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Abstract 

The proposed research work entitled "PROPERTIES AND APPLICATIONS OF 

RECURRENCE RELATION OF SEQUENCE OF NUMBERS AND 

POLYNOMIALS” is motivated by the recurrence relations of sequence of the 

numbers and polynomials. 

The study of recurrence relations is an important part of Number Theory that 

has attracted attention from researchers in areas as diverse as physics, economics, and 

computer science. The Fibonacci sequence, the Luca sequence, the Chebyshev 

polynomial sequences, and the Pell numbers are all special cases of recurrence 

relation sequences with specified initial terms that appear in the field of number 

theory. An equation that describes a sequence in terms of a technique that provides 

the next term as a relation of the previous terms is called a recurrence relation. 

Because the next term in a recurrence relation depends on the previous term, they are 

used in mathematics as well as economics, physics, and other fields and are very 

helpful in solving real-world problems. Recurrence techniques allow us to compute 

growth in economics and many other disciplines. The recurrence relation method can 

be used to handle a wide variety of real-world problems that can be expressed as such. 

Many issues that arise in the network marketing industry can be addressed with the 

help of recurrence techniques, as network marketing is a specific case of recurrence 

relations. For a recurrence relation to yield any term of a sequence, we would first 

have to locate all of the terms that came before it; however, with the help of the theory 

presented in this thesis, we can locate any term of the sequence. The first chapter of 

this thesis provides a general overview of recurrence relations of numbers, which 

form the basis of history and have many practical uses. Some basic definitions and 

well-known findings that are required reading for the following chapters are also 

reviewed. 

Chapter 2 discusses the relation between the roots and terms of recurrence 

relations of the first, second, third, fourth, and 𝑘th orders, as well as the results on 

some special kinds of recurrence relations like Fibonacci polynomials and Chebyshev 
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polynomials. For 𝑘th order recurrence relation, let 𝑐ଵ,  𝑐ଶ, 𝑐ଷ, … , 𝑐௞   are real numbers 

taken be arbitrarily and the equation is supposed  

𝑥௞ − 𝑐ଵ𝑥௞ିଵ − 𝑐ଶ𝑥௞ିଶ … − 𝑐௞ = 0, 

has 𝑥ଵ, 𝑥ଶ, 𝑥ଷ … , 𝑥௞ roots which are distinct in nature. Then the sequence 

< 𝑎௡ >  is a solution of   

𝑎௡ = 𝑐ଵ𝑎௡ିଵ + 𝑐ଶ𝑎௡ିଶ + 𝑐ଷ𝑎௡ିଷ + ⋯ … + 𝑐୩𝑎௡ି୩ , 𝑛 > k, 

𝑖𝑓𝑓 

𝑎௡ = 𝛽ଵ𝑥ଵ
௡ + 𝛽ଶ𝑥ଶ

௡ + ⋯ + 𝛽୩𝑥୩
௡, 

for 𝑛 =  0, 1, 2 …, and for arbitrary constants 𝛽ଵ, 𝛽ଶ, 𝛽ଷ … 𝛽୩. 

The above result is like a milestone in generalizing the concept of obtaining a 

recurrence relation for any polynomial. 

In Chapter 3, the recurrence relation of the rational function 𝑤௡(𝑥) in the form 

of composition function is defined, having terms as Fibonacci numbers or Generalized 

Fibonacci numbers, which is defined as 

 

 

 

𝑤௡(𝑥) = (𝑣𝑜𝑣𝑜𝑣𝑜 … 𝑜𝑣)(𝑥), 
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then a set 𝐻 is considered on the basis of the above-described composition, and 

properties such as closure property, associate property, existence of identity, inverse, 

and cyclic group are verified. 

In Chapter 4, the sequence of tri-diagonal matrices for Generalized Fibonacci 

polynomials is defined as ൛A(n) = ൣ𝑔௡,௡൧ൟ, 𝑛 ∈ 𝑁: 

ൣ𝑔௜,௝൧ =

⎩
⎪
⎨

⎪
⎧ 𝑔௜,௝ = 𝑎𝑥     𝑖𝑓  𝑗 = 𝑖

𝑔௜,௝ = −𝑏  𝑖𝑓 𝑗 − 1 = 𝑖

𝑔௜,௝ = 1  𝑖𝑓  𝑗 + 1 = 𝑖

𝑔௜,௝ = 0  𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ⎭
⎪
⎬

⎪
⎫

.  

so, that  

 

Then determinants of 𝐴(𝑛)are  

 

and proving the results that the above matrices are generating matrices for obtaining 

corresponding recurrence relations. Also, the sequence of tri-diagonal matrices for 

Fibonacci numbers, Fibonacci polynomials and Chebyshev polynomials is discussed, 

and the corresponding theorems for obtaining the recurrence relation with the help of 

generating matrices are proved.       

Chapter 5 mainly focuses on the sequences of complex rational functions with 

coefficients as Fibonacci numbers. 
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Here 𝑧 be any complex unknown and 𝑓௡ Fibonacci numbers for non-negative integer 
𝑛 is:  

𝑓௡ =  𝑓௡ିଵ + 𝑓௡ିଶ,  

with 𝑓଴ = 0, 𝑓ଵ = 1, for 𝑛 ≥ 2. 

Proving that 𝑤௡(𝑧) is a meromorphic function, 𝑤௡(𝑧) is bilinear transformations that 

map a unity circle into a circle center with on the real axis for all values of 𝑛, 

obtaining fixed points for 𝑤௡(𝑧) for any 𝑧 and 𝑤௡(𝑧) is conformal functions in unit 

disc for all integer values of 𝑛. 

In Chapter 6, the relations between the “Chebyshev polynomial of the second 

kind” and Hermite polynomials of two variables are discussed. If for Chebyshev 

polynomials 𝑇௡(𝑥), 𝑈௡(𝑥) and two-variable Hermite polynomial 𝐻௡(𝑥, 𝑦) then  

𝑈௡(𝑥) =
1

𝑛!
න 𝑒ି௧𝑡௡𝐻௡(2𝑥, −

1

𝑡

ାஶ

଴

)𝑑𝑡, 

𝑇௡(𝑥) =
1

2(𝑛 − 1)!
න 𝑒ି௧𝑡௡𝐻௡(2𝑥, −

1

𝑡

ஶ

଴

)𝑑𝑡, 

𝑑

𝑑𝑥
𝑈௡(𝑥) = 𝑛𝑊௡ିଵ(𝑥), 

𝑈௡ାଵ(𝑥) = 𝑥𝑊௡(𝑥) −
𝑛

𝑛 + 1
𝑊௡ିଵ(𝑥), 

were 

𝑊௡(𝑥) =
2

(𝑛 + 1)!
න 𝑒ି௧𝑡௡ାଵ𝐻௡(2𝑥, −

1

𝑡

ାஶ

଴

)𝑑𝑡. 
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Also, for the “Chebyshev polynomial of second kind” the generating function is 

obtained with the help of Hermite polynomial 

෍ ξ௡

ାஶ

௡ୀ଴

𝑈௡(𝑥) = න 𝑒ି௧
ାஶ

଴

෍
(𝑡ξ)௡

𝑛!

ାஶ

௡ୀ଴

𝐻௡ ൬2𝑥, −
1

𝑡
൰ 𝑑𝑡. 

In the last chapter, examples of how recurring relations can be used in NM are 

presented. In network marketing, people are compensated not only for the work they 

produce, but also for the work of those working under them. Due to its distributors 

and compensation structure (which may include numerous tiers), the "down line 

model" is a specific type of network business model. Some restrictions, like the profit-

sharing percentage, are discussed; these restrictions require that the roots of the 

polynomial for which the recurrence relation is defined to be distinct; no employee 

can voluntarily leave the company; employees must be truthful; and it is assumed that 

each employee can only supervise one other employee. 

In the later parts of Chapter 7, the application of recurrence relations, 

especially Fibonacci numbers, and the reproduction mechanism of honey bees are 

discussed. Reproduction in bees is flawlessly described by Fibonacci numbers. The 

Fibonacci numbers verify numerous unusual characteristics of a honeybee's family. 

One of the facts about honey bees is that not every honey bee has two parents. The 

queen is the only female in a group of honey bees. Most of the working drones are 

female, but all are not like the queen honey bee; no eggs are produced by them. Some 

male honey bees do not work; they are called automation bees. Males have only 

mothers and no fathers because males are created from unfertilized queen eggs. 

Females are made when the ruler incorporates a mate with a male; hence, a female 

honey bee has two guardians. Females usually end up as working drones, so the 

parents of female bees are of both genders, if we study male bees, they have a female 

bee as a parent. Based on all the above facts, relations between the reproduction 

mechanisms of bees and Fibonacci numbers are discussed. 

 



 

 

 

VIII 

 

Acknowledgment 

Firstly, I express my sentiments of gratitude to God Almighty and my parents, 

the source of all wisdom, who continuously guide and support me at every moment of 

my life and have enabled me to overcome all the odds smilingly and courageously. 

 

With profound veneration, I express my gratitude to my supervisor, Dr. Vipin 

Verma, Associate Professor, Department of Mathematics, Lovely Professional 

University, Phagwara, Punjab for his knowledgeable guidance, wholehearted 

cooperation, encouragement, and excellent support. 

 

I am highly obliged to the Head of Department and all faculty members of the 

Department of Mathematics at the Lovely Professional University, Phagwara, Punjab 

for their cooperation during my research work. 

 

 

 

 

 

 

 

 

 



 

 

 

IX 

 

Table of Contents 

Declaration ........................................................................................................................... I 

Certificate ............................................................................................................................ ii 

Abstract................................................................................................................................ iii 

Acknowledgment .............................................................................................................vii 

List of Tables ..................................................................................................................... xii 

List of Figures ................................................................................................................... xii 

List of Appendices  ........................................................................................................ xiv 

Chapter 1.Introduction ..................................................................... 1-23 

1.1 Introduction ......................................................................................................... 1 

1.2 Basic Definitions ................................................................................................. 2 

1.3 Literature Review .............................................................................................. 16 

1.4Proposed Objective of the Research Work .......................................................... 21 

1.5 Proposed Methodology of the Research Work.................................................... 21 

1.6 Structure of Thesis ............................................................................................. 22 

Chapter 2.Relation between the Roots of Polynomials and the Terms 

of Recurrence Relation Sequence ............................................................... 24-36 

2.1 Introduction ....................................................................................................... 24 

2.2 Second order Recurrence Relation  .................................................................... 24 

2.3 Fibonacci polynomial ........................................................................................ 26 



 

 

 

X 

 

2.4 Chebyshev Polynomial ...................................................................................... 27 

2.5 Third Order Recurrence Relation ....................................................................... 28 

2.6 Fourth Order Recurrence Relation ..................................................................... 31 

2.7 kth order recurrence relation ............................................................................... 34 

Chapter 3.Cyclic Group of Rational functions with Coefficients as 

Fibonacci Numbers ................................................................................. 37-53 

3.1 Introduction  ...................................................................................................... 37 

3.2 General definitions ............................................................................................. 37 

3.3 Recurrence relation sequence of rational function with Fibonacci number as 

coefficients .............................................................................................................. 38 

3.4 Recurrence relation sequence of rational function with Generalized Fibonacci 

number as coefficients ....................................................................................... 41 

3.5 Cyclic group of matrix using 3-step Fibonacci sequence………………………  46 

Chapter 4.Generating Matrices of Recurrence Relations as Sequence 

of Tri-Diagonal Matrices ................................................................ 54-66 

4.1 Introduction ....................................................................................................... 54 

4.2 Definitions ......................................................................................................... 54 

4.3 Sequence of tri-diagonal matrices ...................................................................... 55 

4.4 Matrix for the k-Fibonacci sequence……………………………………………..60  

Chapter 5.Sequence of Complex Bilinear Transformations with 

Coefficients as Fibonacci numbers ................................................. 67-77 

5.1 Introduction  ...................................................................................................... 67 



 

 

 

XI 

 

5.2 Sequence of complex rational functions ............................................................. 69 

 

Chapter 6.Relations between Chebyshev Polynomials and Hermite 

Polynomials ..................................................................................... 78-84 

6.1 Introduction  ...................................................................................................... 78 

6.2 Relations Between Chebyshev Polynomials and Hermite Polynomials ............... 78 

6.3 Generating functions of Chebyshev polynomial by Hermite polynomial ............ 83 

Chapter 7.Applications of Recurrence Relations .......................... 85-95 

7.1 Introduction  ...................................................................................................... 85 

7.2Application of Recurrence Relation in Network Marketing ................................. 85 

7.3 The Fibonacci Numbers and Its Amazing Applications ...................................... 88 

Summary and Conclusions ........................................................... 96-105 

Future and Scope ............................................................................... 106 

References ................................................................................... 107-112 

List of Publications and Conference Presentations ................... 113-116 

Certificates of Presentation/Participation ........................................ 117 

 

 

 

 



 

 

 

XII 

 

 

List of Tables 

1. Classifications of Natural Numbers  ................................................................................ 2 

2. Honey Bee and Fibonacci Numbers  .................................................................... 91 

3. Sequence of Drone and Worker or Queen Bee’s as Fibonacci Numbers……….…92 

List of Figures 

1. Fibonacci Numbers ................................................................................................ 4 

2. A geometrical interpretation (“The Elements of Euclid”) ………………………….5 

3. Fibonacci Spiral  .................................................................................................... 8 

4. Lucas Numbers ...................................................................................................... 9 

5. Fibonacci Polynomials ......................................................................................... 10 

6. Network Marketing Tree  ..................................................................................... 86 

7. Honey Bee with eggs  .......................................................................................... 89 

8. Male Bee’s Family Tree  ...................................................................................... 90 

9. Honey Bee Fibonacci Tree  .................................................................................. 91 

10. 3 Petals Flower .................................................................................................. 93 

11. 3 Petals Flower .................................................................................................. 93 

11.5 Petals Flower ................................................................................................... 94 

12. 8 Petals Flower .................................................................................................. 94 

13. 21 Petals Flower ................................................................................................ 95 



 

 

 

XIII 

 

14. Seeds count of Fruit ........................................................................................... 83 

15. Fibonacci Numbers in Pineapple ........................................................................ 13 

List of Appendices 

𝐹௡:      𝑛௧௛Fibonacci Number 

𝐿௡:      𝑛௧௛LucasNumber 

∅:      Golden Ratio 

𝐻௡(𝑥, 𝑦):      𝑛௧௛Hermite Polynomial 

⌊. ⌋                    :      Greatest Integer 

𝑑𝑒𝑡(𝐴)            :       Determinant of a matrix 𝐴 

 

 

 

 

 

 

 



 

 

 

1 

 

Chapter 1 

General Introduction 

1.1  Introduction 

The study of recurrence relations, which is a central topic in number theory 

also attracts scholars from a wide variety of disciplines including mathematics, 

physics, economics, and computer science. There are numerous types of recurrence 

relation sequences in number theory. Both the Fibonacci and Lucas sequences are 

examples of recurrence relation sequences with specified initial terms. An equation 

that defines a sequence in terms of a method that provides the next term as a relation 

of the previous terms is called a recurrence relation. Mathematics, economics, and 

physics all benefit from the application of recurrence relations, which are used to 

solve a wide variety of practical problems. Recurrence methods allow us to estimate 

economic expansion. Recurrence relations are a useful tool for modeling and solving 

a wide variety of practical problems. Many issues that arise in network marketing can 

be addressed with the help of recurrence approaches because of the fact that network 

marketing is a special kind of recurrence relationship [6, 7]. Finding any term of a 

sequence in a recurrence relation requires looking up all of the terms before it, but 

with the theorem presented here, you only need to know the beginning of the 

sequence. While many significant recurrence relation identities hold only for 

recurrence relations of order two, the result of this paper holds for recurrence relations 

of any order. Fibonacci was a pseudonym for the Italian mathematician Leonardo of 

Pisa (1170-1240), who published The Book of the Abacus in 1202. He pioneered the 

study of Indian and Arabian mathematics by a European scholar. He introduced the 

Fibonacci sequence. He also says number theory is just advanced arithmetic. The 

renowned mathematician Carl Friedrich Gauss (1777-1855) was cited for some wise 

words on the subject of numbers: "Mathematics is the queen of all sciences, and 

Number Theory is the queen of Mathematics." 

Integers and rational numbers are the focus of number theory, also known as 

"higher arithmetic," which investigates their properties beyond the reach of traditional 
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arithmetic operations. Analyzing and posing new questions about these mathematical 

connections is at the heart of number theory [7, 28]. 

Cube numbers, odd numbers, composite numbers, prime numbers, 3 (modulo 

4) numbers, 1 (modulo 4) numbers, perfect numbers, triangular numbers, Fibonacci 

numbers, etc., are just a few of the many types of natural numbers that have been 

classified since antiquity. While other types of numbers will be discussed, perfection 

and compositeness will be the main foci. The following table [5] provides a summary 

of some of the figures discussed above. Some of the more common natural numbers 

are listed in Table 1.1, while others are more rare. The mathematical connection 

between some of them is straightforward to understand, while the connection between 

others remains murky or has not been adequately explained. However, a few studies 

have shown that prime and perfect numbers are connected. Composite and perfect 

numbers will be investigated shortly for obvious and deducible reasons [11]. 

 

Table 1.1: Classifications of Natural Numbers. 

 

 

 

Number Type Samples 

Odd 1, 3, 5, 7, . .. 

Cube 1, 8, 27, . . .. 

Prime 2, 3, 5, … 

Composite 4, 6, 8, …. 

1 (Modulo 4) 1, 5, 9, …. 

3 (Modulo 4) 3, 7, 11, … 
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1.2  Basic Definitions  

1.2.1 Recurrence Relation 

A recurrence relation is a relation that characterizes arrangement and depends 

on a rule such that it generates the next term as a function of previous terms. When 

the next term is based only on the immediate previous term, it is the simplest case of a 

recurrence relation, which is of first order. If the sequence term is a non-negative 

integer, the first order recurrence relation [1, 2] is   

𝑋௡ାଵ = 𝑓(𝑋௡).                                                                                                                       (1.1) 

It is also possible to have a recurrence relation of higher order, where the term 

𝑋௡ାଵdepends on more than one previous term, such as 𝑋௡, 𝑋௡ିଵ, 𝑋௡ିଶ, …. A 2nd 

order recurrence relation [2, 3] depends on two previous terms 𝑋௡ and 𝑋௡ିଵand for 

integers 𝑛 ≥ 1 is  

X௡ାଵ = 𝑓(𝑋௡, 𝑋௡ିଵ).                                                                                                            (1.2) 

Also, to generate a sequence based on a recurrence relation (1.2), one needs to 

provide two inputs to the function 𝑓 as a first step. Starting with an initial value 𝑋଴, 

the recurrence relation can generate all subsequent terms for a first order recursion, 

𝑋௡ାଵ = 𝑓(𝑋௡). Second-order recursion requires two initial values, 𝑋଴ and 𝑋ଵ, as in 

X௡ାଵ = 𝑓(𝑋௡, 𝑋௡ିଵ). More initial values are needed for recurrence relations of higher 

order. For example 

𝑎௡ାଵ =  𝑎௡ +  5, 𝑛 ≥ 1,                                                                                                       (1.3) 
 

is a first order recurrence relation with initial terms 𝑎଴ = 1, we can find the terms  

𝑎ଵ = 6, 𝑎ଶ = 11, 𝑎ଷ = 16, …. 

𝑎௡ = 𝑎௡ିଵ + 2𝑎௡ିଶ, 𝑛 ≥ 2,                                                                                                (1.4) 

is a recurrence relation of second order with initial terms 𝑎଴ = 0, 𝑎ଵ = 1. 

𝑎௡ = 𝑎௡ିଵ + 2𝑎௡ିଶ + 3𝑎௡ିଶ, 𝑛 ≥ 3,                                                                               (1.5) 

is a recurrence relation of third order with initial terms 𝑎଴ = 0, 𝑎ଵ = 1, 𝑎ଶ = 2. 

𝑎௡ = 𝑎௡ିଵ + 2𝑎௡ିଶ + 3𝑎௡ିଶ𝑎௡ିଷ, 𝑛 ≥ 4,                                                                      (1.6) 
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is a fourth order recurrence relation with 𝑎଴ = 0, 𝑎ଵ = 1, 𝑎ଶ = 2,  𝑎ଷ = 3. 

1.2.2 Fibonacci numbers 

Leonardo of Pisa, an Italian mathematician also known by the name Fibonacci, wrote 

the Book of the Math Device Called an Abacus in 1202. To his credit, he was the first 

European mathematician to study the scientific traditions of India and the Middle 

East. He gave the sequence of special types given by 

𝑓௡ =  𝑓௡ିଵ +  𝑓௡ିଶ, 𝑛 ≥ 2,                                                                                           (1.7) 

with initial terms 𝑓଴ = 0 and 𝑓ଵ = 1. 

 

Figure 1.1: Fibonacci Numbers. 

1.2.1 “Division in the Mean and Extreme Ratio (DEMR)” 

"The Elements" of Euclid is one of the most famous scientific works 

of old science [26]. Contains the most  hypotheses of  old  arithmetic:  rudimentary  

geometry number  hypothesis,  variable based math, 

the hypothesis of extents and proportions, the strategy of calculation of zones and 

volumes etc., systematized a 300-year period of improvement in Greek arithmetic, 

and this work made a solid base for the assist improvement of arithmetic. 

The Components of Euclid surpassed all the work of his forerunner within the field of 

geometry for more than two millennium; “The Elements” remained the essential work 
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for the instructing of rudimentary science. The 13 books of "The Elements" 

are devoted to the information of geometry and number juggling in “Euclidean 

space.” 

From “The Elements of Euclid,” the taking after geometrical issue, which was 

named the issue of "Division in Extreme and Mean Ratio (DEMR)”, was called 

This issue was defined in Book II of “The Elements” as takes: To bipartition line 𝐴𝐵, 

a bigger 𝐴𝐶 and a littler 𝐶𝐵, so that 

𝑅 (𝐴𝐵, 𝐶𝐵) = 𝑆 (𝐴𝐶).                                                                                                          (1.8) 

where 𝑆 (𝐴𝐶) is square area with one side 𝐴𝐶 and 𝑅 (𝐴𝐵, 𝐶𝐵) is rectangle area with 

sides 𝐴𝐵 and 𝐶𝐵. 

so, (1.8) takes the following form: 

(𝐴𝐶)ଶ = 𝐴𝐵 × 𝐶𝐵.                                                                                                               (1.9) 

Dividing (1.9) by 𝐴𝐶 and then by 𝐶𝐵 we get. 

஺஻ 

஺஼
=

஺஼

஼஻
.                                                                                                                                (1.10) 

“This form is well known in mathematics as the Golden Section.” 

We are able decipher (1.10) geometrically by partitioning a line AB at the 

point C in bi-sections, a bigger one AC and a littler one CB, so that the proportion of 

portion AC to the portion CB is equal to the proportion of AB to the AC [26].  

 

 

 

 

Figure 1.2: A geometrical interpretation (“The Elements of Euclid”). 

A C  B 
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Denote proportion (1.10) by 𝑥, then  

𝑥 =
஺஻ 

஺஼
=

஺஼ା஼஻

஺஼
= 1 +  

஼஻ 

஺஼
= 1 +

ଵ
ಲ಴
಴ಳ

= 1 +
ଵ

௫
, 

we obtain 

𝑥ଶ = 𝑥 + 1.                                                                                                                          (1.11) 

It follows from the “geometrical meaning” of the proportion that the required 

solution of (1.11) has to be a positive number, it also follows that a positive root of 

equation is a solution of the problem. By denoting this root by 𝜑 we obtained  

𝜑 =
ଵା√ହ

ଶ
.                                                                                                                              (1.12) 

“This number is called the Golden Proportion, Golden Mean, Golden 

Number or Golden Ratio”. 

1.2.2  “Golden Mean” Remarkable Identities  

“This number is called the Golden Proportion, Golden Mean, Golden 

Number or Golden Ratio”. 

 The Golden Mean is the “miracle” of nature. On the off chance 

that we center all of our scientific information   and   dive   into       

this interesting information about science, at that point there's plausibility of getting a 

charge out of and understanding the superb scientific properties and excellence of 

this one-of-a-kind wonder – “The Golden Mean”. 

Stakhov and Rozin[75, 76], talked in their paper about exceptionally straight- 

forward property of the “golden mean”. On the off chance that we substitute the root 

𝜑 (“The Golden mean”) for 𝑥 in (1.11) at that point we are going to get the following 

surprising identities for the golden mean: 

𝜑ଶ = 𝜑 + 1.                                                                                                                         (1.13) 
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 To prove the validity of the identity (1.13), it is fundamental to 

carryout basic numerical changes over LHS and RHS portion of (1.13) and indicate a 

match [83, 87, and 88]. 

RHS  

𝜑 + 1 =
1 + √5

2
+ 1 =

3 + √5

2
, 

LHS 

𝜑ଶ = ቆ
1 + √5

2
ቇ

ଶ 

=
1 + 2√5 + 5

2
=

3 + √5

2
. 

So the identity (1.13) is verified.  

