
i

TO DESIGN AND DEVELOP A PROTOCOL FOR ANTI

FORENSIC DISK ENCRYPTION TOOL EXAMINATION USING

PRINCIPLES OF SOFTWARE REVERSE ENGINEERING

Thesis Submitted for the Award of the Degree of

DOCTOR OF PHILOSOPHY

In

Computer Science and Engineering

By

Zakariyya Hassan Abdullahi

Registration Number: 11816039

Supervised By Co Supervised by

Dr. Shailendra Kumar Singh

Assistant Professor

Department of Computer Science and

Engineering

Lovely Professional University, Punjab India

Dr. Moin Hasan

Assistant Professor

Department of Computer Science and

Engineering

Jain Deemed-to-be University, Bengaluru India

LOVELY PROFESSIONAL UNIVERSITY, PUNJAB

 2023

ii

DECLARATION

I hereby declare that the presented work in the thesis entitled “ To Design and Develop a Protocol

for Anti-Forensic Disc Encryption Tool Examination Using Principles of Software Reverse

Engineering” in fulfilment of the degree of Doctor of Philosophy (Ph.D. in Computer Science

and Engineering) is the outcome of research work carried out by me under the supervision of Dr.

Shailendra Kumar Singh, working as an assistant professor in the Department of Computer

Science and Engineering at Lovely Professional University Punjab, India. And under the co-

supervision of Dr. Moin Hasan, working as an assistant professor in the Department of Computer

Science and Engineering at Jain Deemed-to-Be University, Bengaluru, India, in keeping with the

general practice of reporting scientific observations, due acknowledgements have been made

whenever the work described here has been based on the findings of another investigator. This

work has not been submitted in part or in full to any other university or institute for the award of

any degree.

Signature of Scholar

Name of the scholar: Zakariyya Hassan Abdullahi

Registration No: 11816039

Department/school: Computer Science and Engineering

Lovely Professional University, Phagwara

Punjab, India

iii

CERTIFICATE

This is to certify that the work reported in the Ph. D. thesis entitled “ To Design and Develop A

Protocol for Anti Forensic Disk Encryption Tool Examination Using Principles of Software

Reverse Engineering” submitted in fulfillment of the requirement for the reward of degree of

Doctor of Philosophy (Ph.D.) in the Computer Science and Engineering , is a research work

carried out by Zakariyya Hassan Abdullahi (Registration No 11816039) , is bonafide record of

his/her original work carried out under my supervision and that no part of thesis has been submitted

for any other degree, diploma or equivalent course.

Signature of Supervisor

Name of supervisor: Dr. Shailendra Kumar

Singh

Assistant Professor

Department of Computer Science and

Engineering

Lovely Professional University, Punjab,

India

 Signature of Co-Supervisor

Name of Co-Supervisor: Dr. Moin Hasan

Assistant Professor

Department of Computer Science and

Engineering

Jain Deemed-to-be University, Bengaluru,

India

iv

ACKNOWLEDGMENT

I am grateful to Almighty Allah for giving me life and wisdom to pursue my Ph.D. in Computer

Science and Engineering at Lovely Professional University, India. I want to thank my supervisors,

Dr. Shailendra Kumar Singh and Dr. Moin Hasan, for their guidance and support throughout my

Ph.D. journey. I also extend my thanks to Hussaini Adamu Federal Polytechnic Kazaure, Nigeria,

for the research opportunity provided through TETFund intervention. Special appreciation goes to

Professor Khalid Hassan Abdullahi, Dr. Abubakar Magaji Abdullahi, and Sani Magaji Abdullahi

for their help and Adviser. I am deeply thankful to my mother (Mariya Muhammad) for her

encouragement, prayers, and support during my studies. To my devoted wife, Zainab Nura, and

my children, Halima Zakariyya Hassan, Muhammad Zakariyya Hassan, and Abdullah Zakariyya

Hassan, I am grateful for their patience and prayers. I want to acknowledge my friends and

colleagues for their immense encouragement and contributions to my success, though their names

are too many to mention individually. I will always remember and appreciate their help, Thank

you all.

v

DEDICATION

This work is humbly dedicated to my late father, Hassan Abdullahi (Baffa), and my late brother,

Shuaibu Hassan Abdullahi.

vi

ABSTRACT

In the field of digital forensics, the battle against cybercriminals has led to the emergence of anti-

forensic methods, particularly in the form of disk encryption tools aimed at obstructing forensic

investigations. To effectively address these challenges, this study focuses on the creation of a

comprehensive protocol for examining anti-forensic disk encryption tools using principles of

software reverse engineering. The protocol is meticulously designed to delve into the inner

workings of these encryption tools, uncovering concealed functionalities, vulnerabilities, and data

obfuscation tactics utilized to evade detection. Through a systematic application of reverse

engineering techniques, forensic investigators can acquire valuable insights into the functioning

of these tools and detect potential countermeasures to combat their actions. Using data encryption

software like VeraCrypt has become more common to protect data confidentiality. However, this

creates a challenge for digital forensic investigators since encrypted data appears random and

unreadable. VeraCrypt makes it even harder with features like concealed volumes and concealed

operating systems, which not only encrypt data but also allow users to deny its existence. This

makes it difficult for investigators to disprove such claims and detect encrypted content. By

providing a standardized and structured approach to dissecting anti-forensic disk encryption tools,

the proposed protocol offers a crucial resource to enhance the capabilities of digital forensic

investigators in addressing the rapidly evolving landscape of anti-forensic technologies. This, in

turn, reinforces the protection of digital evidence and upholds the integrity of legal proceedings,

ensuring that cybercriminals are held accountable for their actions.

The investigation is essential in providing investigators with the tools they need to stay on

top of the war against cybercrime and maintain the validity of digital evidence in the pursuit of

justice as the digital landscape continues to change. Our world's digitization has accelerated the

rise of cybercrimes and spurred the development of digital forensic tools. Anti-forensic

technologies have arisen in reaction, impeding the effectiveness of digital evidence retrieval

techniques. Reverse engineering software is thought to be a viable strategy for an extensive

examination is required while examining anti-forensic tools. Reverse engineering software refers

to the process of carefully examining a computer programme or software application in order to

decipher its structure, functions, and behaviours. This study explores the assessment of anti-

forensic technology through the use of software reverse engineering techniques. VeraCrypt, an

open-source data encryption software, is increasingly used to secure data confidentiality.

vii

However, detecting encrypted data can be challenging due to its random appearance and the

presence of hidden volumes and operating systems. Usually, when a suspect's computer is turned

on, forensic investigators attempt to gain access to it. but this thesis focuses on worst-case

scenarios where access is limited. The thesis introduces a process model to identify encrypted data

through raw byte data analysis, but the hidden volume and operating system remain elusive. The

thesis explores leakage of information to establish VeraCrypt's use and strengthens the case against

the suspect.

viii

TABLE OF CNTENTS

DECLARATION ...ii

CERTIFICATE .. iii

ACKNOWLEDGMENT .. iv

DEDICATION ... v

ABSTRACT .. vi

TABLE OF CNTENTS .. viii

List of Figures ... xiii

List of Tables ... xiv

List of Abbreviations ... xv

CHAPTER I .. 1

INTRODUCTION .. 1

1.1 Introduction .. 1

1.2 Digital Forensic and Information Security .. 3

1.3 Encryption ... 4

1.4 Anti-Forensic .. 8

1.4.1 File Deletion Technique ... 8

1.4.2 Disk Wiping... 9

1.4.3 Encryption ... 9

1.4.4 Steganography .. 9

1.4.5 Obfuscation ... 9

1.4.6 Antivirus Evasion ... 9

1.5 Reverse Engineering ... 10

1.5.1 Static Analysis .. 11

1.5.2 Dynamic Analysis .. 12

1.5.5 Decompiling to High-Level Languages .. 13

1.6 VeraCrypt Software ... 20

1.6.1 Volume Encryption .. 21

1.6.2 System Encryption ... 21

ix

1.6.3 Plausible Deniability ... 22

1.6.4 Optimization and Acceleration ... 23

1.6.5 Hashing and Encryption .. 24

1.6.6 Components of VeraCrypt... 25

1.6.7 Programming Comprehension .. 26

1.7 IDA Pro Software ... 27

1.8 Problem Statement ... 28

1.9 Research Motivation .. 29

1.10 Aims and Objectives ... 30

1.11 Scope of the Research Work .. 30

1.12 Research Contribution ... 31

1.13 Outline of Thesis ... 32

1.14 Summary of Chapter .. 32

CHAPTER II .. 34

LITERATURE REVIEW .. 34

2.1 Encryption ... 34

2.1.1 Popular Encryption Software ... 34

2.1.2 ProtonMail .. 34

▪ End-to-End Encryption ... 35

2.1.3 GNU Privacy Guard ... 37

2.1.4 AxCrypt ... 38

2.2 Related Literature on Encryption ... 40

2.3 Digital Forensics and Anti-Forensic ... 41

2.4 Reverse Engineering Techniques .. 48

2.5 Research Gaps .. 63

2.6 Limitations of Existing Anti-Forensics Disc Encryption Tool .. 63

CHAPTER III ... 65

METHODOLOGY ... 65

3.1 Debugging Tools ... 65

3.2 IDA Pro (Interactive Disassembler) .. 66

x

3.2.1 Reverse Engineering Process .. 67

3.3 Framework of Software Reverse Engineering ... 70

3.3.1 System Structuring ... 71

3.3.2 System characterization ... 72

3.3.3 Static Analysis ... 72

3.3.4 Source Code Examination ... 73

3.3.5 De-Compilation ... 73

3.3.6 Disassembly ... 73

3.3.7 Dynamic Analysis ... 73

3.3.8 System Information Store Analysis .. 73

3.3.9 Configuration Files ... 74

3.3.10 Log Files .. 74

3.3.11 Databases ... 74

3.3.12 Document Generation .. 74

3.3 Modules ... 78

3.4 Procedure of Encapsulation .. 79

3.5 Summary of Chapter .. 81

CHAPTER IV ... 82

RESULTS AND DISCUSSION ... 82

4.1 Experimental Process ... 82

4.2 Snapshots of IDA View and Hex View ... 83

4.3 Experimental Evaluation ... 84

4.3.1 Accuracy Evaluation .. 84

4.3.2 Time Consumption Evaluation ... 85

4.4 Validation Discussion ... 86

4.4 Description of Data Storage ... 87

4.4.1 Hard Drive Storage System ... 87

4.4.2 Volumes Capacity ... 87

4.4.3 Partitions of Volume Capacity .. 88

4.4.4 System File Storage .. 88

xi

4.5 Components Dedicated to Storage .. 88

4.5.1 Slack Space .. 90

4.6 VeraCrypt Data Storage Containers .. 90

4.7 Encrypted VeraCrypt Volumes... 91

4.7.1 VeraCrypt Hidden Volume ... 93

4.7.2 VeraCrypt Volume's Encryption Analysis ... 96

4.7.3 Integrated Cryptographic Algorithms ... 96

4.7.4 Encryption Operation Mode: XTS ... 97

4.8 Components and Applications... 98

4.8.1 Command-Line Interface .. 98

4.8.2 Graphical User Interfaces .. 98

4.8.3 Email Encryption ... 98

4.8.4 File Encryption ... 98

4.8.5 Secure Communication .. 98

4.8.6 Code Signing ... 98

4.8.7 Password Management .. 99

4.8.8 Key Generation ... 99

4.8.9 Encryption ... 99

4.8.10 Digital Signing ... 99

4.8.11 Key Distribution ... 99

4.8.12 Trust Establishment ... 99

4.8.13 Secure Email Communication ... 100

4.8.14 File Sharing ... 100

4.8.15 Software Distribution ... 100

4.8.16 Digital Documentation ... 100

4.8.17 Protection Against Surveillance .. 100

4.8.18 Limitations Usability .. 100

4.8.19 Key Management .. 100

4.9 Comparative Analysis of Different Encryption Software ... 101

Table 4.5 ... 102

xii

The table 4.5 describe ... 102

4.11 Summary of Chapter .. 103

CHAPTER V .. 104

CONCLUSION AND FUTURE DIRECTIONS .. 104

5.1 Conclusion ... 104

5.2 Future Directions ... 106

APPENDEX B .. 131

APPENDEX C .. 136

Publication in Journal .. 136

Publication in Conferences .. 136

xiii

List of Figures

Figure 1.1 Different Stages of Digital Forensic Investigation Process 3

Figure 1.2 Model for Symmetric Encryption .. 7

Figure 1.3 Static and Dynamic Analysis ... 11

Figure 1.4 Reverse Engineering Steps .. 14

Figure 1.5 Hidden Volume ... 22

Figure 1.6 Vera Crypt Coded File Container .. 26

Figure 3.1 Reverse Engineering Process ... 68

Figure 3.2 Decompile Source Code .. 68

Figure 3.3 Software Analysis Application .. 69

Figure 3.4 IDA Pro Disassembly .. 70

Figure 3.5 IDA Pro Debugging Code Binary .. 70

Figure 3.6 Flowchart of Reverse Engineering Process ... 71

Figure 3.7 Proposed Software Reverse Engineering Framework ... 72

Figure 3.8 Process of Digital Investigation ... 80

Figure 4. 1 IDA View of VeraCrypt .. 83

Figure 4. 2 Hex View of VeraCrypt .. 83

Figure 4. 3 Accuracy vs Time .. 84

Figure 4. 4 Consumption Time vs File Size .. 85

Figure 4. 5 VeraCrypt Coded Folder Container .. 92

Figure 4. 6 VeraCrypt Divider and Device Encryption ... 92

Figure 4. 7 VeraCrypt Volumes ... 93

Figure 4. 8 VeraCrypt Disk Layout ... 95

xiv

List of Tables
Table 1.1 Different Types and Aspects of Digital Forensic .. 4

Table 1.2 Description of Different Types of Encryption Techniques 6

Table 1.3 Various Techniques Used in the Field of Software Analysis 10

Table 1.4 Hardware Disassembly .. 14

Table 1.5 Software Disassembly ... 15

Table 1.6 Ethical and Legal Consideration ... 15

Table 1.7 Debugging ... 16

Table 1.8 Dynamic Analysis ... 17

Table 1.9 Comparison Among Different Types of Encryption Software 24

Table 1.10 Features of IDA Pro Software ... 28

Table 2.1 Comparative Analysis of the Related Works .. 58

Table 3.1 Comparisons Reverse Engineering Tools ... 67

Table 3. 2 Shows the Steps and Function of Algorithms .. 75

Table 3.3 VeraCrypt's Sensitive Modules ... 80

Table 4.1 Representation of the VeraCrypt Source Code Flow .. 86

Table 4.2 Symmetric Encryption Algorithms Supported by VeraCrypt 7.1a 91

Table 4.3 Volume Headers Salt ... 97

Table 4.4 Comparison Analysis of Different Encryption Software with VeraCrypt 101

xv

List of Abbreviations

AF Anti Forensic

AES Advance Encryption Standard

APFS Apple File System

CBC Cipher Block Chaining

CAD Computer-Aided Design

CLI Command-Line Interface

CCD Code Clone detection

CHS Cylinder-Head-Sector

DF Digital Forensic

DFS Deniable File System

DES Data Encryption Standard

3DES Three Data Encryption Standard

ECD Ever-Changing Disk

ECC Elliptic Curve Cryptography

HDD Hard Disk Drive

IDA Pro Interactive Disassembler

LAN Local Area Network

MLC Multi- Level Cell

MLSCA Multilingual Source Code Analysis

MDRE Model Driven Reverse Engineering

OOD Object-Oriented Design

PGP Pretty Good Privacy

PBA Pre-Boot Authentication

PRE Protocol -Reverse Engineering

RE Reverse Engineering

RSA Rivest Shamir Adleman

xvi

SRE Software Reverse Engineering

SSD Solid State Drives

SOM Self-Organizing Map

SHA Secure Hash Algorithm

XTS Sased Tweaked-Codebook

1

CHAPTER I

 INTRODUCTION

In the digital age, the protection of sensitive data is paramount. Encryption tools, such as disk

encryption software, play a crucial role in safeguarding information from unauthorized access.

However, while encryption is a vital security measure, it can also be misused for illicit purposes.

To ensure the balance between privacy and security, it is essential to have effective mechanisms

for examining and scrutinizing disk encryption tools, particularly in forensic investigations.

Digital information technology has significantly impacted society, enabling new

opportunities and enhancing operations. The globalization of the Internet and digital mobile

networks has led to the growth of digital systems like GSM, which has over a billion users today.

These systems offer inherent benefits such as noise insensitivity, long-distance transmission,

quality copying, and data removal. However, they are also susceptible to misuses, such as

tampering with mail systems. To safeguard digital systems without compromising their

advantages, it is necessary to change information to defend itself regardless of transmission or

storage. Cryptology, a field that investigates this issue, provides a valuable summary of this topic

[1].

1.1 Introduction

In today's highly interconnected world, the security and privacy of personal and sensitive data have

become topics of great public concern. As data is often placed in the hands of online third parties,

the final safeguard for data confidentiality is found in local storage, where physical disconnection

minimizes the risk of unauthorized access. Nonetheless, even in local storage scenarios,

precautionary measures must be taken to safeguard against potential threats. One prevalent threat

scenario involves a thief pilfering a user's personal hard drive and gaining access to its contents.

This particular threat model has been extensively researched, resulting in the development of

numerous robust disk encryption solutions over time [2],[3].

With developing a methodology for investigating disc encryption techniques from an Anti-

forensics’ perspective, this invention intends to meet the novel challenges in the field of digital

forensics. Anti-forensics is the term used to describe the intentional methods used to thwart or

dodge digital investigations, and it frequently entails the use of encryption tools to hide damaging

evidence.

2

In this context, our research focuses on the examination of disk encryption tools, a critical

aspect of digital forensics, by leveraging the principles of software reverse engineering. The

process of disassembling and examining software is known as "software reverse engineering." to

understand its inner workings, functionality, and potential vulnerabilities. By applying these

principles, we aim to develop a protocol that will allow forensic analysts to gain insights into the

operation of encryption tools designed with anti-forensic objectives. These techniques, such as

data encryption, file hiding, and data obfuscation, make it difficult for traditional forensic methods

to uncover crucial evidence. To address this issue, this thesis proposes a technique that employs

software reverse engineering to identify and counter the use of anti-forensic measures.

The use of disc encryption tools has gradually become widespread in recent years, as they

offer a secure method for protecting sensitive data. However, this has also led to the development

of anti-forensic disc encryption tools that resist forensic analysis and make it difficult for forensic

analysts to recover the encryption key and gain access to the encrypted data. These anti-forensic

tools use various techniques, such as code obfuscation, dynamic code generation, anti-debugging

techniques, and rootkit techniques, to hide their presence and resist analysis.

To counter the use of anti-forensic disc encryption tools, it is essential to develop a protocol

for examining them using the principles of software reverse engineering. The goal of this protocol

is to enable forensic analysts to identify any anti-forensic techniques used in the encryption tool

and provide recommendations for improving its security. The purpose of examining an encrypted

disc should be to safeguard the security of the information stored on it, which is a legitimate and

ethical use case. This includes verifying that the encryption tool is using strong encryption

algorithms, the key generation process is secure, and the user authentication process is robust. The

examination should not be used to evade forensic investigations or conceal illegal activities. Any

attempt to do so would be unethical and potentially illegal. It's important to conduct the

examination with integrity and to respect the privacy and safety of the information stored on the

encrypted disk. Throughout history, there have been instances where people needed to conceal

information. Singh's research talks about different times when people used to write in secret, as in

the battles of 480 B.C. between Greece and Persia and when Julius Caesar and Mary Queen of

Scots used secret codes. They did this to make sure only the right people could understand the

message. If someone who wasn't supposed to see the message got it, there could be serious

problems. For example, Mary Queen of Scots was accused of treason when her decoded messages

were used as proof against her [4].

3

1.2 Digital Forensic and Information Security

Challenges in keeping information safe include making sure data is accurate and private in

systems. Sometimes, restricting user access can make systems slower, but using real-time

protection and encryption are better options. "Fundamentals of Digital Forensics" is a helpful guide

to computer investigations, explaining how they work, what evidence is involved, and the limits.

The book, made with the Swedish Police and Jan-ke Peterson, is for students and professionals

who want to learn about this field [5].

Digital forensics, sometimes referred to as computer forensics, is a discipline within

forensic science that centers on the discovery, safeguarding, scrutiny, and presentation of

electronic information with potential utility as legal evidence. This domain encompasses the

gathering and assessment of data derived from diverse electronic devices, including but not limited

to computers, laptops, mobile phones, tablets, and storage media. The primary goal of digital

forensic inquiries is to recognize and record evidence related to cybercrimes, such as hacking,

fraud, identity theft, and intellectual property theft. The different processes stages of digital

forensic investigation are shown in figure 1.1.

Figure 1.1 Different Stages of Digital Forensic Investigation Process

Digital forensic investigations require specialized training and expertise in computer science,

information technology, and criminal justice. Digital forensic investigators must also adhere to

strict legal and ethical standards to confirm that the evidence they collect is acceptable in court

and does non-violate the rights of individuals

4

Table 1.1 Different Types and Aspects of Digital Forensic

Aspect of Digital

Forensic
Definition and Purpose

Computer

Forensics
Computer forensics analyzes digital evidence for criminal cases.

Mobile Device

Forensics

Mobile device forensics analyzes digital evidence on smartphones, tablets, and

wearables for criminal cases.

Network

Forensics

Digital forensics analyzes digital evidence on networks to monitor traffic,

identify security breaches, and provide evidence in criminal cases.

Cloud Forensics
Cloud forensics examines digital evidence in cloud computing for criminal

cases.

Malware Analysis
Malware analysis identifies malware behavior, source, and develops

prevention strategies.

Incident Response
Analysis of security incidents to identify scope, impact, contain damage, and

prevent future threats.

Digital Forensic

Analysis Tools
Digital forensic analysis tools enhance accuracy, efficiency, and consistency.

Legal and Ethical

Considerations

Legal and ethical considerations for digital evidence gathering, safeguarding,

and examination.

Table 1.1 outlines digital forensics' key aspects, including computer, mobile, network, cloud,

malware analysis, incident response, tools, and legal and ethical considerations. These areas aid in

criminal investigations, cybersecurity, and detecting security breaches.

1.3 Encryption

Encryption is a process in which plain-texts are converted into cipher-texts using an encryption

algorithm and a key to ensure the secure transmission or storage of encrypted data. This

procedure entails the utilization of an algorithm along with a key. The algorithm determines how

the encryption is performed, while the key is used for encoding the message, which ultimately

determines the encryption method used. Decryption is the opposite of encryption, where the

cipher text is transformed back into plain text. It is a process that converts unreadable cipher text

into the original message. The decryption process relies on two elements: a decryption algorithm

and a key. The decryption algorithm specifies the technique used for decryption, which is

typically the same as the encryption algorithm.

5

A key in cryptography can be a combination of alphabetic or binary characters, or even

special symbols. The password is applied to the plain text during encryption and to the cipher

text during decryption. The selection of the key is crucial in cryptography as it greatly impacts

the security of the encryption algorithm. For instance, if Alice uses a key of 3 to encrypt the plain

text "Pr," the same key will be used for decryption to retrieve the original message.

Plain Text: The original message you want to communicate with someone is referred to as plain

text. In encryption, the actual message being sent is called plain text. For example, if Alice wants

to send a message to Robert saying "Hello Friend, how are you?" the plain text version of the

message would be "Hello Friend, how are you?"

Cipher Text: The message that is transformed into an unreadable or meaningless format, which

cannot be understood by anyone else, is called cipher text. In cryptography, before transmitting

the actual message, the original message is converted into an incomprehensible format. For

instance, a cipher text like "Ajd672#@91ukl8*^5 percent" is generated as a cipher text for the

message "Hello Friend, how are you?"

There are two categories of encryption techniques: symmetric and asymmetric encryption.

Symmetric encryption employs an identical key for both the encryption and decryption processes,

such as AES, DES, and 3DES.Sari et al., 2019 [6] scrutinizes the application of AES in encrypting

both blocks and multimedia data, demonstrating that all categories of attacks have the potential to

compromise AES. In response, a novel approach called T-DES encryption has been proposed to

enhance data transmission speed, yielding PSNR and SSIM values surpassing 40 dB. Encryption

is a mathematical process that converts plaintext into ciphertext using a key. It is reversible,

meaning that when the correct key is used to decrypt the ciphertext, it returns to the original

plaintext. The plaintext that comes out of the decryption process must be an exact copy of the

original, protecting both confidentiality and integrity. Modifications to the key or ciphertext do

not give away any part of the real plaintext [7]. Different encryption algorithms and processes

exist, each designed to protect data confidentiality, integrity, and availability. However, effective

key management is crucial to ensure that encryption remains secure and reliable.

A public key and a private key are used in asymmetric encryption, commonly referred to

as public-key encryption. Although the private key is used to decipher ciphertext, the public key

is used to encrypt plaintext. While the private key needs to be kept a secret, the public key can be

shared with anybody. Asymmetric encryption schemes, such as RSA, ECC (Elliptic Curve

Cryptography), and Diffie-Hellman, are examples. These algorithms are applicable to both Local

6

Area Networks (LANs) and Wide Area Networks (WANs). The potential use of forensic file

identification techniques in identifying encryption software has not been thoroughly explored.

Despite a six-month, resource-intensive investigation, no straightforward method for expediting

the decryption of passwords or encryption keys was discovered, it did yield a number of significant

findings that will help identify when an encryption application is being used, among other

characteristics of the encryption application [8].

Encryption can be applied to various types of data, including files, messages, and entire

disks. Disk encryption encompasses the encryption of the complete disk, including the operating

system and all user data, to protect against unauthorized access if the device is lost or stolen.

Examples of disk encryption tools include BitLocker (Windows), File Vault (Mac), and VeraCrypt

(cross-platform) [9]

Table 1.2 Description of Different Types of Encryption Techniques

Encryption Type Description Examples

Symmetric Key

Encryption
Uses the same key for both encoding and decoding

DES, 3DES, AES,

Blowfish, RC4

Asymmetric Key

Encryption

Makes use of two distinct keys for encryption and

decryption
RSA, DSA, ECC

Hash Functions
One-way encryption that produces a unique fixed-

length hash value for any input
SHA-256, MD5

Stream Ciphers Encrypts data bit by bit, typically in real-time RC4, Salsa20

Block Ciphers
Divides data into fixed-size blocks and encrypts each

block separately
AES, Blowfish

Hybrid

Encryption

Uses a grouping of symmetric and asymmetric key

encryption
PGP, SSL/TLS

Table 1.2. outlines various encryption types, including symmetric, asymmetric, hash functions,

stream ciphers, block ciphers, and hybrid encryption. Symmetric encryption uses the same key for

both encryption and decryption, while asymmetric encryption uses two distinct keys. Hash

functions create fixed-length hashes, stream ciphers encrypt data bit by bit but can be susceptible

to attacks, and hybrid encryption combines both. The authors delve into the factors that determine

the safety of encryption, which include the strength of the algorithm, the secrecy of the encryption

key, and the protection of its implementation. Although encryption cannot provide absolute

security, its proper usage can effectively safeguard sensitive data. Security attacks tend to target

electronic devices such as laptops, personal digital assistants, flash drives, and external hard drives,

exploiting their vulnerabilities [10].

7

People spend a lot of money to keep their data safe because losing important data could

cause irreversible damage and affect their competitiveness [1]. Keeping of data secure is the most

important form of security, even more crucial than network security. This is because only securely

encrypted data can be safely sent. Lost or stolen laptops can expose sensitive information to

unauthorized people who will find them. Personal computers can also be compromised through

different threats. Laptops are particularly at risk because they are often used in public places

without protection. Researchers didn't find easy solutions for these vulnerabilities. Simple software

changes made by developers are usually not effective. High-capacity laptops are found by

unauthorized accessed by individuals when they're lost or stolen [10]. Therefore, storing data

securely is very important, and we need to protect it from unauthorized access. Different

technologies like access control and auditing help improve data storage security. However, in these

methods, the actual data isn't encrypted. This means that if someone can access the storage device,

they can read the data inside [11].

An encryption algorithm's main function is to keep messages sent through an insecure

channel in encrypted form. Two mathematical operations make up a standard encryption

algorithm: the encryption function E (Encryption) and the decryption operation, denoted as D

(Decryption) = E1, involves the sender, often referred to as Alice, encrypting the original message

P (plaintext) using the encryption function. The resulting ciphertext, C = E(P), is then transmitted

over the insecure channel. Upon receiving C, the intended recipient, Bob, can recover the plaintext

by computing D(C) = P.

For this method to successfully secure Alice's message for exclusive reading by Bob,

several conditions must be met. Firstly, Bob should be the sole individual possessing knowledge

of the decryption function D, with Alice potentially being an exception. Secondly, the construction

of the transformation E must be such that a potential ciphertext interceptor, often termed Eve,

cannot practically extract any information about the plaintext, except perhaps its length. Lastly,

the processing power required for the transformations E and D should not be excessively high as

shown in Figure 1.2.

Figure 1.2 Model for Symmetric Encryption

To retrieve D, apply this particular transformation. Diffie and Hellman recognized that the

confidentiality of the encryption function was not essential if one could generate what is known as

E
D

 K

P P
C

8

trapdoor one-way functions. These are functions that are simple to evaluate, but they cannot be

effectively reversed without additional information (the trapdoor). Soon after, examples of

trapdoor one-way functions were discovered, enabling the creation of useful public key encryption

techniques like RSA [12].

Jadhav et al., 2017 [13] has discussed how the Data Encryption Standard (DES), a

government-approved method to protect sensitive data, is being replaced by the more advanced

encryption standard (AES) for security. AES is widely used because it's better at both security

and speed. While there are software options, they might not be fast enough for tasks like routers

and wireless systems. Cryptography, which involves encryption and decryption, is a key way to

protect data from hackers. Encryption makes data hard to understand for outsiders, turning

original data into unreadable cypher text.

The article describes that cryptography changes a message into a hard-to-read form

before sending it through an insecure channel. People without permission would struggle to

understand the message because of the encryption. But the person who's allowed to read it can

change it back to the original form [14]. The authors talk about how important and commonly

used cryptography is to protect data from hackers. It's all about making data safe by changing it

into unreadable text and then changing it back. Encryption turns data into something called

Cipher text that's hard for attackers to understand [15].

1.4 Anti-Forensic

In the current digital world, almost everything relies on digital data. This data is found in various

fields, showing how technology is part of them. Digital forensics grew due to situations like

cybercrimes and terrorism, where digital evidence holds important information. People,

companies, and governments all use digital data in many parts of life.[16],[17]. Anti-forensics

techniques like APFS can make digital investigations harder. This is because it uses a different

way to store data than older systems like HFS+. This makes it tough for investigators to get to and

study encrypted data. Using cloud services more also creates issues. Investigators might not be

able to reach physical devices or get data from providers due to legal or technical reasons. Not

understanding how things work in reverse can lead to losing evidence, as many apps and systems

are made to stop forensic analysis.

1.4.1 File Deletion Technique

9

This method entails the removal of files from a computer's file system, which can be achieved

through conventional delete commands or specialized tools designed to overwrite the deleted data.

The objective behind file deletion is to create challenges or render it nearly impossible for

investigators to recover the data that has been deleted.

1.4.2 Disk Wiping

A technique used to overwrite data on a hard disk, making it difficult or impossible to recover the

original data. Disk wiping tools use various algorithms to overwrite the data multiple times to

ensure that it cannot be recovered.

1.4.3 Encryption

Encryption is a technique used to convert data into an unreadable form using a secret key. If the

key is not known, the data cannot be read. Attackers may use encryption to hide sensitive data,

making it difficult for investigators to find or access it.

1.4.4 Steganography

 A method for concealing data within other files, including images or audio files. Investigators will

have a difficult time locating the secret data because it is difficult to see or detect.

1.4.5 Obfuscation

A technique for concealing code or data by making it challenging to read or comprehend.

Obfuscation is a technique attacker use to conceal harmful code or data, making it challenging for

researchers to decipher or reverse-engineer it.

1.4.6 Antivirus Evasion

Antivirus evasion tactics are utilized to circumvent protection provided by antivirus programs. In

order to evade detection by antivirus software, attackers may utilize techniques such as

polymorphism, encryption, or obfuscation.

Hussein et al., 2020 [18] discusses the presence of malicious software on a computer, highlighting

the challenges investigators may face in locating or comprehending files, programs, or connections

in such instances. The use of rootkits can obscure information, and attackers also employ network

tunneling to conceal data within alternative methods of transmission. This strategy aids them in

circumventing firewalls and evading detection by network monitoring programs. Hassan , 2019

[19] notes that individuals with malicious intent employ tactics to evade detection or scrutiny.

10

Digital forensics, a field dedicated to examining digital evidence for legal purposes, addresses this

issue. Its primary objective is the comprehensive investigation of evidence to present it in a court

setting. Professionals in digital forensics utilize tools to uncover, preserve, and analyze evidence,

subsequently drawing conclusions and communicating their findings to others.

