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ABSTRACT 

Skin cancer affects millions of people worldwide, and extensive research is dedicated to detecting 

its root causes. The skin, being the body's largest and most sensitive organ, can develop cancer due 

to inappropriate treatment or environmental factors. The skin plays a crucial role in supporting the 

body's structure and appearance, and various diseases can have adverse effects on it. During the last 

few years, the incidence of skin cancers has increased worldwide. According to the World Health 

Organization (WHO), skin cancer is becoming more common than all other types of cancer. This 

accounts for one in every three cancer diagnoses, with 132,000 newly diagnosed cases identified 

each year. Additionally, it is reported that melanoma incidence rises by 4% to 6% annually in 

regions with people who have light complexions. 

Being among the deadliest malignancies, melanoma is becoming more prevalent worldwide. 

Dermatologists inspect skin lesions using a diagnostic method known as dermoscopy. This involves 

using a magnification tool and a source of light to inspect structures beneath the skin that would be 

otherwise imperceptible. Dermoscopy, despite its efficiency, is a talent that takes years to master. 

Furthermore, the diagnosis is frequently subjective and difficult to duplicate. As a result, there is a 

need to develop automated ways to aid dermatologists in providing a more reliable diagnosis.  

Computer-based detection (CAD) techniques show potential, improving melanoma diagnosis 

rates by between five and thirty per cent over the naked eye. Because visual perception is prone to 

errors, a second opinion is required for increased precision and reliability. Furthermore, these 

systems relieve clinicians of tasks and responsibilities, allowing for a more efficient approach to 

diagnosis. Computer-aided diagnosis has grown in popularity in the medical industry. Skin cancer is 

a common and potentially fatal ailment that a CAD system could potentially detect. Given that it 

manifests visibly on the skin, the diagnosis can rely solely on photographs of skin lesions.  

The primary objective of this thesis is to introduce an intelligent approach to skin cancer 

classification that utilizes image processing techniques and artificial intelligence tools, including 

machine learning. The important aim of this study is to investigate and achieve the highest possible 

accuracy and effectiveness in medical classification applications. This research aims to detect skin 

cancer using a novel system for skin cancer classification with a customized classification phase.  

The proposed methodology is divided into several phases. In the initial phase, data collection is 

performed, which includes benchmark ISIC datasets. After data collection, pre-processing is applied 

to remove noise from the collected dataset. The preprocessing phase involves a series of techniques 

aimed at cleaning, normalizing, and enhancing dermoscopic images. This phase is critical for the 

accurate classification of skin cancer. During pre-processing, the image is resized, hairy parts are 
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removed, and discrete cosine transformation (DCT) and color space conversion are to enhance and 

restore the image. 

The segmentation stage is critical and challenging in image processing, requiring both speed and 

precision. The effectiveness of succeeding procedures, particularly feature extraction and 

classification, is heavily dependent on its proficiency. In this context, our research takes a fresh look 

at the segmentation step, combining background subtraction with a midpoint analysis to define the 

area of interest (ROI). The proposed strategy not only speeds up segmentation but also improves the 

performance of several classifiers. 

Each dermoscopy image can produce hundreds of features that serve as image descriptors. 

However, not all of these characteristics are important for lesion classification. Unnecessary 

characteristics can complicate the classifier, raise computational needs, and perhaps impair 

classification accuracy. It is critical to choose the most relevant elements to portray the distinctive 

characteristics of skin cancer images. As a result, the goal is to extract the fewest features that 

effectively discriminate across the images. In this work a novel method Differential Analyzer 

Algorithm (DAA) for feature extraction and selection is proposed. The adaptation of the DAA 

approach for feature extraction and selection involves iteratively moving from one feature set to 

another while assessing the impact on the model's performance. 

Finally, a customized classifier is employed for skin cancer classification, and the results are 

validated based on classification accuracy, specificity, and sensitivity. The research attains a high 

classification accuracy of 96.35% with the customized classifier, 96.21% with SVM, 94.00% with 

KNN, 93.50% with a decision tree, and 91.00% with the Random Forest approach, thereby 

confirming the validity of the proposed approach. 
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CHAPTER 1 

INTRODUCTION 

Skin cancer is a widespread disease pervaded by uncontrollable cellular proliferation. Its ubiquity 

emphasizes the critical importance of increased ultraviolet (UV) radiation exposure, which is 

mostly emitted by solar radiation or artificial sources like as tanning beds. This section aims to 

provide a fundamental understanding of skin cancer, including an in-depth examination of the skin's 

complex structure, crucial technical terminology for comprehending the complexities of skin 

cancer, and the diagnostic techniques utilized by medical specialists. Furthermore, we will explore 

function of artificial intelligence (AI) and computer-assisted diagnosis (CAD) technologies in skin 

cancer detection, explaining numerous approaches to improve accuracy and efficiency. 

1.1 Skin Cancer 

Skin cancer is becoming an increasingly prominent global health issue, experiencing a rise in 

incidence in recent years. Afflicting millions of individuals worldwide annually, it stands as one of 

the most widespread forms of cancer. The condition emerges when skin cells undergo abnormal 

expansion and uncontrolled proliferation [1]. The human body's skin protects it from heat, injury, 

infection, and UV radiation damage. It can also produce vitamin D, hold water and fat. 

During the last few years, the incidence of skin cancers has increased worldwide. According to 

the World Health Organization (WHO), skin cancer is becoming more common than all other types 

of cancer. This accounts for one in every three cancer diagnoses, with 132,000 newly diagnosed 

cases of identified each year. Additionally, it is reported that melanoma incidence rises by 4% to 

6% annually in regions with people who have light complexions [2]. While affecting barely two per 

cent of all diagnoses, the malignant type of melanoma contributes to eighty per cent of the disease's 

mortality. Based on data from the American Cancer Society, the estimated total number of new 

cases of cancer in 2022 will probably exceed 1,900,000, with 609,360 deaths [3]. UV radiation 

emitted by the sun is the major cause of skin cancer, and the rise in popularity can be ascribed to a 

variety of causes, such as more sun exposure, changing lifestyles, and ozone layer depletion [4]. 

As a result of these findings, numerous campaigns and initiatives focusing on skin cancer 

prevention and early diagnosis have been started. The risks of tanning booths, the necessity of 

limiting ultraviolet radiation (UVR) exposure during the peak of the day, the significance of seeking 
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out shade, the requirement for sun-protective clothing, and the significance of using sunscreen 

should all be discussed with patients by primary care physicians and dermatologists [5]. Even with 

the implementation of these public health measures, skin cancer may be on the rise in several 

countries. 

The human skin is an intricate structure comprising multiple layers, with the epidermis and 

dermis serving as its primary components. The epidermis, the outermost layer, consists of 

squamous cells, which are flat in shape. Just beneath the squamous cells, basal cells are found. 

Melanocytes are cells found in the epidermis's lowest levels, between the basal cells. Melanocytes 

in the skin create pigment (colour). The dermis is the skin's second major layer, located underneath 

the epidermis. It contains a variety of cell types, including lymph tubes, blood vessels, and glands. 

Some glands help to dry the epidermis, while others help regulate temperature and soothe the body. 

Figure 1.1 illustrate the skin’s layers and cells [6]. 

 

Figure 1.1 Different Skin’s Layers and Cells 

1.1.1 Different Types and Stages of Skin Cancer 

Trillions of living cells make up the human body. These cells spread, split, and decease in an 

orderly fashion in normal bodies. Adults divide their cells to replace those that are worn out, 

wounded, or dead. Cancer arises when the proliferation of abnormal cells in a specific part of the 

body becomes uncontrollable [7]. Cancer cell proliferation generates more cancer cells capable of 

infecting different tissues. Skin cancer is caused by UV radiation that is harmful to the skin and 

abnormal development of skin cells known as melanocytes. Melanocytes produce melanin pigments 

in melanosomes, which are then transported to the neighbouring epidermis via the dendritic process 

[8]. Melanocytes develop from the neural crest and travel to various places across the skin during 

the growth stage. Skin abnormalities or tumours are typically classified as benign or malignant.  
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• Benign Tumours: These are non-cancerous growths such as cysts or moles. They usually 

stay localized, do not infect surrounding tissues, and have no chance of smattering to further areas 

of the body. Benign tumours are usually non-threatening and can be removed safely and easily. 

• Malignant Tumours: In contrast, malignant tumours are cancerous and pose a major health 

danger. They develop uncontrollably and have the ability to infiltrate neighbouring tissues. Their 

capacity to metastasise, or spread to distant organs and areas of the body, makes them particularly 

hazardous. Malignant skin tumours can be fatal if left untreated, necessitating rapid medical care 

and complete treatment. Melanoma is a common type of malignant skin cancer. 

Melanoma is categorised into 5 stages from Stage 0 to Stage 4 as shown in Figure 1.2 [9]. 

• Stage 0: This is the first stage of melanoma and specifies that the cancerous cells are present 

but only in the epidermis layer of the skin and have not grown to any other part of 

the body. 

• Stage 1: This stage indicates that cancer has reached outside the epidermis but not to any 

other part of the body, and it lies between 0.8 mm and 2.0 mm in thickness. 

• Stage 2: In this stage, the thickness of the melanoma is bigger than 2.0 mm but less than 

4.0 mm, just like in stage 1. This also does not spread to any other part. 

• Stage 3: The cancer cells have started to grow in the dermic layer and have taken place into 

contiguity with the nerves at this point. The thickness of melanoma at this stage is greater than 4.0 

mm. 

• Stage 4: This stage indicates that the melanoma has grown in other organs of the body. At 

this stage, it is arduous to treat melanoma [10]. 

 

 

Figure 1.2 Stages of Skin Cancer 
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The background of skin cancer detection encompasses various factors, including its prevalence, 

risk factors, clinical presentation, and existing diagnostic methods. Understanding the background 

is essential to recognize the significance of developing advanced techniques for early detection and 

reliable diagnosis. 

1.1.2 Clinical Presentation 

Skin cancer presents various clinical features that dermatologists assess during the examination. 

These features include changes in the size, shape, color, and texture of moles or lesions as shown in 

Figure 1.3. Suspicious signs may comprise anomalies, uneven boundaries, variations in color or 

diameter, and evolving characteristics over time. However, visual inspection alone can be 

subjective and prone to errors, leading to the need for advanced diagnostic techniques [11]. 

Malignant melanomas are categorized as:  

• Nodular Melanoma: This type of tumor accounts for approximately fifteen per cent of all 

malignancies and grows rapidly after diagnosis. Nodular melanomas are nodules or blisters that are 

dusky bronze to dark in color or resemble blood vessels; however, five per cent of them are 

amelanotic. These melanomas are commonly found on different parts of the body, but especially on 

men's hips [12]. 

• Superficial Spreading: The most common kind of melanoma, which accounts for more 

than 70% of all melanomas, is superficial spreading melanoma. This melanoma grows horizontally 

on the skin for a long time (years) before becoming invasive. Superficial spreading melanomas are 

brown lesions with irregular asymmetric borders that are flat or slightly elevated with the staining 

that is black, blue, or pink. These melanomas can appear on anybody's surface, but they are most 

common on men's heads, necks, and trunks and on females' lower extremities [13]. 

• Lentigo Maligna and lentigo Maligna melanoma: These cancers commonly appear on the 

face of elderly people. It resembles a huge and uneven mole that grows slowly [14]. 

• Acral Lentiginous Melanoma: It typically develops on hairless skin, such as the palms and 

soles. It nearly never receives a timely diagnosis, making it the form of malignant melanoma with 

the worst prognosis [15].  

• Amelanotic Melanoma: It is an extremely rare kind of skin cancer. These types of 

cutaneous melanomas are challenging to identify and are frequently misdiagnosed as normal lesions 

on the skin [16]. 
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Figure 1.3 Types of Melanomas (Cancerous) 

1.2 Existing Diagnostic Methods 

Traditionally, skin cancer diagnosis relies on visual inspection and clinical expertise [17]. 

Dermatologists examine suspicious lesions, often using dermoscopy, a technique that magnifies the 

skin surface for better visualization. Biopsy, where a tissue sample is obtained for pathological 

examination, is performed if malignancy is suspected. However, these methods have limitations, 

including subjectivity, inter-observer variability, and dependence on expertise, leading to the 

exploration of automated and computer-aided diagnostic systems [18]. 

The significance of skin cancer detection lies in its potential to save lives, improve treatment 

outcomes, and enhance accessibility to early diagnosis. Early detection allows for less invasive 

treatment options, better chances of successful outcomes, and reduced healthcare costs. Moreover, 

implementing automated skin cancer detection methods can help overcome geographical and 

socioeconomic barriers to accessing dermatological expertise [19]. 

The development of advanced techniques for skin cancer detection, such as the utilization of 

digital differential analyzers coupled with different classifiers, can provide objective and 

quantitative analysis to support clinical decision-making. These techniques aim to improve 

accuracy, sensitivity, and specificity in identifying malignant lesions, enabling timely intervention 

and improved patient care. 

1.2.1. Dermoscopy 

A non-invasive diagnostic method used to examine skin lesions is known as dermoscopy. 

Epiluminescence microscopy and dermatoscopy are other names for it [20]. It entails the use of a 
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dermatoscopy, which is a handheld equipment with magnification and illumination that allows 

healthcare practitioners to see the skin at a considerably better resolution than the naked eye. This 

handheld device provides a higher level of detail, allowing healthcare professionals to visualize 

subsurface skin structures and identify characteristic features associated with skin cancer [21]. 

Dermatologists and other skin disease specialists regularly use this approach to aid in the 

identification of various skin problems such as moles, melanomas, benign growths, and other skin 

tumors [22].  

1.2.2. Biopsy 

A biopsy is a common and important process used to establish a definitive diagnosis of skin cancer. 

When an alarming skin lesion is identified, a biopsy is performed to obtain tissue samples from the 

afflicted area for laboratory examination. The biopsy helps to detect if the lesion is malignant or 

benign, and if it is malignant, it identifies the specific kind of skin cancer present [23]. There are 

several methods for collecting tissue samples for the biopsy, considering the proportions and 

features of the lesion. The following are the most common techniques for skin cancer biopsies [24]: 

• Punch Biopsy: A small, cylindrical sample is extracted from the skin lesion using a round 

tool. 

• Shave Biopsy: A tiny film of the lesion is removed with a knife or other equivalent 

equipment. 

• Excisional Biopsy: Using a scalpel, the entire lesion or a significant piece of it is removed. 

It is critical to emphasise that a biopsy is still the optimal procedure for detecting skin cancer. 

While computer-aided diagnostics and noninvasive imaging tools can help discover and classify 

skin lesions, a sample is required to confirm the diagnosis. Skin cancer identification and diagnosis 

are critical for starting the right treatment and getting better results. 

1.2.3. Total Body Photography 

Total Body Photography (TBP) is a thorough imaging technology used to monitor and identify skin 

cancer in people who are at high risk of getting it. It entails taking high-resolution photographs of a 

person's whole skin surface, including the front, back, and sides, as well as particular close-up 

images of individual skin lesions or moles [25]. TBP is commonly performed by specialized clinics 

or dermatologists and is quite beneficial to patients. While TBP is a useful tool for high-risk 

individuals, it is not a replacement for routine skin checks or biopsies when necessary. TBP is part 

of a broader skin cancer surveillance program that includes regular skin exams, patient education, 
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and, if necessary, biopsies for final diagnosis [26]. TBP can help in this endeavour by improving the 

surveillance procedure for high-risk patients. 

1.2.4. Reflectance Confocal Microscopy  

Reflectance Confocal Microscopy (RCM), a non-invasive technique for imaging, is used to look at 

the skin's live tissue at the cellular level. RCM provides doctors with high-resolution, instantaneous 

images of the structure of cells of the skin, enabling them to observe skin lesions and determine 

whether or not they are benign [27]. A portable probe with a laser light source is placed on the skin 

surface during an RCM examination. The laser light penetrates the skin and is reflected to the 

probe's detector. The detected signals are subsequently translated into photographs of the skin's 

cellular architecture in real-time [28]. 

 RCM captures individual skin cells and their architectural patterns in great aspect. This enables 

dermatologists to identify biological traits linked to particular skin conditions, such as skin cancer. 

Dermatologists can detect changes in the cellular architecture of a lesion by comparing RCM 

pictures recorded at different points in time, allowing for early identification of probable skin 

cancer. Dermatologists employ RCM to differentiate between malignant and non-malignant skin 

lesions by leveraging cellular features. This distinction is critical for effective treatment planning, 

ensuring targeted interventions, and avoiding needless therapies. 

1.2.5. Ultrasound Imaging 

Ultrasound imaging or sonography, is a sort of imaging procedure which employs sound waves 

with a high frequency to generate real-time images of interior organs and tissues. Although 

ultrasound is more frequently used to image internal body parts and cutaneous tissues, it may also 

be employed to diagnose skin cancer in some circumstances [29]. A skin tumour's thickness and 

depth can be evaluated using ultrasound. Given that tumour thickness is a crucial element in 

predicting prognosis and therapy options for melanomas, this is very helpful for staging these 

cancers. 

 Ultrasound can be used to examine surrounding lymph nodes for symptoms of metastasis 

(cancer spread) in some skin malignancies, including melanoma. In some circumstances, ultrasound 

can be applied to track a patient's reaction to treatment for skin cancer. It might aid in determining 

how tumour features and size have changed over time [30]. It's important to remember that, in 

contrast to other imaging techniques like dermoscopy, ultrasonic imaging is not the primary tool for 

diagnosing the majority of skin malignancies. 
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1.2.6. Teledermatology 

Teledermatology is a medical practice that uses telecommunication technology to perform remote 

diagnosis, evaluation, and treatment of dermatological problems such as skin cancer. It enables 

people to receive dermatological care without having to travel to a clinic or hospital. Patients can 

use video conferencing or telecommunication techniques to consult with dermatologists or skin 

cancer specialists remotely. This is especially useful for people who live in distant or 

underdeveloped locations and may not have easy access to specialized treatment [31]. 

Dermatologists can evaluate the photos and provide early detection and monitoring of problematic 

lesions, which is critical for prompt skin cancer diagnosis and treatment. It is crucial to emphasize, 

however, that teledermatology has limitations. Some skin disorders, particularly those that are 

complex or fast-changing, may still necessitate in-person inspection and treatment. 

1.2.7. Machine Learning and Artificial Intelligence 

Machine Learning (ML) and Artificial Intelligence (AI) are rapidly being used in skin cancer 

detection to enhance accuracy, efficiency, and early diagnosis. The image data for skin cancer is 

acquired by employing a dermatoscopy or other imaging equipment. These photos are processed by 

AI and ML algorithms to extract relevant properties such as colour, texture, structure, and shape. 

These extracted features are fed into classification models as inputs [32]. To identify patterns 

associated with diverse forms of skin lesions, these techniques are refined on a huge dataset of 

labelled dermoscopic images.  

The ML model can classify unseen dermoscopic images into a range of classes, including benign 

lesions, malignant melanomas, and specific types of skin cancer. The model, which assigns a 

probability to each class, aids dermatologists' decision-making. Dermatologists may employ AI and 

ML models to help them make decisions [33]. In complex cases or when a dermatologist has 

limited experience with a specific type of skin lesion, they may provide a second opinion or 

additional information to aid in the diagnosis. 

Diagnosing skin cancer using technology has significantly advanced in recent years, enabling 

more accurate and efficient detection. Several technologies are employed to aid the diagnosis 

process, as discussed in Table 1.1. 
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Table 1.1 Existing Technologies for Skin Cancer Detection 

Approaches Purposes Limitations 

Dermoscopy [20] [21] 
Magnifies the skin surface 

for better visualization. 

• Operator Dependent 

• Expensive 

• Error-prone 

Biopsy  [23][24] 

A tissue sample is obtained 

for pathological examination, 

and is performed if 

malignancy is suspected. 

• Sampling error 

• Expensive 

• Time Taking 

Total Body Photography 

(TBP) [25],[26]  

A comprehensive visual 

record of the patient's skin. 

• Slow process 

• Expensive 

• Multiple-time sample 

collection and storage 

• Dependence on 

Imaging Quality 

Reflectance Confocal 

Microscopy (RCM) [27], [28] 

A non-invasive technique 

for imaging is used to look at 

the skin's live tissue at the 

cellular level. 

• Error-prone 

• Expensive 

Ultrasound imaging or 

Sonography [29], [30] 

Imaging procedure which 

employs sound waves with a 

high frequency to generate 

• Subjective 
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real-time images of interior 

organs and tissues. 

• Image Artifacts 

• Limited Soft Tissue 

Differentiation 

Teledermatology [31] 

Use of telecommunications 

technology to provide 

dermatological care and 

consultation remotely. 

• Relies on visual 

assessments 

• Technological Barriers 

• Limited Diagnostic 

Tools 

• Miscommunication 

Computer-Aided Diagnosis 

Systems [34], [35], [36], [37], 

[38], [39], [40] 

These systems analyze 

dermoscopic images and 

provide a quantitative 

assessment or a probability 

score for malignancy. 

• The quality of the 

image dataset 

• User dependency 

1.3 Machine Learning for Skin Cancer Detection 

Skin cancer detection has greatly benefited from advancements in machine learning techniques. 

ML-based mechanisms have shown promise in automating the diagnosis process, improving 

accuracy, and aiding healthcare professionals in making informed decisions [41]. The combination 

of these technologies improves the precision, effectiveness, and affability of skin cancer diagnosis. 

ML models can quickly and accurately analyse large volumes of dermatological pictures. They can 

detect minor changes in moles or skin lesions that may be suggestive of skin cancer early on, 

resulting in more effective therapy and better outcomes [42].  

Skin lesions can be evaluated objectively using ML algorithms. The models retain consistency in 

their assessments, unlike human judgement, which can be impacted by factors such as exhaustion or 

bias. These models can aid in lowering the rate of false positive outcomes, which can be 
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problematic in skin cancer detection. These models can learn from new data indefinitely, improving 

their diagnostic accuracy over time [43]. This recurrent learning process guarantees that they are up 

to date on the most recent advancements in skin cancer detection. Remote consultations can be 

facilitated by ML, allowing patients in underserved areas to receive professional advice without 

having to travel large distances. The use of machine learning techniques in the diagnosis of skin 

cancer has the potential to greatly increase public awareness of the significance of routinely 

checking one's skin and getting medical help when needed [44]. 

However, while technology can aid healthcare practitioners in the diagnosing process, a final 

diagnosis often necessitates a histological study of a biopsy material. Therefore, technology serves 

as a valuable tool in aiding the diagnostic process but should not replace clinical expertise and 

judgment. Early detection and accurate diagnosis are essential for efficient treatment and improved 

results for patients. The background of skin cancer detection encompasses various factors, including 

its prevalence, risk factors, clinical presentation, and existing diagnostic methods. The development 

of advanced techniques for skin cancer detection holds great significance in enhancing early 

detection, reducing mortality rates, and improving accessibility to healthcare services. Here, we 

discuss various ML-based mechanisms for skin cancer detection in this section. 

1.3.1 Supervised Learning 

Supervised learning algorithms require labelled training data to learn patterns and classify new 

instances accurately. In skin cancer detection, these algorithms are trained on dermoscopic images 

with corresponding labels (benign or malignant) [45]. The supervised learning algorithms 

mentioned below are commonly used for skin cancer detection: 

• Support Vector Machines (SVM):  SVMs are used in skin cancer detection to find lesions 

by figuring out which hyperplane is best for differentiating between different classifications, 

including benign and malignant. These approaches improve class separation by transforming data 

into higher-dimensional spaces via a kernel function. SVMs use extracted features to provide 

accurate classification and have demonstrated efficacy in differentiating among lesions [46]. 

• Artificial Neural Networks (ANNs): Artificial Neural Networks (ANNs), specifically 

advanced deep learning architectures like Convolutional Neural Networks (CNNs), have sparked a 

transformative breakthrough in the realm of skin cancer detection. CNNs exhibit the capacity to 

autonomously acquire hierarchical features from dermoscopic images, effectively capturing 

nuanced patterns essential for precise classification. Transfer learning, a method that entails refining 
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pre-existing CNN models on skin cancer datasets, has demonstrated remarkable efficacy in 

achieving high levels of performance within this field [47].  

