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Abstract 

The Autonomic Nervous System (ANS) is responsible for regulating the fluctuations in Heart 

Rate Variability (HRV) and Skin Conductance Response (SCR) during different physical 

activities. HRV is measured by analyzing the beat-to-beat RR interval of the ECG signal, while 

SCR is measured by assessing the skin’s electrical conductivity.   

Both HRV and SCR reflect the complex interactions between the ANS and cardiovascular 

function. Changes in body position can lead to variations in autonomic tone, making postural 

changes important factors affecting HRV and SCR.   

This study investigates the impact of postural changes on the autonomic nervous system and 

explores the relationship between HRV and SCR. The study involved collecting HRV and SCR 

data from subjects in both supine and standing positions to better understand the connection 

between postural changes, HRV, and SCR. These postures were chosen for their significant 

impact on autonomic balance. The data set includes HRV and SCR measurements from 70 

subjects. The BIOPAC®MP36 instrument was used to record HRV, while a NEULOG 

Galvanic Skin Response Sensor was used for SCR recordings..  

The recorded HRV data underwent several analyses using linear, nonlinear, and multiresolution 

approaches. In addition, the relationship between HRV and SCR was examined. 

The time domain methods used in this thesis are SDNN, RMSSD, NN50, and pNN50, while 

applied frequency domain methods are Low frequency (LF), High frequency (HF), and LF/HF 

ratio.  

As HRV is a nonlinear signal, to capture its nonlinear dynamics, complexity, irregularity, and 

pattern, the explored nonlinear method is sample entropy analysis. To subdue the limitation of 

standard sample entropy, a new method has been developed named Composite distance sample 

entropy (CDSE) and applied to the synthetic dataset as well as the recorded dataset in this 

research work. 

Multiresolution research of HRV was carried out to further enhance the analysis employing a 

range of traditional wavelet transformations (db2 to db6). With more understanding of HRV 

dynamics, it is discovered that each HRV signal has unique properties. Consequently, a 

particular signal-matching wavelet is needed. Thus, A matched wavelet using the stochastic 
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fractal search algorithm- MWSFSA has been developed and applied to the dataset of 70 

subjects.  

The study evaluated the performance of various linear, nonlinear, and multi-resolution methods 

in detecting HRV variance between different postures. It was found that the LF/HF ratio, a 

frequency domain parameter, is a more accurate indicator of HRV variation in different 

postures compared to time domain variables such as SDNN, RMSSD, NN50, and pNN50. This 

suggests that frequency domain measures offer a more comprehensive understanding of the 

autonomic response to postural changes. Specifically, the LF/HF ratio accurately detected 

postural variation between supine and standing postures at 85.71%, while NN50 and pNN50 

were accurate at 81.42%, and SDNN and RMSSD at 76.87% and 78.57%, respectively. 

Further, the study investigated the incorporation of sample entropy to capture complicated 

patterns and trends because HRV signals are nonlinear. A remarkable 88.57% accuracy in 

identifying the proper trend of HRV change between postures was found by sample entropy 

analysis. The ability of nonlinear analysis approaches to reveal minor autonomic changes that 

linear methods could miss is highlighted by this. 

Based on these discoveries, a novel method called "Composite distance sample entropy" that 

is based on sample entropy was created. This novel strategy outperformed conventional 

approaches, achieving a significant accuracy rate of 94.28% in detecting HRV variations. The 

addition of sample entropy demonstrated both its strength as a tool for HRV analysis and its 

capacity to identify underlying autonomic responses that would have been missed by 

conventional approaches. 

Using traditional Daubechies wavelets (db2 to db6), multiresolution investigations into HRV 

were conducted to broaden the analysis.  This method sought to identify various accuracy levels 

across various wavelet scales. Results showed distinct accuracies for each wavelet scale, with 

accuracy rates of 92.85%, 94.28%, 91.42%, 94.28, and 91.48% for db2, db3, db4, db5, and 

db6, respectively. This investigation showed how well-suited wavelet techniques can capture 

the finer details of HRV change between postures. The study's outcome was the creation of a 

matched wavelet model named 'MWSFSA' with a remarkable accuracy rate of 97.14% utilizing 

the stochastic fractal search algorithm. The ability to improve HRV analysis accuracy, 

particularly when addressing the complicated dynamics impacted by postural alterations, is 

demonstrated by the matched wavelet technique. 
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The decreased HRV variables - SDNN, RMSSD, NN50, pNN50, HF, SE, and CDSE - in 

standing posture, along with increased values of LF, LF/HF ratio, the mean value of SCR, and 

HR, indicate an increase in sympathetic activation and a decrease in parasympathetic activity. 

This suggests a "fight-or-flight" reaction, preparing the body to respond to perceived stress or 

threat, controlled by the sympathetic nervous system (SNS). The overall rise in physiological 

arousal is reflected in the elevation of SCR and HR. Skin conductance, influenced by 

sympathetic innervation, serves as a gauge of sweat gland activity. A higher SCR indicates 

greater sympathetic outflow and reaction from the sweat glands. The increased HR denotes a 

faster heart rate, also influenced by sympathetic activity. These changes are commonly 

observed in situations of heightened arousal, vigilance, or stress. The rise in HR during the 

standing position reflects the body's attempt to adapt and compensate for the change in posture. 

In conclusion, this thorough investigation illuminates the complex interaction between postural 

changes and HRV, extending its relationship to SCR and providing important new knowledge 

about autonomic reactions. Understanding HRV dynamics during postural changes is improved 

by the superiority of frequency domain measures, the potential of nonlinear analysis utilizing 

"CDSE," and the high precision of matched wavelet techniques "MWSFSA." The results of 

this study have implications for clinical applications as well as physiological research, and they 

may help in the identification and treatment of autonomic dysfunction. This study advances the 

understanding of HRV and SCR responses to postural changes and sets the way for more 

accurate evaluations of autonomic function and cardiovascular health.  
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CHAPTER 1 

 

INTRODUCTION 

This thesis explores the variation of heart rate variability (HRV) and skin conductance 

response during different body postural activities. The study investigates the variation 

of HRV in various body postures using different analysis methods, including linear, 

nonlinear, and multiresolution methods. Additionally, the skin conductance response is 

analyzed in two different postures, and the relationship between skin conductance 

response and heart rate is discussed. The chapter covers the research topic, the 

cardiovascular system, the corresponding physiological background, HRV analysis 

methods, findings related to the different applied methods, and the structure of the 

thesis. The literature survey section includes an extensive study of various signal 

processing techniques to uncover the variation of HRV between different body postures 

and its relationship with skin conductance response. 

1.1 Overview 

Nowadays heart rate variability and skin conductance response are common clinical 

and research tools utilized for identifying different physiological, emotional, and 

psychological disorders. The autonomic nervous system's activity can be examined by 

adopting both physiological markers, namely HRV [1] and SCR [2]. HRV and SCR are 

useful measures for assessing the central and peripheral dynamics of the sympathetic 

nervous system as well as for tracking the effects of various chronic illnesses and 

challenging life situations such as stress, excessive workload, etc. While HRV reflects 

changes arising from both sympathetic and parasympathetic systems, SCR reflects 

changes caused by sympathetic vagal activity [3]. Therefore, a variety of physical and 

psychological activities, including altered body postures, exercise, interactions in 

public, depression, anger, running, cycling, etc., can influence the ANS's response and 

be identified by HRV and SCR measurement. 
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The research focused on investigating how different body postures impact heart rate 

variability and the responses of the body's electrical conductivity. When a person 

changes from sitting or lying down to standing, the sympathetic nervous system is 

activated, causing an increase in heart rate and a drop in heart rate variability, followed 

by a quick return to baseline values. This reaction, known as the "orthostatic challenge," 

can be used to test the body's ability to maintain blood pressure and blood flow to the 

brain during postural changes, as well as the efficiency of the autonomic nervous system 

[4]. Poor autonomic nervous system functioning may lead to a longer return to baseline 

levels or a greater decline in heart rate variability [5]. Changes in body posture during 

exercise or physical activity might also impact heart rate variability. For example, 

changes in body position during yoga, Pilates, or other exercises could result in 

variations in heart rate and heart rate variability [6]. In summary, the impact of altered 

body position on heart rate variability is a typical physiological reaction that can 

provide important information about the operation of the autonomic nervous system. 

Thus, it is important to investigate the variation in HRV and skin conductance response 

for postural changing events i.e., from supine to standing posture. A healthy heart has 

high variability, which indicates that there is a long interval between each heartbeat [7]. 

This enables the heart to stay steady and adaptable while responding swiftly to changes 

in the body's needs. Conversely, a decreased HRV is linked to a higher risk of several 

illnesses, including obesity, diabetes, and cardiovascular disease. Reduced HRV is an 

indication of stress, anxiety, or sadness as well as a damaged autonomic nervous system 

[8]. Numerous methods, such as electrocardiography (ECG), photoplethysmography 

(PPG), and pulse oximetry, can be used to measure HRV. These techniques offer 

insightful information about the autonomic nervous system's operation and can be used 

to gauge a person's general health and well-being [9]. 

Physical exertion enhanced the subject's physical load and sweat rate. The skin 

conductance response, which is represented by electrodermal activity (EDA), and sweat 

production are significantly positively correlated. A range of stimuli, such as emotional 

imagery, noises, or other sensory signals, can be used to quantify SCR [10-11]. 

Over the years, a significant amount of research work has been done in which HRV and 

SCR have been analyzed, but still, both physiological signals have not been examined 
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for the postural changing activity together. Furthermore, it is difficult to detect the HRV 

variations accurately and robustly between various postures using the traditional 

methods of HRV analysis.  

As a result, the main driving force behind this work is to evaluate HRV changes by 

developing HRV analysis methods that can (i) accurately detect HRV differences 

between various postures and (ii) are useful in finding the relationship between the SCR 

and HRV regarding this postural changing activity. This research work can be 

summarized as presented below: 

(1) By identifying the changes in skin conductance and HRV when young adults are 

in a supine posture. 

(2) By identifying the changes in HRV and skin conductance when young adults are 

in a standing posture. 

(3) By identifying the variations in the response of skin conductance and HRV from 

posture changes from supine to standing. 

(4) By identifying the effect of postural change on the relationship between HRV, Heart 

rate, and SCR. 

(5) By identifying the correlation between HRV and SCR. 

1.2 Anatomical Framework 

Heart rate variability (HRV) measurements are a trustworthy indicator that affects the 

heart's regular rhythm. Increased variability in the heart's inter-beat interval may be 

beneficial physiologically, according to a steadily increasing amount of research. Heart 

failure, diabetes, hypertension, and coronary artery disease are just a few pathological 

illnesses that frequently reflect low HRV [12]. levels. The sympathetic nervous system, 

which controls autonomic activities such as digestion, breathing, and heart rate, is one 

of its essential components. This system is activated during emotional experiences, and 

Skin Conductance Response (SCR) is a useful method for evaluating its activity. SCR 

is a useful instrument for assessing sympathetic nervous system function since it acts 

as an indicator of emotional arousal and stress [13]. 
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1.2.1    Human Heart 

The human heart is a vital organ that circulates blood throughout the body. It is located 

slightly to the left side of the chest and is about the size of a fist. The heart consists of 

four chambers: the right atrium, left atrium, right ventricle, and left ventricle. The right 

atrium receives oxygen-poor blood from the body and pumps it into the right ventricle. 

The right ventricle then pumps the blood to the lungs, where it picks up oxygen and 

releases carbon dioxide [14]. The oxygen-rich blood is then pumped into the left 

ventricle and returned to the heart through the left atrium. The left ventricle pumps the 

oxygen-rich blood through the aorta, a large artery, to the rest of the body. The flow of 

blood from the ventricle to the pulmonary artery is controlled by pulmonary valves, 

while the flow of oxygen-rich blood from the left atrium to the left ventricle is regulated 

by the mitral valve. This oxygen-rich blood is then distributed to the body [15] [16] 

[17]. The various part of the human heart is shown in Figure 1.1. 

1.2.2 Cardiac Electrical Conduction 

A unique network of cells called the heart's electrical conduction system starts and 

controls heartbeats. Figure 1.2 represents the electrical activity of the human heart. The 

functioning of this system is mentioned as follows [15][19]: 

(i) The right atrium houses the SA node, which serves as the natural pacemaker of the 

heart by generating electrical impulses that drive the atria to contract, and where 

the heartbeat is first initiated. 

(ii) The atria constrict and force blood into the ventricles as a result of the electrical 

impulses that travel throughout them from the SA node. 
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Figure 1.1 Cross Section of Human Heart [18] 

(iii) The AV node delays the electrical impulses for a short period so that the atria can 

fully contract before the ventricles are triggered. 

(iv) The bundle of His, a specific channel that carries the electrical impulses from the 

AV node to the ventricles, is where the electrical impulses move after the delay. 

(v) To send the electrical impulses to the Purkinje fibers distributed throughout the 

ventricles. 

(vi) The ventricles contract and pump blood out of the heart as a result of the electrical 

impulses being distributed throughout them by the Purkinje fibers. 

The Electrocardiogram (ECG) signal is produced as a result of all these cardiac actions 

[20]. 

1.2.3 Electrocardiogram and wave intervals 

A non-invasive diagnostic procedure that monitors the electrical activity of the heart is 

called an electrocardiogram (ECG or EKG). 
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Figure 1.2 Cardiac Electrical Conduction [21] 

It is a quick and painless treatment that can provide crucial details regarding the 

condition and performance of the heart. Electrodes are affixed to the skin of the arms, 

legs, and chest during an ECG. The electrodes pick up the heart's electrical signals and 

send them to a device that records them as a succession of waves on a graph. The 

different segments and intervals are explained as follows: 

P wave- The electrical activity that takes place as the atria contract is represented by 

the P wave. Normally, it is a short, rounded wave that lasts 0.08 seconds. 

PR Interval and Segment- A typical PR interval ranges from 0.12 to 0.20 seconds. From 

the P wave's completion to the start of the QRS complex, the P-R segment began.  

Q wave- Q wave is the first downward deflection that lasts less than 0.03 seconds. 

R wave- After the Q wave or after the PR interval, the R wave is the initial upward 

deflection. It symbolizes the electrical activity that takes place when the ventricles 

close. From the baseline to the wave's crest, the R wave's height is calculated. 

RR Interval- The RR interval is the distance between two consecutive R peaks.  
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S wave- After the R wave, the S wave is the first downward deflection. There might not 

be a S wave in some leads. The S wave, if it exists, is usually brief and lasts less than 

0.04 seconds. 

QRS complex and interval- The electrical activity that takes place as the ventricles 

compress is represented by the QRS complex. Usually, the complex is tall and narrow 

and lasts for less than 0.12 seconds.  

ST segment and interval- The time between the completion of the QRS complex and 

the beginning of the T wave is known as the ST segment. It stands for the period when 

the ventricles are getting ready for their subsequent contraction. Normally the regular 

ST segment is flat and level with the baseline.  

T wave- Electrical activity that takes place as the ventricles rest and get ready for the 

subsequent contraction is represented by the T wave. The average waveform is rounded 

and less than 0.20 seconds long. 

QT interval- QT interval stands for the amount of time needed for the ventricles to 

recuperate and contract. Age, sex, and heart rate all affect the normal QT interval, which 

is normally shorter than 0.44 seconds. 

RST junction- It is the area of the electrocardiogram (ECG) where the QRS complex 

ends and the RST segment starts [1] [22-24]. All the mentioned waves, segments, and 

intervals of ECG have been shown in Figure 1.3 [25]. 

1.2.4 Heart Rate Variability 

Heart rate variability (HRV) is a term used to describe the variation in the space between 

heartbeats. It illustrates the autonomic nervous system's capacity to adapt to changing 

needs, which regulates the heart rate and other body functions. It can be measured by 

subtracting the one RR interval from the previous RR interval which is depicted in 

Figure 1.4. 

Electrocardiography (ECG) is an effective tool to measure HRV. HRV has been 

demonstrated to be predictive of many health outcomes and to provide insights into 
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Figure 1.3 ECG waveform [25] 

 

Figure 1.4 Heart rate variability [26] 

monitoring autonomic function. High HRV is linked to improved health outcomes, 

including a lower risk of cardiovascular disease, while low HRV is linked to an 

increased risk of several health issues, including diabetes, depression, and heart disease. 
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Age, gender, physical activity, stress, and sleep are just a few of the variables that might 

affect HRV. 

1.2.5 Skin Conductance Response 

The skin's electrical conductance, which is correlated with the activity of the 

sympathetic nervous system, is measured by the skin conductance response (SCR). The 

sympathetic nervous system produces sweating when it is stimulated, such as during 

times of stress or arousal, which raises the skin's electrical conductance and is known 

as electrodermal activity (EDA). The rise in the skin's electrical conductance can be 

measured using electrodes applied to the skin and is known as the skin conductance 

response. SCR is frequently used in psychology and neuroscience to examine emotional 

processes and illnesses including anxiety and depression. SCR is used in marketing 

research to examine how consumers react to advertising and other stimuli. Figure 1.5 

illustrates the skin conductance. 

 

Figure 1.5 Skin Conductance [27] 

Skin conductance measurements typically involve one of two primary categories: Tonic 

skin conductance and Phasic skin conductance [28-30]. 
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(i) Tonic skin conductance (TSC): The term "tonic skin conductance" (TSC) describes 

the skin's normal level of electrical conductance, which is principally regulated by 

the activity of the eccrine sweat glands. By applying a steady, low-level electrical 

current to the skin and observing the resulting voltage, TSC can be measured. TSC 

is affected by many variables, including age, gender, and individual variations in 

sweat gland activity, and is generally stable over time. 

(ii) Phasic skin conductance (PSC) refers to the transient changes in skin conductance 

that occur in response to external stimuli, particularly emotional or arousing 

stimuli. PSC can be measured by applying brief electrical pulses to the skin and 

measuring the resulting changes in voltage. 

Skin conductance level (SCL) and skin conductance response (SCR) are two further 

subtypes of PSC. SCR stands for the brief fluctuations in skin conductance in reaction 

to stimuli, whereas SCL stands for the baseline level of skin conductance. SCR is 

frequently assessed in research on emotion and psychophysiology as a sign of 

emotional arousal and stress [31]. The SCR has been evaluated and analyzed for 

postural change activity in this research work. Figure 1.6 depicts EDA and SCR. 

 

Figure 1.6 Electrodermal activity (EDA) and SCR [32] 
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1.3 Evolution of HRV and SCR 

1.3.1 Autonomic Nervous System 

The body's autonomic processes including digestion, blood pressure, breathing, and 

sweating are controlled by the autonomic nervous system (ANS), an intricate structure 

of nerve fibers and ganglia. In reaction to internal and external stimuli, it is in charge 

of preserving homeostasis or establishing equilibrium between diverse physiological 

processes. 

The "fight or flight" response is controlled by the SNS and is characterized by increased 

heart rate, breathing, and blood pressure as well as decreased digestion and other non-

essential activities when it is triggered by stressful or threatening events [33]. The SNS 

and PNS regulate a variety of physiological processes in a complementary way, and the 

activity of both systems is influenced by a variety of hormonal, neuronal, and feedback 

mechanisms that support homeostasis. 

Numerous health issues, such as hypertension, cardiovascular disease, gastrointestinal 

disorders, and mental health conditions including anxiety and depression, can be 

brought on by ANS dysfunction or imbalance [34]. It is critical to understand the 

functioning and control of the ANS to maintain overall health and well-being. 

1.3.2 History of HRV 

Herophilos (335–280 BC), a Greek scientist, was the first to record heart rate around 

about 300 BC. Herophilos timed the pulse using a water clock. Galen of Pergamon 

(131–200 AD), a scholar and physician, first spoke of the pulse around 170 AD. He 

used the pulse to identify and forecast a variety of ailments. Stephen Hales was the first 

to note fluctuations in arterial pressure and the time between beats during the respiratory 

cycle in 1733. Carl Ludwig, the first person to create a smoking drum kymograph, 

utilized his invention in 1847 to record changes in amplitude and pressure. Anrep et al. 

[35-36] and their collaborators showed that both central and peripheral mechanisms 

contribute to heart rate variations. Hering [37] stated that breathing caused a reduction 

in heart rate in 1910. According to Hamlin et al. [38], RSA in dogs was caused by the 

activation of vagal nerves. 



12 
 

Using power spectrum analysis, numerous researchers [39–43] looked at heart rate 

changes in the 1970s. In 1985, DeBoer et al. [44] proved that HRV signals can be 

analyzed. Power spectral density was employed in 1986 by Myers et al. [45] to classify 

cardiac patients using HRV analysis. Additionally, Malik et al. [46] discovered that 

HRV can be analyzed using filtering methods. Schreibman et al. [47] proposed 

resampling in 1989 to address the non-uniform samples in HRV signal. For RR interval 

measurement, Merri et al. [48] proposed a minimal sample interval used in HRV. In 

1990, Furlan et al. [49] demonstrated that throughout the early hours of the day, 

sympathetic activity increases and vagal tone decreases. In 1995, Malik and Camm [50] 

conducted a thorough study on the application of HRV and its clinical consequences. 

Lvanov et al. [51] employed wavelets for HRV analysis later on in 1996. For HRV 

analysis in 1997, Jasson et al. [52] employed time-frequency analysis techniques. A 

fresh approach to calculating HRV time series was developed by Laguna et al. in 1998 

[53]. A thorough study of HRV analysis methods was provided in 1999 [55] [56]. Chan 

et al. [56] assessed the HRV variations associated with various physical activities in 

2003. Fractal characteristics and support vector machines were utilized in 2004 to 

characterize the dynamics of the heart rate. [57] [58]. Further, neural networks are used 

for HRV signals [59]. Kheder et al. [60] carried out an HRV analysis in 2006 utilizing 

a nonlinear approach. The fractional Fourier transform was employed in 2008 by Zhang 

et al. [61] to find the biological signals.  

In 2010, Bailon et al. [62] used respiratory data to investigate the low and high-

frequency bands of HRV during exercise stress testing. Wavelets were employed for 

analyzing signals by Rafiee et al. in 2011 [63]. HRV analysis methods and their 

relationship were evaluated by Madhavi and Ananth in 2012 [64]. Karthikeyan et al. 

[65] employed a variety of nonlinear techniques in 2013 to detect stress using several 

physiological markers. In 2015, Silva et.al [66] used multiscale entropy for HRV 

analysis. In 2016, Rawal et al. [67] designed a tree-structured matched wavelet for HRV 

analysis. In 2017 and 2018, Porta et al. [68-69] applied various linear and nonlinear 

(i.e., sample entropy) approaches to analyze the complexity of short HRV series. In 

2020, Verma et al. [70] used an optimization technique for ECG heartbeat classification. 
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In 2021, Rawal et al. [71] designed a matched wavelet using the genetic algorithm to 

efficiently analyze the HRV variation during the menstrual cycle. 

1.3.3 History of SCR 

Electrodermal activity (EDA) refers to the human body's ability to alter the electrical 

characteristics of the skin consistently. EDA has also gone under other names 

throughout history, including skin conductance, galvanic skin response (GSR), SCR, 

etc. Emil du Bois-Reymond was a German physiologist who is often credited with 

being the first to measure skin conductance. In 1848, du Bois-Reymond reported that 

the electrical resistance of the skin decreased when the skin was moistened. He called 

this phenomenon "galvanic skin response" and speculated that it might be related to the 

activity of sweat glands. Du Bois-Reymond's work on the electrical properties of living 

tissue laid the foundation for the development of modern skin conductance 

measurement [71]. SCR was shown to be a useful indicator of both cognitive and 

emotional processes by Hermann and Luchsinger in 1867 [71-72]. They discovered that 

SCR specifically increased in response to emotionally stimulating or attention-

demanding stimuli. One of the first to show that SCR might be used as a gauge of 

cognitive and emotional processes, Hermann and Luchsinger's work opened the door 

for more study in this field [73-74].  

Researchers like F.J. McGuigan and Carl W. Richter started using skin conductance in 

the 1920s and 1930s to examine autonomic nervous system activity and emotional 

reactions. The use of skin conductance measurement in research grew in the 1950s and 

1960s because of the development of more advanced instrumentation and data analysis 

methods. Skin conductance became a popular tool for researchers like Roy John, J. 

Gruzelier, and M. Rosenfeld to examine a variety of phenomena, including stress, 

attention, and psychopathology. With the improvement of automated data collecting 

and processing tools in the 1980s and 1990s, the use of skin conductance measurement 

in research proliferated. [75-76]. To explore a variety of physiological and emotional 

events, skin conductance measurement and SCR analysis are still often employed in 

disciplines like psychology, neuroscience, and medicine today [77]. 
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1.3.4 HRV, SCR, and Postural Change 

The important factor that has been used to assess numerous changes in the body over 

the past three decades is Heart Rate Variability (HRV), which represents the 

parasympathetic and sympathetic nervous system activities that control the 

cardiovascular system. Thus, the activity of the ANS can be assessed with the 

measurement of HRV [78-79]. In addition to HRV, another physiological signal, i.e., 

Skin Conductance Response (SCR) (which is frequently used these days for assessing 

the effect of physical activities i.e., postural change) has been analyzed. It is also known 

as electrodermal behavior. When the amount of sweat is altered in ducts, variations are 

observed in SCR. Electro-dermal activity (EDA) is described as an indicator of 

variations in the skin’s electrical conductance [80]. When the posture of the body is 

altered from a supine to a standing position, because of gravity, the blood pressure drops 

initially. To maintain the blood flow, the sympathetic nervous system activates which 

causes a decrement in the HRV and changes in skin conductance response [81-83]. 

