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ABSTRACT 

 

As the world's population and economy continue to expand at an 

unprecedented rate, so does the world's need for electricity. Since CO2 

emissions have risen significantly, global warming has occurred. Fortunately, 

pollution-free, eco-friendly, and limitless forms of renewable energy such as 

photovoltaic (PV) electricity may help alleviate some of these issues. The 

installation of PV systems across the world has thus increased in recent decades. 

The PV energy conversion system must be run at full power in order to 

maximize the efficiency of the solar system. With a variety of factors, including 

sun irradiation, temperature, and array voltage, it is very difficult to accurately 

measure an array's maximum power point (MPP). So, an MPPT controller is 

required in the PV system if it is to run at its maximum power point (MPP). 

Achieved through conventional methods like perturb and observation (P & O) 

and incremental conductance (INC), as well as through intelligent-based 

methods like artificial neural networks (ANN), and fuzzy logic controllers. To 

ensure that the DC connection voltage does not fluctuate, the MPPT has a built-

in DC-DC boost converter. this study compares the performance of the fixed 

voltage MPPT, P&O, INC, FLC and ANN algorithms. The simulation study is 

carried out for a 100 kW PV standalone system under varying climatic 

circumstances 

Grid-connected PV systems with horse herd optimization MPPT and 

hybrid Fuzzy Neural Network variable step size P&O MPPT are simulated. The 

grid-connected PV system was tested with uniform irradiance and partial 

shading conditions. Design and modelling grid-connected PV system with AEO 

optimized PI controller is carried out and the artificial ecosystem optimized PI 

voltage and current controlled grid-connected PV energy conversion system for 

different operating conditions are analyzed 

Grid-connected PV systems are typically more efficient than standalone 

systems because they can take advantage of net metering, which allows excess 

electricity generated by the system to be sent back to the grid for credit, reducing 

the overall cost of electricity. 
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The design and modelling of grid-connected PV systems with an 

optimized PI controller are analyzed. Detailed simulation of the artificial 

ecosystem optimized PI voltage and currently controlled grid-connected PV 

energy conversion system is examined for different operating conditions and 

compared with the ZN PI controller and AFL controller.  The above methods 

are compared in terms of THD, rise time and settling time. 

Optimization algorithms play a crucial role in tracking the maximum 

power point (MPP) of a solar panel. The MPP is the point at which the panel 

generates the maximum amount of power, and tracking it is important for 

achieving optimal energy output. 

Solar panels are subject to various factors that can affect their 

performance, including temperature, shading, and changes in weather 

conditions. An optimization algorithm is designed to constantly adjust the 

system to maximize power output and ensure that the panel operates at its MPP 

despite these factors. The optimization algorithm uses feedback control to 

continuously adjust the power output of the solar panel to match the MPP. This 

is achieved by constantly monitoring the voltage and current output of the panel 

and adjusting the load resistance accordingly. 

Without optimization algorithms, solar panels would not be able to 

generate as much power as they are capable of. This can result in lower energy 

output and reduced efficiency, which can be particularly problematic in 

situations where solar power is the primary source of energy. Optimization 

algorithms also enable solar panels to be integrated more effectively into the 

grid. By ensuring that the panel operates at its MPP, the energy generated can 

be fed back into the grid more efficiently, reducing the need for backup power 

and increasing the overall efficiency of the system. 

 Hence in this paper, various optimization techniques are used to extract 

maximum power from the solar panel. All the algorithms are checked with 

varying temperatures and changing weather conditions. All the algorithms are 

compared in terms of various parameters. 

A DC microgrid is a type of electrical power produced by solar panels 

and some battery storage systems. DC microgrids are less common and less 
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established than AC microgrids, but they are becoming increasingly popular as 

the use of renewable energy sources such as solar panels and wind turbines 

becomes more widespread. 

DC microgrids are generally more efficient than AC microgrids because 

they eliminate the need for multiple conversions between AC and DC power. 

They are also simpler to design and operate, which can make them more cost-

effective. 

One potential drawback of DC microgrids is that they require specialized 

equipment, such as DC-DC converters, to convert the voltage of the power to 

the appropriate level for use by various devices. This can add complexity and 

cost to the system. Ongoing advancements in solar technology, such as 

improvements in solar cell efficiency and energy storage systems, can help to 

make solar PV systems more cost-effective and efficient. This can make them 

more attractive to homeowners and businesses looking to reduce their carbon 

footprint and energy costs. The use of optimization techniques ensures that the 

solar panel is operating at its maximum power point, which maximizes energy 

output and reduces energy waste. This can lead to significant improvements in 

energy efficiency and cost savings over time. Optimization techniques can help 

to mitigate the effects of external factors, such as shading and changes in 

weather conditions, on the performance of the solar panel. This can help to 

increase the reliability of the system and reduce the risk of system downtime.  

In this paper, the simulation and analysis of various optimization 

techniques connected with the grid, here many bios-inspired techniques are also 

used to analyse the effects in solar panels during uniform & non-uniform 

conditions. By comparing the features of MPPT optimization techniques we can 

able to choose the best among all, which can able to track maximum power 

during all conditions. Hence it avoids the drawbacks of the grid-connected 

system. The prototype model of the best optimization can be developed and it 

can be used for real-time implementation in Grid-connected as well as 

standalone PV systems. 
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Chapter 1 

Introduction 

1.1 Introduction 

In this chapter, the global energy environment is accurately portrayed. Currently, 

coal dominates the energy mix; however, there is a shift towards cleaner 

technologies. Along with detailing the nation's general energy condition, the 

share of renewable energy in each of India's regions is highlighted. It is projected 

that by 2050, each region should have 250 MW of renewable capacity. The 

reasons for and objectives of this research effort are discussed, considering all 

the novel features of this research at this stage. 

Human civilization rests on a foundation of energy. The well-being and progress 

of people are directly tied to the availability and efficient use of energy, which 

has a significant impact on a community's or a country's social and economic 

growth. Because of its central role in global politics, diplomacy, and the 

economy, energy commands the undivided attention of all parties involved [1]-

[5]. 

The growth of clean energy is relentless, as evidenced by annual statistics from 

the International Energy Agency (IEA): IEA forecasts project that the renewable 

energy share in global electricity supply will rise from 28.7% in 2021 to 43% in 

2030. Additionally, renewables are expected to contribute two-thirds of the 

increase in electricity demand during this period, primarily driven by wind and 

photovoltaic technologies. The International Energy Agency (IEA) projects that 

global electricity demand will rise by 70% by 2040, with its share of final energy 

use increasing from 18% to 24% over the same period. This growth is primarily 

driven by the emerging economies of India, China, Africa, the Middle East, and 

South-East Asia. 
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Transitioning to an energy system based on renewable technologies will yield 

highly positive economic outcomes for the global economy and development. 

Both the International Renewable Energy Agency (IRENA) and the International 

Energy Agency (IEA) suggest that tripling the share of renewable energy in 

electricity generation from the 2022 levels to 90% worldwide by 2030 is 

essential for meeting the targets set in the Paris Agreement. Achieving this goal 

will require increasing annual investments in renewable energy from the current 

USD 1.3 trillion to USD 5 trillion, which will in turn boost job creation and drive 

growth in the green economy. 

Raw strength (man and animal power) was the primary source of pre-industrial 

energy consumption (about 1700 kWh). Water, wind, the smelting of metals, and 

firewood were also used as foundations of energy. The discovery and subsequent 

improvement in coal-use technologies propelled the Industrial Revolution 

around 1800. A wide range of steam engines powered by coal and automated 

manufacturing and transportation were widely adopted in line with current 

developments. Around 1900, the amount of oil and natural gas being discovered 

and used grew at an exponential rate. Global awareness of inefficient and 

indiscriminate oil usage was raised during and after World War II due to the 

struggle for oil possession and access among countries. Alternative sources of 

energy were sought, and natural gas and uranium-based atomic energy were 

instrumental in spurring economic expansion. New technologies and resources, 

particularly renewables, have recently come into emphasis as a way to keep up 

with the rapid rate of growth while also reducing the dangers associated with 

fossil fuel consumption. This change has occurred recently. Power supply and 

energy use patterns have an enormous impact on human civilization's progress. 

Additionally, the current energy situation may be utilized to help plan the future 

[6]-[9]. 

 



3 
 

1.2 Review of related works 

A thorough analysis of the nation's potential for renewable energy resources, 

hybrid energy systems, and integrated resource utilization in rural electrification 

initiatives was deemed necessary to obtain viable data. More research is being 

done on how to utilize green energy sources, including the creation of stand-

alone hybrid systems and efforts to harness renewable energy resource 

potentials. All simulations for the following authors were performed using the 

MATLAB simulation environment, even though they took place over a wide 

range of dates, places, and nations. 

As reported in [10], a model of an independent energy generation system was 

simulated for remote communities. According to the findings of the study, the 

majority of the energy consumed in remote communities is for lighting, radio, 

and television entertainment purposes, totalling approximately 0.2 to 1 kWh/day, 

depending on the time of day. The feasibility of simulating and modeling four 

distinct system setups/configurations, including a diesel-battery-powered micro 

hydro generator (solar-diesel-battery), LPG-Solar battery-generator, and hydro-

LPG generator-battery, was explored. The most cost-effective micro hydro-

hybrid system consisted of a 15-kiloWatt LPG generator, a 14-kiloWatt micro-

hydro generator, and a 36-kiloWatt-hour battery storage alternative based on the 

simulation's results, with a cost per kWh of 6.5 Rupees. The second simulation 

for the PV hybrid system included a 15-kiloWatt LPG generator, 18kW PV 

source generator, and 72kWh storage battery; the estimated energy price was 

computed at 5.8 Rs/kWh, given a remote petrol price of Rs101/liter and Rs60/Kg 

price of LPG, resulting in a cost of energy at Rs.50/kWh. To reduce costs, a PV 

hybrid system was shown to be more cost-effective in the northern portions of 

Cameroon than a micro-hydro system with a minimum flow rate of 200 

liters/second. For example, [11]'s research revealed how to create an all-in-one 

wind turbine along with a solar PV hybrid energy production system that could 

power a model village of 100 dwellings as well as health clinics and elementary 
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schools. To get the project started, a study of the potential for the two (wind and 

PV power) in a region of interest was conducted. Here the best simulation 

outcome showed that the system was made up of a turbine/diesel wind/PV 

battery/generator and converter combination. When it comes to this 

arrangement, the NPC is $109,114, the COE is 0.302-$/kWh, and the total diesel 

fuel used is 1,955 liters per year, with an operating duration of 633 hours per 

year for an 84% renewable proportion. 

For rural populations in India, [12] conducted a feasibility analysis on a 

standalone hybrid power system from solar and wind sources that could be used 

to generate electricity. The study presented results from a simulation of a 200-

household village, incorporating PV, wind, diesel, and battery systems. The most 

cost-effective setup identified was a battery/converter/diesel generator 

combination (hybrid) with no contribution from renewable energy sources, as 

stated in the paper's conclusions. The load-following dispatch technique was 

utilized in this scenario, along with different cost-effective combinations of 

diesel generators, PV systems, and converters [112]-[113]. According to the 

author's conclusion, these power configurations can be effectively deployed in 

areas where these resources are readily available. 

Orissa's Sundargarh district has a hybrid power system comprised of PV, wind, 

micro-hydro, and a diesel generator, which was designed as a computer model 

by [13]. Two simulations were conducted in this research: one using a mix of a 

diesel generator and two primary green energy sources (solar PV-wind), and the 

other using wind/solar PV, small hydro, and a diesel-run generator. According 

to the conclusions of the scientists, the scheme is only limited by changes in wind 

power and home demand. Elhassan et al [14] describe in full the design and 

construction of a high-efficiency renewable energy-powered electricity system 

in Sudan's capital of Khartoum. Individual homes and groups of between 10 and 

25 households participated in the simulation activity. Single-user PV/battery 

systems cost more than wind and PV systems for a large group of homes to 
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produce electricity. Listed here are a few instances of the costs: If there are ten 

households, the COE is roughly 25.8 SP/Wh, and if there are twenty-five, the 

COE is approximately 20.1 SP/Wh. Wind turbine hybridization with an off-grid 

nonrenewable diesel power plant in Saudi Arabia's rural area in the north was 

shown to be feasible, according to S.Rehman et al. [15]. By merging wind 

turbines with diesel generators, the project aimed to minimize environmental 

pollutants and lower operational costs. Wind speed was also included in a 

sensitivity assessment since it can have a vital influence on the power system 

over time. The results of the simulation indicated that it would not be feasible to 

retrofit an existing diesel generator with a wind turbine if the average wind speed 

was lower than 6 meters per second and the price of diesel fuel was lower than 

0.01 cents per litre [34]-[38]. 

The journal Renewable Energy published research by [16] that examined the 

possibilities for off-grid electricity in Bhutan's rural areas. The study was 

conducted at four different locations across the United States. When determining 

the demanding load, only illumination and communication were taken into 

account. The principal objective of the article was to increase the efficiency of 

hybrid power production systems. In Gasa and Lunana, the most cost-effective 

technology was the PV/battery power generating system, whereas in Getena, the 

most cost-effective technology was the diesel/battery/PV combination system. 

Using a wind and battery system was shown to be more efficient at the Yangtse 

location. As a case study, [17] looked at the economic and technological 

elements of rural Algerian community's hybrid (wind and diesel generator) 

projects. The research investigated whether it would be possible to reduce the 

amount of fuel used by diesel power plants by installing wind turbines alongside 

those plants' existing systems. When compared to the hybrid system, the diesel-

powered plant's cost per litre of between 0.05 and 0.179 dollars is lower, making 

it the more cost-effective option, according to the author, at wind speeds below 

5 m/s. As long as the wind speed is 5.48 metres per second, capacity shortages 
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are zero percent, renewable fractions are zero percent, and the fuel price is 

$0.162, a hybrid system is a feasible alternative. In the Democratic Republic of 

the Congo, hybrid renewable/green energy systems can supply the principal 

electricity for mobile phone towers, according to Kasukana and colleagues [18]. 

They were able to prove their viability. Researchers conducted their 

investigation into the lack of electricity in Kamina, Mbuji-Mayi, and Kabinda, 

as well as other places. The authors looked into a range of different topologies, 

including diesel generators, PV-wind systems, 100% PV, and 100% wind 

schemes. Every possible configuration was examined for its impact on the 

environment and the economy. For Kabinda's ideal hybrid system, two wind 

turbines, an 11kW photovoltaic system, eighty-two batteries, and a 7.5kW 

converter are all that is needed to get the job done. There is an NPC of $196,975 

per kWh and a COE of $0.372. 

Aside from MATLAB's usage as an optimization tool, the hybrid system 

configurations were explored with diverse load demands, and the applications, 

research sites, and meteorological data they used were all unique. To conduct 

some of the experiments, a diesel-powered generator was used to supply 

electricity where none previously existed. Other tests were conducted in regions 

with working electricity. Building a hybrid power system for a particular location 

requires careful consideration of weather data and the number of houses, service 

centers, and consumer load profiles. Additionally, the hybrid off-grid power 

system described in this paper was designed and optimized using the same 

software. This system will provide electricity to a large number of households 

for various purposes, including lighting, baking, communication, water and 

irrigation, and small businesses. Only limited studies at the master's level have 

been conducted for a small number of families (no more than 200) and in a small 

number of locations around the country to determine whether or not to 

implement hybrid power systems in the country. The application, load demand, 

climate data, location, and sheer quantity of households included in this paper 
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are some of the ways it differs from other studies that have been conducted [57]-

[66]. 

1.3 Research Motivations 

To integrate renewable energy into the present energy mix, there are several 

reasons for doing so. The urgency to develop and install renewable energy 

systems worldwide, particularly in India, is primarily motivated by. 

1. Increasing need for energy;  

2. Depletion of fossil fuel sources;  

3. Changes in climate;  

4. Belief in inclusive development;  

5. Efforts to offer power to those who are currently without it 

Solar PV renewable energy systems have recently seen an upsurge in their 

development and implementation around the globe. The rapid decline in the cost 

of clean energy technology and the emergence of new renewable markets boost 

the adoption of renewable-based energy systems. However, ensuring 

renewables' long-term performance and social advantages is crucial. A key issue 

is the deterioration of renewable components over time. As the cost of PV 

modules decreases, the business opportunities for the microgrid concept will 

improve, as will the range of jobs available in related industries. Human 

development studies are becoming mandatory due to these initiatives. Reducing 

emissions using energy systems based on renewable resources also merits 

consideration. Preliminary simulation studies on design and performance are 

necessary, as are precise technical and financial concepts for the system under 

consideration. As a result, the realization and effective usage of non-

conventional energy on a broad scale, as well as the ongoing search for other 

energy sources, pose a major challenge to humanity. 
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1.4 Objective of research 

The following are the goals of the current study, which are based on previous 

research: 

1. Design and simulation of solar PV integrated on standalone model with 

fixed voltage method, incremental conductance, perturb & observe, 

Fuzzy, neural network and hybrid Network (NN) & fuzzy based peak 

power-point tracking control and tested with rapid and continuous 

varying irradiance conditions and analyzed with the parameters such as 

rise time and settling time for the converter. 

