
i 

 

NUMERICAL SOLUTIONS OF DIFFERENTIAL 

EQUATIONS USING WAVELET BASED METHODS 

  A Thesis  

Submitted for the Award of the Degree of 

 

    DOCTOR OF PHILOSOPHY  

in  

                                                   MATHEMATICS 

 

By 

 Jaya Gupta 

                                     Registration Number: 12015110 

 

 

 

 

 

       

 

 

 

 

 

 

 

LOVELY PROFESSIONAL UNIVERSITY, PUNJAB 

2024 

 

Supervised By 

Dr. Ratesh Kumar (11755) 

Associate Professor 

Department of 

Mathematics 



ii 

 

 

 

DECLARATION 

I hereby declare that the presented work in the thesis entitled “Numerical Solution of 

Differential Equation Using Wavelet Based Methods.” in fulfilment of the degree of Doctor 

of Philosophy (Ph. D.) is the outcome of research work carried out by me under the supervision 

of Dr. Ratesh Kumar, working as an Associate Professor, in the School of Mechanical 

Engineering of Lovely Professional University, Punjab, India. In keeping with the general 

practice of reporting scientific observations, due acknowledgement has been made whenever the 

work described here has been based on the findings of other investigators. This work has not 

been submitted in part or full to any other university or institute for the award of any degree. 

 

(Signature of Scholar)  

Name of the scholar: Jaya Gupta 

Registration No.: 12015110 

Department/school: Department of Mathematics 

Lovely Professional University,  

Punjab, India 

 

  

 

 

 

 

 

 



iii 

 

 

 

CERTIFICATE 

This is to certify that the work reported in the Ph. D. thesis entitled “Numerical Solution of 

Differential Equation Using Wavelet Based Methods.” submitted in fulfillment of the 

requirement for the reward of the degree of Doctor of Philosophy (Ph.D.) in the School of 

Mechanical Engineering is a research work carried out by  Jaya Gupta, 12015110, is bona fide 

record of his/her original work carried out under my supervision, and that no part of the thesis 

has been submitted for any other degree, diploma, or equivalent course. 

 

(Signature of Supervisor)                                          

Name of supervisor:  Dr. Ratesh Kumar                                               

Designation:  Associate Professor                                                        

Department/school: School of Mechanical Engineering                                                 

University: Lovely Professional University                                                             

 

 

 

 

 

 

 

 

 



iv 

 

 

 

 

 

 

 

 

 

Dedicated to my almighty God and Parents 

 

 

 

 

 

 

 



v 

 

 

ABSTRACT 

Differential equations hold a crucial position in the realm of mathematical modeling for a wide 

range of real-world issues. When tackling physical problems in the form of mathematics, the 

DEs used for modeling prove to be complex, especially when the mathematical framework 

incorporates variable coefficients with higher order and nonlinearities present in the model. As 

a consequence, the need arises for sophisticated numerical techniques that can be viewed as 

robust solvers capable of obtaining precise numerical solutions for a wide range of such DEs. 

Researchers are persistently dedicating their efforts to enhancing existing methods and creating 

innovative hybrid approaches, all aimed at crafting a robust solver for these types of equations. 

In our review of the literature, we discovered that the Taylor series is a valuable tool for analysing 

functions on a local scale. However, when the need arises to examine functions globally, the 

limitations of the Taylor series become apparent, leading to the introduction of Fourier series in 

the literature. However, Fourier series prove ineffective for analysing functions at a local level. 

In the recent years, there has been a significant proliferation of numerical methods aimed at 

addressing the solution of various types of IVPs and BVPs, both on a local and global scale. 

Among the established approaches are FDM, FEM, and FVM. However, these methods exhibit 

limitations such as low order accuracy, high computational costs, and constraints related to 

geometry. While they excel in spatial localization, their overall accuracy is not good. Another 

category of numerical techniques encompasses spectral methods, where the solution undergoes 

discretization through approximation via a series of basis functions characterized by infinite 

differentiability and non-zero values across the entire domain (global support). When the 

expected solution demonstrates inherent smoothness, spectral methods, combined with the 

method of weighted residuals, show convergence in exponential form. However, they tend to 

perform less effectively in terms of spatial localization when dealing with expected solutions 
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that are discontinuous and lack smoothness. Spectral methods exhibit reduced efficacy when 

applied to problems featuring intricate geometries, although they are computationally more 

efficient than FDM, FEM, and FVM. It's noteworthy that spectral methods operate on a global 

support basis, whereas FDM, FEM, and FVM operate with compact (local) support. Despite 

their diminished spatial localization for complex problems and irregular geometries, spectral 

methods offer superior accuracy and minimize errors. Conversely, FDM, FEM, and FVM, while 

excelling in spatial localization, are comparatively less accurate. Each method possesses 

advantages as well as limitations in a unique way. Wavelet methods emerge as a promising 

solution in this context, allowing us to harness the strengths of various approaches, notably 

superior spatial and temporal localization and enhanced solution accuracy, by employing 

wavelet bases for approximating the unknown solution. Wavelets offer numerous advantages, 

including orthonormality, compact support, translation, and dilation via MRA. Their 

compatibility with computer environments and localization in both spatial and temporal 

dimensions equip them to effectively address the diverse array of challenges encountered in the 

realms of science and technology. The literature contains numerous wavelets with diverse 

characteristics, serving the analysis of various data, signals, images, and solutions. Among the 

options available, HW stands out as the most mathematically straightforward, computationally 

efficient, conceptually simple, and memory-friendly wavelet. It holds the distinction of being an 

orthonormal wavelet with a compact support, as documented in the previous research. The HW 

is represented most simply with a pair of rectangular pulses, enabling unrestricted integration 

due to its straightforward, explicit form. The distinctive characteristics of wavelets, particularly 

the simplicity of their explicit expression, have served as a motivating factor for their integration 

with spectral methods. In the fields of science and technology, this combination has proven its 

value in addressing diverse differential equations. Within the domain of the wavelet method, 

enhancing the solution accuracy can be achieved by modifying the dilation factor within the 



vii 

 

family of the wavelet. Existing literature predominantly focuses on HS2W, which are dyadic in 

nature and characterized by dilation factors that follow the power of 2. 

However, in this thesis, innovative approaches are presented. These methods are built upon the 

HS3W, which is non-dyadic in nature and features a dilation factor following a power of 3. These 

novel methods are employed to analyze a wide array of linear and nonlinear DEs across various 

categories. This thesis is dedicated to advancing algorithms based on HS3W in conjunction with 

established numerical methods such as the Quasilinearization technique, the Gauss elimination 

method and the collocation method. These algorithms are designed to address a spectrum of 

linear and nonlinear DEs. For nonlinear challenges, the approach relies on schemes grounded in 

the Quasilinearization process, leveraging HS3Ws as elaborated in chapters 2 to 4. 

The scope encompasses a wide array of numerical problems stemming from diverse fields. These 

encompass higher-order linear and nonlinear problems. These problems, from a mathematical 

perspective, represent a spectrum including ODEs with associated BCs and ICs, higher-order 

linear and nonlinear PDEs, and linear and nonlinear ordinary and partial FDEs. 
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Chapter 1  

General Introduction 

1.1 Introduction 

The modeled DEs are difficult to solve because they consist of nonlinearities, variable 

coefficients, and higher-order complexities. The vast majority of real-time events, such as 

numerous reactions, diffusion processes, dispersive equations, and equilibrium criteria, are 

governed by these systems of DEs; however, only a few analytical methods are available for 

studying these equations. Despite significant progress in today's mathematics, there are 

numerous equations whose solutions are difficult to approach. However, we require some kind 

of solution in order to obtain satisfactory results. There are many ODEs, PDEs, and FDEs that 

are not discovered in analytical methods with satisfactory results. 

In instances where an analytical solution is unavailable, a diverse range of phenomena 

necessitate numerical evaluation. The complexity inherent in nonlinear differential equations 

(DEs) poses challenges to their solution. This underscores the significance and efficacy of 

numerical approaches. Numerous methods have been devised to ascertain outcomes for DEs of 

intricate nature, aiming for results closely aligned with exact values. Techniques such as the 

"finite difference method," "finite element method," "spectral method," and "Haar scale 2 

wavelet method" are commonly employed. These methods entail discretizing the domain of the 

problem and employing iterative algorithms to approximate a solution that accommodates a 

defined margin of error. 

 As a result, for solving these types of equations, more numerical methods are necessary. 

Therefore, to solve these forms of DEs, researchers have been focusing on enhancing existing 

methods and developing hybrid approaches. Numerical analysis, a mathematical discipline 

dedicated to devising effective methods for tackling challenging mathematical problems, plays 

a crucial role. One of the effective methods used for facing these challenges is wavelet methods. 

Basically, wavelets are mathematical expressions that attain attention in different fields of 

science like signal process, data analysis and image compression. In comparison to Fourier 

series, wavelets gained more importance due to its ability to find out the solution of physical 

problem in respect to both space and time. In this study, we advanced the numerical solutions 

for nonlinear differential equations (DEs) by incorporating the Haar scale 3 wavelet method 
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(HS3WM) with the collocation method, the Quasilinearization technique, and the Gauss 

elimination method. 

The objective is to develop a numerical methodology for solving nonlinear differential equations 

(DEs). Incorporating various equations, such as the Korteweg-de Vries (KdV), Lane-Emden and 

Emden-Fowler, fractional Kawahara equations, and many more, is crucial for constructing 

diverse mathematical models, thereby enhancing their relevance in scientific research. By 

formulating a numerical approach to solving these equations, researchers can gain a deeper 

understanding of their behavior and potential applications. This, in turn, facilitates the generation 

of innovative solutions to a wide range of scientific and engineering challenges. 

1.1.1 Ordinary Differential Equation:  

In mathematics, a DE with one or more functions of a single independent variable and their 

derivatives is known as an ODE. ODE can be found in a diverse range of disciplines, such as 

geometry, mechanics, astronomy, and population modeling. Lane-Emden, Leibnitz, the 

Bernoulli’s, Riccati, Vander-Pol, Clairaut, D'Alembert, and Euler are only a few of the notable 

mathematicians who studied DEs and contributed to the area. 

LEE: 

𝒴′′ +
2

𝒳
𝒴′ + 𝒴𝒷 = 0 

EFE: 

𝜒′′(𝑙) + 𝑘𝜒′(𝑙) + 𝜒(𝑙) = 0 . 

 

1.1.2 Partial Differential Equation: 

PDEs have one dependent variable and more than one independent variable, as well as their 

partial derivatives with respect to the independent variable. 

 

𝐹 (𝑥1,𝑥2,𝑥3,. . . . . . . 𝑥𝑛,𝑦,
𝜕𝑦

𝜕𝑥1
,
𝜕𝑦

𝜕𝑥2

𝜕𝑦

𝜕𝑥3
, . . . . ,

𝜕𝑦

𝜕𝑥𝑛
,
𝜕2𝑦

𝜕𝑥12
,
𝜕2𝑦

𝜕𝑥22
. . .
𝜕2𝑦

𝜕𝑥𝑛2
. . . .

𝜕𝑛𝑦

𝜕𝑥𝑛𝑛
) = 0 

 

KdV, and non-linear KGE are examples of PDEs.  

Dispersive KdV Equation: 

     𝑢𝑡 + 𝜖𝑢𝑢𝑥 + 𝛼𝑢𝑥𝑥𝑥 = 𝑓(𝑥, 𝑡)            
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Non-linear KGE: 

𝑢𝑡𝑡 − 𝑢𝑧𝑧 + 𝜇𝑢 − 𝜀𝑢
2 = 𝑚(𝑧, 𝑡) 

 

PDEs are extremely important because they link the physical and mathematical worlds. It is 

extremely useful in describing natural phenomena in science and engineering. The ICs and BCs 

of a PDE are used to perform many engineering computations. We discovered that it describes 

several processes, such as heat flow, wave propagation, and basic physics ideas from various 

perspectives. We study the vital role of PDEs in the diffusion of neutrons in nuclear reactors, 

study of population models, reactivity of chemical materials, fluid dynamics, quantum 

mechanics, and electricity. 

1.1.3 Fractional Differential Equation: 

FDEs have one or more than one independent variables and contain fractional derivatives with 

respect to the dependent variable. 

 

𝐹 (𝑥1,𝑥2,𝑥3,. . . . . . . 𝑥𝑛,𝑦,
𝜕𝑘1𝑦

𝜕𝑥1𝑘1
,
𝜕𝑘1𝑦

𝜕𝑥2𝑘1
. . .
𝜕𝑘1𝑦

𝜕𝑥𝑛𝑘1
. . . .

𝜕𝑘1𝑦

𝜕𝑥𝑛𝑘1
) = 0 

 

Where [𝑘1] < 𝑘1 < [𝑘1 + 1] ∀ 𝑛 

FDEs are the generalised form ODEs and PDEs. Some of the examples of this equations are 

Riccati equation, Kawahara equation. 

 

Fractional Riccati Equation: 

 

                                                 𝐷𝛼𝑦(𝑥) = −𝑦2(𝑥) + 1 

 

Fractional Vander Pol Equation: 

𝐷𝛼𝑦(𝑚) +
𝑑𝑦(𝑚)

𝑑𝑚
+ 𝑦(𝑚) + 𝑦2(𝑚)

𝑑𝑦(𝑚)

𝑑𝑚
= 𝐹(𝑚, 𝑦)   

 

Fractional KE: 

𝐷𝑦
𝜇
𝜑(𝑚, 𝑦) + 𝑘𝜑𝑧 + 𝜑𝑧𝑧𝑧 − 𝜑𝑧𝑧𝑧𝑧𝑧 = 𝑓(𝑚, 𝑦) 
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FDEs have numerous uses within the realms of magnetism, fluid mechanics, heat transfer, the 

theory of viscoelasticity, the RLC electric circuit, wave propagation in the viscoelastic horn, and 

the cardiac tissue–electrode interface. 

 

1.2 Fractional Calculus:  

Fractional calculus (FC) has evolved into a highly valuable tool for elucidating intricate physical 

and chemical phenomena involving complex kinetics and microscopic structures. It has become 

more important over the past few decades as it has enormous significance in numerous fields 

like as in solid mechanics, signal processing, fluid flow, viscoelasticity, and statistics. The 

quantity of works describing the memory and intrinsic qualities of diverse substances using FEs 

that comprise derivatives and integrals of arbitrary order. The quantity of works describing the 

memory and intrinsic qualities of diverse substances using FEs that comprise derivative and 

integrals of arbitrary order. In a 1695 letter to Leibniz, L' Hospital sought clarification on a 

particular notation Leibniz had introduced a linear function whose derivative had nth-order. 

Inquiring Leibniz to what would happen as if the value of n became half. Leibniz replied by 

stating that a puzzle is generated with important consequences in the future. Therefore, it was 

the first time that a fractional derivative was considered. Weierstrass-type functions are one 

example of a FD model with a non-differentiable but continuous solution [1]. OD or PD models 

cannot be used to explain these types of properties. 

In the past, fractional calculus was primarily a mathematical concept with no apparent practical 

use. However, in today's world, fractional calculus has become immensely significant in the 

realms of science and technology due to its wide-ranging applications in areas such as thermo-

elasticity theory [2], viscoelastic fluids [3], earthquake dynamics [4], fluid dynamics, and more 

[5].  In an experiment conducted on the movement of a rigid plate immersed in a Newtonian 

fluid by Bagley and Torvik, Surprisingly, the experiment demonstrated that the resisting force is 

directly linked to the displacement in the form of a fractional derivative in comparison to the 

velocity, as expected. Moreover, their experiment observations suggested that, in accurately 

predicting the properties of the same material, the fractional model is better than the previous 

ones. Furthermore, it has been experimentally observed, as well as confirmed through real-time 

observations, that numerous complex systems in the real-world exhibit anomalous dynamics. 

Examples of such systems include relaxation phenomena in viscoelastic materials, the diffusion 

of pollutants in the environment, and the transport of charges in amorphous semiconductors, 
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among others. The scientific community has shown significant interest in the enhanced 

efficiency and accuracy offered by FDEs in describing unusual system dynamics. These 

equations have extended numerous classical DEs, originally defined with integer orders, to 

generalized fractional forms, enabling a more comprehensive exploration of the associated 

physical models. 

1.3 Definition of Fractional calculus:  

FC introduces the notion of derivatives with real orders, even for complex and arbitrary values. 

Essentially, it serves as a generalized version of classical calculus. Many researchers are 

embracing FC definitions to introduce the concept of fractional-order derivatives and integrals. 

Within fractional derivatives, there exist various established definitions, such as the Riemann-

Liouville definitions, Grunwald-Letnikov, and Caputo. Among these, the Riemann-Liouville 

definition is the most commonly used; however, it may not be suitable for addressing all types 

of physical models. Caputo proposed a definition in which ICs are specified in an integral order, 

unlike the Riemann-Liouville definition, where ICs are established in a fractional order. In 

contrast, the Grunwald-Letnikov method approaches the problem by defining the derivative 

itself. This particular approach is primarily employed in numerical algorithms and represents an 

extension of the derivative concept to fractional orders. 

1.3.1 Mittag Leffler:  

Mittag Leffler is general form of exponential function. As one-parameter function in the series 

it can be introduced in the form [1]:  

𝐸𝑝(𝑧) = ∑
𝑧𝑛

𝛤(𝑝𝑛 + 1)

∞

𝑛=0

 , 𝑛 > 0, 𝑝 ∈ 𝑅, 𝑧 ∈ 𝐶. 

             and in two-parameter function it is written as: 

𝐸𝑝,𝑞(𝑧) = ∑
𝑧𝑛

𝛤(𝑝𝑛 + 𝑞)

∞

𝑛=0

 , 𝑛 > 0, 𝑝, 𝑞 ∈ 𝑅, 𝑧 ∈ 𝐶. 

              Some of the properties of Mittag Leffler function are: 

𝐸1,1(𝑛) = 𝑒
𝑛 

𝐸2,1(𝑛
2) = cosh (𝑛) 

𝐸2,2(𝑛
2) =

sinh (𝑛)

𝑛
 

𝐸∝,1(𝑛) = 𝐸∝(𝑛) 
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1.3.2 Reimann-Liouville fractional operator of order 𝝁: 

For the positive real numbers, 𝜇, y across the interval [m, n], the FDO established by the 

mathematician Riemann-Liouville is given by [1]: 

𝑑𝜇𝑓(𝑦) =
1

𝛤(𝑝 − 𝜇)
[
𝑑

𝑑𝑦
]
𝑝

∫ 𝑓(𝑧)(𝑦 − 𝑧)𝑝−𝜇−1𝑑𝑧
𝑛

𝑚

 

where 𝜇 denotes the order of derivative and y𝜖 [m, n]. 

1.3.3 Caputo Fractional operator of order 𝝁:  

 For positive real numbers, 𝜇, y, the FDO developed by the Italian mathematician Caputo: 

𝑑𝜇𝑓(𝑦) =
1

𝛤(𝑝 − 𝜇)
∫ [

𝑑

𝑑𝑦
]
𝑝

𝑓(𝑧)(𝑦 − 𝑧)𝑝𝑑𝑧
𝑛

𝑚

  

where 𝜇 denotes the order of derivative and y𝜖 [m, n]. 

 

1.4 Multi resolution analysis:  

To ensure that the theory of wavelets and MRA develops smoothly, it is necessary to make 

modest assumptions about the refinement function. The structure of wavelets can be better 

understood via MRA. The general technique in wavelet analysis is to use an appropriate basis to 

transform a problem into its wavelet domain. To acquire the desired results, the issue is solved 

in the wavelet domain and then transformed back. The ability to show information in a 

hierarchical fashion is a key feature of wavelet analysis. Wavelets are a type of basis function 

that can represent a signal in both the time and in frequency domains. MRA is a useful tool for 

studying functions at different degrees of detail or resolution [6]. MRA relies on the 

mathematical idea of expressing a signal as a convergence of refined approximations. Each of 

these approximations refines the function further and corresponds to distinct resolution levels. 

As a result, MRA is a method for creating orthogonal wavelet bases that follows a set of 

principles and methods. The primary characteristic of this analysis lies in its use of mathematics 

to explain the exploration of signals or images across different scales. The notion of MRA is 

used in the 𝜙𝑚(𝑚 ∈ 𝑍) family of Haar wavelets, which entails a sequence of nested close 
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approximation subspaces. The increasing function {𝜙}𝑚,𝑛∈𝑍 of a subset of  𝐿2(𝑅) with a scaling 

function 𝜑 is called MRA if it satisfies the condition. 

I.  .……….⊂ 𝜙−1 ⊂  𝜙0  ⊂ 𝜙1 ⊂…… is known as Monotonicity.  

II. The spaces 𝜙𝑗  satisfies ⋂ 𝜙𝑛 = 0∞
−∞  and  ⋃ 𝜙𝑛

∞
−∞ = 𝐿2(𝑅) is known as Separation. 

III. f (t) ∈ 𝜙0 iff f (2𝑛𝑡) ∈  𝜙𝑛 for all n ∈ 𝑍 the space 𝑉𝑗 are scaled version of the central space 

𝜙0 is known as Dilation. 

IV.  There exist 𝜑 ∈  𝜙0 such that {𝜑 (𝑡 − 𝑘); 𝑘 ∈ 𝑍} is a Riesz basis in 𝜙0is known as 

Existing of scaling. 

1.5 Quasi-linearisation: 

For obtaining numerical solutions to individual or systems of nonlinear DEs, a generalization of 

the Newton-Raphson method is used (ODEs or PDEs). The basis and advantage of this approach 

stem from the observation that linear equations can frequently be solved through analytical or 

numerical methods, whereas finding a comprehensive solution to a nonlinear DE In relation to 

a limited collection of precise solutions, lacks practical methods. In the Quasi-linearization 

method, nonlinear DEs are resolved iteratively through a sequence of linear DEs. This technique 

not only transforms the nonlinear equation into a linear form but also produces a sequence of 

functions that approaches the solution of the original nonlinear equation as it converges and 

makes it applicable in real-world scenarios. Basically, Quasilinearisation technique is 

generalized form of Newton-Raphson technique. It converges to the exact solution in its original 

form. Quadratically, it must show a monotone convergence [7].  

1.6 Collocation Points: 

The HW collocation approach has been employed in the literature to investigate and gain insight 

into a multitude of physical phenomena described by DEs. One of the prevalent discretization 

methods, known as the collocation approach, was introduced by Kantorovich in 1934 as part of 

the weighted residuals approach for solving DEs. In 1937, three years following its initial 

proposal by Frazer R.A. and his colleagues, the same approach was reintroduced for the identical 

objectives. In the collocation method, weighted truncated series expansions of basis functions 

are utilized to approximate the solution function at various points within the domain, referred to 

as collocation points. These weighted functions play a critical role in ensuring that a minimized 

set of basis functions can effectively satisfy the DEs. Consequently, the careful selection of 

appropriate weight functions is vital for obtaining an accurate AS with minimal residual errors 

when solving a DE. 
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1.7 Historical Background of Wavelets: 

The core concept in wavelet studies involves analyzing data based on different scales. Many 

researchers in this field believe that employing wavelets represents a novel approach to data 

processing. Wavelets, which are functions meeting specific mathematical criteria, serve the 

purpose of representing data or other functions. Wavelet algorithms handle data at various scales 

or resolutions. Historically, scientists have approximated functions by expanding them into sine 

and cosine terms for several decades. According to this definition, these functions exhibit non-

local characteristics, making them ineffective at approximating sharp spikes. However, wavelet 

analysis allows us to approximate functions within finite domains, making it well-suited for 

handling data with abrupt discontinuities. 

Wavelet analysis utilizes a fundamental function called the mother wavelet. In temporal analysis, 

a compressed, high-frequency form of the prototype wavelet is employed, while frequency 

analysis utilizes an expanded, low-frequency version of the same wavelet. Given that the original 

signal can be expressed as a wavelet expansion, data manipulations can be conducted using the 

wavelet coefficients. Other applied fields that are making use of wavelets include astronomy, 

earthquake predictions, imaging, acoustics, human vision, neurophysiology, nuclear 

engineering, speech discrimination, magnetic resonance, sub-band coding, signal and image 

processing, optics, fractals, turbulence, radar, and pure mathematics applications such as solving 

PDEs. Recent years have witnessed an intense activity and interest in both the mathematical 

development of wavelets and their applications. The potential applications of wavelets appear 

limitless across various fields. Wavelets allow for the decomposition of intricate information, 

such as patterns, speech, music, and images, into fundamental building blocks at different scales 

and positions. These components can then be reconstructed with a high degree of accuracy [8]–

[10]. Another area in which wavelets are gaining importance is the numerical analysis of DEs. 

In numerical analysis, wavelets have an enormous impact because of their inherent properties, 

computational efficiency, adaptivity. Additionally, the unidentified solution can be expressed 

through wavelets of varying resolutions, leading to a multigrid representation, which is much 

more compact and more comfortable for implementation. Wavelet-based thresholding 

techniques can transform the dense matrix produced by an integral operator into a sparse form, 

allowing for the achievement of any desired level of solution accuracy. Besides, the wavelet 

methods offer several advantages over the traditional numerical and semi-analytical methods. 

There are numerous numerical methods for solving IVP and BVP that have been discussed. FE, 

FV, and FD are a few of them. However, these approaches have several limitations, such as high 
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cost and low order. These methods are effective in space localization, although they are 

inaccurate. Another semi-analytical technique produces an invalid series solution as a 

consequence of its analysis. In the spectral approach, a solution is approximated by using a set 

of indefinitely differentiable and nonvanishing basis functions throughout the entire domain. If 

the expected solution is in nature, spectral approaches have an experimental rate of convergence. 

However, the spatial localization is a discontinuous and non-smooth process. Spectrum 

approaches offer a cost-effective solution, yet they are less effective for problems involving 

intricate geometries compared to FDM, FEM, and FVM, which operate with localized support. 

The methods work on local support such as FEM, FVM, and FDM, but the spectral technique 

works on global support. For complex problems with irregular geometry, spectral approaches 

have poor spatial localization, but they are more accurate and cause less error. FDM, FEM, and 

FVM, on the other hand, are less precise but have strong spatial localization. Each method has 

its own set of benefits and drawbacks. 

In this scenario, wavelet-based methods emerge as a viable solution, as they enable us to 

incorporate the advantages of all these approaches into an estimate of an unknown solution. 

Because they are orthonormal, have compact support for translation, dilation, and 

multiresolution analysis, are computer-friendly, and are localized in both time and space, 

wavelets are able to handle a variety of issues in science and technology. To deal with more 

complicated problems, wavelet-based approaches can readily be expanded to higher dimensions. 

Wavelets are well-suited to establishing a link with well-established, fast, and highly accurate 

numerical algorithms. In the last few decades, wavelet has become a research topic for both pure 

and applied researchers. In domains such as time series analysis and numerical solutions of DEs 

using wavelet analysis, computations are more precise and time-efficient. Wavelet methods are 

acknowledged as one of the effective and rapidly developing techniques for solving ODEs and 

PDEs numerically, with increasing applications in science and engineering. With the passage of 

time, it develops into a strong weapon that can be used to solve a variety of situations. In general, 

wavelet decomposition analysis is used in signal processing for communication and signal 

identification. For functions with no smoothness but adequate to evaluate the behavior of a 

function around a point, Fourier series of functions with orthogonal functions can be employed. 

The wavelet transform is preferable to the Fourier series because it can study non-stationary, 

time localized events, whereas Fourier series can only provide exact solutions for time- 

independent events.  
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The term 'wavelet' describes a vanishing wave that oscillates within a limited time frame, 

enabling the representation of the time-frequency plane using atoms of varying time supports. A 

wavelet is a compact wave that can be modified in two distinct manners: translation, which 

involves shifting all of the wavelet's points in the same direction and for the same distance, and 

dilation, which involves stretching or decreasing the original wavelet. 

