

i

DESIGN OF HEURISTIC HOMOMORPHIC

TECHNIQUE FOR DISTRIBUTED MULTI-TENANT

CLOUD ENVIRONMENT

Thesis Submitted for the Award of the Degree of

DOCTOR OF PHILOSOPHY
in

Computer Applications

By

Pooja Dhiman

(41801027)

Supervised by Co-Supervised by

Dr. Santosh Kumar Henge Dr. Manmohan Sharma

LOVELY PROFESSIONAL UNIVERSITY

PUNJAB

2022

ii

Candidate's Declaration

I now declare that the thesis entitled "Design of Heuristic Homomorphic Technique

for Distributed Multi-Tenant Cloud Environment" is submitted to the Department

of Research, Lovely Professional University, Phagwara, Punjab, to fulfill the

requirements for the award of Degree of Doctor of Philosophy in Computer

Applications. It is a bonafide record of my own and original research work carried under

the supervision of Dr. Santosh Kumar Henge and Dr. Manmohan Sharma, School of

Computer Applications, Lovely Professional University, Phagwara.

I further declare that the matter presented in this thesis has not been submitted for the

award of any other degree/diploma of this University or any other University/Institute.

(Pooja Dhiman)

Research Scholar

iii

Certificate

I certify that the candidate carried out the work incorporated in the thesis “Design of

Heuristic Homomorphic Technique for Distributed Multi-Tenant Cloud Environment”

submitted by Pooja Dhiman under my supervision/guidance. To the best of my

knowledge:

i. The candidate has not submitted the same research work to any other institution

for any degree/diploma, Associateship, Fellowship, or other similar titles.

ii. The thesis submitted is a record of original research work done by the Research

Scholar during the period of study under my supervision, and

iii. The thesis represents independent research work on the part of the Research

Scholar.

Supervised by Co-Supervised by

(Dr. Santosh Kumar Henge) (Dr. Manmohan Sharma)

Associate Professor Professor

Lovely Professional University Lovely Professional University

Phagwara Phagwara

Punjab Punjab

iv

Letter of Candidacy

v

Acknowledgment

I express my sincere thanks and deep gratitude to my supervisor, Dr. Santosh Kumar

Henge for his valuable support and efforts. He has truly supported and guided me in the

right direction which helped in the fulfilment of the research work. He has always

motivated me in writing quality research papers. I express my gratitude to my co-

supervisor Dr. Manmohan Sharma for unwavering support, suggestions, and guidance.

I express my gratitude to them for their valuable contribution to the progress and

development of my research. They possess an immense breadth and depth of knowledge

coupled with great talent and enthusiasm for research. They have taught me how to

undertake research work and communicate effectively in the form of a research paper.

Their active participation, untiring efforts, affection, guidance, and approach have

brought this work to the present stage.

I received a lot of support from many researchers, academicians, and professors of other

universities as well. I am incredibly helpful for their effort in analysing the proposed

work and providing me with an environment for implementing the work.

I extend my sincere thanks to my family and friends, and especially my father Mr. J.P.

Dhiman for his moral support and motivation. He taught me how to patiently handle

unfavourable situations and maintain balance in life. I deeply thank my husband Mr.

Vikram Arora for supporting me in completing my research work.

Pooja Dhiman

vi

ABSTRACT

Cloud computing has completely altered the delivery of IT services to the clients. It

eliminates the requirement of setting up of high-cost computing infrastructure. The

ability to scale up and down the services according to the requirement of the client

makes it flexible and easy to use. Cloud computing provides various hosting and storage

services on the internet. Cloud service providers (CSPs) provide privacy by segregating

clients’ data and resources into tenants. A tenant is an isolated container specifically

designed for each client; it can be an organization, a department of an organization, or

an individual. Multi-tenancy is the key element in both public and private spaces;

privacy protection is the main concern in collaboration among these tenants.

Authentication, authorization, and data access control are essential to maintain the

security and privacy of the data. Most of secure systems have integrated a dual-mode

authentication process with various control logs in an enterprise-level multi-tenancy

environment, but the dual authentication process may not secure the data from

upcoming threats and researchers should consider additional layers in the authentication

process.

The Fully Homomorphic encryption algorithm encrypts the data on the cloud in a secure

way. This scheme ensures data computation on the encrypted state without the need of

decrypting the data.

A hybrid approach using EHC (Enhanced Homomorphic Cryptosystem) and BGV

(Brakerski-Gentry-Vaikuntanathan) is designed based on the user’s role for the

proposed model. EHC requires less power and the storage requirement is comparatively

less. It is indistinguishable under chosen-ciphertext attack, but it supports implicating

the static data. BGV manages ciphertext by reducing noise, compatible with both static

and dynamic data, but it's weak in proving the security of CCA.

EHC and BGV can be used in combination to cover up the disadvantages of both

algorithms resulting in forming a better algorithm with more advantages and more

security. This research considers dependable and non-dependable parameters and

vii

factors to secure the tenants using the EHC-BGV FHE hybrid methodology, resulting

in a multi-factor authentication-authorization process. The total number of keys used

by BGV is two, one private and one public key while EHC generates one public key

and three private keys.

A token is generated for the security of internal users that will expire after some period

of time and based on the category of the outsider users; keys are generated. EHC

encryption scheme generates the token and keys for most of the insider and outsider

user categories while BGV is used to generate a hybrid key for one specific user

category that is for partial users only. The highest security is set for the trusted category

of outsider tenants in an outsider environment. An additional key OOTP (On-demand

one time password) is generated in case of an attack; upon which self-key mutation

takes place. This key is added apart from password, salting, and OTP authentication

parameters. It adds an additional layer of protection to the cloud data.

For other tenant categories, that is, for an un-trusted user or tenant, two user categories

are used; Partial and Guest or Anonymous user. For partial users, the hybrid key is

generated which is based on some production rules and the session will expire after

some number of days. The guest user is considered as most risky tenant type since a

guest or anonymous user does not provide much details before accessing a file. Hence,

they are given least access to the resources and the session will expire after a number

of hours. In this way, security is applied for different layers of tenants and customized

access is given to the tenants according to their roles.

In our proposed model, the Fully Homomorphic algorithm schemes and parity mapping

with key mutation technique are used. Key mutation is implemented only in case of an

attack. When an attacker tries to intercept the transmission channel, self-key mutation

takes place and shuffling of bits is done which is based on the production rules or parity

rules.

The proposed approach has tested on various distributed cloud servers with 223 end-

users by the integration of seventeen multitenant, twelve head-tenants, and seven

enterprise levels and achieved a 96 percent of success rate. Self-key mutation is

viii

implemented in case of an attacking scenario. The attack is identified by checking the

user’s authorization from the dictionary, which is designed at the time of registration of

the user or tenant. The dictionary contains the user’s information like IP address, name

and location. If the attacker tries to access the data, IP is matched from the dictionary,

if the match is not found, self-key mutation occurs. A rule is selected from 56 rules

which are already designed randomly. The random selection of mutation rule makes it

complex for the attackers to get access to the data.

The proposed blended model is efficient to prevent the data from ciphertext attacks and

achieved more success rate for transmitting the data between various multi-tenants

based on the user-role-user-type of enterprise cloud servers.

ix

Table of Contents

Candidate's Declaration ... ii

Certificate .. iii

Letter of Candidacy ... iv

Acknowledgment ... v

ABSTRACT .. vi

List of Tables... xii

List of Figures ... xv

Annexure I ... xvii

List of Abbreviation .. xvii

Chapter-1 ... 1

Introduction and Overview of Cloud Computing .. 1

1.1 Overview of Cloud Computing ... 1

1.1.1 Cloud Service Delivery Models ... 2

1.1.2 Cloud Deployment Models ... 2

1.2 Multi-Tenancy ... 3

1.2.1 SaaS based Multi-Tenancy Challenges and Concerns 3

1.3 Virtualization ... 4

1.4 Basic types of attacks ... 5

1.5 Homomorphic Design .. 5

1.5.1 Functions of Homomorphic Encryption .. 7

1.5.2 Homomorphic Encryption Schemes .. 8

1.5.3 Properties of Homomorphic Encryption ... 9

1.6 Homomorphic techniques for securing the data with data access control 10

1.7 Analysis of FHE Schemes (BGV, EHC, AHEE, NEHE) ... 11

1.7.1 BGV (Brakerski-Gentry-Vaikuntanathan) .. 11

1.7.2 EHC (Enhanced Homomorphic Cryptosystem) .. 12

1.7.3 AHEE (Algebra Homomorphic Encryption scheme based on updated

Elgamal)….. .. 13

1.7.4 NEHE (Non-interactive exponential Homomorphic encryption algorithm) 14

1.7.5 Detailed Analysis of various FHE Schemes (NEHE, BGV, AHEE, EHC) 16

1.7.6 Selection criteria of BGV and EHC FHE schemes ... 17

x

1.8 EHC, BGV and Hybrid EHC-BGV homomorphic algorithm 18

1.9 Brief summary of this chapter .. 19

Chapter-2 ... 20

Literature Review ... 20

2.1 Analysis of literature .. 20

2.2 Comparison of past proposed and proposed model complexities based on number

of computations .. 38

2.3 Issues with current methodologies and Research gaps ... 39

2.4 Addressing the issues... 40

2.5 Brief summary of this chapter .. 41

Chapter-3 ... 42

Methodology of the proposed research work .. 42

3.1 Objectives of the proposed work ... 42

3.2 Implementation of Ciphertext Policy Attribute-Based Encryption (CP-ABE) Algorithm

 ……….42

3.3 Designing the multi-tenant multiple-enterprise model ... 46

3.4 FHE Blended Schemes EHC and BGV based Environment: 48

3.5 Automated Key Filter and Bit-Mapping Techniques using Hybrid EHC-BGV

Homomorphic Algorithm ... 49

3.6 Secure Token and Key Implications based on Dependable and Non-Dependable

Factors…. .. 52

3.7 Algorithm for generating the token/keys based on the user-role-type 55

3.8 Experimental Scenario and Analysis: .. 57

3.8.1 Attacking scenario .. 57

3.8.2 Self-key mutation ... 58

3.8.3 Working of self-key mutation ... 59

3.9 Brief summary of this chapter .. 79

Chapter-4 ... 80

Experimental Analysis and Results ... 80

4.1 Experimental setup .. 80

4.2 Creating a multitenant environment on CloudSim and generating the keys using EHC

algorithm .. 84

4.2.1 Token generation ... 85

4.2.2 Snip for token generation on email id... 85

4.2.3 Storage requirement by EHC .. 86

xi

4.3 Test case analysis ... 87

4.3.1 Implications of EHC algorithm based key generation time, encryption time and

decryption time ... 87

4.3.2 Implications of Hybrid EHC-BGV Homomorphic based key generation time,

encryption time and decryption time .. 89

4.3.3 Implications of Hybrid EHC-BGV Homomorphic based automated key filter

scenario with bits-shuffling mechanism ... 91

4.3.4 Key generation time variations among EHC algorithm and Hybrid EHC-BGV on

8-byte key size... 92

4.3.5 Encryption time variations among EHC algorithm and Hybrid EHC-BGV on 8-

byte key size .. 92

4.3.6 Decryption time variations among EHC algorithm and Hybrid EHC-BGV on 8-

byte key size .. 93

4.3.7 Description of Comparative analysis of proposed hybrid EHC-BGV approach

with existing approaches ... 93

4.3.8 Comparison of considered size of the cipher-text in existing approaches along

with the proposed EHC model and hybrid EHC-BGV approach with key size of 8

byte………… .. 95

4.3.9 Comparison of considered time for the implication of encryption-time in

existing approaches along with the proposed EHC Model and hybrid EHC-BGV approach

with key size of 8 bytes .. 97

4.3.10 Comparison of considered time for the implication of decryption-time in

existing approaches along with the proposed EHC Model and hybrid EHC-BGV approach

with key size of 8 bytes .. 100

4.4 Conclusion ... 102

4.5 Brief summary of this chapter .. 103

Chapter-5 ... 104

Recommendations and Future work .. 104

5.1 Summary ... 104

5.2 Implications ... 105

5.3 Limitations and Future scope ... 106

Bibliography ... 107

Annexure II ... 116

List of Publications .. 116

Annexure III .. 119

Publications Reprints ... 119

xii

List of Tables

Table 1.1 Various Homomorphic schemes 08

Table 1.2 Detailed analysis of FHE schemes (NEHE, BGV, AHEE, EHC) 16

Table 2.1 Computational complexity of various Homomorphic algorithms 38

Table 3.1 CP-ABE- Multi-tenancy parameters 45

Table 3.2 Algorithm for generating the token/keys 55

Table 3.2(a) Primary data of generated key, salting values, general OTP for

data access and data control, On-demand OTP for verification

and validation, and instance of Data

59

Table 3.2(b) Primary data of generated key, salting values, general OTP for

data access and data control, On-demand OTP for verification

and validation, and instance of Data

59

Table 3.3(a) Conversion of the password Pooja@25 to binary bits. The

matrix is an 8x8 64-bit formation

60

Table 3.3(b) Conversion of salting key to binary bits 61

Table 3.4(a) The 1st and 8th bit interchanging of each character in 8x8 matrix

vector with 64-bit formation

61

Table 3.4(b) The 1st and 7th bit interchanging of each character in 8x8 matrix

vector with 64-bit formation

62

Table 3.4(c) The 1st and 6th bit interchanging of each character in 8x8 matrix

vector with 64-bit formation

62

Table 3.4(d) The 1st and 5th bit interchanging of each character in 8x8 matrix

vector with 64-bit formation

63

Table 3.4(e) The 1st and 4th bit interchanging of each character in 8x8 matrix

vector with 64-bit formation

63

Table 3.4(f) The 1st and 3th bit interchanging of each character in 8x8 matrix

vector with 64-bit formation

63

Table 3.4(g) The 1st and 2nd bit interchanging of each character in 8x8

matrix vector with 64-bit formation

64

Table 3.4(h) The 2nd and 8th bit interchanging of each character in 8x8 matrix

vector with 64-bit formation

64

Table 3.4(i) The 2nd and 7th bit interchanging of each character in 8x8 matrix

vector with 64-bit formation

65

xiii

Table 3.4(j) The 2nd and 6th bit interchanging of each character in 8x8

matrix vector with 64-bit formation

65

Table 3.4(k) The 2nd and 5th bit interchanging of each character in 8x8

matrix vector with 64-bit formation

66

Table 3.4(l) The 2nd and 4th bit interchanging of each character in 8x8

matrix vector with 64-bit formation

66

Table 3.4(m) The 2nd and 3rd bit interchanging of each character in 8x8

matrix vector with 64-bit formation

67

Table 3.4(n) The 3rd and 8th bit interchanging of each character in 8x8

matrix vector with 64-bit formation

67

Table 3.4(o) The 3rd and 7th bit interchanging of each character in 8x8

matrix vector with 64-bit formation

67

Table 3.4(p) The 3rd and 6th bit interchanging of each character in 8x8

matrix vector with 64-bit formation

68

Table 3.4(q) The 3rd and 5th bit interchanging of each character in 8x8

matrix vector with 64-bit formation

68

Table 3.4(r) The 3rd and 4th bit interchanging of each character in 8x8

matrix vector with 64-bit formation

69

Table 3.4(s) The 4th and 8th bit interchanging of each character in 8x8 matrix

vector with 64-bit formation

69

Table 3.4(t) The 4th and 7th bit interchanging of each character in 8x8 matrix

vector with 64-bit formation

70

Table 3.4(u) The 4th and 6th bit interchanging of each character in 8x8 matrix

vector with 64-bit formation

70

Table 3.4(v) The 4th and 5th bit interchanging of each character in 8x8 matrix

vector with 64-bit formation

70

Table 3.4(w) The 5th and 8th bit interchanging of each character in 8x8 matrix

vector with 64-bit formation

71

Table 3.4(x) The 5th and 7th bit interchanging of each character in 8x8 matrix

vector with 64-bit formation

71

Table 3.4(y) The 5th and 6th bit interchanging of each character in 8x8 matrix

vector with 64-bit formation

72

Table 3.4(z) The 6th and 8th bit interchanging of each character in 8x8 matrix

vector with 64-bit formation

72

xiv

Table 3.4(ab) The 6th and 7th bit interchanging of each character in 8x8 matrix

vector with 64-bit formation

73

Table 3.4(ac) The 7th and 8th bit interchanging of each character in 8x8 matrix

vector with 64-bit formation

73

Table 3.5(a) The 1st bit to 8th bit interchange with 57th bit to 64th bit in 8x8

matrix vector with 64-bit formation

74

Table 3.5(b) The 1st to 8th bit interchange with 49th bit to 56th bit in 8x8

matrix vector with 64-bit formation

74

Table 4.1 The key generation time variations among EHC algorithm and

Hybrid EHC-BGV

92

Table 4.2 The encryption time variations among EHC algorithm and

Hybrid EHC-BGV

92

Table 4.3 The decryption time variations among EHC algorithm and

Hybrid EHC-BGV

93

Table 4.4 Comparative analysis of proposed hybrid EHC-BGV approach

with existing approaches with 8-byte key size

94

Table 4.5 Comparison of considered size of the cipher-text in existing

approaches along with the proposed EHC model and hybrid

EHC-BGV approach with 8-byte key size

96

Table 4.6 Comparison of considered time for the implication of

encryption-time in existing approaches along with the proposed

EHC Model and hybrid EHC-BGV approach with 8-byte key

size

97

Table 4.7 Comparison of considered time for the implication of

decryption-time in existing approaches along with the proposed

EHC Model and hybrid EHC-BGV approach with 8-byte key

size

100

xv

List of Figures

Figure 1.1 Working of Homomorphic encryption algorithm. 06

Figure 1.2 Methodology of BGV homomorphic scheme 12

Figure 1.3 Methodology of EHC homomorphic scheme 13

Figure 1.4 Methodology of AHEE homomorphic scheme 14

Figure 1.5 Methodology of NEHE homomorphic scheme 15

Figure 3.1 Ciphertext Policy Attribute-based Encryption (CP-ABE)

algorithm in multiple tenants

43

Figure 3.2 Enterprise-level multi-tenancy environment for data access

control, authorization, and authentication

47

Figure 3.3 Hybrid approach using BGV and EHC Homomorphic

algorithms

51

Figure 3.4 Steps for generating the token and the associated keys

depending on the role of the user

53

Figure 4.1.1 Test case for creating multiple tenants in cloud architecture 81

Figure 4.1.2 Test case for uploading a file on cloud server on real-time 82

Figure 4.1.3 Test case for request for accessing a file 83

Figure 4.1.4 Test case for generating the token key which is received

successfully on email id

83

Figure 4.1.5 Test case showing the mutated key after an attack 84

Figure 4.2(a) Test case with EHC keys generation time and size 85

Figure 4.2(b) Test case with token generation on email id 86

Figure 4.2(c) Memory required by EHC 87

Figure 4.3 Implications of EHC algorithm based key generation time,

encryption time and decryption time

88

Figure 4.4 Implications of Hybrid EHC-BGV Homomorphic based key

generation time, encryption time and decryption time

90

Figure 4.5 Implications of Hybrid EHC-BGV Homomorphic based

automated key filter scenario with bits-shuffling mechanism

based on the 8-byte formation matrix by 56 parity rules key

mutations

91

xvi

Figure 4.6 Test case with comparison of considered size of the cipher-text

in existing approaches along with the proposed EHC model and

hybrid EHC-BGV approach with 8-byte key size

96

Figure 4.7 Test case with comparison of considered time for implication of

encryption-time in existing approaches along with the proposed

EHC model and hybrid EHC-BGV approach with 8-byte key

size

98

Figure 4.8 Bit wise comparison of encryption-time in existing approaches

along with the proposed EHC model and hybrid EHC-BGV

approach with 8-byte key size

99

Figure 4.9 Comparison of considered time for implication of decryption-

time in existing approaches along with the proposed EHC model

and hybrid EHC-BGV approach with 8-byte key size

101

xvii

Annexure I

List of Abbreviation

ABAC Attribute based access control

ABAC Attribute based access control

AES Advance Encryption Standard

AES Advance encryption standard

AHEE Algebra Homomorphic Encryption scheme based on updated Elgamal

AKG Authentication Key Generation

APG Authentication Password Generation

API Application interface

ASCII American Standard Code for Information Interchange

Auth_V Authentication Verification

AWS Amazon Web Services

BGV Brakerski-Gentry-Vaikuntanathan

BMIAE Blockchain multi-instance iris authentication using ElGamal

Homomorphic Encryption

CCA Chosen Cipertext Attack

CP-ABE Ciphertext policy attribute-based encryption

CPA Chosen plaintext attack

CPS Cyber physical system

CRT-RSA Chinese remainder theorem with Rivest-Shamir-Adleman

CSWA Cloud-based workflow scheduling

DAC Discretionary Access Control

DDoS Distributed denial of service

DES Data Encryption Standard

DoS Denial of service

ECC Elliptic Curve Cryptography

EDoS Economic Denial of Sustainability attack

EHC Enhanced Homomorphic Cryptosystem

FHE Fully Homomorphic Encryption

FTP File Transfer Protocol

HE Homomorphic encryption

HEA Homomorphic encryption algorithm

xviii

HElib Homomorphic Encryption library

HK Hybrid Key

HTTPS Hypertext transfer protocol secure

IaaS Infrastructure-as-a-Service

IPFS InterPlanetary File System

IND Indistinguishable

IP Internet address

JWT JSON web token

KM Key mutation

KP-ABE Key policy attribute-based encryption

LPN Learning parity with noise

LWE Learning with errors

MAC Mandatory Access Control

MITM Man in middle attacks

NEHE Non-interactive exponential Homomorphic encryption algorithm

NIST National Institute of Standards and Technology

OOTP On-demand one time password

OTP One time password

P2P Peer to peer

PaaS Platform-as-a-Service

PHE Partial Homomorphic Encryption

PHM Prognostics and health management

PK Public key

PWD Password

PuK Public key

R-LWE Ring learning with errors

RBAC Role based access control

RSA Rivest-Shamir-Adleman

RT Receiver Tenant

SaaS Software-as-a-Service

SEAL Simple Encrypted Arithmetic Library

SHA-2 Secure hashing algorithm

SK Secret key

SLA Service level agreement

xix

SMEs Small and medium enterprises

SOA Service Oriented Architecture

SQL Structured Query Language

ST Sender Tenant

SWHE Somewhat Homomorphic Encryption

TLS Transport layer security

UIDAaaS User Identity Authentication as a Service

V-Nodes Verifier cloud nodes

VF Virtual firewalls

VM Virtual manager

V-Nodes Verifier cloud nodes

1

Chapter-1

Introduction and Overview of Cloud Computing

The chapter presents an overview of cloud computing, multi-tenancy, virtualization,

homomorphic encryption algorithm, access methods and hybrid approach used for the

proposed model. The motivation of the research work is to reduce the research gaps,

and the objectives of the proposed work are explained. This chapter introduces the

concepts used in the proposed model and the organization of the thesis.

1.1 Overview of Cloud Computing

A standard definition by NIST for defining cloud computing is given as, “It is a model

that requires minimal management effort where all the resources can be shared with

multiple users in sharing mode but with customized approach. This customized

approach is managed in a multi-tenant environment for enabling convenient use of the

configurable computing resources” [1].

Cloud computing refers to providing various cloud- based services such as software,

application, platform, storage and networking resources on a pay-per-use basis. It

reduces the expense cost for setting up resources by allowing the sharing mode [2]. It

eliminates the requirement of setting up of high-cost computing infrastructure. The

ability to scale up and down the services according to the requirement of the client

makes it flexible and easy to use. Cloud computing provides various hosting and storage

services on the internet.