2. Design and simulation of grid-linked PV system with horse herd 

optimization and hybrid Network & fuzzy-based peak power-point 

tracking control and tested using rapid and continuous irradiance 

conditions and also tested with connecting load resistance in a point of 

common-coupling. 

3. Design and MATLAB simulation of Conventional PI, augmented full 

state feedback controller and Artificial Eco System Optimized 

Proportional Integral controller for a grid-connected operation of the 

PV/solar system under non-uniform and uniform irradiance conditions. 
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1.5 Structure of Thesis 

Chapter 1 explains the thesis overview that is appropriate for the reader. A wide 

range of energy sources has been examined, and their results are reported in this 

chapter. The thesis's scope, motivation, and structure are all addressed in this 

section. 

Chapter 2 deals with Dissemination of core principles and philosophy of PV 

systems with different MPPT and energy conversion, and investigation of the 

Fixed Voltage method, Incremental conductance MPPT, Perturb & Observe 

MPPT, neural network, fuzzy logic, and hybrid-neural-network & fuzzy-based 

peak power-point tracking controls to increase solar PV electrical energy 

production. 

Chapter 3 deals with the grid-connected operation of the PV system with horse 

herd optimization MPPT and hybrid neural network and fuzzy-based MPPT. It 

also explains the results under uniform irradiance conditions and partial shading 

conditions. 

Chapter 4 investigates the operation of the grid-connected PV system with an 

Artificial ecosystem-optimized Proportional-Integral controller. The suggested 

controller is being evaluated in comparison to the conventional proportional-

integral controller and AFL controller under uniform irradiance conditions. 

In Chapter 5, we will provide final observations and remarks on the grid-

connected PV system under non-uniform and uniform irradiance conditions and 

propose ideas for the scope of future work.
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Chapter 2 

Maximum/peak power-point Algorithms for 

Solar- PV system 

 

This chapter elaborates on various algorithms used to determine the peak/max 

power point of a photovoltaic array system. Many peak power-point approaches 

have been thoroughly addressed, such as the Fixed voltage MPPT, Perturb and 

Observe (P&O), Incremental Conductance (InC) approach, fuzzy control-based 

MPPT method, and Neural Network-based MPPT method. 

2.1 Fixed voltage Peak/max power-point algorithm 

The peak/max power-point of PV characteristics determines a steady voltage 

reference across the solar PV (photovoltaic) panel. Figure 2.1 illustrates the 

principle of fixed PV voltage MPPT. 

 

Figure 2.1. Fixed(constant) Voltage Peak(max) Solar PV power point 

technique  

Measurement is done using an onboard voltage sensor, and comparisons 

are made against the PV panel's peak power point (i.e., volts per square meter). 
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Using a PID (Proportional Integral Derivative) regulator, the incorrect voltage is 

corrected. The Proportional Integral Derivative (PID) controller uses the error 

voltage, sometimes referred to as the duty cycle, to generate the control signal. 

The PWM generator is applied to handle the duty cycle. Within the PWM 

generator, the duty cycle is compared to the triangle wave, and the PWM pulse 

is generated. The power semiconductor switches of the DC-DC converter are 

activated and deactivated by this PWM pulse. The peak power point can be 

tracked from the PV panel with this switching pulse and duty cycle. 

As a starting point, let's consider that Vpv stands for PV voltage, while Vf 

represents the fixed reference voltage. 

𝑒(𝑡) = 𝑉𝑓 − 𝑉𝑝𝑣     (2.1) 

Following the processing of the voltage error by a Proportional Integral 

Derivative (PID) controller, the following equation serves as the PID controller's 

output or final result: 

𝑢(𝑡) = 𝐾𝑝 × 𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
    (2.2) 

In this case, the PID controller's Kp, Ki, and Kd represent proportional, 

integral, and derivative gains, respectively. These controller gains can be 

adjusted using the Ziegler-Nichols Method or an optimization technique. 

Using the PWM generator, the PID controller's output is compared to a 

triangle waveform, or duty cycle, to determine whether the PID controller is 

operating properly. The operation of the PWM generator can be represented in 

terms of the triangle waveform's instantaneous amplitude,  

T(t).

𝑖𝑓 𝑢(𝑡) > 𝑇(𝑡)

𝑃𝑢𝑙𝑠𝑒 = 1
𝑒𝑙𝑠𝑒

𝑃𝑢𝑙𝑠𝑒 = 0

     (2.3) 



12 
 

It is possible to determine the fixed voltage that should be used for a given PV 

panel's irradiance circumstances by first analyzing its voltage and current 

characteristics, as shown in Figure 2.2 below. 

 

Figure 2.2. Voltage - Current, Voltage – Power characteristics of the 

typical 250 W PV panel 

For different irradiances, after obtaining the voltage (V)-power (P) and voltage 

(V)-current (I) characteristics, the next step is to measure the PV voltage (V) at 

the peak power point for various irradiances. An example of typical PV panel 

power-voltage characteristics is shown in Figure 2.3. 
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Figure 2.3. Zoomed view of voltage vs power parameters of the typical 250 

W PV panel 

It is imperative to record the voltage values of V1, V2, V3, V4, and V5, 

followed by computing their average. This averaged voltage will serve as the 

constant reference voltage for the Fixed-voltage technique MPPT and can be 

mathematically expressed as follows. 

:𝑉𝑓 =
𝑉1+ 𝑉2 + 𝑉3+ 𝑉4 …+ 𝑉𝑛

𝑛
      (2.4) 

The variable "n" here represents the number of voltage points from the 

PV array’s voltage-power graphs that are used in this calculation. 

However, when the cell temperature fluctuates significantly, this 

approach cannot accurately determine the solar PV panel's peak power output. 
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2.2 P&O Peak(max) power-locus approach  

The Perturb and Observe Peak Power Point (P&O) technique involves 

maintaining the voltage at the peak power point of every solar photovoltaic panel 

[24]. This concept of the Perturb and Observe Peak PowerPoint Method is 

illustrated in Figure 2.4. 

 

Figure 2.4. P&O Peak power locus technique for Solar PV system 

PV voltage and current are measured using voltage and current sensors and 

detectors. It is then delayed by a sample to retrieve the PV current and voltage 

values from the preceding sample. PV current and voltage are used to determine 

the change in power, which is then compared to the previous instant voltage and 

current [89]. The duty cycle of the P&O MPPT is calculated based on the 

variation in voltage and power conditions. The PV array's voltage-power 

characteristics are used to demonstrate how the P&O MPPT works. 
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Figure 2.5. Power-Voltage characteristics of a typical 250 W PV Panel 

Figure 2.5 shows the typical PV array's voltage-power characteristics. To 

better understand the P&O MPPT algorithm, four different operating conditions 

are considered. These conditions are depicted in different colors: the first 

operating condition is shown in red, the second operating condition in blue, the 

third operating condition in brown, and the fourth operating condition in pink in 

Figure 2.5. At the initial operating point, PV voltage changes from V1 to V2, 

and panel power changes from P1 to P2. To move the power point closer to the 

maximum power point, the PV voltage should be changed from V2 to another 

value as long as both P2-P1 and V2-V1 are positive. 

𝑖𝑓 (𝑃2 − 𝑃1 > 0) & (𝑉2 − 𝑉1 > 0)

{𝑉𝑃𝑉 = 𝑉2 + ∆𝑉}
    (2.5) 

The PV voltage is reduced from V4 to V3, and the power changes from 

P4 to P3 at the second operating point. These conditions require an increase in 

voltage in the PV panel to shift the maximum/peak power point of the solar PV 

panel closer to the PV panel's power point (from V3 to V4). This involves a 

change in power (P3-P4) and a change in voltage (V3-V4) 
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Figure 2.6. Flow Chart for PO MPPT 

𝑖𝑓 (𝑃3 − 𝑃4 < 0) && (𝑉3 − 𝑉4 < 0)

{𝑉𝑃𝑉 = 𝑉3 + ∆𝑉}
    (2.6) 

At this third operating point, the PV voltage changes from V5 to V6, and 

the PV power changes from P5 to P6. The voltage of the PV array should be 

decreased from V6 to a lower value, as both the change in power (P6-P5) and 

the voltage variation (V6-V5) are negative under these circumstances. 

𝑖𝑓 (𝑃6 − 𝑃5 < 0) && (𝑉6 − 𝑉5 > 0)

{𝑉𝑃𝑉 = 𝑉6 − ∆𝑉}
    (2.7) 

A shift in PV voltage from V8 to V7 and a corresponding decrease in PV 

power represent the fourth operational point. Changes in power (P7-P8) are 

positive, whereas changes in voltage (V7-V8) are negative. To move the power 
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point closer to the maximum or peak power point of the solar panel, the PV 

voltage should thus drop from V7 to a different value. 

𝑖𝑓 (𝑃7 − 𝑃8 > 0) && (𝑉7 − 𝑉8 < 0)

{𝑉𝑃𝑉 = 𝑉7 − ∆𝑉}
    (2.8) 

The P&O MPPT algorithm flow chart in Figure 2.6 is based on these four 

operating circumstances [108]. Since this method oscillates around the PV 

panel's maximum power point, it takes some time to reach it. 

2.3 Incremental conductance Peak power point algorithm 

By using this technique, the voltage of the solar PV array is maintained at its 

maximum power point, depending on PV current and PV voltage, using 

incremental conductance [24]. The incremental conductance peak power point 

technique is depicted in Figure 2.7. 

 

Figure 2.7. (InC) Incremental-Conductance Peak-power-point method for 

Solar PV system 

Current (I) and voltage (V) detectors/sensors are used to measure PV current 

and voltage in this approach. 
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Figure 2.8. Power-Voltage characteristics of a typical 250 W PV-Panel 

It is then delayed by a sample to retrieve the PV current and voltage values 

from the preceding sample. The instant PV current and the preceding instant PV 

current are used to compute change currents. Based on the previous instant 

voltage of PV and the current instant voltage of PV, the voltage change is 

determined. MPPT measures the incremental and direct conductance of the PV 

panel to determine the duty cycle. The voltage-power characteristics of the PV 

array are used to illustrate the operation of the InC (incremental-conductance) 

MPPT [90]. 

The typical power-voltage characteristics of a PV panel are depicted in 

Figure 2.8. The incremental conductance MPPT procedure is explained using 

four different operating conditions, as shown in Figure 2.8. The illustration 

displays distinct operating points [92], each represented by a unique color. 

Specifically, the colors red, blue, brown, and pink represent the first, second, 

third, and fourth operational points, respectively. At the initial operational point, 

there is a transition in PV voltage from V1 to V2, accompanied by a 
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corresponding shift in panel power from P1 to P2. Under such conditions, it can 

be observed that the change in power (P2-P1) and the change in voltage (V2-V1) 

both exhibit a positive sign. Additionally, the gradient of the power-voltage 

characteristics is also positive. Under these circumstances, it is recommended to 

increase the PV voltage from V2 to a value that brings the power point closer to 

the highest power point of the PV array. 

                          
𝑖𝑓 (

∆𝑃

∆𝑉
 > 0)

{𝑉𝑃𝑉 = 𝑉2 + ∆𝑉}
     (2.9) 

At the second operating point, the PV voltage decreases from V4 to V3, and the 

PV power decreases from P4 to P3. This situation involves a negative change in 

power (P3-P4) and a negative change in voltage (V3-V4), while the slope of the 

voltage-power characteristics is positively sloped. To reach its maximum output, 

the PV panel's voltage needs to be increased from V3 to another value. 

𝑖𝑓 (
∆𝑃

∆𝑉
 > 0)

{𝑉𝑃𝑉 = 𝑉3 + ∆𝑉}
     (2.10) 

At this third operating point, the PV voltage changes from V5 to V6, and 

the PV power changes from P5 to P6. In these circumstances, the change in 

power (P6-P5) is negative, and the voltage-power characteristics exhibit a 

negative gradient. To move closer to the PV array's maximum power point, the 

PV voltage must be decreased from V6 to another value. 

𝑖𝑓 (
∆𝑃

∆𝑉
 > 0)

{𝑉𝑃𝑉 = 𝑉6 − ∆𝑉}
                          (2.11) 

                        

A shift in PV voltage from V8 to V7 and a corresponding decrease in PV power 

are observed at the fourth operational point. In these circumstances, the power-

voltage characteristics exhibit a negative slope, with a positive sign for power 

changes (P7-P8) and a negative sign for voltage changes (V7-V8). 
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Figure 2.9. Flow Chart for Incremental Conductance MPPT 

The voltage needs to be reduced from V7 to another value for the 

photovoltaic system to reach its maximum energy production   
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𝑖𝑓 (

∆𝑃

∆𝑉
 > 0)

{𝑉𝑃𝑉 = 𝑉7 − ∆𝑉}
                             (2.12) 

The voltage-power characteristics of the photovoltaic panel can be 

expressed as a slope., denoted as 
∆𝑃

∆𝑉
. 

∆𝑃

∆𝑉
= 𝐼 + 𝑉

∆𝐼

∆𝑉
      (2.13) 

At its peak, the PV panel's power-voltage characteristics have a slope of 

zero. 

0 = 𝐼 + 𝑉
∆𝐼

∆𝑉
      (2.14) 

∆𝐼

∆𝑉
= −

𝐼

𝑉
      (2.15) 

Where, 
∆𝐼

∆𝑉
  is the incremental conductance of the PV-panel, 

𝐼

𝑉
(current/voltage) is the instantaneous conductance of the PV-panel. Both will 

equal opposite during peak power point conditions. The power points are on the 

left side of  Toracteristics when
∆𝐼

∆𝑉
>  −

𝐼

𝑉
. In order to advance the powerpoint 

towards the maximum (peak) point position, PV voltage must grow to a certain 

amount.   

The power point is located on the right side of the voltage-power 

characteristics when 
∆𝐼

∆𝑉
<  −

𝐼

𝑉
,. To shift the power point towards the peak 

location, the PV voltage must decrease to a specific level. The flowchart for the 

incremental conductance MPPT technique, based on these operating conditions, 

is shown in Figure 2.9. Since this strategy oscillates around the PV panel's 

maximum power point, it takes some time to reach it. 
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2.4 Fuzzy Logic-based MPPT Control Algorithm 

To optimize the performance of the photovoltaic array, the MPPT procedure 

utilizes a fuzzy-based maximum power point tracking approach [26]-[28]. The 

input to the fuzzy MPPT algorithm includes power slope error (E) and the rate of 

change of power slope error (E). This algorithm is described by the equation 

mentioned below. 

𝐸𝑁(𝑘) =
∆𝑃𝑁(𝑘)

∆𝑉𝑁(𝑘)
          (2.16) 

∆𝑉𝑁(𝑘) = 𝑉𝑝𝑣𝑁(𝑘) − 𝑉𝑝𝑣𝑁(𝑘 − 1)     (2.17) 

∆𝑃𝑁(𝑘) = 𝑃𝑝𝑣𝑁(𝑘) − 𝑃𝑝𝑣𝑁(𝑘 − 1)     (2.18) 

∆𝐸𝑁(𝑘) = 𝐸𝑁(𝑘) − 𝐸𝑁(𝑘 − 1)      (2.19) 

Where, 𝐸𝑁(𝑘) is the power-error error, power-slope 𝑝𝑜𝑤𝑒𝑟 − 𝑠𝑙𝑜𝑝𝑒rror, 

𝑉𝑝𝑣𝑁(𝑘) is the current instant voltage(v) of the PV array, 𝑉𝑝𝑣𝑁(𝑘 − 1) is the 

previous instant voltage of the PV array, 𝑃𝑝𝑣𝑁(𝑘) is the current instant PV array  

 

 

Figure 2.10. Fuzzy-Logic-Based (FLC) Peak-power-point technique for 

Solar-PV system 
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Figure 2.11 Membership function for Error 

power, 𝑃𝑝𝑣𝑁(𝑘 − 1) is the earlier instant PV array power, 𝐸𝑁(𝑘) is the current 

instant power slope error and 𝐸𝑁(𝑘 − 1) is the earlier instant power slope error. 

The Fuzzy MPPT algorithm calculates the duty cycle for the next step based on 

the power slope error (E) and the rate of change in power (P) slope error. The 

membership functions for power slope error and the rate of change in power slope 

error are shown in Figures 2.11 and 2.12. The output of this function can be seen 

in Figure 2.13. 

 

Figure 2.12 Membership function for the rate of change of Error. 

The fuzzy implication system MAMDANI is utilized to represent the fuzzy 

inference-based MPPT. Five membership functions, namely Zero, Positive 
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Small (Z), Positive Big (PB), and Negative Big (NB), are used to allocate error, 

rate of error change, and duty cycle (NB). 

 

Figure 2.13 Membership function for Duty-Cycle Fuzzy  

Table 2.1. Rule base for Fuzzy-Logic MPPT algorithm 

 

Table 2. I display the rule structure for the twenty-five rules generated in the fuzzy 

inference system to implement the MPPT algorithm. The Centroid 

defuzzification method is employed in the fuzzy inference system. 
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2.5 Neural Network-based MPPTControl Algorithm 

 Complex or imprecise plant models may benefit from neural networks in 

nonlinear systems [88]. Solving these puzzles is challenging, whether by hand or 

through more complicated computer techniques. Weight-initialized ANNs can be 

regarded as "information experts." The photovoltaic system with neural network 

MPPT control is shown in Figure 2.14. 

