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Abstract

The proposed research work entitled "PROPERTIES AND APPLICATIONS OF
RECURRENCE RELATION OF SEQUENCE OF NUMBERS AND
POLYNOMIALS” is motivated by the recurrence relations of sequence of the

numbers and polynomials.

The study of recurrence relations is an important part of Number Theory that
has attracted attention from researchers in areas as diverse as physics, economics, and
computer science. The Fibonacci sequence, the Luca sequence, the Chebyshev
polynomial sequences, and the Pell numbers are all special cases of recurrence
relation sequences with specified initial terms that appear in the field of number
theory. An equation that describes a sequence in terms of a technique that provides
the next term as a relation of the previous terms is called a recurrence relation.
Because the next term in a recurrence relation depends on the previous term, they are
used in mathematics as well as economics, physics, and other fields and are very
helpful in solving real-world problems. Recurrence techniques allow us to compute
growth in economics and many other disciplines. The recurrence relation method can
be used to handle a wide variety of real-world problems that can be expressed as such.
Many issues that arise in the network marketing industry can be addressed with the
help of recurrence techniques, as network marketing is a specific case of recurrence
relations. For a recurrence relation to yield any term of a sequence, we would first
have to locate all of the terms that came before it; however, with the help of the theory
presented in this thesis, we can locate any term of the sequence. The first chapter of
this thesis provides a general overview of recurrence relations of numbers, which
form the basis of history and have many practical uses. Some basic definitions and
well-known findings that are required reading for the following chapters are also

reviewed.

Chapter 2 discusses the relation between the roots and terms of recurrence
relations of the first, second, third, fourth, and kth orders, as well as the results on

some special kinds of recurrence relations like Fibonacci polynomials and Chebyshev



polynomials. For kth order recurrence relation, let ¢4, ¢, c3, ..., ¢} are real numbers

taken be arbitrarily and the equation is supposed

k

xk —cpxkt

2

—cxk % .-, =0,

has x4, X5, X3 ..., X; roots which are distinct in nature. Then the sequence

< a, > is a solution of
Ap = C1Qp_q + a5 + 3053+ o+ Oy, N > K,
iff
an = Prx1 + Box7 + -+ Prxy,
forn= 0,1, 2 .., and for arbitrary constants 31, 52, 53 --- Px-

The above result is like a milestone in generalizing the concept of obtaining a

recurrence relation for any polynomial.

In Chapter 3, the recurrence relation of the rational function w;, (x) in the form
of composition function is defined, having terms as Fibonacci numbers or Generalized

Fibonacci numbers, which is defined as

W (X) :Fn—lx+F;1
" E1X+Fn+1
1
Wy (x) = —————
" q +Wn—1(x)
W) = () = ——

wy(x) = (vovovo ...ov)(x),

vov=—-7—
1+ L

q+x



1

v(x) = q+x

then a set H is considered on the basis of the above-described composition, and
properties such as closure property, associate property, existence of identity, inverse,

and cyclic group are verified.

In Chapter 4, the sequence of tri-diagonal matrices for Generalized Fibonacci

polynomials is defined as {A(n) = [gn,n]}, neN:

gij = ax if j=1i
[”]_ gi,j:_bifj_lzi
gijl = gi_]-zlifj+1=iJ'

gij =0 if otherwise

so, that
ax —b 0 0
1 ax —b 0
A(n) = 0 1 ax
ax —b
0 O 1 ax

Then determinants of A(n)are
|A(Tl) | = gn,nlA(n -1) | — Inn-19n-1n |A(n — 2)|.

and proving the results that the above matrices are generating matrices for obtaining
corresponding recurrence relations. Also, the sequence of tri-diagonal matrices for
Fibonacci numbers, Fibonacci polynomials and Chebyshev polynomials is discussed,
and the corresponding theorems for obtaining the recurrence relation with the help of

generating matrices are proved.

Chapter 5 mainly focuses on the sequences of complex rational functions with

coefficients as Fibonacci numbers.



fe-12 + fr

wi(2) = fez + frn

Here z be any complex unknown and f;,, Fibonacci numbers for non-negative integer
nis:

fa= facrt faa
with f, =0,f; =1, forn = 2.

Proving that w,,(z) is a meromorphic function, wy,(z) is bilinear transformations that
map a unity circle into a circle center with on the real axis for all values of n,
obtaining fixed points for w, (z) for any z and w,(z) is conformal functions in unit

disc for all integer values of n.

In Chapter 6, the relations between the “Chebyshev polynomial of the second
kind” and Hermite polynomials of two variables are discussed. If for Chebyshev

polynomials T}, (x), U,,(x) and two-variable Hermite polynomial H, (x, y) then

+00
1 1
U,(x) = mf e_tthn(Zx,—?)dt,
0

[ee)

1
f e 't"H, (2x, — ?)dt,
0

1
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E Un (x) = an—l(x):

Ups1(x) = xW, (x) — Wh_1(x),

n
n+1
were

+00
2 1
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W, (x) =D 1)!f et H, (22, — Dt

0



Also, for the “Chebyshev polynomial of second kind” the generating function is

obtained with the help of Hermite polynomial

;E" Un (%) =JO ooe‘tnzzo

In the last chapter, examples of how recurring relations can be used in NM are

(tj?n H, <2x, — %) dt.

presented. In network marketing, people are compensated not only for the work they
produce, but also for the work of those working under them. Due to its distributors
and compensation structure (which may include numerous tiers), the "down line
model" is a specific type of network business model. Some restrictions, like the profit-
sharing percentage, are discussed; these restrictions require that the roots of the
polynomial for which the recurrence relation is defined to be distinct; no employee
can voluntarily leave the company; employees must be truthful; and it is assumed that

each employee can only supervise one other employee.

In the later parts of Chapter 7, the application of recurrence relations,
especially Fibonacci numbers, and the reproduction mechanism of honey bees are
discussed. Reproduction in bees is flawlessly described by Fibonacci numbers. The
Fibonacci numbers verify numerous unusual characteristics of a honeybee's family.
One of the facts about honey bees is that not every honey bee has two parents. The
queen is the only female in a group of honey bees. Most of the working drones are
female, but all are not like the queen honey bee; no eggs are produced by them. Some
male honey bees do not work; they are called automation bees. Males have only
mothers and no fathers because males are created from unfertilized queen eggs.
Females are made when the ruler incorporates a mate with a male; hence, a female
honey bee has two guardians. Females usually end up as working drones, so the
parents of female bees are of both genders, if we study male bees, they have a female
bee as a parent. Based on all the above facts, relations between the reproduction

mechanisms of bees and Fibonacci numbers are discussed.
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Chapter 1

General Introduction

1.1 Introduction

The study of recurrence relations, which is a central topic in number theory
also attracts scholars from a wide variety of disciplines including mathematics,
physics, economics, and computer science. There are numerous types of recurrence
relation sequences in number theory. Both the Fibonacci and Lucas sequences are
examples of recurrence relation sequences with specified initial terms. An equation
that defines a sequence in terms of a method that provides the next term as a relation
of the previous terms is called a recurrence relation. Mathematics, economics, and
physics all benefit from the application of recurrence relations, which are used to
solve a wide variety of practical problems. Recurrence methods allow us to estimate
economic expansion. Recurrence relations are a useful tool for modeling and solving
a wide variety of practical problems. Many issues that arise in network marketing can
be addressed with the help of recurrence approaches because of the fact that network
marketing is a special kind of recurrence relationship [6, 7]. Finding any term of a
sequence in a recurrence relation requires looking up all of the terms before it, but
with the theorem presented here, you only need to know the beginning of the
sequence. While many significant recurrence relation identities hold only for
recurrence relations of order two, the result of this paper holds for recurrence relations
of any order. Fibonacci was a pseudonym for the Italian mathematician Leonardo of
Pisa (1170-1240), who published The Book of the Abacus in 1202. He pioneered the
study of Indian and Arabian mathematics by a European scholar. He introduced the
Fibonacci sequence. He also says number theory is just advanced arithmetic. The
renowned mathematician Carl Friedrich Gauss (1777-1855) was cited for some wise
words on the subject of numbers: "Mathematics is the queen of all sciences, and
Number Theory is the queen of Mathematics."

Integers and rational numbers are the focus of number theory, also known as

"higher arithmetic," which investigates their properties beyond the reach of traditional



arithmetic operations. Analyzing and posing new questions about these mathematical
connections is at the heart of number theory [7, 28].

Cube numbers, odd numbers, composite numbers, prime numbers, 3 (modulo
4) numbers, 1 (modulo 4) numbers, perfect numbers, triangular numbers, Fibonacci
numbers, etc., are just a few of the many types of natural numbers that have been
classified since antiquity. While other types of numbers will be discussed, perfection
and compositeness will be the main foci. The following table [5] provides a summary
of some of the figures discussed above. Some of the more common natural numbers
are listed in Table 1.1, while others are more rare. The mathematical connection
between some of them is straightforward to understand, while the connection between
others remains murky or has not been adequately explained. However, a few studies
have shown that prime and perfect numbers are connected. Composite and perfect

numbers will be investigated shortly for obvious and deducible reasons [11].

Table 1.1: Classifications of Natural Numbers.

Number Type Samples
Odd 1,3,5,7,..
Cube 1,8,27,...

Prime 2,3,5,..
Composite 4,6,8, ...
1 (Modulo 4) 15,9, ..
3 (Modulo 4) 3,7,11, ...



1.2  Basic Definitions

1.2.1 Recurrence Relation

A recurrence relation is a relation that characterizes arrangement and depends
on a rule such that it generates the next term as a function of previous terms. When
the next term is based only on the immediate previous term, it is the simplest case of a
recurrence relation, which is of first order. If the sequence term is a non-negative
integer, the first order recurrence relation [1, 2] is
Xn+1 = f(Xn). (1.1)

It is also possible to have a recurrence relation of higher order, where the term
X,+1depends on more than one previous term, such as X, X,_1, Xp_p, ... A 2™
order recurrence relation [2, 3] depends on two previous terms X,, and X,_;and for
integersn > 1 is
Xn+1 = f X, Xn-1). (1.2)
Also, to generate a sequence based on a recurrence relation (1.2), one needs to
provide two inputs to the function f as a first step. Starting with an initial value X,
the recurrence relation can generate all subsequent terms for a first order recursion,
X,n+1 = f(X,,). Second-order recursion requires two initial values, X, and X;, as in
Xn+1 = f (X, Xn—1). More initial values are needed for recurrence relations of higher
order. For example

Ani1 = ap, + 5,n =1, (1.3)
is a first order recurrence relation with initial terms a, = 1, we can find the terms

a, =6,a, =11,a; = 16, ...
anp =au_1+2a,_,,n=2, (1.4)
is a recurrence relation of second order with initial terms a, = 0,a; = 1.
a, =ap_1+2a,_,+3a,_,n=3, (1.5)
is a recurrence relation of third order with initial terms ag = 0,a; = 1,a, = 2.

ayp = an_1 + 2a,_, +3a,_2a,_3,n =4, (1.6)



is a fourth order recurrence relation withay = 0,a; = 1,a, = 2, az = 3.

1.2.2 Fibonacci numbers

Leonardo of Pisa, an Italian mathematician also known by the name Fibonacci, wrote
the Book of the Math Device Called an Abacus in 1202. To his credit, he was the first
European mathematician to study the scientific traditions of India and the Middle
East. He gave the sequence of special types given by

fo= facat foe n22 (1.7)

with initial terms f, = O and f; = 1.

Y-axix

Y-axix repi the F,

X-axix represents the values of n

Figure 1.1: Fibonacci Numbers.
1.2.1 “Division in the Mean and Extreme Ratio (DEMR)”

"The Elements" of Euclid is one of the most famous scientific works
of old science [26]. Contains the most hypotheses of old arithmetic: rudimentary
geometry number hypothesis, variable based math,
the hypothesis of extents and proportions, the strategy of calculation of zones and
volumes etc., systematized a 300-year period of improvement in Greek arithmetic,
and this  work made a solid base ~ for  the assist improvement of arithmetic.
The Components of Euclid surpassed all the work of his forerunner within the field of

geometry for more than two millennium; “The Elements” remained the essential work



for the instructing of rudimentary science. The 13 books of "The Elements"
are devoted to the information of geometry and number juggling in “Euclidean

space.”

From “The Elements of Euclid,” the taking after geometrical issue, which was
named the issue of "Division in Extreme and Mean Ratio (DEMR)”, was called
This issue was defined in Book II of “The Elements” as takes: To bipartition line AB,
a bigger AC and a littler CB, so that
R (AB,CB) = S (AC). (1.8)

where S (AC) is square area with one side AC and R (AB, CB) is rectangle area with
sides AB and CB.

s0, (1.8) takes the following form:
(AC)? = AB X CB. (1.9)
Dividing (1.9) by AC and then by CB we get.

AB _ AC (1.10)

AC CB’

“This form is well known in mathematics as the Golden Section.”

We are able decipher (1.10) geometrically by partitioning a line AB at the
point C in bi-sections, a bigger one AC and a littler one CB, so that the proportion of
portion AC to the portion CB is equal to the proportion of AB to the AC [26].

A C B

Figure 1.2: A geometrical interpretation (“The Elements of Euclid”).



Denote proportion (1.10) by x, then

we obtain
x? =x+ 1. (1.11)

It follows from the “geometrical meaning” of the proportion that the required
solution of (1.11) has to be a positive number, it also follows that a positive root of

equation is a solution of the problem. By denoting this root by ¢ we obtained

g =15 (1.12)

“This number is called the Golden Proportion, Golden Mean, Golden

Number or Golden Ratio”.
1.2.2 “Golden Mean” Remarkable Identities

“This number is called the Golden Proportion, Golden Mean, Golden

Number or Golden Ratio”.

The Golden Mean is the “miracle” of nature. On the off chance
that we center all of  our scientific  information and dive into
this interesting information about science, at that point there's plausibility of getting a
charge out of and understanding the superb scientific properties and excellence of

this one-of-a-kind wonder — “The Golden Mean”.

Stakhov and Rozin[75, 76], talked in their paper about exceptionally straight-
forward property of the “golden mean”. On the off chance that we substitute the root
@ (“The Golden mean”) for x in (1.11) at that point we are going to get the following

surprising identities for the golden mean:

P =¢p+1. (1.13)



To prove the wvalidity of the identity (1.13), it is fundamental to
carryout basic numerical changes over LHS and RHS portion of (1.13) and indicate a

match [83, 87, and 88].

RHS

1++5 3445
= +1= ;

1
¢+ 2 2

LHS

, (1+V5) 142V5+5 3445
e ) T2 T

So the identity (1.13) is verified.

On dividing (1.13) by ¢

1
p=1+2, (1.14)
=2 (1.15)
p—1=—. .
@

Consider the golden mean eq. (1.12)

1++/5
(p: 2 .