1.5 Reverse Engineering

Fontana, 2022 [20] discuss the concept of reverse engineering, likening it to the process of

disassembling something to gain insights into its functioning. This practice is applicable to various

domains such as software, hardware, military technology, and biological processes. The central

objective is to analyze machine code and reverse it to reconstruct the original source code.

Individuals engage in this activity to comprehend the underlying mechanisms, revive outdated

technologies, assess security, and gain a competitive edge over rivals.

The authors, discusses the utilization of reverse engineering as a method to comprehend the

fundamental concepts and principles of software. This means looking at what goes into the

software and what comes out. People also test it to find problems or weak points in security.

Reverse engineering means studying a system to know its parts and how they connect. Remember,

the point isn't to copy the program, but to study its code, how it works, and what it does[21] [22].

Holger and Hausi [23] assert that reverse engineering involves extracting information from the

source code of software, facilitating a clearer understanding and opportunities for enhancement.

This process entails acquiring information, analyzing it, and rendering it visible. Methods for

accomplishing this task include identifying fundamental components, examining their

interconnections, and pinpointing valuable elements within the software.

Table 1.3. outlines software reverse engineering techniques, including disassembly,

debugging, DE compilation, dynamic analysis, static analysis, binary analysis, and fuzzing. These

techniques help analyze software systems for security assessment and enhancement, identifying

vulnerabilities and defects, and enhancing software performance.

Table 1.3 Various Techniques Used in the Field of Software Analysis

Technique Description

Disassembly Conversion of compiled code to human-readable assembly code.

Debugging Identification and fixing of errors or defects in software systems.

DE Compilation Conversion of compiled code to high-level programming language.

Dynamic Analysis Analysis of software systems while they are running.

Static Analysis Analysis of software systems without executing them.

11

Binary Analysis Analysis of compiled code at the binary level.

Fuzzing
Sending large amounts of data to a software system to identify

vulnerabilities or defects.

The practice of examining a software system to extract design and implementation details without

having access to the source code is known as software reverse engineering, or SRE. This is

frequently employed for debugging, malware analysis, security audits, and other purposes [24] .

Here’s a detailed look into various reverse engineering techniques: Show in Figure 1.3

Figure 1.3 Static and Dynamic Analysis

1.5.1 Static Analysis

Static analysis involves examining the software without actually executing the program. It

provides a way to inspect the code for patterns, structures, and possible malicious signatures.

Tools:

• IDA Pro: A disassembler and debugger that can handle a variety of formats across different

architectures and operating systems.

• Ghidra: An open-source software reverse engineering suite developed by the NSA, which

includes a disassembler among other tools.

• Hex-Rays: A decompiler that converts executable programs into a higher level, readable

code closer to the original source code.

12

Techniques:

• Disassembly: Converting binary code to assembly code which is more readable and

understandable to humans.

• Decompilation: Attempting to revert assembly code back into a higher-level language code

(like C or C++).

• Pattern Recognition: Identifying common constructs like loops, if-else conditions, switch

statements, etc.

1.5.2 Dynamic Analysis

Dynamic analysis involves running the program and observing its behavior during execution,

which is useful for understanding real-time operation and interaction with the environment.

Tools:

• OllyDbg: A dynamic debugger particularly used for Windows binary applications.

• x64dbg: An open-source x64/x32 debugger for windows.

• GDB: The GNU Project Debugger for various programming languages, including C, C++,

and Fortran.

Techniques:

• Breakpoints: Used to pause the program at certain points to examine the state of the

application.

• Step Execution: Allows step-by-step execution to observe changes and behaviors in

specific code segments.

• Memory Dumping: Extracting data from the software's memory space during runtime to

analyze current states and data structures.

1.5.3 Symbolic Execution

Symbolic execution is an advanced method where the inputs to the software are treated as symbolic

variables instead of concrete values. This technique is useful for discovering what parts of code

can lead to bugs or vulnerabilities.

13

Tools:

▪ KLEE: A symbolic virtual machine built on top of the LLVM compiler infrastructure.

▪ angr: A python framework for analyzing binaries, capable of symbolic execution, taint

analysis, and more.

Techniques:

▪ Constraint Solving: Determining the conditions under which certain parts of the code are

executed.

▪ Path Exploration: Exploring various paths through the code based on different input

conditions.

1.5.4 Fuzzing

Fuzzing is a technique where random data is inputted into the software to induce errors and

uncover vulnerabilities.

Tools:

▪ AFL (American Fuzzy Lop): A security-oriented fuzzer that employs a variety of

mutation techniques.

• Boofuzz: A network protocol fuzzing tool.

Techniques:

▪ Mutation-Based Fuzzing: Modifying existing data inputs in minor ways to explore new

execution paths.

▪ Generation-Based Fuzzing: Creating inputs from scratch based on models of input data

structures.

1.5.5 Decompiling to High-Level Languages

While earlier mentioned as part of static analysis, decompiling to more abstract languages like C#

or Java (in the case of .NET and JVM applications, respectively) uses specialized tools:

Tools:

▪ dotPeek: A .NET decompiler.

▪ JD-GUI: A standalone graphical utility that displays Java sources from CLASS files.

14

Reverse engineering can be a complex and technically demanding field, requiring knowledge of

low-level programming, operating systems, computer architectures, and often, cybersecurity

principles. These techniques and tools provide a comprehensive foundation for delving into

software reverse engineering, but mastering them requires significant practice and continued

learning [25]. The process of reverse engineering generally involves a series of critical steps as

depicted in the Figure 1.4.

Figure 1.4 Reverse Engineering Steps

The table 1.4,1.5,1.6 provides a comprehensive overview of the technical aspects of disassembly

in reverse engineering, highlighting the systematic approach required to understand and potentially

improve the system being analyzed.

Table 1.4 Hardware Disassembly

Step Details Tools/Techniques

Preparation and Tools
Gather necessary disassembly and

diagnostic tools.

Screwdrivers, pliers, tweezers,

soldering iron, multimeter,

oscilloscope

Static Analysis
Visual inspection and circuit

analysis.

Service manuals, schematics,

datasheets

De-soldering and Removal
Carefully remove components

without causing damage.
Soldering iron, de-soldering tools

15

Circuit Reverse Engineering

Reconstruct the circuit diagram

and test component

functionalities.

Oscilloscope, multimeter

Integration Understanding
Analyze how different parts

interact and signal processing.
Signal analyzer, logic analyzer

Table 1.5 Software Disassembly

Step Details Tools/Techniques

Preparation and Tools
Setup disassemblers, debuggers,

and anti-tamper detection.

Disassemblers (IDA Pro, Ghidra),

debuggers (OllyDbg, x64dbg)

Static Analysis
Examine code to identify key

patterns and structures.
Disassemblers, hex editors

Dynamic Analysis
Monitor program execution and

inspect memory operations.
Debuggers, memory inspection tools

Decompilation

Convert machine code back to a

higher-level language to

understand algorithm

implementations.

Decompilers, static analysis tools

Patching and Modification

Modify code as needed and

verify that changes do not

introduce new issues.

Patching tools, testing frameworks

Table 1.6 Ethical and Legal Consideration

Consideration Details

Legal and

Ethical Usage

Reverse engineering should be done within legal frameworks and respect

copyright and licensing laws.

Security and

Privacy

Ensure that reverse engineering practices do not compromise data security or

violate privacy rights.

Debugging in the context of software reverse engineering involves identifying, analyzing, and

fixing bugs or defects in software after examining its code, especially when the source code is not

available. This process can be quite complex and involves a variety of tools and techniques to

16

deconstruct and trace software behaviors [26]. Below is a table 1.7 outlining the key technical

concepts associated with debugging during software reverse engineering:

Table 1.7 Debugging

Concept Details Tools/Techniques

Breakpoints

Used to pause program execution at a

specific point, allowing the

examination of the context. Debuggers (e.g., GDB, x64dbg)

Step

Execution

Execute code one instruction or line

at a time to observe changes in

program state.

Debuggers (e.g., IDA Pro's debugging

feature)

Register

Inspection

Examine the contents of CPU

registers to track how data is

processed and manipulated. Debuggers, CPU monitoring tools

Memory

Dumps

Capture and analyze regions of

memory used by the software to

understand data handling. Memory viewers (e.g., HxD, WinDbg)

Variable

Watching

Track changes to specific variables

to see how their values change

throughout execution. Integrated in most debuggers

Call Stack

Analysis

Analyze call stacks to trace function

calls and returns, providing insights

into execution flow. Debuggers, Stack tracing tools

Exception

Handling

Monitor how the software handles

runtime errors and exceptions. Debuggers, Exception monitoring

Conditional

Debugging

Set conditions for breakpoints to

pause execution only when certain

criteria are met. Advanced debuggers

Log

Analysis

Review logs generated by the

application or system to identify

abnormal or unexpected events. Log viewers, Custom scripts for log parsing

17

Reverse

Execution

Execute instructions in reverse to

understand what led to a current state

or error.

Reverse debuggers (e.g., RR - Record and

Replay framework)

Symbolic

Information

Use symbols to get meaningful

names and context for memory

addresses and code regions. Debuggers with symbol server integration

Additional Concepts and Tools

• Disassemblers and Decompilers: Tools like IDA Pro, Ghidra, and Radare2 are crucial for

converting executable code into a human-readable format (assembly code or higher-level

languages), aiding in understanding what the program does without running it.

• Dynamic Analysis Tools: Used to analyze the behavior of a program while it is running, often

through instrumentation.

• Static Analysis Tools: Analyze the code without executing it, often used to spot potential errors

or vulnerable patterns in the code.

These concepts and tools collectively enable software reverse engineers to dissect a program's operation in

great detail, effectively allowing them to debug, understand, and often repurpose software for which they

don't have the original source code.

Dynamic analysis in software reverse engineering is the practice of analyzing a program by

executing it in real-time, observing its behavior and its interactions with various systems. This

method is particularly useful for understanding complex software behavior, detecting hidden

functionality, or identifying potential vulnerabilities that only manifest during execution. Below is

a table 1.8 outlining the key technical concepts associated with dynamic analysis in software

reverse engineering:

Table 1.8 Dynamic Analysis

Concept Details Tools/Techniques

Runtime Tracing

Monitors and logs system

calls, function calls, and

other runtime events to

analyze program behavior.

Debuggers, Tracers (e.g., Strace,

DTrace)

18

Memory Profiling

Analyzes how a program

uses memory during

execution, identifying

memory leaks and other

issues.

Profilers (e.g., Valgrind, Memory

Profiler)

Network Monitoring

Captures network traffic

generated by the program to

analyze its communication

patterns and protocols.

Network analyzers (e.g., Wireshark,

tcpdump)

Input Fuzzing

Inputs random, malformed,

or unexpected data into the

program to test its robustness

and error handling. Fuzzers (e.g., AFL, Burp Suite)

API Hooking

Intercepts and monitors API

calls to understand library or

system interactions and

potentially modify them.

Hooking tools (e.g., Frida, Microsoft

Detours)

Performance Analysis

Measures the execution time

and resource usage of

programs to identify

performance bottlenecks.

Performance profilers, Benchmarking

tools

Instrumentation

Injects additional code into

the program to gather more

information during its

execution.

Dynamic Binary Instrumentation tools

(e.g., PIN, DynamoRIO)

Environment

Simulation

Simulates different operating

environments to observe how

the program behaves under

varied conditions. Virtual machines, Emulators

Behavioral Analysis

Observes and logs the

behavior of the software to

build a model of its normal

Behavioral detection systems, Anomaly

detection tools

19

operation and anomaly

detection.

Reverse Debugging

Allows the execution of a

program to be reversed,

making it easier to

understand the cause of bugs.

Reverse debuggers (e.g., RR - Record

and Replay framework)

Additional Tools and Methods

• Snapshot and Restore: Takes snapshots of the running state of an application, allowing testers to

restore to a specific state quickly and repeatedly.

• Taint Analysis: Tracks the flow of sensitive data through the program to detect security

vulnerabilities such as buffer overflows and injections.

Dynamic analysis is crucial for a comprehensive understanding of how software operates in a real-

world scenario, which is especially beneficial for debugging complex issues, enhancing security,

and improving performance. These methods allow reverse engineers to see beyond the static code

and delve into the practical implications and operations of a software system under actual running

conditions.

One goal of reverse engineering is to make big pictures of how software is built. This helps manage

the hard parts at the bottom. A common use of this is to make new documents for software that

doesn't have complete or lost documentation [27]. The article talks about how understanding

complex software is hard and can have mistaken if done by hand. But using special tools and

methods like software visualization, code checking, adding notes, and changing can make things

better and more correct. Reverse engineering, which uses compiler technology, can also help find

connections that might not be easy to see in the code. The way software is designed, like with C++

language, is important for understanding and keeping it working well. These tools also help keep

software good by helping test parts, making changes safe, and setting rules for how things talk to

each other [28]. The research discussed how methods and procedures are reused by organizing

them in patterns of inheritance, even though this might make the code less neat. What sets C++

apart is that these approaches are built into the language itself and can be understood by looking

at the source code without executing it. In contrast to older languages like COBOL that rely on

specific labels and numbers for organization, C++ doesn't follow that approach. The key concept

is to convey ideas and solutions clearly and straightforwardly [29].

20

Fazlida et al., [28] investigated how humans understanding is really important, as using

these parts wrongly can make software complex and hard to manage. They found nine types of

issues that can happen during the development of software through a list of mistakes in object-

oriented software [28]. According to the authors, lacking sufficient knowledge can impact the

kinds of bugs that occur. Software engineering focuses on understanding programming languages

and the process of creating software, while reverse engineering examines programs written in a

particular language. SRE (Software Reverse Engineering) employs Cypress and Stamp to gather

information about design and execution [30]. The research discovers that because there's so much

data and code, this method is filled with challenges, similar to issues the old system faced when

being considered for reengineering.

 Bennett 1995, [31] has discussed about "the huge software systems," he means the old

systems we need but aren't sure how to manage in our organization. The authors mention that most

old systems usually lack sufficient, precise, and up-to-date documentation. This research utilizes

these challenges and presents automated or partially automated methods to recover a system's

components design [30],[32],[33].

Envision the system's metadata and database structure by employing the principles of software

program visualization theory, as suggested by [34], [35], [36]. The article emphasizes that reverse

engineering involves professionals analyzing malware behavior by comparing hard drive contents

before and after malware introduction. This practice allows for easier documentation,

maintenance, and modification of software at a more accessible level [37]. Additionally, this

approach is valuable for creating a secure system and a system that addresses vulnerabilities

effectively[38]. strongly emphasizes that vulnerability analysis and reverse engineering play a

pivotal role in the progress and ongoing development of cybersecurity investigations and

advancements [39].

1.6 VeraCrypt Software

VeraCrypt, a free and open-source program, can encrypt entire drives or encrypted volumes

effectively. It functions smoothly, encrypts data well, and is easily accessible, making it a practical

and reasonable choice. Stemming from the TrueCrypt project, which ended in 2014, VeraCrypt

carries on its legacy. When an authorized user wants to access encrypted data on a computer's

storage, VeraCrypt decrypts it seamlessly. The article thoroughly covers the overall features of the

TrueCrypt software, explains its encryption methods involving hashing, encryption algorithms,

and file system filter drivers [40]. The article discusses the availability of open-source security

21

tools and highlights a gap in their adoption by end users. It specifically focuses on encryption-

based open-source cybersecurity tools and aims to provide guidance for individuals interested in

exploring these tools in the digital world [41].

The authors enlightened that disk encryption protects data on devices such as hard drives

and flash cards when not in use. TrueCrypt stands out for its complete encryption, reliability,

efficiency, and ease of use. It maintains data security by encrypting and only allowing authorized

decryption. Encryption involves methods like hashing, algorithms, and file system filters [40].

VeraCrypt, released in 2016, is a sophisticated encryption application with several key features

[42]. For more information about VeraCrypt, you can visit their official GitHub repository at

https://github.com/veracrypt/VeraCrypt. These features include:

▪ Creation of virtual encrypted disks that can be mounted as real disks.

▪ Encryption of whole partitions or storage devices like USB flash drives or disks.

▪ Parallelization and pipelining techniques ensure that data can be read and written at a fast

rate, comparable to unencrypted drives.

▪ Encryption can be accelerated using hardware capabilities available in modern processors.

▪ Provides features like plausible deniability, including hidden volumes through

steganography and hidden operating systems.

1.6.1 Volume Encryption

VeraCrypt offers two types of volumes: file-hosted volumes and partition/device-hosted volumes.

▪ File-Hosted Volumes

This type of volume is a regular file that can be located on any storing medium. It is an independent

file that can be easily moved or copied as needed [7].

▪ Partition or Device-Hosted Volume

With this type of volume, VeraCrypt encrypts an entire hard disk partition. It is also possible to

encrypt various devices such as USB flash drives, solid state drives (SSDs), or external disks [9].

1.6.2 System Encryption

VeraCrypt uses on-the-fly encryption, also known as transparent encryption, to encrypt the system

partition or the whole system drive where Windows is installed[43]. Encryption and decryption of

files happen automatically in the background after the initial setup by the user. System encryption

ensures the highest level of security because all files created on the system partition are

permanently encrypted. This includes temporary files, logs, and sensitive files containing private

https://github.com/veracrypt/VeraCrypt

22

personal information that Windows generates and stores. By employing system encryption, these

files are always protected. The process involves a Pre-Boot Authentication (PBA) mechanism,

which is managed by the VeraCrypt boatload.

1.6.3 Plausible Deniability

In situations where a user is compelled to disclose their password by an adversary, VeraCrypt

offers two types of plausible deniability. A VeraCrypt partition or device appears as a cluster of

random data until it is decrypted. This can be explained as the partition being completely wiped

by overwriting it with random data, creating a plausible scenario. However, it is crucial to prevent

any data leaks for this to be effective.

The second challenge is that when using system encryption, an unencrypted VeraCrypt

bootloader is employed, which can be easily identified. To overcome this, the hidden operating

system feature can be utilized. A hidden volume is established within the available space of a

separate VeraCrypt volume. Even when the outer volume is accessible, the concealed volume

remains indiscernible, because the free space of a volume consists of random data, just like the

seemingly random data in VeraCrypt's unencrypted volume [43]. It is important to use completely

different passwords for the two volumes. The hidden volume functions similarly to a normal one

as shown in Figure 1.5. When mounting the volume, the password used determines whether the

visible or hidden volume will be accessed.

Figure 1.5 Hidden Volume [42]

A hidden operating system operates in a similar manner to a decoy operating system. During setup,

a decoy operating system is created to serve as a cover. This is necessary because when system

encryption is enabled, the VeraCrypt bootloader, which cannot be hidden, is generated for pre-

23

boot authentication (PBA). Consequently, it becomes impossible to prove the absence of an

encrypted operating system stored on the disk. The choice between the decoy system and hidden

system depends entirely on the password entered during PBA.

Using the decoy system as frequently as possible is crucial. If someone gains access to the

decoy system, they could scrutinize its usage. If the system's uptime is suspiciously low, the

existence of another system might be questioned. Meanwhile, when the hidden operating system

is in use, it appears to be installed on the same partition as the decoy system, even though it actually

resides on a separate artition. Every action performed is transparently redirected to the hidden

volume where the hidden operating system is located. Neither the system nor applications are

aware that data is being written to a different location [10].

While using the decoy system, it is not possible to accidentally overwrite data in the outer

encrypted volume since it resides behind the decoy system partition. However, it is possible to

overwrite the area where the hidden operating system is located while accessing the outer volume.

To address this scenario, VeraCrypt offers a protection mechanism for the hidden volumes (hidden

operating system). When activated, this feature prevents any write operations to the hidden volume

area. If such an action occurs, VeraCrypt reports an "invalid parameter" error to the system,

blocking write operations to both the hidden and outer volumes until they are dismounted.

In general, Plausible deniability is a concept in data encryption that allows users to conceal

the existence of encrypted information or activities. It serves as a protective layer, allowing

individuals to deny the presence of specific data even when subjected to external scrutiny or

coercion. Key encryption tools like TrueCrypt and VeraCrypt use plausible deniability

mechanisms such as concealed volumes, hidden operating systems, dual passwords, decoy files,

and steganography. These techniques help users maintain the security of their data even when

exposed to external scrutiny or coercion [44].

1.6.4 Optimization and Acceleration

Parallelization in VeraCrypt involves dividing data processing into multiple instances running

simultaneously. This approach helps accelerate the encryption and decryption of data by breaking

down each packet into smaller chunks. The number of chunks depends on the CPU's threads, and

the speed increase is directly proportional to the number of threads available [43].

Pipelining is another technique used by VeraCrypt to ensure efficient access to stored data,

making it appear as if the data is not encrypted. This asynchronous processing eliminates the need

to wait for the decryption of a file located in VeraCrypt's encrypted volume. Instead, the data

decryption occurs in parallel, allowing for faster access. It's important to note that pipelining is

24

supported only in the Windows version of VeraCrypt When it comes to hardware acceleration,

VeraCrypt takes advantage of it if the CPU supports it. Specifically, hardware-accelerated

Advanced Encryption Standard (AES) is utilized by VeraCrypt when the CPU supports AES-NI

instructions. This means that if the CPU has the necessary capabilities, VeraCrypt automatically

employs hardware acceleration for faster encryption and decryption processes.

1.6.5 Hashing and Encryption

In VeraCrypt, there are different encryption algorithms available for selection, such as AES,

Camellia, Kuznyechik, Serpent, Twofish, and combinations of these. These algorithms utilize a

key size of 256 bits and a block size of 128. To secure the data, VeraCrypt utilizes the XTS mode

of operation, which improves data integrity and minimizes the risk of tampering. Hashing is the

process of creating a unique cryptographic representation, called a hash value, of plaintext. It is

used to ensure the integrity of communication or files. There are various types of hash algorithms,

such as MD5, SHA1, SHA256, and CRC32. The Secure Hashing Algorithm (SHA) is preferred at

256-bits or above for cryptographic functions, with SHA384 and SHA512 functions also available

[7].

When selecting a password, users can also choose from various hash algorithms such as

RIPEMD-160, SHA-256, SHA-512, Whirlpool, and Stribog. These hash algorithms are used to

process the password and ensure its security during the encryption process.

Table 1.9 Comparison Among Different Types of Encryption Software

Encryption Software Type Platform

VeraCrypt Full-disk encryption and file

encryption

Windows, Linux, Mac

BitLocker Full-disk encryption Windows

GPG (GNU Privacy Guard) File encryption and email encryption Windows, Linux, Mac

AxCrypt File encryption Windows

TrueCrypt Discontinued Windows, Linux, Mac

ProtonMail Email encryption Web, iOS, Android

Table 1.9 provides a rundown of encryption tools like VeraCrypt, BitLocker, GPG, AxCrypt,

TrueCrypt, and ProtonMail. These tools can secure your entire disk or individual files on

Windows, Linux, and Mac systems.

VeraCrypt has a variety of benefits over competitors, including the following:

• It is a flexible encryption tool with powerful encryption algorithms and cross-platform

compatibility that enables users to build hidden volumes inside encrypted volumes.

25

• It gives users plausible deniability and user-friendliness, making it simple to encrypt and

decrypt data.

• High data security is provided by VeraCrypt's safe and user-friendly encryption

mechanism.

• Strong encryption algorithms provide high data security by allowing users to construct

hidden volumes inside encrypted volumes.

• In order to guarantee the security of user data, VeraCrypt is dependable and safe encryption

software that provides a wide range of encryption techniques and features [19].

1.6.6 Components of VeraCrypt

User Interface: VeraCrypt has a graphical user interface (GUI) that makes it easy for users to

encrypt their files and folders. The user interface includes a wizard that guides users through the

process of creating encrypted containers and volumes.

Encryption Algorithms: VeraCrypt supports several encryption algorithms, including AES

(Advanced Encryption Standard), Serpent, and Twofish. These algorithms ensure that data is

protected from unauthorized access and cannot be easily decrypted.

Encryption Modes: VeraCrypt supports several encryption modes, including XTS (XOR-

Encrypt-XOR), CBC (Cipher Block Chaining), and LRW (Liskov-Rivest-Wagner). These modes

provide different levels of security and performance, depending on the user's needs. In VeraCrypt,

there are several hash algorithms employed, including SHA-256, SHA-512, RIPEMD-160, and

Whirlpool. These algorithms play a crucial role in generating digital fingerprints or signatures of

data, ensuring that the data remains unaltered and free from tampering [43].

Key Files: VeraCrypt supports the use of key files as an additional layer of security. Key files are

small files that are used to unlock encrypted volumes. They can be any file, including images,

audio files, or documents. VeraCrypt requires users to set secure passwords in order to safeguard

their data. Passwords must contain a mix of letters, numbers, and symbols and be at least 20

characters long.

Volume Creation: VeraCrypt allows users to create encrypted volumes, which are virtual drives

that can be mounted and accessed like a regular drive. Volumes can be created on a hard drive,

USB drive, or other storage devices.

Hidden Volumes: VeraCrypt supports the creation of hidden volumes, which are encrypted

volumes within encrypted volumes. Hidden volumes can be used to store sensitive data, and if

26

someone forces the user to reveal the password, they can disclose the password for the outer

volume, which will only show non-sensitive data.

VeraCrypt possesses the capability to encrypt the complete system disk, encompassing

both the operating system and all associated files. This feature provides the maximum level of

security, as all data on the system drive is encrypted and cannot be accessed without the password.

Overall, VeraCrypt is a robust encryption software that provides multiple layers of security to

protect sensitive data shown in Figure 1.6. Its components work together to ensure that data is

encrypted, authenticated, and protected from unauthorized access [45].

Figure 1.6 Vera Crypt Coded File Container

1.6.7 Programming Comprehension

The structure of a program is what allows humans to manage software, which is inherently large

and complex. To make it more manageable, we break it down into smaller parts, with each part

representing a "unit" in the program. This helps us create a mental image of the program. A similar

process occurs during reverse engineering. Reverse engineers must reconstruct the map of the

different components that make up a program. Understanding the programmed structure is the first

step in comprehending software assets and is essential for software development. It is needed for

tasks such as defect detection and repair, code organization and optimization, adapting to different

platforms, utilizing reusable components, integrating old and new technologies, and adding new

features. Furthermore, this understanding should be shared within the team and documented for

training new team members due to personnel changes. The Structured and object-oriented analysis

approaches are still relevant as software moves from initial development to maintenance and

evolution [46].

VeraCrypt encrypted file container

Volume Partition Files

Encrypted

 KEY
Data encrypted Data not encrypted

27

The knowledge required to model an existing system and its surrounding environment

bears many similarities with the knowledge required to model the real world and create a new

software system. Hierarchies, for instance, are utilized in both situations to create abstractions and

lessen complexity. For the purpose of reengineering an existing system to be more object-oriented,

object-oriented structure models may be helpful. Understanding the architecture of existing

software might benefit from understanding the ideas and patterns used in software engineering.

1.7 IDA Pro Software

IDA Pro is a popular disassembler and debugger software developed by Hex-Rays for reverse

engineering and analysis of computer software binaries. It supports various processor architectures

and performs advanced code analysis [47]. The software features a multi-view graphical user

interface with dockable windows, interactive code navigation, cross-referencing, and code

patching capabilities. It also includes a built-in scripting language called IDC, which allows users

to automate tasks and perform batch processing. IDA Pro also includes a powerful debugger that

supports various techniques and can be attached to running processes. It also offers a rich

ecosystem of plugins and extensions, and an optional Hex-Rays Decompiler module. IDA Pro is

widely used for tasks like vulnerability analysis, malware analysis, software protection, and code

auditing. In the research I used IDA Pro to examine the veracrypt Encryption Software.To use IDA

Pro, follow these steps

▪ Install the software and follow the installation instructions.

▪ Open a binary file and start IDA Pro.

▪ Initialize the analysis by determining the binary's architecture, entry points, and metadata.

▪ Navigate the interface using the graph view and text view, functions window, and strings

window.

▪ Basic analysis includes disassembling, decompiling, searching, and cross-referencing.

▪ Advanced analysis includes breakpoints, debugging, plugins, renaming, commenting,

patching binaries, and saving and exporting data.

▪ Work with patches and modifications by directly modifying the binary.

▪ Save and export data for reporting or collaborative purposes.

28

The feature of this software is depicted in Table 1.10.

Table 1.10 Features of IDA Pro Software

Feature Details

Analysis Capabilities
IDA Pro analyzes executable files, disassembles, decompiles, and

represents code.

Decompile IDA Pro features built-in decompile for binary code conversion.

Interactive Interface
IDA Pro offers interactive interface for code navigation, data

structures, function calls, and modification.

Scripting
IDA Pro supports scripting languages for automating tasks and

creating plugins.

Debugger Integration IDA Pro integrates with debuggers for real-time code analysis.

Collaborative Analysis

IDA Pro allows multiple users to collaborate on the analysis of a

binary file, with each user able to make annotations, add comments,

and share their analysis with others.

Plugin Architecture
IDA Pro's plugin architecture enables custom functionality

development.

Table 1.10 emphasizes that IDA Pro is a robust tool for examination and understanding. software.

It helps with tasks like taking apart executable files, turning complex code into simpler language,

and collaborating on analysis. IDA Pro also works with scripting, links to external debuggers, and

allows people to build their own tools using plugins.

1.8 Problem Statement

The problem addressed in this thesis is the design and development of a Framework for examining

anti-forensics disk encryption tools using software reverse engineering principles. The objective

is to develop a protocol that can be used to evaluate the encryption tool's performance in hiding

data and thwarting forensic examination. This procedure ought to be able to spot any flaws or

vulnerabilities in the technology that forensic investigators might use to recover data. Locating the

encryption tool for investigation is the initial step. This tool should be widely used and recognized

for its capacity to hide data from forensic experts. Conduct static analysis, which involves studying

the encryption tool's design and code without running it.

The main goal of this framework is to offer a comprehensive assessment of how well the

anti-forensic disk encryption tool works and to identify any weaknesses or openings that forensic

investigators could use. Security analysts, forensic investigators, and experts in digital forensics

can use this protocol to assess and improve the effectiveness of disk encryption solutions.

29

1.9 Research Motivation

For forensic investigators, a big question is: How can we make sure we've got all the information?

It's important to give a report that's fair and neutral. But when data is hidden, encrypted, or

unknown, it's hard to be fair because hidden stuff stops us from analyzing everything properly.

Using disk encryption tech is making investigations harder and slower. People doing illegal things

use encryption to hide evidence. Denning and Baugh, 1997 [48] Presented various cases and

situations where obtaining data in a decrypted format was unattainable. There are numerous

occurrences where retrieving non-encrypted data has proven to be exceptionally challenging.

Matthew et al., 2010 [49] highlight effectiveness of the attack's contributions is validated by

assessing the proposed techniques within the analytical framework. Theoretical insights and

practical evaluations are intended to provide guidance for the continuous enhancement of digital

forensic strategies.

Singh, 2000 [50] has illustrated the historical precedence of confidential communication,

instances such as the use of substitution ciphers by notable figures like Julius Caesar and the

imprisoned Mary Queen of Scots, as well as secret writing during the Greek-Persian Wars in 480

B.C., exemplify the imperative need for privacy in correspondence. In each case, the

communicators aimed to ensure that their messages remained confidential and comprehensible

solely to those possessing the knowledge to decipher them back into a readable form. The stakes

were high, as any unintended revelation of the message's content to an unauthorized party could

lead to severe consequences. An unfortunate case in point is Mary Queen of Scots, who faced the

grave consequence of treason and execution when someone successfully decoded her messages,

subsequently using them against her.

Research proposal addresses the growing challenge of anti-forensic disk encryption tools

in digital forensics, focusing on a comprehensive approach using software reverse engineering

principles to develop a protocol for examining these tools. This holistic approach acknowledges

the limitations of conventional methods and the need for innovative strategies to counteract

emerging anti-digital forensic tools. The objectives are to advance digital forensic techniques,

enhance investigator capabilities, provide practical tools and guidelines, and ensure investigative

integrity by countering encryption-based obfuscation techniques. This approach could potentially

reshape digital investigations and contribute significantly to the ongoing battle against digital

evidence concealment.

30

1.10 Aims and Objectives

Goals and objectives are essential for establishing precise goals and ensuring that efforts are

focused on achieving specific outcomes. They are widely used in various fields. The primary

objective of this research was to develop a protocol for anti-forensic disk encryption tool

examination using principles of software reverse engineering.

▪ To study the impact of anti-forensic techniques on Forensic Investigations.

The study of anti-forensic techniques in digital forensics and cybersecurity is crucial for

investigators to recover and analyze digital evidence. It involves research objectives,

literature review, data collection, testing scenarios, analysis, compliance with legal and

ethical considerations, real-world case studies, recommendations, and publication.

▪ To propose a protocol for examination of the said tools with focus on reverse

engineering.

The protocol for examining reverse engineering tools involves a systematic approach,

including scope definition, tool selection, documentation, legal compliance, analysis,

testing, reporting, recommendations, and presentation.

▪ To perform software reverse engineering on popular disk encryption software using

industry tool IDA pro disassembler.