 

Figure 2.14. Neural-Network(N_N) Based Peak power-point-technique for 

Solar PV-system 

Adopting the concept of adaptive data sets, it is feasible to use an input and output 

set to learn and accomplish an assignment. During the learning process, neural 

networks can arrange themselves according to the information they receive. 

Figure 2.15 exhibits a neural network in the block diagram. The peak PV-array 

output voltage (Vmppref) is used to train the Neural Network controller, which 

receives inputs of temperature (T) and irradiance (I). PI(Proportional Integral)  

Controller is utilized to compare the neural network(NN) output voltage to the 

PV voltage and create the duty cycle[86]. The duty cycle is determined based on 

the connection (2.15), 
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𝐷 = 𝐾𝑝 × (𝑉𝑃𝑉 − 𝑉𝑚𝑝𝑝𝑟𝑒𝑓) + 𝐾𝑖 × ∫(𝑉𝑃𝑉 − 𝑉𝑚𝑝𝑝𝑟𝑒𝑓)𝑑𝑡   (2.20) 

Using the power slope error (E) and the rate of change in power slope error (P), 

fuzzy MPPT determines the duty cycle for the next step. Figures 2.11 and 2.12 

provide the membership values for power slope error and power slope error rate 

 

Figure 2.15 Generalized Blocks of ANN-based MPPT Controller 

   

of variation. All the input and output variables required to construct the neural 

network framework are provided by the data. Before constructing a neural 

network tailored for a specific task, feed-forward networks are explored. The 

general architecture of the Feed-forward Network is shown in Figure 2.16. Three 

methods can be used to build an ANN model:  
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1. Discover the neurological connections in the wiring of your brain that 

connect the various patterns. 

2. Choose the technique for determining each neuron's initial weight based on 

the training and learning function. 

3. Define an activation function to find the output of a neuron. This stage is 

described by the term "network architecture" [72]. 

 

 

Figure. 2.16 Generalized structure of ANN layer 

In the hidden layer, there is no standard or norm for the number of neurons. When 

neurons in a transfer function ANN communicate, the synaptic weight of the 

connections between them processes the information inside the cell before 

transmitting it to another neuron. Here's the equation for the net activation input 

of unit k in the jth hidden layer: 


=

+=
n

i

kiijj xwnet
1

      (2.21) 
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The weight of input neurons and hidden neurons may be calculated by 

multiplying the independent variables (xi) of the experimental sample and the 

bias of the hidden nodes (θk). A single neuron receives all the information from 

the neurons in the previous layer. During training and testing, the output (Oj) of 

the jth neuron is determined using a hyperbolic tangent sigmoid function in the 

hidden layer. 

1
1

2
2

−
+

=
− jnetjt

e
O     (2.22) 

A similar pattern is followed by neurons in both the output and hidden layers. 

During training, the weights must be adjusted to minimize a predefined error 

function. Calculating the mean squared error (MSE) can be done in various ways. 

21
 −







=

i

ii ot
N

MSE    (2.23) 

The target value is denoted as t, the output value as o, and the number of 

neurons in the output layer of the network is N in equation (2.18). 

Feed-forward Artificial Neural Networks (ANNs) facilitate unidirectional 

signal transmission, specifically from the input layer to the output layer. In pattern 

recognition, feed-forward ANNs that map inputs to outputs are often used [33]. 

This method is referred to as both bottom-up and top-down classification. The 

network's architecture involves at least three layers: an output layer, an input 

layer, and a hidden layer. Neurons are organized into layers, each with a certain 

number of neurons. Each neuron serves two separate functions. Neurons are 

assigned to the hidden layer through a process called trial and error. The 

processor's speed and memory requirements are affected by the network's size. 

Increased memory and computational needs go hand in hand as the total number 

of neurons increases. Conversely, fewer neurons may not accurately map the 

network's functionality. A non-linear activation function was used to increase the 



29 
 

hidden layer's training efficiency. A weighted average of 0.001 weight increment 

measures the learning rate, which is a crucial consideration in network design. If 

it is too small, the method's convergence may take a lengthy period. 

The following activities are required for implementing the ANN framework: 

1. Start by initializing an archive of weights with random values between 0 and 

1, which helps evaluate the fitness of solutions using a feed-forward neural 

network object. Gather training data for ANN-based MPPT by conducting 

experiments. The input and output matrices for ANN1 are denoted as c and T*, 

respectively. Training data for ANN2 is derived from load current, losses, and 

efficiency measurements, all of which have been normalized to values between 0 

and 1. 

2. Repeat the previously described process until the training error limit is 

reached or the maximum number of repetitions is reached. 

3. Utilize either 25 percent of the training data or a new batch of data for further 

testing once the algorithm has been trained. The ANN controller uses the Leven 

Berg-Marquardt approach to train motor operation data. This method was initially 

devised in 1960 for non-linear least squares issues. The formulae for a weight 

linking nodes in layer k to nodes in the nth epoch are used to update node weights. 

( ) ( )1kj j* k kj n   
w n * y  µ*  w

−
 =   +                     (2.24) 

( ) ( )1j j j j j t y  * y *  y = − −                        (2.25) 

 Nodes in the previous layer can contribute to the calculation of a 

hidden layer's error term, as demonstrated in equation (2.18), which involves 

backpropagation. The Gauss-Newton method is used in combination with 

gradient descent in this approach. We continue to perform input/output mapping, 

comparisons, and weight adjustments until we have learned all the data from the 

training set within an acceptable overall error. Additionally, we evaluate the 
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overall training matrix error total and assessment error. This method does not 

require the computation of Hessian matrices to operate. 

                
t  * H J J   µ* I  = +                (2.26) 

Assuming a combination coefficient of µ = 1, we obtain a gradient of G = Jᵗ * 

e, where “I” is the identity matrix. The Jacobian Matrix J holds the differentiation 

of errors, and the e Matrix contains the network errors. Feed-forward neural 

networks are utilized in the Back Propagation technique for classification 

training. Because learning rates alter the weights, errors propagate backwards 

from the output layer during the process of backward learning. You have two 

options for changing the weights: working in both batch and incremental modes 

is possible. This study uses an incremental approach if weights are adjusted right 

away after the introduction of a training program. To use batch mode, adjust the 

weights after each training session. 

2.6 Hybrid Fuzzy Logical/Neural Network-Based Variable-Step-Size 

P&O (Perturb and Observe) MPPT Algorithm 

Traditional perturb and observe methods often use a constant step-size 

perturbation, leading to a trade-off between reducing oscillations in PV array 

power output around the peak power point and achieving a convergent increase 

in time towards the maximum power point (MPP). A large step size enables a 

quick dynamic response to abrupt changes in irradiance but results in significant 

steady-state fluctuations of the PV array power output near the peak power point 

and power loss. Smaller step sizes help reduce the fluctuation of PV array power 

output around the peak power point; however, this results in a slower response to 

abrupt changes in solar irradiance due to their slower dynamic response. 

Minimum steady-state oscillations and quick dynamic responsiveness require a 

variable step-size MPPT. To address the limitations of the typical fixed step-size 

P&O MPPT algorithm, a hybrid fuzzy logic/neural network approach has been 
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used here to control the step size. Figure 2.17 depicts a hybrid fuzzy logic/neural 

network-based variable step-size P&O MPPT algorithm. 

 

Figure 2.17. Flowchart for hybrid fuzzy logic/neural network (NN) 

variable step-size MPPT 

The terminal current (I) and voltage (V) of the PV array are denoted as Ipv and 

Vpv, respectively. The proposed variable step-size P&O MPPT algorithm allows 

for automatic tuning of the PV array's operational point by supplying the 

associated power converter with a variable reference voltage Vpv. The variable 

step-size control action, based on Mamdani's fuzzy logic rules, was established 

using a framework of Max-Min operations. The fuzzy logic controller comprises 

four main components, as depicted in Figure 2.18. The controller is constructed 

using "If/Then" logic and includes a set of 25 rules. The fuzzy rule labels, as listed 

in Table 2.2, are "positive medium (PM)," "positive very small (PVS)," "positive 

small (PS)," "positive very high (PVH)," and "positive high (PH)." 
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Figure 2.18. FLC-based variable step size control 

Table 2.2: Fuzzy step size control rules 

 Step Size 

 PV1Ss PSs P2Mpp PHp P1V1Hh 

dP/dV PV1Ss P1V1Hh PV1Ss PV1Ss P1Ss P1Ss 

P1Ss P1V1Hh PV1Ss PV1Ss P1Ss P1Ss 

P2Mpp P1Ss P1Ss P1Ss P1V1Hh P1V1Hh 

PHp P1Ss P1V1Hh P1Ss PV1Ss P1V1Hh 

P1V1Hh PV1Ss PV1Ss P1V1Hh PHp P1V1Hh 

 

The FLC has two inputs: the variable perturbation step size and the 

constant perturbation step size of the PV voltage. The fuzzification block 

assesses the P-V curve's slope and the perturbation step size using the rules 

laid out in Table 2.2, and these rules are used to make inferences. 
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(a) 

 

(b) 

Figure 2.19 (a) The FLC's input membership function (b) The 

FLC's output membership function 

The control signal for the variable step size controller is formed by de-fuzzifying 

the fuzzy sets generated by the inference process, using membership functions as 

illustrated in Figures 2.19(a) and 2.19(b). The output variable step size "dv" of 

the fuzzy logic controller (FLC) is the specified outcome of each of the 25 rules 
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it implements. The Centroid defuzzification method is used in the fuzzy inference 

system. 

The Artificial Neural Network (ANN) variable-step-size MPPT is trained using 

data collected from fuzzy logic-based inconstant step-size MPPT. Finally, the 

outputs of the FL variable step-size MPPT and neural network (NN) variable step-

size MPPT are averaged and sent to the PWM generator to control the DC-DC 

converter, which is implemented to maximize energy harvesting from the PV cell 

array. Figure 2.20 demonstrates the representation of a hybrid fuzzy/neural 

network (NN) inconstant step-size MPPT. 

 

Figure 2.20. Hybrid fuzzy logic / neural-network (NN) variable-step-size 

MPPT 

2.7 DC-DC CONVERTER  

This study utilizes a high step-up (DC-DC) converter with an active 

switching LC network to achieve regulated output for the system. The converter 

taps into the front-end stage of a photovoltaic (PV) system to obtain the required 

DC bus voltage. What sets this transformer-less DC-DC converter apart is its 

simplicity, requiring only a single capacitor and a diode. However, despite its 

simplicity, it achieves a significantly increased voltage gain by combining the 

active switched inductor (ASL) and active switched capacitor (ASC) networks in 

a compound configuration. The key innovation of this converter lies in its use of 

a switched capacitor instead of a traditional capacitor. This design choice  
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mitigates the high instantaneous currents associated with capacitors, which is a 

common drawback in traditional voltage-boosting devices. Figure 2.21 provides 

a visual representation of the topology of the active switching LC network in the 

high step-up (DC-DC) converter with active switching, showcasing the 

arrangement and interplay of the ASL and ASC networks to achieve the desired 

voltage regulation and boost. 

 

Figure 2.21. High step-up ratio DC-DC converter and an active 

switching LC network 

2.8 SIMULATION RESULTS AND DISCUSSIONS 

 Evaluations are performed using MATLAB/Simulink, and relevant 

code is generated. The PV-array model, (DC-DC) Boost converter, and PWM 

(single-phase inverter) utilize the Fixed-Voltage (FV) method, Perturb & Observe 

(P&O), fuzzy logic, Incremental Conductance (InC), ANN, Hybrid ANN, and 

fuzzy-based MPPT techniques for the standalone system [77]-[80]. The (DC to 

DC) Boost Converter, Solar PV array, and DC Load are listed in Table 2.3. The 

MPPT's ability to adjust to changing irradiance conditions is assessed. 
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Table 2.3 Standalone Solar PV system’s parameters 

S. 

No 

PV Array DC-DC Boost Converter 

Description Values Description Values 

1 Open Circuit Voltage 

of the Single Panel 
36.3 V Input voltage 348 V 

2 Short Current of the 

Single Panel 
7.84 A Output voltage 600 V 

3 The voltage at Peak 

Power point 
29 V Input capacitor (Cin) 1200 µF 

4 Current at the peak 

Power point 
7.35 A Filter Inductor (L) 5 mH 

5 Peak Power at the 

standard test 

condition 

213.5 W Filter capacitor (Cout) 1200 µF 

6 Number of series 

panel 
12 

Switching 

Frequency 
10 kHz 

7 Number of Parallel 

String 
40 Power rating 110 kW 

8 PV array Power 102.3 kW Rated current 183.3 amps 

 

The simulation results are analyzed for fixed and varying irradiance conditions of 

the PV panel. The irradiance of the PV panel varies every 2 seconds from 1000 

W/m2 to 800 W/m2, then to 600 W/m2, and finally to 400 W/m2. The simulation 

result of the Fixed Voltage technique is illustrated in Figure 2.22. The simulation 

result of the Perturb and Observe method/technique is shown in Figure 2.23. The 

simulation result of the Incremental Conductance method is shown in Figure 2.24. 

The simulation result of the Fuzzy MPPT method with triangular membership is 

shown in Figure 2.25. The simulation result of the Fuzzy MPPT method with 

trapezoidal membership is shown in Figure 2.26. The simulation result of the 
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Neural Network (NN) MPPT method is demonstrated in Figure 2.27. The 

simulation result of the hybrid Neural Network & Fuzzy MPPT method with 

triangular membership is illustrated in Figure 2.28. The simulation result of the 

hybrid Neural Network & Fuzzy MPPT method with trapezoidal membership is 

illustrated in Figure 2.29. In all the above cases the variation of the power is due 

to the change in irradiation condition of the PV array. 

 

Figure 2.22 Simulation of Solar PV system with Fixed Voltage MPPT 

Method 
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Figure 2.23 MATLAB Simulation of Solar-PV system with P&O MPPT 

Method 

 

Figure 2.24 Simulation of Solar PV system with Incremental Conductance 

MPPT Method 
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Figure 2.25 Simulation of Solar PV System using Fuzzy Logic MPPT 

(Triangular Membership)

 

Figure 2.26 Simulation of Solar PV system using Fuzzy Logic MPPT 

(Trapezoidal Membership) 
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Figure 2.27 Simulation of Solar PV system using Neural Network MPPT 

Method 

 

Figure 2.28 Simulation of Solar PV system using Hybrid Fuzzy Neural 

Network MPPT Method with Triangular Membership Function 
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Figure 2.29 Simulation of Solar PV system with Hybrid Fuzzy Neural 

Network MPPT Method with Trapezoidal Membership Function 

 

Table 2.4 Performance of MPPT at Different irradiance conditions 

MPPT 

Fixed 

Volta

ge 

P&O 
Incremental 

Conductance 

Fuzzy 

Logic 

Neural 

Network 

Hybrid 

Neural 

Network + 

Fuzzy 

(Trapezoidal 

Membership) 

Hybrid 

Neural 

Network + 

Fuzzy 

(Triangular 

Membership) 

Irradiance 

W/m2) 
PV Power (kW) 

 

800 77.33 78.51 78.92 79.12 80.21 81.78 82.22 

600 57.18 58.36 58.61 58.97 59.85 61.22 62.12 

400 36.87 37.95 38.20 38.66 39.54 40.40 41.38 
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Table 2.5 Performance of MPPT at 1000 W/m2 and 25 C 

MPPT 
Rise Time 

(ms) 

Settling Time 

(ms) 

PV Power 

(kW) 

Maximum 

Power ratio 

(%) 

Fixed Voltage 150 190 97.9 95.70 

P&O 120 180 98.46 96.25 

Incremental 

Conductance 
100 150 98.77 96.55 

Fuzzy Logic 

(Triangular 

Membership) 

80 120 99.72 97.50 

Fuzzy Logic 

(Trapezoidal 

Membership) 

79 119 99.64 97.39 

Neural 

Network 
60 80 99.8 97.55 

Hybrid Neural 

Network + 

Fuzzy 

(Trapezoidal 

Membership) 

56 45 101.02 98.74 

Hybrid Neural 

Network + 

Fuzzy 

(Triangular 

Membership) 

50 70 101.27 99 

 

 

The performance of several Maximum Power Point Tracking (MPPT) methods 

at 1000 W/m2 solar irradiation and 25°C temperature is shown in Table 2.4. 

Tested MPPT approaches include Fixed Voltage, Perturb and Observe (P&O), 

Incremental Conductance, Fuzzy Logic, Neural Network, and two hybrid 

combinations of neural network and fuzzy logic with distinct membership 

functions. Results indicate that the hybrid approach with triangular membership 

achieves the fastest response times (50 ms rise time and 70 ms settling time) and 

the highest PV power output (101.27 kW) with a maximum power ratio of 99%. 

