
An Effective Framework for Service Placement 

in Fog Environment 

A 

Thesis 

Submitted to 

 

For the award of 

  DOCTOR OF PHILOSOPHY (Ph.D) 

in 

(Computer Science & Engineering)  

By 

    M. Sri Raghavendra 

(11616630) 

Supervised By 

Dr. Priyanka Chawla 

 

LOVELY FACULTY OF TECHNOLOGY AND SCIENCES 

LOVELY PROFESSIONAL UNIVERSITY 

PUNJAB 

2023 

 

 



 
ii 

Declaration of Authorship 

I, M Sri Raghavendra, declare that this thesis titled, “An Effective Framework for 

Service Placement in Fog Environment” and the work presented in it are my own. I 

confirm that: 

 

• This work was done wholly or mainly while in candidature for a research 

degree at this University. 

 

• Where any part of this thesis has previously been submitted for a degree or 

any other qualification at this University or any other institution, this has been 

clearly stated. 

 

• Where I have consulted the published work of others, this is always clearly 

attributed. 

 

• Where I have quoted from the work of others, the source is always given. With 

the exception of such quotations, this thesis is entirely my own work. 

 

• I have acknowledged all main sources of help. 

 

• Where the thesis is based on work done by myself, I have made clear exactly 

what was done by others and what I have contributed myself. 

 

 

 

Signed:         

............................................................................... 

 

Date:  

...............................................................................  

  



 
iii 

Certificate 

 
 

It is to certify that M. Sri Raghavendra, Ph.D. Scholar, Department of Computer 

Science has carried out research work entitled “An Effective Framework for Service 

Placement in Fog Computing Environment”, for the award of the degree of Doctor 

of Philosophy in Computer Science, Faculty of Technology and Sciences, Lovely 

Professional University, Punjab, India.  

 

 

Further certify that:  

 

I. The thesis embodies the original work of the candidate and is not copied from 

any other sources.  

II. The candidate has worked under my supervision for the period required under 

statues.  

III. The candidate has put in the required attendance in the department during the 

period of research.  

IV. The candidate has fulfilled all the requirements of the UGC- 2018 

regulations. 

 

 

 

 

Dr. Priyanka Chawla 

Associate Professor 

Department of Computer Science and Engineering 

National Institute of Technology 

Warangal-506004, Telangana, India 

(Former Professor, SCSE, LPU) 

 

 

 

 



 
iv 

Abstract 

The term "Internet of Things" originally referred to linking physical items to the 

internet, allowing them to see, hear, think, converse, and execute jobs such as sharing 

information and taking action. When it comes to cloud services, latency is also a 

major concern. It is more difficult to measure and less predictable. Latency 

requirements for IoT are high, and cloud services cannot meet these requirements in 

the best way possible. 

     Fog computing is a new suggested architecture that extends existing cloud 

computing by employing extra layers of intermediary computer servers to address 

these issues. Using fog servers, data may be routed from end-user devices to the 

cloud. Like the Cloud, they give processing, memory, and storage resources to 

devices but are more distributed. Our new computer paradigm brings a new set of 

issues, which we hope to address in this study. Fog computing has evolved into a 

flexible and promising platform for delivering elastic resources at the network's edge. 

It reduces transmission delay and bandwidth utilization while processing incoming 

requests from various (IoT) devices. In a heterogeneous resource-restricted distributed 

fog environment, the principal critical concerns that Fog Computing faces are service 

placement and energy usage. 

     The proposed Fog computing framework entitled Deadline-oriented Service 

Placement (DoSP) offers services in both the fog and the cloud nodes. By 

effective   Leveraging of fog resources thereby keeping response times within a 

predetermined time frame was the goal of this study. In a fog environment, it 

leverages the Genetic Algorithm (GA) to identify where services should be placed. 

DoSP modelling influence the service placement techniques on service deadlines were 

assessed in this study by using iFogSim simulator. We found the proposed approach 

to reduce service execution delay by 10.19 percent for Edge Ward and 2.58 percent 

for Cloud Only. 

     This research has proposed a model for deploying deadline-sensitive applications 

(DEEDSP) with minimal energy usage. We demonstrate the importance of such a 

system. However, distributing applications to computing nodes becomes a formidable 
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challenge that necessitates the use of optimization approaches. We employ 

Metaheuristics, specifically the hyper-heuristic algorithm, which can optimize IoT 

application service placement while being deadline-aware and lowering energy 

consumption in Fog Computing. We used iFogSim, a Java-based open-source 

network simulator, to simulate the suggested model. Finally, after running the 

simulation, we performed a result analysis of the model to several output parameters. 

We discovered that it outperforms previous state-of-the-art models. 
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Chapter 1 

Introduction 

1.1 Fog Computing Overview 

The internet has transformed our study, work, and personal lives in the same way 

water, gas, electricity, and telecommunications have. People today place a great deal 

of trust and reliance on the internet to conduct business, communicate, and 

collaborate. Because of the intelligence supplied by smart products, machines are 

increasingly connected to the internet, resulting in intelligent systems such as smart 

homes, intelligent communities, smart utilities, and smart cities, to name a few. To 

this purpose, the future internet is combining people and things, resulting in an 

unparalleled information period dubbed "the Internet of Things (IoT) or Internet of 

Everything (IoE) age." Due to various constraints, such as resource constraints, data is 

typically collected from distant smart objects before being transferred to and 

processed in faraway cloud data centers. 

 

     However, the vast number of smart objects generates a data deluge that consumes 

a tremendous amount of energy and bandwidth, resulting in significant Internet traffic 

congestion, decreased Internet performance, and even application failure for many 

apps. Fog computing was inspired by cloud computing and provides edge processing 

for heterogeneous and ubiquitous items. Because the fog is still in its infancy, our goal 

in this thesis is to hasten its development while also making employment easier for all 

levels of fog actors in this ecosystem. A cloud computing model that provides internet 

services at the network's edge might be investigated. As a result, it assists in 

overcoming the frequently major issues of delays in the usage of IoT cloud systems.  

 

     Cloud computing provides pay-for-pay customers with hardware and software 

resources. It is a mix of cluster and grid computing where resources for high-level 

performance come together at a central point. The advanced form of distributed 

computing services is Fog Computing (Gao et al., 2017). It improves performance and 

uses computer processing and storage resources to handle user requests at the 
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network's edge. Cloud computing is not replaced. If cloud computing uses fog 

computing, this will reduce delays, easily measure and reduce processing costs (Xiao 

et al., 2018). 

 

1.1.1   Fog Evolution 

Cloud computing is enhanced with fog computing. Fog Computing (Wang et al., 

2019) is a new technology for providing high-quality localized services. Cloud 

services are extended by installing Fog computing servers close to mobile users, 

including parks or commercial centers. It provides a "custom cloud" specified local 

software in a user location with a cloud that can process, store and transmit the 

network.Fog computing expands its facilities at dispersed areas around users 

compared to Amazon EC2, IBM SoftLayer, and other centrally managed cloud-based 

services and, thus, offers more focused, localized mobile services customized to 

deployment locations, such as streams of software, localized ads, and sensor networks 

(Li et al., 2018). 

     A central cloud service operates a Fog computing network. Consequently, Fog 

computing is a three-tier system of hierarchy, Mobile-Fog-Cloud. This model has 

three directions: Mobile device to Fog node, Mobile device to Cloud node, and Fog 

node to Cloud node (Ramirez et al., 2017).  

     The primary goal of fog computing is to distribute application's content over the 

fog, where most of the information has downloaded from cloud to lower layer 

computational nodes (Qi et al., 2019). Using Internet access, app users may rapidly 

access data due to fast transmission on a reliable network environment. If the 

user   cannot find the data on lower Fog servers, then the d ata can be transferred from 

the cloud.   To provide this Fog computing service,computational nodes must obtain 

the most recent content from the cloud node(Aljumah and Ahanger, 2018). In most 

cases, this kind of data delivery is accomplished through the internet. The Fog servers 

use a cellar or a satellite network or WAN network for communicating with the cloud 

node (Rafique et al., 2019). 
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Figure 1.1: FOG Computing (Abdulkareem et al., 2019) 

 

Current IT innovations of the state-of-the-art accelerate the growth of intelligent 

production significantly. More and more goods are connected to the internet in an 

intelligent manufacturing environment, allowing a vast amount of data to be accessed 

at all points of the product life cycle. Cloud-based intelligent manufacturing enables 

the processing of vast volumes of data. It allows large-scale manufacturing 

cooperation in various applications and solutions (Abdulkareem et al., 2019). 

     Significant development of the computing paradigms has been witnessed in the last 

decade. Without a doubt, cloud computing is the most well-known and well-

established paradigm, resulting from the necessity to utilise "computer as a utility," 

allowing for the quick emergence of new Internet services. Cloud computing was a 

prominent research topic until an avalanche of smart gadgets and appliances, termed 

the Internet of Things (IoT), highlighted all of the limitations of such a centralized 

architecture (IT) (Padmavathi et al., 2017). The Internet of Things revolution has 

given rise to a growing interest in decentralized models (Oma et al., 2018). 

Connectivity, Sensing and Small Data

Agri 
Technology

Healthcare

Consumer IoT

Smartcity
Transportation 
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To extend the cloud's power to network edges, edge computing tackled most of the 

new difficulties that cloud computers alone couldn't manage, such as bandwidth, 

latency, and connection. (DeDonno et al., 2019) Several implementation approaches 

have been proposed to apply the Edge Calculation Principles, including Mobile Cloud 

Computing (MCC) and Cloudlet Computing (CC). 

     Fog Computing was created by the crowd and it embodies the progression of Edge 

computing principles (Svorobej et al., 2019). Fog computing depicts a complete 

architecture that dispenses resources vertical and horizontal directions over the Cloud 

node-to-IoT devices. As a consequence, it's a leading service that interacts with the 

IoT and Cloud on a regular basis to assist and improve their engagement. (Kaur and 

Chana, 2016). As a result, Fog Computing was created by the crowd, and it embodies 

the progression of Edge computing principles (Svorobej et al., 2019). Fog computing 

attempts to depict a full architecture that distributes resources horizontally and 

vertically over the Cloud-to-Things continuum. As a result, it is a new actor who 

interacts with the cloud and IoT trivially to help and enhance their interaction (Saroa 

et al., 2018). 

     The primary computing paradigm in the last decade is cloud computing. For 

several years it will continue to be a key research topic. The rapid proliferation of IoT, 

however, has weakened its power. Indeed, cloud computing can hardly tackle several 

challenges related to IoT. As a result, the edge's interest increased due to its goal to 

address the IoT challenges by moving the computation processing at the lower fog 

node near to the user  (Gia et al., 2015).In this shift, fog computing has taken the 

shape of a paradigm that entirely spans the gap between Cloud computers and IoT.In 

the smart urban environment, extreme data are generated, thanks to the global use of 

sensors, which enhance the need for an architecture that can meet the data 

maintenance requirements of devices (Barik et al., 2017). Cloud computing has a 

genre called "Fog Computing." The cloud services are close to edge devices in this 

genre. Data processing in the fog with the help of the network, conduct latency-

sensitive and latency-tolerant workflow that require a lot of computation (Mahmud et 

al., 2018).  
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Increasingly linked Internet-of-Things (IoT) gadgets are creating a massive amount of 

data that cloud computing can't handle. The number of devices in 2015 amounted to 

15.41billionfrom 2017 to 20.35, with a forecast of EUR 30.73 billion in 2020. 

 

 

                                           Figure 1.2: Evolution of Fog Computing (M. Sri Raghavendra et al.,2018) 

1.1.1.1 Fog Architecture 

Fog computing (Shi et al., 2015) is a modern computing model, expanding 

conventional cloud computing and network infrastructure. It offers network edge 

power for measurement, contact, control, storage, and operation. The open network 

varies from other conventional software programming models (Sun and Zhang, 2017). 

It's design and functionality and the difference between cloud and Edge Computing 

are outlined in figure 1.2. 

     Fog computing architecture (Shin et al., 2016) is the structure for implementing a 

functional IoT network with physical and logical network components, hardware, and 

software. Important decisions in architecture include the physical and geological 

location of fog nodes, the hierarchy of their structures, their number, size, topology, 

protocols, and data bandwidth capability, the connection of fog nodes, stuff and cloud, 

the design of individual fog Node hardware and software and how a full IoT network 

is structured and managed (Hu et al., 2017). A three-tiered Mobile-Fog-Cloud 

arrangement is common in fog computing (Naha et al., 2018). In the Fog layer, Fog 
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servers provide services to end users and synchronize data with the cloud. The Cloud 

provider provides content services to Fog servers that are geographically dispersed 

(Jin et al., 2018). Whenever a mobile user receives information, the Fog server and 

the mobile user exchange information. This Fog server sends the requested content to 

the mobile user if it is accessible (Aazam et al., 2018). Alternatively, this Fog server 

will need to contact its Cloud provider to place and access data. It's also important to 

note that Fog servers must constantly check their Cloud providers to determine 

whether they have the most recent information, and then update their storage by 

obtaining from the cloud over wired or wireless networks, such as cellular networks, 

if necessary. 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: FOG Computing Architecture(M. Sri Raghavendra et al.,2018) 

Hierarchical architecture has three layers: top, middle, and bottom. 

❖ Terminal Layer 

The layer closest to the user and the physical world is this one. IoT devices such as 

cameras, smartphones, smart vehicles, intelligent cards and printers are all included. 

We're only utilizing them as smart sensors in this case. Equipment like these may be 

found all around the world. Using physical object or event functional data, they are 

responsible for detecting and delivering data to the upper layer. 

 

Cloud Layer

Fog Layer

Terminal Layer
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❖ Fog Layer 

The network's edge is host to this layer. The Fog Computing network contains a large 

number of fog nodes, such as routers, gateways, switches, access points, base stations, 

and specimen fog servers, among other components. It's common to see these fog 

nodes spread out throughout a wide area, such as cafés; retail malls; transit stations; 

streets; as well as public spaces like parks. On a moving carriage, they might be 

stationary or movable. Fog nodes may be readily accessed by the terminals. It is able 

to calculate, transmit, and store temporary data. Real-time analysis and latency-

sensitive applications can both benefit from the fog layer. By collaborating and 

interacting with cloud resources, fog nodes are able to deliver more efficient 

computation and storage than would be possible on their own. 

❖ Cloud Layer 

Many high-performance computers and storage devices make up the cloud computing 

layer. Smart housing, smart transportation, and smart factories are all available. The 

cloud core modules are controlled and planned in accordance with demand load 

requirements in order to maximize the usage of the cloud resources. 

1.1.2   Features of Fog Computing 

Fog computing uses end-user network edge devices for processing, connection, and 

storing of data. Like end-users, it has fairly similar service functionalities. (Rahman et 

al., 2018). Fog computing (Madakam and Bhagat, 2018) relies on this fundamental 

property, making it the most illusory benefit it has over other more traditional kinds of 

computing. Additional advantages and benefits of fog computing are presented in the 

following table: 

Table 1.1: Fog Computing Characteristics 

S. No. Fog Computing Characteristics 

1. Low Latency 
Fog computing provides the best services to 

endpoints at the network's edge. 

2. 

 

Mobility 

To enable mobility strategies like isolating host 

identification from location identity, LISP protocol 

fog devices can be used. 
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3. Interactions in real time 
To provide uninterrupted operation, fog computing 

requires significant interactions. 

 

4. 

 

Distribution by location 

Through proxies and access points along roads and 

rails, the fog will play an active part in delivering 

high quality streaming to moving cars. 

 

 

5. 

 

 

Heterogeneous Devices 

It is possible to use fog nodes in a wide range of 

situations. Computers, laptops, pagers, and smart 

phones are just some of the heterogeneous items or 

gadgets that make up these settings. 

 

 

6. 

 

 

Interoperability 

The term "interoperability" refers to the way in 

which various IoT devices and hardware connect 

and function together when data is being 

transmitted by software via multiple networks. 

 

7. 

 

Save bandwidth 

In the cloud, just a small portion of the useful 

information is carried over. The vast majority of 

the data does not necessitate the use of the internet. 

 

 

8.  

 

 

Data protection and security 

It has the ability to encrypt and isolate data to keep 

it safe. Encryption, integrity checks, and isolation 

are all provided by fog nodes in order to keep 

private information safe. (Stojmenovic and Wen, 

2014). 

 

 

9.  

 

 

Low energy consumption 

A more environmentally friendly computing model 

is provided by fog computing. By using short-

range communication, you may save money on 

your monthly energy bill. Reducing energy use and 

saving money are two of the benefits. 

 

1.2 Background Technologies 

❖ Internet of Things (IoT) 

The trend has been to transfer computers, controls, and data stores in the cloud during 

the last decade. The primary data center, Backbone IP networks, and cellular core 

networks have been converted from storage, shops, and network management 

functions. Nevertheless, today's cloud computing faces growing difficulties in 

meeting evolving Internet of Things (IoT) new requirements (Chiang et al., 2016). 
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Many technological challenges face the Internet of Things (IoT), which will create an 

immense network of trillions or thousands of "things" that interact with each other. 

After the internet, the Internet of Things (IoT) is seen as a technology and an 

economic stream in the global information business (Chen et al., 2014). The IoT is an 

intelligent network connecting everything to the internet to exchange information and 

communicate by accepted protocols via information sensing devices. The aim is to 

define, locate, map, control, and manage matters intelligently (Souza et al., 2018). 

The network extends and enhances the connectivity from humans to people and things 

or things and stuff. It is an Internet-based network. 

     The term "Internet of Things" originally referred to linking physical items to the 

internet, allowing them to see, hear, think, converse, and execute jobs such as sharing 

information and taking action. A smart home allows the residents to open their garage 

automatically when they arrive home, cook meals, and control an in-house climate 

system, entertainment system, and other home appliances. Cisco promotes the Internet 

of Everything (IoE) (L. T. Yang, B. Di Martino et al, 2017), which is defined as the 

intelligent linking of people, processes, data, machines talking to machines; machines 

talking to humans; and humans talking to human’s communications and interactions. 

 

Figure 1.4: Internet of Things (L. T. Yang, B. Di Martino et al, 2017) 
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Anyone can collaborate via any device and any network in an IoT ecosystem, as 

shown in Figure 1.4. As the number of connected devices grows, the Internet of 

Things (IoT) is expected to take over as the dominant technology. However, it is 

uncertain what it will be like when hundreds of things surrounding each person are 

average. For predicting the extent of the IoT, numerous estimates have been 

produced. Cisco estimates that by 2020, there will be 50 billion linked things (J. 

Bradley, J. Barbier, et al, 2013). The Internet of Things is projected to improve life, 

employment, and economy throughout time. 

Internet of Things (IoT) Elements 

Semantics, identification, processing, storage, communication, networking, and 

application are crucial parts of the IoT ecosystem's functionality, as depicted in Figure 

1.5. We take a quick look at each to see what the IoT is all about. 

 

                                Figure 1.5: IoT Ecosystem Key Elements (N. Koshizuka and K. Sakamura, 2010) 

Semantics 

The ability of IoT nodes to intelligently extract knowledge from various things to 

execute functions such as resource discovery, utilization, information modeling, data 

collecting, and analysis is referred to as semantics. 

 

 

Key Elements of IoT Ecosystem

Semantics Identification Processing Storage Communication Networking Application
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Identification 

From addressing, naming, networking, programming, and security, identification is 

critical for the IoT. Electronic product codes (EPC) and ubiquitous codes (uCode) are 

two methods of identifying that have been made available (N. Koshizuka and K. 

Sakamura, 2010). For example, a temperature SO called "T1" may have a different 

address depending on networking protocol stacks like IP, IPv6, 6LoWPAN (N. 

Kushalnagar, G. Montenegro et al., 2007). A domain name service (DNS) mechanism 

is necessary for this scenario to translate the name to its address for communication 

purposes. Furthermore, identity is a critical component in programming, 

communication, and security. 

Processing 

Each node is typically equipped with several processing units, such as controllers, 

processors, and virtual processors, which, when combined with the operating system 

and software applications, comprise the computing intelligence of the node. Various 

microprocessors and sensor-specific software have been created specifically for SOs 

to execute multiple applications. 

Storage 

Because storage is a core function and essential component of a computing system, it 

is critical for IoT applications. Some SOs feature only a few hundred bytes of RAM 

and a few tens of thousands of bytes of non-volatile RAM (NVRAM), while others 

were built with significantly greater storage space. 

Communication 

Communication between network nodes must be effective and efficient in order for 

upper-layer applications to work. Many low-power protocols have been developed to 

permit communication between heterogeneous items via lossy and noisy channels to 

regulate communication between heterogeneous objects. 

Networking 

As opposed to communication, which relates to the choice of media and protocols 

between two nodes, it is concerned with transmitting and receiving data for data 

sharing and advanced collaborations (J. Paek, O. Gnawali et al., 2017). In general, 

networking considers a variety of elements. First and foremost, how are the nodes 

physically and logically connected? To put it another way, how should network nodes 
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be organized for data channel formation and selection? Second, how to allocate 

addresses to networked nodes efficiently? What kind of address should they provide 

each other? Third, what network functions must be provided, and how should these 

functions be provided? 

Application 

Software applications, web applications, mobile applications, and other applications 

must be built to accomplish a group of coordinated operations, tasks, and activities to 

connect with people. In order to produce utilities, applications must be coupled with 

IoT nodes and their software systems. An application may modify numbers, text, 

graphics, or a combination of these components, depending on the functionality and 

purpose for which it was created. 

IoT Architecture 

These IoT economic predictions represent the IoT's potential for revolutionary growth 

shortly, although it is an evolutionary process. That is to say, we should turn 

traditional equipment and existing appliances into smart objects, which will protect 

existing hefty investments while also opening up numerous new commercial 

potentials. Moreover, disseminating ubiquitous goods and services across a large 

region presents a unique opportunity for telecommunication providers (A. Vulpe, G. 

Suciu et al., 2017) to rethink and reconfigure their network (Y. Gadallah, M. H. 

Ahmed et al., 2017) to enable H2M, H2H, and M2M traffic flows. Following that, we 

will talk about IoT architecture, which is the IoT's backbone. 

     Various IoT architectures have been developed to address the necessity of 

connecting widespread and heterogeneous SOs since the IoT gained traction. Several 

layered models have been investigated to provide flexibility, but none are agreed upon 

as a reference model. As shown in Figure 1.4, three of these models, middleware-

based, SOA-based, and business-oriented, are the most popular in IoT polls. The 

following are some additional details. Tan et al. presented a middleware-based IoT 

architecture for H2H, H2M, and M2M communication, with middleware's objective 

to collaborate among corresponding applications (L. Tan and N. Wang, 2010). 
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In contrast, Spiess et al. proposed a service-oriented architecture (SOA)-based 

paradigm in (P. Spiess, S. Karnouskos et al., 2009), claiming that service composition 

is to conduct new services and orchestrate business operations. Regardless of the two 

models, Khan et al. looked at a business-oriented model based on present trends and 

predicted future uses (R. Khan, S. U. Khan et al., 2012). This approach, interestingly, 

includes a business layer for managing the complete IoT system services, activities, 

data analytics, and infrastructure. 

 

The common components of IoT are found in various architectures. 

▪ Objects Layer: In some articles, this layer is referred to as a perception layer, 

symbolizing SO's goal of gathering and processing data. 

▪ Object Abstraction Layer: From the object layer to the top layer, data is safely 

and rapidly sent through this layer. It's a thin layer. 

▪ Service Management Layer: This layer provides APIs for programmers to 

deploy services while processing data to make decisions. 

▪ Application Layer: This layer interacts with users at all levels, each with its 

own set of business requirements. 

 

             Figure 1.6: The layered IoT architecture model. (a) Middleware based. (b) SOA based. (c) Business-

oriented (H. Yetgin, K. T. K. Cheung et al., 2017) 
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The architectures described in Figure 1.6 above were created to address the needs of a 

specific IoT context, such as wireless sensor networks (WSNs) (H. Yetgin, K. T. K. 

Cheung et al., 2017) (Z. Fei, B. Li, S. Yang et al., 2017)(I. Khoufi, P. Minet et al., 

2017). When integrated with the appropriate underlying technologies for data delivery 

to an IoT platform, such architectures are supportable for many IoT applications. 

However, heavy tasks like service composition and management are difficult to 

complete because the bulk of these layers are designed to function on resource-

constrained devices. 

 

     Similarly, heterogeneity is ignored by using a gateway device to interpret between 

different protocol stacks, which has been proved to be prone to serious concerns such 

as single point of failure (SPoF). More significantly, none of them adequately handle 

mobility, scalability, latency, security, and price features. A more generic framework 

to address such challenges is still required (J. Li, J. Jin, D. Yuan et al., 2018). 