1.4 Analysis method for HRV 

Heart rate variability can be analyzed using various ways. Linear methods such as Time 

Domain and Frequency Domain methods have been used to measure the intervals 

between successive normal complexes of heartbeats [84-88]. Under usual physiologic 

conditions, HR is not periodic, and approaches based on linear HRV characteristics do 

not adequately convey the complexity of beat-to-beat variability. Nonlinear techniques 

are more suited to reveal the hidden dynamics of the HRV signal to get around the 

drawbacks of linear methods [89-91]. 

1.4.1 Analysis Using Linear Methods 

Linear methods are divided into two parts: - Time domain analysis, and Frequency 

domain analysis. 

(i) Time Domain Analysis  

The simplest methods used for the analysis of HRV are time-domain measures [1]. Time 

domain methods include:  

Statistical time domain measures include: 
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• SDNN: Normal to Normal (NN) interval’s standard deviation. 

• RMSSD: The successive difference between adjacent Normal to Normal interval’s 

root mean square. 

• SDANN: Averages of the normal-to-normal intervals' standard deviation. 

• SDNNi: Mean of Standard Deviation from all Normal-to-Normal intervals. 

• SDSD: Differences between adjacent normal to normal intervals' standard deviation. 

• NN50: NN intervals with more than 50ms differences between them. 

• pNN50: The percentage of successive NN intervals that have a difference of more 

than 50 ms. 

(ii) Frequency Domain Analysis  

The spectral analysis method referred to as frequency domain analysis dissects the total 

variability of a data series into its constituent frequency elements. These frequency 

components are depicted through a spectral density function that illustrates spectral 

strength concerning frequency. The integral of the spectral density function within the 

specified frequency range allows for the determination of spectral power within a 

specific frequency band. The Fast Fourier Transform (FFT) is a common method for 

spectrum analysis of HRV. Very low frequency (VLF), Low Frequency (LF), and High 

Frequency (HF) are the main notable components of the main spectrum [92]. 

1.4.2 Analysis Using Nonlinear Methods 

In the last decades, a variety of nonlinear signal processing techniques have been 

developed to analyze nonlinear dynamics in novel ways.  

Sample Entropy Analysis 

Sample Entropy (SE) Sample entropy is commonly used to assess the predictability or 

irregularity of physiological signals in biomedical research. It compares patterns in time 

series data and measures the likelihood that similar patterns of a given length of data 

remain similar when the time series is extended by one data sample. SE was proposed 

by Richman and Moorman to address the limitations of Approximate Entropy (AE). SE 
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is not dependent on the length of the signals and is free from self-matches of vector 

pairs [68][93]. 

1.4.3 Analysis using Time-Frequency Methods 

The underlying issue of not having enough data to do a reliable HRV analysis affects 

both linear and non-linear techniques for HRV analysis. Therefore, multi-resolution 

approaches are employed for HRV analysis.  

The time and frequency resolution issues, regardless of the transform employed, are 

caused by a physical phenomenon (the Heisenberg uncertainty principle), yet it is 

feasible to analyze any signal using a different method called Multiresolution Analysis 

(MRA). A mathematical method called multi-resolution analysis (MRA) is used in 

signal and image processing to evaluate and depict data at various levels of detail or 

resolution. It entails breaking down a signal into several layers or levels, each of which 

captures a particular band of frequencies or scale component of the signal. 

 MRA's main principle is to represent a signal at many scales, enabling the investigation 

of both minute details and broad trends. A more thorough comprehension of the 

structure and characteristics of the signal is made possible by this decomposition [66] 

[94-95]. The MRA process typically involves applying a series of filters and down-

sampling operations to decompose the signal. The down-sampling operation reduces 

the signal's sampling rate, maintaining the most relevant components [96-97]. 

1.4.4 Analysis using Matched Wavelets  

Despite significant improvements in signal processing techniques, wavelets are still 

used in clinical research. Most of the studies employed wavelets from a library of 

common wavelets for this primary reason. The primary drawback of the currently 

available wavelets is that they might not closely resemble the signal of interest, which 

further reduces their capacity to identify the desired aspects of the signal. This 

restriction causes incorrect results interpretation, which in turn causes incorrect signal 

interpretation. Designing a wavelet that is appropriate for a specific signal is therefore 

necessary. Matching wavelets are therefore intended for numerous applications, 

including image compression, data compression, feature extraction, etc., to increase the 

analysis' accuracy and rigor [98-100]. 
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1.5 Survey of Literature  

Medical professionals and engineers continue to be intrigued by the recording and 

analysis of HRV and SCR signals after many years. So, during the postural change 

activity, a quick literature review in the fields of heart rate variability and skin 

conductance analysis was performed. 

Various researchers have investigated that the response of HRV and SC can be affected 

by physical as well as mental activities such as exercise, public interactions, postural 

changes, depression, joy or anger, etc. Rawal et al. [101] discussed the role of HRV in 

medical diagnosis, as well as the experimental protocols and preprocessing of recorded 

ECG signals. Rawal et al. [66] [102] investigated that different body postures and 

activities like internal changes of the body (i.e., menstrual cycle), exercise, running, or 

aerobics, affect the sympathetic as well as parasympathetic activity. To test sympathetic 

behavior, some researchers have used EDA to analyze SC during exercise. In the 

context of physical exercise, cardiac autonomic control is described as a subsystem of 

the ANS. Vieluf et al. [103] found that physical activities are responsible for the 

sympathetic activation of ANS, While Molina et al. [104] investigated that there is a 

correlation between physiological parameters even after exercise. Posada-Quintero et 

al. [29] investigated in their research work that when participants perform any physical 

activity, they experience physical load, and the sweating rate is increased. EDA 

represents the changes in SC with a strong positive association with sweat production. 

It is found in various research that both HRV and SC are used for expressing the balance 

of the ANS. Although SC is only used to represent the fluctuations of sympathetic 

activities, as investigated by Posada-Quintero et al. [82]. Hnatkova et al. [105] 

explained in their research that the effect of the postural change varied according to the 

change in body position, also the HR increases to a higher value when a position is 

changed from supine to standing as compared to supine to sitting. Radhakrishna et al. 

[106] investigated that the value of HRV parameters is higher in the position of supine 

as compared to the standing position, while a decrement in the value of HRV parameters 

has been observed in the standing position investigated by Banskota et al. [107].  

Rawal et al. [108] discussed in their research paper that several authors used time and 

frequency domain methods to investigate the influence of exercises on cardiovascular 
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metrics in both men and women. Ryan et al. [109] observed no significant change in 

the value of the frequency component of HRV when the position is changed from left 

supine to right supine position. Further, Cruz et al. [110] used time domain and 

frequency domain approaches of HRV to examine HRV in healthy people in supine and 

standing positions. The impact of change in HRV has also been observed in supine, 

sitting, and standing positions of the body [111.] Stefania et al. [112] used SC tonic or 

phasic variables and associated them with different features of linear methods. 

Alejandro et al. [113] estimated the Guided Coherence in a particular frequency range 

using a time-varying multivariate autoregressive model of EDA and HRV time series 

that integrates physiologically influenced assumptions. 

There are various linear methods used by researchers to examine the variation in the 

HRV parameters [108]. However, linear methods have certain drawbacks which were 

discovered by Acharya et al. [114].  

Linear methods are not ideal for identifying significant changes in heart activity 

because the cardiovascular system is complex. After gaining knowledge about the 

cardiovascular system’s complexity, the authors found that the nonlinear methods of 

HRV analysis are best suited for this purpose [102]. For the analysis of non-linear 

signals i.e., HRV and SCR, nonlinear approaches discussed in the literature are Shannon 

entropy, Approximation entropy (ApEn), Sample entropy, Permutation entropy, 

Quadratic entropy, Quadratic sample entropy, DFA, etc. [91] [93] [115-125]. 

The SE was developed by Richman and Moorman [93] as a statistical measure to 

investigate the irregularity or complexity of time-series signals such as EEG and ECG. 

SE is the modified version of the AE. Because of AE's dependency on the data's length 

and the self-matching of the vector pairs, it is unsuitable for many applications. 

Furthermore, AE requires a certain amount of data to produce reliable results. AE may 

offer erroneous results or fail to deliver relevant insights if the data is too short [126]. 

There are various modified versions of SE, such as permutation entropy [121], 

multiscale entropy [127], Weighted multivariate composite multiscale sample entropy 

[128], local sample entropy (LSampEn) [129], cross-sample entropy [130], etc. 
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Byun et al. [131] investigated major depressive disorder by examining the HRV signal 

of 30 participants using SE, AE, FE, Shannon entropy, and some linear methods. The 

authors found that the entropy analysis of HRV signals can be a promising tool for such 

applications. Porta et al. [126] have investigated the HRV signals using two methods: 

the linear model-based approach and the nonlinear model-free approach. Baumert et al. 

[132] have investigated the variations in the entropy of RR and QT interval variability 

during two types of stress, i.e., orthostatic, and mental stress.  

In this research paper, authors have applied SE and FE along with time domain 

parameters such as SDRR, RMSSD, and HF power for analyzing the complexity of the 

RR and QT interval variability. Wejer et al. [119] have transformed the HRV signals 

into patterns. The researchers have examined the complexity of the heart rhythms 

during the head-up tilt test using the entropy of these patterns. Porta et al. [133] have 

investigated the nonlinearity of short-term HRV under different physiopathological 

states using detrended fluctuation analysis (DFA), the recurrence plot base measure 

(RQA), and the surrogate data analysis (SDA). Ribeiro et al. [134] have investigated 

various nonlinear measures for their systematic review article for analyzing the fetal 

heart rate and found that measures based on entropies, such as SE and multiscale 

entropy, are the most effective measures for this. Time-domain indices involve 

measuring SDNN, RMSSD, and other statistical measures of HRV. The frequency-

domain analyses of the power spectral density of HRV. It is usually categorized into 

low-frequency (LF), high-frequency (HF), and very-low-frequency (VLF) bands. 

Nonlinear methods assess the complexity of HRV by using SE, AE, FE, and QE 

methods. 

In the last two decades, the use of multiresolution analysis (MRA) has been increased 

for the analysis of HRV signals. For the multiresolution analysis of HRV, the most used 

approaches are Wigner Ville distribution (WVD), short-time Fourier transforms 

(STFT) and wavelet transforms [14] [135-138]. The fundamental issue with the STFT 

is its constant lack of flexibility in resolution. The WVD spectrum has various artifacts 

and negative values that correspond to negative energy. Therefore, the wavelet 

transform is the most effective method for presenting non-stationary data. 

As stated in previous works, numerous wavelet basis functions exist in the wavelet 

toolkit. Adopting current wavelets would have the fundamental issue that their selection 
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would be largely dependent on the signal being studied. Therefore, because of their 

non-signal-specific nature, existing wavelets cannot be used to correctly fetch the 

fluctuations of heart rate variability in various postures. The choice of the right wavelet 

is an essential part of evaluating HRV fluctuations from an analytical standpoint. These 

customized wavelets are known as matched wavelet that matches the properties of the 

signals that need to be analyzed.  

A matched wavelet has been created by Rawal et al [66] for the analysis of menstrual 

cycle HRV data. Toth and Toth [139] developed an innovative wavelet for the 

identification of fault bearings, whereas Deak K et al [140] chose the optimum wavelet 

for predicting the size of manufacturing flaws for the tapered roller bearing. Quellec et 

al [141-142] used optimum wavelet for microaneurysm detection in retina graphs as 

well as content-based picture retrieval in medical databases. In the Musical Sounds, 

Duraipandian M [143] used Adaptive Algorithms for Signature Wavelet Recognition, 

whereas a band-limited orthonormal wavelet is also developed for a given signal [99]. 

Strela et al [144] have employed multiwavelets in the filter bank for image and signal 

processing of discrete-time signals. Shark et al. [145] developed an optimal method for 

matching arbitrary transient signals using wavelets. Rawal et al [70] have designed a 

matched wavelet based on a genetic algorithm for the analysis of HRV. 

Based on the extensive survey of literature for analyzing the HRV variation for postural 

change activity and its relationship with SCR in young adults using signal processing 

analysis methods, the following are the drawbacks spotted in the literature survey- 

1. Most of the work is based on analyzing the HRV only for the postural change, 

however, its relationship with SCR is not analyzed. 

2. Also, no prior study has examined HRV variations between the supine and standing 

postures in conjunction with skin conductance response. 

3. For a majority of subjects, linear methods were unable to distinguish the 

difference in HRV between supine and standing postures.  

4. Additionally, nonlinear, and multi-resolution techniques can identify many 

anomalies and minor modifications in the behavior of the heart rate in a variety of 

pathological diseases. However, these techniques have not shown to be reliable in 
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identifying HRV fluctuations for the activity of postural change in the 

maximum number of individuals. They are not as accurate in detecting HRV 

fluctuation as would be anticipated for physiological signals.  

Therefore, there is a pressing requirement to create HRV analysis techniques that can 

precisely detect the HRV differences between various body positions in young adults 

and pinpoint their relationship with SCR. 

1.6 Objective of this research work 

In young, healthy individuals, HRV and SCR analyses are effective tools for examining 

the physiological impacts of physical activity, such as postural movement from one 

posture to another. There are already several tools available for HRV measurement and 

assessment, but the methods currently in use are not enough accurate. Numerous 

researchers have come up with some new techniques for HRV analysis, although the 

results from the traditional techniques are inconsistent. Therefore, it is necessary to 

standardize the methods that are used to assess and analyze the signals associated with 

cardiovascular variability. The field of HRV research is still expanding and actively 

being researched. Despite this ongoing development and exploration, a few issues are 

still unresolved. To ascertain an individual's health problems, it is important to decode 

HRV fluctuations utilizing signal processing techniques as the body shifts from one 

position to another and to correlate this response with skin conductance. 

So, the main objectives of this research work are- 

1. To create a Heart Rate Variability (HRV) and Skin Conductance database at various 

body points. 

2. To apply Linear methods of HRV analysis and find the relationship between Skin 

Conductance and HRV. 

3. To propose a Non-Linear method for HRV analysis and then establish the correlation 

between Skin Conductance and HRV. 

4. To develop the Multi-Resolution method for HRV analysis and further explore the 

relation between Skin Conductance and HRV. 
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1.7 Proposed Methodology  

To achieve the above-mentioned objective, the methodology has been proposed as 

shown in Figure 1.7.  

 

Figure 1.7 Flowchart of the Methodology 

1.8 Thesis Organization 

The structure of the thesis has been organized into 6 chapters as follows: 

Chapter 1: An overview of the cardiac system, a summary of the physiological 

background, and information on the procedures for HRV, SCR, and HRV analysis are 
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all covered in the chapter. The objectives and a literature review are also presented in 

this chapter, along with the necessity for further research in this field. 

Chapter 2: In this chapter, numerous recording-related concerns are covered in detail, 

including the protocols used in the recording as well as information about the 

experimental procedures utilized for this study. 

Chapter 3: Chapter 3 reviews time domain and frequency domain linear HRV analysis 

techniques. It is critical to investigate the usefulness of various linear time domain and 

frequency domain approaches in detecting HRV changes between postures and their 

relationship to SCR. 

The investigation of the linear HRV methods on the recorded dataset revealed that they 

were unable to distinguish between the sympathetic and parasympathetic control of the 

heart in various positions for a large number of participants.  

Chapter 4: Chapter 4's primary goal is to use sample entropy analysis to circumvent 

the drawbacks of traditional linear HRV analysis techniques. 

After Analysing the HRV signal using sample entropy analysis, it is found that the 

accuracy of detecting the postural variation is increased but not as much as expected. 

In traditional SE, some limitations have been identified by the authors: firstly, the 

distance is calculated using only the Chebyshev distance function which limits the use 

of sample entropy to decode the deeper information of the time series data. Secondly, 

the relative inconsistency occurs in the case of small data length. To eliminate these 

problems of SE, a novel method is developed in this paper in which different distance 

functions are used for the maximum extraction of information from the biological 

signal. 

Chapter 5: Following a review of the available research, multiresolution analysis 

(MRA) techniques have become a potent tool in clinical applications relating to 

cardiovascular health. However, the best wavelet to use depends on the HRV signal. 

Determining which one produces the optimal wavelet for a given application is thus 

fundamentally problematic. This can occasionally result in a condition being 

misdiagnosed. 
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Conventional wavelets were initially applied and displayed limited efficacy in 

accurately capturing the desired trend. To address this limitation, matched wavelets 

were developed for each subject’s HRV signal, considering its unique characteristics 

and properties. These specifically matched wavelets- Matched wavelets using the 

Stochastic fractal search algorithm (MWSFSA) were developed for each HRV signal 

in supine and standing postures. 

The wavelet filter coefficients were meticulously optimized, and the HRV signals were 

reconstructed using these optimized coefficients. Subsequently, the LF/HF ratio of the 

reconstructed signals underwent meticulous evaluation, both in the supine and standing 

postures. 

Further, the LF/HF ratio was calculated for the developed matched wavelets and 

conventional wavelets (db2 to db6), and there comparative analysis was performed. 

Among all the methods tested, MWSFSA demonstrated superior performance.  
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CHAPTER 2 

METHODS AND MATERIALS 

The electrocardiogram (ECG), which provides the cardiac input data used in HRV 

analysis, is by far the most crucial component. Numerous electrical heart abnormalities 

can be found using the ECG signal. Similarly, skin conduction response which is also 

known as electrodermal behavior is analyzed to evaluate the impact of different 

physiological activities on ANS. When the amount of sweat is altered in ducts, 

variations are observed in the response of SCR. Electro-dermal activity (EDA) is 

described as an indicator of variations in the skin’s electrical conductance. This chapter 

presents several challenges that arise when recording an ECG and SCR, including the 

type of recording device, different noise sources, artifacts, and environmental electrical 

interference. 

2.1 Overview 

HRV is the phrase used to describe the variations that occur between heartbeats. The 

autonomic nervous system is responsible for these variations. The skin conductance 

response is the electrical conductivity of human skin. Numerous recording-related 

concerns are covered in detail, including the protocols used in the recording as well as 

information about the experimental procedures utilized for this study. 

2.2 Technical and Clinical Procedures 

There are a few requirements that must be met to accurately capture an ECG signal, 

and they are as follows: 

• The selection of sampling frequency is an important point for the recording of the 

ECG signal. The recommended range is 250 to 500 Hz. A very low-frequency range 

can cause a jitter while estimating the R-wave fiducial point. This jitter problem can 

be fixed using an interpolation algorithm [1]. 
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• The accurate selection of the QRS fiducial point is crucial. It is recommended to 

utilize a thoroughly validated QRS fiducial point detection algorithm. 

• The recorded HRV time series are not equally spaced in time due to physiological 

and technical disturbances. Therefore, to remove these artifacts, and improve the 

signal quality, interpolation can be used for preprocessing of the recorded signal. 

There are a few requirements that must be met to accurately capture an SCR signal, and 

they are as follows [71]: 

• The skin should be prepared before placing the electrodes. The skin of that particular 

area must be dry, and clean. 

• The electrodes must be properly placed in the recommended area. 

• The Sensor that is going to be used for the recording of SCR must be properly 

calibrated. 

• The recommended sampling rate for SCR is a minimum of 10 Hz to capture the 

changes in the skin conductivity. 

• The participants must be aware of the experiment. Their consent must be taken 

before the recording begins. 

• A comfortable environment must be provided to relax the participants before the 

recording of SCR to avoid the effect of stress. 

• The personal information of the participants must be kept confidential.   

2.3 Recording Setup and Related Data  

Data collection was carried out in two different bodily positions, namely, lying down 

and standing, with each position maintained for 10 minutes. The rest before and in 

between the recording is provided to settle the hemodynamic parameters of the body. 

For ECG recording the BIOPAC®MP36 system has been used at 500 Hz sampling 

frequency while the recording of SCR has been done using a Neulog Logger GSR 

sensor at 20 Hz sampling frequency. For ECG recording, the authors have used the 

Lead II derivation. For Lead II derivation, the electrodes are attached to the 
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corresponding points (lower left rib and right clavicle) on the wrist and ankles. Three 

Ag-AgCl electrodes were put on each participant's arms and legs. For SCR recording, 

the electrodes were attached to the first two fingers of the left hand of each participant. 

To ensure the best recording circumstances, each participant was given ample rest of 

approximately ten minutes in a supine posture to keep the disturbances minimal, 

following that the Participants' ECGs and SCRs were recorded for ten minutes in the 

supine posture. Afterward, the participant is relaxed for 10 minutes before commencing 

another 10 minutes of recording in a standing position. The RR intervals for all the ECG 

recordings were directly received from the BIOPAC®MP36 system. All subjects were 

given instructions to refrain from talking, coughing, or moving their hands, legs, or 

bodies during recording. Additionally, they were told not to eat or drink anything, 

previous to the recording. The recording procedure along with the attachments of the 

electrodes have been shown in Figure 2.1 and Figure 2.2. 

2.4 Source of Interference in ECG and SCR Recording 

For the recording of both signals, the electrodes placed on the human body externally 

can cause some interference. Other than this power line interference, muscle noise, 

artifacts due to the motion of the body, baseline wander, and radio frequency 

interferences can affect the quality of the recorded signal while recording the ECG and 

SCR signals [71] [146-147]. 

2.5 Self-Recorded Data of ECG and SCR 

To achieve the objectives of this research work, the authors have recorded the ECG 

dataset of 70 participants using the BIOPAC®MP36 system at a 500 Hz sampling 

frequency and SCR using a Neulog Logger GSR sensor at a 20 Hz sampling frequency 

in different postures and examined the effect of postural shift on HRV. Recording was 

done in supine and standing postures for 10 minutes, for each posture. A flowchart of 

the recording of HRV and SCR is shown in Figure 2.3. The participating candidates are 

healthy young adults from the age groups of 18-25 years including both male and 

female participants. Before the recording, the authors obtained written consent from 

participants, and they were advised not to eat or drink for 2 hours before the recording 
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began. Table 2.1 represents the primary characteristics such as age, height, weight, 

BMI, and health status of the participants who participated in this research. 

 

Figure 2.1 The Electrode placement for ECG and SCR recording 

 

Figure 2.2 The Instrumental setup for ECG and SCR recordings 



29 
 

Table 2.1 Physical characteristics of participants 

Characteristics 

of participants 

No. Age in 

years 

Height in cm Weight in 

Kg 

BMI Health 

Status 

Mean SD Mean SD Mean SD Mean SD  

All participants 70 23.24 1.78 166.84 9.17 63.85 11.78 22.56 2.52 No 

medical 

history 

 

Figure 2.3 Flowchart of HRV and SCR data acquisition for different postures 
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2.6 Preprocessing of HRV  

During the recording of the physiological signals i.e., ECG and SCR, various technical 

and manual disturbances occurred and caused the degrading of the quality of the 

recorded signal. There are various reasons for these artifacts such as poorly fastened 

electrodes, motion artifacts, susceptible noise, line interference, etc. These artifacts can 

cause the missing RR interval or sudden peak in SCR recording. As both HRV and SC 

are not equally spaced signals in time, to transform them into evenly spaced signals and 

enhance their physiological information, preprocessing is required. In the preprocessing 

of a time series two main approaches have been followed by researchers, one is the 

deletion of the ectopic beats by deleting some beats or samples [148], and another is 

the substitution of a better matching value by adding the substitute value through 

interpolation [149-151].  

Interpolation 

Interpolation is the process of creating new data points to equalize the distance between 

the original signals. It is a technique that is frequently used to lessen signal artifacts. 

Even though there are many interpolation techniques documented in the literature, the 

most popular ones include Linear [152-154] [14], Spline [14, 155-156], Berger [92, 

157], and Cubic interpolation [158, 159, 160]. 

(i) Linear Interpolation 

The easiest way of interpolating the data points into a straight line between two nearby 

data points is through the use of linear interpolation. The position along the line is then 

used to estimate the value at an intermediate point [161].  

(ii) Cubic Spline Interpolation 

In this method of interpolation, the data has been broken down into smaller subintervals, 

and each subinterval has been interpolated with a different cubic polynomial. By using 

this interpolation method, a continuous, smooth curve that traverses all of the data 

points is produced [162-163]. 
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(iii) Cubic Interpolation 

Each pair of neighboring data points in a cubic interpolation is interpolated using a 

single cubic polynomial. Each data segment is turned into a single cubic polynomial, 

and these individual polynomials are then joined to create the final curve. Using the 

cubic interpolation the resulting curve passes over every data point, but smoothness and 

continuity throughout the full dataset may not be guaranteed [159] [164]. 

2.7 Conclusion 

The initial step in computer-aided diagnostics is to capture the important ECG 

characteristics. Additionally, a detailed explanation has been given of the precautions 

and procedures that need to be followed during the recording of the physiological 

signals. This chapter explained the technical and clinical recommendations for 

recording, the description of the recording instruments, the sources of interference 

during the recording, and the preprocessing of the recorded signals before analysis. 
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CHAPTER 3  

TIME DOMAIN AND 

FREQUENCY DOMAIN 

ANALYSIS 

The purpose of this chapter is to assess the currently used linear time and frequency 

domain HRV analysis techniques. It is crucial to assess the effectiveness of traditional 

methods of linear signal processing methods in detecting HRV fluctuations during the 

transitioning i.e., supine to a standing posture. 