This is an irrational number. Consider inverse of ¢ and solve

12 20-v5) 2(1-v5) +5-1
9 1+v5 (1+V5)(1-V5) (12— (v5)° 2

Also, from the equation (1.15) the inverse number can be found in taking after way:

:1+\/§_ V5—-1

= —1 1= .
¢ 2 2

1
@



Now we transform identity (1.13) by multiplying both part of the identity (1.13) by ¢

and then dividing by @2 we will get following identities:

03 =¢*+q, (1.16)
and
p=1+¢ L (1.17)

Continuing in this way, we have
(pn — (pn—l + q)n—z’ (1.18)
Where n is an integer of the set {0,+1,+2,43, ... }.

For identity (1.16) we may say that “Any number of the golden series (golden power)

is the sum of previous two golden power”.

34
55

12| 21

Figure 1.3: Fibonacci Spiral.

1.2.4 Lucas numbers

Between 1878 and 1891, Edouard Lucas dominated the discipline of recursive
mathematics. He was the first mathematician to tie the Fibonacci number (1.8) to the
arrangement, giving rise to the term "Fibonacci sequence." Lucas provides a sequence

Ly=Lyq+ Lpy,n>2, (1.19)



with initial terms Ly = 2 and L; = 1, Lucas number are the terms of the Lucas

sequence.
- | Y-axix

24

22

X-axix represents the values of n

° Y-axix rep the g Lucas

X-axix

22 -20 -18 -16 -14 -12 -10 -8 -6 - -2 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Figure 1.4: Lucas Numbers.

1.2.5 A Sequence generated by Fibonacci Numbers

If sequence R, is

Ry = fo-1fne1 — o' (1.20)
with f,, is define by equation (1.7), then by equation (1.7) and (1.12) we have
R, = (D™
1.2.6 Generalized Fibonacci number sequence.
It is defined as
E,=aF,_1+ bF,_,,n=>2,Fy=p,F; =q, (1.21)
with positive integers p,q,a & b.
Consider a particular case of equation (1.21)
Vo= aVp_1+ bV, , k=>2,V,=0,V; =1, (1.22)

for positive integersa & b.

1.2.7 Fibonacci sequences of polynomials



E.C. Catalan [56, 62, and 64] studied the Fibonacci polynomial, define by

Friz2(x) = xFpyq(x) + E (%), (1.23)
forn = 0,1,2, ... and with initial terms

Fy(x) =0,

Fi(x) = 1.

Values of x

-12 -1 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 1.5: Fibonacci Polynomials.

1.2.8 Generalized Fibonacci polynomials sequences.

G, (x) Generalized Fibonacci polynomial is given by
Gni2(X) = axGpiq(x) + bGy (%), (1.24)
where n = 0,1,2, ... and with initial terms G,(x) = 0, G;(x) = 1.

1.2.9 Sequence of tri-diagonal matrices for Generalized Fibonacci
sequences of polynomials

For n € Nsequence of tri-diagonal matrices [26, 31, 32] {A(n) = [gn,n]}, is such that

10



gij = ax if j=1i
gij=-b ifj-1=i

[gi,f] - gij =1 if j+1=if’ (1.25)
gij =0 otherwise
so, that
ax —b 0 0
1 ax -—b 0
An) = 0 1 ax
ax —b
0 O 1 ax
Then determinants of A(n) is
|A(n) I = gn,nlA(n - 1) I - gn,n—lgn—l,nlA(n - 2)' (126)

1.2.10 Sequence of tri-diagonal matrices for Fibonacci sequence of
polynomial

Consider a sequence of matrices defined by (1.15) by putting, a = 1,b = 1, we have
sequence of matrices {C(n) = [hn,n]} [60]

hi,j =X lf ] =1
=—1 ifj—1=i
_ )

hij =0 otherwise
x -1 0 0
1 x -1 0
cn)=|0 1 x
- X _1
0 O 1 X

Then determinant of C(n) is
|C(n) ] = hn,nlc(n - 1) | - hn,n—lhn—l,nlc(n - 2)| (128)

11



1.2.11Sequence of tri-diagonal matrices for particular case of

generalized Fibonacci numbers sequence

For n € N we define a sequence of tri-diagonal matrices {D(n) =

qij=a if j=i
[“]_ ql,j:_b ifj—1=i
q"]— qi,jzl lf]+1:l

q;; =0 otherwise
so, that
a —b 0
1 a -b

Q

Then determinants of D(n) is

ID(n) I = Qn,nlD(n - 1) I - qn,n—lqn—l,nlD(n - 2)]

1.2.12 Chebyshev polynomials

(1.29)

(1.30)

For integers n = 0, “Chebyshev polynomials of the first kind {T;,(x)}and the second

kind {U,,(x)}” are
Thi2(x) = 2xT, (x) — T (%), Ty (x) = x, To(x) = 1.
Ups2(x) = 2xUp11(x) — Up(x), Up(x) = 1, U, (x) = 2x.

The way of presenting of (1.31) and (1.32) explicitly as

nok=Dl
o) = ZZ(— S G e < 1

and

Kk
U, (x) = Z( 1)k g{’f( 2k))' (20)"2k, |x] < 1.

12
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(1.34)



On taking x = cosy, then

T,,(cosy) = cos(ny). (1.35)
U,(cosy) = W (1.36)

1.2.13 Sequence of tri-diagonal matrices for Chebyshev polynomial of
first kind

For integer n > 0, sequence of tri-diagonal matrix for “Chebyshev polynomial of the
first kind” as {S(n) = [I; j]} is

(l;; =2x if j=1)
Li=1 ifj—1=i

—J U
Ll =Yy, =1 je1=if (1.37)
lij=0 otherwise
2x 1 0 0
[ 1 2x 1 0]
S(n) = | o I 2 |
[... ves ee 2x 1 J
o o0 - 1 2x
Then determinant of S(n)is
|S(n) | = ln,nls(n - 1) | - ln,n—lln—l,nls(n - 2)' (1'38)

1.2.14 Group

A group in modern algebra is a set that has the following properties with the
given operation:
Closure: Let H be any set and * be any operationon Hifaxbh € H,Va,b € H.
Associative: If (axb)*c=a=*(b=*c),Va,b,c €EH then called H satisfied the
associative property.
Existence of Identity: If there exist an element e in H such that a*e = e xa = q,
V a € Hwhere e is identity element.
Existence of Inverse: Va € H,3 b € H, with condition a*xb = b *a = e then b is

inverse element.



1.2.15Cyclic group

A group in which every element can be created by single a component of the group is

cyclic group. For example, a set of integers with respect to addition is a cyclic group.

1.2.16 Rational function

If f(x) is given by

with polynomials p(x)and q(x), q(x) # 0, then f(x) is rational function.
1.2.17 Bilinear Transformation

A complex mapping
_— (1.39)

where ad — bc # 0, thenw(z)is “bilinear transformation mapping, a complex bilinear

transformation maps a circle or line into circle or line”.

1.2.18 Meromorphic functions

A complex variable a function which has no singularities other than poles
called meromorphic. So we can say that a complex function is meromorphic possible

singularities are only poles.
1.2.19 Conformal Mapping in Complex

A mapping that preserves the sense of rotation as well as the magnitude of
Angle between images of curves, and there is a well-known result that a mapping is

Conformal if it is differentiable and derivatives are non-zero.

1.2.20 Complex polynomials

A complex polynomial is one that can have constants and signs referred to as

variables indeterminate to a non-negative integer power. For those terms that can be



modified, one to another, if the normal characteristics of commutativity are used, the
distribution with addition and multiplication distributive is considered as defining
same polynomial. A complex polynomial within one indeterminate z may always
have to be generated in the way

az" +a,_1z" '+t az? +az+ aqg

where ay, a4, ...,a,are constants and zis the indeterminate. The word
“intermediate” does not mean z represents is any unique value; but that any value will
have to be replaced by any other value. The characterization that marks the product of
this replacement for the substituted value is a feature called the complex polynomial

function [4, 5].
n
Z Clka.
k=0

That is, there can be either zero polynomials or polynomials defined as the sum of
non-zero amounts. Each is the product of a numerical coefficient and several
indeterminate conditions multiplied by non-negative integer powers.

1.2.21 Sequence of complex rational functions

Letz be any complex unknown and u(z)be any function of z given by

1
= . 1.40
u@) = T~ (1.40)
Then we have
1
(uou)(x) = > (1.41)
1+z
now, we define
wy (x) = (wououo ...ou)(x), (1.42)

Where (uououo ... ou) represents n time composition.

1.2.22 Recurrence relation sequence of rational function

Recurrence relation rational function sequence defined as



1

wi(2) =u(z) = 15 (1.43)
and

B 1
wy(z) = 1+W—n—1(2)' (1.44)

for all integers n > 2.

1.2 Literature Review

The study of recurrence relations has attracted the attention of numerous scholars. In
[22], [25], and [26], various summation formulae of the "Generalized Fibonacci and
Gaussian Fibonacci numbers" and "Pell and Pell-Lucas numbers" are developed. The
"Fibonacci," "Tribonacci," "Tetrabasic," "Pentanacci," and "Hexanacci" numbers all
share similar characteristics, as described in [9, 27, 28], [29, 30], [31, 32, 33], [34,
35], and [36]. According to the Georgian Mathematical Journal, in paper [43] the
author explains how Hermite polynomials have some interesting properties. An

alternative generalisation is sought after in this paper
Mn+1(x) = k(x)M"(x) + Mn—l(x): Mo(x) = Zer(x) =m(x) + k(x)

for integers n > 2 and real polynomialsk(x) and m(x). Using matrix algebra, the
author generates an expanded Binet's formula for M,,(x) and, as a result, identities
such as Simpson's, Catalan's, and so on. In addition, they obtained sum formulas for

this new generalization.

In [77] Nalliand Haukkanen introduced h(x) —polynomials introduced a matrix

whose power generates the sequence of the Fibonacci numbers.

In [78], the author presented the various summation formulae for generalized
Fibonacci numbers defined as

W,=rW,_1+sW,_, Wy=a W, =b,forn=2,3,4,...
Similar work has been done for different sequences [38].

In [79], the author studied various properties of 2-Fibonacci sequences defined by

16



Api2 = Apya + .344,' and .B/n+2 = B/n+1 + an
withay =a, fp =b,a; =c¢, f; =d,andn =0,1,2, ...

In [80, 81], the author introduced new schemes of 2-Fibonacci sequences defined as

_ Api41tBag+1 _ Bni+1tQn 41
a/n,1+2 - 2 + ﬁfn17 B’}’L1+2 - 2 + a’nl’
and
_ a%1+ﬁ4’bl — ﬁ/nl+a4’bl
an1+2 - 2 + B’}’Ll‘l'l) ﬂ/n,1+2 - anl + 2 )

with n, =0,1,2, ..., and ay = 2a, By = 2b, ay = 2¢, f; = 2d,wherea, b,c and d
are real numbers, and he established various relationships between these sequences

with a generalized Fibonacci sequence defined by

Fn+2(d6'r Cy) = Fn+1(d8' Cy) + El(dé" Cy)
with
Fo(ds,c,) = ds, Fy(ds,c,) =c,,n=0,1,2, ..

Also, for these sequences listed various properties by an integer function ¢ described
by
o(4+2)+ad()=0;;=0,1,2,..

witha(0) = 0,and (1) = 1.

Similar work has been done by the authors [42, 43] for different schemes of

sequences.

In [82], the author derived the following formulae

p+1 p+1 p+1

= q a yq
UD (aq - .Bq)(aq - Vq) * (ﬁq - aq)(ﬂq - yq) * (Vq - .Bq)(yq - aq)l

a
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and

Vy= a4 B
were
1+ (V19 +3v33) + (V19 - 333)
ag = 3 ’
1+ (V19 +3v33) + ? (V19 - 333)
Bq = 3 ’
L+ o2 (3/19 + 3@) o (3\/19 — 3@)
Yqg = 3 ’
where w = _1?@, for Tribonacci sequence {u‘)}nzo and Tribonacci-Lucas {Vn}nzo

sequence described as
ut)+3 = 'Un+2 + un+1 + 'Ut); Vt)+3 = v1)+2 + Vt)+1 + Vt); = 0, 1, 2, ey
WlthuO = O,Ul = 1,'u2 = 1,V0 = 3,V1 = 1, ande = 3.

Similarly, authors in [83] determined the Binet’s formula by use of the matrix

1 1 1 11
(10000\
01 0 0 0],
0 01 00
00 0 10

For Pentanacci sequence given by
Cj+5 = C}'+4 + c}'+3 + Cj+2 + Cj+1 + c} ,f = 0, 1, 2, ey

Fibonacci numbers and linear algebra also have a lot of connections. Many

researchers have worked in this area.



In 2006, author [84] made use of the sum property of the determinant, which states
that "If A, B, and C are matrices with indistinguishable elements except that one row
(column) of C, say kth, is the sum of kth rows (columns) of A and B, then [A] + [B] =
[C]." ...and the author validated the next property of the Fibonacci numbers by

making use of the determinant's characteristic of being determinant:
FoFy — B Fppr = (D" "B Fpyrom

In [42], the author discussed how dual Bernstein polynomials bring additional
differential-recurrence properties because of relationships between Jacobi
polynomials and orthogonal Hahnand dual Bernstein. A  fourth-order
differential condition fulfilled by double Bernstein polynomials has
been developed utilizing this concept. In addition, for these polynomials, a recurrence
relation of fourth-order has been generated; this result can efficiently solve certain

problems of computation.

In papers [45] it is seen that, based on the Schur parameters, the characteristic
polynomials of some five-diagonal matrices are monic orthogonal polynomials of the
unit circle. This is the result on the unit circle generated by the orthogonal Laurent
polynomial, which is the result of the orthogonal Laurent polynomial’s recurrence
relation of five terms, as well as the one-to-one and onto mapping formed between

them.

In her paper [44], the author considers a sequence of polynomials {P,},n = 0 that
satisfy a special recurrence relation and have simple zeros on the real line. Eigen
value problem generalized by P, turned out to be ‘the characteristic polynomial” of a
simplen X n, for integern > 2. It is shown that measure (positive) on the unit
circle can always be related to this recurrence relation. The property of orthogonality

with respect to this calculation can also be obtained.

In Paper [54], the author studies the relationship between recurrence relations and
significant statistical applications. However, only discrete distributions were covered

by the initial derivation. There is a contemporary application.