On dividing (1.13) by 𝜑 

𝜑 = 1 +
1

𝜑
 ,                                                                                                                          (1.14) 

𝜑 − 1 =
1

𝜑
.                                                                                                                           (1.15) 

Consider the golden mean eq. (1.12) 

𝜑 =
1 + √5

2
. 

This is an irrational number. Consider inverse of 𝜑 and solve  

1

𝜑
=

2

1 + √5
=

2൫1 − √5൯

൫1 + √5൯൫1 − √5൯
=

2൫1 − √5൯

(1)ଶ − ൫√5൯
ଶ =

√5 − 1

2
. 

Also, from the equation (1.15) the inverse number can be found in taking after way:                           

1

𝜑
= 𝜑 − 1 =

1 + √5

2
− 1 =

√5 − 1

2
. 
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Now we transform identity (1.13) by multiplying both part of the identity (1.13) by 𝜑 

and then dividing by 𝜑ଶ we will get following identities:  

𝜑ଷ = 𝜑ଶ + 𝜑,                                                                                                                      (1.16) 

and 

𝜑 = 1 + 𝜑ିଵ.                                                                                                                       (1.17) 

Continuing in this way, we have  

𝜑௡ = 𝜑௡ିଵ + 𝜑௡ିଶ,                                                                                                           (1.18) 

Where 𝑛 is an integer of the set {0, ±1, ±2, ±3, … }. 

For identity (1.16) we may say that “Any number of the golden series (golden power) 

is the sum of previous two golden power”. 

 

 

Figure 1.3: Fibonacci Spiral.  

1.2.4 Lucas numbers 

Between 1878 and 1891, Edouard Lucas dominated the discipline of recursive 

mathematics. He was the first mathematician to tie the Fibonacci number (1.8) to the 

arrangement, giving rise to the term "Fibonacci sequence." Lucas provides a sequence 

𝐿௡ =  𝐿௡ିଵ + 𝐿௡ିଶ , 𝑛 ≥ 2,                                                                                              (1.19) 
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with initial terms 𝐿଴ = 2 and 𝐿ଵ = 1, Lucas number are the terms of the Lucas 

sequence. 

 

Figure 1.4: Lucas Numbers. 

1.2.5 A Sequence generated by Fibonacci Numbers  

If sequence 𝑅௡ is   

𝑅௡ = 𝑓௡ିଵ𝑓௡ାଵ − 𝑓௡
ଶ,                                                                                                        (1.20) 

with 𝑓௡ is define by equation (1.7), then by equation (1.7) and (1.12) we have 

𝑅௡ = (−1)௡. 

1.2.6 Generalized Fibonacci number sequence. 

It is defined as 

𝐹௡ =  𝑎𝐹௡ିଵ +  𝑏𝐹௡ିଶ , 𝑛 ≥ 2, 𝐹଴ = 𝑝, 𝐹ଵ = 𝑞,                                                            (1.21) 

with positive integers 𝑝, 𝑞, 𝑎 & 𝑏. 

Consider a particular case of equation (1.21) 

𝑉௡ =  𝑎𝑉௡ିଵ +  𝑏𝑉௡ିଶ , 𝑘 ≥ 2, 𝑉଴ = 0, 𝑉ଵ = 1,                                                             (1.22) 

for positive integers𝑎 & 𝑏. 

1.2.7 Fibonacci sequences of polynomials 
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E.C. Catalan [56, 62, and 64] studied the Fibonacci polynomial, define by  

𝐹௡ାଶ(𝑥) = 𝑥𝐹௡ାଵ(𝑥) + 𝐹௡(𝑥),                                                                                         (1.23) 

for 𝑛 = 0,1,2, … and with initial terms 

𝐹଴(𝑥) = 0, 

𝐹ଵ(𝑥) = 1. 

 

Figure 1.5: Fibonacci Polynomials. 

1.2.8 Generalized Fibonacci polynomials sequences. 

𝐺௡(𝑥) Generalized Fibonacci polynomial is given by 

𝐺௡ାଶ(𝑥) = 𝑎𝑥𝐺௡ାଵ(𝑥) + 𝑏𝐺௡(𝑥),                                                                                  (1.24) 

where 𝑛 = 0,1,2, … and with initial terms 𝐺଴(𝑥) = 0, 𝐺ଵ(𝑥) = 1. 

1.2.9 Sequence of tri-diagonal matrices for Generalized Fibonacci 
sequences of polynomials 

For 𝑛 ∈ 𝑁sequence of tri-diagonal matrices [26, 31, 32] ൛A(n) = ൣ𝑔௡,௡൧ൟ, is such that 
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so, that  

 

Then determinants of 𝐴(𝑛) is 

1.2.10 Sequence of tri-diagonal matrices for Fibonacci sequence of 
polynomial 

Consider a sequence of matrices defined by (1.15) by putting, 𝑎 = 1, 𝑏 = 1, we have 

sequence of matrices {𝑪(𝒏) = ൣℎ௡,௡൧} [60] 

 

 

 

Then determinant of 𝑪(𝒏) is
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1.2.11 Sequence of tri-diagonal matrices for particular case of 
generalized Fibonacci numbers sequence 

For 𝑛 ∈ 𝑁 we define a sequence of tri-diagonal matrices {𝐷(𝑛) = ൣ𝑞௡,௡൧} 

 

so, that 

 

Then determinants of 𝐷(𝑛) is

 

1.2.12 Chebyshev polynomials 

For integers 𝑛 ≥ 0, “Chebyshev polynomials of the first kind {𝑇௡(𝑥)}and the second 
kind {𝑈௡(𝑥)}” are 

𝑇௡ାଶ(𝑥) = 2𝑥𝑇௡(𝑥) − 𝑇௡(𝑥), 𝑇ଵ(𝑥) = 𝑥, 𝑇଴(𝑥) = 1.                                                 (1.31) 

𝑈௡ାଶ(𝑥) = 2𝑥𝑈௡ାଵ(𝑥) − 𝑈௡(𝑥), 𝑈଴(𝑥) = 1, 𝑈ଵ(𝑥) = 2𝑥.                                       (1.32) 

The way of presenting of  (1.31) and (1.32) explicitly as 

𝑇௡(𝑥) =
𝑛

2
෍(−1)௞

(𝑛 − 𝑘 − 1)!

𝑘! (𝑛 − 2𝑘)!

ቂ
೙

మ
ቃ

௞ୀ଴

(2𝑥)௡ିଶ௞, |𝑥| < 1.                                               (1.33) 

and 

𝑈௡(𝑥) = ෍(−1)௞
(𝑛 − 𝑘 − 1)!

𝑘! (𝑛 − 2𝑘)!

ቂ
೙

మ
ቃ

௞ୀ଴

(2𝑥)௡ିଶ௞, |𝑥| < 1.                                                  (1.34) 
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On taking   𝑥 = cos 𝛾, then 

𝑇௡(cos 𝛾) = cos(𝑛𝛾).                                                                                                       (1.35) 

𝑈௡(cos 𝛾) =
sin(𝑛 + 1) 𝛾

sin 𝛾
.                                                                                              (1.36) 

1.2.13 Sequence of tri-diagonal matrices for Chebyshev polynomial of 
first kind  

For integer 𝑛 ≥ 0, sequence of tri-diagonal matrix for “Chebyshev polynomial of the 

first kind” as  {𝑆(𝑛) = ൣ𝑙௜,௝൧} is  

ൣ𝑙௜,௝൧ =

⎩
⎪
⎨

⎪
⎧𝑙௜,௝ = 2𝑥              𝑖𝑓  𝑗 = 𝑖

𝑙௜,௝ = 1          𝑖𝑓 𝑗 − 1 = 𝑖

𝑙௜,௝ = 1         𝑖𝑓  𝑗 + 1 = 𝑖

𝑙௜,௝ = 0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ⎭
⎪
⎬

⎪
⎫

,                                                                            (1.37) 

𝑆(𝑛)  =

⎣
⎢
⎢
⎢
⎡
 2𝑥 1 0
 1 2𝑥 1
  0 1 2𝑥

⋯ ⋯    0
⋯ ⋯     0
⋯ ⋯      ⋯

⋯ ⋯  ⋯
⋯ ⋯  ⋯
0 0  ⋯

⋯ ⋯  ⋯
⋯ 2𝑥 1
⋯ 1     2𝑥⎦

⎥
⎥
⎥
⎤

. 

Then determinant of 𝑆(𝑛)is 

|𝑆(𝑛) | = 𝑙௡,௡|𝑆(𝑛 − 1) | − 𝑙௡,௡ିଵ𝑙௡ିଵ,௡|𝑆(𝑛 − 2)|.                                                 (1.38) 

1.2.14 Group 

A group in modern algebra is a set that has the following properties with the 

given operation:  

Closure: Let H be any set and ∗ be any operation on H if 𝑎 ∗ 𝑏 ∈ 𝐇 , ∀ 𝑎, 𝑏 ∈ 𝐇 . 

Associative: If (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐), ∀ 𝑎, 𝑏, 𝑐 ∈ 𝐇 then called H satisfied the 

associative property. 

Existence of Identity: If there exist an element 𝑒 in 𝐇 such that 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎,

∀ 𝑎 ∈ 𝐇where 𝑒  is identity element. 

Existence of Inverse: ∀ 𝑎 ∈ 𝐇, ∃ 𝑏 ∈ 𝐇, with condition 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 = 𝑒 then 𝑏 is 

inverse element. 
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1.2.15Cyclic group 
 
A group in which every element can be created by single a component of the group is 

cyclic group. For example, a set of integers with respect to addition is a cyclic group. 

 

1.2.16 Rational function 

If 𝑓(𝑥) is given by  

𝑓(𝑥) =
𝑝(𝑥)

𝑞(𝑥)
, 

with polynomials 𝑝(𝑥)and 𝑞(𝑥), 𝑞(𝑥) ≠ 0, then 𝑓(𝑥) is rational function. 

1.2.17 Bilinear Transformation  

A complex mapping  

𝑤(𝑧) =
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
,                                                                                                                   (1.39) 

where 𝑎𝑑 − 𝑏𝑐 ≠ 0, then𝑤(𝑧)is “bilinear transformation mapping, a complex bilinear 

transformation maps a circle or line into circle or line”. 

1.2.18 Meromorphic functions 

A complex variable a function which has no singularities other than poles 

called meromorphic. So we can say that a complex function is meromorphic possible 

singularities are only poles. 

1.2.19 Conformal Mapping in Complex 

A mapping that preserves the sense of rotation as well as the magnitude of 

Angle between images of curves, and there is a well-known result that a mapping is 

Conformal if it is differentiable and derivatives are non-zero.  

1.2.20 Complex polynomials 

A complex polynomial is one that can have constants and signs referred to as 

variables indeterminate to a non-negative integer power. For those terms that can be 



 

 

 

15 

 

modified, one to another, if the normal characteristics of commutativity are used, the 

distribution with addition and multiplication distributive is considered as defining 

same polynomial. A complex polynomial within one indeterminate 𝑧 may always 

have to be generated in the way 

 

where 𝑎଴ ,  𝑎ଵ , … , 𝑎௡ are constants and 𝑧 is the indeterminate. The word 

“intermediate” does not mean 𝑧 represents is any unique value; but that any value will 

have to be replaced by any other value. The characterization that marks the product of 

this replacement for the substituted value is a feature called the complex polynomial 

function [4, 5]. 

෍ 𝑎௞𝑧௞

௡

௞ୀ଴

. 

That is, there can be either zero polynomials or polynomials defined as the sum of 
non-zero amounts. Each is the product of a numerical coefficient and several 
indeterminate conditions multiplied by non-negative integer powers.  

1.2.21 Sequence of complex rational functions 

Let𝑧 be any complex unknown and 𝑢(𝑧)be any function of 𝑧 given by 

𝑢(𝑧) =  
1

1 + 𝑧
.                                                                                                                     (1.40) 

Then we have 

(𝑢𝑜𝑢)(𝑥) =
1

1 +
ଵ

ଵା௭

,                                                                                                         (1.41) 

now, we define  

𝑤௡(𝑥) = (𝑢𝑜𝑢𝑜𝑢𝑜 … 𝑜𝑢)(𝑥),                                                                                           (1.42) 

Where (𝑢𝑜𝑢𝑜𝑢𝑜 … 𝑜𝑢) represents 𝑛 time composition. 

1.2.22 Recurrence relation sequence of rational function 

Recurrence relation rational function sequence defined as 
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𝑤ଵ(𝑧) = 𝑢(𝑧) =  
1

1 + 𝑧
,                                                                                                   (1.43) 

and 

𝑤௡(𝑧) =
1

1 + 𝑤௡ିଵ(𝑧)
,                                                                                                      (1.44) 

for all integers 𝑛 ≥ 2. 

1.2 Literature Review 

The study of recurrence relations has attracted the attention of numerous scholars. In 

[22], [25], and [26], various summation formulae of the "Generalized Fibonacci and 

Gaussian Fibonacci numbers" and "Pell and Pell-Lucas numbers" are developed. The 

"Fibonacci," "Tribonacci," "Tetrabasic," "Pentanacci," and "Hexanacci" numbers all 

share similar characteristics, as described in [9, 27, 28], [29, 30], [31, 32, 33], [34, 

35], and [36]. According to the Georgian Mathematical Journal, in paper [43] the 

author explains how Hermite polynomials have some interesting properties. An 

alternative generalisation is sought after in this paper 

 

for integers 𝑛 ≥ 2 and real polynomials𝑘(𝑥) and 𝑚(𝑥). Using matrix algebra, the 

author generates an expanded Binet's formula for 𝑀௡(𝑥) and, as a result, identities 

such as Simpson's, Catalan's, and so on. In addition, they obtained sum formulas for 

this new generalization. 

In [77] Nalliand Haukkanen introduced ℎ(𝑥) −polynomials introduced a matrix 

whose power generates the sequence of the Fibonacci numbers. 

In [78], the author presented the various summation formulae for generalized 

Fibonacci numbers defined as 

𝑊௡ = 𝑟𝑊௡ିଵ + 𝑠𝑊௡ିଶ , 𝑊଴ = 𝑎, 𝑊ଵ = 𝑏, for 𝑛 = 2, 3, 4, …. 

Similar work has been done for different sequences [38].  

In [79], the author studied various properties of 2-Fibonacci sequences defined by 
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𝛼𝓃ାଶ = 𝛼𝓃ାଵ + 𝛽𝓃, and 𝛽𝓃ାଶ = 𝛽𝓃ାଵ + 𝛼𝓃 

with 𝛼଴ = 𝑎,  𝛽଴ = 𝑏, 𝛼ଵ = 𝑐,  𝛽ଵ = 𝑑, and 𝓃 = 0, 1, 2, … 

In [80, 81], the author introduced new schemes of 2-Fibonacci sequences defined as 

𝛼𝓃భାଶ =
ఈ𝓃భశభାఉ𝓃భశభ

ଶ
+ 𝛽𝓃భ

, 𝛽𝓃భାଶ =
ఉ𝓃భశభାఈ𝓃భశభ

ଶ
+ 𝛼𝓃భ

, 

and 

𝛼𝓃భାଶ =
ఈ𝓃భାఉ𝓃భ

ଶ
+ 𝛽𝓃భାଵ, 𝛽𝓃భାଶ = 𝛼𝓃భ

+
ఉ𝓃భାఈ𝓃భ

ଶ
, 

with 𝓃ଵ = 0,1,2, …, and 𝛼଴ = 2𝑎,  𝛽଴ = 2𝑏,  𝛼ଵ = 2𝑐,  𝛽ଵ = 2𝑑,where𝑎, 𝑏, 𝑐 and 𝑑 

are real numbers, and he established various relationships between these sequences 

with a generalized Fibonacci sequence defined by 

 

with 

 

Also, for these sequences listed various properties by an integer function 𝜎 described 

by 

𝜎(𝒿 + 2) + 𝜎(𝒿) = 0;𝒿 = 0, 1, 2, …, 

with𝜎(0) = 0, and 𝜎(1) = 1. 

Similar work has been done by the authors [42, 43] for different schemes of 

sequences.  

In [82], the author derived the following formulae 

𝒰𝔶 =
𝛼௤

𝔶ାଵ

(𝛼௤ − 𝛽௤)(𝛼௤ − 𝛾௤)
+

𝛽௤
𝔶ାଵ

(𝛽௤ − 𝛼௤)(𝛽௤ − 𝛾௤)
+

𝛾௤
𝔶ାଵ

(𝛾௤ − 𝛽௤)(𝛾௤ − 𝛼௤)
, 
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and 

𝒱𝔶 = 𝛼௤
𝔶ାଵ

+ 𝛽௤
𝔶ାଵ

+ 𝛾௤
𝔶ାଵ

, 

were 

𝛼௤ =
1 + ቀඥ19 + 3√33

య
ቁ + ቀඥ19 − 3√33

య
ቁ

3
, 

𝛽௤ =
1 + 𝜔 ቀඥ19 + 3√33

య
ቁ + 𝜔ଶ ቀඥ19 − 3√33

య
ቁ

3
, 

𝛾௤ =
1 + 𝜔ଶ ቀඥ19 + 3√33

య
ቁ + 𝜔 ቀඥ19 − 3√33

య
ቁ

3
, 

where 𝜔 =
ିଵା௜√ଷ

ଶ
, for Tribonacci sequence ൛𝒰𝔶ൟ

𝔶ஹ଴
 and Tribonacci-Lucas ൛𝒱𝔶ൟ

𝔶ஹ଴
 

sequence described as 

𝒰𝔶ାଷ = 𝒰𝔶ାଶ + 𝒰𝔶ାଵ + 𝒰𝔶;  𝒱𝔶ାଷ = 𝒱𝔶ାଶ + 𝒱𝔶ାଵ + 𝒱𝔶;  𝔶 = 0, 1, 2, …, 

with𝒰଴ = 0, 𝒰ଵ = 1, 𝒰ଶ = 1, 𝒱଴ = 3, 𝒱ଵ = 1, and 𝒱ଶ = 3. 

Similarly, authors in [83] determined the Binet’s formula by use of the matrix  

⎝

⎜
⎛

1 1 1 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0⎠

⎟
⎞

, 

For Pentanacci sequence given by 

𝒞𝒿ାହ = 𝒞𝒿ାସ + 𝒞𝒿ାଷ + 𝒞𝒿ାଶ + 𝒞𝒿ାଵ + 𝒞𝒿 ; 𝒿 = 0, 1, 2, …, 

Fibonacci numbers and linear algebra also have a lot of connections. Many 

researchers have worked in this area.  
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In 2006, author [84] made use of the sum property of the determinant, which states 

that "If A, B, and C are matrices with indistinguishable elements except that one row 

(column) of C, say kth, is the sum of kth rows (columns) of A and B, then [A] + [B] = 

[C]." ...and the author validated the next property of the Fibonacci numbers by 

making use of the determinant's characteristic of being determinant: 

𝐹𝔪𝐹௡ − 𝐹𝔪ି௥𝐹௡ା௥ = (−1)𝔪ି௥𝐹௥𝐹௡ା௥ି𝔪 

In [42], the author discussed how dual Bernstein polynomials bring additional 

differential-recurrence properties because of relationships between Jacobi 

polynomials and orthogonal Hahnand dual Bernstein. A fourth-order 

differential condition fulfilled by double Bernstein polynomials has 

been developed utilizing this concept. In addition, for these polynomials, a recurrence 

relation of fourth-order has been generated; this result can efficiently solve certain 

problems of computation. 

In papers [45] it is seen that, based on the Schur parameters, the characteristic 

polynomials of some five-diagonal matrices are monic orthogonal polynomials of the 

unit circle. This is the result on the unit circle generated by the orthogonal Laurent 

polynomial, which is the result of the orthogonal Laurent polynomial’s recurrence 

relation of five terms, as well as the one-to-one and onto mapping formed between 

them.  

In her paper [44], the author considers a sequence of polynomials {𝑃௡}, 𝑛 ≥ 0 that 

satisfy a special recurrence relation and have simple zeros on the real line. Eigen 

value problem generalized by 𝑃௡ turned out to be ‘the characteristic polynomial” of a 

simple 𝑛 ×  𝑛, for integer 𝑛 ≥  2. It is shown that measure (positive) on the unit 

circle can always be related to this recurrence relation. The property of orthogonality 

with respect to this calculation can also be obtained. 

In Paper [54], the author studies the relationship between recurrence relations and 

significant statistical applications. However, only discrete distributions were covered 

by the initial derivation. There is a contemporary application. 
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In 2011, Jishe Feng [85] utilized the technique of Laplace expansions to evaluate 

the determinant of 𝐷௡ and constructed a type of 2 × 2 matrix determinant to approach 

a new method to substantiate the following identity: 

𝐹௠ା௡ାଵ = 𝐹௠ାଵ𝐹௡ାଵ  +  𝐹௠𝐹௡ , 

were 

𝐷௡ =

⎝

⎜
⎛

1 −1 0 … 0
1 1 −1 … 0
0 1 1 ⋱ ⋮
⋮ ⋮ ⋱ ⋱ −1
0 0 0 1 1 ⎠

⎟
⎞

 

In 2017, Sümeyra [86] studied some new properties of “Generalized Fibonacci and 

Lucas polynomials” by using Laplace expansion of determinants and also described 

some new families of tri-diagonal matrices given by 

 

and its successive determinants generate the following sequence: 

𝐿𝓅,ℊ,௡ାଵ(𝓉ଵ) = 𝓅(𝓉ଵ)𝐿𝓅,ℊ,௡(𝓉ଵ) + ℊ(𝓉ଵ)𝐿𝓅,ℊ,௡ିଵ(𝓉ଵ), 

and 

𝐹𝓅,ℊ,௡ାଵ(𝓉ଵ) = 𝓅(𝓉ଵ)𝐹𝓅,ℊ,௡(𝓉ଵ) + ℊ(𝓉ଵ)𝐹𝓅,ℊ,௡ିଵ(𝓉ଵ), 
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with 𝑛 = 1, 2, 3, … , 𝐹𝓅,ℊ,଴(𝓉ଵ) = 0, 𝐹𝓅,ℊ,ଵ(𝓉ଵ) = 1, 𝐿𝓅,ℊ,଴(𝓉ଵ) = 2, and 𝐿𝓅,ℊ,ଵ(𝓉ଵ) =

𝓅(𝓉ଵ). 

In 2023, Jinseo Park [87] discusses properties and many special type identities of 

positive integers, which are known as Diophantine m-tuples. He related these special-

type numbers to Fibonacci numbers and discussed the properties of geometry in 

relation to groups.   

In 2023, Seán M. Stewart [88] discusses properties and many special-type identities of 

positive integers. In this paper, the author also related these special type numbers to 

Fibonacci numbers, discussed the properties of geometry, and related them to groups. 

Also discussed are the many special-type results of Fibonacci numbers and some very 

interesting new results on the Fibonacci recurrence relation sequence of numbers. 

1.4 Proposed objectives of the research work 

During our research work it proposed to study the following problems.  

 To obtain new generalizations and extensions of the Fibonacci sequence of 

numbers and polynomials.   

 To obtain new identities and some special representations of the Chebyshev 

polynomials.  

 To study of relation between the group theory and the terms of recurrence 

relation of sequence of numbers and polynomials.  

 To study the applications of recurrence relation in network marketing and in 

some other fields.  

1.5 Proposed methodology of the research work 

To achieve the proposed objective, the following methodology was used:  

1. By using concepts of algebra, number theory focuses on solving 

polynomials, obtaining roots of polynomials and using concepts of 
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determinants, we have obtained the relation between polynomial roots and 

recurrence relations terms. 

2. Concepts of group theory are used to prove theorems of cyclic groups of 

rational function with coefficients as Fibonacci numbers. 

3. By using some properties of matrices and determinants, work will be done 

on finding generating matrices of recurrence relations as a sequence of tri-

diagonal matrices. 

4. Theorems on the sequence of complex bilinear transformations are proved 

using the concepts of complex algebra.  

5. To prove properties and identities, we will use the methods of 

mathematical induction, power series, and the concepts of calculus. 

1.6  Structure of Thesis 

The proposed research work, entitled "PROPERTIES AND APPLICATIONS OF 

RECURRENCE RELATION OF SEQUENCE OF NUMBERS AND 

POLYNOMIALS” is motivated by the recurrence relations of the sequence of 

numbers and polynomials. The thesis is structured in the form of seven chapters in the 

following manner: 

In the first chapter of this thesis, it provides an overview of the recurrence 

relations of numbers that make up history as well as their applications in a variety of 

different disciplines. In addition, we make a cursory review of a few key definitions 

and well-known results that are required to meet the bare minimum standard for the 

forthcoming chapters. This chapter also contains the part of the literature review that 

sheds light on the work done in the field of the recurrence relations of numbers and 

associated polynomials by a number of different researchers. This part of the review is 

included here. In the evaluation, the research void has been singled out, and the goals 

and procedures to fill in these voids have been outlined in detail. 

