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Abstract

In the proposed work, the study carried out involves infectious diseases. Inspite of

advancement in the field of medicine till date, infectious diseases still play havoc

to large population around the world. So, in this work, the transmission of con-

tagious/infectious disease, the factors affecting that transmission and measures

to control the spread of these infectious diseases will be studied. The system is

then formulated and analyzed, setting the borders by defining major components

involved, characterising the variation in the form of mathematical equations and

then interrelating the respective equations to form the model of system under

study. For the study, the formation of dynamic mathematical model is done by

fabricating differential (ordinary) equations which then help in prediction of the

changes resulting in interrelated attributes of the system. The disease dynamics is

modelled by taking factors such as transmission, transition, treatment, preventive

measures, control measures etc. into consideration and then these disease mod-

els are used to prognosticate the efforts of prevention, treatment, awareness and

latent/incubation period of the disease on the spread of the infection. Once the

model is formulated, it will be analyzed for stability, bifurcation and persistence

of system. Sensitivity analysis will be done by estimating sensitivity of model

parameters with respect to state variables. The results will be demonstrated an-

alytically and using graphs with the help of software like MATLAB.

The outcome of the proposed work will help us in predicting the disease dynamics

based on the eigenvalues and the threshold parameter, that is, basic reproduction

number. It will help epidemiologists and health care workers to predict if there

will be epidemic or the disease dies out in the population. In case of outbreak,

control strategies like isolation, vaccination, prevention, treatment etc. can be

planned depending upon the disease.

The objectives of this research work includes the study of:

iii



1. Mathematical modeling on control of communicable/infectious diseases and

their effect on single population.

2. Mathematical modeling on control of communicable/infectious diseases and

their effect on two species.

3. Mathematical modeling on control of co-infectious diseases.

4. Mathematical modeling on communicable/infectious disease including delay

in its control.

In chapter 1, general introduction to infectious diseases is given. Their dynamics,

how they propagate, through which medium they travel, how they spread in pop-

ulation, factors affecting the transmission like temperature, season, travel history,

geographical conditions, human behaviour etc. are discussed. In this view, it is

required to take some preventive measures like usage of insecticide to control the

transmission in case of vector-borne disease, awareness about the disease, treat-

ment, vaccination etc. to eliminate or reduce the amplitude of the infection. The

research work done in the field by some noteworthy researchers till date has been

discussed. In the view of this literature review, the research gaps have been iden-

tified leading to the formation of objectives of the study. The terms used in the

work, mathematical preliminaries in the study have been described in this chapter.

The chapter has been concluded with summary of all the chapters embodied in

the work.

In chapter 2, vector borne infectious disease yellow fever has been taken for study.

A non-linear vector-host compartmental model having variables as susceptible pop-

ulation, protective class taking preventive measures having temporary protection,

infected class and recovered class for humans have been taken. For mosquitoes,

separate compartments for susceptible and infected mosquitoes have been taken

into consideration. The effect of insect repellent and vaccination of humans are

introduced as control measures. Through numerical simulation and sensitivity

analysis, it has been shown that if the threshold value of basic reproduction num-

ber is monitored, the disease can be controlled with the help of various control
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parameters. The results obtained have been validated with the statistical and

mathematical work done previously in the field.

In chapter 3, the infectious disease yellow fever has been taken to study the effect

of awareness programmes conducted through media to make human population

aware and control of vector population through usage of pesticide by proposing

a compartmental model for the yellow fever. It is shown that aware population

makes effort which results in controlling the disease. Moreover, the usage of insec-

ticide also help in decreasing vector/mosquito population. Stability analysis and

calculation of R0 has been performed. It is further observed that awareness pro-

grammes have high impact on spread of disease. The results obtained analytically

are further supported by numerical simulation.

In the same chapter, the infectious disease chikungunya is taken under study. A

non-linear compartmental model is proposed and is studied for the effects of con-

trol measures on both human and mosquitoes. The control measures taken are

mainly preventive strategies, usage of insecticide and vaccination. Results of sta-

bility analysis and simulation part shows that under the effect of insect repellent

cream/sprays along with vaccination for humans, the dosage of insecticide can be

minimized to large extent for mosquitoes. It has been observed that the value of

insecticide (q = 0.01) is sufficient to contain the disease as compared to the value

of insecticide used by authors in [1] where the value of q is in the range 0.2 to 0.7.

Also, the value of threshold parameter R0 has been calculated.

In chapter 4, the co-infection of two diseases namely malaria and rotavirus has

been studied. In this chapter, the effects of malaria treatment, rotavirus treat-

ment, treatment of co-infection along with role of insecticide has been studied.

From the numerical simulation, it has been observed that co-infection decreases

sharply if we apply all the treatments and it takes longer if the individual treat-

ments are applied. The value of basic reproduction number of rotavirus-only

model and malaria-only model is evaluated which resulted in the calculation of

basic reproduction number for the main co-infection model. To understand the

dynamics of co-infection, the stability analysis for infection-free equilibrium and
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basic reproduction number is evaluated. Bifurcation analysis is performed for full

co-infection model along with that of malaria model. Both malaria model and

rotavirus model are found to be globally asymptotically stable. Sensitivity indices

have been calculated to visualise the influence of parameters used in the model on

the basic reproduction number. Results are illustrated with numerical simulation.

In chapter 5, a non-linear SEIR delay model is formulated by incorporating the

incubation period of an infectious disease as delay in the model. The analysis

is performed to check the stability at disease-free and endemic equilibrium. The

critical value of delay parameter (τ) has been calculated and further it was ob-

served that endemic equilibrium is stable if this value is less than the critical value

calculated and system undergoes hopf-bifurcation if the value is greater than the

critical value. It has been also observed through numerical simulation that trans-

mission rate plays a significant role in dynamics of the disease. Since, incubation

period is very important factor associated with dynamics of disease. It is worth

calculating to control the disease. The critical value of τ is found to be 19.5 days.

This work has been supported by [2] in which the value of incubation period of a

virus named hantavirus is 7 − 39 days with median value 18 days. This has also

been validated as the incubation period of an infection named listeriosis may vary

from 3− 70 days [3]. In the present work, it is being observed that as the value of

incubation period (τ) is increased from 19.4 to 19.7 while assuming all other pa-

rameters involved in the model fixed, this system looses the stability transforming

stable solutions to oscillatory solutions.

In the end, the problems taken under study have been well grounded by bibliog-

raphy in the concluding part of the thesis.
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Chapter 1

General Introduction

1.1 Introduction

Infectious diseases have always threatened and invaded human populations. Apart

from the loss of human lives, they create a big burden on the economy of the coun-

try in the sense of money, medical facilities, equipment for treatment and human

efforts. Looking back in history of these diseases, poor sanitation, inaccessibility of

preventive control measures in time, the level of interaction of human population

with the pathogen, geographical area, weather etc. are some of the factors on which

blame of an epidemic can be put on. However, many of the diseases still exists and

spread inspite of taking precautions. Study of factors that determine the frequency

and influence of a disease or other health related problems, their cause, formulation

of preventive strategies, establishing programmes in a defined human population

is known as epidemiology. It can be categorized as descriptive epidemiology and

analytic epidemiology. The first one is the stage in which the disease occurred is ex-

amined by taking into account the time, place where it has occurred and symptoms

of the person affected are considered. Hypothesis regarding the cause of disease

are made in this stage. In the second one, the hypothesis made above are tested.

Further, the diseases can be categorized in two groups: communicable diseases and

non-communicable diseases. Communicable disease are those diseases which pass

from one person to another by direct transmission or indirect transmission and
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Chapter 1. General Introduction

can be caused by bacteria, fungus, yeast, viruses and parasites. These infectious/-

communicable diseases can spread through water, air and direct/indirect contact.

For example Syphilis, Gonorrhea, AIDS are sexually transmitted diseases. Noso-

comial infections, Rhinovirus cold, Brucellosis (slaughter house contact), Hepatitis

B virus are few examples of infections by contact. Cholera, Giardiasis, Listeriosis,

Campylobacter are few examples of food/water borne infections. Airborne infec-

tions can give rise to Tuberculosis, Influenza, Measles, Mumps, Rubella, Pertussis

(childhood disease), Para influenza and many more types of diseases. Some vec-

tor borne infections are malaria, Dengue, Yellow Fever, Rocky mountain spotted

fever and other. The infectious diseases can be transmitted through human, an-

imal, soil and water reservoirs. AIDS, Syphilis, Shigellosis, herpes simplex virus

take human as reservoirs. Rabies, Plague, Anthrax etc. are examples of diseases

with animals as reservoirs. Tetanus, Botulism, Histoplasmosis travel through soil

as reservoir. Some infections with water as reservoir are UTI, hot tub folliculitis

etc. The other category of disease is non-communicable which is also known as

chronic. To begin with, cardiovascular diseases, non-infectious diseases of respi-

ratory track, diabetes, cancer are four types of non-communicable diseases. It is

known fact that unhealthy diet, smoking, lack of exercise and abuse of alcohol

are few important causes of this type of diseases. Further, cervical cancer is a

communicable disease caused by human papilloma virus which conveys that there

is a thin line separating communicable and non-communicable diseases. Commu-

nicable disease or infectious disease have been important part of history because

there were epidemics that have attacked population, causing deaths very often,

then disappearing to re-occur after certain times, possibly in decreasing severity

as people develop immunity against them. For example, black deaths (bubonic

plague) in fourteenth century propagated in many waves from Asia to Europe and

almost one third of population died. Also, there are many diseases which become

endemic causing many deaths. For example, in developing countries, diseases like

measles, diarrhea, respiratory infections and many other which claim millions of

people. Diseases like cholera, dengue, malaria are endemic in several parts of
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world. Therefore, the impact of high mortality with effect on average life period

and disease burden on financial state of countries is a serious issue. In Europe,

bubonic plague claimed 2.5 million people out of 100 million in fourteenth cen-

tury. In 1520, the Aztecs lost half of their population to small pox. Looking at the

brighter side, in 1980, 2, 600, 000 deaths reduced to 160, 000 in 2011 due to measles

vaccine [4]. It has been observed that despite decrease in mortality, the frequency

and magnitude of these diseases is increasing. The aim of studying infectious dis-

ease through mathematical modeling is to control and eradicate the infection from

the given population by knowing and understanding the disease dynamics. There

may be many factors associated with disease transmission like human behaviour,

temperature, geographical conditions, contact rate of susceptible with infective,

availability of control measures like vaccination and their frequency. The growth

of these diseases within an individual commonly known as individual-level dy-

namics and their propagation in population, that is, population scale epidemic

require different types of interventions. To study population level dynamics, two

parameters are required. The first one is the basic reproduction number. It is the

average number of secondary infections from an individual in a naive population.

The second one is the time duration of infection which is infectious period and

exposed time period in SEIR models. It has been observed that the above two

factors have huge variability in epidemiological modeling. For example, childhood

diseases like rubella, measles or chickenpox have very high R0 (basic reproduction

number). Further, it was found that in 1945 to 1965, the value of R0 is ≈ 17

for cough (whooping) and measles in Wales and England with period of infection

being small (less than one month). In contrast, for HIV cases in United Kingdom

R0 is ≈ 4 for homosexual population and R0 is ≈ 11 for female prostitutes in

Kenya and period of infection is lifelong [5].

The pioneer of study of infectious disease was John Graunt, who analyzed various

causes of deaths. To start with, the initial model in mathematical epidemiology

was contributed by Daniel Bernoulli (1700− 1782) which was inoculation against

small pox. Again in 1855, John Snow gave the knowledge that disease like cholera
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is transmitted by water. Furthermore, in 1873, William Budd explained the trans-

mission of disease with compartmental modeling which was further explained by

Sir R.A. Ross, Mechandrick, Kermack and Hamer in 1902 in which Ross demon-

strated the dynamics of malaria transmission through compartmental modeling.

The classic Kermack-McKendrick model [6] is explained as:

Here, the total population N is assumed to be constant approximately. The pop-

ulation is divided in groups or compartments namely susceptible, infected and

recovered or immune compartments. They are denoted by S, I and R. The sus-

ceptible class is one who can catch infection, infected class contracts infection and

transmits it and recovered class is one who recovers/gets immune. This progress

of infection can be represented in the form:

S → I → R

In the model given below, the input in the infected class is proportional to the

number of susceptible as well as infected persons, that is, rSI, r being the rate.

The rate of transfer of infected individuals to the recovered compartment is a,

which contributes the term aI in the recovered class. Here, it is assumed that all

the pair of individuals have equal chance of mixing together. Also, it is supposed

that the incubation period of disease is insignificant, that is, the person who catches

infection becomes infective immediately. With these assumptions the model is

presented in the form of equations.

˙S(t) = −rSI

˙I(t) = rSI − aI

˙R(t) = aI

Here S, I and R are bounded by N as S(t) + I(t) + R(t) = N and the initial

conditions are S(0) = S0 > 0, I(0) = I0 > 0 and R(0) = 0.

It is important to note that the number of compartments depends upon the dis-

ease under study. For example, in SI models, there are only two compartments,
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susceptible and infected whereas SEIR models have one extra class, that is, latent

class. Similarly, depending upon the problem under study there can be various

classes like vaccinated class, aware class, protected class, quarantined class etc.

This development of compartmental modeling for infectious disease helped math-

ematicians and health professionals in different ways as their goals being better

understanding of disease transmission and practical procedures for management

of disease. Taking this work to the next level, the idea of disease transmission and

further its spread was explained only in twentieth century with a mathematical

model of non-linear differential equations for dynamics of infectious disease [7].

There were hundreds of outbreaks in animals as well as humans that have been

reported in the last two centuries among them the most numerous are dengue

([8], [9]), cholera [10], malaria, SARS, measles [11–14], rotavirus, yellow fever [15],

small pox [16], COVID-19 [17] and various food borne and airborne outbreaks and

many more [18–22]. Yellow fever being an old disease was considered to have been

controlled in mid 1900s by vaccination but it returned ([23], [24]). For example,

chikungunya has a long history of transmission in Sub-Saharan Africa and then

it re-occurred in America in 2013. Similarly, rotavirus infection has claimed so

many young children in developing countries as compared to the countries where

mortality rate are low.

A lot of work has been done in the fields of various diseases by different researchers.

Most work has been done in the field of control measures of the infectious diseases

but still there is scope to study many infectious diseases for the control strategies.

In this work, we will mainly focus on control measures for the infectious diseases

like yellow fever, chikungunya, co-infection of rotavirus and malaria.

1.2 Review of Literature

The history of the infectious diseases is highly affected by the accomplishments of

the mankind. They are the second leading cause of mortality worldwide [25]. The

emergence and reemergence of these diseases have high impact globally. Many of
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these diseases like malaria, HIV/AIDS, dengue etc. have become endemic in many

parts of the world. This shifts our focus on the prevention of these diseases, chal-

lenges of vaccines for them, economic challenges, scientific challenges and many

more to mention. Inspite of conquered many of them, we are working hard in many

fields to have proper command over them. There are fields where various treat-

ments, vaccines, therapies have been successful but still there are many where we

are striving hard. In the present work, we will be working on the control strategies

of these infectious diseases in which there is still scope for advancements by taking

examples of some of these diseases like yellow fever, chikungunya, the co-infection

of diseases etc.

Yellow fever is a vector borne disease caused by biting of mosquito species named

Aedes aegypti. This is a life threatening disease which is endemic in many parts

of the world. It is transmitted through a virus to humans through mosquitoes.

Regarding its epidemiology, it occurs in tropical Southern America, Sub-Saharan

Africa where it is otherwise endemic and intermittently epidemic. The first out-

break of yellow fever occurred in 1647 in Islands of Caribbean and afterwards at

least 25 major cities in America. In 1793, more than 9% of total population died in

Philadelphia. In 1878, epidemic in Mississippi river valley claimed 20, 000 people

approximately [26]. The risk of acquiring yellow fever can be related to several

factors like status of vaccination, location travelled, temperature, season, time pe-

riod of exposure to virus, activities during travel and rate of virus transmission.

Researchers like Inwang started working on control through mathematical mod-

eling. In the work, mathematical formulae for two things were established one

out of which is resistance potential of mosquitoes/insects to DDT with target of

80%− 90% mortality. Second was the number of generations which must be sub-

jected to insecticide to attain DDT resistance for Aedes aegypti [27]. Taking the

work further, a model to control Aedes aegypti mosquito by the method of sterile

insect technique was introduced by Esteva et al. It is a method in which normal

insects/mosquitoes are radiated with gamma rays to make them sterile. These

sterile insects when released in normal environment mate with normal females to
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produce eggs that do not hatch, thus making that native population extinct. The

sterile male technique was used in 1958 in Florida and was successful. It was

observed that effectiveness of SIT depends on two factors, one is mating competi-

tiveness of sterile mates and the other is to make sure that sterile mosquitoes are

dispersed near breeding site, so that they can have fair chance of mating. It was

observed that SIT will be effective depending upon the ratio of sterile mosquitoes

release, displacement of natural mosquitos in the environment and effect of im-

migration of females who already have laid fertile eggs and nullified the sterile

releases [28]. This study of yellow fever was taken to another level by observing

the temperature dependence of mosquitoes and incubation period of the virus in

them. Also, distributions of incubation period is quantitatively studied with the

help of four models statistically using historic data. It has been estimated that ex-

trinsic incubation period for urban vector Aedes aegypti at 25 degree has median

value 10 days and intrinsic incubation period has a median value 4.3 days [29].

Further, it was noticed that the first outbreak of yellow fever after 1942 in South

America in metropolitan Asuncion, Paraguay resulted in nine confirmed cases.

Stochastic modeling and probabilistic modeling was done and value of R0 was cal-

culated considering various factors. It was found through simulation, that in this

outbreak in 2008, there were 12.8% local outbreaks and 2% international spread

through airline travellers. Also, the calculation of probabilities of introduction of

YF epidemic and autochthonous transmission was done by considering factors like

rates of travel, number of persons infected, values of R0 and vaccination coverage

rates [30].

Furthermore, it was observed that yellow fever has been largely controlled by

widespread vaccination programmes in which a live attenuated vaccine is admin-

istered in single shot [26]. The only vaccine available for Y F is live attenuated

vaccine in 17 D lineage, which is mainly used to protect not only population in

endemic areas but also persons travelling to those areas. But the occurrence of YF-

17 D vaccine-associated viscerotropic disease (YEL-AVD) questioned the safety of
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YF vaccine. As, it was being observed that there is dominance of YEL-AVD infec-

tions in young females and persons who are susceptible to YEL-AVD depending

on the genetic setup or defect in immunity. Further, it was found that persons

aged 60 years and above are at higher risks of SAEs (Serious adverse events) to YF

17 D and 17 DD vaccines. In Africa, it was observed that wild type YF infections

are more prevalent than risk of adverse events. One interesting thing observed

was that, in Africa, the risk of YF infection during epidemic is more than the risk

of vaccine injury, where as, in contrast to that in Southern part of America, the

risk of having YF during travel is almost the same or little higher than vaccine

related risk. It was suggested that some safer alternative to 17 D vaccine should

be there for travellers and population groups [31]. Taking the research forward,

SAGE working group worked on many factors like need of booster dose against

yellow fever after every 10 years, vaccine safety in elderly people with age more

than 60 years, vaccine safety in HIV infected persons and in persons with other

immune compromising situations, pregnant women, lactating women, whether the

injection can be co-administered with other vaccines, routine vaccination and epi-

demic outbreak strategies ([32], [33]). Further, the estimate of disease burden in

Africa was estimated by Garske et al. by taking various factors into account like

the number of infections per year in any province, the force of infection, popu-

lation and vaccination coverage in that area. It was ascertained that the factors

affecting the estimates regarding burden of disease are uncertainty in demographic

data, uncertainty regarding spatial distribution of yellow fever, its occurrence in

different countries [34]. Furthermore, the yellow fever vaccination outbreak in Sao

Paulo, Brazil in 2009 was studied by Ribeiro et al. It was observed that at the

time of outbreak one million people were vaccinated which resulted in 11 deaths

due to vaccine-induction and there were 28 yellow fever cases reported in outbreak.

Their work helped by finding the areas to be vaccinated and proportion of people

to be vaccinated in order to minimize the deaths. They updated the literature

by working on vaccination strategy to minimize the number of vaccine induced

mortality [35]. Further, taking the research to next level, Bonin et al. worked on
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immune response to vaccine of yellow fever [36]. Also, Sakamoto et al. explored

that the risk of yellow fever in travellers visiting Brazil is increased by importing

the infection of yellow fever to different international destinations. It was found

that in June 2018, death of 394 persons and 1257 confirmed cases were reported af-

ter the outbreak. Also, the calculation of relative risk of travellers visiting Brazil

concluded that they are at 2.1-3.4 times high risk as compared to others. The

countries with lower GDP per capita than countries at better financial status are

at 2.5 − 2.8 times higher risk of importing infection. To prevent the spread, it

was advised that the travellers should be well informed about the area of infection

transmission. In addition, it was suggested that if they cannot avoid going to these

destination, then prior vaccination should be strongly advised to prevent infection

[37]. Working further in the field was estimation of number of Chinese worker who

were not vaccinated against yellow fever during outbreak in Angola in 2016 and it

was observed that 25, 900 Chinese workers in Angola were not vaccinated despite

yellow fever immunization made mandatory by International Health Regulatory

bodies. Their results about the documented record of 11 Chinese workers who

imported the infection of yellow fever to their home land China were in agreement

with each other. It was suggested that yellow fever vaccination should be ensured

to the persons travelling to infected areas in order to prevent the international ex-

pansion of disease. Border controls should be tightened and proof of yellow fever

vaccine should be produced on arrival from yellow fever endemic countries [38].

The next infectious disease under study is chikungunya. Chikungunya is a vector

borne viral disease spread from human to human by mosquito Aedes albopictus

also known as Asian tiger. The main symptoms of disease are joint pains, wrist

pains etc. This virus was firstly identified in 1953 [39]. Firstly, it was consid-

ered as a tropical disease but now the disease poses threat to the public health

globally. So, there is need to target the control measures to eradicate the disease.

Researchers from every nook and corner of the world are investing their efforts

to control the disease. For example, Dumont et al. worked on the outbreaks of

chikungunya in Reunion Island in 2005 and 2006 with the help of mathematical
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modeling. Compartmental models for humans as well as mosquitoes were studied

to calculate basic reproduction number. Numerical simulation revealed that value

of R0 changed from < 1 to > 1 which is in agreement with the situation that

there is no outbreak in 2005 and almost one third of population got affected in

2006. Values of basic reproduction number revealed that force of infection varies

from place to place which can be controlled by destruction of breeding sites of

mosquitoes [40]. Taking a step ahead was by Moulay et al. who studied the inva-

sion of chikungunya in humans. Firstly, disease spread in mosquito population was

studied and then transmission of virus in humans was discussed. For mosquitoes,

stage structured model, that is, different stages like embryonic, larvae and adult

were considered. For virus in humans, SI and SIR type of models were taken into

account. Stability analysis of endemic equilibrium and values of R0 was discussed.

It has been concluded, we have to be careful about Aedes albopictus breed because

in the last years it has developed its potential to adapt in non-tropical areas. It

was suggested that chemical interventions can help reduce the number of vector

as it increases the mortality rate. But this too has drawbacks such as bad effects

on environment and moreover mosquitoes become resistant to insecticides. Also,

it was recommended that better interventions are drying up of breeding sites and

effort by human population like using mosquito nets, mosquito repellent, isolating

patients in hospitals, using appropriate clothes [41]. Again, Dumont et al. stud-

ied the outbreak in Reunion Island in 2006 with the perspective of investigating

possibility to stop the chikungunya episode through mosquito control tools. They

investigated the control measures taken by government in 2006 to stop the epi-

demic. In the process, the use of adulticide, larvicides and other mechanical tools

like eliminating the breeding sites were discussed. It was observed that larvicides

are not enough as they control to a certain limit. Further, it was found that the

adulticide do control but have detrimental effect on endemic species as well as

environment. Simulation results predicted R0 < 1 for 2005 because of which the

outbreak was not of as much amplitude as in 2006. They further updated by

studying the use of larvicide and adulticide mixture. It has been concluded that
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combination of larvicide, adulticide and other mechanical tools like drying up of

breeding sites will give interesting results [1]. The study on chikungunya virus

transmission potential and control measures for outbreak in Italy 2007 was taken

to a higher level by Poletti et al. The study revealed that in the first stage of epi-

demic, there were 161 confirmed laboratory cases were there in two neighbouring

village with total 3968 inhabitants. The researchers employed two models, one for

the main vector Aedes albopictus mosquito with its dependence on temperature

and other for epidemic transmission in humans. It was found that chances of prob-

ability of epidemic was predicted to be 32%−76% after a single infective case who

has contracted disease from a relative from Kerela, India. It was further observed

that the value of R0 was 1.8 − 6. Further, the model gave the values which pre-

dict the already known hypothesis that CHIKV outbreak in those humid climate

countries is associated with high density of mosquitoes. Regarding the efficacy of

control measures, it was observed that reduction of eggs, breeding sites and adulti-

cide do not help as much as compared to larvicides which reduces the average from

73% to 40% as compared to former 73% to 60%. It was suggested that though the

potential of CHIKV is high, epidemic can be controlled by timely interventions

like larvicide, mosquito repellents, window screens etc. [42]. The introduction of

chikungunya virus in United States was studied for three major parts of US that

have wide seasonal temperature variation. For New York, Miami and Atlanta, the

peak time of epidemic risk depending upon the temperature was calculated. For

New York, it was found that if the introduction of a single infected individual is

done after June 15th, till December, there is significant probability of outbreak.

Similarly, for Atlanta, periods of outbreak were predicted depending upon time of

introduction of CHIKV. But for Miami, outbreak was predicted after introduction

of CHIKV at any time of the year as in locations like Miami where temperature

supports mosquito growth, controlling mosquito population will not be sufficient

strategy. It was further suggested that different intervention measures like low-

ering vector human ratio can predict to lower the probability and magnitude of

outbreak and identifying different endemic and epidemic regions can help plan
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better intervention measures [43]. Fischer et al. updated the transmission studies

by climatic risk maps using the knowledge of climatic suitability of chikungunya

virus. It was probed that global transport and travelling imported such exotic

viruses to Europe which was earlier considered as tropical disease. The research in

this paper helped in identifying the regions with climatic aptness of CHIKV trans-

mission. The study predicted that there is increase in risk of disease for Western

Europe along with many Mediterranean regions. The study was updated through

climate change impacts projected in three time frames and climate scenarios from

IPCC [44]. Furthermore, Liu et al. studied chikungunya disease by incorporating

time varying factors for Reunion Island. It was noticed that the birth rate of

mosquitoes is switching factor which varies from dry reason to wet reason [45].