 

𝜓𝑎,𝑏(𝑡) =
1

√|𝑎|
𝜓 (

𝑡 − 𝑏

𝑎
) 

 

where 𝑎 is the dilation parameter and 𝑏 is the translation parameter, A "mother wavelet," a 

function ψ(t) confined within a finite interval, can serve as the foundation for generating a family 

of wavelets. 𝜓𝑎,𝑏(𝑡) is known as Daughter wavelet are formed by translation of 𝑏 and 

contraction or dilation of 𝑎. 

1.7.1 Wavelet transform:  

Wavelet transform is a real and complex valued function can be represented as: 

w𝜓(𝑓)(a, b)(t) = ∫ 𝑓(𝑡)
1

√|𝑎|
𝜓 (

𝑡 − 𝑏

𝑎
)𝑑𝑡

∞

−∞

 

 

Which represents how much the scaled wavelet is like the function f (t) at location t =(b/a) 

where 𝑎 is the dilation parameter and 𝑏 is the translation parameter. It has a wider-applications 

in medical and scientific sectors for diagnosis and communication. 

1.7.1.1 Orthonormal Wavelets: 

Orthonormal wavelets are contemporary functions equipped with the capabilities of dilation and 

translation. These characteristics allow wavelet-based numerical algorithms to show a 

qualitative improvement over other-techniques. 

1.7.1.2 𝑳𝟐(𝑹) Space: 

Vector space of square integral functions is 𝐿2(𝑅) Space. To achieve finite coefficients for 

unknowns, it is crucial for the vector space to consist of square-integrable functions. 

𝐿2(𝑅) = 𝑓: 𝑅 → 𝐶:∫ |𝑓(𝑡)|2𝑑𝑡 < ∞
∞

−∞
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1.7.1.3   Inner Product Space:  

In wavelet theory, an IPS is a vector space equipped with an inner product, which is a 

mathematical operation that takes two vectors as input and returns a scalar. The inner product 

measures the similarity or "closeness" of the two vectors and is typically denoted by a dot 

product. In the context of wavelet theory, an IPS is used to describe the properties of wavelet 

functions, which are functions that can be used to represent signals and other functions in terms 

of a set of basis functions. The IPS provides a framework for studying the properties of wavelet 

functions, including their orthogonality, completeness, and other important properties. By 

analyzing the properties of wavelet functions in an IPS, researchers can develop algorithms for 

signal processing, data compression, and other applications. 

1.7.1.4 Translation and Dilation operator in 𝑳𝟐(𝑹) Space:  

These operators are important in wavelet theory because they are used to generate the wavelet 

basis functions through a process called dyadic decomposition, which involves translating and 

dilating a single mother wavelet function to generate a family of wavelets with different scales 

and positions. 

1.8  Types of Wavelets: 

1.8.1 Continuous wavelet:  

Continuous Wave Transform can effectively treat signals or functions that have multiple high-

frequency components in their Fourier series. The translation and dilation parameters vary 

continuously. A wavelet function 𝜓(t): 

• continuous and the integral of ∫ 𝜓(𝑡)𝑑𝑡 = 0
∞

−∞
 

• square integrable  ∫ |𝜓(𝑡)|2𝑑𝑡 < ∞
∞

−∞
 

Then the Continuous wavelet transforms of a function f ∈ 𝐿2(𝑅) is a function: 

(W𝑓)(a, b)(t) = ∫ f(t)
1

√|a|
ψ (

t − b

a
) dt

∞

−∞

 

1.8.2 Discrete wavelet:  

By discretizing the dilation and translation variables, stability in reconstruction can be achieved 

due to the redundancy inherent in continuous wavelet transform. Furthermore, a real 

orthonormal basis can be obtained. The scaling parameter 'a' is discretized using a logarithmic 

discretization.𝑎 = 𝑎0
𝑚 with m being an integer and 𝑎0is not equal to 1. For the translation 
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parameter ‘b’ it is chosen 𝑏 = 𝑛𝑏0𝑎0
𝑚with m and n are integers. Then 𝜓 (𝑎0

𝑚𝑡 − 𝑛𝑏0) covers the 

whole-time axis for any given scale 𝑎0
𝑚 . Now the family of discrete wavelet functions is given 

by: 

ψ𝑚𝑛(𝑡) = |𝑎0|
𝑚
2𝜓(𝑎0

𝑚𝑡 − 𝑛𝑏0)   , 𝑚, 𝑛 ∈ 𝑍 

1.8.3 Haar Wavelets:  

Wavelets are mathematical tools that have the potential and efficiency to break down data 

functions or operators into individual frequency components and scrutinizing each component 

at a resolution aligned with its scale. In the literature, various wavelets with distinct 

characteristics are available for analysing diverse types of data. However, the Haar wavelet 

(HW) being the most mathematically straightforward, computationally economical, is 

conceptually clear, and memory-efficient wavelet with compact support. The HW approach, 

which dates back to 1909 [11], is one of the simplest wavelet methods in contrast to others. The 

HW is a piecewise constant function with compact support as one of its properties. J. Morlett 

presented the wavelet notion to discuss his functions in the early 1980s, but it received little 

attention. However, Ingrid Daubechies transformed this tool into a formidable mathematical tool 

for solving various practical problems by demonstrating its application in several fields in 1980. 

We discovered that several forms of wavelets exist with various properties for signal processing, 

picture processing, data analysis, and communication in the literature. In 1982, Jean Morlet, an 

engineer, pioneered the concept of wavelets by exploring a family of functions generated 

through scaling and shifting a fundamental function, referred to as the mother wavelet. 

𝜙𝑎𝑏(𝑡) =
1

√𝑎
 𝜙 (

𝑡 − 𝑏

𝑎
) 

Here 𝑎 represents dilation, whereas 𝑏 represents translation. One of the simplest methods in 

comparison to others wavelet method is HWM. The technical disadvantage of the HW is that it 

is not continuous, and therefore not differentiable. 

Because of its minimal computing demands, the Haar transform has primarily found applications 

in pattern recognition and image processing [5], [12]–[14]. Consequently, Haar transforms are 

highly efficient in the realm of 2-D image and signal processing due to their wavelet-like 

structure. It's widely recognized in this field that the most fundamental orthogonal wavelet 

system is often derived from the Haar scaling function and wavelet. Furthermore, wavelets are 

regarded as a broader application of Haar functions and transforms [15], [16]. This transform 
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finds practical applications in communication technology, including multiplexing, digital 

filtering and data coding [5], [17], [18]. For instance, the non-normalized Haar transform is 

employed in sequence division multiplex systems, as discussed in [19]. The paper presents an 

efficient bandwidth utilization method for multiplexed digital channels using the Haar transform. 

Additionally, real-time applications benefit from specialized hardware; fast Haar chips have 

been developed to support these functions. Various extensions of the Haar functions and 

transforms find applications in digital speech processing, voice-controlled computing devices 

and enabling functionalities in robotics. Reference [20] delves into a control system employing 

Haar spectrum for military airplanes. Additionally, [19] and [21] explore the applications of the 

Haar transform in control and communications. In [22], diverse Haar function forms are 

employed for approximate calculations of analytic functions. Furthermore, [5] provides a 

concise exploration of other applications where Haar and Walsh functions offer advantages over 

the Fourier transform. 

One advantageous aspect of HW is their ability to be analytically integrated any number of times. 

Haar wavelets prove highly efficient in handling singularities, as they can serve as intermediary 

BCs. By reducing DEs to solving a system of algebraic equations, HW significantly simplify the 

problem. 

The fundamental and simplest version of Haar wavelet is the Haar scaling function, which 

manifests as a square wave across the given interval, denoted with and generally written as [0,1]. 

ℎ𝑖(𝑡) = {
1                                          0 ≤ 𝑡 < 1
0                                        𝑒𝑙𝑠𝑒 𝑤ℎ𝑒𝑟𝑒

 

 

The expression mentioned above, known as the Haar father wavelet, represents the initial level 

of wavelet analysis. It features neither displacement nor dilation, both being of unit magnitude. 

The HWs have found applications in diverse fields, including image digital processing, physics 

(for characterizing Brownian motion and quantum field theory), numerical analysis, and more. 

In recent years, they have been utilized in a wide array of applications. The Haar transform 

stands as one of the earliest instances of what is now recognized as a dyadic, orthonormal, and 

compact wavelet transform. Haar functions appear very attractive in many applications as for 

example, edge extraction, binary logic design and image coding. In the realm of logic design, 

when applying the Haar wavelet (HW) transform, it is essential to have efficient approaches for 

computing the Haar spectrum from simplified representations of Boolean functions. These 

techniques have been introduced for deriving the Haar spectrum from disjoint cubes and various 
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types of decision diagrams. Furthermore, the field of optimal control theory has witnessed 

extensive use of HWs since their inception, primarily due to their capacity to model processes 

with long-term memory. Beyond control theory, these wavelets find applications in diverse 

domains such as structural dynamics, chemical engineering, space exploration, and economics.  

There is considerable interest in diverse applications encompassing areas such as process and 

manufacturing, energy systems and management, environmental control, electric power 

generation and distribution, aerospace, defence, biomedical systems, chemical, petrochemical, 

industrial processes, socio-economic models, robotics and manufacturing systems, operations 

research, business, electrical, electronic systems, as well as healthcare and support services. 

These applications span a wide array of interdisciplinary and complex systems issues, where 

solutions often intelligent sensors, involve multi-agent software, and both dynamic and static 

optimization techniques. 

Haar wavelets find common applications in signal processing. Digital images demand 

substantial storage due to their redundant data, making efficient processing crucial. Slow internet 

connections can significantly delay downloading large data sets. Wavelet transforms are 

instrumental in speeding up this process. Upon clicking to download an image, the computer 

retrieves the wavelet-transformed matrix from its memory. It then processes both 

approximations and detailed coefficients swiftly, enhancing the overall download experience. 

The development of the mathematical theory of wavelets initially caused certain excitement in 

the scientific computation community; however, we will show that not all applications of 

wavelets result in immediate advantages, particularly in terms of efficiency. Great care should 

be taken with respect to claims of efficiency. 

1.8.4 Haar Scale 2 (HS2WM): 

 Wavelet family is expressed as in terms of mathematical form: 

Haar scaling function  ϕ(𝑡) = {
1                                          0 ≤ 𝑡 < 1
0                                        𝑒𝑙𝑠𝑒 𝑤ℎ𝑒𝑟𝑒

 

                                                                        

Haar wavelet function 𝜑(𝑡) = { 
1                                                 0 ≤    𝑡   < 1/2
−1                                                1/2 ≤     𝑡  < 1
0                                  𝑒𝑙𝑠𝑒  𝑤ℎ𝑒𝑟𝑒                       

 

Haar wavelet family is defined as   
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ℎi(t) = ψ(2
Jt − k) = {

    1                 α1(i) ≤ t ≤ α2(i)

  −1                 α2(i) ≤ t < α3(i)
0                       elsewhere

,             i = 1,2,3, ……2p 

 

 𝛼1(𝑖) =
𝑘

𝑝
,𝛼2(𝑖) =  

2𝑘+1

2𝑝
 ,𝛼3(𝑖) =

(𝑘+1)

𝑝
, 𝑝 = 2𝐽,  𝑗 = 0,1,2, …, 𝑘 = 0,1,2, …… , 𝑝 − 1.   

The wavelet number 𝑖 is determined using the equation 𝑖−1=𝑝+𝑘, where 𝐽 signifies the level of 

wavelet dilatation (with higher 𝐽 values indicating reduced wavelet support), and 𝑘 represents 

the wavelet's translation parameters. The term ℎ1(𝑡) is referred to as the father wavelet, while 

ℎ2(𝑡)is known as the mother wavelet. All other functions, such as ℎ3(𝑡), ℎ4(𝑡), ℎ5(𝑡) , and so 

on, are derived through translation and dilation of the mother wavelet.  

At i= 2𝐽+1, attains its maximum value,  

ℎ1(𝑡) = { 
1,             𝑡 ∈ [0,1)
0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

The Haar function can be derived by discretizing the points into collocation points. 

𝑡 =
𝑖 − 0.5

2𝑀
 

1.8.4.1 Integrals of HS2WM: 

The generalized form of Haar wavelet integrals can be expressed as follows: 

𝜙1,𝑠(𝑡) = ∫ ℎ1,𝑠(𝑡)𝑑𝑡
𝑥

0

 

𝜙1,𝑠+1(𝑡) = ∫ 𝜙1,𝑠(𝑡)𝑑𝑡
𝑥

0

 

It can be written as: 

𝜙𝑖,𝑠+1(𝑡) = {

𝑡𝑠

𝛤(𝑠 + 1)
                        ,                        ∝1≤ 𝑡 <∝2      

0                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝜑𝑖,𝑠+1(𝑡)

=

{
 
 
 

 
 
 

        

                                        
[𝑡 − 𝜇1(𝑖)]

𝑠 

𝛤(𝑠 + 1)
                                                                               ;  𝜇(𝑖) ≤ 𝑡 < 𝜇2(𝑖)

[𝑡 − 𝜇1(𝑖)]
𝑠 − 2[𝑡 − 𝜇2(𝑖)]

𝑠

𝛤(𝑠 + 1)
                                                     ;  𝜇2(𝑖) ≤ 𝑡 < 𝜇3(𝑖)

[𝑡 − 𝜇1(𝑖)]
𝑠 − 2[𝑡 − 𝜇2(𝑖)]

𝑠 + [𝑡 − 𝜇3(𝑖)]
𝑠

𝛤(𝑠 + 1)
;                        ; 𝜇3(𝑖) ≤ 𝑡 < 𝜇4(𝑖) 

0                                                                                           ; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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1.8.4.2 Graphs of Haar Scale 2: 

            Haar Scaling Function 

 

                 

 

                                                                                            Haar Wavelet Function 

 

1.8.5 Haar Scale 3 (HS3WM): 

Wavelet family with dilation factor three expressed in the form: 

Haar Scaling function 𝜙(𝑡) = {
1              0 ≤ 𝑡 ≤ 1 
0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

Haar Symmetric Wavelet function 𝜑1(𝑡) =
1

√2

{
 
 

 
 −1        0 ≤ 𝑡 ≤

1

3
 

2         
1

3
≤ 𝑡 ≤

2

3
 

−1        
2

3
≤ 𝑡 ≤ 1 

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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Haar Anti-symmetric Wavelet function 𝜑2(𝑡) = √
3

2

{
 
 

 
 1        0 ≤ 𝑡 ≤

1

3
 

0         
1

3
≤ 𝑡 ≤

2

3
 

−1        
2

3
≤ 𝑡 ≤ 1 

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

 

    

 

                                                                                          Haar Scaling Function 

 

 

   

 

                                                                                           Haar Wavelet 𝜑1 

 

 

    

 

                                                                                             Haar Wavelet 𝜑2 

ℎ𝑖(𝑡) =  𝜙(𝑡) =  {
1              0 ≤ 𝑡 ≤ 1 
0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑓𝑜𝑟 𝑖 = 1 

 

     ℎ𝑖(𝑡) = 𝜑
1(3𝐽 − 𝑘)(𝑡) =

1

√2
{

−1        𝑎1 ≤ 𝑡 ≤  𝑎2 
2          𝑎2 ≤ 𝑡 ≤ 𝑎3 
−1         𝑎3 ≤ 𝑡 ≤  𝑎4 
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑓𝑜𝑟 𝑖 = 2,4,6. . . . . ,3𝑝 − 1 
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ℎ𝑖(𝑡) = 𝜑
2(3𝐽 − 𝑘)(𝑡) = √

3

2
{

1         𝑎1 ≤ 𝑡 ≤  𝑎2 
0          𝑎2 ≤ 𝑡 ≤ 𝑎3 
−1         𝑎3 ≤ 𝑡 ≤  𝑎4 
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑓𝑜𝑟 𝑖 = 1,3,5. . . . . . ,3𝑝 

Where  𝑎1(𝑖) =
𝑘

𝑝
, 𝑎2(𝑖) =

3𝑘+1

3𝑝
, 𝑎3 =

3𝑘+2

3𝑝
, 𝑎4 =

𝑘+1

𝑝
, 𝑝 = 3𝐽 , 𝐽 = 0,1,2,3, . . . . . , 𝑘 =

0,1,2, . . . . , 𝑝 − 1. 

here i, J and k respectively, represents wavelet number, resolution level (dilation parameter) and 

translation parameter. Here ℎ2(𝑡) 𝑎𝑛𝑑 ℎ3(𝑡) are mother wavelets and rest generated from 

mother wavelets are called daughter wavelets. 

At i= 3𝐽+1, attained its maximum value,  

ℎ1(𝑡) = { 
1,             𝑡 ∈ [0,1)
0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒

 

The Haar function can be derived by discretizing the points into collocation points. 

𝑡 =
𝑖 − 0.5

3𝑀
 

1.8.5.1 Integrals of HS3WM: 

HW integrals in generalised form can be written as: 

𝜙1,𝑠+1(𝑡) = ∫ 𝜙1,𝑠(𝑡)𝑑𝑡
𝑥

0

 

𝜑1,𝑠+1
1(𝑡) = ∫ 𝜑1,𝑠

1(𝑡)𝑑𝑡
𝑥

0

 

𝜑1,𝑠+1
2(𝑡) = ∫ 𝜑1,𝑠

2(𝑡)𝑑𝑡
𝑥

0

 

It can be written as: 

𝜙𝑖,𝑠+1(𝑡) = {

𝑡𝑠

𝛤(𝑠 + 1)
                        ,                             ∝1≤ 𝑡 <∝2      

0                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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𝜑𝑖,𝑠+1
1(𝑡)

=
1

√2

{
 
 
 
 

 
 
 
 

0                                                                                                                             ;  0 ≤ 𝑡 < 𝜇1(𝑖)
−[𝑡 − 𝜇1(𝑖)]

𝑠 

𝛤(𝑠 + 1)
                                                                                                       ; 𝜇1(𝑖) ≤ 𝑡 < 𝜇2(𝑖)    

3[𝑡 − 𝜇2(𝑖)]
𝑠 − [𝑡 − 𝜇1(𝑖)]

𝑠

𝛤(𝑠 + 1)
                                                                               ;  𝜇2(𝑖) ≤ 𝑡 < 𝜇3(𝑖)   

 
3[𝑡 − 𝜇2(𝑖)]

𝑠 − 3[𝑡 − 𝜇3(𝑖)]
𝑠 − [𝑡 − 𝜇1(𝑖)]

𝑠

𝛤(𝑠 + 1)
                                         ; 𝜇3(𝑖) ≤ 𝑡 < 𝜇4(𝑖)  

3[𝑡 − 𝜇2(𝑖)]
𝑠 − 3[𝑡 − 𝜇3(𝑖)]

𝑠 − [𝑡 − 𝜇1(𝑖)]
𝑠 + [𝑡 − 𝜇4(𝑖)]

𝑠

𝛤(𝑠 + 1)
          ;  𝜇4(𝑖) ≤ 𝑡 < 1

 

𝜑𝑖,𝑠+1
2(𝑡)

= √
3

2

{
 
 
 
 

 
 
 
 

0                                                                                                               ;  0 ≤ 𝑡 < 𝜇1(𝑖)
[𝑡 − 𝜇1(𝑖)]

𝑠

𝛤(𝑠 + 1)
                                                                                                 ;  𝜇1(𝑖) ≤ 𝑡 < 𝜇2(𝑖)

[𝑡 − 𝜇1(𝑖)]
𝑠 − [𝑡 − 𝜇2(𝑖)]

𝑠

𝛤(𝑠 + 1)
                                                                         ;   𝜇2(𝑖) ≤ 𝑡 < 𝜇3(𝑖)     

[𝑡 − 𝜇1(𝑖)]
𝑠 − [𝑡 − 𝜇2(𝑖)]

𝑠 − [𝑡 − 𝜇3(𝑖)]
𝑠

𝛤(𝑠 + 1)
                                          ;  𝜇3(𝑖) ≤ 𝑡 < 𝜇4(𝑖)

[𝑡 − 𝜇1(𝑖)]
𝑠 − 3[𝑡 − 𝜇2(𝑖)]

𝑠 − [𝑡 − 𝜇3(𝑖)]
𝑠 + [𝑡 − 𝜇4(𝑖)]

𝑠

𝛤(𝑠 + 1)
     ;  𝜇4(𝑖) ≤ 𝑡 < 1

 

 

1.8.5.2 Graphs of Haar Scale 3 wavelet: 
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First integral of the first nine members of the HS3W family

 

1.9 Literature Review: 

The origin of wavelets was introduced by Alfred Haar in his thesis in 1909 [11]. In each segment, 

the HW function is a constant function with the important characteristic of having a compact 

support. However, it has not received attention in the past few years due to its lack of continuous 

differentiability. But with the development of MRA by Mallat [6] and Meyer [23] in 1980, the 

field of wavelet analysis experienced significant growth. In the advancement of wavelet analysis, 

MRA played a beneficial role. MRA provides a valuable benefit by empowering researchers to 

create their own unique families of wavelets through mathematical techniques. Y. Meyer utilized 

MRA concepts to develop a novel collection of continuously differentiable wavelets. Meyer's 

wavelets did not possess compact support, unlike the HW. After several years, the concept 

introduced by Mallat and Meyer to create a novel set of wavelet bases was utilized by 

Daubechies [24], [25]. These developed wavelets were both orthonormal and had compact 

support, introducing them as a basic component of wavelet applications. After years of 

development and research, wavelets have evolved from being regarded as a scientific curiosity 

to an effective mathematical tool that can be used in a wide range of scientific disciplines. The 

Daubechies wavelet family is categorized by the number of vanishing moments it possesses. To 

achieve these vanishing moments, a system of simultaneous linear and non-linear algebraic 

equations was devised, resulting in the derivation of numerical coefficients. This straightforward 

approach gained acceptance in wavelet method development because it met the researchers' 

needs for understanding wavelet construction successfully. After this development, new wavelet 

families, including the coiflet and symlet wavelets, were introduced. These wavelets carried 
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attractive features such as continuity, differentiability, and compact support, which made them 

very useful in numerical analysis, image processing, and signal processing. Despite these 

benefits, a major drawback of these wavelets was that they lacked an explicit expression and 

were difficult to apply to discretization. As a result, analytical differentiation or integration for 

these wavelets is not practical because the construction of these wavelets depends on filter 

coefficients. When using these wavelets, it was difficult to compute integrals involving nonlinear 

functions because there wasn't an explicit expression. The idea of connection coefficients was 

developed as a solution to this problem. However, determining these connection coefficients 

meant performing a difficult process for every integral separately. Additionally, only simple 

equation nonlinearities, like quadratic equations, could be solved using this approach. 

Connection coefficients were successfully used by Mishra and Sabina [8] to solve DEs using the 

Galerkin method. However, some researchers started asking about the advantages of using the 

wavelet method over conventional methods due to the challenging nature of using wavelets to 

find solutions. Even more pessimistic opinions were expressed by Strang and Nguyen [9], who 

claimed that wavelets faced tough competition from other methods and that they did not believe 

wavelets would succeed. 

Researchers investigated alternative solutions to this problem in order to address this skepticism. 

The problem of the HWs non-differentiability at the point of discontinuity was resolved in 1997 

when researchers re-examined the existing wavelet families. Rather than approximating the 

solution function directly, Chen and Hsiao [26] proposed an approach of approximating the 

highest-order derivative using the HW series. The remaining derivatives and the solution 

function were subsequently derived through the integration of the HOD. This method continues 

to be widely employed by researchers due to its success in solving mathematical frameworks 

that involve integral, differential and intra-differential equations. 

The work of Chen and Hsiao [26] was expanded upon by Lepik [10] by using wavelet transforms 

to examine the linear vibrations of systems with one and two degrees of freedom. Lepik used 

three distinct wavelet transformations and noticed that, for vibrations with one degree of 

freedom, all three wavelets produced results that were qualitatively comparable. In contrast to 

the third wavelet, the Morlet wavelet, the Mexican hat and HWs gave fundamentally different 

results for systems with degrees of freedom two. The HW was further used by Lepik and Tamme 

[27] to investigate the behavior of solutions to linear integral equations. We examined a number 

of integral equation types, such as the Fredholm and Volterra equations, the Integral-differential 

equations, and others. The solution obtained by using HWs outperformed traditional solutions 
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with the same step size, it was found. The convergence rate for the Fredholm and Volterra 

equations was specifically calculated to be 𝑂(𝑀−2). In order to investigate solutions for different 

kinds of ODEs and PDEs, Lepik [28] presented a novel method based on HWs. Lepik contrasted 

the segmentation and piecewise constant approximation methods with this approach, also known 

as the Chen and Hsiao method (CHM). Due to the wavelet matrices' increasing sparsity and the 

associated speed of computation, he noted that the CHM employing wavelets offered 

mathematical simplicity. However, it had difficulties approximating HOD accurately, resulting 

in instability of the proposed method. The HW approach was expanded by U. Lepik [29] to deal 

with nonlinear evolution problems. Burgers and SG equations were used to test the method's 

effectiveness in comparison to established classical techniques. Operational matrices for HWs 

were used by  Chang and Piau [30] to solve ODEs. They optimized the procedure by executing 

computations using wavelets' integrals and their matrix representation. A technique based on 

HW was created by Lepik [31] to resolve various fractional integral equations. This approach 

proved to be fast and simple to use for solving these problems. The same year, Babolian and 

Shahsavaran [32] used error analysis to demonstrate the convergence of the HW approach, 

which was a significant problem at the time. Additionally, they managed nonlinearity for solving 

nonlinear Fredholm IEs. The use of the HW approach to solve nonlinear parabolic PDEs was 

expanded by Hariharan and Kannan [33]. They specifically evaluated the performance of the 

technique using well-known nonlinear PDEs. The proposed approach performed quite well, 

displaying its ability in dealing with nonlinearity. It was found that a large variety of nonlinear 

PDEs could be solved using this method. The same year, Hariharan[34] used the HWM to solve 

a physical model involving the deflection in a finite-length beam subject to a fourth-order ODE, 

as well as the BCs. In order to solve the model, the technique involved developing a generalised 

operation matrix and matrices for their integrals. The ES found in the literature was then 

compared to the results. The findings revealed that the HWM method outperformed other 

approaches by requiring less CPU time and delivering enhanced results with fewer degrees of 

freedom. With changes to the approximation method, Hariharan [35] expanded the use of the in 

HWM  to solve the KGE and SGE. It was found that even with a limited set of points for 

collocation, the HW approach produces results that are more accurate, and that accuracy 

increases as the number of collocation points increases. The buckling of elastic beams was 

studied using the HW approach by Lepik [36]. The study explored various scenarios, such as 

simulating fractures, analysing beam vibrations on an elastic base, and studying beams with 

flexible cross-sections. The utilization of HW showcased several advantageous features, 

including remarkable accuracy with a minimal number of grid points, the application of shared 
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subprograms for addressing diverse problem areas, particularly in handling singularities within 

intermediate boundary conditions, and ease of implementation. By using several examples, the 

author also showed the method also used to solve problems with greater complexity. Kaur, 

Mishra, and Mittal [37] created an algorithm to solve different kinds of ODEs, IDEs, and IEs by 

combining HW with the collocation approach. To show the dependability and effectiveness of 

the developed method, numerical experiments were conducted. When dealing with problems of 

a similar form, the results showed that the wavelet-collocation approach is less time-taking and 

easier as compared to the Galerkin method. Two-dimensional HWs were used by Lepik [38] to 

solve PDEs, explaining their potential for being used for solving equations in higher dimensions. 

The Wave-Like Equation was successfully solved by  Panchal et al., [39] via the HW technique. 

A HW approach for solving fractional KGEs was introduced by Hariharan [40]. The author 

developed wavelet operational matrices to formulate algebraic equations for the fractional KGE. 

The unknown coefficients of the HW series approximation of the solution were then discovered 

by converting these algebraic equations into a matrix system and solving them. The author 

claims that this approach works successfully for other differential and integral systems and is 

fast, simple, and versatile. Sekar [41] used a single-term HWM to solve Integro-Differential 

Equations and showed effectiveness by comparing the results with the LPR method. Berwal and  

Panchal [42] applied the HWM to the L-C-R problem to assess its effectiveness in comparison 

to the ES. The nonlinear Blasius problem was solved at uniform collocation points in the same 

year by Kaur et al. [43]  using the Quasilinearization technique in conjunction with HW bases. 