The cloud computing is playing a major role in the evaluation of technical life of

mankind with the successful execution of various cloud services such as software,

application, platform, storage, and networking resources on a pay-per-use basis. Cloud

data security is always the topmost priority of Cloud Service Providers. The cyber-

attacks on cloud data prove that there is a need for continuous research for finding

various updated ways to protect the cloud data from unauthorized users.

2

1.1.1 Cloud Service Delivery Models

Choosing the right model to adapt in business is the most important task. An appropriate

cloud model can be selected based on the fact, which layers client wants to control and

which ought to be the duty of the cloud provider. Basically, there are three types of

service delivery models:

• Software-as-a-Service (SaaS) – Clients use the provided application or

software directly as on demand without installing on one’s machine. Users do

not have any control over network, storage, server, and application. Medium

and small-scale business this cost-effective model. In simple words, SaaS looks

like passing by public transport. Transports have assigned routes, and you share

the ride with different passengers. Some of the examples are: Google Drive,

Microsoft Office 365, Drop Box, Google voice assistant, Apple’s Siri.

• Platform-as-a-Service (PaaS) - PaaS can be used to deploy, test, and organize

different applications. A pre-configured OS is used, but reasonable amount of

control over the rest of the configuration. Control can be managed by the cloud

service provider or the client itself with a limited access. PaaS can be like taking

a taxi. You do not drive a taxi yourself but asks driver to take you to the

destination. Some examples are AWS, Google App Engine.

• Infrastructure-as-a-Service (IaaS) – Hardware resources like server, storage,

data center are delivered in IaaS service model as a service. No control over

infrastructure is provided to the client. OS can be customized according to the

client’s need. No hardware needs to be installed at client’s premises. IaaS looks

like leasing a car. When you lease a car, you pick the car of your choice and

drive it wherever you wish, however you are not the owner of that car. If you

need upgradation, simply lease another car. Some examples are Microsoft

Azure, Amazon Elastic Compute Cloud, and Google Compute Engine.

1.1.2 Cloud Deployment Models

According to the organizational need of security and client’s ability to manage the

cloud, an appropriate cloud deployment model can be selected.

3

• Private Cloud – An infrastructure used by a single organization. Control may

be managed by the third-party cloud provider or by the client itself. It can exist

on-premises and off-premises and is the most expensive and most secured cloud

deployment model.

• Public Cloud – It supports all the organizations who wish to use the cloud

computing services. Completely owned by the cloud provider itself, exists

commonly on premises of cloud vendor. Its inexpensive nature lets medium and

small businesses prefer this cloud over others, though working on public cloud

can be less secure.

• Hybrid Cloud – It is a combination of cloud types as per organization’s

requirement. It is the most preferred cloud deployment model, capacity and

performance can be improved.

• Community Cloud – Multiple organizations part of a community sharing

community resources are supported by this model.

1.2 Multi-Tenancy

A multi-tenant cloud is a cloud computing architecture which isolates the resources and

client’s data into tenants, hence providing better privacy and integrity of data. It allows

client provider to share the resource among a number of tenants for better resource

utilization at reduced cost. In simple words, a single instance of a resource is being

shared by multiple users. A tenant is a group of users, organization or an individual user

using the service. Each tenant is isolated from other tenants on account of privacy. No

tenant can access other tenant’s data or needs special access permission from cloud

provider.

1.2.1 SaaS based Multi-Tenancy Challenges and Concerns

SaaS (Software as a service) application providers were based on multi-tenant

architecture which is the most challenging testing area, since it involves testing multiple

tenants’ layers (Inner, Outer tenant’s categories). Both, Functional and non-functional

testing can be applied on a SaSE (Software as Service Enterprise) application.

4

• The isolation among the tenants is important to manage the work between them.

The modifications done by one tenant should not affect the performance of

another tenant. Multi-tenancy isolation should be carefully done in all the levels

of the cloud infrastructure; it can be at functional or non-functional level.

• Tenant customization should be supported in run time in such a way that the

changes made by one tenant do not affect other tenant’s interface. The settings

of the tenants are customized individually based on their role and access

applicability. It is the most important requirement of any multi-tenant

application. Updation in one tenant’s interface should not halt the performance

of others.

• An adaptive access control policy for each tenant must be maintained for

collaboration among various tenants to protect each tenant’s data.

1.3 Virtualization

Virtualization simplifies management of resources by sharing and pooling resources for

maximum utilization, a tenant will realise as if the resource is being used by him only

privately. Virtualization technology allows cloud service providers to use one server as

multiple virtual machines in a cost-effective manner. It is the key component of the

cloud. It works on the principle of SOA (Service Oriented Architecture).

Hypervisor is the VM (Virtual machine) manager, responsible for managing resources

between different operating systems running on a system at the same time. There is

always a risk in working on VMs. If hacker gets access of hypervisor, every control is

gone then. A virus or malware in any of the single computer system may spread to other

systems and ultimately reach the hypervisor corrupting the whole virtualized

environment.

Various types of virtualizations are Network virtualization, Server virtualization,

Storage virtualization, Application virtualization, Presentation virtualization, Full

virtualization.

5

1.4 Basic types of attacks

A cryptosystem is said to be indistinguishable if the attacker is unable to distinguish

cipher text pairs for the message encrypted. So, it becomes difficult to access the file.

An algorithm or technique is said to provide stronger security if it is indistinguishable

under Chosen cipher text attack (IND-CCA) as it is hard to break.

• CCA: A chosen cipher text attack is an attack model which decrypts the chosen

cipher texts to obtain the plaintext and the encryption key. The private key can

be obtained by the decryption process.

• CPA: A chosen plaintext attack is an attack model which chooses random

plaintexts to find the respective cipher texts and evaluate the encryption key.

This type of attack is easy to break as compared to CCA.

• KPA: A known-plaintext attack can be easily implemented as the plaintext-

ciphertext pairs are known to the intruder, the only requirement is mapping the

keys in some order to obtain the encryption key. This attack can be easily

breakable and hence is not a preferred choice of cryptanalysts.

1.5 Homomorphic Design

Homomorphic design allows cloud providers to compute the client’s private data as

requested by the client himself, without the need of decryption. Computations are done

on encrypted data where cloud provider has no idea of the original data hereby

protecting the data from unauthorized access.

HE (Homomorphic encryption) method is mainly used in Privacy protection, Data

processing, Ciphertext retrieval. Traditionally, CSP (Cloud Service Provider) asks the

client for decryption key, apply mathematical operation on original data and store the

data over cloud in encrypted form again. This process violates the privacy feature in

cloud. Hence is the need for Homomorphic Cryptosystem[3][4][5]. HE algorithm

schemes are used to perform the operations and computations on the encrypted data in

a secure manner. Decryption process is not required as is required traditionally to

perform the evaluation of values stored on the cloud. This allows data integration,

privacy, and protection.

6

For example, an organization may opt the third party for some computational work.

Traditionally, the cloud providers or the organizations themselves put user’s data at the

risk, to operate and compute some results by taking help from third-party and the third-

party asks for the decryption key, hence violating the privacy factor. But after the

development of the homomorphic algorithm, third-party can work on the encrypted data

only. Thus, it helps in maintaining the privacy of the user’s data.

It is categorized into 3 types; PHE (Partial Homomorphic algorithm), SWE (Somewhat

Homomorphic algorithm) and FHE (Fully Homomorphic algorithm). A PHE supports

only one ciphertext operation at some instant of time that is, it can be either

multiplication or addition operation. A SHE supports both the operations at the same

time but with a limited number of computations. The FHE algorithm is considered as

secure and flexible implementation as it allows an unlimited number of operations on

the encrypted data. Figure 1.1 shows the key generation process using HE algorithm.

The secret key (sk) and public key (pk) are generated at the client’s terminal and the

data variables x and y are encrypted using the pk. The functions and operations are

performed at the server terminal in the encrypted form and the computed values are sent

back to the client where client can use sk to decrypt the ciphertext data. Hence, the

computation takes place on the encrypted values which results in providing better

security and protection to the cloud data.

Figure 1.1 Working of Homomorphic encryption algorithm

7

1.5.1 Functions of Homomorphic Encryption

HE consists of basically four functions, Generating the keys, Encrypting the plaintext,

Decrypting the ciphertext, and Evaluation of operations [6][7][8].

Function name- Key generation (S)

This function generates the private and public keys by taking an input security

parameter.

Input- Security parameter (S)

Output- Public key (PuK), Private keys (PK)

Function name- Encryption (PuK, PT)

This function encrypts the plain text using a public key and produces a resultant

decrypted text that is, cipher text.

Input- Public key (PuK), Plaintext (PT)

Output- Ciphertext (CT)

Function name- Evaluation (PuK, Circuit, CT)

This function evaluates the cipher text on a circuit of inputs by applying the public key.

The functioning is evaluated on the decrypted data, hence protecting the privacy of

user’s data. It returns another cipher text which is the encrypted resultant after

computation.

Input- Public key (PuK), Circuit of t inputs, set of CT of t ciphertext CT1, CT2, and so

on.

Output- Ciphertext (CT)

Function name- Decryption (PK, CT)

This function returns the decrypted cipher text by applying the private key and returns

the original plaintext.

Input- Private key (PK), ciphertext (CT)

Output- Plaintext (PT)

8

1.5.2 Homomorphic Encryption Schemes

Some of the homomorphic schemes are discussed in the tabular form in Table 1.1[8]

[9]. The table contains the PHE algorithms like RSA, ElGamal, Paillier and FHE

algorithms like BGV, EHC, AHEE, and NEHE.

Table 1.1 Various Homomorphic schemes

Homo.

Scheme

Homo. Type Definition/Problem Taken Nature

of Data

Applications

RSA

Rivest-

Shamir-

Adleman

[8]

Multiplicative

Homo.

Asymmetric encryption,

Security assumption on

Integer Factorization

Problem

Static To secure

internet

banking

ElGamal

[8][9]

Multiplicative

Homo.

Based on the concept of

Discrete Logarithms.

Security assumption on

Diffie-Hellman key

exchange.

Static Hybrid

system

Paillier

[8]

Additive

Homo.

Based on Decisional

composite residuosity

assumption (DCRA)

Static E-voting

system

BGV [8]

Mixed Homo. Asymmetric encryption

based on encryption of bits.

Works on integer values in

polynomials vectors.

Static

and

Dynamic

Security of

Integer

Polynomials

EHC [8]

Mixed Homo. EHC is the type of

homomorphic encryption

with its numerous

applications based on real

time. EHC is secure under

CCA and is used for

Encryption and Decryption

operation.

Static Transmission

of messages

securely,

MANETS

NEHE

[8]

Mixed Homo. Encrypted polynomial and

exponential functions are

evaluated.

Static Active

Networks, E-

Commerce

9

1.5.3 Properties of Homomorphic Encryption

HE has mainly two properties; Additive and Multiplicative Homomorphic Encryption

[8] though other operations like subtraction and division can be applied using addition

and multiplication operations.

1.5.3.1 Additive Homomorphic Encryption

The condition for additive HE is,

Ek (PT1⊕PT2) = Ek (PT1) ⊕ Ek (PT2)

Paillier Cryptosystem (1999)[8]: It follows additive HE property. The Paillier

encryption algorithm belongs to PHE category as it supports only a limited number of

addition computations on the cipher text.

Key generation:

Step 1: Calculate modulus value, n = pq

Step 2: λ = lcm (p − 1, q − 1)

Step 3: g є Z /n2 Z such that n|or dn
2 (g)

Step 4: Public-key: (n, g), secret key: λ, μ

Encryption of m:

Step 1: m є {0, 1... n − 1}, a message

Step 2: h єR Z/n Z

Step 3: c = gm hn mod n2, a cipher text

Decryption of c:

m = L (cג mod n2) L(gג mod n2) −1 mod n

The constant parameter,

L (gλ mod n2)-1 mod n or L (gα mod n2)-1 mod n where g=1+ n mod n2

can also be recomputed once for all.

10

1.5.3.2 Multiplicative Homomorphic Encryption

The condition for multiplicative HE is,

Ek (PT1⊗PT2) = Ek (PT1) ⊗ Ek (PT2)

RSA Cryptosystem (1978)[8]: It follows multiplicative HE property. The RSA

encryption algorithm belongs to PHE category as it supports only a limited number of

multiplicative computations on the cipher text.

Key Generation

Step 1: Two large prime numbers p and q are selected for generating

public and private keys.

Step 2: System modulus can be calculated as,

N= p.q and ø(N)=(p-1)(q-1)

Step 3: Encryption key e is randomly selected where, 1<e<ø(N),

gcd(e,ø(N))=1

Step 4: Public encryption key is defined by,

KU= {e,N}

Private decryption key: KR={d,p,q}where d is the secret

exponent which is used as a combination in the decryption key.

 Encryption

Step 1: Receiver’s public key, KU={e,N}

Step 2: Encrypted value is defined by,

 C=Me mod N, where 0≤M<N

 Decryption

Step 1: Private key is input, KR={d,p,q}

Step 2: Decrypted value is computed by,

M=Cd mod N

1.6 Homomorphic techniques for securing the data with data access control

The HE algorithm can be combined with the access control policies. These access

policies are designed to provide customized access to the administrator or the other

11

users or tenants. Tokens are commonly used for the access control mechanism, which

can be combined with multi-factor security parameters like login credentials, salting,

key-mutation and so on [10][11]. Salting technique can be integrated with the login

credentials like username and password. A one-time password can be added as an

additional security protocol to protect the data on public cloud.

The FHE algorithm is considered as a strong encrypting algorithm than PHE and SHE

algorithms Different mechanisms can be followed for a single enterprise and multiple

enterprises. A single enterprise may use limited security parameters because the users

are known insiders and there is less possibility of the attackers and intruders getting

access to the data. Tokens can be used for communicating securely in a single

enterprise. The token is generated randomly and may expire after some fixed period of

time and a new token is required to continue accessing the services. When data is

transmitted from a tenant in one enterprise to another tenant in different enterprise,

additional security protocols are required as data is transmitted publicly and risk of

being attacked is more in this case. Relying on only tokens does not secure the data, a

combination of public, private keys is to be used. Hybrid key is generated for

communication between different enterprises.

The FHE schemes are considered as safe but it becomes difficult to protect the data and

handle the access controls for privacy at the same time[12]. Hence, some other

mechanism must be integrated with the FHE algorithm to secure the cloud data.

The research idea is to develop a more secure system with improved authentication and

authorization techniques. In the proposed model, FHE scheme is integrated with the

self-key mutation technique based on the access control mechanism.

1.7 Analysis of FHE Schemes (BGV, EHC, AHEE, NEHE)

1.7.1 BGV (Brakerski-Gentry-Vaikuntanathan)

A combination of public and private keys is generated and sent on cloud server,

once encryption process completes. For performing computations, FHE does

not requires generating a decryption key. Refer Figure 1.2 for its functioning.

The data is sent to the cloud by encrypting at the user’s end using the public key

12

and FHE operations are applied on the encrypted data and the encrypted

computed values are returned to the user where user applies private key to

decrypt the data and access the same[8][13].

Figure 1.2 Methodology of BGV homomorphic scheme

1.7.2 EHC (Enhanced Homomorphic Cryptosystem)

Prime numbers which are difficult to factorize are generated in EHC algorithm.

Two large numbers are randomly selected, out of which one is used as a PuK

(public key). Three PK’s (private key) are generated for encryption process.

Total four keys are generated. Its working is shown in the flowchart, refer

Figure 1.3. Two large prime numbers are chosen such that it increases the

complexity of guessing these numbers [8]. Modulus is calculated by multiplying

these prime numbers and the result is shared as a private key and a random

number or token is generated. Out of the chosen two prime numbers, one is

taken as a public key while the other number is shared as a secret key or private

key. Then the encryption process is performed using the formula Y = (X + r*pq)

(mod m) where X is the message to be encrypted, r is the random number which

is kept secret and p and q are the randomly generated prime numbers. The

encrypted message is shared to the receiver’s node where the ciphertext is

decrypted to generate the original message, X.

13

Figure 1.3 Methodology of EHC homomorphic scheme

1.7.3 AHEE (Algebra Homomorphic Encryption scheme based on updated

Elgamal)

In this scheme, PuK is generated by multiplying the two very large prime

numbers. PuK is used in the decryption process. A randomly selected number

for encryption is used as another key and this step takes two sub-steps. Refer

Figure 1.4 for its functioning. The encryption process is divided into two steps,

first uses a random number r and apply the encryption process and second one

generates another random number k and again applies the encryption process

[8]. The encrypted message is sent to the receiver’s end where the private keys

and the random number are applied on the ciphertext or encrypted message to

get the original message M.

14

Figure 1.4 Methodology of AHEE homomorphic scheme

1.7.4 NEHE (Non-interactive exponential Homomorphic encryption algorithm)

NEHE is built on RSA algorithm. In this scheme [8], four keys are generated;

one PuK and three PK’s. As shown in the figure 1.5 for the key generation, three

large prime numbers are selected. Encryption key is based on difficulty of

factoring the number and is randomly chosen. The receiver must have the value

of product of the three prime numbers that are selected and its input value x

when it evaluates the encrypted function E(fn(a)).

Suppose the source host ‘A’ needs to compute a function ‘fn’ and the destination

host ‘B’ can compute that function using the algorithm on some input value ‘a’.

15

The condition in this scenario is that ‘A’ does not want to reveal any detail of

the function ‘fn’ to ‘B’ and no communication can take place between ‘A’ and

‘B’ directly during the computation process. NEHE algorithm is fulfilling all

the conditions in this scenario.

Figure 1.5 Methodology of NEHE homomorphic scheme

1. The encryption process for encrypting the function ‘fn’ is done

at the source host end.

2. The source host ‘A’ will create a program P(E(fn)) to implement

E(fn).

3. The program P(E(fn)) is sent by host ‘A’ to host ‘B’.

4. Host ‘B’ will execute P(E(fn)) at input ‘a’.

5. Host ‘B’ will send P(E(fn))(a) to ‘A’.

6. Finally, host ‘A’ will decrypt P(E(fn))(a) and obtain fn(a).

16

1.7.5 Detailed Analysis of various FHE Schemes (NEHE, BGV, AHEE, EHC)

Table 1.2 Detailed analysis of FHE schemes (NEHE, BGV, AHEE, EHC) [13][14][8]

Name of

Scheme

NEHE BGV AHEE EHC

Functionalit

ies

The coefficients

of a polynomial

and Exponents

are encrypted at

the same time.

The bits can

be encrypted

using uneven

encryption

approach and

noise can be

reduced

using the

modulus

switching

technique.

Updated El-

Gamal

algorithm is

used for

encryption

and

decryption

process[15].

Secure

information

exchange is the

basis for

encrypting and

decrypting the

data on cloud.

Methodolog

y

RSA algorithm is

the basic of the

NEHE scheme.

Only public key

and the input

value is required

to evaluate the

non-interactive

exponential

function[14].

Ciphertext

rescaling and

switching of

keys are

done to

improve the

security. In

addition to

the basic

operations,

level shifting

operations

are

implemented

[3].

A two-step

encryption

process is

followed

where two

keys are

generated by

the user which

can be used

for decryption

as well[15].

Secret key or

private key is

generated

randomly for

every

encryption

process

resulting in a

more secured

environment as

same plaintext

will have

different

ciphertexts

[16].

Number of

Keys

One PuK and

three PK are

generated.

Two keys

are generated

Two keys are

generated[3]

[15]

One PuK and

three PK are

generated[16][

17]

Advantages The structure of

the polynomial

function can be

hidden from the

attackers with

NEHE scheme.

Ciphertext is

managed by

reducing the

noise. No

bootstrappin

g is

AHEE

scheme

provides

better security

and data

efficiency and

EHC requires

low power

consumption

and decryption

time is

comparatively

17

The operations in

NEHE are

exponential,

addition,

multiplication

and mixed

Homomorphism[

14].

required[3]

[18]. It

supports the

static and

dynamic data

both. The

implementati

on of BGV is

easily

available in

the libraries.

correctness is

achieved[15].

It supports

both the static

and dynamic

data.

less[17]. It is

secure under

CCA[16].

Lagging

Issues

Dynamic data is

not supported.

The storage

management

in BGV is a

complex

task. Hence,

it is not

suitable for

real world

applications

[11].

It is not

indistinguisha

ble under

CCA[15]; it is

only IND-

CPA secure.

The encryption

framework

must follow a

format and

structure to

match the

decoded

information[8]

[19]. Only

static data is

supported.

Applications Active networks,

E-commerce

mobile

agents[3][8]

Overseeing

integer

polynomials

and vectors

based on

LWE[8].

Suitable for

multi-party

computations

applications,

wireless

networks and

mobile

cipher[8].

Mostly

suitable for

real-time

applications;

Mobile Ad-

Hoc message

transmission

networks[8]

[17].

1.7.6 Selection criteria of BGV and EHC FHE schemes

BGV-

▪ Work on static and dynamic data both

▪ IND-CPA secure

▪ Overhead of storage

▪ 2 keys are generated

18

▪ Not suitable for real time problems.

EHC-

▪ Works on static data only

▪ IND-CCA secure

▪ Requires low power and least storage space

▪ 1 PuK and 3 PK are generated.

▪ Used mainly for real-time applications.

Based on the properties identified, it is found that a combination of BGV and EHC

homomorphic schemes can be compatible for the proposed research topic. A

combination of these schemes overcomes the disadvantages of both the algorithms

resulting in a more secure algorithm.

1.8 EHC, BGV and Hybrid EHC-BGV homomorphic algorithm

Factors to consider while choosing a scheme are computational performance, support

for different programming languages, robustness and quality of available

implementations, and the relative ease-of-use.

EHC and BGV fully homomorphic encryption algorithms are considered in the

proposed research model because of their compatibility and suitability. In the proposed

research, a hybrid EHC-BGV approach is generated that uses EHC to generate the

tokens, public and private keys, and BGV algorithm is used to generate the hybrid key.

EHC (Enhanced homomorphic algorithm) is suitable for real-time applications but it

can work on static data only. It generates 4 keys; 1 PuK and 3 PK. EHC does not require

much storage for its implementation and power requirement is also less compared to

other schemes. It is IND-CCA secure [16].

BGV (Brakerski, Gentry and Vaikuntanathan) can work on both static and dynamic

data. Storage overhead in BGV does not allow to work with real-time applications. Only

two keys are generated; 1 public and 1 private key. BGV is indistinguishable under

CPA (chosen plaintext attack)[13].

19

A combination of BGV and EHC schemes overcomes the disadvantages of both

algorithms resulting in a more secure hybrid algorithm. Since BGV requires extra space,

EHC overcomes this by consuming less storage and EHC supports only static data while

BGV overcomes this as it supports static and dynamic data both [3]. Hence, this hybrid

approach is found to be more secure.

1.9 Brief summary of this chapter

This chapter introduces the basic idea of the proposed research. The concept and terms

relevant to the research work like homomorphic encryption algorithm, virtualization,

cloud models etc are discussed in this chapter.

20

Chapter-2

Literature Review

This chapter includes some of the studies and methodologies by various authors in the

previous years, most researchers have incorporated techniques for security and privacy

among the multi-tenants of single-multi enterprises.

2.1 Analysis of literature

Tenant isolation:

Y. wang et. al. [20] analyzed that a performance technique for tenant isolation can be

used as sharing resources results in the competition for service performance. The

technique analyzed by authors includes an SLA (Service level agreement)-oriented

multi-tenant hybrid scheme. For isolated performance among tenants the container

technology is used. The proposed study results in an improved and cost-effective

version. The future scope of this study is to include more factors and parameters based

on security among tenants. The authors of this paper Sastry and Basu [21] ensures

secrecy through multiple databases and multi instances situated in different machines.