• Random Forests (RF): Random Forests construct an ensemble of decision trees and use 

majority voting to classify instances. They can handle high-dimensional feature spaces and are 

robust against overfitting. Random Forests have been used effectively for skin cancer detection, 

leveraging feature importance to identify discriminative features [48]. 

1.3.2 Unsupervised Learning 

Unsupervised learning represents a facet of machine learning that involves algorithms exploring 

structures, patterns, or relationships within data without relying on explicit guidance from labelled 

samples. This facet holds significant importance in both data analysis and machine learning, as it 

enables the extraction of valuable insights from unstructured or unlabeled data [49]. In the context 

of skin cancer detection, prevalent methods within unsupervised learning are frequently utilized for 

this purpose. 

• Clustering Algorithms: These techniques play a crucial role in grouping similar instances 

based on their features, facilitating the identification of distinct classes or patterns within skin lesion 

data. Employing algorithms such as K-means clustering and hierarchical clustering has proven 

effective in analyzing dermoscopic images, potentially unveiling concealed structures or subtypes 

of skin cancer [50]. 

• Dimensionality Reduction: The goal of dimensionality reduction methods is to simplify 

high-dimensional data while retaining essential information. Widely adopted approaches such as t-

distributed Stochastic Neighbor Embedding (t-SNE) and Principal Component Analysis (PCA) are 

utilized to visualize and explore dermoscopic images. These techniques can aid in feature selection 

and anomaly detection, contributing to a more comprehensive understanding of the data [51]. 

1.3.3 Ensemble Methods 

Ensemble approaches improve machine learning prediction accuracy by merging many models and 

exploiting collective knowledge to aggregate forecasts. Two commonly used ensemble approaches 

in the detection of skin cancer include [52] 

• Bagging: Bagging (Bootstrap Aggregating) is integrating numerous machine learning 

models trained on different data samples used for training. Each model makes an independent 

prediction, which is determined by average or majority voting. This method is efficient in reducing 

model variance and improving overall accuracy [53]. 
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• Boosting: Boosting trains, a sequence of weak ML models, where each subsequent model 

focuses on instances that previous models struggled with, thereby improving overall performance. 

AdaBoost and Gradient Boosting are popular boosting algorithms used for skin cancer detection, 

achieving superior classification results [54]. 

1.3.4 Deep Learning for Skin Cancer Detection 

In the field of skin cancer diagnosis, deep learning architectures—in particular, Convolutional 

Neural Networks (CNNs)—have demonstrated exceptional performance. These CNNs eliminate the 

need for manually created features by automatically extracting hierarchical features from 

dermoscopic images. Their success in this field is largely attributed to their ability to instinctively 

recognize complex patterns, textures, and spatial relationships. The limitations posed by the scarcity 

of labelled data for training have led to a broad acceptance of transfer learning, a technique that 

involves fine-tuning pre-trained CNN models using datasets related to skin cancer [55]. 

In the domain of skin cancer, machine learning has significant advantages over deep learning. 

Machine learning algorithms can be used in healthcare settings while maintaining data privacy. 

They can give precise and quick skin cancer diagnosis, which is critical for effective therapy. 

Furthermore, machine learning algorithms are capable of optimising interaction rounds, resulting in 

improved rates of accuracy with smaller interactions [56]. Deep learning models, on the other hand, 

such as CNNs, are created specifically for the analysis of images and can classify skin lesions with 

more accuracy. 

1.3.5 Computer-Aided Diagnosis Systems for Skin Cancer Detection 

Computer-aided diagnosis (CAD) systems integrate ML algorithms into clinical workflows to aid 

healthcare professionals in diagnosing skin cancer. These systems analyze dermoscopic images and 

provide a quantitative assessment or a probability score for malignancy. As a second opinion, CAD 

systems can help dermatologists diagnose patients more accurately and reduce subjectivity. 

1.3.6 Hybrid Approaches 

Hybrid approaches combine different ML techniques to leverage their respective strengths. For 

example, a hybrid approach might employ dimensionality reduction techniques like PCA or t-SNE 

to reduce the feature space, followed by a supervised learning algorithm like SVM or ANN for 

classification. To enhance overall robustness and accuracy in skin cancer detection, a hybrid 
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approach integrates multiple machine-learning algorithms. This strategy often involves combining 

feature extraction techniques, dimensionality reduction methods, and classification algorithms [57].   

In a hybrid approach, the results obtained from the dimensionality reduction stage are utilized as 

input for the classification algorithm. This transformation of the feature space is designed to 

enhance its suitability for classification, leveraging the discriminative information extracted from 

dermoscopic images. The hybrid approach effectively amalgamates the advantages of 

dimensionality reduction methods, feature extraction techniques, and classification methods to 

boost the correctness and dependability of melanoma detection. By seamlessly integrating these 

components, the hybrid approach can significantly enhance the overall performance of the skin 

cancer detection system, contributing to early diagnosis and timely intervention [58]. 

In conclusion, various ML-based mechanisms have been employed for skin cancer detection. 

Supervised learning algorithms like SVMs, ANNs (particularly CNNs), and Random Forests have 

achieved remarkable performance. Unsupervised learning, ensemble methods, deep learning, CAD 

systems, and hybrid approaches also contribute to accurate and efficient skin cancer detection. 

Supervised, Unsupervised and Hybrid classification methods are three fundamental approaches in 

machine learning as presented in Table 1.2. 

Table 1.2 Classification Methods for Skin Cancer Classification and Detection 

Fundamental 

Approaches 
Classification Methods Limitations 

Supervised 

Classification 

[59],[60],[61], 

[62], [63], [64], 

[65], [66] 

• Decision Trees 

• Support Vector Machines 

(SVM) 

• K-Nearest Neighbors (k-

NN) 

• Logistic Regression 

• Neural Networks 

• Prone to overfitting, especially with 

insufficient training data. 

• Requires large amounts of 

computational resources for training, 

especially for deep networks. 

Unsupervised 

Classification 

[67], [68], [69], 

[70], [71], [72], 

[73], [74], [75] 

• K-means clustering 

• Hierarchical clustering 

• Density-based clustering 

(DBSCAN) 

• Gaussian Mixture 

Models (GMM) 

• Self-organizing maps 

• Sensitive to the choice of initial 

parameters. 

• Sensitive to the choice of initial 

centroids. 

• May struggle with datasets of 

varying densities or with high-dimensional 

data 
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(SOM) 

Hybrid 

Classification 

[76], [77], [78], 

[79], [80], [81], 

[82], [83], [84], 

[85], [86], [87], 

[88], [89] 

• Semi-supervised 

Learning 

• Active Learning 

• Transfer Learning 

• Ensemble Methods 

• Self-supervised Learning 

• Performance heavily depends on the 

quality and representativeness of the 

labelled and unlabeled data. 

• Fine-tuning pre-trained models may 

require significant computational resources. 

• Interpretability may be compromised 

due to the combination of multiple models. 

• Designing effective pretext tasks 

may be challenging and domain-specific. 

 

Each classification method has its unique strengths and weaknesses, and the choice of method 

depends on various factors such as the nature of the data, task requirements, computational 

resources, and interpretability considerations. Hybrid methods aim to overcome the limitations of 

individual approaches by combining multiple techniques to achieve superior performance in 

classification tasks. 

1.4 Problem Statement 

Skin cancer is becoming more prevalent than all other types of cancer, making it a foremost public 

health concern across the globe. Current approaches for detecting and classifying skin lesions rely 

mainly on dermatologists' visual examination, which is arduous and time-consuming. Furthermore, 

clinicians' visual screening cannot ensure entire detection and may result in potential harm, such as 

unneeded treatments or undetected lesions that could lead to fatal results. Additionally, the 

traditional approach to detecting skin cancer lacks accurate criteria for identifying lesions, resulting 

in differences in diagnosis. A system to classify and detect skin lesions should therefore be 

developed that can enhance dermatologists' ability to diagnose them and improve their accuracy in 

detecting and categorizing carcinomas with a view to reducing the potential adverse effects and 

risks associated with manual visual screening. 

This research focuses on addressing the challenge of developing a precise and efficient expert 

system for the classification and detection of skin cancer, utilizing image processing and machine 

learning techniques. Despite notable advancements, current methodologies still lack a satisfactory 

means to differentiate between healthy and cancerous skin lesions.  
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One of the main challenges in the development of skin cancer CAD systems is image 

segmentation, which plays a critical role. The primary goal of image segmentation is to identify and 

isolate the region of interest (ROI) within the image. The use of image segmentation highlights the 

significant features of images while hiding the unnecessary ones. Accurate segmentation is essential 

to get more precise and obvious features for melanoma classification. It is crucial for accurate 

melanoma categorization and detection to eliminate normal tissue and extract more illustrative 

information from the disease using segmentation. Overall, the similarity and dissimilarity of 

numerous image properties throughout the segmentation technique determine the region of interest 

in a segmented image. There are several challenges to consider when implementing segmentation, 

including selecting effective segmentation algorithms, monitoring algorithm performance and its 

effects on image analysis, and recognizing specific portions in an object.  

An additional significant challenge lies in extracting pertinent features from dermoscopic 

images. Given the diverse shapes, colors, and textures of skin lesions, it becomes imperative to 

pinpoint discriminative features capable of effectively distinguishing between benign and malignant 

lesions. Current feature extraction methods frequently depend on manually crafted features, which 

may not completely grasp the intricate and nuanced patterns indicative of malignancy. 

Consequently, there is a demand to delve into advanced feature extraction techniques that can 

autonomously learn and portray relevant features from dermoscopic images. 

A pivotal challenge involves the meticulous selection and optimization of machine-learning 

algorithms for skin cancer diagnosis. Previous studies have explored classifiers like ANNs, random 

forests, and SVMs. However, the quest for the most effective classifier for accurate skin cancer 

classification remains ongoing. These classifiers' success is closely linked to crucial variables such 

as the quality and amount of the training dataset, the prudent selection of appropriate features, and 

the cautious selection of hyperparameters. In the realm of skin cancer diagnostics, optimising these 

factors to achieve excellent accuracy poses a significant difficulty. 

Furthermore, skin cancer detection techniques must be made more efficient. Real-time diagnosis 

is crucial for timely intervention and treatment. However, some existing approaches may suffer 

from high computational costs and slow processing speeds, hindering their practical 

implementation. It is essential to explore techniques that can improve the efficiency of machine 

learning algorithms without sacrificing diagnostic accuracy. Additionally, the availability of 

annotated and diverse dermoscopic datasets poses a challenge in the creation and assessment of 

adaptable machine-learning techniques. Critical for training and evaluating skin cancer detection 

systems is access to extensive, representative datasets with precise annotations. 
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1.5 Objective of the Study 

There has been a lot of interest in using computer technologies to detect skin cancer over the last 

several decades. The aim of such systems is to give an additional conclusion on the diagnosis with 

higher accuracy, fewer faults and dependability than a human expert would ordinarily achieve. 

Several studies have been conducted to improve the automated identification of melanoma. The 

potential advantages of such research are enormous and incomprehensible. Furthermore, the 

difficulties are numerous, and new contributions in the field are highly valued. However, it is 

commonly acknowledged that more reliable and precise detection systems demand more precision. 

Hence, a novel system for skin cancer detection using machine learning is proposed. The objectives 

of this research are defined below based on research gaps discussed in chapter 2. 

1. Development of the segmentation method to find ROI and extract the actual shape of the 

lesion.  

2. Development of a feature extraction method which extracts the structural and textural data.  

3. To design a reliable expert system for the classification and detection of skin cancer.  

4. Performance analysis based on various measures.  

1.6 Thesis Organization 

This section includes supplementary information that supports the main content of the thesis. The 

outline of the thesis is presented in this section. 

The thesis unfolds in a structured manner, commencing with Chapter 1 where the research topic, 

skin cancer detection, is introduced, emphasizing its significance. This chapter also defines the 

problem, outlines objectives, and specifies the investigation's scope and limitations. Chapter 2 

delves into a comprehensive literature review, exploring various aspects of existing research on skin 

cancer detection, critically analysing strengths, limitations, and gaps in the literature. Moving to 

Chapter 3, the proposed methodology and system are elucidated, detailing data collection, 

dermoscopic image acquisition, segmentation using background subtraction, and feature extraction 

with the Differential Analyser algorithm. Chapter 4 navigates classification methods, including 

customized classifiers for skin cancer detection and an exploration of other considered classifiers. 

Chapter 5 presents experimental results, describing the setup, dataset, and evaluation metrics, with a 

comparative analysis of classifier performance. Chapter 6 synthesizes findings and draws 

conclusions, summarizing main discoveries, highlighting contributions, and suggesting future 

research directions for the field of skin cancer detection. 



18 
 

1.7 Summary  

The objective of this chapter is to offer insights into human skin, skin cancer, and a review of past 

research discoveries and diagnostic tools. It underscores the importance of a meticulous diagnostic 

assessment for achieving accurate results and preventing misinterpretation. The prevalence of skin 

cancer is on the rise globally, making early detection crucial for increasing patients' chances of 

survival. Consequently, prioritizing early diagnosis emerges as a promising strategy for reducing 

the mortality rate associated with skin cancer. The subsequent chapter 2 delves into various state-of-

the-art methods for skin cancer classification and detection. Researchers stand to benefit from a 

comprehensive understanding of human skin, diagnostic techniques, and previous research findings 

in this field. 
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CHAPTER 2 

LITERATURE REVIEW 

 

Understanding the advances, obstacles, and advancements in automatic skin cancer diagnosis 

begins with a review of the existing literature in this field. It allows researchers to build on existing 

information and contribute to the continued development of precise and dependable diagnostic 

tools. Continuous information collection and the adoption of innovative approaches are required for 

more effective skin cancer diagnosis and, eventually, better patient outcomes. This section 

examines the pertinent literature, emphasizing the important research, findings, and methodology 

used. Furthermore, it emphasizes the significance of collecting and using the necessary knowledge 

in order to develop a reliable skin cancer detection system. 

2.1 Background of Cancer Detection Systems 

Several experimental studies have been launched in order to improve skin cancer diagnosis and 

develop automated detection technologies. Precision in skin cancer classification and detection is 

critical in the field of dermatology. The ability to quickly and accurately identify the kind and stage 

of skin cancer is critical for developing effective treatment programs and ensuring excellent patient 

outcomes. Several previous research have been performed to address the difficulty of 

dermatological classification, with a specific focus on skin cancer diagnosis. 

He et al., 2016 [90] introduced a groundbreaking architecture, ResNet has significantly impacted 

diverse image recognition tasks, notably in skin lesion classification. ResNet addresses the problem 

of deep neural network training by incorporating residual blocks. These blocks use skip connections 

to allow data from previous layers to bypass particular layers and go directly to subsequent ones. 

This novel design improves the network's capacity to acquire and retain important characteristics 

during training, boosting its performance in picture classification, including the difficult task of skin 

lesion analysis. This design mitigates the vanishing gradient problem and enables training very deep 

networks with improved accuracy. In skin lesion classification, ResNet's ability to handle deep 

architectures is particularly valuable. Skin lesion images are complex, with fine-grained textures 

and intricate patterns. ResNet's skip connections facilitate the extraction of informative features, 

capturing both low-level and high-level image details, essential for accurate lesion classification.  
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Szegedy et al., 2016 [91] presented a new perspective on the Inception architecture and its 

applications in computer vision tasks, which may have implications for skin lesion classification 

models. One of the key contributions is the introduction of "Inception-v3," a refined version of the 

Inception network with significant adjustments. The authors incorporate factorized convolutions, 

which break down standard convolutions into smaller, separate convolutions, thereby reducing 

computation and improving efficiency without compromising accuracy. They also introduce 

"bottleneck" layers that decrease the computational burden by reducing the number of input 

channels while retaining important information. 

Xie et al., 2017 [92] the researchers proposed an ensemble model that integrates multiple neural 

networks, collaboratively contributing to the decision-making process in classification. This 

innovative approach aims to harness the collective power of diverse neural networks to enhance the 

accuracy and reliability of melanoma classification from dermoscopy pictures. The study represents 

a significant step forward in leveraging ensemble techniques for improved skin lesion classification 

and sets the stage for further advancements in the field. 

Zhang et al., 2017 [93] introduced an efficient technique for precisely calculation the Hausdorff 

distance in 3D point sets, with potential applications in assessing spatial disparities in skin lesion 

images. In the realm of medical imaging and dermatology, the precise separation of skin lesions 

from 3D images is critical for analysis and treatment preparation. Evaluating the quality of 

segmentation is paramount to ensuring the accuracy and reliability of computer-aided diagnostic 

systems. The Hausdorff distance, as employed in this context, serves as a metric for quantifying the 

maximum spatial variation between two-point sets. In the context of skin lesion analysis, this would 

correspond to the variances among the segmented lesion and the actual data obtained from medical 

experts. 

Liang et al., 2017 [94] presented a review of deep learning methods that may have transferable 

applications in skin lesion classification. Deep learning techniques have demonstrated remarkable 

success in processing and understanding complex data, such as natural language text. The paper 

investigated several deep learning architectures, encompassing Recurrent Neural Networks (RNNs), 

Transformer models, and CNNs, underscoring their efficacy in extracting significant features from 

textual data. Within the domain of dermatology and healthcare, the accurate classification of skin 

lesions stands as a pivotal task, where precise diagnosis plays a critical part in the primary detection 

and treatment of skin problems. 

Jana et al., 2017 [95] the paper delves into the detection of skin cancer cells by means of image 

processing techniques, which are pertinent to the classification of skin lesions. Preprocessing 

techniques were applied to improve image quality and reduce noise, ensuring that subsequent 



21 
 

analyses were based on reliable data. Segmentation played a pivotal role in identifying individual 

cancer cells by isolating them from surrounding tissue. Sophisticated segmentation algorithms were 

likely explored to accurately delineate cancerous regions, aiding in lesion boundary detection and 

subsequent classification. Feature extraction emerged as a crucial step where relevant characteristics 

of cancer cells, such as texture, shape, and color, were quantified. The extracted features served as 

inputs for classification algorithms capable of distinguishing between benign and malignant cells or 

classifying different types of skin cancer.  

Farooq et al., 2019 [96] the study focused on sophisticated deep-learning approaches for the 

prodromal stages of skin cancer, to contribute to the early detection of skin abnormalities. Detecting 

skin cancer in its early stages is critical because it allows for timely diagnosis and treatment, 

increasing the likelihood of a successful outcome. The article digs into a variety of advanced deep-

learning approaches used in skin cancer classification. These strategies included cutting-edge 

transfer learning, CNNs, attention mechanisms, recurrent neural networks (RNNs), and others. 

Brinker et al., 2019 [97] study compared deep neural networks' performance to skin specialist in 

malignance classification, demonstrating the potential of AI in this field. The study addressed the 

challenge by evaluating the efficacy of DNNs in automated melanoma classification. The paper 

detailed the architecture of the DNN model used, which involve CNNs or other deep learning 

architectures. These models are capable of automatically learning intricate patterns and features 

from melanoma images, contributing to their superior performance in classification tasks.  

Zhang et al., 2019 [98] author explored attention residual learning, particularly in the context of 

skin lesion classification, emphasizing the potential of attention mechanisms to enhance model 

performance. Attention mechanisms empowered the network to selectively emphasize crucial 

regions within the input image. This selective focus enabled the model to concentrate on 

discriminative features while effectively ignoring irrelevant or noisy information. Incorporating 

attention mechanisms into the residual learning architecture further enhances the network's ability 

to learn and represent complex features effectively. The residual connections facilitate the flow of 

information across layers, enabling the model to learn residual features from the input and refine 

them through attention mechanisms. 

Shorten et al., 2019 [99] author delved into diverse image data augmentation techniques 

employed in deep learning, particularly crucial for expanding limited skin lesion datasets. While 

CNNs have established notable achievement in image classification tasks, their efficacy is heavily 

dependent on a substantial amount of labelled data for training. In medical domains like 

dermatology, acquiring such labelled data can be both scarce and costly. Therefore, the exploration 
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of effective image data augmentation methods becomes essential to enhance the demonstration of 

deep learning models when faced with inadequate training data. 

Wu et al., 2020 [100] author described a method for detecting skin lesions utilizing highly linked 

convolutional networks with attention residual learning. For enhanced classification accuracy, the 

approach uses attention processes to focus on relevant features. The suggested method combines 

two highly effective deep learning techniques: densely linked convolutional networks (DenseNet) 

and attention residual learning. DenseNet is known for its ability to alleviate vanishing gradient 

problems and enhance feature reuse, making it well-suited for image classification tasks.  

Basly et al., 2020 [101] described approach for human activity recognition, which combines 

CNN and SVM, may apply to skin lesion categorization problems. CNNs have proven to be 

particularly effective in picture identification tasks in the realm of skin lesion categorization, 

utilizing their capability to autonomously acquire hierarchical features from datasets. The 

combination of CNNs and SVM, both of which are well-known for their performance in 

classification tasks, has the potential to provide a robust and versatile methodology for reliably 

classifying skin lesions based on image data. They excel at capturing visual patterns and features in 

skin lesion images, making them a popular choice for such tasks. However, CNNs can sometimes 

suffer from overfitting, especially when dealing with inadequate training dataset. However, SVMs 

are effective in handling small datasets and are known for their strong generalization capabilities.  

Chaturvedi et al., 2020 [102] the study investigated the practice of advanced convolutional 

neural networks for multi-class cancer classification, perhaps providing insights for lesion 

classification. In the field of skin cancer classification, accurate identification of distinct forms of 

skin lesions is critical for timely diagnosis and treatment. Traditional approaches usually require 

manual feature design, which is a time-consuming procedure that may fail to capture complicated 

patterns. Deep CNNs, on the other hand, have shown substantial success in image recognition tasks, 

making them well-suited for the automated classification of lesions because of their capacity to 

learn detailed patterns and features straight from data. The author explored the potential of CNNs in 

a multi-class setting, where the model is trained to distinguish between various types of skin 

cancers. This approach could be beneficial in real-world scenarios where lesions may have 

overlapping features, and a comprehensive classification system is required. The use of deep CNNs 

enables the model to learn hierarchical representations of skin lesion images, automatically 

extracting relevant features at different levels. This capacity allows the CNN to capture intricate 

patterns, textures, and spatial information that may be indicative of specific skin cancer types. 

Labani et al., 2021 [103] the author presented comprehensive epidemiological data on the 

occurrence of these cancers in Indian and global populations, providing a basis for comparative 
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analysis. The study may delve into factors that contribute to the incidence of skin cancers, such as 

exposure to ultraviolet (UV) radiation, genetic predisposition, and lifestyle behaviours. 

Understanding these risk factors could help identify high-risk groups and guide preventive 

measures to reduce the prevalence of skin lesions and skin cancer cases.  

Wu et al., 2022 [104] the paper dealt with salient object detection, the use of bi-stream networks 

with a small training dataset could be valuable in skin lesion classification. Skin lesion 

classification require robust and accurate feature extraction methods to distinguish between 

different types of lesions. Bi-stream networks are designed to process and combine information 

from multiple streams, leading to enhanced feature representations. By leveraging this network 

architecture, researchers can potentially extract more discriminative features from skin lesion 

images, even with a small training dataset. The advantage of using bi-stream networks is their 

ability to capture different aspects of skin lesions. For instance, one stream could focus on fine-

grained texture details, while another could emphasize global shape information. By fusing the 

information from both streams, the model can better comprehend the diverse characteristics of skin 

lesions, potentially leading to improved classification performance.  