An effective solution is needed for the important fluid mechanics problem known as the Blasius 

equation. The Quasilinearization method and HW approximation, according to the authors, make 

it simple to deal with nonlinearity without repeatedly iterating on specific collocation points. 

The use of the HW series approximation method to solve fractional-order nonlinear oscillation 

equations was expanded by Saeed and Rehman [7]. They observed that the significant interval 

solutions were consistent with the Runge-Kutta technique of fourth order. The HW 

Quasilinearization method was used by Saeed and Rehman [44] to achieve an AS for the Heat 

Convection-Radiation Equations. The Quasilinearization technique was used by the author to 

first linearize the nonlinear heat transport equation. By approximating the DV and its derivatives 

the linear system was solved through a truncated convergent series of HW bases. Collocation 

points were used to solve the following algebraic equations, which produced a matrix system. 

The proposed scheme was applied to specific cases of nonlinear heat transfer equations. In their 

publication, the authors suggest that the HW Quasilinearization methodology is better than 

alternative techniques and closely approximates the exact answer. In order to study nonlinear 
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coupled Burgers' equations, a team of researchers lead by Mittal, Mishra and Kaur [45] used 

HWs and the collocation approach. Through this method, the set of equations was converted into 

a new set of ODEs, which were solved using the Runge Kutta method. The stability analysis of 

this hybrid approach by the researchers showed good results. They predict that other higher-

order DEs can also be solved using similar approach. In the same year, Patel and Pradhan [46] 

used the Wavelet Galerkin strategy to solve nonlinear PDEs by combining Daubecheis wavelets 

with the Galerkin method. Using HW Matrices approaches, Arora, Brar, and Kumar [47] carried 

out a second study to identify numerical solutions to DEs. 

In order to deal with fractional variational problems, Osama et al., [48] used the HW approach. 

Ray [49] compared and evaluated two potential methods for solving FDEs in the same year. The 

study compared the performance of the HWM to the OHAM using fractional Fisher type 

equations. Both approaches have been found to be reliable and suitable for solving these 

equations. However, when it came to results with a particular number of grid points, the OHAM 

performed better than the HWM. However, by adding more grid points, the accuracy of the HW 

approach could be improved. A new hybrid technique was introduced by Oruç et al., [50] for 

examining the solution of the modified Burgers' Equation. The algorithm used HW for spatial 

discretization and finite differencing for time discretization. The Quasilinearization method was 

employed to address the nonlinearities present in the equation. The developed method has been 

tested on three test problems and according to the authors, it is fast and computationally efficient. 

Kumar and Pandit [51] utilized an HWM-based approach to solve Fokker-Plank equations with 

both constant coefficients as well as variable coefficients. Additionally, Shiralashetti and Deshi 

[52] employed a collocation method utilizing HW bases to tackle multi-term fractional 

differential equations. In comparison to other methods, they observed that the HWCM is equally 

reliable, simple to use, and effective at approximating the solution. 

Fallahpour et al., [53] introduced an approach based on HW to address the complexities of 

solving two-dimensional linear stochastic Volterra IEs involving multiple variables, a task 

exacerbated by inherent randomness. After subjecting the method to rigorous testing across 

different scenarios, the authors asserted its reliability, efficiency, and speed. However, they also 

suggested that its precision could be further enhanced by integrating additional numerical 

techniques. Shiralashetti et al., [54] expanded the utility of the HWCM to analyze systems 

governed by singular IVPs. Their research showcased the HWCM as a robust numerical 

technique capable of effectively addressing both linear and nonlinear singular IVPs. This method 

outperformed alternatives like the ADM and the VIM. Singh et al., [55] successfully tackled the 
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wave equation by employing the HWM, demonstrating its effectiveness compared to alternative 

approaches. Shiralashetti and colleagues, as detailed in reference [56], harnessed the HW 

technique for tackling the KGE, showcasing its superior performance when compared to 

traditional numerical approaches like the FDM. Moreover, in their study, Shah and colleagues 

[57] presented a specific version of the operational matrix for HWs, which was applied to tackle 

a range of both linear and non-linear FDEs. Through extensive testing on established benchmark 

problems, the authors asserted that their methodology demonstrated rapid convergence and 

superior accuracy. Patel and Pradhan [58] utilized the HW technique to analyze the advection-

dispersion equation, a model describing the one-dimensional movement of contaminants within 

a porous medium. During that same year, Oruc et al., [59] introduced a hybrid approach 

incorporating HWs to investigate phenomena governed by the Regularized Long Wave 

Equation. Their technique involved discretizing the temporal derivatives using finite 

differencing and approximating the spatial derivatives through a truncated HW series. They 

applied this method to a range of test cases associated with solitary wave propagation and 

asserted its effectiveness in analysing such scenarios. Furthermore, Kaur and Kang [60] 

presented a time discretization scheme that incorporated HW series approximations along with 

the Quasilinearization approach to tackle established nonlinear PDEs. They employed the 

Quasilinearization method to address the nonlinearity within these equations. Moreover, a blend 

of the HWM and collocation technique was utilized to convert the given PDEs into a linear 

system of equations. This system was subsequently solved using the Thomas algorithm. 

Shiralashetti and a team of researchers [61] implemented an adaptive grid strategy. Notably, it 

showcased enhanced accuracy when compared to traditional HWCM and FDM approaches. 

Arbabi and her research team [62] utilized the two-dimensional HWM for solving sets of PDEs. 

They successfully showcased the method's convergence and stability while applying it to various 

test problems. Notably, the authors observed a significant level of correspondence between the 

results they obtained and the ES, affirming its accuracy and reliability. 

Saeed [63] introduced an algorithm designed for the resolution of fractional LEEs. The algorithm 

involved approximating both the unknown solution and the nonlinear term within the DE using 

the ADM. By transforming the nonlinear equation into a system of linear FDEs, the author 

utilized the HWCM to solve these linear FDEs. Subsequently, the solutions obtained were 

reintroduced into the Adomian series, leading to the derivation of a series-based solution. In 

comparisons with other established methods, the author contended that this approach 

consistently yielded excellent results. Furthermore, it was emphasized that this method exhibited 

versatility in effectively addressing various forms of nonlinearities within DEs. Moreover, 
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Shiralashetti and fellow researchers [64] extended the application of the HWCM to address non-

linear Volterra-Fredholm-Hammerstein integral equations. Majak and a team of researchers [65] 

presented an innovative HWT designed to address both integro-differential and DEs. They 

applied this method to a variety of such equations, with a particular emphasis on its utility in the 

analysis of FGM Structures. Their experimentation revealed that this novel approach 

demonstrated improved convergence rates and reduced error when compared to conventional 

methods. Furthermore, they underscored the method's adaptability, noting its capacity to be 

easily tailored for a broad spectrum of integro-differential and DEs with minimal modifications. 

Mittal and a team of researchers [66] introduced a novel approach utilizing HS3WM to address 

ordinary fractional dynamical systems. They assessed the method's validity through 

experimentation on several test problems and conducted a comparative analysis against the 

HS2WM. The results revealed that the HS3WM exhibited superior convergence rates when 

compared to the HS2WM method. Ahsan and his research team [67] utilized a hybrid approach 

that combined the HW-FDM in collaboration of  Quasilinearization technique to find out the 

solution of  both linear and nonlinear SEs. The authors noted that this combined approach 

successfully captured the physical behavior of the phenomena governed by the SEs. 

Nonetheless, it's worth mentioning that when applied to higher-dimensional SEs, this method 

might result in increased computational complexity. Additionally, when dealing with irregular 

domains, supplementary techniques may be necessary for effective implementation. Mittal and 

a group of researchers [68] introduced an innovative approach based on HS3WM for the solution 

of second-order ODEs characterized by singular coefficients and nonlinearity. They applied this 

newly proposed technique to a series of standard benchmark problems, demonstrating its 

superiority over other established methods, including the CSM, QSM, and HS2WM. The 

investigation further revealed that the HS3WM exhibited a more rapid convergence rate 

compared to the HS2WM. Ratas and fellow researchers [69] extended the application of the 

HOHWM to explore mathematical models governed by nonlinear EEs. They conducted a 

performance evaluation by comparing this method to the standard HWM and determined that 

both approaches exhibited equal competence in addressing these challenges. Nevertheless, they 

recommended employing HOHWM when higher levels of accuracy were essential, while HWM 

was suggested for scenarios where lower computational costs were preferred. Likewise, Pervaiz 

and a team of researchers [70] broadened the usage of the HWM to investigate nonlinear SEs 

featuring Dirichlet BCs. Their approach involved implementing the Crank-Nicolson scheme for 

time discretization and the HWCM for space discretization. Through extensive testing on a range 

of nonlinear Schrödinger equations with varying ICs and BCs, it became evident that the 
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proposed method consistently produced favorable outcomes for these specific problem 

scenarios. 

1.10 Research Gap: 

1. From the above study, we can observe that linear and non-linear DEs have been solved 

by using various methods, but under the consideration of HS3WM not much work has 

been done yet. However, some examples of linear and non-linear PDEs, such as 

Dispersive equation, KGE, Riccati equation, Vander-Pol equation etc are unsolved. 

2. From the above discussion, we conclude that only a few DEs have been solved using FDM 

and Quasilinearization. But still, solution for many DEs using HS3WM is not explained. 

3.  From the literature review, we observe that non-linear DE with higher-order derivatives 

is still not much discussed under HS3W, equation such as KdV, LEE and fractional KE. 

1.11 Objectives: 

The utilization of wavelet methods has become popular due to their simple implementation, 

sparse computing costs, high accuracy with limited grid points, and other factors. In this 

research proposal, we aim to investigate the utilization of wavelet methods for solving DEs 

in diverse domains, including physics, economics, financial forecasting, image processing, 

environmental science, medicine, biology, chemistry, and beyond.  

1. To explore the possibility of coupling the wavelet method with other legacy methods to 

frame a hybrid approach by varying the dilation factor. 

2. To investigate the applicability of wavelet method in solving ordinary differential 

equations used in various fields. 

3. To investigate the applicability of wavelet method in solving partial differential equations 

used in various fields. 

4. To investigate the applicability of wavelet method in solving fractional differential 

equations used in various fields. 

This thesis presents novel algorithms based on HS2WM and HS3WM for solving various 

types of linear and nonlinear DEs. The algorithms are applied to a wide range of numerical 

problems arising in different fields, such as BVPs, fractional KE, fractional Riccati equations, 

non-linear KGE, KdV, EFE, and LEE etc. These problems can be mathematically represented 

as ODEs, PDEs, and FDEs with ICs or BCs, and they are systematically treated using 

functional analysis, linear algebra, and approximation theory. The computations were carried 

out using MATLAB 20 software on a system equipped with an Intel Core i5 processor. 
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1.12 Layout of the thesis: 

Chapter 2: A non-dyadic wavelet-based approximation method for the solution of higher- 

order ordinary differential equations that appear in Astrophysics with singularity at 

origin:  In this chapter, we delve into the discussion of two ODEs that hold considerable 

importance in Astrophysics: LEE and the EFE. Both equations exhibit a singularity at the origin. 

Throughout this study, we explore the implications of non-linearity and higher-order by 

employing a proposed method. 

 Chapter 3: A numerical analysis for solving various mathematical 2D-partial differential 

equations via scale 3 Haar wavelets: Within this chapter, we address two distinct equations: 

the dispersion equation and the KGE. We thoroughly examine both linear and non-linear 

scenarios for each case and subsequently compare our findings with previously published results 

in the literature to assess the scheme's compatibility. 

Chapter 4: An effective computational scheme for solving various mathematical fractional 

differential models via non-dyadic Haar wavelets: Within this chapter, we explore FODEs to 

assess the method's applicability to fractional values. We explore various ODEs and PDEs, 

including the Riccati equation and the Vander-Pols equation. Furthermore, we address the fifth-

order non-linear KE, a novel inclusion that has not been previously studied using any wavelet 

method, highlighting the uniqueness of our work. 

Chapter 5: Conclusion and Future Scope 
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Chapter 2  

A non-dyadic wavelet-based approximation method for the solution 

of higher-order ordinary differential equations that appears in 

Astrophysics with singularity at origin. 

2.1 Introduction: 

Numerous mathematicians and astrophysicists have become interested in finding out the solution 

of unique IVP in ODEs in recent years. The Lane Emden Equation (LEE) and Emden Fowler 

Equation (EFE), which have a singularity at the origin, are singularly perturbed equations that 

face computational difficulties in numerical processing [71]. For these kinds of problems 

convergence is directly affected by the small parameters. These equations are fundamentally 

important in the domain of stellar structure. It depicts the equilibrium density distribution in a 

self-gravitating polytrophic isothermal gas sphere. Theoretical models of stellar structure and 

thermionic current depict a star as a gaseous sphere in thermodynamic and hydrostatic 

equilibrium. [72]. American astronomer Lane was the first to take this into account for 

determining the temperature and mass density on the surface as well as the thermal gradient of 

a spherical cloud of gas intervening under the mutual attraction of molecules. Second-order 

nonlinear singular boundary-value problems (SBVP) attracted Lane's interest. Following a 

thorough investigation, According to Lane and Emden, Poisson's equation for the gravitational 

potential of a star model is described by the second-order nonlinear SBVP in a dimensionless 

manner [73].  

2.2 Lane Emden equation (LEE) for a Stellar structure: 

Non-linear ODEs of the LEE have a semi-infinite domain. These equations explain how the 

spherical gas cloud temperature varies in accordance with the principles of classical 

thermodynamics and the molecules' attraction to one another. The polytropic theory of stars is 

primarily a result of thermodynamic considerations, which deal with the problem of transferring 

energy by moving materials across the layers of the star. These equations form a fundamental 

part of the theory of star structure. 

We begin our study by considering a body of fluid that is sufficiently large and isolated that any 

force exerted on any component of the fluid is caused by the gravitational pull of the surrounding 

fluid components. Such a fluid entity is referred to as self-gravitating. A potential gradient can 

be used to represent the force F caused by gravity acting on this body.  
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At a distance of ‘𝓇’ from the centre of the spherical gas cloud ‘𝑃(𝓇)’ stands for the total 

pressure. The average pressure is influenced by both radiation and the usual gas pressure. 

 

 
𝒫 =

1

3
𝜂𝒯4 +

ℛ𝒯

𝒱
. 

 

(2.1) 

Here, 𝜂=radiation constant, 𝒱 =specific volume, ℛ=gas constant, 𝒯= temperature [3]. 

The Poisson equation and the hydrostatic equilibrium condition expressed as in the form of: 

 𝑑𝒫

𝑑𝓇
= −

 𝔾𝑀(𝓇)

𝓇2
,
𝑑𝑀

𝑑𝓇
= 4𝜋𝜌𝓇2. 

 

(2.2) 

Let a sphere of radius ′𝓇′ having mass ‘ 𝑀(𝓇)’ and ′𝔾′ the gravitation constant, ′𝜌′ represents 

the density of the star from the centre of star at distance ′𝓇′. While on combining these equations 

we get the equation in the form as: 

 

 1

𝓇2

𝑑

𝑑𝓇
(
𝓇2

𝜌

𝑑𝒫

𝑑𝓇
) = −4𝜋𝔾𝜌, 

 

(2.3) 

The LEE may be derived from these equations under the basic assumptions that the density just 

depends on while remaining are temperature independent. We analyse a relation in the form ρ ∼

 𝒫
3

5 where the pressure and density are for a degenerate electron gas. Assuming that there is a 

relationship of this type for several states of the star, 

                                                                                                                       𝒫 = 𝒶𝜌1+
1

𝒷, 

 

(2.4) 

where ′𝒶′ and ′𝒷′ are constants. It is important to remember that the polytropic index, which is 

connected with the ratio of particular temperatures in the gas that makes up the star, is referred 

to by the letter ′𝒷′ in this sentence. With the use of these presumptions, we can use this 

relationship to add to the first equation we created to determine the hydrostatic equilibrium 

condition. 

 
(
𝒶(𝒷 + 1)

4𝜋𝔾
𝜂
1
𝒷
−1)

1

𝓇2

𝑑

𝑑𝓇
(𝓇2

𝑑𝒴

𝑑𝓇
) = −𝒴𝒷 . 

 

(2.5) 

In the above relation, 𝜂: central density of star, 𝓎: dimensionless quantity both are related to ′𝜌′. 
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 𝜌 = 𝜂𝒴𝒷 , 

 

(2.6) 

Furthermore, if we incorporate this finding into the Poisson equation, we get a DE for mass that 

depends on the polytropic index ′𝒷′. Although the DE appears to be challenging to solve, this 

issue can be partially alleviated by the addition of variable ′𝒳′ which is dimensionless, provided 

by the following. 

                                                 𝓇 = 𝓀𝒳, (2.7) 

and                                                 

 
                                         𝓀 = (

𝒶(𝒷+1)

4𝜋𝔾
𝜂
1

𝒷
−1)

1/2

 

 

(2.8) 

using these values in the above equations we obtained the LEE, 

 1

𝒳2

𝑑

𝑑𝒳
(𝒳2

𝑑𝒴

𝑑𝒳
) = −𝒴𝒷 . 

 

(2.9) 

On simplification of the above equations, 

 
𝒴′′ +

2

𝒳
𝒴′ + 𝒴𝒷 = 0. 

 

(2.10) 

It is essential to provide the BCs at this point in order to take into consideration hydrostatic 

equilibrium and the normalising of the recently introduced values ′𝒳′ and ′𝒴′. These are 

following boundary requirements on which BCs are based. If 𝓇 → 0 then 𝒳=0, 𝜌 =  𝜂 →

𝒴(0)=1 and this implies 𝒴′(0) =0. 

With initial conditions, 𝒴(0) = 1 and 𝒴′(0) = 0. 

Similarly singular EFE is represented in the form: 

 𝒴′′(𝒳) + 𝑘𝒴′(𝒳) + 𝒴(𝒳) = 0 . (2.11) 

With initial conditions: 𝒴(0) = 𝛼,𝒴′(0) = 0  

A Higher order EFE is expressed as: 

 𝒴𝐼𝑉(𝒳) +
𝜅1
𝒳
𝒴′′′(𝒳) +

𝜅2
𝒳2

𝒴′′(𝒳) +
𝜅3
𝒳3

𝒴′(𝒳) + 𝜅4𝒴(𝒳) = 𝐹 . 
(2.12) 
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With ICs: 𝒴(0) = 𝛼,𝒴′(0) = 𝛽,𝒴′′(0) = 𝜂,  and 𝒴′′′(0) = 𝛾 𝛼, 𝛽, 𝜂 𝑎𝑛𝑑 𝛾 are constants in the 

above equation. 𝜅1, 𝜅2, 𝜅3 and 𝜅4 and 𝐹 are constants and value of a function respectively [74]. 

Several methods have been presented for the solution of LEE by HFCM [75], [76], Legendre 

method [77], [78], HSCM [79]–[81], combination of homotopy perturbation and variational 

iteration [82], Taylors method [83], VIM [84], Green function and ADM [85], Laguerre 

polynomial [86], OHAM [87] and similarly different numerical solutions have been investigated 

by the researchers for the solution of EFE, HAM [88], and the Genocchi operational matrix for 

solving EFE [89]. It includes the quartic polynomial spline method, and fourth order B-spline 

method [90], [91], and modifies ADM, DTM, and VIM [74], [92]–[95]. In the research article, 

HSWM is discussed for obtaining the approximate solution of linear EFEs [96].  EFE is solved 

by using HSWM combined with the Newton-Raphson method and for solving nonlinearity. The 

Quasilinearisation technique is used and discussed in some special cases of EFE [97], Fourth-

order EFE is discussed using HSWM and by converting the DE into a set of algebraic equations, 

and through various examples discuss the applicability of the proposed technique [98],Third 

order DEs are solved using HSWM, through different examples is discussed the effectiveness 

of the method for solving higher-order DEs [99],  in the study, the author developed the solution 

to the HOBV problem using HSWM [100]. Fourth-order LEFE also described by two different 

methods: ADM and the quintic B-spline method [101]. 

After that, in 2018 Mittal and Pandit discussed non-dyadic wavelet-based methods and dealt 

with various kinds of DEs to examine the results [102]. As the dyadic wavelet discussed by Haar 

in 1910 [105], where as In 1995, Chui and Lian developed non-dyadic wavelet to discuss MRA 

[106] and found it better than the prior method.  In recent years, a lot of work has been done 

using a non-dyadic (Haar scale -3) wavelet to discuss various kinds of DEs [102]–[104] by this 

proposed technique. After that R. Kumar discussed various equations using non-dyadic wavelets 

[107], [108]. But LEE and EFE are not yet discussed by the non-dyadic wavelet method, which 

motivates us to work on the solution of this equation. Our main objective is to study the LEE 

type and EFE using the HS3W approach.  

2.3 Quasi-linearisation process 

A generalized form of the Newton– Raphson method is the Quasilinearization strategy used for 

linearizing nonlinear DEs. Quadratically, it converges to the exact value. The fact that many 

nonlinear equations have no analytic solution but their solution is required as per their 

application in the physical world is a major motivation for employing this strategy. If we have a 

non-linear term, we must employ the recurrence relation shown below: 
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𝑢2 = 𝑓(𝑢2) = 𝑓(𝑥, 𝑢2) 

[𝑢2]𝑙+1 = [𝑢
2]𝑙 + [𝑢𝑙+1 − 𝑢𝑙] (

𝜕

𝜕𝑢
(𝑢2))

𝑙

     

(𝑢2)𝑙+1 = (𝑢2)𝑙 + (𝑢𝑙+1 − 𝑢𝑙) 2𝑢𝑙 

(𝑢2)𝑙+1 = (𝑢
2)𝑙 + 2𝑢𝑙+1(𝑢)𝑙 − 2(𝑢

2)𝑙  

(𝑢2)𝑙+1 = 2(𝑢)𝑙+1𝑢𝑙 − (𝑢
2)𝑙 

2.4 Approximation of Emden Fowler differential equation (EFE) by Scale-3 

Haar wavelet: 

Theorem: Let 𝜒(𝓏) be any square integrable function over the interval [𝜎1, 𝜎2), whose highest 

derivative is expressible as a linear combination of HW family as 𝜒𝑛(𝓏) = ∑ 𝑎𝑘ℎ𝑘(𝓏)
3𝑝
𝑖=1 . 

Then all the derivatives of 𝜒(𝓏) of order less than 𝑛 are given by [107] : 

 𝜒𝑘(𝓏) = ∑ 𝑎𝑖𝑝𝑛−𝑘,𝑖(𝓏) + ∑
(𝓏−𝑄)𝑟

𝑟!

𝑛−𝑘−1
𝑟=0

3𝑝
𝑖=1 𝜒𝑘+𝑟  (𝑄); 𝑘 = 0,1,2, 3, … , 𝑛 − 1.  

(2.13) 

Proof: Let us approximate the higher order derivative as: 

 

𝜒𝑛(𝓏) =∑𝑎𝑘ℎ𝑘(𝓏).

3𝑝

𝑖=1

 

(2.14) 

Integrating 𝜒𝑛(𝑧) w.r.t ‘z’ between 𝑧 to 𝑄 we have, 

 

𝜒𝑛−1(𝓏) =∑𝑎𝑖𝑝1,𝑖(𝓏)

3𝑝

𝑖=1

+ 𝜒𝑛−1(𝑄). 

 

   

(2.15) 

As per the rule of mathematical induction on 𝑀 = 𝑛 − 𝑘, Above, theorem is proved. 

Take 𝑀 = 1 ⇒ 𝑘 = 𝑛 − 1, by using 𝑘 = 𝑛 − 1 we have: 

It is same as the above calculated results, so for 𝑚 = 1 it is true. 

Assume the result is true for 𝑀 =  𝑛 − 𝑘 =  𝑠 

 

𝜒𝑛−1(𝓏) =∑𝑎𝑖𝑝1,𝑖(𝓏)

3𝑝

𝑖=1

+ 𝜒𝑛−1(𝑄). 

 

(2.16) 
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𝜒𝑛−𝑠(𝓏) =∑𝑎𝑖𝑝𝑠,𝑖(𝓏) +∑
(𝓏 − 𝑄)𝑟

𝑟!

𝑠−1

𝑟=0

3𝑝

𝑖=1

𝜒𝑛−𝑠+𝑟  (𝑄). 

  

(2.17) 

Proof of the result at 𝑀 = 𝑠 + 1, integrating the above equations  

 

𝜒𝑛−𝑠−1(𝓏) =∑𝑎𝑖𝑝𝑠+1,𝑖(𝓏) +∑
(𝓏 − 𝑄)𝑟+1

(𝑟 + 1)!

𝑠−1

𝑟=0

3𝑝

𝑖=1

𝜒𝑛−𝑠+𝑟  (𝑄)

+ 𝜒𝑛−𝑠−1  (𝑄). 

 

 

(2.18) 

 

 

𝜒𝑛−𝑠−1(𝓏) =∑𝑎𝑖𝑝𝑠+1,𝑖(𝓏) +

3𝑝

𝑖=1

𝜒𝑛−𝑠−1  (𝑄)

+ [
(𝓏 − 𝑄)1

1!
𝜒𝑛−𝑠 +

(𝓏 − 𝑄)2

2!
𝜒(𝑛−𝑠)+1

+
(𝓏 − 𝑄)3

3!
𝜒(𝑛−𝑠)+2 +⋯+

(𝓏 − 𝑄)𝑠

𝑠!
𝜒(𝑛−𝑠)+(𝑠−1)(𝑄)]. 

 

 

 

(2.19) 

 

𝜒𝑛−𝑠−1(𝓏) =∑𝑎𝑖𝑝𝑠+1,𝑖(𝓏) +

3𝑝

𝑖=1

(𝓏 − 𝑄)0

0!
𝜒𝑛−(𝑠+1)

+ [
(𝓏 − 𝑄)1

1!
𝜒(𝑛−(𝑠+1))+1 +

(𝓏 − 𝑄)2

2!
𝜒(𝑛−(𝑠+1))+2 +⋯

+
(𝓏 − 𝑄)𝑠

𝑠!
𝜒(𝑛−(𝑠+1))+𝑠(𝑄)]. 

(2.20) 

 

𝜒𝑛−(𝑠+1)(𝓏) =∑𝑎𝑖𝑝𝑠+1,𝑖(𝓏) +

3𝑝

𝑖=1

∑
(𝓏 − 𝑄)𝑟

(𝑟)!
𝜒(𝑛−(𝑠+1))+𝑟  (𝑄)

(𝑠+1)−1

𝑟=0

. 

 

(2.21) 

Hence the above result is verified for  𝑀 = (𝑛 − 𝑘) = 𝑠 + 1 , therefore given result is valid for 

all derivative of 𝜒(𝓏) which satisfies the proof. 

Since the members of family of non-dyadic HW have a property that they are orthogonal to each 

other, thus by using properties of wavelet and above theorem, over the interval [0,1); any square 

integrable function 𝜒(𝓏) can be expressed as: 

 𝜒(𝓏)  ≈ 𝛼1ℎ1(𝓏) + ∑ 𝛼𝑖𝜑𝑖
1(𝓏) + ∑ 𝛼𝑖𝜑𝑖

2(𝓏).∞
𝑜𝑑𝑑 𝑖𝑛𝑑𝑒𝑥 𝑖≥3

∞
𝑒𝑣𝑒𝑛 𝑖𝑛𝑑𝑒𝑥 𝑖≥2  (2.22) 

Here 𝛼𝑖’s coefficients of HW can be calculated as: 
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𝛼𝑖 = ∫ 𝜒(𝓏)ℎ𝑖(𝓏)𝑑𝑧
1

0
, 𝑖 = 1, 2, 3, … . , 3𝑝. 

 

 

(2.23) 

Considering terms in finite number, for first 3p terms, where 𝑝 = 3𝑗 , 𝑗 = 0,1,2, ….to 

approximate the function 𝜒(𝑧) we get, 

 

𝜒(𝓏) ≈ 𝜒3𝑝 =∑𝑎𝑖ℎ𝑖(𝓏).