• Cloud Computing 

For those who work in the computer industry, cloud computing is a crucial topic. It 

refers to the usage of computer processing power, storage, and servers worldwide 

over the internet. It provides a pool of resources that may be shared, such as data 

storage space, networks, computing power, and specific corporate and user 

applications. (Rithvik, K., Kaur, S., Sejwal et al, 2019). According to (A. Fox, R. 

Griffith, et al., 2009), cloud computing covers both web-based apps and the data 

centre infrastructure needed to support them. The cloud refers to the data center 

hardware and software. (SaaS), (IaaS) and (PAAS) are the three basic types of cloud 

computing. Such services prevent the need for businesses and individuals to invest in 

their massive servers or data center networking equipment. Furthermore, these 

devices do not require users to purchase or install software or programs. 

 

     When a provider makes their cloud open to the public, users can lease some 

services on a pay-as-you-go basis. Amazon web services, Azure, Google, IBM Cloud, 

Oracle are some of the most popular public cloud providers today (L. Dignan, 2018). 



 
15 

While being on the alternative, a private cloud is an internal data center available to 

serve a single firm. Unless otherwise stated, the cloud in this thesis refers to the public 

cloud. 

 

                                                Figure 1.7: Cloud Service Providers (L. Dignan, 2018) 

The best services offered by each company are paired with a multimedia product. It 

allows businesses to configure a business-specific network. Much less risk is posed 

with a multi-cloud architecture. If one host fails, an organization will continue to 

operate in a multi-cloud environment with other services over storing all the data at 

one site. 

Table1.2: Comparison of Different Computing Technologies 

 

Properties 

 

Cloud Computing 

 

IoT 
Fog Computing 

 

 

Delay 

 

 

High delay than fog 

 

 

High 

Fog delivers minimal 

delay because it 

brings all services 

close to the edge. 

 

Access Time 
High: based on VM 

connection 

 

High 

 

High 

Network Bandwidth More bandwidth is required. Low 
Requires low 

bandwidth 
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Protection Less Protection 
Less 

protected 
High Protection 

Deployment Centralized Decentralized Decentralized 

Jitter High Very Low Very Low 

Computational Power On-demand Low Ample 

Storage Capacity Ample Limited Limited 

Architecture of Cloud Computing 

It has two parts namely Frontend &Backend. We have showed the said architecture in 

Fig 1.8 below: 

 

Fig 1.8: Cloud Architecture 

SoA and EDA are merged in this hybrid system to provide a hybrid solution 

(Enterprise Data Architecture). This includes everything from the client 
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infrastructure to the application to the runtime to the storage to the administration of 

security and privacy. 

1. Client Infrastructure:  

This refers to the client-side of a cloud computing system. Cloud computing 

services and resources may be accessed through a single user interface and app. A 

web browser, for example, may be required if you plan on accessing the cloud 

platform. It refers to the front-end elements. You get everything you need to get 

started with cloud computing in this package. 

2.  Backend:  

The service provider's cloud is referred to as the backend. In addition to containing 

the resources, it maintains them and implements security processes. Storage, virtual 

apps and virtual machines, and deployment methods are also included. 

✓ Application: In the backend, an application is a type of software or a platform 

that a customer may access. That is, the service is tailored to the customer's 

needs on the backend. 

✓ Service: SaaS, PaaS, and IaaS are the three primary backend cloud service 

categories referred to as "services." The user's access to services is likewise 

regulated by the system. 

✓ Cloud Runtime: Cloud runtime refers to a virtual machine's processing and 

runtime framework in the back-end context. 

✓ Storage:  Backend storage and data management refer to delivering a flexible 

and scalable storage solution. 

✓ Infrastructure: Infrastructure in the cloud refers to all of the servers, storage, 

networks, and virtualization software that make up the cloud. 

✓ Management: A term used to describe the management of backend 

components including apps, infrastructure, and runtime framework is handling 

in the backend. 

✓ Security: Installing various security solutions in the backend to ensure the 

security of cloud resources, systems, files, and infrastructure for end-users is 

referred to as backend security. 
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✓ Internet:  An Internet connection acts as a mediator or bridge between the 

front and backend, allowing them to communicate and interact. 

 

1.3Application Service Placement: Motivation and Challenges 

Fog computing brings cloud services to the network's edge. The game-changing 

technique of placing IoT apps with optimal cloud and fog computing resources would 

have a tremendous influence on the deployed applications (Syed et al., 2016).It is vital 

that the edge of the network include storage and computing resources for IoT 

workflow applications that have low latency(Tseng et al., 2018). 

     The placement of distributed IoT applications in a fog infrastructure exhibits the 

following challenges: 

1. Service placement is an important issue, requires special attention during the 

architectural design, and placing services (Ye et al., 2016) at non-optimal fog nodes, 

which reduces the performance. 

2. The fog computation provides various levels of cloud service and economies of 

scale, as well as virtualization with the distribution of complex content and services 

and requests from multiple clients without breaking the Service Agreement. The 

process of finding and selecting the right computation nodes to place an application 

task be made more efficient while addressing non-functional constraints like network 

latency and QoS. We need a service placement mechanism that is flexible enough to 

meet varied goals. (Apat et al., 2018). 

 

3. A fog infrastructure (Haouari et al., 2018) comprises heterogeneous devices and 

linkages with vastly different resource capacities. Furthermore, these devices are 

located at various network tiers and positions. Heterogeneous fog computing 

architectures that hybridize various edge node types can achieve greater scalability 

and lower costs than the centralized cloud architecture to support many Internets of 

Things (IoT) devices. 

4. For proper functionality, IoT applications must adhere to a variety of limits and 

requirements. Consumable and non-consumable characteristics (such as network 
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latency) and various sorts of entities (such as components or communication 

channels) are subject to these restrictions, which result in a high degree of diversity. 

5. Physical servers are projected to use about 45%, and networks use about 15% of 

the total capacity. As we design architecture for fog computing, fuel prices are rising, 

making the issue of carbon emissions and environmental effect more challenging as 

we consider the environmental impact. As there are multiple fog nodes, each with 

variable memory and storage capacity, the energy consumption of each node varies in 

the fog architecture. (Kitanov and Jinavski, 2017). 

6. One advantage of Fog environments is low latency (Velasquez et al., 2018). It 

enables the deployment of different services that do not inherently work in the cloud 

with real-time and low latency constraints but also includes a new set of mechanisms 

ensuring the achievement of these low latency rates. The problem of fog computing is 

multi-level. One of the first challenges (Brogi et al., 2019) in the broader sense is 

shaping the orchestration component, which must be capable of deploying the cloud 

and managing tasks within the environment. 

7. We must make placement selections quickly to respond to deployment 

requirements. When it comes to large-scale difficulties, however, solving the 

placement problem becomes increasingly challenging due to an increase in the 

number of computation devices and the number of applications. 

     The problems outlined above have prompted researchers to focus on developing a 

Fog computing model for minimizing response time and energy consumption while 

ensuring reliable operation in a diverse geographic context.  

 

Benefits of Cloud Computing Architecture 

Some of the benefits of this technology are as follows:  

✓ It decreases the quantity of data processing necessary and streamlines the 

overall cloud computing system. 

✓ It contributes to a high level of security. 
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✓ It starts to be modularized. 

✓ As a result, disaster recovery tends to be improved. 

✓ It allows people to get information quickly. 

✓ It reduces the expense of running an IT department. 

 

1.6 Thesis Contribution 

This thesis develops a framework for placing deadline-sensitive applications with 

minimum energy consumption and shows the significance of such a system. However, 

the optimization task of allocating applications to computation nodes becomes a 

complex problem to solve that requires optimization methods. We leverage the use of 

Metaheuristics, a particularly hyper-heuristic algorithm capable of taking advantage 

of optimization of IoT application service placement with deadline-aware and 

minimizing energy consumption in Fog Computing. The simulation of the suggested 

model will be executed using iFogSim, an Open-Source Java-based network 

simulator. It works by stimulating the surrounding consisting of many IoT devices, 

and corresponding fog based we will show node Simulation results for justification. 

Further, the testing of simulation results will be done for different output parameters. 

It will verify that the proposed policy is superior to previous state-of-the-art works. 

The following is a list of the thesis' key contributions. 

1. A survey and taxonomy of the state-of-the-art Inservice placement in a fog 

environment have been designed to meet the specific needs of applications that 

objectively concentrate on latencies like augmented reality and IoT applications 

that generate large volumes of data unworkable for analyzed remote cloud data 

centers. 

2. To design a practical framework for fog application placement, it can take the 

load in another fog node by appropriately positioning the device, inflating the 

heat that a specific fog node produces. 
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3. To design an efficient service placement algorithm concerning deadline 

awareness and energy efficiency. We have used the heuristic (Yates et al., 2019) 

algorithms to improve the scheduling problem's performance. 

4. Extensive simulation-based performance evaluation of the proposed work is 

compared with the state-of-the-art algorithms across the multiple parameters 

along with the analysis and discussion of the deserved results. 

 

1.7 Thesis Organization 

 

Figure 1.9 shows the pictorial representation of the whole thesis. The overall schema 

of the chapters is formulated in the following manner: 

Chapter 1 gives a concise introduction about the term Fog Computing, service 

placement and describes the various parameters used in the thesis work. 

Chapter 2 depicts the literature review related to the fog computing environment, 

different application models, service execution models, and placement and 

orchestration models. A comparative analysis of the existing simulating tools is also 

discussed. 

Chapter 3 The importance of a fog environment in the application module 

deployment is discussed. A multi tire fog architecture based on the suggested 

Deadline oriented Service Placement (DoSP) model is illustrated. In terms of response 

time and resource utilization, the DoSP was compared to the cloud-only and 

EdgeWard placements. 

Chapter 4 provides the deadline-aware and energy-efficient dynamic service 

placement (DEEDSP) technique for IoT environment to minimize energy and 

response time. This proposed system is implemented by using simulation tool, i.e., 

iFogSim. The performance has been measured and compared based on various 

performance metrics. 

 

Chapter 5   summarizes this thesis and proposes future research opportunities for  
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further study.  

 

Figure 1.9: Thesis Organization 
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Chapter 2 

Literature Survey 

As a result of the IoT, virtualization and Cloud computing firms are now collaborating 

to deliver on-demand computer resources while also establishing ever-present 

computer systems in public, private, and business settings. F fog computing is one of 

the primary platforms for addressing IoT-related concerns to fulfill the demand for 

such computing tools. As the compute nodes in fog computing are heterogeneous and 

distributed, Fog computing services must cope with various issues (Apat et al., 2018). 

     Cloud computing and network edge services are combined in fog computing, a 

recent concept Fog computing is characterized by the use of network computers, 

temporary storage, and computation near to the end user. With one or more fog nodes, 

data can be calculated (Agarwal et al., 2016). As the demand for data processing 

grows, more fog nodes can be added. Routers, set-top boxes, gateways, and access 

points can all be used to integrate fog computing resources. 

     In this chapter, we will do in depth discuss of the Fog Computing Environment. 

This environment consists of various components such as Resource Provisioning, 

Application Placement & Application Scheduling. There are three types of fog 

application placement management: Fog Management, Cloud Management, and Fog 

Management in Both.  

     We will be focusing on the 2nd aspect, i.e.. Service Management in Fog has 2 

categories of controls, including the Centralized & Distributed Control. The 

mechanism is further classified into Single Level, Two Level & More Level wherein 

the First part is further classified as Resource Utilization in Single cluster & in 

Neighbor cluster. The neighbor cluster is further categorized into 2 processing models 

named Batch Processing & Stream Processing. 
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Fig 2.1: Literature Classification 
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2.1  Fog Computing Environment 

Fog computing, also known as fogging, is a type of computer architecture that is 

focused on decentralization and communicates data-generating devices to the cloud. 

Here, we will discuss the 3 main environmental factors of Fog Computing: Resource 

Provisioning, Service Placement & Service Scheduling. 

 

 Fig 2.2: Computation Environment Classification 

In recent years, the cloud computing, and fog computing have all received a great deal 

of interest from both business and academics. (De Donno et al., 2019) investigates the 

origins and evolution of important current computing paradigms as Cloud computing, 

Internet of Things, Edge computing, and Fog computing. Fog computing and cloud 

computing cannot help by themselves due to specific restrictions. Both technologies, 

however, are part of Smart City's intelligent IoT network. 

     The Internet of Things (IoT) played a critical role in creating intelligent cities in the 

twenty-first century. With the growth of IoT, data is increasing at a rapid rate. As the 

amount of data expands, so does the requirement for storage. Saving and retrieving 

data from the cloud takes a substantial amount of time. Fog computing is a strategy 

for minimizing the latency of data access to and from cloud resources. At the 

network's endpoint, Fog Processing provides storage, computation, and networking 

capabilities. Fog nodes also offer some basic device capabilities(Saroa et al., 2018). It 

also serves as a foundation for a city-wide waste management system. Fog computing 

could be a smart technique to handle rubbish collection in the city. 

     Fog computing brings cloud computing to end devices, making it easier to support 

time-sensitive, location-based, and large-scale applications. This research proposes a 
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fog computing ecosystem and develops and analyzes a real-world testbed for several 

usage cases. 

     (Hong et al., 2017) are looking at three different scenarios for how to use and 

optimize our fog computing platform. These are the possibilities for use: (i) content 

distribution to impaired networks, (ii) computer fog from crowdsourcing, and (iii) 

programmable internet analytics. Authors use and develop open-source projects to 

create our nebulizing platform. 

     (Shi, Y., Ding et al., 2015) This study analyses the characteristics in fog 

framework and the resources that it may be able to provide both within and outside 

the healthcare system. It increases the real-time quality of services, usability, security, 

and privacy of online applications by providing low latency and local knowledge. 

(Rahman G et al., 2018) summarize and define the Fog Computer Model's 

architecture, functionality, related paradigms, security problems etc. 

     (Qi et al., 2019) have designed the architecture which can be applied at the digital 

twin-story level, giving new manufacturing applications a clear perspective.  

     (Gao et al., 2017) introduced a hybrid data distribution system that integrates Fog 

computing's methods to software-defined networks and DTNs to explain the 

architecture and handle high content updating costs. The Cloud is the control unit for 

processing content update requests and arranging data flows.  

     Fog computing has surpassed significant cloud computing techniques and set new 

trends and heights for current networking worldwide. It poses a risk to data and 

service privacy and security. We may find a summary of current problems and 

challenges in fog computing here (Aljumah et al., 2018). 

     The state-of-the-art and similar works that fall under the same banner are 

investigated in this book (Stojmenovic et al., 2014). Protection and secrecy issues are 

also exposed in the new Fog computing concept. As an example, a man-in-the-middle 

threat is frequently discussed in the context of fog computing security, as is a remote 

code execution assault. We examine the attack's persistent characteristics by looking 

at its CPU and memory use on the Fog computer. In addition, fog computers and their 
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implementations in different real-world scenarios, such as the smart factory, smart 

traffic lights in motor networks, and existing software communication systems, are 

discussed in this article. 

2.1.1   Resource Provisioning 

In the different existing cloud computing platforms, efficient resource allocation is a 

difficulty. (Padmavathi et al., 2017) provides a fuzzy technique that dynamically 

assigns the required resources to maximize the usage of available resources. Unlike 

other algorithms, such as the FCFS priority-based algorithm, our monitoring agency 

tracks the needed resources and assigns them efficiently and according to availability. 

This grouping of incoming requests is done so that the maximum amount of resources 

is allotted. Their performance is assessed to achieve resource allocation efficiency.  

     (Skarlat et al., 2016) formulate the optimization problem by taking into 

consideration existing fog / IoT landscape resources. The goal of this topic is to make 

fog-based computing resources available for time-sensitive applications. In 

comparison to a reference strategy, the findings of the resource supply model reveal 

that delays are reduced by 39%, resulting in shorter journey times and machinery.  

     (Rakshith et al., 2018) offer a resource provisioning system that allocates resources 

and manages registered services in a complicated topological design. Fog computing, 

according to the findings, reduces total service time. 

     For storage system management, the majority of the data was saved on Cloud by 

the businessmen as it provides remote access to the Client on a usage-based basis. In 

that instance, we can rent the computer for their needs rather than purchasing any 

physical equipment from the user. In the cloud computing environment, resource 

provisioning is a difficult operation. The Cloud resource delivery framework for Big 

Data applications is discussed in (A. Sheshasaayee et al., 2017). Many users in the 

Cloud consider resource management to be a critical duty. There are numerous 

techniques of resource provision that are currently in use. For individuals with vast 

enterprises in need of resources, this recommended structure is just too valuable. It 

uses MapReduce to plan tasks, which reduces both runtime and response time. 
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The supporters of resources are all rational people who wish to get the most out of 

their resources. The owners of resources will not contribute unless there is an 

effective incentive system in place. Based on the previous issues have proposed 

architecture mostly on the neurons of the human brain is proposed by the properties of 

fog and cloud data centers. This system structure's activity is studied (Sun et al., 

2017). 

2.1.2   Service Placement 

To maximize the decentralization in fog computing, a strong framework for 

positioning and reaction time and the utilization of resources in services has been 

designed. To support IoT service delivery, (Tran et al., 2019) suggested a new multi-

tier fog computing architecture. The proposed approach optimizes the performance of 

IoT services by utilizing the network edges of virtual resources by improving the 

reaction time, energy, and cost savings. The proposed technique maximizes fog use 

while minimizing latency, energy consumption, network load, and operating expenses 

according to experimental data. 

     A conceptual fog computer framework is presented to improve the resource 

provisioning system model regarding resource cost, dependability, and service 

accessibility (Skarlat et al., 2017). Fault tolerance strategies can improve the 

architecture, allowing for more mobility in the Fog. It may be necessary to investigate 

parallel heuristic algorithms to identify a suitable alternative to the exact optimization 

strategy.  

     (Taneja et al., 2016) This paper describes an adaptively deployed resource-aware 

data analytics platform in a fog framework, that could reduce users' network expenses 

and reaction time by deploying the analytic platform to operate in the Cloud. (Kayal 

and Liebeherr,2019) A collaborative effort suggested a distributed service placement 

method for fog applications to maximize energy use and network resource usage. The 

proposed Neighbor Exchange Local technique, unlike cloud placement approaches, 

Neither central control nor global state data are required. The Markov approximation 

approach is used in the algorithm design to resolve the combinatorial optimization 

aim. 
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A profit-aware application placement policy is presented (R.Mahmud et al., 2020). 

Simultaneously, the program boosts its gross and net income by expanding to suitable 

instances without surpassing its time limits. This technique employs a refund scheme 

to lessen the impact of an SLA breach on users. The compensation scheme is based on 

machine production and helps both producers and consumers. We can use any ILP 

solver or best-fit heuristic approach to find the application-instance map in the 

proposed policy. To demonstrate the efficiency of the suggested technique, the 

heuristic approach is used, and its performance is compared to numerous existing 

application placement strategies in an iFogSim simulated environment. According to 

the testing results, the proposed technique enhances gross and net income, time to 

wait, and a QoS satisfaction level. 

2.1.3   Service Scheduling 

On a gateway-based edge computing service paradigm, (Tseng et al., 2018) proposed 

to reduce data transfer latency and network bandwidth to and from the Cloud. To alter 

the work program of the edge gateway, the lightweight virtualization technology 

Docker can be used to assign computing resources on-demand. The edge gateway can 

handle service needs in the local network. The suggested edge computing model 

eliminates the calculating charge associated with typical cloud service models and 

increases the efficiency of edge computing systems. This paradigm is also applicable 

for many innovative applications in the 5 G and beyond the cloud-based computing 

environment.  

     It is the authors' intention to investigate at a fog-enabled software-defined 

embedded platform wherein the job images are kept on storage servers and 

computations are executed either on an IoT device or on computational nodes. It is 

vital to have an efficient process allocation management technique with a short job 

completion time for enhance customer experience. This research looks into three 

issues throughout this study relating: 1) task scheduling 2) resource management and 

3) how to manage I/O interruption queries across storage servers.  They're considered 

at this as a non - linear optimization challenge. They propose a computationally 
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efficient technique based on this approach, which has been validated through 

simulated experiments (D. Zeng, L. Gu et al., 2016). 

     (Name et al., 2017) suggest a policy to ease the difficulty of user mobility by 

reducing the time necessary to react to an application using an effective algorithm that 

works with the Seamless Handover Scheme for Mobile IPV6. (Yin et al., 2018) 

develop a task scheduling method in the fog node to ensure timely task completion 

and an optimal number of concurrent activities. Finally, a mechanism for reallocating 

task delays based on container properties is proposed. The suggested task planning 

and reassignment technique has demonstrated that it can successfully reduce task 

delays and enhance task concurrency in fog nodes.  

     The resource planning problem has been investigated (Mtshali et al., 2019). In the 

fog computing environment, many cloud computation policies have been examined. 

Most of these scheduling algorithms are evaluated using multiple criteria, including 

energy consumption, implementation time and network utilization and the amount of 

data that is sent and received. The First Come First Serve, shortest job Scheduling 

algorithm, GP, and RR policies were adhered to in the investigation of the multi-

objective optimization problem. Compared to the SJF, GP, and RR, the FCFS 

improves efficiency by 11 percent, 15 percent, and an average delay of 7.78 percent 

and 4.4 percent, respectively. FCFS is thus the optimal planning approach for task 

computing and job efficiency that uses the least energy.  

     (Xuan-Qui Pham et al., 2016) People have come up with a way to use both cloud 

nodes leased from cloud providers and fog nodes that are owned by cloud providers. 

A scheduling approach is proposed that ensures application performance while 

simultaneously lowering the obligatory cost of employing cloud resources. 

2.2 Orchestration Model 

Container scheduling, cluster management and possibly the provisioning of extra 

hosts all fall under the umbrella of orchestration. In this section of the Orchestration 

model, we will discuss the 3 categories: 1. Service Orchestration in Cloud, 2. Service 

Orchestration in Fog, 3. Service Orchestration in both cloud & fog. 
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Fig 2.3: Service Orchestration Classification 

2.2.1   Orchestration Model in Cloud  

The topic of Cloud orchestration was investigated by (Bousselmi et al., 2014). SaaS 

services orchestration or IaaS services orchestration were the two options offered. 

There is a lack of attention paid to the administration of orchestrated software and 

services i.e., scheduling, installation, dependencies and the appropriate provisioning 

of Cloud resources. 

     Senna et al. (2014) introduced hybrid cloud architecture for orchestrating Hadoop 

programs. The Cross-Domain Hadoop Cluster can be automated; the supply of used 

files can be made possible. It can manage the application, and the results can be made 

available to the user through its components. The proposed model informs the user 

about repeated environmental behaviors. The approach aids in the identification of the 

best available resources, including the utilization of leased resources on demand. It 

also demonstrates how leased resources can be successfully managed, with VMs 

being deleted when no longer needed. The proposed architecture enables the creation 

of solutions for complicated contexts like hybrid clouds with Hadoop-as-a-Service.  

     Distributed service orchestration architecture (Sebrechts et al., 2016) is proposed 

to manage better the sophisticated orchestration logic required in such scenarios. To 

address the different components' adaptability, a novel service-engine-based 

technique is given. Cloud modeling languages, autonomous devices, image 

schedulers, and PaaS systems can all benefit from a hybrid integration strategy. The 

notion is included in Tengu, a distributed data experimentation platform, making it 

scalable and stable. 
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The authors created a new CAMP platform that enables the specification, deployment, 

and management of applications and components across diverse cloud environments. 

(Alexander et al., 2017). Policies written in declarative YAML are used in the 

proposed platform. Declarative policy directives, which specify actions we can do in 

response to policies, are also available with an eye on the extended platform's policy 

processing. Descriptive policy representations and fully automated orchestration of 

applications across different cloud providers are two ways CAMP extensions help 

platforms that are compatible with CAMP work better with other platforms. 

     (Alexander et al. 2017) proposed a new solution that included combining the 

upcoming TOSCA and CAMP standards and extending CAMP to orchestrate a multi-

cloud application using declaration policies. There are other additions to the CAMP 

platform that bring the standards closer together for easier integration. The proposal 

proposes a cloud-based solution that allows cloud applications to extend and run 

across various clouds by supporting the modeling and deployment of cloud-based 

applications.  

     (Carnevale et al., 2018) suggested Osmotic Computing Paradigm-based 

orchestration architecture. Finally, start by looking at IoT applications that are 

installed in different places like a graph of Microelements, Osmotic architecture for 

multiple tenants capable of performing a workflow to drive MELS registration and 

transition to a computing application for the study process was described (MELS). 