Taking the work ahead, Robinson et al. worked on the outbreak of chikungunya

in rural Cambodia by proposing a mathematical model. In this outbreak, in vil-

lage of Trapeang Roka Kampong spece province, 44% biologically confirmed cases

of chikungunya were found. Data obtained through campaign conducted after 7

weeks of outbreak helped construct epidemic curve which included self reported

confirmed cases and also those who are not sure about their fever onset date. The

basic reproduction number evaluation came out be 6.46. It was concluded that

the estimate was sensitive to mosquito longevity and changes in rate of biting of

mosquito. The exclusion of asymptotic cases and those whose fever onset date

was not documented lead to underestimation of R0 which in turn have negative

impact on control measures to be adopted by health authorities. It was suggested

that proper documentation and route of disease introduction should be taken into

account for better predictions [46].

One more disease in the list of infectious diseases is rotavirus. Rotavirus is the

main cause of diarrhea and severe gastroenteritis in children aged less than 5 years.

Almost 95% of children get infected by rotavirus before reaching 5 years age with

peak incidence between 4 to 36 months. This virus got its name from word ‘rota’

which means wheel as its shape resembles wheel under microscope. The symp-

toms are watery diarrhea, fever, vomiting and nausea. Its incubation period is
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around two days. It has been noticed that little ones having two natural infec-

tions had complete protection against future infections as each infection confers

immunity. It is being seen that rotavirus claims 20% of diarrhea deaths under 5

years in developing countries. It was suggested by WHO in recommendation that

its vaccine should be covered in vaccine chart of every country as its economic

burden is substantial [47]. A lot of work has been done in the direction to control

the disease. For example, Bishop et al. worked on the immunity conferred by

rotavirus infection in new born babies. The study was conducted on 81 babies

who were observed for about three years. 55% of babies with neonatal infection

and 54% without it, had rotavirus infection and 54% without it had rotavirus

infection in coming three years of life. It was concluded that neonatal infection of

rotavirus does not grantee immunity for subsequent infections but protect against

several clinically severe diseases during reinfection [48]. Further, the dynamics of

rotavirus infection through mathematical modeling was studied by Shim et al. by

incorporating the factors seasonality, breastfeeding and vaccination by studying

the data from Australia. It was observed that different vaccines like Rotashield

(1998, USA), RRV-TV, that is, Rhesus Rotavirus tetravalent, Rotrix, Rotateq

are effective. It was also discovered that post breast feeding, vaccination is more

effective than a neonatal one. It was suggested that quality of maternal antibod-

ies should also be considered as an important factor along with breastfeeding as

the same is different in different geographic regions [49]. Further, the study has

been updated by estimating the number of death due to rotavirus infection for a

data from England and Wales. The records were obtained from office of National

Statistics of Deaths with any type of gastroenteritis [50]. Taking the research to

new heights is done by studying the concept of herd immunity in rotavirus infec-

tion by Effelterre et al. by employing a mathematical transmission model. Their

work helped in studying the impact of vaccination programmes for RV infection

for five countries France, Germany, Italy, Spain and UK of European Union. It

was concluded that when vaccination coverage is 70%, 90% and 95%, herd immu-

nity along with direct effects of vaccination helped by respective reduction in the
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infection. In their work, it was assumed that vaccination mimics natural RV in-

fection which wanes from 100% to 0% from birth to age of 6 months [51]. Further,

updating the work in the field, Zaleta et al. worked on modeling of nosocomial

transmission of rotavirus in hospitals in pediatric wards. Along with calculation of

basic reproduction number which was 0.870, it was observed that there is need of

control measures like health care workers (HCWs) to patient ratio, better hygiene

measures and vaccination. It was concluded that the above control measures def-

initely reduce nosocomial transmission but may not be that effective and feasible

in every setting [52]. Further, the effects of national introduction of monovalent

rotavirus vaccine were assessed and its impact on diarrhea in children with age

less than two years in El Salvador, America, from January 2007 to June 2009 were

evaluated. They surveyed seven hospitals and studied 323 children with age less

than two years who were admitted to hospitals with confirmed rotavirus diarrhea.

It was concluded that the vaccine was highly effective as it reduced the hospital

admission. It was also observed that dose of vaccine was 51% effective as hospital

admission under age five declined by 40% in 2008 and by 51% in 2009 after vac-

cination in 2006. It was indicated that direct effects of rotavirus vaccination can

have benefits even in areas with highest incidence and poorest setting. Whereas,

it was observed that the effectiveness of monovalent vaccine were lower (59%) in

children aged 1−2 years in contrast to those aged 6−11 months (83%) predicting

that immunity wanes with time [53]. Taking the research further, the effect of

rotavirus vaccine in low socio-economic settings (SES) were also studied and it

was observed that efficacy of vaccine of rotavirus ranges from 50% in low SES to

> 90% in contrast to high socio-economic settings. During the research, data from

diverse range, epidemiologically and demographically high, middle, low SES was

taken. Through a mathematical model incorporating age, immunity and natural

history of infection of rotavirus, it was predicted that for severe diseases, vaccines

are very effective and their efficiency diminishes as child grows in low SES. It was

observed that in contrast to middle as well as high SES, the proportions of infec-

tions in low SES does not decline with each infection. It was further probed that
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vaccination for rotavirus impersonate primary and secondary infections but the

infections occurring afterwards cannot be denied. It was suggested that modifi-

cation in vaccination programmes and modifying the aspects of vaccine can help

[54].

Another infectious disease under study is malaria, which is one of the signifi-

cant cause of both social and economic burden. It is caused by protozoan para-

sites. It can be caused plasmodium falciparum, plasmodium malariae, plasmodium

ovale and plasmodium vivax in humans. But plasmodium falciparum is mostly the

causative parasite among humans. WHO estimated 229 million cases of malaria

in 2019 with most deaths and around 90% of the global burden on Sub-Saharan

Africa [55]. However, WHO recommends usage of artemisinin-based combination

therapies (ACT’s) for plasmodium genus. The guidelines for treatment for uncom-

plicated falciparum malaria are in accordance with WHO in non-endemic countries

but drug resistance cannot be ruled out for returning travellers [56].

Further, there are various infections that may infect a host [57–59] and that may

altogether. There are many examples of them involving HIV and TB [60], HIV

and hepatitis B [61], malaria and HIV [62], malaria and rotavirus [63], chikun-

gunya and dengue, HIV-HBV co-infection [64] and many more [65, 66]. Moreover,

this infection may occur with different serotypes or various strains of same virus.

Simultaneous infections may also occur even when it seems that there is no syn-

ergy between the two agents affecting the person. This dynamics of co-infection

is important to study as the treatment of one infection affects the dynamics of

the other infection. Disease, poverty, sanitation, health care, nutrition, access to

facilities are various factors accountable for killing people with these infectious

agents.

Various researchers have been working in the field of controlling these co-infections.

For example, the co-infection of rotavirus and malaria is discussed by Omondi et

al. in 2018 after a study conducted in Ghana which showed that 11.8 percent of

243 children examined were infected by both. A model for the co-infection was

being studied and basic reproduction number was calculated which predicted that
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if Rmve ≈ 0.733 < 1 implies that co-infection can be controlled and disease free

equilibrium is being stable. But Rmve ≈ 1.37431 > 1 implies that co-infection

can be endemic and can be controlled by medical interventions only. It has been

observed that global stability for co-infection can be achieved if protection like

mosquito nets for malaria and better sanitation in case of rotavirus is taken care

of. Further studies found that vaccination as one of the factors is considered by

Omondi et al [63]. The model was analyzed to find out the value of basic reproduc-

tion number and numerical simulation incorporating the data from Kenya showed

that Rv = 0.9692 < 1 which indicated infection-free equilibrium is globally stable.

It was suggested that disease being endemic in population should be controlled by

preventive measures like vaccination, safe drinking water and maintaining hygiene.

It is being recommended that all the new born should be vaccinated in order to

control rotavirus infection effectively [47].

There are various factors that can help in controlling an infection. Sometimes, it is

as simple as isolating an infected individual. The isolation of infected individuals

can also be planned only if we know the incubation period of the disease. Since

isolation can be the only strategy for unseen epidemics but it is not always im-

plemented flawlessly. However, quarantine or isolation time can only be decided

with the knowledge of incubation period. The incubation period of an infectious

disease is the time gap from exposure with microorganisms to the onset of clinical

symptoms. Modeling incubation period is important in calculating the future time

scale of epidemic and also helps in designing control strategies for the disease. The

outbreak investigations and public health area can benefit from the knowledge of

distribution of incubation period of a disease. There are models that rely on the

accuracy of incubation period for public health interventions. The recent public

health emergency, that is, COVID-19, has been studied for incubation period by

many researchers including the latest by [67]. The estimated value of incubation

period was calculated to be 5.74. The incubation period of SARS-CoV-2 Omicron

virus was also calculated to have better control over the epidemic by [68]. A study

of comparison of incubation periods for Delta virus and non-Delta virus revealed
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that the value is 3.7 days for Delta cases and 4.9 days for non-Delta cases in Japan

[69]. Authors in [70] contributed by reviewing the data regarding the incubation

period of five viruses that are significant for public health.

In the view of the above literature, therefore, the following problems related to

infectious diseases with the purpose to control the disease transmission have been

studied with the help of mathematical modeling in this thesis.

1.3 Proposed Objectives of the Work

It was observed that work done on infectious disease using mathematical models

can be complemented in many areas. In earlier work done with statistical kind of

models, mathematical analysis can be considered for better control of infectious

diseases. In many models vaccination as a control strategy can be taken into

account. Factors like treatments, delay, precautions can be taken into account in

many models. The proposed research work related to disease dynamics will be

carried out by using mathematical modeling by achieving following objectives:

1. Mathematical modeling on control of communicable/infectious diseases and

their effects on single population.

2. Mathematical modeling on control of communicable/infectious diseases and

their effect on two species.

3. Mathematical modeling on control of co-infectious diseases.

4. Mathematical modeling on communicable/infectious disease including delay

in its control

1.4 Main Terms Used in the Thesis

� Basic Reproduction Number: It is the number of secondary infections

produced by a single infected individual in a completely naive population

over its infectious period. This is a threshold value and is denoted by R0.
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� Disease-free State: The state when there is no disease present or the

disease dies out in long term is called disease-free state.

� Endemic State: The disease which is present within a geographic area with

constant prevalence is called endemic disease.

� Latent Period: The time gap between getting infected by a microorganism

or a pathogen and when the individual is infectious, that is, they are capable

of transmitting the infection.

� Incubation Period: It is the time from exposure to infection and onset of

clinical symptoms of the infection.

� Nosocomial: It is the infection acquired in hospitals. It is also known as

hospital acquired infection (HAI).

� Control Measures: These are the strategies applied to control the disease.

They can be medicines, preventive measures, vaccines etc.

� Autochthonous Transmission: It is a term which refers to transmission

of an infection from one person and its acquisition by another person in the

same place.

1.5 Mathematical Preliminaries

Definition 1.1. Autonomous and non-autonomous systems [71]

Autonomous system of ordinary differential equation is as

ẋ = f(x)

that is, function is not dependent on independent variable where as in non-

autonomous systems

ẋ = f(x, t) (1.1)

the function f is dependent on independent variable.
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Definition 1.2. Definition of Stability [71]

The solution of the system (1.1) is stable if for given ϵ > 0 there is δ depending

on ϵ with condition that for any solution x̂(t) = x(t, t0, x̂0) of the system (1.1)

∥x̂− x0∥ < δ implies ∥x̂(t)− x0(t)∥ < ϵ for t ≥ t0.

Definition 1.3. Definition of Asymptotic Stability [71]

The solution x(t) of (1.1) is asymptotically stable if it is stable and if there is a

δ0 > 0 which implies ∥x̂(t)− x0(t)∥ → 0 as t → ∞.

Definition 1.4. Routh Hurwitz Criteria [71]

The necessary and sufficient condition for roots of characteristic polynomial, whose

coefficients are real, to lie in left half side of complex plane. This criteria is used

to investigate local asymptotic stability of steady states of system of non-linear

differential equations. It is given in the form of theorem given below:

Theorem 1.5. Let

P (λ) = λn + a1λ
n−1 + a2λ

n−2 + . . . . . . . . . + an−1λ+ an,

be polynomial, where a′is are real constants and i = 1, 2...n. Define n Hurwitz ma-

trices as

H1 =
(

a1

)
, H2 =

 a1 1

a3 a2

 , H3 =


a1 1 0

a3 a2 a1

a5 a4 a3


and

Hn =



a1 1 0 0.... 0

a3 a2 a1 1.... 0

a5 a4 a3 a2.... 0

. . . .... 0

. . . .... 0

0 0 0 0.... an


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Here, ak = 0 for k > n and all roots of P (λ) are either negative or having negative

real parts if and only if all the Hurwitz determinants are positive, that is, detHk >

0, k = 1, 2, 3...n. For n = 2, 3, 4 the this Criteria is summarised as

For

n = 2, a1 > 0, a2 > 0, n = 3, a1 > 0, a3 > 0, a1a2 > a3,

n = 4, a1 > 0, a3 > 0, a4 > 0, a1a2a3 > a23 + a21a4 > 0.

Definition 1.6. Equilibrium Point

A point x = x0 ∈ Rn is equilibrium point or critical point of the system ẋ = f(x)

if f(x0) = 0.

Definition 1.7. Jacobian of a System

For the system ẋ = f(x);x ∈ Rn and x = x0 ∈ Rn. The Jacobian of f at an

equilibrium point x0 is a matrix obtained by partial derivatives of f at x0. This is

denoted by Df(x0) and is given by

J(x0) =



∂f1
∂x1

(x0) .... ∂f1
∂xn

(x0)

..... .... ....

..... .... ....

∂fn
∂x1

(x0) .... ∂fn
∂xn

(x0)


Definition 1.8. Lyapunov Second Method of Stability [71]

Considering the autonomous system

ẋ = f(x) (1.2)

where f ∈ C(Rn, Rn), f = (f1, f2, f3.....fn), x = (x1, x2, x3....xn) and x(t0) = x0

for all t ≥ t0. Let f be smooth enough to ensure the uniqueness and existence of

solutions of (1.2). Let f(x) ̸= 0 for x ̸= 0 and f(0) = 0 in the proximity of the

origin so that origin is an isolated critical point of (1.2) and (1.2) admits the so

called zero solution (x = 0). Let Λ be an open set in space Rn which contains

origin. Let V(x) be a scalar continuous function in (x1, x2, x3....xn) defined on Λ.
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� The function V(x) is said to be positive definite on Λ iff V (0) = 0 and

V (x) > 0 for x ∈ Λ with x ̸= 0.

� A function V(x) is positive semi-definite on Λ if V is positive throughout on

Λ, except at points where the value is zero (including zero).

� A function V(x) is negative definite (or it is negative semi-definite) on Λ iff

−V (x) is positive definite (or it is positive semi-definite) on Λ.

Definition 1.9. Sensitivity Analysis

The calculation of sensitivity indices helps to measure the changes in the state

variable corresponding to a changes in parameter value. The ratio of relative al-

teration in variable to the relative alteration in the value of parameter is termed as

normalized forward sensitivity index of that variable to that parameter. This has

been elaborated by Chitnis et al. [72]. The formula for calculation of normalised

forward sensitivity index of any particular variable u (dependent on any parameter

k) is given under:

Υu
k =

∂u

∂k
× k

u

Definition 1.10. Hopf Bifurcation

Bifurcation is closely associated to biological or mathematical threshold value of

a system. It is the branching of solutions of system at a threshold value τ0 of τ (a

parameter) which causes the system to loose its stability. For τ < τ0, the system

shows stability and for τ > τ0 it is unstable, that is, there is a switch of stability

and hopf bifurcation happens. In particular, hopf bifurcation is observed if a pair

of complex solutions or eigenvalues crosses the virtual axes at a speed which is non-

zero. Let us consider the eigenvalues of the linearized system A(τ) = DxF (x, τ)

of ẋ = F (x, τ) lies in open half plane initially. Now, as τ varies, say, one pair

λ = α(τ)± ιβ(τ) crosses imaginary axes at τ = τ0.

α(τ0) = 0,
dα(τ0)

dτ
̸= 0, β ̸= 0,

then near τ0, the stable equilibrium bifurcates creating periodic cycles.

21



Chapter 1. General Introduction

Definition 1.11. Next Generation Matrix Method [73]

This method is applied to calculate basic reproduction number in case of epidemi-

ological models. This is briefly elaborated as:

Let the autonomous system having non-negative initial conditions be

ẋi = fi(x) = Fi(x)− Vi(x) : i = 1, 2, 3...n, (1.3)

where Vi = V −
i − V +

i . Let X = {x ≥ 0 : xi = 0 for i = 1, 2, ....m} be the set of

all disease-free equilibrium points of the system (1.3). Here x = (x1, x2, .....xn)
t :

xi ≥ 0 is the number of persons in every compartment of the infectious disease

model.

1. If x ≥ 0 then Fi, V
−
i and V +

i are all ≥ 0.

2. If xi = 0 implies V −
i = 0.

Particularly for x ∈ X, implies V −
i = 0 when i = 1, 2, ....m.

3. Fi = 0 for i > m.

4. For x ∈ X, Fi(x) = 0 along with V +
i (x) = 0 for all i = 1, 2, ....m.

5. If F (x) = 0 then all the eigenvalues of Df(x0) possess (negative) real parts.

Here, Fi(x) represents new infections in the ith compartment, V +
i is transition

rate of individuals into ith compartment and V −
i is transition rate of going out of

ith compartment for the individuals.

Theorem 1.12. For a disease transmission model (1.3) where f(x) satisfies the

axioms (1)−(5). Then x0 is DFE of this system then x0 is called LAS for R0 < 1

whereas it is not stable for R0 > 1, here R0 = ρ(FV −1) and ρ(A) being the spectral

radius of the matrix A.
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1.6 Summary of the Thesis

In the present work proposed, the study of the system comprising major compo-

nents human population, mosquito population, infections, their treatments, con-

trol strategies for these infectious diseases is done. The system is studied and

analyzed by defining its boundaries, characterizing the changes in the form of

mathematical equations and then the original system is formed by interconnect-

ing these representative equations. For the proposed work, system of ordinary

differential equations is used for proposing models to understand the dynamics

of disease. In this research work, both kinds of models, that is, with constant

population [74] and variable population have been studied. The disease dynamics

is modelled with involvement of the factors like effect of awareness about disease

in the population, preventive measures taken to control the infection, treatment

taken, vaccination etc. and then they help in prediction of disease transmission,

the extent of transmission, whether the disease will die out or turn into an epi-

demic or remain endemic in the population. Once the differential equations forms

the model, they are solved by assuming the initial conditions and positivity of the

variables taken. Further, the system is analyzed for stability conditions. The local

stability is checked through Routh-Hurwitz criteria and Next generation matrix

method is applied to calculate threshold parameter known as basic reproduction

number. Also numerical simulation using MATLAB is done to support the ana-

lytic results. Further, the results based on the model analysis are compared with

the existing results whether experimental or statistical results available in the field.

In the chapter 1, general introduction regarding various infectious diseases in the

population under the effect of preventive measures, treatments, vaccination etc

has been given. Noteworthy contribution of various researchers till date has been

included in the literature review section. In the view of same, identification of

research gaps has been done. Based on these gaps, the objectives of the proposed

study has been formed. The terms used in the study and mathematical prelimi-

naries have also been described in the chapter. The chapter has been concluded

with summary of chapters comprising the thesis.
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In chapter 2, Mathematical model for transmission of infectious disease yellow fever

has been formulated by taking different compartments for human and mosquito.

Through stability analysis and numerical simulation, it has been proved that infec-

tion can be controlled by reducing mosquito biting rate and disease transmission

parameter. Further, it has also been shown that insect repellent also reduces the

contact between humans and mosquito, thereby, reducing infection. After the cal-

culation of basic reproduction number, the results obtained have been validated

with the existing results available in the field.

In the chapter 3, the infectious disease yellow fever with of awareness through

media has been considered and studied. It has been assumed that these awareness

programmes make people aware about the infection and this aware category of peo-

ple make themselves safe from infection and also make effort in reducing mosquito

population. Stability analysis of infection-free state has been performed. The

value of R0 calculated has been shown to be affected by rate of dissemination

of awareness programmes. Moreover, from the numerical simulation it has been

observed that a lesser quantity of insecticide to control the mosquito is sufficient

in the presence of awareness programmes. Consequently the damage to the envi-

ronment can be reduced.

In the same chapter the infectious disease chikungunya has been studied. A non-

linear mathematical model consisting of separate compartments for human and

mosquitos has been formulated and analyzed. Results obtained by performing sta-

bility analysis and numerical simulation for the model showed that simultaneous

effect of insect repellent creams/sprays, vaccination for the disease and chemical

insecticide can help control the disease. Further, it has been shown that a much

lesser quantity of insecticide as compared to that used earlier in the same field

has been found to be effective to the reduce the infection. Also, the threshold

parameter, that is, R0 has been calculated in the model.

In chapter 4, disease dynamics of co-infection of rotavirus and malaria has been

studied. The co-infection has been studied to see the effects of control measures in

the form of treatments for both human and mosquito compartment. Local stability
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analysis for disease-free equilibrium and calculation of R0 has been done. Firstly,

R0 has been calculated for the individual models and then the threshold value for

the complete model has been calculated. Further, bifurcation, direction of bifurca-

tion and sensitivity indices are calculated to probe the effect of certain parameters

significant for the transmission of disease. It has been observed that collective

treatment namely malaria-rotavirus treatment and insecticide for mosquito is ef-

ficient than only insecticide treatment. Further numerical simulation showed that

cumulative treatment is better than any single treatment given to various infected

classes.

In chapter 5, a compartmental model for infectious diseases is proposed. Since,

the incubation period of a disease plays very important role in disease dynam-

ics. It can guide policy makers and health officials to make policies to control an

emerging disease. The model incorporates incubation period in its formulation

in the form of delay. The conditions of local stability for the equilibrium points

have been investigated. Further, it is observed that disease-free state is locally

stable when R0 < 1. Also, the endemic equilibrium is LAS for certain conditions

including τ < τ0, here τ0 is threshold value of τ . It was also observed that there is

phenomenon of hopf-bifurcation leading to periodic solutions for τ ≥ τ0. Further

investigation leads us to the fact that transmission parameter plays a significant

part in disease dynamics. Furthermore, while analysing the model, it was observed

that infection can be managed or curbed provided particular level of recovery rate

and incubation period is administered failing which can lead to epidemic. Analytic

results have been supported by numerical examples.

In the end, the proposed work under study has been supported by the bibliography

given at the end of the thesis.
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Chapter 2

Control of Infectious Disease and

its Effect on Single Population: A

Yellow Fever Mathematical

Model

2.1 Introduction

Infectious diseases have been studied through mathematical modelling by making

compartments of the total population. They can be as simple as a SIR model and

can be further extended to many compartments depending upon the study taken.

Here, we have extended this basic model to incorporate the control measures taken

to study the infectious diseases by taking an example of yellow fever. The similar

kind of model can be extended to study other vector borne diseases like malaria,

dengue etc. by making appropriate changes.

Yellow fever is viral haemorrhagic fever which is caused by biting of a mosquito

Aedes aegypti, a vector for yellow fever of the urban cycle of the disease ([74],

[75]). After incubation period of 3 to 6 days, the disease becomes symptomatic

with symptoms like mild fever, jaundice, vomiting, muscle pain and the disease

may aggravate to death in some cases. Yellow fever virus is the prototype member
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of the genus Flavivirus. This group of viruses has been found to be transmitted

between vertebrates by arthropod viruses [76]. They are mostly abundant in trop-

ical regions belonging to South America as well as of Africa and it gets transmitted

to primates by Aedes spp. and Sabethes spp. [29]. Mathematical modeling has

played an important role in fighting against the infectious diseases. Health care

policies and cost effective treatment are blessings of researchers doing epidemio-

logical studies. Various researchers have contributed in the field of control of these

diseases. The contribution of some noteworthy researchers is mentioned here. For

example, mosquito control is also studied by many researchers like Kesselring et al.

[77]. Regarding the control of infection in humans, there is no particular antiviral

drug for the disease but timely detection and taking precautionary measures may

increase the chances of patient’s survival. Taking the work to new heights, Zaleta

et al. [78] discussed a sample vaccination model by considering many endemic

states. The authors studied factors like policies concerning vaccination, vaccine

coverage rate, the waning period (i.e. the period after which the immunity due

to vaccine fails) and effectiveness of vaccine. Furthermore, the factors like role of

mosquito vector, the climate and human behaviour were included in the model for

outbreak of yellow fever in Luanda, Angola in December 2015 to August 2016 by

Shi Zhao et al. in 2018. It was concluded that vaccination saved 5.1 fold more

people from death out of 941 observed cases. Further, the time series analysis of

Luanda’s yellow fever suggested that the outbreak occurred in two waves, which

can be more likely if there were no vaccination. In addition to that, the study also

concluded that the value of R0 can be changed by changing factors like insecticide

for vector control, travelling restrictions and precautions through media. It has

been simulated with different vaccination schemes [79]. Working on better control

measures, Bodine et al. [80] modelled yellow fever by taking vaccination, use of

insect repellent, reapplication of repellent after its waning period and human’s

tendency to apply insect repellent according to their state as infected or recov-

ered. Furthermore, Monath et al. studied the underlying cause of yellow fever

infection to the travellers travelling to tropics. Travelling as an adventure to the
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remote areas where yellow fever is endemic, the stay at the place, the exposure to

yellow fever mosquitoes in places like forests of Africa, international health regula-

tions, yellow fever vaccine availability, epidemiological silence were the key factors

studied by the author. It is being observed that there is shortage of YF vaccine

and we need more sources to have complete control over the disease. It is being

observed that the risk of yellow fever infection cannot be measured accurately but

it can be reduced by taking some precautions. It was suggested that travellers

should be aware about the yellow fever endemic areas [81]. Along with the risk

of yellow fever while travelling, the risk YF 17D vaccine has been assessed by

the author after some serious and adverse cases are seen. It was predicted that

in case epidemic occurs, the vaccine requirement will exceed its production [82].

Though vaccination is an effective measure to control the disease but there are

certain limitations for vaccination like restricted access to health care facilities,

immuno deficient persons, pregnant women, small children and belief system of

person for vaccination. Various statistical and theoretical studies have been done

in the direction by researchers [83–86]. It was suggested that whether to vaccinate

or not should be decided by various factors like travel destination, local weather,

exposure of individuals with vectors etc. It was observed that there are studies

showing adverse effect of vaccine [31, 87]. The authors suggested that vaccination

for yellow fever should be avoided keeping in view its adverse effects. Yellow fever

vaccine cannot be made mandatory due to its detrimental effects. Similar studies

were done by [88, 89]. Codecco et al. [90] probed the effects of pre-emptive vac-

cination to populations who have uncertainty regarding risk of infection. It was

suggested that vaccination should be done if risk of epidemic is there otherwise

ethical issues regarding vaccine does not make mind set of people ready for the

vaccination.

