
 A NOVEL SCHEME FOR THE

FRAGMENTATION, ALLOCATION AND

DEDUPLICATION OF DATA TO ACHIEVE

PERFORMANCE IN THE DISTRIBUTED SYSTEMS

Thesis Submitted for the Award of the Degree of

 DOCTOR OF PHILOSOPHY

in

 Computer Science Engineering

By

 Sashi Tarun

Registration Number: 41800190

Supervised By

Prof. (Dr.) Mithilesh Kumar Dubey

School of Computer Applications

Lovely Professional University

LOVELY PROFESSIONAL UNIVERSITY, PUNJAB

2023

ii

DECLARATION

I declare that this thesis entitled “A Novel Scheme for the Fragmentation,

Allocation and Deduplication of Data to Achieve Performance in the

Distributed Systems” has been prepared by me under the guidance of

Prof. (Dr.) Mithilesh Kumar Dubey, Professor, School of Computer

Applications, Lovely Professional University. No part of this thesis has been

formed the basis for the award of any degree or fellowship previously.

Sashi Tarun

School of Computer Science and Engineering,

Lovely Professional University,

Jalandhar Delhi G.T. Road (NH-1),

Phagwara, Punjab, 144411

India.

Date: 20.04.2023

iii

CERTIFICATE

We certify that Mr. Sashi Tarun has prepared his thesis entitled “A Novel

Scheme for the Fragmentation, Allocation and Deduplication of Data to

Achieve Performance in the Distributed Systems” for the award of Ph.D.

Degree of Lovely Professional University under our guidance. He has carried

out work at the Department of Computer Science and Engineering, Lovely

Professional University, Phagwara (India).

Supervisor:

Dr. Mithilesh Kumar Dubey

Professor

School of Computer Applications

Lovely Professional University

Phagwara, Punjab-144411, India

Date: 20.02.2023

iv

ABSTRACT

Data is always a priority to all users engaged in their routine operations and in

data analysis tasks. Earlier, users switched from a flat file to a centralized

system for a better system but they have faced some organizational and

administrative difficulties in arranging and making data useful for them and

become apparent. In order to maintain existing methodologies relevant and in

line with user expectations in the modern era, researchers have attempted to

improve them throughout time. However, as data expands, it poses new

problems and becomes increasingly challenging to handle. Since the advent of

social networking sites and web applications, users have been considerably

more involved in the data generation process. Throughout their conversations

or exchanges, they frequently exchange data in the audio, video, and textual

domains. The data in this case is solely in the control of the users or parties

involved, which attracts different hurdles or challenges.

The purpose of this study is to strengthen the data distribution process by

concentrating on three key areas. Firstly, it stresses more for storage

management by introducing data fragmentation, data allocation based on an

optimized cost-based scheme, and data deduplication using advanced machine

learning architecture. This work is implemented on textual data by offering a

revolutionary text-based data fragmentation technique that follows the

threshold segmentation approach. It controls data storage by dividing the data

into manageable chunks known as data fragments. Second, data distribution is

based on the reducing cost paradigm, which guarantees that customers receive

all of their data quickly and at a low cost. On the other side, a deduplication

approach can be used to get around the problems that arise with having plenty

of data instances. It emphasizes the need to spot duplicate data right away so

that it may be added to the storage unit. The new data entry into the storage

unit is rejected when duplicate data occurs.

v

The results obtained in the comparison to the state of art techniques show that

the proposed algorithms demonstrated a high degree of accuracy, performance,

and achieve data quality.

vi

ACKNOWLEDGEMENT

First and foremost, I would like to express my sincere gratitude to my

supervisor Prof. (Dr.) Mithilesh Kumar Dubey for always providing me, with

his valuable time and support. Through his immense knowledge and patience, I

was able to accomplish all my tasks on time.

I wish to thank Dr. Ranbir Singh Batth for providing his precious time and his

enormous knowledge. He has been actively interested in my work and has

always been available to advise me. I am very grateful for his patience,

motivation, and enthusiasm.

Sincere thanks to Mr. Nitin Dev Sharma for his continuous motivation, making

this journey easy.

A warm thanks to all my friends for their endless sacrifices and selfless support

that made everything possible on this path.

I also want to mention here my gratitude towards my parents, wife, son, and

daughter who went through many ups and downs but still continued to shower

their endless love and care which always boosted my morale to carry forward

this journey and make my efforts visible.

(Sashi Tarun)

vii

CONTENTS

Declaration ... ii

Certificate .. iii

Abstract .. iv

Acknowledgment ... vi

List of Tables ... xii

List of Figures .. xiv

1. Introduction .. 1-18

1.1. Background and Problem Statement ... 1

1.2. Distributed System Overview.. 2

1.3. Fragmentation of Data ... 5

1.4. Fragmentation: Role in Distributed Systems ... 7

1.5. Allocation of Data ... 8

1.6. Allocation: Role in Distributed Systems ... 9

1.7. Deduplication of Data ... 10

1.8. Deduplication: Role in Distributed Systems ... 11

1.9. Issues in the Design of Distributed Systems ... 12

1.10. Challenges in Distributed Systems .. 13

1.11. Major Weaknesses of Distributed Systems ... 16

1.12. Challenges and Motivations .. 17

1.13. Organization of the Thesis... 18

2. Review of Literature .. 20-44

2.1. Introduction ... 20

2.2. Existing Work Done in Distributed Design ... 21

2.3. Existing Work Done in Data Fragmentation ... 23

viii

2.4. Existing Work Done in Data Allocation ... 29

2.5. Existing Work Done in Data Deduplication .. 34

2.6. Problem Statement .. 38

2.7. Research Questions ... 39

2.8. Research Gaps ... 40

2.9. Objectives of Research Work .. 40

2.10. Scope of the Proposed Work ... 40

2.11. Proposed Methodology .. 41

2.11.1. Pseudo-code for the Data Fragmentation .. 43

2.11.2. Pseudo-code for the Data Allocation .. 43

2.11.3. Pseudo-code for Data Deduplication... 43

3. Design a New Data Fragmentation Architecture Based on a Similarity-Based

Threshold Segmentation Method ... 45-68

3.1. Introduction .. 45

3.1.1. Segmentation Technique...…………………………………………47

3.1.2. Similarity Measures.……………………………………………… .47

3.1.2.1. Cosine Similarity……………………………………… .48

3.1.2.2. Soft Cosine Similarity…………………………………. 49

3.1.2.3. Hybrid Similarity……………………………………….49

3.1.3. Machine Learning………………………………………………….49

3.2. Methodology and Implementation .. 50

3.2.1. Uploading Twitter Data ... 52

3.2.2. Removal of English Stop Words ... 52

3.2.3. Applying Word to Vector on Filtered Data 54

3.2.4. Applying Similarity Calculations .. 55

ix

3.2.5. Finding Initial Centroid (IC) of Data .. 58

3.2.6. Calculation of Euclid Distance .. 59

3.2.7. Fragment Generations ... 60

3.3. Results and Discussions .. 61

3.4. Comparative Analysis ... 65

3.5. Conclusion .. 68

4. Introduce a Novel Data Allocation Scheme to Optimize the Allocation

Process Based on Swarm Intelligence ... 69-88

4.1. Introduction .. 69

4.2. Proposed Methodology and Implementation ... 72

4.2.1. Loading of Query File ... 73

4.2.2. Total Cost Calculation ... 74

4.2.2.1. Level-Wise Estimation of Execution Patterns 74

4.2.2.2. Execution Cost Patterns Task-Wise 78

4.3. Proposed Artificial Bee Colony (ABC) Algorithm 80

4.3.1. Artificial Bee Colony Pseudocode .. 80

4.3.2. Re-analyse of Optimal Result using Upgraded Threshold 81

4.4. Simulation Results and Discussion ... 83

4.5. Conclusion .. 88

5. Improve the Existing Data Deduplication Scheme with Machine Learning

Architecture .. 89-106

5.1. Introduction .. 89

5.2. Proposed Methodology .. 91

5.2.1. Pre-Processing of Data ... 92

5.2.1.1. Pseudocode for Pre-Processing Task 93

x

5.2.2. Word to Vector (W2V) Conversion ... 93

5.2.2.1. Pseudocode for W2V Translation .. 94

5.2.3. Clustering of Data ... 94

5.2.4. Training and Testing Data Generation ... 95

5.2.4.1. Pseudocode for Generating Training and Testing Indexes... 95

5.2.5. Similarity Calculations Cluster-Wise ... 96

5.2.5.1. Pseudocode for Similarity Calculation Cluster-Wise 96

5.2.5.2. Pseudocode to Calculate Cosine Similarity 98

5.2.6. Applying Ground Truth Test (gt-test) .. 98

5.2.6.1. Pseudocode to Apply Ground Truth Test 99

5.2.7. Similarity Calculation of Testing Data ... 99

5.2.7.1. Pseudocode for testing Data Similarity Calculations 99

5.2.8. Detecting Duplication by Comparing Similarity-Test Results with

Cluster Similarity ... 100

5.2.8.1. Pseudocode for Comparison of Similarity test and Cluster

Similarity .. 100

5.3. Performance Parameter Estimation .. 101

5.3.1. Pseudocode to Compute Performance Parameters 101

5.4. Results and Analysis .. 103

5.4.1. Evaluation of Performance .. 103

5.5. Comparative Study .. 104

5.6. Conclusion ... 106

6. Conclusion, Contributions and Applications, and Future Work 107-110

6.1. Conclusion ... 107

6.2. Contributions and Applications ... 109

xi

6.3. Future Work ... 110

References 111-127

Research Publications 128

xii

List of Tables

Table Title Page

 3.1 Fragments Classification Row-Wise 61

 3.2 Classification Accuracy of Each Row 62

 3.3 Average Percentage of Iterations 63

 3.4 Evaluation of Tp, Fp, Tn and Fn 63

 3.5 Evaluation of Precision and Recall 64

 3.6 Comparative analysis of parameters followed by different

fragmentation techniques 65

 3.7. Comparison of calculated Precision and Recall 66

 4.1 Execution Cost Matrix (ECM) 71

 4.2 Network Cost Matrix (NCM) 71

 4.3 Query Model Flow 74

 4.4 Estimation of Total System Cost 78

 4.5 Execution Cost Pattern for Each Processing Tasks 79

 4.6 Fitness Value and Re-Analyse Process for Optimal Results 82

 4.7 Comparative analysis of techniques with their cost Usability 83

 4.8 Comparative Studies of Proposed and Existing Approaches 84

 4.9 Optimal Task Allocation 85

 4.10 Evaluation of System Cost with Existing Methods 85

 4.11 Before and After Total Cost Results in mJ 86

 4.12 Comparison of Methods Based on Reduced Total Cost 87

 5.1 Cluster-Wise Distribution of Datasets 94

 5.2 Cluster-Wise Similarity Calculation 97

 5.3 Performance Parameters 103

 5.4 Comparative Analysis of Performance Parameters in Data

Deduplication 105

xiii

 5.5 Results of Proposed and Existing Work 105

xiv

List of Figures

Figure Title Page

 1.1 Distributed System Architecture 4

 1.2 Different Fragmentation Types 6

 1.3 Data Insight 10

 1.4 Deduplication Mechanism 11

 1.5 Research Methodology Flow 42

 3.1 Cosine Similarity 48

 3.2 Machine Learning Architecture 50

 3.3 Data Flow Structure of Fragmentation 51

 3.4 Metadata of Twitter Data 52

 3.5 Stop Word Removal Process 53

 3.6 Stop Word Removal and W2V Conversion Code Snippet 53

 3.7 Vector Representation of Filtered Data 54

 3.8 (a) Outcome after similarity measure

(b) Similarity index graphical representation 58

 3.9 Representation of Clusters and Centroids 59

 3.10 Measures Distance from the Centroids 60

 3.11 Classification Accuracy 62

 3.12 True Positive-False Positive-True Negative-False Negative 64

 3.13 Precision and Recall 64

xv

 3.14 Precision and Recall Comparison 67

 4.1 Directed Acyclic Graph 70

 4.2 Proposed Model Flow 73

 4.3 Results Before and After Optimization of Cost Using ABC 86

 4.4 Reduced Total Cost in %age 87

 5.1 Data Deduplication Process 90

 5.2 Work Flow of Proposed Methodology 92

 5.3 Graphical Representation of Clusters and Centroid

 with Performance Parameters 104

 5.4 Comparison of Proposed and Existing Techniques 106

 Chapter 1

Introduction

Data Fragmentation, Allocation, and Deduplication are the thrust areas of

distributed systems. This work deals with large data storage and stresses

methods to control storage having voluminous data, work for data allocation at

a reduced cost, and maintain to achieve a single instance of data at distributed

geographical sites. Therefore, it is important to have a general understanding of

these topics as well as enough basic information on the distribution of data

areas. This chapter provides a brief summary of it.

This chapter begins with an overview of distributed systems, a discussion of

the background, and a problem statement. It also discusses the issues,

challenges, and weaknesses of distributed adoption. Furthermore, the

challenges and weaknesses of this research study are discussed, and at last,

concluded with thesis organization.

It is further followed by a detailed study of different data distribution

paradigms in the next chapter including fragmentation, allocation, and

deduplication of data.

1.1. Background and Problem Statement

The continuous evolvement of data and its further utilization on the distributed

ground are the chief concern areas. In the modern world, every organization

deals with data repository systems like relational databases, data warehouses,

spatial databases, etc. However, many of these organizations are unable to fully

utilize their vast repositories. However, current trends favor distributed data

management to provide performance for a modern workplace.

This research covers three problems of distributed systems dealing with the

distribution of data:

Chapter 1. Introduction

2

• Firstly, it highlights the researcher’s aptitude for using empirical data

rather than using current. These consequences to radical results and are

not helpful for any solution to the problems and impact the performance

of the distributed environment. Here, predictions are based on the

available data or highlight dependency on data based on human

behavior/intentions and old statistical data.

• Second, Research done so far disregards network expenses, and earlier

methods of allocating data were not financially viable. Data allocation

systems must create a way to help them attain low costs when

considering network, communication, and computation expenses all at

once. This study looks at the three costs involved in implementing cost-

based data distribution for distributed systems.

• Third, stress on controlling the storage, query efficiency, and data

inconsistency issues. These all are impacted by the availability of

redundant data at sites. An advanced machine learning architecture is

required that is able to trace duplicate entries at storage units to handle

data deduplication.

Distributed System Overview

Several definitions are contributed by eminent scientists, authors, designers,

and researchers time-to-time for the distributed system. The most prevailing

meaning is depicted in this definition:

“A distributed system is a collection of autonomous computing elements that

appears to its users as a single coherent system.”

 - By Maarten van Steen & Andrew S. Tanenbaum

Data is a building block and is viewed as an asset to any organization. Data has

its own importance with its value and is employed at multiple levels of

Chapter 1. Introduction

3

granularity during routine data access operations. Existing data storage is

rapidly growing in size as a result of the growing use of chat apps, corporate

online web applications, and real-time transaction processing, posing a

substantial danger to data quality and potentially detracting from current

dispersed performance. It allows individuals to tamper with data without

thinking about the consequences and has resulted in a slew of bottlenecks. It is

vital to organize and manage existing data to attain performance. To do so,

first, regulate data storage, then work on the most cost-effective distribution

strategy, and finally address data inconsistency, and storage wastage concerns

created by redundant data.

Previously, users had to stay in their activity center to get the data or

information they needed. Now, anyone in their network can access their

resources. Changing technology trends have made it possible for users to

spread their data to remote locations and have created a linked configuration to

allow equitable access to data on an everywhere, anytime basis. This aids in

distributed design efficiency by ensuring parallel data access with high data

availability, reliability, consistency, and fault tolerance. All nodes have rapid

access to their data, independent of scheduling or access priority.

However, in the technical design of a distributed structure, some minor but

substantial bottlenecks have formed, reducing worker performance. We need to

work on and debate some of the concerns relating to distributed design before

describing such vulnerabilities.

• How may relational schemas be divided into pieces to govern rising

data?

• How to allocate fragments into dispersed environments to achieve

distribution at minimal cost?

• How to handle duplicate data patterns exists in distributed data

architecture?

Chapter 1. Introduction

4

The goal of this research is to reinforce distributed systems by proposing new

strategies for data fragmentation, cost-based optimum data allocation, and

sustaining single data instances across geographical locations. It enables

distributed systems to be as efficient as possible for a wider range of

applications and managed with greater data management, availability,

reliability, scalability, and efficiency (MARSE).

With time, scientists, writers, and researchers have made several contributions

to the resilient distributed system model, including methods and outcomes.

These characteristics can be used to create a dispersed structural design for a

distributed system as shown in Figure 1.1.

• It is a combination of nodes or sites working autonomously and having

their local memory [1-2].

• All nodes are communicating with each other by different message-

passing schemes [3-4].

• All nodes are geographically dispersed in nature [5].

Figure 1.1: Distributed system architecture

Chapter 1. Introduction

5

Reduced overall performance, interrupted data connections, prolonged wait

times, high latency, huge storage to preserve data, and hefty maintenance

expenditures are all obstacles that must be overcome [6]. The availability of

powerful processors, system memory, increased storage capacity in

offline/online modes, sophisticated software, efficient networking capabilities,

and flexibility in designing platform-independent distributed application

interfaces make the transition from monolithic to distributed computing make

possible. A distributed system has a collection of resources that may be

accessed from any activity center over the internet with the intent to satisfy

clients’ needs and meet their business perspectives.

With time, several architectural design models have been offered to strengthen

the existing distributed design that determines how data is preserved and

accessed conveniently in a geographically scattered network configuration. It is

aimed towards enhancing scalability, data processing flexibility,

communication efficacy, control efficiency, resilience, and resource sharing.

A smart design takes into account the volume of client interest and suggests

how data should be distributed across all sites. Due to a bad design, query

processing is delayed, and system performance decreases as a result. When

systems respond to their varied questions, provide distributed analytic services,

and aid in the construction of effective application interfaces for a range of

contexts, end-users are satisfied.

Researchers have made consistent efforts to construct or enhance architectural

design in geographically dispersed settings time-to-time. To achieve this,

important issues in any serving network include managing data in storage,

focusing more on network cost before making any decision/judgments on data

placement, and preventing data duplication in distributed storage for the

attainment of data quality. The current focus in the design process is to work

Chapter 1. Introduction

6

for efficient, advanced data fragmentation, allocation, and deduplication

methods comparable to existing strategies.

1.2. Fragmentation of Data

Data storage and retrieval depend on the quantity of how the data organized in

the server. With the fast development of technology, the requirements of users

have also changed. A user who was stationary earlier has become mobile now

and requires access to data from anywhere in the world. An unorganized data

structure will result in output delay in the network and may further result in

user migration from one service provider to another service provider. Data

fragmentation is one of the most essential parts when it comes to data storage.

Data fragmentation is an approach used during data distribution in a distributed

setup. It is responsible to partition voluminous data into logical data units in

geographically dispersed sites in subtables or sub-relations. This partitioned

data structure in distributed architecture is termed fragments. This is an attempt

to apply cut down on the size of unwanted data accessed and lower the number

of disk accesses. Data fragmentation is applied by using one of the approaches

including horizontal, vertical, and mixed [7],[8] as shown in figure 1.2.

Figure 1.2: Different fragmentation types

Chapter 1. Introduction

7

• Horizontal Fragmentation: It refers to the refinement of global schema

records into disjoint tuples. The idea behind horizontal fragmentation is

that each site should store all of the data that is used to query the site and

that the data should be fragmented so that the site's queries execute more

quickly.

• Vertical Fragmentation: It allows the global schema to be partitioned into

disjoint columns or attributes. In vertical fragmentation, primary key

attributes are repeated on all partitioned relations.

• Hybrid Fragmentation: The design features of horizontal and vertical

fragmentation combine to create a hybrid fragmentation data structure.

Such architecture is used to satisfy applications designed for special

requirements. To build this type of fragmentation design sub relations are

divided into arbitrary blocks.

1.3. Fragmentation: Role in Distributed System

Fragmentation has revolutionized storage management methods for distributed

systems. It effectively handles data handling difficulties that have an impact on

workforce performance, such as excessive complexity, data inconsistency, and

latency concerns. It is an attempt to manage and regulate internal storage on a

distributed basis, as well as to introduce it in a normalized manner. The

fragmentation approach helps in many ways:

• Reduce Cost: Data fragments are reduced-size grouped/clustered data

structure that holds relevant data records and satisfies access patterns in

the interest of users. It helps to maintain total cost by reducing network

cost, computational, and execution costs at the fragment level. Fragments

contain fine-grained attributes solely responsible to hold required

information used to query the site.

Chapter 1. Introduction

8

• Data Placement: Earlier, data access patterns in a monolithic computing

environment are based on block-level and led to performance issues. But

fragmentation manages by putting data at geographical sites in sub-

relations form to reduce data contention and loading issues. An effective

data management strategy will always direct to set better possibilities for

the placement of data at network sites.

• Query Response: Data response on queries indicates the total time taken

during the finding of relevant data information in data fragments at

geographical sites. The easy availability of data is depending on defined

structural arrangements for fragments in a distributed environment.

Clustering enables a group of similar data patterns so that data is acquired

at one location or from adjoining sites.

• Distributed Application Design: Vertical fragmentation enables designers

to use fragment columns to build distributed application interfaces.

• Storage Management: Earlier data was structured and managed in single

large schemas. Fragmentation gives the flexibility to maintain large

relational data into sub-relations and enables them to reduce storage

capacity at individual sites. It helps to increase query performance and

reduce storage, and data complexity.

1.4. Allocation of Data

The process of fragment allocation to different geographical areas to make data

available to intended users is referred to as data allocation. To gain confidence,

the allocation approach validated those queries from desired sites must be

satisfied at the fragment level. Before assigning data fragments to remote sites,

an evaluation of the total cost of data access is required.

Chapter 1. Introduction

9

To allocate data (fragments) to distinct network nodes, data patterns must be

placed at different nodes in such a manner that users can quickly obtain the

data or information they want without having to visit numerous network sites.

Without the participation of remote nodes, data can be obtained from the

requested node or its surrounding linked nodes [9].

The data allocation does not appear to be dependent on load. The distribution

of data fragments is determined by two factors: execution and transfer costs. In

most situations, execution costs are fixed, but transfer costs vary from one

engine to the next. In addition, the overall cost includes certain runtime entity

charges. So, data allocation would have to give attention to optimization of

total cost during execution, and transfer of data based on data queries rather

than allocation of data fragments on the distributed sites.

1.5. Allocation: Role in Distributed System

In a distributed environment, data-fragments allocation is a major concern

because it relied on data from multiple sources. Due to dependency on

partitioned and replicated allocations large data volumes may now be managed

effortlessly across dispersed sites. It is because of the advancement in database

and communication technology. On one hand, it decreases data access burden

and data complexity, but on the other hand, it causes problems with data

retrieval, relevance, and consistency, and has an impact on distributed system

performance. To overcome these obstacles, mapping an effective data

allocation method with a distributed design that effectively improves the

existing system, increases data availability, extends expansion options,

decreases access time, and works to minimize overall cost is required. Data

allocation roles in distributed systems include:

a. Cost Reduction: An effective data fragment allocation approach can help

to lower the total cost of data access. The entire cost spent is comprised

of many costs such as communication, computation, and execution.

Chapter 1. Introduction

10

b. Better Data Insight: A systematic data allocation not only helps for

increasing system throughput but also gives better data insight for data

analytics operations, and query results at geographical sites. As a whole,

it helps to fetch relevant data from large data volumes as shown in figure

1.3 and can be achieved by optimal fragments allocation strategy.

Figure 1.3. Data Insight

c. Location Traceability: Data allocation at geographical sites becomes

productive when regular data access operations fetch relevant data at

nearby locations. It reduces delays, communication costs, and data loss

issues.

1.6. Deduplication of Data

On different grounds, data in distributed systems are equally responsible for the

occurrence of duplicate data. It occurs, due to prolong attaining of data in the

storage devices, more dependency on social websites for chats, and sharing

information or data in the network. The distributed environment shows a wider

scope and more chances of finding duplicate data at different locations. The

probability of finding errors in one device is less as compared to finding them

on a large network space. The post-processing and inline deduplication process

is shown below in Figure 1.4. Post-processing detects duplicate data at storage

units and maintains the single-instance paradigm of data. On the other side,

inline remove the data duplicity before storing the data in storage units in

distributed systems.

Chapter 1. Introduction

11

Figure 1.4. Deduplication Mechanism

1.7. Deduplication: Role in Distributed System

Deduplication is an inline as well as a background process that works parallelly

to remove multiple copies of data during new data entry or find duplicity of

data internally in the existing storage devices. Deduplication has its role in the

management of data to make it useful. It has its significance includes:

a. Fast Query: Deduplication helps to execute the tasks or queries for data

fastly. It increases the data access rate due to non-redundant data in the

storage. Relevancy of data can be achieved and eliminate the use of

unwanted data records.

b. Save Disk Storage: It is helpful to save disk storage at large on large data

backup files. It maintains a single instance of data and works for data

inconsistency issues, controls excessive use of storage capacity, and

reduces data access costs to a large extent.

Chapter 1. Introduction

12

c. Data Quality: It improves data quality in existing storage devices. It

works a lot for data analysts, IT managers, and business users involved in

the process of drawing future trends based on data for making decisions

for company aspects.

d. Cost Affective: It helps to reduce operational and maintenance cost.

Earlier data-intensive operations required more hardware equipment,

power, cooling, and floor space as well. It is helpful for the retention of

hardware for a long period and reduces cost.

e. Affective Results: Interpretation of redundant data always give irrelevant

results. Here, deduplication works effectively on the data query model to

access required data and its computed results.

f. Bandwidth Usage: It optimizes network communication due to less

consumption of bandwidth in regular data transfer. Normally, backup and

replication operations required more bandwidth for the accomplishment

of their operations.

1.8. Issues in the Design of Distributed System

An issue indicates a lack in the progression of the process involved. So, an

Overhaul of existing design strategies will facilitate us to enhance the

performance of the distributed environment. Some of the small but major

bottlenecks involves in designing distributed systems are:

a. Incomplete Network Information: The lack of knowledge about network

infrastructure is a significant barrier to overcome when creating a

distributed system. To develop a resilient system, thorough knowledge of

architectural design is essential. It also had an impact on the entire network

cost calculation.

Chapter 1. Introduction

13

b. Load Balancing: This is done to ensure that data is distributed evenly

across all sites to maximize throughput. In this case, the load balancer

satisfies all incoming requests by processing them as quickly as possible. It

can be accomplished by intelligently scheduling requests and sending them

to the appropriate network nodes. It delivers the load to sites based on the

number of users who log in for regular transactions, and new sites are

occasionally added to the system, causing the distributed system's status to

rapidly change.

c. Data Availability and Consistency: An unplanned architectural design is a

hindrance to achieving user satisfaction levels during their regular data

access course. The distribution of data over several locations must satisfy a

maximum number of responses in the event of high data load, and failure

occurs at the node level. Another side, if any data item is changed at any of

the activity centers, the same changes must be broadcast to other sites to

ensure consistency. Queries can be satisfied in a concurrent environment by

using good scheduling or supplying relevant data from low-cost nodes.

d. Data Deduplication: Having duplicate copies of data in geographical sites

not only creates confusion or ambiguous situations but also increases

existing storage space. It is equally responsible to degrade the performance

of the systems because it will take more time to parse each data record in

relation. As a result, query results are not showing any relevancy due to

data duplicity.

1.9. Challenges in Distributed System

Challenges are the trends and directions that system designers and researchers

should follow to continuously improve existing challenges that affect

distributed system design, such as:

Chapter 1. Introduction

14

a. Data Incompleteness: It indicates the non-availability of complete data at

nearby sites from the requested site in response to any query. This partial

availability of data slows down the query response time and affects system

throughput. Such a problem occurs when the data-relevancy factor is not

taken into consideration during the designing of distributed architecture.

b. Bugs Issues: Distributed bugs create hurdles in the system performance of

the system by decreasing the response time of any request. These bugs

spread themselves like an epidemic within the network of computers and

slow down data flow in the channel. They make the whole network busy

and affect network efficiency.

c. Implementation Cost: Designing and implementing a distributed system is

very expensive and not bearable for small organizations thinking to avail or

hiring their services.

d. Network Untrustworthiness: It disrupts the communication progress

between two or more ends during the fetching of data. This unreliability of

the network indicates:

i. The request may be queued and has to wait for their turn.

ii. Chances of request loss in the network.

iii. Response node may have any fault, or failure situation.

iv. Network overloading results delayed in response.

v. Network partition problems divide the whole network into two

fragments/partitions. As a result, the response from the other side is not

able to reach the source, where the request generates.

e. Latency: In a widely distributed network, deterioration in data during the

transferring of data or information from one place to another indicates a

latency issue. As enterprises thought about migration of their valuable

services into distributed environment structure but network latency issue

Chapter 1. Introduction

15

not able to lead this operation because migration activity involves backup

and restore operations and found not flexible in disaster recovery in an

emergency due to its speed.

f. Data Synchronization: Changes that took place in geographical sites needed

to propagate all network sites to maintain the correctness, availability, and

reliability of data. But, due to variation in the hardware configuration clock

pulse minor calibration differences are found, as a result, the system might

refuse to sync with others. It is impossible to take care of one global notion

of the same clock time. This results in the inconsistency of data at each

node. On the other side, network delay and network gateway/firewall are

equally responsible to affect the data synchronization process.

g. Fault Tolerance and overloading: To establish reliability in a large

geographical dispersed system fault tolerance methods play an important

role. It is maintained by applying a dynamic replica propagation strategy,

resilience in hardware resources so that corrective operations can be

performed, and checkpointing on redundant data to recover the system

during any fault, failure, or error by restoring the system to the previous

checkpoint status. Overloading shows an imbalance in the functioning and

degrades the performance of the system. There is a need for a good fault-

tolerant system, which carefully examines the reason for failures and

responds to the same.

h. Distributed tracing: We are rapidly going towards an environment that is

increasingly dynamic and dispersed. This means that distributed tracing is

extremely important. And distributed monitoring is something that makes

managing dynamic structures convenient for you.

Chapter 1. Introduction

16

1.10. Major Weaknesses of Distributed System

In distributed environment forecasts about the lifetime of any system is

unpredictable. Success depends upon wrapping up every component of the

distributed system in the present and future scenarios. But despite imparting the

best measures still, there is a need to work out some weaknesses. Some of them

are discussed below:

a. Lack of vision: Time-Based Replication scheme introduces many such

mistakes that further result in inefficiency, insecurity, and cost to maintain

data in a distributed environment. But modern mathematics approaches

such as the Paxos algorithm resolve such hurdles up to some extent [10].

b. Lack of Effective Software: As a distributed environment is an existence of

different machines working in a sophisticated environment where systems

are communicating or interacting simultaneously for their task completion.

It is difficult to deliver refined programs that enable us to react in different

situations like route-finding during congestion, the network going down,

and security issues in a distributed environment. As data access is for all

users in the system so safeguarding of data from collusive attacks prevails

there.

c. Lack of Self-Management Self-Control System: Such a system is

responsible to configure, heal, and optimize machine and network services

to make them functional in disrupting situations. Configuring is all about

the removal or adding of any existing resource or new components. Healing

is for automatically finding, identifying, restricting, and regaining due to

the event of any fault, failure, or error. Optimization refers to the tuning of

existing processes and proactively reacting in different conditions.

d. Lack of Legal Jurisdiction: Users' freedom to use different resources

intended for and performs transactional activities to maintain their data.

Chapter 1. Introduction

17

Business services accessed from outside required some government bodies

who intervene in legal disputes related to data security, privacy, its

ownership, rights on intellectual property, and auditing in case of any

complicacy.

e. Global status of Knowledge: Every node is having its memory for

maintaining personal as well as other data or information. In such a case, it

is not easy to keep track of the worldwide status of a completely distributed

environment. Every process execution involves in the distributed

environment proves a coherent vision of the system but in reality, it shows

a limited observation of the system.

1.11. Challenges and Motivations

The challenges in the data distribution proved to be a hurdle that detracts from

the performance in a distributed environment and some of them are described

as follows:

• Earlier methods rely on user-defined parameters, which leads to bad

distributed designs and facing drawbacks and lead to NP-hard

problems.

• Dependency or usage of datasets having poor data quality for

experimental purposes. Such datasets are having issues like missing

values, noisy data, and incomplete data.

• Earlier techniques were unable to handle complex data in several

scientific fields. Some hybrid similarity measure calculations are

required in order to deal with such data.

• For an efficient load-based distributed architecture, earlier allocation

strategies eliminate cost parameters or disregarded their utility in the

allocation design.

Chapter 1. Introduction

18

• Past research seems not capable to maintain a deduplication ratio and

data quality issues occur. It is found that there is less use of modern

techniques like machine learning.

These prevailing challenges motivate us to propose a hybrid similarity-based

threshold segmentation-based approach for fragmentation, a cost-based data

allocation scheme to work for a load-based architecture, and purpose a data

deduplication technique to eliminate redundancy in data.

To deal with datasets, proper measures are taken into care. The data pre-

processing technique is applied to the data to reduce the data dimension before

data is used for experiments.

1.12. Organization of Thesis

The thesis is organized into chapters. A brief outline of the chapters is given

below.

Chapter 1 discusses fragmentation, allocation, deduplication of data, and their

roles, highlighting design issues, challenges, weaknesses, and about challenges

and motivations.

Chapter 2 discusses prior work in the design of distributed systems for data

fragmentation, allocation, and deduplication. It also covers research gaps,

research questions, objectives, and methodologies with their scope.

Chapter 3 proposes a novel fragmentation scheme for data in a distributed

network environment to deal with issues of storage management.

Chapter 4 proposes an optimized cost-based data allocation model for

heterogeneous distributed computing systems.

Chapter 5 proposes a new scheme for handling duplication of data to achieve

data quality and performance in distributed systems.

Chapter 1. Introduction

19

Chapter 6 concludes the proposed work, contributions and applications, and

future work directions.

 Chapter 2

Review of Literature

Globalization has transformed companies and given a push to keep an

enormous amount of information received from different resources. The rate of

increase of these resources is so rapid that companies are finding it difficult to

focus on relevant information content. Some of the technologies that contribute

to the design of distributed systems are data fragmentation, allocation, and

deduplication. The architectural design of distributed systems influences data

management and retrieval. It demonstrates how data is structured and makes it

simple for others to obtain and use it. A successful design must consider

customer satisfaction as well as how data should be disseminated across all

sites to ensure data availability, consistency, and dependability. In light of this,

a thorough examination of the focus regions and a portion of the data

distribution is necessary to highlight in order to take action to close existing

system vulnerabilities and provide a reliable system to the dispersed

environment. This chapter provides a thorough analysis of several aspects of

data distribution, including fragmentation, allocation, and deduplication, which

have become more advanced over time in order to manage data on a distributed

platform.

2.1. Introduction

Organizations are satisfied when a system responds to their various queries,

provides distributed analytical services, and assists in the building of

appropriate application interfaces for a variety of scenarios. Fragmentation,

allocation, and deduplication processes are the first steps in developing a

system that can manage a diverse application environment. Data is

categorized/fragmented according to how it is accessed. Allocation is the

process of dividing fragments into geographical locations. deduplication

assures data quality and single data instance at each site by identifying and

removal of it across several sites.

Chapter 2. Literature Review

21

To enhance system architecture in a distributed context, several equally

important variables must be addressed. Resource sharing, compute speedup,

throughput, performance, dependability, and communication are only a few

examples. Despite the diversity, several difficulties must be addressed, and

they appear to be a roadblock in developing a distributed system. To make the

distributed design more efficient and effective, the fundamental elements that

generate a geographically scattered arrangement must be focused on and

highlighted.

2.2. Existing Work Done in Distributed Design

Several strategies for addressing existing issues in distributed design have been

explored throughout time. Proposed ideas were applied to the existing design to

improve and fix the present challenges. These solutions sought to boost

scalability, data processing flexibility, and communication effectiveness, as

well as manage efficiency, resilience, and resource sharing.

K. Saxena et al. [11] presented a self-organizing capability architecture that

may automate some grid operations and change the grid's structure or

configuration. A Multi-Agent System (MAS) architecture was suggested for

achieving self-organizing behavior. These agents are self-contained, loosely

linked, and communicate with one another to solve any problems that the issue

solver can't solve. Issues including increasing communication saturation,

component up-gradation, and mapping, and slower decision rates cannot be

avoided with centralized distribution systems.

Zouari M et al. [12] introduced a distributed adaption systems architecture that

offered a way to boost efficiency, robustness, and scalability in a variety of

situations. The adaptation engine in this system monitors the execution and

initiates the active adaptation system if any deviations are detected. Adaptive

distributed applications have gotten a lot of attention, but there haven’t been a

lot of studies done on them.

Chapter 2. Literature Review

22

Yuan P et al. [13] presented a distributed access control architecture to handle

all cloud computing security concerns. In multitenant and virtualized systems,

this idea is utilized to regulate the distribution of physical resources.

Untrustworthy renters can lead to unlawful information flow and side-channel

assaults, according to this study.

A. Almutairi et al. [14] introduced symmetric distributed server architecture

that uses workstation servers rather than huge mainframes. This method is used

to handle thousands of devices/nodes in a big geographically dispersed

environment. The message bus's purpose is to reduce the cost of

communication and integration between devices. Using the network as a whole

has already proven unsuccessful. It's ineffectual for communication in large,

geographically dispersed systems, and it's expensive due to the giant

mainframe's requirements.

Slimani Y. et al. [15] introduced a ReDy architecture that enables users to work

efficiently in large-scale, flexible architecture. This technique provides

scalability, fault tolerance, and dynamicity in a distributed system to achieve

system performance. A distributed system's complexity is growing by the day

due to its reliance on application integration. All processing, communication,

and control technologies must be tightly integrated to ensure expandability,

efficacy, trustworthiness, adaptability, and effectiveness.

Trung A. D [16] addresses the limitations of the current CAP theorem and

suggested Lambda Architecture. The CAP theorem asserts that data in a

distributed system can only be in two states: consistency with availability or

consistency with partition tolerance, or availability with consistency,

availability with fault tolerance, or fault tolerance with consistency, not all

three states at once. To put it another way, existing CAP theorems only work

for two of the three states.

Joe N. [17] introduced a microservices architecture that was designed to

deconstruct any large system into architectural modules. Each module

Chapter 2. Literature Review

23

communicates with one another via the Application Programming Interface

(API). This architecture allows for more scalability. This architecture, unlike

monolithic design, has no impact on the operation of large applications if a

single module fails. Program codes are now smaller and easier to deploy. The

only reason for this was to get beyond the limits of traditional monolithic

structural design.

Weiss C et al. [18] highlight a variety of architectural techniques to guarantee

performance, reliability, availability, efficiency, resilience, and security in a

highly distributed environment. However, distributed systems become complex

as networks extend and data behavior changes. Building a distributed network

of self-balancing intelligent nature is essential to eliminating distributed

environment challenges.

Y. Jiao et al. [19] introduced a load balancing method known as Weighted

Least Connections (WLC) to increase the performance of a distributed system-

based web server.

K. Iwanicki [20] highlighted the use of industrial IoT approaches with

distributed systems to achieve high performance in existing designs.

H. Jiang et al. [21] highlighted the relevance of design patterns to developers

in tackling reoccurring difficulties in distributed systems.

2.3. Existing Work Done in Fragmentation

Several contributions were given by the researchers to build the distributed

system robust. They put all their sincere efforts to work on strategies help to

split the data. It was noticed that the researchers did not stress the efficacy of

the proposed data partitioning work and that it was important to strengthen it.

For best results, data structures have to be organized into fragments suitable for

further allocation at distributed sites. Some of the researcher’s deals with the

fragmentation of data also have tried to cover other aspects matched to data

Chapter 2. Literature Review

24

allocation, security, communication cost, time, data access issues, etc. Some of

their contributions are listed below.

Peng et al. [22] Work on distributed Resource Description Framework (RDF)

is performed to manage the growing massive RDF. To utilize this large volume

RDF is partitioned into small parts called fragments and further approaches the

same for allocation in the distributed database environment. Here, the focus is

given to reducing the communication cost during the query processing tasks. It

also ensures maintaining data integrity and approximation ratio due to frequent

access patterns from outside. Here RDF graph is divided using three

fragmentation strategies namely horizontal, vertical and mixed fragmentation

based on frequent access patterns. It is also focused on balancing and allocation

of fragments into different sites.

H. Abdalla et al. [23] introduced a heuristic approach for fragmentation is

proposed to reduce the transmission cost (TC) of queries in a distributed

environment. Here, at the initial stage fragmentation is based on a cost-

effective model in the context of the relational model, and at a later stage based

on DDBS design. Different replication-based allocation scenarios were

proposed i.e. mixed replication-based data allocation scenario (MAS),

full replication-based data allocation scenario (FAS), and non-replication data

allocation scenario (NAS).

Verma et al. [24] suggested an algorithm that uses a standard deviation that

decreases the overall time for formulating the cluster by a simple k-mean. The

proposed solution splits the gap with the standard deviation of the square root.

This modified k-mean does even better with thank-mean and k-methods. Less

time is needed to formulate the clusters. But neither k-means nor k-methods

also work on very large-scale outcomes. Here, the authors have not used any

kind of similarity measurement technique for distance calculation between

different types of data which results in poor clustering performance, and it

must be integrated with k-means using optimization approaches.

Chapter 2. Literature Review

25

Z. Tao et al. [25] in their work suggest a deep neural network such as

CODEnnn (Code Description Embedding Neural Network). CODE does not fit

the textual resemblance but includes code fragments and high-dimensional

vector field examples in natural language, as well as associated vectors in the

code fragment and the accompanying definition. Code fragments associated

with natural language questions can be obtained by the associated vector

representation by their vectors. In the queries that must be handled, the task

could even be semantically identified with the keywords. The researchers did

not include source code management structures in this study to help symbolize,

and the deep neural network is used and limited for the basic benefit of

information engineering issues.

Sewisy A. et al. [26] introduced a revolutionary, unrivalled-in-complexity

heuristic technique capable of combining multiple design-related techniques

into a single work. Given the fragmentation and allocation cost models, this

strategy should also be able to significantly lower the communication cost of

distribution. The proposed fragmentation approach is intended to be used in

relational databases.

X. Gu et al. [27] proposed, a new clustering algorithm for image co-

segmentation tasks called the salience-guided limited cosine similarity

clustering method (SGC3). In this, a one-step clustering technique extracts the

usual foreground. An unsupervised method is used to direct the clustering

mechanism's auxiliary partition-level information. To ensure the robustness of

the noise and outliers in a given previous one the similarity between the

instance level and the partition level is used for joint estimation. Eventually,

the optimization of associated K-means aims to successfully solve the objective

function. Experimental outcomes from two widely used data sets show that the

proposed solution has achieved successful performance against the most

mature distribution methods.

W. L Xiang et al. [28] introduced a systematic experimental analysis of twenty-

four benchmark functions in a test suite. ABC (Artificial colony of bees) is a

Chapter 2. Literature Review

26

very common and effective tool for optimization. ABC still does however have

a lack of convergence. To further increase ABC convergence velocity, a new

form of ABC (CosABC) is proposed to pick better neighbors based on cosine

similarity. Under the direction of chosen neighbors, a new solution search

equation was applied to reduce the constraint of ABC undirected search. There

is a further contrast with some of the most sophisticated algorithms to check

Cos-ABC supremacy. The related results of the comparison show that Cos-

ABC is efficient and competitive.

Wiese et al. [29] proposed an algorithm to find similar knowledge for a user

whose original query cannot be addressed precisely, clustering-based

fragmentation is suggested. Approximation algorithms and lookup tables are

used to give a better shape to the distributed system for supporting flexible

query answering.

Ali A. Amer et al. [30] proposed an optimized fragmentation approach on each

attribute to know about their retrieval and update frequencies in each site. And

proposed a synchronized horizontal fragmentation approach to reduce data

locality issues and total cost. In this work, if query (Q) is initiated from

multiple (M) locations, this query will be interpreted as a separate query for

each position with a different radio frequency.

S. I. Khan [31] proposed a new technique called Attribute Level Precedence

(ALP) to partition global schema/database relations at the initial and later stage

in case of non-availability of data access statistics and query execution

frequencies. ALP technique is capable to take an advanced decision for

fragmentation at the initial stage (knowledge gathered during the requirement

analysis phase) without empirical data statistics. ALP is a table responsible to

fragment a relation horizontally based on the importance of an attribute in a

network site.

To increase the performance of distributed database systems, Masood Niazi et

al. [32] suggested enhanced vertical fragmentation, allocation, and replication

Chapter 2. Literature Review

27

strategies. To reduce query processing costs, the suggested fragmentation

approach groups highly-bonded properties (i.e., those that are normally

retrieved together) into a single fragment. The suggested allocation technique

aims to discover an optimal allocation that reduces the round-trip response

time. The replication strategy partially copies the fragments to maximize local

query execution while minimizing the cost of replica transmission to the

locations.

Rahimi et al. [33] proposed an algorithm to render fragments vertically with an

Updated Bond Energy Algorithm (BEA). This algorithm utilizes attribute

affinity and seeks to create clusters of attributes and attributes that are

individually evaluated by the same query.

Lim et al. [34] proposed a hybrid fragmentation approach for deductive

database systems as HFA for horizontal fragmentation and, RCA and DVF for

vertical fragmentation. This is a two-phase process in which a deductive

database is fragmented using variable bindings and dependency relationships

represented by the dependency graph.

Khan S. I. [35] suggested MCRUD and MMF algorithms for the efficient

partitioning of large datasets without query statistics. It is suggested here that

earlier partitioning methods were not acceptable because there were no usable

statistics at the initial stage of the implementation of distributed database query

statistics. In his paper, an optimal fragmentation technique is proposed to

partition global relations of a distributed database when there are no data

access statistics and no query execution frequencies are available. When data

access statistics and query execution frequencies are not available at the initial

stage then MMF is responsible for partition relation in the distributed database.