(Brabra et al., 2019) proposed a new model-driven orchestration approach that: 

 

1. To characterize cloud resource objects, TOSCA is used. 

2. Translates these items into native DevOps data using a model-driven translation 

approach. 

3. Provides Connectors with a way to connect the Operations teams contents created 

to the underlying DevOps technologies. 

They looked at the POC implementation and several applications to see how efficient 

it was and how well it transitioned. As indicated by the study, the use of TOSCA for 
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resource object representation and MDE methods for mapping between TOSCA and 

DevOps tools covers the existing complex implementation and inherent variability in 

these tools. They'd cut the amount of time spent on design and expert-led physical 

work in half. 

2.2.2 Orchestration Model in Fog 

For the various domains of infrastructure management, a hybrid strategy (Velasquez 

et al., 2017) is offered to manage the Fog by integrating orchestration and 

choreography. The architecture described here, framed by a SORT’S project, allows 

for a global view that permits broad optimization and automated low-level dynamic 

reactions. Furthermore, we can use different orchestrator instances to achieve 

different optimization goals based on the applications. The Fog paradigm (Velasquez 

et al., 2018) has been overhauled. Several Orchestrator architectures for the Fog 

service have been introduced and how the Fog issues are tackled. A comparative 

analysis of the various architectures is provided.  

     An approach for autonomously controlling and organizing fog computing networks 

was proposed by Dlamini et al. (2018), who used a finite state machine to achieve this 

goal. The scheme is based on prior work that linked the Open Fog architectural style 

towards the ETSI framework to address fog computing orchestration challenges, and 

also the special features with state machines providing information about the network 

event responses. This suggested methodology seems to be a key option to learning 

algorithms, that has been widely known in networking to resolve orchestration issues 

and provides sufficient connectivity intelligence without proceeding it through 

different phases required to establish a machine learning feature to support network 

selection, and it provides significant network abilities without proceeding through all 

different phases required to implement a machine learning process to support network 

selection. 

     We may find an overview of the INPUT in (Wamser et al., 2018). (Supporters of 

the Next Generation of Personal Cloud Services with In-Network Programmability). 

The Fog computing-architecture approach uses the above technologies in its Open 

Volcano implementation to give future network cloud personal Internet access. It 



 
34 

provides processing and storage capacity for end-user and edge cloud services and 

IaaS and PaaS templates with severe time and performance constraints. It provides a 

basic, programmable Ethernet domain that is based on SDN. The focus of this study is 

on multi-service orchestration and monitoring, which is an important component of 

any computer architecture. 

  2.2.3   Orchestration Model in Both 

Academic works regarding the paradigm change to Fog, were assessed by (Osanaiye 

et al., 2017).  By categorizing fog computing applications between real-time and just 

next to real time, taxonomy of diverse fog computing applications are offered. Despite 

the lower latencies of these services, the Cloud must be extended to the network's 

edge, resulting in fog computation.  

     Both computing technologies i.e., Cloud and fog are virtualized systems that 

provide resources for computation, networking, and storage. The concept of an 

adaptive pre-copy live vm migration within Xen discussed here is driven by the 

expectations for high-end users' availability. The suggested method predicts overall 

stop and copy points downtime while in an iterative pre-copy. 

     (Ren et al., 2019) provides a thorough examination of these new computing 

paradigms from the perspective of end-of-cloud orchestration. The designs and 

properties of several computer paradigms are first introduced and compared. Then, to 

address cutting-edge studies on uploading, caching, security, and privacy. 

2.3   Placement Controller 

An entity in Fog computing that oversees various application management actions is 

referred to as the placement controller. It also aids in measuring the time between 

requesting and installing the applications with in Fog computing environment, which 

significantly influences efficiency of cyber physical systems. Within Fog, there have 

been two kinds of placing control systems. 
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Fig 2.4: Placement Controller Classification 

2.3.1   Centralized Controller 

IoT applications require strong analytics approaches like Deep Learning in order to 

extract useful information. Existing IoT apps send data to data centers with a lot of 

processing power. It may, however, clog networks, overburden data centers, and 

expose security vulnerabilities. Connecting data centers to end users is the goal of our 

platform. We execute distribution of analytical algorithms across the devices without 

transferring any data to the data centers. To overcome the hurdles of implementing 

such a platform, we study the challenges and carefully adopt prominent opensource 

projects.  

     We next run extensive tests on the platform that has been implemented. Findings 

reveal the necessity of making decisions about (i) how to deploy an app across 

numerous devices, (ii) the overhead incurred by various factors in our system, and 

(iii) the advantages and limits of distributed analytics. (P.Tsai et al., 2017). 

Tsai et al. present a TensorFlow and Kubernetes-based analytic fog computing 

architecture. A centralized server and fog devices make up this RaspberryPi-based 

architecture. Cloud servers, edge infrastructures, and fog devices are all detailed in 

their work. The application model is programmed in TensorFlow. Using Kubernetes, 

the fog landscape may be managed and resources found and deployed by the system's 

operator containers. Our approach to orchestrating differs from Kubernetes in that it is 

distributed rather than centralized. When compared to Kubernetes, fog nodes are 

smaller and easier to deploy on edge devices. 
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Dynamic distribution topologies for Internet of Things (IoT) applications may be 

developed using the DIANE framework. (M.Vogler et al., 2016). This framework 

keeps track of the deployment infrastructure, organizes it into categories based on 

available resources, and saves the data for subsequent study. The framework 

dynamically deploys topologies for IoT applications and enables monitoring by Using 

a rule-based mechanism. While DIANE provides a rule-based approach for resource 

provisioning, we pose a concrete optimization problem in our study. We also study 

and implement a fog landscape's hierarchical structure, focusing on creating 

communication between different fog landscape devices and offering application 

management. 

2.3.2   Distributed Controller 

In contrast to the centralized controller, the distributed placement controllers govern 

the Fog nodes from a local perspective on the Fog environment, rather than the 

centralized controller's perspective. 

     For applications in smart cities, the authors propose a multi-tiered fog computing 

architecture; this research proposes a multiple layer of fog environment 

supporting smart cities, as well as a large volume of growing data analytics service. 

This multi-layer fog is made up of application - specific fogs and reserved fogs using 

spontaneous or reserved computational resources, correspondingly. The proposed 

unique fog computing paradigm, which includes well-defined essential features, can 

help to overcome the challenges of specialized computing environments and delayed 

cloud services response. Researchers undertake analytics benchmark tests over fogs 

generated using Raspberry Pi equipment that used a distributed computational engine 

in order to measure overall processing capacity of varied analytical workloads and 

build efficient workload models.  

     Placement controls, and resource provisioning algorithms that are fully aware on 

Quality of service are meant to make advanced analytics services more accessible and 

useful. There are several factors to consider while designing a Quality of Service 

(QoS) strategy. This flexible framework simulator is built to evaluate proposed fog-

based analytical services with QoS control mechanisms. Experiments indicate these 
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analytical services are effective across multi-tier fogs, and that the recommended QoS 

techniques work. When compared to a cloud-only model, fogs can greatly improve 

the efficiency of smart city analytical services to customers in terms of task blocking 

likelihood and service usefulness (J. He, J. Wei et al., 2018). 

     Many people are interested in fog computing because of the problems with cloud 

computing. There is a possibility that fog computing could be used to move 

computational power closer to the data that is being created by the devices on the 

edge of the network. This is because there are more and more devices at the edge of 

the network, which means that they need quick and local processing. This vision 

paper overviews current research activities, explains applications where fog 

computing is useful and suggests future difficulties that must be overcome to reach its 

full potential (M. S. de Brito et al., 2017). 

2.4   Fog Architecture 

Fog architecture makes use of end-device services (switches, routers, multiplexers, 

and so on) for computing, storage, and processing. It consists of 2 major components: 

Fog Layers & Clusters, which we will discuss in this section. 

2.4.1   Fog Layers 

2.4.1.1   Single 

Heterogeneous fog computing systems, including multiple edge nodes to support 

many Internets of Things (IoT) devices, provide superior scalability and cheaper costs 

than cloud computing's centralized architecture. This paper presents an energy-

efficient scheduling approach for IoT workflows running on heterogeneous fog 

environment. Our first step is to develop the integer programming model that reduces 

overall energy use. Rather than being used directly for computing, the ILP model's 

goal is to disclose essential components for lowering energy use in a distributed 

system. Based on model data, authors develop new energy minimization scheduling 

method that combines numerous strategies to achieve relatively close to the actual 

values. To create and test their concept, authors used simulations. The results of the 
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tests show that, it achieved near-optimal energy utilization while operating at a much 

rapidly (H. Y. Wu, C.R. Lee et al., 2018). 

 

Fig 2.5: Elements of Fog Architecture (Sri Raghavendra et al.,2021) 

In order to accommodate the growing number of Internet of Things smart devices, the 

researchers suggest a work scheduling mechanism in the fog layer that is mainly 

focused on priorities. It will enhance efficiency and cut down on costs. Priority-based 

job scheduling techniques and the appropriate architecture are clearly mentioned. 

According to performance evaluation, the proposed technique reduces overall reaction 

time. It significantly lowers total cost compared to existing job scheduling algorithms. 

The priority-based approach is applicable in many application domains. This study is 

essential to the growing fog computing technology (T. Choudhari, M. Moh et al., 

2018). 

Using a fog - cloud architecture, the researchers have been trying to deliver 

Internet - of - things types of services to their customers. On the basis of this 

architecture, a unique service placement approach has been developed that increases 

service distribution on the Fog cluster by leveraging context-aware information about 

the context, duration, and service standards to position services in the most 

appropriate locations. With many simulations used for smart grid applications, they 

experimented with testing the proposed approach. Compared to the traditional cloud 

computing model, the results prove that the proposed technique is helpful in 

decreasing latency, energy usage, and network stress (Minh, Q. T et al., 2017). 
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In order to promote the health and well-being of humanity, IoT based systems provide 

a realistic and well-organized approach. Technological solutions built upon wireless 

sensor network are becoming increasingly more accessible as the number of elderly 

citizens who needs health services on a daily basis rises. In such a framework, the 

energy consumption of a sensor node is critical. One possible solution to these 

problems involves the use of the gateway having fog computing technology. Fog 

computing services include distributed processing management, electrocardiography 

extraction and classification, graphical interface including access management, as 

well as pushed notations. Fog computing may reduce the burden on a cloud server, 

and a sensor node can save up to 50% of its power usage. The system also employs 

fog computing to assure that the obtained health information can be presented and 

evaluated in real - time basis, however if the gateway and cloud server are unavailable 

(Gia T. N., Jiang M et al., 2015). 

   2.4.1.2 Multiple 

In order to reduce operating expenditures and system dependability, lowering energy 

consumption for Cloud services has been an essential priority. Anyone can get any 

service they want through the Cloud. This is called XaaS, and it's a way to get new 

real-time Cloud services. The authors examine power-aware virtual machine 

provisioning for real-time services in this research. These are the things they want: 

(i) The users request consider as a virtual server and (ii) use DVFS (Dynamic Voltage 

Frequency Scaling) techniques to deliver virtual machines in data centers. They offer 

many power-saving measures and test their effectiveness using simulation data. (S. 

Sharma and H. Saini et al., 2019). 

     The Internet of Things (IoT) has enabled computers to penetrate these most 

mundane aspects of everyday life, leading in a paradigm change to the way services 

are developed and deployed. A consistent method to applications deployment is 

critical for optimal network infrastructure use, especially when the volume of the 

impact grows rapidly. A typical Internet of Things application comprises multiple 

modules that operate in tandem with active interdependencies; these modules are 

typically hosted in the Cloud in worldwide data centers. According to the findings of 
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this study, a Module Mapping Algorithm is proposed that facilitates actual resource 

utilization in communications infrastructure by effectively installing Software 

Applications within Fog Infrastructure for Internet of Things-based services. Fog 

computing allows application modules to be placed closer to the source on 

Fog devices because processing is spread effectively anywhere in Cloud and Fog 

layers. The whole job's output may be used as a benchmark in fog computing, such as 

for evaluating Service quality and Service Performance Objectives for Applications. 

This method is general and may be used with a variety of standardized IoT 

programmers operating on various network topologies, irrespective of load (Taneja et 

al., 2017). 

     As a result of its emphasis on delivering cloud-based services efficiently and 

effectively towards the users in an efficient and timely way, the fog computing 

paradigm has attracted a great deal of attention in research circles. The majority of fog 

computing's physical equipment, known as fog devices, are geographically dispersed, 

resource restricted, and diverse. A system of fog nodes may be used to install large-

scale programs that are broken down into smaller, more manageable units called 

"Application Modules." In this paper, authors describe a fog-based latency-aware 

Service Module management strategy that takes into account the changing service 

delivery latency and quantity of transmitted data to be analyzed per unit of time for 

different applications. In the fog environment, the policy aims to ensure application 

Quality of Service (QoS) while fulfilling client service timelines and improving 

resource efficiency. Using iFogSim, we simulate and evaluate our proposed strategy 

together in synthetic fog environment. The simulation findings show a significant 

performance improvement over other latency-aware approach (R. Mahmud et al., 

2018). 

     The Internet of Things connects billions of devices (IoT). These gadgets produce a 

lot of data, which puts much strain on traditional networking infrastructures. Using 

edge computing, in conjunction with cloud computing, you may minimize network 

latency and energy usage by relocating computational and storage services that are 

resource heavy to edge devices. Meanwhile, software-defined networks (SDNs) might 

help sophisticated IoT-based applications enhance their quality of service (QoS). 
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Building an SDN-based computing platform, on the other hand, poses major 

challenges, high latency sensitive, more computation complexity, and high 

availability needs of new applications are not being met by present computing 

paradigms. As a result, this study presents a collaborative work offloading technique 

based on cloud-mobile edge computing (MEC) and service orchestration (CTOSO). 

In order to make distinct offloading mechanisms for jobs with varied resource needs 

and delay tolerance, the CTOSO system first assesses the cost of offloading tasks in 

terms of computation, communication, and latency. 

      Additionally, the CTOSO system has an ODaS (orchestrate data as services) 

approach that is based on SDN. MEC servers arrange the gathered metadata into high-

quality services, decreasing the network burden generated by cloud resource uploads. 

On the one hand, data processing is performed to the greatest extent possible at the 

edge layer, allowing for load balancing and minimizing the risk of data leaks. 

Comparing the CTOSO approach toward the RDTO scheme and the MCJO scheme, 

we find that it decreases latency by 73.82 percent to 74.34 percent and energy 

consumption by 10.71 percent to 13.73 percent. (N. K. Giang, M. Blackstock et al., 

2015). 

2.4.2   Clusters 

2.4.2.1   Single Cluster Resources 

The objective of fog computing is to enable substantial Internet of Things applications 

(IoT). The demand for vital information to be transmitted across disparate IoT devices 

via event alerts, such as traffic conditions observed when undertaking traffic 

monitoring, is a critical feature of such systems. In the Internet of Things, the CEP 

paradigm is a strong tool for bridging the existing gap between IoT devices that 

monitor sensor data and IoT application users that get event alerts. However, 

deploying CEP in a highly dynamic IoT environment, such as one with mobile and 

heterogeneous devices, needs a CEP system with an extremely flexible architecture 

that can adapt to changing requirements and operating conditions. They demonstrate 

"how to boost adaptability in a fog environment by utilizing a technique called 

mechanism transitions" using a CEP use case. By describing and analyzing two 
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typical IoT use scenarios, we highlight the potential for mechanism transitions. They 

discover and investigate potential promising mechanism transitions as part of CEP. 

We experiment to determine the optimal operator placement and demonstrate how 

transitions adapt to competing performance objectives (Luthra et al., 2019). 

     In conjunction with the rise of the Internet of Things, fog computing has been 

promoted as a powerful complement to cloud computing for addressing both data and 

communications requirements of the IoT. The communication and cooperation 

between both the cloud and the fog has received a lot of attention recently (cloud). 

The goal of this paper is to examine service allocation in a fog computing system, in 

which a fog provider may efficiently execute clients' offloading applications by 

leveraging collaboration between its fog nodes and cloud nodes. In this cloud-fog 

environment, we first discuss the work scheduling problem. Then authors present a 

heuristic-based strategy with the primary objective of maintaining a balance across 

cloud resource makes span and computation cost. Their analytical results indicate that 

the proposed algorithm generates a greater trade-off value than the other methods 

(Xuan-Qui Pham and E.-N. Huh, 2016). 

     Network edge computing, communication, and storage are all made possible by the 

fog paradigm. Resource allocation is critical in this heterogeneous and distributed 

environment. As a result, scheduling will be difficult for increasing productivity and 

allocating resources to assignments appropriately. Use of a classifying data mining 

method to assist in computer task scheduling. The development of the I-Apriori 

method has been aided by a revolutionary classification mining approach based on the 

apriority algorithm. 

     There are also new task scheduling models and a new method for scheduling tasks 

in the fog, called TSFC (Task Scheduling in Fog Computing). The task set's least 

completion time for every task is coupled with I-Apriority algorithm's associate 

criterion. Furthermore, the job with the quickest completion time is picked to be 

executed somewhere at fog layer with the quickest completion time. Finally, we do 

practical simulations to see how well maybe the I-Apriority as well as TSFC 

strategies work. The TSFC technique surpasses other algorithms in terms of job 
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execution time and average wait period reduction, according to the findings of the 

experiments (Liu, L., Qi et al., 2018). 

2.4.2.2   Clusters Co-operation 

A Fog-of-IoT paradigm is predicted to emerge for the arrival of 5G access 

networks, combining internet of things and the Cloud computing. This computing 

supports distributed networking and computational resources distribution over the 

internet. The FC paradigm is well suited for high computation intensive and time-

critical streaming applications in the power constrained wireless IoT environment. 

Consequently, these objectives have been established for this study: 

• It provides a compelling analysis of the proposed Fog-of-IoT paradigm's major 

"killer" application areas. 

 

• It demonstrates how to use Containers to build a virtualized networked 

computing architecture. The proposed design is implemented in the 

Middleware layer. It makes use of the Container Engines' inherent capabilities 

to enable dynamic real-time scaling of virtualized compute and network 

resources.  

 

• Using a low-complexity penalty-aware bin packing-type algorithm, the 

researchers were able to actively manage the virtualized computing and 

networking resources. The proposed optimization implements the combined 

significant reduction of communication delay and energy while assuring hard 

optimum values on task processing and networking delays by adaptively 

trying to scale the computational power of both the virtual processors and 

transmission capacity of the parameterized TCP/IP connectivity. 

 

• Energy efficiency against implementation complexity of the proposed resource 

manager is quantitatively tested under static and mobility of Fog scenarios, 

and compared to the related achievements are made to back up these claims 

(P. G. V. Naranjo et al., 2018). 
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The continued growth in popularity of automotive tools, smart and IoT devices, 

developing a reliable architecture for managing the huge volumes of data by the 

Vehicle network has become a top concern for the future smart city. 

     Cloud computing centralized data processing has an inherent weakness, and fog 

computing has been offered as a solution with lower fog computational nodes. Based 

on regional collaborative fog nodes, the authors have proposed a vehicle network for 

the smart city, taking into account variables such as latency and mobility as well as 

localization and scalability.  

     The Mobility control, data collecting from multiple sources, distributed compute 

and storage, and multi-path data transfer are some of the services discussed for IoV 

applications. In CFC-IoV, the authors show how to build a hierarchical system that 

manages resources inside and outside of the fog. This makes the LFS more energy 

efficient and packets less likely to be dropped (Zhang, Z. Zhang et al., 2017). 

     Internet of Things (IoT) services would be deployed using fog environment. The 

instability of resources makes it challenging to enable coordinated cooperation across 

compute, storage, and networking resources in the fog. As a result, we created an 

architecture and developed FogFrame. 

     This representational framework describes the required communication channels 

for launching and maintaining fog-based service execution. (V. B. C. Souza et al., 

2018). 

2.5   Workload Type 

Workload refers to the total amount of information a system gets from its surrounding 

environment during a certain period of time. Understanding the workload's 

components is an important part of defining its nature and quantifying and 

probabilistic characterization of the workload factors in relation to event counts and 

service requests. Batch Processing and Stream Processing are the two main types of 

work that make up the workload. 
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Fig 2.6: Workload Classification (Sri Raghavendra et al.,2021) 

2.5.1   Batch Processing 

Batch workload refers to an application's collection of non-interactive inputs. When the batch 

task is received, it has been constructed using data from many sources. 

     Fog computing lowers latency caused by distant clouds by allowing some 

application components to be deployed on fog nodes at the network's edge while 

others remain in the cloud. Virtual Network Functions (VNFs) can be used to build 

application components. Sequence, parallel, selection, and loops can all be used to 

indicate their execution sequences. They must map the application components into 

the infrastructure nodes using effective placement strategies. Current solutions do not 

account for fog node movement, which can occur in real-world systems. This study 

determines the projected end to end delay and applications execution cost for fog 

devices based on the random pointer mobility model developed in the previous 

research. After that, the problem is described as an ILP formulation that reduces a 

weighted aggregation feature of both the makespan and computation cost. A Tabu 

Search Component Placement (TSCP) approach is used to find sub-optimal 

component placements. The suggested technique is used to improve the computation 

time and application execution cost, according to the findings (C. Mouradian, S. 

Kianpisheh et al., 2019). 

     One of the most crucial components of an industrial automation system is the 

control loop. Fog computing, which brings distributed computing resources closer to 

linked devices, is a feasible industrial control solution for time-sensitive applications. 

However, because of the large volume of data exchanged across fog nodes, the 

communication burden is significant, minimizing the response time from fog 

computational nodes to actuators. In this study, we take into account of fog 
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environment. We use batched sparse (BATS) algorithms to reduce communication 

and compute demands in the distributed fog computing environment. According to 

numerical data, the BATS-based system can simultaneously minimize communication 

and processing demands and the overall reaction time from fog nodes to actuators (J. 

Yue, M. Xiao et al., 2018). 

2.5.2   Stream Processing 

Several sources generate this type of task regularly. As a result, the stream processing 

is preferred when developing real-time IoT systems. An IoT device's sensing 

frequency can vary the stream workload's specifications and processing requirements 

over time. 

     With enhancing the Cloud infrastructure concept to accommodate widely scattered 

fog nodes at network edges, fog computing alters the distributed computing 

environment. This scattered technique is ideal for using local fog computation 

nodes resources to run high data stream applications. Storm is an open-source cluster-

based infrastructure with dynamic scalable, and fault-tolerant which are locally 

distributed. In order to run a distributed Quality of Service (QoS) aware scheduler and 

to enable self-adaptation, more components have been added to the Storm, which now 

has the ability to function in a geographically dispersed and continuously changing 

environment. Authors employ two different sets of DSP applications in this work to 

offer a comprehensive experimental assessment of the recommended approach: the 

first one is characterized by a basic topology with a wide variety of criteria, while the 

second comprises numerous applications. The results reveal that in terms of 

application performance and runtime flexibility, this proposed scheduler beats the 

centralized default scheduler. On the other hand, complex topologies with multiple 

operators may induce instability, limiting the availability of DSP applications. (V. 

Cardellini et al., 2015). 

     Fog computing is becoming more and more popular as a paradigm in academia and 

business. Fog computing has the ability to disrupt the industry with new services and 

user experiences. Fog computing, on the other hand, is still in its infancy. If you want 

it to be used as a realistic, low cost, feasible, and easy-to-use alternative to the cloud, 
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you really ought to build a strong foundation first. Fog computing can give a local 

network cloud-like services while cutting expenses. Fog computing allows for a novel 

resource-conserving technique for distributed video summarization, according to the 

authors. The Fog network's nodes are low-resource Raspberry Pi devices. Surveillance 

video is distributed among multiple nodes. For less bandwidth, a summary is made 

through the Fog network and sent to the cloud often. The suggested method is 

evaluated using a variety of realistic workloads recorded as surveillance recordings. 

Experiments show that the suggested framework has extremely little overhead and 

strong scalability compared to off-the-shelf expensive cloud alternatives, even when 

using a single-board computer with limited resources, indicating its utility for IoT-

assisted smart cities. (Mansoor Nasir, Khan Muhammad et al., 2019). 

     One of today's most pressing issues is lowering electricity consumption and costs. 

New energy management systems are urgently required due to the massive growth in 

demand. As a consequence of the advent of new Information Communication 

Technologies (ICT), traditional electrical grids, residential areas, and devices often 

become Smart Grid nodes (SGs), Smart Meters (SMs), and Smart Equipment’s (SEs). 