Data isolation and Application isolation in Multi tenancy are the issues considered in

this paper. Eucalyptus tool is used to implement the algorithm developed by modifying

RSA algorithm as changing the decryption process and the key generation. Double

encryption method is used by user and CSP (Cloud Service Provider) both. Algorithm

developed in this paper ensures secrecy as attacker is not able to gain access to the

location of the data or the key used for encrypting at CSP, not even using brute force

attack. The proposed method is expensive as a greater number of DBMS instances must

be created to ensure secrecy.

Multitenancy and security issues in cloud computing:

Jumagaliyev et. al. [22] describes a method to support abstract Multi-tenant data

architectural model for different types of cloud storage. To implement multi-tenancy

over these different types of storage, data layer code is generated. Main focus is on

Platform-as-a-service. Multi-tenancy at data layer using manual coding is time

21

consuming and prone to errors. A domain-specific modelling language, CadaML is

introduced. It transforms model to source code automatically for different cloud storage

data types namely, relational database, non-relational database and blob/object storage.

CadaML is a graphical language, hence easy to learn. It is not required to create own

multi-tenant-safe implementation. CadaML manages storage types and there is no need

for testing and evaluation phase as, any error if exists is handled at the model level.

Future scope is to check the performance of the proposed method on real cloud

applications in terms of code reliability and overhead of developing the code. Kanade

and Manza [23] presents a survey on SAAS (Software-as-a-Service) Multi-tenancy

applications. A well-defined method is required at all the layers namely; Server layer,

Network layer, Application layer and storage layer. Current approaches are infeasible

in accessing the control to multi-tenancy requirements as individual user IDs are used

in most of the cases. There is always a risk of unauthorized access of data in multi-

tenancy. State-of-the–art survey of multi-tenancy is done, which provides better

understanding of the design challenges and concepts of multi-tenancy. This paper helps

researchers to find out various aspects of multi-tenancy for future work. Future research

can be made on the basis of present design issues in multi-tenancy. Hugo et. al. [24]

reviewed the current literature through a Systematic Mapping Study, to evaluate main

challenges in SaaS Multi-tenant environment. Multi-tenant architecture implementation

challenges and future research opportunities mainly focused on SaaS, tenant

customization in isolation and lack of standardization are some of the issues studied in

this paper. A Systematic Mapping Study involving three phases: planning, conducting

and reporting are conducted which selects study of 89 primary papers and is able to

answer two research questions related to multi-tenant environment. Comparison of

study/ evaluation done in this paper to industrial projects of cloud can be made in future

research which may implicate new hypothesis for testing SaaS applications. Sahu and

Pal [25], index structures were used for better performance and searching scheme.

Encryption security schemes and data search schemes are focused in this paper. The

cloud computing auditing protocol is composed by combining seven algorithms:

SSetup, EUpdate, VESK, DESK, AuthGen, Proof- Gen, Proof Verify and Check Proxy

TPA. Two index structures supporting efficient product vector retrieval and a hash

value AVL tree are designed which supports feature-vector-based and identifier-based

22

product search. Future focus is on the protection of commercially confidential cloud

data along with the ability to search data. Ramkumar and Gunasekaran [26] proposed

two algorithms for improving the security and scheduling issues in cloud computing.

They focused on security and scheduling issues. In the proposed model, Collocate

FCFS of supremacy elements scheduling algorithm can be used for better utilization of

resources. And for security, Crisscross AES (Advance encryption standard) can be used

in grid manner. Comparing FCFS and collocate FCFS priority algorithm, the latter one

is found to have least waiting time. On the other hand, analysis between AES and

crisscross algorithm results in better throughput in case of crisscross algorithm. The

throughput and WT can be analyzed for increased complexity of proposed algorithms.

Further investigation can be done to implement parallel computing and efficacy of other

cryptographic algorithms. Chowdhury [27] concluded that the security issues being

faced by the internet are the same with the cloud computing hence, needs to be accessed

securely. Major security challenges were discussed in this paper like remote access

mechanism and SQL injection, DoS (Denial of service), DDoS (Distributed denial of

service), man in middle attacks. Provides better way to implement access control

mechanism, auditing and monitoring by reducing the possibility of occurrence of risks.

According to interview report on major security risk, it is found that information

security is the major risk area followed by the disaster recovery. Data transmission is

equally important as data storage. Further exploration of security challenges should be

concerned related to data transmission, storage security, application security and third-

party related issues. Dahiya and Rani [28] proposed a multilevel authentication

technique to enhance the data security in the cloud systems. DES (Data Encryption

Standard) and AES (Advance Encryption Standard) along with RSA (Rivest-Shamir-

Adleman) algorithm is used to protect from unauthorized access. Any unauthorized

access may lead to blocking IP address of that user after three failed attempts. A

combination of DES, AES and RSA algorithm will strengthen the security of the cloud.

Transferring data directly to cloud for computing the operations from storage cloud may

lead to data integrity issue. Nadeem [29] investigates cloud architecture and various

protocols used for any weaknesses. Weaknesses in cloud architecture and security

protocols are discussed in this paper. Surveys the weaknesses in present security

protocols, cloud architecture, application software and the cryptosystem. Challenges

23

related to cloud security were identified and counter measures to resolve those issues.

Further investigation can be done to resolve the issues discussed. Bhadauria et. al. [30]

identifies various security issues in cloud computing and their possible solutions. If one

of the servers used in SaaS is damaged then control of data is lost. In PaaS, outage

problem in case of congestion is there. In IaaS, a governance framework is required to

implement virtualization technology. Various security threats discussed based on

different levels; Application-level security, Network level security and Basic Security.

Proper encryption decryption techniques can be used to secure the data over cloud from

upcoming threats for future research. Nazir [31] highlights basic building blocks of

cloud, its architecture and related research challenges. Cloud computing architecture,

building blocks and entities were introduced. This paper provides better understanding

of the design issues or challenges of cloud computing which may be used by other

researchers. Further research can be done on the design challenges discussed. Varsha

et. al. [32] addresses various issues based on literature review on Multi-tenancy issue.

Literature review is used for gathering information related to multi-tenancy. Basic

framework of multi-tenancy is introduced which can be used for further research. A

more secured framework can be designed to satisfy the security issues related to multi-

tenancy. Dharani et. al [33] used Logistic regression classification algorithm to achieve

the highest accuracies with low false positive rate. Logistic regression classification

algorithm and Weka data mining tool are the techniques used. Four measures were

included: Accuracy, Precision, Recall and False Positive Rate in the research. It is found

that the experimental results using LogitBoost classifier achieves highest accuracy of

97.90% while false positive rate of 0.009 is found. Furthermore, research can be done

to improve the security on intrusion model. Kumar et. al. [34] used proper scheduling

algorithms to distribute load among various tenants in virtualization, keeping in mind

the security concerns. This paper uses scheduling algorithms to assign the resource to

the request made by the user. Some algorithms used were round robin, weighted round

robin along with faster response time. A hyper-safe program known as passable

memory lock down can be the solution to the hypervisor security issue. Under this

scheme, no new code can be introduced by any user other than the hypervisor. Further

work can be done to evaluate various issues related to virtualization. Su et. al. [35]

proposed a model to generate user test cases in penetration testing of SQL injection

24

attack model based on transmission channel. The proposed model for SQL injection

detection can describe all types of SQL injection types and reflects the rules and

characteristics of different attack methods in SQL injection efficiently. Also, it can

reduce the false alarms and omissions. Experimental analysis is done using sqlmap

Further research can be done to identify such vulnerabilities and their proposed

solutions. Rimal [36] introduced a workflow scheduling system with four layers for

resource management in Multi-tenant environment. A novel CWSA (Cloud-based

workflow scheduling) policy is employed with proof-of-concept experiments. CWSA

policy minimizes the execution cost of the workflows, utilizing idle resources. CWSA

outperforms as compared with other scheduling policies like FCFS, Backfilling, and

Minimum Completion Time (MCT) in terms of performance. Inherent heterogeneity

and resource isolation may increase the complexity in managing resources in multi-

tenancy. Sakthipriya et. al. [37] explores various cloud security issues such as:

confidentiality, authenticity, management of keys, data splitting. Focus on designing a

better cloud environment. The better understanding of the challenges can pave the way

for future research. Research must be done in future on these security concerns and

finding their improved solutions. End-to-end security should be evaluated for the cloud

users. Sqalli et. al. [38] proposed a system that will help to reduce the latency time while

executing the services, since unauthorized request is denied of accessing any cloud

service hence providing better EDoS (Economic Denial of Sustainability attack) shield

protection mechanism. EDoS shield architecture is created, with main components as

VF (Virtual firewalls) and V-Nodes (Verifier cloud nodes). The location hiding

problem is solved in this approach as in overlay-based approaches. Future work should

be done to deal with IP spoofing attacks and enhancing the proposed architecture. Since,

the decision to forward or dropping a packet completely relies on source IP address

found in blacklist or whitelist.

Genetic algorithm- key mutation concept:

Alkharji et. al. [39] analysed a method for generating random keys for the fully

homomorphic encryption algorithm scheme. The authors focussed on providing strong

encryption method using FHE scheme which is integrated with the genetic algorithm.

Genetic algorithm is used to generate public and private keys randomly. The keys are

25

generated by analysing the population size, cross-over and mutation techniques. It is

found that using Genetic algorithm, the security of FHE scheme can be enhanced.

Arshad et. al. [40] proposed an improved genetic algorithm to generate the random keys

for encryption. The genetic algorithm operators are modified by adding local

intelligence which contains the local information and a random bit generated in each

iteration. For encryption process, the source data is converted to binary bits and after

the encryption process, this binary data form is converted to ciphertext again. The

proposed model is considered as 80% more efficient than the conventional genetic

algorithm. In future, the proposed algorithm can be analysed with increased complexity

and large volume of data. Other encryption schemes must be evaluated with the

proposed scheme. Kalaiselvi et. al. [41] proposed symmetric key homomorphic

algorithm which is based on genetic algorithm for generating the random keys. Since

the keys are generated randomly for each iteration, a very strong cryptosystem is

developed. The proposed model is secure CCA. Future scope is to check the proposed

model with public key cryptosystems.

Authentication and verification models:

Veeraragavan [1] proposed UIDAaaS service to secure the cloud which includes three

algorithms: APG (Authentication Password Generation), AKG (Authentication Key

Generation) and Auth_V (Authentication Verification). The proposed model will solve

user authentication design and deployment issues. Windows azure and ASP.NET

language is used to design and deploy the proposed UIDAaaS authentication algorithm.

Security level of existing and proposed authentication mechanism can be measured by

Hackman tool using DoS and MITM (Man in the middle) attacks. Outcome of the

comparison shows that User authentication mechanism provides better security than the

existing methods. Authentication Key is only a single character which takes very less

space in memory. Time taken in authentication process is less comparatively. The

performance of the proposed algorithm can be measured for attacks other than DoS and

MITM attacks as a future scope. O. Ethelbert et. al. (2017) [10] proposed a method for

improving the authentication process based on JSON model. The HTTPS/TLS

transmission is suggested to use for a dual authentication and authorization process. It

is found that the peak time of access demands can be handled without any latency as

26

the stateless and compact feature of JWT (JSON web token), GAR (Granted Access

Rights), UAD (User, App or Device) are highly portable. The dual authentication

process is not sufficient for the future threats and some additional authentication

modes are required to secure the data from unwanted breaches. Al-Attab and

Fadewar [11] introduced a new device for authentication of the user in cloud system.

This device is a USB (Universal serial bus) which generates random key, every time

user needs to login as second level of security. Dual identification technique used for

second level of security. A dual identification scheme improves the security of the

users. User’s data can be prevented from phishing attacks and brute force attacks.

Future work can be done for designing such device with improved security, and from

view point of user, CSP (Cloud service provider) and the browser. Awasthi [42]

introduced a novel and more secure verification arrangement that depends on E-mail

based OTP, which is secured by Java Mail API and hash key has been proposed.

Identity access management, character-based verification and characteristic based

confirmation are the significant security issues discussed in this paper. A single one-

time token key is generated for identity management of the client. Every time a

new token key is generated, the previous key or watchword is destroyed from the

cloud framework. The proposed model is secured against session hijacking attack and

brute force attack. Session time out mechanism is available. Future work can be done

in administering key process providing better client validation. Also, research can be

done in minimizing the execution time. Gauravaram [43] analyzed that hash function

can be used to protect from birthday and dictionary attacks, to the combination of salt

and password. An offline birthday forgery attack presented a contradictory belief that

birthday attacks can be complicated using hash values with prepended salts computed

over the passwords. It was observed that offline birthday forgery attacks cannot be

prevented using the hash function. Future scope is to develop a more secure system to

prevent from these attacks. Rakesh et. al [44] designed an effective scheme that

guarantees the data storage correctness. For distributed verification of erasure-coded

data, Homomorphic token is used. This development reduces the storage and

communication overhead. Future scope is to find a scheme where we can achieve

both the data storage correctness and public verifiability of dynamic data.

27

HEA (Homomorphic Encryption Algorithm):

Rivis and Zhu [45] suggested that the key management challenges can be managed by

introducing Homomorphic encryption and re-encryption together, as a result for every

new recipient, encrypted data is re-encrypted without having to decrypt it. HEA is used

to compute encrypted data without decrypting it. Since data operations cannot be

applied on encrypted cloud data, one has to first decrypt it which leads to privacy issue.

The authors Ahmad and Khandekar [4] developed RSA and Paillier algorithm for HE

using proxy-Re-encryption algorithm. The proposed algorithm can be used to generate

random key cipher text every time. If in case attacker gets the key then only that

plaintext will get access, all other plaintexts are safe. Proxy Re-encryption method can

be tested with other HE schemes and size of the key can be reduced for efficiency. Chen

and Zhao [5] concluded that fully HEA leads to better security in the cloud. DHCV and

CAFED algorithms are used to protect the cloud data. In DHCV, attacker has to attempt

2512 times to get access to the cloud data, which is technically near to impossible. In

CAFED, Data access and data processing are kept isolated to secure private data. These

algorithms can be further investigated for better security so as to follow fully HEA

scheme. Prasad and Kumanan [13] introduced Enhanced BGV technique by modifying

the classic fully homomorphic encryption scheme BGV. A new technique for sorting

was proposed that sorts the encrypted data without requiring a decryption key. A

number of experiments are executed using the eucalyptus tool. The authors Parmar et.

al. [8] discussed four fully homomorphic encryption schemes BGV, EHC, AHEE,

NEHE in this paper. The number of keys used in each scheme, pros and cons and

implementation details are presented. The application area of these four schemes and

their suitability is discussed in this paper. Ayman Alharbi et. al. [46] introduced a

literature survey related to the homomorphic encryption algorithm. The survey aims to

reduce the gap between the algorithm and its applications in terms of providing security.

The homomorphic applications like vehicle communication, electronic voting, cloud

computing, Blockchain, and signal processing are discussed in the paper. The

homomorphic algorithm is considered as providing a high level of security by allowing

the operations on encrypting data. In the future, a complete systematic view of the

homomorphic algorithm can be analyzed. The authors Kang et. al. [47] showcase how

28

HE algorithm can be used to outsource PHM (Prognostics and Health Management)

services securely and privately in SMEs (Small and Medium Enterprises). A two-party

collaboration H-FFT-C is designed using HE algorithm and two sub-algorithms are

developed from H-FFT-C as H-FFT and H-C. The first one extracts information related

to the frequency of the manufacturing machines and the second one is used a

comparison operator that computes values and gives result in milliseconds. The

combination of these two sub-algorithms that is H-FFT-C algorithm outsources PHM

services efficiently. The result after running the proposed methodology on a fiber

extrusion device shows that the server successfully implements the computational part

and delivers the machine health report. Future scope is to extent this research for

multiple SMEs for a multi-party collaborative scenario. Min et. al. [48] proposes a

feasible solution for the security challenges in a CPS (Cyber Physical System). It

combines the FHE technique with the CPS which allows ciphertext operations on the

encrypted data without the need of decryption. The current homomorphic encryption

allows operations on a limited data type, the authors of this paper suggest using a

parallel approach on that supports floating-point numbers. Group wise ciphertext

operations are performed parallelly to enhance the security using out-of-order

ciphertext operations. The proposed algorithm is implemented in MapReduce platform,

resulting in better speed with big files processing. Costache et. al. [49] investigated

BGV and FV schemes in this paper. A comparison is made between these two schemes

based on their noise behaviour and the method used for analysing the noise will upper

bound the growth loosely. The two libraries used for implementation are HElib and

SEAL. The authors suggested to choose a particular scheme based on some factors. The

gap between the noise evaluated in the heuristic upper bounds and the result from

practical experiments can be reduced as a future scope Chen et. al. [14] discussed the

FHE scheme NEHE. The exponents and coefficients of polynomials are encrypted

using NEHE homomorphic scheme. Algebraic HE with RSA used in NEHE provides

better security as the structure of the function is kept hidden and no decryption key is

required. The homomorphic schemes El-Gamal and EHC are analyzed by the authors

Al-Mashhadi and Khalf [16]. These two algorithms were used to build three HE

cryptosystems based on the block pixel position method to securely transmit the digital

images on the server. EEOE (El-Gamal-EHC based on Odd and Even block index),

29

EEBPT (El-Gamal-EHC based on block position in lower Triangle) and EEZSC (El-

Gamal-EHC based on Zigzag Scan and Counter) are the three cryptosystems developed.

The proposed methodology is considered as safe and takes less execution time. Fahina

et. al. [15] secures the data in cloud using FHE scheme AHEE which is based on the

updated El-Gamal algorithm. It is DSS a modified form which randomly generates the

key for every E1(). The proposed model is indistinguishable under chosen ciphertext

attack. Rao et. al. [17] analyzed EHC scheme for MANETs in this paper. In the

proposed model, encryption of messages over MANETs is done using EHC algorithm.

The messages are divided into groups with message id. Cipher values added with the

message id will result in the original decrypted message. To get access to these

messages on MANETs, an attacker requires a decrypted messages from each group,

which is a complex task. Hence, security of the proposed model is considered as high

as compared to other algorithms in the paper. Mixed multiplicative HE, EHC and El-

Gamal encryption schemes are compared and it is observed that processing time

in EHC is very less. N. Sammeta and L.Parthiban [50] analyzed in their paper that the

FHE AHEE scheme is used to process the medical data privately and in a secure manner

in the hospitals. By checking the patient history, an upcoming health issue that may or

may not occur can be alarmed so that the patient can take appropriate medications in

advance to avoid future health issues. The medical records can be kept secret from the

cloud administrators using the proposed model. The time taken for encryption and

decryption process is comparatively less. The paper can be further implemented by

adding bio-metrics like patient’s fingerprint, pupil tracker and so on. R Kanagavalli and

Vagdevi S [3] compared the BGV HE scheme with RSA and AHEE homomorphic

schemes based on byte level automorphism on BGV. The parameters used for

comparison are time taken for encryption process, size of the ciphertext generated and

time taken in decryption process. The testing is done on different file sizes. It was

found after comparison that the encryption and decryption time taken by BGV is

less compared to RSA and AHEE. But BGV takes large storage space and for real-

time applications managing memory becomes a tedious task. Future scope is to

analyze methods that minimizes memory requirement and researchers can validate the

proposed model for variable block size. The authors Sadeghikhorami and Safavi [51]

presented a secure estimation strategy by considering Kalman filtering technique

30

integrated with Paillier’s algorithm. Paillier’s algorithm can only compute integer

values hence some conversion was required but the proposed methodology can handle

quantized data effectively. Earlier methodologies encrypt data before sending to the

network and a local estimator calculates the state estimation hence, reformulation of

estimator was required to receive the encrypted data and to produce the encrypted

output. The proposed approach reformulated the estimator for quantized data. Hence,

the proposed strategy protects the confidentiality of data by protecting against

eavesdropping attack. Awadallah et.al. [52] proposed a model for validation and

verification of the HE computations for finite integer values. A HE algorithm alone is

not sufficient for providing the data integrity as the computations may be

swapped. The authors of this paper have introduced a verifiable scheme to validate the

HE computations. The proposed scheme adds overhead of managing increased storage

requirement and computations which is completely acceptable according to the authors.

D. Bhatia and M. Dave [53] concluded in their paper that implementing FHE schemes

is a complex process and the applications developed using FHE still lacks in

security. The authors proposed “Privacy Homomorphism” that permits multiple

computations securely. Various algorithms are compared in this paper. It is found that

ECC (Elliptic Curve Cryptography) gives better results and is suitable for sensitive FHE

applications. T. Oladunni and S. Sharma [9] focus on using HE algorithm for protecting

the cloud data. A HE algorithm is categorized depending on the operations into three

types. A PHE algorithm performs only one operation at a time that is, it can be addition

or multiplication operation, a SWHE algorithm allows more than one operation like

addition and multiplication operation at the same time but with the limited number of

operations. While a FHE algorithm allows unlimited ciphertext operations. RSA,

Paillier, and Elgamal algorithms are PHE algorithms, R-LWE and LWE are SWHE

algorithms as these are noise-based, and EHC, BGV, AHEE, NEHE are FHE

algorithms. The computations done on encrypted using FHE algorithm data results in

maintaining the integrity, privacy and security of cloud data. Integrating Blockchain

technology with cloud computing:

Shangping Wang et. al. [54] proposed a method to improve access control policies.

Ethereum Blockchain and CP-ABE (Ciphertext policy attribute-based encryption) are used

31

for this purpose. Ethereum Blockchain is deployed on Linux/Unix operating system

while Windows 10 is used for the implementation process. A smart contract is used to

store the ciphertexts. Cloud security is improved by decrypting in a valid access period.

Accessing the cost of the files has decreased, making function tracing easier. To

improve data integrity, decentralized technologies can be introduced. Adamu Sani

Yahaya et. al. [55] locates a potential supplier for demander in Electric vehicles by

proposing a privacy preserving algorithm. The supplier can be searched using a P2P

communication approach and the implementation takes place using a PHE. Blockchain

verifies the energy transmission process. The proposed model is found to be faster than

BMNN (Bichromatic Mutual Nearest Neighbor) algorithm. Performance of the

proposed model can be optimised by implementing on the methodology hardware. Ch.

V. N. U. Bharathi Murthy et. al. [56] discusses the problems with the cloud and suggests

to use Blockchain with the cloud. An integrated architecture is developed by surveying

the Blockchain on a scalable cloud environment. Different Blockchain platforms are

discussed and further study can be done to apply the Blockchain in practical with the

cloud platform. Ilya Sukhodolskiy and Sergey Zapechnikov [57] ensure privacy in

cryptographic operations without the participation of cloud owners. It puts more

emphasis on the access control mechanism of the cloud. Cloud access can be controlled

using CP-ABE which is implemented on Ethereum. It ensures security by storing only

hash-based cipher texts. The author Vorameth Reantongcome et. al. [58] has proposed

in their paper about multi-tenancy co-resident attack which is caused due to leakage in

data by a malicious tenant. The authors implicated a truffle framework to implement

Blockchain with Ethereum. Ethereum encoded in solidity along with the smart contract

is used. The transactions between the tenants and the cloud owner are recorded using

the Blockchain. Further work can be done to improve the integrity and the

confidentiality of the proposed model. Jin Ho Park and Jong Hyuk Park [59] find a

solution for securing bitcoins by surveying Blockchain technologies. It installs an

electronic wallet in the cloud for using the service using a secure bitcoin protocol and

after using the service it successfully deletes the user details from the wallet. Public key

encryption is used for encrypting the data. It verifies users’ privacy by completely

removing the wallet’s details from the cloud. Researchers can study the future risks of

using bitcoins. Ingo Weber et. al. [60] evaluate quantitative and qualitative analysis to

32

design a multitenant scalable architecture. The evaluation is based on integrity and

isolation in the tenant’s performance. Ethereum is used with Laava's industry partner

for implementing a proof-of-concept prototype. Low cost, data integrity, and

performance isolation can be achieved by the proposed architecture. Flexibility in

anchored chains can be evaluated as a future scope. Meet Shah et. al. [61] used IPFS

(InterPlanetary File System) protocol to emphasize data utilization, decentralized data

storage, security, and privacy in their paper “Decentralized Cloud Storage Using

Blockchain”. It stores AES (Advance Encryption Standard) encrypted files on peer

networks using IPFS protocol in the Blockchain guarded by smart contracts.