3.1 Overview 

Medical professionals and engineers have maintained an ongoing interest in recording 

and analyzing HRV signals over the years. In the field of biomedical engineering, two 

crucial physiological signals are HRV and SC. The autonomic nervous system regulates 

HRV [1].  

A variety of both physical and emotional actions, including activities like physical 

exercise, jogging, aerobic exercises, social interactions, stressors, alterations in body 

position, moments of enthusiasm or irritation, and more, influence both sympathetic 

and parasympathetic responses. These effects can be evaluated through the 

measurement of SC and HR [11] [88]. During postural shifts, the heart's autonomic 

controls change. To get a deeper understanding of how the heart works, a variety of 

physiological techniques have been explored, including changing one's posture. Several 

tools are already available for HRV measurement and assessment, but the methods 

currently in use are not considered accurate. To understand how the postural change 

from supine to standing affects the body's autonomic regulation, it is important to 



33 
 

decode HRV variations using signal processing techniques. This chapter assesses the 

effectiveness of linear computation techniques that combine time domain and 

frequency domain methods for identifying HRV changes between the supine and 

standing positions. 

To analyze the HRV, the time domain methods were first applied to the dataset of 70 

participants in supine postures, the same time domain methods were then implemented 

for the standing postures dataset. In this work, the implemented time domain methods 

are SDNN, RMSSD, NN50, and pNN50. The effects of postural variation on heart 

function were then investigated using frequency domain techniques. Afterward, the 

correlation between HRV and SCR has been explored. 

3.2 Conventional Linear HRV Analysis Methods   

The regulation of cardiac functioning under both healthy and pathological 

circumstances depends strongly on the heart rate's variability. This chapter presents the 

linear analysis of HRV.  

3.2.1 Time Domain Methods 

To measure the intervals between successive normal complexes of heartbeats, time-

domain methods are used. It is based on the statistical analysis of the NN interval [1] 

[165]. 

SDNN 

SDNN stands for the NN interval’s standard deviation. It measures the overall 

variability of the RR intervals between successive heartbeats over a specific period. 

SDNN measures the short-term and long-term variability of HRV. It can be calculated 

using eq. (3.1). 

SDNN = √
1

𝑁
∑ (𝑅𝑅𝑖 − 𝑅𝑅𝑎𝑣)𝑁

𝑖=1             (3.1) 

Here, N = Sum of consecutive RR intervals,  

𝑅𝑅𝑖 = ith RR intervals,  

RRav = Average value of RR intervals.  
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RMSSD 

The RMSSD can be calculated by using eq. (3.2). It reflects the parasympathetic 

modulation of ANS.  

RMSSD = √
1

𝑁−1
∑ (𝑅𝑅𝑖+1 − 𝑅𝑅𝑖)2𝑁−1

𝑖=1            (3.2) 

Here, N = the total number of consecutive RR intervals, 

𝑅𝑅𝑖 = ith RR interval,  

𝑅𝑅𝑖+1 = ith+1 number of RR intervals [165]. 

NN50 

Neighbouring NN interval pairs which are greater than 50 milli seconds during the 

entire recording is known as NN50. It can be calculated by using eq. (3.3). 

NN50 = ∑ {|𝑅𝑅𝑖+1 − 𝑅𝑅𝑖| > 50𝑚𝑠}𝑁
𝑖=1               (3.3) 

N = Overall number of RR intervals in the section that was chosen [165]. 

pNN50 

It measures the percentage of RR interval differences longer than 50 ms in comparison 

to the total number of examined RR intervals. It can be calculated by using eq. (3.4) 

pNN50 =  
𝑁𝑁50

𝑁
 × 100              (3.4) 

N = Overall number of RR intervals in the section that was chosen [165]. 

3.2.2 Frequency Domain Methods 

Fast Fourier Transform is the mathematical tool to break the signal in frequency 

components of a time series signal. The main spectral components of frequency domain 

analysis are the following [1]. 

Ultra-low frequency (ULF) The frequency range of this component is between 0.0001-

0.003Hz 

Very low frequency (VLF): 0.003-0.004Hz is the frequency range of this component. 
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Low Frequency (LF) 

This band is used to represent the sympathetic and parasympathetic activity of ANS. 

0.04-0.15Hz is the frequency range of the LF band [1]. 

High Frequency (HF) 

This band represents the PNS activities. The range of the HF band lies between 0.15 to 

0.40 Hz [1]. 

LF/HF 

The balance between sympathetic and parasympathetic activity is represented by the 

LF/HF ratio [165-167]. 

3.3 Experimental Findings and Related Discussion  

In this chapter, the linear analysis of HRV has been done using time and frequency 

domain methods. The performance measure of applied methods is represented by the 

‘Accuracy’ and ‘mean value’. The performance of the applied methods cannot be 

evaluated only by one metric ‘mean value’ if the evaluation is related to human health. 

In such instances, it is crucial to conduct evaluations on an individual basis for each 

subject. This is important since the reliability of the mean value may not always be 

sufficient in research with a large number of participants. 

As a result, accuracy has been employed in this work as a performance indicator to 

assess the effectiveness of applied approaches, which were founded on the capacity to 

identify variations in HRV in a particular subject.  

In plainer terms, accuracy is the proportion of individuals among all subjects for which 

the method can reliably identify HRV fluctuations. 

Accuracy = 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑠 ℎ𝑎𝑣𝑖𝑛𝑔 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠ℎ𝑖𝑝 𝑜𝑓 𝐻𝑅𝑉 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑝𝑜𝑠𝑡𝑢𝑟𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
 

The relationship of HRV variation for the postural change is said to be correct if the 

HRV variation in standing is less than the supine posture as shown in eq. (3.5) [108] 

[168-169]. 
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HRVST < HRVSU              (3.5) 

Where HRVSU stands for the value of HRV parameter in supine posture, while HRVST 

stands for the value of HRV parameters in standing posture. It suggests that a person's 

HRV in a standing posture is lower than a person's HRV in a supine posture. The 

deployed algorithms are deemed accurate if they successfully identify each subject's 

HRV fluctuations between postures as described in (3.5). If the HRV analysis methods 

successfully identify each subject's HRV fluctuations between postures as described in 

equation (3.5), they are said to be 100% accurate. Therefore, by calculating subject-

specific HRV fluctuations rather than the mean of all individuals, our study gives 

another dimension of heart rate variation analysis which will be more believable and 

appropriate for our investigation. In this research work, the performance parameter 

accuracy is employed to describe the subject-specific fluctuations in HRV between the 

phases. One significant advantage of using accuracy as a measure for HRV analysis 

rather than mean values is that accuracy provides a precise depiction of any HRV 

analysis method's performance. 

The findings are presented as a comparative analysis of several linear algorithms and 

their performance has been evaluated using accuracy as a performance parameter. Time 

domain approaches such as RMSSD, SDNN, NN50, and pNN50 are used in this thesis 

work. The frequency domain analysis has been performed by LF, HF, and LF/HF ratio. 

3.3.1 Results of Linear Methods 

The results have been presented as a mean value of 70 subjects in supine and standing 

postures and their performance has been analyzed by the performance metric 

‘Accuracy’ in a subject-wise manner as shown in Figure 3.1. 

(I) Time Domain Methods 

The examination of time domain parameters, specifically SDNN, RMSSD, NN50, and 

pNN50, is used in the linear assessment of HRV in a group of 70 participants. The goal 

is to assess the impact of posture changes on HRV and calculate the corresponding 

significance levels (p-values), as shown in Table 3.1.  
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Table 3.1 Time domain analysis of HRV in supine and standing postures 

S. 

No. 

Time Domain 

parameters 

Supine Posture Standing 

Posture 

p-value 

1 SDNN 46.35 ± 18.61 39.82 ± 18.89 1.08E-06 

2 RMSSD 40.39 ± 23.29 23.84 ± 19.97 5.52E-12 

3 NN50 131.7 ± 109.9 44.12 ± 57.87 4.57E-11 

4 pNN50 19.76 ± 17.38 5.7 ± 8.38 4.73E-12 

From Table 3.1, it is found that the time domain metrics of HRV have higher values in 

the supine posture, and their value drops when the postural change activity is taken 

from the supine to the standing position. This means that the sympathetic dominance of 

ANS increased in standing posture. The higher value of RMSSD in the supine indicates 

that the parasympathetic activation is higher in the supine posture. A significant 

difference between the value of supine and standing posture has been found. Accuracy 

of the time domain methods has been calculated to capture the postural variation of 

HRV correctly, and it is found that the pNN50 and NN50 can detect this variation with 

81.42% accuracy. On the other hand, the accuracy of RMSSD is 78.57%, and SDNN is 

76.87% as shown in Figure 3.1.  

 

Figure 3.1 The Performance analysis of time domain methods 
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(II) Frequency Domain Methods 

After the Time-domain analysis of HRV, the spectral analysis has been performed for 

chasing better accuracy. For the frequency domain analysis of HRV signals of 70 

subjects, the parameters- LF, HF, and LF/HF ratio have been evaluated as shown in 

Table 3.2. The value of frequency domain parameters has been presented as the mean 

value of 70 subjects along with the standard deviation. The significant difference 

between the postures has been analyzed by t-test analysis. 

Table 3.2 Frequency domain analysis of HRV in supine and standing postures 

S. 

No. 

Frequency Domain 

Parameters 

Supine Posture Standing Posture p-value 

1 Low Frequency 559.92 ± 499.88 665.25 ±636.38 0.0278 

2 High Frequency 716.13 ± 676.10 273.58 ±402.34 2.29E-10 

3 LF/HF ratio 1.23 ±1.07 3.53 ±2.82 6.44E-10 

The obtained results indicate that there is a momentous increment in the LF component 

when the position has been changed from supine to standing. The high-frequency 

component decreases when the position transition takes place. The LF/HF ratio 

increases in the standing postures. A conclusion can be made from the results, that the 

sympathetic influence of the ANS increased when posture is changed from supine to 

standing. The increased value of LF in standing posture indicates the sympathetic 

dominance of ANS in this posture, while higher HF in supine posture shows that 

parasympathetic dominance is higher in supine posture. Since LF/HF represents the 

equilibrium between the sympathetic and parasympathetic nervous systems, its larger 

value in the standing position denotes a higher sympathetic dominance relative to the 

parasympathetic dominance of the ANS. In Table 3.2, the p-value indicates that the 

values of HF and LF/HF ratio are significantly different for supine and standing 

postures. 

For accurately detecting the postural variation of HRV, the accuracy of the applied 

methods has been calculated to assess the performance of the frequency domain 
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methods, and it has been discovered that the LF/HF ratio is capable of detecting this 

variation with 85.71% accuracy. 

 

Figure 3.2 The Performance analysis of frequency domain methods 

However, as shown in Figure 3.2, LF's accuracy is 62.85% and HF's accuracy is 

84.28%. 

3.3.2 The Comparative Analysis of Performance between Linear Methods for 

Postural Change Activity  

As discussed earlier, in this research work, SDNN, RMSSD, NN50, and pNN50 for 

time domain analysis and LF, HF, and LF/HF metrics have been used as frequency 

domain analysis of HRV for evaluating the effect of postural change on HRV. For 

performance analysis of the applied methods, the accuracy of each method has been 

calculated to evaluate which method is more efficient in detecting subject-specific HRV 

fluctuations for postural variation activity. The performance graph of applied linear 

methods has been shown in Figure 3.3.  

The subject-specific analysis shows that NN50 and pNN50 can identify postural 

variation correctly is higher than RMSSD and SDNN. The accuracy of pNN50 and 

NN50 is 81.42 %, while the accuracy of SDNN and RMSSD is 76.87% and 78.57% 

respectively. Also, the frequency domain metric, LF/HF ratio outperforms other linear 

methods. The accuracy of the LF/HF ratio for correctly identifying the postural change 
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from supine to standing posture is highest at 85.71% as it can detect the HRV variation 

for postural alteration in the maximum number of subjects. 

 

 

Figure 3.3 Performance analysis of Linear methods 

3.3.3 Impact of postural change on HR and SCR and its relationship with HRV 

The influence of postural variation on SCR and heart rate of 70 subjects has been 

analyzed and presented in Table 3.3 as mean value and SD. The significant difference 

between the values of different postures has been evaluated by performing a statistical 

analysis and given as a p-value. 

The mean value of skin conductance and heart rate has been given for the two body 

positions. As we can see from the results the value of SCR and HR has been increased 

when the posture of the body is changed from a supine to a standing position. Table 3.3 

concluded that the mean value of skin conductance and HR is higher in the standing 

position which implies lower HRV in this position. 
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Table 3.3 Effect of Postural Change on SCR and HR 

S. No. Physiological Signals Supine Posture Standing Posture p-value 

1 SCR 1.79 ±2.03 2.44 ±2.35 4.00E-05 

2 HR 76.80 ± 11.01 93.94 ±12.93 3.67E-27 

These obtained results indicate that the increment of the SCR and HR in the position of 

standing regulates the sympathetic activation in this position. It also indicates that both 

SCR and HR have a positive correlation for the postural change from supine to standing. 

3.4 Conclusion 

This chapter presents the linear evaluation of the HRV signal of 70 subjects which is 

recorded in the supine and standing posture. For this purpose, time domain and 

frequency domain methods have been implemented on the recorded dataset to evaluate 

the postural variation of HRV during postural changing activity from the supine position 

to the standing position. It is found that the frequency domain method (LF/HF ratio) is 

more accurate in detecting the postural variation of HRV between postures than all the 

applied time domain methods. However, the accuracy of the LF/HF ratio is not 

sufficient when the analysis is related to the physiological signal. So, there is a need to 

develop a method that can more precisely detect the HRV variation accurately between 

postures. 

The relation between SCR, HR, and HRV is also evaluated. A positive correlation is 

observed between SCR and HR, while an inverse relation has been found between SCR 

and HRV. 
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Chapter 4 

Sample Entropy Analysis 

This chapter provides information on the Sample Entropy (SE) analysis which is used 

to identify changes in HRV signals caused by activity that involves postural adjustment. 

In this chapter, a novel approach called CDSE for identifying HRV variations as well 

as SCR between the two body positions to overcome the shortcomings of sample 

entropy analysis has been proposed. To validate the proposed method, a comparative 

study of the new method and traditional SE utilizing statistical parameters has been 

presented in this chapter. Afterwards, the correlation between HRV and SCR has been 

discussed. 

4.1 Overview  

The autonomic nervous system regulates HRV and SCR. The impact of physical activity 

on the ANS can be assessed by evaluating the response of skin conductance and HRV 

[1] [170-171]. A wide range of physical and emotional behaviors, including activities 

like working out, running, engaging in aerobics, social interactions, stressors, 

alterations in body position, moments of enthusiasm or agitation, and so forth, influence 

both sympathetic and parasympathetic activity. These influences can be gauged by 

monitoring SC and Heart HR [11] [88] [172].  

In the previous chapter, the analysis of HRV has been performed using linear methods, 

but their accuracy for detecting the postural variation is low. Various researchers 

suggested that HRV is a nonstationary signal, so the nonlinear analysis of HRV would 

be more accurate for the detection of postural variations between different body 

postures [102]. Thus, in this chapter, an attempt has been made to analyze the HRV 

using two nonlinear methods called approximation entropy (AE) and sample entropy 

(SE). Afterward, a novel nonlinear method based on sample entropy analysis was 

developed for the analysis of HRV. 



43 
 

 

4.2 Existing Nonlinear Methods of HRV Analysis 

Numerous nonlinear signal processing techniques have been developed during the past 

few decades to examine the nonlinear dynamics from a novel perspective. The 

nonlinear methods which are implemented in this research work are approximation 

entropy and sample entropy. 

4.2.1 Approximation Entropy Analysis 

Pincus S. M. [120] introduced AE, which is a tool for quantifying anomalies in HRV 

time series. It is used to assess the consequences of pathological signal abnormalities. 

The values of AE have been calculated using 3 variables, embedding dimension ‘m’, 

length of signal ‘N’, and tolerance ‘r’. The complexities in the HRV signal indicate the 

higher value of AE [108]. The use of AE for calculating complexity has become 

outdated, especially when dealing with short data sequences and extensive embedding 

dimensions, as the adverse effects of bias become increasingly evident. In its place, a 

significantly less biased assessment of conditional entropy, known as S.E., has taken 

over. [126]. Although authors found that AE is less sensitive to short-term fluctuations 

and reflects better signal's overall complexity. Authors discovered that AE is more 

resilient and robust when dealing with distorted signals or missing data points. 

However, AE should be used in conjunction with other methods for a more 

comprehensive evaluation of the HRV signal. 

4.2.2 Sample Entropy Analysis 

Richman and Moorman have proposed SE to overcome the flaws of AE. SE does not 

depend on the length of the signals and is free from self-matches of vector pairs. 

Embedding, dimension ‘m’, tolerance value ‘r’, and the signal ‘N’ length are the three 

fundamental parameters for evaluating the values of SE analysis. The SE is calculated 

for physiological signals using conditional probability and by evaluating its negative 

logarithm of the consecutive template vector pairs E and F [93]. The value of SE can 

be calculated as Eq. (4.1) 

SE = -log E/F               (4.1) 
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Where Qm+1(i), and Qm+1(j) are the two vectors. E represents the vector pairs that having 

maximum distance as calculated in Eq. (4.2) 

d [Qm+1(i), Qm+1(j)] < r               (4.2) 

Similarly, Qm(i), and Qm(j) are the two vectors. F represents the vector pairs having 

maximum distance as calculated in Eq.  (4.3) 

d [Qm(i), Qm(j)] < r              (4.3) 

4.3 Limitation of Existing Sample Entropy 

In traditional Sample entropy, only a single distance function has been used to calculate 

the distance between two template vectors. It is based on a single distance function 

which does not provide sufficient features when analyzing the postural change. Further, 

it is also inconsistent for small-data length signals [173]. It is also not focused on 

increasing the accuracy of detecting postural differences accurately by analyzing the 

HRV. Also, various modified versions of SE have been developed in the literature, 

dealing with signal complexity and short data length. However, these methods are not 

focused more on evolving the dimension of using a multi-distance function. Because 

calculating the distance between vector pairs is essential in SE estimation. 

4.4 Objective of the proposed SE method 

So, this research work is based on overcoming the limitations of the existing research 

work. The objectives of this proposed work are as follows: 

• To develop a method that can extract the maximum information from the signal and 

is compatible with the analysis of short data length and long data length signals. 

• To develop a method compatible with synthetic signals and real-time data such as 

HRV. 

• To develop a method that can accurately detect the postural difference between 

supine and standing postures for a large number of participants. 

4.5 Proposed Method 

To address the limitations of conventional SE, a novel approach measured by composite 

distance function was proposed for the full extraction of information from biological 
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signals such as HRV and SC. Afterward, different noise signals with different data 

lengths were used to demonstrate the efficacy of the proposed method. To overcome 

the relative inconsistency of evaluated entropy for short data length signals. For this 

purpose, HRV and SCR signals have been acquired. After that, the successive R peaks 

have been taken from the ECG signal, which is known as the RR signal.  

Step 1: Let the original RR Signal (q) be represented by Eq. (4.4) and shown in Figure 

4.1- 

     q = {q1, q2,……………………..qN}                       (4.4) 

where N= Total number of samples. 

 

Fig. 4.1 Original RR Signal 

Step 2: It is difficult to analyze the whole signal in one go and extract the maximum 

information from the data. To extract the maximum information from the signal, 

different combinations and methods need to be explored. So we divided the signal into 

two series and named them as odd-numbered and even-numbered sample series. 

 

Fig. 4.2 Odd Sample Series 

Odd sample series- Here odd series is created with the odd-numbered samples from the 

original RR signal as shown in Figure 4.2. Let the odd series be denoted as q (o) as 

shown in Eq. (4.5). Where ‘o’ varies from 1 to N1 sample. When the number of the 

sample is odd, N1 will be equal to N. While the number of samples is even, N1 will be 

equal to N-1. 

      q (o) : 1 ≤ o ≤ N1,              (4.5) 

   Where,     N = Odd,      N1 = N 
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                    N = Even,     N1 = N-1 

Even sample series- Here even series is constructed by selecting the even-numbered 

samples from the original RR signal as shown in Figure 4.3. Let even series be denoted 

as q (e) as given in Eq. (4.6), where ‘e’ varies from 2 to N2 sample. When the number 

of samples is even, N2 will be equal to N. While the number of samples is odd, N2 will 

be equal to N-1. 

 

Fig. 4.3 Even Sample Series 

                                         q (j) : 2 ≤ e ≤  N2,                        (4.6) 

Where,     N = Odd,      N2 = N-1 

                N = Even,     N2 = N 

Step 3: Construction of vector pair- Construct template vector based on embedding 

dimension ‘m’ for q (o) (odd sample). The embedding dimension determines how many 

samples are contained in each vector pair. Where ym(i) is the vector of ‘m’ data points 

from q(i) to q(i+m-1) as given in Eq. (4.7). 

ym(i) = q(i+φ)       (4.7) 

where     φ is,     0 ≤ φ ≤ m-1  

     and    i is,     1 ≤ i ≤N- m+1 

Step 4: Composite Distance function- The match of the vector pair [ym(i), ym(φ)] 

occurs whenever the distance between two template vectors is less than a predefined 

tolerance ‘r'. In conventional sample entropy, the distance is calculated using the 

Chebyshev distance method (𝑑1), and only the largest element-wise difference between 

the two-state vectors is considered in this method. However, there are several methods 

for determining the distance between two template vectors [173]. In the proposed 

method, the distance is calculated using the composite distance function to obtain the 

maximum information from the signal. 
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The composite distance function in this proposed method is made up of three distance 

methods that are used to measure the distance between two vectors, and these three 

distances are denoted as 𝑑1, 𝑑2, and 𝑑3. where- 

𝑑1= is the maximum difference between individual template vectors. (As used in 

conventional SE) 

𝑑2= is the absolute relative distance between two individual template vectors. 

𝑑3= is the straight-line distance between two individual template vectors. 

All three distances [174] can be calculated as given in Eq. (4.8), Eq., (4.9) and Eq. 

(4.10)-  

  𝑑1 [ym(i), ym(φ)] = max{ │q(i+j)- q(φ +j)│ : 0 ≤ j ≤ m-1 }             (4.8) 

𝑑2 [ym(i), ym(φ)] = ∑ │𝑞 (𝑖 + 𝑗) − 𝑞 (𝜑 + 𝑗)│𝑚−1
𝑗=1               (4.9) 

 𝑑3 [ym(i), ym(φ)] = √∑ (𝑞(𝑖 + 𝑗) − 𝑞(𝜑 + 𝑗))2𝑚−1
𝑗=1              (4.10) 

Step 5: Matched vector pair count- If the distance between two vector pairs is less than 

or equal to a tolerance ‘r’, then [ym(i), ym(φ)] is called an m-dimensional matched vector 

pair. Here we have calculated three matched vector pair counts as B1, B2, and B3 using 

‘m’ and different distances 𝑑1, 𝑑2 and 𝑑3 respectively. 

(a). If  Bi = {
1                 𝑤ℎ𝑒𝑛           𝑑1[𝑦𝑚(𝑖), 𝑦𝑚(𝜑)] ≤ 𝑟

0                𝑤ℎ𝑒𝑛           𝑑1[𝑦𝑚(𝑖), 𝑦𝑚(𝜑)] ˃ 𝑟
           (4.11) 

After the calculation of Bi for the value of 1 or 0 based on 𝑑1, m, and tolerance r as 

given in Eq. (4.11), B1 will be calculated as shown in Eq. (4.12)- 

    B1 = ∑ 𝐵𝑖              (4.12) 

Where B1 is the sum of all the values of Bi. 

(b). Let B2 be the count of all matched vector pairs for distance 𝑑2 as given in Eq. 

(4.13)- 

If   Bj = {
1                 𝑤ℎ𝑒𝑛           𝑑2[𝑦𝑚(𝑖), 𝑦𝑚(𝜑)] ≤ 𝑟

0                𝑤ℎ𝑒𝑛           𝑑2[𝑦𝑚(𝑖), 𝑦𝑚(𝜑)] ˃ 𝑟
   (4.13) 
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Based on the value of 𝑑2, embedding dimension, and tolerance r, Bj is calculated as 1 

or 0. Then B2 will be calculated as in Eq. (4.14) -    

B2 = ∑ 𝐵𝑗             (4.14) 

Where B2 is the sum of all the values of Bj. 

(c). First, we calculated Bz for the value of 1 or 0 using distance 𝑑3 as given in Eq. 

(4.15) 

If  Bz = {
1                 𝑤ℎ𝑒𝑛           𝑑3[𝑦𝑚(𝑖), 𝑦𝑚(𝜑)] ≤ 𝑟

0                𝑤ℎ𝑒𝑛           𝑑3[𝑦𝑚(𝑖), 𝑦𝑚(𝜑)] ˃ 𝑟
           (4.15) 

B3 will be calculated as given in Eq. (4.16)- 

        B3 = ∑ 𝐵𝑧             (4.16) 

Where B3 is the sum of all the values of Bz. 