In 2011, Jishe Feng [85] utilized the technique of Laplace expansions to evaluate
the determinant of D,, and constructed a type of 2 X 2 matrix determinant to approach

a new method to substantiate the following identity:
Frnint1 = Fni1Fner + EnFy,

WEre

SR
’_}l
—_
=
—_
o O

In 2017, Stimeyra [86] studied some new properties of “Generalized Fibonacci and
Lucas polynomials” by using Laplace expansion of determinants and also described

some new families of tri-diagonal matrices given by

p(t)  iyg(t) 0 0
ivg(t) p(t) iyg(t) 0
c(n) = 0 iVgt) pt) : ,
: : . ivg(t,)

0 0 0 ivg(t) p(t)

and its successive determinants generate the following sequence:

Lp,g,n+1(’t1) = ?Q(tl)Lp,g,,n (tl) + g(tl)Lp,g,n—l(tl):

and

Fp,g,n+1(’t1) = p(tl)Fp,g,,n(tl) + g(tl)F;),g,,n—l(tl);
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Wlth n= 1, 2, 3, ---:Fp,g,o(tl) = 0, F}?,g;,l(tl) = 1, Lp,g,o(’tl) = 2, and L;J,ga,l(tl) =
p(t1).

In 2023, Jinseo Park [87] discusses properties and many special type identities of
positive integers, which are known as Diophantine m-tuples. He related these special-
type numbers to Fibonacci numbers and discussed the properties of geometry in

relation to groups.

In 2023, Sean M. Stewart [88] discusses properties and many special-type identities of
positive integers. In this paper, the author also related these special type numbers to
Fibonacci numbers, discussed the properties of geometry, and related them to groups.
Also discussed are the many special-type results of Fibonacci numbers and some very

interesting new results on the Fibonacci recurrence relation sequence of numbers.

1.4 Proposed objectives of the research work
During our research work it proposed to study the following problems.

e To obtain new generalizations and extensions of the Fibonacci sequence of
numbers and polynomials.

e To obtain new identities and some special representations of the Chebyshev
polynomials.

e To study of relation between the group theory and the terms of recurrence
relation of sequence of numbers and polynomials.

e To study the applications of recurrence relation in network marketing and in

some other fields.
1.5 Proposed methodology of the research work

To achieve the proposed objective, the following methodology was used:
1. By using concepts of algebra, number theory focuses on solving

polynomials, obtaining roots of polynomials and using concepts of
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determinants, we have obtained the relation between polynomial roots and
recurrence relations terms.

2. Concepts of group theory are used to prove theorems of cyclic groups of
rational function with coefficients as Fibonacci numbers.

3. By using some properties of matrices and determinants, work will be done
on finding generating matrices of recurrence relations as a sequence of tri-
diagonal matrices.

4. Theorems on the sequence of complex bilinear transformations are proved
using the concepts of complex algebra.

5. To prove properties and identities, we will use the methods of

mathematical induction, power series, and the concepts of calculus.

1.6  Structure of Thesis

The proposed research work, entitled "PROPERTIES AND APPLICATIONS OF
RECURRENCE RELATION OF SEQUENCE OF NUMBERS AND
POLYNOMIALS” is motivated by the recurrence relations of the sequence of
numbers and polynomials. The thesis is structured in the form of seven chapters in the

following manner:

In the first chapter of this thesis, it provides an overview of the recurrence
relations of numbers that make up history as well as their applications in a variety of
different disciplines. In addition, we make a cursory review of a few key definitions
and well-known results that are required to meet the bare minimum standard for the
forthcoming chapters. This chapter also contains the part of the literature review that
sheds light on the work done in the field of the recurrence relations of numbers and
associated polynomials by a number of different researchers. This part of the review is
included here. In the evaluation, the research void has been singled out, and the goals

and procedures to fill in these voids have been outlined in detail.

Chapter 2, “Relation between the Roots of Polynomials and the Term of
Recurrence Relation Sequence,” is divided into seven sections, discussing the relation

between the roots and terms of “recurrence relations of first order, second order, third



order, fourth order, and kth order.” Also discussed are the results on some special

kinds of recurrence relations like Fibonacci polynomials and Chebyshev polynomials.

Chapter 3, “Cyclic Group of Rational Functions with Coefficients as
Fibonacci Numbers, “is divided into four sections, starting with the basic definitions
of group, Fibonacci numbers, Generalized Fibonacci sequence, and the recurrence
relation of rational function in the form of composition function, which have the
terms Fibonacci numbers or Generalized Fibonacci numbers. Finally, a set is
considered on the basis of its defined composition, and the properties of the group are

verified.

In Chapter 4, “Generating Matrices of Recurrence Relations as Sequence of
Tri-Diagonal Matrices,” we worked on the tri-diagonal matrix sequence for

generalized Fibonacci polynomials, Fibonacci numbers, and Chebyshev polynomials.

In Chapter 5, “Sequence of Complex Bilinear Transformations with
Coefficients as Fibonacci Numbers,” the main focus is onw;, (z) the sequences of
complex ration functions with coefficients as Fibonacci numbers, verifying the

properties of bilinear transformations for wy, (z).

In Chapter 6, “Relations Between Chebyshev Polynomials and Hermite
Polynomials,” we have discussed the relation between the “Chebyshev polynomial of
the second kind” and Hermite polynomials of two variables; also, the generating

function is obtained with the help of Hermite polynomials.

Chapter 7, “Applications of Recurrence Relations,” deals with applications of
recurrence relations in network marketing with some limitations imposed on the
problem. In the later parts of the chapter, the application of recurrence relations,
especially Fibonacci numbers, and the reproduction mechanism of honey bees are

discussed.



Chapter 2
Relation between the Roots of Polynomials and the Terms of

Recurrence Relation Sequence

2.1 Introduction

We have given the identities and recurrence relations of first, second, third, fourth,
and forkth order in this chapter. These are exceptionally valuable identities for
obtaining any term in any order of the respective sequence. We have given an explicit
formula to calculate any term of a recurrence relation sequence, which is a very
important result [12, 13].
2.2 Second order Recurrence Relation
Theorem 2.2.1: If ¢; , c, are real numbers and let
x2—cix—c, =0, (2.1)
have distinct roots x; and x,. Then sequence < a, > is solution of
Ap = C10p_1 + C20y_5 , N = 2, (2.2)
with initial terms ay = 4;,a; = A,.
iff
an = P1x7 + Box3,
forn= 0,1, 2, ..., where §; and 3, are arbitrary constants.
Proof: First suppose that < a,, > is of type a,, = f1x1' + B,x3 we shall prove that
< a, > 1is a solution of the recurrence relation (2.2). Since the x; and x, roots of
equation (2.1) then
— .2
C1X1 + ¢ = x1,

C1X, + ¢y = X2,



by equation (2.2)
Clln_1 + Co0n_p = (BT + Boxl ™) + (BT 72 + Box3 ™) = Bixy + Box3
this implies
C1ap_q1 +Cray_5 = Ay,
which proves the result.
Converse part
Consider the sequence < a,, >
Ap = C1Ap—1 + 20y N 22,
with initial terms ay = 4, a; = 4A,.
and let
an = Prx1 + Boxi.
So, by initial condition
Bi+ B2 = Ay, (2.3)
B1x1 + Box; = Ay, (2.4)

By equation (2.3)

Bl = Al - BZ;
putting this value in (2.4) we obtained
A1x1 — X,
bo=——"7—
X1 — X2
and
Ay — A1x,
pr=—""T
X1 — X2

Theorem 2.2.2: For real numbers ¢; and c,, then the sequence < a, > 1is the
solution to

Ap = C1Ap_q + C2ay_,M = 2, (2.5)



with given initial terms a, = A; and a; = A,. If in equation (2.5) c;and c, are such
that the roots of x? — ¢;x — ¢, = 0 are distinct and greater than 1 and satisfy the
conditionsA;x; > A, and A;x, < A,, then the recurrence relation sequence must be

divergent.

Proof: Using theorem 2.2.1 a, = By1x]" + B,x3, with x; and x, are roots of the
equation x? — ¢;x — ¢, = 0 but according to the given condition clearly value of
x1and x, are greater than 1 so if limit of n goes to infinity then xi* and x3 both gives

the value infinity

by Theorem 2.2.1

B A —x
2 xl_xz )
and
B Ay —Aix,
! X1 — Xy

According to given conditions values of $;and 8, are positive. As n — o, $;x1* and
Box3 gives the value infinity. So, we can say that as n - oo, < a,, > tends to infinity,

so the sequence must be divergent.
2.3 Fibonacci polynomial

Theorem 2.3.1: Letn > 0 be an integer, if F,(x), the Fibonacci polynomial, is

characterized by
Fn+1(x) = an(x) + Fn—l(x):

with F; (x) = 1, Fy(x) = 0 and x2 > (—4) then

1 1
PP e [x + \/m]n Tl a [x —Vx?+ 4]n.

Proof: By using theorem 2.2.1 with ¢; = x,c; = 1 and for variable T by equation

Fn(x) =

(2.1) then we have



T?—xT—1=0.
On solving the roots are

x+Vx2+4
2 )

using theorem 2.2.1 we obtained

xwﬁ] [ W]

> , (2.6)

E, (x) = B1 [
using initial condition,

B+ B2=0, (2.7)

TTa 773
B g =1, 28)

Solving (2.7) and (2.8) we have

x2 +

-

VxZ + 4
on substituting values of ; and 8, we get the desired result.

2.4 Chebyshev Polynomial
Theorem 2.4.1: If Chebyshev polynomial of the first kind T, (x) is

Tn+1(x) = 2xT, (x) — Ty-1 (%),

foralln > 1, with Ty(x) = 1, T; (x) = x, x2 > 1, we can write

T,(x) = %[x +/x%2 - 1" +%[x —\/ﬁ]n_

Proof: Using theorem 2.2.1 with ¢; = 2x,c, = —1 and for variable T by equation

(2.1) we have polynomial
T?—-2xT +1=0.

On solving roots obtained as



x+/x2 -1,

by theorem 2.2.1, we obtained

To(x) = Bi[x +Vx? = 1]" + Byo[x —/x%2 — 1]™. (2.9)

Using initial conditions
Br+tB=1, (2.10)
Bilx +Vx2 =111 + B[x —Vx2 — 1] = x, (2.11)
solving (2.10), (2.11) we have B; = %and By = %
So, by equation (2.9)

1 n 1 n

Tn(x)z—[x+\/x2—1] +—[x— xz—l] .

2 2

2.5 Recurrence Relation of Third Order

In a recurrence relation of third order [14, 15], given the first three terms, the next

term depends on the previous three terms, e.g.
a, =a,_1+2a,_,+3a,_3,n=3,
withay =0,a; =1,a, = 2.
Theorem 2.5.1: If ¢c;, ¢, and c5 are real numbers, let
x3—cx? —cyx—c3=0, (2.10)
hasx,, x, and x;asreal and distinct roots.
Then the sequence < a,, >has solution
A, = C1Ap_1 +C2ay_y + C30y_3,n1 =3, (2.11)
with three initial terms

Ag = Al'



a; = Ay,
a, = As.
iff
an = P1x1 + Boxi + P3x3,
for integers n = 0, arbitrary constants 1, 55, and 5.
Proof: Suppose sequence < a,, >is
an = P1x1 + Boxi + P33,

now to prove < a, > is a solution of (2.11). Ifxq, x, and x5 are roots of (2.10) then

we have
3 2
X{ = C1x7 + cxq + C3,
3 _ 2
X5 = C1x5 + Cyxy + C3,
3 _ 2
X3 = C1x3 + Cyx3 + C3.
Consider

C10p—1 + C20n_5 + €303
= ¢ (BxT ™+ Boxi T 4 Bax )
+ 2 (Bix] % + Box 32 + BaxF ) + c3(Brx] 3 + Boxi T3 4 Baxd )

= P1x1 + Boxi + P3xz = an.
This implies
C1Qn-1 + C20n_2 + C3Ay_3 = Qy.
which prove the result.
Converse part

Suppose recurrence relation



Ap = C1Ap_q + C0y_5 + C30,_3,1 = 3,

with
ap = A4y,
a; = 4,
a, = As.
Let

an = P1X1 + Box3 + B3x3

So, by initial conditions

Bit+ B2+ Ps= 4, (2.12)
Bix1 + Baxz + Paxz = Ay, (2.13)
Bixi + Box3 + B3x3 = As. (2.14)

Non-trivial solution of system (2.12), (2.13), and (2.14) is possible if f

1 1 1
X1 Xz X3|#0,
xp x5 xf

on expanding determinant
(1 —x2)(xz — x3)(x3 — x1) # 0. (2.15)

As the roots are distinct equation (2.15)is always non-zero. So, non-trivial values of

B1, Band S5 can be found, therefore the result is valid.

Example 2.5.1: Let for sequence < a, >,a, = 6a,_; —1la,_, +6a,_3, n =3
and ay = 0,a; = 1,a, = 2. Then find a,,.

Solution: By theorem 2.5.1 polynomial for < a,, > is

x32—6x24+11x—6=0.



Roots of above equations are 1, 2, and 3, again by theorem 2.5.1
an = ﬁllz + ,3222 + 3332. (2.16)

Usinga, = 0,a; = 1,a, = 2in (2.16)

Bi+B2+B3=0, (2.17)
fi1+ 26, +3B3 =1, (2.18)
Bi+ 4P, +9B5 =2, (2.19)

Solving (2.17), (2.18) and (2.19) we have f; = —=,8, = 2, B3 = —>.
By using (2.16)
3

1
an = =5 A" +22M -5 (3.

now putn = 10 we have a,, = —27478.

2.6 Fourth Order Recurrence Relation

In the recurrence relation of fourth order, the next term depends on the previous four

terms with four initial conditions, e.g.
ap =0au_1+2a,_,+3a,_,+a,_3,n=4,
initial terms ag = 0,a, = 1,a, = 2, az = 3, for integers n > 0.
Theorem 2.6.1: If ¢;, c,, czand c,are real numbers, let
x*—cx3 —cyx? —c3x —cy =0 (2.20)
has distinct real roots x;, x5, x3 and x,.
Then sequence < a, >has solution
Ap = C10p_1 + C205_5 + C30p_3+CoQp_y, N =4 (2.21)
with

ao = Al'



a1 = Az,

a, = A3
a3 = A4.
iff

an = P1X7 + Poxz + B3x3 + Paxy,
withn = 0, 1, 2, ..., and for arbitrary constants f;, 85, B3 and [, constants.
Proof: Suppose that< a,, >is a sequence

an = P1X7 + Paxi + Bax3 + Paxy,

Now we prove < a, > is a solution of (2.21). For roots x;, X, x3, X4 of equation

(2.20) we obtained

xt = X3 + %2 + c3xq + c4,

Xy = C1X5 + X2 + c3%, + C4,
4 _ 3 2

X3 = C1X3 + Cyx3 + C3X3 + Cy,
4 _ 3 2

X4 = C1X3 + Caxi + C3X4 + Cy.