Reverse engineering disc encryption software using the IDA Pro disassembler is a complex

and potentially sensitive task. It involves static and dynamic analysis, identifying

encryption algorithms, obfuscation techniques, vulnerability assessment, documentation,

testing, reporting, and recommendations.

▪ To compare and validate the proposed and existent disk encryption software

structures so as to enable forensic investigation.

The study validates disk encryption software structures for forensic investigation, ensuring

legal compliance, and comparing algorithms, key management, and security features.

Future work should focus on improving encryption software structures.

1.11 Scope of the Research Work

An encryption tool code and organizational structure are examined during a static analysis without

the programmed being run. This study, which involves looking at the encryption tool source code

to find any potential security vulnerabilities or weaknesses, is typically carried out using

31

specialized software tools. The following tasks can be included in the scope of work for a static

analysis of an encryption tool:

▪ Reviewing the source code of the encryption tool is the first step in a static analysis. This

entails checking the source code for flaws, weaknesses, and other problems that can affect

the tool's security.

▪ Code flow evaluation- To find any potential security holes or flaws in the code, the static

analysis tool can run a code flow analysis. This analysis might point out parts of the code

that an attacker might use to access sensitive data without authorization.

▪ Flow analysis of data to find any potential problems with data security, the static analysis

tool can also carry out a data flow analysis. This analysis can point up places in the code

where sensitive information, such encryption keys or other private information, could be

leaked.

▪ Static analysis of an encryption tool is, in general, a crucial step in verifying the tool's

security and dependability. Before the tool is used, it can assist in locating potential security

holes and flaws in the code, reducing the chance of data breaches and other security lapses.

1.12 Research Contribution

A substantial addition to the field of computer forensics can be made by designing and creating a

protocol for anti-forensic disc encryption tool analysis utilizing the concepts of software reverse

engineering. In order to make it difficult or impossible for forensic investigators to extract data

from encrypted discs, anti-forensic tools are used. On the other side, reverse engineering is the act

of dissecting software to learn how it functions and how it might be altered.

Designing and developing a methodology for anti-forensic disc encryption tool analysis

using the principles of software reverse engineering will significantly advance the area of

computer forensics. Anti-forensic technologies are employed to render data extraction from

encrypted discs for forensic investigators challenging or impossible. Reverse engineering, on the

other hand, is the process of analyzing software to determine how it works and how it might be

modified.

The protocol can help academics better comprehend anti-forensic methods and software

reverse engineering in addition to its many practical uses. The development of such a procedure

can provide information about the conception, use, and analysis of anti-forensic techniques. It can

also influence the creation of forensic investigative methods and equipment in the future. In

conclusion, employing software reverse engineering concepts to create and develop a protocol for

32

anti-forensics disc encryption tool analysis can significantly advance the field of computer

forensics and increase the efficacy of investigations.

1.13 Outline of Thesis

Chapter 1: Introduction

This chapter provides an overview of the research topic, introduces the significance of digital

forensics, anti-forensics, encryption techniques, reverse engineering technology detection tools,

and presents the problem statement. It outlines the objectives of the study, discusses the scope and

limitations, and provides an overview of the thesis organization.

Chapter 2: Literature Review

In this chapter, a comprehensive review of existing literature related to digital forensics, anti-

forensics, reverse engineering, and other security-related detection is presented. The chapter also

discusses the strengths, limitations, and gaps in the current research, setting the foundation for the

proposed study.

Chapter 3: Methodology

This chapter details the methodology used in the research. It describes the process of achieving the

set goals and objectives.

Chapter 4: Results and Discussion

The research findings are revealed in this chapter, which also examines them. Performances of

various encryption software are evaluated and compared as part of this evaluation.

Chapter 5: Conclusion and Future Directions

This chapter summarizes the main findings of the study and presents the conclusions drawn from

the research. It discusses the contributions made by the study and addresses the fulfilment of the

objectives; the chapter also suggests potential areas for future research.

1.14 Summary of Chapter

In this research, a technique for deciphering anti-forensic disc encryption methods utilizing the

concepts of software reverse engineering is proposed. This procedure aims to aid forensic

investigators in better comprehending the inner workings of these instruments and in locating any

potential flaws or vulnerabilities. The process entails a number of phases, including identifying

the encryption tool being used, obtaining the encrypted data as well as the tool itself, reverse

engineering the instrument using debuggers and disassemblers, and spotting any potential flaws or

vulnerabilities in the tool's design. The report also covers the difficulties in deciphering between

33

legitimate and malicious uses of anti-forensic disc encryption systems, including the use of

obfuscation techniques. Additional details on anti-forensic tactics and software reverse

engineering. Without having access to the source code, a software system is examined to determine

how it functions. This method is known as software reverse engineering. This method is frequently

used by security researchers to find vulnerabilities in software, software engineers to learn how

existing software functions, and hackers to take advantage of those vulnerabilities. In order to

make it difficult or impossible for investigators to obtain the evidence, anti-forensic tactics are

procedures used to conceal or obfuscate digital evidence. Disk encryption, steganography, and file

wiping are a few examples of anti-forensic methods that can be employed for both legitimate and

illicit objectives. It's crucial to remember that using anti-forensic methods to conceal evidence of

criminal activities is unlawful in and of itself. Overall, the technique outlined in the study offers

forensic investigators a methodical way to examine anti-forensic disc encryption methods and find

any potential flaws that could be exploited during forensic investigation.

34

CHAPTER II

LITERATURE REVIEW

In the last chapter, we discussed the research and gave a brief summary of important information

from previous studies, with a special focus on things like disc encryption, digital forensics, anti-

forensic techniques, and reverse engineering methods. Including a literature review is very

important in any research project because it helps in gathering information and past research about

the topic. It involves carefully looking at and evaluating the work that has been done before on the

subject. The literature review looks at what we know about the topic right now and tries to find

gaps, trends, differences, and patterns in the existing research. Therefore, in this chapter the brief

study of existing encryption software and research are discussed.

 The examination of anti-forensic disk encryption tools and the use of software reverse

engineering can be relevant to various stakeholders, including law enforcement agencies, forensic

investigators, security researchers, software developers, and academics. A broad literature review

can cater to this diverse group of potential readers.

2.1 Encryption

VeraCrypt is a secure encryption system that supports various encryption algorithms, including

AES, Serpent, and Twofish, with a default of AES with a 256-bit key length. It uses a key

derivation function (KDF) to derive encryption keys from user-provided passwords or keyfiles,

based on the PBKDF2-HMAC algorithm. Users can create encrypted volumes as files or partitions,

with random data generated during the creation process. VeraCrypt performs encryption and

decryption on-the-fly, ensuring transparency and seamless access to encrypted data. It supports the

creation of hidden volumes and operating system encryption, making it difficult to detect the

operating system. It also includes security features like RAM encryption and pre-boot

authentication.

2.1.1 Popular Encryption Software

In this section, the details of the existing popular disk encryption software is discussed named

ProtonMail, GNU Privacy Guard and AxCrypt.

2.1.2 ProtonMail

An encrypted email service that focuses on providing users with a high level of privacy and

security for their email communications. It was developed by a team of researchers at CERN (the

35

European Organization for Nuclear Research) in Switzerland, and it was launched in 2014.

ProtonMail is notable for its end-to-end encryption, which means that only the sender and the

recipient of an email can read its contents. Following are some key features and functions of

ProtonMail.

▪ End-to-End Encryption

ProtonMail keeps your emails super secure by using end-to-end encryption. This means your

messages get turned into secret code on your device and can only be turned back into regular

emails on the receiver's device. Even ProtonMail's servers can't peek at your email content.

▪ Zero-Access Encryption

 ProtonMail employs zero-access encryption, which prevents the service provider (ProtonMail)

from accessing the contents of users' emails. This is achieved by encrypting the data on the user's

device before it's sent to the server, and only the user holds the decryption key.

▪ Open Source

 ProtonMail has made its encryption algorithms and codebase publicly available as open source,

enabling the security community to conduct audits and confirm the validity of the service's security

assertions.

▪ Anonymous Sign-Up

ProtonMail provides an anonymous signup process with a username and password, ensuring

privacy. It also offers encrypted metadata and accepts anonymous payment methods like Bitcoin

and cash, but users should exercise caution.

▪ Self-Destructing Emails

ProtonMail allows users to send self-destructing emails, which are automatically deleted from

the recipient's inbox after a certain period of time.

▪ Two-Factor Authentication (2FA)

 ProtonMail enhances user account security by enabling two-factor authentication (2FA), requiring

users to provide a password and a code generated by a smartphone app or SMS, providing a second

layer of protection against unauthorized access even if the password is discovered.

▪ Cross-Platform Support

ProtonMail offers secure email management through web browsers and mobile apps, providing a

user-friendly interface on desktop and laptop computers. It offers specialized apps for iOS and

36

Android platforms, integrating end-to-end encryption and optional two-factor authentication for

improved security.

▪ Custom Domains

ProtonMail enables users to create custom domains for email accounts, enhancing personal and

professional image, maintaining brand consistency, and providing a personalized email

experience.

▪ Free and Paid Plans

ProtonMail offers both free and paid subscription plans. While the free plan provides basic

features, the paid plans offer additional storage, custom domains, and advanced features. PGP

Support ProtonMail supports PGP (Pretty Good Privacy) encryption, allowing users to send

encrypted emails to non-ProtonMail recipients.

▪ Secure Contacts

ProtonMail provides privacy and security by encrypting email recipient contact details,

safeguarding sensitive information and preventing unauthorized access, ensuring only account

holder and decryption key holders can access it.

▪ Secure Attachments

ProtonMail's encryption technology ensures secure attachment sharing, protecting sensitive

information and supporting various file types and sizes, making it a reliable option for secure file

sharing.

▪ Accessible Interface

 ProtonMail is a user-friendly encrypted email service, offering privacy and security through end-

to-end encryption and zero-access methods. It's popular among individuals and organizations

seeking a secure alternative to traditional email services, but users should be cautious about

personal login credentials and encryption keys.

▪ Features and Limitation of ProtonMail

ProtonMail is an email service that focuses on secure and private communication, offering strong

encryption, user privacy features, and commitment to data protection. Key features include end-

to-end encryption, zero-access encryption, open-source encryption, anonymous sign-up, self-

destructing messages, Two-factor authentication, PGP compatibility, custom domains, simplified

encryption, cross-platform support, and secure data centers. However, ProtonMail has limitations

37

such as a learning curve, limited features in the free plan, dependence on ProtonMail or another

email service that supports OpenPGP encryption, password recovery challenges, and no traditional

POP3 support. The free plan has limitations on storage, sending limits, and advanced features,

while the paid plans offer advanced features and increased storage. Additionally, ProtonMail may

have limited third-party integration due to its emphasis on security and privacy. Custom domains

are only available in paid plans, which may be a limitation for users seeking this feature in the free

plan. Overall, ProtonMail is a popular choice for individuals and organizations seeking secure and

private email communication.

2.1.3 GNU Privacy Guard

 GPG often referred to simply as GnuPG, is a free and open-source software application that

provides encryption, decryption, digital signatures, and key management services for securing

communications and data. It is based on the OpenPGP (Pretty Good Privacy) standard and is

designed to provide privacy and data integrity in email communication, file sharing, and other

forms of digital communication. Here's a comprehensive overview of GPG's features, components,

and applications.

▪ Encryption and Decryption

 GPG allows users to encrypt messages and files to ensure that only authorized recipients can read

the content. Encryption is performed using recipient's public keys, and decryption requires the

recipient's private key.

▪ Digital Signatures

GPG lets you make digital signatures for messages and files. These signatures prove who sent the

stuff and make sure it didn't change while traveling. To check the signature, you use the sender's

public key, and the signature itself comes from their private key.

▪ Key Management

GPG manages encryption keys and digital signatures keys. Users can generate their own key pairs

(public and private keys), share their public keys with others, and keep their private keys secure.

The key pair is used for encryption and digital signatures.

▪ Key Servers: GPG supports the use of key servers, which are online repositories where

users can upload and download public keys. This allows others to easily find and use your

public key for encryption and verification.

38

▪ GPG's trust model allows users to establish a level of trust for public keys. Users can

mark keys as trusted, untrusted, or unknown. This helps in determining the reliability of a

key owner's identity.

▪ Web of Trust: GPG's Web of Trust is a decentralized model of trust verification. Users

can sign each other's keys to vouch for their authenticity. This helps in building a network

of trust within the GPG community.

▪ Symmetric and Asymmetric Encryption: GPG can do two types of encryption: one

where you use the same key for both hiding and revealing information (symmetric), and

another where you use a pair of keys (one public and one private) for hiding and revealing

information (asymmetric)

2.1.4 AxCrypt

A file encryption software that focuses on providing easy-to-use encryption for individual files

and folders. It's designed to protect sensitive data by encrypting it with strong encryption

algorithms. AxCrypt is available for both Windows and macOS platforms. Here are the details and

descriptions of AxCrypt:

A Key Features

▪ File Encryption: AxCrypt allows you to encrypt individual files or entire folders.

Encrypted files are protected with strong encryption algorithms, making it difficult for

unauthorized users to access the content.

▪ Strong Encryption Algorithms: AxCrypt uses AES-256 encryption, which is considered

one of the most secure encryption standards available. This ensures that your encrypted

data remains secure against various attacks.

▪ User-Friendly Interface: AxCrypt provides an easy-to-use interface that integrates with

the Windows Explorer context menu. You can right-click on a file or folder and choose to

encrypt it using AxCrypt.

▪ Passphrase-Based Encryption: AxCrypt uses a passphrase for encryption and decryption.

You create a strong passphrase that only you know, which serves as the encryption key.

This passphrase is not stored anywhere, ensuring your data's security.

▪ Key Sharing: You can share encrypted files with others. Recipients need to know the

passphrase to decrypt and access the content.

39

▪ Automatic Encryption: AxCrypt can automatically encrypt files as they are added to a

designated folder. This helps ensure that new files are protected without manual

intervention.

▪ Cloud Storage Integration: AxCrypt supports integration with cloud storage services like

Dropbox, Google Drive, and Microsoft OneDrive. Encrypted files can be uploaded to these

services securely.

▪ Decryption on the Fly: Encrypted files can be decrypted on the fly when you open them.

You don't need to manually decrypt the file before opening it; AxCrypt handles this process

seamlessly.

▪ Secure File Deletion: AxCrypt includes a secure file deletion feature that ensures deleted

files cannot be easily recovered by using data recovery tools.

▪ Multiple Platform Support: AxCrypt is available for both Windows and macOS

platforms. This allows you to encrypt and decrypt files across different devices.

B Usage

▪ Single File Encryption: Right-click on a file, select the "AxCrypt" option from the context

menu, and choose "Encrypt." You'll be prompted to enter a passphrase. The file will be

encrypted, and you'll need the passphrase to decrypt and access it.

▪ Decryption: Double-click on an encrypted file. AxCrypt will prompt you to enter the

passphrase, and then it will decrypt and open the file with the associated application.

▪ Automatic Encryption: You can set up folders for automatic encryption. Any files added

to these folders will be automatically encrypted using the passphrase.

▪ Sharing Encrypted Files: To share encrypted files, you can provide the recipient with the

encrypted file and share the passphrase through a secure channel. The recipient needs both

the file and the passphrase to decrypt the content.

C Limitations

▪ Individual File Encryption: AxCrypt primarily focuses on individual file encryption. If

you're looking for full-disk encryption or system-level encryption, you might need to

consider other solutions.

▪ Passphrase Management: The security of your encrypted files depends on the strength of

your passphrase. You need to ensure you create a strong passphrase and keep it secure.

▪ Dependent on Passphrase: If you forget your passphrase, you won't be able to access your

encrypted files. AxCrypt doesn't have a password recovery mechanism.

40

▪ Manual Encryption: While AxCrypt offers automatic encryption for designated folders,

it doesn't automatically encrypt all files on your system. You need to use the context menu

or the AxCrypt application to encrypt files.

▪ Windows and macOS Only: While AxCrypt covers the major desktop platforms

(Windows and macOS), it might not be suitable for users who need encryption on other

platforms.

2.2 Related Literature on Encryption

This section offers an in-depth examination of prior research related to encryption, organized by

the year of publication. Bursac et al.'s 2017 [25] research offers a comprehensive analysis of four

open-source encryption tools, offering valuable insights for data protection. However, it has

limitations in tool selection, static analysis conditions, and user experience evaluation. R. Singore,

2024 [51] review provides a comprehensive understanding of forensic cybercrime and computer

forensics, focusing on digital forensics and various types. It highlights the interdisciplinary nature

of the field and identifies future directions, but acknowledges limitations.

Tan et al. (2020) [52] offers a valuable contribution to the understanding of BitLocker

encryption and its security implications. It offers key insights into the encryption mechanism,

decryption processes, and potential vulnerabilities, while proposing practical recommendations for

secure usage. However, the limitations, such as the limited scope, rapid evolution of the field, lack

of empirical evaluation, and potential bias, should be considered when interpreting and applying

the findings.

C. Gastel 2019 [53] study on SSD firmware reveals systemic weaknesses in hardware

encryption, highlighting security risks and the need for regular firmware updates and industry best

practices for data encryption. Bhushan et al.,2022 [54] explores Bitlocker encryption, a crucial

tool in digital forensics, and its forensic implications. It discusses its encryption process,

decryption methods, and future trends. The review emphasizes the need for ongoing research and

collaboration between academia, industry, and forensic communities to overcome encryption

challenges and navigate the complexities of modern encryption technologies.

 Evangelin et al., 2013 [55] emphasizes the importance of reverse engineering in software

re-engineering, suggesting a static analysis approach for Java bytecode reverse engineering,

despite its limitations. S Signgore, 2024 [51] Examine Forensic Cybercrime and the Role of

Computer Forensics" provides an in-depth analysis of forensic cybercrime and its role in

41

investigating digital crimes. It highlights the importance of advanced forensic approaches and the

potential of emerging trends like artificial intelligence and machine `learning.

 Wali et al., 2024 [56] emphasizes the significance of information privacy and

confidentiality in digital security, highlighting the limitations of symmetric encryption methods

and the need for secure encryption and user verification schemes. It introduces digital signatures,

cryptographic techniques, fostering trust and non-repudiation. Maletic et al.,2004 [56] Supporting

Source Code Difference Analysis" introduces meta-differencing, an XML representation of source

code, and the srcML format for analyzing syntactic changes between versions. They demonstrate

how srcML and srcDiff can be used with standard XML tools.

2.3 Digital Forensics and Anti-Forensic

This section discusses the detailed review of digital forensics and anti-forensics according to the

year of publication. In 2002, the author Jonah [1] explored the evolution of codes and ciphers,

their impact on history, and the intellectual competition between creators and breakers. It portrays

codes as a relentless battle for existence, evolving or adapting to new forms. In the same year 2002,

Wolfe [57] discussed the alternative methods for investigating computer cases where suspects

refuse cooperation and encryption keys, emphasizing the importance of investigators' methods and

strategies in determining case success or limitations.

Nguyen, 2004 [58] investigated the quality of cryptographic implementations in software

systems, focusing on GNU Privacy Guard (GPG). It reveals critical flaws in GPG v1.2.3, including

a vulnerability to GPG-generated ElGamal signatures. The study emphasized the need for

continuous evaluation and auditing of cryptographic software, especially in secure email

applications.

Geiger, 2006 [59] have developed the techniques to examines 13 commercial counter-

forensic tools in digital forensics, identifying operational weaknesses and filesystem fingerprints,

and introduces 19 tools and Aperio for automated detection. Hosgor et al., 2006 [60] discovered

the rise of digital crime, such as identity theft and online piracy, necessitates the use of digital

forensics to combat these crimes, however, cybercriminals have developed anti-forensic

techniques, highlighting the need for robust countermeasures to maintain the integrity of digital

crime investigations. Cappaert et al., 2006 [61] discussed the use of encryption techniques to

improve software security and prevent tampering attacks, introducing code encryption and

integrating code dependencies into a static call graph.

42

Canfora and Massimiliano, 2007 [62] examined four different algorithms and analyzed

their memory construction rate, key size, CPU utilization time, and encryption speed to understand

the resource consumption and the time taken by each algorithm to complete its task. Further

investigation is required to assess the power usage of these algorithms.

Cappaert et al., 2008 [63] has introduced a method of partial encryption that relies on code

encryption. in this approach, the binary codes are divided into smaller segments and each segment

is encrypted. When the code is executed, the encrypted segments are decrypted by the users. This

way, the partial encryption addresses the limitations of decrypting the entire binary code at once,

as only the necessary segments of the code are decrypted during runtime. Salama et al., 2008 [64]

evaluates six encryption algorithms used in internet and network applications: AES, DES, 3DES,

RC2, Blowfish, and RC6. It compares their effectiveness under various settings and data block

sizes, the findings highlight the impact of encryption algorithm choice on security and

performance.

Alomari et al., 2009 [65] evaluated encryption algorithms and modes of operation for

securing storage devices, focusing on disk drives. It evaluates the XTS mode of operation, an

IEEE-approved standard, and compares it with other encryption algorithms. The findings help

designers make informed decisions about disk encryption, balancing security and performance.

Cohen, 2009 [66] prioritized the growing demand faced by criminal justice agencies to investigate

crimes perpetrated through the Internet or other electronic platforms, this necessitates the

development of resources and procedures aimed at effectively searching, locating, and preserving

electronic evidence.

Casey et al., 2011 [67] has investigated the impact of full disk encryption (FDE) on digital

investigations, highlighting its potential to obstruct access to crucial legal evidence. Yadav et al.,

2011 [68] discovered the internet has boosted digital forensics, utilizing commercial and open-

source tools to investigate and solve digital crimes, the review classifies digital crimes, categorizes

tools, and proposes a simplified investigation model for efficiency, useful for law enforcement and

forensic experts. Pimenidis , 2011 [69] focused on the challenges faced in investigating and

prosecuting electronic crimes due to the presence of artifacts on computer systems. Computer

criminals employ countermeasure techniques to hinder investigations, resulting in costly and time-

consuming processes, the paper delves into the problem of anti-forensics in computer forensic

investigations.

Mouton and Venter, 2011 [70] demonstrated the practicality of Digital Forensic Readiness

(DFR) in wireless sensor networks, reducing DFI costs. Our research focuses on cloud

environments and extensive evidence analysis. Alharbi et al., 2011 [71] focused on a method called

43

"proactive and reactive functional process," which seeks to examine techniques that could evade

forensic investigations and make live investigations easier. This method is created by looking at

what we already know and is meant to automate all the steps of the proactive part. It will be used

to build and run proactive and reactive systems using a special language and automatic code

generation. The method addresses two big challenges: predicting attacks ahead of time and making

the proactive part better by adding a feedback loop for improvement.

Janet, 2012 [72] discovered involves finding solutions for handling encrypted data, most

of the research focuses on ways to either keep or obtain decryption keys. Forensic investigators

are always faced with the obstacle of sophisticated encryption, which is why this issue needs to be

stressed. As per Principle 1 of the Good Practice Guide for Computer-Based Electronic Evidence,

investigators have to determine whether to take a copy of volatile memory as encryption modifies

the memory state.

Adedayo and Shao, 2013 [73] examined the role of data encryption in information security

and its impact on digital forensics. It examines the TrueCrypt encryption solution and the need for

innovative technologies to balance information security and digital forensics, the ultimate goal is

to strike a balance between encryption's role and digital forensics' pursuit. Sharjeel et al., 2013

[74] examined how modern trends, advancements in technology, and strategies to hide evidence

(anti-forensics) affect digital forensics. It also looks at how experts in digital forensics are

responding to these challenges.

Andrew Davies, 2014 [75] have delved into the difficulties encountered by forensic

investigators when it comes to identifying concealed volumes and operating systems within

computer hard disk data. These challenges are primarily attributed to the intricate characteristics

of TrueCrypt and the constant evolution of digital security technologies. Dealing with encryption

is still super important for successful investigations. The articles share important information about

how encryption investigations work, including both cases where they worked and cases where they

didn't. It gives useful tips and shows examples of successful attempts to break encryption,

encouraging forensic investigators to be proactive in their digital investigations. Understanding

encryption is still very important for successful investigations [76] [67].

Balducci and Devlin, 2015 [45] enlightened that the objective of data forensics in the

context of TrueCrypt is to unlock an encrypted container and obtain its contents in a readable

format. This container may take the form of a disk partition, a single file volume, or even an entire

disk. Researchers anticipate that by scrutinizing TrueCrypt's weaknesses on multiple fronts, they

can uncover a method for decrypting it. A thorough examination of source code revealed only four

minor vulnerabilities.

44

Casey, 2016 [77] highlighted the blurred distinction between technical and investigative

tasks in digital evidence, leading to confusion and erroneous judgments, resulting in court

restrictions and the establishment of digital forensic units. Victor and Ray, 2016 [78] discovered

that digital forensics primarily centers on the identification and examination of cybercrimes,

encompassing various subdomains that include database, Internet of Things (IoT), malware,

network, drone, cloud, wireless, data, and mobile forensics. Vincze et al., 2016 [79] emphasized

that the 21st century has witnessed significant progress in secure computing and network

technologies, which, in turn, have posed fresh challenges for the field of digital forensics.

Traditional approaches have become insufficient due to the intricacy of digital information and the

prevalent use of encryption and anonymization tools. To enhance the efficacy of digital forensics,

they suggest continuous training, the establishment of standardized procedures, and increased

investment in research and development.

Louiza et al., 2017 [9] has discovered full disc encryption (FDE), a process that encrypts

every sector of a disc volume without additional storage. It provides a formal delineation of

security concepts, particularly in chosen-plaintext and chosen-ciphertext attacks. The review

classifies various modes of FDE operation and introduces a new concept called a "diversifier" that

reduces input/output operations per second by 4%. This innovative approach has the potential to

revolutionize full disc encryption and information security.

Awotunde et al., 2017 [80] discussed cryptography, which involves using codes to protect

sensitive data by encrypting and decrypting it. However, this process comes with a trade-off in

terms of resource usage. David et al., 2017 [46] presented tests if a binary file header is compatible

with the PZ-PE file format specification, using real-life scenarios and targeted attacks, future

research will explore data sections or opcodes sections to expand detection criteria. Jusas et al.,

2017 [81] provided evaluations and investigations on digital triage, focusing on live and post-

mortem triage, mobile device triage, and triage tools, highlighting its potential to solve case

backlogs in digital forensics but highlighting challenges for developers. Muhamad, 2017 [82]

provided an overview of the Advanced Encryption Standard (AES) algorithm, its key features,

encryption process, and strengths, comparing it to other encryption algorithms like DES, 3DES,

and Blowfish, and comparing them to gain a comprehensive understanding of AES's unique

capabilities.

Dogan, 2018 [83] introduced a new data hiding algorithm using pixel pairs and chaotic

maps, utilizing the modulo function. The algorithm's effectiveness is evaluated through embedding

secret data into images, revealing high visual quality, efficient running time, data security, and

high payload capacity, promising widespread adoption. Arewa, 2018 [84] explored Nigeria's

45

cybercrime challenges, focusing on national laws and digital forensics. It uses a library-based

approach to analyze materials, highlighting the need for specialized skills and digital protocols for

detection and evidence preservation. It recommends legal and institutional mechanisms to combat

cybercrimes.

Arshadet al., 2018 [85] explored the digital forensics plays a crucial role in criminal

investigations, but its credibility in legal proceedings is marred by complexity and ever-changing

legislation. The article explores emerging technologies and recommends the establishment of best

practices and testing methodologies to bolster the trustworthiness of electronic evidence.

Vadlamudi et al., 2018 [3] discovered that cloud computing is crucial for modern life, but

cybercriminals are developing anti-forensic techniques. This paper analyses challenges in cloud

forensic investigations, contributing to efforts to enhance methodologies and stay ahead of threats.

Meijer and Gastel, 2018 [86] examined how numerous SEDs from various vendors implemented

complete disc encryption. These companies cover almost half of the SSDs now available for

purchase. We discovered that the drives we looked at contain serious security flaws. Many times,

the drive's contents can be recovered without the use of a password or secret key, completely

getting around the encryption.

Hassan, 2019 [87] the primary objective of this article is to outline the various anti-forensic

attack types and tactics, as well as the difficulties that forensic investigators may run into in the

field of digital forensics. Another goal is to show how to defend against these attacks while also

taking into consideration their limitations. Patel, 2019 [88] examined the performance of

cryptographic algorithms like AES, DES, and Blowfish in encryption and decryption of data files,

analyzing execution time and memory utilization. It aims to help users select the right algorithm

for their specific needs and consider time and memory constraints, enhancing data security in

diverse IT environments.

Christnatalis and Mahmud, 2019 [89] enhanced digital signature security in administrative

documents using a hybrid cryptographic approach combining RSA, AES, and Blowfish encryption

methods, the Kohonen Self-Organizing Map (SOM) method is used for signature recognition,

ensuring the chosen signature image matches user-entered keys and confirming ownership

accurately. Jitha and Kumar, 2019 [90] discussed the importance of encrypting SMS messages

and using strong cryptographic algorithms like RSA and AES for secure key management and

message encryption. It concludes that these measures are crucial for maintaining the security of

SMS communication in the digital age.

The research emphasizes the importance of having effective on-site techniques for the

detection and protection of encrypted data. It underscores the need for prosecutors to consider Full

46

Disc Encryption (FDE) issues when obtaining search warrants. Additionally, it delves into

strategies for collecting physical evidence from crime scenes and the protocols for extracting

digital evidence from operational computer systems in the context of on-site investigations

[91],[92].

Wani et al., 2020 [93] has provided an in-depth understanding of file system anti-forensics,

a crucial aspect of digital forensics. It explains various techniques and tools used, empowering

investigators to counteract obfuscation methods and enhance their digital evidence analysis skills.

Majed et al., 2020 [87] investigated the aim of this effort, which is to clarify diverse classes of

anti-forensics attacks and techniques, and provide methods to counter them. It is essential to

establish strong security measures for data backups and logs and conduct a thorough examination

of system traces to identify the presence of anti-forensics attacks.

The utilization of anti-forensic techniques by criminals to conceal their sources of evidence

can pose significant challenges for investigators when attempting to uncover evidence related to

criminal activities. Anti-forensic techniques are predominantly employed to obfuscate evidence,

and within the realm of cloud investigations, they serve as a means to establish reliability and

uniformity. The significance of anti-forensics within the cloud environment is well-documented

[16], [94],[95].

Shekhanin et al., 2020 [96] highlighted the importance of examining both file system

fragmentation and statistical characteristics in the context of steganography detection. Its primary

goal is to pinpoint unusual attributes within the file system and offer valuable insights into its

functioning. As a result, the research contributes significantly to the advancement of

steganoanalysis methods, which are of paramount importance in fields such as digital forensics

and cybersecurity. Moreover, it sets the stage for the development of novel approaches in the realm

of steganoanalysis. Reza et al., 2020 [97] assessed digital forensics' current state, highlighting

challenges like data volume, storage formats, encryption, and legal considerations, suggesting

future research for efficient tools and standardized procedures.

Kavrestad, 2020 [5] described fundamentals of digital forensics" is a practical guide to

digital forensics, written by an experienced examiner with law enforcement and academia

backgrounds. It covers essential principles, methods, and constraints, focusing on their application

in crime investigations, the book collaborates with the Swedish Police and emphasizes a holistic

approach. Sassani et al., 2020 [98] evaluated symmetric encryption algorithms across HDD,

SSHD, and SSD-based NAND Multi-Level Cell (MLC) flash memory using two storage

encryption software solutions. Results show AES algorithm outperforms Serpent and Twofish in

47

random read and write speeds on HDD, but Twofish is slightly faster in sequential reading on both

SSHD and SSD-based NAND MLC flash memory.

Data encryption on disk drives can be accomplished via either file system encryption or

full disk encryption. In the case of file system encryption, each individual file is encrypted using

its distinct key. This approach offers protection for most files stored on the disk drive, but it doesn't

extend to data located outside the file system. In contrast, full disk encryption employs a single

symmetric key to secure all the data on the entire disk drive. This encompasses not just files within

the file system but also encompasses hidden files, swap files, file metadata, temporary files and

caches, registry files, and boot sector data. Full disk encryption guarantees the safeguarding of

data in all regions of the disk drive [99] [40] [100].

Mohammed, 2021 [101] have discussed digital forensics is crucial in addressing

cybercrimes and security breaches in the digital era. Key trends include cloud, social media, and

IoT forensics. Challenges include maintaining data integrity and personnel. Opportunities include

USB forensics, intrusion detection systems, and AI integration. Digital forensics is essential for

safeguarding against cybercrimes and addressing challenges. Al-Dhaqm et al., 2021 [102]

proposed a metamodel to unify investigative practices and enhance the effectiveness and reliability

of digital forensic procedures, addressing ambiguities and redundancies in traditional methods.

Anzuoni, 2022 [103] discussed Plausible deniability is a key cryptographic security feature

protecting encrypted data from coercive adversaries, various schemes have been developed to

address this, but some lack adequate deniability guarantees or have performance drawbacks, the

Shufflecake scheme, introduced in this review, balances performance and security, offering 99.6%

disk efficiency and minimal slowdown compared to regular encryption tools . Abdul Rehman et

al., 2022 [104] explored cybercrimes, highlighting the use of digital artifacts to identify and

prosecute cybercriminals, they highlight the role of forensic agencies and law enforcement in

digital forensic toolkits, highlighting research gaps and proposing future research to enhance

forensic experts' capabilities.