Keeping in view the above factors, there is need to use other control measures like

use of insect repellent, bed nets, decreasing interaction between humans and hosts,

timings to visit the places where the disease is endemic. In our work, we will be

using insect repellent as protective measure along with vaccine as control strategy.
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To our knowledge, there have been no work in yellow fever compartmental mod-

eling, in which protected class of individuals has been investigated and studied.

Here, with this aspect, protected class for human population has been introduced

in this model to whom temporary protection is given. The reason for taking this

class is that the persons who travel to yellow fever endemic regions are normally

non-immune. So, the common practice to have protection is in the form sprays or

application of insect repellent.

2.2 Mathematical Model

To study the dynamics of yellow fever, firstly we will formulate the model in the

form of differential equations by making different compartments of the population.

2.2.1 Model Formulation

A mathematical model for yellow fever transmission for mosquito and human pop-

ulations has been proposed. It is being assumed that the two populations mixes

deliberately without any obstruction. The total human population denoted by

Nh(t) is divided into different epidemiological compartments of individuals namely

susceptible class Sh(t), protected class Ph(t), infected class Ih(t) and temporary

immune class Rh(t), whereas the vector/mosquito population Nm(t) is split into

two classes, that is, susceptible class and infected class denoted by Sm(t) and

Im(t) respectively. The transfer between the compartments is denoted by differ-

ent epidemiological parameters. The susceptible human population gets infected

when they are bitten by infected mosquitoes. The susceptible human population

is increased by constant birth rate bh. Here θ (0 ≤ θ ≤ 1) is the proportion of

susceptible human which are taken under preventive measures and are going to

the protected class. It is being assumed that protection will reduce the likelihood

of infection. The factor associated with it is denoted by ω. Here ω = 0, the protec-

tion is effective and if ω = 1, then the protection is not effective. This protection is
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Figure 2.1: Flow diagram of the system

temporary as it wanes off with time. So, the protected humans return to the Sh(t)

at a constant rate δ1. Infected humans acquire temporary immunity to increase

the immune class at a constant rate ϕ. The disease does not transmit vertically

and the human population have a constant rate of natural death denoted by µh.

Also, infected humans die with disease death at a constant rate α. For mosquitoes,

the recruitment is through constant birth rate bm. Susceptible mosquitoes, when

bite an infected individual at a constant rate a, gets infected with transmission

probability β2 and here β1 is the transmission probability of getting infected from

infected mosquito. There is no recovered class for vectors of the disease, that is,

mosquitoes as they do not recover from the infection once they are infected. In

the model, there is no difference between vaccinated and recovered humans as

current yellow fever vaccine confers lifelong immunity which is same as recovery

from disease.

Under these assumptions, the progress of the infection is given in the system of
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equations:

Ṡh = bhNh − aβ1
ShIm
Nm

− θSh + δ1Ph − µhSh − ϵSh,

Ṗh = θSh − ωaβ1
PhIm
Nm

− (δ1 + µh)Ph,

İh =
aβ1ShIm

Nm

+ ωaβ1
PhIm
Nm

− (ϕ+ α + µh)Ih,

Ṙh = ϕIh − µhRh + ϵSh,

Ṡm = bmNm − aβ2Sm
Ih
Nh

− µmSm,

˙Im = aβ2Sm
Ih
Nh

− µmIm.

(2.1)

Taking initial conditions Sh(0) > 0, Ph(0) > 0, Ih(0) > 0, Rh(0) > 0, Sm(0) > 0

and Im(0) > 0.

It is quite evident that

Nh = Sh + Ph + Ih +Rh,

Nm = Sm + Im.

Also upon adding all the equations in the model (2.1) for human and mosquito

populations, we get

Ṅh = bhNh − µhNh − αIh,

Ṅm = bmNm − µmNm.
(2.2)

It is quite clear from first equation of (2.2), that in the absence of the disease

(α = 0), population Nh grows exponentially if bm > µm, Nh is constant if bh = µh,

Nh decreases if bh < µh. Considering second equation of (2.2), Nm = c1e
(bm−µm)t,

which implies that Nm is constant if bm = µm, Nm decreases if bm < µm and it

grows exponentially if bm > µm.
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2.2.2 Description of Parameters in the Model

Table 2.1: Table for Description of Parameters in Yellow Fever Model.

Parameters Value Units

a Average number of bites by mosquitoes to human -

β1 Transmission rate of YF from mosquito to human day−1

β2 Transmission rate from human to mosquito day−1

θ Proportion of susceptible individuals under protection day−1

δ1 Rate of movement from protected class to susceptible
class after protection wanes

day−1

µh Natural death rate for humans day−1

µm Natural death rate for mosquitoes day−1

ϵ Effective vaccination rate of susceptible humans day−1

ϕ Constant rate to join temporary immunity class day−1

bh Birth rate of humans day−1

bm Birth rate of mosquitoes day−1

α Yellow fever induced death rate day−1

ω Factor related to infection, ω = 0: protection is effec-
tive, ω = 1: protection is ineffective

numeric
value

2.3 Dynamical Behaviour of the Model

The dynamical behaviour of the model will be checked by exploring the bounded-

ness and performing the stability analysis of the model.

2.3.1 Positivity and Boundedness of the Model

As we are dealing with dynamics of diseases, it is very important to ensure that

all the variables in the model (2.1) are non-negative.

In this section, the positivity as well as boundedness of the variables will be dis-

cussed in the form given below:

Theorem 2.1. Assuming the initial conditions of the model to lie in τ , where

τ = {(Sh, Ph, Ih, Rh, Sm, Im) ∈ R6
+ : Sh ≥ 0, Ph ≥ 0, Ih ≥ 0, Rh ≥ 0, Sm ≥ 0, Im ≥ 0}.
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then ∃ a unique solution for the above system of equations (2.1) and the solution

is retained in τ for t ≥ 0.

Proof. Considering right side of the equations (2.1) in the model are continuous

with continuous partial derivatives in τ , we can prove that the system of equations

has a unique solution for all t ≥ 0. Thereby, it will be sufficient to prove that

Sh ≥ 0, Ph ≥ 0, Ih ≥ 0, Rh ≥ 0, Sm ≥ 0 and Im ≥ 0 for future time t. We will

apply the same approach as applied in [74], [91] and [92].

Let

t1 = sup{t > 0 : Sh ≥ 0, Ph ≥ 0, Ih ≥ 0, Rh ≥ 0, Sm ≥ 0, Im ≥ 0}.

Therefore, t1 > 0. Now, from first equation of (2.1) of the model, we have

Ṡh = bhNh − aβ1
ShIm
Nm

− θSh + δ1Ph − µhSh − ϵSh. (2.3)

The above written equation can be presented as

Ṡh + [f(t) + (θ + ϵ+ µh)]Sh = F (t),

where f(t) = aβ1Im
Nm

and F (t) = bhNh + δ1Ph.

So, d
dt
(Sh(t)[exp (θ + ϵ+ µh)t+

∫ t

0
f(η)dη]) = F (t) exp[(θ + ϵ+ µh) +

∫ t

0
f(η)dη].

Integrating both sides from t = 0 to t = t1, the above equation becomes

Sh(t1)[exp (θ + ϵ+ µh)t1 +
∫ t1
0

f(η)dη]−Sh(0) =
∫ t1
0
[F (ξ) exp[(θ + ϵ+ µh)ξ +

∫ ξ

0
f(η)dη]dξ.

Therefore,

Sh(t1) = Sh(0) exp[−((θ + ϵ+ µh)t1 +

∫ t1

0

f(η)dη)]

+ exp[−((θ + ϵ+ µh)t1 +

∫ t1

0

f(η)dη)]×
∫ t1

0

F (ξ) exp[(θ + ϵ+ µh)ξ +

∫ ξ

0

f(η)dη]dξ.
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Sh(t1) being the sum of positive quantities is positive. Hence, Sh(t1) > 0. Similarly,

by the same argument, we can show that Ph, Ih, Rh, Sm and Im are all positive

for t > 0.

Assuming that the two populations of humans and mosquitoes does not vary no-

tably during the interval of time taken under study, we assume the two populations

to be relatively constant ([74]). Hence, without loss of generality, the populations

in each compartments can be scaled by total species of the respective population

to make the model dimensionless. This is done by the transformations as

sh = Sh

Nh
, ph = Ph

Nh
, ih = Ih

Nh
, rh = Rh

Nh
, sm = Sm

Nm
, im = Im

Nm
.

The system of equations reduces to

ṡh = bh − aβ1shim − θsh + δ1ph − µhsh − ϵsh,

ṗh = θsh − ωaβ1phim − (δ1 + µh)ph,

i̇h = aβ1shim + ωaβ1phim − (ϕ+ α + µh)ih,

ṙh = ϕih − µhrh + ϵsh,

˙sm = bm − aβ2smih − µmsm,

˙im = aβ2smih − µmim.

(2.4)

2.3.2 Equilibrium Points of the System

To check the behaviour of the system (2.4), we need to solve it to find the equi-

librium points.

Now, we want to find equilibrium points of the system (2.4).

� Disease-free equilibrium is given by E0(s
′

h, p
′

h, 0, r
′

h, s
′
m, 0)

where s
′

h = Dbh
(θ+µh+ϵ)−θδ1

, p
′

h = bhθ
(θ+µh+ϵ)−θδ1

, r
′

h = Dbhϵ
(θ+µh+ϵ)−θδ1

, s
′
m = bm

µm
.

Here s
′

h ≥ 0, p
′

h ≥ 0 and r
′

h ≥ 0 provided (θ + µh + ϵ)− θδ1 > 0.

� Disease endemic equilibrium is given by E∗(s∗h, p
∗
h, i

∗
h, r

∗
h, s

∗
m, i

∗
m) where

p∗h = ABC
ωαa2β2

2
− aβ1(a2ωβ1β2+CD)

ωαCθ
, i∗h = B

aβ2
,
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r∗h = ϕB
µHaβ2

+ ϵ(a2ωβ1β2+CD)
µhθC

, i∗m = aβ2

aβ2+bm
where s∗h = 1 − p∗h − i∗h − r∗h and

s∗m = 1− i∗m, here A = ϕ+ α + µh, B = aβ2 + bm − µm, C = aβ2 + bm

and D = δ1 + µh.

2.3.3 Stability Analysis

To proceed further, we will analyse the stability of the model at infection-free

stationary point and disease endemic stationary point.

2.3.3.1 Local Stability at Disease-free Equilibrium

Firstly, firstly we will evaluate the threshold parameter R0. We have computed

R0 by next generation matrix [93] and its value is

R0 =

√
a2β1β2(δ1 + µh + θω)

(ϕ+ α + µh)((θ + µh + ϵ)D − θδ1)
.

Theorem 2.2. The infection-free equilibrium E0(s
′

h, p
′

h, 0, r
′

h, s
′
m, 0) is locally asymp-

totically stable provided R0 < 1.

Proof. The local stability at E0 is done by finding out the eigenvalues. The Jaco-

bian of the system is given under

J0 =


−ωaβ1im − (δ1 + µh) 0 −ωaβ1ph

ωaβ1im −(ϕ+ α + µh) aβ1sh + ωaβ1ph

0 aβ2sm −µm


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The Jacobian calculated at E0(s
′

h, p
′

h, 0, r
′

h, s
′
m, 0) is

J0 =


−(δ1 + µh) 0 − ωaβ1bhθ

(θ+µh+ϵ)D−θδ1

0 −(ϕ+ α + µh) aβ1s
′

h + ωaβ1p
′

h

0 aβ2s
′
m −µm



which contributes one of the eigenvalue as λ = −(δ1 + µh) < 0.

The other eigenvalues are calculated from

λ2 + (ϕ+ α + µh + µm)λ− a2β1β2s
′

m(s
′

h + ωp
′

h) = 0.

It can be written as λ2 + A1λ+ A2 = 0,

where A1 = ϕ+ α + µh + µm > 0,

and A2 = −a2β1β2s
′
m(s

′

h + ωp
′

h) = (1− (R0)
2)A bm

µm
.

According to Routh-Hurwitz criteria, condition is A1 > 0 along with A2 > 0.

Clearly, A1 > 0 and A2 > 0 if (1− (R0)
2)A bm

µm
> 0,

that is, 1 − (R0)
2 > 0, which implies, R0 < 1. Therefore, the infection-free equi-

librium E0 is locally asymptotically stable for R0 < 1.

2.3.3.2 Stability Analysis at Endemic Equilibrium

Here, the local asymptotic stability at disease-endemic equilibrium is discussed

using Routh-Hurwitz criteria.

Theorem 2.3. The endemic equilibrium is locally stable if A1 > 0, A2 > 0 and

A1A2 − A3 > 0 conditions holds, where A1, A2 and A3 are given below.

Proof. The local stability of disease-endemic equilibrium is evaluated by the cal-

culating eigenvalue of the model at the point E∗ while assuming that ih ̸= 0.
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Jacobian matrix J1 for the given system is

J1 =


−a11 a12 −a13

a21 −a22 a23

a31 a32 −a33


where a11 = ωaβ1im + (δ1 + µh), a12 = 0, a13 = ωaβ1ph, a21 = ωaβ1im,

a22 = (ϕ+ α + µh), a23 = aβ1sh + ωaβ1ph, a31 = 0, a32 = aβ2sm, a33 = µm.

The equation giving values of λ for E∗ is given by det(J1 − λI3) = 0,

where I3 is the identity matrix. Now for determining the stability at E∗, we will

be using Routh-Hurwitz criteria to investigate the stability with the help of the

characteristic equation given by λ3 + A1λ
2 + A2λ+ A3 = 0,

where the coefficients A′
is are given by: A1 = (a11 + a22 + a33),

A2 = [a11(a22 + a33) + (a22a33 − a23a32)], A3 = a11(a22a33 − a23a32) + a13a21a32.

According to Routh-Hurwitz criteria, endemic equilibrium will be LAS provided

A1 > 0, A2 > 0, A3 > 0, A1A2 − A3 > 0.

2.4 Numerical Simulation and Discussion

Using initial conditions Sh(0) = 100, Ph(0) = 20, Ih(0) = 10, Rh(0) = 10,

Sm(0) = 120, Im(0) = 20 and parameters values: bh = 10, a = 1, β1 = .001, θ =

0.2, δ1 = 0.05, µh = .01, ϵ = 0.1, ω = 1, ϕ = 0.02, α = 0.008, bm = 0.051, µm =

0.1, β2 = 0.01. To check the sensitivity of model outcomes to the changes in var-

ious parameters, the model was simulated for different scenarios. To check the

effect of mosquito interaction with humans, the parameters relating to mosquito

bite and transmission of yellow fever, that is, the values of a and β1 were var-

ied. The system changes from disease-free state to endemic state when the values

a = 1, β1 = 0.0001 were changed to a = 4, β1 = 0.01 which reflected in the change

of value of R0 changing from 0.2749 to 1.0997 while keeping all other parameters

fixed. This is shown in Figures 2.2 and 2.3.
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Table 2.2: Table for Parameters for the Model for the Disease Yellow Fever.

Parameters Value Source

a [1,12] [94], [95]

β1 0.001 assumed

β2 0.01 [90]

θ 0.2 assumed

µh 0.01 assumed

µm 0.1 assumed

ϵ 0.1 [96], [97], [98]

bh 10 assumed

bm 0.051 [74]

δ1 0.05 assumed

α 0.008 [34]

ϕ 0.02 assumed

Discussion on Number of Mosquito Bites
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Figure 2.2: Simulation results for
disease-free state for a = 1, β1 =

0.0001, R0 = 0.2749.
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Figure 2.3: Simulation results for
endemic state for a = 4, β1 = 0.01,

R0 = 1.0997.

The simulation was done with varying values of a while keeping all other fixed.

Depending upon a ∈ [1, 12], R0 varies from 0.0869 to 1.0433. It can be interpreted

as the insect biting rate increases, the infection increases in human population as

shown in Figures 2.4 and 2.5. The data used for the parameter related to mosquito

bite in the model is largely consistent with the work done by [74, 94, 95] which

gives validation to our work.

Discussion on Transmission Parameter

In our work, it has been shown that a slight change in the value of transmission
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Figure 2.4: Simulation results for
infective state humans for a = 1,

R0 = 0.0869.
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Figure 2.5: Simulation results for
infective state humans for a = 12,

R0 = 1.0433.

parameter β1 affects the value of R0. As the yellow fever transmission parameter

for humans, β1 increases, there is increase in infection in human populations as

can be seen in Figures 2.6 and 2.7. It is apparent from the simulation and verified

numerically that as we increase β1 from 0.001 to 0.002, the value of R0 changes

from 0.8694 < 1 to 1.2295 > 1. It is apparent that by reducing β1, there will be

reduction in severity of disease. These results are supported by a statical work

done by [99] in which they used two models to estimate the intensity of transmis-

sion in African regions which are endemic to the disease. The results are also in

line with the work done by Hamlet et al. [100] in which logistic regression model

was used to predict the mosquito dependence on temperature. It was found that

force of infection plays a strong role in the dynamics of the infection.
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Figure 2.6: Simulation results for
infective state of humans for β1 =

0.001, R0 = 0.8694.
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Figure 2.7: Simulation results for
infective state of humans for β1 =

0.002, R0 = 1.2295.
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Discussion on Insect Repellent

To examine the effects of temporary immunity attained through insect repellent

on the severity of disease, all other parameters are fixed except the parameter for

temporary imunity (ϕ). The value of R0 decreases from 1.0039 to 0.8694 as we

increased the value of ϕ from 0.01 to 0.02. It can be interpreted as that even the

small amount of insect repellent has a dampening effect on the progress of disease.

The peak of the curve decreases rapidly as is clear in the Figures 2.8 and 2.9.

Discussion on Vaccination Rate
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Figure 2.8: Simulation results for
infective state of humans for ϕ =

0.01, R0 = 1.0039.
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Figure 2.9: Simulation results for
infective state of humans for ϕ =

0.02, R0 = 0.8694.

Various vaccination programmes can be incorporated to make the disease control

in time. This can be done by starting vaccination programmes in the time before

the activity of the mosquitoes reaches its maximum height, that is, during colder

months. To model this, different values of vaccination rates were considered for

simulation. Figures 2.10 and 2.11 represent the effect of vaccination rate ϵ on the

infected population Ih. The greater the value of ϵ, the smaller is the infection in

human population as is visible from the graphs. In our study, it was found that as

the value of vaccination rate increases, the infection in the population decreases.

These results are supported by study done by Garske et al. [34] in which the

authors applied estimation method to study the impact of vaccination coverage

through generalized linear models. The model has been validated with the fact

that the value of the parameter taken for vaccination to control the disease is in
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the range [0, 1] which is consistent with the work done by [96–98].
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Figure 2.10: Simulation results
for infective state of humans for

ϵ = 0.1.
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Figure 2.11: Simulation results
for infective state of humans for

ϵ = 0.9.

2.5 Conclusion

A mathematical model for the disease dynamics of control of yellow fever is pro-

posed and studied in which two populations namely humans and mosquitoes are

considered. Disease-free equilibrium and endemic equilibrium are calculated and

the local stability at these points have been investigated by applying Routh-

Hurwitz criteria. Further, the value of basic reproduction has been calculated

by using next-generation matrix method. The results showed that disease can be

controlled by reducing mosquito biting rate, disease transmission parameter and

vaccine coverage rate. Since, vaccines are not easily available in all areas which

are affected by yellow fever and there are also rare adverse effects based on yellow

fever vaccine. Therefore, the use of insect repellent to reduce the contact between

mosquito and human is added as a precautionary measure which further can reduce

the chances of epidemic. It has been shown numerically that preventive measures

like application of insect repellent plays an important role along with vaccination.

As we increased the value of parameter related to temporary protection through

insect repellent, the value of R0 changes from < 1 to > 1. The very significant

factor used to predict the disease transmission, that is, (R0) is shown to be highly
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sensitive to this preventive measure giving temporary immunity. Numerical sim-

ulation is done for different scenarios by using MATLAB to support the analytic

results.
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Chapter 3

Mathematical Modeling on the

Effect of Control Measures on

Disease Dynamics of Two

Species: A Study on Yellow Fever

and Chikungunya

3.1 Introduction

Humans are susceptible to any kind of pathogen and the source of that infection

can vary depending upon variety of factors. In vector-host interaction, when one

species is infected, the other too gets infected after interaction. In a similar way,

the control strategies applied on either one or both have impact on each other as

they complete the circle. Here, we are studying the impact of control measures on

disease dynamics of both the species by taking yellow fever and chikungunya as

an example.
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3.2 Model for Yellow Fever with Control Measures

Yellow fever is a zoonotic disease in a cycle of humans and non-human primates,

where humans are the hosts and mosquitoes are vectors for the transmission cy-

cle. It is endemic in Sub-Saharan Africa and Southern America. Its reemergence

in mainly travellers travelling to endemic areas is a big reason to worry [101].

Mathematical modeling has emerged as a helping tool in framing various health

policies which are cost effective that can reduce disease burden of these outbreaks.

Many researchers have applied mathematical modeling for spread of these epi-

demics [102–105]. For example, Ankersen et al. [77] proposed a compartmental

model for yellow fever epidemic through the effect of treatment of standing water

on mosquito population. Yusuf et al. [74] formulated a deterministic model with

multiple control measures for yellow fever outbreak. It was found that outbreak

can be controlled if chemical and biological tools control mosquito population.

Many researchers have studied yellow fever with effect of vaccine like Barrett [106]

studied the availability of live attenuated vaccine 17D strain. It was suggested

that occasional supply or insufficient supply of vaccine should be taken care of as

there is literature available till date about vaccine shortage [107]. Although, there

is a limited research supporting an alternative for shortage of YF vaccine [108] but

much literature is not available. Also, yellow fever vaccine associated viscerotropic

infection is although rare but it is fatal [109].

Among various control measures is control through awareness about infection as

rise in the infection is accompanied by rise of awareness. This in turn make people

change their behaviour as they try to isolate them or try to prevent the infection.

These behavioural patterns can change in the patterns of transmission of the in-

fection by reducing its pace. This awareness can be in any form like wearing face

mask, having home remedies, having vaccination in time etc. Various researchers

around the world have worked on the contribution of awareness in the control of

disease. The contribution of some noteworthy researchers is included here. For

example, awareness in population regarding vaccination required for international
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travel was discussed in the [110]. It was observed in a study conducted at yel-

low fever vaccination clinic at Indian Institute of Medical Sciences, Bhubneswar,

India that only 57.3 percent are aware of any requirements of travel vaccination.

Whereas, 37.5 percent of the participants knew the fact that YF vaccine gives life-

long immunity. It was concluded that awareness about vaccination while travelling

was also associated with occupation, higher education and history of any previ-

ous vaccination. Because of the fact that international travel exposes a person to

wide spectrum of diseases, it was advised that the awareness regarding vaccina-

tion and prevention should be properly disseminated. The role of awareness has

also been studied for HIV/AIDS by [111]. The role of awareness about gyneco-

logical health has also been taken seriously by [112]. The same kind of study on

awareness is done by Jegede et al. [113]. It was concluded through a survey done

by cross sectional study among 670 international travellers departing from Addis

Ababa Bole international airport that uptake of recommended vaccines specifically

DPT and influenza was low. There are variety of aspects involved in the vacci-

nation programmes. In the work, the factors of religion and belief system were

discussed. Considering the pivotal points, Mehta et al. [114] studied the factors

like knowledge, attitude and precautionary measures taken regarding mosquito

borne diseases by taking a sample from Bhavanagar, India. It was found that

from sample of 135 persons, 88.1 percent of sample have awareness about these

disease whereas 76.3 percent were aware about precautionary measures about the

disease.

Although the YF vaccine confers lifelong immunity, there are adverse effects of vac-

cine that should be taken into consideration. The author in [115] emphasizes on

the understanding the human behaviour response to the epidemics. He suggested

that in epidemic modeling, society and disease both should be taken together as

it is a co-evolution. It was suggested that there are many factors that change

the behaviour of people like quarantine, closure of public places, control tracing

etc. and these factors when included in a disease model can give better results.

The authors in [116] studied the effects of connectivity between susceptible and
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infective population. It was suggested that contact searching can be an effective

tool in controlling the epidemic. The impact of SARS epidemic on the behaviour

of population was also studied [117]. Through telephone survey done on 1603

adults in Hong Kong, it was noted that after the epidemic, majority of people

adopted healthier lifestyle, spent more on health resources, practiced good health

hygiene, measured healthy diet and opted for weight control practices. It was con-

cluded that people opted for more healthy lifestyle to be safe. The authors in [118]

studied that there is a relationship between health behaviour and risk perception.

Moreover, there is a significant role of media in controlling the infectious diseases

[119]. Further, this work was taken ahead by [120] in which the authors developed

a SIS model for infection by incorporating media coverage. It was concluded that

media coverage cannot fully eradicate infection but to an extent more awareness

through media in a given population can reduce the number of infectives. Working

further in the same field, Cui et al. [121] formulated three dimensional model for

infectious disease. Stability analysis and numerical simulation shows that media

coverage shortens the time of secondary peaks in the graphs. Taking the work

to new heights, Funk et al. [122] analyzed and formulated a mathematical model

to study the effect of awareness about the disease. It was concluded that if the

infection rate is below some threshold value, the behavioral response in the prox-

imity of the disease outbreak can stop the disease spread. It was observed that

the factors like prediction of results of future of outbreak and interpreting disease

parameters are very important. Furthermore, Funk et al. [123] studied endemic

diseases of which population is aware or unaware. They studied the impact of

various disease parameters under the effect of awareness among individuals. It

was concluded that the correlations between disease and awareness at the local

level is significant in the starting phase of any outbreak. Also, the investigation of

spread of pathogen in disease transmission when the population changes behaviour

being aware of infection was done. Moreover, compartmental model to study the

dissemination of information in prevention of disease was studied by incorporating

the level of responsiveness to information about disease [124].
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A lot of work has been done to study the impact of awareness in the spread of vari-

ous outbreaks of various diseases. But to our knowledge, there is still scope in this

field regarding awareness for yellow fever. In the present work, we have proposed a

mathematical model for yellow fever to study the effect of awareness programmes

being executed by media along with control on vector population through insec-

ticide. This awareness about infection will affect the susceptible class. Further,

this susceptible class will be more on the precautionary side thereby forming a

separate aware class.

3.2.1 Mathematical Model

In the upcoming section, a mathematical model is established by incorporating

awareness through media among human population as a control measure and in-

secticide as a control strategy for vector population thereby showing the impact

on both the species.

3.2.1.1 Model Formulation

Here, the total population of human Nh(t) is segregated into three compartments

susceptible, infected and aware. Here, Sh(t) represents susceptible humans, Ih(t)

represents infected humans and Ah(t) represents aware human class as regards to

their awareness or disease status. The total vector population Nv(t) is categorised

into two classes namely susceptible vectors Sv(t) and infected vectors Iv(t). Here,

M(t) is the number of campaigns conducted by media to make people aware at

that time. It is being assumed that the campaigns through media are considered

to be dependent on the number of infected persons in the community. Further, the

decrease in the media campaigns is also included in the model. This descent can be

due to social causes, psychological reasons or monotonicity of these programmes.