Consider

C10n—1 t C20n_3 + C3Ap_3 + C4Qn_4
= ¢, (BixT ™+ BoxZ T 4 Baxd T+ Byxp )
+ o (Bix] ™2 + Box3 ™2 + BaxS T + Baxi™?)
+ 3Bl ™3 + Box3 3 + Baxd T + Baxi )
+ ca(Brx? ™ + Boxd ™ + Baxd T+ Baxi ™)

= P1x1 + Boxy + P3x3 + Puxi = ay.

which proves the theorem.



Converse part
Let

Ap = C1Ap_q + C2ap_5 + C3a,,_3 + C4a,_4 ,n = 4 is recurrence relation with

ay =4y,
a; = 4,
a; = As,
as; = A,.

Let a, = Byx7" + fox; + Bax3+Paxy
So
.31 +Bz +33 +ﬁ4 = Ay,

P1x1 + Boxy + P3xz + Baxs = Ay,

Bixi + Bax5 + Bax5 + Buxi = As,

Bixi + Bax5 + Baxi 4 Buxi = A,

Solution of non-trivial type of system of linear equations is possible if f

X, X, Xy X,

2 2 2 2
X, Xy X} X,

3 3 3 3
X, X, Xy X,

*=0

on expanding determinant

(g — x2) (22 — x3)(x3 — x4) (x4 — x1) # 0. (2.22)

Since the roots are distinct so equation (2.22)is always non-zero, therefore values of

non-trivial type of 8, S, B3 and 5, can be found and result is valid.



2.7 k™ order recurrence relation
Theorem 2.7.1: If ¢, ¢;,C3, ..., i are real numbers and let
xk —cxkf Tt —cxk"2 . —¢, =0,
has distinct roots xq, X5, X3 ..., Xk.
then sequence < a,, > for all non negative integers have solution.
Ap = C1Qp_q + C0p_5 + C30p_3 + -+ .+ CQp_ , N > K,
with initial terms
ap = Ay,
a, =4,

a, :A3,

ai_1 = Ax.
iff
an = Prx1 + Boxi + Baxi + -+ + Prxi,
for n > 0,and for arbitrary constantsf;, 52, B3 .. Px-
Proof: Let us suppose that the sequence < a,, > as

Ay = P11 + Poxy + f3xi + -+ .ka{(l,

(2.23)

(2.24)

Now we will prove that < a,, > is a solution of (2.24). Since x4, x5, X3, ..., X}, are

roots of equation (2.23) so
xf = cxF 1+ cxk 2 + L4 ¢,

x¥ = cxk 1+ o xk 2+ L4 ¢,



xf=cxf ek Lt

Consider

C1Qp_1 +Cray_5 + 30,3+ -+ Crap_g
= C1(.31x?_1 + .Bzxg_l + .339551_1 + - +.3kx1r<1_1)
(B ™2 + foxf TP+ foxB TR 4+ frod )
+ (Bl + Pox} 3 4+ Baxl P+ 4 B ) +
+ e (Buxl ™ + Boxy T+ Baxd T+ 4 B )
= Pyx1 + Boxy + Baxi + -+ Prxi = an.

which prove the first part.
Proof of converse part
Let
Ay = C1Qpn_1 + C0p_o+ -+ Crp_y,n >k,

is a sequence with k initial terms ay = Ag, a1 = 41,a, = Ay, ..., ax = Ay
Let

an = P1xi + Poxy + Paxy + -+ + Prxp.
So

B+ B2+ B3+t P = Ao
Bix1 + Baxy + Baxz + -+ Brxy = Ay,

,lef + .329522 + .339532 +t .kalg

I
o
v

k k k
Bixf + Boxk + BaxX + - + Brxf

I
B
T



Solution of non-trivial type of system of linear equation is possible if f

1 1 .1

Xy Xy Xl

on expanding determinant

(1 — x3)(xy — x3)(x3 — x4) . (), — x1) # 0. (2.25)

Since the roots are different, the equation (2.25)is always non-zero; therefore, values

of non-trivial type of 1, B2, B3, ---, fxcan be found and the result is valid.



Chapter 3

Cyclic Group of Rational functions with Coefficients as
Fibonacci Numbers

3.1 Introduction

The study of group theory [17, 18, and 19] is an essential part of contemporary
mathematics and is also accumulating increasing amounts of value in a wide variety
of other areas. In this chapter, we demonstrate that there is a connection between
group theory and number theory, describe a group of rational functions with
coefficients that are the Fibonacci number in terms of the composition operation, and
show that the condition of a cyclic group is satisfied. Given the recurrence relation
sequence of rational functions with coefficients as Fibonacci numbers, we discuss
representational relations between group properties and rational functions with
Fibonacci coefficients. Furthermore, we prove that the collection of all such rational
functions forms a cyclic group with respect to the composition of the function

operation.

3.2 General definitions

3.2.1 Group

Group is a set that fulfills four properties with regard to the given operation. Four

axioms are
Closure: Let H be any set and * be any operationon Hifaxb € H = Va,b € H.
Associative: If (a*b)*c=ax(b*c),Va,b,c € H.

Existence of Identity: If there exist an element e in H such that axe = e xa = q,

V a € Hwhere e is identity element.

Existence of Inverse: If Va € H,3 b € H, with a*b = b * a = e then inverse of a

1S b.



3.2.2 Cyclic group

A cyclic group is a group in which every element can be generated by a single
element of that group. e.g., a set of integers with respect to addition is a cyclic group.

3.2.3 Rational function

If f(x) given by

for polynomials p(x)and q(x), q(x) # 0, then f(x) is rational function.

3.2.4 Fibonacci numbers

Fibonacci numbers sequence is defined as

fa= fac1t fa2m 22, 3.1
Where initial terms are fy = 0 and f; = 1. “The terms of the Fibonacci sequence are
called Fibonacci numbers”.

3.2.5 Lucas numbers

Lucas numbers sequence for non-negative integer n is given by

Ln = Ln_1 + Ln_z ,n = 2, (32)

with Ly = 2 and L; = 1. The terms of the Lucas sequence are called Lucas numbers.

3.2.6 Generalized Fibonacci sequences

Generalized Fibonacci sequence [20, 24], is defined as

Fp = pFy_1+ qF_y,k>2, Fy=aF, =b, (3.3)
for positive integers p, q,a & b.

3.3 Recurrence relation sequence of rational function with Fibonacci
number as coefficients



If function u: (0, ) — (0,1)is real valued defined as

1
1+x

u(x) =

on its domain u(x) is clearly continuous. The codomain of u is a subset of the domain
of u.So, considers function.

(wou)(x) = T

1+x

now we define
Zp (x) = (uououo ...ou)(x), (3.4)
where (uououo ... ou) represent n time composition.

The sequence of rational functions for recurrence relations is defined as

)

z(0) =ul) = 7~

and

1

(%) = 142z, (x)

for all integer n > 2.

Now, we define z,(x) such that every member of this family has Fibonacci

coefficients, if the Fibonacci sequence is given by the (3.1) equation, we obtain

fo-1x+ fu

Fox t et (3-2)

Zn(x) =

where f; is ith Fibonacci number and z,(x)nth term of equation (3.4) sequence of

rational function. For n € N, the codomain of z, (x) is

o= (i b e )

For example, we can say that

Codomain of z; (x), A; = (0,1).



Codomain of z,(x),A, = G, 1).

Codomain of z3(x), A3z = Gg)

So, co-domain for all function z, (x) can be find out.

For odd n

= ()
Forevenn

=G i)

Theorem 3.3.1: Let I: (0, 0) — (0, o0) such that

I(x) = x.

(3.6)

Let G be set of all z,(x)for all n € N and including 7 function defined by equation

(3.6) then with respect composition operation given by equation (3.4) G is cyclic

group.

Proof: Closure property: let z, and z,any two functions in G, n,m € Nthen we

according to definition (3.4)

Z, (x) = (uououo ...ou)(x), where there are n times composition
Zm (x) = (uououo ...ou)(x), where there are m times composition

(2n0zp) (x) = (uououou ... ou)(x), where there are n + m times composition

(2n0Zp) (x) = Zpin(x) € G.

It satisfied closure property

Associative: Associativity is clearly satisfied since all compositions are of u.
Existence of Identity: Clearly identity is existed since G is including /.

Inverse: Initially it is required to prove all functions are one-one onto.



fo-1x+ fu

Zn(X) - fonx + fn+1’
_fn—ly + fu
W) = o

Consider

2 (X) = 2, (y),

On solving we have x = y which proves that all function all one-one.

Let

fo-1X+fn

fox + far Y
Solving this we obtained

fne1Y — fun .

fo-1 = fuy '
Let, if possible

fa-1-fuy =0,
On solving

y=1 €A

clearlyx >0,V yin 4,.

So, we ca say that every element of 4,, have pre image under z,, thereforez,is onto for
all n. That is every member of Gis one-one and onto. So, invertible property holds for

every member of G.

Cyclic Property: Every member can be generated by z;(x) = u(x) = i so by

definition of cyclic group G is a cyclic group under the composition operation, which

prove the theorem.

3.4 Recurrence relation sequence of rational function with
Generalized Fibonacci number as coefficients



Consider functionv: (0, c0) — (0,1)is real valued, defined by

1
q+x

v(x) =

Where q in any positive integer, on its domain v(x)is clearly continuous and

codomain of u is subset of domain of u. Now consider function

wov)(x) = —

q+x

we define
wy, (x) = (vovovo ...ov)(x), (3.7)
where (vovovo ... ov) represents n time composition.

Recurrence relation sequence of rational function is given as

wy(x) =

)

q+x
and

1

q+ Wn—1(x)' (38)

Wn(x) =

for all integern > 2.

Now, it is required to prove that generalized Fibonacci numbers appear in the
coefficients of every member of this family. For this reason, by equation (3.3), if we

takep=q, q=1, a=0, b =1, we have:
F,=qF, 1+ F,_,,Vn=2,
with F, = 0 and F; = 1, where q is any positive integer.

Now to show that

F,_1x+E

) 3.9
Fox+Foy (39

wy (x) =



for F; is ith generalized Fibonacci number, wy,(x)nth term of equation (3.9) is
sequence of rational functions. Using the principle of mathematical induction, (3.9)

can be proved.

Forn=1

wi(x) = v(x) = parp

and
Fy =0,F, =1andF, = q, therefore (3.9) holds forn = 1.

Let the result holds for n = k, so by (3.9) let

( ) _ Fk_lx + Fk
Wi = Fix + Fiyr
To show (3.9) holds forn =k + 1
Consider
() = ——
Wi W00 = q + wi(x)
by equation (3.9) we have
1
W1 (x) = T PR xiFR
FirX+Fpiq
Fix + Fyqq

Wit 0 = e e % F (@Fen ¥ F)
Frx + Frqq

Wypq(x) = ——m8——,
e () Fies1 X + Fieyz

which proves the result holds for all positive integers n by the principle of
mathematical induction.

Theorem 3.4.1: If w,(x)is defined by equation (3.8), then w,(x) is monotonic
function. If n is odd, then w,,(x) is a monotonically decreasing function, and if n is
even, then wy,(x) is a monotonically increasing function.



Proof: It is clear from definition of wy,(x), it is differentiable on given domain, so
using first derivative test the theorem will be proved.

On differentiating equation (3.8) forn = 1

dw; -1

dx (q +x)? <

0.

So, by first derivative test w; (x) is monotonically decreasing function.

Now differentiating (3.8),

we have
[dw _ [de-1]
sgn = sgn I |
for oddn
dw,
dx 0,
for evenn
dw,
I >0,

which proves our result.

Corollary 3.4.1: Forn € N, the range set B, of wy(x) is B, = (EFF—") for odd n

Fn Fpniq
Fn  Fp—q

and B, = ( , )for even n.

Fny1’ Fn

Proof: By Theorem 3.4.1 for odd n, w,(x) is monotonically decreasing function by
equation (3.9) w,(x) approach to its maximum value as x — 0 so we can say that

. F, : -
maximum value of w,(x) — F—" and wy(x) approach to its minimum value as
n+1

Fpn—1

- » SO We can say that the
n

X — 0o so we can say that minimum value of w,(x) —

range set B,, of w,(x) is




Let n is even then w,(x) is monotonically increasing and so wy, (x) approach to its

n

- - F,
minimum value as x = 0 so we can say that minimum value of wy,(x) - = and
n+1

Zy (x) approach to its maximum value as x — oo so we can say that maximum value
Fn Fn—1)
Fpy1’ Fo /'

Fp—1

- » SO We can say that the range set B, of w,(x) is B,, = (
n

of w,(x) —»

So, our corollary is proved.
Theorem 3.4.2: Let I: (0,0) = (0, o) such that
I(x) =x (3.10)

Let for all w,(x),V n € N, the set is given by H and with including / function defined
by equation (3.10), then H is cyclic group with respect composition operation given
by (3.7).

Proof: Closure property

Let w,, and wy,are any two functions in H then by definition equation (3.7)

wy, (x) = (vovovov ...ov)(x),where there are n times composition,

Wi, (x) = (vovovov ... ov) (x),where there are m times composition,

(wpowy,) (x) = (vovovov ...ov)(x), where there are n + m times composition,
(Wnowp,) (X) = Win(x) € H,

Which satisfied closure property.

Associative: By definition of composition of u associative property satisfied.

Existence of Identity: Identity exists since H includes /.

Inverse: To prove inverse it is required to prove all functions are one-one and onto.

By equation (3.9)

(x) Fo_1x+E, o) F,_1y+E
WylX) =——————m""",W. = —_
W T B x ¥ Pyt T By + Fun
Consider

wp(x) = wy(y),

on solving x = y so all function all one-one.

Let



F,_1x+F,

X+ gy
On solving
Foiiy—F _
— =X
Fn—l — MYy
Let if possible
Fo1-Fy =0,
On solving
F_
y= :* - ¢ B,,
n

clearly x > 0,V y in B,,.

So, we can say that every element of B, have pre-image under wy,(x), therefore
wy(x) is onto for alln € N. So, we can say that every member of His one-one and

onto, hence invariability proved by every member of H.

Cyclic Property: We can generate every member by w, (x) = v(x) = q%.So, under

the composition operation G is a cyclic group, which proved the theorem.

3.5. A Sequence of matrix generated by Fibonacci Numbers

te = [p B} (e wms[re P

We easily prove that (M1)" = M™

R ] G o e B s

This is an example of a recurrence relation sequence of matrix that follows the same pattern
as the recurrence relation of the Fibonacci sequence [16, 25 and 26].