Chapter 2, “Relation between the Roots of Polynomials and the Term of 

Recurrence Relation Sequence,” is divided into seven sections, discussing the relation 

between the roots and terms of “recurrence relations of first order, second order, third 
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order, fourth order, and 𝑘th order.” Also discussed are the results on some special 

kinds of recurrence relations like Fibonacci polynomials and Chebyshev polynomials. 

Chapter 3, “Cyclic Group of Rational Functions with Coefficients as 

Fibonacci Numbers, “is divided into four sections, starting with the basic definitions 

of group, Fibonacci numbers, Generalized Fibonacci sequence, and the recurrence 

relation of rational function in the form of composition function, which have the  

terms Fibonacci numbers or Generalized Fibonacci numbers. Finally, a set is 

considered on the basis of its defined composition, and the properties of the group are 

verified. 

In Chapter 4, “Generating Matrices of Recurrence Relations as Sequence of 

Tri-Diagonal Matrices,” we worked on the tri-diagonal matrix sequence for 

generalized Fibonacci polynomials, Fibonacci numbers, and Chebyshev polynomials.  

 In Chapter 5, “Sequence of Complex Bilinear Transformations with 

Coefficients as Fibonacci Numbers,” the main focus is  on 𝑤௡(𝑧) the sequences of 

complex ration functions with coefficients as Fibonacci numbers, verifying the 

properties of bilinear transformations for 𝑤௡(𝑧). 

In Chapter 6, “Relations Between Chebyshev Polynomials and Hermite 

Polynomials,” we have discussed the relation between the “Chebyshev polynomial of 

the second kind” and Hermite polynomials of two variables; also, the generating 

function is obtained with the help of Hermite polynomials.      

Chapter 7, “Applications of Recurrence Relations,” deals with applications of 

recurrence relations in network marketing with some limitations imposed on the 

problem. In the later parts of the chapter, the application of recurrence relations, 

especially Fibonacci numbers, and the reproduction mechanism of honey bees are 

discussed. 
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Chapter 2 

Relation between the Roots of Polynomials and the Terms of  

Recurrence Relation Sequence 

2.1 Introduction  

We have given the identities and recurrence relations of first, second, third, fourth, 

and for𝑘𝑡ℎ order in this chapter. These are exceptionally valuable identities for 

obtaining any term in any order of the respective sequence. We have given an explicit 

formula to calculate any term of a recurrence relation sequence, which is a very 

important result [12, 13].  

2.2 Second order Recurrence Relation   

Theorem 2.2.1: If 𝑐ଵ , 𝑐ଶ are real numbers and let 

𝑥ଶ − 𝑐ଵ𝑥 − 𝑐ଶ = 0,                                                                                                              (2.1) 

have distinct roots 𝑥ଵ and 𝑥ଶ. Then sequence < 𝑎௡ >  is solution of 

𝑎௡ = 𝑐ଵ𝑎௡ିଵ + 𝑐ଶ𝑎௡ିଶ , 𝑛 ≥ 2,                                                                                          (2.2) 

with initial terms 𝑎଴ = 𝐴ଵ, 𝑎ଵ = 𝐴ଶ. 

𝑖𝑓𝑓 

𝑎௡ = 𝛽ଵ𝑥ଵ
௡ + 𝛽ଶ𝑥ଶ

௡, 

for 𝑛 =  0, 1, 2, …, where 𝛽ଵ and 𝛽ଶ are arbitrary constants.  

Proof: First suppose that < 𝑎௡ > is of type 𝑎௡ = 𝛽ଵ𝑥ଵ
௡ + 𝛽ଶ𝑥ଶ

௡ we shall prove that    

< 𝑎௡ >  is a solution of the recurrence relation (2.2). Since the 𝑥ଵ and 𝑥ଶ roots of 

equation (2.1) then 

𝑐ଵ𝑥ଵ + 𝑐ଶ = 𝑥ଵ
ଶ, 

𝑐ଵ𝑥ଶ + 𝑐ଶ = 𝑥ଶ
ଶ. 
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by equation (2.2) 

𝑐ଵ𝑎௡ିଵ + 𝑐ଶ𝑎௡ିଶ =   𝑐ଵ(𝛽ଵ𝑥ଵ
௡ିଵ + 𝛽ଶ𝑥ଶ

௡ିଵ) + 𝑐ଶ(𝛽ଵ𝑥ଵ
௡ିଶ + 𝛽ଶ𝑥ଶ

௡ିଶ) = 𝛽ଵ𝑥ଵ
௡ + 𝛽ଶ𝑥ଶ

௡ 

this implies 

𝑐ଵ𝑎௡ିଵ + 𝑐ଶ𝑎௡ିଶ = 𝑎௡. 

which proves the result. 

Converse part 

Consider the sequence < 𝑎௡ > 

𝑎௡ = 𝑐ଵ𝑎௡ିଵ + 𝑐ଶ𝑎௡ିଶ  𝑛 ≥ 2, 

with initial terms 𝑎଴ = 𝐴ଵ, 𝑎ଵ = 𝐴ଶ. 

and let  

𝑎௡ = 𝛽ଵ𝑥ଵ
௡ + 𝛽ଶ𝑥ଶ

௡. 

So, by initial condition          

𝛽ଵ + 𝛽ଶ =  𝐴ଵ,                                                                                                                        (2.3) 

𝛽ଵ𝑥ଵ + 𝛽ଶ𝑥ଶ =  𝐴ଶ,                                                                                                               (2.4) 

By equation (2.3) 

𝛽ଵ = 𝐴ଵ − 𝛽ଶ, 

putting this value in (2.4) we obtained  

𝛽ଶ =
𝐴ଵ𝑥ଵ − 𝑥ଶ

𝑥ଵ − 𝑥ଶ
, 

and  

𝛽ଵ =
𝐴ଶ − 𝐴ଵ𝑥ଶ

𝑥ଵ − 𝑥ଶ
. 

Theorem 2.2.2: For real numbers 𝑐ଵ and  𝑐ଶ , then the sequence < 𝑎௡ >  is the 
solution to 

𝑎௡ = 𝑐ଵ𝑎௡ିଵ + 𝑐ଶ𝑎௡ିଶ, 𝑛 ≥ 2,                                                                                           (2.5) 
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with given initial terms 𝑎଴ = 𝐴ଵ and 𝑎ଵ = 𝐴ଶ. If in equation (2.5) 𝑐ଵand 𝑐ଶ are such 

that the roots of 𝑥ଶ − 𝑐ଵ𝑥 − 𝑐ଶ = 0 are distinct and greater than 1 and satisfy the 

conditions𝐴ଵ𝑥ଵ > 𝐴ଶ and 𝐴ଵ𝑥ଶ < 𝐴ଶ, then the recurrence relation sequence must be 

divergent. 

Proof: Using theorem 2.2.1 𝑎௡ = 𝛽ଵ𝑥ଵ
௡ + 𝛽ଶ𝑥ଶ

௡, with 𝑥ଵ and 𝑥ଶ are roots of the 

equation 𝑥ଶ − 𝑐ଵ𝑥 − 𝑐ଶ = 0 but according to the given condition clearly value of 

𝑥ଵand 𝑥ଶ are greater than 1 so if  limit of  𝑛 goes to infinity then 𝑥ଵ
௡ and 𝑥ଶ

௡ both gives 

the value infinity 

 by Theorem 2.2.1 

𝛽ଶ =
𝐴ଵ𝑥ଵ − 𝑥ଶ

𝑥ଵ − 𝑥ଶ
, 

and 

𝛽ଵ =
𝐴ଶ − 𝐴ଵ𝑥ଶ

𝑥ଵ − 𝑥ଶ
. 

According to given conditions values of 𝛽ଵand 𝛽ଶ are positive. As 𝑛 → ∞, 𝛽ଵ𝑥ଵ
௡ and 

𝛽ଶ𝑥ଶ
௡ gives the value infinity. So, we can say that as 𝑛 → ∞, < 𝑎௡ > tends to infinity, 

so the sequence must be divergent. 

2.3 Fibonacci polynomial  

Theorem 2.3.1: Let𝑛 ≥ 0 be an integer, if 𝐹௡(x), the Fibonacci polynomial, is 

characterized by 

𝐹௡ାଵ(𝑥) = 𝑥𝐹௡(𝑥) + 𝐹௡ିଵ(𝑥), 

with 𝐹ଵ(𝑥) = 1, 𝐹଴(𝑥) = 0 and  𝑥ଶ > (−4) then  

𝐹௡(𝑥) =
1

2௡√𝑥ଶ + 4
ቂ𝑥 + ඥ𝑥ଶ + 4ቃ

௡
−

1

2௡√𝑥ଶ + 4
ቂ𝑥 − ඥ𝑥ଶ + 4ቃ

௡
. 

Proof: By using theorem 2.2.1 with 𝑐ଵ = 𝑥 , 𝑐ଶ = 1 and for variable 𝑇 by equation 

(2.1) then we have  
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𝑇ଶ − 𝑥𝑇 − 1 = 0. 

On solving the roots are 

𝑥 ± √𝑥ଶ + 4

2
, 

using theorem 2.2.1 we obtained  

𝐹௡(𝑥) = 𝛽ଵ ቈ
𝑥 + √𝑥ଶ + 4

2
቉

௡

+ 𝛽ଶ ቈ
𝑥 − √𝑥ଶ + 4

2
቉

௡

,                                                      (2.6) 

using initial condition, 

𝛽ଵ + 𝛽ଶ = 0,                                                                                                                           (2.7) 

𝛽ଵ[
𝑥 + √𝑥ଶ + 4

2
]ଵ + 𝛽ଶ[

𝑥 − √𝑥ଶ + 4

2
]ଵ = 1,                                                                  (2.8) 

Solving (2.7) and (2.8) we have 

𝛽ଵ =
1

√𝑥ଶ + 4
, 

𝛽ଶ =
−1

√𝑥ଶ + 4
, 

on substituting values of 𝛽ଵ and 𝛽ଶ we get the desired result. 

2.4 Chebyshev Polynomial  

Theorem 2.4.1: If Chebyshev polynomial of the first kind 𝑇௡(𝑥) is 

𝑇௡ାଵ(𝑥) = 2𝑥𝑇௡(𝑥) − 𝑇௡ିଵ(𝑥), 

for all 𝑛 ≥ 1, with 𝑇଴(𝑥) = 1, 𝑇ଵ(𝑥) = 𝑥, 𝑥ଶ > 1, we can write 

𝑇௡(𝑥) =
1

2
[𝑥 + ඥ𝑥ଶ − 1]௡ +

1

2
[𝑥 − ඥ𝑥ଶ − 1]௡. 

Proof: Using theorem 2.2.1 with 𝑐ଵ = 2𝑥 , 𝑐ଶ = −1 and for variable T by equation 

(2.1) we have polynomial  

𝑇ଶ − 2𝑥𝑇 + 1 = 0. 

On solving roots obtained as  
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𝑥 ± ඥ𝑥ଶ − 1, 

by theorem 2.2.1, we obtained  

𝑇௡(𝑥) = 𝛽ଵ[𝑥 + ඥ𝑥ଶ − 1]௡ + 𝛽ଶ[𝑥 − ඥ𝑥ଶ − 1]௡.                                                        (2.9) 

Using initial conditions 

𝛽ଵ + 𝛽ଶ = 1,                                                                                                                         (2.10) 

𝛽ଵ[𝑥 + ඥ𝑥ଶ − 1]ଵ + 𝛽ଶ[𝑥 − ඥ𝑥ଶ − 1]ଵ = 𝑥,                                                              (2.11) 

solving (2.10), (2.11) we have 𝛽ଵ =
ଵ

ଶ
 and 𝛽ଶ =

ଵ

ଶ
. 

So, by equation (2.9)  

𝑇௡(𝑥) =
1

2
ቂ𝑥 + ඥ𝑥ଶ − 1ቃ

௡

+
1

2
ቂ𝑥 − ඥ𝑥ଶ − 1ቃ

௡

. 

2.5 Recurrence Relation of Third Order 

In a recurrence relation of third order [14, 15], given the first three terms, the next 

term depends on the previous three terms, e.g. 

𝑎௡ = 𝑎௡ିଵ + 2𝑎௡ିଶ + 3𝑎௡ିଷ, 𝑛 ≥ 3, 

with 𝑎଴ = 0, 𝑎ଵ = 1, 𝑎ଶ = 2. 

Theorem 2.5.1: If 𝑐ଵ,  𝑐ଶ and 𝑐ଷ  are real numbers, let 

𝑥ଷ − 𝑐ଵ𝑥ଶ − 𝑐ଶ𝑥 − 𝑐ଷ = 0,                                                                                               (2.10) 

has𝑥ଵ, 𝑥ଶ and 𝑥ଷasreal and distinct roots.  

Then the sequence < 𝑎௡ >has solution  

𝑎௡ = 𝑐ଵ𝑎௡ିଵ + 𝑐ଶ𝑎௡ିଶ + 𝑐ଷ𝑎௡ିଷ , 𝑛 ≥ 3,                                                                     (2.11) 

with three initial terms  

𝑎଴ = 𝐴ଵ, 
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𝑎ଵ = 𝐴ଶ, 

𝑎ଶ = 𝐴ଷ. 

𝑖𝑓𝑓 

𝑎௡ = 𝛽ଵ𝑥ଵ
௡ + 𝛽ଶ𝑥ଶ

௡ + 𝛽ଷ𝑥ଷ
௡, 

for integers 𝑛 ≥ 0, arbitrary constants 𝛽ଵ, 𝛽ଶ, and 𝛽ଷ. 

Proof: Suppose sequence < 𝑎௡ >is  

𝑎௡ = 𝛽ଵ𝑥ଵ
௡ + 𝛽ଶ𝑥ଶ

௡ + 𝛽ଷ𝑥ଷ
௡, 

now to prove  < 𝑎௡ >  is a solution of (2.11). If𝑥ଵ, 𝑥ଶ and 𝑥ଷ are roots of (2.10) then 

we have 

𝑥ଵ
ଷ = 𝑐ଵ𝑥ଵ

ଶ + 𝑐ଶ𝑥ଵ + 𝑐ଷ, 

𝑥ଶ
ଷ = 𝑐ଵ𝑥ଶ

ଶ + 𝑐ଶ𝑥ଶ + 𝑐ଷ, 

𝑥ଷ
ଷ = 𝑐ଵ𝑥ଷ

ଶ + 𝑐ଶ𝑥ଷ + 𝑐ଷ. 

Consider 

𝑐ଵ𝑎௡ିଵ + 𝑐ଶ𝑎௡ିଶ + 𝑐ଷ𝑎௡ିଷ

=   𝑐ଵ(𝛽ଵ𝑥ଵ
௡ିଵ + 𝛽ଶ𝑥ଶ

௡ିଵ + 𝛽ଷ𝑥ଷ
௡ିଵ)

+ 𝑐ଶ(𝛽ଵ𝑥ଵ
௡ିଶ + 𝛽ଶ𝑥ଶ

௡ିଶ + 𝛽ଷ𝑥ଷ
௡ିଶ) + 𝑐ଷ(𝛽ଵ𝑥ଵ

௡ିଷ + 𝛽ଶ𝑥ଶ
௡ିଷ + 𝛽ଷ𝑥ଷ

௡ିଷ)

= 𝛽ଵ𝑥ଵ
௡ + 𝛽ଶ𝑥ଶ

௡ + 𝛽ଷ𝑥ଷ
௡  = 𝑎௡. 

This implies  

𝑐ଵ𝑎௡ିଵ + 𝑐ଶ𝑎௡ିଶ + 𝑐ଷ𝑎௡ିଷ = 𝑎௡. 

which prove the result.  

Converse part    

Suppose recurrence relation 
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𝑎௡ = 𝑐ଵ𝑎௡ିଵ + 𝑐ଶ𝑎௡ିଶ + 𝑐ଷ𝑎௡ିଷ , 𝑛 ≥ 3, 

with 

𝑎଴ = 𝐴ଵ, 

𝑎ଵ = 𝐴ଶ, 

𝑎ଶ = 𝐴ଷ. 

Let  

𝑎௡ = 𝛽ଵ𝑥ଵ
௡ + 𝛽ଶ𝑥ଶ

௡ + 𝛽ଷ𝑥ଷ
௡ 

So, by initial conditions 

𝛽ଵ + 𝛽ଶ + 𝛽ଷ =  𝐴ଵ,                                                                                                            (2.12) 

𝛽ଵ𝑥ଵ + 𝛽ଶ𝑥ଶ + 𝛽ଷ𝑥ଷ =  𝐴ଶ,                                                                                             (2.13) 

𝛽ଵ𝑥ଵ
ଶ + 𝛽ଶ𝑥ଶ

ଶ + 𝛽ଷ𝑥ଷ
ଶ =  𝐴ଷ.                                                                                             (2.14) 

Non-trivial solution of system (2.12), (2.13), and (2.14) is possible 𝑖𝑓𝑓 

ቮ

1 1 1
𝑥ଵ 𝑥ଶ 𝑥ଷ

𝑥ଵ
ଶ 𝑥ଶ

ଶ 𝑥ଷ
ଶ

ቮ ≠ 0, 

on expanding determinant 

(𝑥ଵ − 𝑥ଶ)(𝑥ଶ − 𝑥ଷ)(𝑥ଷ − 𝑥ଵ)  ≠ 0.                                                                                (2.15) 

As the roots are distinct equation (2.15)is always non-zero. So, non-trivial values of 

𝛽ଵ,  𝛽ଶand 𝛽ଷ can be found, therefore the result is valid. 

Example 2.5.1: Let for sequence < 𝑎௡ >, 𝑎௡ = 6𝑎௡ିଵ − 11𝑎௡ିଶ + 6𝑎௡ିଷ, 𝑛 ≥ 3 
and 𝑎଴ = 0, 𝑎ଵ = 1, 𝑎ଶ = 2. Then find 𝑎ଵ଴. 

Solution: By theorem 2.5.1 polynomial for < 𝑎௡ > is  

𝑥ଷ − 6𝑥ଶ + 11𝑥 − 6 = 0. 
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Roots of above equations are 1, 2, and 3, again by theorem 2.5.1 

𝑎௡ = 𝛽ଵ1ଶ + 𝛽ଶ2ଶ + 𝛽ଷ3ଶ.                                                                                               (2.16) 

Using 𝑎଴ = 0, 𝑎ଵ = 1, 𝑎ଶ = 2 in (2.16)   

𝛽ଵ + 𝛽ଶ + 𝛽ଷ = 0,                                                                                                               (2.17) 

𝛽ଵ + 2𝛽ଶ + 3𝛽ଷ = 1,                                                                                                          (2.18) 

𝛽ଵ + 4𝛽ଶ + 9𝛽ଷ = 2,                                                                                                          (2.19) 

Solving (2.17), (2.18) and (2.19) we have 𝛽ଵ = −
ଷ

ଶ
, 𝛽ଶ = 2, 𝛽ଷ = −

ଵ

ଶ
. 

By using (2.16) 

𝑎௡ = −
3

2
(1௡) + 2(2௡) −

1

2
(3௡). 

now put 𝑛 = 10 we have  𝑎ଵ଴ = −27478. 

2.6 Fourth Order Recurrence Relation 

In the recurrence relation of fourth order, the next term depends on the previous four 

terms with four initial conditions, e.g. 

𝑎௡ = 𝑎௡ିଵ + 2𝑎௡ିଶ + 3𝑎௡ିଶ + 𝑎௡ିଷ, 𝑛 ≥ 4, 

initial terms 𝑎଴ = 0, 𝑎ଵ = 1,𝑎ଶ = 2, 𝑎ଷ = 3, for integers 𝑛 ≥ 0. 

Theorem 2.6.1: If 𝑐ଵ,  𝑐ଶ, 𝑐ଷand 𝑐ସare real numbers, let 

𝑥ସ − 𝑐ଵ𝑥ଷ − 𝑐ଶ𝑥ଶ − 𝑐ଷ𝑥 − 𝑐ସ = 0                                                                                  (2.20) 

has distinct real roots 𝑥ଵ, 𝑥ଶ, 𝑥ଷ and 𝑥ସ.  

Then sequence < 𝑎௡ >has solution 

𝑎௡ = 𝑐ଵ𝑎௡ିଵ + 𝑐ଶ𝑎௡ିଶ + 𝑐ଷ𝑎௡ିଷ + cସ𝑎୬ିସ , 𝑛 ≥ 4                                                  (2.21) 

with 

𝑎଴ = 𝐴ଵ, 
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𝑎ଵ = 𝐴ଶ, 

𝑎ଶ = 𝐴ଷ 

𝑎ଷ = Aସ. 

𝑖𝑓𝑓 

𝑎௡ = 𝛽ଵ𝑥ଵ
௡ + 𝛽ଶ𝑥ଶ

௡ + 𝛽ଷ𝑥ଷ
௡ + 𝛽ସ𝑥ସ

௡, 

with𝑛 =  0, 1, 2, …, and for arbitrary constants 𝛽ଵ, 𝛽ଶ, 𝛽ଷ and 𝛽ସ constants. 

Proof: Suppose that< 𝑎௡ >is a sequence 

𝑎௡ = 𝛽ଵ𝑥ଵ
௡ + 𝛽ଶ𝑥ଶ

௡ + 𝛽ଷ𝑥ଷ
௡ + 𝛽ସ𝑥ସ

௡, 

Now we prove  < 𝑎௡ >  is a solution of (2.21). For roots 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, 𝑥ସ of equation 

(2.20) we obtained  

𝑥ଵ
ସ = 𝑐ଵ𝑥ଵ

ଷ + 𝑐ଶ𝑥ଵ
ଶ + 𝑐ଷ𝑥ଵ + 𝑐ସ, 

𝑥ଶ
ସ = 𝑐ଵ𝑥ଶ

ଷ + 𝑐ଶ𝑥ଶ
ଶ + 𝑐ଷ𝑥ଶ + 𝑐ସ, 

𝑥ଷ
ସ = 𝑐ଵ𝑥ଷ

ଷ + 𝑐ଶ𝑥ଷ
ଶ + 𝑐ଷ𝑥ଷ + 𝑐ସ, 

𝑥ସ
ସ = 𝑐ଵ𝑥ସ

ଷ + 𝑐ଶ𝑥ସ
ଶ + 𝑐ଷ𝑥ସ + 𝑐ସ. 

Consider 

𝑐ଵ𝑎௡ିଵ + 𝑐ଶ𝑎௡ିଶ + 𝑐ଷ𝑎௡ିଷ + 𝑐ସ𝑎௡ିସ

=   𝑐ଵ(𝛽ଵ𝑥ଵ
௡ିଵ + 𝛽ଶ𝑥ଶ

௡ିଵ + 𝛽ଷ𝑥ଷ
௡ିଵ + 𝛽ସ𝑥ସ

୬ିଵ)

+ 𝑐ଶ(𝛽ଵ𝑥ଵ
௡ିଶ + 𝛽ଶ𝑥ଶ

௡ିଶ + 𝛽ଷ𝑥ଷ
௡ିଶ + 𝛽ସ𝑥ସ

୬ିଶ)

+ 𝑐ଷ(𝛽ଵ𝑥ଵ
௡ିଷ + 𝛽ଶ𝑥ଶ

௡ିଷ + 𝛽ଷ𝑥ଷ
௡ିଷ + 𝛽ସ𝑥ସ

୬ିଷ)

+ 𝑐ସ(𝛽ଵ𝑥ଵ
௡ିସ + 𝛽ଶ𝑥ଶ

௡ିସ + 𝛽ଷ𝑥ଷ
௡ିସ + 𝛽ସ𝑥ସ

୬ିସ)

= 𝛽ଵ𝑥ଵ
௡ + 𝛽ଶ𝑥ଶ

௡ + 𝛽ଷ𝑥ଷ
௡ + 𝛽ସ𝑥ସ

௡ = 𝑎௡ . 

which proves the theorem. 
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Converse part  

Let    

𝑎௡ = 𝑐ଵ𝑎௡ିଵ + 𝑐ଶ𝑎௡ିଶ + 𝑐ଷ𝑎௡ିଷ + cସ𝑎୬ିସ , 𝑛 ≥ 4 is recurrence relation with  

𝑎଴ = 𝐴ଵ, 

𝑎ଵ = 𝐴ଶ, 

𝑎ଶ = 𝐴ଷ, 

𝑎ଷ = Aସ. 

Let 𝑎௡ = 𝛽ଵ𝑥ଵ
௡ + 𝛽ଶ𝑥ଶ

௡ + 𝛽ଷ𝑥ଷ
௡+𝛽ସ𝑥ସ

௡ 

So    

𝛽ଵ + 𝛽ଶ + 𝛽ଷ + 𝛽ସ =  𝐴ଵ, 

𝛽ଵ𝑥ଵ + 𝛽ଶ𝑥ଶ + 𝛽ଷ𝑥ଷ + 𝛽ସ𝑥ସ =  𝐴ଶ, 

𝛽ଵ𝑥ଵ
ଶ + 𝛽ଶ𝑥ଶ

ଶ + 𝛽ଷ𝑥ଷ
ଶ + 𝛽ସ𝑥ସ

ଶ =  𝐴ଷ, 

𝛽ଵ𝑥ଵ
ଶ + 𝛽ଶ𝑥ଶ

ଶ + 𝛽ଷ𝑥ସ
ଶ + 𝛽ସ𝑥ସ

ଷ =  𝐴ସ. 

