑔𝑚

−𝑔𝑔 − 𝑔𝑚

   

2
0

𝑔𝑑

−𝑔𝑑

   

3
−𝑔𝑔

−𝑔𝑚 − 𝑔𝑑

𝑔𝑔 + 𝑔𝑚 + 𝑔𝑑]
 
 
 
 
 
 

[
 
 
 
 
 
1

2

3 ]
 
 
 
 
 

  (4.16)  

Having developed the floating admittance matrix (FAM) model of the FET as an active 

device in Eq. (4.46), we can use this model in deriving all transfer functions of any 

amplifier configurations of the FET.  

 

4.3 Circuit Model of FET Common-Source Amplifier  

 The circuit of a common-source amplifier is shown in Fig. 4.9, where coupling and 

bypass capacitors have been added along with the signal source and load resistors. 

These coupling and bypass capacitors do not behave as short circuits at low frequencies.  

Since, 𝑣𝑠 is also used for the voltage at the source terminal of the JFET, the signal 

voltage will be represented by 𝑣𝑖  in the JFET and MOSFET amplifiers.  

 

 

              

 

 

 

 

 

 

                     Fig. 4.9 Circuit Model of a Common-Source FET Amplifier 

  The coupling capacitors CG and CD isolate the amplifier dc (VDD) from the signal 

source and the load. The bypass capacitor provides the low impedance path for the ac 

signal so that the presence of the source resistor 𝑅𝑆  does not reduce the gain of the 

amplifier. The common-source amplifier (CS) is similar to the common emitter (CE) 

D 

S 

IG = 0 

+VDD 

RD 

𝑣𝑜 

R2 

𝑣𝑖 

CD 

CG 

RS 

ID 

ID + 

− 

R1 

CS 

  RL 𝑟𝑠 
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amplifier configuration. The common-source amplifier configuration is perhaps the 

most widely used configuration of the FET amplifier.  

 For the small-signal analysis of the FET amplifier, the coupling, bypass capacitors, 

and dc supply 𝑉𝐷𝐷 are replaced by short circuits. After these replacements, the circuit 

is called the ac circuit, as shown in Fig. 4.10. 

 

 

 

 

 

                                    

                       

 

                     Fig. 4.10 AC Circuit Model of a CS JFET Amplifier 

 

 The floating admittance matrix of the JFET only [18-24] used in Fig. 4.10 is 

rewritten here as; 

  [𝑌𝐷] =

[
 
 
 
 
 
 

1
𝑔
𝑔

𝑔𝑚

−𝑔𝑔 − 𝑔𝑚

      

2
0

𝑔𝑑

−𝑔𝑑

      

2
−𝑔𝑔

−𝑔𝑚 − 𝑔𝑑

𝑔𝑔 + 𝑔𝑚 + 𝑔𝑑]
 
 
 
 
 
 

[
 
 
 
 
 
1

2

3 ]
 
 
 
 
 

 (4.17) 

 The floating admittance matrix of the passive components used in the CS amplifier 

in Fig. 4.10 is written as; 

 [𝑌𝑔𝑠,𝐺𝐺,𝐺𝐷,𝐺𝐿] =

[
 
 
 
 
 

1
𝑔𝑠 + 𝐺𝐺

0

−𝑔𝑠 − 𝐺𝐺

       

2
0

𝐺𝐷 + 𝐺𝐿

−𝐺𝐷 − 𝐺𝐿

       

3
−𝑔𝑠 − 𝐺𝐺

−𝐺𝐷 − 𝐺𝐿

𝑔𝑠 + 𝐺𝐺 + 𝐺𝐷 + 𝐺𝐿]
 
 
 
 
 

 

[
 
 
 
 
 
1

2

3 ]
 
 
 
 
 

 (4.18) 

Now, Eqs (4.17) and (4.18) are merged together as per node specifications to yield the 

complete floating admittance matrix of the common-source amplifier in Fig. 4.10 as;  

D 

S 
RD 

𝑣𝑜 

RG 

𝑣𝑖
CE 

𝑖𝑑  

  RL 𝑟𝑠 

G 

3 

𝑖𝑠  

2 

1 

R23 R13 
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[
 
 
 
 
 
 

1
𝑔𝑔 + 𝑔𝑠 + 𝐺𝐺

𝑔𝑚

−𝑔𝑔 − 𝑔𝑚 − 𝑔𝑠 − 𝐺𝐺

       

2
0

𝑔𝑑 + 𝐺𝐷 + 𝐺𝐿

−𝑔𝑑 − 𝐺𝐷 − 𝐺𝐿

       

3
−𝑔𝑔 − 𝑔𝑠 − 𝐺𝐺

−𝑔𝑚 − 𝑔𝑑 − 𝐺𝐷 − 𝐺𝐿

𝑔𝑔 + 𝑔𝑚 + 𝑔𝑑 + 𝑔𝑠 + 𝐺𝐺 + 𝐺𝐷 + 𝐺𝐿]
 
 
 
 
 
 

[
 
 
 
 
 
1

2

3 ]
 
 
 
 
 

  

   (4.19) 

 The voltage gain [18-24] between the output terminals 2 & 3 and the input terminals 

1 & 3 of a common-source amplifier in Fig. 4.10 using Eq. (4.19) is expressed as;  

 𝐴𝑣|13
23 = 𝑠𝑔𝑛(2 − 3)𝑠𝑔𝑛(1 − 3)(−1)9

|𝑌23
13|

|𝑌13
13|
= −

|𝑌23
13|

|𝑌13
13|

  (4.20) 

From Eq. (4.19), |𝑌13
13| = 𝑔𝑑 + 𝐺𝐷 + 𝐺𝐿 and  |𝑌23

13| = 𝑔𝑚 

 𝐴𝑣|13
23 =

𝑣23

𝑣13
=

𝑣2

𝑣1
= −

𝑔𝑚

𝑔𝑑+𝐺𝐷+𝐺𝐿
= −gm(rd ∥ RD ∥ RL) (4.21)  

As 𝑟𝑑 ≫ 𝑅𝐷 & 𝑅𝐿, Eq. (4.21) reduces to   

 𝐴𝑣|13
23 = −𝑔𝑚(𝑅𝐿) = −𝑔𝑚(R𝐷 ∥ RL)   (4.22) 

 The input resistance [18-24] between the input terminals 1 & 3 of a common-source 

amplifier in Fig. 4.10 using Eq. (4.18) is expressed as; 

 𝑅𝑖𝑛 = 𝑅13 =
|𝑌13
13|

|𝑌3
3|
𝑔𝑠=0

    (4.23) 

From Eq. (4.19), |𝑌13
13| = 𝑔𝑑 + 𝐺𝐷 + 𝐺𝐿  

 |𝑌3
3|𝑔𝑠=0 = |

𝑔𝑔 + 𝑔𝑠 + 𝐺𝐺

𝑔𝑚

    
0

𝐺𝐷 + 𝐺𝐿

| = (𝑔𝑔 + 𝐺𝐺)(𝑔𝑑 + 𝐺𝐷 + 𝐺𝐿)  

 𝑅𝑖𝑛 = 𝑅13 =
𝑔𝑑+𝐺𝐷+𝐺𝐿

(𝑔𝑔+𝐺𝐺)(𝑔𝑑+𝐺𝐷+𝐺𝐿)
= 𝑟𝑔 ∥ 𝑅𝐺 ≅ 𝑅𝐺  as 𝑅𝐺 ≪ 𝑟𝑔 (4.24) 

From Fig. 4.11, 𝑣13 =
𝑅𝑖

𝑟𝑠+𝑅𝑖
𝑣𝑖 =

𝑅𝐺

𝑟𝑠+𝑅𝐺
𝑣𝑖 =

𝑅𝐺

𝑅𝐺
𝑣𝑖 = 𝑣𝑖  

Since the internal resistance 𝑟𝑠 of the input voltage source is very low i.e. 𝑟𝑠 ≪ 𝑅𝐺 , 

above equation simplifies to 

 
𝑣13

𝑣𝑖
= 1  (4.25) 

 

 

 

 Fig. 4.11 Effective Voltage Gain Model with 𝑅𝑖 = 𝑅13 = 𝑅𝐺  for CS Amplifier 

 

𝑣𝑖 

1 

3 

𝑅𝑖 𝑅𝐺  

𝑟𝑠 
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 𝐴𝑣𝑠 =
𝑣23

𝑣13
𝑥
𝑣13

𝑣𝑖
=

𝑣23

𝑣𝑖
= −𝑔𝑚(𝑟𝑑 ∥ RD ∥ RL) ≅ −𝑔𝑚(𝑅𝐷 ∥ 𝑅𝐿)   (4.26) 

  The output resistance [18-24] between the output terminals 2 and 3 of a common-

source amplifier in Fig. 4.10 using Eq. (4.19) is expressed as; 

 𝑅𝑜 = 𝑅23 =
|𝑌23
23|

|𝑌3
3|
𝐺𝐿=0

  (4.27) 

From Eq. (4.18), |𝑌23
23| = 𝑔𝑔 + 𝑔𝑠 + 𝐺𝐺   

 |𝑌3
3|𝐺𝐿=0 = |

𝑔𝑔 + 𝑔𝑠 + 𝐺𝐺

𝑔𝑚

    
0

𝑔𝑑 + 𝐺𝐷 + 𝐺𝐿

| = (𝑔𝑑 + 𝐺𝐷)(𝑔𝑔 + 𝑔𝑠 + 𝐺𝐺)  

 𝑅𝑜 = 𝑅23 =
𝑔𝑔+𝑔𝑠+𝐺𝐺

(𝑔𝑑+𝐺𝐷)(𝑔𝑔+𝑔𝑠+𝐺𝐺)
=

1

(𝑔𝑑+𝐺𝐷)
= 𝑟𝑑 ∥ 𝑅𝐷  (4.28) 

  The current gain [18-24] between the output terminals 2 & 3 and the input 

terminals 1 & 3 of a common-source amplifier in Fig. 4.10 using Eq. (4.19) is expressed 

as;  

 𝐴𝑖|13
23 = 𝑠𝑔𝑛(2 − 3)𝑠𝑔𝑛(1 − 3)(−1)9

|𝑌23
13|

|𝑌3
3|
𝐺𝐿 = −

|𝑌23
13|

|𝑌3
3|
𝐺𝐿 (4.29) 

From Eq. (4.19), |𝑌23
13| = 𝑔𝑚  

 |𝑌3
3| = |

𝑔𝑔 + 𝑔𝑠 + 𝐺𝐺

𝑔𝑚

    
0

𝑔𝑑 + 𝐺𝐷 + 𝐺𝐿

| = (𝑔𝑑 + 𝐺𝐷 + 𝐺𝐿)(𝑔𝑔 + 𝑔𝑠 + 𝐺𝐺)  

 𝐴𝑖|13
23 = −

|𝑌23
13|

|𝑌3
3|
𝐺𝐿 = −

𝑔𝑚𝐺𝐿

(𝑔𝑑+𝐺𝐷+𝐺𝐿)(𝑔𝑔+𝑔𝑠+𝐺𝐺)
= −

𝑔𝑚𝐺𝐿

𝐺𝐷+𝐺𝐿
(𝑟𝑔 ∥ 𝑟𝑠 ∥ 𝑅𝐺) 

   = −
𝑔𝑚𝑅𝐷

𝑅𝐷+𝑅𝐿
𝑟𝑠 (4.30) 

  The power gain [18-24] between the output terminals 2 & 3 and the input 

terminals 1 & 3 of the common-source amplifier in Fig. 4.10 is written as; 

 𝐴𝑃|13
23 = 𝐴𝑣|13

23. 𝐴𝑖|13
23 = −𝑔𝑚(𝑅𝐷 ∥ 𝑅𝐿) (−

𝑔𝑚𝑅𝐷

𝑅𝐷+𝑅𝐿
𝑟𝑠) 

       = 𝑔𝑚
2 (𝑅𝐷 ∥ RL) (

𝑅𝐷

𝑅𝐷+𝑅𝐿
𝑟𝑠)     (4.31) 

 

4.4 Circuit Model of FET Common-Drain Amplifier  

The common-drain amplifier is more popularly known as a source follower. It is similar 

to the emitter follower amplifier circuit as the source terminal follows the voltage at the 
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gate (input) terminal. The basic circuit of a common-drain amplifier is shown in Fig. 

4.12. The ac circuit of the common-drain amplifier is drawn as in Fig. 4.13.  

 

  

   

    

 

 

 

 

 

                      Fig. 4.12 Circuit Model of Source Follower Amplifier  

 

 

 

 

 

 

 

          Fig. 4.13 AC circuit Model of a Source Follower Amplifier  

 

 The floating admittance matrix of the JFET [18-24] only in Fig. 4.12 is written as; 

 [𝑌𝐷] =

[
 
 
 
 
 
 

1
𝑔𝑔

𝑔𝑚

−𝑔𝑔 − 𝑔𝑚

   

2
0

𝑔𝑑

−𝑔𝑑

   

3
−𝑔𝑔

−𝑔𝑚 − 𝑔𝑑

𝑔𝑔 + 𝑔𝑚 + 𝑔𝑑]
 
 
 
 
 
 

[
 
 
 
 
 
1

2

3 ]
 
 
 
 
 

 (4.32)

  

The floating admittance matrix of the passive components in Fig. 4.13 is written as; 

D 

S 

IG = 0 

+VDD 

𝑣𝑜 R2 

𝑣𝑖 

C2 

C1 

RS 

R1 

C3 

  RL 

𝑟𝑠 

RD 

D 

S 𝑣𝑜 

GG 

𝑣𝑖 
GS   GL 

𝑔𝑠 

2 

3 

1 G 

2 R12 R32 
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 [𝑌𝑔𝑠,𝐺𝐺,𝐺𝐷,𝐺𝐿] =

[
 
 
 
 
 

1
𝑔𝑠 + 𝐺𝐺

−𝑔𝑠 − 𝐺𝐺

0

       

2
−𝑔𝑠 − 𝐺𝐺

𝑔𝑠 + 𝐺𝐺 + 𝐺𝑆 + 𝐺𝐿

−𝐺𝑆 − 𝐺𝐿

       

3
0

−𝐺𝑆 − 𝐺𝐿

𝐺𝑆 + 𝐺𝐿 ]
 
 
 
 
 

 

[
 
 
 
 
 
1

2

3 ]
 
 
 
 
 

 (4.33) 

Now, Eqs. (4.32) and (4.33) are merged together as per node specifications to yield the 

overall floating admittance matrix of the common-drain amplifier as;  

 

[
 
 
 
 
 
 

1
𝑔𝑔 + 𝑔𝑠 + 𝐺𝐺

𝑔𝑚 − 𝑔𝑠 − 𝐺𝐺

−𝑔𝑔 − 𝑔𝑚

       

2
−𝑔𝑠 − 𝐺𝐺

𝑔𝑑 + 𝑔𝑠 + 𝐺𝐺 + 𝐺𝑆 + 𝐺𝐿

−𝑔𝑑 − 𝐺𝑆 − 𝐺𝐿

       

2
−𝑔𝑔

−𝑔𝑚 − 𝑔𝑑 − 𝐺𝑆 − 𝐺𝐿

𝑔𝑔 + 𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆 + 𝐺𝐿]
 
 
 
 
 
 

[
 
 
 
 
 
1

2

3 ]
 
 
 
 
 

  (4.34) 

  The voltage gain [18-24] between the output terminals 3 & 2 and the input 

terminals 1 & 2 of the common-drain amplifier in Fig. 4.13 is expressed using Eq. (4.34) 

as;   

 𝐴𝑣|12
32 = 𝑠𝑔𝑛(3 − 2)𝑠𝑔𝑛(1 − 2)(−1)8

|𝑌32
12|

|𝑌12
12|
= −

|𝑌32
12|

|𝑌12
12|

 (4.35) 

From Eq. (4.34), |𝑌32
12| = −𝑔𝑔 − 𝑔𝑚 

 |𝑌12
12| = 𝑔𝑔 + 𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆 + 𝐺𝐿  

  𝐴𝑣|12
32 =

𝑣32

𝑣12
= −

−𝑔𝑚

𝑔𝑚+𝑔𝑑+𝐺𝑆+𝐺𝐿
= −

−𝑔𝑚

𝑔𝑚+𝐺𝑆+𝐺𝐿
= 𝑔𝑚 (

1

𝑔𝑚
∥ 𝑅𝑆 ∥ 𝑅𝐿) 

      = 𝑔𝑚(𝑅𝑆 ∥ 𝑅𝐿)  (4.36) 

  The input resistance [18-24] between the input terminals 1 & 2 of a common-

drain amplifier in Fig. 4.13 using Eq. (4.34) is expressed as; 

 𝑅𝑖𝑛 = 𝑅12 =
|𝑌12
12|

|𝑌3
3|
𝑔𝑠=0

   (4.37) 

From Eq. (4.34), |𝑌12
12| = 𝑔𝑔 + 𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆 + 𝐺𝐿  

 |𝑌2
2|𝑔𝑠=0 = |

𝑔𝑔 + 𝑔𝑠 + 𝐺𝐺

−𝑔𝑚

    

0

𝑔𝑔 + 𝑔𝑑 + 𝑔𝑚 + 𝐺𝑆 + 𝐺𝐿
|  

   = (𝑔𝑔 + 𝑔𝑑 + 𝑔𝑚 + 𝐺𝑆 + 𝐺𝐿)(𝑔𝑔 + 𝐺𝐺)   

  𝑅𝑖𝑛 = 𝑅12 =
𝑔𝑔+𝑔𝑚+𝑔𝑑+𝐺𝑆+𝐺𝐿

(𝑔𝑔+𝑔𝑑+𝑔𝑚+𝐺𝑆+𝐺𝐿)(𝑔𝑔+𝐺𝐺)  
= 𝑟𝑔 ∥ 𝑅𝐺 ≅ 𝑅𝐺 (4.38) 

 The overall voltage gain [18-24] including voltage source resistance 𝑟𝑠 can be 

obtained using Fig. 4.14. 
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 Fig. 4.14 Effective Voltage Gain Model with  𝑅𝑖 = 𝑅12 = 𝑅𝐺 for CD Amp 

 𝑣12 =
𝑅𝑖

𝑟𝑠+𝑅𝑖
𝑣𝑖 =

𝑅𝐺

𝑟𝑠+𝑅𝐺
𝑣𝑖 ≅ 𝑣𝑖 

 
𝑣12

𝑣𝑖
= 1  

 𝐴𝑣𝑠 =
𝑣32

𝑣12
𝑥
𝑣12

𝑣𝑖
=

𝑣32

𝑣𝑖
= 𝑔𝑚(RS ∥ RL)   (4.39) 

  The output resistance [18-24] between the output terminals 3 & 2 of a common-

drain amplifier in Fig. 4.13 using Eq. (4.34) is expressed as;   

 𝑅𝑜 = 𝑅32 =
|𝑌32
32|

|𝑌3
3|
𝐺𝐿=0

 (4.40) 

From Eq. (4.34), |𝑌32
32| = 𝑔𝑔 + 𝑔𝑠 + 𝐺𝐺  

 |𝑌2
2|𝐺𝐿=0 = |

𝑔𝑔 + 𝑔𝑠 + 𝐺𝐺

−𝑔𝑔 − 𝑔𝑚

    

−𝑔𝑔

𝑔𝑔 + 𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆 + 𝐺𝐿

|  

                   = (𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆)(𝑔𝑠 + 𝐺𝐺)   = (𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆)(𝑔𝑠 + 𝐺𝐺) 

     = (𝑔𝑚 + 𝐺𝑆)(𝑔𝑠 + 𝐺𝐺)  

 |𝑌2
2|𝐺𝐿=0 = (𝑔𝑚 + 𝐺𝑆)(𝑔𝑠 + 𝐺𝐺)   

 𝑅𝑜 = 𝑅23 =
𝑔𝑠+𝐺𝐺

(𝑔𝑚+𝐺𝑆)(𝑔𝑠+𝐺𝐺) 
=

1

(𝑔𝑚+𝐺𝑆) 
=

1

𝑔𝑚 
∥ 𝑅𝑆 ≅ 

1

𝑔𝑚 
  (4.41) 

A Common-source amplifier's output resistance is extremely low.

   

 The current gain [18-24] between the output terminals 3 & 2 and the input terminals 

1 & 2 of a common-drain amplifier in Fig. 4.13 using Eq. (4.34) is expressed as; 

 𝐴𝑖|12
32 = 𝑠𝑔𝑛(3 − 2)𝑠𝑔𝑛(1 − 2)(−1)8

|𝑌32
12|

|𝑌2
2|
𝐺𝐿 = −

|𝑌32
12|

|𝑌2
2|
𝐺𝐿  (4.42) 

From Eq. (4.34), |𝑌32
12| = −𝑔𝑔 − 𝑔𝑚  

 |𝑌2
2| = |

𝑔𝑔 + 𝑔𝑠 + 𝐺𝐺

−𝑔𝑔 − 𝑔𝑚

    

0

𝑔𝑔 + 𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆 + 𝐺𝐿
|  

     = (𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆 + 𝐺𝐿)𝑔𝑠  

𝑣𝑖 

   rs 1 

RG 

2 

𝑅𝑖 = 
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 𝐴𝑖|12
32 = −

−𝑔𝑚

(𝑔𝑚+𝑔𝑑+𝐺𝑆+𝐺𝐿)𝑔𝑠
𝐺𝐿 =

𝑔𝑚𝑟𝑠

𝑔𝑚+𝑔𝑑+𝐺𝑆+𝐺𝐿
𝐺𝐿 =

𝑔𝑚𝑟𝑠

𝑔𝑚+𝐺𝑆+𝐺𝐿
𝐺𝐿  

   =
𝑔𝑚𝑅𝑆𝑟𝑠

{1+𝑔𝑚(𝑅𝑆∥𝑅𝐿)}(𝑅𝑆+𝑅𝐿)
 (4.43) 

  The power gain [18-24] between the output terminals 3 & 2 and the input 

terminals 1 & 2 of a common-drain amplifier in Fig. 4.13 is written as; 

 𝐴𝑃|12
32 = 𝐴𝑣|12

32. 𝐴𝑖|12
32 = {𝑔𝑚(𝑅𝑆 ∥ 𝑅𝐿) }

𝑔𝑚𝑟𝑠𝑅𝑆

{1+𝑔𝑚(𝑅𝑆∥𝑅𝐿)}(𝑅𝑆+𝑅𝐿)
 (4.44) 

Equation (4.44) indicates that the power of a common-drain amplifier is very low. 

 

4.5 Circuit Model of FET Common-Gate Amplifier  

The simple circuit of a common-gate amplifier circuit is shown in Fig. 4.15. This 

configuration is used to match low input resistance to high output resistance. Its ac 

circuit is drawn in Fig. 4.16.  