3.5.1. Terms of Fibonacci Numbers

f, 0 fg 21
f; 1 fy 34
f; 1 fio 55
f3 2 f11 89
f, 3 f, 134
fe 5 ) 223
fy 8 i, 367
f, 13 fis 590

3.5.2. A Sequence generated by Fibonacci Numbers

T froifnsr = fo®

T fof2 = fi? -1
Ty fifs = f2? -1
T3 fofa = f3° -1
Ty fafs = fu® -1
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Ts fufs — fs’ -1

Ts fufs — fs’ -1

T fsfr = fo -1

So we can observe T,, = (—1)"

By this observation we can conclude
det(M™) = (—1)"for all integer n

3.5.3. Set of terms of sequence of non-singular matrix

Let
H={M"“neZ}
We define
o_[1 O
M™ = 0 1]

Theorem 3.5.4: Show that H is a cyclic group with respect to matrix multiplication.
Proof: -let M™, M™eH
Then we have
M. M™ = M
So we can say that H satisfied the 1* axiom of the group.
All elements of H are matrices so must satisfied the associativity properties.

Mo = [} O] is the identity of H
0 1
so identity exists in the set

Since
det(M™) = (-1D™",




for all non-negative integers n.

So every matrix must be invertible, so we can say that the inverse of every element of
a set must exist. Therefore, H must be a group with respect to matrix multiplication.

£ fi] .
fi fo]’ it

Since every element of this group can be written as a power of M! = [

confirmed that H is a cyclic group with respect to matrix multiplication.

3.5.5 Generalized Fibonacci of 3" order sequence

Let {f3,} be the generalized Fibonacci sequence of order third which given by
fan = fan+2 + faner + famo

where with initial terms,
f20=0,f31=0,f3,=1,

for all non-negative integer n.

3.5.6. Special case of generalized Fibonacci of 3" order sequence

Let {I3 ,} be the special case of generalized Fibonacci sequence of order third, which
given by

l3nss = alzpip + 13041 + 130, a+0,
Where given initial terms are below
l30=0,l31=0,l3,=1,
for all non-negative integer n.
3.5.7. Sequence of non-singular matrix

Let sequence of matrix [1, 2, 3, 4 and 5]

a 1 1
Pi= [1 0 0]
01 0



l3a lzz+lsz 33
Pi=|lzg3 l3p+131 I3

l32 l31+130 I34

And continue like this we have

l3,n+2 l3,n+1 + lS,n l3,n+1
n __
P} =|lzn1  lzpt+l3n l3n
lsn  lapn-1+l3n2 l3nq

In this sequence of matrix there are some special types of relations

P = (P
100
Let (P})° = Pg":[o 1 o]
0 0 1
det(PY) =1

for all non-negative integer n.
3.5.8. Set of terms of sequence of non-singular matrix
Let

G={P}:ne’z}
Theorem 3.5.9: Show that G is a cyclic group with respect to matrix multiplication.
Proof: -let P}, PJ"eG
Then we have

PPt = pptm

So we can say that G satisfied the 1*" axiom of the group.

All elements of G are matrix so must satisfied the associativity properties.

1 0 0
Clearly P) = [0 1 O]is the identity of G
0 0 1

So identity is exist in set



Since
det(P}]) =1,

for all integers n.

So every matrix must be invertible, so G must be a group with respect to matrix
multiplication.

Since every element of this group can be written as a power of P, it has been
confirmed that it is a cyclic group with respect to matrix multiplication [29, 30].

Theorem 3.5.10: Show that G is isomorphic to a group set of integers (Z) with
respect to addition.

Proof: Let define a mapping ¢: G = Z such that

e(P3) =n
for all integers n.
Well-defined
Let

P} =P
forn,me Z.

Py = P
this implies

n—-m=20

n=m

So ¢ is well-defined mapping.
One-one
Let
@(P3') = p(P5"),
forn,m € Z,

this implies



n—m=0,
this implies
Py~™ = p3,
therefore
P} =rJ",

So ¢ is one-one mapping.
Onto
Let n € Z be any integer then P§' € G, such that we have
@(P3) =n

for all integers n.
So ¢ is onto mapping.
Homomorphism
Consider

(PFPT) = (P3"™) =n+m = @(P7) + @(P3"),
forn,me Z.

So, ¢ is homomorphism mapping. Therefore, G is isomorphic to the group set of
integers (Z) with respect to addition.

Theorem 3.5.11: Show that G is a cyclic sub-group of group SL3(Z) with respect to
matrix multiplication.

Proof: Let A € G then all entries of A are integer and order is 3 also |A| =1
This implies A € SL3(Z).
So,

G c SL3(Z).

Also G and SL3(Z) both are group with respect to same binary operation, so G is a sub
group of SL;(Z).



Theorem 3.5.12: Show that G is not a simple group with respect to matrix
multiplication.

Proof:- We have
G={P}:nezZ}

a 1
Pi = [1 0]
0 1 0

O =

If we take a = 1 then

11 1
K31=[100]
01 0

We have
H={K}'neZz}

Then H is clearly a proper sub-group of G and G is a cyclic group, so H must be a
normal sub-group of G. Therefore, G is not a simple group.

Theorem 3.5.13: Show that G is matrix lie-group.

Proof: We have
G={P}:nezZ}.

Let
A, €QG,

then all entries of A, are Fibonacci numbers, so A4, not be convergent to any matrix.
So, we can say that there is no convergent sequence in G. Therefore G is a matrix lie-

group.

Both the definition of the 3-Generalized Fibonacci group and an analysis of its
algebraic axioms can be found in this chapter. The authors of the research established
a cluster with the assistance of 3-Generalized Fibonacci and a sequence of matrices.
This result can be applied to a wide variety of different kinds of groups, as well as a
wide variety of other sequences.



Chapter 4

Generating Matrices of Recurrence relations as Sequence of

Tri-Diagonal Matrices

4.1 Introduction

Identities for generalized Fibonacci sequences of integers, Fibonacci sequences of
polynomials, and Chebyshev polynomials have been presented in this chapter. The
Fibonacci generalized sequence of integers, the Fibonacci sequence of polynomials,
and the Chebyshev polynomial [16, 21, 22, and 23] can all be represented in the form

of matrices with the assistance of these identities, which are of great use.

4.2 Definitions

4.2.1 Generalized Fibonacci sequences of numbers

Generalized Fibonacci sequence is defined as [8, 9]

F,= aFy_q1+ bFy,_,,n>2, (4.1)
for Fy = p, F; = q and positive integersp, q,a & b.

Particularly by equation (4.1)p =0, = 1,E, =V,

V,= aVy_y + bV, k =2, (4.2)
where I/, = 0,V; = land a, b are positive integers.

4.2.2 Fibonacci sequences of polynomials

E.C. Catalan define Fibonacci polynomial F,(x)as
Friz2(x) = xFpyq(x) + F (%), (4.3)

where Fy(x) = 0, F;(x) =1andn > 0.
4.2.3 Generalized Fibonacci polynomials

If G, (x) is Generalized Fibonacci polynomial define by
Gn+2 (x) = axGn+1(x) + bGn(x): (4.4)



withG,(x) = 1, Gy(x) = 0andn > 0.

4.2.4 Chebyshev polynomials

Chebyshev polynomial of first kind T, (x) is

Thy1(x) = 2xT (x) — Ty (%), (4.5)
T,(x) = x, Ty(x) = 1 and for all integersn > 1.

4.3 Sequence of tri-diagonal matrices

4.3.1 Sequence of tri-diagonal matrices for Generalized Fibonacci
sequences of polynomials

For n € N, tri-diagonal matrix sequence {A(n) = [gn,n]}is

gij = ax if j=i
gij=-b ifj-1=i

=10 21 i e1zif (4.6)
gij =0 otherwise
So, that
ax —b 0 0
1 ax —b 0
A) =| 0 1 ax
ax —b
0 O 1 ax
Then determinant of A(n) is
|A(n) | = gn,nlA(n - 1) I - gn,n—lgn—l,nlA(n - 2)' (47)

Theorem 4.3.1: Let |[A(n) | = G441 Vn =1, where |A(n) |the determinant of A(n)
given by (4.6) then G,41is (n + 1)th term of polynomials of generalized Fibonacci
sequence given by (4.4).

Proof: Principle mathematical induction is used to prove the result

For n = 1 by equation (4.6) we have
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A1) | = ax,
also, for n = 1 by equation (4.4) we have
G, = ax,
so that
A1) | = G.
The result holds forn = 1.
Now consider for n < kresult is true. So, we have
|AMK)| = G- (4.8)
Now to show for n = k + 1 result is also true.
By equation (4.7)
|ACk + 1) | = grrrk+1lAK) | = Grr1,kGrre+11Ak — D,
by definition (4.6)
Ir+1k+1 = AX,
r+1k9kk+1 = —D,
putting these two values we have
|ACk + 1)| = ax|A(k)| + b|A(k — 1)],
by equation (4.8)
|A(k + D] = aGyryq + bGy = Gy
So, result holds for n = k + 1, for all nthe theorem is proved.

4.3.2 Sequence of tri-diagonal matrices for Fibonacci sequence of
polynomial

Consider a sequence of matrices defined by (4.6) by putting, a = 1,b = 1 we have

sequence of matrices {C(n) = [hy, |}



J hij=1 ifi=j

hi,j=1 lfl:]+1

[hi.j] - hi,j =1 if i =j— 1 | (4.9)
Lhi,j =0 if otherwise )

x —1 0 0
1 x -1 0
cm) =|9 1 x
- X -1
0 O 1 X
Then determinant of C(n)is
|C(n) | = hn,nlc(n - 1) | - hn,n—lhn—l,nlc(n - 2)' (4-10)

Theorem 4.3.2: |C(n)| = Fpy1(x), for all integers n>1, where |C(n)| is
determinant of C(n) define by (4.9) sequence of matrix and F,,,(x) is (n+ 1)th
term Fibonacci sequence of polynomials defined by (4.3).

Proof: Principle mathematical induction can be used to prove this result

By equation (4.9) for n =1

IC() | = x,
Also, by equation (4.3) forn =1
F,(x) = x,
which verify
1IC(1) | = Fo(x).

So, the result holds for n = 1.

Consider for n < k result holds therefore

ICU| = Fieqq (x). (4.11)
Now show that for n = k + 1 theoremholds

by equation (4.10) consider

|C(k +1) | = hggrp41|CCK) | = Ryer i k+11CCk — 1))
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by equation (4.9)
Risiesr =X,
hier1chic e+ = =1,
putting these two values we have
IC(k + DI =x|CU)| + |C(k — DI,
by equation (4.11) we have
|C(k + 1) = xFe1(x) + Fr(x) = Fryz(x).
Which proves the result forn = k + 1, therefore, for all n the Theorem is true.

4.3.3 Sequence of tri-diagonal matrices for particular case of
generalized Fibonacci numbers

For n € Nwe define a sequence of tri-diagonal matrices {D(n) = [qn,n]}

qij =a if j=i

q;; =0 otherwise

a —b 0 0

1 a -b 0

pm) =0 1 @

a —b

so that 0 0 1 a

Then determinants of D(n) is

|D(n) | = Qn,nlD(n - 1) | - qn,n—lqn—l,nlD(n - 2)' (4'13)

Theorem 4.3.3: |D(n) | = V,,,, for every integern > 1 where|D (n) |the determinant

of D(n)defines by (4.12) and V,,,1is (n + 1)th term of sequence given by (4.2).

Proof: Principle mathematical induction can be used to prove this result.

Taking n = 1 by equation (4.12) we have
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ID(D) | = a,

forn = 1 by equation (4.13) we have
V, =a,

therefore

ID(1) | = V.
So, for n = 1result holds.
Consider for n < k result holds therefore
DU = Viys. (4.14)
Now show that for n = k + 1 theorem holds
by equation (4.13) consider

IDCk + 1) | = qra1,k+1 /D) | = Gres1,k G k411D (k — 1),

by equation (4.12)

Ar+1k+1 = @,
and

Tk+1kqrk+1 = —b,
putting these two values we obtained
|D(k + D] = alD(k)| + bID(k — 1)I,
by equation we have
ID(k + 1| = aViyq + bVy = Vigo.

Which proves result for n = k + 1, therefore for all n the theorem is true.

4.3.4 Sequence of tri-diagonal matrices for Chebyshev polynomial

We defined a special sequence of tri-diagonal matrix {S(n) = [I; j]} such that



=2x if j=i

l.
[:;] = ;=1 if j+1=i( (4.15)
lij=0 otherwise
2x 1 0 0
1 2x 1 0
sy =| 9 1 = i
2x 1
0 0 1 2x
Then determinant of S(n)is
IS(n) | = ln,nls(n - 1) | - ln,n—lln—l,nls(n - 2)' (416)

Theorem 4.3.4: |S(n) | = 2T, for integer n = 1where|S(n) | is the determinant of
S(n)define by (4.15) and Ty, is nth term of Chebyshev polynomials.
Proof: Principle mathematical induction can be used to prove this result.
For n = 1 by equation (4.15) we have

|S(1) | = 2x,
also, for n = 1 by equation (4.5) we have

2T, = 2x,

therefore

|S(1) | = 2T;.
So, for n = 1result holds.
Consider for n < kresult holds that is
|S(k)| = 2T. (4.17)
Now we will show that for n = k + 1result is also true,
by equation(4.16) consider

1SCe + 1) | = L1412 1SCR) | = Legaselio e+ 1 1SCe = 1),

by equation (4.15)
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lev1k+1 = 2x,
and
Uerrpelier+r = 1,

putting these two values we obtained

|S(k + )| = 2x|S(K)| — [S(k — D],
by equation (4.17)

|S(k + 1)| = 4xTy — 2Ty_q = 2Ty y1-
Which proves result for n = k + 1, therefore for all n the theorem is true.
4.4 Generalized k-Fibonacci sequences of numbers
Generalized k-Fibonacci sequence is defined as [6, 7, and 8].