Step 6: Similarly, repeat step (3) to step (5) to obtain m+1 dimensional matched vector 

pairs that will give A1, A2, and A3. Where A1, A2, and A3 are the three matched vector 

pair counts as given in Eq. (4.18), Eq. (4.20), and Eq. (4.22) respectively. 

(a). If   Ai = {
1                 𝑤ℎ𝑒𝑛           𝑑1[𝑦𝑚+1(𝑖), 𝑦𝑚+1(𝜑)] ≤ 𝑟

0                𝑤ℎ𝑒𝑛           𝑑1[𝑦𝑚+1(𝑖), 𝑦𝑚+1(𝜑)] ˃ 𝑟
          (4.17) 

After the calculation of Ai as given in Eq. (4.17), A1 will be calculated as shown in Eq. 

(18) -  

        A1 = ∑ 𝐴𝑖   ,                                  (4.18) 

Where A1 is the sum of all the values of Ai. 

(b). If Aj = {
1                 𝑤ℎ𝑒𝑛           𝑑2[𝑦𝑚+1(𝑖), 𝑦𝑚+1(𝜑)] ≤ 𝑟

0                𝑤ℎ𝑒𝑛           𝑑2[𝑦𝑚+1(𝑖), 𝑦𝑚+1(𝜑)] ˃ 𝑟
          (4.19) 

Then A2 will be calculated as shown in Eq. (4.20), Where A2 is the sum of all the values 

of 𝐴𝑗. 

    A2 =∑ 𝐴𝑗  ,                         (4.20) 

 (c). If     Az = {
1                 𝑤ℎ𝑒𝑛           𝑑3[𝑦𝑚+1(𝑖), 𝑦𝑚+1(𝜑)] ≤ 𝑟

0                𝑤ℎ𝑒𝑛           𝑑3[𝑦𝑚+1(𝑖), 𝑦𝑚+1(𝜑)] ˃ 𝑟
         (4.21) 
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Now A3 will be calculated as a sum of all the values of 𝐴𝑧 as shown in Eq. (4.22)-  

      A3 =∑ 𝐴𝑧 ,             (4.22) 

Step 7: In the conventional method [93], SE is defined as the negative logarithm of the 

ratio of A to B. Here, A is the count of the m+1 dimensional matched vector pair and B 

is the count of the m-dimensional matched vector pair as given in the following 

Equation. 

Conventional Sample Entropy (x, m, r) = S.E.conventional = - log 
𝐴

𝐵
 

According to the above equation, the Odd sample entropy using different distances (𝑑1, 

𝑑2, and 𝑑3) can be calculated as given in Eq. (4.23) to Eq. (4.25), 

    𝑆𝐸1𝑜𝑑𝑑
= - log 

𝐴1

𝐵1
        (4.23) 

Where 𝑆𝐸1𝑜𝑑𝑑
, the sample entropy of odd sampled series is calculated using distance 𝑑1 

and  

𝑆𝐸2𝑜𝑑𝑑
 = - log 

𝐴2

𝐵2
                  (4.24) 

Where 𝑆𝐸2𝑜𝑑𝑑
, the sample entropy of odd sampled series is calculated using 

distance 𝑑2.  

𝑆𝐸3𝑜𝑑𝑑
. = - log 

𝐴3

𝐵3
          (4.25) 

Where 𝑆𝐸3𝑜𝑑𝑑
.is the sample entropy of odd sampled series calculated using 

distance 𝑑3. 

Step 8: The sample entropy of the odd sample series can be calculated by taking the 

average of all the separately calculated sample entropies 𝑆𝐸1𝑜𝑑𝑑
, 𝑆𝐸2𝑜𝑑𝑑

, and𝑆𝐸3𝑜𝑑𝑑
 

using composite distance function is shown in Eq. (4.26). 

  Odd Sample Entropy-   𝑆. 𝐸.𝑜𝑑𝑑 = 
𝑆𝐸1𝑜𝑑𝑑+𝑆𝐸2𝑜𝑑𝑑+𝑆𝐸3𝑜𝑑𝑑.

3
         (4.26) 
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Step 9: Repeat steps (3) to (6) for even-numbered samples q(e) and calculate 𝑆𝐸1𝑒𝑣𝑒𝑛
, 

𝑆𝐸2𝑒𝑣𝑒𝑛
, and 𝑆𝐸3𝑒𝑣𝑒𝑛

 from step (6) to (7). 

Step 10: The sample entropy of an even sample series can be calculated by taking the 

average of all the separately calculated sample entropies 𝑆𝐸1𝑒𝑣𝑒𝑛
, 𝑆𝐸2𝑒𝑣𝑒𝑛

, and𝑆𝐸3𝑒𝑣𝑒𝑛
 

using composite distance function is given in Eq. (4.27). 

  Even Sample Entropy-   𝑆. 𝐸.𝑒𝑣𝑒𝑛= 
𝑆𝐸1𝑒𝑣𝑒𝑛+𝑆𝐸2𝑒𝑣𝑒𝑛+𝑆𝐸3𝑒𝑣𝑒𝑛

3
         (4.27) 

Step 11: In the proposed composite distance sample entropy, the RR signal is first 

divided into odd and even sample series. For both series, the SE is separately calculated 

using different distance methods which are termed as 𝑆. 𝐸.𝑜𝑑𝑑 and𝑆. 𝐸.𝑒𝑣𝑒𝑛. The 

proposed sample entropy is calculated by taking the average of 𝑆. 𝐸.𝑜𝑑𝑑 and𝑆. 𝐸.𝑒𝑣𝑒𝑛 as 

given in Eq. (4.28). 

Proposed Sample Entropy= SEproposed = 
𝑆.𝐸.𝑜𝑑𝑑+𝑆.𝐸.𝑒𝑣𝑒𝑛

2
 

 (4.28) 

The proposed method's flowchart is depicted in Fig. 4.4 in a step-by-step format. 

4.6 Experimental Results and Discussion 

In this chapter, a new method has been introduced for the analysis of non-linear signals. 

The performance of the proposed method is validated, by implementing it on the 

different synthetic signals along with the conventional method. Then both methods have 

been implemented on the self-recorded data set. To get better results, the value of 

embedding dimension ‘m’ and tolerance ‘r’ have been selected as ‘2’ and ‘0.2’ 

respectively. Synthetic data of different noise signals are analyzed to validate the 

supremacy of the proposed method over the conventional method. The effect of signal 

length is also evaluated in both methods. Afterward, a comparative study is performed 

between the conventional and proposed methods. For this purpose, the effect of body 

postures has been analyzed on HRV and SCR by applying conventional SE and 

proposed SE methods.  
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Figure 4.4 Flowchart of proposed ‘CDSE’ method 

4.6.1 Sensitivity to the length of the data using synthetic signals. 

We simulated four different noises i.e., pink, red, blue, and brown [127] [173]. For each 

noise, the data length has been taken with an increment of 10 points starting from 50 

points to 1000. Each data length has been realized 100 times and their corresponding 

error bar have been plotted. For a graphical representation of data variability, an error 

bar has been used. 
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Figure 4.5 (a) Pink Noise 

 

Figure 4.5 (b) Red Noise 
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Figure 4.5 (c) Blue Noise 

 

Figure 4.5 (d) Violet Noise 

Figure 4.5 The Error Plot of Colour noises (a), (b), (c), and (d) of Proposed and 

Conventional SE analysis for (x-axis represents the signal length, the y-axis represents 

error plot of mean and SD). 

To confirm the superiority of the proposed method these noise signals are realized 100 

times at each sample size. Sample entropy using the conventional and proposed method 
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is calculated for these simulated noise signals with embedding dimensions m=2 and 

r=0.2. After the calculation of SE for the conventional and proposed method, the error 

bar graphs have been plotted for each noise type. In Figure 4.5, the colored error bar 

represents the error plot of the proposed CDSE method, while the black color represents 

the error plot of the conventional SE. The number of samples of the simulated signals 

has been shown on the x-axis, while the y-axis represents the mean value of applied 

methods along with their standard deviation. We used noise signals in our research 

work. The error bars were employed to visually compare the performance of our 

proposed method with the conventional SE method. This methodology is based on a 

long-standing research practice in which noise signals have been widely used by 

different researchers over the last several years to analyze and distinguish the usefulness 

of various analytic approaches. 

From Figures 4.5(a), 4.5(b), 4.5(c), and 4.5(d), the variations in the mean value are 

higher for the conventional sample entropy and low for the proposed method for 

different data lengths. 

Figure 4.5(a) represents the error bar graph of ‘Pink noise’, which is generally known 

as 1/f noise. It is the most commonly used noise in physiological signals. The error plot 

of pink noise for the proposed CDSE shows less deviation of the mean value compared 

to conventional SE. In Figure 4.5(b), the error bar of the ‘Red noise’ has been 

represented. Red noise is also known as brown noise and is represented as 1/f2. It shows 

higher intensities at lower frequencies. The error bar of ‘Blue noise’ is shown in Figure 

4.5(c). Blue noise also known as high-frequency white noise, is used to evaluate the 

conventional and proposed methods. In the figure, the proposed SE shows a smaller 

deviation around its mean value compared to the conventional SE. We used noise 

signals as our research. Here, the deviation in the mean value of the error plot is higher 

for the conventional SE compared to the proposed SE. 

4.6.2 The Effect of Postural change on Skin conductance response and Heart Rate 

using paired t-test on the mean value of 70 subjects 

The comparative analysis is also done on the data set of SCR and heart rate using a 

paired t-test. In Table 4.1, the results are expressed in the form of the mean value along 
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with the standard deviation. The level of significance is considered as p < 0.05. The 

interpretation of the obtained results is also given in below Table 4.1. 

Table 4.1 Mean and p-value of Skin conductance response and Heart rate for n=70 

subjects with Interpretation 

Parameter

s 

Supine  

(Mean±SD) 

(n=70) 

Standing 

(Mean±SD) 

(n=70) 

p-value SC and HR 

variations in 

Supine and 

Standing 

positions 

Interpretation 

SCR 1.79±2.03 

 

2.44± 2.35 

 

4.00E-05 

 

SCR.st ˃ SCR.su The mean value of 

SCR is higher in the 

standing position as 

compared to supine 

implying that 

sympathetic 

activation is higher in 

the standing position. 

Heart rate 76.80±11.01 

 

93.94±12.93 

 

3.67E-27 

 

 

HR.st ˃ HR.su The mean value of HR 

is smaller in the 

supine position as 

compared to standing 

implying that the 

parasympathetic 

activity is higher in 

the supine position. 

Both SCR and heart rate show higher mean values during the postural transition (from 

supine to standing). From the results, it is clear that the change in body posture affects 

the mean value of skin conductance response and heart rate. Initially when the body is 

in a rest position the mean value is low but when the body position is changed from 

supine to standing, the mean value is increased. 
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4.6.3 Performance Evaluation of Proposed Method and Conventional Sample 

Entropy on HRV and SCR Dataset 

The performance of the proposed method has been analyzed by evaluating the accuracy 

of obtained results which are based on the correct detection of HRV and the response 

of SC variation in supine and standing positions. The Accuracy of the conventional and 

proposed method is calculated using equation (4.29) for HRV and SC signals based on 

entropy trend in the position of supine and standing. 

Accuracy =  
𝑁𝑠1

𝑁𝑠
×100            (4.29) 

Where 𝑁𝑠 is the total number of subjects and 𝑁𝑠1 is the number of subjects having 

higher sample entropy in the supine position than in the standing position (SE.su ˃  SE.st). 

The accuracy using the proposed method is 94.28% as 66 out of 70 subjects show higher 

sample entropy in the supine position for HRV signal while using the conventional 

method, it is 88.57% as 62 out of 70 subjects show higher sample entropy in the supine 

position as shown in Figure 4.6. Analyzing the effect of position change on SCR using 

the proposed method, the accuracy is obtained at 71.42% percent while in the case of 

the conventional method, its percentage is 65.71% as depicted in Figure 4.7. 

 

Figure 4.6 Performance analysis of conventional SE and proposed method for the 

analysis of HRV 
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Figure 4.7 Performance analysis of conventional SE and proposed method for 

analysis of SCR 

The trend of HRV obtained using the proposed and conventional method is shown in 

Figures 4.8(a) and 4.8(b), while the trend of SC is shown in Figures 4.9(a) and 4.9(b). 

 

Figure 4.8 (a) 
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Figure 4.8 (b) 

Figure 4.8 Number of Subjects out of 70 subjects showing SE.su ˃ SE.st trend for 

HRV 

Here Figure 4.8(a) and Fig. 4.8(b) show the trend of SE for HRV in the position of 

supine and standing using proposed and conventional methods. The blue color indicates 

the supine position while the orange color shows standing. In Figure 4.7, the number of 

subjects that follow the sample entropy trend in supine and standing positions (i.e. SE.su 

˃ SE.st) is higher for the proposed method as compared to the conventional method 

which implies higher accuracy of the proposed method. 

 

Figure 4.9 (a) 
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Figure 4.9 (b) 

Figure 4.9 Number of Subjects out of 70 subjects showing SE.su ˃ SE.st trend for 

Skin conductance response. 

In Figures 4.9(a) and 4.9(b), the trend of SE has been shown for skin conductance 

response. From the figure, a higher number of subjects follow the SE.su ˃ SE.st trend 

using the proposed method as compared to the conventional methods, which indicates 

the higher accuracy of the proposed method. 

4.6.4 Comparative analysis of different nonlinear methods applied to the HRV 

dataset.  

Furthermore, the HRV of 70 subjects was analyzed using the proposed CDSE and the 

existing nonlinear techniques. The results of the applied nonlinear methods in the form 

of mean value were presented in Table 4.2, while Table 4.3 interpreted these findings. 

From Table 4.2 and Table 4.3, the authors found that the obtained results using nonlinear 

methods such as AE, SE, FE, QE, and CDSE are in the desired trend as mentioned in 

the literature [66, 102, 108, 175]. The proposed CDSE and existing methods can detect 

the expected trends of heart rate variability for the body’s postural changing activity. 

Results indicate that the values of HRV decreased when participants switched their 

posture from supine to standing. The decreased HRV implies that the sympathetic 

activity of the autonomic nervous system increased in the standing position of the body, 

while parasympathetic activation is higher in the supine posture. The authors have 

evaluated the performance of the applied methods with the idea of accurate 
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measurements of the obtained Postural trend. For this purpose, the authors have 

implemented proposed and existing nonlinear techniques to the recorded signal of 

different postures and found that only the CDSE method can detect the desired trend of 

HRV correctly in a more significant number of participants compared with other 

methods. Fig. 4.10 presents the accuracy graph of applied approaches. 

Table 4.2 HRV Analysis in Supine and Standing Body Postures Using Different 

Methods 

S. 

N. 

Methods (mean for n=70) Supine Standing P-Value 

  1. AE 1.3600 ± 0.1192 1.2240 ± 0.1580 6.92E-11 
2. SE  1.6782 ± 0.2512 1.3058 ± 0.2672 1.82E-16 
3. FE  -0.0075 ± 0.0014 -0.0065 ± 0.0009 1.50E-07 

4. QE 0.0019 ±0.0003 0.0015 ± 0.0002 2.32E-09 

5. Proposed CDSE Method 2.1331 ± 0.2499  1.6793 ± 0.3093 1.57E-18 

 

Table 4.3 Interpretation of Increment and Decrement of the value of HRV in different 

postures 

Methods HRV trend in supine 

and standing position 

Interpretation [102] [108] 

 

 

 

AE 

AE su > AE st The lower value of AE indicates a higher Heart rate and lower 

HRV in the standing position [61]. It indicates that the regulation 

and coordination of ANS are greater in the standing posture. It 

also indicates that the sympathetic and vagal modulation of the 

sympathetic nervous system is higher in standing posture [176]. 

SE SE su > SE st A higher value of SE in the supine position indicates higher HRV 

and low heart rate [111] [175]. It also indicates that the HRV 

signal is more irregular in supine posture than standing. The 

reason behind higher HRV and large irregularity in the supine 

posture is the increased vagal modulation in the supine posture. 

Fuzzy Entropy FEsu> FE st In the supine posture, the body is in relaxed mode So, the ANS is 

skewed towards parasympathetic modulation which results in 

more irregular HRV and reflects the higher value of FE. When 

posture switches to standing mode, the sympathetic activation of 

ANS increases. Which results in more regular HRV signals, and 

the value of entropy decreased [131] [132]. 

Quadratic 

Entropy 

QE su> QE st The small value of QE in standing posture suggests that the 

parasympathetic modulation is higher in the supine posture, when 
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body posture changes from supine to standing, the 

parasympathetic activation decreases, and sympathetic activation 

increases in standing posture [125].   

Proposed 

CDSE method 

CDSE su > CDSE st A decrement in SE value after the change in position from supine 

to standing implies decreased HRV. In the supine posture, the 

cardiovascular system is in a relaxed state as the gravity force is 

not acting against blood flow. So, the ANS is skewed towards 

parasympathetic modulation which results in complex and more 

irregular HRV and reflects the higher value of entropy. When 

posture switches to standing mode, it increases cardiovascular 

activity and in response, the sympathetic activation of ANS 

increases. Which results in more regular HRV signals, and the 

value of entropy decreased. 

 

 

Figure 4.10 Comparison of the proposed method with other existing methods for 

detecting the accurate trend of HRV for postural change. 

4.6.5 The Correlation between HR and SCR 

The value of SE for both HRV and SC signal is decreased for the conventional and 

proposed method in the standing posture indicating that the parasympathetic activity is 

higher in the supine position and higher sympathetic activation in the standing position. 

The effectiveness of the proposed method has been compared with the conventional 
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method using accuracy as a performance parameter. The accuracy obtained using the 

proposed method is much better than the conventional method.  

The mean value of 70 subjects of skin conductance response and heart rate is increased 

when the position is changed from supine to standing, which suggests that both 

parameters have a positive correlation for the postural change activity. The increment 

of the mean value in the standing position indicates the sympathetic dominance in this 

position. 

4.7 Conclusion 

Within this research chapter, we delve into the impact of altering one's posture on Heart 

Rate Variability (HRV) and Skin Conductance (SC). An analysis of HRV and SC 

involves the application of non-linear methods, among which Sample Entropy (SE) 

stands out. However, conventional SE exhibits sensitivity to limited signal lengths, 

employing a single distance function for matched vector pairs. This sensitivity renders 

the analysis insufficient for establishing a clear connection between HRV and SC. 

As a solution, we introduce a novel approach called "composite distance sample 

entropy" for matched vector pairs, aiming to mitigate the sensitivity associated with 

short signal lengths. In this proposed method, the distance between two template 

vectors is determined using a composite distance function. To validate the efficacy of 

this method, we simulate various noise signals of varying lengths for sample entropy 

computation. Subsequently, we perform a comparative analysis, employing accuracy 

measures and paired t-tests, between the proposed method and the conventional 

approach. This evaluation is conducted on a self-recorded dataset comprising data from 

70 subjects in both supine and standing positions. 

The results demonstrate that the proposed method yields higher accuracy compared to 

the conventional SE method, and it appears to be less influenced by signal length. 

Furthermore, our research uncovers a positive correlation between HR and SC across 

different body postures. 
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CHAPTER 5 

MATCHED WAVELETS 

The right wavelet must be used to accurately measure the HRV changes. A 

matched wavelet that accurately depicts the characteristics of an HRV signal during 

postural change activity from a supine position to a standing position is therefore 

necessary. This chapter uses the stochastic fractal search algorithm to create matched 

wavelets in response to the drawbacks of conventional wavelets analyzing HRV. 

Further, the correlation between the HRV and SCR has been established for postural 

change activity. 

5.1 Introduction 

HRV and SCR have been commonly utilized in research to explore non-invasively the 

impact of diverse physical activities on heart activity and electrical conductivity of skin 

[1] [170-171]. HRV indicates the variation in time intervals between consecutive 

heartbeats caused by dynamic autonomic nervous system (ANS) activities. The reason 

is that as a predictor of mortality and multiple risk factors, HRV is used here for the 

assessment of ANS. Thus, the activity of the ANS can be assessed with the 

measurement of HRV [78-79]. In addition to HRV, another physiological signal, i.e. 

Skin Conductance Response (SCR) (which is frequently used these days for assessing 

the effect of physical activities i.e. postural change) has been analyzed. It is also known 

as electrodermal behavior. Electro-dermal activity (EDA) is described as an indicator 

of variations in the skin’s electrical conductance [80]. To maintain the blood flow, the 

sympathetic nervous system activates which causes a decrement in the HRV and 

changes in skin conductance response [81-83]. A wide range of physical and emotional 

behaviors, including activities like working out, running, engaging in aerobics, social 

interactions, stressors, alterations in body position, moments of enthusiasm or agitation, 

and so forth, influence both sympathetic and parasympathetic activity. These influences 

can be gauged by monitoring SC and Heart HR [11] [88] [172]. During postural shifts, 
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the heart's autonomic controls change. To get a deeper understanding of how the heart 

works, a variety of physiological techniques have been explored, including the change 

in posture. 

In the literature, it is mentioned that the autonomic balance is different for different 

postures, which implies that the sympathetic nervous system activity is higher for 

standing or sitting postures (vertical postures) and vagal or parasympathetic activity is 

dominant for supine posture (recumbent posture) [171] [177-179]. 

Conventional HRV assessments are often classified as linear or non-linear. First, HRV 

is measured using linear approaches. Time domain techniques are the most basic 

technique to compute HRV; they are determined statistically using successive inter-beat 

intervals, whereas frequency domain measures are more comprehensive indexes based 

on spectrum analysis of HRV [91] [180]. However, non-linear measures that are devoid 

of the non-stationary features of HRV are developed using a mathematical approach. In 

comparison with the linear approach, the nonlinear approach is very well known for 

identifying the smallest fluctuations of ANS [181]. There is no time resolution present 

in linear methods of HRV analysis. So, it can’t be told which incident happened at what 

time.  

There are various multiresolution techniques used for the analysis of HRV [14] [135-

138]. The fundamental issue with the STFT is its constant lack of flexibility in 

resolution. The WVD spectrum has various artifacts and negative values that 

correspond to negative energy. Therefore, the wavelet transform is the most widely used 

technique for the analysis of HRV. 

In adopting current wavelets, the fundamental issue is that their selection is largely 

dependent on the signal being studied. Therefore, existing wavelets cannot be used to 

correctly fetch the fluctuations of heart rate variability in various postures. Analytically 

assessing HRV variations requires careful consideration of the wavelet to be used. The 

choice of the right wavelet is an essential part of evaluating HRV fluctuations from an 

analytical standpoint. As a result, choosing a wavelet according to the characteristics of 

the signal is the most requirement. 
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A Matched wavelet that correctly depicts the characteristics of an HRV signal in diverse 

body postures (supine and standing postures) is required for this research. Thus, in this 

chapter, a new wavelet has been developed for each HRV signal in supine and standing 

positions. The developed matched wavelet accurately describes the behavior of the 

HRV signal in each posture. Afterward, the correlation between the HRV, SCR, and HR 

have been analyzed. 

5.2 Type of wavelets 

The analysis is made using the wavelet’s function, which is more localized in time and 

space than Fourier analysis. Wavelets are mathematical computations that can be used 

to examine signals and data. A group of wavelets created by sizing and translating a 

single fundamental wavelet function is known as a family of wavelets. Typically, a 

function with zero average, like the Mexican hat or the Haar function, is referred to as 

the fundamental wavelet function [19]. The various types of wavelets used in signal 

processing are- 

Daubechies wavelet: The Daubechies wavelets are highly suited for the analysis of 

signals with sharp transitions or discontinuities because they possess a large number of 

advantageous characteristics. Their capacity to conduct a multi-resolution analysis of 

signals is one of their primary characteristics. They can so divide a signal into various 

frequency bands that each reflect various scales or resolutions. 

Coiflet wavelet: Coiflet wavelets are orthogonal wavelets. These are the wavelets that 

have limited length and are zero outside of a small interval. 

Coiflet wavelets are frequently employed in image processing applications like image 

compression and denoising because they can shrink the size of the picture file without 

affecting the quality. The coiflet wavelet has a filter length of 6N and a support width 

of 6N-1. 

Symlet wavelet: 

Similar to Daubechies wavelets, the Symlet wavelet family can be used in signal and 

picture processing. Symlet wavelets are compactly supported, like Daubechies 

wavelets, which means that they have finite lengths and are zero outside of a finite 

interval. They also have high localization characteristics and orthogonal in the time and 
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frequency domains. The abbreviation for these wavelets is symN, where N denotes the 

order of values 2, 3, 4…etc. It has a support width of 2N-1 and a filter length of 2N. 

Haar wavelet: 

It is discontinuous, symmetric, and compactly supported: the Haar wavelet. The filter 

length is 2 and the support width is 1, making this wavelet identical to db1. 

Meyer wavelet: 

An endlessly regular, symmetric orthogonal wavelet is referred to as a meyer (meyr) 

wavelet. 