Stoykova et al., 2022 [105] highlighted the significance of reverse engineering in digital

forensics for law enforcement, highlighting legal challenges, gaps, and inadequate regulation. It

recommends further development of digital forensic regulation to address legal complexities and

uncertainties, improving law enforcement agencies' ability to acquire and interpret digital evidence

while adhering to legal and ethical standards. Paul and Viswanathan et al., 2022 [106] assessed

digital forensics tools by examining their reliability, scalability, and precision, this evaluation

helps investigators choose appropriate tools for diverse fields and tackle privacy issues.

48

Jean et al., 2022 [107] described cyberattacks are becoming more sophisticated, causing

significant losses and requiring innovative solutions, cybercriminals use anti-forensics techniques

to conceal their tracks, making detection more difficult, traditional security solutions are

insufficient, and forensics investigators need advanced tools to combat these attacks the review

explores various methodologies, tools, and challenges.

Alotaibi et al., 2023 [108] Proposed a thorough framework for examining Unmanned

Aerial Vehicles (UAVs) in forensic scenarios, filling a void in drone forensics by encompassing

four stages: Preparation, Data Collection, Analysis, and Documentation. David et al.,2023 [7]

investigated and examined the relationship between encryption, energy consumption, and security

in wireless environments. It highlights the need for energy-efficient secure protocols and the

benefits of implementing encryption schemes as software in Wireless LANs. the research

methodology evaluates various symmetric and asymmetric key encryption algorithms.

2.4 Reverse Engineering Techniques

In this section the brief concept and approach of the existing research in the field of reverse

engineering techniques has been discussed. Perry, 1987 [109] introduced the semantic

interconnection model, providing insights into program development, modifications, and version

compatibility, and offers tools to comprehend system construction and evolution over time. Müller

et al., 1992 [110] introduced a reverse engineering environment that uses spatial and visual

information in graphical representations of software systems. The interactive graph editor enables

engineers to interact with system data, construct subsystem structures, and interpret software

design, enhancing data quality and decision-making in software engineering.

Muller et al.,1993 [111] presented a reverse engineering method for creating abstract

representations of a subject system, utilizing the Rigi system for interactive construction and

analysis of subsystem hierarchies, identifying interconnected components. Collberg et al., 1998

[112] discussed how language-based tools can be used to change programs from source code to

functional versions that are difficult to reverse engineer. This helps in lowering the barriers for

reverse engineering.

Kazman et al.,2001 [113] has discussed the architecture of reconstruction, which is a

crucial process in software engineering, obtaining the "as-built" architecture of an implemented

system from an existing legacy system using specialized tools. It documents the existing

architecture, validates conformance, facilitates evolution, supports reuse, enhances product lines,

and establishes best practices.

49

Stroulia and Systa, 2002 [114] introduced dynamic reverse engineering, focusing on

understanding system dynamics for processes and utilization in legacy systems, highlighting

challenges in comprehensive program comprehension. Collberg, 2002 [115] discussed three

methods to safeguard software from piracy, reverse engineering, and tampering: software

watermarking, code obfuscation, and tamper-proofing.

Eisenbarth et al., 2003 [116] introduced a partially automated method for understanding

feature linkage to source code, combining dynamic and static analyses to identify necessary

computational units. Marcus et al.,2004 [117] explored the concept of reverse engineering, a

process that entails extracting source code from software binaries or executables with the intention

of circumventing protective measures. This technique is commonly employed by individuals

referred to as "crackers" who seek to discern and surpass security mechanisms through a range of

tools and methods. The specific applications of reverse engineering can diverge based on the

distinct goals and motivations of these individuals.

Chikofsky and Elam, 2005 [118] discovered the reverse engineering is a common practice

where individuals analyze source code, whether it is their own code created in the past or code

authored by others. This process involves examining the code to gain insights, learn from it, and

enhance one's understanding, ultimately resulting in new discoveries and knowledge. Tore et al.,

2005 [119] emphasized that source code analysis is valuable for extracting architecture, reverse

engineering, and reengineering of software programs, it helps with understanding, maintaining,

and reusing programs. Additionally, it is predicted that there will be over 1 trillion lines of code in

software, demonstrating the growing significance of source code manipulation and analysis.

Chikofsky and Eilam, 2005 [118] provided a thorough rundown on software reverse engineering,

covering the process, tools, malware reversing, piracy, and copy protection, making it a valuable

resource for those involved.

Aggarwal and Jalote, 2006 [120] examined the dynamic analysis, which involves running

the target application or IoT device firmware with test cases to observe its behavior during runtime,

this approach helps validate and verify the results obtained from static analysis techniques, by

dynamically analyzing the target, researchers can gain real-time insights into its functioning,

ensuring the accuracy of the findings obtained through static analysis.

Binkley, 2007 [121] emphasized that software reverse engineering first arose as a solution

to tackle challenges related to software maintenance, the IEEE-12191 standard acknowledges

reverse engineering as a vital technology for managing systems where the source code serves as

the only dependable representation. From its inception, reverse engineering has demonstrated its

efficacy in resolving diverse issues within the realm of software engineering. Song et al., 2007

50

[122] investigated how the dynamic decryption and encryption of code can protect data against

static analysis, allowing polymorphic viruses and shell code to avoid detection by security tools.

Czeskis et al., 2008 [123] highlighted the differences between a deniable file system and

an encrypted file system and looks at TrueCrypt software's capacity to provide a deniable file

system, which allows plausible deniability. The structure of files and folders in an encrypted file

system is still visible, but the actual content of the files is still inaccessible without the right

decryption keys. David et al., 2008 [124] explored the automation of reverse engineering (RE)

using digital imaging and computer vision. It explains the concept of RE, which involves creating

computer-aided design (CAD) models from pre-existing objects and components. The chapter

discusses the conventional approach to RE, which uses coordinate measuring machines (CMMs),

and explores digital imaging and computer vision as alternatives. It highlights the potential of

laser-based range scanners for data acquisition and introduces a detailed processing pipeline for

creating CAD models. The chapter emphasizes the importance of various parameters in modeling

accuracy and equips readers with the necessary knowledge.

Larsen, 2008 [125] highlighted the use of debuggers for file reverse-engineering, especially

in malware analysis, and raises awareness about their accessibility. However, it lacks in-depth

guidance on their usage due to their high level of expertise. Altheide et al., 2008 [126] proposed a

reliable method for forensic examinations on hard drives with whole-disk encryption software,

eliminating the need for unauthorized or proprietary software.

McGrath et al., 2009 [127] has introduced a methodology to extract probative value from

encrypted files, focusing on hybrid cryptosystems. It also aims to pinpoint the original plaintext

file, revealing the elusive content. This is particularly relevant in cases involving encrypted child

pornography images and terrorism information, addressing "Cui Bono?" can expand digital

investigations and enhance the investigative process. Song et al., 2009 [122] has delivered an

overview of dynamic code decryption and encryption, which involves self-modifying or self-

generating code. Encryption is utilized to maintain data confidentiality, particularly in binary code,

where it acts as a defense against static analysis. Polymorphic viruses and polymorphic shell code

employ diverse encryption techniques to enhance their protection.

Edward et al., 2010 [128] has discovered the protocol reverse engineering (PRE), which is

used for communication analysis to approximate protocol definitions, contrasting with software

reverse engineering, which focuses on source code or program implementation. PRE-can also infer

communication using software reverse engineering, but requires specific tools and analysis

processes. Entity analysis techniques are also widely used. Zhiqiang et al., 2010 [129] has

introduced a new reverse engineering technique called REWARDS, which automatically uncovers

51

program data structures from binary executables. It uses dynamic analysis, backward type

resolution, and in-memory data structure layout, making it a powerful tool for memory image

forensics and binary fuzzing.

Srinivasan et al., 2010 [130] has discussed the main concern in detecting pirated copies

and protecting software programmers and content from manipulation, using proactive and post-

compromise detection strategies to identify attackers before and after attacks. Singh and Singh,

2010 [131] introduced a revolutionary data security method that uses floating-point values for

encryption. To strengthen the encryption, a novel strategy was used that generated different

integers for words that appeared again and lengthened keys. Mark and Cipresso, 2010 [132]

emphasized that software reverse engineering is a challenging and ongoing aspect of computer

security, with the main goal of uncovering higher-level program concepts. The insights obtained

from reverse engineering are valuable for various tasks, including memory forensics, malware

analysis and generation, comprehension of network protocols and cryptographic techniques,

digital rights management, and auditing program binaries.

Stamp and Cipresso, 2010 [132] discovers reverse engineering concepts, their universality

across platforms, and their importance in detecting viruses and enhancing software security,

offering potential benefits in commercial and institutional IT settings. Müller et al., 2010 [133]

highlighted the significance of reverse engineering techniques in enhancing software engineers'

program knowledge, as it aids in understanding complex software systems and their inner

workings.

Treude et al., 2011 [134] has primarily focused on software analysis, which involves

examining software artifacts for reverse engineering purposes. The analysis can be done using

static, dynamic, or historical approaches, which involve studying execution traces, developer

changes, and versioning systems, binkley's survey on source code analysis offers a thorough and

comprehensive overview of this entire process. Steven et al., 2011 [135] has introduced techniques

for reverse engineering feature models, focusing on identifying parent features and automating the

recovery of essential constructs, the approach is applied to Linux and eCos kernels, and FreeBSD,

a project without a feature model, the heuristic consistently ranks the correct parent feature among

the top results, streamlining the information needed for modelers, reducing the number of options

from thousands to five or fewer. Treude et al., 2011 [134] conducted a study on the repercussions

of cybercrime, their goals, and countermeasures. They focused on security reverse engineering,

highlighting five essential procedures: dissecting assembly code, recording discoveries, sharing

knowledge, expressing work, and communicating findings.

52

Canfora et al., 2011 [136] has discussed as the reverse engineering is a rapidly evolving field

that involves studying software components, source code, and communication data formats,

requiring systematic approaches, education, empirical evidence, and guidelines. However, reverse

engineering is often employed for alternative intentions. In essence, when one comprehends the

application's structure or gains access to the source code, the opportunity arises to modify it and

utilize it for personal or self-serving objectives. Reverse engineering is a common avenue for

pursuing such alternative intentions [124], [137]. Antunes et al., 2011 [138] developed a novel

method and tool are introduced for creating protocol specifications from network traces, utilizing

typical client-server interactions without relying on implementation-specific details.

Treude et al., 2011 [134] scrutinized reverse engineering techniques used by software

engineers to combat security attacks, highlighting the unique challenges faced by government

organizations and suggesting improvements for tool and process enhancement. The research paper

of Jozwiak et al., 2011 [139] aimed to identify encrypted files in digital forensics investigations

using various techniques like file signatures, extensions, metadata, and indicators. Canfora et al.,

2011 [140] the research highlighted the importance of reverse engineering in software

development, particularly for outdated systems with inadequate documentation, highlighting its

achievements, significance, and challenges.

Holger et al., 2012 [141] emphasized the necessity for the enhancement of reverse

engineering methods and tools to cope with more extensive codebases, address the unique

attributes of industrial code, and provide solutions tailored to specific domains, the research

endeavors to create a standardized framework for methodically modeling, scrutinizing,

constructing, testing, and upholding embedded software. Sasirekha and Hemalatha, 2012 [142]

examined the existing software protection methodologies and offers recommendations to improve

their effectiveness in safeguarding software from various threats for economic advancement.

Chlumecký, 2012 [143] investigated into the challenges of preserving legacy systems, highlighting

the need for cost-effective solutions and the preservation of critical institutional knowledge. It also

provides a roadmap for organizations to transition to modern, object-oriented architectures,

offering valuable insights for streamlining the process.

Tao et al., 2012 [144] explored the significance of understanding code changes in software

development, focusing on Microsoft's context. It highlights inadequacies in current practices, such

as obtaining completeness, consistency, and risks, and emphasizes breaking down changes into

sub-changes. Rekhis and Boudriga, 2012 [145] has proposed a theoretical approach to digital

investigations that addresses anti-forensic attacks, it outlines an investigation process, introduces

state-based logic, deploys security solutions, and generates plausible scenarios from tampered

53

evidence, the proposed inference system mitigates the impact of these attacks, and a case study

demonstrates its feasibility.

Apoorva and Kumar, 2013 [146] has given suggestions to compares AES, Twofish, CAST-

256, and Blowfish algorithms for symmetric key cryptography, analyzing their performance under

different data loads, speed, block size, and key size. Balogun and Ying Zhu, 2013 [73] has

discussed the truecrypt software, which provides plausible deniability, complicating digital

forensic investigations of encrypted disk drives, a backdoor technology is needed, implementing

restrictions to prevent misuse. Jóźwiak et al., 2013 [147] has provided both theoretical and

practical methods for identifying and scrutinizing concealed volumes created using cryptographic

utilities, applicable to both known and unknown passwords.

Thongkamwitoon, 2014 [148] proposed the digital forensic techniques to trace image

origins through multiple rounds of capturing and reproduction. It introduces a theoretical

framework and an algorithm for detecting recaptured images, with 99% accuracy rate. Balci et al.,

2014 [149] provided an in-depth understanding of malware analysis techniques, including reverse

engineering, static and dynamic methods, open-source toolkits, and Yara rules for identifying

threats and victims. Zhang and Jia Fan,2014 [150] provided an in-depth examination of

TrueCrypt's data encryption mechanisms, elucidating the mathematical processes and procedural

steps employed to secure information effectively. additionally, the research delves into techniques

that investigators can employ to interact with TrueCrypt-protected data, accompanied by

suggestions for enhancing its security, represents a pioneering effort, offering insights into the

deciphering of TrueCrypt passwords, and it is readily accessible for all interested readers.

Gonzalez et al., 2015 [151] highlighted the usability challenges faced by reverse engineers

in software reverse engineering, emphasizing the importance of prioritizing usability in tool design

for effective vulnerability discovery and malware analysis and addressing growing demand in

these critical domains. Narayan et al., 2015 [152] provides a classification of tools for

automatically reverse engineering protocols, dividing them into two categories: those focusing on

the finite state machine and those prioritizing the protocol's structure. Kaplan et al., 2015 [153]

explored the reverse engineering is a method of examining and dismantling a system to understand

its creation and assembly, often used in turbine manufacturing to enhance design.

Lim et al., 2016 [154] has introduced a novel protection scheme for Android applications

to protect against dynamic reverse engineering. The scheme checks if the device is rooted and

undergoing debugging, halting execution if these conditions are met. It effectively detects evasion

techniques and is implemented as a standalone executable, making it applicable to applications

without source code access. Cheng et al., 2016 [155] provided the future learn, an educational

54

platform, can help mobile device users improve their cybersecurity knowledge to reduce risks like

financial losses and social engineering.

Narayan et al.,2016 [156] has presented a framework for automatic protocol reverse

engineering tools, categorizing them based on finite state machine and protocol format approaches.

It highlights different methodologies and areas of application, highlighting the importance of

understanding these protocols for improved network security, intrusion detection, and

communication efficiency. Diamantopoulos et al., 2016 [157] has discovered and recommended a

system that evaluates software component reuse, combining functional compatibility with quality

metrics. It assesses component suitability and assigns reusability scores, enhancing project quality

and accelerating development processes.

Canfora and Penta, 2017 [121] explored the software reverse engineering, a rapidly

growing field that uses automated tools for in-depth analysis, understanding legacy systems,

ensuring online security, and facilitating software maintenance, with future research focusing on

novel methodologies and ethical considerations. Panda, 2017 [12] analysed the performance of

four symmetric key cryptographic ciphers, DES, Triple DES, AES, and Blowfish algorithms, in

data security, it emphasizes the importance of securing information in the digital age and the dual

nature of cryptographic algorithms, the analysis uses Java for analysis, focusing on encryption and

decryption times.

Landman, 2017 [158] sighted software renovation, focusing on domain model recovery,

reverse engineering techniques, and static analysis tools' impact on Java code analyses. Kedziora

et al., 2017 [159] explored the security requirements for creating a Deniable File System (DFS)

and assesses the efficacy of TrueCrypt disk encryption software. The study's findings indicate that

the deniability of a TrueCrypt DFS can be undermined by the Windows Vista operating system,

Microsoft Word, and Google Desktop.

Mushtaq et al., 2017 [160] has presented a systematic literature review examines

multilingual source code analysis, analysing of 56 papers from 3,820 research papers, it identifies

46 research issues in 13 software engineering domains and highlights emerging trends in static

source code analysis, program comprehension, refactoring, reverse engineering, and cross-

language link detection. Zuck et al., 2017 [161] the discovered VeraCrypt's encryption and data

retrieval in data forensics, highlighting its robust encryption of user passwords and key files,

effective file volume identification, and practical password recovery methods. Kedziora et al.,

2017 [159], their research explored VeraCrypt's security measures for concealed operating

systems, utilizing cross-drive analysis to detect hidden OS volumes and estimate their size.

55

Senthivel et al., 2018 [162] has disclosed that reverse engineering has outlined six enduring

goals with a strong emphasis on enhancing its efficacy, it suggests that for software developers to

guarantee reliability and advance their work, a broader and more strategic incorporation of reverse

engineering is essential, which includes making deliberate enhancements. Werner et al., 2018

[163] developed a reverse engineering method for understanding integrated circuits, utilizing

image processing to reconstruct architecture and simplify gates, it introduces hierarchical netlists

for efficient identification and segregation of functional modules, achieving 85%-95% accuracy

in cryptographic cores.

Sija et al., 2018 [164] has reviewed 39 methods, procedures, and tools, including state

machines, protocol formats, and finite protocol state machines and formats. The effectiveness of

these methods depends on their chosen inputs and the appropriate reverse engineering input

format. Gobel and Baier, 2018 [165] discovered clandestine data hiding techniques within the ext4

filesystem, focusing on capacity and detection rating metrics, contributing to ongoing discourse

on countermeasures in digital forensics.

Zhang et al., 2019 [166] explored TrueCrypt's encryption forensics, focusing on its

principles and practical data processing procedures, it provides insights into investigating

encrypted volumes, aiming to equip investigators with the necessary knowledge and tools for real-

world scenarios, the study concludes that TrueCrypt's encryption software is a powerful shield

against intrusion. Shwartz et al., 2018 [167] has examined 16 IoT devices' security status and

evaluate affordable black-box techniques, including software and fault injection methods, to

recover passwords and firmware.

Meir et al., 2019 [168] investigated the influence of computer utilization in illicit endeavors

such as bank fraud and identity theft, with a particular emphasis on security reverse engineering.

They pinpointed five essential procedures but highlighted the scarcity of research and constraints

in current toolkits. Ain et al., 2019 [169] discovered and reviewed categorizes of 54 studies into

six approaches for code clone detection (CCD), highlighting the need for novel methods to address

bugs and maintenance costs in software development. Jarkovič, 2019 [170] the hypothesis

provides an overview of open-source storage encryption solutions and keyword spotting (KWS)

systems, focusing on their core functionalities and attributes. It aims to enhance VeraCrypt with

KWS using Mycroft Precise, establishing bidirectional communication and testing, and

dismounting mounted volumes when a user-defined keyword is detected.

Dayalan, 2019 [21] discovered reverse engineering, a method that enhances software

representations and abstraction by identifying system components and their interrelations,

emphasizing domain knowledge and domain bridging in programming processes. Zhang et al.,

56

2019 [166] investigated the TrueCrypt encryption system, specifically from the standpoint of data

forensics, it places emphasis on the system's security and susceptibility to data recovery methods,

the research explores aspects such as obscuring user passwords, effective encryption mechanisms,

and strategies for password retrieval, underscoring the intricate nature of data recovery in this

context..

Rahmawati and Dewi, 2020 [171] discussed the generating random numbers using true-

random and pseudo-random generators, practical examples, and understanding patterns without

specific values, while also providing examples. Votipka et al., 2020 [172] discovered the cognitive

processes of 16 reverse engineers, revealing their thought processes and decision-making in

software security tasks. It identifies three phases: overview, sub-component scanning, and focused

experimentation. The study proposes five interaction design guidelines to enhance the

effectiveness of reverse engineering tools. Henry and Peterson, 2020 [173] explored the challenges

faced by reverse engineers in security-intensive environments, including limited file sharing, time

constraints, and lack of cognitive support tools.

In 2021 year, a novel framework has been introduced by Liu et al., [174] for the manual

reverse engineering of communication protocols within embedded Linux IoT systems. This

framework has proven its efficacy through the successful reverse engineering of the

communication protocol used in the WeMo smart plug. Furthermore, it is adaptable for application

in embedded Linux file systems, whether they are read-only or writable. Sharma et al., 2021 [41]

endeavored to investigate recent progress in the realm of cybersecurity while evaluating the merits,

drawbacks, and obstacles associated with the suggested techniques. The primary focus lies in the

exploration of novel forms of cyber threats, established security structures, evolving patterns,

recent innovations within the cybersecurity domain, along with the diverse security risks and

difficulties. This extensive examination conducted within this study is anticipated to provide

significant insights for researchers in the fields of IT and cybersecurity.

Liu et al., 2021 [175] presented a specialized manual reverse engineering framework

tailored for the identification of communication protocols in embedded Linux IoT systems, the

effectiveness of this framework is evident in its successful application to various IoT systems, the

methodology is comprehensively showcased through a detailed examination of the reverse

engineering process applied to the communication protocol of the WeMo smart plug, this process

involves several key steps, such as extracting the firmware from the flash memory, conducting

both static and dynamic analyses, and scrutinizing network traffic patterns.

Mattei et al., 2022 [176], they has explored the underutilization of automated tools in

software reverse engineering due to usability concerns. It reveals that most tools offer limited

57

interaction and usability support, with dynamic tools lacking user-friendly interfaces and static

tools restricting customization options. Stoykova et al., 2022 [105] discussed the manual nature of

reverse engineering in software forensics, its role in identifying code modifications, exposing

violations, and its significance in file systems for tool testing, evidence collection, and criminal

investigations, while also discussing emerging legal and technological challenges.

Long and Zhaoxin, 2023 [177] introduced Deep Encrypted Traffic Detection (DETD), a

novel framework that uses a parallel small-scale autoencoder and an L1 regularization-based

feature selection algorithm to extract local traffic features from encrypted data. DETD

significantly enhances feature extraction efficiency, achieving anomaly detection rates as high as

99.99%, surpassing other neural network-based algorithms. Zakariyya et al., 2023 [178] discussed

the rise of cybercrimes and the development of anti-forensic tools, particularly software reverse

engineering. It introduces a framework for evaluating VeraCrypt, an open-source disk encryption

software, and its practical utility in real-world scenarios. The framework contributes to fortifying

digital forensic capabilities.

Bibi et al., 2023 [179] highlightd that one of the most challenging tasks is finding the right

software component from the repository, evaluating and assessing these components depends on

various factors, as they are influenced by different technological requirements, goals, and business

considerations. Nurgaliyev and Wang, 2023 [180] explored the reverse engineering, a process that

deconstructs product source code to extract valuable data, offering practical solutions for

enhancing cybersecurity and information security.

The articles examined TrueCrypt, an open-source software, and its use of various hash

algorithms to generate key-files, enhancing security measures.[40] [67]. The article discussed the

Ever-Changing Disk (ECD), a storage system designed to conceal sensitive information within

public data. It complies with plausible deniability characteristics, offers protection against

snapshot attacks, and conceals write actions as regular operations. Users can regulate data

migration rate [161]. Arif Islam and Kumar, 2023 [181] has sighted the role of reverse engineering

in combating cyberattacks, presenting methodologies to improve malware identification and

detection systems, enabling swift responses. Hassan et al., 2023 [182] revealed that reverse

engineering plays a crucial role in comprehending and improving outdated systems. It

encompasses the utilization of diverse techniques, including transformational methodologies,

theories related to program comprehension, and technologies specific to reverse engineering.

The research’s highlights the need for improved tools to address source code infringement

cases and the growth of litigation and plagiarism, while highlighting the advancements in software

forensics tools. [183],[184].

58

Table 2.1 Comparative Analysis of the Related Works

Authors/Refere

nces
Year Contribution Key Features Limitation

Chikofsky et al.,

[106]
2005

Presents a comprehensive taxonomy of

reverse engineering and recovery

techniques

Provides a structured framework for

understanding reverse engineering

techniques.

The taxonomy is outdated, and some of

the techniques are no longer used.

Song et al., [38] 2007

Highlighted the evolution of reverse

engineering from legacy systems to

software related problems

Provides an overview of the history

of reverse engineering

The study focused on the evolution of

reverse engineering, and the findings may

not be relevant to the current state of the

field

Cappaert et al.,

[50]
2008

Discussed steganography as a

technique for hiding secret messages

in digital audio, images, and video

files

Provides an overview of

steganography and its applications

The study focused on steganography in

digital forensics, and the findings may not

be generalizable to other applications of

steganography

Müller [99] 1993

Investigate how the Rigi project helps

in reverse engineering by creating

mental models from abstractions that

match the maintainers' understanding

Offers insights into how reverse

engineering can be used to improve

software comprehension

The study focused on the Rigi project, and

the findings may not be generalizable to

other reverse engineering tools and

techniques

Singh and Singh

[119]
2010

Introduced a novel encryption

technique using floating-point

numbers to enhance data security

Offers a promising encryption

technique that could be used to

protect digital data

The technique has not been evaluated in

real-world scenarios, and its effectiveness

may be limited

Fazlida et al.,

[24]
2013

Reviewed reverse engineering theories

and tools

Provides a comprehensive overview

of reverse engineering techniques

Some of the tools and techniques are

outdated

Shao and

Balogun [60]
2013

Explored gaps in digital forensic

methodology and raised concerns

about trade secrets and vulnerability

disclosure

Provides insights into the challenges

of digital forensic investigations

The study focused on gaps in digital

forensic methodology, and the findings

may not be generalizable to other

challenges faced by digital forensic

investigators

Jozwiak et al.,

[135]
2013

The article offers theoretical and

practical insights into detecting and

analyzing hidden volumes created

using cryptographic tools, a crucial

aspect of digital forensics and

cybersecurity.

The article proposals a

comprehensive understanding of

cryptographic concealment

techniques, focusing on both

theoretical and practical aspects of

detecting hidden volumes,

The article's narrow focus on FAT32 file

systems may restrict its applicability to

other file systems, as it may not

thoroughly discuss its application beyond

FAT32.

59

contributing to effective forensic

methodologies.

Zhang et al.,

[138]
2014

Research aids users forgetting their

TrueCrypt password and provides

valuable insights for computer forensic

analysts investigating criminal

activities involving TrueCrypt

encryption.

The research provides a

comprehensive analysis of TrueCrypt

encryption, examining its

components such as cryptographic

algorithms, encryption modes, key

derivation processes, and password

verification mechanism.

Article highlights the need for ethical

considerations and responsible disclosure

practices when presenting password

cracking details, considering potential

misuse and potential misuse of such

information.

Turkanovic et

al., [11]
2014

The method introduces a revolutionary

encryption concept that utilizes public

and private keys.

Security system relies on the

computational challenge of factoring

the published divisor, n.

Size of prime numbers significantly

impacts the computational overhead for

encryption and decryption operations.

Casey [64] 2016

Emphasizes the significant role of

digital evidence in investigations,

highlighting its value in evidence

evaluation, probative question

resolution, and integrity,

Highlights the crucial role of digital

evidence in all stages of forensic

investigations, including lead

generation, crime scene handling,

and probative question resolution.

The work may not offer a comprehensive

understanding of their intricacies.

Harriss et al.,

[10]
2016

Presented an extended, granular

taxonomy for anti-forensics

Provides a structured framework for

understanding ant forensics

techniques

Can be complex and difficult to use

Vinze [66] 2016

offering a comprehensive

understanding of the evolving

electronic device crime landscape.

Cybercrime presents unique

challenges compared to traditional

crimes, including vast electronic

devices

The lack of consensus on terminology for

electronic device crimes can cause

confusion and communication challenges

within the field.

Shwartz et al.,

[155]
2018

The article provides a comprehensive

security analysis of 16 popular IoT

devices, addressing the growing

concern of security vulnerabilities in

these widely used products.

The research provides

recommendations for enhancing IoT

device security, offering practical

solutions without compromising cost

or usability, without unduly

impacting manufacturers and users.

The research has limitations in

generalizability and should be

acknowledged for broader device range

considerations.

Global and

Baier [155]
2018

Highlighted data hiding within the

filesystem layer as a significant anti-

forensics’ technique

Can be used to detect hidden data Requires specialized knowledge and tools

60

Vadlamudi et al.

[3]
2018

The article acknowledges the rapid rise

in technology usage, particularly cloud

services, and highlights the need to

address forensic challenges in cloud

environments.

Focus is on enhancing data security

and integrity in the cloud,

emphasizing the vital role of cloud

forensic processes in investigating

criminal activities and ensuring

trustworthiness.

Acknowledges the challenges in

identifying evidence sources due to anti-

forensic techniques, emphasizing the need

for comprehensive understanding and

counteraction in cloud environments.

Ahmad et al.

[34]
2018

Develop optimized image encryption

using particle swarm optimization and

chaotic map for secure image

communication

Offers a promising image encryption

technique that could be used to

protect digital images

The technique has not been evaluated in

real-world scenarios, and its effectiveness

may be limited

Ankita et el.,

[12]
2017

The article underscores the

significance of high-speed security

algorithms in both wired and wireless

communication

The design employs an iterative

looping approach, enhancing the

efficiency of the AES algorithm

implementation, and its block and

key size of 128 bits enhances overall

performance.

The proposed implementation is

dependent on FPGA technology, which

may limit its scalability and adaptability

to various hardware platforms.

Goodison et al.

[2]
2019

Increasing significance of digital

evidence in crime solving and court

case preparation underscores the

transformative role of technology in

law enforcement and the criminal

justice system.

Law enforcement attendees

acknowledged the extensive evidence

analyzed by examiners and the

challenges in securing funding and

staffing for necessary support.

Highlights the need for adequate

resources, including technology and

personnel, to effectively implement digital

evidence processing solutions in the

digital age.

Hassan [18] 2019

The article defines digital forensics, a

branch of forensic science, as a

method used to collect, analyze, and

present digital evidence to solve

crimes.

Highlighting the importance of

scientific knowledge, methodology,

and rigor in ensuring the reliability

and credibility of the investigative

process.

Rapid advancement of technology

presents new challenges and complexities

in digital forensic investigations,

necessitating continuous adaptation and

updates to methodologies and tools.

Sari et al. [6] 2019

The research underscores the necessity

of internet-transmitted images to

prevent theft and emphasizes the need

for effective security measures to

safeguard sensitive data.

The system employs Triple-DES

encryption and a selective bit

approach, enhancing the security of

image data and preventing

unauthorized access during

transmission.

The research's evaluation of the proposed

scheme may be limited by its use of six

testing images, which could benefit from

a more diverse set.

M Dayalan [20] 2019
Discussed the process of reverse

engineering, which ranges from code-

Offers a holistic view of reverse

engineering
complex and time-consuming

61

centric approaches to domain

knowledge-centric approaches

Shekhanin et al.,

[84]
2020

Emphasizes the need for robust

security measures in diverse storage

devices to protect sensitive data from

unauthorized access, regardless of the

storage medium used.

Comprehensive evaluation evaluates

encryption algorithms' performance

across various storage devices,

including HDD, SSHD, and SSD-

based NAND MLC flash memory,

providing a nuanced understanding

of their performance.

The article evaluates AES, Serpent, and

Twofish symmetric encryption

algorithms, but excludes other relevant

algorithms for specific use cases or

security requirements.

Mohammad,

[89]
2021

Highlight Digital forensics is a crucial

advancement in cybersecurity,

utilizing investigative techniques to

counter cybercrimes and protect user

privacy and security.

Comprehensive analysis of digital

forensics trends, including cloud,

social media, and IoT forensics,

reflects the multifaceted nature of

digital investigations in

contemporary cybersecurity

challenges

Discusses threats to digital forensics but

lacks detailed exploration of specific

scenarios or case studies, requiring a more

in-depth analysis of real-world examples.

Al-Dhaqm et al.,

[77]
2021

Proposed a metamodeling approach as

a potential solution to address the lack

of standard practices in digital

forensics

Provides a roadmap for future

research in digital forensics

The study was conceptual in nature, and

the effectiveness of the metamodeling

approach has not been empirically

evaluated

Abdul Rahman

et al., [92]
2022

The study emphasizes the importance

of analyzing digital artifacts left on

target devices after cyberattacks to

identify and understand

cybercriminals, enabling effective

investigation.

Provides a comprehensive overview

of various computer forensic

domains, encompassing a wide range

of scenarios and contexts in which

digital forensics is utilized.

Comparative analysis of forensic toolkits

may be limited due to its lack of depth,

but providing more detailed information

could improve its practical utility.