MCRUD is responsible for taking fragmentation decisions without using

empirical data.

I. B. Oriji et al. [36] proposed a hybrid optimized model using the information

on the type and frequency of queries for fragmentation of data horizontally and

Chapter 2. Literature Review

28

vertically and is based on a supervised machine learning approach to produce

non-overlapping fragments. These fragments are maintained by archiving

process rather than deletion operation on them. These fragments are used to

facilitate searching operations based on the index so that database tables are

partitioned horizontally and vertically.

Work on frequent access patterns (FAP) is given to reflect the behavior

workload to ensure the data integrity and ratio of approximation. Peng et al.

[37] presented a data structure that was based on trees by utilizing the depth-

first search (DFS) coding for maintaining them as well as managing newly

entered queries [24].

Aloini et al. [38] presented a fragmentation mechanism that has recently been

shown to hurt the performance of negatively exported processes. Finally, by

merging Process Mining (PM), Social Network Analysis (SNA), and Text

Mining the fragmentation process improved knowledge sharing among port

Community System (PCS) actors so that process efficiency can be achieved.

Memmi et al. [39] highlighted a study on data fragmentation in the public and

private sectors to hold information in a structural archive to attain data security.

Raouf et al. [40] proposed a distributed database vertical fragmentation,

allocation, and replication strategy named (VFAR). The suggested technique

vertically separates distributed database relations in the initial stage of

distributed database architecture, eliminating the requirement for frequent user

queries, which are not available at this time. It also allocates and copies the

resultant fragments to the distributed database's sites, utilizing each site to

manipulate and read actions on each fragment. First, the suggested scheme

decreases the overheads and complexity of existing vertical partitioning

approaches' expensive computations, according to experimental data. Second,

it addresses the issue of a high volume of user questions that aren't available at

the outset. It also addresses the issue of iterative development. Third, it

Chapter 2. Literature Review

29

generates all fragments of one iteration to solve the problem of repeated binary

partitioning in the case of n-ary partitioning.

Ahmed E. A. Raouf et al. [41] introduced a cloud-based complete vertical

fragmentation, allocation, and replication (FVFAR) system that addresses the

limitations of earlier vertical fragmentation solutions while simultaneously

providing vertical fragmentation, allocation, and replication as a service. The

FVFAR scheme begins with the requirement analysis phase of the system

development life cycle and partitions the distributed database relations

vertically at the first stage of developing the distributed database, eliminating

the necessity for frequent user queries that aren't available at this time. It also

distributes and duplicates the resulting fragments to the distributed database

system's sites, improving system performance, increasing availability, and

lowering the communication cost of database relations access via the cloud.

The FVFAR system addresses the limitations of earlier vertical fragmentation

solutions, according to experimental results. Furthermore, compared to earlier

methodologies, it results in a significant reduction in total communication costs

while executing distributed database system queries. It also demonstrated the

ability of the FVFAR approach to perform vertical partitioning of distributed

database relations during the first stages of database architecture. As a result,

before partitioning a database, database designers do not need to wait for

empirical data on query frequencies.

Abdel Raouf A.E. et al. [42] demonstrated a cloud-based enhanced dynamic

distributed database system. Fragmentation, allocation and replication

decisions can all be made dynamically at runtime with the proposed

approach. Users can also access the distributed database from any location.

Furthermore, this study proposes an improved allocation and replication

technique that may be used early in the distributed database design process

when no information about query execution is known.

Haughlid et al. [43] proposed DYFRAM, a decentralized solution for

dynamic table fragmentation and allocation in distributed database systems

Chapter 2. Literature Review

30

based on on-site access patterns. The method performs fragments,

replicates, and reallocates data based on recent access history, with the goal

of increasing the number of local accesses over remote accesses.

2.4. Existing Work Done in Allocation

The way the data is spread across several geographical regions determines the

success of a distributed system. Easy availability of data at a low cost depends

on the strategies applied for the placement of data fragments remotely. Some of

the efforts adopted by researchers are discussed as below:

Tosun U. et al. [44] employ the well-known Quadratic Assignment Problem

solution algorithms to handle the fragment allocation problem in distributed

databases. This significant problem is solved using a new collection of Genetic,

Simulated Annealing, and Fast Ant Colony techniques. The execution times

and quality of the fragment allocation possibilities are explored in the tests.

Even for a vast number of fragments and sites, the results are quite promising.

Only one fragment is assigned to each site by the model used to determine

where each fragment will be placed.

H. I. Abdalla [45] proposed a new dynamic deallocation approach for a given

fragment as Update Matrix (UM) and Distance Cost Matrix (DM). It works

based on changing data access patterns in replicated and non-replicated

distributed database systems. It was assumed that fragments are allocated on

the network site are based on the applied frequency value of the database data

items. Reallocation of data fragments on the remote sites is planned based on

communication and update cost value. Each fragment is having an updated cost

value. Fragment having maximum update cost value is considered for

reallocation and chosen candidate site to store fragments to minimize the

communication cost. UM is defined as the value getting after issuing of update

query at a particular site for the manipulated fragment. In this approach when

the same query is applied at more than one site, then queries can be treated

differently from each other and have different frequency values.

Chapter 2. Literature Review

31

Singh, A. et al. [46] proposed a biogeography-based optimization algorithm

(BBO) for non-replicated static data allocation in the distributed database

system. It reduces the data transfer cost while executing a set of queries.

N. K. Z. Lwin et al. [47] introduced a non-redundant dynamic fragment

allocation technique that is based on the changing access pattern at different

sites to improve the performance. Here fragments reallocation is dependent on

access made on each fragment data volume based on a defined time constraint

and the threshold value. This proposed technique changes the reallocation

strategy by modifying the read and write data volume factor and introducing

threshold time volume and Distance Constraints Algorithm. Write data volume

is considered for the reallocation process when more than one sites approach

the fragments. This ensures the overall improvement of distributed system

performance.

H. I. Abdalla [48] proposed an algorithm called Simulates Annealing with

Genetic Algorithm (SAGA) is used for optimal allocation of fragments in a

distributed environment. Here, allocation of data depends on access patterns for

fragments and focused on reducing the allocation cost during the movement of

data fragments from one site to another.

Guo et al. [49] were introduced an energy-efficient dynamic loading and

resource scheduling method that includes reducing energy usage and

decreasing application times. The method also successfully decreases energy

efficiency by modifying the CPU clock frequency of SMDs to the optimum in

local computing and adjusting the communication energy of wireless channels

in cloud computing.

Liu et al. [50] were worked for the placement of virtual machines in cloud

computing and energy-efficient EMACS was created. The intended virtual

machine placement was achieved with the fewest number of active machines

and by turning off idle nodes. According to experimental investigations,

Chapter 2. Literature Review

32

OEMACS aimed to minimize the number of active servers, increase resource

use, balance diverse resources, and reduce power consumption.

Malekloo et al. [51] was presented a multi-target colony optimization

technique that offers energy and service-sensitive performance in the

placement and consolidation of virtual machines. The results demonstrate that

this technique outperforms the other ways in terms of energy consumption,

limiting CPU waste, lowering energy communications costs caused by traffic

sharing across virtual machines, and reducing the number of virtual migrations

to system and SLA violations.

Vakilinia et al. [52] were proposed his work to "minimize all of cloud data

center power consumption" a platform for virtual machine placement.

Sharma et al. [53] discussed an evaluation of current reliability and energy

management strategies and their effect on cloud computing. There were

debates on the classifications of resources loss, failure tolerance mechanisms,

and mechanisms for energy conservation in cloud systems. Different problems

and study gaps have been established in the balance between energy reliability

and quality.

Long et al. [54] introduced a strong immune clonal optimization method based

on the dynamic load balance approach and immune clonal selection theory in

green cloud computing has solved the problem of high energy consumption

and reduced cloud utilization. In terms of solution efficiency and processing

costs, the experimental findings show that the method outperforms clonal

selection techniques.

Kaur et al. [55] demonstrated the need for energy management when

addressing the dual position of cloud computing as a significant contributor to

rising energy use and reducing energy waste. The research provided an in-

depth analysis of current energy management methods in cloud computing. It

also supplies taxonomies for the assessment of current work in the area of

science.

Chapter 2. Literature Review

33

Lee et al. [56] addressed the consolidation of tasks as an efficient way to

maximize resource usage and minimize energy use. The research focused on

two energy-conscious energy consolidation heuristics intended to optimize the

use of resources and take both active and idle energy use directly into account.

The heuristics suggested assigning each job to the resource, which minimizes

the energy needs explicitly or indirectly, without degradation in performance.

Beloglazov et al. [57] suggested an energy-efficient cloud computing

architectural structure and concepts. The study identified open analysis

problems, the provision of infrastructure as well as algorithms to handle cloud

computing environments effectively. The conclusions indicate that the

suggested model of cloud storage makes substantial cost savings and has a high

capacity in complex workload environments for energy efficiency

improvements.

Scionti et al. [58] introduced an algorithm for allocating the total energy

consumption. The effects of simulations were also viewed on a state-of-the-art

platform. The suggested solution results in tangible energy conservation,

showing energy efficiency dominance in comparison with well-known and

widely accepted allocation methods.

Khan et al. [59] conducted their research on maximizing physical and virtual

machines' capacity and energy consumption in a cloud computing system.

Findings offered a good understanding of how power and energy usage were

affected by various workloads. The tools and structure presented can be used

for research and improving energy efficiency in any cloud environment and of

any scale.

Tang et al. [60] addressed a problem of energy optimization that has been

modeled whereas the task dependence, transfer of data, and some constraints

such as response time, and cost have been considered and solved by genetic

algorithms. A series of simulation trials have been carried out to assess the

Chapter 2. Literature Review

34

algorithm efficiency and the findings suggest that the proposal is more

effective than the benchmark method.

Liu et al. [61] proposed an optimal paradigm for work schedules to decrease

energy usage in cloud data centers. The proposed solution was designed as an

integer programming problem to reduce the energy consumption of a cloud-

based data center by organizing activities for a small number of servers and

adhering to task response time constraints. As a realistic program, the authors

have developed the most effective initial task-programming method for the

server to decrease energy expenses. A data center planning system with diverse

tasks is modeled and simulated. The study findings reveal that the

recommended work scheduling strategy reduces server power consumption by

more than 70 times on average when compared to a random job scheduling

system.

Zhao et al. [62] suggested a power-aware scheduling approach for a

heterogeneous cloud network to solve the issue of high energy consumption.

The results show that the average power consumption in this system is 23.9 -

6.6% lower than in modern technology.

Li R. et al. [63] proposed an abstract model that uses piecewise linear functions

to handle data analytics workload in a distributed cluster architecture. This is

responsible to reduce the makespan time to handle cost issues.

Chung-Chi H. et al. [64] proposed a hybrid heuristic genetic algorithm and the

steepest descent methods to achieve optimal task allocation with a reduction in

hardware policies to reduce system cost.

Kashish Ara Shakil et al. [65] developed a latency-aware max-min algorithm

(LAM) for resource allocation in cloud infrastructures. The suggested method

was developed to handle resource allocation challenges such as changing user

requirements and on-demand access to infinite resources. It may allocate

resources in a cloud-based environment to enhance infrastructure performance

and increase revenue.

Chapter 2. Literature Review

35

2.5. Existing Work Done in Deduplication

P. G. et al. [66] proposed a new way for constructing safe deduplication

systems in the cloud and fog using Convergent and Modified Elliptic Curve

Cryptography (MECC) algorithms. The proposed method concentrates on the

two main objectives of such systems. On the one hand, data redundancy must

be reduced to a bare minimum, while on the other, a solid encryption strategy

must be created to assure data security. The proposed method is well suited for

tasks such as a user uploading new files to the fog or cloud storage. The file is

first encrypted using the Convergent Encryption (CE) method, and then re-

encrypted using the MECC algorithm.

Ahmed Sardar M. Saeed et al. [67] introduced a technique to detect substantial

redundancy and content-defined chunking (CDC) has been employed in data

deduplication. They optimized the deduplication system by tweaking relevant

parameters in CDC to determine chunk cut-points and provided an efficient

fingerprint using a novel hash function in the proposed study. They developed

a new low-cost hashing function and a novel byte’s frequency-based chunking

(BFBC) approach.

A Vijayakumar et al. [68] introduced a service named Key Generation and

Token Maintenance (KGTMaaAS) to manage cloud storage and minimize

duplicated data. It can detect duplicate data at both the block and file levels.

Dinesh Mishra et al. [69] proposed a framework for role and attribute-based

de-duplication in the cloud that supports diverse content types. De-duplication

has been done on a role-by-role basis. That is, distinct material should be kept

for each role type, or de-duplication should be performed. It will handle a

variety of content types, including text, photos, and video. Users with the same

function may have several versions of the same content that they share or trade.

These can be text, photos, or any other sort of data, hence de-duplication is

necessary at the role level rather than at the system level to decrease memory

and storage requirements.

Chapter 2. Literature Review

36

Duaa S. Naji et al. [70] developed a novel de-duplication methodology to work

on the contents of large data sets. Different dictionary indexing approaches will

be utilized to de-duplicate the field’s contents that have bounded variability. In

addition, for fields with lengthy strings, a set of computationally low-cost hash

algorithms will be utilized to speed up deduplication.

S. Ruba et al. [71] in their work detected that string-to-string comparison

results are a less effective identification architecture to detect data duplicity.

For the removal of redundant data stored on the disk fingerprint index detection

and prefetching techniques were introduced. It was based on reinforcement

learning and helped to remove 2% to 10% duplicity in comparison to the sparse

indexing method.

Guangpin X et al. [72] proposed data deduplication work to reduce the

duplicate data in scale-out distributed storage systems. To achieve this more

scalable and efficient deduplication process mechanism as SEP-D for locating

metadata information using content-based hashing to reduce I/O operations and

CRUSH for the application of placement strategies.

H. Fingler et al. [73] introduced the sub-file-level chunking deduplication

system as an example of system deduplication since it divides the incoming

data stream into several data "chunks" and uses comparing methods to find

duplicates. De-duplication systems delete duplicate chunks, allowing only one

copy of these chunks to be stored or sent to achieve the storage space or

network bandwidth savings goal. It's worth noting that de-duplication systems

have a long runtime and require a lot of CPU resources to function.

H. A. S. Jasim et al. [74] introduced the genetic evolution-based data

deduplication methodology has a greater deduplication ratio than existing

systems, allowing it to detect duplicated data even quicker. The divisor D

values in prior methodologies are static; however, in global optimization using

a genetic algorithm, we dynamically choose the optimum divisor D value to

uncover maximal redundancy. Bucket indexing based on genetic evolution

Chapter 2. Literature Review

37

deduplication is 16 times quicker than Rabin CDC, 5 times quicker than AE,

and 1.6 times quicker than Fast CDC.

In Bigdata storage, a large amount of data is stored in digital form without

using a structured approach. So, to identify duplicate data and create

unstructured data into structured data a new technique was presented by N.

Kumar et al. [75] to increase the efficiency of Bigdata storage. Based on hash

values and MD5 methods a bucket-based deduplication system with a fixed-

size chunking level is proposed. To execute this strategy, the researchers

employed the Destor open-source application and HDFS (Hadoop Distributed

File System).

N. Kumar et al. [76] proposed the AR-Dedup cluster deduplication system to

achieve high data deduplication rates and minimal overhead communication

while maintaining load balancing. In their program, they adopt an application-

aware method for deduplication. AR-Dedup makes use of cluster deduplication

routing.

Y. Xuan Xing et al. [77] presented an artificial neural network deduplication

methodology to discover duplicate data. The suggested system takes as input a

set of data created by various similarity measurements. The ANN is used to

process the model parameters that have been computed from similarity

functions i.e. dice coefficient, Damerau-Lavenshtein distance, and Tversky

index. The ANN has two stages, one for training and the other for testing data.

Y. Zhang et al. [78] introduced a method to achieve maximum disc storage

savings, it spreads data blocks over numerous storage nodes and performs rapid

compression following data deduplication. Droplet improves disc IO by

combining write requests for tiny data blocks into big chunks. Droplet has

demonstrated great deduplication performance in tests. Droplet is a high-

throughput and scalability distributed deduplication storage solution.

S. S. Sengar et al. [79] proposed an in-line data deduplication distributed

architecture that follows an intelligent storage balancing strategy to use storage

Chapter 2. Literature Review

38

nodes for storing data to enhance deduplication efficiency. This architecture

was capable to perform deduplication with high throughput and ratio and was

found effective in comparison to performing duplication on a single system. A

technique was proposed called sampled hashing to strengthen the scalability of

the distributed architecture.

Paulo, J. et al. [80] presented DEDIS, a dependable and distributed system that

conducts offline deduplication across VMs' primary storage volumes in a

cluster-wide approach. DEDIS is designed to be completely decentralized,

avoiding any single point of failure or contention and allowing for safe scaling

out. As long as it exports a shared block device interface, the concept is

compatible with any storage backend, distributed or centralized. It also

included new optimizations for enhancing deduplication efficiency and

reliability while lowering the storage request effect.

Singhal, S. et al. [81] proposed an approach that focuses mostly on chunking

and indexing in distributed data deduplication systems. The suggested method

uses GA to determine the value of the chunk's dynamic single divisor D. GA's

primary goal is to get a high deduplication ratio, although this requires some

additional time. To find the value of the divisor, a novel model is proposed by

associating GA. This is the first time GA has been used to deduplicate data.

The BST index tree is used to index the fingerprints, which is the proposed

system's second innovation. On VMDK, Linux, and Quanto datasets, the

suggested system's performance is examined, and the deduplication ratio is

improved significantly.

Shengmei Luo et al. [82] proposed a distributed deduplication cloud storage

solution. Using several storage nodes to deduplicate in parallel, it enables

scalable throughput and capacity with low deduplication ratio loss. First, Boafft

uses a data-similarity-based efficient data routing algorithm that not only

reduces network bandwidth overhead but also quickly calculates data storage

location. Second, each data server keeps a similarity index table in memory

that can be used to partially deduplicate data and avoid a significant number of

Chapter 2. Literature Review

39

random disc reads/writes. Finally, using a cache container of hot fingerprints

based on access frequency, we improve the data deduplication ratio in a single

node.

2.6 Problems Statement

The researchers devised many solutions to data management issues. When data

is sufficiently formatted, prepared, or regularly arranged, it functions well as a

crucial component of information construction. However, changes in data

behavior in terms of quantity, cost, and quality have an influence on worker

capabilities and performance. When users send data access requests from any

activity center, they confront a number of challenges. Data extraction delays,

transmission or data loss, availability of partial data at the node level, high data

access prices, data quality, and inconsistency are some of the problems.

In distributed data management, empirical data was employed. When applied

to any NP-hard problem solution, such drawing solutions to such problems

look radical or fundamental. It is tough to operate efficiently on many networks

while accessing their data. Such outcomes are not useful and do not work for

progressive results in study domains during studies. Data is being created at an

increasing rate due to the importance of data in business. Every user seeks data

for a variety of reasons; some are required to change existing data patterns,

while others use data for business analysis. Various social networking groups

and corporate web programs generated equal volumes of data, resulting in a

large storage space full of duplicated data.

Very little work had been done in the domain of textual data context

encouraging to work for a distributed architecture to handle it properly. The

amount of text data generated by social media groups such as WhatsApp, and

Facebook is constantly growing. This data has a storage problem, which

increases data complexity when many data-access activities are performed at

the same time. It necessitates the management of multiple concurrent users

accessing their data from various locations. It demonstrated a system that

Chapter 2. Literature Review

40

enables users to perform transactions on shared data simultaneously and

enhance performance on the distributed ground.

2.7 Research Questions

To work upon such hurdles several questions are active in mind. Some of the

research questions are depicted below:

• How to manage textual data in a large distributed network to achieve

distributed performance?

• How can a distributed network accomplish an optimum data allocation

that reduces overall costs?

• How do large amounts of data stored on dispersed machines become

redundant-free, hence improving data quality?

2.8 Research Gaps

Based on the literature review outlined in the previous chapter, the following

gaps in the existing literature have been identified:

• Usage of relative similarity is found in most of the studies in modern-day

fragmentation techniques.

• The allocation model lacks the supplementary load architecture and also

ignores the network cost.

• Data duplication identification methods can be improved by the

application of modern-day machine learning which is not monitored.

2.9 Objectives of Research Work

• Design a new data fragmentation architecture based on a similarity-

based threshold segmentation method.

• To introduce a novel data allocation scheme to optimize the allocation

process based on Swarm Intelligence.

Chapter 2. Literature Review

41

• To improve the existing data duplication scheme with Machine

Learning architecture.

• To evaluate and analyze the proposed methodology with the existing

scheme using a simulation framework.

2.10 Scope of the proposed work

Every company now uses data repository systems such as relational databases,

transactional databases, and multimedia databases to retain data from various

sources. Researchers make every effort to work with massive amounts of data

to address issues such as delays, inconsistent data, and missing data, among

others. To accommodate ever-increasing data, the emphasis is on improving

data management through data fragmentation, allocation, and deduplication.

Data, such as audio, video, and textual content, is growing in size as it is

generated from all directions. The goal of this research is to handle textual data

using appropriate distribution methods, allocation algorithms, and data quality

improvement while maintaining a single data instance.

2.11 Proposed Methodology

This section explains the proposed methodology for the implementation of the

work and as depicted in figure 1.5.

Chapter 2. Literature Review

42

Figure 1.5 Research methodology flow

Dataset Selection Data Pre-Processing W2V Clustering

Cluster Wise

Similarity Calculation
Hybridized Similarity

Apply Threshold

Based

Segmentation

method for cluster

formation

Cross Validation Using Machine Learning Classification Using ANN

Total Cost

Calculation ABC Algo.
Fitness
= = 1

Repeat

Allocation

Yes

No

Re-
analyse

No

Migrate

Yes

Compare cluster similarity-value with

calculated new data similarity-value

and Assign label 1 for duplicate

otherwise label 0

Apply Machine Learning Training

If classified

label is same

with Training

Lebel

Duplicate Content

Non- Duplicate Content

Yes

No

Stop

Start

Uploading of

Query File

Chapter 2. Literature Review

43

2.11.1 Pseudo-code for the Data Fragmentation

The following steps are accomplished to achieve this work and are as follows:

Step 1: Loading of data for fragmentation process

Step 2: Selection of data and its representation in a list, row-by-row

Step 3: Applying data preprocessing tasks i.e. stop word removal

Step 4: Filtered data generation and its conversion into Vector Model

Step 5: Cluster formation based on the vector data model

Step 6: Applying similarity index calculations clusters-wise (cosine, soft-

cosine similarity)

Step 7: Hybridize the similarity

Step 8: Apply threshold-based data fragmentation based on the similarity index

Step 9: Cross-validation to authenticate fragments

Step 10: Validate the fragments by using machine learning and classifying it

using an artificial neural network (ANN).

2.11.2 Pseudo-code for the Data Allocation

The steps are as follows:

Step 1: Loading of Query File

Step 2: Total cost calculation

Step 3: Level-wise estimation of execution patterns

Step 4: Execution of cost patterns task-wise

Step 5: Applying the proposed artificial bee colony (ABC) algorithm

Step 6: Re-Analyse Optimal Result using Upgraded Threshold

2.11.3 Pseudo-code for the Data Deduplication

The steps are as follows:

Step 1: Begin uploading saved data and queries.

Step 2: Remove stop words from the dataset using text pre-processing.

Step 3: Convert textual information into vectors.

Chapter 2. Literature Review

44

Step 4: Using k-means to categorize existing or new data into clusters, find

indices (indicating the number of probable clusters) and centroids positions

(the center point of each cluster).

Step 5: Indexes for training and testing are created.

Step 6: The cluster-wise similarity index calculation.

Step 7: Check duplicate data in testing data using the ground truth (gt) test.

Label 1 should be used for duplicate data entry; otherwise, label 0 should be

used.

Step 8: Perform a similarity test on the test data.

Step 9: To find duplicate figures, the results of similarity tests are compared to

the similarity of each cluster according to set threshold values.

Step 10: Calculation of performance parameters such as sensitivity, specificity,

accuracy, and fmeasure to assess the efficacy of a suggested deduplication

system.

Chapter 3

Design a New Data Fragmentation Architecture Based on a

Similarity-Based Threshold Segmentation Method

A distributed system is defined as the use of separate computers to share

various resources over linked networks. A properly distributed architecture

may fulfill each data item need specified by users. Users employ a variety of

query methods to locate desired data or information. Some of them focus on

data items from a single table or a combination of tables. User queries are

categorized as fine or coarse-grained, single or multi-database, and use a

collective and selective approach to retrieve needed data from several

viewpoints [83]. If knowledge grows at an exponential pace on a daily basis,

design architecture must be scalable in order to handle vast amounts of data in

the future. In this work, an effort for fragmentation of data is given to handle

data at large. To achieve a similarity-based threshold segmentation approach is

applied to make clusters or groups represented as fragments.

3.1 Introduction

One of the most important aspects of any serving network is data distribution.

The organization of data in a dispersed context has a significant impact on data

storage and retrieval. The demands of consumers have changed in tandem with

the rapid growth of technology. A user who was once immobile has evolved

into a mobile user who requires data access from everywhere on the planet.

Users may migrate from one service provider to another as a result of an

unstructured data structure causing network output delays. When it comes to

data storage, data fragmentation is a crucial component. Others will be able to

use organized data more easily. The extraction of information on time is quite

difficult due to a large amount of data. As a result, to accomplish performance

in a distributed system, an optimal strategy is required to overcome earlier

shortcomings and serve the greatest number of consumers possible across a

large geographical network.

Chapter 3. Design a new data fragmentation architecture……………

46

The fragmentation, allocation, and deduplication of data mechanisms are

linked to data improvement in a dispersed network. By breaking huge global

data into small independent portions termed fragments or segments [84-91] it is

possible to make the best use of available storage space and efficiency. When

opposed to retrieving data from a single huge data structure, these discrete

segments help to reduce demand in a globally distributed context. Scalability,

data availability, security, searching speed, and data inconsistency may all be

easily managed with distributed systems. Working with a single massive data

system and entertaining millions of users at the same time while maintaining

high data accuracy has become difficult.

Parallel technology, software technology, and network infrastructure advances

have all contributed to the emergence of cloud computing, VANETs, and

OPPNETs [92],[93]. This is a novel computer model that offers users data,

programs, and various IT resources via the network as a service, with no

latency in information transmission [94]. Cloud computing is a type of

infrastructure management tool that includes resource management via

virtualization technologies and a big capacity resource pool. Users of the cloud

will make requests via the network and subsequently receive the service. The

resource pool can be dynamically deployed, modified, and reconfigured, and

the operation can be canceled, among other things [95].

The main goal of this research is to develop a novel relative-based

fragmentation architecture for scalable query addressing in the context of

textual facts in a distributed network environment. Previously, data

fragmentation was based on empirical data and was broad in scope to get the

desired result. This method applies similarity calculations on textual data are

used to arrive at a definitive result utilizing vector calculation. This study uses

a combination of cosine, soft cosine, and hybrid similarity as a means of

distinguishing between data items for partitioning.

Earlier strategies focused on discovering similarities between several

documents, but the proposed methodology is responsible for determining the

Chapter 3. Design a new data fragmentation architecture……………

47

similarity in the connection itself by comparing one row to the next and

applying similarity calculations to vector values. As a result, it is necessary to

rely on the required strategy that is appropriate for a diversified environment

with an adaptive character.

3.1.1 Segmentation Technique

Segmenting data or splitting cloud data into smaller, coherent, and

interconnected sections is a method of collecting data with similar features.

Text segmentation is the process of breaking down a document into smaller

chunks, or segments. In word processing, it is widely utilized. Depending on

the goal of the text analysis, these segments are classed as words, phrases,

subjects, sentences, or any other unit of data. Text segmentation is a technique

for deleting logical sections of text. The passage or boundary portion is the

name given to this part. There are a variety of reasons why a divided document

might be useful for text analysis. This could be because it is smaller and more

coherent than the entire document. When it comes to getting information, text

segmentation is a major issue. Its goal is to partition a text into homogeneous

segments, which are segments that have the following characteristics: (a) each

segment has a distinct topic, and (b) adjacent segments cover diverse themes.

From a large base of unformatted or loose material, these pieces can be tracked

as suitable to a query [96].

3.1.2 Similarity Measures

When there is ground truth for clustering, the similarity value is derived using

the ground truth of the cluster or region; however, when there is no ground

truth for the region or cluster, the ground truth becomes radical, and similarity

measures are generated using vector calculations. Discourse is the

measurement of the equivalent of two pieces of evidence. An agreement is

generally characterized as a gap along with the dimensions representing the

objects' attributes in the context of data mining. If the distance is little, the

degree of similarity will be high; if the distance is big, the degree of similarity

Chapter 3. Design a new data fragmentation architecture……………

48

will be below. Plagiarism, asking for a similar question previously answered on

Quora, collaborative filtering in recommendation systems, and so on all

employ the similarity metric. The distance between different points of data is a

similar measurement. The difference is between the two data items measuring

divergence, whereas similarity is a variable that shows the strength of the

association between two data items. In this work, three similarity metrics are

combined: Cosine, Soft Cosine similarity, and hybrid similarity [97].

3.1.2.1 Cosine Similarity

In general, similarity is a measure of how similar things are when compared to

other comparable things. One involved the use of vectors, which are computer

equations. A vector is a quantity that is both large and has a direction. In

computer science, a vector is a one-dimensional sequence. The angle of cosine

between them is calculated using the similarity of the cosine approach. Finding

the angle between the two vectors requires the point product of the two vectors,

as shown in Figure 3.1. We will effectively attempt to get the cosine of the

angle between the two lines by establishing the cosine relation. The 0° cosine

is 1, and every other variable is less than 1. As a result, it's an orientation

judgment rather than a magnitude judgment: two vectors with the same

direction have a cosine similarity of 1, two vectors with a 90° similarity of 0,

and two vectors with the same direction have a similarity of -1, regardless of

magnitude [98].

Figure 3.1 Cosine Similarity

Chapter 3. Design a new data fragmentation architecture……………

49

3.1.2.2 Soft Cosine Similarity

A soft cosine agreement test evaluates the agreement's attributes. The

traditional Cosine conformity criterion judged similarity based on features

determined by the vector space model (VSM), which are fundamentally

distinct from one another. Soft cosine similarity, on the other hand, can be a

huge benefit if you need to apply a criterion of an agreement to help with

document grouping or classification [99].

3.1.2.3 Hybrid Similarity

The qualities of cosine similarity and soft cosine similarity are merged in this

similarity metric.

3.1.3 Machine Learning

Machine learning (ML) is an artificial intelligence (AI) technology that allows

devices to learn and strengthen themselves without the need for explicit

programming. Machine learning is concerned with the creation of computer

systems that can observe and learn information by themselves. The learning

process, according to the explanations we provide, begins with insights or data,

such as examples, direct knowledge or input, data patterns, and making

informed future judgments. The main goal is to allow computers to learn on

their own and alter their behavior accordingly without the need for human

interaction or assistance [100].

The following is how ML categorization is always done:

• A supervised machine learning algorithm

• Machine Learning Unsupervised Algorithm

• Deep learning algorithm that is semi-supervised

• A strengthening algorithm based on machine learning [101]

The relative information model is used entirely by the machine learning

architecture (illustrated in Figure 3.2).

Chapter 3. Design a new data fragmentation architecture……………

50

Figure 3.2 Machine Learning Architecture

It takes in what is given to it and learns from it. It is divided into three parts:

the input layer, the hidden layer, and the output layer. The input layer takes the

raw data and changes it into a more intelligible form by comparing it to the

defined goal label. The data's meaning is propagated by the hidden layer,

which generates the cross-validation training platform. AI and machine

learning as a solution to problems involved in the process of validating the data

received as output from the proposed method applied.

3.2 Methodology and Implementation

This section covers steps involving the processing of data fragmentation

implementation discussed below and graphically depicts in Figure 3.3:

• Start by uploading Twitter data that hasn't been labeled.

• Apply Data Preprocessing

o Remove English Stop Words from the data to filter it.

• Apply word-to-vector on filtered data.

• On the set of row lists, perform similarity calculations.

Chapter 3. Design a new data fragmentation architecture……………

51

• Identifying the data's initial centroid.

• The Euclid distance between each tweet was calculated.

• Counting how many centroids there are.

• Using K-Means to generate fragments

• Use Machine Learning (ML) Training to validate the fragments and a

neural network to classify them.

To do so, we went through a series of procedures. The following sections

contain step-by-step descriptions of each process. In MATLAB R2016a, each

step is carried out separately.

Figure 3.3 Data flow structure for fragmentation

Chapter 3. Design a new data fragmentation architecture……………

52

3.2.1 Uploading of Twitter-Dataset

The dataset used in the proposed study comes from a sample of data and

was accessed at [102]. The above-described dataset contains unlabeled tweets

that must be segmented and for segmentation. The "text" column in this dataset

contains 1048576 data instances, of which 93 are used to continue the relative

fragmentation experiment as shown in Figure 3.4.

Figure 3.4 Metadata of Twitter Dataset [102]

3.2.2 Removal of English Stop Words

A stop list [103] can be used to get a list of those stop words. The first step is to

eliminate English stop words from unlabeled tweets. The technique of deleting

English stop words from tweets (as illustrated in Figure 3.5 and Figure 3.6)

helps to reduce the dimension of the data accessible. The most prevalent words

Chapter 3. Design a new data fragmentation architecture……………

53

in textual (tweet) files tend to be prepositions, articles, and nouns. These words

don't add anything to the content. Because some words in information retrieval

(IR) software are not named keywords, stop list words were deleted from the

text [105]. To achieve this, data column 5 contain textual data used as data for

experiment purpose. In this procedure, all rows are examined one by one till

the conclusion of the records and compared for the elimination of stop words.

Filter words are traced and turned into vectors at the end of the operation.

Figure 3.5 Stop Word Removal Process

Figure 3.6 Stop Word Removal and W2V Conversion Code Snippet

Chapter 3. Design a new data fragmentation architecture……………

54

3.2.3 Applying Word to Vector on Filtered Data

The similarity is commonly measured by comparing how similar or similar two

objects are. One approach to calculating similarity is to use vectors. A vector is

essentially a number with both magnitude and direction. In computer science, a

one-dimensional sequence is referred to as a vector. Word2vec is a tool for

creating a compact space of word vectors. It takes a large text corpus as input

(tweets with stop words deleted) and allocates a vector to each word in the

tweet.

Figure 3.7 Vector Representation of Filtered Words

The vector representation of the terms is obtained after generating a dictionary.

Each row of words in column 5 is represented in the dataset by the values of

the vector after approximation (as shown in Figure 3.7). As a result, the

following stage is to assess the data's similarity index using three different

similarity measures: Cosine, Soft Cosine, and hybrid similarity index. The next

sections provide a full description of these three measurements. In word2vec,

the two main models are Skip-gram and Continuous Bag of Words. In the

Skip-gram model, terms are predicted from a word in their context, whereas in

the CBOW model, the most likely word is chosen based on the context. The

output layer uses a softmax feature or a combination of softmax features to get

Chapter 3. Design a new data fragmentation architecture……………

55

the output of each term's probability distribution. In these models, input and

output words are encoded in one-hot encoding, which means that when the

matrix W connecting the input and hidden layers is multiplied by one, a single

row is picked W. Because its lines contain vector representations of terms,

dimension N is the algorithm hyperparameter and the qualified W-output

matrix. [106].

Modifications to softmax, such as hierarchical softmax and negative sampling,

are used to speed up the training of Skip-gram and CBOW models, allowing

the probability distribution to be calculated faster than in linear time from

dictionary size [107-109].

3.2.4 Applying Similarity Calculations

In the vector model, a document is defined as an unordered set of terms. The

words that make up the text to obtain essential or useful information are

referred to as retrieval terms. Here, the similarity index for the uploaded

document to the rest of the text in the set is calculated using cosine similarity.

For example, if the tweet contains 100 rows, the similarity (either cosine or soft

cosine) is determined by comparing the word vector to the remaining 99 rows.

Input: Vector data

Output: simvalue=Calculatecossim(v1, v2)

1. Calculatecossim(v1, v2) = [];

2. nume = 0; //numerator

3. deno=0; //denominator

4. deno1=0;

5. deno2=0;

6. for I = 1 → v1.length

7. nume=nume+v1(I)*v2(I);

8. End for

9. for J = 1 → v1.length

10. deno1=deno1+v1(J)^2;

11. deno2=deno2+v2(J)^2;

12. End for

13. deno=sqrt(deno1)*sqrt(deno2);

14. simvalue=nume/deno;

15. Return: simvalue as output

16. End function

Pseudocode 1. Cosine Similarity on Vectors

Chapter 3. Design a new data fragmentation architecture……………

56

The pseudocode 1, depicts the operation of cosine similarity by computing the

cosine angles between two vectors v1 and v2. To do this, each row in relation

is compared to other rows using a vector list with the numerator and

denominator as variables. It is calculated by multiplying each vector row by

row consecutively and storing the result in the nume variable. Deno is

computed by multiplying deno1 and deno2 by their square roots. deno1 and

deno2 are the squares of v1 and v2. Finally, simvalue is determined by dividing

nume and deno.

Input: Word to Vector data

Output: sc=Calculatesoftcosine(v1, v2)

1. Calculatesoftcosine(v1,v2)=[]

2. sc=0;

3. num=0;

4. for I = 1 → v1.length

5. for J = 1 → v2.length

6. num=num+ v1(I)*v2(J);

7. End for

8. End for

9. avalue=0;

10. bvalue=0;

11. for I = 1 → v1.length

12. for J = 1 → v1.length

13. avalue=avalue+v1(I)*v1(J);

14. bvalue=bvalue+v2(I)*v2(J);

15. End for

16. End for

17. avalue=sqrt(avalue);

18. bvalue=sqrt(bvalue);

19. deno=avalue*bvalue;

20. sc=num/deno;

21. sc=sc/(max(v1)/max(v2));

22. End function

Pseudocode 2. Soft Cosine Similarity on Vectors

An enhanced technique known as soft cosine similarity is developed to attain

precision in the outcome of cosine similarity. Soft cosine is calculated using

pseudocode 2 by dividing the numerator and denominator. For each row, the

numerator is the multiplication of v1 and v2 with other available rows in the

relations. On the other hand, the denominator for each row and column is the

square root of v1 and v2.

Chapter 3. Design a new data fragmentation architecture……………

57

Input: calculated results of cosine similarity and soft cosine similarity

Output: allhybrid=hybridsim()

1. [r,c]=size(w2v);

2. allcossim=[];

3. allsoftcossim=[];

4. allhybrid=[];

5. for i=1→r

6. v1=w2v(i,:);

7. simvalue=0;

8. softvalue=0;

9. counter=0;

10. for j=i+1→r

11. v2=w2v(j,:);

12. simvalue=simvalue+Calculatecossim(v1,v2);

13. softvalue=softvalue+Calculatesoftcosine(v1,v2);

14. counter=counter+1;

15. End for

16. allcossim(i)=simvalue/counter;

17. allsoftcossim(i)=softvalue/counter;

18. allhybrid(i)=allcossim(i)+allsoftcossim(i);

19. End for

20. End function

Pseudocode 3. Hybrid Similarity

The findings of cosine and soft-cosine similarity are used in pseudocode 3. To

begin, determine the size of the vector to determine the number of rows and

columns. Then, using w2v, get the values of the vectors v1 and v2 from each

word in the rows. Call Calculatecossim() on the v1 and v2 variables to get the

similarity value. Call Calculatesoftcosine() on the v1 and v2 variables to get

the Soft Cosine similarity value. Finally, for each row, add the average of

cosine and soft cosine similarity to get the hybrid similarity.

Columns 1, 2, and 3 of (a) in Figure 3.8 reflect the results of cosine, soft-

cosine, and hybrid similarity calculations, respectively. And (b) shows the

similarity index graphical representation after applying Cosine, Soft Cosine,

and hybrid similarity measures.

Chapter 3. Design a new data fragmentation architecture……………

58

Figure 3.8 (a) Outcome after similarity measure (b) Similarity index graphical representation

The average similarity index is calculated by evaluating the final output for all

tweets in the row. The following equations reflect the cosine, soft cosine, and

hybrid similarity index formulas:

Cosine Similarity = ((1.1)

Soft Cosine Similarity = (1.2)

Hybrid Similarity = Cosine + Soft Cosine (1.3)

Set = (1.4)

3.2.5 Finding Initial Centroid (IC) of Data

The Initial Centroid (IC) of the tweet data is determined next, which is derived

as the average of each similarity measure acquired from each similarity index

(Cosine, soft cosine, and hybrid) independently. This value is used as the

tweet's IC. The formula for calculating the IC is given by equation (1.5).

Initial Centroid (IC) = (1.5)

Where k = Total number of tweets

Chapter 3. Design a new data fragmentation architecture……………

59

The "X" sign represents the centroid of each cluster, as seen in Figure 3.9. The

available data is divided into three clusters, which are labeled cluster1,

cluster2, and cluster3, and are represented by distinct colors, blue, red, and

orange, respectively.

Figure 3.9 Representation of Clusters and Centroids

3.2.6 Calculation of Euclid Distance

The geometric distance in multidimensional space is known as the Euclidean

distance. The following formula is used to compute the Euclidean distance

between points T1 and T2 in n-dimensional space (1.6). The equations below

reflect the formula used to determine the Euclidian distance of each tweet from

the set (ST), which is calculated using equation (1.4) for cosine data, soft

cosine data, and hybrid data:

D1 = ECU1(IC,ST) (1.6)

D2 = Squared ECU1(IC,ST) (1.7)

D3 = (D1 + D2) / 2 (1.8)

It is worth noting that the Euclidean distance (and its square) are calculated

using the Tweet data received in the previous stage. The total number of

centroids in the given data was then calculated to determine the number of

fragments by measuring the average of D1, D2, and D3.

Chapter 3. Design a new data fragmentation architecture……………

60

D is the total number of centroids.

D = (1.9)

Figure 3.10 depicts an example of a distance calculated from ST that is D1,

D2, D3.

Figure 3.10 Measures Distance from the Centroid

3.2.7 Fragment Generations

Data fragmentation is the process of splitting data into fragments to make

storage easier. The formula used to determine the number of pieces from the

supplied data is expressed as equation (1.10).

p = (1.10)

where K = total number of tweets (rows)

 C = number of centroids

and D = Total numbers of fragments

The fragmented data is fed into the Artificial Neural Network (ANN) alongside

the original word 2 vector data. Table 3.1 shows the classified fragments for

the 100, 200, 300, 400, and 500 rows. It shows fragments distributions

individually for each row after classified by ANN.

Chapter 3. Design a new data fragmentation architecture……………

61

Table 3.1 Fragments Classification Row-Wise

3.3 Results and Discussions

A MATLAB program with 4 GB RAM, a 64-bit operating system, and a 2.30

GHz processor was used to implement the fragmented architecture. In terms of

categorized accuracy, the performance has been evaluated. For 100, 200, 300,

400, and 500 rows, the results were examined individually.

Table 4.2 shows the results of five experiments that were conducted to measure

detection accuracy. The accuracy of the designed fragmented structure's

classification is shown in Figure 3.11. The simulations were run five times to

ensure that the submitted data, which may comprise rows (100, 200, 300, 400,

and 500), was as accurate as possible. The accuracy of classification increases

as the number of rows grows, as shown in the graph. This is because as the

amount of data grows, so does the ability to train an ANN structure, resulting

in better classification of fragmented data. For 100, 200, 300, 400, and 500

rows, the classification accuracy averages 63.81, 76.28, 81.52, 83.58, and

92.078, respectively.

For 100 Rows For 200 Rows For 300 Rows For 400 Rows For 500 Rows

1 1 2 4 3

1 1 2 2 2

2 1 1 1 1

1 2 3 3 2

1 2 1 1 3

1 1 2 2 2

2 1 1 2 4

1 3 2 3 4

1 2 3 3 3

3 1 4 4 3

2 2 3 2 2

Chapter 3. Design a new data fragmentation architecture……………

62

Table 3.2 Classification Accuracy for Each Row

Iterations 100 200 300 400 500

1 62.45 75.89 82.15 84.57 91.04

2 63.57 76.28 81.27 83.57 92.57

3 62.78 76.18 79.68 84.25 93.17

4 64.28 75.12 80.15 82.37 92.14

5 65.97 77.94 84.36 83.14 91.47

Figure 3.11 Classification Accuracy

The average percentage of iterations is derived to evaluate precision and recall,

as shown in Table 3.3. Table 3.4 shows the fragmented architecture developed

after the suggested work was analyzed using parameters such as True Positive,

True Negative, False Negative, and False Positive. Table 3.5 shows the

precision and recall.

True Positive (Tp) = Total true selected elements / Total sample size (1.11)

 False Positive (Fp) = False selected elements / Total sample size (1.12)

Chapter 3. Design a new data fragmentation architecture……………

63

True Negative (Tn) = True left samples / Total sample Size (1.13)

False Negative (Fn) = False left sample / Total sample Size (1.14)

Table 4.5 displays the precision and recall, which are nearly the same for each

row, and Figure 3.11 and 3.13 shows the graphical depiction of the Tp, Tn,

Fp, Fn evaluation and precision and recall respectively.

The Fp value reveals that the components are not placed in clusters that are

suitable for them. In this study, the Fp results are lower. Tn displaying the

remaining bad samples. It shows a decent search response if it is high.

Precision and recall values are calculated based on the values calculated for Tp,

Tn, Fp, and Fn. The simulation of Tp, Tn, Fp, Fn is shown in Figure 3.12.