5.3 Properties of Wavelet Function 

Different wavelets have various characteristics. Here is a description of these attributes 

[19] [182]. 

i.  Orthogonality: 

Wavelets are implied to be orthogonal to one another by the orthogonal property of 

wavelets. The coarser scaling function and each wavelet detail function are orthogonal 

to each other. Some wavelets, such as biorthogonal wavelets, don't have the orthogonal 

property of wavelets. 

ii. Smoothness:  

For many applications, the wavelet function should be sufficiently smooth to effectively 

capture the properties of the underlying signal. The number of derivatives that exist for 

a given wavelet is used to determine how smooth it is. The Haar wavelet is an example 

of a wavelet that lacks smoothness since it is discontinuous and non-differentiable. 

iii. Support Width  

The wavelet's smoothness quality and support breadth are inversely connected. The 

wavelet with the largest support width is smoother. 

iv. Symmetry:  

Since wavelet coefficients are symmetric, phase shifts are prevented, and they do not 

stray from the original signal. The biological wavelets can be symmetric or 

antisymmetric. 
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v. Vanishing Moments:  

The smoothness of a wavelet is directly correlated with its vanishing moments. 

Wavelets with a higher number of vanishing moments are better at capturing higher-

degree polynomial signals. 

vi. Localisation:  

The wavelet's characteristics are time- and frequency-specific. In smoother wavelets, 

the frequency localization characteristics are better. 

5.4 Continuous Wavelet Transform 

The continuous wavelet transform is described by using equation (5.1) [183].  

𝐶𝑊𝑇𝑥
𝜓(𝑏, 𝑎) =  𝜓𝑥

𝜓(𝑏, 𝑎) =  
1

√|𝑎|
∫ 𝑥(𝑡)𝜓∗ (

𝑡−𝑏

𝑎
) 𝑑𝑡                (5.1) 

where x(t) is the original signal, b and a are the translation and scale parameters, 𝜓 is 

the mother wavelet-style converting function and ‘*’ stands for the complex conjugate. 

In the transfer domain, the time information is given by translation parameter b, and the 

‘a’ corresponds to the scales in maps. In the context of maps, a smaller scale indicates 

a detailed perspective of the signal whereas a greater scale indicates a non-detailed 

global picture. When it comes to frequency, low frequencies (high scales) offer the 

signal's overall information, whereas high frequencies (low scales) correspond to the 

signal's intricately buried information. Scaling, however, can either expand or contract 

a signal mathematically [184]. The signal is compressed and stretched more when the 

scale is increased or decreased.  

5.5 Discrete Wavelet Transform 

A potent technique for multiscale representation and analysis of nonstationary HRV 

signals is the discrete wavelet transform (DWT) [185]. The Quadrature Mirror Filter 

(QMF) bank is used in DWT to split the signal in the frequency plane [186]. 

 The signal is divided into an approximation 𝑎𝑗,𝑘 (low pass component) and detail 

𝑑𝑗,𝑘 (high pass component) coefficients at each scale and then down-sampled. At the 

ideal cut-off frequencies, the frequency axis is recursively split in half at each scale 

using equation (5.2). 
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      𝑓𝑗 = 2−𝑗 1

2𝑇
                           (5.2) 

The low-pass filter is represented by the scaling function Ø(t), and the high-pass filter 

is represented by the wavelet function ψ(t) [11]. Using equations (5.3) and (5.4), the 

approximation 𝑎𝑗,𝑘  and detail coefficients 𝑑𝑗,𝑘  are provided. 

𝑎𝑗,𝑘 = x(t),Ø𝑗,𝑘(𝑡)               (5.3) 

𝑑𝑗,𝑘 = x(t),𝜓𝑗,𝑘(𝑡)               (5.4) 

where Ø𝑗,𝑘(𝑡) and 𝜓𝑗,𝑘(𝑡) are the scaled and dilated versions of basis functions and are 

defined using equations (5.5) and (5.6), wherein j and k are the scale and translation, 

respectively. 

Ø𝑗,𝑘(𝑡) = 2−𝑗/2 Ø(2−𝑗t-k)                  (5.5) 

𝜓𝑗,𝑘(𝑡) = 2−𝑗/2 𝜓(2−𝑗t-k)                     (5.6) 

The scaling and wavelet functions are given in equation (5.7) 

x(n) = ∑ ∑ 𝑑𝑗,𝑘 𝑘
𝐽
𝑗=1 𝜓𝑗,𝑘(𝑛) + 𝑎𝑗,𝑘 Ø𝑗,𝑘(𝑛)                (5.7) 

In a DWT, specific frequency bands are linked to various regulatory processes, 

particularly for the HRV signals. Therefore, the sub-band decomposition is required to 

comprehend the underlying physical processes in biological signals like HRV. The 

results obtained using the sub-band decomposition depend upon the type of wavelet 

used for the HRV analysis [19]. 

 

Figure 5.1 Discrete wavelet transform 

5.6 Wavelet and filter banks 

Signal processing methods like analysis and synthesis filter banks are employed for 

signal analysis and reconstruction when a signal has been broken down into several 
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frequency bands. The HRV signal is often extracted and reconstructed from its 

frequency components for Heart Rate Variability signal analysis using decomposition 

and reconstruction filter banks. By employing a decomposition (analysis) filter bank, 

the HRV signal is divided into numerous frequency bands. By running the HRV signal 

through a series of filters, each of which isolates a particular frequency range or band 

from the signal. Each filter's output corresponds to the energy of the signal for that 

frequency range [187] [188]. In most cases, the resulting frequency bands are selected 

to match the physiological processes that contribute to the HRV signal. The inverse 

filters are used to combine the frequency bands that were produced from the analytical 

filter bank. The resultant signal is a close representation of the initial HRV signal. 

5.7 Implementation of Daubechies wavelets on the recorded data set of HRV 

Daubechies wavelets (db2 to db4) were employed for multiresolution analysis of HRV, 

on the recorded dataset of HRV. To examine each subject’s HRV signal, it is 

decomposed into different frequency ranges, and subsequently, the LF/HF ratio is 

computed as part of the analysis. The calculated values obtained from this process are 

significantly different for supine and standing positions, and higher in the standing 

position as compared to the supine position for each calculated wavelet (db2 to db6). 

An increase in the LF/HF ratio when transitioning from the supine to the standing 

position suggests a reduction in HRV during standing. This shows an elevation in 

sympathetic activity within the ANS in the upright posture. The efficiency of accurately 

detecting the HRV variation in the postural change activity is used to assess each 

wavelet's performance. Figure 5.2 represents the performance graph of applied 

wavelets.  

5.8 Mean Square Error 

In several disciplines, including signal processing, mean square error (MSE) is a 

regularly employed metric for assessing the accuracy of a reconstruction or prediction. 

The MSE is utilized to determine the average squared deviation between the 

reconstructed signal and the original signal.  
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Figure 5.2 Performance Graph of applied wavelets 

5.9 Mean square Error calculation of applied wavelets (db2 to db6) 

After the calculation of LF/HF, the original signal has been reconstructed with the 

decomposed frequency bands. The mean square error between the original signal and 

the reconstructed signal has been calculated to find out the performance of the applied 

wavelets for the recorded HRV signal. The MSE has been plotted using the box plot in 

Figure 5.3 and Figure 5.4. 

Figure 5.3 represents the mean square error between the original and reconstructed 

signal in the supine posture for different wavelets, while Figure 5.4 shows the MSE in 

the standing posture for applied wavelets.  

From Figure 5.3 and Figure 5.4, it is visible that the reconstructed signal using db4 is 

much closer to the original signal in both postures. This implies that the db4 wavelet is 

superior compared to other wavelets for better reconstruction of the signal using 

decomposed frequency bands. 
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Figure 5.3 Comparative analysis based on MSE in Standing Posture 

 

Figure 5.4 Comparative analysis based on MSE in Standing Posture 

When the different wavelets i.e., db1 to db6 have been applied to the recorded data set 

of 70 subjects, an increment in the value of LF/HF has been found in the standing 

posture as compared to the supine posture. The evaluated accuracy in a subject-to-
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subject manner has been shown in Figure 5.2. Using db3, db5, and db2, the maximum 

number of subjects follow this trend as compared to other applied wavelets. After all 

these evaluations, some contradictory results have been found, this means that on one 

hand db4 can reconstruct the signal in a better way than other applied wavelets. On the 

other hand, the accuracy of db4 using the LF/HF ratio is not as good as it has been 

obtained with db3, db5, and db2. In addition, the reconstruction of the HRV signal is 

not that good with db3, db2, and db5, as good as with db4. 

So, there is a need to optimize the wavelet filter coefficients that match the 

characteristics of the original signal and reconstruct the signal with minimum MSE and 

higher accuracy. 

5.10 Limitation of Existing Wavelets 

The signal is divided into a series of frequency channels with equal bandwidth using 

the wavelet transform. Wavelets have several uses because there is an endless variety 

of basic functions that can be used. By dilating and translating the mother wavelet ψ(t) 

(an appropriate function), several basis functions are created. 

In the past, wavelets have been employed to analyze biological signal data. The goal of 

the ongoing research is to identify a wavelet that can accurately estimate a given signal. 

Therefore, the wavelet that depends on the unique characteristics of the signal under 

inquiry is anticipated to be the best [189]. Although wavelets are widely used in many 

applications, their usage in clinical applications including HRV has been constrained 

by the choice of the best mother wavelet. 

5.11 Need for a Matched Wavelet 

For fundamental investigations and clinical diagnostics, it is vital to analyze and record 

physiological signals like HRV. In some cases, the traditional wavelets may be unable 

to recover the hidden data from the extremely complicated HRV signals. Such 

concealed information relates to fundamental mechanisms of normal and pathologic 

function and has clinical relevance in the prediction of sudden cardiac death, stress 

analysis, etc. Based on the aforementioned research, it is evident that the analysis of a 

specific signal's dynamic behavior necessitates the utilization of a waveform that 

closely aligns with the signal. Therefore, this study requires a tailored wavelet that is 



73 
 

capable of accurately capturing the dynamics of an HRV signal across various body 

postures, including supine and standing positions. 

5.12 Developed Method 

In this research work the new matched wavelet has been developed for analysis of the 

HRV signals of each participant. The matched wavelet has been optimized using the 

Stochastic fractal search (SFS) algorithm so that the developed matched wavelet 

(MWSFSA) can reconstruct the signal that depicts similar characteristics as the original 

signal. The frequency content and temporal properties of the HRV signal are matched 

by matched wavelets, which can enhance the analysis's signal-to-noise ratio (SNR).  

5.12.1 Overview of Stochastic Fractal Search Algorithm (SFSA) 

Stochastic fractal search is a bioinspired approach [190]. This method employs the 

mathematical concept of fractals to mimic growth patterns observed in various natural 

entities such as tree leaves, peacock wings, and electrical discharge formations in the 

sky. The SFSA algorithm conducts an exploratory search within the problem domain 

by employing fractals. The algorithm revolves around two fundamental processes: 

diffusion and updating. 

This clustering process involved in the SFSA algorithm promotes exploitation by 

leveraging the proximity of each point to its present position. The updating process 

consists of two steps that modify the position of each solution. It involves mutating the 

elements and then involves a comprehensive transformation of the solution. The 

updating process is executed based on assigned probabilities for each solution. 

Consequently, superior solutions possess lower probabilities of modification and a 

greater likelihood of remaining unchanged [191] [192]. 

(i) Diffusion Process: 

To bolster the algorithm's exploitation potential and enhance the likelihood of 

discovering local minima, coefficients are generated within the search space. Gaussian 

walks are utilized to generate different solutions, denoted by solution A and solution B, 

as described by equations (5.8) and (5.9). 

Coefficient A (CA) is calculated as follows:  
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CA = Gaussian(𝜇_X, 𝜎) + ε × X - ἐ' × wi              (5.8) 

Coefficient B (CB) is obtained using the Gaussian distribution: 

CB = Gaussian(𝜇_Y, 𝜎)                 (5.9) 

In this context, ε and ἐ symbolize randomly generated numbers uniformly distributed 

within the range of 0 to 1. The ith coefficient is denoted as wi, while X represents the 

optimal coefficients. 𝜇_X and 𝜇_Y refer to the absolute values of X and wi, respectively. 

The standard deviation, 𝜎, is determined using the formula illustrated in equation 

(5.10): 

σ = log(G) / G × (wi - X)               (5.10) 

As the simulation progresses and the iteration (G) increases, the factor log(G)/G reduces 

the magnitude of the Gaussian jumps. 

(ii) Updating Process 

Following the initialization phase, the fitness of all coefficients within the search space 

is assessed, and the optimal coefficient (OC) is determined. The OC is then diffused 

around its initial position, yielding diverse coefficients using either Equation (5.8) or 

Equation (5.9). 

Subsequently, a ranking procedure is conducted to evaluate the fitness of all 

coefficients. Each coefficient is assigned a uniform probability based on its fitness, as 

determined by equation (5.11). 

The rank (ranki) of coefficient wi among the other coefficients in the group is calculated 

as: 

ranki = rank(wi) / n                 (5.11) 

Here, rank(wi) represents the rank of coefficient wi, and n is the total number of 

coefficients in the group. 

For each coefficient wi in the group, the jth component of wi is updated according to 

the following equation if the condition ranki < ε is satisfied; otherwise, it remains 

unchanged: 
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wi’ = wr(j) - ε × (wt(j) - wi (j))               (5.12) 

Here, wi’ represents the newly modified position of coefficient wi, while wr and wt 

denote randomly selected coefficients. 

In the second updating phase, the positions of all coefficients are adjusted based on the 

positions of other coefficients in the group. This process helps improve the quality of 

exploration. 

Once again, the coefficients obtained from the initial updating process are ranked using 

equation (5.11). If the condition ranki < ε is satisfied for the ith position of the new 

coefficient wi', the current position of wi'(i) is adjusted using equations (5.13) and (5.14) 

depicted below. Otherwise, it remains unaltered. 

wi’’ = wi’ + ε’ × (wt’ - X)   if   ε’ ≤ 0.5           (5.13) 

wi’’ = wi’ + ε’ × (wt’ - wr’)   if   ε’ ≥ 0.5           (5.14) 

During the initial updating process, random points, wt' and wr', are selected, and 𝜀' is 

generated using a Gaussian distribution. If it is established that the fitness of the new 

solution is superior, only then is the value of wi'' substituted with wi'. 

5.12.2 Developed matched wavelet MWSFSA: Matched wavelet using the 

stochastic fractal search algorithm. 

In this research work the new matched wavelet has been developed for analysis of HRV 

signals of each participant. The matched wavelet has been optimized using the 

Stochastic fractal search (SFS) algorithm so that the developed matched wavelet 

(MWSFSA) can reconstruct the signal that depicts similar characteristics as the original 

signal. The frequency content and temporal properties of the HRV signal are matched 

by matched wavelets, which can enhance the analysis's signal-to-noise ratio (SNR). 

This may lessen the effect of noise on HRV characteristics.  

 

5.12.2.1 Problem formulation 

(a) Initialization of filter coefficients. 

1) Initialize the analysis scaling filter coefficient ‘w0(n)’. 
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2) Determine the analysis wavelet filter coefficients w1(n) as specified in equation 

(5.15). 

w1(n) = (-1)n w0(n)            (5.15) 

3) Compute the synthesis filter coefficients ‘h0(n)’ and ‘h1(n)’ using equations (5.16) 

and (5.17). 

h0(n) = (-1)n w1(n)            (5.16) 

h1(n) = (-1)n+1 w0(n)            (5.17) 

(b) Reconstruction of the HRV signal: Srecon 

Reconstruct the HRV signal ‘Srecon’ using the filter coefficients initialized in equations 

(5.15), (5.16), and (5.17). 

(c) Calculation of Mean square error 

The MSE has been calculated using equation (5.18). 

MSE = 
∑ (𝑆𝑜𝑟𝑔−𝑆𝑟𝑒𝑐𝑜𝑛)2𝑛

𝑖=1

𝑁
                (5.18) 

Where 𝑆𝑟𝑒𝑐𝑜𝑛 is the reconstructed signal, while 𝑆𝑜𝑟𝑔 is the original signal. 

(d) Equality Constraints 

1) Orthogonality: The orthogonality is explained in the equation (5.19). 

∑(w) = √2   

Hence,    g1 = ∑ (w) - √2            (5.19) 

2) Normality: The scaling function is bound to have a norm of 1, which means that 

its energy is retained, by the normalcy requirement. The normality condition is given 

in the equation (5.20). 

∑ (w.^2) = 1 

Hence,    g2 = ∑ (w.^2) - 1            (5.20) 

(e) Fitness function. 

Fitness function = MSE + K * penalty             (5.21) 
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Here K= 100, and the penalty can be calculated as – 

Penalty = |g1| + |g2|     

5.12.2.2 Application of SFSA in Optimization of the Filter Coefficients 

To minimize the discrepancy between the reconstructed and original signal, the search 

methodology of fractals has been implemented to find the best filter coefficient for the 

best possible reconstruction of the signal. The implementation of SFSA for the 

optimization of filter coefficients and evaluating the best possible results is explained 

in the following steps and the methodology of optimized matched wavelet MWSFSA 

has been explained in the flowchart shown in Figure 5.5. 

Step 1: All the random coefficients (points) have been evaluated between -1 and 1, in 

this step, as per equation (5.22) 

Points = wmin + rand (wmax – wmin)              (5.22) 

Where, wmin = -1 * ones (1, order) 

wmax = 1 * ones (1, order) 

Step 2: Load the original signal ‘f’. 

Step 3: Constraint definition- equality constraints 

 g1 = Sum(w) - √2 

 g2 = Sum(w.^2) - 1 

Step 4: Generation of wavelet using w0(n), w1(n), h0(n), and h1(n) as given in equations 

(5.15), (5.16), and (5.17). 

Step 5: Reconstruction of the signal based on the generated wavelets as explained in 

step 4. 

Step 6: Calculate the MSE between the signal generated in Step 6 and the original 

signal as loaded in Step 2. 

Step 7: Decision making:  Is iteration count < Maximum iteration?  

(i) If NO, then results will be saved, and the LF/HF ratio will be calculated. 
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(ii) If YES, then diffusion will be started as explained in equations (5.8) and (5.9). 

Afterward, the first updating process begins as explained in equation (5.12).  After the 

completion of the first updating, the second updating process started as mentioned in 

equations (5.13), and (5.14). 

Step 8: After the second updating process completion, it is required to check whether 

the termination criterion is met or not. 

(i) If YES – then results will be saved and the filter coefficients at which the 

minimum MSE is obtained will be used to reconstruct the signal. 

(ii) If NO – then the process will start again from step 4.  

5.13 Experimental Results and Discussion  

In this research work, new matched wavelets have been developed to analyze each HRV 

signal. For this matched wavelet, the filter coefficients have been optimized using the 

stochastic fractal search algorithm. Using these optimized filter coefficients, signal 

reconstruction has been performed. For the comprehensive evaluation of HRV signals, 

the new matched wavelet has been developed using SFSA (MWSFSA) and compared 

with conventional wavelets (db2 to db6). Further, the filter coefficients have been 

optimized using SFSA, and these optimized filter coefficients have been used for the 

reconstruction of the signal. Also, MSE has been calculated between this reconstructed 

signal and the original signal.  

5.13.1 Mean Square Error Calculation 

In several disciplines, including signal processing, mean square error (MSE) is a 

regularly used metric to assess the accuracy of a reconstruction or prediction. MSE has 

been calculated using the equation (5.18). To verify the supremacy of the developed 

matched wavelet MWSFSA, a comprehensive comparative analysis has been 

performed in Table 5.1 and Table 5.2. 
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Figure 5.5 Flowchart of the matched wavelet MWSFSA for optimizing filter 

coefficients. 
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The comparative analysis between the matched wavelet MWSFSA, and conventional 

wavelets (db2 to db6) has been performed in this chapter based on MSE. The 

comparative analysis of MSE is given in Table 5.1 and Table 5.2. 

Table 5.1 Comparison of MSE for applied methods for n=5 subjects in supine posture 

Implemented 

Methods 

Comparison of MSE between the original and reconstructed 

signal for applied methods (n=5) 

Subject1 Subject2 Subject 3 Subject4 Subject5 

db2 5.78E-07 6.40E-06 1.88E-08 4.95E-07 8.46E-07 

db3 1.78E-07 5.14E-06 1.30E-09 3.85E-07 1.42E-06 

db4 4.40E-09 7.04E-08 7.74E-09 3.02E-09 1.34E-08 

db5 7.60E-08 2.43E-06 1.01E-09 1.80E-07 6.89E-07 

db6 3.38E-08 3.91E-06 2.73E-08 2.64E-07 1.97E-06 

MWSFSA 1.72E-10 3.26E-10 9.77E-11 9.55E-13 1.89E-12 

Filter 

coefficients for 

each developed 

MWSFSA 

W= 

[0.78099 

0.00026 

0.00831 

0.62456] 

W= 

[0.09474 

0.91746 

0.38556 

0.01682] 

W= [-

0.18913 

0.61665 

0.27631 

0.71162] 

W= 

[0.02516 

0.56528 

0.82450 -

0.00072] 

W= 

[0.00115 

0.05152 

0.49504 

0.86704] 

The results show that when using the developed matched wavelet MWSFSA, the MSE 

value is significantly lower compared to the other utilized methods. This indicates a 

higher quality of signal reconstruction achieved by the MWSFSA method in 

comparison to the other approaches. Table 5.1 and Table 5.2 show the filter coefficients 

for five subjects in supine and standing posture which have been used in the signal 

reconstruction. Thus, MWSFSA is the most effective matched wavelet as it has less 

MSE in comparison to other wavelets. 

5.13.2 Comparative analysis of MSE using box plot 

As discussed above, the developed matched wavelet MWSFSA demonstrates the lowest 

MSE values as compared to the conventional wavelets (db2 to db6).  
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Table 5.2 Comparison of MSE for applied methods for n=5 subjects in standing posture 

Implemented 

Methods 

Comparison of MSE between the original and reconstructed 

signal for applied methods (n=5) 

Subject1 Subject2 Subject 3 Subject4 Subject5 

db2 3.00E-07 2.27E-07 3.10E-07 5.16E-11 6.93E-09 

db3 3.16E-07 2.65E-07 1.18E-07 3.38E-10 1.36E-08 

db4 1.18E-09 1.08E-10 7.74E-10 9.12E-11 1.02E-10 

db5 1.51E-07 1.25E-07 5.31E-08 2.05E-10 7.92E-09 

db6 3.11E-07 2.69E-05 3.69E-08 7.43E-10 8.08E-09 

MWSFSA 3.38E-10 8.17E-14 6.16E-13 1.36E-12 9.55E-13 

Filter 

coefficients 

for each 

developed 

MWSFSA 

W= 

[0.16506 -

0.11217 

0.81107 

0.55005] 

W= 

[0.03913 

0.02603 

0.46664 

0.88291] 

W= 

[0.03913 

0.02603 

0.46664 

0.88291] 

W= 

[0.89831 

0.40286 

0.16754 -

0.05482] 

W= 

[0.02516 

0.56528 

0.82450 -

0.00072] 

This highlights the superior performance of the MWSFSA method in terms of signal 

reconstruction quality for all five subjects. So, it is necessary to evaluate the value 

distribution of MSE of 70 subjects in both body postures with all the applied methods 

using box plots. Figure 5.6 and Figure 5.7 represent the box plot of MSE in supine and 

standing posture respectively. 

Figure 5.6 and Figure 5.7 show that the developed matched wavelets MWSFSA have a 

minimum deviation in the mean square error value between the original and 

reconstructed signal of HRV in both body postures compared to the other applied 

methods. The value distribution of MSE is at a lower scale for MWSFSA in supine and 

standing postures, which implies that the MWSFSA can optimize and generate the best 

optimal filter coefficients for each HRV signal that reconstructs the signal with 

maximum characteristics of the original signal intact with it. 
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Figure 5.6 Comparison of Mean Square Error in Supine posture for 70 subjects between 

developed matched wavelet MWSFSA and conventional wavelets (db2 to db6). 

 

Figure 5.7 Comparison of Mean Square Error in Standing Posture for 70 subjects 

between developed matched wavelet MWSFSA and conventional wavelets (db2 to 

db6). 
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After MWSFSA, the existing wavelet db4 shows the minimum deviation of the MSE 

in both body postures. As the developed wavelet MWSFSA shows less deviation in the 

values of MSE in supine and standing posture, this makes MWSFSA superior to 

consider for the analysis of the LF/HF ratio of HRV for the reconstructed signal. The 

variation in LF/HF ratio represents the activation of the sympathetic or parasympathetic 

nervous systems in different body postures. The desired trend of the LF/HF ratio for the 

different postures and its interpretation has been explained in Table 5.3.  

Table 5.3 The Interpretation of the Variation HRV in Supine and Standing Posture 

Using LF/HF Ratio 

Parameter The Desired HRV 

trend in supine 

and standing 

position 

Interpretation [108] 

LF/HF 

ratio 

LF/HFsu < LF/HFst A rise in the value of the LF/HF ratio in standing 

posture indicates the activation of the 

sympathetic nervous system in this posture, 

while the decrease in supine posture implies the 

parasympathetic increment in this posture.  

5.14 Comparative analysis of existing wavelets and developed matched wavelet 

MWSFSA using LF/HF ratio. 

In this chapter, the HRV signal of 70 subjects has been analyzed for the postural 

variation effect using the developed and conventional wavelets. As mentioned in the 

section above, the optimized filter coefficients by developed matched wavelets 

MWSFSA are the most effective ones as compared to the other methods based on MSE. 