These smart equipment' data is exchanged on a regular basis. More complicated 

algorithms, faster retrievals, and higher storage capacity are all required to handle this 

data. A new fog-based energy management system is now being created with all of 

that in mind. Many data processing and permanent storage capacities are available 

with Cloud Computing (CC). It does, however, have limitations in terms of quick data 

retrieval, resulting in reaction times. 

     Alternatively, fog computing (FC) allows rapid information retrieving with less 

response delays, with main negative becoming the requirement for temporary storage. 

The proposed system architecture unifies the properties of both cloud and fog by 

combining their services. To regulate the load across multiple Virtual Machines in 

Fog servers, a novel load balancing approach called Modified Shortest Job First 

(MSJF) is introduced. The suggested algorithm's performance is evaluated using 

several performance factors such as Computational Time, Response Time, and Cost. 

The suggested system's performance is validated using simulation in the Cloud 
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Analyst tool. It is expected that the suggested approach would not outperform based 

on the findings (T. Nazar, N. Javaid et al., 2018). 

2.6   Service Execution Model 

Service Execution is responsible for the execution of individual jobs that make up 

applications. They are in charge of configuring the runtime environment in which jobs 

are executed. There are 2 categories of the Service Execution Model: Sequential & 

Parallel, and we will discuss these 2 categories in this section. 

 

Fig 2.7: Types Of Service Execution 

Stable infrastructures, vast volumes of motor vehicles, computers, and strong 

networks are typical components of the mobile cloud paradigm of car fog computing. 

The required service must be given fast as a portal for service delivery to correctly 

save the resources of the related nodes and increase network survival. However, the 

restricted capacity of the components compounds the situation. Four networks are 

assigned the bandwidth available to save operating time (Lin et al., 2018). According 

to the above serving methods, a utility model is designed and solved by a two-step 

procedure. The solutions on a Lagrangian algorithm for the first step are all sub-

optimal. The second stage entails determining and assessing the best solution 

selection procedure. They have done a computational simulation for demonstrating 

the assignment results and the best utility model for maximizing survival run. 

2.6.1   Sequential Service Execution 

A unique fog-like service distribution approach is proposed (Yousefpour et al., 2019). 

The fundamental idea is to merge three components into a single goal function 

(application time, network congestion, and server usage). The best service 
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deployment strategy minimizes application response time, decreases network 

congestion, and keeps cloud-level server utilization minimum. It is suggested that 

optimal service deployment be used. This work has considered security concerns for 

device data transit, vulnerable executing device data in the process, and data privacy, 

segregated into executed components on other devices. Data protection is a current 

security concern that will be addressed in future research. It will show that fog 

computing is a cost-effective and safe solution for low-latency applications.  

      (Ghobaei-Arani et al., 2019) Fog management solutions in this critical field are 

described in conventional taxonomy terms using current methodologies and 

unresolved problems. Service placement, dynamic resource allocation, load balancing, 

and provisioning are the required fields in the taxonomy. To contrast the methods to 

resource management, key factors such as performance metrics, case studies, 

methodologies, assessment tools, and their advantages and downsides are used. 

2.6.2   Parallel Service Execution 

With several IoT devices, fog nodes, and datacenters all working together, the authors 

provide an energy and time savings weighted cost model. In addition, for concurrent 

IoT applications, a novel batch application placement approach that relies on the 

Memetic Algorithm. Given the different of IoT applications, they provide an ultra - 

light pre-scheduling solution to enhance the concurrent execution (M. Goudarzi, H. 

Wu et al., 2020). 

     (La et al., 2018) The researchers investigated if intelligence could be used as a fog 

computing facilitator. As shown in the first case study, human-driven data analytics 

can increase context knowledge and network adaptation in resource planning. 

Furthermore, when work offloading is assisted by a cluster of fog nodes, the second 

case study reduces energy consumption and latency for the EU device. Although fog 

computing intelligence is still in its infancy, the research shows that it has much 

potential for practical applications and requires greater attention. 

     By working together on task offloading and scheduling, (Guo et al., 2019), the 

RAN for a delay-effective computing offloading mechanism exploited parallel 
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communication and computation in Fog. Specifically, the average mission execution 

delay minimization problem has been formulated, and the RCO has proposed an 

efficient approach to its optimal solution. The RCO is shown to be scalable and 

effective by extensions of application and numerical evaluations. 

2.7   Application Dependency 

 

Fig 2.8: Application Module Type 

2.7.1   Independent Task 

A large number of edge nodes and a single cloud node are used to offload computing 

burdens from a large number of wireless devices (WD). Each task indicates whether it 

should be handled regionally at its edge nodes or offloaded to the cloud node when 

considering various real-time computation workloads at various WDs. They look into 

simple computational offloading strategies in order to keep MEC network service 

quality while lowering WD energy consumption. They also suggest a heterogeneous 

DDLO that beats 

     DDLO in terms of convergence. The DDLO techniques perform better than the 

LR-based methodology, according to extensive numerical study. It also takes less than 

a millisecond for the DDLO algorithm to make scheduling decisions, which is 

hundreds of times quicker than that of the LR-based approach (L. Huang, X. Feng et 

al., 2019). 

     The authors discuss the development of cloudlet-based mobile cloud computing 

(MCC) to handle resource constraints on mobile devices (energy consumption, 

processing and memory resources, etc.) as well as communication channel delays. 
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The architecture described by them is more effectively meets the compute and storage 

demands of mobile devices while also eliminating network delay. At the same time, 

the article detailed the tasks connected to energy conservation and communication 

channel delays by solving problems that need complicated computation and memory 

resources in cloudlets placed near the user (D. G. Roy, D. De et al., 2017). 

     The need to extending Cloud infrastructure towards the end user has prompted the 

development of innovative computer architectures such as Fog computing. When fog 

and cloud computing are mixed and used regularly, a new, extremely heterogeneous 

computing ecosystem emerges that benefit from both. Early research efforts such as 

the OpenFog Consortium's reference design or a new project, Fog-to-Cloud, 

emphasizes an administrative infrastructure for managing such a combination of 

resources (F2C). For this purpose, they investigate the possible merits of F2C in 

distributed environments that take into account the mobility and consumption 

scenarios of computing resources. They conduct comprehensive simulations to 

evaluate the issues like application responsiveness, communication bandwidth usage, 

energy consumption, and the probability of service interruption. The studies 

demonstrate that maybe a fog architecture gives considerable performance gains over 

a standalone Cloud (Ramirez, X. Masip-Bruin et al., 2017). 

Mobile Edge Computing (MEC) has been proposed to substantially reduce latency 

due to the inability of Mobile Cloud Computing (MCC) to meet the needs of delay-

sensitive applications. However, because edge servers have restricted capabilities that 

negate the latency gains during periods of high load, hierarchical edge cloud 

architecture has been investigated as a solution. However, depending on the cloudlet 

layer, such a model incurs variable computing costs. In this research, we optimize the 

transmission power and the assigned server computation of mobile devices in a 

multilayered MEC to minimize their energy consumption and computational cost 

while maintaining their latency threshold. We formally define the mixed-integer non-

convex program and provide an efficient algorithm for solving and obtaining a high-

quality solution based on the Successive Convex Approximation (SCA) approach. We 

investigate various scenarios using numerical data and demonstrate the effectiveness 
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of our approach in delivering an approximation solution that reduces total energy 

usage and computing cost (E. E. Haber, T. M. Nguyen et al., 2018). 

2.7.2   Dependent Task 

Similar studies employed Directed Acyclic Graphs to model their applications in the 

dependent category (DAG). An individual IoT application service is represented by 

each triangle. Each edge depicts the flow of data (or dependence) between two jobs. 

     When it comes to providing rich services to mobile users, emerging Internet of 

Things represents a new strategy to creating, storing, and analyzing enormous 

volumes of real-time data. A widely accepted concept of offloading mobile 

applications for execution to centrally managed and distributed data centers, including 

such cloud and fog servers, is being promoted to reduce disputes among mobile 

device' resource restrictions and user' requirements for reduced processing latency and 

longer battery life. However, despite the improved efficiency of Internet of Things in 

cloud-edge computing, randomly offloading mobile applications remains a significant 

barrier to enhancing execution time and overall energy consumption for portable 

devices due to complexity and variety of big data collected from mobile devices. It is 

proposed that COM be used to solve this problem, which is a computation offloading 

solution for Internet of Things enabled cloud edge computing. A system model is 

investigated in detail, including processing time and energy consumption for mobile 

devices. Dynamic scheduling is then demonstrated for data-constrained computing 

workloads. NSGA-III is also used to solve the multi-objective optimization issue of 

job offloading in cloud-edge computing. Finally, rigorous tests and comprehensive 

simulations are carried out to ensure that our proposed technique is effective (X. Xu, 

Q. Liu et al., 2019). 

     Offloading some code to the cloud is a promising method for increasing mobile 

app speed while also reducing device energy usage. Existing offloading solutions, on 

the other hand, are greatly affected by a long communication latency among both 

mobile devices and cloud servers. They suggest cutting-edge nodes near mobile 

devices as a solution to this problem, and they study how they improve code 

offloading. Edge-centric code offloading system Echo relies on a multiple 



 
53 

layer computing architecture that includes smart phones or tablets, edge computing 

and cloud computing—determining which operations should be offloaded where is a 

major challenge for Echo. In contrast to other offloading systems that allow mobile 

devices to make their own best possible offloading decision, Echo uses a centralized 

control towards the bottom computational nodes . Authors could perhaps fully 

leverage constrained hardware resources at the bottom computational nodes with this 

edge-centric design to perform services with guaranteed quality of service. We also 

have unique ways to make the system run faster, like slow object transfer and 

updating different parts of the same object at the same time. According to the finding 

of actual functioning implementation and process simulations, Echo significantly 

outperforms earlier code offloading systems on the basis of computation time and 

energy consumption (L. Lin, P. Li et al., 2018). 

     Code offloading is a promising technique to speed up mobile apps and minimize 

mobile device energy usage by transferring work to the cloud. Code offloading 

solutions that are now in use, suffered from a large amount of communication latency 

among mobile devices and cloud. To address this problem, we propose placing edge 

devices nearby mobile devices and investigating how they may help with code 

offloading. Authors proposed Echo, an Edge-centric code offloading system, 

proposed a three-layer computing environment that incorporates mobile devices, local 

edge, and also the cloud. The choice of which procedures to offload towards which 

computer platform is a critical issue that Echo must handle. When compared to 

conventional offloading methods, Echo provides a centralized deciding algorithm at 

the edge rather than allowing individual mobile devices to determine its own 

offloading decisions. An edge-centric architecture may make the most of the devices 

with limited available resources at the edges to deliver assured quality offloading 

services. Delayed communication and divergent object updating are two of the unique 

solutions we provide for boosting system performance. According to the findings of a 

smaller range deployment with simulations, Echo outperforms earlier code offloading 

systems on the basis of processing time and energy consumption (S. Bi, L. Huang et 

al., 2019). 
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2.8   Optimization Algorithms 

Optimization algorithms examine numerous solutions iteratively until the best or most 

pleasing one is discovered. They are also known as optimization techniques. 

Optimization has been an integral aspect for computer-aided system design since the 

invention of computers. There are two sorts of algorithms: Optimal and Sub Optimal. 

Sub Optimal Algorithms are divided into four categories: Heuristic Algorithms, Meta-

Heuristic Algorithms, Hybrid Heuristic Algorithms, and Hyper Heuristic Algorithms. 

 

Fig 2.9: Classification of Optimization Algorithms 

In this paper, we look at how to optimize QoS and save energy across cloud node, 

edge node, fog, and IoT models. (Qu et al., 2020). The authors assist instructors in 

better comprehending the principles and methods used in these models to increase 

QoS while conserving energy. Quality assurance, SLA violations, and resource 

management are all issues that the writers have discussed. When it comes to ensuring 

QoS and reducing SLA infringements, effective VM management is the most 

important factor to consider. The solution's suitable scheduling and VM integration 

can meet the needs of customers. 

2.8.1 Optimal Algorithms 

Fog Computation strategy extends the cloud services to offering extensive IoT-based 

application services. The Service Placement Problem concerns the placement of 

services and applications across the lower computational fog nodes and cloud 

node resources (SPP). In this fog environment, it is critical for response time and 
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energy consumption. However, problems such as changing service requirements, 

limited processing resources, and different latency and power consumption 

characteristics of fog domain devices make providing an efficient solution 

challenging. As a result, in this study, they suggest MinRE, an efficient SPP technique 

for fog-cloud systems. They recommend MinRes for important services to reduce 

reaction time and mining for ordinary services to save energy in the fog environment 

(Hassan, H. O., Azizi et al., 2020). 

     When used in conjunction with IoT devices and cloud computing, the fog 

computing paradigm can help to minimize job scheduling and load balancing. To deal 

with the huge volume of data received by various IoT devices, current research 

provides a multiple tier architecture with latency aware scheduling and load balancing 

with in fog computing environment. Tier-1 consists the IoT devices which is the 

lowest tier. The gateway routers divide the applications in the second tier into two 

classes using the Fuzzy Algorithm: Higher Priority and Lower Priority. 

     Fuzzifier takes into account a variety of criteria, including the task's length, time of 

arrival, minimum computational time, as well as completion time. The third 

tier receives a high-priority task. In the third level, Synthetic Patterns, a novel fog 

structure made up of nodes, were implemented. The fog nodes are grouped using the 

K-means++ clustering algorithm. Each fog node is responsible for a number of 

functions, such as monitoring, management, and communications.  

     The EDF task scheduling method has been suggested to schedule work anywhere 

in the fog nodes. The current fog node usage is estimated using Artificial Neural 

Networks. Whenever the IoT device does not find the required resources, the request 

is forwarded towards the cloud. Using iFogSim in a real-time Video Surveillance and 

Object Tracking application, then performance of the proposed scheme was evaluated 

on the basis of energy usage, response time, task scheduling frequency, and delay 

(A.A.Alsaffar, H.P.Pham et al., 2016). 
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The authors created a policy on improved learning with genetic algorithm which use a 

dynamic resource allocation technique (Talaat et al., 2020). LBOS continuously 

monitors network traffic, collects and distributes data for each server load to available 

servers via a dynamic resource allocation procedure. Because of this, it increases 

efficiency even during peak hours. As a result, LBOS provides easy and effective 

within fog environment for complex applications such as healthcare. The proposed 

fog framework is composed of multiple layers: First layer consists of the IoT devices, 

the second and the third layer maintains the fog, cloud node. The IoT layer monitors 

the patient symptoms.  

     The fog layer is taken into account while handling incoming requests, and the 

demand is sent to the appropriate server. The cloud layer is used to send and receive 

data to and from the fog layer. The patient information is supplied to the most 

appropriate server for management. This proposal's principal goal is to achieve a low 

latency. There are two key elements in the fog layer: one is Load Balancer Agent and 

the other is Resource Allocator.   

     The Load Balancer is a software that determines which Fog Server is capable of 

handling a given request. In the fog environment, the Resource Allocator algorithm is 

employed to attain a high Load balance. According to experimental data, the proposed 

approach improves cloud/fog device quality of service in terms of allocation costs and 

time reduction. 

2.8.2.   Sub Optimal Algorithms 

This section will discuss the 4 categories of sub-optimal algorithms: Heuristic, Meta-

Heuristic, Hybrid Heuristic & Hyper Heuristic algorithms. 

2.8.2.1.  Heuristic 

The Min-conflict scheduling algorithm is provided as a load balancing scheduling 

algorithm (Kamal et al., 2018). To resolve a CSP, the algorithm uses a heuristic 

technique. The suggested Min-Conflict heuristic approach solves the limitation 

problem by assigning VMs to processing requests with the fewest possible conflicts. 

Optimal resources are offered for applications where modest tasks are required, and 
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machine resources are raised. This work yields three separate performance matrices: 

cost, RT, and processing time. 

      In the subject of fog computing, the WOA algorithm is presented to handle the 

problem of job scheduling (Jayasena et al., 2019). Energy usage and execution costs 

are factored into the fog computation paradigm. The augmented wave method is then 

suggested as a solution to this scheduling issue. Experimental studies are being 

undertaken to compare the proposed model to the PSO, RR, SJF, and RR in terms of 

effectiveness. In addition to these applications, iFogSim has been used to create and 

simulate a smart health framework. 

     Fog computing, which brings data storage to the network's edge, makes automated 

placement even more crucial for deploying distributed applications. An application's 

resources criteria must be met when a deployment is made in a heterogeneous fog 

infrastructure. The Internet of Things to the geographical locations of actual 

objects/things further complicates placement selections. Framework, objective 

function, and procedure are shown in this research to deal with the issue of deploying 

IoT applications that are spread out in the fog, as well as how to do it.  

     Through the use of a backtrack search method with supporting heuristics, the 

proposed mechanism is capable of dealing with large-scale challenges and making 

efficient placement decisions that meet the goal of reducing the reaction time of 

deployed apps. The proposed technique is tested using simulations of various 

configurations of algorithms and heuristics on various infrastructures as well as 

workloads (Xia, Y., Etchevers et al., 2018). 

2.8.2.2.   Meta-Heuristic 

Data volumes have increased dramatically as a result of the rapid rise of 

IoT applications. IoT nodes' resources are insufficient to manage such massive 

workloads. They could move some of the burden to the cloud to address this issue, but 

this would reduce the quality of services provided to end consumers. Latency for end-

users can be reduced by putting computation in fog devices that are strategically 

placed at the network's edge.  
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The difficulty of optimizing fog device energy consumption to cloud device energy 

consumption is critical. However, the propagation latency between fog and cloud 

nodes, which is highly variable owing to cloud dispersion with a wide variety of 

workloads, is largely responsible for delivering the appropriate quality of the services 

for processing the required workloads. No strategy has yet been successful in 

handling the problem of job distribution while also limiting the energy consumption 

and delay caused by fog devices or clouds. This study proposes a processing model 

for the fog processing problem, defining a trade-off between energy use and latency. 

A method known as NSGAII is used to solve this multi-objective problem. In a fog-

cloud scenario, the numerical results demonstrate that applying the suggested 

technique for job allocation can reduce both energy usage and latency (M.Abbasi et 

al., 2020). 

     A great deal of attention has been given to the use of meta-heuristics in cloud and 

grid systems recently (Kalra, M., & Singh, 2015). Based on these three prominent 

meta-heuristic approaches: Ant Colony Optimization, Genetic Algorithm, and Particle 

Swarm Optimization, as well as two classical strategies: League Championship 

Algorithm (LCA) and BAT algorithm, a comprehensive study and analysis of various 

Cloud and grid optimization algorithms is provided. In order to improve the speed and 

quality of convergence of meta-heuristic algorithms, the majority of research is 

focused on increasing the speed and quality of meta-heuristic algorithms. They 

addressed these concerns by adjusting the transformation operator, prepping the input 

population, or using hybridizing methods. 

    The use of meta-heuristic approaches in cloud and grid environment planning is 

examined (Shishira et al., 2016). The majority of research is devoted to increasing the 

speed and quality of solution convergence for meta-heuristic approaches, that are 

really slow than deterministic algorithms and give less optimal answers. Adjusting the 

transformation operator, preparing the input population, and hybridizing methods 

addressed these issues. Furthermore, different programming algorithms focused on 

diverse optimization criteria. The approach utilized for meta-heuristic improvement, 

optimization criteria, task nature, and the context in which the algorithm is 

implemented are all compared in comparative algorithm analysis based on each meta-
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heuristic technique. Today's data centers are huge consumers of electricity and a 

substantial contributor to global warming pollution. Hence new investigative work 

has been performed to plan the usage of energy. The major goal is to reduce data 

center energy usage without sacrificing performance or violating SLA requirements. 

     Butt et al. (2019) proposed three layers of cloud infrastructure: Fog, consumers, 

and cloud infrastructure itself. The Cloud and Fog both provide virtual machines 

(VMs) that can easily operate the user device. The following is the proposed meta-

heuristic algorithm: The fog and cloud VM applications set are balanced using a 

genetic algorithm and Particle Swarm Optimization. The proposed approach is 

compared with the current Particle swarm optimization to assess efficiency. Nearest 

Data Center, Reaction Time, as well as Reconfigure Load is used to optimizing 

Response and Processing Time.  These regulations also dictate which data centers are 

used to process requests. 

2.8.2.3.   Hybrid 

Edge computing can improve Internet of Things and Cyber-Physical 

System applications through providing computation resources closer to the user. 

Computationally heavy modules of applications, including a thread, and a task, can be 

offloaded towards edge nodes because these edge devices have underused processing 

capabilities. The near-optimal approach of scheduling off loadable modules in an 

application is established using a Particle Swarm optimization and Genetic 

Algorithm strategy in this work to substantially improve the application completion 

time and device energy consumption. Particle swarm optimization is used to optimize 

offloading without breaching the deadline constraint of an application using an 

Adaptive Genetic Approach technique based on a novel inertial weight equation 

(Ezhilarasie, R., Reddy et al., 2019). 

     A multi-objective hybrid fruitfully optimization technique (Lawanyashri et al., 

2017) is suggested to improve convergence rates and optimization precision based on 

simulated ringing. It is hoped that the suggested technique would help cloud 

computing users make better use of resources while consuming less power and 

money. 
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Use of WorkflowSim allowed the development and implementation of an algorithm 

for scheduling workflow tasks in cloud settings using the GA-PSO algorithm 

(Manasrah and Ali, 2018). PSO, GA, and MTCT were among the algorithms that 

performed comparably to the recommended strategy. With the suggested technique, it 

is hoped to ensure that the available virtual machines (VMs) are distributed equitably 

in cloud computing environments, while also taking into consideration the order that 

workflow activities are completed in order to save processing time and costs. 

(Rafique et al., 2019) suggested the NBIHA, a modified particle swarm optimization 

method, as a novel biologically inspired hybrid algorithm (MPSO). To Program tasks 

across fog devices, the proposed approach uses MPSO. To control fog device resource 

levels, it employs a mix of MPSO and MCSO. In the suggested system, resources are 

divided and regulated based on the requests received. The primary objective is to 

minimize average reaction time and maximize resource usage by appropriately 

coordinating operations and regulating available fog resources. iFogSim is used to 

mimic the performance. The proposed technique (NBIHA) shows promising 

outcomes of energy use, completion time, and average reaction time when compared 

to state-of-the-art scheduling algorithms. 

2.8.2.4.    Hyper-Heuristic 

Putting the evolutionary algorithm into practice, Hyper-heuristics is a time-consuming 

operation that initially intimidates researchers and practitioners who would rather 

concentrate on the challenging application area. Hyper-Heuristics, in most 

circumstances, intelligently find the best heuristic or algorithm for a given situation. A 

hyper-heuristic can, of course, be (often) meta-heuristic and act on meta-heuristic. A 

meta-heuristic that works at a lower level (Meta-heuristic) operates at a somewhat 

greater hyper-heuristic activity than the traditional use of meta-heuristics to 

optimization problems. EvoHyp, a Java toolbox for constructing hyper-heuristics 

evolutionary algorithms, was introduced by (N. Pillay et al., 2017). EvoHyp includes 

libraries for hyper heuristic genetic algorithms (GenAlg), hyper heuristic genetic 

programming (GenProg), a Genalg distributed version (DistrGenAlg), and a 

GeneProg distributed version (DistrGenProg) as well as a Genalg distributed version 
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(DistrGenAlg) (DistrGenProg). They demonstrate and explain how to use libraries. 

The ultimate goal is to provide an instrument set that a non-expert can execute a 

hyper-heuristic evolutionary algorithm. 

     A data mining rule is used to introduce an HH-based security-aware technique 

(Rahbari et al., 2017). The proposed algorithm is 61.72 percent SA, 70.28 percent 

ACO, and 62.81 percent PSO in terms of average power usage. The proposed 

algorithm Furthermore, the SA algorithm costs 53.92 percent compared to 54.28 

percent for the PSO method, resulting in a 53.84 percent raise for the ACO algorithm. 

It shrinks simulation time and energy consumption to the size of a heuristic method 

while increasing decision-making authority for allocating resources based on 

workflow type and user limitations. 

     To reduce a well-known series of tests, a hyper-heuristic detection method is 

applied (Yates et al., 2019). A database of heuristic selections is created using the 

series of low-level heuristic selections and objective function values that arise. The 

sequences in the database are separated into subsequences. The logarithmic return 

mathematical principle is used to distinguish between "efficient" subsequences that 

tend to lower the goal value and "disruptive" subsequences that tend to raise it. 

     A multi-objective evolutionary paradigm is proposed to create a selection Hyper-

heuristic for the 2D bin packing problem (J. C. Gomez et al., 2017). A multi-target 

developmental learning procedure with specialized genetic operators is used to 

construct a collection of hyper-heuristic variable-length laws. Hyper-heuristics 

provide a solution to a single problem instance by detecting the situation and deciding 

which heuristic individual to employ at the decisive moment.  