Solution of non-trivial type of system of linear equations is possible 𝑖𝑓𝑓 

ተ

ተ

3
4

3
3

3
2

3
1

2
4

2
3

2
2

2
1

4321

1111

xxxx

xxxx

xxxx

ተ

ተ
≠ 0 

on expanding determinant 

(𝑥ଵ − 𝑥ଶ)(𝑥ଶ − 𝑥ଷ)(𝑥ଷ − 𝑥ସ)(𝑥ସ − 𝑥ଵ) ≠ 0.                                                               (2.22) 

Since the roots are distinct so equation (2.22)is always non-zero, therefore values of 

non-trivial type of 𝛽ଵ,  𝛽ଶ 𝛽ଷ and 𝛽ସ can be found and result is valid. 
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2.7 kth order recurrence relation  

Theorem 2.7.1: If 𝑐ଵ,  𝑐ଶ, 𝑐ଷ, … , 𝑐௞ are real numbers and let 

𝑥௞ − 𝑐ଵ𝑥௞ିଵ − 𝑐ଶ𝑥௞ିଶ … − 𝑐௞ = 0,                                                                                (2.23) 

has distinct roots  𝑥ଵ, 𝑥ଶ, 𝑥ଷ … , 𝑥௞.  

then sequence < 𝑎௡ >  for all non negative integers have solution.   

𝑎௡ = 𝑐ଵ𝑎௡ିଵ + 𝑐ଶ𝑎௡ିଶ + 𝑐ଷ𝑎௡ିଷ + ⋯ … + 𝑐୩𝑎௡ି୩ , 𝑛 > k,                                     (2.24) 

with initial terms 

𝑎଴ = 𝐴ଵ, 

𝑎ଵ = 𝐴ଶ, 

𝑎ଶ = 𝐴ଷ, 

… 

𝑎௞ିଵ = A୩. 

𝑖𝑓𝑓 

𝑎௡ = 𝛽ଵ𝑥ଵ
௡ + 𝛽ଶ𝑥ଶ

௡ + 𝛽ଷ𝑥ଷ
௡ + ⋯ + 𝛽୩𝑥୩

௡, 

for 𝑛 ≥  0,and for arbitrary constants𝛽ଵ, 𝛽ଶ, 𝛽ଷ … 𝛽୩. 

Proof: Let us suppose that the sequence < 𝑎௡ > as  

𝑎௡ = 𝛽ଵ𝑥ଵ
௡ + 𝛽ଶ𝑥ଶ

௡ + 𝛽ଷ𝑥ଷ
௡ + ⋯ + 𝛽୩𝑥୩

௡, 

Now we will prove that  < 𝑎௡ >  is a solution of (2.24). Since 𝑥ଵ, 𝑥ଶ, 𝑥ଷ, … , 𝑥௞ are 

roots of equation (2.23) so  

𝑥ଵ
௞ = 𝑐ଵ𝑥ଵ

௞ିଵ + 𝑐ଶ𝑥ଵ
௞ିଶ +  … + 𝑐௞ , 

𝑥ଶ
௞ = 𝑐ଵ𝑥ଶ

௞ିଵ + 𝑐ଶ𝑥ଶ
௞ିଶ +  … + 𝑐௞ , 
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⋮            ⋮             ⋮             ⋱          ⋮  

𝑥௞
௞ = 𝑐ଵ𝑥௞

௞ିଵ + 𝑐ଶ𝑥௞
௞ିଶ +  … + 𝑐௞ . 

Consider 

𝑐ଵ𝑎௡ିଵ + 𝑐ଶ𝑎௡ିଶ + 𝑐ଷ𝑎௡ିଷ + ⋯ + 𝑐௞𝑎௡ି௞

=   𝑐ଵ൫𝛽ଵ𝑥ଵ
௡ିଵ + 𝛽ଶ𝑥ଶ

௡ିଵ + 𝛽ଷ𝑥ଷ
௡ିଵ + ⋯ +𝛽୩𝑥୩

୬ିଵ൯

+ 𝑐ଶ൫𝛽ଵ𝑥ଵ
௡ିଶ + 𝛽ଶ𝑥ଶ

௡ିଶ + 𝛽ଷ𝑥ଷ
௡ିଶ + ⋯ + 𝛽୩𝑥୩

୬ିଶ൯

+ 𝑐ଷ൫𝛽ଵ𝑥ଵ
௡ିଷ + 𝛽ଶ𝑥ଶ

௡ିଷ + 𝛽ଷ𝑥ଷ
௡ିଷ + … + 𝛽୩𝑥୩

୬ିଷ൯ + ⋯

+ 𝑐௞(𝛽ଵ𝑥ଵ
௡ିସ + 𝛽ଶ𝑥ଶ

௡ିସ + 𝛽ଷ𝑥ଷ
௡ିସ + … + 𝛽୩𝑥୩

୬ିସ)

= 𝛽ଵ𝑥ଵ
௡ + 𝛽ଶ𝑥ଶ

௡ + 𝛽ଷ𝑥ଷ
௡ + ⋯ + 𝛽௞𝑥௞

௡ = 𝑎௡ . 

which prove the first part.  

Proof of converse part    

Let    

𝑎௡ = 𝑐ଵ𝑎௡ିଵ + 𝑐ଶ𝑎௡ିଶ + ⋯ + 𝑐௞𝑎௡ି௞ , 𝑛 > 𝑘, 

is a sequence with 𝑘 initial terms 𝑎଴ = 𝐴଴, 𝑎ଵ = 𝐴ଵ, 𝑎ଶ = 𝐴ଶ, … , 𝑎௞ = A୩. 

Let  

𝑎௡ = 𝛽ଵ𝑥ଵ
௡ + 𝛽ଶ𝑥ଶ

௡ + 𝛽ଷ𝑥ଷ
௡ + ⋯ + 𝛽௞𝑥௞

௡. 

So    

𝛽ଵ + 𝛽ଶ + 𝛽ଷ + ⋯ + 𝛽௞ =  𝐴଴, 

𝛽ଵ𝑥ଵ + 𝛽ଶ𝑥ଶ + 𝛽ଷ𝑥ଷ + ⋯ + 𝛽௞𝑥௞ =  𝐴ଵ, 

𝛽ଵ𝑥ଵ
ଶ + 𝛽ଶ𝑥ଶ

ଶ + 𝛽ଷ𝑥ଷ
ଶ + ⋯ + 𝛽௞𝑥௞

ଶ =  𝐴ଶ, 

⋮            ⋮             ⋮             ⋱          ⋮                ⋮ 

𝛽ଵ𝑥ଵ
௞ + 𝛽ଶ𝑥ଶ

௞ + 𝛽ଷ𝑥ଷ
௞ + ⋯ + 𝛽௞𝑥௞

௞ =  𝐴௞. 
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Solution of non-trivial type of system of linear equation is possible 𝑖𝑓𝑓 

ተ

1 1 …
𝑥ଵ 𝑥ଶ …
⋮ ⋮ ⋱

1
 𝑥௞

⋮
𝑥ଵ

௞ 𝑥ଶ
௞… 𝑥௞

௞

ተ ≠ 0. 

on expanding determinant  

(𝑥ଵ − 𝑥ଶ)(𝑥ଶ − 𝑥ଷ)(𝑥ଷ − 𝑥ସ) … (𝑥௞ − 𝑥ଵ) ≠ 0.                                                          (2.25) 

Since the roots are different, the equation (2.25)is always non-zero; therefore, values 

of non-trivial type of 𝛽ଵ,  𝛽ଶ,  𝛽ଷ , … , 𝛽௞can be found and the result is valid. 
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Chapter 3 

Cyclic Group of Rational functions with Coefficients as 
Fibonacci Numbers 

 

3.1 Introduction 

The study of group theory [17, 18, and 19] is an essential part of contemporary 

mathematics and is also accumulating increasing amounts of value in a wide variety 

of other areas. In this chapter, we demonstrate that there is a connection between 

group theory and number theory, describe a group of rational functions with 

coefficients that are the Fibonacci number in terms of the composition operation, and 

show that the condition of a cyclic group is satisfied. Given the recurrence relation 

sequence of rational functions with coefficients as Fibonacci numbers, we discuss 

representational relations between group properties and rational functions with 

Fibonacci coefficients. Furthermore, we prove that the collection of all such rational 

functions forms a cyclic group with respect to the composition of the function 

operation.  

3.2 General definitions 

3.2.1 Group 

Group is a set that fulfills four properties with regard to the given operation. Four 

axioms are 

Closure: Let H be any set and ∗ be any operation on H if 𝑎 ∗ 𝑏 ∈ 𝐇 ⇒ ∀ 𝑎, 𝑏 ∈ 𝐇 . 

Associative: If (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐), ∀ 𝑎, 𝑏, 𝑐 ∈ 𝐇. 

Existence of Identity: If there exist an element 𝑒 in 𝐇 such that 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎,

∀ 𝑎 ∈ 𝐇where 𝑒 is identity element. 

Existence of Inverse: If ∀ 𝑎 ∈ 𝐇, ∃ 𝑏 ∈ 𝐇, with 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 = 𝑒 then inverse of 𝑎 

is 𝑏. 
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3.2.2 Cyclic group 

A cyclic group is a group in which every element can be generated by a single 
element of that group. e.g., a set of integers with respect to addition is a cyclic group. 

3.2.3 Rational function 

If 𝑓(𝑥) given by 

𝑓(𝑥) =
𝑝(𝑥)

𝑞(𝑥)
, 

for polynomials 𝑝(𝑥)and 𝑞(𝑥), 𝑞(𝑥) ≠ 0, then  𝑓(𝑥) is rational function. 

3.2.4 Fibonacci numbers 

Fibonacci numbers sequence is defined as   

𝑓௡ =  𝑓௡ିଵ +  𝑓௡ିଶ , 𝑛 ≥ 2,                                                                                                  (3.1) 

Where initial terms are 𝑓଴ = 0 and 𝑓ଵ = 1. “The terms of the Fibonacci sequence are 

called Fibonacci numbers”. 

3.2.5 Lucas numbers 

Lucas numbers sequence for non-negative integer 𝑛 is given by 

𝐿௡ =  𝐿௡ିଵ +  𝐿௡ିଶ , 𝑛 ≥ 2,                                                                                                (3.2) 

with 𝐿଴ = 2 and 𝐿ଵ = 1. The terms of the Lucas sequence are called Lucas numbers. 

3.2.6 Generalized Fibonacci sequences 

Generalized Fibonacci sequence [20, 24], is defined as 

𝐹௞ =  𝑝𝐹௞ିଵ +  𝑞𝐹௞ିଶ , 𝑘 ≥ 2, 𝐹଴ = 𝑎, 𝐹ଵ = 𝑏,                                                      (3.3)  

for positive integers 𝑝, 𝑞, 𝑎 & 𝑏. 

3.3 Recurrence relation sequence of rational function with Fibonacci 
number as coefficients  



 

 

 

39 

 

If function 𝑢: (0, ∞) → (0,1)is real valued defined as 

𝑢(𝑥) =  
1

1 + 𝑥
. 

on its domain 𝑢(𝑥) is clearly continuous. The codomain of 𝑢 is a subset of the domain 
of 𝑢.So, considers function. 

(𝑢 𝑜 𝑢)(𝑥) =
1

1 +
ଵ

ଵା௫

, 

now we define  

𝑧௡(𝑥) = (𝑢𝑜𝑢𝑜𝑢𝑜 … 𝑜𝑢)(𝑥),                                                                                           (3.4) 

where (𝑢𝑜𝑢𝑜𝑢𝑜 … 𝑜𝑢) represent 𝑛 time composition. 

The sequence of rational functions for recurrence relations is defined as 

𝑧ଵ(𝑥) = 𝑢(𝑥) =  
1

1 + 𝑥
, 

and 

𝑧௡(𝑥) =
1

1 + 𝑧௡ିଵ(𝑥)
, 

for all integer 𝑛 ≥ 2. 

Now, we define 𝑧௡(𝑥) such that every member of this family has Fibonacci 

coefficients, if the Fibonacci sequence is given by the (3.1) equation, we obtain  

𝑧௡(𝑥) =
𝑓௡ିଵ 𝑥 + 𝑓௡

𝑓௡ 𝑥 + 𝑓௡ାଵ
,                                                                                                            (3.5) 

where 𝑓௜ is 𝑖th Fibonacci number and 𝑧௡(𝑥)𝑛th term of equation (3.4) sequence of 

rational function. For 𝑛 ∈ 𝑁, the codomain of 𝑧௡(𝑥) is 

𝐴௡ = ൬min ൜
𝑓௡ିଵ

𝑓௡
,

𝑓௡

𝑓௡ାଵ
ൠ , max ൜

𝑓௡ିଵ

𝑓௡
,

𝑓௡

𝑓௡ାଵ
ൠ൰. 

For example, we can say that  

Codomain of 𝑧ଵ(𝑥), 𝐴ଵ = (0,1). 
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Codomain of  𝑧ଶ(𝑥), 𝐴ଶ = ቀ
ଵ

ଶ
, 1ቁ. 

Codomain of  𝑧ଷ(𝑥), 𝐴ଷ = ቀ
ଵ

ଶ
,

ଶ

ଷ
ቁ. 

So, co-domain for all function 𝑧௡(𝑥) can be find out. 

For odd 𝑛 

𝐴௡ = ൬
𝑓௡ିଵ

𝑓௡
,

𝑓௡

𝑓௡ାଵ
൰. 

For even 𝑛 

𝐴௡ = ൬
𝑓௡

𝑓௡ାଵ
,
𝑓௡ିଵ

𝑓௡
൰. 

Theorem 3.3.1: Let 𝐼: (0, ∞) → (0, ∞) such that  

𝐼(𝑥) = 𝑥.                                                                                                                                 (3.6) 

Let G be set of all 𝑧௡(𝑥)for all 𝑛 ∈ 𝑁 and including I function defined by equation 

(3.6) then with respect composition operation given by equation (3.4) G is cyclic 

group. 

Proof: Closure property: let 𝑧௡ and 𝑧௠any two functions in G, 𝑛, 𝑚 ∈ 𝑁then we 

according to definition (3.4) 

𝑧௡(𝑥) = (𝑢𝑜𝑢𝑜𝑢𝑜 … 𝑜𝑢)(𝑥), where there are 𝑛 times composition 

𝑧௠(𝑥) = (𝑢𝑜𝑢𝑜𝑢𝑜 … 𝑜𝑢)(𝑥), where there are 𝑚 times composition 

(𝑧௡𝑜𝑧௠) (𝑥) = (𝑢𝑜𝑢𝑜𝑢𝑜𝑢 … 𝑜𝑢)(𝑥), where there are 𝑛 + 𝑚 times composition 

(𝑧௡𝑜𝑧௠) (𝑥) = 𝑧௠ା௡(𝑥) ∈ 𝑮. 

It satisfied closure property 

Associative: Associativity is clearly satisfied since all compositions are of 𝑢. 

Existence of Identity: Clearly identity is existed since G is including I. 

Inverse: Initially it is required to prove all functions are one-one onto. 



 

 

 

41 

 

𝑧௡(𝑥) =
𝑓௡ିଵ 𝑥 + 𝑓௡

𝑓௡ 𝑥 + 𝑓௡ାଵ
, 

𝑧௡(𝑦) =
𝑓௡ିଵ 𝑦 + 𝑓௡

𝑓௡ 𝑦 + 𝑓௡ାଵ
. 

Consider 

𝑧௡(𝑥) = 𝑧௡(𝑦), 

On solving we have 𝑥 = 𝑦 which proves that all function all one-one. 

Let  

𝑓௡ିଵ 𝑥 + 𝑓௡

𝑓௡ 𝑥 + 𝑓௡ାଵ
= 𝑦. 

Solving this we obtained  

𝑓௡ାଵ 𝑦 − 𝑓௡

𝑓௡ିଵ − 𝑓௡𝑦
= 𝑥, 

Let, if possible   

𝑓௡ିଵ – 𝑓௡𝑦 = 0, 

On solving  

𝑦 =
𝑓௡ିଵ

𝑓௡
∉ 𝐴௡, 

clearly 𝑥 > 0, ∀ 𝑦 in 𝐴௡. 

So, we ca say that every element of 𝐴௡ have pre image under 𝑧௡ therefore𝑧௡is onto for 

all 𝑛. That is every member of 𝑮is one-one and onto. So, invertible property holds for 

every member of 𝑮. 

Cyclic Property: Every member can be generated by 𝑧ଵ(𝑥) = 𝑢(𝑥) =  
ଵ

ଵା௫
 so by 

definition of cyclic group G is a cyclic group under the composition operation, which 

prove the theorem. 

3.4 Recurrence relation sequence of rational function with 
Generalized Fibonacci number as coefficients 
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Consider function𝑣: (0, ∞) → (0,1)is real valued, defined by  

𝑣(𝑥) =  
1

𝑞 + 𝑥
, 

Where 𝑞 in any positive integer, on its domain 𝑣(𝑥)is clearly continuous and 

codomain of 𝑢 is subset of domain of 𝑢. Now consider function 

(𝑣 𝑜 𝑣)(𝑥) =
1

1 +
ଵ

௤ା௫

, 

we define 

𝑤௡(𝑥) = (𝑣𝑜𝑣𝑜𝑣𝑜 … 𝑜𝑣)(𝑥),                                                                                           (3.7) 

where (𝑣𝑜𝑣𝑜𝑣𝑜 … 𝑜𝑣) represents 𝑛 time composition.  

Recurrence relation sequence of rational function is given as  

𝑤ଵ(𝑥) =
1

𝑞 + 𝑥
, 

and 

𝑤௡(𝑥) =
1

𝑞 + 𝑤௡ିଵ(𝑥)
,                                                                                                        (3.8) 

for all integer𝑛 ≥ 2. 

Now, it is required to prove that generalized Fibonacci numbers appear in the 

coefficients of every member of this family. For this reason, by equation (3.3), if we 

take 𝑝 = 𝑞, 𝑞 = 1, 𝑎 = 0, 𝑏 = 1,  we have:  

𝐹௡ = 𝑞𝐹௡ିଵ + 𝐹௡ିଶ, ∀ 𝑛 ≥ 2, 

with 𝐹଴ = 0 and 𝐹ଵ = 1, where 𝑞 is any positive integer. 

 Now to show that  

𝑤௡(𝑥) =
𝐹௡ିଵ 𝑥 + 𝐹௡

𝐹௡ 𝑥 + 𝐹௡ାଵ
,                                                                                                          (3.9) 
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for 𝐹௜ is 𝑖th generalized Fibonacci number, 𝑤௡(𝑥)𝑛th term of equation (3.9) is 

sequence of rational functions. Using the principle of mathematical induction, (3.9) 

can be proved.  

For 𝑛 = 1 

𝑤ଵ(𝑥) = 𝑣(𝑥) =  
1

𝑞 + 𝑥
, 

and 

𝐹଴ = 0 , 𝐹ଵ = 1 and 𝐹ଶ = 𝑞, therefore (3.9) holds for 𝑛 = 1. 

Let the result holds for 𝑛 = 𝑘, so by (3.9) let 

𝑤௞(𝑥) =
𝐹௞ିଵ 𝑥 + 𝐹௞

𝐹௞ 𝑥 + 𝐹௞ାଵ
. 

To show (3.9) holds for 𝑛 = 𝑘 + 1 

Consider   

𝑤௞ାଵ(𝑥) =
1

𝑞 + 𝑤௞(𝑥)
. 

by equation (3.9) we have  

𝑤௞ାଵ(𝑥) =
1

𝑞 +
ிೖషభ ௫ାிೖ

ிೖ ௫ାிೖశభ

, 

𝑤௞ାଵ(𝑥) =
𝐹௞𝑥 +  𝐹௞ାଵ

(𝑞𝐹௞  +  𝐹௞ିଵ)𝑥 + (𝑞𝐹௞ାଵ +  𝐹௞)
, 

𝑤௞ାଵ(𝑥) =
𝐹௞ 𝑥 + 𝐹௞ାଵ

𝐹௞ାଵ 𝑥 + 𝐹௞ାଶ
, 

which proves the result holds for all positive integers 𝑛 by the principle of 
mathematical induction. 

Theorem 3.4.1: If 𝑤௡(𝑥)is defined by equation (3.8), then 𝑤௡(𝑥) is monotonic 
function. If 𝑛 is odd, then 𝑤௡(𝑥)  is a monotonically decreasing function, and if 𝑛 is 
even, then  𝑤௡(𝑥) is a monotonically increasing function. 
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Proof: It is clear from definition of 𝑤௡(𝑥), it is differentiable on given domain, so 
using first derivative test the theorem will be proved.  

On differentiating equation (3.8) for 𝑛 = 1 

𝑑𝑤ଵ

𝑑𝑥
=  

−1

(𝑞 + 𝑥)ଶ
< 0.  

So, by first derivative test 𝑤ଵ(𝑥) is monotonically decreasing function.   

Now differentiating (3.8), 

𝑑𝑤௡

𝑑𝑥
=  

−1

(𝑞 + 𝑤௡ିଵ)ଶ

𝑑𝑤௡ିଵ

𝑑𝑥
, 

we have   

𝑠𝑔𝑛 ൤
𝑑𝑤௡

𝑑𝑥
൨ = −𝑠𝑔𝑛 ൤

𝑑𝑤௡ିଵ

𝑑𝑥
൨, 

for odd𝑛 

𝑑𝑤௡

𝑑𝑥
< 0, 

for even𝑛 

𝑑𝑤௡

𝑑𝑥
> 0, 

which proves our result.  

Corollary 3.4.1: For𝑛 ∈ 𝑁, the range set 𝐵௡ of  𝑤௡(𝑥) is 𝐵௡ = ቀ
ி೙షభ

ி೙

ி೙

ி೙శభ
ቁ for odd 𝑛 

and 𝐵௡ = ቀ
ி೙

ி೙శభ
,

ி೙షభ

ி೙
ቁfor even 𝑛.  

Proof: By Theorem 3.4.1 for odd 𝑛, 𝑤௡(𝑥)  is monotonically decreasing function by 
equation (3.9) 𝑤௡(𝑥) approach to its maximum value as 𝑥 → 0 so we can say that 

maximum value of 𝑤௡(𝑥) →
ி೙

ி೙శభ
  and 𝑤௡(𝑥) approach to its minimum value as 

𝑥 → ∞ so we can say that minimum value of 𝑤௡(𝑥) →
ி೙షభ

ி೙
 , so we can say that the 

range set 𝐵௡ of 𝑤௡(𝑥) is 

𝐵௡ = ൬
𝐹௡ିଵ

𝐹௡

𝐹௡

𝐹௡ାଵ
൰. 
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Let 𝑛 is even then 𝑤௡(𝑥) is monotonically increasing and so 𝑤௡(𝑥) approach to its 

minimum value as 𝑥 → 0 so we can say that minimum value of 𝑤௡(𝑥) →
ி೙

ி೙శభ
  and 

𝑧௞(𝑥) approach to its maximum value as 𝑥 → ∞ so we can say that maximum value 

of 𝑤௡(𝑥) →
ி೙షభ

ி೙
 , so we can say that the range set 𝐵௡ of 𝑤௡(𝑥) is 𝐵௡ = ቀ

ி೙

ி೙శభ
,

ி೙షభ

ி೙
ቁ. 

So, our corollary is proved.  

Theorem 3.4.2: Let 𝐼: (0, ∞) → (0, ∞) such that 

𝐼(𝑥) = 𝑥                                                                                                                                (3.10) 

Let for all 𝑤௡(𝑥), ∀ 𝑛 ∈ 𝑁, the set is given by H and with including I function defined 
by equation (3.10), then H is cyclic group with respect composition operation given 
by (3.7). 

Proof: Closure property  

Let 𝑤௡ and 𝑤௠are any two functions in H then by definition equation (3.7) 

𝑤௡(𝑥) = (𝑣𝑜𝑣𝑜𝑣𝑜𝑣 … 𝑜𝑣)(𝑥),where there are 𝑛 times composition,  

𝑤௠(𝑥) = (𝑣𝑜𝑣𝑜𝑣𝑜𝑣 … 𝑜𝑣)(𝑥),where there are 𝑚 times composition,  

(𝑤௡𝑜𝑤௠) (𝑥) = (𝑣𝑜𝑣𝑜𝑣𝑜𝑣 … 𝑜𝑣)(𝑥), where there are 𝑛 + 𝑚 times composition,   

(𝑤௡𝑜𝑤௠) (𝑥) = 𝑤௠ା௡(𝑥) ∈ 𝑯, 

Which satisfied closure property. 

Associative: By definition of composition of 𝑢 associative property satisfied. 

Existence of Identity: Identity exists since H includes I. 

Inverse: To prove inverse it is required to prove all functions are one-one and onto. 