3𝑝

𝑖=1

 

 

(2.24) 

 

2.5 Methods for the solution of LEE and EFE: 

Approximation Technique 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Consider a LEE: 

Step 1: Consider an ODE known as LEE and EFE. 

Step 2: Approximate the higher derivatives of the existing 

equation. 

Step 3: By integrating the higher derivatives, other lower 

derivatives can be obtained which are present in the equation. 

Step 4: After finding all the derivatives and values of the function 

by the approximation method, substitute all the values it into the 

given mathematical equation. 

Step 5: By using proposed methodology, an ODE is converted 

into algebraic equation. 

Step 6: By applying the MATLAB algorithm to a given equation, 

an approximate solution to the given problem is obtained, and 

then the exact solution and solution existing in the literature are 

compared with the results obtained for a mathematical equation. 

Step 7: Results are obtained in the form of tables and graphs, and 

it has been observed that our results are better than the existing 

results in the literature. 
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𝒴′′ +

2

𝒳
𝒴′ + 𝒴𝒷 = 0 

 

 

 

(2.25) 

  With BCs, 𝒴(0) = 1 and 𝒴′(0) = 0, for 𝒷 = 1 

 

𝒴′′(𝒳) =∑𝜇𝜏

3𝑀

𝜏=1

ℎ𝜏(𝒳) 

 

On integrating w.r.t 𝒳 

 

(2.26) 

𝒴′(𝑥) =∑𝜇𝜏

3𝑀

𝜏=1

𝑃1,𝜏(𝒳) + 𝒴
′(0) 

𝒴(𝑥) =∑𝜇𝜏

3𝑀

𝜏=1

𝑃2,𝜏(𝑥) + 𝒳𝒴
′(0) + 𝒴(0) 

 

𝒴(𝒳) =∑𝜇𝜏

3𝑀

𝜏=1

𝑃2,𝜏(𝒳) + 1 

 

 

 

(2.27) 

 Using all values in above equation, 

∑𝜇𝜏

3𝑀

𝜏=1

ℎ𝜏(𝒳) +
2

𝒳
∑𝜇𝜏

3𝑀

𝜏=1

𝑃1,𝜏(𝒳) +∑𝜇𝜏

3𝑀

𝜏=1

𝑃2,𝜏(𝒳) + 1 = 0 

 

∑𝜇𝜏

3𝑀

𝜏=1

[ℎ𝜏(𝒳) +
2

𝒳
𝑃1,𝜏(𝒳) + 𝑃2,𝜏(𝒳)] = −1 

(2.28) 

 

 

Similarly, EFE is solved by approximating the higher derivatives and finding the other values 

and results are further discussed using numerical examples. 

2.6 Error analysis with test problems 

Above scheme is applied on LEE and EFE to validate the competency of the scheme and 

accuracy level gained by the recent technique. 𝐿2 − 𝑒𝑟𝑟𝑜𝑟 , 𝐿∞ − 𝑒𝑟𝑟𝑜𝑟 and absolute errors has 

been found which can written as. 

Absolute Error =|𝑢𝑒𝑥𝑎𝑐𝑡(𝒳𝑟) − 𝑢𝑛𝑢𝑚(𝒳𝑟)|. (2.29) 
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𝐿∞ = max
𝑟
|𝑢𝑒𝑥𝑎𝑐𝑡(𝒳𝑟) − 𝑢𝑛𝑢𝑚(𝒳𝑟)| . (2.30) 

𝐿2 =
√∑ |𝑢𝑒𝑥𝑎𝑐𝑡(𝒳𝑟)−𝑢𝑛𝑢𝑚(𝒳𝑟)|2

3𝑝
𝑙=1

√∑ |𝑢𝑒𝑥𝑎𝑐𝑡(𝒳𝑟)|2
3𝑝
𝑙=1

. (2.31) 

where 𝑥𝑟 represents the collocation points of the domain and calculated by the relation.  

 
𝒳𝑟 = 𝒶 + (𝒷 − 𝒶)

𝓂 − 0.5

3𝓅
;𝓂 = 1, 2, 3, … , 3𝓅 

(2.32) 

 

2.7 Numerical Observations: 

2.7.1  Fourth non-order linear EFE: 

 𝑢𝑖𝑣(𝑧) +
12

𝓏
𝑢′′′(𝑧) +

36

𝓏2
𝑢′′(𝑧) +

24

𝑧3
𝑢′(𝑧) + 60(7 − 18𝑧4 + 3𝑧8)𝑢9 = 0. 

 

(2.33) 

With IC, 

 𝑢(0) = 1, 𝑢′(0) = 𝑢′′(0) = 𝑢′′′(0) = 0. (2.34) 

ES of the given equation:    

   𝑢(𝑧)=
1

√1+𝑧4
. (2.35) 

 

𝑢(𝑧) =∑𝑎𝑖ℎ𝑖(𝑧)

3𝑝

𝑖=1

+
12

𝓏
𝑃1,𝑖(𝑧) +

36

𝓏2
𝑃2,𝑖(𝑧) +

24

𝓏
𝑃2,𝑖(𝑧)

+ 60(7 − 18𝑧4 + 3𝑧8)(9𝑢𝑟+1𝑢𝑟
8 − 8𝑢𝑟

9) 

Table 2.1 shows a comparative study of absolute error of proposed methods with other methods 

and whereas Table 2.2 represents a comparative study at LOR J=2 and Table 2.3 signifies value 

of 𝐿2 and 𝐿∞ error at different LOR. In Figure 2.1, comparative study is discussed between the 

AS and ES derived by proposed method and Figure 2.2 signifies the value of absolute error at 

different collocation points.  
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Table 2.1 A comparison study of Absolute errors of proposed method with other methods. 

𝑧 Absolute error by VIM 

[74]. 

Absolute error by 

HS2WM  [98]. 

Absolute error by 

HS3WM 

0.930 4.5E-02 1.1E-02 1.32E-05 

0.943 6.2E-02 1.3E-02 1.35E-05 

0.961 8.5E-01 1.5E-02 1.42E-05 

0.977 1.2E-01 1.7E-02 1.48E-05 

0.992 1.6E-01 2.0E-02 1.53E-05 

 

Table 2.2 A comparison study of Absolute errors by proposed method at different points for 

LOR J=2. 

𝑧 ES AS by HS3WM Absolute 

Error by 

HS3WM 

Absolute 

Error by 

ADM [101] 

Absolute 

Error by 

QBSM 

[101] 

0.1 0.999858843193092 0.999858845358450 2.165E-09 1.1713E−05 2.9749E−06 

0.2 0.999140153146428 0.999140184430897 3.128E-08 - - 

0.3 0.995124236352257 0.995124652439060 4.160E-07 - - 

0.4 0.983937555332222 0.983940019395591 2.464E-06 6.5734E−06 1.7577E−06 

0.5 0.970136312766435 0.970142500145332 6.187E-06 5.2624E−07  4.7039E−07 

0.6 0.936785055989435 0.936803613298913 1.855E-05 7.5805E−06 3.9870E−06 

0.7 0.886591328782529 0.886633635115172 4.230E-05 - - 

0.8 0.821293712001356 0.821369965673296 7.625E-05 - - 

0.9 0.771883253099228 0.771983726870444 1.004E-04 3.6837E−05 1.0483E−05 

 

Table 2.3 Value of the L2 and L∞ errors at different LOR: 

LOR 𝐿2 error at HS3WM 𝐿∞ error at HS3WM 

J=1 4.85313E-04 1.05739E-03 

J=2 5.15079E-05 1.21669E-04 

J=3 5.69559E-06 1.37822E-05 

J=4 6.32507E-07 1.54229E-06 

J=5 7.02744E-08 1.71784E-07 

J=6 7.80821E-09 1.91028E-08 
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Figure 2.1 For NE no. 2.7.1, graphical presentation of ES and AS of u (z) at distinct point of z. 

 

Figure 2.2 For NE no. 2.7.1, Value of Absolute error for different values of z. 

2.7.2 Third order non-linear ODE (EFE) 

 
𝑢′′′(𝑧) +

3

𝓏
𝑢′′(𝑧) = 𝑢3(𝑧) + 24𝑒𝑧 + 36𝑧𝑒𝑧 + 12𝑧2𝑒𝑧 + 𝑧3𝑒𝑧 − 𝑧9𝑒3𝑧 . 

(2.36) 

With IC,  



41 

 

 𝑧(0) = 0, z(1) = 𝑒, 𝑧′(0) = 0. 

 

(2.37) 

ES of the given equation: 

 𝑢(𝑧) = 𝑧3𝑒𝑧 . 

 

(2.38) 

 𝑢(𝑧)=∑ 𝑎𝑖ℎ𝑖(𝑧)
3𝑝
𝑖=1 +

3

𝓏
𝑎𝑖𝑃1,𝑖(𝑧) − (3𝑢𝑟+1𝑢𝑟

2 − 2𝑢𝑟
3) − (24𝑒𝑧 + 36𝑧𝑒𝑧 +

12𝑧2𝑒𝑧 + 𝑧3𝑒𝑧 − 𝑧9𝑒3𝑧) 

 

Table 2.4 shows a comparative study of absolute error of proposed methods with other methods 

at LOR J=3 and Table 2.5 signifies value of 𝐿2 and 𝐿∞ error at different LOR. In Figure 2.3, 

comparative study is discussed between the AS and ES derived by proposed method and Figure 

2.4 signifies the value of absolute error at different collocation points.  

Table 2.4 A comparison study of Absolute errors of proposed method with other methods at 

resolution level J=3. 

𝑧 ES AS by HS3WM Absolute error by 

HS3W 

0.104 0.001283440775195 0.001282586360785 8.54E-07 

0.203 0.010362491097857 0.010359072316960 3.41E-06 

0.302 0.037445865503173 0.037437985358077 7.88E-06 

0.401 0.096482597073391 0.096468138911095 1.44E-05 

0.50 0.206090158837516 0.206066773523318 2.33E-05 

0.611 0.420496827502144 0.420460286063230 3.65E-05 

0.709 0.727518335078141 0.727467043686249 5.12E-05 

0.808 1.187018782746865 1.186949558412363 6.92E-05 

0.907 1.851351961228259 1.851261220832432 9.07E-05 

 

Table 2.5 Value of the 𝐿2 and 𝐿∞ error at different LOR 

LOR 𝐿2 Error by 

HS2W[109] 

𝐿∞ error by 

HS2W[109] 

𝐿2 error by 

HS3W 

𝐿∞ error by 

HS3W 

J=1 1.8840E-02 2.9323E-02 4.14486E-03 7.8944E-03 

J=2 2.1377E-02 1.0697E-02 4.70304E-04 9.8452E-04 

J=3 8.1855E-03 2.8254E-03 5.23755E-05 1.1305E-04 

J=4 2.9917E-03 7.1846E-04 5.82097E-06 1.2693E-05 
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J=5 1.0737E-03 1.8035E-04     6.46793E-07 1.4152E-06 

J=6 3.8237E-04 4.5133E-05 7.18663E-08 1.5742E-07 

                                                                                                        

 

Figure 2.3 For NE no. 2.7.2, graphical presentation of ES and AS of 𝑢 (𝑧) at distinct point of 

z. 

 

Figure 2.4  For NE no. 2.7.2, Value of Absolute error for different values of 𝑧. 

2.7.3 A Fourth order linear ODE: 

 
𝑢𝑖𝑣(𝑧) +

9

𝑧
𝑢′′′(𝑧) +

18

𝑧2
𝑢′′(𝑧) +

6

𝑧3
𝑢′(𝑧) − 32(15 + 75𝑧4 + 54𝑧8 + 8𝑧12)𝑢

= 0. 

(2.39) 

With IC, 
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 𝑢(0) = 1, 𝑢′(0) = 𝑢′′(0) = 𝑢′′′(0) = 0. 

 

(2.40) 

ES of the given equation:    

 𝑢(𝑧)=𝑒𝑧
4
 

𝑢(𝑧) =∑𝑎𝑖ℎ𝑖(𝑧)

3𝑝

𝑖=1

+
9

𝑧
𝑃1,𝑖(𝑧) +

18

𝑧2
𝑃2,𝑖(𝑧) +

6

𝑧3
𝑃3,𝑖(𝑧)

+ 32(15 + 75𝑧4 + 54𝑧8 + 8𝑧12)𝑃4,𝑖(𝑧). 

(2.41) 

Table 2.6 shows a comparative study of absolute error of proposed methods with other methods 

and whereas Table 2.7 represents a comparative study at resolution level J=2 and Table 2.8 

signifies value of 𝐿2 and 𝐿∞ error at different LOR. In Figure 2.5, comparative study is discussed 

between the AS and ES derived by proposed method and Figure 2.6 signifies the value of 

absolute errors at different collocation points.  

Table 2.6 A comparison study of Absolute errors of proposed method with other methods at 

resolution level J=3. 

𝑧 ES AS by VIM [74] AS by HS2WM 

[98] 

AS by HS3WM 

0.504 1.0667142 1.01574 1.06660 1.0667141 

0.605 1.1453966 1.03202 1.14384 1.1453962 

0.707 1.2840731 1.05733 1.28388 1.2840730 

0.801 1.5117446 1.08968 1.50862 1.5117443 

0.902 1.4512819 1.13321 1.94051 1.9459544 

 

Table 2.7 A comparison study of Absolute errors by proposed method at different points for 

LOR J=2. 

𝑧 ES AS by HS3WM Absolute Error by 

HS3WM 

0.1 1.000282406409751 1.000282408938148 2.528E-08 

0.2 1.001723294678824     1.001723334769213 4.009E-07 

0.3 1.009870313695018 1.009870867313081 5.536E-06 

0.4 1.033454757045220 1.033458183478689 3.426E-05 

0.5     1.064485414542223 1.064494458917860 9.044E-05 

0.6     1.149633526509271 1.149664285482661         3.075E-05 
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0.7     1.312594689586376 1.312681132438711         8.644E-05             

0.8     1.619507358288849 1.619719662482946         2.123E-04               

0.9     1.969508640506898 1.969871146748689         3.625E-04               

 

Table 2.8 Value of the 𝐿2 and 𝐿∞ error at different LOR: 

LOR 𝐿2 error by HS3WM 𝐿∞ error at HS3WM 

J=1 1.11181E-03 3.93567E-03 

J=2 1.34148E-04 5.83032E-04 

J=3 1.50753E-05 7.03277E-05 

J=4 1.67720E-06 8.00930E-06 

J=5 1.86383E-07 8.96960E-07 

J=6 2.07096E-08 9.99204E-08 

 

 

Figure 2.5: For numerical Experiment no. 2.7.3, graphical presentation of ES and AS of 𝑢(𝑧) 

at distinct point of z. 
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Figure 2.6 For NE no. 2.7.3: Value of Absolute error for different values of z. 

 

2.7.4 For 𝝁(𝓧) = 𝟏 𝒂𝒏𝒅 𝝀(𝔂) = 𝓨𝓫 the fundamental LEE introduced to analyze the 

thermal behavior of a gas cloud that was spherical. 

With BC: 𝒴(0) = 0, 𝒴′(0) = 0, here 𝒷 ≥ 0, there are different cases for different 

values of 𝒷. 

Case a: for 𝒷 = 0, equation’s ES given as: 𝒴(𝒳) =1- 
𝒳2

6
 

Case b: for 𝒷 = 1, equation’s ES given as: 𝒴(𝒳) =  
sin𝒳

𝒳
 

Case c: for 𝒷 = 5, equation’s ES given as: 𝒴(𝒳)= (1 +
𝒳2

3
)
−
1

2
 

 

For 𝒷 = 0, equation becomes: 

 
𝒴′′ +

2

𝒳
𝒴′ + 1 = 0 

(2.43) 

With BC, 

                                                           𝒴(0) = 0, 𝒴′(0) = 0 (2.44) 

ES: 

 

𝒴′′ +
2

𝒳
𝒴′ + 𝒴𝒷 = 0 

 

(2.42) 
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                                                     𝒴(𝒳)  = 1 − 
𝒳2

6
  (2.45) 

Table 1 and table 2 shows a comparative study of absolute error of proposed methods with other 

methods and whereas table 3 represents a comparative study at LOR J=2 and table 3 signifies 

value of 𝐿2 and 𝐿∞ error at different LOR. In figure 1, comparative study is discussed between 

the AS and ES derived by proposed method for case (a) and (b). 

Table 2.9 A comparative study of Absolute errors obtained using proposed method with 

methods available in the literature. 

𝒳 Absolute error by HS2W[79] Absolute error by HS3W 

0.24 5.55E-17 0 

0.36 5.55E-17 0 

0.49 0 0 

0.61 5.55E-17 0 

0.74 0 0 

0.86 2.78E-17 0 

0.99 0 0 

For 𝓫 = 𝟏, equation becomes: 

 
𝒴′′(𝒳) +

2

𝒳
𝒴′(𝒳) + 𝒴(𝒳) = 0 

(2.46) 

With BC,  

 𝒴(0) = 0,𝒴′(0) = 0,  (2.47) 

ES: 

 
𝒴(𝒳)  =

sin𝒳

𝒳
 

(2.48) 

Table 2.10 A comparative study of Absolute errors obtained using proposed method with 

methods available in the literature. 

𝒳 J=5 [76] HSWM3 J=6 [76] HSWM3 

0.2 4.79E−06 1.05E-10 1.63E−07 1.16E-11 

0.4 9.51E−06 4.19E-10 2.79E-07 2.00E-11 

0.6 1.12E−05 9.36E-10 3.11E−07 1.04E-10 

0.8 1.17E−05 1.65E-09 3.19E−07 1.84E-10 
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Table 2.11 A comparative study of Errors obtained using proposed method at different LOR. 

LOR 𝐿2 − 𝑒𝑟𝑟𝑜𝑟 𝐿∞ − 𝑒𝑟𝑟𝑜𝑟 

𝐽=0 5.81E-05 9.20E-05 

𝐽 =1 7.82E-06 1.49E-05 

𝐽 =2 8.87E-07 1.80E-06 

𝐽 =3 9.88E-08 2.05E-07 

𝐽 =4 1.09E-08 2.30E-08 

𝐽 =5 1.22E-09 2.56E-09 

 

 

Figure 2.7 Graphical depiction of AS and ES for NE no. 2.7.4 for case (a) 

 

Figure 2.8 Graphical depiction of AS and ES for NE no. 2.7.4 for case (b). 
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2.7.5 For 𝓫 = 𝟓, equation becomes: 

 
𝒴′′(𝒳) +

2

𝒳
𝒴′(𝒳) + 𝒴5(𝒳) = 0 

(2.49) 

With BC, 

                                        𝒴(0) = 0, 𝒴′(0) = 0 (2.50) 

ES: 

 
                                      𝒴(𝒳)  =  (1 +

𝒳2

3
)
−
1

2
 

(2.51) 

Table 2.12 shows a comparative study of absolute error of proposed methods with other methods 

and whereas Table 2.13 signifies value of 𝐿2 and 𝐿∞ error at different LOR. In Figure 2.9, 

comparative study is discussed between the AS and ES derived by proposed method and absolute 

error value for case (c). 

Table 2.12 A comparative study of Absolute errors obtained using proposed method with 

methods available in the literature. 

𝒳 TWM [83] VIM [84] IDM [85] HS3WM 

0.1000 6.4E-06 6.2E-03 3.1E-03 7.9E-10 

0.2000 6.3E-06 6.1E-03 2.9E-03 3.1E-09 

0.3000 6.0E-06 5.8E-03 2.6E-03 6.8E-09 

0.4000 5.7E-06 5.5E-03 2.2E-03 1.1E-08 

0.5000 5.3E-06 5.0E-03 1.8E-03 1.7E-08 

0.6000 4.8E-06 4.5E-03 1.4E-03 2.4E-08 

0.7000 4.3E-06 3.8E-03 9.8E-04 3.2E-08 

0.8000 3.8E-06 2.8E-03 6.0E-04 4.0E-08 

0.9000 3.2E-06 1.6E-03 2.7E-04 4.8E-08 

 

Table 2.13 A comparative study of Errors obtained using proposed method at different 

resolution levels. 

LOR 𝐿2 − 𝑒𝑟𝑟𝑜𝑟 𝐿∞ − 𝑒𝑟𝑟𝑜𝑟 

𝐽 =0 1.70E-03 2.61E-03 

𝐽 =1 1.91E-04 3.43E-04 

𝐽 =2 2.13E-05 4.02E-05 

𝐽 =3 2.36E-06 4.55E-06 
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𝐽 =4 2.63E-07 5.09E-07 

𝐽 =5 2.92E-08 5.66E-08 

             

                 

                

Figure 2.9 Graphical depiction of ES, AS and Absolute error for NE no. 2.7.5 for case (c). 

2.7.6 Basic LEE: 

For 𝜇(𝒳) = −2(2𝒳2 + 3) 𝑎𝑛𝑑 𝜆(𝒴) = 𝒴 then the equation 

 
𝒴′′(𝒳) +

2

𝓍
𝒴′(𝒳) − 2(2𝒳2 + 3)𝒴(𝒳) = 0 

(2.52) 

With BC,  
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 𝒴(0) = 1,𝒴′(0) = 0, (2.53) 

ES: 

  𝒴(𝒳) = 𝑒𝒳
2
 (2.54) 

Table 2.14 shows a comparative study of absolute error of proposed methods with other methods 

and whereas Table 2.15 signifies value of 𝐿2 and 𝐿∞ error at different LOR. In Figure 2.10, 

comparative study is discussed between the AS and ES derived by proposed method and absolute 

error value. 

Table 2.14 A comparative study of Absolute errors obtained using proposed method with 

methods available in the literature. 

𝒳 Error by Absolute 

error [110] 

Absolute Error Gürbüz 

and Sezer [86] 

Absolute error HSWM 

0.1 3.73E−07 9.27E−04 1.75E-10 

0.2 2.91E−07 1.66E−03 6.91E-10 

0.3 3.97E−07 2.02E−03 1.53E-09 

0.4 4.85E−07 2.29E−03 2.66E-09 

0.5 3.99E−07 2.58E−03 4.00E-09 

0.6 5.43E−07 2.93E−03 5.38E-09 

0.7 6.52E−07 3.36E−03 6.50E-09 

0.8 6.24E−07 3.92E−03 6.80E-09 

0.9 9.22E−07 4.66E−03 5.22E-09 

 

Table 2.15 A comparative study of Errors obtained using proposed method at different LOR. 

LOR 𝐿2 − 𝑒𝑟𝑟𝑜𝑟 𝐿∞ − 𝑒𝑟𝑟𝑜𝑟 

𝐽 =0 1.99E-03 5.06E-03 

𝐽 =1 1.21E-04 3.18E-04 

𝐽 =2 1.71E-05 4.37E-05 

𝐽 =3 1.95E-06 4.98E-06 

𝐽 =4 2.17E-07 5.54E-07 

𝐽 =5 2.42E-08 6.16E-08 
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Figure 2.10 Graphical depiction of ES, AS, Absolute error for NE no. 2.7.6. 

2.7.7  Lane Emden equation: 

For 𝜇(𝒳) = 1 , 𝜆(𝒴) = 𝒴 𝑎𝑛𝑑 𝜑(𝓍) = 6 +  12𝒳 + 𝒳2  +  𝒳3  

 
𝒴′′(𝒳) +

2

𝒳
𝒴′(𝒳) + 𝒴(𝒳) = 6 +  12𝒳 + 𝒳2  +  𝒳3 

 

(2.55) 

With BC, 

 

ES: 

 

 𝒴(0) = 0,𝒴′(0) = 0, (2.56) 

 𝒴(𝒳) = 𝒳2  +  𝒳3 (2.57) 
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Table 2.16 shows a comparative study of absolute error of proposed methods with other methods 

and whereas Table 2.17 signifies value of 𝐿2 and 𝐿∞ error at different LOR. In Figure 2.11, 

comparative study is discussed between the AS and ES derived by proposed method and absolute 

error value. 

Table 2.16 A comparative study of Absolute errors obtained using proposed method with 

methods available in the literature. 

𝒳 Absolute error by HS3W at LOR 

J=4 

Absolute error by HS3W at 

LOR J=5 

0.1 4.259E-07 4.738E-08 

0.2 8.591E-07 9.421E-08 

0.3 1.270E-06 1.405E-07 

0.4 1.675E-06 1.862E-07 

0.5 2.073E-06 2.303E-07 

0.6 2.476E-06 2.739E-07 

0.7 2.850E-06 3.161E-07 

0.8 3.211E-06 3.568E-07 

0.9 3.571E-06 3.957E-07 

 

Table 2.17 A comparative study of Errors obtained using proposed method at different LOR. 

LOR Absolute error by HS2W[43] Absolute error by HS3W 

𝐽 =4 5.434E-04 2.073E-06 

𝐽 =5 3.427E-05 2.303E-07 
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Figure 2.11 Graphical depiction of ES, AS, Absolute error for NE no.2.7.7. 

2.7.8  Basic LEE: 

For 𝜇(𝒳) = 𝒳 , 𝜆(𝒴) = 𝒴 𝑎𝑛𝑑 𝜑(𝓍) = 𝒳5 −𝒳4 + 44𝒳2 − 30𝒳, then the equation is the 

basic LEE  

 
𝒴′′(𝒳) +

8

𝒳
𝒴′(𝒳) + 𝒳𝒴(𝒳) = 𝒳5 −𝒳4 + 44𝒳2 − 30𝒳 

 

(2.58) 

BC, 

 𝒴(0) = 0,𝒴′(0) = 0 (2.59) 

ES: 

 𝒴(𝒳) = 𝒳4 − 𝒳3 (2.60) 

Table 2.18 shows a comparative study of absolute error of proposed methods with other methods 

and whereas Table 2.19 signifies value of 𝐿2 and 𝐿∞ error at different LOR. In Figure 2.12, 

comparative study is discussed between the AS and ES derived by proposed method and absolute 

error value. 

Table 2.18 A comparative study of Absolute errors obtained using proposed method with 

methods available in the literature. 

𝒳 ES Absolute error by HS3W at LOR Abs. Error for OHAM 

(0𝑡ℎ order) [87]. 

0.1 −0.0009 4.426E-09 1.180E-08 

0.2 −0.0064 7.200E-09 6.899E-07 

0.3 −0.0189 8.357E-09 7.114E-06 
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0.4 −0.0384 7.877E-09 3.579E-05 

0.5 −0.0625 5.775E-09 1.206E-04 

0.6 −0.0864 2.036E-09 3.125E-04 

0.7 −0.1029 3.326E-09 6.679E-04 

0.8 −0.1024 1.029E-08 1.220E-03 

0.9 −0.0729 1.880E-08 1.932E-03 

 

Table 2.19 A comparative study of Errors obtained using proposed method at different LOR. 

LOR 𝐿2 − 𝑒𝑟𝑟𝑜𝑟 𝐿∞ − 𝑒𝑟𝑟𝑜𝑟 

𝐽 =0 9.34E-02 9.17E-03 

𝐽 =1 9.66E-03 1.33E-03 

𝐽 =2 1.07E-03 1.76E-04 

𝐽 =3 1.19E-04 2.05E-05 

𝐽 =4 1.33E-05 2.32E-06 

𝐽 =5 1.48E-06 2.59E-07 
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Figure 2.12 Graphical depiction of the ES, the AS, and the absolute error for NE no. 2.7.8 

2.7.9  LEE: 

For 𝜇(𝒳) = 𝒳 , 𝜆(𝒴) = 𝒴 𝑎𝑛𝑑 𝜑(𝓍) = −𝑛2 cos(𝑛𝒳) −
2𝑛

𝒳
sin (𝑛𝒳), then the equation is the 

basic LEE  

BC, 

 𝒴(0) = 2,𝒴′(0) = 0 (2.62) 

 

 

ES:  

 𝒴(𝒳) = 1 + cos (𝑛𝒳) (2.63) 

Table 2.20 shows a comparation between absolute error of proposed method by other methods. 