Table 3.3 Average Percentage of Iterations

Table 3.4 Evaluation of Tp, Fp, Tn, and Fn

No. of Rows/Records Average of all five iterations in %

100 64

200 76

300 82

400 84

500 92

Total Passed Query 100 200 300 400 500

Total true selected samples (Tp) 0.45 0.53 0.57 0.59 0.64

True left samples (Tn) 0.25 0.17 0.13 0.11 0.11

False left samples (Fn) 0.44 0.53 0.57 0.58 0.64

False selected sample (Fp) 0.25 0.08 0.04 0.03 0.01

Chapter 3. Design a new data fragmentation architecture……………

64

 Figure 3.12 True Positive-False Positive-True Negative-Fast Negative

Table 3.5 Evaluation of Precision and Recall

Figure 3.13 Precision and Recall

Total Passed Rows 100 200 300 400 500

Precision 0.64 0.87 0.93 0.95 0.98

Recall 0.64 0.76 0.82 0.84 0.85

Chapter 3. Design a new data fragmentation architecture……………

65

3.4 Comparative Analysis

Different fragmentation algorithms are proposed by the researchers to work for

enhancing performance. These algorithms work for fragmentation and work for

controlling transfer cost (TC), communication Cost (CC), and access time

(AT). and response time (RT). The proposed work used performance

parameters including precision and recall to achieve optimal results. The

parameters of different techniques are hereby discussed below in Table 3.6.

Table 3.6 Comparative analysis of parameters followed by different fragmentation techniques

References
Algorithms/

Techniques Used

Cost parameters used Performance parameters

Storage

Cost
TC CC AT RT Precision Recall

[109]
K-Means and

SMOTE
☓ 🗸 🗸 🗸 🗸 🗸 🗸

[110]
Hybrid Similarity

based partitioning
☓ 🗸 🗸 🗸 🗸 🗸 🗸

[33]
Modified Bond

Energy algorithm
☓ 🗸 🗸 🗸 🗸 ☓ ☓

[129]

Hybrid Ant

Colony Algorithm

(HACA)

☓ 🗸 🗸 🗸 🗸 🗸 ☓

Proposed

Work

The similarity-

based threshold

segmentation

technique

🗸 🗸 🗸 🗸 🗸 🗸 🗸

For total passed rows of 500, the maximum precision achieved is 0.98. Every

row passed has a recall value of 0.85. It is discovered that the proposed work

has improved in terms of precision and recall. Researchers previously

employed the k-means dependent cosine similarity measurement method to

estimate feature similarity between cluster centroids and data points to quantify

the similarity between the clustering output and side information. A data

partitioning clustering technique based on the notion of a learning approach has

been suggested. The suggested work's fundamental flaw is that it only uses

cosine similarity-based k-means for dividing big data sets [110]. On the

contrary proposed approach uses a similarity-based threshold segmentation

method clustering-wise to reach optimal precision and recall results.

Chapter 3. Design a new data fragmentation architecture……………

66

To increase precision and recall parameters during partitioning, an effort is also

made to hybridize cosine and soft-cosine [111]. We offered cosine, soft cosine,

and hybrid similarity as an increased method in this study, and the result was a

rise of 0.98 precision and 0.85 recall values. As a result, we rely on this

technique to fragment textual data for a variety of systems.

In his research, Huaping Guo [109] suggested a classification system based on

data-partitioning and SMOTE for unbalanced learning, achieving precision and

recall rates of 0.47 and 0.54 in percentage, respectively. On the other hand, the

author in [110] offered a strategy to develop a partitioning method based on the

combination of cosine and soft cosine similarities to increase the data

partitioning performance with improved portioning speed and accuracy. It

shows 0.69 and 0.67 precision and recalls in percentage.

The suggested approach's computed accuracy and recall are based on the

classification technique's estimated precision and recall of 0.98 and 0.85 for the

proposed method, respectively after the data are classified into clusters. In

Table 3.7, the comparisons with various methodologies are shown or

distinguished. The Graphical Views of Precision and Recall are shown in

Figure 3.14.

Table 3.7 Comparison of calculated Precision and Recall

Parameters Huaping Guo et al.

[109]

Kiranjeet Kaur et

al. [110]

Proposed

Work

Precision 0.47 0.69 0.98

Recall 0.54 0.67 0.85

Chapter 3. Design a new data fragmentation architecture……………

67

Figure 3.14 Precision and Recall Comparison

The following are some of the benefits/differences of the proposed work over

existing implemented methodologies:

• It aids in the classification of fragmented data with high precision and

recalls indicating maximum coverage, and accuracy, and reducing

overall processing time.

• Previous clustering strategies based on cosine-based k-means, cosine,

and soft cosine hybridization failed due to a lack of balance in the

quality and efficiency of clustering in categorical data sets.

• Existing techniques' concepts are fine in certain circumstances, but not

in others. As a result, algorithm hybridization is the optimal strategy.

To ensure enhanced efficiency and the ability to cope with big data sets,

cosine and soft cosine similarity notions are used to compute hybrid

similarity in this research work.

Chapter 3. Design a new data fragmentation architecture……………

68

3.5 Conclusion

A novel relative data fragmentation architecture is proposed in this study to

partition a huge dataset into many fragments. Twitter data is used in this

project, and it is turned into vectors to be used for fragmentation. Calculations

of cosine, soft cosine, and hybrid similarity are performed, and centroid

positions are discovered. To find clusters, the K-Mean technique is utilized to

calculate the distance between data points with each centroid. Finally,

validation and performance are checked using ANN to ensure accuracy. The

goal of this study is to implement a unique similarity-based data fragmentation

architecture in an unsupervised learning environment. When compared to

previously proposed approaches, the comparison yielded good precision and

recall.

Chapter 4

 Introduce a Novel Data Allocation Scheme to optimize the

Allocation Process Based on Swarm Intelligence

Efforts to increase the flexibility and efficacy of distributed computing systems

are continuing. These achievements are the result of extensive research in the

domains of connection technologies, network programs, high-performance

computer components, and storage. However, delays in answers, long

execution times, and long completion times have been highlighted as stumbling

blocks that impair performance and need more attention. Such shortcomings

raised the total cost of the system and impeded data dissemination in a

geographically dispersed structure. Data allocation performance might be

improved by improving the load-based architectural model.

4.1. Introduction

In this objective, an abstract job model is used to accomplish this, and a data

query file containing input data is processed on a directed acyclic graph. The

task is run on the processing engine with the lowest execution cost, and the

total cost of the system is computed. Communication, computation, and

network costs are all added together to get the overall cost. The way data is

fragmented and dispersed across multiple geographically dispersed sites

determines the success of a distributed system [99]. Overcoming the escalating

labor load, and reducing data allocation costs are two of the most difficult

components of distributed architecture. A higher load means a longer query

completion time, which impacts operational costs and raises the overall system

execution cost. Data pieces must be split down into little sub-tasks and

scheduled to be handled in parallel to keep the overall system execution cost

low. The goal of this form of heuristic division is to cut down on the amount of

time it takes to complete all tasks.

Chapter 4. Introduce a Novel Data Allocation Scheme ………..

70

The query file has details about tasks, communication, and computation cost

incurred by each processing engine. It determines how tasks are executed

among an available number of processing engines. For estimating task

execution costs, each engine has its own computing cost. The execution cost is

estimated by adding the processing engine's lowest execution cost to the

communication and network costs incurred during execution.

A directed acyclic graph (DAG) comprising vertices and edges, as shown in

Figure 4.1, was used to parallelize all of the jobs. Each job/task is represented

in a DAG as a vertex or node, with the links between them reflecting the

communication overhead and connectivity between tasks. When data is

exchanged between nodes, the cost of communication is incurred. The DAG is

in care of three different types of costs: communication, network, and

computing. Each expense was taken into account while calculating the total

cost of system execution. For total cost calculations, only the calculation cost

with the shortest execution time is considered.

Figure 4.1. Directed Acyclic Graph

In this research work, we look at a distributed system with heterogeneous

processors and system tasks. A distributed system is made up of P = P1, P2, ….,

Pn heterogeneous processors coupled by communications links and T = t1, t2,

..., tm system tasks that collectively express a purpose. As shown in Tables 4.1

1

2 3 4 5 6

7 8 9

10

Chapter 4. Introduce a Novel Data Allocation Scheme ………..

71

and 4.2, the execution cost matrix (ECM) is an asymmetrical matrix of order

m*m that represents the cost of executing tasks on different processors, while

the network cost matrix (NCM) is an asymmetrical matrix of order m*m that

represents the cost of communication between multiple tasks. The suggested

ABC algorithm is used to compute the best total cost by combining both.

Table 5.1 Execution Cost Matrix (ECM)

Query/Tasks
Processors

P1 P2 P3

1 0.81 0.16 0.66

2 0.91 0.97 0.04

3 0.13 0.96 0.85

4 0.91 0.49 0.93

5 0.63 0.80 0.68

6 0.10 0.14 0.76

7 0.28 0.42 0.74

8 0.55 0.92 0.39

9 0.96 0.79 0.66

10 0.96 0.96 0.17

Table 4.2 Network Cost Matrix (NCM)

Query/Tasks
Processors

P1 P2 P3

1 0.71 0.44 0.28

2 0.03 0.38 0.68

3 0.28 0.77 0.66

4 0.05 0.80 0.16

5 0.10 0.19 0.12

6 0.82 0.49 0.50

7 0.69 0.45 0.96

8 0.32 0.65 0.34

9 0.95 0.71 0.59

10 0.03 0.75 0.22

Chapter 4. Introduce a Novel Data Allocation Scheme ………..

72

The challenges with data allocation in a distributed system are response time,

execution time, and completion time [112]. It gradually raises system expenses

and impedes workforce advancement. The use of multiple processors directly

impacts network and communication costs during task execution, which affects

the overall system cost. The researchers previously utilized methodologies that

eliminated network costs from overall system cost assessments. In this case,

the previously obtained study results appear to be incorrect and useless in many

trials conducted in a dispersed setting. The suggested research focuses on a

swarm intelligence-based artificial bee colony method that can be used to

address and resolve present problems as well as quickly work on earlier errors.

Previous difficulties are discussed in [114-118]. The proposed strategy is based

on bees' learning and adaptive behavior, which could help with performance

issues. It controls bee degradation loss as a result of the expensive cost of

storing the bees from the site. To balance loss, such costs are removed from the

overall system cost. In a distributed computing system, it contributes to the

enhancement of data allocation.

4.2 Proposed Methodology and Implementation

The processing engine determines the data allocation technique. If the cost

parameter is not properly regulated, the data allocation procedure consumes

more network costs. In this instance, the cost of doing actions on several

processors varies. The processing cost of two dependent jobs running on the

same processor is the same, and communication between them is considered

zero. To compute execution cost, the intended operations are repeated on the

specific processing engines. The lowest cost of query execution is applied to

the communication cost to determine the task execution cost. The following

steps are followed to complete the scheduled activity, as shown in Figure 4.2:

Chapter 4. Introduce a Novel Data Allocation Scheme ………..

73

Figure 4.2 Proposed Model Flow

4.2.1 Loading of Query File

The query model flow provides a complete list of all jobs, their flows, and the

communication and computes charges associated with each processing engine,

as illustrated in Table 4.3 below. It is a tabular representation of a directed

acyclic graph (DAG). Query tasks are represented as flows from the root node

to their connected nodes, and so on. The communication cost is the cost that

appears after two tasks have been completed and communication or interaction

has occurred between them. And, when several processing engines are used,

the engine with the lowest computing cost is chosen for continued execution.

The least expensive processing engine fit for the tasks at hand is chosen in this

case.

Chapter 4. Introduce a Novel Data Allocation Scheme ………..

74

Table 4.3 Query Model Flow

Query/Tasks flow Communication

Cost

Computation Cost

T1 T2 PE1 PE2 PE3

1 2 12 12 10 14

1 3 15 8 9 15

1 4 17 14 18 15

1 5 14 11 14 9

1 6 16 12 14 17

2 7 14 11 15 17

2 8 15 12 17 19

3 8 18 12 17 19

3 9 17 17 18 13

4 7 18 11 15 17

5 7 17 11 15 17

5 8 25 12 17 19

6 9 10 17 18 13

6 7 14 11 15 17

7 10 12 14 15 13

8 10 13 14 15 13

9 10 14 14 15 13

4.2.2 Total Cost Calculation

The overall cost is equal to the total amount of energy used to complete all

tasks. Overall expenses are calculated at the node level using a level-by-level

cumulative computation. The total cost of communication, computation, and

network access for all jobs is added up at each level to determine load. All

three parameters combine to reflect the total cost of selecting processors for

task execution. Each CPU has its own set of characteristics, and they all do

tasks within the operating system's priority limits. It means that we won't be

able to interrupt the workflow. After each of its parents has completed their

jobs, sub-tasks are carried out. Instead of prioritizing tasks at each node, task

assessment is prioritized for processors with lower execution costs.

4.2.2.1 Level-Wise Estimation of Execution Patterns

To calculate the total cost, jobs at various levels are processed in topological

order, and their associated communication, network, and computing costs from

Chapter 4. Introduce a Novel Data Allocation Scheme ………..

75

the communicating node are calculated and added. This method is used for all

jobs and lies on different levels (0-nth levels) depending on DAG size. The

overall execution cost is calculated by summing the results computed at each

level.

To implement calculations at each node level-wise following pseudocodes are

used and shown below:

4.2.2.1.1 Pseudocode to Compute Level-Wise Execution-Cost

Level-I:

Input: entry_query, query_comp_cost, myminvalue, myminpos

Output: total_engine_value

1. execution_pattern=[];

2. total_engine_value=zeros(1,3);

3. [myminvalue,myminpos]=min(query_comp_cost(1,:));

4. execution_pattern(1,1)=entry_query;

5. execution_pattern(1,2)=0;

6. execution_pattern(1,3)=myminvalue;

7. execution_pattern(1,4)=myminpos;

8. total_engine_value(1,myminpos)=total_engine_value(1,myminpos)+myminvalue;

Level-II:

Input: last_engine, total_query_count, lvcount2, current, parent, query_engine

Output: comm_costt, total_cost, total_engine_value

1. last_engine=myminpos;

2. total_cost=[];

3. total_query_count=2; % disp(execution_pattern);

4. for i=1:lvcount2 % return level-2 queries count

5. current=level(2,i);

6. parent=entry_query;

7. for j=1:query_engines

8. comp_current=query_comp_cost(current,j);

9. if j~=last_engine

10. comm_costt=0;

Chapter 4. Introduce a Novel Data Allocation Scheme ………..

76

11. sd=find(query_comm_cost(:,1)==entry_query); % return no. of queries related

to 1

12. for k=1:numel(sd)

13. kp=query_comm_cost(sd(k),2);

14. if kp==current

15. comm_costt=query_comm_cost(k,3);

16. end

17. end

18. total_cost(j)=comm_costt+comp_current+total_engine_value(1,j);

19. else

20. total_cost(j)=comp_current+total_engine_value(1,j);

21. end

22. end

Level-III:

Input: lvcounter, query_data, execution_pattern

Output: parentcurrent, parentfinishtime, totalcost

1 for i=1:lvcounter % Tally execution pattern of level 3

2 current=lv3jobs(i);

3 parentcurrent=[];

4 parentfinishtime=[];

5 counter=0;

6 [dp,pos]=find(query_data(:,2)==current);

7 for j=1:numel(dp)

8 parentcurrent(j)=query_data(dp(j),1);

9 currentparent=parentcurrent(j);

10 m=find(execution_pattern(:,1)==currentparent);

11 currentparentfinishtime=execution_pattern(m,3);

12 parentfinishtime(j)=currentparentfinishtime;

13 parentprocessor(j)=execution_pattern(m,4);

14 end

15 [maxval,maxpos]=max(parentfinishtime);

16 minstarttime=maxval;

17 parentp=parentprocessor(maxpos);

Chapter 4. Introduce a Novel Data Allocation Scheme ………..

77

18 totalcost=[];

19 for j=1:3

20 [p,k]=find(execution_pattern(:,4)==j);

21 lasttime=execution_pattern(p(numel(p)),3);

22 if lasttime<minstarttime

23 lasttime=minstarttime;

24 end

25 totalcost(j)=lasttime;

26 end

Level -IV

Input: lvcounter, query_data, execution_pattern

Output: parentcurrent, parentfinishtime, totalcost

1. for i=1:lvcounter

2. current=lv4jobs(i);

3. parentcurrent=[];

4. parentfinishtime=[];

5. counter=0;

6. [dp,pos]=find(query_data(:,2)==current);

7. for j=1:numel(dp)

8. parentcurrent(j)=query_data(dp(j),1);

9. currentparent=parentcurrent(j);

10. m=find(execution_pattern(:,1)==currentparent);

11. currentparentfinishtime=execution_pattern(m,3);

12. parentfinishtime(j)=currentparentfinishtime;

13. parentprocessor(j)=execution_pattern(m,4);

14. end

15. [maxval,maxpos]=max(parentfinishtime);

16. minstarttime=maxval;

17. parentp=parentprocessor(maxpos);

18. totalcost=[];

19. for j=1:3

20. [p,k]=find(execution_pattern(:,4)==j);

21. lasttime=execution_pattern(p(numel(p)),3);

Chapter 4. Introduce a Novel Data Allocation Scheme ………..

78

22. if lasttime<minstarttime

23. lasttime=minstarttime;

24. end

25. totalcost(j)=lasttime;

26. end

The cost of the processing engine's execution for each task is calculated using a

formula (1). The formula is used to get the lowest execution cost (2). The

overall cost of the system is computed by calculating the lowest execution cost

of all tasks by the formula (3). Table 4.4 shows the practical implementation

calculation for each processing engine.

PEs Execution Cost =

communication cost + computation cost + network cost (1)

Least Execution Cost = min(execution cost of each PEs) (2)

Total System Execution Cost = sum of the least execution cost of all tasks (3)

Table 4.4 Estimation of Total System Cost

Query/

Tasks/Jobs

Computation Cost

of Tasks on PEs

Execution Cost of

Each PEs Least Execution

Cost

Total System

Cost
P1 P2 P3 P1 P2 P3

1 9 8 7 0 0 7 7

396

2 12 10 14 24 22 21 21

3 8 9 15 23 24 43 23

4 14 18 15 54 35 43 35

5 11 14 9 48 63 37 37

6 12 14 17 51 65 82 51

7 11 15 17 53 57 60 53

8 12 17 19 53 45 37 45

9 17 18 13 63 60 61 60

10 14 15 13 64 72 70 64

4.2.2.2 Execution Cost Patterns Task-Wise

As indicated in Table 4.5, the execution pattern for each processing engine

task is computed using the ECM and NCM results.

4.2.2.2.1 Pseudocode for the calculation of execution pattern task-wise

Input: execution_pattern, network_cost, currentp, total_query_count, ex_pt

Chapter 4. Introduce a Novel Data Allocation Scheme ………..

79

Output: ecost

1. ex_pt=[];

2. ex_pt{1,1}='Query No';

3. ex_pt{1,2}='Starting Consumption Unit';

4. ex_pt{1,3}='Ending Consumption Unit';

5. ex_pt{1,4}='DB Engine ID';

6. total_query_count=10;

7. for i=1:total_query_count

8. ex_pt{i+1,1}=execution_pattern(i,1);

9. ex_pt{i+1,2}=execution_pattern(i,2);

10. ex_pt{i+1,3}=execution_pattern(i,3);

11. ex_pt{i+1,4}=execution_pattern(i,4);

12. end

13. for i=1:total_query_count

14. currentdiff=execution_pattern(i,3)-execution_pattern(i,2);

15. currentp=execution_pattern(i,4);

16. ecost=energypattern(i,currentp);

17. ecost=ecost+networkcost(i,currentp);

18. execution_pattern(i,5)=ecost;

19. end

Table 4.5 Execution Cost Pattern for Each Processing Tasks

Tasks
Starting

Consumption Unit

Ending

Consumption

Unit

Processing

Engines ID

Execution Cost

Pattern (mJ)

1 0 7 3 6.5224

2 7 21 3 0.7154

3 0 23 1 0.4039

4 0 35 2 1.2806

5 28 37 3 0.7977

6 23 51 1 0.9210

7 51 53 1 0.9733

8 37 45 2 1.5620

9 51 60 2 1.5016

10 60 64 1 0.9993

Chapter 4. Introduce a Novel Data Allocation Scheme ………..

80

4.3 Proposed Artificial Bee Colony (ABC) Algorithm

The swarm intelligence algorithm is a step toward solving problems that

traditional numerical approaches can't solve. Honey bees are an example of a

rapid social collective behavior that can adapt, learn, and update itself. The

majority of the researchers were inspired to use it to improve their outcomes.

This algorithm is based on the behavior of bee colonies. Employed bees (those

responsible for food collection), observer bees (those responsible for food

monitoring), and scout bees (those are in rest) are the three categories of bees

found here. The ABC algorithm is used to optimize the total execution cost.

4.3.1 Artificial Bee Colony pseudocode

Input: Food Source

Output: [scout,beedegradation]=beefitness(employed_bee, energypattern,

networkcost, timemodel, currentprocessor, taskname)

1. scout=0;

2. beedegradation=0;

3. restprocessors=[];

4. rc=1;

5. for i=1:3

6. if i~=currentprocessor

7. restprocessors(rc)=i;

8. rc=rc+1;

9. end

10. end

11. for i=1:numel(restprocessors)

12.

onlooker_bee_value(i)=timemodel*(energypattern(taskname,restprocessors(i

)) , networkcost(taskname,restprocessors(i)));

13. end

14. selected_food_source=min(onlooker_bee_value);

15. onlooker_bee_selection=selected_food_source;

16. employed_bee=employed_bee*timemodel;

17. natural_change_onlooker=rand;

18. natural_change_employed=rand;

19. if onlooker_bee_selection*natural_change_onlooker > employed_bee *

natural_change_employed

20. scout=0;

21. beedegradation=0;

22. else

Chapter 4. Introduce a Novel Data Allocation Scheme ………..

81

23. scout=1;

24. beedegradation=((employed_bee*natural_change_employed) -

(onlooker_bee_selection * natural_change_onlooker)) / timemodel;

25. end

26. end

The fitness function above lines 19-25 aids in measuring the overall execution

cost in distributed systems to achieve low-cost data allocation. It compares and

ensures that the outputs, as well as the bee deterioration component, are

optimal once the processes are completed.

4.3.2 Re-Analyse of Optimal Result using Upgraded Threshold

Re-Analyse of optimal result is applied to an upgraded threshold value. This is

accomplished by subtracting the cost of bee degradation from the total system

cost.

Input: scout, beed, timemodal

Output: Optimal

1. if scout>0

2. optimal(i,5) =abs(optimal(i,5)-beed/timemodel);

3. end

The measurement results of fitness value along with the re-analyzing process

are carried out to achieve optimal results using the ABC algorithm. The

calculated result values are evaluated and results are discovered as shown in

Table 4.6.

Chapter 4. Introduce a Novel Data Allocation Scheme ………..

82

T
ab

le
 4

.6

 F

it
n

es
s

V
al

u
e

an
d

 R
e-

A
n

al
y

se
 P

ro
ce

ss
 f

o
r

O
p

ti
m

al
 R

es
u

lt

O

p
ti

m
al

R
es

u
lt

 A
ft

er

re
-a

n
al

y
ze

(m
J)

6
.3

4
8
7

9
.5

4
9
6

8
.9

6
0
7

4
4

.6
5
7

6

6
.9

8
6
3

2
5

.5
7
2

7

1
.9

4
6
7

1
2

.0
3
4

8

1
3

.1
6
4

2

3
.5

8
5
2

b
ee

d

1
.2

1
5
8

6
.5

2
7
4

7
.5

7
1
6

5
.6

8
8
1

1
.7

3
9
9

6
.0

2
6
4

0

3
.6

9
2
7

3
.1

4
9
3

1
.6

4
8
6

S
co

u
t

1

1

1

1

1

1

0

1

1

1

If

A
*

B
 >

C
*

D

F
al

se

F
al

se

F
al

se

F
al

se

F
al

se

F
al

se

T
ru

e

F
al

se

F
al

se

F
al

se

n
at

u
ra

l_

ch
an

g
e

_

em
p

lo
y

ed

(D
)

0
.2

5
5
1

0
.6

9
9
1

0
.9

5
9
3

0
.1

3
8
6

0
.2

5
7
5

0
.2

5
4
3

0
.2

4
3
5

0
.3

5
0
0

0
.2

5
1
1

0
.4

7
3
3

em
p

lo
y

ee

d
_

 b
ee

(C
)

4
5

.6
5
6

5

1
4

0
.2

2
1

2

2
1

3
.6

6
8

3

4
4

.8
2
0

1

6
4

.6
1
6

4

7
2

2
.0

6
2

6

3
.8

9
3
3

9
9

.9
7
1

1

1
2

1
.6

2
7

3

1
5

.9
8
9

4

n
at

u
ra

l_

ch
an

g
e_

o
n

lo
o
k

er

(B
)

0
.7

5
1
3

0
.5

0
6
0

0
.8

9
0
9

0
.5

4
7
2

0
.1

4
9
3

0
.8

4
0
7

0
.8

1
4
3

0
.9

2
9
3

0
.1

9
6
6

0
.6

1
6
0

o
n

lo
o
k

er
_

b
ee

_
 s

el
ec

ti
o

n

(A
)

4
.1

7
4
5

1
3

.1
2
6

7

3
4

.5
9
7

2

3
8

.3
8
1

2

6
.5

6
5
4

1
7

.6
8
6

2

1
.7

3
4
7

5
.8

6
0
9

1
1

.1
6
6

7

1
.5

8
0
0

0
n

lo
o
k

er
_

b
ee

_
v

al
u

e

1
0

.6
4
5

4

4
.1

7
4
5

1
3

.1
2
6

7

1
8

.9
3
0

1

3
9

.6
2
1

7

3
4

.5
9
7

2

3
3

.5
8
4

2

3
8

.3
8
1

2

6
.5

6
5
4

8
.8

8
4
4

1
7

.6
8
6

2

3
5

.1
7
0

9

1
.7

3
4
7

3
.4

0
5
8

6
.9

1
1
8

5
.8

6
0
9

1
7

.1
6
9

6

1
1

.1
6
6

7

6
.8

5
6
7

1
.5

8
0
0

R
es

t

P
ro

ce
ss

o
r

1

2

1

2

2

3

1

3

1

2

2

3

2

3

1

3

1

3

2

3

C
u

rr
en

t

P
ro

ce
ss

o
r

3

3

1

2

3

1

1

2

2

1

T
as

k
s

1

2

3

4

5

6

7

8

9

1
0

Chapter 4. Introduce a Novel Data Allocation Scheme ………..

83

4.4 Simulation Results and Discussion

The ABC technique is written in MATLAB and runs on a 3.00 GHz Intel

Core i3 processor with 4 GB of RAM. The quantity of energy consumed is

measured in megaJoules (mJ). Table 4.7 highlighted algorithms used in the

allocation in distributed systems and found that network cost is not used to

compute the system total cost. Table 4.8 compares the planned work to other

methods. Previously suggested methodologies failed to account for network

costs in their computations, resulting in anomalies that increased overall

system costs. In the proposed work, all parameters, including communication

cost, computation cost, network cost, and bee degradation are used to produce

the best least cost.

Table 4.7 Comparative Analysis of Techniques with their Cost Usability

References Algorithms
Communication

Cost

Computation

Cost

Network

Cost

[113]
List based HEFT (Heterogeneous

Earliest Finish Time)
🗸 🗸 ✖

[119] Communication Link Sum (CLS) 🗸 🗸 ✖

[64] Enhanced PSO 🗸 🗸 ✖

[117]
Communication and Computation

Aware task scheduler framework
🗸 🗸 ✖

[130]]

Simplified biogeography-based

optimization (SBBO) & Genetic

algorithm
🗸 🗸 ✖

[131] Computational Algorithm 🗸 🗸 ✖

[132]
Fuzzy C-means Clustering

Technique
🗸 🗸 ✖

Proposed

Work
Artificial Bee Colony (ABC) 🗸 🗸 🗸

Chapter 4. Introduce a Novel Data Allocation Scheme ………..

84

T
ab

le
 4

.8

 C

o
m

p
ar

at
iv

e
S

tu
d

ie
s

o
f

P
ro

p
o

se
d

 a
n

d
 E

x
is

ti
n

g
 A

p
p

ro
ac

h
es

D
ra

w
b

a
ck

s

N
et

w
o

rk
 c

o
st

 i
s

n
o
t

u
se

d
 d

u
ri

n
g

th
e

co
m

p
u
ta

ti
o
n

 o
f

co
st

.

N
et

w
o

rk
 c

o
st

 i
s

n
o
t

u
se

d
 d

u
ri

n
g

th
e

co
m

p
u

ta
ti

o
n

 o
f

sy
st

em
 c

o
st

.

O
n

 t
h

e
o

th
er

 s
id

e,
 t

h
is

 a
p
p

ro
ac

h

fo
ll

o
w

s
a

st
at

ic

ta
sk

al

lo
ca

ti
o

n

p
o

li
cy

.

n
et

w
o

rk

co
st

p

ar
am

et
er

is

av
o

id
ed

h

er
e

in

th
e

d
at

a

al
lo

ca
ti

o
n
 p

er
sp

ec
ti

v
e

d
o

es

n
o

t
co

n
si

d
er

th

e
fa

u
lt

to
le

ra
n

ce
 p

ar
t

to
 a

d
ju

st
 t

h
e

lo
ad

.

A
ss

u
m

p
ti

o
n

A
ss

u
m

e
to

 r
ed

u
ce

 s
y

st
em

 c
o

st

A
ss

u
m

e
to

 r
ed

u
ce

 s
y

st
em

 c
o

st

A
ss

u
m

e
to

 i
m

p
ro

v
e

ef
fi

ci
en

cy

b
y

al

lo
ca

ti
n

g

d
at

a
w

it
h

al

l

re
so

u
rc

es
 a

t
a

lo
w

 c
o

st
.

A
ss

u
m

e
to

 r
ed

u
ce

 s
y

st
em

 c
o

st

b
y

le

ar
n
in

g
,

ad
ap

ti
v

e,

an
d

u
p

d
at

in
g

 b
eh

av
io

r
to

 a
ch

ie
v

e

p
er

fo
rm

an
ce

in

d

is
tr

ib
u

te
d

co
m

p
u

ti
n

g
.

P
u

rp
o
se

T
h

is

u
se

d

li
st

-b
as

ed

H
E

F
T

(H
et

er
o

g
en

eo
u

s
E

ar
li

es
t

F
in

is
h

ti

m
e)

al
g

o
ri

th
m

to

re

d
u

ce

co
st

b
y

m

in
im

iz
in

g

en
er

g
y

 c
o
n

su
m

p
ti

o
n

 r
at

e.

T
o

re

d
u

ce

th
e

in
te

r-
p

ro
ce

ss
o

r

co
m

m
u

n
ic

at
io

n
 t

o
 r

ed
u

ce
 t

h
e

sy
st

em
 c

o
st

fo
r

ta
sk

al

lo
ca

ti
o
n

in

d
is

tr
ib

u
te

d

co
m

p
u

ti
n

g
 s

y
st

em
s.

P
ro

p
o

se
d

a

L
o

ad

B
al

an
ci

n
g

M
u

ta
ti

o
n

P
ar

ti
cl

e
S

w
ar

m
 O

p
ti

m
iz

at
io

n
 (

L
B

M
P

S
O

)

to
 a

ll
o

ca
te

 t
h

e
b

es
t

re
so

u
rc

es
 t

o
 t

as
k

s
fo

r

m
ai

n
ta

in
in

g

ex

ec
u

ti
o
n

ti

m
e,

tr

an
sm

is
si

o
n

co
st

,
m

ak
es

p
an

,
et

c.

W
o

rk
 t

o
 r

ed
u

ce
 o

v
er

al
l

sy
st

em
 c

o
st

 u
si

n
g

ar
ti

fi
ci

al
 b

ee
 c

o
lo

n
y

 a
p

p
ro

ac
h

 f
o

r
D

A
G

R
ef

er
en

ce
s

[1
1
3

]

[1
1
9

]

[6
4

]

--

E
x
is

ti
n

g

A
p

p
ro

a
ch

es

A
rt

if
ic

ia
l

In
te

ll
ig

en
ce

C
o

m
m

u
n

ic
at

io
n

 L
in

k

S
u

m
 (

C
L

S
)

E
n

h
an

ce
d
 P

S
O

P
ro

p
o

se
d

 A
p
p

ro
ac

h

Chapter 4. Introduce a Novel Data Allocation Scheme ………..

85

All activities are carried out in parallel on processing engines, improving

performance and boosting distributed job allocation. Low-cost processing units

can complete jobs in huge numbers and in a short amount of time. The overall

incurred cost on task execution is used to calculate system cost, as shown in

Table 4.9. As stated in Table 4.10, the proposed work is compared to other

current strategies, and it is determined that the ABC algorithm assists in

obtaining optimal system cost to develop a robust distributed environment.

Table 4.9 Optimal Task Allocation

Optimal Allocation

Total Execution Cost System Cost
Tasks Processing Engines

t3, t6, t7, t10 PE1 191

396 t4, t8, t9 PE2 140

t1, t2, t5 PE3 65

Table 4.10 Evaluation of System Cost with Existing Methods

Proposed Algorithm

System

Cost

A.Y., Hamed

Algorithm [120]
System

Cost

P.K., Yadav

Algorithm [119]
System

Cost

Tasks
Processing

Engines
Tasks

Processing

Engines
Tasks

Processing

Engines

t3, t6, t7, t10 PE1

396

t4, t7 PE1

459

t5,t7 PE1

528 t4, t8, t9 PE2
t2, t3, t8,

t9
PE2

t2, t3, t8,

t9
PE2

t1, t2, t5 PE3 t1, t5, t6 PE3 t1, t4, t6 PE3

Table 4.11 compares the findings of total energy usage during task execution

before and after. It demonstrates that the proposed ABC algorithm reduces total

cost. Figure 4.3 depicts the simulation results before and after optimization

graphically, as stated below.

Chapter 4. Introduce a Novel Data Allocation Scheme ………..

86

Table 4.11. Before and After Total Cost Results in mJ

Query/Tasks
Total Cost Before

Optimization in mJ

Total Cost After

Optimization in mJ

1 6.5224 6.3487

2 10.0158 9.5496

3 9.2899 8.9607

4 44.8201 44.6576

5 7.1796 6.9863

6 25.7880 25.5727

7 1.9467 1.9467

8 12.4964 12.0348

9 13.5141 13.1642

10 3.9973 3.5852

Average Cost of Tasks 13.56 13.28

Figure 4.3 Results Before and After Optimization of Cost Using ABC

Chapter 4. Introduce a Novel Data Allocation Scheme ………..

87

Table 4.12 compares the findings to a list-based work scheduling technique

using artificial intelligence [113] and a task allocation model for system cost

analysis using communication link sum (CLS) [119]. Except for network cost,

these strategies take into account all indicators. As illustrated in Figure 4.4, the

suggested approach saves 13.28 in overall expenses when compared to

previous techniques. This approach makes it simple to allocate big data chunks

and execute them quickly and cheaply. There are no long waits, delays, or

completion periods with this strategy, which lowers the distributed system's

performance.

Table 4.12 Comparison of Methods Based on Reduced Total Cost

Research Technique Used Reduced Total Cost (%age)

Proposed Work using Artificial Bee Colony (ABC) 13.28

Existing Work using AI [113] 60.6

Existing Work using Communication Link Sum (CLS)

[119]
24

Figure 4.4 Reduced Total Cost in % age

Chapter 4. Introduce a Novel Data Allocation Scheme ………..

88

4.5 Conclusion

In this paper, we describe a swarm intelligence-based artificial bee colony

(ABC) method for lowering system execution costs and improving data

distribution in distributed systems. By removing equivalent cost units from the

entire cost, it is also easy to trace the degrading loss of bees. The ABC method

was found to significantly reduce total execution costs and enhance system

efficiency when compared to earlier approaches. According to prior studies,

network costs are not used to assess system costs. As a result, test findings

based on previous results are incorrect. This cost allocation model accounts for

all costs spent in a distributed system's data processing.

Chapter 5

Improve the Existing Data Deduplication Scheme with Machine

Learning Architecture

Data as a resource has its own value in a distributed architecture, however, it

appears that continuous integration of vast volumes of data across several sites

without cross-verification to retain a single instance data pattern is

unachievable. As a result, systems have run across roadblocks that have a

direct impact on distributed workforce efficiency and performance. Users

require high-quality data or information to continue operating as enhanced data

services and to identify future trends. Duplicate data entries in storage

repositories, on the other hand, are seen as a severe fault or stumbling block in

data analysis and query activities. As a result, organizations have spent a lot of

time and money detecting duplicate data throughout the duplicate entry

detection process.

5.1. Introduction

This research work on a cutting-edge machine learning framework for

detecting duplicate data in existing and new data entries. This technique

imports textual data inputs or queries into memory to pre-process them, then

converts them to a vector space model. A clustering K-means technique is used

to group data into groups of equivalent capacity. Similarity computations were

done cluster-by-cluster rather than on a large dataset to save time and money

during the discovery phase.

The distributed environment satisfies company needs by allowing individuals

to store, transfer, and secure their data on a regular basis, lowering operational

expenses. Researchers have worked on [67-69] in the domain of distributed

data. As a result of businesses' efforts to boost storage capacity at dispersed

sites, data quality issues have been observed. Workers are accountable for

developing data-related difficulties when a growing focus on data consumption

Chapter-5: Improve the Existing Data Deduplication Scheme ……….

90

includes digital social media content, transactional data, archived data, and

frequent data backups, all of which have developed as data problems. It

reduces the efficiency of dispersed systems by increasing data storage capacity

(due to redundancy). It lowers data quality by slowing query responses,

increasing computation expenses, wasting excess bandwidth during data

transmission, and slowing query responses. Such bottlenecks diminish

distributed workforce efficiency and put data analysts and data engines at risk

of not being able to extract data from dispersed massive data volumes in order

to complete their responsibilities. It is crucial to identify duplicate data before

disseminating data to dispersed sites. The deduplication process is pictorially

shown in Figure 5.1.

Figure 5.1 Data Deduplication Process

For distributed data structures, the researchers have presented a number of data

deduplication strategies. Several strategies, such as attribute-based

deduplication, attribute, and role-based deduplication, ANN, clustering

algorithms, hash indexing, MapReduce and HDFS, bucket-based

deduplication, Fingerprint clustering, Sampling method, Token generation

techniques, and block-level deduplication, have been proposed to address

existing challenges. Data uniqueness aids in the creation of error-free,

consistent, and unambiguous data. Data redundancy is created by overlapping

data from several sources, which provides an erroneous scenario for those who

value performance attributes like data reliability, precision, and consistency. As

a result, before being allowed to write to current data storage, frequent data

Chapter-5: Improve the Existing Data Deduplication Scheme ……….

91

requests must be reviewed first. It only accepts non-conflict data that would be

considered duplicates otherwise.

Businesses spend a large amount of money securing their data by performing

periodic data backups and storing it on offsite servers, according to the

findings. It causes data challenges such as increased data duplication ratios,

delays in finding and retrieving data, muddled data issues, and other hidden

costs. The process of recognizing duplicate data in storage units is known as

data deduplication. When uploading and transferring data across a distributed

network, the proposed approach detects duplicate data copies to save time and

money.

This study proposes an advanced machine-learning framework for the

deduplication process. The experiment uses the "user's sentimental analysis

data" and "tweets" datasets, each comprising 1048576 data instances. With

2000x20 and 2001x30 records/instances, respectively, columns 6 and 4 are

used as rawdata or inputs in the deduplication process, which are then used for

text pre-processing or refinement by deleting stop words to get filteredwords.

Each word in the filterdata is converted to a vector space model and given a

value based on the sum of each character's ASCII values. Data clustering is a

method of grouping data into groups in order to reduce computation costs and

find duplicate data more effectively.

5.2 Proposed Methodology

MATLAB 2016a is used to accomplish the recommended methodology.

Figure 5.2 shows a design for detecting/identifying duplicate data.

Chapter-5: Improve the Existing Data Deduplication Scheme ……….

92

Figure 5.2 Work Flow of Proposed Methodology

5.2.1 Pre-Processing of Data

It refers to the practice of removing common terms from a dataset in a textual

context utilizing stop-word lists that include articles, prepositions, and nouns,

among other things. By removing stop words from the available dataset text

records, the dimension of the dataset text records must be reduced. This is due

to the fact that it contains no useful information. The stop list in [103] can be

used to find these stop words. The sixth column from the dataset in [102] and

the fourth column from the dataset in [104] are used as data inputs (rawdata) to

the code lines below to apply to pre-process:

Chapter-5: Improve the Existing Data Deduplication Scheme ……….

93

1. Datacol = 6;

2. for i=1:r

3. rawdata{i,1}=data{i,datacol};

4. end

At each cycle, data-input requests (rawdata) are selected row-by-row from the

storage and set as currentdata, which is then parsed by the getwords() method.

Individual words from currentdata are obtained using the getwords() method

and stored in the array list of allwords. These words are compared to stop

word lists to generate a filteredwords list. After the pre-processing procedure,

filteredwords containing suppressed words are retrieved.

5.2.1.1. Pseudocode for Pre-Processing Task

Input: rawdata

Output: filteredwords

1. Load rawdata as input % Select text column row-wise

2. [r,c]= size(rawdata);

3. for i=1:r

4. currentdata=rawdata{i,1};

5. words=getwords(currentdata);

6. allwords{i}=words;

7. filteredwords=filterdata(words,stopwords);

8. End

5.2.2 Word-To-Vector (W2V) Conversion

Comparing how similar or similar two objects are is a typical way to gauge

similarity. Using vectors as a method of calculating similarity is one option. A

vector is a number that has both a magnitude and a direction. It takes a big text

corpus (tweets with stop words removed) as input and assigns a vector to each

word. Depending on the size of the characteristics or filteredwords, such

vectors are expressed in rows and columns, which are then utilized to cluster

the data. Each characteristic or filteredwords is replaced by a value, which is

the total of each character's ASCII value.

Chapter-5: Improve the Existing Data Deduplication Scheme ……….

94

5.2.2.1. Pseudocode for W2V Translation

Input: filteredwords

Output: w2v

1. for wd=1:numel(filteredwords)

2. w2v(i,wd)=sum(double(filteredwords{wd}));

3. End

5.2.3 Clustering of Data

Textual data samples are turned into vector data models for deduplication,

which is then used to create clusters. The data instances in these datasets are

used to train machine learning models. As indicated in Table 5.1, datasets are

divided into three clusters, each with its unique collection of data instances.

Table 5.1 Cluster-Wise Distribution of Datasets

Dataset
Dataset

Size Used

Clusters

Indexes

Data-

Instances

Rows Cols.

Sentiment Analysis with Tweets [102] 2000x20

1 724 20

2 701 20

3 575 20

Tweets-about-the-top-companies-from-

2015-to-2020 [104]
2001x30

1 35 30

2 1935 30

3 31 30

Clustering is a machine learning technique that aids in the discovery of groups

in unlabelled data. It aids in the examination and categorization of fresh data

patterns into their related groupings. During the deduplication process, it

preserves intra-cluster similarity and assists in identifying duplicate data

contents at the cluster level. Rather than applying to the huge dataset values,

group-data analysis improves similarity measure outcomes. The computing

cost of data analysis interpretation is also reduced when done in groups.

Chapter-5: Improve the Existing Data Deduplication Scheme ……….

95

To begin the process of creating data clusters, the dataset is divided into

indexes and centroids. Based on a vector data model, K-means uses the closest

neighbouring technique to allocate data to cluster categories and estimate

centroid positions for each cluster. During the cluster identification procedure,

these centroid coordinates aid in the categorization of vector data. As a result,

rather than comparing dataset values, the deduplication procedure is applied

directly at the cluster level.

5.2.4 Training and Testing Indexes Generation

The dataset for evaluating machine learning models is divided into training and

testing data. For training and testing data, a ratio of 80 percent to 20 percent is

employed. In order to create the training index (index) and testing index (ti), a

randomly generated integer is chosen in each iteration until the training and

testing counts are not equal. These indexes are saved in the training indexes

and test index lists, which are then utilized to extract data rows. These indexes

are also used to calculate similarity based on the vector values of data rows.

Equations I and (ii) are used to estimate training count and testing count,

respectively:

training_count = round(training_rate/100*rrc) (i)

test_count = rrc-numel(training_indexes) (ii)

5.2.4.1. Pseudocode for Generating Training and Testing Indexes

Input: training_count, rrc, test_count

Output: training_indexes, test_index

1. for kki=1: training_count

2. tindex=round(rrc*rand);

3. if tindex==0

4. tindex=1;

5. end

6. training_indexes(kki)=tindex; % generate training index

7. end

8. for kkm=1:test_count

9. ti=round(rrc*rand);

Chapter-5: Improve the Existing Data Deduplication Scheme ……….

96

10. if ti==0

11. ti=1;

12. end

13. test_index(kkm)=ti; %generating testing indexes

14. end

5.2.5 Similarity Calculation Cluster-Wise

A similarity computation is done independently on each cluster to detect

duplicate data records. Calculating the similarity index for each data point in

the cluster takes a lengthy time. To save time, we construct cluster indexes

rather than individual indexes. Cluster indexes are built using a random

evaluation approach to save processing time. Ten randomly applied indices are

chosen independently to describe each clustered index. These validations are a

set of data row values picked at random and used to determine cosine similarity

to the test data. The previous result of the similarity value is maintained and

added to the most current result during the computation.

This technique is repeated based on the characterization set-value (which

represents row attributes) and the validation set-value (which represents row

attributes) (which represents random data values). The cluster-wise similarity is

used to identify duplicate data received as testing data or new data entries to be

stored as a whole in data storage. As a result, all data contents that fall within

the range of the cluster similarity index could be regarded duplicate material.

The results of cluster-wise similarity values are provided in Table 5.2.