     To construct Pareto approx. Hyper-heuristics, the proposed system integrates three 

well-studied multi-objective evolution algorithms: the non-dominated genetic sorting 

algorithm 1, the heavy evolutionary algorithm 2 of Pareto, and the generalized 

differential evolution algorithm 3. 
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Table 2.1: Optimization Algorithms 

S.No References 
Optimization 

Algorithm 
Control Parameters Contribution 

1 

(Taneja M., 

Davy et al., 

2017) 

ModuleMappin

g Algorithm -  

Fog-Cloud 

Placement,   

 

lower bound 

Algorithm -  

Algorithm used 

for Search. 

 

Comparing the 

Network Node 

and the 

Application 

service 

Resource Utilization. 

Latency, Network 

usage, Energy 

consumption 

For Internet of Things based 

applications, a Module Mapping 

Algorithm is used to optimally use 

resources in its network architecture by 

efficiently distributing Applications in 

Fog infrastructure. 

2 

(Minh, Q. 

T., Nguyen 

et al., 2017) 

Application 

module 

Placement 

Latency, energy 

usage, and network 

burden are all being 

reduced in this 

effort. 

To enable IoT service offerings, a multi 

layer fog architecture is being 

created.Based on this architecture, a 

novel service placement approach has 

been given that maximises service 

decentralisation on the Fog environment 

by using context-aware information 

about the location, duration, and service 

quality. 

3 

(Wang, D., 

Liu et al., 

2019) 

fog controller 

node selection 

procedure based 

on the Gini 

coefficient.  

Computation 

resource allocation, 

Latency, Quality 

Loss 

A Gini coefficient-based approach is 

suggested to get a sub-optimal strategy. 

The computing resource allocation 

problem is addressed using an improved 

resource optimization technique focused 

on a genetic algorithm. 

4 
(Attiya et 

al., 2020) 

Using the 

Simulated 

Annealing 

Technique with 

Improved Harris 

Hawks 

Optimization.  

Data Center, Host, 

Virtual Machines, 

Performance 

Improvement Rate 

It offers a cloud-based version of the 

Harris hawks optimization method 

based on simulated annealing. In the 

proposed approach, simulated 

annealing is employed here as local 

search algorithm to improve the 

stabilisation rate and quality of the 

results produced by the regular HHO 

algorithm. 

5 

Qu, Z., 

Wang et al., 

2020 

QoS 

optimization 

Ensuring QoS, 

Reducing SLA 

Violations 

Researchers examined QoS 

improvement and energy efficiency in 

the settings of cloud, fog and IoT 

computing, as well as edge computing 

and IoT devices. They gave a 

description of the major difficulties and 

looked at the solutions suggested by 

past research. 

6 
Talaat et al., 

2020 

Solution with 

LB 

enhancement 

(LBOS) 

Network Traffic 

monitoring,  time, 

the privacy of data, 

and accuracy 

An LB enhancement technique in 

Machine Learning as well as a genetic 

algorithm is suggested in this paper. 
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7 
(Kamal et 

al., 2018) 

Load balancing 

scheduling 

algorithm 

low latency, high-

security 

The Min-conflicts scheduling technique 

is provided in this study as a load 

balancing scheduling algorithm. To 

solve a Constraint Satisfaction Problem, 

the method uses a heuristic technique 

(CSP). 

8 

(Jayasena 

and 

Thisarasing

he, 2019) 

Whale 

Optimization 

Algorithm 

energy consumption 

and execution cost 

Compared to the RR, SJF, and PSO 

algorithms, the proposed algorithm 

reduced average energy usage by 4.47 

percent and cost by 62.07 percent on 

average. 

9 
Kalra and 

Singh, 2015 

Metaheuristic 

based 

techniques 

Priority constraints, 

dependencies 

constraints, deadline 

constraints, and 

budget constraints 

are all types of 

constraints. 

The authors have provided a full review 

and comparative analysis of different 

scheduling methods for cloud and grid 

settings in this paper, based on 

the standard metaheuristic approaches. 

10 
(Shishira et 

al., 2016) 

League 

Championship 

Algorithm 

(LCA) 

 

The authors offer a detailed review of 

cloud optimization algorithms based on 

three common metaheuristic techniques: 

ACO, PSO, and an unique technique: 

Algorithm for League Championships 

(LCA). 

11 
Butt et al. 

(2019) 

This paper 

proposes the 

Genetic 

Algorithm with 

Binary Particle 

Swarm 

Optimization. 

Both the response 

time and the 

processing time are 

important 

considerations.  

Authors suggest a three-tiered 

architecture with cloud, and fog 

12 

Hassan, H. 

O., Azizi et 

al., 2020 

MinRes for 

critical services 

Latency, Power 

Consumption 

For SPP in fog-cloud systems, they 

recommend MinRE, an efficient 

technique termed SPP-MinRE. 

Affordability for IoT and energy 

efficiency for Fog Service Providers. 

They propose MinRes for critical 

services, which tries to reduce reaction 

time, and mining for regular services, 

which reduces fog environment energy 

usage 

13 

A.A. 

Alsaffar, 

H.P.Pham et 

al., 2016 

K Means ++ 

Clustering 

reaction time, 

scheduling time, rate 

of load balancing, 

delay, and energy 

usage are all factors 

to consider. 

An innovative multiple 

layer architecture with delay-aware 

schedule and load balancing towards the 

fog environment is presented. 

14 

Jayasena 

and 

Thisarasing

he, 2019 

Wave 

Algorithm 

Energy usage and 

execution costs 

For this problem, the improved wave 

algorithm is suggested. Experiments are 

being undertaken to compare the WOA 

to the PSO, RR, SJF, and RR in terms 

of effectiveness. iFogSim has also been 

used to design and simulate a smart 

health framework, in addition to these 

applications. 
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2.9.  Optimization Metrics 

2.9.1.   Deadline aware 

This placement parameter is intended to shorten the amount of time it takes to provide 

application services while still satisfying the deadline requirements. The computation, 

propagation, and deploying times are all taken into account while computing this 

statistic. 

     IoT applications, which operate in a dispersed heterogeneous environment, can 

provide a variety of services to their users. Quality of service standards are breached 

in such applications when computer tasks are outsourced to the public Cloud.It is 

essential for IoT applications to have a full framework that allows for service 

placement for the fog computing environment. It's challenging to orchestrate time-

critical IoT applications in a fog environment.  

     The authors propose a DoSP algorithm, a unique four - layered fog computing 

architecture that distributes application modules in both cloud and fog nodes, as a 

solution to this challenge. This research demonstrated how to take use of fog 

resources when keeping a set response time. It uses the Genetic Algorithm to 

determine where services should be placed in a fog environment. It was necessary to 
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The suggested technique uses a 

backtrack search algorithm and 

associated heuristics to efficiently 

determine placement selections that 

reduce deployed app reaction time. 
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delay 

The NSGAII algorithm is used to solve 

this multi-objective model of the issue. 

This strategy can minimise energy use 

and delay in a fog-cloud setting. 

Furthermore, by assigning 25% of IoT 

tasks to fog devices, energy 

consumption and latency are decreased. 
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Annealing 

Approach 

Maximizes resource 

efficiency by 

lowering energy 

usage and costs 

A multi-objective fruitfly optimization 

technique is suggested to improve 

convergence rates and optimization 

precision based on simulated ringing. 

The suggested technique optimises 

resource usage while lowering energy 

consumption and expenditures. 
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use the iFogSim simulator in order to simulate DoSP and evaluate the impact of 

service placement strategy on services deadlines. According to research, the proposed 

method reduces service execution delay by 10.19% for EdgeWard and 2.58% for 

Cloud Only (Meeniga Sriraghavendra et al., 2021). 

     Offloading a job to a fog node or a cloud server can be done in a timely manner, 

depending on the work's resource requirements. The goal of this study is to develop a 

DPTO approach enabling scheduling as well as executing Edge device tasks on 

suitable computing units. Each task is allocated to the proper multilayer feedback 

queue and prioritised according to its deadline.  

     This technique eliminates the problem with low priority jobs starvation by 

minimising the waiting period for delay-sensitive tasks in the queue. In addition, the 

DPTO technique chooses the optimum processing node for each job depending upon 

available resources and Connected devices transmission time. While fulfilling 

deadlines, this method reduces job offloading time by half. Finally, thorough 

simulation findings based on a variety of performance characteristics indicate that the 

proposed approach surpasses current baseline techniques (Adhikari, M., Mukherjee et 

al., 2019). 

     The IoT era's many connected gadgets provide a substantial communication and 

computational resource management challenge. Furthermore, the rivalry for limited 

resources among such devices will inevitably increase the delay experienced by users. 

The authors propose a priority service-providing approach to decrease the latency 

faced by delay-sensitive services. Priority groups are created to use a matching 

theoretical approach, which divides incoming work into time limit and delay-

insensitive groupings.  

     The computing and communication node utilised to assess the queue delays 

experienced from each class. To deliver a good quality of experience concerning 

overall delay time for all jobs, a priority - based system is designed and managed 

using a heuristic algorithm. The dynamic priority system, which enhances their own 

category when the delay exceeds a certain threshold, is beneficial to users seeking 
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non-computing jobs at the communication node. The total delay encountered at both 

computing and communication nodes is compared using high priority, non-prioritized, 

as well as dynamic scheduling systems. The data show that having effective priority 

service could significantly minimise the amount of time consumers are delayed (A. 

Alnoman et al., 2018). 

     The matching game is also used to explain the challenge of distributing client tasks 

to cloudlets. During this game, client who surpass a latency threshold employ the idea 

of demands can enqueue the demand in some other cloudlet and put the task data 

towards the first cloudlet available. A matching approach that is based on delayed 

matching is used to solve this game. Simulation findings demonstrate that the 

proposed technique offers consistent service and minimum latencies, when compared 

to reactive baseline systems (Mohammed S et al., 2018). 

     A whole new computer paradigm has arisen in response to the rising popularity of 

IoT applications, known as fog computing. To make fog node deployment easier, IoT 

applications are separated down into modules. To achieve a common goal, these 

modules communicate with one another. The application's overall performance may 

be harmed if these modules are added without a plan in place. Furthermore, the fog 

nodes' capacity is insufficient in relation to the module requirements, causing a 

placement problem. The author’s aim is to lower the total latency of the application 

by deploying modules on fog nodes (Amira Rayane Beamer et al., 2018). 

     Fog computing, in order to support the Internet of Things, aims to expand the 

Cloud's services by providing processing, storing, and network connectivity to the 

edge nodes. Clustering, dispersion, and dynamic deployment capabilities from IoT 

devices to Cloud are complex tasks due to the aforementioned diversity, tree structure, 

and exceptionally large scaled architecture. Multi-task IoT applications could be 

deployed on Fog infrastructure, according with QoS. The operational characteristics 

such as latency, bandwidth of infrastructure, application module interactions, and 

organizational policies are addressed in its model. Algorithms that detecting 

configurations with Fog infrastructure were discussed. The proposed work is analysed 

with FogTorch (Brogi A et al., 2017). 
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Regional fog layers' dynamic and distributed development is particularly challenging 

to achieve due to unpredictable arriving and departing of adjacent fog nodes. To 

maintain low communication and processing, a fog node must be able to dependably 

detect a group of neighbouring nodes and effectively offload computing chores to all 

of these fog nodes and the Cloud. A combined fog-cloud infrastructure is used to 

examine the topic of fog network creation and task allocation.  

     Their goal is to decrease computation and communication time and ensures the fog 

nodes to create the effective fog connectivity and optimise job allocation when the 

arrival processes of neighbouring fog nodes are uncertain. The findings also show 

how the proposed architecture can appropriately transmit computing jobs between 

both the network environment and a faraway cloud server in a variety of network 

topologies (G. Lee, W. Saad et al., 2019). 

2.9.2   Cost 

There are a variety of financial expenses involved using fog computing, including 

infrastructure setup, operating costs, and instance leasing charges, among others. The 

use of cost as a placement metric relates to the reduction of costs during an 

application placement process in Fog. This statistic is taken into account in the 

following research papers. 

     Thanks to the Internet of Things, wearables and smart home/city applications have 

gotten a fresh lease on life. Instead of depending exclusively on the limited storage 

and computational capacity of small devices, they must remap the landscape of these 

applications that deal with vast volumes of data stored in the Cloud to accommodate 

their needs. It's becoming increasingly difficult for traditional cloud computing 

infrastructure to keep up with the growing number of IoT devices and their need for 

real - time data, latency sensitive applications.  

     Although fog computing appears to be a promising solution because it provides 

end-users at the network's edge with elastic resources and services. The emergence of 

innovative social software like crowd sensing has heightened the demand of 

scalability, budget effective infrastructure which can support distributed analytic with 
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optimize resource allocation and decreasing reaction time, among other functions. 

Based on recent breakthroughs, we are encouraged to propose MIST as a fog 

computing-based approach to assist crowd sensing activities within scope of IoT.  

     For cost-effective constrained resource provision, we further concentrate on 

database industry associations, job scheduling, as well as virtual machine deployment 

to MIST. Written as a mixed-integer nonlinear programme (MINLP), the problem is 

linearized to become a mixed-integer linear programme (MINLP) and then solved 

(MILP). Real-world aspects like Tehran region, Iran's headquarters, are used to 

perform a complete evaluation of MIST. According to the findings, the MIST fog-

based technique outperforms traditional cloud computing as that of the numerous 

applications demanding real-time service rises. (H. R. Arkian et al., 2017). 

     In response to the fast growth of the IoT and smart manufacturing, enormous 

numbers of intelligent devices are connecting to cloud servers, producing tremendous 

congestion in the network and network latency concerns. Fog computing is a new 

computing paradigm that can bring computer resources available to end users and 

tackle problems that standard cloud-only solutions can't. Work scheduling in fog 

computing is still in development owing to Quality-of-Service restrictions such as 

costs and time, as well as the complexity of many provided facilities including edge 

devices, cloud, and fog nodes.  

     This paper provides the cost-effective scheduler of multiple workflows under time 

limitations to address this issue. We'll establish the execution time and cost models for 

fog computing workflows. After that, a novel multi-workflow scheduling approach is 

constructed utilising Particle Swarm Optimization. Workflow execution costs may be 

estimated by using a fitness function. As an example, the heart monitoring app is 

offered. Extensive testing has proven that, when compared to alternative options, our 

suggested methodology may greatly lower the cost of completing many procedures 

within given timelines (Ruimiao Ding, Xuejun Li et al., 2019). 
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2.9.3.   Energy 

At some point, offloading all of your work to a data centre in another country gets 

very pricey and inefficient because there are a lot of Internet of things devices and a 

lot of data sent from them. It's also challenging to strike a balance in between energy 

usage for application requests by IoT devices and the deadline constraints. Near-user 

fog computing provides speedier service while using fewer resources than cloud 

computing from afar. Fog does not appear to be a replacement for Cloud; rather, they 

seem to be complementing, and their partnership is worth investigating.  

     Using a basic fog architecture, the authors demonstrate how to fully harness the 

benefits of both fog and cloud computing. Assigning the resources in such an energy 

and time-efficient manner is then the first step in lowering energy and time costs. The 

problem is then solved with ETCORA, which minimizes application request energy 

usage and completion time. Before concluding, extensive simulations are performed 

to ensure that the proposed technique significantly outperformed the next two 

methods in terms of energy use and time required to fulfil requests (Sun, H., Yu et al., 

2019). 

     The Internet of Things is really a network that links a variety of devices, including 

sensors and computers. Sensor data is transferred to network servers and analysed on 

cloud servers, according to the cloud computing concept. As a result of the high 

volume of sensor traffic, networks are congested and servers are overburdened. To 

decrease time delay as well as network activity while improving performance of the 

system, fog computing models distribute data and processes among cloud servers and 

fog nodes. While we can reduce cloud server traffic, the total amount of power used 

by fog nodes to analyse sensor data grows.  

     To minimise node total electric energy consumption, the authors develop the tree-

based fog computing (TBFC) infrastructure for distributing activities and data across 

cloud and fog servers in the IoT. The amount of electricity consumption of devices 

with in the TBFC concept seems to be relatively low than the cloud environment, 

according to the evaluation (Oma, R., Nakamura et al., 2018). 



 
70 

Cloud, on the other hand, has substantial challenges in meeting the computational and 

sophisticated network needs of the inevitable 5G communication network, which 

include low delay, high flexibility, and scalability.  

     Smart phones are currently the primary method by which many customers connect 

to high-speed Internet. The most efficient method to accomplish this is to move 

computation, storage towards the Cloud. On the other side, a new paradigm defined as 

Fog Computing or simply Fog, has emerged to overcome these restrictions. Inside a 

5G network, fog can help boost spectrum and energy efficiency while also allowing 

direct wireless communication between devices. It can also help with the emerging 

concept towards network function virtualization. They investigate on energy 

consumption of cloud and fog computing, and also the enhanced communication 

within 5G mobile wireless networks. (Kitanov, S. Janevski et al, 2017). 

      Researchers in this study examine a method for offloading computation inside a 

fog computing system in order to save energy. We think that users must choose 

whether or not to shift work toward a local fog device based on energy use and delay 

restrictions. The energy consumption and execution delay of the offloading process 

are investigated in depth using queuing theory. Two queuing models reflect both 

processing only at mobile device and fog node. The energy-efficient optimization 

issue is based on a theoretical study and is meant to decrease energy usage while 

taking execution delay limitations into account. An alternative multiplier-based 

distributed solution is provided to tackle the described problem. Extensive simulation 

tests are carried out to demonstrate the efficacy and improved performance of the 

proposed plan over other existing proposals (Chang, Z., Zhou et al., 2017). 

     An effective task offloading approach was proposed by the authors for the purpose 

of constructing effective framework inside a Fog computing environment for the 

processing of time - intensive and resource-consuming applications. The Firefly 

algorithm is used in the proposed offloading approach to choose the best computing 

node based on two Performance constraints: energy usage and process time. The 

major aims of this method are to reduce both computational time and overall energy 

consumption of IoT applications with the shortest feasible delay. The Firefly 
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approach's control parameters are carefully studied. Through comparisons, we show 

that the suggested technique outperforms existing methods on a variety of 

performance parameters, such as computation time, energy efficiency, Emissions of 

carbon dioxide, and heat emissions (Mainak Adhikari, Hemant Gianey, 2019). 

     In the IoT environment, computational offloading is a challenging task. This 

offloading improves processing of data produced by various Devices, enhances 

the task processing, and extends battery life.  In this research, authors describe a safe 

compute offloading approach for the Fog-Cloud-IoT environment. Machine learning 

techniques are used in a fog-IoT scenario to ensure efficient and safe offloading. At 

the smart gateway, we encrypt data using a Neuro-Fuzzy Model. The IoT device then 

selects a suitable Fog node where it may deploy its task via Particle Swarm 

Optimization via the smart gateway. If a fog node is unable to manage the load, after 

classification, the data is transmitted to the Cloud.  

     The historical data is stored in a cloud permanently. On the other side, the data 

which should be analysed if offloaded using a dynamic offloading technique. The 

availability of the fog node is determined by two parameters in PSO: which 

are Available Processing Capacity and Remaining Node Energy. The Cloud node is 

chosen by Reinforcement Learning. The suggested solution for smart city applications 

is evaluated by using the NS-3 simulator. The proposed framework is compared with 

the previous solutions.   The proposed strategy appears to minimise latency, according 

on simulation data (Adam A. Alli and Muhammad Mahbub Alam. 2019). 

     In this highly distributed, energy-hungry environment, the quality of deployed 

services must be ensured, taking into account the heterogeneity of capabilities and 

protocols and the mobility of users and objects. SDNs and fog computing have been 

introduced to the deployment infrastructure, tweaked to give the required 

functionality. The authors want to see how IoT services work in a Fog architecture. 

They present an infrastructure and IoT applications model and a placement strategy 

that includes system energy consumption and application latency violations mitigation 

using a Discrete Particles Swarm Optimization method (DPSO). For the simulations, 

they employed the iFogSim simulator (T. Djemai, P. Stolfe et al., 2019). 
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Fog computing has gotten much interest to address the location awareness and real-

time reaction needs of many applications. On the other hand, fog devices have 

restricted power supply, processing resources, and communication resources 

compared to cloud computing, posing design issues in meeting real-time reaction 

requirements. Energy-efficient offloading decision mechanisms and also an 

offloading scheduler are shown in this paper.  

     They show how to balance the response time and energy consumption of several 

fog devices that run multiple applications by effectively managing their 

communication and computation resources. Unloading responsibilities are divided 

into various subtasks, each with its own timeframe from start to end. A run-time 

dispatcher with the use of an end-to-end delay-based scheduling aspect is also 

provided to fulfil the response time needs of such applications. This framework saves 

a lot of energy, according to the assessment findings, and real-world platform research 

backs it up (Y. Jiang, Y. Chen et al., 2019). 

2.9.4 Deadline and Energy 

A cloud-fog computing system's power consumption and latency are examined to find 

a solution to this problem. They begin by quantifying the problem of employment 

allocation. The primary issue is then categorized into three problem instances with 

equivalent components in the system, each of which may be solved using an 

approximate solution strategy independently. Finally, we show that fog computing 

may considerably increase overall system performance by sacrificing minimum 

processing resources of the cloud, to retain bandwidth of the network and minimize 

transmission latency, based on comprehensive simulations and numerical data (M. 

Huang, W. Liu et al., 2018). 

     The most pressing challenge confronting the modern ICT business is energy 

efficiency. The ever-increasing ICT technologies and services have dramatically 

increased energy needs, emphasizing the importance of raising awareness to 

encourage the development of energy-saving techniques. However, the support of the 

underlying ICT platform is critical for the successful and effective implementation of 

such systems. reducing the energy consumption in Cloud environment. It introduces 
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the Green Cloud Scheduling Model (GCSM), where it uses a scheduler unit to assign 

and organize deadline-constrained activities confined to just energy-aware nodes, 

taking use of task and resource heterogeneity.  

     To avoid performance degradation and achieve specified QoS, GCSM 

algorithmically determines energy-aware job assignment decisions. Setting up a 

Cloud environment allows for evaluating and comparing the suggested model with 

two additional methodologies. According to the findings, GCSM saves 71% on 

energy and has an excellent performance in meeting deadlines (Kaur, T., & Chana et 

al., 2016). 

2.10.  Simulation Tools 

2.10.1.   iFogSim 

Fog bed, an integration platform and toolkit for rapid prototyping of fog components 

in virtualized environments, was introduced by (Coutinho et al., 2018). With a 

desktop approach, Fogbed uses fog nodes as a software container in various network 

setups. The concept satisfies the requirements for low-cost deployment, versatility, 

and real-world technological compatibility. Unlike current approaches, the proposed 

framework allows testing of fog component standard interfaces with third-party 

systems. 

     FogNetSim++ (Qayyum et al., 2018), a novel simulator that allows users to 

simulate an extensive fog network with many configurable possibilities, has been 

proposed in this paper. It enables researchers to integrate custom mobility models and 

algorithms into fog node planning and management. They have used a traffic 

management system to test the simulator's scalability and efficacy concerning CPU 

and memory usage. 

     (Gupta et al., 2016) presented the IoT-Fog Simulator, iFogSim, to model and 

assess the influence of resource management approaches on latency, grid congestion, 

energy use, and cost. In two case studies, we show how to model the IoT environment 

and compare resource management strategy. In addition, the simulation toolkit's 
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scalability is measured on the basis of Memory usage and computation time in a range 

of scenarios. 

     (Lopes et al., 2017) addressed how fog-building resources are allocated based on 

user mobility and developed MyiFogSim. This iFogSim module allows virtual 

computers to migrate between clouds. In addition, a migration strategy will be 

presented and tested using MyiFogSim to see how it affects the quality of the service 

framework. The results show that the policy will support lower latency without a 

migration policy compared to a scenario. 

     To investigate personalized and dynamic techniques for creating and executing 

applications, (Brogi et al., 2019) presented a fog computing simulator. Complex 

network theory influences relationships between applications, network connections, 

and infrastructure characteristics, allowing topological behavior in dynamic and 

flexible strategies, including device module positioning, workload locations, path-

routing, and service schedule. The most commonly reported, iFogSim, is presented 

with a comparative analysis of simulator test efficiency and convergence. To highlight 

the YAFS functionalities, we write three scripts that we know cannot be used with 

current fog simulators: dynamic allocation of new device modules, dynamic network 

node failures, and user mobility alongside topology. 