 

 

 

 

 

 

 

          Fig. 4.15 Common-Gate Circuit Model of a FET Amplifier 

 

 

 

 

 

 

 

              Fig. 4.16 AC circuit model of a FET CG Amplifier 

 

 The floating admittance matrix of only the JFET in Fig.  4.16 is once again 

repeated for ease in the further analysis as; 

C2 C1 

𝑣𝑖 

𝑟𝑠 
D 

G RL 

VDD 

RD 
RS 

VGG 

3 2 

𝑣𝑖 

𝑟𝑠 

S D

G 
RLRDRS

1 

R31 
R21 
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  [𝑌𝐷] =

[
 
 
 
 
 
 

1
𝑔𝑔

𝑔𝑚

𝑔𝑔 + 𝑔𝑚

    

2
0

𝑔𝑑

−𝑔𝑑

    

3
−𝑔𝑔

−𝑔𝑚 − 𝑔𝑑

𝑔𝑔 + 𝑔𝑚 + 𝑔𝑑

    

]
 
 
 
 
 
 

[
 
 
 
 
 
1

2

3 ]
 
 
 
 
 

 (4.45) 

 The floating admittance matrix [18-24] of the passive circuits used in the amplifier 

of Fig. 4.14 is once again repeated for ease in the further analysis as; 

[𝑌𝑔𝑠,𝐺𝑆,𝐺𝐷,𝐺𝐿] =

[
 
 
 
 
 

1
𝑔𝑠 + 𝐺𝑆 + 𝐺𝐷 + 𝐺𝐿

−𝐺𝐷 − 𝐺𝐿

−𝑔𝑠 − 𝐺𝑆

    

2
−𝐺𝐷 − 𝐺𝐿

𝐺𝐷 + 𝐺𝐿

0

    

3
−𝑔𝑠 − 𝐺𝑆

0

𝑔𝑠 + 𝐺𝑆 ]
 
 
 
 
 

[
 
 
 
 
 
1

2

3 ]
 
 
 
 
 

 (4.46) 

Now, Eqs. (4.45) and (4.46) are merged together to form the overall floating admittance 

matrix of the common-gate amplifier in Fig. 4.16 as;  

 

[
 
 
 
 
 
 

1
𝑔𝑔 + 𝑔𝑠 + 𝐺𝑆 + 𝐺𝐷 + 𝐺𝐿

𝑔𝑚 − 𝐺𝐷 − 𝐺𝐿

−𝑔𝑔 − 𝑔𝑚 − 𝑔𝑠 − 𝐺𝑆

    

2
−𝐺𝐷 − 𝐺𝐿

𝑔𝑑 + 𝐺𝐷 + 𝐺𝐿

−𝑔𝑑

    

3
−𝑔𝑔 − 𝑔𝑠 − 𝐺𝑆

−𝑔𝑚 − 𝑔𝑑

𝑔𝑔 + 𝑔𝑚 + 𝑔𝑑 + 𝑔𝑠 + 𝐺𝑆]
 
 
 
 
 
 

[
 
 
 
 
 
1

2

3 ]
 
 
 
 
 

 (4.47) 

Assuming 𝑔𝑔 = 1/𝑔𝑔 very small, Eq. (4.47) reduces as;  

 

[
 
 
 
 
 

1
𝑔𝑠 + 𝐺𝑆 + 𝐺𝐷 + 𝐺𝐿

𝑔𝑚 − 𝐺𝐷 − 𝐺𝐿

−𝑔𝑚 − 𝑔𝑠 − 𝐺𝑆

    

2
−𝐺𝐷 − 𝐺𝐿

𝑔𝑑 + 𝐺𝐷 + 𝐺𝐿

−𝑔𝑑

    

3
−𝑔𝑠 − 𝐺𝑆

−𝑔𝑚 − 𝑔𝑑

𝑔𝑚 + 𝑔𝑑 + 𝑔𝑠 + 𝐺𝑆]
 
 
 
 
 

[
 
 
 
 
 
1

2

3 ]
 
 
 
 
 

 (4.48) 

 The voltage gain [18-24] between the output terminals 2 & 1 and the input terminals 

3 & 1 of a common-gate amplifier in Fig. 4.16 using Eq. (4.48) is expressed as;  

 𝐴𝑣|31
21 = 𝑠𝑔𝑛(2 − 1)𝑠𝑔𝑛(3 − 1)(−1)7

|𝑌21
31|

|𝑌31
31|
= −

|𝑌21
31|

|𝑌31
31|

 (4.49) 

From Eq. (4.48), |𝑌21
31| = −𝑔𝑚 − 𝑔𝑑  

 |𝑌31
31| = 𝑔𝑑 + 𝐺𝐷 + 𝐺𝐿  

 𝐴𝑣|31
21 = −

|𝑌21
31|

|𝑌31
31|
=

𝑣21

𝑣31
= −

−𝑔𝑚−𝑔𝑑

𝑔𝑑+𝐺𝐷+𝐺𝐿
=

𝑔𝑚

𝐺𝐷+𝐺𝐿
= 𝑔𝑚(𝑅𝐷 ∥ 𝑅𝐿) (4.50) 
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  The input resistance [18-24] between the input terminals 3 & 1 of a common-gate 

amplifier in Fig. 4.16 using Eq. (4.48) is expressed as;  

 𝑅𝑖𝑛 = 𝑅31 =
|𝑌31
31|

|𝑌1
1|
𝑔𝑠=0

   (4.51) 

From Eq. (4.48), |𝑌1
1|𝑔𝑠=0 = |

𝑔𝑑 + 𝐺𝐷 + 𝐺𝐿

−𝑔𝑑

    

−𝑔𝑚 − 𝑔𝑑

𝑔𝑚 + 𝑔𝑑 + 𝑔𝑠 + 𝐺𝑆

| 

   = |

𝑔𝑑 + 𝐺𝐷 + 𝐺𝐿

−𝑔𝑑

    

−𝑔𝑚 − 𝑔𝑑

𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆

| = |

𝐺𝐷 + 𝐺𝐿

−𝑔𝑑

    

𝐺𝑆

𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆

|  

   = |
𝐺𝐷 + 𝐺𝐿

0

    

𝐺𝑆

𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆

| = (𝐺𝐷 + 𝐺𝐿)(𝑔𝑚 + 𝐺𝑆)   

 𝑅𝑖𝑛 = 𝑅31 =
𝑔𝑑+𝐺𝐷+𝐺𝐿

(𝐺𝐷+𝐺𝐿)(𝑔𝑚+𝐺𝑆) 
=

𝐺𝐷+𝐺𝐿

(𝐺𝐷+𝐺𝐿)(𝑔𝑚+𝐺𝑆) 
=

1

𝑔𝑚+𝐺𝑆  
=

1

𝑔𝑚
∥ 𝑅𝑆 

   ≅ 
1

𝑔𝑚
   (4.52) 

Equation (4.52) indicates that the output resistance of a common-gate amplifier is very 

low. 

 The overall voltage gain, including voltage source resistance 𝑟𝑠 can be obtained 

from Fig. 4.17. 

 

 

 

                 

      Fig. 4.17 Effective Voltage Gain Model with 𝑅𝑖 = 𝑅31 =
1

𝑔𝑚
 for CG Amp 

From Fig. 4.17, 𝑣31 =
𝑅𝑖

𝑟𝑠+𝑅𝑖
𝑣𝑖 =

1

𝑔𝑚

𝑟𝑠+
1

𝑔𝑚

𝑣𝑖 = 𝑣𝑖  

 
𝑣31

𝑣𝑖
= 1  

 𝐴𝑣𝑠 =
𝑣21

𝑣31
𝑥
𝑣31

𝑣𝑖
=

𝑣21

𝑣𝑖
= 𝑔𝑚(𝑅𝐷 ∥ 𝑅𝐿)  (4.53) 

 The output resistance [18-24] between the output terminals 2 & 1 of a common-

gate amplifier in Fig. 4.16 using Eq. (4.48) is expressed as; 

 𝑅𝑜 = 𝑅21 =
|𝑌21
21|

|𝑌1
1|
𝐺𝐿=0

 (4.54) 

𝑣𝑖 

   rs 3 
1

𝑔𝑚
 

1 

𝑅𝑖 = 
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 From Eq. (4.48), |𝑌1
1|𝐺𝐿=0 = |

𝑔𝑑 + 𝐺𝐷 + 𝐺𝐿

−𝑔𝑑

    

−𝑔𝑚 − 𝑔𝑑

𝑔𝑚 + 𝑔𝑑 + 𝑔𝑠 + 𝐺𝑆

| 

      = |

𝑔𝑑 + 𝐺𝐷

𝐺𝐷

    

−𝑔𝑚 − 𝑔𝑑

𝑔𝑠 + 𝐺𝑆

| = |

𝑔𝑑 + 𝐺𝐷

𝐺𝐷

    

−𝑔𝑚 − 𝑔𝑑

𝑔𝑠 + 𝐺𝑆

|    

  = (𝐺𝑆 + 𝑔𝑠)(𝑔𝑑 + 𝐺𝐷) + 𝐺𝐷(𝑔𝑚 + 𝑔𝑑)   

|𝑌21
21| = 𝑔𝑚 + 𝑔𝑑 + 𝑔𝑠 + 𝐺𝑆  

 𝑅𝑜 = 𝑅21 =
𝑔𝑚+𝑔𝑑+𝑔𝑠+𝐺𝑆

(𝐺𝑆+𝑔𝑠)(𝑔𝑑+𝐺𝐷)+𝐺𝐷(𝑔𝑚+𝑔𝑑)
=

𝑔𝑚+𝑔𝑠+𝐺𝑆

(𝐺𝑆+𝑔𝑠)𝐺𝐷+𝑔𝑚𝐺𝐷
 

   =
𝑔𝑚+𝑔𝑠+𝐺𝑆

{𝐺𝑆+𝑔𝑠+𝑔𝑚}𝐺𝐷
= 𝑅𝐷 (4.55) 

Since the internal resistance of a voltage source is 𝑟𝑠 is very small w.r.t. 𝑟𝑑 and hence  

 𝑅𝑜 = 𝑅21 = 𝑟𝑑 ∥ 𝑅𝐷 = 𝑅𝐷 (4.56) 

 The current gain [18-24] between the output terminals 2 & 1 and  the input 

terminals 3 & 1 of a common-gate amplifier in Fig. 4.16 using Eq. (4.48) is expressed 

as; 

  𝐴𝑖|31
21 = 𝑠𝑔𝑛(2 − 1)𝑠𝑔𝑛(3 − 1)(−1)7

|𝑌21
31|

|𝑌1
1|
𝐺𝐿 = −

|𝑌21
31|

|𝑌1
1|
𝐺𝐿 (4.57) 

From Eq. (4.48), |𝑌1
1| = |

𝑔𝑑 + 𝐺𝐷 + 𝐺𝐿

−𝑔𝑑

    

−𝑔𝑚 − 𝑔𝑑

𝑔𝑚 + 𝑔𝑑 + 𝑔𝑠

| 

                          = |

𝐺𝐷 + 𝐺𝐿

−𝑔𝑑

    

𝑔𝑠

𝑔𝑚 + 𝑔𝑑 + 𝑔𝑠

|  

 = (𝑔𝑚 + 𝑔𝑑 + 𝑔𝑠)(𝐺𝐷 + 𝐺𝐿) + 𝑔𝑑𝑔𝑠 = (𝑔𝑚 + 𝑔𝑠)(𝐺𝐷 + 𝐺𝐿)  

 𝐴𝑖|31
21 = −

|𝑌21
31|

|𝑌1
1|
𝐺𝐿 = −

−𝑔𝑚−𝑔𝑑

(𝑔𝑚+𝑔𝑠)(𝐺𝐷+𝐺𝐿)
𝐺𝐿 =

𝐺𝐿

(𝐺𝐷+𝐺𝐿)
 =

𝑅𝐷

(𝑅𝐷+𝑅𝐿)
 (4.58) 

 The power gain [18-24] between the output terminals 2 & 1 and the input 

terminals 3 & 1 of a common-gate amplifier in Fig. 4.16 is written as; 

 𝐴𝑝|31
21
= 𝐴𝑣|31

21. 𝐴𝑖|31
21 = 𝑔𝑚(𝑅𝐷 ∥ 𝑅𝐿) { 

𝑅𝐷

𝑅𝐷+𝑅𝐿
}  (4.59) 

The power of the Common-gate amplifier is also very low. 

 

4.6 Circuit Model of FET Phase-splitter amplifier (complete analysis) 

A versatile circuit of FET amplifier with resistances connected to all the three terminals 

(drain, gate, and source) is drawn in Fig. 4.18. The drain resistance RD, the source 
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resistance RS and the gate resistance RG are connected in Fig. 4.18. We will try to derive 

all types of transfer functions of the FET amplifiers in all the three configurations, i.e. 

common-source, common-drain, and common-gate. Fig. 4.19 is the ac circuit derived 

from Fig. 4.16 after shorting all capacitances CG and CD and the DC supply voltages at 

the frequency of interest. The bypass capacitor CS is left open to implement this circuit 

as a FET phase-splitter amplifier. Fig. 4.19 is called a phase-splitter amplifier because 

the phase of the voltage at terminal-2 is 1800 out of phase to the voltage at terminal-3.  

 

 

 

 

 

 

 

 

 

 

                        Fig. 4.18 Circuit Model of a FET Phase-Splitter Amplifier  

 

 

 

 

 

 

 

          Fig. 4.19 AC Circuit Model of a FET Phase-Splitter Amplifier 

 

 Since the phase-splitter amplifier is defined by 4-nodes, the floating admittance 

matrix [18-24] of the three-node JFET is converted to 4-nodes as;  

D 

S 

IG = 0 

+VDD 

RD 

𝑣𝑒 R2 

𝑣𝑖 

CD 

CG 

RS1 

ID 

ID + 

− 

R1 

  RL1 𝑟𝑠 

𝑣𝑜 

RL2 

CS 

D 

S 

RL =𝑅𝐷 ∥ 𝑅𝐿1 

𝑣𝑜 

RG 

𝑣𝑖 

  RL1 𝑟𝑠 

G 

3 

2 

1 

RS 

4 R14 

  RD 

R24 

𝑣𝑠 

RS =𝑅𝑆1 ∥ 𝑅𝐿2 
R34 
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[
 
 
 
 
 
 
 
 
𝑖1

𝑖2

𝑖3

𝑖4 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 

1
𝑔𝑔

𝑔𝑚

−𝑔𝑔 − 𝑔𝑚

0

    

2
0

𝑔𝑑

−𝑔𝑑

0

    

3
−𝑔𝑔

−𝑔𝑚 − 𝑔𝑑

𝑔𝑔 + 𝑔𝑚 + 𝑔𝑑

0

    

4
0

0

0

0 ]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝑣1

𝑣2

𝑣3

𝑣4]
 
 
 
 
 
 
 
 

  (4.60)

  

Similarly, the floating admittance matrix of only passive components used in the circuit 

of the phase-splitter amplifier of Fig. 4.19 is written as; 

          

[
 
 
 
 
 
 
 
 
𝑖1

𝑖2

𝑖3

𝑖4 ]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

1
𝑔𝑠 + 𝐺𝐺

0

0

−𝑔𝑠 − 𝐺𝐺

    

2
0

𝐺𝐿

0

−𝐺𝐿

    

3
0

0

𝐺𝑆

−𝐺𝑆

    

4
−𝑔𝑠 − 𝐺𝐺

−𝐺𝐿

−𝐺𝑆

𝑔𝑠 + 𝐺𝐺 + 𝐺𝑆 + 𝐺𝐿]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
1

2

3

4 ]
 
 
 
 
 
 
 

 (4.61)

  

Now, Eqs. (4.60) and (4.61) are merged together as per node specification to form the 

overall floating admittance matrix of Fig. 4.19 as;  

[
 
 
 
 
 
 
 
 
𝑖1

𝑖2

𝑖3

𝑖4 ]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 

1
𝑔𝑔 + 𝑔𝑠 + 𝐺𝐺

𝑔𝑚

−𝑔𝑔 − 𝑔𝑚

−𝑔𝑠 − 𝐺𝐺

    

2
0

𝑔𝑑 + 𝐺𝐿

−𝑔𝑑

−𝐺𝐿

    

3
−𝑔𝑔

−𝑔𝑚 − 𝑔𝑑

𝑔𝑔 + 𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆

−𝐺𝑆

    

4
−𝑔𝑠 − 𝐺𝐺

−𝐺𝐿

−𝐺𝑆

𝑔𝑠 + 𝐺𝐺 + 𝐺𝑆 + 𝐺𝐿]
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
𝑣1

𝑣2

𝑣3

𝑣4]
 
 
 
 
 
 
 
 

(4.62) 

 

 The voltage gain [18-24] between the output terminals 2 & 4 and the input 

terminals 1 & 4 of a FET phase-splitter circuit in Fig. 4.19 using Eq. (4.62) is expressed 

as; 

 𝐴𝑣|14
24 = 𝑠𝑔𝑛(2 − 4)𝑠𝑔𝑛(1 − 4)(−1)

11 |𝑌24
14|

|𝑌14
14|
= −

|𝑌24
14|

|𝑌14
14|

  (4.63) 

From Eq. (4.62), |𝑌24
14| = |

𝑔𝑚

−𝑔𝑔 − 𝑔𝑚
    

−𝑔𝑚 − 𝑔𝑑

𝑔𝑔 + 𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆
| = |

𝑔𝑚

−𝑔𝑔
    

−𝑔𝑚 − 𝑔𝑑

𝑔𝑔 + 𝐺𝑆
| 
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                    = 𝑔𝑚𝐺𝑆  

 |𝑌14
14| = |

𝑔𝑑 + 𝐺𝐿

−𝑔𝑑

    

−𝑔𝑚 − 𝑔𝑑

𝑔𝑔 + 𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆
| = |

𝑔𝑑 + 𝐺𝐿

𝐺𝐿

    

−𝑔𝑚 − 𝑔𝑑

𝐺𝑆

|  

  = (𝑔𝑑 + 𝐺𝐿)𝐺𝑆 + (𝑔𝑚 + 𝑔𝑑)𝐺𝐿 

 𝐴𝑣|14
24 = −

𝑔𝑚𝐺𝑆 

(𝑔𝑑+𝐺𝐿)𝐺𝑆+(𝑔𝑚+𝑔𝑑)𝐺𝐿 
= −

𝑔𝑚𝐺𝑆 

(𝐺𝑆+𝑔𝑚)𝐺𝐿 
= −

𝑔𝑚𝐺𝑆 

𝐺𝑆𝐺𝐿 
≅ −𝑔𝑚𝑅𝐿 (4.64) 

 The current gain [18-24] between the output terminals 2 & 4 and the input 

terminals 1 & 4 of a FET phase-splitter circuit in Fig. 4.19 using Eq. (4.62) is expressed 

as; 

 𝐴𝑖|14
24 = 𝑠𝑔𝑛(2 − 4)𝑠𝑔𝑛(1 − 4)(−1)

11 |𝑌24
14|

|𝑌4
4|
𝐺𝐿 = −

|𝑌24
14|

|𝑌4
4|
𝐺𝐿  (4.65) 

From Eq. (4.62), |𝑌4
4| =

|

|

𝑔𝑔 + 𝑔𝑠 + 𝐺𝐺

𝑔𝑚

−𝑔𝑔 − 𝑔𝑚

    

0

𝑔𝑑 + 𝐺𝐿

−𝑔𝑑

    

−𝑔𝑔

−𝑔𝑚 − 𝑔𝑑

𝑔𝑔 + 𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆

|

|
  

                             =
|
|

𝑔𝑠 + 𝐺𝐺

𝑔𝑚

−𝑔𝑚

    

0

𝑔𝑑 + 𝐺𝐿

−𝑔𝑑

    

0

−𝑔𝑚 − 𝑔𝑑

𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆

|
|
 

  = (𝑔𝑠 + 𝐺𝐺) |

𝑔𝑑 + 𝐺𝐿

−𝑔𝑑

    

−𝑔𝑚 − 𝑔𝑑

𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆

|  

      = (𝑔𝑠 + 𝐺𝐺) |

𝑔𝑑 + 𝐺𝐿

𝐺𝐿

    

−𝑔𝑚 − 𝑔𝑑

𝐺𝑆

| 

  = (𝑔𝑠 + 𝐺𝐺){(𝑔𝑑 + 𝐺𝐿)𝐺𝑆 + 𝐺𝐿(𝑔𝑚 + 𝑔𝑑)}   

 𝐴𝑖|14
24 = −

|𝑌24
14|

|𝑌4
4|
𝐺𝐿 = −

𝑔𝑚𝐺𝑆𝐺𝐿

=(𝑔𝑠+𝐺𝐺){(𝑔𝑑+𝐺𝐿)𝐺𝑆+𝐺𝐿(𝑔𝑚+𝑔𝑑)}
  

  = −
𝑔𝑚𝐺𝑆𝐺𝐿

(𝑔𝑠+𝐺𝐺)𝐺𝐿{𝐺𝑆+𝑔𝑚}
   = −

𝑔𝑚𝑟𝑠

1+𝑔𝑚𝑅𝑆
   ≅ −𝑔𝑚𝑟𝑠   (4.66) 

 The input resistance [18-24] between the input terminals 1 & 4 of a FET phase-

splitter circuit in Fig. 4.19 using Eq. (4.62) is expressed as;  

 𝑅𝑖 = 𝑅14 =
|𝑌14
14|

|𝑌4
4|
𝑔𝑠=0

 (4.67) 
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From Eq. (4.61), |𝑌4
4|𝑔𝑠=0 = |

|

𝑔𝑔 + 𝑔𝑠 + 𝐺𝐺

𝑔𝑚

−𝑔𝑔 − 𝑔𝑚

    

0

𝑔𝑑 + 𝐺𝐿

−𝑔𝑑

    

−𝑔𝑔

−𝑔𝑚 − 𝑔𝑑

𝑔𝑔 + 𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆

|

|
  

  =
|
|

𝐺𝐺

𝑔𝑚

−𝑔𝑚

    

0

𝑔𝑑 + 𝐺𝐿

−𝑔𝑑

    

0

−𝑔𝑚 − 𝑔𝑑

𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆

|
|
= 𝐺𝐺 |

𝑔𝑑 + 𝐺𝐿

𝐺𝐿

    

−𝑔𝑚 − 𝑔𝑑

𝐺𝑆

|  

  = 𝐺𝐺{(𝑔𝑑 + 𝐺𝐿)𝐺𝑆 + 𝐺𝐿(𝑔𝑚 + 𝑔𝑑)} 

  𝑅𝑖 = 𝑅14 =
(𝑔𝑑+𝐺𝐿)𝐺𝑆+(𝑔𝑚+𝑔𝑑)𝐺𝐿

𝐺𝐺{(𝑔𝑑+𝐺𝐿)𝐺𝑆+(𝑔𝑚+𝑔𝑑)𝐺𝐿}
= 𝑅𝐺   (4.68) 

 The output resistance [18-24] between the output terminals 2 & 4 of a FET phase-

splitter circuit in Fig. 4.19 using Eq. (4.62) is expressed as;  

 𝑅𝑜2 = 𝑅24 =
|𝑌24
24|

|𝑌4
4|
𝐺𝐿=0

 (4.69) 

From Eq. (4.62), |𝑌24
24| = |

𝑔𝑔 + 𝑔𝑠 + 𝐺𝐺

−𝑔𝑔 − 𝑔𝑚

    

−𝑔𝑔

𝑔𝑔 + 𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆

| 

   = |

𝑔𝑠 + 𝐺𝐺

−𝑔𝑚

    
0

𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆

| = (𝑔𝑠 + 𝐺𝐺)(𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆)  

    

 |𝑌4
4|𝐺𝐿=0 = |

|

𝑔𝑔 + 𝑔𝑠 + 𝐺𝐺

𝑔𝑚

−𝑔𝑔 − 𝑔𝑚

    

0

𝑔𝑑 + 𝐺𝐿

−𝑔𝑑

    

−𝑔𝑔

−𝑔𝑚 − 𝑔𝑑

𝑔𝑔 + 𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆

|

|
  

                   =
|
|

𝑔𝑠 + 𝐺𝐺

𝑔𝑚

−𝑔𝑚

    

0

𝑔𝑑

−𝑔𝑑

    

0

−𝑔𝑚 − 𝑔𝑑

𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆

|
|
 

      = (𝑔𝑠 + 𝐺𝐺) |

𝑔𝑑

−𝑔𝑑

    

−𝑔𝑚 − 𝑔𝑑

𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆

| = (𝑔𝑠 + 𝐺𝐺) |

𝑔𝑑

0
    

−𝑔𝑚 − 𝑔𝑑

𝐺𝑆

| 

   = (𝑔𝑠 + 𝐺𝐺)𝑔𝑑𝐺𝑆   
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 𝑅𝑜 = 𝑅24 =
(𝑔𝑠+𝐺𝐺)(𝑔𝑚+𝑔𝑑+𝐺𝑆)

(𝑔𝑠+𝐺𝐺)𝑔𝑑𝐺𝑆
=

(𝑔𝑚+𝐺𝑆)

𝑔𝑑𝐺𝑆
= 𝑟𝑑(1 + 𝑔𝑚𝑅𝑆)  (4.70) 

 The voltage gain [18-24] between terminals 3 & 4 and 1 & 4 of a FET phase-

splitter circuit in Fig. 4.19 using Eq. (4.62) is expressed as; 

 𝐴𝑣|14
34 = 𝑠𝑔𝑛(3 − 4)𝑠𝑔𝑛(1 − 4)(−1)

12 |𝑌34
14|

|𝑌14
14|
=

|𝑌34
14|

|𝑌14
14|

  (4.71) 

From Eq. (4.62), |𝑌34
14| = |

𝑔𝑚

−𝑔𝑔 − 𝑔𝑚
    

𝑔𝑑 + 𝐺𝐿

−𝑔𝑑

| = |

𝑔𝑚

−𝑔𝑚

    

𝑔𝑑 + 𝐺𝐿

−𝑔𝑑

|     

      = |
0

−𝑔𝑚

    