Cryptocurrency is transferred to the peer’s wallet from the user’s wallet. The

Blockchain’s decentralized approach discussed in this paper is considered to be safe

and secure. Wenlei Qu et. al. [62] proposed a technology for electronic voting in their

paper which focuses on security and privacy issues by combining Blockchain and

homomorphic signcryption. Homomorphic signcryption technique in Hyperledger

Blockchain type is used to secure the voting ballots. Valid and invalid votes after

aggregating the voting results are categorized using a smart contract. It improves and

secures the voting process by reducing the time taken for the process in a secure and

transparent manner without the need of any third party. Security can be further

improved by practically implementing the proposed model and researching the model

in detail. Sharath Yaji et. al. [63] proposed a technique using PHE schemes with

Blockchain in their paper to preserve privacy. It focuses on attacks on the wallet,

collision attack reimages attacks in the Blockchain. Goldwasser-Micali and Paillier

PHE schemes are used in the proposed model which can bypass most of the attacks.

The time required to process the model is comparatively less and is more secure. Latest

attacks can be analyzed and experimented on in the proposed model with improved

PHE schemes. Morampudi Mahesh Kumar et. al. [64] concluded a privacy algorithm

to focus on malicious attacks, which is based on BMIAE (Blockchain multi-instance iris

authentication using ElGamal Homomorphic Encryption). It is mainly designed for an

untrusted server. Distance compute can be performed using a smart contract in BMIAE,

where Elgamal is based on the hardness of these discrete problems. The proposed model

guarantees confidentiality and integrity can be achieved along with the decreased

execution time and the computational cost. Bobo Huang a et.al. [65] proposed BPS

33

which is the Blockchain-Publish-Subscribe model used to secure pub/sub streaming

models from the attacks on the edge cloud caused by multiple tenants using the same

pub/sub system. The illegal or unauthorized behavior by a tenant or an unauthorized

user can be detected using the BPS model which is based on Blockchain functionality.

It verifies the integrity using a Merkel tree and keeps a record of all the tenants in the

access control list combined with the smart storage feature. It is analyzed that the

proposed model outperforms security with a minimum overhead of performance. BPS

can be tested to support complex deployments and improve scalability. Leila Ismail et.

al. [66] analysed in their paper a new paradigm combining cloud-based services with

Blockchain technology to provide an efficient and patient-centric view to the healthcare

stakeholders. A BcC (Blockchain-cloud integration) is deployed for managing the

patient details efficiently in the database management system for the healthcare

industry. Further, this paper discusses the strengths and weaknesses of BcC

architecture. BcC can overcome the individual shortcomings of cloud and Blockchain

technologies; as the cloud provides a centralized service that may violate the privacy of

the patient and Blockchain is not scalable and it faces some challenges with its

efficiency. Future scope is to enhance the existing model for better scalability and

efficiency. Gaopeng Xie et. al. [67] integrated Blockchain technology with the cloud

data integrity verification scheme. It focuses on cloud data integrity and analyzed

previous studies and works on improving the defects detected in the research and the

user verification process is simplified. The authors introduced a lattice signature

algorithm to resist quantum computing technology and combined it with a cuckoo filter

for simplifying overhead in the computational process. It relies on a SIS (small integer

solution) assumption to cope with the attacks. The proposed scheme can cope with

quantum attacks and malicious attacks with high efficiency. To explore more features

of the data integrity scheme combined with Blockchain technology. Caixia Yang et. al.

[68] designed a Blockchain-based access control framework by integrating cloud

computing. The access control permission of the data on the cloud is redefined, which

is stored in the Blockchain. The proposed model overcomes the limitations of the

Blockchain and the cloud. AuthPrivacyChain is the framework designed by the authors

based on EOS (Electro-optical system) Blockchain. The proposed model is compared

with the traditional cloud using the test tool JMeter. The users with proper access rights

34

can only access the data. The designed model can prevent the data from insider as well

as outsider attacks. Wenjuan li et. al. [69] surveyed Blockchain-based trust models.

Blockchain’s decentralized approach helps in protecting the data from breaches as the

traditional cloud trust model is not transparent and follows a centralized approach that

cannot be trusted. In cloud computing, the efficiency and adaptiveness can be improved

by using a hybrid edge cloud with double-Blockchain technology. Blockchain

successfully builds trust by using a transparent approach, it avoids data leakage and

eliminates the single point of failure because of its decentralized approach. In the

future, Blockchain must be studied to collaborate with the new cloud technologies like

edge computing, IoT applications, fog computing, and so on. The resource constraint

may create a problem if all the data is stored on the chain, it may increase the processing

time. Hence, it is to be researched. Mueen Uddin et. al. [70] reviewed the common

cloud vulnerabilities that are mostly based on the virtualization platform, the identified

issues are solved using the Blockchain-enabled models. The common vulnerabilities

like a centralized security risk, transparency, resource sharing in a virtualized

environment are discussed. The challenges with the Blockchain model are also

discussed in this paper. Blockchain helps the cloud service providers in creating a

virtual database and using a one-click method for accessing the services. Ketki R.

Ingole and Sheetal Yamde [71] analyzed the business opportunities in both financial

and non-financial sectors using Blockchain technology. The processing of bitcoin is

discussed; attackers may steal the private key stored in the user’s computer hard drive

to hack bitcoin. Hence, the records stored in the computer must be deleted after use.

The longer it stays in the user’s system, the more is the data at risk. The authors of this

paper suggested a way to secure the data from breach by simply removing the user’s

information from the system completely.

CPABE technique:

Hassan El Gafif and Ahmed Toumanari [72] proposed in their paper ciphertext-policy

attribute-based encryption (CP-ABE) key encapsulation mechanism. This scheme

reduces the expense for the encryption operation as in traditional CP-ABE. The

authors proposed two CP-ABE mechanisms, one for the untrusted ABE service

provider and another for the semi-trusted ABE service provider. The proposed schemes

35

are found to be secured under CPA and are considered as more efficient than the

traditional CP-ABE scheme. PanJun Sun [73] evaluated some technologies related to

cloud security like CP-ABE, KP-ABE (Key policy attribute-based encryption), proxy re-

encryption, access control, and multi-tenancy and suggested to include the upgraded

and updated technologies and policies to secure the data. The real-time execution of the

analyzed methods is left as a future scope.

Access control techniques based on role of the user:

Rai [74] discussed different access methods which provides an efficient way to ensure

only authorised users can access the data. Different access methods analysed are DAC

(Discretionary Access Control), MAC (Mandatory Access Control), RBAC (Role based

access control), TBAC (Task based access control) and ABAC (Attribute based access

control) models. Traditionally, MAC and DAC were considered as trustworthy but

RBAC method is used mostly by the organizations to protect the cloud data because of

its advantages. The authors Kumar and Chatterjee [75] designed access rules for the E-

health cloud based on the trust degree of the users to provide customized services to the

users. These access rules are stored in the access rule database. Based on the user’s

category, the access view can be full, partial, or no view. A dynamic and adaptive access

model is formed by adding the trust factor of the user in CPN tool. Proper verification

of these access rules is required to check whether they follow the access control

properties. Chhabra et. al. [76] compared the available access control techniques

analyzed their suitability to the cloud computing environment. A multitenant

environment requires fair access control between its tenants. ABAC technique is

discussed in detail. ABAC grants access rights based on the policies that combine the

attributes. The attributes are the basic building blocks and may contain static values like

the role of the user. The future scope of ABAC is evaluated and suggestions for

strengthening ABAC are analyzed. The authors Sethi el. al. [77] integrated an access

control technique that is based on the role of the user. Each user requires a customized

set of services; hence granting all the resources is not advisable. Administrator is

responsible to assign the role of the user based on the trust factor. A spatio-temporal

RBAC model grants the access on the basis of time of the request and the location of

the user. This model is integrated with the Homomorphic encryption algorithm. The

36

proposed model evaluates the impact of the trust factor to strengthen the cloud security.

The authors Ding and Yan [12] proposed a flexible way to control the access using a

privacy-preserving data processing scheme. Homomorphic encryption algorithm

solely cannot secure the cloud data as it is a single key system, it cannot flexibly

handle the data sharing and access control mechanism over the encrypted data.

The authors of this paper proposed an efficient and flexible way to control the data

access in a privacy-preserving system. Paillier’s partial homomorphic encryption is

used with the cooperation of cloud service provider and the computation party. A total

of seven operations are analyzed using Paillier’s algorithm on outsourced encrypted

data. These are Addition, Subtraction, Multiplication, Sign Acquisition, Absolute,

Comparison, and Equality Test. The proposed attribute-based encryption scheme is

tested and compared with existing work and it is found to be a better alternative. Future

scope is to realize more operations, reducing the latency and improving the overall

efficiency by applying edge computing and some pre-processing methods. The authors

Hingwe and Bhanu [78] proposed a role-based access control that is integrated with

PHE Paillier’s algorithm for a multi-tenant database. A role hierarchy is maintained

with access privileges and a session key is used for managing the active session. The

session key is generated using SHA-2 (Secure hashing algorithm) to encrypt the data at

client end and Paillier algorithm encrypts the sensitive data, hence data is protected

during execution and in the database as well. Data integrity and confidentiality are

achieved using the proposed model for access control as it protects data from SQL

injection and privilege escalation. Role hierarchy management with least privilege

grants used in the proposed method, does not allow privilege escalation and hence

protects the data in an efficient manner. Though, user has to remember two or more

keys which is considered as lagging issue with the proposed model and future work can

be done to reduce this issue.

Using Multi-bits:

Yu et. al. [79] proposed a multi-bit public key encryption protection based on LPN

(Learning parity with noise). The proposed approach solves the encoding error to some

extent. The scheme is compared with RSA and Damgard’s multi-bit scheme, it is found

that encryption time in the proposed scheme is slow than RSA while fast than

37

Damgard’s and decryption time is faster than RSA while slower than Damgard’s

scheme. The proposed scheme can bypass quantum attacks effectively and decryption

error problem is solved. The scheme lags in achieving stronger CCA security. In

future, providing stronger CCA security is the main focus with smaller public key,

ciphertext size and low computational overhead.

Hybrid approaches:

The authors [80] proposed a combination of encryption algorithms AES, ECC and RSA

to improve the security in the cloud. Two methodologies were used; first one proposed

cryptographic algorithm and second one is the practical implementation of the

algorithms for performance evaluation. It is found that AES takes less time in terms of

encryption and decryption time while proposed hybrid algorithm takes more time in

execution but secrecy is better here hence is more secure. Future scope is to find a more

secure combination of algorithms with increased performance and least encryption and

decryption time. Z. Saeed [32] proposed a cryptographic algorithm with 3 layers which

is composed of AES, ECC and RSA methods. Java NetBeans is used to implement

RSA-ECC algorithm and is compared with RSA-AES algorithm; it is observed that the

time taken for encryption and decryption process by the RSA-ECC algorithm is

comparatively less. Zaineldeen and Ate [81] proposed a hybrid approach to secure the

cloud data. The homomorphic encryption schemes EHC and AES are integrated to form

the hybrid technique. It is found that the proposed methodology is better in terms of

encryption-decryption time, memory requirement, throughput measurement and power

consumption used by the techniques. Kardi and Zagrouba [82] proposed a hybrid

approach using RSA and ECC algorithm schemes for a wireless sensor

networks(WSNs). The hybrid approach overcomes the weakness of both the

algorithms, resulting in a compatible and more efficient scheme. Some findings in the

proposed study states that asymmetric cryptosystems server better WSN as it offers

better security than symmetric cryptosystem which take less memory and is faster

comparatively. Hence, asymmetric cryptosystem combining ECC and RSA is

developed which is more flexible and configurable to user’s customized needs based

on different nature of the applications used. Future work is to explore the proposed

algorithm for different applications using various technical configurations. The authors

38

Abid et. al. [83] proposes an optimized HE CRT-RSA algorithm to overcome the

challenge with traditional homomorphic encryption algorithm of fast decryption and

slow transmission. Multiple keys are utilized for better communication and security.

The proposed model is compared with classical RSA algorithm and it is found that the

proposed model 3 to 4% faster than the RSA algorithm and is more secure.

2.2 Comparison of past proposed and proposed model complexities based on

number of computations

K. Kumari et. al. [84] proposed two schemes based on homomorphic encryption

algorithm, the first one is based on Carmichael’s Theorem and the second one is an

improved version of EHC algorithm. Both the schemes, CTHE (Carmichael’s

Theorem-based Homomorphic Encryption), and the MEHE (Modified and improved

Gorti’s Enhanced Homomorphic Encryption) reduces the noise using the modulus

switching technique and are secure under quadratic residuosity, integer factorization

and discrete logarithm problems. The complexities as evaluated by the authors are

presented in Table 2.1 [84].

Table 2.1 Computational complexity of various Homomorphic algorithms

Schemes CTHE MEHE Gorti’s

EHC

scheme

DGHV

scheme

Paillier ElGamal

Number of

computations

7Ek+1Dk 6Ek+1Dk 5Ek+1Dk 5Ek+2Dk 5Ek+6Dk 6Ek+3Dk

Overall time

taken in

encryption,

evaluation

and

decryption

process (ns)

5.3 * 1011

for n= 211

7.9 * 109

for n= 211

6.6 * 108

for n= 211

7.7 * 109

for n= 211

8.3 * 1013

for n= 211

5.6 * 1012

for n= 211

PuK(n/n
2
)

length

211 to 218 211 to 218 211 to 218 211 to 218 211 to 218 211 to 218

As shown in Table 2.1, the comparison of the proposed algorithms (existing and

current) is shown based on the number of computations, time taken and the public key

39

length. It can be observed that Gorti’s EHC and DGHV schemes computation are close

to MEHE and CTHE schemes. Since Gorti’s scheme lacks in noise reduction, the

proposed schemes MEHE and CTHE are considered. Though, some hybrid approach is

still required since the schemes MEHE and CTHE are basic structure state of the art

schemes and the implementation is not available in the libraries and packages. Hence,

some hybrid approach is required which can work on a larger real number space without

increasing the overall computational cost. Blockchain technology can be embedded

with the proposed model to ensure mutability.

In the proposed model, Gorti’s EHC algorithm is considered and is integrated with BGV

algorithm with key mutation and mapping techniques. Any homomorphic scheme is

said to be suitable for real-world applications if it reduces computational and storage

overhead. EHC takes very less storage space and the computational complexity is better

as discussed in Table 2.1. The total cost of the proposed hybrid EHC-BGV model is

comparatively less and the proposed model supports both static and dynamic data.

Though, there is still scope of improvement.

2.3 Issues with current methodologies and Research gaps

Most of the researchers focused on the data storage correctness (using Homomorphic

token), but a very few talks about data transmission while it is in transit-mode, buffer-

storage-mode, end-user mode. Some rely on generating a random token number every

time a user log in, in addition to username and password[11][42]. The existing

approaches and models used token-based models along with dual authentication

methods [34][38][43][37]. Some of the researchers integrated CP-ABE[85][72], proxy

re-encryption [4][73], KP-ABE [73], JSON based model with HTTPS/TLS

transmission [10], SLA oriented multi-tenant hybrid scheme [20], FHE schemes such

as AHEE scheme [15], NEHE [8][14] and so on. While others focussed upon validation

along with verification-based approaches for accessing the data and control between

the tenants [52][67].

Some authors used FHE schemes with tenant isolation [1][25]. Homomorphic

encryption algorithm is considered as a safer option for encrypting the data by

40

maintaining the privacy, but it alone cannot provide data privacy and control data access

both at the same time [53][86].

Some hybrid techniques are also developed as discussed in the related work but none

of the schemes results in a more secure way of protecting the data without any

weaknesses or lagging issues [42][82][81].

Some of the issues in the present schemes includes CCA security issue, computational

overhead, limited to single-bit or using multi-bit alone is also not sufficient [24][78].

Some researchers used a multifactor authentication method for verification and

validation of the user to protect them from unauthorized access. Though it can secure

the cloud data from the traditional threats, but for upcoming threats, this method is not

considered as safe [42]. A multifactor authentication method may combine the

verification factors like login credentials, OTP, and salting. Salting is dependent on the

operating system used and hence cannot be considered as safe [42].

The attacker can guess the password using brute force attack or any other related attacks

[21][42]. Hence, there must a mechanism for shuffling the password based on some

parity rules and not dependent on the operating system like salting.

A key mutation concept is currently in use by security experts. It shuffles the keys

automatically, hence it becomes difficult to access the data where password changes

automatically using some parity rules [87][40][41].

Existing role-based access control methodologies and technologies are not sufficient to

secure a multi-tenant cloud environment [74][75][77][12][78]. Hence, a new technique

is required to protect the cloud data.

2.4 Addressing the issues

We proposed a role-based authentication multi-factor model with a customized tenant

environment using FHE algorithm and CPABE technique. A combination of FHE

algorithms EHC and BGV is used for token and keys generation with parity mapping

and key mutation concept introduced.

41

The proposed model secures the cloud data from CCA attacks as EHC is IND-CCA. It

protects the data from the insider and the outsider attacks both, by classifying the users

based on their roles using CPABE algorithm. The multiple tenants are categorized into

different layers based on their role using a CPABE model which is an inexpensive

method [72] and EHC requires less memory and power [3][16] which results in less

investment on storage resources. Hence, it can be concluded that the proposed research

model is inexpensive. In terms of computational time, BGV takes less time than most

of the past proposed algorithms like RSA and AHEE [3] and the processing time in

EHC is comparatively less [17]. The key mutation technique is embedded with the

hybrid model to provide better security when attacker tries to access the data.

2.5 Brief summary of this chapter

This chapter discusses the issues related to the past proposed methodologies and

presents a solution to address the problems identified.

42

Chapter-3

Methodology of the proposed research work

3.1 Objectives of the proposed work

The research aims at improving security and privacy against the most vulnerable threats

of cloud computing. Main objectives of the research can be defined as follows:

▪ To analyse existing Homomorphic techniques in multi-tenant environment.

▪ To design multi-tenant access control logs in Homomorphic encryption

technique.

▪ To develop Homomorphic encryption technique in multi-tenant cloud

environment.

▪ To test and validate the developed technique.

3.2 Implementation of Ciphertext Policy Attribute-Based Encryption (CP-ABE)

Algorithm

CP-ABE algorithm consists of four algorithms namely, Setup, Encrypt, KeyGen, and

Decrypt. [88][85]

Setup: The public key and master key are generated using the bilinear group with a

prime number and two random generators. The input is based on security parameters

and the universe of the attribute. It takes no other input than the implicit parameters.

Encrypt (Public_key_PK, Message_M, Access_tree_T): Input values are public key,

message, and a tree-like access structure. The message can be encrypted using an access

structure like a tree. A polynomial is chosen for each node in a top-down manner in

such a way that, degree of each node is one less than the threshold value. The ciphertext

can only be accessed if the user satisfies the attribute set for the access tree.

KeyGen (Master_key, Attribute_set_S): It generates the private key by taking as

input the master key and attribute set S, describing the key.

Decrypt (Cipher_text_CT, private_key_SK, node_N): Original message can be

decrypted using a combination of public and private keys, access tree structure, and

43

ciphertext. Based on the condition of satisfying the set of attributes S by access tree, the

ciphertext can be decrypted.

Each node in the access tree can be evaluated using the expression:

node = hash ∑ (node.children(N).hash) …(1)

Here, a node is integrated with the help of encrypting the hash table by incorporating the local

node. Hash is a key that can be either a token key or salting or a public key. Here, a node is a

communicating device and children are tenants which belong to a user or an organization. It

authenticates data using hashing technique in an MTE.

Figure. 3.1 Ciphertext Policy Attribute-based Encryption (CP-ABE) algorithm in multiple tenants

In Figure 3.1, multi-tenant architecture is created where Sender Tenant (ST) sends a

message to Receiver Tenant (RT) by encrypting it using the CP-ABE algorithm[89].

The ST transfers the data to the Inner Tenant, from where the data is sent to the Inner-

Outer-Tenant and finally to the outer layer of sender end that is, Inner-Outer-External

Tenant. The data or packet is then sent to the network which is received by the receiver’s

outer most tenant layer that is, External-Outer-Inner-Tenant level and from this level

the data is transferred to the Outer-Inner-Tenant which transfers it to the Outer Tenant,

which is then received by the RT. Homomorphic encryption can be applied for better

44

security. A homomorphic encryption algorithm can be used in combination with the

CP-ABE algorithm to make it more secured since CP-ABE model divides the tenants

to multiple levels, providing a customized access approach for each tenant. It allows

any number of operations on the ciphertext itself.

For two enterprise communication, according to the relation of source and destination

(tenants) levels, the possible and relevant multiple tenants between two enterprises are

created as an inner tenant, outer tenant, Inner-Outer -Tenant, Inner-Outer-External

Tenant, Outer-Inner-Tenant, External-Outer-Inner Tenant. Although, these tenant

levels can be extended for more than two enterprises.

Sender tenant: The sender tenant is the user or organization that wants to send a

packet(s) to another tenant at the enterprise level. A sender tenant uses a token along

with the public key for encryption. It acts on the Internal-Global setup.

Inner tenant: It is a tenant which lies in the sender tenant block. Internal-external setup

is required for this level. It is completely based on token only. No keys are required for

internal communication among tenants.

Inner-outer tenant: It is based on an Internal-External-Global setup. It uses token,

salting and public key for encrypting the message. For key generation access tree

(collection of nodes or tenants) is used with message and ciphertext along with the

token, salting and public key. The decryption of ciphertext can be done using a secret

key with salting and token.

Inner-Outer-External Tenant: It is based on the Internal-External-Global-Global setup.

Here, the packets are transmitted outside the enterprise. For encryption, token, salting,

public key, message and access tree are used. A combination of public and private keys

is generated in this setup. Decryption is done based on nodes, and token, salting and a

private key are used on the ciphertext for decryption.

External-Outer-Inner Tenant: It is based on a Global-Global-External-Internal tenant

setup. It is responsible to receive the packets from the sender enterprise tenant.

Encryption of message or packet on access tree is done using salting, a public key and

a token key. A combination of keys is generated along with public and private keys

45

based on nodes. Decryption is based on nodes and can be done using a private key,

token and salting on the ciphertext.

Outer-Inner-Tenant: It is based on the Global-External-Internal setup. It takes the

packets from the outermost layer of the tenants and sends them to the outer tenant layer

which is next to the receiving tenant. A public key, salting and token key are used for

the encryption process and for decryption, a private key, salting, and token key are used.

Outer tenant: In this level, a packet can be received and decrypted using the salting

technique, which adds some random collection of digits, symbols, and alphabets in the

password field to make it difficult to guess by a hacker or an intruder. It used salting,

secret key, or private key and token to decrypt the ciphertext received. It acts on an

External-Global setup.

Receiver tenant: The tenant for whom the packet is meant can receive the packet and

ciphertext can be decrypted using a combination of private key and token on the nodes.