In Figure 2.13, shows a comparation between the AS and ES derived by proposed method. 

Table 2.20 A comparative study of Absolute errors obtained using proposed method with 

methods available in the literature. 

𝒳 ES Absolute error by HS3W at LOR Abs. Error for IEM  

 [111]. 

0.2 1.8253 4.5355E-07 1.500E-02 

0.1 1.9553 1.052E-07 9.800E-03 

0.05 1.9887 2.926E-08 2.800E-05 

0.02 1.9882 1.411E-10 8.400E-06 
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Figure 2.13 Graphical depiction of the ES, the AS, and the absolute error for NE no. 2.7.9 

2.8 Conclusion:  

After going through the results obtained for numerical experiments with the proposed technique, 

we observed that, in comparison to other methods, a higher-order non-linear EFE and LEE can 

be easily solved by using HS3WM with less computational cost and high accuracy. With the use 

of the MATLAB subprogram, AS of EFE is attained. The solution obtained accuracy results 

with a higher LOR at a small number of collocation points by HS3WM in comparison to 

HS2WM and other existing methods available in the literature. Even at same LOR HS3WM 

provides the less value of error in comparison to HS2WM.  

Therefore, by observing the performance of the method on different numerical experiments, it 

is concluded that, in the future the proposed computational method will be extended to solve 

numerous higher order complex ODEs of the same kind with singularities, which has great 

importance in the fields of applied mathematics and astrophysics. While the Haar scale 3 wavelet 

family offers advantages, its discontinuity at partition points poses a challenge. This 

discontinuity prevents the direct use of differentiation for calculating wavelet weight 

coefficients. Consequently, integration becomes the preferred method for determining these 

coefficients. Otherwise this method is appropriate for solving different kinds of ODEs. 
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Chapter 3  

A numerical analysis for solving various mathematical 2D-partial 

differential equations via scale 3 Haar wavelets. 

3.1 Introduction:  

In various fields such as plasma physics, solid-state physics, fluid physics, chemical kinetics, 

and mathematical biology, non-linear phenomena play a vital role in discussing the solutions to 

the physical problems developed in these fields, which are represented in terms of PDEs. To 

deal with these kinds of difficulties, different numerical and analytical methods are used for 

finding the solution to these equations. As per the literature review, it was observed that wavelet-

based methods are one of the compatible tools for searching the solutions of these kinds of real-

life problems. As it is enough sufficient to tackle with these kinds of complexities. Several 

articles have already published to discuss the applicability of the wavelet method for evaluating 

the solution non-linear and higher order complex DEs. Nonlinear dispersive equations are 

predominantly occurring whenever dispersion leads to dissipation, such as in plasma physics, 

nonlinear fiber optics, electrical transmission line behavior, communication theory, transport in 

porous media, and even blood pressure etc. In the world of waves, strong dispersion is the 

inherent property of waves arising in the natural real medium, except for some exclusion of non-

dispersive light and sound. This fact has strongly motivated the research community to conduct 

the deep analysis of phenomena governed by nonlinear dispersive equations. In the framework 

of the theory of nonlinear dispersive equations, the KdV equation has gotten huge attention from 

the scientific community. One-dimensional nonlinear lattice, long-wave motion in shallow 

water, hydrodynamics, quantum mechanics, plasma physics, and optics are all discussed by the 

generalized KdV equation [112]–[116]. The KdV equation's wave-soliton solutions explain why 

our pulse can be felt all over our body, which is caused by a localized pressure wave in our 

arteries and survives despite changes in local circumstances and artery shape [117], [118]. 

Similarly, a nonlinear KGE is a second order PDE, and it has applications in the sector of applied 

physics, such as phenomena of field theory and quantum mechanics. Basically, KGE belongs to 

family of a wave equations used to study the behavior of particles in motion at high velocities 

with high energy.    
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Because of some mathematical complications in treating these equations, finding the solution to 

these types of equations becomes a big challenge, as there is no established analytic method to 

solve this kind of problems. As a result, many researchers are working on developing numerical 

and semi-analytic schemes for solving problem governed by these PDEs, such as GT[119], 

DM[120], Collocation and RBF [121], HP[122], VIM[123], FDM[124], LM [125] and dyadic 

wavelet [126]–[128], quadratic and cubic non-linearity [129], ADM [130], [131],Decomposition 

method [132], [133], VIM [74], [134] , HPM [135], AEM [136], Polynomial wavelets [137], 

Legendre wavelet [138], [139], HWOM[140], Laguerre wavelet [141], CWM [142], HWCM 

[56]. 

The wavelet method is applicable in different fields, such as image denoising [143], [144] 

finding variance, correlation, and covariance in BSE [145]. But the use of HS2WM is common 

in the literature. Mittal and Pandit devised the HS3W-based technique to achieve a numerical 

approximation of order two beginning and problems with boundary value recently. They also 

demonstrated that the scale-3 Haar wavelet convergence rate is higher than the dyadic wavelets 

[66], [68]. H. Kaur et al. discussed the Bagley-Torvik equation by using a HW, and the results 

obtained are good in comparison to existing solutions in the literature [146]. R. Kumar et al. 

suggested a solution to higher-order linear and non-linear boundary problems using the Haar 

scale [147] and further demonstrated a hybrid method for solving BVPs. The results obtained 

are better than the previous results [107]. R. Kumar discussed the historical development of the 

Haar scale and also devised the construction of non-dyadic wavelet families with their integrals 

[148]. This gives us reason to believe that developing a new hybrid approach using HS3WM for 

the dispersive equations, would lead to an improved solution for these problems. 

The prime objective of the current work is to provide a better solver for the third-order KdV 

equation and second order non-linear KGE by developing a new numerical technique using two-

dimensional HS3W bases.  

The KdV equation has the following mathematical form. i.e. 

𝑢𝑡  +  𝜖𝑢𝑢𝑥  +  𝛼𝑢𝑥𝑥𝑥  =  𝑓(𝑥, 𝑡) ,   𝑎 ≤ 𝑥 ≤ 𝑏, 𝑡 > 0, ϵ > 0 

with ICs,  𝑢(𝑥, 0) =  𝑘1(𝑥), 𝑎 ≤ 𝑥 ≤ 𝑏   and 

                                                 BCs: 𝑢(0, 𝑡) = 𝜌1 , 𝑢𝑥 (0, t) =  𝜌2, 𝑢𝑥𝑥 (0, t) =  𝜌3. 

where are 𝑘1, 𝜌1, 𝜌2 𝑎𝑛𝑑 𝜌3 assumed to be continuous functions, t is time variable, and x is space 

variable. 
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Nonlinear KGE expressed as: 

 𝜕2𝑢

𝜕𝓉2
−
𝜕2𝑢

𝜕𝑥2
+ 𝜇 𝑢 − 𝜖𝑢2 = 𝑚(𝑥, 𝓉),      (𝑥, 𝓉) ∈ [0,1] × [0, 𝑇] (3.1) 

Having IC as, 

 𝑢(𝑥, 0) = 𝜂1(𝑥) (3.2) 

 𝜕𝑢

𝜕𝑡
(𝑥, 0) = 𝜂2(𝑥) 

(3.3) 

 and the BC, 

 𝑢(0, 𝓉) = 𝛾1(𝓉),    𝓉 ∈ [0, 𝑇] (3.4) 

 𝑢(1, 𝓉) = 𝛾2(𝓉),    𝓉 ∈ [0, 𝑇] (3.5) 

Where 𝜇, 𝜖,𝑚 are known constants, 𝜂1(𝑥), 𝜂2(𝑥), 𝛾1(𝓉), 𝛾2(𝓉), 𝑚(𝑥, 𝓉) are the given functions 

and here value of 𝑢(𝑥, 𝓉) is to be determined. 

3.2 Haar Scale-3 Wavelet: 

The HS3W integral approach is used to solve third-order non-linear PDEs, in which the DEs 

highest order derivative is elaborated into HS3W, and the derivatives of lower order are assessed 

by integrating the DEs. The HS3WM as more accuracy and converges faster than the HS2W. 

f(x)≈ 𝑘1 𝜙1(𝑥) + ∑ 𝑘𝑛𝜑𝑛
1(𝑥) + ∑ 𝑘𝑛𝜑𝑛

2(𝑥)∞
𝑜𝑑𝑑 𝑖𝑛𝑑𝑒𝑥 𝑛≥3

∞
𝑒𝑣𝑒𝑛 𝑖𝑛𝑑𝑒𝑥 𝑛≥2  

 

3.3 Discretization Scheme for second and third order partial differential 

equation: 

 For solving PDE of the kind, we discussed the concept of time and space discretisation. 

   𝑢𝑡 + 𝜖𝑢𝑢𝑥 + 𝛼𝑢𝑥𝑥𝑥 = 𝑓(𝑥, 𝑡) (3.6) 

For 𝜖 = 0 𝑎𝑛𝑑 𝛼 = 1, for a non − homogenous equation 𝑓(𝑥, 𝑡) = 𝐹(𝑥, 𝑡) above equation 

becomes linear. 

   𝑢𝑡 + 𝑢𝑥𝑥𝑥 = 𝑓(𝑥, 𝑡) (3.8) 

 𝑢𝑡
𝛼 + 𝜖𝑢𝑢𝑥 + 𝑢𝑥𝑥 + 𝜇𝑢𝑥𝑥𝑥 = 𝑓(𝑥, 𝑡) (3.7) 
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For 𝜖 = 1 𝑎𝑛𝑑 𝛼 = 1, 𝜇 = 1, we get, 

 𝑢𝑡 + 𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 𝑓(𝑥, 𝑡) (3.9) 

For solving the non-linearity of the above function Quasilinearisation technique is used. 

For linear dispersive equation: 

 𝑢𝑡 + 𝑢𝑥𝑥𝑥 = 𝑓(𝑥, 𝑡) (3.10) 

With subject to ICs: 

 𝑢(𝑥, 0) = 𝑔(𝑥);  0 ≤ 𝑥 ≤ 1 (3.11) 

With subject to BCs:  

 𝑢(0, 𝑡) = 𝜑0(𝑡), 𝑢𝑥(0, 𝑡) = 𝜑1(𝑡); 0 ≤ 𝑡 ≤ 𝑇 (3.12) 

 

Here 𝛼, 𝜖 are known constants. 𝑔(𝑥), 𝜑0(𝑡), 𝜑1(𝑡) and 𝜑2(𝑡) are the given functions. The 

value of 𝑢(𝑥, 𝑡)is to be determined. 

Let us consider, 

 

𝑢𝑡𝑥𝑥𝑥(𝑥, 𝑡) =∑∑𝑎𝑖𝑧𝐻𝑖(𝑥)𝐻𝑧(𝑡)

3𝑝

𝑥=1

3𝑝

𝑖=1

 

(3.14) 

Integrating equation (3.14), w.r.t to t between 0 to t 

 

𝑢𝑥𝑥𝑥(𝑥, 𝑡) =∑∑𝑎𝑖𝑥𝐻𝑖(𝑥)𝑄1,𝑥(𝑡)

3𝑝

𝑥=1

3𝑝

𝑖=1

+ 𝑢𝑥𝑥𝑥(𝑥, 0) 

 

(3.15) 

 

𝑢𝑥𝑥𝑥(𝑥, 𝑡) =∑∑𝑎𝑖𝑥𝐻𝑖(𝑥)𝑄1,𝑥(𝑡)

3𝑝

𝑥=1

3𝑝

𝑖=1

+ [𝑔(𝑥)]𝑥𝑥𝑥                              

 

(3.16) 

On integrating with respect to x, 

 

𝑢𝑥𝑥(𝑥, 𝑡) − 𝑢𝑥𝑥(0, 𝑡) =∑∑𝑎𝑖𝑥𝑄1,𝑖(𝑥)𝑄1,𝑥(𝑡)

3𝑝

𝑥=1

3𝑝

𝑖=1

+ [𝑢𝑥𝑥(𝑥, 0) − 𝑢𝑥𝑥(0,0)] 

 

(3.17) 

 

𝑢𝑥𝑥(𝑥, 𝑡) = ∑∑𝑎𝑖𝑥𝑄1,𝑖(𝑥)𝑄1,𝑥(𝑡)

3𝑝

𝑥=1

3𝑝

𝑖=1

+ [𝑢𝑥𝑥(𝑥, 0) − 𝑢𝑥𝑥(0,0)] + 𝑢𝑥𝑥(0, 𝑡) 

 

(3.18) 

Integrating with respect to x,  

 𝑢𝑥𝑥(0, 𝑡) = 𝜑2(𝑡). (3.13) 
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 𝑢𝑥(𝑥, 𝑡) − 𝑢𝑥(0, 𝑡)

=∑∑𝑎𝑖𝑥𝑄2,𝑖(𝑥)𝑄1,𝑥(𝑡)

3𝑝

𝑥=1

3𝑝

𝑖=1

+ [𝑢𝑥(𝑥, 0) − 𝑢𝑥(0,0)] − 𝑥𝑢𝑥𝑥(0,0)

+ 𝑥𝑢𝑥𝑥(0, 𝑡) 

(3.19) 

 

 

𝑢𝑥(𝑥, 𝑡) =∑∑𝑎𝑖𝑥𝑄2,𝑖(𝑥)𝑄1,𝑥(𝑡) + [

3𝑝

𝑥=1

3𝑝

𝑖=1

𝑔𝑥(𝑥, 0) − 𝑔𝑥(0,0)] − 𝑥𝜑2(0) + 𝑥𝜑2(𝑡)

+ 𝜑1(𝑡)   

(3.21) 

Again, integrating with respect to 𝑥. 

   𝑢(𝑥, 𝑡) − 𝑢(0, 𝑡) = ∑ ∑ 𝑎𝑖𝑥𝑄3,𝑖(𝑥)𝑄1,𝑥(𝑡) + [𝑢(𝑥, 0) − 𝑢(0,0)]
3𝑝
𝑥=1 −3𝑝

𝑖=1

𝑥 𝑢𝑥(0,0) −
𝑥2

2
𝑢𝑥𝑥(0,0) +

𝑥2

2
𝑢𝑥𝑥(0, 𝑡) + 𝑥𝑢𝑥(0, 𝑡) 

(3.22) 

On differentiating w.r.t to t we get, 

BCs we get, 

 

𝑢(𝑥, 𝑡) =∑∑𝑎𝑖𝑥𝑄3,𝑖(𝑥)𝑄1,𝑥(𝑡) + [𝑔(𝑥) − 𝑔(0)] +

3𝑝

𝑥=1

3𝑝

𝑖=1

𝑥2

2
[𝜑2(𝑡) − 𝜑2(0)]

+ 𝑥[𝜑1(𝑡) − 𝜑1(0)] + 𝜑0(𝑡) 

(3.25) 

 

𝑢𝑡(𝑥, 𝑡) =∑∑𝑎𝑖𝑥𝑄3,𝑖(𝑥)𝐻𝑥(𝑡) +
𝑥2

2
[𝜑2(𝑡)

3𝑝

𝑥=1

3𝑝

𝑖=1

]𝑡 + 𝑥[𝜑1(𝑡)]𝑡 + [𝜑0(𝑡)]𝑡 

(3.26) 

 

𝑢𝑥(𝑥, 𝑡) =∑∑𝑎𝑖𝑥𝑄2,𝑖(𝑥)𝑄1,𝑥(𝑡)

3𝑝

𝑥=1

3𝑝

𝑖=1

− 𝑥𝑢𝑥𝑥(0,0) + 𝑥𝑢𝑥𝑥(0, 𝑡) + [𝑢𝑥(𝑥, 0)

− 𝑢𝑥(0,0)] + 𝑢𝑥(0, 𝑡) 

 

(3.20) 

  𝑢(𝑥, 𝑡) = ∑ ∑ 𝑎𝑖𝑥𝑄3,𝑖(𝑥)𝑄1,𝑥(𝑡) + [𝑢(𝑥, 0) − 𝑢(0,0)]
3𝑝
𝑥=1 − 𝑥3𝑝

𝑖=1 𝑢𝑥(0,0) −

𝑥2

2
𝑢𝑥𝑥(0,0) +

𝑥2

2
𝑢𝑥𝑥(0, 𝑡) + 𝑥𝑢𝑥(0, 𝑡) + 𝑢(0, 𝑡)                                    

(3.23) 

 

𝑢𝑡(𝑥, 𝑡) =∑∑𝑎𝑖𝑥𝑄3,𝑖(𝑥)𝐻𝑥(𝑡) + [

3𝑝

𝑥=1

3𝑝

𝑖=1

𝑥2

2
𝑢𝑥𝑥(0, 𝑡)]𝑡 + 𝑥[𝑢𝑥(0, 𝑡)]𝑡 + [𝑢(0, 𝑡)]𝑡 

(3.24) 

 

𝑢𝑥(𝑥, 𝑡) =∑∑𝑎𝑖𝑥𝑄2,𝑖(𝑥)𝑄1,𝑥(𝑡) + [

3𝑝

𝑥=1

3𝑝

𝑖=1

𝑔𝑥(𝑥, 0) − 𝑔𝑥(0,0)] + 𝑥[𝜑2(𝑡) − 𝜑2(0)]

+ 𝜑1(𝑡) 

(3.27) 
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𝑢𝑥𝑥𝑥(𝑥, 𝑡) =∑∑𝑎𝑖𝑥𝐻𝑖(𝑥)𝑄1,𝑥(𝑡)

3𝑝

𝑥=1

3𝑝

𝑖=1

+ 𝑢𝑥𝑥𝑥(𝑥, 0) 

(3.28) 

 

 

 

∑∑𝑎𝑖𝑥{𝑄3,𝑖(𝑥)𝐻𝑥(𝑡) + 𝛼[

3𝑝

𝑥=1

3𝑝

𝑖=1

𝐻𝑖(𝑥)𝑄1,𝑥(𝑡)]}

= 𝐹(𝑥, 𝑡) − [𝑥𝜑1(𝑡)]𝑡 − [𝜑0(𝑡)]𝑡 − [
𝑥2

2
𝜑2(𝑡)]𝑡 − 𝛼[𝑔(𝑥)]𝑥𝑥𝑥 

(3.31) 

Similarly, For approximating Space and time variables containing HOD in the KGE are 

approximated with the help of HS3WM as explained below: 

 

𝑢𝑥𝑥𝓉𝓉(𝑥, 𝓉) =∑∑   𝒶𝒾𝑛 ℎ𝒾(𝑥) ℎ𝑛(𝓉)

3𝑝

𝑛=1

3𝑝

𝑖=1

 

(3.32) 

  
To perform integration with respect to 𝑥, the lower limit is set to zero, while the upper limit is 

𝑥, the above equation converted in to: 

 

𝑢𝑥𝓉𝓉(𝑥, 𝓉) =∑∑  𝒶𝒾𝑛 𝑃1,𝒾(𝑥) ℎ𝑛(𝓉)

3𝑝

𝑛=1

3𝑝

𝑖=1

+ 𝜑𝑥𝓉𝓉(0, 𝓉) 

(3.33) 

  
Again, integration with respect to 𝑥, the lower limit is set to zero, while the upper limit is 1, the 

value of  𝑢𝑥𝓉𝓉(0, 𝓉) is given by  

 

𝑢𝑥𝓉𝓉(0, 𝓉) = (𝑢𝓉𝓉(1, 𝓉) − 𝑢𝓉𝓉(0, 𝓉)) −∑∑  𝒶𝒾𝑛 𝑃2,𝒾(1) ℎ𝑛(𝓉)

3𝑝

𝑛=1

3𝑝

𝑖=1

 

(3.34) 

and equation becomes, 

 𝑢𝑡 + 𝛼𝑢𝑥𝑥𝑥 = 𝐹(𝑥, 𝑡) (3.29) 

 

∑∑𝑎𝑖𝑥𝑄3,𝑖(𝑥)𝐻𝑥(𝑡) + [

3𝑝

𝑥=1

3𝑝

𝑖=1

𝑥2

2
𝜑2(𝑡)]𝑡 + [𝑥𝜑1(𝑡)]𝑡 + [𝜑0(𝑡)]𝑡

+ 𝛼[∑∑𝑎𝑖𝑥𝐻𝑖(𝑥)𝑄1,𝑥(𝑡)

3𝑝

𝑥=1

3𝑝

𝑖=1

+ [𝑔(𝑥)]𝑥𝑥𝑥]

=  𝐹(𝑥, 𝑡)                                                                                      

(3.30) 
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𝑢𝑥𝓉𝓉(𝑥, 𝓉) =∑∑  𝒶𝒾𝑛 ( 𝑃1,𝒾(𝑥) −  𝑃2,𝒾(1))  ℎ𝑛(𝓉) + (𝑢𝓉𝓉(1, 𝓉) − 𝑢𝓉𝓉(0, 𝓉))

3𝑝

𝑛=1

3𝑝

𝑖=1

 

(3.35) 

  
Again, integration with respect to 𝑥, the lower limit is set to zero, while the upper limit is 𝑥 

 

𝑢𝓉𝓉(𝑧, 𝓉) =∑∑ 𝒶𝒾𝑛( 𝑃2,𝒾(𝑧) −  𝑧 𝑃2,𝒾(1)) ℎ𝑛(𝓉) + 𝑧 𝑢𝓉𝓉(1, 𝓉) + (1

3𝑝

𝑛=1

3𝑝

𝑖=1

− 𝑧) 𝑢𝓉𝓉(0, 𝓉) 

(3.36) 

  
between the limit 0 𝑡𝑜 𝓉, integrating w.r.t 𝑡  and after that on applying the BC, we get  

 

𝑢𝓉(𝑥, 𝓉) =∑∑ 𝒶𝒾𝑛( 𝑃2,𝒾(𝑥) −  𝑥 𝑃2,𝒾(1)) 𝑃1,𝑛(𝑡) + 𝑥 (𝑢𝑡(1, 𝓉) − 𝜂2(1))

3𝑝

𝑛=1

3𝑝

𝑖=1

+ (1 − 𝑥)( 𝑢𝓉(0, 𝓉) − 𝜂2(0)) + 𝜂2(𝑥) 

(3.37) 

  
Integrate w.r.t 𝓉 in between the given limit implies: 

 

𝑢(𝑥, 𝓉) =∑∑  𝒶𝒾𝑛 ( 𝑃2,𝒾(𝑥) −  𝑥 𝑃2,𝒾(1))  𝑃2,𝑛(𝓉) + 𝑥(𝛾2(𝓉) − 𝛾2(0))

3𝑝

𝑛=1

3𝑝

𝑖=1

− 𝑥 𝓉𝜂2(1) + (1 − 𝑥)(𝛾1(𝓉) − 𝛾1(0)) − (1 − 𝑥) 𝓉𝜂2(0)

+ 𝓉𝜂2(𝑥)                               

(3.38) 

  

On Differentiating the above equation with respect 𝑥 two times,  

 

𝑢𝑥𝑥(𝑥, 𝑡) =∑∑   𝒶𝒾𝑛 ℎ𝒾(𝑥)𝑃2,𝑛(𝓉) + 𝑡(𝜂2)𝑥𝑥(𝑥)

3𝑝

𝑛=1

3𝑝

𝑖=1

 

(3.39)    

 

 

∑∑ 𝒶𝒾𝑛 ( 𝑃2,𝒾(𝑧) −  𝑥 𝑃2,𝒾(1))  ℎ𝑛(𝓉) + 𝑥(𝛾2(𝓉))𝑡𝑡 +
(1 − 𝑥)(𝛾1(𝓉))𝑡𝑡 + 

3𝑝

𝑛=1

3𝑝

𝑖=1

 

𝛼(∑∑ 𝒶𝒾𝑛 ( 𝑃2,𝒾(𝑥) −  𝑥 𝑃2,𝒾(1))  𝑃2,𝑛(𝓉)

3𝑝

𝑛=1

3𝑝

𝑖=1

+ 𝑥(𝛾2(𝓉) − 𝛾2(0)) − 𝑥𝓉 𝜂2(1)

+ (1 − 𝑥)(𝛾1(𝓉) − 𝛾1(0)) − (1 − 𝑥) 𝓉𝜂2(0) + 𝓉𝜂2(𝑥)) 

(3.40) 
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=∑∑  𝒶𝒾𝑛 ℎ𝒾(𝑥)𝑃2,𝑛(𝓉)

3𝑝

𝑛=1

3𝑝

𝑖=1

+ 𝑡(𝜂2)𝑥𝑥(𝑥)  + 𝑚(𝑥, 𝓉) 

 

 ∑ ∑  𝒶𝒾𝑛  [( 𝑃2,𝒾(𝑥) −  𝑥𝑃2,𝒾(1))  ℎ𝑛(𝓉) + 𝛼 (( 𝑃2,𝒾(𝑥) −  𝑥𝑃2,𝒾(1))  𝑃2,𝑛(𝓉)) −
3𝑝
𝑛=1

3𝑝
𝑖=1

 ℎ𝒾(𝑥)𝑃2,𝑛(𝓉)] =𝑚(𝑥, 𝓉) + 𝑡(𝜂2)𝑥𝑥(𝑥) − (𝑥(𝛾2(𝓉))𝑡𝑡 ,    +
(1 − 𝑥)(𝛾1(𝓉))𝑡𝑡) −

𝛼 (𝑥 (𝛾2(𝓉) − 𝛾2(0)) − 𝑥 𝓉 𝜂2(1) + (1 − 𝑥)(𝛾1(𝓉) − 𝛾1(0)) − (1 − 𝑥) 𝓉𝜂2(0) +

𝓉𝜂2(𝑥)) 

 

(3.41) 

Now discretizing the variable as 𝑥 → 𝑥𝑟 , 𝑡 → 𝑡𝑠   where 𝑥𝑟 =
2𝑟−1

6𝑝
  , 𝑡𝑠 =

2𝑠−1

6𝑝
, 𝑟, 𝑠 =

1,2, ……3𝑝    in the above equations we get the following system of algebraic equations: 

 

∑∑ 𝒶𝒾𝑛

3𝑝

𝑛=1

3𝑝

𝑖=1

𝑅𝑖,𝑛,𝑟,𝑠 = 𝐹(𝑟, 𝑠) 

 

                                                                                         

  

 

  

Where, 

 
   𝑅𝑖,𝑛,𝑟,𝑠 = [( 𝑃2,𝒾(𝑥𝑟) −  𝑥𝑟 𝑃2,𝒾(1))  ℎ𝑛(𝓉𝑠) + 𝛼 (( 𝑃2,𝒾(𝑥𝑟) −  𝑥𝑟 𝑃2,𝒾(1))  𝑃2,𝑛(𝓉𝑠)) −

 ℎ𝒾(𝑥𝑟)𝑃2,𝑛(𝓉𝑠)]  

 

    𝐹(𝑟, 𝑠) = 𝑚(𝑥𝑟 , 𝓉𝑠) + 𝑡(𝜂2)𝑥𝑥(𝑥𝑟) − (𝑥𝑟(𝛾2(𝓉𝑠))𝑡𝑡 ,    +
(1 − 𝑥𝑟)(𝛾1(𝓉𝑠))𝑡𝑡) −

𝛼 (𝑥𝑟 (𝛾2(𝓉𝑠) − 𝛾2(0)) − 𝑥𝑟 𝓉𝑠  𝜂2(1) + (1 − 𝑥𝑟)(𝛾1(𝓉𝑠) − 𝛾1(0)) − (1 − 𝑥𝑟) 𝓉𝜂2(0) +

𝓉𝑠𝜂2(𝑥𝑟))                                                                                                                               

 

The system mentioned above is simplified into a system of algebraic equations, which is then 

reduced to the following set of 4D-arrays. 

𝐴3𝑝×3𝑝𝑅3𝑝×3𝑝×3𝑝×3𝑝 = 𝐹3𝑝×3𝑝 

 

 

 

 

 

  

Using the given transformations, the aforementioned system of arrays is transformed and 

reduced to the following matrix system. 