𝐺𝐿

−𝑔𝑑

| = 𝑔𝑚𝐺𝐿  

 𝐴𝑣|14
34 =

𝑔𝑚𝐺𝐿

(𝑔𝑑+𝐺𝐿)𝐺𝑆+(𝑔𝑚+𝑔𝑑)𝐺𝐿
=

𝑔𝑚𝐺𝐿

(𝐺𝑆+𝑔𝑚)𝐺𝐿
 =

𝑔𝑚𝑅𝑆

(1+𝑔𝑚𝑅𝑆)
 1 (4.72) 

 The output resistance [18-24] between its terminals 3 & 4 of a FET phase-splitter 

circuit in Fig. 4.19 using Eq. (4.62) is expressed as; 

 𝑅𝑜3 = 𝑅34 =
|𝑌34
34|

|𝑌4
4|
𝐺𝑆=0

  (4.73) 

From Eq. (4.62), |𝑌34
34| = |

𝑔𝑔 + 𝑔𝑠 + 𝐺𝐺

𝑔𝑚

    
0

𝑔𝑑 + 𝐺𝐿

| = (𝑔𝑠 + 𝐺𝐺)(𝑔𝑑 + 𝐺𝐿)  

 |𝑌4
4|𝐺𝑆=0 = |

|

𝑔𝑔 + 𝑔𝑠 + 𝐺𝐺

𝑔𝑚

−𝑔𝑔 − 𝑔𝑚

    

0

𝑔𝑑 + 𝐺𝐿

−𝑔𝑑

    

−𝑔𝑔

−𝑔𝑚 − 𝑔𝑑

𝑔𝑔 + 𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆

|

|
  

        =
|
|

𝑔𝑠 + 𝐺𝐺

𝑔𝑚

−𝑔𝑚

    

0

𝑔𝑑 + 𝐺𝐿

−𝑔𝑑

    

0

−𝑔𝑚 − 𝑔𝑑

𝑔𝑚 + 𝑔𝑑

|
|
 

  = (𝑔𝑠 + 𝐺𝐺) |

𝑔𝑑 + 𝐺𝐿

−𝑔𝑑

    

−𝑔𝑚 − 𝑔𝑑

𝑔𝑚 + 𝑔𝑑

|  

         = (𝑔𝑠 + 𝐺𝐺) |

𝑔𝑑 + 𝐺𝐿

𝐺𝐿

    

−𝑔𝑚 − 𝑔𝑑

0
| = (𝑔𝑠 + 𝐺𝐺)(𝑔𝑚 + 𝑔𝑑)𝐺𝐿     

 𝑅𝑜3 = 𝑅34 =
(𝑔𝑠+𝐺𝐺)(𝑔𝑑+𝐺𝐿) 

(𝑔𝑠+𝐺𝐺)(𝑔𝑚+𝑔𝑑)𝐺𝐿
=

(𝑔𝑑+𝐺𝐿) 

(𝑔𝑚+𝑔𝑑)𝐺𝐿
=

𝐺𝐿 

𝑔𝑚𝐺𝐿
=

1 

𝑔𝑚
 (Very low) (4.74) 
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 The current gain [18-24] between terminals 3 & 4 and 1 & 4 of a FET phase-

splitter circuit in Fig. 4.19 using Eq. (4.62) is expressed as; 

 𝐴𝑖|14
34 = 𝑠𝑔𝑛(3 − 4)𝑠𝑔𝑛(1 − 4)(−1)

12 |𝑌34
14|

|𝑌4
4|
𝐺𝑆 =

|𝑌34
14|

|𝑌4
4|
𝐺𝑆           (4.75) 

From Eq. (4.62),|𝑌34
14| = |

𝑔𝑚

−𝑔𝑔 − 𝑔𝑚
    

𝑔𝑑 + 𝐺𝐿

−𝑔𝑑

| = |
0

−𝑔𝑚

    

𝐺𝐿

−𝑔𝑑

| = 𝑔𝑚𝐺𝐿  

 𝐴𝑖|14
34 =

|𝑌34
14|

|𝑌4
4|
𝐺𝑆 =

𝑔𝑚𝐺𝐿

(𝑔𝑠+𝐺𝐺)(𝑔𝑚+𝑔𝑑)𝐺𝐿   
𝐺𝑆 =

𝑔𝑚𝐺𝐿

(𝑔𝑠+𝐺𝐺)𝑔𝑚𝐺𝐿   
𝐺𝑆 =

𝐺𝑆

𝑔𝑠   
 

  =
𝑟𝑆

𝑅𝑆   
   (4.76) 

 The power gain [18-24] between the output terminals 2 & 4 and the input terminals 

1 & 4 of a FET phase splitter circuit in Fig. 4.19 using Eq. (4.62) can be expressed as; 

 𝐴𝑃|14
24 = 𝐴𝑣|14

24. 𝐴𝑖|14
24 = (−𝑔𝑚𝑅𝐿)(−𝑔𝑚𝑟𝑠) = 𝑔𝑚

2 𝑟𝑠𝑅𝐿      (4.77) 

 Power gain [18-24] between the output terminals 3 & 4 and the input terminals 1 

& 4 of a FET phase splitter circuit in Fig. 4. 19 using Eq. (4.62) can be written as; 

 𝐴𝑃|14
34 = 𝐴𝑣|14

34. 𝐴𝑖|14
34 = (

𝑔𝑚𝑅𝑆

(1+𝑔𝑚𝑅𝑆)
) (

𝑟𝑆

𝑅𝑆   
) =

𝑔𝑚𝑟𝑆

(1+𝑔𝑚𝑅𝑆)
  (4.78) 

   

4.7 Conclusions 

The analysis of all configurations FET amplifier to derive all types of transfer functions 

and self-node functions becomes very simple using the floating admittance matrix 

approach. All equations derived here corroborate the equations derived using the small-

signal equivalent circuits.  
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Chapter 5 

 

 

Four Terminal MOSFET Model and Applications in 

Amplifiers 

 

5.1 Introduction 

In general, the MOS structures are of two-terminal, three-terminal, and four terminal 

devices. The two-terminal MOS structure has a gate and the substrate terminal only. It 

does not have the source and drain terminals for the current flow. This structure is often 

referred to as a MOS capacitor. The three terminal MOS structures are similar to the 

three terminal BJT. The four terminal MOS structure has two gates; the front gate and 

the back gate. The back gate is nothing but the substrate (body) terminal. The back gate 

is usually connected to the source terminal and hence it is treated as three terminal 

devices for general purposes. An IC has numerous numbers of MOSFETs. If the sources 

of all MOSFETs are connected to the single body (substrate) terminal, the circuit will 

become useless. Fig. 5.1 has four terminals as VB (Body), VS (Source), VG (Gate), and 

VD (Drain). The body and the source terminal are connected to ground and hence it 

becomes effectively a three-terminal device. Thus, a general purpose MOSFET is 

basically a three terminal device having the gate, the drain, and the source. The body, 

in different style, of the MOSFET is the silicon substrate over which drain, gate and 

source are grown [1-22] as in Fig. 5.1.  

 No problem exists in the normal functioning of the MOSFET if voltages 𝑉𝐺𝑆 and 

𝑉𝐷𝑆 are applied with the body grounded. If the body is not grounded and 𝑉𝐺𝑆 is applied, 

the potential difference exists between source and the body terminals, and the problem 

will occur. The body is always reverse biased, and the gate is also reverse biased. The 

body now starts functioning similar to the function of the gate. So, the body terminal is 

called the second gate terminal of the MOSFET.  
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                Fig. 5.1 Physical Structural Model of The nMOSFET 

 Normally, the body is kept at the source potential. If there exists any potential 

difference between the source and the body points, the normal functioning of the 

MOSFET is impaired. The body connection is taken as the 4th terminal of the MOSFET. 

Body bias is the voltage at which the body terminal (4th terminal of MOS) is 

connected.  Body effect occurs when the body or substrate of the MOSFET is 

not biased at the same level as that of the source. The body effect is also called the back-

gate effect [2-22]. Usually, it is grounded but we can bias it to some voltage to adjust 

𝑉𝑡ℎ of the device. The body terminal is called the 2nd gate also. Hence, the different 

potential at the body (2nd gate) changes the normal input-output functions of the 

MOSFET. 

 The derivation of current-voltage characteristics in the linear and saturation mode 

has been carried out with the underlying assumptions that the substrate potential is equal 

to the source terminal potential i.e. 𝑉𝑆𝐵 = 0.  

5.2 Development of FAM Model for a 4-terminal MOSFET 

Figure 5.2 shows the polarities applied across terminal voltages and drain current 

directions for both nMOS and pMOS devices, including the substrate [8-22] voltage 

𝑉𝑆𝐵. 
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 We know that the substrate voltage or the body bias is the other very important 

factor which contributes to the drain current. If the body of the MOS device is not 

connected to the source, it works as a back gate, and the drain current has some 

dependency on the body bias voltage 𝑉𝑆𝐵. Since the body bias (𝑉𝑆𝐵) functions as a gate 

terminal, and it is also treated as equivalent to a current source which depends on the 

body bias voltage in the small-signal equivalent circuit. The current source, due to the 

body bias, is represented as 𝑔𝑚𝑏𝑣𝑏𝑠.  

 

 

 

 

 

 

 

 

Fig. 5.2 Circuit Symbol Model of a 4-Terminal nMOSFET with (a) DC and (b) AC 

Voltages  

The effect of 𝑉𝑆𝐵 on the cannel can be represented as a change in the threshold voltage 

𝑉𝑡. With increasing reverse substrate bias, the voltage 𝑉𝑆𝐵 results in an increase in 𝑉𝑡ℎ 

according to relaship 

     𝑉𝑡𝑛 = 𝑉𝑡ℎ0 + 𝛾(√2𝜙𝑓 + 𝑣𝑆𝐵 − √2𝜙𝑓) (5.8) 

 If there exists an ac component of voltage in the source-to-body (𝑣𝑠𝑏), there will 

be an ac component of voltage induced in the threshold voltage that causes an ac 

component in the drain current. Thus, a back-gate transconductance can be defined as; 

    𝑔𝑚𝑏 =
𝜕𝐼𝐷

𝜕𝑉𝐵𝑆
|
𝑉𝐺𝑆=𝑘,𝑉𝐷𝑆=𝑘

= −
𝜕𝐼𝐷

𝜕𝑉𝑆𝐵
|
𝑉𝐺𝑆=𝑘,𝑉𝐷𝑆=𝑘

(as 𝑉𝐵𝑆 = −𝑉𝑆𝐵) 

         = −(
𝜕𝐼𝐷

𝜕𝑉𝑡𝑛
) (

𝜕𝑉𝑡𝑛

𝜕𝑉𝑆𝐵
)|
𝑉𝐺𝑆=𝑘,𝑉𝐷𝑆=𝑘

  (5.9) 

Using Eq. (5.6), we get 

    𝑔𝑚 =
𝜕𝐼𝐷

𝜕𝑉𝐺𝑆
|
 𝑉𝐷𝑆=𝑘

= 2𝑘𝑛{𝑉𝐺𝑆 − 𝑉𝑡𝑛(𝑉𝑆𝐵)}  

    
𝜕𝐼𝐷

𝜕𝑉𝑡𝑛
= 2𝑘𝑛(𝑉𝐺𝑆 − 𝑉𝑡𝑛)(−1) = −2𝑘𝑛{𝑉𝐺𝑆 − 𝑉𝑡𝑛(𝑉𝑆𝐵)} = −𝑔𝑚  (5.10) 
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Using Eq. (5.8), we get 

 
𝜕𝑉𝑡𝑛

𝜕𝑉𝑆𝐵
= −

𝛾

2√2𝜙𝑓+𝑣𝑆𝐵
= 𝜂 (A very small fraction) (5.11) 

The back-gate transconductance is then given as; 

 𝑔𝑚𝑏 = −(
𝜕𝐼𝐷

𝜕𝑉𝑡𝑛
) (

𝜕𝑉𝑡𝑛

𝜕𝑉𝑆𝐵
)|
𝑉𝐺𝑆=𝑘,𝑉𝐷𝑆=𝑘

= −(−𝑔𝑚)(𝜂) = 𝜂𝑔𝑚 (5.12) 

Thus, we see that due to two gates (the front gate and the back gate), we have two 

transconductances (𝑔𝑚) and 𝑔𝑚𝑏. The value of 𝑔𝑚 is much greater than 𝑔𝑚𝑏.   

 The approximate small-signal equivalent circuit of the 4-terminal MOSFET, 

including the body effect, is shown in Fig. 5.3. We should note the direction of the 

current and polarity of the small-signal source-to-body voltage. If 𝑣𝑏𝑠 > 0, then 𝑣𝑆𝐵 

decreases, 𝑉𝑡𝑛 decreases, and 𝑖𝐷 increases. The current direction and voltage polarity 

are thus consistent.  

 

 

 

 

 

 

   Fig. 5.3 Small-signal Circuit model of the nMOSFET with the body effect. 

 

5.3 Small-signal Model Development of the MOSFET with 𝑽𝑺𝑩 ≠ 𝟎 

Now, we will develop a more detailed small-signal equivalent model of a 4-terminal 

nMOSFET. For non-zero body bias, there is a voltage between the substrate and the 

source terminal of the MOSFET. This voltage (𝑉𝑆𝐵) functions as the back gate for the 

MOSFET. Hence, the input-output performance of the MOSFET will get affected. So 

its effect has to be included in the small-signal equivalent circuit of the MOSFET to 

both its input and output sides in the existing small-signal equivalent circuit described 

in all most all books. Hence, the simplified small-signal equivalent circuit of the 

MOSFET, including the effect of the 𝑉𝑆𝐵 is drawn as in Fig. 5.3. We know that the gate 

conductance 𝑔𝑔 is negligibly small. Similarly, the back-gate conductance 𝑔𝑏 will also 

be negligibly small. Let us analyze the most frequently used common source amplifier 
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circuit, including the effect of non-zero substrate voltage. Fig. 5.4 is the circuit 

representation of the common source.  

The relationship between terminal voltages and currents in Fig. 5.4 are written as; 

  𝐼𝐺 = 𝑓1(𝑉𝐺𝑆)  (5.13) 

  𝑖𝑔 = 𝑖1 = 𝑔𝑔(𝑣𝑔 − 𝑣𝑠) = 𝑔𝑔(𝑣1 − 𝑣3)  (5.14) 

 

 

 

 

 

  Fig. 5.4 Circuit Model of a 4-terminal Common-Source MOSFET Amplifier  

Equation (5.14) is rearranged in terms of 4-terminal voltages 𝑣1, 𝑣2, 𝑣3 and 𝑣4 as;

   

  𝑖1 = 𝑔𝑔𝑣1 + (0)𝑣2 − 𝑔𝑔𝑣3 + (0)𝑣4  (5.15) 

Similar to the normal gate, the back-gate current is expressed as; 

  𝑖𝑏 = −𝑔𝑏(𝑣𝑠 − 𝑣𝑏) = −𝑔𝑏𝑣3 + 𝑔𝑏𝑣4  (5.16) 

writing 𝑖𝑏 = 𝑖4; the back-gate current as the 4-terminal current becomes; 

  𝑖4 = −𝑔𝑏𝑣3 + 𝑔𝑏𝑣4 (5.17) 

Arranging Eq. (5.17) in terms of 4-terminal voltages 𝑣1, 𝑣2, 𝑣3, and 𝑣4 as; 

𝑖4 = −𝑣𝑠𝑏(𝑔𝑏) = −𝑔𝑏(𝑣𝑠 − 𝑣𝑏) = (0)𝑣1 + (0)𝑣2 − 𝑔𝑏𝑣3 + 𝑔𝑏𝑣4  (5.18) 

The mutual conductance between the output current and the back-gate voltage 𝑉𝐵𝑆  is 

defined as; 

  𝑔𝑚𝑏 =
𝜕𝐼𝐶

𝜕𝑉𝐵𝑆
|
𝑉𝐺𝑆 & 𝑉𝐷𝑆=𝑘

=
𝜕𝐼𝐶

𝜕𝑉4
|
𝑉𝐺𝑆 & 𝑉𝐷𝑆=𝑘

  (5.19) 
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Hence, the total drain current is the combined effect of partial contribution due to 

changes in 𝑉𝐺𝑆, 𝑉𝐷𝑆, and 𝑉𝐵𝑆. 

 𝑖𝑔 = 𝑔𝑔(𝑣𝑔 − 𝑣𝑠)  (5.20) 

 𝑖1 = 𝑔𝑔𝑣1 + (0)𝑣1 − 𝑔𝑔𝑣3 + (0)𝑣4  (5.21) 

The mutual conductance between the output current and the back-gate voltage 𝑔𝑚𝑏 is 

defined as; 

  𝑔𝑚𝑏 =
𝜕𝐼𝐶

𝜕𝑉𝐵𝑆
|
𝑉𝐺𝑆 & 𝑉𝐷𝑆=𝑘

=
𝜕𝐼𝐶

𝜕𝑉4
|
𝑉𝐺𝑆 & 𝑉𝐷𝑆=𝑘

  (5.22) 

Hence, the total drain current is the combined effect of the partial contribution due to a 

change in 𝑉𝐺𝑆, 𝑉𝐷𝑆, and 𝑉𝐵𝑆. Hence, the total deviation in the drain current is 

mathematically expressed by a partial differential equation as; 

 ∆𝐼𝐷 =
𝜕𝐼𝐷

𝜕𝑉𝐺𝑆
|
𝑉𝐷𝑆 & 𝑉𝐺𝐵=𝑘

+
𝜕𝐼𝐷

𝜕𝑉𝐷𝑆
|
𝑉𝐺𝑆 & 𝑉𝐺𝐵=𝑘

+
𝜕𝐼𝐷

𝜕𝑉𝐵𝑆
|
𝑉𝐷𝑆 & 𝑉𝐺𝑆=𝑘

  (5.23) 

 𝑖𝑑 = 𝑔𝑚(𝑣𝑔 − 𝑣𝑠) + 𝑔𝑜(𝑣𝑑 − 𝑣𝑠) + 𝑔𝑚𝑏(𝑣𝑏 − 𝑣𝑠)  

 𝑖𝑑 = 𝑔𝑚(𝑣1 − 𝑣3) + 𝑔𝑜(𝑣2 − 𝑣3) + 𝑔𝑚𝑏(𝑣4 − 𝑣3)  

 𝑖𝑑 = 𝑔𝑚𝑣1 − 𝑔𝑚𝑣3 + 𝑔𝑜𝑣2 − 𝑔𝑜𝑣3 + 𝑔𝑚𝑏𝑣4 − 𝑔𝑚𝑏𝑣3  

 𝑖2 = 𝑖𝑑 = 𝑔𝑚𝑣1 + 𝑔𝑜𝑣2 − (𝑔𝑚 + 𝑔𝑜 + 𝑔𝑚𝑏)𝑣3 + 𝑔𝑚𝑏𝑣4  (5.24) 

 𝑖𝑠 = −𝑔𝑚𝑣1 − 𝑔𝑜𝑣2 + (𝑔𝑚 + 𝑔𝑜 + 𝑔𝑚𝑏)𝑣3 − 𝑔𝑚𝑏𝑣4 − 𝑔𝑔𝑣1  

               +𝑔𝑔𝑣3 + 𝑔𝑏𝑣3 − 𝑔𝑏𝑣4  

 𝑖3 = 𝑖𝑠 = −(𝑔𝑔 + 𝑔𝑚)𝑣1 − 𝑔𝑜𝑣2 + (𝑔𝑔 + 𝑔𝑚 + 𝑔𝑜 + 𝑔𝑚𝑏 + 𝑔𝑏)𝑣3 

                      −(𝑔𝑚𝑏 + 𝑔𝑏)𝑣4  (5.25)                                                                                                    

 𝑖4 = 𝑖𝑏 = −𝑔𝑏(𝑣𝑠 − 𝑣𝑏) = −𝑔𝑏𝑣3 + 𝑔𝑏𝑣4  (5.26) 

Writing 𝑖𝑏 = 𝑖4; the back-gate current in 4-terminal currents as; 

 𝑖4 = 𝑖𝑏 = −𝑣𝑠𝑏(𝑔𝑏) = −𝑔𝑏(𝑣𝑠 − 𝑣𝑏) = (0)𝑣1 + (0)𝑣2 − 𝑔𝑏𝑣3 + 𝑔𝑏𝑣4  (5.27) 
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 The terminal voltages and currents of Eqs. (5.21), (5.24), (5.25), and (5.27) can be 

arranged in the form of floating admittance matrix [23-26] as;  

[
 
 
 
 
 
 
𝑖1

𝑖2

𝑖3

𝑖4 ]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

𝑔𝑔

𝑔𝑚

−𝑔𝑔 − 𝑔𝑚

0

     

0

𝑔𝑜

−𝑔𝑜

0

     

−𝑔𝑔

−𝑔𝑚−𝑔𝑚𝑏 − 𝑔𝑜

𝑔𝑔 + 𝑔𝑚 + 𝑔𝑜 + 𝑔𝑚𝑏 + 𝑔𝑏

−𝑔𝑏

     

0

𝑔𝑚𝑏

−𝑔𝑚𝑏 − 𝑔𝑏

𝑔𝑏 ]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
𝑣1

𝑣2

𝑣3

𝑣4]
 
 
 
 
 
 

 (5.28) 

 From Eq. (5.28) is the floating admittance matrix of a 4-terminal MOSFET at low 

frequency as it does not have the capacitive effect. This Eq. (5.28) will be used to derive 

all transfer functions of the circuit’s incorporating a 4-terminal MOSFET. Eq. (5.28) 

suggests the small-signal equivalent circuit model of a 4-terminal MOSFET as shown 

in Fig. 5.5.   

 

 

 

 

 

 

 

     Fig. 5.5 Small-signal Model of a 4-terminal MOSFET with 𝑉𝑆𝐵 ≠ 0 

Now we will take advantage of the floating admittance matrix of Eq. (5.28) to derive 

all transfer functions of any circuit containing 4-terminal MOSFET. 

5.4 Circuit Model of 4- terminal MOSFET phase-splitter Amplifier 

Figs. 5.6 and 5.7 are the simple 4-terminal MOSFET phase-splitter amplifier and its ac 

circuit, respectively. The phase-splitter amplifier provides two outputs: one at the drain 

point and the other at the source point. These two outputs are 1800 apart.  

𝑣𝑑𝑠 

𝑖𝑠 = 𝑖3 

4 

𝑔𝑏 

𝑖𝑏 = 𝑖4 

− 

𝒗𝒃𝒔 

+ B D 

2 

𝑖𝑑 = 𝑖2 

𝒈𝒎𝒗𝒈𝒔 
𝒈𝒐 𝒈𝒎𝒃𝒗𝒃𝒔 

S 

  + 

− 3 

1 
𝑖1 = 𝑖𝑔  

𝒈𝒈 

G 

𝒗𝒈𝒔 

+ 

− 
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 Since, 𝑔𝑔→1 𝑝𝑆, it is neglected w.r.t. the other parameters of the MOSFET 

𝑔𝑜→ 0.02 𝑚𝑆,  and 𝑔𝑚→1 𝑚𝑆, 𝑔𝑚𝑏 = 𝜂𝑔𝑚→ 0.1 𝑚𝑆.  

 

 

 

 

  

 

 

 

        Fig. 5.6 Circuit Model of a 4-terminal MOSFET Phase-Splitter Amplifier              

 

 

 

 

 

 

 

       Fig. 5.7 AC circuit model of a 4-terminal MOSFET Phase-Splitter Amplifier 

The floating admittance matrix representation of the 4-terminal MOSFET in the 4x4 

matrix is repeated here for ease in further analysis.  