Table 3.1 CP-ABE- Multi-tenancy parameters

Multiten

ant / CP-

ABE

Setup Parameters Encrypt KeyGen Decrypt

Sender

Tenant

Internal-

Global

Token, PK, M, T Token, PK, M, T PK, M, T CT, SK, N,

Token

Inner -

Tenant

Internal-

External

Token-based Token-based Token based Token based

Outer

Tenant

External-

Global

Token + Salting

based

Token + Salting

based

Token + Salting +

CT based

Salting + Token

+ CT based

Inner-

Outer -
Tenant

Internal-

External-
Global

Token + Salting

+ PK based

Token + Salting +

PK based

Token + Salting +

PK + M + T + CT
based

Token + Salting

+ CT + SK based

Inner-

Outer-
External

Tenant

Internal-

External-
Global-

Global

Token + Salting

+ PK + M + T
based

Token + Salting +

PK + M + T based

Token + Salting +

PK + M + T + CT
+ SK + N based

Token + Salting

+ CT + SK + N
based

External-

Outer-
Inner

Tenant

Global-

Global-
External-

Internal

T + M + PK +

Salting + Token

T + M + PK +

Salting + Token

N + SK + CT + T

+ M + PK +
Salting + Token

based

N + SK + CT +

Salting + Token
Based

Outer-

Inner-
Tenant

Global-

External
Internal -

PK + Salting +

Token based

PK + Salting +

Token based

CT + T + M + PK

+ Salting + Token

SK + CT +

Salting + Token
based

Outer

Tenant

Global-

External

Salting + Token

based

Salting + Token

based

CT + Salting +

Token based

CT + Token +

Salting based

46

Inner -
Tenant

External-
Internal

Token-based Token-based Token-based Token based

Receiver

Tenant

Global-

Internal

PK, M, T, Token CT, SK, N PK, M, T Token, CT, SK,

N,

The Table 3.1 describes the parameter generation at various levels in a CP-ABE

algorithm. The terms used in the table are T- Access tree, PK – Public key, SK – Secret

key or private key, M – Message, CT – ciphertext, N – Node in a tree,

For Internal-Global and Global-Internal tenant setup, token key ‘Token’ is used. Since

for internal communication, only token keys can be used with no need of using an extra

combination of keys which is required for global communication. An additional key

with the token key is sent along with the packets in such communications.

For encryption, token, salting, and public keys are used in sender enterprise to encrypt

the packets. In key generation, a secure key is added to send packets to another

enterprise tenant and a combination of parameters like token, salting, public key, private

key or secret key, ciphertext, and N-based are used.

For Internal-External and External-Internal tenant setup, communication is done locally

so an additional key is not required here. Token key is sufficient to provide security.

For all other tenant setups, salting is used along with the token keys to provide an extra

layer of protection that is multi-factor authentication mechanism is used here.

For example, some financial institutions are already using such secured systems which

require multiple levels of authentication from the user. It requires a combination of

username, password, OTP, salting technique combined with encryption, or an extra

level of authentication added for better security.

The additional set of keys result in better security when communicating at a global level

tenant mechanism.

3.3 Designing the multi-tenant multiple-enterprise model

In the proposed architecture, the internal communication between the tenants is done

by the main server or database server. In a single enterprise, tokens are used for internal

verification as multiple tenant’s works on the same LAN. The communication outside

47

the enterprise is done using a web server. Storing data on cloud using tokens only is not

considered as a secure way. FHE algorithm generates an additional key which is

disabled by default and will be active only when an attacker tries to intercept or access

the data. Communication between different enterprises requires a firewall router to

ensure the data privacy and security.

The communication server used is web server which means the IP address is visible to

the attackers, and hence extra security protocols are required, while the main server is

working in the background where IP address is not visible. The IP address of which is

not known to intruders. Figure 3.2, represent the enterprise-level architecture in a multi-

tenant environment.

Figure 3.2 Enterprise-level multi-tenancy environment for data access control, authorization, and

authentication

48

In Figure 3.2, one main database server is required for each enterprise. Therefore, a

total of 2 main servers and 2 communicating servers are needed for sharing data. There

are a total of 4 departments in each enterprise, hence, total 8 departments with 16 users

in the first enterprise while 15 in the second once. A total of 2 firewall routers, which

can be Cisco routers or simple checkpoint devices, can be attached between the main

server and the web server. Its main focus is to protect and secure data from unauthorized

access. The multi-tenant cloud architecture communicates in two different ways; one

for the insider tenant and another for the outsider tenant. Further these insider and

outsider tenant are categorized into different sub-tenant layers as explained in Section

3.2 in the CP-ABE model. For insider tenant, token is generated while for outsider

tenant, key is generated; this key is generated based on the outsider user role or type.

For trusted outsider tenant category, private key is generated; for untrusted tenants, type

of user or tenant is further categorized into partial tenant and guest tenant, hybrid key

is generated for a partial tenant and public key is generated for anonymous or guest

tenant. Hence, multiple-tenant layers are designed on the cloud interface and data

packets can be transmitted securely using the proposed hybrid methodology integrated

with self-key mutation technique.

3.4 FHE Blended Schemes EHC and BGV based Environment:

The FHE scheme ensures that the data computations are evaluated on the encrypted

state of data with no requirement of decryption operation [16]. Hence, it is considered

to provide better security to the cloud data and services.

The proposed methodology uses EHC and BGV algorithm schemes for generation of

keys.

In the proposed model, EHC FHE scheme is used for communication inside the

organization and generates tokens for this purpose. As communication within the

enterprise is considered safe; generating only token is sufficient for data transmission.

The token will expire after some specific period of time depending on the type and role

of the user and may have different access permissions for a file [78]. For example, an

HR head may have different rights than a technical head for the same file. Hence, token

49

life time is used to provide more security in the organization. Another example is with

banking institution, where the login session may expire after some time period due to

the inactivity or idle state of the user. In a similar way, the token expires after a specified

time period based on the user role type.

For an outsider user, BGV algorithm is used for partial user only, and for other cases,

EHC algorithm is used. A hybrid key is generated for a partial user using BGV

algorithm. This key is a combination of keys. Key expiration takes place for partial user

category as this user role is not considered safe.

An additional key is generated using hybrid EHC and BGV algorithm in addition, that

is hidden by default and will be active for the attacking scenario only. Suppose one PK

and two PuK’s are generated using FHE algorithm then a hidden key with size 4-bit is

generated using bit mapping technique. This hidden key is sent along with the other

public and private keys. This key will only be active in case of packets being attacked

by the attacker.

This hybrid approach gives different layers of security that can protect the data in an

efficient manner. For a distributed enterprise, a hybrid approach is more suitable since

different categories of users are there, based on their roles, the data access services are

provided.

3.5 Automated Key Filter and Bit-Mapping Techniques using Hybrid EHC-

BGV Homomorphic Algorithm

The proposed research work is extended from the traditional BGV and EHC algorithms.

The traditional cipher substitution techniques are extended and integrated with the self-

key mutation technique. The proposed hybrid BGV-EHC model is synchronized with

the user role to generate the tokens and keys for securing the data on the cloud. BGV is

used at places where static and dynamic data both are used such as if the role of the user

is partial then BGV algorithm is used to generate hybrid key; a partial user may be

working on static data but for some cases the user may need access to the dynamic data.

For example, a user may want to access data of the same organization but in different

branch location then the dynamic allocation is assigned to the user. EHC takes low

50

memory space, hence it is used at places where memory consumption is high. Since 56

parity rules are generated, therefore some complexity may increase if rules are further

created. Still to handle 56 parity rules, some storage is required as resources are required

to operate the required computations on these rules. Hence, EHC and BGV both are

used in this case to handle static and dynamic data with less storage. EHC is used as

major algorithm and BGV is used as minor algorithm. In the proposed model, the sender

and receiver’s properties are shared for the transmission of data on the cloud. The

parameters shared are sender & receiver’s name and ID, the type of data being shared,

tenant type, role type, authentication type, data site bytes, service type, method type,

session initiation time and session end time.

The selection of the algorithm used for keys and token generation depends on the type

of the user or tenant [77][78]. A tenant can be within the organization or outside it. An

insider tenant requires only a token for the secure transmission of the data while an

outsider tenant requires additional security for data protection.

Figure 3.3 describes the hybrid approach using BGV and EHC algorithms. Depending

on the parameters initialized, the user’s category is identified such as Sender’s name,

Sender’s IP address, Receiver’s name and IP address, type of tenant etc. Moreover,

admin have the power to grant roles to the tenants. The role of the user is divided into

two categories; insider and outsider category and based on these categories the

respective process for implementation follows.

51

Figure 3.3 Hybrid approach using BGV and EHC Homomorphic algorithms

If the receiver type is insider, token/key implications are executed using the EHC

algorithm. The insider tenant is considered as the most secured cloud environment in

the organization. The token is generated randomly and expires after some period of time

Sender Properties
Receiver Properties

SIP  Sender IP , SName  Sender name, RIP  Receiver IP, RName Receiver name, TData Type of
data, TTenant  Type of tenant, TKey  Type of key, Auth  Type of authentication, Dby Data site in

bytes, TServ Type of service, TMethod  Type of method, SITime  Session initiation time,
SETime Session end time, RRole Receiver role type

Yes

No

No

Guest user

Chose two large prime numbers

p and q

Calculate m = p * q

Generate a random number ‘r’ r, q and

m kept secret.

Secret values r, q and m

Shared key: p

Encryption

Encrypt(X, m, p, q, r)

Assume X € Zp

Compute Y = (X + r*pq) (mod m)

Output Y € Zc

Compute X = Y mod p

Output X € Zp

Receiver

Node

Input Y € Zc

Decryption

Decrypt the data
Sender

Node

{Outsider}

Decrypt(Y, p)

Receiver =

INSIDER

Receiver =

TRUSTED

Receiver =

PARTIAL

Token / Key
Implications

Private Key (PK)
Implications

Public Key (PuK)
Implications

Hybrid Key (HK)
Implications

EHC

Enhanced Homomorphic cryptosystem

Key Junction

BGV

Brakerski-Gentry-Vaikuntanathan

Key Junction

Homomorphic

operations

(Public & Private key)

Cloud

Key

Generation

User

Encryption User Data

Decryption

FHE operations

(+, *, Sort, Search)

Ciphertext

52

to provide a secure architecture. Similar way, if the receiver is trusted but comes under

outsider category, private key implications follow and if the receiver is non-trusted and

comes under the partial category of the user, a HK is generated using BGV key junction.

A hybrid key is a combination of PuK and PK based on some parity rules. The last type

of tenant is for the anonymous category, public key is generated in this case using EHC

key junction. Hence, the key junction for generating the public, private keys and token

generation is EHC and the key junction for the hybrid key is BGV.

Further the hybrid model is integrated with the self-key mutation technique which will

be active only in case of an attack and different parity rules are designed and applied

for bit-mapping during the mutation process. The mutation technique is used for

shuffling the password keys such that the attacker cannot guess the password. If

anyhow, the password is known to the attacker then the system checks the registered IP

address of the device used. This IP address is not found in the dictionary where

authorized user’s data is saved, hence it blocks the communication and shuffles the key

again using the mutation technique. Any new device must be registered first, before

using it to access the data on the cloud.

Hence, the proposed research model automates the key filtering and bit mapping

techniques based on the user’s or tenant’s role.

3.6 Secure Token and Key Implications based on Dependable and Non-

Dependable Factors

The complete process of communication relies on the type of the user category [90],

the category can be insider or an outsider. Figure 3.4 explains the generation of token

and the keys depending on the role of the user. The role or category of the user is

identified by checking the parameters values initialized at the beginning of the

flowchart. It includes the details like Sender’s name IP address or Receiver’s name and

IP address, type of the tenant, keys, authentication mode, or service and data site in

bytes size, the receiver’s role, session timings etc.

53

Figure 3.4 Steps for generating the token and the associated keys depending on the role of the user

{Outsider}

No

No

54

For an insider user category, only token is generated. Token is sent in the authentication

and the required parameters are sent for the communication process. Next, evaluation

of the data access authentication mode takes place. The parameters for insider user are

not modified since this user category has most of the access permissions.

The second case is when the user is an outsider. Additional security protocols are

considered for this user category. It is subcategorized into a trusted user, partial-trusted

user and anonymous or guest user.

A trusted user category requires additional checks for authentication and verification of

the user. Different techniques are used for the verification process along with OTP

generation. Parameters required for authentication process to access the data are shared.

For the login process, along with the username, password, and Salting method, OTP is

generated which is sent on the user’s mobile number. Apart from using these

authentication techniques, an additional key OOTP is generated, that is, on-demand

OTP is generated that remain in deactivated state by default and will be active when an

attacker tries to access the data packets, this key is generated using the bit mapping

technique based on some production rules that are designed specifically for the

attacking case scenario. The attacker is identified by checking the details like IP

address, and location of the user from the dictionary. An invalid three login attempts,

sends an email to the data owner with details of the attacker like IP address, location,

and the file name being accessed. It automatically changes the password using self-

mutation technique.

An outsider untrusted category is sub-divided into a partial user category where key

expiration concept is added. The session of the user will remain active for some days

and the token will expire afterwards. Firstly, a condition to check the role of the user is

applied, if the user is a partial user, then a hybrid key is generated. The authentication

mode requires a hybrid key and the data access authentication mode uses a hybrid key

and the parameters required for token/key expiration. For a partial user category, the

key will expire after ‘n’ number of days automatically. In data access modification

authentication mode, the parameter changes take place. It updates the parameters in the

database after processing them. It is a combination of data access authentication mode

parameters and hybrid key and session time of key in days.

55

Finally, the last category of user is an outsider un-trusted user, which is anonymous

user. This user role category is considered as least secure. The session with be active

for an ‘n’ number of hours. Data can be accessed using a public key which is the least

secure option. The data access authentication is done using the public key and the

parameters passed in the previous step. And the parameters are updated in the next step.

3.7 Algorithm for generating the token/keys based on the user-role-type

The algorithm in Table 3.2 [91] defines the procedure for generating the keys by

following the proposed methodology.

Table 3.2 Algorithm for generating the token/keys

Step

0:

Preparing the data for communication.

Step

1:

Initiating the parameters for sending along with the data as, Sender IP, Sender

name, Receiver IP, Receiver name, Type of data, Type of tenant, Type of key, Type

of authentication, Data site in bytes, Type of service, Type of method, Session

initiation time, Session end time, Receiver role type.

Step

2:

The dependable and non-dependable parameters are tuned with initiated variables as,

SIP  sip{s1, s2, s3, …… sn}

Sname  Sender name

RIP  rip{r1, r2, r3, …… rn}

Rname Receiver name

Tdata  tdata{td1, td2, td3, …… tdn}

Ttenant  Type of tenant

Tkey  tkey{tk1, tk 2, tk 3, …… tk n}

Tauth  tauth{tau1, tau2, tau 3, …… tau n}

Dby  Data site in bytes

Tserv  tserv{ts1, ts 2, ts 3, …… ts n}

Tmethod  tmethod{tm1, tm 2, tm 3, .. tm n}

SITime  sitime {sit1, sit 2, sit 3, .. sit n}

SETime  setime {set1, set 2, set 3, .. set n})

RRole  rrole {rr1, rr 2, rr 3, .. rr n})

Step

3:

User Integration: Categorization of the user, such that

Step

3.1:

If (user = = INSIDER) (INSIDER  insider{i1, i2, i3, …… in} Token (T)

generated (T  t{t1, t2, t3, …… tn})

Parameters tuning to the variables,

56

DS  ds{ds1, ds 2, …… ds n}

RoU  rou{rou1, rou 2, …… rou n}

Data Transmission Rate → DTR

AT  at{at1, at 2, …… at n}

TST  tst{tst1, tst 2, …… tst n}

TLT  tlt{tlt1, tlt 2, …… tlt n}

TET  tet{tet1, tet 2, …… tet n}

DataAccAuMode  T+DS+RoU+DTR+AT+TST+TLT+TET

Step

3.2:

If (user = = TRUSTED) (TRUSTED  trusted {tr1, tr2, tr3, …… trn})

PK (Private key) generated (PK  pk{pk 1, pk2, pk3, …… pkn})

Parameters tuning to the variables,

DS  ds{ds1, ds 2, …… ds n})

RoU  rou{rou1, rou 2, …… rou n}

Data Transmission Rate → DTR

AT  at{at1, at 2, …… at n}

KST  kst{kst1, kst 2, …… kst n}

KLT  klt{klt1, klt 2, …… klt n}

KET  ket{ket1, ket 2, …… ket n}

Accessing data,

DataAccAuMode  PK+DS+RoU+DTR+AT+KST+KLT+KET

Login keys,

Password → PWD

One Time Password → OTP

OS Salting Key → OSSK

On-demand OTP → OOTP {active only in attacking scenario}

Parameters modified,

DataAccModificationAuModeDataAccAuMode+PWD+OTP+OSSK+OOTP

Step

3.3:

If (user = = PARTIAL) (PARTIAL  partial {par1, par 2, par3, .. par n})

HK (Hybrid key) generated (HK  hk{hk 1, hk2, hk3, …… hkn})

Tuning the parameters to variables,

DS  ds{ds1, ds 2, …… ds n}

RoU  rou{rou1, rou 2, …… rou n}

Data Transmission Rate → DTR

AT  at{at1, at 2, …… at n}

KST  kst{kst1, kst 2, …… kst n}

KLT  klt{klt1, klt 2, …… klt n}

KET  ket{ket1, ket 2, …… ket n}

Accessing data,

DataAccAuMode  HK+DS+RoU+DTR+AT+KST+KLT+KET

57

Key expiration time,

if (KLT >= KLD) {for KLD as key life time in days}

Key expires

Parameters modified,

DataAccModificationAuMode  DataAccAuMode + KLD

Step

3.4:

If (user = = ANONYMOUS) (ANONYMOUS  an {an1, an 2, an 3, .. an n})

PuK (Public key) generated

Parameters tuning to the variables,

DS  ds{ds1, ds 2, …… ds n}

RoU  rou{rou1, rou 2, …… rou n}

Data Transmission Rate → DTR

AT  at{at1, at 2, …… at n}

KST  kst{kst1, kst 2, …… kst n}

KLT  klt{klt1, klt 2, …… klt n}

KET  ket{ket1, ket 2, …… ket n}

Accessing data,

DataAccAuMode  PuK+DS+RoU+DTR+AT+KST+KLT+KET

Key expiration time,

if (KLT >= KLH) {for KLH as key life in hours}

Key expires

Parameters modified,

DataAccModificationAuMode  DataAccAuMode + KLH

Step

4:

End if

Step

5:

End

3.8 Experimental Scenario and Analysis:

3.8.1 Attacking scenario

The users or tenants are categorized into two groups; authorized tenants and

unauthorized tenants. An authorized tenant has authenticated login credentials while an

unauthorized user or an attacker does not have valid credentials to access the cloud. To

identify the type of user, a dictionary is designed with details of all the authorized

58

tenants. The user must register his/her machine accessing the data just like the banking

systems follow. Any new device must first be registered to use. The details included for

registration are user’s name, IP address, and location. The key shared after registration

is in active mode but not enabled. The user must change the key from its default value

to enable it.

An attacker is identified by using the dictionary containing details of all the authorized

users. The entry of the IP address of the attacker is not found in the dictionary; hence it

is recognized as an unauthorized user. The access to unauthorized users is blocked

automatically using mutation technique.

Consider a scenario where an ex-employee wants to access the previous company’s

cloud data, his/her details may not be deleted from the dictionary. That means, the

credential details may still be active, in this scenario the location of the user is verified

and since the user’s IP address is different, the access will be blocked.

3.8.2 Self-key mutation

In case, an attack is identified using the dictionary technique, the self-key mutation

takes place automatically. This is a process of shuffling bits is based on some rules [87].

Consider a scenario where an attacker can guess the password, considering 30 seconds

are needed to guess a password or a character. If the attacker succeeds to guess a

character, then in these 30 seconds, the self-key mutation process occurs. This process

of self-key mutation repeats itself after every 30 seconds. Hence after every 30 seconds,

the password will change and the attacker cannot access the cloud data leaving the cloud

protected and secured. The authorized user can request for a new password again to

access the file which the attacker failed to access. As, the user will receive an email

after 3 invalid attempts by the attacker. The email contains the geographical

information, IP address and other relevant details of the attacker.

The self-key mutation concept is used for randomly changing the position of the key

bits to increase the complexity. Cloud security can be based on the proposed model for

better protection from attackers.

59

3.8.3 Working of self-key mutation

The characters entered by the user are first converted to binary bits because the

homomorphic encryption algorithm works on the binary bits only [41]. For conversion

to binary bits, ASCII code is used. The characters are converted to ASCII code first and

then decimal to binary conversion takes place.

Table 3.2(a) Primary data of generated key, salting values, general OTP for data access and data

control, On-demand OTP for verification and validation, and instance of Data

Key Salting OTP On-demand OTP Data

Data

access

Data

control

Verification

Validation

8 bytes 4 bytes 4 bytes 6 bytes 4 bytes 6 bytes 64-bit of data in

single instance

Table 3.2(b) Primary data of generated key, salting values, general OTP for data access and data

control, On-demand OTP for verification and validation, and instance of Data

Key Salting OTP On-demand OTP Data

Pooja@25 Xe92 1723 201723 1723 201723 64-bit of data in single

instance

Consider a password and self-mutation rules for the considered password as explained

below:

Password: Pooja@25

P-80(Ascii)-1010000(decimal)

P is the first character of the password; the value of P in ASCII is 80 and the value 80

is converted to binary bit 1010000 using decimal to binary conversion method.

Similarly, other characters can be converted to binary.

o-111-1101111

o-111-1101111

j-106-1101010

60

a-97-1100001

@-64—1000000

2-50- 10

5-53- 110101

The Table 3.3(a) shows the procedure for conversion of the password Pooja@25 to

binary bits. The matrix is an 8*8 64-bit formation. The ASCII values of Pooja@25 are

converted to binary bits.

Table 3.3(a) Conversion of the password Pooja@25 to binary bits. The matrix is an 8x8 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

The self-mutation is applied to the salting key, which is generated by the operating

system itself.

Salting key: Xe92

X-88(ASCII)- 1011000

e-101-1100101

9-57-111001

2-50- 10

The Table 3.3(b) shows the binary conversion of the salting bits where the salting key

is considered as Xe92. The ASCII values of Xe92 are converted to binary bits.

61

Table 3.3(b) Conversion of salting key to binary bits

X 0 1 0 1 1 0 0 0

e 0 1 1 0 0 1 0 1

9 0 0 1 1 1 0 0 1

2 0 0 0 0 0 0 1 0

Parity rules for self-key mutation:

For 8-byte formation of matrices, a total of 56 rules are generated using permutation

and combination where 28 rules are generated column-wise and the rest 28 rules are

generated bitwise or row-wise. These rules can be extended with good hardware

systems. To reduce complexity, the proposed research is limited to 56 rules only. The

final changed matrix is randomly generated from the mutation process and cannot be

identified in advance.

Column wise parity rules for interchanging bits:

Rule 1: 1st and 8th bit interchanging of each character.

In Table 3.4(a), the 1st bit of the password is interchanged with the last bit that is the 8th

bit of the password. Hence, for character ‘P’, 1st bit ‘0’ is replaced with the 8th bit which

is ‘0’ resulting in a new combination of bits ‘0101000’, though it has been observed

here that both the interchangeable bits are same; same result is produced. Consider

second character ‘o’ where 1st bit is ‘0’ and 8th bit is ‘1’, both are interchanged resulting

in a new combination of bits ‘101101110’. In this case, the combination of bits is

different from the original one.

Table 3.4(a) The 1st and 8th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

62

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

The above process follows from Rule 1 to Rule 28.

Rule 2: 1st and 7th bit interchanging of each character is shown in Table 3.4(b).

Table 3.4(b) The 1st and 7th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 3: Table 3.4(c) shows interchanging of 1st and 6th character.

Table 3.4(c) The 1st and 6th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 4: 1st and 5th bit interchanging of each character is shown in Table 3.4(d) where

the first column values is interchanged with the 5th column values.