Not all, but a certain number of them are maintained in the system after some

time as there is probability of presence of infected vectors in the system. It is being

assumed that host and vector population mixes freely and disease spreads through
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direct contact only. Further, it being a vector borne disease, to control the disease

transmission, the vector control is very important factor. For this purpose, we have

added insecticide as a control measure in the model. Under these assumptions,

the progress of the disease is expressed by the set of differential equations:

Ṡh = A− abShIv − βMSh + δAh − d1Sh,

İh = abShIv − (α + d1)Ih,

Ȧh = βMSh − δAh − d1Ah,

Ṡv = bv − acSvIh − ϵAhSv − (u1 + d2)Sv,

İv = acSvIh − ϵAhIv − (u1 + d2)Iv,

Ṁ = τIh − τ0(M −M0).

(3.1)

Here, human population increases by birth or immigration rate A where a is the

number of mosquito bites per human per unit time. The term b represents the

transmission probability of getting infection from mosquito to host. Therefore,

ab represents the rate at which susceptible host gets infection from mosquitoes.

Similarly, c is the transmission probability of infection from human to mosquito.

Therefore, ac is the rate at which mosquito gets infected from humans. bv is the

birth rate of mosquitoes. Here, the term α denotes the mortality rate of infected

persons due to yellow fever. Again, β is the rate of dissemination of awareness

programmes. These awareness programmes helps the population make a new class

named aware class. It is being assumed that aware population will take all the

precautions for their safety and are successful in doing so. δ is the rate at which

aware class loose awareness because of fading away of memory or some social issues.

ϵ is the rate at which aware population makes effort to reduce vector population

by various efforts like proper of drainage of water, cleanliness etc. Moreover, u1

is the control measure in the form of insecticides to reduce the vector population.

Here, τ is the rate at which awareness programmes through media are executed.

Again, τ0 is the rate at which these programmes decline. M0 is the number of

baseline programmes maintained in the system.
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3.2.1.2 Description of Parameters in the Model

Table 3.1: Table for Description of Parameters for Disease Yellow Fever with Aware-
ness.

Parameters Description Units

a Mosquito biting rate per population
per day

b Transmission probability of YF from infected
mosquito to human

-

c Transmission probability of YF from infected human
to mosquito

-

β Rate of propagation of awareness day−1

δ Rate at which individuals loose awareness due to mem-
ory fading

day−1

d1 Natural death rate for humans day−1

d2 Natural death rate for mosquitoes day−1

α Disease death rate of infected humans day−1

ϵ Rate of making efforts to control mosquito population per population
per day

u1 Pesticide control for mosquito population day−1

τ Rate at which awareness is being spread through me-
dia

day−1

τ0 Rate at which media campaigns diminish day−1

M0 Value of baseline number of programs maintained in
system

-

3.2.2 Dynamical Behaviour of the Model

In the upcoming section, we will check the dynamic behaviour of model (3.1) by

firstly investigating the boundedness and positivity of the solutions of the model.

3.2.2.1 Boundedness and Positivity of Model

The expressions for Nh(t) and Nv(t) can be attained from

Nh(t) = Sh(t) + Ih(t) + Ah(t),

Nv(t) = Sv(t) + Iv(t).
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Adding the equations in (3.1), we get

Ṅh = A− d1Nh − αIh,

Ṅv = bv − u1Nv − d2Nv.
(3.2)

It is quite clear from first equation of (3.2), Nh ≤ A
d1

and Nv approaches bv
u1−d2

as

time approaches infinity. As we are studying human and mosquito population, it

is assumed that all the parameters involved are non-negative.

Theorem 3.1. Assuming the initial conditions of the model to lie in T , where

T = {(Sh, Ih, Ah, Sv, Iv,M) ∈ R6
+ : Sh ≥ 0, Ih ≥ 0, Ah ≥ 0, Sv ≥ 0, Iv ≥ 0,M ≥ 0}.

∃ a unique solution lying in T for t ≥ 0.

Proof. Taking third equation of (3.1), Ȧh = βMSh − δAh − d1Ah,

solving the above equation, we get Ah ≥ C0e
−(δ+d1)t, C0 being arbitrary constant,

implying that ∀ t≥ 0, Ah ≥ 0.

Taking second last equation of (3.1), İv = acSvIh− ϵAhIv− (u1+d2)Iv, solving the

above equation, Iv ≥ C1e
−(ϵ+u1+d2)t, C1 being arbitrary constant, implying that ∀

t≥ 0, Iv ≥ 0.

Taking last equation of (3.1), Ṁ = τIh−τ0(M−M0), solving, we getM ≥ C2e
(−τ0)t,

where C2 is any constant. Therefore, ∀ t≥ 0, M(t) ≥ 0.

Now, considering first equation of (3.1), Ṡh = A− abShIv − βMSh + δAh − d1Sh.

It can be rewritten as Ṡh ≥ −abShIv − βMSh − d1Sh,

solving, Sh ≥ C3e
−(f1(t)+f2(t)+d1)t, where C3 is any constant and f1(t) = abIv,

f2(t) = βM(t) are positive as both Iv ≥ 0 and M(t) ≥ 0, which implies ∀ t≥ 0,

Sh ≥ 0.

In the similar manner, it can be proved that Sv ≥ 0 and Ih ≥ 0 ∀ t≥ 0.
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3.2.2.2 Analysis of Model

Firstly, we will analyse the model by finding the equilibrium points of the system

(3.1) and then the value of R0 will be evaluated to see the progression of the

disease.

3.2.2.3 Disease-free Equilibrium

Here, we find the equilibrium states of the system. To find the disease-free equilib-

rium, that is, when there is no infection in the population, we put Ih = 0, Iv = 0.

So, we get disease-free equilibrium E0(S0
h, 0, A

0
h, S

0
v , 0,M

0).

Here, S0
h = AC

P
, A0

h = AβM0

P
, S0

v = Pbv
ϵAβM0+PD

,M0 = M0.

Here, C = d1 + δ,D = u1 + d2, P = d1(βM0 + C).

3.2.2.4 Basic Reproduction Number

To study the disease progression in the society, we derive the value of basic repro-

duction number, R0. The value of R0 decides whether a disease will die out or

turn into an epidemic. To calculate R0, we will be using Next Generation Matrix

(NGM) given by [93]. For NGM , we have transmission matrix F and transition

matrix V . Here F is transmission matrix describing production of new infection

and V is the transition matrix denoting change in the state including death. The

matrices F and V are given by

F =

 0 abS0
h

acS0
v 0


and

V =

 −(α + d1) 0

0 −ϵA0
h − u1 − d2


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After calculating V −1, −FV −1 is calculated, where

FV −1 =

 0
−BabS0

h

Q

−acS0
v(ϵA

0
h+D)

Q
0


Here B = α + d1, D = u1 + d2, Q = B(D + ϵA0

h).

We compute the dominant eigenvalue of the matrix −FV −1, that is, the spectral

radius R0.

R0 =

√
a2bcS0

hS
0
v

Q

3.2.2.5 Local Stability Analysis at Infection-free Equilibrium

To check the stability at disease-free state, we check the Jacobian of the system

(3.1). Jacobian is given by

J0 =



−abIv − βM − d1 0 δ 0 −abSh −βSh

abIv −B 0 0 abSh 0

βM 0 C 0 0 βSh

0 −acSv −ϵSv −ϵAh −D − acIh 0 0

0 acSv −ϵIv acIh −ϵAh −D 0

0 τ 0 0 0 −τ0


where C = δ + d1.

The Jacobian for disease-free equilibrium E0 is

J0 =



−βM0 − d1 0 δ 0 −abS0
h −βS0

h

0 −B 0 0 abS0
h 0

βM0 0 C 0 0 βS0
h

0 −acS0
v −ϵS0

v −ϵA0
h −D 0 0

0 acS0
v 0 0 −ϵA0

h −D 0

0 τ 0 0 0 −τ0


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The eigenvalues given by above matrix are λ = −ϵA0
h −D,−τ0.

Remaining eigenvalues are given by

λ2 + A1λ+ A2 = 0,

λ2 + l1λ+ l2 = 0.
(3.3)

Here A1 = B +D + ϵA0
h, A2 = B(D + ϵA0

h)− a2bcS0
hS

0
v

and l1 = C + βM0 + d1, l2 = C(βM0 + d1)− βM0δ.

For the first equation of (3.3), applying Routh-Hurwitz criteria, for the system to

be stable, the conditions are A1 > 0 and A2 > 0. Clearly A1 > 0 and A2 > 0 if

B(D + ϵA0
h) > a2bcS0

hS
0
v ,

which implies
a2bcS0

hS
0
v

B(D + ϵA0
h)

< 1,

which means

R0 < 1.

The above result is presented in the form of theorem below:

Theorem 3.2. The disease-free equilibrium E0(S0
h, 0, A

0
h, S

0
v , 0,M0) is locally asymp-

totically stable if R0 < 1.

In the upcoming section, we will take numerical examples using MATLAB.

3.2.3 Numerical Simulation and Discussion

Here, we perform numerical simulation using different set of parameters for the

model (3.1) to support the above results. Also, validation of basic reproduction

number is done. These simulation help us understand the correlation between

human and vector population in a better way. With initial conditions Sh = 1000,

Ih = 100, Ah = 50, Sv = 500, Iv = 100, M = 0. The values of parameters have

been presented in the form of table given in the form of the table. To have better

understanding of effect of various aspects of programmes initiating awareness on
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Table 3.2: Table for Parameters for the Model for the Disease Yellow Fever with
Awareness.

Parameters Value Source

a [1,12] [94], [95]

b 0.1 assumed

c 0.01 [90]

β 0.001 [105]

d1 0.0005 assumed

d2 0.0005 assumed

ϵ 0.01 assumed

M0 5 [105]

δ 0.05 assumed

α 0.005 [34]

τ 0.0015 [105]

τ0 0.22 [105]

disease dynamics, we varied parameters like rate of propagation of awareness pro-

grammes (β) and rate of making efforts to control mosquito population (ϵ).

Discussion on Dissemination of Awareness Programmes

Firstly, we vary parameter for rate of propagation of awareness programmes (β)

from β = 0.1 to β = 0.5. As we increased the value of β, the value of R0 changes

from 1.6612 > 1 to 0.8575 < 1. This indicates that R0 is greatly affected by rate

of dissemination of awareness programmes. The same impact has been be shown

in Figures 3.1 and 3.2.
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Figure 3.1: Simulation results
for infectious human population for

β = 0.1, R0 = 1.6612 > 1.
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Figure 3.2: Simulation results
for infectious human population for

β = 0.5, R0 = 0.8575 < 1.

Discussion on Efforts by Aware Population

Now, we varied the value of parameter for ϵ, the rate at which aware population
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reduce vector population. It is verified from the figures that as there is increase

in the efforts of aware population, there is decrease in mosquito population. As

we increased the value of ϵ from ϵ = 0.001 to ϵ = 0.01. This resulted in decrease

in the value of R0 from 1.3276 to 0.8499 and if the value of R0 is decreased below

unity, this indicates decline in disease transmission. This is clear from Figures 3.3

and 3.4.
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Figure 3.3: Simulation results for
vector population for ϵ = 0.001,

R0 = 1.3276 > 1.
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Figure 3.4: Simulation results for
vector population for ϵ = 0.01,

R0 = 0.8499 < 1.

Discussion on Usage of Insecticide

In the present model, we have also incorporated a factor of insecticide in the vec-

tor compartment to control the disease. It was observed that when we change

the value of parameter for insecticide i.e. u1 from 0.01 to 0.1, the value of R0

decreases from 1.3276 to 0.8376. This indicates that if the value of parameter for

insecticide is increased, then the value of R0 decreases below unity. This indicates

that increasing the control measure for mosquitoes, the disease transmission turns

from epidemic to die off in the long run. For another vector borne disease [1], the

value used for parameter for insecticide is in the range 0.2 to 0.7. We used a lesser

quantity u1 = 0.1, which still gives us R0 < 1. This implies that by spreading

awareness in the population, we can still control the disease by lesser amount of

insecticide thereby saving environment from detrimental effects. This is shown in

Figures 3.5 and 3.6.
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Figure 3.5: Simulation results for
vector population for u1 = 0.01,

R0 = 1.3276 > 1.
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Figure 3.6: Simulation results for
vector population for u1 = 0.1,

R0 = 0.8376 < 1.

3.2.4 Conclusion

This work analyses the impact of awareness programmes on the dynamics of yel-

low fever infection in humans. It is being assumed that the programmes by media

generate awareness implementing personal protection and control of vector pop-

ulation. Furthermore, the change in the behaviour of human population as a

result of these programmes results in the fabricating of a separate compartment

named aware class. This class not only protects themselves from infection through

mosquitoes but also makes effort in reducing mosquito population. In this work,

disease-free equilibrium and basic reproduction number has been calculated. Sta-

bility analysis at disease-free equilibrium has been performed. Disease-free equi-

librium was found to be stable if R0 < 1. Further, it was found that value of R0 is

affected by the rate of dissemination of awareness programmes. Moreover, it has

been observed that the rate at which aware population reduces mosquitoes also

affects the value of R0. In the model, insecticide is also used as a control measure

for yellow fever disease. It is found that lesser quantity of insecticide is sufficient

to control the infection in addition to awareness programmes.
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3.3 Model for Chikungunya Disease with Control Mea-

sures

Chikungunya is an alphavirus which affects humans by the bites of mosquito named

Aedes albopictus. The cycle starts with the bite of an infected mosquito. The

symptoms appear approximately after four days of incubation period and viremia

usually persists for approximately 7 days in infected individuals. If in this period,

a mosquito feeds on viremic host that can also get infected with chikungunya

virus. The symptoms appear in 2 to 4 days including high fever, rash and chronic

joint pain which can last for over a year [40]. The name of the virus has been

derived from Makonde word of Southern Tanzania which means that which bends,

as this results in bended posture because of multiple joint pains. The mortality

rate due to chikungunya fever is low but can occur in persons having other health

issues. After its reemergence after 20 years in various islands of Indian ocean,

the first confirmed case of chikungunya was reported in Reunion island of Indian

ocean in April 2005. This case was imported from Grande-Comore [45]. This

turned into an outbreak consisting of two epidemic waves, one of which died in

2005 and turned to epidemic in 2006 producing 2, 44, 000 estimated cases during

outbreak. After the outbreak of this infection in Reunion island in 2005, in which

one third of the total population got affected [40], the study of chikungunya was

taken seriously by researchers. In 2012, Dumont et al. has done compartmental

modeling by taking different classes for humans and vector while taking larvae

compartment for mosquitoes for the first time. It was shown in their work that

the value of R0 changes from < 1 in 2005 to R0 > 1 in 2006, which agreed with

the situation in island as disease dies out in 2005 and turned out to be epidemic

in 2006. The study was updated further by [41] by dividing mosquito population

into eggs, larvae and adults stages. A case study of chikungunya outbreak in Italy

has been studied by Poletti et al. in [42] in 2011 by a model taking into account

the dynamics of mosquito, incorporating the climate factors. The value of R0

was predicted to rise depending upon mosquito density. It was concluded that
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epidemic can be under control by interventions in time besides high transmission

capability of chikungunya virus. In a study, simulation was done by introduction

of one infective person in different parts of the United States at different times

of the years [43]. It was predicted that in August, if the chikungunya virus was

introduced, the peak was at 38%, while the same was at 30% if it is from August

to September. It was observed that changing time of introduction of infection

in simulation does not work for areas like Miami, where the temperature sup-

port mosquito growth. Further, a study conducted in Europe revealed that the

mosquito population can be reduced by the use of chemical larvicide, use of sprays

like Deltamethrin, eliminating standing water in tires, buckets or destroying other

breeding sites of mosquitoes [44]. But the use of adulticide like Deltamethrin and

Fenirothion have been seem to harm the environment ([125], [126]) and in many ar-

eas the Aedes mosquito developed resistance to this adulticide. Further, to control

the disease, pulse vaccination to susceptible population was studied by [127]. The

same has been studied for different diseases [128–135]. There are many candidates

in different stages of trial, but there is no vaccine available commercially [136–

138]. Although there are some vaccines that have been tested on humans. Various

trials for vaccine have been conducted by US Army Medical Research Institute.

It was seen that in 85% of cases, neutralizing antibody titers were obtained after

one year and there was seroconversation rate of 95% on day 28 [139]. But because

of the emergence of threat of biological weapons in 2003, the trials for phase 3 of

candidate vaccine was postponed [140]. One of the candidate, V LA1553, a live-

attenuated vaccine candidate for active immunisation and prevention of disease

caused by chikungunya virus seems to be promising vaccine [141].The effective

vaccination depends on various factors like availability of vaccine, accessibility of

health care facilities, belief system in humans for vaccination and proportion of

population that can be vaccinated due to various constraints. In the absence of

specific treatment, it can be controlled by mosquito control tools and symptomatic

care of patients. So, the important way is to take the preventive measures like
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reducing interaction with mosquitoes, controlling mosquito population. Insect re-

pellent can also be used to reduce the interaction of mosquito to human and they

are easily available and can be used by anyone. All the above factors discussed

above if taken together can help reduce the amplitude of the epidemic curve.

Inspired from the discussion done, the target of this work is to control the spread

of chikungunya by incorporating different control strategies. Here, in the present

work, we have taken insecticide to control the vector population. It can be spray of

chemical adulticide to reduce adult mosquito population or localized treatment of

larvicides targeting the breeding sites of larvae before they mature. But chemical

insecticide if used alone in massive quantity can harm the environment. Also, over

time,aedes mosquitoes develop resistance to chemical insecticides. This necessi-

tates us to study and to explore new control tools. Therefore, with the target to

use it in minimum quantity, we are using insect repellent as temporary protection

on humans to reduce the contact rate to control the disease. We take this into

account as it is easy to handle and has no bad impact on environment. Further,

vaccinating the susceptible population can also help in reduction of infection. So,

total three types of controls have been considered in the model namely reducing the

contact between humans and mosquitoes by application of insect repellent by hu-

mans, application of insecticides and vaccinating the susceptible population. Till

now, there is no mathematical model incorporating these three control measures

affecting both human and mosquito population in case of chikungunya virus.

3.3.1 Mathematical Model

Model formulation for chikungunya disease is done by making compartments of

the population and then fabricating them in the form of differential equations.

3.3.1.1 Model Formulation

In this mathematical model for chikungunya virus, different compartments for

human and mosquito population are considered. The human (host) population is
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categorised into four epidemiological states, that is, susceptible, protected, infected

and temporary immune class or recovered class denoted by SH(t), PH(t), IH(t)

and RH(t) respectively. The vector population is split into two states namely

susceptible SV (t) and infected IV (t). There is no recovered class for mosquitoes

because if they get infected they never recover.

Here, it is assumed that the probability of a susceptible human to get infected from

an infectious mosquito depends upon the density of human hosts and infectious

mosquitoes [142].

It is being assumed that mosquito and human populations are mixed well and

chikungunya is transmitted between humans and mosquitoes. Also, no vertical

transmission in case of virus is assumed in the model. As the interaction between

humans and mosquitoes can be reduced by the application of insect repellent. In

our model, a protected class having temporary protection is taken by applying

insect repellent. Here, bH being the birth rate and µH being the natural mortality

rate. The susceptible mosquitoes bite infected human beings at a rate a. Here, b

is the proportion of the bites leading to infection. c being the probability that the

vector becomes infected. The term γ (0 ≤ γ ≤ 1) is the proportion of susceptible

humans under temporary protection taken from mosquitoes per day. Since, the

protection wanes off with time, therefore the individuals move from protected class

to susceptible class SH(t) at rate δ. ω is the effective vaccination rate after which

susceptible individuals goes to recovered/immune class. As the naive population

travel to endemic areas with sprays and repellents to avoid mosquitoes. This gives

them temporary protection for few hours after which it wanes off and we assume

this protection reduces the likelihood of infection by a factor ϵ. Here ϵ = 0, if

the protection is effective and ϵ = 1, if the protection is ineffective. θ is the rate

of infected humans acquiring temporary immunity. The humans in infected class

have disease death rate p. bV and µV is the mosquito birth rate and death rates

respectively. Further, q is the additional death rate of mosquitoes due to use of

insecticide. Here, the term abSHIV
NV

denotes the interaction of human host (SH)

and infected infected mosquito (IV ). The term acSV IH
NH

denotes the interaction of
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susceptible vector SV with infected humans (IH). With the assumptions discussed

above, the model is constructed as:

ṠH = bHNH − ab
SHIV
NV

− γSH + δPH − (µH + ω)SH ,

ṖH = γSH − ϵab
PHIV
NV

− (δ + µH)PH ,

˙IH = ab
SHIV
NV

+ ϵab
PHIV
NV

− (θ + p+ µH)IH ,

ṘH = θIH − µHRH + ωSH ,

ṠV = bVNV − ac
SV IH
NH

− (µV + q)SV ,

˙IV = ac
SV IH
NH

− (µV + q)IV .

(3.4)

along with the initial conditions SH(0) > 0, PH(0) > 0, IH(0) > 0,

RH(0) > 0, SV (0) > 0, IV (0) > 0.

Here,

NH(t) = SH(t) + PH(t) + IH(t) +RH(t),

NV (t) = SV (t) + IV (t).

Upon adding the equations (3.4) in the model, we get,

ṄH = bHNH − µHNH − pIH ,

ṄV = bVNV − µVNV − qNV .
(3.5)

It is quite clear from first equation in (3.5), that when disease is not present in the

society (p = 0), population NH grows exponentially if bH > µH , NH is constant

if bH = µH , NH decreases if bH < µH .

Considering the second equation in (3.5), NV = c1e
(bV −µV −q)t, which implies

that NV is constant if bV = µV − q, NV decreases if bV < µV − q and it

grows exponentially if bV > µV − q.
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3.3.1.2 Description of Parameters in the Model

Table 3.3: Table for Description of Parameters for Chikungunya Model.

Parameters Description Units

a Mosquito biting rate day−1

b Proportion of bites causing infection in mosquitoes -

c Probability of mosquito getting infected -

θ Rate at which infected individuals acquire temporary immunity day−1

δ Rate at which susceptible humans move from PH to SH day−1

µH Natural death rate of humans day−1

µV Natural death rate for mosquitoes day−1

ω Effective vaccination rate of susceptible humans day−1

bH Natural birth rate of humans day−1

bV Natural birth rate of mosquitoes day−1

p disease induced death rate day−1

NH Total human population -

NV Total mosquito population -

γ Proportion of individuals under temporary protection day−1

q Mortality rate due to insecticide day−1

ϵ 0 if the protection is effective and 1 if the protection is ineffective -

3.3.2 Dynamical Behaviour of the Model

We will analyse the model given by (3.4) firstly by making it dimensionless and

then we will perform the stability analysis at equilibrium states of the system

under study.

3.3.2.1 Positivity and Boundedness of the Model

Before moving further, we assume that parameters taken in the model are taken to

be non-negative, as the interaction in the model is between mosquito and humans.

Φ = {(SH , PH , IH , RH , SV , IV ) ∈ R6
+ : SH ≥ 0, PH ≥ 0, IH ≥ 0, RH ≥ 0, SV ≥ 0, IV ≥ 0}.

Assuming all the initial conditions in Φ there is a unique solution lying in Φ for

t ≥ 0.
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Figure 3.7: Flow diagram of the system

Theorem 3.3. With the initial conditions of the system formulated to lie in Φ,

where

Φ = {(SH , PH , IH , RH , SV , IV ) ∈ R6
+ : SH ≥ 0, PH ≥ 0, IH ≥ 0, RH ≥ 0, SV ≥ 0, IV ≥ 0}.

there exists a unique solution of the system of equations (3.4) and this solution lies

in Φ for t ≥ 0.

Proof. Assuming the right side of system to be continuous and has partial deriva-

tives that too are continuous in the region Φ, we can prove that the set of equa-

tions in the system has a unique solution for t ≥ 0. Thereby, it will be sufficient

to demonstrate that SH ≥ 0, PH ≥ 0, IH ≥ 0, RH ≥ 0, SV ≥ 0 and IV ≥ 0 for all

time t. We will apply the same approach as applied in [74], [91] and [92].
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Let T = sup{t > 0 : SH ≥ 0, PH ≥ 0, IH ≥ 0, RH ≥ 0, SV ≥ 0, IV ≥ 0}.

Therefore T > 0. Considering first equation in (3.4) of the model, we have,

ṠH = bHNH − ab
SHIV
NV

− γSH + δPH − µHSH − ωSH . (3.6)

We can rewrite it as

ṠH + [f(t)+ (γ+ω+µH)]SH = F (t), where f(t) = abIV
NV

and F (t) = bHNH + δPH .

d
dt
(SH(t)[exp (γ + ω + µH)t+

∫ t

0
f(η)dη]) = F (t) exp[(γ + ω + µH)t+

∫ t

0
f(η)dη].

On integrating, the above equation becomes

SH(T )[exp (γ + ω + µH)T +
∫ T

0
f(η)dη]−SH(0) =

∫ T

0
[F (ξ) exp[(γ + ω + µh)ξ +

∫ ξ

0
f(η)dη]dξ.

Therefore,

SH(T ) = SH(0) exp[−((γ + ω + µH)T +

∫ T

0

f(η)dη)]

+ exp[−((γ + ω + µH)T +

∫ T

0

f(η)dη)]×
∫ T

0

F (ξ) exp[(γ + ω + µh)ξ +

∫ ξ

0

f(η)dη]dξ.

Hence, SH(T ) being sum of positive quantities is non-negative.

Therefore, SH(T ) ≥ 0. Similarly, we can show that PH ≥ 0, IH ≥ 0, RH ≥ 0,

SV ≥ 0 and IV ≥ 0 for all t ≥ 0.

3.3.2.2 Dimensionless Transformation

Here, it is assumed that the total human population and vector population does

not vary significantly in the time interval taken under study. In a way, the pop-

ulation of both the species under study is assumed to be relative constant ([74]).

Based on this it is interpreted that we can normalize the equations in the model
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by scaling the population of each compartment by their respective species popu-

lation. The transformations are given as under:

sH = SH

NH
, pH = PH

NH
, iH = IH

NH
, rH = RH

NH
, sv =

SV

NV
, iv =

IV
NV

.

On simplification, the system of equations reduces to

˙sH = bH − absHiv − γsH + δpH − µHsH − ωsH ,

˙pH = γsH − ϵabpHiv − (δ + µH)pH ,

˙iH = absHiv + ϵabpHiv − (θ + p+ µH)iH ,

˙rH = θiH − µHrH + ωsH ,

ṡv = bv − acsviH − (µv + q)sv,

i̇v = acsviH − (µv + q)iv.