Wu et al., 2022 [105] focused on salient object detection, its use of recursive multi-model 

complementary deep fusion and parallel sub-networks could inspire advancements in skin lesion 

classification methods. The key contributions of the paper lie in its novel approach to salient object 

detection, which involves a recursive multi-model complementary deep fusion technique. Multiple 

sub-networks are built in parallel in this method, each optimised for obtaining various features from 

the given input data. These sub-networks then complement each other's outputs through recursive 

fusion, leading to enhanced feature representations and improved detection accuracy. The concept 

of using parallel sub-networks for feature extraction and then combining them to exploit their 

complementary strengths can be translatable to skin lesion classification tasks. The high complexity 

and diversity of skin lesion images often require a robust feature representation to accurately 

differentiate between various types of lesions.  

Sundari et al., 2023 [106] introduced an automatic classification system designed for skin 

lesions, employing deep-learning neural networks, with a specific focus on DCNNs. The authors 

enhanced the performance of CNNs by fine-tuning layers through various methods, including 

VGG-16, InceptionResNet, InceptionV3, and DenseNet. Notably, the proposed system attained an 

accuracy level comparable to that of dermatologists in detecting malignancy, underscoring the 

efficacy of deep learning algorithms within this domain. The significance of timely recognition and 

treatment of skin diseases was emphasized in the paper, acknowledging their profound impact on 

patient's quality of life and the potentially life-threatening nature of certain conditions. The 
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integration of DCNNs in cancer classification and detection was identified as a promising approach 

that surpassed the capabilities of traditional image processing methods. 

 In the concurrent year, Abdelhakim et al., 2023 [107] proposed a model that combined deep 

learning and reinforcement learning algorithms to facilitate the early detection and classification of 

skin cancer using dermoscopic images. In the application of this model, various pre-processing 

techniques were employed, alongside the utilization of the watershed algorithm for segmentation, 

and a DCNN for classification purposes. Remarkably, the proposed model achieved a notable 

accuracy rate of 80% in effectively classifying skin cancer into seven distinct types. The study 

underscored the successful amalgamation of reinforcement learning with deep learning, particularly 

in the context of skin cancer classification tasks. To train and evaluate the proposed model, 

dermoscopy images sourced from the ISIC database were employed, encompassing seven types of 

skin cancers. The research aimed to address the investigation of the CNN-DQN model's 

performance concerning the classification and detection of skin lesions. The methodology adopted 

was rooted in deep reinforcement learning, presenting a novel and innovative approach for the 

classification and detection of skin cancer. 

Tembhurne et al., 2023 [108] proposed an ensembled method for lesion detection and achieved 

an accuracy of 93% on the ISIC dataset. In the proposed framework, a novel segmentation method 

“background subtraction with midpoint analysis” for finding ROI and DAA for feature extraction 

has been proposed. For the classification of skin cancer images, different classifiers have been 

implemented. It is observed that SVM perform better among other classifiers, then the state-of-the-

art methods and achieves an accuracy of 95.30%. 

Avanija et al., 2023 [109] this study delved into the critical issue of skin cancer detection, 

emphasizing its life-threatening nature and the imperative need for prompt and accurate 

identification. Skin cancer arose from unchecked cell proliferation due to DNA damage, leading to 

mutations and the formation of malignant tumors. Traditionally, machine learning had been 

employed for cancer identification, but manual feature creation could be laborious. Deep Learning 

offered an automated solution through convolutional-based deep neural networks, leveraging the 

ISIC Skin Cancer Dataset for detection. The study underscored the significance of precise 

identification, as inaccuracies could have severe consequences. Standalone machine learning 

models might have lacked reliability and accuracy, and their generalizability to real-world scenarios 

remained a concern. To address these challenges, the study emphasized comprehensive data 

curation, enhancement, regularization, and model design. Moreover, the research proposed the use 

of ensemble learning to improve prediction precision, acknowledging the importance of 
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amalgamating decisions from individual learners. Through these efforts, the study identified crucial 

factors for skin cancer classification, offering a dependable solution for this critical healthcare issue. 

Sharafudeen and Chandra 2023 [110] introduced of a novel method offered a promising avenue 

in the realm of skin lesion classification. By harnessing features derived from both patient data and 

EfficientNets, the researchers put forth a comprehensive approach aimed at enhancing classification 

accuracy. Their method, as reported, yielded notable results, achieving an accuracy rate of 94.13% 

on the ISIC 2018 dataset and 91.93% on the ISIC 2019 dataset. This study contributed to the 

growing body of literature on skin lesion classification by proposing a methodology that integrated 

diverse sources of information. By leveraging features extracted from patient data alongside those 

from EfficientNets, the researchers demonstrated a holistic approach to classification that 

capitalized on both clinical and computational insights. The reported accuracy rates underscored the 

efficacy of the proposed method in accurately discerning between benign and malignant skin 

lesions across different datasets. Such findings not only validated the utility of the approach but also 

suggested its potential applicability in clinical settings for aiding dermatological diagnosis. 

Nadiger et al., 2023 [111] the study demonstrated the effectiveness of neural networks in 

improving skin cancer identification and diagnosis. One study achieved an overall accuracy rate of 

90.73% by utilizing neural networks and proposed an automatic melanoma diagnosis system. 

Another study developed a Convolutional Neural Network (CNN) with a 90% accuracy rate in 

classifying skin rashes as benign or malignant. Additionally, a methodological approach presented 

in one study utilized neural networks to classify skin lesions with a similar overall accuracy rate of 

90.73%. The aim across these studies was to enhance classification results and overall accuracy, 

with the potential to increase the number of output classes as more data became available. 

Furthermore, a proposed automatic melanoma diagnosis and inspection system achieved a correct 

categorization rate of 86% using photos of skin rashes taken with a consumer-level digital camera. 

These findings underscored the promising potential of neural networks in automated skin cancer 

diagnosis and identification systems.  

Avanija et al., 2023 [112] delved into the critical issue of skin cancer detection, emphasizing its 

life-threatening nature and the imperative need for prompt and accurate identification. Skin cancer 

arose from unchecked cell proliferation due to DNA damage, leading to mutations and the 

formation of malignant tumors. Traditionally, machine learning had been employed for cancer 

identification, but manual feature creation could be laborious. Deep Learning offered an automated 

solution through convolutional-based deep neural networks, leveraging the ISIC Skin Cancer 

Dataset for detection. The study underscored the significance of precise identification, as 

inaccuracies could have severe consequences. Standalone machine learning models might have 
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lacked reliability and accuracy, and their generalizability to real-world scenarios remained a 

concern. To address these challenges, the study emphasized comprehensive data curation, 

enhancement, regularization, and model design. Moreover, the research proposed the use of 

ensemble learning to improve prediction precision, acknowledging the importance of amalgamating 

decisions from individual learners. Through these efforts, the study identified crucial factors for 

skin cancer classification, offering a dependable solution for this critical healthcare issue. 

Chaugule et al., 2023 [113] in the realm of skin cancer detection and categorization, recent 

research has aimed to develop an automated system utilizing machine learning algorithms. This 

endeavor relies on a dataset comprising dermatoscopic images sourced from diverse origins, 

covering various forms of skin lesions, including malignant melanoma, basal cell carcinoma, and 

squamous cell carcinoma. Throughout these studies, several key phases have been identified. 

Initially, researchers focus on preprocessing methods such as noise reduction, normalization, and 

feature extraction to enhance image quality. Subsequently, a comprehensive array of characteristics 

such as color, texture, and portrait features are extracted from the processed images. These 

attributes serve as crucial inputs for a range of machine learning models employed in the research, 

including Convolutional Neural Networks (CNNs), Support Vector Machines (SVMs), and Random 

Forests. 

Yaqoob et al., 2023 [114] examining the utilization of federated learning in the detection and 

categorization of skin cancer. Shedding light on the efficacy of conventional machine learning 

methods in diagnosing skin cancer and the utilization of federated learning techniques in healthcare 

systems that prioritize privacy. Identifying relevant search terms in line with the research inquiries 

and creating search queries using logical operators. Providing a comprehensive overview of 

federated learning and its integration into the healthcare sector. Assessing solutions devised using 

traditional machine learning for predicting skin cancer and federated learning algorithms for 

detecting and categorizing skin cancer.  

Jadhav et al., 2023 [115] the non-invasive medical computer vision techniques were 

implemented for automated analysis of images in melanoma detection. The process involved 

preprocessing, segmentation, feature extraction, and classification through the utilization of a 

convolutional neural network (CNN), which resulted in an impressive classification accuracy of 

92.1%.  

Melanoma has garnered a significant role in the research arena due to an upsurge in the count of 

new incidents worldwide each year. Particularly in developing software solutions to recognize and 

evaluate dermoscopy images of patients' skin lesions. The range of methodologies is wide, and each 

study covers a distinct combination of techniques such as preprocessing, segmentation, low-level 
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feature extractions and various machine-learning approaches. The basic steps involved in 

classifying skin cancer images is presented in Figure 2.1. 

 

 

Figure 2.1 Phases of Skin Cancer Detection System 

The authors conducted an impressive analysis to offer a baseline for the classification of skin 

cancer. They accomplished this by fine-tuning a previously trained deep convolutional neural 

network. Machine learning models have shown considerable potential in dermatology, particularly 

in skin cancer diagnosis. Though these algorithms produce hopeful results, the great variety of real-

world skin problems makes using automated differential diagnosis in real-world scenarios difficult. 

2.1.1 Skin Cancer Image Preprocessing 

The preprocessing of dermoscopic images is a crucial step that plays a pivotal role in advancing 

automated systems for diagnosing skin conditions. This initial stage encompasses a sequence of 

operations intended to enhance the quality and relevance of the input data before it undergoes 

further analysis [116]. Effective preprocessing significantly contributes to the accuracy and 

reliability of automated diagnostic systems in dermatology. By improving the quality of 

dermoscopic images by preprocessing, automated diagnostic systems can extract more useful 

information, resulting in more accurate and reliable skin problem detection [117]. This emphasises 

the critical significance of preprocessing in creating the groundwork for the success of automated 

skin health assessment systems. These steps typically include artefact removal and image 

enhancement [118], [119], [120], [121] as shown in Figure 2.2. 
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Figure 2.2 Preprocessing Methods for Dermoscopic Skin Cancer Images  

Artefact removal is an essential step in preprocessing as it helps to eliminate any unwanted 

elements or noise present in the image. This can include removing artefacts such as hair, dust, 

scratches, or shadows that may affect the accuracy of the diagnosis. Image enhancement techniques 

are used to upgrade the brightness and visual of the skin lesions, making it easier for dermatologists 

to identify and classify them accurately. A review of various preprocessing methods proposed in the 

past for dermoscopic images is presented in this section. 

Lee et al., 1997 [122] proposed as a new technique Dull Razor hair removal that employs a 

bilinear interpolation method to eliminate hair pixels. This technique comprises three basic steps: 

(1) morphological closing operation to locate the location of dark hairs; (2) bilinear interpolation to 

replace hair pixels; and (3) an adaptive median filter to smooth the final output.  

Celebi et al., 2009 [19] has demonstrated a method for enhancing dermoscopy images. This 

approach determines the optimal weights for converting color images into corresponding grey-level 

images by maximizing Otsu's histogram bimodality measure. 

Zhou et al., 2011 [123] introduced an innovative approach that leverages mean shift-based 

gradient vector flow (GVF) to guide both inner and outer dynamics in the correct direction. This 

technique initiates by computing force vectors in the image domain as the initial step for energy 

force. The mean shift of pixels within a defined region constrains the deformation of the area 

enclosed by the evolving boundary. In order to enhance image segmentation, the researchers 

integrated a mean-field term into the conventional GVF objective function. 

P
re

p
ro

ce
ss

in
g

Enhancement 
Methods

Color Space 
Conversion

Histogram 
Equalization

CLAHE

Wavelet Transform

Artifact 
Removal 
Methods

Erosion and Dilation

Opening and Closing

Morphological 
Gradient

Bottom-Hat 
Transform



29 
 

Barata et al., 2012 [124] has developed a new method for extracting melanin regions from 

dermoscopy images that requires a series of steps. The dermoscopy image is first subjected to a 

preprocessing technique. A set of directed filters and linked component analysis (CCA) are then 

used to identify the pigmented network "lines". Finally, attributes from the discovered region are 

retrieved and applied to train an AdaBoost algorithm to identify each lesion in terms of the melanin 

region's presence.  

Abbas et al., 2013 [125] have demonstrated a hair removal technique that identifies and removes 

hair in the CIE L*u*v* colour space using morphological operations and thresholding. On these 

fine systems that are based on their illuminance, a hair mask was constructed using a defined 

thresholding method. Finally, a morphological operation replaced each masked pixel with an 

average of its non-masked neighbours.  

Huang et al., 2013 [126] evaluated the DullRazor software's efficacy for hair removal using 

clinical photos and discovered that it was ineffective for getting rid of little or darkened hairs. The 

author offered a different strategy to deal with this problem. In order to remove hair, this method 

combines conventional matched filters with region-growing algorithms and uses linear discriminant 

analysis based on a colour similarity criterion. The suggested method additionally makes use of 

multiscale matching filters to improve the ability to identify dark and fine hairs in clinical images. 

The two-stage thresholding method with hysteresis was also used by the author for edge detection 

and hair segmentation. To distinguish between classes and maximise the ratio of inter-class 

measures to intra-class measurements, the author also used a matrix of inter-class scatter measures 

using linear discriminant analysis (LDA). 

Aswin et al., 2014 [127] a novel approach for melanoma detection was introduced, integrating 

genetic algorithm (GA) and ANN techniques. Hair removal from images was executed using the 

Dull-Rozar technique, while segmentation of region was identified through the Otsu thresholding 

method. Additionally, the Gray-Level Co-occurrence Matrix (GLCM) technique was applied to 

extract unique features from the segmented results. Following this, combining ANN and GA, a 

hybrid classification algorithm was implemented, to classify lesion images into malignant and 

benign classes. 

Lee and Chen, 2014 [128] a technique has been presented to precisely identify the optimal 

threshold value for defining malignant boundaries in skin scans. The proposed method incorporates 

the utilization of the fuzzy c-means approach (FCM) in tandem with a type-2 fuzzy set algorithm. In 

the preprocessing phase, the researchers also implemented the 3D color constancy method to 

alleviate the impact of shadows and variations in skin tone present in the images. This integrated 

strategy significantly improves the precision of boundary delineation for malignant skin lesions. 



30 
 

Youssef et al., 2017 [129] presents a multiscale strategy for analysing and identifying skin 

lesions using dermoscopic pictures, automated segmentation, and classification tools. A pre-

processing phase is included in the segmentation procedure to partition the textured image into 

discrete texture and geometric components using colour texture image decomposition. The 

geometry component is used for segmentation to obtain ROI, whereas the texture component 

archives the lesion's textural features. A SVM is employed to classify the features. The proposed 

method's efficacy and performance are assessed by comparing it to contemporary and robust 

dermoscopic techniques published in the literature. 

Khalid et al., 2017 [130] describes a novel method for identifying melanoma in dermoscopy 

images. The suggested method employs a preprocessing phase where noise and hair in images are 

detected using directional filters, as well as an image colouring method to fill in unidentified areas 

in the images. To outline the border of the lesion in the images, the method employs Markov 

random field and fuzzy C-Means methods. The research reveals that the strategy performs better 

other methods for identifying melanoma skin cancer. The approach performs well in automatic 

image segmentation when tested on dermoscopic image dataset.  

Waghulde et al., 2019 [131] suggests using image processing techniques to identify melanoma in 

digital photos. To remove noise from the image, preprocessing techniques such as median filters are 

used. For additional analysis, the image is turned into an HSI colour image. The image is segmented 

using texture segmentation algorithms and active shape segmentation algorithms. For feature 

extraction, the GLCM Feature Extraction algorithm is used. The image is classified as normal or 

melanoma using the probabilistic neural network (PNN) classifier. 

Netala et al., 2020 [132] presented various approaches and methods for each phase of pre-

processing including image enhancement, restoration, and removal of hair. The paper emphasizes 

the importance of automated skin cancer detection for early diagnosis and saving lives. The study 

emphasises the potential advantages of pre-processing approaches that can improve the reliability 

and effectiveness of the systems for skin cancer diagnosis. 

Hajiarbabi et al., 2023 [133] proposed a methodology for the preprocessing of images involving 

the elimination of noise and illumination effects, succeeded by the utilization of transfer learning 

from the ImageNet dataset to train a convolutional neural network. The subsequent step includes the 

fine-tuning of the network to specialize in the identification of melanoma as opposed to other 

benign cancers, with a specific emphasis on the central region of the image where the suspicious 

area is situated. 

Jeslin et al., 2023 [134] delved into the critical role of image preprocessing in refining attributes 

extracted from images, particularly in the realm of dermoscopic imaging. It highlighted the use of 
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curvelet features as the foundation of a comprehensive preprocessing algorithm aimed at enhancing 

accuracy and precision. Various techniques were discussed, including CLAHE for contrast 

enhancement, the Frangi vessel filter for artefact identification and elimination, and the Fast 

Marching Method (FMM) for inpainting missing regions. Denoising methods such as median 

filtering, frequency domain filtering, wavelet transform, and curvelet were also explored, each 

balancing noise reduction with the preservation of critical image features like edges and textures.  

Mukadam et al., 2023 [135] underscored the critical role of preprocessing methods, with a 

particular focus on the Enhanced Super-Resolution Generative Adversarial Network (ESRGAN). 

Their study highlighted how employing ESRGAN can significantly enhance image quality, thereby 

facilitating more effective feature extraction processes. Furthermore, the author showcased a 

comprehensive approach by integrating various preprocessing techniques. This methodological 

strategy aimed to optimize the dataset for subsequent analysis and modelling tasks. By leveraging a 

combination of preprocessing methods, including ESRGAN, the researchers demonstrated a 

commitment to enhancing data quality and improving the performance of machine learning models 

in image-related tasks.  

Gururaj et al., 2023 [136] addressed the crucial task of image preprocessing within the context of 

their study. This preparatory phase encompassed several key steps aimed at optimizing the raw 

image dataset for subsequent analysis. Initially, the researchers conducted sampling of the raw 

image data, an essential procedure to manage and streamline the dataset for further processing. 

Subsequently, author applied an approach termed the "dull razor" method, which involved 

employing specific filtering techniques to effectively eliminate noise artifacts present in the images. 

Aydin et al., 2023 [137] the preparatory stage involves a series of processing steps aimed at 

optimizing the input data for subsequent analysis. Among these steps are normalization, which 

standardizes the data distribution, and the removal of unnecessary data, which streamlines the 

dataset for improved model efficiency. By standardizing data through normalization, researchers 

ensure that features are on a comparable scale, thereby mitigating issues related to varying 

magnitudes and facilitating more effective model training.  

In preprocessing, various challenges are observed in the literature. (i) The original datasets 

contain images with high resolution, which impose a high cost of calculation. As a result, images 

must be scaled because direct scaling can cause structural deformation in lesions. (ii) In cases where 

the lesion and skin tone are very similar, the images may have low contrast. It's perplexing to 

identify the dissimilarity between an ordinary and a malicious mole in these instances. (iii) Another 

issue is the existence of noise in the images, such as hair and noise, which might make it difficult to 

analyse the imaged skin lesions properly.  
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2.1.2 Skin Cancer Image Segmentation  

The process of dividing an image into multiple regions or components is referred to as 

segmentation. Skin cancer image segmentation is a critical step in the detection and diagnosis of 

this prevalent illness. The primary goal of this segmentation is to precisely delineate and indicate 

the boundaries of skin lesions from surrounding healthy skin or background [138]. This 

segmentation procedure is significant in dermatology and medical image analysis for a range of 

applications, including skin disease identification, treatment strategy development, and tracking the 

progression of skin cancer over time. Due to the complex structures of lesions, variations in shape, 

size, borders, and colour, as well as the presence of artefacts such as air bubbles, hair, and ink 

markings, skin cancer segmentation is difficult. Previous research has sought to develop computer-

based systems for skin cancer detection by segmenting lesion regions from surrounding skin and 

extracting valuable features [139]. These models, however, were based on traditional machine 

learning approaches, and their accuracy was restricted. For the separation of ROI in medical 

images, various segmentation approaches have been suggested and are discussed in this section. 

The methods including thresholding-based, edge-based, region-based, artificial intelligence-based, 

and deformable model based [118], [140], [141], [142], [143] as shown in Figure 2.3. 

 

Figure 2.3 Segmentation Methods for Skin Cancer Images 
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Premaladha et al., 2016 [144] has developed a novel segmentation method known as Normalized 

Otsu's Segmentation (NOS). NOS addresses the challenge of constant luminance and effectively 

separates damaged skin tissues from normal tissues. Additionally, they implemented the contrast-

limited Adaptive Histogram Equalization (CLAHE) approach and a median filter to enhance image 

contrast. Furthermore, author developed classification techniques, including Deep Learning-based 

Neural Networks and a Hybrid Ad Boost- SVM algorithm. These classification methods are 

provided with fifteen features that have been developed and extracted from the ROI within the 

images. 

Dhane et al., 2016 [145] has proposed a novel technique for scar detection by using digital 

photographs acquired with a portable optical camera. The method for clustering that is suggested 

uses a spectral approach and is based on an affinity matrix. The spectral clustering (SC) process 

entails creating a Laplacian similarity matrix based on the Ng-Jorden-Weiss method.  

Zortea et al., 2017 [146] proposed a simple weighted Otsu thresholding method that builds upon 

the Otsu threshold. The initial threshold takes into account all of the pixels in the image, including 

cross-diagonal pixels, which are weighted based on an independent estimate derived from the skin 

pixels in the peripheral region. This method proves to be both simple and effective, particularly 

when dealing with lesions that are obscured by coarse hairs. 

Xie et al., 2017 [147] introduced a skin lesion classification system that divided lesions into 

noncancerous and cancerous groups. The proposed paradigm is divided into three stages. Initially, a 

self-generating NN was employed to recover diseases from images. The data on boundary, 

appearance and colour details were retrieved in the second phase. The dimensionality of the features 

was reduced using PCA, permitting the optimal amount of characteristics to be determined. In the 

last step, lesions were classified using a NN ensemble approach.  

Satheesa et al., 2017 [148] has presented a non-invasive computerized dermoscopy system for 

diagnosing skin lesions that take into account the predicted depth of lesions. It is proposed to use 

2D dermoscopic pictures to rebuild a 3D skin lesion. Adaptive snake technique is applied to obtain 

ROI from the data. The calculated depth map is fitted to the existing 2D surface to produce the 3D 

reconstruction. The depth and 3D form features are extracted based on the generated 3D tensor 

structure. Feature selection is used to inspect the impact of quality and combinations of features on 

decision-making. 

Choudhary and Biday, 2017 [149] have suggested an ANN-based skin cancer diagnosis model 

which employs a maximum entropy thresholding approach to segment images. To retrieve 

distinctive properties of melanomas, a GLCM was used. The input images were categorised into 

either malignant or benign stages of melanoma by employing a feed-forward ANN. 
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Esteva et al., 2017 [150] presented a CAD system that is implemented on an ISIC dataset using 

image processing and machine learning techniques to identify melanoma. Author have used the 

Histogram equalization technique to enhance image contrast and a dilation technique to eliminate 

hairs or skin defects. Xie et al., 2017 [147] proposed a self-generating neural net to separate skin 

lesions and coloured edges; and texture-based features from the lesion are extracted for feature 

extraction. The proposed work divides skin cancer into two categories such as: cancerous and non-

cancerous.  

Maity et al., 2018 [151] employed the optimum technique for chromatic aberration, to determine 

RGB pictures of skin ulcers in a comparative analysis of colour constancy approaches and found 

that the weighted grey edge method is best. Al-Masni et al., 2018 [152] a unique segmentation 

approach based on full-resolution convolutional networks (FrCN) was presented in this paper. The 

proposed FrCN method is designed to capture full-resolution features from every pixel in the input 

data directly, without the requirement for intermediate steps 

Mobeen et al., 2018 [153] lay the framework using segmentation and a convolution neural 

network on dermoscopy pictures to detect skin lesions with a malignant predisposition. As a 

dataset, images from ISIC-2016 were used. 