63

Table 3.4(d) The 1st and 5th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 5: Table 3.4(e) shows the interchanging of 1st and 4th bit of each character where

the first column values are interchanged with the 4th column values.

Table 3.4(e) The 1st and 4th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 6: This rules interchanges the 1st and 3rd bit of each character as shown in Table

3.4(f). The first column values are replaces with the 3rd column values.

Table 3.4(f) The 1st and 3th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

64

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 7: It interchanges the 1st and 2nd bit of each character as shown in Table 3.4(g).

The first column values are replaced with the 2nd column values

Table 3.4(g) The 1st and 2nd bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 8: This rule interchanges the 2nd and 8th bit of each character as shown in Table

3.4(h). The 2nd column values are replaced with 8th column values.

Table 3.4(h) The 2nd and 8th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

65

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 9: This rule interchanges the 2nd and 7th bit of each character as shown in Table

3.4(i). The 2nd column values are replaced with 7th column values.

Table 3.4(i) The 2nd and 7th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 10: This rule interchanges the 2nd and 6th bit of each character as shown in Table

3.4(j). The 2nd column values are replaced with 6th column values.

Table 3.4(j) The 2nd and 6th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

66

Rule 11: This rule interchanges the 2nd and 5th bit of each character as shown in Table

3.4(k). The 2nd column values are replaced with 5th column values.

Table 3.4(k) The 2nd and 5th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 12: This rule interchanges the 2nd and 4th bit of each character as shown in Table

3.4(l). The 2nd column values are replaced with 4th column values.

Table 3.4(l) The 2nd and 4th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 13: This rule interchanges the 2nd and 3rd bit of each character as shown in Table

3.4(m). The 2nd column values are replaced with 3rd column values.

Table 3.4(m) The 2nd and 3rd bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

67

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 14: This rule interchanges the 3rd and 8th bit of each character as shown in Table

3.4(n). The 3rd column values are replaced with 8th column values.

Table 3.4(n) The 3rd and 8th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 15: This rule interchanges the 3rd and 7th bit of each character as shown in Table

3.4(o). The 3rd column values are replaced with 7th column values.

Table 3.4(o) The 3rd and 7th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

68

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 16: This rule interchanges the 3rd and 6th bit of each character as shown in Table

3.4(p). The 3rd column values are replaced with 6th column values.

Table 3.4(p) The 3rd and 6th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 17: This rule interchanges the 3rd and 5th bit of each character as shown in Table

3.4(q). The 3rd column values are replaced with 5th column values.

Table 3.4(q) The 3rd and 5th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

69

Rule 18: This rule interchanges the 3rd and 4th bit of each character as shown in Table

3.4(r). The 3rd column values are replaced with 4th column values.

Table 3.4(r) The 3rd and 4th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 18: This rule interchanges the 4th and 8th bit of each character as shown in Table

3.4(s). The 4th column values are replaced with 8th column values.

Table 3.4(s) The 4th and 8th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 20: This rule interchanges the 4th and 7th bit of each character as shown in Table

3.4(t). The 4th column values are replaced with 7th column values.

Table 3.4(t) The 4th and 7th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

70

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 21: This rule interchanges the 4th and 6th bit of each character as shown in Table

3.4(u). The 4th column values are replaced with 6th column values.

Table 3.4(u) The 4th and 6th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 22: This rule interchanges the 4th and 5th bit of each character as shown in Table

3.4(v). The 4th column values are replaced with 5th column values.

Table 3.4(v) The 4th and 5th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

71

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 23: This rule interchanges the 5th and 8th bit of each character as shown in Table

3.4(w). The 5th column values are replaced with 8th column values.

Table 3.4(w) The 5th and 8th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 24: This rule interchanges the 5th and 7th bit of each character as shown in Table

3.4(x). The 5th column values are replaced with 7th column values.

Table 3.4(x) The 5th and 7th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

72

Rule 25: This rule interchanges the 5th and 6th bit of each character as shown in Table

3.4(p). The 5th column values are replaced with 6th column values.

Table 3.4(y) The 5th and 6th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 26: This rule interchanges the 6th and 8th bit of each character as shown in Table

3.4(z). The 6th column values are replaced with 8th column values.

Table 3.4(z) The 6th and 8th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 27: This rule interchanges the 6th and 7th bit of each character as shown in Table

3.4(p). The 6th column values are replaced with 7th column values.

Table 3.4(ab) The 6th and 7th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

73

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 28: This rule interchanges the 7th and 8th bit of each character as shown in Table

3.4(p). The 7th column values are replaced with 8th column values.

Table 3.4(ac) The 7th and 8th bit interchanging of each character in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Parity rules for self-key mutation through Row-wise:

The rules based on interchanging a row with another row that is, bitwise operation

follows here. A few bits are interchanged with another set of bits. Total 64 bits are

incorporated.

Rule 29: This rule interchanges the 1st bit to 8th bit with 57th bit to 64th bit of each

character as shown in Table 3.5(a).

In this rule, bitwise operation takes place. It shuffles the bits for one character with bits

of another character. Here, character ‘P’ is replaced with ‘5’, which means the bits are

74

interchanging. After applying the mutation, ‘P’ has bits ‘00110101’ and ‘5’ has bits

‘01010000’. Hence, the password is shuffled bitwise.

Table 3.5(a) The 1st bit to 8th bit interchange with 57th bit to 64th bit in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Similar process follows from Rule 30 to Rule 56.

Rule 30: This rule interchanges the 1st bit to 8th bit with 49th bit to 56th bit of each

character as shown in Table 3.5(b).

In this rule, shuffling of bits for one character is done with bits of another character.

Here, character ‘P’ bits are replaced with bit ‘2’ values, which means the bits are

interchanging. After applying the mutation, ‘P’ has bits ‘00000010’ and ‘2’ has bits

‘01010000’. Hence, the password is shuffled bitwise.

Table 3.5(b) The 1st to 8th bit interchange with 49th bit to 56th bit in 8x8 matrix vector with 64-bit

formation

P 0 1 0 1 0 0 0 0

o 0 1 1 0 1 1 1 1

o 0 1 1 0 1 1 1 1

j 0 1 1 0 1 0 1 0

a 0 1 1 0 0 0 0 1

@ 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 1 0

5 0 0 1 1 0 1 0 1

Rule 31: 1st to 8th bit interchange with 41st bit to 48th bit.

75

This rule interchanges the 1st bit to 8th bit with 41st bit to 48th bit of each character. In

this rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘P’ bits are replaced with character ‘@’ values, which means the bits are

interchanging. After applying the mutation, ‘P’ has bits ‘01000000’ and ‘@’ has bits

‘01010000’. Hence, the password is shuffled bitwise.

Rule 32: 1st to 8th bit interchange with 33th bit to 40th bit.

This rule interchanges the 1st bit to 8th bit with 33rd bit to 40th bit of each character. In

this rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘P’ bits are replaced with character ‘a’ values, which means the bits are

interchanging. After applying the mutation, ‘P’ has bits ‘01100001’ and ‘a’ has bits

‘01010000’. Hence, the password is shuffled bitwise.

Rule 33: 1st to 8th bit interchange with 25th bit to 32nd bit.

This rule interchanges the 1st bit to 8th bit with 25th bit to 32th bit of each character. In

this rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘P’ bits are replaced with character ‘j’ values, which means the bits are

interchanging. After applying the mutation, ‘P’ has bits ‘01101010’ and ‘j’ has bits

‘01010000’. Hence, the password is shuffled bitwise.

Rule 34: 1st to 8th bit interchange with 17th bit to 24th bit.

This rule interchanges the 1st bit to 8th bit with 17th bit to 24th bit of each character. In

this rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘P’ bits are replaced with character ‘o’ values, which means the bits are

interchanging. After applying the mutation, ‘P’ has bits ‘01101010’ and ‘o’ has bits

‘01010000’. Hence, the password is shuffled bitwise.

Rule 35: 1st to 8th bit interchange with 9th bit to 16th bit.

This rule interchanges the 1st bit to 8th bit with 9th bit to 16th bit of each character. In

this rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘P’ bits are replaced with character ‘o’ values (second row), which means the

bits are interchanging. After applying the mutation, ‘P’ has bits ‘01101111’ and ‘o’ has

bits ‘01101010’. Hence, the password is shuffled bitwise.

Rule 36: 9th to 16th bit interchange with 57th to 64th bit.

This rule interchanges the 9th to 16th bit with 57th to 64th bit of each character. In this

rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘o’ (second row) bits are replaced with character ‘5’ values, which means the

bits are interchanging. After applying the mutation, ‘o’ has bits ‘00110101’ and ‘5’ has

bits ‘01101111’. Hence, the password is shuffled bitwise.

76

Rule 37: 9th to 16th bit interchange with 49th to 56th bit.

This rule interchanges the 9th to 16th bit with 49th to 56th bit of each character. In this

rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘o’ (second row) bits are replaced with character ‘2’ values, which means the

bits are interchanging. After applying the mutation, ‘o’ has bits ‘00000010’ and ‘2’ has

bits ‘01101111’. Hence, the password is shuffled bitwise.

Rule 38: 9th to 16th bit interchange with 41st bit to 48th bit.

This rule interchanges the 9th to 16th bit with 41st to 48th bit of each character. In this

rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘o’ (second row) bits are replaced with character ‘@’ values, which means

the bits are interchanging. After applying the mutation, ‘o’ has bits ‘01000000’ and ‘@’

has bits ‘01101111’. Hence, the password is shuffled bitwise.

Rule 39: 9th to 16th bit interchange with 33rd bit to 40th bit.

This rule interchanges the 9th to 16th bit with 33rd bit to 40th bit of each character. In this

rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘o’ (second row) bits are replaced with character ‘a’ values, which means the

bits are interchanging. After applying the mutation, ‘o’ has bits ‘01100001’ and ‘a’ has

bits ‘01101111’. Hence, the password is shuffled bitwise.

Rule 40: 9th to 16th bit interchange with 25th to 32nd bit.

This rule interchanges the 9th to 16th bit with 25th to 32nd bit of each character. In this

rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘o’ (second row) bits are replaced with character ‘j’ values, which means the

bits are interchanging. After applying the mutation, ‘o’ has bits ‘01101010’ and ‘j’ has

bits ‘01101111’. Hence, the password is shuffled bitwise.

Rule 41: 9th to 16th bit interchange with 17th bit to 24th bit.

This rule interchanges the 9th to 16th bit with 17th bit to 24th bit of each character. In this

rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘o’ (second row) bits are replaced with character ‘o’ (third row) values, which

means the bits are interchanging. After applying the mutation, ‘o’ (second row) has bits

‘01101111’ and ‘o’ (third row) has bits ‘01101111’. Hence, the password is shuffled

bitwise.

Rule 42: 17th to 24th bit interchange with 57th to 64th bit.

This rule interchanges the 17th to 24th bit with 57th to 64th bit of each character. In this

rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘o’ (third row) bits are replaced with character ‘5’ values, which means the

77

bits are interchanging. After applying the mutation, ‘o’ (third row) has bits

‘00110101’and ‘5’ has bits ‘01101111’. Hence, the password is shuffled bitwise.

Rule 43: 17th to 24th bit interchange with 49th to 56th bit.

This rule interchanges the 17th to 24th bit with 49th to 56th bit of each character. In this

rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘o’ (third row) bits are replaced with character ‘2’ values, which means the

bits are interchanging. After applying the mutation, ‘o’ (third row) has bits

‘00000010’and ‘2’ has bits ‘01101111’. Hence, the password is shuffled bitwise.

Rule 44: 17th to 24th bit interchange with 41st to 48th bit.

This rule interchanges the 17th to 24th bit with 41st to 48th bit of each character. In this

rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘o’ (third row) bits are replaced with character ‘@’ values, which means the

bits are interchanging. After applying the mutation, ‘o’ (third row) has bits

‘01000000’and ‘@’ has bits ‘01101111’. Hence, the password is shuffled bitwise.

Rule 45: 17th to 24th bit interchange with 33rd to 40th bit.

This rule interchanges the 17th to 24th bit with 33rd to 40th bit of each character. In this

rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘o’ (third row) bits are replaced with character ‘a’ bit, which means the bits

are interchanging. After applying the mutation, ‘o’ (third row) has bits ‘01100001’and

‘a’ has bits ‘01101111’. Hence, the password is shuffled bitwise.

Rule 46: 17th to 24th bit interchange with 25th to 32nd bit.

This rule interchanges the 17th to 24th bit with 25th to 32nd bit of each character. In this

rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘o’ (third row) bits are replaced with character ‘j’ bits, which means the bits

are interchanging. After applying the mutation, ‘o’ (third row) has bits ‘01101010’and

‘j’ has bits ‘01101111’. Hence, the password is shuffled bitwise.

Rule 47: 25th to 32th bit interchange with 57th to 64th bit.

This rule interchanges the 25th to 32th bit with 57th to 64th bit of each character. In this

rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘j’ bits are replaced with character ‘5’ bits, which means the bits are

interchanging. After applying the mutation, ‘j’ has bits ‘00110101’ and ‘5’ has bits

‘01101010. Hence, the password is shuffled bitwise.

Rule 48: 25th to 32th bit interchange with 49th to 56th bit.

This rule interchanges the 25th to 32th bit with 49th to 56th bit of each character. In this

rule, shuffling of bits for one character is done with bits of another character. Here,

78

character ‘j’ bits are replaced with character ‘2’ bits, which means the bits are

interchanging. After applying the mutation, ‘j’ has bits ‘00000010’ and ‘2’ has bits

‘01101010. Hence, the password is shuffled bitwise.

Rule 49: 25th to 32th bit interchange with 41st to 48th bit.

This rule interchanges the 25th to 32th bit with 41st to 48th bit of each character. In this

rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘j’ bits are replaced with character ‘@’ bits, which means the bits are

interchanging. After applying the mutation, ‘j’ has bits ‘01000001’ and ‘@’ has bits

‘01101010. Hence, the password is shuffled bitwise.

Rule 50: 25th to 32th bit interchange with 33rd to 40th bit.

This rule interchanges the 25th to 32th bit with 33rd to 40th bit of each character. In this

rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘j’ bits are replaced with character ‘a’ bits, which means the bits are

interchanging. After applying the mutation, ‘j’ has bits ‘01100001’ and ‘a’ has bits

‘01101010. Hence, the password is shuffled bitwise.

Rule 51: 33rd to 40th bit interchange with 57th to 64th bit.

This rule interchanges the 33rd to 40th bit with 57th to 64th bit of each character. In this

rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘a’ bits are replaced with character ‘5’ bits, which means the bits are

interchanging. After applying the mutation, ‘a’ has bits ‘00110101’ and ‘5’ has bits

‘01100001’. Hence, the password is shuffled bitwise.

Rule 52: 33rd to 40th bit interchange with 49th to 56th bit.

This rule interchanges the 33rd to 40th bit with 49th to 56th bit of each character. In this

rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘a’ bits are replaced with character ‘2’ bits, which means the bits are

interchanging. After applying the mutation, ‘a’ has bits ‘00000010’ and ‘2’ has bits

‘01100001’. Hence, the password is shuffled bitwise.

Rule 53: 33rd to 40th bit interchange with 41st to 48th bit.

This rule interchanges the 33rd to 40th bit with 41st to 48th bit of each character. In this

rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘a’ bits are replaced with character ‘@’ bits, which means the bits are

interchanging. After applying the mutation, ‘a’ has bits ‘01000000’ and ‘5’ has bits

‘01100001’. Hence, the password is shuffled bitwise.

Rule 54: 41st to 48th bit interchange with 57th to 64th bit.

79

This rule interchanges the 41st to 48th bit with 57th to 64th bit of each character. In this

rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘@’ bits are replaced with character ‘5’ bits, which means the bits are

interchanging. After applying the mutation, ‘@’ has bits ‘00110101’ and ‘5’ has bits

‘01000000’. Hence, the password is shuffled bitwise.

Rule 55: 41st to 48th bit interchange with 49th to 56th bit.

This rule interchanges the 41st to 48th bit with 49th to 56th bit of each character. In this

rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘@’ bits are replaced with character ‘2’ bits, which means the bits are

interchanging. After applying the mutation, ‘@’ has bits ‘00000010’ and ‘2’ has bits

‘01000000’. Hence, the password is shuffled bitwise.

Rule 56: 49th to 56th bit interchange with 57th to 64th bit.

This rule interchanges the 49th to 56th bit with 57th to 64th bit of each character. In this

rule, shuffling of bits for one character is done with bits of another character. Here,

character ‘2’ bits are replaced with character ‘5’ bits, which means the bits are

interchanging. After applying the mutation, ‘2’ has bits ‘00000010’ and ‘5’ has bits

‘00110101’. Hence, the password is shuffled bitwise.

A total of 56 parity rules are generated for 8-byte formation. Based on these rules, self-

key mutation concept is implemented. The resultant matrix cannot be identified in

advance since it is randomly generated using the key mapping bit parity rules in the

mutation process and swapping pattern is anonymous to all the users whether the user

is authorized or unauthorized.

3.9 Brief summary of this chapter

This chapter presents the objectives of the proposed research work. The methodology

of the proposed work is defined where, the working of the hybrid environment using

EHC and BGV is discussed, along with CPABE parameters that are used to define

customized access to different tenants. The algorithm is designed to show the step-by-

step procedure of the proposed methodology. The parity rules for key mapping are

defined, that are used in the attacking scenario.

80

Chapter-4

Experimental Analysis and Results

4.1 Experimental setup

A real-time cloud scenario is created by designing the API using Xampp tool. Apache

tomcat server acts as the web server and MySQL is used to handle the backend queries.

The multi-tenant cloud API is designed with two servers; the main server and the web

server. The database server or main server is applicable for communication inside the

organization or an enterprise; only tokens are generated for internal communication.

The IP in this scenario is not visible to the attacker and hence it is considered as safest

communication method while the web server is used for communication outside the

organization or enterprise. The database tables created in MySQL contains the tenant

information based on their role. The role is approved by ADMIN only. For accessing

the files, another table is created which contains information regarding the files present

in the database and the key/token generation algorithms are embedded in the code to

grant access to only authenticated user. The authenticated and authorized users can only

access the files, all the information is matched from the database. To show the attempt

by an unauthorized user, a table named ‘untrusted’ is created which contains the

information about the attacker such as, IP address, name, and location. After 3 invalid

attempts, an email will be shared with the attacker’s details to the owner of the data

being accessed. The complete processing is done by integrating the algorithms in the

web server interface.

The proposed model is tested for 223 end-users, 17 multi-tenants, 12 head-tenants and

7 enterprise levels.

Case1: Creating multiple tenants in cloud architecture.

In figure 4.1.1, ADMIN is the first layer of the tenant category who is responsible to

approve or reject the tenant’s authentication and registration. The login credentials are

shared on the email id of the authenticated tenant or the user. The credentials should be

modified by the user once the user logins the page, as the credentials shared by the

81

admin on the email id are the default credentials and should be changed for security

reasons. Next layer is designed for data owners who are responsible to upload the data

on the cloud server. Further it is divided into different user types; insider tenant, trusted

tenant, partial tenant, and guest tenant. Depending on the role type, key expiration

technique is followed. Hence, same token or key cannot be used to access the file for a

long time or after expiry of the token or the key.

Figure 4.1.1 Test case for creating multiple tenants in cloud architecture

Case2: Uploading a file on cloud server on real-time.

Figure 4.1.2 shows the home page of data owner named admin1. Admin1 is responsible

to upload the data or files on the cloud environment. Suppose “sample4.txt” file needs

to be uploaded. Clicking on “choose file” button navigates to the windows browser; the

required file can be uploaded by clicking on “upload” button afterwards. Figure 4.1.2

shows the existence of the file on the cloud server.

82

Figure 4.1.2 Test case for uploading a file on cloud server on real-time

Case3: Request for accessing a file.

Suppose user “user4” wants to access the uploaded file “sample4.text” by “admin1”.

Then “user4” first requests file access to the data owner, this request is received and

approved by “admin1”, the data owner, then a key is generated using EHC algorithm

since the category of “user4” is “Insider” user. For a partial user, BGV algorithm is

used to generate the hybrid key. This key is sent to the user’s email id. It will expire

after some time based on the user’s role category. For an Insider user, the key expiration

is the maximum since it is considered the safest role as the tenant or user belongs to the

organization. The decryption key received on the user’s email id is required to open the

required file as shown in Figure 4.1.3.

83

Figure 4.1.3 Test case for Request for accessing a file.

Figure 4.1.4 shows the snip of token/key received on the email id of the user. This token or key

is generated using EHC or BGV algorithm based on the category of the user.

Figure 4.1.4 Test case for generating the token key which is received successfully on email id

Case 4: Self-key mutation in case of an attack. Figure 4.1.5 shows the result after the

self-key mutation. A total of 56 parity rules are applied randomly. These 56 rules are

defined for 8-byte bit formation or 64-bit matrix formation. In the table, “keydata”

column defines the key after applying the mutation technique. The original key is

mutated randomly 5 times which increases the complexity in guessing the key.

84

Figure 4.1.5 Test case showing the mutated key after an attack

4.2 Creating a multitenant environment on CloudSim and generating the keys

using EHC algorithm

A multitenant cloud environment is designed using CloudSim simulator and Netbeans.

Authentication and authorization of users is done using the credentials of the users and

only after proper verification and validation of the credentials, the user can access the

cloud. The bits required for PuK and PK and the time taken by these keys are evaluated.

Figure 4.2(a) shows the key generation time for EHC algorithm which is generated by

implementing the EHC algorithm. The public key size is 144 bits and private key size

is 152 bits and the key generation time for public key is 474.599ms and for private key,

it takes 316.400ms (round off to 3 decimal places).

85

Figure 4.2(a) Test case with EHC keys generation time and size

4.2.1 Token generation

A token is generated for the communication inside the organization to access the file.

It is sent to the registered user’s email id. FTP is used as a transmission protocol for

sending tokens/keys.

The token will expire after some specified time. After this, the session of the tenant will

expire and is asked to request again to the owner for accessing that file. The tenant

requests again for the file to the owner and after approval by the data owner, OTP will

be received on the user’s email id and same can be used to get access to the content of

the file.

4.2.2 Snip for token generation on email id

The token ID is generated randomly and successfully received on the registered email

id. The snip of email id is shown in figure 4.2(b). An 8-bit token number is randomly

generated and shared on the authenticated user’s ID. This token key will expire after

86

some period of time. Dummy keys are generated by the organization for its users, which

should be modified by the user before logging in the system.

Figure 4.2(b) Test case with token generation on email id

4.2.3 Storage requirement by EHC

The memory requirement by EHC algorithm is very less which results in an overall

inexpensive approach, though BGV requires more storage space but in the proposed

approach, BGV is used only to generate hybrid key and the public key, private key and

token generation are done using EHC algorithm.

The memory requirement by EHC can be evaluated by implementing EHC algorithm

as shown in Figure 4.2(c). The total memory required by EHC before and after key

generation is evaluated as 1.11255 bits which is approximately equal to 0.0 bytes

(negligible to zero). Hence, it can be concluded that to total time taken by EHC is very

less.

87

Figure 4.2(c) Memory required by EHC

4.3 Test case analysis

The proposed EHC-BGV encryption hybrid model is much better in terms of providing

security and privacy with the implications of transmission rate of data, secure tokens

number and keys generations, application areas along with the implicated environment-

internal enterprise like as local–global–local tenant and implicated environment-

external enterprise like as external enterprise.