  

[
 
 
 
 
𝑖1
𝑖2
𝑖3
𝑖4 ]
 
 
 
 

=

[
 
 
 
 

1
𝑔𝑔
𝑔𝑚

−𝑔𝑔 − 𝑔𝑚
0

   

2
0
𝑔𝑂
−𝑔𝑜
0

   

3
−𝑔𝑔

𝑔𝑚 − 𝑔𝑜 − 𝑔𝑚𝑏
𝑔𝑔 + 𝑔𝑚 + 𝑔𝑚𝑏 + 𝑔𝑜 + 𝑔𝑏

−𝑔𝑏

   

4
0
𝑔𝑚𝑏

−𝑔𝑚𝑏 − 𝑔𝑏
𝑔𝑏 ]

 
 
 
 

[
 
 
 
 
𝑣1
𝑣2
𝑣3
𝑣4]
 
 
 
 

 (5.29) 

Ideally, the gate current of FETs/MOSFETs is zero, 𝑔𝑔 → 0. Since the MOSFET phase-

splitter amplifier has 5-nodes, then the 4-node floating admittance matrix in Eq. (5.29) 

is converted to a 5x5 matrix as; 

CD GD 

GG 

GS1 

CG 

+VDD 

GL1 

𝑣𝑠  

GL2 

2 

3 

1 

5 

𝑔𝑠  

𝑣𝑖  

𝑣𝑜  

B, 4 

𝑣𝑏𝑠  CS 

 

 

GS 

1 

2 

3 

5 

GG 

 GS = GS1 +GL2 

 GL = GD +GL1 

R15 

𝑔𝑠  

𝑣𝑖  
𝑣𝑠  

𝑣𝑜  

R35 

R25 

B, 4 

𝑣𝑏𝑠  
GD GL1 
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[
 
 
 
 
 
𝑖1
𝑖2
𝑖3
𝑖4
𝑖5 ]
 
 
 
 
 

=

[
 
 
 
 
 
1
0
𝑔𝑚
−𝑔𝑚
0
0

   

2
0
𝑔𝑜
−𝑔𝑜
0
0

   

3
0

𝑔𝑚 − 𝑔𝑜 − 𝑔𝑚𝑏
𝑔𝑚 + 𝑔𝑚𝑏 + 𝑔𝑜 + 𝑔𝑏

−𝑔𝑏
0

   

4
0
𝑔𝑚𝑏

−𝑔𝑚𝑏 − 𝑔𝑏
𝑔𝑏
0

   

5
0
0
0
0
0]
 
 
 
 
 

[
 
 
 
 
 
𝑣1
𝑣2
𝑣3
𝑣4
𝑣5]
 
 
 
 
 

 (5.30) 

The floating admittance matrix of the passive components used in the 4-terminal 

MOSFET phase-splitter amplifier of Fig. 5.7 is; 

 

[
 
 
 
 
 
𝑖1
𝑖2
𝑖3
𝑖4
𝑖5 ]
 
 
 
 
 

=

[
 
 
 
 
 

1
gs + GG
0
0
0

−gs − GG

    

2
0
GL
0
0
−GL

    

3
0
0
GS
0
−GS

    

4
0
0
0
0
0

   

5
−gs − GG
−GL
−GS
0

gs + GG + GL + G𝑆]
 
 
 
 
 

[
 
 
 
 
 
𝑣1
𝑣2
𝑣3
𝑣4
𝑣5]
 
 
 
 
 

 (5.31) 

Now, Eqs (5.30) and (5.31) are merged together as per the node specifications to yield 

the overall floating admittance matrix of the 5-node 4-terminal MOSFET phase-splitter 

amplifier as; 

[
 
 
 
 
 
𝑖1
𝑖2
𝑖3
𝑖4
𝑖5 ]
 
 
 
 
 

=

[
 
 
 
 
 

1
gs + GG
𝑔𝑚
−𝑔𝑚
0

−gs − GG

  

2
0

𝑔𝑜 + GL
−𝑔𝑜
0
−GL

  

3
0

𝑔𝑚 − 𝑔𝑜 − 𝑔𝑚𝑏
𝑔𝑚 + 𝑔𝑚𝑏 + 𝑔𝑜 + 𝑔𝑏 + GS

−𝑔𝑏
−GS

   

4
0
𝑔𝑚𝑏

−𝑔𝑚𝑏 − 𝑔𝑏
𝑔𝑏
0

  

5
−gs − GG
−GL
−GS
0

gs + GG + GL + GS]
 
 
 
 
 

[
 
 
 
 
 
𝑣1
𝑣2
𝑣3
𝑣4
𝑣5]
 
 
 
 
 

 

       (5.32) 

Now, from this Eq. (5.32), the floating admittance matrix of all the four configurations, 

i.e. common-source, common-drain, and common-gate 4-terminal MOSFET 

amplifiers, will be derived easily. 

 

5.5 Circuit Model of a Four Terminal MOSFET C-S Amplifier 
We now proceed to derive the floating admittance matrix of a common-source amplifier 

(CS) using Eq. (5.32) from the 4-terminal phase-splitter MOSFET amplifier. For that, 

adding the 3rd row to the 5th row and the 3rd column to the 5th column and deleting the 

original the 3rd row and the 3rd column after assigning the 5th row and the 5th column as 

the 3rd row and the 3rd column yields as; 

 

[
 
 
 
 

1
𝑔𝑠 + 𝐺𝐺
𝑔𝑚
0

−𝑔𝑚 − 𝑔𝑠 − 𝐺𝐺

     

2
0

𝑔𝑜 + 𝐺𝐿
0

−𝑔𝑜 − 𝐺𝐿

      

4
0

𝑔𝑚𝑏  
𝑔𝑏

−𝑔𝑚𝑏 − 𝑔𝑏

     

3
−𝑔𝑠 − 𝐺𝐺

−𝑔𝑚 − 𝑔𝑚𝑏  − 𝑔𝑜 − 𝐺𝐿
−𝑔𝑏  

𝑔𝑚 + 𝑔𝑜 + 𝑔𝑚𝑏 + 𝑔𝑏+𝑔𝑠 + 𝐺𝐺 + 𝐺𝐿]
 
 
 
 

     (5.33) 
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 Equation (5.33) is the floating admittance matrix of a 4-terminal MOSFET CS 

amplifier derived from Eq. (5.32) of a 4-terminal MOSFET phase-splitter amplifier 

circuit in Fig. 5.7. From this Eq. (5.33), the circuit of a MOSFET CS amplifier is drawn 

as in Fig. 5.8.  

 

 

 

 

 

            

        Fig. 5.8 AC Circuit Model of a 4-terminal MOSFET Common-Source Amplifier 

 

  The voltage gain [23-26] between the output terminals 2 & 3 and the input 

terminals 1 & 3 of a 4-terminal MOSFET CS amplifier in Fig. 5.8 using Eq. (5.33) is 

expressed as; 

 𝐴𝑣|13
23 = 𝑠𝑔𝑛(2 − 3)𝑠𝑔𝑛(1 − 3)(−1)9

|𝑌23
13|

|𝑌13
13|

          (5.34) 

 |𝑌23
13| = |

𝑔𝑚
0
   
𝑔𝑚𝑏
𝑔𝑏

| =  𝑔𝑚𝑔𝑏 ,    

 |𝑌13
13| = |

𝑔𝑜 + 𝐺𝐿
0

   
𝑔𝑚𝑏
𝑔𝑏

| = (𝑔𝑜 + 𝐺𝐿)𝑔𝑏  

 𝐴𝑣|13
23 = −

𝑔𝑚𝑔𝑏

(𝑔𝑜+𝐺𝐿)𝑔𝑏
= −

𝑔𝑚

(𝑔𝑜+𝐺𝐿)
     = −𝑔𝑚(𝑟𝑜 ∥ 𝑅𝐿)  

    = −𝑔𝑚(𝑟𝑜 ∥ 𝑅𝐷 ∥ 𝑅𝐿) = 𝑔𝑚(𝑟𝑜 ∥ 𝑅𝐷 ∥ 𝑅𝐿)∠180
0                     (5.35) 

 The current gain [23-26] between the output terminals 2 & 3 and the input terminals 

1 & 3 of a 4-terminal MOSFET CS amplifier in Fig. 5.8 using Eq. (5.33) is expressed 

as follows; 

 Ai|13
23 = sgn(2 − 3)sgn(1 − 3)(−1)8

|Y23
13|

|Y3
3|
GL     (5.36) 

 |𝑌3
3| = |

𝑔𝑠 + 𝐺𝐺 0 0
𝑔𝑚 𝑔𝑜 + 𝐺𝐿 𝑔𝑚𝑏  
0 0 𝑔𝑏

| = (𝑔𝑠 + 𝐺𝐺)(𝑔𝑜 + 𝐺𝐿)𝑔𝑏  

 

1 

2 

3 

3 

GG 

 GS = GS1 +GL2 

 GL = GD +GL1 

R15 

𝑔𝑠  

𝑣𝑖  

𝑣𝑜  

R25 

B, 4 

𝑣𝑏𝑠  
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 𝐴𝑖|13
23 = −

𝑔𝑚𝑔𝑏𝐺𝐿

(𝑔𝑠+𝐺𝐺)(𝑔𝑜+𝐺𝐿)𝑔𝑏 
    = −

𝑔𝑚𝐺𝐿

(𝑔𝑠+𝐺𝐺)(𝑔𝑜+𝐺𝐿) 
  

    = −𝑔𝑚(𝑟𝑠)(𝑅𝐷 ∥ 𝑅𝐿)𝐺𝐿 = 𝑔𝑚(𝑟𝑠)(𝑅𝐷 ∥ 𝑅𝐿)𝐺𝐿∠180
0     (5.37) 

 The input resistance [23-26] between the input terminals 1 & 3 of a 4-terminal 

MOSFET CS amplifier in Fig. 5.8 using Eq. (5.33) is expressed as; 

 𝑅𝑖𝑛 = 𝑅13 =
|𝑌13
13|

|𝑌3
3|
𝑔𝑠=0

  

 |𝑌3
3|𝑔𝑠=0 = 𝐺𝐺(𝑔𝑜 + 𝐺𝐿)𝑔𝑏                                   (5.38) 

 𝑅𝑖𝑛 = 𝑅13 =
(𝑔𝑜+𝐺𝐿)𝑔𝑏

𝐺𝐺(𝑔𝑜+𝐺𝐿)𝑔𝑏
= 𝑅𝐺                               (5.39) 

 Now, the input resistance RG of the amplifier is connected across the ac input voltage 

source (𝑣𝑠) in series with its internal resistance (𝑟𝑠) as in Fig. 5.9.  

 

 

 

Fig. 5.9 Effective Voltage Gain Model with Source Voltage and Resistance of a 4-

terminal MOSFET CS Amplifier  

 From Fig. 5.9, the effect of source resistance on the overall voltage gain can be 

estimated as follows; 

 
𝑣13

𝑣𝑖
=

𝑅𝑖𝑛

𝑅𝑖𝑛+𝑟𝑠
=

RG

RG+rs
= 1 (RG>>rs)                 (5.40)  

 𝐴𝑣𝑠 =
𝑣23

𝑣13
𝑥
𝑣13

𝑣𝑖
=

𝑣23

𝑣𝑖
  = {−𝑔𝑚(𝑟𝑜 ∥ 𝑅𝐷 ∥ 𝑅𝐿)} (

RG

RG+rs
) 

     = −𝑔𝑚(𝑟𝑜 ∥ 𝑅𝐷 ∥ 𝑅𝐿) = 𝑔𝑚(𝑟𝑜 ∥ 𝑅𝐷 ∥ 𝑅𝐿)∠180
0                              (5.41) 

 Equation (5.41) reveals that the voltage developed across the actual input terminals 

1 and 3 of the MOSFET CS amplifier is the open circuit signal voltage 𝑣𝑠, as  𝑟𝑠<<𝑅𝐺 . 

Hence, the overall voltage gain of the amplifier, including the source resistance, is not 

affected by the source resistance 𝑟𝑠 and is expressed as; 

3 
 

 

 
𝑔𝑠  

𝑣𝑖  

RG 

1 

Rin=R13 
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 𝐴𝑣𝑠|13
23 =

𝑣13

𝑣𝑖
𝑥
𝑣23

𝑣13
= −𝑔𝑚(𝑟𝑜 ∥ 𝑅𝐷 ∥ 𝑅𝐿)  𝑔𝑚(𝑅𝐷 ∥ 𝑅𝐿)∠180

0                 (5.42) 

 The voltage gain given in Eq. (5.42) of a MOSFET CS amplifier in Fig. 5.7 is 

available in all standard books [2-13]. This corroborates the correctness of the proposed 

technique.  

 The output resistance [23-26] between the output terminals 2 & 3 of the 4-terminal 

MOSFET CS amplifier in Fig. 5.8 using Eq. (5.33) is expressed as; 

 Ro = R23 =
|Y23
23|

|Y3
3|
GL=0

                                         (5.43) 

 |𝑌23
23| = |

𝑔𝑠 + 𝐺𝐺
0

   
0
𝑔𝑏
| = (𝑔𝑠 + 𝐺𝐺)𝑔𝑏  

 |𝑌3
3|𝐺𝐿=0 = |

𝑔𝑠 + 𝐺𝐺 0 0
𝑔𝑚 𝑔𝑜 + 𝐺𝐷 + 𝐺𝐿 𝑔𝑚𝑏  
0 0 𝑔𝑏

|  = (𝑔𝑠 + 𝐺𝐺)(𝑔𝑜 + 𝐺𝐷)𝑔𝑏   

  𝑅𝑜 = 𝑅23 =
(𝑔𝑠+𝐺𝐺)𝑔𝑏

(𝑔𝑠+𝐺𝐺)(𝑔𝑜+𝐺𝐷)𝑔𝑏  
=

1

𝑔𝑜+𝐺𝐷  
= ro𝑅𝐷                              (5.44) 

 The output resistance seen accros RD in Fig. 5.8 is the effective output resistance 

given as; 

 𝑅𝑜 = 𝑅23 = 𝑟𝑜 ∥ 𝑅𝐷 ≅ 𝑅𝐷                                            (5.45) 

 The power gain [23-26] between the output terminals 2 & 3 and the input terminals 

1 & 3 of a 4-terminal MOSFET CS amplifier in Fig. 5.8 using Eq. (5.33) is expressed 

as ; 

 𝐴𝑃|13
23 = 𝐴𝑣|13

23𝑥𝐴𝑖|13
23 = {−𝑔𝑚(𝑅𝐷 ∥ 𝑅𝐿)}{−𝑔𝑚(𝑟𝑠)(𝑅𝐷 ∥ 𝑅𝐿)𝐺𝐿 } 

      𝑔𝑚
2 (𝑅𝐷 ∥ 𝑅𝐿)

2𝑟𝑠𝐺𝐿                          (5.46) 

 5. Circuit Model of a 4-terminal MOSFET C D Amplifier 
The floating admittance matrix of a MOSFET phase-splitter circuit of Eq. (5.32) is 

again manuevoured by adding the 2nd row and the 2nd column to the 5th row and the 5th 

column. Then the 5th row and the 5th columns are assigned as the 2nd row and the 2nd 

column after deleting the original 2nd row and the 2nd column to derive the over all 

floating admittance matrix of a 4-terminal common-drain (CD) amplifier as in Eq. 

(5.47).  
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[
 
 
 
 

1
𝑔𝑠 + 𝐺𝐺
−𝑔𝑚
0

𝑔𝑚 − 𝑔𝑠 − 𝐺𝐺

   

3
0

𝑔𝑚 + 𝑔𝑜 + 𝑔𝑚𝑏 + 𝑔𝑏 + 𝐺𝑆
−𝑔𝑏

−𝐺𝑆−𝑔𝑚 − 𝑔𝑜 − 𝑔𝑚𝑏

   

4
0

−𝑔𝑚𝑏 − 𝑔𝑏
𝑔𝑏
𝑔𝑚𝑏

   

2
−𝑔𝑠 − 𝐺𝐺
−𝑔𝑜 − 𝐺𝑆

0
𝑔𝑠 + 𝐺𝐺 + 𝑔𝑜 + 𝐺𝐿]

 
 
 
 

[
 
 
 
 
1
3
4
2 ]
 
 
 
 

  (5.47) 

The circuit of a common-drain amplifier is drawn in Fig. 5.10 using Eq. (5.47). 

 

 

 

 

 

 

Fig. 5.10 AC circuit model of a 4-terminal CD Amplifier 

 The voltage gain [23-26] between the output terminals 3 & 2 and the input terminals 

1 & 2 of a 4-terminal MOSFET CD amplifier in Fig. 5.10 using Eq. (5.47) is expressed 

as follows; 

 𝐴𝑣|12
32 = 𝑠𝑔𝑛(3 − 2)𝑠𝑔𝑛(1 − 2)(−1)8

|𝑌32
12|

|𝑌12
12|

      (5.48) 

 |𝑌32
12| = |

−𝑔𝑚
0
   
−𝑔𝑚𝑏 − 𝑔𝑏

𝑔𝑏
| = −𝑔𝑚𝑔𝑏  

 |𝑌12
12| = |

𝑔𝑚 + 𝑔𝑜 + 𝑔𝑚𝑏 + 𝑔𝑏 + 𝐺𝑆
−𝑔𝑏

   
−𝑔𝑚𝑏 − 𝑔𝑏

𝑔𝑏
|  

     = |
𝑔𝑚 + 𝑔𝑜 + 𝐺𝑆

0
   
−𝑔𝑚𝑏 − 𝑔𝑏

𝑔𝑏
|  = (𝑔𝑚 + 𝑔𝑜 + 𝐺𝑆)𝑔𝑏  

 𝐴𝑣|12
32 = −

−𝑔𝑚𝑔𝑏

(𝑔𝑚+𝑔𝑜+𝐺𝑆)𝑔𝑏
=

𝑔𝑚

(𝑔𝑚+𝑔𝑜+𝐺𝑆)
 = 𝑔𝑚 (

1

𝑔𝑚
𝑟𝑜 𝑅𝑆) 

       𝑔𝑚 (
1

𝑔𝑚
𝑅𝑆) = (

𝑅𝑆
1

𝑔𝑚
+𝑅𝑆

) = (
𝑔𝑚𝑅𝑆

1+𝑔𝑚𝑅𝑆
)            (5.49)      

      ≅ 1 (ideal)                                                            (5.50) 

 

 

GS 

1 

2 

3 

5 

GG 

 GS = GS1 +GL2 
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 The current gain [23-26] between the output terminals 3 & 2 and the input terminals 

1 & 2 of a 4-terminal MOSFET CD amplifier in Fig. 5.10 using Eq. (5.47) is expressed 

as; 

 𝐴𝑖|12
32 = 𝑠𝑔𝑛(3 − 2)𝑠𝑔𝑛(1 − 2)(−1)8

|𝑌32
12|

|𝑌2
2|
𝐺𝐿   (5.51)                      

 |𝑌2
2| = |

𝑔𝑠 + 𝐺𝐺 0 0
−𝑔𝑚 𝑔𝑚 + 𝑔𝑜 + 𝑔𝑚𝑏 + 𝑔𝑏 + 𝐺𝑆 −𝑔𝑚𝑏 − 𝑔𝑏
0 −𝑔𝑏 𝑔𝑏

| 

             = |

𝑔𝑠 + 𝐺𝐺 0 0
−𝑔𝑚 𝑔𝑚 + 𝑔𝑜 + 𝐺𝑆 −𝑔𝑚𝑏 − 𝑔𝑏
0 0 𝑔𝑏

|  

             = 𝑔𝑏(𝑔𝑠 + 𝐺𝐺)(𝑔𝑚 + 𝑔𝑜 + 𝐺𝑆)  

 𝐴𝑖|12
32 = −

−𝑔𝑚𝑔𝑏𝐺𝐿

𝑔𝑏(𝑔𝑠+𝐺𝐺)(𝑔𝑚+𝑔𝑜+𝐺𝑆)
=

𝑔𝑚𝐺𝐿(𝑟𝑠∥𝑅𝐺)

(𝑔𝑚+𝐺𝑆)
 = 𝑔𝑚𝐺𝐿(𝑟𝑠 ∥ 𝑅𝐺)(

1

𝑔𝑚
𝑅𝑆)   

           = 𝑔𝑚𝐺𝐿(𝑟𝑠 ∥ 𝑅𝐺) (
1

𝑔𝑚
) = 𝐺𝐿(𝑟𝑠 ∥ 𝑅𝐺) =

(𝑟𝑠RG)

𝑅𝐿
                          (5.52) 

 The input resistance [23-26] between the input terminals 1 & 2 of a 4-terminal 

MOSFET CD amplifier in Fig. 5.10 using Eq. (5.47) is expressed as ;  

 𝑅𝑖𝑛 = 𝑅12 =
|𝑌12
12|

|𝑌2
2|
𝑔𝑠=0

                                          (5.53) 

 |𝑌2
2|𝑔𝑠=0 = 𝑔𝑏𝐺𝐺(𝑔𝑚 + 𝑔𝑜 + 𝐺𝑆)  

 𝑅𝑖𝑛 = 𝑅12 =
|𝑌12
12|

|𝑌2
2|
𝑔𝑠=0

=
(𝑔𝑚+𝑔𝑜+𝐺𝑆)𝑔𝑏

𝑔𝑏𝐺𝐺(𝑔𝑚+𝑔𝑜+𝐺𝑆)
=

1

𝐺𝐺
= 𝑅𝐺                         (5.54) 

 The overall voltage gain of the MOSFET CD amplifier including the effect of the 

signal source resistance is obtained by deriving the actual input voltage appearing at 

the gate terminal of the amplifier as in Fig. 5.11.  

 

 

 



 

135 
 

 

 

 

 

Fig. 5.11 Effective Voltage Gain Model with Source Voltage of a 4-terminal MOSFET 

CD Amplifier 

From Fig. 5.11, 𝑣12 = 𝑣𝑖
𝑅𝐺

𝑟𝑠+𝑅𝐺
≅ 𝑣𝑖; as  𝑟𝑠 ≪ 𝑅𝐺                          (5.55) 

Now, 𝐴𝑣𝑠 =
𝑣32

𝑣12
𝑥
𝑣12

𝑣𝑖
= 𝐴𝑣|12

32𝑥
𝑣12

𝑣𝑖
  = (

𝑅𝑆
1

𝑔𝑚
+𝑅𝑆

)𝑥1 = (
𝑔𝑚𝑅𝑆

1+𝑔𝑚𝑅𝑆
) ≅ 1        (5.56) 

 The output resistance [23-26] between the output terminals 3 & 2 of a 4-terminal 

MOSFET CD amplifier in Fig. 5.10 using Eq. (5.47) is written as ;   

  𝑅𝑜𝑢𝑡 = 𝑅32 =
|𝑌32
32|

|𝑌2
2|
𝐺𝐿=0

                    (5.57) 

 |𝑌32
32| = |

𝑔𝑠 + 𝐺𝐺
0

   
0
𝑔𝑏
| = (𝑔𝑠 + 𝐺𝐺)𝑔𝑏  

 |𝑌2
2|𝐺𝑆=0 = 𝑔𝑏(𝑔𝑠 + 𝐺𝐺)(𝑔𝑚 + 𝑔𝑜)  

 𝑅𝑜𝑢𝑡 = 𝑅32 =
(𝑔𝑠+𝐺𝐺)𝑔𝑏

(𝑔𝑠+𝐺𝐺)(𝑔𝑚+𝑔𝑜)𝑔𝑏
=

1

(𝑔𝑚+𝑔𝑜)
 =

1

𝑔𝑚
𝑟𝑜 ≅ 

1

𝑔𝑚
               (5.58) 

 The power gain [23-26] between the output terminals 3 & 2 and the input terminals 

1 & 2 of a 4-terminal MOSFET CD amplifier in Fig. 5.10 using Eq. (5.47) is written 

as ; 

 𝐴𝑃|12
32 = 𝐴𝑣|12

32𝑥𝐴𝑖|12
32 = (1)

(𝑟𝑠RG)

𝑅𝐿
= {

𝑟𝑠RG

𝑅𝐿
}               (5.59) 

 5.7 Circuit Model of a 4-terminal MOSFET CG Amplifier 
The floating admittance matrix of a MOSFET common-gate (CG) amplifier results 

from the MOSFET phase-splitter amplifier shown in Fig. 5.7 and its Eq. (5.32) by 

adding the 1st row and the 1st column to the 5th row and the 5th column and deleting the 

original 1st row and the 1st column after assigning the 5th row and the 5th column as the 

1st row and the 1st column as;   

2 

𝑣𝑖 

𝑟𝑠  
1 

RG 
Rin  

=R12 
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[
 
 
 
 

2
𝑔𝑜 + 𝐺𝐿
−𝑔𝑜
0
−𝐺𝐿

   

3
−𝑔𝑚 − 𝑔𝑜 − 𝑔𝑚𝑏  

𝑔𝑚 + 𝑔𝑜 + 𝑔𝑚𝑏 + 𝑔𝑏 + 𝑔𝑠
−𝑔𝑏
−𝑔𝑠

   

4
𝑔𝑚𝑏  

−𝑔𝑚𝑏 − 𝑔𝑏
𝑔𝑏
0

   

1
𝑔𝑚 − 𝐺𝐿
−𝑔𝑚 − 𝑔𝑠

0
𝐺𝐿 + 𝑔𝑠 ]

 
 
 
 

[
 
 
 
 
2
3
4
1 ]
 
 
 
 

            (5.60) 

 Figure 5.12 is the circuit of the CG amplifier derived from Eq. (5.60) after assigning 

𝐺𝑠 + 𝑔𝑠 = 1/(𝑅𝑠𝑟𝑠) = 𝑔𝑠 to serve as the input source resistance. 