Other techniques exhibit slightly slower response times and lower power outputs, 

with the Fixed Voltage method showing the slowest response time (150 ms rise 
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time and 190 ms settling time) and the lowest power output (97.9 kW), yet still 

achieving a respectable maximum power ratio of 95.70%. These findings provide 

valuable insights for selecting the most suitable MPPT technique based on 

specific efficiency and response time requirements for solar power systems. 

Table 2.5 provides a comparative analysis of various Maximum Power Point 

Tracking (MPPT) techniques under different solar irradiance levels. The 

evaluated MPPT techniques include Fixed Voltage, Perturb and Observe (P&O), 

Incremental Conductance, Fuzzy Logic, Neural Network, and two hybrid 

combinations of Neural Network and Fuzzy Logic with different membership 

functions. Table 2.4 presents the PV power output (measured in kilowatts, kW) 

achieved by each MPPT method at three distinct irradiance levels: 800 W/m2, 

600 W/m2, and 400 W/m2. As the irradiance decreases, the PV power output for 

all MPPT techniques also decreases, which is expected due to the reduced 

availability of solar energy. Among the techniques, the Hybrid Neural Network 

+ Fuzzy approach with triangular membership exhibits the highest PV power 

output at each irradiance level, with values of 81.78 kW, 61.22 kW, and 40.40 

kW, respectively. This indicates the effectiveness of this hybrid approach in 

maximizing PV power production across varying irradiance conditions. 

Conversely, the Fixed Voltage MPPT method demonstrates the lowest PV power 

output across all irradiance levels, achieving 77.33 kW, 57.18 kW, and 36.87 kW, 

respectively. This suggests that the Fixed Voltage method may not adapt well to 

changing irradiance levels compared to the other MPPT techniques. These 

findings highlight the potential of the Hybrid Neural Network + Fuzzy 

(Triangular Membership) method in enhancing the performance of solar power 

systems by maximizing PV power generation under varying solar irradiance 

conditions. 
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2.9 Summary 

Fixed Voltage MPPT, neural-network MPPT, Perturb and Observe 

(P&O) MPPT, Fuzzy MPPT, Incremental Conductance MPPT, and hybrid 

neural network & fuzzy MPPT were all discussed in this chapter, along with their 

operation in a PV system. In cases of low irradiance, the Fixed Voltage, P&O, 

Fuzzy, and Incremental Conductance MPPT methods struggle to accurately track 

the peak power from the solar PV array, posing an issue. The Incremental 

Conductance MPPT and Perturb and Observe MPPT methods took a long time 

to track the PV panel's peak power point accurately. However, under all 

irradiance conditions, the peak power in the hybrid neural network & fuzzy 

MPPT method can be quickly and accurately derived without oscillations. 
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Chapter 3 

Grid-connected solar PV system with Horse 

herd optimization MPPT and Hybrid neural 

network (NN)/Fuzzy logic-based inconstant 

step-size MPPT 

A grid-linked PV generation system, along with a two-stage grid-linked inverter 

(DC-AC), is composed of modular blocks. Depending on the scope and depth of 

the investigation, these building components may take on different 

configurations. Currently under investigation are PV arrays, a boost controller, 

an inverter, an LCL filter, a load, and the grid as various building blocks. Figure 

3.1 depicts how these building components come together to form the common, 

yet complex system required for the current research. After a brief overview of 

each block, the design phase can begin. Subsequently, specific modelling 

techniques for each block will be discussed. Following that, MATLAB will be 

utilized to illustrate the entire two-stage, three-phase grid-linked switching 

model. The problems related to partial shading conditions are presented in [81]-

[85]. 

  

Figure 3.1. Graphical representation of PV grid system 
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Figure 3.2 illustrates a schematic design of the three-phase grid-linked PV 

system under examination. The PV system features a two-stage conversion 

structure, including DC-AC (inverter) and DC-DC stages. The boost converter 

receives its output from the solar PV and performs two tasks: (1) maximizing the 

PV's output power, and (2) boosting and regulating the DC voltage at the PV's 

output.  

 

 

Figure 3.2. Double(two)-stage Grid-connected PV-system 

 

The solar panels experience non-uniform irradiance conditions due to partial 

shading [73]-[76]. The next step involves the function of the inverter DC-AC 

conversion, which converts the DC input from the boost converter into AC 

(variable) power and sends it into the utility grid. LCL filters are installed 

between the inverter and the power grid to remove high-frequency harmonics 

from the inverter output. The different parameters are broken down as follows: 

the DC-link capacitance symbol, the three-phase output currents from the grid-

connected inverter (ia, ib, and ic), the grid phase voltages (va, vb, vc), and the 

LCL filter connected between them. The per-phase voltages outputted by the 

inverter are Cdc, ua, ub, and uc. This section concludes with simulation results 

that demonstrate the model's ability to predict steady-state behaviors. The rest of 

this section focuses on each of the system's blocks. 
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3.1 Modelling of PV array 

The process by which P-n junction diodes produce charge carriers involves the 

absorption of incident photons with energy levels surpassing their bandgap, 

which is the distance between two points in a semiconductor's band [21]. In 

addition to standard monocrystalline solar cells, various polycrystalline types are 

now available in the market. The features of solar cells are far from ideal; hence, 

much research is ongoing to find the equations for the solar cells that best 

describe their actual behavior. In the ideal model, a current source and a diode 

are connected in series [19]. 

 

Figure 3.3. Single-cell PV equivalent circuit 

In Figure 3.3, the photovoltaic cell's current source and the Shockley diode's 

behavior can be observed. The total output current of a solar cell is the sum of 

the diode current and the current source. Figure 3.3 illustrates the ideal solar cell 

model, including parallel and series resistance. The basic equation for a solar cell 

is as follows: 

𝐼 = IpvI0 [e(qV akT⁄ ) − 1]      (3.1) 

The diode reverse saturation current is represented by "I0," the current produced 

by solar irradiance is represented by "IPV," the cell temperature is represented by 

"T," and the net current of a solar photovoltaic cell is represented by "I." "q" 

stands for electron charge, and "K" for the Boltzmann constant. Equation (1) 
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cannot fully describe the characteristics of a solar cell. Experimental data shows 

that the model is most accurate when it incorporates both series and parallel 

resistance. 

I = Ipv − I0 [(
V+RserI

Vta
) − 1] −

V+RserI

Rper
   (3.2) 

Series resistance is denoted by "Rser," parallel impedance is denoted by "Rper," 

and the thermal voltage of the PV cell is denoted by "Vt" and is expressed as 

Vt=kT/q. The series and parallel-combination solar PV cell terminal voltage is 

denoted by "V." Solar cells exhibit series and parallel resistances, which arise 

from differences in contact resistance between the cell and the connecting 

terminal. The number of parallel and series combinations of cells used in a PV 

array can modify Equation (3.2). Increasing the cells in series boosts the voltage 

of a PV array while increasing the number of parallel cells increases the current. 

It's evident how sunlight irradiation and temperature influence the amount of 

light-generated current by examining Equation (3.3). 

                               Ipv = (Ipv + Ki∆T)
G

Gn
                                          (3.3) 

Because the series resistance of the solar cell is significantly lower than the 

parallel resistance, it is hypothesized that the short-circuit current approximates 

the nominal photovoltaic current.  
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Table 3.1. Specification of PV arrays 1 & 2 

PV Array 1 & 2 

S.No Description Values 

1 PV open-circuit-voltage (V) 51.5V 

2. PV Short-circuit-current (A) 9.4A 

3. Current @ maximum power point (A) 8.13A 

4. Voltage @ maximum power point (V) 43V 

5. Series PV panel 3 

6. Parallel String 1 

7. PV array Rating (W) 1048.77 

         

 

Figure 3.4. PV and IV Characteristics of PV array. 

 

The photovoltaic generated current is represented by "Ipvn," the current 

coefficient is represented by "ki," the temperature difference between actual and 

nominal is denoted by "ΔT," actual solar irradiance is denoted by "G," and 

standard solar irradiance is denoted by "Gn." Three PV arrays were used in the 

study, and Table 3.1 lists the specifications of a photovoltaic array. PV array 1 
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and PV array 2 each consist of 3 series and 1 parallel string [107]. The PV and 

IV characteristics of the PV array1 are shown in Figure 3.4. 

3.2 Maximum(peak) Power-Point Tracking 

Maximizing a solar panel's power output is crucial for solar power generation. 

A solar cell's non-linear behavior prevents it from producing electricity at a 

steady rate. Moreover, the power properties of the solar cell continually change 

due to external conditions like temperature and irradiance. To ensure solar cells 

operate at maximum power, their output voltages should be monitored closely 

so that, under varied irradiance and temperature conditions, they are near the 

peak power point. MPPT can increase a solar cell's total efficiency by capturing 

the PV array's peak output during regular daylight hours. MPPT algorithms are 

gaining popularity due to their upgraded versions and excellent efficiency [93]-

[99]. 

The algorithm used by the MPPT controller includes several choices. The 

three most common methods are the fuzzy logic controller, perturbation and 

observation (P&O), and incremental conductance technique (IC). Techniques 

vary in terms of speed, intricacy, and stability. The approach used will depend 

on the needs of the system's design. In this system, the Horse Herd Optimization-

based maximum power-point tracking algorithm and the Hybrid Neural Network 

(NN)/Fuzzy Logic based on constant step size MPPT have been used and 

compared in the chapter for grid-connected PV systems [39]-[44]. 

3.3 Horse Herd Optimization 

To make the Horse Optimization Algorithm function, we looked into how 

horses act in their natural habitats. It is common for horses to exhibit grazing (A), 

hierarchical (B), social (C), imitation (E), and defence mechanisms (D) in roam 

behaviour (F). Consequently, the algorithm was inspired by the six distinct 

behaviours exhibited by horses at different stages of their development.  
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The equation expresses the movement imparted to horses at each repetition. 

𝑍𝑖
𝑖𝑡𝑒𝑟,𝐴𝐺𝐸 = 𝑆𝑖

𝑖𝑡𝑒𝑟,𝐴𝐺𝐸 + 𝑍𝑖
(𝑖𝑡𝑒𝑟−1),𝐴𝐺𝐸 , 𝐴𝐺𝐸 = 𝛼, 𝛽, 𝛾, 𝛿           (3.4) 

𝑍𝑥
𝑖𝑡𝑒𝑟,𝐴𝐺𝐸

 displays the location of the ith horse, AGE shows the horse's age 

choice, Iter is the current repetition, and 𝑆𝑖
𝑖𝑡𝑒𝑟,𝐴𝐺𝐸

 shows the horse's velocity 

vector. At diverse ages, horses display a variety of diverse behaviours. Typically, 

a horse's lifespan is between 25 and 30 years old. Horses aged 0–5 years, 5–10 

years, 10–15 years, and more than 15 years are denoted by α, β, γ, and δ, 

respectively, in this regard. To choose the age of horses, a full matrix of replies 

should be undertaken iteratively. By sorting based on the best replies, it is possible 

to choose 10% of horses from the entire matrix for added consideration. The 

following 20% of respondents belong to the category. Thirty percent of the 

remaining horses are chosen, while forty percent are selected as horses. Equine 

behaviour has been computationally simulated to determine the horse's speed. 

They are herbivorous and graze on grass, fodder, and other plants. They spend 

16 to 20 hours a day grazing on pasture, with little time for rest. It's called 

"continuous eating" when you're constantly eating all the time. In the pasture, 

perhaps you've seen the mares and their foals. For each horse, the HOA algorithm 

uses a coefficient of grass to estimate the grazing area surrounding the animal. 

Horses can be found grazing in the fields at any age. Grazing is mathematically 

implemented according to the following formula. 

𝐴𝑖
𝑖𝑡𝑒𝑟,𝐴𝐺𝐸 = 𝑎𝑖

𝑖𝑡𝑒𝑟,𝐴𝐺𝐸 × (𝑈 + 𝑅 × 𝐿) × (𝑍𝑖
(𝑖𝑡𝑒𝑟−1)

), 𝐴𝐺𝐸 = 𝛼, 𝛽, 𝛾, 𝛿

 (3.5) 

𝑎𝑖
𝑖𝑡𝑒𝑟,𝐴𝐺𝐸 = 𝑎𝑖

(𝑖𝑡𝑒𝑟−1),𝐴𝐺𝐸 × 𝑤𝑎   (3.6) 

The horse's propensity to graze is shown by 𝐴𝑖
𝑖𝑡𝑒𝑟,𝐴𝐺𝐸

, where Wa is the horse's 

motion parameter. wg per iteration is less linear when this factor is taken into 

account. This formula yields a range of values from 0 to 1, with R being a number 
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drawn at random within that range. Consider U and L values are 1.05 to 0.95, 

with the constant Wa equal to 1.5 for entirely age groups. 

In the wild, horses aren't allowed to roam free. Following a leader, which is a 

common occurrence in human life, is what they do. The law of hierarchy states 

that a mature horse or stallion is also accountable for leading the herds of wild 

horses. The tendency of a herd of horses to track the greatest experienced and 

influential horse is considered by the coefficient h in HOA. In this instance, 

during the Central Ages (aged between 5 and 15 years), research has revealed that 

horses track the law of the ladder as expressed in the following equation. 

𝐵𝑖
𝑖𝑡𝑒𝑟,𝐴𝐺𝐸 = 𝑏𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟,𝐴𝐺𝐸 × (𝑍∗
(𝑖𝑡𝑒𝑟−1)

− 𝑍𝑖
(𝑖𝑡𝑒𝑟−1)

), 𝐴𝐺𝐸 = 𝛼, 𝛽, 𝛾 

 (3.7) 

𝑏𝑖
𝑖𝑡𝑒𝑟,𝐴𝐺𝐸 = 𝑏𝑖

(𝑖𝑡𝑒𝑟−1),𝐴𝐺𝐸 × 𝑤𝑏   (3.8) 

The best horse location has a significant impact on the velocity parameter, as 

shown by 𝐵𝑖
𝑖𝑡𝑒𝑟,𝐴𝐺𝐸

, and 𝑍∗
(𝑖𝑡𝑒𝑟−1)

 displays the exact location of the best horse. 

Horses need to be among other animals and may even share a home with them. 

Since horses are preyed upon by predators, herd life provides them with a sense 

of safety. Survival and emancipation are both made easier by plurality. Fights 

among horses are common due to their social characteristics, and excitability is a 

result of their unique traits. Some horses enjoy spending time with other creatures 

like cows and ewes, but they dislike being alone. This behavior is seen as a 

tendency to move toward the average position of other horses. Young horses 

(aged 5–15 years) show a keen interest in the herd, as demonstrated by the 

following equation: 

𝐶𝑖
𝑖𝑡𝑒𝑟,𝐴𝐺𝐸 = 𝑐𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟,𝐴𝐺𝐸 × ((
1

𝑁
∑ 𝑍𝑘

(𝑖𝑡𝑒𝑟−1)𝑁
𝑘=1 ) − 𝑍𝑖

(𝑖𝑡𝑒𝑟−1)
) , 𝐴𝐺𝐸 = 𝛽, 𝛾

 (3.9) 

𝑐𝑖
𝑖𝑡𝑒𝑟,𝐴𝐺𝐸 = 𝑐𝑖

(𝑖𝑡𝑒𝑟−1),𝐴𝐺𝐸 × 𝑤𝑐   (3.10) 
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𝐶𝑖
𝑖𝑡𝑒𝑟,𝐴𝐺𝐸

 is the ith horse's social signal vector, and 𝑐𝑖
𝑖𝑡𝑒𝑟,𝐴𝐺𝐸 represents the ith 

iteration's orientation toward the herd. With each iteration, 𝑐𝑖
𝑖𝑡𝑒𝑟,𝐴𝐺𝐸 lowers by a 

𝑤𝑐 factor. Both the number of horses and the age choice of each horse are shown 

in the N field. As part of the sensitivity analysis of parameters, we calculate the c 

coefficients for 𝛽𝑎𝑛𝑑 𝛾 hand and horses, respectively. It's common knowledge 

that horses learn from each other, both good and bad habits, such as how to locate 

a pasture. 

Equine mimicry is also considered in the current algorithm. A young horse's 

desire to imitate others persists throughout its life and is expressed as the 

following equation: 

𝐸𝑖
𝑖𝑡𝑒𝑟,𝐴𝐺𝐸 = 𝑒𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟,𝐴𝐺𝐸 × ((
1

𝑝𝑁
∑ 𝑍𝑘

(𝑖𝑡𝑒𝑟−1)𝑝𝑁
𝑘=1 ) − 𝑍𝑖

(𝑖𝑡𝑒𝑟−1)
) , 𝐴𝐺𝐸 = 𝛾

 (3.11) 

𝑒𝑖
𝑖𝑡𝑒𝑟,𝐴𝐺𝐸 = 𝑒𝑖

(𝑖𝑡𝑒𝑟−1),𝐴𝐺𝐸 × 𝑤𝑒   (3.12) 

𝐸𝑖
𝑖𝑡𝑒𝑟,𝐴𝐺𝐸

represents the horse's path toward the mean of the finest horses in the 

area at 𝑍𝑘
(𝑖𝑡𝑒𝑟−1)

 places. The number of horses with the greatest placements is 

represented by pN. Ten percent of the horses have been nominated as 𝑝. 