4.3.1 Implications of EHC algorithm based key generation time, encryption time

and decryption time

The key generation time, encryption time and decryption time of EHC algorithm is

evaluated by implementing the EHC algorithm as shown in the Figure 4.3.The file size

varies from 24 bits to 8248 bits. It can be observed that the encryption, and decryption

time of EHC is better if compared with the past proposed algorithms like RSA, AHEE

etc. Some of the algorithms are compared and shown in the upcoming sections.

88

Figure 4.3 Implications of EHC algorithm based key generation time, encryption time, decryption

time and memory consumed

89

4.3.2 Implications of Hybrid EHC-BGV Homomorphic based key generation

time, encryption time and decryption time

The key generation time, encryption time and decryption time of hybrid approach has

shown as in the Figure 4.4 by running the implementation code as follows. It can be

noted that the time taken by EHC is more in case of encrypting and decrypting a file

when compared with the results obtained from the hybrid model that is, when EHC is

integrated with BGC, it gives better results.

90

Figure 4.4 Implications of Hybrid EHC-BGV Homomorphic based key generation time, encryption

time, decryption time and memory consumed

91

4.3.3 Implications of Hybrid EHC-BGV Homomorphic based automated key

filter scenario with bits-shuffling mechanism

The bits are shuffled based on the 8-byte formation matrix. A total of 56 parity rules

are applied for key mutation concept. The result is shown in the Figure 4.5 where the

original key Pooja@25 is shuffled and mutation technique is applied which returns

P2oja@05. Here, it can be observed that 2 bits are interchanged; the second bit and the

seventh bit. The production rule is randomly selected from 56 rules.

Figure 4.5 Implications of Hybrid EHC-BGV Homomorphic based automated key filter scenario

with bits-shuffling mechanism based on the 8-byte formation matrix by 56 parity rules key mutations

92

4.3.4 Key generation time variations among EHC algorithm and Hybrid EHC-

BGV on 8-byte key size

As shown in Table 4.1, the key generation time in hybrid is less as compared to the

EHC algorithm since a hybrid model takes advantages of the BGV and EHC algorithms

both and the weaknesses of individual algorithms BGV and EHC is bypassed by using

the hybrid approach.

Table 4.1 The key generation time variations among EHC algorithm and Hybrid EHC-BGV on 8-byte

key

Key Size EHC (in ms) Hybrid (in ms)

24 bits 0.509 0.5025

72 bits 5.09 0.1954

128 bits 5.09 0.1766

256 bits 5.09 0.2261

1024 bits 5.09 0.233

2048 bits 5.09 0.1211

4096 bits 5.09 0.2239

8248 bits 5.09 0.1099

4.3.5 Encryption time variations among EHC algorithm and Hybrid EHC-BGV

on 8-byte key size

The encryption time in hybrid is very less as compared with EHC algorithm as the

hybrid model combines the qualities of two algorithms that is, BGV and EHC. The time

required to encrypt data is less as compared with the EHC algorithm alone as shown in

the Table 4.2.

Table 4.2 The encryption time variations among EHC algorithm and Hybrid EHC-BGV on 8-byte key

Plain Text Size EHC (in ms) Hybrid (in ms)

24 bits 2.3233 0.0355

72 bits 3.1756 0.0863

128 bits 3.8193 0.113

93

256 bits 4.9124 0.1493

1024 bits 6.0552 0.3443

2048 bits 7.2221 0.7684

4096 bits 7.8624 1.1374

8248 bits 8.7277 1.8491

4.3.6 Decryption time variations among EHC algorithm and Hybrid EHC-BGV

on 8-byte key size

The use of hybrid approach that integrates two FHE algorithms that is, EHC and BGC

gives better results as compared with EHC algorithm alone. As seen in Table 4.3, the

decryption time in hybrid is very less as compared with EHC algorithm.

Table 4.3 The decryption time variations among EHC algorithm and Hybrid EHC-BGV on 8-byte key

Plain Text Size EHC (in ms) Hybrid (in ms)

24 bits 2.1533 0.0525

72 bits 4.1264 0.1582

128 bits 6.2627 0.3305

256 bits 8.6085 0.6308

1024 bits 11.4445 0.8546

2048 bits 14.0209 2.407

4096 bits 16.8254 2.6386

8248 bits 19.4799 3.3513

4.3.7 Description of Comparative analysis of proposed hybrid EHC-BGV

approach with existing approaches

The novel concept in our proposed model is based on using the Hybrid EHC-BGV

Homomorphic based automated key filter bit-mapping key mutation (KM) approach

for Secure Data Access Control in Distributed Enterprise Multitenant. The Hybrid

EHC-BGV Homomorphic based Automated KF-BM-KM is implemented only in case

of an attack. When an attacker tries to intercept the transmission channel, self-key

94

mutation takes place and shuffling of bits is done which is based on the production

rules.

In Table 4.4, a comparative description of the past proposed approaches with the

proposed model is shown. It can be observed that the proposed model provides up to

96% success rate. The 96% success rate is calculated by considering the average of

encryption, decryption, and key generation time of the past proposed and the proposed

model.

Table 4.4 Description of Comparative analysis of proposed hybrid EHC-BGV approach with existing

approaches

Author

name

Applica

tion

area

Mode

of

security

Homo

morphi

c

encrypt

ion

techniq

ue

Implica

ted

Enviro

nment-

Interna

l

Enterp

rise

Impli

cated

Envir

onme

nt-

Exter

nal

Enter

prise

Number

of

Tokens

and Keys

Success rate

Gorti

VNKV

Subba
Rao

et.al.[17]

Mobile

Ad Hoc

Networ
ks

Messag

e

Transmi
ssion

EHC Local

Tenant

Global

Tenant

4 (1

public, 3

private
keys)

100% only if

there are a

greater
number of

active nodes

in each
group of

networks.

S.V.Suri

ya prasad
et.al. [13]

Cloud

Security

Data

Transmi
ssion

BGV,

EBGV
(Enhanc

ed

BGV)

Local

Tenant

Global

Tenant

2 (1

public, 1
private

key)

Partially

Executed

Liang

Chen

et.al. [14]

Cloud

Security

Data

Transmi

ssion

NEHE Local

Tenant

Local

Tenant

4 (1

public, 3

private

keys)

Partially

Executed

Pooja

and

Santosh
Kumar

Henge

Networ

k and

Cloud
Security

Data

storage

and
Transmi

ssion

EHC-

BGV

Local –

Global

–Local
Tenant

Extern

al

Enterp
rise

3 tokens

PuK, HK,

PK (6
keys)

96%

The complexity in securing the data on cloud for the proposed model is found in

identifying the type of the tenant as the implementation of the model is based on the

role of the tenant. Hence, proper evaluation of the tenant’s role must be identified. The

95

evaluation of attacker’s IP address and data site and key generation is a tedious task.

Further the parameters used for authentication and authorization includes password,

OTP, OOTP, token, and key expiration time. Here, OOTP is On-demand OTP that is

generated only case of an attack and token/key is expired based on the category or role

of the tenant/user. For the proposed multitenant cloud architecture, 2 hours token/key

expiration is set for an insider user and 24 hours for a partial user and 10 minutes for

anonymous user. While trusted category requires extra layer of authentication using

OTP that is received on email id and to access a file, password is sent to the email id

again. Hence, multi-factor authentication technique is incorporated in the proposed

research model.

The proposed Hybrid EHC-BGV Homomorphic based automated key filter bit-

mapping key mutation (KM) approach is more efficient in terms of data privacy and

security.

4.3.8 Comparison of considered size of the cipher-text in existing approaches

along with the proposed EHC model and hybrid EHC-BGV approach with

key size of 8 bytes

The Table 4.5 describes a comparative study of the proposed hybrid model with the

existing approaches by considering the cipher-texts which are used for data

transmission through the cloud enterprise-level servers. It can be observed that there is

a constant key generation time for proposed EHC algorithm. The proposed EHC

algorithm is tested on the proposed model which is integrated with different tenant

roles, different enterprises, and different users. EHC algorithm is tested for 256-bit size

only because if the key size increases EHC is taking a lot of time in key generation. It

is one of the major complexities during the implementation process; the results are

implicated considering the key size.

Figure 4.6 shows the graphical representation of the results evaluated in the Table 4.5.

It can be seen directly that the ciphertext size in the proposed model is less as compared

to the past proposed algorithms.

96

Table 4.5 Comparison of considered size of the cipher-text in existing approaches along with the

proposed EHC model and hybrid EHC-BGV approach with key size of 8 bytes

Plain text

size in bits

RSA [3] AHEE

[3]

Proposed

EHC

Model

Proposed Hybrid

EHC-BGV

Homomorphic

based automated

KF-BM-KM

approach

24 bits 30 28 24 24

72 bits 80 78 56 56

128 bits 137 133 64 96

256 bits 272 263 64 192

1024 bits 1033 1027 64 960

2048 bits 2057 2055 64 1984

4096 bits 4123 4115 64 4032

8248 bits 8313 8295 64 8184

Figure 4.6 Test case with comparison of considered size of the cipher-text in existing approaches

along with the proposed EHC model and hybrid EHC-BGV approach with 8-byte key size

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

24 bits 72 bits 128 bits 256 bits 1024 bits 2048 bits 4096 bits 8248 bits

Ti
m

e
in

 m
s

File size in bits

Key generation time

RSA

AHEE

Proposed EHC Model

Proposed Hybrid EHC-BGV Homomorphic based automated KF-BM-KM approach

97

4.3.9 Comparison of considered time for the implication of encryption-time in

existing approaches along with the proposed EHC Model and hybrid EHC-

BGV approach with key size of 8 bytes

The comparison study of existing approaches along with the proposed hybrid approach

by considering the encryption time taken for transmitting the data is shown as in the

Table 4.6. The encryption time in hybrid is very less as compared with EHC algorithm

for file size from 24 bits to 8248 bits. For 8248 bits file size, the time taken in the

encryption process is 1.8491ns which is very less as compared to RSA, AHEE and

proposed EHC algorithm. The hybrid model combines the features of both the

algorithms which result in better approach.

Table 4.6 Comparison of considered time for the implication of encryption-time in existing approaches

along with the proposed EHC Model and hybrid EHC-BGV approach with key size of 8 bytes

Plain text

size in

bits

RSA [3] AHEE

[3]

Proposed

EHC

Model

Proposed Hybrid

EHC-BGV

Homomorphic

based automated

KF-BM-KM

approach

24 bits 12.05 5.67 2.3233 0.0355

72 bits 36.15 17 3.1756 0.0863

128 bits 64.22 30.2 3.8193 0.113

256 bits 128.46 60.5 4.9124 0.1493

1024 bits 514.05 242 6.0552 0.3443

2048 bits 1024.25 477 7.2221 0.7684

4096 bits 2056.45 968 7.8624 1.1374

8248 bits 4133.15 1949 8.7277 1.8491

Figure 4.7 shows the graphical representation of the results evaluated for encryption

time for 8 bytes. It can be seen directly that the encryption time in the proposed hybrid

model is less as compared to the past proposed algorithms. Figure 4.8 shows the bitwise

comparison of the proposed algorithm with the past proposed algorithms.

98

Figure 4.7 Test case with comparison of considered time for implication of encryption-time in

existing approaches along with the proposed EHC model and hybrid EHC-BGV approach with 8-

byte key size

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200

24 bits 72 bits 128 bits 256 bits 1024 bits 2048 bits 4096 bits 8248 bits

Ti
m

e
in

 m
s

File size in bits

Encryption time

RSA

AHEE

Proposed EHC Model

Proposed Hybrid EHC-BGV Homomorphic based automated KF-BM-KM approach

99

Figure 4.8 Bit wise comparison of encryption-time in existing approaches along with the proposed

EHC model and hybrid EHC-BGV approach with 8-byte key size

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200

24
bits

72
bits

128
bits

256
bits

1024
bits

2048
bits

4096
bits

8248
bits

RSA 12.05 36.15 64.22 128.46 514.05 1024.25 2056.45 4133.15

AHEE 5.67 17 30.2 60.5 242 477 968 1949

Proposed EHC Model 2.3233 3.1756 3.8193 4.9124 6.0552 7.2221 7.8624 8.7277

Proposed Hybrid EHC-BGV
Homomorphic based automated

KF-BM-KM approach
0.0355 0.0863 0.113 0.1493 0.3443 0.7684 1.1374 1.8491

Ti
m

e
in

 m
s

File size in bits

Encryption time

RSA

AHEE

Proposed EHC Model

Proposed Hybrid EHC-BGV Homomorphic based automated KF-BM-KM approach

100

4.3.10 Comparison of considered time for the implication of decryption-time in

existing approaches along with the proposed EHC Model and hybrid EHC-

BGV approach with key size of 8 bytes

The existing approaches are compared with the proposed hybrid approach by taking

into the consideration decryption time of data transmission as shown in the Table 4.7.

The decryption time in hybrid is very less as compared with EHC algorithm for file size

from 24 bits to 8248 bits. For 8248 bits file size, the time taken in the decryption process

is 3.3513ns which is very less as compared to RSA, AHEE and proposed EHC

algorithm.

Figure 4.9 shows the graphical representation of the results evaluated for decryption

time for 8 bytes from the Table 4.7. It can be seen directly that the decryption time in

the proposed hybrid model is less as compared to the past proposed algorithms.

Table 4.7 Comparison of considered time for the implication of decryption-time in existing approaches

along with the proposed EHC Model and hybrid EHC-BGV approach with 8 byte key size

Plain text

size in

bits

RSA

[3]

AHEE

[3]

Proposed

EHC

Model

Proposed

Hybrid EHC-

BGV

Homomorphic

based

automated

KF-BM-KM

approach

24 bits 5.96 0.92 2.1533 0.0525

72 bits 17.88 2.76 4.1264 0.1582

128 bits 31.78 4.9 6.2627 0.3305

256 bits 63.57 9.8 8.6085 0.6308

1024 bits 254.31 39.3 11.4445 0.8546

2048 bits 508.59 78.5 14.0209 2.407

4096 bits 1017.17 157 16.8254 2.6386

8248 bits 2048.27 316 19.4799 3.3513

101

Figure 4.9 Comparison of considered time for implication of decryption-time in existing approaches

along with the proposed EHC model and hybrid EHC-BGV approach with 8-byte key size

Hence, the proposed hybrid approach is better in terms of key generation time,

encryption time and decryption time. Hence, it can be concluded that the proposed

model is better in terms of providing better security and time required for generating

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

24 bits 72 bits 128 bits 256 bits 1024 bits 2048 bits 4096 bits 8248 bits

Ti
m

e
in

 m
s

File size in bits

Decryption time

RSA

AHEE

Proposed EHC Model

Proposed Hybrid EHC-BGV Homomorphic based automated KF-BM-KM approach

102

the keys, encryption time and decryption time is very less as compared to the EHC

algorithm.

4.4 Conclusion

The proposed model uses a hybrid approach embedded with mutation technique to

secure the cloud data. The hybrid technique is using EHC and BGV algorithms. Both

fully homomorphic encryption schemes are compatible with each other as they

overcome each other’s cons. Different access methods are used for different categories

of the tenant; it is based on the role of the user or tenant. Since all the services are not

required by the tenants, only a few tenants require all the services; hence data is

provided based on the role and category of the tenant. Based on the role of the user, an

appropriate FHE scheme is applied.

If the user’s role is Insider, Trusted Outsider or Anonymous/Guest user, then EHC

algorithm is used. While BGV algorithm is used only in case the user is a Partial user.

For an Insider user, no keys are generated; only tokens are used internally since risk of

breaching data is very low inside the organization. These tokens are generated using

EHC algorithm. For Outsider category, user is divided into two sub-categories; Trusted

Outsider and Un-trusted Outsider. For a Trusted Outsider and a guest user, EHC is used

to generate the public and private keys. Guest user is considered as more prone to

breaches since risk is high in this case. For an Untrusted Partial category, hybrid key is

generated using a BGV algorithm.

For handling the attacking scenario, a dictionary is maintained with a list of authorized

users that contains information like IP address, name, and location of the user. If any of

the data is found mismatched while requesting access to the data, it is considered as an

unauthorized access. In this case, a subsequent action takes place which implements the

self-key mutation concept.

The self-key mutation is applied on 8-byte or 64-bits formation of keys. A total of 56

parity rules are designed for self-key mutation implementation. Keys are shuffled based

on the random selection of these parity rules.

103

The proposed approach has tested on various distributed cloud servers with 223 end-

users by the integration of seventeen multitenant, twelve head-tenants, and seven

enterprise levels.

It is found that the proposed hybrid approach is more secure than the current encryption

models for protecting the data on the cloud since it is IND-CCA secure and the time

taken for various operations is comparatively less. It is an inexpensive approach as

storage requirement and power consumption is low. Moreover, the bit parity mapping

in the hybrid approach is integrated to add a multi-factor authentication technique.

Hence, it can be concluded that the proposed model is better in terms of maintaining

privacy and security.

The proposed blended model is efficient to prevent the data from the ciphertext attacks

and achieved a success rate of 96 percent for the communication between the multi-

tenants that are based on the user-role-user type of enterprise cloud servers.

4.5 Brief summary of this chapter

This chapter implements the possible test cases for the proposed research methodology

using XAMPP tool. The proposed hybrid approach is compared with the past proposed

algorithms. It is found from the results that the proposed hybrid model using EHC and

BGV that is integrated with key mutation mapping technique takes less time for

encryption, decryption, and key generation process. Since, auto tuning method for keys

mutation is used in self-key mutation technique, the proposed work is found to be

fulfilling its objective of securing the cloud with less complexity. Based on the tenant’s

role, the scenario changes which is dynamically designed and implemented with more

efficiency.

104

Chapter-5

Recommendations and Future work

This thesis presents a more secured way to protect the data on the cloud. Security and

privacy constraints are fulfilled in the proposed study. Various access control methods

are discussed along with the fully homomorphic encryption algorithm. The proposed

model is designed using a hybrid FHE approach integrated with self-mutation

technique.

5.1 Summary

The research aims at improving security and privacy against the most vulnerable threats

of cloud computing. The proposed model uses FHE algorithms, EHC and BGV for

encrypting the data on cloud and access control mechanism is integrated with key

mutation technique. The access is given based on the role of the user or tenant and

public, private keys, and hybrid keys are generated according to the tenant’s access

permissions. Self-key mutation occurs in case on an attacking scenario.

The objectives of the proposed model are achieved successfully following the proposed

research methodology.

Objective 1: To analyse existing Homomorphic techniques in multi-tenant

environment.

Literature review is used for the analyses and evaluation of the past proposed HE

algorithms. A combination of EHC and BGV FHE algorithms is found to be suitable

for the proposed research.

Objective 2: To design multi-tenant access control logs in Homomorphic encryption

technique.

A multitenant customized cloud environment is designed with access control based on

the role of the tenant. Keys are generated on the basis of the role of the user or tenant.

Cloud Simulation Tool with Netbeans is used for the implementation. Xampp is used

to create web pages. Apache is used as a web server and MySQL is used as a database

105

server. A multi-tenant cloud environment is designed that serves different access

mechanisms based on the user’s role. Mapping of the tokens between tenants is based

on session, and token management (initiation time, start time, end time). A Multi-factor

authentication (Email, owner approval, random keys/tokens) technique is introduced. A

hidden key OOTP is generated for the attacking scenario.

Objective 3: To develop Homomorphic encryption technique in multi-tenant cloud

environment.

A secured multi-tenant cloud environment is developed using a hybrid Homomorphic

approach with key filtration technique integrated in the proposed model. Cloud

Simulation Tool with Netbeans is used for the implementation. Xampp is used to create

web pages, Apache is used as a web server and MySQL is used as a database server.

Key/token is generated using EHC and BGV FHE algorithms. EHC is used to generate

the token, public key, and private key, and BGV is used to generate a hybrid key based

on the user’s role. Self-key mutation technique is used for the attacking scenario. A total

of 56 parity rules are integrated for parity mapping.

Objective 4: To test and validate the developed technique.

The proposed model is compared with current methodologies and techniques,

considering the parameters such as Key generation time, Encryption time, Decryption

time, and Computational Complexity. It is found that the proposed methodology is

secure under CCA. The time taken in encryption, decryption and key generation is very

less. Success rate of the proposed model is 96%.

5.2 Implications

The future work can be done to reduce the computational complexity by increasing the

key size. In the proposed model, the key size is limited to 8248 bits and increasing the

key size increases the complexity. It can be improved by considering the high-

performance devices with 128 GB RAM and specialized hardware configuration.

106

5.3 Limitations and Future scope

• The proposed methodology is designed for 8 bytes formation of bits integrated

with self-key mutation technique. In future, the number of bytes can be

increased to check the performance of the proposed hybrid model.

• The EHC algorithm is tested for 256 bits fixed key size since in the proposed

model, some complications were seen to handle the size more than 256 bits. It

took more time in generating the keys for larger key size.

• Fibre optics can be used for further research for improved performance and

increased key size. As increasing key size results in increased computational

complexity due to requirement of more resources. The high-performance

systems are required to perform complex computations.

• Proper evaluation can be made for the future threats. The upcoming breaches

and possible attacks can be examined further to check the validity of the

proposed model.

• The proposed model can be integrated with the Blockchain technique[92] and

performance can be evaluated for any improvement in terms of security and in

reduction the total time required in generating the keys, encryption and

decryption time.

107

Bibliography

[1] N. Veeraragavan, “Design and Implementation of Authentication as a Service (Aaas) in

Windows Azure Cloud Platform,” J. Phys. Conf. Ser., vol. 1142, no. 1, pp. 0–8, 2018,

doi: 10.1088/1742-6596/1142/1/012016.

[2] D. Pooja, “Cloud Computing - Overview and its Challenges,” Res. Rev. Int. J.

Multidiscip., vol. 04, no. 03, pp. 499–501, 2019.

[3] R. Kanagavalli and S. Vagdevi, “Secured Data Storage in Cloud Using Homomorphic

Encryption,” Int. J. Cloud Comput. Serv. Archit., vol. 9, no. 4, pp. 1–11, 2019, doi:

10.5121/ijccsa.2019.9401.

[4] I. Ahmad and A. Khandekar, “Homomorphic Encryption Method Applied to Cloud

Computing,” vol. 4, no. 15, pp. 1519–1530, 2014.

[5] B. Chen and N. A. Zhao, “FULLY HOMOMORPHIC ENCRYPTION APPLICATION

IN CLOUD COMPUTING,” 2014.

[6] J. Yang, M. Fan, G. Wang, and Z. Kong, “Simulation Study Based on Somewhat

Homomorphic Encryption,” J. Comput. Commun., vol. 2014, no. January, pp. 109–111,

2014.

[7] N. Jain, “Implementation and Analysis of Homomorphic Encryption Schemes,” Int. J.

Cryptogr. Inf. Secur., vol. 2, no. 2, pp. 27–44, 2012, doi: 10.5121/ijcis.2012.2203.

[8] P. V.Parmar, S. B. Padhar, S. N. Patel, N. I. Bhatt, and R. H. Jhaveri, “Survey of Various

Homomorphic Encryption algorithms and Schemes,” Int. J. Comput. Appl., vol. 91, no.

8, pp. 26–32, 2014, doi: 10.5120/15902-5081.

[9] T. Oladunni and S. Sharma, “Homomorphic Encryption and Data Security in the

Cloud,” no. October, 2019.

[10] O. Ethelbert, F. F. Moghaddam, P. Wieder, and R. Yahyapour, “A JSON Token-Based

Authentication and Access Management Schema for Cloud SaaS Applications,” 2018.

[11] B. S. Al-attab, “Authentication Technique by Using USB Token in Cloud Computing,”

no. February 2016, pp. 1–4, 2019.

[12] W. Ding, Z. Yan, and R. H. Deng, “Privacy-Preserving Data Processing with Flexible

Access Control,” IEEE Trans. Dependable Secur. Comput., vol. 17, no. 2, pp. 363–376,

108

2020, doi: 10.1109/TDSC.2017.2786247.