Fiksn = Fgan-1+ Figan—2 + Fiogan—3 + = Finsr + Fin
where Fo = Fy 1 = Fyp—2 =0,Fg -1 =1
4.4.1. Generalized 3-Fibonaccisequences of numbers
Generalized 3-Fibonacci sequence is defined as [3, 4, 10, 11, and 12].
F33in = F3nsa + Finsr + Fin

where Fk,O = Fk,l = 0, Fk,Z =1

4.4.2. Generalized 4-Fibonaccisequences of numbers
Generalized 4-Fibonacci sequence is defined as [1, 2, 8, and 9].

Fyaon = Fansz + Fanio + Fansr + Fun
where

Fk,o = Fk,l = Fk,z =0, Fk,3 =1



4.4.3 Sequence of special type for 3-fibonacci numbers

| kijoy ifi=j+1]
[ki;] =< kij=1 vi=j—1¥
k;j =0 if otherwise
r 1 1 1 0 O 0 0 0 1
-1 1 1 1 0 0 0 O
0 -1 1 1 1 0 0 O
Kn) = : :
0 0 0 0 O 1 1 1
0 0 0 0 O -1 1 1
-0 0 0 0 O o -1 1

Then determinant of K (1) are of the type

IK(n) | =|K(n—1) |+ |K(n—2)|+ |K(n—3)| foralln >3

where

KW =11K@2)|=2]K@B) | =4
4.4.4. Sequence of special type for 4-fibonacci numbers

rql-,j=1 if 1=7Y
qi,j= -1 ifi=j+1
q;=1 ifi=j-1
[Qi,j]=< l,],_l Fi=i—2
4ij = if i=]
;=1 ifi=j=3
\q;; = 0 if otherwise )

~~

-1 1 1 1 0 0 0 0 1
-1 1 1 1 0 0 0
0 -1 1 1 1 0 0 O
Q(n) = : :
0 0 0 0 O 1 1 1
0 0 0 0 O -1 1 1
L0 0 0 0 O 0 -1 1

Then determinant of Q (1) are of the type

QM) =10 -1 [+[Q(n-2)|+1Q(n=3)| +|Q(n —4)| foralln>4



where
M |=1]e2)[=210B)|=41Q4) =8

4.4.5. Sequence of special type for k-Fibonacci numbers

( hi’jzl lfl:] h
hij=-1 ifi=j+1
R S A A A
hij=1 if i=j—3
ghi,j =0 if otherwise )
r 1 1 1 1 1 0 0 0 7
-1 1 1 1 1 0 0 O
o -1 1 1 1 0 0 O
H(n) = : :
0O 0 0 0 O 1 1 1
0O 0 0 0 O -1 1 1
L0 0 0 0 O o -1 1

Then determinant of H (1) are of the type
|[Hm) | =|Hm—1) |+ |Hn—-2)|+|H(n—3)| + |H(n — 4)| foralln > 4
Where
[HL) [=1H2)|=2,HB) | =4|H(4)|=8..

4.4.6. Statement: - |[K(n) | = F3,,4, for alln > 1, where |K(n) | is the determinant
of nth term of above define (1.5) sequence of matrix and F3 ,, ,,is (n + 2)th term 3-
Fibonacci sequence of number.

Proof: This conclusion will be established through the application of mathematical
reasoning on first principles.

For n =1 wehave |[K(1) | =1alsoF33 =1
So we can say |[K(1) | = F33
So result is true forn = 1

By hypothesis result is true for n < m (our hypothesis)



So we have |[K(m)| = F3 4 forall n <m
So we have |[K(m — 1) | = F3 41, [K(M — 2) | = F3 0, IK(M) | = F3 42
Now we will find that result is also true forn =m + 1
Consider |[K(m+ 1) | =|K(m) |+ |[K(m —1)| + |K(m — 2)|
So we have after the putting all above value

IK(m + 1) | = F3 4z + Fame1 + Fam
So we get

[K(m+ 1) | = F3n43

So resultistrue forn =m + 1
So proves the result is true for alln

4.4.7. Statement: - |Q(n) | = Fy 43 for alln > 1, where |Q(n) | is the determinant
of nth term of above define (1.6) sequence of matrix and F3 ,,43is (1 + 3)th term 4-
Fibonacci sequence of number.

Proof: - We will prove this result by principle mathematical induction.
For n=1 wehave |[K(1) | =1also F,, = 1.

So we cansay |K(1) | = Fy 4.

So result is true for n = 1.

By hypothesis result is true for n < m (our hypothesis).

So we have |Q(n)| = Fy 43 forall n<m

So |Q(m) | = Fymis lQ(m—-1)| = Fymi2, lQm—-2)| = Fyms1, lQ(m —3) | =
Fym

Now we will find that result is also true forn = m + 1.
Consider
lQ(m + 1) | =|Q(m) | +|Q(m — 1| + |Q(m — 2)| + |Q(m — 3).

So we have after the putting all above value



Q(m + 1) | = Fymez + Famiz + Famer + Fam:
So we get
IQ(m+ 1) | = Fymya-
So result is true forn = m + 1.
So proves the result is true for all n.

4.4.8. Statement: - |H(n) | = Fy p4x—1 for alln > 1, where |H(n) | is the
determinant of nth term of above define (1.7) sequence of matrix and Fj, ;4,118
(n+ k — 1)th term k-Fibonacci sequence of number.

Proof: - We will prove this result by principle mathematical induction.
For n =1 wehave |[H(1) | = 1 also F ) = 1.
So we cansay |[H(1) | = Fy .
So result is true forn = 1.
By hypothesis result is true for n < m (our hypothesis).
So we have [H(n)| = Fy 43 forall n <m.
[H(M) | = Fymar—1v [HM = 1) | = Finyr—zs e oo e [HM =k + 1) | = Fy .
Now we will find that result is also true forn = m + 1.
Consider |[Hm+ 1) |=|Hm) |+ |Hm—1)|+ -+ |[K(m —k + 1)|.
So we have after the putting all above value

[Hm + 1) | = Fmar-1 + Fomesr—2 + -+ Fomer + Figm -
So we get

|[H(m + 1) | = Femek s

So result is true forn = m + 1.

So proves the result is true for all n.



Chapter 5

Sequence of Complex Bilinear Transformations with

Coefficients as Fibonacci numbers

5.1 Introduction

This chapter deals with a sequence of complex functions of rational types with
coefficients as Fibonacci numbers, then proves many properties, results, and theorems
on these sequences of complex rational functions. Also, all terms of sequence in a
complex rational function are forming a bilinear transformation. We show that all
terms of sequence of a complex rational function are meromorphic functions and also
discuss the fixed points of all terms of sequence of a complex rational function and
the singularities of all terms of sequence of a complex rational function. So, this
chapter represent a special relation between two main branch of mathematics Number

Theory and Complex Analysis [33, 34, 36 and 40].

5.1.1 Fibonacci number sequence

Fibonacci numbers sequence for non-negative integer n = 2 is given by

fa= facrt fa2 (5.1)

with fy = 0and f; = 1.The terms of the Fibonacci sequence are called Fibonacci

numbers.

5.1.2 A Sequence generated by Fibonacci Numbers sequence

R, = fn—lfn+1 - fnz- (5-2)
By equation (5.2) we have

Ry = fof2 —f12 =-1,

R, = fifs —fz2 =1,

R3 = fofs —f32 =-1,



SO, W€ can observe
R, = (-D".
5.1.3 Bilinear Transformation

A complex mapping

az+b

w(z) = —1d (5.3)

where ad — bc # 0 is called the bilinear transformation mapping, a complex bilinear

transformation mapping a circle or line into circle or line.

5.1.4 Meromorphic functions

A complex variable a function which has no singularities other than poles so we can

say that a complex function is meromorphic possible singularities are only poles.

5.1.5 Conformal Mapping in Complex

A mapping which preserves the sense rotation as well as the magnitude of angle
between images of curves called the conformal mapping and there is a famous result a

mapping is conformal if it is differentiable and derivatives is non-zero.

5.1.6 Complex polynomials

A complex polynomial is one that can have constants and signs referred to as
variables or be indeterminate to a non-negative integer power. For those terms that
can be modified from one to another, if the normal characteristics of commutatively
are used, the distribution with addition and multiplication distributive is considered to
define the same polynomial. A complex polynomial within an indeterminate z may

always have to be generated in the following way [41, 42 and 44]
apz" + a,1z" M+t ayz? +a;z +aq

where a, , a4, ..., a, are constants and z is the indeterminate. The word intermediate

does not mean z represent is any unique value; but that any value will have to be



replaced by any value. The characterization that marks the product of this replacement

to the substituted value is a feature called the complex polynomial function.
n
z apzk.
k=0

So that is, there can be either zero polynomials or that can be defined as the sum of
the amount of nonzero. Each is a sum of the commodity of a numerical coefficient
and several indeterminate conditions brought to non-negative integer powers [46, 47

and 48].

5.2. Sequence of complex rational functions

Letz be any complex unknown and u(z) is any function of z given by below

1
u@) = ——, (5:4)
then we have,
1
(uou)(x) = — (5.5)
T+
Now we define
wy, (x) = (uououo ...ou)(x), (5.6)

Where (uououo ... ou) represent n time composition.

Rational function as recurrence relation sequence for integer n > 2, is defined by

1
wy(2) = 117 (5.7)
and
= ! 5.8
wp(z) = Trw @ (5.8)

Theorem 5.2.1: Ifw,,(z) is given by (5.8), then w,,(z) represented in the form of

Fibonacci coefficients by



foc1Z2+ fa
faZ + fos1

Proof: Principle mathematical induction can be used to prove this result.

wn(2) = (5.9)

If n = 1 by equation (5.1), (5.6) and (5.8) we will get

_foz+fi
1+z fiz+f,

w;(z2) =u(z) = (5.10)

So, for n = 1 the result holds.

Now consider for n = k result is true, let

fe-12 + fi
frz + fk+1.

Consider for n = k + 1 by equation (5.8)

wi(z) = (5.11)

1

wit1(2) = T+ welz) Wi Z)
by equation (5.8) we get

1
Wit (2) = —F o

frz+fr+1

on solving

fxZ + fis1
(fie + fee1)Z + frrr + fie

Wis1(2) =

we have

fxZ + frs1

w zZ)=——"",
e1(2) fr+12 + fraz

So, the result is true forn = k + 1, therefore the result is true for all integer n using

principle of mathematical induction.

Theorem 5.2.2: Ifw, (z)is defined by equation (5.9) then wy,(z) is meromorphic

function for all integer n.



Proof: To prove w,(z)are meromorphic function for all integer value of n we will

prove w,, (z) have singularities are poles for all wy, (z), for rational function wy, (z)

_p(2)
wy(2) = ﬁ'

Wherep(z) and q(z) are polynomials of degree one and z is complex variable.
If z, is singular point of w;,, (2)iffq(z,) = 0, by equation (5.8)

fenn
)

fr

Zg =

Clearlyp (— %) # Oandg (— %) = 0.

Theorem 5.2.3: Ifw,(z)is defined by equation (5.9) then w,(z) is bilinear

transformation for all integersn.

Proof: We know that the bilinear transformation mapping is defined by (5.3) and
comparing(5.3), and (5.9) we get
a=fo1b=fuc=fud=fo1
Using above terms
ad —bc = fpu_1fn41 — fnz-

So, we can say wy, (z) is bilinear transformation if

ad —bc = fu_sfosr —fa© #0,
by equation (5.2)

ad = bc = fyu_1fuss = fo* = Rp = (D",

which proves that

ad = be = fo_sfurr = fo” # 0.
So w,, (2)is bilinear transformation for all integer values of n.

Theorem 5.2.4: Ifw, (2)is defined by equation (5.9) then w;,(z) has same fixed point

for all integersn = 0.



Proof: We know that for fixed point z of w,,(2), w,(2) = z, by equation (5.9)

_ fa-1Z+ fa
fnz +fn+1’

fnzz —(foe1 —fas)z—fn =0,

wyp(z) =2z

(nﬂ—ﬁm)rﬁmq—nﬂﬂ+wf
zZ= )

2fn

et 5

zZ=—"

2fn

145
=——

V4

So, we can say that two fixed point of w,, (z) are:

_—1£45

d 2

Theorem 5.2.5: If w,(z)is defined by equation (5.9) then w,(z) are conformal

functions in the unit disc for all integer values of n.

Proof: We know that a mapping is conformal if and only if it is differentiable and

derivatives are non-zero; by equation (5.9)

w,(2) = fac1z2+ fn
" faZ + fos1’
alsow,, (z)is
_p(2)
wp(z) = E'

where p(2) = fr_12+ ., q(2) = frz + friqare degree one polynomials. So wy,(z)
is differentiable if and only if g(z) # 0.

On differentiating equation (5.9) with respect to z



fn—lfn+1 - fnz
(faz + frne)?’

by equation (5.2)

wn(z) = (5.12)

fn—lfn+1 - fnz #0

if
(faz + far1)? =0,
SO,
L _fan
fa

since f,, < faus1 » 2| > 1, therefore wy(z) is non-zero for all every z in unit disc,

which proved w,, (z) is conformal in unit disc.

Theorem 5.2.6: Ifw,(z)is defined by equation (5.9) then wy(z) is “bilinear
transformation” which maps unity circle into a circle center with on real axis for all

value of n.
Proof: If bilinear transformation mapping is given by (5.3) as

az+b
cz+d

w(z) =
where ad — bc # 0, we have pole of bilinear transformation is at

zZ=--
c

There is a famous result in complex algebra: if the pole of bilinear transformation
does not lie on the boundary of a circle, then bilinear transformation maps that circle

into a circle.

So, we have pole of

w,,(z) = o112+ fu
" faZ + fos1

at



s
fo

Since f;, < fn41> 80, 1z| > 1, we can say that the pole of w,(z) not lie on the

7z =

boundary of the unit circle. The result tells us that all values in the sharp image of the
unit circle |z| = 1 for the bilinear transformation wy,(z)in a circle. Compute the
transformation w;,,(z) and prove the image of the unit circle|z| = 1. If this is again a
circle centered on the real axis, then the proof of the theorem is complete. By equation

(5.8)

fac1z2+ fn

wn(2) = faZ + foe1’

Solving above equation we find value of z

- w
7 = M’ (5.13)
faW — fr-1
We know that equation of unity circle is|z| = 1. Using equation (5.13) in|z| = 1
Jo = fn1 W -1
JaW = fu1 '

|fo = fara Wl = foaw — fral,
|fo = farr w+ )| = [fu(u+ ) = fuasl,
(fa = farr W2 + (fara v)* = (it = fu-0)® + (o )%
(fars = fiDu? + (fisr = V2 + 2(facsfo = fafasr)u = fioa = fil,

Z(fn—lfn - fnfn+1) U= fnz—l - fnz
(fn2+1 - fnz) (fn2+1 - fnz)

Since in above equation coefficients are same for u? and v2.So we can say that it

u? + v+

represents a circle and coefficient of v is zero so centre must lic on real axis.
Therefore, we can say that “wy, (z)are bilinear transformation which maps unity circle

into a circle center with on real axis for all integer values of n”.



Theorem 5.2.7: Ifw, (z)is defined by equation (5.9), then “w,(z) is a bilinear
transformation that maps the upper half plane into the upper half plane for all even

values of n”.

Proof: If bilinear transformation mapping is given by (5.3) as

az+b
w(z) = cz+d
where ad — bc # 0 and z = x + iy.
Pole of bilinear transformation is at
d
zZ=——
c

There is a famous result in complex algebra: “if pole of bilinear transformation lies on

line bilinear transformation maps that line onto line”.

So, we have pole of

w,, (2) = fac1z2+ fn
" foZ + fos1
at
__fun
fo

Since f,, and f,,; are real z are also real valued so we can say that pole lie on real

axis.

We know that the equation of the upper half part of the plane is Im(z) = 0, soy = 0.
So, boundary of this reason is y = 0. By using result image of boundary is boundary.