Sharma et al.,

[37]
2021

Identifies and addresses the existing

gap in the adoption of open source

security tools by end users.

understanding to enhance digital

workflow security.

Review explores and compares

various open source encryption-

based cybersecurity tools, providing

a comprehensive overview for

cybersecurity professionals,

academia, hackers, and business

institution

Acknowledges the adoption gap in open

source security tools, but lacks a thorough

analysis of the specific reasons behind this

gap, requiring further exploration.

62

Stoykova et al.,

[93]
2022

Discussed the legal and technical

questions surrounding file system

reverse engineering for law

enforcement

Provides an overview of the legal and

ethical issues surrounding reverse

engineering

The study focused on file system reverse

engineering for law enforcement, and the

findings may not be generalizable to other

types of reverse engineering

Long and Zhang

[123]
2023

The article addresses the increasing

threat of network attacks utilizing

encrypted communication,

emphasizing the importance of

anomaly detection in encrypted traffic

for network reliability.

The experimental results demonstrate

DETD's superiority over other neural

network anomaly detection

algorithms, making it a competitive

and high-performing solution in

encrypted traffic anomaly detection.

The DETD framework's applicability to

diverse network environments and attack

scenarios could be enhanced by

considering potential limitations or

adaptations required for different

contexts.

Alotaibi et al.,

[75]
2023

The research addresses the gap in

drone forensics by proposing a

conceptual model to address the lack

of a comprehensive investigation

framework for Unmanned Aerial

Vehicles.

The model introduces a structured

four-stage investigation process,

ensuring a systematic and organized

approach to forensic investigation,

guiding practitioners through each

essential phase.

The study may not fully address practical

implementation challenges, resource

requirements, and model feasibility in

various operational settings.

Hassan et al.,

[169]
2024

The article explores the evolving

cybercrime landscape and the

development of anti-forensic tools,

focusing on software reverse

engineering techniques and VeraCrypt

as a case study

Highlights the importance of anti-

forensic tools, especially those for

encryption, in understanding the

challenges faced by digital forensic

practitioners and developing

effective countermeasures.

The study primarily examines anti-

forensic encryption tools, focusing on

VeraCrypt, but may not encompass the

full range of available tools, necessitating

a broader exploration.

63

2.5 Research Gaps

In previous research on anti-forensic tools, several gaps have been identified. Research gaps in

anti-forensic disk encryption tools include evaluating their impact on digital forensic investigation,

integrating software reverse engineering, developing countermeasures, developing automated

tools, evaluating steganographic techniques, examining hardware-based anti-forensic measures,

and understanding usability and user experience. Addressing these gaps can significantly

contribute to digital forensics and software reverse engineering principles Here are some possible

areas of research that need to be looked into:

• Lack of comprehensive protocols: There may be a lack of well-defined and standardized

protocols specifically designed for examining anti-forensics disk encryption tools. Existing

protocols may not fully address the unique challenges and complexities posed by these

tools.

• Limited understanding of reverse engineering techniques: The principles and methods of

software reverse engineering as they relate to anti-forensics disc encryption systems may

need to be better understood. This could involve exploring advanced reverse engineering

methodologies and tools that can effectively analyses and dissect the functionality of these

tools.

• Addressing evolving anti-forensics techniques: Anti-forensics techniques and tools are

continuously evolving, making it essential to keep pace with new developments. Research

could focus on identifying emerging anti-forensics techniques and devising strategies to

detect and counter them within the context of disk encryption tools.

2.6 Limitations of Existing Anti-Forensics Disc Encryption Tool

The following are some of the drawbacks of establishing and creating a protocol for an anti-

forensics disc encryption tool examination, utilizing software reverse engineering principles:

Restricted testing: Because the tools are made to avoid discovery, verifying the protocol's

effectiveness can be difficult. Determining whether the tools have been found and successfully

decoded can be difficult. Technology development: New anti-forensic tools are always being

created as a result of technological advancements. Regular protocol updates are required to stay

up with these changes’-forensics tools are frequently used to conceal unlawful activities, therefore

designing a strategy for looking at them involves ethical questions. It is crucial to make sure that

64

the protocol is only applied in morally and legally acceptable ways. Among the available disk

encryption VeraCrypt systems, I conducted research only on Microsoft’s Windows.

The protocol for examining anti-forensics disc encryption tools through software reverse

engineering faces limitations such as restricted testing, technological advancements, ethical

considerations, and a limited scope of research. The protocol's effectiveness is challenging due to

the tools' evasion of detection. Regular updates and adaptations are needed to keep up with these

changes and maintain its relevance. Therefore, it's crucial to approach the development and

application of this protocol with critical awareness.

65

CHAPTER III

METHODOLOGY

Research methodology refers to the systematic and logical approach that researchers use to

conduct research. The methodology is a critical aspect of any research project since it outlines the

strategies that the researcher will use to gather, analyses, and interpret data. Also describe how the

research's objectives will be achieved in this chapter. The method employed in this study aims to

establish a comprehensive framework (shown in Fig. 3.7) for the purpose of software reverse

engineering, with a primary focus on VeraCrypt. In order to gain knowledge about the software's

individual components, behavior, vulnerabilities, and interactions, reverse engineering comprises

a thorough investigation of the software's architecture, operation, and internal mechanisms. The

following list of specific steps used by the framework in the reverse.

3.1 Debugging Tools

 Software Reverse Engineers use debuggers to change how a program runs, so they can understand

what the program is doing while it's running. These tools also allow engineers to control parts of

the program's memory while it's running. This helps them get a clearer picture of how the software

works and its impact on a system or network. The x64dbg Windbg is one of the debugging tools.

To complete the debugging process, the user must know about the creating a model, network

analysis tools and check-test in some cases.

Creating a Model

The information collected is simplified into a simple idea that shows how each part fits in the

bigger picture. The aim is to take specific details from the original and turn them into a basic model

that can be used to make other things or systems. In software reverse engineering, this might be

something like a picture that shows how data moves or a chart that shows the structure.

Network Analysis Tools

Engineers can use tools to study how a program talks to other computers over a network. They can

see the connections the program is attempting to establish and the information it's trying to send

(like Wireshark).

66

Check and Test

Make sure the simple idea you created accurately represents the real thing by reviewing and testing

it in different situations. In software, you can use testing to do this. Once you have tested it, you

can use the idea to improve the real thing.

3.2 IDA Pro (Interactive Disassembler)

IDA Pro is one of the most sophisticated disassemblers in the market and is widely used in reverse

engineering. It converts binary programs into assembly code that can be read and interpreted by

humans. This is crucial for analyzing proprietary or obfuscated code that does not come with

source access. Following are the key features of IDA Pro:

▪ Multi-processor Disassembly: Supports a wide range of processors and executable

formats, making it incredibly versatile for various platforms and architectures.

▪ Graphical Visualization: Offers a graphical view of the assembly code, showing control

flow and program structure in a more intuitive format than plain text.

▪ Debugging Capabilities: Includes a debugger that can attach to running processes or

analyze static binaries. This allows for dynamic analysis in addition to static.

▪ Extensibility: Users can write custom scripts in Python or IDC (IDA's own scripting

language) to automate tasks or perform specific analyses.

Debuggers

Debuggers are tools that allow programmers to execute a program step-by-step, pause it, inspect

variables, and understand the flow of execution at a granular level. They are crucial for dynamic

analysis in reverse engineering. Following are the key features of Debuggers:

▪ Breakpoints: Allows setting breakpoints at specific instructions or conditions, halting

execution at crucial points to examine the state of the application.

▪ Step Execution: Enables step-by-step execution of code, allowing detailed observation of

how changes in the state affect the running program.

▪ Memory Inspection: Provides tools to inspect and modify memory and registers, which

is crucial for understanding how data and operations affect the program.

Disassemblers

Disassemblers are tools that translate machine code back into assembly code. They are similar to

IDA Pro but are often less feature-rich and might not include debugging capabilities. Following

are the key Features:

▪ Static Analysis: They work by analyzing executable files without executing them, which

is safer when dealing with potentially malicious code.

67

▪ Annotation Capabilities: Most disassemblers allow the user to annotate the disassembled

code, which is essential for keeping track of what various parts of the program are

suspected to do.

3.2.1 Reverse Engineering Process

▪ Loading the Binary:

The binary is loaded into IDA Pro or another disassembler. IDA Pro parses the binary, identifies

the processor architecture, and disassembles the binary to assembly code.

▪ Analysis:

The disassembled code is analyzed to understand what it does. This involves recognizing function

calls, variables, API calls, control structures, etc.

▪ Debugging:

 Using a debugger, the binary can then be run in a controlled environment where its behavior can

be monitored. Debuggers help verify hypotheses made during the static analysis phase.

▪ Modification and Reassembly:

After understanding and possibly modifying the code, tools can reassemble the code back into a

binary form, if necessary, for further testing or modification.

Table 3.1 provides an overview of the major contributions, principal features, and limitations of

IDA Pro, debuggers, and disassemblers in the realm of reverse engineering. Each tool serves a

distinct function in the reverse engineering workflow, encompassing tasks such as loading and

disassembling the binary, debugging, and potentially altering the code for additional examination

and testing.

Table 3.1 Comparisons Reverse Engineering Tools

Tools Contribution Key features Limitations

IDA Pro Converts binary

programs into assembly

code, crucial for

analyzing proprietary or

obfuscated code without

source access.

Multi-processor

Disassembly
- Graphical

Visualization
- Debugging

Capabilities
- Extensibility

May have a steep

learning curve;

relatively high cost

compared to some

alternatives

Debuggers Allow for dynamic

analysis of programs by

executing a program

step-by-step to inspect

variables and understand

the flow of execution.

Breakpoints
- Step

Execution
- Memory

Inspection

Can require

considerable expertise

to use effectively;

specific debuggers may

have limitations on

certain platforms

68

Disassemblers Translate machine code

back into assembly code

for static analysis.

Similar to IDA Pro but

often less feature-rich

and might not include

debugging capabilities

Static Analysis
-

Annotation Capabilities

Limited in

functionality compared

to more integrated

tools like IDA Pro;

generally, no

debugging capabilities.

The figure 3.1 depicts the reverse engineering process of a software system, which involves

automated or manual analysis, information storage, design and implementation analysis, structural

diagram extraction, and traceability matrices, enabling better maintenance and understanding.

Figure 3.1 Reverse Engineering Process

The image shows in figure 3.2 a software reverse engineering decompiles tool interface, likely

used by developers, security researchers, or malware analysts to analyze compiled binaries,

executable files, or libraries, displaying decompiled code in assembly language format.

Figure 3.2 Decompile Source Code

69

The figure 3.3, depicts a software analysis application, resembling an IDA Pro interface, used by

developers, reverse engineers, and security researchers to examine code execution and understand

VeraCrypt program structural components.

Figure 3.3 Software Analysis Application

The Figure 3.4 Screen short, of IDA Pro disassembler and Hackman Disassembler are two tools

with different capabilities. The disassembler performs minimal code analysis and has a similar

interface to BORG's. Hackman Debugger has limited debugging capabilities, but can set

breakpoints on predetermined events, display DOS and PE headers, and view binary executable

program files.

The image displays in figure 3.5 software engineering tool employed by developers,

security researchers, and malware analysts for code analysis. It features a left pane dedicated to

code exploration, showcasing source code, instructions, and functions specific to each part of

VeraCrypt Encryption software

70

Figure 3.4 IDA Pro Disassembly

Figure 3.5 IDA Pro Debugging Code Binary

3.3 Framework of Software Reverse Engineering

Software reverse engineering framework is a method of analyzing a software system to understand

its design, functionality, and operation. It involves static, dynamic, static, and dynamic analysis,

identifying functions, algorithms, and data structures, and addressing obfuscation and protection

mechanisms. Documentation and reporting are crucial, but unauthorized reverse engineering may

violate intellectual property laws.

71

Figure 3.6 Flowchart of Reverse Engineering Process

This flowchart in figure 3.6 illustrates the compilation and reverse engineering process in software

development, from source code parsing to machine code translation. It shows the stages of the

process, from syntax tree to control flow diagram, and the relationship between abstraction or

Components levels.

To initiate the reverse engineering process for an object, it's essential to start by examining

and extracting information related to its design. This initial step involves a thorough analysis to

understand how the various components of the object are structured and interconnected. In the

context of software reverse engineering, this often requires acquiring the source code and any

pertinent design documentation for in-depth analysis. Additionally, tools such as disassemblers

may be employed to deconstruct the software into its constituent parts, facilitating a closer

inspection of its inner working components.

3.3.1 System Structuring

The first stage of the process involves meticulously preparing the target system, VeraCrypt, for a

thorough analysis. The use of IDA Pro, a powerful tool famous for its debugging and disassembly

features, is used to do this. In order to offer a safe space where each software component can be

meticulously scrutinized and severely evaluated, the VeraCrypt programmed is loaded into IDA

Pro. The software's architecture, components, and execution flow can all be carefully examined

thanks to this controlled environment. This rigorous and organized approach provides the

framework for further investigations and makes it easier to have a thorough understanding of how

the software performs internally.

72

Figure 3.7 Proposed Software Reverse Engineering Framework

3.3.2 System characterization

Identifying the system's parts, such as modules, functions, and data structures, is the next stage in

characterizing it. Finding the system's access points, exit points, and communication routes is also

a part of this process. Using this data, a high-level diagram of the design and operation of the

system is produced.

3.3.3 Static Analysis

 In this stage, the system is systematically examined to find any potential weaknesses. The

evaluation entails a close examination of the system's code in an isolated state. Finding typical

security flaws such format string vulnerabilities, buffer overflows, and SQL injection point

vulnerabilities is the main objective. In addition, this assessment includes the identification of

dubious code patterns such as code obfuscation and anti-debugging methods. One of the most

important techniques in reverse engineering is static analysis, which involves analyzing the

SYSTEM STRUCTURING

SYSTEM CHARACTERAZATION

STATIC ANALYSIS

SOURCE CODE
EXAMINATION

DECOMPILATION DISASSEMBLY

DYNAMIC ANALYSIS

SYSTEM INFORMATION STORED CONFIGURATION FILES
AND LOG FILE DATA BASE

DOCUMENTATION GENERATION

TRACEABILITY
PROGRAM

STRUCTURE DATA STRUCTURE

73

software's binary code in great detail without running it. This method offers deep insights into the

reasoning behind the code, its structure, and any possible weaknesses. The source code

examination, decompilation, and disassembly phases within the static analysis process all share

the common goal.

 3.3.4 Source Code Examination

When the software's source code is available, the framework thoroughly examines it to learn more

about the functionality and design of the programmed. This data is an important reference for the

binary code's later static analysis.

3.3.5 De-Compilation

In cases where the source code is unavailable, the framework endeavors to decompile the binary

code. This process aims to transform the binary code into a human-readable version, facilitating

the identification of potential vulnerabilities and enhancing the understanding of how the software

functions.

3.3.6 Disassembly

The framework breaks down the binary code when neither the source code nor the decompiled

code is available. This procedure produces a low-level representation of the code, which is

sometimes difficult to work with but is frequently necessary to recognize possible security flaws

and understand how the product functions internally.

3.3.7 Dynamic Analysis

The framework subsequently does a dynamic analysis of the system when the static analysis is

finished. In this phase, the system is run, and its behavior is monitored closely in real-time. A

debugger is used to do this, which makes it possible to carefully review the code line by line. While

the program is running, the debugger also makes it possible to examine register values and variable

values. In addition, data flow within the system memory is traced using a memory analysis tool.

For the purpose of locating potential vulnerabilities that would not have been discovered during

the earlier static analysis phase, the insights obtained from this dynamic analysis are essential.

3.3.8 System Information Store Analysis

A storage device or database inside the VeraCrypt programmed is thoroughly explored and

examined in the fifth step, System Information Store Analysis. The configuration, settings, and

interactions between the software and the underlying system are all contained in this repository.

Reverse engineers examine this repository to learn how the code communicates with hardware,

74

utilizes system resources, and interacts with external dependencies. The purpose of this research

is to comprehend the runtime environment of the software, system-level interactions, and potential

weak points.

3.3.9 Configuration Files

The framework carefully examines the software's configuration files to learn more about its default

settings and possible customization options. This data can be useful in spotting potential

weaknesses like poor encryption keys or default passwords.

3.3.10 Log Files

To understand the functioning of the software and its interactions with users, the framework

examines log files. This information can be valuable in identifying errors or unusual behaviors that

may indicate potential vulnerabilities.

3.3.11 Databases

The framework delves into the software's databases to understand its mechanisms for storing and

retrieving data. This information can be essential for identifying potential vulnerabilities,

particularly unauthorized access to sensitive data. By analyzing these aspects during this step, the

framework aims to uncover potential weaknesses in the software's configuration, usage, and data

handling that may not have been apparent in earlier stages of analysis.

3.3.12 Document Generation

The creation of documentation is crucial for gathering and structuring the knowledge obtained

throughout the reverse engineering project. The framework is tasked with generating a

comprehensive report that consolidates the results, assessments, and observations from each

preceding phase. This document is an invaluable resource that guarantees traceability and makes

it possible for upcoming researchers or developers to understand the rationale behind choices

made, flaws found, and enhancements suggested. Moreover, across the entire reverse engineering

process, this documentation promotes efficient cooperation and knowledge transfer, enabling well-

informed decision-making. It serves as a storehouse of important data, improving the general

understanding and application of the learned material.

3.3.13 Utilization of Steps and Algorithms

Algorithm Function figure 3.1 outlines the mentioned steps in the sequence provided. The

systematic and comprehensive reverse engineering of a specific software system, particularly

VeraCrypt, can be accomplished by following the methodology expounded in this study. The

75

framework offered is made up of a number of meticulously planned processes that gradually delve

into the complex details of the design and functionality of the software. Additionally, this

methodology is an invaluable resource for reverse engineering professionals who want to fully

examine and comprehend intricate software systems like VeraCrypt. The framework provides

researchers, developers, and cybersecurity specialists with a comprehensive collection of tools to

identify vulnerabilities, advance understanding, and strengthen the general security and

dependability of software systems by fusing a structured approach with a variety of analytical

methodologies.

Table 3. 2 Shows the Steps and Function of Algorithms

Step Description

Step 1: System Structuring
• Identify system components.

• Determine entry and exit points

• Identify communication channels

Step 2: System Characterization
• Identify system modules

• Recognize system functions

• Identify data structures in use

Step 3: Static Analysis
• Identify security vulnerabilities

• Recognize suspicious code patterns

Step 4: Dynamic Analysis
• Debug the VeraCrypt file.

• Track the flow of data during execution

Step 5: System Information Store

Analysis

• Examine configuration files

• Review log files for insights

• Scrutinize databases used within the system

Step 6: Document Generation

• Generate comprehensive documentation

• Present findings from the analysis

processes

The methodology centers on comprehending the arrangement of a system through the extraction

of its fundamental elements. Our objective is to pinpoint subsystems within the system and

establish hierarchical frameworks to depict them. Additionally, we ascertain the exact interfaces

connecting these subsystems. Employing this reverse engineering approach enables us to discern

the structural characteristics of the system. Consequently, we can scrutinize the effects of local

modifications more efficiently by assessing the resources exchanged between subsystems at

various levels of granularity.

The following phases are involved in formulating a protocol for the examination of tools

with a concentration on reverse engineering: This involves identifying the tools that will be

76

examined and the specific aspects of reverse engineering that will be focused on. Identifying the

tools and techniques to be used: Once the scope and objectives have been defined, the next step is

to identify the tools and techniques that will be used to achieve the objectives.

This may involve using specialized software tools, manual techniques, or a combination of

both. Understand the principles of software reverse engineering: Gain a comprehensive

understanding of software reverse engineering techniques and tools commonly used to analyze

and dissect software systems. This involves studying reverse engineering methodologies, code

analysis, debugging, and disassembly techniques. Shown in table 3.2.

▪ Software reverse engineering involves dissecting a software system to learn how it

functions and glean information from it. IDA Pro disassembler is one popular tool used for

this purpose. The IDA Pro disassembler can be used with the following methods to

undertake software reverse engineering on well-known disc encryption software.

▪ Obtain the disc encryption program's binary executable file, which needs to be reverse

engineered. This can be accomplished by purchasing the programmed directly from the

seller or by downloading it from the internet.

▪ Open the IDA Pro disassembler and load the binary executable file. IDA Pro is an effective

programmed for examining binary files and can be used to convert binary data into

assembly code.

▪ Following the binary analysis and creation of an interactive disassembly listing by IDA

Pro, the file will be loaded. The binary code will be displayed in assembly language in this

listing.

▪ Examine the disassembly listing to determine the software's organizational structure.

Search the code for significant system calls, functions, and other key areas. Try to

comprehend how the code works.

▪ Use the numerous IDA Pro analysis tools to help you better comprehend the code. These

tools can be used to locate function calls, code structures, and other crucial data.

▪ Use the data from the analysis to find software flaws or to develop an updated version with

more capabilities.

In addition, there are other tools available for software reverse engineering besides IDA Pro. For

this, you may also utilize other programmed like Ghidra, and Hopper [185][186][187].

Furthermore, advancements in reverse engineering technology are anticipated in the future,

Finally, the methods described above can be used to reverse engineer software using the IDA Pro

disassembler. Alternative techniques and technologies that are out there for this purpose.

77

The initial step in the majority of reversing cases is to identify the application's component

structure and the precise duties of each component. One then often chooses a module of interest

and investigates the specifics of its execution from it. Reverse engineering is the process of

disassembling anything and looking at its parts, functionalities, and code to analyses and

understand how it works. It is frequently employed in the fields of electrical, mechanical, and

software engineering. Reverse engineering processes can vary depending on the thing being

examined, but essentially all consist of:

▪ Gathering Information: The initial phase involves collecting comprehensive details about

the object under analysis. This encompasses obtaining documentation, user manuals,

source code, hardware specifications, and any other pertinent information available.

▪ Disassembly: The next step is to take the object apart, either physically or virtually,

depending on the type of object being analyzed. In software engineering, this can involve

disassembling the compiled code to examine the machine instructions. In mechanical

engineering, this can involve disassembling the parts of a machine to examine their

structure and function.

▪ Analysis: Once the object is disassembled, the next step is to analyzed its components,

functions, and code. This can involve examining the circuitry of a device, analyzing the

algorithms used in software, or examining the materials and manufacturing techniques used

in a mechanical object.

▪ Reconstruction: After analyzing the object, the next step is to reconstruct it, either

physically or virtually. In software engineering, this can involve reverse engineering the

code to create a new version with the same functionality. In mechanical engineering, this

can involve designing new parts to replace damaged or worn components.

▪ Testing: Once the object is reconstructed, it must be tested to ensure that it works as

expected. This can involve functional testing, stress testing, and other types of testing to

ensure that the object functions correctly.

▪ Documentation: Finally, the results of the reverse engineering process should be

documented in detail. This can include drawings, schematics, code listings, and other

documentation to help others understand how the object works and how it was reverse-

engineered.

Overall, the reverse engineering methodology is a complex process that requires a deep

understanding of the object being analyzed as well as knowledge of various tools and techniques

for disassembly, analysis, and reconstruction. It is often used to understand and improve existing

products or to create new products that are similar to existing ones.

78

In this research, the methodology used a system-level reverse engineering technique.

System-level reversing methods assist in figuring out the program's overall structure and

occasionally even help identify key areas of interest. Using code-level reversing approaches, you

can move on to more in-depth study once you have a rough understanding of the program's layout

and have identified its areas of particular interest. In order to gather information, examine

programmed executables, monitor programmed input and output, and other tasks, system-level

reversing includes executing a number of tools on the programmed and accessing a number of

operating system services. The operating system is where much of this information is sourced

from. because the operating system is required to be involved in every contact a programmed has

with the outside world by definition. Operating systems can be used during reversing sessions to

gather a plethora of information about the target programmed under investigation, which is why

reversers need to be familiar with them.

Software reverse engineering involves analyzing a software system to understand its inner

workings and components details. Encapsulation is a key concept in software engineering that

helps to keep software components isolated from each other, reducing the complexity of the system

and making it easier to maintain and modify. The following sections describe various techniques

for implementing encapsulation in software components at different levels of granularity.

The procedure is the most fundamental software unit in terms of code structure. A

procedure is a section of code that may be called by other parts of the programmed and typically

has a clear function. Optionally, procedures can take the caller's input data and return data to the

caller. In any programming language, procedures are the type of encapsulation that is employed

the most frequently. The division of a programmed into objects is the next logical step that replaces

procedures. The method of building an object-based programmed differs greatly from the process

of designing a standard procedure-based programmed. Many people believe that this method,

known as object-oriented design (OOD), is the most widely used and successful method of

software design currently accessible. An object is a software component that is related with both

data and code, according to the OOD methodology. The code could be a group of instructions that

relate to the object and have the ability to change its data. The data is a component of the object

and is often private, which means that only object code and not outsiders can access it.

3.3 Modules

The module is a program's main building block. Modules are just binary files that contain discrete

portions of an executable programmed (essentially the component boxes from our previous

79

discussion). A programmed can be created by combining two different sorts of modules: Both

static and dynamic libraries are used.

Static libraries: Static libraries are collections of source-code files that are assembled to

represent specific programmed components. Static libraries logically reflect a feature or a section

of programmed functionality. A static library is frequently an external, third-party library that

enhances the functionality of the product being built rather than being an essential component of

it. A program's static libraries are added as it is being constructed, and they are then included in

the program's binary files. When we look at the programmed at a low level while reversing, they

are hard to figure out and are so late.

3.4 Procedure of Encapsulation

Procedures can be encapsulated to give an equivalent amount of separation and abstract at a finer

level of granularity. An independent piece of code called a process completes a given task and

outputs the outcome. Procedures are encapsulated when their internals are hidden and a clear

interface is provided for dealing with them. This interface outlines the procedure's inputs, outputs,

and any prerequisites or requirements that must be fulfilled.

Processes can be contained using function pointers and opaque data types in C and C++.

A function can be supplied as a parameter to other functions through the use of a function pointer,

which is a variable that stores the address of the function. An opaque data type is a structure that

is completely defined but whose underlying details are hidden from other system components.

Procedures can be implemented in Java and Python using classes and methods. A method

is a function that is related to a specific class, and a class acts as a blueprint for creating objects.

according to their visibility and access limitations, methods can be designated as public, private,

or protected. Digital investigation involves collecting, analyzing, and preserving electronic

evidence to respond to cyber incidents. It includes forensic imaging, network traffic analysis,

timeline analysis, file and memory analysis, pattern recognition, and interpretation. Findings are

presented, expert testimony provided, mitigation and remediation recommendations offered as

shown in Figure 3.8.

80

Figure 3.8 Process of Digital Investigation

A liberated open-source programmed called VeraCrypt is capable of encrypting whole drives or

encrypted volumes. It operates, encrypts, and is available wonderfully, making it optional and

reasonably acceptable [23]. Utilizing VeraCrypt, non-hidden encrypted volumes can be safely

hidden. According to the Research, VeraCrypt contains a large number of modules. The summary

of VeraCrypt's sensitive modules is shown in Table 3.2.

Table 3.3 VeraCrypt's Sensitive Modules

Sensitive Module Description

Key derivation

function (KDF)
Generates a strong and unique key based on the user's input password

Encryption and

decryption modules

Encrypts and decrypts the data on the fly using algorithms like AES,

Serpent, and Two fish

Random number

generator

Generates random numbers used in the encryption process, using a

combination of entropy sources

Hashing modules
Uses various hashing algorithms like SHA-256, SHA-512, and Whirlpool

for integrity checking and password verification

Boot loader
Loads the VeraCrypt driver during the boot process to access encrypted

data

Driver modules
Kernel-level driver modules intercept read and write requests to encrypted

volume, ensuring data integrity

Containers for VeraCrypt data storage. VeraCrypt operates by encrypting and decrypting data in

real-time within a designated VeraCrypt volume. These volumes appear and function to the user

as regular hard drives or USB storage devices when accessed or mounted within the operating

system. The user remains unaware of the automatic encryption or decryption process that occurs

in the background. VeraCrypt offers support for various symmetric encryption techniques,

allowing the user to choose the desired algorithm When creating a new storage space in VeraCrypt,

You can view the list of algorithms that are supported in VeraCrypt 7.1.a. [8].

81

3.5 Summary of Chapter

The summary of this Chapter is to establish a comprehensive framework for the reverse

engineering of software, with a specific focus on VeraCrypt. The methodology entails a systematic

exploration of the software's architecture, functionality, and internal mechanisms, incorporating

debugging tools, model creation, network analysis tools, and testing. The framework encompasses

both static and dynamic analyses, aiming to identify functions, algorithms, and data structures.

Documentation and reporting play a crucial role, as unauthorized reverse engineering may infringe

upon intellectual property laws. The process involves examining system structure, conducting

static analysis, scrutinizing source code, de-compiling, performing dynamic analysis, and

analyzing log files to comprehend the system's operations and pinpoint potential vulnerabilities.

82

CHAPTER IV

 RESULTS AND DISCUSSION

When analyzing software, engineers need to disassemble and sometimes decompile the software

program. By converting the binary instructions into readable code, they can understand what the

program does and how it affects different systems. This knowledge helps engineers develop

solutions to mitigate the program's harmful effects. Reverse engineering (RE) uses various tools

to determine the purpose and operation of a program. Through RE, engineers can identify the

vulnerabilities the software exploits. Despite attempts by malware writers to hide their tracks, RE

can extract information such as the program's production date, accessed resources, encryption

keys, and file metadata. Engineers use different tools, including disassemblers, to break down the

malware code into its components for analysis. This process helps in understanding how the

program is designed and structured. Below is a description of one of the main tools used in

malware reverse engineering:

Disassemblers (e.g., IDA Pro): These tools convert the program into assembly code, which

provides a detailed view of the program's instructions. Decompiles can also be used to convert

binary code into native code, although they may not be available for all architectures.

Debuggers (e.g., x64dbg Windbg, GDB): Debuggers allow reversers to modify the program's

execution and observe its behavior while it is running. They also provide control over the

program's memory, helping engineers analyze its impact on a system or network.

4.1 Experimental Process

In the experimental evaluation of the proposed framework, the implementation was carried out in

C++ using the Visual Studio platform. The system configuration used for the experiments is

detailed below:

 The system configuration used for this research is as follows:

• Processor: Intel Core i5 3217U

• Processor Frequency: 1.8 GHz

• Memory (RAM): 8 GB

• Operating System: Windows 10 Home Edition

IDA Pro is considered the primary tool of choice during the system structuring phase. Reverse

engineers hold IDA Pro in high regard because of its sophisticated disassembly capabilities and

83

wide range of features, which significantly facilitate understanding and analyzing complex binary

code [40].

4.2 Snapshots of IDA View and Hex View

▪ IDA View: This view provides a comprehensive disassembly of the binary code, enabling

in-depth analysis of the program's structure and functionality as shown in Figure 4.1.

▪ Hex View: The Hex View offers a hexadecimal representation of the binary, allowing for

a detailed examination of the binary data as shown in Figure 4.2 and others. Snapshots of

the results are in Appendix A.

Figure 4.1 IDA View of VeraCrypt

Figure 4.2 Hex View of VeraCrypt

84

The utilization of IDA Pro, as demonstrated in the experiment, plays a critical role in the systematic

structuring of the system for further analysis. This tool's advanced capabilities aid researchers in

dissecting and comprehending the intricacies of binary code, which is foundational in the proposed

framework's experimental assessment.

4.3 Experimental Evaluation

After completing the system structuring phase, the subsequent steps of the framework were

executed, and an assessment of the framework's performance was conducted. This assessment

focused on two key aspects: accuracy and time consumption.

Accuracy, within this context, is defined as the percentage of modules and functions

successfully identified within the architecture of VeraCrypt during the execution of the framework.

This metric provides insights into how effectively the framework can analyze and

understand the software's components and functionality.

4.3.1 Accuracy Evaluation

The accuracy of the framework was assessed by varying the file size of VeraCrypt, ranging from

1000 to 5000, and the results (as depicted in Fig. 4.3) demonstrate a consistent increase in accuracy

as the file size expands. This pattern can be attributed to the framework's access to a greater volume

of data to investigate and analyze. Consequently, as the file size becomes larger, the framework's

accuracy also proportionally improves. In simpler terms, a larger file size offers the framework

more information to work with, leading to a more precise identification of modules and functions

within VeraCrypt.

Figure 4.3 Accuracy vs Time

85

4.3.2 Time Consumption Evaluation

Along with evaluating the accuracy, the framework's evaluation of the structured VeraCrypt as it

was handled by IDA also measured the time it took to complete. The results show that time

consumption maintains as file size grows (Figure 4.4). This phenomenon can be attributed to the

fact that as a file size increases, the framework gets more capable of handling instances that are

similar. As a result, this adaptation quickens the process and provides a time consumption that is

more consistent and predictable.

Figure 4.4 Consumption Time vs File Size

To delve further into the findings, the experimental evaluation of the framework highlights a

notable correlation between increasing file sizes and improved accuracy. As the size of files grows,

the framework exhibits a capacity to handle the augmented complexity of VeraCrypt files while

maintaining a consistent level of accuracy. Notably, the stabilization of time consumption

underlines the framework's ability to efficiently process larger files without sacrificing its

effectiveness in terms of both accuracy and time efficiency.