So, for each participant, an MWSFSA has been developed to generate the best possible 

filter coefficients for better signal reconstruction. In this way, for the HRV signal of 70 

subjects, in supine and standing postures, the total number of developed matched 

wavelets is 140. The HRV signals were reconstructed using these optimized filter 
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coefficients, and subsequently, the LF/HF ratio was computed for each participant. 

When analyzing Heart Rate Variability (HRV), a commonly utilized parameter is the 

LF/HF ratio, which reflects the balance between low and high-frequency components. 

The "fight or flight" reaction activates sympathetic activity, which is predominantly 

linked to the low-frequency (LF) component of HRV. The parasympathetic response, 

sometimes known as the "rest and digest" response, is connected to the high-frequency 

(HF) component of HRV. This ratio, which reflects the entire autonomic nervous system 

activity, is frequently employed as a measure of sympathovagal balance. 

The average value of the LF/HF ratio is given in Table 5.4. The level of significance 

between the value of supine and standing postures has been calculated using a paired t-

test. 

Table 5.4 Comparative analysis between applied methods using LF/HF ratio 

S. No. Applied Wavelets LF/HF Ratio 

Supine posture 

(n=70) 

Standing posture 

(n=70) 

1 db2 1.31 ± 0.89* 3.66 ± 2.11* 

2 db3 1.46 ± 1.14* 4.24 ± 2.70* 

3 db4 1.50 ± 1.27* 4.59 ± 3.08* 

4 db5 1.49 ± 1.20* 4.80 ± 3.42* 

5 db6 1.56 ± 1.38* 4.85 ± 3.44* 

6 Developed matched 

wavelet MWSFSA 

0.73 ± 0.30* 1.32 ± 0.83* 

Note: * represents the significance level p < 0.0001 

According to the data presented in Table 5.4, the LF/HF ratio value is lower in the 

supine posture and increases during the transition from supine to standing posture, 

indicating a shift in postural activity. This significant change in the value of the LF/HF 

ratio is noticed for all the applied wavelets. The higher value of the LF/HF ratio in the 

standing posture indicates that the heart rate variability is decreased in this posture, 

while the lower value of the LF/HF ratio represents the higher value of HRV in the 

supine posture.  
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5.15 Performance Analysis 

The evaluation of the methods used in this study focused on their accuracy in detecting 

the HRV postural shift trend between supine and standing positions. The accuracy of 

the developed method was assessed individually for each subject, and the majority of 

subjects exhibited a higher LF/HF ratio in the standing posture as compared to the 

supine posture, as depicted in Figure 5.8. This observation can be explained by the 

following factors. 

(i) Consistency of results: The developed method (MWSFSA) has consistently 

produced the expected trend of LF/HF ratio in 68 out of 70 subjects, indicating a high 

level of consistency in capturing the autonomic response to postural shifts. Most 

subjects displayed the anticipated pattern of a larger LF/HF ratio in standing and a lower 

LF/HF ratio in the supine posture, demonstrating the robustness and dependability of 

the developed method. This level of agreement demonstrates the reliability of the 

method on a subject-to-subject basis. 

(ii) Robustness of the developed method: The developed method (MWSFSA) not 

only has a minimum MSE between the original and reconstructed signal for 70 subjects 

as shown in Figure 5.6 and Figure 5.7, but it also outperforms based on detecting 

accurate LF/HF ratio trend for the maximum subjects. This makes the developed 

method more robust compared to other methods because it performs well on both 

parameters, whether it is MSE or the trend of LF/HF ratio trend.  

(iii) Clear differentiation: The stark difference between the two postures indicates 

that the developed method (MWSFSA) successfully captures the autonomic alterations 

brought on by postural variations. Understanding the autonomic response to postural 

changes depends on this differentiation. 

(iv) Clinical implications: The ability to accurately detect changes in the LF/HF 

ratio during postural shifts for maximum subjects can provide valuable information 

about the autonomic function and potentially aid in diagnosing or monitoring certain 

conditions. This highlights the practical significance of the method's accuracy. 

(v) Accuracy measurement: The accuracy of the developed method (MWSFSA) has 

been measured using the equation (5.23). 
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  Accuracy = 

𝑁𝑜.𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 ℎ𝑎𝑣𝑖𝑛𝑔 
𝐿𝐹

𝐻𝐹
 𝑟𝑎𝑡𝑖𝑜 𝑖𝑛 

𝑠𝑢𝑝𝑖𝑛𝑒 𝑝𝑜𝑠𝑡𝑢𝑟𝑒 < 𝑁𝑜.  𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 ℎ𝑎𝑣𝑖𝑛𝑔 
𝐿𝐹

𝐻𝐹
 𝑟𝑎𝑡𝑖𝑜 𝑖𝑛 

𝑆𝑡𝑎𝑛𝑑𝑖𝑛𝑔 𝑝𝑜𝑠𝑡𝑢𝑟𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠
         (5.23) 

 

Figure 5.8 Accuracy of the developed matched wavelet MWSFSA along with db2 to 

db6 for correctly detecting the LF/HF ratio for postural change. 

5.16 The Correlation between HRV, HR and SCR 

As mentioned in the previous chapters, in this research work the skin conduction 

response of 70 subjects has been recorded along with HR in both the posture (supine 

and standing) for analyzing the impact on ANS activity. In Table 5.5 the mean value of 

SCR, HR, and LF/HF ratio of HRV have been given along with the standard deviation. 

The significant difference between the values of different postures has been evaluated 

by performing a statistical analysis and given as a p-value.  

From Table 5.5 it is evident that the mean value of LF/HF ratio, SCR, and HR increased 

in the postural change activity from supine to standing. This implies that the activity of 

the sympathetic nervous system increased in the standing posture. 
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Table 5.5 Correlation between LF/HF ratio, SCR, and HR for postural change from 

supine to standing position. 

Parameter

s 

Supine  

(Mean ± 

SD) 

Standing 

(Mean ± 

SD) 

p-value Parameter 

variations 

in Supine 

and 

Standing 

positions 

Interpretation 

LF/HF 

ratio 

0.73±0.30* 1.32±0.83* 4.0190e-

08 

LF/HFsu < 

LF/HFst 

A rise in the value 

of the LF/HF ratio 

in standing posture 

indicates the 

activation of the 

sympathetic 

nervous system in 

this posture, while 

the decrease in 

supine posture 

implies the 

parasympathetic 

increment in this 

posture. An 

elevated LF/HF 

ratio during posture 

changes suggests a 

shift in the 

sympathovagal 

balance towards a 

predominance of 

sympathetic 

activity. 



88 
 

SCR 1.79±2.03 

 

2.44± 2.35 

 

4.00E-05 

 

SCR.st ˃ 

SCR.su 

The mean value of 

SCR is higher in the 

standing position as 

compared to supine 

implying that 

sympathetic 

activation is higher 

in the standing 

position. 

Heart rate 76.80±11.

01 

 

93.94±12.

93 

 

3.67E-27 

 

 

HR.st ˃ 

HR.su 

The mean value of 

HR is smaller in the 

position supine as 

compared to 

standing implies 

that the 

parasympathetic 

activity is higher in 

the supine position. 

The elevated values of these three parameters during posture changes suggest a shift in 

the sympathovagal balance towards a predominance of sympathetic activity in the 

standing position. This also represents a positive correlation between HR, LF/HF ratio, 

and SCR for postural change activity. 

5.17 Conclusion 

In this chapter, the influence of postural transitions, specifically from supine to standing 

has been explored on heart rate variability (HRV) using different wavelets. The study 

aimed to improve the accuracy of HRV analysis by developing and applying the 

matched wavelet named MWSFSA obtained through optimization algorithms. 

Furthermore, this work has been focused on analyzing the LF/HF ratio as an indicator 

of autonomic nervous system activity, specifically the balance between sympathetic and 

parasympathetic activity. 
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The findings of this study demonstrate that the MWSFSA wavelet is more accurate in 

capturing the effects of postural changes on HRV parameters, particularly the LF/HF 

ratio. The superior performance of the MWSFSA wavelet, indicated by the minimum 

mean squared error (MSE) between reconstructed and original signals, suggests its 

efficacy in capturing the intricate interplay between sympathetic and parasympathetic 

activity. The LF/HF ratio serves as an essential marker of autonomic balance, 

representing the relative contributions of sympathetic and parasympathetic branches of 

the autonomic nervous system to cardiac activity. The accurate determination of LF/HF 

ratio trends in response to postural changes enables a deeper understanding of 

autonomic regulation during orthostatic challenges. The ability to reliably assess 

sympathetic and parasympathetic activity through accurate LF/HF ratio analysis has 

broad implications. It can aid in evaluating cardiovascular health, identifying subjects 

at risk for autonomic dysfunction, and developing targeted interventions for various 

clinical conditions, including orthostatic intolerance, cardiovascular diseases, and 

autonomic disorders.  

In conclusion, developing and implementing the MWSFSA wavelet, optimized for 

HRV analysis during postural changes, offers a valuable contribution to the field. The 

enhanced accuracy of the LF/HF ratio assessment is 97.14 % which is the highest 

compared to other wavelets, for capturing the complex dynamics of sympathetic and 

parasympathetic activity, providing valuable insights into autonomic control of the 

cardiac system. Further, a positive correlation between HR, LF/HF ratio, and SCR for 

postural change activity is found. This research has the potential to advance our 

understanding of autonomic regulation and facilitate more precise assessment of 

cardiovascular health, which pave the way for future studies in investigating the impact 

of postural changes on ANS function. 
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CHAPTER 6 

CONCLUSION AND SCOPE FOR 

FUTURE WORK 

The research of cardiovascular variability and skin conductance has gained popularity 

as a result of major technological developments in measurement instruments and 

processing capabilities. This dissertation is no exception. At the end of each chapter, we 

share numerous study findings that are specific to that chapter's content. In this chapter, 

we explain the thesis's significant contributions and evaluate its prospects for further 

extension. 

6.1 Conclusion 

Changes in cardiovascular rhythms and their impact on the autonomic nervous system 

(ANS) have been linked to a variety of physiological issues and medical interventions, 

such as changes in posture, exercise, mental stress, etc. The study of Heart rate patterns 

has a long history, there has been a surge of interest in the last three decades. There is a 

rising emphasis in current research on investigating skin conductance response and its 

impact on ANS. HRV and SC have both been linked to an assortment of health issues, 

including diabetes, myocardial infarction, hypertension, physical activity, and stress. 

As a result, HRV signals and SCR data have been collected to acquire physiological 

information during postural changes in this research work. This enables research into 

the dynamic shifts in individuals' cardiovascular regulation in tandem with 

electrodermal activity. 

In this thesis work, the effect of postural change has been examined on HRV and SCR. 

To achieve this, the HRV and SCR data of 70 young healthy participants have been 

acquired in supine and standing postures.  
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This thesis delves into several established linear and nonlinear methods for analyzing 

HRV, as well as introducing new HRV analysis techniques to address the stated 

objectives." Furthermore, the relationship between HRV and SCR (Skin Conductance 

Response) has been studied. 

The following are the key conclusions: 

1. At the beginning of this study, established linear HRV analysis methods were used. 

On the recorded dataset, time-domain (SDNN, RMSSD, NN50, pNN50) and 

frequency-domain (LF, HF, LF/HF ratio) approaches were employed to analyze the 

variation of HRV postural transitions from supine to standing position. Findings 

show that the frequency-domain approach, specifically the LF/HF ratio, is more 

effective than time-domain methods at detecting HRV differences between postures 

with 85.71% accuracy. However, when assessing HRV in the context of 

physiological data, the LF/HF ratio alone may not give sufficient precision. 

2. Due to the inefficient performance of the linear HRV analysis methods, and 

considering the nonlinear nature of HRV, nonlinear analysis of HRV has been 

performed using the existing method- Sample entropy. This study also attempted to 

investigate the relationship between HRV and SCR for postural change activities. 

From the analysis results, it is found that sample entropy is 88.57% accurate in 

detecting the postural variation of HRV from supine to standing postures correctly.  

Nonetheless, the conventional SE technique exhibits a susceptibility to short signal 

lengths, relying on a single distance function for matching vector pairs, which 

renders the analysis insufficient for establishing the connection between HRV and 

SC. Consequently, a novel approach called "composite distance sample entropy 

(CDSE)" has been introduced to mitigate the impact of short signal lengths. In the 

proposed CDSE method, the calculation of the distance between the two template 

vectors is conducted utilizing the composite distance function. The proposed method 

demonstrates an accuracy of 94.28%, which is approximately 6% more precise in 

detecting postural variations in HRV. 
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Furthermore, to substantiate the superiority of the CDSE method we propose, various 

noise signals of differing lengths were simulated. The results affirm that the proposed 

method outperforms the conventional SE method in terms of accuracy and appears to 

be less influenced by signal length variations. Additionally, our research uncovers a 

positive correlation between HR and SC across various body postures.  

3. However, employing standard linear and nonlinear HRV methodologies to investigate 

and analyze long-term nonlinear heart rate fluctuations has intrinsic problems. To 

address this, these short variations in heart rate using wavelet transforms are examined. 

In this investigation, discrete wavelet transform is used to deconstruct HRV signals 

obtained during postural shifts. Following that a comparative analysis of other wavelet 

families, notably db2-db6 is performed. The results of using these distinct wavelets 

revealed that the LF/HF ratio in standing postures is larger than in supine postures. 

However, it is important to highlight that for the majority of research participants, these 

wavelets were unable to discern between the two body postures' HRV variations. 

4. To overcome the drawbacks of the current conventional wavelets, a new matched 

wavelet using the stochastic fractal search algorithm has been developed. The 

fundamental drawback of employing existing wavelets is that their selection is 

frequently made without consideration of the signal under investigation. The changes 

of a particular HRV signal cannot be decoded using these wavelet basis functions. In 

terms of analysis, picking the right wavelet to measure HRV changes is a crucial step. 

5. It is found that the new matched wavelet “MWSFSA” which is developed using a 

stochastic fractal search algorithm can accurately capture the effects of postural changes 

on HRV parameters, particularly the LF/HF ratio. The superior performance of the 

MWSFSA wavelet, indicated by the minimum mean squared error (MSE) between 

reconstructed and original signals, suggests its efficacy in capturing the intricate 

interplay between sympathetic and parasympathetic activity. The accurate 

determination of LF/HF ratio trends in response to postural changes enables a deeper 

understanding of autonomic regulation during orthostatic challenges. Thus, developing 

and implementing the MWSFSA wavelet, optimized for HRV analysis during postural 

changes, offers a valuable contribution to the field. The enhanced accuracy of the 

LF/HF ratio assessment is 97.14 % which is as highest compared to others, for capturing 
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the complex dynamics of sympathetic and parasympathetic activity, providing valuable 

insights into autonomic control of the cardiac system. A positive correlation between 

HRV’s spectral parameter, LF/HF ratio, and SCR for postural change activity is found. 

6.2 Limitations of this work and Scope for future work 

HRV and SCR measurements are being used in a variety of applications. The 

measurements of HRV and SCR not only offer a basic connection between 

psychological processes and physiological processes but also allow for the analysis of 

the skin's electrical activity and the cardiac autonomic state. There are still certain 

concerns that must be handled because standardizing HRV techniques and response of 

skin conductance entail doing so. The following are some of the issues covered: 

1. In this work, the effect of postural change has been analyzed from a supine position 

to a standing position to investigate the response of HRV and its relationship with 

SCR. Further, a sitting position will be desired to be included to investigate the deep 

analysis of the postural change effect. 

2. In this work, HRV and SCR are the only two parameters considered to find the 

difference between postural change variation on the activity of ANS. For further 

analysis, other parameters such as respiration rate, blood pressure, etc., may contribute 

to a comprehensive investigation.  

3. Within this study, an examination was carried out on a range of established algorithms 

aimed at identifying accurate HRV variations during postural changes. Given the 

constraints and shortcomings observed in these conventional algorithms, a set of 

innovative algorithms was subsequently introduced. These algorithms were further 

used to evaluate the accurate HRV fluctuations that occurred during the postural 

change activity on a self-recorded HRV dataset of 10 min duration and its association 

with SCR. However, the recording time of 10 minutes needs to be increased to 

determine its true relevance in identifying HRV changes and their association with 

SCR based on physiological behavior 

4. In this work, a dataset of young people between the ages of 18 and 25 has been used. 

The population of middle-aged and older people needs to be taken into account to 

generalize the postural effect on physiological signals for further research. 
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5. For additional research, a gender-based study of postural change activity may be 

added. 

6. The key emphasis of this work is based on analyzing the HRV variation for postural 

change activity and its association with the response of skin conductance. Skin 

conductance response needs to be analyzed deeply for further research using signal 

processing methods. 

7. In this research work, a limited set of standard analysis methods was used to analyze 

the HRV dataset. Further, other existing methods may also be used for a 

comprehensive investigation of the HRV. 

8. This research work primarily focuses on a deeper understanding of HRV analysis. 

However, the skin conductance analysis may be explored in further work in detail. 

It is envisaged that the current work will make a significant addition to the field of HRV 

analysis approaches in detecting HRV changes and its link with SCR during postural 

change activity. The research presented in this thesis will also advance non-invasive 

HRV and SCR analysis techniques for efficient healthcare provision. 

 

  



95 
 

References 

 

[1] M. Malik, “Heart rate variability: Standards of measurement, physiological 

interpretation, and clinical use.” European Heart Journal, vol. 17, no. 3, 

pp. 354-381, 1996, doi: 10.1093/oxfordjournals.eurheartj.a014868. 

[2] T. Chaspari, A. Tsiartas, L. I. Stein, S. A. Cermak, and S. S. Narayanan, 

“Sparse Representation of Electrodermal Activity with Knowledge-Driven 

Dictionaries.” IEEE Transactions on Biomedical Engineering, vol. 62, no. 

3, pp. 960-971, 2015, doi: 10.1109/tbme.2014.2376960. 

[3] H. F. Posada-Quintero, T. Dimitrov, A. Moutran, S. Park, and K. H. Chon, 

“Analysis of Reproducibility of Noninvasive Measures of Sympathetic 

Autonomic Control Based on Electrodermal Activity and Heart Rate 

Variability.” IEEE Access, vol. 7, pp. 22523-22531, 2019, doi: 

10.1109/access.2019.2899485. 

[4] A. Terkelsen, H. Mølgaard, J. Hansen, N. Finnerup, K. Krøner, and T. 

Jensen, “Heart Rate Variability in Complex Regional Pain Syndrome during 

Rest and Mental and Orthostatic Stress.” Anesthesiology, vol. 116, no. 1, 

pp. 133-146, 2012, doi: 10.1097/aln.0b013e31823bbfb0. 

[5] I. Šipinková, G. Hahn, M. Meyer, M. Tadlanek, and J. Hajek, "Effect of 

respiration and posture on heart rate variability." Physiol. Res, vol. 46, pp. 

173-179, 1997. 

[6] P. Sarang and S. Telles, “Effects of two yoga-based relaxation techniques 

on heart rate variability (HRV).” International Journal of Stress 

Management, vol. 13, no. 4, pp. 460-475, 2006, doi: 10.1037/1072-

5245.13.4.460. 



96 
 

[7] G. G. Berntson, K. S. Quigley, G. J. Norman, and D. L. Lozano, 

“Cardiovascular Psychophysiology.” Handbook of Psychophysiology, pp. 

183-216, doi: 10.1017/9781107415782.009. 

[8] J. L. Andreassi, “The Psychophysiology of cardiovascular 

reactivity.” International Journal of Psychophysiology, vol. 25, no. 1, pp. 

7-11, 1997, doi: 10.1016/s0167-8760(96)00732-5.  

[9] G. G. BERNTSON, “Heart rate variability: Origins, methods, and 

interpretive caveats.” Psychophysiology, vol. 34, no. 6, pp. 623-648, 1997, 

doi: 10.1111/j.1469-8986.1997.tb02140.x. 

[10] B. N. Kyle and D. W. McNeil, “Autonomic Arousal and Experimentally 

Induced Pain: A Critical Review of the Literature.” Pain Research and 

Management, vol. 19, no. 3, pp. 159-167, 2014, doi: 10.1155/2014/536859.  

[11] F. R. Walker, A. Thomson, K. Pfingst, E. Vlemincx, E. Aidman, and E. 

Nalivaiko, “Habituation of the electrodermal response – A biological 

correlate of resilience?” PLOS ONE, vol. 14, no. 1, 2019, doi: 

10.1371/journal.pone.0210078. 

[12] H. Tsuji, “Reduced heart rate variability and mortality risk in an elderly 

cohort. The Framingham Heart Study.” Circulation, vol. 90, no. 2, pp. 878-

883, 1994, doi: 10.1161/01.cir.90.2.878. 

[13] M. A. Nystoriak and A. Bhatnagar, “Cardiovascular Effects and Benefits of 

Exercise.” Frontiers in Cardiovascular Medicine, vol. 5, 2018, doi: 

10.3389/fcvm.2018.00135. 

[14] G.D. Clifford, “Signal processing methods for heart rate variability 

analysis," Ph.D. dissertation, University of Oxford, 2002. 

[15] C. H. Renu Madhavi, “Characterisation of Heart Rate Variability of 

Healthy, Cardiac and Non-cardiac Diseased Subjects using Nonlinear 

Techniques,” Ph.D. dissertation, Avinashilingam University for Women, 

Coimbatore, 2012. 



97 
 

[16] M. Sylva, M. J. Van den Hoff, and A. F. Moorman, “Development of the 

human heart.” American Journal of Medical Genetics Part A, vol. 164, no. 

6, pp. 1347-1371, 2013, doi: 10.1002/ajmg.a.35896. 

[17]  K. V. L. Siem, “Modelling fibre orientation of the left ventricular human 

heart wall,” master’s thesis, Institutt for datateknikk og 

informasjonsvitenskap, 2007. 

[18] “Atrium (heart) - Wikipedia.” 

https://en.wikipedia.org/wiki/Atrium_(heart). 

[19] B. S. Saini, “Signal Processing of Heart Rate Variability,” Ph. D. Thesis, 

Dr. B. R. Ambedkar National Institute of Technology, Jalandhar, 2009. 

[20] E. Tze-Yeng Chang, “Towards understanding the electrogram: Theoretical 

& experimental multiscale modelling of factors affecting action potential 

propagation in cardiac tissue,” Ph. D. Thesis, Imperial College, London. 

[21] https://ykhoa.org/d/image.htm?imageKey=CARD/63340 

[22] Y. N. Singh, “ECG Delineation and its Application in Individual 

Identification,” M. Tech Thesis, Indian Institute of Technology, Kanpur, 

2007. 

[23] G. Q. Gao, “Computerised and Classification of five Cardiac Conditions,” 

M. E. Thesis, Auckland University of Technology, Auckland, Newzealand, 

2003. 

[24] S. Z. Fatemian, “A Wavelet-based Approach to Electrocardiogram (ECG) 

and Phonocardiogram (PCG) Subject Recognition,” Master of Applied 

REFERENCES Analysis of Heart Rate Variability in Menstrual Cycle of 

Women 237 Science Thesis, University of Toronto, Toronto, 2009. 

[25]  P. Madona, R. I. Basti, and M. M. Zain, “PQRST wave detection on ECG 

signals.” Gaceta Sanitaria, vol. 35, 2021, doi: 

10.1016/j.gaceta.2021.10.052. 

https://en.wikipedia.org/wiki/Atrium_(heart)
https://ykhoa.org/d/image.htm?imageKey=CARD/63340


98 
 

[26] D. J. Cornforth, M. P. Tarvainen, and H. F. Jelinek, “How to Calculate Renyi 

Entropy from Heart Rate Variability, and Why it Matters for Detecting 

Cardiac Autonomic Neuropathy.” Frontiers in Bioengineering and 

Biotechnology, vol. 2, 2014, doi: 10.3389/fbioe.2014.00034. 

[27] C. Kappeler-Setz, F. Gravenhorst, J. Schumm, B. Arnrich, and G. Tröster, 

“Towards long term monitoring of electrodermal activity in daily 

life.” Personal and Ubiquitous Computing, vol. 17, no. 2, pp. 261-271, 

2011, doi: 10.1007/s00779-011-0463-4. 

[28] J. Shukla, M. Barreda-Angeles, J. Oliver, G. C. Nandi, and D. Puig, 

“Feature Extraction and Selection for Emotion Recognition from 

Electrodermal Activity.” IEEE Transactions on Affective Computing, vol. 

12, no. 4, pp. 857-869, 2021, doi: 10.1109/taffc.2019.2901673. 

[29] H. F. Posada-Quintero, “Time-varying analysis of electrodermal activity 

during exercise.” PLOS ONE, vol. 13, no. 6, 2018, doi: 

10.1371/journal.pone.0198328. 

[30] H. F. Posada-Quintero, J. P. Florian, Álvaro D. Orjuela-Cañón, and K. H. 

Chon, “Highly sensitive index of sympathetic activity based on time-

frequency spectral analysis of electrodermal activity.” American Journal of 

Physiology-Regulatory, Integrative and Comparative Physiology, vol. 311, 

no. 3, 2016, doi: 10.1152/ajpregu.00180.2016. 

[31] E. Syrjala, M. Jiang, T. Pahikkala, S. Salantera, and P. Liljeberg, “Skin 

Conductance Response to Gradual-Increasing Experimental Pain.” 2019 

41st Annual International Conference of the IEEE Engineering in Medicine 

and Biology Society (EMBC), 2019, doi: 10.1109/embc.2019.8857776. 