 

 

 

 

 

 

 

      Fig. 5.12 Circuit Model of a 4-terminal CG MOSFET Amplifier 

 

Here, also 𝐺𝐿=𝐺𝐿1 + 𝐺𝐷 

 The voltage gain [23-26] between the output terminals 2 & 1 and the input terminals 

3 & 1 of a 4-terminal MOSFET CG amplifier in Fig. 5.12 using Eq. (5.60) is expressed 

as follows; 

 𝐴𝑣|31
21 = 𝑠𝑔𝑛(2 − 1)𝑠𝑔𝑛(3 − 1)(−1)7

|𝑌21
31|

|𝑌31
31|

        (5.61) 

 |𝑌21
31| = |

−𝑔𝑚 − 𝑔𝑚𝑏  − 𝑔𝑜
−𝑔𝑏

    
𝑔𝑚𝑏  
𝑔𝑏

| = |
−𝑔𝑚 − 𝑔𝑜

0
   
𝑔𝑚𝑏  
𝑔𝑏

| = −(𝑔𝑚 + 𝑔𝑜)𝑔𝑏 

 |𝑌31
31| = |

𝑔𝑜 + 𝐺𝐿
0

    
𝑔𝑚𝑏  
𝑔𝑏

| = (𝑔𝑜 + 𝐺𝐿)𝑔𝑏  

 𝐴𝑣|31
21 = −

−(𝑔𝑚+𝑔𝑜)𝑔𝑏

(𝑔𝑜+𝐺𝐿)𝑔𝑏
=

(𝑔𝑚+𝑔𝑜)

(𝑔𝑜+𝐺𝐿)
= 𝑔𝑚(𝑟𝑜 ∥ 𝑅𝐿) = 𝑔𝑚𝑅𝐿                          (5.62) 

where, 𝑅𝐿 = 𝑅𝐷 ∥ 𝑅𝐿1 

 The current gain [23-26] between the output terminals 2 & 1 and the input terminals 

3 & 1 of a 4-terminal MOSFET CG amplifier in Fig.5.12 using Eq. (5.60) is expressed 

as follows;  

GL1 

1 

2 3 

GD GS 

𝑣𝑖  

𝑟𝑠  

R21 R31 

GL=GL1+GD 

B, 4 

𝑣𝑏𝑠  
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 𝐴𝑖|31
21 = 𝑠𝑔𝑛(2 − 1)𝑠𝑔𝑛(3 − 1)(−1)7

|𝑌21
31|

|𝑌1
1|
𝐺𝐿    (5.63) 

 |𝑌1
1| = |

𝑔𝑜 + 𝐺𝐿
−𝑔𝑜
0

   

−𝑔𝑚 − 𝑔𝑚𝑏  − 𝑔𝑜
𝑔𝑚 + 𝑔𝑚𝑏 + 𝑔𝑜 ++𝑔𝑏 + 𝑔𝑆

−𝑔𝑏
   

𝑔𝑚𝑏  
−𝑔𝑚𝑏 − 𝑔𝑏

𝑔𝑏
|  

      = |
𝑔𝑜 + 𝐺𝐿
𝐺𝐿
0

   
−𝑔𝑚 − 𝑔𝑜

𝑔𝑆
0

   

𝑔𝑚𝑏  
0
𝑔𝑏

| = 𝑔𝑏{(𝑔𝑜 + 𝐺𝐿)𝑔𝑆 + 𝐺𝐿(𝑔𝑚 + 𝑔𝑜)}   

𝐴𝑖|31
21 =

(𝑔𝑚+𝑔𝑜)𝑔𝑏

𝑔𝑏{(𝑔𝑜+𝐺𝐿)𝑔𝑆+𝐺𝐿(𝑔𝑚+𝑔𝑜)}
𝐺𝐿  =

𝑔𝑚𝐺𝐿

{𝑔𝑆+𝑔𝑚}𝐺𝐿
= 𝑔𝑚 {𝑟𝑆

1

𝑔𝑚
} ≅ 1    (5.64) 

 The input resistance [23-26] between the input terminals 3 & 1 of a 4-terminal 

MOSFET CG amplifier in Fig. 5.12 using Eq. (5.60) is expressed as ;  

 𝑅𝑖𝑛 = 𝑅31 =
|𝑌31
31|

|𝑌1
1|
𝑔𝑠=0

                                       (5.65) 

 |𝑌1
1|𝑔𝑠=0 = 𝑔𝑏{(𝑔𝑜 + 𝐺𝐿)𝑔𝑆 + 𝐺𝐿(𝑔𝑚 + 𝑔𝑜)}    = 𝑔𝑏𝐺𝐿(𝑔𝑚 + 𝑔𝑜)  

 𝑅𝑖𝑛 = 𝑅31 =
|𝑌31
31|

|𝑌1
1|
𝑔𝑠=0

=
(𝑔𝑜+𝐺𝐿)𝑔𝑏

𝑔𝑏(𝑔𝑚+𝑔𝑜)𝐺𝐿 
=

(𝐺𝐿)𝑅𝐿

𝑔𝑚 
  =

1

𝑔𝑚 
                           (5.66) 

Figure 5.13 gives effective input voltage across the gate and source terminals of the 

MOSFET CG amplifier in Fig. 5.12. 

 

 

 

Fig. 5.13 Effective Voltage Gain Model with Source Voltage and Resistance of a 4-

terminal MOSFET CG Amplifier 

From Fig. 5.13, 
𝑣31

𝑣𝑖
=

𝑅𝑖

𝑟𝑠+𝑅𝑖
=

1/𝑔𝑚

𝑟𝑠+1/𝑔𝑚
  

 𝐴𝑣𝑠 = 𝐴𝑣|31
21𝑥

𝑣31

𝑣𝑖
= [𝑔𝑚(𝑟𝑜 ∥ 𝑅𝐷 ∥ 𝑅𝐿) ] (

1/𝑔𝑚

𝑟𝑠+1/𝑔𝑚
)  

    = [(𝑟𝑜 ∥ 𝑅𝐷 ∥ 𝑅𝐿) ] (
1

𝑟𝑠+1/𝑔𝑚
)                     (5.67) 

1 
𝑣𝑖 

𝑟𝑠  

   Ri=R31  

3 

1

𝑔𝑚
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   The output resistance [23-26] between the output terminals 2 & 1 of a 4-terminal 

MOSFET CG amplifier in Fig. 5.12 using Eq. (5.60) is expressed as ;  

 𝑅𝑜𝑢𝑡 = 𝑅21 =
|𝑌21
21|

|𝑌1
1|
𝐺𝐿=0

                      (5.68) 

 |𝑌21
21| = |

𝑔𝑚 + 𝑔𝑜 + 𝑔𝑚𝑏 + 𝑔𝑏 + 𝑔𝑆
−𝑔𝑏

   
−𝑔𝑚𝑏 − 𝑔𝑏

𝑔𝑏
|   

          = |
𝑔𝑚 + 𝑔𝑜 + 𝑔𝑆

0
   
−𝑔𝑚𝑏 − 𝑔𝑏

𝑔𝑏
| = (𝑔𝑚 + 𝑔𝑜 + 𝑔𝑆)𝑔𝑏  

 |𝑌1
1|𝐺𝐿=0  = 𝑔𝑏{(𝑔𝑜 + 𝐺𝐷 + 𝐺𝐿)𝑔𝑆 + (𝐺𝐷 + 𝐺𝐿)(𝑔𝑚 + 𝑔𝑜)}    

              = 𝐺𝐷𝑔𝑏{𝑔𝑆 + 𝑔𝑚}  

 𝑅𝑜𝑢𝑡 = 𝑅21 =
(𝑔𝑚+𝑔𝑜+𝑔𝑆)𝑔𝑏

𝐺𝐷𝑔𝑏{𝑔𝑆+𝑔𝑚}
=

𝑔𝑚+𝑔𝑜+𝑔𝑆

𝑔𝑆+𝑔𝑚
𝑅𝐷 = 𝑅𝐷                                  (5.69) 

  The power gain [23-26] between the output terminals 2 & 1 and the input terminals 

3 & 1 of a 4-terminal MOSFET CG amplifier in Fig. 5.12 using Eq. (5.60) is written 

as; 

𝐴𝑃|31
21 = 𝐴𝑣|31

21𝑥 𝐴𝑖|31
21 = {𝑔𝑚(𝑟𝑜 ∥ 𝑅𝐷 ∥ 𝑅𝐿)}{1} = 𝑔𝑚(𝑟𝑜 ∥ 𝑅𝐷 ∥ 𝑅𝐿)         (5.70) 

5. Circuit Model of a 4-terminal MOSFET Phase-Splitter Amplifier 

(complete analysis) 

To derive all transfer and self-port functions between output terminals 2 & 5 and input 

terminals 1 & 5 of the 4-terminal MOSFET phase-splitter amplifier circuit in Fig. 5.7, 

we take the help of Eq. (5.32).  

 The voltage gain [23-26] between the output terminals 2 & 5 and the input terminals 

1 & 5 of a 4-terminal MOSFET phase-splitter amplifier circuit in Fig. 5.7 using Eq. 

(5.32) is expressed as; 

 𝐴𝑣|15
25 = 𝑠𝑔𝑛(2 − 5)𝑠𝑔𝑛(1 − 5)(−1)13

|𝑌25
15|

|𝑌15
15|

     (5.71) 

From Eq. (5.32), |𝑌25
15| = |

𝑔𝑚
−𝑔𝑚
0
   

−𝑔𝑚 − 𝑔𝑜 − 𝑔𝑚𝑏  
𝑔𝑚 + 𝑔𝑜 + 𝑔𝑚𝑏 + 𝑔𝑏 + 𝐺𝑆

−𝑔𝑏
   

𝑔𝑚𝑏  
−𝑔𝑚𝑏 − 𝑔𝑏

𝑔𝑏
| 
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            = |
𝑔𝑚
0
0
   

−𝑔𝑜
𝐺𝑆
0
    

𝑔𝑚𝑏  
0
𝑔𝑏

| = 𝑔𝑏𝑔𝑚𝐺𝑆  

 |𝑌15
15| = |

𝑔𝑜 + 𝐺𝐿
−𝑔𝑜
0

   

−𝑔𝑚 − 𝑔𝑜 − 𝑔𝑚𝑏  
𝑔𝑚 + 𝑔𝑜 + 𝑔𝑚𝑏 + 𝑔𝑏 + 𝐺𝑆

−𝑔𝑏
   

𝑔𝑚𝑏  
−𝑔𝑚𝑏 − 𝑔𝑏

𝑔𝑏
| 

         = |
𝑔𝑜 + 𝐺𝐿
𝐺𝐿
0

   

−𝑔𝑚 − 𝑔𝑜
𝐺𝑆
0

   

𝑔𝑚𝑏  
0
𝑔𝑏

| 

     = 𝑔𝑏{(𝑔𝑜 + 𝐺𝐿)𝐺𝑆 + (𝑔𝑚 + 𝑔𝑜)𝐺𝐿}   = 𝑔𝑏{𝐺𝑆 + 𝑔𝑚}𝐺𝐿  

 𝐴𝑣|15
25 = −

𝑔𝑏𝑔𝑚𝐺𝑆

𝑔𝑏{𝐺𝑆+𝑔𝑚}𝐺𝐿
= −

𝑔𝑚𝑅𝐿

{𝐺𝑆+𝑔𝑚}𝑅𝑆
= −

𝑔𝑚𝑅𝐿

1+𝑔𝑚𝑅𝑆
         (5.72) 

    = −
𝑔𝑚(RDRL)

1+𝑔𝑚𝑅𝑆
     (here effective load resistance =RDRL)                        (5.73)  

 The voltage gain [23-26] between the output terminals 3 & 5 and the input terminals 

1 & 5 of a 4-terminal MOSFET phase-splitter amplifier circuit in Fig. 5.7 using Eq. 

(5.32) is expressed as; 

 𝐴𝑣|15
35 = 𝑠𝑔𝑛(3 − 5)𝑠𝑔𝑛(1 − 5)(−1)14

|𝑌35
15|

|𝑌15
15|

       (5.74) 

From Eq. (5.32), |𝑌35
15| = |

𝑔𝑚
−𝑔𝑚
0
   
𝑔𝑜 + 𝐺𝐿
−𝑔𝑜
0

   

𝑔𝑚𝑏  
−𝑔𝑚𝑏 − 𝑔𝑏

𝑔𝑏
| = |

𝑔𝑚
0
0
   
𝑔𝑜 + 𝐺𝐿
𝐺𝐿
0

   

𝑔𝑚𝑏  
0
𝑔𝑏

| 

      = 𝑔𝑏𝑔𝑚𝐺𝐿  

 𝐴𝑣|15
35 =

𝑔𝑏𝑔𝑚𝐺𝐿

𝑔𝑏{𝐺𝑆+𝑔𝑚}𝐺𝐿
=

𝑔𝑚𝑅𝑆

{1+𝑔𝑚𝑅𝑆}
                      (5.75) 

 If we select GL = GS, then Eqs. (5.72) and (5.75) become exactly equal in magnitude 

but 1800 phase apart. For this reason, the circuit is called a phase-splitter amplifier.  

  The current gain [23-26] between the output terminals 2 & 5 and the input terminals 

1 & 5 of a 4-terminal MOSFET phase-splitter amplifier circuit in Fig. 5.7 using Eq. 

(5.32)  is expressed as; 

 𝐴𝑖|15
25 = 𝑠𝑔𝑛(2 − 5)𝑠𝑔𝑛(1 − 5)(−1)13

|𝑌25
15|

|𝑌5
5|
𝐺𝐿  (5.76) 
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From Eq. (5.32), 

 |𝑌5
5| = |

𝑔𝑠 + 𝐺𝐺
𝑔𝑚
−𝑔𝑚
0

    

0
𝑔𝑜 + 𝐺𝐿
−𝑔𝑜
0

    

0
−𝑔𝑚 − 𝑔𝑜 − 𝑔𝑚𝑏  

𝑔𝑚 + 𝑔𝑜 + 𝑔𝑚𝑏 + 𝑔𝑏 + 𝐺𝑆
−𝑔𝑏

     

0
𝑔𝑚𝑏  

−𝑔𝑚𝑏 − 𝑔𝑏
𝑔𝑏

   | 

          = |

𝑔𝑠 + 𝐺𝐺
𝑔𝑚
0
0

   

0
𝑔𝑜 + 𝐺𝐿
𝐺𝐿
0

    

0
−𝑔𝑚 − 𝑔𝑜

𝐺𝑆
0

     

0
𝑔𝑚𝑏  
0
𝑔𝑏

| 

   = (𝑔𝑠 + 𝐺𝐺) |
𝑔𝑜 + 𝐺𝐿
𝐺𝐿
0

   

−𝑔𝑚 − 𝑔𝑜
𝐺𝑆
0

    

𝑔𝑚𝑏  
0
𝑔𝑏

| 

 = (−1)3+3𝑔𝑏(𝑔𝑠 + 𝐺𝐺){(𝑔𝑜 + 𝐺𝐿)𝐺𝑆 + 𝐺𝐿(𝑔𝑚 + 𝑔𝑜)}  

 = 𝑔𝑏(𝑔𝑠 + 𝐺𝐺){𝐺𝐿𝐺𝑆 + 𝑔𝑚𝐺𝐿}  

|𝑌5
5| = 𝑔𝑏(𝑔𝑠 + 𝐺𝐺)𝐺𝐿(𝐺𝑆 + 𝑔𝑚)       

𝐴𝑖|15
25 −

|𝑌25
15|

|𝑌5
5|
𝐺𝐿 = −

𝑔𝑏𝑔𝑚𝐺𝑆

𝑔𝑏(𝑔𝑠+𝐺𝐺)𝐺𝐿(𝐺𝑆+𝑔𝑚)
𝐺𝐿 = −

𝑔𝑚𝐺𝑆

(𝑔𝑠+𝐺𝐺)(𝐺𝑆+𝑔𝑚)
= −

𝑔𝑚(𝑟𝑠∥𝑅𝐺)

(1+𝑔𝑚𝑅𝑆)
  (5.77) 

  = −
𝑔𝑚𝑟𝑠

1+𝑔𝑚𝑅𝑆
                          (5.78) 

Similarly, the current gain [23-26] between the output terminals 3 & 5 and the input 

terminals 1 & 5 using Eq. (5.32) of a 4-terminal MOSFET phase-splitter amplifier 

circuit in Fig. 5.7 is expressed as; 

𝐴𝑖|15
35 = 𝑠𝑔𝑛(3 − 5)𝑠𝑔𝑛(1 − 5)(−1)14

|𝑌35
15|

|𝑌5
5|
𝐺𝑆   (5.79)        

𝐴𝑖|15
25 −

|𝑌25
15|

|𝑌5
5|
𝐺𝐿 = −

𝑔𝑏𝑔𝑚𝐺𝑆

𝑔𝑏(𝑔𝑠+𝐺𝐺)𝐺𝐿(𝐺𝑆+𝑔𝑚)
𝐺𝐿 = −

𝑔𝑚𝐺𝑆

(𝑔𝑠+𝐺𝐺)(𝐺𝑆+𝑔𝑚)
= −

𝑔𝑚(𝑟𝑠∥𝑅𝐺)

(1+𝑔𝑚𝑅𝑆)
  

  = −
𝑔𝑚𝑟𝑠

1+𝑔𝑚𝑅𝑆
                          (5.80) 

Equations (5.77) and (5.80) are exactly equal in magnitude but differs in phase by 1800.  

  The input resistance [23-26] between the input terminals 1 & 5 of a 4-terminal 

MOSFET phase-splitter amplifier circuit in Fig. 5.7 using Eq. (5.32) is expressed as ;  

 𝑅𝑖𝑛 = 𝑅15 =
|𝑌15
15|

|𝑌5
5|
𝑔𝑠=0

                                          (5.81) 
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|𝑌5
5|
𝑔𝑠=0

= 𝑔𝑏(𝑔𝑠 + 𝐺𝐺)𝐺𝐿(𝐺𝑆 + 𝑔𝑚) = 𝑔𝑏𝐺𝐺𝐺𝐿(𝐺𝑆 + 𝑔𝑚)  

𝑅𝑖𝑛 = 𝑅15 =
𝑔𝑏{𝐺𝑆+𝑔𝑚}𝐺𝐿

𝑔𝑏𝐺𝐺𝐺𝐿(𝐺𝑆+𝑔𝑚)
=

1

𝐺𝐺
 = 𝑅𝐺   

  The output resistance [14-17] between the output terminals 2 & 5 of a 4-terminal 

MOSFET phase-splitter amplifier in Fig. 5.7 using Eq. (5.32) is expressed as ;  

 𝑅𝑜𝑢𝑡 = 𝑅25 =
|𝑌25
25|

|𝑌5
5|
𝐺𝐿=0

                                         (5.82) 

 |𝑌5
5|
𝐺𝐿1=0

= 𝑔𝑏(𝑔𝑠 + 𝐺𝐺)(𝐺𝐷 + 𝐺𝐿1)(𝐺𝑆 + 𝑔𝑚) = 𝑔𝑏𝐺𝐺𝐺𝐷(𝐺𝑆 + 𝑔𝑚) 

 |𝑌5
5|
𝐺𝑆=0

= 𝑔𝑏(𝑔𝑠 + 𝐺𝐺)(𝐺𝐷 + 𝐺𝐿1)(𝐺𝑆 + 𝑔𝑚) = 𝑔𝑏(𝑔𝑠 + 𝐺𝐺)(𝐺𝐷 + 𝐺𝐿1)𝑔𝑚 

 |𝑌5
5|
𝐺𝑆 0

= 𝑔𝑏(𝑔𝑠 + 𝐺𝐺)(𝐺𝐷 + 𝐺𝐿1)(𝐺𝑆 + 𝑔𝑚)   

 |𝑌25
25| = |

𝑔𝑠 + 𝐺𝐺
−𝑔𝑚
0

   
0

𝑔𝑚 + 𝑔𝑜 + 𝑔𝑚𝑏 + 𝑔𝑏 + 𝐺𝑆
−𝑔𝑏

   
0

−𝑔𝑚𝑏 − 𝑔𝑏
𝑔𝑏

|   

        = |
𝑔𝑠 + 𝐺𝐺
−𝑔𝑚
0

   
0

𝑔𝑚 + 𝑔𝑜 + 𝐺𝑆
0

   
0

−𝑔𝑚𝑏 − 𝑔𝑏
𝑔𝑏

|  

      = (𝑔𝑠 + 𝐺𝐺)(𝑔𝑚 + 𝑔𝑜 + 𝐺𝑆)𝑔𝑏  

 𝑅𝑜𝑢𝑡 = 𝑅25 =
|𝑌25
25|

|𝑌5
5|
𝐺𝐿1=0

=
𝑔𝑏(𝑔𝑠+𝐺𝐺)(𝑔𝑚+𝑔𝑜+𝐺𝑆)

𝑔𝑏(𝑔𝑠+𝐺𝐺)𝐺𝐷(𝐺𝑆+𝑔𝑚)
=

(𝑔𝑚+𝑔𝑜+𝐺𝑆)

(𝐺𝑆+𝑔𝑚)
 𝑅𝐷  

    = {1 +
𝑔𝑜𝑅𝑆

1+𝑔𝑚𝑅𝑆
} 𝑅𝐷.                            (5.83) 

 𝑅𝑜𝑢𝑡 = 𝑅25
|𝑌25
25|

|𝑌5
5|
𝐺𝐿≠ 0

=
(𝑔𝑚+𝑔𝑜+𝐺𝑆)

𝐺𝐿(𝐺𝑆+𝑔𝑚) 
=

𝑔𝑚+𝐺𝑆

𝐺𝐿(𝐺𝑆+𝑔𝑚) 
+

𝑔𝑜

𝐺𝐿(𝐺𝑆+𝑔𝑚) 
  

= 𝑅𝐿 + 𝑅𝐿
𝑔𝑜𝑅𝑆

1+𝑔𝑚𝑅𝑆 
  = 𝑅𝐿 (1 +

𝑔𝑜𝑅𝑆

1+𝑔𝑚𝑅𝑆 
) (5.84) 

  The output resistance [23-26] between the output terminals 3 & 5 of a 4-terminal 

MOSFET phase-splitter amplifier in Fig. 5.7 using Eq. (5.32) is expressed as ;  

 𝑅𝑜𝑢𝑡 = 𝑅35 =
|𝑌35
35|

|𝑌1
1|
𝐺𝑆=0

    (5.85) 
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 |𝑌35
35| = |

𝑔𝑠 + 𝐺𝐺
−𝑔𝑚
0

   
0

𝑔𝑜 + 𝐺𝐿
0

   
0

−𝑔𝑚𝑏 − 𝑔𝑏
𝑔𝑏

| = (𝑔𝑠 + 𝐺𝐺)(𝑔𝑜 + 𝐺𝐿)𝑔𝑏  

𝑅𝑜𝑢𝑡 = 𝑅35 =
|𝑌35
35|

|𝑌5
5|
𝐺𝑆=0

=
(𝑔𝑠+𝐺𝐺)(𝑔𝑜+𝐺𝐿)𝑔𝑏 

𝑔𝑏(𝑔𝑠+𝐺𝐺)𝐺𝐿𝑔𝑚
=

(𝑔𝑜+𝐺𝐿)

𝐺𝐿𝑔𝑚
≅

𝐺𝐿

𝐺𝐿𝑔𝑚
=

1

𝑔𝑚
              (5.86) 

𝑅𝑜𝑢𝑡 = 𝑅35 =
|𝑌35
35|

|𝑌5
5|

𝐺𝑆≠0

=
(𝑔𝑠 + 𝐺𝐺)(𝑔𝑜 + 𝐺𝐿)𝑔𝑏

(𝑔𝑠 + 𝐺𝐺)(𝑔𝑜 + 𝐺𝐿)(𝐺𝑆 + 𝑔𝑚)𝑔𝑏
=

1

(𝐺𝑆 + 𝑔𝑚)
 

   = 𝑅𝑆 ∥
1

𝑔𝑚
=

1

𝑔𝑚
 (5.87) 

 The power gain [14], [17] between terminals 2 & 5 and 1 & 5 of a MOS phase-

splitter amplifier circuit in Fig. 4 is written as ;  

𝐴𝑃|15
25 = 𝐴𝑣|15

25𝑥 𝐴𝑖|15
25   = (−

𝑔𝑚𝑅𝐿

1+𝑔𝑚𝑅𝑆
) (−

𝑔𝑚𝑟𝑠

1+𝑔𝑚𝑅𝑆
)     (5.88) 

 The power gain [14], [17] between terminals 3 & 5 and 1 & 5 of a MOS phase-

splitter amplifier circuit in Fig. 4 is written as ;  

𝐴𝑃|15
35 = 𝐴𝑣|15

35𝑥 𝐴𝑖|15
35   = (

𝑔𝑚𝑅𝑆

{1+𝑔𝑚𝑅𝑆}
) (

𝑔𝑚𝑟𝑠

1+𝑔𝑚𝑅𝑆
)                    (5.89) 

The LTSpice simulation of a Voltage-dependent capacitor was presented by Zeltsern 

and Yaakov[22]. The exhaustive discussion on the Design and comparative analysis 

of active-loaded differential amplifiers using double-gate MOSFET goes to the credit 

of Pillay and Srivastava [23]. 