 𝒶𝒾ℓ = 𝑏𝜆  𝑎𝑛𝑑 𝐹𝑟𝑠 = 𝐺𝜇 

𝐵1×(3𝑝)2𝑆(3𝑝)2×(3𝑝)2 = 𝐺1×(3𝑝)2 
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Where 𝜆 = 3𝑝(𝑖 − 1) + 𝑙 and  𝜇 = 3𝑝(𝑟 − 1) + 𝑠 

The values of 𝑏𝜆 can be calculated for various 𝑛 values (𝑛 = 1, 2, . . . ) using MATLAB program 

and the Thomas algorithm to solve the SOE mentioned above. By applying the transformation 

mentioned earlier, the original wavelet coefficients  𝒶𝒾ℓ can be retrieved. To obtain the final 

solution of the problem, these coefficients will be utilized in the equations for different 𝑡𝑛 values 

(𝑛 = 0, 1, 2, . . . ). 

3.4 Numerical Methods: 

The MATLAB computer language was used to do numerical calculations and generate graphical 

outputs. A discrete form of the HS3W series is required to determine the numerical solution of 

a PDE using the HS3WM. There are a range of methods to do this, but we'll stick to the 

collocation method in the meantime. The HS3W is discontinuous. Therefore, to avoid the 

collocation point at the point of continuity, the approach given in the equations is applied for the 

selection of collocation points of the HS3W matrix for the initial LOR J = 2. 

3.4.1 Linear homogeneous equation 

 𝑢𝑡 + 𝛼 𝑢𝑥𝑥𝑥 = 0, 0 ≤ x ≤ 1, t ≥ 0, 𝛼 > 0 (3.42) 

 

 𝑢(0, 𝑡) = 𝑐𝑜𝑠𝛼𝑡 

𝑢𝑥(0, 𝑡) = −𝑠𝑖𝑛𝛼𝑡 

𝑢𝑥𝑥(0, 𝑡) = −𝑐𝑜𝑠 𝛼𝑡, 𝑡 ≥  0. 

(3.44) 

 

 ES,        

   𝑢(𝑥, 𝑡) = 𝑐𝑜𝑠(𝑥 + 𝛼𝑡) 

(3.45) 

 

 

𝑢(𝑥, 𝑡) =∑∑𝑎𝑖𝑥𝑄3,𝑖(𝑥)𝑄1,𝑥(𝑡)

3𝑝

𝑥=1

3𝑝

𝑖=1

+ 𝑢(0, 𝑡) + 𝑥[𝑢𝑥(0, 𝑡) − 𝑢𝑥(0,0)]

+
𝑥2

2
[𝑢𝑥𝑥(0, 𝑡) − 𝑢𝑥𝑥(0,0)] + [𝑢(𝑥, 0) − 𝑢(0,0)] 

       

(3.46) 

 

 With IC,  

      𝑢(𝑥, 0) = 𝑐𝑜𝑠𝑥, 0 ≤ x ≤ 1 and 

(3.43) 
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Table 3.1 Comparison of results achieved for test problem 3.4.1 with ES. 

x t AS ES Absolute 

Error 

0.055555555556 0.055555555556 0.97541008539 0.97541008538 2.30E-10 

0.166666666667 0.166666666667 0.94495691696 0.94495694631 1.87E-09 

0.277777777778 0.277777777778 0.90284957492 0.90284966935 2.69E-09 

0.388888888889 0.388888888889 0.84960735580 0.8496075628 2.19E-08 

0.500000000000 0.500000000000 0.78588689733 0.78588726077 1.19E-08 

0.611111111111 0.611111111111 0.71247409841 0.71247462453 3.92E-08 

0.722222222222 0.722222222222 0.68600257950 0.68600314569 6.32E-08 

0.833333333333 0.833333333333 0.65859016536 0.65859075501 9.24E-08 

0.944444444444 0.944444444444 0.63027446253 0.63027505092 1.26-07 

The application of boundary conditions to the equation results in the solution being presented 

through tables and figures. Figure 3.1 described the clear agreement in the ES and AS. Table 3.1 

is depicting the performance of present method in comparison with the ES existing in the recent 

literature. We observed that the proposed method is running well. Further, it has been observed 

that the error norms decrease with an increase in collocation points which ensures that the 

proposed scheme is stable. 

 

Table 3.2 𝑳𝟐 and 𝑳∞ errors at different values of J for test problem 3.4.1. 

 

LOR J=1 J=2 J=3 

𝐿2 error (HS3WM) 3.962E-04 4.420E-05 4.928E-06 

𝐿2 error [15] 3.867E-03 4.015E-04 4.1837E-05 

𝐿∞ (HS3WM) 8.838E-04 1.052E-04 1.423E-05 
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Figure 3.1 Graphical Representation of Numerical Problem: Above Figure shows a graphical 

representation of ES and AS for Numerical Problem. Illustrate that the exact and numerical 

findings for J=2 are compatible. 

3.4.2 Linear Non-homogeneous Equation 

 𝑣𝑡 + 𝛼 𝑣𝑥𝑥𝑥 = −𝜋
3𝑐𝑜𝑠(𝜋𝑥)𝑐𝑜𝑠𝑡 − 𝑠𝑖𝑛(𝜋𝑥)𝑠𝑖𝑛𝑡, 0 ≤ x ≤ 1, t ≥ 0, 𝛼 > 0 (3.47) 

    ES,   

 𝑣(𝑥, 𝑡) = 𝑠𝑖𝑛(𝜋𝑥)𝑐𝑜𝑠𝑡 (3.49) 

 

 With ICs, 

𝑣(𝑥, 0) = 𝑠𝑖𝑛𝜋𝑥, 0 ≤  x ≤  1 and 𝑣(0, 𝑡) = 0 

𝑣𝑥(0, 𝑡) =  𝜋𝑐𝑜𝑠𝑡, 𝑣𝑥𝑥(0, 𝑡) = 0, 𝑡 ≥  0 

 

(3.48) 
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𝑣(𝑥, 𝑡) =∑∑𝑎𝑖𝑙𝑄3,𝑖(𝑥)𝑄1,𝑥(𝑡) + 𝑣(0, 𝑡)

3𝑝

𝑥=1

3𝑝

𝑖=1

+
𝑥2

2
[𝑣𝑥𝑥(0, 𝑡) − 𝑣𝑥𝑥(0,0)] + 𝑥[𝑣𝑥(0, 𝑡)

− 𝑣𝑥(0,0)] + [𝑣(𝑥, 0) − 𝑣(0,0)] 

(3.50) 

 

With the help of surface plots, results and tables obtained by the proposed scheme have been 

explained. It is clear from Figure 3.2 that the results achieved and the analytic solution with the 

proposed scheme are roughly coinciding. By increasing the number of collocation points the 

solution achieved can further be improved. Table 3.3, in comparison with the ES error obtained 

by the discussed scheme, are presented. 

 

Table 3.3 Comparison of results achieved for test problem 3.4.2 with ES. 

 

Table 3.4 𝑳𝟐 and 𝑳∞ errors at different values of J for test problem 3.4.2. 

z t AS ES Absolute 

Error 

0.05555 0.05555 0.058134859223 0.05813485923 8.24E-12 

0.16666 0.16666 0.058055122235 0.05805512231 8.47E-11 

0.27777 0.27777 0.057895757626 0.05789575784 7.74E-11 

0.38888 0.38888 0.057656983977 0.05765698439 6.13E-10 

0.50000 0.50000 0.057339128788 0.05733912948 4.19E-10 

0.61111 0.61111 0.056942628022 0.05694262905 4.99E-09 

0.72222 0.72222 0.056468025517 0.05646802695 3.38E-08 

0.83333 0.83333 0.173618403368 0.17361840345 1.22E-08 

0.94444 0.9444 0.173618403368 0.17338027100 1.21E-08 

LOR J=1 J=2 J=3 

𝐿2error (HS3WM) 2.344E-03 2.765E-04 2.907E-04 

𝐿2 error [15] 1.442E-02 1.489E-03 1.5000E-03 

𝐿∞ (HS3WM) 5.491E-03 8.791E-04 1.345E-03 
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Figure 3.2 Graphical Representation of Numerical Problem: Above Figure shows a graphical 

representation of ES and AS for Numerical Problem. Illustrate that the exact and numerical 

findings for J=2 are compatible. 

3.4.3 Non-Linear KdV Equation 

 With subject to IC 

                                                                 w (x, 0) = 0.  

 

 

 

(3.52) 

 
wα

t +ww𝑥 +w𝑥𝑥𝑥 =    2
√𝑡𝑒𝑥

𝛤(1 2⁄ )
  + 𝑡2𝑒2𝑥 + 𝑡 𝑒𝑥 

(3.51) 

 With subject to BC, (3.53) 
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For this above problem we consider for 𝛼 = 1, 

ES of the given statement in the literature 

w (x, t) = t 𝑒𝑥 

Table 3.5 Comparison of AS and ES with Absolute error for numerical problem 

x t AS ES Absolute error 

0.055555555556 0.055555555556 0.05870679949 0.05872931915 6.83E-08 

0.166666666667 0.166666666667 0.17616794218 0.17618795746 2.05E-08 

0.277777777778 0.277777777778 0.29362739612 0.29364659576 3.41E-08 

0.388888888889 0.388888888889 0.41108608457 0.41110523407 4.78E-07 

0.500000000000 0.500000000000 0.52854439875 0.52856387238 6.15E-07 

0.611111111111 0.611111111111 0.64600237955 0.64602251068 7.51E-07 

0.722222222222 0.722222222222 0.76346019728 0.76348114899 8.82E-07 

0.833333333333 0.833333333333 0.06502208135 0.06563113404 1.02E-07 

0.944444444444 0.944444444444 0.19634933254 0.19689340214 1.16E-07 

The application of boundary conditions to the equation results in the solution being presented 

through tables and figures. Figure 3.3 described the clear agreement in the ES and AS. Table 3.5 

is depicting the performance of present method in comparison with the ES existing in the recent 

literature. We observed that the proposed method is running well. Further, it has been observed 

that the error norms decrease with an increase in collocation points which ensures that the 

proposed scheme is stable. 

                                                w (0, t) = t, w𝑥 (0, t) = t, w𝑥𝑥 (0, t) = t 

 

  𝑤(𝑥, 𝑡) =∑∑𝑎𝑖𝑙𝑄3,𝑖(𝑥)𝑄1,𝑥(𝑡) + 𝑤(0, 𝑡)

3𝑝

𝑥=1

3𝑝

𝑖=1

+
𝑥2

2
[𝑤𝑥𝑥(0, 𝑡) − 𝑤𝑥𝑥(0,0)]

+ 𝑥[𝑤𝑥(0, 𝑡) − 𝑤𝑥(0,0)] + [𝑤(𝑥, 0) − 𝑤(0,0)]     

(3.53) 

 
𝑤𝛼

𝑡 + 𝑤𝑤𝑥 + 𝑤𝑥𝑥𝑥 =    2
√𝑡𝑒𝑥

𝛤(1 2⁄ )
  +  𝑡2𝑒2𝑥 + 𝑡 𝑒𝑥            

(3.54) 
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Table 3.6 𝑳𝟐 and 𝑳∞ errors at different values of J for test problem 3.4.3. 

 

               

c   

Figure 3.3 Graphical Representation of Numerical Problem: Above Figure shows a graphical 

representation of ES and AS for Numerical Problem. Illustrate that the exact and numerical 

findings for J=2 are compatible. 

3.4.4  “A Non-linear KGE”: 

With IC, 

 𝑢(𝑧, 0) =  0     𝑧 ∈ [0,1],  
𝜕𝑢

𝜕𝑡
(𝑧, 0) =0, 𝑧 ∈ [0,1] (3.55) 

and the BC, 

LOR J=1 J=2 J=3 

𝐿2 error (HS3WM) 1.3780E-04 1.5385E-05 1.7103E-06 

𝐿2 error [16] 5.0822E-04 1.0454E-04 2.6384E-05 

𝐿∞ error (HS3WM) 4.5581E-04 5.6298E-05 6.5662E-06 

 

 𝜕2𝑢

𝜕𝓉2
− 𝜔

𝜕2𝑢

𝜕𝑧2
+ 𝜇 𝑢 − 𝜖𝑢2 = 𝑚(𝑧, 𝓉), (𝑧, 𝓉) ∈ [0,1] × [0, 𝑇], (3.54) 
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 𝑢(0, 𝓉) =  0          ,   𝑢(1, 𝓉) = 𝑡3     𝓉 ∈ [0, 𝑇] 

With 

 𝜔 = −1, 𝜇 = 0, 𝜖 = 1 & 𝑚(𝑧, 𝓉) = 6𝑧𝑡(𝑧2 − 𝑡2) + 𝑧6𝑡6 

(3.56) 

Using current scheme, proposed the numerical solution in the following form: 

 𝑢(𝑧, 𝓉) = ∑ ∑  𝒶𝒾ℓ ( 𝑃2,𝒾(𝑧) −  𝑧 𝑃2,𝒾(1))  𝒬2,ℓ(𝓉) − 𝑧 𝓉𝑢𝑡(1,0) + 𝑧 (𝑢(1, 𝑡) −3𝑝
𝑙=1

3𝑝
𝑖=1

𝑢(1,0)) + (1 − 𝑧)(𝑢(0, 𝑡) − 𝑢(0,0)) − (1 − 𝑧) 𝓉𝑢𝑡(0,0) + 𝓉𝑢𝑡(𝑧, 0) + 𝑢(𝑧, 0)                                                        

       

(3.58) 

 

Table 3.7 At different of ′𝑱 ′, value 𝑳𝟐 and 𝑳∞ errors for Test problem 3.4.4 

LOR 𝐽 = 1 𝐽 = 2 𝐽 = 3 

𝐿2-error 2.6933e-03 2.9622e-04 3.2876e-05 2.5e-04 [149] 

𝐿∞-error 7.6259e-04 8.5589e-05 9.5212e-06 9.7e-05 [149] 

 

Table 3.8 Comparison of ES for  Test problem 3.4.4 with results achived 

z t AS ES 

Value of 

Absolute 

error 

Error 

value 

[149]. 

0.05 0.05 0.000014553615258 0.000014444806667 1.07e-09 - 

0.1 0.1 0.003815423325686 0.003900097800132 7.16e-09 3.1e-04 

0.2 0.2 0.017939826726911 0.018056008333945 1.34e-08 3.5e-04 

0.3 0.3 0.049416386100151 0.049545686868345 1.67e-08 1.8e-04 

0.4 0.4 0.034562837292023 0.034563423922912 1.62e-08 3.7e-04 

0.5 0.5 0.105175840987305 0.105302640603567 1.60e-08 2.5e-04 

0.6 0.6 0.192148930569310 0.192260376739845 1.24e-08 3.7e-04 

0.7 0.7 0.317266350484410 0.317352402477415 7.40e-08 3.6e-04 

0.8 0.8 0.487458705981956 0.487512225016511 2.80e-08 2.2e-04 

0.9 0.9 0.709656476255199 0.709673351557369 2.84e-09 4.5e-04 

Applying boundary conditions to the equation yields a solution best visualized through tables 

and figures. Figure 3.4 demonstrates the good agreement between the ES and AS. Table 3.8 

compares the performance of our method against existing ES methods from recent literature. 

ES for the problem: 

𝑢(𝑥, 𝑡) = 𝑧3𝑡3 

    

 

(3.57) 
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The results show that our method performs well, with decreasing error norms as the number of 

collocation points increases, indicating the scheme's stability. 

  

  
Figure 3.4 The solution for numerical Experiment no. 3.4.4 includes four graphical 

representations: ES, AS, contour view of the ES, and absolute error. 

3.4.5 Numerical Experiment: 

 𝜕2𝑢

𝜕𝓉2
− 𝜔

𝜕2𝑢

𝜕𝑧2
+ 𝜇 𝑢 − 𝜖𝑢2 = 𝑚(𝑧, 𝓉),      (𝑧, 𝓉) ∈ [0,1] × [0, 𝑇]      (3.59) 

        With IC,  

and the BC, 

ES for the problem:   

 𝑢(𝑧, 𝑡) = 𝑧 𝑐𝑜𝑠𝑡 (3.62) 

 𝑢(𝑧, 0) = z,  𝑧 ∈ [0,1] 

𝜕𝑢

𝜕𝑡
(𝑧, 0) = 0,  𝑧 ∈ [0,1] 

 

(3.60) 

 𝑢(0, 𝓉) = 0,        𝓉 ∈ [0, 𝑇] 

𝑢(1, 𝓉) = 𝑐𝑜𝑠𝑡,      𝓉 ∈ [0, 𝑇] ; with 𝜔 = −1  and 𝑚(𝑧, 𝓉) = −𝑧𝑐𝑜𝑠𝑡 + 𝑧2𝑐𝑜𝑠2𝑡 

(3.61) 
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            Using current scheme, proposed the numerical solution in the following form: 

 

𝑢(𝑧, 𝓉) =∑∑  𝒶𝒾ℓ ( 𝑃2,𝒾(𝑧) −  𝑧 𝑃2,𝒾(1))  𝒬2,ℓ(𝓉) − 𝑧 𝓉𝑢𝑡(1,0) + 𝑧 (𝑢(1, 𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

− 𝑢(1,0)) + (1 − 𝑧)(𝑢(0, 𝑡) − 𝑢(0,0)) − (1 − 𝑧) 𝓉𝑢𝑡(0,0)

+ 𝓉𝑢𝑡(𝑧, 0) + 𝑢(𝑧, 0) 

(3.63) 

Surface plots effectively illustrate the results and tables generated by our proposed scheme. 

Figure 3.5 visually confirms the close agreement between the solution obtained using our 

scheme and the analytical solution. Increasing the number of collocation points can further refine 

the solution. Table 3.10 presents the error comparison between our scheme and the established 

ES. 

Table 3.9 At different of ′𝑱′, value 𝑳𝟐 and 𝑳∞  errors for Test problem 3.4.5 

 

                  

LOR 𝐿∞-error 

(FDM) 

𝐿∞-error 

(HSWM2) 

[56] 

𝐿∞-error 

(MFDCM) 

[149] 

𝐿∞-error 

(CM) 

[149] 

𝐿∞-error 

(HSWM3) 

3 1.1474E-01 2.2466E-08 5.7e-11 3.3e-04 0 

4 1.2236E-01 5.9080E-10 5.8e-12 8.3e-05 0 

5 1.2433E-01 6.4369E-11 - - 0 
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Figure 3.5 The solution for numerical Experiment no. 3.4.5 includes four graphical 

representations: ES, AS, contour view of the ES, and absolute error. 

 

Table 3.10 Comparison of ES for  Test problem 3.4.5 with results achived 

z t AS ES 
Value of Absolute 

Error 

Error value 

[150]. 

0.1 0.1 0.0061388829 0.0061388829 0 4.9593𝐸 − 8 

0.2 0.2 0.0060452101 0.0060452101 0 5.6542𝐸 − 7 

0.3 0.3 0.0058926166 0.0058926166 0 1.8493𝐸 − 6 

0.4 0.4 0.0056825896 0.0056825896 0 3.2841𝐸 − 6 

0.5 0.5 0.0054171763 0.0054171763 0 3.8373𝐸 − 6 

0.6 0.6 0.0050556234 0.0050556234 0 4.6197𝐸 − 6 

0.7 0.7 0.0046817428 0.0046817428 0 1.4141𝐸 − 5 

0.8 0.8 0.0042622308 0.0042622308 0 5.6879𝐸 − 5 

0.9 0.9 0.0038011762 0.0038011762 0 1.8571𝐸 − 4 
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3.5 Discussion: 

Using the HS3WM, we convert DEs into set of linear algebraic equations. A NM is proposed by 

using Quasilinearisation and collocation methods for solving the linear and non-linear PDEs. By 

dealing with different numerical experiments, a comparison is made between numerical results 

derived from the discussed HS3WM and other existing numerical methods to test their 

compatibility. 

3.6 Conclusion 

From the outcomes we obtained from the results of NM performed on three numerical problems 

with the discussed technique, we conclude that: 

• 2D PDE of order two and three containing non-linearity can easily be solved with high 

accuracy and less computational cost by the discussed scheme. 

• To solve distinct types of PDEs the MATLAB subprograms are used to make it more 

computer-friendly.  

• The proposed scheme for a limited collocation points becomes a strong solver for PDEs of 

these forms, and good accuracy is obtained.  

• In comparison to the classical HS2WM, numerical findings indicate that Quasilinearization 

using HS3WM converges rapidly, even for small numbers of grid points. 

 

Figure 3.1 to 3.5 demonstrates excellent agreement between the solution from our scheme and 

the analytical solution. Further refinement can be achieved by increasing the number of 

collocation points. Therefore, by observing the techniques performance, we observed that the 

discussed method can be extended to solve DEs of distinct kinds, such as ODEs, PDEs, FDEs, 

IDEs, and IEs. By using MATLAB, all the calculations have been done. 
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Chapter 4  

An effective computational scheme for solving various mathematical 

fractional differential models via non-dyadic Haar wavelets. 

4.1 Introduction: 

In recent years, the usage of FOD has exploded in engineering and biological sciences, as well as 

other fields of study. Modeling and controlling of numerous dynamic systems is one of the biggest 

advantages of using FDEs. Fractional derivatives and integrals are more useful and cost-effective 

than conventional derivatives in the formulation of specific electrochemical applications [151]. 

This discovery stimulated their curiosity not only in the applications of the concepts of integrals 

and derivatives of arbitrary order but also, in the fundamental mathematical features of these 

interesting operators [152]. Many physical phenomena, such as the behavior of biological and 

mechatronic systems, rheology, complicated viscoelasticity, anomalous diffusion, and so on, 

cannot be well defined and justified based on partial calculus, due to which it attracted the 

researchers [153]–[155]. In the distinct fields such as science and engineering, FDEs have many 

practical applications. Numerous substantial and technical structures, such as dielectric 

polarisation methods, viscoelastic systems, and electrode-electrolyte polarisation are modelled 

using fractional derivatives [156], [157]. As, a result of the expanding applications, many 

numerical approaches for the solution of these equations have been developed including the 

wavelet method [158], generalized DTM, VIM, and FDM[159], and so on. Nonlinear phenomena 

may be seen in several scientific fields, including fluid dynamics, plasma physics, solid-state 

physics, and chemical kinetics, in engineering, and other fields. The mathematical technique of 

wavelet analysis is well-known and extensively applied. Wavelets are a set of expressions that 

have been combined to generate basic functions in summation form, and to generate these basic 

functions, a mother wavelet is translated and compressed. Therefore, it produces locality and 

smoothness properties. The use of wavelets has aroused researcher’s interest in solving 

conventional ODEs and PDEs numerically, For solutions to these equations numerous traditional 

wavelet techniques have recently expanded by the researchers. Numerical solutions and 

numerical integration of fractional ODEs and PDEs are two further wavelet applications in 

practical mathematics. For the time being, wavelets such as B-spline, Legendre wavelet, the HW, 

Daubechies and Boubaker wavelets are used [160]. Many studies have employed the HSW, a 
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wavelet that is orthonormal with compact support [161][7]. A FDE is converted into an algebraic 

structure with finite variables using HWs [162]. In 2018, Mittal and Pandit used HS3W to solve 

a variety of DE, and expressed that many various types of mathematical models controlled by 

DEs, such as dispersive equations [108] and, second-order linear integro-differential equations 

[163], can be equally capable of being solved by using these wavelet bases [164]. They also 

depicted that, in terms of convergence the HS3WM is more rapidly convergent than the HS2WM. 

Furthermore, the attributes of the solution to the nonlinear FDE are yet to be investigated using 

HS3WM. This inspires us to introduce a new technique for analysing the behavior of FE-governed 

systems by employing the HS3WM. The following types of DEs are used to assess the 

applicability of modified HS3W [107]. 

 D𝑢𝛼(𝑧) = 𝐺(𝑧, 𝑢(𝑧), 𝑢′(𝑧), 𝑢"(𝑧)) (4.1) 

With the set of ICs and BCs, 

(a) ICs: 

 𝑢(0) = 𝜇1and 𝑢′(0) = 𝜇2 (4.2) 

 

(b)  Dirichlet BCs:  

 𝑢(0) = 𝜇3  and  𝑢(1) = 𝜇4 (4.3) 

4.2 Basic definition of fractional calculus: 

In the given section, we discussed the basic definitions of Fractional Differentiation and 

Integration. 

• Reimann Liouville Fractional differential operator of order 𝛼:For the positive real numbers, 

𝛼, t across the interval [m, n], the FDO established by the Riemann-Liouville is given by 

[1]: 

𝑑𝛼𝑓(𝑡) =
1

𝛤(𝑝 − 𝛼)
[
𝑑

𝑑𝑡
]
𝑝

∫ 𝑓(𝑥)(𝑡 − 𝑥)𝑝−𝛼−1𝑑𝑥
𝑛

𝑚

 

where 𝛼 denotes the order of derivative and 𝑡𝜖 [m, n]. 

• Caputo fractional differential operator of order 𝛼: For positive real numbers, 𝛼, t, the 

FDO developed by the Caputo, an Italian mathematician is [162]: 

𝑑𝛼𝑓(𝑡) =
1

𝛤(𝑝 − 𝛼)
∫ [

𝑑

𝑑𝑡
]
𝑝

𝑓(𝑥)(𝑡 − 𝑥)𝑝𝑑𝑥
𝑛

𝑚

  

where 𝛼 denotes the order of derivative and 𝑡𝜖 [m, n]. 
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4.3 Quasilinearisation technique:  

Basically, QT is generalised form of Newton-Raphson technique. It converges to solution in its 

exact form. Quadratically, it must show a monotone convergence [44]. Here consider a non-

linear second order DE: 

 𝜓′′(𝜐) = 𝑘(𝜐, 𝜓(𝜐)) (4.4) 

With BC: 

 𝜓(𝑎1) = 𝜃1, 𝜓(𝑏1) = 𝜃2;  𝑎1 ≤ 𝜐 ≤ 𝑏1 (4.5) 

Here 𝑘 is in terms of 𝜓(𝜐). Let us choose approximation at initial step of solution 𝜓(𝜐). Let 

us say 𝜓0(𝜐). 𝑘 can be expanded around 𝜓0(𝜐) is written in the form: 

 𝑘(𝜓(𝜐), 𝜐) = 𝑘(𝜓0(𝜐), 𝜐) + (𝜓(𝜐) − 𝜓0(𝜐) )𝑘𝜓0(𝜐) (𝜓0(𝜐) , υ) (4.6) 

After that 

 𝜓′′(𝜐) = 𝑘(𝜓1(𝜐), 𝜐) + (𝜓(𝜐) − 𝜓1(𝜐) )𝑘𝜓1(𝜐) (𝜓1(𝜐) , υ) (4.8) 

The form of a recurrence relationship is: 

for obtaining 𝜓𝑠+1(𝜐) here use 𝜓𝑠(𝜐), whose value is already known. a non-linear DE with 

required conditions is given as, 

 𝜓𝑠+1(𝜐) = 𝛼,𝜓𝑠(𝜐) = 𝛽. (4.10) 

Now consider the non-linear second order DE of the form; 

 𝜓′′(𝜐) = 𝑘(𝜓′(𝜐), 𝜓(𝜐), 𝜐) (4.11) 

 

 𝜓𝑠+1
′′(𝜐) = 𝑘(𝜓′(𝜐), 𝜓(𝜐), 𝜐) + (𝜓𝑠+1

′ (𝜐)

− 𝜓𝑠
′(𝜐)) 𝑘𝜓𝑠′(𝜐)(𝜓𝑠

′(𝜐), 𝜓𝑠(𝜐), 𝜐)) + (𝜓𝑠+1(𝜐)

− 𝜓𝑠(𝜐)) k (𝜓𝑠
′(𝜐), 𝜓𝑠(𝜐), 𝜐) 

(4.12) 

With BCs 

 𝜓𝑠+1(𝜐) = 𝛼,𝜓𝑠(𝜐) = 𝛽. (4.13) 

 𝜓′′(𝜐) = 𝑘(𝜓0(𝜐), 𝜐) + (𝜓(𝜐) − 𝜓0(𝜐) )𝑘𝜓0(𝜐) (𝜓0(𝜐) , υ) (4.7) 

 𝜓𝑠+1
′′(𝜐) = 𝑘(𝜓𝑠(𝜐), 𝜐) + (𝜓(𝜐) − 𝜓𝑠(𝜐) )𝑘𝜓𝑠(𝜐) (𝜓𝑠(𝜐) , υ) (4.9) 
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Follow the same technique to establish the recurrence relation for higher order non-linear 

DEs. 