[32] E. Babaei, B. Tag, T. Dingler, and E. Velloso, “A Critique of Electrodermal 

Activity Practices at CHI.” Proceedings of the 2021 CHI Conference on 

Human Factors in Computing Systems, 2021, doi: 

10.1145/3411764.3445370. 



99 
 

[33] M. Kana, “Mathematical Models of Cardiovascular Control by the 

Autonomic Nervous System,” Ph. D. Thesis, Czech Technical University in 

Prague, Prague, 2010. 

[34] J. Simmons, “Autonomic Nervous System Response to Repeated Cold 

Exposure”, M. S. Thesis, B.S., Louisiana State University, 2013. 

[35] “Respiratory variations of the heart rate - I—The reflex mechanism of the 

respiratory arrhythmia.” Proceedings of the Royal Society of London. Series 

B - Biological Sciences, vol. 119, no. 813, pp. 191-217, 1936, doi: 

10.1098/rspb.1936.0005. 

[36] “Respiratory variations of the heart rate -The central mechanism of the 

respiratory arrhythmia and the inter-relations between the central and the 

reflex mechanisms.” Proceedings of the Royal Society of London. Series B 

- Biological Sciences, vol. 119, no. 813, pp. 218-230, 1936, doi: 

10.1098/rspb.1936.0006. 

[37] H. E. Hering, "A functional test of heart vagi in man." Menschen Munchen 

Medizinische Wochenschrif,t vol. 57, pp. 1931-1933, 1910. 

[38] R. Hamlin, C. Smith, and D. Smetzer, “Sinus arrhythmia in the 

dog.” American Journal of Physiology-Legacy Content, vol. 210, no. 2, pp. 

321-328, 1966, doi: 10.1152/ajplegacy.1966.210.2.321. 

[39] B. W. HYNDMAN, R. I. KITNEY, and B. M. SAYERS, “Spontaneous 

Rhythms in Physiological Control Systems.” Nature, vol. 233, no. 5318, 

pp. 339-341, 1971, doi: 10.1038/233339a0. 

[40] B. SAYKRS, “Analysis of Heart Rate Variability.” Ergonomics, vol. 16, no. 

1, pp. 17-32, 1973, doi: 10.1080/00140137308924479. 

[41] G. Chess, R. Tam, and F. Calaresu, “Influence of cardiac neural inputs on 

rhythmic variations of heart period in the cat.” American Journal of 

Physiology-Legacy Content, vol. 228, no. 3, pp. 775-780, 1975, doi: 

10.1152/ajplegacy.1975.228.3.775. 

[42] B. W. HYNDMAN and J. R. GREGORY, “Spectral Analysis of Sinus 

Arrhythmia during Mental Loading.” Ergonomics, vol. 18, no. 3, pp. 255-

270, 1975, doi: 10.1080/00140137508931460. 



100 
 

[43] J. Penaz, N. Honzikova, and B. Fiser. "Spectral analysis of resting 

variability of some circulatory parameters in man." Physiologia 

Bohemoslovaca, vol. 27, no. 4, pp. 349-357, 1978. 

[44] G. A. Myers, “Power Spectral Analysis of Heart Rate Varability in Sudden 

Cardiac Death: Comparison to Other Methods.” IEEE Transactions on 

Biomedical Engineering, no. 12, pp. 1149-1156, 1986, doi: 

10.1109/tbme.1986.325694. 

[45] M. Malik, T. Cripps, T. Farrell, and A. J. Camm, “Prognostic value of heart 

rate variability after myocardial infarction. A comparison of different data-

processing methods.” Medical & Biological Engineering & Computing, 

vol. 27, no. 6, pp. 603-611, 1989, doi: 10.1007/bf02441642. 

[46] K. Schreibman, C. Thomas, and M. Levy, “Spectral analysis of cardiac 

cycle length variations: resampling overcomes effects of nonuniform 

spacing.” Images of the Twenty-First Century. Proceedings of the Annual 

International Engineering in Medicine and Biology Society, Nov. 1989, doi: 

10.1109/iembs.1989.95561. 

[47] M. Merri, D. Farden, J. Mottley, and E. Titlebaum, “Sampling frequency of 

the electrocardiogram for spectral analysis of the heart rate 

variability.” IEEE Transactions on Biomedical Engineering, vol. 37, no. 1, 

pp. 99-106, 1990, doi: 10.1109/10.43621. 

[48] R. Furlan, “Continuous 24-hour assessment of the neural regulation of 

systemic arterial pressure and RR variabilities in ambulant 

subjects.” Circulation, vol. 81, no. 2, pp. 537-547, 1990, doi: 

10.1161/01.cir.81.2.537. 

[49] M. Malik, and A. J. Camm, Eds., Heart Rate Variability, Armonk, NY: 

Futura, 1995. 

[50] P. C. Ivanov, “Scaling behaviour of heartbeat intervals obtained by wavelet-

based time-series analysis.” Nature, vol. 383, no. 6598, pp. 323-327, 1996, 

doi: 10.1038/383323a0. 

[51] S. Jasson, “Instant Power Spectrum Analysis of Heart Rate Variability 

During Orthostatic Tilt Using a Time-/Frequency-Domain 



101 
 

Method.” Circulation, vol. 96, no. 10, pp. 3521-3526, 1997, doi: 

10.1161/01.cir.96.10.3521. 

[52] P. Laguna, G. Moody, and R. Mark, “Power spectral density of unevenly 

sampled data by least-square analysis: performance and application to heart 

rate signals.” IEEE Transactions on Biomedical Engineering, vol. 45, no. 

6, pp. 698-715, 1998, doi: 10.1109/10.678605. 

[53] H. V. Huikuri, T. Mäkikallio, K. Airaksinen, R. Mitrani, A. Castellanos, and 

R. J. Myerburg, “Measurement of heart rate variability: a clinical tool or a 

research toy?” Journal of the American College of Cardiology, vol. 34, no. 

7, pp. 1878-1883, 1999, doi: 10.1016/s0735-1097(99)00468-4. 

[54] F. Lombardi, "Heart rate variability: a contribution to a better understanding 

of the clinical role of heart rate." European Heart Journal Supplements, 

vol. 1, no. H, pp. 44-51, 1999. 

[55] H. Chan, C. Lin, and Y. Ko, “Segmentation of heart rate variability in 

different physical activities.” Computers in Cardiology 2003, doi: 

10.1109/cic.2003.1291099. 

[56] Y. Yamamoto, K. Kiyono, and Z. R. Struzik, “Measurement analysis, 

interpretation of long-term heart rate variability,” in Proceedings of SICE 

Annual Conference, 2004, pp. 2598-2605. 

[57] S. Osowski, L. Hoai, and T. Markiewicz, “Support Vector Machine-Based 

Expert System for Reliable Heartbeat Recognition.” IEEE Transactions on 

Biomedical Engineering, vol. 51, no. 4, pp. 582-589, 2004, doi: 

10.1109/tbme.2004.824138. 

[58] U. Rajendra Acharya, N. Kannathal, L. Mei Hua, and L. Mei Yi, “Study of 

heart rate variability signals at sitting and lying postures.” Journal of 

Bodywork and Movement Therapies, vol. 9, no. 2, pp. 134-141, 2005, doi: 

10.1016/j.jbmt.2004.04.001. 

[59] G. Kheder, A. Kachouri, M. Ben Messouad, and M. Samet, “Application of 

a Nonlinear Dynamic Method in the Analysis of the HRV (Heart Rate 

Variability) Towards Clinical Application: Tiresome Diagnosis.” 2006 2nd 

International Conference on Information & Communication Technologies, 

vol. 1, pp. 177-182, 2004, doi: 10.1109/ictta.2006.1684366. 



102 
 

[60] Y. Zhang, Q. Zhang, and S. Wu, “Biomedical signal detection based on 

fractional fourier transform.” 2008 International Conference on 

Technology and Applications in Biomedicine, 2008, doi: 

10.1109/itab.2008.4570600. 

[61] R. Bailón, L. Mainardi, M. Orini, L. Sörnmo, and P. Laguna, “Analysis of 

heart rate variability during exercise stress testing using respiratory 

information.” Biomedical Signal Processing and Control, vol. 5, no. 4, pp. 

299-310, 2010, doi: 10.1016/j.bspc.2010.05.005. 

[62] J. Rafiee, M. Rafiee, N. Prause, and M. Schoen, “Wavelet basis functions 

in biomedical signal processing.” Expert Systems with Applications, vol. 

38, no. 5, pp. 6190-6201, 2011, doi: 10.1016/j.eswa.2010.11.050. 

[63] C. H. Renu Madhavi, and A. G. Ananth, “A Review of Heart Rate 

Variability and It’s Association with Diseases,” International Journal of 

Soft Computing and Engineering (IJSCE), vol. 2, no. 3, 2012. 

[64] K. Palanisamy, M. Murugappan, and S. Yaacob, “Multiple Physiological 

Signal-Based Human Stress Identification Using Non-Linear 

Classifiers.” Electronics and Electrical Engineering, vol. 19, no. 7, 2013, 

doi: 10.5755/j01.eee.19.7.2232 

[65] L. E. V. Silva, B. C. T. Cabella, U. P. da C. Neves, and L. O. Murta Junior, 

“Multiscale entropy-based methods for heart rate variability complexity 

analysis.” Physica A: Statistical Mechanics and its Applications, vol. 422, 

pp. 143-152, 2015, doi: 10.1016/j.physa.2014.12.011. 

[66] K. Rawal, B. S. Saini, and I. Saini, “Design of tree structured matched 

wavelet for HRV signals of menstrual cycle.” Journal of Medical 

Engineering & Technology, vol. 40, no. 5, pp. 223-238, 2016, doi: 

10.3109/03091902.2016.1162213 

[67] A. Porta, V. Bari, G. Ranuzzi, B. De Maria, and G. Baselli, “Assessing 

multiscale complexity of short heart rate variability series through a model-

based linear approach.” Chaos: An Interdisciplinary Journal of Nonlinear 

Science, vol. 27, no. 9, 2017, doi: 10.1063/1.4999353. 

[68] A. Porta, “On the Relevance of Computing a Local Version of Sample 

Entropy in Cardiovascular Control Analysis.” IEEE Transactions on 



103 
 

Biomedical Engineering, vol. 66, no. 3, pp. 623-631, 2019, doi: 

10.1109/tbme.2018.2852713. 

[69] A. K. Verma, I. Saini, and B. S. Saini, “A new BAT optimization algorithm 

based feature selection method for electrocardiogram heartbeat 

classification using empirical wavelet transform and Fisher 

ratio.” International Journal of Machine Learning and Cybernetics, vol. 11, 

no. 11, pp. 2439-2452, 2020, doi: 10.1007/s13042-020-01128-0. 

[70] K. Rawal and G. Sethi, “Design of Matched Wavelet Using Improved 

Genetic Algorithm for Heart Rate Variability Analysis of the Menstrual 

Cycle.” International Journal of Image and Graphics, p. 2150030, 2020, 

doi: 10.1142/s0219467821500303. 

[71] W. Boucsein, “Electrodermal activity: Springer science & business media,” 

Broek, EL vd, Schut, MH, Westerink, JHDM, Herk, J. v., & Tuinenbreijer, 

K. 2012 Feb. 

[72] H. D. Critchley, “Review: Electrodermal Responses: What Happens in the 

Brain.” The Neuroscientist, vol. 8, no. 2, pp. 132-142, 2002, doi: 

10.1177/107385840200800209. 

[73] M. E. Dawson, A. M. Schell, and D. L. Filion, “The Electrodermal 

System.” Handbook of Psychophysiology, pp. 217-243, 2007, doi: 

10.1017/9781107415782.010. 

[74] J. L. Andreassi, “Psychophysiology.” Psychology Press., Jul. 2013, doi: 

10.4324/9781410602817. 

[75] J. T. Cacioppo, L. G. Tassinary, and G. G. Berntson, “Psychophysiological 

Science: Interdisciplinary Approaches to Classic Questions About the 

Mind.” Handbook of Psychophysiology, vol. 3, pp. 1-16, 2007, doi: 

10.1017/cbo9780511546396.001. 

[76] J. A. Coan and J. J. Allen, “The Handbook of emotion elicitation and 

assessment.” Choice Reviews Online, vol. 46, no. 3, 2007, doi: 

10.5860/choice.46-1769. 

[77] P. J. Lang and M. M. Bradley, “Emotion and the motivational 

brain.” Biological Psychology, vol. 84, no. 3, pp. 437-450, 2010, doi: 

10.1016/j.biopsycho.2009.10.007 



104 
 

[78] R. Metelka, “Heart rate variability - current diagnosis of the cardiac 

autonomic neuropathy. A review.” Biomedical Papers, vol. 158, no. 3, pp. 

327-338, 2014, doi: 10.5507/bp.2014.025. 

[79] A. Soni and K. Rawal, “A Review on Physiological Signals: Heart Rate 

Variability and Skin Conductance.” Lecture Notes in Networks and 

Systems, pp. 387-399, 2020, doi: 10.1007/978-981-15-3369-3_30. 

[80] T. Chaspari, A. Tsiartas, L. I. Stein, S. A. Cermak, and S. S. Narayanan, 

“Sparse Representation of Electrodermal Activity with Knowledge-Driven 

Dictionaries.” IEEE Transactions on Biomedical Engineering, vol. 62, no. 

3, pp. 960-971, 2015, doi: 10.1109/tbme.2014.2376960. 

[81] T. Moretta, M. Kaess, and J. Koenig, “A comparative evaluation of resting 

state proxies of sympathetic and parasympathetic nervous system activity 

in adolescent major depression.” Journal of Neural Transmission, vol. 130, 

no. 2, pp. 135-144, 2023, doi: 10.1007/s00702-022-02577-3. 

[82] H. F. Posada-Quintero, J. P. Florian, A. D. Orjuela-Cañón, T. Aljama-

Corrales, S. Charleston-Villalobos, and K. H. Chon, “Power Spectral 

Density Analysis of Electrodermal Activity for Sympathetic Function 

Assessment.” Annals of Biomedical Engineering, vol. 44, no. 10, pp. 3124-

3135, 2016, doi: 10.1007/s10439-016-1606-6. 

[83] S. Yang, S. A. R. Hosseiny, S. Susindar, and T. K. Ferris, “Investigating 

Driver Sympathetic Arousal under Short-term Loads and Acute Stress 

Events.” Proceedings of the Human Factors and Ergonomics Society 

Annual Meeting, vol. 60, no. 1, pp. 1905-1905, 2016, doi: 

10.1177/1541931213601434. 

[84] T. Thong, L. Kehai, J. Mcnames, M. Aboy and B. Goldstein, ―Accuracy 

of ultra-short term HRV measures,” in Proceedings of 25th Annual 

International Conference of IEEE EMBS, Cancun, Mexico, pp. 17–21, 

2003. 

[85] S. Kay and S. Marple, “Spectrum analysis—A modern 

perspective.” Proceedings of the IEEE, vol. 69, no. 11, pp. 1380-1419, 

1981, doi: 10.1109/proc.1981.12184. 



105 
 

[86] R. D. Berger, S. Akselrod, D. Gordon, and R. J. Cohen, “An Efficient 

Algorithm for Spectral Analysis of Heart Rate Variability.” IEEE 

Transactions on Biomedical Engineering, no. 9, pp. 900-904, 1986, doi: 

10.1109/tbme.1986.325789. 

[87] D. Singh, K. Vinod, S. C. Saxena, and K. K. Deepak, “Spectral evaluation 

of aging effects on blood pressure and heart rate variations in healthy 

subjects.” Journal of Medical Engineering & Technology, vol. 30, no. 3, pp. 

145-150, 2006, doi: 10.1080/03091900500442855. 

[88] A. Soni and K. Rawal, “EFFECT OF PHYSICAL ACTIVITIES ON 

HEART RATE VARIABILITY AND SKIN 

CONDUCTANCE.” Biomedical Engineering: Applications, Basis and 

Communications, vol. 33, no. 5, 2021, doi: 10.4015/s1016237221500381. 

[89] T. H. Makikallio, J. M. Tapanainen, M. P. Tulppo, and H. V. Huikuri, 

“Clinical applicability of heart rate variability analysis by methods based 

on nonlinear dynamics,” Cardiac Electrophysiology Review, vol. 6, pp. 

250–255, 2002. 

[90] T. Hao, X. Zheng, H. Wang, K. Xu, and S. Chen, “Linear and nonlinear 

analyses of heart rate variability signals under mental load.” Biomedical 

Signal Processing and Control, vol. 77, p. 103758, 2022, doi: 

10.1016/j.bspc.2022.103758. 

[91] A. Soni and K. Rawal, “ANALYSIS OF HRV FOR POSTURAL CHANGE 

OF YOUNG ADULTS USING SIGNAL PROCESSING 

METHODS.” Biomedical Engineering: Applications, Basis and 

Communications, vol. 34, no. 5, 2022, doi: 10.4015/s1016237222500284. 

[92] R. D. Berger, S. Akselrod, D. Gordon, and R. J. Cohen, “An Efficient 

Algorithm for Spectral Analysis of Heart Rate Variability.” IEEE 

Transactions on Biomedical Engineering, no. 9, pp. 900-904, 1986, doi: 

10.1109/tbme.1986.325789. 

[93] J. S. Richman and J. R. Moorman, “Physiological time-series analysis using 

approximate entropy and sample entropy.” American Journal of 

Physiology-Heart and Circulatory Physiology, vol. 278, no. 6, 2000, doi: 

10.1152/ajpheart.2000.278.6.h2039. 



106 
 

[94] F. Yang and W. Liao, “Modeling and decomposition of HRV signals with 

wavelet transforms.” IEEE Engineering in Medicine and Biology 

Magazine, vol. 16, no. 4, pp. 17-22, 1997, doi: 10.1109/51.603643. 

[95] H. L. Chan, S. C. Fang, Y. L. Ko, M. A. Lin, H. H. Huang, and C. H. Lin, 

“Heart Rate Variability Characterization in Daily Physical Activities Using 

Wavelet Analysis and Multilayer Fuzzy Activity Clustering.” IEEE 

Transactions on Biomedical Engineering, vol. 53, no. 1, pp. 133-139, 2006, 

doi: 10.1109/tbme.2005.859811. 

[96] Y. Goren, L. Davrath, I. Pinhas, E. Toledo, and S. Akselrod, “Individual 

Time-Dependent Spectral Boundaries for Improved Accuracy in Time-

Frequency Analysis of Heart Rate Variability.” IEEE Transactions on 

Biomedical Engineering, vol. 53, no. 1, pp. 35-42, 2006, doi: 

10.1109/tbme.2005.859784. 

[97] M. O. Mendez, “On arousal from sleep: time-frequency analysis.” Medical 

& Biological Engineering & Computing, vol. 46, no. 4, pp. 341-351, 2008, 

doi: 10.1007/s11517-008-0309-z. 

[98] A. Tewfik, D. Sinha, and P. Jorgensen, “On the optimal choice of a wavelet 

for signal representation.” IEEE Transactions on Information Theory, vol. 

38, no. 2, pp. 747-765, 1992, doi: 10.1109/18.119734. 

[99] R. Rao and J. Chapa, “Algorithms for designing wavelets to match a 

specified signal.” IEEE Transactions on Signal Processing, vol. 48, no. 12, 

pp. 3395-3406, 2000, doi: 10.1109/78.887001. 

[100] R. Gopinath, J. Odegard, and C. Burrus, “Optimal wavelet representation 

of signals and the wavelet sampling theorem.” IEEE Transactions on 

Circuits and Systems II: Analog and Digital Signal Processing, vol. 41, no. 

4, pp. 262-277, 1994, doi: 10.1109/82.285705. 

[101] K. Rawal, G. Sethi, B. S. Saini, and I. Saini, “HRV.” Global Developments 

in Healthcare and Medical Tourism, pp. 236-264, 2020, doi: 10.4018/978-

1-5225-9787-2.ch013. 

[102] K. Rawal, B. Saini, and I. Saini, “Effect of age and postural related changes 

on cardiac autonomic function in the pre-menopausal and post-menopausal 



107 
 

women.” International Journal of Medical Engineering and Informatics, 

vol. 9, no. 4, p. 299, 2017, doi: 10.1504/ijmei.2017.086888. 

[103] S. Vieluf, T. Hasija, R. Jakobsmeyer, P. J. Schreier, and C. Reinsberger, 

“Exercise-Induced Changes of Multimodal Interactions Within the 

Autonomic Nervous Network.” Frontiers in Physiology, vol. 10, 2019, doi: 

10.3389/fphys.2019.00240. 

[104] G. E. Molina, C. J. G. Da Cruz, K. E. Fontana, E. M. K. V. K. Soares, L. G. 

G. Porto, and L. F. Junqueira, “Post-exercise heart rate recovery and its 

speed are associated with cardiac autonomic responsiveness following 

orthostatic stress test in men.” Scandinavian Cardiovascular Journal, vol. 

55, no. 4, pp. 220-226, 2021, doi:10.1080/14017431.2021.1879394. 

[105] K. Hnatkova, “Sex differences in heart rate responses to postural 

provocations.” International Journal of Cardiology, vol. 297, pp. 126-134, 

2019, doi: 10.1016/j.ijcard.2019.09.044. 

[106] R. Radhakrishna, D. Narayana Dutt, and V. K. Yeragani, “Nonlinear 

measures of heart rate time series: influence of posture and controlled 

breathing.” Autonomic Neuroscience, vol. 83, no. 3, pp. 148-158, 2000, doi: 

10.1016/s1566-0702(00)00173-9. 

[107] G.B. Nepal, and B.H. Paudel, “Effect of posture on heart rate variability in 

school children,” Nepal Med Coll J, 14(4), pp.298-302, 2012. 

[108] K. Rawal and G. Sethi, “HRV ANALYSIS OF DIFFERENT POSTURES 

OF YOUNG HEALTHY WOMEN USING SIGNAL PROCESSING 

METHODS.” Biomedical Engineering: Applications, Basis and 

Communications, vol. 33, no. 1, p. 2150006, 2020, doi: 

10.4015/s101623722150006x. 

[109] A. D. Ryan, P. D. Larsen, and D. C. Galletly, “Comparison of heart rate 

variability in supine, and left and right lateral positions.” Anaesthesia, vol. 

58, no. 5, pp. 432-436, 2003, doi: 10.1046/j.1365-2044.2003.03145.x. 

[110] C. J. G. Da Cruz, L. G. G. Porto, P. Da Silva Rolim, D. De Souza Pires, G. 

L. Garcia, and G. E. Molina, “Impact of heart rate on reproducibility of 

heart rate variability analysis in the supine and standing positions in healthy 

men.” Clinics, vol. 74, 2019, doi: 10.6061/clinics/2019/e806. 



108 
 

[111] P. Kumar, A. K. Das, Prachita, and S. Halder, “Time-domain HRV Analysis 

of ECG Signal under Different Body Postures.” Procedia Computer 

Science, vol. 167, pp. 1705-1710, 2020, doi: 10.1016/j.procs.2020.03.435. 

[112] S. Cecchi, A. Piersanti, A. Poli, and S. Spinsante, “Physical Stimuli and 

Emotions: EDA Features Analysis from a Wrist-Worn Measurement 

Sensor.” 2020 IEEE 25th International Workshop on Computer Aided 

Modeling and Design of Communication Links and Networks (CAMAD), 

2020, doi: 10.1109/camad50429.2020.9209307. 

[113] A. L. Callara, L. Sebastiani, N. Vanello, E. P. Scilingo, and A. Greco, 

“Parasympathetic-Sympathetic Causal Interactions Assessed by Time-

Varying Multivariate Autoregressive Modeling of Electrodermal Activity 

and Heart-Rate-Variability.” IEEE Transactions on Biomedical 

Engineering, vol. 68, no. 10, pp. 3019-3028, 2021, doi: 

10.1109/tbme.2021.3060867. 

[114] U. Rajendra Acharya, K. Paul Joseph, N. Kannathal, C. M. Lim, and J. S. 

Suri, “Heart rate variability: a review.” Medical & Biological Engineering 

& Computing, vol. 44, no. 12, pp. 1031-1051, 2006, doi: 10.1007/s11517-

006-0119-0. 

[115] N. Ganapathy, Y. R. Veeranki, and R. Swaminathan, “Convolutional neural 

network based emotion classification using electrodermal activity signals 

and time-frequency features.” Expert Systems with Applications, vol. 159, 

p. 113571, 2020, doi: 10.1016/j.eswa.2020.113571. 

[116] M. Javorka, I. Zila, T. Balhárek, and K. Javorka, “Heart rate recovery after 

exercise: relations to heart rate variability and complexity.” Brazilian 

Journal of Medical and Biological Research, vol. 35, no. 8, pp. 991-1000, 

2002, doi: 10.1590/s0100-879x2002000800018. 

[117] Z. Visnovcova, “Spectral and Nonlinear Analysis of Electrodermal Activity 

in Adolescent Anorexia Nervosa.” Applied Sciences, vol. 10, no. 13, p. 

4514, 2020, doi: 10.3390/app10134514. 