2.10.2 CloudSim 

In Cloud computing models, application services are very complicated to get, design, 

set up, and install. It's difficult to evaluate cloud approach, application workload 

configurations, as well as resource management modeling techniques in different 

requirements and user configurations with needs. CloudSim (Calheiros et al., 2011) is 

an expanded simulation toolkit that allows for the simulation and modeling of cloud 

computing environment including application - aware scenarios. In order to better 

understand the tactics and behavior of Cloud system components, which including 

physical servers, virtual servers, and allocating resources, CloudSim was developed as 

a set of tools and utilities.  
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It has standardized application supply approaches that may be scaled up rapidly and 

effectively. It now offers cloud computing environment modeling and simulation in a 

single, interconnected cloud environment. In inter-networked cloud computing 

environments, it also exposes customizable APIs for policy implementation and the 

provision of VM allocation strategies. Several academics use CloudSim to study 

efficient resource distribution as well as power aware server and storage management 

systems.  

     CloudSim is used by HP Labs with in United States, as well as other universities, 

in their research. In a study that investigated application-level provision of services in 

this hybrid cloud environment, CloudSim's utility is illustrated. The federated cloud 

computing approach significantly improves QoS application needs under variable 

demand patterns for resources and services, as demonstrated in this case study. 

Simulation is one of the most frequent ways of evaluation in scientific workflow 

studies.  

     (Chen and Deelman, 2012) launched WorkflowSim, which extends the existing 

workflow management layer to incorporate a current CloudSim simulator. According 

to the authors, failures in the simulation of scientific procedures and system overheads 

may result in large inaccuracies during the projected runtime. WorkflowSim has 

chosen two intriguing research topics. It provides a specialized and effective 

assessment tool to demonstrate its continued commitment to increasing research 

activity. 

     (Zhou et al., 2013) present FTCloudSim, which extends CloudSim's core features. 

The FTCloudSim framework has been expanded to help researchers introduce new 

ways for improving cloud service efficiency. FTCloudSim will also examine the 

behavior of the suggested new mechanisms. Four upgraded dependability techniques 

are used to demonstrate the possibilities of FTCloudSim. A tool for simulating and 

modeling containerized cloud computational infrastructures, Container CloudSim 

(Piraghaj et al., 2016), is described in detail below. As a CloudSim expansion, 

containerized cloud simulation architecture is proposed and implemented. In order to 

demonstrate how their container planning and supply rules may be integrated and 
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contrasted in order to reduce energy consumption and SLA satisfaction, a number of 

use scenarios are offered. Because there will be more containers in a data centre 

compared to virtual machines, this developed system is particularly scalable because 

it allows several containers to be simulated. Table 2.2 shows a comparison of 

different simulation tools. 

Table 2.2: Comparison of Different Simulation Tools 

Simulators/ 

Characteristics 
Language 

Community 

Support 

Application-

Level 

Modelling 

Scalability Mobility 
Fault 

Injection 

iFogSim Java,XML Low 
Stream 

Processing 
Yes No No 

CloudSim Java Moderate 
Service 

Chain 
Yes No No 

Fogbed Java Moderate Fog Network No No No 

FogNetSim++ C++ Moderate Fog Network Yes Yes No 

YAFS Python Moderate Modular Yes Yes Yes 

 

The Table 2.3. summarizes various existing frameworks in fog environment with 

respect to their application properties, architectural properties, and placement 

properties. The frameworks listed in the table are as follows: 

1. Application properties 

a. Workload Type 

b. Execution Type 

c. Number of applications and number of modules in each application 

d. Service Modules 

2. Architectural properties and 

a. Number of Fog node layers 

b. Cluster cooperation 

3. Placement properties. 

a. Priority 

b. Strategy 

c. Approach 

d. Optimization Parameters 
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Table 2.3: Summary of Literature 
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Column-wise abbreviations: 

S – Sequential, P- Parallel 

M-Multiple, S- Single 

I-Independent, D-Dependent 

S- Single, M-Multiple 

S-Static, D-Dynamic 

H-Heuristic, FL-Fuzzy Logic, LP-Linear Programming, HH-Hyper heuristics. 
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2.11.  Formulas for Existing Parameters such as Cost and Energy: 

2.11.1 Cost 

There are various cost models that are utilized in fog service placement, and the 

particular formulas employed may differ based on the approach and assumptions 

used. Fog service placement commonly involves several cost models and their 

associated formulas, including: 

     Energy cost: This cost model refers to the energy utilized by fog nodes to execute a 

service or process data. The energy cost can be determined by multiplying the power 

consumption rate, execution time, and the energy price per unit. The energy cost 

formula is given as: 

                   Energy Cost = Power Consumption Rate x Execution Time x Energy 

Price per unit 
 

     Processing cost: This cost model refers to the computational cost of executing a 

service or processing data, which can be estimated in terms of CPU cycles, memory 

usage, or other resources. The processing cost can be estimated by multiplying the 

resource usage and the unit price of the resource. The processing cost formula is: 

                   Processing Cost = Resource Usage x Unit Price of Resource 

     Bandwidth cost: This cost model refers to the cost of transmitting data between fog 

nodes or between fog and cloud nodes. The bandwidth cost can be determined by 

multiplying the data size and the unit price of bandwidth. The formula for bandwidth 

cost is: 

                    Bandwidth Cost = Data Size x Unit Price of Bandwidth 

     Delay cost: This cost model refers to the penalty for not meeting the service 

deadline or response time requirement. The delay cost can be estimated as a function 

of the waiting time or response time and the penalty cost per unit time. The formula 

for delay cost is: 

                      Delay Cost = Waiting Time x Penalty Cost per unit time 
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It should be noted that the above formulas are just examples, and other cost models 

and associated formulas may be used based on the particular fog service placement 

problem and requirements. 

2.11.2 Energy 

There are several formulas available for calculating energy consumption in fog 

service placement, depending on the specific factors considered. Some of the 

commonly used formulas include: 

     Energy Consumption of a Device: This formula estimates the energy consumed by 

a device based on its power consumption and the duration of usage. 

                           Energy Consumption = Power × Time 

     Energy Consumption of a Communication Link: This formula calculates the 

energy consumed by a communication link based on its data rate, distance, and the 

transmission time. 

                        Energy Consumption = Data Rate × Distance^2 × Transmission Time 

     Total Energy Consumption of a Fog Service Placement: This formula calculates 

the total energy consumed in a fog service placement scenario, considering the energy 

consumption of all devices and communication links involved. 

                        Total Energy Consumption = ∑(Energy Consumption of Devices) + 

∑(Energy Consumption of Communication Links) 

     It is important to note that these formulas are just examples and may not be 

applicable to all fog service placement scenarios. Other factors such as data 

compression, data aggregation, and load balancing can also affect energy 

consumption and may require additional formulas or models. 
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2.12.  Research Questions 

The research challenges of the globally dispersed fog environment in terms of energy 

and response time are addressed in this paper. Based on the motivation stated above, 

the following research investigations are proposed: 

❖ How to identify latency-sensitive applications? 

 Determining the applications with the highest priority is essential for the fog 

computing environment. Moreover, identifying the applications and providing the 

response time below the deadline is crucial. 

❖ How to map the application modules?  

Determine which category of application module it is decided according to the 

category of application module that affects the application deadline and energy 

consumption. 

❖ How to choose the appropriate computation node for application 

deployment?  

Finding a suitable node in the hardware heterogeneity of the fog environment is 

very challenging. Different parameters should be considered for the computation 

node selection. 

❖ What are the main parameters for effective service placement in a fog 

environment?  

Determine the parameters which provide effective service placement is important 

for the fog computing environment. Moreover, identify the parameters which 

affect application deployment in a fog environment. 

❖ How to design the application placement algorithm in a Fog environment? 

Considering the parameters for application placement, evaluate the performance, 

and identify the most significant impact on application deadline and energy 

consumption. 

❖ What are the most effective strategies & simulation tools for the service 

placement?  

Finding the effective algorithm for application modules placement, and suitable 

simulator tool for evaluating the proposed work.   

2.13.  Objectives 



 
82 

In order to fulfill the aim of the research, the following are the objectives identified. 

1. To analyze and assess the existing service placement methodologies in a fog 

computing environment. 

2. To design and develop a practical framework for service placement in a fog 

computing environment. 

❖ To design and implement an algorithm for deadline-aware service placement. 

❖ To design and implement algorithm for deadline aware and energy efficiency 

service placement. 

3. To evaluate the proposed architecture. 
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Chapter 3 

Deadline oriented Service Placement (DoSP) 

3.1 Introduction 

Since it provides subscription-based access to remote computing resources, cloud 

computing has helped both individuals and corporations. Cloud computing employs 

servers located in a remote location that gives computer power on demand. Servers 

have high latency, bandwidth, and energy consumption due to their remote position. 

In light of these limitations, cloud computing cannot be suitable for Internet of Things 

(IoT) applications that require low latency, such as smart farming and traffic 

monitoring. Other IoT applications that are not suitable for cloud computing include 

home automation, smart buildings, as well as smart health monitoring units and 

intelligent supermarkets. A common research topic that has gotten a lot of interest is 

offering services together in short length of time. The fog computing technology 

solves the problem of moving computation closer to the data-generating devices. Fog 

computing is a type of cloud computing that relies significantly on bandwidth usage, 

heterogeneous processing, workload distribution, and mobility. 

     Resource provisioning has been found to minimize latency, improve compliance 

with Service Level Agreements (SLAs), and give additional benefits. However, 

simply providing services is insufficient to achieve the intended results; service 

placement strategies are also required. A complete technique that addresses service 

placement while also increasing Quality of Service is therefore required in light of 

both the heterogeneous nodes and dynamic fog-cloud computing environment. 

     This study will make the following major contributions, which are listed in 

alphabetical order: The proposed work provides a comprehensive approach in Quality 

of Service-aware service placement in a fog environment, allowing for optimum 

sequential IoT application service placement. 

• It is presented a Deadline-oriented Service Placement (DoSP) algorithm, that 

evaluates a service placement response time of in different levels and 
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determines where workflow-based Internet of Things applications should be 

located in different layers of the fog framework. 

 

• A fog simulation is carried out using the iFogSim toolbox, and indeed the 

efficiency of the service distribution approach is evaluated. Based on the 

distinct levels, many IoT application modules/services are placed on different 

tiers of the fog architecture. 

 

3.2    System Model 

There are three layers of nodes in the fog computing environment, as indicated in 

Figure 3.1. Sensors and actuators in IoT devices are linked to fog nodes with 

processing, storage, as well as network connectivity at a lower level. The controlling 

role is performed by a fog node in the fog environment. This node is referred to as the 

fog controller node. 

The following are the functions of the fog controller node:  

1. Accepting the user’s incoming request. 

2. fog controller node regulates the availability of resources across cloud and 

fog nodes, including certain processing capacity, storage, and memory size. 

3. It finding out where the ideal place to put an application is. 

     When running the modules for resource utilisation, this however identifies which 

application modules should be installed on which computational node. This fog 

controller node forwards the module placement to the cloud node, fog nodes, and the 

neighbour controller node. 

• The application receiver component is in charge of receiving the user's 

application request. For each application that makes it to the controller node, 

parameters and information such as the number of modules, workloads, and 

data input size were established. In the fog computing architecture, the fog 

controller node (FCN) determines the right placement of modules. 
 

• The resource collector is in charge of gathering and storing information about 

all processing nodes' current system statuses in the resource database. As 

resources are added or removed from the computer system, state information 
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is frequently updated. It assures that the fog controller node's final application 

placement conforms to the most recent updates on computing node resource 

use, improving precision. 

• With information about all computing nodes' processing speed and 

communication delay, the application placer examines the application, 

calculates the needed location, then allocates the tasks of each application to 

the computing node with the most processing power and communication 

delay. The computer nodes examined in the proposed framework include fog, 

fog controller, neighbour controller, and Cloud nodes. The sensors' frequency 

is considered to be the same for convenience, as well as fog nodes at same 

system level are presumed to be the same kind. 

 Figure 3.1: System model 
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3.3    Proposed Methodology 

The suggested approach seeks to establish an effective framework for the installation 

of IoT-based applications in a fog environment that is aware of the quality of service 

(QoS). It is designed to function in a fog computing environment. Mostly in context 

of building Internet of Things applications in an array of sectors, which including 

healthcare and the military, we can see the relevance of this paradigm, as well as the 

need for fog computing, moreover to cloud computing, in order to manage these 

applications. 

3.3.1.   Overview of the proposed work 

Fig. 3.2 shows a system for service placement that is aware of the quality of service 

(QoS), which guarantees the service placement, was effectively optimized in order to 

increase performance. This method can aid service placement in a fog environment 

while also allowing for effective decision-making based on a given IoT application's 

QoS needs. 

 Figure 3.2: Overview of the framework 
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IoT workflow-based application is used as the source of information. The suggested 

system is then in charge of analyzing its needs and running an algorithm for effective 

service placement that considers service deadlines. The service placement meets or 

exceeds timelines. For the sake of simplicity, no service layer agreements are addressed 

in the proposed work. 

3.3.2.   Functional Details of the Proposed Work 

Detailed architectural design of deadline-aware service placement is depicted in Figure 

3.3, which also includes functional aspects. Upon selection with one or even more 

workflow-based Internet of Things applications, the proposed architecture is subjected 

to a number of checks to verify that the service placement fits the requirements of the 

application. Modules from the IoT application are used in this application. For each 

module/service, the number of modules to be installed, their sequencing, and the 

deadline associated with each module are among the details obtained. Following that, 

each module's requirements are assessed. Each module has its own pool of resources, 

including storage, computing power, and bandwidth, which makes it difficult to 

maintain a high level of productivity. 

 Figure 3.3: Functionalities of the proposed architecture 
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It is also possible to fulfill this need for a specific service using FN, FCN, NFCN, or 

CN networks. After that, the availability of resources is investigated in order to gather 

information across all computational nodes with associated resource availability. The 

information about resource availability is then used to select a node for a particular 

service or module. Finally, the benefits are deployed in a particular layer. After node 

selection, the selected nodes are picked based on the most recent study of resource 

availability and the service deadline. 

3.4.   Application Model 

3.4.1   Application Data flow 

Before a program is required to be run in the fog environment, it should be divided 

into modules. The groupings of interconnected modules aid the concept of a 

distributed application. Every module in the program is required and performs at least 

some of the application's functions. Application edges are the connections that exist 

between two application tasks; if two applications have an edge between them, it 

indicates that they are both reliant on the other.   The distributed data flow model 

(DDF) represents application dependency and data flow in the directed network that 

can be unidirectional or sequential. 

 Figure 3.4:  Flow of Data in Application  
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Figure 3.4 depicts the five key modules (tasks) that perform processing in the IoT 

applications discussed in this work: the sensor module, the process module 1, the 

process module 2, the process module 3, and the actuation module (as depicted in the 

figure). Modules are a set of interrelated activities that make up an application. They 

are carried out one by one in a sequential manner. A sensor is shown in Figure 1 that 

transmits information from the Sensing module towards the application 

process modules. Authorization, data normalization, as well as multi-sensor data 

aggregation are all handled by this module.  

     The data coming from the Sense module is handled by process modules. The 

application comes with a number of features. As a result, each processing module is 

capable of carrying out at least one data function. The actuate module determines and 

controls the actions of the associated actuator. In the iFogSim simulator, the app 

components are mimicked using the AppModule class. We used the AppEdge class in 

the iFogSim simulator to build data dependencies across modules, as seen in Figure 

3.4. 

3.4.2 Application Process flow 

An example of a service placement request is illustrated in Figure 3.5, which is 

received by a fog controller node from the user. It then determines which resources 

are required for the specified IoT application. It also necessitates the setting of a 

deadline for the service. The resources on fog nodes are assessed with the deadline in 

mind. Then, determine which fog nodes are capable of meeting service deadlines. 

     It is then computed and validated when the deadline and deployment time will be 

met or exceeded. The service is distributed in the fog node (or) fog controller node 

(or) Cloud if the service is low. If the time is excessively long, it is forwarded to the 

NFCN, which evaluates resource availability and QoS expectations. The application 

modules are posted to NFCN once they have been approved. Otherwise, they're sent 

to the Public Cloud, which hosts the service. 

 

 



 
90 

 Figure 3.5:  Flowchart of Application Module Placement in Fog area 

 

3.5.   Model for Performance metrics (formulas & Constraints) 

3.5.1.  Application Selection Prioritization 

During this phase, the requests for service placement received from various applicants 

are prioritized. This is accomplished by ranking applications based on the time 

elapsed during respective deadline and its deployment time, which would be defined 

as follows:  

 

     (1)    
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3.6.   Deadline-oriented Service Placement Approach 

3.6.1.  Proposed Policy 

The Deadline-oriented Service Placement (DoSP) method is supposed to assess the 

fog landscape for this given sequential applications with deadline requirement and 

make judgments regarding applications service placement in the fog area. The 

suggested approach is depicted in Figure 3.3 with Node selection, respectively. It is 

based on the notion of Genetic Algorithms (GA). 

3.6.2.  Service Placement Algorithm 

Each operation within the GA will operate in accordance with this concept. The 

length of the vector is proportional to the number of services which will be employed 

in the algorithm. The vector is the layout blueprint that determines where the 
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application modules will be placed. The I - th module is inserted in node 2 whether 

the vector[i] = 2. As a result, the I - th module is assigned to the value of the 

processing node. The whole vector (the placement strategy) is referred to as the 

chromosome. 

     In the previous paragraph, it was stated that it would take the shape of an integer 

vector. Fog cell IDs, Cloud, nearest neighbour, and fog orchestration control node are 

all possible integers. These IDs are just as follows: Zero as Cloud, One as FCN, Two 

as NFCN, as well as Three for FN. The parameter "number of Placement Locations" 

is assigned as the number of potential integers. The first generation must be created 

after the variables "Chromosome Length" and "Number of Placement Locations" have 

been assigned. It is necessary to predetermine the population size of the GA, which is 

one of the sections of the GA. Through this quantity, we'll be able to create a series of 

chromosomes for the first generation. There have been various distinctive ways to fill 

a vector using numbers with a chromosome. One method is to add numbers to the 

vector at random from a list of potential integers. 

      This might be the stage during which a new chromosome be formed. The status 

check should be satisfied by all of the produced chromosomes. This status check is a 

procedure for determining if a plan has been effectively put. When the needed MIPS 

is far less than the available MIPS, a module could be successfully inserted first. 

Second, only FN contains the sensing and actuation components. Moreover, 

the process modules are really not permitted in the FN. 

     In order to determine how excellent an individual chromosome is, its fitness must 

first be determined. Then it is added to the population. According on how near an 

application has come to the deadline, its fitness may be measured. Whenever the 

application is filed close to the deadline, then high penalty will be imposed; else, a 

low penalty would be applied. The fitness value must be minimized in this case which 

is possible by using the minimum fitness chromosome placement strategy. The 

variable "fittest Chromosome" is assigned to the population's fittest chromosome. We 

return that chromosome if it meets all of the restrictions, and we are done. If that is 

not the case, we will have to go through the rest of the process. First, we determine 
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the number of crossovers that we will perform. It is also possible to use "crossover" as 

an additional operator with in genetic algorithm. 

     This number of generations, which would be entirely user-controlled, is another 

aspect of the genetic algorithm. We utilized the GA operator "selection" in each 

generation to find the best (fittest) chromosome. In this case, the most suited 

chromosome is the one with the highest fitness among the ones that have been chosen. 

As a result, we're not focusing at the most fit chromosome in the population. This 

algorithm's selection part can be implemented in a variety of ways. Using the 

Tournament option is one option. Tournament selection is a two-step selection 

method. 

     The first stage is to group all of the population's solutions into a "circle," with each 

solution occupying a different area of that circle depending on its fitness. The greater 

the significance of the chromosome, the higher the fitness will be. The second stage is 

to choose the best suited option from the list of possible options. This choice was 

made in order to obtain both parents' approval. The crossover can be carried out in a 

variety of ways. 
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3.6.3.  Time Complexity 
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3.7.   Performance Evaluation 

3.7.1.   Experimental Methodology 

We employed fog, fog controller, neighbour controller, and cloud nodes as compute 

nodes for our benchmarking. Meeting application deadlines while decreasing reaction 

time and boosting energy efficiency are the performance goals for the proposed work. 

Figure 3.6 depicts the overall experimental framework. We present a genetic 

algorithm for an analytics algorithm application placement. We assessed the 

suggested work by conducting benchmarking analyses with various existing methods. 

Observations on applications modules location are made through using experimental 

setup indicated in the preceding section.  

     In comparison to current approaches such as EdgeWard and Cloud Only, the 

recommended deadline-aware technique for application module placement is 

presented. Because EdgeWard is a simple greedy optimization heuristic, it was 

chosen. Based on resource availability, EdgeWard organises application modules in a 

bottom-to-top order. In all circumstances, Cloud Only offloads all modules to the 

Cloud. Response time is a key observation at certain deadlines. A range of distributed 

data flow-based sequential IoT applications are studied for the empirical study. 

Simulations using iFogSim have provided the critical insights across application areas 

such as motion, sound, video, humidity, and temperature. 

 

Fig 3.6: Experimental framework 
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3.7.2.   Simulation Setup 

To assess the effectiveness of resource management strategies, simulation studies are 

commonly utilised in fog computing. We employ iFogSim, a simulator toolkit that has 

been used in a number of research papers as a viable foundation for fog computing 

research. Experiments must be conducted in a safe atmosphere. Table 3.1 summarises 

the setting employed in this research endeavour for the empirical investigation. 

Table 3.1: Simulation Setup & its Configuration 

 

iFogSim with JDK 1.8 was used to conduct the simulation investigation. A visual 

model of the fog computing infrastructure is available through our simulation 

framework's API. 

     It may be used to simulate the fog, fog controller, cloud nodes, gateways, sensors, 

as well as actuators, among several others. 1 Fog Orchestration node, 10 Fog 

Nodes governed through by a Fog Controller Node, 1 Neighbor Controller Node, and 

a Cloud make up the network. The processing capabilities of the node may be 

configured to such potential measured in millions of instructions per second. Drag-

and-drop functionality in the iFogSim allows users to design and comprehend with 

intuitively. 

     Figure 3.7 depicts the fog infrastructure that has been built for the planned 

simulation investigation. Different nodes can be accommodated in each fog cell. After 

the modelling is finished, the nodes are properly configured. In the simulation study, 

each node is modelled like a real-world unit with similar features. As a result, it's vital 

that they're set up correctly. The fog node and fog controller nodes are configured for 

various settings in Table 3.2. Among the criteria are the computational capacity, 

memory, and storage details. 
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Other parameters are required for simulation, as stated in Table 3.3. The 

communication link delays are taken into account when configuring these parameters 

(in seconds). The outcomes of the simulation study will be easier to notice and 

measure as a result of this. It is critical to keep track of numerous parameters when 

simulating the service placement scenario because they are employed in real-world 

fog computing networks. 

 

Fig 3.7: Fog infrastructure modeled using iFogSim for the simulation study 
 

Table 3.2: Characteristics of the fog controller node and fog node 
 

 

Table 3.3: Different parameters and their corresponding communication link delay in seconds 
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Table 3.4: Different parameters and their corresponding communication link delay in seconds 

 

Table 3.5: Required resources for application modules 

 

 

Table 3.6: Deadline and deployment time of each application 
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3.7.3.  Analysis and Results 

 

 Fig 3.7: Performance comparison with a) motion, and b) video applications 

 

Fig 3.8: Performance comparison with a) sound and b) temp applications 

As illustrated in Fig. 3.7, the deadline for Motion Application is 120 seconds, 

whereas the deadline for Video Application is 300 seconds. The horizontal axis shows 

several techniques for placing services, while the vertical axis shows reaction time in 

seconds. There was a deadline breach in the instance of a motion application, according 

to the results. Both the EdgeWard and Cloud Only approaches are 184.45 and 31.85 

seconds late, respectively. The EdgeWard, Cloud Only, and DoSP methods might be 

useful in ensuring that the video application's length restriction isn't exceeded. 

The findings are provided for sound and temperature applications, as shown in 

Fig. 3.8. The reaction time for IoT applications with deadlines of 300 and 360 seconds 

is measured. The findings found that in the case of sound application, there were 

deadline violations. The EdgeWard approach could not deliver optimal service 

placement since it was 4.45 seconds late. In the case of a temp application, the three 

ways are used to place the service without infringing the deadline. EdgeWard, on the 

other hand, took longer to respond, and the DoSP technique took the shortest. 
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Fig 3.9: Performance comparison with humidity application  

 

3.7.3.1   Response Time Against Deadline 

In order to evaluate the suggested DoSP method, response time, also referred as 

latency, is an important parameter to measure. This response time with a specified 

deadline is an important empirical observation. As shown in Fig. 3.10, these findings 

were obtained in terms of reaction time versus various deadlines. The results of all of 

the applications are displayed with a 1 second communication distance between both 

the fog master control station and the Cloud. On the bottom axis, deadlines run from 

50 to 500 seconds, with each increment of 50 seconds. 