5.2.5.1. Pseudocode For Similarity Calculation Cluster-Wise

Input: rowvalue, test_index

Output: simvalue=calculatecossim(v1,v2)

1. dfa=[];

2. for i=1:3

3. dtcluster=[];

4. dtcluster=w2v1(ind1==i, :);

5. smvalue=0;

6. [rcl,cls]=size(dtcluster);

Chapter-5: Improve the Existing Data Deduplication Scheme ……….

97

7. total_no_of_validations=10;

8. total_characterization=10;

9. counter=0;

10. for dd=1:total_characterization

11. for kd=1:total_no_of_validations

12. rowvalue=round(rcl*rand);

13. if rowvalue==0

14. rowvalue=1;

15. end

16. counter=counter+1;

17. dtver(counter,:)=dtcluster(rowvalue,:);

18. end

19. end

20. datatovalidate=w2v1(test_index,:);

21. try

22. smvalue=smvalue+calculatecossim(dtver(1:numel(test_index),:),datatovalidat

e);

23. catch

24. smvalue = smvalue + calculatecossim(datatovalidate, dtver);

25. end

26. dfa(i)=smvalue/numel(test_index); % clusters wise similarity index

27. end

Table 5.2 Cluster-Wise Similarity Calculations

Datasets

References

Cluster

Indexes

Similarity Value

(Cluster-wise)

[102]

1 0.0012

2 0.0009

3 0.0014

[104]

1 0.2222

2 0.2077

3 0.2579

Chapter-5: Improve the Existing Data Deduplication Scheme ……….

98

5.2.5.2. Pseudocode to Calculate Cosine-Similarity

Input: test_index, row_value

Output: simvalue = simvalue + calculatecossim(v1,v2)

1. nume=0; %numerator

2. deno=0; %denominator

3. for i=1:numel(v1)

4. try

5. nume=nume+v1(i)*v2(i);

6. catch

7. end

8. end

9. deno1=0;

10. deno2=0;

11. for j=1:numel(v1)

12. try

13. deno1=deno1+v1(j)^2;

14. deno2=deno2+v2(j)^2;

15. catch

16. end

17. end

18. deno=sqrt(deno1)*sqrt(deno2);

19. simvalue=nume/deno;

20. end

5.2.6 Applying of Ground Truth Test (gt)

The gt test command is used to detect duplicate data on the testing data. To do

so, 1x400 and 1x1600 data-size test and training indexes are employed.

Records are detected as duplicate if vectors on training indexes are matched

and determined to be identical to vectors on test indexes, otherwise, they are

not. The gt test elements list is updated to 1 (if a match is discovered) or 0 (if

no match is found) during the comparison (for matching not found). This

operation is repeated until all elements on the training data are not compared to

the test data as a whole, and the gt test element list is populated.

Chapter-5: Improve the Existing Data Deduplication Scheme ……….

99

5.2.6.1. Pseudocode To Apply Ground Truth Test

Input: training_indexes, test_index

Output: gt_test

1. w2v_test=[];

2. w2v_test=w2v1(test_index,:);

3. [rtest,ctest]=size(w2v_test)

4. gt_test=[];

5. gt_test=zeros(1,numel(test_index));

6. for kdi=1:numel(gt_test)

7. ssd=[];

8. ssd=find(training_indexes==test_index(kdi));

9. if ~isempty(ssd)

10. gt_test(kdi)=1;

11. end

12. end

5.2.7 Similarity Calculation on Testing Data

The test data and test value are subjected to a similarity test in this step. Test

values are 400x20 vector values of testing data that are based on randomly

generated test indices. In this section, the set value for test indexes is shown at

line 5 in pseudocode. To reduce computing expense, each test value of testing

data is compared with randomly produced test data to compute a cosine

similarity test. The similarity test is calculated by multiplying test indexes by

the sum of previously computed simtest values.

5.2.7.1. Pseudocode For Testing Data Similarity Calculation

Input: test_data, test_value

Output: sim_test

1. simtest=0;

2. [rtest,ctest]=size(w2v_test)

3. for ii=1:rtest

4. test_value=w2v_test(ii,:);

Chapter-5: Improve the Existing Data Deduplication Scheme ……….

100

5. test_indexes=5; % generations of test index

6. for kk=1:test_indexes

7. test_index=round(rtest*rand);

8. if test_index==0

9. test_index=1;

10. end

11. test_data=w2v(test_index,:);

12. simtest=simtest+calculatecossim(test_data,test_value);

13. end

14. simtest=simtest/test_indexes;

5.2.8 Detecting Duplication by Comparing Similarity-Test Results with

Clusters-Similarity

Threshold limitations are determined by adding and subtracting 10% from

cluster similarity values after the similarity test has been computed. Setting up

threshold as described in Pseudocode lines 4-5 defines the threshold range

limit. The decision boundary (threshold limit) is compared to the similarity test

(simtest) to validate if the data is duplicated (1) or not. Each testing data test

value (400x1) is compared to threshold limits comparable to cluster similarity

index numbers. If the results of a similarity test are close to or within threshold

limits, the input is classified as duplicate data, and the result set list is updated

with duplication (1) for each comparison performed. Because duplicate data

inputs may be limited or monitored, data is sometimes not allowed to be stored

in current storage.

5.2.8.1. Pseudocode for comparison of Similarity test and Cluster

Similarity

Input: dfa, simtest, duplicate

Output: result_test

1. result_test=[];

2. duplicate=0;

3. for kd=1:numel(dfa)

4. th1=dfa(kd)+dfa(kd)*.10;

5. th2=dfa(kd)-dfa(kd)*.10;

Chapter-5: Improve the Existing Data Deduplication Scheme ……….

101

6. if simtest<th1 && simtest>th2

7. duplicate=1;

8. else

9. end

10. end

11. result_test(ii)=duplicate;

12. end

5.3 Performance Parameters Estimation

The sensitivity, specificity, fmeasure, and accuracy metrics are used to test the

performance of the machine learning model. When the results of the resulting

test and the ground truth test (gt test) are almost the same, the accuracy

percentage rate rises. For each result test and gt test element, frequencies of 1

and 0 are computed independently. According to coding lines 24 and 25, the

percentages of sensitivity (for frequency 1) and specificity (for frequency 0)

are calculated.

5.3.1. Pseudocode to Compute Performance Parameters

Input: result_test, gt_test

Output: function [sensitivity, Specificity, fmeasure] = parameters (output, actual)

1. ar=actual;

2. actual=[];

3. actual=ar;

4. fone=0; % one in test result

5. ft=0; % one in test gt

6. for i=1:numel(actual)

7. if actual(i)==1

8. ft=ft+1;

9. if output(i)==1

10. fone=fone+1;

11. end

12. end

13. end

14. fzero=0; % zero in test result

Chapter-5: Improve the Existing Data Deduplication Scheme ……….

102

15. fz=0; % zero in test gt

16. for i=1:numel(actual)

17. if actual(i)==0

18. fz=fz+1;

19. if output(i)==0

20. fzero=fzero+1;

21. end

22. end

23. end

24. sensitivity=(fone/ft)*100;

25. Specificity=(fzero/fz)*100;

26. acflag=zeros(1,numel(output));

27. for kk=1:numel(output)

28. if output(kk)==actual(kk)

29. acflag(kk)=1;

30. end

31. end

32. match=0;

33. for k=1:numel(output)

34. if output(k)==actual(k)

35. match=match+1;

36. end

37. end

38. tempv=sensitivity;

39. sensitivity=Specificity;

40. Specificity=tempv;

41. accuracy=((((numel(find(acflag==1))/numel(acflag)))+((numel(find(acflag=

=0))/numel(acflag))))/2)*100;

42. accuracy=(match/numel(output))*100;

43. fmeasure=2*sensitivity*Specificity/(sensitivity+Specificity);

44. fmeasure=fmeasure/100;

45. end

As indicated in Table 5.3 and evaluated at code lines 24-44 in the above-

concerned pseudocode, four elements are examined for the assessment of the

proposed deduplication approach: sensitivity, specificity, accuracy, and

Chapter-5: Improve the Existing Data Deduplication Scheme ……….

103

fmeasure. The sensitivity and specificity values are calculated using data from

fone and fzero. The predictions of duplicate records as duplicate and fzero,

which mistakenly suggest a duplicate record, distinguish fone. The fraction of

correct test data predictions is defined as accuracy. The total number of

forecasts can easily be used to calculate the number of correct predictions.

Fmeasure displays the precision of a model on a given dataset.

5.4 Results and Analysis

The performance of the suggested deduplication approach is evaluated using a

variety of parameters. The approaches are implemented in MATLAB 2016a

with an Intel Core 2 Processor, 2.1MHz clock speed, and 4GB of RAM.

5.4.1 Evaluation of Performance

Based on the datasets in [95],[97], this section gives a performance analysis of

the proposed deduplication method. The performance of the proposed machine

learning architecture is examined on both datasets, and it is discovered that it is

effective in achieving the accuracy performance criterion. The evaluation

parameters used for both datasets are specificity, sensitivity, accuracy, and

fmeasure, as shown in Figure 5. 3. Table 5.3 shows the results of parameter

measurements used to estimate performance specifications. The proposed

sophisticated machine learning architecture achieves an average accuracy of

99.7%.

Table 5.3 Performance Parameters

Dataset Used Sensitivity Specificity Fmeasure Accuracy

Sentiment Analysis

with Tweets [102]
1 0.004545 0.00904 100

Tweets about the top

companies from 2015-

to-2020 [104]

0.99408 0 0 99.4083

Average Accuracy 99.7

Chapter-5: Improve the Existing Data Deduplication Scheme ……….

104

Figure 5.3 Graphical Representation of clusters and centroids with performance parameters

5.5 Comparative Study

The dependency on storage services like Dropbox [121], OneDrive, Google

Drive [122], Mozy [123], and Spideroak [124] are used to maintain

voluminous data. Researchers used a variety of strategies to ensure a high

deduplication ratio to reduce storage and associated cost using the

deduplication process. The deduplication techniques continuously work for

achieving performance in a distributed environment and work for different

parameters. Some of them are depicted below in Table 5.4 as applied by

different algorithms.

Chapter-5: Improve the Existing Data Deduplication Scheme ……….

105

Table 5.4 Comparative Analysis of performance parameters in data deduplication

Deduplication

Algorithms

Performance Parameters

Storage Communication Computation Reliability Privacy Security

[27-30] 🗸 ⨯ ⨯ ⨯ ⨯ ⨯

[133] 🗸 🗸 🗸 🗸 🗸 🗸

[134] 🗸 ⨯ ⨯ 🗸 ⨯ ⨯

[135] 🗸 ⨯ ⨯ 🗸 ⨯ 🗸

Proposed

work
🗸 🗸 🗸 🗸 ⨯ ⨯

 In this proposed scheme, an advanced machine learning architecture is

applied, and a comparison with existing Support Vector Machine, Neural

Network, and Fuzzy techniques is undertaken, and it is discovered that our

scheme has a high accuracy rate of 100% (approx..). To depict metrics

findings, the performance study of the deduplication process is done out on the

accuracy parameter, as shown in Table 5.5 and bar-graph in Figure 5.4. The

comparison is made between the planned work and the existing methodology

in terms of accuracy.

Table 5.5 Results of Proposed and Existing Work

Proposed and Existing Data Deduplication Schemes Accuracy %age

Advance Machine Learning Architecture (Proposed Model) 99.7

FEM (Fuzzy Expectation Maximization) Clustering [125] 97.98

Enhanced Fuzzy Ontology Based Record Deduplication [126] 91.5

Support Vector Model [127] 88

Artificial Neural Network Model [128] 79.8

Chapter-5: Improve the Existing Data Deduplication Scheme ……….

106

Figure 5.4 Comparison of Proposed and Existing Techniques

5.6 Conclusion

This research proposes a sophisticated machine learning architecture for

detecting duplicate data on distributed storage as well as monitoring fresh data

inputs. It emphasizes the importance of using an effective deduplication

technique to detect duplicate data entries. We suggested an advanced approach

based on a machine learning model that can be used to detect duplicate data

entries and improve labor efficiency and system performance. It uses an

unsupervised learning approach to detect duplicate data in a textual

environment using a relative approach. In comparison to existing SVM, NN,

and Fuzzy model accuracy results, the proposed methodology has obtained

100% accuracy. On the basis of the used datasets, evaluations of performance

characteristics like sensitivity, specificity, fmeasure, and accuracy are also

generated. Performance is assessed in this case using two distinct datasets. It is

discovered that experiments using the proposed methods produce better

outcomes than those using the existing models.

Chapter 6

Conclusion, Contributions and Applications, and Future Work

The data storage maintains data from varied sources including database users,

web applications, web blogs, forums containing users’ feedback, and

messaging apps including WhatsApp, Facebook, Twitter, and Instagram. Data

size is scaled up and affects the storage capacity. It was found that researchers

contributed very little to handle the data storage part. This research effort is an

initiative towards handling textual data, that enables users to retrieve

information easily and control storage by appropriate data distribution

techniques at geographical sites. This can be achieved by distributing the data

at the repository or storage level into manageable pieces called fragments.

Another aspect of a distributed system is to reduce total costs during data

access operations. This can be fulfilled by applying all cost parameters during

the calculation of the total cost during data allocation measures. Besides, it

raised high chances of the occurrence of repeated data problems arising due to

the availability of multiple data instances at sites. This can be resolved by

identifying multiple data entries at distributed data stores and controlling

during the arrival of a new entry at the beginning.

The conclusion and future perspectives of the projected study are described in

detail further in this study. The conclusion is presented in section 6.1,

contributions and application in section 6.2, and the planned work for the

future is presented in section 6.3.

6.1 Conclusion

This research work explores a novel scheme for data fragmentation, allocation,

and deduplication to cope with various distributed systems data hurdles and

performance issues. This work introduces three major aspects of a distributed

systems design concerning textual data or information: a) Fragmentation of

data for controlling data storage. b) Cost-based data allocation for distributed

performance. c) Deduplication of data for handling redundant data instances.

Chapter 6. Conclusion, Contributions …………………

108

Some research gaps were found in earlier techniques or methodologies adopted

by researchers and motivated us to eliminate them to make distributed system

design robust.

In this work, a novel relative data fragmentation architecture is proposed for

partitioning a large dataset into smaller fragments. This experiment makes use

of Twitter data, which has been converted into vectors for fragmentation

purposes. Cosine, soft cosine, and hybrid similarity are calculated, as well as

centroid placements. The K-Mean approach is used to estimate the distance

between data points and each centroid to locate clusters. Finally, ANN is used

to assess the validity and performance of the model. The purpose of this

research is to introduce a novel data fragmentation architecture based on

similarity into an unsupervised learning environment. The comparison revealed

remarkable accuracy and recall when compared to other proposed alternatives.

It aids in the accurate and precise categorization of fragmented data, as well as

indicating maximum coverage and accuracy while reducing total processing

time. Due to a lack of balance in the quality and efficiency of clustering in

categorical data sets, earlier strategies that relied on cosine-based k-means,

cosine, and soft cosine hybridization for clustering were ineffective. Existing

techniques' principles are good in certain cases, but not in others. As a result,

algorithm hybridization is the best option. To provide enhanced efficiency and

the ability to cope with big data sets, cosine and soft cosine similarity notions

are employed to calculate hybrid similarity in this study effort.

Secondly, we use a swarm intelligence-based artificial bee colony (ABC)

approach to reduce system execution costs and enhance data allocation in

distributed systems. It's also simple to measure bee degradation losses when

comparable cost units are removed from the total cost. When compared to

previous methodologies, the ABC algorithm was proven to considerably lower

total execution costs and increase system efficiency. According to previous

studies, network prices are not taken into account when calculating system

costs. As a result, earlier test results are untrustworthy. This cost allocation

Chapter 6. Conclusion, Contributions …………………

109

model accounts for all expenses incurred during data processing in a

distributed system.

This research proposes a sophisticated machine learning architecture for

detecting duplicate data on distributed storage as well as monitoring fresh data

inputs. It emphasizes the importance of using an effective deduplication

technique to detect duplicate data entries. We suggested an advanced approach

based on a machine learning model that can be used to detect duplicate data

entries and improve worker efficiency and system throughput. It uses an

unsupervised learning approach to detect duplicate data in a textual

environment using a relative approach. In comparison to existing SVM, NN,

and Fuzzy model accuracy results, the proposed methodology has obtained

100% accuracy.

All above schemes are implemented using MATLAB and performances are

compared with existing techniques and observed that proposed techniques are

optimal and achieve performance.

6.2 Contribution and Applications

The main objective of this research work is to introduce data fragmentation,

allocation, and deduplication techniques for building a robust distributed

system. To achieve this a comprehensive literature study is carried out that

covers various fragmentation, allocation and deduplication strategies involved

in the distribution design.

In today's world, everyone strives for a high level of consistency and quality in

their data. On the one hand, the company is reliant on a centralized data

management system for its desired data. This allows users to access it from

within the organization's network rather than having to seek help from across

the globe. On the other hand, to keep up with global business, companies must

manage their data in a global context so that it can be accessed by anyone,

anywhere, at any time.

Chapter 6. Conclusion, Contributions …………………

110

Businesses make every effort to protect and organize their data to fulfill their

transactions. These transactions may be used for data analysis, which can aid in

recognizing current business trends, resolving data anomalies detected during

data insertion, updating, and deletion, and computations on stored data. All of

the following objectives would be met if all the relevant ideas were merged to

improve existing design architecture and build new approaches.

This research work effectively handles growing data issues by controlling

storage and partitioning them into fragments. Once data is fragmented, is

allocated remotely based on the least total cost paradigm. Another hurdle as

duplicate data in distributed sites is tackled using machine learning that

sustains data quality and focuses on maintaining a single data instance at each

site.

Hence, the research carried out in this thesis will help in the fields of software

development, business data analytics, and other areas including database

performance, medical, and data investigations.

6.3 Future Work

In this research work, efforts are made to provide novel data fragmentation,

allocation, and deduplication strategies to build a reliable, high-performance

distributed operational environment. When dealing with textual data, future

work will focus on optimizing work results by introducing strategies to control

ever-increasing data storage, reduction of data distribution costs, and enrich

data quality by preserving a single data instance in a distributed architecture.

 References

[1] Andrews, Gregory R. Foundations of Multithreaded. Parallel and

Distributed Programming. Addison– Wesley. 2000. p. 8–9 291. ISBN

978-0-201-35752-3.

[2] Ghosh, Sukumar. Distributed Systems – An Algorithmic Approach.

Chapman & Hall/CRC. 2007. p. 3. ISBN 978-1-58488-564-1.

[3] Andrews, Gregory R. Foundations of Multithreaded. Parallel and

Distributed Programming. Addison– Wesley. 2000. p. 291. ISBN 978-0-

201-35752-3

[4] Ghosh, Sukumar. Distributed Systems – An Algorithmic Approach.

Chapman & Hall/CRC. 2007. p. 3. ISBN 978-1-58488-564-1

[5] Lynch, Nancy A. Distributed Algorithms. Morgan Kaufmann. 1996.

ISBN 978-1-55860-348-6.

[6] Ranichandra, C., Tripathy, B.K. Architecture for distributed query

processing using the RDF data in a cloud environment. Evol. Intel. 2019.

https://doi.org/10.1007/s12065-019-00315-5

[7] Weiss C, Karras P, Bernstein A. Hexastore: sextuple indexing for

semantic web data management. Proc VLDB Endow. 2008. 1(1).

p.1008–1019.

[8] Das S, Agrawal D, El Abbadi A. G-store: a scalable data store for

transactional multi key access in the cloud. In Proceedings of the 1st

ACM symposium on cloud computing. ACM. 2010. p.163–174.

[9] Lu X.. Symmetric Distributed Server Architecture for Network

Management System. In: Zhou X.. Xu M., Jahnichen S., Cao J. (eds)

Advanced Parallel Processing Technologies. APPT 2003. Lecture Notes

in Computer Science. 2003. vol. 2834. Springer. Berlin. Heidelberg.

https://doi.org/10.1007/978-3-540- 39425-9_50

https://doi.org/10.1007/s12065-019-00315-5
https://doi.org/10.1007/978-3-540-%2039425-9_50

References

112

[10] A. Valadares, C. V. Lopes. A Framework for Designing and Evaluating

Distributed Real-Time Applications. 2014 IEEE/ACM 18th International

Symposium on Distributed Simulation and Real-Time Applications.

Toulouse. 2014. p. 67-76. https://doi.org/10.1109/DS-RT.2014.17

[11] K. Saxena, A. R. Abhyankar, Distributed architecture for self-organizing

smart distribution systems, in IET Smart Grid. 2018. vol. 1. no. 4. p. 113-

122. 12. https://doi.org/10.1049/iet-stg.2018.0029

[12] Zouari M., Segarra MT., André F., Thépaut A. An Architectural Model

for Building Distributed Adaptation Systems. In: Brazier F.M.T.,

Nieuwenhuis K., Pavlin G., Warnier M., Badica C. (eds) Intelligent

Distributed Computing V. Studies in Computational Intelligence. 2011.

vol 382. Springer. Berlin. Heidelberg. https://doi.org/10.1007/978-3-642-

24013-3_15

[13] Yuan P, Liu P, Wu B, Jin H, Zhang W, Liu L. TripleBit: a fast and

compact system for large-scale RDF data. Proc VLDB Endow. 2013.

6(7). p.517–528.

[14] A. Almutairi, M. Sarfraz, S. Basalamah, W. Aref and A. Ghafoor. A

Distributed Access Control Architecture for Cloud Computing. IEEE

Software. 2012. March-April. vol. 29. no. 2. p. 36-44.

https://doi.org/10.1109/MS.2011.153

[15] Slimani Y., Najjar F., Mami N. An Adaptive Cost Model for Distributed

Query Optimization on the Grid. In: Meersman R.. Tari Z.. Corsaro A.

(eds) On the Move to Meaningful Internet Systems 2004: OTM 2004

Workshops. OTM 2004. Lecture Notes in Computer Science. 2004. vol.

3292. Springer. Berlin. Heidelberg. Https://doi.org/10.1007/978-3-540-

30470-8_26

[16] Trung A. D. Big Data: Lambda Architecture in a nutshell. gitconnected.

2020. Oct 9. https://levelup.gitconnected.com/big-data-lambda-

architecture-in-a-nutshell-fd5e04b12acc

https://doi.org/10.1109/DS-RT.2014.17
https://doi.org/10.1049/iet-stg.2018.0029
https://doi.org/10.1007/978-3-642-24013-3_15
https://doi.org/10.1007/978-3-642-24013-3_15
https://doi.org/10.1109/MS.2011.153
https://doi.org/10.1007/978-3-540-30470-8_26
https://doi.org/10.1007/978-3-540-30470-8_26
https://levelup.gitconnected.com/big-data-lambda-architecture-in-a-nutshell-fd5e04b12acc
https://levelup.gitconnected.com/big-data-lambda-architecture-in-a-nutshell-fd5e04b12acc

References

113

[17] Joe N. What are microservices?. cloudacademy. 2019. April 10.

https://cloudacademy.com/blog/microservices-architecture-challenge-

advantage-drawback/

[18] Weiss C, Karras P, Bernstein A. Hexastore: sextuple indexing for

semantic web data management. Proc VLDB Endow. 2008. 1(1).

p.1008–1019.

[19] Y. Jiao, W. Wang. Design and Implementation of Load Balancing of

Distributed-system-based Web Server. 2010 Third International

Symposium on Electronic Commerce and Security. Guangzhou. 2010. p.

337-342. https://doi.org/10.1109/ISECS.2010.81

[20] K. Iwanicki. A Distributed Systems Perspective on Industrial IoT. 2018

IEEE 38th International Conference on Distributed Computing Systems

(ICDCS). Vienna. 2018. p. 1164-1170.

https://doi.org/10.1109/ICDCS.2018.00116

[21] H. Jiang, D. Liu, X. Chen, H. Liu, and H. Mei. How Are Design Patterns

Concerned by Developers?. 2019 IEEE/ACM 41st International

Conference on Software Engineering: Companion Proceedings (ICSE-

Companion). Montreal. QC. Canada. 2019. p. 232-233.

https://doi.org/10.1109/ICSE-Companion.2019.0009

[22] Peng Peng, Lei Zou, Lei Chen, Dongyan Zhao, “Adaptive Distributed

RDF Graph Fragmentation and Allocation based on Query Workload”,

IEEE Transactions on Knowledge and Data Engineering, Vol. 31, No. 4,

pp. 670-685, April 2019

[23] H. Abdalla, A. M. Artoli, “Towards an Efficient Data Fragmentation,

Allocation, and Clustering Approach in a Distributed Environment”,

Information, Vol 10, No.112, 2019

[24] Verma and A. Kumar, “Performance Enhancement of K-Means

Clustering Algorithms for High Dimensional Data sets”, International

Journal of Advanced Research in Computer Science and Software

Engineering, Vol. 4, No. 1, pp.5-9, 2014

https://cloudacademy.com/blog/microservices-architecture-challenge-advantage-drawback/
https://cloudacademy.com/blog/microservices-architecture-challenge-advantage-drawback/
https://doi.org/10.1109/ISECS.2010.81
https://doi.org/10.1109/ICDCS.2018.00116
https://doi.org/10.1109/ICSE-Companion.2019.0009

References

114

[25] Z. Tao, H. Liu, H. Fu and Y. Fu, “Image Co-segmentation via Saliency-

Guided Constrained Clustering with Cosine Similarity”, AAAI,pp. 4285-

4291,2017

[26] Sewisy A, Amer A, Abdalla H (2017) A novel query-driven clustering-

based technique for vertical fragmentation and allocation in distributed

database systems. Int J Semant Web Inf Syst 13(2):27–54

[27] X. Gu, H. Zhang and S. Kim, “Deep code search”, In Proceedings of the

40th International Conference on Software Engineering, ACM, pp. 933-

944,2018

[28] W. L Xiang, Y. Z. Li, R. C. He, M.X. Gao, M.Q An, “A novel artificial

bee colony algorithm based on the cosine similarity”, Computers &

Industrial Engineering, Vol. 115, pp.54-68, 2018

[29] Wiese, L. (2014). Clustering-based fragmentation and data replication for

flexible query answering in distributed databases. Journal of Cloud

Computing 3, 18. https://doi.org/10.1186/s13677-014-0018-0

[30] Ali A. Amer, Adel A. Sewisy, Taha M.A. Elgendy. (2017). An optimized

approach for simultaneous horizontal data fragmentation and allocation

in Distributed Database Systems (DDBSs). Heliyon 3 e00487. doi:

10.1016/j.heliyon.2017. e00487

[31] Khan S. I., (2016). Efficient Partitioning of Large Databases without

Query Statistics. Database System Journal, pp. 34-53

[32] Masood Niazi Torshiz, Azadeh Salehi Esfaji, Haleh Amintoosi,

Enhanced Schemes for Data Fragmentation, Allocation, and Replication

in Distributed Database Systems. International Journal of Computer

Systems Science & Engineering. 2020. 2. pp. 99-112

[33] Rahimi, H., Parand, F. A., & Riahi, D. (2018). Hierarchical simultaneous

vertical fragmentation and allocation using modified Bond Energy

Algorithm in distributed databases. Applied computing and informatics,

14(2), pp. 127-133. https://doi.org/10.1016/j.aci.2015.03.001

https://doi.org/10.1186/s13677-014-0018-0
https://doi.org/10.1016/j.aci.2015.03.001

References

115

[34] Lim, S., Ng, Y. A Hybrid Fragmentation Approach for Distributed

Deductive Database Systems. Knowledge and Information Systems 3, pp.

198–224, 2001. https://doi.org/10.1007/PL00011666

[35] Shahidul Islam Khan, A. S. M. Latiful Hoque, “A New Technique for

Database Fragmentation in Distributed Systems”, International Journal of

Computer Applications (0975 – 8887), Volume 5– No.9, August 2010

[36] I. B. Oriji, I.C. Ejiofor, “A Hybrid Model for Data Fragmentation in

Distributed System”, International Research Journal of Computer

Science, Issue 04, Volume 5, pp. 186-192, 2018

[37] Peng, P., Zou, L., Chen, L., & Zhao, D. Adaptive distributed RDF graph

fragmentation and allocation based on query workload. IEEE

Transactions on Knowledge and Data Engineering, 31(4), pp.670-685,

2019. https://doi.org/10.1109/TKDE.2018.2841389

[38] Aloini, D., Benevento, E., Stefanini, A., & Zerbino, P. Process

fragmentation and port performance: Merging SNA and text mining.

International Journal of Information Management, 2020, 51,101925.

https://doi.org/10.1016/j.ijinfomgt.2019.03.012

[39] Memmi, G., Kapusta, K., & Qiu, H. Data protection: Combining

fragmentation, encryption, and dispersion. In 2015 International

Conference on Cyber Security of Smart Cities, Industrial Control System

and Communications (SSIC) (pp.1-9). IEEE.

https://doi.org/10.1109/SSIC.2015.7245680

[40] Raouf, A.E.A., N.L. Badr, and M. Tolba. An optimized scheme for

vertical fragmentation, allocation and replication of a distributed

database. in 2015 IEEE Seventh International Conference on Intelligent

Computing and Information Systems (ICICIS). 2015. IEEE.

[41] Ahmed E. Abdel Raouf , Nagwa L. Badr, M. F. Tolba. An Enhanced

CRUD for Vertical Fragmentation Allocation and Replication Over the

Cloud Environment. INFOS '16: Proceedings of the 10th International

https://doi.org/10.1007/PL00011666
https://doi.org/10.1109/TKDE.2018.2841389
https://doi.org/10.1016/j.ijinfomgt.2019.03.012
https://doi.org/10.1109/SSIC.2015.7245680
https://dl.acm.org/doi/proceedings/10.1145/2908446

References

116

Conference on Informatics and Systems. 2016. pp. 146-152.

https://doi.org/10.1145/2908446.2908480

[42] Abdel Raouf A.E., Badr N.L., Tolba M.F. Distributed Database

System (DSS) Design Over a Cloud Environment. In: Hassanien A.,

Mostafa Fouad M., Manaf A., Zamani M., Ahmad R., Kacprzyk J.

(eds) Multimedia Forensics and Security. Intelligent Systems

Reference Library, vol 115. 2017, Springer, Cham.

https://doi.org/10.1007/978-3-319-44270-9_5

[43] Hauglid, J.O., Ryeng, N.H., Nørvåg, K.: DYFRAM: dynamic

fragmentation and replica management in distributed database

systems. Distrib. Parallel Databases 28(2–3), 157–185 , 2010

[44] Tosun U, Dokeroglu T, Cosar A, Heuristic algorithms for fragment

allocation in a distributed database system. In: Gelenbe E, Ricardo L

(eds) 27th international symposium on computer and information

sciences (ISCIS). Computer and information sciences III. Springer, pp

401–408, 2013

[45] H. I. Abdalla, “A New Data Re-Allocation Model for Distributed

Database System”, International Journal of Database Theory and

Application, Vol. 5, No. 2, pp. 45-60, 2012

[46] Singh, A., Kahlon, K. S., & Virk, R. S. Nonreplicated Static Data

Allocation in Distributed Databases Using Biogeography-Based

Optimization. Chinese Journal of Engineering, 2014, 1–9.

doi:10.1155/2014/785321

[47] N. K. Z. Lwin, T. M. Naing, “Non-Redundant Dynamic Fragment

Allocation with Horizontal Partition in Distributed Database System”,

ICIIBMS, Bangkok, Thailand, pp.300-305, 2018

[48] H. I. Abdalla, “An Efficient Approach for Data Placement in Distributed

Systems”, Fifth FTRA International Conference on Multimedia and

Ubiquitous Engineering, pp. 297-301, 2011

https://dl.acm.org/doi/proceedings/10.1145/2908446
https://doi.org/10.1145/2908446.2908480
https://doi.org/10.1007/978-3-319-44270-9_5

References

117

[49] Guo, S.; Liu, J.; Yang, Y.; Xiao, B.; Li, Z., “Energy-efficient dynamic

computation offloading and cooperative task scheduling in mobile cloud

computing”, IEEE Transaction Mobile Computing, 18, 319-333, (2019).

doi:10.1109 /TMC.2018.2831230

[50] Liu, X.F.; Zhan, Z.H.; Deng, J.D.; Li, Y.; Gu, T.; Zhang, J., “An energy

efficient ant colony system for virtual machine placement in cloud

computing”, IEEE Trans. Evol. Comput., 22, 113–128, (2018)

doi:10.1109/TEVC.2016.2623803.

[51] Malekloo, M.H.; Kara, N.; El Barachi, M., “An energy efficient and SLA

compliant approach for resource allocation and consolidation in cloud

computing environments”, Sustain. Comput. Informatics Syst., 17, 9–24,

(2018) doi:10.1016/j.suscom.2018.02.001.

[52] Vakilinia, S.; Heidarpour, B.; Cheriet, M., “Energy efficient resource

allocation in cloud computing environments”, IEEE Access, 4, 8544–

8557, (2016). doi:10.1109/ACCESS.2016.2633558

[53] Sharma, Y.; Javadi, B.; Si, W.; Sun, D., “Reliability and energy

efficiency in cloud computing systems: Survey and taxonomy, J. Netw.

Comput. Appl., 74, 66–85, (2016). doi:10.1016/j.jnca.2016.08.010

[54] Long, Z.; Ji, W., “Power-efficient immune clonal optimization and

dynamic load balancing for low energy consumption and high efficiency

in green cloud computing”, J. Commun. 2016, 11, 558–563,

doi:10.12720/jcm.11.6.558-563

[55] Kaur, T.; Chana, I., “Energy efficiency techniques in cloud computing: A

survey and taxonomy”, ACM Comput. Surv., 48, (2015).

doi:10.1145/2742488

[56] Lee, Y.C.; Zomaya, A.Y., “Energy efficient utilization of resources in

cloud computing systems”, J.Supercomput. , 60, 268–280, (2012).

doi:10.1007/s11227-010-0421-3

[57] Beloglazov, A.; Abawajy, J.; Buyya, R., “Energy-aware resource

allocation heuristics for efficient management of data centers for cloud

computing”, Future Gener. Comput. Syst., 28, 755–768, (2012).

doi:10.1016/j future.2011.04.017.

References

118

[58] Scionti, A.; Goga, K.; Lubrano, F.; Terzo, O., “Towards energy efficient

orchestration of cloud computing infrastructure”, In Complex, Intelligent,

and Software Intensive Systems. CISIS 2018. Advances in Intelligent

Systems and Computing; Barolli, L., Javaid, N., Ikeda, M., Takizawa,

M., Eds.; Springer: Cham, 2019; Vol. 772, pp. 172–183, ISBN

9783319936581.

[59] Khan, N.; Shrestha, R., “Optimizing power and energy efficiency in

cloud computing”, In Proceedings of the 9th International Conference on

Cloud Computing and Services Science. CLOSER 2019; 2019.

[60] Tang, C.; Xiao, S.; Wei, X.; Hao, M.; Chen, W., “Energy-efficient and

deadline satisfied task scheduling in mobile cloud computing”, In

Proceedings of the 2018 IEEE International Conference on Big Data and

Smart Computing, BigComp 2018; 2018; pp. 198–205.

[61] Liu, N.; Dong, Z.; Rojas-Cessa, R., “Task scheduling and server

provisioning for energy-efficient cloud- computing data centers”, In

Proceedings of the International Conference on Distributed Computing

Systems; 2013; pp. 226–231.

[62] Zhao, H.; Qi, G.; Wang, Q.; Wang, J.; Yang, P.; Qiao, L., “Energy-

efficient task scheduling for heterogeneous cloud computing systems”, In

Proceedings of the 21st IEEE International Conference on High-

Performance Computing and Communications, 17th IEEE International

Conference on Smart City and 5th IEEE International Conference on

Data Science and Systems, HPCC/SmartCity/DSS 2019; 2019; pp. 952–

959.

[63] Li R., Mi N., Riedewald M., Sun Y., Yao Y., “A Case for Abstract Cost

Models for Distributed Execution of Analytics Operators”, In:

Bellatreche L., Chakravarthy S. (eds) Big Data Analytics and Knowledge

Discovery. DaWaK 2017. Lecture Notes in Computer Science, 2017, vol

10440. Springer, Cham. https://doi.org/10.1007/978-3-319-64283-3_11

https://doi.org/10.1007/978-3-319-64283-3_11

References

119

[64] Chung-Chi H., Y-Che H., “Reliability and cost optimization in

distributed computing systems”, Computers & Operations Research,

Volume 30, Issue 8, 2003, pp. 1103-1119, ISSN 0305-0548,

https://doi.org/10.1016/S0305-0548(02)00058-8

[65] Kashish Ara Shakil, Mansaf Alam, Samiya Khan, “A latency-aware max-

min algorithm for resource allocation in cloud”, International Journal of

Electrical and Computer Engineering (IJECE), Vol. 11, No. 1, February

2021, pp. 671-685, ISSN: 2088-8708, DOI: 10.11591/ijece.v11i1.

pp.671-685

[66] P. G., S., R. K., N., Menon, V.G. et al. A secure data deduplication

system for integrated cloud-edge networks. J Cloud Comp 9, 61 (2020).

https://doi.org/10.1186/s13677-020-00214-6

[67] Ahmed Sardar M. Saeed and Loay E. George, “Data Deduplication

System Based on Content-Defined Chunking Using Bytes Pair

Frequency Occurrence”, Symmetry, 2020, 12(11), 1841.

https://doi.org/10.3390/sym12111841

[68] A Vijayakumar and A Nisha Jebaseeli, “Pioneer approach of data

deduplication to remove redundant data from cloud storage”,

International Journal of Advanced Research in Engineering and

Technology (IJARET), Volume 11, Issue 10, October 2020, pp. 535-544,

DOI: 10.34218/IJARET.11.10.2020.057

[69] Dinesh Mishra, Sanjeev Patwa, “Attribute and Role-Based

Deduplication”, International Journal of Advanced Science and

Technology, vol. 29(7), pp. 14597 – 14606, 2020.

[70] Duaa S. Naji and Loay E. George, “A Technique for Big Data

Deduplication based on Content Attributes and Dictionary Indexing”,

IOP Conference Series: Materials Science and Engineering, Volume 928,

2nd International Scientific Conference of Al-Ayen University (ISCAU-

2020) 15-16 July 2020, Thi-Qar, Iraq

https://doi.org/10.1016/S0305-0548(02)00058-8
https://doi.org/10.1186/s13677-020-00214-6
https://doi.org/10.3390/sym12111841

References

120

[71] S. Ruba, A.M. Kalpana, “Machine Learning Techniques Used to Store

Efficient Cloud Data Through Chunking And Data Deduplication

Process”, Proteus Journal, 2020, pp. 60-75, Vol.11, Issue 12.

https://doi.org/10.37896/PJ11.12/043

[72] Guangpin X, Bo T, et al., “LIPA: A Learning-based Indexing and

Prefetching Approach for Data Deduplication”, 35th Symposium on

Mass Storage Systems and Technologies (MSST), IEEE, pp. 299-310,

2019.

[73] H. Fingler, M. Ra and R. Panta, "Scalable, Efficient, and Policy-Aware

Deduplication for Primary Distributed Storage Systems," 2019 31st

International Symposium on Computer Architecture and High

Performance Computing (SBAC-PAD), 2019, pp. 180-187, doi:

10.1109/SBAC-PAD.2019.00038.

[74] H. A. S. Jasim and A. A. Fahad, “New techniques to enhance data

deduplication using content based-TTTD chunking algorithm,” Int. J.

Adv. Comput. Sci. Appl., vol. 9, no. 5, pp. 116–121, 2018, doi:

10.14569/IJACSA.2018.090515.

[75] N. Kumar, S. Antwal, G. Samarthyam and S. C. Jain, "Genetic optimized

data deduplication for distributed big data storage systems," 2017 4th

International Conference on Signal Processing, Computing and Control

(ISPCC), 2017, pp. 7-15, doi: 10.1109/ISPCC.2017.8269581.

[76] N. Kumar, R. Rawat, and S. C. Jain, “Bucket based data deduplication

technique for big data storage system,” 2016 5th Int. Conf. Reliab.

Infocom Technol. Optim. ICRITO 2016 Trends Futur. Dir., pp. 267–271,

2016, doi: 10.1109/ICRITO.2016.7784963.

[77] Y. Xuan Xing, N. Xiao, F. Liu, Z. Sun, and W. hui He, “AR-dedupe: An

efficient deduplication approach for cluster deduplication system,” J.

Shanghai Jiaotong Univ., vol. 20, no. 1, pp. 76–81, 2015, doi:

10.1007/s12204-015-1591-1.

https://doi.org/10.37896/PJ11.12/043

References

121

[78] Y. Zhang, Y. Wu and G. Yang, "Droplet: A Distributed Solution of Data

Deduplication," 2012 ACM/IEEE 13th International Conference on Grid

Computing, pp. 114-121, 2012, doi: 10.1109/Grid.2012.21.

[79] S. S. Sengar and M. Mishra, "E-DAID: An Efficient Distributed

Architecture for In-Line Data De-duplication," 2012 International

Conference on Communication Systems and Network Technologies,

2012, pp. 438-442, doi: 10.1109/CSNT.2012.101.

[80] Paulo, J., & Pereira, J. (2016). Efficient Deduplication in a Distributed

Primary Storage Infrastructure. ACM Transactions on Storage, 12(4), 1-

35. doi:10.1145/2876509

[81] Singhal, S., Kaushik, A., & Sharma, P. (2018). A Novel approach of data

deduplication for distributed storage. International Journal of

Engineering & Technology, 7(2.4), 46. doi:10.14419/ijet.v7i2.4.10040

[82] Shengmei Luo, Guangyan Zhang, Chengwen Wu, Samee U. Khan,

Boafft: Distributed Deduplication for Big Data Storage in the Cloud,

IEEE Transactions on Cloud Computing, Vol. 61, No. 11, January 2015

[83] Tarun S., Batth R. S. (2019). Distributed Database Design Challenges

and its Countermeasures-A Study. Journal of the Gujarat Research

Society 21 (6), pp. 875-886

[84] S. Tarun, R. S. Batth and S. Kaur, "A Review on Fragmentation,

Allocation and Replication in Distributed Database Systems," 2019

International Conference on Computational Intelligence and Knowledge

Economy (ICCIKE), Dubai, United Arab Emirates, 2019, pp. 538-544,

doi: 10.1109/ICCIKE47802.2019.9004233

[85] Chakravarthy, S., Muthura j, J., Varadara jan, R., and Navathe, S.B. An

Objective Function for Vertically Partitioning Relations in Distributed

Databases and its Analysis, Distributed and Parallel Databases, Vol. 2,

No. 2, New York, April 1993.

References

122

[86] Chu Pai-Cheng, A Transaction Oriented Approach to Attribute

Partitioning, Information System, Vol. 17, No. 4, London, 1992.

[87] Chu, W., and Leong, I.T., A Transaction-Based Approach to Vertical

Partitioning for Relational Database Systems, IEEE Transaction on

Software Engineering, Vol. 19, No. 8, New York, August 1993.

[88] Cornell, D., and Yu, P., A Vertical Partitioning Algorithms for Relational

Databases, Proceedings of the Third International Conference on Data

Engineering, Los Angeles, CA, February 1987.

[89] Hammer, M., and Niammir, B., A Heuristic Approach to Attributes

Partitioning, Proceedings ACM SIGMOD International Conference on

Management of Data, Boston, MA, 1979.

[90] Navathe, S., Ceri, G., Wiederhold, G., and Dou, J., Vertical Partitioning

Algorithm for Database Design, ACM Transaction on Database System,

Vol.9, No.4, New York, December 1984.

[91] Navathe, S. and Ra, M., Vertical Partitioning for Database Design: A

Graphical Algorithm, ACM SIGMOD, Portland, OR, June 1989.

[92] R. Singh and K. S. Mann, “Improved TDMA Protocol for Channel

Sensing in Vehicular Ad Hoc Network Using Time Lay,” Proceedings of

2nd International Conference on Communication, Computing and

Networking Lecture Notes in Networks and Systems, pp. 303–311, 2018.

[93] A. Nayar, R. S. Batth, D. B. Ha, and G. Sussendran, G. “Opportunistic

networks: Present scenario-A mirror review” International Journal of

Communication Networks and Information Security,” 10 (1), pp. 223-

241, 2018

[94] G.S Shahi, R.S Batth, S. Egerton, 2020 “MRGM: An Adaptive

Mechanism for Congestion Control in Smart Vehicular Network”,

International Journal of Communication Networks and Information

Security 12 (2).

References

123

[95] Qi, H., & Gani, A. (2012, May). Research on mobile cloud computing:

Review, trend and perspectives. In 2012 Second International Conference

on Digital Information and Communication Technology and it's

Applications (DICTAP), IEEE, pp. 195-202.

[96] Borkar, V., Deshmukh, K., & Sarawagi, S. (2001, May). Automatic

Segmentation of text into structured records. In Proceedings of the 2001

ACM SIGMOD international conference on Management of data, pp.

175-186.

[97] Santini, S., & Jain, R. (1999). Similarity measures. IEEE Transactions on

pattern analysis and Machine Intelligence, 21(9), pp. 871-883.

[98] Huang, A. (2008, April). Similarity measures for text document

clustering. In Proceedings of the sixth New Zealand computer science

research student conference (NZCSRSC2008), Christchurch, New

Zealand, Vol. 4, pp. 9-56.

[99] Sidorov, G., Gelbukh, A., Gómez-Adorno, H., & Pinto, D. (2014). Soft

similarity and soft cosine measure: Similarity of features in vector space

model. Computación y Sistemas, 18(3), pp. 491-504.

[100] Michie, D., Spiegelhalter, D. J., & Taylor, C. C. (1994). Machine

learning. Neural and Statistical Classification, 13(1994), pp. 1-298.

[101] Ikonomakis, M., Kotsiantis, S., & Tampakas, V. (2005). Text

classification using machine learning techniques. WSEAS transactions

on computers, 4(8), pp. 966-974.