 𝐿𝐽𝜓𝑠+1(𝜐) = 𝑘(𝜓𝑠(𝜐), 𝜓𝑠
′(𝜐). . . . . . . 𝜓𝑠

𝑗−1
(𝜐), 𝜐) + ∑ (𝜓𝑠+1

𝑝 (𝜐) −𝑛−1
𝑝=0

𝜓𝑠
𝑝(𝜐)) 𝑘𝜓𝑝(𝜓𝑠

′(𝜐), 𝜓𝑠(𝜐), . . . . , 𝜓𝑠
𝑗−1
(𝜐), 𝜐)                                                                      

(4.14) 

The order of the DE is j, the above equation is linear, and it can be solved recursively 𝜓𝑠(𝜐)  

if  is having a known value and can use it to get value of 𝜓𝑠+1(𝜐). 

4.4 Applications of Fractional differential equation 

In this part, the HS3WM is used to solve certain numerical problems for solving linear as well 

as non-linear FDEs and to showcase the method's compatibility, compare the outcomes with 

those obtained using existing methods in the literature. 

4.4.1 Numerical Experiment: Fractional Riccati Equation. 

Riccati equation is a non-linear ODEs which has applications in various fields such as 

diffusion problems, optimal control, and random processes. 

 𝐷𝛼𝑦(𝑥) = −𝑦2(𝑥) + 1, 𝑓𝑜𝑟 𝑥 ≥ 0, 0 ≤ 𝛼 ≤ 1 (4.15) 

Subject to IC, 

 y (0) = 0. (4.16) 

ES at 𝛼 = 1, 

 
𝑦(𝑥) =

𝑒2𝑥 − 1

𝑒2𝑥 + 1
 

(4.17) 

Solution: Applying QT on non-linear term of equation 

  𝐷𝛼𝑦𝑠+1(𝑥) + 2 𝑦𝑠(𝑥)𝑦𝑠+1(𝑥) = 𝑦𝑠
2 + 1, 𝑥 ≥ 0 (4.18) 

With ICs 𝑦𝑠+1(0) = 0; we apply HS3WM to (4.15), we approximate the term containing 

highest derivatives by HWS as: 

 

𝐷𝛼𝑦𝑠+1(𝑥) =∑𝑐𝑙ℎ𝑙(𝑥)

3𝑀

𝑖=1

 

(4.19) 

On integrating the above equation (4.19) we obtained the lower derivatives and by using the 

IC we have, 
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                                         𝑦𝑠+1(𝑥) =∑𝑐𝑙𝑃𝛼,𝑙(𝑥) 

3𝑀

𝑙=1

 

 

(4.20) 

Now substituting equations (4.19) and (4.20) in equation (4.18) we get 

 

         ∑𝑐𝑙[ℎ𝑙(𝑥) + 2 𝑦𝑠(𝑥)𝑃𝛼,𝑙(𝑥)] = 𝑦𝑠
2(𝑥) + 1                                          

3𝑀

𝑙=1

 

(4.21) 

For  𝛼 = 1, we assign the differential order to equation (4.15) and at J=2 resolution level. Table 

4.1 and 4.2 shows the comparative study of the ES and AS as well as value of errors 

respectively derived using the HS3W technique and graphical results are shown in Figure 4.1. 

The absolute inaccuracy decreases as the number of iterations increases. Using the QT at a 

given LOR, the precise answer at 𝛼 = 1 and the HW resolution at various 𝛼′𝑠  which varies 

from 0.2 to 0.8 and it is described by the graph when the values of parameter approach to 1 

the AS approaches to ES which shows competency of the method that are demonstrated in 

Figure 4.2. 

Table 4.1 Comparison of ES and AS at different values of 𝒙. Discussion of Absolute 

Error by HS3WM with HSW. 

For 

different 

value of x 

ES AS Absolute Error 

by HS3WM 

Absolute Error by 

HSW 

[160]. 

0.1 0.018516401922 0.0185121722129 4.229709e-06 6.11e-05 

0.2 0.055498470109 0.0554858503623 1.261974e-05 1.16e-04 

0.3 0.0923288861517 0.0923080825640 2.080356e-05 1.12e-04 

0.4 0.1289083852227 0.1288797350278 2.865019e-05 8.34e-04 

0.5 0.1651404129246 0.1651043750530 3.603787e-05 6.69e-03 

0.6 0.2009321223245 0.2008892648997 4.285742e-05 6.64e-03 

0.7 0.2361952879391 0.2361462731435 4.901479e-05 6.24e-04 

0.8 0.2708471185167 0.2707926854500 5.443306e-05 5.86e-03 

0.9 0.3048109541868 0.3047519003975 5.905378e-05 1.48e-04 

1.0 0.3380168376494 0.3379540000363 6.283761e-05 5.89e-04 
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Table 4.2 Comparison of value of Error of HS3WM at different levels of resolution. 

LOR J=3 J=4 J=5 

HSWM3 𝐿2𝑒𝑟𝑟𝑜𝑟 1.1896e-05 1.3217e-06 1.5412e-07 

HSWM3 𝐿∞𝑒𝑟𝑟𝑜𝑟 7.7184e-06   8.5760e-07 9.7023e-08 

 

 

Figure 4.1 Graphical representation of ES and AS at 𝛼 = 1. 

     

Figure 4.2: Graphical representation exact and approximate value for different values 

of 𝛼 lies between 0 and 1.  At J=2 resolution level. 
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4.4.2 Numerical Experiment: Fractional Vander-Pol Oscillator Problem 

 
𝐷𝛼𝑦(𝑥) +

𝑑𝑦(𝑥)

𝑑𝑥
+ 𝑦(𝑥) + 𝑦2(𝑥)

𝑑𝑦(𝑥)

𝑑𝑥
= 2 𝑐𝑜𝑠(𝑥) − 𝑐𝑜𝑠3(𝑥),

1 ≤ 𝛼 ≤ 2 

(4.22) 

Subject to IC, 

 y (0) = 0, 𝑦′(0) = 1 (4.23) 

At 𝛼 = 2, the precise answer exists in literature is given by: 

 y(x)= sin(x) (4.24) 

Solution: 

After applying QT to equation (19) we get, 

      𝐷𝛼𝑦𝑠+1(𝑥) + (1 + 2𝑦𝑠(𝑥)𝑦𝑠
′(𝑥))𝑦𝑠+1(𝑥) + (1 + 𝑦𝑠

2(𝑥))𝑦𝑠+1
′(𝑥) =

2𝑦𝑠
′(𝑥)𝑦𝑠

2(𝑥) + 2𝑐𝑜𝑠(𝑥) − 𝑐𝑜𝑠3(𝑥), 1 ≤ 𝛼 ≤ 2    

(4.25) 

With ICs, 𝑦𝑠+1(0) = 0, 𝑦𝑠
′(0) = 1; we apply HS3WM to (4.22), we approximate the term 

which has highest derivatives by HWS as: 

                                          𝐷𝛼𝑦𝑠+1(𝑥) = ∑ 𝑐𝑙ℎ𝑙(𝑥)                         
3𝑀
𝑙=1  (4.26) 

On integrating the above equation (4.26) we obtained the lower derivatives and by using the 

ICs we have, 

 

𝑦𝑠+1(𝑥) =∑𝑐𝑙𝑃𝛼,𝑙(𝑥)      

3𝑀

𝑙=1

 

(4.27) 

Now substituting equations (4.26) and (4.27) in equation (4.22) we get 

   ∑ 𝑐𝑙[
3𝑀
𝑙=1 ℎ𝑙(𝑥) + (1 + 2𝑦𝑠(𝑥) 𝑦𝑠

′(𝑥)) 𝑃𝛼,𝑙(𝑥) + (1 +

𝑦𝑠
2(𝑥))𝑃𝛼−1,𝑙(𝑥)] = 2𝑦𝑠

2(𝑥)𝑦𝑠
′(𝑥) − (1 + 2𝑦𝑠

′(𝑥)𝑦𝑠(𝑥) )𝑥 −

1−𝑦𝑠
2(𝑥) + 2𝑐𝑜𝑠(𝑥) − 𝑐𝑜𝑠3(𝑥) 

(4.28) 

With initial approximations 

  𝑦0(𝑥) = 0, 𝑦0
′(𝑥) = 1 (4.29) 

We assign the differential order to Eq. (4.22) for 𝛼 = 2, and the LOR to J=2. Table 4.3 and 4.4 

shows the comparative study of the ES and AS as well as value of errors respectively derived 

using the HS3W technique and graphical results are shown in Figure 4.3. With more iterations, 
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the absolute error reduces. The precise solution at  𝛼 = 1 and the HWS at distinct  𝛼′𝑠 are 

represented in Figure 4.4 via QT at a fixed LOR. The HW resolution at various 𝛼′𝑠  which 

varies from 1.2 to 1.8 and it is described by the graph when the values of parameter approach 

to 2 the AS approaches to ES which shows competency of the method. 

Table 4.3 Comparison of ES and AS at different values of 𝒙. Discussion of Absolute 

Error by HS3WM with HSW. 

For 

different 

value of 

x 

ES AS Value by 

HS2WM [63]. 

Absolute Error 

by HS3WM 

0.1 0.0998334166 0.0998334056 0.0998333872 2.89934e-06 

0.2 0.1986693308 0.1986693108 0.1986692768 8.67113e-06 

0.3 0.2955202067 0.2955202012 0.2955201331 1.44070e-05 

0.4 0.3894183423 0.3894182990 0.3894182543 2.01071e-05 

0.5 0.4794255386 0.4794255100 0.4794254413 2.57714e-05 

0.6 0.5646424734 0.5646423900 0.5646423719 3.13998e-05 

0.7 0.6442176872 0.6442176329 0.6442175863 3.69924e-05 

0.8 0.7173560909 0.7173560600 0.7173559950 4.25492e-05 

0.9 0.7833269096 0.7833268874 0.7833268225 4.80701e-05 

1.0 0.8414709848 0.8414709675 0.8414709106 5.35553e-05 

 

Table 4.4 Comparison of value of Error of HS3WM at different LOR. 

LOR J=2 J=3 J=4 

HSWM3 𝐿2𝑒𝑟𝑟𝑜𝑟 6.33395260e-05 7.03695009e-06 7.81873793e-07 

HSWM3 𝐿∞𝑒𝑟𝑟𝑜𝑟 4.12718973e-05 4.58592395e-06 5.09566047e-07 
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Figure 4.3 Graphical representation of ES and AS 

 

Figure 4.4 Graphical representation of ES and AS at LOR J=2. 

4.4.3 Numerical Experiment: Non-linear Oscillator Ordinary Differential Equation 

 𝐷𝛼𝑦(𝑥) + (𝑦′)2(𝑥) − 𝑦(𝑥) + 𝑦2(𝑥) − 1 = 0,   1 < 𝛼 ≤ 2 (4.30) 

With IC,  
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 y (0) = 2,𝑦′(0) = 0 (4.31) 

The value of ES at 𝛼 = 2 given as, 

                                                      y(x)=1+cos(x)                                                  (4.32) 

Solution: On Applying QT to equation (4.30) and the equation becomes 

 𝐷𝛼𝑦𝑠+1(𝑥) + 2𝑦𝑠
′(𝑥)𝑦𝑠+1

′ (𝑥) − (1 − 2𝑦𝑠(𝑥))𝑦𝑠+1(𝑥) = 𝑦𝑠
2(𝑥) +

(𝑦′
𝑠
)2(𝑥) + 1                                                 

(4.33) 

With ICs, 

  𝑦𝑠+1(0) = 2, 𝑦𝑠
′(0) = 0 (4.34) 

we apply HS3WM to (4.30), we approximate the term which contains highest derivatives 

by HWS as: 

                                         𝐷𝛼𝑦𝑠+1(𝑥) = ∑ 𝑐𝑙ℎ𝑙(𝑥) 
3𝑀
𝑙=1  (4.35) 

On integrating the above equation (4.35) we obtained the lower derivatives and by using the 

IC we have, 

 

 𝑦𝑠+1(𝑥) =∑𝑐𝑙𝑃𝛼,𝑙(𝑥) + 𝑦𝑠+1(0)  

3𝑀

𝑙=1

 

(4.36) 

 

 𝑦𝑠+1(𝑥) =∑𝑐𝑙𝑃𝛼,𝑙(𝑥) + 2  

3𝑀

𝑙=1

 

(4.37) 

 

𝑦′
𝑠+1
(𝑥) =∑𝑐𝑙𝑃𝛼−1,𝑙(𝑥)

3𝑀

𝑙=1

 

(4.38) 

Now substituting equations (4.36), (4.37) and (4.38) in equation (4.33) we get 

 

∑𝑐𝑙[ℎ𝑙(𝑥) + 2𝑦𝑠
′(𝑥)

3𝑀

𝑙=1

𝑃𝛼−1,𝑙(𝑥) − (1 − 2𝑦𝑠
′(𝑥)) 𝑃𝛼,𝑙(𝑥)]

=  𝑦𝑠
2(𝑥) + 𝑦𝑠

′2(𝑥) + 2(1 − 2𝑦𝑠(𝑥)) + 1 

(4.39) 

 

With ICs 

 𝑦0(𝑥) = 2, 𝑦0
′(𝑥) = 0 (4.40) 
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For 𝛼 = 2, we assign the differential order to Eq. (4.33) and at J=2 LOR. Table 4.5 and 4.6 

shows the comparative study of the ES and AS as well as value of errors respectively derived 

using the HS3WM and graphical results are shown in Figure 4.5. The absolute inaccuracy 

decreases as the number of iterations increases. At a constant LOR, the ES at 𝛼 = 1 and the 

HWS at various  𝛼′𝑠 are shown in figure 4.6. The HW resolution is investigated for various 

parameter values ranging from 1.2 to 1.8. The results are depicted graphically. As the 

parameter values approach 2, AS converges towards the ES. This convergence demonstrates 

the effectiveness of the proposed method. 

Table 4.5 Comparison of ES and AS at different values of 𝒙. Discussion of Absolute 

Error by HS3WM with HSW. 

At 𝛼=2, 

for 

different 

value of x 

ES AS Value by 

HS2WM[63]. 

Absolute Error by 

HS3WM 

0.1 1.995004165 1.995004166 1.995004166 3.734e-06 

0.2 1.980066578 1.980066579 1.980066581 1.568e-05 

0.3 1.955336489 1.955336492 1.955336496 3.958e-05 

0.4 1.921060994 1.921060999 1.921061007 7.543e-05 

0.5 1.877582562 1.877582576 1.877582583 1.232e-04 

0.6 1.825335615 1.825335628 1.825335647 1.830e-04 

0.7 1.764842187 1.764842204 1.764842233 2.547e-04 

0.8 1.696706709 1.696706740 1.696706772 3.384e-04 

0.9 1.621609968 1.621609998 1.621601051 4.341e-04 

1.0 1.540302306 1.540302356 1.540302414 5.417e-04 

 

Table 4.6 Comparison of value of Error HS3WM at different LOR 

LOR J=2 J=3 J=4 

HSWM3 𝐿2𝑒𝑟𝑟𝑜𝑟 8.69048147e-06 9.66118381e-07 1.07352784e-07 

HSWM3 𝐿∞𝑒𝑟𝑟𝑜𝑟 3.71196461e-05 4.25861607e-06 4.78242174e-07 
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Figure 4.5 Graphical representation of ES and AS 

     

Figure 4.6 Graphical representation ES and AS for different values of α lies between 

0 and 1. At J=2 resolution level. 

 

4.4.4 Numerical Experiment: Composite Fractional Oscillation Equation. 

   𝐷𝛼𝑦(𝑥) + 𝑦(𝑥) = 𝑓(𝑥), 0 < 𝛼 < 1                                     (4.41) 

With IC, 
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                        𝑦(0) = 0, where 𝑓(𝑥) = 𝑥2 +
2𝑥2−𝛼

𝛤(3−𝛼)
               (4.42) 

For 𝛼 = 1, the ES of the equation is  

 y(x)=𝑥2 (4.43) 

Solution: 

We apply HS3WM to (4.41), we estimated the advanced derivatives term by HWS as: 

 

          𝐷𝛼𝑦(𝑥) =∑𝑐𝑙ℎ𝑙(𝑥)  

3𝑀

𝑙=1

              
(4.44) 

On integrating the above equation (4.44) we obtained the lower derivatives and by using 

the IC we have, 

 

 𝑦(𝑥) =∑𝑐𝑙𝑃𝛼,𝑙(𝑥)

3𝑀

𝑙=1

   
(4.45) 

now using equation (4.44) and (4.45) in equation (4.41). 

 

                ∑𝑐𝑙[ℎ𝑙(𝑥) + 𝑃𝛼,𝑙(𝑥)] =  𝑥
2 +

2𝑥2−𝛼

𝛤(3 − 𝛼)
                      

3𝑀

𝑙=1

 

(4.46) 

We assign the differential order to Eq. (4.41) for 𝛼 = 1, and the LOR to J2. Figure 4.7 depicts 

the ES and AS obtained using the HS3W approach. With more iterations, the absolute error 

reduces. The precise solution at  𝛼 = 1 and the HWS at distinct 𝛼′𝑠 are represented in figure 

4.8 via QT at a fixed resolution level. The HW resolution is investigated for various 

parameter values ranging from 0.2 to 0.8. The results are depicted graphically. As the 

parameter values approach 1, AS converges towards the ES. This convergence demonstrates 

the effectiveness of the proposed method. 

Table 4.7 Comparison of ES and AS at different values of 𝒙. Discussion of Absolute 

Error by HS3WM with HSW at different values of 𝜶. 

For 

different 

value of 

x 

ES AS Absolute 

Error by 

HS3WM. 

(𝛼 =

0.25) 

Absolute 

Error by 

HS2WM 

(𝛼 = 0.25) 

[57] 

Absolute 

Error by 

HS3WM 

(𝛼 = 0.50) 

Absolute Error 

by HS2WM 

(𝛼 = 0.50) 

[57] 

0.1 0.01 0.01016911 4.225e-06 9.000e-03 4.1904e-06 4.000e-03 
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0.2 0.04 0.04149865 4.105e-06 8.000e-03 4.3903e-06 5.000e-03 

0.3 0.09 0.09149070 4.004e-06 4.000e-03 4.0882e-06 1.000e-03 

0.4 0.16 0.16099201 3.939e-06 2.800e-03 3.9885e-06 8.000e-03 

0.5 0.25 0.25000256 3.875e-06 6.300e-03 3.9234e-06 2.300e-03 

0.6 0.36 0.36346740 3.843e-06 3.200e-03 3.8435e-06 6.000e-03 

0.7 0.49 0.49230933 3.812e-06 2.000e-03 1.6807e-06 7.000e-03 

0.8 0.64 0.64066050 4.088e-06 9.000e-03 1.5997e-06 0.000 

0.9 0.81 0.81593848 3.796e-06 5.200e-03 1.7160e-06 1.400e-03 

1.0 1 0.99589056 3.369e-06 4.400e-03 1.6397e-06 2.300e-03 

 

Table 4.8 Comparison of value of Error of HS2WM and HS3WM at different LOR 

LOR J=2 J=3 J=4 

HSWM3 𝐿2𝑒𝑟𝑟𝑜𝑟 5.0450146e-04 5.602634e-05 6.2247865e-06 

HSWM3 𝐿∞𝑒𝑟𝑟𝑜𝑟 3.3670033e-04 3.787018e-05   4.2250783e-06 

 

    

Figure 4.7 Graphical representation of ES and AS. 
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Figure 4.8 Graphical representation ES and AS for different values of 𝛼 lies between 

0 and 1. At J=2 resolution level. 

4.4.5 Numerical Experiment: Fractional Relaxation-Oscillation Equation. 

 𝐷𝛼𝑦(𝑥) + 𝑦(𝑥) = 𝑓(𝑥), 0 < 𝛼 < 1 (4.47) 

With IC, 

 y (0) = 0 (4.48) 

here,         

 f(x)=1-4x+5𝑥2- 
4

𝛤(2−𝛼)
𝑥1−2𝛼 +

10

𝛤(3−𝛼)
𝑥2−𝛼 (4.49) 

for 𝛼 = 1, the ES of the given equation is 

 y(x) = 1-4x+5𝑥2 (4.50) 

Solution: 

we apply HS3WM to (4.47), we approximate the term which has derivatives by HW series 

as: 

 

𝐷𝛼𝑦(𝑥) =∑𝑐𝑙ℎ𝑙(𝑥)                                                       

3𝑀

𝑙=1

                   
(4.51) 
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On integrating the above equation (4.51) we obtained the lower derivatives and by using 

the IC we have, 

 

𝑦(𝑥) =∑𝑐𝑙𝑃𝛼,𝑙(𝑥)                                                                      

3𝑀

𝑙=1

 

(4.52) 

now using equation (4.51) and (4.52) in equation (4.47). 

 

∑𝑐𝑙[ℎ𝑙(𝑥) + 𝑃𝛼,𝑙(𝑥)]

3𝑀

𝑙=1

= 1 − 4𝑥 + 5𝑥2  −
4

𝛤(2 − 𝛼)
𝑥1−2𝛼

+
10

𝛤(3 − 𝛼)
𝑥2−𝛼              

(4.53) 

 

We assign the differential order to Equation (4.47) for 𝛼 = 1, and the LOR to J=2. Figure 

4.9 depicts the ES and AS obtained using the HS3W approach. With more iterations, the 

absolute error reduces. The precise solution at  𝛼 = 1 and the HW solution at distinct 𝛼′𝑠 

are represented in Figure 4.10 at a fixed LOR. The HW resolution is investigated for 

various parameter values ranging like 0.25 and 0.50. The results are depicted graphically. 

As the parameter values approach 0.75, the AS converges towards the ES. This 

convergence demonstrates the effectiveness of the proposed method. 

Table 4.9 Comparison of ES and AS at different values of 𝒙. Discussion of Absolute 

Error by HS3WM with HSW at different values of 𝜶. 

For 

different 

value of 

x 

ES AS Absolute 

Error by 

HS3WM 

(𝛼 = 0.25) 

 

Absolute 

Error by 

HS2WM 

(𝛼 = 0.25) 

[57] 

Absolute 

Error by 

HS3WM 

(𝛼 = 0.50) 

 

Absolute 

Error by 

HS2WM 

(𝛼 = 0.50)  

[57] 

0.1 0.6500 0.6475563 2.1038e-05 8.000e-03 2.0525e-05 2.300e-03 

0.2 0.4000 0.4058143 2.0441e-05 1.700e-03 1.4646e-05 3.000e-03 

0.3 0.2500 0.2500128 1.9942e-05 2.000e-03 1.3941e-05 1.000e-03 

0.4 0.2000 0.2006316 1.9536e-05 3.100e-03 1.3601e-05 2.200e-03 

0.5 0.2500 0.2542126 1.5579e-05 1.210e-03 1.1873e-05 6.800e-03 
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0.6 0.4000 0.4142480 1.5199e-05 8.400e-03 1.0238e-05 2.200e-03 

0.7 0.6500 0.6599499 9.1999e-04 6.000e-03 1.0017e-05 2.600e-03 

0.8 1.0000 1.0016564 8.9387e-04 2.700e-03 9.5078e-05 0.0000 

0.9 1.4500 1.4665236 7.8681e-04 1.720e-03 1.9536e-05 5.300e-03 

1.0 2.0000 1.9976832 2.8766e-05 3.300e-03 1.2543e-05 4.320e-03 

 

Table 4.10 Comparison of value of Error of HSW2M and HSW3M at different LOR 

LOR J=2 J=3 J=4 

HSWM3 𝐿2𝑒𝑟𝑟𝑜𝑟 1.382717e-03 1.53448107e-04 1.704744e-05 

HSWM3 𝐿∞𝑒𝑟𝑟𝑜𝑟 1.683501e-03 1.89350905e-04 2.112539e-05 

 

     

Figure 4.9 Graphical representation of ES and AS 



94 

 

       

Figure 4.10 Graphical representation ES and AS for different values of 𝛼 lies  

between 0 and 1.  At Resolution-level J=2 

4.4.6 Numerical Experiment: Fractional Kawahara Equation 

The KE, which plays a crucial role in describing the behavior of non-linear water waves 

in the region having long wavelength, since it has weaker dispersion but large non-linearity 

which makes this equation interesting. The Kawahara have been the focus of in-depth 

study for many years. In order to depict solitary-wave propagation in media, Kawahara 

first proposed the KE in 1972. Both the theory of shallow water waves with surface tension 

and plasma magneto-acoustic waves. The modified KE is also widely applicable to 

capillary-gravity water waves, plasma waves, and other phenomena. 