(3.7)

3.3.2.3 Steady States

All the steady states of the system given by (3.7) are calculated by equating to

zero the right side of the equations. The two equilibrium points of the system are

evaluated as:

� Infection-free equilibrium point is E0(s0H , p
0
H , 0, r

0
H , s

0
v, 0)

where

s0H = DbH
B

, p0H = bHγ
B

, r0H = DωbH
BµH

, s0v =
bv
A

� Endemic equilibrium is E∗(s∗H , p
∗
H , i

∗
H , r

∗
H , s

∗
v, i

∗
v)

where

s∗H = (ϵa2bc+DE)EbH
M

, p∗H = γE2bH
M

, i∗H = B
ac
, r∗H = Bθ

acµH
− N

µH
,

s∗v =
bv
E
, i∗v =

ac
E
.

Where

A = µv + q, B = ac+ bv − A,D = δ + µH , E = ac+ bv,

L = ω+ µH + γ,M = (a2bc+LE)(ϵa2bc+DE)− δγE2, N = ω(ϵa2bc+DE)EbH
M

.
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3.3.2.4 Stability Analysis

The local stability analysis of the model is done at both the equilibria along with

the evaluation of R0.

3.3.2.5 Stability Analysis at Disease-free Equilibrium E0

Firstly, we will calculate R0 by the approach by Van den Driessche [73]. Consid-

ering only those terms in which infection is in progress.

Infectious subsystem is taken as:

˙pH = γsH − ϵabpHiv − (δ + µH)pH ,

˙iH = absHiv + ϵabpHiv − (θ + p+ µH)iH ,

i̇v = acsviH − (µv + q)iv.

This is segregated in two matrices T and
∑

where

T =


−ϵabiv 0 −ϵabpH

ϵabiv 0 ϵabsH + ϵabpH

0 acsV 0


and

∑
=


−(δ + µH) 0 0

0 −(θ + p+ µH) 0

0 0 −(µv + q)


Here, the matrix T is transmission matrix and is associated with number of sec-

ondary infections and Σ is transition matrix associated with rate of progress of

infection. After calculating Σ−1 and K = −TΣ−1.

K =


−ϵabiv 0 −ϵabpH

A

ϵabiv
D

0 absH+ϵabpH
A

0 acsv
m

0


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This matrix K is calculated at disease-free equilibrium and then the dominant

eigenvalue of this K = −TΣ−1 matrix will be the value of R0.

Therefore,

R0 =

√
a2bcbvbH(D + ϵγ)

A2Bm

where m = (θ + p+ µH).

Theorem 3.4. The disease-free equilibrium E0(s0H , p
0
H , 0, r

0
H , s

0
v, 0) is locally asymp-

totically stable if R0 < 1.

Proof. The local stability at DFE is investigated from Jacobian matrix of the

system.

J0 =



−abiv − L γ abiv ω 0 0

δ −ϵabiv −D ϵabiv 0 0 0

0 0 −m θ −acsv acsv

0 0 0 −µH 0 0

0 0 0 0 −aciH aciH

−absH −ϵabpH absH + ϵabpH 0 0 −A


where L = ω + µH + γ and D = δ + µH .

Solving the above matrix to find the eigenvalues of the Jacobian at DFE, we get,

λ1 = −A, λ2 = −(µv + q) which are negative definite.

Other eigenvalues are given by:

λ2 + (L+D)λ+ (LD − γδ) = 0,

λ2 + (A+m)λ+ Am− a2bcs0v(s
0
H + ϵp0H) = 0.

(3.8)

Firstly, taking first equation of (3.8), we get λ3 =
−(L+D)−

√
disc

2
and λ4 =

−(L+D)+
√
disc

2
.

Here, disc = (L−D)2 + 4γδ, which is positive definite. λ3 is negative definite.

λ4 is negative if (µH + ω)(µH + δ) + µHγ > 0 which is true.

Now taking second equation of (3.8), we get,

λ5 =
−(A+m)−

√
Disc

2
, λ6 =

−(A+m)+
√
Disc

2
.

Here, Disc > 0 if (A−m)2 + 4a2bcs0v(s
0
H + ϵp0H) > 0.
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λ5 is negative definite and λ6 is negative if

(µv + q)(θ + p+ µH) >
a2bcbvbH(D+ϵγ)

AB
which implies,

a2bcbvbH(D + ϵγ)

AB(µv + q)(θ + p+ µH)
< 1

a2bcbvbH(D + ϵγ)

A2Bm
< 1,

i.e.

R2
0 < 1 ⇒ R0 < 1.

Therefore, disease-free equilibrium is stable if R0 < 1.

3.3.2.6 Stability Analysis at E∗

In this section, local stability analysis at the endemic equilibrium is discussed.

The local stability conditions at endemic equilibrium is done by calculating the

eigenvalues of the system. The Jacobian of the system is

J1 =



−l1 γ l3 ω 0 0

δ −l2 l4 0 0 0

0 0 −l8 θ −l9 l10

0 0 0 −l12 0 0

0 0 0 0 −l7 l11

−l13 −l5 l6 0 0 −A


where

l1 = abi∗v + L, l2 = ϵabi∗v +D, l3 = abi∗v

l4 = ϵabi∗v, l5 = ϵabp∗H , l6 = abs∗H + ϵabp∗H

l7 = aci∗H + A, l8 = m, l9 = acs∗v, l10 = acs∗v
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l11 = aci∗H , l12 = µH , l13 = abs∗H

On solving this, we get characteristic equation for endemic equilibrium

det(J1 − λI6) = 0

where I6 is 6×6 identity matrix. To investigate the stability at E∗, we will use the

Routh-Hurwitz criteria. This criteria is applied on the characteristic polynomial

to check the stability conditions. The solved characteristic equations is given below

p6(λ) = λ6 + a1λ
5 + a2λ

4 + a3λ
3 + a4λ

2 + a5λ+ a6 (3.9)

where a′is are given below

a1 = A− l1 − l2 − l7 − l8 − l12

a2 = (l1 + l2)(l7 + l8 + l12 − A)− γδ − Al7 + (l8 + l12)(l7 − A) + l8l12 − l6l10

a3 = δγ(l7 + l8 + l12 −A) + (l1 + l2)[Al7 + (A− l7)(l8 + l12) + l8l12] + l7A(l8 + l12) +

l8l12(A− l7)− l10(l4l5 − l4l6 + l3l13− l2l6) + l6(l7l10 + l10l12 + l9l11)

a4 = γδ(Al7+(A− l7)(l8+ l12)+ l8l12)− (l1+ l2)[Al7+(l8+ l12)+ l8l12(A− l7)] −

Al7l8l12 −Rl10 + l6(l9l11l12 − l7l10l12) + (l10l7 + l9l10l11l12)(l4l5 − l1l6 − l2l6 + l3l13)

a5 = Al7l8l12(l1 + l2)− γδ[Al7(l8 + l12) + l8l12(A− l7)] + R(l7l10 + l10l12 + l9l11) +

(l9l11l12 − l7l10l12)(l4l5 − l1l6 − l2l6 + l3l13)

a6 = Al7l8l12γδ +R(l9l11l12 − l7l10l12)

R = l1l2l6 − l1l4l5 − δγl6 + l3l5δ + γl4l13 − l2l3l13.

By Routh-Hurwitz criteria all the eigenvalues of the Jacobian J1 are negative or

have negative real parts iff the Hurwitz determinants Hi are all positive. Which

implies that the endemic equilibrium is locally asymptotically stable iff

H1 = a1 > 0, H2 = a1a2 − a3 > 0,

H3 = a1a2a3 + a1a5 − a21a4 − a23 > 0,

H4 = (a3a4 − a2a5)(a1a2 − a3)− (a1a4 − a5)
2 > 0,

H5 = a5H4 > 0, H6 = a6H5 > 0.
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3.3.3 Numerical Simulation and Discussion

Using initial conditions SH(0) = 1000, PH(0) = 20, IH(0) = 10, RH(0) = 10,

SV (0) = 140, IV (0) = 20 and parameters values: bH = 0.1, a = 5, b = 0.1, θ =

0.2, δ = 0.001, µH = 0.000375, ϵ = 0, ω = 0.1, p = 0.1, c = 0.1, bV = 0.01, µV =

0.1, q = 0.01. To check the sensitivity of model outcomes for different parameters,

sensitivity analysis is done. We modelled different scenarios by varying different

parameters and check the value of basic reproduction number.

Discussion on Mosquito Bites

Table 3.4: Table for Parameters for Model for the Disease Chikungunya.

Parameters Value Source

a [1,12] [95], [1], [40]

b 0.1 assumed

c 0.6 [46]

θ 0.2 assumed

δ 0.001 assumed

ω 0.1 assumed

bH 0.1 assumed

bV 0.01 assumed

µH 0.000375 [1]

µV 0.1 [46]

p 0.1 assumed

γ 0.5 assumed

q 0.017 assumed

Firstly, by changing the value of b, the proportion of mosquito bites causing in-

fection, the variation in the Figures 3.8 and 3.9 can be seen. The values of b were

varied from 0.1 to 0.9 which resulted in change in the value of R0 from 0.6274 < 1

to 1.8821 > 1. It means that if the proportion of mosquito bites causing infection

is decreased, then infection can be decreased.

Discussion on Insecticide

To check the system is sensitive to variations in parameter relating to mortality

rate of mosquitoes due to insecticide. We varied that parameter q from 0.001 to

0.009 that resulted in change of R0 from 3.8455 > 1 to 0.7698 < 1. As the value
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Figure 3.8: Simulation results for
infective state of humans for b =

0.1, R0 = 0.6274 < 1.
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Figure 3.9: Simulation results for
infective state of humans for b =

0.9, R0 = 1.8821 > 1.

of q increases, infection in mosquitoes also reduces as shown in Figures 3.10 and

3.11, which in turn will reduce the transmission in humans. Value of R0 indicate

that as the value of q increases, disease will turn from epidemic state to dying off

state.
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Figure 3.10: Simulation results
for infective state of humans for

q = 0.001, R0 = 3.8455 > 1.
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Figure 3.11: Simulation results
for infective state of humans for

q = 0.009, R0 = 0.7698 < 1.

Discussion on Vaccination Rate

Another parameter involved in the model to control the disease is ω, that is, effec-

tive vaccination rate. As the value of ω is varied from 0.1 to 0.5, the peak of the

curve of infection in humans decreases sharply as seen in Figures 3.12 and 3.13

indicating to be a successful measure of prevention.
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Figure 3.12: Simulation results
for infective state of humans for

ω = 0.1.
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Figure 3.13: Simulation results
for infective state of humans for

ω = 0.5.

Discussion on Insect Repellent

With the usage of insect repellent, the contact between mosquitoes and humans

can reduced. This is well illustrated in the numerical simulation shown in Figures

3.14 and 3.15 when we changed the values of parameter a, that is, mosquito biting

rate. The values of a were varied from 5 to 12 and this resulted in value of R0 to

change from 0.6274 < 1 to 1.0178 > 1. Figures 3.16 and 3.17 shows the graphs
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Figure 3.14: Simulation results
for infected human for a = 5, R0 =

0.6274 < 1.
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Figure 3.15: Simulation re-
sults for infected human for a =

12, R0 = 1.0178 > 1.

of human population in disease-free state and endemic state. When the set of

parameters a and b are varied from a = 1, b = 0.1 to a = 8, b = 0.7, the value

of basic reproduction number R0 changes from 0.3679 to 3.5902. It is quite clear

that R0 is very much affected by the factors a and b.

Discussion on Temporary Protection

Another control parameter introduced is γ, that is, proportion of individuals under
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Figure 3.16: Simulation results
for disease-free state when a =

1, b = 0.1.
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Figure 3.17: Simulation results
for endemic state when a = 8, b =

0.7.

temporary protection of insect repellent. We changed the value of γ to check its

sensitivity through simulation and found that on changing its value from 0.1 to 0.9,

R0 changes its value from 0.6274 < 1 to 1.0419 > 1. This can be interpreted that

by the application of insect repellent, lesser mosquitoes will bite the person and

hence chances of infection decreases. Since it is a circle of humans and mosquitoes

for disease progression, this means that infection in humans and in vectors will

decrease as is shown in Figures 3.18 and 3.19.
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Figure 3.18: Simulation results
for infective state of humans for

γ = 0.9.
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Figure 3.19: Simulation results
for infective state of humans for

γ = 0.1.

Discussion on Value of Insecticide

In [1], the authors used the range of the parameter q (which represents the effect

of insecticide) from 0.2 to 0.7. However, we used q to be 0.01 which is a much

lower value than the range used in [1]. We observed that a less effective insecticide

(q = 0.01) is sufficient to kill the mosquito population in 50 days (see Figure 3.20)
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because the mosquito human system is already considered to be under the effect of

repellent also. Since, the use of insecticide is only an added control, less effective

one would be sufficient. As we increase the value of q to be 0.2 to 0.7, the vector

population dies off quickly (see Figures 3.21 and 3.22). The variation in value of
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Figure 3.20: Simulation results
for infected vector for a = 5, q =

0.01.
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Figure 3.21: Simulation results
for infected vector for a = 5, q =

0.2.

q is shown in the Figure 3.20, 3.21 and 3.22), which clearly interprets the effect of

insecticide on the mosquito species. Further, this decrease in infection in infected

mosquitoes decreases the infection in human population, thereby becoming the

reason for decrease in chikungunya circle. The greater the value of insecticide, the

greater is the mortality rate but the concern about the environment makes us turn

towards safer alternative.
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Figure 3.22: Simulation results for infected vector for a = 5, q = 0.7.
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3.3.4 Conclusion

A mathematical model for chikungunya virus has been proposed and analysed.

To control the disease transmission, various control measures are incorporated to

eradicate the disease in both human and as well as mosquito population. This is

possible only if the vector population is eradicated or disease can be controlled

in human population. Further, to reduce the mosquito population, one of the

most important intervention is reducing mosquitoes by using chemical insecti-

cides. But keeping in view, the fatal consequences of these on environment, some

other control measures are considered. Among the control strategies for humans,

a preventive measure in the form of mosquito repellent creams/sprays are incor-

porated along with vaccination. The system is analysed for its equilibrium points

for which further the stability analysis is performed using Routh-Hurwitz criteria.

The threshold value, basic reproduction number is evaluated to see the progression

of the disease. The impact of various control strategies on the value of R0 have

been studied. All these factors if taken together in right proportion and at right

time can reduce impact of epidemic and hence R0. It is concluded from simulation

results that usage of insecticide can be reduced to a large extent if insect repellent

sprays/creams and vaccination are used in support of insecticide. Hence, the en-

vironment can be saved to a great extent. The efficacy of these control measures

were analysed using numerical simulation through MATLAB.
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Chapter 4

Modelling the Effects of Control

Strategies on Co-infection: A

Mathematical Model on

Rotavirus and Malaria

4.1 Introduction

Various infectious agents can infect a host and that too with different strains. The

control/treatment of one affects the disease dynamics of other. Here, we have

studied the effect of control measures on co-infection of two infectious diseases by

taking an example of rotavirus and malaria.

Malaria and rotavirus co-infection is the cause of big burden of public health

worldwide. The co-infection with malaria is typically difficult to understand and

diagnose as the main species responsible for it is Plasmodium falciparum which

is unicellular protozoan parasite infecting humans and it is the lethal species of

Plasmodium causing malaria in humans. The main mosquito species responsible

for malaria are Plasmodium ovale, Plasmodium vivax, Plasmodium malariae and

Plasmodium falciparum but P. falciparum is most fatal to human kind. P. falci-

parum can cause asymptomatic infections, chronic and sometimes repeated acute
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infection. Generally, an individual acquires a degree of immunity but if a febrile

individual is co-infected with any other potential pathogen, it is hard to diagnose

that P. falciparum is the sole cause of illness. It is the most important disease in

the tropical regions with around 40% of world total population exposed to malaria

in around 100 countries, it is a major health problem globally [143]. Its symptoms

include severe headache, vomiting, nausea, fever, back pains, sweating and chills

([144], [145]). Malaria is responsible for about 70, 000 − 2.7 million causalities

every year out of which 75% are African children with age under five years [72]. It

is responsible for 30% of OPD, 19% of admissions to hospitals for various diseases

and around 20% of mortality in children having age less than five years as seen in

Kenya ([146], [147]). Prevention of malaria can be done through insect repellents,

mosquito bed nets, draining of dirty water and spray of chemical insecticides etc.

Many researchers have done a lot of work in the field of controlling the disease

with different control measures.

On the other hand, the other infectious disease under study is rotavirus which is

the most prevalent pathogen accountable for diarrhea among children [148]. It is

transferred through fecal-oral route when person gets in contact with contaminated

water, surface or object. It can also be transferred by respiratory route. Rotavirus

causes severe infection of gastrointestinal tract and diarrhea in young children. It

is the second main cause of mortality for children under five years [149]. Around

the world, diarrhea claims 760, 000 deaths in children every year. Over 2.5% of

admissions to hospitals are because of rotavirus. It has been diagnosed clinically

that 38% of the children gets secured against further rotavirus infection after first

natural infection [150]. It has been observed that various factors associated with

rotavirus infection are seasonality, breast feeding, hygiene, sanitation etc. [151].

Water and sanitation improvements, management of oral rehydration solution and

vaccines were suggested as control measures by Mulholland et al. [152].

It was further observed that in Northern Ghana, the main culprit of acute di-

arrhea is rotavirus. It was supported by a study conducted at Bulpeila health

centre, that 15% of children with uncomplicated malaria has diarrhea. In Ghana,
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it was found that 11.8% of the total number children have co-infection from P.

falciparum and enteropathogens and in more than half of the infected persons

rotavirus was common enteropathogen [153]. The study was further taken ahead

by co-infection model for rotavirus and malaria by [63]. The work was progressed

by another co-infection model for rotavirus and malaria developed by authors of

[154]. In the work, effect of vaccination for rotavirus disease on co-infection dy-

namics was explored. It was further done by making SIR model for host and

for vector (mosquito), there is SI model for malaria disease with control measure

as vaccination only for rotavirus. The effect of rotavirus vaccination on malaria

and rotavirus co-infection was explored. It was found that rotavirus only model

was globally asymptotically stable where co-infection model exhibits backward

bifurcation. Further, it was concluded that rotavirus vaccination helps reduce co-

infection.

A mathematical model on co-infection of malaria and cholera has been formu-

lated and analyzed by [155]. The model was exhibiting backward bifurcation. It

was concluded that malaria infection can increase the risk of cholera infection but

cholera infection does not accelerate risk of malaria. The effect of treatment of

malaria on the infection of cholera has also been elaborately discussed. The work

on co-infections of diseases has been taken to next level by researchers in [156] in

which the conditions of optimal control for HIV-malaria are analyzed. Analysis of

sub-models shows that malaria only model exhibits backward bifurcation. It was

concluded that for optimal control of HIV-malaria, preventive control measures

are the best form of strategy. To minimize the infection and cost associated with

control measures, a dynamic model for the co-infection of dysentery and measles

has been analyzed by Berhe et al. [157]. The controls like vaccination, treatment

and sanitation of surroundings have been included. Further, the cost analysis has

been done. Taking the work to next level, Tilahun et al. developed a mathe-

matical model for Typhoid-Pneumonia co-infection [158]. Sensitivity index and

bifurcation analysis has been done to check the most sensitive parameters. It was

concluded that Pneumonia treatment cost least with prevention of typhoid fever.
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The necessary conditions for optimal control have been also derived along with

an optimality system. Cancer and hepatitis has been studied by authors in [159].

Malaria, rotavirus models have been studied individually ([49], [143] and [151])

and some researchers have worked to calculate the key factor R0. From the previ-

ous studies, it is quite clear that there are models that studied malaria-rotavirus

co-infection [154] in which treatment is given only to rotavirus infected class but

still there is scope in the field. Further, in the work done by authors in [63], sta-

bility analysis of malaria-rotavirus co-infection model is done.

The model developed in the present study represents co-infection dynamics of ro-

tavirus and malaria disease that is complete enough to consider all the possible

control measures not only on humans but also for mosquitoes responsible for the

spread of malaria. Here, control measures are taken for rotavirus infected human

population, malaria infected human population, co-infected human population and

insecticide is taken as control measure for mosquito population. Taken together,

these control measures gives a picture that is likely to produce better results of

co-infection control.

4.2 Formulation and Description of the model

We propose a model for rotavirus and malaria co-infection with various control

measures. Since, we are dealing with vector-host interaction, there are separate

compartments for host and vector in the formulation of model. In the proposed

model, it is being assumed that a person can recover from malaria disease only,

rotavirus disease only and also from the co-infection once co-infected with the

diseases. It is also being assumed that all rotavirus recovered humans, malaria re-

covered humans and humans recovered from both the diseases are not permanently

recovered. Therefore, they are susceptible to the diseases again. The total human

population (Nh) is divided into different compartments namely susceptible class

(Sh), class infected with rotavirus only (Ir), class infected with malaria only (Im),

class infected with both rotavirus and malaria (Imr), only malaria recovered class
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(Rm), only rotavirus recovered class (Rr), malaria-rotavirus recovered or removed

class (Rmr). Similarly, the total vector population (Nv) is split in two compart-

ments, that is, susceptible vector (Sv) and infected vector (Iv). In the model, A

is the recruitment of susceptible human population and B is recruitment of sus-

ceptible mosquito population. It is being assumed that susceptible humans gets

infected with malaria after the bite of malaria infected mosquito at biting rate a

per day. So, susceptible person gets infection of malaria with a force λm = abIv
Nh

.

Malaria infected individuals (Im) recover naturally at a rate ηm and by treatment

t1. Malaria infected population gets reduced by disease death rate α1 and natural

death µh. Further, malaria recovered population become susceptible again at a

rate β. Again, malaria is transmitted to susceptible vector population after com-

ing in contact with malaria infected individual through biting. So, a susceptible

mosquito gets infected at a rate λv =
ac(Im+θ1Imr)

Nv
. Mosquito population is reduced

naturally at rate µv and by pesticide at a rate q. It is being assumed that there

are no disease deaths in mosquitoes and also they do not recover from malaria

once infected. So, there is no recovered compartment for mosquitoes.

Susceptible humans gets infected with rotavirus at a rate λr = r(Ir+θ2Imr)
Nh

after

coming in contact with rotavirus infectious human. Here, r is contact rate of sus-

ceptible population with rotavirus infected humans. Rotavirus infected population

is diminished by natural recovery rate ηr and through treatment at rate t2. It is

also dwindled by disease death with rate α2 and natural death rate µh. Here θ2

models that humans co-infected with malaria-rotavirus both are more infectious

than only-rotavirus infected [160]. Malaria infected individuals gets infected with

rotavirus at rate δλr and gets transferred to co-infected compartment. The pa-

rameter δ > 1 is for increased susceptibility of individual getting infected with

rotavirus than those who already have malaria. According to the authors in [161],

there are chances of co-infection as malaria causes immunosuppression especially in

young children. In the same way, humans having rotavirus infection gets infected

with malaria at rate ξλm shifting the individual to co-infected compartment Imr.

Again, ξ > 1 accounts for increased susceptibility of malaria infection in human
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having weak immune system due to rotavirus. Co-infected humans gets recovery

from rotavirus at rate αr and gets transferred to malaria infected class. Similarly,

co-infected individuals recover from malaria and gets transferred to rotavirus-only

infected compartment at rate αm.

4.2.1 Model Equations

The model describes malaria-rotavirus co-infection with treatments for both malaria

and rotavirus as control measures for humans and usage of insecticide for vector

population to control malaria. The model equations are given as:

˙Sh(t) = A− (λm + λr + µh)Sh + βRm + βRr + βRmr,

˙Im(t) = λmSh + αrImr − (δλr + ηm + t1 + α1 + µh)Im,

˙Ir(t) = λrSh + αmImr − (ξλm + ηr + t2 + α2 + µh)Ir,

˙Imr(t) = δλrIm + ξλmIr − (α3 + ηmr + αr + αm + t3 + µh)Imr,

˙Rm(t) = (ηm + t1)Im − (µh + β)Rm,

˙Rr(t) = (ηr + t2)Ir − (µh + β)Rr,

˙Rmr(t) = (ηmr + t3)Imr − (µh + β)Rrm,

˙Sv(t) = B − λvSv − (µv + q)Sv,

˙Iv(t) = λvSv − (µv + q)Iv.

(4.1)

With initial conditions as

Sh(0) > 0, Im(0) > 0, Ir(0) > 0, Imr(0) > 0, Sv(0) > 0, Iv(0) > 0.

Here, the total population Nh(t) and Nv(t) satisfies

Nh(t) = Sh(t)+Im(t)+Ir(t)+Imr(t)+Rm(t)+Rr(t)+Rmr(t), Nv(t) = Sv(t)+Iv(t).

Upon adding the equations in (4.1) separately for humans and vectors, we get

Ṅh = A− µhNh − α1Im − α2Ir − α3Imr,

Ṅv = B − µvNv − qNv.
(4.2)
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It is evident from equation (4.2), that when there is no disease in the population,

Ṅh ≤ A− µhNh.

After solving above equation and calculating as time approaches infinity, we have

Ω1 = {(Sh, Im, Ir, Imr, Rm, Rr, Rmr, Sv, Iv) ∈ R9
+ : 0 ≤ Nh ≤ A

µh

}.

Similarly, for vector population, in case of no death due to insecticide

Ṅv ≤ B − µvNv.

After solving this equation as time tends to infinity, we get,

Ω2 = {(Sv, Iv) ∈ R2
+ : 0 ≤ Nv ≤

B

µv

}.

The solution set of the system is bounded in Ω = Ω1 × Ω2.

4.2.2 Table for Description of Parameters for Co-infection Model

The terms in the model are presented in the tabular form:

Here,

λm =
abIv
Nh

λv =
ac(Im + θ1Imr)

Nv

λr =
r(Ir + θ2Imr)

Nh

.

4.3 Positivity and Boundedness of Solution of Co-infection

Model

To perform the analysis of the model given by (4.1), it is significant to see the

positivity and boundedness of the solutions of all the variables taken in the model.
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Table 4.1: Table for Description of Parameters for Co-infection Model.

Parameters Description

r Effective contact rate of susceptible human with rotavirus infected
human

β The rate at which recovered population becomes susceptible again

ηm Natural recovery rates from malaria

ηr Natural recovery rates from rotavirus

ηmr Natural recovery rates from malaria-rotavirus both

t1 Effective treatment control on malaria

t2 Effective treatment control on rotavirus

t3 Effective treatment control on malaria-rotavirus both

αr Rate at which co-infected human recover from rotavirus and trans-
fer to malaria infected

αm Rate at which co-infected human recover from malaria and transfer
to rotavirus infected

α1 Disease deaths due to malaria

α2 Disease deaths due to rotavirus

α3 Disease deaths due to malaria and rotavirus both

a The average bites by mosquito on humans

b Transmission rates per bite from malaria infected mosquito to sus-
ceptible human

c Transmission rates per bite from malaria infected human to sus-
ceptible vector

µh Natural mortality rates of humans

µv Natural mortality rates of vectors

q Mortality rate of mosquitoes due to insecticide

δ For increase in human susceptible to rotavirus infection who is
already malaria infected

ξ Models increase in human susceptible to infection with malaria
already infected with rotavirus

θ1 For increase in probability of infection in vector from co-infected
human [63]

θ2 Models that co-infected are more contagious than that infected
with only rotavirus [160]

∗Table for Parameters

As the model proposed is for dynamics of mosquito and human, it is being supposed

that all parameters taken in the model are positive.