According to the preceding example, 𝑤𝑒  is the reduction factor. 

Predators have historically threatened horses, shaping their behaviour 

accordingly. They exhibit a fight-or-flight response to protect themselves, with 

escape being their primary instinct. Additionally, they may buck if caught. Horses 

fight for resources like nutrition and water to fend off competitors and escape 

dangerous conditions, such as wolves, by instinct. In the HOA algorithm, a horse's 

defensive system works by avoiding horses that provide incorrect responses. 

Factor "d" plays a crucial role in their defence strategy. As mentioned earlier, 

horses must either flee or confront threats. This defensive strategy is utilized by 

both young and adult horses throughout their lives. The horse's defensive system 
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is represented by a negative coefficient, preventing the animal from assuming 

improper postures. 

𝐷𝑖
𝑖𝑡𝑒𝑟,𝐴𝐺𝐸 = −𝑑𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟,𝐴𝐺𝐸 × ((
1

𝑞𝑁
∑ 𝑍𝑘

(𝑖𝑡𝑒𝑟−1)𝑞𝑁
𝑘=1 ) − 𝑍𝑖

(𝑖𝑡𝑒𝑟−1)
) , 𝐴𝐺𝐸 =

𝛼, 𝛽, 𝛾 (3.13) 

𝑑𝑖
𝑖𝑡𝑒𝑟,𝐴𝐺𝐸 = 𝑑𝑖

(𝑖𝑡𝑒𝑟−1),𝐴𝐺𝐸 × 𝑤𝑑   (3.14) 

where 𝐷𝑖
𝑖𝑡𝑒𝑟,𝐴𝐺𝐸

 is the ith horse's escape vector from the average of the 

𝑍𝑘
(𝑖𝑡𝑒𝑟−1)

 vector's worst-case placements. Also included in qN is the total numbers 

of horses in the worst-case scenario. According to certain estimates, q represents 

20% of all horses. 𝑤𝑑 is the reduction factor. Horses spend hours foraging for 

nourishment across the landscape, moving from one meadow to another. While 

there are exceptions, most horses are kept in  

stables.  

When a horse needs to graze, it may wander off to a different site unexpectedly. 

Horses are inherently curious creatures, always seeking new pastures and areas 

to explore. They can visually perceive each other along the lateral boundaries, 

satisfying their innate curiosity about their environment. This is simulated as 

random movements multiplied by an appropriate factor (r). Roaming behavior 

starts at a young age in horses and gradually diminishes as they mature. 

𝐹𝑖
𝑖𝑡𝑒𝑟,𝐴𝐺𝐸 = 𝑓𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟,𝐴𝐺𝐸 × 𝒫(𝑍𝑖
(𝑖𝑡𝑒𝑟−1)

), 𝐴𝐺𝐸 = 𝛾, 𝛿  (3.15) 

𝑓𝑖
𝑖𝑡𝑒𝑟,𝐴𝐺𝐸 = 𝑓𝑖

(𝑖𝑡𝑒𝑟−1),𝐴𝐺𝐸 × 𝑤𝑓   (3.16) 

The present study considers the arbitrary rate vector of the ith horse for local 

exploration and outflow from minimums, where 𝐹𝑖
𝑖𝑡𝑒𝑟,𝐴𝐺𝐸

 represents the arbitrary 

rate vector of ith horse for local-search and 𝑤𝑓 displays the decrease the factor 

superscript very sequence. 
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The following equation may be used to write the signal vector of horses at 

several ages throughout each sequence of the process. 

𝑆𝑖
𝑖𝑡𝑒𝑟,𝛼 = 𝐴𝑖

𝑖𝑡𝑒𝑟,𝛼 + 𝐷𝑖
𝑖𝑡𝑒𝑟,𝛼

   (3.17) 

𝑆𝑖
𝑖𝑡𝑒𝑟,𝛽

= 𝐴𝑖
𝑖𝑡𝑒𝑟,𝛽

+ 𝐵𝑖
𝑖𝑡𝑒𝑟,𝛽

+ 𝐶𝑖
𝑖𝑡𝑒𝑟,𝛽

+ 𝐷𝑖
𝑖𝑡𝑒𝑟,𝛽

 (3.18) 

𝑆𝑖
𝑖𝑡𝑒𝑟,𝛾

= 𝐴𝑖
𝑖𝑡𝑒𝑟,𝛾

+ 𝐵𝑖
𝑖𝑡𝑒𝑟,𝛾

+ 𝐶𝑖
𝑖𝑡𝑒𝑟,𝛾

+ 𝐸𝑖
𝑖𝑡𝑒𝑟,𝛾

+ 𝐷𝑖
𝑖𝑡𝑒𝑟,𝛾

+ 𝐹𝑖
𝑖𝑡𝑒𝑟,𝛾

 (3.19) 

𝑆𝑖
𝑖𝑡𝑒𝑟,𝛿 = 𝐴𝑖

𝑖𝑡𝑒𝑟,𝛿 + 𝐸𝑖
𝑖𝑡𝑒𝑟,𝛿 + 𝐹𝑖

𝑖𝑡𝑒𝑟,𝛿
  (3.20) 

The optimal parameters used for the horse herd MPPT are as follows: 

Grazing, Defence Mechanism, and Hierarchy constants for alpha horses 

are 1.5, 0.5, and 1.5. For beta horses, the constants are 1.5, 0.9, 0.2, and 

0.2 for Grazing, Defence Mechanism, Sociability, and Hierarchy, 

respectively. Gamma horses have constants of 1.5, 0.5, 0.1, 0.3, 0.1, and 

0.05 for Grazing, Hierarchy, Sociability, Imitation, Defence 

Mechanism, and Wandering & Curiosity. Delta horses have constants 

of 1.5 and 0.1 for Grazing Wandering & Curiosity. The maximum 

population is 4, and the iteration is 100. 

 

 



56 
 

 

Fig.3.5. Horse Herd MPPT Flowchart 

3.4 Horse Herd Optimization MPPT Algorithm 

The Maximum power tracking algorithm by Horse herd optimization is 

explained in this section.  

1. Initialize the parameter of the Horse herd optimization 

2. Initialize the random Horses (Duty cycle) and find PV power for each 

horse by measuring PV Voltage and current. 

3.  Apply the operator of the Horse Herd optimization such as grazing (A), 

hierarchical (B), social (C), Imitation (E), and defence mechanisms (D) 

in their behaviour (F) and find a new duty cycle. 
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4. Again, calculate the PV power and compare it with the previous 

iteration's maximum power and replace the global duty cycle and global 

fitness value. 

5. Again, go to step 3 up to stopping criterion stratified. 

6. Transmit the ultimate optimal/best duty cycle to the (DC-DC) converter 

to extract the utmost power. 

The flowchart of the Horse Herd MPPT is shown in Fig 3.5. The main 

characteristics of the Horse Herd Optimization MPPT method are its direction 

and accurate orientation, which differ greatly from the new maximum power 

point. In other words, this occurs only when the irradiance rises. Because of this, 

the efficiency of P Horse Herd Optimization MPPTs will decrease. As a solution 

to these issues, a novel approach utilizing a hybrid fuzzy logic/neural network-

based variable step size maximum power-point tracking (MPPT) algorithm has 

been developed. Due to the limitations of the conventional Horse Herd 

Optimization MPPT approach, alternative solutions utilizing artificial 

intelligence techniques have been proposed for PV-MPPT optimization. Chapter 

2 provides an explanation of the Hybrid Fuzzy logic/neural network-based 

variable step size MPPT. 

3.5 High Step-Up DC-DC Converter 

To achieve the required DC bus voltage for the system, this study employs a high 

step-up (DC-DC) converter with an active switching LC network, which utilizes 

the front-end stage of a photovoltaic (PV) system to provide the necessary DC 

bus voltage. In this transformer-less DC-DC converter, only a single capacitor 

and a diode are required, yet the voltage gain is significantly increased by 

combining the ASL (active switched inductor) and ASC (active switched 

capacitor) networks in a compound configuration. By using a switched capacitor 

instead of a traditional capacitor, this converter avoids the high instantaneous 

currents associated with capacitors, which is a drawback of traditional voltage-
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boosting devices. Figure 3.6 illustrates the topology of the active switching LC 

network in the high step-up (DC-DC) converter with active switching. The ASLC 

converter topology combines an ASC system network with the original ASL 

system network. There is a common switch, S1, between the original ASL and 

ASC networks, which includes inductors L1 and L2 as well as switches Q1 and 

Q2. Because only a single diode and a single capacitor are added to this, the basic 

structure is maintained. 

 

 

Figure 3.6. High step-up ratio DC-DC converter and an active switching 

LC network 

 

Figure 3.7. Inverter conventional current controller 
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3.6 Inverter and Controller Design 

VSIs and CSIs are both typical inverter types found in utility hybrid grids, 

each with distinct pros and cons. The mode of operation influences the selection 

of the control strategy to be used. For example, droop control is the most 

common method of controlling a ship in an isolated situation, allowing voltage 

and frequency adjustments depending on load changes. The hybrid grid must 

supply power following the central controller's commands or the hybrid grid's 

ability to do so, depending on the grid's voltage and frequency. As a result, power 

regulation of the grid-connected inverter is a key consideration. Aside from that, 

regulating the grid's injected current is critical to maintaining high power quality 

and safeguarding the system. The VSI inverters chosen to meet these needs are 

currently controlled. Figure 3.7 shows the conventional grid-connected inverter 

control system, which controls the DC-link voltage and the inner AC control 

loop. The PI controller controls both the reactive and active power flow in the 

outer loop. An internal reference point is provided by the error signal in the inner 

current control loop. Typically, the frequency (f) of the outer loop is set low to 

reduce sensitivity to changes in the inner current controller. The control 

bandwidth of the outer loop is between 10 and 20 Hz, resulting in slower 

movement compared to the inner loop. An essential aspect of AC control is feed-

forward voltage regulation. The control system regulates the currents along the 

d- and q-axes of the inverter. The loop frequency is around 100 Hz, 

approximately ten times faster than the outer loop. The reference point and 

component along the d-axis are set based on a load's reactive power 

requirements. The voltage components along the d- and q-axes are converted into 

appropriate three-phase voltage for current tracking. Subsequently, the three-

phase voltage generates the gating signal for the inverter. To maintain a constant 

grid frequency, a phase-locked loop (PLL) is necessary. Calibration of the PI 

controller parameters, specifically the integral gain and proportional gain, is 

carried out through experimentation and refinement. 
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3.7 LCL Filter 

Power electronics devices have been utilized in recent years for applications in 

solar and wind power systems, contributing to the growth of renewable energy 

sources. Optimizing power transmission from the PV system to the utility grid 

necessitates the use of power converters. However, the use of power conversion 

equipment can lead to harmonic issues that may adversely affect connected loads 

and sensitive electronics. Therefore, Total Harmonic Distortion (THD) is a 

critical consideration in the system. 

An LCL filter is commonly employed to mitigate the harmonic waves generated 

by the inverter. Traditionally, the inductance of the input or output circuits of 

power conversion devices has been utilized to reduce these harmonics. Placing 

an LCL filter between the grid and the inverter helps attenuate the switching 

frequency harmonics produced by the grid-connected inverter. Compared to an 

L filter, an LCL filter offers better attenuation capabilities and cost savings for 

high-order harmonics. Its ability to attenuate higher harmonics allows for the use 

of lower switching frequencies to comply with harmonic restrictions outlined in 

established standards such as IEEE-519 and IEEE-1547.When designing an LCL 

filter, several factors need to be taken into account, including but not limited to 

current ripple, filter dimensions, and attenuation of switching ripple. The 

presence of reactive power demand has the potential to induce resonance in the 

capacitor when it interacts with the grid. Several factors, including output phase 

voltage, rated power, line voltage, grid frequency, and switching frequency, DC 

voltage must be taken into account while designing an LCL filter. grid-connected 

solar power systems. 

The following are the LCL filter's design parameters: base resistance, 

𝑍𝑏 =
𝑉𝐿𝐿

2

𝑃
     (3.21) 
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Base capacitance, 

𝐶𝑏 =
1

𝜔𝑔𝑍𝑏
     (3.22) 

The maximum permitted power factor change for the grid is 5%, which forms 

the basis of the filter capacity design. The filter's capacitance may be calculated 

in this way: 

𝐶𝑖 = 0.05 × 𝐶𝑏    (3.23)   

The goal is to ascertain the inverter side inductance filter design such that the 

current flowing through the output ripple is limited to no more than 10% of the 

nominal amplitude. The calculation of inductance can be determined by a 

specific formula or equation. 

 

𝐿𝑖 =
𝑉𝐷𝐶

6𝑓𝑠𝑤∆𝐼𝐿𝑚𝑎𝑥
      (3.24) 

where ∆𝐼𝐿𝑚𝑎𝑥is the 10 % current ripple denoted by: 

∆𝐼𝐿𝑚𝑎𝑥 = 0.01
𝑃√2

𝑉𝐿𝐿
      (3.25) 

 

The inductance component serves to restrict the output current ripple to a 

maximum of 10% of its standard amplitude. The calculation of grid-side 

inductance is performed as follows. 

𝐿𝑔 =
√

1

𝑘𝑎
2 +1

𝐶𝑖𝜔𝑠𝑤
2        (3.26) 

The designed filter value for the LCL filter: L1 and L2 are 0.03H and C is 100µF. 
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Fig.3.8. MATLAB Simulink of Grid-connected PV system with partial 

shading with horse herd MPPT. 

3.8 MATLAB Simulation Results of Grid-connected PV-system with Horse 

Herd Optimization 

The developed grid-connected PV system with horse herd MPPT control for 

partial shading scenarios was simulated using MATLAB and the developed 

Simulink model, as shown in Fig 3.8. The irradiance for the first group of the PV 

array was maintained at 1000 W/m², while the irradiance for the second group 

varied every 1 second to create partial shading effects. Specifically, the 

irradiance changed from 1000 W/m² from 0 to 1 second, 800 W/m² from 1 to 2 

seconds, and 600 W/m² from 2 to 3 seconds. Fig. 3.9 presents the simulation 

results for the PV system, including PV voltage, PV current (I), PV power, and 

DC link voltage. During the 0 to 1-second interval, the PV array power was 2049 

W, with the PV voltage maintained at 250 V and the PV current at 8.19 A. In the 

next second (1 to 2 seconds), the PV power was reduced to 1540 W, with the PV 

voltage dropping to 220 V and the PV current decreasing to 7 A. Finally, from 2 

to 3 seconds, the PV power further decreased to 1000 W, with the PV voltage at 

198 V and the PV current at 5.05 A. The PV voltage response varied based on 

different partial shading conditions, as observed in Fig. 3.9, 
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Fig.3.9. Simulation result of PV voltage, current, power and DC link 

voltage with optimal HOA parameter. 

 

Fig.3.10. Simulation result of grid voltage(V), current(I) and power(P) 
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demonstrating the effective extraction of maximum power from the PV array 

using the horse herd optimization MPPT algorithm. 

The simulation result of the grid such as grid voltage, grid current and grid-power 

is demonstrated in Fig 3.10. The grid voltage is maintained at 400 V. The grid 

current and power are changing based on power output from the PV array as seen 

in Fig 3.10. The grid receives power around 950 W from 0 to 0.5 sec because PV 

has more excess power than load. The grid supplies power to load during 0.5 to 

3 sec due to PV power being less than load power. 

 

Fig.3.11. Simulation result of grid voltage, current and power. 

 Figure 3.11 depicts the simulation outcomes of load parameters, 

specifically load voltage, load current, and load power. The load voltage was 

consistently maintained at 400 V, the load-current changing based on the load 

added into the system. The load power is 1000 W from 0 to 0.5 sec and 2000 W 

from 0.5 to 3 sec. From the test results (Fig 3.9 to Fig 3.11), the Power balance 
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maintained between sources and load and maximum(peak) power from PV is 

extracted/obtained effectively using horse herd optimization. 

The same system was tested with the following random parameters of the horse 

herd i.e., Grazing, Defence Mechanism, and Hierarchy constant for alpha horses 

is 1, 0.2, and 1. Grazing, Defence Mechanism, sociability, Hierarchy constant for 

beta horses is 1, 0.5, 0.1 and 0.1. Grazing, Hierarchy, sociability, imitation, 

Defence Mechanism and Wandering & Curiosity constants for gamma horses are 

1, 0.2, 0.2, 0.1, 0.2 and 0.1. Grazing and Wandering & Curiosity constant for delta 

horses are 1 and 0.2. the maximum population is 4 and the iteration is 100. Figure 

3.12 Provide the results of the PV system with random HOA parameters and the 

results are similar to the optimal parameter of the HOA. 