 𝐷𝑡
𝜇
𝜑(𝑧, 𝑡) + 𝜑𝜑𝑧 + 𝜑𝑧𝑧𝑧 − 𝜑𝑧𝑧𝑧𝑧𝑧 = 𝐹(𝑧, 𝑡) (4.54) 

 𝜑(𝑧, 0) = 0                  (4.55) 

With forcing term, 

 
𝐹(𝑧, 𝑡) =

2𝑡2−𝜇

𝛤(3 − 𝜇)
𝑠𝑖𝑛𝑧 +

1

2
𝑡4𝑠𝑖𝑛2𝑧 − 2𝑡2𝑐𝑜𝑠𝑧                  

(4.56) 

Exact solution: 

 𝜑(𝑧, 𝑡) = 𝑡2𝑠𝑖𝑛𝑧 (4.57) 

the solution computed by the proposed method for 𝑧, 𝓉 ∈ [0,2𝜋] × [0,1]. 
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 𝜑𝑡(𝑧, 𝑡) + 𝜑𝜑𝑧 + 𝜑𝑧𝑧𝑧 − 𝜑𝑧𝑧𝑧𝑧𝑧 = 𝐹(𝑧, 𝑡)                  (4.58) 

For 𝜇 = 1, 

By using QT for non-linear term,  

 
 𝜑𝑡(𝑧, 𝑡) + 𝜑𝜑𝑧 + 𝜑𝑧𝑧𝑧 − 𝜑𝑧𝑧𝑧𝑧𝑧 = 2𝑡𝑠𝑖𝑛𝑧 +

1

2
𝑡4𝑠𝑖𝑛2𝑧 − 2𝑡2𝑐𝑜𝑠𝑧 

(4.61) 

Approximate the HOD: 

 

𝜑𝑡𝑧𝑧𝑧𝑧𝑧(𝑧, 𝑡) =∑∑𝑎𝑖𝑧𝐻𝑖(𝑧)𝐻𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

        

(4.63) 

Integrating the equation with respect to t between 0 to t, 

 

𝜑𝑧𝑧𝑧𝑧𝑧(𝑧, 𝑡) − 𝜑𝑧𝑧𝑧𝑧𝑧(𝑧, 0) =∑∑𝑎𝑖𝑧𝐻𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

  

(4.64) 

 

𝜑𝑧𝑧𝑧𝑧𝑧(𝑧, 𝑡) =∑∑𝑎𝑖𝑧𝐻𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+ 𝜑𝑧𝑧𝑧𝑧𝑧(𝑧, 0)      

(4.65) 

Integrating w.r.t z between 0 to z, 

 𝜑𝑧𝑧𝑧𝑧(𝑧, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0, 𝑡)

=∑∑𝑎𝑖𝑧𝑃1,𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+ [𝜑𝑧𝑧𝑧𝑧(𝑧, 0) − 𝜑𝑧𝑧𝑧𝑧(0,0)]     

(4.66) 

 𝜑𝑧𝑧𝑧𝑧(𝑧, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0, 𝑡)

=∑∑𝑎𝑖𝑧𝑃1,𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+ [𝜑𝑧𝑧𝑧𝑧(𝑧, 0) − 𝜑𝑧𝑧𝑧𝑧(0,0)]     

(4.67) 

Again, integrating w.r.t z, 

 
𝐹(𝑧, 𝑡) = 2𝑡𝑠𝑖𝑛𝑧 +

1

2
𝑡4𝑠𝑖𝑛2𝑧 − 2𝑡2𝑐𝑜𝑠𝑧                  

(4.59) 

 𝜑𝑡(𝑧, 𝑡) + 𝜑𝜑𝑧 + 𝜑𝑧𝑧𝑧 − 𝜑𝑧𝑧𝑧𝑧𝑧

= 2𝑡𝑠𝑖𝑛𝑧 +
1

2
𝑡4𝑠𝑖𝑛2𝑧 − 2𝑡2𝑐𝑜𝑠𝑧                  

(4.60) 

 𝜑𝑡(𝑧, 𝑡) + 𝜑𝑟+1𝜑𝑧 − 𝜑𝑟𝜑𝑧 + (𝜑𝑧)𝑟+1𝜑 + 𝜑𝑧𝑧𝑧 − 𝜑𝑧𝑧𝑧𝑧𝑧

= 2𝑡𝑠𝑖𝑛𝑧 +
1

2
𝑡4𝑠𝑖𝑛2𝑧 − 2𝑡2𝑐𝑜𝑠𝑧 

(4.62) 
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 𝜑𝑧𝑧𝑧(𝑧, 𝑡) − 𝜑𝑧𝑧𝑧(0, 𝑡)

=∑∑𝑎𝑖𝑧𝑃2,𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+ [𝜑𝑧𝑧𝑧(𝑧, 0) − 𝜑𝑧𝑧𝑧(0,0)]

+ 𝑧[𝜑𝑧𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0,0) ]      

(4.68) 

 

 𝜑𝑧𝑧𝑧(𝑧, 𝑡) =∑∑𝑎𝑖𝑧𝑃2,𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+ [𝜑𝑧𝑧𝑧(𝑧, 0) − 𝜑𝑧𝑧𝑧(0,0)]

+ 𝑧[𝜑𝑧𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0,0) ] + 𝜑𝑧𝑧𝑧(0, 𝑡)  

(4.69) 

 

 

 

𝜑𝑧𝑧𝑧(𝑧, 𝑡) =∑∑𝑎𝑖𝑧𝑃2,𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+ [𝜑𝑧𝑧𝑧(𝑧, 0) − 𝜑𝑧𝑧𝑧(0,0)]

+ 𝑧[𝜑𝑧𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0,0) ] + 𝜑𝑧𝑧𝑧(0, 𝑡)  

(4.70) 

Again, integrating w.r.t z, 

 𝜑𝑧𝑧(𝑧, 𝑡) − 𝜑𝑧𝑧(0, 𝑡)

=∑∑𝑎𝑖𝑧𝑃3,𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+ [𝜑𝑧𝑧(𝑧, 0) − 𝜑𝑧𝑧(0,0)]

+
𝑧2

2
[𝜑𝑧𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0,0) ] + 𝑧[𝜑𝑧𝑧𝑧(0, 𝑡)

− 𝜑𝑧𝑧𝑧(0,0)] 

(4.71) 

Again, integrating w.r.t z, 

 

𝜑𝑧𝑧(𝑧, 𝑡) =∑∑𝑎𝑖𝑧𝑃3,𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+ [𝜑𝑧𝑧(𝑧, 0) − 𝜑𝑧𝑧(0,0)]

+
𝑧2

2
[𝜑𝑧𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0,0) ] + 𝑧[𝜑𝑧𝑧𝑧(0, 𝑡)

− 𝜑𝑧𝑧𝑧(0,0)] + 𝜑𝑧𝑧(0, 𝑡) 

(4.72) 
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 𝜑𝑧(𝑧, 𝑡) − 𝜑𝑧(0, 𝑡)

=∑∑𝑎𝑖𝑧𝑃4,𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+ [𝜑𝑧(𝑧, 0) − 𝜑𝑧(0,0)]

+
𝑧3

6
[𝜑𝑧𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0,0) ] +

𝑧2

2
[𝜑𝑧𝑧𝑧(0, 𝑡)

− 𝜑𝑧𝑧𝑧(0,0)] + 𝑧[𝜑𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧(0,0)] 

(4.73) 

 

 𝜑(𝑧, 𝑡) − 𝜑(0, 𝑡)

=∑∑𝑎𝑖𝑧𝑃5,𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+ [𝜑(𝑧, 0) −  𝜑(0,0)]

+
𝑧4

24
[𝜑𝑧𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0,0) ] +

𝑧3

6
[𝜑𝑧𝑧𝑧(0, 𝑡)

− 𝜑𝑧𝑧𝑧(0,0)] +
𝑧2

2
[𝜑𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧(0,0)] 

+ 𝑧[𝜑𝑧(0, 𝑡) − 𝜑𝑧(0,0)] 

(4.75) 

 

 

 

 

𝜑𝑧(𝑧, 𝑡) =∑∑𝑎𝑖𝑧𝑃4,𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+ [𝜑𝑧(𝑧, 0) − 𝜑𝑧(0,0)]

+
𝑧3

6
[𝜑𝑧𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0,0) ] +

𝑧2

2
[𝜑𝑧𝑧𝑧(0, 𝑡)

− 𝜑𝑧𝑧𝑧(0,0)] + 𝑧[𝜑𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧(0,0)] + 𝜑𝑧(0, 𝑡) 

 

(4.74) 

 

𝜑(𝑧, 𝑡) =∑∑𝑎𝑖𝑧𝑃5,𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+ [𝜑(𝑧, 0) −  𝜑(0,0)]

+
𝑧4

24
[𝜑𝑧𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0,0) ] +

𝑧3

6
[𝜑𝑧𝑧𝑧(0, 𝑡)

− 𝜑𝑧𝑧𝑧(0,0)] +
𝑧2

2
[𝜑𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧(0,0)] 

+ 𝑧[𝜑𝑧(0, 𝑡) − 𝜑𝑧(0,0)] + 𝜑(0, 𝑡)       

(4.76) 
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𝜑𝑡(𝑧, 𝑡) =∑∑𝑎𝑖𝑧𝑃5,𝑖(𝑧)𝐻𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+ [𝜑(𝑧, 0) −  𝜑(0,0)]𝑡

+
𝑧4

24
[𝜑𝑧𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0,0) ]𝑡

+
𝑧3

6
[𝜑𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧(0,0)]𝑡

+
𝑧2

2
[𝜑𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧(0,0)]𝑡 + 𝑧[𝜑𝑧(0, 𝑡) − 𝜑𝑧(0,0)]𝑡

+ [𝜑(0, 𝑡)]𝑡 

(4.77) 

 

 

 𝜑𝑡(𝑧, 𝑡) + 𝑚𝜑𝑧 + 𝜑𝑧𝑧𝑧 − 𝜑𝑧𝑧𝑧𝑧𝑧 = 𝐹(𝑧, 𝑡) (4.78) 

∑∑𝑎𝑖𝑧𝑃5,𝑖(𝑧)𝐻𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+ [𝜑(𝑧, 0) −  𝜑(0,0)]𝑡 +
𝑧4

24
[𝜑𝑧𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0,0) ]𝑡

+
𝑧3

6
[𝜑𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧(0,0)]𝑡 +

𝑧2

2
[𝜑𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧(0,0)]𝑡 

+𝑧[𝜑𝑧(0, 𝑡) − 𝜑𝑧(0,0)]𝑡 + [𝜑(0, 𝑡)]𝑡

++𝑚{∑∑𝑎𝑖𝑧𝑃4,𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+ [𝜑𝑧(𝑧, 0) − 𝜑𝑧(0,0)]

+
𝑧3

6
[𝜑𝑧𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0,0) ] +

𝑧2

2
[𝜑𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧(0,0)]

+ 𝑧[𝜑𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧(0,0)] + 𝜑𝑧(0, 𝑡)}∑∑𝑎𝑖𝑧𝑃2,𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+ [𝜑𝑧𝑧𝑧(𝑧, 0) − 𝜑𝑧𝑧𝑧(0,0)] + 𝑧[𝜑𝑧𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0,0) ]

+ 𝜑𝑧𝑧𝑧(0, 𝑡) 

−∑∑𝑎𝑖𝑧𝐻𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+ 𝜑𝑧𝑧𝑧𝑧𝑧(𝑧, 0) − 𝐹(𝑧, 𝑡) = 0 
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∑∑𝑎𝑖𝑧𝑃5,𝑖(𝑧)𝐻𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+ [𝜑(𝑧, 0) −  𝜑(0,0)]𝑡

+
𝑧4

24
[𝜑𝑧𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0,0) ]𝑡

+
𝑧3

6
[𝜑𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧(0,0)]𝑡

+
𝑧2

2
[𝜑𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧(0,0)]𝑡 

+𝑧[𝜑𝑧(0, 𝑡) − 𝜑𝑧(0,0)]𝑡 + [𝜑(0, 𝑡)]𝑡 + 

+𝑚{∑∑𝑎𝑖𝑧𝑃4,𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+ [𝜑𝑧(𝑧, 0) − 𝜑𝑧(0,0)]

+
𝑧3

6
[𝜑𝑧𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0,0) ] +

𝑧2

2
[𝜑𝑧𝑧𝑧(0, 𝑡)

− 𝜑𝑧𝑧𝑧(0,0)] + 𝑧[𝜑𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧(0,0)] + 𝜑𝑧(0, 𝑡)} 

+∑∑𝑎𝑖𝑧𝑃2,𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+ [𝜑𝑧𝑧𝑧(𝑧, 0) − 𝜑𝑧𝑧𝑧(0,0)]

+ 𝑧[𝜑𝑧𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0,0) ] + 𝜑𝑧𝑧𝑧(0, 𝑡) 

−∑∑𝑎𝑖𝑧𝐻𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+ 𝜑𝑧𝑧𝑧𝑧𝑧(𝑧, 0) = 𝐹(𝑧, 𝑡) 

(4.79) 

 

∑∑𝑎𝑖𝑧𝑃5,𝑖(𝑧)𝐻𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+𝑚∑∑𝑎𝑖𝑧𝑃4,𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+∑∑𝑎𝑖𝑧𝑃2,𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

 

−∑∑𝑎𝑖𝑧𝐻𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

 

(4.80) 
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= 𝐹(𝑧, 𝑡) − [𝜑(𝑧, 0) −  𝜑(0,0)]𝑡 −
𝑧4

24
[𝜑𝑧𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0,0) ]𝑡

−
𝑧3

6
[𝜑𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧(0,0)]𝑡

−
𝑧2

2
[𝜑𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧(0,0)]𝑡 − 𝑧[𝜑𝑧(0, 𝑡) − 𝜑𝑧(0,0)]𝑡

− [𝜑(0, 𝑡)]𝑡 −𝑚[𝜑𝑧(𝑧, 0) − 𝜑𝑧(0,0)]

− 𝑚
𝑧3

6
[𝜑𝑧𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0,0) ] − 𝑚

𝑧2

2
[𝜑𝑧𝑧𝑧(0, 𝑡)

− 𝜑𝑧𝑧𝑧(0,0)] − 𝑚𝑧[𝜑𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧(0,0)] − 𝑚𝜑𝑧(0, 𝑡)

− [𝜑𝑧𝑧𝑧(𝑧, 0) − 𝜑𝑧𝑧𝑧(0,0)]

− 𝑧[𝜑𝑧𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0,0) ] − 𝜑𝑧𝑧𝑧(0, 𝑡)

− 𝜑𝑧𝑧𝑧𝑧𝑧(𝑧, 0) 

 

∑∑𝑎𝑖𝑧𝑃5,𝑖(𝑧)𝐻𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

+𝑚∑∑𝑎𝑖𝑧𝑃4,𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

 

+∑∑𝑎𝑖𝑧𝑃2,𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

 

−∑∑𝑎𝑖𝑧𝐻𝑖(𝑧)𝑃1,𝑙(𝑡)

3𝑝

𝑙=1

3𝑝

𝑖=1

 

= 𝐹(𝑧, 𝑡) − [𝜑(𝑧, 0) −  𝜑(0,0)]𝑡 

−
𝑧4

24
[𝜑𝑧𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0,0) ]𝑡 

−
𝑧3

6
[𝜑𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧(0,0)]𝑡 

−
𝑧2

2
[𝜑𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧(0,0)]𝑡 

−𝑧[𝜑𝑧(0, 𝑡) − 𝜑𝑧(0,0)]𝑡 

(4.81) 
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Table 4.11 At different values of 𝒛 and 𝒕, comparison of AS and ES with the value of 

Absolute error. 

𝑧 𝑡 AS ES 

Value of 

Absolute 

error 

0.0555555555555 0.0555555555555 0.000057152654610 0.000057152654610 9.15e-18 

0.1666666666666 0.1666666666666 0.000006350294957 0.000006350294957 1.06e-18 

0.2777777777777 0.2777777777777 0.001428816365253 0.001428816365253 2.28e-16 

0.3888888888888 0.3888888888888 0.002800480075895 0.002800480075896 4.48e-16 

0.5000000000000 0.5000000000000 0.004629365023419 0.004629365023420 7.40e-16 

0.6111111111111 0.6111111111111 0.006915471207824 0.006915471207825 1.10e-15 

0.7222222222222 0.7222222222222 0.009658798629109 0.009658798629110 1.54e-15 

0.8333333333333 0.8333333333333 0.012859347287275 0.012859347287277 9.76e-15 

0.9444444444444 0.9444444444444 0.016517117182322 0.016517117182325   2.64e-15 

 

Table 4.12 At different values of 𝝁, value of 𝑳𝟐-error and 𝑳∞-error. 

For different 

values of 𝜇 

𝜇 = 0.25 𝜇 = 0.50 𝜇 = 0.75 𝜇 = 1 

𝐿2-error 2.3274996e-03 1.454231e-03 6.7407088e-04 2.4911575e-06 

𝐿∞-error 2.9885388e-03 1.867226e-03 9.4193127e-04 2.9707930e-06 

 

−[𝜑(0, 𝑡)]𝑡 −𝑚[𝜑𝑧(𝑧, 0) − 𝜑𝑧(0,0)]

− 𝑚
𝑧3

6
[𝜑𝑧𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0,0) ] − 𝑚

𝑧2

2
[𝜑𝑧𝑧𝑧(0, 𝑡)

− 𝜑𝑧𝑧𝑧(0,0)] − 𝑚𝑧[𝜑𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧(0,0)] − 𝑚𝜑𝑧(0, 𝑡)

− [𝜑𝑧𝑧𝑧(𝑧, 0) − 𝜑𝑧𝑧𝑧(0,0)]

− 𝑧[𝜑𝑧𝑧𝑧𝑧(0, 𝑡) − 𝜑𝑧𝑧𝑧𝑧(0,0) ] − 𝜑𝑧𝑧𝑧(0, 𝑡)

− 𝜑𝑧𝑧𝑧𝑧𝑧(𝑧, 0) 
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Figure 4.11 Graphical Representation of AS, ES and absolute error with contour view 

of ES. 

By Discontinuous Galerkin method for the different value of μ, norm representation attains 

third order level of accuracy [165]. But the proposed method at similar values of μ, 3D 

graphical representation attains third as well as fourth level of accuracy. The HW resolution 

is investigated for various parameter values ranging from 0.25,0.50 and 0.75. The results are 

depicted graphically. As the parameter values approach 1, the AS converges towards the ES. 

This convergence demonstrates the effectiveness of the proposed method. 
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        𝜇 = 1                                                           𝜇 = 0.25 

       

       𝜇 = 0.50                                                 𝜇 = 0.75 

Figure 4.12 Graphical representation for 𝝁=0.25, 0.50 and 0.75 with AS at 𝝁=1. 

4.4.7 Numerical experiment 4.5.7: Fractional Kawahara Equation  

 
𝐷𝑡
𝜇
𝜑(𝑧, 𝑡) + (

𝜑2

2
+
𝜑3

3
)𝑧 + 𝜑𝑧𝑧𝑧 − 𝜑𝑧𝑧𝑧𝑧𝑧 = 𝐹(𝑧, 𝑡) 

(4.82) 

 

  𝜑(𝑧, 0) = 0                 (4.83) 

With source term, 

 
𝐹(𝑧, 𝑡) =

2𝑡2−𝜇

𝛤(3 − 𝜇)
𝑐𝑜𝑠(2𝜋𝑧) − 𝑡4𝜋sin(4𝜋𝑧) − 𝑡6𝜋cos(2𝜋𝑧)sin(4𝜋𝑧)

+ 8𝜋3𝑡2sin (2𝜋𝑧) + 32𝜋5𝑡2sin(2𝜋𝑧)     

(4.84) 

ES,  
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                  𝜑(𝑧, 𝑡) = 𝑡2cos (2𝜋𝑧)     (4.85) 

 calculation of accuracy of proposed technique for 𝑧, 𝓉 ∈ [0,1] × [0,1]. 

For 𝜇 = 1, 

 
                 𝜑𝑡(𝑧, 𝑡) + (

𝜑2

2
+
𝜑3

3
)𝑧 + 𝜑𝑧𝑧𝑧 − 𝜑𝑧𝑧𝑧𝑧𝑧 = 𝐹(𝑧, 𝑡) 

(4.86) 

After solving the above equation, it becomes, 

 𝜑𝑡 + 𝜑𝜑𝑧 + 𝜑
2𝜑𝑧 +𝜑𝑧𝑧𝑧 − 𝜑𝑧𝑧𝑧𝑧𝑧

= 2𝑡𝑐𝑜𝑠(2𝜋𝑧) − 𝑡4𝜋sin(4𝜋𝑧) − 𝑡6𝜋cos(2𝜋𝑧)sin(4𝜋𝑧)

+ 8𝜋3𝑡2sin (2𝜋𝑧) + 32𝜋5𝑡2sin(2𝜋𝑧) 

(4.87) 

After applying QT on non-linear terms, 

 𝜑𝑡 + 𝜑𝑟+1𝜑𝑧 − 𝜑𝑧𝜑 + (𝜑𝑧)𝑟+1𝜑 + 2(𝜑𝑧)𝑟+1𝜑𝜑𝑧 − 2𝜑
2𝜑𝑧

+ 𝜑2(𝜑𝑧)𝑟+1 + 𝜑𝑧𝑧𝑧 − 𝜑𝑧𝑧𝑧𝑧𝑧

= 2𝑡𝑐𝑜𝑠(2𝜋𝑧) − 𝑡4𝜋sin(4𝜋𝑧) − 𝑡6𝜋cos(2𝜋𝑧)sin(4𝜋𝑧)

+ 8𝜋3𝑡2sin (2𝜋𝑧) + 32𝜋5𝑡2sin(2𝜋𝑧)     

(4.88) 

 

Table 4.13 At different values of 𝒛 and 𝒕, comparison of AS and ES with the value of 

Absolute error at 𝝁=1. 

𝑧 𝑡 AS ES 

Value of 

Absolute 

error 

0.055555555555556 0.055555555555556 0.00460711028235 0.00460711028246 1.09e-13 

0.166666666666667 0.166666666666667 0.03202132022695 0.03202132022771 7.57e-13 

0.277777777777778 0.277777777777778 0.08410831912169 0.08410831912367 2.61e-12 

0.388888888888889 0.388888888888889 0.16086810696656 0.16086810697036 3.08e-12 

0.500000000000000 0.500000000000000 0.26230068376157 0.26230068376778 6.20e-12 

0.611111111111111 0.611111111111111 0.38840604950672 0.38840604951591 9.81e-11 

0.722222222222222 0.722222222222222 0.53918420420202 0.53918420421476 1.27e-11 

0.833333333333333 0.833333333333333 0.71463514784745 0.71463514786434 1.68e-11 

0.944444444444444 0.944444444444444 0.91475888044302 0.91475888046464 2.16e-11 
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Table 4.14  Value 𝑳𝟐 and 𝑳∞ errors for Test problem 4.47 at 𝝁=0.2, 0.4 and 0.6 

For different 

values of 𝜇 

𝐿2 error (HSW3) 

 

𝐿2 error [165] 𝐿∞errors 

(HSW3M) 

𝐿∞ errors [165] 

0.2 7.7e-003 1.013271e-002 9.9e-003 4.082594e-002 

0.4 7.5e-003 1.013270e-002 9.7e-003 4.082593e-002 

0.6 7.4e-003 1.013270e-002 9.3e-003 4.082592e-002 

 

           

Figure 4.13 Graphical Representation of AS, ES at 𝝁 = 𝟏. 

               

     𝜇 = 0.20                                                                   𝜇 = 0.40 
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Figure 4.14 Graphical representation for 𝝁=0.20, 0.40 and 0.60 with graph of 

collocation points. 

It is explored HW resolution for parameter values between 0.20, 0.40 and 0.60. The results 

are shown graphically. As the parameter values get closer to 1, AS converges towards the 

ES. This convergence confirms the effectiveness of the proposed method. 

4.4.8 Conclusion: 

In this chapter, FEs like Riccati, Vander-Pol and the time-fractional KEs are solved using the 

HSWM, and the stability and error analysis for the linear case is carried out. The numerical 

experiments are provided to show the method's accuracy and capacity. Higher-dimensional 

issues and other types of time-FEs can be easily solved using the same approach and 

analytical technique. With the support of graphics, the results are examined and discussed 

while taking various parameter values into account. Results show that the AS converges to 

the ES as the value of FOD. Researchers may find our method attractive for solving 

fractional-order problems that are emerging in the science of technology because it can be 

made more precise by assuming high approximations. 
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Chapter 5  

Conclusion and Future Work 

The majority of physical phenomena can be effectively represented through DEs, 

facilitating in-depth exploration and analysis. However, obtaining analytical solutions for 

these DEs becomes an exceptionally challenging endeavour when the mathematical model 

incorporates elements such as variable coefficients, nonlinearities, or a higher number of 

variables (resulting in higher dimensionality). Consequently, there is a necessity for 

advanced numerical techniques that can be considered robust solvers, allowing us to obtain 

precise numerical solutions for these types of complex DEs. Researchers are persistently 

dedicating their efforts to enhancing current methodologies and innovating new hybrid 

approaches, all with the goal of creating potent solvers tailored to address these types of 

equations. Within the existing body of literature, dyadic wavelets are prevalent, 

characterized by dilation factors following powers of 2. The primary objective of this thesis 

is to create and investigate the utilization of numerical methods based on HS3W, which are 

non-dyadic and employ a dilation factor of 3. This innovative approach is employed to 

compute numerical solutions for a variety of significant problems, including higher-order 

linear and nonlinear BVP, time-dependent PDEs, and FDEs. Within this thesis, we have 

employed HS3W and HS2W as the primary framework, complemented by established 

numerical approaches like the collocation method, Quasilinearization process, and the 

Gauss elimination method, to derive solutions for a wide spectrum of linear and nonlinear 

higher-order, ODEs, PDEs, and FDEs. We have also established the conditions for the 

convergence of these numerical techniques. Ultimately, we introduce a novel HS3W (non-

dyadic) based technique, showcasing its superior efficiency when compared to the 

traditional HS2W dyadic wavelet-based approach. The proposed wavelet techniques, 

specifically the HS3W (non-dyadic) collocation method and the HS3W (non-dyadic) 

Quasilinearization method, have demonstrated their remarkable utility across a wide 

spectrum of real-world problems. Leveraging the inherent advantages of HS3W (non-

dyadic), such as computational efficiency, conceptual simplicity, memory efficiency, and 

orthonormality with compact support, these methods emerge as enhanced alternatives to 

traditional numerical approaches. Indeed, their simplicity, the sparsity of HS3W matrices, 

and the representation of solutions with a significantly reduced number of wavelet 

coefficients contribute to accelerated convergence rates for this method. The HS3W (non-
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dyadic) based approach yields improved results even with a lower LOR. This method 

requires only a small number of collocation points, effectively reducing computational 

expenses. 

While the main discoveries of the proposed techniques have been previously elucidated in 

the preceding chapters, we will now provide a condensed overview of their advantages as 

follows: 

I. The introduced approach represents a relatively novel concept employed for 

calculating numerical solutions to significant problems encompassing higher-order 

linear and nonlinear DEs, including those with BCs, as well as time-dependent PDEs, 

FDEs, and nonlinear systems of fractional FPDEs. 

II. The operational matrices and integral matrices associated with HS3W (non-dyadic) 

exhibit sparsity, which significantly enhances computational efficiency and leads to 

a considerable reduction in computational costs. 

III. Regarding the convergence analysis of the equations under consideration, the 

utilization of HS3W bases leads to a faster rate of convergence when compared to the 

HS2W basis functions. 

IV. During the implementation of HS3W basis functions in conjunction with the 

collocation method, it becomes evident that the collocation method is notably more 

straightforward to apply when paired with HS3W, particularly when contrasted with 

other numerical techniques like finite element methods. 

V. The HS3W (non-dyadic) method offers a high degree of convenience in addressing 

BOP within ODE, PDE, and FDE. This convenience arises from the automatic 

incorporation of BCs into the method's inherent processes. 

VI. The primary constraint associated with the HS3W family lies in the discontinuity of 

its members at partition points. Consequently, the application of a derivative-based 

approach at the initial stage is not feasible. Instead, one must employ an integration 

procedure to ascertain the coefficients governing the weights of the wavelets. 

VII. In conclusion, the utilization of HS3W has demonstrated elegance, effectiveness, and 

substantial potential in addressing a diverse range of mathematical models. Their 

performance surpasses that of the results found in existing literature. 
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FUTURE SCOPE 

In the context of the physical problems investigated within this thesis, the utilization of the 

HS3W (non-dyadic) approach has demonstrated elegance, effectiveness, and significant 

potential for addressing a wide array of mathematical models. The research conducted in this 

thesis has generated several noteworthy findings that could serve as valuable directions for 

future research. A selection of these potential research avenues is outlined below: 

I. The proposed method has the potential to be expanded for use with two-dimensional 

integral equations, integro-differential equations, and fractional integro-differential 

equations, making use of the latest developments in fractional calculus, such as the 

Atangana-Baleanu fractional operator and the Caputo-Fabrizio definitions. 

Furthermore, the HS3W (non-dyadic) techniques presented here can be customized to 

seek solutions for novel forms of linear and nonlinear ODEs, PDEs, and FDEs. 

II. In this thesis, HS3W has been employed as the primary tool in conjunction with 

established numerical methods such as the Quasilinearization process, Gauss 

elimination, and collocation method. Nevertheless, the literature contains an extensive 

array of wavelets with diverse structures and characteristics, including Shannon, 

Daubechies, Gabor, Bernoulli, Legendre, Hermite, Spline, ultraspherical, Chebyshev, 

Gegenbauer, Bessel, Laguerre among others. To assess the efficiency and accuracy of 

a numerical technique based on a specific wavelet, conducting a comparative study 

holds significant promise, offering motivation and interest for further exploration. 

III. In the application of the HS3W (non-dyadic) collocation method, nonlinear problems 

are addressed through a linearization process employing the Quasilinearization 

formula, as elaborated in this thesis. Additionally, there is the possibility of further 

exploring the applicability of this technique in conjunction with other established 

methods for handling nonlinearities within equations. Examples of such methods 

include the method of lines and the generalized Newton-Raphson method, among 

others. 

IV. The majority of the PDEs and FDEs governing the various real-world phenomena 

addressed in this research pertain to second-order equations in one or two dimensions. 

However, it is worth noting that the proposed method has the potential to be extended 

for the resolution of HODEs frequently encountered in the fields of engineering and the 

sciences. 
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V. In this research study, the collocation method has been employed in conjunction with 

non-dyadic HW basis functions. These wavelet basis functions can also be integrated 

into other established numerical methods and subsequently compared with various 

numerical and semi-analytical techniques, such as the FEM and alternative wavelet-

based approaches, among others. 

VI. In the current research, the convergence of the proposed methods has been rigorously 

demonstrated in the individual chapters. However, it's important to note that there are 

additional avenues for validation, including stability analysis and statistical assessments 

such as paired t-tests and ANOVA, which can further substantiate the obtained results. 
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