Mahmoud et al., 2018 [154] presented a new skin cancer CAD system based on texture analysis 

methodologies in their research. Hair removal, filtering, extraction of features, and classification are 

the four processes of the proposed CAD system. The CAD system was used to distinguish between 

non-malignant skin lesions (common nevi or dysplastic nevi) and malignant skin lesions. Extraction 

of histograms of oriented gradients (HOG) features after artefact removal offers the best 

classification results, according to the findings of their experiments.  

Pathan et al., 2018 [155] presented a comprehensive review of state-of-the-art approaches used 

in computer-aided diagnostic systems. The author initiated the review by delving into the domain-

specific aspects of melanoma and then proceeded to explore the primary techniques utilized in each 

phase of the diagnostic process. 

Artificial Bee Colony (ABC) was developed by Aljanabi et al., 2019 [156] improved melanoma 

detection can be achieved through the use of skin lesion segmentation as a means of identifying 

lesions in dermoscopy images. Chouhan et al., 2019 [157] conducted an extensive survey on skin 

lesion segmentation using computational intelligence techniques. The survey covered a range of 

methods, including fuzzy C-means, CNN, and GA. These techniques are commonly applied for 

image segmentation in various fields, including medical imaging, scientific analysis, engineering, 

and the humanities. Monika et al., 2020 [158] presented a Colour-based k-means clustering for 

segmentation since colour is a significant characteristic in determining the kind of malignancy.  
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Kaymak et al., 2020 [159] FCN-8, FCN-16, FCN-32, and FCN-Alex Net are four FCN 

architectures generated by using the CNN model for the segmentation of skin cancer images. The 

network was first put through its paces on the ISIC 2017 dataset. Plot and Jacquard coefficients are 

employed to evaluate the degree of agreement among the partitioned result and the authentic ground 

truth. Even though the multiple FCN frameworks performed proportionately well, FCN-8 was 

discovered to be more effective in terms of segmentation.  

Mohakud and Dash 2021 [160] for dermoscopic image segmentation, the author proposes a 

hyperparameter-optimized Full Convolutional Encoder-Decoder Network (FCEDN). The new 

Exponential Neighbourhood Gray Wolf Optimization (EN-GWO) algorithm was used to optimize 

the network hyperparameters. The neighbourhood search strategy in EN-GWO is determined by 

combining the individual wolf hunting strategy with the global search strategy, and it reflects the 

appropriate balance of exploration and exploitation. Murugan et al., 2021 [161] the median filter is 

applied in pre-processing phase, and for the separation of the region of interest, the mean shift 

method is used.  

Gururaj et al., 2023 [136] delved into the process of image segmentation, a fundamental aspect 

of image analysis and computer vision. Their study highlighted the utilization of encoder and 

decoder technologies in this segmentation process, emphasizing the adoption of advanced 

computational techniques to address complex image-processing tasks. The essence of image 

segmentation, as elucidated by author involved the delineation of distinct regions within an image. 

This encompassed the separation of foreground elements from the background, as well as the 

grouping of pixels based on shared characteristics such as color or shape similarity. By employing 

encoder and decoder technologies, the researchers aimed to enhance the precision and efficiency of 

this segmentation process. 

Aydin et al., 2023 [137] proposed an innovative method that combined histogram-based 

descriptors from various color spaces, offering a novel and highly effective strategy for categorizing 

different types of cancer. While color imagery often relied on key point-based features, the 

incorporation of global features in this context had received limited attention in prior research. The 

findings highlighted a notable improvement in accuracy rates when employing color images 

compared to grayscale counterparts, suggesting the potential advantages of leveraging color 

information for enhanced classification outcomes.  

The summary of different existing techniques for skin cancer segmentation is presented in Table 

2.1. The table highlights the outcomes of various methods in terms of pros and cons from the past 

few years.  
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Table 2.1 Different Techniques for Skin Cancer Segmentation 

Author Dataset Method 
Contribution and 

Performance Measures 
Remarks 

Giotis et al., 

(2015) [162] 

Digital 

archives 

• K-means  

• ABCD rule 

• CLAM  

Proposed a system for 

melanoma detection with 

an accuracy of 80% 

• Noise sensitive 

• Depends on the size 

of the data 

Satheesha 

et al., (2017) 

[148] 

ISIC 

PH2 

ATLAS 

• Adaptive 

snake  

• 3D Tensor   

A non-invasive 

computerized 

dermoscopy technique 

for diagnosing skin 

lesions based on their 

estimated depth was 

described. 

• For reconstruction, 

the actual depth of the 

lesion cannot be 

computed 

Yuan et al., 

(2017) [163] 

ISIC 

PH2 
• Deep CNN 

Proposed an 

automatic segmentation 

approach for skin cancer 

images with a 95.50% 

accuracy. 

• A deeper network 

needs more training 

samples to avoid 

overfitting 

Singh et al., 

(2018) [164] 

Images 

from 

different 

sources 

• 

Computerized 

tools for 

melanoma 

detection 

For computerised 

devices, dermoscopic 

images are the most 

suitable solution. 

• Segmentation 

feature extraction and 

accuracy are major issues 

in computerized tools 

Al Masni et 

al., (2018) 

[152] 

ISIC 

PH2 

• Fully 

resolution 

convolution 

network  

A method for 

automatic segmentation 

of skin cancer images 

was proposed, with an 

accuracy of 84.97%. 

• Highly sensitive 

• The large data set 

cannot be handled 

• Over and under-

segmentation are not 

taken care of 

Seeja et al., 

(2019) [165] 

 

ISIC 
• DCNN  

• FCN 

Proposed a 

segmentation method for 

skin lesion segmentation 

and achieved an 

accuracy of 85.19% 

• Notation of dataset 

Zaffar et 

al., (2020) 

ISIC 

PH2 

• CNN 

 

Suggests Automated 

method for lesion 

• The dataset was not 

handled correctly 



37 
 

[166] boundary segmentation 

by combining U-Net and 

ResNet and achieving an 

accuracy of 85.40% 

 

• Data overfitting 

Vani et al., 

(2021) [167] 
 

• Deep 

Learning 

• Active 

Contour 

A deep learning-based 

strategy for melanoma 

diagnosis was proposed, 

and an accuracy of 

90.00% was attained. 

• Noise is not 

moderated 

Ashraf et 

al., (2022) 

[168] 

ISIC 
• Deep 

Learning 

Proposed deep 

learning-based 

automated skin 

segmentation method 

and achieved a Jaccard 

index of 90.20%. 

• Low-resolution 

images were not 

identified 

• Skin lesions lose 

their ground truth 

annotations. 

Tahir et al., 

(2023) [169] 

ISIC 

HAM10

000 

DermIS 

• Deep 

learning 

A deep learning-based 

network for skin cancer 

was proposed, with an 

accuracy of 94.17%. 

• Proposed system is 

suited for only people 

with fair skin tone. 

In segmentation, images exhibiting higher inconsistencies at the lesion centre compared to the 

boundary inconsistencies yields poor segmentation results. Furthermore, in some situations, a 

higher threshold value set for segmentation causes a regression area at the image centre, resulting in 

the false detection of lesions. Many features that aren't required for classification complicate the 

classifier and increase computational time, lowering classification accuracy. The best aspects of the 

skin cancer photographs should depict the region's characteristics. As a result, the finest method to 

identify lesion features is required. Therefore, a novel system is required to develop which can 

handle these all challenges and achieve better performance than the state-of-the-art methods. 

2.1.3 Skin Cancer Image Feature Extraction  

Feature extraction is a critical step in image processing. Each dermoscopy image can produce 

hundreds of features that serve as image descriptors. However, not all of these characteristics are 
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important for lesion classification. Unnecessary characteristics can complicate the classifier, raise 

computational needs, and perhaps impair classification accuracy.  

Extraction of feature is an important step in obtaining a discriminatory illustration of the skin 

lesions. Achieving the right feature is a challenging procedure and has been extensively researched 

in this area, which may lead to the identification of a wide range of features describing the skin 

lesion system [170]. The major features that are extracted are texture feature, shape features and 

colour features. Texture features are basically a kind of spatial variation function in the pixel value 

of the image. These values are the pixel intensities or greyscale values in the image which are useful 

in several applications. The texture is also a type of visual content in the image. Shape features are a 

type of structural information of an image like asymmetry and border irregularities of a lesion. 

Colour features represent the variation in red, green and blue components of an image.  

These features can be classified into 4 categories: i) Handcrafted that include shape, colour, 

symmetry and texture of the lesion, these features are global image descriptor and are very common 

one, ii) dictionary-based features, in which to acquire local image descriptors of lesion approaches 

like bags of features or sparse coding are used, iii) deep learning features those who acquire decent 

image descriptors automatically by using neural networks or convolution neural networks, and iv) 

clinical features aimed at providing medical explanations for features used by a computer-assisted 

diagnostic system [11]. In this section, a brief review of various feature extraction method for skin 

cancer detection are addressed as shown in Figure 2.4. 

 

Figure 2.4 Feature Extraction and Selection Methods for Skin Cancer Images 
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A. Pattern Analysis  

In 1987 Pehamberger et. al presented the pattern analysis method and then it is updated in 2000 in 

the Consensus Meeting of Dermoscopy (CNMD) [171]. For extraction of features in skin lesion 

diagnosis pattern analysis method have been used. The presence of uneven shapes indicates the 

global patterns in lesion images. It comprises the reticular formation, bulbous, cobbled, regular, 

stardust, analogous, multimodule, lacunar and nonspecific shapes. Local patterns of dermoscopic 

arrangements include pigment structures, spots or globs, strips, blue-white cloak, blemishes or 

pigment, vitiligo, recession and vascular bundle situated in a particular section of the lesion [172] as 

shown in Table 2.2. 

Table 2.2 Pattern Analysis Method for Feature Extraction 

Global pattern Local pattern 

Reticular formation 
• Pigmented structure (existing or non-existent/usual or 

abnormal) 

Bulbous • Spots/globs (existing or non-existent /even or uneven) 

Cobbled • Strips (existing or non-existent/ even or uneven) 

Regular • Blue Whitish cloak (existent or non-existent) 

Stardust 
• Blemishes or pigment (existing or non-existing/ even or 

uneven) 

Analogous • Vitiligo (existing or non-existing) 

Multimodule • Recession Structure (existing or non-existing) 

Nonspecific (missing) • Vascular Structure (existing or non-existing) 

 

B. Asymmetric, Border, Color, Diameter Rule 

ABCD method of dermoscopy was the next method afterwards pattern analysis [173]. This method 

is based on some criteria which include asymmetric (A) that is calculated by dividing image 

horizontally and vertically, border (B) an uneven, blurry and shabby boundary indicate melanoma, 

color (C) like blue-grey, black, red, white, dark brown, light brown present in lesion indicate 

melanoma and diameter (D) if the diameter of a lesion id greater than 6nm then it indicates 

melanoma’s presence as shown in Table 2.3. All these criteria are assigned with some score and a 

total dermoscopy score (TDS) is computed the formulae for calculating TDS given in equation 2.1. 

𝑇𝐷𝑆 = 𝐴 ∗ 1.3 + 𝐵 ∗ 0.1 + 𝐶 ∗ 0.5 + 𝐷 ∗ 0.5        (2.1) 
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Table 2.3 ABCD Rule Of Dermoscopy 

Features Definition Score Weight 

factor 

Asymmetry (A) 
• Vertically or horizontally 

(even or uneven) 
0-2 1.3 

Boundary (B) 
• An irregular, blurred and 

ragged border 
0-8 0.1 

Colour (C) 

• Presence of 6 key colors 

(blue-grey, red, dark brown, 

white, black, light brown) 

1-6 0.5 

Diameter (D) • More Than 6nm 1-5 0.5 

 

C. Seven-Point Checklist 

This method has been used to attain high accuracy of dermoscopic images in computational 

diagnosis. This method is based on seven criteria that include three major (unusual pigmented 

pattern, Blue-whitish cloak and unusual vascular structure) and four minor criteria (Asymmetrical 

strips, Asymmetrical colouration, Asymmetrical spots/globs and Recession pattern as shown in 

Table 2.4. In this method, a total score is calculated and if the value of the final score is 3 or greater 

than that means melanoma is present otherwise not. To calculate a total score each minor criteria is 

given one point and each major criteria is given two points [174]. 

Table 2.4 Seven-Point Checklist Method for Feature Extraction 

Minor criteria Score Major criteria 
Sc

ore 

Asymmetrical Strips 1 Unusual pigmented Pattern 2 

Asymmetrical colouring 1 Blue whitish cloak 2 

Asymmetrical spots/globs 1 Unusual Vascular structure 2 

Recession pattern 1   

 

D. Menzies’s Method 

This method is based on nine positive (Blue-white cloak, Various brown spots, Pseudopodium 

pattern, radiated coursing, white discolouration, bordering black spots/globs, multicolours, Various 

blue/grey spots, Prolonged structure) and two negative features (Point and axial symmetry of 

pigmentation, Presence of a single color) present in structure as shown in Table 2.5.  A lesion is said 



41 
 

to be melanoma when there is at least one or more positive features are present and none of the 

negative features is present [175]. 

Table 2.5 Types of Features used by Menzie’s Method for Feature Extraction 

Negative features Positive features 

Point and axial symmetry of lesion 
• Blue Whitish Cloak (existing or non-

existing) 

 

The presence of a single-color 

• Various brown spots 

• Pseudopodium 

• Pattern radiated 

• Coursing white 

• Discolouration 

• Bordering black spots/globs 

Multicolours 

• Various blue/grey spots 

 

E. Color, Architectural, Symmetry, Homogeneity Algorithm 

Henning et al., [176] give an updated type of pattern analysis known as the CASH algorithm. This 

algorithm includes architectural features which were not colours by any other criteria previously. 

CASH algorithm adds Colour (C), Architectural (A), Symmetry(S) and Homogeneity (H) features 

for lesion and each feature is given a score, then a total dermoscopy score (TDS) is calculated on 

the basis of these features if the value of TDS is greater than 7 then the lesion is melanoma as 

shown in Table 2.6.  

Table 2. 6 CASH Algorithm for Feature Extraction 

Features Definition Score 

Colour (C) 

• Presence of 6 key colors (blue-grey, 

red, dark brown, white, black, light 

brown) 

1 for each 

Architectural (A) 
• Undefined 

• Visible variation 

1 

2 

Symmetry (S) 
• Monoaxial symmetry 

• Biaxial asymmetry 

1 

2 

 Homogeneity (H) 

• Network; spots/globs 

Stripe/pseudopodium Pattern 

Blue-white cloak 

 

1 for each 
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• Recession systems blots 

• Heterogeneous venule 

 

Colour present in the CASH algorithm is bright brown, blue, dark black and white, dark brown and 

red with a score of 1 point each. The colour red, white, and, mainly, blue are probably very crucial 

in differentiating non-cancerous lesion from the cancerous lesion. Architecture refers to the 

structural and colour of a lesion a modest with a score of 1 point or noticeable change with a score 

of 2 points in lesion have a high probability of being a melanoma. Structural features refer to the 

presence of shape of the lesion which is Monoaxial symmetry with a score of 1 point and biaxial 

asymmetry with a score of 2 points indicate the presence of melanoma.  

Homogeneousness/heterogeneousness is primarily established on previously indication of the 

multiple patterns, which are characterized as three or more dermoscopic arrangements exist in the 

lesion. These patterns are network; spots/globs; strips/pseudopodium; blue-white cloak; recession 

arrangements; blots; and heterogeneous venule each with a score of 1 point [177]. 

Choudhary and Biday, 2014 [149] suggested an ANN-based skin cancer diagnosis model which 

employs a maximum entropy thresholding approach to segment images. To retrieve distinctive 

properties of melanomas, a grey-level co-occurrence matrix (GLCM) was used. The input images 

were categorised into either malignant or benign stages of melanoma by employing a feed-forward 

ANN.  

Aswin et al., 2014 [127] introduced is a novel approach for melanoma detection that employs a 

blend of GA and ANN techniques. To eliminate hair from the images, the Dull-Rozar technique 

was implemented, and ROI were isolated using the Otsu thresholding technique. Moreover, the 

GLCM method was utilized to derive unique features from the segmentation results. Following this, 

a hybrid classification algorithm that integrates ANN and GA was applied to classify lesion images 

into malignant and benign categories. 

Premaladha et al., 2016 [144] devised classification methodologies involving Deep Learning-

based Neural Networks and Hybrid Ad Boost-SVM algorithms. These approaches were provided 

with a set of fifteen features created and extracted from the ROIs within the images. 

Xie et al., 2017 [147] introduced a skin lesion classification system that categorizes lesions into 

noncancerous and cancerous groups. The proposed paradigm consists of three stages. Firstly, a self-

generating Neural Network (NN) was employed to identify diseases from images. In the second 

phase, data on boundary, appearance, and color details were extracted. The dimensionality of the 

features was then reduced using PCA, enabling the determination of an optimal set of 

characteristics. In the final step, lesions were classified using a neural network ensemble approach. 
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 Satheesa et al., 2017 [148] describe a non-invasive computerized dermoscopy system designed 

for diagnosing skin lesions, taking into consideration the predicted depth of the lesions. The 

approach involves utilizing 2D dermoscopic images to reconstruct a 3D representation of the skin 

lesion. To achieve this, an adaptive snake technique is applied to extract the ROI from the data. 

Subsequently, a calculated depth map is fitted to the existing 2D surface, resulting in the creation of 

a 3D reconstruction of the skin lesion. The depth and 3D form features are then extracted based on 

the generated 3D tensor structure.  

Al-Masni et al., 2018 [152] a distinctive segmentation approach was introduced, leveraging full-

resolution convolutional networks (FrCN). The suggested FrCN technique captures full-resolution 

features directly from each pixel in the input data, without relying on intermediate steps. This 

eliminates the necessity for pre- or post-processing procedures, such as artifact removal, 

illumination adjustments, or additional strengthening of the segmented skin lesion boundaries. The 

use of FrCN allows for a streamlined and efficient segmentation process, emphasizing a direct and 

comprehensive extraction of features at the full resolution of the input data. 

Gulati et al., 2019 [32] proposed a system for melanoma and non-melanoma classification is. 

Preprocessing measures are first carried out to clarify and improve dermoscopic images by 

eliminating unwanted artefacts. Then, using active contour-based segmentation, the primary area of 

interest is constructed. Moreover, colour, structure, and texture are retrieved and fed into the 

classification model (SVM) for efficient and precise malignant and non-malignant tumour 

categorization.  

Mahbod et al., 2020 [178] a framework is introduced for extracting deep features from several 

well-established and pre-trained deep CNNs. The deep features are derived from pre-trained models 

such as AlexNet, ResNet-18, and VGG16. These features are subsequently fed into a multi-class 

SVM classification model. The outcomes of the individual classifiers are combined to make a final 

classification decision. The proposed model is validated on the ISIC 2017 database, demonstrating 

its effectiveness in skin lesion classification. 

Monika et al., 2020 [158] in the segmentation phase, a color-based k-means clustering technique 

is applied, leveraging the significance of color as a crucial characteristic in discerning the type of 

malignancy. The features extracted include ABCD, and the Grey Level Co-occurrence Matrix 

(GLCM). These features encompass both statistical and textural aspects, providing a comprehensive 

set of characteristics for further analysis and classification of skin lesions. 

Murugan et al., 2021 [161], the proposed approach employs an image processing method for the 

classification and detection of skin melanoma. In the preprocessing phase, a median filter is applied 

to the ROI, and the mean shift method is utilized to separate the ROI effectively. Feature extraction 
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from the ROI involves Moment Invariant features such as Gray Level Run Length Matrix and Gray 

Level Co-occurrence Matrix. These extracted features are then utilized for the classification of 

lesions into malignant and non-malignant categories. The combined use of preprocessing and 

feature extraction techniques contributes to an effective and accurate skin melanoma detection 

system. 

There are both advantages and disadvantages to feature extraction and selection methods in the 

analysis of skin cancer images. Though these methods are important to improve the accuracy of 

machine learning models in detecting skin cancer, they do come with a number of limitations. 

While dealing with huge datasets or high-resolution images, feature extraction can be highly 

computational. Handcrafted features that are predetermined and constructed based on prior 

information are used in many classic feature extraction methods. These traits may not be 

appropriate for every case of skin cancer. Overfitting can occur when feature selection procedures 

result in the model performing well on training data but poorly on unknown data. 

Table 2.7 Comparative Analysis of Different Feature Extraction Method 

Author  Method Findings  Remarks 

Giotis et al., 

(2015) [162] 

• ABCD  

• CLAM  

• Accuracy= 80% 

• Specificity= 81% 

• Sensitivity = 80% 

• Noise sensitive 

• It depends on the 

size of the data  

Premaladha et al., 

(2016) [144] 

• Normalised 

Otsu’s  

• GLMC  

• Accuracy = 93% 

• Data overfitting 

• Decision parameters 

not defined accurately 

• The dataset was not 

handled correctly 

Kasmi and 

Mokrani 

(2016) [179] 

• ABCD  

• Accuracy= 94.0% 

• Sensitivity = 

91.25%  

• Specificity = 

95.83%  

• Small-size 

melanoma is not detected  

Oliveira et al., 

(2016) [180] 

• Canny’s edge 

detector 

• Low error 

probability 

• It dodges the 

discovery of double-

edge 

• Borders of the lesion 

are not completely spotted 

• Large sensitivity to 

noise 
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• Thresholding 

based  

• Lesion boundaries 

correctly detected 

• Leads Irregular 

lesion edges 

• Sensitive to artefacts  

• Region-based  
• Low contrast 

boundaries detected  

• Computationally 

expensive 

• Sensitive to noise 

• AI based  
• Good accuracy and 

sensitivity 

• Complexity of 

implementation 

• Unnecessary steps 

involved 

• Time-consuming  

• Active counter  

• Identified low-

contrast boundaries  

• Overcome image 

noise 

• The success of 

segmentation is 

determined by the original 

curve's appropriateness. 

Pathan et al., 

(2018) [155] 

• Pattern 

Analysis 

• Uses local and 

global patterns of 

Dermoscopic  

• The criteria used for 

feature extraction are not 

sufficient 

• ABCD 

• TDS is calculated 

by using the weight 

factor  

• Lesions less than 

4.75 TDS are not detected 

• Menzies 

Method 

• Uses positive and 

negative features 
• Less accurate 

• Seven Point 

Checklist 

• Based on three 

major and four minor 

criteria 

• Melanoma is more 

likely if you have a total 

score of three or more 

points. 

• The low specificity 

and accuracy 

• CASH 
• Include a feature 

architecture 
• Low specificity 

Satheesha et al., 

(2018) [148] 

• Adaptive snake  

• Tensor flow 

• Sensitivity = 98% 

• Specificity = 99% 

• For reconstruction, 

the actual depth of the 
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lesion cannot be 

computed 

Singh and Gupta 

(2018) [164] 

• Literature 

survey of 

computerized tools 

for melanoma 

detection  

• Dermoscopic 

images are the most 

viable option for 

computerized tools 

• Segmentation feature 

extraction and accuracy 

are major issues in 

computerized tools 

Al Masni et al., 

(2018) [152] 

• Fully resolution 

convolution network 

for segmentation 

• Accuracy = 

84.97% 

• Highly sensitive 

• The large data set 

cannot be handled 

• Over and under-

segmentation is not taken 

care of 

Zaqout et al., 

(2019) [181] 

• Thresholding  

• ABCD 

• Accuracy=94.5%, 

• Sensitivity=82.5% 

• Specificity=97.5%, 

• Sensitive to artefacts 

• More datasets are 

needed for validation  

 

2.1.4 Skin Cancer Image Classification 

Over the past ten years, there has been a wealth of research focused on the detection and 

differentiation of both malignant and benign skin cancers. Numerous datasets have been made 

accessible to the academic community, enabling researchers to employ various methods such as 

partitioning, merging, grouping, and classification algorithms for the purpose of detecting and 

managing skin cancer. Every method comes with its particular limitations and has contributed to 

significant advancements in the medical field, aiding healthcare professionals in their decision-

making processes. In the field of image classification, correlation-based methods have grabbed 

significant recognition due to their capability to capture the underlying relationships between 

features and classes. Common similarity measures such as mutual information, cross-correlation, 

entropy, and pattern intensity have been employed in these methods [182]. 