By equation (3.9)  

𝑤௡(𝑥) =
𝐹௡ିଵ 𝑥 + 𝐹௡

𝐹௡ 𝑥 + 𝐹௡ାଵ
, 𝑤௡(𝑦) =

𝐹௡ିଵ 𝑦 + 𝐹௡

𝐹௡ 𝑦 + 𝐹௡ାଵ
. 

Consider 

𝑤௡(𝑥) = 𝑤௡(𝑦), 

on solving  𝑥 = 𝑦 so all function all one-one. 

Let           
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𝐹௡ିଵ 𝑥 + 𝐹௡

𝐹௡ 𝑥 + 𝐹௡ାଵ
= 𝑦, 

On solving  

𝐹௡ାଵ 𝑦 − 𝐹௡

𝐹௡ିଵ − 𝐹௡𝑦
= 𝑥. 

Let if possible   

𝐹௡ିଵ – 𝐹௡𝑦 = 0,  

On solving  

𝑦 =
𝐹௡ିଵ

𝐹௡
∉ 𝐵௡ ,  

clearly 𝑥 > 0, ∀ 𝑦 in 𝐵௡. 

So, we can say that every element of 𝐵௡ have pre-image under 𝑤௡(𝑥), therefore 

𝑤௡(𝑥) is onto for all 𝑛 ∈ 𝑁. So, we can say that every member of 𝑯is one-one and 

onto, hence invariability proved by every member of 𝑯. 

Cyclic Property: We can generate every member by 𝑤ଵ(𝑥) = 𝑣(𝑥) =  
ଵ

௤ା௫
.So, under 

the composition operation G is a cyclic group, which proved the theorem. 

3.5. A Sequence of matrix generated by Fibonacci Numbers 

Let                 𝑀ଵ = ൤
fଶ 𝑓ଵ

𝑓ଵ 𝑓଴
൨ = ቂ

1 1
1 0

ቃ  𝑎𝑛𝑑                 𝑀௡ = ൤
f௡ାଵ 𝑓௡

𝑓௡ 𝑓௡ିଵ
൨ 

We easily prove that (𝑀ଵ)௡ =  𝑀௡ 

 𝑀௡ +  𝑀௡ିଵ = ൤
f௡ାଵ 𝑓௡

𝑓௡ 𝑓௡ିଵ
൨ + ൤

f௡ 𝑓௡ିଵ

𝑓௡ିଵ 𝑓௡ିଶ
൨ = ൤

f௡ାଶ 𝑓௡ାଵ

𝑓௡ାଵ 𝑓௡
൨ 

This is an example of a recurrence relation sequence of matrix that follows the same pattern 
as the recurrence relation of the Fibonacci sequence [16, 25 and 26]. 
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3.5.1. Terms of Fibonacci Numbers 
 
 
 

f଴ 0 f଼ 21 

fଵ 1 fଽ 34 

fଶ 1 fଵ଴ 55 

fଷ 2 fଵଵ 89 

fସ 3 fଵଶ 134 

fହ 5 fଵଷ 223 

f଺ 8 fଵସ 367 

f଻ 13 fଵହ 590 

 

3.5.2. A Sequence generated by Fibonacci Numbers 
 
 

𝑇௡ 𝑓௡ିଵ𝑓௡ାଵ − 𝑓௡
ଶ  

𝑇ଵ 𝑓଴𝑓ଶ − 𝑓ଵ
ଶ -1 

𝑇ଶ 𝑓ଵ𝑓ଷ − 𝑓ଶ
ଶ -1 

𝑇ଷ 𝑓ଶ𝑓ସ − 𝑓ଷ
ଶ -1 

𝑇ସ 𝑓ଷ𝑓ହ − 𝑓ସ
ଶ -1 
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𝑇ହ 𝑓ସ𝑓଺ − 𝑓ହ
ଶ -1 

𝑇଺ 𝑓ସ𝑓଺ − 𝑓ହ
ଶ -1 

𝑇଻ 𝑓ହ𝑓଻ − 𝑓଺
ଶ -1 

 

So we can observe 𝑇௡ = (−1)௡ 

By this observation we can conclude  

det (𝑀௡) = (−1)௡𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑛 

3.5.3. Set of terms of sequence of non-singular matrix 

Let 

𝐻 = { 𝑀𝑛: 𝑛 ∈ 𝑍 } 

We define 

𝑀଴ = ቂ
1 0
0 1

ቃ 

Theorem 3.5.4: Show that 𝐻 is a cyclic group with respect to matrix multiplication.  

Proof: -let 𝑀௡,  𝑀௠𝜖𝐻 

Then we have 

 𝑀௡.  𝑀௠ =  𝑀௡ା௠ 

So we can say that 𝐻 satisfied the 1st axiom of the group. 

All elements of H are matrices so must satisfied the associativity properties.  

𝑀଴ = ቂ
1 0
0 1

ቃ is the identity of 𝐻 

so identity exists in the set 

Since  
det (𝑀௡) = (−1)௡,   
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for all non-negative integers 𝑛. 

So every matrix must be invertible, so we can say that the inverse of every element of 
a set must exist. Therefore, 𝐻 must be a group with respect to matrix multiplication. 

Since every element of this group can be written as a power of 𝑀ଵ = ൤
fଶ 𝑓ଵ

𝑓ଵ 𝑓଴
൨, it 

confirmed that 𝐻 is a cyclic group with respect to matrix multiplication. 

 

3.5.5 Generalized Fibonacci of 3rd order sequence 

Let {𝑓ଷ,௡} be the generalized Fibonacci sequence of order third which given by 

𝑓ଷ,௡ = 𝑓ଷ,௡ାଶ + 𝑓ଷ,௡ାଵ + 𝑓ଷ,௡, 

where with initial terms,   

𝑓ଷ,଴ = 0 , 𝑓ଷ,ଵ = 0 , 𝑓ଷ,ଶ = 1, 

for all non-negative integer 𝑛. 

3.5.6. Special case of generalized Fibonacci of 3rd order sequence 

Let {𝑙ଷ,௡} be the special case of generalized Fibonacci sequence of order third, which 

given by 

𝑙ଷ,௡ାଷ = 𝑎𝑙ଷ,௡ାଶ + 𝑙ଷ,௡ାଵ + 𝑙ଷ,௡, 𝑎 ≠ 0, 

Where given initial terms are below  

𝑙ଷ,଴ = 0 , 𝑙ଷ,ଵ = 0 , 𝑙ଷ,ଶ = 1, 

for all non-negative integer 𝑛. 

3.5.7. Sequence of non-singular matrix 

Let sequence of matrix [1, 2, 3, 4 and 5] 

𝑃ଷ
ଵ = ቈ

𝑎 1 1
1 0
0 1

0
0

቉ 
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𝑃ଷ
ଶ = ቎

𝑙ଷ,ସ 𝑙ଷ,ଷ + 𝑙ଷ,ଶ 𝑙ଷ,ଷ

𝑙ଷ,ଷ 𝑙ଷ,ଶ + 𝑙ଷ,ଵ

𝑙ଷ,ଶ 𝑙ଷ,ଵ + 𝑙ଷ,଴

𝑙ଷ,ଶ

𝑙ଷ,ଵ

቏ 

And continue like this we have 

𝑃ଷ
௡ = ቎

𝑙ଷ,௡ାଶ 𝑙ଷ,௡ାଵ + 𝑙ଷ,௡ 𝑙ଷ,௡ାଵ

𝑙ଷ,௡ାଵ 𝑙ଷ,ଶ + 𝑙ଷ,௡ିଵ

𝑙ଷ,௡ 𝑙ଷ,௡ିଵ + 𝑙ଷ,௡ିଶ

𝑙ଷ,௡

𝑙ଷ,௡ିଵ

቏ 

In this sequence of matrix there are some special types of relations 

 

𝑃ଷ
௡ = (𝑃ଷ

ଵ)௡ 

                                           Let (𝑃ଷ
ଵ)଴ =   𝑃ଷ

଴ = ቈ
1 0
0 1

0
0

0 0 1
቉ 

det(𝑃ଷ
଴) = 1                              

for all non-negative integer 𝑛. 

3.5.8. Set of terms of sequence of non-singular matrix 

Let  

𝐺 = {𝑃ଷ
௡: 𝑛 ∈ 𝑍 }. 

Theorem 3.5.9: Show that 𝐺 is a cyclic group with respect to matrix multiplication.  

Proof: -let 𝑃ଷ
௡, 𝑃ଷ

௠𝜖𝐺 

Then we have 

𝑃ଷ
௡𝑃ଷ

௠ = 𝑃ଷ
௡ା௠ 

So we can say that 𝐺 satisfied the 1st axiom of the group. 

All elements of 𝐺 are matrix so must satisfied the associativity properties.  

Clearly 𝑃ଷ
଴ = ቈ

1 0
0 1

0
0

0 0 1
቉is the identity of 𝐺 

So identity is exist in set 
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Since  
det(𝑃ଷ

௡) = 1, 

for all integers 𝑛. 

So every matrix must be invertible, so 𝐺 must be a group with respect to matrix 
multiplication. 

Since every element of this group can be written as a power of 𝑃ଷ
ଵ, it has been 

confirmed that it is a cyclic group with respect to matrix multiplication [29, 30]. 

Theorem 3.5.10: Show that G is isomorphic to a group set of integers (𝑍) with 
respect to addition.  

Proof: Let define a mapping 𝜑: 𝐺 → 𝑍 such that 

𝜑(𝑃ଷ
௡) = 𝑛 

for all integers 𝑛. 

Well-defined 

Let  

𝑃ଷ
௡ = 𝑃ଷ

௠ 

for 𝑛, 𝑚 ∈ 𝑍. 

𝑃ଷ
௡ି௠ = 𝑃ଷ

଴ 

this implies   

𝑛 − 𝑚 = 0 

𝑛 = 𝑚 

So 𝜑 is well-defined mapping.  

One-one  

Let               

𝜑(𝑃ଷ
௡) = 𝜑(𝑃ଷ

௠), 

for 𝑛, 𝑚 ∈ 𝑍, 

this implies 



 

 

 

52 

 

𝑛 = 𝑚, 

𝑛 − 𝑚 = 0, 

this implies                         

𝑃ଷ
௡ି௠ = 𝑃ଷ

଴, 

therefore  

𝑃ଷ
௡ = 𝑃ଷ

௠, 

So 𝜑 is one-one mapping. 

Onto 

Let 𝑛 ∈ 𝑍 be any integer then 𝑃ଷ
௡ ∈ 𝐺, such that we have 

𝜑(𝑃ଷ
௡) = 𝑛   

for all integers 𝑛. 

So 𝜑 is onto mapping. 

Homomorphism 

Consider  

𝜑(𝑃ଷ
௡𝑃ଷ

௠) =  𝜑(𝑃ଷ
௡ା௠) = 𝑛 + 𝑚 =  𝜑(𝑃ଷ

௡) +  𝜑(𝑃ଷ
௠), 

for 𝑛, 𝑚 ∈ 𝑍. 

So, 𝜑 is homomorphism mapping. Therefore, G is isomorphic to the group set of 
integers (𝑍) with respect to addition. 

Theorem 3.5.11: Show that G is a cyclic sub-group of group SLଷ(Z) with respect to 
matrix multiplication. 

Proof: Let 𝐴 ∈ 𝐺 then all entries of 𝐴 are integer and order is 3 also  |𝐴| = 1 

This implies 𝐴 ∈ SLଷ(Z). 

So,  

𝐺 ⊂ SLଷ(Z). 

Also 𝐺 and SLଷ(Z) both are group with respect to same binary operation, so 𝐺 is a sub 
group of SLଷ(Z). 
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Theorem 3.5.12: Show that G is not a simple group with respect to matrix 
multiplication. 

Proof:- We have  
𝐺 = {𝑃ଷ

௡: 𝑛 ∈ 𝑍 } 

𝑃ଷ
ଵ = ቈ

𝑎 1 1
1 0
0 1

0
0

቉ 

If we take 𝑎 = 1 then  

𝐾ଷ
ଵ = ቈ

1 1 1
1 0
0 1

0
0

቉ 

We have  

𝐻 = {𝐾ଷ
௡: 𝑛 ∈ 𝑍 } 

Then 𝐻 is clearly a proper sub-group of 𝐺 and 𝐺 is a cyclic group, so 𝐻 must be a 
normal sub-group of 𝐺. Therefore, 𝐺 is not a simple group. 

Theorem 3.5.13: Show that G is matrix lie-group. 

Proof: We have  
𝐺 = {𝑃ଷ

௡: 𝑛 ∈ 𝑍 }. 

Let  

𝐴௡ ∈ 𝐺, 

then all entries of 𝐴௡ are Fibonacci numbers, so 𝐴௡ not be convergent to any matrix. 
So, we can say that there is no convergent sequence in 𝐺. Therefore 𝐺 is a matrix lie-
group.  

Both the definition of the 3-Generalized Fibonacci group and an analysis of its 
algebraic axioms can be found in this chapter. The authors of the research established 
a cluster with the assistance of 3-Generalized Fibonacci and a sequence of matrices. 
This result can be applied to a wide variety of different kinds of groups, as well as a 
wide variety of other sequences. 
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Chapter 4 

Generating Matrices of Recurrence relations as Sequence of 

Tri-Diagonal Matrices 

4.1 Introduction 

Identities for generalized Fibonacci sequences of integers, Fibonacci sequences of 

polynomials, and Chebyshev polynomials have been presented in this chapter. The 

Fibonacci generalized sequence of integers, the Fibonacci sequence of polynomials, 

and the Chebyshev polynomial [16, 21, 22, and 23] can all be represented in the form 

of matrices with the assistance of these identities, which are of great use. 

4.2 Definitions 

4.2.1 Generalized Fibonacci sequences of numbers 

Generalized Fibonacci sequence is defined as [8, 9] 

𝐹௡ =  𝑎𝐹௡ିଵ +  𝑏𝐹௡ିଶ , 𝑛 ≥ 2,                                                                                            (4.1) 

for 𝐹଴ = 𝑝, 𝐹ଵ = 𝑞 and positive integers𝑝, 𝑞, 𝑎 & 𝑏. 

Particularly by equation (4.1) 𝑝 = 0, 𝑞 = 1, 𝐹௡ = 𝑉௡ 

𝑉௡ =  𝑎𝑉௡ିଵ +  𝑏𝑉௡ିଶ , 𝑘 ≥ 2,                                                                                            (4.2) 

where 𝑉଴ = 0, 𝑉ଵ = 1and 𝑎, 𝑏 are positive integers. 

4.2.2 Fibonacci sequences of polynomials 

E.C. Catalan define Fibonacci polynomial 𝐹௡(𝑥)as 

𝐹௡ାଶ(𝑥) = 𝑥𝐹௡ାଵ(𝑥) + 𝐹௡(𝑥),                                                                                           (4.3) 

where 𝐹଴(𝑥) = 0, 𝐹ଵ(𝑥) = 1 and 𝑛 ≥ 0. 

4.2.3 Generalized Fibonacci polynomials 

If 𝐺௡(𝑥) is Generalized Fibonacci polynomial define by 

𝐺௡ାଶ(𝑥) = 𝑎𝑥𝐺௡ାଵ(𝑥) + 𝑏𝐺௡(𝑥),                                                                                     (4.4) 
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with𝐺ଵ(𝑥) = 1, 𝐺଴(𝑥) = 0 and 𝑛 ≥ 0. 

4.2.4 Chebyshev polynomials 

Chebyshev polynomial of first kind 𝑇௡(𝑥) is  

𝑇௡ାଵ(𝑥) = 2𝑥𝑇௡(𝑥) − 𝑇௡ିଵ(𝑥),                                                                                         (4.5) 

𝑇ଵ(𝑥) = 𝑥, 𝑇଴(𝑥) = 1 and for all integers 𝑛 ≥ 1. 

4.3 Sequence of tri-diagonal matrices  

4.3.1 Sequence of tri-diagonal matrices for Generalized Fibonacci 
sequences of polynomials 

For 𝑛 ∈ 𝑁, tri-diagonal matrix sequence ൛A(n) = ൣ𝑔௡,௡൧ൟis  

 

So, that  

 

Then determinant of 𝐴(𝑛) is 

 

Theorem 4.3.1: Let |𝐴(𝑛) | = 𝐺௡ାଵ ∀ 𝑛 ≥ 1 , where |𝐴(𝑛) |the determinant of 𝐴(𝑛) 

given by (4.6) then 𝐺௡ାଵis ( 𝑛 + 1)𝑡ℎ term of polynomials of generalized Fibonacci 

sequence given by (4.4).  

Proof: Principle mathematical induction is used to prove the result  

For  𝑛 = 1 by equation (4.6) we have  
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|𝐴(1) | = 𝑎𝑥, 

also, for  𝑛 = 1 by equation (4.4) we have  

𝐺ଶ = 𝑎𝑥, 

so that 

|𝐴(1) | = 𝐺ଶ. 

The result holds for 𝑛 = 1. 

Now consider for 𝑛 ≤ 𝑘result is true. So, we have  

|𝐴(𝑘)| = 𝐺௞ାଵ.                                                                                                                       (4.8) 

Now to show for 𝑛 = 𝑘 + 1 result is also true. 

By equation (4.7)  

|𝐴(𝑘 + 1) | = 𝑔௞ାଵ,௞ାଵ|𝐴(𝑘) | − 𝑔௞ାଵ,௞𝑔௞,௞ାଵ|𝐴(𝑘 − 1)|, 

by definition (4.6) 

𝑔௞ାଵ,௞ାଵ = 𝑎𝑥, 

𝑔௞ାଵ,௞𝑔௞,௞ାଵ = −𝑏, 

putting these two values we have 

|𝐴(𝑘 + 1)| = 𝑎𝑥|𝐴(𝑘)| + 𝑏|𝐴(𝑘 − 1)|, 

by equation (4.8) 

|𝐴(𝑘 + 1)| = 𝑎𝐺௞ାଵ + 𝑏𝐺௞ = 𝐺௞ାଶ. 

So, result holds for 𝑛 = 𝑘 + 1, for all 𝑛the theorem is proved. 

4.3.2 Sequence of tri-diagonal matrices for Fibonacci sequence of 
polynomial 

Consider a sequence of matrices defined by (4.6) by putting, 𝑎 = 1, 𝑏 = 1 we have 

sequence of matrices {𝐶(𝑛) = ൣℎ௡,௡൧} 
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ൣℎ௜,௝൧ =

⎩
⎪
⎨

⎪
⎧ ℎ௜,௝ = 1     𝑖𝑓  𝑖 = 𝑗

ℎ௜,௝ୀ ଵ    𝑖𝑓 𝑖 = 𝑗 + 1

ℎ௜,௝ = −1  𝑖𝑓  𝑖 = 𝑗 − 1

ℎ௜,௝ = 0  𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ⎭
⎪
⎬

⎪
⎫

                                                                                 (4.9) 

 

Then determinant of 𝐶(𝑛)is 

 

Theorem 4.3.2: |𝐶(𝑛) | = 𝐹௡ାଵ(𝑥), for all integers 𝑛 ≥ 1, where |𝐶(𝑛) | is 

determinant of 𝐶(𝑛) define by (4.9) sequence of matrix and 𝐹௡ାଵ(𝑥) is ( 𝑛 + 1)𝑡ℎ 

term Fibonacci sequence of polynomials defined by (4.3). 

Proof: Principle mathematical induction can be used to prove this result  

By equation (4.9) for  𝑛 = 1 

|𝐶(1) | = 𝑥, 

Also, by equation (4.3) for 𝑛 = 1 

𝐹ଶ(𝑥) = 𝑥, 

which verify   

|𝐶(1) | = 𝐹ଶ(𝑥). 

So, the result holds for  𝑛 = 1. 

Consider for 𝑛 ≤ 𝑘 result holds therefore  

|𝐶(𝑘)| = 𝐹௞ାଵ(𝑥).                                                                                                             (4.11)  

Now show that for 𝑛 = 𝑘 + 1 theoremholds 

by equation (4.10) consider  

|𝐶(𝑘 + 1) | = ℎ௞ାଵ,௞ାଵ|𝐶(𝑘) | − ℎ௞ାଵ,௞ℎ௞,௞ାଵ|𝐶(𝑘 − 1)|. 
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by equation (4.9) 

ℎ௞ାଵ,௞ାଵ = 𝑥, 

ℎ௞ାଵ,௞ℎ௞,௞ାଵ = −1, 

putting these two values we have 

|𝐶(𝑘 + 1)| = 𝑥|𝐶(𝑘)| + |𝐶(𝑘 − 1)|, 

by equation (4.11) we have 

|𝐶(𝑘 + 1)| = 𝑥𝐹௞ାଵ(𝑥) + 𝐹௞(𝑥) = 𝐹௞ାଶ(𝑥). 

Which proves the result for 𝑛 = 𝑘 + 1, therefore, for all 𝑛 the Theorem is true. 

4.3.3 Sequence of tri-diagonal matrices for particular case of 
generalized Fibonacci numbers  

For 𝑛 ∈ 𝑁we define a sequence of tri-diagonal matrices {𝐷(𝑛) = ൣ𝑞௡,௡൧} 

 

so that  

Then determinants of 𝑫(𝒏) is 

 

Theorem 4.3.3: |𝐷(𝑛) | = 𝑉௡ାଵ for every integer𝑛 ≥ 1 where|𝐷(𝑛) |the determinant 

of 𝑫(𝒏)defines by (4.12) and 𝑉௡ାଵis ( 𝑛 + 1)𝑡ℎ term of sequence given by (4.2). 

Proof: Principle mathematical induction can be used to prove this result.  

Taking 𝑛 = 1 by equation (4.12) we have  
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|𝐷(1) | = 𝑎, 

for𝑛 = 1 by equation (4.13) we have 

𝑉ଶ = 𝑎, 

therefore 

|𝐷(1) | = 𝑉ଶ. 

So, for 𝑛 = 1result holds. 

Consider for 𝑛 ≤ 𝑘 result holds therefore 

|𝐷(𝑘)| = 𝑉௞ାଵ.                                                                                                                    (4.14) 

Now show that for 𝑛 = 𝑘 + 1 theorem holds 

by equation (4.13) consider  

|𝐷(𝑘 + 1) | = 𝑞௞ାଵ,௞ାଵ|𝐷(𝑘) | − 𝑞௞ାଵ,௞𝑞௞,௞ାଵ|𝐷(𝑘 − 1)|, 

by equation (4.12) 

𝑞௞ାଵ,௞ାଵ = 𝑎, 

and 

𝑞௞ାଵ,௞𝑞௞,௞ାଵ = −𝑏, 

putting these two values we obtained 

|𝐷(𝑘 + 1)| = 𝑎|𝐷(𝑘)| + 𝑏|𝐷(𝑘 − 1)|, 

by equation we have 

|𝐷(𝑘 + 1)| = 𝑎𝑉௞ାଵ + 𝑏𝑉௞ = 𝑉௞ାଶ. 

Which proves result for 𝑛 = 𝑘 + 1, therefore for all 𝑛 the theorem is true. 

4.3.4 Sequence of tri-diagonal matrices for Chebyshev polynomial 

We defined a special sequence of tri-diagonal matrix {𝑆(𝑛) = ൣ𝑙௜,௝൧} such that 
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Then determinant of 𝑆(𝑛)is 

 

Theorem 4.3.4: |𝑆(𝑛) | = 2𝑇௡for integer 𝑛 ≥ 1where|𝑆(𝑛) | is the determinant of 

𝑆(𝑛)define by (4.15) and 𝑇௡is 𝑛th term of Chebyshev polynomials. 

Proof: Principle mathematical induction can be used to prove this result.  

For  𝑛 = 1 by equation (4.15) we have  

|𝑆(1) | = 2𝑥, 

also, for  𝑛 = 1 by equation (4.5) we have  

2𝑇ଵ  = 2𝑥, 

therefore 

|𝑆(1) | = 2𝑇ଵ. 

So, for 𝑛 = 1result holds. 

Consider for 𝑛 ≤ 𝑘result holds that is  

|𝑆(𝑘)| = 2𝑇௞.                                                                                                                       (4.17) 

Now we will show that for 𝑛 = 𝑘 + 1result is also true, 

by equation(4.16) consider  

|𝑆(𝑘 + 1) | = 𝑙௞ାଵ,௞ାଵ|𝑆(𝑘) | − 𝑙௞ାଵ,௞𝑙௞,௞ାଵ|𝑆(𝑘 − 1)|, 

by equation (4.15) 
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𝑙௞ାଵ,௞ାଵ = 2𝑥,  

and 

𝑙௞ାଵ,௞𝑙௞,௞ାଵ = 1,  

putting these two values we obtained 

|𝑆(𝑘 + 1)| = 2𝑥|𝑆(𝑘)| − |𝑆(𝑘 − 1)|, 

by equation (4.17)  

|𝑆(𝑘 + 1)| = 4𝑥𝑇௞ − 2𝑇௞ିଵ = 2𝑇௞ାଵ. 

Which proves result for 𝑛 = 𝑘 + 1, therefore for all 𝑛 the theorem is true. 

4.4 Generalized k-Fibonacci sequences of numbers 

Generalized k-Fibonacci sequence is defined as [6, 7, and 8]. 