Theorem 4.1. Given the initial conditions proposed in the system to lie in T ,

where

T = {(Sh, Im, Ir, Imr, Rm, Rr, Rmr, Sv, Iv) ∈ R9
+ : Sh ≥ 0, Im ≥ 0, Ir ≥ 0, Imr ≥ 0,

Rm ≥ 0, Rr ≥ 0, Rmr ≥ 0, Sv ≥ 0, Iv ≥ 0}.
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then there is a unique solution for system of equations given by (4.1) and solution

of above model remain in T for all time t > 0.

Proof. Taking first equation of co-infection model (4.1)

˙Sh(t) = A+ βRm + βRr + βRmr − (λm + λr + µh)Sh.

We will proceed by technique as applied by [162] and [163]. It is easy to prove that

Sh(t) > 0 for all t ≥ 0. Let us prove the contrary. If possible, let there exists a first

time t0 > 0 such that Sh(t0) = 0, S ′(t0) ≤ 0 and Sh, Im, Ir, Imr, Rm, Rr, Rmr, Sv, Iv >

0 for 0 < t ≤ t0. Then from first equation of co-infection model (4.1), we have,

Ṡh(t0) = A+ βRm(t0) + βRr(t0) + βRmr(t0)− (λm + λr + µh)Sh(t0),

Ṡh(t0) = A+ βRm(t0) + βRr(t0) + βRmr(t0)− 0,

Ṡh(t0) > 0.

Which is a contradiction. Therefore, there does not exist any time t0 such that

Sh(t0) = 0 and S ′(t0) ≤ 0. Hence, Sh(t) > 0 for all t > 0.

Similarly, considering the next equation of co-infection model (4.1), if possible, let

there exists a first time t0 > 0 such that

Im(t0) = 0, I ′m(t0) ≤ 0 and Sh, Im, Ir, Imr, Rm, Rr, Rmr, Sv, Iv > 0 for 0 < t ≤ t0.

˙Im(t0) = λmSh(t0) + αrImr(t0)− (δλr − ηm − t1 − α1 − µh)Im(t0),

˙Im(t0) = λmSh(t0) + αrImr(t0),

˙Im(t0) > 0.

Which is a contradiction. Therefore, there does not exist any time t0 such that

Im(t0) = 0 and I ′m(t0) ≤ 0. Hence, Im(t) > 0 for all t > 0. Similarly, by the same

argument, we can prove that other variables are also positive and this proves the

theorem.
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To proceed further, it is important to study and analyse the disease transmission

of both the diseases individually. For this, we will study the co-infection model

(4.1) in the absence of malaria disease (rotavirus model) and the same model in

the absence of rotavirus (malaria model) separately. The individual models for

both the diseases are given in the following section.

4.4 Models for Rotavirus and Malaria

We will study the individual models for rotavirus and malaria separately.

4.4.1 Model to Study Disease Dynamics of Rotavirus Only

By excluding terms related to malaria from the co-infection model given by (4.1),

the single rotavirus-only model is given by

˙Sh(t) = A− λrSh − µhSh + βRr,

˙Ir(t) = λrSh − ηrIr − t2Ir − α2Ir − µhIr,

˙Rr(t) = ηrIr + t2Ir − µhRr − βRr.

(4.3)

4.4.2 Model to Study Disease Dynamics of Malaria Only

Leaving out the terms related to roatavirus in the co-infection model given by

(4.1), we get malaria-only model

˙Sh(t) = A− λmSh − µhSh + βRm,

˙Im(t) = λmSh − ηmIm − t1Im − α1Im − µhIm,

˙Rm(t) = ηmIm + t1Im − µhRm − βRm,

˙Sv(t) = B − λvSv − (µv + q)Sv,

˙Iv(t) = λvSv − (µv + q)Iv.

(4.4)
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In the upcoming section, the study of the main model given by (4.1) will be

investigated by performing analysis of the two models given by equations (4.3)

and (4.4).

4.4.3 Analysis of Individual Models

Here, we analyse the individual models by calculating their disease-free equilibrium

points, basic reproduction numbers and stability at these points.

4.4.3.1 Analysis of the Model Considering Rotavirus Disease Only

First, we will start by calculating infection-free equilibrium of model (4.3) for ro-

tavirus disease. Disease-free equilibrium of model dealing with rotavirus disease

only is given by E0r =
(

A
µh
, 0, 0

)
.

4.4.3.2 Basic Reproduction Number

The stability of disease-free equilibrium point of rotavirus-only model is checked

by basic reproduction number. We apply the method given by Driessche [164].

We separate the transition terms and transmission terms from the infected com-

partment. Here, all the new infections are taken in the matrix named F and

all other transitions are taken in the matrix named V . Let F = [r] and V =

[−(ηr + t2 + µh + α2)]. Then we calculate the matrix FV −1. The spectral radius

of the matrix FV −1 is denoted by R0. It is given by

R0 = ρ(FV −1).

R0r =
r

ηr + t2 + µh + α2

(4.5)

86



Chapter 4. Co-infection of Rotavirus and Malaria

Here, R0r < 1 implies that r < ηr + t2 + µh + α2,

which means that effective contact rate of rotavirus from rotavirus infected human

with susceptible human is less than total recovery rate (natural as well as with

treatment) and death rate of human (natural death as well as disease death). This

justifies the disease-free state that if transmission rate of any disease is less than

its recovery, that disease will definitely die out .

In the upcoming sections, the local stability analysis and global stability analysis

at disease-free equilibrium of rotavirus has been performed.

4.4.3.3 Local Stability Analysis of Disease-free State of Rotavirus Model

The result of disease-free state of rotavirus-only model can be written as:

Theorem 4.2. The disease-free state of rotavirus-only model is locally asymptot-

ically stable if R0r < 1 and is not stable for R0r > 1.

Proof. We will find the stability conditions at disease-free equilibrium by calcu-

lating the variational matrix. The condition for stability of DFE is attained by

applying Routh-Hurwitz criteria for stability at required points. The Jacobian of

system (4.3) at disease-free equilibrium E0r =
(

A
µh
, 0, 0

)
is given as

J0 =


−µh −r β

0 r −M 0

0 ηr + t2 −µh − β


where M = ηr + t2 + µh + α2.

The eigenvalues is λ = −µh,−µh − β, r −M.

First two eigenvalues are negative. For third eigenvalue to be negative, r−M < 0,

which implies r
M

< 1

R0r < 1.
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4.4.3.4 Global Stability Analysis of Disease-free Equilibrium of Rotavirus

Model

The global stability analysis of rotavirus model is performed by considering a

Lyapunov function and La Salle invariant principle [165].

Theorem 4.3. The disease-free equilibrium E0r of the sub-model (4.3) is globally

asymptotically stable in Ω if R0r < 1.

Proof. Suppose a Lyapunov function for (4.3):

V (t) = (ηr + t2 + µh + α2) Ir

Let (ηr + t2 + µh + α2) = M , differentiating with respect to time, we have,

˙V (t) = (ηr + t2 + µh + α2)İr

= M(
rIrSh

Nh

−MIr)

≤ M(r −M)Ir

= M2(R0r − 1)Ir

≤ 0.

if R0r ≤ 1. It follows that ˙V (t) ≤ 0 for R0r ≤ 1.

Clearly, V̇ = 0 is true if and only if R0r = 1 or Ir = 0. Therefore, by Lyapunov

Lasalle Principle [165], every solution of (4.3) in the feasible region approaches E0r

as time approaches infinity.

4.4.3.5 Analysis of the Model Considering Malaria Disease Only

To have better clarity about the disease dynamics of malaria in the absence

of rotavirus disease, we will perform stability analysis at disease-free station-

ary state of the model given by (4.4). Disease-free equilibrium is denoted as

E0m (S0
h, I

0
m, R

0
m, S

0
v , I

0
v ) i.e

(
A
µh
, 0, 0, B

µv+q
, 0
)
.
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4.4.3.6 Basic Reproduction Number

To see the disease dynamics, we need to calculate basic reproduction number by

next generation matrix method given by Driessche [164]. We divide the coefficient

matrix of infected compartment Im and Iv of the system (4.4) into matrices F and

V . The matrix F is for transmission, that is, new infections and transition terms

are included in V .

F =

 0 ab

ac 0


and

V =

 −(ηm + t1 + α1 + µh) 0

0 −(µv + q)


Calculating the matrix J = FV −1, we get,

J = FV −1 =

 0 − ab
(µv+q)

− ac
ηm+t1+α1+µh

0


The eigenvalues of the above determinant are calculated by

J − λI = 0,

where,

J − λI =

 −λ − ab
(µv+q)

− ac
ηm+t1+α1+µh

−λ


Now, the spectral radius of the matrix named FV −1 is denoted by R0m, that is

R0m = ρ(FV −1).

which implies

R0m =

√
a2bc

(ηm + t1 + α1 + µh)(µv + q)
(4.6)
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R0m < 1 implies a2bc < (ηm + t1 + α1 + µh)(µv + q). This can be interpreted

that the collective transmission rate of malaria disease from infected human to

susceptible mosquito and from infected mosquito to susceptible human along with

mosquito biting rate is less than the cumulative recovery rate (natural as well

as with treatment) and death rate (natural as well as with disease) which in

turn justifies the disease-free state as transmission of any disease should be less

than its recovery and death. Also, it is noteworthy that in case of vector-host

models when an infectious mosquito or an infectious human is introduced in a

completely naive population, the basic reproduction number is always in the form

of square, that is, R2
0. This is interpreted in a way that it takes two generations

for infectious host/vector to reproduce itself [73]. In the upcoming section, local

stability analysis is carried out at disease-free equilibrium states.

4.4.3.7 Local Stability Analysis of Malaria Model at Disease-free Equilib-

rium

By applying theorem 2 of Driessche and Watmough [73], the following result is

stated:

Theorem 4.4. The disease-free equilibrium of the model (4.4) for malaria disease

only is locally asymptotically stable if R0m < 1 and unstable if R0m > 1.

Proof. Firstly, we will calculate the variational matrix to see the local stabil-

ity of disease-free equilibrium. Further, to calculate that, we need to find the

eigenvalues of the system. The Jacobian matrix at E0m (S0
h, I

0
m, R

0
m, S

0
v , I

0
v ) i.e

E0m

(
A
µh
, 0, 0, B

µv+q
, 0
)
is given as:

J0 =



−µh 0 β 0 −ab

0 −L 0 0 ab

0 −(ηm + t1) −µh − β 0 0

0 −ac 0 (µv + q) 0

0 ac 0 0 −(µv + q)


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where L = ηm + t1 + α1 + µh.

The eigenvalues are λ = −µh,−(µv + q),−µh − β.

Other eigenvalues are given by

λ2 + λ(L+ µv + q) + L(µv + q)− a2bc = 0.

It can be rewritten as

λ2 + l1λ+ l2 = 0,

where l1 = (L+ µv + q) and l2 = L(µv + q)− a2bc.

According to Routh-Hurwitz criteria l1 and l2 should be both positive for the equi-

librium to be stable. It is quite clear that l1 > 0.

Now, l2 > 0 implies L(µv + q) > a2bc, implying

a2bc

(ηm + t1 + α1 + µh)(µv + q)
< 1,

which implies

R2
0m < 1.

4.4.3.8 Bifurcation Analysis of Malaria Model

The occurrence of bifurcation is investigated by applying centre manifold criteria

for the set of equations in (4.4). Applying the Centre Manifold Theorem [166]

along with [155], bifurcation analysis is carried out. This theorem by Castilo-

Chavez and Song is given under.

Theorem 4.5. Consider a system of differential equations with parameter µ

dx

dt
= f(x, µ) (4.7)
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where f : Rn × R → Rn and f ∈ C2(Rn × R) and f(0, µ) = 0 for every real µ.

Let

� A = Dxf(0, 0), which is linearization of the above system (4.7) around 0 and

evaluated at µ = 0.

� Here matrix A has simple eigenvalue zero and all other eigenvalues of A are

having negative real parts.

� This matrix A has left and right eigenvectors v and w corresponding to zero

eigenvalue with v.w = 1.

Consider fk be the kth component of f and

l =
n∑

k=i=j=1

vkwiwj
∂2fk

∂xi∂xj

(0, 0) (4.8)

m =
n∑

k=i=1

vkwi
∂2fk
∂xi∂µ

(0, 0) (4.9)

The local dynamics of (4.7) around 0 is determined by the coefficients l and m.

1. For l > 0,m > 0, when µ < 0 and ∥µ∥ ≪ 1, 0 is locally asymptotically stable

and it assures a positive unstable equilibrium. When 0 < µ ≤ 1, 0 is unstable

and it assures a negative and locally asymptotically stable equilibrium.

2. For l < 0,m < 0, when µ < 0 and ∥µ∥ ≪ 1, 0 is unstable; when 0 < µ ≤ 1, 0

is locally asymptotically stable and this assures a positive unstable equilibrium.

3. For l > 0,m < 0, when µ < 0 and ∥µ∥ ≪ 1, 0 is unstable and it assures

a locally asymptotically stable negative equilibrium. When 0 < µ ≤ 1, 0 is

stable and there is appearance of a positive unstable equilibrium.

4. For l < 0,m > 0, when µ changes from negative to positive, there is switch

in stability from stable to unstable at 0. Accordingly, a negative unstable

equilibrium changes to positive and locally asymptotically stable equilibrium.
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To apply this theorem let us consider b∗ as bifurcation parameter so that R0m = 1.

Here

b∗ =
L(µv + q)

a2c
.

Now, we transform the variables in (4.1) as:

Sh = x1, Im = x2, Rm = x3, Sv = x4, Iv = x5.

The system takes the form:

ẋ1 = A− (λm + µh)x1 + βx3,

ẋ2 = λmx1 − (ηm + t1 + α1 + µh)x2,

ẋ3 = (ηm + t1)x2 − (µh + β)x3,

ẋ4 = B − λvx4 − (µv + q)x4,

ẋ5 = λvx4 − (µv + q)x5.

(4.10)

Where

λm =
abx5

Nh

λv =
acx2

Nv

Firstly, the Jacobian of the system (4.10) is calculated at E0m, which is given by

J0m =



−µh 0 β 0 −p1

0 −L 0 0 p1

0 p2 −p3 0 0

0 −p4 0 −p5 0

0 p4 0 0 −p5


where

p1 = ab, p2 = ηm + t1, p3 = µh + β, p4 = ac, p5 = µv + q.

Now, we will calculate the left and right eigenvectors of the Jacobian J0m. Let us

denote the left and right eigenvectors v and w, where v = [v1, v2, v3, v4, v5]
T and
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w = [w1, w2, w3, w4, w5]
T . We get,

w1 =

(
w2

µh

)(
βp2
p3

− p1p4
p5

)
, w2 = w2, w3 =

p2w2

p3
, w4 =

−p4w2

p5
, w5 =

p4w2

p5

and

v1 = v3 = v4 = 0, v2 = v2, v5 =
p1v2
p5

.

After rigorous calculation and calculating the coefficients l and m from the theo-

rem in [166], we have,

l = −w5

[
v2w2ab

∗µh

A
+

v2w3ab
∗µh

A
+

v5w2ac(µv + q)

A

]
,

and

m = av2w5.

As the coefficient m is positive definite and l < 0. From the theorem in [166], the

system undergoes forward bifurcation.

4.4.3.9 Global Stability Analysis for Malaria Model at Disease-free State

The global stability analysis of malaria model is done by La Salle invariant prin-

ciple and considering a suitable Lyapunov function [165].

Theorem 4.6. The disease-free equilibrium E0m of the sub-model (4.4) is globally

asymptotically stable in Ω if R0m < 1.

Proof. Let us consider a Lyapunov function for the set of equations (4.4):

V (t) = acIm + (ηm + t1 + µh + α1) Iv.
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Here (ηm + t1 + µh + α1) = L, Taking derivative with respect to time, we get,

˙V (t) = ac ˙Im + Lİv

= ac

(
abIvSh

Nh

− LIm

)
+ L

(
acImSv

Nv

− (µv + q)Iv

)
≤ a2bcIv − acLIm + acLIm − (µv + q)LIv

= a2bcIv − (µv + q)LIv

= (µv + q)LIv

[
a2bc

(µv + q)L
− 1

]
= (µv + q)LIv

[
R2

0m − 1
]

≤ 0,

if R0m ≤ 1. It follows that ˙V (t) ≤ 0 for R0m ≤ 1.

Clearly, V̇ = 0 is true if and only if R0m = 1 or Iv = 0. Hence, by Lyapunov

Lasalle Principle [165], every solution of (4.4) in the feasible region approaches

E0m as time approaches infinity. Therefore, the disease-free equilibrium E0m of

the (4.4) is GAS in Ω if R0m < 1. Hence the theorem is proved.

4.5 Analysis of Co-infection Model

The infection-free equilibrium of co-infection model is given by (4.1)

E0rm (S0
h, I

0
m, I

0
r , I

0
mr, R

0
m, R

0
r , R

0
rm, S

0
v , I

0
v ) = E0rm

(
A
µh
, 0, 0, 0, 0, 0, 0, B

µv+q
, 0

)
.

In the coming section, we will find the basic reproduction number of the main

model given by (4.1) as it is the threshold value that help us to decides the dynam-

ics of the disease. Also, the global stability analysis will be performed along with

bifurcation analysis of the model. Sensitivity analysis is done to check whether the

variation in parameters affect the behaviour of system as there may be some pa-

rameters for which system may be sensitive. It will be checked through sensitivity

analysis and their effect on basic reproduction number is discussed.
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4.5.1 Basic Reproduction Number of Co-infection Model

The basic reproduction number of co-infection model (4.1) is given by

R0 = max{R0r, R0m},

where R0r and R0m are given by equations 4.5 and 4.6.

4.5.2 Global Stability Analysis of Co-infection Model

We study the global asymptotic stability for the system of equations (4.1) by

Castillo-Chavez et al. approach in [166]. For that, we express the system of the

equations given by (4.1) as:

Ẋ = F (X,Z),

Ż = G(X,Z), G(X, 0) = 0.

Where X stands for uninfected population whereas Z stands for infected pop-

ulations. Here, X = (Sh, Rm, Rr, Rmr, Sv) and Z = (Im, Ir, Imr, Iv). Let the

disease-free equilibrium of the model be E0 = (X0, 0), where X0 =
(

A
µh
, B

µv+q

)
.

To make sure, the system is GAS, the conditions given by C1 and C2 must hold.

(C1): For Ẋ = F (X, 0), X0 is globally asymptotically stable.

(C2) : G(X,Z) = BZ − Ĝ(X,Z), Ĝ(X,Z) ≥ 0 for (X,Z) ∈ Ω.

Where B = ∂
∂Z

G(X0, 0).

If above two conditions holds for the model (4.1), then the following results holds.

Theorem 4.7. The DFE of the model (4.1) is globally asymptotically stable for

R0 < 1 and conditions C1 and C2 are satisfied.
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Proof. For the model (4.1), F (X,Z) and G(X,Z) are given as:

F (X,Z) =



A− (λm + λr + µh)Sh + β(Rm +Rr +Rmr)

(ηm + t1)Im − (µh + β)Rm

(ηr + t2)Ir − (µh + β)Rr

(ηmr + t3)Imr − (µh + β)Rmr

B − λvSv − (µv + q)Sv


and

G(X,Z) =


λmSh + αrImr − (δλr + ηm + t1 + α1 + µh)Im

λrSh + αmImr − (ξλm + ηr + t2 + α2 + µh)Ir

δλrIm + ξλmIr − (αr + ηmr + t3 + α3 + αm + µh)Imr

λvSv − (µv + q)Iv


Consider the system

F (X, 0) =



A− µhSh

0

0

0

B − (µv + q)Sv


It is clear that X0 = ( A

µh
, B
µv+q

) is globally asymptotically stable point of above

equation of F (X, 0). This can be verified as the solution of above equation

Sh = A
µh

+(Sh(0)− A
µh
)e−µht and Sv =

B
µv+q

+(Sv(0)− B
µv+q

)e−(µv+q)t approaches X0

as time approaches infinity which implies global convergence of solution of system

(4.1) in Ω.

B =


−(ηm + t1 + α1 + µh) 0 αr ab

0 r − (ηr + t2 + α2 + µh) rθ2 + αm 0

0 0 −(ηmr + t3 + α3 + αm + αr + µh) 0

ac 0 acθ1 −(µv + q)


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Then G(X,Z) can be written as G(X,Z) = BZ − Ĝ(X,Z), where

Ĝ(X,Z) =


Ĝ1(X,Z)

Ĝ2(X,Z)

Ĝ3(X,Z)

Ĝ4(X,Z)



=


abIv(1− Sh

Nh
) + δλrIm

λr(Nh − Sh) + ξλmIr

−(δλrIm + ξλmIr)

λv(Nv − Sv)


Clearly Ĝ3(X,Z) < 0, implying Ĝ(X,Z) < 0. Therefore, condition C2 is not

satisfied. Therefore, E0(X0, 0) is not GAS for R0 < 1.

4.5.3 Bifurcation Analysis

We use method based on using Center Manifold Theory. For this theorem as

mentioned in [166] (see also [158]), two main quantities are considered say a and

b which decides the direction of bifurcation. Out of several conditions, one is: if

a < 0 and b > 0, then system undergoes forward bifurcation whereas if a > 0

and b > 0, then system exhibits backward bifurcation. Applying this theorem, the

following results can be concluded.

Theorem 4.8. If a0 = βk9
k7

− k3k10
k12

> 0, the system (4.1) undergoes backward

bifurcation for R0 = 1. If this inequality is inverted, then system undergoes forward

bifurcation for R0 = 1.

Proof. To apply this theory, we consider two important coefficients b and r to be

bifurcation parameters for R0r = 1 and R0m = 1 iff r = r∗ and b = b∗, where

r = r∗ = ηr + t2 + µh + α2,
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and

b = b∗ =
(µv + q)(ηm + t1 + α1 + µh)

a2c
.

Now, we transform the variables in the system (4.1) as:

Sh = x1, Im = x2, Ir = x3, Imr = x4, Rm = x5, Rr = x6, Rmr = x7, Sv = x8,

Iv = x9.

Let x = (x1, x2, x3, x4, x5, x6, x7, x8, x9)
T and F = (f1, f2, f3, f4, f5, f6, f7, f8, f9)

T ,

then the system given by (4.1) takes the form

ḋx = F (x) (4.11)

can be presented as:

ẋ1 = A− (λm + λr + µh)x1 + βx5 + βx6 + βx7,

ẋ2 = λmx1 + αrx4 − (δλr + ηm + t1 + α1 + µh)x2,

ẋ3 = λrx1 + αmx4 − (ξλm + ηr + t2 + α2 + µh)x3,

ẋ4 = δλrx2 + ξλmx3 − (α3 + ηmr + αr + αm + t3 + µh)x4,

ẋ5 = (ηm + t1)x2 − (µh + β)x5,

ẋ6 = (ηr + t2)x3 − (µh + β)x6,

ẋ7 = (ηmr + t3)x4 − (µh + β)x7,

ẋ8 = B − λvx8 − (µv + q)x8,

ẋ9 = λvx8 − (µv + q)x9.

(4.12)

Where λm = abIv
Nh

, λv =
ac(Im+θ1Imr)

Nv

and λr =
r(Ir+θ2Imr)

Nh
.

The Jacobian of the system (4.12) at disease-free equilibrium ( A
µh
, 0, 0, 0, 0, 0, 0, B

µv+q
, 0)
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is

J2 =



−µh 0 −k1 −k2 β β β 0 −k3

0 −L 0 αr 0 0 0 0 k3

0 0 k4 k5 0 0 0 0 0

0 0 0 −N 0 0 0 0 0

0 k6 0 0 −k7 0 0 0 0

0 0 k8 0 0 −k7 0 0 0

0 0 0 k9 0 0 −k7 0 0

0 −k10 0 −k11 0 0 0 −k12 0

0 k10 0 k11 0 0 0 0 −k12


where,

k1 = r, k2 = rθ2, k3 = ab, k4 = r − M, k5 = rθ2 + αm, k6 = ηm + t1, k7 =

µh + β, k8 = ηr + t2, k9 = ηmr + t3, k10 = ac, k11 = acθ1, k12 = µv + q, N =

(α3 + ηmr + αr + αm + t3 + µh) . Now, we will calculate the right eigenvector of

the Jacobian J2.

Let it be denoted by w = [w1, w2, w3, w4, w5, w6, w7, w8, w9]
T . After calculation,

we get,

−µhw1 − k1w3 − k2w4 + βw5 + βw6 + βw7 − k3w9 = 0

−Lw2 + αrw4 + k3w9 = 0

k4w3 + k5w4 = 0

−Nw4 = 0

k6w2 − k7w5 = 0

k8w3 − k7w6 = 0

k9w4 − k7w7 = 0

−k10w2 − k11w4 − k12w8 = 0

k10w2 + k11w4 − k12w9 = 0.

(4.13)

From above set of equations (4.13), we get,

w1 = w2

µh
(βk6

k7
− k3k10

k12
), w2 = w2, w3 = w4 = 0, w5 = k6w2

k7
, w6 = w7 = 0,

w8 = −k10w2

k12
, w9 =

k10w2

k12
.
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Let us suppose that left eigenvector of Jacobian J2 associated with zero eigenvalue

is denoted by

v = [v1, v2, v3, v4, v5, v6, v7, v8, v9]
T .

After calculation, we get,

−µhv1 = 0

−Lv2 +K6v5 − k10v8 + k10v9 = 0

−k1v1 + k4v3 + k8v6 = 0

−k2v1 + α2v2 + k5v3 −Nv4 + k9v7 − k11v8 + k11v9 = 0

βv1 − k7v5 = 0

βv1 − k7v6 = 0

βv1 − k7v7 = 0

−k12v8 = 0

−k3v1 + k3v2 − k12v9 = 0.

(4.14)

Here L = ηm+t1+α1+µh,M = ηr+t2+α2+µh andN = ηmr+t3+αm+αr+α3+µh.