     The vertical axis depicts the response time. Humidity and Video applications 

began when the elapsed time was 50 seconds, whereas other applications started at 

100 seconds. Responding time values may be grouped into three categories, according 

to the findings: low, medium, and high. When services are deployed in a fog 

master controller node, response time is lowered, implying greater performance. 

Whenever services were being hosted in the Cloud, its response time is stated as 

medium, which is faster than the fog controller node's response time. When services 

are installed in an adjacent fog controller node, the response time is increased due to 

its deployment delay and extra deployment time needed to position the service 

The performance of service placement approaches revealed varying reaction times, as 

shown in Fig. 3.9. The proposed DoSP method has the potential to meet the deadline. 

It is the same with the Cloud-Only strategy. The deadline is missed by 4.45 seconds 

when using the EdgeWard technique. This level of performance is unacceptable since 

SLAs may be related to deadlines in cloud and fog computing scenarios. 
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modules. As a result of these observations, the observed patterns in reaction time may 

be explained. The data indicated that the deadline has an impact on response time. 

The explanation is so that the suggested DoSP algorithm tries to promote service 

placement which may not exceed the stated timeframe. The results showed that the 

recommended approach performs deadline-aware, with no violations across the board. 

It should suggest that DoSP has made appropriate service placement selections in 

light of the timeframe and available resources. 

 

Fig 3.10: Performance of the DoSP method concerning all applications 

3.7.3.2   Resource Utilization Analysis 

Using the suggested DoSP approach, service placement selections are made based on 

an analysis of resource availability. The EdgeWard technique places both sensing and 

actuating services in multiple fog nodes all across the fog layer. Other functions that 

are relocated to the controller node and propagated to the next fog master controller 

node include data collecting, analysis, and decision making. In the DoSP, things are a 

little different. The sensor and actuation units are housed in the fog nodes. Processing-

related modules, on the other hand, are located either in the fog master controller node 

or cloud node. 

     As according resource analysis, the fog node is responsible for 40% of all service 

deployments, which is considerably faster than the rest of the system (see Fig. 3.11). 
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The service placement of the fog controller node is 12 percent in the closest neighbour 

node and 6 percent with in fog controller node. Cloud deployments account for the 

remaining 42% of service deployments. As previously noted, there is a distinction in 

EdgeWard conditions. It splits the services between fog nodes, nearest neighbour 

nodes, and fog orchestration control nodes, with 40 percent going to fog nodes, 32 

percent going to closest neighbour nodes, and 28 percent going to fog orchestration 

control nodes. 

     The Cloud Only technique is used to store everything on the cloud. As a result, 

the fog nodes and fog master controller nodes are not available. It has the drawback 

that perhaps the Cloud Only services placement may not meet the requirements of 

specialized sequential IoT workflow applications that demand quick response times. 

The Cloud significantly slower than all of the other levels in the fog framework. 

 

Fig 3.11: Resource utilization for a) Edge Ward method and b) DoSP 

3.8.  Summary 

The proposed Deadline-Aware Dynamic Service Placement (DoSP) method is 

designed for dealing with a large number of sequential workflow applications that 

follow the sense-process-actuate paradigm and contain the same set of modules for 

each application. The algorithm uses the DDF model to deploy the applications and 

every service must be hosted across any one of the available processing nodes.  

     The dynamic nature of the DoSP algorithm allows it to adapt to changes in the 

network environment, such as fluctuations in the availability of processing nodes and 
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changes in service deadlines. As a result, the algorithm can optimize service 

placement to ensure efficient resource utilization and meet tight SLA requirements. 

     This approach is particularly interesting because it has the potential to accelerate 

the introduction of Internet of Things (IoT) applications in fog computing. The DoSP 

algorithm is tested using the iFogSim simulator, and the results indicate that it 

outperforms previous approaches such as EdgeWard and Cloud Only.  

     DoSP's placement strategy is unique, allowing it to enhance performance and 

reduce reaction time in the face of tight Service Level Agreement (SLA) 

requirements. Although the study only used five workflow-based IoT apps, the 

assumed values are calculated by taking the average of the previous experimental run. 
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Chapter 4 

Deadline and Energy Efficient Dynamic Service Placement 

(DEEDSP) 

4.1.   Introduction 

 

 

In the next five years, the number of Internet of Things (IoT) objects is predicted 

to exceed fifty billion. Wearables, autonomous vehicles, drones, robotics, augmented 

reality (AR), and virtual reality (VR) devices are just a few examples of items that use 

a lot of power and compute. The seamless integration of all "things" connected in the 

network poses an unprecedented difficulty. Due to the tremendous surge of data traffic 

generated by billions of IoT devices, the traditional cloud computing paradigm has 

proven untenable under time-critical needs. Fog computing is the idea of adding a new 

networking layer, storage, processing, and resources at the network's edge or end-users. 

Fog is needed to improve Quality of Service (QoS) characteristics like lowering latency, 

increasing efficiency, and better overall service to end-users. Sensing and actuation 

modules, for example, are IoT services that connect data with IoT or edge devices in an 

IoT application. Real-time applications such as intelligent lighting systems, automobile 

networks, smart grid, pipeline monitoring, wired trains, wind farms, petroleum and gas 

sector applications, and industrial loop control benefit greatly from these capabilities. 

A distributed computing paradigm is gradually replacing the current central computer 

paradigm, in which IoT system control, data, and intelligence are exclusively available 

on the Cloud. On the other hand, meeting such criteria requires careful selection of 

hosting systems and appropriate application assignments. 

Application placement decision-making is an NP-hard problem. When compared to 

cloud computing, the placement of modules in a fog computing environment becomes 

more difficult. The reasons for the increased complexity are as follows: 

• Devised diversity (in terms of device configuration, hardware, and software, 

such as operating systems),  
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     The aim of the proposed method is to find optimal locations for services, which 

may include fog nodes, fog controller nodes, neighbor controller nodes, and cloud 

nodes, while ensuring that the response time of the application does not exceed the 

deadline and the energy consumption is minimized. The article highlights several key 

contributions in this regard. 

• We evaluated DEEDSP's efficiency in this fog environment using the 

iFogSim simulator, which revealed a significant reduction in energy 

utilization and service response time when compared to conventional 

techniques. 

• The location of IoT devices must be considered in IoT application placement, 

and there are a large number of these devices, adding to the complexity of 

placement; and, 

• Specific application constraints, such as computation and latency requirements, 

must be met. 

Cloud servers consume more electricity due to their vast scale and expanding service 

needs. The fog computing system's energy saving is also vital and must be taken into 

account. On the other hand, ensuring QoS, such as application response time within the 

stipulated deadline, is equally crucial. In the fog computing system, we investigate the 

trade-off between power usage and response time. Based on the most relevant and novel 

approaches published in IoT, cloud computing, and fog computing, we proposed a 

framework for a deadline-aware and energy-efficient service placement strategy. By 

making effective decisions dynamically, the suggested method brings originality to the 

fog-computing environment. Various heuristic techniques are used in the proposed 

hyper-heuristic-based algorithm. This technique combines the strengths of heuristic 

algorithms like simulated annealing (SA), genetic algorithms (GA), and particle swarm 

optimization (PSO) into a single approach. 
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4.2.    Proposed Methodology 

Figure 4 depicts the proposed system. 1. The framework described in Figure 4 allows 

for deadline-aware service placement. 2. The placement of services is carefully 

considered in terms of energy efficiency. An IoT application's Quality of Service 

criteria can be taken into consideration when deciding where to locate services in a 

fog environment. The input is a sequential workflow IoT applications. Following that, 

the proposed system must analyse its needs and utilise an algorithm to develop an 

appropriate service location that takes into account service deadlines and energy 

efficiency. 

The services of workflow-based IoT applications are placed in Fog, fog controller, 

neighbor fog controller, or cloud nodes according to the deadlines and energy 

consumption associated with the services—the service location results in energy 

efficiency and satisfies deadlines. 

 

 

Fig 4.1: Proposed Methodology 
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Fig 4.2: Modified Fog Environment 

 

4.3.   Application Model 

Prior to the programming, software modularity is being required to be performed with 

in distributed environment, it is necessary to break it down into smaller modules. The 

concept of a distributed application is aided by the groups of interconnected modules. 

Every module in the program is necessary that performs at least part of the functions 

of the application. Such interconnections among application modules are known as 

application edges; if two application modules have an edge between them; it signifies 

that both are dependent on one other. The distributed data flow model is a directed 

network that may be whether sequential and unidirectional, and it depicts application 

relationships and data flow. 

4.3.1.   Application Sequence Diagram 

Figure 4.3 depicts application modules deployed to VMs in fog nodes, cloud nodes, 

fog brokers 1 and 2, and fog brokers 1 and 2. After processing, the application 

modules are transferred back to fog broker 1 to be combined and supplied to the user. 
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Fig 4.3: Application sequence diagram 

 

 

 

 

Step 1:   The mobile user requests for the application, this request is handled by the 

fog node which it is connected. 

Step 2: The fog node forwards the request to the fog broker 1. 

Step 3: Fog broker 1 extracts and sequences the modules of the requested application. 

Step 4: Fog broker 1 finds the required resources of the modules for execution. 

Step 5: Fog broker 1 finds the resource availability information from itself, fog node, 

fog broker 2, and cloud node. 

Step 6: Fog broker 1 runs the placement algorithm to find the optimal module 

placement. 

Step 7: The module assign nodes are responsible for processing the assigned module. 

Step 8: The assigned nodes send the results of the modules back to the Fog broker 1. 

Step 9: Fog broker 1 combines the results which are send by the module assigned 

nodes. 

Step 10: The response send to the mobile user through the fog node which it is   

connected. 
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4.3.2 Application Process flow 

Figure 4.4 depicts how applications are scheduled in the fog controller node's 

application queue to achieve the goals of minimizing response time and maximizing      

energy efficiency for all applications. To implement the application buffering policy, 

we can use the application queue. As shown in Figure 4.1, we suggest a parallel 

virtual queuing paradigm at the fog controller node that buffers arriving application 

modules of the same type into a separate virtual queue. In the fog environment 

system, the framework supports a variety of IoT applications. 

 

 

Step 1:   The mobile user requests for the application, this request is handled by the 

fog node which it is connected. 

Step 2: The fog node forwards the request to the fog broker 1. 

Step 3: Fog broker 1 extracts and sequences the modules of the requested application. 

Step 4: Fog broker 1 finds the required resources of the modules for execution. 

Step 5: Fog broker 1 finds the resource availability information from itself, fog node, 

fog broker 2, and cloud node. 

Step 6: Fog broker 1 runs the placement algorithm to find the optimal module 

placement. 

Step 7: The module assign nodes are responsible for processing the assigned module. 

Step 8: The assigned nodes send the results of the modules back to the Fog broker 1. 

Step 9: Fog broker 1 combines the results which are send by the module assigned 

nodes. 

Step 10: The response send to the mobile user through the fog node which it is   

connected. 

4.4.  Model for Performance metrics (formulas & Constraints) 

4.4.1.  Application response time: 

The optimization problem is designed to reduce reaction time while meeting 

constraints such as deadlines and energy consumption. 

 Restime(n), is the response time of an nth application. The application response time is 

calculated as follows: 

 

Restime(n) = MKspantime(n) + Totaltime(n)                 (1) 

Where: 

 

• The application makes span time, MKspantime(n), is made up of the time it 

takes to execute all application modules, Exectime(n), and the time it takes to 

communicate with the controller node's application modules, Commtime(n). 

• The time elapsed until we properly located each service on the computational 

framework resource sources or computing nodes is factored into the total 

deployment time of an application TotalDept(n). 
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Fig 4.4: Queuing the Application Modules 

 

 

Where: 

 

• The application makes span time, MKspantime(n), is made up of the time it 

takes to execute all application modules, Exectime(n), and the time it takes to 

communicate with the controller node's application modules, Commtime(n). 

• The time elapsed until we properly located each service on the computational 

framework resource sources or computing nodes is factored into the total 

deployment time of an application TotalDept(n). 

Exectime (n) is the module capacity divided by the node capacity. Node capacity is "the 

CPU power of the computational node where the application service is deployed," 

whereas module capacity is "the required CPU power for the module." The 

communication time is the sum of the undeniable communication delays between the 

nodes in which each module in an application is located.  
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4.4.2.   Energy Consumption 

 

 

The distances between the fog node (FN), the neighbor control node (NFCN), the 

controller node (FCN), and the cloud node (CN) are represented by the variables 

distfog, distnbr, distctrl, and distcloud, respectively. The fog controller node serves as 

a manager, assigning modules to the appropriate nodes. The controller node receives 

the results from the nodes and sends them back to it. As a result, communication 

between the nodes takes place twice. 

Exectime (n) is the module capacity divided by the node capacity. Node capacity is "the 

CPU power of the computational node where the application service is deployed," 

whereas module capacity is "the required CPU power for the module." The 

communication time is the sum of the undeniable communication delays between the 

nodes in which each module in an application is located.  

In Equation (4), ‘m’ is the number of modules in each application. Total deployment 

time of the application TotalDept(n) Consists of Depttime(n) and the estimated extra 

time when an application module ni is sent to the adjacent controller node. 

     Here ni represents i
th

 module in n
th

 application. The xfog, xnbr, xctrl, and xcloud are 

binary decision variables. The value of  these variables will be 1 if the ni is placed in 

the appropriate node, else the value is 0. The additional deployment time comprises of 

delay for propagation PDelay(n) and expected deployment time ExptDept(n) in neighbor 

controller node. 

     We depend on the variable F(n) to cover the additional deployment time. If the 

neighboring controller node has at least one application module of n
th

 application 

propagated then F(n) = 1 otherwise F(n) = 0. If F(n) == 1, we add PDelay(n) and 

ExptDept(n) to Dept(n). Else we add nothing to Dept(n). We formalize the total 

deployment time of an application TotalDept(n) as follows: 

Only the energy consumption of compute nodes is taken into account; communication 

and cooling energy are omitted. Our goal is to reduce overall energy consumption, 

including energy consumed when working and consumed while idle. When the 

computation node is inactive, the static energy is depleted. In contrast, dynamic energy 

pertains to the host's resource utilization. Util depicts the consumption point of the host 

node. The nominal power implied by dissipating the entire power unit is Emax. The 

number of modules in each application is denoted by the letter m. 
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4.4.3.   Placement Constraints 

 

 

 

 

The module placement approach must ensure that Restime (n), defined in constraint2, 

does not jeopardize the application's deadline, D(n). 

 

Only the energy consumption of compute nodes is taken into account; communication 

and cooling energy are omitted. Our goal is to reduce overall energy consumption, 

including energy consumed when working and consumed while idle. When the 

computation node is inactive, the static energy is depleted. In contrast, dynamic energy 

pertains to the host's resource utilization. Util depicts the consumption point of the host 

node. The nominal power implied by dissipating the entire power unit is Emax. The 

number of modules in each application is denoted by the letter m. 

Let placefog(ni), placectrl(ni), placenbr(ni), placecloud(ni) ∈ {0, 1} be binary factors 

that specifies whether the module ni is deployed on a fog node (placefog(ni) = 1), or a 

fog controller node (placectrl(ni) = 1), or a neighbor controller Nodeplacenbr(ni) = 1), 

or on the cloud node (placecloud(ni) = 1). Since themodule is deployed only once, in 

the constraint1 is held: 

gfvcgfc    

     The constraint1 value will be 1, because the module will be placed in at least one 

of the available nodes. 

gugyfuyhguijyg 

ghghijhgyuij 

Constraint3 in this article is that the application's requested resources, Reqresni, must 

be sufficient to the accessible resources, Availres(r, nodes), such as processing power 

(CPU), storage space (STR), and memory capacity (MEM). It can be stated as 

follows: 
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4.5. Our Proposed Approach 

4.5.1. Proposed Policy 

 

 

 

 

 

The sensor (xi) and actuation (yi) modules of the application that we should only 

deploy at lower fog nodes are represented by constraint4 in this article. The following 

is how it's defined: 

The above ‘constraints1,2,4’  are applicable independently for each application. 

We used existing methods to process the modules in the fog layer in reality. 

According to our technique, delay-tolerant applications are placed in the cloud and 

neighbor nodes, whereas delay-sensitive apps are placed in low computational fog 

nodes. When comparing the cloud with Fog, the cloud has more computing capacity 

and has a higher communication delay between the cloud and the device layer.  

     On the other hand, Fog has limited computing resources and has a shorter 

communication delay with the device layer. Furthermore, our system considers 

application deadlines and energy consumption during the placing process. The data 

used to execute the suggested method is artificial. 

  ghfyhfrtyh    

     Where, n is the index of modules in each application and N is the number of 

applications. The aim of the proposed algorithm is to minimize the objective function 

presented as above. 
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4.5.2.  Service Placement Algorithm 

The placement strategy is divided into 3 phases: 

Phase 1: Selection of an application 

Phase 2: Selection of module 

Phase 3: Selection of the node 

 

4.5.2.1. Phase 1: Selection of an application 

 

Step 1: Applications are prioritized based on their deadlines and deployment times. 

The application with the shortest deadline-to-deployment time is given precedence. If 

many ready jobs have the same priority, a FCFS application is chosen. Priorities for 

the application Apri is a month that is given by: 

 

4.5.2.2. Phase 2: Selection of module 

The modules of the application are retrieved upon an application selection. After that, 

we will look at how the application modules should be classified. It is accomplished 

in the following way: 

These phases are explained in the following subsections. 
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4.5.2.3. Phase 3: Selection of the node 

 

 

 

 

 

Step 2: In the sense and actuation modules queue, selected applications of sense and 

actuation modules are placed. 

Step 3: Place the application's process modules in the high or low computational 

process modules queues, depending on their CPU value. 

     The steps mentioned above in 2 and 3 are described in Algorithm 1. Using the 

Govern function (Hi; Imp Flag; Div Flag), as defined in Algorithm 2 and Algorithm 3, 

the selected heuristic algorithm Hi will evolve the solution Z for the provided number 

of iterations. 

Step 4: The ModulePlacement function is called by Algorithm 1 to position the 

modules in the specified nodes. ModulePlacement() selects nodes that satisfy the 

application module placement restrictions listed below. 

     Let placefog(ni), placectrl(ni), placenbr(ni), placecloud(ni) ∈ {0, 1} be binary 

factors that specifies whether the module ni is deployed on a fog node (placefog(ni) = 

1), or a fog controller node (placectrl(ni) = 1), or a neighbor controller 

Nodeplacenbr(ni) = 1), or on the cloud node (placecloud(ni) = 1). Since themodule is 

deployed only once, in the constraint1 is held: 

hbgvhg 

      The constraint1 value will be 1, because the module will be placed in at least one 

of the available nodes. The module placement strategy must be assured that 

Restime(n) as specified in the constraint2, application does not compromise its 

deadline, D(n). 

hghg 

     The constraint3 is that, available resources, Availres(r, nodes), such as processing 

power (CPU), storage space (STR), memory capacity (MEM) must be sufficient to 

required resources, Reqresni, of the application in the deployment node. This can be 

defined as: 
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hhkhbj 

     The constraint4 represents the sensing (xi) and actuation (yi) modules of the 

application that should be placed in lower fog nodes only. It is defined as below: 

 

 

     The above constraints1,2,4 is applicable independently for each application. 

Step 5: The 2nd algorithm, referred to as module placement, is depicted below. The 

population of the solution and the candidate pool are the algorithm's first two input 

parameters. The application modules' placement plans in the computational nodes are 

used to populate the solution. The module placement algorithm selects the heuristic 

algorithm Hi from the candidate pool H in a sequential manner. Three hyper-heuristic 

methods are included in the set H: genetic algorithm, particle swarm optimization, and 

simulated annealing (H = GA, PSO, SA).  

     The 2nd algorithm, referred to as module placement, is depicted below. The 

population of the solution and the candidate pool are the algorithm's first two input 

parameters.  
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The application modules' placement plans in the computational nodes are used to 

populate the solution. The module placement algorithm selects the heuristic algorithm 

Hi from the candidate pool H in a sequential manner. Three hyper-heuristic methods 

are included in the set H: genetic algorithm, particle swarm optimization, and 

simulated annealing (H = GA, PSO, SA). As indicated in Algorithm 2, the selected 

heuristic algorithm Hi will be rerun until the maximum number of iterations is 

achieved, or there is no improvement. 
     cgfdg 

     Step 6: When the Govern() function returns True, the Module Placement algorithm 

will choose the next algorithm Hi from H at random. Then, as indicated in Algorithm 

3, solution Z is acquired to refine the solution. 

Step 7: 

      
bvhbv      

     In Algorithm 4, while selecting the next heuristic algorithm Hi from the candidate 

pool H a sequential selection method is employed. The Algorithm Module Placement 

suggests when to change to the next heuristic algorithm from the list Hi. 
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If after a defined number of iterations, the selected Hi’s Notimprove, cannot better the 

fitness value (which is obtained by BSDEE value) then we pick a new heuristic 

algorithm by returning a False value to the calling function. 

     The Improvement Detection function will suggest choosing a new heuristic 

algorithm in three situations: when iterations exceed the Maxiterations, the flag Notimprove 

has been met, and If the condition of termination is satisfied. 

Step 8: 

 

     The Diversity Detection () method in Algorithm 5 detects when to switch the 

heuristic algorithm from the list H. The threshold value is determined by the diversity 

of the original solution D(Z). (i.e., the initial solution's fitness values). The diversity 

of the present solution D is used to calculate the fitness function's average (Z). If the 

threshold value is smaller than the current solution's diversity D(Z), Module 

Placement () will choose the next new Heuristic algorithm. 

Step 9: 

 

     The fine-tuned answers produced by Hi from the Fine Tune() method are passed to 

the newly selected hyper-heuristic algorithm in Algorithm 6. It indicates that the 

heuristic algorithm Hi's candidate solutions can balance the search's intensification 

and variety. The Fine Tune() algorithm, to be more specific, is responsible for 

changing the population's solutions. 
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4.5.3.  Time Complexity 

 

4.6.   Performance Evaluation  

4.6.1.  Experimental framework  

 

 

 

The complexity of the running time is proportional to the size of the application list, 

which is N. To arrange this list of applications, the scheduler requires O(NlogN) time 

complexity, and the space complexity is expected to be O. (N). Each heuristic 

algorithm in list H has a time complexity of O(SP
2
), where S denotes the number of 

sub solutions in each problem solution, and P represents the population size. So, if all 

heuristic algorithms are confined to SP
2
 and r is the number of iterations required, the 

hyper-heuristic algorithm's time complexity is O(rSP
2
). The total computing 

complexity of the proposed algorithm is O (NlogN + rSP
2
). 

For system benchmarking, we must address three critical aspects of representation: 

computational platform, method, and data analysis on a collection of data. We used a 

simulation tool and an analytics technique to evaluate the system in the suggested 

work. iFogSim, FogNetSim++, MyiFogSim, and YAFS are some of the simulation 

programs available, each with its unique set of benefits. We used the iFogSim 

simulator, which is the most used fog computing simulator, in this study. 

Furthermore, in a hierarchical design, the iFogSim simulator is ideal for emulating 

IoT, fog, and cloud processing nodes.  

     It's an excellent choice for assessing various essential aspects of IoT applications, 

such as reaction time and energy consumption. We used fog nodes, fog controller 

nodes, neighbor controller nodes, and cloud nodes as computing nodes for 

benchmarking. The proposed work's performance metrics are meeting application 

deadlines while lowering reaction time and increasing energy efficiency. Figure 4.5 

depicts the overall experimental framework. 

 

fdf 

     We present a hyper-heuristic method for application placement as an analytics 

algorithm. We assessed the suggested work by conducting benchmarking trials with 

various existing methods. 
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Fig 4.5: Experimental framework 

 

4.6.2.    Simulation Setup 

 

4.6.2.1.  Network topologies and resource description: 

 

The experimental context for our model's evaluation is shown in Table 4.1. The 

iFogSim simulator uses Java with JDK 1.8 to develop fog infrastructure. In our 

simulations, the processing power of processors is expressed by MIPS (million 

instructions per second). 