[118] T. Henriques, M. Ribeiro, A. Teixeira, L. Castro, L. Antunes, and C. Costa-

Santos, “Nonlinear Methods Most Applied to Heart-Rate Time Series: A 

Review.” Entropy, vol. 22, no. 3, p. 309, 2020, doi: 10.3390/e22030309. 



109 
 

[119] D. Wejer, B. Graff, D. Makowiec, S. Budrejko, and Z. R. Struzik, 

“Complexity of cardiovascular rhythms during head-up tilt test by entropy 

of patterns.” Physiological Measurement, vol. 38, no. 5, pp. 819-832, 2017, 

doi: 10.1088/1361-6579/aa64a8. 

[120] S. Pincus, “Approximate entropy: a complexity measure for biological time 

series data.” Proceedings of the 1991 IEEE Seventeenth Annual Northeast 

Bioengineering Conference, vol. 88, no. 6, pp. 2297-2301, 1991, doi: 

10.1109/nebc.1991.154568. 

[121] C. Bandt and B. Pompe, “Permutation Entropy: A Natural Complexity 

Measure for Time Series.” Physical Review Letters, vol. 88, no. 17, 2002, 

doi: 10.1103/physrevlett.88.174102. 

[122] W. Chen, Z. Wang, H. Xie, and W. Yu, “Characterization of Surface EMG 

Signal Based on Fuzzy Entropy.” IEEE Transactions on Neural Systems 

and Rehabilitation Engineering, vol. 15, no. 2, pp. 266-272, 2007, doi: 

10.1109/tnsre.2007.897025. 

[123] W. Chen, J. Zhuang, W. Yu, and Z. Wang, “Measuring complexity using 

FuzzyEn, ApEn, and SampEn.” Medical Engineering & Physics, vol. 31, 

no. 1, pp. 61-68, 2009, doi: 10.1016/j.medengphy.2008.04.005. 

[124] K. Huselius Gylling, “Quadratic sample entropy as a measure of burstiness: 

A study in how well Rényi entropy rate and quadratic sample entropy can 

capture the presence of spikes in time-series data,” 2017. 

[125] D. Lake, “Renyi Entropy Measures of Heart Rate Gaussianity.” IEEE 

Transactions on Biomedical Engineering, vol. 53, no. 1, pp. 21-27, 2006, 

doi: 10.1109/tbme.2005.859782. 

[126] A. Porta, B. De Maria, V. Bari, A. Marchi, and L. Faes, “Are Nonlinear 

Model-Free Conditional Entropy Approaches for the Assessment of 

Cardiac Control Complexity Superior to the Linear Model-Based 

One?” IEEE Transactions on Biomedical Engineering, vol. 64, no. 6, pp. 

1287-1296, 2017, doi: 10.1109/tbme.2016.2600160. 

[127] M. Costa, A. L. Goldberger, and C.-K. Peng, “Multiscale entropy analysis 

of biological signals.” Physical Review E, vol. 71, no. 2, 2005, doi: 

10.1103/physreve.71.021906. 



110 
 

[128] N. Zhang, A. Lin, H. Ma, P. Shang, and P. Yang, “Weighted multivariate 

composite multiscale sample entropy analysis for the complexity of 

nonlinear times series.” Physica A: Statistical Mechanics and its 

Applications, vol. 508, pp. 595-607, 2018, doi: 

10.1016/j.physa.2018.05.085. 

[129] A. Porta, “On the Relevance of Computing a Local Version of Sample 

Entropy in Cardiovascular Control Analysis.” IEEE Transactions on 

Biomedical Engineering, vol. 66, no. 3, pp. 623-631, 2019, doi: 

10.1109/tbme.2018.2852713. 

[130] D. Shang, P. Shang, and Z. Zhang, “Efficient synchronization estimation 

for complex time series using refined cross-sample entropy 

measure.” Communications in Nonlinear Science and Numerical 

Simulation, vol. 94, p. 105556, 2021, doi: 10.1016/j.cnsns.2020.105556. 

[131] S. Byun, “Entropy analysis of heart rate variability and its application to 

recognize major depressive disorder: A pilot study.” Technology and Health 

Care, vol. 27, pp. 407-424, 2019, doi: 10.3233/thc-199037. 

[132] M. Baumert, B. Czippelova, A. Ganesan, M. Schmidt, S. Zaunseder, and 

M. Javorka, “Entropy Analysis of RR and QT Interval Variability during 

Orthostatic and Mental Stress in Healthy Subjects.” Entropy, vol. 16, no. 

12, pp. 6384-6393, 2014, doi: 10.3390/e16126384. 

[133] L. Faes, “Comparison of methods for the assessment of nonlinearity in 

short-term heart rate variability under different physiopathological 

states.” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 29, 

no. 12, 2019, doi: 10.1063/1.5115506. 

[134] M. Ribeiro, “Non-linear Methods Predominant in Fetal Heart Rate 

Analysis: A Systematic Review.” Frontiers in Medicine, vol. 8, 2021, doi: 

10.3389/fmed.2021.661226. 

[135] C. H. Renu Madhavi, &A. G.  Ananth, “A review of heart rate variability 

and its association with diseases,” Int J Soft Comput Eng, vol. 2, pp.2231-

2307, 2012. 



111 
 

[136] T. Pham, Z. J. Lau, S. H. A. Chen, and D. Makowski, “Heart Rate 

Variability in Psychology: A Review of HRV Indices and an Analysis 

Tutorial.” Sensors, vol. 21, no. 12, p. 3998, 2021, doi: 10.3390/s21123998. 

[137] S. Chabchoub, S. Mansouri, and R. Ben Salah, “Signal processing 

techniques applied to impedance cardiography ICG signals – a 

review.” Journal of Medical Engineering & Technology, vol. 46, no. 3, pp. 

243-260, 2022, doi: 10.1080/03091902.2022.2026508. 

[138] A. Voss, S. Schulz, R. Schroeder, M. Baumert, and P. Caminal, “Methods 

derived from nonlinear dynamics for analysing heart rate 

variability.” Philosophical Transactions of the Royal Society A: 

Mathematical, Physical and Engineering Sciences, vol. 367, no. 1887, pp. 

277-296, 2008, doi: 10.1098/rsta.2008.0232. 

[139] L. Tóth and T. Tóth, “On Finding Better Wavelet Basis for Bearing Fault 

Detection.” Acta Polytechnica Hungarica, vol. 10, no. 3, pp. 17-35, 2013, 

doi: 10.12700/aph.10.03.2013.3.3. 

[140] K. Deák, T. Mankovits, and I. Kocsis, “Optimal Wavelet Selection for the 

Size Estimation of Manufacturing Defects of Tapered Roller Bearings with 

Vibration Measurement using Shannon Entropy Criteria.” Strojniški vestnik 

- Journal of Mechanical Engineering, vol. 63, no. 1, pp. 3-14, 2017, doi: 

10.5545/sv-jme.2016.3989. 

[141] G. Quellec, M. Lamard, P. Josselin, G. Cazuguel, B. Cochener, and C. 

Roux, “Optimal Wavelet Transform for the Detection of Microaneurysms 

in Retina Photographs.” IEEE Transactions on Medical Imaging, vol. 27, 

no. 9, pp. 1230-1241, 2008, doi: 10.1109/tmi.2008.920619. 

[142] D. D. M., “Adaptive Algorithms for Signature Wavelet recognition in the 

Musical Sounds.” Journal of Soft Computing Paradigm, vol. 2, no. 2, pp. 

120-129, 2020, doi: 10.36548/jscp.2020.2.005. 

[143] G. Quellec, M. Lamard, G. Cazuguel, B. Cochener, and C. Roux, “Wavelet 

optimization for content-based image retrieval in medical 

databases.” Medical Image Analysis, vol. 14, no. 2, pp. 227-241, 2010, doi: 

10.1016/j.media.2009.11.004. 



112 
 

[144] V. Strela, P. Heller, G. Strang, P. Topiwala, and C. Heil, “The application of 

multiwavelet filterbanks to image processing.” IEEE Transactions on 

Image Processing, vol. 8, no. 4, pp. 548-563, 1999, doi: 

10.1109/83.753742. 

[145] L. K. Shark and C. Yu, “Design of matched wavelets based on generalized 

Mexican-hat function.” Signal Processing, vol. 86, no. 7, pp. 1451-1469, 

2006, doi: 10.1016/j.sigpro.2005.08.004. 

[146] C. Levkov, G. Michov, R. Ivanov, and I. K. Daskalov, “Subtraction of 50 

Hz interference from the electrocardiogram.” Medical & Biological 

Engineering & Computing, vol. 22, no. 4, pp. 371-373, 1984, doi: 

10.1007/bf02442109. 

[147] M. Wachowiak, G. Rash, P. Quesada, and A. Desoky, “Wavelet-based noise 

removal for biomechanical signals: a comparative study.” IEEE 

Transactions on Biomedical Engineering, vol. 47, no. 3, pp. 360-368, 2000, 

doi: 10.1109/10.827298 

[148] M. A. Salo, H. V. Huikuri, and T. Seppanen, “Ectopic Beats in Heart Rate 

Variability Analysis: Effects of Editing on Time and Frequency Domain 

Measures.” Annals of Noninvasive Electrocardiology, vol. 6, no. 1, pp. 5-

17, 2001, doi: 10.1111/j.1542-474x.2001.tb00080.x. 

[149] P. Tikkanen, “Characterization and applications of analysis methods for 

ECG and time interval variability data,” Ph. D Thesis, Oulu University, 

1999. 

[150] N. Lippman, K. M. Stein, and B. B. Lerman, “Comparison of methods for 

removal of ectopy in measurement of heart rate variability.” American 

Journal of Physiology-Heart and Circulatory Physiology, vol. 267, no. 1, 

1994, doi: 10.1152/ajpheart.1994.267.1.h411. 

[151] C. L. Birkett, M. G. Kienzle, and G. A. Myers, “Interpolation over ectopic 

beats increase low frequency power in heart rate variability spectra,” 

Computers in Cardiology, IEEE Computer Society Press, pp. 257-259, 

1991. 



113 
 

[152] D. Singh, K. Vinod, S. C. Saxena, and K. K. Deepak, “Effects of RR 

segment duration on HRV spectrum estimation,” Physiological 

Measurement, vol. 25, pp. 721–735, 2004. 

[153] D. Singh, K. Vinod and S. C. Saxena, “Sampling frequency of the RR-

interval time series for spectral analysis of the heart rate variability,” 

Journal of Medical Engineering and Technology, vol. 28, pp. 263–272, 

2004 

[154] M. Pagani, F. Lombardi, S. Guzzetti, O. Rimoldi, R. Furlan, P. Pizzinelli, 

G. Sandrone, G. Malfatto, S. Dell’Orto, and E. Piccaluga, “Power spectral 

analysis of heart rate and arterial pressure variabilities as a marker of 

sympathovagal interaction in man and conscious dog,” Circulation 

Research, vol. 59, pp. 178-193, 1986 

[155] B. W. Hyndman, and C. Zeelenberg, “Spectral analysis of HRV revisited: 

Comparison of the methods,” in Proceedings of the IEEE International 

Conference on Computers in Cardiology, London, UK, pp. 719-722, 

September 5-8, 1993. 

[156] M. Di. Rienzo, P. Castiglloni, G. Parati, G. Mancia, and A. Pedotti, “Effects 

of sino-aortic denervation on spectral characteristics of blood pressure and 

pulse interval variability: a wide band approach,” Medical and Biological 

Engineering and Computing, vol. 34, pp.133-131, 1996. 

[157] J. Vila, S. Barro, J. Presedo, R. Ruiz, and F. Palacios, “Analysis of heart 

rate variability with evenly spaced time values.” Proceedings of the Annual 

International Conference of the IEEE Engineering in Medicine and Biology 

Society, 1992, doi: 10.1109/iembs.1992.5761116. 

[158] M. H. Vastenburg, T. Visser, M. Vermaas, and D. V. Keyson, “Designing 

Acceptable Assisted Living Services for Elderly Users.” Lecture Notes in 

Computer Science, pp. 1-12, 2008, doi: 10.1007/978-3-540-89617-3_1. 

[159] M. E. Gomes, H. N. Guimarães, A. L. Ribeiro, and L. A. Aguirre, “Does 

preprocessing change nonlinear measures of heart rate 

variability?” Computers in Biology and Medicine, vol. 32, no. 6, pp. 481-

494, 2002, doi: 10.1016/s0010-4825(02)00029-x. 



114 
 

[160] M. A. Peltola, “Role of editing of R–R intervals in the analysis of heart rate 

variability.” Frontiers in Physiology, vol. 3, no. 148, pp. 1-10, 2012, doi: 

10.3389/fphys.2012.00148. 

[161] http://en.wikipedia.org/wiki/Linear_interpolation 

[162] http://en.wikipedia.org/wiki/Spline_interpolation 

[163] http://en.wikipedia.org/wiki/Spline_%28mathematics%29 

[164] http://www.paulinternet.nl/?page=bicubic 

[165] O. Masek, “Heart Rate Variability Analysis,” Diploma Thesis, Czech 

Technical University in Prague, Prague, 2009. 

[166] D. A. LITVACK, T. F. OBERLANDER, L. H. CARNEY, and J. P. SAUL, 

“Time and frequency domain methods for heart rate variability analysis: A 

methodological comparison.” Psychophysiology, vol. 32, no. 5, pp. 492-

504, 1995, doi: 10.1111/j.1469-8986.1995.tb02101.x. 

[167] S. Kay and S. Marple, “Spectrum analysis—A modern 

perspective.” Proceedings of the IEEE, vol. 69, no. 11, pp. 1380-1419, 

1981, doi: 10.1109/proc.1981.12184. 

[168] P. Castiglioni, G. Parati, A. Civijian, L. Quintin, and M. Di Rienzo, “Local 

Scale Exponents of Blood Pressure and Heart Rate Variability by Detrended 

Fluctuation Analysis: Effects of Posture, Exercise, and Aging.” IEEE 

Transactions on Biomedical Engineering, vol. 56, no. 3, pp. 675-684, 2009, 

doi: 10.1109/tbme.2008.2005949. 

[169] Y. Saeki, F. Atogami, K. Takahashi, and T. Yoshizawa, “Reflex control of 

autonomic function induced by posture change during the menstrual 

cycle.” Journal of the Autonomic Nervous System, vol. 66, no. 1, pp. 69-74, 

1997, doi: 10.1016/s0165-1838(97)00067-2. 

[170] M. Van Dooren, J. (Gert-J. De Vries, and J. H. Janssen, “Emotional 

sweating across the body: Comparing 16 different skin conductance 

measurement locations.” Physiology & Behavior, vol. 106, no. 2, pp. 298-

304, 2012, doi: 10.1016/j.physbeh.2012.01.020. 

[171] N. Watanabe, J. Reece, and B. I. Polus, “Effects of body position on 

autonomic regulation of cardiovascular function in young, healthy 

http://en.wikipedia.org/wiki/Linear_interpolation
http://en.wikipedia.org/wiki/Spline_interpolation
http://en.wikipedia.org/wiki/Spline_%28mathematics%29
http://www.paulinternet.nl/?page=bicubic


115 
 

adults.” Chiropractic & Osteopathy, vol. 15, no. 1, pp. 1-8, 2007, doi: 

10.1186/1746-1340-15-19. 

[172] S. Pearson, A. P. Colbert, J. McNames, M. Baumgartner, and R. 

Hammerschlag, “Electrical Skin Impedance at Acupuncture Points.” The 

Journal of Alternative and Complementary Medicine, vol. 13, no. 4, pp. 

409-418, 2007, doi: 10.1089/acm.2007.6258. 

[173] A. Omidvarnia, M. Mesbah, M. Pedersen, and G. Jackson, “Range Entropy: 

A Bridge between Signal Complexity and Self-Similarity.” Entropy, vol. 

20, no. 12, p. 962, 2018, doi: 10.3390/e20120962. 

[174] V. S. Prasatha, H. A. A. Alfeilate, A. B. Hassanate, O. Lasassmehe, A. S. 

Tarawnehf, M. B. Alhasanatg, and H. S. E. Salmane. "Effects of distance 

measure choice on knn classifier performance-a review." arXiv preprint 

arXiv:1708.04321, pp. 56, 2017.  

[175] P. Kumar, A. K. Das, S. Halder, “Statistical heart rate variability analysis 

for healthy person: Influence of gender and body posture.” Journal of 

Electro cardiology, vol. 79, pp. 81-88, 2023. 

[176] K, Buszko, A. Piątkowska, E. Koźluk, T. Fabiszak, & G. Opolski, (2018). 

“Entropy Measures in Analysis of Head up Tilt Test Outcome for 

Diagnosing Vasovagal Syncope.” Entropy, vol. 20, no. 12, p. 976, 2018. 

[177] A. D. Ryan, P. D. Larsen, and D. C. Galletly, “Comparison of heart rate 

variability in supine, and left and right lateral positions.” Anaesthesia, vol. 

58, no. 5, pp. 432-436, 2003, doi: 10.1046/j.1365-2044.2003.03145.x. 

[178] P. Le and W. S. Marras, “Evaluating the low back biomechanics of three 

different office workstations: Seated, standing, and perching.” Applied 

Ergonomics, vol. 56, pp. 170-178, 2016, doi: 

10.1016/j.apergo.2016.04.001. 

[179] A. Soni and K. Rawal, “Study the Effect of Body Postures on Skin 

Conductance Response and Heart Rate.” Proceedings of International 

Conference on Women Researchers in Electronics and Computing, pp. 30-

37, 2021, doi: 10.21467/proceedings.114.5. 



116 
 

[180] F. Shaffer and J. P. Ginsberg, “An Overview of Heart Rate Variability 

Metrics and Norms.” Frontiers in Public Health, vol. 5, pp. 258, 2017, doi: 

10.3389/fpubh.2017.00258. 

[181] Čukić Milena, “Linear and Non-Linear Heart Rate Variability Indexes from 

Heart-Induced Mechanical Signals Recorded with a Skin-Interfaced 

IMU.” Sensors, vol. 23, no. 3, p. 1615, 2023, doi: 10.3390/s23031615. 

[182] S. Mallat, “A theory for multiresolution signal decomposition: the wavelet 

representation.” IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol. 11, no. 7, pp. 674-693, 1989, doi: 10.1109/34.192463. 

[183] R. M. Rao, “Wavelet Transforms: Introduction to Theory and 

Applications.” Journal of Electronic Imaging, vol. 8, no. 4, p. 478, 1999, 

doi: 10.1117/1.482718. 

[184] O. Rioul and M. Vetterli, “Wavelets and signal processing.” IEEE Signal 

Processing Magazine, vol. 8, no. 4, pp. 14-38, 1991, doi: 10.1109/79.91217. 

[185] M. Unser and A. Aldroubi, “A review of wavelets in biomedical 

applications.” Proceedings of the IEEE, vol. 84, no. 4, pp. 626-638, 1996, 

doi: 10.1109/5.488704. 

[186] U. Wiklund, M. Akay, S. Morrison, and U. Niklasson, “Wavelet 

decomposition of cardiovascular signals for baroreceptor function tests in 

pigs.” IEEE Transactions on Biomedical Engineering, vol. 49, no. 7, pp. 

651-661, 2002, doi: 10.1109/tbme.2002.1010848. 

[187] J. Karel, R. Peeters, R. Westra, K. Moermans, S. Haddad, and W. Serdijn, 

“Optimal discrete wavelet design for cardiac signal processing.” 2005 IEEE 

Engineering in Medicine and Biology 27th Annual Conference, pp. 2769-

2772, 2005, doi: 10.1109/iembs.2005.1617046. 

[188] R. S. S. Kumari, S. Bharathi, and V. Sadasivam, “Design of Optimal 

Discrete Wavelet for ECG Signal Using Orthogonal Filter 

Bank.” International Conference on Computational Intelligence and 

Multimedia Applications (ICCIMA 2007), vol. 1, pp. 96-100, 2007, doi: 

10.1109/iccima.2007.273. 

[189] G. Shi, Ai. Ding, and N. Zhang, “Design of wavelet based on waveform 

matching and its application to signal compression.” 48th Midwest 



117 
 

Symposium on Circuits and Systems, 2005., vol. 2, pp. 1696-1699, 2005, 

doi: 10.1109/mwscas.2005.1594446. 

[190] H. Salimi, “Stochastic Fractal Search: A powerful metaheuristic 

algorithm.” Knowledge-Based Systems, vol. 75, pp. 1-18, 2015, doi: 

10.1016/j.knosys.2014.07.025. 

[191] T. Tyagi, H. M. Dubey, and M. Pandit, “Multi-Objective Optimal Dispatch 

Solution of Solar-Wind-Thermal System Using Improved Stochastic 

Fractal Search Algorithm.” International Journal of Information 

Technology and Computer Science, vol. 8, no. 11, pp. 61-73, 2016, doi: 

10.5815/ijitcs.2016.11.08. 

[192] H. M. Dubey, M. Pandit, B. K. Panigrahi, and T. Tyagi, “Multi-objective 

Power Dispatch Using Stochastic Fractal Search Algorithm and 

TOPSIS.” Swarm, Evolutionary, and Memetic Computing, pp. 154-166, 

2016, doi: 10.1007/978-3-31 

  



118 
 

APPENDIX 

INTERNET SOURCES 

• http://en.wikipedia.org/wiki/Elecrocardiography  

• http://en.wikipedia.org/wiki/Linear_interpolation  

• http://en.wikipedia.org/wiki/Spline_interpolation  

• http://en.wikipedia.org/wiki/Spline_%28mathematics%29  

• http://www.paulinternet.nl/?page=bicubic  

• https://archive.physionet.org/tutorials/hrv-toolkit/ 

• https://users.rowan.edu/~polikar/WTpart1.html 

• https://in.mathworks.com/matlabcentral/fileexchange/69381-sample-entropy 

• http://hrventerprise.com/seminar.html 

• https://en.wikipedia.org/wiki/Electrodermal_activity 

• http://www.sciencedirect.com/science/article/pii/S0950705114002822 

• https://in.mathworks.com/matlabcentral/fileexchange/47565-stochastic-fractal-

search-sfs 

 
 

 

 

https://archive.physionet.org/tutorials/hrv-toolkit/
https://in.mathworks.com/matlabcentral/fileexchange/69381-sample-entropy
http://hrventerprise.com/seminar.html
https://en.wikipedia.org/wiki/Electrodermal_activity
http://www.sciencedirect.com/science/article/pii/S0950705114002822
https://in.mathworks.com/matlabcentral/fileexchange/47565-stochastic-fractal-search-sfs
https://in.mathworks.com/matlabcentral/fileexchange/47565-stochastic-fractal-search-sfs


119 
 

 

Authors Research 

Contribution 

  



120 
 

LIST OF PUBLICATIONS 

 

1. A. Soni and K. Rawal, “Effect of Physical Activities on Heart Rate Variability 

and Skin Conductance.” Biomedical Engineering: Applications, Basis and 

Communications, vol. 33, no. 5, p. 2150038, 2021, doi: 

10.4015/s1016237221500381. 

2. A. Soni and K. Rawal, “Analysis of HRV for Postural Change of Young Adults 

using Signal Processing Methods.” Biomedical Engineering: Applications, 

Basis and Communications, vol. 34, no. 5, p. 2250028, 2022, doi: 

10.4015/s1016237222500284. 

3. A. Soni and K. Rawal, “Analyzing the effect of postural change on heart rate 

variability using multi-distance sample entropy (MDSE).” Biomedical Signal 

Processing and Control, vol. 87, no. Part B, p. 105476, 2024, doi: 

10.1016/j.bspc.2023.105476. 

4. A. Soni, K. Rawal, and T. Tyagi, “The study of the response of postural stimuli 

in relation to Heart rate and Skin conductance in the nonlinear domain,” 

International Journal of Biomedical Engineering and Technology, vol. 45, no. 

2, p. 164-182, 29 May 2024. https://doi.org/10.1504/IJBET.2024.138713 

5. A. Soni, and K. Rawal, T. Tyagi, “A Novel Composite Distance Sample Entropy 

Method (CDSE) to investigate the effect of Different Body Postures on Heart 

Rate Variability and Skin Conductance,” in Frontiers. (Communicated) 

6. A. Soni, K. Rawal, and T. Tyagi, “Unveiling the Dynamics of Postural Changes: 

Optimized Filter Bank Analysis of HRV for Sympathetic and Parasympathetic 

Nervous System Activity Using Stochastic Fractal Search Algorithm,” 

Biomedical Signal Processing and Control. (Communicated). 

 

 



121 
 

LIST OF CONFERENCES 

 

1. A. Soni and K. Rawal, “A Review on Physiological Signals: Heart Rate 

Variability and Skin Conductance.” Lecture Notes in Networks and Systems, pp. 

387-399, 2020, doi: 10.1007/978-981-15-3369-3_30. 

2. A. Soni and K. Rawal, “Study the Effect of Body Postures on Skin Conductance 

Response and Heart Rate.” Proceedings of International Conference on Women 

Researchers in Electronics and Computing, pp. 30-37, Sep. 2021, doi: 

10.21467/proceedings.114.5. 

3. A. Soni and K. Rawal, “Nonlinear analysis of postural provocations in the 

response of Heart rate and Skin Conductance,” In the 4th International e-

Conference on Intelligent Circuits and Systems (ICICS-2022), held on April 8-

9th, 2022. 

 

 

 

 