5. Conclusions 
The technique proposed is straightforward and purely mathematical. Once the 

MOSFET parameters are known, even a pure mathematician with the knowledge of 

matrix manuevouring has little understanding of device operations and can easily obtain 

all transfer and self-port functions. Additionally, its zero-sum property provides a check 

at the beginning of writing the FAM of any complicated or straightforward network. 

This property states that the sum of all elements in any row or in any column should be 

zero. If not, then some mistakes must have been made somewhere in writing the FAM. 

In such circumstances, the researchers have to reobserve once again before proceeding 

further. This provides a clue to saving time and energy. Thus, the analysis and design 

become easy using the FAM approach. Matrix partitioning method helps to write FAM 

of complicated circuits as several sub-matrices and then added together, node wise, is 
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a handy tool. Composite circuits containing both types of devices (BJT and MOS) still 

further increase the complexity and complicate the problem in arriving at simple 

solutions using the conventional methods. 

 On the contrary, the circuit analysis can be done easily using FAM. Some 

approximations are inherent in the conventional analysis method (complicated small-

signal equivalent circuit), but FAM approach does not require any approximation, and 

the result will be accurate. The solution of lattice network, bridge-T, Twin-T etc., are 

very cumbersome using the conventional methods and may be solved easily with 

proposed FAM technique. 
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Chapter- 

 

Conclusions 

 
The conventional method of analysis of any circuit containing the active device(s) is 

based on the small-signal equivalent circuit of the active device and then use of either 

KCL, KVL, Thevenin’s, or Norton’s theorem. The researchers have to decide which 

conventional tool (either KCL, KVL, Thevenin’s, or Norton’s theorem) is most suitable 

for a particular problem to get the solution easily. On the contrary, the proposed 

technique is unique and can be applied to a simple or to even a complicated circuits 

using portioning property of the matrix, equally well, to get the solution easily.  

 We are now more than two decades into the 21st century, and on an ever-

accelerating fast track to technological innovation in electronics. The transistors and its 

progression into the IC, or microchip, lit the fuse leading to the explosion of innovations 

in electronics that is now taking place. Since the widespread introduction of the 

microchip in the early 1970s, more medical, mathematical, and scientific breakthroughs 

have occurred than during any other time, and big breakthroughs are happening more 

frequently. 

 In this context, all academicians and professionals are trying hard to simplify and 

achieve better and better results from any system we think of. Our aim to simplification 

of the analog circuit combining BJT, FET, MOSFET, and their combinations along 

with resisters and capacitors lies in using properties of the Floating Admittance Matrix 

(FAM) technique. The floating admittance matrix approach of the solution of any 

circuit has the following special features: 

1. The zero-sum property provides a self-check of the proposed technique in the 

very beginning after writing the floating admittance matrix (FAM) of any 

simple or complicated circuit. This property states that the sum of all elements 

in any row or in any column should be zero. If, not, then some mistakes must 
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have been made somewhere in writing the FAM. In such circumstances, the 

researcher has to observe once again the FAM before proceeding further. This 

provides a clue to save the time and energy. Hence the analysis and design 

becomes easy using FAM Approach. 

2. The FAM technique of solution of any circuit takes the help of matrix 

manoeuvring in the form of ratios of co-factors of the FAM only.  

3. Matrix partitioning method help to write FAM of complicated circuits in 

number of sub matrices and then added together node wise, is a handy tool.   

4. Cascaded and cascoded circuits with even only one type of the active devices 

poses too much of problem for finding out different types of transfer or self-port 

functions of any circuit. Precisely, if we introduce a resistance in-between 

cascode connection, the solution by conventional method is very cumbersome, 

if not impossible.  

5. Composite circuits containing both types of devices (BJT and FET/MOSFET) 

still further increases the complexity and complicates the problem in arriving at 

the solutions. On the contrary, it can be analysed easily using FAM, in the form 

of sub-matrices. 

6. Solving even resistive network having more than two loops becomes tedious 

task by the conventional tools. As  an example, the solution of the bridge T-

network or twin-T runs into pages by conventional methods of KCL, KVL, 

Thevenin’s, Norton’s  theorems.  

7. Solving Twin-T Network is very good example of rejecting precisely only one 

frequency and passing all other frequencies. Its analysis by the conventional 

method is very difficult, but solved easily using FAM.   

8. Similarly, getting the solution of Lattice Network by conventional tool is very 

cumbersome, but solved easily with FAM technique. 

9. Derivation of all types of transfer and self-port functions; such input impedance, 

output impedance, voltage gain, current gain, power gain by conventional 

method for even in pure resistive complicated network becomes very lengthy 

and cumbersome. 
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10. Some approximation is inherent to the conventional method of analysis, but 

FAM approach does not require any approximation and results will be more 

accurate. 

11. Mathematical model of any device provides an insight into the complete 

behaviour of the physical system that reduces the problem to its essential 

characteristic. 

12. Deduction of the value of all the component in the Bridged T-Attenuator in 

terms of propagation constant and characteristic impedance is very problematic 

using conventional method, but becomes very simple using FAM technique.  

13. The FAM is the only method suitable for non-electrical people with a back 

ground of matrix, if interested in solving any electrical and electronic circuit, 

because it is based on only maneuvering of the matrix in the form of cofactors 

of the FAM only.  

14. Once, the FAM of any network is written, it is easy to find out transfer or self-

port functions between as many ports as possible.  

 The technique proposed is straightforward and purely mathematical. Once the BJT/ 

FET/ MOSFET floating admittance matrix is known, even a pure mathematician with 

the knowledge of matix maneuvering having little understanding of device operations 

can also easily obtain all transfer functions and self-port functions. Concluding with the 

above advantages, the proposed technique provides a clue to the time and energy 

management. Thus, the analysis and design become easy using FAM approach.  

 On the contrary, the circuit analysis can be done easily using FAM. Some 

approximations are inherent in the conventional analysis method (for complicated 

small-signal equivalent circuit), but FAM approach does not require any 

approximation, and the result will be accurate. The solution of lattice network, bridge-

T, Twin-T etc., are very cumbersome using the conventional methods and may be 

solved easily with the proposed FAM technique. 

 If the body of the 4-terminal MOSFET is not connected to the source terminal, a 

voltage occurs between the body and the source terminal that effects the threshold 

voltage of the MOSFET and the normal functioning of the MOSFET. The small-signal 
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model development of the 4-terminal MOSFET gets affected and hence the floating 

admittance matrix includes the body effect also.  

 On the other hand, if the source terminal of all the 4-termina MOSFETs in an 

integrated circuit are connected to only Body (substrate), then the circuit becomes 

useless. Hence, the body terminal is dealt as a separate terminal and given the name of 

back-gate. Thus all the four terminals of a MOSFET play active role in functioning of 

the MOSFET. 

 As stated previously, mathematical modelling is a powerful tool in engineering 

education that enables its users to minimize time and cost in the design process. Also, 

mathematical modelling usage facilitates the process of redesigning or concurrent 

engineering, a relatively new addition to engineering field.  

The simulation and Validation of the common emitter amplifier on LTSpice plateform 

closely corroborates the theoretical results obtained using FAM technique. Also the 

simulation and validation of  three complecated circuit presented in  our published 

paper, indicated on Sr No.-3, 4 and 7 in Anexxure 2 validates theoretically predicted 

results. 

 

 

Future Scope of Work 

The straight forward answer to the scope is any researcher can prepare a program (s) to 

maneuver the FAM in the form of ratios of its cofactors to obtain any transfer or self-

port function. There are many circuits using many single type of devices i.e. only BJTs 

or only MSFETs or even the composite of these two types of devices to obtain the 

solution easily using the FAM technique applying matrix portioning technique. Since, 

the proposed technique is based on the matrix, the computer or MAT Lab program can 

very well be used. The wide scope for researchers remain unsolved for the non-linear 

circuit using piece wise linear model. 
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Annexure-2 

Complete Papers Published List in pdf Formates as downloaded from Publishers source 

and Indexed in Scopus. 

Paper No1-Mathematical modelling of semiconductor devices and circuits-A review 

ICICS2020.pdf

 
Paper No2- Mathematical Modelling of Simple Passive RC Filters Using Floating 

Admittance Technique. 

INOCON2020.pdf

 
Paper No3- Mathematical Modelling and Simulation of Band Pass Filters using the 

Floating Admittance Matrix Method. 

WSEASTR.pdf

 
Paper No4- Unique Analysis Approach to Bridge-T Network using Floating 

Admittance Matrix Method. 

IJCSSPBridge-T.pdf

 
Paper No5- Unique Analysis Technique for 4-Terminal MOSFET Amplifiers using 

Floating Admittance Matrix Approach. 

ICONAT2022.pdf

 
Paper No6-An Elegant Method of Analysis for the BJT Amplifiers using Floating 

Admittance Matrix. 

BJTFAM.pdf

 
Paper No7- Mathematical Modeling of Twin -T Notch Filter using Floating 

Admittance Matrix. 

IJCSSPTwin-T.pdf
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Annexure-3 
Comperision of Solutions with Convensional and Floating Admittance Method(FAM)   

 

8.8 Darlington configuration (Conventional Method) 

We have seen that the input resistance of the emitter follower and BJT phase splitter is 

high. Still higher input resistance can be achieved using the Darlington pair. This is a 

very popular interconnection of 2-Bipolar Junction Transistors as a single unit, 

illustrated in Fig.8.8 (a), is commercially available in the market by the name of 

Darlington pair. Its main feature is that the 2-BJT works as a single transistor with its 

current amplification ratio as the product of the current amplification ratios of the 2-

independent BJTs. In other words, if β1 and β2 are current amplification ratios of the 

two BJTs (T1 and T2), then the overall current amplification ratio in the form of 

Darlington connection is;  

  βD = β1β2  (8.99) 

 

 

 

 

 

 

 

            Figure 8.8 (a) Darlington Pair 

From Fig.8.8 (a) it is clear that  

 ic2 = β2ib2  

 ie1 = (1 + β1)𝑖𝑏1 = 𝑖𝑏2 

 𝑖𝑐 = 𝑖𝑐1 + 𝑖𝑐2 = β1𝑖𝑏1 + β2𝑖𝑏2 = β1𝑖𝑏1 + β2(1 + β1)𝑖𝑏1 

  = {β1 + β2(1 + β1)}𝑖𝑏1  (8.100) 

Hence, the overall current amplification ratio is = 
ic

ib1
=

{β1+β2(1+β1)}𝑖𝑏1

ib1
 

  = β1 + β2(1 + β1) (8.101) 

 𝑟𝜋1 =
VT

IB1
=

VT

IE1/(1+β1)
=

VT(1+β1)

IE1
=

VT

IB2
(1 + β1) = (1 + β1)𝑟𝜋2 

 𝑟𝜋2 =
VT

IE1
=

VT

(1+β1)IB1
=

VT/IB1

(1+β1)
=

𝑟𝜋1

(1+β1)
 

Following are the two equivalent circuits in terms of input currents of both transistors. 

A simple circuit of Darlington amplifier is shown Fig. 8.8 (b). The emitter current of 

βD = β1β2 

ic 

ib 

ie 

T2 

T1 

Ri2 
Ri1 

ib1 

ie1 ie2 

ic2 
 ic1 ic1+ic2 = ic 

ib2 
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transistor T1 is equal to the base current of the transistor T2. The ac circuit of the 

Darlington configuration is shown in Fig. 8.8(c).  From the ac circuit of Darlington pair 

shown in Fig. 8.8 (d), its small signal equivalent circuit looks like the one drawn in Fig. 

8.8 (e).  

 

 

 

 

 

                                Figure 8.8 (b) Input resistance of Darlington pair 

 

 

 

 

 

            

                

                                       Figure 8.8 (c) Darlington pair amplifier 

 

 

 

 

 

 

 

 

 

                                Figure 8.8 (d) ac circuit of Darlington pair amplifier 

 

           

             

 

       

  

      Figure 8.8 (e) Equivalent circuit of Darlington pair amplifier 

ie1 ie1 ie2 

𝑟𝜋2 𝑟𝜋2= 𝑟𝜋1/(1 + 𝛽) 𝑟𝜋1= (1 + 𝛽1)ℎ𝜋2 𝑟𝜋1 

ie1 ie1 ie2 

ib2 
ib1 

T2 

T1 

RE 

RB 

VBB 

VCC 

RL 

vs 

rs 

ib1 

ic1 

ie2 ib2 

ie2 

ic2 

ic1+ic2 

T2 

T1 

RE 

RB 

RL 

𝑣𝑖  

rs 

ib1 

ic1 

ie2 ib2 

ie2 

ic2 

ic1+ic2 𝑣𝐿  

𝑣𝑒  

𝑣𝑏  

Rib  

𝛽2𝑖𝑏  𝛽1𝑖𝑏 

𝑟𝜋2 

RB 
𝑣𝑖𝑏  

RL 

𝑣𝐿 

ib2 

ib1 𝑟𝜋1 

RE 

rs 

𝑣𝑠  

𝑣𝑒 

𝑖𝑒2 
𝑖𝐿  
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From Fig.8.8 (e), 𝑖𝑏2 = 𝑖𝑒1 = (1 + 𝛽1)𝑖𝑏1  (8.102) 

Writing loop equation in the input circuit  

 vi = rπ1ib1 + {rπ2 + (1 + 𝛽2)RE}ib2 

  = rπ1ib1 + {rπ2 + (1 + 𝛽2)RE}ie1  

  = rπ1ib1 + {rπ2 + (1 + 𝛽2)RE}(1 + 𝛽1)ib1  

  = [rπ1 + {rπ2 + (1 + 𝛽2)RE}(1 + 𝛽1)]ib1   (8.103) 

Hence, its input resistance Rib =
vi

ib1
= rπ1 + {rπ2 + (1 + 𝛽2)RE}(1 + 𝛽1)  (8.104) 

 Rib = [re1 + {rπ2 + (1 + 𝛽2)RE}](1 + 𝛽1) (8.105) 

The effective input resistance of the amplifier including the bias resistor RB is 

 𝑅𝑖(𝑒𝑓𝑓) = 𝑅𝐵 ∥ 𝑅𝑖𝑏 8.106) 

The upper limit on the value of effective input resistance is limited to the value of 𝑅𝐵. 

Hence, the Darlington configuration could not help much in enhancing the effective 

input resistance of the Darlington amplifier. As an example, the circuit of Fig.8.8 (e) 

reduces to Fig.8.8 (f). The effective input resistance including the bias resistance is; 

 Ris = Ri ∥ RBB = 10 kll104 k = 10 k (8.106) 

The Darlington configuration is used as the emitter follower, the voltage is supposed to 

be unity (ideally), but very near to unity in practical cases.  

From Fig. 8.8 (e), the voltage developed across the emitter resistance RE is given as; 

  𝑣𝑒2 = 𝑖𝑒2𝑅𝐸 = (1 + β2)ib2𝑅𝐸 

  = (1 + β2)𝑅𝐸ie1 

  = (1 + β2)(1 + β1)𝑅𝐸ib1   (8.107) 

 𝑣𝑖𝑏 = Riib1 = [rπ1ib1 + (1 + β1)ib1rπ2 + (1 + β2)(1 + β1)𝑅𝐸ib1] 

 𝑣𝑖𝑏 = Riib1 = [rπ1 + {rπ2 + (1 + β2)RE}(1 + β1)]ib1 (8.108) 

 The voltage gain between the emitter point and the input (base point) is the ratio 

of the voltage 𝑣𝑒2 and 𝑣𝑖𝑏 and is given as; 

  
𝑣𝑒2

𝑣𝑖𝑏
=

(1+β2)(1+β1)𝑅𝐸ib1

[rπ1+{rπ2+(1+β2)RE}(1+β1)]ib1
=

(1+β2)(1+β1)𝑅𝐸

rπ1+{rπ2+(1+β2)RE}(1+β1)
 (8.109) 

From Fig. 8.8 (f)  𝑖𝑠 =
𝑣𝑠

𝑟𝑠+𝑅𝐵∥𝑅𝑖𝑏
 

 𝑣𝑖𝑏 = (𝑅𝐵 ∥ 𝑅𝑖𝑏)𝑖𝑠 = (𝑅𝐵 ∥ 𝑅𝑖𝑏)
𝑣𝑠

𝑟𝑠+𝑅𝐵∥𝑅𝑖𝑏
 

 𝑣𝑖𝑏 = (𝑅𝐵 ∥ 𝑅𝑖𝑏)𝑖𝑠 = (𝑅𝐵 ∥ 𝑅𝑖𝑏)
𝑣𝑠

𝑟𝑠+𝑅𝐵∥𝑅𝑖𝑏
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  = (
𝑅𝐵𝑅𝑖𝑏

𝑅𝐵+𝑅𝑖𝑏
)

𝑣𝑠

𝑟𝑠+
𝑅𝐵𝑅𝑖𝑏
𝑅𝐵+𝑅𝑖𝑏

= 𝑣𝑠
𝑅𝐵𝑅𝑖𝑏

𝑟𝑠(𝑅𝐵+𝑅𝑖𝑏)+𝑅𝐵𝑅𝑖𝑏
 (8.110)   

 

 

 

 

Figure 8.8 (f) Simplified equivalent circuit of Darlington pair amplifier 

  𝐴𝑣 =
𝑣𝑖𝑏

𝑣𝑠
=

𝑅𝐵𝑅𝑖𝑏

𝑟𝑠(𝑅𝐵+𝑅𝑖𝑏)+𝑅𝐵𝑅𝑖𝑏
   

Now, the overall voltage gain including the source resistance can be expressed as; 

 𝐴𝑣𝑠 =
ve2

vib
𝑥
vib

𝑣𝑠
=

ve2

𝑣𝑠
=

v0

𝑣𝑠
  

𝐴𝑣𝑠𝑒 =
𝑣𝑒2=𝑣𝑜

𝑣𝑠
= {

(1+β2)(1+β1)𝑅𝐸

rπ1+{rπ2+(1+β2)RE}(1+β1)
} {

𝑅𝑖𝑏𝑅𝐵

𝑟𝑠(𝑅𝑖𝑏+𝑅𝐵)+𝑅𝑖𝑏𝑅𝐵
}  (8.111) 

The output resistance is defined as; 

 𝑅𝑂 =
v𝑒

𝑖𝑜
|
𝑣𝑆=0

  (8.112) 

Thus, for obtaining the output resistance, the circuit of Fig.8.8 (e) now reduces to 

Fig.8.8 (g).  

 

 

 

 

 

 

Figure 8.8 (g) Equivalent circuit of Darlington amp. for 𝑅𝑂 

From Fig. 8.8 (g),  

 

  Ve = −𝑟𝜋2ib2 − 𝑟𝜋1ib1 − (rs ∥ RBB)ib1 

= −𝑟𝜋2ib2 − {𝑟𝜋1 + (rs ∥ RBB)}ib1  

= −𝑟𝜋2ib2 − {𝑟𝜋1 + (rs ∥ RBB)}
ie1

1+𝛽1
  

= −𝑟𝜋2ib2 − {𝑟𝜋1 + (rs ∥ RBB)}
i𝑏2

1+𝛽1
  

= −𝑟𝜋2ib2 −
{𝑟𝜋1+(rs∥RBB)}

1+𝛽1
ib2  

vs 
RB 

i𝑒 i𝑠 
r𝑠 

v𝑖  
𝑅𝑖𝑏  

Ri  

 

𝛽2𝑖𝑏  𝛽1𝑖𝑏  

𝑟𝜋2 

RB 
𝑣𝑖𝑏  

RL 

𝑣𝐿 

ib2 ib1 

𝑟𝜋1 

rs 𝑣𝑒 

𝑖0 



 

154 
 

ve = −[𝑟𝜋2ib2 −
{𝑟𝜋1+rs∥RBB}

1+𝛽1
] ib2          (8.113) 

𝑖𝑜 = −(1 + 𝛽2)𝑖𝑏2,   

 𝑖𝑏2 = −
𝑖𝑜

(1+𝛽2)
  (8.114) 

 𝑖𝑏2 = 𝑖𝑒1 = −(1 + 𝛽1)𝑖𝑏1 (8.115) 

 

Substituting 𝑖𝑏2 in Eq. (8.113) from Eq, (8.114) yields; 

 

 ve = vO = −[𝑟𝜋2ib2 +
{𝑟𝜋1+rs∥RBB}

1+𝛽1
] (−

𝑖𝑜

(1+𝛽2)
) 

 𝑅𝑂 =
vO

iO
=

𝑟𝜋2

1+𝛽2
+

𝑟𝜋1+rs∥RBB

(1+𝛽1)(1+𝛽2)
 (Very low) (8.116) 

 

The voltage gain between collector and base points is now obtained as; 

 𝑣𝑐 = 𝑣𝐿 = −(𝛽1𝑖𝑏1 + 𝛽2𝑖𝑏2)𝑅𝐿 = −(𝛽1𝑖𝑏1 + 𝛽2𝑖𝑒1)𝑅𝐿 

  = −(𝛽1𝑖𝑏1 + 𝛽2(𝛽1 + 1)𝑖𝑏1)𝑅𝐿  

  = −{𝛽1 + (1 + 𝛽1)𝛽2}𝑅𝐿𝑖𝑏1   (8.117) 

 
𝑣𝑐=𝑣𝐿

𝑣𝑖𝑏
= −

−{𝛽1+(1+𝛽1)𝛽2}𝑅𝐿𝑖𝑏1

[rπ1+{rπ2+(1+β2)RE}(1+β1)]ib1
 

  = −
{𝛽1+(1+𝛽1)𝛽2}𝑅𝐿

rπ1+{rπ2+(1+β2)RE}(1+β1)
 (8.118) 

𝐴𝑣𝑠𝐿 =
VL

vib
𝑥
vib

𝑣𝑠
=

vL

𝑣𝑠
= −

−{𝛽1+(1+𝛽1)𝛽2}𝑅𝐿

[rπ1+{rπ2+(1+β2)RE}(1+β1)]
{

𝑅𝑖𝑏𝑅𝐵

𝑟𝑠(𝑅𝑖𝑏+𝑅𝐵)+𝑅𝑖𝑏𝑅𝐵
}  

𝐴𝑣𝑠𝐿 = −
−{𝛽1+(1+𝛽1)𝛽2}𝑅𝐿

[rπ1+{rπ2+(1+β2)RE}(1+β1)]
{

𝑅𝑖𝑏𝑅𝐵

𝑟𝑠(𝑅𝑖𝑏+𝑅𝐵)+𝑅𝑖𝑏𝑅𝐵
}  (8.119)

  

Darlington Configuration(FAM Method)  

Analysis using floating admittance matrix technique. The circuit of the Darlington 

configuration is shown in Fig. 1(a).  The ac circuit of the Darlington configuration is 

shown in Fig. 1(b).  