Puttingy = 0 inw,(z2) = u +iv

facix+ fu

utiv=——————
faX + fas



on comparing real with real part and imaginary part with imaginary part, we obtained
v = 0 therefor image of y = 0 is v = 0. Now there are only two possibilities for

image either image of y > 0isv > 0 orv < 0.

For finding image of y > 0, we will use trial method for this put z = i in w,,(z)we
have

fac1lt

) =

on rationalizing the denominator

fn—l i+ fn x fn+1 - ifn
fni + fn+1 fn+1 - ifn’

Wn(i) =

on Solving

(fnfn+1 + fn—l fn) + (fn—l fn+1 - fnz)
(s + )

Wn(i) =

)

by equation (5.2)
R, = (-1)",
since we working only on even value of n

R, = fn—lfn+1 _fnz =1>0.

So, that values of w,, (i) lies in v > 0, which proves the theorem.

Theorem 5.2.8: Ifw, (z)is defined by equation (5.9), “then w,(z) is a bilinear
transformation that maps the upper half plane into the lower half plane for all odd

values of n”.
Proof: If bilinear transformation mapping is given by (5.3) as

az +b
Y=

where ad — bc # 0 and z = x + iy.

Pole of bilinear transformation is at



There is a famous result in complex in complex algebra if pole of a bilinear

transformation lies on line bilinear transformation maps that line onto line.

So, we have pole of

w.(z) = foc1Z+fa
" foZ + fos1
at
_ _fm
fo

since f,, and f,,,, are real then we can say that z is real value, so we can say that pole

lie on a real axis.

We know that the condition of the upper-half plane is Im(z) > 0, so y = 0. So,
boundary of this reason is y = 0. By using result image of boundary is boundary.

Puttingy = 0 inw,(z) = u +iv

facix+ fu

u+tiv= :
faX + frs1

Comparing the real and imaginary parts givesv = 0,so the image of y = 0 is v = 0.
Now there are only two possibilities for image either image of y > 0 is v > Oor
v <0.

For finding image of y > 0, we will use trial method for this put z = i in w,,(2)

fa1l+ fu

) = Ty

on rationalizing and solving

(fnfn+1 + fn—l fn) + (fn—l fn+1 - fnz)
(fir + 1) '

Wn(i) =

by equation (5.2)

R, = (=17,



since we are working on only odd value of n we have

R, = fn—lfn+1 _fnz =-1<0.

So, that values of w,, (i) lies in v < 0, which proves the theorem.



Chapter 6

Relations between Chebyshev Polynomials and Hermite

Polynomials

6.1 Introduction

In this chapter, we have obtained the relation between the “Chebyshev polynomial of
the second kind” and Hermite polynomials of two variables, also the generating

function is obtained with the help of the Hermite polynomial [8, 49 and 51].
6.2 Relations between Chebyshev Polynomials and Hermite

Polynomials

“The Chebyshev polynomial of the first kind {T,(x)} and the second kind {U, (x)}”

for all integers n = 0 are given by
Tni2(x) = 2xT (x) — T (), Ty (x) = x, To(x) = 1. (6.1)
Un42(x) = 2xUp11(x) — Uy (x), U (x) = 2x, Up(x) = 1.(6.2)

Then the explicit representation of T, (x) and U, (x)are respectively

T, (x) = ZZ(— )k gj( i 23 (20" %, |x] < 1. (6.3)
and

E] n—k-1)
U, (x) = kZ()(—ka(Zx)n—Zk, x| < 1. (6.4)

If we take x = cosy, then

T,,(cosy) = cos(ny). (6.5)



sin(n+ 1)y

6.6
siny (6.6)

Up(cosy) =

In analysis, Chebyshev polynomials show integral representations of the
Hermite polynomials and the generation process will add the new representations of

Chebyshev polynomials.

Proposition 6.2.1. If T, (x), U, (x) are Chebyshev polynomials defined by (6.1), (6.2)
and H, (x,y) two-variable Hermite polynomial then [52, 53]

+00

1 _ 1
U,(x) = Ef e tt”Hn(Zx,—?)dt. (6.7)
0
and
1 [ 1
T,(x) = mf e'tt"Hn(Zx, —?)dt. (6.8)

0

Proof: By taking note of this

n! =fe_tt”dt.
0
Replacingn byn — k
(n—k)! = f etk de. (6.9)

0

For H,(x,y) and U, (x) the explicit forms are

2
) )"

Lkt 2ir (6.10)

H,(x,y) =n!



5]
U, (x) = Z (=D - k)! (zx)n-z;c'
k=0

K1 (n = 21! (61D)
In equation (6.9) replacing x by 2x and y replacing by — % we will get
I k 2k 4~k
H (2 1) o (D) @x)" =%t~ 612
n\SoTy) T Kl (n—2K)! (612)

k=0

if e~tt™ is multiplied both sides of equation (6.11)and integrating in the limit 0 to oo

we will get

n

2
*© 1 (—1)k(2x)”‘2kf°°
—tin _ — | -t yn—k
fo e 't"H, (Zx, t) dt n.k:0 k(= 201 . e tt"Rdt, (6.13)

by using equation (6.9) we will get

e 1 2 (—Dk2x)" 2k (n — k)!
fo et Hy <2x‘_?)dt: "!Z -2k

k=0

by equation (6.11) we have
+00
1 tem 1
U,(x) = EJ e 't Hn(2x,—?)dt.
0

which proves the result.

Theorem 6.2.1: If T,,(x), U,(x) are Chebyshev polynomials defined by (6.1), (6.2)
then:

d
T Up(x) = nWp,_4(x),

Un+1(x) = an(x) - Wn—l(x):

n
n+1



WEre

400

1
f e ‘t"1H, (2x, — ?)dt.
0

W,(x) =

(n+1)!

Proof: From preposition 6.2.1 H, (x, y) can be costumed as follows:

10 1 1
[ZX — ?% Hn (ZX, —;) = Hn+1 (Zx, —?), (614)
10 1 1
E%Hn (Zx, —;) = TLHn_1 (2X, —?) (615)

First, we will prove identity (6.14) and (6.15), consider

n-1

) n-1
OH, (2%, — ) . 2 (—1)k(2x)n2k-1¢k
200 v L K@m—2k-D

s0, by equation (6.12) we have

10 1 1
2wt (20-5) =ty (20-).
Which proves (6.15) in the same way we can prove (6.14).

It obtains integral representations in the relations of Chebyshev polynomials and by

equation (6.15)

+00
d _2n —ten 1
aun(X) —FJ‘ e 't Hn(Zx,—?)dt. (616)
0
+ 0
dT()— e f g (2% — Dyt 6.17
dx n\X) = (n—l)' e n—1( X, t) ' ( ' )

0

The relation above provides a link between polynomials U, (x) and H,, (x), however,

as



+ 00

1
f e 't"H,_,(2x,— ?)dt.
0

1

Up—1(x) = (n—1)!

By using the second kind of Chebyshev polynomial equation (6.7) in the first
identity (6.16)

+o00

1
Upir(x) = e tt"1H,  ,(2x,— ?)dt,

|

0

using the relation

10 1 1
2x + ——] H, <2x, _t) =Hy41 (Zx, - —),

—tox — t
we have
+00 1
_ —tyn+1 _=
Un+1(x)—x(n+1)!f e "t""'H,(2x, t)dt
0
+00
! f ‘tt"aH 2 1dt
(n+ 1) € ox n (2%, t) ’
0
using
10 u (2 1y H ) 1
3w (20.-3) =t (26 -7),
We obtained
+00
Uppr1(x) = x 2 e 't"1H, (2x —l)dt
T T o+ 1) T
0
+00
2n J “H"H,_1(2 ! dt 6.18
(n_l_ 1)| e n—1( x'_t) . ( . )

0

From R.H.S second term of (6.18) given following polynomial



+ 00

1
f e tt"1H, (2x, — ?)dt.
0

replacingn by n — 1,

2 1
Wn_l(x) = W,f e‘tt"Hn_l(Zx, —?)dt,
0

so, we obtained

d
E Un (X) = an—l(x):

and

Unsa (1) = XWo (3) = ——= W1 ().

Which proves the theorem.

6.3 Generating functions of Chebyshev polynomial by Hermite

polynomial

The second type of Chebyshev polynomial can draw a slightly different links from
Hermite polynomial and their generating functions. Both sides of the equation (6.7)

are multiplied by ", [¢] < 1 and over n taking summation [57, 58, 59 and 61]

i §" Up(x) = J;ooe_ti (f?n Hy <2x, - %) dt, (6.19)
n=0 n=0

by remembering the polynomials

+00 n i
—_ — ,(xt+yte)
n=0

in (6.19) and solving we get



+00 1
;E M

which is required generating function for U,, (x).
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Chapter 7
Applications of Recurrence Relations

7.1 Introduction

In this chapter, applications of recurrence relations in network marketing are
discussed with some limitations imposed on the problem. In the later parts of the
chapter, the application of recurrence relations, especially Fibonacci numbers, and the
reproduction mechanism of honey bees are verified, and Fibonacci numbers in blooms

are viewed [63, 65 and 66].

7.2 Application of Recurrence Relation in Network Marketing

People are compensated in network marketing not only for the work that they produce
themselves but also for the work that is generated by other employees who report to
them. Because of the hierarchical structure and the network of distributors, one type
of business model for networks is referred to as a "down line model." This model
includes numerous levels of compensation for distributors. The problem that is being
discussed is that certain limitations, such as the percentage distribution of profit,
should be such that the roots of the polynomial for which the recurrence relation is
defined must be distinct; any worker cannot leave the business; workers should be
honest; and there is an assumption that every worker can only take one worker under

him. These limitations should be met [67, 68 and 69].

In its early stages, network marketing was primarily focused on the sale of nutritional
supplements, cosmetics, and household goods. The concept was first introduced in the
1950s, and by the 1980s, network marketing businesses had expanded to include
companies that specialized in providing long-distance telephone services and

insurance [70, 71 and 76].

There are a wide variety of business platforms available for use in network marketing.
Word-of-mouth marketing and relationship referrals are two of the most common

ways that employees offer products directly to customers in most of these businesses.



The majority of businesses in the network marketing industry focus on providing
opportunities to people who, in other circumstances, might not have them, including

individuals who are [10]

e Less certainty in running their claim trade.

e Have exceptionally little sum of cash to invest.
e With current work level, people are not happy.
e Own businesses were not running successfully.

MLMinIndia g

Compliance Checklist

Compensaton Plans
Figure 7.1 Network Marketing Tree

7.2.1 Theorem on recurrence relation sequence

Recall the Theorem 2.2.1, we have

For real numbers c;, ¢, and let

x2—c;x—c, =0, (7.1)
having distinct roots x; and x, are distinct roots.

Then the sequence < a, >has solution

Ap = C1Qp_q1 + €20y N = 2, (7.2)

with initial terms ay = A4, a; = A,.
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iff
an = B1x1 + Box7,
Forn = 0,1, 2, ..,and forrandom constants 3, and f3,.

Preposition 7.2.1: Allow a man A to begin his network business by taking on the task
of a man B under him, and A must agree to share 50 percent of his profit with B.
Now, B will be responsible for the labor of a man C under him, and C will receive
35% of B's profit while A receives 2% of B's profit. Now let's say that C hires D to
work for him, and under this arrangement D receives 35% of C's profits while C
receives 2% of D's profits. If there are one hundred individuals working in this
network business, then each working man will receive 35% of the profits earned by
his immediate predecessor, as well as 2% of the profits earned by his immediate
predecessor's immediate predecessor. If the profit of man A is Rs. 400,000, then you

need to figure out what the profit of man 10 is.

Solution: let a,is the profit of the man A and a, is the profit of man B and a,, is the
profit of the n™ man. Then by given condition we have a; = 400000 and a, =

200000

35 2

a, = man_l + man_z,n > 2. (73)

The characteristic equation of (7.3) is

, 35 2

X —mx—m=0, (74’)

Solving equation (7.2) we have % and — %then using above theorem 7.2.1 we have

2 1
an = BIQ" + B (=55

by given condition forn = 1,2
1 1

B, (é) + B, (—%) — 400000, (75)

2 2

B, @ + B, (—%) — 200000, (7.6)



Solving (7.5) and (7.6) we have

_ 11000000
1= 9 )
and
16000000
=Ty

By theorem 7.2.1 we can write

_ 11000000 2~ 16000000 1

n 9 5 T ~20

so putn = 10 we have a;, = 128.15

profit of any worker in the network line can be find out using above method.

Limitation:

e The percentage distribution of profit should be such that the roots of a
polynomial must be distinct.

e Any worker cannot leave the business.

e Work should be honest.

e There is an assumption every worker can take only worker under him.

7.3 Amazing Applications of the Fibonacci Numbers

“The Fibonacci numbers” and the associated "Golden Ratio" are shown in nature and
in specific show-stoppers. We study those huge numbers in nature and pursue the
Fibonacci sequence. It shows up in biological settings, for example, in the fanning of
trees, phyllo taxis (the course of action of leaves on a stem), the natural product
sprouts of a pineapple, the blooming of an artichoke's uncurling greenery, the game
plan of a pine cone's bracts, and so on. At present, Fibonacci numbers assume a

significant role in coding innovation hypotheses.

7.3.1 Reproduction mechanism of Bee’s

The reproduction mechanism of Bee model is much more realistic as far as the
Fibonacci numbers are concerned. The Fibonacci numbers were first uncovered by a

man named Leonardo Pisano. He was notable for his Fibonacci. The Fibonacci



sequence is a sequence wherein each term is the aggregate of the two numbers going

before it [4]. By equation (1.7)

fa = fa-1+ fa-2

For integersn > 2, wheref, = 0, f; = 1 andf,, represents the nth Fibonacci
number.[39]

Reproduction in bees is flawlessly described by Fibonacci numbers. The Fibonacci
numbers verify numerous unusual characteristics of a honeybee's family. Honey bees
have some unusual facts, such as the fact that not every one of them has two parents.
The queen is a unique female in the honeybee community. There are numerous
working drones who are female, not at all like the queen honey bee; no eggs are
produced by them. There are some male automaton bees who do not work.
Unfertilized eggs from a queen's ovaries produce males, so male bees just have a
mother. Females are formed when a queen bee mates with a male, so a female bee has
two parents. Females usually become worker bees, so a female bee has both a male
and a female parent, while a male bee has only one female bee as parent. Based on all
the above facts, relations between the reproduction mechanisms of bees and Fibonacci

numbers are discussed [79, 80, 81and 82].

Queen bees lay eggs only if the eggs are: Fertilized or Non fertilized then respective
bees are Workers females or Drones— males respectively.

Figure7.2: Honey bee with eggs.
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Bees?

Male bee’s family tree generation  female male total
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Figure 7.3 Male bee’s family tree
- Male - Female

JLES. :
v s

Figure 7.4: Family of Male and Female bees.