 

Fig.3.12. Simulation result of PV voltage, current, power and DC link 

voltage with random HOA parameter. 
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3.9 Simulation Results of Grid-connected PV system with Hybrid Fuzzy 

logic/neural network (NN)-based variable step size MPPT 

A Simulink diagram of a Hybrid Fuzzy logic/neural-network (NN)-based 

variable step-size MPPT-controlled PV system connected to a three-phase 

network is depicted in Figure 3.13. The system includes a DC-DC converter 

and a three-phase full-bridge inverter to link the solar panels to the grid for 

power generation. The control algorithm comprises an MPPT controller and 

a phase-locked loop (PLL), with all controllers integrated, including the 

inverter DC bus controller, boost converter, the inverter, and the MPPT 

controller. 

 

Figure 3.13. Simulink model of the solar PV three-phase grid system with 

Hybrid Fuzzy logic/neural network-based variable step size MPPT 

The grid controls the output terminal current of the grid-linked inverter as well 

as the DC link voltage. The duty cycle generated by the hybrid (fuzzy logic and 

neural network) MPPT algorithm is then followed by the controller of the high 

gain boost converter. DC energy is converted to AC energy by an inverter that 
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also manages synchronized current output with the DC-link voltage and grid 

voltage. The controller includes a voltage-regulating outer loop and a current-

controlling inner loop. The inverter plays a crucial role in maintaining a constant 

DC-link voltage and keeping the output current synchronized with the grid 

voltage. The power rating of the two series-connected PV panels is 2100 W and 

258 V, while the grid rating is 400 V and 50 Hz. 

(i) Under uniform irradiance 

The PV panel is connected in series, and the irradiance is fixed at 1000 watts per 

square meter (W/m2). The corresponding PV power, grid voltage, grid current, 

DC link voltage, and grid power are shown in Figure 3.14. The simulated results 

indicate that the PV power is around 2080 W, and the grid power is around 1990 

W. It has also been noted that the voltage across the DC connection is maintained 

at 700 V, with the grid voltage at 400 V and the grid current at 4.975 A.  

 

Figure 3.14. Simulation results at 1000 W/m2 
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The efficiency is calculated for the present operating condition and found to be 

95.67%. Similarly, in the second condition, the irradiance is fixed at 500 W/m2, 

and results such as PV power, grid voltage, grid current, DC-link voltage, and 

electrical grid power are simulated. 

 

 

Figure 3.15. Simulation results at 500 W/m2 

The simulated outputs are demonstrated in Figure 3.15. The results report that 

the PV power and grid power are 1010 W and 990 W, respectively. The DC-link 

voltage is 700V, along with the electrical grid voltage and current at 400 V and 

2.52 A. Therefore, the efficiency of the system at 500 W/m2 is 98.02%. 

(ii) Under Partial Shaded Conditions 

The first PV panel's irradiance is fixed at 1000 W/m2, whereas the irradiance on 

the second PV panel is changed from 1000, 800, 600, and 400 W/m2 every 0.2 

seconds to create a partial shading effect. The corresponding results such as PV 

power, grid voltage, grid current, DC-link voltage, and grid power are shown in 
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Figure 3.16. When the second PV panel's irradiance is 800 W/m2, the PV power 

is around 1700 W, the grid power is around 1600 W, the voltage of the DC 

connection is maintained at 700V, the grid voltage is 400 V, and the grid current 

is 4 A. The efficiency in this condition is 94.11%. When the second PV panel's 

irradiance is 600 W/m2, the PV power is around 1400 W, the grid power is 

around 1300 W, the DC link voltage is maintained at 700 V, the grid voltage is 

400 V, and the grid current is 3.125 A, the efficiency in this condition is 92.85%. 

 

Figure 3.16. Simulation results under the partial shading effect 

When the second PV panel's irradiance is 400 W/m2, the PV power is around 

850 W, the grid power is around 780 W, the DC link voltage is constantly 

maintained at 700 V, the grid voltage is 400 V, and the grid current is 1.95A. 

The efficiency in this condition is 91.76%. The maximum power from the PV 

panel is effectively extracted to the peak point employing hybrid fuzzy 

logic/neural network-based variable step-size MPPT. Tables 3.2 and 3.3 
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demonstrate the output parameters and efficiency of the proposed MPPT 

under different operating conditions and with other MPPT algorithms. 

Table 3.2 presents the outcomes of the proposed Maximum Power Point 

Tracking (MPPT) algorithm under various operating conditions. The table 

includes parameters such as PV power, grid power, grid current, and 

efficiency (%) for different irradiance levels on Panel 1 and Panel 2. 

Table 3.2. The outcome of the proposed MPPT under different 

operating parameters 

Operating Conditions Parameters Efficiency 

( ) 

(%) 

PV Power 

(W)   

 

Grid Power 

(W) 

 

Grid 

current (A) 

Irradiance of  

Panel 1 and Panel 2: 

1000 W/m2 

2080 1990 4.975 95.67  

Irradiance of Panel 1 

and Panel 2: 500 W/m2 

1010 990 2.4750 98.02 

Irradiance of 

Panel-1: 1000 W/m2 

and Panel 2: 800 W/m2 

1700 1600 4 94.11 

Irradiance of 

Panel-1: 1000 W/m2 

and Panel 2: 600 W/m2 

1400 1300 3.25 92.85 

Irradiance of 

Panel-1: 1000 W/m2 

and Panel 2: 400 W/m2 

850 780 1.95 91.76 

 

At an irradiance of 1000 W/m2 on both panels, the PV power ranges from 850 

W to 2080 W, with corresponding grid power values and grid currents. As the 

irradiance decreases to 500 W/m2 on both panels, the PV power and grid power 

reduce accordingly, while the grid current remains relatively stable. Similar 

trends are observed when Panel 1 has higher irradiance than Panel 2, indicating 

the algorithm's ability to adjust MPPT settings based on varying irradiance levels 

to maximize efficiency, as reflected in the efficiency values ranging from 
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91.76% to 98.02%. Table 3.3 provides a comparative analysis of the proposed 

hybrid Maximum Power Point Tracking (MPPT) technique with various other 

MPPT techniques from different references. The table includes references, 

MPPT techniques, parameters such as PV power, grid power, and grid current, 

along with efficiency (%) values  

Table 3.3. Comparisons of proposed hybrid MPPT with other MPPTs 

References MPPT 

Technique 

Parameters Efficiency 

( ) 

(%) 

PV Power 

(W)   

 

Grid 

Power 

(W) 

 

Grid 

current 

(A) 

[15] Fuzzy 2076 1978.4 4.94 95.3 

[18] Neural 

Network 

2075 1975.4 4.93 95.2 

[33] Fuzzy 2070 1958.2 4.89 94.6 

[34] Fuzzy 2072 1966.3 4.91 94.9 

[35] Fuzzy 2071 1963.3 4.90 94.8 

[36] Fuzzy, 

Neural with 

evolutionary 

algorithms 

2073 1971.4 4.92 95.1 

[37] Neural 

Network 

Estimator  

2074 1968.2 4.92 94.9 

[38] fuzzy 2073 1965.2 4.91 94.8 

[39] SASV-

MPPT 

approach 

and 

Lyapunov 

design 

method 

2077 1981.4 4.98 95.39 

Horse 

Herd 

MPPT 

Horse Herd 

MPPT 

2078 1983.45 4.95 95.45 

Hybrid 

Fuzzy 

Neural 

Network 

Hybrid 

Fuzzy 

Neural 

Network 

2080 1990 4.975 95.67 
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 Different MPPT techniques such as Fuzzy, Neural Networks, Hybrid Fuzzy 

Neural Networks, and others are evaluated based on their performance metrics. 

The efficiency values range from 94.6% to 95.67%, indicating the effectiveness 

of the hybrid approach in maximizing power generation from the photovoltaic 

(PV) system.  The table also includes a unique "Horse Herd MPPT" technique, 

showcasing the diversity of methods explored in MPPT optimization for solar 

PV systems. 

3.10. Experimental Verification 

Figure 3.17 illustrates the hardware setup for the hybrid fuzzy logic/neural 

network-based variable step-size MPPT for a grid-linked photovoltaic system. 

The experimental setup consists of eight panels rated at 250 W each installed on 

the rooftop, a high step-up boost converter, a DC-AC inverter, a single-phase AC 

grid, and a PIC microcontroller for implementing MPPT and grid inverter 

control. 

 

Figure.3.17. The hardware setup of the Proposed Work. 
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The hardware model is tested with uniform irradiance and partially 

shaded conditions. Figure 3.18 shows the PV voltage and current for constant 

irradiance. PV voltage is 255 V and PV current is 7.58 A and PV power is 1932.9 

W. Figure 3.19 shows the DC link voltage, grid phase ‘a’ voltage and current for 

the same conditions. The DC link voltage is maintained at 698 volts, phase ‘a’ 

voltage is sustained at 228 V and phase ‘a’ current is maintained at 2.56 A and 

power from Inverter is 1766.4 W. The efficiency of the system is 91.38 %.   

 

Figure.3.18. PV Voltage and current for constant Irradiance. 

Partial shading conditions are created for the four panels by covering each 

panel with metal sheets, and corresponding results are measured during these 

conditions. Figure 3.20 shows the PV voltage and current for partially shaded 

conditions. The PV voltage, current, and power after partial shading is 210 V, 

3.89 A, and 816.9 W, respectively. 
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Figure.3.19. DC link Voltage, grid Phase ‘a’ voltage and current for 

constant Irradiance. 

 

Figure 3.20. PV Voltage and current for partially shaded conditions. 

Figure 3.21 shows the DC link voltage, phase 'a voltage, and current for the same 

conditions. The DC link voltage, phase 'a' voltage, current, and power from the 

inverter after partial shading are 697 V, 230 V, 1.1 A, and 759 W. The efficiency 

of the system is 92.91%. 
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Figure.3.21. DC link Voltage, grid Phase ‘a’ voltage and current for 

partially shaded conditions. 

3.11 Summary 

This chapter describes how a grid-linked PV system with a hybrid fuzzy 

neural network variable step-size MPPT and horse herd optimization-based 

MPPT operates. Both partial shade and uniform irradiance conditions were 

investigated for the model's simulation findings. According to test findings, 

hybrid fuzzy neural network variable step-size MPPT outperforms other MPPTs 

in terms of accuracy and quality. Lastly, measurements and analyses are done on 

the hybrid fuzzy neural network variable step-size MPPT experimental findings. 
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Chapter 4 

Artificial Ecosystem Optimization algorithm 

tuned PI-controlled Grid-connected PV system 

4.1 Introduction 

This research demonstrates the crucial role of optimization approaches in 

designing the most efficient PI controller for power converters in Grid-connected 

PV systems. In this study, the PI controller parameters are optimized using the 

best optimization method. The power quality and stability of a three-phase grid-

linked PV inverter scheme are enhanced through real-time Kp and Ki data. To 

implement the proposed controller method, a PI controller and synchronous 

reference frame are utilized. High dynamic responsiveness is achieved by 

incorporating feed-forward compensation within the current control loop. 

Artificial Ecosystem Optimization offers advantages over traditional PI and 

Augmented full state feedback controllers in terms of calculation time, 

robustness, and process information. However, not all effects of optimizing a PV 

inverter linked to the grid were covered, including those related to DC link 

voltage fluctuations, power quality performance, output voltage and current 

stability, harmonics reduction, smooth power flow, and frequency stabilization. 

This cutting-edge research focuses on enhancing the power quality of the inverter 

system, expertly minimizing temporal transient response and overshooting while 

simultaneously achieving zero steady-state error. Our innovative approach 

effectively addresses challenges posed by load variation and DC link stability, 

enabling rapid improvements in voltage and frequency stability with reduced 

complexity using the Artificial Ecosystem Optimization approach to optimize PI 

control settings. The development of inverter control for a 2.1 kW solar PV 

system is conducted in MATLAB/Simulink, with the Artificial Ecosystem 

Optimization technique implemented using a MATLAB m-file script. THD 

variation is minimized in both simulated and real-world experiments when 
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comparing PI and Augmented full state feedback controller performances with 

and without an optimization method [50]-[55] here are some of the most 

important aspects and contributions of the planned research: 

i. To enhance power quality and stability on a three-phase grid, this 

study proposes using a controller-based Artificial Ecosystem 

Optimization to optimize Kp and Ki in PV converter systems in real 

time. 

ii. The purpose of this method is to minimize the steady-state error 

caused by power-load variations while simultaneously optimizing the 

PI controllers' settings to reduce transient response and temporal 

overshoot. 

iii. With the help of an optimized controller, PV converter systems can 

employ a better controller in real-time, which, in turn, determines the 

best possible PI controller settings in response to changing loads. 

4.2. Grid-Linked PV Inverter System 

In this research, the link between the solar photovoltaic (PV) array and the utility 

grid was established using a three-phase voltage source inverter (VSI). The 

hybrid fuzzy neural network variable step size MPPT regulators, DC link, a high-

voltage gain boost converter, inverter, and filter are all included in the device's 

circuitry, which is shown in Figure 4.1. A hybrid fuzzy neural network with 

variable step size maximum power point tracking technique is combined with a 

high voltage gain boost converter to maximize the power produced by the PV 

system. To facilitate distribution, a three-phase AC grid is connected to a three-

phase voltage source inverter, a low-pass (LCL) filter,  
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Figure 4.1. Three-phase Grid linked PV system 

 

and its control. Extensive details on solar PV-integrated three-phase grids are 

provided in the next section [67]-[70]. 

4.3 PV system model 

The solar cell is the fundamental building block of any photovoltaic 

system. It harnesses the power of multiple solar cells working in unison within a 

PV cell. The PV cell's analogous circuit, depicted in Figure 4.2, comprises a 

parallel diode (D), a photocurrent source (Iph), a shunt resistance (Rsh), and a 

series resistance (Rs) interconnected in series with the source. This circuit allows 

for the discovery of the fascinating relationship between output current and 

output voltage, as demonstrated in Eq (4.1). 

.𝐼𝑝𝑣 = 𝐼𝑝ℎ − 𝐼𝑠ℎ (𝑒
(

𝑉𝑝𝑣+𝐼𝑝𝑣𝑅𝑠

𝐴𝑁𝑠𝑘𝑇
)

− 1) −
𝑉𝑝𝑣+𝐼𝑝𝑣𝑅𝑠

𝑅𝑠ℎ
   (4.1) 

Where the saturation current is represented by Ish, photocurrent is represented 

by Iph, Boltzmann's constant is symbolized by k with a value of 1.3811 × 10^-

23, the electron charge is represented by q with a value of 1.6021 × 10^-19 C, 

the ideal diode factor is denoted by “A”, the series connected PV cell is denoted 
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by Ns, and the cell temperature at standard conditions is denoted by “T”. The 

photocurrent of a PV cell can be calculated at any temperature and solar 

irradiance using Eqs. (4.2), (4.3), and (4.4). 

 

Figure 4.2. Equivalent circuit of Solar PV cell 

Table 4.1. PV panel specifications 

S. No. Description Values Unit 

1 Open-circuit voltage 44.86 V 

2 Short-circuit current 5.5 A 

3 Peak-power point voltage 37.73 V 

4 Peak-power point current 5.04 A 

5 
Coefficient of 

Voltage/temperature 
-0.364 %/C 

6 
coefficient of 

current/temperature 
0.102 %/C 

7 Panel in Series  11  

8 Strings in parallel 1  

9 Peak power at STC 2092 W 

 

𝐼𝑝ℎ =
𝐺

𝐺𝑟𝑒𝑓
(𝐼𝑠𝑐 + 𝐾𝑖(𝑇 − 𝑇𝑟𝑒𝑓))     (4.2) 

𝐼𝑠𝑐 = 𝐼𝑠𝑐,𝑟𝑒𝑓 (
𝑅𝑃+𝑅𝑠

𝑅𝑃
)       (4.3) 
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𝐼𝑠𝑎𝑡 =
𝐼𝑠𝑐,𝑟𝑒𝑓+𝐾𝑖(𝑇−𝑇𝑟𝑒𝑓)

𝑒𝑥𝑝

𝑞(𝑉𝑜𝑐,𝑟𝑒𝑓+
𝐾𝑣(𝑇−𝑇𝑟𝑒𝑓)

𝐴𝑁𝑠𝑘𝑇
)

−1

     (4.4) 

Where Gref and G represent the current and reference solar irradiance, the 

temperature coefficient at short-circuit current is denoted by Ki; Trk represents 

the absolute temperature of the module in Kelvin, and the open-circuit voltage 

temperature coefficient is denoted by Kv. Furthermore, Voc, ref, and ISC, ref denote 

the open-circuit voltage and short-circuit current of the PV panel at standard test 

conditions [87 

 

Figure 4.3. PV and IV Characteristics of the PV panel 

 

 

 



81 
 

]. Table 4.1 presents the specifications of the PV unit based on Eqs (4.1)–(4.4). 

Under typical test conditions, the Simulink model confirms the I–V and P–V 

characteristic curves (Gref = 1000 W/m2 and Trk = 25°C), as shown in Fig. 4.3. 