 
                                   Fig. 1(a) Darlington Configuration 
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                               Fig. 1(b) Darlington Configuration 

The partitioned floating admittance matrix of transistors T1 in Fig. 1(b) is written as; 

 [

1
𝑔𝜋1
𝑔𝑚1

−𝑔𝜋1 − 𝑔𝑚1

     

2
0
0
0

     

3
−𝑔𝜋1
−𝑔 𝑚1

𝑔𝜋1 + 𝑔𝑚1

] | 1
2
3

|   (1) 

 

Similarly, the partition floating admittance matrix of transistors T2 in Fig. 1(b) is 

written as; 

 

 [

3
𝑔𝜋2
𝑔𝑚2

−𝑔𝜋2 − 𝑔𝑚2

    

2
0
0
0

     

4
−𝑔𝜋2
−𝑔𝑚2

𝑔𝜋2 + 𝑔𝑚2

] [ 3
2
4

]  (2) 

 

Also, the partition floating admittance matrix of resistors RB, RE, and RL in Fig. 1(b) 

is written as; 

 

[
 
 
 
 
 

1
𝑔𝑠 + 𝐺𝐵

0
0
0

−𝑔𝑠 − 𝐺𝐵

   

2
0
𝐺𝐿
0
0
−𝐺𝐿

   

3
0
0
0
0
0

   

4
0
0
0
𝐺𝐸
−𝐺𝐸

   

5
−𝑔𝑠 − 𝐺𝐵
−𝐺𝐿
0
−𝐺𝐸

𝑔𝑠 + 𝐺𝐵 + 𝐺𝐸 + 𝐺𝐿]
 
 
 
 
 

[
 
 
 
 
 
1
2
3
4
5 ]
 
 
 
 
 

 (3) 

The three partition matrices of Eqs. (1), (2), and (3) are combined to form the overall 

matrix of Fig. 1 (b) as; 

 

[
 
 
 
 
 

1
𝑔𝜋1 + 𝑔𝑠 + 𝐺𝐵

𝑔𝑚1
−𝑔𝜋1 − 𝑔𝑚1

0
−𝑔𝑠 − 𝐺𝐵

     

2
0
𝐺𝐿
0
0
−𝐺𝐿

     

3
−𝑔𝜋1

−𝑔𝑚1 + 𝑔𝑚2
𝑔𝜋1 + 𝑔𝑚1 + 𝑔𝜋2
−𝑔𝜋2 − 𝑔𝑚2

0

       

4
0

−𝑔𝑚2
−𝑔𝜋2

𝑔𝜋2 + 𝑔𝑚2 + 𝐺𝐸
−𝐺𝐸

  

5
−𝑔𝑠 − 𝐺𝐵
−𝐺𝐿
0
−𝐺𝐸

𝑔𝑠 + 𝐺𝐵 + 𝐺𝐸 + 𝐺𝐿]
 
 
 
 
 

[
 
 
 
 
 
1
2
3
4
5 ]
 
 
 
 
 

 

 (4) 

 |𝑌25
15| = |

𝑔𝑚1
−𝑔𝜋1 − 𝑔𝑚1

0
   

−𝑔𝑚1 + 𝑔𝑚2
𝑔𝜋1 + 𝑔𝑚1 + 𝑔𝜋2
−𝑔𝜋2 − 𝑔𝑚2

   

−𝑔𝑚2
−𝑔𝜋2

𝑔𝜋2 + 𝑔𝑚2 + 𝐺𝐸
|  
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      = |
𝑔𝑚1

−𝑔𝜋1 − 𝑔𝑚1
0

   

−𝑔𝑚1 + 𝑔𝑚2
𝑔𝜋1 + 𝑔𝑚1 + 𝑔𝜋2
−𝑔𝜋2 − 𝑔𝑚2

   
0
0
𝐺𝐸

|  

   = |
𝑔𝑚1

−𝑔𝜋1 − 𝑔𝑚1
0

   

𝑔𝑚2
𝑔𝜋2

−𝑔𝜋2 − 𝑔𝑚2
   
0
0
𝐺𝐸

|  

     = 𝐺𝐸{𝑔𝑚1𝑔𝜋2 + (𝑔𝜋1 + 𝑔𝑚1)𝑔𝑚2} = 𝐺𝐸{𝑔𝑚1𝑔𝜋2 + 𝑔𝜋1(1 + 𝛽1)𝑔𝑚2} 
     = 𝑔𝜋1𝑔𝜋2{𝑔𝑚1𝑟𝜋1 + 𝑟𝜋2(1 + 𝛽1)𝑔𝑚2} = 𝑔𝜋1𝑔𝜋2{𝛽1 + 𝛽2(1 + 𝛽1)} 

 𝐴𝑣|15
25 = 𝑠𝑔𝑛(2 − 5)𝑠𝑔𝑛(1 − 5)(−1)13

|𝑌25
15|

|𝑌15
15|
= −

|𝑌25
15|

|𝑌15
15|

  (5) 

 𝐴𝑣|15
25 = −

|𝑌25
15|

|𝑌15
15|
= −

𝑔𝜋1𝑔𝜋2{𝛽1+𝛽2(1+𝛽1)}𝐺𝐸

𝐺𝐿𝑔𝜋1𝑔𝜋2[(1+𝛽1){𝑟𝜋2+(1+𝛽2)𝑅𝐸}+𝑟𝜋1]𝐺𝐸
  

     = −
{𝛽1+𝛽2(1+𝛽1)}𝑅𝐿

[𝑟𝜋1+(1+𝛽1){𝑟𝜋2+(1+𝛽2)𝑅𝐸}]
   (6) 

The input resistance between terminals 1 and 5 of the Darlington pair amplifier in Fig. 

1 (b) is expressed as; 

  𝑅𝑖𝑛 = 𝑅𝑖(15) =
|𝑌15
15|

|𝑌5
5|
𝑔𝑠=0

   (7) 

 |𝑌15
15| = |

𝐺𝐿
0
0
  

−𝑔𝑚1 + 𝑔𝑚2
𝑔𝜋1 + 𝑔𝑚1 + 𝑔𝜋2
−𝑔𝜋2 − 𝑔𝑚2

  

−𝑔𝑚2
−𝑔𝜋2

𝑔𝜋2 + 𝑔𝑚2 + 𝐺𝐸
| =

|
𝐺𝐿
0
0
    

−𝑔𝑚1
𝑔𝜋1 + 𝑔𝑚1

𝐺𝐸
    

−𝑔𝑚2
−𝑔𝜋2

𝑔𝜋2 + 𝑔𝑚2 + 𝐺𝐸
| 

  = 𝐺𝐿{(𝑔𝜋1 + 𝑔𝑚1)(𝑔𝜋2 + 𝑔𝑚2) + (𝑔𝜋1 + 𝑔𝑚1)𝐺𝐸 + 𝑔𝜋2𝐺𝐸}  
  = 𝐺𝐿𝑔𝜋1𝑔𝜋2[(1 + 𝛽1){𝑟𝜋2 + (1 + 𝛽2)𝑅𝐸} + 𝑟𝜋1]𝐺𝐸 

 |𝑌5
5|
𝑔𝑠+𝐺𝐵=0

= |

𝑔𝜋1
𝑔𝑚1

−𝑔𝑖1 − 𝑔𝑚1
0

  

0
𝐺𝐿
0
0

  

−𝑔𝜋1
−𝑔𝑚1 + 𝑔𝑚2

𝑔𝜋1 + 𝑔𝑚1 + 𝑔𝜋2
−𝑔𝜋2 − 𝑔𝑚2

   

0
−𝑔𝑚2
−𝑔𝜋2

𝑔𝜋2 + 𝑔𝑚2 + 𝐺𝐸

|  

  = |

𝑔𝜋1
𝑔𝑚1

−𝑔𝜋1 − 𝑔𝑚1
0

   

0
𝐺𝐿
0
0

      

0
0
0
𝐺𝐸

    

0
−𝑔𝑚2
−𝑔𝜋2

𝑔𝜋2 + 𝑔𝑚2 + 𝐺𝐸

| = 𝑔𝜋1𝑔𝜋2𝐺𝐿𝐺𝐸  

 𝑅𝑖𝑛 = 𝑅𝑖(15) =
𝐺𝐿𝑔𝜋1𝑔𝜋2[(1+𝛽1){𝑟𝜋2+(1+𝛽2)𝑅𝐸}+𝑟𝜋1]𝐺𝐸

𝑔𝜋1𝑔𝜋2𝐺𝐿𝐺𝐸
    

 = 𝑟𝜋1 + (1 + 𝛽1){𝑟𝜋2 + (1 + 𝛽2)𝑅𝐸}  (8)  

The output resistance between terminals 2 and 5 of the Darlington pair amplifier in 

Fig. 1 (b) is expressed as; 

 𝑅𝑜𝑢𝑡 = 𝑅𝑜(25) =
|𝑌25
25|

|𝑌5
5|
𝐺𝐿=0

  (9) 

 |𝑌25
25| = |

𝑔𝜋1 + 𝑔𝑠 + 𝐺𝐵
−𝑔𝜋1 − 𝑔𝑚1

0
   

−𝑔𝜋1
𝑔𝜋1 + 𝑔𝑚1 + 𝑔𝜋2
−𝑔𝜋2 − 𝑔𝑚2

   
0

−𝑔𝜋2
𝑔𝜋2 + 𝑔𝑚2 + 𝐺𝐸

|  

 |𝑌5
5|
𝐺𝐿=0

= |

𝑔𝜋1 + 𝑔𝑠 + 𝐺𝐵
𝑔𝑚1

−𝑔𝜋1 − 𝑔𝑚1
0

  

0
𝐺𝐿
0
0

  

−𝑔𝜋1
−𝑔𝑚1 + 𝑔𝑚2

𝑔𝜋1 + 𝑔𝑚1 + 𝑔𝜋2
−𝑔𝜋2 − 𝑔𝑚2

   

0
−𝑔𝑚2
−𝑔𝜋2

𝑔𝜋2 + 𝑔𝑚2 + 𝐺𝐸

| = 0  
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 𝑅𝑜𝑢𝑡 = 𝑅𝑜(25) =
|𝑌45
45|

|𝑌5
5|
𝐺𝐿=0

=
|𝑌45
45|

0
= ∞ (10) 

 𝑅𝑜𝑢𝑡 = 𝑅𝑜(25) =
|𝑌45
45|

|𝑌5
5|
𝐺𝐿 0

=
1

ℎ𝑜𝑒
∥ 𝑅𝐶 ≅ 𝑅𝐶  (11) 

Once again output impedance became infinite only because ℎ𝑜𝑒 was neglected in the 

floating admittance matrix representation of BJTs, because its value is negligibly small. 

If it is considered, then the output resistance will be equal to 
1

ℎ𝑜𝑒
. 

The output resistance between terminals 4 and 5 of the Darlington pair amplifier in Fig. 

1 (b) is expressed as; 

  𝑅𝑜𝑢𝑡 = 𝑅𝑜(45) =
|𝑌45
45|

|𝑌5
5|
𝐺𝐸=0

  (12) 

  |𝑌45
45| = |

𝑔𝜋1 + 𝑔𝑠 + 𝐺𝐵
𝑔𝑚1

−𝑔𝜋1 − 𝑔𝑚1

   
0
𝐺𝐿
0
   

−𝑔𝜋1
−𝑔𝑚1 + 𝑔𝑚2

𝑔𝜋1 + 𝑔𝑚1 + 𝑔𝜋2
|  

           = |
𝑔𝑠 + 𝐺𝐵
𝑔𝑚2
𝑔𝜋2

   
0
𝐺𝐿
0
   

−𝑔𝜋1
−𝑔𝑚1 + 𝑔𝑚2

𝑔𝜋1 + 𝑔𝑚1 + 𝑔𝜋2
|  

   = 𝐺𝐿{(𝑔𝑠 + 𝐺𝐵)(𝑔𝜋1 + 𝑔𝑚1 + 𝑔𝜋2) + 𝑔𝜋1𝑔𝜋2}  
   = 𝐺𝐿{(𝑟𝑠 + 𝑅𝐵){𝑟𝜋1 + (1 + 𝛽1)𝑟𝜋2} + 𝑟𝑠𝑅𝐵1}𝑔𝜋1𝑔𝜋2𝑔𝑠𝐺𝐵  

  |𝑌5
5|
𝐺𝐸=0

= |

𝑔𝜋1 + 𝑔𝑠 + 𝐺𝐵
𝑔𝑚1

−𝑔𝜋1 − 𝑔𝑚1
0

  

0
𝐺𝐿
0
0

  

−𝑔𝜋1
−𝑔𝑚1 + 𝑔𝑚2

𝑔𝜋1 + 𝑔𝑚1 + 𝑔𝜋2
−𝑔𝜋2 − 𝑔𝑚2

  

0
−𝑔𝑚2
−𝑔𝜋2

𝑔𝜋2 + 𝑔𝑚2 + 𝐺𝐸

| 

                  = |

𝑔𝜋1 + 𝑔𝑠 + 𝐺𝐵
𝑔𝑚1

−𝑔𝜋1 − 𝑔𝑚1
0

   

0
𝐺𝐿
0
0

    

𝑔𝑠 + 𝐺𝐵
0
0
0

  

0
−𝑔𝑚2
−𝑔𝜋2

𝑔𝜋2 + 𝑔𝑚2

|  

             = 𝐺𝐿 |
𝑔𝜋1 + 𝑔𝑠 + 𝐺𝐵
−𝑔𝜋1 − 𝑔𝑚1

0
     
𝑔𝑠 + 𝐺𝐵

0
0

    
0

−𝑔𝜋2
𝑔𝜋2 + 𝑔𝑚2

| ‘ 

    = 𝐺𝐿{(𝑔𝑠 + 𝐺𝐵)(𝑔𝜋2 + 𝑔𝑚2)(𝑔𝜋1 + 𝑔𝑚1)}  
    = 𝐺𝐿𝑔𝑠𝐺𝐵(𝑟𝑠 + 𝑅𝐵)𝑔𝜋1(1 + 𝛽2)𝑔𝜋2(1 + 𝛽1)  
 

 𝑅𝑜𝑢𝑡 = 𝑅𝑜(45) =
𝐺𝐿{(𝑟𝑠+𝑅𝐵){𝑟𝜋1+(1+𝛽1)𝑟𝜋2}+𝑟𝑠𝑅𝐵1}𝑔𝜋1𝑔𝜋2𝑔𝑠𝐺𝐵

𝐺𝐿𝑔𝑠𝐺𝐵(𝑟𝑠+𝑅𝐵)𝑔𝜋1(1+𝛽2)𝑔𝜋2(1+𝛽1)
  

 

 𝑅𝑜𝑢𝑡 = 𝑅𝑜(45) =
𝑟𝜋1

(1+𝛽2)(1+𝛽1)
+

(1+𝛽1)𝑟𝜋2

(1+𝛽2)(1+𝛽1)
+

𝑟𝑠𝑅𝐵
𝑟𝑠+𝑅𝐵

(1+𝛽2)(1+𝛽1)
  

 

  =
𝑟𝑒1

(1+𝛽2)
+

𝑟𝜋2

(1+𝛽2)
+

𝑟𝑠∥𝑅𝐵

(1+𝛽2)(1+𝛽2)
  =

𝑟𝑒1

(1+𝛽2)
+ 𝑟𝑒2 +

𝑟𝑠∥𝑅𝐵

(1+𝛽2)(1+𝛽2)
              (13)        

   

The voltage gain between terminals 4 & 5 and 1 & 5 of a Darlington amplifier in Fig. 

1 (b) is expressed as; 

  𝐴𝑣|15
45 = 𝑠𝑔𝑛(4 − 5)𝑠𝑔𝑛(1 − 5)(−1)15

|𝑌45
15|

|𝑌15
15|
= −

|𝑌45
15|

|𝑌15
15|

     (14)   
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 |𝑌45
15| = |

𝑔𝑚1
−𝑔𝜋1 − 𝑔𝑚1

0
   
𝐺𝐿
0
0
     

−𝑔𝑚1 − 𝑔𝑚2
𝑔𝜋1 + 𝑔𝑚1 + 𝑔𝜋2
−𝑔𝜋2 − 𝑔𝑚2

| = −𝐺𝐿(𝑔𝜋1 + 𝑔𝑚1)(𝑔𝜋2 + 𝑔𝑚2) 

    = −𝐺𝐿𝑔𝜋1𝑔𝜋2(1 + 𝛽1)(1 + 𝛽2)  
 

 𝐴𝑣|15
45 = −

−𝐺𝐿𝑔𝜋1𝑔𝜋2(1+𝛽1)(1+𝛽2) 

𝐺𝐿𝑔𝜋1𝑔𝜋2[(1+𝛽1){𝑟𝜋2+(1+𝛽2)𝑅𝐸}+𝑟𝜋1]𝐺𝐸
  

 

  =
(1+𝛽1)(1+𝛽2) 𝑅𝐸

𝑟𝜋1+(1+𝛽1){𝑟𝜋2+(1+𝛽2)𝑅𝐸}
≅

(1+𝛽1)(1+𝛽2) 𝑅𝐸

(1+𝛽1){𝑟𝜋2+(1+𝛽2)𝑅𝐸}
 =

(1+𝛽2) 𝑅𝐸

𝑟𝜋2+(1+𝛽2)𝑅𝐸
 

 

 ≅
(1+𝛽2)𝑅𝐸

(1+𝛽2)𝑅𝐸
= 1 (Emitter follower)  (15) 

The current gain between terminals 4 & 5 and 1 & 5 of a Darlington amplifier in Fig. 1 

(b) is expressed as; 

 𝐴𝑖|15
45 = 𝑠𝑔𝑛(4 − 5)𝑠𝑔𝑛(1 − 5)(−1)15

|𝑌45
15|

|𝑌5
5|
𝐺𝐿 = −

|𝑌45
15|

|𝑌5
5|
𝐺𝐸                           (16)  

 |𝑌5
5| = |

𝑔𝜋1
𝑔𝑚1

−𝑔𝜋1 − 𝑔𝑚1
0

  

0
𝐺𝐿
0
0

  

−𝑔𝜋1
−𝑔𝑚1 + 𝑔𝑚2

𝑔𝜋1 + 𝑔𝑚1 + 𝑔𝜋2
−𝑔𝜋2 − 𝑔𝑚2

  

0
−𝑔𝑚2
−𝑔𝜋2

𝑔𝜋2 + 𝑔𝑚2 + 𝐺𝐸

|  

 

         = |

𝑔𝜋1
𝑔𝑚1

−𝑔𝜋1 − 𝑔𝑚1
0

  

0
𝐺𝐿
0
0

    

0
0
0
𝐺𝐸

     

0
−𝑔𝑚2
−𝑔𝜋2

𝑔𝜋2 + 𝑔𝑚2 + 𝐺𝐸

| = 𝐺𝐿𝐺𝐸𝑔𝜋1𝑔𝜋2  

 

 Current gain = 𝐴𝑖|15
45 = −

−𝐺𝐿𝑔𝜋1𝑔𝜋2(1+𝛽1)(1+𝛽2) 

𝐺𝐿𝐺𝐸𝑔𝜋1𝑔𝜋2
𝐺𝐸 = (1 + 𝛽1)(1 + 𝛽2)  (17) 

 

11.14 FET-FET Cascode amplifier (Conventional) 

Analysis using conventional method of small-signal equivalent circuit approach.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                       Figure 11.15 (a)  

𝑣𝑜  RG1 

RG2 C 

RS 

 RG 
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                        Figure 11.15 (b) ac circuit 

The small signal equivalent circuit of the FET-FET cascode is drawn in Fig.  

 vgs1 = vg1 − vs1 = vi − RSid  (11.92) 

 vgs2 = vg2 − vs2 = 0 − vs2 = −(rd + RS)id + μvgs1 

             = −(rd + RS)id + μvi − μRSid   

     = −{rd + (1 + μ)RS}id + μvi  (11.93) 

Writing loop equation in Fig. 11.15 (c) yields. 

 (2𝑟𝑑 + 𝑅𝑆 + 𝑅𝐷)𝑖𝑑 = 𝜇𝑣𝑔𝑠1 + 𝜇𝑣𝑔𝑠2  (11.94) 

Substituting 𝑣𝑔𝑠1 and 𝑣𝑔𝑠2 from Eqs (11.92) and (11.93) in (11.94) yields;  

 (2𝑟𝑑 + 𝑅𝑆 + 𝑅𝐷)𝑖𝑑 = 𝜇(vi − 𝑖𝑑RS) − 𝜇[{rd + (1 + μ)RS}id] + 𝜇
2vi 

 (2 + 𝜇)𝑟𝑑 + (1 + 𝜇)RS + 𝜇(1 + μ)RS + 𝑅𝐷)𝑖𝑑 = μ𝑣𝑖 + 𝜇
2vi  

 (2 + 𝜇)𝑟𝑑 + (1 + 𝜇)
2RS + 𝑅𝐷)𝑖𝑑 = μ𝑣𝑖 + 𝜇

2vi = 𝜇(1 + 𝜇)𝑣𝑖 

  𝑖𝑑 =
𝜇(1+𝜇)𝑣𝑖

(2+𝜇)𝑟𝑑+(1+𝜇)
2RS+𝑅𝐷)

  (11.95) 

 

 

 

 

 
 

  

 

Figure 11.15 (c) Equivalent circuit                  Figure 11.15 (d) Equivalent circuit for RO  

The output resistance and current gain are not derived in the example of the circuit.  
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FET-FET Cascode(FAM Method) 

Analysis using floating admittance matrix technique. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                              

Figure 2(a) FET-FET Casecode  

 

 

 

 

 

 
    Figure 2(b)AC Circuit FET-FET Casecode 
 
The partitioned floating admittance matrix of each active device M1 of Fig. 2 (b) is 
and M2 is expressed as; 

 [
𝑖1 = 𝑖𝑔
𝑖2 = 𝑖𝑑
𝑖3 = 𝑖𝑠

] [

1
0
𝑔𝑚
−𝑔𝑚

     

2
0
𝑔𝑑
−𝑔𝑑

     

3
0

−𝑔𝑚 − 𝑔𝑑
𝑔𝑚 + 𝑔𝑑

] [
𝑣1 = 𝑣𝑔
𝑣2 = 𝑣𝑑
𝑣3 = 𝑣𝑠

] [ 1
2
3

]  (1) 

The partitioned floating admittance matrix of each active device M2 of Fig. 2 (b) is 

  [
𝑖1 = 𝑖𝑔
𝑖3 = 𝑖𝑑
𝑖2 = 𝑖𝑠

] [

4
0
𝑔𝑚
−𝑔𝑚

     

5
0
𝑔𝑑
−𝑔𝑑

     

2
0

−𝑔𝑚 − 𝑔𝑑
𝑔𝑚 + 𝑔𝑑

] [
𝑣1 = 𝑣𝑔
𝑣3 = 𝑣𝑑
𝑣2 = 𝑣𝑠

] [ 4
5
2

] (2) 

RG1 

RG2 C 

RS 

 RG 

+VDD 

𝑣𝑖  

M1 

M2 

𝑣𝑜  
RD 

𝑣𝑜  

RS 

 RG 𝑣𝑖  

M1 

M2 

RD 

2=3’ 2’=5 

1’= 4 
2 

1 

3 
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The partitioned floating admittance matrix of all passive resistors RG, RS, and RD of 
Fig. 2 (b) is 

 

[
 
 
 
 
 
1
𝐺𝐺
0
0
−𝐺𝐺
0

       

2
0
0
0
0
0

       

3
0
0
𝐺𝑆
−𝐺𝑆
0

       

4
−𝐺𝐺
0
−𝐺𝑆

𝐺𝐺 + 𝐺𝑆 + 𝐺𝐷
−𝐺𝐷

      

5
0
0
0
−𝐺𝐷
𝐺𝐷 ]

 
 
 
 
 

[
 
 
 
 
 
1
2
3
4
5 ]
 
 
 
 
 

 (3) 

The overall floating admittance matrix of the 5x5 Darlington pair amplifier in Fig. 2(b) 
is; 

 

[
 
 
 
 
 
1
𝐺𝐺
𝑔𝑚
−𝑔𝑚
−𝐺𝐺
0

     

2
0

2𝑔𝑑 + 𝑔𝑚
−𝑔𝑑
0

−𝑔𝑚 − 𝑔𝑑

     

3
0

−𝑔𝑚 − 𝑔𝑑
𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆

−𝐺𝑆
0

   

4
−𝐺𝐺
−𝑔𝑚
−𝐺𝑆

𝐺𝐺 + 𝐺𝑆 + 𝐺𝐷
𝑔𝑚 − 𝐺𝐷

   