The ration to two consecutive Fibonacci numbers second divided by first is called
Golden Ratio, the value 1.618 is Golden Ratio. Honey bees are shown by both
Fibonacci numbers and the Golden ratio. The Fibonacci numbers are very much
represented in honeybees. For instance, on the off chance that you pursue the family
tree of honeybees, it follows the Fibonacci sequence splendidly [3, 8]. On the off

chance that you have taken any hive and pursue this pattern, it would resemble this



Table 7.1 Honey bee and Fibonacci numbers.

Number Parents Grand Great Great - Great - Great -
Parents Great Grand | Great Grand
Grand Parents Parents
Parents
Male bees 1 2 3 5 8
Female bees | 2 3 5 8 13

Dividing the number of females by the number of drones yields the golden ratio of
1.618. This series of numbers works randomly for each bee hive. Usually, honeybee

hives are always used to clarify the Fibonacci sequence and the Golden Ratio [5,9].

o”—|—§g glg OZTQ
P ITE
F—T—29
7
o}

Figure 7.5 Honey Bee family Tree.

Now let's take a gander at the male honey family tree of a bee called A. A (symbol at
the base of the tree for male, a hover with over a bolt) parent as one (female honey
bee represent the queen honey bee symbol, a hover over across) a queen honey bee
has two parents. This means grandparents of A were two. His granddad will just have
one parent, while his grandma will have two, so altogether there were three great-
grandparents of A. One of which will be male and, along these lines, have one parent,
whereas the other two are female and, in this way, have a total of four parents. So, the
total count of great-great-grandparents of A was five. Proceeding with this, one can
find that the great-great-great-grandparents of A were eight, the great-great-great-

great grandparents were thirteen, etc. Again, it is the Fibonacci sequence [8].
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Table 7.2: Sequence of Drone and Worker or Queen Bee’s as Fibonacci numbers.

Generation Drone Worker or Queen
1 1 2
2 2 3
3 3 5
4 5 8
5 8 13
6 13 21

7.3.2 Fibonacci Sequence in the home garden

Fibonacci numbers can be stated in nature in lovely blossoms, on the leader of a
sunflower and the seeds are pressed with a particular goal in mind so they pursue the
example of the Fibonacci sequence. This winding keeps the seeds of the sun-flower
from swarming themselves out consequently helping them with endurance. The petals
of blossoms and different plants may likewise be identified with the Fibonacci
sequence in the manner in which they make new petals [5]. Fibonacci can be
originating in nature. It can be seen in the following flowers, leaf and in vegetables
that daily we are consuming. God created the flowers with 3 petals,5 petals,8 petals so

on. It is in the Fibonacci sequence [6].
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Figure 7.7: 3 petals flowers.
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Figure 7.8: 5 petals flowers.

Figure 7.9: 8 petals flowers.
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Figure 7.11: Sseeds count of fruit.

Figure 7.12: Fibonacci numbers on Pineapples.
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Summary and Conclusions

In the first chapter, we provide an overview of the recurrence relations of numbers
that make up history, as well as their applications in a variety of different disciplines.
In addition, we make a cursory review of a few key definitions and well-known
results that are required to some degree in order to proceed to the consecutive

chapters.

In chapter 2, we demonstrated how the roots and terms of recurrence relations of the
first, second, third, fourth, and kth orders are connected to one another. In addition,
the results on particular kinds of recurrence relations, such as those involving
Fibonacci polynomials and Chebyshev polynomials, have been obtained, and some of

these findings are as follows:
e For arbitrary real numbersc; and c,, if x; and x, are different roots of

x2—cix—c, =0,
Then sequence < a, >has a solution
Ap = C10p_1 + 205N = 2,

with given initial terms a, = A; and a; = A,, if and only ifa, = fx{ +

B2x3,
for arbitrary constants ; and f3,.
e For random real numbers c; and c, the sequence < a,, > has a solution
ap = C10p—1 + C2an N 2 2,

with given initial terms ay, = A; and a; = A4,, if in equation above
sequencec;and ¢, are such that roots of x2 — ¢;x — ¢, = Oare distinct and
greater than 1 and satisfied the condition A;x; > A, and A;x, < A,then

recurrence relation sequence must be divergent.

e For real numbers c;, ¢,, and cslet

x3—cx?—cx—c3 =0,



Has distinct roots x4, x, and x3. Then sequence < a,, > has a solution

Ap = C1Ap_q + C20p_5 + 30,3, = 3,
with given initial terms ap, = A, a; = A,, and a, = As.

iff
an = P1x7 + Boxz + P33,
forn = 0,1, 2, ..., with arbitrary constants 5, f,and 3.
For real numbers c¢,, c,, c3,and c,and let
x* —cyx® —cx? —c3x — ¢, =0,

Has distinct roots x4, x5, x3 and x, . Then the sequence < a,, > is a solution

of the recurrence relation
Ap = C10p_q + 2055 + 30,3 +C4a0y_4,N =4,

with given initial terms aq = A, a; = A,, a, = Az, and a; = A,.

an = P1x1 + Boxz + Paxy + Paxy
forn = 0,1, 2, ..., with arbitrary constants 31, 5, 53 and B,.
For real numberscy, c5, c3, ..., Ck, let
xk —cx® Tt —cxk"2 L~ =0,
have distinct roots x4, x5, x5 ..., X; . Then the sequence < a, >has a solution

Ap = C1Qp_q +C2ap_5 + 3053+ - .+ Oy, N > K,

with given initial terms ag = A1, a; = 43, a, = Az, ..., Q-1 = Ag.



iff
an = Prx1 + Boxi + Baxi + -+ + Prxi
forn = 0,1, 2 ...with arbitrary constants 3, 52, B3 ... Pk-

In Chapter 3 we have worked on recurrence relation of rational function in the form of
composition function have terms Fibonacci numbers or Generalized Fibonacci
numbers, then we have considered a set based on the defined composition function

and properties of group are verified, the main results of the research outcomes are

e Ifu:(0,00) — (0,1)is real valued function given by

1

u(x) = 1+

u(x) Continuous in its domain. The co-domain of u is a subset of the domain
of u, so consider function

@ou)(®) = —

1+x

Then z,,(x) = (uououo ...ou)(x).
The recurrence relation sequence of rational function is

2 =ut) = o,
and
1

n(x) = 1+ Zn—l(x)’
For integer n > 2.
Then, z,,(x) is

2, (x) = fo1x+ fu

" faX + faed

where f; ith Fibonacci number and z,(x)nth term of sequence of rational

function. For n € N, the codomain of z,,(x) is



= (min {2, 2 ma 22, )

LetI:(0,0) - (0,00),I(x) = x and Let G be set of all z,(x) for alln € N
and including I function, then with respect to composition operation given by
equationz, (x) G is cyclic group.

If v: (0,0) — (0,1)a function with real value given by

v(x) =

q+x

where g in any positive integer, v(x) continuous on its domain and codomain

of u 1s subset of domain of u. Considered function
1
wov)(x) =———,
+
q+x
And defined wy,(x) = (vovovo ...ov)(x).

Recurrence relation sequence of rational function is

W) = v = —
1
S Er—eo)

for all integern > 2.

Now, verify that each member of this family has the same coefficient as the
generalized Fibonacci number. If we takep =q, g =1, a=0, b =1, by
equation (3.3) we have generalized Fibonacci sequence

Fo=qFn-1+ Fhs,
Vn=>2,Fy =0 F;, = 1,where q is any positive integer, then proved that

F,_1x+E

X)) =45 ——F%=
Wn( ) an+Fn+1

Where F;, ith generalized Fibonacci number, wy,(x)nth term of equation
sequence of rational functions.



e Then proved the result that w,, (x) is monotonic function.

e For integern € N, the range set B, of z,(x) is B, = (% i)for oddnand
n n+1
B, = (F:’:l , F’Fl;l)for n even.
e Letl:(0,00) > (0,0): I(x) = x, considerH set of all w,(x)Vn €N and
including I function, then H is cyclic group with respect composition
operation given by wy, (x).

In Chapter 4, we have worked on the sequence of tri-diagonal matrices for generalized
Fibonacci polynomials, Fibonacci numbers, and Chebyshev polynomials, defining the
sequence of tri-diagonal matrices for different cases, and proving the results for

corresponding recurrence relations. The main results are:

o Forn € N, sequence of tri diagonal matrix {A(n) = [gn,n]} is

gij = ax if j=1i
gl’}_ gi,j:1 lfj+1:l’
gij =0 otherwise
so, that
ax —b 0 0
1 ax -b 0
A) =| 9 1 ax
ax —b
0 O 1 ax

Then determinants of A(n) is
|A(n)| = gn,nlA(n - 1)| - gn,n—lgn—l.nlA(n - 2)|

Let |A(n) | = G,,41 Vn = 1, where |A(n) |the determinant of A(n) and
Gp41is (n + 1)th term of generalized Fibonacci sequence ofpolynomials.

e We have a sequence of tri-diagonal matrices,{C(n) = [hn,n]}
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hi,j:x lf]:l

[his] = hij = if j+1=i(
hij =0 otherwise
x -1 0 0
1 x -1 0
cm) =9 L x
x -1
0 0 1 X

Then determinant of C(n)is
|C(n) | = hn,nlc(n -1) | — hn,n—lhn—l,nlc(n - 2)|.

Proved the result that |C(n) | = F,,41(x), V integersn = 1, where |C(n) | is

the determinant of C(n) and F,;;(x) is (n + 1)th term Fibonacci sequence

of polynomials.

For n € Nwe define a sequence of tri diagonal matrices {D(n) = [qnn]}

qij = a if j=1i
[”]_ qi,jz—b lf]—1=l
ql']_ qi,j:]- lf]+1:l'
q;j =0 otherwise
so, that
a —-b 0 0
1 a -b 0
D) =9 1 @ L
vee eee e we a —b
o o0 - e 1 a

Then determinants of D (n)is

|D(TL) I = qn,nlD(n - 1) | - qn,n—lqn—l,nlD(n - Z)I
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Proved the result |D(n)|=V,,; V integers n =1 where|D(n) |the
determinant of D(n) and V,,qis (n+ 1)th term of a certain case of

generalized Fibonacci sequence.

e For sequence of tri-diagonal matrix {R(n) = [li, j]}

li,j = ZX lf ] =1
[i'j]_ li'jzl lf]+1:l’
lij=0 otherwise
2x 1 0 0
1 2x 1 0
Rm) =| 0 1 2x i
2x 1
0 0 1 2x

Then determinant of R(n)is
IR(n) I = ln,n |R(n - 1) | - ln,n—lln—l,n |R(n - 2)'

Proved the result|R(n)| = 2T,for integer n = lwhere|R(n)| is the

determinant of R(n)and Ty,is nth term of Chebyshev polynomials

In Chapter 5 we have mainly focuses onw,(z) the sequences of complex ration
functions with coefficients as Fibonacci numbers, verifying properties of bilinear

transformations for w, (z), the main research outcomes are:

e Letz be any complex unknown and u(z) is any function of z given by below

1

u(z) = 1+7

then

1
(uwou)(x) = 1+—1,

1+z
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Now we define w,, (x) = (uououo ...ou)(x). Then Recurrence relation
sequence of rational function is defined as

1
wy(z) = 1+7
and
()= —
WnlZ) =7 + w,_,(2)

for all integersn = 2, then we have proved that w,,(z) represented in form of
Fibonacci numbers by

fac1z2+ fn

wn(2) = foZ + fre1

e The next result proved that w,(z) is a meromorphic function for integer n >
0.

e Then we have proved that wy, (z) is bilinear transformation for integer n > 0.

e The fixed points of w,(z) for all integer values of n are discussed, and they

are

—1+£45

z=—"F0

e Then proved the result thatw,, (z) are conformal functions in unit disc for all
integer value of n.

e Next result we have proved that “bilinear transformationw,(z) maps unity
circle into a circle center with on real axis for all value of n”.

e Then a “bilinear transformation, which w;,, (z) maps the upper half plane into
the upper half plan for all even values of n” is discussed.

e Last result in this chapter is “bilinear transformation w;,,(z) maps upper half

plane into lower half plan for all odd values of n”.

In Chapter 6 we have obtained the relation between the Chebyshev polynomial of
second kind and Hermite polynomials of two variables, also the generating function is

obtained with the help of Hermite polynomial, main results are:



o If T,(x), Uy,(x) are Chebyshev polynomials and H,(x,y) two-variable

Hermite polynomial then we integral characterization

+ 00

1 Cten 1
U,(x) = mf e 't Hn(Zx,—?)dt,
0

and

[ee)

1 1
Tn(x) = mj e_tthn(zx, _?)dt-
0

e IfT,(x), U,(x) are Chebyshev polynomials then:

d
a Un (x) = an—l(x)'

Ups1(x) = xW, (x) — Whp_1(x),

n
n+1
were

+ 00

1
f e “t"1H, (2x,— ?)dt.
0

e Generating functions of Chebyshev polynomial by Hermite polynomial

zin U,(x) = f;we—tz (1;2” H, (Zx, - %) dt.

by remembering the polynomials of the

+o0
t” (xt+yt?)
EHn(x, y)=e )

n=0

on solving we get



Z U (0) = ZEx 1-2¢x + &2

which is required generating function for U, (x).

In Chapter 7 applications of recurrence relation in network marketing with some

limitation imposed on the problem is discussed. In the later parts of the chapter,

applications of recurrence relations, especially Fibonacci numbers, and the

reproduction mechanism of honey bees are viewed, main results are

On the basis of the following theorem:

For arbitrary real numbers c;and c,, if x; and x, are distinct roots of

2

x“—cx—c, =0.

Then the sequence < a,, >has a solution

A, = C1anp_1 + C2a,_on = 2,
if and only if a,, = Byx* + B,x}, with arbitrary constants §; and f3,, problem
of network marketing is proposed and solved with the limitations

v The percentage distribution of profit should be such that the roots
of polynomial must be distinct.
v Any worker cannot leave the business.
v Work should be honest.
v There is an assumption every worker can take only worker under
him.
The reproduction mechanism of bees was studied in view of Fibonacci
numbers. There are numerous unusual features of honeybees, and we have
shown how the Fibonacci numbers tally a honeybee's family.

Then applications of Fibonacci numbers nature in lovely blossoms, on the

leader of a sunflower and the seeds, petals of flowers are reviewed.



Future and Scope

(1) The relation between the roots and terms of recurrence relations of may be discussed
for Jacobsthal polynomials, Pell polynomials, and orthogonal polynomial of third and
fourth kind.

(2) Recurrence relation of rational function in the form of composition function have
terms Lucas numbers, Generalized Lucas numbers can be defined and properties of
group can be verified.

(3) wy,(2) the sequences of complex ration functions with coefficients as Lucas number

can be defined and try to prove some properties ion view of complex analysis.

(4) Relations between different orthogonal polynomials in the view of recurrence

relations may establish.
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