One of the correlation-based methods used for image classification is mutual information. 

Mutual information has been extensively employed in machine learning for various tasks, like 

feature selection and independent component analysis [129]. Mutual information is also frequently 

used in medical image analysis to align images to the same coordinate system [183]. Another 

commonly used correlation-based method in image classification is cross-correlation. Cross-

correlation is a technique that measures the similarity between two signals by sliding one signal 
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over the other and calculating the correlation at each position [184]. Unlike mutual information, 

which focuses on the statistical relationship between two variables, cross-correlation directly 

compares the intensity of the image pixels [185]. A review of state-of-the-art approaches based on 

correlation is presented in this section. 

Dimou et al., 2006 [186] the author evaluates the use of ensemble classifiers and fusion 

techniques in diagnostic cancer models to improve accuracy, confidence, and feature space 

coverage. In two medical situations, the author assesses the performance of an ensemble of eight 

classifiers based on 15 alternative fusion algorithms. The study uses 11 commonly accepted metrics 

to measure the correlation of the base classifiers and provides insights for selecting an improved 

hyper-classifier. The author also discusses the concept of multi-classifier systems and the benefits 

of combining the outputs of multiple classifiers to achieve higher accuracy. 

Truong et al., 2014 [187] the author performed an extensive analysis of double Debye model 

parameters for the purpose of categorizing non-melanoma skin cancer. Utilizing Pearson 

correlation, the study aimed to unveil the sensitivity of these parameters and assess the impact of 

variations in their combinations on the tumor percentage in skin samples. Receiver Operating 

Characteristic (ROC) plots were employed to pinpoint and assess the parameters with the highest 

sensitivity, gauging their effectiveness in discriminating between skin cancer and normal skin. 

Kavitha et al., 2016 [188] proposed a model to classify breast cancer genes using microarray 

data, called Correlation-based Support Vector Machine Recursive Multiple Feature Elimination 

(CSVM-RMFE). With the SVM-RFE approach, several irrelevant genes are removed in a single 

iteration to lessen the computing burden of dimension reduction. Prior to using SVM-RFE, it also 

focuses on identifying linked genes and isolating a new gene from them in order to increase the 

classifier's accuracy.  

Chutia et al., 2017 [189] author introduced a novel ensemble classification framework that 

combined Random Forest (RF) with a correlation-based feature selection (CFS) technique for the 

precise classification of heterogeneous land surfaces displaying homogeneous land cover classes in 

satellite images. The CFS method was applied to evaluate the significance of features, enhancing 

the performance of the RF classifier by selecting the most relevant feature set. The research not 

only compared the effectiveness of the RF classifier against other supervised classifiers but also 

demonstrated its superiority.  

Rajesh et al., 2018 [190] the author proposed a framework for the identification and 

categorization of various skin disorders. PCA and Linear Discriminant Analysis (LDA) were 

employed to extract features from the original data. The retrieved features were then condensed to a 

subset with sufficient discriminatory power for classification, achieved through the application of 



48 
 

the Fisher ratio approach, a feature selection technique. To categorize the diverse skin illnesses 

within the dataset, ensemble-based classifiers, including Bayesian, self-organized map, and SVM, 

were utilized. 

Sinayobye et al., 2019 [191] the author employed a hybrid classification model that incorporated 

a correlation-based filter feature selection technique with machine learning classifiers to identify 

relevant features and assess their performance. A smart meter dataset was used to train the model, 

predict outcomes, and evaluate the classification performance of various classifiers. In the feature 

selection process, features were grouped based on their relative correlation coefficient with respect 

to the class attribute, and the top K features were chosen to generate a reduced dataset. According to 

the results, the Random Forest classifier outperformed the other classifiers used in the experiment. 

Murugan et al., 2019 [192] author applied a watershed segmentation approach to segment the 

region of interest. Shape, ABCD rule, and GLCM were among the features collected from the 

segmented regions. For classification, three classifiers were used: Random Forest, KNN, and SVM. 

The SVM classifier outperformed the other classifiers in terms of skin lesion categorization.  

Rajasekhar et al., 2020 [193] presented a method for classifying skin lesions as melanoma from 

dermoscopic images. This method makes use of Shape, Colour, and Texture data, as well as the 

brand-new Spectral Graph Wavelet Transform (SGWT) for texture feature extraction. The SGWT is 

better than traditional wavelet transformations because it can handle images with irregular shapes 

by employing weighted graphs that are produced as meshes. The suggested method classified 

characteristics derived from the dermoscopic pictures using Nave Bayes, SVM and K-Nearest 

Neighbor (KNN) classifiers. 

Murugan et al., 2021 [161] introduced is a system for identifying malignant skin cancer utilizing 

a support vector machine. The skin images underwent pre-processing with a median filter and 

subsequent segmentation through Mean Shift segmentation. Feature extraction from the segmented 

images employed three strategies: GLCM, Grey Level Run Length Matrix (GLRLM), and Moment 

Invariants. Classification of the extracted features utilized RF, SVM, and PNN classifiers, along 

with a combination of SVM+RF classifiers. In direct comparison with alternative classifiers, the 

combined RF+SVM classifier demonstrated superior performance. 

Abbas et al., 2022 [194] employed the Wisconsin Breast Cancer Dataset (WBCD)1 and the Duke 

Breast Cancer Dataset (DBDS)2 in this research to predict breast cancer tumors. Linear 

Discriminant Analysis (LDA) feature selection was integrated with a variety of machine learning 

classifiers, including Neural Networks, SVM, RF, and Decision Tree (DT).  

 
1https://www.kaggle.com/datasets/uciml/breast-cancer-wisconsin-data/discussion/62297  

2 https://sites.duke.edu/mazurowski/resources/breast-cancer-mri-dataset/ 
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Hajiarbabi et al., 2023 [133] author proposed a methodology that encompasses the creation and 

execution of a multi-scale architecture for the detection of skin cancer, which integrates the results 

from three distinct Convolutional Neural Networks (CNN) and channels them into a Fully 

Connected Network (FCN). Furthermore, the application of image processing methodologies is 

adopted to ameliorate both the quality and quantity of training images by incorporating techniques 

such as cropping and scaling to significantly augment the dataset size.  

Abdelhafeez et al., 2023 [195] proposed a novel approach for identifying skin lesions in 

computer-aided diagnostic (CAD) systems, addressing the complexities arising from variations in 

melanoma size and texture. The method combined deep learning-based layer fusion with 

neutrosophic set techniques. Off-the-shelf networks, including GoogleNet and DarkNet, were 

evaluated using transfer learning on the ISIC 2019 skin lesion datasets. Initially, individual 

networks achieved accuracies of 77.41% and 82.42%, respectively. Through a feature fusion 

methodology, the accuracies were boosted to 79.2% and 84.5%. In the second stage, error-

correcting output codes (ECOC) were employed to construct well-trained support vector machine 

(SVM) classifiers from fused feature maps. Neutrosophic techniques were then applied to resolve 

ambiguities in classification scores, resulting in an improved accuracy of 85.74%. This 

outperformed recent proposals and offered trained models and single-valued neutrosophic sets 

(SVNSs) for public use in relevant research fields. 

A comparative analysis of correlation-based techniques in different research areas is presented in 

Table 2.8. Singhal and Singh, 2015 [196] proposed an approach for automatically detecting Acute 

Lymphoblastic leukemia (ALL) using shape information taken from pictures of lymphocyte cells. 

The Correlation based feature group (CFG) technique is used to create a set of sixteen features that 

may accurately predict whether a lymphocyte cell is normal or blasted, with a 92.30% accuracy. 

Maleki et al., 2015 [197] the author employs a method known as CFG, in which features are 

organized into groups based on their correlation values. Following that, unique feature vectors are 

created for each of these groupings. The KNN and SVM algorithms are then used to perform 

classification jobs and attain 93.55% accuracy. Jiang et al., 2017 [198] proposed a correlation-based 

strategy for optimizing the bag-of-visual-words (BOVW) model for image classification by 

reducing dictionary size while keeping characteristics with strong category relevance. The method 

entails creating a visual dictionary containing features that have a high correlation to categories and 

then training it with an SVM classifier.  

Zhang et al., 2017 [199] proposed a method for an apple-diseased leaf image database containing 

three types of apple leaf diseases: powdery mildew, mosaic, and rust. The proposed method was 

based on image processing techniques and pattern recognition methods, combined with GA and 
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CFS, and achieved an accuracy of 94.28%. Arora et al., 2017 [200] proposed a hybrid classification 

technique that employs correlation-based feature selection and regression classification to 

categorize segmented chromosomes into five categories: straight, overlapping, bending, touching, 

or noise. On 1592 segmented chromosomes, the approach obtains an overall accuracy of 94.78%. 

Nahid et al., 2020 [201] implemented a Deep Neural Network (DNN) algorithm guided by 

structural and statistical information proposed for classifying breast cancer images exhibiting high 

precision, accuracy, and F-measure values. The author focuses on the Break His dataset and offers a 

combination of Long-Short-Term-Memory (LSTM) models and CNN for breast cancer image 

classification, together with SVM and softmax decision-making layers. 

Liu et al., 2020 [202] presented. a normal vector correlation-based image denoising method for 

lung cancer. The lung CT image is split into many multiscale sub-images and pre-processed. The 

first-level sub-image is subjected to a modified super pixel segmentation algorithm to create a 

collection of super pixels. In order to separate the lungs, a random forest classifier is used to 

categorize the super pixels of each sub-image based on the attributes that were retrieved from them. 

Nasir et al., 2021 [203] proposed a real-time supervised learning strategy for document 

categorization that employs a deep convolutional neural network (DCNN) and feature selection 

using the Pearson correlation coefficient. The technique incorporates phases such as feature 

extraction using pre-trained NN models, data augmentation, feature selection and feature fusion. On 

the Tobacco3482 dataset, the proposed technique achieves a classification accuracy of 93.1% using 

a cubic SVM classifier. Khan et al., 2021 [204] employed pattern recognition and machine learning 

approaches for identifying and recognizing fruit conditions. It addresses obstacles such as convex 

edges, colour inconsistency, variation, accessibility, scale, and source. On the Plant Village dataset, 

the suggested method obtains an average accuracy of 93.74%. 

Table 2.8 Comparative Analysis of Different Correlation Method 

Author 
Different 

Applications 

Feature selection 

method 
Classifier Performance 

Singhal and 

Singh (2015) 

[94] 

Acute 

Lymphoblastic 

Leukemia 

Correlation-based 

Feature Selection 
SVM 92.30% 

Maleki et al., 

(2015) [95] 

Protein-protein 

interactions (PPIs) and 

breast cancer 

Correlation-based 

Feature grouping 

SVM 

KNN 
92.39% 
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Jiang et al., 

(2017) [96] 

Documents 

Correlation-based 

model bag-of-visual-

words 

SVM 87.50% 

Zhang et al., 

(2017) [97] 
Leaf disease 

Feature selection 

based on correlation and 

GA 

SVM 94.28% 

Arora et al., 

(2017) [98] 

Genetic defects Correlation-based 

Feature Selection 
CVR classifier 94.78 % 

Nahid et al., 

(2018) [99] 

Breast cancer K-Means 

Mean-Shift 

Deep Neural 

Network 
91.00% 

Liu et al., 

(2020) [100] 

Lung Disease 
Gaussian Mixture 

Model 
RF 92.30% 

Nasir et al., 

(2020) [101] 

Document 

classification 

Pearson correlation 

coefficient 

Deep 

convolutional 

neural network 

93.1% 

 

Khan et al., 

(2021) [102] 

Grape rot leaves, 

apple rust, grape 

powdery mildew, apple 

scab 

Entropy-rank 

correlation-based feature 

selection 

M-SVM 93.74%, 

 

After the study of various research articles [205], [206] [207] and review papers [208] [124], 

[205],[209], [210] some research gaps have been identified and summarized below:  

(i) The original datasets include high-resolution images, which require significant 

computational resources.  

(ii)  Images may have little contrast when there is a lot of similarity between the lesion and skin 

tone.  

(iii) Another issue is the noise within the image, e.g., Hair may interfere with the accurate 

analysis of skin lesions that have been imaged. 

(iv)  Poor segmentation results are caused by images with more central lesion irregularities than 

border irregularities.  

(v) Additionally, in some situations, a higher segmentation threshold can result in a region of 

regression in the image's center, which can result in the false detection of lesions. 

(vi) While dealing with huge datasets or high-resolution images, feature extraction can be highly 

computational.  
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(vii) Handcrafted features that are predetermined and constructed based on prior information are 

used in many classic feature extraction methods.  

(viii) Feature selection approaches can sometimes result in overfitting, in which the model 

performs well on training data but badly on unknown data. 

2.2 Summary 

This chapter focuses on a review of the literature on skin cancer detection devices. It provides 

insights and information to aid in the design of components for automated skin cancer detection 

systems, with the ultimate goal of enhancing and improving skin cancer detection accuracy. The 

strategies and methodologies chosen from the studied literature are highlighted in each section of 

the chapter. The proposed methodologies will be used in the proposed skin cancer detection system 

in Chapter 3, contributing to the system's development and improvement.
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  CHAPTER 3 

METHODOLOGY AND SYSTEM FRAMEWORK 

 

The automated diagnosis of skin cancer poses a challenging and crucial problem within the realm of 

medical image processing. The accurate differentiation between benign and malignant skin 

melanomas holds considerable importance for patient outcomes and the reduction of diagnostic 

errors. Researchers have devised a range of methods and algorithms to tackle this challenge, with 

significant contributions from advancements in machine learning, computer vision, and deep 

learning, all pivotal in enhancing diagnostic accuracy. 

The study proposes a unique contribution in the form of an innovative medical expert system 

designed to categorize skin cancer lesions autonomously and with high accuracy. The major goal is 

to produce classification results that are not only accurate but also contain fewer errors than those 

produced by human specialists. 

3.1 Proposed System 

The proposed workflow initiates with the data acquisition phase, where information is gathered 

from the publicly available ISIC Dataset. Subsequently, a pre-processing mechanism is 

implemented to eliminate any potential noise within the dataset, and image enhancement techniques 

are applied to improve image contrast. The segmentation of the ROI is accomplished by utilizing 

background subtraction along with midpoint analysis. Feature extraction and selection are carried 

out using a differential analyzer algorithm (DAA) to identify crucial features for skin prediction. 

Finally, the system concludes with the classification stage, employing a correlation and linearity 

model. Figure 3.1 illustrates the flow of the proposed system. 
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Figure 3.1 Block Diagram for Proposed Frameworks of Skin Cancer Classification and Detection 

3.2 Publicly Available ISIC Dataset  

The International Skin Imaging Collaboration (ISIC) dataset stands as a critical resource in the 

realm of dermatology, specifically for research concerning skin cancer [211]. Skin cancer, a 

significant global health concern, necessitates comprehensive datasets to advance diagnostic and 

prognostic methodologies. The ISIC dataset, renowned for its diverse and extensive collection of 

dermoscopic images, serves as a cornerstone in addressing this challenge and propelling 

advancements in skin cancer research. For the study, as shown in Figure 3.2, a dataset of SIM ISIC 

Datasets [212] is used which is a publicly available dataset designed to detect skin cancer. 

3.2.1 Applications and Contributions 

Researchers worldwide leverage the ISIC skin cancer dataset to develop and fine-tune algorithms 

capable of distinguishing benign from malignant lesions [213]. These algorithms aid clinicians in 

accurately diagnosing skin cancers, facilitating timely interventions and improving patient 

outcomes. Moreover, the dataset serves as a standard for assessment of different algorithms, 

fostering healthy competition and continuous refinement of diagnostic tools [214]. 
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Figure 3.2 ISIC Dataset Images (Cancerous and Non- Cancerous) 

3.2.2 Diverse Challenges and Opportunities 

However, working with the ISIC dataset comes with its set of challenges. Variability in image 

quality, diversity of skin types, and the need for rigorous validation are factors that necessitate 

careful consideration. Despite these challenges, the dataset offers researchers a unique opportunity 

to harness the potential of machine learning and artificial intelligence in healthcare. By researching 

novel approaches, researchers can contribute to more reliable, effective, and easily accessible skin 

cancer diagnoses. 

3.3 Pre-Processing of Dermoscopic Images 

In the realm of dermoscopic image analysis, preprocessing serves as a crucial stage that 

significantly influences the accuracy and reliability of subsequent processing steps. The 

preprocessing phase involves a series of techniques aimed at cleaning, normalizing, and enhancing 

dermoscopic images. This phase is critical for the accurate classification of skin cancer. Several 

image processing techniques are applied to the input images during the preprocessing phase of skin 

cancer analysis before segmentation or other diagnostic activities are conducted.  

The preprocessing is required to improve image quality and subsequent analysis, but it has some 

drawbacks. The following are some of the most common problems associated with the 

preprocessing step of skin cancer analysis: Data loss may occur during some preprocessing 
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processes [215]. When image resolution is lowered, details and small details may be blurred or 

destroyed, limiting the reliability of subsequent examination or diagnosis [216]. It is crucial to 

strike a balance between reducing noise and retaining key information during preprocessing [217]. 

To handle these issues during pre-processing, the image is resized, hairy parts are removed, and 

discrete cosine transformation (DCT) [218] and color space conversion are to enhance and restore 

the image during this pre-processing stage. 

3.3.1 Image Resizing  

Dermoscopic images often vary in resolutions and scales, necessitating the use of image resizing to 

standardize dimensions for compatibility with analysis algorithms. The careful execution of resizing 

is crucial to prevent distortion or the loss of vital details. In certain scenarios, dermoscopic images 

may have resolutions exceeding 1000 × 700, incurring a high computational cost. To address this, 

the original images are resized to [296, 296] using a MATLAB function, striking a balance between 

computational efficiency and preserving essential information in the images. This resizing process 

ensures that the images maintain compatibility with subsequent analysis algorithms while 

minimizing the computational resources required.  

3.3.2 Hair Removal Using Bottom Hat Filter 

Pre-processing is carried out using a dual strategy. First, the bottom hat filtering mechanism was 

applied to remove the hair from the image by reading the image and converting the RGB image into 

grayscale as shown in Figure 3.3. Bottom-hat filtering is an image processing technique used to 

enhance the visibility of small, darker structures or features in an image that are smaller than the 

structuring element used. It can be useful in the context of skin cancer image analysis for 

highlighting subtle details, such as hairs or darker areas on the skin.  
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Figure 3.3 Preprocessing Phase of Proposed System 

During the proposed methodology, we don't need the extensive amount of color information found 

in RGB images, therefor RGB images are converted into greyscale images. The outcome of a 

conversion is kept in [u, v]. The cross-shaped structured element's results will be used to determine 

how well the image measures up to the region boundaries. The maximum size of an object is 

specified by the T_size variable. If the maximum size (T_Size) is exceeded, these values will be 

replaced with the neighbourhood intensity levels denoted by Object-1(u,v). The working of the 

mechanism is explained in Algorithm-3.1. 

 

3.3.3 Image Enhancement Applying DCT and Color Space Conversion 

Standardizing the brightness and contrast levels of dermoscopic images is essential to ensure 

consistent visual characteristics. Variations in lighting conditions during image capture can lead to 

disparities in image quality. Preprocessing methods such as gamma correction, histogram 
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stretching, and dynamic range compression help normalize these attributes, ensuring that images are 

comparable and conducive to accurate recognition. 

Image enhancement highlights the useful information present within the image and reduces the 

redundant information within the image as well. The proposed model used individual colour-

checking and stretching mechanisms to introduce uniformity at each point within the image. To 

overcome the non-uniformity illuminations color space conversion strategy with DCT is applied. 

One of the key discussions in the realm of image enhancement centres around the utilization of the 

DCT method [219].  DCT is highly regarded for its speed and effectiveness in processing images. 

Its fundamental purpose is to convert signals from their spatial domain into a frequency domain. 

The overall operation of enhancement with DCT and contrast enhancement is given as under Figure 

3.4. 

  

Figure 3.4 Image Enhancement during Preprocessing Phase 

Chen et al., [220] introduced a modest modification to the Discrete Cosine Transform (DCT) 

algorithm, which led to substantial performance improvements, particularly when dealing with 

significant variations in illumination. Their insight was that by discarding low-frequency DCT 

coefficients within the logarithmic domain, the method demonstrated a remarkable ability to 

mitigate the adverse effects of illumination variations. One of the notable advantages of this 

approach is that it does not require modelling or the use of bootstrap sets. Moreover, it is known for 

its speed and ease of implementation, making it particularly suitable for recognition systems.  

The Discrete Cosine Transform can be employed for image enhancement in cancer images, 

similar to how it is used in various image processing tasks. DCT-based image enhancement can 

help improve the quality and visibility of relevant features within cancer images. This section 

explains the methodology for image enhancement using DCT and color space conversion. 

Hairless Image Convert to YCbCr Apply DCT

Apply Correction 
Factor on Different 

Channels
Inverse DCT

YCbCr to RGB 
Conversion
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After replacing the hairy part from the image with neighborhood pixels, the image is required to 

be enhanced. Convert the hair removal RGB cancer image into HSV (Hue, Saturation, Value) that 

separates the information needed to be enhanced. Apply the 2D DCT transformation to the chosen 

colour channel (e.g., the Value channel in HSV) of the cancer image. Apply a 2D DCT 

transformation to the LL (low-low) frequency bands of the image. The LL frequency bands 

represent the low-frequency components and are typically found in the top-left corner of the DCT 

coefficient matrix. Most of the information within the signal is concentrated towards lower 

frequency components and hence LL frequency bands will be transformed through 2D DCT. The 

correction coefficient for this purpose is required to be evaluated. This is given through equation 

3.1. 

𝐶𝐹 = max (
∑ 𝐿𝐿

𝑖
→

∑ 𝐿𝐿𝑖
)          (3.1) 

Here “CF” is the correction factor. 𝐿𝐿
𝑖

→ is the similarity-valued matrix of the adaptive histogram 

equivalent image and LLi is the singular valued matrix of the input image. 

After obtaining the DCT coefficients of the LL bands, Correction is done with these coefficients 

to control the contrast enhancement. The correction factor determines the amount of enhancement. 

It should be less than 1 to avoid over-amplification. The correction coefficient can be calculated 

based on the correction factor you want to apply. The coefficient represents the reciprocal of the 

correction factor and is used to restore the image. The correction factor (CF) will be multiplied by 

the colour channel. Apply the inverse 2D DCT transformation to the modified DCT coefficients. 

This step restores the enhanced image back to the spatial domain. Clip and scale pixel values as 

necessary to ensure they fall within a suitable intensity range (e.g., [0, 255] for 8-bit images) to 

create the final enhanced image. Apply contrast stretching to further refine the quality of the 

enhanced image. 

• Step 1: Convert RGB image to HSV 

• Step 2: Apply DCT 

• Step 3: Apply correction factor 

• Step 4: H=CF*H 

o S=CF*S 

o V=CF*V 

• Step 5: Apply inverse DCT 

• Step 6: Convert HSV to RGB 

It is observed that the scale factor of “CF” gives better clarity and hence we use CF as the scale 

factor in contrast enhancement.  
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3.4 Segmentation of Dermoscopic Images 

Segmentation in image processing involves isolating the critical elements of an image while 

removing unnecessary portions. In the domain of skin cancer images, segmentation is applied to 

identify the boundary between a lesion and the surrounding healthy skin [221]. Its primary goal is to 

distinguish sets of related pixels within a ROI so that structural transitions between these sets can be 

more easily detected. Segmentation accuracy is critical to attaining lower error rates in the later 

assessment of skin lesion shape, border, and size parameters [222]. One of the most crucial and 

complex operations in image processing is segmentation. It has to be simultaneously fast and 

precise. The effectiveness of subsequent procedures, such as feature extraction and classification, is 

heavily reliant on the efficiency of the segmentation phase. 