5
0
−𝑔𝑑
0
−𝐺𝐷

𝑔𝑑 + 𝐺𝐷]
 
 
 
 
 

[
 
 
 
 
 
1
2
3
4
5 ]
 
 
 
 
 

 (4) 

 |𝑌24
24| = |

𝐺𝐺
−𝑔𝑚
0
    

0
𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆

0
    

0
0

𝑔𝑑 + 𝐺𝐷

| = 𝐺𝐺(𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆)(𝑔𝑑 + 𝐺𝐷)  

  = 𝐺𝐺(𝜇𝑅𝑆 + 𝑟𝑑 + 𝑅𝑆)𝑔𝑑𝐺𝑆(𝑟𝑑 + 𝑅𝐷)𝑔𝑑𝐺𝐷  

  = 𝐺𝐺{𝑟𝑑 + (1 + 𝜇)𝑅𝑆}𝑔𝑑𝐺𝑆(𝑟𝑑 + 𝑅𝐷)𝑔𝑑𝐺𝐷  

 |𝑌54
54| = |

𝐺𝐺
𝑔𝑚
−𝑔𝑚

    
0

2𝑔𝑑 + 𝑔𝑚
−𝑔𝑑

    
0

−𝑔𝑚 − 𝑔𝑑
𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆

| = 𝐺𝐺 |
2𝑔𝑑 + 𝑔𝑚
−𝑔𝑑

   
−𝑔𝑚 − 𝑔𝑑

𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆
|  

  = 𝐺𝐺 |
2𝑔𝑑 + 𝑔𝑚
𝑔𝑑 + 𝑔𝑚

   
−𝑔𝑚 − 𝑔𝑑

𝐺𝑆
| = 𝐺𝐺{(2𝑔𝑑 + 𝑔𝑚)𝐺𝑆 − (𝑔𝑚 + 𝑔𝑑)(𝑔𝑑 + 𝑔𝑚)}  

 |𝑌54
14| = |

𝑔𝑚
−𝑔𝑚
0
   
𝑔𝑚 + 2𝑔𝑑
−𝑔𝑑

−𝑔𝑚 − 𝑔𝑑

   

−𝑔𝑚 − 𝑔𝑑
𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆

0
| = |

0
−𝑔𝑚
0
   

0
−𝑔𝑑

−𝑔𝑚 − 𝑔𝑑

   
𝐺𝑆

𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆
0

| 

     = 𝐺𝑆𝑔𝑚(𝑔𝑚 + 𝑔𝑑)  

 |𝑌14
14| = |

2𝑔𝑑 + 𝑔𝑚
−𝑔𝑑

−𝑔𝑚 − 𝑔𝑑

   

−𝑔𝑚 − 𝑔𝑑
𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆

0
   

−𝑔𝑑
0

𝑔𝑑 + 𝐺𝐷
| 

= |
0
−𝑔𝑑

−𝑔𝑚 − 𝑔𝑑

   
𝐺𝑆

𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆
0

   
𝐺𝐷
0

𝑔𝑑 + 𝐺𝐷

|  

  = −𝐺𝑆𝑔𝑑(𝑔𝑑 + 𝐺𝐷) + 𝐺𝐷(𝑔𝑚 + 𝑔𝑑)(𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆)  

Voltage gain between output terminals 5 and 4 and input terminals 1 and 4 is 
expressed as; 
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 𝐴𝑣|14
54 = 𝑠𝑔𝑛(5 − 4)𝑠𝑔𝑛(1 − 4)(−1)14

|𝑌54
14|

|𝑌14
14|
= −

|𝑌54
14|

|𝑌14
14|

   (5) 

 𝐴𝑣|14
54 = −

|𝑌54
14|

|𝑌14
14|
= −

𝐺𝑆𝑔𝑚(𝑔𝑚+𝑔𝑑)

−𝐺𝑆𝑔𝑑(𝑔𝑑+𝐺𝐷)+𝐺𝐷(𝑔𝑚+𝑔𝑑)(𝑔𝑚+𝑔𝑑+𝐺𝑆)
  

       = −
𝐺𝑆𝑔𝑚𝑔𝑚𝑅𝐷𝑅𝑆

𝑔𝑑+𝑔𝑚(𝑔𝑚𝑅𝑆+1)
= −

𝑔𝑚𝑅𝐷

(𝑔𝑚𝑅𝑆+1)
= −𝑔𝑚𝑅𝐷 (for RS=0) 

The input resistance between terminals 1 and 4 of the Darlington pair amplifier in 
Fig.2(b) from Eq (3) is expressed as; 

  𝑅𝑖𝑛 = 𝑅𝑖(14) =
|𝑌14
14|

|𝑌4
4|
𝑔𝑠=0

   (6) 

 |𝑌4
4| = |

𝐺𝐺
𝑔𝑚
−𝑔𝑚
0

  

0
2𝑔𝑑 + 𝑔𝑚
−𝑔𝑑

−𝑔𝑚 − 𝑔𝑑

 

0
−𝑔𝑚 − 𝑔𝑑

𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆
0

   

−𝐺𝐺
−𝑔𝑚
−𝐺𝑆

𝑔𝑚 − 𝐺𝐷

| 

    = |

𝐺𝐺
0

−𝑔𝑚
0

  

0
0
−𝑔𝑑

−𝑔𝑚 − 𝑔𝑑

 

0
𝐺𝑆

𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆
0

   

−𝐺𝐺
−𝐺𝑆 − 𝐺𝐷
−𝐺𝑆

𝑔𝑚 − 𝐺𝐷

| 

         = |

𝐺𝐺
0

−𝑔𝑚
0

  

0
0
−𝑔𝑑

−𝑔𝑚 − 𝑔𝑑

 

0
𝐺𝑆

𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆
0

   

0
−𝐺𝐷
0

−𝑔𝑑 − 𝐺𝐷

| 

    = 𝐺𝐺 |
0
−𝑔𝑑

−𝑔𝑚 − 𝑔𝑑

   
𝐺𝑆

𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆
0

   
−𝐺𝐷
0

−𝑔𝑑 − 𝐺𝐷

| 

  = 𝐺𝐺[{−𝐺𝑆𝑔𝑑(𝑔𝑑 + 𝐺𝐷)} − 𝐺𝐷(𝑔𝑚 + 𝑔𝑑)(𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆)] 

  = −𝐺𝐺[{𝐺𝑆𝑔𝑑(𝑔𝑑 + 𝐺𝐷)} + 𝐺𝐷(𝑔𝑚 + 𝑔𝑑)(𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆)] 

 |𝑌4
4|𝐺𝐷=0 = −𝐺𝐺𝐺𝑆𝑔𝑑𝑔𝑑 

 𝑅𝑖𝑛 = 𝑅𝑖(14) =
−𝐺𝑆𝑔𝑑(𝑔𝑑+𝐺𝐷)+𝐺𝐷(𝑔𝑚+𝑔𝑑)(𝑔𝑚+𝑔𝑑+𝐺𝑆)

−𝐺𝐺[𝐺𝑆𝑔𝑑(𝑔𝑑+𝐺𝐷)+𝐺𝐷(𝑔𝑚+𝑔𝑑)(𝑔𝑚+𝑔𝑑+𝐺𝑆)]
= 𝑅𝐺  (evident)        (7) 

The output resistance between terminals 5 and 4 of the Darlington pair amplifier in 
Fig.1 (b) from Eq (3) is expressed as; 

 𝑅𝑜 = 𝑅𝑜(54) =
|𝑌54
54|

|𝑌4
4|
𝐺𝐷=0

    (8) 

 𝑅𝑜 = 𝑅𝑜(54) =
|𝑌54
54|

|𝑌4
4|
𝐺𝐷=0

=
GG{(2gd+gm)GS+(gm+gd)(gd+gm)}

𝐺𝐺[{𝐺𝑆𝑔𝑑𝑔𝑑}]
  

  =
(2gd+gm)GS

𝐺𝑆𝑔𝑑𝑔𝑑
+
(gm+gd)(gd+gm)

𝐺𝑆𝑔𝑑𝑔𝑑
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  = (2gd + gm)𝑟𝑑𝑟𝑑 + (gm + gd)(gd + gm)𝑅𝑆𝑟𝑑𝑟𝑑  

  = (2 + μ)𝑟𝑑 + (μ + 1)(1 + μ)𝑅𝑆 = (2 + μ)𝑟𝑑 + (μ + 1)
2𝑅𝑆    (9) 

 𝐴𝑣|14
24 = 𝑠𝑔𝑛(2 − 4)𝑠𝑔𝑛(1 − 4)(−1)11

|𝑌24
14|

|𝑌14
14|
= −

|𝑌24
14|

|𝑌14
14|

   (10) 

 |𝑌24
14| = |

𝑔𝑚
−𝑔𝑚
0
   

−𝑔𝑚 − 𝑔𝑑
𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆

0
    

−𝑔𝑑
0

𝑔𝑑 + 𝐺𝐷
| = |

0
−𝑔𝑚
0
   

𝐺𝑆
𝑔𝑚 + 𝑔𝑑 + 𝐺𝑆

0

    
𝐺𝐷
0

𝑔𝑑 + 𝐺𝐷

| 

  = 𝑔𝑚𝐺𝑆(𝑔𝑑 + 𝐺𝐷)  

 𝐴𝑣|14
24 = −

|𝑌24
14|

|𝑌14
14|
= −

−𝐺𝑆𝑔𝑑(𝑔𝑑+𝐺𝐷)+𝐺𝐷(𝑔𝑚+𝑔𝑑)(𝑔𝑚+𝑔𝑑+𝐺𝑆) 

𝑔𝑚𝐺𝑆(𝑔𝑑+𝐺𝐷)
 

     =
𝑔𝑑(𝑔𝑑+𝐺𝐷)+𝐺𝐷(𝑔𝑚+𝑔𝑑)(𝑔𝑚+𝑔𝑑+𝐺𝑆) 

𝑔𝑚(𝑔𝑑+𝐺𝐷)
 

  =
𝑔𝑑 

𝑔𝑚
+
𝐺𝐷(𝑔𝑚)(𝑔𝑚+𝐺𝑆) 

𝑔𝑚𝐺𝑆(𝐺𝐷)
=

1

𝜇
+
(𝑔𝑚+𝐺𝑆) 

𝐺𝑆
=

1

𝜇
+ (1 + 𝑔𝑚𝑅𝑆) ≅ (1 + 𝑔𝑚𝑅𝑆)  (11) 

 

 

11.13 FET-BJT Darlington (Conventional Method) 

Obtain voltage gain and the output resistance for the circuit shown in Fig.11.14 (a).  

 

 

 

 

 

 

 

 

 

 

  Figure 11.14 (a)  Figure 11.14 (b) Equivalent circuit 
From Fig. 11.14 (b), 
  𝑣𝑠 = 𝑖𝑒𝑅𝐸 = (1 + 𝛽)𝑖𝑏𝑅𝐸    (11.83) 
  𝑣𝑔𝑠 = 𝑣𝑔 − 𝑣𝑠 = 𝑣𝑖 − 𝑣𝑠 = 𝑣𝑖 − {𝑟𝜋 + (1 + 𝛽)𝑅𝐸}𝑖𝑏 

  𝜇𝑣𝑔𝑠 = 𝑟𝑑𝑖𝑑 + 𝑟𝜋𝑖𝑏 + 𝑖𝑒𝑅𝐸 = 𝑟𝑑𝑖𝑏 + 𝑟𝜋𝑖𝑏 + (1 + 𝛽)𝑅𝐸𝑖𝑏 

  𝜇𝑣𝑖 − 𝜇{𝑟𝜋 + (1 + 𝛽)𝑅𝐸}𝑖𝑏 = 𝑟𝑑𝑖𝑏 + 𝑟𝜋𝑖𝑏 + (1 + 𝛽)𝑅𝐸𝑖𝑏 
  [𝑟𝑑 + 𝑟𝜋 + (1 + 𝛽)𝑅𝐸 + 𝜇{𝑟𝜋 + (1 + 𝛽)𝑅𝐸}]𝑖𝑏 = 𝜇𝑣𝑖 

  𝑖𝑏 =
𝜇𝑣𝑖

𝑟𝑑+𝑟𝜋+(𝜇+1){𝑟𝜋+(1+𝛽)𝑅𝐸}
    (11.84) 

  𝑣𝑜 = (1 + 𝛽)𝑖𝑏𝑅𝐸 = (1 + 𝛽)
𝜇𝑣𝑖

𝑟𝑑+𝑟𝜋+(𝜇+1){𝑟𝜋+(1+𝛽)𝑅𝐸}
𝑅𝐸 (11.85) 

  Voltage gain = 𝐴𝑣 =
𝑣𝑜

𝑣𝑖
=

𝜇(1+𝛽)𝑅𝐸

𝑟𝑑+𝑟𝜋+(𝜇+1){𝑟𝜋+(1+𝛽)𝑅𝐸}
 (11.86) 
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vi 
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The input resistance is defined as;

  𝑅𝑖𝑛 =
𝑣𝑖

𝑖𝑏
|
𝑣𝑜=0

= 𝑅𝐺  (11.87) 

Here analysis does not talk about the output resistance and the current gain. 

 

FET-BJT Cascode amplifier (FAM Method) 

Analyze the voltage gain and output resistance of the FET cascode amplifier 

shown in Fig.3(a) and Fig.3(b). 

 

 

 

  

 

 

        

   

    

    

 

 

 

 

 

 

                           Figure 3(a)                                                 Figure 3(b) ac circuit 

The partitioned floating admittance matrices of FET (T1) and BJT (T2) in Fig. 3 (b) are 
written as; 

 [

1
0
𝑔𝑚1
−𝑔𝑚1

   

2
0
𝑔𝑑
−𝑔𝑑

   

3
0

−𝑔𝑚1 − 𝑔𝑑
𝑔𝑚1 + 𝑔𝑑

] | 1
2
3

|  (1) 

 [

3
𝑔𝜋
𝑔𝑚2

−𝑔𝜋 − 𝑔𝑚2

   

2
0
0
0

   

4
−𝑔𝜋
−𝑔𝑚

𝑔𝜋 + 𝑔𝑚2

] [ 3
2
4

]  (2) 

The partitioned floating admittance matrices of the passive resistors RG and RE are 
written as; 

  

[
 
 
 
 
1
𝐺𝐺
−𝐺𝐺
0
0

   

2
−𝐺𝐺

𝐺𝐺 + 𝐺𝐸
0
−𝐺𝐸

   

3
0
0
0
0

       

4
0
−𝐺𝐸
0
𝐺𝐸 ]

 
 
 
 

[
 
 
 
 
1
2
3
4 ]
 
 
 
 

   (3) 

The overall floating admittance matrix of Fig. 3(b) is  

 

𝑣𝑜  

 RG 

+VDD 

T1 

RE 

𝑣𝑖  𝑣𝑜  

 RG 

1 T1 

RE 

𝑣𝑖  

2 

3 

1’=3 3’=4 

2 

T2 

T2 
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[
 
 
 
 

1
𝐺𝐺

𝑔𝑚1 − 𝐺𝐺
−𝑔𝑚1
0

   

2
−𝐺𝐺

𝑔𝑑 + 𝐺𝐺 + 𝐺𝐸
−𝑔𝑑
−𝐺𝐸

   

3
0

−𝑔𝑚1 − 𝑔𝑑 + 𝑔𝑚2
𝑔𝑚1 + 𝑔𝑑 + 𝑔𝜋
−𝑔𝜋 − 𝑔𝑚2

       

4
0

−𝑔𝑚2 − 𝐺𝐸
−𝑔𝜋

𝑔𝜋 + 𝑔𝑚2 + 𝐺𝐸]
 
 
 
 

[
 
 
 
 
1
2
3
4 ]
 
 
 
 

  (4) 

|𝑌42
12| = |

−𝑔𝑚1
0

  
𝑔𝑚1 + 𝑔𝑑 + 𝑔𝜋
−𝑔𝜋 − 𝑔𝑚2

| = 𝑔𝑚1(𝑔𝜋 + 𝑔𝑚2) = 𝑔𝑚1(1 + 𝛽2)𝑔𝜋 

|𝑌2
2| = |

𝐺𝐺
−𝑔𝑚1
0

   
0

𝑔𝑚1 + 𝑔𝑑 + 𝑔𝜋
−𝑔𝜋 − 𝑔𝑚2

  
0
−𝑔𝜋

𝑔𝜋 + 𝑔𝑚2 + 𝐺𝐸

|  

   = 𝐺𝐺 |
𝑔𝑚1 + 𝑔𝑑 + 𝑔𝜋
−𝑔𝜋 − 𝑔𝑚2

  
−𝑔𝜋

𝑔𝜋 + 𝑔𝑚2 + 𝐺𝐸
| = 𝐺𝐺 |

𝑔𝑚1 + 𝑔𝑑
𝐺𝐸

     
−𝑔𝜋

𝑔𝜋 + 𝑔𝑚2 + 𝐺𝐸
| 

 = 𝐺𝐺{(𝑔𝑚1 + 𝑔𝑑)(𝑔𝜋 + 𝑔𝑚2 + 𝐺𝐸) + 𝑔𝜋𝐺𝐸}  

= 𝐺𝐺[𝑟𝑑 + (1 + 𝜇){𝑟𝜋 + (1 + 𝛽2)𝑅𝐸}]𝑔𝜋𝐺𝐸𝑔𝑑  

|𝑌12
12| = |

𝑔𝑚1 + 𝑔𝑑 + 𝑔𝜋
−𝑔𝜋 − 𝑔𝑚2

  
−𝑔𝜋

𝑔𝜋 + 𝑔𝑚2 + 𝐺𝐸
| = |

𝑔𝑚1 + 𝑔𝑑
𝐺𝐸

  
−𝑔𝜋

𝑔𝜋 + 𝑔𝑚2 + 𝐺𝐸
|  

= (𝑔𝑚1 + 𝑔𝑑)(𝑔𝜋 + 𝑔𝑚2 + 𝐺𝐸) + 𝑔𝜋𝐺𝐸  

= 𝑔𝑑(1 + 𝜇)𝑔𝜋(𝑅𝐸 + 𝑔𝑚2𝑟𝜋𝑅𝐸 + 𝑟𝜋2)𝐺𝐸 + 𝑔𝜋𝐺𝐸  

 = [𝑟𝑑 + (1 + 𝜇){𝑟𝜋 + (1 + 𝛽2)𝑅𝐸}]𝐺𝐸𝑔𝜋𝑔𝑑 

|𝑌32
12| = |

−𝑔𝑚1
0

  
−𝑔𝜋

𝑔𝜋 + 𝑔𝑚2 + 𝐺𝐸
| = −𝑔𝑚1{𝑔𝜋 + 𝑔𝑚2 + 𝐺𝐸}  

= −𝑔𝑚1𝑔𝜋{𝑅𝐸 + 𝑔𝑚2𝑟𝜋𝑅𝐸 + 𝑟𝜋}𝐺𝐸  

= −𝑔𝑚1𝑔𝜋{𝑟𝜋 + (1 + 𝛽2)𝑅𝐸}𝐺𝐸  

|𝑌42
42| = |

𝐺𝐺
−𝑔𝑚1

   
0

𝑔𝑚1 + 𝑔𝑑 + 𝑔𝜋
| = 𝐺𝐺(𝑔𝑚1 + 𝑔𝑑 + 𝑔𝜋)  

= 𝐺𝐺(𝑔𝑚1𝑟𝜋𝑟𝑑 + 𝑟𝑑 + 𝑟𝜋)𝑔𝑑𝑔𝜋  

= 𝐺𝐺{𝑟𝑑 + (1 + 𝜇)𝑟𝜋}𝑔𝑑𝑔𝜋    

𝐴𝑣|12
42 = 𝑠𝑔𝑛(4 − 2)𝑠𝑔𝑛(1 − 2)(−)9

|𝑌42
12|

|𝑌12
12|
=

|𝑌42
12|

|𝑌12
12|

   (5) 

𝐴𝑣|12
42 =

|𝑌42
12|

|𝑌12
12|
=

𝑔𝑚1(1+𝛽2)𝑔𝜋

[𝑟𝑑+(1+𝜇){𝑟𝜋+(1+𝛽2)𝑅𝐸}]𝐺𝐸𝑔𝜋𝑔𝑑
  

  =
𝑔𝑚1(1+𝛽2)𝑅𝐸𝑟𝑑

[𝑟𝑑+(1+𝜇){𝑟𝜋+(1+𝛽2)𝑅𝐸}]
 =

𝜇(1+𝛽2)𝑅𝐸

[𝑟𝑑+(1+𝜇){𝑟𝜋+(1+𝛽2)𝑅𝐸}]
   (6) 

𝑅𝑖𝑛 = 𝑅𝑖(12) =
|𝑌12
12|

|𝑌2
2|
𝑔𝑠=0

=
[𝑟𝑑+(1+𝜇){𝑟𝜋+(1+𝛽2)𝑅𝐸}]𝐺𝐸𝑔𝜋𝑔𝑑

𝐺𝐺[𝑟𝑑+(1+𝜇){𝑟𝜋+(1+𝛽2)𝑅𝐸}]𝑔𝜋𝐺𝐸𝑔𝑑
  

 =
1

𝐺𝐺
= 𝑅𝐺(𝑒𝑣𝑖𝑑𝑒𝑛𝑡)   (7) 



 

166 
 

|𝑌2
2|𝐺𝐸=0 = |

𝐺𝐺
−𝑔𝑚1
0

   
𝐺𝐺
𝑔𝑑
𝐺𝐸

    
0
−𝑔𝜋

𝑔𝜋 + 𝑔𝑚2 + 𝐺𝐸

| = |
𝐺𝐺
−𝑔𝑚1
0

   
𝐺𝐺
𝑔𝑑
0
    

0
−𝑔𝜋

𝑔𝜋 + 𝑔𝑚2

|  

= (𝑔𝜋 + 𝑔𝑚2)𝐺𝐺(𝑔𝑑 + 𝑔𝑚1) = 𝑔𝜋(1 + 𝛽2)𝐺𝐺𝑔𝑑(1 + 𝜇) 

𝑅𝑜𝑢𝑡 = 𝑅𝑖(42) =
|𝑌42
42|

|𝑌2
2|
𝐺𝐸=0

  =
𝐺𝐺{𝑟𝑑+(1+𝜇)𝑟𝜋}𝑔𝑑𝑔𝜋

𝐺𝐺𝑔𝑑(1+𝜇)(1+𝛽2)𝑔𝜋
=

{𝑟𝑑+(1+𝜇)𝑟𝜋}

(1+𝜇)(1+𝛽2)
 

  =
𝑟𝑑

(1+𝜇)(1+𝛽2)
+

(1+𝜇)𝑟𝜋

(1+𝜇)(1+𝛽2)
  

  =
𝑟𝑑

𝛽2𝜇
+

(1+𝜇)𝑟𝜋

(1+𝛽2)(1+𝜇)
 =

𝑟𝑑

𝛽2𝜇
+

𝑟𝜋

𝛽2
=

𝑟𝑑

𝛽2𝑔𝑚1
+

1

𝑔𝑚2
 (8) 

𝐴𝑖|12
42 = 𝑠𝑔𝑛(4 − 2)𝑠𝑔𝑛(1 − 2)(−)9

|𝑌42
12|

|𝑌2
2|
𝐺𝐿 =

|𝑌42
12|

|𝑌2
2|
𝐺𝐿  (9) 

𝐴𝑖|12
42 =

|𝑌42
12|

|𝑌2
2|
𝐺𝐿 =

𝑔𝑚1(1+𝛽2)𝑔𝜋

𝐺𝐺[𝑟𝑑+(1+𝜇){𝑟𝜋+(1+𝛽2)𝑅𝐸}]𝑔𝜋𝐺𝐸𝑔𝑑
𝐺𝐸   

  =
𝜇(1+𝛽2)𝑅𝐺

[𝑟𝑑+(1+𝜇){𝑟𝜋+(1+𝛽2)𝑅𝐸}]
 =

𝜇(1+𝛽2)𝑅𝐺

(1+𝜇){𝑟𝜋+(1+𝛽2)𝑅𝐸}
=

(1+𝛽2)𝑅𝐺

{𝑟𝜋+(1+𝛽2)𝑅𝐸}
 

  =
𝑅𝐺

𝑅𝐸
 (Evident as gate current will be negligible and hence ratio is very large). 

 