The suggested approach presents module placement ideas for various scenarios in 

cloud Network Connectivity from the controller node and applications. The following 

is the topology of the network: 

• The lowest level in the hierarchy has sensors and actuators. 

• The next level contains numerous fog nodes (FN) managed by a fog 

orchestration controller node (FCN). 

• The next level includes one neighbor cluster fog controller node (NFCN). 

• The top-level contains a cloud node (CN). 

Table 4.2 depicts a setup framework that includes a single cluster with ten fog nodes 

controlled by the FCN and connected to the NFCN and the CN node. 
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4.6.2.2.   Module configuration and resource demands 

 

TABLE 4.1: Simulation setup 

 

TABLE 4.2: Characteristics of the computation node 

 

 

 

 

Motion, video, sound, temperature, and humidity are just some of the applications 

we've analyzed. Table 4.3 lists the application deadlines and deployment times. Each 

application is made up of five parts. Sensing, data collection, data processing, 

decision making, and actuation are among them. The processing power (CPU), 

storage space (STR), and memory capacity (MEM) of these modules are listed in 

Table 4.4.  

     The next part, which explains several application scenarios, provides concrete 

examples for these concepts. To guarantee that the simulations are diverse, different 

parameters have been modified. Table 4.5 shows the parameters that affect the results 

and their values in the GS, DoSP, GA, PSO, SA, and suggested DEEDSP algorithms. 

The GS29 and DoSP31 algorithms are both GA-based. As a result, the GS, DoSP, and 

GA algorithms have the same population size, crossover, mutation, and elitism rate. 
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TABLE 4.3: Applications configuration 

 

TABLE 4.4: Required resources of application modules 

 
 

 

 
 

4.6.3.   Analysis and Results 

 
 

 

TABLE 4.5 Parameters of GS, DoSP, and DEEDSP algorithms for IoT applications placement 

This evaluation aims to see how successful framework module placement plans 

are in comparison to various current techniques. Cloud only placement, collaborative 

task offloading scheme with service orchestration (CTOSO), edge-ward placement 

(EWP), genetic scenarios (GS), deadlines-oriented service placement (DoSP), genetic 

algorithms, particle swarm optimization, and simulated annealing are among the 

methods used. 
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4.6.3.1 Deadline satisfaction 

4.6.3.1.1 Scenario 1 

 
 

 
 

This section examines the outcomes of time frame-aware application placement and 

energy consumption reduction as functions with varying application complexities 

(i.e., latency-sensitive, latency tolerable applications with various computational 

capacities). They were thoroughly examined using existing state-of-the-art 

methodologies and the suggested approach using the iFogSim simulator. The 

outcomes are split into two groups as mentioned below: 

Scenario 1: It has applications that do not require a lot of processing power.  

Scenario 2:  It has apps that require a lot of processing power. By comparing them to 

FN computations, the computations are distinguished. 

We will discuss these scenarios in detail. 

Each application’s response time, Restime is determined by the Equation (5). The 

execution time (Exectime) and the total time of deployment (TotalDept)is computed with 

(1) and (2) with the respective data given in Tables 3–5. After computations, the 

corresponding deadline D(n) of the application in Table 4 shall be compared to Restime 

with various cloud distances. The results for the first scenario are shown in Figures 

4.6–4.8. The cloud-only policy exceeds the application deadline for motion, video, 

sound, temp, and humidity applications as shown in Figures 4.6,4.7, and 4.8. It 

exceeds the deadline with an average cloud distance of 25, but it misses the deadline 

with a cloud distance of 10 because the deadline is short.  

     At a cloud distance of 50, the CTOSO policy surpasses the deadline in video and 

temp applications, as demonstrated in Figures 4.6B and 7B, respectively. Because it 

stores the application in FN, this policy does not exceed the deadline for short 

deadline applications, even at large cloud distances. Applications with an extended 

deadline will be given preference for placement in CN, even if submitted after the 

deadline. Two latency-tolerable applications (video and temperature) exceed the 

deadline at a cloud distance of 50. 
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 Fig 4.6: Performance comparison of motion and video applications 

 
 

At a distance of 20, the EWP policy exceeds the move application deadline. Because 

the previous programs may have used up all of the resources, FN and FCN, the 

subsequent applications will only have NFCN and CN to work. When the distance 

between TAU and CN is large, there is a possibility of missing the deadline. In any 

circumstance, the GS, DoSP, GA, PSO, SA, and DEEDSP policies do not exceed the 

deadlines. 
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Fig 4.7: Performance comparison of sound and temp applications 

 

The application deadline is exceeded by the techniques cloud Only, CTOSO, and 

EWP. For latency tolerance apps at high cloud distances and latency-sensitive 

applications with significant compute, CTOSO beats the deadline. 

jkijk  

     For latency-sensitive applications with low and high compute, EWPpolicy exceeds 

the deadline. DoSP has a faster response time for tight deadlines, but DEEDSP has a 

faster response time for applications with long cloud distances. 
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Fig 4.8: Performance comparison of humidity application 

 

Fig 4.9: Respone time Of Motion Applicaion With Various FN Capacities 

In comparison to GS and DoSP, GA, PSO, SA, and DEEDSP policies yielded a low 

"combined response time." EWP has proven to be the best for applications like video 

and temp with long deadlines, but the suggested technique exceeds EWP at a point, 

50. DoSP provides the fastest reaction times for latency-sensitive applications in both 

low and heavy computational activities. 
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Fig 4.10: Performance Comparison Of Motion and Video Application(H.Gupta et al., 2016, Skarlat et al., 2017, 

Meeniga Sriraghavendra et al., 2021, M. Huang et al., 2018,Holland JH et al.,1975,Kennedy J,1995,Kirk,1983) 

In Figure 4.8, we can see that the GS and DoSP policies have pushed the application 

near its deadline. Figure 4.9 shows the motion application reaction times for TAU = 

25, cloud distance = 20, and different FN MIPS. The cloud-only and EWP policies, in 

this case, overshoot the deadline by 200 MIPS. All other policies had higher 

"combined response times" than the proposed strategy. 

4.6.3.1.2.   Scenario 2 

In Figures 4.10–4.13, the results for the second scenario are shown. Except for the 

Motion application, all of the comparisons policies do not exceed the deadline in this 

scenario at a cloud distance of 10. Only CTOSO and EWP policies exceed the 

deadline in this motion application cloud. CTOSO misses the deadline because the 

high computational modules cannot be placed in FN. Because the suggested DEEDSP 

algorithm places this application in FCN, the results show that DEEDSP performs 

well as DoSP.  

     Figure 4.13 depicts the motion application reaction times for TAU = 25, cloud 

distance = 20, and different FN MIPS. In this case, the cloud-only, EWP, and CTOSO 

policies all surpass the deadline until the MIPS exceeds 250. Until MIPS 250, the 

DEEDSP scheme and DoSP performed equally well; however, DoSP outperforms the 

proposed DEEDSP algorithm marginally for larger MIPS values. 
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Fig 4.11: Performance Comparison Of Sound and Temp Application(H.Gupta et al., 2016, Skarlat et al., 2017, 

Meeniga Sriraghavendra et al., 2021, M. Huang et al., 2018,Holland JH et al.,1975,Kennedy J,1995,Kirk,1983) 

 

Figure 4.13 depicts the motion application reaction times for TAU = 25, cloud 

distance = 20, and different FN MIPS. In this case, the cloud-only, EWP, and CTOSO 

policies all surpass the deadline until the MIPS exceeds 250. Until MIPS 250, the 

DEEDSP scheme and DoSP performed equally well; however, DoSP outperforms the 

proposed DEEDSP algorithm marginally for larger MIPS values. 
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Fig 4.12: Performance comparison of humidity application 

 

 

 

 

Fig 4.13: Response time of motion application with various FN capacities 
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4.6.3.2.   Resource utilization 

 

 

Fig 4.14: Service placement in various policies 

Figure 4.14 shows that the cloud utilization for Cloud Only, CTOSO, EWP, GS, 

DoSP, GA, PSO, SA, and DEEDSP policies are 100 percent, 24 percent, 0 percent, 36 

percent, 32 percent, 4 percent, 8%, 8%, and 0%, respectively. Cloud Only, CTOSO, 

EWP, GS, DoSP, GA, PSO, SA, and DEEDSP policies have an FN utilization of 0%, 

76 percent, 76 percent, 40 percent, 40 percent, 68 percent, 68 percent, and 68 percent, 

respectively. Finally, the NFCN utilization for cloud-only, CTOSO, EWP, GS, DoSP, 

GA, PSO, SA, and DEEDSP policies is 0%, 0%, 12%, 4%, 12%, 12%, 8%, 8%, and 

16%, respectively. Only an application's sensing and actuation modules are allowed to 

run on fog nodes in both GS and DoSP rules. 

     Looking at all of the policies, we can see that the EWP and DEEDSP policies 

haven't put any application modules in the cloud node. Except in the Cloud Only 

policy, the GS policy has added more modules to the cloud node. GS, DoSP, and 

Cloud Only policies deployed more or nearly the same number of modules in FN 

nodes than CTOSO, EWP, GA, PSO, SA, and DEEDSP policies. 
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Fig 4.15: Service placement with various cloud distances of DEEDSP policy 

Figure 4.15 depicts the share of each resource type as the cloud distance changes. The 

module placement in the cloud node steadily decreases as the cloud distance 

increases. To prevent applications from exceeding their deadlines, they are placed in a 

fog node, which increases fog node consumption. In a deadline-conscious setting, 

when the TAU value and cloud distances increase, the modules are more likely to be 

placed in FCN rather than NFCN. Because of the application deadline, the module 

placement in the NFCN steadily decreases when the TAU value rises, as shown in 

Figure 4.16.  

     Cloud node, FCN node, or FN node module location increases. When the cloud 

distance and TAU parameters are increased, the modules prefer to execute in the FN 

or FCN node. Applications submitted after the deadline should be submitted to either 

NFCN or CN. 
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Fig 4.16: Service placement with various TAU values of DEEDSP policy 

 

4.6.3.2.1.   Scenario 1 

 

Figure 4.17 depicts FN consumption as a function of FN MIPS levels. It is believed 

that the applications will have a minimal computing cost and a short deadline. The 

Cloud Only policy does not place the application modules in the FN node, as can be 

seen. In the FN node, GA, PSO, SA, CTOSO, and EWP policies place an equal 

amount of modules. 

     For all FN node MIPS, the GS and DoSP policies use 40% of the fog node 

resources. These two policies prevent the application's process modules from being 

placed. FN node use is lower in the GA, PSO, SA, and DEEDSP schemes till 350 

MIPS, compared to CTOSO, EWP, GA, PSO, and SA policies. CTOSO, EWP, and 

DEEDSP policies position all the modules after 400 MIPS in FN node. 
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Fig 4.17: FN consumption 

 

4.6.3.2.2.   Scenario 2 

 

Figure 18 depicts FN usage to various FN MIPS values. It is believed that the 

applications will have a high computing cost and a short deadline. In the case of the 

cloud-only policy, the application modules are not placed in the FN node. CTOSO 

and EWP policies place the same number of modules in the FN node as in the prior 

scenario. Only the sensing and actuation modules of the apps are allowed to run in FN 

under the GS and DoSP regulations, which use 40% of the fog node resources.  

     The application process modules are not placed in FN by these two policies. FN 

node utilization is lower in GA, PSO, SA, and DEEDSP policies than CTOSO, EWP, 

GA, PSO, SA, and DEEDSP policies. In the same policy, sensor and actuation 

modules occupy FN nodes, preventing the FN nodes from running other modules. 

CTOSO and EWP policies place all modules on the FN node after 400 MIPS. 
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Fig 4.18: FN utilization with various capacities 

 

4.6.3.3 Energy utilization 

 

 

 

Figure 4.19 illustrates this. All other options consume more energy than the cloud-

only policy. Because it stores all modules in the cloud, the cloud consumes more 

energy to run the modules. Except for EWP and DEEDSP, the policies GA, PSO, and 

SA use less energy than the others.  

     The EWP and DEEDSP policies are useless or have the same cloud (CN) energy 

as the other policies. The DEEDSP policy uses less energy than the other policies 

combined. More modules are placed in FN as a result of the CTOSO policy. Because 

it installs more modules in FN, CTOSO requires more FN energy. The fog node is 

given priority in the CTOSO policy, while the remaining modules are placed in the 

cloud (CN). The majority of EWP and DEEDSP policies do not place modules in the 

cloud. Because of the high FN energies, EWP requires more energy than DEEDSP. 
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Fig 4.19: System energy consumption of various policies 

 

4.6.3.3.1.  Scenario 1 

 

 

Except for EWP, all policies that consider FCN for placement spend the same amount 

of FCN energy. DEEDSP has a higher NFCN energy than any other policies that take 

NFCN into account. In terms of using the NFCN node without surpassing the 

application deadline, this strategy outperforms different rules. 

The energy usage for various fog node MIPS is shown in Figure 4.20. In the event of 

a cloud-only strategy, the cloud energy usage remains constant for all FN MIPS 

values. DEEDSP uses less energy than any other plans up to 350 FN MIPS. Because 

it deploys more modules in the cloud node, the CTOSO consumes more energy than 

the DEEDSP policy, up to 250 FN MIPS. Because FN has enough room to support all 

of the modules alone, the CTOSO, EWP, GA, PSO, SA, and DEEDSP policies 

require the same amount of energy from 400 FN MIPS.  
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Fig 4.20: Energy consumption with various FN capacities 

 

 

4.6.3.3.2.   Scenario 2 

 

The rise in the FN MIPS value has no impact on the GS and DoSP policies. Only the 

sensor and actuation modules are placed in FN by these two regulations. Even as the 

FN MIPS value rises, it uses the FN resources equally. For various FN capabilities, 

the suggested DEEDSP spends less or equal energy than other policies. 

Because all modules are located in CN, the cloud-only policy, as illustrated in Figure 

4.21, consumes a constant amount of energy for various FNMIPS. DEEDSP spends 

less or equal energy than all other policies until the fog node reaches 350 FN MIPS. 

DEEDSP policy has arranged for all high-performance computing modules to be 

housed in FN. CTOSO and EWP policies have been demonstrated to be the best in 

system energy consumption at 400 FN MIPS. The FN MIPS value does not affect the 

GS and DoSP policies; these two policies solely place sensing and actuation modules 

in FN.  
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Fig 4.21: Overall energy consumption with various FN capacities 

 

Even as the FN MIPS value rises, it continues to use FN resources. Starting at 400 

MIPS, GA, PSO, SA, and DEEDSP required the same amount of FN energy. The 

energy consumption of all policies with different cloud distances is shown in Figure 

4.22. The change in cloud distance does not affect the energy consumption of the 

cloud alone, CTOSO, or EWP regulations. The energy consumption of the GS, DoSP, 

GA, PSO, SA, and DEEDSP policies decreases as the cloud distance increases.  

     When the distance between the cloud and the modules is extended, these three 

policies prevent the modules from being placed in the cloud. By reducing the number 

of modules in the cloud, the application will not miss its deadline. At high cloud 

distances, the proposed technique uses less energy than all existing policies. Except 

for EWP and DEEDSP policies, GA, PSO, and SA policies use less energy than other 

policies. 



 
140 

 

 

Fig 4.22: Overall energy consumption with various cloud distances 

 
 

 

 

Figure 4.23 depicts the energy usage of all policies based on different TAU values. 

GA and DEEDSP consume less energy than EWP policy between TAU values of 5 

and 20. TAU levels do not affect the energy usage of cloud-only, CTOSO, and EWP 

policies. All modules are placed in cloud nodes in the cloud-only policy. Thus, they 

are not affected by the TAU value, keeping the energy consumption constant. The 

scenario under the CTOSO policy is the same as in the cloud alone. Even after 

increasing the TAU value, the EWP policy arranges the modules in a hierarchical 

sequence in the neighbour controller node. As a result, greater TAU values do not 

affect energy usage.  
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Fig 4.23:  Overall energy consumption with various TAU values 

 

 

 

 

The system's total energy consumption is increased in the GS, DoSP, GA, PSO, SA, 

and DEEDSP policies as the TAU values increase. The GS and DoSP policies strive 

to arrange the modules in FCN and CN when the TAU values rise. More modules in 

the controller node and cloud node lead to a rise in energy consumption. When the 

TAU value rises, the DEEDSP policy consumes less energy than the GS, DoSP, GA, 

PSO, and SA policies. To avoid surpassing the deadline, the GS, DoSP, GA, PSO, 

SA, and DEEDSP policies minimize module insertion in neighbour fog controller 

nodes when the TAU value is increased. 
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4.6.3.4.  Trade-off between energy and execution time 

 
 

 

Fig 4.24: Trade-off between energy consumption and makespan time of DEEDSP policy 

 
 

When considering the response time and energy utilisation parameters which are 

dependent on cloud distance D, Figure 4.24 illustrates how well the DEEDSP policy 

impacts one another. Due to the increasing amount of services assigned to CN, energy 

consumption is highest when D = 0, although makespan time is lowered to 20.64 

seconds.  

xccsx    

     At a cloud distance of D = 15, consumption of energy as well as makespan time 

improved by 23.543 joules and 23.74 seconds, respectively. When D approached 50, 

overall energy consumption decreases but the makespan duration increases. The 

DEEDSP approach minimizes energy usage when increases the service placement in 

FN, leading in kind of a prolonged makespan time. The experiment demonstrated that 

our planned approach might be adaptable by modifying the cloud distance D. 
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4.7. Summary 

When used in sequential IoT workflow applications, overall efficiency of the multi-

tier fog infrastructure is investigated. There are several fog nodes containing distinct 

system resources inside this framework. Regarding better service location in a fog 

environment, the deadline-aware and energy-efficient service allocation method is 

explained. For validate this service placement method, extensive benchmark tests in a 

fog environment were conducted to evaluate application response time and system 

energy usage. When trying to compare this with other state-of-the-art algorithms, the 

proposed deadline-aware and energy-efficient service placement method is assessed. 

As per the simulated results, the suggested approach functioned effectively in a multi-

layer fog environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It meets the needs of users looking for high-performance execution or low energy 

consumption. At a cloud distance of 30 kilometres, the system achieves balance in 

terms of energy efficiency and makespan time. It is the best spot for balancing energy 

consumption and makespan time.  
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Chapter 5 

Conclusion & Future Scope 

5.1. Overview 

The findings and outcomes of the proposed model are presented in this chapter. We 

have presented the multi-tiered fog computing paradigm application service in the 

previous chapters wherein we have proposed the 2 Fog placement models named as 

Deadline-Aware Dynamic Service Placement (DoSP) & (DEEDSP). According to the 

Literature Survey, no work has been done to provide real-time analytics that 

dynamically identifies analytical activities pushed to the cloud or edge with the least 

latency and throughput.  

     Most of the network security-related research in fog computing has concentrated 

on multi-node authentication and authorization mechanisms. Still, little work has been 

done to provide fault tolerance in the fog environment for individual nodes, networks, 

service platforms, and applications. One of the challenging problems is the 

minimization of the energy consumption by the nodes in fog environment. There is a 

need to work to be done on programming models and architectures with the 

consideration of dynamic configuration. Further, due to multiple cloud tenant & users, 

distributed resources very minimal work has been done on security aspects in the fog 

computing environment. 

     With the Internet of Things (IoT) looming huge around the globe, it's crucial to 

remember that such applications can encompass thousands of connected devices. In 

other words, an IoT application may be thought of as a collection of services. The IoT 

application is coupled with sensing devices that create data 24 hours a day, seven days 

a week. IoT applications require cloud assistance because their sensor devices 

generate data continuously, and this data has big data characteristics such as volume 

(a large amount of data), velocity (data is streamed), and variety (data types such as 

structured, unstructured and semi-structured).  
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In this context, it is acknowledged that deploying an IoT application in the public 

cloud causes the application's response time and throughput to suffer. It is the primary 

issue that has been identified. Hence, fog computing is a good fit to execute 

workflow-based IoT applications. Furthermore, the issue is the positioning of services 

that allow for such an application. In terms of storage, processing, and other services, 

the services do not have uniform needs.  

     As a result, one size does not fit all, and different services require different 

treatment. When a particular service is deployed in FN, FCN, or CN, it is unavoidable 

to imagine or foresee prospective improvements in the broader application. It is a 

difficult problem that we must handle. As a result, the goal of this study is to develop 

fault-tolerant QoS aware service placement. 

     The thesis focuses on developing a framework for placing deadline-sensitive 

applications with minimum energy consumption and shows the significance of such a 

system. However, the optimization task of allocating applications to computation 

nodes becomes a complex problem to solve that requires optimization methods. We 

leverage the use of Meta heuristics, a particularly hyper-heuristic algorithm capable of 

taking advantage of optimization of IoT application service placement with deadline-

aware and minimizing energy consumption in Fog Computing.  

     The simulation of the suggested model will be executed using iFogSim. It works 

with stimulating the surrounding consisting of many IoT devices, and corresponding 

fog based we will show node Simulation results for justification.  

     Further, the testing of simulation results will be done for different output 

parameters. It will verify that the proposed policy is an improvement to previous 

works. The following is a list of the thesis' key contributions. 

✓ A survey and taxonomy of the state-of-the-art in-service placement in a fog 

environment have been designed to meet the specific needs of applications 

that objectively concentrate on latencies like augmented reality and IoT 

applications which tend to generate huge amounts of data un-workable for 

analyzed remote cloud data centers. 
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✓ To design a practical framework for application placement in a fog 

environment. The optimal solution obtains the load in another fog node by 

appropriately positioning the device, raising the heat that a specific fog node 

produces. 

 

✓ To design an efficient service placement algorithm concerning deadline 

awareness and energy efficiency. We have used the heuristic (Yates et al., 

2019) algorithms to improve the scheduling problem's performance. 

To compare the Extensive simulation-based performance evaluation of the proposed 

work with the existing algorithms across various multiple parameters along-with the 

analysis and discussion of the deserved results. 

5.2.   Conclusion 

The proliferation of IoT devices has resulted in a tremendous volume of data with 

hardware heterogeneity, geographical dispersion, and limited bandwidth. Existing 

cloud models are ill-suited to handle the latency-sensitive applications in such 

bandwidth constrained networks. The primary objective of this research study is to 

propose a fog computing model that can mitigate the above-mentioned challenges by 

distributing local processing near the point of data production. 

     The proposed fog computing model comprises three layers - device, fog, and 

cloud. The fog layer consists of nodes with exploitable computational resources, 

which can be leveraged to accelerate IoT services. The research focuses on two 

primary parameters - response time and energy minimization. 

     To achieve the aforementioned objectives, two fog placement models named 

Deadline-Aware Dynamic service placement (DoSP) and Dynamic Energy-Efficient 

Deadline-Sensitive Placement (DEEDSP) are proposed. The DoSP algorithm 

leverages the Genetic algorithm for deadline-aware application placement in the fog 

environment. The algorithm is dynamic and adapts to changes in the network 

environment to optimize service placement. The DEEDSP algorithm improves service 

placement in terms of deadline-awareness and energy efficiency. The algorithm is 

based on a hyper-heuristic algorithm that balances the energy-delay tradeoffs to 
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dynamically place application modules while minimizing the system's energy 

consumption. 

     Simulation results show that both the DoSP and DEEDSP algorithms outperform 

other approaches such as Edge Ward and Cloud Only. The proposed algorithms have 

the potential to accelerate IoT services in fog computing by balancing the energy-

delay trade-offs and providing a dynamic and adaptable service placement strategy. 

Further research can be conducted to test the proposed algorithms on larger datasets 

and real-world scenarios. 

5.3.  Future Scope 

The future scope of this research includes the following areas of development to 

improve the existing approach: 

     Real-time information and energy efficiency: The proposed method can be 

extended to optimize service location based on real-time data and energy efficiency. 

Advanced optimization techniques such as machine learning can be employed to 

achieve better results. 

     Container virtualization and device mobility: In a fog computing environment, 

container virtualization and device mobility can be considered to improve the 

efficiency and flexibility of the system. 

     Security: The DEEDSP approach can be further enhanced by integrating 

blockchain or quantum computing concepts to improve the security and processing 

capability of the system. 

     IoT applications: DEEDSP can be applied in various IoT applications, such as 

Industry 4.0, healthcare, and agriculture, to optimize service placement and improve 

system performance. 

     Serverless edge computing: The concept of serverless edge computing can be 

incorporated to scale applications effectively and optimize service placement. 

     In conclusion, the proposed DEEDSP approach can be further enhanced and 

expanded to address the latest trends and challenges in the fog computing domain. 

The future research would require integrating advanced optimization techniques, 

security mechanisms, and new technologies to improve the performance and 

efficiency of the system. 
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