𝐹௞,௞ା௡ =  𝐹௞,௞ା௡ିଵ + 𝐹௞,௞ା௡ିଶ + 𝐹௞,௞ା௡ିଷ + ⋯ 𝐹௞,௡ାଵ + 𝐹௞,௡ 

𝑤ℎ𝑒𝑟𝑒 𝐹௞,଴ = 𝐹௞,ଵ = ⋯ 𝐹௞,௞ିଶ = 0, 𝐹௞,௞ିଵ = 1 

4.4.1. Generalized 3-Fibonaccisequences of numbers 

Generalized 3-Fibonacci sequence is defined as [3, 4, 10, 11, and 12]. 

𝐹ଷ,ଷା௡ =  𝐹ଷ,௡ାଶ + 𝐹௞,௡ାଵ + 𝐹௞,௡ 

𝑤ℎ𝑒𝑟𝑒 𝐹௞,଴ = 𝐹௞,ଵ = 0, 𝐹௞,ଶ = 1 

  

4.4.2. Generalized 4-Fibonaccisequences of numbers 

Generalized 4-Fibonacci sequence is defined as [1, 2, 8, and 9]. 

𝐹ସ,ସା௡ =  𝐹ସ,௡ାଷ + 𝐹ସ,௡ାଶ + 𝐹ସ,௡ାଵ + 𝐹ସ,௡ 

where 

𝐹௞,଴ = 𝐹௞,ଵ = 𝐹௞,ଶ = 0, 𝐹௞,ଷ = 1 
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4.4.3 Sequence of special type for 3-fibonacci numbers 

ൣ𝑘௜,௝൧ =

⎩
⎪
⎨

⎪
⎧

𝑘௜,௝ = 1           𝑖𝑓  𝑖 = 𝑗

𝑘௜,௝ୀ ିଵ      𝑖𝑓 𝑖 = 𝑗 + 1

𝑘௜,௝ = 1     𝑖𝑓  𝑖 = 𝑗 − 1

𝑘௜,௝ = 1     𝑖𝑓  𝑖 = 𝑗 − 2

𝑘௜,௝ = 0   𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ⎭
⎪
⎬

⎪
⎫

 

𝑲(𝒏)  =

⎣
⎢
⎢
⎢
⎢
⎡

1 1 1 0 0

−1 1 1 1 0

0 −1 1 1 1

⋯

0 0 0

0 0 0

0 0 0
⋮ ⋱ ⋮

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⋯

1 1 1

−1 1 1

0 −1 1⎦
⎥
⎥
⎥
⎥
⎤

 

Then determinant of 𝑲(𝒏) are of the type 

|𝐾(𝑛) | = |𝐾(𝑛 − 1) | + |𝐾(𝑛 − 2)| + |𝐾(𝑛 − 3)| 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 3 

where 

|𝐾(1) | = 1, |𝐾(2) | = 2, |𝐾(3) | = 4 

4.4.4. Sequence of special type for 4-fibonacci numbers 

ൣ𝑞௜,௝൧ =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑞௜,௝ = 1              𝑖𝑓  𝑖 = 𝑗

𝑞௜,௝ୀ ିଵ          𝑖𝑓 𝑖 = 𝑗 + 1

𝑞௜,௝ = 1       𝑖𝑓  𝑖 = 𝑗 − 1

𝑞௜,௝ = 1     𝑖𝑓  𝑖 = 𝑗 − 2

𝑞௜,௝ = 1      𝑖𝑓  𝑖 = 𝑗 − 3

𝑞௜,௝ = 0    𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ⎭
⎪⎪
⎬

⎪⎪
⎫

 

𝑸(𝒏)  =

⎣
⎢
⎢
⎢
⎢
⎡

1 1 1 1 0

−1 1 1 1 1

0 −1 1 1 1

⋯

0 0 0

0 0 0

0 0 0
⋮ ⋱ ⋮

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⋯

1 1 1

−1 1 1

0 −1 1⎦
⎥
⎥
⎥
⎥
⎤

 

Then determinant of 𝑸(𝒏) are of the type 

|𝑄(𝑛) | = |𝑄(𝑛 − 1) | + |𝑄(𝑛 − 2)| + |𝑄(𝑛 − 3)| + |𝑄(𝑛 − 4)|  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 4 
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where 

|𝑄(1) | = 1, |𝑄(2) | = 2, |𝑄(3) | = 4, |𝑄(4) | = 8 

4.4.5. Sequence of special type for k-Fibonacci numbers 

ൣℎ௜,௝൧ =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

ℎ௜,௝ = 1                     𝑖𝑓  𝑖 = 𝑗

ℎ௜,௝ = −1                𝑖𝑓 𝑖 = 𝑗 + 1

ℎ௜,௝ = 1               𝑖𝑓  𝑖 = 𝑗 − 1

ℎ௜,௝ = 1               𝑖𝑓  𝑖 = 𝑗 − 2

ℎ௜,௝ = 1               𝑖𝑓  𝑖 = 𝑗 − 3
…

ℎ௜,௝ = 1       𝑖𝑓 𝑖 = 𝑗 − (𝑘 − 1)

ℎ௜,௝ = 0                𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 

𝑯(𝒏)  =

⎣
⎢
⎢
⎢
⎢
⎡

1 1 1 1 1

−1 1 1 1 1

0 −1 1 1 1

⋯

0 0 0

0 0 0

0 0 0
⋮ ⋱ ⋮

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

⋯

1 1 1

−1 1 1

0 −1 1⎦
⎥
⎥
⎥
⎥
⎤

 

Then determinant of 𝑯(𝒏) are of the type 

|𝐻(𝑛) | = |𝐻(𝑛 − 1) | + |𝐻(𝑛 − 2)| + |𝐻(𝑛 − 3)| + |𝐻(𝑛 − 4)|  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 4 

Where 

|𝐻(1) | = 1, |𝐻(2) | = 2, |𝐻(3) | = 4, |𝐻(4) | = 8 …. 

4.4.6. Statement: - |𝐾(𝑛) | = 𝐹ଷ,௡ାଶ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 1 , where |𝐾(𝑛) | is the determinant 

of nth term of above define (1.5) sequence of matrix and 𝐹ଷ,௡ାଶis ( 𝑛 + 2)𝑡ℎ term 3-

Fibonacci sequence of number. 

Proof: This conclusion will be established through the application of mathematical 
reasoning on first principles. 

For  𝑛 = 1  we have |𝐾(1) | = 1 also 𝐹ଷ,ଷ = 1 

So we can say |𝐾(1) | = 𝐹ଷ,ଷ 

So result is true for 𝑛 = 1 

By hypothesis result is true for 𝑛 ≤ 𝑚 (our hypothesis) 
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So we have |𝐾(𝑚)| = 𝐹ଷ,௠ାଶ   𝑓𝑜𝑟 𝑎𝑙𝑙  𝑛 ≤ 𝑚 

So we have |𝐾(𝑚 − 1) | = 𝐹ଷ,௠ାଵ, |𝐾(𝑚 − 2) | = 𝐹ଷ,௠, |𝐾(𝑚) | = 𝐹ଷ,௠ାଶ 

Now we will find that result is also true for 𝑛 = 𝑚 + 1 

Consider  |𝐾(𝑚 + 1) | = |𝐾(𝑚) | + |𝐾(𝑚 − 1)| + |𝐾(𝑚 − 2)| 

So we have after the putting all above value 

|𝐾(𝑚 + 1) | = 𝐹ଷ,௠ାଶ + 𝐹ଷ,௠ାଵ + 𝐹ଷ,௠ 

So we get  

|𝐾(𝑚 + 1) | = 𝐹ଷ,௠ାଷ 

So result is true for 𝑛 = 𝑚 + 1 

So proves the result is true 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 

4.4.7. Statement: - |𝑄(𝑛) | = 𝐹ସ,௡ାଷ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 1 , where |𝑄(𝑛) | is the determinant 

of 𝑛𝑡ℎ term of above define (1.6) sequence of matrix and 𝐹ଷ,௡ାଷis ( 𝑛 + 3)𝑡ℎ term 4-

Fibonacci sequence of number. 

Proof: - We will prove this result by principle mathematical induction. 

For  𝑛 = 1  we have |𝐾(1) | = 1 also 𝐹ସ,ସ = 1. 

So we can say |𝐾(1) | = 𝐹ସ,ସ. 

So result is true for 𝑛 = 1. 

By hypothesis result is true for 𝑛 ≤ 𝑚 (our hypothesis). 

So we have |𝑄(𝑛)| = 𝐹ସ,௡ାଷ   𝑓𝑜𝑟 𝑎𝑙𝑙  𝑛 ≤ 𝑚 

So  |𝑄(𝑚) | = 𝐹ସ,௠ାଷ, |𝑄(𝑚 − 1) | = 𝐹ସ,௠ାଶ, |𝑄(𝑚 − 2) | = 𝐹ସ,௠ାଵ, |𝑄(𝑚 − 3) | =

𝐹ସ,௠ 

Now we will find that result is also true for 𝑛 = 𝑚 + 1. 

Consider   

|𝑄(𝑚 + 1) | = |𝑄(𝑚) | + |𝑄(𝑚 − 1)| + |𝑄(𝑚 − 2)| + |𝑄(𝑚 − 3)|. 

So we have after the putting all above value 
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|𝑄(𝑚 + 1) | = 𝐹ସ,௠ାଷ + 𝐹ସ,௠ାଶ + 𝐹ସ,௠ାଵ + 𝐹ସ,௠. 

So we get  

|𝑄(𝑚 + 1) | = 𝐹ସ,௠ାସ . 

So result is true for 𝑛 = 𝑚 + 1. 

So proves the result is true for all 𝑛. 

4.4.8. Statement: - |𝐻(𝑛) | = 𝐹௞,௡ା௞ିଵ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 1 , where |𝐻(𝑛) | is the 

determinant of nth term of above define (1.7) sequence of matrix and 𝐹௞,௡ା௞ିଵis 

( 𝑛 + 𝑘 − 1)𝑡ℎ term k-Fibonacci sequence of number. 

Proof: - We will prove this result by principle mathematical induction. 

For  𝑛 = 1  we have |𝐻(1) | = 1 also 𝐹௞,௞ = 1. 

So we can say |𝐻(1) | = 𝐹௞,௞. 

So result is true for 𝑛 = 1. 

By hypothesis result is true for 𝑛 ≤ 𝑚 (our hypothesis). 

So we have |𝐻(𝑛)| = 𝐹ସ,௡ାଷ   𝑓𝑜𝑟 𝑎𝑙𝑙  𝑛 ≤ 𝑚. 

|𝐻(𝑚) | = 𝐹௞,௠ା௞ିଵ, |𝐻(𝑚 − 1) | = 𝐹௞,௠ା௞ିଶ, … … … . |𝐻(𝑚 − 𝑘 + 1) | = 𝐹௞,௠. 

Now we will find that result is also true for 𝑛 = 𝑚 + 1. 

Consider  |𝐻(𝑚 + 1) | = |𝐻(𝑚) | + |𝐻(𝑚 − 1)| + ⋯ + |𝐾(𝑚 − 𝑘 + 1)|. 

So we have after the putting all above value 

|𝐻(𝑚 + 1) | = 𝐹௞,௠ା௞ିଵ + 𝐹௞,௠ାା௞ିଶ + ⋯ + 𝐹௞,௠ାଵ + 𝐹௞,௠ . 

So we get  

|𝐻(𝑚 + 1) | = 𝐹௞,௠ା௞ , 

So result is true for 𝑛 = 𝑚 + 1. 

So proves the result is true for all 𝑛. 
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Chapter 5 

Sequence of Complex Bilinear Transformations with 

Coefficients as Fibonacci numbers 

5.1 Introduction 

This chapter deals with a sequence of complex functions of rational types with 

coefficients as Fibonacci numbers, then proves many properties, results, and theorems 

on these sequences of complex rational functions. Also, all terms of sequence in a 

complex rational function are forming a bilinear transformation. We show that all 

terms of sequence of a complex rational function are meromorphic functions and also 

discuss the fixed points of all terms of sequence of a complex rational function and 

the singularities of all terms of sequence of a complex rational function. So, this 

chapter represent a special relation between two main branch of mathematics Number 

Theory and Complex Analysis [33, 34, 36 and 40]. 

5.1.1 Fibonacci number sequence   

Fibonacci numbers sequence for non-negative integer 𝑛 ≥ 2 is given by 

𝑓௡ =  𝑓௡ିଵ +  𝑓௡ିଶ,                                                                                                                (5.1) 

with 𝑓଴ = 0 and 𝑓ଵ = 1.The terms of the Fibonacci sequence are called Fibonacci 

numbers. 

5.1.2 A Sequence generated by Fibonacci Numbers sequence  

𝑅௡ = 𝑓௡ିଵ𝑓௡ାଵ − 𝑓௡
ଶ.                                                                                                           (5.2) 

By equation (5.2) we have 

𝑅ଵ = 𝑓଴𝑓ଶ − 𝑓ଵ
ଶ = −1, 

𝑅ଶ = 𝑓ଵ𝑓ଷ − 𝑓ଶ
ଶ = 1, 

𝑅ଷ = 𝑓ଶ𝑓ସ − 𝑓ଷ
ଶ = −1, 
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so, we can observe  

𝑅௡ = (−1)௡. 

5.1.3  Bilinear Transformation  

A complex mapping   

𝑤(𝑧) =
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
,                                                                                                                     (5.3) 

where 𝑎𝑑 − 𝑏𝑐 ≠ 0 is called the bilinear transformation mapping, a complex bilinear 

transformation mapping a circle or line into circle or line. 

5.1.4  Meromorphic functions 

A complex variable a function which has no singularities other than poles so we can 

say that a complex function is meromorphic possible singularities are only poles. 

5.1.5  Conformal Mapping in Complex 

A mapping which preserves the sense rotation as well as the magnitude of angle 

between images of curves called the conformal mapping and there is a famous result a 

mapping is conformal if it is differentiable and derivatives is non-zero.   

5.1.6  Complex polynomials 

A complex polynomial is one that can have constants and signs referred to as 

variables or be indeterminate to a non-negative integer power. For those terms that 

can be modified from one to another, if the normal characteristics of commutatively 

are used, the distribution with addition and multiplication distributive is considered to 

define the same polynomial. A complex polynomial within an indeterminate 𝑧 may 

always have to be generated in the following way [41, 42 and 44] 

 

where 𝑎଴ ,  𝑎ଵ, … , 𝑎௡ are constants and 𝑧 is the indeterminate. The word intermediate 

does not mean 𝑧 represent is any unique value; but that any value will have to be 
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replaced by any value. The characterization that marks the product of this replacement 

to the substituted value is a feature called the complex polynomial function.  

෍ 𝑎௞𝑧௞

௡

௞ୀ଴

. 

So that is, there can be either zero polynomials or that can be defined as the sum of 

the amount of nonzero. Each is a sum of the commodity of a numerical coefficient 

and several indeterminate conditions brought to non-negative integer powers [46, 47 

and 48]. 

5.2. Sequence of complex rational functions 

Let𝑧 be any complex unknown and 𝑢(𝑧) is any function of 𝑧 given by below 

𝑢(𝑧) =  
1

1 + 𝑧
,                                                                                                                       (5.4) 

then we have, 

(𝑢𝑜𝑢)(𝑥) =
1

1 +
ଵ

ଵା௭

.                                                                                                            (5.5) 

Now we define  

𝑤௡(𝑥) = (𝑢𝑜𝑢𝑜𝑢𝑜 … 𝑜𝑢)(𝑥),                                                                                            (5.6)  

Where (𝑢𝑜𝑢𝑜𝑢𝑜 … 𝑜𝑢) represent 𝑛 time composition. 

Rational function as recurrence relation sequence for integer 𝑛 ≥ 2, is defined by   

𝑤ଵ(𝑧) =  
1

1 + 𝑧
,                                                                                                                     (5.7) 

and 

𝑤௡(𝑧) =
1

1 + 𝑤௡ିଵ(𝑧)
.                                                                                                        (5.8) 

Theorem 5.2.1: If 𝑤௡(𝑧) is given by (5.8), then 𝑤௡(𝑧) represented in the form of 

Fibonacci coefficients by 
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𝑤௡(𝑧) =
𝑓௡ିଵ 𝑧 + 𝑓௡

𝑓௡𝑧 + 𝑓௡ାଵ
.                                                                                                           (5.9) 

Proof: Principle mathematical induction can be used to prove this result.  

If 𝑛 = 1 by equation (5.1), (5.6) and (5.8) we will get 

𝑤ଵ(𝑧) = 𝑢(𝑧) =  
1

1 + 𝑧
=

𝑓଴ 𝑧 + 𝑓ଵ

𝑓ଵ 𝑧 + 𝑓ଵ
.                                                                              (5.10) 

So, for 𝑛 = 1 the result holds. 

Now consider for 𝑛 = 𝑘  result is true, let  

𝑤௞(𝑧) =
𝑓௞ିଵ 𝑧 + 𝑓௞

𝑓௞𝑧 + 𝑓௞ାଵ
.                                                                                                         (5.11) 

Consider for 𝑛 = 𝑘 + 1 by equation (5.8)  

𝑤௞ାଵ(𝑧) =
1

1 + 𝑤௞(𝑧)
, 

by equation (5.8) we get 

𝑤௞ାଵ(𝑧) =
1

1 +
௙ೖషభ ௭ା௙ೖ

௙ೖ௭ା௙ೖశభ

, 

on solving  

𝑤௞ାଵ(𝑧) =
𝑓௞𝑧 + 𝑓௞ାଵ

(𝑓௞ + 𝑓௞ିଵ)𝑧 + 𝑓௞ାଵ + 𝑓௞
, 

we have  

𝑤௞ାଵ(𝑧) =
𝑓௞𝑧 + 𝑓௞ାଵ

𝑓௞ାଵ 𝑧 + 𝑓௞ାଶ
. 

So, the result is true for 𝑛 = 𝑘 + 1, therefore the result is true for all integer 𝑛 using 

principle of mathematical induction. 

Theorem 5.2.2: If𝑤௡(𝑧)is defined by equation (5.9) then 𝑤௡(𝑧) is meromorphic 

function for all integer 𝑛. 
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Proof: To prove 𝑤௡(𝑧)are meromorphic function for all integer value of 𝑛 we will 

prove 𝑤௡(𝑧) have singularities are poles for all 𝑤௡(𝑧), for rational function 𝑤௡(𝑧) 

𝑤௡(𝑧) =
𝑝(𝑧)

𝑞(𝑧)
, 

Where𝑝(𝑧) and 𝑞(𝑧) are polynomials of degree one and 𝑧 is complex variable. 

If 𝑧଴ is singular point of 𝑤௡(𝑧)iff𝑞(𝑧଴) = 0, by equation (5.8) 

𝑧଴ = −
𝑓௞ାଵ

𝑓௞
, 

Clearly𝑝 ቀ−
௙ೖశభ

௙ೖ
ቁ ≠ 0and𝑞 ቀ−

௙ೖశభ

௙ೖ
ቁ = 0. 

Theorem 5.2.3: If𝑤௡(𝑧)is defined by equation (5.9) then 𝑤௡(𝑧) is bilinear 

transformation for all integers𝑛. 

Proof: We know that the bilinear transformation mapping is defined by (5.3) and 

comparing(5.3), and (5.9) we get 

𝑎 = 𝑓௡ିଵ, 𝑏 = 𝑓௡, 𝑐 = 𝑓௡, 𝑑 = 𝑓௡ାଵ, 

Using above terms  

𝑎𝑑 − 𝑏𝑐 = 𝑓௡ିଵ𝑓௡ାଵ − 𝑓௡
ଶ. 

So, we can say 𝑤௡(𝑧) is bilinear transformation if 

𝑎𝑑 − 𝑏𝑐 = 𝑓௡ିଵ𝑓௡ାଵ − 𝑓௡
ଶ ≠ 0, 

by equation (5.2) 

𝑎𝑑 − 𝑏𝑐 = 𝑓௡ିଵ𝑓௡ାଵ − 𝑓௡
ଶ = 𝑅௡ = (−1)௡, 

which proves that  

𝑎𝑑 − 𝑏𝑐 = 𝑓௡ିଵ𝑓௡ାଵ − 𝑓௡
ଶ ≠ 0. 

So 𝑤௡(𝑧)is bilinear transformation for all integer values of 𝑛. 

Theorem 5.2.4: If𝑤௡(𝑧)is defined by equation (5.9) then 𝑤௡(𝑧) has same fixed point 

for all integers𝑛 ≥ 0. 
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Proof: We know that for fixed point 𝑧 of 𝑤௡(𝑧), 𝑤௡(𝑧) = 𝑧, by equation (5.9) 

𝑤௡(𝑧) = 𝑧 =
𝑓௡ିଵ 𝑧 + 𝑓௡

𝑓௡𝑧 + 𝑓௡ାଵ
, 

𝑓௡𝑧ଶ − ( 𝑓௡ିଵ − 𝑓௡ାଵ)𝑧 − 𝑓௡ = 0, 

𝑧 =
(𝑓௡ିଵ − 𝑓௡ାଵ) ± ට(𝑓௡ିଵ − 𝑓௡ାଵ)ଶ + 4𝑓௡

ଶ

2𝑓௡
, 

𝑧 =
−𝑓௡ ± ට5𝑓௡

ଶ

2𝑓௡
, 

𝑧 =
−1 ± √5

2
. 

So, we can say that two fixed point of 𝑤௡(𝑧) are: 

𝑧 =
−1 ± √5

2
. 

Theorem 5.2.5: If 𝑤௡(𝑧)is defined by equation (5.9) then 𝑤௡(𝑧) are conformal 

functions in the unit disc for all integer values of 𝑛. 

Proof: We know that a mapping is conformal if and only if it is differentiable and 

derivatives are non-zero; by equation (5.9) 

𝑤௡(𝑧) =
𝑓௡ିଵ 𝑧 + 𝑓௡

𝑓௡𝑧 + 𝑓௡ାଵ
, 

also𝑤௡(𝑧)is  

𝑤௡(𝑧) =
𝑝(𝑧)

𝑞(𝑧)
, 

where 𝑝(𝑧) = 𝑓௡ିଵ 𝑧 + 𝑓௡ , 𝑞(𝑧) = 𝑓௡𝑧 + 𝑓௡ାଵare degree one polynomials. So 𝑤௡(𝑧) 
is differentiable if and only if 𝑞(𝑧) ≠ 0. 

On differentiating equation (5.9) with respect to 𝑧 
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𝑤௡
ᇱ (𝑧) =

𝑓௡ିଵ𝑓௡ାଵ − 𝑓௡
ଶ

(𝑓௡𝑧 + 𝑓௡ାଵ)ଶ
,                                                                                                 (5.12) 

by equation (5.2) 

𝑓௡ିଵ𝑓௡ାଵ − 𝑓௡
ଶ ≠ 0 

if 

(𝑓௡𝑧 + 𝑓௡ାଵ)ଶ = 0, 

so, 

𝑧 = −
𝑓௡ାଵ

𝑓௡
, 

since 𝑓௡ < 𝑓௡ାଵ , |𝑧| > 1, therefore 𝑤௡
ᇱ (𝑧) is non-zero for all every 𝑧 in unit disc, 

which proved 𝑤௡(𝑧) is conformal in unit disc. 

Theorem 5.2.6: If𝑤௡(𝑧)is defined by equation (5.9) then 𝑤௡(𝑧) is “bilinear 

transformation” which maps unity circle into a circle center with on real axis for all 

value of 𝑛. 

Proof: If bilinear transformation mapping is given by (5.3) as 

𝑤(𝑧) =
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
,  

where 𝑎𝑑 − 𝑏𝑐 ≠ 0, we have pole of bilinear transformation is at 

𝑧 = −
𝑑

𝑐
, 

There is a famous result in complex algebra: if the pole of bilinear transformation 

does not lie on the boundary of a circle, then bilinear transformation maps that circle 

into a circle. 