4.4 Peak power tracking algorithm and DC-DC boost converter  

The photovoltaic array uses 11 series modules and 1 parallel string to 

achieve a maximum power output of 2.1 kW. Figure 4.3 displays the PV system 

array's characteristic curves for various temperatures and irradiance levels. The 

voltage and current produced by PV arrays fluctuate significantly due to changes 

in temperature and irradiance, impacting these parameters. In this setup, a high 

voltage gain DC-DC boost converter is used in conjunction with the Hybrid 

Fuzzy Neural Network variable step size MPPT approach to monitor PV output 

based on irradiance and temperature. The maximum PV output can be regulated 

using the Hybrid Fuzzy Neural Network variable step size MPPT by sensing PV 

current (Ipv) and PV voltage (Vpv). Increasing the DC voltage (Vdc) to 400 volts 

allows adjusting the duty cycle D of the high voltage gain boost converter to 

raise the PV voltage and extract power at its peak. PV solar systems connected 

to the power grid typically use a DC connection. The DC side voltage of the grid 

inverter should be regulated near its peak PV voltage, with no fluctuations in the 

inverter's output current. The nominal voltage of the inverter should match that 

of the DC connection, ensuring the inverter's current and voltage are well-

matched with those of the array. An equivalent mathematical expression for a 

high-voltage-gain DC-DC step-up converter can be written as follows: (4.5). 

𝑉𝑑𝑐𝑙𝑖𝑛𝑘 =
𝑉𝑝𝑣

1−𝐷
        (4.5) 
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Figure 4.4. Three Phase grid-linked PV systems with inverter control 

4.5 DC–AC converter 

High-frequency harmonics in the grid system are reduced by the inverter's 

integrated AC filter, which converts DC energy into AC power. Based on the 

output of the parameter control technique, the controller generates PWM logic 

signals for the switches of the inverter. Figure 4.4 illustrates a block schematic 

of a typical inverter control system. The DC connector and filtering circuitry are 

auxiliary components, while the IGBTs and filters are the main components. A 

600 µF capacitor stabilizes the input voltage to the inverter system from the DC 

power source. To mitigate the impact of grid harmonics from the inverter's high-

frequency components, an alternating current (AC) filter [25] connects the 

device to the grid. The inverter's regulator system consists of a voltage control 
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loop and an inner current loop. The PI controller utilizes an inner current loop 

and a DC link voltage control to regulate and stabilize the DC link voltage Vdc. 

The inner loop control current controller energizes the VSI inverter with a 

predetermined amount of energy, enhancing the reliability of the electricity. 

Table 4.2 provides details on grid-connected inverter systems. 

Table 4.2. Inverter-fed grid system specification 

S. 

No. 
Description Values Unit 

1 
Voltage per phase of the grid 

(Vg) 
230 V 

2 DC link voltage (Vdclink) 400 V 

3 DC link capacitor (Cdc) 600 µF 

4 Grid Frequency (F) 50 Hz 

5 Inverter Frequency (Fsw) 10 kHz 

6 Inductor Filter (L1) 4.06 mH 

7 Inductor Filter (L2) 4.305 mH 

8 Capacitor Filter (C) 6.23 µF 

 

4.6 Closed loop system modelling 

4.6.1 Phase-Lock Loop (PLL) 

PLL systems, like the one shown in Figure 4.4, enable grid-connected inverters 

to ascertain the phase angle of the grid swiftly and accurately. Figure 4.5 displays 

the layout of the synchronous PLL frame block. By setting Vdq to 0 and 

employing the PI regulator to constrain error, the rotational frequency can be 

adjusted. It is necessary to integrate the angular frequency before computing the 

phase angle. 
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Figure 4.5. Phase Locked Loop structure 

4.6.2 Voltage regulator controller 

The DC link capacitor is positioned between the inverter's DC bus and the high-

gain boost converter in a solar photovoltaic (PV) grid system. It enhances 

electricity quality and safety while meeting the standards set by the grid system. 

The DC link capacitor voltage controller, responsible for power distribution 

control, can be adjusted. A reference peak current for the entire grid is generated 

using a PI controller. The input to the inner loop is provided by the output of the 

outer loop. Equation (4.6) illustrates the DC-link voltage regulator model. 

𝐼𝑟𝑒𝑓 = ∫ 𝐾𝐼1 × 𝑒 + 𝐾𝑝1 × 𝑒  (4.6) 

Where e represents the voltage drop between the measured values and the 

reference values. The PI controller receives the expected error to maintain the 

voltage across the DC link as low as possible. Consistent DC connection voltage 

across the high-gain boost converter and the inverter is essential to prevent total 

harmonic distortion (THD), which is a primary cause of poor grid power quality 
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4.6.3 Current controller 

The current controller is crucial for improving power quality in grid-connected 

mode. It is constructed with a PI controller for connection voltage to compensate 

for current inaccuracies, as shown in Figure 4.4. 

4.7 Artificial Ecosystem Algorithm Optimized PI Controller  

PI controllers are a type of response loop control built using linear parameters, 

and they are used in processes dependent on load conditions. When selecting an 

inverter controller, performance, ease of installation, and dependability are 

crucial factors. To effectively regulate the injection of actual power into the 

utility system and maintain the voltage of the DC link on the inverter side, the PI 

controller is commonly used in AC voltage systems. The voltage and current 

harmonics, crucial for the overall power quality of the power system, are strongly 

influenced by the nonlinearity performance of loads and inverters. The use of an 

inductive filter in grid-connected inverters has been the subject of various 

studies. Controller settings can be conveniently chosen from the full range of 

allowable controller parameters for the system when the current controller and 

active damping interact appropriately. 

Reductions in grid impedance can significantly impact system stability, as 

indicated by research on grid current control. The PI controller's reliability and 

ease of use in synchronous reference frames have led to its frequent deployment. 

However, achieving a stable and optimal solution in the face of nonlinear load 

variations and grid disturbances remains challenging with PI controllers. The use 

of fractional-order PI controllers has been shown to enhance the performance of 

three-phase solar PV systems. Additionally, using finite model predictive 

control, it has been demonstrated that the filter inductor, also utilized in grid-
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linked inverter systems, can minimize current harmonics. Consequently, this 

type of control introduces additional layers of complexity to an inverter system. 

In this study, the Artificial Ecosystem algorithm optimization approach is 

utilized to reduce transient response, achieve low steady-state error, and 

eliminate temporal overshoot caused by abrupt changes in load in a three-phase 

grid-connected PV inverter system. The optimal Kp and Ki parameters can be 

quickly determined by a real-time optimization approach using the Artificial 

Ecosystem algorithm. In case of an input error, the Artificial Ecosystem employs 

an optimization algorithm to respond promptly. The suggested inverter control 

system with the Artificial Ecosystem algorithm is depicted in Figure 5.6. By 

minimizing the error between the voltage regulator and the current controllers 

through the use of an artificial ecosystem, the PI controller's parameters are 

optimized. Further details about the limitations and objectives of the Artificial 

Ecosystem method are discussed later on. The merits and demerits of various 

methods, including the traditional Ziegler-Nichols (ZN) approach, evolutionary 

algorithms, neural fuzzy logic, fuzzy logic, and the Artificial Ecosystem 

algorithm, are outlined in Table 4.3. It can be observed in the table below that 

the Artificial Ecosystem algorithm is generally faster. Consequently, the 

Artificial Ecosystem approach does not require the use of inference rules during 

construction, unlike the Augmented full-state feedback controller, neural fuzzy 

logic, and fuzzy logic controllers. The ideal PI controller parameter values with 

reduced response times can be quickly and easily identified using a single 

solution space and the Artificial Ecosystem technique. 
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Figure 4.6. Proposed AEO-optimized PI-controlled inverter for grid-

linked PV 

4.7.1 Objective function 

The PI controller's parameters are adjusted by minimizing the error between the 

voltage regulator and the current controllers using an artificial ecosystem. Later, 

we discuss the purpose and constraints of the Artificial Ecosystem technique in 

more detail. The error is denoted by the function E(t), the weight coefficients by 

C1 and C2, the maximum time by Tmax, and the total harmonic distortion of the 

output current by THDI. 

min 𝑓(𝑦) = 𝐶1 × ∫ 𝑒(𝑡)2𝑑𝑡 + 𝐶2 × ∑ 𝑇𝐻𝐷𝐼
𝑇𝑚𝑎𝑥
0

𝑇𝑚𝑎𝑥

0
   (4.7) 
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Table 4.3. Merits and demerits of the control method 

S. 

No. 
Method 

Data 

Training 
Rules 

Function 

calculation 

Parameters 

settling 

Reference 

Paper 

1 
ZN 

Method PI 
NA NA NA 

Calculation 

is simple 
[ 6 ] 

2 

The 

augmented 

full-state 

feedback 

controller 

NA Yes NA 

trial and 

error 

method 

[ 7] 

3 

Fuzzy 

neuro 

system 

Yes Yes NA 

It needs 

huge 

parameters 

[ 9-11 ] 

4 GA NA NA Yes 

It needs 

huge 

parameters 

[ 12 ] 

5 
Artificial 

Ecosystem 
NA NA Yes 

It needs 

fewer 

parameters 

[ 17-18 ] 

 

4.7.2 Problem constraints 

When operating in grid-linked mode, a PV system is governed by optimal 

parameters, including four decoupled PI controller parameters (Kp1, Ki1, Ki2, 

and Ki3). The formulation of an inverter for a three-phase PV system connected 

to the grid includes a DC link voltage and current controller. 
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𝑡𝑖𝑚𝑒

min 𝑓(𝑦) = 𝐶1 × ∫ 𝑒(𝑡)2𝑑𝑡 + 𝐶2 × ∑ 𝑇𝐻𝐷𝐼
𝑇𝑚𝑎𝑥
0

𝑇𝑚𝑎𝑥

0

𝐿1 ≤ 𝐾𝑝1 ≤ 𝑈1

𝐿2 ≤ 𝐾𝑖1 ≤ 𝑈2

𝐿3 ≤ 𝐾𝑝2 ≤ 𝑈3

𝐿4 ≤ 𝐾𝑖2 ≤ 𝑈4

  

 (4.8) 

𝑦 = {𝐾𝑝1, 𝐾𝑖1, 𝐾𝑝2, 𝐾𝑖2}     (4.9) 

L1, L2, L3, L4, U1, U2, U3, and U4 specify the upper and lower bounds for the 

Kp1, Ki1, Kp2, and Ki2 parameters in this optimization problem. Then, we 

introduce the Artificial Ecosystem method to solve for these parameters, namely 

Kp1, Ki1, Kp2, and Ki2. 

4.8 Artificial Ecosystem Algorithm 

Our optimization technique employs three operators: production, consumption, 

and destruction, all based on a synthetic ecosystem. The primary objective of the 

initial operator is to enhance the ratio of exploration to exploitation. Introducing 

a second operator enhances the algorithm's capacity to explore new spaces. 

Recommendations are provided to encourage the adoption of the algorithm for 

the third operator. Figure 4.7 (a) illustrates some of the most crucial criteria used 

by AEO when attempting to find a solution. 

• Producers, consumers, and decomposers make up the three major classes 

of organisms in every given ecosystem. 

• A population has a single producer. 

• There is only ever one of each kind of decomposer in every given 

population. 

• The rest of a population is made up of eaters, and each individual in this 

group has an equal chance of evolving into a carnivore, herbivore, or 

omnivore. 
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• Each person's level of healthiness in a population may be quantified by 

calculating their "fitness value" in terms of the population function. Since 

a higher function fitness value indicates a higher energy level in a 

minimization problem, the population is sorted from highest to lowest in 

terms of function fitness value. 

In this ecosystem, each creature has its fitness rankings displayed, and the 

black arrows represent the flow of energy. Individuals with a fitness value for a 

function greater than zero are classified as producers, while those with a fitness 

value less than zero are classified as decomposers. Figure 4.7 (b) indicates that 

the consumer group includes herbivores (x2 and x5), omnivores (x3), and 

carnivores (x4 and x6). 

 

Fig. 4.7.  (a) Energy flow in an ecosystem 

 

In an ecosystem, producers utilize carbon dioxide, water, sunlight, and nutrients 

from decomposers to create food energy. In AEO, the best individual (the 

decomposer) in a population updates the poorest individual (the producer) on the 

lower and upper boundaries of the search space. The producer then uses this 
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information to guide the rest of the population (herbivores and omnivores) 

toward more productive regions. After the factory finishes producing the 

operator, anyone who wants to buy one may do so. Each consumer has the option 

of obtaining their calories from either a high-energy producer or 

 

 

Fig. 4.7.(b) AEO ecosystem structure 

a low-energy consumer chosen at random. Several species, such as cuckoos, 

bumblebees, deer, and lions, exhibit foraging behaviours similar to the 

mathematical operator known as the Levy flight. Given that certain steps are 

significantly longer in the long run, the Levy flight is a promising random walk 

for finding the global optimum as it can effectively explore the search space. To 

enhance the optimization effectiveness in biomimetic algorithms, Levy flying 

has been widely adopted. In a balanced environment, nutrients released during 

decomposition are utilized by producers. There will be a natural death rate for 

the population, and the decomposer will use chemical reactions to break down 

the bodies as they decompose. The pseudocode for the AEO algorithm is 

depicted in Fig. 4.7 (c). 
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The AEO method generates a random particle [88] to initiate fitness computation 

and determine the elite value for each parameter across the entire swarm. We 

utilized MATLAB code for the AEO algorithm on a PC with 2.50 GHz and 8GB 

of RAM. The flowchart of the AEO algorithm is depicted in Figure 4.7 (c). Using 

the AEO approach, optimal parameter standards for an inverter's PI controller 

are obtained to provide an active controller and higher switching state. 

 

Fig. 4.7 (c) AEO algorithm pseudocode 
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4.9. Simulation results and discussion 

To evaluate the effectiveness of the proposed Artificial Ecosystem 

approach for adjusting the PI controller settings in the inverter control technique, 

MATLAB/Simulink was used to create a 2-kW grid-linked PV system with a 

three-phase setup. The validation of the suggested Artificial Ecosystem method 

for the inverter control system was carried out using the following MATLAB 

implementation and testing results. The key findings include optimal PI 

controller settings, a comprehensive comparison of results achieved with and 

without optimization, and a voltage Total Harmonic Distortion (THD) analysis. 

Specifically, it demonstrates how the suggested approach enhances the 

characteristics of the single-phase grid system integrated with solar PV.   

The final PI controller settings for the three-phase grid-linked PV system are 

presented in Table 4.4. These settings were incorporated into the control 

algorithm of the inverter controller to improve the overall performance of the 

inverter system. The initial values for the PI controllers of the inverters were 

determined through trial and error, which was the method used in the first 

Simulink/MATLAB implementation of the three-phase grid-linked PV system. 

During the modeling process of the Artificial Ecosystem's operation, the model 

underwent one hundred iterations. Table 4.4 showcases the final values of the PI 

controllers after 100 iterations. 

Table 4.4 presents the optimal values of Proportional-Integral (PI) controllers for 

both voltage and current control, obtained using the Artificial Ecosystem (AEO) 

algorithm, and compares them with values obtained from the Ziegler-Nichols 

(ZN) method. For the PI voltage controller, the ZN method yields a proportional 

gain (Kp1) of 0.01 and an integral gain (Ki1) of 1.5, while the AEO algorithm 

recommends slightly higher values of Kp1 as 0.02 and Ki1 as 2. 
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Table 4.4. Optimum Value of PI voltage and current controller using AEO 

algorithm 

Method 
PI Voltage Controller PI Current Controller 

Kp1 Ki1 Kp2 Ki2 

ZN method 0.01 1.5 7.6 125 

Artificial 

Ecosystem 
0.02 2 8.5 100 

Parameter Worst Best Mean 
Standard 

Deviation 

Artificial 

Ecosystem 
35.55 31.02 31.56 1.305 

 

 Similarly, for the PI current controller, the ZN method results in Kp2 of 7.6 and 

Ki2 of 125, whereas the AEO algorithm suggests Kp2 as 8.5 and Ki2 as 100. The 

table also presents the performance evaluation of the AEO algorithm by listing 

the worst, best, mean, and standard deviation of the parameter values. For the 

AEO algorithm, the worst, best, and mean values of the PI controller parameters 

are 35.55, 31.02, and 31.56, respectively, while the standard deviation is 1.305. 

These results indicate that the AEO algorithm successfully optimizes the PI 

controller parameters, leading to improved performance and stability in voltage 

and current control applications. The optimized values are closer to the best-

performing configurations, and there is a relatively low deviation, highlighting 

the effectiveness of the AEO algorithm in controller parameter optimization. 

The Augmented Full-State Feedback controller, the Ziegler-Nichols (ZN) 

algorithm technique, and the Artificial Ecosystem (AEO) algorithm are depicted 

in Figure 4.8 for controlling the DC link voltage. The results reveal that the rise 

time of the PI controller is just 0.02 seconds when the Artificial Ecosystem 

technique is used, 0.025 seconds when the ZN method is used, and 0.03 seconds 
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when the Augmented Full-State Feedback controller approach is used. The 

inverter system's input power is stabilized with the use of the Artificial 

Ecosystem algorithm rather than a regular PI controller. Finally, in terms of 

steady-state performance, the Artificial Ecosystem's PI controller algorithm 

fared better than the standard PI controller. The inverter can maintain a consistent 

DC input from the Artificial Ecosystem thanks to the algorithm's ability to 

compensate for transient impacts. By stabilizing the DC link input voltage, the 

inverter may produce an AC output waveform with a low ripple factor %. 