[102] S. AXELBROOKE, "First Inbound and Response Tweets", Kaggle.com,

2020. [Online]. Available: https://www.kaggle.com/soaxelbrooke/first-

inbound-and-response-tweets/data?select=sample.csv [Accessed: 27-

Dec- 2020].

[103] Yencken, L., Stopwords.txt, Gist., from

https://gist.github.com/larsyencken/1440509 [Retrieved December 27,

2020]

https://www.kaggle.com/soaxelbrooke/first-inbound-and-response-tweets/data?select=sample.csv
https://www.kaggle.com/soaxelbrooke/first-inbound-and-response-tweets/data?select=sample.csv
https://gist.github.com/larsyencken/1440509

References

124

[104] Metin, O., Tweets about the top companies from 2015 to 2020, Kaggle.,

from https://www.kaggle.com/omermetinn/tweets-about-the-top-

companies-from-2015-to-2020?select=Tweet.csv [Retrieved December

27, 2020]

[105] Lende, S. P., & Raghuwanshi, M. M. (2016, February). Question

answering system on education acts using NLP techniques. In 2016

world conference on futuristic trends in research and innovation for

social welfare (Startup Conclave) (pp. 1-6). IEEE.

[106] Zeyu, X., Qiangqian, S., Yijie, W., & Chenyang, Z. (2018). Paragraph

vector representation based on word to vector and CNN learning.

Computers, Materials & Continua, 55(2), pp. 213-227.

[107] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient

estimation of word representations in vector space. arXiv preprint

arXiv:1301.3781.

[108] Bartunov, S., Kondrashkin, D., Osokin, A., & Vetrov, D. (2016, May).

Breaking sticks and ambiguities with adaptive skip-gram. In artificial

intelligence and statistics, pp. 130-138.

[109] H. Guo, J. Zhou and C.A. Wu (2018), “Imbalanced Learning Based on

Data-Partition and SMOTE”, Information, Vol. 9, No. 9, pp. 238.

[110] Kaur K., Laxmi V. (2019), “Hierarchical Clustering Based Improved

Data Partitioning using Hybrid Similarity Measurement Approach”,

International Journal of Innovative Technology and Exploring

Engineering, Volume-8 Issue-8, pp. 3008-2014.

[111] Sashi Tarun, Ranbir Singh Batth, Sukhpreet Kaur, “A Novel

Fragmentation Scheme for Textual Data Using Similarity-Based

Threshold Segmentation Method in Distributed Network Environment”,

International Journal of Computer Networks and Applications (IJCNA),

Vol 7, Issue 6, Nov-Dec 2020, pp. 231-242.

https://doi.org/10.22247/ijcna/2020/205322

[112] Ahmed Osman, Assim Sagahyroon, Raafat Aburukba, Fadi Aloul,

“Optimization of energy consumption in cloud computing data centers”,

International Journal of Electrical and Computer Engineering (IJECE),

https://www.kaggle.com/omermetinn/tweets-about-the-top-companies-from-2015-to-2020?select=Tweet.csv
https://www.kaggle.com/omermetinn/tweets-about-the-top-companies-from-2015-to-2020?select=Tweet.csv
https://doi.org/10.22247/ijcna/2020/205322

References

125

Vol. 11, No. 1, February 2021, pp. 686-698, ISSN: 2088-8708, DOI:

10.11591/ijece.v11i1.pp 686-698

[113] Akanksha, “List-Based Task Scheduling Algorithm for a Distributed

Computing System Using Artificial Intelligence”, In: Abraham A.,

Cherukuri A., Melin P., Gandhi N. (eds) Intelligent Systems Design and

Applications. ISDA 2018 2018. Advances in Intelligent Systems and

Computing, vol 941. Springer, Cham. (2020).

https://doi.org/10.1007/978-3-030-16660-1_98

[114] Gandomi, A., Movaghar, A., Reshadi, M. et al., “Designing a

MapReduce performance model in distributed heterogeneous platforms

based on benchmarking approach”, J Supercomput, 76, 7177-7203,

(2020). https://doi.org /10.1007/s11227- 020- 03162- 9

[115] Lotfi, N., “Data allocation in distributed database systems: a novel hybrid

method based on differential evolution and variable neighborhood

search”, SN Appl. Sci. 1, 1724, (2019). https://doi.org /10.1007/s42452-

019-1787-3

[116] Tariq R., Aadil F., Malik M.F., Ejaz S., Khan M.U., Khan M.F.,

“Directed Acyclic Graph Based Task Scheduling Algorithm for

Heterogeneous Systems”, In: Arai K., Kapoor S., Bhatia R. (eds)

Intelligent Systems and Applications. IntelliSys 2018. Advances in

Intelligent Systems and Computing, vol 869. Springer, Cham. (2019).

https://doi.org /10.1007/978-3-030-01057-7_69

[117] Suhelah Sandokji and Fathy Eassa, “Communication and Computation

Aware Task Scheduling Framework Toward Exascale Computing”,

International Journal of Advanced Computer Science and Applications

(IJACSA), 10(7), (2019). http://dx.doi.org/10.14569

/IJACSA.2019.0100718

[118] I. Hababeh, “A Method for Fragment Allocation Design in the

Distributed Database Systems”, The Sixth Annual U.A.E. University

Research Conference, 2005.

[119] P K Yadav, M P Singh and Kuldeep Sharma, “An Optimal Task

Allocation Model for System Cost Analysis in Heterogeneous

References

126

Distributed Computing Systems: A Heuristic Approach”, International

Journal of Computer Application, 28(4):30-37, August 2011. DOI:

10.5120/3374-4664

[120] Ahmed Younes. Hamed, “Task Allocation for Minimizing Cost of

Distributed Computing Systems Using Genetic Algorithms”,

International Journal of Advanced Research in Computer Science and

Software Engineering, September 2012, Vol.2, Issue 9, pp. 202-209.

[121] Dropbox, a file-storage and sharing service. [Online]. Available:

http://www.dropbox.com

[122] Google drive. [Online]. Available: http://drive.google.com

[123] Mozy: A file-storage and sharing service. [Online]. Available:

http://mozy.com/

[124] Spideroak. [Online]. Available: https://www.spideroak.com/

[125] P. Selvi, D. Shanmuga Priyaa, “An Enhanced Unsupervised Fuzzy

Expectation Maximization Clustering for Deduplication of Records in

Big data”, International Journal of Recent Technology and Engineering

(IJRTE), Volume-8 Issue-3, pp. 988-993, 2019.

DOI:10.35940/ijrte.C1269.1083S219

[126] R. Parimala Devi, “Enhanced Fuzzy Ontology Based Record

Deduplication”, Aut Aut Research Journal, Vol. 11(9), pp. 499-

515DOI:10.0001865.Aut Aut.2020.V11I9.463782.00746

[127] M. Padmanaban and T. Bhuvaneswari, “A Technique for Data

Deduplication using Q-Gram Concept with Support Vector Machine “,

International Journal of Computer Applications, Vol. 61(12), pp. 1-9,

2013

[128] M. Padmanaban and T. Bhuvaneswari, “An Approach Based on Artificial

Neural Network for Data Deduplication”, International Journal of

Computer Science and Information Technologies, Vol. 3(4), pp. 4637-

4644, 2012.

References

127

[129] Goli, M., & Rouhani Rankoohi, S. M. T., “A new vertical fragmentation

algorithm based on ant collective behavior in distributed database

systems”, Knowledge and Information Systems, 30(2), 435–455,

2011, doi:10.1007/s10115-011-0384-6

[130] Arjan Singh, “SBBO Based Replicated Data Allocation Approach for

Distributed Database Design”, International Journal of Engineering

Research and Technology”, Vol, 13(9), pp. 2461-2473, 2020,

https://dx.doi.org/10.37624/IJERT/13.9.2020.2461-2473

[131] Anju Khandelwal, “Optimal execution Cost of Distributed System:

Through Clustering”, International Journal of Engineering Science and

Technology (IJEST), Vol. 3(3), pp. 2320-2328, 2011

[132] Seema Yadav, Rakesh Mohan, Pradeep Kumar Yadav,” Task Allocation

Model for Optimal System Cost Using Fuzzy C-Means Clustering

Techniques in Distributed Systems”, Ingénierie des Systèmes d

’Information, Vol. 25(1), pp. 59-68, 2020. https://doi.org/10.18280/isi.

250108

[133] J. Paulo and J. Pereira, “A survey and classification of storage

deduplication systems,” ACM Comput. Surv., vol. 47, no. 1, pp. 11:1–

11:30, 2014. [Online]. Available: http://doi.acm.org/10.1145/2611778

[134] J. Li, et al., “Secure distributed deduplication systems with improved

reliability,” IEEE Trans. Comput., vol. 64, no. 12, pp. 3569–3579, Dec.

2015. [Online]. Available: http://dx.doi.org/10.1109/TC.2015.2401017

[135] J. Li, X. Chen, M. Li, J. Li, P. P. C. Lee, and W. Lou, “Secure

deduplication with efficient and reliable convergent key management,”

IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 6, pp. 1615–1625, Jun.

2014. [Online]. Available: http://dx.doi.org/10.1109/TPDS.2013.284

https://dx.doi.org/10.37624/IJERT/13.9.2020.2461-2473
http://doi.acm.org/10.1145/2611778
http://dx.doi.org/10.1109/TC.2015.2401017
http://dx.doi.org/10.1109/TPDS.2013.284

Research Publications

128

Research Publications

This research work contributes following publications objective-wise:

Journal Publications:

[1] Sashi Tarun, Ranbir Singh Batth, Sukhpreet Kaur, "A Novel

Fragmentation Scheme for Textual Data Using Similarity-Based Threshold

Segmentation Method in Distributed Network Environment", International Journal

of Computer Networks and Applications (IJCNA), 7(6), pp: 231 - 242, 2020, DOI:

10.22247/ijcna/2020/205322.

[2] Sashi Tarun, Mithilesh Kumar Dubey, Ranbir Singh Batth, Sukhpreet

Kaur, “An Optimized Cost-Based Data Allocation Model for Heterogeneous

Distributed Computing Systems”, International Journal of Electrical and Computer

Engineering (IJECE), ISSN 2088-8708, e-ISSN 2722-2578, Q2, Vol. 12, No. 6,

December 2022, pp. 6373~6385, DOI: 10.11591/ijece.v12i6.pp6373-6385

Conference Publications:

[3] S. Tarun, R. S. Batth and S. Kaur, "A Review on Fragmentation,

Allocation and Replication in Distributed Database Systems," 2019 International

Conference on Computational Intelligence and Knowledge Economy (ICCIKE),

2019, pp. 538-544, doi: 10.1109/ICCIKE47802.2019.9004233.

[4] Sashi Tarun, Ranbir Singh Batth, Sukhpreet Kaur, “Distributed System

Design Issues, Challenges and Weaknesses: A Review”, First International

Conference on Recent Trends in Parallel and Distributed Processing (RTPDP-

2021), GCET, Greater Noida, IOS Press Conference Series, Scopus Indexed, July

2021

[5] S. Tarun, R. S. Batth and S. Kaur, "A Scheme for Data Deduplication

Using Advance Machine Learning Architecture in Distributed Systems," 2021

International Conference on Computing Sciences (ICCS), 2021, pp. 53-60, DOI:

10.1109/ICCS54944.2021.00019

978-1-7281-3778-0/19/$31.00 ©2019 IEEE

A Review on Fragmentation, Allocation and
Replication in Distributed Database Systems

Sashi Tarun

Research Scholar, School of CSE
Lovely Professional University

 Phagwara, India
sashi.25347@lpu.co.in

Ranbir Singh Batth
School of CSE

Lovely Professional University
Phagwara, India

ranbir.21123@lpu.co.in

Sukhpreet Kaur

Department of CSE
Chandigarh Engineering College

Chandigarh, India
sukhpreet.4479@cgc.edu.in

Abstract— Continuous efforts on the improvement of

existing techniques of data distribution methods were shared

by researchers’ time-to-time. The purpose behind is to work

for an effective distributed working environment to shape out

the distributed system to handle vast data, continuous network

expansion, and its numerous users. To satisfy database queries

in distributed system users generally initiate, execute and

complete his request on his node or from adjoining nodes.

Here, focus is on maximize the local data processing and

minimize the communication cost between sites. Optimality of

results can be achieved by proper partitioning of database into

disjoint sets called fragments, placement of fragment into

network sites by allocation, and replication to maintain data

availability and control fault tolerance. So, there is a need to

calibrate large distributed system to satisfy daily data pattern

of users. This research paper highlights all the antecedent

techniques, algorithms, methods, design framework etc. used

for the designing of data fragments, allocation and replication

in distributed system.

Keywords— mobile host, fixed host, fragment, allocation,
replication, communication cost, optimal, pattern

I. INTRODUCTION

Fragmentation of data indicates partition of database into
number of small independent parts called fragments.
Accessing of data from fragments introduce partial data
access and an environment of working with table views. It is
a step towards selection of data-items using fine grained
rather than coarse grained approach.

After the fragmentation, allocation of data fragments into
defined geographical dispersed environment is managed
either in centralized, fragmentation, full replication and
partial replication strategy.

Replication in distributed database system, is to maintain
data transparency by maintaining duplicate copies at each
sites depends on users access or based on their mobility
working behavior. It ensures data availability, fault tolerance,
and reliability at individual sites ground. Eager approach of
replication is required to achieve above stated assurances.

The sole purpose of different data distribution methods is
to achieve overall distributed performance by:
 Dividing the workforce load into fragments and

maintain easy data availability to them without wait or
delay.

 Modular approach to ensure fast execution of sub-
queries.

 Allowing further network expansion without
complexity.

 Controlling usage of storage space.
 Ensure easy data sites maintenance.

Earlier centralized system had some flaws that lead to
move towards de-centralized system:
 Load Balance and Performance: In centralized system,

user’s query follows a concurrent environment, in which
users simultaneously access the database and load on the
centralized system increases. It slow down the
performance of the database, and response to several
users at the same time for the same data-items seems
difficult and instant response to database queries are
normally get affected.

 Complexity and Expansion: Data in the centralized
system is increasing at an alarming rate due to large
workforce. As a result, more storage capacity is required
to maintain data and become difficult to understand the
logical structure. Further expansion of database in this
environment is all about invitation to accidental data
loss.

 Data Maintenance and its Availability: Maintenance of
large data in centralized database indicates interruption
in service to its users and affects the availability of the
data for sometime. To overcome this flaw distributed
database opens the door of easy data maintenance and its
availability. Data availability can be from any of the
network node in decentralized system.

 Fault tolerance: There is a lack of fault tolerance feature
in centralized system and it affects the data availability.
But this become easy by distributed approach as it
enables to work on fault tolerance by replication
process. It maintains the data availability because failure
of any node does not affect the overall performance.

 Fig.1. Distributed Database System

2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE)
December 11–12, 2019, Amity University Dubai, UAE

538

The key of this proposed paper is to highlights the need
of data distribution and introduce its predecessor
methodology adopted by researchers. Therefore, this paper
focus on :

 Problem Area of Distributed Database System.
 The need of distribution of data.
 To depicts different problems and hindrance in the

distribution of data.
 Taxonomy of distributed database system.
 To highlight all antecedent techniques used for

mobile users in distributed system.
A. Problem Area of Distributed Database System

Adoption of DDBSs introduces different problems in
the distributed environment. These problem areas are now
subject of discussion and continuously efforts are given by
the researchers to work for optimal approaches, so that
distributed performance can be enhanced. Some of the
problem areas of distributed database system in distribution
of data domain are:

 Data Coverage Issues
Data-items contained in the fragments are not efficient

to cover up database queries from outside. Normally,
availability of data is not feasible sometimes from where the
query initiated. It is because of bad design issues of
distributed database fragmentation.

 High Replication Costing
Cost of replication is very high for maintaining

identical data copies at each sites contain the data fragments.
Data access operations are regularly performed by the
database users for changing records or alterations in the
database. In concurrent environment, data changes should
be immediately reflected on other sides to maintain data
consistency at every site.

 Performance Degradation
Availability of partial data at each node affects the data

access performance. Access operations required more time
to fetch the complete information from other nodes in the
network. It increase delay in query response time problems.

B. Need of Data Distribution
To give better shape to large amount of data

(accumulated from different data sources) designer has to
choose an effective data distribution approach. It works to
achieve the following objectives:

 Data Transparency
Data accessibility or its availability to mobile users are

from any network sites and make them feel the overall
system as a single coherent system. It permits for the
execution of high level queries in the distributed database
without looking into where the data is coming from.

 Manage Workload
 Data distribution is helpful by following ways:
a) To manage mobile workforce by optimizing

processing power to different task routing towards their
destination.

b) Allow to access application interfaces from
multiple locations as the suitability of work.

c) Service continuation by routing the request to other
path to a healthy node contains requested information.

d) Allow to work in a transparent system by doing
operations such as maintenance and upgrading of peer nodes

without interrupting data availability to other users at node
stations.

 Failure Transparency
One of the drawbacks of centralized database is that it

does not compromise with any failure. But, distributed
database survive in case of failure of any of the network
node. Load of failure node is equally taken by the nearby
nodes to avoid any loss of data and processing delay.

 Autonomy
All sites in the distributed environment are working in

an independent way. Every site is having own data and
maintains his own information system. This autonomy
features is highly supported in business for establishing
different divisions, department to facilitate a strong system.

 Location Transparency
This is all about ease of access to data by users at

different locations. Users from anywhere, anytime in the
network get access their data easily. Communication system
enables this transparency to access required data remotely.

 Modular Structural Approach
It helps to achieve following objectives without

interruption of others:
a) Easy modification in case of upgrading on the

existing nodes,
b) Addition to increasing the number of nodes for the

existing network expansion and
c) Removal of nodes/functionality in case of not

required in near future.
 Restricted Data Access

Data distribution in the distributed environment allow
user to view certain part of the data or information not as a
whole. Here in this system, users intend to access only
required information from the request node without the
interest of other data.

C. Data Distribution Problems
Different problems occur during the distribution of data

in distributed database system:
 Behaviorial Practice
A good data distribution schemes is always as per the

interest of the users because users himself work with the
data as a producer and consumer. Mobile users continuously
change their database queries to satisfy their business
requirements. Here, existing distribution schemes are not
able to cope up from changing access pattern behavior. As a
result data fragments become worthless and not able to
cover database queries demanded or expected by the
database users.

 Network Expansion
To satisfy every user globally there is a need to expand

the size of the existing network by adding nodes at the
appropriate locations. It is the communication system that
facilitates the network nodes to coordinate with each other
during transactions in the large network. But it has serious
concern with the existing data distribution schemes. Are
new nodes in the expanded network affect communication
cost, time, and degrade performance. Sometimes, it leads to
refragmentation and reallocation issues. Due to expansion,
links between the nodes can be added or removed to define
new communication path.

2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE)
December 11–12, 2019, Amity University Dubai, UAE

539

 Lack in Architectural Design
A good architectural design is helpful to build strong

system and works for a long period of time. A design for the
mobile world is a challenging task because design reflects
the interconnection blueprints. A bad architectural design of
the network affects the data distribution schemes. It raises
anomalies during the transaction hours by showing
incomplete, irrelevant information, failure of queries as a
result of problem in data extraction. It results redesign of
whole architectural design with a view to implement
affective data distribution approaches.

 Software Application Compatibility
Every mobile unit depends on interfaces programs to

perform their required database operations in distributed
environment. Due to network expansion existing application
programs are not compatible and able to extract data
completely from each node. On the other side, to increase
the capability by adjusting new data-items on the existing
nodes seems unreachable to software applications.
Moreover data synchronous issues with data nodes when
transaction occurs by users using application programs. So,
to make effective compatibility between application
programs and data distribution schemes advance action is
needed.

 Integrity Check
Integrity Control becomes more difficult at fragments

level. As a result correctness at fragments level is not
controlled easily. When large global schema is divided into
independent pieces called fragments then they are treated as
separate entities. In such cases integrity during data
operation is not verified easily by the checker and result of
this data redistribution problem may occur in the near
future.

 Testability Issues
To smoothly run the system by entertaining all

supporting users in distributed system, it is important that all
data sites will be available for use most of the time without
fault, failure and error. But testing in distributed system at
node (site) level is not possible due to the existence of
multiple data-items from different databases schemas. There
is no relationship between data inside the fragments and
allocated at distributed sites. Each site contains data
information from multiple databases independent to each
other.
D. Data Distribution Hindrance:

Some of the hindrances in the distribution of data in
distributed system faced are:
 Network Latency

Delay during query response, replica propagation delay,
and communication delay are common network hindrances
who discard the effectiveness of data distribution
approaches.
 Resources Availability:

Resources like power during regular usage, insufficient
bandwidth to transfer and communication with others is
required to smooth line the distributed database operations.
Deficiency in these resources leads to implementation
hurdle.
 Disconnection

Frequent disconnection of network during distributed
operations is a hindrance to achieve performance. To

perform operations trusted service connection with the
network is required.

II. RELATED WORK
Work on distributed Resource Description Framework

(RDF) is performed to manage the growing massive RDF.
To utilize this large volume RDF is partition into small parts
called fragments and further approach the same for
allocation in the distributed database environment. Here,
focus is given to reduce the communication cost during the
query processing tasks. It also ensures to maintain data
integrity and approximation ratio due to frequent access
patterns from outside. Here RDF graph is divided using
three fragmentation strategies namely horizontal, vertical
and mixed fragmentation based on frequent access patterns.
It is also focus on balancing and allocation of fragments into
different sites [12].

A systematic review on data distribution strategies i.e.
Data fragmentation, Allocation and Replication is
performed by the author. In this paper, it is indicated that
different problems are faced by the designers during using
and designing of these strategies. First, Data fragmentation
is having problems of Join Optimization, when query trying
to combine more than one fragments from more than one
geographical site to fetch the required data. It reduces the
response time. Secondly, includes data allocation problem
about finding optimal technique helpful to allocate
fragments to different sites.

A heuristic approach for fragmentation is proposed to
reduce transmission cost (TC) of queries in distributed
environment. Here, at initial stage fragmentation is based on
cost-effective model in context of relational model and at
later stage based on DDBS design. Different replication
based allocation scenario were proposed i.e. mixed
replication-based data allocation scenario (MAS), full-
replication-based data allocation scenario (FAS), and non-
replication data allocation scenario (NAS)[7].

A modified Bond Energy Algorithm (BEA) is proposed
and it is a hierarchical process to make fragments vertically
and allocate the fragments into geographical sites across the
network. This algorithm use affinity of attributes and is
helpful to generate cluster of attributes, to calculate cluster
allocation cost and also decide about their appropriate sites
for allocation. Here attributes accessed collectively by the
same query are placed into one fragment [5].

A study was to review and compare the existing
algorithms in design perspective with a view to identify
their strength and weakness. This is just to present an
affective design for the distribution of data fragments on the
distributed environment [6].

A non-redundant dynamic fragment allocation
technique is proposed and is based on the changing access
pattern at different sites with a view to improve the
performance. Here fragments reallocation is depend on
access made on each fragment data volumes based on
defined time constraint and threshold value. This proposed
technique change the reallocation strategy by modifying the
read and write data volume factor and introduced threshold
time volume and Distance Constraints Algorithm. Write
data volume is considered for the reallocation process when
more than one sites approach for the fragments. This ensures
the overall improvement of distributed system performance
[11].

2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE)
December 11–12, 2019, Amity University Dubai, UAE

540

A hybrid optimized model using information on the
type and frequency of queries for fragmentation of data
horizontally and vertically and is based on supervised
machine learning approach to produce non overlapping
fragments. These fragments are maintained by archiving
process rather than deletion operation on them. These
fragments are used to facilitate searching operations based
on index so that database tables are partition horizontally
and vertically [8].

Two algorithms Modify Create Read Update Delete
(MCRUD) and Matrix based Fragmentation (MMF) for
efficient partitioning of large databases without query
statistics. It shows that earlier approaches of partitioning
were based on type and frequency of the queries called
observed or experimental data. Here it is also indicated that
earlier partitioning approach were not suitable because at the
initial stage of the design of distributed database query
statistics are not available. In his paper, an optimal
fragmentation technique is proposed to partition global
relations of a distributed database when there is no data
access statistics and no query execution frequencies are
available. When data access statistics and query execution
frequencies are not available at the initial stage then MMF is
responsible to partition relation in the distributed database.
MCRUD is responsible to take fragmentation decision
without using empirical data [14].

Work on different replication strategies in MANET,
mobile database, distributed database, and cellular network
etc is highlighted. It discuss about replication protocols as
ROWA, ROWA-A and Quorum Based Protocol. All are
replica control protocol, ROWA is responsible to fetch the
read request values to the nearest site from the occurrence of
request location and replicate the changes to all the sites. An
alternative approach is in the form of ROWA-Available and
is same as ROWA in the case of read operations but
replicate the changes only to all available replica copies and
do not bother about any replication failure. ROWA-A is
responsible for maintaining the availability of data but do
not compromised with the correctness of data. In case of
failure users are working with stale value of data. It shows
incorrect or out-of-date copy of replica. Quorum based
replica is to update the subset of replicas rather than
replicate the changes as a whole and helpful to maintain
consistency of data [2].

An integrated approach is proposed for DDBMS
namely data fragmentation, network sites clustering and
allocation of fragments. This work is responsible to
improvise problems in the form of; fragmentation,
redundancy in data allocation and redistribution problem
due to complexity, to maintain data availability and
consistency issues [14].

It is also highlighted, to maintain inconsistency issues
faced by the mobile users during the access of database in
his mobility from any of the activity center. Here a 5-cube
structure with nearest-neighbors propagation distribution
protocol is proposed to make useful distributed database
system for the mobile users. It ensures consistent data to all
mobile users/sites by dynamically replicates the changes to
all its adjoining sites from the transactional node [16].

A new dynamic deallocation approach for a given
fragment as Update Matrix (UM) and Distance Cost Matrix
(DM) is proposed. It works on the basis of changing data

access patterns in replicated and non-replicated distributed
database system. It was assumed that fragments are
allocated on network site is based on applied frequency
value of the database data items. Reallocation of data
fragments on the remote sites is planned based on
communication and update cost value. Each fragment is
having update cost value. Fragment having maximum
update cost value is considered for reallocation and chosen
candidate site to store fragments to minimize the
communication cost. UM is defined as the value getting
after issuing of update query at a particular site for the
manipulated fragment. In this approach when same query is
applied at more than one site, then queries can be treated
different to each other and having different frequency value
[4].

An algorithm called Simulates Annealing with Genetic
Algorithm (SAGA) is used for optimal allocation of
fragment in distributed environment. Here, allocation of
data is depends on access patterns for fragments and focused
on reducing the allocation cost during movement of data
fragment from one site to another [3].

A problem in large scale mobile distributed database
system is introduced by replication architecture for
distributing replica and updates propagation protocol to
propagate recent changes occurred in different objects in
distributed system to achieve the data consistency. In his
paper presented a new binary hybrid approach consists of
pessimistic and optimistic replication strategy, helpful to
work with large number of replicas and reduce the data
inconsistency rate to support mobile users. This replication
is helpful to achieve update propagation delay reduction and
less communication cost. Here replication architecture is
proposed consist of master, zone and cell level and Wheel-
based updates propagation protocol is used to maintain
replicas in mobile distributed database [1].

A decentralized approach for dynamic table
fragmentation and allocation in distributed database systems
is proposed. It is based on observation and monitoring of the
sites access patterns to tables which reforms fragmentation,
replication, and reallocation based on recent access history
aiming at maximizing the number of local accesses
compared to accesses from remote sites [9].

A new technique called Attribute Level Precedence
(ALP) to partition global schema/database relations at initial
and later stage in case of non-availability of data access
statistics and query execution frequencies. ALP technique is
capable to take advance decision for fragmentation at the
initial stage (i.e. knowledge gathered during requirement
analysis phase) without empirical data statistics. ALP is a
table responsible to fragment a relation horizontally based
on the importance of an attribute in a network site [15].

III. TAXONOMY OF DISTRIBUTED DATABASE SYSTEMS

Dealing with data to know about different facts or
figures is possible, if data is classified, arranged and
distributed into different sites using optimal classification.
Classification is a straight path to know about different
categories and helpful to frame out distributed database
system as shown in Fig. 2.

2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE)
December 11–12, 2019, Amity University Dubai, UAE

541

A. Classification of Distributed Database System
In control dimension, DDBS is of two types:

1) Control based on locality: In control dimension,
DDBS is of two types:

a) Centralized Control DDBS: In this, only a
particular sites is responsible to plan, monitor and control
the distributed data transactions occurs in different sites and
ensure data consistency at each sites.

b) Distributed Control DDBS: In this, different sites
equal responsible to control and cooperate the processing of
the transactions to ensure data consistency.

2) Degree of Integration: In this dimension, distributed
control DDBS is of two types:

a) Strongly Integrated or DDBSs: Here information
about the executing transactions is with each site to ensure
global consistency on other sites.

b) Loosely Integrated or MDBSs: In this, each site
are not willing to share control information with any other
sites.

3) Degree of Heterogenity: Here sites can be
homogenous and heterogeneous in both strongly and loosely
integrated in the DDBSs.

IV. DATA DISTRIBUTION DESIGNING TECHNIQUES

Based on studies, a checklist is created to identify
different distribution designing techniques and get to know
about work introduced by the researchers’ time-to-time for
achieving the optimality of fragmentation, allocation and
replication of data in distributed system.

A. Distributed Designing Techniques in Frequency

Some of the contributions in Distributed Database
System are depicted below in TABLE 1 starts from 2019 to
1979 onwards with their frequency counts.

TABLE 1 DIFFERENT DISTRIBUTED TECHNIQUES WITH THEIR FREQUENCY AND PERCENTAGE

S.No. References

Research Categories

Fragmentation Allocation Replication
Framework/Algorithms/Methods/

Techniques/Review/Approach/
Model/Strategy/Architecture/

Solution/Survey/Protocol

1 Peng et al. (2019) Framework Yes Yes -

2 Ezechiel et al. (2019) Review Yes Yes Yes

3 Abdalla et al. (2019) Approach Yes - -

4 Rahimi et al. (2018) Algorithm Yes Yes -

5 Fuaad et al. (2018) Review - Yes -

6 Lwin et al. (2018) Technique - Yes -

7 Oriji et al. (2018) Model Yes - -

8 S. I. Khan (2016) Algorithms Yes - -

9 D. Rane et al. (2016) Strategy - - Yes

10 Al-Sayyed et al. (2014) Approach Yes Yes -

11 S. Tarun (2012) Strategy - - Yes

12 Abdalla (2012) Approach - Yes -

13 Abdalla (2011) Algorithm - Yes -

14 A. Ahmad (2011) Architecture - - Yes

15 Hauglid et al. (2010) Approach - Yes Yes

16 S. I. Khan et al. (2010) Technique Yes - -

17 K. Matiasko et al. (2008) Algorithms - Yes -

18 T. Ulus et al. (2007) Algorithm - Yes -

19 Mondal et al. (2006) Algorithm - - Yes

20 I. Hababeh (2005) Method - Yes -

21 Grebla et al. (2004) Solution - Yes -

22 N. H. Daudpota (1998) Model - Yes -

23 X. Liu et al. (1995) Survey - - Yes

24 Navathe et al. (1995) Algorithm Yes - -

25 O. Wolfson et al. (1992) Algorithm - - Yes

26 Cheung et al. (1990) Protocol - - Yes

27 D. Agarwal et al. (1990) Protocol - - Yes

Frequency 9 14 10

Percentage (%) 32 50 37

2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE)
December 11–12, 2019, Amity University Dubai, UAE

542

Fig.2 Taxanomy distributed database system

B. Analysis of Design Techniques

Different research activities carried out in fragmentation,
allocation and replication of data in distributed system. For
better understanding the data distribution Table 1, is having
all details showing about the achievements yearly wise. It
helps to categorizes different methodologies based on where
the decisions on distribution methods are carried out.

Above table targeted about how to promote performance by
introducing methodologies through their research time-to-
time. Continuous research on distribution methods shows
possibility of flaws and gaps in the earlier approaches
precluded. It is an effort for finding new techniques to
promote performance in DDBSs. Here, percentage and
frequency indicates the usability of data distribution
techniques and its ratio respectively. This act support
information about the overview of distributed design using
different techniques.

Based on the review of Table 1, it is concluded that
fragmentation is having less (32%) research work initiatives
to shape distributed system for better availability and
performance. As fragmentation is consider as first blueprint
in which other distribution techniques are depending on.
Here research on fragmentation, allocation and replication is
not carried out simultaneously by the researchers. All are
carried out separately causes some of the flaws and gaps are
still remains.

So, few researchers are having work on fragmentation issues
followed by allocation to reach up to an optimal solution.
Both are having impact on the design of DDBSs.

V. CONCLUSION AND FUTURE WORK

In this article, it is to address about the needs, problems,
hindrance and predecessor methodologies involved in the
design of distributed database system. With the continuous
expansion of network and increasing data requirements, there
is a need to work for affective optimal solutions and workout

for resolving various problems and hindrances in the form of
data inconsistency, query performance, communication error,
communication cost, availability and reliability of data etc.
Different techniques are depicted in Table 1, to show
information about researcher efforts in the field of
fragmentation, allocation and replication of data.

Future work is to work for techniques, models responsible to
perform effective data fragmentation, allocation and
replication to handle distributed workforce with optimal
results in comparison with existing methodologies.

REFERENCES
[1] A. Ahmad, “A Novel Replication Strategy for Large Scale Mobile

Distributed Database Systems”, Journal of Engineering Science and
Technology, Vol. 6, No. 3, pp. 268-299, 2011.

[2] D. Rane, M.P Dhore, “Overview of Data Replication Strategies in
Various Mobile Environment”, IOSR Journal of Computer
Engineering, pp. 01-06, 2016

[3] H. I. Abdalla, “An Efficient Approach for Data Placement in
Distributed Systems”, Fifth FTRA International Conference on
Multimedia and Ubiquitous Engineering, pp. 297-301, 2011

[4] H. I. Abdalla, “A New Data Re-Allocation Model for Distributed
Database System”, International Journal of Database Theory and
Application, Vol. 5, No. 2, pp. 45-60, 2012.

[5] H. Rahimi, F. Parand, “Hierarchical Simultaneous Vertical
Fragmentation and Allocation using Modified Bond Energy
Algorithm in distributed databases”, Applied Computing and
Informatics (14), pp.127-133, 2018

[6] H. A. Fuaad, A. A. Ibrahim, A. Majed and A. Asem, “A Survey on
Distributed Database Fragmentation, Allocation and Replication
Algorithms”, British Journal of Applied Science and Technology,
27(2): pp.1-12, 2018

[7] H. Abdalla, A. M. Artoli, “Towards an Efficient Data Fragmentation,
Allocation, and Clustering Approach in a Distributed Environment”,
Information, Vol 10, No.112, 2019

[8] I. B. Oriji, I.C. Ejiofor, “A Hybrid Model for Data Fragmentation in
Distributed System”, International Research Journal of Computer
Science, Issue 04, Volume 5, pp. 186-192, 2018

[9] J. O. Hauglid, N. H. Ryeng, K. Norvag “DYFRAM: Dynamic
Fragmentation and Replica Management in Distributed Database
Systems”, Distributed Parallel Databases, pp 157–185, 2010.

[10] K. K. Ezechiel, S. K. R. Agarwal, “A Systematic Review on
Distributed Databases Systems and their Techniques”, Journal of

2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE)
December 11–12, 2019, Amity University Dubai, UAE

543

Theoretical and Applied Information Technology, Vol. 96, No. 1,
236-266, 2019

[11] N. K. Z. Lwin, T. M. Naing, “Non-Redundant Dynamic Fragment
Allocation with Horizontal Partition in Distributed Database System”,
ICIIBMS, Bangkok, Thailand, pp.300-305, 2018

[12] Peng Peng, Lei Zou,Lei Chen,Dongyan Zhao,“Adaptive Distributed
RDF Graph Fragmentation and Allocation based on Query
Workload”, IEEE Transactions on Knowledge and Data Engineering,
Vol. 31, No. 4, pp. 670-685, April 2019

[13] Rizik M. H. Al-Sayyed, D. Suleiman, M. A. A. Itriq, I. Hababeh,“A
New Approach for Fragmentation and Allocation to Improve the
Distributed Database Management System Performance”, Journal of
Software Engineering and Applications, Vol. 7, pp. 891-905, 2014.

[14] S. Tarun, ”A Reputation Replica Propagation Strategy for Mobile
Users in Mobile Distributed Database System”, International Journal
of Grid and Distributed Computing, Vol. 5, No. 4, 2012.

[15] S. I. Khan, ”Efficient Partitioning of Large Databases without Query
Statistics”, Database System Journal, pp. 34-53, 2016.

[16] S. I. Khan and A. S. L. Hoque, “A New Technique for Database
Fragmentation in Distributed System”, International Journal of
Computer Application, Vol. 5, No. 9, pp. 20-24, 2010.

2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE)
December 11–12, 2019, Amity University Dubai, UAE

544

Distributed Systems Design Issues,

Challenges and Weaknesses: A Review

Sashi Taruna,1, Ranbir Singh Batthb, Sukhpreet Kaurc

aResearch Scholar, School of CSE, Lovely Professional University, Punjab
bSchool of Computer Science & Engineering, Lovely Professional University, Punjab

cDeptt. of CSE, Chandigarh Engineering College, Chandigarh

Abstract. It has now become simple to build or operate on large distributed

systems due to the continuous advancement of connectivity technologies, network
software, high computing components, and storage space. Good system designs

pave a lot for end-users and allow them to operate with high data reliability,
availability, and accuracy in a diverse environment. But now, in the technical

architecture of a distributed structure, several small but important bottlenecks

influence workforce performance. For better scope, it is necessary to put more
stress on some of the vulnerabilities that stop distributed systems from detracting

their efficiency. This article stresses some of the issues, challenges, and

weaknesses of the distributed system and brought into knowledge the need for

system tuning to build a robust system.

Keywords. distributed, bottlenecks, reliability, availability, consistency,

workforce, efficiency

1. Introduction

Through these features distributed structures are derived:

a) It is a combination of nodes or sites working autonomously and having their local

memory [1-2].

b) All nodes are communicating with each other by different message-passing

schemes [3-4].

c) All nodes are geographically dispersed in nature [5].

Figure 1. Distributed System

Maintaining of data and its retrieval depends on the planned architectural design of

distributed systems. It indicates how data is organized in a diverse environment and

makes it easy to retrieval and usefulness to others. A good design work towards users'

satisfaction level and propose how data is being distributed among all the sites to

achieve data availability, reliability, and consistency. For getting data, a query

processor has to depend on more than one node and result to delay in query processing

and degrade system performance. Earlier, users were stationary, but with technological

advancement, everyone in their network can access their resources from anywhere,

anytime. Good system design satisfies end-users by responding to their diverse queries,

providing distributed analysis services, and helping in building effective application

interfaces for a diverse environment. In a centralized system design data or

information, extraction is from one location. Reduction in overall performance, disrupt

data communication, hold long-wait, high-latency, massive storage to maintain data,

and high maintenance cost is some problems encountered in central storage.

Alternatively, decentralized systems divide data into different sites in a connected

network. In this connected arrangement all nodes can access data from each site equally

without scheduling or any access priority.

A distributed system is the step towards designing a system to support a diverse

application environment and involves fragmentation [6], allocation [7], and replication

processes to build it effectively [19]. Fragmentation partition the data depending on

users' access patterns. Allocation is for the placement of partitions into geographical

sites. Replication is to achieve consistency and availability of data in each site by

propagating changes over distributed sites.

Over time several designs were proposed to overcome existing problems in the

distributed systems. Proposed techniques were added to the existing design to

strengthen and overcome the prevailing challenges. These architectures focus on

improving issues such as scalability, data processing flexibility, and effectiveness of

communication, regulate efficiency, robustness, and achieve resource sharing. Existing

architectural designs of the distributed environment are discussed below in table 1.

Table 1. Existing Distributed Architectural Design

S.No.

Distributed

Architectural

Design

Responsibilities Limitations

1

Distributed
Agent-Based

Architecture [8]

This architecture is having self-organizing

features and is responsible to automate

different grid operations and perform changes
on its topology or configuration itself. To

achieve self-organizing behavior Multi-Agent

System (MAS) architecture was proposed.
These agents are autonomous, loosely

connected in nature, and interact with each

other for solving any problem, which is beyond

the capacity of the problem solver.

Centralized distribution

systems are not capable of
avoiding earlier issues

such as increased

communication saturation,
component up-gradation,

and their mapping, slower

decision rate, etc.

2

Distributed

Adaption
Systems

Architecture [9]

This system was helpful to improve the

efficiency, robustness, and scalability in

heterogeneous environments. In this system,
the adaptation engine watches the execution

and activates the active adaptation system in

case of detection of any differences.

Adaptive distributed

applications are not

addressed in earlier

research.

3

Distributed
Access

Control

Architecture

[10]

This architecture addresses all concerns related
to security challenges in cloud computing. This

architecture is implemented for multitenant and

virtualized environments so that sharing of

physical resources can be controlled.

This research is to tackle

untrusted tenants who

further result in
unauthorized information

flow and risk of side-

channel attacks.

4

Symmetric

Distributed
Server

Architecture

[11]

This architecture believes in using workstation

servers in place of large mainframes. This

approach is to manage thousands of

devices/nodes in a large geographically
dispersed environment. Here message bus is

responsible to establish communication
between the devices and integrated them at a

lower cost.

Earlier approaches were
not effective to use the

network as a whole. It is

not effective for
communication in wide

geographical distributed
systems and expensive due

to the dependency of the

large mainframe.

5
ReDy
Architecture

 [12]

This architecture is flexible to work in large-

scale applications. In a distributed system, this
solution guarantees scalability, fault tolerance,

and dynamicity to achieve performance in the

system.

Due to dependency on the
integration of applications

in the distributed system

complexity is increasing
day by day. To achieve

expandability, efficacy,

trustworthiness, flexibility,
and effectiveness it is

necessary to tightly

integrate all processing,
communication, and

control technologies.

6

Lambda
Architecture

[13]

Lambda Architecture is an approach to tackle
the limitation of the existing CAP theorem.

According to the CAP theorem data in the

distributed environment satisfy only two states
either consistency with availability, or

consistency with partition tolerance, or

availability with consistency, or availability
with fault tolerance, or fault tolerance with

consistency, not as a whole in together.

Existing CAP theorem

work for only two states

out of three states.

7

Microservices
Architecture

[14]

This architecture is a way to decompose any

large system into modules architectural
patterns. Each module communicates using an

interface called Application Programming

Interface. This architecture is a solution to
achieve scalability. In comparison to

monolithic, this architecture does not affect the

functions of large applications due to the
failure of a single module. Programs codes are

smaller and easy to deploy.

This was limited only to

defeat the problems of

conventional monolithic

structural design.

The proposed paper explores all prevailing challenges, weaknesses, and issues

involves in the designing of a distributed system. An upcoming section highlights

obstacles in tuning distributed design, challenges, weaknesses, and issues involved in

the distributed design process. In the end, suggestions to overcome the prevailed

challenges are highlights showing different design aspects of distributed heterogeneous

system.

2. Motivation

To work in a widely distributed environment it is necessary to deals with various

factors equally responsible to strengthen the system design. They are resource sharing,

computation speedup, throughput, performance, reliability, and communication, etc.

Despite the diversity, some prevailing flaws need to work upon and seem to be an

obstacle in the designing of a distributed system. To make distributed design more

efficient and effective it is necessary to work on and to highlight all key factors

responsible to shape geographically dispersed setup.

3. Related Work

Efforts were given by the researcher to build a distributed system more effectively so

that issues, challenges, and weaknesses up to some extent can be resolved. To achieve

performance, reliability, availability, efficiency, robustness, and security in a widely

distributed environment researchers depend on different architectural designs as

discussed in [15] but due to network spreading, and increasing data behavior

distributed systems become complex. It is essential to design a distributed network of

self-balancing intelligent nature to avoid distributed environment problems. An

unsupervised machine learning algorithm follow similarity-based-threshold segments

scheme was implemented to fragment twitter textual data into distributed environment

to handle data of different size in rows [16]. For building multimedia applications in a

distributed system issues of networking and data management were resolved in [17].

To do this, there is a need to strengthen the storage of data in the networking

environment because the process gets affected during the integration of information

among sites in [18]. Work on Distributed Real-Time (DRT) applications was

conducted and is found that it has become difficult to implement the same on the

distributed system (DS) due to the existing design structure. As an outcome, a

structural blueprint of distributed real-time applications was proposed in [20]. An

algorithm as Weighted Least Connections (WLC) was proposed to perform load

balancing to improve the performance in a distributed system-based web server in [21].

Distributed system software issues, challenges, and problems are also highlighted by

[22]. It was also highlighted the growing real-world interest in the exercise of the

industrial IoT techniques with distributed system to achieve high performance in the

existing design [23]. Work on the importance of design patterns to the developers for

resolving recurring problems was also highlighted in [24].

4. Distributed Design Tuning Obstacles

Researchers put forth a lot of effort to enhance and regulate the performance of the

existing distributed system. Despite of this, there are obstacles in system design that

affect the tuning progression. It has been very problematic to build an efficient

distributed architecture and to improve the performance part in such situations as

depicted below:

a. It has become difficult in a distributed processing environment to achieve an

exact working view of the system due to the involvement of multiple

components in the execution of tasks in a distributed environment.

b. To achieve distributed tuning, log details and metrics play a key role to

strengthen the working environment. As resource consumption is not limited to

individual components but involves multiple sharing of components among

nodes. As a result, integration of log details or viewing different metrics

collectively in a single place belonging to different nodes is a serious concern.

c. It has become difficult to know which component needs to be monitored and

when to increase during load to achieve performance in a distributed system.

d. Cascading failures are hard to solve. Component Failure propagates to other

connected components and reduces traceability and handling of problems (fault,

failure or errors) becomes complicated.