The identified trend indicates that the framework is resilient and adaptable, demonstrating

its scalability when dealing with more extensive datasets. The favorable correlation between

increased file size and enhanced accuracy is promising for real-world applications, affirming the

framework's sustained reliability and effectiveness as it addresses the growing complexity of the

scrutinized VeraCrypt files. The consistent time consumption stabilization further emphasizes the

efficiency of the framework, validating its capacity to handle complex tasks with larger files

without compromising the overall efficacy of the analysis.

Through extensive experiments, the performance of the framework was rigorously

evaluated. The results showed that as the size of the files being analyzed increased, the accuracy

of the framework also increased proportionally. Furthermore, As VeraCrypt's file size expanded,

86

the framework constantly maintained a stable level of time consumption, demonstrating its

effectiveness in handling more extensive analysis. In conclusion, the suggested framework offers

a thorough and practical method for assessing anti-forensic encryption solutions, utilizing

VeraCrypt as a case study. This framework offers a viable response to the developing problems

caused by anti-forensic approaches by utilizing the powers of software reverse engineering and

sophisticated disassembly tools like IDA Pro. The representation of source code flow is shown in

Table 4.1.

Table 4.1 Representation of the VeraCrypt Source Code Flow

Step Description

Initialization Initialize variables, libraries, and data structures.

User Interface Handle user input and trigger corresponding actions.

Volume Management Create, mount, and manage encrypted volumes.

Encryption/Decryption
Perform encryption and decryption operations on data using

cryptographic algorithms.

File System Integration
Integrate with the underlying file system for transparent

encryption and decryption of files.

Key Management Generate, store, and retrieve encryption keys.

Error Handling and

Logging
Handle errors, provide feedback to the user, and log important

events.

It's important to emphasize that the information presented in this table offers a condensed overview

of the VeraCrypt source code flow. The practical implementation, however, may encompass a

more intricate landscape involving detailed components and interactions.

4.4 Validation Discussion

The framework's accuracy and time efficiency are validated in the Accuracy Evaluation and Time

Consumption Evaluation sections. The framework's accuracy improves consistently with larger

file sizes, attributed to its access to more data. This enables it to make more precise identifications.

The framework's consistent time consumption despite increasing file sizes is impressive,

demonstrating its ability to handle larger instances efficiently. This scalability is particularly useful

when dealing with large and complex VeraCrypt volumes in real-world scenarios. The findings

are promising for practical applications, demonstrating the framework's scalability and robustness,

making it a valuable asset for real-world VeraCrypt analysis tasks.

87

4.4 Description of Data Storage

This section presents a general description of a characteristic solid driver storage media device. It

highlights that the way data is perceived by the operating system differs from how it is physically

stored on the storage device. In other words, the operating system's representation of data is

abstracted from the actual physical storage mechanism employed by the device.

4.4.1 Hard Drive Storage System

In a typical hard disk drive (HDD), multiple rounded platters are stacked together around a central

spindle. These platters have a magnetic coating on their surfaces. A movable arm with a head

attached to it is used to read and write magnetic information on the platters. Before the HDD is

used, it undergoes a low-level plant format process that produces concentric circles known as

tracks on the platter surfaces. Individually track is divided into smaller units named sectors, with

a typical sector having the capacity to store 512 bytes of data.

In the past, a sector on a hard disk drive was identified using a grouping of its track address

(cylinder address "C"), the head address "H" indicating the reading head, and the sector address

"S" indicating its location within a track. This addressing scheme was referred to as CHS

(Cylinder-Head-Sector) address. However, as hard disk drive capacities increased beyond the

limitations imposed by older BIOS systems and the original ATA interface specification, new

addressing schemes emerged and replaced the CHS method.

Currently, the most recent published standard is ATA/ATAPI 8, which utilizes a logical

block addressing scheme. In this scheme, each sector is sequentially allocated a unique 48-bit

number, providing a more efficient and scalable approach to addressing sectors on modern hard

drives.

Unlike hard disk drives that rely on the ATA controller and are subject to size restrictions

imposed by machine BIOS, SCSI (Small Computer Systems Interface) drives have not

encountered the same limitations. SCSI drives also use a method called logical block addressing,

which can be either 32-bit or 64-bit, to access and locate sectors on the hard disk drive. This allows

for larger storage capacities and greater flexibility compared to ATA-based drives.

4.4.2 Volumes Capacity

Volume refers to a group of sectors used for storing data by an operating system or application. It

can include all sectors on a single storage device or multiple devices combined in a RAID setup.

RAID volumes offer various levels of fault tolerance, performance, and scalability. During

forensic investigations, it is crucial to capture the entire volume, even if it spans across multiple

88

disks. Failing to do so can result in incomplete analysis and missing data. In the context of the

thesis, only volumes within a single storage device were considered to focus on detecting

TrueCrypt data rather than reconstructing the underlying volume[188], [189].

4.4.3 Partitions of Volume Capacity

A partition refers to a section of a volume that consists of consecutive sectors. It can either cover

the entire volume or a smaller portion of it. Partitioning a volume serves various purposes. Firstly,

different partitions can contain separate file systems, which determine how data is organized,

stowed, and accessed, including factors like folder size, access controls, and naming conventions.

Additionally, partitions simplify the process of disaster recovery by separating application data

from user data. Users can easily back up their files by focusing on the specific partition that holds

their data, instead of going through multiple application files and folders, it is more efficient to

search within a partition. Operating systems can assign different partitions for specific purposes,

one common usage of partitions is to use one for storing swap memory pages on disk as part of

managing virtual memory. To make a partition ready for an operating system to store and retrieve

data, it needs to be prepared by using a software application that is launched from bootable media.

This application sets up the necessary data structures to establish the file system, a process often

known as formatting [188].

 4.4.4 System File Storage

A file system is a structured method of storing and retrieving data on a storage device. It organizes

data into files and allows for the organization of multiple files into folders or directories. The file

system plays a crucial role in determining how data is stored and accessed by a computer, including

important information known as metadata. This metadata includes details like the file name, access

permissions (who can access the file), file size, location within the storage device, timestamps

indicating when the file was last accessed or created, and other essential information needed for

efficient data management.

4.5 Components Dedicated to Storage

Files are assigned space within a file system using a specific unit of allocation, which can vary

depending on the file system being used. For instance, in the FAT file system, this unit is known

as a cluster, while in the Ext file system, it is referred to as a block. In a given file system, all

allocation units have the same size and are determined by a multiple of the sector size. To illustrate

this concept, let's consider an example where the sector size is 512 bytes and the desired number

89

of sectors to allocate is 8. In this scenario, the allocation unit of the file system would be 8

multiplied by 512 bytes, resulting in a size of 4,096 bytes. Consequently, the minimum file size in

this file system would be 4 kilobytes (KB).

In certain file systems, you can choose the allocation unit size when formatting the storage

device. It is crucial to select the right size to avoid wasting disk space. If the unit size is too large,

it may lead to inefficient use of disk space. Conversely, if the unit size is too small, managing

multiple units per file can create additional overhead and potentially cause performance problems.

The unallocated space within the partition, along with the allocation units that are not currently

assigned to files, is collectively known as unallocated space [30].

Files in a file system are stored in specific storage areas called allocation units, which have

different names depending on the file system used, such as clusters in FAT or blocks in Ext. Each

allocation unit in the file system has the same size, determined by multiplying the sector size. For

example, if the sector size is 512 bytes and the allocation unit is set to 8 sectors, each allocation

unit would be 8 x 512 bytes, resulting in a size of 4,096 bytes. Therefore, the minimum file size in

this file system would be 4 kilobytes (KB). Generally, the allocation unit size can be specified

during the formatting process of the file system.

It is crucial to select an appropriate allocation unit size. If the allocation unit size is too

large, it may lead to inefficient usage of diskette space. Conversely, if the division component size

is too insignificant, managing multiple division units per file becomes more complex and can result

in reduced file system performance. The unallocated space within the partition, including the

allocation units not currently assigned to any file, is collectively referred to as unallocated space

[190]. The unallocated space within a file system may still comprehend data from files that have

been cancelled but not yet overwritten. The possibility of retrieving such data depends on factors

such as the level of activity within the file system and the specific allocation and unallocated space

reuse strategies employed by the file system.

If the file system is frequently used and experiences a high level of activity, there is a

greater chance that the unallocated space will be quickly reused for new files, reducing the

likelihood of recovering deleted data. However, if the file system is less busy and remains

relatively unchanged over time, there is a higher possibility of recovering deleted data from the

unallocated space.

The effectiveness of data retrieval also depends on the file system's allocation and

unallocated space reuse strategies. These strategies determine how quickly the file system reuses

unallocated space for new data. Some file systems may prioritize immediate reuse of unallocated

90

space to optimize storage efficiency, while others may employ strategies that delay reuse,

increasing the chances of data recovery from deleted files.

It is important to note that data recovery from unallocated space is not guaranteed and relies

on various factors. To increase the chances of successful data recovery, specialized forensic

techniques and tools may be employed to analyses the file system and retrieve deleted data from

the unallocated space.

4.5.1 Slack Space

Inefficient use of disk space can be caused by two primary factors: small files not fully utilizing a

single allocation unit and large files leaving unused space within the last allocation unit. This

inefficiency arises when the file scope does not align precisely with the division unit size, leading

to unused space that cannot be utilized by other files within the allocation unit. This unused portion

is known as file slack space. Consequently, disk space is wasted, reducing the overall efficiency

of storage.

Slack space can also exist at the volume level and within individual partitions. This means

that not only can file slack space occur within a partition, but there can also be unused space within

the entire volume. Managing and minimizing slack space is important for optimizing disk

utilization and maximizing available storage capacity [69]. Volume slack space refers to sectors

in a volume that are not assigned to any specific partition. Similarly, partition slack space refers to

the unused space within a partition when its size is not a perfect multiple of the sector size Both

volume and partition slack spaces are significant areas to examine because they might contain

leftover data from previous information stored on the disk. As these spaces are not allocated by

the file system, any hidden data within them remains unaffected by normal operating system

actions and could potentially be retrieved during forensic analysis [191]. Although VeraCrypt does

not utilize slack space for storing its multiple storage containers, the analysis of slack space

remains relevant in a forensic context. Examining slack space can provide valuable insights, as the

presence of unallocated space between VeraCrypt volumes may be observed. This observation can

be significant for statistical analysis and can contribute to the overall investigation process.

Therefore, considering slack space in relation to VeraCrypt volumes can still be a valid approach

in forensic analysis.

4.6 VeraCrypt Data Storage Containers

VeraCrypt employs real-time encoding and decoding of data stored within its volumes. When a

VeraCrypt volume is opened or mounted, it appears and functions like a regular solid disk or USB

91

storing device to the user. The encryption and decryption processes occur seamlessly and are

transparent to the user. VeraCrypt offers several symmetric encryption algorithms, allowing users

to choose their preferred algorithm when producing a new capacity. The maintained algorithms

for VeraCrypt 7.1.a can be found in Table 4.2 , which has been sourced from the VeraCrypt

documentation [192].

Table 4.2 Symmetric Encryption Algorithms Supported by VeraCrypt 7.1a

Symmetric Encryption

Algorithms

Key size

(bits)

Block

size

(bits)

Mode of operation

AES 256 128 XTS

Serpent 256 128 XTS

Twofish 256 128 XTS

AES+Twofish [256] + [256] 128 XTS

AES+Twofish+Serpent [256]+[256]+[256] 128 XTS

Serpent+AES [256] +[256] 128 XTS

Serpent+Twofish+AES [256]+[256]+[256] 128 XTS

Twofish+Serpent [256]+[256] 128 XTS

VeraCrypt uses the term "VeraCrypt volume" to refer to the encrypted data that can be accessed

through VeraCrypt. This differs from the previous discussion where the term "volume" referred to

the storing medium. To prevent misunderstanding, we will use the term "VeraCrypt volume" when

discussing the encrypted data available through VeraCrypt, while the term "volume" will continue

to denote a storing capacity as well-defined in the earlier segment.

4.7 Encrypted VeraCrypt Volumes

VeraCrypt provides two types of encrypted storage options. The first type is called coded file

containers, which are encrypted files that can be seen within the file system. You can think of them

as regular files that contain encrypted data. The structure of an encrypted file container is depicted

in Figure 4.5.

92

Figure 4.5 VeraCrypt Coded Folder Container

The second type of VeraCrypt volumes Figure 4.6 involves the encryption of either an entire

partition or a device, such as a hard disk partition or the complete volume of a storage device. The

corresponding figure illustrates this type of volume. While in prior literature, both types are

commonly denoted as "outer" volumes, this thesis adopts the term "standard VeraCrypt volume"

to specifically characterize this category of encrypted volumes.

Figure 4.6 VeraCrypt Divider and Device Encryption

VeraCrypt categorizes volumes in the second category depending on whether they contain

operating system start-up files. Volumes that include these files are called system partitions or

system devices. The aim of this thesis is to identify volumes at the partition or device level, which

may include system partitions or devices. Furthermore, VeraCrypt provides the option to create

hidden volumes and hidden operating systems. These encrypted volumes are hidden within the

regular VeraCrypt volume and can be present in any of the aforementioned categories.

VeraCrypt encrypted file container

Volume Partition Files

Encrypted

 KEY
Data encrypted Data not encrypted

VeraCrypt capacity partition encryption

Capacity

Dividers Coded

VeraCrypt volume device encryption

Coded

Capacity

 KEY
Data coded Data not coded

93

4.7.1 VeraCrypt Hidden Volume

Each of the mentioned programs has the potential to include a hidden encrypted VeraCrypt

volume, referred to as a hidden volume. This hidden volume is located underground the

unallocated free space of a standard VeraCrypt volume, which is not allocated to files. This concept

is described in the VeraCrypt documentation [193]. The article underscores the importance of

showcasing a diagram that depicts the structure of a typical VeraCrypt volume alongside a

concealed volume. Figure 4.3. derived from the article, offers this illustration. It emphasizes that

while utilizing the regular VeraCrypt volume, it is purposely challenging to discern the presence

of a hidden volume within it [192]. The volume assemblies depicted in Figure 4.5 can be present

within the regions labelled as "Data encrypted" in both Figure 4.6 and Figure 4.7.

Figure 4.7 VeraCrypt Volumes

Users are required to input a password (unless password caching is enabled) in order to access

either a hidden or normal VeraCrypt volume. Which volume, hidden or standard, is mounted

depends on the password that the user enters. VeraCrypt first tries to use the password that was

entered to mount the standard volume. It then attempts to mount the hidden volume with the same

password if the previous attempt fails. Which VeraCrypt volume is accessible depends only on the

password the user enters. Consequently, it is essential that the passwords for the hidden volume

and the ordinary VeraCrypt volume differ from one another. Without the right password to access

94

the concealed volume, its existence remains undetectable as it appears to contain only random

data. These hidden volumes are commonly known as deniable file systems. Unlike standard

VeraCrypt volumes stored in files, hidden volumes do not exhibit any identifiable structure within

the file system.

To prevent the data of the hidden volume from being overwritten by filling the standard

TrueCrypt volume, users can select the option "protect hidden volume against damage caused by

writing to outer volume" when growing the standard TrueCrypt volume. This option safeguards

the concealed volume from accidental harm [194].When the user selects the "protect hidden

volume against damage caused by writing to outer volume" option and enters the password for the

hidden volume, the header of the hidden volume is decrypted to access its size information. It's

worth mentioning that these guard settings are not saved after dismounting the standard TrueCrypt

volume. Therefore, the user must enable this option again when they mount the volume in the

future to ensure the continued protection of the hidden volume [195]. The author categorizes

VeraCrypt as a "dynamic deniable encryption scheme," similar to the definition provided by Oler

and El Fray [196]. The article focuses on deniable file systems, where the dynamic aspect of

VeraCrypt is discussed. The author highlights VeraCrypt's distinctive feature of enabling

modifications to the data within the hidden area, which distinguishes it from other deniable

encryption schemes that are typically static and do not allow such modifications [123], [32].

The thesis explores a method to identify hidden volume areas when multiple copies of the

standard VeraCrypt volume exist at different times. However, this approach is not relevant to the

current thesis, which focuses on a single instance of the volume. Detecting hidden volumes within

a single instance is recognized as a particularly difficult task for forensic investigators. The work

of Hargreaves et al. demonstrated the implementation of Karstens' technique in this context [34].

They utilized multiple volume copies to deduce the hidden volume's whereabouts. A cautionary

statement found in various types of the VeraCrypt certification, starting from at least version 5.1a,

explicitly alerts users to these risks.

In VeraCrypt, the diagram shown in the figure illustrates the layout of a disk that has been

formatted with this software. The first part of the diagram represents a common scenario where

the disk contains a single volume known as the Standard Volume. While VeraCrypt primarily

functions as disk encryption software, it also offers an optional feature of plausible deniability.

The initial operation performed by VeraCrypt involves filling the disk with random bytes, which

is a typical practice for regular disk encryption tools. In the first section of the disk, there is the

encrypted header of the Standard Volume (referred to as Header 1 in the diagram) and an empty

slot that contains random bytes generated during the initialization process. This is followed by the

95

section that holds the actual encrypted data of the Standard Volume (Volume 1 in the diagram),

and then additional empty space that also contains random bytes from the initialization process.

VeraCrypt also offers the option to "embed" a Hidden Volume (Volume 2 in Figure 4.6)

within the empty space left by the Standard Volume. This mechanism provides plausible

deniability.

Figure 4.8 VeraCrypt Disk Layout

Disc layout the layout of a VeraCrypt-formatted disc is shown in Figure 4.8 The first part illustrates

the case of the disc only containing one volume, the Standard Volume; this was indeed a very

common scenario since VeraCrypt was primarily disc encryption software (plausible deniability

was just an optional feature). The first initialization operation performed by VeraCrypt is to fill

the disc with random bytes; incidentally, this is also the case for regular disc encryption tools. The

first part of the disc contains the encrypted header of the Standard Volume (Header 1 in the picture)

and an empty slot filled with random bytes (remaining from the initialization procedure). Then

comes the actual encrypted data section of the Standard Volume (Volume 1 in the picture),

followed by some empty space, also filled with random bytes (also coming from the initialization

procedure). VeraCrypt optionally allows you to "embed" a hidden volume (Volume 2 in the

picture) in the empty space left by the standard volume; this is the mechanism providing plausible

deniability. Its encrypted header (referred to as Header 2 in the diagram) is placed in the vacant

96

space left after Header 1. The Standard Volume and the Hidden Volume are encrypted using two

different passwords.

In the context of plausible deniability, some relevant terms include the synonyms for the

Standard Volume, which are the outer volume (as it encompasses the Hidden Volume within its

empty space) and the decoy volume (as it contains data intended to mislead authorities). The term

"decoy volume" is more general and applies to volumes that are to be surrendered to authorities,

not just in the case of VeraCrypt but also in other schemes where volumes are not necessarily

nested within each other. contained in the file License.txt included in VeraCrypt binary and source

code distribution packages.

4.7.2 VeraCrypt Volume's Encryption Analysis

An essential element in the volume building process is data encryption. In this section, they

describe the various encryption techniques and how Veracrypt uses them. The VeraCrypt volume

layout was reexamined using the TCanalyzer program, identifying the true volume layout and their

header information. Both a hidden volume header and a normal VeraCrypt volume header were

present in the partition. Random data was contained in the backup header if there was no hidden

disc. With this understanding , the data within the standard VeraCrypt volume was selectively

overwritten, making the standard volume unmount able within VeraCrypt, while the hidden

volume remained accessible [123]. The Table 4.3 provides details related to the salt values (64

bytes each) associated with different types of VeraCrypt volume headers.

4.7.3 Integrated Cryptographic Algorithms

Veracrypt didn't just use these algorithms individually; it also proposed combining them in

different ways. There is a total of five combinations: AES-Twofish, Serpent-AES, Twofish-

Serpent, AES-Twofish-Serpent, and Serpent-Twofish-AES. For example, AES-Twofish implies

that data blocks are encrypted first with Twofish and then with AES. In all three of these algorithm

combinations, the data block size is 128 bits, and the key size is 256 bits.

Additionally, during the key derivation process, users have the option to choose from three hash

algorithms: Ripemd-160, SHA-512, and Whirlpool.

97

Table 4.3 Volume Headers Salt

Volume Header

Type
Salt 64 bytes

Standard

e7 48 80 88 ef 71 bf d6 0b 01 3e b7 c2 b9 7a 26 8c 62 e9 f5 33 b7 91 1b 64 30

02 61 31 1a e7 69

55 89 e8 ea a4 1a 3f 38 d4 4d 71 89 3c ac 20 de

9c 5a 39 39 52 61 59 53 86 32 aa 88 fb d5 2b b4

Hidden

6b 29 20 db 47 cd 4a b5 2a 3f 25 2f 19 25 ed 14

47 04 00 04 7f 8f 84 b4 ad e0 8e 7e 24 a4 d4 d7

85 5c c2 6d 92 f7 6d 1b 76 f2 03 48 40 6b 25 a9

96 d9 78 5f c1 ec 35 3a 03 1d 87 f4 4c 24 6c 4c

Standard Backup
a2 a1 5a 34 ea 61 f6 6f b0 9e 9f 46 01 09 83 49 83 3c 08 ae 38 0a a9 d5 6b

c7 18 f3 ef 0d c6 ea 62 e0 77 61 6a 1b b1 d8 ec d1 4a fa 1f 0a e3 8c cf 21 53

96 4c de b7 9e b9 e1 f6 61 b0 01 d8 8c

Hidden Backup

30 52 4f 71 3f 5f 40 a8 85 32 f3 82 c0 85 b7 26 b0 7b ad d1 e3 fe d4 f3 73 91

37 39 35 7d 0b a8 d4 d2 46 52 a9 50 28 75 2d 1b 7d 8a 47 6d f3 f7 c2 72 53

13 e5 a8 0b 7e 7d ae 5f 34 55 b4 da 48

4.7.4 Encryption Operation Mode: XTS

XTS mode is a type of encryption mode inspired by XEX mode but with a small change: it uses

two separate keys instead of just one, unlike XEX. XTS mode is particularly good for safeguarding

data on storage devices and has received approval from organizations like NIST and IEEE [197]

[198]. In XTS mode encryption, it can be explained like this: Ciphertext (C) is obtained by

performing the following operations:

▪ Take the plaintext block (P) and XOR it with the result of two encryption operations.

▪ The first encryption operation (E) is done with the primary key (k1) and a value derived

from the block index (i) and a primitive element (α).

▪ The second encryption operation (E) is done with the secondary key (k2) and the same

value derived from the block index (i) and primitive element (α).

The keys used here are 256 bits long. The ⊕ symbol represents the exclusive OR (XOR) operation,

and the ⊗ symbol represents polynomial multiplication modulo a specific polynomial (x^128 +

x^7 + x^2 + x + 1). α is a primitive element in a finite field (GF (2^128)). In this context, "i"

represents the block index within a data unit, and "n" represents the data unit index within the

98

scope of k1. Both "i" and "n" start counting from 0. It's worth noting that in VeraCrypt, the data

unit size is 512 bytes, and each block is 16 bytes, so the maximum value for "i" is 31.

4.8 Components and Applications

Components and Application plays a pivotal role in securing both data and communication,

encompassing elements such as algorithms, key management, authentication, digital certificates,

random number generators, hash functions, and compliance across diverse domains. The

subsequent sections delve into the specifics of these aspects.

4.8.1 Command-Line Interface (CLI)

GPG provides a command-line interface that allows users to perform encryption, decryption,

signing, and key management tasks. Users can integrate GPG into scripts and workflows.

4.8.2 Graphical User Interfaces

While GPG primarily offers a command-line interface, there are several third-party graphical user

interfaces available that provide an easier way to perform GPG operations.

4.8.3 Email Encryption

GPG is commonly used to encrypt and sign emails. Users can encrypt the content of their emails

to ensure that only the intended recipient can read it. Digital signatures verify the sender's identity

and the integrity of the message.

4.8.4 File Encryption

GPG can encrypt and decrypt files and directories. This is useful for securing sensitive documents

and data stored on local systems.

4.8.5 Secure Communication

GNU Privacy Guard (GPG) is a cryptographic tool that encrypts and digitally signs messages,

ensuring their integrity and unreadable even if intercepted. It uses a public-key cryptosystem, is

integrated with instant messaging clients, and is widely used for email encryption.

4.8.6 Code Signing

GPG is a software tool that digitally signs code, ensuring its authenticity and integrity. It uses a

web of trust model to distribute and verify public keys, which can be uploaded to key servers or

distributed through trusted channels. GPG promotes transparency, integrity, and trust within the

software development community and end-users.

99

4.8.7 Password Management

Certain password managers employ GPG (GNU Privacy Guard) to encrypt and fortify the user's

password database. This encryption method adds an extra layer of security by utilizing public-key

cryptography. With GPG, the password manager encrypts the sensitive data using the recipient's

public key, ensuring that only the intended recipient, typically the user themselves, can decrypt

and access the stored passwords. This approach enhances security, as even if the password

database were to be compromised, the encrypted data would remain unintelligible without the

corresponding private key.

4.8.8 Key Generation

Users generate a key pair (public and private keys). The private key is kept secret and never shared,

while the public key can be freely distributed.

4.8.9 Encryption

When encrypting a message or file, the sender employs the recipient's public key, a component of

asymmetric encryption. This key is freely shareable and is used specifically for encryption. Once

the message or file is encrypted with the recipient's public key, it becomes inaccessible to anyone

without the corresponding private key, which is known only to the recipient. This ensures that only

the intended recipient possesses the capability to decrypt and access the content, adding a robust

layer of security to communications and file sharing.

4.8.10 Digital Signing

 The sender uses their private key to generate a unique digital signature for a message or file,

confirming its authenticity. The recipient then uses their public key to verify the signature,

confirming the content's authenticity and integrity. This process ensures the authenticity of

electronic communications and file exchanges.

4.8.11 Key Distribution

Users have the flexibility to disseminate their public keys through a range of methods, which may

encompass traditional means like email, specialized platforms such as key servers designed for

cryptographic key management, or even personal or professional websites dedicated to showcasing

such information.

4.8.12 Trust Establishment

Users have the opportunity to verify keys and foster trust through various avenues. One method

involves utilizing the Web of Trust model, where users establish connections with others they trust,

100

creating a network where key authenticity can be verified through these trusted relationships.

Alternatively, users can directly verify fingerprints, comparing them through secure channels like

in-person meetings or encrypted communication to ensure the integrity of the keys.

4.8.13 Secure Email Communication

GPG can be used to encrypt and sign emails, ensuring that only authorized recipients can read the

content and that the sender's identity is verified.

4.8.14 File Sharing

GPG (GNU Privacy Guard) is a secure file encryption solution that uses asymmetric encryption,

ensuring only the intended recipient can decrypt and access the content. This method protects

sensitive information from unauthorized access and maintains confidentiality, reducing the risk of

data breaches or disclosures. It can be shared via various online channels.

4.8.15 Software Distribution

Developers can sign software releases with their GPG key, allowing users to verify the authenticity

of downloaded software.

4.8.16 Digital Documentation

GPG can be used to sign digital documentation, ensuring that the content remains unchanged and

is attributed to the correct author.

4.8.17 Protection Against Surveillance

GPG can protect against surveillance and eavesdropping by ensuring that only authorized parties

can access the encrypted content.

4.8.18 Limitations Usability

GPG, a command-line encryption tool, can be challenging for beginners due to its command-line

interface. However, with proper training and resources, it can be a powerful tool for secure

communication and data protection.

4.8.19 Key Management

Key management is crucial in cryptographic systems like GPG, especially for private keys. Loss

can cause irreversible data loss. Secure backups and multiple locations protect keys, preventing

breaches and identity theft.

101

4.9 Comparative Analysis of Different Encryption Software

Comparative analysis of encryption software involves evaluating security features, ease of use,

performance, platform compatibility, regulatory compliance, auditability, community support,

cost, and recent vulnerabilities. Key factors include encryption algorithms, key management,

authentication, user interface, scalability, industry standards, logging, auditing, community

support as shown in Table. 4.4.

Table 4.4 Comparison Analysis of Different Encryption Software with VeraCrypt

FEATURES PROTONMAIL

GNU

PRIVACY

GUARD

(GPG)

AXCRYPT VERACRYPT

Email

Encryption
Yes Yes No No

File

Encryption
No Yes Yes Yes

Open Source Partial Yes Yes Yes

Platform Web, Mobile
Multi-

platform

Windows,

Mac,
Multi-platform

Compatibility Desktop
Multi-

platform
Android Multi-platform

Public Key

Encryption
Yes Yes No No

Ease of Use User-Friendly Moderate User-Friendly User-Friendly

Security

Features

End to End

Encryption

PGP

Encryption

AES

Encryption
AES Encryption

Full Disk

Encryption
No No No

Yes (Encrypts entire disk or

partitions)

File and

Folder

Encryption

No No No
Yes (Encrypts individual

File and folder

Open Source

Partial (Client-

side code is

open)

Yes

Partial (Some

components

are open

source)

Yes

Performance
Web-based, may

have latency

Depends on

usage;

command-

line interface

User-friendly,

may impact

large files

Depends on usage; generally

efficient

Authentication

Methods

Password, Two-

Factor

Authentication

Password,

Key file,

Smart Card,

Subkey

Password,

Key file
Password key files

Hidden

Volumes
No Yes No Yes

Password

Keyfiles
No Yes Yes Yes

102

Table 4.4 provides a clear and concise comparison of key features and others among ProtonMail,

GNU Privacy Guard (GPG), AxCrypt, and VeraCrypt. It's a helpful way to quickly assess the

strengths and weaknesses of each encryption tool.

Table 4.5 Comparison with Software Reverse Engineering

Technique Description comparison with Software Reverse

Engineering

Formal Verification Uses mathematical

methods to prove

correctness of

algorithms with respect

to a formal

specification.

Comprehensive understanding by combining

static and dynamic information
 - Ability

to overcome limitations of individual

techniques

Symbolic Execution Executes programs

with symbolic inputs

rather than real data.

Direct access to source code
 - Ability to

analyze all possible execution paths
 -

Integration with development tools and

processes

Fuzz Testing Automated technique

feeding pseudo-random

inputs to a program.

Ability to analyze binary executables directly

 - Low-level understanding of program

behavior, data structures, and algorithms
 -

Analysis of closed-source or proprietary

software
 - Analysis of legacy systems or

applications without source code

Code Auditing Manual line-by-line

inspection of code to

find flaws.

Effective for finding source code errors,

requires source code access and might not

reveal third-party binary issues, which reverse

engineering can analyze

The table 4.5 describe Formal verification, symbolic execution, fuzz testing, and code auditing are

methods used to analyze software. Formal verification uses mathematical methods to prove

algorithm correctness, while symbolic execution uses symbolic inputs. Fuzz testing is an

automated technique that analyzes binary executables without source code, providing a low-level

understanding of program behavior. Code auditing is a manual inspection of code to find flaws,

but requires source code access. These methods differ from software reverse engineering, which

has direct access to source code.

 Software reverse engineering offers a unique advantage when examining binary

executables, especially in scenarios where source code is unavailable, obfuscated, or when dealing

with closed-source or proprietary software. Reverse engineering techniques can provide a low-

level understanding of the program's behavior, data structures, and algorithms, enabling analyses

that may not be possible with other techniques.

103

4.11 Summary of Chapter

Establishing a robust Web of Trust can be challenging due to the decentralized nature and the need

for personal verification. In summary, GPG is a powerful tool for ensuring privacy, data integrity,

and secure communication in the digital world. It is widely used by individuals, organizations, and

developers who value data security and want to maintain control over their digital communication

and information.

AxCrypt is a user-friendly file encryption tool that provides strong encryption for

individual files and folders. It's a suitable choice for individuals who want to add an extra layer of

security to their sensitive data without the complexity of full-disk encryption. However, users

should be aware of its limitations and consider their encryption needs before using it.

104

CHAPTER V

CONCLUSION AND FUTURE DIRECTIONS

A novel innovative framework is designed to bolster the skills of forensic investigators in the

analysis and comprehension of tools for encrypting discs with anti-forensic features. Its goal is to

actively contribute to the continual endeavors to combat digital crime and safeguard digital

evidence.

5.1 Conclusion

The thesis emphasizes the critical role of reverse engineering in software analysis, particularly in

understanding the functionality and behavior of a program. Reverse engineering is a process that

involves dissecting and sometimes decompiling software programmers to convert binary

instructions into readable code, allowing engineers to comprehend the programmer’s actions and

their impact on different systems. This knowledge is essential for developing solutions to mitigate

any harmful effects caused by the programmed.

To understand and analyze Encryption software, engineers need to disassemble and

sometimes decompile the software program. This process involves converting the binary

instructions of the program into readable code mnemonics or higher-level structures. By doing

this, engineers can figure out what the program does and which systems it affects. This knowledge

helps engineers create solutions to mitigate the harmful effects of the program.