[13] S. V. S. Prasad and K. Kumanan, “Homomorphic Encryption Using Enhanced BGV

Encryption Scheme For Cloud Security,” Int. J. Eng. Comput. Sci., vol. 7, no. 03, pp.

23785–23789, 2018, doi: 10.18535/ijecs/v7i3.22.

[14] L. Chen, Z. Tong, W. Liu, and C. Gao, “Non-interactive exponential homomorphic

encryption algorithm,” Proc. 2012 Int. Conf. Cyber-Enabled Distrib. Comput. Knowl.

Discov. CyberC 2012, pp. 224–227, 2012, doi: 10.1109/CyberC.2012.44.

[15] U. Shwetha, R. M. H, and M. June, “Securing the data in cloud using Algebra

Homomorphic Encryption scheme based on updated Elgamal (AHEE),” vol. 6, no. 3,

pp. 287–292, 2017.

[16] H. M. Al-Mashadi and A. A. Khalaf, “Hybrid homomorphic cryptosystem for secure

transfer of color image on public cloud,” J. Theor. Appl. Inf. Technol., vol. 96, no. 19,

pp. 6474–6486, 2018.

[17] G. Vnkv, S. Rao, and G. Uma, “An Efficient Secure Message Transmission in,” GJCST-

E Network, Web Secur., vol. 13, no. 9, 2013.

[18] A. El-yahyaoui and M. D. Elkettani, “Fully homomorphic encryption : state of art and

comparison,” Int. J. Comput. Sci. Inf. Secur., vol. 14, no. 4, pp. 159–168, 2016, doi:

10.6084/M9.FIGSHARE.3362338.

[19] R. A. A. C.Saravanabhavan, K.Anguraju, M.Kannan, P.Preethi, “Ensuring Efficient

Data Storage Using Fully Mature Homomorphic Encryption Technique in the Cloud

Environment,” Int. J. Recent Technol. Eng., vol. 8, no. 2, pp. 4820–4832, 2019, doi:

10.35940/ijrte.B2472.078219.

[20] Y. Wang, Y. Sun, Z. Lin, and J. Min, “Container-Based Performance Isolation for Multi-

Tenant SaaS Applications in Micro-Service Architecture,” J. Phys. Conf. Ser., vol.

1486, no. 5, 2020, doi: 10.1088/1742-6596/1486/5/052032.

[21] J. K. R. Sastry and M. T. Basu, “Securing multi-tenancy systems through multi DB

instances and multiple databases on different physical servers,” Int. J. Electr. Comput.

Eng., vol. 9, no. 2, p. 1385, 2019, doi: 10.11591/ijece.v9i2.pp1385-1392.

[22] A. Jumagaliyev and Y. Elkhatib, “CadaML: A modeling language for multi-tenant cloud

application data architectures,” IEEE Int. Conf. Cloud Comput. CLOUD, vol. 2019-July,

no. October, pp. 430–434, 2019, doi: 10.1109/CLOUD.2019.00075.

109

[23] S. Kanade and R. Manza, “A Comprehensive Study on Multi Tenancy in SAAS

Applications,” Int. J. Comput. Appl., vol. 181, no. 44, pp. 25–27, 2019, doi:

10.5120/ijca2019918531.

[24] V. H. S. C. Pinto, H. J. F. Luz, R. R. Oliveira, P. S. L. Souza, and S. R. S. Souza, “A

systematic mapping study on the multi-tenant architecture of SaaS systems,” Proc. Int.

Conf. Softw. Eng. Knowl. Eng. SEKE, vol. 2016-Janua, no. August, pp. 396–401, 2016,

doi: 10.18293/SEKE2016-068.

[25] M. T. Scholar and N. Kumar, “A Review on Analysis of Data Search Scheme for Secure

Information Retrieval in Cloud Computing,” vol. 5, no. 2, pp. 529–532, 2019.

[26] K. Ramkumar, “Preserving security using crisscross AES and FCFS scheduling in cloud

computing Preserving security using crisscross AES and FCFS scheduling in cloud

computing,” no. January, 2019, doi: 10.1504/IJAIP.2019.10017743.

[27] R. R. Chowdhury, “Security in Cloud Computing,” vol. 96, no. 15, pp. 24–30, 2014.

[28] S. R. Nidhi Dahiya, “IMPLEMENTING MULTILEVEL DATA SECURITY IN

CLOUD COMPUTING,” Int. J. Adv. Res. Comput. Sci., vol. 8, no. 8, 2017, doi:

10.1049/PBSE007E.

[29] M. A. Nadeem, “Cloud Computing : Security Issues and Challenges,” no. December,

2016, doi: 10.21174/jowc.v1i1.73.

[30] S. S. Rohit BHADAURIA, Rituparna CHAKI, Nabendu CHAKI, “A SURVEY ON

SECURITY ISSUES IN,” 2014.

[31] M. Nazir, “Cloud Computing : Overview & Current Research Challenges,” vol. 8, no.

1, pp. 14–22, 2012.

[32] M. Computing, “Study of Security Issues in Cloud Computing,” vol. 4, no. 6, pp. 230–

234, 2015.

[33] S. D. K and K. Akilandeswari, “An Efficient Virtual Machine Intrusion Detection

System on Cloud Computing,” vol. 2, no. 1, pp. 143–146, 2019.

[34] S. Kumar, S. Pal, A. Kumar, and J. Ali, “Virtualization , The Great Thing and Issues in

Cloud Computing,” pp. 338–341, 2013.

[35] Q. L. Guanyu Su, Fang Wang, “Research on SQL injection Vulnerability Attack

model,” pp. 217–221, 2018.

110

[36] B. P. Rimal, G. S. Member, M. Maier, and S. Member, “Workflow Scheduling in Multi-

Tenant Cloud Computing Environments,” vol. 9219, no. c, pp. 1–14, 2016, doi:

10.1109/TPDS.2016.2556668.

[37] S. kalaivan. R.priya and Department, “SECURITY ISSUES IN CLOUD COMPUTING

D.Sakthipriya,” J. Anal. Comput., pp. 1–5, 2018, [Online]. Available:

https://www.ijaconline.com/wp-content/uploads/2020/03/A-Review-Paper-on-Cloud-

Computing-Models-1.pdf

[38] M. H. Sqalli, “EDoS-Shield - A Two-Steps Mitigation Technique against EDoS Attacks

in Cloud Computing,” 2011, doi: 10.1109/UCC.2011.17.

[39] M. Alkharji, M. Al Hammoshi, C. Hu, and H. Liu, “Genetic Algorithm based key

Generation for Fully Homomorphic Encryption,” pp. 1–11, 2017.

[40] M. J. Arshad and M. Umair, “Improving Cloud Data Encryption Customized Genetic

Algorithm Using,” I.J. Intell. Syst. Appl., no. December, pp. 46–63, 2020, doi:

10.5815/ijisa.2020.06.04.

[41] K. Kalaiselvi, S. Gopika, and M. Jacob, “Optimized Symmetric Keys Generated using

Genetic Algorithm for Fully Homomorphic Encryption System,” vol. 14, no. 06, pp.

339–343, 2021.

[42] U. Awasthi, “Token Based Authentication Using Hash Key , Session And Javamail

Api,” pp. 12377–12384, 2017, doi: 10.15680/IJIRCCE.2017.

[43] P. Gauravaram, “Security analysis of salt ∥ password hashes,” pp. 25–30, 2013, doi:

10.1109/ACSAT.2012.49.

[44] B. Rakesh, K. Lalitha, M. Ismail, and H. P. Sultana, “DISTRIBUTED SCHEME TO

AUTHENTICATE DATA STORAGE SECURITY IN CLOUD COMPUTING,” vol.

9, no. 6, pp. 59–66, 2017, doi: 10.5121/ijcsit.2017.9606.

[45] M. Rivis and S. Ying, “Achieving Regulatory Compliance for Data Protection in the

Cloud,” Int. J. Adv. Comput. Sci. Appl., vol. 4, no. 12, pp. 162–167, 2013, doi:

10.14569/ijacsa.2013.041224.

[46] A. Alharbi, H. Zamzami, and E. Samkri, “Survey on homomorphic encryption and

address of new trend,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 7, pp. 618–626, 2020,

doi: 10.14569/IJACSA.2020.0110774.

111

[47] H. E. D. Kang, D. Kim, S. Kim, D. D. Kim, J. H. Cheon, and B. W. Anthony,

“Homomorphic Encryption as a secure PHM outsourcing solution for small and medium

manufacturing enterprise,” J. Manuf. Syst., vol. 61, no. June, pp. 856–865, 2021, doi:

10.1016/j.jmsy.2021.06.001.

[48] Z. Min, G. Yang, A. K. Sangaiah, S. Bai, and G. Liu, “A privacy protection-oriented

parallel fully homomorphic encryption algorithm in cyber physical systems,” Eurasip

J. Wirel. Commun. Netw., vol. 2019, no. 1, 2019, doi: 10.1186/s13638-018-1317-9.

[49] A. Costache, K. Laine, and R. Player, “Homomorphic noise growth in practice:

comparing BGV and FV,” pp. 1–36, [Online]. Available:

https://eprint.iacr.org/2019/493.pdf

[50] N. Sammeta and L. Parthiban, “Medical data analytics for secure multi-party-primarily

based cloud computing utilizing homomorphic encryption,” J. Sci. Ind. Res. (India).,

vol. 80, no. 8, pp. 692–698, 2021.

[51] L. Sadeghikhorami and A. A. Safavi, “Secure distributed Kalman filter using partially

homomorphic encryption,” J. Franklin Inst., vol. 358, no. 5, pp. 2801–2825, 2021, doi:

10.1016/j.jfranklin.2020.08.048.

[52] R. Awadallah, “Verifiable Homomorphic Encrypted Computations for Cloud

Computing,” no. November, 2021, doi: 10.14569/IJACSA.2021.0121089.

[53] D. Bhatia and M. Dave, “Partial and Fully Homomorphic Encryption Schemes for

Privacy Preserving,” pp. 457–462, 2019.

[54] S. Wang, X. Wang, and Y. Zhang, “A Secure Cloud Storage Framework with Access

Control Based on Blockchain,” IEEE Access, vol. 7, pp. 112713–112725, 2019, doi:

10.1109/ACCESS.2019.2929205.

[55] A. S. Yahaya, N. Javaid, R. Khalid, M. Imran, and N. Naseer, “A Blockchain based

Privacy-Preserving System for Electric Vehicles through Local Communication,” IEEE

Int. Conf. Commun., vol. 2020-June, 2020, doi: 10.1109/ICC40277.2020.9149129.

[56] C. H. V. N. U. Bharathi Murthy, M. L. Shri, S. Kadry, and S. Lim, “Blockchain based

cloud computing: Architecture and research challenges,” IEEE Access, vol. 8, pp.

205190–205205, 2020, doi: 10.1109/ACCESS.2020.3036812.

[57] I. Sukhodolskiy and S. Zapechnikov, “A blockchain-based access control system for

cloud storage,” Proc. 2018 IEEE Conf. Russ. Young Res. Electr. Electron. Eng.

112

ElConRus 2018, vol. 2018-Janua, pp. 1575–1578, 2018, doi:

10.1109/EIConRus.2018.8317400.

[58] V. Reantongcome, V. Visoottiviseth, W. Sawangphol, A. Khurat, S. Kashihara, and D.

Fall, “Securing and Trustworthy Blockchain-based Multi-Tenant Cloud Computing,”

ISCAIE 2020 - IEEE 10th Symp. Comput. Appl. Ind. Electron., pp. 256–261, 2020, doi:

10.1109/ISCAIE47305.2020.9108796.

[59] J. H. Park and J. H. Park, “Blockchain security in cloud computing: Use cases,

challenges, and solutions,” Symmetry (Basel)., vol. 9, no. 8, pp. 1–13, 2017, doi:

10.3390/sym9080164.

[60] I. Weber, Q. Lu, A. B. Tran, A. Deshmukh, M. Gorski, and M. Strazds, “A platform

architecture for multi-tenant blockchain-based systems,” Proc. - 2019 IEEE Int. Conf.

Softw. Archit. ICSA 2019, no. January 2021, pp. 101–110, 2019, doi:

10.1109/ICSA.2019.00019.

[61] M. Shah, M. Shaikh, V. Mishra, and G. Tuscano, “Decentralized Cloud Storage Using

Blockchain,” Proc. 4th Int. Conf. Trends Electron. Informatics, ICOEI 2020, no. Icoei,

pp. 384–389, 2020, doi: 10.1109/ICOEI48184.2020.9143004.

[62] W. Qu, L. Wu, W. Wang, Z. Liu, and H. Wang, “A electronic voting protocol based on

blockchain and homomorphic signcryption,” Concurr. Comput. , no. November 2019,

pp. 1–17, 2020, doi: 10.1002/cpe.5817.

[63] S. Yaji, K. Bangera, and B. Neelima, “Privacy preserving in blockchain based on partial

homomorphic encryption system for ai applications,” Proc. - 25th IEEE Int. Conf. High

Perform. Comput. Work. HiPCW 2018, pp. 81–85, 2019, doi:

10.1109/HiPCW.2018.8634280.

[64] M. M. Kumar, M. V. N. K. Prasad, and U. S. N. Raju, “BMIAE: Blockchain-based

multi-instance Iris authentication using additive ElGamal homomorphic encryption,”

IET Biometrics, vol. 9, no. 4, pp. 165–177, 2020, doi: 10.1049/iet-bmt.2019.0169.

[65] B. Huang et al., “BPS: A reliable and efficient pub/sub communication model with

blockchain-enhanced paradigm in multi-tenant edge cloud,” J. Parallel Distrib.

Comput., vol. 143, pp. 167–178, 2020, doi: 10.1016/j.jpdc.2020.05.005.

[66] L. Ismail, H. Materwala, and A. Hennebelle, “A scoping review of integrated

blockchain-cloud (Bcc) architecture for healthcare: Applications, challenges and

113

solutions,” Sensors, vol. 21, no. 11, 2021, doi: 10.3390/s21113753.

[67] G. Xie, Y. Liu, G. Xin, and Q. Yang, “Blockchain-Based Cloud Data Integrity

Verification Scheme with High Efficiency,” Secur. Commun. Networks, vol. 2021,

2021, doi: 10.1155/2021/9921209.

[68] C. Yang, L. Tan, N. Shi, B. Xu, Y. Cao, and K. Yu, “AuthPrivacyChain: A Blockchain-

Based Access Control Framework with Privacy Protection in Cloud,” IEEE Access, vol.

8, pp. 70604–70615, 2020, doi: 10.1109/ACCESS.2020.2985762.

[69] W. Li, J. Wu, J. Cao, N. Chen, Q. Zhang, and R. Buyya, Blockchain-based trust

management in cloud computing systems: a taxonomy, review and future directions, vol.

10, no. 1. Journal of Cloud Computing, 2021. doi: 10.1186/s13677-021-00247-5.

[70] M. Uddin, A. Khalique, A. K. Jumani, S. S. Ullah, and S. Hussain, “Next-generation

blockchain-enabled virtualized cloud security solutions: Review and open challenges,”

Electron., vol. 10, no. 20, pp. 1–23, 2021, doi: 10.3390/electronics10202493.

[71] S. Y. Ketki R. Ingole, “Blockchain Technology in Cloud Computing : A Systematic

Review,” Int. Res. J. Eng. Technol., vol. 2018, pp. 1–43, 2018.

[72] A. Toumanari, “Efficient Ciphertext-Policy Attribute-Based Encryption Constructions

with Outsourced Encryption and Decryption,” vol. 2021, 2021.

[73] P. J. Sun, “Security and privacy protection in cloud computing: Discussions and

challenges,” J. Netw. Comput. Appl., vol. 160, no. April, p. 102642, 2020, doi:

10.1016/j.jnca.2020.102642.

[74] S. Dubey and P. K. Rai, “A Review of Cloud Service Security with Various Access

Control Methods,” Int. J. Comput. Sci. Mob. Comput., vol. 10, no. 3, pp. 39–45, 2021,

doi: 10.47760/ijcsmc.2021.v10i03.005.

[75] A. Singh, U. Chandra, S. Kumar, and K. Chatterjee, “A Secure Access Control Model

for E-health Cloud,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2019-

Octob, pp. 2329–2334, 2019, doi: 10.1109/TENCON.2019.8929433.

[76] A. Chhabra, “Access Control in Multi Tenant and Diverse Cloud”.

[77] K. Sethi, P. Bera, A. Chopra, and B. K. Tripathy, “Integration of Role Based Access

Control with Homomorphic Cryptosystem for Secure and Controlled Access of Data in

Cloud,” ACM Int. Conf. Proceeding Ser., pp. 194–199, 2017, doi:

114

10.1145/3136825.3136902.

[78] Kamlesh Kumar Hingwe and S. Mary Saira Bhanu, “Hierarchical Role-Based Access

Control with Homomorphic Encryption for Database as a Service Kamlesh,” Adv. Intell.

Syst. Comput., vol. 409, pp. v–vi, 2016, doi: 10.1007/978-981-10-0135-2.

[79] Z. Yu, C. Z. Gao, Z. Jing, B. B. Gupta, and Q. Cai, “A Practical Public Key Encryption

Scheme Based on Learning Parity with Noise,” IEEE Access, vol. 6, no. c, pp. 31918–

31923, 2018, doi: 10.1109/ACCESS.2018.2840119.

[80] Z. R. Saeed, “Improved Cloud Storage Security of Using Three Layers Cryptography

Algorithms,” vol. 16, no. 10, pp. 34–39, 2018.

[81] S. Zaineldeen and A. Ate, “Improve the security of transfer data file on the cloud by

executing hybrid encryption algorithms,” Indones. J. Electr. Eng. Comput. Sci., vol. 20,

no. 1, pp. 521–527, 2020, doi: 10.11591/ijeecs.v20.i1.pp521-527.

[82] A. Kardi and R. Zagrouba, “Hybrid Cryptography Algorithm for Secure Data

Communication in WSNs: DECRSA,” no. September, pp. 643–657, 2021, doi:

10.1007/978-981-33-6981-8_51.

[83] R. Abid et al., “An optimised homomorphic CRT-RSA algorithm for secure and

efficient communication,” Pers. Ubiquitous Comput., pp. 1–10, 2021, doi:

10.1007/s00779-021-01607-3.

[84] K. A. Kumari, A. Sharma, C. Chakraborty, and M. Ananyaa, “Preserving Health Care

Data Security and Privacy Using Carmichael’s Theorem-Based Homomorphic

Encryption and Modified Enhanced Homomorphic Encryption Schemes in Edge

Computing Systems,” Big Data, vol. 10, no. 1, pp. 1–17, 2022, doi:

10.1089/big.2021.0012.

[85] N. Helil and K. Rahman, “CP-ABE access control scheme for sensitive data set

constraint with hidden access policy and constraint policy,” Secur. Commun. Networks,

vol. 2017, 2017, doi: 10.1155/2017/2713595.

[86] P. Dhiman and S. K. Henge, “Comparative Analysis of Cloud Security Complexities

and Past Proposed Non-Homomorphic and Homomorphic Encryption Methodologies

with Limitations,” Proc. 4TH Int. Conf. Inf. Commun. Technol. Compet. Strateg.

(ICTCS 2019), no. ISBN: 978-1-003-05209-8.

[87] M. Alkharji, M. Al Hammoshi, C. Hu, and H. Liu, “Genetic Algorithm based key

115

Generation for Fully Homomorphic Encryption,” no. March, 2018.

[88] B. Waters, “Ciphertext-policy attribute-based encryption: An expressive, efficient, and

provably secure realization,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), vol. 6571 LNCS, no. subaward 641, pp. 53–

70, 2011, doi: 10.1007/978-3-642-19379-8_4.

[89] P. Dhiman and S. K. Henge, “Comparative Analysis and Scrutiny of Key Authentication

Techniques in Fully Homomorphic Schemes,” Int. J. Adv. Sci. Technol., vol. 29, no. 7,

pp. 12413–12421, 2020.

[90] P. Zhang, J. Xu, H. Muazu, and W. Mao, “Access Control Research on Data Security in

Cloud Computing,” Proc. ICCT20 I 5 Access, pp. 873–877.

[91] P. Dhiman et al., “Secure Token–Key Implications in an Enterprise Multi-Tenancy

Environment Using BGV–EHC Hybrid Homomorphic Encryption,” Electronics, vol.

11, no. 13, p. 1942, 2022, doi: 10.3390/electronics11131942.

[92] Pooja Dhiman and Dr. Santosh Kumar Henge, “Analysis of Blockchain Secure Models

and Approaches based on various services in Multi-Tenant Environment,” Recent Innov.

Comput. Lect. Notes Electr. Eng., vol. 855, no. 2, 2021, [Online]. Available:

https://doi.org/10.1007/978-981-16-8892-8_42

116

Annexure II

List of Publications

S

No.

Title of paper with

author names

Name of

journal/confere

nce

Published

date

Issn no/ vol no,

issue no

Indexing in

Scopus/ Web

of

Science/UGC-

CARE list

1.

Cloud Computing -

Overview and its

Challenges

RESEARCH

REVIEW

International

Journal of

Multidisciplinary

March 2019 Vol. 4, Issue 3

https://doi.org/1

0.5281/zenodo.2

605480

UGC

2.

Comparative

Analysis of Cloud

Security

Complexities and

Past Proposed Non-

Homomorphic and

Homomorphic

Encryption

Methodologies with

Limitations

Fourth

International

Conference on

Information and

Communication

Technology for

Competitive

Strategies

(ICTCS 2019)

May 2020 https://doi.org/1

0.1201/9781003

052098.

Scopus and

Web of

Science

3.

Comparative

Analysis and Scrutiny

of Key

Authentication

Techniques in Fully

Homomorphic

Schemes

International

Journal of

Advanced

Science and

Technology

June 2020 Vol. 29, No. 7 Scopus

117

4.

Analysis of

Blockchain Secure

Models and

Approaches based on

various services in

Multi-Tenant

Environment

International

Conference on

Recent

Innovations in

Computing

(ICRIC-2021)

April 2022 Volume 855,

https://doi.org/1

0.1007/978-981-

16-8892-8_42

Scopus

5.

Secure Token-Key

Implications in

Enterprise Multi-

Tenancy

Environment using

BGV-EHC Hybrid

Homomorphic

Encryption

MDPI

Electronics

Journal

July 2022 Electronics 202

2, 11(13);

https://doi.org/1

0.3390/electroni

cs11131942

SCI 2.397

Impact Factor

6.

Blockchain Merkle-

Tree Ethereum

Approach in

Enterprise

Multitenant Cloud

Environment

Computers,

Materials &

Continua

Oct 2022 Vol. 74, no. 2

DOI:

10.32604/cmc.2

023.030558

SCI- 3.772

Impact Factor

7.

Integrating of Rule

based Secure

Parameters for

Analyzing Third-

Party Applications

and Libraries in Cross

International

conference on

Materials for

Merging

Technologies-

Publication in

process

Accepted Scopus

118

Platform

Development

2021 (ICMET

2021)

8.

Enterprise Level

Centric Secure

System

Administration for

Analysis, Detection

and Prevention of

Vulnerabilities,

Insider Attacks in

Multi-Tenants

Distribution

Environment

International

conference on

Materials for

Merging

Technologies-

2021 (ICMET

2021)

Publication in

process

Accepted Scopus

9.

Hybrid EHC-BGV

Homomorphic based

Automated Key Filter

Bit-Mapping

Approach for Secure

Data Access Control

in Distributed

Enterprise

Multitenant

Journal of

Healthcare

Engineering

Publication

under process

Accepted SCI- 2.682

Impact Factor

119

Annexure III

Publications Reprints

120

121

122

123

124