Solving the above equations in (4.14), we get, v1 = 0, v2 = v2, v3 = 0, v4 =

v2
N
(αr +

Lk11
k10

), v5 = v6 = v7 = v8 = 0, v9 = Lv2
k10

, where v2 can be calculated satis-

fying the condition for eigenvectors v and w such that v.w = 1. The coefficients l

and m are defined in the equations given below :

l =
n∑

k=i=j=1

vkwiwj
∂2fk

∂xi∂xj

(s0h, 0, 0, 0, 0, 0, 0, s
0
v, 0) (4.15)

m =
n∑

k=i=1

vkwi
∂2fk
∂xi∂b∗

(s0h, 0, 0, 0, 0, 0, 0, s
0
v, 0). (4.16)

Here, f ′
is denote the right hand side of the equations (4.12). Considering the sys-

tem (4.12) and taking into account only non-zero components of v, it is calculated

that:
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l =
v2w

2
2k10ab

∗a0
µhk12

, m = av2w9,

where

a0 =
βk9
k7

− k3k10
k12

. (4.17)

Since, the coefficient m is always positive. Therefore, the bifurcation of the system

(4.12) at b = b∗ is dependent on value of l. From the equation (4.17), it can be

clearly seen that l > 0 iff a0 > 0, that is, βk9
k7

> k3k10
k12

. Hence, for l > 0, the system

exhibits backward bifurcation and for l < 0, it undergoes forward bifurcation at

disease-free equilibrium at R0 = 1.

4.5.4 Sensitivity Analysis

In this section, the sensitivity analysis is done. With the aid of this, we can identify

those parameters having greater influence on R0. The technique used by [72] have

been applied. Sensitivity index of a function R0 with respect to any parameter

say p is defined as

ΥR0
p =

∂R0

∂p

p

R0

.

Since, R0 = max [R0m, R0r], we have performed the sensitivity analysis for both

R0r and R0m separately. Positive value of sensitivity index means that corre-

sponding to a hike in given parameter, there will be increase in the value of basic

reproduction number. On the other side, a negative value of sensitivity index im-

plies that an increase in the parameter value will reflect in the form of diminishing

value of basic reproduction number. From the table 4.2, it has been observed that

the parameters r, a, b and c have huge effect in spreading the disease. If their

values are increased, there is rise in basic reproduction number provided other

parameters are fixed. This can be clearly verified as the parameters a, b, c and

r are the rates of transmission of disease. So, increase in the values of these will

definitely increase the basic reproduction number and which in turn increases the
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Table 4.2: Table for Sensitivity Indices.

Symbol Sensitivity index

R0r Basic reproduction number for rotavirus-only model

r 1.0000

µh −1.0002

ηr −0.4543

t2 −0.4998

α2 −0.0004

R0m Basic reproduction number for malaria-only model

a 1.0000

b 0.5000

c 0.5000

µh −0.5000

µv −0.0001

q −0.0001

ηm −0.2498

t1 −0.2498

α1 −0.2498
∗Table for Sensitivity indices

spread of these diseases. The parameters having negative sensitivity indices like

ηm, ηr, t1, t2 and q will diminish the value of basic reproduction number if their

values are increased thereby controlling the disease. This is biologically true that

increase in recovery naturally or by treatment will control the spread of disease

along with the increased usage of insecticide.

4.6 Numerical Simulation and Discussion

We simulate the model (4.1) for different values of treatment in each case. Here,

four types of control strategies are applied: (1) malaria-treatment for malaria

infected (2) rotavirus treatment for rotavirus infected (3) malaria-rotavirus treat-

ment for co-infected (4) insecticide treatment for vectors (5) all treatments com-

bined.
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4.6.1 Table for Parameter Values for the Co-infection Model

Table 4.3: Table for Parameters for the Co-infection Model.

Parameters Description Value Source

a Average number of bites from
mosquito to human

4× 10−1 [167]

b Transmission rate of malaria from
infected mosquito to human

0.83333 day−1 [72]

c Transmission rate of malaria from
infected human to mosquito

7.2× 10−2 day−1 [168]

β Rate at which human recovered
from co-infection transfer to suscep-
tible class (Sh)

0.0027 day−1 [149]

µh Natural mortality rate of humans 2.537 × 10−5

day−1
[169]

µv Natural mortality rate of
mosquitoes

4× 10−5 day−1 [170]

ηm Natural recovery rate from malaria 0.5 day−1 [171]

ηr Natural recovery rate from rotavirus 0.5 day−1 Assumed

ηmr Natural recovery rate from malaria-
rotavirus co-infection

5.75× 10−4 day−1 Assumed

t1 Effective treatment control for
malaria

0.5 day−1 Assumed

t2 Effective treatment control for ro-
tavirus

0.5 day−1 Assumed

t3 Effective treatment control for
malaria-rotavirus co-infection

0.5 day−1 Assumed

α1 Disease death due to malaria 4.49312 × 10−4

day−1
[172]

α2 Disease death due to rotavirus 4.466 × 10−4

day−1
[173]

α3 Disease death due to malaria-
rotavirus co-infection

5.0× 10−2 day−1 Assumed

q Mortality rate of mosquitoes due to
insecticide

0.2 day−1 Assumed

∗Table for Values of Parameters.

Discussion on Insecticide Treatment

Figures 4.1 and 4.2 shows the impact of insecticide in eradicating co-infection in

the population. It is verified that co-infection decreases sharply as we apply all

the treatments and it takes longer if we apply insecticide treatment only on vector

compartment. It can seen in Figure 4.1 that it takes 40 days for the infection

to die out with only insecticide treatment where as it takes only 10 days for the

infection to vanish with all treatments as seen in Figure 4.2.
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Figure 4.1: Simulation results for
co-infected population Imr under
the effect of insecticide treatment.
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Figure 4.2: Simulation results for
recovered from both malaria and
rotavirus Imr under the effect of in-

secticide treatment.

Discussion on Malaria Treatment and Rotavirus Treatment

Similarly, in Figure 4.3, it can be seen that with malaria treatment only, the

co-infection dies out in around 40 days while it takes around 10 days with all

treatments for the same to happen. Also, it is evident from the Figure 4.4 that

the recovered population is high when all the treatments are given. Similarly, it is

apparent from Figure 4.5 that co-infection dies out in 10 days with all treatments

whereas it takes about 30 days with rotavirus treatment only. Also, it is clear from

the Figure 4.6 that the recovered population is at its peak when all the treatments

are given.
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Figure 4.3: Simulation results
for co-infected population Imr un-
der the effect of malaria treatment

only.

Days
0 10 20 30 40 50

R
m

r

0

200

400

600
malaria treatment
all treatments

Figure 4.4: Simulation results
for recovered from both malaria
and rotavirus Rmr under the effect

of malaria treatment only.
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Figure 4.5: Simulation results
for co-infected population Imr un-
der the effect of rotavirus treat-

ment only.
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Figure 4.6: Simulation results for
recovered from both malaria and
rotavirus Rmr under the effect of

rotavirus treatment only.
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Figure 4.7: Simulation results
for co-infected population Imr un-
der the effect of malaria-rotavirus

treatment only.
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Figure 4.8: Simulation results
for recovered from both malaria
and rotavirus Rmr under effect of
malaria-rotavirus treatment only.

Discussion on Malaria-Rotavirus Treatment

It can be seen in Figure 4.7 that co-infection dies off in 10 days with all treatment

effects where as it takes 20 days for the disease to terminate with malaria-rotavirus

treatment. Figure 4.8 shows that all treatments have better effect on disease pro-

gression in comparison with malaria-rotavirus treatment.

Comparison of Values of Malaria-Rotavirus Treatment

We simulated the system for various values of treatments and studied the co-

infected and recovered population. It is being seen in the Figures 4.9 and 4.10

that increase in the value of t3, that is, malaria-rotavirus treatment decreases the

number of days in which co-infection dies off and it also reduces the amplitude of

co-infection.
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Comparison of Values of Rotavirus Treatment
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Figure 4.9: Simulation results
for co-infected population Imr with

t3 = 0.01.
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Figure 4.10: Simulation results
for co-infected population Imr with

t3 = 0.1.

We simulated the system for variety of values of rotavirus treatment and then

malaria treatment. Figures 4.11 and 4.12 shows the effect of increasing the value

of treatments for rotavirus i.e. t2 in decreasing the co-infection.
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Figure 4.11: Simulation results
for co-infected population Imr with

t2 = 0.1.
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Figure 4.12: Simulation results
for co-infected population Imr with

t2 = 0.5.

Comparison of Values of Malaria Treatment

Figures 4.13 and 4.14 shows the effect of increasing the value of treatments for

malaria on co-infection.

Discussion on Collective Impact of Various Treatments

Figure 4.15 shows the collective impact of different treatments for all the suscepti-

ble population and Figure 4.16 shows the collective impact of different treatments

on co-infected population. It is evident that all treatments have better results

than any other treatment. When we compare malaria-rotavirus treatment with
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Figure 4.13: Simulation results
for co-infected population Imr with

t1 = 1.
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Figure 4.14: Simulation results
for co-infected population Imr with

t1 = 10.
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Figure 4.15: Simulation results
for susceptible population Sh under
the effect of different treatments.
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Figure 4.16: Simulation results
for co-infected population Imr un-
der the effect of different treat-

ments.

all treatments, the results are better with all treatments which means that the

additional treatment factor of insecticide gives additional control on disease trans-

mission. In vector borne diseases, vector control helps in eradicating the disease.

As a result, it can be interpreted that vector control is a major factor in control-

ling the co-infection along with other control strategies in reduction of co-infected

individuals.
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4.7 Conclusion

A compartmental model for transmission of malaria and rotavirus is formulated

and studied for various control measures/treatments. The effect of various con-

trol strategies namely treatment for humans infected with rotavirus, treatment

for humans infected with malaria, treatment for humans co-infected with malaria-

rotavirus and insecticide control for mosquito population is studied. Since, the

results are based on theoretical and numerical analysis, they offer some very im-

portant insights about the dynamics of diseases. The underlying relationship of

two diseases under different control scenario is quite clear from the analysis.

Firstly, we studied single disease models and performed the disease-free stability

analysis. It is found that the dynamics of disease is determined by threshold

value R0r and R0m in case of rotavirus and malaria respectively. According to

analysis, disease-free equilibrium is locally asymptotically stable as well as globally

asymptotically stable for rotavirus-only model and malaria-only model if R0r < 1

and R0m < 1 respectively. We derived the basic reproduction number for co-

infection model Rmr = max{R0r, R0m}. Sensitivity analysis of the model indicates

that the parameters a, b and c have positive value creating great influence on the

spread of malaria whereas the basic reproduction number of rotavirus-only model is

most sensitive to r. Bifurcation analysis of the full co-infection model is done. The

full co-infection model is found to be globally asymptotically unstable at disease-

free equilibrium. It is evident that single control measure takes longer to control

or eradicate the infection from the system. It is observed that only insecticide

treatment also takes longer to control the infection in human population. It is

clear that when all treatments namely malaria-rotavirus treatment and insecticide

treatment to mosquitoes are applied collectively, the infection dies out in much

lesser time. This means that the combined strategy saves more accumulative cases

of co-infection than any other strategy of treatment. Altogether, we can say that

the study indicates that the possibility of controlling the co-infection of rotavirus
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and malaria using effective strategies for treatment/controls for both the diseases

is bright.
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Chapter 5

Analysis of Mathematical Model

of an Infectious Disease with

Incubation Period as Delay in

Control

5.1 Introduction

A very important aspect of disease transmission is incubation period. Incubation

period of a communicable or an infectious disease is time from exposure to infec-

tion and its symptoms onset [174]. Incubation period is the delay in terms of time

by the human system in showing symptoms after being exposed to microorgan-

isms. It is very important to know the incubation period of a disease as it helps in

investigation about the cause as well as source of infection. It also helps in another

way that from the incubation period, the date of infection can be calculated which

can help health officials to set the periods of quarantine and control the possible

epidemic without help of vaccine or treatment [175–177]. As the potentially ex-

posed person can be isolated for a period longer than the incubation period to

contain its movement. Many antiviral medications are effective only if given be-

fore or instantly after symptoms onset. Incubation period distribution also helps
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in hypothesis testing that whether the outbreak of an infectious disease has ended

or not.

Based on the literature reviewed by [178], the incubation period of nine respira-

tory virus have been found. For example, for adenovirus, the median value of

incubation period is 5.3 days (95% CI 9.8 − 6.3). It is 4.0 days for SARS coron-

avirus, 1.4 days for influenzas A (95% CI 1.3 − 1.5), 4.4 days (3.9 − 4.9 at 95%

level of confidence) for syncytial virus related to respiratory system, 9.25 days for

measles (95% CI 11.8 − 13.3) and so on. It is also used in epidemiological stud-

ies by estimating the time of exposure when a outbreak at some particular time

is there. For example, in case of food poisoning on a large scale, the identifica-

tion of source of infection is done [174]. In ecological studies, the determination

of adaptive strategy by a parasite in case of vivax malaria can be done by the

knowledge of incubation period thereby helping in understanding the evolution

relevant to the seasonal pressure [179]. The prediction of disease control greatly

depends upon the assumption made in model formulation. Epidemic models with

delay can predict result which can be very complicated dynamical patterns and

in many cases destabilises the system leading to periodic solutions ([180], [181]).

Various researchers have worked in the field to explore different aspects of incu-

bation period. For example, a model for infectious disease hepatitis B virus with

latent period, incubation period and control strategies was studied for different

strategies [182]. In the work, it was emphasised that it is important to incorpo-

rate incubation period because when virus infects a healthy liver, it may take 6

weeks to 6 months from infection to the incidence of disease. Further, for typhoid

infection, it was observed that the incubation period vary extensively according

to the available reports by [183]. It is of significant interest that reports by WHO

and CDC ([184], [185]) mention that its incubation period ranges from 3−60 days

and 3− 30 days respectively. Although, the value of the mean incubation period

investigated by [183] was found to be 9.6 days. In a similar kind of research, it was

found that the mean value of period of incubation for the infection of measles is

12.5 days with range 8.1− 9.8 (at 95% Confidence interval). This has been based
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on five observational studies, where 5% of cases develop symptoms before 8.9 days

(95% CI) whereas 95% before 17.7 days (95% CI 16.1 − 19.2) after exposure to

infection [186]. Similarly, the incubation period of yellow fever lies between 3− 6

days [57]. Various researchers have contributed by calculating the incubation pe-

riod of corona virus by various methods. For example, the mean incubation period

of COVID-19 was concluded to be 3.2 days with range 2.8 − 3.7 (at 95% level of

confidence) for human coronavirus [187].

Further, it is quite interesting to know that the period of incubation for several

diseases is higher as compared to others. For example, hantavirus, listeriosis,

Crimean-Congo hemorrhagic fever and many more. Crimean-Congo hemorrhagic

fever classifies to be a part of infectious disease with high incubation period with

maximum value 50 days as observed clinically [188]. Further, it has been observed

that sometimes disease have longer incubation period than expected as in case

quoted in [189], the incubation period of measles was 23 days. Taking the research

to the next level is work done by [190]. It was found that in a recent emergence

of confirmed case of monkeypox, the incubation period is around 21 days which

indicates that the quarantine period should be planned accordingly. It is of great

interest to know that other than incubation period, delay can be modelled in many

different forms ([191], [192]). For example, cholera being a water borne disease,

for control of infection, there should be a sampling of contaminated water from

various sources in order to see how much disinfectant is required. As there is time

lag between sampling and application of disinfectants. Further, in case of tuber-

culosis, control can be achieved by quick identification of TB infected cases and

thereby reducing the delays in identification of TB cases [193]. Similarly, malaria

parasite may take days or months in the liver of a human to grow whereas in

the mosquito, it takes 10 days or so before it can be injected to a host [194]. In

the work done by [195] maturation delay along with latent period of disease has

been incorporated for childhood disease. Further, the disease dynamics have been

shown to be immensely affected by the critical value of delays. Taking the work

done in model with delay in [196], latent period of infection and control strategy
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in the form of media awareness has been incorporated.

Being relevant to control and prevention of the disease, it is quite helpful in

analysing the results of the mathematical model. The information of incubation

period will be useful in making control strategies for tackling the disease transmis-

sion and ultimately controlling the epidemic. Underestimation of the incubation

period can make an individual to release early from quarantine while overestima-

tion of it can have financial and psychological effects on the individual. Quite

complicated models have been formulated earlier to calculate incubation period

of a disease. This is an attempt to formulate a simple model that fit majority of

infectious diseases. Here, in the light of previous work done, a model has been

formulated with discrete time delay. Here, the delay incorporated in the system

is the time that is required for exposed human being to be infectious.

5.2 The Mathematical Model

In the upcoming section, formulation, the description, parameters in the formation

of model and finally the model in the concluding form in terms of ordinary differen-

tial equations is stated. In this work, it is being assumed that the total population

of humans is stratified into different classes named susceptible, exposed, infected

and recovered denoted by Sh(t), Eh(t), Ih(t) and Rh(t) respectively. Also, here

we assume that the susceptible or completely naive category increases by birth or

immigration with rate Λ. With the assumption that the human gets infected with

infection rate b when exposed to the virus, thereby the bSh(t)Ih(t) term represents

interaction of susceptible class with infected class. Let c denotes the rate at which

humans transits to infected compartment from exposed compartment. The time

lag in the mathematical model is included in exposed compartment in the term

Eh(t − τ). Here, delay incorporated in the model denotes the time necessary for

the exposed human to be infectious and starts showing symptoms, that is, incu-

bation period. Exposed humans move to recovery class naturally at a rate γ. It

has been assumed that an exposed individual can have ability to naturally recover
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thereby adding the term γEh(t) in the recovery class. Infected persons are reduced

by disease deaths at a rate α, thereby reducing the infected compartment by the

term αIh(t). Here, we assume that an individual having weak immunity catches

virus easily, thereby die natural death which justifies the natural death in case of

infected individual. Here, r is the rate at which infected recover. They recover

thereby term rIh(t) is added in the recovered class. Here d1, d2, d3 and d4 are the

natural mortality rates of susceptible persons, exposed persons, infectious persons

and persons who have recovered.

5.2.1 Governing Equations

With the assumptions mentioned above, a mathematical model for an infectious

disease by incorporating incubation period in the exposed class has been formu-

lated. The model in its final form is stated under:

˙Sh(t) = Λ− bSh(t)Ih(t)− d1Sh(t),

˙Eh(t) = bSh(t)Ih(t)− cEh(t− τ)− γEh(t)− d2Eh(t),

˙Ih(t) = cEh(t− τ)− (α + d3 + r)Ih(t),

˙Rh(t) = γEh(t) + rIh(t)− d4Rh(t).

(5.1)

Here, Sh(0) > 0, Eh(0) > 0, Ih(0) > 0, Rh(0) > 0.

Here, the expression for Nh(t) can be achieved by adding above equations.

Nh(t) = Sh(t) + Eh(t) + Ih(t) +Rh(t).

5.2.2 Parameter Description

The parameters in the equations (5.1) are described in the tabular format which

is given below:
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Table 5.1: Table for Parameters in the Model with Delay in an Infectious Disease.

Parameters Description Units

Λ Rate of birth or rate of immigration day−1

c Rate at which exposed individuals
transfer to infected compartment

day−1

b Transmission rate of disease per person per day

γ Rate at which exposed individuals
recover naturally

day−1

α Disease induced death rate of infec-
tious population

day−1

d1 Natural mortality rate of susceptible
individuals

day−1

d2 Natural mortality rate of exposed
individuals

day−1

d3 Natural mortality rate of infectious
individuals

day−1

d4 Natural mortality rate of recovered
individuals

day−1

Nh Total human population -

r Recovery rate of infectious individ-
uals

day−1

5.3 Dynamic Behaviour of the Model

The dynamics of the disease is analysed by determining various aspects associated

with the model like positivity, bounds, stability at equilibrium points etc.

5.3.1 Positivity and Boundedness of Solutions

In the upcoming part, we will check the boundedness and positivity of the solutions

of the model represented by (5.1). Assuming that the parameters taken in the

model are non-negative since the model is based on human dynamics. Now, we

know that

Nh(t) = Sh(t) + Eh(t) + Ih(t) +Rh(t),

= Λ− αIh(t)− d1Sh(t)− d2Eh(t)− d3Ih(t)− d4Rh(t),

≤ Λ− a1Nh(t),
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here a1= minimum of {d1, d2, α+ d3, d4}.

Therefore, Nh(t) is proved to be bounded and hence, Sh(t), Eh(t), Ih(t) and Rh(t)

are all bounded.

Now, for positive solution of the system (5.1). Consider, C([−τ, 0], R4
+) be space of

continuous functions which maps [−τ, 0] with R4
+ and this space is a Banach space.

By the fundamental theory of functional differential equations, it is neccessary to

prove that ∃ a solution (unique) (Sh(t), Eh(t), Ih(t), Rh(t)) for the system under

study with (Sh(0), Eh(0), Ih(0), Rh(0)) ∈ C. Since, we are dealing with human

epidemiology, it is assumed that ∃ a unique solution of (5.1) which satisfies

Sh(η) = ϕ1(η), Eh(η) = ϕ2(η), Ih(η) = ϕ3(η), Rh(η) = ϕ4(η),

where ϕi(0) > 0 and η ∈ [−τ, 0], ϕi(η) ∈ C([−τ, 0], R4
+) for all i varying from 1, 2, 3

and 4.

Theorem 5.1. The solutions of the model consisting of equations (5.1) show pos-

itivity ∀ t ≥ 0.

Proof. From first equation of the model (5.1),

˙Sh(t) = Λ− bSh(t)Ih(t)− d1Sh(t),

≥ −bSh(t)− d1Sh(t).

Which implies, Sh(t) ≥ Sh(0)e
−(b+d1)t.

Hence, we get Sh(t) ≥ 0 as t → ∞.

Taking second equation of the model (5.1),

˙Eh(t) = bSh(t)Ih(t)− cEh(t− τ)− d2Eh(t)− γEh(t),

≥ −cEh(t− τ)− d2Eh(t)− γEh(t).
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Which implies, Eh(t) ≥ Eh(0)e
−(c+d2+γ)t.

Eh(t) ≥ 0, as t → ∞.

In the similar manner, it can be proved that, Ih(t) ≥ Ih(0)e
−(α+d3+r)t, which

implies Ih(t) ≥ 0 as time approaches infinity.

and it is be verified that Rh(t) ≥ 0 as time approaches infinity.

Hence, Sh(t), Eh(t), Ih(t), Rh(t) are non-negative for all t ≥ 0.

To proceed further and see the system dynamics corresponding to different sce-

narios, analysis of the model to see its stability will be done.

5.4 Model Analysis

In the upcoming section, possible steady states and evaluation of R0 for the model

(5.1) is done.

5.4.1 Existence and Evaluation of Possible Equilibrium states

Now, in the direction to obtain all the possible equilibria for the model given by

(5.1), we will solve the equations for solutions by equating to zero the growth

rates of all the state variables. The model (5.1) possesses two equilibria namely

disease-free and endemic equilibrium.

Disease-free steady state is calculated as E0(S0, 0, 0, 0), with S0 =
Λ
d1

and

disease endemic state is denoted as E1(S1, E1, I1, R1).

5.4.2 Threshold Parameter: Basic Reproduction Number

We will evaluate the threshold value R0 by next generation matrix [93]. The in-

fected compartments have been divided in two matrices F i.e. transmission matrix

and V i.e. transition matrix, where F , V are:
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F =

 0 bS0

0 0


and

V =

 −(c+ d2 + γ) 0

c −(α + d3 + r)


Yielding FV −1,

FV −1 =

 bcS0

PQ
bS0

Q

0 0


Here, P = c+ d2 + γ and Q = α + d3 + r.

The spectral radius for FV −1 is given under:

ρ(FV −1) =
Λbc

d1PQ
.

Applying the formula in [73],

R0 = ρ(FV −1) =
Λbc

d1(c+ d2 + γ)(α + d3 + r)

Now, as we have the expression for R0, the endemic equilibrium E1(S1, E1, I1, R1)

can be presented as: S1 =
PQ
bc
, E1 =

Qd1(R0−1)
bc

, I1 =
d1(R0−1)

b
, R1 =

d1(r+
γQ
c
)(R0−1)

bd4

Now, local stability at equilibria for both the cases for τ = 0 along with τ > 0 is

done to explore the dynamics of system.

5.4.3 Local Stability Analysis for τ = 0

Now, we will check the behaviour of given model at both the equilibrium points

for τ = 0. First, stability at disease-free equilibrium is discussed.
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5.4.3.1 Stability Analysis at E0

At E0 and τ = 0 the analysis is stated as:

Theorem 5.2. The disease-free equilibrium (E0) exists stably for R0 < 1 whereas

it shows instability if R0 > 1.

Proof. The local stability at E0 is checked through calculation of the eigenvalues

of Jacobian. The Jacobian for the system (5.1) is presented here

J0 =


−bIh − d1 0 −bSh 0

bIh −P bSh 0

0 c −Q 0

0 γ r −d4


At E0(

Λ
d1
, 0, 0, 0)

J0 =


−d1 0 −bΛ

d1
0

0 −P bΛ
d1

0

0 c −Q 0

0 γ r −d4


The eigenvalues obtained are λ = −d1,−d4. The remaining eigenvalues can be

calculated from the equation

λ2 + (P +Q)λ+ PQ− bcΛ

d1
= 0.

This can be rewritten in the form λ2+a1λ+a2 = 0, here a1 = P+Q, a2 = PQ− bcΛ
d1

.

Applying Routh-Hurwitz theorem, characteristic equation has negative eigenvalues

if the following holds a1 > 0 and a2 > 0.

It is evident that a1 > 0 definitely and a2 > 0 if the following holds

PQ >
bcΛ

d1
.
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From this, it can be interpreted that R0 < 1.

Therefore, the infection-free equilibrium E0 is LAS provided R0 < 1.

5.4.3.2 Stability Analysis at E1

Here, we will check the local stability conditions at E1.

Theorem 5.3. The disease-endemic equilibrium E1 shall be locally asymptotically

stable provided R0 < 1 and sustains condition of being unstable under R0 > 1.

Proof. For the system of equations represented by (5.1), we shall check the lo-

cal stability at E1 by calculating the eigenvalues through Jacobian at E1. The

Jacobian J1 for given system is presented by

J1 =


−bI1 − d1 0 −bS1 0

bI1 −P bS1 0

0 c −Q 0

0 γ r −d4


One eigenvalue is λ = −d4 and the remaining eigenvalues are obtained from the

equation:

λ3 + k1λ
2 + k2λ+ k3 = 0,

here

k1 = P +Q+ bI1 + d1, k2 = PQ− bcS1 + (P +Q)bI1 + d1(P +Q) and

k3 = bI1PQ+ PQd1 − d1bcS1.

Applying Routh-Hurwitz theorem, the eigenvalues of the system should be nega-

tive. This implies that endemic equilibrium point E1 will be locally stable if the

condition given below satisfies:

k1 > 0, k2 > 0, k3 > 0, k1k2 − k3 > 0.
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In the forthcoming section, the local stability at both equilibria for τ > 0 will be

done.