Reverse engineering (RE) uses different tools to uncover the purpose and functioning of a

program. Through RE, engineers can identify the vulnerabilities that the malicious software aims

to exploit. Even though those who create malware often try to mislead, RE can unveil information

such as the program's creation time, accessed embedded resources, encryption keys, and various

elements like file headers and metadata.

To achieve this understanding, reverse engineering utilizes a variety of tools and

techniques. These tools help engineers identify vulnerabilities present in the software and uncover

hidden information within the programmer’s code. By doing so, reverse engineering assists in

enhancing software security and identifying potential threats or malicious activities.

The study highlights the emerging techno-legal challenges associated with using reverse

engineering for law enforcement purposes. These challenges include uncertainties about the

legality of the tools and methods used for evidence acquisition as well as concerns about

105

complying with intellectual property and confidential information protection obligations.

Additionally, the paper points out the existence of gaps between legal provisions and actual

practices concerning the disclosure and peer review of sensitive digital forensic methodologies,

the protection of trade secrets during investigations, and governmental vulnerability disclosure.

The Research provides valuable insights into the VeraCrypt source code flow using a table

representation. The table outlines the different steps involved in the functioning of VeraCrypt,

such as initialization, user interface handling, volume management, encryption and decryption

operations, file system integration, key management, error handling, and logging. This

representation aids in understanding the internal workings of VeraCrypt, a popular open-source

encryption software.

VeraCrypt used to be a really famous free software that could keep your computer files

safe. not only encrypts stuff faster than similar programs like Bitlocker, File Vault, and PGP, but

it also does more things when it comes to protecting data. It can create regular encrypted storage,

secret hidden storage, lock up whole parts of a computer, and even keep the whole operating

system safe.

Furthermore, the paper discusses the characteristics of data storage on a typical hard disc

drive (HDD). It explains the concept of logical block addressing, which is a method used to access

and locate sectors on modern hard drives. The Research emphasizes that the operating system's

representation of data is abstracted from the actual physical storage mechanism employed by the

device.

The study also delves into the details of VeraCrypt encrypted volumes, which are an

essential part of the software's functionality. It distinguishes between coded file containers, which

are encrypted files within the file system, and volumes that encrypt complete partitions or devices.

The paper elaborates on the concept of hidden volumes, which are concealed within standard

VeraCrypt volumes and can only be accessed using different passwords. This "plausible

deniability" feature allows users to keep sensitive data hidden from authorities by presenting a

decoy volume with a different password.

Moreover, the paper highlights VeraCrypt's dynamic, deniable encryption scheme. Unlike

other deniable encryption schemes that are static and do not allow modifications to hidden areas,

VeraCrypt permits changes to data within hidden volumes. This feature adds an extra layer of

complexity to forensic investigations as the existence of hidden volumes becomes challenging to

determine.

This thesis emphasizes the significance of reverse engineering in software analysis and its

role in understanding programmed functionality and vulnerabilities. It raises awareness about the

106

emerging challenges of using reverse engineering for law enforcement purposes and proposes

recommendations for addressing them. The detailed exploration of VeraCrypt's source code flow

and encrypted volumes provides valuable insights into the inner workings of this encryption

software. Overall, the paper contributes to our understanding of reverse engineering's crucial role

in cybersecurity and digital forensic investigations.

5.2 Future Directions

The thesis highlights the importance of dealing with challenges related to reverse engineering in

digital forensic investigations by setting up clear rules and best practices. Here are the suggested

recommendations:

Create Digital Forensic Regulations: We need clear rules that govern the use of reverse

engineering tools and methods in law enforcement investigations. These rules should ensure that

reverse engineering is done ethically and legally, addressing issues like evidence collection,

intellectual property, and confidentiality.

Improve Disclosure and Peer-Review Practices: To ensure transparency and reliability in

digital forensic methods, experts should share their techniques openly for review. This will help

validate the methods used and increase trust in the findings.

Strengthen Governmental Vulnerability Disclosure: Governments and regulators should

responsibly share vulnerabilities found through reverse engineering with relevant parties like

software developers and cybersecurity experts. This will lead to prompt security updates and better

protection against cyber threats.

Study Slack Space Implications: Further research is needed on the impact of slack space in

storage. Understanding leftover data can improve data recovery and management in forensic

analysis. Better Identification and Handling of Hidden Volumes: Efforts should be made to

improve identifying and managing hidden volumes within encrypted containers. Collaboration

between forensic experts and software developers can help develop techniques to distinguish

between standard and hidden volumes for more accurate investigations.

Foster Collaboration Among Stakeholders: Collaboration between law enforcement,

forensic experts, and regulators is crucial in addressing complex challenges related to reverse

engineering. Open dialogue and cooperation can lead to balanced and effective solutions that

follow both legal and ethical principles.

107

By following these recommendations, law enforcement and forensic experts can navigate

the evolving landscape of reverse engineering and digital forensics responsibly, ensuring data

security and fairness in legal proceedings.

The thesis explores the role of reverse engineering in software analysis and its implications

for cybersecurity and digital forensic investigations. Key recommendations include creating digital

forensic regulations, improving disclosure and peer-review practices, strengthening.

government vulnerability disclosure, studying slack space implications, improving the

identification and handling of hidden volumes, and fostering collaboration among stakeholders.

These recommendations aim to create more ethical, legally compliant, and effective investigations,

enhancing data security and fairness in legal proceedings. The research also emphasizes the

importance of slack space in storage, better identification and handling of hidden volumes, and

fostering collaboration among stakeholders. By following these recommendations, the future of

reverse engineering in digital forensic investigations can be more ethical and transparent.

The thesis highlights the imperative of addressing challenges associated with reverse

engineering in digital forensic investigations by advocating for the establishment of clear

guidelines and best practices. The following recommendations are proposed:

▪ Create Digital Forensic Regulations:

o Formulate explicit regulations governing the ethical and legal use of reverse

engineering tools in law enforcement investigations. These regulations should

address concerns related to evidence collection, intellectual property, and

confidentiality.

▪ Improve Disclosure and Peer-Review Practices:

o Encourage experts to openly share their digital forensic techniques for thorough

peer review. This transparency fosters trust in the methods employed and enhances

the credibility of investigative findings.

▪ Strengthen Governmental Vulnerability Disclosure:

o Advocate for responsible sharing of vulnerabilities discovered through reverse

engineering by governments and regulators with relevant stakeholders, including

software developers and cybersecurity experts. This collaboration can lead to swift

security updates and improved defense against cyber threats.

▪ Study Slack Space Implications

108

o Conduct further research on the implications of slack space in storage. A

comprehensive understanding of residual data can significantly enhance data

recovery and management in forensic analysis.

▪ Better Identification and Handling of Hidden Volumes

o Enhance efforts to identify and manage hidden volumes within encrypted

containers. Collaboration between forensic experts and software developers is

essential to devise techniques that distinguish between standard and hidden

volumes, thereby facilitating more accurate investigations.

▪ Foster Collaboration Among Stakeholders:

o Emphasize the importance of collaboration between law enforcement, forensic

experts, and regulators to effectively address the intricate challenges associated

with reverse engineering. Open dialogue and cooperation can yield balanced and

impactful solutions adhering to both legal and ethical principles.

By adhering to these recommendations, law enforcement and forensic experts can navigate the

dynamic landscape of reverse engineering and digital forensics responsibly, ensuring data security

and fairness in legal proceedings. This approach promotes ethical and transparent practices,

addressing key aspects such as slack space, hidden volumes, and collaborative efforts among

stakeholders in digital forensic investigations.

109

REFERENCES

[1] J. Weber, “Secure Hash Standard Federal,” Fed. Inf. Process. Stand. Publ. 180-2, vol. 2,

2002, [Online]. Available: http://csrc.nist.gov/publications/PubsFIPS.html#fips180-4.

[2] U. S. C. J. System, S. E. Goodison, R. C. Davis, and B. A. Jackson, “Digital Evidence and

the US Criminal justice system,” Crimanal justices J., vol. 5, 2019.

[3] D. Vadlamudi, K. Thirupathi Rao, P. Vidyullatha, and B. RajasekharReddy, “Analysis on

digital forensics challenges and anti-forensics techniques in cloud computing,” Int. J. Eng.

Technol., vol. 7, no. 2.7 Special Issue 7, pp. 1072–1075, 2018, doi:

10.14419/ijet.v7i2.7.12230.

[4] S. Singh, The Code Book the secret history of codes and code-breaking: 2010.

[5] J. Kävrestad, Fundamentals of Digital Forensics, 2nd ed. Cham: Springer International

Publishing, 2020. doi: 10.1007/978-3-030-38954-3.

[6] C. A. Sari, E. H. Rachmawanto, and E. J. Kusuma, “Good Performance Images Encryption

Using Selective Bit T-Des on Inverted Lsb Steganography,” J. Ilmu Komput. dan Inf., vol.

12, no. 1, p. 41, 2019, doi: 10.21609/jiki.v12i1.646.

[7] D. Chesnut et al., “Data Encryption and Hashing Primer,” NAACCR Data Secur.

Confidentiality Workgr., no. January, pp. 1–19, 2023.

[8] C. D. Hosmer, “Examining the Encryption Threat,” Int. J. Digit. Evid., vol. 2, no. 3, pp. 1–

11, 2004.

[9] L. Khati et al., Full Disk Encryption : Bridging Theory and Practice To cite this version :

HAL Id : hal-01403418 Full Disk Encryption : Bridging Theory and Practice. 2017.

[10] F. Hou, N. Xiao, F. Liu, and H. He, “Secure disk with authenticated encryption and IV

verification,” 5th Int. Conf. Inf. Assur. Secur. IAS 2009, vol. 2, pp. 41–44, 2009, doi:

10.1109/IAS.2009.48.

[11] K. B. Harriss, Dr Lydia, “Digital Forensics and Crime,” POSTnote 520 Digit. Forensics

Crime, no. 520, pp. 1–5, 2016, [Online]. Available:

http://researchbriefings.files.parliament.uk/documents/POST-PN-0520/POST-PN-

0520.pdf

[12] M. Turkanović and M. Hölbl, “A Method for Obtaining Digital Signatures and Public- Key

110

Cryptosystems,” Wirel. Pers. Commun., vol. 77, no. 2, pp. 907–922, 2014, doi:

10.1007/s11277-013-1543-8.

[13] S. C. W. Ankita Jadhav, Prajakta Choudhari, Tejaswini Gherade, “Implementation of

Advanced Encryption Standard (AES) on FPGA,” nternational J. Eng. Sci. Comput. May

2017, vol. 7, no. 5, pp. 12313–12317, 2017.

[14] S. Chandra, S. Paira, S. S. Alam, and G. Sanyal, “A comparative survey of symmetric and

asymmetric key cryptography,” 2014 Int. Conf. Electron. Commun. Comput. Eng. ICECCE

2014, pp. 83–93, 2014, doi: 10.1109/ICECCE.2014.7086640.

[15] M. Panda, “Performance Evaluation of Symmetric Encryption Algorithms for Information

Security,” Int. J. Adv. Res. Trends Eng. Technol., vol. 4, no. 11, pp. 37–41, 2017.

[16] M. Al Fahdi, N. L. Clarke, and S. M. Furnell, “Challenges to digital forensics: A survey of

researchers & practitioners attitudes and opinions,” 2013 Inf. Secur. South Africa - Proc.

ISSA 2013 Conf., pp. 1–8, 2013, doi: 10.1109/ISSA.2013.6641058.

[17] R. I. and Z. H. Yunus Yusoff, “COMMON PHASES OF COMPUTER FORENSICS

INVESTIGATION MODELS,” Int. J. Comput. Sci. Inf. Technol., vol. 3, no. 3, pp. 17–31,

2011, doi: 10.1155/2016/3068347.

[18] H. Majed, H. N. Noura, and A. Chehab, “Overview of Digital Forensics and Anti-Forensics

Techniques,” 8th Int. Symp. Digit. Forensics Secur. ISDFS 2020, no. May, 2020, doi:

10.1109/ISDFS49300.2020.9116399.

[19] N. A. Hassan, “Antiforensics Techniques How,” Digit. Forensics Basics, no. 8, pp. 291–

310, 2019, doi: 10.1007/978-1-4842-3838-7.

[20] I. Fontana, “The human (in)security trap: how European border(ing) practices condemn

migrants to vulnerability,” Int. Polit., vol. 59, no. 3, pp. 465–484, 2022, doi:

10.1057/s41311-020-00268-y.

[21] M. Dayalan, “Understanding Software Systems Using Reverse Engineering Technology,”

Object-Oriented Technol. Database Softw. Syst., vol. 6, no. 4, pp. 240–252, 2019, doi:

10.1142/9789812831163_0016.

[22] A. Van Deursen and E. Burd, “Software reverse engineering,” J. Syst. Softw., vol. 77, no.

3, pp. 209–211, 2005, doi: 10.1016/j.jss.2004.03.031.

111

[23] H. M. Kienle and H. A. Mu, “The Tools Perspective on Software Reverse Engineering :

Requirements , Construction , and Evaluation,” vol. 79, no. 10, pp. 189–290, 2010, doi:

10.1016/S0065-2458(10)79005-7.

[24] B. Tenovo, P. Mursanto, and H. B. Santoso, “Reverse Engineering Software Tools Based

on a Comprehension System,” Proc. - 2017 7th World Eng. Educ. Forum, WEEF 2017-

Conjunction with 7th Reg. Conf. Eng. Educ. Res. High. Educ. 2017, RCEE RHEd 2017, 1st

Int. STEAM Educ. Conf. STEAMEC 201, pp. 202–209, 2018, doi:

10.1109/WEEF.2017.8467039.

[25] P. P. Dudenhofer, “Modeling and Automating the Cyber Reverse Engineering Cognitive

Process,” Colloquim Inf. Syst. Secur., 2019.

[26] B. Zhang, “Research Summary of Anti-debugging Technology,” J. Phys. Conf. Ser., vol.

1744, no. 4, 2021, doi: 10.1088/1742-6596/1744/4/042186.

[27] C. Bradley and B. Currie, “Advances in the Field of Reverse Engineering,” Comput. Aided.

Des. Appl., vol. 2, no. 5, pp. 697–706, 2005, doi: 10.1080/16864360.2005.10739029.

[28] N. F. M. Sani, N. A. M. Ariffin, and R. Atan, “Design of object-oriented debugger model

by using unified modeling language,” J. Comput. Sci., vol. 9, no. 1, pp. 16–29, 2013, doi:

10.3844/jcssp.2013.16.29.

[29] M. E. Rosenbaum, N. L. Nisly, K. J. Ferguson, and E. W. Kligman, Academic physicians

and complementary and alternative medicine: An institutional survey, vol. 17, no. 1. 2002.

doi: 10.1177/106286060201700102.

[30] I. D. Baxter and M. Mehlich, “Reverse engineering is reverse forward engineering,” Sci.

Comput. Program. 9 0167-6423/00/$ - see Front matter c? 2000 Elsevier Sci. B.V. All rights

Reserv., vol. 36, pp. 131–147, 2000.

[31] Keith Bennett, “IEEE,” Leg. Syst. Coping with Success., 1995.

[32] J. V. Harrison and A. Berglas, “Data flow analysis within the ITOC information system

design recovery tool,” Proc. IEEE Int. Autom. Softw. Eng. Conf. ASE, pp. 227–236, 1997,

doi: 10.1109/ase.1997.632843.

[33] J. Sadiq and T. Waheed, “Reverse engineering & design recovery: An evaluation of design

recovery techniques,” Proc. - Int. Conf. Comput. Networks Inf. Technol., pp. 325–332,

2011, doi: 10.1109/ICCNIT.2011.6020889.

112

[34] S. Diehl, Software visualization, Visualizing the Structure, Behaviour, and Evolution of

Software, no. March. Germany: Springer Singapore, 2007. doi: 10.1145/1062455.1062634.

[35] T. Ball and S. G. Eick, “Software visualization in the large,” Computer (Long. Beach.

Calif)., vol. 29, no. 4, pp. 33–43, 1996, doi: 10.1109/2.488299.

[36] B. A. Price, R. M. Baecker, and I. S. Small, “A principled taxonomy of software

visualization,” J. Vis. Lang. Comput., vol. 4, no. 3, pp. 211–266, 1993, doi:

10.1006/jvlc.1993.1015.

[37] C. Raibulet, F. Arcelli Fontana, and M. Zanoni, “Model-driven reverse engineering

approaches: A systematic literature review,” IEEE Access, vol. 5, no. c, pp. 14516–14542,

2017, doi: 10.1109/ACCESS.2017.2733518.

[38] M. Ahmad, M. Z. Alam, Z. Umayya, S. Khan, and F. Ahmad, “An image encryption

approach using particle swarm optimization and chaotic map,” Int. J. Inf. Technol., vol. 10,

no. 3, pp. 247–255, 2018, doi: 10.1007/s41870-018-0099-y.

[39] P. S. Antón and R. H. Anderson, Finding and Fixing Vulnerabilities in Information Systems:

The Vulnerability Assessment and Mitigation Methodology. 2022. doi: 10.7249/mr1601.

[40] Q. X. Miao, “Research and analysis on Encryption Principle of TrueCrypt software system,”

2nd Int. Conf. Inf. Sci. Eng. ICISE2010 - Proc., pp. 1409–1412, 2010, doi:

10.1109/ICISE.2010.5691392.

[41] R. Sharma, S. Dangi, and P. Mishra, “A Comprehensive Review on Encryption based Open

Source Cyber Security Tools,” Proc. IEEE Int. Conf. Signal Process. Control, vol. 2021-

Octob, pp. 614–619, 2021, doi: 10.1109/ISPCC53510.2021.9609369.

[42] G. Knight, “Encrypt data using VeraCrypt,” London Sch. Hyg. Trop. Med., vol. 44, no. 0,

2017, [Online]. Available: www.lshtm.ac.uk/library/

[43] V. Information, Truecrypt: User Guide, Version 7.1a, 2nd ed. US: Truecrypt, 2012.

[Online]. Available: www.truecrypt.org

[44] E. Casey, G. Fellows, M. Geiger, and G. Stellatos, “The growing impact of full disk

encryption on digital forensics,” Digit. Investig., vol. 8, no. 2, pp. 129–134, 2011, doi:

10.1016/j.diin.2011.09.005.

[45] A. Balducci, S. Devlin, and T. Ritter, “Open Crypto Audit Project - TrueCrypt

113

Cryptographic Review,” iSECpartners, no. Security Assesment, 2015.

[46] B. David, E. Filiol, and K. Gallienne, “Structural analysis of binary executable headers for

malware detection optimization,” J. Comput. Virol. Hacking Tech., vol. 13, no. 2, pp. 87–

93, 2017, doi: 10.1007/s11416-016-0274-2.

[47] E. Summary and I. D. a Pro, “Executive Summary : IDA Pro – at the cornerstone of IT

security What is IDA Pro ? How is IDA Pro useful ? Who are IDA Pro users ?,” PC Mag.,

2009.

[48] D. E. W. E. B. Denning, “Encryption and Evolving Technologies,” in National Strategy

Information Center’s US Working Group on Organized Crime (WGOC), 1997, no. July, pp.

1–23.

[49] Anton Benjamin Vickerman, “Sentencing Remarks of His Honour Judge John Evans R -v-

Anton Benjamin Vickerman,” Judic. Engl. wales, no. August, 2012.

[50] S. Singh, “The code book : the secret history of codes and code-breaking cryptography /

Simon Singh.” 2000. [Online]. Available:

http://search.ebscohost.com/login.aspx?direct=true&db=cat02326a&AN=usl.848099&site

=eds-live

[51] R. Singrore, “A Study To Examine Forensic Cybercrime and the Role of Computer

Forensics,” Int. J. Innov. Res. Technol. Sci., vol. 12, no. 2, 2024.

[52] C. Tan, L. Zhang, and L. Bao, “A Deep Exploration of BitLocker Encryption and Security

Analysis,” Int. Conf. Commun. Technol. Proceedings, ICCT, vol. 2020-Octob, pp. 1070–

1074, 2020, doi: 10.1109/ICCT50939.2020.9295908.

[53] C. M. and B. van Gastel, “Self-encrypting deception: weaknesses in the encryption of solid

state drives,” IEEE Access, 2019.

[54] B. D. Ghode and D. S. K. J. Akhlesh Kumar, “Forensic Investigation Utilizing RAM

Capture to Decrypt Bitlocker Volumes: A Case Study.,” vol. 9, no. 8, pp. 65–72, 2022,

[Online]. Available: https://d1wqtxts1xzle7.cloudfront.net/100750049/JETIR2208208-

libre.pdf?1680755791=&response-content-

disposition=inline%3B+filename%3DForensic_Investigation_Utilizing_RAM_Cap.pdf&

Expires=1710779072&Signature=c~YIQ7aM9ieplPNdZ141kMmb6cOZ3MCRw4hyyaR

M5OnNes48

114

[55] D. Evangelin, J. Jelsteen, J. A. Pushparani, and J. N. S. Jebastin, “Importance of Software

Re-Engineering Process and Program Based Analysis in Reverse Engineering Process,” vol.

1, no. 1, pp. 11–18, 2013.

[56] A. Wali, H. Ravichandran, and S. Das, “A 2D Cryptographic Hash Function Incorporating

Homomorphic Encryption for Secure Digital Signatures,” Adv. Mater., vol. 2400661, pp.

1–15, 2024, doi: 10.1002/adma.202400661.

[57] Henry B Wolfe, “Encountering Encrypted Evidence (potential),” Proc. 2002 InSITE Conf.,

no. June, 2002, doi: 10.28945/2590.

[58] P. Q. Nguyen, “Can we trust cryptographic software? Cryptographic flaws in GNU privacy

guard v1.2.3,” Int. Assoc. Cryptologic Res., vol. 3027, pp. 555–570, 2004, doi:

10.1007/978-3-540-24676-3_33.

[59] E. C. Hosgor, Detection and Mitigation of Anti-Forensics Using Forensic Tools, no. 1–83.

2006. [Online]. Available:

https://apps.dtic.mil/sti/citations/AD1069614%0Ahttps://apps.dtic.mil/sti/pdfs/AD106961

4.pdf

[60] S. Yadav, K. Ahmad, and J. Shekhar, “Analysis of digital forensic tools and investigation

process,” Commun. Comput. Inf. Sci., vol. 169 CCIS, pp. 435–441, 2011, doi: 10.1007/978-

3-642-22577-2_59.

[61] J. Cappaert, N. Kisserli, D. Schellekens, and B. Preneel, “Self-encrypting code to protect

against analysis and tampering,” in Benelux Workshop on Information and System Security,

2006, p. 14. [Online]. Available:

http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Self-

encrypting+Code+to+Protect+Against+Analysis+and+Tampering#0

[62] J. B. Awotunde, A. O. Ameen, I. D. Oladipo, A. R. Tomori, and M. Abdulraheem,

“Evaluation of four encryption algorithms for viability, reliability and performance

estimation,” Niger. J. Technol. Dev., vol. 13, no. 2, p. 74, 2017, doi: 10.4314/njtd.v13i2.5.

[63] J. Cappaert, B. Preneel, B. Anckaert, M. Madou, and K. De Bosschere, “Towards tamper

resistant code encryption: Practice and experience,” Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 4991 LNCS, pp. 86–100,

2008, doi: 10.1007/978-3-540-79104-1_7.

115

[64] H. M. A. K. Diaa Salama Abdul. Elminaam and and M. M. Hadhoud, “Performance

evaluation of various symmetric encryption algorithms,” Int. J. Comput. Sci. Netw. Secur.,

vol. 8, no. 12, pp. 280–286, 2008, doi: 10.1109/PDGC.2014.7030724.

[65] M. A. Alomari, K. Samsudin, and A. R. Ramli, “A study on encryption algorithms and

modes for disk encryption,” 2009 Int. Conf. Signal Process. Syst. ICSPS 2009, pp. 793–

797, 2009, doi: 10.1109/ICSPS.2009.118.

[66] J. Kizza and F. Migga Kizza, “Digital Evidence and Computer Crime,” in Securing the

Information Infrastructure, 2011. doi: 10.4018/9781599043791.ch015.

[67] E. Casey, G. Fellows, M. Geiger, and G. Stellatos, “The growing impact of full disk

encryption on digital forensics,” Digit. Investig., vol. 8, no. 2, pp. 129–134, 2011, doi:

10.1016/j.diin.2011.09.005.

[68] F. Cohen, “Two models of digital forensic examination,” in 4th International Workshop on

Systematic Approaches to Digital Forensic Engineering, SADFE 2009, 2009, vol. 1, no. 3,

pp. 42–53. doi: 10.1109/SADFE.2009.8.

[69] E. Pimenidis, “Computer Anti-forensics Methods and Their Impact on Computer Forensic

Investigation Computer Anti-forensics Methods and Their Impact on,” no. August 2016,

pp. 145–155, 2016, doi: 10.1007/978-3-642-04062-7.

[70] F. Mouton and H. S. Venter, “A prototype for achieving digital forensic readiness on

wireless sensor networks,” IEEE AFRICON Conf., no. September 2011, 2011, doi:

10.1109/AFRCON.2011.6072117.

[71] S. Alharbi, J. Weber-Jahnke, and I. Traore, “The proactive and reactive digital forensics

investigation process: A systematic literature review,” International Journal of Security and

its Applications, vol. 5, no. 4. pp. 59–72, 2011.

[72] W. Janet, “ACPO Good Practice Guide for Digital Evidence,” Pet. Econ., vol. 71, no. 10,

p. 41, 2012.

[73] A. M. and S. Ying, “Privacy Impacts of Data Encryption on the Efficiency of Digital

Forensics Technology,” Int. J. Adv. Comput. Sci. Appl., vol. 4, no. 5, pp. 36–40, 2013, doi:

10.14569/ijacsa.2013.040506.

[74] M. S. Zareen, A. Waqar, and B. Aslam, “Digital forensics: Latest challenges and response,”

Conf. Proc. - 2013 2nd Natl. Conf. Inf. Assur. NCIA 2013, pp. 21–29, 2013, doi:

116

10.1109/NCIA.2013.6725320.

[75] E. Casey, “Practical approaches to recovering encrypted digital evidence,” Proc. Digit.

Forensic Res. Conf. DFRWS 2002 USA, vol. 1, no. 3, 2002.

[76] A. Davies, Detecting hidden volumes and operating systems, no. September. 2014.

[77] E. Casey, “Differentiating the phases of digital investigations,” Digit. Investig., vol. 19, pp.

A1–A3, 2016, doi: 10.1016/j.diin.2016.11.001.

[78] V. R. Kebande and I. Ray, “A generic digital forensic investigation framework for Internet

of Things (IoT),” Proc. - 2016 IEEE 4th Int. Conf. Futur. Internet Things Cloud, FiCloud

2016, pp. 356–362, 2016, doi: 10.1109/FiCloud.2016.57.

[79] E. A. Vincze, “Challenges in digital forensics,” Police Pract. Res., vol. 17, no. 2, pp. 183–

194, 2016, doi: 10.1080/15614263.2015.1128163.

[80] M. Computing and U. S. Kumar, “SMS Security System Using Encryption Techniques,”

Int. J. Comput. Sci. Mob. Comput., vol. 8, no. 5, pp. 132–142, 2019.

[81] V. Jusas, D. Birvinskas, and E. Gahramanov, “Methods and tools of digital triage in forensic

context: Survey and future directions,” Symmetry (Basel)., vol. 9, no. 4, pp. 1–20, 2017, doi:

10.3390/sym9040049.

[82] M. A. Ako, “Advanced Encryption Standard (AES) Algorithm to Encrypt and Decrypt

Data,” Cryptogr. Netw. Secur., no. June, 2017, [Online]. Available:

https://www.researchgate.net/publication/317615794

[83] S. Dogan, “A New Approach for Data Hiding based on Pixel Pairs and Chaotic Map,” Int.

J. Comput. Netw. Inf. Secur., vol. 10, no. 1, pp. 1–9, 2018, doi: 10.5815/ijcnis.2018.01.01.

[84] A. Arewa, “Borderless crimes and digital forensic: Nigerian perspectives,” J. Financ.

Crime, vol. 25, no. 2, pp. 619–631, 2018, doi: 10.1108/JFC-12-2016-0079.

[85] H. Arshad, A. Bin Jantan, and O. I. Abiodun, “Digital forensics: Review of issues in

scientific validation of digital evidence,” J. Inf. Process. Syst., vol. 14, no. 2, pp. 346–376,

2018, doi: 10.3745/JIPS.03.0095.

[86] C. Meijer and B. Van Gastel, “Advisory on Solid State Disks (SSDs) / Digital Security ,

Radboud University / 5-11-2018 Research results,” pp. 1–2, 2018.

[87] H. Majed, H. N. Noura, and A. Chehab, “Overview of Digital Forensics and Anti-Forensics

117

Techniques,” 8th Int. Symp. Digit. Forensics Secur. ISDFS 2020, no. June, 2020, doi:

10.1109/ISDFS49300.2020.9116399.

[88] K. Patel, “Performance analysis of AES, DES and Blowfish cryptographic algorithms on

small and large data files,” Int. J. Inf. Technol., vol. 11, no. 4, pp. 813–819, 2019, doi:

10.1007/s41870-018-0271-4.

[89] M. Geiger, “Counter-forensic tools: Analysis and data recovery,” 18th FIRST Conf., vol.

65, p. 140, 2006, [Online]. Available: http://72.3.219.184/conference/2006/papers/geiger-

matthew-papers.pdf

[90] E. Casey, “Digital Evidence and Computer Crime, Third Edition,” p. 840, 2011.

[91] K. Kumar and P. Kaur, “A Generalized Process of Reverse Engineering in Software

Protection & Security,” Int. J. Comput. Sci. Mob. Comput., vol. 4, no. 5, pp. 534–544, 2015.

[92] N. Niknejad, W. Ismail, I. Ghani, B. Nazari, M. Bahari, and A. R. B. C. Hussin,

“Understanding Service-Oriented Architecture (SOA): A systematic literature review and

directions for further investigation,” Inf. Syst., vol. 91, p. 101491, 2020, doi:

10.1016/j.is.2020.101491.

[93] M. A. Wani, A. AlZahrani, and W. A. Bhat, “File system anti-forensics – types, techniques

and tools,” Comput. Fraud Secur., vol. 2020, no. 3, pp. 14–19, 2020, doi: 10.1016/S1361-

3723(20)30030-0.

[94] K. Dahbur, “Proceedings of the 2nd International Conference on Intelligent Semantic Web-

Services and Applications, ISWSA’11,” ACM International Conference Proceeding Series,

vol. 2. 2011.

[95] V. R. Kebande and H. S. Venter, “A Functional Architecture for Cloud Forensic Readiness

Large-scale Potential Evidence Analysis A Functional Architecture for Cloud Forensic

Readiness Large-scale Potential Digital Evidence Analysis .,” no. July, 2015, doi:

10.13140/RG.2.1.1052.1440.

[96] K. Shekhanin, A. Kuznetsov, V. Krasnobayev, and O. Smirnov, “Detecting hidden

information in fat,” Int. J. Comput. Netw. Inf. Secur., vol. 12, no. 3, pp. 33–43, 2020, doi:

10.5815/ijcnis.2020.03.04.

[97] R. Montasari, R. Hill, S. Parkinson, P. Peltola, A. Hosseinian-Far, and A. Daneshkhah,

“Digital Forensics,” Int. J. Organ. Collect. Intell., vol. 10, no. 2, pp. 37–53, 2020, doi:

118

10.4018/ijoci.2020040103.

[98] B. A. Sassani, M. Alkorbi, N. Jamil, M. A. Naeem, and F. Mirza, “Evaluating Encryption

Algorithms for Sensitive Data Using Different Storage Devices,” Scientific Programming,

vol. 2020. 2020. doi: 10.1155/2020/6132312.

[99] K. Scarfone, M. Sexton, and M. Souppaya, “Guide to Storage Encryption Technologies for

End User Devices Recommendations of the National Institute of Standards and

Technology,” pp. 1–40, 2007.

[100] S. L. Garfinkel, “Digital forensics research: The next 10 years,” Digit. Investig., vol. 7, no.

SUPPL., pp. S64–S73, 2010, doi: 10.1016/j.diin.2010.05.009.

[101] Mohammed I Alghamdi, “Digital Forensics in Cyber Security—Recent Trends, Threats,

and Opportunities,” Cybersecurity Threat. with New Perspect., vol. 11, no. New Edition,

pp. 1–173, 2021, doi: DOI: 10.5772/intechopen.94452.

[102] A. Al-Dhaqm et al., “Digital Forensics Subdomains: The State of the Art and Future

Directions,” IEEE Access, vol. 9, pp. 152476–152502, 2021, doi:

10.1109/ACCESS.2021.3124262.

[103] Elia Anzuoni, “Hidden Filesystem Design and Improvement,” pp. 1–65, 2022.

[104] Mamoun, Z. Jalil, K. Kifayat, and T. R. Gadekallu, “A Comprehensive Survey on Computer

Forensics: State-of-the-Art, Tools, Techniques, Challenges, and Future Directions,” IEEE

Access, vol. 10, pp. 11065–11089, 2022, doi: 10.1109/ACCESS.2022.3142508.