So, we have pole of 

𝑤௡(𝑧) =
𝑓௡ିଵ 𝑧 + 𝑓௡

𝑓௡𝑧 + 𝑓௡ାଵ
, 

at 
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𝑧 = −
𝑓௡ାଵ

𝑓௡
, 

Since 𝑓௡ < 𝑓௡ାଵ, so, |z| > 1, we can say that the pole of 𝑤௡(𝑧) not lie on the 

boundary of the unit circle. The result tells us that all values in the sharp image of the 

unit circle |z| = 1 for the bilinear transformation 𝑤௡(𝑧)in a circle. Compute the 

transformation 𝑤௡(𝑧) and prove the image of the unit circle|z| = 1. If this is again a 

circle centered on the real axis, then the proof of the theorem is complete. By equation 

(5.8) 

𝑤௡(𝑧) =
𝑓௡ିଵ 𝑧 + 𝑓௡

𝑓௡𝑧 + 𝑓௡ାଵ
, 

Solving above equation we find value of z 

𝑧 =
𝑓௡ − 𝑓௡ାଵ 𝑤

𝑓௡𝑤 − 𝑓௡ିଵ
,                                                                                                                (5.13) 

We know that equation of unity circle is|z| = 1. Using equation (5.13) in|z| = 1 

ฬ
𝑓௡ − 𝑓௡ାଵ 𝑤

𝑓௡𝑤 − 𝑓௡ିଵ
ฬ = 1, 

|𝑓௡ − 𝑓௡ାଵ 𝑤| = |𝑓௡𝑤 − 𝑓௡ିଵ|, 

|𝑓௡ − 𝑓௡ାଵ (𝑢 + 𝑖𝑣)| = |𝑓௡(𝑢 + 𝑖𝑣) − 𝑓௡ିଵ|, 

(𝑓௡ − 𝑓௡ାଵ 𝑢)ଶ + (𝑓௡ାଵ 𝑣)ଶ = (𝑓௡𝑢 − 𝑓௡ିଵ)ଶ + (𝑓௡ 𝑣)ଶ, 

(𝑓௡ାଵ
ଶ − 𝑓௡

ଶ)𝑢ଶ + (𝑓௡ାଵ
ଶ − 𝑓௡

ଶ)𝑣ଶ + 2(𝑓௡ିଵ𝑓௡ − 𝑓௡𝑓௡ାଵ)𝑢 = 𝑓௡ିଵ
ଶ − 𝑓௡

ଶ, 

𝑢ଶ + 𝑣ଶ +
2(𝑓௡ିଵ𝑓௡ − 𝑓௡𝑓௡ାଵ)

(𝑓௡ାଵ
ଶ − 𝑓௡

ଶ)
𝑢 =

𝑓௡ିଵ
ଶ − 𝑓௡

ଶ

(𝑓௡ାଵ
ଶ − 𝑓௡

ଶ)
. 

Since in above equation coefficients are same for 𝑢ଶ and 𝑣ଶ.So we can say that it 

represents a circle and coefficient of v is zero so centre must lie on real axis. 

Therefore, we can say that “𝑤௡(𝑧)are bilinear transformation which maps unity circle 

into a circle center with on real axis for all integer values of 𝑛”. 
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Theorem 5.2.7: If 𝑤௡(𝑧)is defined by equation (5.9), then “𝑤௡(𝑧) is a bilinear 

transformation that maps the upper half plane into the upper half plane for all even 

values of 𝑛”. 

Proof: If bilinear transformation mapping is given by (5.3) as 

𝑤(𝑧) =
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
, 

where 𝑎𝑑 − 𝑏𝑐 ≠ 0 and 𝑧 = 𝑥 + 𝑖𝑦. 

Pole of bilinear transformation is at 

𝑧 = −
𝑑

𝑐
. 

There is a famous result in complex algebra: “if pole of bilinear transformation lies on 

line bilinear transformation maps that line onto line”. 

So, we have pole of 

𝑤௡(𝑧) =
𝑓௡ିଵ 𝑧 + 𝑓௡

𝑓௡𝑧 + 𝑓௡ାଵ
, 

at 

𝑧 = −
𝑓௡ାଵ

𝑓௡
. 

Since 𝑓௡ and 𝑓௡ାଵ are real 𝑧 are also real valued so we can say that pole lie on real 

axis. 

We know that the equation of the upper half part of the plane is 𝐼𝑚(𝑧) ≥ 0, so y ≥ 0. 

So, boundary of this reason is y = 0. By using result image of boundary is boundary. 

Putting y = 0 in 𝑤௡(𝑧) = 𝑢 + 𝑖𝑣 

𝑢 + 𝑖𝑣 =
𝑓௡ିଵ 𝑥 + 𝑓௡

𝑓௡ 𝑥 + 𝑓௡ାଵ
, 
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on comparing real with real part and imaginary part with imaginary part, we obtained 

𝑣 = 0 therefor image of 𝑦 = 0 is 𝑣 = 0. Now there are only two possibilities for 

image either image of 𝑦 > 0 is 𝑣 > 0 or 𝑣 < 0.  

For finding image of 𝑦 > 0, we will use trial method for this put 𝑧 = 𝑖 in 𝑤௡(𝑧)we 

have  

𝑤௡(𝑖) =
𝑓௡ିଵ 𝑖 + 𝑓௡

𝑓௡𝑖 + 𝑓௡ାଵ
, 

on rationalizing the denominator   

𝑤௡(𝑖) =
𝑓௡ିଵ 𝑖 + 𝑓௡

𝑓௡𝑖 + 𝑓௡ାଵ
×

𝑓௡ାଵ − 𝑖𝑓௡

𝑓௡ାଵ − 𝑖𝑓௡
, 

on Solving  

𝑤௡(𝑖) =
(𝑓௡𝑓௡ାଵ + 𝑓௡ିଵ 𝑓௡) + (𝑓௡ିଵ 𝑓௡ାଵ − 𝑓௡

ଶ)

(𝑓௡ାଵ
ଶ + 𝑓௡

ଶ)
, 

by equation (5.2)  

𝑅௡ = (−1)௡, 

since we working only on even value of 𝑛 

𝑅௡ = 𝑓௡ିଵ𝑓௡ାଵ − 𝑓௡
ଶ = 1 > 0. 

So, that values of 𝑤௡(𝑖) lies in 𝑣 > 0, which proves the theorem. 

Theorem 5.2.8: If𝑤௡(𝑧)is defined by equation (5.9), “then 𝑤௡(𝑧) is a bilinear 

transformation that maps the upper half plane into the lower half plane for all odd 

values of 𝑛”. 

Proof: If bilinear transformation mapping is given by (5.3) as 

𝑤(𝑧) =
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
,  

where 𝑎𝑑 − 𝑏𝑐 ≠ 0 and 𝑧 = 𝑥 + 𝑖𝑦. 

Pole of bilinear transformation is at 
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𝑧 = −
𝑑

𝑐
. 

There is a famous result in complex in complex algebra if pole of a bilinear 

transformation lies on line bilinear transformation maps that line onto line. 

So, we have pole of 

𝑤௡(𝑧) =
𝑓௡ିଵ 𝑧 + 𝑓௡

𝑓௡𝑧 + 𝑓௡ାଵ
, 

at 

𝑧 = −
𝑓௡ାଵ

𝑓௡
, 

since 𝑓௡ and 𝑓௡ାଵ are real then we can say that 𝑧 is real value, so we can say that pole 

lie on a real axis. 

We know that the condition of the upper-half plane is 𝐼𝑚(𝑧) ≥ 0, so y ≥ 0. So, 

boundary of this reason is y = 0. By using result image of boundary is boundary. 

Putting y = 0 in 𝑤௡(𝑧) = 𝑢 + 𝑖𝑣 

𝑢 + 𝑖𝑣 =
𝑓௡ିଵ 𝑥 + 𝑓௡

𝑓௡𝑥 + 𝑓௡ାଵ
, 

Comparing the real and imaginary parts gives𝑣 = 0,so the image of 𝑦 = 0 is 𝑣 = 0. 
Now there are only two possibilities for image either image of 𝑦 > 0 is 𝑣 > 0or 
𝑣 < 0.  

For finding image of 𝑦 > 0, we will use trial method for this put 𝑧 = 𝑖 in 𝑤௡(𝑧) 

𝑤௡(𝑖) =
𝑓௡ିଵ 𝑖 + 𝑓௡

𝑓௡ 𝑖 + 𝑓௡ାଵ
, 

on rationalizing and solving 

𝑤௡(𝑖) =
(𝑓௡𝑓௡ାଵ + 𝑓௡ିଵ 𝑓௡) + (𝑓௡ିଵ 𝑓௡ାଵ − 𝑓௡

ଶ)

(𝑓௡ାଵ
ଶ + 𝑓௡

ଶ)
, 

by equation (5.2)  

𝑅௡ = (−1)௡, 
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since we are working on only odd value of  𝑛 we have  

𝑅௡ = 𝑓௡ିଵ𝑓௡ାଵ − 𝑓௡
ଶ = −1 < 0. 

So, that values of 𝑤௡(𝑖) lies in 𝑣 < 0, which proves the theorem. 
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Chapter 6 

Relations between Chebyshev Polynomials and Hermite 

Polynomials 

6.1 Introduction 

In this chapter, we have obtained the relation between the “Chebyshev polynomial of 

the second kind” and Hermite polynomials of two variables, also the generating 

function is obtained with the help of the Hermite polynomial [8, 49 and 51].      

6.2 Relations between Chebyshev Polynomials and Hermite 

Polynomials 

“The Chebyshev polynomial of the first kind  {𝑇௡(𝑥)} and the second kind {𝑈௡(𝑥)}” 

for all integers 𝑛 ≥ 0 are given by  

𝑇௡ାଶ(𝑥) = 2𝑥𝑇௡(𝑥) − 𝑇௡(𝑥), 𝑇ଵ(𝑥) = 𝑥, 𝑇଴(𝑥) = 1.                                                    (6.1) 

𝑈௡ାଶ(𝑥) = 2𝑥𝑈௡ାଵ(𝑥) − 𝑈௡(𝑥), 𝑈ଵ(𝑥) = 2𝑥, 𝑈଴(𝑥) = 1. (6.2) 

Then the explicit representation of  𝑇௡(𝑥) and 𝑈௡(𝑥)are respectively  

𝑇௡(𝑥) =
𝑛

2
෍(−1)௞

(𝑛 − 𝑘 − 1)!

𝑘! (𝑛 − 2𝑘)!

ቂ
೙

మ
ቃ

௞ୀ଴

(2𝑥)௡ିଶ௞ , |𝑥| < 1.                                                  (6.3) 

and 

𝑈௡(𝑥) = ෍(−1)௞
(𝑛 − 𝑘 − 1)!

𝑘! (𝑛 − 2𝑘)!

ቂ
೙

మ
ቃ

௞ୀ଴

(2𝑥)௡ିଶ௞ , |𝑥| < 1.                                                    (6.4) 

If we take 𝑥 = cos 𝛾, then 

𝑇௡(cos 𝛾) = cos(𝑛𝛾).                                                                                                          (6.5) 
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𝑈௡(cos 𝛾) =
sin(𝑛 + 1) 𝛾

sin 𝛾
.                                                                                                 (6.6) 

In analysis, Chebyshev polynomials show integral representations of the 

Hermite polynomials and the generation process will add the new representations of 

Chebyshev polynomials.  

Proposition 6.2.1. If 𝑇௡(𝑥), 𝑈௡(𝑥) are Chebyshev polynomials defined by (6.1), (6.2) 

and  𝐻௡(𝑥, 𝑦) two-variable Hermite polynomial then [52, 53] 

𝑈௡(𝑥) =
1

𝑛!
න 𝑒ି௧𝑡௡𝐻௡(2𝑥, −

1

𝑡

ାஶ

଴

)𝑑𝑡.                                                                                (6.7) 

and 

𝑇௡(𝑥) =
1

2(𝑛 − 1)!
න 𝑒ି௧𝑡௡𝐻௡(2𝑥, −

1

𝑡

ஶ

଴

)𝑑𝑡.                                                                    (6.8) 

Proof:  By taking note of this 

𝑛! = න 𝑒ି௧𝑡௡𝑑𝑡

ஶ

଴

. 

Replacing 𝑛 by 𝑛 − 𝑘 

(𝑛 − 𝑘)! = න 𝑒ି௧𝑡௡ି௞𝑑𝑡.

ஶ

଴

                                                                                                  (6.9) 

For 𝐻௡(𝑥, 𝑦) and 𝑈௡(𝑥) the explicit forms are  

𝐻௡(𝑥, 𝑦) = 𝑛! ෍
(𝑦)௞(𝑥)௡ିଶ௞

𝑘! (𝑛 − 2𝑘)!

ቔ
೙

మ
ቕ

௞ୀ଴

.                                                                                      (6.10) 
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𝑈௡(𝑥) = ෍
(−1)௞(𝑛 − 𝑘)! (2𝑥)௡ିଶ௞

𝑘! (𝑛 − 2𝑘)!

[
೙

మ
]

௞ୀ଴

.                                                                       (6.11) 

In equation (6.9) replacing 𝑥 by 2𝑥 and 𝑦 replacing by −
ଵ

௧
 we will get 

𝐻௡ ൬2𝑥, −
1

𝑡
൰ = 𝑛! ෍

(−1)௞(2𝑥)௡ିଶ௞𝑡ି௞

𝑘! (𝑛 − 2𝑘)!

ቔ
೙

మ
ቕ

௞ୀ଴

,                                                                 (6.12) 

if 𝑒ି௧𝑡௡ is multiplied both sides of equation (6.11)and integrating in the limit 0 𝑡𝑜 ∞ 

we will get 

න 𝑒ି௧𝑡௡
ஶ

଴

𝐻௡ ൬2𝑥, −
1

𝑡
൰ 𝑑𝑡 =  𝑛! ෍

(−1)௞(2𝑥)௡ିଶ௞

𝑘! (𝑛 − 2𝑘)!

ቔ
೙

మ
ቕ

௞ୀ଴

න 𝑒ି௧
ஶ

଴

𝑡௡ି௞𝑑𝑡,                    (6.13) 

by using equation (6.9) we will get 

න 𝑒ି௧𝑡௡
ஶ

଴

𝐻௡ ൬2𝑥, −
1

𝑡
൰ 𝑑𝑡 =  𝑛! ෍

(−1)௞(2𝑥)௡ିଶ௞(𝑛 − 𝑘)!

𝑘! (𝑛 − 2𝑘)!

ቔ
೙

మ
ቕ

௞ୀ଴

,  

by equation (6.11) we have  

𝑈௡(𝑥) =
1

𝑛!
න 𝑒ି௧𝑡௡𝐻௡(2𝑥, −

1

𝑡

ାஶ

଴

)𝑑𝑡. 

which proves the result.  

Theorem 6.2.1: If 𝑇௡(𝑥), 𝑈௡(𝑥) are Chebyshev polynomials defined by (6.1), (6.2) 

then: 

𝑑

𝑑𝑥
𝑈௡(𝑥) = 𝑛𝑊௡ିଵ(𝑥), 

𝑈௡ାଵ(𝑥) = 𝑥𝑊௡(𝑥) −
𝑛

𝑛 + 1
𝑊௡ିଵ(𝑥), 
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were 

𝑊௡(𝑥) =
2

(𝑛 + 1)!
න 𝑒ି௧𝑡௡ାଵ𝐻௡(2𝑥, −

1

𝑡

ାஶ

଴

)𝑑𝑡. 

Proof: From preposition 6.2.1 𝐻௡(𝑥, 𝑦) can be costumed as follows:  

൤2𝑥 −
1

𝑡

𝜕

𝜕𝑥
൨ 𝐻௡ ൬2𝑥, −

1

𝑡
൰ = 𝐻௡ାଵ ൬2𝑥, −

1

𝑡
൰,                                                              (6.14) 

1

2

𝜕

𝜕𝑥
𝐻௡ ൬2𝑥, −

1

𝑡
൰ = 𝑛𝐻௡ିଵ ൬2𝑥, −

1

𝑡
൰.                                                                         (6.15) 

First, we will prove identity (6.14) and (6.15), consider   

𝜕𝐻௡(2𝑥, −
ଵ

௧
)

2𝜕𝑥
= 𝑛! ෍

(−1)௞(2𝑥)௡ିଶ௞ିଵ𝑡ି௞

𝑘! (𝑛 − 2𝑘 − 1)!

ቔ
೙షభ

మ
ቕ

௞ୀ଴

, 

so, by equation (6.12) we have 

1

2

𝜕

𝜕𝑥
𝐻௡ ൬2𝑥, −

1

𝑡
൰ = 𝑛𝐻௡ିଵ ൬2𝑥, −

1

𝑡
൰. 

Which proves (6.15) in the same way we can prove (6.14). 

It obtains integral representations in the relations of Chebyshev polynomials and by 

equation (6.15) 

𝑑

𝑑𝑥
𝑈௡(𝑥) =

2𝑛

𝑛!
න 𝑒ି௧𝑡௡𝐻௡(2𝑥, −

1

𝑡

ାஶ

଴

)𝑑𝑡.                                                                      (6.16) 

𝑑

𝑑𝑥
𝑇௡(𝑥) =

𝑛

(𝑛 − 1)!
න 𝑒ି௧𝑡௡ିଵ𝐻௡ିଵ(2𝑥, −

1

𝑡

ାஶ

଴

)𝑑𝑡.                                                    (6.17) 

The relation above provides a link between polynomials 𝑈௡(𝑥) and 𝐻௡(𝑥), however, 

as 
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𝑈௡ିଵ(𝑥) =
1

(𝑛 − 1)!
න 𝑒ି௧𝑡௡ିଵ𝐻௡ିଵ(2𝑥, −

1

𝑡

ାஶ

଴

)𝑑𝑡. 

By using the second kind of Chebyshev polynomial equation (6.7) in the first 

identity (6.16) 

𝑈௡ାଵ(𝑥) =
1

(𝑛 + 1)!
න 𝑒ି௧𝑡௡ାଵ𝐻௡ାଵ(2𝑥, −

1

𝑡

ାஶ

଴

)𝑑𝑡, 

using the relation 

൤2𝑥 +
1

−𝑡

𝜕

𝜕𝑥
൨ 𝐻௡ ൬2𝑥,

1

−𝑡
൰ = 𝐻௡ାଵ ൬2𝑥, −

1

𝑡
൰, 

we have  

𝑈௡ାଵ(𝑥) = 𝑥
2

(𝑛 + 1)!
න 𝑒ି௧𝑡௡ାଵ𝐻௡(2𝑥, −

1

𝑡

ାஶ

଴

)𝑑𝑡

−
1

(𝑛 + 1)!
න 𝑒ି௧𝑡௡

ାஶ

଴

𝜕

𝜕𝑥
𝐻௡(2x, −

1

𝑡
)𝑑𝑡, 

using 

1

2

𝜕

𝜕𝑥
𝐻௡ ൬2𝑥, −

1

𝑡
൰ = 𝑛𝐻௡ିଵ ൬2𝑥, −

1

𝑡
൰, 

We obtained  

𝑈௡ାଵ(𝑥) = 𝑥
2

(𝑛 + 1)!
න 𝑒ି௧𝑡௡ାଵ𝐻௡(2𝑥, −

1

𝑡

ାஶ

଴

)𝑑𝑡

−
2𝑛

(𝑛 + 1)!
න 𝑒ି௧𝑡௡𝐻௡ିଵ(2𝑥, −

1

𝑡

ାஶ

଴

)𝑑𝑡.                                               (6.18) 

From R.H.S second term of (6.18) given following polynomial 
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𝑊௡(𝑥) =
2

(𝑛 + 1)!
න 𝑒ି௧𝑡௡ାଵ𝐻௡(2𝑥, −

1

𝑡

ାஶ

଴

)𝑑𝑡. 

replacing𝑛 by 𝑛 − 1, 

𝑊௡ିଵ(𝑥) =
2

(𝑛)!
න 𝑒ି௧𝑡௡𝐻௡ିଵ(2𝑥, −

1

𝑡

ାஶ

଴

)𝑑𝑡, 

so, we obtained  

𝑑

𝑑𝑥
𝑈௡(𝑥) = 𝑛𝑊௡ିଵ(𝑥), 

and 

𝑈௡ାଵ(𝑥) = 𝑥𝑊௡(𝑥) −
𝑛

𝑛 + 1
𝑊௡ିଵ(𝑥). 

Which proves the theorem. 

6.3 Generating functions of Chebyshev polynomial by Hermite 

polynomial 

The second type of Chebyshev polynomial can draw a slightly different links from 

Hermite polynomial and their generating functions. Both sides of the equation (6.7) 

are multiplied by 𝜉௡, |𝜉|  <  1 and over 𝑛 taking summation [57, 58, 59 and 61] 

෍ ξ௡

ାஶ

௡ୀ଴

𝑈௡(𝑥) = න 𝑒ି௧
ାஶ

଴

෍
(𝑡ξ)௡

𝑛!

ାஶ

௡ୀ଴

𝐻௡ ൬2𝑥, −
1

𝑡
൰ 𝑑𝑡,                                                   (6.19) 

by remembering the polynomials 

෍
t୬

n!

ାஶ

௡ୀ଴

𝐻௡(𝑥, 𝑦) = 𝑒(௫௧ା௬௧మ), 

in (6.19) and solving we get   
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෍ ξ௡

ାஶ

௡ୀ଴

𝑈௡(𝑥) =
1

1 − 2𝜉𝑥 + 𝜉ଶ
. 

which is required generating function for 𝑈௡(𝑥). 
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Chapter 7 

Applications of Recurrence Relations 

7.1 Introduction 

In this chapter, applications of recurrence relations in network marketing are 

discussed with some limitations imposed on the problem. In the later parts of the 

chapter, the application of recurrence relations, especially Fibonacci numbers, and the 

reproduction mechanism of honey bees are verified, and Fibonacci numbers in blooms 

are viewed [63, 65 and 66]. 

7.2 Application of Recurrence Relation in Network Marketing  

People are compensated in network marketing not only for the work that they produce 

themselves but also for the work that is generated by other employees who report to 

them. Because of the hierarchical structure and the network of distributors, one type 

of business model for networks is referred to as a "down line model." This model 

includes numerous levels of compensation for distributors. The problem that is being 

discussed is that certain limitations, such as the percentage distribution of profit, 

should be such that the roots of the polynomial for which the recurrence relation is 

defined must be distinct; any worker cannot leave the business; workers should be 

honest; and there is an assumption that every worker can only take one worker under 

him. These limitations should be met [67, 68 and 69]. 

In its early stages, network marketing was primarily focused on the sale of nutritional 

supplements, cosmetics, and household goods. The concept was first introduced in the 

1950s, and by the 1980s, network marketing businesses had expanded to include 

companies that specialized in providing long-distance telephone services and 

insurance [70, 71 and 76]. 

There are a wide variety of business platforms available for use in network marketing. 

Word-of-mouth marketing and relationship referrals are two of the most common 

ways that employees offer products directly to customers in most of these businesses. 
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The majority of businesses in the network marketing industry focus on providing 

opportunities to people who, in other circumstances, might not have them, including 

individuals who are [10] 

 Less certainty in running their claim trade. 
 Have exceptionally little sum of cash to invest. 

 With current work level, people are not happy. 
 Own businesses were not running successfully.  

 

Figure 7.1 Network Marketing Tree 

7.2.1 Theorem on recurrence relation sequence 

Recall the Theorem 2.2.1, we have  

For real numbers 𝑐ଵ, 𝑐ଶ  and let 

𝑥ଶ − 𝑐ଵ𝑥 − 𝑐ଶ = 0,                                                                                                              (7.1) 

having distinct roots 𝑥ଵ and 𝑥ଶ are distinct roots.  

Then the sequence < 𝑎௡ >has solution 

𝑎௡ = 𝑐ଵ𝑎௡ିଵ + 𝑐ଶ𝑎௡ିଶ𝑛 ≥ 2,                                                                                           (7.2) 

with initial terms 𝑎଴ = 𝐴ଵ, 𝑎ଵ = 𝐴ଶ. 



 

 

 

87 

 

𝑖𝑓𝑓 

𝑎௡ = 𝛽ଵ𝑥ଵ
௡ + 𝛽ଶ𝑥ଶ

௡, 

For 𝑛 =  0, 1, 2, …,and forrandom constants 𝛽ଵ and 𝛽ଶ.  

Preposition 7.2.1: Allow a man A to begin his network business by taking on the task 

of a man B under him, and A must agree to share 50 percent of his profit with B. 

Now, B will be responsible for the labor of a man C under him, and C will receive 

35% of B's profit while A receives 2% of B's profit. Now let's say that C hires D to 

work for him, and under this arrangement D receives 35% of C's profits while C 

receives 2% of D's profits. If there are one hundred individuals working in this 

network business, then each working man will receive 35% of the profits earned by 

his immediate predecessor, as well as 2% of the profits earned by his immediate 

predecessor's immediate predecessor. If the profit of man A is Rs. 400,000, then you 

need to figure out what the profit of man 10 is. 

Solution: let 𝑎ଵis the profit of the man A and 𝑎ଶ is the profit of man B and 𝑎௡ is the 

profit of the 𝑛th man. Then by given condition we have 𝑎ଵ = 400000 and 𝑎ଶ =

200000 

𝑎௡ =
35

100
𝑎௡ିଵ +

2

100
𝑎௡ିଶ, 𝑛 > 2.                                                                                  (7.3) 

The characteristic equation of (7.3) is   

𝑥ଶ −
35

100
𝑥 −

2

100
= 0,                                                                                                        (7.4) 

Solving equation (7.2) we have 
ଶ

ହ
 and −

ଵ

ଶ଴
then using above theorem 7.2.1 we have            

𝑎௡ = 𝛽ଵ(
2

5
)௡ + 𝛽ଶ(−

1

20
)௡, 

by given condition for 𝑛 = 1,2 

𝛽ଵ ൬
2

5
൰

ଵ

+ 𝛽ଶ ൬−
1

20
൰

ଵ

= 400000,                                                                                     (7.5) 

𝛽ଵ ൬
2

5
൰

ଶ

+ 𝛽ଶ ൬−
1

20
൰

ଶ

= 200000,                                                                                    (7.6) 
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Solving (7.5) and (7.6) we have  

𝛽ଵ =
11000000

9
, 

and 

𝛽ଶ =
16000000

9
, 

By theorem 7.2.1 we can write  

𝑎௡ =
11000000

9
(
2

5
)௡ +

16000000

9
(−

1

20
)௡, 

so put 𝑛 = 10 we have 𝑎ଵ଴ = 128.15 

profit of any worker in the network line can be find out using above method. 