As previously stated, segmenting dermoscopic pictures can be difficult due to factors such as 

poor contrast between the lesion and normal skin tone, colour fluctuations within the pigmented 

region, and the presence of artefacts. Despite these difficulties, dermatologists find segmentation 

extremely useful since it provides critical information on asymmetry, border irregularity, colour, 

and diameter—all of which are important determinants in melanoma diagnosis. As a result, using a 

proper segmentation approach to outline the complete lesion area from photographs considerably 

improves the diagnosis procedure. In medical image segmentation, various segmentation 

approaches have been used, including active contours-based methods, thresholding-based, artificial 

intelligence-based, region-based and edge-based. [208], [223]-[224]. 

• Threshold-based techniques: These approaches depend on the selection of one or more 

histogram threshold values to distinguish objects from the background [225]. 

• Edge-based: These approaches locate the boundaries separating the regions using edge 

operators [226], [227]. 

• Region-based: By merging, splitting, or both, pixels are organized into homogeneous 

regions [228]. 

• AI-based: These approaches depict images as random fields, with parameters determined 

through various optimization techniques [229]. 

• Active contours: These techniques identify object contours by using curve evolution [179], 

[230]. 

Though segmentation approaches are important in the research and detection of skin cancer, they 

do have certain limitations. Skin cancer segmentation procedures involve manual input or 

monitoring. This procedure can be tedious and costly because it frequently includes physically 

outlining the lesion's limits [231]. Skin lesions can have a wide range of appearances, including 
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shape, size, texture, and colour. Some segmentation methods may struggle to represent the complex 

and diverse features of many types of skin lesions [232]. Segmentation methods may suffer from 

over- or under-segmentation. Both scenarios can result in incorrect and inadequate segmentation 

data, which can affect future analysis and diagnosis [233]. To consider these kinds of issues in this 

study a novel method has been proposed for the segmentation of medical images. The proposed 

midpoint segmentation method using a background subtraction approach, enhances the performance 

of different classifiers. It helps segment the image into regions of interest, allowing for a more 

focused analysis of specific objects. By extracting only ROI, the background subtraction reduces 

the computational load associated with processing the entire image or video stream. 

3.4.1 Proposed Segmentation Method  

Background subtraction is a popular method for identifying video frames in a sequence taken by 

stationary cameras. The basic idea is to detect objects by determining the disparity between the 

current frame and a reference frame, which is sometimes referred to as the 'Background Image' or 

'Background Model.' This is generally accomplished by detecting the ROI in a picture, with ROI 

detection serving as the primary goal of this approach. In our proposed methodology we have 

implemented a background subtraction algorithm with midpoint analysis [234] . Figure 3.5 depicts a 

schematic overview of the proposed strategy.  

 

Figure 3.5 Working of Background Subtraction Model 
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In our proposed methodology, we have created a reference image by applying midpoint analysis. 

This reference image will be used to extract the region of interest from the input image. Region 

extraction is very significant since it will be used to examine irregularities in separate regions. 

Typically, the region extraction step is done with an inside-outside test that categorises the 

boundaries of the image. These concerns have been addressed in [56]. In our proposed work, the 

process is reserved. The boundary separation of the image in region-based separation mechanisms is 

a problem. Therefore, extraction of the cancerous region may not be appropriate. The advantages of 

reorientation include the shortest time to identify regions of interest in subsequent segmentation 

processes. 

The process, which starts from the inside and moves outward, cannot be completed until it 

encounters the boundary, but using the proposed method, the control will move from the boundary 

of this region and move inward to the centre, creating a threshold point at which changes in 

intensity levels occur. If no abnormalities are detected when scanning 50% of the area, the entire 

area will be marked as non-critical. The overall workings of the proposed method are given below 

in Algorithm 3.2. 

In the beginning, the proposed method uses the levels of color intensity (Ci) to locate the edge 

(E). Color is extremely important in identifying the region of the image (R). The equation 3.2 is 

used to identify the color. 

  𝐸𝑥𝑒,𝑦𝑒
= {

𝐶𝑖! = 𝐶𝑖 + 1 𝑅_𝐸
0 𝑜𝑡ℎ𝑟𝑤𝑖𝑠𝑒

         (3.2) 

The region edges (RE), which are identified by a color comparison with the adjacent pixel, are 

stored in the Ex,y variable, where ‘E’ stands for the region's edges. As a result, multiple edges 

corresponding to different regions will be detected, and the edge variable requires the subscripted 

variable "e." 

To determine the region's dimension, the diameter of the region is estimated. The equation 3.3 is 

used to determine the region's centre (CNi), which is obtained by dividing the region's dimension by 

"2" to obtain the radius. The centre of the region will be determined by the region's edges. The 

normal flow of the system will now come from the centre. 

𝐶𝑁𝑖 = {
(𝑚𝑎𝑥(𝐸𝑥𝑖,𝑦𝑖

) − 𝑚𝑖𝑛(𝐸𝑥𝑖,𝑦𝑖
)) /2 > 0

≤ 0 𝑅𝐸 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑛𝑜𝑡 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 
        (3.3) 
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The region extraction phase is crucial in the proposed segmentation process. The process begins 

with the identification of labelled segments. Regions corresponding to critical points have edge 

values.  

A set of intensity values (Int) will be stored in buffers (Bfi) corresponding to these edges. 

Intensity values corresponding to these regions will be used to remove the background and extract 

the region of interest. The centre intensity values greater than 0 are stored in the buffer for further 

processing, and values less than or equal to 0 are discarded. The primary equation used for the 

region extraction is given in equation 3.4. 

𝐵𝑓𝑖 = {
𝐼𝑛𝑡(𝐶𝑁 > 0), 𝑉𝑎𝑙𝑖𝑑 𝑐𝑒𝑛𝑡𝑟𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑠𝑡𝑜𝑟𝑒𝑑 𝑤𝑖𝑡ℎ𝑖𝑛 𝑏𝑢𝑓𝑓𝑒𝑟

𝐷𝑖𝑠𝑐𝑎𝑟𝑑 𝐼𝑛𝑡(𝐶𝑁 ≤ 0) 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑟𝑒𝑗𝑒𝑐𝑡𝑒𝑑 
               (3.4) 
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The background colour with the skin image has a maximum of 255 intensity levels. The region 

obtained from the region separation and the intensities from the region separation are used in the 

background subtraction process. This is expressed in equation 3.5. 

𝑊𝑖𝑡ℎ𝑜𝑢𝑡𝐵𝑔𝑖
= ⌊255 − 𝐼𝑛𝑡(𝐵𝑓𝑖)          (3.5) 

This intensity will be subtracted from the rest of the image to extract a background-free image. 

After background subtraction, the region of interest is obtained. The most positive matching 

segments will be kept, and the rest will be rejected. To acquire relationships between components, 

bwconncomp is used. Regionprops is applied to get the coordinates of the region with the highest 

correlation. 

3.4.2 Advantages and Challenges 

Background subtraction is advantageous for scenarios where the foreground and background have a 

clear contrast, and it can work well in real-time applications like surveillance and object tracking. 

However, its accuracy may decrease when lighting conditions change or when there are gradual 

changes in the background. 

Midpoint and Region cut, on the other hand, provides more refined results by considering 

multiple attributes for segmentation. It can handle more complex scenarios where objects have 

varying colors, textures, and shapes. However, region cut methods can be computationally intensive 

and may require parameter tuning. 

In the realm of image segmentation, background subtraction and midpoint analysis are essential 

techniques that play a pivotal role in extracting relevant information from images. Background 

subtraction helps identify the foreground objects by highlighting them against the background, 

while midpoint further refines the segmentation process by grouping pixels with similar 

characteristics. Both methods contribute to various applications across industries, enabling more 

accurate analysis and understanding of visual data.  

3.5 Feature Extraction and Selection for Dermoscopic Images 

Feature extraction is employed specifically on the extracted region, enhancing processing speed by 

focusing on relevant portions rather than the entire image. The chosen method for feature extraction 

is the bag of features approach, which proves advantageous in this context [235]. This algorithm 

considers both local and global solutions. Local solutions are ideal within a certain part of the 

search space, whereas global solutions are optimal globally. If the local solution outperforms the 
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global solution in a given case, the global solution will be replaced by the superior local solution. 

Color, shape, and texture features were discovered to be the most relevant for the detection of 

chronic melanoma images [236]. These features are mentioned in Figure 3.6.  

 

Figure 3.6 Different Types of Features Extracted 

These features provide valuable information that can aid in differentiating between benign and 

malignant skin lesions. Contribution of each feature to the detection process is given in this section: 

Shape: The shape of a skin lesion can provide important clues about its nature. Malignant 

lesions often have irregular, asymmetrical shapes, with uneven borders [237]. In contrast, benign 

lesions tend to have more regular, symmetrical shapes [238]. Analyzing the shape of a lesion can 

help dermatologists identify potential signs of malignancy. 

Color: Color variation is a key characteristic of many skin lesions, and analyzing color patterns 

can aid in diagnosis [239]. Malignant lesions may exhibit uneven pigmentation, with areas of dark 

brown, black, red, or even blue. Benign lesions, on the other hand, often have more uniform 

coloring, such as light brown, pink, or tan [240]. Evaluating color distribution and changes over 

time can provide important diagnostic information. 
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Texture: The texture of a skin lesion refers to its surface characteristics, such as smoothness, 

roughness, or scaliness [241]. Malignant lesions may exhibit irregular texture patterns, including 

ulceration, crusting, or scaling [242]. Benign lesions, in contrast, tend to have smoother, more 

uniform textures [243]. Assessing texture features can help distinguish between benign and 

malignant lesions and guide further diagnostic evaluation. 

In computer-aided skin cancer detection systems, shape, color, and texture features are often 

quantified and analyzed using image processing techniques and machine learning algorithms [244]. 

By extracting and analyzing these features from digital images of skin lesions, these systems can 

assist healthcare providers in identifying suspicious lesions and determining the likelihood of 

malignancy. 

While shape, color, and texture features are important components of skin cancer detection, they 

are typically considered alongside other clinical features, such as size, symmetry, and evolution of 

the lesion, to form a comprehensive assessment [245]. Integrating multiple features allows for more 

accurate and reliable diagnosis of skin cancer lesions, ultimately improving patient outcomes. 

3.5.1 Proposed Method for Feature Extraction and Selection 

The Differential Analyzer Algorithm (DAA) algorithm is primarily used for drawing lines on a 

computer screen. It calculates the coordinates of points along a straight line between two given 

points (usually the endpoints of the line) and then plots those points to create the line. The 

algorithm is based on the idea of using incremental changes along the x-axis to determine 

corresponding changes along the y-axis. 

3.5.2 Steps Involved in DAA Algorithm  

In this iterative and differential feature selection strategy, each step represents a deliberate 

modification of the feature set, assessing the impact on the model's performance. The assumption of 

linearity in each feature aligns with the idea of fitting feature values over linear dimensions, 

highlighting the importance of how each feature contributes to the overall model. 

• Calculate the slope of the line. 

• Determine the number of steps required. 

• Calculate the incremental changes in x and y. 

• Initialize a starting point. 

• Perform a loop for i from 1 to steps: 

• Plot the point 
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• Increment x by dx and calculate the new value of y. 

The conventional DAA algorithm is commonly employed in graphics, but a comparable 

incremental approach holds potential for adaptation in the realm of machine learning and data 

analysis. In this context, Feature Extraction and Selection play a crucial role, emphasizing the 

selection of a subset of pertinent features from the initial feature set. The objective is to enhance 

model performance and alleviate computational complexity. The adaptation of the DAA approach 

for feature selection involves iteratively moving from one feature set to another while assessing the 

impact on the model's performance. The incremental adjustments mimic the incremental changes 

along the x-axis in the traditional DAA algorithm. Each feature is supposed to possess a certain 

linearity. A differential approach used will try to fit the feature values over linear dimensions. 

Features not fitting the dimension will be rejected. The steps entailed in the feature selection 

process are outlined in Algorithm 3.3. 

 

To choose the relevant features, the differential analyzer algorithm (DAA) is used [246]. DAA is a 

meta-heuristic technique that works in the same way as genetic algorithms [247]. In this approach, 

each unit within the population is designated as either male or female, and each child is regarded as 

a potential solution to the given problem. The male population is represented by "X," while the 

female population is denoted as "Y." The determination of the required number of iterations for 

convergence is based on the computation of Max and Min values derived from the extracted 

parameters, as depicted in equations (3.6) and (3.7). 

𝑑𝑥 = 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 = {
max(𝑋𝑖) , 𝑤ℎ𝑒𝑟𝑒 𝑋𝑖 > 0

min(𝑋𝑖) , 𝑤ℎ𝑒𝑟𝑒 𝑋𝑖 > 0
          (3.6) 
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 𝑑𝑦 = 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛 = {
max(𝑌𝑖) , 𝑤ℎ𝑒𝑟𝑒 𝑌𝑖 > 0

min(𝑌𝑖) , 𝑤ℎ𝑒𝑟𝑒 𝑌𝑖 > 0
        (3.7) 

Where "I" is the size of the population, dx denotes the highest statistical variance between the 

maximum and minimum population of males, and dy represents the highest statistical variance 

between the maximum and minimum population of females. The total number of iterations allowed 

is calculated using equation (3.8). 

𝑠 = {
𝑑𝑥, 𝑖𝑓 𝑑𝑥 > 𝑑𝑦
𝑑𝑦, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

           (3.8) 

The 'S' variable indicates the steps, the total number of repetitions after which the algorithm 

automatically terminates. To derive offspring indicative of potential solutions, the crossover factor 

is computed from both the male and female populations. The equations (3.9) and (3.10) are used to 

compute the crossover factors represented by XC and YC.  

𝑋𝑐 =
𝑑𝑥

𝑠𝑡𝑒𝑝𝑠
                  (3.9) 

𝑌𝑐 =
𝑑𝑦

𝑠𝑡𝑒𝑝𝑠
          (3.10) 

The population's selection for offspring is determined by XC and YC. The equations (3.11) and 

(3.12) are used to produce the next generation of offspring.  

𝑋𝑛 = 𝑋𝑛 + 𝑋𝑐          (3.11) 

 𝑌𝑛 = 𝑌𝑛 + 𝑌𝑐          (3.12) 

The subsequent male and female individuals chosen to produce offspring are denoted as Xn and Yn. 

Their fitness is evaluated using a linear fitness equation, as illustrated by equation (3.13), where 

"m" represents the slope, and "c" represents the intercept. 

𝑓(𝑥, 𝑦) = 𝑚 ∗ (𝑋𝑛, 𝑌𝑛) + 𝑐       (3.13) 

The error function serves as the objective function to determine whether to retain the current 

offspring. The error rate, calculated using equation (3.14), must be less than the specified tolerance 

for the offspring to be accepted. 

𝑒𝑟𝑟𝑜𝑟𝑥,𝑦 = {∑ 𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑋𝑛 , 𝑌𝑛) − 𝑓𝑚𝑜𝑑𝑒𝑙(𝑋𝑛, 𝑌𝑛)      (3.14) 

If the generated offspring satisfies the optimization function, it is retained. Equation (3.15) defines 

the error rate, which must be less than the specified tolerance for the offspring to be preserved: 



69 
 

ɛ = {
𝑒𝑟𝑟𝑜𝑟𝑥,𝑦, 𝑖𝑓(𝑑𝑥 < 𝑝𝑡 𝑎𝑛𝑑 𝑑𝑦 < 𝑝𝑡

𝑁𝐴, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
       (3.15) 

Here, 'ε' represents the specified tolerance, which must be less than 0.001. If this condition is not 

met, optimality is not achieved, and the process is reiterated. 

The feature set extracted from the image equivalent to the specific region determines the optimal 

values that can be plotted linearly. For example, the range of values extracted from the region image 

has local maxima represented as dx = 10 and dy = 20. The minimum set of values obtained is given 

as (10,20) and the maximum value is given as (20,40). We calculate steps = dy = 20. The value of 

xincr will be 0.5, and the value of yincr will be 1. The range of values obtained through the DAA 

approach is listed in Table 3.1.  

Table 3.1 The Range of Values Obtained Through DAA Approach 

X Y (X, Y) 

10 20 (10,20) 

10.5 21 (10,21) 

11 22 (11,22) 

. 

. 

. 

. 

. 

. 

. 

. 

. 

20 40 (20,40) 

 

These values of X and Y are compared against the extracted values. Out of the range of values, 

values closely matched with the line coordinates are retained, and the rest of the values not 

satisfying the line coordinates are rejected. Optimal feature extraction will be achieved after the end 

of this algorithm. 

This algorithm undertakes the extraction of shape, size, and texture features from region images. 

Subsequent to the extraction process, each feature undergoes various normalization mechanisms to 

mitigate differences among feature values. The optimization function is employed for the evaluation 

process, with a predefined tolerance set. The obtained results are then compared to this specified 

tolerance to identify the most favourable offspring. Each of the fittest offspring is associated with a 

specific feature. The crossover factor is modified to the weight factor acquired for optimizing the 

Differential Analyzer Algorithm (DAA). Notably, in comparison to a standard genetic algorithm, 

this approach exhibits a remarkable convergence rate. The number of iterations is variable, ranging 

from 10, 20, and 30, up to 100, thereby enhancing the DAA's performance towards achieving the 

best possible solution. The constraint settings for the DAA are outlined in Table 3.2. 
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Table 3.2 Constraint Settings for DAA 

Constraints Values 

Feature reduction ratio 55 

Repetitions 100 

Replication 5 

Appropriate Tolerance 0.001 

Every optimised feature in this process is assigned a gender during optimisation. Which male and 

female traits will be used to produce offspring depends heavily on the crossover factor. The best 

feature is represented by the progeny, which is kept in the final feature matrix. Figure 3.7 shows 

how the Differential Analyzer Algorithm (DAA) works. 

 

Figure 3.7  Mechanism of DAA Algorithm 

In this context, the pivotal role of feature extraction and selection cannot be overstated, as it 

underscores the significance of choosing a subset of pertinent features from the initial feature set. 

The overarching goal is to augment model performance while concurrently mitigating 

computational complexity. Feature selection, as a core component of this process, entails the 

meticulous curation of a subset of relevant features from the original set. This strategic approach is 

designed to not only enhance the efficacy of the model but also to alleviate the computational 

burden associated with an exhaustive feature set. The adaptation of the DAA approach for feature 

selection involves iteratively moving from one feature set to another while assessing the impact on 

the model's performance. The incremental adjustments mimic the incremental changes along the x-

axis in the traditional DAA algorithm. 
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3.5.3 Benefits and Considerations of DAA Algorithm 

• Efficiency: Similar to the DAA algorithm's efficiency in approximating lines, this approach 

can help efficiently navigate through different feature combinations without exhaustive search. 

• Flexibility: This approach allows for gradual changes in the feature set, which can be 

beneficial when transitioning between various subsets of features. 

• Complexity: Feature selection is a complex problem, and this approach simplifies the 

process by breaking it down into incremental steps. However, the algorithm's design and stopping 

criteria need careful consideration. 

In conclusion, while the Differential Analyzer Algorithm is traditionally used for drawing lines, 

its incremental nature can be creatively adapted to solve other problems like feature extraction and 

selection. This showcases the versatility of algorithms and their potential for inspiring innovative 

solutions in various domains of computer science and data analysis. 

3.5.4 Normalization  

This phase is crucial for ensuring that the features used in a machine learning model are on a similar 

scale, preventing certain features from disproportionately influencing the model due to differences 

in their magnitude [248]. The overarching goal of these normalization strategies is to close the gap 

between the highest and lowest extracted feature values. By ensuring a consistent and standardized 

scale across features, the normalization phase contributes to the model's ability to generalize well 

and improve classification accuracy. This is particularly important in machine learning, where the 

effectiveness of models can be influenced by the relative scales of input features. The three 

normalization mechanisms mentioned—depth-based, min-max normalization (MMN), and grey-

level scaling—are applied to generate a feature matrix linearly. 

• Depth-based Normalization: To compare two different feature sets, this step estimates the 

depth of sequencing.  

• Min-Max Normalization (MMN): This technique linearly adjusts the raw data to 

predetermined lower and upper bounds. Normally, the data is rescaled between 0 and 1 or -1 and 

1[248]. 

• Greyscale normalization: This likely involves scaling pixel values to a common range, 

making it easier for the machine learning algorithm to work with the data. It can be performed 

either by normalizing each column or row to a range of values from 0 to 1. 
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3.6 Summary 

This chapter provides full details of proposed segmentation and feature extraction methods used in 

automated skin cancer detection systems. The proposed method for segmentation is applied 

especially for obtaining ROI. The proposed feature extraction and selection algorithm is applied for 

various features to classify benign from malignant lesions. The feature sets extracted in this chapter 

part will be given to the different classifiers to trace their role in differentiating benign from 

melanoma. This will help the appropriate features attain their weight according to the performance 

related to the classification of melanoma as discussed in next chapter 4. 
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  CHAPTER 4 

CLASSIFICATION 

 

The act of classifying skin lesion images into several classes or categories according to the type of 

skin cancer or the probability of malignancy is known as classification in skin cancer imaging. The 

classification of a lesion as malignant or non-cancerous is a crucial and final stage in computer-

aided diagnostics. Pattern recognition, visual analysis, and artificial intelligence all rely heavily on 

classification. Training or learning and testing are the two processes in supervised classification. 

During the training stage, the classifier is taught or trained using a dataset with features as input. 

When a machine or algorithm is trained, it is put through testing with reserved features, which 

implies that training is done using distinct images or feature vectors. Classifier performance is thus 

assessed in this manner. Before explaining the proposed lesion classification method, a brief 

description of numerous classification algorithms is presented. 

4.1 Models for Skin Cancer Classification and Detection 

The use of machine learning and artificial intelligence in healthcare is critical for skin cancer 

categorization and diagnosis. The classifying models used for this purpose are chosen based on the 

unique qualities of the data and the application's specific requirements. This section investigates and 

discusses some commonly used models for skin cancer categorization and detection. 

4.1.1 Support Vector Machine  

A Support Vector Machine (SVM) comes under the group of supervised learning approach and is 

accompanied by specific learning algorithms. Serving as a non-probabilistic binary linear classifier, 

it finds application in data analysis for both classification and regression tasks [249]. Created using 

an SVM training algorithm, this model is crafted to classify new cases into one of two 

predetermined categories. As a member of the supervised learning models, it employs associated 

learning algorithms. Fundamentally, the SVM-generated model, trained via a dedicated algorithm, 

assigns new instances to one of the two predefined categories, drawing from a set of training 

examples [250]. SVMs are strong algorithms in the field of supervised machine learning, notably for 

grouping datasets into meaningful groupings. These models rely on decision plane and decision 
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boundary principles. The basic purpose of SVMs is to find the best hyperplane that maximises the 

distance between the closest points of different data clusters. Instances located near this ideal 

hyperplane are referred to as 'Support Vectors.' 

4.1.2 K- Nearest Neighbor  

The K-nearest neighbour (KNN) algorithm is a slow learning method and one of the foundational 

techniques in machine learning. Its adaptability allows it to be used in both classification and 

regression problems. Notably, KNN is sensitive to the peculiarities of the input data. This method 

has various advantages, including high accuracy in specific cases, resistance to outlier influence, 

and the absence of underlying assumptions about the nature of the data. 

This extensively used classification strategy includes classifying unknown occurrences based on 

their similarity or distance to records in the training set [251]. The approach computes the similarity or 

distance of each test record to each record in the training set. These records are then ordered depending on 

the proximity function (similarity or distance) computed [252]. The top-k records are then chosen as the 

test record's k-nearest neighbours. When a record's k-nearest neighbours (KNN) include instances 

from several classes, the decision is made by a majority vote [253]. 