5.4.4 Local Stability Analysis for τ > 0

Now, we will analyse the model (5.1) for τ > 0. Here, the conditions for stability

and hopf-bifurcation at E1 will be advancing. Linearizing system (5.1) about E1,

we get,

J2 =


−bI1 − d1 0 −bS1 0

bI1 −ce−τλ − d2 − γ bS1 0

0 ce−τλ −Q 0

0 γ r −d4


We get one eigenvalue as λ = −d4 and the other eigenvalues can be evaluated from

characteristic equation:

λ3 + p1λ
2 + p2λ+ p3 + e−τλ[q1λ

2 + q2λ+ q3] = 0. (5.2)

Where, p1 = Q+d1+d2+γ+d1(R0−1), p2 = (d2+γ)[Q+d2+d1(R0−1)]+d1Q,

p3 = Q(d2 + γ)d1R0, q1 = c, q2 = c(Q− PQ
c

+ d1R0),

q3 = d1R0Q(c− P ) + PQd1(R0 − 1).

Now, the local stability conditions can be presented in the theorem form given

below:

Theorem 5.4. The infected state of system (5.1) under study is LAS provided

R0 > 1 with τ ≥ 0.

Proof. When τ > 0, we rewrite the characteristic equation (5.2) in the form

G(λ) + e−τλH(λ) = 0,

122



Chapter 5. Analysis of Delay Model with Incubation Period

here G(λ) = λ3 + p1λ
2 + p2λ+ p3 and H(λ) = q1λ

2 + q2λ+ q3.

To show the phenomenon of hopf-bifurcation, we prove that equation (5.2) possess

a pair of purely imaginary roots. After substituting λ = ιω in equation (5.2) and

segregating real and imaginary parts, the transcendental equations are:

p3 − p1ω
2 = (q1ω

2 − q3) cos(τω)− q2ω sin(τω),

ω3 − p2ω = (q1ω
2 − q3) sin(τω) + q2ω cos(τω).

(5.3)

Squaring and adding equations in (5.3), we get,

ω6 + l1ω
4 + l2ω

2 + l3 = 0, (5.4)

here l1 = p21 − 2p2 − q21, l2 = p22 − 2p1p3 − q22 + 2q1q3, l3 = p23 − q23,

substituting ω2 = ρ in (5.4), we arrive at

ρ3 + l1ρ
2 + l2ρ+ l3 = 0. (5.5)

Now, if coefficients in equation (5.5), i.e. l1, l2, l3 satisfies the Routh-Hurwitz

condition, then the equation (5.5) will not have any real root which is positive.

In that case, we shall not have any non-negative value of the parameter ω which

satisfies equation (5.4).

Therefore, we can conclude that if coefficients l1, l2 and l3 in the equation numbered

as (5.5) satisfies Routh-Hurwitz theorem, then the disease endemic equilibrium E1

of (5.1) is LAS if τ > 0 provided it is stable when τ = 0.

Let us suppose the other way around that l1, l2 and l3 in the equation (5.5) does

not satisfy criteria given by Routh-Hurwitz. Let us suppose l3 < 0, which gives:

p23 − q23 < 0. (5.6)

Now, if the condition given by (5.6) holds, then (5.5) has all non-negative roots

along with that the equation (5.4) will have imaginary root with real part zero
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denoted by ιω0. From equations in (5.3), τ0 for this value of ω0 is given by

τ0 =
1

ω0

arccos
(q2ω

2
0)(p2 − ω2

0) + (p3 − p1ω
2
0)(q1ω

2
0 − q3)

(q22ω
2
0) + (q1ω2

0 − q3)2
+

2πk

ω0

, (5.7)

here k = 1, 2, 3, .....

Applying Butler’s lemma [197], we can state that the model shows stability at E1

for τ < τ0.

Now, we will cross check if hopf-bifurcation is there as τ transits from τ to τ0.

For the phenomenon named hopf bifurcation to happen, transversality condition

should be satisfied, which is given under:

sign{ d

dτ
Re(λ)}ω=ω0 > 0,

where sign is signum function. Differentiating (5.2) with respect to τ ,

[(3λ2 + 2p1λ+ p2) + e−λτ (2q1λ+ q2)]
dλ

dτ
− e−λτ (λ+ τ

dλ

dτ
)(q1λ

2 + q2λ+ q3) = 0,

(
dλ

dτ

)−1

=
3λ2 + 2p1λ+ p2

(q1λ2 + q2λ+ q3)(λe−λτ )
+

2q1λ+ q2
λ(q1λ2 + q2λ+ q3)

− τ

λ
,

=
3λ2 + 2p1λ+ p2

−λ(λ3 + p1λ2 + p2λ+ p3)
+

2q1λ+ q2
λ(q1λ2 + q2λ+ q3

− τ

λ
,

=
2λ3 + p1λ

2 − p3
−λ2(λ3 + p1λ2 + p2λ+ p3)

+
q1λ

2 − q3
λ2(q1λ2 + q2λ+ q3)

− τ

λ
.

When λ = ιω0,
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sign{(d(Re(λ))

dτ
)} = sign{Re(

dλ

dτ
)−1},

=
1

ω2
0

sign{Re(
p1ω

2
0 + p3 + 2ιω3

0

(p1ω2
0 − p3) + ι(ω3

0 − p2ω0)
) + (

q1ω
2
0 + q3

(q3 − q1ω2
0) + q2ιω0

)},

=
1

ω2
0

sign{Re(
2ω6

0 + (p21 − 2p2)ω
4
0 − p23

(p1ω2
0 − p3)2 + (ω3

0 − p2ω0)
) +

(q1ω
2
0 + q3)(q3 − q1ω

2
0)

(q3 − q1ω2
0)

2 + (q22ω
2
0)

},

=
1

ω2
0

sign{2ω
6
0 + (p21 − 2p2 − q21)ω

4
0 + (q23 − p23)

(q3 − q1ω2
0)

2 + q22ω
2
0

}.

Now, when condition (5.6) satisfies, we have, sign{ d
dλ
Re(τ)}ω=ω0 > 0.

The above proven is stated in the theorem form given under:

Theorem 5.5. If the condition p23 − q23 < 0 satisfies, where p3 = Q(µ2 + ω)µ1R0,

q3 = µ1R0Q(η−P ) +PQµ1(R0 − 1), then the infectious state E1 of system under

study stabilizes if τ < τ0 and is not stable if τ > τ0. Hopf-Bifurcation criteria

is justified creating cyclic solutions when τ transits through the value τ0, that is,

Hopf-Bifurcation is achieved at τ = τ0.

5.5 Numerical Examples and Discussion

To substanciate the results proven analytically for the system of equations (5.1),

numerical simulation has been done. The initial conditions and parameter values

considered are given as Sh(0) = 700, Eh(0) = 300, 110(0) = 50 and Rh(0) = 4.

We simulated the model (5.1) keeping Λ = 4, d1 = d2 = d3 = 0.0000948, d4 =

0.0099, γ = 0.05, α = 0.01 fixed and keep varying r = 0.09, b = 0.001 and c =

0.09. The local asymptotic stability for infection-free equilibrium for τ = 0, b =

0.0001, c = 0.05 and r = 0.09 is shown in Figure 5.1. The value of R0 is found to

be 0.2031. Further, the asymptotic stability for disease endemic equilibrium for

parameters τ = 0, r = 0.05, b = 0.001 and c = 0.1 can be seen in Figure 5.2. The

value of R0 is found to be 2.9062. It can be interpreted that as we increase the

values of parameters affecting the disease transmission, namely b and c the value
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of R0 increases from less than one to greater than one. This in turn implies that

by controlling the transmission associated factors, disease can be controlled.

Discussion on Switch of Stability
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Figure 5.1: Simulation results
for Λ = 4, b = 0.0001, c = 0.1,
d1 = d2 = d3 = 0.0000948, d4 =
0.0099, γ = 0.05, α = 0.01, r = 0.09

and R0 = 0.2031 < 1.
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Figure 5.2: Simulation results
for Λ = 4, b = 0.001, c = 0.09,
d1 = d2 = d3 = 0.0000948, d4 =
0.0099, γ = 0.05, α = 0.01, r = 0.2

and R0 = 2.9062 > 1.

In the present work, it is being observed that as the value of incubation period (τ)

is increased from 19.4 to 19.7 while all other model parameters are fixed as given

above, the system looses its stability transforming stable solutions to oscillatory

solutions. Here, the endemic equilibrium is unstable and hopf bifurcation occurs

for τ = 19.7 > 19.5 as shown in 5.3. Again, the system is asymptotically stable

τ = 19.4 < 19.5 as can be seen in 5.4.

Discussion on Value of Incubation Period

Since, the value of incubation period plays a vital role in disease dynamics. It is

worth calculating to control the disease. The critical value of τ is found to be 19.5.

This work has been supported by [2] in which the value of incubation period of

a virus named hantavirus is 7 − 39 days with median value 18 days. It is caused

by infected rodents and humans can get infected by inhaling rodent urine, saliva

or feces. This has also been validated as the incubation period of an infection

named listeriosis may vary from 3 − 70 days [3]. Here, the system is asymptoti-

cally stable τ = 19.4 < 19.5 as can be seen in Figures 5.5 and 5.7. The switch in

stability for τ = 19.7 > 19.5 is seen in phase portrait given in Figures 5.6 and 5.8.
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Figure 5.3: Simulation results
for τ = 19.7 showing periodic
solutions. The endemic equilib-
rium is unstable for Λ = 4, b
= 0.001, c = 0.09, d1 = d2 =
d3 = 0.0000948, d4 = 0.0099, γ =
0.05, α = 0.01 and r = 0.2, τ =

19.7 > 19.5.
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Figure 5.4: Simulation results
for τ = 19.4 showing asymptotic
stability. The endemic equilib-
rium is stable for Λ = 4, b =
0.001, c = 0.09, d1 = d2 =
d3 = 0.0000948, d4 = 0.0099, γ =
0.05, α = 0.01 and r = 0.2, τ =

19.4 < 19.5.
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Figure 5.5: Simulation results for
phase plane graphs of Sh(t) and
Eh(t) for τ = 19.4 showing it to

be asymptotic stable.
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Figure 5.6: Simulation results for
phase plane graphs of Sh(t) and
Eh(t) for τ = 19.7 showing phe-

nomenon of hopf bifurcation.

Discussion on Transmission Rate

Transmission rate of an infectious disease plays a dominant role in dynamics of

disease. We varied transmission parameter b and it can be seen in Figures 5.9 and

5.10, that disease dies off in around 150 days for b = 0.001 and when transmission

rate is decreased to b = 0.0001, it takes around 100 days for disease to die off.

Thus, it is concluded in this work that the cumulative effect of transmission of

disease and incubation period of disease greatly affects the dynamics of disease.

Thus, it is imperative that for disease to be under control, transmission of disease

should be controlled. Further, the value of incubation period of a disease needs to
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Figure 5.7: Simulation results for
phase plane graphs of Ih(t) and
Rh(t) for τ = 19.4 showing it to

be asymptotic stable.
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Figure 5.8: Simulation results for
phase plane graphs of Ih(t) and
Rh(t) for τ = 19.7 showing the phe-

nomenon of hopf bifurcation.
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Figure 5.9: Simulation results for
infected class for b = 0.001, R0 =

6.585.
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Figure 5.10: Simulation results
for infected class for b = 0.0001,

R0 = 0.6585.

be monitored so that treatment can be given in time, otherwise with increase in

infection and not monitoring incubation periods, situation of epidemic can occur.

5.6 Conclusion

A non-linear mathematical model for infectious diseases is proposed. Since, the

incubation period of a disease plays very important role in disease dynamics. It can

guide policy makers and officials of health department to make policies to control

an emerging disease. The model incorporates incubation period in its formulation

in the form of delay. The conditions of local stability for the equilibrium points

have been investigated. Further, it is found that infection-free equilibrium is locally
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stable when R0 < 1. Also, the endemic equilibrium is LAS for certain conditions

including τ < τ0, where τ0 is the critical value of τ . It was also observed that

phenomenon of hopf-bifurcation is there which leads to periodic solutions for τ ≥

τ0. Further investigation leads us to the fact that transmission parameter plays

a significant role in disease spread. Furthermore, while analysing the model, it

was observed that infection can be managed or curbed provided particular level

of recovery rate and incubation period is administered failing which can lead to

epidemic. Analytic results have been supported by numerical examples.

129



Chapter 6

Conclusion and Future Scope

In the upcoming chapter, important results corresponding to the objectives pro-

posed have been summarised. Moreover, suggestions for further research, recom-

mendations and future scope in the area of work done in the thesis are discussed.

6.1 Conclusion

The work explores the contemporary use of mathematical models in analyzing the

control of epidemic in a community, region or a nation. The proposed models are

very appropriate in solving the problems surging from infectious diseases and can

be applicable for creating awareness among community and to control the infec-

tions caused by various viruses creeping in the population. The aim is to control

the disease by making the policy makers of the nation aware through the results

obtained from the models. In this way, it starts a discourse among people mak-

ing them aware by designing health policies, control strategies and various health

related programmes. All mathematical models are proposed to make real world

problems understandable and control measures that help in better prediction of

future problems.

In all the models proposed, the population has been divided into various com-

partments which are mutually exclusive. There is instantaneous movement of
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individuals in all the models except in the model in last chapter, where there is

delay in movement from one compartment to another.

In chapter 2, we proposed and analyzed model for yellow fever with different con-

trol strategies namely vaccination and insect repellent creams/sprays. This work

can be helpful in making appropriate health policies.

Secondly, in chapter 3, two infectious diseases are studied to investigate the effect

of control measures on both human and mosquito population. Firstly, a math-

ematical model for yellow fever has been proposed and analysed with awareness

through media as a control strategy. This will help people become aware about

the infectious disease which can help them in decisions regarding travelling to var-

ious destinations, controlling mosquito population and this aware class of people

can help the society to cope up with the crisis. In the same chapter, a model for

the disease chikungunya is proposed with multiple control measures to study its

impact on both humans and mosquito population.

In chapter 4, co-infection of rotavirus and malaria is studied. The model proposed

is studied for association of control of one disease and the other. The model is

studied for its stability, bifurcation, direction of bifurcation and sensitivity indices

have been calculated to notice the impact of parameters on the basic reproduc-

tion number. The normalized forward sensitivity indices help in determining the

sensitivity of parameters in the model responsible for the transmission of disease

and its prevalence.

In chapter 5, a mathematical model is studied for an infectious disease by in-

corporating incubation period of a disease as a control measure. The incubation

period of a disease can help in the formation of policies regarding health to decide

the quarantine periods for exposed individuals to control the disease transmission.

The existence of hopf-bifurcation is seen for some threshold value of delay.

The models are analyzed with the help of various tools like stability theories for

dynamical systems, bifurcation theory (wherever applicable), next generation ma-

trix. The performance of stability analysis for disease-free equilibrium and disease
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endemic equilibrium using Routh-Hurwitz criteria and calculation of basic repro-

duction number is done. It is observed that for all the systems, the disease-free

equilibrium is locally asymptotically stable provided R0 < 1 and is not stable

provided R0 > 1. Numerical simulation is done using MATLAB to produce and

support the analytic results graphically.

6.2 Applications and Future scope

The work in the thesis has been devoted to investigate the effect of control mea-

sures in the transmission of infectious diseases. The said work has been processed

by using mathematical models, that is, by considering the whole system of popu-

lation in the form of ordinary differential equations. Further, the effect of the said

control measures has been investigated by incorporating them in the equations

as parameters. Since, infectious diseases invade the human population since ages

and still affect us with the strains that are unknown. Therefore, the work can be

beneficial to a variety of diseases with relevant variation. Keeping this in mind

and as seen in the literature survey done in the work, it can be well considered

that this work can be extended in many ways in which the human population can

better cope up with the crisis of these infectious diseases.

In the work done in chapter 2, insect repellent has been used as precautionary

measure. The waning effect of insect repellent creams can be added in the model

as it wanes off after some time.

In the work done in chapter 3, two infectious diseases are studied. One is Yellow

fever and the other is chikungunya. For yellow fever transmission, the awareness

through media has been used as a control measure to fight the epidemic. The us-

age of these awareness programmes definitely delay the progression of the epidemic

but not prevent it all together. This is particularly important in humid weathers

that support mosquito growth. There is a great scope of adding various mosquito

control tools for extra benefit. For the dynamics of chikungunya, we are dealing

with a vector-host model with various control measures. This kind of model can
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be considered for other vector-host models like Dengue, West Nile virus, Zika virus

by changing the parameters to relevant ones.

In all, the work is done on control of the infectious diseases. So, there are many

factors that can be considered to extend the work. A few of them has been men-

tioned here.

� The change in climate and seasonal variation which is cause of fluctuating

disease burden can also be considered.

� Delay in treatment response, latent period of infection can also be considered

in the work wherever applicable.

� Since, mortality rate is associated with infectious diseases in general and its

value keeps on changing depending on different factors. One of the great way

is to consider some vaccination campaign evaluations in future.

� The models can also be applied for particular classes like immuno-deficient

individuals whose immunity is compromised due some health related issues.

This can be done by considering immunity as one of the factors to study.

� In the disease dynamics, one of the practical problems is lack of experimen-

tal data for validation of the model proposed. Some experiments can be

conducted for evaluation of model parameters in future.
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fractional-order siq mathematical model of corona virus disease using the

nonstandard finite difference scheme. Malaysian Journal of Mathematical

Sciences, 16(3):391–411, 2022.

[67] Balram Rai, Anandi Shukla, and Laxmi Kant Dwivedi. Incubation period for

covid-19: a systematic review and meta-analysis. Journal of Public Health,

30(11):2649–2656, 2022.
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Strobel. Chikungunya, an epidemic arbovirosis. The Lancet infectious dis-

eases, 7(5):319–327, 2007.

[141] Robert McMahon, Ulrike Fuchs, Martina Schneider, Sandra Hadl, Romana

Hochreiter, Annegret Bitzer, Karin Kosulin, Michael Koren, Robert Mader,

Oliver Zoihsl, et al. A randomized, double-blinded phase 3 study to demon-

strate lot-to-lot consistency and to confirm immunogenicity and safety of

the live-attenuated chikungunya virus vaccine candidate vla1553 in healthy

adults. Journal of Travel Medicine, 31(2):taad156, 2024.

[142] Julius Tumwiine, Joseph YT Mugisha, and Livingstone S Luboobi. Thresh-

old and stability results for a malaria model in a population with protective

intervention among high-risk groups. Mathematical Modelling and Analysis,

13(3):443–460, 2008.

[143] Noppadon Tangpukdee, Chatnapa Duangdee, Polrat Wilairatana, and

Srivicha Krudsood. Malaria diagnosis: a brief review. The Korean jour-

nal of parasitology, 47(2):93, 2009.

[144] Hannah C Slater, Manoj Gambhir, Paul E Parham, and Edwin Michael.

Modelling co-infection with malaria and lymphatic filariasis. PLoS compu-

tational biology, 9(6):e1003096, 2013.

151



Bibliography

[145] Timothy William and Jayaram Menon. A review of malaria research in

malaysia. Med J Malaysia, 69(Suppl A):82–87, 2014.

[146] Meghna Desai, Ann M Buff, Sammy Khagayi, Peter Byass, Nyaguara Amek,

Annemieke van Eijk, Laurence Slutsker, John Vulule, Frank O Odhiambo,

Penelope A Phillips-Howard, et al. Age-specific malaria mortality rates in

the kemri/cdc health and demographic surveillance system in western kenya,

2003–2010. PloS one, 9(9):e106197, 2014.

[147] Dejan Zurovac, Sophie Githinji, Dorothy Memusi, Samuel Kigen, Beat-

rice Machini, Alex Muturi, Gabriel Otieno, Robert W Snow, and Andrew

Nyandigisi. Major improvements in the quality of malaria case-management

under the “test and treat” policy in kenya. PLoS One, 9(3):e92782, 2014.

[148] Hera Nirwati, Mohamad Saifudin Hakim, Sri Aminah, Ida Bagus Ny-

oman Putra Dwija, Qiuwei Pan, and Abu Tholib Aman. Identification of

rotavirus strains causing diarrhoea in children under five years of age in yo-

gyakarta, indonesia. The Malaysian Journal of Medical Sciences: MJMS, 24

(2):68, 2017.

[149] Hellen Namawejje, Livingstone S Luboobi, Dmitry Kuznetsov, and Eric

Wobudeya. Modeling optimal control of rotavirus disease with different con-

trol strategies. J. Math. Comput. Sci., 4(5):892–914, 2014.

[150] Umesh D Parashar, Joseph S Bresee, Jon R Gentsch, and Roger I Glass.

Rotavirus. Emerging infectious diseases, 4(4):561, 1998.

[151] RuthF Bishop, GP Davidson, IH Holmes, and BJ Ruck. Virus particles in

epithelial cells of duodenal mucosa from children with acute non-bacterial

gastroenteritis. The Lancet, 302(7841):1281–1283, 1973.

[152] Edward Kim Mulholland. Global control of rotavirus disease. Hot Topics in

Infection and Immunity in Children, 549:161–168, 2004.

152



Bibliography

[153] Klaus Reither, Ralf Ignatius, Thomas Weitzel, Andrew Seidu-Korkor, Louis

Anyidoho, Eiman Saad, Andrea Djie-Maletz, Peter Ziniel, Felicia Amoo-

Sakyi, Francis Danikuu, et al. Acute childhood diarrhoea in northern ghana:

epidemiological, clinical and microbiological characteristics. BMC infectious

diseases, 7(1):1–8, 2007.

[154] R Nyang’inja, G Lawi, M Okongo, and A Orwa. Stability analysis of

rotavirus-malaria co-epidemic model with vaccination. Dyn. Syst. Appl, 28:

371–407, 2019.

[155] KO Okosun and Oluwole Daniel Makinde. A co-infection model of malaria

and cholera diseases with optimal control. Mathematical biosciences, 258:

19–32, 2014.

[156] Baba Seidu, Oluwole D Makinde, and Ibrahim Y Seini. Mathematical analy-

sis of the effects of hiv-malaria co-infection on workplace productivity. Acta

Biotheoretica, 63(2):151–182, 2015.

[157] Hailay Weldegiorgis Berhe, Oluwole Daniel Makinde, and David Mwangi

Theuri. Co-dynamics of measles and dysentery diarrhea diseases with opti-

mal control and cost-effectiveness analysis. Applied Mathematics and Com-

putation, 347:903–921, 2019.

[158] Getachew Teshome Tilahun, Oluwole Daniel Makinde, and David Malonza.

Co-dynamics of pneumonia and typhoid fever diseases with cost effective

optimal control analysis. Applied Mathematics and Computation, 316:438–

459, 2018.

[159] Gbenga J Abiodun, Kazeem O Okosun, and Oluwole D Makinde. A cancer

and hepatitis co-infection model. International Journal of Ecological Eco-

nomics & Statistics, 39(3):1–14, 2018.

[160] Sara Elsheikh, Rachid Ouifki, and Kailash C Patidar. A non-standard finite

difference method to solve a model of hiv–malaria co-infection. Journal of

Difference Equations and Applications, 20(3):354–378, 2014.

153



Bibliography

[161] John E Bennett, Raphael Dolin, and Martin J Blaser. Mandell, douglas,

and bennett’s principles and practice of infectious diseases: 2-volume set,

volume 2. Elsevier Health Sciences, 2014.

[162] P Kirwa, T Rotich, R Obogi, and PK Tanui. Boundedness and positivity of

a mathematical model of the immune response to hiv infection. Int. J. Sci.

Res. Eng. Tech., 6:847–849, 2017.

[163] S Olaniyi and OS Obabiyi. Mathematical model for malaria transmission

dynamics in human and mosquito populations with nonlinear forces of infec-

tion. International journal of pure and applied Mathematics, 88(1):125–156,

2013.

[164] Pauline Van den Driessche. Reproduction numbers of infectious disease mod-

els. Infectious Disease Modelling, 2(3):288–303, 2017.

[165] Joseph P La Salle. The stability of dynamical systems. SIAM, 1976.

[166] Carlos Castillo-Chavez and Baojun Song. Dynamical models of tuberculosis

and their applications. Math. Biosci. Eng, 1(2):361–404, 2004.

[167] W Peters. Epidemiology of malaria in new guinea. Transactions of The

Royal Society of Tropical Medicine and Hygiene, 52(5):477–478, 1958.

[168] ME Smalley and RE Sinden. Plasmodium falciparum gametocytes: their

longevity and infectivity. Parasitology, 74(1):1–8, 1977.

[169] Suwastika Naidu and Anand Chand. A comparative study of the financial

problems faced by micro, small and medium enterprises in the manufacturing

sector of fiji and tonga. International Journal of Emerging Markets, 7(3):

245–262, 2012.

[170] C Garrett-Jones and B Grab. The assessment of insecticidal impact on the

malaria mosquito’s vectorial capacity, from data on the proportion of parous

females. Bulletin of the World Health Organization, 31(1):71, 1964.

154



Bibliography

[171] Abdoulaye A Djimde, Ogobara K Doumbo, Ousmane Traore, Ando B

Guindo, Kassoum Kayentao, Yacouba Diourte, Safiatou Niare-Doumbo,

Drissa Coulibaly, Abdoulaye K Kone, Yacouba Cissoko, et al. Clearance

of drug-resistant parasites as a model for protective immunity in plasmod-

ium falciparum malaria. The American journal of tropical medicine and

hygiene, 69(5):558–563, 2003.

[172] A Gemperli, P Vounatsou, N Sogoba, and T Smith. Malaria mapping using

transmission models: application to survey data from mali. American journal

of Epidemiology, 163(3):289–297, 2006.

[173] Umesh D Parashar, Erik G Hummelman, Joseph S Bresee, Mark A Miller,

and Roger I Glass. Global illness and deaths caused by rotavirus disease in

children. Emerging infectious diseases, 9(5):565, 2003.

[174] Hiroshi Nishiura. Early efforts in modeling the incubation period of infectious

diseases with an acute course of illness. Emerging themes in epidemiology, 4

(1):1–12, 2007.

[175] JR Glynn and DJ Bradley. The relationship between infecting dose and

severity of disease in reported outbreaks of salmonella infections. Epidemi-

ology Infection, 109(3):371–388, 1992.

[176] H Nishiura. Incubation period as a clinical predictor of botulism analysis

of previous izushi-borne outbreaks in hokkaido, japan, from 1951 to 1965.

Epidemiology Infection, 135(1):126–130, 2007.

[177] Isao Tateno et al. Incubation period and the initial symptoms of tetanus a

clinical assessment of theproblem of the passage of tetanus toxin to the cen-

tral nervous system. Jikken Igaku Zasshi Japanese Journal of Experimental

Medicine, 33(3):149–58, 1963.

[178] Miriam L Horowitz, Noah D Cohen, Shinji Takai, Teotimu Becu, M Keith

Chaffin, Karin K Chu, K Gary Magdesian, and Ronald J Martens. Appli-

cation of sartwell’s model (lognormal distribution of incubation periods) to

155



Bibliography

age at onset and age at death of foals with rhodococcus equi pneumonia as

evidence of perinatal infection. Journal of veterinary internal medicine, 15

(3):171–175, 2001.
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Cevit, Nazif Elaldı, and Abdülaziz Gültürk. Crimean-congo hemorrhagic
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