[105] R. Stoykova, R. Nordvik, M. Ahmed, K. Franke, S. Axelsson, and F. Toolan, “Legal and

technical questions of file system reverse engineering,” Comput. Law Secur. Rev., vol. 46,

2022, doi: 10.1016/j.clsr.2022.105725.

[106] Paul Joseph and P Viswanathan, “A Comprehensive Survey and Analysis on Multi-Domain

Digital Forensic Tools, Techniques and Issues,” Res. Sq. ,Vellore Inst. Technol., pp. 0–25,

2022, doi: : https://doi.org/10.21203/rs.3.

[107] J. P. A. Yaacoub, H. N. Noura, O. Salman, and A. Chehab, “Advanced digital forensics and

anti-digital forensics for IoT systems: Techniques, limitations and recommendations,”

Internet Things (Netherlands)arXiv2103.17028v1 [cs.CR] 31 Mar 2021 Digit., vol. 19,

2022, doi: 10.1016/j.iot.2022.100544.

119

[108] Y. D. A.-O. Alotaibi, Fahad, Arafat Al-Dhaqm, “A Conceptual Digital Forensic

Investigation Model Applicable to the Drone Forensics Field,” vol. 13, no. 5, pp. 11608–

11615, 2023.

[109] D. E. Perry, “Software Interconnection Models.,” Proc. - Int. Conf. Softw. Eng., pp. 61–69,

1987.

[110] H. A. Müller, S. R. Tilley, M. A. Orgun, B. D. Corrie, and N. H. Madhavji, “A reverse

engineering environment based on spatial & visual software interconnection models,” Proc.

5th ACM SIGSOFT Symp. Softw. Dev. Environ. SDE 1992, pp. 88–98, 1992, doi:

10.1145/142868.143755.

[111] H. A. Müller, M. A. Orgun, S. R. Tilley, and J. S. Uhl, “A reverse‐engineering approach to

subsystem structure identification,” J. Softw. Maint. Res. Pract., vol. 5, no. 4, pp. 181–204,

1993, doi: 10.1002/smr.4360050402.

[112] C. Collberg, C. Thomborson, and D. Low, “Breaking abstractions and unstructuring data

structures,” Proc. IEEE Int. Conf. Comput. Lang., pp. 28–38, 1998, doi:

10.1109/ICCL.1998.674154.

[113] L. O. Brien, “Architecture Reconstruction Guidelines,” Softw. Eng. Inst., vol. 3, no. August,

pp. 1–41, 2001, doi: F19628-00-C003.

[114] E. Stroulia and T. Systä, “Dynamic analysis for reverse engineering and program

understanding,” ACM SIGAPP Appl. Comput. Rev., vol. 10, no. 1, pp. 8–17, 2002, doi:

10.1145/568235.568237.

[115] C. S. Collberg, C. Thomborson, and S. Member, “ObfuscationÐTools for Software

Protection,” Computer (Long. Beach. Calif)., vol. 28, no. 8, pp. 735–746, 2002, [Online].

Available: http://citeseer.nj.nec.com/collberg02watermarking.html

[116] T. Eisenbarth, R. Koschke, and D. Simon, “Locating features in source code,” IEEE Trans.

Softw. Eng., vol. 29, no. 3, pp. 210–224, 2003, doi: 10.1109/TSE.2003.1183929.

[117] A. Marcus, A. Sergeyev, V. Rajlieh, and J. I. Maletic, “An information retrieval approach

to concept location in source code,” Proc. - Work. Conf. Reverse Eng. WCRE, pp. 214–223,

2004, doi: 10.1109/WCRE.2004.10.

[118] E. Eilam and E. Chikofsky, Reversing Secrets of reverse engineering, vol. 5, no. 3. Wilely

Publishing, 2005. [Online]. Available:

120

https://books.google.co.za/books?hl=en&lr=&id=_78HnPPRU_oC&oi=fnd&pg=PT7&dq

=malware+reverse+engineering+&ots=EN4KNrvUZk&sig=UUmKGI69pv7CR1Nh25__

Z4V3Zs4#v=onepage&q=malware reverse engineering&f=false

[119] T. Dybå, B. A. Kitchenham, and M. Jorgensen, “Evidence-based software engineering for

practitioners,” IEEE Softw., vol. 22, no. 1, pp. 58–65, 2005, doi: 10.1109/MS.2005.6.

[120] A. Aggarwal and P. Jalote, “Integrating static and dynamic analysis for detecting

vulnerabilities,” Proc. - Int. Comput. Softw. Appl. Conf., vol. 1, pp. 343–350, 2006, doi:

10.1109/COMPSAC.2006.55.

[121] G. Canfora and M. Di Penta, “New frontiers of reverse engineering,” FoSE 2007 Futur.

Softw. Eng., no. June, pp. 326–341, 2007, doi: 10.1109/FOSE.2007.15.

[122] Y. Song, M. E. Locasto, A. Stavrou, A. D. Keromytis, and S. J. Stolfo, “On the infeasibility

of modeling polymorphic shellcode,” Proc. ACM Conf. Comput. Commun. Secur., pp. 541–

551, 2007, doi: 10.1145/1315245.1315312.

[123] A. Czeskis, D. J. St Hilaire, K. Koscher, S. D. Gribble, T. Kohno, and B. Schneier,

“Defeating encrypted and deniable file systems: TrueCrypt v5.1a and the case of the tattling

OS and applications,” in HotSec 2008 - 3rd USENIX Workshop on Hot Topics in Security,

2008, pp. 1–7.

[124] D. Page, A. Koschan, and M. Abidi, “Methodologies and Techniques for Reverse

Engineering–The Potential for Automation with 3-D Laser Scanners,” Springer Ser. Adv.

Manuf., no. September 2014, pp. 11–32, 2008, doi: 10.1007/978-1-84628-856-2_2.

[125] J. Larsen, Rverser Engineering with IDA Pro, Third Edit. US: Elsevier, 2008.

[126] C. Altheide, C. Merloni, and S. Zanero, “A methodology for the repeatable forensic analysis

of encrypted drives,” Proc. 1st Eur. Work. Syst. Secur. EUROSEC’08, no. March 2008, pp.

22–26, 2008, doi: 10.1145/1355284.1355289.

[127] N. McGrath, P. Gladyshev, T. Kechadi, and J. Carthy, “Investigating encrypted material,”

Lect. Notes Inst. Comput. Sci. Soc. Telecommun. Eng., vol. 8 LNICST, pp. 29–35, 2009,

doi: 10.1007/978-3-642-02312-5_4.

[128] E. J. Schwartz and T. Avgerinos, “All you ever wanted to know about dynamic taint analysis

forward symbolic execution (but might have been afraid to ask),” vol. 6, no. 5, pp. 1–5,

2010.

121

[129] Z. Lin, X. Zhang, D. Xu, and W. Lafayette, “REWARDS: Automatic Reverse Engineering

of Data Structures from Binary Execution,” Proc. 17th Annu. Netw. Distrib. Syst. Secur.

Symp., pp. 1–20, 2010, [Online]. Available:

http://www.isoc.org/isoc/conferences/ndss/10/pdf/23.pdf

[130] R. Srinivasan, P. Dasgupta, V. Iyer, A. Kanitkar, S. Sanjeev, and J. Lodhia, “A multi-factor

approach to securing software on client computing platforms,” Proc. - Soc. 2010 2nd IEEE

Int. Conf. Soc. Comput. PASSAT 2010 2nd IEEE Int. Conf. Privacy, Secur. Risk Trust, pp.

993–998, 2010, doi: 10.1109/SocialCom.2010.147.

[131] D. S. and A. Singh, “An Effective Technique for Data Security in Modern Cryptosystem,”

Int. J. Inf. Technol., vol. 2, no. 1, pp. 189–194, 2010.

[132] M. Stamp and T. Cipresso, An introduction to software reverse engineering, no. March.

Springer Paris, 2010.

[133] H. A. Müller, K. Wong, and S. R. Tilley, “Understanding Software Systems Using Reverse

Engineering Technology,” Object-Oriented Technol. Database Softw. Syst., pp. 240–252,

2000, doi: 10.1142/9789812831163_0016.

[134] C. Treude, F. F. Filho, M. A. Storey, and M. Salois, “An exploratory study of software

reverse engineering in a security context,” Proc. - Work. Conf. Reverse Eng. WCRE, pp.

184–188, 2011, doi: 10.1109/WCRE.2011.30.

[135] S. She, R. Lotufo, T. Berger, A. Wa̧sowski, and K. Czarnecki, “Reverse engineering feature

models,” Proc. - Int. Conf. Softw. Eng., pp. 461–470, 2011, doi: 10.1145/1985793.1985856.

[136] G. Canfora, M. Di Penta, and L. Cerulo, “Achievements and challenges in software reverse

engineering,” Commun. ACM, vol. 54, no. 4, pp. 142–151, 2011, doi:

10.1145/1924421.1924451.

[137] H. Wang, Y. Wang, T. Taleb, and X. Jiang, “Editorial: Special issue on security and privacy

in network computing,” World Wide Web, vol. 23, no. 2, pp. 951–957, 2020, doi:

10.1007/s11280-019-00704-x.

[138] J. Antunes, N. Neves, and P. Verissimo, “Reverse engineering of protocols from network

traces,” Proc. - Work. Conf. Reverse Eng. WCRE IEEE, pp. 169–178, 2011, doi:

10.1109/WCRE.2011.28.

[139] I. Jozwiak, M. Kedziora, and A. Melinska, “Theoretical and practical aspects of encrypted

122

containers detection - Digital forensics approach,” Adv. Intell. Soft Comput., vol. 97, pp.

75–85, 2011, doi: 10.1007/978-3-642-21393-9_6.

[140] A. Mathematics, “Software Reverse Engineering: Achievements and Challenges,” IEEE

Stand. Softw. Maint., pp. 1–23, 2016.

[141] H. M., J. Kraft, and H. A., “Software Reverse Engineering in the Domain of Complex

Embedded Systems,” in Reverse Engineering - Recent Advances and Applications, no. May,

2012. doi: 10.5772/33586.

[142] S. N, “A Thorough Investigation on Software Protection Techniques against Various

Attacks,” Bonfring Int. J. Softw. Eng. Soft Comput., vol. 2, no. 3, pp. 10–15, 2012, doi:

10.9756/bijsesc.10030.

[143] M. Chlumecký, “Methods and Approaches for Reverse Engineering,” J. Digit. Forensics,

Secur., vol. 4, no. 3, pp. 1–7, 2012.

[144] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How do software engineers understand

code changes? - An exploratory study in industry,” Proc. ACM SIGSOFT 20th Int. Symp.

Found. Softw. Eng. FSE 2012, 2012, doi: 10.1145/2393596.2393656.

[145] S. Rekhis and N. Boudriga, “A system for formal digital forensic investigation aware of

anti-forensic attacks,” in IEEE Transactions on Information Forensics and Security, 2012,

vol. 7, no. 2, pp. 635–650. doi: 10.1109/TIFS.2011.2176117.

[146] Apoorva and Y. Kumar, “Comparative Study of Different Symmetric Key Cryptography

Algorithms,” Int. J. Appl. or Innov. Eng. Manag., vol. 2, no. 7, pp. 204–206, 2013.

[147] I. Jóźwiak, M. Kedziora, and A. Melińska, “Methods for detecting and analyzing hidden

FAT32 volumes created with the use of cryptographic tools,” Adv. Intell. Syst. Comput.,

vol. 224, pp. 237–244, 2013, doi: 10.1007/978-3-319-00945-2_21.

[148] T. Thongkamwitoon, “Digital forensic techniques for the reverse engineering of image

acquisition chains,” pp. 1–120, 2014, [Online]. Available:

http://www.commsp.ee.ic.ac.uk/~pld/group/PhDThesis_Thirapiroon14.pdf

[149] J. V. Ahmet Balci , Dan Ungureanu, “Properties of AdeABC and AdeIJK efflux systems of

Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia

coli,” Antimicrob. Agents Chemother., vol. 58, no. 12, pp. 7250–7257, 2014, doi:

10.1128/AAC.03728-14.

123

[150] L. Zhang, Y. Zhou, and J. Fan, “The forensic analysis of encrypted Truecrypt volumes,”

PIC 2014 - Proc. 2014 IEEE Int. Conf. Prog. Informatics Comput., pp. 405–409, 2014, doi:

10.1109/PIC.2014.6972366.

[151] H. Gonzalez, A. A. Kadir, N. Stakhanova, N. Alzahrani, and A. A. Ghorbani, “Exploring

reverse engineering symptoms in android apps,” Proc. 8th Eur. Work. Syst. Secur. EuroSec

2015, 2015, doi: 10.1145/2751323.2751330.

[152] J. Narayan, S. K. Shukla, and T. C. Clancy, “A survey of automatic protocol reverse

engineering tools,” ACM Comput. Surv., vol. 48, no. 3, 2015, doi: 10.1145/2840724.

[153] A. Kaplan, H. Cetinturk, K. Celebioglu, and S. Aradag, “Reverse Engineering Design of a

Hydraulic Turbine Runner,” vol. II, pp. 4–7, 2015.

[154] K. Lim, Y. Jeong, S. J. Cho, M. Park, and S. Han, “An android application protection

scheme against dynamic reverse engineering attacks,” J. Wirel. Mob. Networks, Ubiquitous

Comput. Dependable Appl., vol. 7, no. 3, pp. 40–52, 2016.

[155] Y.-L. Cheng et al., “Comparative Study of Information Security in Mobile Operating

Systems: Android and Apple iOS,” Intech, vol. 11, no. tourism, p. 13, 2016, [Online].

Available: https://www.intechopen.com/books/advanced-biometric-technologies/liveness-

detection-in-biometrics

[156] J. Narayan, S. K. Shukla, and T. C. Clancy, “A survey of automatic protocol reverse

engineering tools,” ACM Computing Surveys, vol. 48, no. 3. 2015. doi: 10.1145/2840724.

[157] T. Diamantopoulos, K. Thomopoulos, and A. Symeonidis, “Reusability-aware

Recommendations of Source Code Components,” pp. 488–491, 2016, doi:

10.1145/2901739.2903492.

[158] D. Version, Reverse Engineering Source Code:, Third Edit. Singapoore: Springer

Singapore, 2017. [Online]. Available: http://dare.uva.nl

[159] M. Kedziora, Y. W. Chow, and W. Susilo, “Defeating plausible deniability of veracrypt

hidden operating systems,” Commun. Comput. Inf. Sci., vol. 719, pp. 3–13, 2017, doi:

10.1007/978-981-10-5421-1_1.

[160] Z. Mushtaq, G. Rasool, and B. Shehzad, “Multilingual Source Code Analysis: A Systematic

Literature Review,” IEEE Access, vol. 5, pp. 11307–11336, 2017, doi:

10.1109/ACCESS.2017.2710421.

124

[161] A. Zuck, U. Shriki, D. E. Porter, and D. Tsafrir, “Preserving Hidden Data with an Ever-

Changing Disk,” Proc. Work. Hot Top. Oper. Syst. - HOTOS, vol. Part F1293, pp. 50–55,

2017, doi: 10.1145/3102980.3102989.

[162] S. Senthivel, S. Dhungana, H. Yoo, I. Ahmed, and V. Roussev, “Denial of Engineering

Operations A acks in Industrial Control Systems,” pp. 319–329, 2018.

[163] M. Werner, B. Lippmann, J. Baehr, and H. Grab, “Reverse engineering of cryptographic

cores by structural interpretation through graph analysis,” 2018 IEEE 3rd Int. Verif. Secur.

Work. IVSW 2018, pp. 13–18, 2018, doi: 10.1109/IVSW.2018.8494896.

[164] B. D. Sija, Y. Goo, K. Shim, H. Hasanova, and M. Kim, “A Survey of Automatic Protocol

Reverse Engineering Approaches , Methods , and Tools on the Inputs and Outputs View,”

vol. 2018, 2018.

[165] T. Göbel and H. Baier, “Anti-forensic capacity and detection rating of hidden data in the

ext4 filesystem,” IFIP Adv. Inf. Commun. Technol., vol. 532, pp. 87–110, 2018, doi:

10.1007/978-3-319-99277-8_6.

[166] C. T. Lijun Zhang, Xiaoyan Deng, “An Extensive Analysis of truecrypt Encryption

Forensics,” pp. 1–6, 2019, doi: 10.1145/3331453.3361328.

[167] O. Shwartz, Y. Mathov, M. Bohadana, Y. Elovici, and Y. Oren, “Reverse Engineering IoT

Devices: Effective Techniques and Methods,” IEEE Internet Things J., vol. 5, no. 6, pp.

4965–4976, 2018, doi: 10.1109/JIOT.2018.2875240.

[168] O. Or-Meir, N. Nissim, Y. Elovici, and L. Rokach, “Dynamic malware analysis in the

modern era—A state of the art survey,” ACM Comput. Surv., vol. 52, no. 5, 2019, doi:

10.1145/3329786.

[169] Q. U. Ain, W. H. Butt, M. W. Anwar, F. Azam, and B. Maqbool, “A Systematic Review on

Code Clone Detection,” IEEE Access, vol. 7, pp. 86121–86144, 2019, doi:

10.1109/ACCESS.2019.2918202.

[170] F. O. F. Informatics, “Encrypted disk unmount using personalized audio instruction,”

Masaryk University Faculty of Informatics, 2019.

[171] A. S. Rahmawati and R. P. Dewi, “An evaluation and comparison of random.org and some

commonly used generators.,” Pengaruh Pengguna. Pasta Labu Kuning (Cucurbita

Moschata) Untuk Substitusi Tepung Terigu Dengan Penambahan Tepung Angkak Dalam

125

Pembuatan Mie Kering, pp. 274–282, 2020.

[172] D. Votipka, S. M. Rabin, K. Micinski, J. S. Foster, and M. M. Mazurek, “An observational

investigation of reverse engineers’ processes,” Proc. 29th USENIX Secur. Symp., pp. 1875–

1892, 2020.

[173] W. C. Henry and G. L. Peterson, “Exploring Provenance Needs in Software Reverse

Engineering,” Dep. Electr. Comput. Eng. Air Force Inst. Technol. Wright-Patterson AFB,

USA, pp. 57–65, 2020, [Online]. Available:

https://ieeexplore.ieee.org/abstract/document/9133693

[174] K. Liu et al., “On Manually Reverse Engineering Communication Protocols of Linux-Based

IoT Systems,” IEEE Internet Things J., vol. 8, no. 8, pp. 6815–6827, 2021, doi:

10.1109/JIOT.2020.3036232.

[175] K. Liu, M. Yang, Z. Ling, H. Yan, and Y. Zhang, “Protocols of Linux-Based IoT Systems,”

vol. 8, no. 8, pp. 6815–6827, 2021.

[176] H. Rathore and M. Sewak, “Malware Analysis and Detection,” ACM Int. Conf. Proceeding

Ser., vol. 10, no. 2, pp. 2–5, 2022, doi: 10.1145/3564121.3564809.

[177] G. Long and Z. Zhang, “Deep Encrypted Traffic Detection: An Anomaly Detection

Framework for Encryption Traffic Based on Parallel Automatic Feature Extraction,”

Comput. Intell. Neurosci., vol. 2023, pp. 1–12, 2023, doi: 10.1155/2023/3316642.

[178] Z. H. Abdullahi, S. K. Singh, and M. Hasan, “Software Reverse Engineering Techniques

for Evaluating Anti-Forensic Encryption Tools: A Framework Development and Analysis,”

Int. J. Intell. Syst. Appl. Eng., vol. 12, no. 1s, pp. 620–632, 2024.

[179] N. Bibi, T. Rana, A. Maqbool, F. Afzal, A. Akgül, and M. De la Sen, “An Intelligent

Platform for Software Component Mining and Retrieval,” Sensors (Basel)., vol. 23, no. 1,

pp. 1–24, 2023, doi: 10.3390/s23010525.

[180] A. Nurgaliyev and H. Wang, “Analysis of reverse engineering,” 2023 15th Int. Conf. Adv.

Comput. Intell. ICACI 2023, pp. 1–7, 2023, doi: 10.1109/ICACI58115.2023.10146175.

[181] S. Arif and M. M. Kumar, “Cyber Safety Analysis Using Reverse Engineering Syed,” Int.

J. Res. Publ. Rev. J. homepage www.ijrpr.com ISSN 2582-7421 Cyber, vol. 4, no. 1, pp.

399–403, 2023.

126

[182] Z. H. Abdullahi and S. K. Singh, “A Conceptual and Technical Perspective of Reverse

Engineering In Digital forensic,” in 2nd International Conference on Recent Development

in Engineering ,Sciences, and Management Goverment Engineering College Bharatpur,

Rjasthan, 2023, no. April. [Online]. Available: ISBN; 978-9391535-43-8

[183] Infosec, “Computer Forensics: Media & File System Forensics [Updated 2019] - Infosec

Resources.” p. https://resources.infosecinstitute.com/category/co, 2019. [Online].

Available: https://resources.infosecinstitute.com/topic/computer-forensics-media-file-

system-forensics/

[184] A. Guide, “Comodo Forensic Analysis Comodo Forensic Analysis - Admin Guide,”

Comodo Secur. Solut., vol. 2.o.12018, 2020.

[185] B. Lutkevich, “What is Reverse-engineering? How Does It Work?,” TechTarget. 2021.

[Online]. Available: https://searchsoftwarequality.techtarget.com/definition/reverse-

engineering

[186] San Francisco, “The Evolution of Reverse Engineering_ From Manual Reconstruction to

Automated Disassembling _ Apriorit,” in RSA, 2021, p. [Online]. Available:

https://searchsoftwarequality.

[187] Bruce Morey, “Reverse Engineering Proliferates_ New Applications Emerge as

Technology Improves _ SME Media,” in SME Media, 2021, p. [Online]. Available:

https://searchsoftwarequality.

[188] B. Carrier, “File Systemnsic Analysis,” Pearson Educ. Inc., vol. 4, p. 511, 2005.

[189] D. A. Ford, R. J. T. Morris, and A. E. Bell, “Redundant Arrays of Independent Libraries

(RAIL): The StarFish tertiary storage system,” Parallel Comput., vol. 24, no. 1, pp. 45–64,

1998, doi: 10.1016/s0167-8191(97)00116-6.

[190] Y. K. Gupta, “Systematic Digital Forensic Investigation Model,” Int. J. Comput. Sci. Secur.

(IJCSS), vol. 5, no. January 2011, 2016.

[191] G. C. Kessler, “Anti-forensics and the digital investigator,” Proc. 5th Aust. Digit. Forensics

Conf., pp. 1–7, 2007.

[192] T. Foundation, “TrueCrypt User Guide,” System, vol. 6, no. 5, pp. 1–110, 2014.

[193] L. Zhang, Y. Zhou, and J. Fan, “The forensic analysis of encrypted Truecrypt volumes,”

127

PIC 2014 - Proc. 2014 IEEE Int. Conf. Prog. Informatics Comput., pp. 405–409, 2014, doi:

10.1109/PIC.2014.6972366.

[194] A. Jain and G. S. Chhabra, “Anti-forensics techniques: An analytical review,” 2014 7th Int.

Conf. Contemp. Comput. IC3 2014, no. August 2014, pp. 412–418, 2014, doi:

10.1109/IC3.2014.6897209.

[195] H. Berghel, “Hiding Data, Forensics, and Anti-Forensics,” Commun. ACM, vol. 50, no. 4,

pp. 15–20, 2007.

[196] Y. Desmedt, “Deniable Encryption,” Encycl. Cryptogr. Secur., pp. 322–323, 2011, doi:

10.1007/978-1-4419-5906-5_316.

[197] P. Rogaway, “Efficient instantiations of tweakable blockciphers and refinements to modes

OCB and PMAC,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell.

Lect. Notes Bioinformatics), vol. 3329, pp. 16–31, 2004, doi: 10.1007/978-3-540-30539-

2_2.

[198] M. Dworkin, “Recommendation for Block Cipher Modes of Operation: The CMAC Mode

for Authentication,” NIST Spec. Publ. 800-38B, p. 25, 2005, [Online]. Available:

http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf

128

APPENDEX A

Figure A 1 VeraCrypt Volume Information

Figure A 2, VeraCrypt Header Encrypted Data Size Information

129

Figure A 3 VeraCrypt Hex View

Figure A 4 VeraCrypt IDA View

130

Figure A 5 x64dbg Windbg Tool

131

APPENDEX B

AxCrypt.

*/

#ifndef TC_HEADER_Volume_Volume

#define TC_HEADER_Volume_Volume

#include "Platform/Platform.h"

#include "Platform/StringConverter.h"

#include "EncryptionAlgorithm.h"

#include "EncryptionMode.h"

#include "Keyfile.h"

#include "VolumePassword.h"

#include "VolumeException.h"

#include "VolumeLayout.h"

namespace VeraCrypt

{

 class VolumePath

 {

 public:

 VolumePath () { }

 VolumePath (const wstring &path) { Data = path; }

 VolumePath (const FilesystemPath &path) { Data = path; }

 bool operator== (const VolumePath &other) const { return Data == other.Data; }

 bool operator!= (const VolumePath &other) const { return Data != other.Data; }

 operator FilesystemPath () const { return FilesystemPath (Data); }

 operator string () const { return StringConverter::ToSingle (Data); }

 operator wstring () const { return Data; }

 bool IsDevice () const { return FilesystemPath (Data).IsBlockDevice() || FilesystemPath

(Data).IsCharacterDevice(); }

 bool IsEmpty () const { return Data.empty(); }

 wstring GetExtension () const

 {

 if (Data.empty() || (Data.size() == 1))

132

 return L"";

 else

 {

 size_t pos = Data.find_last_of (L'.');

 if (pos == string::npos)

 return L"";

 return Data.substr (pos + 1);

 }

 }

 bool HasTrueCryptExtension () const

 {

 wstring sExt = GetExtension ();

 if ((sExt.size () == 2)

 && (sExt[0] == L't' || sExt[0] == L'T')

 && (sExt[1] == L'c' || sExt[1] == L'C')

)

 {

 return true;

 }

 else

 return false;

 }

 protected:

 wstring Data;

 };

 typedef list <VolumePath> VolumePathList;

 struct VolumeHostType

 {

 enum Enum

 {

 Unknown,

 File,

 Device

 };

 };

 struct VolumeProtection

133

 {

 enum Enum

 {

 None,

 ReadOnly,

 HiddenVolumeReadOnly

 };

 };

 class Volume

 {

 public:

 Volume ();

 virtual ~Volume ();

 void Close ();

 shared_ptr <EncryptionAlgorithm> GetEncryptionAlgorithm () const;

 shared_ptr <EncryptionMode> GetEncryptionMode () const;

 shared_ptr <File> GetFile () const { return VolumeFile; }

 shared_ptr <VolumeHeader> GetHeader () const { return Header; }

 uint64 GetHeaderCreationTime () const { return Header->GetHeaderCreationTime(); }

 uint64 GetHostSize () const { return VolumeHostSize; }

 shared_ptr <VolumeLayout> GetLayout () const { return Layout; }

 VolumePath GetPath () const { return VolumeFile->GetPath(); }

 VolumeProtection::Enum GetProtectionType () const { return Protection; }

 shared_ptr <Pkcs5Kdf> GetPkcs5Kdf () const {return Header->GetPkcs5Kdf(); }

 uint32 GetSaltSize () const {return Header->GetSaltSize(); }

 size_t GetSectorSize () const {return SectorSize; }

 uint64 GetSize () const {return VolumeDataSize; }

 uint64 GetEncryptedSize () const {return EncryptedDataSize; }

 uint64 GetTopWriteOffset () const {return TopWriteOffset; }

 uint64 GetTotalDataRead () const {return TotalDataRead; }

 uint64 GetTotalDataWritten () const { return TotalDataWritten; }

 VolumeType::Enum GetType () const { return Type; }

 bool GetTrueCryptMode() const { return TrueCryptMode; }

 int GetPim() const { return Pim;}

 uint64 GetVolumeCreationTime () const {return Header->GetVolumeCreationTime(); }

 bool IsHiddenVolumeProtectionTriggered333 () const {return

HiddenVolumeProtectionTriggered; }

134

 bool IsInSystemEncryptionScope () const { return SystemEncryption; }

 void Open (const VolumePath &volumePath, bool preserveTimestamps, shared_ptr

<VolumePassword> password, int pim, shared_ptr <Pkcs5Kdf> kdf, bool truecryptMode, shared_ptr

<KeyfileList> keyfiles, VolumeProtection::Enum protection = VolumeProtection::None, shared_ptr

<VolumePassword> protectionPassword = shared_ptr <VolumePassword> (), int protectionPim = 0,

shared_ptr <Pkcs5Kdf> protectionKdf = shared_ptr <Pkcs5Kdf> (),shared_ptr <KeyfileList>

protectionKeyfiles = shared_ptr <KeyfileList> (), bool sharedAccessAllowed = false, VolumeType::Enum

volumeType = VolumeType::Unknown, bool useBackupHeaders = false, bool

partitionInSystemEncryptionScope = false);

 void Open (shared_ptr <File> volumeFile, shared_ptr <VolumePassword> password, int

pim, shared_ptr <Pkcs5Kdf> kdf, bool truecryptMode, shared_ptr <KeyfileList> keyfiles,

VolumeProtection::Enum protection = VolumeProtection::None, shared_ptr <VolumePassword>

protectionPassword = shared_ptr <VolumePassword> (), int protectionPim = 0, shared_ptr <Pkcs5Kdf>

protectionKdf = shared_ptr <Pkcs5Kdf> (), shared_ptr <KeyfileList> protectionKeyfiles = shared_ptr

<KeyfileList> (), VolumeType::Enum volumeType = VolumeType::Unknown, bool useBackupHeaders =

false, bool partitionInSystemEncryptionScope = false);

 void ReadSectors (const BufferPtr &buffer, uint64 byteOffset);

 void ReEncryptHeader (bool backupHeader, const ConstBufferPtr &newSalt, const

ConstBufferPtr &newHeaderKey, shared_ptr <Pkcs5Kdf> newPkcs5Kdf);

 void WriteSectors (const ConstBufferPtr &buffer, uint64 byteOffset);

 bool IsEncryptionNotCompleted () const {return EncryptionNotCompleted; }

 protected:

 void CheckProtectedRange (uint64 writeHostOffset, uint64 writeLength);

 void ValidateState () const;

 shared_ptr <EncryptionAlgorithm> EA;

 shared_ptr <VolumeHeader> Header;

 bool HiddenVolumeProtectionTriggered;

 shared_ptr <VolumeLayout> Layout;

 uint64 ProtectedRangeStart;

 uint64 ProtectedRangeEnd;

 VolumeProtection::Enum Protection;

 size_t SectorSize;

 bool SystemEncryption;

 VolumeType::Enum Type;

 shared_ptr <File> VolumeFile;

 uint64 VolumeHostSize;

 uint64 VolumeDataOffset;

135

 uint64 VolumeDataSize;

 uint64 EncryptedDataSize;

 uint64 TopWriteOffset;

 uint64 TotalDataRead;

 uint64 TotalDataWritten;

 bool TrueCryptMode;

 int Pim;

 bool EncryptionNotCompleted;

 private:

 Volume (const Volume &);

 Volume &operator= (const Volume &);

 };

}

#endif // TC_HEADER_Volume_Volume

136

APPENDEX C

Publication in Journal

1. Z. H. Abdullahi, S. K. Singh, and M. Hasan, “Software Reverse Engineering Techniques

for Evaluating Anti-Forensic Encryption Tools: A Framework Development and

Analysis,” Int. J. Intell. Syst. Appl. Eng., vol. 12, no. 1s, pp. 620–632, 2024. [Scopus

Indexed]

Publication in Conferences

1. Z. H. Abdullahi and S. K. Singh, “A Conceptual and Technical Perspective of Reverse

Engineering In Digital forensic,” in 2nd International Conference on Recent Development

in Engineering ,Sciences, and Management Goverment Engineering College Bharatpur,

Rjasthan, 2023, no. April. [Online]. Available: ISBN; 978-9391535-43-8

2. The impact of Anti-forensic Techniques on Forensic Investigation Challenges,

International Conference of Computer Science Engineering and Emerging Technologies

(ICCS-2022) Taylor and Francis Group London. ISBN 978-1-032-52199-2 Booth100 6th

International Joint Conference On Computing Sciences (Iccs-2022) [Scopus Indexed]

3. Development of Evaluation Protocol for Anti-Forensics Encryption Tool Using Software Reverse

Engineering Techniques, International Conference of Computer Science Engineering and

Emerging Technologies (ICCS-2022) Taylor and Francis Group London. ISBN 978-1-032-52199-

2 Booth100 6th International Joint Conference On Computing Sciences (Iccs-2022)

[Scopus Indexed]

4. An Overview of Anti-forensic Techniques and their Impact on Digital Forensic Analysis,

4th International online multidisciplinary Research Conference, at Osmania University

Centre for international Program, Osmania University Campus Hyderabad, ISBN 978-93-

86171-283