4.1.3 Random Forest 

As the name of this algorithm illustrates, a forest is a collection of trees. Random Forest is a 

methodology that builds an ensemble of decision trees that provide the output class for the input 

variable collectively. Random Forest is used in our work to address the overfitting difficulties that 

are often associated with training sets in decision tree models. To generate many tree learners, this 

technique leverages bootstrap aggregation. To solve overfitting problems, feature bagging is 

accomplished by randomly picking a subset of features. 

This method falls within the domain of ensemble classifiers [254]. The process involves creating 

multiple random subsample spaces from the training set, each acting as a sub-training set. For each 

of these subsets, a decision tree is constructed, resulting in a collection of decision trees termed 

random forests. Each decision tree assigns a class label to a test sample, and the ultimate decision is 

determined through a majority vote among the ensemble of decision trees [192]. 

4.1.4 Decision Tree Classifier 

Decision trees (DT) have a structure analogous to flowcharts, with each node denoting an attribute 

test and each branch denoting the test's result. The leaf node denotes the final class label, which is 
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the result of assessing all attribute computations. Applications for this predictive modelling 

technique can be found in data mining, statistics, and machine learning. It predicts outcome values 

based on many input elements. Decision trees are frequently represented visually to improve 

understanding and interpretation [161].  

A training dataset is used to generate DT, with intermediate nodes dividing the dataset into 

subgroups and leaf nodes signifying class labels. The training set is divided in this manner until the 

decision tree covers every record in the training set [255]. 

4.1.5 Artificial Neural Networks 

Artificial Neural Networks (ANNs), specifically advanced deep learning architectures like 

Convolutional Neural Networks (CNNs), have sparked a transformative breakthrough in the realm 

of skin cancer detection [256], [257]. CNNs exhibit the capacity to autonomously acquire 

hierarchical features from dermoscopic images, effectively capturing nuanced patterns essential for 

precise classification [258]. Transfer learning, a method that entails refining pre-existing CNN 

models on skin cancer datasets, has demonstrated remarkable efficacy in achieving high levels of 

performance within this field [133].  

4.1.6 Convolutional Neural Networks  

Convolutional Neural Networks (CNNs)—have demonstrated exceptional performance [259]. 

These CNNs eliminate the need for manually created features by automatically extracting 

hierarchical features from dermoscopic images [260]. Their success in this field is largely attributed 

to their ability to instinctively recognize complex patterns, textures, and spatial relationships [261]. 

The limitations posed by the scarcity of labelled data for training have led to a broad acceptance of 

transfer learning, a technique that involves fine-tuning pre-trained CNN models using datasets 

related to skin cancer [262].  

In the domain of skin cancer, machine learning has significant advantages over deep learning 

[263]. They can give precise and quick skin cancer diagnosis, which is critical for effective therapy. 

Furthermore, machine learning algorithms are capable of optimising interaction rounds, resulting in 

improved rates of accuracy with smaller interactions [240]. Deep learning models, on the other 

hand, such as CNNs, are created specifically for the analysis of images and can classify skin lesions 

with more accuracy [264] 
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4.1.7 Customized Classifier 

The customized classifier is tailored to the specific dataset and task requirements. It can be a 

combination of various algorithms, data preprocessing techniques, and feature selection methods. 

Its adaptability allows it to exploit the dataset's unique characteristics and yield optimized results. 

This classifier's strength lies in its flexibility to be finely tuned, but it requires domain expertise to 

create and optimize.  

There are numerous other classification algorithms and techniques, each with its strengths, 

weaknesses, and suitability for different types of data and tasks [265]. The ones listed are among 

the most commonly used and well-known in the field of machine learning [266]. However, there are 

several reasons why other methods may not have been included in the list: 

Scope and Focus: The list provided focuses on a representative selection of supervised, 

unsupervised, and hybrid classification methods [267]. Including every possible classification 

algorithm would make the list exhaustive and less focused [268]. 

Relevance and Popularity: The methods listed are widely used and studied in both academia 

and industry. They represent some of the most established and effective approaches for 

classification tasks across various domains [269]. 

Space Limitations: Providing an exhaustive list of classification methods and their descriptions 

would require a significant amount of space and may overwhelm the reader [270]. The goal is to 

provide a concise overview of the main approaches while still covering a broad range of techniques. 

Evolution of Techniques: The field of machine learning is continuously evolving, with new 

algorithms and techniques being developed and published regularly. While the listed methods are 

well-established, newer approaches may not have been included due to their relatively recent 

emergence or limited adoption at the time of listing [271]. 

Application Specificity: Some classification methods are tailored to specific domains or types 

of data and may not be as widely applicable or general-purpose as the ones listed. Including highly 

specialized methods may not be relevant for a general overview [272]. 

In practice, the choice of classification method depends on factors such as the nature of the data, 

the complexity of the problem, the availability of labelled data, computational resources, and the 

specific goals of the analysis [273]. Researchers and practitioners often experiment with various 

algorithms to find the most suitable one for their particular task and dataset. 
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4.2 Proposed Classification Model 

The proposed model skin cancer customized classifier (SCCC) represents the binary classification 

problem. In detection, there were only different possibilities: affected or not affected. The 

classification is executed through a customized-based approach, integrating tailored features, 

correlation analysis, and optimization to enhance the performance of classification. This approach 

incorporates global and local phases, fitness evaluation, and probability-based selection, adding 

resilience to the classifier and rendering it suitable for real-world applications. Notably, the 

Linearity Model Classifier exhibited the lowest degree of misclassification, indicating the highest 

classification accuracy. This observation aligns with the performance of the trained model. 

Moreover, the customized trained model demonstrated proficiency in testing scenarios with SVM, 

random forest, decision tree, and naïve Bayes approaches. The proposed method leverages a 

correlation and linearity model-based approach, as illustrated in Figure 4.1. 

 

Figure 4.1 Proposed Correlation and Linearity Model  

The classifier performs operations on an optimization basis. The initial phase is based on 

correlation. The features having the highest correlations with the target or output variables will be 

retained and the rest of the feature vectors will be iterated. The obtained solution is termed a local 

solution. For the next iteration, the local solution is converted to a global solution by comparing it 

against the objective function. There exist two solutions corresponding to feature selection. The first 
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solution is termed a local solution and the other solution is termed a global solution. The values of 

local and global solution are represented with ‘g’. The switching probabilities is used to select the 

next feature vector for correlation analysis. The process continues until features having highest 

correlation with the target value is obtained. After obtaining highest correlation feature vector, 

classification result is printed.  

The novelty in this approach is introduced by first of all modelling the assignments of local 

descriptors. These are termed contributor functions. After this multiple assignment strategy is used 

for reconstructing local features using neighbouring visual words from the vocabulary. 

Reconstruction weights are calculated from quadratic programming. These weights will be used to 

form contributor functions. Features possessing the highest weight will be extracted and retained. 

The process generates the local solution during the local leader phase. This phase is in charge of 

creating local solutions. It is often a search or optimizing method that investigates a confined 

segment of the solution space to identify an optimal solution inside that segment. The current search 

space is changed in this phase based on the results of the local leader phase. Its goal is to create a 

reference position that will be used by a differential technique to determine the location of a feature 

within an image.  

The reference location (RFl) within the sample space is updated by taking into account the 

contemporary energy location, the leadership position, and a randomly picked item from the group. 

The perturbation rate (perrate) limits the dimension of the solution space [274]. If the perturbation 

rate (Perrate) is greater than or equal to a random number x(0, 1), the decision at position (a, b) is 

determined by equation (4.1). The decision is updated if the random number x(0, 1) satisfies the 

requirements; otherwise, it is set to 1. 

𝑅𝐹(𝑙) =

{
𝑅𝐹𝑙(𝑎1,𝑏) + 𝑥(0,1) ∗ (𝑁𝑖(𝑎1) − 𝐿𝑜𝑐𝑎𝑙𝑠𝑜𝑙(𝑎1,𝑏)) + 𝑥(−1,1) ∗ (𝑁𝑖(𝑎1) − 𝐺𝑙𝑜𝑏𝑎𝑙𝑠𝑜𝑙(𝑎1,𝑏)) 𝑤ℎ𝑒𝑟𝑒 𝑥(0,1) ≥ 𝑃𝑒𝑟𝑟𝑎𝑡𝑒

𝑅𝐹𝑙(𝑎1,𝑏) 𝑤ℎ𝑒𝑟𝑒 𝑥(0,1) < 𝑃𝑒𝑟𝑟𝑎𝑡𝑒 
    

                (4.1) 

In this scenario, x(0,1) represents a random sample drawn from the sample space. The sample 

space takes into account the perturbation rate. The combination of the splitting and shifting method, 

along with perturbation, improves the accurateness of feature extraction. The target function is 

influenced by factors such as throughput, energy efficiency, and the degree of imbalance. If the 

newly proposed solution demonstrates superior fitness values compared to the previous generation, 

it supersedes the old one. The acceptability of the current solution for region selection is determined 

by its fitness value, as defined in equation (4.2). 
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𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = {
1 𝑖𝑓 𝑁𝑔(𝑎1) > 0

0 𝑖𝑓 𝑁𝑔(𝑎1) ≤ 0
          (4.2) 

The following fitness equation implies that the region selected must contain certain properties 

related to the target vector, or else the present solution would be rejected. Equation (4.3) represents 

a target function (Tf) related to the total solution. 

𝑇𝑓 = ∑ max ( 𝐸𝑐)𝑀𝑎𝑥(𝑇)𝑀𝑖𝑛(𝐼𝑚𝑑𝑒𝑔)         (4.3) 

In this context, 'Ec' represents the residual features that need to be maximized, 'Imdeg' signifies the 

degree of imbalance that should be minimized and 'T' denotes throughput (number of features). 

The global leadership phase holds significant importance and is tasked with updating the search 

space, akin to the local leadership phase but with a distinct approach. The selection or update of the 

differential (image) is determined by the probability value (Py) calculated in (4.4).  

𝑃𝑦𝑁𝑠𝑒𝑙𝑒𝑐𝑡 = 0.9 ∗
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑛(𝑖)

maxp−fitnesscuurent
+ 0.1        (4.4) 

Maxp stands for the maximum predicted fitness value, while, fitnesscurrent represents the current 

fitness function value. Fitnessn(i) indicates the fitness value of the current region. To assess the 

likelihood of region selection, the total probability is set to "1," which is subsequently divided into 

two parts: 0.9 and 0.1. 

At this point, a new attempt is performed utilizing the fitness equation. Following that, the 

fitness value of the existing region is compared to the freshly computed region. The region with the 

most potential is picked for the construction of the feature vector. 

 The proposed classifier is based on the Linearity model (LM) and correlation mechanism. The 

linearity model (LM) for the classification of skin cancer aims to find an optimal function that fits 

the data points while minimizing the error within a certain tolerance. The basic formulation of LM 

involves solving an optimization problem. The key components and steps involved in this algorithm 

are presented in this section. 

• Input data 

Let's assume we have N training samples with features X = {x1, x2, ..., xn} and corresponding 

continuous target values y = {y1, y2, ..., yn}. 

• Model 

The proposed classifier is based on a correlation mechanism and the Linearity Model (LM). The 

LM is a classification approach applied for skin cancer classification. Its goal is to create an optimal 

function that fits the data points while minimizing errors within a particular tolerance. The LM 
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model seeks to find a function f(x) that predicts the target values y based on the input features. 

Given a new test sample x*, the LM predicts the corresponding target value y* using the learned 

model. 

• Training  

The algorithm uses the N training samples to learn the optimal function f(x). This process 

involves adjusting the model parameters to minimize the errors between the predicted values and 

the true target values within the defined tolerance. Once the optimal function f(x) has been learned 

during the training phase, it can be applied to new, unseen data for skin cancer classification. The 

model makes predictions about whether a given sample represents skin cancer or not based on its 

features. 

• Optimization problem 

The goal of the LM optimisation problem-solving is to determine the ideal values for the model's 

weights (w) while regulating the model's complexity and minimising the training error. This is 

accomplished by utilising the following equation (4.5). 

  𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (
1

2
) ∗  ||𝑤||

2
+  𝐶 ∗  𝛴𝜉𝑖 +  𝛴𝜉𝑖

∗        (4.5) 

This expression denotes the objective function's regularisation component. The objective is to 

reduce the square of the norm of the weight vector 'w.' By penalising big weight values, the 

regularisation term prevents the model from becoming overly complex. For mathematical 

simplicity, the factor of 1/2 is frequently given. Σ represent sum of the slack variables ξi. The 

variable ξi accounts for some mistakes in the model's predictions. 'C' is a regularisation parameter 

that governs the trade-off between minimising training errors and minimising model complexity. 

Constraints are included in the optimisation problem to ensure that the model's predictions stay 

within a specific margin (𝜀) of the true values. The difference between the true target value 'Yi' and 

the anticipated value 'f(Xi)' must be less than or equal to 𝜀 plus the slack variable ξi, according to 

this requirement. In other words, it assures that the prediction is not too far off from the genuine 

value given in equation (4.6). 

𝑌𝑖 −  𝑓(𝑋𝑖)  <=  𝜀 +  𝜉𝑖        (4.6) 

The constraint defined in equation (4.7) is identical to the preceding one, except it covers the 

situation where the anticipated value is less than the true value. It also assures that the prediction is 

within ε of the actual value. 

𝑓(𝑋𝑖)  −  𝑌𝑖 <=  𝜀 +  𝜉𝑖 ∗          (4.7) 
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The constraints in defined equation (4.8) compel the slack variables to be non-negative. This 

implies they can take values greater than or equal to zero, showing how far a data point deviates 

from the margin (ε). 

𝜉𝑖, 𝜉𝑖 ∗ >=  0          (4.8) 

• Kernel trick 

LM often employs the kernel trick to handle non-linear relationships between features and target 

values. The input features Xi and Xj are transformed into a higher-dimensional feature space using a 

kernel function, typically a radial basis function (RBF) kernel, which enables linear separation in 

that space. 

• Solution 

The LM optimization issue tries to determine the best model weights while balancing model 

complexity and training mistakes. It includes slack variables to provide some flexibility in dealing 

with data points that are not completely predicted by the model. The regularisation parameter 

governs the relevance of minimizing training mistakes about model complexity. The constraints 

ensure that the model's predictions remain within a certain margin (ε) of the true values, while also 

preventing the slack variables from going negative. To discover the best answer, this optimization 

problem is often tackled using quadratic programming techniques. 

• Classification Threshold 

After training the Linearity Model (LM) and using it to make predictions, a classification 

threshold is applied to the predicted continuous values. The categorization threshold is used to 

divide the anticipated values into risk levels or categories.  

The overall process described involves training a Linearity Model with normalization, dealing 

with slack variables for classification flexibility, ensuring that predictions remain within a margin 

of true values, and applying a suitable classification threshold to make practical risk assessments for 

skin cancer. Several aspects, including data quality, model selection, and the selection of suitable 

hyperparameters and thresholds would determine the effectiveness of this strategy. 
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4.3 Summary 

This chapter introduces a methodology for the automatic diagnosis of skin cancer, a complex 

challenge in the field of medical image processing. Its primary objective is to support medical 

professionals in determining whether a skin melanoma is benign or malignant. Thus, the quest for 

more effective detection methods to reduce error rates is a critical focus for researchers. The 

significant contribution of this work lies in the proposal and evaluation of novel medical expert 

systems capable of autonomously classifying skin cancer tumors as either benign or dangerous, 

with a level of precision that potentially surpasses that of human experts. The proposed algorithm in 

this thesis employs an innovative approach for the classification of skin melanomas. It 

accomplishes this by improving the quality of skin cancer images, isolating tumors from the 

surrounding skin, extracting and selecting the most relevant tumor features, and ultimately 

classifying them as melanoma or non-melanoma. Various methods are applied at different stages to 

create an efficient system. This research aims to make contributions to various facets of the system. 

The algorithms are designed to expedite detection while minimizing errors compared to traditional 

methods. The intention is for these proposed algorithms to have a positive impact on public health 

systems and assist medical experts in the early-stage screening of tumors. 
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CHAPTER 5 

RESULTS AND DISCUSSION 

 

A novel framework has been created and deployed for the detection of Melanoma and Non-

Melanoma, specifically designed for the automated identification and analysis of skin lesions or 

infected patches in dermoscopic images. Comprising pre-processing stages, segmentation 

algorithms, feature extraction methods, and classification, the framework aims to recognize and 

characterize these areas for subsequent analysis or diagnosis. 

5.1 Evaluation of the Proposed System  

The proposed framework initiates pre-processing, addressing noise through hair removal using a 

bottom hat filter. Contrast enhancement is performed through Discrete Cosine Transform (DCT) 

and color space conversion, facilitating the detection and isolation of infected regions within the 

provided dataset. Segmentation employs the background subtraction method, tracking lesions using 

region properties and a midpoint analysis approach for extracting the Region of Interest (ROI). 

Various features are extracted from the ROI utilizing the DAA algorithm. In the classification of 

skin lesions, the system utilizes an ensemble classifier based on a correlation and linearity model, 

achieving an impressive accuracy of 96.35%. 

5.2 Dataset and Tools  

The dataset employed in this study is ISIC, a publicly available dataset specifically curated for skin 

cancer detection. Test results are also provided alongside the dataset. This dataset comprises images 

depicting both affected and non-affected skin conditions, with specified coordinates for the affected 

skin outlined in separate files. The simulation is carried out using MathWorks Matlab 2019a. In 

designing our proposed system, we utilized the visualization tools inherent to Matlab, enabling the 

creation of an interactive interface that is user-friendly. 

5.3 Metrics for Performance Evaluation 

The suggested method is evaluated using three parameters: accuracy, sensitivity and specificity. 

They are discussed as follows. 



84 
 

Accuracy (Ac) refers to the overall performance of a system. Accuracy ensures that the results 

produced by the system are true and accurate to avoid misdiagnosis. It is calculated using equation 

(5.1).  

     𝐴𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
          (5.1) 

Sensitivity (Sn) denotes the capability of a system to recognize people who have the disease. It 

shows how good the system is in identifying the person with an actual disease, if the numerical data 

is high then the possibility of identifying the person with the disease also increases. It is calculated 

using equation (5.2).  

     𝑆𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
           (5.2) 

Specificity (Sp) denotes the capability of a system to recognize people who do not have the disease. 

It shows how good the system is in identifying an individual who does not have a disease, if the 

numerical data is high then the possibility of identifying healthy persons also increases. It is 

calculated using equation (5.3). 

𝑆𝑝 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
           (5.3) 

TP means true positive rate (detection of abnormality in a person with disease), TN means true 

negative rate (in a healthy individual, no abnormalities are detected.), FP means false positive 

(identification of an anomaly in a healthy individual) and FN means false negativity (no 

abnormality detected in a person with disease). 

5.4 Results of Preprocessing Phase 

In this part of our proposed process, we transform the original RGB colour image into a grayscale 

image. This transformation is an important phase in our process since it helps us identify lesion 

margins and other important aspects in dermatology. Grayscale images have various advantages in 

this scenario, especially because they are simpler than full-color ones. Grayscale photos represent 

differences in grayscale shades, necessitating less information per pixel and making analysis more 

efficient. 

 The proposed framework first performs pre-processing in which noise in the form of hair 

removal is accomplished with the help of a bottom hat method. In this situation, the bottom-hat 

operation is especially helpful since it highlights darker things of importance against lighter 

backgrounds. The selection of the shape and size parameters for the structuring element is crucial in 



85 
 

order to correctly distinguish hair structures from the remaining grayscale image. To remove 

undesirable hair artefacts without compromising the integrity of the underlying image careful 

selection of the structuring element is essential. DCT and Color space conversion are used for 

performing image enhancement, this enables the detection and separation of infected regions from 

the sample (i.e., given dataset). 

Figure 5.1 (A) depict the original input image from ISIC dataset, (B) shows the grey scale image 

of original image, (C) shows the result of bottom hat operation (D) depict the output image without 

any hair in it and (E) shows the results of image enhancement phase of preprocessing. 

 

 

Figure 5.1 Results of Preprocessing Phase 

5.5 Results of Segmentation Phase 

For the segmentation, the output image of preprocessing phase is given as input for further 

segmentation operations. The segmentation is performed by applying the background subtraction 

with midpoint analysis approach to track only lesions from a given image and region props is used 

to extract the ROI. The result in terms of region separation and extraction is more accurate through 

improved inside-outside tests and region extraction mechanisms. Using these proposed approach 

regions overlapping issue is resolved. The Skin images and normal and abnormal separation 

mechanisms enclose the abnormal shape with boundaries. The grid structure is formed using 

boundary value analysis, and the outcome accurately separates lesions from normal skin. 
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Figure 5.2 (A) depicts the input image i.e., enhanced image, (B) shows the result of background 

subtraction with midpoint analysis method (C) represent the ROI obtained applying region prop 

mechanism and (D) final output image with ROI.  

 

Figure 5.2 Results of Segmentation Phase 

The Jacobi index [73] is used to evaluate segmentation performance. The Jacobi index compares the 

true and estimated results. Jacobi index is given in equation (5.4). 

𝐽𝐼 =
𝑇𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃
          (5.4) 

The JI index ranges from 0 to 1. True positive values were set to 1 if both the estimation and the 

fact were 1. In the incident of an inappropriate prediction, the false-positive and negative values are 

determined to 1. The proposed method has TP=238, FN=10, TN=8, and a segmentation accuracy of 

92%. In some cases, the accuracy is even greater than 98%A comparative study of SVM classifier 

on the ISIC dataset with different segmentation and feature extraction methods is presented in Table 

5.1. Carrera and Dominguez [275] applied the optimal threshold for segmentation and SVM for 

classification on the ISIC dataset and achieved an accuracy of 75.00%. Thaajwer and Ishanka [276] 

achieved an accuracy of 85.00% on the ISIC dataset by applying Otsu segmentation and the 

Watershed method for image segmentation and classifying by implementing an SVM classifier. 

Kassem, Hosny, and Fouad [277] extracted features from images using Google Net and achieved an 

accuracy of 81.00% by applying multi-SVM to the ISIC dataset. Pushpalatha et al., [278] achieved 
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an accuracy of 70.00% by applying deep learning for segmentation on the ISIC dataset and SVM 

for the classification of cancer images. Keerthana and Venugopal [279] used the ISIC dataset and 

extracted features using CNN, achieving an accuracy of 87.43% by implementing an SVM 

classifier. Tembhurne et al., [108] proposed an ensembled method for lesion detection and achieved 

an accuracy of 93.00% on the ISIC dataset. In the proposed framework, a novel segmentation 

method “background subtraction with midpoint analysis” for finding ROI and DAA for feature 

extraction has been proposed. For the classification of skin cancer images, different classifiers have 

been implemented. It is observed that SVM perform better among other classifiers, then the state-

of-the-art methods and achieves an accuracy of 96.21%. 

 

Table 5.1 Comparison Analysis of Proposed Segmentation Method with Different State-of-Art Methods 

Using SVM Classifier 

Author Dataset Methods Classifier Accuracy 

Carrera and Dominguez 

(2018) [275] 
ISIC •Optimal threshold SVM 75.00 

Thaajwer and Ishanka 

(2019) [276] 
ISIC 

•Otsu segmentation and 

Watershed method 
SVM 85.00 

Kassem et al., (2020) 

[277] 
ISIC •Google net 

Multiclass 

SVM 
81.00 

Pushpalatha et al., (2021) 

[278] 
ISIC •Deep Learning SVM 70.00 

Keerthana and Venugopal 

(2022) [279] 
ISIC •CNN SVM 87.43 

Tembhurne et al., (2023) 

[108] 
ISIC 

•Deep learning and 

machine learning 
SVM 93.00 

Proposed method ISIC 
•Background subtraction 

with midpoint analysis 
SVM 96.21 

A comparison of the proposed methods with the different classifiers using different segmentation 

methods is presented in Table 5.2. Murgan et al., [192] applied the watershed algorithm for 

segmentation of skin cancer images and extracted GLMC-based features. For classification, SVM, 

RF, and KNN were implemented and attained the maximum accuracy of 85.72%. Bassel et al., 

[280] proposed an approach for classifying melanoma and benign skin cancers based on the 

layering of classifiers and method achieved a notable accuracy of 90.00%. Wang et al., [281] 

proposed a methodology for cancer detection using the ISIC dataset, leveraging a deep learning-

based approach. The model demonstrated a commendable accuracy of 92.00%, showcasing the 
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effectiveness of the proposed technique. Das et al., [282] implemented the ABCD rule for feature 

extraction and various machine learning methods in the context of skin cancer detection on the ISIC 

dataset. The approach exhibited a high accuracy of 93.51%, highlighting the efficacy of combining 

feature extraction methodologies with machine learning techniques for improved diagnostic 

outcomes. 