5. Issues in the Design of Distributed System

An issue indicates about lacks in the progression of process involved. So, Overhaul on

the existing design strategies will facilitate us to enhance the performance of a

distributed environment include:

a. Incomplete network information: Unawareness about network infrastructure is a

big hurdle for designing a distributed system. So, complete knowledge of the

architectural design is required to design the robust system.

b. Scalability/Expandability: In a distributed environment this feature enables us to

enlarge the existing design architecture by adding other network nodes to increase

the network size. It not only for increasing the network size but also

accommodates data items into existing network sites/nodes wherever applicable.

c. Load balancing: This is to distribute the data equally among sites to increase the

throughput. In this, the load balancer equally looks into the scheduling part so that

requests are responded to time without any delay. Load on sites depends on the

number of user's login for regular transactions and sometimes, new sites are added

to the system and the state of the distributed system rapidly changes.

d. Data availability and its consistency: Placement of data items into different sites

should be in such a way that maximum responses can be satisfied. In case of

change on any data items, the same changes need to propagate into other sites to

maintain consistency. In a concurrent environment query satisfaction level can be

handled by effective scheduling strategy or by providing relevant data from the

available nodes at a low cost.

e. Maintenance: Design architecture should be in maintainable capacity. So that

changes in the logical structure and further addition of new features to increase its

functionality can be satisfied.

f. Concurrency: Mobile users during their mobility simultaneously apply data

requests to data sites. In such an environment propagating changes dynamically

and handling concurrent requests from every corner is a big challenge.

g. Data Deduplication: Having duplicate copies of data in the geographical sites not

only creates confusion or ambiguity situations but also increases existing storage

space. It is equally responsible to degrade the performance of the systems because

it will take more time to parse each data record in relation. As a result, queries

results are not showing any relevancy due to data duplicity.

6. Challenges in Distributed System Design

Challenges are the trends and directions to the system designer's, the researchers to

continuously work towards the improvement of existing challenges that affect

distributed system design are:

a. Data Incompleteness: Non-availability of whole data at nearby sites from the

requested site in response to any query. It slows the query response time and

throughput. This challenge came into existence when data availability is not on the

requested site.

b. Bugs Issues: Distributed bugs create hurdles in the system performance of the

system by decreasing the response time of any request. These bugs spread

themselves like an epidemic within the network of computers and slow down data

flow in the channel. They make the whole network busy and affect network

efficiency.

c. Implementation Cost: Designing and implementation a distributed system are

very expensive and not bearable to small organizations thinking to avail or hire

their services.

d. Network Untrustworthiness: It disrupts the communication progress between

two or more ends during the fetching of data. This unreliability of the network

indicates:

i. The request may be queued and has to wait for their turn.

ii. Chances of request loss in the network.

iii. Response node may have any fault, failure situation

iv. Network overloading results delayed in response

v. Network partition problems divide the whole network into two

fragments/partitions. As a result, the response from the other side is not in

a position to reach the source, where the request generates.

e. Latency: In a widely distributed network, deterioration in data during the

transferring of data or information from one place to another indicates a latency

issue. As enterprises thought about migration of their valuable services into

distributed environment structure but network latency issue not able to lead this

operation because migration activity involves backup and restore operations and

found not flexible in disaster recovery in an emergency due to its speed.

f. Data Synchronization: Changes took place in geographical sites needed to

propagate all network sites to maintain the correctness, availability, and reliability

of data. But, due to variation in the hardware configuration i.e. clock pulse minor

calibration differences are found, as a result, the system might refuse to sync with

others. It is impossible to take care of one global notion of the same clock time.

This results in the inconsistency of data at each node. On the other side, network

delay and network gateway/firewall equally responsible to affect the data

synchronization process.

g. Fault Tolerance and overloading: To establish reliability in a large geographical

disperse system fault tolerance methods play an important role. It is maintained by

applying a dynamic replica propagation strategy, resilience in hardware resources

so that corrective operations can be performed, check pointing on redundant data

to recover the system during any fault, failure, or error by restoring the system to

the previous checkpoint status. Overloading shows an imbalance in the functioning

and degrades the performance of the system. There is a need for a good fault-

tolerant system, which carefully examines the reason for failures and responds for

the same.

h. Distributed tracing: We are rapidly going towards an environment that is

increasingly dynamic and dispersed. This means that distributed tracing is

extremely important. And distributed monitoring is something that makes

managing dynamic structures convenient for you.

7. Major Weaknesses of Distributed Design

In distributed environment forecast about the lifetime of any system is unpredictable.

Success depends upon wrapping up every component of the distributed system in the

present and future scenarios. But despite imparting the best measures still, there is a

need to work out some weaknesses. Some of them are discussed below:

a. Lack of vision: Time-Based Replication scheme introduces many such mistakes

that further resulted in inefficiency, insecurity, and costly to maintain data in a

distributed environment. But with modern mathematics approaches such as the

Paxos algorithm resolve such hurdles up to some extent.

b. Lack of Effective Software: As a distributed environment is an existence of

different machines working for a sophisticated environment where systems are

communicating or interacting simultaneously for their task completion. It is

difficult to deliver refined programs that enable us to react in different situations

like route-finding during congestion, the network goes down, and security issues in

a distributed environment. As data access is for all users in the system so

safeguarding of data from collusive attack prevails there.

c. Lack of Self-Management Self-Control System: Such a system is responsible to

configure, heal, and optimize machine and network services to make them

functional in disrupting situations. Configuring is all about the removal or adding

of any existing resource or new components. Healing is for automatically finding,

identifying, restricting, and regain due to the event of any fault, failure, or error.

Optimization refers to the tuning of existing processes and proactively reacts in

different conditions.

d. Lack of Legal Jurisdiction: Users' freedom to use different resources intended for

and performs transactional activities to maintain their data. Business services

accessed from outside required some government bodies who intervene in legal

disputes related to data security, privacy, its ownership, rights on intellectual

property, and auditing in case of any complicacy.

e. Global status of Knowledge: Every node is having its memory for maintaining

personal as well as other data or information. In such a case, it is not easy to keep

track of the worldwide status of the complete distributed environment. Every

process execution involves in the distributed environment prove a coherent vision

of the system but in real it shows a limited observation of the system.

8. Overcoming Distributed Design Challenges

After analysis it is concluded that designers and researcher’s has to participate with

their sincere efforts to overcome design challenges to construct a flexible dispersed

structural design. This can be possible by the inclusion of the following suggestions

and are discussed below:

a. Distributed architectural design is having an access control mechanism to more

strengthen their security part.

b. Distributed architecture should be designed in such a way that communication and

integration between connected components can be easily managed at a low cost.

c. Distributed systems should have scalability features. Modularization is one way to

achieve scalability. It allows dividing large systems into independent parts and

enabling easy deployment of services without loss or failure.

d. Distributed systems design should have the capability to control error rates and

other communication issues by using an automated approach. This is all about

introducing self-organizing, adaptive features in the distributed design architecture

to detect any difference to improve the working environment.

e. Distributed design should have less dependency on join queries to access dispersed

data. By this data, retrieval can be achieved without delay.

f. Distributed design architecture is mostly affected due to high operating and energy

consumption costs. Different design projects are practically failed due to the

inefficiency of handling overall costs. So, design architecture should be based on

the least-cost strategy and capable to work efficiently.

Conclusion

This paper concludes all alarming issues, challenges, and weaknesses prevailed in the

distributed design systems. Efforts in the field of expandability, network applications,

robustness, data management, security, and reliability are the chief agenda these days

to build the robust design. Due to changes in the behavior of network users, data size,

and technological development trends it has now become easy to overcome bottleneck

issues and burdens involved in the progression of operation or event. So, to build an

optimal system it is required to inculcate above design factors to overcome such

occurrence in near future. As future work, there is a need to introduce an adaptive

approach for the reduction of total cost to strengthen the allocation process in

distributed environment and cover most of the above bottlenecks.

References

[1] Andrews, Gregory R. Foundations of Multithreaded. Parallel and Distributed Programming. Addison–
Wesley. 2000. p. 8–9 291. ISBN 978-0-201-35752-3.

[2] Ghosh, Sukumar. Distributed Systems – An Algorithmic Approach. Chapman & Hall/CRC. 2007.

p. 3. ISBN 978-1-58488-564-1.
[3] Andrews, Gregory R.. Foundations of Multithreaded. Parallel and Distributed Programming. Addison–

Wesley. 2000. p. 291. ISBN 978-0-201-35752-3

[4] Ghosh, Sukumar. Distributed Systems – An Algorithmic Approach. Chapman & Hall/CRC. 2007. p.
3. ISBN 978-1-58488-564-1

[5] Lynch, Nancy A.. Distributed Algorithms. Morgan Kaufmann. 1996. ISBN 978-1-55860-348-6.

[6] S. Tarun, R. S. Batth and S. Kaur. A Review on Fragmentation, Allocation and Replication in
Distributed Database Systems. 2019 International Conference on Computational Intelligence and

Knowledge Economy (ICCIKE). Dubai. United Arab Emirates. 2019. p. 538-544. doi:

10.1109/ICCIKE47802.2019.9004233
[7] Ranichandra, C., Tripathy, B.K. Architecture for distributed query processing using the RDF data in a

cloud environment. Evol. Intel. . 2019. https://doi.org/10.1007/s12065-019-00315-5

https://archive.org/details/foundationsofmul0000andr
https://en.wikipedia.org/wiki/Addison%E2%80%93Wesley
https://en.wikipedia.org/wiki/Addison%E2%80%93Wesley
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-201-35752-3
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-58488-564-1
https://archive.org/details/foundationsofmul0000andr
https://en.wikipedia.org/wiki/Addison%E2%80%93Wesley
https://en.wikipedia.org/wiki/Addison%E2%80%93Wesley
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-201-35752-3
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-58488-564-1
https://en.wikipedia.org/wiki/Nancy_Lynch
https://archive.org/details/distributedalgor0000lync
https://en.wikipedia.org/wiki/Morgan_Kaufmann_Publishers
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1-55860-348-6
https://doi.org/10.1007/s12065-019-00315-5

[8] K. Saxena, A. R. Abhyankar, Distributed architecture for self-organizing smart distribution systems, in

IET Smart Grid. 2018. vol. 1. no. 4. p. 113-122. 12. https://doi.org/10.1049/iet-stg.2018.0029.

[9] Zouari M., Segarra MT., André F., Thépaut A. An Architectural Model for Building Distributed
Adaptation Systems. In: Brazier F.M.T., Nieuwenhuis K., Pavlin G., Warnier M., Badica C. (eds)

Intelligent Distributed Computing V. Studies in Computational Intelligence. 2011. vol 382. Springer.

Berlin. Heidelberg. https://doi.org/10.1007/978-3-642-24013-3_15
[10] Yuan P, Liu P, Wu B, Jin H, Zhang W, Liu L. TripleBit: a fast and compact system for large-scale RDF

data. Proc VLDB Endow. 2013. 6(7). p.517–528.

[11] A. Almutairi, M. Sarfraz, S. Basalamah, W. Aref and A. Ghafoor. A Distributed Access Control
Architecture for Cloud Computing. IEEE Software. 2012. March-April. vol. 29. no. 2. p. 36-44.

https://doi.org/10.1109/MS.2011.153.

[12] Slimani Y., Najjar F., Mami N.. An Adaptive Cost Model for Distributed Query Optimization on the
Grid. In: Meersman R.. Tari Z.. Corsaro A. (eds) On the Move to Meaningful Internet Systems 2004:

OTM 2004 Workshops. OTM 2004. Lecture Notes in Computer Science. 2004. vol. 3292. Springer.
Berlin. Heidelberg. https://doi.org/10.1007/978-3-540-30470-8_26

[13] Trung A. D. Big Data: Lambda Architecture in a nutshell. gitconnected. 2020. Oct 9.
https://levelup.gitconnected.com/big-data-lambda-architecture-in-a-nutshell-fd5e04b12acc

[14] Joe N. What are microservices?. cloudacademy. 2019. April 10.
https://cloudacademy.com/blog/microservices-architecture-challenge-advantage-drawback/

[15] Weiss C, Karras P, Bernstein A. Hexastore: sextuple indexing for semantic web data management. Proc

VLDB Endow. 2008. 1(1). p.1008–1019.

[16] Sashi Tarun, Ranbir Singh Batth, Sukhpreet Kaur. A Novel Fragmentation Scheme for Textual Data
Using Similarity-Based Threshold Segmentation Method in Distributed Network Environment.

International Journal of Computer Networks and Applications (IJCNA). 2020. 7(6). p. 231 – 242.DOI:

10.22247/ijcna/2020/205322.
[17] Das S, Agrawal D, El Abbadi A. G-store: a scalable data store for transactional multi key access in the

cloud. In Proceedings of the 1st ACM symposium on cloud computing. ACM. 2010. p.163–174.
[18] Lu X.. Symmetric Distributed Server Architecture for Network Management System. In: Zhou X.. Xu

M., Jähnichen S., Cao J. (eds) Advanced Parallel Processing Technologies. APPT 2003. Lecture Notes

in Computer Science. 2003. vol. 2834. Springer. Berlin. Heidelberg. https://doi.org/10.1007/978-3-540-
39425-9_50

[19] S. Tarun. Reputation Replica Propagation Strategy for Mobile Users in Mobile Distributed Database

System. International Journal of Grid and Distributed Computing. 2012. vol. 5. no. 4. p. 55-64.
[20] A. Valadares, C. V. Lopes. A Framework for Designing and Evaluating Distributed Real-Time

Applications. 2014 IEEE/ACM 18th International Symposium on Distributed Simulation and Real-

Time Applications. Toulouse. 2014. p. 67-76. https://doi.org/10.1109/DS-RT.2014.17.
[21] Y. Jiao, W. Wang. Design and Implementation of Load Balancing of Distributed-system-based Web

Server. 2010 Third International Symposium on Electronic Commerce and Security. Guangzhou. 2010.

p. 337-342. https://doi.org/10.1109/ISECS.2010.81.
[22] K. S. Mishra, A. K. Tripathi. Some issues challenges and problems of distributed software system. Int.

J. Comput. Sci. Inf. Technol.. 2014. vol. 5. no. 4. p. 4922-4925.

[23] K. Iwanicki. A Distributed Systems Perspective on Industrial IoT. 2018 IEEE 38th International
Conference on Distributed Computing Systems (ICDCS). Vienna. 2018. p. 1164-1170.

https://doi.org/10.1109/ICDCS.2018.00116.

[24] H. Jiang, D. Liu, X. Chen, H. Liu, and H. Mei. How Are Design Patterns Concerned by Developers?.
2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings

(ICSE-Companion). Montreal. QC. Canada. 2019. p. 232-233. https://doi.org/10.1109/ICSE-

Companion.2019.00090.

https://doi.org/10.1049/iet-stg.2018.0029
https://doi.org/10.1007/978-3-642-24013-3_15
https://doi.org/10.1109/MS.2011.153
https://doi.org/10.1007/978-3-540-30470-8_26
https://levelup.gitconnected.com/big-data-lambda-architecture-in-a-nutshell-fd5e04b12acc
https://cloudacademy.com/blog/microservices-architecture-challenge-advantage-drawback/
https://doi.org/10.1007/978-3-540-39425-9_50
https://doi.org/10.1007/978-3-540-39425-9_50
https://doi.org/10.1109/DS-RT.2014.17
https://doi.org/10.1109/ISECS.2010.81
https://doi.org/10.1109/ICDCS.2018.00116
https://doi.org/10.1109/ICSE-Companion.2019.00090
https://doi.org/10.1109/ICSE-Companion.2019.00090

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/205322 Volume 7, Issue 6, November – December (2020)

ISSN: 2395-0455 ©EverScience Publications 231

RESEARCH ARTICLE

A Novel Fragmentation Scheme for Textual Data

Using Similarity-Based Threshold Segmentation

Method in Distributed Network Environment

Sashi Tarun

School of Computer Science and Engineering, Lovely Professional University, Phagwara, India.

sashitarun79@gmail.com

Ranbir Singh Batth

School of Computer Science and Engineering, Lovely Professional University, Phagwara, India.

ranbir.21123@lpu.co.in

Sukhpreet Kaur

Department of Computer Science and Engineering, Chandigarh Engineering College, Mohali, India

sukhpreet.4479@cgc.edu.in

Published online: 25 December 2020

Abstract – Data distribution is one of the most essential

architectures of any serving network. Data storage and its

retrieval depend a lot on how the data is organized in the

distributed environment. With the fast development of

technology, the requirements of users have also changed. A user

who was stationary earlier has become mobile now and requires

access to the data from anywhere in the world. An unorganized

data structure will result in output delay in the network and may

further result in user migration from one service provider to

another service provider. Data fragmentation is one of the most

essential parts when it comes to data storage. Organized data

always gives convenience to others to use it conveniently. Due to

the vast collection of data extraction of information in a fast

manner is very complicated. So, to achieve performance in a

distributed system an optimal strategy is required to overcome

previous lapses and serves the maximum number of users in a

wide geographical network. This research paper proposes a

novel relative based fragmentation method that analyses the

attributes of the data in relative architecture and is helpful to

achieve query performance with better speed and accuracy. To

assess the current proposed work a comparison has been drawn

between k-means dependent cosine similarity measurement and

hybridization of cosine and soft-cosine partition methods for

data partitioning. Mentioned results in the article shows that the

proposed similarity-based threshold segmentation method

outperforms the existing in terms of partitioning strategy,

precision, and recall parameters to achieve performance.

Index Terms – Fragmentation, K-Means, Similarity, Data

Partitioning, Threshold, Segmentation, Precision, Recall.

1. INTRODUCTION

A distributed system refers to the use of independent

computers engaged to share various resources in the

connected networks. A good distributed design is having the

capability to cover each data-items requirement raised by the

users. Users looking for desire data or information, using

different query angles. Some of them focus on data-items

belonging to a single table or a combination of more than one.

From different angles, user queries are classified as fine and

coarse-grained, single database or multi-database, and follow

a collective and selective approach to reach required data [1].

If knowledge grows at a rapid rate day by day, design

architecture should be scalable to handle vast amounts of

information in the future.

The mechanism of fragmentation, allocation, and

deduplication of data is associated with improving data in a

distributed network. Proper utilization of available storage

space is achieved by dividing the large global data into small

independent parts called fragments or segments [2]. These

independent segments help to reduce the load in a widely

distributed environment as compared to accessing data from a

single large data schema. With distributed systems, issues

such as scalability, data availability, security, searching speed,

and inconsistency of data can be easily managed. It has

become difficult to work with a single large data system and

to entertain millions of users simultaneously with high data

accuracy.

The growth of cloud computing, VANET, OPPNETs is the

product of parallel technology, software technology, and

network infrastructure innovations [3-4]. This is a new form

of a computer model that provides users with the data,

applications, and various IT resources through the network as

a service without delay in the exchange of information [5].

Cloud computing can be considered as a kind of infrastructure

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/205322 Volume 7, Issue 6, November – December (2020)

ISSN: 2395-0455 ©EverScience Publications 232

RESEARCH ARTICLE

management tool, resource management through

virtualization technology, which consists of a large capacity

resource pool. Cloud users will send requests through the

network and then receive the service. In which dynamically

deploy, modify, and reconfigure the resource pool, and cancel

the operation, etc are included [6].

The availability of numerous services over the Internet is

cloud computing. These assets include data processing

software and apps for records, servers, computers, networks,

and tablets. You can store files in cloud-based storage in an

external database rather than storing them on your hard drive

or local storage unit. Tools and data resources can be used as

long as an electronic device has access to the Internet. Cloud

storage is referred to as such because it is possible to remotely

recover the stored information in the data or a virtual space.

On remote servers, cloud service providers allow users to

store files and programmes and then access all data online.

This means that the user does not have to be in a certain

position to use it in order to be able to function remotely.

Cloud storage is a popular choice for individuals and

businesses for many reasons, including cost savings,

increased efficiency, quality and efficiency, reliability and

security [7].

The key aim of this study is to implement a new

fragmentation architecture suitable for scalable question

addressing in the distributed network world in terms of textual

data. Earlier data fragmentation was based on empirical data

and far-reaching to get the desired result. This approach

introduces a novel relative-based fragmentation architecture

where there is no ground reality and similarity calculations are

carried out on the textual data to reach the conclusive result

using vector calculations. This paper uses a mixture of

similarities of cosine, soft cosine, and hybrid similarity as a

differentiation between the entities of data for partitioning.

Existing design not proved to be effective on diverse data

trends include textual data context. Earlier techniques focus

on finding similarities between more than one documents but

this technique is responsible to find the similarity in the

relation itself by comparing each row to one another and

apply similarity calculation on vector values. So, there is a

need to depend on the required strategy suitable for a diverse

environment with adaptive nature.

As follows, the paper is structured. The classification of data

is in the form of a category based on related attributes is

addressed in Section Segmentation. Section Similarity

Measures helps to discover the relationship between the rows

in relation or two data-items using Cosine, Soft Cosine

similarity, and hybrid similarity. In the proposed methodology

section steps are evaluated one by one i.e. selection of dataset,

stop word removal, word-to-vector conversion,

implementation of cosine, soft-cosine, and hybrid similarity,

determination of initial centroid of the dataset used, Euclid

distance calculation, finding centroid positions for each

cluster, creating fragmentation, and validating the fragments

using machine learning and neural network are included. The

outcomes and discussion of the research work section is

included to illustrate the feasibility of the work proposed.

Comparative analysis is done at the end of the section to

equate the new model with the current scheme.

1.1. Segmentation

Segmentation is the method of collecting data with similar

properties or separating cloud data into smaller, coherent, and

interconnected areas. Text segmentation is a process by which

a document is split into smaller parts, typically called

segments. It is used extensively in word-processing. These

segments are classified as word, phrase, subject, sentence, or

any unit of information, depending on the task of the text

analysis. The method of removing coherent blocks of text is

Text segmentation. The section is called the boundary section

or passage.

There are several explanations of why a split document could

be useful for the analysis of the text. One explanation for this

is that it is smaller and more coherent than whole documents.

Segmentation of text is a big problem when it comes to

obtaining information. It aims to divide a text into

homogeneous segments i.e. segments with the following

characteristics: (a) each segment has a particular topic and (b)

adjacent segments deal with different topics. These segments

can be traced as appropriate to a query from a broad base of

unformatted or loose text [8].

1.2. Similarity Measures

When there is available ground truth for the clustering then

the similarity value will be evaluated through the ground truth

of the cluster or region but when there is no ground truth of

the region or cluster then the ground truth becomes radical

and hence similarity measures are calculated through vector

calculation. Discourse is the measurement of the equivalence

of two pieces of evidence. In the sense of data mining, an

agreement is commonly defined as a gap along with the

dimensions describing the objects' properties. The degree of

similarity will be high if this distance is small; if a distance is

large, the degree of similarity will below. The similarity

measure is used in many ways, including plagiarism, asking

for a similar question previously asked about Quora,

collaborative filtering in recommendation systems, etc. A

similar measure may be described as the distance between

various points of data. While the similarity is a quantity that

represents the strength of the relationship between two data

items, the difference is between the two data items measuring

divergence. Three similarity measures are used in conjunction

in this study, namely Cosine, Soft Cosine similarity, and

hybrid similarity [9].

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/205322 Volume 7, Issue 6, November – December (2020)

ISSN: 2395-0455 ©EverScience Publications 233

RESEARCH ARTICLE

The resemblance is determined in the 0 to 1 [0, 1] scale.

 Relationship equal to 1 such that if X = Y

 Similarity is equal to 0, unless X is equal to Y

Where, X, Y are two different vector lists.

Similarity is arbitrary and relies extensively on the domain

and its use. Two fruits, for instance, are similar because of

color or height, or taste.

1.3. Cosine Similarity

Similarity is in general, a measure of similarity; that is, how

similar things are compared to similar things. One was with

the use of vectors, an equation for the computer. A vector is

literally a quantity which has both size and direction. A vector

is considered a 1-dimensional sequence in Computer Science.

The resemblance of cosine is a method used to calculate the

angle of cosine between them. The point product of the two

vectors is required for finding the angle between the two

vectors as shown in Figure 1. Measurement of cosine equality

assumes the uniform point sum of the two objects. By

determining the cosine relation, we will effectively attempt to

find the cosine of the angle between the two lines. The 0°

cosine is 1, and it is less than 1 for every other variable.

Therefore, it is an orientation and not a magnitude judgment:

two vectors with the same direction have a cosine similarity

of 1, two vectors with a 90° similarity of 0, and two vectors

with the same direction have a similarity of -1, irrespective of

their magnitude [10].

Cos θ =
𝐴. �⃗⃗�

‖𝐴‖‖�⃗⃗�‖

Figure 1 Similarity of Cosine

1.4. Soft Cosine Similarity

A soft cosine agreement tests attribute to the agreement. The

conventional criterion of Cosine conformity determined

similarity based on features determined by the model of

vector space (VSM), which are completely different from

each other. On the other hand, it can be a great advantage of

soft cosine similarity if one needs to use a criterion of

agreement that can help with the grouping or classification of

documents [11].

Figure 2 Learning Computer Architecture

Weight

Conversion

Supply

Training

Value

Store Processed

Value

Input Layer

Raw Data

Intake

Hidden Layer

Propagation of

Data into Data

Value

Test Data

Classify and

Predict

Duplication
Database

for

Relative

Value

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/205322 Volume 7, Issue 6, November – December (2020)

ISSN: 2395-0455 ©EverScience Publications 234

RESEARCH ARTICLE

1.5. Hybrid Similarity

In this similarity measures, the features of cosine similarity

and soft cosine similarity are combined.

1.6. Machine Learning

Machine learning (ML) is an artificial intelligence (AI)

technique that without specific programming provides devices

with the ability to learn and strengthen automatically.

Machine learning focuses on the development of computer

systems capable of viewing and learning knowledge

themselves. Based on the explanations we present, the

learning process begins with insights or data, such as

examples, direct knowledge or input, looking for data

patterns, and making informed future decisions. The key goal

is to allow computers learn automatically and adjust behavior

appropriately without human intervention or support [12]. ML

categorization is always undertaken as given below;

 Machine learning algorithm supervised

 Unsupervised Algorithm for machine learning

 Semi-supervised algorithm for deep learning

 Machine learning algorithm for strengthening [13]

The learning computer architecture (shown in Figure 2) works

completely on the relative information model. It learns from

what is provided to it. It is separated into the input layer, the

hidden layer, and the output layer into three parts. The input

layer takes the data as raw data and transforms it against the

specified goal label into a more understandable form. The

hidden layer propagates the meaning of the data and generates

the cross-validation training platform.

2. RELATED WORK

Several contributions were given by the researchers to build

the distributed system robust. It was noticed that the

researchers did not stress the efficacy of the proposed data

partitioning work and that it was important to strengthen it.

This issue arises due to methods of unsupervised data

partitioning. Some researchers have used clustering methods,

but the accuracy is lower because of the presence of

unsupervised algorithms, and it is important to use the theory

of similarity for clustering. K-methods are considered to be a

less popular clustering algorithm since clustering is too

difficult and costly to use than k-mean. The suggested

algorithm uses a standard deviation that decreases the overall

time for formulating the cluster by a simple k-mean. The

proposed solution splits the gap with the standard deviation of

the square root. This modified k-mean does even better than

k-mean and k-methods. Less time is needed to formulate the

clusters. But neither k-means nor k-methods also work on

very large-scale outcomes. The authors have not used any

kind of similarity measurement technique for distance

calculation between different types of data that results in poor

clustering performance, and it must be integrated with k-

means using optimization approaches [14]. Researchers

suggest a deep neural network such as CODEnnn (Code-

Description Embedding Neural Network). CODE does not fit

the textual resemblance, but includes code fragments and

high-dimensional vector field examples in natural language,

as well as associated vectors in the code fragment and the

accompanying definition. Code fragments associated with

natural language questions can be obtained by the associated

vector representation in accordance with their vectors. In the

queries that must be handled, the task could even be

semantically identified with the keywords. The researchers

did not include source code management structures in this

study to help symbolize, and the deep neural network is used

and limited for the basic benefit of information engineering

issues [15]. For image co-segmentation tasks, a new

clustering algorithm called salience-guided limited cosine

similarity clustering method (SGC3) has been proposed,

where a one-step clustering technique extracts the usual

foreground. In the method, the unsupervised significant prior

is used to direct the clustering mechanism's auxiliary

partition-level information. To ensure the robustness of the

noise and outliers in a given previous one the similarity

between the instance level and the partition level is used for

joint estimation. Eventually, the optimization of associated K-

means aims to successfully solve the objective function.

Experimental outcomes from two widely used data sets show

that the proposed solution has achieved successful

performance against the most mature distribution methods

[16]. A systematic experimental analysis of twenty-four

benchmark functions in a test suite. ABC (Artificial colony of

bees) is a very common and effective tool for optimization.

ABC still does however have a lack of convergence. In order

to further increase ABC convergence velocity, a new form of

ABC (CosABC) is proposed to pick better neighbors based on

cosine similarity. Under the direction of chosen neighbors, a

new solution search equation was applied to reduce the

constraint of ABC undirected search. There is a further

contrast with some of the most sophisticated algorithms to

check Cos-ABC supremacy. The related results of the

comparison show that Cos-ABC is efficient and competitive

[17]. To find similar knowledge for a user whose original

question cannot be addressed precisely, clustering-based

fragmentation is suggested. Approximation algorithms and

lookup tables are used to give a better shape to the distributed

system for supporting flexible query answering [18]. Work

for optimized fragmentation approach on each attribute was

conducted to know about their retrieval and update

frequencies in each site. And proposed a synchronized

horizontal fragmentation approach to reduce data locality

issues and total cost. In this work, if query (Q) is initiated

from multiple (M) locations, this query will be interpreted as

a separate query for each position with a different radio

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/205322 Volume 7, Issue 6, November – December (2020)

ISSN: 2395-0455 ©EverScience Publications 235

RESEARCH ARTICLE

frequency [19]. To achieve fragmentation an algorithm based

on agglomerative hierarchical clustering was introduced to

reduce the number of iterations. It mainly focused on the

minimization of transmission cost [20]. It is proposed to

render fragments vertically with an Updated Bond Energy

Algorithm (BEA). This algorithm utilizes attribute affinity

and seeks to create clusters of attributes and attributes that are

individually evaluated by the same query [21]. A hybrid

fragmentation approach for deductive database systems is

proposed as HFA for horizontal fragmentation and, RCA and

DVF for vertical fragmentation. This is a two-phase process

deductive database is fragmented using variable bindings and

dependency relationships represented by dependency graph

[22]. For the efficient partitioning of large datasets without

query statistics, MCRUD and MMF algorithms have been

suggested. It is suggested here that earlier partitioning

methods were not acceptable because there were no usable

statistics at the initial stage of the implementation of

distributed database query statistics. [23]. Work on frequent

access patterns (FAP) is given to reflect the behavior

workload to ensure the data integrity and ratio of

approximation. It presented a data structure that was based on

trees by utilizing the depth-first search (DFS) coding for

maintaining them as well as to manage newly entered queries

[24]. The fragmentation mechanism has recently been shown

to have a detrimental effect on the performance of negatively

exported processes. Finally, by merging Process Mining

(PM), Social Network Analysis (SNA) and Text Mining, the

fragmentation process and improved knowledge sharing

among port Community System (PCS) actors have been

improved so that process efficiency can be achieved [25].

Study on data fragmentation in the public and private sectors

is being carried out in order to hold information in a structural

archive in order to attain data security [26].

It is concluded that, continuous efforts were given to improve

partitioning strategies for distributed network environment.

Earlier, partitioning of data was not using query statistics but

later on the basis of the behavior of users’ frequent access

pattern has used to make partitions. Due to lack in picking

neighbors for the clustering and as a result query get affected

during response and suffered delay. So for effective

partitioning, information sharing between network nodes,

maintaining efficiency, controlling delay and balancing data

load a new scheme is required work for diverse environment.

3. PROPOSED METHODOLOGY

The steps are as follows:

i) Begin by uploading unlabeled Twitter data.

ii) Apply filtering of data by removing English Stop

Words.

iii) Apply word to vector operations.

iv) Apply similarity calculations on the set of row list.

v) Finding of initial centroid of data.

vi) Calculation of Euclid distance of each tweet.

vii) Finding the number of centroids.

viii) Creating fragments using K-Means.

ix) Validate the fragments using ML Training and

classify using a neural network.

To achieve this, we have followed further processes in

sequence. The step description of each process is provided in

the next sections. Each step is individually implemented in

Matlab R2016a.

3.1. Dataset Used

The dataset used for the proposed work is from the sample of

data and is accessible from [27] on 27.12.20.

The above-defined dataset consists of tweets in unlabelled

form, which needs to be segmented, and for segmentation. In

this dataset "text" column having 1048576 instances of data

out of that 93 instances are used for further implementation of

the relative fragmentation experiment.

3.2. Stop Word Removal

The foremost step is to filter English stop words. The list of

those stop words can be accessed from stop list [28] on

27.12.20.

The process of removing English stop words (as shown in

Figure 3) from the tweets helps to decrease the dimension of

the available data.

Figure 3 Stop Words Removal Process

Prepositions, articles, nouns, seem to be the most common

words in text documents, etc. These words do not provide

meaningful information about the text. Stop list words were

omitted from the text because certain words in information

retrieval (IR) software are not called keywords. For E.g. By

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/205322 Volume 7, Issue 6, November – December (2020)

ISSN: 2395-0455 ©EverScience Publications 236

RESEARCH ARTICLE

maintaining an English stop word dictionary, English stop

words are deleted from each text file in the data set [29].

For the removal of stop words, the code snippet is given

below in Figure 4.

Figure 4 Stop Word Removals and W2V Conversion

3.3. Word to Vector

Similarity is usually a test of similarity, i.e. how similar or

similar objects are compared. By using vectors, one method

of calculating similarity is. A vector is essentially a number

that has both direction and magnitude. A 1-dimensional

sequence is considered a vector in Computer Science. A way

to build a compact space of word vectors is Word2vec. It

takes as input a broad text corpus (tweets after stop words

have been removed) and assigns each word in the tweet a

vector. First a dictionary is generated and then the vector

representation of the terms is computed. Contextual proximity

based vector representation: the words in the text adjacent to

the same words (and thus have a similar meaning) in the

vector representation have indexes of high similarity. The

values of the vector after approximation (as seen in Figure 5)

are represented in the dataset for each row of words in column

5. Therefore, the next step is to evaluate the similarity index

of the data using three similarity measures named Cosine,

Soft Cosine, and hybrid similarity index. A detailed

description of these three measures is provided in the

upcoming sections.

Skip-gram and Continuous Bag of Words are the two primary

models in word2vec. In the Skip-gram model, terms are

predicted from a word in their context, and the most possible

word is chosen on the basis of the context in the CBOW

model. To get the output of the probability distribution of

each term, the output layer uses a softmax feature or a

combination of it. Input and output words are given in one-hot

encoding in these models, such that a single row is chosen W

when multiplied by the matrix W connecting the input and

hidden layers. Dimension N is the algorithm hyper parameter

and the qualified W-output matrix, since its lines contain

vector representations of terms. [30].

Figure 5 Vector Representation of the Word

To speed up the training of Skip-gram and CBOW models,

modifications are used softmax, such as hierarchical softmax

and negative sampling, which allow calculating the

probability distribution faster than in linear time from the size

of dictionary [31-32].

3.4. Cosine/ Soft Cosine / Hybrid Similarity Index

A document in the vector model is considered as an unordered

set of terms. Terms to retrieve information are the words that

make up the text to obtained essential or useful information.

Here Cosine similarity is applied to calculate the similarity

index for the uploaded document to the rest of the text in the

set. For example, if we have considered 100 rows in the tweet,

then the similarity (either cosine or soft cosine) is determined

by comparing the word vector to the rest of the 99 rows. In

this way for row 2, row3, row4………………………row 100,

have to be determined.

Input: Word to Vector data

Output: simvalue=Calculatecossim(v1, v2)

1. Calculatecossim(v1, v2) = [];

2. nume = 0; //numerator

3. deno=0;//denominator

4. deno1=0;

5. deno2=0;

6. for I = 1 v1.length

7. nume=nume+v1(I)*v2(I);

8. End for

9. for J = 1 v1.length

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/205322 Volume 7, Issue 6, November – December (2020)

ISSN: 2395-0455 ©EverScience Publications 237

RESEARCH ARTICLE

10. deno1=deno1+v1(J)^2;

11. deno2=deno2+v2(J)^2;

12. End for

13. deno=sqrt(deno1)*sqrt(deno2);

14. simvalue=nume/deno;

15. Return: simvalue as output

16. End function;

Algorithm 1 Cosine Similarity between Vectors

Algorithm 1 showing the functioning of cosine similarity, it is

represented by calculating the cosine angles between two

vectors v1 and v2. To do this, in relation each row is

compared with other rows using a vector list and use

numerator and denominator as a variable. It is calculated by

multiplying each vector with one another row-wise

sequentially and stores their result in nume variable. And deno

is calculated by multiplying by the square root of deno1 and

deno2. deno1 and deno2 is the square of v1 and v2

respectively. In the end, simvalue is calculated by the division

of nume and deno.

Input: Word to Vector data

Output: sc=Calculatesoftcosine(v1, v2)

1. Calculatesoftcosine(v1,v2)=[]

2. sc=0;

3. num=0;

4. for I = 1 v1.length

5. for J = 1 v2.length

6. num=num+ v1(I)*v2(J);

7. End for

8. End for

9. avalue=0;

10. bvalue=0;

11. for I = 1 v1.length

12. for J = 1 v1.length

13. avalue=avalue+v1(I)*v1(J);

14. bvalue=bvalue+v2(I)*v2(J);

15. End for

16. End for

17. avalue=sqrt(avalue);

18. bvalue=sqrt(bvalue);

19. deno=avalue*bvalue;

20. sc=num/deno;

21. sc=sc/(max(v1)/max(v2));

22. End function

Algorithm 2 Soft Cosine Similarity

To achieve accuracy in the result of cosine similarity an

improved algorithm as soft cosine similarity is proposed.

Algorithm 2 is used to calculate soft cosine by a division of

numerator and denominator. The numerator is the

multiplication of v1 and v2 for each row with other available

rows in the relations. The denominator on the other side is the

square-root of v1and v2 for each row and column.

Input: calculated results of cosine similarity and soft cosine

similarity

Output: allhybrid=hybridsim()

1. [r,c]=size(w2v);

2. allcossim=[];

3. allsoftcossim=[];

4. allhybrid=[];

5. for i=1r

6. v1=w2v(i,:);

7. simvalue=0;

8. softvalue=0;

9. counter=0;

10. for j=i+1r

11. v2=w2v(j,:);

12. simvalue=simvalue+Calculatecossim(v1,v2);

13. softvalue=softvalue+Calculatesoftcosine(v1,v2);

14. counter=counter+1;

15. End for

16. allcossim(i)=simvalue/counter;

17. allsoftcossim(i)=softvalue/counter;

18. allhybrid(i)=allcossim(i)+allsoftcossim(i);

19. End for

20. End function

Algorithm 3 Hybrid Similarity

Algorithm 3 calculation is based on the results of cosine and

soft-cosine similarity. To calculate firstly compute the size of

the vector to find out the number of rows and columns. Next

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/205322 Volume 7, Issue 6, November – December (2020)

ISSN: 2395-0455 ©EverScience Publications 238

RESEARCH ARTICLE

is to fetch the vectors v1 and v2 values from each word

present in the rows using w2v(). Calculate similarity value by

calling Calculatecossim() on v1 and v2 values. Calculate Soft

Cosine similarity value by calling Calculatesoftcosine() on v1

and v2 values. And at last, calculate the hybrid similarity by

adding the average of cosine and soft cosine similarity for

each row.

In Figure 6 columns 1, 2, 3 represent cosine, soft-cosine, and

hybrid similarity calculation outcomes respectively. After

applying Cosine, Soft Cosine, and hybrid similarity measures,

the similarity index graphical representation is as shown in

Figure 7.

Figure 6 Outcomes after Similarity Measures

Figure 7 Similarity Index Graphical Representation

The resultant output for all tweets in the row is evaluated to

obtain an average similarity index is then measured. The

formula used for cosine, soft cosine, and hybrid similarity

index is represented by equations mentioned below:

Cosine Similarity=∑ 𝑐𝑜𝑠𝑖𝑛𝑒𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦/𝑛𝑛
𝑖=1 (1.1)

Soft Cosine Similarity=∑ 𝑆𝑜𝑓𝑡𝑐𝑜𝑠𝑖𝑛𝑒𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦/𝑛𝑛
𝑖=1

 (1.2)

Hybrid Similarity =Cosine +Soft Cosine (1.3)

Set = [𝐶𝑜𝑠𝑖 , 𝑠𝑜𝑓𝑡𝑖 , ℎ𝑦𝑏𝑟𝑖𝑑𝑖] (1.4)

3.5. To Find Initial Centroid (IC) of Data

The next step is to determine, the Initial Centroid (IC) of the

tweet data, which is obtained as the average of each similarity

measure obtained from each similarity index (Cosine, soft

cosine, and hybrid) individually. This value is taken as IC for

the tweet. The formula used to determine the IC is given by

equation (1.5).

Initial Centroid (IC)

=[∑
𝐴𝑙𝑙 𝐶𝑜𝑠𝑖𝑛𝑒

𝐾
,𝑘

𝑖=1 ∑
𝐴𝑙𝑙 𝑠𝑜𝑓𝑡𝐶𝑜𝑠𝑖𝑛𝑒

𝐾
,𝑘

𝑖=1 ∑
𝐴𝑙𝑙 ℎ𝑦𝑏𝑟𝑖𝑑

𝐾

𝑘
𝑖=1](1.5)

Where, k is the total number of tweets in a given document.

As shown in Figure 8, the centroid of each cluster is

represented by the "X" sign. The available data are grouped

into three clusters named cluster1, cluster2, and cluster3, each

represented by different colors the blue, red, and orange

colors respectively.

Figure 8 Cluster Assignments for Centroid

3.6. To Find Euclidian Distance of Each Tweet

Euclidean distance is the geometric distance in

multidimensional space. The Euclidean distance between

points T1 and T2 in n-dimensional space is calculated using

the following formula (1.6). The formula used to calculate the

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/205322 Volume 7, Issue 6, November – December (2020)

ISSN: 2395-0455 ©EverScience Publications 239

RESEARCH ARTICLE

Euclidian distance of each tweet from the set (st), which is

calculated using equation (1.4) for cosine data, soft cosine,

and hybrid data is represented by equations shown below:

For all St in sets calculate,

𝐷1 = 𝐸𝐶𝑈1(𝐼𝐶, 𝑆𝑇) (1.6)

𝐷2 = 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝐶𝑈1 (𝐼𝐶, 𝑆𝑇) (1.7)

𝐷3 = (𝐷1 + 𝐷2)/2 (1.8)

Note that the Euclidean distance (and its square) is calculated

from the Tweet data obtained from the previous step.

After this, to determine the number of fragments, the total

number of centroids in the given data has been calculated by

measuring the average of D1, D2, and D3. i.e.

D=Total number of centroids

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝐷 =
𝐷1+𝐷2+𝐷3

3
 (1.9)

An example of distance measured from st that is d1 is

represented by Figure 9.

Figure 9 Measured Distances from Centroid 1

3.7. Fragmentation

Data fragmentation refers to dividing the data into segments

so that the storage becomes easy. To determine the number of

fragments from the available data, the formula used is written

by equation (1.10).

𝑝 =
√𝐷×𝐾

𝐶
 (1.10)

Where K is the total number of rows.

3.8. Neural Network

The data obtained after fragmentation is passed along with the

original word 2 vector data as input to the Artificial Neural

Network (ANN). The used structure of ANN is given below

(see Figure 10).

The classified fragments for 100, 200, 300, 400, and 500 rows

are listed in Table 1 below.

Figure 10 ANN Structure to Classify Fragmented Data

For 100

Rows

For 200

Rows

For 300

Rows

For 400

Rows

For 500

Rows

1 1 2 4 3

1 1 2 2 2

2 1 1 1 1

1 2 3 3 2

1 2 1 1 3

1 1 2 2 2

2 1 1 2 4

1 3 2 3 4

1 2 3 3 3

3 1 4 4 3

2 2 3 2 2

Table 1 Classification of Fragments for Each Row

4. RESULTS AND DISCUSSIONS

Fragmented architecture has been designed using MATLAB

simulator with 4 GB RAM, 64-bit operating system, and a

processor of 2.30 GHz. The performance has been analyzed in

terms of the classified accuracy. The results have been

evaluated individually, for 100, 200, 300, 400, and 500 rows.

Experiments have been performed five times to determine the

detection accuracy as depicted in Table 2. Figure 11

represents the classification accuracy of the designed

fragmented structure. The simulations have been performed

five times so that the exact accuracy for the uploaded data that

might contain rows (100, 200, 300, 400, and 500). From the

figure, it is observed that with the increase in rows, the

classification accuracy increases. This is because with the

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/205322 Volume 7, Issue 6, November – December (2020)

ISSN: 2395-0455 ©EverScience Publications 240

RESEARCH ARTICLE

increase in the data the ability to train ANN structure is

increases that result in improved classification of the

fragmented data. The average of the classification accuracy

obtained for 100, 200, 300, 400, and 500 rows are 63.81,

76.28, 81.52, 83.58, and 92.078 respectively.

Iterations 100 200 300 400 500

1 62.45 75.89 82.15 84.57 91.04

2 63.57 76.28 81.27 83.57 92.57

3 62.78 76.18 79.68 84.25 93.17

4 64.28 75.12 80.15 82.37 92.14

5 65.97 77.94 84.36 83.14 91.47

Table 2 Classification Accuracy for Different Rows

Figure 11 Classification Accuracy

To evaluate precision and recall average percentage of

iterations is calculated as shown in Table 3. The fragments

architecture created after the evaluation of the proposed work

is further evaluated by parameters such as True Positive, True

Negative, False Negative, and False Positive are shown in

Table 4. Precision and Recall are shown in Table 5.