 

Figure 4.8. The response of the DC link Voltage   

 

Figure 4.9. The response of the grid current at 1000 W/m2   

The single-phase grid current of the three-phase system is depicted in Fig. 4.9 

and 4.10, respectively, for constant irradiance and step change in irradiance using 
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the controller. Simulations with PI controllers using the Ziegler-Nichols (ZN) 

method, an Augmented Full-State Feedback controller, and the Artificial 

Ecosystem algorithm method resulted in the grid system current seen in Fig. 4.9. 

Minor noise and non-sinusoidal behaviour may be observed in the amplitude of 

the grid current produced by the PI controller with the Ziegler-Nichols (ZN) 

method and the augmented full-state feedback controller approach. As shown in 

Fig. 4.9, the grid current generated by a traditional ZN-PI controller exhibits a 

higher number of harmonics compared to the grid current generated by a PI 

controller employing the Artificial Ecosystem algorithm method, which 

produces a current waveform with fewer harmonics. This is attributed to the 

inverter control scheme utilizing an appropriate control algorithm that reduces 

the harmonic level in the grid current while maintaining stable output voltage. 

 

Figure 4.10. The response of the grid current at varying irradiance 

conditions 

The grid currents of systems with a Ziegler-Nichols (ZN) PI controller and 

systems with a PI controller utilizing the Artificial Ecosystem algorithm 

approach are compared in Figure 4.10. There is a statistically significant impact 

on grid current between (0.4-0.6) s due to irradiance changes in PV systems. 
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Currents vary because the grid receives more electricity when the sun is shining 

brightly. The current waveform of the PI controller without the Artificial 

Ecosystem algorithm has a greater harmonic level than that with the Artificial 

Ecosystem approach. Based on this finding, we can conclude that the control 

system effectively maintains stable voltage and current amplitudes regardless of 

varying irradiance conditions. 

The inverter demonstrates its potential for power flow analysis when used in 

conjunction with a grid-connected inverter system to extract solar PV power and 

feed it back into the utility. Figure 4.11 depicts the step-momentary scenario, 

which occurs when there is a sudden shift in available light. Sometimes it's 

possible to assess the overshoot. The fluctuating nature of the grid-linked system 

is directly proportional to the flexibility of solar irradiation. Figures 11(a) and 

11(b) show that the inverter system exhibits numerous transients and overshoots 

in the grid and PV-contributed power when a step transient condition occurs, 

unlike the PI controller using the Artificial Ecosystem algorithm technique. In 

Fig. 11(c), we can see that the Artificial Ecosystem's algorithm-based control 

system mitigates transient impacts overall and prevents overshoot, allowing the 

system to return to a steady state. 

 

 

 

(a) AFL 
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(b) ZN PI 

 

(c) AEO PI 

Figure.4.11. PV Power and Grid Power 

Electricity from a system with low harmonic content is essential for grid 

connection. A low total harmonic distortion (THD) on the current waveform 

indicates better and more linear power for the user, resulting in lower energy 

consumption. The power factor of the load suffers when the THD factor of the 

load is high. The THD factor of the grid system  

is high due to the low load consumption. An improved regulator and Fast Fourier 

Transform analysis might be used to reduce the THD of the grid current to around 

5%, representing a significant improvement. 



99 
 

 

(a) AFL 

 

(b) ZN PI 

 

(c) AEO PI 

Figure.4.12. THD of the Grid Current 

  In Figure. 4.12, the harmonic spectrum of grid current waveforms is shown 

using a ZN-PI controller, an augmented full-state feedback controller, and a PI 

controller based on an Artificial Ecosystem algorithm. The total harmonic 

distortion (THD) of the grid current is 53.21% when using the ZN-PI controller, 
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24.81% when using the augmented full-state feedback controller method, and 

3.76% when using the Artificial Ecosystem algorithm. The use of the Artificial 

Ecosystem algorithm can improve the controller algorithm of the inverter system 

and, consequently, enhance the system's performance. 

 

Figure.4.13. Convergence Plot 

Contrasting with Figure 4.13, where the PSO approach converges after 30 

iterations, the Artificial Ecosystem procedure reduces the fitness function and 

reaches the value in just 10 iterations. After 100 optimization cycles, the most 

effective PI controller settings were discovered to be Kp1, Ki1, and Ki2. The 

optimum settings for a three-phase inverter's current controller, voltage 

regulators, and PI controller may be determined with the use of an Artificial 

Ecosystem. The outcomes show that the Artificial Ecosystem approach is 

superior to the PSO algorithm in determining the optimal PI controller settings 

when compared to the enhanced full-state feedback controller, ZN technique. 
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Table 4.5 Comparison of augmented full-state feedback controller, ZN method, 

PSO Method and Artificial Ecosystem Algorithm 

Method 

Time domain specification of DC 

link Voltage 
Current 

THD (%) 

Efficiency 

(%) 
Rise 

Time 

(ms) 

Overshoot 

(%) 

Settling 

Time 

(ms) 

ZN method 30 21 250 53.21 94 

The 

augmented 

full-state 

feedback 

controller 

25 20 240 24.81 96 

PSO 

Method 
23 15 200 4.21 97 

Artificial 

Ecosystem 

Algorithm 

20 2 160 3.76 98 

 

Table 4.5 presents a comprehensive comparison between the performance of the 

standard Proportional-Integral (PI) controller and the optimization achieved 

through the Artificial Ecosystem algorithm, along with other techniques such as 

the Augmented full-state feedback controller, Ziegler-Nichols (ZN) method, and 

Particle Swarm Optimization (PSO) method. The table evaluates critical 

parameters including rise time, overshoot, settling time, current Total Harmonic 

Distortion (THD), and system efficiency. The results demonstrate that the 

recommended method, i.e., the Artificial Ecosystem algorithm, surpasses the 

alternatives in several aspects. Notably, the THD for grid current achieved using 

the Artificial Ecosystem algorithm is notably lower at 3.76%, showcasing its 

ability to reduce harmonic distortions in the system. Moreover, improvements in 

time domain specifications such as settling time (20 ms) and rise time (160 ms) 

are achieved more rapidly compared to other optimization methods, indicating 

the efficiency of the Artificial Ecosystem approach in achieving quicker 

response times. Additionally, the negligible overshoot of about 2% with the 



102 
 

Artificial Ecosystem algorithm is favourable compared to other techniques, 

further highlighting its stability and precision. However, it's worth noting that 

the overall system efficiency is recorded at 98%, which, while relatively high, is 

slightly lower compared to some alternative approaches. 

4.10 Simulation Results During Partial Shading Conditions  

The simulation process involved the use of MATLAB and Simulink to 

analyze the effects of partial shading on the photovoltaic (PV) system. One group 

of the PV array was kept at a constant irradiance of 1000 W/m², while the 

irradiance for another group varied every second to mimic partial shading. For 

instance, the irradiance changed from 1000 W/m² to 800 W/m² within the first  

 

Fig.4.14. Simulation result of PV voltage, current, power and DC link 

voltage with optimal HOA parameter. 



103 
 

second and further decreased to 600 W/m² in the subsequent second. 

Figure 4.14 illustrates the simulation results, including PV voltage, PV current 

(I), PV power, and DC link voltage. During the first second, the PV array 

generated 2049 W of power with a PV voltage of 250 V and a PV current of 8.19 

A. In the second second, the power was reduced to 1540 W, accompanied by a 

decrease in PV voltage to 220 V and PV current to 7 A. Finally, in the third 

second, the power dropped to 1000 W with a PV voltage of 198 V and a PV 

current of 5.05 A.  

 

Fig.4.15 Simulation result of grid voltage(V), current(I) and power(P). 

 The simulation results for the grid, including grid voltage, grid current, 

and grid power, are shown in Figure 4.15. The grid voltage remains stable at 400 

V throughout the simulation. The grid current and power vary depending on the 
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power output from the PV array, as indicated in the figure. Initially, from 0 to 

0.5 seconds, the grid receives around 950 W of power because the PV array 

generates more excess power than the load requires. However, from 0.5 to 3 

seconds, the grid supplies power to the load as the PV power becomes 

insufficient to meet the load demand. 

 

Fig.4.16. Simulation result of grid voltage, current and power. 

Figure 4.16 illustrates the simulation results for load parameters, specifically 

load voltage, load current, and load power. The load voltage is consistently 

maintained at 400 V, while the load current changes based on the load added to 

the system. The load power is 1000 W from 0 to 0.5 seconds and increases to 

2000 W from 0.5 to 3 seconds. 
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The test results show that there is a maintained power balance between the 

energy sources and the load.  

4.11. Experimental results and discussion 

This section presents experimental verification of the efficiency of the 

suggested AEO algorithm-optimized PI-controlled three-phase grid-linked 

system. The hardware configuration for the suggested task is depicted in Fig. 

4.17. 

 

Figure. 4.17 Hardware Setup of the Proposed Work. 

The test rig includes a 2-kilowatt photovoltaic (PV) panel on a rooftop, a 

boost converter and inverter power module, a PIC microcontroller for maximum 

power point tracking, a DC link voltage controller and inverter control logic, a 

digital storage oscilloscope, and a power quality analyser. PIC microcontrollers 

are used to implement the AEO-optimized PI controller's control logic through a 

C application. The experimental system is put through a series of tests with a 

steady load. 
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(a) PV Voltage (left) & Current (Right) 

X-axis – 10ms/div & Y axis – 200 V/div (Left) & 2 A/div (Right) 

  

(b) Inverter Voltage (left) & grid Voltage (Right) 

X-axis – 10ms/div & Y axis – 400 V/div (Left) & 150 V/div (Right) 

  

(c) Grid Current (left) & Load Current (Right) 
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X-axis – 10ms/div & Y axis – 4 A/div (Left) & 2A/div (Right) 

 

 

(d) THD of the Grid current 

Figure. 4.18. Experimental results of the proposed system 

The experimental findings for the proposed system are summarized in Fig. 4.18. 

PV voltage and current are displayed in Figure 4.18 (a). The power output from 

the PV panel is 1858.5 W, with a voltage of about 413 V and a current of about 

4.5 A, resulting in a power output of around 413 V * 4.5 A. Voltage from the 

inverter and the grid is shown in Figure 4.18 (b). The inverter's peak voltage is 

413 V, which is filtered by a harmonic LCL filter before being sent into the grid. 

The average voltage on the grid is about 233.3 V, with a peak value of roughly 

330 V. The grid and load current are depicted in Figure 4.18(c). The grid current 

peaks at 9 A, while the load current peaks at 2 A. The grid current is 6.36 A, and 

the load current is 1.41 A, both expressed as root-mean-squared (RMS) values. 

Electricity consumption by the load is 328.9 W, while power output to the grid 

is 1483.8 W. There is a total of 1812.7 W of electricity available, resulting in a 

remarkable 97.5% efficiency. The THD spectra of the grid current are shown in 

Figure 4.18 (d), indicating a THD in the grid current of 4.1%. A comparison 
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between the modelling and experimental findings of the suggested work is 

presented in Table 4.6. Table 4.6 illustrates that there are minimal differences 

between the simulation and experimental data. In the simulation, the PV system 

generates 1992 W of power, whereas, in practice, it produces 1858.5 W. 

Similarly, the power at the grid and load in the virtual environment is 1952.2 W, 

while in the real world, it amounts to 1812.7 W. 

Table 4.6. Parameter Comparisons in Experimentation and Simulation 

Parameter 
Experimentation 

Results 
Simulation Results 

PV Voltage (V) 413 415 

PV Current (A) 4.5 4.8 

PV Power (W) 1858.5 1992 

Grid & Load Voltage (V) 233.3 230 

Grid + Load Current (A) 7.77 8.48 

Grid + Load Power (W) 1812.7 1952.2 

Efficiency (%) 97.5 98 

THD of the Grid current 

(%) 
4.1  3.76 

  

Both theoretical and practical evaluations indicate the system's effectiveness at 

approximately 98%. In terms of Total Harmonic Distortion (THD) of the grid 

current, the simulation records 3.56%, whereas the experiment shows 4.1%. 

These results highlight that an AEO-optimized PI voltage and current-regulated 

three-phase grid-connected PV system performs exceptionally well across 

various scenarios. The minor discrepancies between simulation and actual 

performance demonstrate the robustness and accuracy of the AEO optimization 

in enhancing system efficiency and stability. 
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4.11 Summary 

This chapter describes how to tune the PI controller using AEO 

optimization and compares it to the AFL and ZN PI controllers. From the test 

results, the AEO-optimized PI controller provides better results than a 

conventional PI controller and AFL controller in terms of rise time, overshoot, 

settling time, current THD, and system efficiency. Finally, experimental results 

of the AEO-optimized PI-controlled grid-connected PV system are measured and 

analysed 
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Chapter 5 

Conclusions and Future Scope of Work 

5.1. Conclusions  

This thesis examines the integration of various Maximum Power Point 

Tracking (MPPT) algorithms into grid-connected solar PV systems. It starts with 

a literature review and explains the research's purpose, outlining the thesis 

structure and research goals. Chapter 2 presents findings and discussions on 

multiple MPPT algorithms, including fixed voltage, Perturb and Observe, 

incremental conductance, fuzzy logic-based, and neural network-based 

algorithms, which are examined and simulated. Chapter 3 focuses on a grid-

connected solar PV system, discussing a hybrid fuzzy logic/neural network-

based variable step size MPPT algorithm and Horse Herd Optimization MPPT 

[71]. It covers PV array modelling, MPPT techniques, DC-DC converters, 

inverter design, simulation results, and experimental verification. Chapter 4 

introduces an Artificial Ecosystem Optimization method to tune a PI controller 

in a grid-connected photovoltaic system, involving closed-loop system 

modelling, PV system modelling, and Peak Power Tracking algorithms, with 

presentation of experiment, simulation, and optimization outcomes. Chapter 5 

summarizes and discusses the dissertation's findings and suggests ideas for future 

research in this area. 

The findings of this dissertation's study are presented below. 

• The implementation of Maximum Power Point Tracking (MPPT) 

for Photovoltaic Power Systems involves utilizing various techniques such as 

P&O MPPT, Incremental Conductance MPPT, ANN MPPT, Fuzzy Logic 

MPPT, and Hybrid Fuzzy Neural Variable Step Size P&O MPPT. MATLAB 

simulation results are compared for a 100 kW PV standalone system under 
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different climatic conditions in this proposed model [29], showcasing the 

simulation results of the proposed model. Among these  

methods, tracking with Hybrid Fuzzy Neural-Network Variable Step Size 

P&O MPPT yielded the highest output power in terms of settling time, rise time, 

and peak power compared to other methods. 

• The chapter presents a study on grid-connected photovoltaic 

systems that utilize Horse Herd Optimization Maximum Power Point Tracking 

(MPPT) and Hybrid Fuzzy Neural Network Variable Step Size Perturb and 

Observe (P&O) MPPT. The photovoltaic system connected to the grid was 

evaluated under both uniform irradiance and partial shading scenarios. The test 

results indicate that the Hybrid Fuzzy Neural Network with variable step size 

Perturb and Observe Maximum Power Point Tracking algorithm is efficient in 

extracting the maximum power from the photovoltaic array under both uniform 

irradiance and partially shaded conditions while considering load resistance 

conditions. 

• The design and modelling of a grid-connected PV system with an 

AEO-optimized PI controller are explained. A detailed simulation of the artificial 

ecosystem-optimized PI voltage and current-controlled grid-connected PV 

energy conversion system is conducted for various operating conditions and 

compared with the ZN PI controller and AFL controller. The test results indicate 

that the AEO-optimized PI-controlled grid-connected PV system outperforms 

other methods in terms of THD, rise time, and settling time. 

5.2 Future Scope of Work 

The future scope of research in grid-connected PV systems encompasses 

several key areas for further advancement. Firstly, there is a need to develop 

more efficient and adaptive & Bioinspired MPPT algorithms that can 

dynamically adjust to changing environmental conditions, such as partial 
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shading or fluctuations in solar irradiance. These advanced algorithms have the 

potential to significantly enhance the energy yield of solar PV systems and 

improve their overall performance, especially under challenging operational 

circumstances. By focusing on the creation of novel MPPT algorithms, 

researchers can contribute to the continual improvement and optimization of 

grid-connected PV systems, making them more resilient and effective in 

harnessing solar energy. 

Secondly, the integration of energy storage solutions, particularly 

batteries, with grid-connected PV systems represents a promising avenue for 

future research. This involves developing sophisticated control strategies and 

algorithms that can optimize the utilization of energy storage to ensure a 

continuous and stable power supply to the grid, even during periods of low solar 

irradiance or fluctuating demand. Investigating the economic aspects, such as 

cost-effectiveness and return on investment, will also be crucial in evaluating the 

viability and scalability of integrating energy storage with grid-connected PV 

systems. By addressing these aspects, researchers can pave the way for the 

widespread adoption of renewable energy sources and contribute significantly to 

the advancement of sustainable energy generation and grid stability.
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