Table 5.2 Comparison Analysis of Proposed Segmentation Methods with Different Segmentation 

Methods 

Author Methods 
Performance measure (Accuracy %) 

SVM KNN RF DT 

Murugan et al., (2021) 

[192] 

•Watershed segmentation 

•ABCD rule 

•GLMC 

85.72 69.54 74.32 NA 

 Bassel et al., (2022)  

[280] 
•Xception, VGG16 Resnet50, 

 

86.70 

 

 

81.00 

 

 

80.30 

 

75.70 

Wang et al., (2022) 

[281] 
•Deep learning 

 

81.00 

 

76.00 NA NA 

Das et al., (2022) [282] •ABCD Rule 

 

93.51 

 

 

91.00 

 

90.67 NA 

Proposed Method 

• Background 

Subtraction with 

Midpoint Analysis 

 

96.21 

 

 

92.20 

 

 

90.0 

 

89.60 

The proposed segmentation approach (background subtraction with midpoint analysis) is 

implemented using SVM, KNN, RF, and DT classifiers. The outcomes demonstration that the 

proposed technique performed better with all classifiers in terms of accuracy.   

5.6 Results of Feature Extraction and Selection Phase 

Developing an efficient classification system for identifying and categorizing skin lesions requires 

careful consideration of both feature extraction and selection in the context of skin cancer image 

analysis. In order to help classify benign and malignant skin lesions, these procedures include 

extracting pertinent information from the image.  
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To discover the best features in proposed system, a DAA algorithm is used to extract and select 

the feature set. This methodology tries to automatically discover the most important traits, which 

can lead to more accurate and efficient skin lesion diagnosis and classification. The performance of 

the proposed algorithm will be checked based on the selected features. It works by iteratively 

developing a population of candidate solutions (feature sets) over numerous generations to discover 

the best set of features that meet specific performance criteria.  

The DAA develops offspring during the optimisation process by changing or combining existing 

feature sets. These offspring are assessed using a fitness function that assesses how well they 

execute the task. Offspring who do not produce the strongest results may be removed in each 

iteration, assisting in the refinement of the feature set. Each fittest offspring is branded with a 

unique trait. The actual point plotted as shown in Figure 5.3 represents the multiple features in a 

single image and the DAA plotted points are the selected features for the proposed methodology. 

Color (Blue-grey, Black, Red, White, Dark brown, Light brown), Shape (Area, Length of major 

axis, Length of minor axis) and Texture (Energy, Correlation, Contrast). 

 

Figure 5.3 Shows Feature Extraction and Selection Using DAA 
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5.6.1 Results of Normalization 

This phase seeks to increase the accuracy of classification by merging all of the feature sets (colour, 

texture, and shape) into a feature vector. The process involves scaling the values of each feature 

within the matrix to fit within a predefined range. By doing so, the model ensures that all features 

are on a level playing field and that no single feature dominates the classification process due to 

differences in scale. During the normalization phase, three primary normalization mechanisms are 

employed: depth-based normalization, min-max normalization, and gray scale normalization. 

Following the specified operation, the three normalization matrices are shown in Figure 5.4. 

 

Figure 5.4 Colour Feature Matrix After Normalization 

5.6.2 Performance Evaluation of Different Classifiers on Different 

Feature Sets 

The presented results in Table 5.3 highlight the performance of different classifiers with distinct 

sets of features, revealing varying accuracies for each combination of feature set and classifier. This 

comprehensive analysis contributes to a thorough understanding of the effectiveness of different 

feature sets in the context of skin cancer detection with diverse classifiers. The performance 

evaluation of various classifiers using different feature sets is categorized into two cases, namely 

Case 1 and Case 2:  
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Table 5.3 Performance Evaluation of Different Classifiers on Different Feature Sets 

Case Type of features 

Classifier Performance (Accuracy %) 

SVM KNN RF SCCC 

1 

 Shape: (Area, Length of major axis, Length 

of minor axis) 

 Color: (Blue-grey, Black, Red, White) 

95.30 92.20 90.0 95.87 

2 

 Shape: (Area, Length of major axis, Length 

of minor axis) 

Color: (Blue-grey, Black, Red, White, Dark 

brown, Light brown) 

  Texture: (Energy, Contrast, Correlation) 

96.21 93.75 92.03 96.35 

 

5.7 Result Analysis of Different Classifiers 

This section presents the performance evaluation corresponding to different classifiers within the 

methodology. The proposed approaches for segmentation, feature extraction, and classification 

contribute to the enhanced accuracy of the overall system. To validate the integrity of the image, 

correlation analysis is employed by comparing the results with the original image. The outcomes of 

the correlation analysis are detailed in Table 5.4. 

Table 5.4 Level of Correlation with Different Features of Image 

Images 
Values of 

Correlation Analysis 
Level of correlation Result 

Image A 0.90 0-1 High correlated 

Image B 0.87 0-1 High correlated 

Image C 0.24 0-1 Positively correlated 

Image D 0.77 0-1 High correlated 

Image E 0.2 0-1 Less correlated 

 

This section provides a performance analysis of classifier accuracy, sensitivity and specificity using 

features selected by the DAA approach with various normalization techniques in Table 5.5.  
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Table 5.5 Metrics for Performance Evaluation 

Classifier Specificity (%) Sensitivity (%) Accuracy (%) 

KNN 76.6 86.7 93.75 

RF 96.4 92.1 92.03 

SVM 95.3 92 96.21 

SCCC 97.6 95.2 96.35 

The proposed approach incorporates three different normalizations, recording the best, average, and 

worst possible classification accuracy. Simulation results with diverse normalization mechanisms 

are documented in Figure 5.5, Figure 5.6, and Figure 5.7. The proposed approach used a customized 

classifier-based approach in achieving the classification of test images. The best possible approach 

in terms of classification accuracy will be selected by implementing and analyzing results of five 

different classifier (SVM, KNN, RF, DT and SCCC)). As multiple classifiers predicted similar 

results, classification accuracy using a customized classifier-based approach was high.  

 

Figure 5.5 Performance Analysis of Different Classifiers using Grayscale Normalization 
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Figure 5.6 Performance Analysis of Different Classifiers using Min-Max Normalization 

 

 

Figure 5.7 Performance Analysis of Different Classifiers using Depth based Normalization 
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The customized classifier (SCCC) exhibits superior performance compared to all other classifiers, 

as illustrated in Figure 5.5, Figure 5.6, and Figure 5.7. Specifically, the performance of the 

customized classifier under greyscale normalization surpasses that of min-max and depth-based 

normalization. Consequently, the classification outcome of SCCC (accuracy 96.35%) in the context 

of DAA will be employed in the subsequent section for comparison with state-of-the-art techniques. 

It is important to note a limitation of our work, which involves utilizing only one dataset (ISIC) 

with two cases (melanoma and benign) for classification and detection. Results may vary based on 

the dataset employed. 

5.8 Results Comparisons with the State of Art Methods 

A comparative study of various techniques for skin cancer classification and detection on the 

different dataset are presented in Table 5.6. Satheesa et al., [148] has used three different datasets 

ISIC, PH2 and ATLAS and applied adaptive snake technique for segmentation, 3D reconstruction 

of dermoscopic images for feature extraction and SVM, AdaBoost and BOF for classification. 

Codella et al., [283] has implemented FCN for segmentation and CNN, U-NET and DRN for 

classification on the ISIC dataset and achieved an accuracy of 76%. Zortea et al., [146] has used 

microscopic images and applied SWOT for segmentation. Smaoui and Derbel, [284] has applied 

Multi-threshold Otsu for segmentation, ABCD rule for feature extraction and TVD rule for 

classification on the PH2 dataset and achieved an accuracy of 90%. Carrera and Dominguez, [275] 

has achieved an accuracy of 75% by applying the Optimal threshold for segmentation and SVM, 

and DT for classification on the ISIC dataset. Al-Masni et al., [152] has applied FCRN on the ISIC 

and PH2 data set for segmentation of cancer images with 95% accuracy. Murugan et al., [192] has 

achieved an accuracy of 85% by applying the Watershed approach for segmentation, ABCD rule for 

feature extraction and SVM, KNN, and RF for classification on the ISIC dataset. Thaajwer and 

Ishanka, [227] has used the ISIC dataset and achieved an accuracy of 85% by implementing Otsu 

segmentation and Watershed method for segmentation and NN, SVM, and CNN for classification. 

Khan et al., [285] has proposed an Improved K-means clustering for segmentation and SVM for 

classification on the DERMIS dataset and achieve an accuracy of 96%. Kassem et al., [277] has 

applied Google net for feature extraction and Multiclass SVM for classification on the ISIC dataset 

with an accuracy of 81%. Albert, [286] has applied CNN and SVM on the Med Node dataset and 

achieved an accuracy of 91%. Hohn et al., [287] achieve an accuracy of 92% by applying deep 

learning CNN. Jiang et al., [288] has applied DRA-Net on the Histopathological Image set and 
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achieved an accuracy of 86%. Murgan et al., [161] has used the mean shift method for segmentation 

and SVM, probabilistic NN, and random forests for classification and achieved an accuracy of 89%. 

Table 5.6 Comparison of Various Techniques for Skin Cancer Classification and Detection on Different 

Dataset 

Authors Datasets  Techniques  
Accuracy 

% 

 

Satheesa et al., 

(2017) [148] 

 

ISIC 

PH2 

ATLAS 

• Adaptive snake for segmentation 

• 3D reconstruction of dermoscopic images for 

feature extraction 

• SVM, AdaBoost and BOF for classification  

 

NA 

Codella et al., (2017) 

[283] 
ISIC 

• Fully convolution network (FCN) for 

segmentation 

• CNN, U-Net and deep residual network for 

classification 

76.00 

Zortea et al., (2017) 

[146] 

Microscop

ic images 

• Shading attenuation approach for preprocessing 

• A simple weighted Otsu thresholding (SWOT) 

method for segmentation 

• Morphological operation for post-processing 

NA 

Smaoui, and Derbel, 

(2018) [284] 
PH2 

• Median filtering for preprocessing 

• Multi-threshold Otsu for segmentation 

• ABCD rule for feature extraction 

• TVD rule for classification 

90.00 

Carrera and 

Dominguez (2018) 

[275] 

ISIC 

• Dilation approach and histogram equalization for 

preprocessing 

• The optimal threshold for segmentation  

• SVM, DT for classification 

75.00 

Al-Masni et al., 

(2018) [152] 

ISIC 

PH2 

• Full-resolution convolutional networks for 

segmentation 
95.62 

Murugan et al., 

(2019) [192] 
ISIC 

• A median filter for preprocessing 

• Watershed approach for segmentation 

• ABCD rule for feature extraction  

• SVM, KNN, and RF for classification  

85.72 

  

Thaajwer and 

Ishanka (2019) [227] 
ISIC 

• Hough transformation for hair removal 

• Otsu segmentation and watershed method for 

segmentation 

85.00 
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• NN, SVM, CNN 

Khan et al., (2019) 

[285] 
DERMIS 

• Gaussian filter for preprocessing 

• Improved K-means clustering for segmentation 

• SVM for classification 

96.00 

Kassem et al., (2020) 

[277] 
ISIC 

• Google net for feature extraction 

• Multiclass SVM for classification 
81.00 

Albert (2020) [286] Med node 
• CNN 

• SVM 
91.00 

Hohn et al., (2020) 

[287] 
 • Deep learning CNN 92.60 

Jiang et al., (2021) 

[288] 

Histopatho

logical 

Image set 

• Deep learning framework DRA-Net 86.60 

Murgan et al., (2021) 

[161] 
ISIC 

• A median filter for pre-processing 

• Mean shift method for segmentation 

• SVM, probabilistic NN, and random forests for 

classification 

89.00 

Proposed System  ISIC 

• Bottom hat filter and DCT for preprocessing 

• Background subtraction with midpoint and  region 

props for segmentation 

• DAA for feature extraction 

• SCCC 

96.35 

 

5.9 Results and Performance Evaluation on the ISIC Dataset 

In Table 5.7, the performance of the proposed system is compared with state-of-the-art methods 

using the publicly available ISIC dataset. Previous studies, such as those conducted by authors 

in[275],[192], [227], [277] and [161] utilized the ISIC dataset and employed various techniques for 

preprocessing, segmentation, feature extraction, and classification, achieving the highest accuracy 

of 89%. Notably, the proposed system surpasses this performance, demonstrating superior accuracy 

of 96.35%. 
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Table 5.7 Comparative Analysis of the Proposed SCCC System with State of Art Methods 

Authors Datasets Techniques 
Accuracy 

% 

Carrera and Dominguez 

(2018) [275] 
ISIC 

• Dilation approach and histogram 

equalization for preprocessing 

• The optimal threshold for segmentation 

• SVM, DT for classification 

75.00 

Murugan, Nair, and Kumar 

(2019) [192] 
ISIC 

• A median filter for preprocessing 

• Watershed approach for segmentation 

• ABCD rule for feature extraction 

• SVM, KNN, and RF for classification 

85.72 

 

Thaajwer and Ishanka 

(2019) [227] 
ISIC 

• Hough transformation for hair removal 

• Otsu segmentation and Watershed method 

for segmentation 

• NN, SVM, CNN 

85.00 

Kassem, Hosny, and 

Fouad (2020) [277] 
ISIC 

• Google net for feature extraction 

• Multiclass SVM for classification 
81.00 

Murgan et al. (2021) [161] ISIC 

• A median filter for pre-processing 

• Mean shift method for segmentation 

• SVM, probabilistic NN, and random  forests 

for classification 

89.00 

Proposed System ISIC 

• Bottom hat filter and DCT for preprocessing 

• Background subtraction with midpoint and 

region props for segmentation 

• DAA for feature extraction 

• SCCC 

96.35 

 

5.10 Results and Comparison with Deep Learning Methods 

To evaluate the performance of the customized classifier on the ISIC dataset in the proposed system 

comparison with the different existing classifiers on the same dataset is shown in Table 5.8 and with 

different dataset is shown in Table 5.9. Authors in [289][289], [290], [118], and [178] use the same 

dataset and different classifiers for melanoma classification and achieved the highest accuracy of 
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96.00%. The proposed system is reliable, resilient, and efficient which achieves an accuracy of 

96.35% on the same dataset. 

Table 5.8 Comparative Analysis of the Proposed SCCC System with Deep Learning Methods 

Author Dataset Classifier Accuracy (%) 

Perez et al., 2018 [116] ISIC CNN 87.40 

Serte and Demirel 2019 [117] ISIC 
Gabor wavelet-based 

CNN 
96.00 

Zhang et al., 2019 [118] ISIC Deep CNN 87.50 

Mahbod et al., 2020 [178] ISIC Multi-CNN 86.20 

Kamrul et al., 2022 [207] ISIC Hybrid-CNN 96.00 

Proposed System ISIC SCCC 96.35 

 

Table 5.9: A Comparative Analysis of Deep Learning Methods for Skin Cancer Classification and 

Detection 

Author Technique Classifiers Accuracy (%) 

Xie F et al., 2017 

[92]  

Deep Learning SGNN  91.11 

Zhang et al., 2019 

[292] 

Deep Learning 
ARL-CNN 91.70 

Hassan et al., 2019 

[293] 

Deep Learning 
CNN 93.70 

Wu et al., 2020 

[100] 

Deep Learning 
DenseNet 83.70 

Javaid et al., 2021 

[294] 

Deep Learning 
OTSU, PCA, SVM, RF 93.89 

Gouda et al., 2022 

[295] 

Deep Learning ESRGAN, CNN, Transfer 

Learning 
83.20 

Reis et al., 2022 

[296] 

Deep Learning 
InSiNet, CNN 94.59 

Nadiger et al., 2023 

[297]  

Deep Learning CNN 90.00 

Sundari et al., 2023 

[298]  

Deep Learning InceptionV3, Inception ResNet, 

DenseNet, and VGG-16, 

95.00 

Pangsibidang et al., Deep Learning CNN, K-means clustering, 78.00 
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2023 [299]  Genetic algorithm, Naive Bayes 

and SVM 

Viknesh et al., 2023 

[300]  

Deep Learning AlexNet,  LeNet, VGG-16 models 

and SVM 

91.00 

Tembhurne et al., 

2023 [301] 

Deep Learning 
Machine learning, Deep learning 93.00 

Keethna et al., 2023 

[302] 

Deep Learning 
CNN, SVM 88.02 

Proposed method 
Machine 

Learning 
SCCC 96.35 

Almost every existing work lacked optimization in feature selection. The selection ratio in the 

proposed work was 50%. The reduction can be furthered in the feature selection mechanism to 

determine variation. As seen from the result section, exponential variation was observed. There are 

the following reasons for the improvement in the results: 

In the proposed method, some important features are extracted and employed. Each element 

influences a different aspect of skin lesion because each type of skin lesion has a distinct colour. 

Differentiation can be recognized using colour features, Shape features and textural features. 

A differential analyser algorithm is used since it has the least calculation complexity. The 

extracted features were scaled to fit onto a line. Due to optimised space exploration, DAA ensures a 

better selection of features and avoids local minima. This model selects optimised features by 

verifying these features against optimised functions. 

For qualitative evaluation, the experimental results of applying the suggested technique to 

dermoscopy images are compared with actual data. A comparison analysis is performed against 

several additional approaches in addition to qualitative assessment. Our strategy produced the best 

results based on the evaluation metric. As a result, we believe that our effective and dependable 

technique has the potential to assist dermatologists in making more accurate and timely diagnoses.  
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5.11 Summary 

In this chapter, we delve into the outcomes of the proposed system. The ISIC dataset has proven to 

be a valuable source of images, yielding excellent results. To prepare the images for preprocessing, 

certain adjustments were necessary to meet the specific requirements. We provide an in-depth 

analysis of the results achieved in segmentation, feature extraction, and the application of the 

customized classifier.Our assessment covers texture, shape, and color features, which were 

evaluated using training sets in the context of traditional machine learning models. The performance 

of this classifier is noteworthy, with all models consistently demonstrating accuracy ranging 

between 94% and 96.35%. It becomes evident that the segmentation and feature extraction methods 

proposed play a crucial role in the model's construction and overall succe 
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CHAPTER 6 

CONCLUSION AND FUTURE SCOPE 

A novel approach for detecting skin cancer was introduced in this study. Before executing the 

proposed segmentation method, some image processing techniques were used to improve 

recognition accuracy. To acquire colour, shape, and texture features, the system employs a feature 

extraction and selection method, which is then used in conjunction with a customized classifier for 

lesion categorization. 

6.1 Contribution of Proposed System to Society 

A skin cancer expert system contributes significantly to society by functioning as a beneficial 

instrument in the fields of healthcare and dermatology. It plays a critical role in the early 

identification and accurate diagnosis of skin cancer, resulting in timely intervention and improved 

patient outcomes. These expert systems improve healthcare practitioners' efficiency in analysing 

enormous volumes of dermatological data by utilising new technologies such as machine learning 

and deep learning. As a result, faster and more precise diagnoses are possible, lowering the load on 

healthcare systems and potentially saving lives. Furthermore, the availability of such expert systems 

can extend healthcare services to remote or underdeveloped locations, allowing individuals to 

receive timely and trustworthy skin cancer examinations. 

6.2 Conclusion 

In conclusion, the proposed model presents a significant advancement in dermatological image 

analysis, particularly in the context of melanoma detection. Through a comprehensive approach that 

involves preprocessing, segmentation, feature extraction, and classification, the system achieves 

commendable results, showcasing its potential for practical application in the medical field. 

One of the notable strengths of the proposed model lies in its effective segmentation phase, 

which employs background subtraction with a midpoint and region prop mechanism. This process 

is crucial for isolating and highlighting relevant features within the images, a pivotal step in 

dermatological analysis. The Jacobi index is utilized as a performance metric, comparing true and 

estimated results. With a segmentation accuracy of 95.30%, the proposed model demonstrates its 
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proficiency in accurately identifying and segmenting skin lesions. This accuracy is further 

underscored by the normalization phase, which aims to merge color, texture, and location features 

into a cohesive feature vector. The three normalization techniques grey scaling, min-max, and 

depth-based—contribute to refining the feature matrices. 

In terms of classification, the model employs different classifiers, with customized classifiers 

consistently outperforming others. The classification accuracy of the proposed model, reaching 

96.35%, is a testament to its efficacy in distinguishing between malignant and benign skin lesions. 

The comparative analysis with other classifiers and normalization techniques reaffirms the 

superiority of the proposed approach. 

Looking beyond the experimental results, the proposed model is positioned favourably when 

compared with existing state-of-the-art methods. This underscores its competitiveness and potential 

for integration into clinical settings. The model's high accuracy, coupled with its ability to adapt to 

various normalization techniques, positions it as a robust tool for dermatologists and healthcare 

professionals. 

In terms of future scope, there are several avenues for refinement and expansion. The feature 

reduction mechanism could be further optimized to enhance performance and reduce computational 

complexity. Exploring and validating the model with diverse datasets encompassing a broader range 

of dermatological conditions would contribute to its generalizability. Additionally, real-world 

clinical validation and collaboration with dermatologists could provide valuable insights into the 

model's practical utility and potential integration into diagnostic workflows. 

Continued research into emerging technologies and methodologies in dermatology, such as 

advancements in imaging techniques or incorporation of artificial intelligence for real-time analysis, 

could inform future iterations of the model. Collaboration with the medical community and 

adherence to evolving standards and protocols would be essential for the model's seamless 

integration into the healthcare landscape. 

In essence, the proposed model represents a promising step forward in leveraging computational 

techniques for dermatological diagnosis. Its accuracy, adaptability, and potential for further 

enhancement position it as a valuable tool in the ongoing efforts to improve early detection and 

diagnosis of skin lesions, particularly melanoma. 
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6.3 Future Scope 

The proposed dermatological image analysis model, while showcasing promising results, opens up 

a realm of future possibilities and areas for further exploration. The dynamic landscape of medical 

imaging and artificial intelligence presents several avenues for improvement and expansion, 

positioning the model as a foundation for ongoing research and innovation. 

One prominent area for future development lies in diversity in datasets. Future research should 

involve the integration of larger and more diverse datasets, encompassing a broader spectrum of 

dermatological conditions beyond melanoma. This expansion would contribute to a more 

comprehensive understanding of the model's capabilities and limitations across various skin lesions. 

Real-world clinical validation is paramount for the translation of computational models into 

practical healthcare applications. Collaborations with dermatologists and medical practitioners can 

provide valuable insights, ensuring that the model aligns with clinical workflows and meets the 

stringent standards of the medical community. Integration into existing diagnostic processes and 

electronic health record systems is an essential step toward seamless adoption. 

Artificial intelligence (AI) and machine learning (ML) are continuously evolving, and 

incorporating the latest advancements into the proposed model can enhance its diagnostic 

capabilities. Ongoing research in AI-driven image analysis, including deep learning architectures 

and transfer learning, presents opportunities for increasing the model's sophistication and accuracy. 

In conclusion, the future scope of the proposed dermatological image analysis model is rich with 

possibilities. Fine-tuning feature reduction mechanisms, diversifying datasets, engaging in clinical 

collaborations, exploring advanced imaging technologies, embracing AI advancements, and 

extending the model's coverage to various skin conditions collectively represent a roadmap for 

continued research and innovation. The ongoing synergy between computational approaches and 

clinical expertise holds the key to advancing dermatological diagnostics and improving patient 

outcomes. 
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