True Positive (Tp) =

Total true selected elements / Total sample size (1.11)

False Positive (Fp) =

 False selected elements / Total sample size (1.12)

True Negative (Tn) =

True left samples / Total Sample Size (1.13)

False Negative (Fn) =

False left sample / Total Sample Size (1.14)

Table 5 showing the precision and recall and found that they

are almost the same for every row passed and Figure 12

shows the graphical representation of the precision and recall.

The Fp value reveals that the components are not put in fitting

clusters. The Fp outcomes in this work are lower. Tn showing

bad samples that are left. If it is high it indicates a good search

response. Depends on the value calculated for Tp, Tn, Fp, and

Fn precision and recall values are calculated.

No. of

Rows/Records

Average of all

five iteration in

% (approx)

Remaining

average (%)

100 64 36

200 76 24

300 82 18

400 84 16

500 92 8

Table 3 Average Percentage of Iterations

Rows 100 200 300 400 500

Total true

selected

samples

(Tp)

0.45 0.53 0.57 0.59 0.64

True left

samples

(Tn)

0.25 0.17 0.13 0.11 0.11

False

left

samples

(Fn)

0.44 0.53 0.57 0.58 0.64

false

selected

sample

(Fp)

0.25 0.08 0.04 0.03 0.01

Table 4 Evaluation of Tp, Fp, Tn, and Fn

Total

Passed

Rows

100 200 300 400 500

Precision 0.64 0.87 0.93 0.95 0.98

Recall 0.64 0.76 0.82 0.84 0.85

Table 5 Evaluation of Precision and Recall

Figure 12 Precision and Recall

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/205322 Volume 7, Issue 6, November – December (2020)

ISSN: 2395-0455 ©EverScience Publications 241

RESEARCH ARTICLE

5. COMPARATIVE ANALYSIS OF PROPOSED AND

EXISTING WORK

The maximum attained precision is 0.98 for total passed rows

of 500. The recall value for every row passed is 0.85. It is

found that an enhancement in proposed work in the case of

precision and recall is seen. Earlier researchers used the k-

means dependent cosine similarity measurement method to

determine the feature similarity between the cluster centroids

and the data points to quantify the similarity between the

outcome of the clustering and the side details. A clustering

algorithm for data partitioning using the principle of a

learning method has been proposed. The main drawback of

this proposed work is that only cosine similarity based k-

means have been used for partitioning large data sets [33]. An

effort on the hybridization of cosine and soft-cosine is also

carried out to improve precision and recall parameters during

partitioning [34]. In this research, we have proposed cosine,

soft cosine, and hybrid similarity as an enhanced mechanism

and achieved an increase of 0.98 precision and 0.85 recall

values as outcome. So, we rely on this technique for

fragmenting the text data for a diverse system. Table 6 shows

the comparison of calculated precision and recall. Figure 13

shows the Graphical Views of Precision and Recall

Parameters

Huaping

Guo et al.

[33]

Kiranjeet

Kaur et al.

[34]

Proposed

Work

Precision
0.47 0.69 0.98

Recall
0.54 0.67 0.85

Table 6 Comparison of calculated Precision and Recall

Figure 13 Graphical Views of Precision and Recall

Proposed works has many advantages over existing

methodologies and are following as:

 It helps to improve the classification of fragmented data

with high precision and recall and indicates maximum

coverage, accuracy, and reduce overall computational

time.

 Earlier techniques depends on cosine based k-means,

cosine and soft cosine hybridization for clustering were

not effective due to lack of balance in the quality and

efficiency of clustering in categorical data sets.

 The principles of existing approaches are fine for some

case, but not applicable. So algorithm hybridization is the

best approach. Cosine and soft cosine similarity notions

are used to compute hybrid similarity in this research work

to ensure improved efficiency and can easily dealing with

large data sets.

6. CONCLUSION

In this paper, novel relative data fragmentation architecture is

proposed to divide the large dataset into different fragments.

Here, twitter data is being applied for experiment purposes

and converted into vectors to use it for fragmentation

purposes. Cosine, soft cosine and hybrid similarity calculation

is calculated and centroid positions are discovered. K-Mean

algorithm is used to calculate the distance between data points

with each centroid to discover clusters. At last, validation and

performance is performed by checking its accuracy using

ANN. In this research, efforts are given to introduce novel

similarity based data fragmentation architecture in an

unsupervised learning environment. Comparison is performed

and attained high precision and recall as compared to the

existing proposed methods.

Future work is stress on the allocation and deduplication of

data to strengthen the wide distributed network environment.

So, that most of the user’s requirements can be satisfied and

also work for the enhancement of various parameters such as

cost, delay factors, duplication of data.

REFERENCES

[1] Tarun S., Batth R. S. (2019). Distributed Database Design Challenges
and its Countermeasures-A Study. Journal

of the Gujarat Research Society 21 (6), pp. 875-886
[2] S. Tarun, R. S. Batth and S. Kaur, "A Review on Fragmentation,

Allocation and Replication in Distributed Database Systems," 2019

International Conference on Computational Intelligence and
Knowledge Economy (ICCIKE), Dubai, United Arab Emirates, 2019,

pp. 538-544, doi: 10.1109/ICCIKE47802.2019.9004233

[3] R. Singh and K. S. Mann, “Improved TDMA Protocol for Channel
Sensing in Vehicular Ad Hoc Network Using Time Lay,” Proceedings

of 2nd International Conference on Communication, Computing and

Networking Lecture Notes in Networks and Systems, pp. 303–311,
2018.

[4] A. Nayar, R. S. Batth, D. B. Ha, and G. Sussendran, G. “Opportunistic

networks: Present scenario-A mirror review” International Journal of
Communication Networks and Information Security,” 10 (1), pp. 223-

241, 2018.

[5] G.S Shahi, R.S Batth, S. Egerton, 2020 “MRGM: An Adaptive
Mechanism for Congestion Control in Smart Vehicular Network”,

International Journal of Communication Networks and Information

Security 12 (2).
[6] Qi, H., & Gani, A. (2012, May). Research on mobile cloud computing:

Review, trend and perspectives. In 2012 Second International

International Journal of Computer Networks and Applications (IJCNA)

DOI: 10.22247/ijcna/2020/205322 Volume 7, Issue 6, November – December (2020)

ISSN: 2395-0455 ©EverScience Publications 242

RESEARCH ARTICLE

Conference on Digital Information and Communication Technology

and it's Applications (DICTAP), IEEE, pp. 195-202.
[7] Venters, W., & Whitley, E. A. (2012). A critical review of cloud

computing: researching desires and realities. Journal of Information

Technology, 27(3), pp. 179-197.
[8] Borkar, V., Deshmukh, K., & Sarawagi, S. (2001, May). Automatic

Segmentation of text into structured records. In Proceedings of the

2001 ACM SIGMOD international conference on Management of
data, pp. 175-186.

[9] Santini, S., & Jain, R. (1999). Similarity measures. IEEE Transactions

on pattern analysis and machine Intelligence, 21(9), pp. 871-883.
[10] Huang, A. (2008, April). Similarity measures for text document

clustering. In Proceedings of the sixth new zealand computer science

research student conference (NZCSRSC2008), Christchurch, New
Zealand ,Vol. 4, pp. 9-56.

[11] Sidorov, G., Gelbukh, A., Gómez-Adorno, H., & Pinto, D. (2014).

Soft similarity and soft cosine measure: Similarity of features in vector

space model. Computación y Sistemas, 18(3), pp. 491-504.

[12] Michie, D., Spiegelhalter, D. J., & Taylor, C. C. (1994). Machine

learning. Neural and Statistical Classification, 13(1994), pp. 1-298.
[13] Ikonomakis, M., Kotsiantis, S., & Tampakas, V. (2005). Text

classification using machine learning techniques. WSEAS transactions
on computers, 4(8), pp. 966-974.

[14] Verma and A. Kumar, “Performance Enhancement of K-Means

Clustering Algorithms for High Dimensional Data sets”, International
Journal of Advanced Research in Computer Science and Software

Engineering, Vol. 4, No. 1,pp.5-9, 2014.

[15] Z.Tao, H. Liu, H. Fu and Y.Fu, “Image Co-segmentation via Saliency-
Guided Constrained Clustering with Cosine Similarity”, AAAI,pp.

4285-4291,2017

[16] X. Gu, H. Zhang and S. Kim, “Deep code search”, In Proceedings of
the 40th International Conference on Software Engineering, ACM,pp.

933-944,2018.

[17] W. L Xiang, Y. Z. Li, R. C. He, M.X. Gao, M.Q An, “A novel
artificial bee colony algorithm based on the cosine similarity”,

Computers & Industrial Engineering, Vol. 115, pp.54-68, 2018.

[18] Wiese, L. (2014). Clustering-based fragmentation and data replication
for flexible query answering in distributed databases. Journal of Cloud

Computing 3, 18. https://doi.org/10.1186/s13677-014-0018-0

[19] Ali A. Amer, Adel A. Sewisy, Taha M.A. Elgendy. (2017). An
optimized approach for simultaneous horizontal data fragmentation

and allocation in Distributed Database Systems (DDBSs). Heliyon 3

e00487. doi: 10.1016/j.heliyon.2017. e00487
[20] Abdalla, H., &Artoli, A. M. (2019). Towards an efficient data

fragmentation, allocation, and clustering approach in a distributed

environment. Information, 10(3), 112.
https://doi.org/10.3390/info10030112

[21] Rahimi, H., Parand, F. A., & Riahi, D. (2018). Hierarchical

simultaneous vertical fragmentation and allocation using modified
Bond Energy Algorithm in distributed databases. Applied computing

and informatics, 14(2), pp. 127-133.

https://doi.org/10.1016/j.aci.2015.03.001
[22] Lim, S., Ng, Y. (2001). A Hybrid Fragmentation Approach for

Distributed Deductive Database Systems. Knowledge and Information

Systems 3, pp. 198–224. https://doi.org/10.1007/PL00011666
[23] Khan S. I., (2016). Efficient Partitioning of Large Databases without

Query Statistics”, Database System Journal, pp. 34-53.

[24] Peng, P., Zou, L., Chen, L., & Zhao, D. (2019). Adaptive distributed
RDF graph fragmentation and allocation based on query

workload. IEEE Transactions on Knowledge and Data

Engineering, 31(4),pp.670-685.
https://doi.org/10.1109/TKDE.2018.2841389

[25] Aloini, D., Benevento, E., Stefanini, A., & Zerbino, P. (2020). Process

fragmentation and port performance: Merging SNA and text
mining. International Journal of Information

Management, 51,101925.https://doi.org/10.1016/j.ijinfomgt.2019.03.0

12

[26] Memmi, G., Kapusta, K., & Qiu, H. (2015, August). Data protection:

Combining fragmentation, encryption, and dispersion. In 2015
International Conference on Cyber Security of Smart Cities, Industrial

Control System and Communications (SSIC) (pp.1-9). IEEE.

https://doi.org/10.1109/SSIC.2015.7245680
[27] Links: https://www.kaggle.com/soaxelbrooke/first-inbound-and-

response-tweets/data?select=sample.csv

[28] Links: https://gist.github.com/larsyencken/1440509
[29] Lende, S. P., &Raghuwanshi, M. M. (2016, February). Question

answering system on education acts using NLP techniques. In 2016

world conference on futuristic trends in research and innovation for
social welfare (Startup Conclave) (pp. 1-6). IEEE.

[30] Zeyu, X., Qiangqian, S., Yijie, W., & Chenyang, Z. (2018). Paragraph

vector representation based on word to vector and CNN
learning. Computers, Materials & Continua, 55(2), pp. 213-227.

[31] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient

estimation of word representations in vector space. arXiv preprint

arXiv:1301.3781.

[32] Bartunov, S., Kondrashkin, D., Osokin, A., &Vetrov, D. (2016, May).

Breaking sticks and ambiguities with adaptive skip-gram. In artificial
intelligence and statistics, pp. 130-138.

[33] H. Guo, J. Zhou and C.A. Wu (2018), “Imbalanced Learning Based on
Data-Partition and SMOTE”, Information, Vol. 9, No. 9, pp. 238.

[34] Kaur K., Laxmi V. (2019), “Hierarchical Clustering Based Improved

Data Partitioning using Hybrid Similarity Measurement Approach”,
International Journal of Innovative Technology and Exploring

Engineering, Volume-8 Issue-8, pp. 3008-2014.

Authors

Mr. Sashi Tarun is a PhD. Research Scholar in the

School of Computer Science And Engineering at

Lovely Professional University, Punjab, India. He has
completed M.Tech. Computer Science from Jamia

Hamdard University, New Delhi. His research

interests are Distributed Systems, Cloud Systems,

Database System, Computer Networks, AI, and

Machine Learning. He has number of papers in his

credit. He has 7 years of teaching experience as
Assistant Professor.

Dr. Ranbir Singh Batth is working as an Associate

Professor in the School of Computer Science and
Engineering and he also serves as an International

coordinator for at Lovely Professional University,

Punjab, India. He has received his Ph.D. from IKG
Punjab Technical University, Kapurthala, Punjab,

India in 2018 and the Master degree in Computer

Engineering from Punjabi University, Patiala. His
research interests include Wireless Sensor Networks,

Cloud Computing, Network Security, Ad Hoc

Networks, IoT, Machine Learning, Deep Learning, Wireless Communications
and Mobile computing. He also serves as an editorial member, guest

editor, and reviewer for various reputed International journals. He has been

the organizing chair, session chair and advisory member for various reputed
International conferences. He is an active member of ACM and IEEE

computer Society.

Dr. Sukhpreet Kaur is working as Associate
Professor in CSE department at Chandigarh

Engineering College, Landran, Mohali. She has in

total of 15 years of vast experience in teaching and
research. She has done Ph.D in CSE from I K Gujral

Punjab Technical University, Jalandhar and has

done her Masters in Technology in CSE from
GNDEC, Ludhiana. The various research areas in

which she worked includes Image Processing,

Artificial Intelligence and Computer Vision.

https://doi.org/10.1186/s13677-014-0018-0
https://doi.org/10.3390/info10030112
https://doi.org/10.1016/j.aci.2015.03.001
https://doi.org/10.1007/PL00011666
https://doi.org/10.1109/TKDE.2018.2841389
https://doi.org/10.1016/j.ijinfomgt.2019.03.012
https://doi.org/10.1016/j.ijinfomgt.2019.03.012
https://doi.org/10.1109/SSIC.2015.7245680
https://www.kaggle.com/soaxelbrooke/first-inbound-and-response-tweets/data?select=sample.csv
https://www.kaggle.com/soaxelbrooke/first-inbound-and-response-tweets/data?select=sample.csv
https://gist.github.com/larsyencken/1440509

A Scheme for Data Deduplication Using Advance

Machine Learning Architecture in Distributed

Systems

Sashi Tarun1, ,

Research Scholar, School of CSE,

Lovely Professional University,

Phagwara, India

Sashitarun79@gmail.com

Ranbir Singh Batth2

School of CSE,

Lovely Professional University,

Phagwara, India

ranbir.21123@lpu.co.in

Sukhpreet Kaur3

Department of CSE,

Chandigarh Engineering College,

Chandigarh, India

Sukhpreet.4479@cgc.edu.in

Abstract-- In a distributed architecture, data as a

resource has its own value, but continuous integration

of large amounts of data across several locations

without cross-verification to preserve a single instance

data pattern appears impossible. As a result, systems

have encountered hurdles that have a direct influence

on the efficiency and performance of distributed

workforces. Users need high-quality data or

information in order to continue working as improved

data services in order to find future trends. However,

duplicate data entries in storage repositories are

considered a major flaw or stumbling block in the data

analysis and query operations processes. As a result,

businesses have invested significant resources in

detecting duplicate data throughout the duplicate entry

detection process. We've introduced a cutting-edge

machine learning framework for detecting duplicate

data on both current and new data entries. Textual data

inputs or queries are imported into memory,

preprocessed, and transformed to a vector space model

using this technique. To arrange data in groups with

equal capacity, a clustering K-means approach is used.

To save time and money during the detection phase,

similarity computations were done cluster-by-cluster

rather than on a huge dataset. The suggested technique

performs better than existing deduplication algorithms,

with an optimal accuracy of 99.7%. If the result-test

and gt-test outcomes are determined to be same during

comparison, the accuracy performance parameter of

the deduplication process is greater.

Keywords-- machine learning, vector space model, k-

means, computational cost, similarity, deduplication,

performance

I. INTRODUCTION

The distributed environment meets business needs

by allowing individuals to regularly store, transfer,

and secure their data with reducing operational costs.

In the domain of dispersed data, researchers have

worked on [1-3]. Data quality problems have been

discovered as a result of companies' efforts to expand

storage capacity at dispersed sites. When greater

focus on data consumption includes digital social

media contents, transactional data, archived data, and

regular data backups, all of which have emerged in

the form of data problems, workers are responsible

for creating data-related concerns. It decreases

distributed system efficiency by increasing data

storage capacity (due to redundancy). It degrades

data quality by slowing query replies, raising

computing costs, wasting surplus bandwidth during

data transport, and slowing query responses. Such

roadblocks reduce the efficiency of distributed

workforces and put data analysts and data engines in

danger of not being able to extract data from

dispersed enormous data volumes in order to fulfil

their tasks. Prior to distributing data to scattered sites,

it is necessary to identify duplicate data as shown in

Fig. 1.

Fig. 1. Deduplication Process

The researchers have proposed a variety of data

deduplication techniques for distributed data

structures. To address existing challenges, several

strategies were proposed, including attribute-based

deduplication, attribute and role-based deduplication,

ANN, clustering algorithms, hash indexing,

MapReduce and HDFS, bucket-based deduplication,

Finger print clustering, Sampling method, Token

generation techniques, and clock level deduplication.

Data uniqueness helps us to make our data error-free,

consistent, and non-ambiguous. Data redundancy is

produced by combining data from several sources in

an overlapping manner, which creates an incorrect

scenario for people who believe in performance

characteristics such as data reliability, accuracy, and

mailto:Sashitarun79@gmail.com
mailto:ranbir.21123@lpu.co.in
mailto:Sukhpreet.4479@cgc.edu.in

consistency. As a result, frequent data requests must

be checked first before being allowed to write to

existing data storage. It only allows non-conflict data

that would otherwise be considered duplicate data.

It was discovered that businesses spend a

significant amount of money safeguarding their data

by doing periodic data backups and keeping it on

remote servers. It creates data difficulties including

increased data duplication ratios, delays in

discovering and retrieving data, confusing data

issues, and other hidden expenses. Data deduplication

is a method of identifying duplicate data in storage

units. The proposed approach detects duplicate data

copies to save time and money while uploading and

transferring data across a dispersed network.

For the deduplication process, an advanced

machine learning architecture is proposed in this

work. The “user's sentimental analysis data” and

“tweets” datasets, each with 1048576 data instances,

are deployed for the experiment. Columns 6 and 4 are

utilized as rawdata or inputs in the deduplication

process, with 2000x20 and 2001x30

records/instances, respectively, which are then used

for text pre-processing or refinement by removing

stop words to get filteredwords. Each word in the

filterdata is transformed into a vector space model

and assigned a value based on the sum of the ASCII

values for each character. Data clustering is a

technique for categorizing data into groups in order

to save computing costs and effectively discover

duplicate data. The work on performance parameters

has been covered in order to show the scheme's

efficacy, and the results generated are based on the

result test and gt test list values and represented in

boolean terms.

The remainder of the paper is organized as

follows: The second section highlights current work

on deduplication methods. The proposed technique

was explained in Section 3. The explanation of

simulation and calculative findings obtained using

the proposed advanced machine learning architecture

is covered in Section 4. The fifth section depicts a

comparison of proposed and existing approaches. The

paper work is concluded at Section 6.

II. RELATED WORK AND STUDIES

To detect substantial redundancy, content-defined

chunking (CDC) has been employed in data

deduplication. They optimized the deduplication

system by tweaking relevant parameters in CDC to

determine chunk cut-points and provided an efficient

fingerprint using a novel hash function in the

proposed study. They developed a new low-cost

hashing function and a novel byte’s frequency-based

chunking (BFBC) approach in [1]. To tackle data

duplication issues, works on new techniques are on

continuous development track. Earlier work had

contributed a lot to achieve performance in

distributed model. A service named KGTMaaAS Key

Generation and Token Maintenance was designed to

manage cloud storage and minimize duplicated data.

It can detect duplicate data at both the block and file

level in [2]. A framework for role and attribute-based

de-duplication was proposed in the cloud that

supports diverse content types. De-duplication has

been done on a role-by-role basis. That is, distinct

material should be kept for each role type, or de-

duplication should be performed. It will handle a

variety of content types, including text, photos, and

video. Users with the same function may have several

versions of the same content that they share or trade.

These can be text, photos, or any other sort of data,

hence de-duplication is necessary at the role level

rather than at the system level to decrease memory

and storage requirements in [3]. To work on the

contents of large data sets, a novel de-duplication

methodology has been developed. Different

dictionary indexing approaches will be utilized to de-

duplicate the field’s contents that have bounded

variability. In addition, for fields with lengthy strings,

a set of computationally low-cost hash algorithms

will be utilized to speed up deduplication in [4]. It

was found that to detect data duplicity string to string

comparison results is less effective identification

architecture. For the removal of redundant data stored

on the disk fingerprint index detection and

prefetching techniques. It was based on

reinforcement learning and helped to remove 2% to

10% duplicity in comparison to sparse indexing

method in [5]. Data deduplication work was proposed

to reduce the duplicate data in scale-out distributed

storage systems. To achieve this more scalable and

efficient deduplication process mechanism as SEP-D

for locating metadata information using content-

based hashing to reduce I/O operations and CRUSH

for the application of placement strategies was

presented in [7]. The sub-file-level chunking

deduplication system is an example of system

deduplication since it divides the incoming data

stream into several data "chunks" and uses comparing

methods to find duplicates. De-duplication systems

delete duplicate chunks, allowing only one copy of

these chunks to be stored or sent in order to achieve

the storage space or network bandwidth savings goal.

It's worth noting that de-duplication systems have a

long runtime and require a lot of CPU resources to

function in [8]. The genetic evolution-based data

deduplication methodology has a greater

deduplication ratio than existing systems, allowing it

to detect duplicated data even quicker. The divisor D

values in prior methodologies are static; however, in

global optimization using a genetic algorithm, we

dynamically choose the optimum divisor D value to

uncover maximal redundancy. Bucket indexing based

on genetic evolution deduplication is 16 times

quicker than Rabin CDC, 5 times quicker than AE,

and 1.6 times quicker than Fast CDC in [10]. In

Bigdata storage, large amount of data is stored in

digital form without using a structured approach. So,

to identify duplicate data and create unstructured data

into structured data a new technique was presented to

increase the efficiency of Bigdata storage. Based on

hash values and MD5 methods a bucket-based

deduplication system with a fixed-size chunking level

is proposed. To execute this strategy, the researchers

employed the Destor open-source application and

HDFS (Hadoop Distributed File System) in [11]. To

achieve high data deduplication rates and minimal

overhead communication while maintaining load

balancing the AR-Dedup cluster deduplication

system was proposed. In their programme, they adopt

an application-aware method to deduplication. AR-

Dedup makes use of cluster deduplication routing in

[12]. To discover duplicate data, an artificial neural

network deduplication methodology was presented.

The suggested system takes as input a set of data

created by various similarity measurements. The

ANN is used to process the model parameters that

have been computed from similarity functions i.e.

dice coefficient, damerau-lavenshtein distance, and

tversky index. The ANN has two stages, one for

training and the other for testing data used in [13]. To

achieve maximum disc storage savings, it spreads

data blocks over numerous storage nodes and

performs rapid compression following data

deduplication. Droplet improves disc IO by

combining write requests for tiny data blocks into big

chunks. Droplet has demonstrated great deduplication

performance in tests. Droplet is a high-throughput

and scalability distributed deduplication storage

solution in [16]. An in-line data deduplication

distributed architecture follows an intelligent storage

balancing strategy was proposed to use storage nodes

for storing data with a view to enhance deduplication

efficiency. This architecture was capable to perform

deduplication with high throughput and ratio and

found affective with comparison to perform

deduplication on a single system. A technique was

proposed called sampled hashing to strengthen the

scalability of the distributed architecture in [17].

III. PROPOSED METHODOLOGY

String based data mining is one of the most

traditional approach in the history of computer

architecture. Data matching through string

comparison is one of the most ambiguous

architectures, as a small variation in the string

architecture will lead to a mismatch in the string

phase. In addition to this, de-duplication is a relative

process as there is no ground truth available for the

processing. The relative analysis is best attainable

when vector-based learning module is applied. To

handle deduplication an advance machine learning

architecture is proposed to identify/detect duplicate

data as shown in Fig. 2.

Step-by-step implementation of proposed

methodology is performed in Matlab 2016a. It

follows following steps:

• Start uploading of stored data/queries.

• Apply text pre-processing by removal of stop

words from the dataset.

• Translate textual data into vectors.

• Finding indexes (indicate no. of possible

clusters) and centroids positions (centre point of

each cluster) using k-means for categorizing

existing or new data into clusters.

• Generation of training and testing indexes.

• Calculation of similarity index cluster-wise.

• Apply ground truth (gt) test to check duplicate

data in testing data. Assign label 1 for duplicate

data entry otherwise put label 0.

• Calculate similarity test on testing data.

• The results of similarity tests are compared to

the similarity of each cluster according to set

threshold values in order to discover duplicate

figures.

• Calculation of sensitivity, specificity, accuracy,

and fmeasure performance parameters to

evaluate proposed deduplication scheme

efficacy.

Fig. 2. Proposed Methodology work flow

A. Text Pre-Processing

It refers to process involves removal of common

words from the dataset in textual context using stop

word lists which contains articles, prepositions, and

nouns etc. It is necessary to reduce dimension of

available dataset text-records by eliminating stop

words. The reason for this is that it provides no

valuable information. These stop words can be

accessible from the stop list in [19]. To apply

preprocessing, sixth column from dataset in [18] and

fourth column from dataset in [20] are used as data-

inputs (rawdata) as specified below in code lines:

1. Datacol = 6;

2. for i=1:r

3. rawdata{i,1}=data{i,datacol};

4. end

Data-input queries (rawdata) are selected row-

wise from the storage at every iteration and set as

currentdata which is further interpreted by

getwords() method. getwords() method is used to

obtain individual words from currentdata to stored

them in the array-list of allwords. Such words are

compared with stop word lists and filteredwords list

is generated. Filteredwords containing suppressed

words obtained after preprocessing step.

1) Pseudocode for Text Pre-Processing
Input: rawdata
Output: filteredwords

1. Load rawdata as input % Select text column row-wise

2. [r,c]= size(rawdata);
3. for i=1:r

4. currentdata=rawdata{i,1};

5. words=getwords(currentdata);
6. allwords{i}=words;

7. filteredwords=filterdata(words,stopwords);

8. end

B. Word to Vector (W2V) Translation

Similarity is commonly measured by comparing

how similar or similar two objects are. An approach

of calculating similarity is to use vectors. A vector is

essentially a number with both magnitude and

direction. It takes a large text corpus as input (tweets

with stop words deleted) and allocates a vector to

each word in the tweet. Such vectors are represented

in rows and columns depending on size of attributes

or filteredwords, which finally used for clustering the

data. Each attribute or filteredwords are replaced by a

value, which is the sum-up of ASCII value of each

character in a word.

1) Pseudocode for W2V Translation
Input: filteredwords

Output: w2v

1. for wd=1:numel(filteredwords)
2. w2v(i,wd)=sum(double(filteredwords{wd}));

3. End

C. Categorizing Data into Clusters

For deduplication, textual data samples are

converted into vector data model which further

applied for creating clusters. These datasets are

having data instances used for training machine

learning model. Datasets are partitioned into three

clusters having their own data instances as shown

below in Table I.

TABLE I. DISTRIBUTION OF DATASET CLUSTER WISE

Dataset

Dataset-

Size

Used

Clusters

Indexes

Data-

Instances

Rows Cols.

Sentiment Analysis

with Tweets [18]
2000x20

1 724 20

2 701 20

3 575 20

Tweets-about-the-
top-companies-

from-2015-to-2020

[20]

2001x30

1 35 30

2 1935 30

3 31 30

Clustering is an approach helps to find groups on

unlabeled data in machine learning. It helps to

examine and categorize new data patterns into their

associated groups. It maintains intra-cluster similarity

and helps to identify duplicate data contents at cluster

level during deduplication process. Group-data

analysis enhances similarity measure results rather

than applying on the large dataset values. Data

analysis interpretation in groups also improves the

computational cost.

In the process of making data clusters, dataset is

categorized into indexes and centroids to begin with.

K-means follows nearest neighbor strategy to allocate

data in cluster category and estimate centroid position

for each cluster based on vector data model. These

centroid positions helps to categorize vector data

during cluster identification process. So,

deduplication process directly applied at cluster level

rather than applying comparison on dataset values.

D. Generation of Training and Testing Indexes

To evaluate machine learning model dataset is

split into training and testing data. A ratio of 80% and

20% is used for training and testing data. To generate

training index (tindex) and testing index (ti) random

generated integer is selected in each iteration till not

equivalent to training and testing count. Such

generated indexes are maintained in training_indexes

and test_index lists that is used further to extract data-

rows. These indexes are further used for similarity

calculations based on vector values of data rows. To

estimate training_count and testing_count, equations

(i) and (ii) are used as given below:

training_count = round(training_rate/100*rrc) (i)

test_count = rrc-numel(training_indexes) (ii)

1) Pseudocode for Training and Testing Index
Input: training_count, rrc, test_count

Output: training_indexes, test_index

1. for kki=1: training_count
2. tindex=round(rrc*rand);

3. if tindex==0

4. tindex=1;
5. end

6. training_indexes(kki)=tindex; % generate training index

7. end
8. for kkm=1:test_count

9. ti=round(rrc*rand);

10. if ti==0
11. ti=1;

12. end

13. test_index(kkm)=ti; %generating testing indexes

14. end

E. Cluster-Wise Similarity Calculation

To detect duplicate data records, a similarity

computation is performed individually on each

cluster. It takes a long time to go through each data

point in the cluster and calculate the similarity index.

Rather of focusing on individual indexes, we

construct cluster indexes to save time. To save

computing time, a random evaluation approach is

used to build cluster indexes. To describe each cluster

index, ten randomly applied indices are chosen

individually. These validations are a set of randomly

chosen data row values that are used to determine

cosine similarity with the test data. During the

computation, the prior result of the similarity value is

kept and added to the most recent result. This method

is repeated according to the characterization set-value

(which represents row attributes) and validation set-

value (which represents random data values). Cluster-

wise similarity is used to detect duplicate data

received as testing data or fresh data entries to put in

data storage as a whole. As a result, all data contents

that fall within the cluster similarity index's range

might be considered duplicate material. Cluster wise

similarity value results are shown below in Table II.

1) Pseudocode for Cluster-Wise Similarity
Input: rowvalue, test_index

Output: simvalue=calculatecossim(v1,v2)

1. dfa=[];
2. for i=1:3

3. dtcluster=[];

4. dtcluster=w2v1(ind1==i, :);
5. smvalue=0;

6. [rcl,cls]=size(dtcluster);

7. total_no_of_validations=10;
8. total_characterization=10;

9. counter=0;

10. for dd=1:total_characterization
11. for kd=1:total_no_of_validations

12. rowvalue=round(rcl*rand);

13. if rowvalue==0
14. rowvalue=1;

15. end
16. counter=counter+1;

17. dtver(counter,:)=dtcluster(rowvalue,:);

18. end
19. end

20. datatovalidate=w2v1(test_index,:);

21. try
22. smvalue=smvalue+calculatecossim(dtver(1:numel(test

_index),:),datatovalidate);

23. catch
24. smvalue = smvalue + calculatecossim(datatovalidate,

dtver);

25. end
26. dfa(i)=smvalue/numel(test_index); % clusters wise

similarity index

27. end

TABLE II. CLUSTER-WISE SIMILARITY VALUES

Datasets

References

Cluster

Indexes

Similarity Value

(Cluster-wise)

[18]

1 0.0012

2 0.0009

3 0.0014

[20]

1 0.2222

2 0.2077

3 0.2579

1) Pseudocode for Cosine Similarity
Input: test_index, row_value

Output: simvalue = simvalue + calculatecossim(v1,v2)
1. nume=0; %numerator
2. deno=0; %denominator
3. for i=1:numel(v1)
4. try
5. nume=nume+v1(i)*v2(i);
6. catch
7. end
8. end
9. deno1=0;
10. deno2=0;
11. for j=1:numel(v1)
12. try
13. deno1=deno1+v1(j)^2;
14. deno2=deno2+v2(j)^2;
15. catch
16. end
17. end
18. deno=sqrt(deno1)*sqrt(deno2);
19. simvalue=nume/deno;
20. end

F. Generation of Ground Truth Test (gt_test)

To detect duplicate data on testing data gt_test is

applied. To achieve this, test index and training

indexes having data-size of 1x400 and 1x1600

dimension are used. If vectors on training indexes is

matched and found identical with vectors of test

indexes than records are identified as duplicate,

otherwise not. During comparison gt_test elements

list is update to 1 (for matching found) or otherwise 0

(for matching not found). This procedure is repeated

till all elements on the training data is not compared

with test data as a whole and gt_test list of elements

is populated.

1) Pseudocode for Ground Truth Test (gt_test)
Input: training_indexes, test_index

Output: gt_test

1. w2v_test=[];

2. w2v_test=w2v1(test_index,:);
3. [rtest,ctest]=size(w2v_test)

4. gt_test=[];

5. gt_test=zeros(1,numel(test_index));
6. for kdi=1:numel(gt_test)

7. ssd=[];

8. ssd=find(training_indexes==test_index(kdi));
9. if ~isempty(ssd)

10. gt_test(kdi)=1;

11. end

12. end

G. Similarity Test on Testing Data

In this section, similarity test is carried out on test

data and test value. Test values are testing data

having size of 400x20 vector values, and test data is

based on randomly generated test indexes. The set

value for test_indexes is depicted at line 5 in

pseudocode in this section. Here, each test value of

testing data is compared with randomly generated test

data to compute cosine similarity test to reduce

computational cost. Similarity test is estimated by

summing up of previous computed simtest results

fraction by test_indexes.

1) Pseudocode for Test-Data Similarity Test
Input: test_data, test_value

Output: sim_test

1. simtest=0;
2. [rtest,ctest]=size(w2v_test)

3. for ii=1:rtest

4. test_value=w2v_test(ii,:);
5. test_indexes=5; % generations of test index

6. for kk=1:test_indexes

7. test_index=round(rtest*rand);
8. if test_index==0

9. test_index=1;

10. end
11. test_data=w2v(test_index,:);

12. simtest=simtest+calculatecossim(test_data,test_value);

13. end
14. simtest=simtest/test_indexes;

H. Comparison of Similarity-Test Results with

Clusters-Similarity to Detect Duplication

After computation of similarity test, threshold

limits are defined by adding and decreasing 10% on

cluster similarity results. The threshold range limit is

defined by setting up threshold as defined in

Pseudocode lines 4-5. Decision boundary (threshold

limit) is compared with similarity test (simtest) to

confirm about duplicate (1) or otherwise (0) in testing

data. Each test_value (400x1) of testing data is

compared with threshold limits equivalent to

numbers of cluster similarity index. If similarity test

results are found close or within threshold limits,

such input is categorized as duplicate data and

updating on result_set list with duplicate (1) for each

comparison done. Sometimes, data is not permitted to

house in existing storage because duplicate data

entries may be restricted or monitored.

1) Pseudocode to Compare Cluster Similarity and

Similarity Test Results
Input: dfa, simtest, duplicate

Output: result_test
1. result_test=[];

2. duplicate=0;

3. for kd=1:numel(dfa)
4. th1=dfa(kd)+dfa(kd)*.10;

5. th2=dfa(kd)-dfa(kd)*.10;

6. if simtest<th1 && simtest>th2
7. duplicate=1;

8. else

9. end
10. end

11. result_test(ii)=duplicate;

12. end

I. Calculation of Performance Parameters

To check the performance of machine learning

model works on sensitivity, specificity, fmeasure, and

accuracy parameters are carried out. Accuracy

percentage rate increases when outcome of

result_test and ground truth test (gt_test) are nearby

same to each other. Here, frequencies of 1 and 0 are

computed separately for each result_test and gt_test

elements. Calculation of sensitivity (for frequency 1)

and Specificity (for frequency 0) percentage is carried

as per coding lines 24 and 25 respectively.

1) Pseudocode to compute performance parameters
Input: result_test, gt_test

Output: function [sensitivity, Specificity, fmeasure] =

parameters (output, actual)
1. ar=actual;
2. actual=[];
3. actual=ar;
4. fone=0; % one in test result
5. ft=0; % one in test gt
6. for i=1:numel(actual)
7. if actual(i)==1
8. ft=ft+1;
9. if output(i)==1
10. fone=fone+1;
11. end
12. end
13. end
14. fzero=0; % zero in test result
15. fz=0; % zero in test gt
16. for i=1:numel(actual)
17. if actual(i)==0
18. fz=fz+1;
19. if output(i)==0
20. fzero=fzero+1;
21. end
22. end
23. end
24. sensitivity=(fone/ft)*100;

25. Specificity=(fzero/fz)*100;
26. acflag=zeros(1,numel(output));
27. for kk=1:numel(output)
28. if output(kk)==actual(kk)
29. acflag(kk)=1;
30. end
31. end
32. match=0;
33. for k=1:numel(output)
34. if output(k)==actual(k)
35. match=match+1;
36. end

37. end
38. tempv=sensitivity;
39. sensitivity=Specificity;
40. Specificity=tempv;
41. accuracy=((((numel(find(acflag==1))/numel(acflag)))

+((numel(find(acflag==0))/numel(acflag))))/2)*100;
42. accuracy=(match/numel(output))*100;
43. fmeasure=2*sensitivity*Specificity/(sensitivity+Specific

ity);
44. fmeasure=fmeasure/100;
45. end

Four aspects are examined for the assessment of

proposed deduplication approach includes sensitivity,

specificity, accuracy and fmeasure evaluated at code

lines 24-44 in above concerned pseudocode. The

sensitivity and specificity value are evaluated based

on pertinent information at fone, fzero. fone is

characterized by prediction of duplicate records as

duplicate and fzero which incorrectly imply a

duplicate record. Accuracy is defined as the

proportion of correct test data predictions. The

number of right predictions may be determined easily

by the number of total forecasts. Fmeasure shows the

exactness of a model on a dataset.

IV. RESULTS AND ANALYSIS

Different assessment criteria are used to analyze

the performance of proposed deduplication approach.

The methods are implemented in MATLAB 2016a,

Intel core 2 Processor, Clock Speed of 2.1MHz, and

4GB of RAM.

A. Performance Evaluation

This section presents the performance study of

the proposed deduplication method based on dataset

in [18],[20]. The performance is evaluated on both

the datasets and found that proposed machine

learning architecture is efficient in achieving

accuracy performance parameter. Specificity,

sensitivity, accuracy, and fmeasure are the evaluation

parameters employed as represented in Fig. 3 for both

datasets. Measurements on parameters are carried out

to estimate performance specification and are

discussed in Table 3. An average of 99.7 accuracy

result is found in proposed advanced machine

learning architecture.

TABLE III. PERFORMANCE PARAMETERS

Dataset Sensitivity Specificity Fmeasure Accuracy

Sentiment An
alysis with

Tweets [18]

1 0.004545 0.00904 100

Tweets about

the top
companies

from 2015-

to-2020 [20]

0.99408 0 0 99.4083

Average

Accuracy
 99.7

Fig. 3. Graphical Representation of clusters and centroids with

performance parameters

V. COMPARATIVE STUDY ON PROPOSED AND

EXISTING TECHNIQUES

Different techniques were purposed by

researchers to maintain accuracy in the deduplication

process. In this proposed scheme an advanced

machine learning architecture is used and a

comparative analysis is conducted with existing

SVM, NN, Fuzzy approaches and found that our

scheme is having high accuracy rate of 100%. The

performance analysis of deduplication process is

carried out on accuracy parameter as shown in table 4

and bar-graph in Fig. 4. to represent metrics results.

The comparison is done on proposed work and

existing methodology worked on accuracy parameter.

TABLE IV. COMPARITIVE RESULTS OF PROPOSED WITH

EXISTING DEDUPLICATION SCHEMES

Proposed and Existing Data

Deduplication Schemes
Accuracy %age

Advance Machine Learning

Architecture (Proposed Model)
99.7

FEM (Fuzzy Expectation
Maximization) Clustering [9]

97.98

Enhanced Fuzzy Ontology Based

Record Deduplication [6]
91.5

Support Vector Model [14] 88

Artificial Neural Network Model [15] 79.8

Fig. 4. Graphical Bar Representation of Proposed Scheme

Accuracy with Existing Deduplication Schemes

VI. CONCLUSION

This study suggests an advanced machine

learning architecture to detect duplicate data on

distributed storage and also monitor new data inputs

as well. It stresses on the need of an affective

deduplication technique that helps to detect duplicate

data entries. We proposed an advance algorithm

based on machine learning model helps to detect

duplicate data entries and work for the enhancement

of workforce efficiency and system performance. It

follows a relative approach to detect duplicate data in

the textual context using unsupervised learning

approach. The proposed methodology has achieved

an accuracy of 100% in comparison to existing SVM,

NN, Fuzzy models accuracy results.

REFERENCES

[1] Ahmed Sardar M. Saeed and Loay E. George, “Data

Deduplication System Based on Content-Defined Chunking
Using Bytes Pair Frequency Occurrence”, Symmetry,

2020, 12(11), 1841. https://doi.org/10.3390/sym12111841

[2] A Vijayakumar and A Nisha Jebaseeli, “Pioneer approach of

data deduplication to remove redundant data from cloud
storage”, International Journal of Advanced Research in

Engineering and Technology (IJARET), Volume 11, Issue 10,

October 2020, pp. 535-544, DOI:
10.34218/IJARET.11.10.2020.057

[3] Dinesh Mishra, Dr. Sanjeev Patwa, “Attribute and Role

Based Deduplication”, International Journal of Advanced
Science and Technology, vol. 29(7), pp. 14597 – 14606,

2020.

[4] Duaa S. Naji and Loay E. George, “A Technique for Big
Data Deduplication based on Content Attributes and

Dictionary Indexing”, IOP Conference Series: Materials

Science and Engineering, Volume 928, 2nd International
Scientific Conference of Al-Ayen University (ISCAU-2020)

15-16 July 2020, Thi-Qar, Iraq

[5] S. Ruba, A.M. Kalpana, “Machine Learning Techniques
Used To Store Efficient Cloud Data Through Chunking And

Data Deduplication Process”, Proteus Journal, 2020, pp. 60-

75, Vol.11, Issue 12. https://doi.org/10.37896/PJ11.12/043

[6] R. Parimala Devi, “Enhanced Fuzzy Ontology Based Record
Deduplication”, Aut Aut Research Journal, Vol. 11(9), pp.

499-515DOI:10.0001865.Aut Aut.2020.V11I9.463782.00746

[7] Guangpin X, Bo T, et al., “LIPA: A Learning-based Indexing
and Prefetching Approach for Data Deduplication”, 35th

Symposium on Mass Storage Systems and Technologies

(MSST), IEEE, pp. 299-310, 2019.
[8] H. Fingler, M. Ra and R. Panta, "Scalable, Efficient, and

Policy-Aware Deduplication for Primary Distributed Storage

Systems," 2019 31st International Symposium on Computer

Architecture and High Performance Computing (SBAC-

PAD), 2019, pp. 180-187, doi: 10.1109/SBAC-
PAD.2019.00038.

[9] P. Selvi, D. Shanmuga Priyaa, “An Enhanced Unsupervised

Fuzzy Expectation Maximization Clustering for
Deduplication of Records in Big data”, International Journal

of Recent Technology and Engineering (IJRTE), Volume-8

Issue-3, pp. 988-993, 2019.
DOI:10.35940/ijrte.C1269.1083S219

[10] H. A. S. Jasim and A. A. Fahad, “New techniques to enhance

data deduplication using content based-TTTD chunking
algorithm,” Int. J. Adv. Comput. Sci. Appl., vol. 9, no. 5, pp.

116–121, 2018, doi: 10.14569/IJACSA.2018.090515.

[11] N. Kumar, S. Antwal, G. Samarthyam and S. C. Jain,
"Genetic optimized data deduplication for distributed big

data storage systems," 2017 4th International Conference on

Signal Processing, Computing and Control (ISPCC), 2017,

pp. 7-15, doi: 10.1109/ISPCC.2017.8269581.

[12] N. Kumar, R. Rawat, and S. C. Jain, “Bucket based data

deduplication technique for big data storage system,” 2016
5th Int. Conf. Reliab. Infocom Technol. Optim. ICRITO 2016

Trends Futur. Dir., pp. 267–271, 2016, doi:

10.1109/ICRITO.2016.7784963.
[13] Y. xuan Xing, N. Xiao, F. Liu, Z. Sun, and W. hui He, “AR-

dedupe: An efficient deduplication approach for cluster

deduplication system,” J. Shanghai Jiaotong Univ., vol.
20, no. 1, pp. 76–81, 2015, doi: 10.1007/s12204-015-1591-1.

[14] M. Padmanaban and T. Bhuvaneswari, “A Technique for

Data Deduplication using Q-Gram Concept with Support
Vector Machine “, International Journal of Computer

Applications, Vol. 61(12), pp. 1-9, 2013

[15] M. Padmanaban and T. Bhuvaneswari, “An Approach Based
on Artificial Neural Network for Data Deduplication”,

International Journal of Computer Science and Information

Technologies, Vol. 3(4), pp. 4637-4644, 2012.