Limitation:  

 The percentage distribution of profit should be such that the roots of a 
polynomial must be distinct. 

 Any worker cannot leave the business. 

 Work should be honest. 

 There is an assumption every worker can take only worker under him.  

7.3 Amazing Applications of the Fibonacci Numbers  

“The Fibonacci numbers” and the associated "Golden Ratio" are shown in nature and 

in specific show-stoppers. We study those huge numbers in nature and pursue the 

Fibonacci sequence. It shows up in biological settings, for example, in the fanning of 

trees, phyllo taxis (the course of action of leaves on a stem), the natural product 

sprouts of a pineapple, the blooming of an artichoke's uncurling greenery, the game 

plan of a pine cone's bracts, and so on. At present, Fibonacci numbers assume a 

significant role in coding innovation hypotheses. 

7.3.1 Reproduction mechanism of Bee’s 

The reproduction mechanism of Bee model is much more realistic as far as the 

Fibonacci numbers are concerned. The Fibonacci numbers were first uncovered by a 

man named Leonardo Pisano. He was notable for his Fibonacci. The Fibonacci 
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sequence is a sequence wherein each term is the aggregate of the two numbers going 

before it [4]. By equation (1.7) 

𝑓௡  = 𝑓௡ିଵ + 𝑓௡ିଶ, 

For integers 𝑛 ≥  2, where𝑓଴ = 0, 𝑓ଵ = 1 and𝑓௡ represents the 𝑛th Fibonacci 
number.[39] 

Reproduction in bees is flawlessly described by Fibonacci numbers. The Fibonacci 

numbers verify numerous unusual characteristics of a honeybee's family. Honey bees 

have some unusual facts, such as the fact that not every one of them has two parents. 

The queen is a unique female in the honeybee community. There are numerous 

working drones who are female, not at all like the queen honey bee; no eggs are 

produced by them. There are some male automaton bees who do not work. 

Unfertilized eggs from a queen's ovaries produce males, so male bees just have a 

mother. Females are formed when a queen bee mates with a male, so a female bee has 

two parents. Females usually become worker bees, so a female bee has both a male 

and a female parent, while a male bee has only one female bee as parent. Based on all 

the above facts, relations between the reproduction mechanisms of bees and Fibonacci 

numbers are discussed [79, 80, 81and 82]. 

Queen bees lay eggs only if the eggs are: Fertilized or Non fertilized then respective 
bees are Workers females or Drones→ males respectively. 

 

Figure7.2: Honey bee with eggs. 
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Figure 7.3 Male bee’s family tree 

 

Figure 7.4: Family of Male and Female bees. 

The ration to two consecutive Fibonacci numbers second divided by first is called 

Golden Ratio, the value 1.618 is Golden Ratio. Honey bees are shown by both 

Fibonacci numbers and the Golden ratio. The Fibonacci numbers are very much 

represented in honeybees. For instance, on the off chance that you pursue the family 

tree of honeybees, it follows the Fibonacci sequence splendidly [3, 8]. On the off 

chance that you have taken any hive and pursue this pattern, it would resemble this 
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Table 7.1 Honey bee and Fibonacci numbers. 

 

Dividing the number of females by the number of drones yields the golden ratio of 

1.618. This series of numbers works randomly for each bee hive. Usually, honeybee 

hives are always used to clarify the Fibonacci sequence and the Golden Ratio [5,9].  

 

Figure 7.5 Honey Bee family Tree. 

Now let's take a gander at the male honey family tree of a bee called A. A (symbol at 

the base of the tree for male, a hover with over a bolt) parent as one (female honey 

bee represent the queen honey bee symbol, a hover over across) a queen honey bee 

has two parents. This means grandparents of A were two. His granddad will just have 

one parent, while his grandma will have two, so altogether there were three great-

grandparents of A. One of which will be male and, along these lines, have one parent, 

whereas the other two are female and, in this way, have a total of four parents. So, the 

total count of great-great-grandparents of A was five. Proceeding with this, one can 

find that the great-great-great-grandparents of A were eight, the great-great-great-

great grandparents were thirteen, etc. Again, it is the Fibonacci sequence [8]. 
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Table 7.2: Sequence of Drone and Worker or Queen Bee’s as Fibonacci numbers. 

 

7.3.2 Fibonacci Sequence in the home garden  

Fibonacci numbers can be stated in nature in lovely blossoms, on the leader of a 

sunflower and the seeds are pressed with a particular goal in mind so they pursue the 

example of the Fibonacci sequence. This winding keeps the seeds of the sun-flower 

from swarming themselves out consequently helping them with endurance. The petals 

of blossoms and different plants may likewise be identified with the Fibonacci 

sequence in the manner in which they make new petals [5]. Fibonacci can be 

originating in nature. It can be seen in the following flowers, leaf and in vegetables 

that daily we are consuming. God created the flowers with 3 petals,5 petals,8 petals so 

on. It is in the Fibonacci sequence [6]. 
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Figure 7.6:  3 petals flowers.  

 

Figure 7.7:  3 petals flowers.  
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Figure 7.8:  5 petals flowers.  

 

Figure 7.9:  8 petals flowers.  
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Figure 7.10:  21 petals flowers.  

 

 

Figure 7.11:  5seeds count of fruit.  

 

 

Figure 7.12:  Fibonacci numbers on Pineapples. 
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Summary and Conclusions 

In the first chapter, we provide an overview of the recurrence relations of numbers 

that make up history, as well as their applications in a variety of different disciplines. 

In addition, we make a cursory review of a few key definitions and well-known 

results that are required to some degree in order to proceed to the consecutive 

chapters. 

In chapter 2, we demonstrated how the roots and terms of recurrence relations of the 

first, second, third, fourth, and 𝑘𝑡ℎ orders are connected to one another. In addition, 

the results on particular kinds of recurrence relations, such as those involving 

Fibonacci polynomials and Chebyshev polynomials, have been obtained, and some of 

these findings are as follows: 

 For arbitrary real numbers𝑐ଵ and  𝑐ଶ , if 𝑥ଵ and 𝑥ଶ are different roots of   

𝑥ଶ − 𝑐ଵ𝑥 − 𝑐ଶ = 0, 

Then sequence < 𝑎௡ >has a solution   

𝑎௡ = 𝑐ଵ𝑎௡ିଵ + 𝑐ଶ𝑎௡ିଶ𝑛 ≥ 2,  

with given initial terms 𝑎଴ = 𝐴ଵ and 𝑎ଵ = 𝐴ଶ, if and only if𝑎௡ = 𝛽ଵ𝑥ଵ
௡ +

𝛽ଶ𝑥ଶ
௡, 

for arbitrary constants 𝛽ଵ and 𝛽ଶ.  

 For random real numbers 𝑐ଵ and  𝑐ଶ  the sequence < 𝑎௡ >  has a solution 

𝑎௡ = 𝑐ଵ𝑎௡ିଵ + 𝑐ଶ𝑎௡ିଶ𝑛 ≥ 2,  

with given initial terms 𝑎଴ = 𝐴ଵ and 𝑎ଵ = 𝐴ଶ, if in equation above 

sequence𝑐ଵand 𝑐ଶ are such that roots of  𝑥ଶ − 𝑐ଵ𝑥 − 𝑐ଶ = 0are distinct and 

greater than 1 and satisfied the condition 𝐴ଵ𝑥ଵ > 𝐴ଶ  and 𝐴ଵ𝑥ଶ < 𝐴ଶthen 

recurrence relation sequence must be divergent. 

 For real numbers 𝑐ଵ,  𝑐ଶ , and 𝑐ଷlet 

𝑥ଷ − 𝑐ଵ𝑥ଶ − 𝑐ଶ𝑥 − 𝑐ଷ = 0,  
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Has distinct roots  𝑥ଵ, 𝑥ଶ and 𝑥ଷ. Then sequence < 𝑎௡ > has a solution 

𝑎௡ = 𝑐ଵ𝑎௡ିଵ + 𝑐ଶ𝑎௡ିଶ + 𝑐ଷ𝑎௡ିଷ , 𝑛 ≥ 3, 

with given initial terms 𝑎଴ = 𝐴ଵ, 𝑎ଵ = 𝐴ଶ, and 𝑎ଶ = 𝐴ଷ. 

𝑖𝑓𝑓 

𝑎௡ = 𝛽ଵ𝑥ଵ
௡ + 𝛽ଶ𝑥ଶ

௡ + 𝛽ଷ𝑥ଷ
௡, 

for 𝑛 =  0, 1, 2, …,with arbitrary constants 𝛽ଵ, 𝛽ଶand 𝛽ଷ. 

 For real numbers 𝑐ଵ,  𝑐ଶ, 𝑐ଷ , and 𝑐ସand let 

𝑥ସ − 𝑐ଵ𝑥ଷ − 𝑐ଶ𝑥ଶ − 𝑐ଷ𝑥 − 𝑐ସ = 0, 

Has distinct roots 𝑥ଵ, 𝑥ଶ, 𝑥ଷ and 𝑥ସ . Then the sequence < 𝑎௡ >  is a solution 

of the recurrence relation  

𝑎௡ = 𝑐ଵ𝑎௡ିଵ + 𝑐ଶ𝑎௡ିଶ + 𝑐ଷ𝑎௡ିଷ + cସ𝑎୬ିସ , 𝑛 ≥ 4 , 

with given initial terms 𝑎଴ = 𝐴ଵ, 𝑎ଵ = 𝐴ଶ, 𝑎ଶ = 𝐴ଷ, and 𝑎ଷ = 𝐴ସ.  

 

𝑖𝑓𝑓 

𝑎௡ = 𝛽ଵ𝑥ଵ
௡ + 𝛽ଶ𝑥ଶ

௡ + 𝛽ଷ𝑥ଷ
௡ + 𝛽ସ𝑥ସ

௡ 

for 𝑛 =  0, 1, 2, …,with arbitrary constants 𝛽ଵ, 𝛽ଶ, 𝛽ଷ and 𝛽ସ. 

For real numbers𝑐ଵ,  𝑐ଶ, 𝑐ଷ, … , 𝑐௞, let 

𝑥௞ − 𝑐ଵ𝑥௞ିଵ − 𝑐ଶ𝑥௞ିଶ … − 𝑐௞ = 0, 

have distinct roots 𝑥ଵ, 𝑥ଶ, 𝑥ଷ … , 𝑥௞ . Then the sequence < 𝑎௡ >has a solution 

𝑎௡ = 𝑐ଵ𝑎௡ିଵ + 𝑐ଶ𝑎௡ିଶ + 𝑐ଷ𝑎௡ିଷ + ⋯ … + 𝑐୩𝑎௡ି୩ , 𝑛 > k, 

with given initial terms 𝑎଴ = 𝐴ଵ, 𝑎ଵ = 𝐴ଶ, 𝑎ଶ = 𝐴ଷ , … , 𝑎௞ିଵ = 𝐴௞.  
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𝑖𝑓𝑓 

𝑎௡ = 𝛽ଵ𝑥ଵ
௡ + 𝛽ଶ𝑥ଶ

௡ + 𝛽ଷ𝑥ଷ
௡ + ⋯ + 𝛽୩𝑥୩

௡ 

for 𝑛 =  0, 1, 2 ….with arbitrary constants 𝛽ଵ, 𝛽ଶ, 𝛽ଷ … 𝛽୩. 

In Chapter 3 we have worked on recurrence relation of rational function in the form of 

composition function have terms Fibonacci numbers or Generalized Fibonacci 

numbers, then we have considered a set based on the defined composition function 

and properties of group are verified, the main results of the research outcomes are  

 If 𝑢: (0, ∞) → (0,1)is real valued function given by 

𝑢(𝑥) =  
1

1 + 𝑥
, 

𝑢(𝑥) Continuous in its domain. The co-domain of 𝑢 is a subset of the domain 
of 𝑢, so consider function 

(𝑢 𝑜 𝑢)(𝑥) =
1

1 +
ଵ

ଵା௫

, 

Then 𝑧௡(𝑥) = (𝑢𝑜𝑢𝑜𝑢𝑜 … 𝑜𝑢)(𝑥). 
The recurrence relation sequence of rational function is  

𝑧ଵ(𝑥) = 𝑢(𝑥) =  
1

1 + 𝑥
, 

and 

𝑧௡(𝑥) =
1

1 + 𝑧௡ିଵ(𝑥)
, 

For integer 𝑛 ≥ 2. 

Then, 𝑧௡(𝑥) is 

𝑧௡(𝑥) =
𝑓௡ିଵ 𝑥 + 𝑓௡

𝑓௡ 𝑥 + 𝑓௡ାଵ
, 

where 𝑓௜  𝑖th Fibonacci number and 𝑧௡(𝑥)𝑛th term of sequence of rational 

function. For 𝑛 ∈ 𝑁, the codomain of 𝑧௡(𝑥) is 



 

 

 

99 

 

𝐴௡ = ൬min ൜
𝑓௡ିଵ

𝑓௡
,

𝑓௡

𝑓௡ାଵ
ൠ , max ൜

𝑓௡ିଵ

𝑓௡
,

𝑓௡

𝑓௡ାଵ
ൠ൰ 

 Let 𝐼: (0, ∞) → (0, ∞),𝐼(𝑥) = 𝑥 and Let G be set of all  𝑧௡(𝑥) for all 𝑛 ∈ 𝑁 

and including I function, then with respect to composition operation given by 

equation𝑧௡(𝑥)G is cyclic group. 

 If 𝑣: (0, ∞) → (0,1)a function with real value given by 

𝑣(𝑥) =  
1

𝑞 + 𝑥
, 

where 𝑞 in any positive integer, 𝑣(𝑥) continuous on its domain and codomain 

of 𝑢 is subset of domain of 𝑢. Considered function 

(𝑣 𝑜 𝑣)(𝑥) =
1

1 +
ଵ

௤ା௫

, 

And defined   𝑤௡(𝑥) = (𝑣𝑜𝑣𝑜𝑣𝑜 … 𝑜𝑣)(𝑥). 

Recurrence relation sequence of rational function is 

𝑤ଵ(𝑥) = 𝑣(𝑥) =  
1

𝑞 + 𝑥
, 

𝑤௡(𝑥) =
1

𝑞 + 𝑤௡ିଵ(𝑥)
, 

for all integer𝑛 ≥ 2.  

Now, verify that each member of this family has the same coefficient as the 
generalized Fibonacci number. If we take 𝑝 = 𝑞, 𝑞 = 1, 𝑎 = 0, 𝑏 = 1, by 
equation (3.3) we have generalized Fibonacci sequence  

𝐹௡ = 𝑞𝐹௡ିଵ +  𝐹௡ିଶ, 

∀ 𝑛 ≥ 2, 𝐹଴ = 0  𝐹ଵ = 1,where 𝑞 is any positive integer, then proved that 

𝑤௡(𝑥) =
𝐹௡ିଵ 𝑥 + 𝐹௡

𝐹௡ 𝑥 + 𝐹௡ାଵ
, 

Where 𝐹௜ , 𝑖𝑡ℎ generalized Fibonacci number, 𝑤௡(𝑥)𝑛th term of equation 
sequence of rational functions. 
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 Then proved the result that 𝑤௡(𝑥) is monotonic function.  

 For integer𝑛 ∈ 𝑁, the range set 𝐵௡ of  𝑧௡(𝑥) is 𝐵௡ = ቀ
ி೙షభ

ி೙

ி೙

ி೙శభ
ቁfor odd𝑛and 

𝐵௡ = ቀ
ி೙

ி೙శభ
,

ி೙షభ

ி೙
ቁfor 𝑛 even.  

 Let 𝐼: (0, ∞) → (0, ∞): 𝐼(𝑥) = 𝑥, considerH set of all  𝑤௡(𝑥) ∀ 𝑛 ∈ 𝑁 and 
including I function, then H is cyclic group with respect composition 
operation given by 𝑤௡(𝑥). 

In Chapter 4, we have worked on the sequence of tri-diagonal matrices for generalized 

Fibonacci polynomials, Fibonacci numbers, and Chebyshev polynomials, defining the 

sequence of tri-diagonal matrices for different cases, and proving the results for 

corresponding recurrence relations. The main results are:       

 For 𝑛 ∈ 𝑁, sequence of tri diagonal matrix ൛A(n) = ൣ𝑔௡,௡൧ൟ is 

 

so, that  

 

Then determinants of 𝑨(𝒏) is 

 

Let |𝐴(𝑛) | = 𝐺௡ାଵ ∀ 𝑛 ≥ 1 , where |𝐴(𝑛) |the determinant of 𝐴(𝑛) and 
𝐺௡ାଵis ( 𝑛 + 1)𝑡ℎ term of generalized Fibonacci sequence ofpolynomials. 

 We have a sequence of tri-diagonal matrices,{𝐶(𝑛) = ൣℎ௡,௡൧} 
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Then determinant of 𝐶(𝑛)is 

 

Proved the result that |𝐶(𝑛) | = 𝐹௡ାଵ(𝑥), ∀ integers 𝑛 ≥ 1, where |𝐶(𝑛) | is 

the determinant of 𝐶(𝑛) and 𝐹௡ାଵ(𝑥) is ( 𝑛 + 1)𝑡ℎ term Fibonacci sequence 

of polynomials. 

 For 𝑛 ∈ 𝑁we define a sequence of tri diagonal matrices {𝐷(𝑛) = ൣ𝑞௡,௡൧} 

 

so, that 

 

Then determinants of 𝐷(𝑛)is 
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Proved the result |𝐷(𝑛) | = 𝑉௡ାଵ ∀ integers 𝑛 ≥ 1 where|𝐷(𝑛) |the 

determinant of 𝐷(𝑛) and 𝑉௡ାଵis ( 𝑛 + 1)𝑡ℎ term of a certain case of 

generalized Fibonacci sequence. 

 For sequence of tri-diagonal matrix {𝑅(𝑛) = ൣ𝑙௜,௝൧} 

 

 

 

Then determinant of 𝑅(𝑛)is 

 

Proved the result|𝑅(𝑛) | = 2𝑇௡for integer 𝑛 ≥ 1where|𝑅(𝑛) | is the 

determinant of 𝑅(𝑛)and 𝑇௡is 𝑛th term of Chebyshev polynomials  

In Chapter 5 we have mainly focuses on𝑤௡(𝑧) the sequences of complex ration 

functions with coefficients as Fibonacci numbers, verifying properties of bilinear 

transformations for 𝑤௡(𝑧), the main research outcomes are: 

 Let𝑧 be any complex unknown and 𝑢(𝑧) is any function of 𝑧 given by below 

𝑢(𝑧) =  
1

1 + 𝑧
, 

then 

(𝑢𝑜𝑢)(𝑥) =
1

1 +
ଵ

ଵା௭

, 
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Now we define 𝑤௡(𝑥) = (𝑢𝑜𝑢𝑜𝑢𝑜 … 𝑜𝑢)(𝑥). Then Recurrence relation 
sequence of rational function is defined as 

𝑤ଵ(𝑧) =  
1

1 + 𝑧
, 

and 

𝑤௡(𝑧) =
1

1 + 𝑤௡ିଵ(𝑧)
,  

for all integers𝑛 ≥ 2, then we have proved that  𝑤௡(𝑧) represented in form of 
Fibonacci numbers by 

𝑤௡(𝑧) =
𝑓௡ିଵ 𝑧 + 𝑓௡

𝑓௡𝑧 + 𝑓௡ାଵ
. 

 The next result proved that 𝑤௡(𝑧) is a meromorphic function for integer 𝑛 ≥

0. 

 Then we have proved that 𝑤௡(𝑧) is bilinear transformation for integer 𝑛 ≥ 0. 

 The fixed points of 𝑤௡(𝑧) for all integer values of 𝑛 are discussed, and they 

are  

𝑧 =
−1 ± √5

2
. 

 Then proved the result that𝑤௡(𝑧) are conformal functions in unit disc for all 

integer value of 𝑛. 

 Next result we have proved that “bilinear transformation𝑤௡(𝑧) maps unity 

circle into a circle center with on real axis for all value of 𝑛”. 

 Then a “bilinear transformation, which 𝑤௡(𝑧) maps the upper half plane into 

the upper half plan for all even values of 𝑛” is discussed. 

 Last result in this chapter is “bilinear transformation 𝑤௡(𝑧) maps upper half 

plane into lower half plan for all odd values of 𝑛”. 

In Chapter 6 we have obtained the relation between the Chebyshev polynomial of 

second kind and Hermite polynomials of two variables, also the generating function is 

obtained with the help of Hermite polynomial, main results are:      
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 If 𝑇௡(𝑥), 𝑈௡(𝑥) are Chebyshev polynomials and  𝐻௡(𝑥, 𝑦) two-variable 

Hermite polynomial then we integral characterization 

𝑈௡(𝑥) =
1

𝑛!
න 𝑒ି௧𝑡௡𝐻௡(2𝑥, −

1

𝑡

ାஶ

଴

)𝑑𝑡, 

and 

𝑇௡(𝑥) =
1

2(𝑛 − 1)!
න 𝑒ି௧𝑡௡𝐻௡(2𝑥, −

1

𝑡

ஶ

଴

)𝑑𝑡. 

 If 𝑇௡(𝑥), 𝑈௡(𝑥) are Chebyshev polynomials then: 

𝑑

𝑑𝑥
𝑈௡(𝑥) = 𝑛𝑊௡ିଵ(𝑥), 

𝑈௡ାଵ(𝑥) = 𝑥𝑊௡(𝑥) −
𝑛

𝑛 + 1
𝑊௡ିଵ(𝑥), 

were 

𝑊௡(𝑥) =
2

(𝑛 + 1)!
න 𝑒ି௧𝑡௡ାଵ𝐻௡(2𝑥, −

1

𝑡

ାஶ

଴

)𝑑𝑡. 

 Generating functions of Chebyshev polynomial by Hermite polynomial 

෍ ξ௡

ାஶ

௡ୀ଴

𝑈௡(𝑥) = න 𝑒ି௧
ାஶ

଴

෍
(𝑡ξ)௡

𝑛!

ାஶ

௡ୀ଴

𝐻௡ ൬2𝑥, −
1

𝑡
൰ 𝑑𝑡. 

by remembering the polynomials of the  

෍
t୬

n!

ାஶ

௡ୀ଴

𝐻௡(𝑥, 𝑦) = 𝑒(௫௧ା௬௧మ), 

on solving we get   
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෍ ξ௡

ାஶ

௡ୀ଴

𝑈௡(𝑥) =
1

1 − 2𝜉𝑥 + 𝜉ଶ
, 

which is required generating function for 𝑈௡(𝑥). 

In Chapter 7 applications of recurrence relation in network marketing with some 

limitation imposed on the problem is discussed. In the later parts of the chapter, 

applications of recurrence relations, especially Fibonacci numbers, and the 

reproduction mechanism of honey bees are viewed, main results are   

 On the basis of the following theorem:  

For arbitrary real numbers 𝑐ଵand  𝑐ଶ , if 𝑥ଵ and 𝑥ଶ are distinct roots of  

𝑥ଶ − 𝑐ଵ𝑥 − 𝑐ଶ = 0. 

Then the sequence < 𝑎௡ >has a solution  

𝑎௡ = 𝑐ଵ𝑎௡ିଵ + 𝑐ଶ𝑎௡ିଶ𝑛 ≥ 2, 

if and only if 𝑎௡ = 𝛽ଵ𝑥ଵ
௡ + 𝛽ଶ𝑥ଶ

௡, with arbitrary constants 𝛽ଵ and 𝛽ଶ, problem 

of network marketing is proposed and solved with the limitations 

 The percentage distribution of profit should be such that the roots 
of polynomial must be distinct. 

 Any worker cannot leave the business. 
 Work should be honest. 
 There is an assumption every worker can take only worker under 

him.  

 The reproduction mechanism of bees was studied in view of Fibonacci 

numbers. There are numerous unusual features of honeybees, and we have 

shown how the Fibonacci numbers tally a honeybee's family.  

 Then applications of Fibonacci numbers nature in lovely blossoms, on the 

leader of a sunflower and the seeds, petals of flowers are reviewed. 
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Future and Scope 

(1) The relation between the roots and terms of recurrence relations of may be discussed 

for Jacobsthal polynomials, Pell polynomials, and orthogonal polynomial of third and 

fourth kind.  

(2) Recurrence relation of rational function in the form of composition function have 

terms Lucas numbers, Generalized Lucas numbers can be defined and properties of 

group can be verified. 

(3) 𝑤௡(𝑧) the sequences of complex ration functions with coefficients as Lucas number 

can be defined and try to prove some properties ion view of complex analysis. 

(4) Relations between different orthogonal polynomials in the view of recurrence 

relations may establish.  
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