[16] Y. Zhang, Y. Wu and G. Yang, "Droplet: A Distributed

Solution of Data Deduplication," 2012 ACM/IEEE 13th

International Conference on Grid Computing, pp. 114-121,
2012, doi: 10.1109/Grid.2012.21.

[17] S. S. Sengar and M. Mishra, "E-DAID: An Efficient
Distributed Architecture for In-Line Data De-duplication,"
2012 International Conference on Communication Systems
and Network Technologies, 2012, pp. 438-442, doi:
10.1109/CSNT.2012.101.

[18] URL: https://www.kaggle.com/kazanova/sentiment140
[19] URL: https://gist.github.com/larsyencken/1440509

[20] URL: https://www.kaggle.com/omermetinn/tweets-about-the-

top-companies-from-2015-to-2020?select=Tweet.csv

0 20 40 60 80 100 120

Advance Machine Learning Architecture
(Proposed Model)

FEM (Fuzzy Expectation Maximization)
Clustering [9]

Enhanced Fuzzy Ontology Based Record
Deduplication [6]

Support Vector Model [14]

Artificial Neural Network Model [15]

Accuracy %age

https://doi.org/10.3390/sym12111841
https://iopscience.iop.org/journal/1757-899X
https://iopscience.iop.org/journal/1757-899X
https://iopscience.iop.org/volume/1757-899X/928
https://iopscience.iop.org/issue/1757-899X/928/3
https://iopscience.iop.org/issue/1757-899X/928/3
https://iopscience.iop.org/issue/1757-899X/928/3
http://proteusresearch.org/gallery/pj-2629.07-f.pdf
http://proteusresearch.org/gallery/pj-2629.07-f.pdf
http://proteusresearch.org/gallery/pj-2629.07-f.pdf
https://doi.org/10.37896/PJ11.12/043
http://autrj.com/gallery/47-aut-sep-2020.pdf
https://www.kaggle.com/kazanova/sentiment140
https://gist.github.com/larsyencken/1440509
https://www.kaggle.com/omermetinn/tweets-about-the-top-companies-from-2015-to-2020?select=Tweet.csv
https://www.kaggle.com/omermetinn/tweets-about-the-top-companies-from-2015-to-2020?select=Tweet.csv

International Journal of Electrical and Computer Engineering (IJECE)

Vol. 12, No. 6, December 2022, pp. 6373~6386

ISSN: 2088-8708, DOI: 10.11591/ijece.v12i6.pp6373-6386 6373

Journal homepage: http://ijece.iaescore.com

An optimized cost-based data allocation model for

heterogeneous distributed computing systems

Sashi Tarun1, Mithilesh Kumar Dubey1, Ranbir Singh Batth1, Sukhpreet Kaur2
1School of Computer Science Engineering, Lovely Professional University, Phagwara, India

2Department of Computer Science Engineering, Chandigarh Engineering College, Chandigarh, India

Article Info ABSTRACT

Article history:

Received Jun 25, 2021

Revised Jun 11, 2022

Accepted Jul 7, 2022

 Continuous attempts have been made to improve the flexibility and

effectiveness of distributed computing systems. Extensive effort in the fields

of connectivity technologies, network programs, high processing

components, and storage helps to improvise results. However, concerns such

as slowness in response, long execution time, and long completion time have

been identified as stumbling blocks that hinder performance and require

additional attention. These defects increased the total system cost and made

the data allocation procedure for a geographically dispersed setup difficult.

The load-based architectural model has been strengthened to improve data

allocation performance. To do this, an abstract job model is employed, and a

data query file containing input data is processed on a directed acyclic graph.

The jobs are executed on the processing engine with the lowest execution

cost, and the system's total cost is calculated. The total cost is computed by

summing the costs of communication, computation, and network. The total

cost of the system will be reduced using a Swarm intelligence algorithm. In

heterogeneous distributed computing systems, the suggested approach

attempts to reduce the system's total cost and improve data distribution.

According to simulation results, the technique efficiently lowers total system

cost and optimizes partitioned data allocation.

Keywords:

Communication cost

Computation cost

Data allocation

Execution time

Network cost

Total cost

This is an open access article under the CC BY-SA license.

Corresponding Author:

Sashi Tarun

School of Computer Science Engineering, Lovely Professional University

Phagwara, India

Email: sashitarun79@gmail.com

1. INTRODUCTION

The success of a distributed system is determined by how data is fragmented and distributed across

several geographical locations [1], [2]. One of the most difficult aspects of distributed architecture is

overcoming the growing workforce load and cutting down data allocation costs. Load implies a longer query

completion time, which has an impact on operational costs and increases the overall system execution cost.

To keep the overall system execution cost low, data fragments must be broken down into little sub-tasks and

planned to be processed in parallel. The objective of this type of heuristic division is to reduce the time it

takes to complete all jobs.

The number of processing engines and tasks used in the execution is determined by the query file

and the number of processing engines. Each engine has its own computing cost for calculating task execution

costs. The execution cost is calculated by adding the lowest execution cost to the communication and

network costs incurred during the processing engine's execution.

To parallel execute all jobs, a directed acyclic graph (DAG) with vertices and edges as shown in

Figure 1 was utilized. Each job is represented as a vertex or node in a DAG, and the edges between them

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 6, December 2022: 6373-6386

6374

reflect the communication cost and connection between the tasks. The cost of communication is incurred

when data is transferred between nodes. DAG is responsible for three sorts of costs: communication,

network, and computation. Each expense factored into the total cost of system execution. Only the

calculation cost with the shortest execution time is considered for total cost computation.

Figure 1. Directed acyclic graph

We consider a distributed system with heterogeneous processors and system tasks in this paper.

P=P1, P2, ..., Pn of heterogeneous processors connected by communications links, and T=t1, t2,, tm of

system tasks that collectively express a purpose, are represented by a distributed system. The execution cost

matrix (ECM), which is an asymmetrical matrix of order m*m, represents the cost of execution of tasks on

different processors, while the network cost matrix (NCM), which is an asymmetrical matrix of order m*m,

represents the cost of communication between multiple tasks, as shown in Tables 1 and 2. By using both, the

suggested artificial bee colony (ABC) algorithm may compute the best overall cost.

Table 1. Execution cost matrix
Query/Tasks Processors

 P1 P2 P3

1 0.81 0.16 0.66

2 0.91 0.97 0.04

3 0.13 0.96 0.85
4 0.91 0.49 0.93

5 0.63 0.80 0.68

6 0.10 0.14 0.76
7 0.28 0.42 0.74

8 0.55 0.92 0.39

9 0.96 0.79 0.66
10 0.96 0.96 0.17

Table 2. Network cost matrix
Query/Tasks Processors

 P1 P2 P3

1 0.71 0.44 0.28

2 0.03 0.38 0.68

3 0.28 0.77 0.66
4 0.05 0.80 0.16

5 0.10 0.19 0.12

6 0.82 0.49 0.50
7 0.69 0.45 0.96

8 0.32 0.65 0.34

9 0.95 0.71 0.59
10 0.03 0.75 0.22

Delay in response, high execution time, and high completion time are the issues with data allocation

in a distributed system [3]. It progressively boosts system costs and impacts workforce progress. The use of

several processors increased network and communication costs during task execution, which had an impact

on the overall system cost. Earlier techniques used by the researchers excluded network costs from overall

system cost calculations. In this situation, the previously produced study results appear to be erroneous and

useless in different experiments in a distributed environment. The proposed study focuses on a swarm

intelligence-based artificial bee colony method useful for addressing and resolving current difficulties and

1

2

3

4

5

6

7

8

9

10

Int J Elec & Comp Eng ISSN: 2088-8708

An optimized cost-based data allocation model for heterogeneous distributed … (Sashi Tarun)

6375

rapidly working for handling previous flaws [4]–[9] discusses previous issues. The proposed method is based

on the learning and adaptive behavior of bees, which might be beneficial in resolving performance

difficulties. It controls bee-degradation loss that arises as a result of the high expense of collecting the bees

from the location. To accomplish optimization, such costs are subtracted from the overall system cost to

balance loss. It aids in the betterment of data allocation in a distributed computing system.

The following is a list of the topics covered in this paper. The second section goes through important

research and findings. The third section introduces the technique we suggest. The simulation results of our

suggested ABC method are shown in section 4. Section 5 compares and contrasts the proposed algorithm with

existing algorithms. Finally, section 6 presents the paper's conclusion.

2. RELATED WORK

An energy-efficient dynamic loading and resource scheduling method includes reducing energy

usage and decreasing application times. The method also successfully decreases energy efficiency by

modifying the central processing unit (CPU) clock frequency of smart mobile devices to the optimum in local

computing and adjusting the communication energy of wireless channels in cloud computing [10]. For the

placement of virtual machines in cloud computing an energy-efficient order exchange and migration ant

colony system (OEMACS) algorithm was created. The intended virtual machine placement was achieved

with the fewest number of active machines and by turning off idle nodes. According to experimental

investigations, OEMACS aimed to minimize the number of active servers, increase resource use, balance

diverse resources, and reduce power consumption [11]. To offer energy and service-sensitive performance in

the placement and consolidation of virtual machines, a multi-target colony optimization technique was

presented. The results demonstrate that this technique outperforms the other ways in terms of energy

consumption, limiting CPU waste, lowering energy communications costs caused by traffic sharing across

virtual machines, and reducing the number of virtual migrations to system and service level agreement (SLA)

violations [12]. To minimize all of cloud data center power consumption a platform for virtual machine

placement was introduced. The adaptability and scalability of the platform proposed resulted in exceptional

success in virtual machine deployment and relocation processes [13].

An evaluation of current reliability and energy management strategies and their effect on cloud

computing was discussed. There were debates on the classification of resource loss, failure tolerance

mechanisms, and mechanisms for energy conservation in cloud systems. Different problems and study gaps

have been established in the balance between energy reliability and quality [14]. A strong immune clonal

optimization method based on the dynamic load balance approach and immune clonal selection theory in

green cloud computing has solved the problem of high energy consumption and reduced cloud utilization. In

terms of solution efficiency and processing costs, the experimental findings show that the method

outperforms clonal selection techniques [15]. The need for energy management is demonstrated when

addressing the dual position of cloud computing as a significant contributor to rising energy use and reducing

energy waste. The research provided an in-depth analysis of current energy management methods in cloud

computing. It also supplies taxonomies for the assessment of current work in the area of science [16].

Consolidation of tasks as an efficient way to maximize resource usage and minimize energy use was

addressed. The research focused on two energy-conscious energy consolidation heuristics intended to

optimize the use of resources and take both active and idle energy use directly into account. The heuristics

suggested assigning each job to the resource, which minimizes the energy needs explicitly or indirectly,

without degradation in performance [17]. An energy-efficient cloud computing architectural structure and

concepts were suggested. The study identified open analysis problems, the provision of infrastructure as well

as algorithms to handle cloud computing environments effectively. The conclusions indicate that the

suggested model of cloud storage makes substantial cost savings and has a high capacity in complex

workload environments for energy efficiency improvements [18].

An algorithm for allocating the total energy consumption was introduced. The effects of

simulations were also viewed on a state-of-the-art platform. The suggested solution results in tangible energy

conservation, showing energy efficiency dominance in comparison with well-known and widely accepted

allocation methods [19]. The research was conducted on maximizing physical and virtual machines' capacity

and energy consumption in a cloud computing system. Findings offered a good understanding of how power

and energy usage were affected by various workloads. The tools and structure presented can be used for

research and improving energy efficiency in any cloud environment and of any scale [20]. A problem of

energy optimization has been modeled whereas the task dependence, transfer of data, and some constraints

such as response time, and cost have been considered and solved by genetic algorithms. A series of

simulation trials have been carried out to assess the algorithm efficiency and the findings suggest that the

proposal is more effective than the benchmark method [21]. To decrease energy usage in cloud data centers,

an optimal paradigm for work schedules has been proposed. The proposed solution was designed as an

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 6, December 2022: 6373-6386

6376

integer programming problem to reduce the energy consumption of a cloud-based data center by organizing

activities for a small number of servers and adhering to task response time constraints. As a realistic program,

the authors have developed the most effective initial task-programming method for the server to decrease

energy expenses. A data center planning system with diverse tasks is modeled and simulated. The study

findings reveal that the recommended work scheduling strategy reduces server power consumption by more

than 70 times on average when compared to a random job scheduling system [22]. A power-aware

scheduling approach for a heterogeneous cloud network was suggested to solve the issue of high energy

consumption. The results show that the average power consumption in this system is 23.9-6.6% lower than in

modern technology [23]. An abstract model was proposed that uses piecewise linear functions to handle data

analytics workload in a distributed cluster architecture. This is responsible to reduce the makespan time to

handle cost issues [24]. A hybrid heuristic genetic algorithm and the steepest descent methods were used to

achieve optimal task allocation with the reduction in hardware policies to reduce system cost [25]. A latency-

aware max-min algorithm (LAM) has been developed for resource allocation in cloud infrastructures. The

suggested method was developed to handle resource allocation challenges such as changing user

requirements and on-demand access to infinite resources. It may allocate resources in a cloud-based

environment to enhance infrastructure performance and increase revenue [26].

3. PROPOSED METHOD

The data allocation method is based upon the processing engine. The data allocation process

consumes a higher network cost if the cost parameter is not controlled correctly. The cost of doing activities

on multiple processors varies in this case. When two dependent jobs are run on the same processor, the

computing cost is the same, and communication between them is regarded as zero. The planned activities are

repeated on the specific processing engines to compute execution costs. To calculate the task execution cost,

the lowest cost of query execution is applied to the communication cost. The following stages are carried out

to carry out the planned task, as illustrated in Figure 2.

Figure 2. Proposed method flow

Int J Elec & Comp Eng ISSN: 2088-8708

An optimized cost-based data allocation model for heterogeneous distributed … (Sashi Tarun)

6377

3.1. Load the query data file

The communication and processing costs of the tasks in a flow are utilized to compute the query

cost. It is a flow diagram that shows the execution of queries and tasks at different levels. The lowest cost

processing engine (PE) is chosen to determine the calculation cost. The query model flow is used to illustrate

the details of all jobs, including their flow and associated communication and computing costs, as shown in

Table 3.

Table 3. Query model flow (query_data)
Query/Tasks flow

Communication Cost
Computation Cost

T1 T2 PE1 PE2 PE3

1 2 12 12 10 14

1 3 15 8 9 15

1 4 17 14 18 15

1 5 14 11 14 9
1 6 16 12 14 17

2 7 14 11 15 17

2 8 15 12 17 19
3 8 18 12 17 19

3 9 17 17 18 13

4 7 18 11 15 17
5 7 17 11 15 17

5 8 25 12 17 19
6 9 10 17 18 13

6 7 14 11 15 17

7 10 12 14 15 13

8 10 13 14 15 13

9 10 14 14 15 13

3.2. Total cost estimation

The total cost is defined as the total energy incurred during the execution of all tasks. At the node

level, a level-wise cumulative computation is used to calculate overall costs. At each level, the load is

measured by summing all communication, computation, and network access expenses for all jobs. The

overall cost spent after selecting processors for task execution is represented by all three factors. All

processors have their specifications and perform tasks without violating the priority limitations set by the

operating system. It indicates it will not let you break the workflow sequence. Sub-tasks are executed after

each of its parents has completed their execution. Instead of focusing on task prioritization at each node,

preference is given to processors with lower execution costs for a task assessment. Tasks are data fragments

that are placed on each node and vary in size. To compute the total cost at level 1 (root-level) following steps

are executed as shown in pseudocode 1. It is responsible to compute total cost by SumUp least execution cost

of PE with other parameters cost incurred at each level.

Pseudocode 1. Pseudocode to calculate execution pattern of level 1 tasks
Input: entry_query, query_comp_cost, myminvalue, myminpos

Output: total_engine_value

1 execution_pattern=[];

2 total_engine_value=zeros(1,3);

3 [myminvalue,myminpos]=min(query_comp_cost(1,:));

4 execution_pattern(1,1)=entry_query;

5 execution_pattern(1,2)=0;

6 execution_pattern(1,3)=myminvalue;

7 execution_pattern(1,4)=myminpos;

8 total_engine_value(1,myminpos)=total_engine_value(1,myminpos)+myminvalue;

Here, to calculate the execution pattern at level 2, it is required to count number of queries comes

under this level, find connectivity between parent and current nodes and compute their communication cost.

The communication cost become same in the case if tasks are executed on the same processor else not. To

calculate the total cost incurred during the execution of individual task/queries at current level

communication cost, and least execution cost of machines are involved. Pseudocode 2 is responsible to

evaluate all cost parameters to compute the overall cost of level 2.

Pseudocode 2. Pseudocode to calculate execution pattern of level 2 tasks
Input: last_engine, total_query_count, lvcount2, current, parent, query_engine

Output: comm_costt, total_cost, total_engine_value

1 last_engine=myminpos;

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 6, December 2022: 6373-6386

6378

2 total_cost=[];

3 total_query_count=2;

4 for i=1:lvcount2 % return level-2 queries count

5 current=level(2,i);

6 parent=entry_query;

7 for j=1:query_engines

8 comp_current=query_comp_cost(current,j);

9 if j~=last_engine

10 comm_costt=0;
11 sd=find(query_comm_cost(:,1)==entry_query); % return total no. of queries related to 1
12 for k=1:numel(sd)
13 kp=query_comm_cost(sd(k),2);
14 if kp==current
15 comm_costt=query_comm_cost(k,3);
16 end
17 end
18 total_cost(j)=comm_costt+comp_current+total_engine_value(1,j);
19 else
20 total_cost(j)=comp_current+total_engine_value(1,j);
21 end
22 end

The pseudocode 3 estimate the level 3 tasks total execution cost. Here, all tasks are evaluated level-

wise in sequence to compute the total cost pattern. During computation cost, communication cost and

network cost values are summed-up.

Pseudocode 3. Pseudocode to calculate execution pattern of level 3 tasks
Input: lvcounter, query_data, execution_pattern

Output: parentcurrent, parentfinishtime, totalcost

1 for i=1:lvcounter % Tally execution pattern of level 3

2 current=lv3jobs(i);

3 parentcurrent=[];

4 parentfinishtime=[];

5 counter=0;

6 [dp,pos]=find(query_data(:,2)==current);

7 for j=1:numel(dp)

8 parentcurrent(j)=query_data(dp(j),1);

9 currentparent=parentcurrent(j);

10 m=find(execution_pattern(:,1)==currentparent);
11 currentparentfinishtime=execution_pattern(m,3);
12 parentfinishtime(j)=currentparentfinishtime;
13 parentprocessor(j)=execution_pattern(m,4);
14 end
15 [maxval,maxpos]=max(parentfinishtime);
16 minstarttime=maxval;
17 parentp=parentprocessor(maxpos);
18 totalcost=[];
19 for j=1:3
20 [p,k]=find(execution_pattern(:,4)==j);
21 lasttime=execution_pattern(p(numel(p)),3);
22 if lasttime<minstarttime
23 lasttime=minstarttime;
24 end
25 totalcost(j)=lasttime;
26 end

The queries at level 4 are conducted once the parent tasks at level 3 have been completed. The size

of the level is calculated at this level, and each task is assessed row-by-row. There is one task marked as

current in this. According to query_data, the current task or query has three parents that are each represented

as parentcurrent. Each parentcurrent's execution cost is calculated separately. As illustrated in pseudocode 4,

network costs and PEs with the lowest execution costs are added to compute the overall cost during

evaluation of tasks and queries at level 4. At the end, total execution cost of processing engines (PEs) is

computed and the smallest execution cost of PE is picked.

Pseudocode 4. Pseudocode to calculate execution pattern of level 4 tasks
Input: lvcounter, current, parentcurrent, parentfinishtime, query_data, execution_pattern

Output: totalcost

1. for i=1:lvcounter

2. current=lv4jobs(i);

3. parentcurrent=[];

Int J Elec & Comp Eng ISSN: 2088-8708

An optimized cost-based data allocation model for heterogeneous distributed … (Sashi Tarun)

6379

4. parentfinishtime=[];

5. counter=0;

6. [dp,pos]=find(query_data(:,2)==current);

7. for j=1:numel(dp)

8. parentcurrent(j)=query_data(dp(j),1);

9. currentparent=parentcurrent(j);

10. m=find(execution_pattern(:,1)==currentparent);

11. currentparentfinishtime=execution_pattern(m,3);

12. parentfinishtime(j)=currentparentfinishtime;

13. parentprocessor(j)=execution_pattern(m,4);

14. end

15. [maxval,maxpos]=max(parentfinishtime);

16. minstarttime=maxval;

17. parentp=parentprocessor(maxpos);

18. totalcost=[];

19. for j=1:3

20. [p,k]=find(execution_pattern(:,4)==j);

21. lasttime=execution_pattern(p(numel(p)),3);

22. if lasttime<minstarttime

23. lasttime=minstarttime;

24. end

25. totalcost(j)=lasttime;

26. end

3.2.1. Calculation of total system cost

The system’s total cost is calculated by adding the least execution cost of all tasks using (3). The

execution cost of the processing engine for each task is estimated using (1). The least execution cost is

estimated using (2). The practical calculation of implementation for each processing engine is shown in

Table 4.

Table 4. Execution cost of each processing engine
Query/tasks 1 2 3 4 5 6 7 8 9 10

Computation cost

of tasks
9 8 7 12 10 14 8 9 15 14 18 15 11 14 9 12 14 17 11 15 17 12 17 19 17 18 13 14 15 13

Execution cost of
each PEs

0 0 7 24 22 21 23 24 43 54 35 43 48 63 37 51 65 82 53 57 60 53 45 37 63 60 61 64 72 70

Least exec. cost 7 21 23 35 37 51 53 45 60 64
Total system cost 396

𝑃𝐸𝑠 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 + 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 + 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑐𝑜𝑠𝑡 (1)

𝐿𝑒𝑎𝑠𝑡 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = 𝑚𝑖𝑛(𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑃𝐸𝑠) (2)

𝑇𝑜𝑡𝑎𝑙 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡 = 𝑠𝑢𝑚 𝑜𝑓 𝑙𝑒𝑎𝑠𝑡 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑎𝑙𝑙 𝑡𝑎𝑠𝑘𝑠 (3)

3.2.2. Calculation of execution pattern

Execution cost matrix (ECM) and network cost matrix (NCM) results as shown in Tables 1 and 2

respectively are used to compute execution patterns for each processing task and indicated processing engine

task wise. In this, jobs at various levels are processed in topological order, and their associated

communication, network, and computing costs from the communicating node are calculated and added. This

method is used for all jobs and lies on different levels (0-nth levels) depending on directed acyclic graph

(DAG) size.

The results computed at each level are added to determine the overall execution cost. Information on

the tasks that are carried out one after the other starting at the root level is provided by pseudocode 5. From

the root level, the execution cost pattern is calculated individually for each job from 1 to 10 by noting the

starting and ending consumption units and the processing engines involved in each task. The overall cost is

then calculated task-by-task as shown in Table 5. Every time, the difference between the starting and ending

consumption units is used to calculate the execution cost. For each task, the energy pattern from the ECM is

chosen based on the corresponding processing engine ID.

Pseudocode 5. Pseudocode to calculate execution cost pattern for each task with PEs ID
Input: execution_pattern, network_cost, currentp, total_query_count, ex_pt

Output: ecost

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 6, December 2022: 6373-6386

6380

1. ex_pt=[];
2. ex_pt{1,1}='Query No';
3. ex_pt{1,2}='Starting Consumption Unit';
4. ex_pt{1,3}='Ending Consumption Unit';
5. ex_pt{1,4}='DB Engine ID';
6. total_query_count=10;
7. for i=1:total_query_count
8. ex_pt{i+1,1}=execution_pattern(i,1);
9. ex_pt{i+1,2}=execution_pattern(i,2);
10. ex_pt{i+1,3}=execution_pattern(i,3);

11. ex_pt{i+1,4}=execution_pattern(i,4);
12. end
13. for i=1:total_query_count
14. currentdiff=execution_pattern(i,3)-execution_pattern(i,2);
15. currentp=execution_pattern(i,4);
16. ecost=energypattern(i,currentp);
17. ecost=ecost+networkcost(i,currentp);

18. execution_pattern(i,5)=ecost;
19. end

Table 5. Execution cost pattern for each processing task
Tasks Starting consumption unit Ending consumption unit Processing engines ID Execution cost pattern (mJ)

1 0 7 3 6.5224

2 7 21 3 0.7154

3 0 23 1 0.4039
4 0 35 2 1.2806

5 28 37 3 0.7977

6 23 51 1 0.9210
7 51 53 1 0.9733

8 37 45 2 1.5620
9 51 60 2 1.5016

10 60 64 1 0.9993

3.3. Proposed artificial bee colony

A swarm intelligence algorithm is a step toward dealing with issues that cannot be handled by the

traditional numerical methods. The honey bees represent a quick social collective behavior having the ability

to adapt, learn, and update themselves. It inspired most researchers to apply it for the optimization of results.

This algorithm is based on bee colony behavior. Here bees are of three types; employed bees (those

responsible for food collection), onlooker bees (those responsible for food monitoring), and scout bees (those

are in rest). ABC algorithm works here to optimize the total execution cost as shown in pseudocode 6.

Pseudocode 6. Artificial bee colony (ABC)
Input: Food Source

Output: [scout,beedegradation] =beefitness(employed_bee, energypattern, networkcost,

timemodel, currentprocessor, taskname)

1. scout=0;

2. beedegradation=0;

3. restprocessors=[];

4. rc=1;

5. for i=1:3

6. if i~=currentprocessor

7. restprocessors(rc)=i;

8. rc=rc+1;

9. end

10. end

11. for i=1:numel(restprocessors)

12. onlooker_bee_value(i)=timemodel*(energypattern(taskname, restprocessors(i)),
networkcost(taskname, restprocessors(i)));

13. end

14. selected_food_source=min(onlooker_bee_value);

15. onlooker_bee_selection=selected_food_source;

16. employed_bee=employed_bee*timemodel;

17. natural_change_onlooker=rand;

18. natural_change_employed=rand;

19. if onlooker_bee_selection*natural_change_onlooker > employed_bee*natural_change_employed

20. scout=0;

Int J Elec & Comp Eng ISSN: 2088-8708

An optimized cost-based data allocation model for heterogeneous distributed … (Sashi Tarun)

6381

21. beedegradation=0;

22. else

23. scout=1;

24. beedegradation=((employed_bee*natural_change_employed) -
(onlooker_bee_selection*natural_change_onlooker)) /timemodel;

25. end

26. end

3.4. Fitness function checking

Fitness function aids in validating the overall execution cost in distributed systems to accomplish

data allocation at a minimal cost. It compares and verifies the outcomes, as well as cover the bee degradation

part to reach to the optimal state. The code lines 19-25 of proposed ABC pseudocode 6 depicts that if the

results after multiplication of onlooker_bee_selection*natural_change_onlooker is greater than the results of

employed_bee*natural_change_employed, in such case there is no occurrence of scout and beedegradation

loss otherwise scout and beedegradation occurs. This can be accomplished by subtracting the cost of

beedegradation from the total system cost. This is the expense of collecting nectar from various sites,

including the time spent traveling back and forth.

3.5. Re-analyze with upgraded threshold to get optimized result

Table 6 illustrates the results of the ABC algorithm's calculations. It shows the measurements

between different variables involves to achieve optimal results. Finally, it calculates optimal results in mJ,

which show the system's total execution cost in pseudocode 7. This can be achieved by setting threshold

value in which optimal results is further subtracted by time spent by bees during the collection of nectar from

flowers in different location indicated as beedegradation. The measurement in Table 6 shows the calculations

carried out to justify the effectiveness of ABC algorithm. It shows total system cost estimated after

reanalyzing the cost discovered. Here, all variables are interpreted in view to achieve the results.

Pseudocode 7. Pseudocode to re-analyze with upgraded threshold
Input: scout, beed, timemodal

Output: Optimal

1. if scout>0
2. optimal(i,5)=abs(optimal(i,5)-beed/timemodel);
3. end

Table 6. Fitness value and re-analyze process for optimal result
Tasks Current

Processor

Rest

Processor

0nlooker_

bee value

onlooker

_ bee_
selection

(A)

natural_

change_
onlooker

(B)

employed_

bee (C)

natural_

change _
employed

(D)

If A*B >

C*D

Scout beed Optimal Result

After re-analyze
(total system cost

in mJ)

1 3 1 10.6454 4.1745 0.7513 45.6565 0.2551 False 1 1.21
58

6.3487
2 4.1745

2 3 1 13.1267 13.1267 0.5060 140.2212 0.6991 False 1 6.52

74

9.5496

2 18.9301
3 1 2 39.6217 34.5972 0.8909 213.6683 0.9593 False 1 7.5716 8.9607

3 34.5972

4 2 1 33.5842 38.3812 0.5472 44.8201 0.1386 False 1 5.6881 44.6576
3 38.3812

5 3 1 6.5654 6.5654 0.1493 64.6164 0.2575 False 1 1.7399 6.9863

2 8.8844
6 1 2 17.6862 17.6862 0.8407 722.0626 0.2543 False 1 6.0264 25.5727

3 35.1709

7 1 2 1.7347 1.7347 0.8143 3.8933 0.2435 True 0 0 1.9467
3 3.4058

8 2 1 6.9118 5.8609 0.9293 99.9711 0.3500 False 1 3.6927 12.0348

3 5.8609
9 2 1 17.1696 11.1667 0.1966 121.6273 0.2511 False 1 3.1493 13.1642

3 11.1667

10 1 2 6.8567 1.5800 0.6160 15.9894 0.4733 False 1 1.6486 3.5852
3 1.5800

4. SIMULATION RESULTS AND DISCUSSION

The ABC method is implemented in MATLAB and executed on an Intel Core i3 processor 11

generations with a clock speed of 3.00 GHz and 4 GB of RAM. Megajoules (mJ) are units of measurement

for the amount of energy consumed. In Table 7, the proposed work is compared to existing approaches. It

was discovered that previously suggested approaches did not account for network costs in their calculations,

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 6, December 2022: 6373-6386

6382

and anomalies were discovered that impacted overall system costs. To obtain the optimal least cost, all

parameters such as communication cost, computation cost, network cost, as well as bee degradation are

applied in the suggested work.

All activities are executed in parallel on processing engines, which improves performance and

strengthens distributed task allocation. Processing units with low execution costs can complete jobs in large

numbers and in a short amount of time. As indicated in Table 8, the total incurred cost on task execution is

utilized to determine system cost. The suggested work is compared to other current techniques with concerns,

and it is discovered that the ABC algorithm helps to obtain optimal system cost to construct a resilient

distributed environment, as shown in Table 9.

Table 10 compares the before and after results of total energy consumption during task execution. It

shows that total cost is reduced by the proposed ABC algorithm. The simulation results of before and after

optimization are shown graphically in Figure 3.

Table 7. Comparative study of projected work with existing approaches
Existing

Approaches
References Purpose Assumption Drawbacks

Artificial

intelligence

[4] This used list-based heterogeneous

earliest finish time (HEFT) algorithm to
reduce cost by minimizing energy

consumption rate.

Assume to reduce system

cost

Network cost is not used during

the computation of cost

Communication
link sum (CLS)

[19] To reduce the inter-processor
communication to minimize the system

cost for task allocation in distributed

computing systems

Assume to reduce system
cost

Network cost is not used
during the computation of

system cost. On the other

side, this approach follows a
static task allocation policy

Enhanced PSO [27] Proposed a load balancing mutation

particle swarm optimization (LBMPSO)
to allocate the best resources to tasks for

maintaining execution time, transmission

cost, and makespan.

Assume to improve

efficiency by allocating
data with all resources at a

low cost

network cost parameter is

avoided here in the data
allocation perspective

Proposed

Approach

 Work to reduce overall system cost

using artificial bee colony approach for

DAG

Assume to reduce system

cost by learning, adapting,

and updating behavior to
achieve performance in

distributed computing

does not consider fault

tolerance part to adjust the

load

Table 8. Optimal task allocation
Optimal allocation Total execution cost System cost

Tasks Processing engines

t3, t6, t7, t10 PE1 191 396

t4, t8, t9 PE2 140

t1, t2, t5 PE3 65

Table 9. Assessment of system cost parameter with other methods
Proposed algorithm

System cost
Hamed algorithm [28]

System cost
Yadav algorithm [27]

System cost
Tasks Processing engines Tasks Processing engines Tasks Processing engines

t3, t6, t7, t10 PE1 396 t4, t7 PE1 459 t5,t7 PE1 528
t4, t8, t9 PE2 t2, t3, t8, t9 PE2 t2, t3, t8, t9 PE2

t1, t2, t5 PE3 t1, t5, t6 PE3 t1, t4, t6 PE3

Table 10. Earlier and subsequent total cost results in mJ
Query/Tasks Total Cost Before Optimization in mJ Total Cost After Optimization in mJ

1 6.5224 6.3487

2 10.0158 9.5496

3 9.2899 8.9607
4 44.8201 44.6576

5 7.1796 6.9863

6 25.7880 25.5727
7 1.9467 1.9467

8 12.4964 12.0348

9 13.5141 13.1642
10 3.9973 3.5852

Average Cost of Tasks 13.56 13.28

Int J Elec & Comp Eng ISSN: 2088-8708

An optimized cost-based data allocation model for heterogeneous distributed … (Sashi Tarun)

6383

Figure 3. Energy consumption with and without optimization

In Table 11, the results are compared with a list-based task scheduling algorithm that employs

artificial intelligence [4], and a task allocation model for system cost analysis that employs communication

link sum (CLS) [27]. These techniques consider all indicators except network cost. In comparison to prior

techniques, the proposed work saves 13.28 in overall costs, as shown in Figure 4. This method can easily

allocate large data fragments and perform them fast and inexpensively. With this method, there are no

extended waits, delays, or completion times, which lowers the performance of the distributed system.

Table 11. Comparison with existing techniques
Research technique used Reduced total execution

cost (%age)

Proposed work using artificial bee colony (ABC) 13.28
Existing work using AI [4] 60.6

Existing work using communication link sum (CLS) [27] 24

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10To
ta

l C
o

st
 B

e
fo

re
 O

p
ti

m
iz

at
io

n
 in

 m
J

Query/Tasks

Total Cost Before Optimization in mJ

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10

To
ta

l C
o

st
 A

ft
e

r
O

p
ti

m
iz

at
io

n
 in

 m
J

Query/Tasks

Total Cost After Optimization in mJ

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 6, December 2022: 6373-6386

6384

Figure 4. Comparative representation of techniques

5. CONCLUSION

We present a swarm intelligence-based artificial bee colony (ABC) method to reduce system

execution costs and enhance data allocation in distributed systems in this study. It also makes it easier to

trace the degradation loss of bees by subtracting equivalent cost units from the overall cost. When compared

to previous approaches, the ABC algorithm was found to considerably lower total execution costs and

improve system efficiency. Network expenses are not utilized to calculate system costs, according to

previous studies. As a result, past results used to perform tests are inaccurate. This cost allocation model

takes into account all expenses incurred during data processing in a distributed system. In the future, attempts

might be made to bring new approaches to enhance data allocation by focusing more on fault tolerance in

distributed computing systems.

REFERENCES
[1] S. Tarun, R. S. Batth, and S. Kaur, “A novel fragmentation scheme for textual data using similarity-based threshold segmentation

method in distributed network environment,” International Journal of Computer Networks and Applications, vol. 7, no. 6, 231,
Dec. 2020, doi: 10.22247/ijcna/2020/205322.

[2] S. Tarun, R. S. Batth, and S. Kaur, “A review on fragmentation, allocation and replication in distributed database systems,” in

International Conference on Computational Intelligence and Knowledge Economy, Dec. 2019, pp. 538–544., doi:
10.1109/ICCIKE47802.2019.9004233.

[3] A. Osman, A. Sagahyroon, R. Aburukba, and F. Aloul, “Optimization of energy consumption in cloud computing datacenters,”

International Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 1, pp. 686–698, Feb. 2021, doi:
10.11591/ijece.v11i1.pp686-698.

[4] Akanksha, “List-based task scheduling algorithm for distributed computing system using artificial intelligence,” in Advances in

Intelligent Systems and Computing, vol. 941, Springer International Publishing, 2020, pp. 1006–1014, doi: 10.1007/978-3-030-
16660-1_98.

[5] A. Gandomi, A. Movaghar, M. Reshadi, and A. Khademzadeh, “Designing a MapReduce performance model in distributed

heterogeneous platforms based on benchmarking approach,” The Journal of Supercomputing, vol. 76, no. 9, pp. 7177–7203, Sep.
2020, doi: 10.1007/s11227-020-03162-9.

[6] N. Lotfi, “Data allocation in distributed database systems: a novel hybrid method based on differential evolution and variable

neighborhood search,” SN Applied Sciences, vol. 1, no. 12, Dec. 2019, doi: 10.1007/s42452-019-1787-3.
[7] R. Tariq, F. Aadil, M. F. Malik, S. Ejaz, M. U. Khan, and M. F. Khan, “Directed acyclic graph based task scheduling algorithm

for heterogeneous systems,” in Advances in Intelligent Systems and Computing, vol. 869, Springer International Publishing, 2019,

pp. 936–947., doi: 10.1007/978-3-030-01057-7_69.
[8] S. Sandokji and F. Eassa, “Communication and computation aware task scheduling framework toward exascale computing,”

International Journal of Advanced Computer Science and Applications, vol. 10, no. 7, pp. 119–128, 2019, doi:

10.14569/IJACSA.2019.0100718.
[9] I. O. Hababeh and N. Bowring, “A method for fragment allocation design in the distributed database systems,” The Sixth Annual

UAE, pp. 4–12, 2005

[10] S. Guo, J. Liu, Y. Yang, B. Xiao, and Z. Li, “Energy-efficient dynamic computation offloading and cooperative task scheduling in
mobile cloud computing,” IEEE Transactions on Mobile Computing, vol. 18, no. 2, pp. 319–333, Feb. 2019, doi:

10.1109/TMC.2018.2831230.
[11] X.-F. Liu, Z.-H. Zhan, J. D. Deng, Y. Li, T. Gu, and J. Zhang, “An energy efficient ant colony system for virtual machine

placement in cloud computing,” IEEE Transactions on Evolutionary Computation, vol. 22, no. 1, pp. 113–128, Feb. 2018, doi:

10.1109/TEVC.2016.2623803.
[12] M.-H. Malekloo, N. Kara, and M. El Barachi, “An energy efficient and SLA compliant approach for resource allocation and

consolidation in cloud computing environments,” Sustainable Computing: Informatics and Systems, vol. 17, pp. 9–24, Mar. 2018,

doi: 10.1016/j.suscom.2018.02.001.

Int J Elec & Comp Eng ISSN: 2088-8708

An optimized cost-based data allocation model for heterogeneous distributed … (Sashi Tarun)

6385

[13] S. Vakilinia, B. Heidarpour, and M. Cheriet, “Energy efficient resource allocation in cloud computing environments,” IEEE
Access, vol. 4, pp. 8544–8557, 2016, doi: 10.1109/ACCESS.2016.2633558.

[14] Y. Sharma, B. Javadi, W. Si, and D. Sun, “Reliability and energy efficiency in cloud computing systems: survey and taxonomy,”

Journal of Network and Computer Applications, vol. 74, pp. 66–85, Oct. 2016, doi: 10.1016/j.jnca.2016.08.010.
[15] Z. Long and W. Ji, “Power-efficient immune clonal optimization and dynamic load balancing for low energy consumption and

high efficiency in green cloud computing,” Journal of Communications, vol. 11, no. 6, pp. 558–563, 2016, doi:

10.12720/jcm.11.6.558-563.
[16] T. Kaur and I. Chana, “Energy efficiency techniques in cloud computing: a survey and taxonomy,” ACM Computing Surveys,

vol. 48, no. 2, pp. 1–46, Nov. 2015, doi: 10.1145/2742488.

[17] Y. C. Lee and A. Y. Zomaya, “Energy efficient utilization of resources in cloud computing systems,” The Journal of
Supercomputing, vol. 60, no. 2, pp. 268–280, May 2012, doi: 10.1007/s11227-010-0421-3.

[18] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-aware resource allocation heuristics for efficient management of data centers

for cloud computing,” Future Generation Computer Systems, vol. 28, no. 5, pp. 755–768, May 2012, doi:
10.1016/j.future.2011.04.017.

[19] A. Scionti, K. Goga, F. Lubrano, and O. Terzo, “Towards energy efficient orchestration of cloud computing infrastructure,” in

Advances in Intelligent Systems and Computing, vol. 772, Springer International Publishing, 2019, pp. 172–183, doi:
10.1007/978-3-319-93659-8_15.

[20] N. Khan and R. Shrestha, “Optimizing power and energy efficiency in cloud computing,” in 9th International Conference on

Cloud Computing and Services Science, 2019, pp. 380–387., doi: 10.5220/0007723503800387.
[21] C. Tang, S. Xiao, X. Wei, M. Hao, and W. Chen, “Energy efficient and deadline satisfied task scheduling in mobile cloud

computing,” in 2018 IEEE International Conference on Big Data and Smart Computing (BigComp), Jan. 2018, pp. 198–205, doi:

10.1109/BigComp.2018.00037.
[22] N. Liu, Z. Dong, and R. Rojas-Cessa, “Task scheduling and server provisioning for energy-efficient cloud-computing data

centers,” in IEEE 33rd International Conference on Distributed Computing Systems Workshops, Jul. 2013, pp. 226–231, doi:

10.1109/ICDCSW.2013.68.
[23] H. Zhao, G. Qi, Q. Wang, J. Wang, P. Yang, and L. Qiao, “Energy-efficient task scheduling for heterogeneous cloud computing

systems,” in IEEE 21st International Conference on High Performance Computing and Communications, Aug. 2019,

pp. 952–959, doi: 10.1109/HPCC/SmartCity/DSS.2019.00137.
[24] R. Li, N. Mi, M. Riedewald, Y. Sun, and Y. Yao, “A case for abstract cost models for distributed execution of analytics

operators,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), vol. 10440, Springer International Publishing, 2017, pp. 149–163., doi: 10.1007/978-3-319-64283-3_11.
[25] C.-C. Hsieh and Y.-C. Hsieh, “Reliability and cost optimization in distributed computing systems,” Computers and Operations

Research, vol. 30, no. 8, pp. 1103–1119, Jul. 2003, doi: 10.1016/S0305-0548(02)00058-8.

[26] K. A. Shakil, M. Alam, and S. Khan, “A latency-aware max-min algorithm for resource allocation in cloud,” International
Journal of Electrical and Computer Engineering (IJECE), vol. 11, no. 1, pp. 671–685, Feb. 2021, doi:

10.11591/ijece.v11i1.pp671-685.

[27] P. K. Yadav, M. P. Singh, and K. Sharma, “An optimal task allocation model for system cost analysis in heterogeneous
distributed computing systems: a heuristic approach,” International Journal of Computer Applications, vol. 28, no. 4, pp. 30–37,

Aug. 2011, doi: 10.5120/3374-4664.

[28] A. Y. Hamed, “Task allocation for maximizing reliability of distributed computing systems using genetic algorithms,”
International Journal of Computer Networks and Wireless Communications (IJCNWC), vol. 2, no. 5, pp. 560–569, 2012.

BIOGRAPHIES OF AUTHORS

Sashi Tarun is a Ph.D. Research Scholar in the School of Computer Science

and Engineering at Lovely Professional University, Punjab, India. He has completed

M.Tech. Computer Science from Jamia Hamdard University, New Delhi. His research

interests are distributed systems, cloud systems, database systems, computer networks,

artificial intelligence, and machine learning. He has several papers on his credit. He has

7 years of teaching experience as an Assistant Professor. He can be contacted by email:

sashitarun79@gmail.com.

Mithilesh Kumar Dubey is working as a Professor in the School of Computer

Application of Lovely Professional University Jalandhar Punjab India. He has handsome

experience in the software industry as well as in Research development. He has published

many articles at international level in reputed journals. He can be contacted by email:

mithilesh.21436@lpu.co.in

mailto:sashitarun79@gmail.com
https://orcid.org/0000-0002-2342-4733
https://scholar.google.co.in/citations?user=XX5V5VQAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57213687934
https://orcid.org/0000-0002-1492-7857
https://scholar.google.com/citations?user=UsR_USsAAAAJ&hl=en&authuser=1
https://www.scopus.com/authid/detail.uri?authorId=57209976545

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 12, No. 6, December 2022: 6373-6386

6386

Ranbir Singh Batth is working as an associate professor in the School of

Computer Science and Engineering and also serves as a coordinator for international

relations at Lovely Professional University, Punjab, India. In 2018, he received his Ph.D. in

computer science and engineering from Punjab Technical University, India. His research

interests include wireless sensor networks, cloud computing, network security, ad-hoc

networks, machine learning, deep learning, wireless communications, and mobile

computing. He is a senior member of IEEE and faculty coordinator of the ACM research

chapter. He can be contacted by email: ranbir.21123@lpu.co.in.

Sukhpreet Kaur is working as Associate Professor in the CSE department at

Chandigarh Engineering College, Landran, Mohali. She has in total 15 years of vast

experience in teaching and research. She has done a Ph.D. in CSE from I.K Gujral Punjab

Technical University, Jalandhar, and has done her Masters in Technology in CSE from

GNDEC, Ludhiana. The various research areas in which she worked include image

processing, artificial intelligence, and computer vision. She can be contacted by email:

sukhpreet.4479@cgc.edu.in.

mailto:ranbir.21123@lpu.co.in
mailto:sukhpreet.4479@cgc.edu.in
https://orcid.org/0000-0002-8655-7613
https://scholar.google.com/citations?user=57LENlIAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57201743939
https://orcid.org/0000-0002-8689-4214
https://scholar.google.com/citations?user=ENl0g9MAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57215553679

